Identifizierung von Suszeptibilitätsloci für Typ-2-Diabetes mellitus in einem Mausmodell für das metabolische Syndrom

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Sandra Lebek geb. Osthold aus Hattingen

Düsseldorf, August 2018

aus dem Institut für Klinische Biochemie und Pathobiochemie des Deutschen Diabetes-Zentrums Leibniz-Zentrum für Diabetesforschung der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

- 1. Prof. Dr. Hadi Al-Hasani
- 2. Prof. Dr. Eckhard Lammert

Tag der mündlichen Prüfung: 29. August 2018

Inhaltsverzeichnis

Zusammenfassungen	1
Zusammenfassung	1
Summary	3
1. Einleitung	5
1.1 Diabetes mellitus	5
1.2 Entstehung des T2DM	6
1.3 Adipositas	7
1.3.1 Auswirkungen einer hochkalorischen Ernährung	8
1.4 Insulinresistenz	9
1.5 Mausmodelle	12
1.5.1 Mausstämme zur Untersuchung des T2DM	13
1.5.1.1 New Zealand Obese (NZO)-Mausstamm	13
1.5.1.2 129P2/OlaHsd-Mausstamm	14
1.6 Identifizierung von Suszeptibilitätsgenen für Adipositas und T2DM	15
1.6.1 Positionelle Klonierung	17
1.7 Zielsetzung	20
2. Material und Methoden	22
2.1 Material	22
2.1.1 Mausstämme	22
2.1.2 Tiernahrung	22
2.1.3 Zelllinien	22
2.1.4 Geräte	23
2.1.5 Chemikalien und Mixe	24
2.1.6 Reaktionskits	26
2.1.7 Enzyme	26
2.1.8 siRNA	27
2.1.9 Antikörper	27
2.1.10 Puffer und Lösungen	27
2.1.11 Verbrauchsmaterialien	29
2.1.12 SNP-Marker	
2.1.13 Oligonukleotide	
2.1.14 Datenbanken und Software	

2.2 Methoden	34
2.2.1 Tierexperimentelle Methoden	34
2.2.1.1 Verpaarungsstrategie zur Erzeugung einer N2 (NZOx129P2)-Population	on
und rekombinant kongenen Mauslinien (RCS)	34
2.2.1.2 Haltungsbedingungen	34
2.2.1.3 Metabolischen Charakterisierung	35
2.2.1.4 Nuclear-Magnetic-Resonance (NMR)-Technik	36
2.2.1.5 Fasting/Refeeding	37
2.2.1.6 Analyse der Metaboliten aus Mausblut	37
2.2.1.7 Finale Parameter und Gewebeentnahme	37
2.2.2 Molekularbiologische Methoden	38
2.2.2.1 Isolierung genomischer DNA	38
2.2.2.2 Isolierung und Aufarbeitung von Gesamt-RNA	38
2.2.2.1 Isolierung von Gesamt-RNA aus Muskel- und Lebergewebe	38
2.2.2.2 Isolierung von Gesamt-RNA aus Fettgewebe (gWAT, BAT)	39
2.2.2.3 Konzentrationsbestimmung von Nukleinsäuren4	40
2.2.2.4 cDNA-Synthese	40
2.2.2.5 Quantitative Real-Time PCR (qRT-PCR)4	41
2.2.2.6 Relative Quantifizierung4	43
2.2.2.7 Genotypisierung der N2 (NZOx129P2)-Population4	44
2.2.2.7.1 Genotypisierung mittels der Kompetitive Allele Specific PCR (KASP) -
Methode4	45
2.2.2.8 <i>Microarray</i> -Analyse4	46
2.2.3 Zellbiologische Methoden4	46
2.2.3.1 Zellaussaat und Transfektion muriner Hepa 1-6-Zellen4	47
2.2.3.2 Transfektion muriner Hepa 1-6-Zellen-knockdown von Txndc124	47
2.2.3.3 Lyse muriner Hepa 1-6-Zellen4	48
2.2.4 Biochemische Methoden4	49
2.2.4.1 Analyse der Plasmaparameter4	49
2.2.4.1.1 Bestimmung des Plasmainsulins4	49
2.2.4.1.2 Bestimmung der Triglyzeride(TG) im Plasma5	50
2.2.4.1.3 Bestimmung der freien Fettsäuren (FFA) im Plasma5	50
2.2.4.2 Gewebeanalyse	50
2.2.4.2.1 Leber- und Quadricepsgewebe5	50

2.2.4.2.1.1 Bestimmung des Glykogengehaltes in der Leber	0
2.2.4.2.1.2 Bestimmung der TG des Leber- sowie Quadricepsgewebes	1
2.2.4.2.2 Analyse des Gesamtinsulins des Pankreas	2
2.2.5 Proteinanalyse	3
2.2.5.1 Western-Blot	3
2.2.5.1.1 Proteinbestimmung	3
2.2.5.1.2 SDS-PAGE	3
2.2.5.1.3 Blotten und Blocken und Antikörperbehandlung	4
2.2.5.1.4 Detektion der Chemilumineszenz	5
2.2.6 Statistik	5
2.2.6.1 Quantitative Trait Loci (QTL)-Analyse	5
2.2.6.2 Expressions-Quantitative Trait Loci (eQTL)-Analyse	6
2.2.6.3 Test auf Normalverteilung und Signifikanz	6
2.2.6.4 Korrelationsanalyse nach Spearman	6
3. Ergebnisse	7
3.1 Erzeugung sowie metabolische Charakterisierung einer N2 (NZOx129P2))-
Population	7
3.1.1 Parental- und F1-Population	8
3.1.2 N2 (NZOx129P2)-Population	1
3.2 Genotypisierung und Kopplungsanalyse der N2 (NZOx129P2)-Generation6	7
3.2.1 Genotypisierung	7
3.2.2 Kopplungsanalyse (Quantitative Trait Loci (QTL) Analyse)6	7
3.2.2.1 Ermittelte Kopplungen der QTL-Analyse	8
3.2.2.2 Identifizierung des Suszeptibilitätslocus Nir4 auf Chromosom 470	6
3.3 Eingrenzung des Suszeptibilitätslocus Nir4 mittels Expressionsanalysen	2
3.3.1 Expressionsanalyse der Parentalstämme mittels Microarray-Technik82	2
3.3.2 Expressions analyse mittels quantitativer <i>Real-Time</i> PCR	5
3.3.2.1 Expressionsanalyse potentieller Kandidatengene in Tieren der 21-Wocher	n
alten Parentalstämmen	5
3.3.2.2 Expressionsanalyse potentieller Kandidatengene in der N2 (NZOx129P2))-
Population	1
3.3.2.2.1 Expressionsanalyse potentieller Kandidatengene in der Leber der Na	2
(NZOx129P2)-Männchen	1

3.3.2.2.2 Expression der Kandidatengene im SMq der N2 (NZOx129P2)-
Männchen
3.3.2.2.3 Expression der Kandidatengene im gWAT der N2 (NZOx129P2)-
Männchen
3.4 Expressions-QTL-Analyse (eQTL) und Korrelationsanalysen
3.4.1 eQTL-Analyse der Leber der N2 (NZOx129P2)-Männchen
3.4.2 eQTL-Analyse und Korrelationsanalysen für SMq der N2 (NZOx129P2)-
Männchen96
3.4.3 eQTL-Analyse und Korrelationsanylsen für gWAT der N2 (NZOx129P2)-
Männchen
3.5 Identifizierung des Suszeptibilitätsgens Txndc12
3.5.1 Expressionsanalyse von Txndc12 in Tieren der 21-Wochen alten
Parentalstämme
3.5.2 Analyse der mRNA- und Protein-Sequenz von Txndc12104
3.5.3 Vergleich der Aminosäuresequenz von TXNDC12107
3.5.4 Proteinexpression von TXNDC12108
4. Diskussion
4.1 Metabolische Charakterisierung der Mauspopulationen109
4.1.1 Parental-, F1- und N2 (NZOx129P2)-Population109
4.1.1.1 Metabolische Charakterisierung der Parental- und F1-Population110
4.1.1.2 Metabolische Charakterisierung der N2 (NZOx129P2)-Population110
4.2 Kopplungsanalyse
4.2.1 Identifizierung von Suszeptibilitätsloci auf Chromosom 2 und 4113
4.2.2 Der Suszeptibilitätslocus Nir4 auf Chromosom 4114
4.3 Expressionsanalysen
4.3.1 Expressionsanalysen mittels Microarray-Technik117
4.3.2 Eingrenzung des Nir4-Locus mittels qRT-PCR117
4.4 Expressions-QTL (eQTL)-Analyse118
4.4.1 Identifikation der T2DM- Suszeptibilitätsgene Hdhd3 und Alad119
4.4.1.1 Haloacid dehalogenase-like hydrolase domain-containing protein 3
(<i>Hdhd3</i>)121
4.4.1.2 Delta-Aminolävulinsäure-Dehydratase (Alad)121
4.5 Identifizierung des Suszeptibilitätsgens Txndc12
4.5.1 Das Protein TXNDC12

4.5.2 Proteinexpression von TXNDC12 im Lebergewebe	126
4.6 Ausblick	127
5. Literaturverzeichnis	128
6. Anhang	137
6.1 Tabellenverzeichnis	137
6.2 Abbildungsverzeichnis	138
6.3 Tabellen	141
6.4 Abbildungen	161
6.5 Abkürzungsverzeichnis	164
Danksagung	167

Zusammenfassungen

Zusammenfassung

Fragestellung

Die *New Zealand Obese* (NZO)-Maus entwickelt ein metabolisches Syndrom mit der Ausprägung von Adipositas, Hypertonie, Hyperglykämie und Dyslipidämie und wird als polygenes Modell für Adipositas und T2DM angesehen. Bislang sind die genetischen Ursachen, welche die NZO-Maus für T2DM prädisponieren, ungeklärt.

Ziel der vorliegenden Studie war es, im Rahmen des *Collaborative Diabetes Cross*-Projektes, neue Suszeptibilitätsloci für Adipositas und T2DM zu identifizieren. Dazu wurde eine Rückkreuzungspopulation aus der adipösen, T2DM-anfälligen NZO-Mauslinie mit dem schlanken, T2DM-resistenten 129P2-Mausstamm generiert. Nachfolgende Kopplungsanalysen (*Quantitative Trait Loci* (QTL)-Analysen) sollten signifikante Kopplungen (QTL) identifizieren.

Methoden

Männliche (n=290) und weibliche (n=307) Tiere der Rückkreuzungspopulation (N2), welche auf einem NZO-Hintergrund erzeugt wurde, sind phänotypisiert und unter Verwendung von Single Nucleotide Polymorphisms (SNP)-Markern genomweit genotypisiert worden. Ab dem Absatz im Alter von 3 Lebenswochen erhielten die Tiere eine Hochfettdiät (High-Fat Diet (HFD), 45 % Fett/Kalorien). In der 21. Lebenswoche erfolgten die Gewebe- und Plasma (Herzblut)-Entnahmen. Die erfassten quantitativen Merkmale wurden zusammen mit den ermittelten Genotypen in der QTL-Analyse (R/qtl-Software) auf mögliche signifikante Kopplungen hin untersucht. Die dem Suszeptibilitätslocus zugrundeliegenden Gene wurden anschließend über Expressionsanalysen (Microarray, qRT-PCR), Expressions-QTL (eQTL)-Analysen, und Proteinexpressionsanalysen auf Expressionsunterschiede hin untersucht.

Ergebnisse

Die QTL-Analyse führte zur Identifizierung des Suszeptibilitätslocus *Nir4* (NZO *insulin resistance* Chr. 4) auf Chromosom 4, welcher mit einer erhöhten Blutglukose (Woche 17), Finale Blutglukose (FBG) und Lebergewicht in den NZO/129P2 (N/O)-Allel-Trägern der N2-Männchen einherging. Das kritische QTL-Intervall hat eine

Ausdehnung von 57,91 Mb und umfasst den Bereich zwischen 58,07 und 115,98 Mb. Die stärkste signifikante Kopplung wurde für das Merkmal Blutglukose in der 17. Lebenswoche mit einem Logarithm of the Odds (LOD)-score von 7,1 bei 41,37 cM (97,25 Mb) festgestellt. Die T2DM-Prävalenz war in den N/O-Allel-Trägern im Vergleich zu den NZO/NZO (N/N)-Allel-Trägern um 26,5 % erhöht. Letztere entwickelten keine Hyperglykämie. Expressionsanalysen der am Nir4-Locus lokalisierten Gene führten zur Identifizierung der Kandidatengene Hdhd3 und Alad, welche bei 62,50 Mb bzw. 62,51 Mb lokalisiert sind. Hierbei wurden im gWAT signifikante Expressionsunterschiede zwischen N/N-Allel-Trägern und N/O-Allel-Trägern ermittelt. Die Genexpression beider Gene war in den N/O-Allel-Trägern reduziert und korrelierte sowohl mit einer erhöhten Blutglukose (Woche 17) als auch FBG. Zudem war eine geringe Genexpression von Alad mit einer Zunahme des Lebergewichtes assoziiert. Mithilfe von eQTL-Analysen konnte ein Zusammenhang zwischen der Genexpression von Hdhd3 und Alad mit cis-wirkenden Elementen des Nir4-Locus festgestellt werden. Ein weiteres Kandidatengen, Txndc12, wurde über einen Sequenzvergleich zwischen NZO- und 129P2-Tieren identifiziert. Im NZO-Genom wurde eine Punktmutation identifiziert, die zu einem Aminosäureaustausch eines evolutionär hoch konservierten Alanins im Signalpeptid von TXNDC12 führt (Ala7Pro). Der Austausch hat mögliche funktionelle Konsequenzen bei der Lokalisation des Proteins. Die Txndc12-Variante des NZO-Stammes war mit einer niedrigen Blutglukose (Woche 17), FBG und Lebergewicht assoziiert.

Schlussfolgerung

Im Rahmen der vorliegenden Arbeit konnte der T2DM-Suszeptibilitätslocus *Nir4* auf Chromosom 4 identifiziert werden. Die diabetogene Wirkung des *Nir4*-Locus korreliert mit einer reduzierten Genexpression der Gene *Hdhd3* und *Alad* und ist mit einer funktionsfähigen TXNDC12-Variante des 129P2-Stammes assoziiert. Denkbar wäre, dass eine veränderte 129P2-Variante im *Hdhd3*- und *Alad*-Gen den T2DM in den N/O-Allel-Trägern begünstigte. Weiterhin kann postuliert werden, dass ein Vorliegen einer Mutation in *Txndc12*-Gen die N/N-Allel-Träger vor einem T2DM schützte.

Summary

Background and aims

Inbred strains of mice can be used as model system for human metabolic diseases. New Zealand obese (NZO) mice present the metabolic syndrome with symptoms of obesity, hypertension, hyperglycemia and dyslipidemia and are considered as a polygenic model for obesity and type 2 diabetes (T2D). Until today, the genetic variants that predispose NZO mice to the development of diabetes have not been elucidated. As part of the *Collaborative Diabetes Cross* project, the aim of this study was to identify novel susceptibility loci for obesity and diabetes by combining gene-driven and phenotyping approaches. Therefore, we crossbred obese diabetes-prone NZO mice with lean diabetes-resistant 129P2 mice and performed *Quantitative Trait Loci* (QTL) analysis.

Methods

Animals (307 females and 290 males) of the backcross population (N2) were phenotyped and genotyped by using a genome-wide high-density SNP panel. All mice received a high fat diet (45 % fat/calories) after weaning at 3 weeks of age. After 21 weeks of age, mice were sacrificed and tissues as well as plasma were harvested. The calculations of phenotype-genotype associations were performed by QTL analysis using R/qtl software. Differences of expression levels of genes underlying the identified susceptibility loci were analysed using expression analysis (qRT-PCR and Microarray approaches) expression QTL (eQTL)-calculations, and protein expression analysis.

Results

Linkage analysis identified the T2DM-susceptibility locus *Nir4* on chromosome 4. This locus was associated with high blood glucose (week 17), final blood glucose, and liver weight levels in the NZO/129P2 (N/O) allele carriers of the N2 males. *Nir4* is located between 58.07 and 115.98 Mb on chromosome 4. The major significant linkage was detected for blood glucose at 17 weeks of age (Logarithm of the Odds (LOD) 7.1) at 41.37 cM (97.25 Mb). The T2DM prevalence was 26.5 % higher in N/O allele carriers compared to NZO/NZO (N/N) allele carriers. Mice identified with the N/N allele had a hypoglycemic phenotype. Expression analysis revealed the two candidate genes *Hdhd3* (62.50 Mb) and *Alad* (62.51 Mb) in gWAT tissue. In this tissue, N/O allele carriers showed lower gene expression for both genes compared to N/N allele carriers. Reduced

gene expression of *Hdhd3* and *Alad* was associated with higher levels of blood glucose (week 17) and final blood glucose. Furthermore, lower gene expression of *Alad* was correlated with increased liver weight. By using eQTL analysis, the gene expression of *Hdhd3* and *Alad* was linked to *cis*-acting elements of *Nir4*. Moreover, the candidate gene *Txndc12* was identified due to sequence comparison of NZO and 129P2 mice. In the genome of NZO a missense mutation was identified, which leads to an aminoacid exchange of alanine in the signal peptide of TXNDC12 (Ala7Pro). At this position, the alanine is evolutionarily highly conserved, suggesting a functional consequence in protein location. The variant of *Txndc12* in NZO mice was associated with lower levels of blood glucose (week 17), final blood glucose and liver weight.

Conclusion

In the present study, the T2DM-susceptibility locus *Nir4* was identified on chromosome 4. The diabetogenic effect of *Nir4* correlates with reduced gene expression levels of *Hdhd3* and *Alad* and is associated with a functional variant of the TXNDC12 protein. It was assumed that variants of *Hdhd3* and *Alad* in the 129P2 strain led to hyperglycemia in the N/O allele carriers. Furthermore, it was suggested that a mutation of *Txndc12* protects N/N allele carries against T2DM.

1. Einleitung

1.1 Diabetes mellitus

Der Diabetes mellitus stellt eine chronische Stoffwechselerkrankung dar, dem eine chronische Erhöhung des Blutzuckers (Hyperglykämie) zugrunde liegt. Hierbei können eine gestörte Insulinproduktion durch das Pankreas oder eine verminderte Insulinwirkung auf die Körperzellen oder beides gemeinsam verantwortlich sein, was u.a. zu Schädigungen des Nerven- sowie Blutgefäßsystems führt (Tao *et al.*, 2015).

Diese Erkrankung wird in zwei Typen unterschieden: Typ-1 sowie Typ-2-Diabetes mellitus. Typ-1-Diabetes mellitus (T1DM) wird durch einen Insulinmangel infolge einer Zerstörung der insulinproduzierenden Betazellen des Pankreas verursacht und entsteht meistens bereits im Kindes- oder Jugendalter. Als Ursache werden eine Zusammenwirkung erblicher Veranlagung und Umweltfaktoren sowie eine Fehlsteuerung des Immunsystems angesehen (Akerblom et al., 2002). Dagegen tritt der Typ-2-Diabetes mellitus (T2DM) bei einer auf die Körperzellen verminderten Insulinwirkung auf und betrifft meist Erwachsene ab dem 40. Lebensjahr. Charakterisiert wird dieser durch eine vorliegende Hyperglykämie in Kombination mit einer Hypoinsulinämie (American Diabetes Association, 2009). Ursächliche Faktoren sind eine Kombination aus genetischer Veranlagung sowie Lebensstil (Rathmann et al., 2005). Der mit Abstand am häufigsten auftretende Typ des Diabetes mellitus ist der T2DM. Weltweit leiden 90 % der an einer Diabeteserkrankung betroffenen Menschen an T2DM (WHO, 2016). Im Jahr 2012 wurden schätzungsweise 1,5 Millionen Todesfälle durch T2DM verursacht (WHO, 2014a). Die Weltgesundheitsorganisation (World Health Organization, WHO) schätzte für das Jahr 2014 die globale Diabetesprävalenz bei 9 % aller Erwachsenen über 18 Jahren ein (WHO, 2014b). Für das Jahr 2030 wird Diabetes als eine der führenden Todesursachen vorhergesagt (Mathers & Loncar, 2006). In Deutschland leiden circa 6,7 Millionen Menschen an Diabetes, von denen 95 % an einen T2DM erkrankt sind. Eine im Jahr 2016 erschienene Studie humaner Gesundheitsdaten einer Altersgruppe zwischen 40 und 80 Jahren zeigte, dass in Männern eine signifikant höhere T2DM-Prävalenz vorliegt als bei Frauen (Tamayo et al., 2016).

1.2 Entstehung des T2DM

Die Entwicklung eines T2DM ist bislang nicht gänzlich verstanden. Es wird angenommen, dass die abdominale Adipositas ein zentraler Risikofaktor für die Entstehung des T2DM darstellt. Diese entwickelt sich aus einer Kombination aus hochkalorischer Ernährung sowie Bewegungsmangel. Liegt zudem eine genetische Prädisposition für T2DM vor, kann diese zusammen mit der Adipositas die primäre Phase des T2DM einleiten, welche durch eine Insulinresistenz charakterisiert wird. Bei einer Insulinresistenz liegt eine Störung der Glukoseaufnahme der peripheren Gewebe (Fett-, Leber- und Muskelgewebe) vor. Die Insulinresistenz stellt den zentralen Faktor für die jeweiligen Symptome als auch Folgeerkrankungen des metabolischen Syndroms dar, welches einen Sammelbegriff für folgende Risikofaktoren für T2DM repräsentiert: Adipositas, Hypertonie, Hyperglykämie, Dyslipidämie (Kadowaki et al., 2006; Joost & Schürmann, 2014). Jedoch mündet nicht jede Insulinresistenz sowie Adipositas in einen T2DM. Die Gründe sind derzeit nicht bekannt. Studien zeigen, dass ein möglicher kausaler Effekt in der Ausbildung der Blutgefäße besteht. So erkranken insulinresistente Menschen mit einem Blutgefäßdefekt häufiger an einem T2DM als solche, die intakte Blutgefäße besitzen (Lammert, 2008).

Einer beginnenden Insulinresistenz steuert der Körper mit einer Erhöhung der Insulinsekretion aus den Betazellen des Pankreas entgegen (Hyperinsulinämie). Nimmt die Betazellmasse ab, kann diese Kompensierung nicht mehr gewährleistet werden und der T2DM manifestiert sich (sekundärer T2DM). Dabei kann eine Funktionsstörung innerhalb der Mitochondrien eine zentrale Rolle spielen, welche u.a. die Aufgabe besitzen, den apoptotischen Betazelluntergang zu regulieren. Im Falle einer Hyperglykämie werden vermehrt reaktive Sauerstoffspezies (*Reactive Oxygen Species*, ROS) in den Mitochondrien gebildet (Glukotoxizität). Diese aktivieren zum einen das mitochondriale Protein UCP2, wodurch die ATP-Synthese in den Betazellen gesenkt und als Konsequenz die Regulierung der glukosestimulierten Insulinsekretion gestört wird. Zum anderen oxidieren ROS mehrfach-ungesättigte Fettsäuren des Phospholipids Cardiolipin, wodurch die Freigabe von Cytochrom C aus den Mitochondrien ins Zytoplasma erfolgt. Cytochrom C ist dort an der Aktivierung verschiedener Caspasen (Caspase 9, 3, 6 und 7) beteiligt, die die Betazellen während der Apoptose zersetzen (Ma et al., 2011). Außerdem führt Adipositas zu einer ektopischen Fettakkumulation im Pankreas, was die Apoptose der Betazellen einleitet (Lipotoxizität) (Li et al., 2008). Neben dem apoptotischen Betazelluntergang, werden zurzeit weitere mögliche Mechanismen diskutiert, die zu einem Versagen von Betazellen führen können. So kommen inflammatorische Formen, wie Nekrose (Burkart *et al.*, 1999) und deren Unterform Nekroptose, als mögliche Ursachen in Frage. Der Begriff Nekroptose wurde im Jahr 2005 von Degterev und Kollegen geprägt, welcher sich aus Elementen der Apoptose und Nekrose zusammensetzt. Dabei werden wie bei der Apoptose ähnliche Todesrezeptoren der Fas/TNFR-Familie der Zelle aktiviert, welche jedoch einen nekrotischen Zelltod mit anschließender Immunantwort zur Folge haben (Degterev *et al.*, 2005).

1.3 Adipositas

Adipositas gilt als eine der größten gesundheitlichen Herausforderungen des 21. Jahrhunderts. Dabei wird diese Erkrankung als Anreicherung von Fettmasse über den Normbereich definiert und anhand des Body Mass Index (BMI) ermittelt. Dieser Wert setzt sich aus der Relation des Körpergewichtes zur Körpergröße zusammen. Bei Übergewicht liegt ein BMI von 25,0–29,9 kg/m² vor. Überschreitet der BMI 30,0 kg/m², gilt dies als Adipositas (WHO, 2014b).

Innerhalb der letzten drei Jahrzehnte nahm die Adipositas-Prävalenz in nahezu allen Industrieländern zu (Yeo, 2017). Im Jahr 1980 litten weltweit 5 % der Männer und 8 % der Frauen an Adipositas, wogegen sich binnen 28 Jahren die Prävalenz nahezu verdoppelte. So waren im Jahr 2008 weltweit 10 % der Männer sowie 14 % der Frauen betroffen (WHO, 2011). Wie dem T2DM liegt der Adipositas ebenfalls eine genetische Disposition zugrunde. Sowohl Human- als auch Mausstudien identifizierten u.a. den Leptin-Melanocortin Signalweg im Hypothalamus, welcher zum Appetitverhalten beiträgt (Cone, 2005). Eine genetische Störung dieses Signalweges führt in Mensch und Maus zu einer ausgeprägten Adipositas (Yeo & Heisler, 2012). So bedingen Mutationen im Leptingen (Zhang *et al.*, 1994) sowie im Leptin- (Lee *et al.*, 1996) als auch Melanocortin-4 (MC4)-Rezeptor eine Hyperphagie, Adipositas und einen reduzierten Energieverbrauch (Adan *et al.*, 2006; Clément *et al.*, 1998). Der reduzierte Energieumsatz ist Folge dieser Mutationen, da hierdurch das Thyrotropin-Releasing-Hormon (TSH) nicht mehr stimuliert werden kann, welches zur Aufgabe hat, den Grundumsatz zu regulieren (Görtzen & Veh, 2007).

Das Hormon Leptin, welches 1994 entdeckt wurde (Zhang et al., 1994), wird vom weißen Fettgewebe (White Adipose Tissue, WAT) produziert und sekretiert. Seine

Funktion liegt in der Regulierung der Energiehomöostase, indem es die Energieaufnahme in Form von Triglyzeriden (TG) und den Energieverbrauch über freie Fettsäuren (*Free Fatty Acids*, FFA) kontrolliert (Tourkantonis *et al.*, 2013; Kadowaki *et al.*, 2006) und somit das Appetitverhalten sowie das Körpergewicht reguliert. Dabei liegt seine Hauptaufgabe in der Aufrechterhaltung der Fettspeicherkapazität (Ahima *et al.*, 1996). In einem gesunden Organismus hemmt Leptin den Appetit. Der im Leptin-Melanocortin Signalweg vorhandene MC4-Rezeptor besitzt ähnlich zu Leptin die Aufgabe, das Hungergefühl zu unterdrücken. Dagegen agiert das Hormon Ghrelin als appetitanregendes Hormon als Gegenspieler. Es wurde postuliert, dass Ghrelin die Tumornekrosefaktor- α (TNF- α)-induzierte Apoptose in Adipozyten reduziert und demzufolge eine schützende Funktion im menschlichen Fettgewebe inne hat (Rodríguez, 2014).

1.3.1 Auswirkungen einer hochkalorischen Ernährung

FFA können neben der körpereigenen Herstellung (WAT, Lipolyse; Leber, de novo Lipogenese) auch mit der Nahrung in unveresterter Form aufgenommen werden. Nach einem fettreichen Mahl transportieren Chylomikronen Nahrungsfette aus dem Blut in das viszerale weiße Fettgewebe (visceral White Adipose Tissue, vWAT). Dort werden sie als Triglyzeride gelagert und bei Bedarf als FFA freigesetzt. Eine Anreicherung des viszeralen Fettgewebes, bedingt durch eine hochkalorische Ernährung, führt zu einer Erhöhung frei zirkulierender FFA. Liegt eine verstärkte Freigabe an FFA vor, kann dies zu einer Insulinresistenz der peripheren Gewebe (Leber, Muskel, gonadales weißes Fettgewebe (gonadal White Adipose Tissue, gWAT)) beitragen. Am Beispiel der hepatischen Insulinresistenz gelangen die frei zirkulierenden FFA über die Pfortader auf direktem Wege in die Leber. Zudem kann die Leber über die de novo Lipogenese eigens FFA aus Glukose, welche ebenfalls über den Glukosetransporter 2 (GLUT 2) aus dem Blut aufgenommen wird, erzeugen. Die Leber baut FFA über β-Oxidation in der mitochondrialen Matrix zu Acetyl-CoA ab, wodurch ROS entstehen (Rosca et al., 2012). Weiterhin besitzt sie die Funktion aus FFA Triglyzeride zu erstellen, die ihrerseits verpackt in very-low-density-Lipoproteine (VLDL) aus der Leber heraus transportiert werden, sofern ein Energieüberschuss in diesem Gewebe vorliegt. VLDL wird dabei von den Hepatozyten selbst synthetisiert (Ebbert & Jensen, 2013).

Abb. 1: Auswirkungen einer HFD auf die Leber. Eine HFD verursacht einen Einstrom an FFA aus dem vWAT über die Pfortader in die Leber. Die aus der HFD aufgenommene Glukose kann in der Leber über die *de novo* Lipogenese in FFA verstoffwechselt werden. So entsteht eine Anreicherung an FFA, welche die Leber in TG umwandelt und als VLDL freigibt. Weiterhin können FFA über die mitochondriale β -Oxidation zu Acetyl-CoA oxidiert werden, was zu einer Bildung von ROS führt. Eine HFD zieht folglich eine gesteigerte Beta-Oxidation sowie ROS-Bildung nach sich. IR=Insulinresistenz; HFD=Hochfettdiät; DNL=*de novo* Lipogenese; FFA=*Free Fatty Acids* (Freie Fettsäuren); vWAT=*visceral White Adipose Tissue* (viszerales Fettgewebe); TG=Triglyzeride; VLDL=*very-low-density*-Lipoproteine; ROS=*Reactive Oxygen Species* (reaktive Sauerstoffspezies). Modifiziert nach (Marra *et al.*, 2008).

Zusammengefasst ist die Konsequenz einer fettreichen Ernährung (*High-Fat Diet*, HFD) eine viszerale Adipositas, ein nachfolgender Anstieg an FFA, eine Insulinresistenz sowie eine Zunahme der ROS-Produktion (Marra *et al.*, 2008) (Abb. 1).

1.4 Insulinresistenz

Die Insulinresistenz ist durch eine verminderte Wirksamkeit des pleiotropen Hormons Insulin auf die Insulinrezeptoren peripherer Organe gekennzeichnet. Dabei können sowohl Muskel, Leber als auch Fettgewebe eine Resistenz gegenüber Insulin entwickeln.

Die genauen Ursachen, die eine Insulinresistenz auslösen, sind bisher nicht geklärt. Unter anderem wird angenommen, dass eine Störung in der Fettsäureverwertung als auch eine Entzündungsreaktion als kausale Faktoren der Insulinresistenzentstehung unterliegen. Dabei spielt das vWAT eine entscheidende Rolle. Nachfolgend ist in Abbildung 2 ein schematischer Überblick der Entwicklung einer Insulinresistenz beschrieben.

Abb. 2: Entwicklungsstadien der Insulinresistenz. Über die Nahrung wird Glukose insulinabhängig über Glukosetransporter aufgenommen. Primär erfolgt die Glukoseaufnahme im Skelettmuskel (bis zu 90 %), wo diese in Form von Glykogen gespeichert wird. Das Fettgewebe (*white adipose tissue*, WAT) speichert die aufgenommene Glukose als Energie in Form von Triglyzeriden (TG), welche als freie Fettsäuren (FFA) abgegeben werden können. Eine zusätzliche Funktion des Fettgewebes besteht in der Sezernierung von Adipokinen. Die Leber kann zum einen ebenfalls Glukose in Form von Glykogen speichern, zum anderen eigenständig über die Glukoneogenese synthetisieren, sofern ein Insulinmangel vorliegt. Infolge einer hochkalorischen Ernährung gekoppelt mit Bewegungsmangel kann Adipositas entstehen. Als Konsequenz steigt die Freigabe an FFA sowie Adipokinen aus dem sich vergrößernden viszeralen Fettgewebe an, was in eine Insulinresistenz des Fettgewebes, des Muskels sowie der Leber münden kann. Modifiziert nach (Leto & Saltiel, 2012).

In Folge einer anhaltenden fettreichen Ernährung kann eine Zunahme der Fettzellgröße (Hypertrophie) als auch eine Zunahme der Zellzahl (Hyperplasie) des vWAT und folglich Adipositas entstehen. Dies hat eine gesteigerte Lipolyse im vWAT zur Konsequenz, wodurch vermehrt frei zirkulierende FFA entstehen (Cao *et al.*, 2012). Liegt eine erhöhte Menge an frei zirkulierenden FFA aufgrund von Hyperplasie und Hypertrophie von Adipozyten vor, kann dies als ein Indiz einer Insulinresistenz des Fettgewebes angesehen werden. Ursache ist die Aktivierung des *Toll-like*-Rezeptors 4 (TLR4) durch seinen Liganden Fetuin-A, was zu einer FFA-induzierten Insulinresistenz im Fettgewebe führt (Gogoi *et al.*, 2014; Pal *et al.*, 2012). Eine gesteigerte Lipolyse des Fettgewebes kann aber auch durch einen vorliegenden Entzündungsprozess verursacht werden. Es ist beschrieben, dass eine Adipositas mit einem systemischen Entzündungsstatus (*Metaflammation*) assoziiert ist (Lauterbach & Wunderlich, 2017). So ist das Fettgewebe, welches als ein endokrines Organ angesehen wird, in der Lage, neben Adipokinen (wie Adiponektin) auch proinflammatorische Zytokine (wie Interleukin-6 (IL-6) und TNF- α) zu produzieren. Dabei können die Zytokine ebenfalls

zu einer gesteigerten Lipolyse im vWAT (Lauterbach & Wunderlich, 2017; Shulman, 2014) führen. Die durch das vWAT freigesetzten FFA können vom Skelettmuskel und der Leber aufgenommen werden. Liegt eine erhöhte Freisetzung von FFA vor, kann dies eine ektopische Anlagerung von Triglyzeriden in Muskel- und Lebergewebe nach sich ziehen und ebenfalls in eine Insulinresistenz beider Gewebe münden (Lettner & Roden, 2008). Es wurde postuliert, dass im Muskel die Fettintermediate in der Lage sind, die Proteinkinase C- Θ (PKC- Θ), eine Serin/Threonin Kinase, zu aktivieren. Die aktivierte PKC- Θ hemmt die Insulinsignalkaskade und setzt so die Insulinsensitivität der Insulinrezeptoren der Skelettmuskelzellen herab (de Luca & Olefsky, 2008). Dies führt im Weiteren zu einer gestörten Translokation des Glukosetransporters-4 (GLUT4) an die Plasmamembran (Shulman, 2014). In der Leber kann dagegen die Aktivierung der Proteinkinase C- ε (PKC- ε) erfolgen, wodurch die Aktivität der intrazellulären Kinasedomäne des Insulinrezeptors gehemmt und somit die hepatische Insulinresistenz eingeleitet wird (Perry *et al.*, 2014).

Neben einer ektopischen Anlagerung von Fettintermediaten, welche durch eine gestörte Lipolyse des Fettgewebes verursacht wird, wird auch oxidativer Stress als möglicher Auslöser einer Insulinresistenz diskutiert (de Luca & Olefsky, 2008). Es wurde postuliert, dass eine erhöhte Freisetzung von FFA und Adiponektinen zu oxidativem Stress beitragen, indem vermehrt ROS infolge von mitochondrialem Stress gebildet werden (Lettner & Roden, 2008).

Im Skelettmuskel, Fettgewebe, sowie in der Leber insulinsensitiver Individuen stimuliert Insulin sowohl die Glukoseaufnahme als auch die Glykogensynthese (Perry *et al.*, 2014) und hemmt gleichzeitig die Glukoneogenese in der Leber. Die Glukoseaufnahme wird über die Translokation des GLUT4 zur Plasmamembran der Skelettmuskel- und Fettzelle ermöglicht, der primäre Glukosetransporter in der Leberzelle ist GLUT2. Ungefähr 90 % der insulinstimulierten Glukoseaufnahme findet dabei im Skelettmuskel statt (Kraegen *et al.*, 1985). Liegt ein Überschuss an frei zirkulierender Glukose vor, kann diese in Form von Glykogen sowohl im Skelettmuskel als auch der Leber gespeichert werden. Gleichzeitig hemmt Insulin im WAT die Lipolyse, was die Freigabe von FFA aus den Adipozyten vermindert. Individuen, welche eine Insulinresistenz entwickelt haben, besitzen folglich eine verminderte Glukosetoleranz, eine erhöhte hepatische Glukoseproduktion sowie einen Anstieg frei zirkulierender FFA (de Luca & Olefsky, 2008). Als Konsequenz produzieren die

pankreatischen β-Zellen vermehrt Insulin, um die überschüssige Blutglukose in die Zellen zu transportieren. Mittels folgender Methoden kann eine vorliegende werden: oder Insulinresistenz festgestellt Glukose-Insulintoleranztest, Hyperinsulinämische-euglykämische Clamp (hyperinsulinemic euglycaemic clamp, HIEC)-Technik oder die Ermittlung des Homeostasis Model Assessment (HOMA)-Index (van Dijk *et al.*, 2013). Die HIEC-Technik ist der Goldstandard zur Bestimmung der Insulinwirkung. Dabei kann die direkte Messung der Insulinresistenz erfolgen. Jedoch stellt dies ein sehr aufwendiges Verfahren dar. Hierbei werden Insulin und Glukose gleichzeitig intravenös verabreicht, wodurch eine Hyperinsulinämie herbeigeführt wird. Die Glukoseinfusionsgeschwindigkeit, welche notwendig für einen konstanten Blutzucker ist, wird ermittelt und gibt Aufschluss über eine vorhandene Insulinresistenz.

1.5 Mausmodelle

In Mäusen kann sowohl Adipositas als auch T2DM (>300 mg/dl (16,6 mmol/l)) (Joost & Schürmann, 2014) abhängig vom verwendeten Mausstamm, durch eine HFD induziert oder verstärkt werden. Es gibt T2DM-sensitive, wie die New Zealand Obese (NZO), als auch T2DM-resistente (z. B. SJL) Mausstämme. Zudem sind diverse fettreiche Tiernahrungen erhältlich. Eine gewöhnliche HFD setzt sich meist aus 25-40 % Rohfett mit 45-60 % Kalorien aus Fett zusammen. Des Weiteren variieren solche Nahrungen in ihrem Anteil an Saccharose (Mirhashemi et al., 2008; Brockmann & Neuschl, 2012). Mirhashemi und Kollegen untersuchten den Einfluss von Saccharose, Fettgehalt als auch Fettqualität auf NZO-Tiere. Ihre Studie zeigte, dass in diesen Tieren ein erhöhter Fettanteil das Einsetzen des T2DM beschleunigt und verschlimmert, unabhängig von der Qualität und des Saccharosegehaltes und ohne Einfluss auf das Körpergewicht. Dagegen führt eine Standardernährung zu einem reduzierten Körpergewicht sowie zu einer Verzögerung in der T2DM-Entwicklung (Mirhashemi et al., 2010). Diese Standarddiät besteht meist aus 4,5 % Rohfett, 22 % Rohprotein, 50 % Stärke oder andere Zucker. Der Energiegehalt setzt sich wie folgt zusammen: 11 % aus Fett, 36 % aus Protein und 53 % aus Kohlenhydraten (Brockmann & Neuschl, 2012).

1.5.1 Mausstämme zur Untersuchung des T2DM

Zu Beginn des 20. Jahrhunderts ist der erste Maus-Inzuchtstamm (DBA, Jahr 1909) durch Clarence Cook Little, einem Student von William E. Castle, erzeugt worden (Paigen, 2003). Im Jahr 1929 gründete Little, gefördert durch die Automagnaten Edsel Ford und Roscoe Jackson, das Jackson Laboratorium in Maine, welches im Jahr 2007 bereits 2.000 Inzuchtstämme beherbergte (Clee & Attie, 2007). Für die Untersuchung des T2DM gibt es eine Vielzahl an Inzuchtstämmen, mit monogenen (z.B. Lep^{ob/ob}) oder polygenen Anlagen (z.B. NZO) zu Adipositas, Insulinresistenz und Diabetes. Genetische Suszeptibilitätsloci (Quantitative Trait Loci, QTL) stellen Regionen auf Chromosomen dar, die mit der Ausprägung eines quantitativen Merkmals (z.B. Blutglukose) assoziiert sind. Um Suszeptibilitätsloci für T2DM sowie Adipositas zu identifizieren, bedient man sich gezielt verpaarter Filialgenerationen (F2) bzw. Rückkreuzungspopulationen (N2), welche aus einem z.B. diabetesanfälligen und einem -resistenten Mausstamm erzeugt werden. Diese Tiere können im Hinblick auf das zu untersuchende Krankheitsbild metabolisch charakterisiert werden (Ortlepp et al., 2000). Als diabetesresistente Mausstämme sind beispielsweise C57BL/6J (B6), SJL, C3H, DBA und 129P2/OlaHsd (129P2) beschrieben (Almind & Kahn, 2004). In dieser Arbeit erfolgte die Erzeugung einer N2-Population aus weiblichen NZO/HI (NZO) und männlichen 129P2. Der Vorteil einer N2-Generation besteht zum einen darin, eine große Anzahl diabetischer Tiere zu erhalten (bis zu 50 %), da diese einen höheren Anteil des NZO-Genoms besitzen (75 % nach Mendelschem Gesetz). Zum anderen kann eine rezessive Mutation erkannt werden, wenn die F1-Generation auf den diabetesanfälligen Mausstamm, welcher rezessive Allele beherbergt, zurückgekreuzt wird (Brockmann & Neuschl, 2012).

1.5.1.1 New Zealand Obese (NZO)-Mausstamm

Der NZO-Stamm stellt ein polygenes Modell zur Untersuchung des metabolischen

Abb. 3: New Zealand Obese (NZO) Maus.

Syndroms dar. Dieser Stamm prägt aufgrund einer Hyperphagie, bedingt durch eine Leptinresistenz (Giesen *et al.*, 2003; Jürgens *et al.*, 2006), eine früh einsetzende Adipositas (McInerney *et al.*, 2004), Insulinresistenz, Hypertonie sowie Dyslipidämie aus, welche mit dem humanen Erkrankungsbild vergleichbar sind (Ortlepp *et al.*, 2000). Männliche Tiere entwickeln eine Hyperglykämie sowie Hyperinsulinämie ab einem Lebensalter zwischen 8–12 Wochen und ein später einsetzendes Betazellversagen, welches mit einer geringeren Plasmainsulinkonzentration einhergeht (Joost & Schürmann, 2014). Weibliche Tiere sind aufgrund des Hormons Östrogen vor T2DM nahezu geschützt (Vogel *et al.*, 2013). Plum und Kollegen zeigten im Jahr 2002, dass fettreiche Nahrung gepaart mit einer genetischen Disposition zu einem deutlichen Anstieg der T2DM-Prävalenz in NZO-Mäusen führt (Plum *et al.*, 2002). Erhalten diese Tiere jedoch eine kohlenhydratfreie Ernährung, sind sie vor Hyperglykämie sowie Betazelluntergang geschützt (Jürgens *et al.*, 2007).

Im Jahr 1948 generierte Dr. Franz Bielschowsky an der *New Zealand Otago Medical School* u.a. den agoutifarbenen NZO-Stamm. Dieser entstammt einer Mauskolonie aus dem *Imperial Cancer Research Fund* Labor in London, welche durch W. H. Hall im Jahr 1930 nach Neuseeland übersiedelt wurde. Der in dieser Arbeit verwendete NZO/HI-Stamm resultiert aus der NZO/BI-Population der *New Zealand Otago Medical School* und wurde von Lieselotte Herberg am Deutschen Diabetes-Zentrum etabliert. Aus dem NZO/HI-Stamm erzeugte E. Leiter anschließend die NZO/HILtJ-Kolonie am Jackson Laboratorium in Maine (Kluge *et al.*, 2012).

1.5.1.2 129P2/OlaHsd-Mausstamm

Der 129-Mausstamm ist 1928 von L. C. Dunn an der Columbia University aus einer

Abb. 4: 129P2/OlaHsd Maus. www.taconic. com, 2018.

Kreuzung von Farbmäusen mit einem Chinchilla-Stamm (Tyr^{c-ch}) von William E. Castle erzeugt worden. Im Jahr 1945 wurde der 129-Mausstamm zu Russell ans Laboratorium Maine Jackson in überführt. Hauptsächlich wird dieser Stamm am Tyr-Locus, welcher für die Pigmentierung verantwortlich ist, aufrechterhalten, so dass die Fellfarbe entweder Albino oder Chinchillaton einem hellen gleicht. Der

129P2/OlaHsd-Stamm wurde im Jahr 1978 zu G. D. Searle, High Wycomb, überführt. Ein Jahr später gelangte dieser zum Harlan Laboratorium, welches im Jahr 2015 mit Huntingdon Life Sciences zu Envigo fusionierte (Envigo, 2016). Tiere des 129P2/OlaHsd-Stammes besitzen ein chinchillafarbenes Fell (Tyr^{c-ch}) sowie pinkfarbene Augen, da sie das *pink-eyed dilution* Gen (*p*) auf Chromosom 7 tragen (Brilliant *et al.*, 1994). Die Tiere sind Diabetes-resistent und besitzen eine geringe Betazellmasse, was folglich mit einem niedrigen Insulinspiegel einhergeht. Zudem sind diese Tiere schlank und glukosetolerant (Clee & Attie, 2007). Aufgrund einer Vielzahl an verfügbaren embryonalen Stammzellen des 129-Stammes ist dieser der am häufigsten verwendete Mausstamm in der Produktion zielgerichteter Mutationen. Ein E14-Klon wurde bereits aus der 129P2-Population erzeugt (Envigo, 2016).

1.6 Identifizierung von Suszeptibilitätsgenen für Adipositas und T2DM

Suszeptibilitätsgene sind Gene, die zur Ausprägung einer Erkrankung wie T2DM beitragen. Es wird angenommen, dass Umweltfaktoren, wie eine hochkalorische Ernährung, mit diesen Genen direkt oder indirekt interagieren und so Signalwege, welche mit T2DM assoziiert sind, beeinflussen. Als Konsequenz kann bspw. eine erhöhte T2DM-Prävalenz entstehen.

Abb. 5: Identifizierte Adipositas- und T2DM-Gene auf NZO-Hintergrund. Dargestellt sind die identifizierten Suszeptibilitätsgene (kursiv) und QTL (fett, kursiv) entsprechend ihrer Chromosomenzugehörigkeit. QTL sind farblich entsprechend ihrer Funktion markiert: Adipositas (gelb), T2DM (rot) und Insulin (blau). QTL=*Quantitative Trait Locus*, Suszeptibilitätslocus.

Die Ausprägung eines quantitativen Merkmals unterliegt jedoch nicht ausschließlich Suszeptibilitätsgenen einer QTL-Region. Eine weitere Möglichkeit besteht in der GenGen-Interaktion von Suszeptibilitätsgenen verschiedener QTL (Brockmann & Neuschl, 2012). Dies konnte in einigen Studien für das Merkmal Adipositas gezeigt werden (Brockmann *et al.*, 2009; Carlborg *et al.*, 2005; Stylianou *et al.*, 2006). Mithilfe der NZO-Mauslinie sind einige Gene für Adipositas als auch T2DM identifiziert worden. Darunter *Tbc1d1* (Chadt *et al.*, 2008), *Zfp69* (Scherneck *et al.*, 2009), *Pctp* (Pan *et al.*, 2006), *Abcg1* (Taylor *et al.*, 2001), *Nmur2* (Schmolz *et al.*, 2007), *Lepr* (Kluge *et al.*, 2000), *Ifi202b* (Schwenk *et al.*, 2013; Vogel *et al.*, 2012) und *Abcc8* (Andrikopoulos *et al.*, 2016). Einen Überblick dieser Gene sowie deren jeweilige QTL-Zugehörigkeit repräsentiert Abbildung 5.

Am Deutschen Institut für Ernährungsforschung (DIfE) ist es gelungen, einige Suszeptibiliätsgene für Adipositas als auch T2DM (Tbc1d1, Zfp69, Nmur2, Lepr und Ifi202b) mittels NZO-Rückkreuzungen zu identifizieren. Neben dem NZO-Stamm gibt es noch weitere Mausstämme, die eine Adipositas oder einen T2DM entwickeln (BTBR, BTBR T+tf/J; DBA/2J) (Joost & Schürmann, 2014). So konnten Rückkreuzungsstudien auf BTBR-Hintergrund die Risikogene *Tsc2* (Wang *et al.*, 2012) und Sorcs1 (Clee et al., 2006) identifizieren. Tomosyn-2 und App wurden unter Verwendung des BTBR T+tf/J-Mausstammes ermittelt (Bhatnagar et al., 2011; Tu et al., 2012) und Lisch-like auf DBA/2J-Hintergrund (Dokmanovic-Chouinard et al., 2008). Neben Rückkreuzungsmodellen stellen rekombinant kongene Inzuchtlinien (Recombinant Congenic Strains, RCS) eine weitere Methode zur Genidentifikation dar. Der große Nutzen unterliegt hierbei dem Eingrenzen der QTL-Region (Brockmann & Neuschl, 2012). Dafür wird der den QTL-bedingende Mausstamm (Donorstamm) auf den Hintergrund eines Rezipientenstammes für etwa 10 Generationen zurückgekreuzt. Die so erzeugte N10-Generation besitzt einen zu 99,9 % genomischen Hintergrund des Rezipientenstammes, der restliche Anteil sind Allele der QTL-Region. In Folge ist es möglich, Tiere der N10-Generation gezielt zu untersuchen (Phänotypisierung und ggf. weitere Inzuchtverpaarungen) um so den QTL-Bereich, der noch einige hundert Gene beherbergen kann, weiter eingrenzen und das Riskogen ermitteln zu können.

Die Ursachen für T2DM werden u.a. in verschiedenen Kooperationsprojekten erforscht. An der Deutschen Diabetes-Mausklinik (*German Diabetes Mouse Clinic* (GMC)), welche von Professor Martin Hrabé de Angelis im Jahr 2001 am Helmholtz Zentrum München gegründet wurde, erfolgt eine systemische Phänotypisierung verschiedener Mausmutanten, um molekulare Mechanismen, welche einem T2DM unterliegen, zu verstehen (Gailus-Durner *et al.*, 2005). Innerhalb des *Collaborative Diabetes Cross* Projektes, welches am Deutschen Diabetes-Zentrum sowie dem DIfE im Rahmen des Deutschen Zentrum für Diabetesforschung (DZD) stattfindet, ist es das gemeinsame Ziel, neue Riskogene für T2DM und Adipositas zu identifizieren. Die vorliegende Arbeit ist Teil des *Collaborative Diabetes Cross*-Projektes. Für die Identifizierung neuer Suszeptibilitätsgene für T2DM und Adipositas werden innerhalb dieses Projektes vier murine Rückkreuzungspopulationen auf einem adipösen, T2DM-anfälligen NZO-Hintergrund erzeugt. Als Kreuzungspartner dienen schlanke, T2DM-resistente (129P2/OlaHsd und C57BL/6J) und T2DM-sensitive (DBA/2J und C3HeB/FeJ) Mausstämme. Die Strategie zur Identifizierung dieser Gene ist im nachfolgenden beschrieben (1.6.1).

1.6.1 Positionelle Klonierung

Der gesamte Ablauf zur Identifizierung eines Suszeptibilitätsgens wird als positionelle Klonierung beschrieben (Abb. 6).

Abb. 6: Methode zur Identifizierung von Suszeptibilitätsgenen *via* **Positioneller Klonierung.** Ein Rückkreuzungsstamm (N2) wird genotypisiert und phänotypisiert. Diese Daten werden in einer QTL-Analyse (Kopplungsanalyse) vereint. Der erhaltene QTL kann über RCS-Linien eingegrenzt und die Kandidatengene über Expressionsanalysen sowie Sequenzierung überprüft werden. QTL=*Quantitative Trait Locus*, Suszeptibilitätslocus; RCS=*Recombinant Congenic Strain*, rekombinant kongene Inzuchtlinie; *LOD=Logarithm of the Odds*. Modifiziert nach (Schwenk *et al.*, 2013).

Diese startet mit der Erzeugung einer Inzucht (F2)- oder Rückkreuzungspopulation (N2), die sich in mindestens einem quantitativen Merkmal (z.B. Körpergewicht, Blutglukose) unterscheidet, welches dem zu untersuchenden Krankheitsbild zugrunde liegt. Diese Population wird metabolisch charakterisiert und genomweit genotypisiert. Die Genotypen, deren Bestimmung über Einzelnukleotidpolymorphismen (Single Nucleotide Polymorphisms, SNP)-Marker erfolgen kann, sowie die untersuchten Phänotypen (normalverteilte Merkmale) werden anschließend in einer Kopplungsanalyse, der QTL-Analyse, vereint. Um bei der QTL-Analyse ein Konfidenzintervall von 95 % erzielen zu können, sollte die zu analysierende Population aus etwa 300-400 Individuen bestehen (Brockmann & Neuschl, 2012; Lander & Kruglyak, 1995). Innerhalb der QTL-Analyse erfolgt über die Berechnung des Logarithm of the Odds (LOD)-score die Abschätzung der Wahrscheinlichkeit, ob eine signifikante Kopplung (LOD-score>3) zwischen Genotyp und Phänotyp vorliegt. Dieser stellt den Logarithmus des Quotienten aus der Wahrscheinlichkeit für die Kopplung zweier Marker (zweier Genorte) und der Wahrscheinlichkeit ihrer Nichtkopplung dar (Lander & Kruglyak, 1995). Besteht eine signifikante Kopplung zwischen einem Phänotyp mit einer chromosomalen Region, wird dieser Bereich als QTL deklariert, da dieser Abschnitt ein quantitativ untersuchtes Merkmal beeinflusst. Bereits seit dem Jahr 1990 werden Studien zur Identifizierung von QTL durchgeführt (Brockmann & Neuschl, 2012). Um die sich auf den QTL befindenden Suszeptibilitätsgene identifizieren zu können, erfolgt mittels RCS-Tieren sowie Expressionsanalysen (*Microarray, quantitative Real-Time* PCR (qRT-PCR)) als auch durch Sequenzierungen die Eingrenzung des Suszeptibilitätslocs. Eine weitere Möglichkeit zur Eingrenzung des QTL stellt die Haplotypenkartierung dar. Diese kann u.a. mittels SNP-Datenbanken erstellt werden. Ein Haplotyp repräsentiert eine Allel-Kombination gekoppelter Gene auf einem Chromosom, die gemeinsam vererbt wurden. Liegt eine genetische Ähnlichkeit zwischen Geschwistern vor, erfolgte die Vererbung von herkunftsgleichen Allelen (identity by descent, IBD). Sind IBD-Allele mit einem genetischen Locus gekoppelt, der mit der Ausprägung eines Phänotyps assoziiert ist, dann sollten Geschwister mit einem hohen IBD-Status zu einer ähnlichen Merkmalsausprägung neigen. Im Gegensatz dazu sollten Geschwister mit deutlich unterschiedlichem Phänotyp weniger IBD-Allele an dem entsprechenden QTL aufweisen. Es ist unwahrscheinlich, dass IBD-Regionen die potentiellen genetischen Polymorphismen enthalten, welche dem QTL unterliegen. Da ein QTL aufgrund seiner Größe eine

Vielzahl an nicht-IBD- und IBD-Regionen aufweisen kann, können die Gene, die sich innerhalb einer IBD-Region befinden, ausgeschlossen werden (Schmidt *et al.*, 2008).

1.7 Zielsetzung

Ziel der vorliegenden Arbeit war es, neue Suszeptibilitätsloci für T2DM und Adipositas mithilfe der Erzeugung einer (1) Rückkreuzungspopulation (N2) aus der adipösen, T2DM-anfälligen NZO-Mauslinie mit dem schlanken, T2DM-resistenten 129P2-Stamm und (2) nachfolgender *Quantitative Trait Locus* (QTL)-Analysen zu identifizieren. Anschließend sollte der Suchrahmen der auf dem identifizierten Suszeptibilitätslocus lokalisierten Gene über (3) Expressionsanalysen, (4) eQTL-Analysen sowie (5) Proteinexpressionsanalysen eingegrenzt werden.

(1) Erzeugung einer Rückkreuzungspopulation

Die Rückkreuzungspopulation aus NZO- und 129P2-Tieren sollte phänotypisch im Hinblick auf verschiedene quantitative Merkmale hin charakterisiert und genomweit unter Verwendung von SNP-Markern genotypisiert werden.

(2) Identifizierung der Suszeptibilitätsloci mittels QTL-Analyse

Mithilfe des R/qtl-Programmpakets sollte die Durchführung der QTL-Analysen stattfinden, um neue Suszeptibilitätsloci für T2DM und Adipositas in dem NZOx129P2-Rückkreuzungsmodell zu identifizieren.

(3) Eingrenzung von Kandidatengenen mittels Expressionsanalysen

Die Parentalstämme sollten zunächst im Alter von 6 Lebenswochen genomweit über *Microarray*-Analysen auf Expressionsunterschiede hin untersucht werden. Gene, die dem kritischen Bereich des identifizierten QTL unterliegen, sollten mit den Ergebnissen der *Microarray*-Analyse abgeglichen und über qRT-PCR-Analysen in den 21-Wochen alten Parentalstämmen auf signifikante Expressionsunterschiede hin überprüft werden. Die Gene, die in den 21-Wochen alten Parentaltieren stark signifikant differentiell exprimiert wurden, sollten in der N2-Population ebenfalls über qRT-PCR-Analysen untersucht werden.

(4) Weitere Eingrenzung der Kandidatengene über eQTL-Analysen

Um den Suchrahmen möglicher Kandidatengene weiter einzugrenzen, sollten die in den N2-Tieren ermittelten mRNA-Expressionsdaten in einer eQTL-Analyse im Hinblick auf mögliche Assoziationen zum identifizierten Suszeptibilitätslocus analysiert werden.

Eine nachfolgende Korrelationsanalyse sollte Aufschluss geben, ob die Genexpressionen der Kandidatengene mit den Phänotypen, die mit dem QTL assoziiert waren, korrelierten.

(5) Weitere Eingrenzung der Kandidatengene über Proteinexpressionsanalysen

Ob die mRNA-Expressionsunterschiede potentieller Kandidatengene ebenfalls eine veränderte Proteinexpression zur Folge hatten, sollte mithilfe von Proteinexpressionsanalysen überprüft werden.

2. Material und Methoden

2.1 Material

2.1.1 Mausstämme

Tab. 1: Verwendete Mausstämme

Mausstamm	Ursprung
NZO/HI	Lieselotte Herberg, DDZ Düsseldorf
129P2/OlaHsd	DIfE, Potsdam-Rehbruecke

2.1.2 Tiernahrung

Die Hochfettdiät (*High-Fat Diet* (HFD), 45 % Fett/Kalorien) wurde über die Firma Brogaarden (Brogaarden ApS, Lynge, Norwegen) bezogen.

Tab. 2: Verwendete Hochfettdiät (High-Fat Diet (HFD), 45 % Fett/Kalorien)

Diät	Bestandteile	Gm %	Kcal %
Hochfettdiät (High-Fat Diet, HFD)			
für Nager 45 % Fett/Kalorien	Protein	24	20
Produkt #D12451	Kohlenhydrate	41	35
Firma Brogaarden	Fett	24	45
	Gesamt kcal/gm	4.73	

2.1.3 Zelllinien

Tab. 3: Verwendete Zelllinie

	Zelllinie	Ursprung
Hepa 1-6		Murine Leberzelllinie. Ein Derivat eines
		Hepatoms des BW7756 Mausstammes,
		welches in einer C57/L Maus entstand.

2.1.4 Geräte

Tab. 4: Verwendete Geräte

Bezeichnung	Hersteller
Agilent 2100 Bioanalyzer	Agilent Technologies, Kalifornien, USA
ChemiDoc XRS+System	Bio-Rad, München, Deutschland
Elektronische Waage	Sartorius, Göttingen, Deutschland
Waage	Sartorius, Göttingen, Deutschland
FeedTime	TSE-Systems, Bad Homburg,
	Deutschland
HERAcell 240i CO ₂ Incubator	Thermo Scientific (Perbio Science),
	Bonn, Deutschland
iMark TM Microplate Absorbance Reader	Bio-Rad, München, Deutschland
LG Power Pac HC Power Supply	Bio-Rad, München, Deutschland
LG Tankblot Eco-Mini C	VWR International, Langenfeld,
	Deutschland
Mastercycler	Eppendorf, Hamburg, Deutschland
Motic Microskop AE2000	VWR International, Langenfeld,
	Deutschland
Multipipette® E3	Eppendorf, Hamburg, Deutschland
NanoDrop 1000	Peqlab, Erlangen, Deutschland
Neubauer-Kammer improved Assistent	VWR International, Langenfeld,
	Deutschland
NMR	EchoMRI, Houston; USA
Overhead Shaker REAX 2	Heidolph Instruments, Schwabach,
	Deutschland
PCR Plate Spinner	VWR International, Langenfeld,
	Deutschland
QuantStudio 7 Flex	Life Technologies, Darmstadt,
	Deutschland
Speed Vac	Eppendorf, Hamburg, Deutschland
StepOnePlus [™] Real-Time PCR System	Applied Biosystems, Foster City, USA
Thermomixer comfort 1,5 ml	Eppendorf, Hamburg, Deutschland
TissueLyser II	QIAGEN, Hilden, Deutschland
Uniprep Gyrator	UniEquip, Planegg, Deutschland
Vortex 4 basic	IKA, Staufen, Deutschland

Vortex-Genie 2 Water-Jet Vakuum Pumpe Wippschüttler ST 5

Zentrifuge 5424 Zentrifuge 5424 R Zentrifuge GH 3.7 Scientific Industries, New York, USA Ditabis, Pforzheim, Deutschland CAT M. Zipperer GmbH, Ballrechten-Dottingen, Deutschland Eppendorf, Hamburg, Deutschland Eppendorf, Hamburg, Deutschland Beckman Coulter, Krefeld, Deutschland

2.1.5 Chemikalien und Mixe

Chemikalien	Hersteller
Acrylamid	AppliChem, Darmstadt, Deutschland
Ammoniumpersulfat (APS)	AppliChem, Darmstadt, Deutschland
2-Propanol (≥ 99,5 %)	AppliChem, Darmstadt, Deutschland
Bromphenolblau	Roth, Karlsruhe, Deutschland
BSA Standard	Thermo Scientific (Perbio Science), Bonn,
	Deutschland
Chloroform reinst DAB 9, BP	AppliChem, Darmstadt, Deutschland
Complete	Roche Diagnostics, Mannheim,
	Deutschland
CXR Reference Dye	Promega, Madison, USA
Desoxyribonukleosidtriphosphat (dNTP)	Promega, Madison, USA
DMEM	Life Technologies Darmstadt, Deutschland
EDTA	Roth, Karlsruhe, Deutschland
EGTA	Roth, Karlsruhe, Deutschland
Essigsäure (min. 99,8 %)	Kmf Laborchemie, Lohmar, Deutschland
Ethanol (EtOH) absolut, reinst	AppliChem, Darmstadt, Deutschland
FBS (South America Origin) 500mL	Life Technologies Darmstadt, Deutschland
Flüssiger Stickstoff	Linde, Düsseldorf, Deutschland
Glycin	Roth, Karlsruhe, Deutschland
Glycerol	Roth, Karlsruhe, Deutschland
Glycerolphosphat	Roth, Karlsruhe, Deutschland
GoScript Reverse Transcriptase	Promega, Madison, USA
GoTaq® qPCR Master Mix	Promega, Madison, USA

Hexanucleotidprimer (2 mg Primer, Random	Roche Diagnostics, Mannheim,
p(dN)6)	Deutschland
HCL (37 %)	Roth, Karlsruhe, Deutschland
Isofluran	Piramal Healthcare, Morpeth, UK
Isopentan	Merck, Darmstadt, Deutschland
Kaliumhydroxid (KOH)	Merck, Darmstadt, Deutschland
KASP V4.0 2X Master Mix 96/384, High Rox,	LGC genomics, Middlesex, UK
5,000x10ul reactions (25mL)	
Magermilchpulver	Roth, Karlsruhe, Deutschland
Magnesiumchlorid 25mM	Promega, Madison, USA
MaXtract High Density	QIAGEN, Hilden, Deutschland
Methanol	AppliChem, Darmstadt, Deutschland
Natriumacetat (C ₂ H ₃ NaO ₂)	Sigma-Aldrich, Steinheim, Deutschland
Natriumchlorid (NaCl ₂)	Roth, Karlsruhe, Deutschland
Natriumfluorid	Roth, Karlsruhe, Deutschland
Natriumorthovanadat (Na ₃ VO ₄)	Roth, Karlsruhe, Deutschland
Natriumpyrophopsphat (Na ₄ P ₂ O ₇)	Roth, Karlsruhe, Deutschland
Natriumsulfat (Na ₂ SO ₄)	Merck, Darmstadt, Deutschland
Nuclease-freies Wasser	Promega, Madison, USA
Opti-MEM I Serumreduziertes Medium (1x)	Invitrogen, Carlsbad, USA
PBS Dulbeccos W/O Ca,Mg	Invitrogen, Carlsbad, USA
PEN STREP	Gibco, Life Technologies Darmstadt,
	Deutschland
Phosphostopp	Roche Diagnostics, Mannheim,
	Deutschland
Phenylmethylsulfonylfluorid (PMSF)	Roth, Karlsruhe, Deutschland
QIAshreder (250)	QIAGEN, Hilden, Deutschland
QIAzol Lysis Reagent (200ml)	QIAGEN, Hilden, Deutschland
Rapsöl	EchoMRI, Houston; USA
RNase Exitus Plus 500mL	AppliChem, Darmstadt, Deutschland
RNAse-free DNAse Set (50)	QIAGEN, Hilden, Deutschland
RNAse-freies Wasser	QIAGEN, Hilden, Deutschland
SDS	Roth, Karlsruhe, Deutschland
TEMED	Roth, Karlsruhe, Deutschland
Tris	Roth, Karlsruhe, Deutschland
Triton-X-100	Serva, Heidelberg, Deutschland

TRIzol TRYPSIN–EDTA Lösung Tween 20 Life Technologies Darmstadt, Deutschland Sigma-Aldrich, Steinheim, Deutschland Roth, Karlsruhe, Deutschland

2.1.6 Reaktionskits

Tab. 6: Verwendete Reaktionskits

Hersteller
human GmbH, Bremen, Deutschland
Promega, Madison, USA
DRG Instruments, Marburg, Deutschland
DRG Instruments, Marburg, Deutschland
Stratec, Berlin, Deutschland
Bio-Rad, München, Deutschland
Invitrogen, Carlsbad, USA
QIAGEN, Hilden, Deutschland
Wako Chemicals GmbH, Neuss,
Deutschland
PerkinElmer, Solingen, Deutschland
Thermo Scientific (Perbio Science),
Bonn, Deutschland
QIAGEN, Hilden, Deutschland
QIAGEN, Hilden, Deutschland
RANDOX Laboratories Ltd., Ardmore,
UK

2.1.7 Enzyme

Tab. 7: Verwendete Enzyme

Bezeichnung	Hersteller
iScript Reverse Transkriptase	Bio-Rad, München, Deutschland
Amyloglukosidase von Aspergillus niger	Sigma-Aldrich, Steinheim, Deutschland

2.1.8 siRNA

Bezeichnung	Sequenz $5 \rightarrow 3^{\circ}$	Pr	odukt-Nr.
Non target	UAGCGACUAAACACAUCAAUU	D-0012	210-01
Txndc12	AGACGGACGCACUGGGCUU	Art.#:	J-063279-11-
		0005	

Tab. 8: Verwendete siRNA-Oligonukleotide

2.1.9 Antikörper

Tab.	9:	Verwendete	Antikörper
------	----	------------	------------

Primäre Antikörper	Hersteller
mouse-anti GAPDH	Ambion, Darmstadt, Deutschland
Anti-ERp19 (Txndc12)	Abcam, Cambridge, UK
Sekundäre Antikörper	Hersteller
Rabbit-anti-mouse-IgG HRPO	Dianova, Hamburg, Deutschland

2.1.10 Puffer und Lösungen

Bezeichnung	Bestandteile
Blockierlösung	Milchpulver 5 %; TBS-Tween (1x)
HCl-Ethanol-Gemisch (0,18 M HCL in 75 %	100 ml Gesamtansatz: 75 ml EtOH absolut,
Ethanol)	reinst; 23,5 ml milliQ-H ₂ O; 1,5 ml
	konzentrierte HCL (37 %) (lagern bei 4 °C)
Elektrophoresepuffer (1x)	25 mM Tris; 192 mM Glycin; 0,1 % SDS
Lysepuffer	20 mM Tris; 150 mM NaCl; 1 mM EDTA;
	1 mM EGTA; 1 % TritonX100
	Zusatz: Proteinase Inhibitoren: Complete
	(Roche Diagnostics), 40 µl je ml
	Lysepuffer. Phosphatase Inhibitoren: 1 mM
	PMSF; 1 mM Glycerolphosphat, 1 mM
	Na ₃ VO ₄ ; 1 mM NaF; 2,5
	Natriumpyrophosphat; pH=7,4

Tab. 10: Verwendete Puffer- und Lösungen

Laemmli-Puffer	20 Vol. % Glycerol; 8 % SDS; 10 mM
	EDTA; 0,25 M Tris; 0,4 M DTT; 2%
	Bromphenolblau
Natriumacetat-Puffer	0,12 M Natriumacetat gelöst in dest H_2O ,
	mit konzentrierter Essigsäure eingestellt,
	pH=4,8
Sammelgel	7,8 ml Sammelgelpuffer, 3,9 ml Acrylamid
	(30 %); 1,83 ml dH ₂ O; 6 μ l APS; 3 μ l
	TEMED
Sammelgelpuffer (SDS-PAGE)	0,5 M Tris; 0,4 % SDS; 37,5 % Glycerol;
	pH=6,8
Trenngel (16 %)	2,34 ml Trenngelpuffer; 4,8 ml Acrylamid
	(30 %); 1,86 ml dH ₂ O, 18 µl APS; 9 µl
	TEMED
Trenngelpuffer (SDS-PAGE)	1,5 M Tris; 0,4 % SDS; pH=8,8
TBS (10x)	10 mM Tris; 1,5 M NaCl
TBS (1x)	10 mM Tris; 150 mM NaCl
TBS-Tween (TBS-T) (1x)	20 mM Tris; 137 mM NaCl; 0,1 Vol. %
	Tween 20
Transferpuffer (1x)	2,5 mM Tris; 19,2 mM Glycin; 20 %
	Methanol
Zellmedium (DMEM) (pH 7,4)	500 ml DMEM; 50 ml FBS (10 %); 5 ml
	nicht essentielle Aminosäuren; 5 ml
	Pen/Strep-Lösung
	1 0

2.1.11 Verbrauchsmaterialien

Material	Hersteller
Alu-Zip-Beutel	Peter Oehmen GmbH, Essen, Deutschland
Biosphere® Filter Tips (20 µL, 100 µL, 1000	Sarstedt, Nümbrecht, Deutschland
μL)	
Cellstar® Multiwell Platten 12 Well	Peter Oehmen GmbH, Essen, Deutschland
Cellstar® tubes (15 mL, 50 mL)	Greiner bio-one, Frickenhausen,
	Deutschland
Combitips advanced® (0.2 mL)	Eppendorf, Hamburg, Deutschland
Contour next Sensoren	Bayer Vital, Leverkusen, Deutschland
CRYO-Röhrchen 1,8 ml mit Stern-Fuß	Fisher Scientific, Schwerte, Deutschland
Einmalspritze Omnifix® 1 ml	BBraun, Melsungen, Deutschland
Filterpapier (Protein Saver TM 903 TM Card)	GE Healthcare Bio-Sciences Corp.,
	Chalfont St Giles, UK
MaXtract High Density	QIAGEN, Hilden, Deutschland
MicroAmp® Fast Optical 96-Well Reaction	Applied Biosystems, Foster City, USA
Plate with Barcode, 0.1 mL	
Microtestplatten 96-well-Platten	Sarstedt, Nümbrecht, Deutschland
Microvette CB 300 µl Lithium-Heparin	Sarstedt, Nümbrecht, Deutschland
Nitrozellulosemembran (Amersham Protran	GE Healthcare Life sciences, München,
0,45 NC 300x4m)	Deutschland
PCR-Foil (MicroAmp® Optical Adhesive	Applied Biosystems, Foster City, USA
Film)	
PCR-Plates (FrameStar® 384-Well)	4titude, Berlin, Deutschland
Pipette Tips (20 µL, 100 µL, 1000 µL)	Sarstedt, Nümbrecht, Deutschland
Plastikhalter	EchoMRI, Houston; USA
QIAshreder	QIAGEN, Hilden, Deutschland
Rotilabo®-Aluminiumfolie	Roth, Karlsruhe, Deutschland
Safe Lock-EpiTubes (0.5 mL, 1.5 mL, 2.0 mL)	Sarstedt, Nümbrecht, Deutschland
Stainless Steel Balls (Stahlkugeln) (5 mm)	QIAGEN, Hilden, Deutschland
Sterican violett(0,55 / 25 / 24G)	Roth, Karlsruhe, Deutschland
Trockenmittel	Peter Oehmen GmbH, Essen, Deutschland

Tab. 11: Verwendete Verbrauchsmaterialien
2.1.12 SNP-Marker

Die in dieser Arbeit verwendeten SNP-Marker, die für die Genotypisierung der rekombinant kongenen Mauslinien (RCS)-Tiere verwendet wurden, sind über LGC genomics, UK, bezogen worden.

2.1.13 Oligonukleotide

Die in dieser Arbeit verwendeten Oligonukleotide (Primer), die zur Detektion der Kandidatengene dienten, sind nachfolgend aufgeführt. Die Primer sind entweder über Primer-Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/, 2018) oder über PrimerBank (https://pga.mgh.harvard.edu/primerbank/, 2018) entworfen worden. Dabei sollten sie eine Produktgröße von 150–300 bp sowie eine *Annealing*-Temperatur von 60-62°C aufweisen. Der Bezug erfolgte über die Firma Eurofins Genetics.

Tab.	12:	Verwendete	Oligonukleotide.	RP=reverse	(rückwärts)-gerichteter	Primer;	FP=forward	(vorwärts)-
gerich	nteter	Primer.						

Primer	Sequenz (5'→3')	Produk t-größe (bp)	Exon- Exon- Übergang
2310002L09Rik_FP	GGGCCTGGGATTGCTTCTGT	71	730-731
2310 002L09Rik_RP	GCATAGAGACTGGAACTGACTCCA		
Acnat2_FP	AGCAACTGTGGTGACTTCGGTC	156	36-37
Acnat2_RP	ACACAGGCTCATCCACAAGGG		
AI314180_FP	CGGCTCCGACTCAGATCAGC	125	250-251
AI314180_RP	GGGTGCTGGACAGTTTGAGC		
AI464131_FP	TGGCGGTCACTGAGACTTCA	155	85-86
AI464131_RP	TGAGACTTTTAGGGCCTGCG		
Alad_FP	GCGAGCAGCGTCCTTGGTA	89	115-116
Alad_RP	CCTCAGCTCTTGTTCTGGGGT		
Aldob_FP	GGTGGCAAGGCTGCAAACAA	73	1122-1123
Aldob_RP	CCGCCTGGCAGTTAGCCATA		
Cd72_Iso3_FP	TCTAGGACAGGACTGTGAGGC	127	181-182
Cd72_Iso3_RP	TGTAGGACCTGCTTTGTCCG		
Cdkn2b_FP	GCTCACCGAAGCTACTGGGT	259	367-368
Cdkn2b_RP	CTGCCCATCATCATGACCTGGA		
Cdkn2c_FP	CTGGTCTGCCCTCAGCGAT	198	1147-1148
Cdkn2c_RP	GGCCATTCTTTAGGGTCCCTTG		

Clta_variant5_FP	CGGAAGCAAGAAGCGGAGTG	109	627-628
Clta_variant5_RP	TGTTTGTGCTGTTGTTTGCCTT		
Cyp2j6_FP	AGGACTCTGTTGGTGGCTGC	165	410-411
Cyp2j6_RP	CTTCACCAACGGCTGGATTGA		
Cyp4b1_FP	CAGGGCCCAGGAATTGCATTG	176	1370-1371
Cyp4b1_RP	GCCCAGTGGCTTCAGGTAGA		
Ddx58_FP	GTGCCCCTACTGGTTGTGGA	196	931-932
Ddx58_RP	GTTGCCCCAGAAATGCTCGC		
Dio1_FP	CCAGGGAGAGTCAAACAGAGCA	245	362-363
Dio1_RP	CTGCTGCCTTGAATGAAATCCCA		
Eps15_FP	CCAGCTGTAGCTGATGTTCTCA	133	301-302
Eps15_RP	GAAGATCCTGAACCTCACTGGTC		
Galt_Iso1_FP	GCTAATGGGGAGGTGAATCCC	161	595-596
Galt_Iso1_RP	CAGGGGTGGAAGCACATGAC		
Gng10_FP	AGCCTTAGCCGCCATGTCTT	108	163-164
Gng10_RP	GCTGCCTGGGAGACCTTGAT		
Grhpr_variant1_FP	ATGTGCGGCTACGGACTCTC	74	551-552
Grhpr_variant1_RP	CGAGCGATGGCCTGACCTAT		
Hacd4_FP (Ptplad2)	CTGTGTGTTCTTGCTGAAGCATT	276	546-547
Hacd4_RP (Ptplad2)	TGCAGCTTAGACCACCAGTCC		
Hdhd3_FP	CTCTTTTCCCGAGCCAGGATCT	76	43-44
Hdhd3_RP	GTAGGTCAGAGGGGTAGGCT		
Hook1_FP	AGCTGGCGGAGAAGGAAAGAAG	124	2131-2132
Hook1_RP	TTCTGAAACGCCAGGCTCTTGTTA		
Leprot_FP	TAAAGCTCTCGTGGCGCTCT	96	119-120
Leprot_RP	AGGGGCCAGTAAACGCCATAG		
Mmachc_FP	GCGTTCAGCGTGCGTTATGG	104	148-149
Mmachc_RP	ACGCCACCTGGAAGGGATAA		
Npr2_FP	ACCGGTCACTTCAAGGGAAAT	189	1882-1883
Npr2_RP	CCCACGAGGACAATACTCGG		
Orm1_FP	CTGAGCTGGCTCTCTGACAA	73	149-150
Orm1_RP	GAATTGCCTGCCTGTACTCG		
Orm2_FP	TTCATTGGTGCGGCTGTCCT	140	298-299
Orm2_RP	ACACAGTGGTCATCTATGGTGTGA		
Orm3_FP	GGAGCTTCGAGAGTATCACACC	144	366-367
Orm3_RP	AGGGTTTCTACTTCTCCTTCATACT		

Pcsk9_FP	TCCACAGACAGGCGAGCAAG	153	1081-1082
Pcsk9_RP	CTATGAGGGTGCCGCTGACT		
Pde4b_FP	GCCACTGCAGCCTAACTACCT	174	819-820
Pde4b_RP	CGGTTCAGCATCCTTTTGAACTTGT		
Pgm2_FP	GCTCTGGACCGGGTAGCAAA	100	1143-1144
Pgm2_RP	GGGACAGCTTGCTTGCATCC		
Podn_FP	ACCTCTCCCTTTTGCCCTGG	180	299-300
Podn_RP	GCCAGCACCTTACACACCGA		
Ptpn3_FP	AGGACTCCGGGCTCTGTAGG	175	166-167
Ptpn3_RP	CCGAGTAACCTGGGTGCTAGAT		
Ptprd_FP	TGCCAGGTGGAAGTGTAAATATC	107	1643-1644
Ptprd_RP	CGGCATATCATCTTCTGGTGTC		
Raver2_FP	TGTGGACAGGAATAAACGAACAG	147	359-360
Raver2_RP	GTGATGCACAAGAGAGCGTC		
Scp2_FP	TAGGAGACCTTCGCTGCTGGA	231	299-300
Scp2_RP	GGAATCACCATACACATAGCCAACG		
Spata6_FP	CCGGAAGCAGTAGACCCTGG	102	477-478
Spata6_RP	AGACAGTGTTTCTCCCACTGGT		
Svep1_FP	CCAGACCTGTGAGGTTGTCC	94	1346-1347
Svep1_RP	GGCGGCATTGAAGTGGTTTT		
Tmem53_FP	TGGAGCCAGAGTATGGAGGG	160	321-322
Tmem53_RP	TCACAATGCAGCCCCTTTTGT		
Tnc_FP	CTCTGGAATTGCTCCCAGCAT	70	4698-4699
Tnc_RP	TTCCGGTTCAGCTTCTGTGGTAG		
Tpm2.1_FP	TGATAGCCTCAGAGGAGGAGTATT	187	839-840
Tpm2.1_RP	TCCACGTTCTCTTCCTTGGC		
Txn1_FP	TGCTACGTGGTGTGGACCTT	188	456-457
Txn1_RP	CGGAGAACTCCCCCACCTTT		
Txndc8_FP	TGCTCCTGTTTTCCAGGCAATG	197	224-225
Txndc8_RP	TCGGTCCACTTCTGAGGCAG		
Ugcg_FP	AAGCAATAGCCGACCGAGGTT	70	831-832
Ugcg_RP	TACGAACCAGAGTTTTGCATGGC		
Zfp37_FP	CGGAAAGCGATGCGGAATGG	164	218-219
Zfp37_RP	CCCCTTTCCCGATGATGGCT		
Txndc12_FP	GATGTCGCTTCGTTTCGGGGG	102	179-180
Txndc12_RP	TCTCCAAAACCCTTTCCAAGCC		

Txndc12_5_FP	TACGTCAGTGCTGAGCAAGTTGT	173	521-522
Txndc12_5_RP	TGGTGGCTTAGCGGTTCTGG		
Txndc12_7_FP	GCCTGCAAAGCTTTAAAACCCA	127	293-294
Txndc12_7_RP	CCCCATCAGGGCTGAAGTCT		

2.1.14 Datenbanken und Software

Tab. 13: Verwendete Datenbanken und Software-Programme

Bezeichnung	Internetadresse/Hersteller
4 D v16.1	4D, Le Pecq, Frankreich
Ensembl	https://www.ensembl.org/
GraphPad Prism 5.01	Graphpad Software Inc.
NCBI GenBank®, BLAST	https://blast.ncbi.nlm.nih.gov/
NCBI GenBank®, Primer-Blast	https://www.ncbi.nlm.nih.gov/tools/primer
	-blast/
NCBI GenBank®, PubMed	https://www.ncbi.nlm.nih.gov/pubmed
PrimerBank	https://pga.mgh.harvard.edu/primerbank/
Sanger SNP-Datenbank	https://www.sanger.ac.uk/sanger/Mouse_S
	npViewer/rel-1303
SMART	https://smart.embl-heidelberg.de/
StepOne software v2.1	Applied Biosystems, Foster City, USA
Quantstudio Real-Time PCR Software	Applied Biosystems, Foster City, USA
R/qtl	R Development Core Team
UniProt	https://www.uniprot.org/uniprot/Q9CQU0

2.2 Methoden

2.2.1 Tierexperimentelle Methoden

2.2.1.1 Verpaarungsstrategie zur Erzeugung einer N2 (NZOx129P2)-Population und rekombinant kongenen Mauslinien (RCS)

Für die Erzeugung einer N2 (NZOx129P2)-Rückkreuzungspopulation wurden weibliche NZO/HI-Mäuse (Lieselotte Herberg, DDZ Düsseldorf) (Kluge *et al.*, 2012), welche zu einem Hochfettdiät-induzierten T2DM neigen, mit männlichen Diabetes-resistenten 129P2/OlaHsd-Mäusen (DIFE, Potsdam-Rehbruecke) (Clee *et al.*, 2006) zunächst zur Generierung einer F1 (NZOx129P2)-Generation verpaart. Im Anschluss sind männliche F1-Tiere mit weiblichen NZO/HI-Tieren gekreuzt worden. Die so erzeugte Rückkreuzungspopulation (N2 (NZOx129P2)) wurde auf eine hohe Anzahl Mäuse (307 Weibchen und 290 Männchen) vermehrt, um eine für die QTL-Analyse ausreichende Teststärke zu gewährleisten.

Für die Erzeugung der rekombinant kongenen Mauslinien (RCS) RCS.NZOx129P2Nir4 wurden männliche heterozygote Allel-Träger der gewünschten Chromosomen jeweils drei weitere Male (bis zur Erzeugung einer N5 Generation) mit weiblichen NZO-Tieren zurückgekreuzt, um den prozentualen Anteil des NZO-Genoms zu erhöhen. Dabei wurde in der N2 und N3-Generation jeweils der genetische NZO-Hintergrund mithilfe von SNP-Markern, welche im Abstand von etwa 20 Mb über das gesamte Genom gewählt wurden, bestimmt (*speed congenics*). Die Genotypisierung erfolgte am DDZ über SNP-Marker (LGC genomics, UK) über die Kompetitive allelspezifischen PCR (*Kompetitive Allele Specific PCR*, KASP)-Technologie (2.2.2.7.1). Nach gleichem Schema wurde die Linie RCS.B6x129P2Nir4 erzeugt, wobei hier die gewünschte genetische Region auf einem C57BL/6J-Hintergrund übertragen wurde.

2.2.1.2 Haltungsbedingungen

Die Mäuse wurden in einer Anzahl von je 3-6-Tieren je Käfig (Makrolon®-Käfige Typ III, Fa. EBECO, Castrop-Rauxel, Deutschland) auf entstaubter Weichholzfaser (Fa. Rettenmaier & Söhne, Ellwangen, Deutschland) gehalten und erhielten freien Zugang zu Nahrung und Wasser *ad libitum*. Im Alter von 19-21-Tagen erfolgten der Absatz und die Gabe einer Hochfettdiät (*High-Fat Diet* (HFD), 45 % der Kalorien aus Fett, Brogaarden ApS, Lynge, Norwegen). Die Tötung (Herzpunktion) fand mit einem Alter

von 21-Wochen statt und wurde am anästhesierten Tier (Isofluran) durchgeführt. Alle Experimente sind in Übereinstimmung mit den Richtlinien der *Federation of European Laboratory Animal Science Association* (FELASA) erfolgt und wurden durch das Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV) genehmigt.

2.2.1.3 Metabolischen Charakterisierung

Die metabolische Charakterisierung der Parental- F1- als auch N2-Population ist dem in Abb. 7 dargestellten zeitlichen Verlauf zu entnehmen. Im Alter von 21 Tagen erfolgte die Gabe einer HFD (45 % Fett/Kalorien) (Brogaarden ApS, Lynge, Norwegen). Zudem erfolgte die Bestimmung des Körperzusammensetzung (*Nuclear-Magnetic-Resonance* (NMR), Echo MRI, Houston, USA) im Alter von 3, 6, 10 und 15 Wochen. *Fasting* und *Refeeding* (2.2.1.5) fand in Lebenswoche 8, die Metabolomanalyse (2.2.1.6) in Lebenswoche 10 und die Tötung in Lebenswoche 21 (2.2.1.7) statt. Die Messung der Blutglukose (Contour next Sensoren, Bayer Vital, Leverkusen, Deutschland) sowie des Körpergewichts (Waage, Sartorius, Göttingen, Deutschland) erfolgte morgens um 8 Uhr. Während die Phänotypisierung der männlichen Parental-, F1- sowie N2-Mäuse identisch war, unterschied sich diese der weiblichen N2-Individuen (Abb. 7) marginal.

Abb. 7: Metabolische Charakterisierung der männlichen Parental-, F1- sowie N2 (NZOx129P2)-Population im zeitlichen Verlauf. Die metabolische Charakterisierung ist beginnend ab Lebenswoche 3 bis Lebenswoche 21 durchgeführt worden. Dabei erhielten die Mäuse eine Hochfettdiät (*High-Fat Diet* (HFD), 45 % Fett/Kalorien). Die Charakterisierung der weiblichen und männlichen N2-Tiere unterschied sich im Hinblick auf die KG- und BG-

Bestimmung sowie des *Fasting/Refeeding*-Experimentes (nach 16 h fasten). 129P2=129P2/OlaHsd; NZO=NZO/HI; KG=Körpergewicht; BG=Blutglukose; NMR=*Nuclear magnetic resonance*, Kernspinresonanzspektroskopie; I=Insulin; TG=Triglyzeride; FFA=Freie Fettsäuren; FBG=Finale Blutglukose; KL=Körperlänge. Die Metabolomanalyse aus Mausblut wurde mit freundlicher Unterstützung durch Frau Prof. Dr. Uta Ceglarek (Arbeitsgruppe Prof. Dr. Ralph Burkhardt, Universitätsklinikum Leipzig) durchgeführt. Die finalen Parameter in Lebenswoche 21 sind nach 6 h fasten ermittelt worden.

2.2.1.4 Nuclear-Magnetic-Resonance (NMR)-Technik

Die Körperzusammensetzung wurde mittels des Kernspinresonanzspektroskopie (*Nuclear-Magnetic-Resonance* (NMR)) (Echo MRI, Houston, USA) (Abb. 8) gemessen. Hierbei wurden Fett- sowie Magermasse (Muskeln) bestimmt.

Der Kernspin beschreibt die Eigenschaft der Eigendrehung von u.a. Wasserstoffkernen

Abb. 8: Kernspinresonanzspektroskopie (*Nuclear-Magnetic-Resonance* (NMR)). Firma EchoMRI.

(Protonen). Im Laufe einer NMR-Spektroskopie richten Protonenspins sich zunächst die innerhalb des magnetischen Feldes aus. Anschließende Radiofrequenzimpulse führen einer zu elektromagnetischen Schwingung der Kernspins. Die Zeit, welche wieder zu einem Gleichgewichtszustand der Kernspins führt, wird als Relaxationszeit definiert und dient als Messwert in der NMR-Technik. Dabei besitzen verschiedene Fett- und Muskelgewebe unterschiedliche Relaxationszeiten, so dass ein Kontrast zwischen beiden Geweben entsteht. Eine Verstärkung dieses Kontrastes durch entsprechend veränderte kann Radiofrequenzimpulse vorgenommen werden.

Vorab jeder Messung erfolgte die Kalibrierung mit Rapsöl (EchoMRI, Houston; USA), welches als Äquivalent zu den im gesamten Körper vorkommenden Fettmolekülen dient. Anschließend wurde das Gewicht (Waage, Sartorius, Göttingen, Deutschland) der zu messenden Maus bestimmt und diese in einem Plastikhalter (EchoMRI, Houston; USA) fixiert. Dieser ist in das NMR platziert und die Messung von etwa 2-Minuten Dauer durchgeführt worden.

2.2.1.5 Fasting/Refeeding

Mithilfe dieser Analyse sollten Blutglukose, Körpergewicht und Plasmaparameter (Insulin, TG und FFA) von 16 h gefasteten Mäusen und nicht-gefasteten Mäusen (HFD, 45 % Fett/Kalorien) ermittelt werden. Zunächst sind 8-Wochen alte Mäuse, die bereits seit 5 Wochen eine HFD erhielten, für 16 Stunden (über Nacht) nüchtern gesetzt worden. In den Morgenstunden erfolgte die Bestimmung der oben genannten Parameter. Dabei wurde das Blut (etwa 55 µl) aus der Schwanzvene mittels Microvetten (Microvette CB 300 µl Lithium-Heparin, Sarstedt, Nümbrecht, Deutschland) gesammelt und bei 4 °C, 9.391 g für 5 Minuten zentrifugiert. Anschließend erhielten die Mäuse die HFD. Nach 2 Stunden erfolgte eine erneute Blutabnahme für eine weitere Bestimmung der oben genannten Parameter. Das Blut wurde hierbei in 2 Microvetten gesammelt (20 µl Blut diente der Bestimmung des Plasmainsulins (2.2.4.1.1), 35 µl die der TG (2.2.4.1.2) und FFA (2.2.4.1.3). Die Zentrifugation des Blutes für die Insulinanalyse erfolgte bei 4 °C, 9.391 g für 5 Minuten, die des Blutes für die TG- und FFA-Ermittlung bei 4 °C, 2.348 g für 5 Minuten. Dabei sollte die niedrige Geschwindigkeit die Trennung von Fett und Plasma verhindern. Das Plasma ist daraufhin bei -80 °C gelagert worden.

2.2.1.6 Analyse der Metaboliten aus Mausblut

Die Analyse der Metaboliten aus Mausblut wurde mit freundlicher Unterstützung durch Frau Prof. Dr. Ute Ceglarek und Kollegen (Arbeitsgruppe Prof. Dr. Ralph Burkhardt, Universitätsklinikum Leipzig) entsprechend der beschriebenen Methode von Burkhardt und Kollegen durchgeführt (Burkhardt *et al.*, 2015). Dazu wurde ein Blutstropfen (Ø 3 mm) 10-Wochen alter Mäuse aus der Schwanzvene auf ein Filterpapier (Protein Saver[™] 903[™] Card, GE Healthcare Bio-Sciences Corp., Chalfont St Giles, UK) aufgetragen und für 3 Stunden bei RT getrocknet. Anschließend sind die Membranen vakuumverpackt in einem Alu-Zip-Beutel (mit Trockenmitteln) verschlossen (beides Peter Oehmen GmbH, Essen, Deutschland) auf Trockeneis an Dr. Ceglarek versandt worden.

2.2.1.7 Finale Parameter und Gewebeentnahme

Die Tötung fand im Alter von 21-Wochen statt. Die Tiere sind für 6 Stunden über Nacht nüchtern gesetzt worden (FeedTime, TSE-Systems, Bad Homburg, Deutschland).

Gegen 8 Uhr morgens erfolgte die Erfassung der Nüchtern-Blutglukose nach 6 h fasten (Contour next Sensoren, Bayer Vital, Leverkusen, Deutschland) und des Körpergewichtes (Waage, Sartorius, Göttingen, Deutschland). Im Anschluss sind die Tiere mit Isofluran anästhesiert und die Körperlänge mittels Millimeterpapier ermittelt worden. Daraufhin erfolgte die Tötung mittels Herzpunktion (Einmalspritze (Omnifix® 1 ml, BBraun, Melsungen, Deutschland) mit EDTA benetzt). Das Herzblut (EDTA) wurde gesammelt und bei 4 °C, 9.391 g für 10 Minuten zentrifugiert. Die Ermittlung der Plasmaparameter (In, TG und FFA) erfolgte gemäß 2.2.4.1. Folgende Gewebe wurden entnommen und in Folien (Rotilabo®-Aluminiumfolie, Roth, Karlsruhe, Deutschland) zunächst im flüssigen Stickstoff und anschließend bei -80 °C gelagert: Herz, Leber, Pankreas, Muskeln (Soleus, TA, Quadriceps, EDL, Gastroc.), Fettgewebe (gWAT, scWAT, BAT). Je ein Muskel (Soleus, TA, EDL) ist für zukünftige Histologische Studien entsprechend behandelt und gelagert worden. Dabei sind die Muskeln unmittelbar nach ihrer Entnahme mit Isopentan (gekühlt mittels flüssigen Stickstoffs) gefroren und in CRYO-Röhrchen (1,8 ml mit Stern-Fuß, Innengewinde, Fisher Scientific, Schwerte, Deutschland) zunächst im flüssigen Stickstoff und anschließend bei -80 °C gelagert worden.

2.2.2 Molekularbiologische Methoden

2.2.2.1 Isolierung genomischer DNA

Die DNA-Isolation aus Mausschwanz (wenige mm) erfolgte nach dem Invisorb Genomic DNA Kit II (Stratec, Berlin, Deutschland) entsprechend der Herstellerangaben. Die Konzentrationsbestimmung und die Überprüfung der Reinheit der DNA wurde photometrisch im NanoDrop 1000 (Peqlab, Erlangen, Deutschland) bestimmt (2.2.2.3).

2.2.2.2 Isolierung und Aufarbeitung von Gesamt-RNA

2.2.2.1 Isolierung von Gesamt-RNA aus Muskel- und Lebergewebe

Die Isolierung der Gesamt-RNA aus murinen Muskeln sowie Lebergeweben erfolgte unter Anwendung der Trizol[™]-Methode. Dabei wurden zunächst die Gewebe gemörsert. Anschließend ist das gemörserte Gewebe eines vollständigen Quadriceps bzw. 30 mg des gemörserten Lebergewebes weiter aufgeschlossen worden. Hierbei folgte eine Homogenisierung mit 500 µl Trizol (Life Technologies Darmstadt, Deutschland) und einer Stahlkugel im TissueLyser II (beides QIAGEN, Hilden, Deutschland) für 5 Minuten/25 Hz. Im Anschluss ist die Probe für 5 Minuten bei RT inkubiert worden. Das lysierte Quadriceps-Gewebe ist im Weiteren zentrifugiert worden (12.000 g/ 10 Minuten/4°C). Der Überstand wurde entnommen, mit 100 µl Chloroform überschichtet und für 15 Sekunden invertiert. Bei dem lysierten Lebergewebe fand die Zugabe von Chloroform (100 µl) und der Invertierung unmittelbar nach der 15sekündigen Invertierung statt. Ab diesem Schritt wurden Muskel- als auch Lebergewebe gleich behandelt. Es folgten eine 2-3-minütige Inkubation (RT) und eine Zentrifugation (12.000 g/5 Minuten/ 4°C). Als Ergebnis war eine Dreiphasige Auftrennung der Probe erkennbar (Phenolchloroform-Phase (untere), Interphase, RNA-enthaltene klare Phase (obere). Diese (RNA-haltige obere Phase) wurde bis zur Interphase entnommen und präzipitiert. Dafür fand die Zugabe von 250 µl 100 %igem Isopropanol statt, eine kurze Invertierung sowie ein 10-minütige Inkubation bei RT schloss sich an. Die darauffolgende Zentrifugation (12.000 g/10 Minuten/ 4°C) führte zum Absetzten des Pellets, in welchem die RNA vorlag. Der Überstand wurde verworfen und das Pellet mit 500 µl Ethanol (75 %) gewaschen und die Probe gevortext. Ein nachfolgender Zentrifugationsschritt (7.500 g/ 5 Minuten/ 4 °C) wurde durchgeführt und der Überstand verworfen. Das so gewaschene Pellet ist für 30 Minuten getrocknet und mit RNasefreien Wasser (35 µl bei Quadriceps, 50 µl bei Lebergewebe) resuspendiert worden. Daraufhin ist die Probe für 10 Minuten im Thermomixer comfort 1,5 ml (Eppendorf, Hamburg, Deutschland) bei 300 rpm/ 60°C und für weitere 2 Minuten bei RT inkubiert worden. Die Konzentration der so isolierten Gesamt-RNA sowie die Reinheit wurden am NanoDrop 1000 (Peqlab, Erlangen, Deutschland) bestimmt und die RNA bei -80 °C gelagert.

2.2.2.2 Isolierung von Gesamt-RNA aus Fettgewebe (gWAT, BAT)

Die Isolierung von Gesamt-RNA aus Fettgewebe (100 mg Gewebe) erfolgte über das RNeasy Mini Kit (QIAGEN, Hilden, Deutschland) über Silizium-Membran-Säulen (QIAshredder, QIAGEN, Hilden, Deutschland), da hierüber bessere Ergebnisse hinsichtlich der gewonnenen RNA-Qualität erzielt wurden. Die Durchführung erfolgte gemäß Herstellerangaben.

2.2.2.3 Konzentrationsbestimmung von Nukleinsäuren

Die Konzentrationsbestimmung erfolgte sowohl für genomisch isolierte DNA (2.2.2.1) sowie für RNA (2.2.2.2). Die Nukleinsäurekonzentration wurde mithilfe des Spektrophotometers NanoDrop 1000 (Peqlab, Erlangen, Deutschland) bestimmt. Dabei ist die optische Dichte (OD) der Probe bei einer Wellenlänge von 260 nm (DNA) bzw. 280 nm (RNA) gemessen worden. Eine doppelsträngige DNA-Lösung mit einer Konzentration von 50 µg/ml weist bei einer Wellenlänge von 260 nm eine OD von 1 auf. Eine einzelsträngige RNA-Lösung dagegen zeigt eine OD von 1 bei einer Konzentration von 40 µg/ml.

2.2.2.4 cDNA-Synthese

Um die Genexpression auf mRNA-Ebene durch qRT-PCR nachweisen zu können, musste RNA zunächst in cDNA (*complementary* DNA) umgeschrieben werden. Dabei erfolgte die Synthese der cDNA aus 2 µg RNA (Skelettmuskel Quadriceps (SMq) und Leber) bzw. 1 µg RNA (gWAT und BAT) mithilfe von Hexanukleotidprimern (2.1.5) sowie des GoScript® Reverse Transkriptase Kits (Promega, Madison, USA). Im Folgenden ist der Reaktionsansatz dargestellt.

cDNA-Ansatz

Gesamt	13 µl
Desoxyribonukleosidtriphosphat (dNTP) (25mM)	1 µl
Hexanukleotidprimer (1:10) (12,5 nmol)	2 µl
RNA- <i>Template</i> (1 bzw. 2 µg)	10 µl

Hexanukleotidprimer (Random Primer) sind Oligodesoxyribonukleotide, die an komplementären Regionen der RNA binden. Die Desoxyribonukleosidtriphosphate stellen alle vier Nukleotide dar, die der DNA-Polymerase helfen, den neuen DNA-Strang zu synthetisieren. Zunächst ist der cDNA-Ansatz für 5 Minuten bei 65 °C inkubiert worden, damit die Primer mit dem RNA-Strang hybridisieren. Im Weiteren erfolgte die Lagerung auf Eis (1 Minute) und das Zentrifugieren für 10 Sekunden.

GoScript 5x reaction buffer	4 µ1
MgCl ₂	2 µ1
GoScript Reverse Transkriptase	1 µl
Gesamt	7 μl

Reverse Transkriptase-Mix

Dann folgte die Zugabe des Reverse Transkritase Mix, so dass ein Gesamtvolumen von 20 µl entstand. Für die Umschreibung der RNA in cDNA fand eine RNA-abhängige DNA-Polymerase (Reverse Transkriptase) (GoScript Reverse Transcriptase, Promega, Madison, USA), welche eine RNase H+ Aktivität aufweist, Anwendung. Die RNase H+ fügt der RNA Strang-Brüche zu, infolge dessen wird die RNA vom cDNA-Strang getrennt. Um einen unerwünschten Abbau des RNA-*Templates* durch die RNase zu verhindern, wurde die Reverse Transkriptase (bereits vom Hersteller durchgeführt) mit einem RNase-Inhibitor versetzt. Die cDNA ist im weiteren Verlauf bei 25 °C für 5 Minuten hybridisiert worden. Die Synthese fand für 60 Minuten bei 42°C statt. Im Anschluss erfolgte die Inaktivierung der Reversen Transkriptase bei 70 °C für eine Dauer von 15 Minuten. Die anschließende Lagerung erfolgte bei -20 °C.

2.2.2.5 Quantitative Real-Time PCR (qRT-PCR)

Die Polymerasekettenreaktion, kurz PCR (*Polymerase chain reaction*), ist eine molekularbiologische Methode, mit der sich bereits geringe Mengen an DNA in kurzer Zeit vervielfältigen lassen und dient folglich als eine der empfindlichsten biologischen Techniken. Dabei beruht die PCR auf einem immer wiederkehrenden Zyklus aus folgenden drei Schritten: Denaturierung, Hybridisierung (*Annealing*) und Elongation. Zunächst erfolgt durch Erhitzen bei 95°C die Denaturierung der DNA, bei welcher die beiden komplementären Stränge voneinander getrennt werden. Die nachfolgende Hybridisierung, bei welcher die Temperatur auf etwa 55°C herabgesetzt wird, führt zur Verbindung der Primer mit der DNA. Infolge einer Temperaturerhöhung auf 72°C, welche die optimale Arbeitstemperatur der verwendeten Polymerasen ist, können diese weitere Nukleotide an die entstehenden DNA-Stränge anknüpfen. Durch Wiederholung dieser drei Schritte verdoppelt sich die Anzahl an kopierten DNA-Molekülen. Nach bereits 20 Zyklen entstehen aus einem einzigen DNA-Doppelstrang etwa eine halbe Million Moleküle.

Die in den 1990er Jahren zum ersten Mal beschriebene quantitativen *Real-Time* PCR (qRT-PCR) sagt im Vergleich zur PCR nicht nur aus, ob ein bestimmter DNA-Abschnitt in einer Probe vorliegt, sondern bestimmt zugleich dessen Menge. Dieses Verfahren ermöglicht eine ständige Beobachtung des Reaktionsverlaufes, weshalb diese PCR auch als quantitative Echtzeit (*Real-Time*)-PCR (qRT-PCR) bezeichnet wird. Mithilfe von Fluoreszenz-Messungen, die anhand diverser Fluoreszenzfarbstoffe wie SYBR Green I, welche in die DNA interkalieren, ermöglicht werden, erfolgt die Ermittlung der Quantifizierung.

In dieser Arbeit fand der GoTaq[®] qPCR *Master* Mix der Firma Promega Verwendung, welcher bis auf Wasser, Primer und DNA alle erforderlichen Komponenten für die qPCR enthält. Dieser Mix beinhaltet einen neuartigen Fluoreszenzfarbstoff (CRX), der stärkere Fluoreszenzen als SYBR Green I hervorruft. Die Erstellung des qPCR-Ansatzes ist im nachfolgenden beschrieben.

qPCR-Ansatz

GoTaq [®] qPCR <i>Master</i> Mix, 2X	5 µ1
Primer <i>fwd.</i> (1 µM)	0,5 µl
Primer rev. (1 µM)	0,5 µl
Template (25 ng)	4 µl
Gesamt	10 µl

Die Primer sind mit Nuclease-freiem Wasser 1:10 auf eine Endkonzentration von 1 pmol/µl (1 µM) verdünnt worden. Als *Template* diente cDNA, die ebenfalls mit Nuklease-freiem Wasser (1:40) und auf eine Arbeitslösung von 25 ng eingestellt wurde. Die qRT-PCR erfolgte über die vergleichende (*Comparative*) C_T-Methode (2.2.2.6). Es sind Doppel- bzw. Dreifachbestimmungen erfolgt. Neben dem Zielgen wurde auch ein Referenzgen (*Housekeeper*) zur späteren Quantifizierung in jeder qRT-PCR eingesetzt. Mithilfe des qRT-PCR-Systems *Quant StudioTM 7 Flex System* der Firma Applied Biosystem sind die qRT-PCRs im 384er-Format (FrameStar® 384-Well, 4titude, Berlin, Deutschland) durchgeführt worden. Dieser *Cycler* verwendet ein LED-*Array* mit einer Anregungswellenlänge von 470 nm, dies ermöglicht die Anregung der meisten in der qRT-PCR gebräuchlichen Fluoreszenzfarbstoffe. Als Referenz wurde ROX ausgewählt.

<u>Schritt</u>	<u>Temp.</u>	<u>Zeit</u>	<u>Anzahl Zyklen</u>
1. Initiale Denaturierung	95°C	2 Min.	1
2. Denaturierung	95°C	15 Sek.	40
3. Hybridisierung	60°C	1 Min.	
4. Schmelzkurve: Denaturierung	95°C	15 Sek.	1
5. Schmelzkurve: Hybridisierung	60°C	1 Min.	1
6. Schmelzkurve: Dissociation	95°C	15 Sek.	1

Das entsprechende qPCR-Programm lautete wie folgt:

Da die Fluoreszenzfarbstoffe während der qRT-PCR-Analyse in die DNA interkalieren nimmt die Fluoreszenz aufgrund der Vermehrung der DNA zu. Dies führt jedoch zu der Schwierigkeit, dass aufgrund der insgesamten Fluoreszenzzunahme, bedingt durch das Ziel- als auch Referenzgen, keine Spezifiät für das untersuchte Zielgen gewährleistet werden kann. Daher erfolgt nach jeder Hybridisierung (Schritt 3) die Schmelzkurvenanalyse, welche über die Spezifiät Aufschluss gibt. Jede DNA-Sequenz hat eine bestimmte Schmelztemperatur (TM). Durch die Temperaturerhöhung in Schritt 4 werden die Wasserstoffbrückenbindungen zwischen den Basen der DNA wieder aufgetrennt und folglich der Fluroszenzfarbstoff entlassen. Diese Fluoreszenzänderung ist in der Aufzeichnung der Schmelzkurve zu erkennen.

Während der qRT-PCR werden sogenannte C_T -Werte (*Cycle threshold*) mit dem Programm *PCR-Miner* (Zhao & Fernald, 2005) berechnet. Dieser Wert sagt aus, wann die Fluoreszenz des gefärbten Amplikons zum ersten Mal einen bestimmten Schwellenwert überschritten hat. Je mehr cDNA vor der qPCR in der Probenlösung vorlag, umso mehr Kopien entstehen während der Zyklen, wodurch es schneller zu Fluoreszenzsignalen kommt und der Schwellenwert eher überschritten wird. Folglich dient der C_T-Wert als Maß für die Effizienz der Expressionsstärke. Ein geringer C_T-Wert zeigt somit eine größere Anzahl von cDNA des nachzuweisenden *Templates* an. Anhand der C_T-Werte wurde in dieser Arbeit die relative Quantifizierung berechnet (2.2.2.6).

2.2.2.6 Relative Quantifizierung

Mithilfe der relativen Quantifizierung ist es möglich, die Genexpression eines Zielgens mit der eines Referenzgens (*Housekeeper*) aufeinander zu beziehen (Normalisierung).

Der Vorteil dieser Normalisierung liegt in der Reduzierung der Varianz der Expressionsergebnisse. Gewebe- und Matrixeffekte als auch unterschiedliche RNA Extraktionseffizienzen können die Integrität der extrahierten RNA sowie Fehler bei der reversen Transkription (cDNA-Synthese) innerhalb einer experimentellen Probe betreffen. Insofern kann das Zielgen als auch Referenzgen gleichermaßen von diesen Effekten beeinflusst werden. Durch die Berechnung des Expressionsverhältnisses heben sich diese individuellen Probeneffekte wieder auf. In dieser Arbeit erfolgte die qRT-PCR über die vergleichende Methode (*Comparative* $C_T (\Delta \Delta C_T)$). Wurden verschiedene Mausgruppen zueinander hinsichtlich des Expressionsniveaus eines Zielgens betrachtet, erfolgte die Ermittlung der relativen Genexpression über die $2(-\Delta\Delta C_T)$ -Methode. In der vorliegenden Doktorarbeit sind die Mittelwerte der C_T-Werte des Referenzgens sowie des Zielgens von 5-8 Tieren je Parentalstamm (NZO und 129P2) ermittelt worden. Die Differenz dieser Mittelwerte bildeten die ΔC_T -Werte (Gl.1). Im Anschluss wurden die Mittelwerte des ΔC_T für den NZO-Mausstamm errechnet und die jeweiligen ΔC_T -Werte der 129P2-Population auf den Mittelwert des ΔC_T des NZO-Mausstamms normiert $(\Delta C_T(\text{Zielgen}) - \Delta C_T(\text{Referenzgen}))$ und so der $\Delta \Delta C_T$ erhalten (Gl. 2). Zuletzt ergab sich der 2(- $\Delta\Delta C_T$)-Wert aus der zweiten Potenz des $\Delta\Delta C_T$ -Wertes.

Bei der Analyse der Rückkreuzungspopulation war eine Normierung lediglich auf das Referenzgen möglich. Daher erfolgte hierbei die Berechnung der relativen Genexpression mittels der ΔC_T -Methode, welcher die Differenz aus den C_T -Mittelwerten des Referenzgens und des Zielgens darstellt.

(Gl. 1)
$$\Delta C_T = C_T Zielgen - C_T Referenzeen(Gl. 2) $\Delta \Delta C_T = \Delta C_T 129P2 - \Delta C_T NZO$$$

2.2.2.7 Genotypisierung der N2 (NZOx129P2)-Population

Die Genotypisierung der 290 männlichen und 307 weiblichen N2-Tiere erfolgte mit freundlicher Unterstützung durch LGC genomics, UK. Dabei wurde genomische DNA aus den Mausschwänzen isoliert (2.2.2.1) und auf 20 ng mit dH₂O eingestellt. Aus einer von LGC bereitgestellten SNP-Marker Liste (Anhang Tab. 8) sind 118 SNP-Marker, die sich an einer spezifischen Allelposition zwischen NZO und 129P2 unterscheiden, im Abstand von 10-20 Mb ausgewählt worden. Unter Anwendung der fluoreszenzbasierten Kompetitiven allelspezifischen PCR (*Kompetitive Allele Specific PCR*, KASP)- Technologie (2.2.2.7.1) sind die Tiere für diese 118 SNP-Positionen genotypisiert worden.

2.2.2.7.1 Genotypisierung mittels der *Kompetitive Allele Specific PCR* (KASP)-Methode

Die Kompetitive Allele Specific PCR (KASP)- Genotypisierung ist von LGC genomics, UK, entwickelt worden. Diese besitzt ein *fluorescence resonant energy transfer* (FRET) Kassetten-Reportersystem, bestehend aus 2 Kassetten, welches eine bi-allele Unterscheidung der zu analysierenden SNPs der genomischen DNA bietet. Eine Kassette ist mit der Fluorphore 6-Carboxyfluorescein Fluorescein (6-FAM, auch FAM, 520 nm Emissionswellenlänge), die andere mit Hexachloro-Fluorescein (HEX, 556 nm Emissionswellenlänge) markiert. So ist es möglich, in einem PCR-Ansatz Aufschluss über einen der beiden Genotypen zu erhalten. Die Fluoreszenz beider FRET-Kassetten ist durch Quenscher gelöscht worden. Durch Entfernung des Quenschers kann die Löschung wieder aufgehoben werden. Das KASP-Genotypisierungs-Assay (Abb. 9). beinhaltet den KASP Assay Mix und den KASP Master Mix. Ersterer enthält einen rückwärtsgerichteten (*rev.*) Primer und 2 verschiedene vorwärtsgerichtete (*fwd.*) Primer. Dabei ist jeder der *fwd.* Primer für eines der Allele des SNPs spezifisch. Der KASP Master Mix besteht aus der FRET Kassette und einer Taq Polymerase.

Abb. 9: Aufbau des KASP-Genotypisierungs-Assays. Fwd.=forward (vorwärtsgerichtet); rev.=reverse (rückwärtsgerichtet). C=Cytosin; A=Adenin; F=FAM; H=HEX; Q=Quenscher. KASP=Kompetitive Allele Specific PCR. Modifiziert nach LGC genomics.

Beide Komponenten werden mit der zu genotypisierenden genomischen DNA (20 ng) in entsprechender Konzentration vereint und über ein spezielles PCR-Programm (StepOnePlus[™] Real-Time PCR System, Applied Biosystems, Foster City, USA) analysiert.

Schritt	Temp.	Zeit	Anzahl Zyklen
Pre-PCR Read	37°C	30 Sek.	1
1. Initiale Denaturierung	94°C	15 Min.	1
2. Denaturierung	94°C	20 Sek.	10
3. Hybridisierung	61°C (um	1 Min.	
	0.6°C pro		
	Zyklus		
	sinkend)		
4. Schmelzkurve: Denaturierung	95°C	20 Sek.	26
5. Schmelzkurve: Hybridisierung	55°C	1 Min.	
Post-PCR Read	37°C	30 Sek.	1

Zunächst erfolgten die Denaturierung und die Anlagerung eines der beiden allelspezifischen *fwd.* Primer an die SNP-Region der einzelstängigen DNA. Zusammen mit dem *rev.* Primer wird die Zielregion amplifiziert. Der *rev.* Primer führt zur Elongation des 3'- Ende, an welchem die FRET-Kassette, welche komplementär zu dem neu synthetisierten Teilstück ist, bindet. Als Folge dessen löst sich die Fluorphore vom Quenscher und kann so ein Fluoreszenzsignal emittieren.

2.2.2.8 Microarray-Analyse

RNA 6-Wochen alter Parentaltiere (NZO und 129P2) wurde aus den Geweben Leber, gWAT, BAT und SMq isoliert (2.2.2.2) und die Expressionsanalysen für 21.406 Gene über einen *Affimetrix*-Chip (GeneChip® Mouse Genome. 430A 2.0 Array) mit Unterstützung von Dr. Axel Rasche (MPI Berlin) und Dr. Birgit Knebel (Plattform Genomics, DDZ) durchgeführt. Die Sicherstellung der RNA-Qualität erfolgte mithilfe des Agilent 2100 Bioanalyzer (Agilent Technologies, Kalifornien, USA) nur RNA einer hohen Qualität (RNA integrity number (RIN)>8) wurde für die *Microarray*-Analyse eingesetzt.

2.2.3 Zellbiologische Methoden

Für das Kandidatengen *Txndc12* sollte ein *knockdown* in murinen Hepa 1-6-Zellen (Leberzelllinie) stattfinden. Ziel war es, den neu erworbenen Antikörper zu überprüfen

und die mit siRNA-Oligonukleotiden behandelten Zellen als Positivkontrolle für die Proteinanalyse von TXNDC12 zu nutzen.

2.2.3.1 Zellaussaat und Transfektion muriner Hepa 1-6-Zellen

Die murine Leberzelllinie Hepa 1-6 wurde mit freundlicher Unterstützung durch Dr. Bengt Belgardt bereitgestellt. Die Zellen lagen zu Beginn des Experiments bereits kultiviert vor.

Für die Aussaat ist das Medium entfernt und die Zellen mit 10 ml PBS gewaschen worden. Zum Ablösen erfolgte die Zugabe von 1 ml Trypsin und die Inkubation für 3 Minuten im Brutschrank (37 °C, 5 % CO2) (HERAcell 240i CO2 Incubator, Thermo Scientific (Perbio Science), Bonn, Deutschland). Das Ablösen ist dabei unter dem Mikroskop (Motic Microskop AE2000, VWR International, Langenfeld, Deutschland) beobachtet worden. Abgestoppt wurde die Reaktion durch die Zugabe von 9 ml Medium (enthält 10 % FBS+ 1 % Antibiotikum). Anschließend ist die vollständige Zellsuspension (10 ml) in ein 50 ml Falcon tube (Cellstar® tube) überführt worden. Dieses wurde im Anschluss für 4 Minuten bei RT bei 1.000 rpm zentrifugiert (Zentrifuge GH 3.7, Beckman Coulter, Krefeld, Deutschland). Der Überstand ist abgesaugt und das Zellpellet in 10 ml Medium (enthält 10 % FBS+ 1 % Antibiotikum) resuspendiert worden. Die Zellzahlbestimmung erfolgte im Anschluss mittels Neubauer-Kammer (Neubauer-Kammer improved Assistent, VWR International, Langenfeld, Deutschland), es sollten 200.000 Zellen pro well einer 12-well-Platte (Cellstar® Multiwell Platten 12 Well, Peter Oehmen GmbH, Essen, Deutschland) eingesetzt werden. Dabei wurde erhaltene Menge an Zellsuspension entsprechend mit Medium (enthält 10 % FBS+ 1 % Antibiotikum) auf das einzusetzende Volumen von 1 ml je well aufgefüllt. Die homogene Verteilung der Zellen wurde unter dem Mikroskop betrachtet. Es folgte eine Inkubation über Nacht im Brutschrank (37 °C, 5 % CO2). Im Anschluss erfolgte die Transfektion.

2.2.3.2 Transfektion muriner Hepa 1-6-Zellen-knockdown von Txndc12

Die Transfektion von Hepa 1-6-Zellen mit siRNA-Oligonukleotiden von *Txndc12*, welche einen *knockdown* erzielen sollte, wurde wie folgt durchgeführt. Zunächst sind 6 *wells* der am Vortag ausgesäten Zellen mit einem siRNA-Transfektionsmix (Tab. 14)

behandelt worden, die übrigen 6 *wells* dienten als Kontrollen (mit non Target siRNA-Oligonukleotiden transfiziert).

siRNA-Transfektionsansatz	Volumen pro <i>well</i> (µl)
Optimem	100
siRNA	1
Kontrollansatz	Volumen pro <i>well</i> (µl)
Optimem	100
-	100

Tab. 14: Pipettierschema des siRNA-Transfektionsmixes pro well

Für die Transfektion ist zudem ein Lipofektamin RNAimax-Mix für alle 12 *wells* zusammengesetzt worden (Tab. 15). Anschließend wurde der siRNA-Transfektionsund Lipofektamin RNAimax-Mix im Verhältnis 1:1 gemischt, so dass sich insgesamt ein Gesamtvolumen von 200 μl ergab. Der Reaktionsansatz wurde im weiteren Verlauf 10 Minuten inkubiert. In dieser Zeit sind die Zellen mit PBS (1 ml PBS je *well* einer 12*well*-Platte (Cellstar® Multiwell Platten 12 Well, Peter Oehmen GmbH, Essen, Deutschland)) gewaschen und anschließend mit Medium (ohne FBS und Antibiotikum; 800 μl je *well*) überschichtet worden. Anschließend fand die Zugabe von 200 μl (je *well*) des Transfektionsansatzes (siRNA-Transfektions- und Lipofektamin RNAimax-Mix (1:1)) statt und die Zellen wurden bei 37 °C und 5% CO₂ (HERAcell 240i CO2 Incubator, Thermo Scientific (Perbio Science), Bonn, Deutschland) über Nacht inkubiert. Nach 24 Stunden wurde das Medium abgesaugt. Im Weiteren erfolgten die Zugabe des Kultivierungsmediums (enthält 10 % FBS + 1 % Antibiotikum) und eine Inkubation bei 37 °C und 5% CO₂.

Tab. 15: Pipettierschema des Lipofektamin RNAimax-Mixes pro well

Lipofektamin RNAimax-Mix	Volumen pro <i>well</i> (µl)
Optimem	100
Lipofektamin RNAimax	3

2.2.3.3 Lyse muriner Hepa 1-6-Zellen

Die Zellen sind sowohl für die Protein- als auch für zukünftige RNA-Analysen vorbereitet worden.

Zu Beginn wurde das Medium abgesaugt und die Zellen pro *well* mit je 1 ml PBS gewaschen. Nach Abnahme des PBS sind die trocken liegenden Zellen auf Eis gelagert und wie folgt für die RNA- als auch Proteinanalyse vorbereitet worden.

Von den mit *Txndc12*-siRNA-Oligonukleotiden als auch non Target-siRNA-Oligonukleotiden transfizierten Zellen (insgesamt 6 *wells* je Bedingung) wurden 3 *wells* für die RNA-Analyse mit jeweils 170 µl Trizol, die übrigen 3 *wells* für die Proteinanalyse mit 100 µl Lysepuffer behandelt. Die 12-*well*-Platte (Cellstar® Multiwell Platten 12 Well, Peter Oehmen GmbH, Essen, Deutschland) wurde daraufhin für 15 Minuten bei 4 °C auf einem Schüttler (Wippschüttler ST 5, CAT M. Zipperer GmbH, Ballrechten-Dottingen, Deutschland) (70/min) platziert. Im Anschluss erfolgte die Vereinigung der Zellen dreier *wells*, welche die gleichen Bedingungen besaßen, in einem 1,5 ml *Safe Lock* Reaktionsgefäß. Die lysierten Zellen wurden nachfolgend mit Phosphostopp (1:10) und Complete (1:25) versetzt. Die mit Lysepuffer und Trizol behandelten Zellen wurden bis zur weiteren Aufarbeitung bei -80 °C gelagert.

2.2.4 Biochemische Methoden

2.2.4.1 Analyse der Plasmaparameter

Den Mäusen wurde in Lebenswoche 8 nach 16 h fasten und nach einem anschließenden 2-stündigen Füttern (HFD (45 % Fett/Kalorien) (Brogaarden ApS, Lynge, Norwegen) Blut aus der Schwanzvene entnommen (Microvette CB 300 µl Lithium-Heparin, Sarstedt, Nümbrecht, Deutschland). In Lebenswoche 21 wurde das Herzblut (Einmalspritze Omnifix® 1 ml, BBraun, Melsungen, Deutschland (mit EDTA benetzt)) nach 6 h fasten gesammelt. Aus allen gewonnenen Blutproben ist das Plasma auf Insulin, TG- sowie FFA-Gehalt analysiert worden.

2.2.4.1.1 Bestimmung des Plasmainsulins

Die Bestimmung des Plasmainsulins (in [µg/L]) erfolgte über das *Insulin (Mouse) ultrasensitive-* und *Insulin (Mouse) normal ELISA-Kit* (DRG Instruments, Marburg, Deutschland) gemäß Herstellerangaben. Die kolorimetrische Messung fand im Absorptionsspektrometer (iMark[™] Microplate Absorbance Reader, Bio-Rad, München, Deutschland) bei 450 nm statt.

2.2.4.1.2 Bestimmung der Triglyzeride(TG) im Plasma

Die Plasmaanalyse der TG (in [mg/dl]) erfolgte mit dem *Triglycerides (TRIGS) GPO-PAP Method-Kit* (RANDOX Laboratories Ltd., Ardmore, UK) nach Herstellerangaben. Die kolorimetrische Messung fand im Absorptionsspektrometer (iMark[™] Microplate Absorbance Reader, Bio-Rad, München, Deutschland) bei 490 nm statt. Da das freie Glycerol zu falsch-positiven Werten führt, sind vom erhaltenen TG-Wert 10 mg/dl subtrahiert worden. Die Analyse erfolgte in Duplikaten.

2.2.4.1.3 Bestimmung der freien Fettsäuren (FFA) im Plasma

Albumingebundene freie Fettsäuren (NEFA) wurden unter Anwendung der NEFA-HR(2)-ACS-ACOD-Methode (Wako Chemicals GmbH, Neuss, Deutschland) im Plasma entsprechend der Herstellerangaben analysiert und in mmol/l bestimmt. Der Farbumschlag wurde nach einer 15-minütigen Inkubation (RT) im Absorptionsspektrometer (iMark[™] Microplate Absorbance Reader, Bio-Rad, München, Deutschland) bei 560 nm gemessen.

2.2.4.2 Gewebeanalyse

Für die in Lebenswoche 21 entnommenen Gewebe Leber, gWAT, Quadriceps, BAT und Pankreas erfolgten weitere Analysen. Für die Gewebe Leber und Quadriceps (SMq) wurden die Gesamtgewichte (Elektronische Waage, Sartorius, Göttingen, Deutschland), der Glykogen-, sowie TG-Gehalt bestimmt (2.2.4.2.1). Für die nachfolgenden Expressionsanalysen erfolgte die Isolierung von RNA aus Leber, SMq, gWAT und BAT (2.2.2.2). Für das Pankreas erfolgte die Ermittlung des Gesamtinsulins (2.2.4.2.2).

2.2.4.2.1 Leber- und Quadricepsgewebe

2.2.4.2.1.1 Bestimmung des Glykogengehaltes in der Leber

Die Analyse erfolgte nach dem 2001 erschienenen Protokoll von Suzuki und Kollegen (Suzuki *et al.*, 2001). Zunächst sind die Gewichte des gefrorenen Lebergewebes (Elektronische Waage, Sartorius, Göttingen, Deutschland) bestimmt und dieses vollständig gemörsert worden. Für die Hydrolyse sind etwa 40 mg in ein 2 ml-*Safe Lock* Reaktionsgefäß, in welches zuvor ein Loch in den Deckel gestanzt wurde, zusammen mit einer Stahlkugel (QIAGEN, Hilden, Deutschland) und 300 µl KOH (30 % (wt/vol))

im Thermomixer (Thermomixer comfort 1,5 ml, Eppendorf, Hamburg, Deutschland) bei 99 °C für 30 Minuten (850 rpm) behandelt worden. Sobald die Proben auf Raumtemperatur abgekühlt waren, erfolgte die Glykogenfällung. Dafür sind die Proben mit 100 µl Na₂SO₄ (1 M) und 800 µl EtOH (absolut, reinst) versetzt und vorsichtig gemischt worden. Ein weiterer Schritt im Thermomixer bei 99 °C für 2-3 Minuten folgte. Danach fand eine Zentrifugation bei 21.130 g für 15 Minuten bei 4 °C statt. Der Überstand wurde verworfen (Water-Jet Vakuum Pumpe, Ditabis, Pforzheim, Deutschland) und das Glykogenpellet in 200 µl dH₂O gelöst (Uniprep Gyrator, UniEquip, Planegg, Deutschland). Die Glykogenfällung wurde zwei weitere Male wiederholt. Nach dem letzten Schritt wurde das Pellet nicht mehr in dH₂O aufgenommen, sondern in einer Vakuum-Zentrifuge (Speed Vac, Eppendorf, Hamburg, Deutschland) für 20 Minuten getrocknet. Anschließend sind 0,3 mg/ml Amyloglukosidase in 200 µl Natriumacetat Puffer (0,12 M, pH=4,8) gelöst worden und das Gesamtvolumen zum Glykogenpellet pipettiert. Ein nachfolgender Schritt im Gyrator führte zu einer entsprechenden Durchmischung der Probe. Diese wurde daraufhin für 3 Stunden bei 40 °C im Thermomixer inkubiert. Nachfolgend fand ein Zentrifugationsschritt bei 1.987 g statt und der Überstand, welcher die produzierte Glukose enthielt, ist in ein neues Reaktionsgefäß überführt worden. Diese wurde mithilfe einer Glukosebestimmungsmethode (Glucose LiquiColor® Test, human GmbH, Bremen, Deutschland) gemäß der Herstellerangaben bei 500 nm kolorimetrisch bestimmt. Folglich konnte daraus der Glykogengehalt in µg/mg errechnet werden.

2.2.4.2.1.2 Bestimmung der TG des Leber- sowie Quadricepsgewebes

Zunächst sind 20-30 mg der Leber- bzw. Quadriceps-Gewebe (gemörsert) in ein 2 ml 1,5 Safe Lock Reaktionsgefäß eingesetzt und mit einem ml kaltem Chloroform/Methanol-Gemisch (2:1 vol/vol) sowie einer Stahlkugel im TissueLyser II (QIAGEN, Hilden, Deutschland) (25 Hz/sek.) für 2 Minuten (Muskeln für 4 Minuten) homogenisiert worden. Um die Lipide zu extrahieren, ist die Probe horizontal für 2 Stunden bei RT geschüttelt worden. Anschließend folgte die Zugabe von 200 µl dH₂O und die Durchmischung im Vortexer. Daraufhin erfolgte eine Zentrifugation der Probe für 15 Minuten bei 3.381 g. Die erhaltene Phasentrennung war in eine untere (organische Chloroform-Phase) und obere (wässrige Methanol-Phase) gegliedert. 250 µl der unteren, organischen Phase sind in ein neues 2 ml Safe Lock Reaktionsgefäß

überführt und für 1 Stunde in einer Vakuum-Zentrifuge getrocknet worden (Speed Vac, Eppendorf, Hamburg, Deutschland). Die Lipidfraktion ist daraufhin in 1.750 µl Chloroform resuspendiert und gemischt (Vortexer) worden. Für die nachfolgende Bestimmung in Triplikaten sind 3x50 µl der Probe in 1,5 *Safe Lock* Reaktionsgefäße pipettiert und die flüssigen Bestandteile für 15 Minuten in der Vakuum-Zentrifuge verflüchtigt worden. Die Analyse der TG im Gewebe (Leber und Quadriceps) erfolgte mit dem *Triglycerides (TRIGS) GPO-PAP Method-Kit* (RANDOX Laboratories Ltd., Ardmore, UK) nach Herstellerangaben. Dabei erfolgte die kolorimetrische Absorptionsbestimmung bei 490 nm (iMark[™] Microplate Absorbance Reader, Bio-Rad, München, Deutschland).

2.2.4.2.2 Analyse des Gesamtinsulins des Pankreas

Gefrorenes Pankeasgewebe ist in ein 2 ml *Safe Lock* Reaktionsgefäß platziert und mit 1 ml eines eiskalten HCl-Ethanol-Gemisches und einer Stahlkugel (QIAGEN, Hilden, Deutschland) versetzt worden. Die Homogenisierung fand im TissueLyser II (QIAGEN, Hilden, Deutschland) für 5 Minuten bei 30/s statt. Das Homogenisat ist anschließend in einem Rotator (Overhead Shaker REAX 2, Heidolph Instruments, Schwabach, Deutschland) bei 4 °C über Nacht durchmischt worden. Anschließend erfolgte ein Zentrifugationsschritt bei 2.348 g für 15 Minuten bei 4 °C. Der gesamte Überstand wurde in einem 1,5 ml *Safe Lock* Reaktionsgefäß gesammelt. Da kein Gewicht des Pankreas bestimmt wurde, ist die Insulinmenge auf den Proteingehalt normiert worden. Daher ist vorab ein BCA-*Assay* (Pierce BCA Protein Assay Kit, Thermo Scientific (Perbio Science), Bonn, Deutschland) entsprechend der Herstellerangaben durchgeführt worden. Hierbei ist der Überstand des Pankreas-Homogenisates 1:50 mit milliQ-H₂O verdünnt und die Proteinmenge (in [mg/ml]) von Duplikaten im BCA-*Assay* ermittelt worden.

Die nachfolgende Insulinbestimmung (in μ g/ml Insulin) erfolgte mit dem *Insulin* (*Mouse*) normal ELISA-Kit (DRG Instruments, Marburg, Deutschland). Der Überstand des Pankreas-Homogenisats ist 1:100.000 mit Lysepuffer verdünnt und in den Insulin-ELISA eingesetzt worden. Anschließend wurden die Insulinwerte durch die Proteinwerte dividiert und die Gesamtinsulinmenge des Pankreas bei μ g Insulin/mg Protein angegeben.

2.2.5 Proteinanalyse

2.2.5.1 Western-Blot

Der Western-Blot, auch Immunoblot, dient der Identifizierung eines Proteins mittels spezifischer Antikörper-Antigen Interaktion. Dabei werden die Proteine entsprechend ihrer molekularen Größe (kDA) über ein Polyacrylamidgel aufgetrennt und auf eine Membran übertragen (Blotten). Die Prozedur erfolgt in 6 Schritten: 1. Proteinbestimmung, 2. SDS-PAGE, 3. Blotten, 4. Blocken, 5. Zugabe der spezifischen Antikörper und 6. Detektion (Blancher & Jones, 2001).

2.2.5.1.1 Proteinbestimmung

Die Proteinanalyse für TXNDC12 fand für das Lebergewebe als auch für die lysierten Hepa 1-6-Zellen (transfiziert mit Txndc12-siRNA- und non Target siRNA-Oligonukleotiden) (2.2.3.3) statt. Dazu erfolgte vorab eine Proteinbestimmung mittels Bicinchoninsäure (Bicinchoninic acid, BCA)-Assay (Pierce BCA Protein Assay Kit, Thermo Scientific (Perbio Science), Bonn, Deutschland) gemäß Herstellerangaben. Die Bestimmung des Gesamtproteingehaltes (in [µg/µl]) wird durch eine Kombination aus der Biuret- und einer Komplexbildungsreaktion mit BCA erzielt. Zu Beginn ist Lebergewebe (gemörsert, 30 mg) von 21-Wochen alten NZO- und 129P2-Parentaltieren (n=6) zusammen mit einer Stahlkugel (QIAGEN, Hilden, Deutschland) und 200 ml Lysepuffer in einem 2 ml Safe Lock Reaktionsgefäß im TissueLyser II (QIAGEN, Hilden, Deutschland) (5 Minuten, 25 Hz/sek.) lysiert und anschließend für 10 Minuten bei 12.000 g zentrifugiert und im Anschluss bei 4 °C gelagert worden. Nachfolgend sind der Leerwert, die Standardreihe (bestehend aus 8 Standards) sowie die lysierten Leberproben in Duplikaten in eine 96-well Platte (Microtestplatten 96-well-Platten, Sarstedt, Nümbrecht, Deutschland) vorgelegt und jeweils mit 200 µl Amersham Biosciences Lösung (enthielt BCA und Kupfersulfat) behandelt worden. Die Absorptionsmessung erfolgt kolorimetrisch bei 562 nm (iMarkTM Microplate Absorbance Reader, Bio-Rad, München, Deutschland).

2.2.5.1.2 SDS-PAGE

Die Natriumdodecylsulfat-Polyacrylamidgelelektrophorese (*sodium dodecyl sulfate polyacrylamide gel electrophoresis* (SDS-PAGE)) ist von Ulrich K. Laemmli entwickelt

worden (Laemmli, 1970). Hierbei werden Proteine nach ihrer Molekülmasse im elektrischen Feld über ein Polyacrylamidgel (SDS Gel) aufgetrennt. Dieses besteht aus einem Trenn- und einem Sammelgel. Durch das darin enthaltene anionische Detergens SDS erfolgt die Denaturierung der Proteine wodurch die Sekundär- und Tertiärstrukturen gelöst werden. Die nun negativ geladenen Proteine wandern entsprechend ihrer Molekülgröße unter Stromfluß durch die Gelmatrix zur Anode. Ein Protein-Standard bekannter Molekülmasse hilft dabei, die molekulare Masse der aufgetragenen Proteine zu bestimmen.

In dieser Arbeit sind die lysierten Leberproben als auch die Hepa 1-6-Zelllysate entsprechend ihrer zuvor bestimmten Proteinkonzentrationen (2.2.5.1.1) auf 20 μ g mit ddH₂O eingestellt worden. Die 20 μ g-Probe wurde daraufhin mit einem Laemmli-Puffer 1:4 verdünnt, gemischt (Vortex) und für 5 Minuten bei 95 °C inkubiert (Thermomixer comfort 1,5 ml, Eppendorf, Hamburg, Deutschland). Anschließend sind die Proben (je 16 μ l) als auch ein Protein-Standard (8 μ l) auf ein SDS-Gel (16 %) (2.1.10) aufgetragen und für etwa 30 Minuten bei 200 Volt in einer Gelelektrophoresekammer, welche mit einem Elektrophoresepuffer gefüllt war, aufgetrennt worden.

2.2.5.1.3 Blotten und Blocken und Antikörperbehandlung

Im Anschluss sind die im SDS-Gel eingebetteten Proteine auf eine Nitrozellulosemembran (GE Healthcare Life sciences, München, Deutschland) über Nacht bei 4 °C und 200 mA (LG Power Pac HC Power Supply, Bio-Rad Laboratories GmbH, München; LG Tankblot Eco-Mini C, VWR International GmbH, Langenfeld) in einem Transferpuffer (1x) transferiert worden.

Anschließend ist die Membran gewaschen (TBS-T) und mit 5 % Milchpulver für 1 Stunde blockiert worden. Daraufhin ist die Membran 2x mit TBS-T gewaschen und mit 10 ml des Primärantikörpers Txndc12 (ERp19), welcher in 5 % Milchpulver 1:1000 angesetzt wurde, für 2 Stunden bei RT auf einem Schüttler (Wippschüttler ST 5, CAT M. Zipperer GmbH, Ballrechten-Dottingen, Deutschland) inkubiert worden. Ein weiteres dreimaliges Waschen mit TBS-T folgte, wobei TBS-T beim 3. Mal für 30 Minuten auf der Membran verblieb. Im Anschluss erfolgte die Zugabe von 10 ml eines Sekundärantikörpers (Anti-Rabbit, 1:20.000 in 5 % Milchpulver angesetzt), welcher mit einer Peroxidase (*horseradish peroxidase*, HRP) gekoppelt war. Die Inkubation fand für 1 Stunde bei RT auf dem Schüttler (Wippschüttler ST 5, CAT M. Zipperer GmbH, Ballrechten-Dottingen, Deutschland) statt. Danach wurde die Membran erneut 3x gewaschen. Auch hierbei verblieb das zuletzt zugefügte TBS-T für 30 Minuten bei RT auf der Membran. Zur Normierung wurde die Membran mit dem *Housekeeper* GAPDH (Primärantikörper, Anti-GAPDH, 1:5.000 in 5 % Milchpulver angesetzt) als auch mit dem HRP-gekoppelten Sekundärantikörper (Anti-Rabbit, 1:5.000 mit 5 % Milchpulver versetzt) für jeweils 1 Stunde inkubiert.

2.2.5.1.4 Detektion der Chemilumineszenz

Die Detektion der HRP-vermittelten Chemilumineszenz erfolgte über das Western Lightning® ECL Pro-*Kit* (PerkinElmer, Solingen, Deutschland) gemäß Herstellerangaben. Dieses enthält den Farbstoff Luminol, welcher in Verbindung mit Peroxiden in alkalischer Lösung eine Chemilumineszenz auslöst (Albrecht, 1928). Die Chemilumineszenz ist dabei im ChemiDoc (ChemiDoc XRS+System, Bio-Rad, München, Deutschland) gemessen worden.

2.2.6 Statistik

2.2.6.1 Quantitative Trait Loci (QTL)-Analyse

Die Quantitative Trait Loci (QTL)-Analyse erfolgte unter Verwendung der R/qtl-Software (Version i386 3.1.0, Broman and Sen, Springer 2009). Vorab einer QTL-Analyse wurden die ermittelten quantitativen Merkmale auf ihre Normalverteilung hin überprüft. Dies erfolgte über den D'Agostino und Pearson omnibus K2-Test (GraphPad Prism 5.01). Nicht normalverteilte Werte wurden logarithmiert (log2). In der anschließenden genomweiten QTL-Analyse sind die normalverteilten Parameter zusammen mit den Genotypen (analysiert durch LGC genomics, UK) über Single-QTL genome scans durch die Intervallkartierungsmethode (Interval Mapping) mit dem EM-Algorithmus errechnet worden. Die Intervallkartierungsmethode wurde 1989 von Lander und Botstein (Lander & Botstein, 1989) entwickelt. Dabei erfolgt die Abschätzung der maximalen Wahrscheinlichkeit, ob ein QTL in einem Intervall zweier benachbarter SNP-Marker vorliegt. Diese Abschätzung wird durch das Einbinden von Logarithm of the Odds (LOD)-score-Analysen verstärkt. Ein LOD-score ist der Logarithmus des Quotienten aus der Wahrscheinlichkeit für die Kopplung zweier Marker (zweier Genorte) und der Wahrscheinlichkeit ihrer Nichtkopplung. Liegt ein *LOD-score* von 3 vor, ist die Wahrscheinlichkeit einer Kopplung um 1000-fach erhöht und es kann von einer signifikanten Kopplung ausgegangen werden, wodurch auf das Vorhandenseins eines QTL geschlossen werden kann (Nyholt, 2000). Unter Anwendung eines Permutationstests von 100 Permutationen erfolgte der Signifikanztest.

2.2.6.2 Expressions-Quantitative Trait Loci (eQTL)-Analyse

Die Expressions-*Quantitative Trait Loci* (eQTL)-Analyse fand ebenfalls unter Verwendung der R/qtl-Software (Version i386 3.1.0, Broman and Sen, Springer 2009) statt. Die Durchführung erfolgte unter gleichen Bedingungen wie die QTL-Analyse (2.2.6.1), jedoch sind anstelle der Phänotyp-Daten die relativen Expressionsdaten $(2^{-\Delta C_T})$ der N2-Population mit den Genotyp-Daten (analysiert durch LGC genomics, UK) in die Kopplungsanalyse eingesetzt worden.

2.2.6.3 Test auf Normalverteilung und Signifikanz

Der Test auf Normalverteilung erfolgte über den D'Agostino und Pearson omnibus K2-Test (GraphPad Prism 5.01). Die Signifikanzprüfung fand unter Verwendung des ungepaarten Student's *t*-Test statt (Microsoft Excel 2010). Die Signifikanzschwelle in der QTL-Analyse wurde mithilfe eines Permutationstests (100 Permutationen) ermittelt.

2.2.6.4 Korrelationsanalyse nach Spearman

Die Korrelationsanalyse erfolgte nach Spearman, die eine nichtparametrische Korrelationsanalyse repräsentiert. Hierbei sind mittels linearer Regression die Berechnung der Signifikanz (*p*-Wert) sowie des Determinationskoeffizienten *r*2 erfolgt. Die Analyse fand mittels GraphPad Prism 5.01 statt.

3. Ergebnisse

3.1 Erzeugung sowie metabolische Charakterisierung einer N2 (NZOx129P2)-Population

Um neue Suszeptibilitätsloci für Adipositas und T2DM zu identifizieren, erfolgte im Rahmen des *Collaborative Diabetes Cross*-Projektes zunächst die Erzeugung einer Rückkreuzungspopulation (N2) auf Hintergrund des NZO-Stammes (Abb. 10). Dabei sind männliche T2DM-resistente 129P2/OlaHsd (129P2)-Tiere mit weiblichen T2DM-anfälligen NZO/HI (NZO)-Mäusen verpaart worden.

Abb. 10: Erzeugung und Phänotypisierung der N2 (NZOx129P2)-Population. Die Erzeugung der Rückkreuzungspopulation (N2) erfolgte über eine Verpaarung männlicher 129P2-Tiere mit weiblichen NZO-Tieren. Die metabolische Charakterisierung der N2-Population ist beginnend ab Lebenswoche 3 bis Lebenswoche 21 durchgeführt worden. Dabei erhielten die Mäuse eine Hochfettdiät (*High-Fat Diet* (HFD), 45 % Fett/Kalorien). Die Charakterisierung der weiblichen und männlichen N2-Tiere unterschied sich im Hinblick auf die KG- und BG-Bestimmung sowie des *Fasting/Refeeding*-Experimentes (nach 16 h fasten). 129P2=129P2/OlaHsd; NZO=NZO/HI; KG=Körpergewicht; BG=Blutglukose; NMR=*Nuclear magnetic resonance*, Kernspinresonanzspektroskopie; I=Insulin; TG=Triglyzeride; FFA=Freie Fettsäuren; FBG=Finale Blutglukose; KL=Körperlänge. Die Metabolomanalyse aus Mausblut wurde mit freundlicher Unterstützung durch Frau Prof. Dr. Uta Ceglarek (Arbeitsgruppe Prof. Dr. Ralph Burkhardt, Universitätsklinikum Leipzig) durchgeführt. Die finalen Parameter in Lebenswoche 21 sind nach 6 h fasten ermittelt worden. Modifiziert nach (www.taconic.com; www.jax.org/strain/002105, 2018).

Die generierten Nachkommen der Filialgeneration 1 (F1) (NZOx129P2) sowie N2 (NZOxF1)-Generation als auch die Parentaltiere (NZO und 129P2), wurden in Lebenswoche 3 abgesetzt und erhielten eine Hochfettdiät (*High-Fat Diet* (HFD), 45 % Fett/Kalorien). Anschließend sind die Mäuse bis zur 21. Lebenswoche metabolisch charakterisiert worden (2.2.1.3). Dabei wurden folgende quantitative Merkmale betrachtet: Blutglukose, Körpergewicht, Körperlänge, Lebergewicht, Mager- sowie Fettmasse, Pankreas-Insulin, Plasmainsulin, Plasma-Triglyzeride, Freie Fettsäuren im Plasma sowie 62 Metaboliten.

3.1.1 Parental- und F1-Population

Es wurden insgesamt 50 männliche Parental- und F1-Tiere (16 NZO, 17 129P2 und 17 F1) erzeugt.

Abb. 11: Blutglukose und Körpergewicht der Parental- und F1-Tiere im zeitlichen Verlauf. (A) Blutglukosespiegel und (B) Körpergewichtsentwicklung. Alle Tiere erhielten beginnend ab Lebenswoche 3 eine Hochfettdiät (*High-Fat Diet* (HFD), 45 % Fett/Kalorien). F1: n=17; 129P2: n=17; NZO: n=16.

Trotz der HFD-Fütterung entwickelten die 129P2-Tiere im Vergleich zu den NZO- als auch F1-Tieren in allen beobachteten Lebenswochen eine geringe Blutglukose (<200 mg/dl) und ein geringes Körpergewicht (<40 g) (Abb. 11 A und B). Dagegen wiesen einige der NZO-Tiere bereits im Alter von 6 Wochen eine Hyperglykämie (>300 mg/dl) auf (Abb. 11 A), welche im zeitlichen Verlauf aufgrund des fortgeschrittenen T2DM bei vier Tieren zu einer Gewichtsreduktion führte (Abb. 11 B und Anhang Tab. 4). Im Gegensatz zu den beiden anderen gegenübergestellten Versuchsgruppen zeichnete sich innerhalb der NZO-Population ein unterschiedlicher Krankheitsverlauf ab. Von insgesamt 16 untersuchten Tieren bildeten 6 NZO-Tiere keinen T2DM aus (Blutglukose <300 mg/dl). Innerhalb der heterozygoten F1-Generation war eine unterschiedliche Körpergewichtszunahme (Unterschied von etwa 20g) erkennbar (Abb. 11 B), jedoch verlor kein Tier dieser Population an Gewicht.

Ob Blutglukose und Körpergewicht der jeweiligen Mauspopulationen korrelieren, wurde anhand von Korrelationsanalysen ermittelt. Hierbei erfolgten für Lebenswoche 15 die Analyse zwischen Blutglukose und Körpergewicht sowie die zwischen Blutglukose und Körperfettmasse.

Dabei konnte innerhalb der 129P2-Population weder eine Korrelation zwischen Blutglukose und Körpergewicht noch Blutglukose und Körperfettmasse festgestellt werden (Abb. 12 A und B). In der NZO-Gruppe dagegen korrelierte Blutglukose mit Körperfettmasse negativ (Abb. 12 D). Jedoch scheint kein ausgeprägter Zusammenhang zwischen Blutglukose und Körpergewicht zu bestehen, da kein signifikanter Zusammenhang zu erkennen ist (Abb. 12 C). Die Reduktion des Körpergewichtes ist auf einen vorliegenden T2DM in den NZO-Tieren zurückzuführen und folglich nicht abhängig von einer Zunahme des Blutzuckers (Anhang Tab. 4). Gegensätzlich hierzu wurden für die F1-Population positive Korrelationen für Blutglukose mit Körpergewicht bzw. Körperfettmasse ermittelt (Abb. 12 E und F). Demnach entwickelten diese Tiere aufgrund der zunehmenden Fettleibigkeit einen Anstieg der Blutglukose.

Abb. 12: Korrelationen der Blutglukoseparameter mit den Körpergewichtsdaten und den Daten der Körperfettmasse männlicher Parental- und F1-Tiere. (A) und (B) Korrelationen der 129P2-Population, (C) und (D) Korrelationen der NZO-Population, (E) und (F) Korrelationen der F1-Population. W.=Lebenswoche. Spearman Korrelationen. Mittels linearer Regression erfolgte die Errechnung der Signifikanz sowie des Determinationskoeffizienten r^2 . 129P2: n=17; NZO: n=16; F1: n=17.

Die nachfolgende Tabelle 16 listet weitere ermittelte Phänotypisierungsdaten der Parental- sowie der F1-Population auf.

Tab. 16: Weitere Phänotypisierungsdaten der männlichen Parental- und F1-Population. Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. BG=Blutglukose; KG=Körpergewicht; FM=Fettmasse; MM=Magermasse; nBG=BG nach 16 h fasten; gBG=nicht-gefastet BG; nKG=KG nach 16 h fasten; gKG=nicht-gefastet KG; FBG=Finale BG; FKG=Finales KG; KL=Körperlänge. 129P2: n=17; NZO: n=16; F1: n=17.

		129P2		NZO		F1	
Merkmal	Woche	Mittel-	±SEM	Mittel-	±SEM	Mittel-	±SEM
		wert		wert		wert	
BG [mg/dl]	3	125,6	4,1	150,2	6,4	156,5	5,3
BG [mg/dl]	6	138,6	7,5	325,5	26,3	187,8	6,2
BG [mg/dl]	10	162,9	8,9	272,4	45,7	160,8	3,6
BG [mg/dl]	15	142,4	5,6	342,9	37,7	179,5	18,6
BG [mg/dl]	18	117,2	2,4	319,8	36,2	194,8	26,1
BG [mg/dl]	19	136,4	5,9	320,1	38,2	192,1	19,4
BG [mg/dl]	20	119,1	4,2	335,3	38,3	198,4	23,3
KG (g)	3	14,0	0,7	13,3	0,6	14,8	0,5
KG (g)	6	25,5	0,5	39,3	0,6	34,1	0,7
KG (g)	10	29,3	0,8	48,3	0,6	41,8	1,4
KG (g)	15	33,8	0,9	57,5	1,2	52,9	2,5
KG (g)	18	35,5	1,1	59,6	1,8	58,5	3,0
KG (g)	19	36,9	1,1	60,7	2,0	59,8	3,3
KG (g)	20	37,6	1,2	62,2	2,1	62,2	3,2
FM (g)	3	2,8	0,2	2,4	0,2	2,5	0,1
FM (g)	6	4,5	0,2	11,3	0,4	7,6	0,5
FM (g)	10	4,8	0,4	15,5	0,7	12,6	1,0
FM (g)	15	6,7	0,7	22,2	1,3	19,8	1,6
MM (g)	3	11,6	0,6	10,5	0,3	12,5	0,4
MM (g)	6	19,4	0,5	27,6	0,3	25,3	0,4
MM (g)	10	23,2	0,7	31,5	0,4	28,5	0,6
MM (g)	15	25,8	0,7	33,1	0,4	31,6	0,9
nBG [mg/dl]	8	75,4	3,9	152,9	16,0	106,2	5,5
gBG [mg/dl]	8	153,7	7,8	373,8	38,7	149,9	5,0
nKG (g)	8	25,4	0,5	42,6	0,6	37,6	1,3
gKG (g)	8	26,5	0,6	43,4	0,7	38,0	1,3
FBG [mg/dl]	21	112,7	4,7	284,4	36,8	158,7	5,3
FKG (g)	21	36,6	1,2	61,6	2,4	62,4	3,0
KL (cm)	21	10,4	0,5	12,3	0,1	12,6	0,1

Phänotypisierungsdaten weiterer Lebenswochen sind im Anhang (Anhang Tab. 1) aufgelistet. Die Plasma- sowie Gewebe-Analysen der Parentaltiere fanden im Rahmen der Masterarbeit von Mareike Damen statt (Mareike Damen, Masterarbeit, 2015).

3.1.2 N2 (NZOx129P2)-Population

Insgesamt wurden 290 männliche sowie 307 weibliche N2-Tiere hinsichtlich ihrer quantitativen Merkmale charakterisiert (Abb. 13).

Abb. 13: Blutglukose sowie Körpergewicht der männlichen und weiblichen N2 (NZOx129P2)-Tiere im zeitlichen Verlauf. Blutglukosespiegel der (A) männlichen und (B) weiblichen Tiere. Körpergewichtsentwicklung der (C) männlichen und (D) weiblichen N2-Mäuse. Männliche (m) N2-Tiere: n=290; weibliche (w) N2-Tiere: n=307.

Innerhalb der männlichen N2-Tiere entwickelten 123 einen T2DM (Blutglukose >300 mg/dl), wogegen 167 Tiere normoglykämisch blieben (Blutglukose <300 mg/dl). Einige der männlichen Individuen prägten bereits ab Lebenswoche 5 eine Hyperglykämie aus (Abb. 13 A). Erwartungsgemäß erkrankten die weiblichen Tiere nicht an T2DM (Blutglukose in allen Lebenswochen <300 mg/dl) (Abb. 13 B) (Vogel *et al.*, 2013) und wiesen im Vergleich zu den männlichen Tieren ein geringeres Körpergewicht auf (Abb. 13 C und D).

Abb. 14: T2DM-Prävalenz aller Populationen im Vergleich. 129P2: n=17; NZO: n=16; F1: n=17; N2 (NZOx129P2)-Tiere: Männliche (m): n=290; weibliche (w): n=307.

Ähnlich zu den parentalen NZO-Tieren war auch innerhalb der Gruppe der N2-Männchen eine unterschiedliche Entwicklung des T2DM über den gesamten Versuchszeitraum zu beobachten (Blutglukose 100 bis 600 mg/dl) (Abb. 11 A und 13 A). Jedoch verzeichneten die N2-Männchen ab Lebenswoche 15 eine nahezu um ein Drittel geringere Diabetesprävalenz (~40%) als die NZO-Männchen (~60%) (Abb. 14) und wiesen ein höheres Körpergewicht (bis zu 30 g höher) auf (Abb. 15 B). Insgesamt entwickelten 7 von 290 männlichen N2-Tieren ein Gewicht von über 90 g (Abb. 13 C). Sechs dieser sieben Mäuse wiesen eine Hyperglykämie auf. Das niedrigste Körpergewicht besaßen die männlichen 129P2-Tiere gefolgt von den N2-Weibchen (Abb. 15 B). Beide Populationen waren normoglykämisch (Blutglukose <300 mg/dl) (Abb. 15 A).

Abb. 15: Blutglukose- sowie Körpergewichtsparameter aller Populationen im Vergleich. Boxplots repräsentieren die (A) Blutglukose- und (B) Körpergewichtsverteilung in Lebenswoche 20. W.=Lebenswoche. 129P2: n=17; NZO: n=16; F1: n=17; N2 (NZOx129P2)-Tiere: Männliche (m): n=290; weibliche (w): n=307.

Im Anschluss an die Datenerhebung aus der metabolischen Charakterisierung erfolgte für die N2-Männchen eine Korrelationsanalyse, in der verschiedene physiologische Parameter miteinander korreliert wurden. In diesen Tieren korrelierte ein Anstieg des Körpergewichtes bzw. Körperfettmasse mit einer Zunahme der Blutglukose (Abb. 16). Gleiches ist zuvor in der F1-Generation beobachtet worden (Abb. 12 E und F).

Bei Betrachtung der zeitlichen Entwicklung dieser drei Parameter innerhalb der männlichen N2-Population wird deutlich, dass sich die Tiere in Lebenswoche 6 weder im Hinblick auf das Körpergewicht bzw. Körperfettmasse noch Blutglukose unterschieden (Abb. 16 A und B). Die Abhängigkeit dieser quantitativen Merkmale zueinander setzte erst ab Lebenswoche 10 ein (Abb. 16 C und D). Auffällig war, dass sich die Tiere stark hinsichtlich ihrer Blutglukosewerte unterschieden. Einige entwickelten bereits in dieser Lebenswoche eine Hyperglykämie (>300 mg/dl). In Lebenswoche 15 erfolgte eine deutliche Auftrennung der Population in eine hyperglykämische und normoglykämische (<300 mg/dl) Gruppe (Abb. 16 E und F).

Abb. 16: Korrelationen der Blutglukoseparameter mit den Körpergewichtsdaten und den Daten der Körperfettmasse männlicher N2 (NZOx129P2)-Tiere. Korrelationen der Blutglukoseparameter mit (A) Körpergewicht und (B) Körperfettmasse in Lebenswoche 6. Korrelationen der Blutglukoseparameter mit (C) Körpergewicht und (D) Körperfettmasse in Lebenswoche 10. Korrelationen der Blutglukoseparameter mit (E)

Um die Ursache dieser Gruppenbildung zu klären, wurde die männliche N2-Population in Lebenswoche 15 genauer analysiert. Dabei erfolgte zunächst die Auftrennung in normoglykämische (<300 mg/dl W.15) und hyperglykämische (>300 mg/dl W.15) Tiere. Deren Blutglukose- sowie Körpergewichtsentwicklung ist nachfolgend abgebildet (Abb. 17).

Abb. 17: Blutglukosespiegel und Körpergewichtsentwicklung der in Lebenswoche 15 hyperglykämischen (>300 mg/dl W.15) und normoglykämischen (<300 mg/dl W.15) männlichen N2 (NZOx129P2)-Tiere. (A) Blutglukose- und (B) Körpergewichtsverlauf. W.=Lebenswoche. Gruppe >300 mg/dl W.15: n=103; Gruppe <300 mg/dl W.15: n=187. Daten repräsentieren Mittelwerte. Student`s t-Test, ungepaart (***p<0,001).

Männliche N2-Tiere, die in Lebenswoche 15 hyperglykämisch waren (>300 mg/dl W.15) (Abb. 17 A), besaßen im Vergleich zu den normoglykämischen Tieren bereits in Lebenswoche 7 ein höheres Gewicht (Differenz 1 g) sowie einen höheren Blutglukosespiegel (Differenz 22,3 mg/dl) (Anhang Tab. 5). Ab Lebenswoche 10 lag

Körpergewicht und (F) Körperfettmasse in Lebenswoche 15. Die definierte Schwelle einer vorliegenden Hyperglykämie (>300 mg/dl) ist gekennzeichnet. W.=Lebenswoche. Spearman Korrelationen. Mittels linearer Regression erfolgte die Errechnung der Signifikanz sowie des Determinationskoeffizienten r^2 . N2-Männchen (m): n=290.
ein stark signifikanter Unterschied seitens der Blutglukose (65,2 mg/dl) als auch des Körpergewichts (2,5 g) (*p*-Wert < 0,001) zwischen diesen Gruppen vor, welcher sich bis Lebenswoche 15 verstärkte (Differenz 220,4 mg/dl und 5,2 g) (Abb. 17 A und B). Die Tiere, die in Lebenswoche 15 normoglykämisch (<300 mg/dl W.15) waren, besaßen einen von der 5. bis zur 21. Lebenswoche konstanten Blutzuckerspiegel (um 200 mg/dl). Ihre Körpergewichtszunahme glich dagegen der der hyperglykämischen Gruppe (Abb. 17 B).

Zusätzlich erhobene Phänotypisierungsdaten der N2-Generation sind folgender Tabelle zu entnehmen (Tab. 17). Weitere Daten inklusive der ermittelten Plasma- und Gewebeparameter sind im Anhang (Anhang Tab. 6) aufgelistet. Die Analyse der Leberparameter fand im Rahmen der Masterarbeit von Yvonne Schulte statt (Yvonne Schulte, Masterarbeit, 2015).

Tab. 17: Weitere Phänotypisierungsdaten der N2 (NZOx129P2)-Generation. Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. BG=Blutglukose; KG=Körpergewicht; FM=Fettmasse; MM=Magermasse; FBG=Finale BG; FKG=Finales KG; KL=Körperlänge. N2 Männchen: n=285-290; N2 Weibchen: n=298-307.

		N2 Mä	nnchen	N2 Weibchen			
Merkmal	Woche	Mittelwert	±SEM	Mittelwert	±SEM		
BG [mg/dl]	3	140,3	1,7	137,8	1,4		
BG [mg/dl]	6	216,1	3,7	162,7	1,7		
BG [mg/dl]	10	223,3	5,3	143,7	1,2		
BG [mg/dl]	15	273,4	7,2	143,5	1,5		
BG [mg/dl]	18	263,4	7,2	140,1	1,5		
BG [mg/dl]	19	262,9	7,1	137,8	1,4		
BG [mg/dl]	20	251,7	6,8	141,1	1,6		
KG (g)	3	12,5	0,2	12,4	0,1		
KG (g)	6	37,5	0,2	30,4	0,2		
KG (g)	10	50,8	0,3	39,1	0,3		
KG (g)	15	63,4	0,4	45,9	0,4		
KG (g)	18	69,0	0,5	49,2	0,5		
KG (g)	19	70,8	0,5	50,3	0,5		
KG (g)	20	72,5	0,5	51,2	0,5		
FM (g)	3	2,3	0,1	2,4	0,1		
FM (g)	6	9,4	0,1	10,0	0,1		
FM (g)	10	18,0	0,2	16,5	0,2		
FM (g)	15	27,1	0,3	21,3	0,3		
MM (g)	3	10,9	0,1	10,6	0,1		
MM (g)	6	26,9	0,1	19,3	0,1		
MM (g)	10	31,4	0,1	21,4	0,1		
MM (g)	15	34,0	0,1	23,1	0,1		
FBG [mg/dl]	21	188,7	6,0	138,7	1,6		
FKG (g)	21	74,2	2,2	51,6	0,5		
KL (cm)	21	12,4	0,0	11,6	0,0		

Um weitere Erkenntnisse hinsichtlich der gewonnenen Phänotypisierungsdaten zu erhalten und um die nachfolgende Kopplungsanalyse durchführen zu können, wurde die gesamte N2-Generation mittels *Single Nucleotide Polymorphisms* (SNP)-Analyse (2.2.2.7 und 2.2.2.7.1) genotypisiert (LGC Genomics, UK).

3.2 Genotypisierung und Kopplungsanalyse der N2 (NZOx129P2)-Generation

Die N2-Population wurde aus parentalen Mausstämmen generiert, die sich in quantitativen Merkmalen, die mit T2DM und Adipositas assoziiert sind, unterscheiden. Eine umfangreiche Phänotypisierung sowie genomweite Genotypisierung der N2-Tiere ermöglichte die statistische Ermittlung von Genotyp-Phänotyp-Korrelationen innerhalb der Kopplungsanalyse. Dabei erfolgt die Berechnung der Wahrscheinlichkeit der Kopplung, ob ein genetischer Marker mit einem Suszeptibilitätslocus (*Quantitative Trait Loci*, QTL) gemeinsam vererbt wird. Liegt in der N2-Population eine Varianz des Phänotyps vor, kann von einer Wahrscheinlichkeit der Kopplung ausgegangen werden.

3.2.1 Genotypisierung

Die Genotypisierung (2.2.2.7 und 2.2.2.7.1) der N2-Population (290 Männchen und 307 Weibchen) erfolgte mittels 118 SNP-Marker, die sich an einer spezifischen Allelposition zwischen NZO und 129P2 unterschieden. Um gekoppelte Loci identifizieren zu können, sind die SNP-Marker im Abstand von 10-20 Mb ausgewählt worden. Die Analyse ist unter Anwendung der fluoreszenzbasierten Kompetitiven allelspezifischen PCR (*Kompetitive Allele Specific PCR*, KASP) Technologie, welche eine bi-allele Unterscheidung der zu analysierenden SNPs ermöglicht, durchgeführt worden.

3.2.2 Kopplungsanalyse (Quantitative Trait Loci (QTL) Analyse)

Vorab der Kopplungsanalyse wurden die ermittelten Phänotypisierungsdaten der N2-Population auf ihre Normalverteilung hin überprüft (2.2.6.3) und zusammen mit den erhaltenen Genotypen der jeweiligen Tiere in die Kopplungsanalyse (QTL-Analyse) (2.2.6.1) eingesetzt. Mithilfe der Kopplungsanalyse ist es möglich, den Genort, der mit der Ausprägung eines Phänotyps assoziiert ist, zu identifizieren. Dieser Genort wird als QTL bezeichnet. Die Berechnung erfolgte über Single-QTL genome scans durch die mit Intervallkartierungsmethode (Interval *Mapping*) dem EM (expectationmaximization, maximale Wahrscheinlichkeit)-Algorithmus. Die Annahme war, dass die gesamte phänotypische Varianz innerhalb der N2-Population von einem QTL beeinflusst wird. Die Abschätzung der maximalen Wahrscheinlichkeit gibt Aufschluss darüber, ob ein QTL in einem Intervall zweier benachbarter SNP-Marker vorliegt. Der Logarithm of the Odds (LOD)-score stellt den Logarithmus des Quotienten aus der Wahrscheinlichkeit für die Kopplung zweier Genorte und der Wahrscheinlichkeit ihrer Nichtkopplung dar. Ein LOD-score über 3 gilt als Maß für eine signifikante Kopplung zwischen Genotyp und einem QTL, der mit dem Phänotyp assoziiert ist (Lander & Kruglyak, 1995). Unter Anwendung eines Permutationstests von 100 Permutationen erfolgte der Signifikanztest.

3.2.2.1 Ermittelte Kopplungen der QTL-Analyse

Im Folgenden wird die genetische Karte dargestellt (Abb. 18), die die Verteilung der 118 SNP-Marker im Genom der N2-Tiere veranschaulicht. Die genetischen Koordinaten der Marker wurden mittels R/qtl-Analyse der N2 (NZOx129P2)-Kreuzung errechnet.

Genetische Karte

Abb. 18: Genetische Karte der 118 SNP-Marker-Verteilung im Genom der N2 (NZOx129P2)-Population. Dargestellt sind die Positionen (in Centimorgan (cM)) der SNP-Marker sowie deren chromosomale Zugehörigkeit. SNP=*Single Nucleotide Polymorphisms*, Einzelnukleotidpolymorphismen.

Die QTL-Analyse lieferte ausschließlich für die männlichen N2-Tiere mit den in der Arbeit bestimmten Phänotypen signifikante Kopplungen (QTL). Auf Chromosom 2 und 4 wurden die stärksten Korrelationen zwischen Phänotyp und Genotyp ermittelt. Auf Chromosom 2 sind QTL für Körpergewicht, Magermasse und Körperlänge identifiziert worden. Auf Chromosom 4 lagen QTL für Blutglukose (Woche 17), Finale Blutglukose (FBG, nach 6 h fasten) und Lebergewicht vor.

Nachfolgend sind die errechneten QTL für die Chromosomen 2 und 4 abgebildet (Abb. 19 und 20). Die Signifikanzgrenze lag für alle ermittelten QTL-Analysen bei einem *p*-Wert von 0,05 (Permutationstest, 100 Permutationen).

Abb. 19: Errechnete QTL auf Chromosom 2 der männlichen N2 (NZOx129P2)-Population. (A) Körpergewicht in Lebenswoche 6, (B) Magermasse in Lebenswoche 15 sowie (C) Körperlänge in Lebenswoche 21. Vergleichend dazu ist in (D) das Ergebnis der QTL-Analyse für Fettmasse in Lebenswoche 15 abgebildet. Hierbei konnte kein QTL auf Chromosom 2 detektiert werden. Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. QTL=*Quantitative Trait Locus; LOD=Logarithm of the Odds.* n=290. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

Auf Chromosom 2 wurde für das Körpergewicht der N2-Männchen in Lebenswoche 6 die höchste signifikante Kopplung mit einem *LOD-score* von 3,4 erzielt (Abb. 19 A und Tab. 18), wogegen der errechnete QTL für Magermasse in Lebenswoche 15 einen *LOD-score* von 5,9 aufwies (Abb. 19 B). Die in Lebenswoche 21 ermittelte finale Körperlänge lieferte eine signifikante Kopplung mit einem *LOD-score* von 3,6 (Abb. 19 C). Für das Merkmal Fettmasse konnte kein QTL auf Chromosom 2 ermittelt werden, jedoch zeigte sich auf Chromosom 3 eine signifikante Kopplung (*LOD-score*=2,7) (Abb. 19 D). Für Körpergewicht der Lebenswoche 6 und für die finale Körperlänge sind weitere QTL auf Chromosom 6 bzw. 13 identifiziert worden (*LOD-score*=2,7 bzw. 2,8) (Abb. 19 A und C).

Im Anschluss sind die auf Chromosom 4 identifizierten QTL dargestellt (Abb. 20). So wurde für Blutglukose in Lebenswoche 17 ein QTL mit einem *LOD-score* von 7,1 errechnet (Abb. 20 A). Die in Lebenswoche 21 (nach 6 h fasten) charakterisierten Parameter Lebergewicht (Abb. 20 B) und FBG (Abb. 20 C) zeigten signifikante Kopplungen auf selbigem Chromosom mit *LOD-score*-Werten von 5,8, bzw. 3,2. Für das Merkmal finales Plasmainsulin (nach 6 h fasten) (Abb. 20 D) ist ebenfalls eine Kopplung auf Chromosom 4 ermittelt worden, jedoch wurde die Signifikanzschwelle nicht erreicht (*LOD-score* von 2,1). Neben Chromosom 4 konnten für die Parameter Lebergewicht und FBG ebenfalls signifikante Kopplungen auf den Chromosomen 8 bzw. 14 festgestellt werden (*LOD-score*=3,2 bzw. 4,1) (Abb. 20 B und C).

Abb. 20: Errechnete QTL für Chromosom 4 der männlichen N2 (NZOx129P2)-Population. (A) Blutglukose in Lebenswoche 17, (B) Lebergewicht sowie (C) Finale Blutglukose (FBG) in Lebenswoche 21. (D) Für finales Plasmainsulin in Lebenswoche 21 konnte kein signifikanter QTL auf Chromosom 4 berechnet werden Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. QTL=*Quantitative Trait Locus*; LOD=Logarithm of the Odds. n=290. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

Jedoch weist der zeitliche Vergleich der QTL auf Chromosom 2 (Körpergewicht) und 4 (Blutglukose) einen deutlichen Unterschied hinsichtlich der Beständigkeit der Kopplung der identifizierten Regionen auf (Abb. 21 und 22). So wurde auf Chromosom 2 für das Körpergewicht lediglich für eine (Woche 6) von 19 analysierten Lebenswochen eine signifikante Kopplung ermittelt (Abb. 21). Auf Chromosom 4 hingegen zeichnete sich für die Blutglukose eine stabile signifikante Kopplung beginnend ab Lebenswoche 15 ab (Abb. 22).

Ergebnisse

Abb. 21: Zeitlicher Verlauf der genomweiten QTL-Analyse im Hinblick auf das Körpergewicht aller beobachteten Lebenswochen der männlichen N2 (NZOx129P2)-Population. QTL, welche einen *LOD-score* von 2,5 übertrafen, sind rot markiert. Dabei betrug der auf Chromosom 2 in Lebenswoche 6 gemessene *LOD-score*=3,5. Die auf Chromosom 6 rot markierte Kopplung verzeichnete in Lebenswoche 6 einen *LOD-score* von 2,6. KG=Körpergewicht; LOD=*Logarithm of the Odds*; QTL=*Quantitative Trait Locus*. n=290. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

Abb. 22: Zeitlicher Verlauf der genomweiten QTL-Analyse im Hinblick auf die Blutglukose aller beobachteten Lebenswochen der männlichen N2 (NZOx129P2)-Population. QTL, welche einen *LOD-score* von 2,5 übertrafen,

sind rot markiert. Neben Chromosom 4 konnte auch auf Chromosom 7 eine signifikante Kopplung erzielt werden. Auf Chromosom 4 liegt der höchste in dieser Kreuzung erreichte *LOD-score* bei 6,9, auf Chromosom 7 bei 4,5. BG=Blutglukose; *LOD=Logarithm of the Odds*; QTL=*Quantitative Trait Locus*. n=290. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

In der nachfolgenden Tabelle sind alle signifikanten Kopplungen (QTL), welche einen *LOD-score*>3,0 (Lander & Kruglyak, 1995) aufwiesen, zusammen mit den jeweiligen Chromosomenpositionen in Mb sowie Centimorgan (cM) und der Population, die den höchsten Effekt auf der jeweiligen SNP-Markerposition zeigte, aufgelistet (Tab. 18).

Tab. 18: Überblick aller signifikanten Kopplungen (QTL) der männlichen N2 (NZOx129P2)-Population. N/O (NZO/129P2) stellt die heterozygoten Allel-Träger dar. Pfeile repräsentieren eine Hoch- bzw. Runterregulierung. FBG=Finale Blutglukose; KL=Körperlänge; LG=Lebergewicht; gTG=Plasma Triglyzeride nicht-gefastet; MMA=Methylmalonylcarnitin; LOD=Logarithm of the Odds. Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. n=284-290. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

quantitatives Merkmal	Chromosom	LOD-score (Lebenswoche)	Peak-Region	Mb-Position Marker	cM-Position Marker	Effekt
Blutglukose	4	5,8 (17)	rs4138670	58,07	27,53	N/O ↑
	4	4,3 (17)	rs16265	77,61	32,23	N/O ↑
	4	7,1 (17)	rs3726937	97,25	41,37	N/O ↑
	4	6,8 (17)	rs31935151	108,83	47,03	N/O ↑
	4	5,4 (17)	rs4224727	115,98	48,27	N/O ↑
	6	3,8 (4)	rs3660389	81,16	0	N/O ↑
	6	3,0 (4)	rs3719379	101,07	13,41	N/O ↑
	7	3,0 (18)	rs4226547	36,56	15,79	N/O ↓
	7	4,2 (18)	rs3680765	56,65	26,69	N/O ↓
	7	3,6 (18)	rs4226649	73,19	28,49	N/O ↓
	8	3,2 (13)	rs3671390	24,43	7,45	N/O ↓
	8	3,1 (16)	rs3664354	41,09	20,11	N/O ↓
FBG	4	3,2 (21)	rs3726937	97,25	41,37	N/O ↑
	14	4,1 (21)	rs3669009	11,44	0	N/O ↓
Körpergewicht	2	3,0 (6)	rs3724080	131,98	63,71	N/O ↓
	2	3,4 (6)	rs3666533	151,96	70,88	N/O ↓
	2	3,3 (6)	rs3024096	168,44	91,40	N/O ↓
KL	2	3,6 (21)	rs4223406	113,67	51,74	N/O ↓
	2	3,2 (21)	rs3724080	131,98	63,71	N/O ↓
LG	4	4,8 (21)	rs3726937	97,25	41,37	N/O ↑
	4	5,8 (21)	rs31935151	108,83	47,03	N/O ↑
	4	4,8 (21)	rs4224727	115,98	48,27	N/O ↑
	4	4,2 (21)	rs3679734	134,92	57,38	N/O ↑
	8	3,0 (21)	rs3671390	24,43	7,45	N/O ↓
	8	3,2 (21)	rs3664354	41,09	20,11	N/O ↓
Magermasse	2	3,8 (15)	rs3714030	60,30	27,79	N/O ↓
	2	4,8 (15)	rs3670874	77,03	41,53	N/O ↓
	2	4,9 (15)	rs4223268	<i>93,26</i>	45,73	N/O ↓
	2	5,9 (15)	rs4223406	113,67	51,74	N/O ↓
	2	4,3 (15)	rs3724080	131,98	63,71	N/O ↓
	2	3,5 (15)	rs3666533	151,96	70,88	N/O ↓
gTG	1	3,0 (8)	rs3663996	143,99	61,98	N/O ↑
Metabolite: MMA	8	3,1 (10)	rs3664354	41,09	20,11	N/O ↑
Metabolite: Alanin	11	4,7 (10)	rs3023278	71,98	20,78	N/O ↑
	11	3,8 (10)	rs3688955	90,40	31,76	N/O ↑

Wie zuvor beschrieben, sind die höchsten *LOD-score*-Werte auf den Chromosomen 2 (Magermasse, *LOD-score*=5,9) und 4 (Blutglukose (Woche 17), *LOD-score*=7,1) errechnet worden (Tab. 18). Bei genauerer Betrachtung der Tabelle 18 ist ersichtlich, dass alle auf Chromosom 4 identifizierten QTL (Blutglukose (Woche 17), FBG und Lebergewicht) die größte Effektgröße in der heterozygoten Population (NZO/129P2 (N/O)) innerhalb der N2-Männchen aufwiesen. Im Gegensatz dazu zeigten die homozygoten Tiere (NZO/NZO (N/N)) ein erhöhtes Körpergewicht sowie Magermasse und eine größere Körperlänge an den SNP-Markerpositionen der auf Chromosom 2 identifizierten QTL.

Einen genomweiten Überblick aller ermittelten Kopplungen zwischen den Genorten und den metabolischen Phänotypen repräsentiert die *heatmap* in Abbildung 23. In dieser sind alle analysierten quantitativen Merkmale, mit Ausnahme der 62 Metaboliten, aufgeführt: Blutglukose und Körpergewicht (nach 16 h fasten, nicht-gefastet und die finalen Parameter nach 6 h fasten), Körperlänge, Mager- sowie Fettmasse, Pankreas-Insulin, Plasmainsulin (nach 16 h fasten, nicht-gefastet und finales Plasmainsulin nach 6 h fasten), Plasma-Triglyzeride (TG) (nach 16 h fasten, nicht-gefastet und finale Plasma-TG nach 6 h fasten), freie Fettsäuren (FFA) im Plasma (nach 16 h fasten, nicht-gefastet und finale Plasma-FFA nach 6 h fasten), Lebergewicht, Leber Glykogen, Leber TG, Quadriceps (SMq) Gewicht und SMq TG. Je dunkler die Farbgebung in der Abbildung, umso signifikanter ist der *LOD-score* und dementsprechend die Kopplung. Einen Überblick über die 62 analysierten Metabolite ist im Anhang aufgeführt (Anhang Tab. 7).

Bei Betrachtung der *heatmap* ist ersichtlich, dass für folgende quantitative Merkmale signifikante Kopplungen vorlagen: Blutglukose (Chr. 4, 6, 7 und 8) inklusive FBG (Chr. 4 und 14), Körpergewicht (Chr. 2), Körperlänge (Chr. 2), Lebergewicht (Chr. 4 und 8), Magermasse (Chr. 2) sowie nicht-gefastete TG (Chr. 1). Die stärksten Korrelationen zwischen Phänotyp und Genotyp sind auf Chromosom 2 und 4 ermittelt worden. Dabei wurde die größte signifikante Kopplung innerhalb der N2-Männchen auf Chromosom 4 für das Merkmal Blutglukose (Woche 17) identifiziert.

Abb. 23: *heatmap* der errechneten *LOD-score*-Werte für alle ermittelten Phänotypen mit Ausnahme der Metaboliten der männlichen N2 (NZOx129P2)-Population. *LOD=Logarithm of the Odds*; Chr.=Chromosom; W.=Lebenswoche; BG=Blutglukose; FBG=Finale Blutglukose; KG=Körpergewicht; FKG=Finales KG; KL=Körperlänge; LG=Lebergewicht; MM=Magermasse; FM=Fettmasse; PaI=Pankreas Insulin; FPI=Finales Plasmainsulin; FPTG=Finale Plasma-TG; FPFFA=Finale Plasma-FFA; nBG=BG nach 16 h fasten; nKG=KG nach

Aufgrund der Beständigkeit des identifizierten QTL auf Chromosom 4 für das Merkmal Blutglukose (Woche 17) und der weiteren detektierten QTL für selbiges Chromosom (FBG, Lebergewicht) (Abb. 23) konzentrierten sich die weiterführenden Analysen auf Chromosom 4.

3.2.2.2 Identifizierung des Suszeptibilitätslocus Nir4 auf Chromosom 4

Der identifizierte Suszeptibilitätslocus für Insulinresistenz auf Chromosom 4 der NZO-Rückkreuzung wurde mit *Nir4* (NZO *insulin resistance* Chr. 4) bezeichnet. Bei Betrachtung der Gegenüberstellung aller drei identifizierten QTL (Blutglukose (Woche 17), FBG und Lebergewicht) auf Chromosom 4 fällt auf, dass alle ein ähnliches Muster zeigen (Abb. 24).

Abb. 24: Gegenüberstellung aller identifizierter QTL auf Chromosom 4 der männlichen N2 (NZOx129P2)-Population. Die dargestellten QTL übertrafen die Signifikanzschwelle (*LOD-score>*3). Drei *Peak*-Regionen sind erkennbar: 1. *Peak*-Region (rs4138670, 58,07 Mb (27,53 cM)), 2. *Peak*-Region (rs3726937, 97,25 Mb (41,37 cM)) und 3. *Peak*-Region (rs4224727, 115,98 Mb (48,72 cM)). Der identifizierte QTL *Nir4* wird durch die SNP-Marker rs4138670 (1. *Peak*) und rs4224727 (3. *Peak*) begrenzt und beträgt eine Größe von 57,91 Mb. Die heterozygoten Allel-Träger (NZO/129P2 (N/O)) besaßen die höhere Effektgröße in allen drei Merkmalen. Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. QTL=*Quantitative Trait Locus*; BG=Blutglukose;

¹⁶ h fasten; nI=Plasmainsulin nach 16 h fasten; nTG=Plasma-TG nach 16 h fasten; nFFA=Plasma-FFA nach 16 h fasten; gBG=BG nicht-gefastet; gKG=KG nicht-gefastet; gI=Plasmainsulin nicht-gefastet; gTG=Plasma-TG nicht-gefastet; gFFA=Plasma-FFA nicht-gefastet; LGLy=Leber Glykogen; LTG=Leber TG; QG=SMq Gewicht; QTG=SMq TG. TG=Triglyzeride; FFA=Freie Fettsäuren. SMq=Skelettmuskel Quadriceps. Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. n=230-290. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

Dabei sind drei *Peak*-Regionen erkennbar, an denen sich die QTL überlagern. Die erste umfasst den Bereich um 27,5 cM (58,07 Mb, SNP-Marker rs4138670), die zweite liegt bei 41,37 cM (97,25 Mb, SNP-Marker rs3726937) und die dritte befindet sich bei 48,72 cM (115,98 Mb, SNP-Marker rs4224727).

Die N/O-Allel-Träger wiesen im Vergleich zu den N/N-Allel-Trägern für alle drei QTL (Blutglukose (Woche 17), FBG und Lebergewicht) den höheren Wert auf (Tab. 18). Da kein Gewichtsverlust (Tab. 17) und auch keine Reduktion des Plasmainsulins (Anhang Tab. 10-12) zu beobachten war, wurde postuliert, dass der identifizierte Suszeptibilitätslocus *Nir4* einen insulinresistenten Phänotyp bedingt.

Nachfolgend sind die erhobenen Daten der Blutglukose (Woche 17), FBG sowie des Lebergewichts der N/O- als auch N/N-Individuen der N2-Männchen für die 1. und 3. *Peak*-Region aufgeführt. Dabei ist ersichtlich, dass alle drei Parameter an beiden *Peak*-Regionen in den N/O-Allel-Trägern im Vergleich zu den N/N-Allel-Trägern signifikant (*p*-Wert<0,001) erhöht waren (Abb. 25).

LG=Lebergewicht; FBG=Finale Blutglukose; W.=Lebenswoche; LOD=Logarithm of the Odds. n=284-290. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

Abb. 25: Gegenüberstellung der Effektgrößen innerhalb der 1. und 3. *Peak*-Region für Blutglukose, FBG sowie Lebergewicht der männlichen N2 (NZOx129P2)-Population. Blutglukose der (A) 1. *Peak*- und (B) 3. *Peak*-Region. FBG der (C) 1. *Peak*- und (D) 3. *Peak*-Region. Lebergewicht der (E) 1. *Peak*- und (F) 3. *Peak*-Region. Dargestellt sind die Ergebnisse jedes einzelnen Tieres innerhalb der N2-Männchen. W.=Lebenswoche; FBG=Finale Blutglukose. Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. *Peak* 1: NZO/NZO (N/N): n=139-144, NZO/129P2 (N/O): n=140-144; *Peak* 3: N/N: n=131-134, N/O: n=148-154. Student`s t-Test, ungepaart (***p<0,001).

Um einen Einblick hinsichtlich der T2DM-Erkrankung innerhalb der männlichen N2-Population zu erhalten, sind die wöchentlich erfassten Blutglukose- als auch Körpergewicht-Daten sowie die T2DM-Prävalenz im Weiteren für die 1. und 3. *Peak*-Region im zeitlichen Verlauf dargestellt (Abb. 26).

Hier ist zu entnehmen, dass für beide *Peak*-Regionen des QTL auf Chromosom 4 sowohl die N/O-Allel-Träger eine höhere Blutglukose sowie eine höhere T2DM-Prävalenz im Vergleich zu den N/N-Allel-Trägern aufwiesen (Abb. 26 A bis D). Am Stärksten unterschied sich die Population im Hinblick auf die Blutglukose in Lebenswoche 17, sowohl für *Peak* 1 und 3 (Abb. 26 A und B). An der Position des SNP-Markers für *Peak* 1 lag ein Unterschied von 73,6 mg/dl (Abb. 26 A und Anhang Tab. 10) und für *Peak* 3 von 71,7 mg/dl (Abb. 26 B und Anhang Tab. 12) vor. Die T2DM-Prävalenz zeigte die größte Differenz zwischen den N/O- und den N/N-Allel-Trägern für *Peak* 1 (27,1 %) (Abb. 26 C) in Lebenswoche 17 und für *Peak* 3 (24,1 %) (Abb. 26 D) in Lebenswoche 16. Im Gegensatz dazu war kein Unterschied innerhalb der N2-Männchen für das Merkmal Körpergewicht festzustellen (Abb. 26 E und F).

Diese Datenlage deutet darauf hin, dass T2DM-Risikogene des 129P2-Stammes die Insulinresistenz in den N/O-Allel-Trägern bedingten.

Abb. 26: Zeitlicher Verlauf der Blutglukose- sowie Körpergewichtsparameter und T2DM-Prävalenz innerhalb der männlichen N2 (NZOx129P2)-Population. Blutglukose der (A) 1. *Peak*- und (B) 3. *Peak*-Region. T2DM-Prävalenz der (C) 1. *Peak*- und (D) 3. *Peak*-Region. Körpergewicht der (E) 1. *Peak*- und (F) 3. *Peak*-Region. m=männliche Tiere. *Peak* 1: NZO/NZO (N/N): n=144, NZO/129P2 (N/O): n=144; *Peak* 3: N/N: n=134, N/O: n=154.

Viele bereits identifizierten QTL, die mit T2DM assoziiert sind, sind in einer Online-Datenbank erfasst (www.diabesitygenes.org, 2018). Davon sind 10 QTL auf Chromosom 4 beschrieben. Diese sind nachfolgend mit dem in dieser vorliegenden Arbeit identifizierten QTL *Nir4* gegenübergestellt (Abb. 27).

QTL	Merkmal	Mauskreuzung
Nir4	Glukose	(NZO x 129P2) x NZO
D4Mit171	IPGTT	C57BL/KsJ x DBA/2
D4Mit15	IPGTT	C57BL/6J x C3H/He
Nidd/SJL	Glukose	(NZO x SJL) x NZO
D4Mit203	Glukose	C57BL/KsJ x DBA/2
D4Mit203	IPGTT	TSOD x BALB/cA
D4Mit166	IPGTT	KK/Ay x C57BL/6J
D4Mit42	IPGTT	C57BL/KsJ x DBA/2
lnsq1	Insulin	Du6i x DBA/2
Nidd1/24	Insulin	NZO x NON
Nidd1/36	Glukose	NZO x NON

Abb. 27: Überblick der bislang identifizierten T2DM-QTL auf Chromosom 4. Neben *Nir4* sind alle bisher auf Chromosom 4 bekannten QTL, sowie die jeweilige Mauskreuzung, dargestellt. Die *Peak*-Region, an welcher der höchste *LOD-score* ermittelt wurde, ist gekennzeichnet. Eine farbliche Markierung der QTL erfolgte entsprechend ihres assoziierten Merkmals: orange=Glukosetoleranz; rot=Glukose; blau=Insulin. QTL=*Quantitative Trait Locus*; IPGTT=Intraperitonealer Glukosetoleranztest. Modifiziert nach (diabesitygenes.org, 2018).

Bei Betrachtung der Abbildung 27 fällt auf, dass sich nahezu alle auf Chromosom 4 identifizierten QTL auf den distalen Bereich des Chromosoms konzentrieren. *Nir4* überlappt mit *D4Mit15* (45,68–129,07 Mb) (Kayo *et al.*, 2000), *Nidd/SJL* (99,80-146,64 Mb) (Plum *et al.*, 2000), *D4Mit203* (105,06-144,74 Mb) (Togawa *et al.*, 2006), *D4Mit203* (109,17-148,85 Mb) (Hirayama *et al.*, 1999), *D4Mit166* (73,43-113,11 Mb) (Suto & Sekikawa, 2002), *Insq1* (106,68-144,40 Mb) (Brockmann *et al.*, 2000), *Nidd1/24* (79,00-109,18 Mb) und *Nidd1/36* (79,00-109,18 Mb) (Leiter *et al.*, 1998). Davon sind *Nidd/SJL*, *D4Mit203* und *Nidd1/36* mit dem Merkmal Glukose assoziiert. Die für *Nir4* ermittelte *Peak*-Region, an welcher die stärkste Kopplung (*LOD*-

score=7,1) identifiziert wurde, lag bei 97,25 Mb. Ähnlich dazu wurde für *Nidd1/36* die *Peak*-Region bei 98,74 Mb ermittelt. Jedoch wurde ein anderer Phänotyp für *Nidd1* als für *Nir4* beschrieben. *Nidd1* war mit Gewichtsverlust, Hyperglykämie und Hypoinsulinämie assoziiert. *Nir4* dagegen wies keine Assoziation mit einer Gewichtsreduktion (Tab. 17) und Hypoinsulinämie (Anhang Tab. 10-12) auf.

3.3 Eingrenzung des Suszeptibilitätslocus Nir4 mittels Expressionsanalysen

Um die potentiellen Risikogene für die *Peak*-Regionen von *Nir4* identifizieren zu können, wurden im weiteren Verlauf Expressionsanalysen von Kandidatengenen, die auf diesen Regionen lokalisiert sind, durchgeführt.

3.3.1 Expressionsanalyse der Parentalstämme mittels Microarray-Technik

Gesamt-RNA wurde aus den Geweben Leber, Skelettmuskel (Quadriceps (SMq)) sowie aus braunen und gonadalen weißem Fettgewebe 6-Wochen alter NZO- und 129P2-Mäuse (jeweils 8 pro Gruppe) isoliert. Diese Gewebe wurden in einer genomweiten Microarray-Analyse (2.2.2.8) hinsichtlich ihrer Genexpression für 21.406 Gene untersucht (mit Unterstützung von Dr. Axel Rasche, MPI Berlin und Dr. Birgit Knebel, Plattform Genomics, DDZ, vollständige Ergebnisübersicht von Chr. 2 und 4, siehe Anhang Tab. 9). In dieser Arbeit wurde der Suszeptibilitätslocus Nir4 zwischen 58,07 Mb-115,98 Mb auf Chromosom 4 identifiziert. Auf Chromosom 4 sind insgesamt 2.622 Gene annotiert (NCBI GenBank®, https://www.ncbi.nlm.nih.gov, 2018), von denen 1.329 Gene in Bezug auf ihre Genexpression in den Geweben der 6-Wochen alten Parentaltiere über die Microarray-Analyse hin überprüft wurden. Für Nir4 wurde ein umfangreicher Suchrahmen von 40-117 Mb festgelegt, welcher 561 der 1.329 analysierten Gene beinhaltete. Das Verhältnis der Genexpression dieser 561 Gene wurde zwischen den 129P2- und NZO-Tieren ermittelt und ist nachfolgend graphisch (heatmap) dargestellt (Abb. 28). Ziel war es, Gene zu identifizieren, die Expressionsunterschiede zwischen beiden Parentalstämmen aufwiesen.

Abb. 28: *Microarray*-Analyse für *Nir4*. Die *heatmap* veranschaulicht die mittels des *Microarrays* erzielten Ergebnisse für braunes Fettgewebe (BAT), gonadales weißes Fettgewebe (gWAT), Skelettmuskel Quadriceps (SMq) sowie Leber 6-Wochen alter NZO- sowie 129P2-Tiere. Dargestellt sind numerische Ratios differentiell exprimierter Gene im Suchrahmen von 40–117 Mb zwischen NZO und 129P2 für Chromosom 4. Blau stellt eine Hochregulierung im NZO-Stamm dar (<1), rot weist auf eine Hochregulierung im 129P2-Stamm hin (>1). *LOD=Logarithm of the Odds*. n=8.

Im gWAT wurden die meisten differentiell exprimierten Gene detektiert. So konnten 80 Gene anhand des Verhältnisses zwischen 129P2 und NZO ermittelt werden, von denen 57 in 129P2 und 23 in NZO hochreguliert waren. Im BAT wurden 55 Gene identifiziert, von denen 29 in 129P2 und 26 in NZO eine Hochregulation verzeichneten. In der Leber waren von insgesamt 55 Genen 34 in NZO und 21 in 129P2 hochreguliert. Dagegen wurde im SMq die geringste Anzahl an differentiell exprimierten Genen festgestellt. Hier zeigten lediglich 44 Gene eine differentielle Expression, von denen 18 in NZO und 26 in 129P2 hochreguliert wurden. **Tab. 19: Überblick der Verhältnisse der signifikant differentiell exprimierten Gene im** *Microarray* zwischen 40–117 Mb. Blau hinterlegte Verhältnisse, welche <1 sind, belegen eine Hochregulierung im NZO-Stamm, dagegen repräsentieren rot hinterlegte Verhältnisse (>1) eine Hochregulierung im 129P2-Stamm. Gene, welche keinen signifikanten Expressionsunterschied im *Microarray* zeigten, jedoch in bzw. umliegend der *Peak*-Regionen lokalisiert sind, sind unterstrichen. Gene, die nicht im *Microarray* untersucht wurden, aber unmittelbar auf der *Peak*-Region lokalisiert sind, erscheinen fett und unterstrichen. SMq=Skelettmuskel Quadriceps; gWAT=gonadales weißes Fettgewebe; BAT=Braunes Fettgewebe. n=8. Einseitiger Wilcoxon-Vorzeichen-Rang-Test, *p*-Wert <0,05.

Um die Anzahl an Kandidatengenen innerhalb dieser Suchregion weiter einzugrenzen, erfolgte im weiteren Verlauf ein Signifikanztest des Verhältnisses der differentiell exprimierten Gene zwischen beiden Stämmen. Die Gene, die einen signifikanten Expressionsunterschied zwischen 129P2 und NZO im *Microarray* aufwiesen, als auch Gene, welche innerhalb sowie umliegend der *Peak*-Regionen lokalisiert sind (Tab. 19), wurden nachfolgend mittels quantitativer *Real-Time* PCR (qRT-PCR) in den jeweiligen Geweben der beiden Parentalstämmen auf ihre Expression hin überprüft (2.2.2.5).

3.3.2 Expressions analyse mittels quantitativer Real-Time PCR

Die Expressionsanalysen erfolgten für die 21-Wochen alten Parentaltiere. Dabei sind die Gewebe Leber, SMq, gWAT sowie BAT auf signifikante Expressionsunterschiede hin zwischen NZO und 129P2 untersucht worden.

3.3.2.1 Expressionsanalyse potentieller Kandidatengene in Tieren der 21-Wochen alten Parentalstämmen

Die Gewebe Leber, SMq, gWAT und BAT von 21-Wochen alten Parentaltieren wurden zunächst aufgearbeitet (RNA-Isolation, 2.2.2.2). Insgesamt 44 Gene (Tab. 19) sind hinsichtlich ihrer Genexpression in diesen Geweben mittels qRT-PCR-Analyse untersucht worden (Abb. 29). Die Anzahl der über qRT-PCR analysierten Gene belief sich in der Leber auf 17, im SMq auf 18, im gWAT auf 32 und im BAT auf 26 (Abb. 29 A bis D). Lediglich vier Gene, welche im *Microarray* der 6-Wochen alten Parentaltiere eine signifikant differentielle Expression zwischen beiden Mausstämmen zeigten, wurden in den 21-Wochen alten Parentaltieren nicht exprimiert. Im gWAT betraf dies die Gene *Aldob* sowie *Ptprd*, die im *Microarray* mit einer Hochregulierung im 129P2-Stamm (Ratio 3,15 bzw. 1,45) detektiert wurden. Gleiches galt für die Gene *Orm3* und *Raver2* für das BAT. Diese wiesen in der *Microarray*-Analyse eine Hochregulierung für die 129P2-Tiere auf (Ratio 1,56 bzw. 1,41) (Tab. 19 und Anhang Tab. 14).

86

Abb. 29: mRNA-Expressionsanalysen der 21-Wochen alten männlichen NZO- und 129P2-Parentaltiere. Mittels qRT-PCR unter Berechnung der $2^{(-\Delta\Delta C_T)}$ Methode erfolgten die jeweiligen Analysen für die Gewebe (A) Leber, (B) SMq, (C) gWAT und (D) BAT. Die Normierung fand im Lebergewebe gegen *Scp2*, im SMq gegen *Pde4b* und im gWAT als auch im BAT gegen *Grhpr* statt. Pfeile repräsentieren die jeweiligen *Peak*-Regionen. SMq=Skelettmuskel Quadriceps; gWAT=gonadales weißes Fettgewebe; BAT=braunes Fettgewebe. Daten sind als Mittelwerte (±SEM) von 6–8 Tieren pro Mausstamm dargestellt. Student's *t*-Test, ungepaart (*p<0,05, **p<0,01, ***p<0,001).

Im Lebergewebe (Abb. 29 A) zeigten 7 Gene (Acnat2, Aldob, Txn1, Hdhd3, Alad, Ptprd und Hook1) einen signifikanten Expressionsunterschied zwischen den 129P2- und NZO-Tieren. Von diesen sind Acnat2, Aldob, Txn1, Hdhd3 sowie Alad in bzw. umliegend der 1. Peak-Region auf Chromosom 4 lokalisiert. Ptprd befindet sich zwischen 1. und 2. Peak-Region und Hookl liegt innerhalb der 2. Peak-Region. Für das Muskelgewebe (SMq, Abb. 29 B) konnte für 8 Gene (Galt, Ptpn3, Txn1, Al314180, Alad, Orm1, Ptprd und Raver2) eine signifikant differentielle Expression festgestellt werden, von denen Txn1, Alad und Ptprd ebenfalls in der Leber als signifikant differentiell exprimiert identifiziert wurden. Galt befindet sich mit einem Abstand von 16,27 Mb proximal vom 1. Peak-Marker (58,07 Mb) entfernt, wogegen Ptpn3 und Al314180 innerhalb der 1. Peak-Region liegen. Orm1 befindet sich mit etwa 5 Mb distal von dem 1. Peak-Marker, Raver2 mit 3,9 Mb distal vom 2. Peak-Marker. Die Expressions analyse für das gWAT (Abb. 29 C) ergab 20 signifikant differentiell exprimierte Gene (Ddx58, Galt, Cd72, Tpm2, Txn1, Svep1, Al314180, Hdhd3, Alad, Tnc, Ptplad2, Cdkn2b, Cyp2j6, Pgm2, Leprot, Podn, Eps15, Cdkn2c, Cyp4b1 und Mmachc). Hierbei wurde Hdhd3 bereits in der Leber, Galt und Al314180 im SMq sowie Txn1 und Alad sowohl in Leber als auch SMq als signifikant differentiell exprimiert detektiert. Proximal von der 1. Peak-Region sind Ddx58, Cd72 und Tpm2 lokalisiert. Svep1 (58,04 Mb) hingegen befindet sich unmittelbar auf der 1. Peak-Marker-Position (58,07 Mb). Zwischen 1. und 2. Peak-Region liegen Tnc, Ptplad2 sowie Cdkn2b. Cyp2j6, Pgm2 und Leprot sind innerhalb der 2. Peak-Region lokalisiert. Weiter distal zwischen 2. und 3. Peak-Region folgen Podn, Eps15 sowie Cdkn2c. Auf der 3. Peak-Marker-Position (115,98 Mb) ist Cyp4b1 (115,63 Mb) positioniert, gefolgt von Mmachc (116,70 Mb).

Innerhalb des BAT-Gewebes (Abb. 29 D) wiesen 14 Gene einen signifikanten Expressionsunterschied zwischen den Parentaltieren auf: *Ddx58, Galt, CD72, Npr2, Ugcg, Hdhd3, Tnc, Ptplad2, Hook1, Pgm2, Podn, Eps15, Cdkn2c,* sowie *Spata6.* 10 von ihnen zeigten ebenfalls im gWAT eine signifikant differentielle Expression. Darunter waren *Ddx58, Galt, CD72, Hdhd3, Tnc, Ptplad2, Pgm2, Podn, Eps15* sowie *Cdkn2c. Galt* wurde ebenfalls im SMq und *Hdhd3* in der Leber als signifikant differentiell exprimiert detektiert. *Hook* wurde neben BAT auch in der Leber signifikant unterschiedlich exprimiert. Dagegen konnte für die Gene *Npr2, Ugcg* und *Spata6* ausschließlich im BAT ein signifikanter Expressionsunterschied ermittelt werden. *Npr2* (43,64 Mb) liegt etwa 14 Mb proximal vom 1. *Peak*-Marker entfernt. *Ugcg* (59,19 Mb)

befindet sich innerhalb der 1. *Peak*-Region und *Spata6* (111,78 Mb) ist etwa 4 Mb proximal vom 3. *Peak*-Marker entfernt.

Einen Überblick aller signifikant differentiell exprimierter Gene in Leber und SMq bzw. im gWAT und BAT der 21-Wochen alten Parentaltiere bieten die Tabellen 20 und 21. Hier sind neben den Expressionsniveaus (Mittelwert des $2^{(-\Delta\Delta C_T)} \pm SEM$) auch die Signifikanzstärken für die jeweiligen Gewebe aufgelistet. Vergleichend dazu wurden die Ergebnisse des Microarrays (6-Wochen alte Parentaltiere) hinsichtlich der jeweiligen Hochregulierungen aufgeführt. Bei Betrachtung der qRT-PCR-Ergebnisse in Tab. 20 und 21 fällt auf, dass die meisten Gene in NZO hochreguliert waren. In 129P2 waren im SMq Galt und Orm1, im BAT Galt, Npr2, Hook1, Pgm2 und Cdkn2c hochreguliert. In der Leber und dem gWAT wurden alle signifikant differentiell exprimierten Gene stärker in NZO exprimiert. Im Vergleich zu den Microarray-Daten konnten für Leber 4 Gene (Acnat2, Hdhd3, Alad und Hook1), für SMq 5 Gene (Galt, Ptpn3, Alad, Orm1 und Raver2), für gWAT 6 Gene (CD72, Tpm2, Ptplad2, Cdkn2b, Leprot, und Cyp4b1) und für BAT 4 Gene (Ddx58, Galt, Hdhd3 und Spata6) hinsichtlich ihrer Expressionsrichtung bestätigt werden. Alle übrigen Gene, die in den qRT-PCR-Analysen der 21-Wochen alten Parentaltieren signifikante Expressionsunterschiede in den vier Geweben zeigten, wiesen im Microarray keine signifikante differentielle Expression (n.d.) auf, oder wurden, wie Svep1, nicht im *Microarray* analysiert (n.a.).

Tab. 20: Gegenüberstellung aller signifikant differentiell exprimierten Gene in Leber und SMq der 21-Wochen alten männlichen NZO- und 129P2-Parentaltiere. Vergleichend dazu sind die Ergebnisse der *Microarray*-Analyse der 6-Wochen alten Parentaltiere aufgelistet. n.d.=kein signifikant differentieller Expressionsunterschied im *Microarray*; SMq=Skelettmuskel Quadriceps. Daten repräsentieren Mittelwerte des 2 ($\Delta\Delta C_T$) ±SEM von 6–8 Tieren pro Mausstamm. Die Normierung fand im Lebergewebe gegen *Scp2*, im SMq gegen *Pde4b* statt. Student`s *t*-Test, ungepaart (*p<0,05, **p<0,01, ***p<0,001).

Chromosom 4	Mb Pos.	Gen		Let	ber		SMq					
			NZO	129P2	t-Test	Micro- array	NZO	129P2	t-Test	Micro- array		
	40203777	Ddx58										
	41755228	Galt					1,04 ± 0,11	$4,19 \pm 0,49$	***	↓ NZO		
	43446462	Cd72										
	43514711	Tpm2										
	43641255	Npr2										
	49379840	Acnat2	$1,04 \pm 0,11$	$0,19 \pm 0,03$	***	↑ NZO						
	49535995	Aldob	$1,02 \pm 0,06$	$0,79 \pm 0,04$	*	n.d.						
	57190841	Ptpn3					1,22 ± 0,25	0,25 ± 0,06	*	↑ NZO		
	57943373	Txn1	1,01 ± 0,04	0,86 ± 0,05	*	n.d.	1,08 ± 0,17	0,47 ± 0,05	*	n.d.		
	58044164	Svep1										
Peak-Region	58798911	Al314180					1,09 ± 0,17	0,38 ± 0,03	*	n.d.		
58,07 Mb	59189257	Uqcq										
	62189540	Zfp37					1,41 ± 0,52	0,63 ± 0,06	*	n.d.		
	62499008	Hdhd3	$1,02 \pm 0,08$	0,25 ± 0,01	***	↑ NZO						
	62510868	Alad	1,06 ± 0,13	0,21 ± 0,02	***	↑ NZO	1,12 ± 0,22	0,06 ± 0,01	*	↑ NZO		
	63344560	Orm1					1,09 ± 0,14	2,98 ± 0,52	*	↓ NZO		
	63959785	Tnc										
	75941238	Ptprd	1,04 ± 0,11	0,48 ± 0,02	**	n.d.	1,13 ± 0,20	0,47 ± 0,06	*	n.d.		
	88396144	Ptplad2										
	89306289	Cdkn2b										
	95967240	Hook1	$1,02 \pm 0,06$	0,81 ± 0,02	*	↑ NZO						
Book Bogion	96516138	Cyp2j6										
	99929414	Pgm2										
97,25 WD	101068983	Raver2					1,03 ± 0,09	0,66 ± 0,03	*	↑ NZO		
	101656109	Leprot										
	108014791	Podn										
	109385319	Eps15										
	109660876	Cdkn2c										
Deals Design	111777503	Spata6										
115 00 Mb	115628462	Cyp4b1										
115,98 MD	116702279	Mmachc										

Tab. 21: Gegenüberstellung aller signifikant differentiell exprimierten Gene in gWAT und BAT der 21-Wochen alten männlichen NZO- und 129P2-Parentaltiere. Vergleichend dazu sind die Ergebnisse der *Microarray*-Analyse der 6-Wochen alten Parentaltiere aufgelistet. n.d.=kein signifikant differentieller Expressionsunterschied im *Microarray*; n.a.=im *Microarray* nicht analysiert; gWAT=gonadales weißes Fettgewebe; BAT=braunes Fettgewebe. Daten repräsentieren Mittelwerte des 2 $(-\Delta\Delta C_T)$ ±SEM von 6–8 Tieren pro Mausstamm. Die Normierung fand im gWAT als auch im BAT gegen *Grhpr* statt. Student`s *t*-Test, ungepaart (**p*<0,05, ***p*<0,01, ****p*<0,001).

Chromosom 4	Mb Pos.	Gen		gW	/AT		BAT					
			NZO	129P2	t-Test	Micro- array	NZO	129P2	t-Test	Micro- array		
	40203777	Ddx58	1,15 ± 0,17	$0,26 \pm 0,02$	**	n.d.	1,04 ± 0,10	0,46 ± 0,03	**	↑ NZO		
	41755228	Galt	1,35 ± 0,26	$0,39 \pm 0,03$	**	n.d.	1,22 ± 0,23	2,37 ± 0,11	**	↓ NZO		
	43446462	Cd72	1,66 ± 0,33	0,02± 0,004	**	↑ NZO	1,18 ± 0,24	0,12 ± 0,01	**	n.d.		
	43514711	Tpm2	1,36 ± 0,33	$0,25 \pm 0,02$	*	↑ NZO						
	43641255	Npr2					$1,02 \pm 0,06$	1,38 ± 0,11	*	n.d.		
	49379840	Acnat2										
	49535995	Aldob										
	57190841	Ptpn3										
	57943373	Txn1	1,31 ± 0,29	$0,55 \pm 0,07$	*	n.d.						
	58044164	Svep1	1,12 ± 0,17	0,23 ± 0,01	**	n.a.						
Peak-Region	58798911	<u>AI314180</u>	1,10 ± 0,18	$0,35 \pm 0,02$	*	n.d.						
58,07 Mb	59189257	Ugcg					1,05 ± 0,11	$0,69 \pm 0,08$	*	n.d.		
	62189540	<u>Zfp37</u>										
	62499008	Hdhd3	1,10 ± 0,16	0,19 ± 0,01	**	n.d.	1,05 ± 0,10	0,41 ± 0,04	***	↑ NZO		
	62510868	Alad	1,03 ± 0,08	$0,37 \pm 0,02$	***	n.d.						
	63344560	Orm1										
	63959785	Tnc	1,43 ± 0,34	0,17 ± 0,01	*	n.d.	1,17 ± 0,25	0,24 ± 0,05	*	n.d.		
	75941238	Ptprd										
	88396144	Ptplad2	1,43 ± 0,29	$0,15 \pm 0,03$	**	↑ NZO	1,13 ± 0,21	0,37 ± 0,07	*	n.d.		
	89306289	Cdkn2b	1,28 ± 0,25	0,11 ± 0,02	**	↑ NZO						
	95967240	Hook1					1,39 ± 0,37	3,08 ± 0,14	**	n.d.		
Deals Dealer	96516138	Cyp2j6	1,12 ± 0,16	$0,63 \pm 0,04$	*	↓ NZO						
Peak-Region	99929414	Pgm2	1,12 ± 0,15	0,73 ± 0,04	*	↓ NZO	1,14 ± 0,18	2,17 ± 0,09	**	n.d.		
97,25 WD	101068983	Raver2										
	101656109	Leprot	1,29 ± 0,25	$0,35 \pm 0,03$	**	↑ NZO						
	108014791	Podn	1,07 ± 0,21	$0,47 \pm 0,06$	*	↓ NZO	1,09 ± 0,15	0,33 ± 0,05	**	n.d.		
	109385319	Eps15	1,08 ± 0,14	$0,23 \pm 0,02$	***	n.d.	1,02 ± 0,08	0,67 ± 0,11	*	n.d.		
	109660876	Cdkn2c	1,62 ± 0,36	$0,42 \pm 0,09$	*	↓ NZO	1,09 ± 0,14	1,85 ± 0,09	**	n.d.		
Beek Denien	111777503	Spata6					1,02 ± 0,08	0,51 ± 0,05	**	↑ NZO		
115 00 Mb	115628462	Cyp4b1	1,01 ± 0,05	0,20 ± 0,01	***	↑ NZO						
115,98 MD	116702279	Mmachc	1,07 ± 0,13	0,62 ± 0,11	*	n.d.						

Insgesamt zeigten einige Gene, die auf Chromosom 4 lokalisiert sind, signifikante Expressionsunterschiede zwischen NZO- und 129P2-Tieren auf. So belief sich die Anzahl der so erhaltenen Kandidatengene in der Leber auf 7, in dem SMq auf 9, im gWAT 20 und im BAT auf 14 (Tab. 20 und 21). Da bereits postuliert wurde, dass eine Insulinresistenz innerhalb der heterozygoten N2-Männchen vorlag, sind die Gewebe Leber, SMq sowie gWAT aller N2-Männchen auf ihre Expression für die Kandidatengene hin analysiert worden.

3.3.2.2 Expressionsanalyse potentieller Kandidatengene in der N2 (NZOx129P2)-Population

Vorab erfolgte die RNA-Isolation (2.2.2.2) aus den Geweben Leber, SMq und gWAT der männlichen N2-Population (n=290). Im Anschluss wurde für jedes Gewebe eine Expressionsanalyse mittels qRT-PCR für die jeweiligen Kandidatengene, welche zwischen NZO- und 129P2-Tieren stark signifikant differentiell exprimiert wurden (p<0,01) (Tab. 20 und 21), durchgeführt.

3.3.2.2.1 Expressionsanalyse potentieller Kandidatengene in der Leber der N2 (NZOx129P2)-Männchen

In der Leber der 21-Wochen alten N2-Männchen wurden die Kandidatengene *Acnat2*, *Hdhd3*, *Alad* und *Ptprd*, welche einen stark signifikanten Expressionsunterschied zwischen 129P2 und NZO in den 21-Wochen alten Parentaltieren aufwiesen (p<0,01), auf ihre Expression hin mittels qRT-PCR (2.2.2.5) überprüft.

qRT-PCR erfolgten die jeweiligen Analysen. Die Normierung fand gegen Scp2 statt. Daten repräsentieren Mittelwerte (±SEM). Student`s *t*-Test, ungepaart (**p<0,01).

Lediglich die Gene *Hdhd3* und *Alad* zeigten einen signifikanten Expressionsunterschied (p < 0,01) zwischen den N/N- sowie N/O-Allel-Trägern der N2-Männchen auf (Abb. 30). Beide Gene verzeichneten eine erhöhte Expression in den homozygoten Allel-Trägern. Diese Ergebnisse deckten sich mit den Resultaten der zuvor analysierten 6- und 21-Wochen alten Parentalpopulationen (Tab. 20). Die *Peak*-Positionen für *Hdhd3* und *Alad* wurden entsprechend ihrer Genposition ausgewählt.

3.3.2.2.2 Expression der Kandidatengene im SMq der N2 (NZOx129P2)-Männchen

Im SMq sind die Gene *Galt* sowie *Alad* via qRT-PCR (Abb. 31) auf ihr Expressionsniveau innerhalb der N2-Männchen analysiert worden. *Galt* zeigte in den 21-Wochen alten Parentaltieren einen großen signifikanten Expressionsunterschied (p<0,001) mit einer Hochregulierung im 129P2-Stamm auf. Gleiches wurde in den 6-Wochen alten Tieren beobachtet. *Alad* wies ebenfalls einen signifikanten Expressionsunterschied in den 6-Wochen als auch in den 21-Wochen alten Parentaltieren auf (in beiden Fällen lag eine Hochregulierung im NZO-Stamm vor). Jedoch lag innerhalb der N2-Männchen ein schwacher signifikanter Unterschied vor (p<0,05). Da *Alad* im Lebergewebe sowie im gWAT in den 21-Wochen alten Parentaltieren stark signifikant differentiell exprimiert wurde (p<0,001) (Tab. 20), ist es im SMq analysiert worden.

Abb. 31: Relative Genexpression im SMq der 21-Wochen alten männlichen N2 (NZOx129P2)-Tiere. (A) *Galt*: NZO/NZO (N/N): n=131, NZO/129P2 (N/O): n=135 und (B) *Alad*: N/N: n=131, N/O: n=134. SMq=Skelettmuskel Quadriceps. Mittels qRT-PCR erfolgten die jeweiligen Analysen. Die Normierung fand gegen *Pde4b* statt. Daten repräsentieren Mittelwerte (\pm SEM). Student's *t*-Test, ungepaart (p < 0.05; ***p < 0.001).

Die erhaltenen Ergebnisse lieferten für beide überprüften Kandidatengene einen signifikanten Expressionsunterschied in den männlichen N2-Tieren. So zeigte *Galt* eine signifikant erhöhte Expression in den N/O-Allel-Trägern (p<0,001) (Abb. 31 A), *Alad* dagegen war, wie zuvor für das Lebergewebe beschrieben (Abb. 30 B), in den N/N-Allel-Trägern signifikant hochreguliert (p<0,05) (Abb. 31 B). Dies wurde ebenfalls in den Parentalpopulationen (6- und 21-Wochen alt) beobachtet (Tab. 20). Die *Peak*-Positionen sind für die jeweiligen Gene entsprechend der Genposition ausgewählt worden.

3.3.2.2.3 Expression der Kandidatengene im gWAT der N2 (NZOx129P2)-Männchen

Für das gWAT der männlichen N2-Population wurde die Expressionsanalyse für folgende Kandidatengene durchgeführt: Ddx58, Galt, Cd72, Svep1, Hdhd3, Alad, Ptplad2, Cdkn2b, Leprot, Eps15 sowie Cyp4b1. Alle Gene waren in den 21-Wochen alten Parentaltieren in NZO signifikant (p<0,01) hochreguliert (Tab. 21). In der *Microarray*-Analyse der 6-Wochen alten Tiere wurden Cd72, Ptplad2, Cdkn2b, Leprot und Cyp4b1 ebenfalls signifikant in NZO exprimiert. Die übrigen Gene sind dagegen im *Micoarray* nicht signifikant differentiell exprimiert bzw. nicht untersucht worden (Tab. 21).

Abb. 32: Relative Genexpression im gWAT der 21-Wochen alten männlichen N2 (NZOx129P2)-Tiere. (A) *Hdhd3*: NZO/NZO (N/N): n=133, NZO/129P2 (N/O): n=136, (B) *Alad*: N/N: n=130, N/O: n=133, (C) *Ptplad2*: N/N: n=129, N/O: n=141 und (D) *Leprot*: N/N: n=129, N/O: n=140. Mittels qRT-PCR erfolgten die jeweiligen Analysen. Die Normierung fand gegen *Grhpr* statt. gWAT=gonadales weißes Fettgewebe. Daten repräsentieren Mittelwerte (\pm SEM). Student`s *t*-Test, ungepaart (**p<0,01; ***p<0,001).

Die Expressionsanalyse des gWAT-Gewebes der N2-Männchen lieferte für *Hdhd3*, *Alad*, *Ptplad2* und *Leprot* (Abb. 32) einen signifikanten Expressionsunterschied zwischen N/O- und N/N-Allel-Trägern (*p*<0,01). Zeigten *Hdhd3* und *Alad* eine erhöhte Expression in den N/N-Allel-Trägern, wurden *Ptplad2* und *Leprot* in den N/O-Allel-Trägern hochreguliert. Diese Ergebnisse decken sich lediglich für *Hdhd3* und *Alad* mit denen der 21-Wochen alten Parentaltieren (Tab. 21). *Ptplad2* und *Leprot* zeigten dagegen konträr zu den erhaltenen Expressionsniveaus in den Parentaltieren eine Expressionserhöhung in den N/O-Allel-Trägern.

Wie bereits für Leber und SMq, wurden die *Peak*-Positionen von *Nir4* für die jeweiligen Gene entsprechend der Genposition ausgewählt.

Verlauf wurden Expressions-QTL-Analysen (eQTL) als Im weiteren auch Korrelationsanalysen für die Gewebe Leber, SMq und gWAT der männlichen N2-Tiere durchgeführt. Die eQTL-Analyse beruht, wie die QTL-Analyse, auf der Berechnung der linearen Regression. Diese hat zum Ziel, die Eigenschaft einer abhängigen Variable (quantitatives Merkmal) mithilfe unabhängiger Variablen (SNP-Marker) zu erklären. Dabei wird die Genexpression als ein quantitatives Merkmal behandelt. Der hierbei errechnete p-Wert gibt darüber Aufschluss, ob ein signifikanter Zusammenhang zwischen beobachteten Phänotyp und dem Locus vorliegt. Im Falle eines vorliegenden eQTL (Assoziation zwischen Genexpression und Locus) wurde postuliert, dass die Genexpression von genomischen Regionen, die diese Loci umgeben, reguliert wird (Jiang & Liu, 2015). So ist es im Rahmen dieser Arbeit möglich einen zusätzlichen Informationsgewinn darüber zu erhalten, ob genetische Regulatoren den beobachteten Phänotyp zugrunde lagen.

3.4 Expressions-QTL-Analyse (eQTL) und Korrelationsanalysen

Die eQTL-Analyse fand für die Kandidatengene, die in den männlichen N2-Geweben eine signifikante differentielle Expression zwischen N/O- und N/N-Allel-Trägern zeigten, für die Gewebe Leber, SMq sowie gWAT in der männlichen N2-Population statt (2.2.6.2).

Weiterhin erfolgten Korrelationsanalysen für die männlichen N2-Tiere nach Spearman, um zu überprüfen, ob die relative Expressionsstärke mit den für Chromosom 4 beobachteten Phänotyp (Blutglukose (Woche 17), FBG und Lebergewicht) korrelierte.

3.4.1 eQTL-Analyse der Leber der N2 (NZOx129P2)-Männchen

In der Leber wurde die eQTL-Analyse für die Gene Hdhd3 und Alad durchgeführt.

Abb. 33: eQTL-Analyse des Lebergewebes 21-Wochen alter männlicher N2 (NZOx129P2)-Tiere. (A) Hdhd3: n=272 und (B) Alad. n=269. eQTL=Expressions-QTL; QTL=Quantitative Trait Locus; LOD=Logarithm of the Odds. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

Für beide Kandidatengene konnte keine signifikante Kopplung mittels eQTL-Analyse auf Chromosom 4 erzielt werden (Abb. 33 A und B).

3.4.2 eQTL-Analyse und Korrelationsanalysen für SMq der N2 (NZOx129P2)-Männchen

Für das SMq-Gewebe erfolgte die eQTL-Analyse für Galt sowie Alad.

Abb. 34: eQTL-Analyse des SMq-Gewebes 21-Wochen alter männlichen N2 (NZOx129P2)-Tiere. (A) *Galt*: n=266 und (**B**) *Alad*: n=267. eQTL=Expressions-QTL; QTL=Quantitative Trait Locus; LOD=Logarithm of the Odds; SMq=Skelettmuskel Quadriceps. Die Signifikanzschwelle betrug *p*=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

Die eQTL-Analyse lieferte für *Galt* (Abb. 34 A), im Gegensatz zu *Alad* (Abb. 34 B), eine hoch-signifikante Kopplung auf Chromosom 4 (*LOD-score*=24,7). Die relative Expression von *Galt* korrelierte positiv mit der FBG der N2-Männchen (Abb. 35).

Abb. 35: Korrelationsanalyse der relativen Expressionsdaten von *Galt* mit FBG innerhalb der N2 (NZOx129P2)-Männchen im SMq. Grau: NZO/NZO (N/N)-Allel-Träger; grün: NZO/129P2 (N/O)-Allel-Träger. m=Männchen; FBG=Finale Blutglukose nach 6 h fasten; SMq=Skelettmuskel Quadriceps. Spearman Korrelationen. Mittels linearer Regression erfolgte die Errechnung der Signifikanz sowie des Determinationskoeffizienten r^2 . N/N: n=131; N/O: n=135.

3.4.3 eQTL-Analyse und Korrelationsanylsen für gWAT der N2 (NZOx129P2)-Männchen

Innerhalb des gWAT-Gewebes wurden die Gene *Hdhd3*, *Alad*, *Ptplad2* und *Leprot* hinsichtlich der Assoziation zwischen ihrer Genexpression und *Nir4* überprüft.

Abb. 36: eQTL-Analyse des gWAT-Gewebes 21-Wochen alter männlichen N2 (NZOx129P2)-Tiere. (A) Hdhd3: n=270, (B) Alad: n=265, (C) Ptplad2: n=271 und (D) Leprot: n=271. eQTL=Expressions-QTL; QTL=Quantitative Trait Locus; LOD=Logarithm of the Odds; gWAT=gonadales weißes Fettgewebe. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

Die eQTL-Analyse ergab für alle 4 analysierten Gene *Hdhd3*, *Alad*, *Ptplad2* und *Leprot* im gWAT signifikante Kopplungen auf Chromosom 4 (Abb. 36). *Hdhd3* und *Alad* erzielten (Abb. 36 A und B) die stärksten signifikanten Differenzen innerhalb der männlichen N2-Population (in beiden Fällen lag ein *LOD-score* von 15,0 vor). *Ptplad2* und *Leprot* (Abb. 36 C und D) bewirkten eine geringere, dennoch ähnliche Kopplungssignifikanz (*LOD-score*=4,7 bzw. 5,3).

Die relative Expression von *Hdhd3* korrelierte sowohl mit Blutglukose (Woche 17) (*p*-Wert=0,0003) als auch mit FBG (*p*-Wert=0,0015) (Abb. 37 A und B) negativ. Ebenfalls wurden für *Alad* negative Korrelationen mit Blutglukose (Woche 17) (*p*-Wert=0,0002), FBG (*p*-Wert=0,0001) und mit Lebergewicht (*p*-Wert=0,0004) (Abb. 37 C, D und E) ermittelt. Die relative Genexpression von *Leprot* korrelierte positiv mit Lebergewicht (*p*-Wert<0,0001) (Abb. 37 F). Ebenfalls positive Korrelationen sind für *Ptplad2* sowohl mit Blutglukose (Woche 17) (*p*-Wert<0,0001) (Abb. 37 G und H) errechnet worden.

Abb. 37: Korrelationsanalyse der relativen Expressionsdaten von *Hdhd3*, *Alad*, *Leprot* und *Ptplad2* mit BG W.17, FBG und Lebergewicht innerhalb der N2 (NZOx129P2)-Männchen im gWAT. (A) *Hdhd3* mit BG W.17 log2, (B) *Hdhd3* mit FBG log2, (C) *Alad* mit BG W.17 log2, (D) *Alad* mit FBG log2, (E) *Alad* mit LG log2, (F) *Leprot* mit LG log2, (G) *Ptplad2* mit BG W.17 log2 und (H) *Ptplad2* mit LG log2. Grau: NZO/NZO (N/N)-Allel-Träger; grün: NZO/129P2 (N/O)-Allel-Träger. m=Männchen; BG W.17=Blutglukose in Lebenswoche 17; FBG=Finale Blutglukose nach 6 h fasten; LG=Lebergewicht nach 6 h fasten; gWAT=gonadales weißes Fettgewebe. Spearman Korrelationen. Mittels linearer Regression erfolgte die Errechnung der Signifikanz sowie des Determinationskoeffizienten r^2 . N/N: n=129-133; N/O: n=133-141.

Die nachfolgende Tabelle (Tab. 22) stellt einen Überblick der Gene, welche in den männlichen N2-Tieren signifikant differentiell exprimiert wurden, für Leber, SMq und gWAT dar. Des Weiteren geht daraus die Information hervor, ob und auf welchem Chromosom ein eQTL ermittelt werden konnte.

Tab. 22: Überblick aller signifikant differentiell exprimierter Gene innerhalb der männlichen N2 (NZOx129P2)-Population für Leber, SMq und gWAT. Gegenübergestellt sind die fünf Kandidatengene *Galt*, *Hdhd3*, *Alad*, *Ptplad2* und *Leprot* hinsichtlich ihrer Genexpression in den 6-Wochen alten Parentaltieren (*Microarray*), 21-Wochen alten Parentaltieren sowie N2-Männchen. Zudem ist angegeben, auf welchem Chromosom ein eQTL identifiziert wurde. Pfeile repräsentieren eine Hoch- bzw. Runterregulierung im NZO-Stamm bzw. in den NZO/NZO (N/N)-Allel-Trägern. n.d.=nicht differentiell exprimiert; -=kein eQTL detektiert; eQTL=Expressions-QTL; QTL=*Quantitative Trait Locus*; SMq=Skelettmuskel Quadriceps; gWAT=gonadales weißes Fettgewebe. 6- und 21-Wochen alte Parentaltieren n=5-8; N2-Männchen: n=269-273.

Chr. 4	Mb Pos.	Gen	Leber				SMq				gWAT			
			Micro- array	21 Parental	N2	eQTL	Micro- array	21 Parental	N2	eQTL	Micro- array	21 Parental	N2	eQTL
	41755228	Galt					↓ NZO	↓ NZO	↓ N/N	Chr.4	n.d.	↑ NZO	n.d.	
Peak 1	62499008	Hdhd3	↑ NZO	↑ NZO	↑ N/N	-					n.d.	↑ NZO	↑ N/N	Chr.4
58,07 Mb	62510868	Alad	↑ NZO	↑ NZO	↑ N/N	-	↑ NZO	↑ NZO	↑ N/N	-	n.d.	↑ NZO	↑ N/N	Chr.4
	88396144	Ptplad2									↑ NZO	↑ NZO	↓ N/N	Chr.4
<i>Peak</i> 2 97,25 Mb	101656109	Leprot									↑ NZO	↑ NZO	↓ N/N	Chr.4

Innerhalb der männlichen N2-Population sind im Lebergewebe signifikante Expressionsunterschiede für Hdhd3 und Alad ermittelt worden. Beide Gene wiesen eine Hochregulierung in den N/N-Allel-Trägern auf. Dies entsprach den erhaltenen Daten der 21-Wochen alten Parentaltiere als auch den Microarray-Daten. In beiden Analysen wurde eine Hochregulierung im NZO-Stamm festgestellt. Jedoch besaß die Genexpression dieser Gene keine Kopplung zum Nir4-Locus (Abb. 33). Im SMq wurden Galt und Alad in den männlichen N2-Tieren signifikant differentiell exprimiert. Die Hochregulierung lag für Galt innerhalb der N/O-Allel-Träger, für Alad innerhalb der N/N-Allel-Träger vor. Diese Ergebnisse wurden ebenfalls in den Parentaltieren beobachtet. Die eQTL-Analyse ergab für die Genexpression von Galt einen signifikanten Zusammenhang zum Nir4-Locus auf Chromosom 4. Im gWAT sind für Hdhd3, Alad, Ptplad2 und Leprot sowohl signifikante Expressionsunterschiede als auch eQTL auf Chromosom 4 identifiziert worden. Eine Gegenüberstellung der erhaltenen Expressionsdaten der männlichen N2-Mäuse mit den Parentaltieren (21-Wochen und 6-Wochen (Microarray) alte Tiere) zeigte, dass Hdhd3 und Alad in allen Fällen in NZObzw. N/N-Allel-Trägern hochreguliert wurden. Dagegen war für Ptplad2 und Leprot
eine Hochregulierung in den NZO-Parentaltieren ermittelt worden, in den männlichen N2-Tieren wurde jedoch eine signifikant höhere Expression in den N/O-Allel-Trägern identifiziert. Aufgrund dieser Unterschiede kamen *Ptplad2* und *Leprot* als Kandidatengene nicht weiter in Betracht.

Nach Abschluss dieser Expressionsanalysen war es möglich, den Suchrahmen auf folgende 3 Kandidatengene einzugrenzen: *Galt*, *Hdhd3* und *Alad*.

Einen Überblick aller auf Chromosom 4 erhaltenen QTL sowie eQTL von *Galt* (SMq-Gewebe), *Hdhd3* und *Alad* (jeweils gWAT-Gewebe) für die männliche N2-Gruppe bietet Abbildung 38. Die Überlagerung aller Kopplungsverläufe zeigt, dass die eQTL von *Hdhd3* und *Alad* einen ähnlichen Verlauf zu den identifizierten QTL von Blutglukose (Woche 17), FBG als auch zu dem von Lebergewicht aufwiesen. Auffällig ist, dass der Verlauf im proximalen Bereich um *Peak* 1 (27,53 cM, SNP-Marker rs4138670) für alle diese Kopplungen, mit Ausnahme von FBG, nahezu identisch ist. Die höchsten *Peaks* aller QTL sowie dieser eQTL konzentrierten sich auf dem Chromosomenbereich zwischen 58,07 Mb (1. *Peak*-Region, SNP-Marker rs4138670) und 115,98 Mb (3. *Peak*-Region, SNP-Marker rs4224727).

Dagegen deckte sich der Kopplungsverlauf des eQTL von *Galt* nicht mit denen der QTL, die den Phänotyp von *Nir4* bedingten. Aufgrund dessen konnte *Galt* als Kandidat ausgeschlossen werden.

Chromosom 4

Abb. 38: Gegenüberstellung der identifizierten QTL- sowie eQTL auf Chromosom 4 der männlichen N2 (NZOx129P2)-Population. W.=Lebenswoche; QTL=*Quantitative trait locus*; eQTL=Expressions-QTL; *LOD=Logarithm of the Odds*, SMq=Skelettmuskel Quadriceps; gWAT=gonadales weißes Fettgewebe;

BG=Blutglukose; LG=Lebergewicht; FBG=Finale BG. Die in Lebenswoche 21 ermittelten Daten repräsentieren Parameter nach 6 h fasten. n=266-290. Die Signifikanzschwelle betrug p=0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

3.5 Identifizierung des Suszeptibilitätsgens Txndc12

3.5.1 Expressionsanalyse von *Txndc12* in Tieren der 21-Wochen alten Parentalstämme

Die *Microarray*-Analyse der 6-Wochen alten Parentaltiere lieferte für *Txndc12*, welches auf dem distalen Bereich von Chromosom 4 (108,83 Mb) liegt, eine signifikante differentielle Expression zwischen NZO und 129P2 im BAT (Tab. 19). Eine anschließende qRT-PCR-Analyse der 21-Wochen alten Parentaltiere fand neben BAT zudem für Leber, SMq und gWAT statt. Es wurde festgestellt, dass dieses Gen in den NZO-Tieren gering (gWAT und BAT) bzw. nicht (Leber, SMq) exprimiert wurde. Dagegen wiesen die 129P2-Tiere eine signifikant erhöhte differentielle Expression auf (Abb. 39).

Abb. 39: Expressionsanalysen der 21-Wochen alten männlichen NZO- und 129P2-Parentaltiere für die Gewebe Leber, SMq, gWAT und BAT für *Txndc12* im Vergleich. Mittels qRT-PCR unter Berechnung der 2 $(-\Delta\Delta C_T)$ Methode erfolgten die jeweiligen Analysen. Die Normierung fand im Lebergewebe gegen *Scp2*, im SMq gegen *Pde4b* und im gWAT als auch im BAT gegen *Grhpr* statt. SMq=Skelettmuskel Quadriceps; gWAT=gonadales weißes Fettgewebe; BAT=braunes Fettgewebe. Daten repräsentieren Mittelwerte (±SEM) von 6–8 Tieren pro Mausstamm. Student`s *t*-Test, ungepaart (**p<0,001).

Um sicherzustellen, ob die fehlende bzw. geringe Genexpression von *Txndc12* im NZO-Stamm ein qRT-PCR-Artefakt darstellt, ist im folgenden eine Überprüfung zweier weiterer Primerpaare (Txndc12_5 und Txndc12_7), welche jeweils an anderen Bereichen des Gens binden, erfolgt (Abb. 40).

NZO 129P2

Abb. 40: Expressions analysen der 21-Wochen alten männlichen NZO- und 129P2-Parentaltiere für das Gewebe SMq für verschiedene Primer von *Txndc12* im Vergleich. Mittels qRT-PCR erfolgten die jeweiligen Analysen. SMq=Skelettmuskel Quadriceps. Daten repräsentieren Mittelwerte (\pm SEM) von 6–8 Tieren pro Mausstamm. Student's *t*-Test, ungepaart (***p<0,001).

In Abbildung 40 ist ersichtlich, dass lediglich das erste Primerpaar (Txndc12) zu keinem PCR-Produkt im NZO-Stamm führte. Dagegen wurden die Genbereiche, an welchen Txndc12_5 und Txndc12_7 gebunden haben, in beiden Mausstämmen amplifiziert. Dabei war eine ähnliche relative Expression in beiden Mausstämmen festzustellen. Demnach lag kein Unterschied hinsichtlich der relativen Genexpression für *Txndc12* zwischen den beiden Parentalstämmen vor.

Um die Ursache der geringen Expressionsmenge in den NZO-Tieren für Primer 1 (Txndc12) von *Txndc12* zu identifizieren, wurden im Weiteren die mRNA als auch die Proteinsequenz analysiert (NCBI GenBank®, https://www.ncbi.nlm.nih.gov, 2018 und Sanger SNP-Datenbank, https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1303, 2018).

3.5.2 Analyse der mRNA- und Protein-Sequenz von Txndc12

Bei Betrachtung der mRNA-Sequenz von *Txndc12* ist festzustellen, dass im NZO-Stamm an Position 107 ein Cytosin anstelle eines Guanins, wie es in C57BL/6J (B6) als auch 129P2 der Fall ist, vorliegt (Abb. 41).

NZO	89	ATGTCGCTTCGTTTCGGGCCCCACCTGTTTGCTGAGCTTC	127
129P2	89	ATGTCGCTTCGTTTCGGGGCCACCTGTTTGCTGAGCTTC	127
в6	89	ATGTCGCTTCGTTTCGGGGCCACCTGTTTGCTGAGCTTC	127

Abb. 41: Gegenüberstellung der mRNA-Sequenz von *Txndc12* des NZO-, 129P2- sowie B6-Mausstammes. Die NZO-Maus trägt an Position 107 der mRNA anstelle eines Guanins (B6 und 129P2 Situation) ein Cytosin. NZO=NZO/HILtJ; 129P2=129P2/OlaHsd; B6=C57BL/6J. Daten wurden aus der NCBI GenBank®, (http://www.ncbi.nlm.nih.gov, 2018) sowie der Sanger SNP-Datenbank (www.sanger.ac.uk/sanger/Mouse_Snp Viewer/rel-1303, 2018) erhoben.

Exakt an dieser Position endet das Nukleotid des vorwärts gerichteten Primers des 1. Primerpaares (Txndc12). Die nachfolgend dargestellte mRNA-Sequenz (Abb. 42), basierend auf den B6-Stamm C57BL/6J (NCBI GenBank®, https://www.ncbi.nlm.nih.gov, 2018), zeigt die verwendeten Primersequenzen, welche farblich hinterlegt sind.

	1234	567	890	123	456	789	012	345	678	901	234	567	890	123	456	789	012	345	678	90
1	CTGA	ACG	GCG	ATA	AGG	GGG	CAG	AGC	GGA	GCT	TCT	GCT	GGA	AAT	CCT	GTT	CCC	TCA	ATC	CG
61	GTGG	GCTC	TGT	GCA	ACT	'ACC	ACC	GTG	GAG	ATG	TCG	CTT	CGT	TTC	GGG	<u>GCC</u>	ACC	TGT	TTG	CT
										М	S	L	R	F	G	A	Т	С	L	L
121	GAGC	TTC	AGT	TTC	CTG	CTC	CTC	ATC	ACT	TCT	TCA	GAC	GGA	CGC	ACT	GGG	CTT	GGA	AAG	GG
_	S	F	S	F	L	L	L	I	Т	S	S	D	G	R	Т	G	L	G	K	G
181	TTTT	'GGA	GAI	CAC	ATT	CAC	TGG	AGG	ACT	CTG	GAA	GAT	GGC	AAG	AAG	GAA	GCA	GCT	GCA	AG
	F	G	D	Н	I	Н	W	R	Т	L	E	D	G	K	K	E	A	A	A	S
241	<u>T</u> GGC	TTG	CCG	CTG	ATG	GTG	ATC	ATC	CAT	AAA	TCT	TGG	TGT	GGA	GCC	TGC.	AAA	<u>.GCT</u>	TTA	AA
	G	L	P	L	М	V	I	I	H	K	S	W	C	G	A	C	K	A	L	K
301	ACCO		TTT	GCA	GAA	TCT	ACA	IGAA	ATT	TCA	GAA	CTG	TCC	CAT	AAT	TTT	GTT	ATG	GTA	AA
0.61	P	K	F	A	E	S	Т	E	I	S	E	L	S	H	N	F	V	M	V	N
361	TCTG	GAG	GAT	GAA	GAG	GAG	CCC	AGG	GAT	GAA	GAC	TTC	AGC	CCT	GAT	GGG	GGT	'I'A'I'	ATC	CC
101	L	E	D	E	E	E	Р	R	D	E	D	F	S	Р	D	G	G	Y	I	P
421	<u>A</u> CGC	CATC	CTT	TTC	TTG	GA'I	ccc	AGT	GGC	AAG	GTG	CGT	CCT	GAA	ATC	<u>ATC</u>	AA'I'	GAG	AGT	GG
101	R	1	L	F.	ட – – – –	D	Р	S	G	K	V	R	Р	E	1	1	N	E	S	G
48L	AAA(: <u>ccc</u>	AGC	TAC	AAG	TAT	TTC	TAC	GTC	AG'I	GCT	GAG	CAA	GTT	GTT	CAA	GGG	A'I'G	AAG	ΞA
E 4 1	N	Р	S	Y	K	Y	E	Y	V	S	A	E	Q	V	V	Q	G	M	K	E
541	<u>A</u> GC'I	CAG	GAG	AGG	CTG	ACG	GGC	GAC	GCC	TTC	AGA	GAG		CAC	TTT	CAG	GAT	GAG	TTG	<u>r</u> G
C 0 1	A	Q	E	K	L	T	G	D	A	F	R	E	K	H	E	Q	D	E	L	~
60I	ACAI	GAA	'TGA	GTG	TTC	TGG	AAG	AAA	AGC	AGC	AGA	IGAG	CGA	ATC	CTA	AAG.	AAT	CAC	CCA	JА
C C 1	1000		700	ana		ר רכ רכי	aa7	maa	mmo			ana	maa	ana	CAC	ama		ama	maa	ъc
001 701	ACCO		AGC					TGC	TTC CCA	CCC	CTA		TGG	CAG	GAG	CTC	CTCA	UCTG	TGG	AG
781	AGGU	,САС тттт	CCT CCT		ААС ТТЛТ	CTG CCN		ТСТ	GGA TCN	JUDU JUDU	AGC TA A	AGC	ССС ЛПС	GCC NNN	CTTC	ТGA ФФФ	СТС		701	JC TTT
841	TGAG		ССТ	GGG	GAT	ממדי	CTC	'СТТ 'СЪТ	GTC	'AGT	יבאבי ערידעי	TGA	GTC	ርጉርጉ የተጥጥ		СЪТ	UA1 TTT		CTA	CTT
901	GTAC	TCA	AGC	TGA	AGT	GAA	ACA	AAC	CAG	AAC	GAT	CTT	TTC	TAT	AGT	GTA	CAA	ATT	GCA	GG
961	AGTI	ACC	AAT	TTT	GAA	AGG	TGG	CAT	TCT	CCT	TTT	GTC	TTG	GTA	ACC	CTC	CTG	GAC	TTC	TС
021	CCGG	AAC	CCC	TGC	GCC	CGC	CCA	CCC	TTT	GCT	CAG	GCA	TCC	CCG	TTT	GCA	CGA	ATG	CGT	GΤ
L081	CAAG	GAAT	GGC	TGT	GCA	CTG	AGA	CAG	CCC	CAA	CTG	GAA	GCA	TGC	TTT	CCC	TGT	TGC	TGT	ΤA
141	GAGA	AAC	TCT	CAA	GTC	TGC	AAA	CCC	TAC	ATG	AAG	CCA	TTT	TGT	CAA	TTC	ACC	AAC	TGT	AT
201	TTTI	GTA	CTG	GGG	TTA	AAA	CAA	ACA	CAA	GAG	ATA	AAA	TAT	GTT	TCA	TTA	AGC	TTT	ATT	AA
261	AACI	TGA	TAA	GGA	AA															

Abb. 42: mRNA- sowie Proteinsequenz von *Txndc12* basierend auf C57BL/6J. Primerpaar 1 (rot umrandet) umfasst die Region inkl. der in NZO enthaltenen Punktmutation, welche zum Austausch von Alanin (rot umkreist) zu Prolin führt. Dabei befindet sich der vorwärts gerichtete Primer auf Exon 1, der rückwärts gerichtete am Übergang von Exon 1 und 2. Der vorwärts gerichtete Primer von Primerpaar 2 (grün umrandet) befindet sich am Übergang von

Exon 3 zu 4 und der rückwärtsgerichtete auf Exon 5. Der vorwärts gerichtete Primer von Primerpaar 3 (blau umrandet) befindet sich am Übergang von Exon 6 zu 7 und der rückwärtsgerichtete auf Exon 7. Modifiziert nach (www.ncbi.nlm.nih.gov, 2018).

Somit konnte das Nukleotid Guanin des vorwärts gerichteten Primers des 1. Primerpaares (Txndc12) aufgrund des im NZO-Stamm vorliegenden Basenaustausches nicht am 3'-Ende der zu amplifizierenden DNA binden.

Als Folge dieses Basenaustausches, welcher eine Punktmutation darstellt und einen Aminosäurenaustausch zur Folge hat, entsteht in den NZO-Tieren ein Prolin anstelle eines Alanins, wie es in B6 als auch in 129P2 der Fall ist (Abb. 43).

NZO	1	MSLRFG <mark>P</mark> TCLLSFSFLLLITSSDG <mark>RTGLGKGFGDHIHWRTLEDGKKEA</mark>	48
129P2	1	MSLRFGATCLLSFSFLLLITSSDGRTGLGKGFGDHIHWRTLEDGKKEA	48
в6	1	MSLRFGATCLLSFSFLLLITSSDGRTGLGKGFGDHIHWRTLEDGKKEA	48

Der betroffene Bereich befindet sich innerhalb des Signalpeptids des Proteins (Abb. 43) und ist in der Sanger SNP-Datenbank als dbSNP rs31935151 erfasst (https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1303, 2018).

Dieser dbSNP rs31935151 wurde in der Genotypisierung der N2-Population verwendet. Die kausalen Phänotypen, welche die signifikanten QTL auf Chromosom 4 hervorbrachten (Abb. 25 und 38), sind für die Chromosomenposition dieses SNP innerhalb des *Txndc12* (108,83 Mb) in den N2-Männchen betrachtet worden (Abb. 44).

Abb. 43: Proteinsequenz von TXNDC12. Veranschaulicht wird die Aminosäureposition der zwischen NZO (NZO/HILtJ), 129P2 (129P2/OlaHsd) und B6 (C57BL/6J) auftretenden Mutation (rot). Das Signalpeptid ist umrandet. Daten aus NCBI GenBank® (https://www.ncbi.nlm.nih.gov, 2018) und SMART (https://smart.embl-heidelberg.de/, 2018).

Abb. 44: Blutglukose, FBG und Lebergewicht der N2 (NZOx129P2)-Männchen an Position rs31935151. (A) Blutglukose der Woche 17, (B) FBG der Lebenswoche 21 und (C) Lebergewicht der Woche 21. FBG=Finale Blutglukose. FBG und Lebergewicht sind nach 6 h fasten ermittelt worden. NZO/NZO (N/N): n=133-134, NZO/129P2 (N/O): n=147-151. Student`s t-Test, ungepaart (***p<0,001).

Aus Abbildung 44 geht hervor, dass an Position 108,83 Mb (rs31935151) die N/O-Allel-Träger eine stark signifikant höhere Blutglukose (Woche 17) (Abb. 44 A), FBG (Abb. 44 B) sowie höheres Lebergewicht (Abb. 44 C) aufwiesen. Dies entspricht den Ergebnissen der vorangegangenen QTL-Analyse (Abb. 25).

3.5.3 Vergleich der Aminosäuresequenz von TXNDC12

In einer im Jahr 2003 erschienenen Studie wurde die Aminoäuresequenz von TXNDC12 zwischen Mensch, Maus, Ratte, *Xenopus laevis* und *C. elegans* verglichen (Alanen *et al.*, 2003). Das Alanin im Signalpeptid ist bei Maus (B6 (C57BL/6J), 129P2 (129P2/OlaHsd)), Mensch, Ratte, *Xenopus laevis* und *C. elegans* evolutionär hoch konserviert (Abb. 45).

Mensch	1	METRPRLGATCLLGFSFLLLVISSDGHNGLGKGFGDHIHWRTLEDGKKEA	50
Maus	1	MSLRFGATCLLSFSFLLLITSSDGRTGLGKGFGDHIHWRTLEDGKKEA	48
Ratte	1	MSLRFGATCLLSFSFLLLITSSDGRTGLGKGFGDHIHWRTLEDGKKEA	48
Xenopus	1	MRYLNAAGLAVLSICFLFLAPVFADTGLGRGFGDHIHWRTLEDGKKEA	48
C.elegans	1	MRSLLLLALVSASAYASFDKIKDSIQNPLARGFGDDIAWVKWEDAIETA	49

Abb. 45: Vergleich der Aminosäuresequenz von TXNDC12 zwischen Mensch, Maus, Ratte, *Xenopus laevis* und *C. elegans*. Die Punktmutation rs31935151 ist grau hinterlegt. Modifiziert nach (Alanen *et al.*, 2003).

3.5.4 Proteinexpression von TXNDC12

Um den beobachteten Unterschied innerhalb der N2-Männchen an Position rs31935151 zu klären, erfolgten im weiteren Schritt Analysen der relativen Proteinexpression. Da angenommen wurde, dass ein Unterschied zwischen NZO- und 129P2-Allelen bestand, sind die Lebergewebe von jeweils 6 21-Wochen alten NZO- und 129P2-Tieren gemäß (2.2.5.1.1) aufbereitet worden. Die Proteinexpressionen sind anschließend über die Western-Blot-Technik (2.2.5.1) analysiert worden (Abb. 46).

Abb. 46: Relative Proteinexpression von TXNDC12 in 21-Wochen alten NZO- und 129P2-Tieren. Die Proteine (20 μg) der Leberlysate wurden über SDS-PAGE aufgetrennt, auf eine Nitrozellulosemembran übertragen und mittels Western-Blot-Technik detektiert. Als Ladekontrolle diente GAPDH. NZO=NZO/HI; 129P2=129P2/OlaHsd. Daten repräsentieren Mittelwerte (±SEM) von 6 Tieren je Mausstamm.

Jedoch konnte die Proteinanalyse keinen Unterschied hinsichtlich der relativen Proteinexpression von TXNDC12 in Lebergeweben 21-Wochen alter NZO- und 129P2-Mäusen liefern (Abb. 46). In beiden Mausstämmen wird TXNDC12 nahezu gleich stark exprimiert.

4. Diskussion

Ziel der vorliegenden Studie war es, im Rahmen des *Collaborative Diabetes Cross*-Projektes (1.6) neue murine Suszeptibilitätsloci (*Quantitative Trait Loci*, QTL) für Adipositas und T2DM zu identifizieren. Zu diesem Zweck erfolgte die Generierung und metabolische Charakterisierung einer Rückkreuzungspopulation (N2), gezüchtet aus der adipösen, T2DM-anfälligen NZO-Mauslinie und dem schlanken, T2DM-resistenten 129P2-Mausstamm. Die N2-Population wurde über einen Zeitraum von 18 Wochen hinsichtlich verschiedener quantitativer Merkmale untersucht und jedes Individuum genomweit für 118 SNP-Positionen genotypisiert. Aus den erhobenen Genotyp- und Phänotyp-Daten wurden daraufhin durch Kopplungsanalysen mehrere quantitative Merkmalsregionen (QTL) auf verschiedenen Chromosomen identifiziert.

Über die letzten Jahrzehnte hat sich die Technik der Identifizierung und funktionellen Charakterisierung neuer Risikogene für metabolische Erkrankungen mithilfe muriner Kopplungsanalysen als sehr erfolgreich herausgestellt. So konnten im Bereich der Adipositas und des T2DM bislang 9 Genvarianten in Mauskreuzungen identifiziert werden: *Sorcs1* (Clee *et al.*, 2006), *Lisch-like* Faktor (Dokmanovic-Chouinard *et al.*, 2008), *Zfp69* (Scherneck *et al.*, 2009), *Ifi202b* (Vogel *et al.*, 2012), *Stxbp51* (Bhatnagar *et al.*, 2011), *Tsc2* (Wang *et al.*, 2012), *Slco1a6* (Tian *et al.*, 2015), *Abcc8* (Andrikopoulos *et al.*, 2016) und *Tbc1d1* (Chadt *et al.*, 2008). Von diesen sind *Zfp69*, *Ifi202b* und *Tbc1d1* in der eigenen Arbeitsgruppe identifiziert worden. Dabei diente häufig der NZO-Mausstamm als Kreuzungspartner, da dieser ein dem humanen metabolischen Syndrom ähnliches Krankheitssyndrom entwickelt.

In der vorliegenden Arbeit wurde ein neuer Suszeptibilitätslocus für Insulinresistenz auf Chromosom 4 *Nir4* (NZO *insulin resistance* Chr. 4) innerhalb der männlichen N2-Tiere identifiziert. Mittels Expressions- und Sequenzanalysen konnten drei potentielle Kandidatengene (*Hdhd3*, *Alad* und *Txndc12*) auf *Nir4*, die im Zusammenhang mit der T2DM-Ausprägung in den männlichen N2-Tieren standen, identifiziert werden.

4.1 Metabolische Charakterisierung der Mauspopulationen

4.1.1 Parental-, F1- und N2 (NZOx129P2)-Population

Mit dem Ziel, neue Suszeptibilitätsloci zu identifizieren, wurden die Parental (NZO und 129P2)-, F1- und N2 (NZOx129P2)-Populationen zunächst umfangreich für

verschiedene T2DM- und Adipositas-assoziierte metabolische Parameter charakterisiert. Um eine frühe Adipositas und progressive Insulinresistenz untersuchen zu können, erhielten die Tiere unmittelbar nach dem Absatz im Alter von 3 Wochen eine Hochfettdiät (*High-Fat Diet* (HFD), 45 % Fett/kcal).

4.1.1.1 Metabolische Charakterisierung der Parental- und F1-Population

Erwartungsgemäß entwickelten die T2DM-resistenten 129P2-Parentaltiere im Vergleich zu den NZO- und den F1-Tieren ein deutlich geringeres Körpergewicht und niedrigere Blutglukosewerte. Beide Parameter korrelierten in der 129P2-Population nicht. Dagegen wurde innerhalb der NZO-Gruppe eine unterschiedliche T2DM-Entwicklung festgestellt. Von den 16 untersuchten NZO-Tieren entwickelten 6 keine Hyperglykämie (<300 mg/dl). Die übrigen 10 NZO-Mäuse bildeten dagegen bereits ab Lebenswoche 6 eine Hyperglykämie aus. Diese erkrankten im weiteren Verlauf an einem schweren T2DM, welcher bei 4 Tieren ab Lebenswoche 14 mit einem Gewichtsverlust einherging (Abb. 11 und Anhang Tab. 4). Ursache dieser Variation der T2DM-Entwicklung innerhalb der NZO-Gruppe war auf eine unterschiedlich stark ausgeprägte Körpergewichtszunahme der einzelnen Tiere zurückzuführen. Eine Aufteilung der NZO-Gruppe in einerseits eine normoglykämische (Blutglukose <300 mg/dl) und andererseits hyperglykämische (Blutglukose >300 mg/dl) Subgruppe zeigte, dass normoglykämische NZO-Tiere im Mittel bereits ab der 5. Lebenswoche durchschnittlich 2 g weniger wogen als die Tiere der hyperglykämischen Subgruppe (31,3 g bzw. 33,0 g) (Anhang Tab. 2). In den heterozygoten F1-Tieren, welche eine Insulinresistenz ausbildeten, korrelierte ein Anstieg der Blutglukose mit einem Anstieg der Körperfettmasse und des Körpergewichtes (Abb. 12 E und F). Der Vergleich der F1-Tiere zu den Parentaltieren lässt folgern, dass 129P2-Allele die Ausbildung eines T2DM in der F1-Population verzögerten. Des Weiteren ist ein ab Lebenswoche 5 um durchschnittlich 2 g auftretender Gewichtsunterschied innerhalb der NZO-Population prädiktiv für eine T2DM-Entstehung.

4.1.1.2 Metabolische Charakterisierung der N2 (NZOx129P2)-Population

Die Charakterisierung der N2-Popluation, welche nach Mendel einen genetischen NZO-Hintergrund von etwa 75 % besitzt, zeigte für die weiblichen Tiere keinen Anstieg der Blutglukose. In allen beobachteten Lebenswochen wiesen diese Tiere trotz der HFD- Intervention normoglykämische Blutglukosewerte (<300 mg/dl) auf. Es wurde postuliert, dass weibliche Tiere durch das Hormon Östrogen vor T2DM geschützt werden (Vogel et al., 2013). Dagegen waren 123 männliche Tiere der N2-Population (insgesamt n=290) hyperglykämisch (Blutglukose >300 mg/dl) und entwickelten eine Insulinresistenz, da die vorliegende Hyperglykämie keinen Gewichtsverlust nach sich zog. Des Weiteren lag keine Hypoinsulinämie vor (Anhang Tab. 10-12). Die übrigen 167 männlichen Tiere besaßen bis zur 21. Lebenswoche normoglykämische Blutglukosewerte. Ein Vergleich der in Lebenswoche 15 normoglykämischen (n=187) und hyperglykämischen (n=103) N2-Männchen zeigte, dass bereits ein in Lebenswoche 7 auftretender Gewichtsunterschied von 1 g (41,1 g bzw. 42,1 g) die Ausbildung eines T2DM bedingte (Anhang Tab. 5). Normoglykämische N2-Männchen besaßen zu diesem Zeitpunkt eine T2DM-Prävalenz von 2,7 %, hyperglykämische N2-Männchen eine von 14,9 % (Anhang Tab. 3). Ähnliches war innerhalb der NZO-Population beobachtet worden. Normoglykämische und hyperglykämische NZO-Tiere wiesen in Lebenswoche 7 einen Unterschied von durchschnittlich 2 g Körpergewicht auf (41,1 g bzw. 42,9 g) (Anhang Tab. 2). Die T2DM-Prävalenz in diesem Lebensalter lag bei den normoglykämischen NZO-Tieren bei 0 %, bei den hyperglykämischen NZO-Tieren bei 50 % (Anhang Tab. 3). Verglichen zu den hyperglykämischen NZO-Tieren verzeichneten die N2-Männchen zu diesem Zeitpunkt eine geringere T2DM-Prävalenz um etwa 35 %. Die normoglykämischen N2- und NZO-Männchen wiesen in selbiger Lebenswoche (Woche 7) ein identisches Körpergewicht auf (durchschnittlich 41 g). Folglich ist in den NZO- und N2-Männchen eine frühzeitige Körpergewichtszunahme (ab Lebenswoche 7 über 41 g) mit einer T2DM-Ausprägung assoziiert. Ursache kann das Vorhandensein eines diabetogenen NZO-Allels sein, welches zu dieser Merkmalsausprägung beiträgt.

Ähnliches wurde auch in einer im Jahr 2000 erschienenen Studie beschrieben (Plum *et al.*, 2000). Hierbei wurde in einem Rückkreuzungsmodell aus NZO- und der schlanken, T2DM-resistenten SJL-Maus ein Gewichtsunterschied von 10 g in Lebenswoche 12 beobachtet, der in den männlichen N2-Tieren als prädiktives Maß für eine später einsetzende T2DM-Entstehung sowie eine Hypoinsulinämie postuliert wurde. In dieser Studie erkrankten jedoch die N2-Tiere, die ein diabetogenes SJL-Allel trugen, an einen manifesten T2DM.

Die hohe Variation der Blutglukosewerte zwischen den einzelnen Individuen, die sowohl in den N2- sowie in den NZO-Männchen in der vorliegenden Doktorarbeit beobachtet wurde, kann neben einem diabetogenen NZO-Allel durch weitere Faktoren bedingt sein. Denkbar wäre, dass die Tiere unterschiedlich auf die hochkalorische Nahrung ansprachen. Kammel und Kollegen zeigten, dass genetisch identische C57BL/6J-Tiere ein unterschiedliches Körpergewicht auf einer HFD entwickelten. Als mögliche Ursachen wurden epigenetische Veränderungen im *Igfbp2*-Gen vermutet (Kammel *et al.*, 2016). Eine weitere Studie beschrieb, dass in Mäusen eine ernährungsbedingte Fettleibigkeit sowie T2DM epigenetisch vererbt werden (Huypens *et al.*, 2016). Diese Erkenntnisse führen zu der Annahme, dass epigenetische Ursachen der ernährungsbedingten Gewichtszunahme und der T2DM-Entstehung in den NZOund N2-Männchen der vorliegenden Studie zugrunde lagen.

Im Gegensatz zu den Blutglukosewerten zeigten die N2-Männchen kaum Streuung im Körpergewicht. Entgegen der Beobachtungen innerhalb der NZO-Tiere, wiesen die männlichen N2-Tiere ein höheres Gewicht ohne Gewichtsverlust auf (Lebenswoche 20: NZO: 62,2 g bzw. N2-Männchen 72,5 g) (Tab. 16 und 17). Dabei ging die Gewichtszunahme, bedingt durch die Zunahme des Körperfettanteils, mit einer Zunahme der Blutglukose einher (Abb. 16). Dies kann als Anzeichen einer Störung der Glukoseaufnahme in verschiedene periphere Gewebe, wie das Fett-, Leber- oder Muskelgewebe, interpretiert werden und repräsentiert einen insulinresistenten Phänotyp. Da der Parentalstamm 129P2 als Diabetes-resistent beschrieben ist (Clee & Attie, 2007), lassen die Vergleiche zwischen den männlichen N2- und den NZO-Tieren vermuten, dass die männlichen N2-Tiere aufgrund von protektiven 129P2-Allelen vor einen manifesten T2DM geschützt sind. Ein Vorliegen eines diabetogenen NZO-Allels und mögliche epigenetische Ursachen führten zu einer frühzeitigen Adipositas, die mit einer peripheren Insulinresistenz in den N2-Männchen assoziiert war.

4.2 Kopplungsanalyse

Um die Genorte zu identifizieren, die mit der Ausprägung der in der N2-Population erhobenen quantitativen Merkmale assoziiert sind, erfolgten *in silico* QTL-Analysen mithilfe der R/qtl-Software. Die Zuordnung der Genorte fand über Genotyp-Phänotyp-Korrelationen statt. Liegt eine signifikante Kopplung auf einem bestimmten Locus vor, kann diese den größten Teil der Varianz innerhalb einer Population erklären. Die männliche N2-Population wies einen hohen Grad an Variation zwischen den Blutglukosewerten der einzelnen Tiere auf (Blutglukose 100 bis 600 mg/dl) (Abb. 13 A). Daher wurde für dieses Merkmal eine signifikante Kopplung mit einer quantitativen Merkmalsregion erwartet.

QTL-Analysen können Aufschluss darüber geben, ob phänotypische Unterschiede von wenigen Loci mit größeren Effekten oder mehreren Loci mit kleineren Effekten beeinflusst wurden. Bekannt ist, dass verschiedene QTL miteinander interagieren können. Beispielsweise zeigten Plum und Kollegen, dass der T2DM-QTL Nidd/SJL (Chromosom 4) mit dem Adipositas-QTL Nob1 (Chromosom 5) interagiert. Dieses Zusammenspiel aus T2DM- und Adipositas-Genen ("Diabesity") führte zu einer Verstärkung der diabetogenen Wirkung des Nidd/SJL-Locus auf einem NZO-Hintergrund (Plum et al., 2002). In der vorliegenden Arbeit ist die Berechnung der QTL über Single-QTL genome scans durch die Intervallkartierungsmethode (Interval Mapping) mit dem EM-Algorithmus erfolgt. Die über Single-QTL genome scans durchgeführte QTL-Analyse beruht auf der Annahme, dass die gesamte Varianz der Phänotypen in der Population von einem Locus abhängt. Logarithm of the Odds (LOD)score-Analysen sowie ein Permutationstest gaben Aufschluss über vorliegende signifikante Kopplungen. Liegt ein LOD-score über 3 vor, kann von einer signifikanten Kopplung ausgegangen werden, wodurch auf das Vorhandensein eines QTL geschlossen werden kann (Nyholt, 2000).

4.2.1 Identifizierung von Suszeptibilitätsloci auf Chromosom 2 und 4

Insgesamt wurden die stärksten signifikanten Korrelationen zwischen Phänotypen und Genotypen auf Chromosom 2 (Körpergewicht, Magermasse und Körperlänge) und 4 (Blutglukose der Woche 17, Finale Blutglukose (FBG, nach 6 h fasten) und Lebergewicht) in der männlichen N2-Population identifiziert (Abb. 19 und 20). Erwartungsgemäß wurde eine signifikante Kopplung für das Merkmal Blutglukose errechnet, da sich für dieses Merkmal ein sehr hoher Grad an Variation zwischen den Individuen der männlichen N2-Generation zeigte. Auffällig war, dass alle auf Chromosom 4 identifizierten QTL mit quantitativen Merkmalen assoziiert waren, die in Zusammenhang mit einem insulinresistenten Phänotyp stehen. Folglich wurde diese Region als *Nir4* (NZO *insulin resistance* Chr. 4) bezeichnet. Da der auf Chromosom 4 identifizierten QTL wird and Chromosom 2 identifizierten Locus den größten Teil der phänotypischen Varianz der N2-Männchen erklärt, wurde dieser im Rahmen der vorliegenden Arbeit näher analysiert.

4.2.2 Der Suszeptibilitätslocus Nir4 auf Chromosom 4

Auf Chromosom 4 wurden in der Vergangenheit bereits mehrere QTL für T2DM identifiziert (Abb. 27). Dabei sind neben dem unter 4.2 erwähnten Nidd/SJL-Locus (99,80-146,64 Mb) (Plum, 2000) 7 weitere in näherer Umgebung zu Nir4 (58,07-115,98 Mb) beschrieben: D4Mit15 (45,68-129,07 Mb) (Kayo et al., 2000), D4Mit203 (105,06–144,74 Mb) (Togawa et al., 2006), D4Mit203 (109,17-148,85 Mb) (Hirayama et al., 1999), D4Mit166 (73,43-113,11 Mb) (Suto & Sekikawa, 2002), Insq1 (106,68-144,40 Mb) (Brockmann et al., 2000), Nidd1/24 (79-109,18 Mb) und Nidd1/36 (79-109,18 Mb) (Leiter et al., 1998). Davon sind D4Mit203 und Nidd1/36 mit dem Merkmal Glukose assoziiert (Abb. 27). D4Mit203 wurde innerhalb einer C57BL/KsJxDBA/2-Kreuzung ermittelt, wogegen Nidd1/36 in einer Kreuzungsstudie mit NZO als Kreuzungspartner identifiziert wurde. Wie der Nidd/SJL-Locus ist auch der Nidd1/36-Locus mit einer Hyperglykämie, einer Hypoinsulinämie und einer Reduktion des Körpergewichtes assoziiert, ein metabolisches Profil, das einen manifesten T2DM repräsentiert. Jedoch spiegelt keiner der bereits zuvor identifizierten QTL das dem Nir4-Locus zugrundeliegende Krankheitsbild wider, da dieser sich weder durch eine Gewichtsreduktion noch durch eine Hypoinsulinämie der N2-Männchen auszeichnete (Tab. 17 und Anhang Tab. 10-12).

Eine Gegenüberstellung der ermittelten QTL für Blutglukose (Woche 17), FBG und Lebergewicht ließ 3 *Peak*-Regionen innerhalb des *Nir4* erkennen (1. *Peak*-Region bei 58,07 Mb (27,5 cM), 2. *Peak*-Region bei 97,25 Mb (41,37 cM) und 3. *Peak*-Region bei 115,98 Mb (48,72 cM)). Es wurde angenommen, dass jede Region signifikant mit mindestens einem quantitativen Merkmal assoziiert war und folglich mehrere Gene für die Ausprägung der Insulinresistenz in den N2-Männchen verantwortlich sind.

Entgegen der Erwartungen entwickelten die homozygoten Allel-Träger, welche an den relevanten *Peak*-Positionen auf *Nir4* NZO/NZO (N/N)-Allele aufwiesen, weder eine Hyperglykämie noch ein erhöhtes Lebergewicht. Stattdessen wiesen die heterozygoten Allel-Träger (NZO/129P2 (N/O)) eine höhere Blutglukose (Woche 17), FBG sowie ein höheres Lebergewicht auf (Abb. 24). Dies lässt den Schluss zu, dass 129P2-Allele, entgegen der zuvor erhobenen Annahme (4.1.1.2), für die Insulinresistenz in den N/O-Allel-Trägern der N2-Männchen verantwortlich waren. Ähnliches wurde für die diabetogene Wirkung des *Nidd/SJL*- und *Nidd1*-Locus ermittelt. Hierbei waren es diabetogene Varianten des schlanken SJL- bzw. NON-Stammes, welche einen T2DM

auf einem adipösen NZO-Hintergrund bewirkten. Dies unterstützt die Hypothese, dass dem *Nir4*-Locus ebenfalls diabetogene Allele des 129P2-Stammes zugrunde lagen.

Jedoch stellt sich gleichzeitig die Frage, warum die N/N-Allel-Träger des Nir4-Locus vor einem T2DM geschützt waren. Ein Vergleich aus den Studien von Plum und Kollegen (Plum et al., 2000) und Scherneck und Kollegen (Scherneck et al., 2009) lässt eine mögliche Hypothese zu. Plum und Kollegen identifizierten den Nidd/SJL-Locus auf Chromosom 4, welcher einer Rückkreuzung aus NZO- und schlanken, T2DMresistenten SJL-Mäusen entstammte. Die ermittelte Peak-Position lag bei 114,55 Mb, welche sich in unmittelbarer Nähe zu der 3. Peak-Region des in der vorliegenden Arbeit beschriebenen Nir4 befindet (115,98 Mb, SNP-Marker rs4224727). Wie in der Arbeit von Plum und Kollegen waren auch in der vorliegenden Studie ausschließlich männliche Nachkommen von der Entstehung eines T2DM betroffen. Jedoch unterscheiden sich Nidd/SJL und Nir4 im Hinblick auf die T2DM-Erkrankung. So erkrankten die NZO/SJL-Allel-Träger des Nidd/SJL-Locus an einen manifesten T2DM, welcher mit einer Hypoinsulinämie und einer Gewichtsreduktion einherging. Dagegen wiesen die NZO/129P2-Allel-Träger des Nir4-Locus eine Hyperglykämie auf, die keinen Gewichtsverlust zur Folge hatte. Sowohl in der vorliegenden Studie als auch in der Studie von Plum und Kollegen entwickelten nicht die homozygoten (NZO/NZO)-, sondern die heterozygoten (NZO/129P2 bzw. NZO/SJL)-Allel-Träger einen T2DM. Demzufolge verursachten Allele des schlanken Mausstammes auf einem adipösen NZO-Hintergrund die Ausbildung eines T2DM. Scherneck und Kollegen gelang es, die Ursache im Zfp69-Gen, welches sich auf dem Nidd/SJL-Locus auf Chromosom 4 (120,93 Mb) befindet, zu detektieren. Hierbei lag eine funktionslose Form des Gens im NZO-Stamm vor. Im schlanken, T2DM-resistenten SJL-Stamm hingegen wurde das funktionsfähige Gen identifiziert. Es wurde postuliert, dass die funktionsfähige Zfp69-Variante auf einem adipösen NZO-Hintergrund (gain of function) die diabetogene Wirkung des Nidd/SJL-Locus verursacht, wohingegen die funktionslose NZO-Variante protektiv wirkt (Scherneck et al., 2009).

Es kann postuliert werden, dass dem diabetogenen Effekt des *Nir4*-Locus ebenfalls eine Genvariante des schlanken, T2DM-resistenten 129P2-Stammes zugrunde liegt. Eine mögliche *loss of function* Variante im NZO-Stamm könnte die N/N-Allel-Träger vor der Entwicklung eines T2DM schützen. Um dieser Hypothese nachzugehen, erfolgten zunächst Expressionsstudien von Genen, die in und um den Bereich von *Nir4* lokalisiert sind.

4.3 Expressionsanalysen

Um die ursächlichen Gene des QTL zu identifizieren, sind verschiedene experimentelle Ansätze möglich. So kann ein QTL, welcher meist mehrere hundert Gene abdeckt, mithilfe von rekombinant-kongenen Mauslinien (*recombinat congenic strains*, RCS) oder Haplotypenkartierung näher eingegrenzt werden. Dabei stellen Haplotypen eine spezielle Allel-Kombination gekoppelter Gene dar. Die Ermittlung identischer, herkunftsgleicher Allele (*identity by descent*, IBD) kann dabei helfen, den Suchrahmen möglicher Kandidatengene einzugrenzen (Browning & Browning, 2011). Da diese Bereiche keine Variation im Phänotyp in einer Auskreuzungspopulation auslösen können, werden Gene, die sich innerhalb der IBD-Regionen befinden, ausgeschlossen.

Des Weiteren helfen Expressions- sowie Sequenzanalysen signifikante Unterschiede zwischen den Parentalstämmen auf mRNA- oder genomischer Ebene in einem relativ kurzen Zeitraum aufzudecken. Viele bisherigen Suszeptibilitätsgene wurden erfolgreich über Expressionsanalysen (qPCR, Microarray) (Becker et al., 2004; Dreja et al., 2010; Scherneck et al., 2009; Vogel et al., 2012) identifiziert. Expressionsanalysen bieten einen großen Vorteil. So ist es parallel zur QTL-Analyse möglich, die Parentalgenerationen genomweit für eine Vielzahl von Genen auf Expressionsunterschiede hin mittels der Microarray-Analyse zu untersuchen. Anschließend können die identifizierten QTL mit den Expressionsraten der dort lokalisierten Gene abgeglichen werden. Dies schränkt in einer relativ kurzen Zeitspanne den Suchrahmen möglicher Kandidatengene ein. Jedoch ist dies mit einem hohen Kostenaufwand verbunden. Des Weiteren ist nicht gewährleitet, dass eine veränderte mRNA-Expression Ursache für eine Erkrankung ist. So kann eine durch einen Aminosäureaustausch veränderte Enzymaktivität ebenfalls einer Krankheit unterliegen. Dabei können z.B. Fehler in der Translation zu einem fehlgefalteten Protein führen. Fehlgefaltete Proteine können einerseits in der Zelle angelagert werden und dort einen oxidativen Stress auslösen. Andererseits können diese über die Proteasomen im Zytosol degradiert werden, was einen Funktionsverlust nach sich zieht. Mukherjee und Kollegen zeigten, dass ein T2DM möglicherweise im Zusammenhang mit dem fehlgefalteten Protein Amylin steht (Mukherjee et al., 2015).

4.3.1 Expressionsanalysen mittels *Microarray*-Technik

In der vorliegenden Arbeit wurden mithilfe einer Microarray-Analyse insgesamt 21.406 Gene in 4 verschiedenen Geweben (SMq, Leber. gWAT, BAT) auf Expressionsunterschiede zwischen 6-Wochen alten NZO- und 129P2-Parentalstämmen hin analysiert. Für diese Gene lagen bereits Informationen zur mRNA-Sequenz oder Genkonservierung vor (https://www.ensembl.org/, 2018). Dieser Experimentalansatz sollte die spätere funktionelle Charakterisierung der identifizierten Kandidatengene erleichtern.

Aufgrund ihrer direkten Assoziation zur T2DM-Entstehung wurden die Gewebe Leber, SMq, gWAT und BAT für die *Microarray*-Analyse verwendet. Für den *Nir4*-Locus (58,07–115,98 Mb) wurde ein umfassender Suchrahmen von 40-117 Mb festgelegt, welcher 561 der analysierten Gene enthielt. Von diesen zeigten insgesamt 166 Gene eine differentielle Expression, 35 davon einen signifikanten Expressionsunterschied zwischen dem NZO- und 129P2-Stamm auf. Somit war es bereits anhand der *Microarray*-Analyse möglich, die Anzahl an möglichen Kandidatengenen stark zu reduzieren.

4.3.2 Eingrenzung des Nir4-Locus mittels qRT-PCR

Die verbliebenen 35 Gene, welche in der *Microarray*-Analyse einen signifikanten Expressionsunterschied zwischen NZO- und 129P2-Parentaltieren am *Nir4*-Locus aufwiesen, wurden anschließend über qRT-PCR-Analysen im Hinblick auf mögliche Expressionsunterschiede in den 21-Wochen alten Parentaltieren analysiert. Da die männlichen N2-Tiere erst ab einem durchschnittlichen Lebensalter von 15-Wochen einen T2DM entwickelten, wurden für die qRT-PCR-Untersuchung die Gewebe (Leber, SMq, gWAT und BAT) der 21-Wochen alten Parentaltiere verwendet. Zusätzlich zu den im *Microarray* als signifikant differentiell exprimiert identifizierten Genen, wurde die Genexpression von 9 weiteren Genen mittels qRT-PCR-Analyse bestimmt, welche in bzw. umliegend der *Peak*-Regionen von *Nir4* lokalisiert waren. Von den insgesamt 44 überprüften Genen (Tab. 19) konnten 31 Gene, die eine signifikante differentielle Expression zwischen den 21-Wochen alten 129P2- und NZO-Mäusen aufwiesen, als mögliche Kandidaten eingegrenzt werden (Tab. 20 und 21). Um die Frage zu klären, welches dieser Kandidatengene für die Insulinresistenz in den N/O-Allel-Trägern verantwortlich war, wurde zunächst von der Annahme ausgegangen, dass ein möglichst

großer und signifikanter Expressionsunterschied der entsprechenden Gene zwischen den N/O- und N/N-Allel-Trägern vorliegen sollte. Infolgedessen wurden die Gewebe Leber, gWAT und SMq der 290 männlichen N2-Tiere für jene Gene, die in den Parentaltieren eine stark signifikante differentielle Expression (*p*-Wert<0,01) aufwiesen, via qRT-PCR-Analysen untersucht. So konnten jeweils 2 Kandidatengene in der Leber (*Hdhd3* und *Alad*) als auch im SMq (*Galt* und *Alad*) und 4 Gene im gWAT (*Hdhd3*, *Alad*, *Ptplad2* und *Leprot*) ermittelt werden, die allesamt signifikante Expressionsunterschiede in den N2-Männchen aufwiesen. Somit ist es gelungen, durch eine Kombination aus *Microarray*- und qRT-PCR-Analysen innerhalb eines relativ kurzen Zeitraums den Suchbereich von 561 Genen (Abb. 28) auf 5 Kandidatengene (*Galt*, *Hdhd3*, *Alad*, *Ptplad2* und *Leprot*) einzugrenzen, welche mit hoher Wahrscheinlichkeit mit der diabetogenen Wirkung des *Nir4*-Locus in Zusammenhang stehen.

4.4 Expressions-QTL (eQTL)-Analyse

eQTL-Analysen dienten der Klärung, ob genetische Regulatoren des Nir4-Locus den insulinresistenten Phänotyp der N/O-Allel-Träger der N2-Männchen bedingten. In Eukaryoten wird die Anhäufung eines mRNA-Transkripts entweder lokal an der genomischen Position des untersuchten Gens durch cis-regulatorische Elemente oder jenseits durch trans-regulatorische Elemente (in der Regel auf einem anderen Chromosom) oder eine Kombination aus beiden kontrolliert (Lan et al., 2004). Dabei stellen cis-wirkende Elemente regulatorische Sequenzmotive in den Promotoren der Gene dar, die in unmittelbarer Nähe zum Gen liegen und einen Einfluss auf dessen Transkriptionshäufigkeit besitzen. Dagegen sind trans-regulatorisch Elemente regulatorische Sequenzmotive von Transkriptionsfaktoren oder RNA-Bindeproteinen, die entfernt vom Zielgen liegen. eQTL-Analysen liefern einen Hinweis auf die Kausalität der Gen-Phänotyp-Wirkung. So kann davon ausgegangen werden, dass das Protein mit dem Phänotyp korreliert, wenn die kausale Genvariante (SNP-Marker) mit dem Phänotyp (QTL) und der Genexpression (eQTL) korreliert (Mendelsche Randomisierung). Mithilfe von eQTL-Analysen konnten bereits in vorherigen Studien einige genetisch-regulierte mRNA-Transkripte in Geweben wie Leber, Muskel und Fett identifiziert werden (Ponsuksili et al., 2017). Jedoch gibt ein identifizierter eQTL lediglich Aufschluss darüber, ob eine vorliegende Varianz hinsichtlich der

Genexpression mit dem Locus assoziiert ist (Jiang & Liu, 2015). Dies klärt nicht die Frage, weshalb an diesem Locus eine unterschiedliche Genexpression vorliegt.

So können diverse Faktoren, wie beispielsweise DNA-Polymorphismen, in den regulatorischen Elementen die Expressionsrate eines Gens beeinflussen (Huang *et al.*, 2009). Aber auch eine höhere mRNA-Stabilität kann zu einer höheren gemessenen Expressionsrate führen. Infolge der Vielseitigkeit der Genregulation können dem eQTL *cis-* oder *trans*-regulierende Elemente unterliegen. In eQTL-Analysen humaner Studien lagen am häufigsten *cis-*wirkende Regulatoren, in murinen Studien dagegen *trans*-wirkende Regulatoren vor. Ursachen werden hinsichtlich der unterschiedlichen Probengröße diskutiert. Jedoch wird den *cis-*eQTL eine größere Bedeutung zugesprochen. So besaßen die *trans*-wirkenden Regulatoren lediglich einen kleineren Effekt auf die Genexpression benachbarter Gene trugen, wie etwa im Fall des humanen Suszeptibilitätsgens *ORMDL3* (Cheung *et al.*, 2010; Hubner *et al.*, 2005). Zusätzlich sollten Korrelationsanalysen nach Spearman Aufschluss darüber liefern, ob die Genexpression der möglichen Kandidatengene (*Galt, Hdhd3, Alad, Ptplad2* und *Leprot*) mit den in der N2-Population erhobenen Parametern Blutglukose (Woche 17),

FBG und Lebergewicht in Zusammenhang stand.

4.4.1 Identifikation der T2DM- Suszeptibilitätsgene Hdhd3 und Alad

In der vorliegenden Arbeit führten die eQTL-Analysen zur Identifizierung von *cis*eQTL für die beiden im gWAT der N2-Männchen differentiell exprimierten Gene *Hdhd3* und *Alad*. Die im gWAT der N/O-Allel-Träger festgestellte reduzierte Genexpression von *Hdhd3* und *Alad* war mit *cis*-wirkenden Elementen des *Nir4*-Locus assoziiert. Des Weiteren korrelierte die Genexpression beider Gene in den männlichen N2-Tieren negativ mit denen dem *Nir4*-Locus assoziierten Phänotypen. So standen die in den N2-Männchen ermittelten geringen Genexpressionen von *Hdhd3* und *Alad* in Zusammenhang mit einer erhöhten Blutglukose (Woche 17) und FBG. Die geringe Genexpression von *Alad* war zudem mit einem höheren Lebergewicht assoziiert.

Es ist bekannt, dass ein heterozygoter, *cis*-wirkender Polymorphismus allelspezifische Ursachen besitzt (Babak *et al.*, 2010). Insofern können vorliegende SNPs in den *cis*-wirkenden Elementen mit der Insulinresistenz in den N/O-Allel-Trägern assoziiert sein. Da eine verringerte Genexpression für *Hdhd3* und *Alad* festgestellt wurde, kann

angenommen werden, dass diese Polymorphismen den Promotor, welcher die Genexpression reguliert, betrafen. Hierbei können die *cis*-wirkenden Elemente zu einer Hemmung der Transkription (*"Silencer"*) geführt haben. Aufgrund ihrer direkten Nachbarschaft zueinander (*Hdhd3* 62,50 Mb, *Alad* 62,51 Mb) und der Tatsache, dass beide Gene innerhalb der 1. *Peak*-Region (58,07 Mb) lokalisiert sind, ist es denkbar, dass eine Gen-Gen-Interaktion zwischen beiden vorlag. Gen-Gen-Interaktionen sind bereits für QTL beschrieben bzw. postuliert worden (Moreno *et al.*, 2007; Tsaih *et al.*, 2014).

Hdhd3 wurde in Leber und gWAT, *Alad* in Leber, SMq und gWAT innerhalb der N2-Männchen signifikant differentiell exprimiert. In allen Fällen lag eine Hochregulierung in den N/N-Allel-Trägern vor. Jedoch stand ausschließlich die im gWAT ermittelte Genexpression mit dem *Nir4*-Locus in Form eines *cis*-eQTL im Zusammenhang (Tab. 22) . Denkbar wäre, dass hierbei ein Zusammenwirken von *Hdhd3* und *Alad* mit dem Hormon Leptin und dem Gen *Lepr*, welches ebenfalls auf Chromosom 4 (101,72 Mb) lokalisiert ist und für den Leptinrezeptor codiert, stattfand. Zum einen wird das Hormon Leptin, welches im Hypothalamus das Appetitverhalten über den Leptinrezeptor steuert, vom weißen Fettgewebe synthetisiert. Zum anderen liegt in NZO-Mäusen eine Leptinresistenz vor, welche mit einer Hyperphagie und Adipositas einhergeht. Jedoch entwickelten statt der N/N-Allel-Träger die N/O-Allel-Träger einem T2DM.

Aus der Literatur ist bekannt, dass Menschen, die an einem T2DM erkrankt waren, geringere Aktivitäten von *Alad* aufwiesen (Bonfanti *et al.*, 2011). Eine im Jahr 1978 erschienene Studie diabetischer Ratten stellte eine geringe Aktivität des Enzyms Hydrolase fest (Wolinsky *et al.*, 1978), welches in Beziehung zu *Hdhd3* stehen könnte. Demzufolge kann ein kausaler Zusammenhang zwischen *Hdhd3* und *Alad* und der Insulinresistenz der männlichen N/O-Allel-Träger der N2-Population vorliegen. Folglich können *Hdhd3* und *Alad* als potentielle T2DM-Suszeptibilitätsgene postuliert werden.

In der vorliegenden Doktorarbeit wurden reduzierte Genexpressionen von *Hdhd3* und *Alad* im gWAT festgestellt, welche einer starken Kontrolle durch den *Nir4*-Locus unterlagen und mit einem Anstieg der Blutglukose (Woche 17) und FBG in den N2-Männnchen korrelierten. Zudem war eine geringe Genexpression von *Alad* mit einer Zunahme des Lebergewichtes assoziiert. Denkbar wäre, dass Mutationen in den *cis*-wirkenden Elementen der Gene zu dem diabetogenen Effekt des *Nir4*-Locus führten. Da

Hdhd3 und *Alad* einen ähnlich starken Zusammenhang zum *Nir4*-Locus aufwiesen, kann eine Gen-Gen-Interaktion zu einer Verstärkung der Hyperglykämie und folglich zur Insulinresistenz in den N/O-Allel-Trägern beigetragen haben. Weiterhin ist es denkbar, dass *Hdhd3* und *Alad* des 129P2-Stammes auf einem hyperphagen NZO-Hintergrund einen diabetogenen Einfluss besaßen. Welche Mutationen und Wirkungsmechanismen beiden Genen unterliegen, die einen T2DM in den N/O-Allel-Trägern begünstigten, soll in zukünftigen Studien analysiert werden. Denkbar wären hierbei funktionelle Analysen, die die Frage klären, ob eine geringe Genexpression von *Hdhd3* und *Alad* mit einer Störung der Glukoseaufnahme in Fettzellen (z.B. 3T3-L1-Zellen) assoziiert ist.

Nachfolgend werden die Gene Hdhd3 und Alad näher beschrieben.

4.4.1.1 Haloacid dehalogenase-like hydrolase domain-containing protein 3 (Hdhd3) Das Gen Haloacid dehalogenase-like hydrolase domain-containing protein 3 (Hdhd3) gehört zu der Superfamilie der Halosäure-Dehalogenase-ähnlichen (HAD) Hydrolasen. Vertreter dieser großen Familie besitzen am häufigsten Funktionen als Phosphatasen und ATPasen (Allen & Dunaway-Mariano, 2009; Burroughs *et al.*, 2006). Dabei haben einige Phosphatasen eine hohe Phosphatase-Aktivität zu Zuckerphosphaten, wie Fruktose-6-Phosphat und Glukose-6-Phosphat, inne (Kuznetsova *et al.*, 2005). Es wurde postuliert, dass *Hdhd3* für ein Protein kodiert, das als Hydrolase wirken kann. Hydrolasen sind in der Lage Ester, Ether, Peptide, Glykoside, Säureanhydride oder C-C-Bindungen zu spalten. In diabetischen Ratten wurde eine reduzierte Hydrolase-Aktivität festgestellt (Wolinsky *et al.*, 1978). Sollte *Hdhd3* tatsächlich über eine Hydrolase-Aktivität und folglich mit einem T2DM in Zusammenhang stehen.

4.4.1.2 Delta-Aminolävulinsäure-Dehydratase (Alad)

Das Enzym delta-Aminolävulinsäure-Dehydratase (*Alad*) katalysiert den zweiten Schritt in der Porphyrin- und Hämbiosynthese. Hierbei entsteht Porphobilinogen, eine Vorstufe des roten Blutfarbstoffes Häm. Die Synthese erfolgt dabei im Knochenmark und der Leber. Im Menschen konnte eine Mutation im *Alad*-Gen nachgewiesen werden, die einen Mangel an *Alad* zur Folge hat und eine Porphyrie auslöst (Jaffe & Stith, 2007). Dies stellt eine Stoffwechselerkrankung dar, die mit einer Störung des Häms einhergeht. Dabei sammeln sich die Porphyrine, wie Porphobilinogen, in der Leber an, was zu einer Leberentzündung führen kann. Die hierbei auftretenden Symptome wie Fettleber sowie Hypertonie sind auch auftretende Symptome innerhalb einer T2DM-Erkrankung. Jedoch führt die Gabe von Glukose in den an Porphyrie erkrankten Patienten zu einer Linderung. Insofern wurde in einer vorherigen Studie diskutiert, ob ein vorliegender T2DM ein Vorteil für die an Porphyrie erkrankten Patienten sein könnte (Andersson *et al.*, 1999). Eine 2011 erschienene Studie zeigte, dass eine verminderte Aktivität von *Alad* in T2DM-Patienten beobachtet wurde (Bonfanti *et al.*, 2011). Folglich begünstigt ein Mangel an *Alad* mehrere Stoffwechselerkrankungen wie Porphyrie und T2DM. Dieses wurde ebenfalls im Rahmen der vorliegenden Doktorarbeit festgestellt.

4.5 Identifizierung des Suszeptibilitätsgens Txndc12

Durch Expressionsanalysen der 21-Wochen alten Parentaltiere konnte *Txndc12* als potentieller Kandidat für die durch den *Nir4*-Locus vermittelte Insulinresistenz ermittelt werden. Zufällig befand sich das Nucleotid Guanin am 3'-OH-Ende des qRT-PCR Primers (Primer 1). Exakt an dieser Position liegt in dem NZO-Stamm ein SNP vor (Abb. 41). An dieser Stelle wird Guanin durch Cytosin ersetzt, was zu einer Punktmutation (Ala7Pro) im Signalpeptid von TXNDC12 bei der NZO-Maus führt. Das Alanin im Signalpeptid von TXNDC12 ist über mehrere Spezies (Menschen, Ratte, *Xenopus laevis* und *C. elegans*) evolutionär hoch konserviert (Abb. 45) und daher vermutlich funktionell von Bedeutung.

Dieser SNP im *Nir4*-Locus wurde ebenfalls zur Genotypisierung der N2-Population genutzt (rs31935151, 108,83 Mb) und zeigte eine hohe Assoziation des Genotyps mit Blutglukose (Woche 17), FBG und Lebergewicht (Abb. 41).

Txndc12 (108,83 Mb) ist in der 3. *Peak*-Region (115,98 Mb) von *Nir4* auf Chromosom 4 lokalisiert. Folglich kann postuliert werden, dass *Txndc12* als potentielles Risikogen zur T2DM-Entstehung in den N/O-Allel-Trägern der N2-Männchen beitrug (Abb. 44). Jedoch lag keine signifikant differentielle mRNA-Expression von *Txndc12* zwischen den 21-Wochen alten NZO- und 129P2-Tieren vor (Abb. 40). Da die Punktmutation der NZO-Variante das Signalpeptid betrifft, wäre folgendes Szenario denkbar: Das N-terminale Signalpeptid des TXNDC12 konnte aufgrund der Punktmutation nicht vom Signal-Erkennungs-Partikel (*signal recognition particle*, SRP), einem zytosolischen

Ribonukleoprotein, erkannt werden und verblieb im Zytosol. Dies hatte zur Folge, dass die TXNDC12-Variante der NZO-Maus nicht zum ER transportiert wurde, wo die Faltung und Reifung von Proteinen stattfindet (Jeong *et al.*, 2008). Folglich könnten die N/N-Allel-Träger aufgrund einer verringerten Proteinsynthese von TXNDC12 vor T2DM geschützt worden sein. Es ist bekannt, dass Punktmutationen im Signalpeptid mit einem T2DM in Verbindung stehen können. So zeigte eine im Jahr 2012 erschienene Studie, dass Mutationen im Signalpeptid des humanen POMC-Gens die Reifung des Proteins im ER verhinderten, was eine Auswirkung auf die T2DM-Entstehung hatte (Mencarelli *et al.*, 2012). Um die Bedeutung der Mutation im Signalpeptid von TXNDC12 zu klären, wurden im weiteren Verlauf die Proteinsequenz sowie die Proteinexpression von TXNDC12 analysiert.

4.5.1 Das Protein TXNDC12

Das Thioredoxin-Domäne-enthaltene Protein 12, kurz TXNDC12, besitzt mehrere Namensbezeichnungen, welche entsprechend der betrachteten molekularen Masse gewählt wurden. So z.B. Endoplasmatisches Retikulum (<u>ER</u>)-ansässiges <u>Protein von 19</u> kDA (ERp19), ERp18, ERp16 (Jeong *et al.*, 2008) und *human thioredoxin-like protein* 19 kDa (hTLP19) (Liu *et al.*, 2003). Jeong und Kollegen bezeichneten dieses aufgrund der molekularen Masse der ausgereiften Form des humanen Proteins als ERp16, wobei die Bezeichnungen ERp18 und 19 entsprechend der molekularen Masse des Vorläufer-Proteins ausgewählt wurden (Jeong *et al.*, 2008).

In der Literatur sind bisher protektive Funktionen für TXNDC12 beschrieben worden. So wurde postuliert, dass TXNDC12 als Antioxidans und als Inhibitor der durch ER-Stress induzierten Apoptose wirken kann.

In der KEGG-Signalweg-Analyse ist das humane TXNDC12 mit dem Glutathion-Signalweg assoziiert. Glutathion (GSH) ist das am häufigsten in Pflanzen und Tieren vorkommende Thiol, welches als Tripeptid vorliegt und aus den Aminosäuren L-Cystein, L-Glutamat und Glycin aufgebaut ist (Sies, 1999). Jede Zelle besitzt die Fähigkeit, GSH zu synthetisieren, dennoch ist dessen Synthese in der Leber essentiell. Chen und Kollegen zeigten in einer 2007 erschienenen Studie, dass Mäuse, in denen die GSH-Synthese in der Leber aufgrund eines gezielten *knockouts* nicht erfolgte, innerhalb eines Monats an Leberversagen starben (Chen *et al.*, 2007). Es wird postuliert, dass TXNDC12 als Protein-Disulfid-Reduktase, welche zur Familie der Oxidoreduktasen gehört, die katalytische Aktivität besitzt, GSH zu GSH-Disulfid zu oxidieren (GSSG) (https://www.uniprot.org/uniprot/Q9CQU0, 2018). Diese Reaktion ist reversibel (Abb. 47), weshalb TXNDC12 aus dem oxidierten GSSG wieder reduziertes GSH herstellen kann.

2 GSH + Protein-Disulfid = GSH-Disulfid + Protein-Dithiol

Abb. 47: Redoxreaktion des Glutathions. Modifiziert nach (https://www.brenda-enzymes.org/structure.php? show=reaction&id=37013&type=I&displayType=marvin, 2018).

GSH wirkt dabei als Antioxidans, in dem es die reaktiven Sauerstoffspezies in der Zelle neutralisiert. In gesunden Zellen befindet sich mehr als 90 % GSH und weniger als 10 % an GSSG. Das Verhältnis GSH/GSSG kann Aufschluss über den Gesundheitszustand der Zelle bieten. Ist dieses erhöht, liegt weniger oxidativer Stress in der Zelle vor (Owen & Butterfield, 2010). Demzufolge kann TXNDC12 die wichtige Aufgabe besitzen, die Zelle vor oxidativem Stress zu schützen, indem es das schädliche GSSG in das protektive GSH reduziert.

Eine weitere protektive Funktion wird für TXNDC12 bei der Inhibierung der durch ER-Stress induzierten Apoptose beschrieben. Eine im Jahr 2008 erschienene Studie zeigte, dass die Überexpression von TXNDC12 in HeLa-Zellen das Einsetzten der Apoptose durch die Apoptoseinduktoren Brefeldin A, Tunicamycin oder Dithiothreitol verminderte, wogegen ein Fehlen von TXNDC12 zu einer verstärkten Apoptose durch ER-Stress führte (Jeong *et al.*, 2008; Rowe *et al.*, 2009). Dabei kann eine Anreicherung von ungefalteten und fehlgefalteten Proteinen im ER-Lumen zu erhöhtem ER-Stress führen. Denkbar wäre, dass TXNDC12 dabei eine protektive Funktion einnimmt, indem es eine korrekte Disulfidbindungen in entstehenden Proteinen katalysiert und folglich eine Aufgabe im ER-Lumen bei der Proteinfaltung besitzt. So zeigten Studien in murinen Lebergeweben aus Balb/C und C57BL/6-Mäusen, dass das reife TXNDC12, bei welchem das Signalpeptid zuvor abgespalten wurde, im luminalen Kompartiment des ER ansässig ist und folglich als ER-Protein fungiert (Knoblach *et al.*, 2003; Jeong *et al.*, 2008). Luminale ER-Proteine haben u.a. die Aufgabe, Proteine posttranslational zu modifizieren. Dies kann z. B. über die Ausbildung von Disulfidbrücken erfolgen. Disulfidbrückenbindungen stellen ein typisches Merkmal sekretorischer Proteine dar, da diese sich nicht im Zytosol ausbilden können. TXNDC12 besitzt eine Thioredoxin (TRX)-Domäne, die auf der Proteinsequenz an Position 37–118 lokalisiert ist (Abb. 48). Dabei stellt TRX ein charakteristisches Proteinstrukturmotiv dar, welches mit Cysteinenthaltenen Substraten interagiert (Martin, 1995), da dieses die redox-aktive CGAC-Domäne enthält. Zwischen den Schwefelatomen beider Cystein-Moleküle erfolgt die Disulfidbrückenbindung, welche als separater Schritt bei der Proteinfaltung erfolgen kann ohne nachfolgende Faltungsschritte hinauszuzögern.

Signalpeptid

MSLRFG<mark>A</mark>TCLLSFSFLLLITSSDG<mark>RTGLGKGFGDHI</mark>HWRTLEDGKKEAAASGLPLMVIIHKSW<mark>CGAC</mark>KAL KPKFAESTEISELSHNFVMVNLEDEEEPRDEDFSPDGGYIPRILFLDPSGKVRPEII<mark>N</mark>ESGNPSYKYFYV SAEQVVQGMKEAQERLTGDAFREKHFQDEL

Abb. 48: Proteinsequenz von TXNDC12 des C57BL/6J-Stammes. Das im C57BL/6J-Stamm vorkommende Alanin, welches in der NZO/HILtJ-Maus zu Prolin ersetzt wird, ist rot markiert. Das Signalpeptid ist umrandet. Grau hinterlegt erscheint die Thioredoxin-Domäne. Das redox-aktive Motiv ist gelb hinterlegt, die Glykosylierungsstelle ist blau markiert. Daten aus NCBI GenBank® (https://www.ncbi.nlm.nih.gov, 2018) und SMART (http://smart.embl-heidelberg.de/, 2018).

TRX-Domänen sind typisch für die Protein-Disulfid-Isomerase (PDI), einem ER-Protein, welches zwei der redox-aktiven CGHC-Domänen besitzt. Die PDI steht mit einem T2DM in Verbindung, da diese die Insulinproduktion der pankreatischen β-Zellen verringert (Rajpal *et al.*, 2012). Die Aufgabe der PDI besteht darin, als Isomerase die Bildung korrekter Disulfidbindungen in entstehenden Proteinen zu katalysieren. Dabei ist die Isomerase-Eigenschaft der PDI vom Vorhandensein beider redox-aktiven CGHC-Domänen abhängig. Da TXNDC12 lediglich nur eine aufweist, wurde angenommen, dass es nicht als eine typische Isomerase fungieren kann (Knoblach *et al.*, 2003). Des Weiteren differiert die Aminosäuresequenz der PDI CGHC-Domäne zu der der TXNDC12 (CGAC). Mutagenese-Studien zeigten, dass Mutationen der internen Histidin-Reste die Proteinaktivitäten ändern können. Aufgrund dessen wird angenommen, das Alanin der CGAC-Domäne von TXNDC12 zu einer spezifischen Funktion des TXNDC12-Proteins führt. Eine Diabetes-protektive Funktion kann in dieser Studie nicht eindeutig bestätigt werden. So besaßen die N/O-Allel-Träger der 21-Wochen alten N2-Männchen, die eine funktionsfähige TXNDC12-Variante trugen, höhere Blutzuckerwerte als die N/N-Allel-Träger, welche homozygote Träger der Mutation im *Txndc12* Gen waren. Die Funktion von TXNDC12 im Metabolismus ist jedoch nicht hinreichend geklärt, um die Kausalität der Mutation auszuschließen.

Um zu klären, ob die Mutation im Signalpeptid eine Auswirkung auf die Proteinexpression besaß, sind im Weiteren Proteinexpressionsanalysen von TXNDC12 im Lebergewebe der 21-Wochen alten NZO- und 129P2-Parentaltiere erfolgt.

4.5.2 Proteinexpression von TXNDC12 im Lebergewebe

Die Proteinanalyse von TXNDC12 lieferte sowohl für das Lebergewebe der 21-Wochen alten NZO- als auch 129P2-Tiere eine nahezu identische relative Proteinexpression. Da hierbei Leberlysate aus gemörsertem Lebergewebe eingesetzt wurden, konnte mittels dieser Analyse nicht geklärt werden, ob die NZO-Variante im Zytosol oder im ER angereichert war. Dennoch war es wichtig zu klären, inwieweit Unterschiede in der vorhandenen Proteinmenge vorlagen. Die nahezu gleiche Proteinexpression in den Lebergeweben der NZO- und 129P2-Tiere zeigte, dass die Translation der mRNA der NZO-Variante an den Ribosomen im Zytoplasma stattfand. Möglicherweise konnten die gebildeten Proteine der NZO-Variante nicht von den Signal-Erkennungs-Partikeln erkannt werden und verblieben im Zytosol, so wie es zuvor unter 4.5 angenommen wurde. Zukünftige Studien sollen darüber Auskunft geben, ob die NZO-Variante tatsächlich im Zytosol verblieb, oder doch im ER-Lumen angereichert wurde. Denkbar wäre, dass die Mutation im Signalpeptid von TXNDC12 zu einer veränderten Reifung bzw. Funktion des Proteins in der NZO-Maus führt. Jedoch sind weitere Studien nötig, um die genaue biologische Funktion von TXNDC12 zu klären. So fehlen u.a. zurzeit Informationen zu ER-Proteinen, die mit TXNDC12 interagieren. Lediglich eine Funktion als Thiol-Disulfid-Oxidoreduktase, welche zuständig für eine genaue Disulfidbrückenbildung im ER ist, wird bisher postuliert (Jeong et al., 2008; Rowe et al., 2009). Über die Aufgaben des Signalpeptids von TXNDC12 liegen derzeit keine Studien vor. Weitere Untersuchungen sind daher notwendig, um die Kausalität der Mutation für den Nir4 QTL zu belegen.

4.6 Ausblick

Um zu klären, weshalb die N/N-Allel-Träger der männlichen N2-Population keinen T2DM entwickelten, soll die im NZO-Stamm vorkommende Mutation im *Txndc12*-Gen näher untersucht werden, da diese aller Voraussicht nach zu einem gesunden Phänotyp beiträgt.

So können zunächst Membranfraktionierungs-Analysen für das Lebergewebe vorgenommen werden, um zu prüfen, ob die NZO-Variante im Zytosol oder im ER konzentriert ist. Eine Jahr 2008 erschienene Studie von Jeong und Kollegen beschreibt eine geeignete Methode der Membranfraktionierung des Lebergewebes männlicher C57BL/6-Mäuse. In dieser wurde u.a. TXNDC12 erfolgreich aufgereinigt. Das Protein TXNDC12 konnte dabei hauptsächlich in der schweren Membranfraktion, welche das ER, Mitochondrien, Peroxisomen sowie andere Organellen enthielt, nachgewiesen werden. Dagegen wurden in der Zytosol-Fraktion lediglich geringe Mengen an TXNDC12 detektiert. Die Autoren kamen zu der Schlussfolgerung, das TXNDC12 der C57BL/6-Maus im ER lokalisiert ist.

Eine weitere Überprüfung kann mittels rekombinant-kongener Mausstämme (RCS) erfolgen. Zurzeit werden mehrere Kreuzungen für NZOx129P2- und B6x129P2-RCS für Chromosom 4 durchgeführt (2.2.1.1). Dabei gilt es, zunächst den *Nir4*-Locus weiter einzugrenzen. Eine metabolische Phänotypisierung soll durchgeführt werden, um den beobachteten Phänotyp der N2-Männchen zu replizieren. Da die männlichen N2-Tiere eine Insulinresistenz besaßen, sollen die Gewebe SMq, gWAT und Leber in den RCS-Tieren genauer untersucht werden. Mithilfe der RCS-Tiere, die diesen Phänotyp aufzeigen, sollen gezielte Kreuzungen durchgeführt werden, um so den *Nir4*-Locus weiter eingrenzen zu können. Zusätzlich kann eine Haplotypenanalyse durch Ermittlung von IBD-Regionen helfen, den Suchrahmen möglicher Kandidatengene einzugrenzen. Weiterhin sollen zukünftige Studien aufdecken, ob eine geringe Genexpression von *Hdhd3* und *Alad* mit einer Störung der Glukoseaufnahme in Fettzellen einhergeht. Dies kann mit funktionellen Analysen in z.B. 3T3-L1-Zellen untersucht werden.

5. Literaturverzeichnis

Adan RA, Tiesjema B, Hillebrand JJ, la Fleur SE, Kas MJ, de Krom M: The MC4 receptor and control of appetite. Br J Pharmacol 149:815-827, **2006**

Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS: Role of leptin in the neuroendocrine response to fasting. Nature 382:250-252, **1996**

Akerblom HK, Vaarala O, Hyöty H, Ilonen J, Knip M: Environmental factors in the etiology of type 1 diabetes. Am J Med Genet 115:18-29, **2002**

Alanen HI, Williamson RA, Howard MJ, Lappi AK, Jäntti HP, Rautio SM, Kellokumpu S, Ruddock LW: Functional Characterization of ERp18, a New Endoplasmic Reticulum-located Thioredoxin Superfamily Member. J Biol Chem 278:28912-28920, **2003**

Albrecht HO: Über die Chemiluminescenz des Amonophthalsäurehydrazids. Z Phys Chem 136: 321-330, **1928**

Allen KN, Dunaway-Mariano D: Markers of fitness in a successful enzyme superfamily. Curr Opin Struct Biol 19:658-665, 2009

Almind K, Kahn CR: Genetic Determinants of Energy Expenditure and Insulin Resistance in Diet-Induced Obesity in Mice. Diabetes 53:3274-3285, **2004**

Andersson C, Bylesjö I, Lithner F: Effects of diabetes mellitus on patients with acute intermittent porphyria. J Intern Med 245:193-197, **1999**

Andrikopoulos S, Fam BC, Holdsworth A, Visinoni S, Ruan Z, Stathopoulos M, Thorburn AW, Joannides CN, Cancilla M, Balmer L, Proietto J, Morahan G: Identification of ABCC8 as a contributory gene to impaired early-phase insulin secretion in NZO mice. J Endocrinol 228:61-73, **2016**

American Diabetes Association: Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 33:62–69, **2009**

Babak T, Garrett-Engele P, Armour CD, Raymond CK, Keller MP, Chen R, Rohl CA, Johnson JM, Attie AD, Fraser HB, Schadt EE: Genetic validation of whole-transcriptome sequencing for mapping expression affected cis-regulatory variation. BMC Genomics 11:473, **2010**

Becker W, Kluge R, Kantner T, Linnartz K, Korn M, Tschank G, Plum L, Giesen K, Joost HG: Differential hepatic gene expression in a polygenic mouse model with insulin resistance and hyperglycemia: evidence for a combined transcriptional dysregulation of gluconeogenesis and fatty acid synthesis. J Mol Endocrinol 32:195-208, **2004**

Bhatnagar S, Oler AT, Rabaglia ME, Stapleton DS, Schueler KL, Truchan NA, Worzella SL, Stoehr JP, Clee SM, Yandell BS, Keller MP, Thurmond DC, Attie AD: Positional cloning of a type 2 diabetes quantitative trait locus; tomosyn-2, a negative regulator of insulin secretion. PLoS Genet 7: e1002323, **2011**

Blancher C, Jones A: SDS -PAGE and Western Blotting Techniques, 2001

Bonfanti G, Ceolin RB, Valcorte T, De Bona KS, de Lucca L, Gonçalves TL, Moretto MB: δ -Aminolevulinate dehydratase activity in type 2 diabetic patients and its association with lipid profile and oxidative stress. Clin Biochem 44:1105-1109, **2011**

Brilliant MH, Ching A, Nakatsu Y, Eicher EM: The Original Pink-Eyed Dilution Mutation (p) Arose in Asiatic Mice: Implications for the H4 Minor Histocompatibility Antigen, Myodl Regulation and the Origin of Inbred Strains. Genetics 138:203-211, **1994**

Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, Karle S: Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F(2) variance of growth and obesity in DU6i x DBA/2 mice. Genome Res 10:1941-1957, **2000**

Brockmann GA, Tsaih SW, Neuschl C, Churchill GA, Li R: Genetic factors contributing to obesity and body weight can act through mechanisms affecting muscle weight, fat weight or both. Physiol Genomics 36:114-126, **2009**

Brockmann GA, Neuschl C: Positional Cloning of Diabetes Genes. Methods Mol Biol 933:275-289, 2012

Browning SR, Browning BL: Haplotype phasing: existing methods and new developments. Nat Rev Genet 12:703-714, **2011**

Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H: Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 5:314-319, **1999**

Burkhardt R, Kirsten H, Beutner F, Holdt LM, Gross A, Teren A, Tönjes A, Becker S, Krohn K, Kovacs P, Stumvoll M, Teupser D, Thiery J, Ceglarek U, Scholz M: Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood. PLoS Genet 11:e1005510, **2015**

Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L: Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361:1003-1034, **2006**

Cao L, Liu X, Cao H, Lv Q, Tong N: Modified High-Sucrose Diet-Induced Abdominally Obese and Normal-Weight Rats Developed High Plasma Free Fatty Acid and Insulin Resistance. Oxid Med Cell Longev 2012:374346, **2012**

Carlborg Ö, Brockmann GA, Haley CS: Simultaneous mapping of epistatic QTL in DU6i x DBA/2. Mamm Genome 16:481-494, **2005**

Chadt A, Leicht K, Deshmukh A, Jiang LQ, Scherneck S, Bernhardt U, Dreja T, Vogel H, Schmolz K, Kluge R, Zierath JR, Hultschig C, Hoeben RC, Schürmann A, Joost HG, Al-Hasani H: Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 40:1354-1359, **2008**

Chen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, Wang B, Schneider SN, Nebert DW, Dalton TP: Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 45:1118-1128, **2007**

Cheung V, Nayak RR, Wang IX, Elwyn S, Cousins SM, Morley M, Spielman RS: Polymorphic Cis- and Trans-Regulation of Human Gene Expression. PLoS Biol 8: e1000480, **2010**

Clee SM, Attie AD: The Genetic Landscape of Type 2 Diabetes in Mice. Endocr Rev 28:48-83, **2007**

Clee SM, Yandell BS, Schueler KM, Rabaglia ME, Richards OC, Raines SM, Kabara EA, Klass DM, Mui ET, Stapleton DS, Gray-Keller MP, Young MB, Stoehr JP, Lan H, Boronenkov I, *et al.*: Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nat Genet 38:688-693, **2006**

Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougnères P, Lebouc Y, Froguel P, Guy-Grand B: A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398-401, **1998**

Cone RD: Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571-578, **2005**

de Luca C, Olefsky JM: Inflammation and Insulin Resistance. FEBS Lett 582:97-105, 2008

Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112-119, **2005**

Dokmanovic-Chouinard M, Chung WK, Chevre JC, Watson E, Yonan J, Wiegand B, Bromberg Y, Wakae N, Wright CV, Overton J, Ghosh S, Sathe GM, Ammala CE, Brown KK, Ito R, LeDuc C, Solomon K, *et al.*: Positional cloning of "Lisch-Like", a candidate modifier of susceptibility to type 2 diabetes in mice. PLoS Genet 4: e1000137, **2008**

Dreja T, Jovanovic Z, Rasche A, Kluge R, Herwig R, Tung YC, Joost HG, Yeo GS, Al-Hasani H: Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome. Diabetologia 53:309-320, **2010**

Ebbert JO, Jensen MD: Fat Depots, Free Fatty Acids, and Dyslipidemia. Nutrients 5:498-508, 2013

Envigo: http://www.envigo.com/resources/data-sheets/5193-185-envigo-leaflets-2016-129-lr.pdf, 2016

Gailus-Durner V, Fuchs H, Becker L, Bolle I, Brielmeier M, Calzada-Wack J, Elvert R, Ehrhardt N, Dalke C, Franz TJ, Grundner-Culemann E, Hammelbacher S, *et al.*: Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat Methods 2:403-404, **2005**

Giesen K, Plum L, Kluge R, Ortlepp J, Joost HG: Diet-dependent obesity and hypercholesterollemia in the New Zealand obese mouse: identification of quantitative trait locus for elevated serum cholesterol on the distal mouse chromosome 5. Biochem Biophys Res Commun 304:812-817, **2003**

Gogoi B, Chatterjee P, Mukherjee S, Buragohain AK, Bhattacharya S, Dasgupta S: A polyphenol rescues lipid induced insulin resistance in skeletal muscle cells and adipocytes. Biochem Biophys Res Commun 452:382-388, **2014**

Görtzen A, Veh RW: Adipositas – Eine Einführung in molekulare Mechanismen. Dtsch Arztebl 104: A-2431 / B-2149 / C-2081, **2007**

Hirayama I, Yi Z, Izumi S, Arai I, Suzuki W, Nagamachi Y, Kuwano H, Takeuchi T, Izumi T: Genetic analysis of obese diabetes in the TSOD mouse. Diabetes 48:1183-1191, **1999**

Huang Y, Zheng J, Przytycka TM: Discovery of regulatory mechanisms from gene expression variation by eQTL analysis. Biological Data Mining CRC Press 205-228, **2009**

Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Müller A, *et al.*: Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243-253, **2005**

Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, Marschall S, Hrabě de Angelis M, Beckers J: Epigenetic germline inheritance of diet induced obesity and insulin resistance. Nat Genet 48:497-499, **2016**

Jaffe EK, Stith L: ALAD porphyria is a conformational disease. Am J Hum Genet 80:329-337, 2007

Jeong W, Lee DY, Park S, Rhee SG: ERp16, an Endoplasmic Reticulum-resident Thioldisulfide Oxidoreductase. J Biol Chem 283:25557-25566, **2008**

Jiang B, Liu J: Bayesian Partition Models for Identifying Expression Quantitative Trait Loci. J Am Stat Assoc 110:1350-1361, 2015

Joost HG, Schürmann A: The genetic basis of obesity-associated type 2 diabetes (diabesity) in polygenic mouse models. Mamm Genome 25:401-412, **2014**

Jürgens HS, Schürmann A, Kluge R, Ortmann S, Klaus S, Joost HG, Tschöp MH: Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice. Physiol Genomics 25:234-241, **2006**

Jürgens HS, Neschen S, Ortmann S, Scherneck S, Schmolz K, Schüler G, Schmidt S, Blüher M, Klaus S, Perez-Tilve D, Tschöp MH, Schürmann A, Joost HG: Development of diabetes in obese, insulin-resistant mice: essential role of dietary carbohydrate in beta cell destruction. Diabetologia 50:1481-1489, **2007**

Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784-1792, **2006**

Kammel A, Saussenthaler S, Jähnert M, Jonas W, Stirm L, Hoeflich A, Staiger H, Fritsche A, Häring HU, Joost HG, Schürmann A, Schwenk RW: Early hypermethylation of hepatic Igfbp2 results in its reduced expression preceding fatty liver in mice. Hum Mol Genet 25:2588-2599, **2016**

Kayo T, Fujita H, Nozaki J, E X, Koizumi A: Identification of two chromosomal loci determining glucose intolerance in a C57BL/6 mouse strain. Comp Med 50:296-302, **2000**

Kluge R, Giesen K, Bahrenberg G, Plum L, Ortlepp JR, Joost HG: Quantitative trait loci for obesity and insulin resistance (Nob1, Nob2) and their interaction with the leptin receptor allele (LeprA720T/T1044I) in New Zealand obese mice. Diabetologia 43:1565-1572, **2000**

Kluge R, Scherneck S, Schürmann A, Joost HG: Pathophysiology and Genetics of Obesity and Diabetes in the New Zealand Obese Mouse: A Model of the Human Metabolic Syndrome. Methods Mol Biol 933:59-73, **2012**

Knoblach B, Keller BO, Groenendyk J, Aldred S, Zheng J, Lemire BD, Li L, Michalak M: ERp19 and ERp46, New Members of the Thioredoxin Family of Endoplasmic Reticulum Proteins. Mol Cell Proteomics 2:1104-1119, **2003**

Kraegen EW, James DE, Jenkins AB, Chisholm DJ: Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol 248:E353-362, **1985**

Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko A, Arrowsmith CH, Edwards AM, Yakunin AF: Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev 29:263-279, **2005**

Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685, **1970**

Lammert E: The Vascular Trigger of Type II Diabetes Mellitus. Exp Clin Endocrinol Diabetes 116:S. 21-25, 2008

Lan H, Rabaglia ME, Schueler KL, Mata C, Yandell BS, Attie AD: Distinguishing covariation from causation in diabetes: A lesson from the protein disulfide isomerase mRNA abundance trait. Diabetes 53:240-244, **2004**

Lander ES, Botstein D: Mapping Mendelian Factors Underlying Quantitative Trait Using RFLP Linkage Maps. Genetics 121:185-199, **1989**

Lander E, Kruglyak L: Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241-247, **1995**

Lauterbach MA, Wunderlich FT: Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch 469:385-396, **2017**

Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM: Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632-635, **1996**

Leiter EH, Reifsnyder PC, Flurkey K, Partke HJ, Junger E, Herberg L: NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes 47:1287-1295, **1998**

Leto D, Saltiel AR: Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol 13:383-396, 2012

Lettner A, Roden M: Ectopic Fat and Insulin Resistance. Curr Diab Rep 8:185-191, 2008

Li N, Frigerio F, Maechler P: The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem Soc Trans 36:930-934, **2008**

Liu F, Rong YP, Zeng LC, Zhang X, Han ZG: Isolation and characterization of a novel human thioredoxin-like gene hTLP19 encoding a secretory protein. Gene 315:71-78, **2003**

Ma ZA, Zhao Z, Turk J: Mitochondrial Dysfunction and β -Cell Failure in Type 2 Diabetes Mellitus. Exp Diabetes Res 2012:703538, **2011**

Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C: Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14:72-81, **2008**

Martin JL: Thioredoxin-a fold for all reasons. Structure 3:245-250, 1995

Mathers CD, Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442, **2006**

McInerney MF, Najjar SM, Brickley D, Lutzke M, Abou-Rjaily GA, Reifsnyder P, Haskell BD, Flurkey K, Zhang YJ, Pietropaolo SL, Pietropaolo M, Byers JP, Leiter EH: Anti-Insulin Receptor Autoantibodies Are Not Required for Type 2 Diabetes Pathogenesis in NZL/Lt Mice, a New Zealand Obese (NZO)-Derived Mouse Strain. Exp Diabesity Res 5:177-185, **2004**

Mencarelli M, Zulian A, Cancello R, Alberti L, Gilardini L, Di Blasio AM, Invitti C: A novel missense mutation in the signal peptide of the human POMC gene: a possible additional link between early-onset type 2 diabetes and obesity. Eur J Hum Genet 20:1290-1294, **2012**

Mirhashemi F, Kluth O, Scherneck S, Vogel H, Kluge R, Schurmann A, Joost HG, Neschen S: High-fat, carbohydrate-free diet markedly aggravates obesity but prevents beta-cell loss and diabetes in the obese, diabetes-susceptible db/db strain. Obes Facts 1:292-297, **2008**

Mirhashemi F, Scherneck S, Kluth O, Kaiser D, Vogel H, Kluge R, Schürmann A, Neschen S, Joost HG: Diet Dependence of Diabetes in the New Zealand Obese (NZO) Mouse: Total Fat, But not Fat Quality or Sucrose Accelerates and Aggravates Diabetes. Exp Clin Endocrinol Diabetes 119:167-171, **2010**

Moreno C, Kaldunski ML, Wang T, Roman RJ, Greene AS, Lazar J, Jacob HJ, Cowley AW Jr: Multiple Blood Pressure loci on rat Chromosome 13 attenuate the development of hypertension in the Dahl S Hypertensive rat. Physiol Genomics 31:228-235, **2007**

Mukherjee A, Morales-Scheihing D, Butler PC, Soto C: Type 2 Diabetes as a Protein Misfolding Disease. Trends Mol Med 21:439-449, **2015**

Nyholt DR: All LODs are not created equal. Am J Hum Genet 67:282-288, 2000

Ortlepp JR, Kluge R, Giesen K, Plum L, Radke P, Hanrath P, Joost HG: A metabolic syndrome of hypertension, hyperinsulinaemia and hypercholesterolaemia in the New Zealand obese mouse. Eur J Clin Invest 30:195-202, **2000**

Owen JB, Butterfield DA: Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol 648:269-77, **2010**

Paigen, K: One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics 163:1-7, **2003**

Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS, Bhattacharya S: Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279-1285, **2012**

Pan HJ, Agate DS, King BL, Wu MK, Roderick SL, Leiter EH, Cohen DE: A polymorphism in New Zealand inbred mouse strains that inactivates phosphatidylcholine transfer protein. FEBS Lett 580:5953-5958, **2006**

Perry RJ, Samuel VT, Petersen KF, Shulman GI: The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510:84-91, **2014**

Plum L, Kluge R, Giesen K, Altmüller J, Ortlepp JR, Joost HG: Type 2 Diabetes–Like Hyperglycemia in a Backcross Model of NZO and SJL Mice: characterization of a susceptibility locus on chromosome 4 and its relation with obesity. Diabetes 49:1590-1596, **2000**

Plum L, Giesen K, Kluge R, Junger E, Linnartz K, Schürmann A, Becker W, Joost HG: Characterisation of the mouse diabetes susceptibilty locus Nidd/SJL: islet cell destruction, interaction with the obesity QTL Nob1, and effect of dietary fat. Diabetologia 45:823-830, **2002**

Ponsuksili S, Trakooljul N, Hadlich F, Haack F, Murani E, Wimmers K: Genetic architecture and regulatory impact on hepatic microRNA expression linked to immune and metabolic traits. Open Biol 7: 170101, **2017**

Rajpal G, Schuiki I, Liu M, Volchuk A, Arvan P: Action of Protein Disulfide Isomerase on Proinsulin Exit from Endoplasmic Reticulum of Pancreatic β-Cells. J Biol Chem 287:43-47, **2012**

Rathmann W, Scheidt-Nave C, Roden M, Herder C: Type 2 diabetes: prevalence and relevance of genetic and acquired factors for its prediction. Dtsch Arztebl Int 110:331-337, **2013**

Rodríguez A: Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes Facts 7:82-95, **2014**

Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL: Oxidation of Fatty Acids Is the Source of Increased Mitochondrial Reactive Oxygen Species Production in Kidney Cortical Tubules in Early Diabetes. Diabetes 61:2074-2083, **2012**

Rowe ML, Ruddock LW, Kelly G, Schmidt JM, Williamson RA, Howard MJ: Solution structure and dynamics of ERp18, a small endoplasmic reticulum resident oxidoreductase . Biochemistry 48:4596-4606, **2009**

Scherneck S, Nestler M, Vogel H, Blüher M, Block MD, Berriel Diaz M, Herzig S, Schulz N, Teichert M, Tischer S, Al-Hasani H, Kluge R, Schürmann A, Joost HG: Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL. PLoS Genet 5:e1000541, **2009**

Schmidt C, Gonzaludo NP, Strunk S, Dahm S, Schuchhardt J, Kleinjung F, Wuschke S, Joost HG, Al-Hasani H: A meta-analysis of QTL for diabetes-related traits in rodents. Physiol Genomics 34:42–53, **2008**

Schmolz K, Pyrski M, Bufe B, Vogel H, Nogueras R, Jürgens H, Nestler M, Zahn C, Tschöp M, Meyerhof W, Joost HG, Schürmann A: Regulation of feeding behavior in normal and obese mice by neuromedin-U: A variant of the neuromedin-U receptor 2 contributes to hyperphagia in the New-Zealand Obese mouse. Obesity Metabolism 3:28-37, **2007**

Schwenk RW, Vogel H, Schürmann A: Genetic and epigenetic control of metabolic health. Mol Metab 2:337-347, **2013**

Shulman GI: Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371:2237-2238, 2014

Sies H: Glutathione and its role in cellular functions. Free Radic Biol Med 27:916-921, 1999

Stylianou IM, Korstanje R, Li R, Sheehan S, Paigen B, Churchill GA: Quantitative trait locus analysis for obesity reveals multiple networks of interacting loci. Mamm Genome 17:22-36, **2006**

Suto J, Sekikawa K: A quantitative trait locus that accounts for glucose intolerance maps to chromosome 8 in hereditary obese KK-A(y) mice. Int J Obes Relat Metab Disord 26:1517-1519, **2002**

Suzuki Y, Lanner C, Kim JH, Vilardo PG, Zhang H, Yang J, Cooper LD, Steele M, Kennedy A, Bock CB, Scrimgeour A, Lawrence JC Jr, DePaoli-Roach AA: Insulin control of glycogen metabolism in knockout mice lacking the muscle-specific protein phosphatase PP1G/RGL. Mol Cell Biol 21:2683-2694, **2001**

Tamayo T, Brinks R, Hoyer A, Kuß OS, Rathmann W: The Prevalence and Incidence of Diabetes in Germany. Dtsch Arztebl Int 113:177-182, **2016**

Tao Z, Shi A, Zhao J: Epidemiological Perspectives of Diabetes. Cell Biochem Biophys 73:181–185, **2015**

Taylor BA, Wnek C, Schroeder D, Phillips SJ: Multiple obesity QTLs identified in an intercross between the NZO (New Zealand obese) and the SM (small) mouse strains. Mamm Genome 12:95-103, **2001**

Tian J, Keller MP, Oler AT, Rabaglia ME, Schueler KL, Stapleton DS, Broman AT, Zhao W, Kendziorski C, Yandell BS, Hagenbuch B, Broman KW, Attie AD: Identification of the Bile Acid Transporter Slco1a6 as a Candidate Gene That Broadly Affects Gene Expression in Mouse Pancreatic Islets. Genetics 201:1253-1262, **2015**

Togawa K, Moritani M, Yaguchi H, Itakura M: Multidimensional genome scans identify the combinations of genetic loci linked to diabetes-related phenotypes in mice. Hum Mol Genet 15:113-128, **2006**

Tourkantonis I, Kiagia M, Peponi E, Tsagouli S, Syrigos KN: The Role of Leptin in Cancer Pathogenesis. Journal of Cancer Therapy 4:640-650, **2013**

Tsaih SW, Holl K, Jia S, Kaldunski M, Tschannen M, He H, Andrae JW, Li SH, Stoddard A, Wiederhold A, Parrington J, *et al.*: Identification of a Novel Gene for Diabetic Traits in Rats, Mice, and Humans. Genetics 198:17-29, **2014**

Tu Z, Keller MP, Zhang C, Rabaglia ME, Greenawalt DM, Yang X, Wang IM, Dai H, Bruss MD, Lum PY, Zhou YP, Kemp DM, Kendziorski C, *et al.*: Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets. PLoS Genet 8:e1003107, **2012**

van Dijk TH, Laskewitz AJ, Grefhorst A, Boer TS, Bloks VW, Kuipers F, Groen AK, Reijngoud DJ: A novel approach to monitor glucose metabolism using stable isotopically labelled glucose in longitudinal studies in mice. Lab Anim 47:79-88, **2013**

Vogel H, Scherneck S, Kanzleiter T, Benz V, Kluge R, Stadion M, Kryvych S, Blüher M, Klöting N, Joost HG, Schürmann A: Loss of function of Ifi202b by a microdeletion on chromosome 1 of C57BL/6J mice suppresses 11b-hydroxysteroid dehydrogenase type 1 expression and development of obesity. Hum Mol Genet 21:3845-3857, **2012**

Vogel H, Mirhashemi F, Liehl B, Taugner F, Kluth O, Kluge R, Joost HG, Schürmann A: Estrogen Deficiency Aggravates Insulin Resistance and Induces β -Cell Loss and Diabetes in Female New Zealand Obese Mice. Horm Metab Res 45:430-435, **2013**

Wang CY, Stapleton DS, Schueler KL, Rabaglia ME, Oler AT, Keller MP, Kendziorski CM, Broman KW, Yandell BS, Schadt EE, Attie AD: Tsc2, a positional candidate gene underlying a quantitative trait locus for hepatic steatosis. J Lipid Res 53:1493-1501, **2012**

WHO: Global status report on noncommunicable diseases 2010. Geneva, World Health Organization, **2011**

WHO: Global Health Estimates: Deaths by Cause, Age, Sex and Country, 2000-2012. Geneva, World Health Organization, **2014a**

WHO: Global status report on noncommunicable diseases 2014. Geneva, World Health Organization, **2014b**

WHO: Global report on diabetes. Geneva, World Health Organization, 2016

Wolinsky H, Goldfischer S, Capron L, Capron F, Coltoff-Schiller B, Kasak L: Hydrolase Activities in the Rat Aorta. I. Effects of Diabetes Mellitus and Insulin Treatment. Circ Res 42:821-831, **1978**

Yeo GSH: Genetics of obesity: can an old dog teach us new tricks? Diabetologia 60:778-783, **2017**

Yeo GS, Heisler LK: Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15:1343-1349, **2012**

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature 372:425-432, **1994**

6. Anhang

6.1 Tabellenverzeichnis Tab. 1: Verwendete Mausstämme
Tab. 2: Verwendete Hochfettdiät 22
Tab. 3: Verwendete Zelllinie
Tab. 4: Verwendete Geräte 23
Tab. 5: Verwendete Chemikalien und Mixe 24
Tab. 6: Verwendete Reaktionskits 26
Tab. 7: Verwendete Enzyme 26
Tab. 8: Verwendete siRNA-Oligonukleotide
Tab. 9: Verwendete Antikörper
Tab. 10: Verwendete Puffer- und Lösungen
Tab. 11: Verwendete Verbrauchsmaterialien
Tab. 12: Verwendete Oligonukleotide. 30
Tab. 13: Verwendete Datenbanken und Software-Programme
Tab. 14: Pipettierschema des siRNA-Transfektionsmixes pro well
Tab. 15: Pipettierschema des Lipofektamin RNAimax-Mixes pro well48
Tab. 16: Weitere Phänotypisierungsdaten der männlichen Parental- und F1-Population.
Tab. 17: Weitere Phänotypisierungsdaten der N2 (NZOx129P2)-Generation66
Tab. 18: Überblick aller signifikanten Kopplungen (QTL) der männlichen N2 (NZO
x129P2)-Population
Tab. 19: Überblick der Verhältnisse der signifikant differentiell exprimierten Gene im
Microarray zwischen 40–117 Mb
Tab. 20: Gegenüberstellung aller signifikant differentiell exprimierten Gene in Leber
und SMq der 21-Wochen alten männlichen NZO- und 129P2-Parentaltiere90
Tab. 21: Gegenüberstellung aller signifikant differentiell exprimierten Gene in gWAT
und BAT der 21-Wochen alten männlichen NZO- und 129P2-Parentaltiere90
Tab. 22: Überblick aller signifikant differentiell exprimierter Gene innerhalb der männ-
lichen N2 (NZOx129P2)-Population für Leber, SMq und gWAT101
6.2 Abbildungsverzeichnis

Abb. 1: Auswirkungen einer HFD auf die Leber
Abb. 2: Entwicklungsstadien der Insulinresistenz
Abb. 3: New Zealand Obese (NZO) Maus
Abb. 4: 129P2/OlaHsd Maus
Abb 5: Identifizierte Adipositas- und T2DM-Gene auf NZO-Hintergrund 15
Abb 6: Methode zur Identifizierung von Suszeptibilitätsgenen <i>via</i> Positioneller
Klonierung 17
Abb. 7: Metabolische Charakterisierung der männlichen Parental F1- sowie N2
(NZOx129P2)-Population im zeitlichen Verlauf
Abb. 8: Kernspinresonanzspektroskopie (<i>Nuclear-Magnetic-Resonance</i> (NMR))
Abb. 9: Aufbau des KASP-Genotypisierungs- <i>Assays</i>
Abb. 10: Erzeugung und Phänotypisierung der N2 (NZOx129P2)-Population
Abb. 11: Blutglukose und Körpergewicht der Parental- und F1-Tiere im zeitlichen
Verlauf
Abb. 12: Korrelationen der Blutglukoseparameter mit den Körpergewichtsdaten und
den Daten der Körperfettmasse männlicher Parental- und F1-Tiere
Abb. 13: Blutglukose sowie Körpergewicht der männlichen und weiblichen N2
(NZOx129P2)-Tiere im zeitlichen Verlauf
Abb. 14: T2DM-Prävalenz aller Populationen im Vergleich
Abb. 15: Blutglukose- sowie Körpergewichtsparameter aller Populationen im
Vergleich
Abb. 16: Korrelationen der Blutglukoseparameter mit den Körpergewichtsdaten und
den Daten der Körperfettmasse männlicher N2 (NZOx129P2)-Tiere
Abb. 17: Blutglukosespiegel und Körpergewichtsentwicklung der in Lebenswoche 15
hyperglykämischen (>300 mg/dl W.15) und normoglykämischen (<300 mg/dl W.15)
männlichen N2 (NZOx129P2)-Tiere
Abb. 18: Genetische Karte der 118 SNP-Marker-Verteilung im Genom der N2
(NZOx129P2)-Population
Abb. 19: Errechnete QTL auf Chromosom 2 der männlichen N2 (NZOx129P2)-
Population
Abb. 20: Errechnete QTL für Chromosom 4 der männlichen N2 (NZOx129P2)-
Population

Abb. 21: Zeitlicher Verlauf der genomweiten QTL-Analyse im Hinblick auf das
Körpergewicht aller beobachteten Lebenswochen der männlichen N2 (NZOx129P2)-
Population72
Abb. 22: Zeitlicher Verlauf der genomweiten QTL-Analyse im Hinblick auf die
Blutglukose aller beobachteten Lebenswochen der männlichen N2 (NZOx129P2)-
Population72
Abb. 23: heatmap der errechneten LOD-score-Werte für alle ermittelten Phänotypen mit
Ausnahme der Metaboliten der männlichen N2 (NZOx129P2)-Population75
Abb. 24: Gegenüberstellung aller identifizierter QTL auf Chromosom 4 der männlichen
N2 (NZOx129P2)-Population76
Abb. 25: Gegenüberstellung der Effektgrößen innerhalb der 1. und 3. Peak-Region für
Blutglukose, FBG sowie Lebergewicht der männlichen N2 (NZOx129P2)-Population.
Abb. 26: Zeitlicher Verlauf der Blutglukose- sowie Körpergewichtsparameter und
T2DM-Prävalenz innerhalb der männlichen N2 (NZOx129P2)-Population80
Abb. 27: Überblick der bislang identifizierten T2DM-QTL auf Chromosom 481
Abb. 28: <i>Microarray</i> -Analyse für <i>Nir4</i>
Abb. 29: mRNA-Expressionsanalysen der 21-Wochen alten männlichen NZO- und
129P2-Parentaltiere
Abb. 30: Relative Genexpression im Lebergewebe der 21-Wochen alten männlichen N2
(NZOx129P2)-Tiere
Abb. 31: Relative Genexpression im SMq der 21-Wochen alten männlichen N2
(NZOx129P2)-Tiere
Abb. 32: Relative Genexpression im gWAT der 21-Wochen alten männlichen N2
(NZOx129P2)-Tiere
Abb. 33: eQTL-Analyse des Lebergewebes 21-Wochen alter männlicher N2
(NZOx129P2)-Tiere
Abb. 34: eQTL-Analyse des SMq-Gewebes 21-Wochen alter männlichen N2
(NZOx129P2)-Tiere
Abb. 35: Korrelationsanalyse der relativen Expressionsdaten von Galt mit FBG
innerhalb der N2 (NZOx129P2)-Männchen im SMq97
Abb. 36: eQTL-Analyse des gWAT-Gewebes 21-Wochen alter männlichen N2
(NZOx129P2)-Tiere

Abb. 37: Korrelationsanalyse der relativen Expressionsdaten von Hdhd3, Alad, Ptplad2
und Leprot mit BG W.17, FBG und Lebergewicht innerhalb der N2 (NZOx129P2)-
Männchen im gWAT100
Abb. 38: Gegenüberstellung der identifizierten QTL- sowie eQTL auf Chromosom 4
der männlichen N2 (NZOx129P2)-Population
Abb. 39: Expressionsanalysen der 21-Wochen alten männlichen NZO- und 129P2-
Parentaltiere für die Gewebe Leber, SMq, gWAT und BAT für Txndc12 im Vergleich.
Abb. 40: Expressionsanalysen der 21-Wochen alten männlichen NZO- und 129P2-
Parentaltiere für das Gewebe SMq für verschiedene Primer von Txndc12 im Vergleich.
Abb. 41: Gegenüberstellung der mRNA-Sequenz von Txndc12 des NZO-, 129P2- sowie
B6-Mausstammes
Abb. 42: mRNA- sowie Proteinsequenz von Txndc12 basierend auf C57BL/6J 105
Abb. 43: Proteinsequenz von TXNDC12
Abb. 44: Blutglukose, FBG und Lebergewicht der N2 (NZOx129P2)-Männchen an
Position rs31935151
Abb. 45: Vergleich der Aminosäuresequenz von TXNDC12 zwischen Mensch, Maus,
Ratte, Xenopus laevis und C. elegans
Abb. 46: Relative Proteinexpression von TXNDC12 in 21-Wochen alten NZO- und
129P2-Tieren
Abb. 47: Redoxreaktion des Glutathions
Abb. 48: Proteinsequenz von TXNDC12 des C57BL/6J-Stammes

6.3 Tabellen

Anhang Tab. 1: Phänotypisierungsdaten der Parental- und F1-Population weiterer Lebenswochen. Aufgelistet sind die Blutglukose (BG)- sowie Körpergewicht (KG)-Daten. W:=Lebenswoche; 129P2: n=17; NZO: n=16; F1: n=17.

		129P2		NZO		F1	
Merkmal	W.	Mittelwert	± SEM	Mittelwert	± SEM	Mittelwert	± SEM
BG [mg/dl]	4	143,8	5,2	234,3	6,1	208,4	4,6
BG [mg/dl]	5	147,9	9,3	232,5	10,2	202,0	6,3
BG [mg/dl]	7	130,6	4,1	263,4	28,6	180,4	7,4
BG [mg/dl]	8	132,8	5,5	292,4	36,1	178,3	9,4
BG [mg/dl]	9	127,6	3,4	275,9	39,2	179,0	5,3
BG [mg/dl]	11	133,9	6,6	300,4	39,4	164,1	7,3
BG [mg/dl]	12	139,1	6,9	291,9	39,1	175,8	7,9
BG [mg/dl]	13	142,2	6,2	330,9	42,9	184,6	16,2
BG [mg/dl]	14	140,2	6,4	346,8	43,9	187,9	19,4
BG [mg/dl]	16	123,3	5,2	348,8	35,0	169,1	14,8
BG [mg/dl]	17	131,9	5,3	315,6	39,6	166,4	14,0
KG (g)	4	19,9	0,7	22,9	0,7	24,8	0,5
KG (g)	5	23,8	0,5	32,3	0,7	31,0	0,5
KG (g)	7	26,4	0,6	42,2	0,5	36,2	0,8
KG(g)	8	27,6	0,6	44,5	0,7	39,1	1,1
KG (g)	9	28,2	0,7	45,1	0,6	39,7	1,2
KG (g)	11	30,4	0,9	50,7	0,6	43,8	1,7
KG (g)	12	31,3	0,8	53,4	0,7	46,2	1,9
KG (g)	13	31,9	0,9	55,3	0,8	47,8	2,2
KG (g)	14	32,9	0,9	56,7	1,0	50,7	2,3
KG (g)	16	33,9	1,1	58,4	1,4	54,7	2,8
KG (g)	17	34,9	1,0	58,7	1,7	56,9	2,9

Anhang Tab. 2: Phänotypisierungsdaten hyperglykämischer (>300 mg/dl) und normoglykämischer (<300 mg/dl) männlicher NZO-Tiere. BG=Blutglukose; KG=Körpergewicht; FM=Fettmasse; MM=Magermasse; nBG=BG nach 16 h fasten; nKG=KG nach 16 h fasten; gBG=BG nicht-gefastet; gKG=KG nicht-gefastet; nI=Plasmainsulin nach 16 h fasten; nTG=Plasma-TG nach 16 h fasten; nFFA=Plasma-FFA nach 16 h fasten; gI=Plasmainsulin nicht-gefastet; gTG=Plasma-TG nicht-gefastet; gFFA=Plasma-FFA nicht-gefastet. W.=Lebenswoche; TG=Triglyzeride; FFA=Freie Fettsäuren. NZO<300 mg/dl: n=6; NZO>300 mg/dl: n=10. n.s.=nicht signifikant. Student`s *t*-Test, ungepaart (*p<0.05, *p<0.01, **p<0.001).

		NZO		NZO			
		<300 mg	/d1	>300 m	>300 mg/dl		
Merkmal	W.	Mittelwert	± SEM	Mittelwert	± SEM	Differenz	p-Wert
BG [mg/dl]	3	138,3	6,3	157,3	9,0	19,0	n.s.
BG [mg/dl]	4	236,5	11,5	232,8	7,3	-3,7	n.s.
BG [mg/dl]	5	223,3	23,2	238,0	9,3	14,7	n.s.
BG [mg/dl]	6	334,2	41,7	320,3	35,4	-13,9	n.s.
BG [mg/dl]	7	180,0	9,5	313,5	37,6	133,5	**
BG [mg/dl]	8	194,5	18,8	351,1	48,4	156,6	*
BG [mg/dl]	9	199,2	18,8	321,9	58,0	122,7	n.s.
BG [mg/dl]	10	148,5	12,6	346,8	62,2	198,3	*
BG [mg/dl]	11	202,2	13,8	359,3	55,2	157,1	*
BG [mg/dl]	12	182,7	16,0	357,5	52,2	174,8	**
BG [mg/dl]	13	204,8	21,5	406,6	55,3	201,8	**
BG [mg/dl]	14	180,0	11,2	446,8	46,1	266,8	***
BG [mg/dl]	15	201,7	6,4	427,7	40,5	226,0	***
BG [mg/dl]	16	201,7	23,7	437,1	27,6	235,4	***
BG [mg/dl]	17	159,8	23,4	409,0	37,7	249,2	***
BG [mg/dl]	18	182,7	18,5	402,0	37,1	219,3	***
BG [mg/dl]	19	201,8	28,0	379,2	47,5	177,4	**
BG [mg/dl]	20	228,8	19,0	399,2	50,7	170,4	**
KG (g)	3	12,9	0,9	13,5	0,9	0,6	n.s.
KG (g)	4	22,1	1,0	23,5	0,9	1,4	n.s.
KG (g)	5	31,3	1,1	33,0	0,8	1,7	n.s.
KG (g)	6	38,4	1,1	39,8	0,7	1,5	n.s.
KG (g)	7	41,1	0,8	42,9	0,7	1,8	n.s.
KG (g)	8	43,4	0,9	45,2	0,9	1,9	n.s.
KG (g)	9	44,1	0,3	45,6	0,8	1,5	n.s.
KG (g)	10	47,7	0,5	48,7	0,8	1,0	n.s.
KG (g)	11	50,4	1,2	50,9	0,7	0,6	n.s.
KG (g)	12	53,6	1,2	53,4	0,8	-0,2	n.s.
KG (g)	13	55,9	1,2	55,0	1,2	-0,9	n.s.

KG (g)	14	57,3	1,3	56,3	1,4	-1,1	n.s.
KG (g)	15	58,3	1,3	57,1	1,7	-1,1	n.s.
KG (g)	16	59,1	1,0	58,0	2,2	-1,1	n.s.
KG (g)	17	59,0	1,1	58,6	2,6	-0,4	n.s.
KG (g)	18	60,7	1,2	58,9	2,8	-1,8	n.s.
KG (g)	19	63,0	1,2	59,5	3,1	-3,5	n.s.
KG (g)	20	64,4	0,7	61,0	3,4	-3,4	n.s.
FM (g)	3	2,4	0,4	2,3	0,3	-0,1	n.s.
FM (g)	6	10,3	0,3	11,9	0,5	-0,5	n.s.
FM (g)	10	16,0	1,0	15,3	1,0	1,5	*
FM (g)	15	24,4	1,5	20,9	1,8	0,8	n.s.
MM (g)	3	10,8	0,7	10,3	0,4	-0,7	n.s.
MM (g)	6	27,1	0,7	27,9	0,3	0,4	n.s.
MM (g)	10	31,3	1,0	31,7	0,5	-3,5	n.s.
MM (g)	15	33,1	1,0	33,2	0,4	0,1	n.s.
nBG [mg/dl]	8	131,5	11,5	165,8	24,3	34,3	n.s.
nKG (g)	8	41,6	1,0	43,2	0,8	96,0	n.s.
gBG [mg/dl]	8	313,8	46,9	409,8	53,6	1,6	n.s.
gKG (g)	8	42,1	0,9	44,1	0,8	2,0	n.s.
FKG (g)	21	64,0	0,5	60,1	3,8	-3,9	n.s.
FBG [mg/dl]	21	180,0	21,6	347,1	50,3	167,1	*
KL (cm)	21	12,3	0,1	12,2	0,1	0,0	n.s.

Anhang Tab. 3: T2DM-Prävalenz der normoglykämischen und hyperglykämischen NZO-Tiere und N2 (NZOx129P2)-Männchen im Vergleich. W. 15=Lebenswoche 15. NZO <300 mg/dl: n=6; NZO >300 mg/dl: n=10; N2 Männchen <300 mg/dl W. 15: n=187; N2 Männchen >300 mg/dl W. 15: n=103.

	NZO <300 mg/dl	NZO >300 mg/dl	N2 Männchen <300 mg/dl W. 15	N2 Männchen >300 mg/dl W. 15
Woche		T2DM-Prä	ivalenz (%)	•
3	0	0	0	0
4	0	0	0	1,0
5	0	0	1,6	2,9
6	0	30	1,6	7,8
7	0	50	2,7	14,9
8	0	50	3,7	15,7
9	0	50	5,9	23,5
10	0	50	6,9	33,3
11	0	50	8,0	49,0
12	0	50	10,6	58,8
13	0	80	11,7	73,5
14	0	90	13,9	85,0
15	0	90	13,8	88,2
16	0	90	15,0	88,2
17	0	90	15,4	88,2
18	0	100	17,6	88,2
19	0	100	17,6	88,2
20	0	100	17,9	88,2

Anhang Tab. 4: Auswirkungen des Gewichtsverlustes innerhalb der hyperglykämischen (>300 mg/dl) männlichen NZO-Gruppe. Im Verlauf der Phänotypisierung verloren 4 von 10 hyperglykämischen NZO-Männchen an Gewicht. Gegenübergestellt sind die Phänotypisierungsdaten der hyperglykämischen NZO-Tiere, die einen bzw. keinen Gewichtsverlust aufwiesen. GV=Gewichtsverlust; BG=Blutglukose; KG=Körpergewicht; FM=Fettmasse; MM=Magermasse; nBG=BG nach 16 h fasten; nKG=KG nach 16 h fasten; gBG=BG nicht-gefastet; gKG=KG nichtgefastet; nI=Plasmainsulin nach 16 h fasten; nTG=Plasma-TG nach 16 h fasten; nFFA=Plasma-FFA nach 16 h fasten; gI=Plasmainsulin nicht-gefastet; gTG=Plasma-TG nicht-gefastet; gFFA=Plasma-FFA nicht-gefastet. TG=Triglyzeride; FFA=Freie Fettsäuren. NZO >300 mg/dl ohne GV: n=6; NZO >300 mg/dl mit GV: n=4.

		NZO		NZO		
		>300 mg/dl		>300 mg		
		ohne G	V	mit G		
Merkmal	Woche	Mittelwert	± SEM	Mittelwert	± SEM	Differenz
BG [mg/dl]	3	152,0	9,1	165,3	19,2	13,3
BG [mg/dl]	4	232,0	12,8	233,8	5,4	1.8
BG [mg/dl]	5	227,5	13,2	253,8	8,4	26,3
BG [mg/dl]	6	304,8	47,3	343,5	59,2	38,7
BG [mg/dl]	7	233,8	29,2	433,0	22,9	199,2
BG [mg/dl]	8	249,3	27,9	503,8	51,8	254,4
BG [mg/dl]	9	198,0	12,2	507,8	75,0	309,8
BG [mg/dl]	10	222,3	45,8	533,5	66,5	311,2
BG [mg/dl]	11	230,7	19,0	552,3	35,4	321,6
BG [mg/dl]	12	238,3	13,7	536,3	47,2	297,9
BG [mg/dl]	13	284,7	41,2	589,5	10,5	304,8
BG [mg/dl]	14	348,7	39,4	594,0	6,0	245,3
BG [mg/dl]	15	340,7	30,7	558,3	21,8	217,6
BG [mg/dl]	16	385,8	23,2	514,0	33,0	128,2
BG [mg/dl]	17	332,2	32,1	524,3	26,2	192,1
BG [mg/dl]	18	320,2	18,3	524,8	33,0	204,6
BG [mg/dl]	19	270,5	24,9	542,3	24,2	271,8
BG [mg/dl]	20	277,3	13,0	582,0	18,0	304,7
KG (g)	3	13,2	1,2	14,0	1,4	0,7
KG (g)	4	23,3	1,2	23,7	1,7	0,3
KG (g)	5	32,3	1,1	34,1	1,1	1,8
KG (g)	6	39,0	0,8	41,1	1,2	2,1
KG (g)	7	42,2	0,8	44,1	1,0	1,9
KG (g)	8	44,2	1,2	46,8	1,2	2,5
KG (g)	9	45,4	0,6	46,0	2,1	0,5
KG (g)	10	48,6	1,2	48,8	1,3	0,2
KG(g)	11	51,5	1,2	50,2	0,6	-1,3
KG (g)	12	54,7	1,0	51,3	0,6	-3,5
KG (g)	13	57,0	1,4	52,1	0,8	-5,0
KG (g)	14	59,2	1,3	51,9	0,6	-7,3
KG (g)	15	61,0	1,3	51,3	0,5	-9,7
KG (g)	16	63,2	1,1	50,1	0,7	-13,1
KG (g)	17	64,7	1,3	49,3	0,8	-15,4
KG (g)	18	65,6	1,1	48,8	0,3	-16,8
KG (g)	19	66,9	1,0	48,4	0,6	-18,6
KG (g)	20	69,0	1,3	48,9	0,6	-20,2
FM (g)	3	2,3	0,5	2,3	0,1	0,0
FM (g)	6	11,9	0,6	11,9	1,0	0,0
FM (g)	10	15,2	1,2	15,4	1,7	0,2
FM (g)	15	22,0	2,5	19,1	2,7	-2,9
MM (g)	3	10,4	0,6	10,1	0,5	-0,3
MM (g)	6	28,0	0,6	27,9	0,2	0,0
MM (g)	10	31,8	0,7	31,5	0,6	-0,3
MM (g)	15	33,3	0,6	32,9	0,5	-0,4
nBG [mg/dl]	8	134,3	19,2	213,0	47,7	78,7
nKG (g)	8	42,8	1,1	43,9	1,3	1,2
gBG [mg/dl]	8	339,8	76,0	514,8	30,8	174,9
gKG (g)	8	43,6	1,1	45,0	1,5	1,4
FKG (g)	21	69,2	1,1	46,5	1,4	-22,8
FBG [mg/dl]	21	239,7	26,1	508,3	53,0	268,6
KL (cm)	21	12,5	0,1	11,9	0,1	-0,6

Anhang Tab. 5: Phänotypisierungsdaten hyperglykämischer (>300 mg/dl) und normoglykämischer (<300 mg/dl) männlicher N2 (NZOx129P2)-Tiere in Lebenswoche 15. BG=Blutglukose; KG=Körpergewicht; FM=Fettmasse; MM=Magermasse; nBG=BG nach 16 h fasten; nKG=KG nach 16 h fasten; gBG=BG nicht-gefastet; gKG=KG nicht-gefastet; nI=Plasmainsulin nach 16 h fasten; nTG=Plasma-TG nach 16 h fasten; nFFA=Plasma-FFA nach 16 h fasten; gI=Plasmainsulin nicht-gefastet; gTG=Plasma-TG nicht-gefastet; gFFA=Plasma-FFA nicht-gefastet. W.=Lebenswoche; TG=Triglyzeride; FFA=Freie Fettsäuren. N2 Männchen <300 mg/dl W.15: n=103. n.s.=nicht signifikant. Student`s *t*-Test, ungepaart (*p<0,05, **p<0,01, ***p<0,001).

	1						1
		N2 Männchen		N2 Männchen			
		<300 mg/d	ll W. 15	>300 mg/dl W. 15			
Merkmal	W.	Mittelwert	± SEM	Mittelwert	± SEM	Differenz	p-Wert
BG [mg/dl]	6	212,2	4,4	223,3	6,8	11,2	n.s.
BG [mg/dl]	7	193,3	3,8	215,6	8,2	22,3	*
BG [mg/dl]	8	192,4	3,9	236,2	9,3	43,8	***
BG [mg/dl]	9	193,0	4,6	230,4	8,1	37,3	***
BG [mg/dl]	10	200,1	4,8	265,4	11,0	65,2	***
BG [mg/dl]	11	206,8	5,5	306,3	11,6	99,5	***
BG [mg/dl]	12	211,5	5,8	324,0	11,6	112,5	***
BG [mg/dl]	13	218,0	5,7	364,4	11,2	146,3	***
BG [mg/dl]	14	208,4	5,6	398,9	9,7	190,5	***
BG [mg/dl]	15	195,1	3,8	415,5	7,6	220,4	***
KG (g)	6	37,2	0,2	38,0	0,4	0,8	n.s.
KG (g)	7	41,1	0,3	42,1	0,4	1,0	*
KG (g)	8	44,2	0,3	45,7	0,4	1,5	**
KG (g)	9	46,7	0,3	48,6	0,5	1,9	**
KG (g)	10	50,0	0,3	52,5	0,5	2,5	***
KG (g)	11	52,3	0,4	55,4	0,5	3,1	***
KG (g)	12	55,1	0,4	58,5	0,6	3,4	***
KG (g)	13	57,5	0,4	61,5	0,6	4,0	***
KG (g)	14	59,5	0,4	63,8	0,6	4,3	***
KG (g)	15	61,6	0,4	66,7	0,6	5,2	***
FM (g)	6	9,3	0,2	9,7	0,3	0,4	n.s.
FM (g)	10	17,5	0,3	18,8	0,4	1,2	*
FM (g)	15	25,9	0,3	29,3	0,5	3,4	***
MM (g)	6	26,7	0,2	27,3	0,2	0,6	*
MM (g)	10	31,0	0,2	32,1	0,2	1,1	***
MM (g)	15	33,5	0,2	34,8	0,2	1,2	***
nBG [mg/dl]	8	91,9	1,7	89,4	1,7	-2,6	n.s.
nKG (g)	8	42,1	0,3	43,5	0,4	1,4	**
gBG [mg/dl]	8	175,8	4,5	192,3	6,5	16,5	*
gKG (g)	8	42,9	0,3	44,3	0,4	1,4	**
nI [µg/L]	8	1,1	0,0	1,2	0,1	0,1	n.s.
nTG [mg/dl]	8	180,8	4,6	171,2	5,1	-9,6	n.s.
nFFA [mmol/l]	8	1980,8	36,0	1845,1	40,5	-135,7	n.s.
gI [µg/L]	8	12,1	0,8	21,6	2,3	9,5	***
gTG [mg/dl]	8	256,7	8,9	270,8	13,9	14,1	n.s.
gFFA [mmol/l]	8	2,3	0,1	2,2	0,1	-0,1	n.s.

Anhang Tab. 6: Phänotypisierungsdaten der männlichen N2 (NZOx129P2)-Population. BG=Blutglukose; KG=Körpergewicht; nBG=BG nach 16 h fasten; nKG=KG nach 16 h fasten; gBG=BG nicht-gefastet; gKG=KG nicht-gefastet; nI=Plasmainsulin nach 16 h fasten; nTG=Plasma-TG nach 16 h fasten; nFFA=Plasma-FFA nach 16 h fasten; gI=Plasmainsulin nicht-gefastet; gTG=Plasma-TG nicht-gefastet; gFFA=Plasma-FFA nicht-gefastet; FPI=Finales Plasmainsulin; FPTG=Finale Plasma TG; FPFFA=Finale Plasma FFA; PaI=Pankreas Insulin; LG=Lebergewicht; LTG=Leber TG; LGLy=Leber Glykogen; QG=SMq Gewicht; QTG=SMq TG. TG=Triglyzeride; FFA=Freie Fettsäuren. Alle finalen Parameter sind nach 6 h fasten untersucht worden. n=230-290 Männchen der N2-Population.

		N2 Männchen		
Merkmal	Woche	Mittelwert	± SEM	
BG [mg/dl]	4	205,8	2,0	
BG [mg/dl]	5	227,8	3,1	
BG [mg/dl]	7	201,2	3,9	
BG [mg/dl]	8	208,0	4,3	
BG [mg/dl]	9	206,3	4,3	
BG [mg/dl]	11	242,2	6,1	
BG [mg/dl]	12	251,5	6,4	
BG [mg/dl]	13	270,0	6,8	
BG [mg/dl]	14	275,4	7,3	
BG [mg/dl]	16	275,5	7,0	
BG [mg/dl]	17	270,3	7,1	
KG (g)	4	23,0	0,2	
KG (g)	5	32,0	0,2	
KG (g)	7	41,5	0,2	
KG (g)	8	44,8	0,2	
KG (g)	9	47,4	0,3	
KG (g)	11	53,4	0,3	
KG (g)	12	56,3	0,3	
KG (g)	13	58,9	0,4	
KG (g)	14	61,0	0,4	
KG (g)	16	65,3	0,4	
KG (g)	17	67,1	0,5	
nBG [mg/dl]	8	91,0	1,2	
nKG (g)	8	42,6	0,3	
gBG [mg/dl]	8	181,7	3,7	
gKG (g)	8	43,4	0,2	
nI [µg/L]	8	1,1	0,0	
nTG [mg/dl]	8	177,4	3,5	
nFFA [mmol/l]	8	2,2	0,0	
gI [µg/L]	8	15,5	1,0	
gTG [mg/dl]	8	261,7	7,6	
gFFA [mmol/l]	8	2,2	0,0	
FPI [µg/L]	21	9,4	0,5	
FPTG [mg/dl]	21	86,7	1,2	
FPFFA [mmol/l]	21	0,6	0,0	
PaI [µg/mg]	21	34,0	2,0	
LG (g)	21	2,8	0,0	
LTG [µg/mg]	21	44,7	0,7	
LGly [µg/mg]	21	127,7	116,6	
QG (g)	21	184,7	2,0	
QTG [µg/mg]	21	31,8	0,6	

Anhang Tab. 7: Analysierte Metabolite der N2 (NZOx129P2)-Generation. Gln=Glutamin; Lvs=Lvsin; OH-Prol=Hydroxyprolin; PiPA=Pipecolinsäure; Aba=Abscisinsäure; Ala=Alanin; Arg=Arginin; Asn=Asparagin; Asp=Asparaginsäure; Carn=Carnosin; Cit=Citrullin; Glu=Glutaminsäure; Gly=Glycin; His=Histidin; Leu/Ile=Leucin /Isoleucin; MeHis=Methyl-Histidin; Met=Methionin; Orn=Ornithin; Phe=Phenylalanin; Pro=Prolin; Sarc=Sarcosin; Ser=Serin; Tau=Taurin; Thr=Threonin; Trp=Tryptophan; Tyr=Tyrosin; Val=Valin; C0=Freies Carnitin; C2=Acetylcarnitin; C3=Propionylcarnitin; C3DC=Malonylcarnitin; C4=Butyrylcarnitin; C4-OH=3-Hydroxy-Butyryl-Carnitin; C5=Iso-valerylcarnitin; C5:1=Tiglylcarnitin; C5 OH+HMG=2-Hydroxyisovalerylcarnitin; C6=Hexanovlcarnitin; C6DC= Adipylcarnitin; C8=Octanoylcarnitin; C8:1=Octenoylcarnitin; C10=Decanoylcarnitin; C10:1=Decenoylcarnitin; MMA=Methylmalonylcarnitin; Glut=Glutarylcarntin; C12=Dodecanoylcarnitin; MeGlut=3-Methylglutaryl-C14=Myristoylcarnitin; C14:1=Tetradecenoylcarnitin; C14OH=3-Hydroxy-Tetradecanoylcarnitin; carnitin; C16=Palmitoyl-carnitin; C16:1=Hexadecenoylcarnitin; C16:1OH=3-Hydroxy-Hexadecenoylcarnitin; C16OH=3-Hydroxy-Hexa-decanoylcarnitin; C18=Stearoylcarnitin; C18:1=Octadecenoylcarnitin; C18:1OH=Hydroxy-Octadec-1-enoylcarnitin; C18:2OH=Hydroxy-Octadec-2-enoylcarnitin; C18OH=3-Hydroxy-Octadecanoylcarnitin; C18:2= trans,trans-9,12-Octadecadiensäure (Linolsäure); C20:1=cis-11-Eicosensäure; C20:2=cis-11,14-Eicosadiensäure; C20:3=cis-11,14,17-Eicosatriensäure. Die Analyse der Metaboliten aus Mausblut wurde mit freundlicher Unterstützung durch Frau Dr. Ute Ceglarek und Kollegen durchgeführt (2.2.1.6). N2-Männchen: n=242-290; N2-Weibchen: n=300.

		N2 Mär	nchen	N2 Weibchen		
Merkmal	Woche	Mittelwert	± SEM	Mittelwert	± SEM	
Gln	10	0,563	0,020	0,640	0,018	
Lys	10	205,973	7,637	202,930	6,305	
OH-Prol	10	468,605	7.006	420,837	5,934	
PiPA	10	97.481	2.370	86,293	2.022	
Aba	10	1 800	0.059	1 845	0.049	
Ala	10	180 941	2 323	177 492	2 829	
Arg	10	100,941	1,116	53 360	1,116	
Asn	10	0 1/10	0.012	0.142	0.011	
Asp	10	127.004	5,116	110 266	2 480	
Cornosin	10	0.120	0.010	0.111	0,008	
Cit	10	50 118	0,010	52 602	0,008	
Ch	10	204 252	0,830	196 792	0,740	
Cla	10	204,232	2,297	100,762	2,030	
Gly	10	133,940	1,000	133,084	1,209	
His	10	140,024	6,567	134,750	5,427	
Leu/Ile	10	163,238	2,391	130,424	1,/12	
MeHis	10	19,559	0,853	/,214	0,269	
Met	10	47,945	1,384	43,528	1,008	
Orn	10	42,943	2,652	44,090	1,594	
Phe	10	58,833	0,787	54,586	0,669	
Pro	10	107,961	2,801	91,106	2,383	
Sarc	10	101,286	2,227	95,567	2,393	
Ser	10	262,161	5,140	276,584	5,718	
Tau	10	1,307	0,028	1,345	0,027	
Thr	10	41,487	0,818	40,351	0,885	
Trp	10	41,810	1,225	37,544	0,977	
Tyr	10	93,479	1,604	77,026	1,319	
Val	10	172,693	2,691	136,099	2,102	
	10	18,423	0,377	18,527	0,303	
C2 (263)	10	17,686	0,245	17,847	0,225	
C3	10	0,635	0,020	0,623	0,023	
C3DC	10	0,168	0,009	0,159	0,008	
C4	10	0,388	0,009	0,383	0,009	
C4-OH	10	0,164	0,006	0,168	0,007	
C5	10	0,251	0,006	0,243	0,006	
C5 OH+HMG	10	0,171	0,005	0,169	0,004	
C5:1	10	0,016	0,002	0,016	0,002	
C6	10	0,097	0,004	0,092	0,004	
C6DC	10	0,021	0,002	0,029	0,002	
C8	10	0,160	0,006	0,146	0,006	
C8:1	10	0,022	0,002	0,028	0,003	
C10	10	0,162	0,006	0,158	0,006	
C10:1	10	0,066	0,004	0,072	0,004	
C12	10	0,163	0,005	0,162	0,006	
C14	10	0,245	0,006	0,248	0,006	
C14:1	10	0,100	0,004	0,101	0,004	
C14OH	10	0,027	0,002	0,030	0,002	
C16	10	1,151	0,016	1,184	0,015	
C16:1	10	0,121	0,004	0,118	0,004	
C16:10H	10	0,045	0,002	0,053	0,003	
C16OH	10	0,073	0,003	0,064	0,003	
Glut	10	0,070	0,003	0,066	0,003	
MeGlut	10	0,023	0,002	0,032	0,002	
MMA	10	0,295	0,008	0,332	0,009	

C18	10	0,543	0,009	0,590	0,009
C18:1	10	0,516	0,008	0,558	0,009
C18:10H	10	0,047	0,003	0,043	0,003
C18:2	10	0,143	0,004	0,137	0,004
C18:2OH	10	0,016	0,002	0,019	0,001
C18OH	10	0,032	0,002	0,036	0,002
C20:1	10	0,020	0,002	0,023	0,002
C20:2	10	0,019	0,002	0,019	0,002
C20:3	10	0,007	0,001	0,007	0,001

Р	ורגז H/OZN	SOTZ	A	υ	U	υ (, c	0	υ	A	5	U	J (,	-	F	υ	U	ت		ل ر		0	A	υ	A	-	U (0 0	⊢	c	U	∢ ر	0	U	A		ی ر	, ₋	٨	υ	A	J	۲ŀ	- 0	υ	F	F .	A T	. A	U	5
SN	29922 29922		υ	т	A	- <	< +	-	A	σ	A	-	_ <	× +	. U	σ	Т	F	۷ ا		, c	> ر	< ∢	U	т	σ	A	0	ס <	υ	9	₹ 0	⊳ ⊲		G	υ ·	₹ <	< ⊢		υ	A	σ	⊢	۵	ע פ	F	U	5	ی و	0	A	A
	ชา_รя		rs3714728	rs3711079	rs4222256	rs3023914	rs3664578	rs3684654	rs4222579	rs3663996	rs3706326	rs3022876	rs3022878	rs3658142	rs3714030	rs3670874	rs4223268	rs4223406	rs3724080	rs3666533	rc 3600 700	rc2162271	rs3721089	rs4136498	rs3656494	rs3674478	rs3689878	rs3723778	rs4138670 rs16265	rs3726937	rs31935151	rs4224727	rs3693138 rs3693138	rs4225021	rs3664933	rs3023833	rs3/1530/	re3657031	rs3719351	rs3665335	rs3722801	rs3660389	rs3719379	rs3659264	rs3/21822 rs3711088	rs3675839	rs4226547	rs3680765	rs422bb49 rs3023147	rs3706526	rs3658154	rs3690034
ι	MB_ Position		9.01	21.93	34.50	50.45 76 20	95.53	107.41	127.76	143.99	163.73	182.87	20.05 11 00	29.67	60.30	77.03	93.26	113.67	131.98	151.96	100.44	01.001	118.53	135.36	154.44	6.82	24.51	39.40	58.07 77.61	97.25	108.83	115.98	154.93	5.58	24.92	44.79	64.37	06.86	114.44	132.93	150.60	81.16	101.07	112.02	131.26 148.26	16.62	36.56	56.65	91.40	110.62	124.65	145.05
-c	Num Cur_BLE		NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI BUILD 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37 NCBI Build 37	NCBI Build 37		NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37 NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37
а [—]	Current <u>,</u> osition		9013,683	21932,522	34502,304	50454,676 76296 671	06575 300	107414,374	127764,553	143991,782	163725,177	182868,268	11000 200	29668 785	60302,386	77028,245	93260,019	113667,509	131981,147	151960,8/8	C2C,444001	10010102	118532,449	135357,403	154440,247	6820,652	24513,526	39402,375	58070,039 77612.028	97252,336		115975,049	154079 632	5581,238	24922,231	44791,322	64371,068	49C/C 46720	114439.672	132930,367	150598,041	81157,828	101072,610	112015,649	131258,1// 148260.469	16621,522	36559,436	56652,493	/3194,8/4 91398.404	110616,848	124648,174	145051,921
-0	Pre_BLC Pre_BLC		NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NUCBI BUILD 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI BUILD 30	NCBI Build 30	NCBI Build 36	NCBI Build 36 NCBI Build 36	NCBI Build 36		NCBI Build 36	NCBI Build 36 NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36 NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36 NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36					
ςι Γs	Previou Position		9013,536	21927,592	34390,005	50342,377	95459 219	107345,344	127695,522	143911,616	163631,723	182774,812	14004 614	29635,274	60265,168	76991,027	93220,701	113628,191	131846,852	151826,583	070'0TC00T	100510,012	118821,535	135631,826	154712,576	6820,652	24677,009	39644,013	58151,221 77437.355	97077,663		115800,376	153540 373	5587,244	24926,478	44688,331	64.258,964	021,200 06,668 367	114250.662	132739,200	150063,845	81173,492	101088,714	112031,432	148269.117	15194,695	35483,177	49265,144	84126079	103342,155	117295,809	137698,581
-0	Pre_BLC Num4		NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCRI Build 34	NCBI Build 34 NCBI Build 34	NCBI Build 34		NCBI Build 34	NCBI Build 34 NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34 NCBI Build 34	NCBI Build 33	NCBI Build 34	NCBI Build 34	NCBI Build 34 NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34																					
†ր s	Previou Position		9133,092	22169,149	34714,963	50654,679	93456 305	105409,062	125703,186	141968,822	161701,394	180891,958	11062 771	79745,428	60319,730	76887,938	93124,546	113450,591	131669,265	151592,079	JOU 2 11 20	090 91000	117603,871	134577,396	153784,289	6820,652	24721,893	39594,194	58000,617 77027.346	96560,719		115261,350	153197 886	5587,244	23885,821	43157,154	62/1/,829	05.046 162 05.046 162	113100.308	131644,110	148733,723	81543,887	101598,231	112625,329	132086,896 149245.770	7713,719	30937,254	43511,234	78103 809	97574,701	111380,518	13228,256
-0	Pre_BLC Pre_BLC		NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI BUILD 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33 NCBI Build 33	NCBI Build 33		NCBI Build 33	NCBI Build 33 NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33 NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33 NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33
EL S	Previou Position		9092,232	22156,681	34729,044	50770,716 76 946 305	93564.612	105439,262	125699,272	142043,511	161807,324	181014,946	193115,640	282,11021	60402,965	77084,354	93313,855	113718,326	131904,434	152198,491	196,10001,341	10020500	119180,483	136240,934	155382,051	6820,652	24512,289	39546,759	57325,266 76240.370	95915,920		114648,085	152591 465	5587,957	23823,761	43011,404	62615,736	01 23 1,27 0 03 730 85 1	111382.152	130042,137	147263,370	81433,073	101508,565	112574,496	131616,2/2 148456,534	7713,719	24197,894	36839,834	53U81,232 71387875	90978,642	104800,451	125485,358
-c	Pre_BLC Vum2		NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI BUILD 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30 NCBI Build 30	NCBI Build 30		NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30 NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30
ζι Ts	Previou Position		9040,094	22219,118	34815,662	77001 222	93852 872	105815,323	126118,985	142518,694	162452,424	181677,584	193/81,032	30076 432	61271,996	78374,188	94719,682	115363,857	133808,812	153831,479	0//0640/T	10068/ 688	119282,719	136315,711	155483,596	6345,504	24361,858	39330,757	57259,890 75322.204	95544,603		114302,071	151354 591	8305,230	23580,378	43274,002	63005,987	03454 121	111157.291	129921,255	147758,431	81668,744	101794,822	112858,733	131/54,156 148689,545	10686,131	25628,493	38015,220	72660 606	91932,077	105778,515	126850,930
-c	Pre_BLC Vum1		MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC V3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC V3		MGSC v2	MGSC v3	MGSC v3 MGSC v3	MGSC v3		MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3 MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3					
ŢU Ts	Previou Position		9072,542	22154,835	34899,657	50957,023	94081 544	106073,928	126655,393	143006,008	162977,516	182325,478	194/53,091	30149.715	61161,692	78062,303	94398,324	114758,266	133158,154	152934,935	100/6T 060T	1004 80 838	119173,143	136177,436	155372,777	6370,062	24192,594	39199,957	56969,111 75245.266	95346,075		114064,127	150157 643	8305,854	23890,459	43353,028	63053,775	02020,457 03038 503	111893.957	130950,804	149044,358	82087,904	101960,309	112964,989	131929,438 149052,281	11167,675	26273,800	39020,313	73958 894	93235,239	107143,493	127943,093
	СНВ		1	-	-				1	1	1			۲ ۲	5	2	2	2	2	7 0	۰ n	n n	'n	m	m	4	4	4,	4 4	4	4	4 4	4 4	- S	S	s I		n u	n u	ъ	S	9	9	9	و م	7	7	-	~ ~	-	~	2
	ol_9NS	JAX Stock #	01-009072542-M	01-022154835-M	01-034899657-N	01-050957023-N	01-094081544-M	01-106073928-M	01-126655393-N	01-143006008-M	01-162977516-M	01-182325478-N	01-194/53091-N	02-030149715.M	02-061161692-M	02-078062303-M	02-094398324-N	02-114758266-N	02-133158154-M	02-152934935-M	N-T006T060T-70	M-951001001-00	03-119173143-M	03-136177436-M	03-155372777-M	04-006370062-M	04-024192594-M	04-039199957-M	04-056969111-M 04-075245266-N	04-095346075-M	rs31935151	04-114064127-N	04-150152643-M	05-008305854-N	05-023890459-M	05-043353028-N	05-063053/75-M	M-1 84020200-20	05-111893957-M	05-130950804-M	05-149044358-M	06-082087904-M	06-101960309-M	06-112964989-M	06-149052281-M	07-011167675-M	07-026273800-N	07-039020313-M	07-073958894-N	07-093235239-M	07-107143493-M	07-127943093-M

Anhang Tab. 8: SNP-Marker Liste. Dargestellt sind die 118 SNP-Marker, welche durch LGC genomics hergestellt wurden.

ורו H/OZN ⊾	SOTZ	Т	A	ن ی	A	A	0	<u>ں</u>	ۍ ا	ی ر	, o	υ	- I	υ,	∢ ⊦	- 0	υ	A	F	U	U	5	י פ	_ ر	, r	A	σ	⊢	A	U	A	۷ ۷	+ ر	- 0	A	⊢	A	a a	5	c	A	U	υ F	- 4	4	⊢	U	ں ت		- 0	A	U	5
Z9P2		A	U	⊍ ⊳	σ	U	F.	A	٩ŀ		. 4	F	U	- (ۍ ر	◄ ر	F	σ	U	A	A	υ ·	∢ ر	ר פ	. u	0	٩	A	F	A	σ	u ہ	_ (⊳ ∢	c	U	U	ں ر	-	9	U	F		ی ر	, U	U	A	A (J	- ר	9	F	A
מ־זא		rs3715345	rs3671390	rs3664354 rs3703673	rs3699199	rs3653415	rs3719348	rs3659084	rs3709024	rs36684510 re3668451	rs3711701	rs3669882	rs3089366	rs3654717	rs36934/4	rs3695837	rs3023278	rs3688955	rs3679103	rs3701242	rs3673599	rs3706076	rs36/3029	rs3655030	rs3654710	rs3724682	rs3713287	rs3677220	rs3695655	rs3088696	rs3669009	rs4137897	rs36/135/	rs3665803	rs3726451	rs3023416	rs3688432	rs3/03015 re3711016	rs3023429	rs4159750	rs4166431	rs4184097	rs4198584	rs3684506	rs3712909	rs3023456	rs3669120	rs4231742	rs36/9149	rs3656892	rs3709900	rs3658667	rs3681148
Position Position		5.17	24.43	41.09 61.25	80.55	95.86	16.02	34.65	50.59	04.30 78 00	97.37	117.66	89.14	106.64	30.00	54.13	71.98	90.40	107.48	46.43	63.91	83.78	100.44	13 73	31.51	47.41	60.68	78.16	96.49	116.97	11.44	30.90	4b./2 65 A2	83.81	17.00	31.85	51.57	70.28 87 21	101.64	8.84	28.24	48.13	68.42	9.20	47.46	67.76	86.60	11.08	30.86	47.34	88.70	20.69	31.48
Num Cur_BLD_		NCBI Build 37	NCBI Build 37	NCBI Build 37 NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37 NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI BUILD 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37 NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37	NCBI Build 37
Current_P osition		5167,384	24432,100	41091,728 61245.935	80549,385	95859,946	16021,041	34646,174	50587,523	78003 067	97366,631	117660,481	89143,789	106641,086	124216,087	54134,980	71981,592	90397,849	107481,064	46426,114	63907,587	83781,035	100439,104	13726 514	31508.761	47409,994	60682,856	78157,169	96493,594	116967,700	11439,598	30897,434	4b/1b,3b8 65421 200	83805,203	17000,043	31846,034	51566,218	7205 816	101641,254	8838,559	28238,287	48129,852	68417,817	27244 878	47464,576	67755,219	86603,470	11084,828	3085/,2/3	68820,760	88696,388	20687,583	31481,029
Pre_BLD_ Num5		NCBI Build 36	NCBI Build 36	NCBI Build 36 NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36 NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36 MCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NUCBI BUILD 36	NCBI Build 36 NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36 NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36 NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36	NCBI Build 36									
Previous_ Proition5		5167,356	24787,173	41505,191 61659.280	80921,558	96225,175	15966,990	34588,260	50531,648	78031 844	97275,564	117600,061	89110,843	106608,140	124182,091	54164,901	71984,285	90352,625	107435,840	46195,413	63724,613	83598,896	99601,944	2/0/555511	31424.357	47325,597	60591,118	78481,455	96824,338	117298,174	9400,660	28913,257	45018,570 63766 573	82213,420	17015,013	31860,868	51564,746	87203 152	101638,857	8754,336	28153,434	48049,076	68300,930	26835 577	46790,818	67310,824	86112,456	11084,828	30840,629	68786,475	88661,189	20680,190	31472,536
Pre_BLD_ Num4		NCBI Build 34	NCBI Build 34	NCBI Build 34 NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34 NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34 NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI BUILD 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34 NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34	NCBI Build 34
Previous_ Proition4		4529,922	2 2076,208	3 8906,954 5 7800.625	77238,607	92618,969	16057,898	34752,567	50851,745	702.40 066,000 066	97365,571	117747,982	89652,369	107091,633	1244/1/489 2 0011 E21	54074,320	71893,749	90357,623	107440,840	42072,031	59549,468	79540,677	94.628,066	13053 670	30,896.515	46912,694	59239,910	74081,063	91914,180	112595,360	9067,193	28217,891	411/b,484 502/07/772	77764,102	16908,269	31918,903	51731,902	70481,638 87477 677	101869,286	8510,486	27021,666	46968,368	67438,176	74903 852	44846,088	65174,424	84032,069	11130,175	960'04602	68891,893	88671,206	19853,462	30658,450
Pre_BLD_ Num3		NCBI Build 33	NCBI Build 33	NCBI Build 33 NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI BUILD 33	NCBI Build 33 NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI BUIID 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33 NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI BUILD 33	NCBI Build 33	NCBI Build 33	NCBI Build 33	NCBI Build 33
Previous_		5155,555	22094,663	39077,236 57541.983	77144,354	92682,126	16064,796	34817,878	50940,014	79546 688	97306,104	117724,024	89439,033	106878,678	124560,538	53961,217	71780,646	90207,658	107290,875	40487,282	58027,245	77988,269	93816,208	CUC, C21411	30796.574	46810,500	59724,452	74616,016	92456,309	113136,546	7213,582	26120,337	38/50,818 56709 927	75192,472	16982,487	31970,597	51757,920	87761 903	102289,996	8524,329	28078,003	48035,134	68704,488	25696 382	45492,753	65826,423	84773,276	11306,822	31146,035	69186,821	89013,861	19885,530	30716,634
Pre_BLD_ Vum2		NCBI Build 30	NCBI Build 30	NCBI Build 30 NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI BUILD 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI BUILD 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI BUILD 30	NCBI BUILD 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30 NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30	NCBI Build 30
Previous_		5151,391	22086,209	38990,856 57605.677	77161,009	92700,427	16056,805	34766,397	50902,789	700/TC2070	97440,457	117859,016	89174,359	106620,494	124418,/9/	54918,073	72829,301	91367,846	108463,400	39555,905	57141,606	77335,816	931b1,458	130262011	30862.328	46844,721	59749,753	74260,055	92094,738	112927,497	5910,235	24813,337	3/42b,/43 55461 902	73977,117	16970,195	31878,976	51698,415	7640 387	102265,828	8318,736	27992,428	48198,473	68851,673	55803 879	45586,362	65900,970	84867,637	11079,095	309/2,334	69077,944	88981,199	19895,013	30814,642
Pre_BLD_ Num1		MGSC v3	MGSC v3	MGSC v3 MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC V3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC V3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC v3	MGSC V3	MGSC v3	MGSC v3	MGSC v3	MGSC v3
Previous_ Proition1		5101,158	22074,356	39133,894 57901.843	77591,748	93120,105	16198,772	34961,903	51115,796	85C,12UC0 70007	97984,353	118995,402	89875,395	107333,522	1250/1/850	54801.294 54801.294	72769,004	91287,860	108428,031	39674,614	57318,199	77362,373	93345,521	13051 043	30913.320	46957,715	60129,254	75102,485	93069,759	113792,906	5898,912	25184,538	3 /91/,54	74468,555	17113,859	3 2012,071	5 1946,000	1/0/1160/	102788,257	8315,743	27993,667	48122,303	68922,190	26797930	46354,848	66532,305	85498,773	10953,833	30864,114	68995,140	89124,391	20257,763	31186,563
снв		8	~	~ ~	∞	∞	6	6	6	סת	6	6	10	10	10	= =	11	11	11	12	12	12	11	13	1 1	13	13	13	13	13	14	14	14	14	15	15	15	15	15	16	16	16	16	17	17	17	17	18	9	18	18	19	19
al_9NS	JAX Stock #	08-005101158-M	08-022074356-M	08-039133894-M 08-057901843-M	08-077591748-M	08-093120105-M	09-016198772-M	09-034961903-M	09-051115796-M	M-05020202020	09-097984353-M	09-118995402-M	10-089875395-N	10-107333522-M	M-0281/0571-01	11-054801294-M	11-072769004-N	11-091287860-M	11-108428031-M	12-039674614-M	12-057318199-M	12-077362373-M	12-0933435 21-M	M-500615511-21	13-030913320-M	13-046957715-M	13-060129254-M	13-075102485-M	13-093069759-M	13-113792906-N	14-005898912-M	14-025184538-M	14-03/91/554-M	14-074468555-M	15-017113859-M	15-03 2012071-N	15-051946000-M	M-1/0110/0-31	15-102788257-N	16-008315743-C	16-027993667-C	16-048122303-C	16-068922190-C	17-026297930-M	17-046354848-M	17-066532305-N	17-085498773-M	18-010953833-N	18-030864114-M	18-068995140-M	18-089124391-M	19-020257763-M	19-031186563-M

Anhang Tab. 9: Überblick der Verhältnisse der signifikant differentiell exprimierten Gene im *Microarray* auf Chromosom 2 und 4. Verhältnisse, welche <1 sind, belegen eine Hochregulierung im NZO-Stamm, dagegen repräsentieren Verhältnisse >1 eine Hochregulierung im 129P2-Stamm.

EnsID	Chr.	Position (Mb)	Gen	Leber	SMq	gWAT	BAT
ENSMUSC0000075467	2	26.35	Dulz	1.42	1.74	1.43	1.00
ENSMUSC00000075407	$\frac{2}{2}$	20,33	Dala Dala 1	2 34	1,74	1,45	3.80
ENSMUSC000000494	2	162.62	T UKI Sovino 3	0.549	0.249	0.464	0.467
ENSMUSC00000017707	2	26.01	Cm22870	1.41	1 79	1.64	0,407
ENSMUSC0000004829	2	20,91	Um228/9	0,402	1,70	2 42	
ENSMUSC00000020822	2	32,30	LCH2 Slo42 a 1	0,402	0,74	3,43	
ENSMUSC00000027075	2	04,00	<i>SIC4501</i>	0,037	1,94	2,52	
ENSMUSG00000032679	2	104,10	Casya	0,530	0,588	0,010	
ENSMUSG0000004105	2	33,22	Angpti2	1,4	1,35		
ENSMUSG0000026893	2	62,66	Gca	0,632	0,/18		
ENSMUSG000000/903/	2	131,94	Prnp	0,66	1,38		
ENSMUSG0000090625	2	174,34	Gm20/21	0,741	1,57		
ENSMUSG0000074622	2	160,36	Mafb	1,39		0,569	1,62
ENSMUSG0000026655	2	3,71	Fam107b	0,746		0,586	
ENSMUSG0000025815	2	5,90	Dhtkd1	2,22		1,37	
ENSMUSG0000060422	2	86,05	Olfr1034	2,78		1,49	
ENSMUSG0000068735	2	93,19	Trp53i11	1,41		1,46	
ENSMUSG0000027195	2	94,03	Hsd17b12	0,713		0,726	
ENSMUSG0000027175	2	104,68	Tcp1111	1,75		1,43	
ENSMUSG0000027199	2	122,59	Gatm	1,4		0,529	
ENSMUSG0000005803	2	122,77	Sqrdl	1,39		1,64	
ENSMUSG0000017929	2	167,30	B4galt5	1,7		0,481	
ENSMUSG0000026880	2	35,31	Stom	1,33			1,72
ENSMUSG0000063235	2	90,91	Ptpmt1	1,41			1,49
ENSMUSG0000048058	2	101,95	Ldlrad3	1,38			0,713
ENSMUSG0000036591	2	20.86	Arhgap21	1.58			- ,
ENSMUSG0000078201	2	25.26	Tmem203	0.737			
ENSMUSG0000062061	2	25.70	Obp2a	1.9			
ENSMUSG0000009566	2	32.69	Engs	0.676			
ENSMUSG0000026864	2	34.77	Hspa5	0,070			
ENSMUSG0000020804	$\frac{2}{2}$	36.08	Ispus	1 /3			
ENSMUSC0000026046	2	51.05	Nimi	0.678			
ENSMUSC0000026940	2	51,95	IVIIII Ifila 1	0,078			
ENSMUSC0000020890	2	62,00	1jin1	0,08			
ENSMUSG0000034780	2	08,10	BSgatt1	0,398			
ENSMUSG0000027079	2	84,72		0,716			
ENSMUSG0000027074	2	84,80	Ube210	0,505			
ENSMUSG00000027074	2	84,94	SIC4585	1,47			
ENSMUSG0000045392	2	86,03	Olfr1033	2,07			
ENSMUSG00000027189	2	102,30	Trim44	0,679			
ENSMUSG0000065794	2	116,97	Gm25514	1,35			
ENSMUSG0000032715	2	152,34	Trib3	1,37			
ENSMUSG0000000876	2	154,59	Pxmp4	0,7			
ENSMUSG0000018211	2	164,21	Wfdc15b	0,651			
ENSMUSG0000017664	2	165,28	Slc35c2	1,41			
ENSMUSG0000039501	2	167,04	Znfx1	0,703			
ENSMUSG0000008999	2	172,87	Bmp7	0,704			
ENSMUSG0000027514	2	173,21	Zbp1	0,733			
ENSMUSG0000094786	2	177,51	Gm14403	0,708			
ENSMUSG0000017754	2	164,84	Pltp		0,743	0,713	0,712
ENSMUSG0000038740	2	33,73	Mvb12b		1,61	1,61	
ENSMUSG0000026827	2	57,37	Gpd2		1,34	1,88	
ENSMUSG0000068614	2	114,05	Actc1		1,6	0,555	
ENSMUSG0000035268	2	163,66	Pkig		0,721	0,732	
ENSMUSG0000017760	2	164,83	Ctsa		0,642	0,644	
ENSMUSG0000026826	2	57,11	Nr4a2		1,93		1,45
ENSMUSG0000038400	2	173,22	Pmepa1		1,38		0,739
ENSMUSG0000016344	2	181.19	Ppdpf		2,05		2,12
ENSMUSG0000043241	2	5,96	Upf^2		1,37		,
ENSMUSG0000026773	2	11.47	Pfkfb3		1.54		
ENSMUSG0000043415	2	19.66	Otud1		2,33		
ENSMUSG0000050592	2	32.07	Fam78a		1.45		
ENSMUSG0000026915	2	37.57	Strbp		1.43		
ENSMUSG0000050447	2	50.13	Lvnd6		1.9		
ENSMUSG0000027313	2	119 35	Chac1		1 36		
ENSMUSG0000027333	2	131 51	Smor		0 709		
ENSMUSG0000027333	2	152.01	Myll-2		1 35		
ENSMUSG0000027470	$\frac{2}{2}$	172,91	Aurka		1 1/		
ENSMUSG0000027490	$\frac{2}{2}$	172,50	Del-1		1,44		
ENSWISG0000027515	$\frac{2}{2}$	32.28	I UKI Swi5		1,/1	1 / 8	1 56
ENSMUSC0000026860	2	31.25	Domd5			1 27	1 32
EINSINIUSCUUUUUU20809	2	34,03	rsmas			1,57	1,33

ENEMLICCOOOOO27022	2	(7 15	V:			0.709	1.55
ENSMUSG0000027022	2	67,45	Xirp2			0,708	1,55
ENSMUSG0000027068	2	69,38	Dhrs9			0,355	3,55
ENSMUSG0000059173	2	79.83	Pdela			1.6	1.42
ENSMUSC0000027332	2	118.88	Ind			1.83	14
ENGNIUSC00000027552	2	110,00				1,05	1,7
ENSMUSG0000046814	2	119,17	Gchfr			1,4	1,98
ENSMUSG0000098789	2	120,03	Jmjd7			0,703	0,699
ENSMUSG0000027359	2	126.55	Slc27a2			2.58	2.08
ENSMUSC0000074771	2	136.50	Ankofl			2.2	1.34
ENSW0300000074771	2	130,30	Ankeji DC024002			2,2	1,34
ENSMUSG000001/914	2	136,50	BC034902			2,1	1,42
ENSMUSG0000067786	2	157,56	Nnat			1,46	0,602
ENSMUSG0000017300	2	164.78	Tnnc2			0.487	3.84
ENSMUSC0000026650	2	3 / 1	Maial			1 3/	-,
ENSM0300000020030	2	2,41	D			1,54	
ENSMUSG0000026648	2	3,45	Dcire1c			0,648	
ENSMUSG0000026657	2	4,61	Frmd4a			0,715	
ENSMUSG0000039063	2	6.19	Echdc3			1.35	
ENSMUSG0000075538	2	6.03	Gm10855			1 3/	
ENGNUSC0000075556	2	0,75	115			1,57	
ENSMUSG0000023206	2	11,/1	IlISra			1,57	
ENSMUSG0000026737	2	18,84	Pip4k2a			0,608	
ENSMUSG0000075514	2	20,97	Gm13375			1,65	
ENSMUSG0000026679	2	21.18	Enkur			1.74	
ENGNUSC00000020077	2	21,10	Linkur			1,74	
ENSMUSG0000026779	2	23,12	Masti			0,614	
ENSMUSG0000026981	2	24,34	Il1rn			0,236	
ENSMUSG0000026976	2	24,42	Pax8			1.51	
ENSMUSG0000026958	2	25 35	Dpp7			0 726	
ENEMUSC000002055	2	25,55	Uar 111			0,720	
EIN5IVIUSGUUUUUU26956	2	25,56	Uapili			0,038	
ENSMUSG00000015083	2	25,50	C8g			1,65	
ENSMUSG0000026941	2	25,57	Mamdc4			1,4	
ENSMUSG0000065258	2	26.91	Gm23060			1.56	
	2	20,24	612.00			1,50	
ENSMUSG0000026860	2	30,34	Sh5glb2			1,46	
ENSMUSG0000050737	2	30,89	Ptges			1,47	
ENSMUSG0000026825	2	32.31	Dnm1			0.713	
ENSMUSC0000026810	2	32.41	Slc25a25			0.748	
ENSW0300000020819	2	32,41	51025025			0,740	
ENSMUSG00000358/5	2	35,08	AI182371			1,/1	
ENSMUSG0000026749	2	38,51	Nek6			0,646	
ENSMUSG0000026834	2	58.27	Acvrlc			1.49	
ENSMUSC0000075224	2	62.07	Fian			1.57	
ENSMUSC0000075524	2	03,97	Tign			1,57	
ENSMUSG0000027030	2	68,21	Stk39			1,68	
ENSMUSG0000027035	2	68,86	Cers6			0,72	
ENSMUSG0000005233	2	69.19	Spc25			0.695	
ENSMUSC0000027018	2	71.30	Hat1			0,703	
ENSMUSC00000027018	2	71,39				0,703	
ENSMUSG0000055612	2	72,48	Cdca/			0,706	
ENSMUSG0000075284	2	73,43	Wipf1			0,69	
ENSMUSG0000044033	2	77.01	Ccdc141			1.56	
ENSMUSC0000027000	2	70.26	ItaaA			0.723	
ENSMUSC00000027009	2	79,20	ngu4			0,723	
ENSMUSG0000027082	2	84,43	Ifpi			1,52	
ENSMUSG0000002111	2	91,10	Spi1			0,355	
ENSMUSG0000027249	2	91.63	F2			1.99	
ENSMUSG0000027230	2	91.98	Creh311			0.656	
ENSMUSC0000068742	2	02,40	Cm2			1.5	
EINSI/10500000008742	2	92,40	Cry2			1,5	
ENSMUSG0000027221	2	92,61	Chst1			1,53	
ENSMUSG0000027215	2	93,42	Cd82			1,55	
ENSMUSG0000040272	2	93.84	Accs			1.37	
ENSMUSG0000032841	2	101 71	Prv51			1.41	
ENGMUSC00000005007		101,/1				1,41	
ENSMUSG0000005087	2	102,81	Ca44			0,392	
ENSMUSG0000032698	2	103,97	Lmo2			0,63	
ENSMUSG0000041660	2	110,26	Bbox1			1,71	
ENSMUSG0000027331	2	118 81	Knstrn			0.629	
ENSMUSC0000027331	2	110.07	Canos			0.641	
EINSIMUSG00000027520	2	119,07	Cases			0,041	
ENSMUSG0000072980	2	119,61	Oip5			0,746	
ENSMUSG0000027306	2	119,62	Nusap1			0,697	
ENSMUSG0000027293	2	120.09	Ehd4			0.615	
ENSMUSC0000001000	2	127.00	Rhura			0.619	
ENSW030000001999	2	127,09	Bivia			0,018	
ENSMUSG0000079056	2	127,46	Kcnip3			1,75	
ENSMUSG0000042851	2	128,97	Zc3h6			1,42	
ENSMUSG0000048327	2	129.27	Ckap2l			0.72	
ENSMUSG0000037002	2	120 50	Sirpa			0.473	
ENGMUSC00000037302	2	122,37	511 pu			0,775	
ENSMUSG0000043110	2	132,87	Lrrn4			2,2	
ENSMUSG0000062098	2	138,26	Btbd3			1,54	
ENSMUSG0000027423	2	144.25	Snx5			0.62	
ENSMUSG0000037143	2	145 04	4930529M08Ril			1 30	
ENGMUSC000003/143	2	140.40	TL1.1			1,57	
ENSIMUSG000000/4/43	2	148,40	Inba			2,04	
ENSMUSG0000027435	2	148,44	Cd93			0,721	
ENSMUSG0000032046	2	150,83	Abhd12			0,578	
ENSMUSG0000038375	2	155.38	Trn53inn?			0.728	
ENSMUSC0000067919	2	156 79	My10			1 /19	
	2	150,78	wyl9			1,40	
ENSMUSG0000027639	2	157,10	Samhd I		1	0,629	1

ENSMUSG0000067787	2	157.56	Blcap			1.51	
ENSMUSG0000064405	2	158 36	Gm23025			1.34	
	2	150,50	01125725			1,54	
ENSMUSG0000044349	2	158,38	Snhg11			1,46	
ENSMUSG0000044405	2	158.50	Adig			1.39	
ENGMUSC0000007654	-	150,00	Eam 02 d			0.721	
ENSMUSG0000027654	2	158,77	Famosa			0,731	
ENSMUSG0000017950	2	163,51	Hnf4a			1,45	
ENSMUSC0000017607	2	163 73	A da			0.605	
ENSIVIUS00000017097	2	105,75	Аш			0,005	
ENSMUSG0000027656	2	163,83	Wisp2			0,624	
ENSMUSG0000027661	2	165 51	Slc2a10			0.55	
ENSIVIO300000027001	2	105,51	5102010			0,55	
ENSMUSG0000047907	2	169,63	Tshz2			1,77	
ENSMUSG0000016256	2	174 43	Ctsz			0 566	
	2	174,45	Cl32			0,500	1.50
ENSMUSG0000039496	2	3,51	Cdnf				1,52
ENSMUSG0000026986	2	24.00	Hnmt				0.639
ENGNUIG C00000015000	-	25,47	D, I				0,722
ENSMUSG0000015090	2	25,47	Ptgas				0,733
ENSMUSG0000036352	2	26.01	Ubac1				0.73
ENEMILEC0000017144	2	51.12	D., 12				0.749
ENSIVIUS00000017144	2	51,15	кпаз				0,748
ENSMUSG0000075307	2	69,67	Klhl41				1,41
ENSMUSG0000002732	2	76.66	Ekbn7				1.44
ENSINGSG0000002732	2	70,00	Ткорт				1,77
ENSMUSG0000051747	2	76,84	Ttn				3,16
ENSMUSG0000044338	2	85 14	Anlnr				0.724
ENGN/USC00000077247	2	01.(7	11puu				1.20
ENSMUSG0000027247	2	91,67	Arngap1				1,30
ENSMUSG0000068686	2	104,07	Cd59b				1,54
ENSMUSC0000040152	2	110 11	Thhe 1				1.62
	2	110,11	Thust				1,03
ENSMUSG0000027338	2	131,95	Prnd				0,727
ENSMUSG0000033096	2	150 58	Anman				1 44
ENGMUSCOOOOOOOOOO	ź	155,50	c les				0.710
ENSMUSG0000038259	2	155,94	Gdf5				0,/19
ENSMUSG0000027624	2	156.52	Enh4 111				0.624
ENGMUSC0000074(20	-	156.96	4020510115D:L				0,621
ENSIVIUSG00000074629	2	130,80	4930318113Rik				0,075
ENSMUSG0000074623	2	160.31	Gm826				1.35
ENGMUSC0000082228	4	12/19	Cm 11826	2.45	2 85	2.60	2 40
ENSIVIUS00000085528	4	13,40	Gm11820	2,45	2,05	2,09	2,49
ENSMUSG0000028648	4	123,72	Ndufs5	0,615	0,54	0,57	0,515
ENSMUSG0000046623	4	127 35	Gib4	0.74	0.54	0 504	0.42
E1451410500000040023		127,55	0,04	0,74	0,54	0,504	0,42
ENSMUSG0000037553	4	133,61	Zdhhc18	0,617	0,655	0,679	0,68
ENSMUSG0000095567	4	156.24	Noc21	0.655	0.619	0 554	0.644
	-	150,24	110021	0,055	0,017	0,554	0,011
ENSMUSG0000028393	4	62,51	Alad	0,586	0,487		0,673
ENSMUSG0000041261	4	8 1 4	Car8	1 36	0.697		
ENGNUSC00000011201	4	(2.24	0 1	1,50	1.27		
ENSMUSG0000039196	4	63,34	Orm1	0,67	1,37		
ENSMUSG0000028218	4	12.16	Fam92a	1.38		1.35	
ENSMUSC0000050027	4	100.65	0620012D21D:1	1 47		1.96	
ENSIVIUS00000039027	4	109,05	9030013D21Kik	1,47		1,00	
ENSMUSG0000092680	4	117,16	Snord55	1,34		1,38	
ENSMUSC0000086200	4	132 31	Subal2	1.85		1.65	
EINSINIUS00000080290	4	152,51	Snng12	1,05		1,05	
ENSMUSG0000064949	4	132,31	Snora61	2,04		1,71	
ENSMUSG0000046312	4	41 50	A 1464131	0 706			0.685
ENGLAUG GOODOOO 10312		(2,50	11101151	0,700			0,005
ENSMUSG0000038422	4	62,50	Hdhd3	0,609			0,666
ENSMUSG0000034853	4	106.74	Acot11	1.8			1.61
ENGMUSC0000005599	4	24.40	C=12250	1.62			y -
EINSIMUSQ0000093388	4	54,49	Gm12550	1,05			
ENSMUSG0000061322	4	41,63	Dnaicl	0,554			
ENSMUSG0000060317	4	49 38	Acnat?	0.277			
		77,50	D5 105	0,277			
ENSMUSG0000065887	4	53,86	n-R5s185	0,439			
ENSMUSG0000061540	4	63.36	Orm2	0.364			
ENEMLISCOODOOO0028572		05.07	II.a -1-1	0 672			
ENSIMUSG0000028572	4	95,97	HOOKI	0,075			
ENSMUSG0000029656	4	104,77	C8b	0,717			
ENSMUSG0000044254	4	106 44	PeskQ	0.49			
ENGMUSC0000024707		107.20	D: 1	0.724			
ENSIVIUSCUUUUUU34785	4	107,29	Di01	0,734			
ENSMUSG0000057375	4	107,32	Yipf1	0,732			
ENSMUSG0000057236	4	129 31	Rhhn4	1 30			
		122,31	nuop i	1,59			
ENSMUSG0000023232	4	130,25	Serinc2	0,532			
ENSMUSG0000037600	4	133.53	1810019.116Rik	0.734			
ENEMLISC0000002644		122.07	Draft-1	1.27			
EINSIVIUSG00000003644	4	133,87	крѕока1	1,37			
ENSMUSG0000037443	4	134,13	Cep85	0,747			
ENSMUSC0000027266	4	13/ /0	Dafah?	0.624			
		134,40	F ujun2	0,024			
ENSMUSG0000028672	4	135,95	Hmgcl	1,37			
ENSMUSG0000070661	4	138 97	Rnfl86	1.52			
	т А	120.21	11.7 5	1,52			
EINSIVLUSG00000028/43	4	139,31	Akr/a5	1,45			
ENSMUSG0000028737	4	139.62	Aldh4a1	1.38			
ENEMLISCOOOOOACOCO		142 41	Duran all	0.724			
EN31VL0300000040802	4	145,41	r rumej8	0,724			
ENSMUSG0000028952	4	152,02	Zbtb48	0,737			
ENSMUSG0000020050	4	15/ 00	Fam 213h	15			
ENSINE SCOUDOU029039	4	134,90	1 um2130	1,5			
ENSMUSG0000040044	4	34,57	Orc3		1,51	1,66	1,73
ENSMUSG0000066154	4	62.08	Mun3		1 38	3 30	0.555
ENGN4100000000104		101.07	nup5		1,50	1.00	1.41
ENSMUSG00000352/5	4	101,07	Kaver2		0,638	1,36	1,41
ENSMUSG0000066000	4	147.61	2610305D13Rik		2,01	2.28	2,44
ENEMLISCOOOCOOCOOCO		06.66	DI:		1.25	0.525	_,
EINSIMUSG00000028494	4	80,00	Plin2		1,55	0,535	
ENSMUSG0000032643	4	124,71	Fhl3		0,745	0,717	
ENSMUSG0000037266	Λ	13/ 02	DAWen 530		1.58	1 35	
	+	1,54,92	DAWSUJJE		1,30	1,35	
ENSMUSG0000028979	4	148,60	Masp2		1,41	2,01	

ENSMUSG0000036073	4	41,76	Galt	1,37		1,41
ENSMUSG0000029020	4	147,87	Mfn2	0,723		0,687
ENSMUSG0000052137	4	12.09	Rhm12h2	1 30		
ENSINE SG00000032137	7	12,07	Rbm12b2	1,57		
ENSMUSG0000028478	4	44,01	Clta	0,635		
ENSMUSG0000038764	4	57,19	Ptpn3	0,742		
ENSMUSG0000083087	4	67.93	Gm11249	0.729		
ENEMLISCOOOOOO2820C	-1	72.04	22100021000:1	0,725		
ENSMUSG0000028396	4	/3,94	2310002L09Rik	0,725		
ENSMUSG0000038172	4	83,22	Ttc39b	1,42		
ENSMUSG0000028636	4	119.42	Pncs	0 748		
ENGNIUS COORDOOD 20050		102.72	1 pes	1.65		
ENSMUSG0000023075	4	123,73	Akirin1	1,65		
ENSMUSG0000001334	4	129,14	Fndc5	0,65		
ENSMUSG0000028841	4	134.23	Cnksr1	0.669		
ENSMUSC0000027248	4	124 51	Daar7	0,607		
ENSIVIUS00000037348	4	154,51	Fuq7/	0,097		
ENSMUSG0000006221	4	141,42	Hspb7	0,679		
ENSMUSG0000078515	4	141,68	Ddi2	1,42		
ENSMUSG0000040715	4	1/1 68	Rectal	1 30		
ENGN/USC0000040715	7	141,00	A3C101	1,57		
ENSMUSG0000078486	4	156,22	2310042D19Rik	0,703		
ENSMUSG0000073988	4	20,01	Ttpa		2,32	1,57
ENSMUSG0000028251	4	21.76	Tstd3		0.682	1.38
ENGNILISC00000028464	4	42.51	T		0.712	2,17
ENSIVIUS00000028404	4	45,51	1pm2		0,715	2,17
ENSMUSG0000028359	4	63,36	Orm3		2,21	1,56
ENSMUSG0000028573	4	95,56	Fggy		1,7	1,48
ENSMUSG0000078532	4	130 53	Nkain 1		0 567	0.678
ENGMUSC00000070552	-	121.02			0,507	0,070
ENSMUSG0000028906	4	131,92	Epb4.1		0,675	0,598
ENSMUSG0000006219	4	141,58	Fblim1		0,402	0,747
ENSMUSG0000070583	4	147.87	Fv1		1.38	1.48
ENSMUSC0000045572	1	A 1 2	Daul		1,50	-,10
EINSIVIUSG00000455/3	4	4,13	Гепк		1,52	
ENSMUSG0000028249	4	6,39	Sdcbp		0,663	
ENSMUSG0000028207	4	9.45	Asph		1.35	
ENSMUSC0000041058	4	10.61	When I		0.631	
ENSWI0300000041038	+	19,01	wwp1		0,031	
ENSMUSG0000028238	4	19,88	Atp6v0d2		0,105	
ENSMUSG0000073987	4	20,04	Ggh		1,37	
ENSMUSG0000028259	4	25 20	Fh15		2	
ENGMUSC00000020237	-	20,20	<i>C</i> 22021		0 ((2)	
ENSMUSG0000093947	4	30,70	Gm22831		0,663	
ENSMUSG0000028294	4	34,71	1700003M02Rik		1,45	
ENSMUSG0000073910	4	3/ 05	Moh3h		1.47	
ENSMUSC00000029450	-1	42.45	C 172		0.259	
ENSMUSG0000028459	4	43,45	Cd/2		0,258	
ENSMUSG0000028469	4	43,64	Npr2		1,67	
ENSMUSG0000035637	4	44.98	Grhpr		1.42	
ENEMLISCOOOOO22227	4	15.95	12000028000:4		0.500	
ENSIMUSG0000028327	4	45,85	1300002K09Kik		0,599	
ENSMUSG0000028307	4	49,54	Aldob		3,15	
ENSMUSG0000052117	4	57 91	D630039A03Rik		1 38	
ENEMLISCOODOO222117	4	50.91	Sun20		0.702	
ENSIMUSG0000028585	4	59,81	Shx50		0,705	
ENSMUSG0000058523	4	61,83	Mup5		1,8	
ENSMUSG0000028356	4	63.14	Ambp		2.1	
ENSMUSG0000028399	4	75.94	Ptprd		1.45	
ENSWI0500000028599	4	73,94	Пірій		1,45	
ENSMUSG0000028487	4	84,28	Bnc2		1,53	
ENSMUSG0000028497	4	88,40	Ptplad2		0,679	
ENSMUSG0000073802	4	89 31	Cdkn2b		0.67	
ENEMLISC00000028571	4	06.04	$C_{\rm vir}2i12$		1.45	
ENSW0300000028571	4	90,04	<i>Cyp2J15</i>		1,45	
ENSMUSG0000052914	4	96,52	Cyp2j6		1,44	
ENSMUSG0000052520	4	96.63	Cvp2i5		1.67	
ENSMUSC0000028565	4	07 78	Nfia		1.63	
ENGMUSC0000026505	4	21,10	n n		1,05	
EINSIVIUSG0000025791	4	99,93	r gm∠		1,4/	
ENSMUSG0000035212	4	101,66	Leprot		0,723	
ENSMUSG0000028600	4	108.01	Podn		2.29	
ENSMUSC0000028601	1	109.17	Febde?		1.0	
	+	100,17			1,9	
ENSMUSG0000028551	4	109,66	Cdkn2c		1,55	
ENSMUSG0000070867	4	114,41	Trabd2b		1,56	
ENSMUSG0000028713	4	115.63	Cvn4h1		0.639	
ENSMUSC0000049772	1	117.05	T		1.40	
EINSIVIUSGUUUUUU48//2	4	117,25	1 mem 33		1,49	
ENSMUSG0000032870	4	120,97	Smap2		0,59	
ENSMUSG0000028871	4	124.99	Rspo1		2,23	
ENSMUSG0000028789	4	128.03	Adc		1 38	
ENDALIGG00000020705	-	120,75			1,50	
EINSIMUSG0000028776	4	130,17	Tinagl1		0,567	
ENSMUSG0000025743	4	130,79	Sdc3		0,522	
ENSMUSG0000028581	4	130.91	Lantm5		0.408	
ENSMUSC00000203010		121.04	Maan		1 20	
EIN5IMUSG00000028910	4	131,84	Mecr		1,59	
ENSMUSG0000065097	4	132,31	Snora16a		1,45	
ENSMUSG0000085241	4	132.35	Snhg3		1.49	
ENSMUSC0000064297	1	122.25	Sucra 72 ~		1 17	
EINSINUSGUUUUU06438/	4	132,33	snora/3a		1,4/	
ENSMUSG0000056529	4	132,56	Ptafr		0,416	
ENSMUSG0000037731	4	132.78	Themis2		0,518	
ENSMUSC0000028970		122.95	Str 12		1 25	
	4	152,05	51212		1,55	
ENSMUSG0000000682	4	134,09	Cd52		0,295	
ENSMUSG0000028843	4	134,13	Sh3bgrl3		0,465	

ENSMUSG0000036905	4	136,88	C1qb		0,463	
ENSMUSG0000036896	4	136,89	C1qc		0,482	
ENSMUSG0000036887	4	136,90	Clqa		0,566	
ENSMUSG0000028756	4	138,31	Pink1		1,49	
ENSMUSG0000028755	4	138,34	Cda		1,5	
ENSMUSG0000046447	4	138,45	Camk2n1		1,35	
ENSMUSG0000043621	4	138,72	Ubxn10		1,66	
ENSMUSG0000078234	4	139,96	Klhdc7a		1,38	
ENSMUSG0000040659	4	141,86	Efhd2		0,52	
ENSMUSG0000028583	4	143,27	Pdpn		0,687	
ENSMUSG0000028599	4	145,21	Tnfrsf1b		0,689	
ENSMUSG0000078502	4	145,62	Gm13212		0,551	
ENSMUSG0000078496	4	147,51	Gm13152		1,41	
ENSMUSG0000019055	4	147,92	Plod1		0,707	
ENSMUSG0000028967	4	150,85	Errfi1		1,97	
ENSMUSG0000028931	4	152,39	Kcnab2		0,45	
ENSMUSG0000073680	4	155,78	Tmem88b		1,68	
ENSMUSG0000078485	4	156,22	Plekhn1		0,556	
ENSMUSG0000046667	4	12,14	Rbm12b1			0,708
ENSMUSG0000065344	4	39,26	Gm25581			0,586
ENSMUSG0000040296	4	40,20	Ddx58			0,712
ENSMUSG0000028444	4	41,66	Cntfr			0,67
ENSMUSG0000028347	4	48,59	Tmeff1			0,68
ENSMUSG0000064782	4	49,29	Gm22685			0,605
ENSMUSG0000083496	4	79,33	Gm11263			0,72
ENSMUSG0000028556	4	98,94	Dock7			0,68
ENSMUSG0000070892	4	99,27	Gm10305			0,746
ENSMUSG0000028525	4	102,25	Pde4b			0,745
ENSMUSG0000028603	4	108,12	Scp2			0,691
ENSMUSG0000028567	4	108,83	Txndc12			1,4
ENSMUSG0000034401	4	111,78	Spata6			0,679
ENSMUSG0000028690	4	116,70	Mmachc			1,33
ENSMUSG0000028689	4	116,71	Ccdc163			1,54
ENSMUSG0000095676	4	117,19	Gm25099			0,552
ENSMUSG0000094405	4	117,20	Gm23143			0,741
ENSMUSG0000082143	4	118,99	Gm12864			1,41
ENSMUSG0000045268	4	119,17	Zfp691			0,737
ENSMUSG0000028653	4	123,05	Trit1			0,721
ENSMUSG0000028779	4	130,12	Pefl			0,702
ENSMUSG0000037242	4	135,21	Clic4			0,655
ENSMUSG0000007872	4	136,14	Id3			0,683
ENSMUSG0000029009	4	148,06	Mthfr			0,742
ENSMUSG0000047719	4	148,43	Ubiad1			1,38
ENSMUSG0000028961	4	149,15	Pgd			1,4
ENSMUSG0000028982	4	149,74	Slc25a33			1,34

Anhang Tab. 10: Phänotypisierungsdaten der männlichen N2 (NZOx129P2)-Generation für die 1. *Peak*-Region (SNP-Marker rs4138670) von *Nir4*. BG=Blutglukose; KG=Körpergewicht; FBG=Finale Blutglukose; FKG=Finales Körpergewicht; LG=Lebergewicht; FPI=Finales Plasmainsulin. Alle finalen Parameter sind nach 6 h fasten untersucht worden. NZO/NZO (N/N)-Allel-Träger: n=141-144; NZO/129P2 (N/O)-Allel-Träger: n=139-144. n.s.=nicht signifikant. Student`s *t*-Test, ungepaart (*p<0,05, **p<0,01, ***p<0,001).

		N/N	·	N/C)	N/N vs. N/O
		Peak 1 rs4	138670	Peak 1 rs4	138670	Peak 1
		1 0000 1 101	20070	1 0000 1 101	100070	rs4138670
Merkmal	Woche	Mittelwert	± SEM	Mittelwert	± SEM	<i>p</i> -Wert
BG [mg/dl]	3	137.2	2.1	143.6	2.6	n.s.
BG [mg/dl]	4	206.2	2.9	205.2	2.9	n.s.
BG [mg/dl]	5	222.4	3.8	232.5	4.8	n.s.
BG [mg/dl]	6	214.1	5.1	218.5	5.5	n.s.
BG [mg/dl]	7	203.9	5.8	198.6	5.2	n.s.
BG [mg/dl]	8	200.1	5.7	216,1	6,5	n.s.
BG [mg/dl]	9	198,3	5,2	214,3	6,7	n.s.
BG [mg/dl]	10	211.3	6,9	234,9	8.0	*
BG [mg/dl]	11	228.6	8.2	256.0	9,0	*
BG [mg/dl]	12	235.3	8.5	266.8	9.5	*
BG [mg/dl]	13	252,5	9.2	288.0	9,9	**
BG [mg/dl]	14	252.6	10.4	299.7	10.2	**
BG [mg/dl]	15	245.0	9.2	303.3	10.6	***
BG [mg/dl]	16	241.0	8.3	308.7	10.9	***
BG [mg/dl]	17	233.7	8.3	307.3	10.8	***
BG [mg/dl]	18	235.1	8,9	291.7	10.9	***
BG [mg/dl]	19	230.6	9.0	294,3	10,4	***
BG [mg/dl]	20	223,2	8,5	280,4	10,3	***
FBG [mg/dl]	21	168,9	6.6	209.2	9.8	***
KG (g)	3	12.1	0.2	12.9	0.2	*
KG (g)	4	22,5	0.3	23,4	0.3	*
KG (g)	5	31,8	0,3	32,2	0,2	n.s.
KG (g)	6	37,4	0,3	37,5	0,3	n.s.
KG (g)	7	41,5	0,3	41,3	0,3	n.s.
KG (g)	8	44,7	0,4	44,8	0,3	n.s.
KG (g)	9	47,5	0,4	47,2	0,3	n.s.
KG (g)	10	50,9	0,5	50,7	0,4	n.s.
KG (g)	11	53,5	0,5	53,3	0.4	n.s.
KG (g)	12	56,4	0,5	56,2	0,4	n.s.
KG (g)	13	58,8	0,6	58,9	0.4	n.s.
KG (g)	14	61,0	0,6	61,1	0,4	n.s.
KG (g)	15	63,3	0,6	63,4	0,5	n.s.
KG (g)	16	65,1	0,7	65,4	0,5	n.s.
KG (g)	17	67,0	0,7	67,2	0,5	n.s.
KG (g)	18	68,8	0,8	69,1	0,6	n.s.
KG (g)	19	70,7	0,8	70,8	0,6	n.s.
KG (g)	20	72,5	0,8	72,4	0,6	n.s.
FKG (g)	21	71,9	0,9	76,4	4,3	n.s.
LG (g)	21	2,6	0,1	2,9	0,1	**
FPI [ug/L]	21	7.9	0.6	10.6	0.7	**

Anhang Tab. 11: Phänotypisierungsdaten der männlichen N2 (NZOx129P2)-Generation für die 2. *Peak*-Region (SNP-Marker rs3726937) von *Nir4*. BG=Blutglukose; KG=Körpergewicht; FBG=Finale Blutglukose; FKG=Finales Körpergewicht; LG=Lebergewicht; FPI=Finales Plasmainsulin. Alle finalen Parameter sind nach 6 h fasten untersucht worden. NZO/NZO (N/N)-Allel-Träger: n=135-138; NZO/129P2 (N/O)-Allel-Träger: n=145-150. n.s.=nicht signifikant. Student`s *t*-Test, ungepaart (*p<0,05, **p<0,01, ***p<0,001).

		N/N	·	N/C)	N/N vs. N/O
		Peak 2 rs3	726937	Peak 2 rs3	726937	Peak 2
		1 0000 2 100	20001	1 0000 2 100	20,01	rs3726937
Merkmal	Woche	Mittelwert	± SEM	Mittelwert	± SEM	<i>p</i> -Wert
BG [mg/dl]	3	137.5	2.1	143.3	2.5	n.s.
BG [mg/dl]	4	206.5	3.0	204.8	2.9	n.s.
BG [mg/dl]	5	222.1	4.1	233,3	4,5	n.s.
BG [mg/dl]	6	212.3	5.1	219.0	5.4	n.s.
BG [mg/dl]	7	199.2	5.5	202.6	5.5	n.s.
BG [mg/dl]	8	195.0	4.8	220,1	7.0	**
BG [mg/dl]	9	196,4	5,2	215,4	6,6	*
BG [mg/dl]	10	210.3	6.6	234.8	8.1	*
BG [mg/dl]	11	223.7	8.0	259,1	9,0	**
BG [mg/dl]	12	230,9	8,4	270,7	9,3	**
BG [mg/dl]	13	247,9	9.2	289.7	9,6	**
BG [mg/dl]	14	249,9	10.3	298.8	10.1	***
BG [mg/dl]	15	241.3	9.3	302.9	10,4	***
BG [mg/dl]	16	238.8	8.3	309.2	10.6	***
BG [mg/dl]	17	230.0	8,6	306.2	10.3	***
BG [mg/dl]	18	231,0	8,9	292,4	10,6	***
BG [mg/dl]	19	229.7	9.2	292.6	10.1	***
BG [mg/dl]	20	226,2	8,7	274,9	10,2	***
FBG [mg/dl]	21	166,1	6,4	210,6	9,6	***
KG (g)	3	12,3	0,2	12,7	0,2	n.s.
KG (g)	4	22,6	0,3	23,3	0,3	n.s.
KG (g)	5	31,8	0,3	32,2	0,2	n.s.
KG (g)	6	37,4	0,3	37,5	0,3	n.s.
KG (g)	7	41,5	0,3	41,4	0,3	n.s.
KG (g)	8	44,7	0,3	44,7	0,3	n.s.
KG (g)	9	47,5	0,4	47,2	0,4	n.s.
KG(g)	10	50,7	0,4	50,8	0,4	n.s.
KG (g)	11	53,3	0,5	53,4	0,4	n.s.
KG(g)	12	56,3	0,5	56,3	0,4	n.s.
KG (g)	13	58,7	0,5	59,0	0,5	n.s.
KG(g)	14	60,9	0,6	61,1	0,5	n.s.
KG (g)	15	63,1	0,6	63,6	0,5	n.s.
KG (g)	16	64,9	0,6	65,6	0,6	n.s.
KG (g)	17	66,5	0,7	67,5	0,6	n.s.
KG (g)	18	68,4	0,7	69,3	0,6	n.s.
KG (g)	19	70,2	0,8	71,1	0,6	n.s.
KG (g)	20	72,2	0,8	72,7	0,7	n.s.
FKG (g)	21	71,5	0,8	76,6	4,1	n.s.
LG (g)	21	2,5	0,1	3,0	0,1	***
FPI [ug/L]	21	8.1	0.6	10.5	0.7	**

Anhang Tab. 12: Phänotypisierungsdaten der männlichen N2 (NZOx129P2)-Generation für die 3. *Peak*-Region (SNP-Marker rs4224727) von *Nir4*. BG=Blutglukose; KG=Körpergewicht; FBG=Finale Blutglukose; FKG=Finales Körpergewicht; LG=Lebergewicht; FPI=Finales Plasmainsulin. Alle finalen Parameter sind nach 6 h fasten untersucht worden. NZO/NZO (N/N)-Allel-Träger: n=131-134; NZO/129P2 (N/O)-Allel-Träger: n=149-154. n.s.=nicht signifikant. Student`s *t*-Test, ungepaart (*p<0,05, **p<0,01, ***p<0,001).

		N/N	·	N/O)	N/N vs. N/O
		Peak 3 rs4	224727	Peak 3 rs4	224727	Peak 3
		1 0000 0 10 10		1 0000 0 10 10		rs4224727
Merkmal	Woche	Mittelwert	+ SEM	Mittelwert	+ SEM	n-Wert
BG [mg/dl]	3	137.4	2.2	143.0	2.4	ns
BG [mg/dl]	4	208.2	3.1	204.3	2.8	n s
BG [mg/dl]	5	2200,2	4 2	233.0	4 5	n.s.
BG [mg/dl]	6	213.8	5.1	218.5	5.4	n s
BG [mg/dl]	7	204.0	6.0	199.3	5.1	n.s.
BG [mg/dl]	8	195.2	4.9	218.9	6.8	**
BG [mg/dl]	9	199.3	5,5	212,5	6.4	ns
BG [mg/dl]	10	212.1	7.0	233.8	7.8	*
BG [mg/dl]	10	212,1	8.1	258.0	8.9	**
BG [mg/dl]	12	232.0	8.6	250,0	0,2	**
BG [mg/dl]	12	232,0	0,0	207,2	0.8	***
BG [mg/dl]	13	245,5	9,0	291,7	10.3	***
DC [mg/dl]	14	249,0	0,2	297,0	10,5	***
PC [mg/dl]	15	230,5	0,0 8 0	303,3	10,5	***
DC [mg/dl]	10	239,2	8,0 8,6	202.2	10,7	***
DC [mg/dl]	17	231,0	8,0 8 0	505,5 280.7	10,5	ak ak ak
	10	255,0	8,9	209,7	10,0	***
BG [mg/dl]	19	234,1	9,0	288,1	10,4	**
BG [mg/dl]	20	230,2	8,7	270,9	10,2	***
FBG [mg/dl]	21	165,9	6,3	208,5	9,6	~ ~ ~
KG (g)	3	12,2	0,2	12,8	0,2	n.s.
KG (g)	4	22,6	0,3	23,3	0,3	n.s.
KG (g)	5	31,8	0,3	32,3	0,2	n.s.
KG (g)	6	37,4	0,3	37,6	0,3	n.s.
KG (g)	7	41,4	0,3	41,5	0,3	n.s.
KG (g)	8	44,7	0,4	44,9	0,3	n.s.
KG (g)	9	47,4	0,4	47,5	0,4	n.s.
KG (g)	10	50,6	0,4	51,1	0,4	n.s.
KG (g)	11	53,2	0,5	53,6	0,4	n.s.
KG (g)	12	56,1	0,5	56,6	0,5	n.s.
KG (g)	13	58,4	0,5	59,3	0,5	n.s.
KG (g)	14	60,6	0,6	61,4	0,5	n.s.
KG (g)	15	62,9	0,6	63,8	0,5	n.s.
KG (g)	16	64,8	0,6	65,7	0,6	n.s.
KG (g)	17	66,4	0,7	67,7	0,6	n.s.
KG (g)	18	68,4	0,7	69,5	0,6	n.s.
KG (g)	19	70,2	0,7	71,3	0,7	n.s.
KG (g)	20	72,2	0,8	72,8	0,7	n.s.
FKG (g)	21	71,5	0,8	76,6	4,0	n.s.
LG (g)	21	2,5	0,1	3,0	0,1	***
FPI [ug/L]	21	7.7	0.5	10.9	0.7	***

Anhang Tab. 13: mRNA-Expressions analysen der 6-Wochen alten männlichen NZO- und 129P2-Parentaltiere für die Gewebe Leber, SMq, gWAT und BAT im Vergleich. Mittels qRT-PCR unter Berechnung der $2^{(-\Delta\Delta C_T)}$ Methode erfolgten die jeweiligen Analysen. Die Normierung fand im Lebergewebe gegen *Scp2*, im SMq gegen *Pde4b* und im gWAT als auch im BAT gegen *Grhpr* statt. Daten sind als Mittelwerte (±SEM) von 5–6 Tieren pro Mausstamm dargestellt. n.s.=nicht signifikant. Student`s *t*-Test, ungepaart (*p<0,05, **p<0,01, ***p<0,001).

	NZO vs. 129P2	p-Wert	*	¥	***	n.s.	**	n.s.				n.S.			*	n.s.	n.s.		*	***				n.S.		n.S.		n.s.	*	n.s.		n.s.	n.S.			n.s.	*	n.s.	n.s.	n.s.	n.s.	n.s.	
	9P2	± SEM	0,05	0,03	0,05	0,21	0,05	0,20				0,15			0,06	0,09	0,10		0,02	0,03				0,62		0,77		0,29	0,11	0,09		0,16	0,14			0,12	0,04	0,16	0,09	0,19	0,10	0,05	
BAT	129	Mittelwert	0,50	0,56	1,01	0,50	0,38	1,53				1,36			0,69	1,20	0,80		0,32	0,36				1,18		1,75		1,97	1,76	0,91		1,48	0,70			0,67	0,72	0,84	0,87	0,69	0,95	1,12	
	0	± SEM	0,06	0,07	0,03	0,14	0,07	0,10				0,11			0,07	0,06	0,12		0,09	0,06			0	0,52		0,07		0,19	0,12	0,03		0,04	0,07			0,09	0,08	0,12	0,03	0,07	0,04	0,04	
	ZN	Mittelwert	1,01	1,02	0,35	1,05	1,02	1,03				1,05			1,01	1,02	1,05		1,03	1,01			:	1,4/		0,58		1, 14	1,06	1,00		1,01	1,02			1,03	1,02	1,05	1,00	1,01	1,01	1,01	
	NZO <i>vs.</i> 129P2	p-Wert	**	n.s.	*	*	**	*				*	n.s.	***	n.s.	n.s.	n.s.	n.s.	*	n.s.		n.s.				***	*		n.s.	n.s.	n.s.	n.s.	*			n.s.	n.s.	n.s.	n.s.	*	** *		n.s. I
	P2	± SEM	0,05	0,05	0,06	0,01	0,06	0,07				0,05	0,08	0,04	0,11	0,08	0,03	0,05	0,02	0,17		0,10		0,06		0,03	0,08		0,08	0,14	0,10	0,05	0,08			0,54	0,05	0,38	0,18	0,05	0,03	0,05	0,06
gWAT	129	Mittelwert	0,55	0,82	1,01	0,05	0,50	1,41				0,62	0,43	0,26	0,81	0,89	0,64	0,86	0,30	0,86		0,66	4	0,26		0,29	0,28		1,00	1,03	1,02	0,80	0,51			2,59	0,76	1,46	0,88	0,50	0,23	0,60	1,18
	0	± SEM	0,07	0,10	0,08	0,22	0,11	0,10				0,09	0,26	0,06	0,10	0,09	0,14	0,09	0,10	0,10		0,25		0,24		0,06	1,35		0,06	0,16	0,12	0,10	0,04			0,12	0,09	0,08	0,23	0,10	0,09	0,09	0,28
	NZ	Mittelwert	1,02	1,04	1,73	1,12	1,05	1,03				1,03	1,22	1,01	1,03	1,03	1,06	1,03	1,03	1,03		1,23		1,23		1,02	5,90		1,01	1,08	1,05	1,03	1,01			1,06	1,03	1,02	1,15	1,04	1,03	1,03	1,23
	NZO <i>vs.</i> 129P2	p-Wert I			*				**		S.U	n.s.		n.s.	n.s.	n.S.	n.s.	n.s.		*	n.s.			5	n.s.						**						*	n.s.		n.s.	1	n.s.	
	9P.2	± SEM			0,13				0,07		0.27	0,11		0,20	0,12	0,19	0,14	0,18		0,05	0,19			000	0.14						0,04						0,07	0,11		0,12	67.0	0,12	
SMq	129	Mittelwert			1,06				0,46		1.23	0,75		0,99	0,88	1,20	0,91	1,15		0,28	0,97			02.0	0,70	=======					0,27						0,62	0,57		0,73	10 0	0,87	
	0	± SEM			0,04				60'0		0.38	0,08		0,11	0,10	0,11	0,10	0,06		0,14	0,19			c i 0	0.09	2010					0,14						0,09	0,19		0,11		0,12	
	ZN	Aittelwert			0,40				1,03		1.29	1,03		1,05	1,04	1,04	1,05	1,02		1,10	1,13			1 05	1.04						1,07						1,03	1,12		1,05		1,06	
	NZO <i>vs.</i> 129P2	p-Wert		***						n.s. ***		* **			***	***	***		**	n.s.	n.s.		n.s.					**					***	n.s.	n.s.						***	***	
	P2	± SEM		0,13						0,08	/T'n	0,09			0,11	0,12	0,17		0,05	0,08	0,05		0,09		0.09	aala		0,08					0,20	0,14	0,12							0,11	
Leber	129	Mittelwert		2,27						0,73	2,30	1,65			2,07	2,24	2,44		0,62	0,83	0,87		0,61		1.26	2=(=		1,57					2,65	0,43	1,07						101	1,97	
	0	± SEM		0,10						0,10	an'n	0,06			0,04	0,02	0,05		0,07	0,13	0,23		0,43		0.04			0,06					0,15	0,24	0,08						100	0,04	
	NZ	Mittelwert		1,04						1,04	T/UL	1,01			1,01	1,00	1,01		1,02	1,05	1,16		1,49		1.01	= = (=		1,01					1,07	1,16	1,02							1,01	
Gen			Ddx58	AI464131	Galt	Cd72	Tpm2	Npr2	Clta	Acnat2	Alaob Ptnn3	Txn1	Txndc8	Svep1	AI314180	Gng10	Ugcg	Zfp37	Hdhd3	Alad	0rm1	Orm3	0m2	10001000	Ptnrd	Ptplad2	Cdkn2b	Hoo k1	Cyp2j6	Pgm2	Raver2	Leprot	Pde4b	Pcsk9	Dio1	Podn	Scp2	Eps15	Cdkn2c	Spata6	Cyp4b1	Mmachc	Tmembs
Mb Pos.			40203777	41495604	41755228	43446462	43514711	43641255	44012262	49379840	57190841	57943373	57984029	58044164	58798911	59035088	59189257	62189540	62499008	62510868	63344560	63356162	63362449	73041570 22	75951070	88396144	89306289	95967240	96516138	99929414	01139095	01656109	02254742	06442329	07291465	08014791	08118379	09385319	09660876	111777503	115628462	116/022/9	17251951
Chr.4		<u> </u>	1	-		-				.1.			1-"		- year	region	dW /0,84	-	-	-	-	-	-1	<u> </u>	<u> </u>	1-0			Peak -	Dorion	101221		1	1	1	1	-	1	1	Peak -	Region	115,98 Mb	

Anhang Tab. 14: mRNA-Expressionsanalysen der 21-Wochen alten männlichen NZO- und 129P2-Parentaltiere für die Gewebe Leber, SMq, gWAT und BAT im Vergleich. Mittels qRT-PCR unter Berechnung der $2^{(-\Delta\Delta C_T)}$ Methode erfolgten die jeweiligen Analysen. Die Normierung fand im Lebergewebe gegen *Scp2*, im SMq gegen *Pde4b* und im gWAT als auch im BAT gegen *Grhpr* statt. Daten sind als Mittelwerte (±SEM) von 6–8 Tieren pro Mausstamm dargestellt. n.s.=nicht signifikant. n.e.=nicht exprimiert. Student`s *t*-Test, ungepaart (*p<0,05, **p<0,01, ***p<0,001).

			-	_	_	_	_	_	_	_	_			_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_		_	_	_	_	_	_	_		_
	NZO <i>vs.</i> 129P2	p -Wert	* *	*	* *	n.s.	*	n.s.				s			*	n.s.	n.s.		*	* *				n.s.		,		n.s.	*	n.s.		n.s.	n.s.			n.s.	*	n.s.	n.s.	n.s.	n.s.	n.s.	
	P2	± SEM	0,05	0,03	0,05	0,21	0,05	0,20				0.4 5	CT'N		0.06	0.09	0,10		0,02	0,03				0,62		5	0,11	0,29	0,11	60'0		0,16	0,14			0,12	0,04	0,16	0,09	0,19	0,10	0,05	
BAT	129	Mittelwert	0,50	0,56	1,01	0,50	0,38	1,53				201	0C'T		0.69	1.20	0,80		0,32	0,36		n.e.		1,18		1	C / 'T	1.97	1,76	0,91	n.e	1,48	0,70			0,67	0,72	0,84	0,87	0,69	0,95	1,12	
	0	± SEM	0,06	0,07	0,03	0,14	0,07	0,10				11	11/0		0.07	0.06	0,12		0,09	0,06				0,52		1000	10'0	0,19	0,12	0,03		0,04	0,07			0,09	0,08	0,12	0,03	0,07	0,04	0,04	
	NZN	littelwert	1,01	1,02	0,35	1,05	1,02	1,03			T	105	CO/T		1.01	1.02	1,05		1,03	1,01		n.e.		1,47		0	0C'N	1,14	1,06	1,00	n.e.	1,01	1,02			1,03	1,02	1,05	1,00	1,01	1,01	1,01	
	NZO <i>vs.</i> 129P2	p-Wert	*	n.s.	**	*	**	*				*		***	n.s.	n.s.	n.s.	n.s.	*	n.s.		n.s.		*		***	*		n.s.	n.s.	n.s.	n.s.	**			n.s.	n.s.	n.s.	n.s.	**	* *	* !	n.s.
Ì	P2	± SEM	0,05	0,05	0,06	0,01	0,06	0,07				0.05	cn'n	0.04	0.11	0.08	0,03	0,05	0,02	0,17		0,10		0,06		000	0.08	000	0,08	0,14	0,10	0,05	0,08			0,54	0,05	0,38	0,18	0,05	0,03	0,05	0,06
gWAT	129	Aittelwert	0,55	0,82	1,01	0,05	0,50	1,41			n.e.	0.50	0.43	0.76	0.81	0.89	0,64	0,86	0,30	0,86		0,66		0,26		n.e.	0,29	0-10	1,00	1,03	1,02	0,80	0,51			2,59	0,76	1,46	0,88	0,50	0,23	0,60	1,18
	0	± SEM	0,07	0,10	0,08	0,22	0,11	0,10				000	0.05	0.06	0.10	60.0	0,14	0,09	0,10	0,10		0,25		0,24		, U U	1 35	22/1	0,06	0,16	0,12	0,10	0,04			0,12	60'0	0,08	0,23	0,10	60'0	0,09	0,28
	NZO	littelwert	1,02	1,04	1,73	1,12	1,05	1,03			n.e.	1 00	1 2 2	1 01	1.03	1.03	1,06	1,03	1,03	1,03		1,23		1,23		n.e.	1,UZ	0.00	1,01	1,08	1,05	1,03	1,01			1,06	1,03	1,02	1,15	1,04	1,03	1,03	1,23
	NZO vs. 129P2	p-Wert N			* *				*		1	n.S.		vu	n.s.	n.s.	n.s.	n.S.		*	n.s.				n.s.	n.s.					*						*	n.s.		n.s.		n.s.	-
Ì	P2	± SEM			0,13				0,07		5	0.11	11/0	0.00	0.12	0.19	0,14	0,18		0,05	0,19			1	60'0	0,14					0,04						0,07	0,11		0,12		0,12	
SMq	1291	littelwert			1,06				0,46			1,23 0 75	c/'n	0 00	0.88	1.20	0,91	1,15		0,28	0,97			1	0, /0	0,81					0,27						0,62	0,57		0,73		0,87	
		± SEM			0,04				0,09		0.0	0,38 00,0	0,'00	0 11	0.10	0.11	0,10	0,06		0,14	0,19			2	0,12	60'0					0,14						0,09	0,19		0,11		0,12	
	NZO	ittelwert			0,40				1,03		00.1	1,29	CU,1	1 05	1.04	1.04	1,05	1,02		1,10	1,13			-	1,05	1,04					1,07						1,03	1,12		1,05		1,06	_
	VZO <i>vs.</i> 129P2	p-Wert M		***						n.s.	*	***			***	***	***		*	n.s.	n.s.		n.s.			n.s.		*					***	n.s.	n.s.							***	_
	<u>2</u>	± SEM		0,13						0,08	0,17	000	60'0		0.11	0.12	0,17		0,05	0,08	0,05		0,09		1	60'0		0,08					0,20	0,14	0,12							0,11	-
Leber	129P	ittelwert		2,27						0,73	2,30	1.65	C0/T		2.07	2.24	2,44		0,62	0,83	0,87		0,61		:	1,26		1.57					2,65	0,43	1,07							1,97	-
		± SEM M		0,10						0,10	0,06	0.00	0,'00		0.04	0.02	0,05		0,07	0,13	0,23		0,43			0,04		0,06					0,15	0,24	0,08							0,04	-
	NZO	ittelwert		1,04						1,04	1,01	5	T/UT		1.01	1.00	1,01		1,02	1,05	1,16		1,49			1,01		1,01					1,07	1,16	1,02							1,01	-
Gen		ž	Ddx58	AI464131	Galt	Cd72	Tpm2	Npr2	Clta	Acnat2	Aldob	Ptpn3	Tvndrg	Sup 1	AI314180	Gna10	Ugcg	Zfp37	Hdhd3	Alad	0rm1	Orm3	0rm2	Tnc	TUUUZLUYKIK	Ptprd	Cdkn 2h	Hook1	Cyp2j6	Pgm2	Raver2	Leprot	Pde4b	Pcsk9	Dio1	Podn	Scp2	Eps15	Cdkn2c	Spata6	Cyp4b1	Mmachc	Tmem53
Mb Pos.			40203777	41495604	41755228	43446462	43514711	43641255	44012262	49379840	49535995	14201212	01004013	58044164	58798911	59035088	59189257	62189540	62499008	62510868	63344560	63356162	63362449	63959785	/39415/9 23	75951070	89306289	95967240	96516138	99929414	101139095	101656109	102254742	106442329	107291465	108014791	108118379	109385319	109660876	111777503	115628462	116702279	117251951
chr.4			I							1			1		Peak -	Region	3,07 Mb	1		1			1						1		vegion									Donk	Region	5.98 Mb	

Anhang Tab. 15: mRNA-Expressionsdaten der 21-Wochen alten männlichen N2 (NZOx129P2)-Generation für die drei *Peak*-Regionen von *Nir4*. 1. *Peak*-Region (rs4138670, 58,07 Mb), 2. *Peak*-Region (rs3726937, 97,25 Mb) und 3. *Peak*-Region (rs4224727, 115,98 Mb). Mittels qRT-PCR unter Berechnung der $2^{(-\Delta C_7)}$ Methode erfolgten die jeweiligen Analysen. Die Normierung fand im Lebergewebe gegen Scp2, im SMq gegen Pde4b und im gWAT gegen Grhpr statt. Daten sind als Mittelwerte (±SEM) von 122-145 Tieren pro Gruppe dargestellt. NZO/NZO (N/N)-Allel-Träger: n=122-136; NZO/129P2 (N/O)-Allel-Träger: n=130-145. n.s.=nicht signifikant. Student`s t-Test, ungepaart (**p*<0,05, ***p*<0,01, ****p*<0,001).

10	_	-	(n	r—	γ <u> </u>	Γ,	r—	<u> </u>	m			1			(m			_	<u> </u>				1	<u> </u>	r-		
		N/N vs. N/O Peak 1 rs4138670	p -Wert	n.s.	n.s.	n.s.		n.s.	* *	* *			N/N vs. N/O	Peak 2 rs3726937		p -Wert		×	×	*		N/N vs. N/O	Peak 3	rs4224727	p -Wert	n.s.	1		
		N/O Peak 1 rs4138670	± SEM	0,1623	0,0558	0,2680		0,2202	0,0163	0,0024		gWAT	gWAT	0 3726937		± SEM		0,2237	0,0327	0,4320		0	4224727		± SEM	0,0109	01010		
	gWAT		Mittelwert	4,9789	1,6616	3,3978		7,6777	0,7220	0,0948				/N	Peak 2 rs		Mittelwert		5,1543	0,4736	9,6305	gWAT	/N	Peak 3 rs		Mittelwert	0,2214	1005	
		N 4138670	± SEM	0,1651	0,0657	0,2560		0,2234	0,0235	0,0041				N/N Peak 2 rs3726937	± SEM		0,2893	0,0294	0,5116		z	4224727		± SEM	0,0114	01100			
		N/ Peak 1 rs	Mittelwert	4,7985	1,7486	3,2967		7,6144	0,9734	0,1326					Peak 2 rs		Mittelwert		4,3782	0,3854	7,9348		N	Peak 3 rs		Mittelwert	0,2237	10100	
		N/N vs. N/O Peak 1 rs4138670	p-Wert		* *					*			N/N vs. N/O	<i>Peak</i> 2 rs3726937		p-Wert						N/N vs. N/O	Peak 3	rs4224727	p-Wert				
SM2		0 4138670	± SEM		0,0158					0,0152		SMq	SMq		3726937		± SEM							4224727		± SEM			
	SMq	N/ Peak 1 rs	Mittelwert		0,3356					0,1425				Ň	Peak 2 rs		Mittelwert					SMq	N	Peak 3 rs		Mittelwert			
		N 4138670	± SEM		0,0112					0,0182				z	3726937		± SEM						z	4224727		± SEM			
		N/ Peak 1 rs	Mittelwert		0,1741					0,1913				Ň	Peak 2 rs		Mittelwert						N	Peak 3 rs		Mittelwert			
		N/N vs. N/O Peak 1 rs4138670	p-Wert				n.s.		n.s.	n.s.			N/N vs. N/O	<i>Peak</i> 2 rs3726937		p-Wert	n.s.					N/N vs. N/O	Peak 3	rs4224727	p-Wert				
		0 4138670	± SEM				0,0003		0,0015	0,0013			c	3726937		± SEM	0,0039					0	4224727		± SEM				
-	Leber	N/ Peak 1 rs	Mittelwert				0,0050		0,0141	0,0082		Leber	N	Peak 2 rs		Mittelwert	0,0785				Leber	N	Peak 3 rs		Mittelwert				
		/N 54138670	± SEM				0,0004		0,0015	0,0014					N	'N :3726937		± SEM	0,0041					z	4224727		± SEM		
		N) Peak 1 rs	Mittelwert				0,0051		0,0177	0,0099			N	Peak 2 rs		Mittelwert	0,0830					N	Peak 3 rs		Mittelwert				
	Gen			Ddx58	Galt	Cd72	Acnat2	Svep1	Hdhd3	Alad		Gen		_			Ptprd	Ptplad2	Cdkn2b	Leprot	Gen	_	_	_		Eps15	0444		
-	Mb Pos.			40203777	41755228	43446462	49379840	58044164	62499008	62510868		Mb Pos.					75951070	88396144	89306289	1,02E+08	Mb Pos.					1,09E+08	1101.00		
_	_			_	_	_	_					_					_	_	_	_			_			_	-		

5 сŀ.

160

6.4 Abbildungen

Anhang Abb. 1: Die *heatmap* veranschaulicht sämtliche erhaltene *LOD-score*-Werte der Metaboliten der männlichen N2 (NZOx129P2)-Tiere. Chr.=Chromosom; Gln=Glutamin; Lys=Lysin; OH-Prol=Hydroxyprolin; PiPA=Pipecolinsäure; Aba=Abscisinsäure; Ala=Alanin; Arg=Arginin; Asn=Asparagin; Asp=Asparaginsäure; Carn=Carnosin; Cit=Citrullin; Glu=Glutaminsäure; Gly=Glycin; His=Histidin; Leu/Ile=Leucin/Isoleucin;

MeHis=Methyl-Histidin; Met=Methionin; Orn=Ornithin; Phe=Phenylalanin; Pro=Prolin; Sarc=Sarcosin; Ser=Serin; Tau=Taurin; Thr=Threonin; Trp=Tryptophan; Tyr=Tyrosin; Val=Valin; C0=Freies Carnitin; C2=Acetylcarnitin; C3=Propionylcarnitin; C3DC=Malonylcarnitin; C4=Butyrylcarnitin; C4-OH=3-Hydroxy-Butyryl-Carnitin; C5=Iso-valerylcarnitin; C5:1=Tiglylcarnitin; C5 OH+HMG=2-Hydroxyisovalerylcarnitin; C6=Hexanoylcarnitin; C6DC =Adipylcarnitin; C8=Octanoylcarnitin; C8:1=Octenoylcarnitin; C10=Decanoylcarnitin; C10:1=Decenoylcarnitin; MMA=Methylmalonylcarnitin; Glut=Glutarylcarnitin; C12=Dodecanoylcarnitin; MeGlut=3-Methylglutarylcarnitin; C14=Myristoylcarnitin; C16:1=Hexadecenoylcarnitin; C16:1OH=3-Hydroxy-Tetradecanoylcarnitin; C16=Palmitoylcarnitin; C16:1=Hexadecenoylcarnitin; C16:1OH=3-Hydroxy-Hexadecenoylcarnitin; C18=Stearoylcarnitin; C18:1=Octadecenoylcarnitin; C18:1OH=Hydroxy-Octadec-1-enoylcarnitin; C18:2OH=Hydroxy-Octadec-2-enoylcarnitin; C18:0H=3-Hydroxy-Octadecanoylcarnitin; C18:2=trans,trans-9,12-Octadecadiensäure (Linolsäure); C20:1=cis-11-Eicosensäure; C20:2=cis-11,14-Eicosadiensäure; C20:3=cis-11,14,17-Eicosatriensäure. Die Analyse der Metaboliten aus Mausblut wurde mit freundlicher Unterstützung durch Frau Dr. Ute Ceglarek und Kollegen durchgeführt (Mat-Meth.). N2-Männchen: n=242-290. Die Signifikanzschwelle lag bei einem *p*-Wert von 0,05 (Berechnung der Signifikanz erfolgte durch einen Permutationstest von 100 Permutationen).

SMq=Skelettmuskel

1-2 2-2,5 2,5-3 3-6 > 6 LOD-score

6.5 Abkürzungsverzeichnis

129P2	129P2/OlaHsd
4-AA	4-Aminoantipyrin
Ala7Pro	Aminosäureaustausch an Position 7, Alanin, Prolin
6-FAM	6-Carboxyfluorescein Fluorescein
ACOD	Acyl-CoA-Oxidase
ACS	Acyl-CoA Synthetase
Alad	delta-Aminolävulinsäure-Dehydratase
APS	Ammoniumpersulfat
B6	C57BL/6J
BAT	Brown Adipose Tissue, braunes Fettgewebe
BCA	Bicinchoninic acid, Bicinchoninsäure
BG	Blutglukose
BMI	Body Mass Index
bp	Basenpaar
cDNA	complementary DNA
Chr.	Chromosom
cM	Centimorgan
Ct	Cycle threshold
DMEM	Dulbecco's Modified Eagle's medium
DNL	de novo Lipogenese
dNTP	Desoxyribonukleosidtriphosphat
EDTA	Ethylendiamintetraessigsäure
EGTA	Ethylenglycol-bis(aminoethylether)-N,N,N',N'-tetraessigsäure
EM	expectation-maximization, maximale Wahrscheinlichkeit
EnsID	Ensembl Gen ID
et al.	et alia, und andere
eQTL	Expressions-QTL
ER	Endoplasmatisches Retikulum
ERp19	ER-ansässiges Protein von 19 kDA (TXNDC12)
F2	Filialgeneration
FAM	6-FAM, 6-Carboxyfluorescein Fluorescein
FBG	Finale Blutglukose, nach 6 h fasten
FBS	Fetal Bovine Serum
FFA	Free Fatty Acids, freie Fettsäuren
FKG	Finales Körpergewicht, nach 6 h fasten
FM	Fettmasse
FP	forward, vorwärts
FPFFA	Finale Plasma-FFA
FPI	Finales Plasmainsulin
FPTG	Finale Plasma-TG
FRET	fluorescence resonant energy transfer
Galt	galactose-1-phosphate uridylyltransferase
GAPDH	Glycerinaldehyd-3-Phosphat Dehydrogenase
Gastroc.	Gastrocnemius
gBG	Nicht-gefastet BG
gFFA	Nicht-gefastet Plasma-FFA
gI	Nicht-gefastet Plasmainsulin
gKG	Nicht-gefastet KG
GLUT	Glukosetransporter
GMC	German Diabetes Mouse Clinic, Deutsche Diabetes-Mausklinik
Grhpr	glyoxylate reductase/hydroxypyruvate reductase
GSH	Glutathion
GSSG	GSH-Disulfid

gTG	Nicht-gefastet Plasma-TG
gWAT	gonadal White Adipose Tissue, gonadales weißes Fettgewebe
h	Stunden
HAD	Haloacid dehalogenase-like, Halosäure-Dehalogenase-ähnlich
Hdhd3	Haloacid dehalogenase-like hydrolase domain-containing protein 3
HEX	Hexachloro-Fluorescein
HFD	High Fat Diet, Hochfettdiät
HIEC	Hyperinsulinämische-euglykämische <i>Clamp</i>
НОМА	Homeostasis Model Assessment
HRP	horseradish peroxidase
hTLP19	human thioredoxin-like protein 19 kDa
I	Insulin
IBD	identity by descent
IL-6	Interleukin-6
IPGTT	Intraperitonealer Glukosetoleranztest
IR	Insulinresistenz
KASP	Kompetitive Allele Specific PCR
kDa	Kilodalton
KDa KC	Kirouanon
KU	Körperlänge, nach 6 h fasten
NL Loprot	kolpenange, nach o'n lasten
Leprot	Lehergewicht
	Leber Glykogen
LGLY	Lever Olykogen Leverithm of the Odda
	Logartinm of the Oaas
	Leber-10 Männlich
m Mi	Manninch
	Megabasen
MC4	Melanocortin-4
MEHA	3-Metnyi-N-Etnyi-N-(p-Hydroxyetnyi)-Aniiin
MM	Magermasse
MMA	Metnylmalonylcarnitin
n	Anzahl
n.a.	Nicht analysiert
n.d.	Keine signifikante differentielle Expression
N/N	NZO/NZO-Allel-Irager
N/O	NZO/129P2-Allel-Träger
N2	Rückkreuzungspopulation
nBG	Nüchtern BG
NEFA	Albumingebundene freie Fettsäuren
nFFA	Nüchtern Plasma-FFA
nl	Nüchtern Plasmainsulin
Nir4	QTL, NZO insulin resistance Chr. 4
nKG	Nüchtern KG
NMR	Nuclear-Magnetic-Resonance, Kernspinresonanzspektroskopie
nTG	Nüchtern Plasma-TG
NZO	NZO/HI, New Zealand Obese, Lieselotte Herberg
Pal	Pankreas-Insulin
Pde4b	phosphodiesterase 4B
PDI	Protein-Disulfid-Isomerase
ΡΚС-ε	Proteinkinase C-ε
ΡΚС-Θ	Proteinkinase C-O
POD	Peroxidase
POMC	Proopiomelanocortin
Pos.	Position
Primer Hexa	Hexanucleotide primer

Ptplad2	Synonym: Hacd4; 3-hydroxyacyl-CoA dehydratase 4
QG	SMq-Gewicht
qRT-PCR	quantitative Real-Time Polymerasekettenreaktion
QTG	SMq-TG
QTL	Quantitative Trait Locus, Suszeptibilitätslocus
r2	Determinationskoeffizient
RCS	Recombinant Congenic Strain, rekombinant kongene Inzuchtlinie
ROS	Reactive Oxygen Species, reaktive Sauerstoffspezies
RP	Reverse, rückwärts
RT	Raumtemperatur
Scp2	sterol carrier protein 2
SDS-PAGE	Natriumdodecylsulfat-Polyacrylamidgelelektrophorese
SMq	Skelettmuskel Quadriceps
SNP	Single Nucleotide Polymorphisms, Einzelnukleotidpolymorphismen
SRP	signal recognition particle, Signal-Erkennungs-Partikel
T1DM	Typ-1-Diabetes mellitus
T2DM	Typ-2-Diabetes mellitus
ТА	Tibialis anterior
TBS-T	Tris-Borat-EDTA Puffer-Tween
TG	Triglyzeriden
TLR4	Toll-like-Rezeptor 4
ТМ	Schmelztemperatur
TMB	3.3',5.5'-Tetramethylbenzidin
TNF-α	Tumornekrosefaktor-α
TRX	Thioredoxin
TSH	Thyrotropin-Releasing-Hormon
TXNDC12	Thioredoxin-Domäne-enthaltenes Protein 12
VLDL	very-low-density-Lipoproteine
vWAT	visceral White Adipose Tissue, viszerales weißes Fettgewebe
W	Weiblich
W.	Lebenswoche
WAT	White Adipose Tissue, weißes Fettgewebe
WHO	Weltgesundheitsorganisation

Danksagung

Zunächst danke ich meinem Betreuer Herrn Prof. Dr. Hadi Al-Hasani für die Bereitstellung des Arbeitsplatzes und die Möglichkeit an diesem hervorragenden Thema zu arbeiten.

Herrn Prof. Dr. Eckhard Lammert danke ich für die freundliche Übernahme der Zweitbetreuung dieser Arbeit.

Frau Dr. Alexandra Chadt danke ich für die hervorragende und engagierte Betreuung während der gesamten Doktorarbeit. Sie hatte immer ein offenes Ohr und immer Zeit! Vielen, vielen Dank für die tolle Einarbeitung in das Projekt und die Mausarbeit! Ein ganz großes Dankeschön!!!

Die Etablierung dieses Projektes erfolgte in Zusammenarbeit mit dem Deutschen Institut für Ernährungsforschung (DIfE). Hierbei gilt mein besonderer Dank Frau Prof. Dr. Annette Schürmann, Dr. Anne Kamitz, Dr. Nicole Hallahan, Gunnar Schulze und Markus Jaehnert. Insbesondere möchte ich mich dabei für die Möglichkeit bedanken, die R/qtl-Analyse durch Gunnar und Markus zu erlernen. Vielen Dank!

Mein weiterer Dank gilt Frau Prof. Dr. Ceglarek, Prof. Dr. Burkhardt und deren Arbeitsgruppe für die Analyse der Metaboliten.

Für die Durchführung der *Microarray*-Analyse bedanke ich mich herzlich bei Dr. Axel Rasche und Dr. Birgit Knebel.

Um dieses große Mausprojekt mit all seinen Herausforderungen meistern zu können, möchte ich mich zum einen bei den Tierhausleitern Herr Dr. Partke, Frau Dr. Julia Aretz und Frau Dr. Brumloop bedanken. Ein ganz besonderer Dank gilt dabei den Tierpflegern Peter Herdt, Andrea Scheffel-Clauswitz, Denise Schauer, Jennifer Schwettmann und Cornelia Köllmer. Glücklicherweise hatte ich tatkräftige Unterstützung bei der Mausarbeit, Expressionsanalysen etc. durch die technischen Mitarbeiter Angelika Horrighs, Anette Kurowski, Annette Schober, Heidrun Podini, Carina Heitmann und Lothar Bohne, durch die Studenten Isabel Richter, Laura Trettin, Nicolas Hampe, Anja Wagner , Yvonne Schulte, Mareike Damen, Modei Blank, Janek Masuch, Sarah Walsh, Angela Pelligra, Isabel Zeinert, Alona Weker und weiteren Kollegen Christian de Wendt, Dr. Torben Stermann, Sandra Karpinski!!!

Mein weiterer Dank gilt Tim Benninghoff, Christian Binsch, Christian Springer, Sabrina Müller-Lühlhoff, David Barbosa, Simon Göddeke, Matthias Dille, Pia Fahlbusch, Tina Hörbelt, Nicole Krause und Dr. Samaneh Mafakheri! Ein großer Dank gilt meinen lieben Kolleginnen vom "QTL-Team" Tanja Schallschmidt und Delsi Altenhofen! Euch dank ich ganz besonders!!!

Insgesamt möchte ich mich bei allen Kollegen für die tolle Atmosphäre, die guten und sehr lustigen Gespräche bedanken! War einfach eine tolle, schöne Zeit mit euch!!!

Hervorzuheben ist die besondere Unterstützung, die ich durch Prof. Dr. Al-Hasani, Dr. Alexandra Chadt und allen Kollegen und Mitarbeitern des DDZ während meiner Schwangerschaft und nach dem Wiedereinstieg erhielt! Ein ganz großes Dankeschön für die tolle Zusammenarbeit, und Hilfe, meine Doktorarbeit fortführen und beenden zu dürfen!

Für das Korrekturlesen dieser Arbeit möchte ich mich besonders bei Dr. Alexandra Chadt, Christian Binsch und Tanja Schallschmidt bedanken. Vielen Dank!

Der größte Dank gilt meiner Familie, besonders dir Peter und dir, mein kleiner Vincent!!! Kocham was oboje, całym sercem!

Eidesstattliche Erklärung

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der "Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf" erstellt worden ist.

Ferner versichere ich, dass ich bisher noch keinen Promotionsversuch unternommen habe. Die Arbeit wurde bisher an keiner anderen Hochschule eingereicht.

Düsseldorf, den 29. August 2018

dely-