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Abstract

This thesis is about the topics interpreter construction, just-in-time compilation and
software tools for the specification language B. There are two main topics: The sec-
ond tool chain and the RPython-JIT. Both topics need an implementation of B. This
implementation is PyB, an interpreter and model checker written in Python. The
contribution of this thesis is PyB and the experiments done with it.

1. Abstract Second tool chain: The first research question is the development
and evaluation of a second tool chain (PyB). This is a software tool which checks the
computations of an other tool (ProB). Of interest are aspects of B which can easily
implemented, which can not be implemented and the usefulness and evaluation of the
whole approach. The motivation of this work is the necessity of an additional check of
ProB, a tool used for the B method which is used to develop and model safety critical
software for which reliability is vital. The second tool chains goal is to raise this reliability.
The method of development was that of a clean room implementation which dictates
that all computations are independent of the main tool: No ProB code is known. The
main idea is that it is easy to build a simple tool to check a complex tool. In result
this assumption was partially correct. It is wrong when check includes finding solutions.
In B this can be unavoidable. The implementation was simple except of infinite sets
and constrains solving. The implementation supports the whole B language and was
successfully used on machines from industry. In conclusion the approach is useful if the
tool must not find solutions. Otherwise it will also become a complex tool.

2. Abstract RPython-JIT: The second research question was the application of
the RPython technology on a B implementation. The means the adaption of Python
source code to the RPython requirements (static subset of Python) and the addition
of a JIT. This was only done on dynamic languages before. The motivation was to
examine if the performance results can be transfered to a specification language like B. A
second branch was used, because the goal of a simple and a fast tool are in conflict. The
performance was evaluated by the method of micro benchmarks and benchmarks of
industrial machines. The result was a speed up of one magnitude (compared to ProB)
on model checking of simple machines. Machines which need constraint solving su�er
from a performance loss by several orders of magnitude. In conclusion the application
of the RPython-JIT technology was a success anyway. If PyB will be improved by
complex features like constraint solving better results can be expected.





Zusammenfassung

Diese Dissertation befasst sich mit den Themen Interpreterbau, Just-In-Time Kompilation und Software-
Werkzeuge für die Spezifikationssprache B. Behandelt wurden zwei unterschiedliche Themen: Das Thema
der zweiten Kette und das Thema des RPython-JIT. Beide Themen erfordern eine Implementierung von
B. Bei dieser Implementierung handelt es sich um PyB, einen Interpreter und Modelprüfer geschrieben
in Python. Der Beitrag dieser Arbeit ist PyB und die damit durchgeführten Experimente.

1. Zusammenfassung zweite Kette: Die erste Problemstellung ist die Entwicklung und Unter-
suchung einer zweiten Kette (PyB). Dies ist ein Software-Werkzeug, welches die Berechnungen eines
anderen Werkzeuges (ProB) überprüft. Von Interesse war, wie bestimmte Aspekte der Sprache B
besonders einfach implementiert werden können, für welche Aspekte dies nicht möglich ist und die
Bestimmung von Nützlichkeit und Grenzen dieses Ansatzes. Motivation dieser Fragestellungen ist die
Notwendigkeit einer zusätzlichen Überprüfung von ProB, einem Software-Werkzeug für die B-Methode,
welche zur Entwicklung und Modellierung im Bereich sicherheitskritische Software eingesetzt wird, wo
Zuverlässigkeit unabdingbar ist. Die zweite Kette ist ein Ansatz, der diese Zuverlässigkeit erhöhen
soll. Methode der Entwicklung war die einer Cleanroom-Implementierung, welche fordert, dass PyB

seine Berechnungen völlig unabhängig vom ersten Werkzeug (ProB) durchführt: Kein ProBCode ist
bekannt. Die Grundannahme ist, dass es einfach ist, ein simpleres Werkzeug zu entwickeln um ein
komplexes zu testen. Im Ergebnis hat sich diese Annahme nur als teilweise richtig herausgestellt. Sie
ist falsch, wenn PyB zur Überprüfung einer Lösung selbst Werte finden muss. Dies ist in B in einigen
Fällen unausweichlich. Simpel war die B-Implementierung mit Ausnahme von unendlichen Mengen und
constraint solving. Die Implementierung unterstützt den vollen B Sprachumfang und wurde erfolgreich
mit industriellen Maschinen getestet. Im Fazit ist dieser Ansatz für B nur nützlich, wenn die zweite
Kette nicht selbst Lösungen finden muss, da diese sonst selbst zu einem komplexen fehleranfälligen
Werkzeug wird.

2. Zusammenfassung RPython-JIT: Die zweite Problemstellung ist die Anwendung der RPy-
thon Technologie auf eine B-Implementierung. Hierbei ist die Anpassung des PyB-Quellcodes an die
RPython Anforderungen (eine statische Python Untermenge) sowie das Hinzufügen eines JITs gemeint.
Dieses wurde bisher nur auf Implementierungen von dynamischen Programmiersprachen angewandt.
Motivation ist es, die Übertragbarkeit von bereits bestehenden Performanceergebnissen auf eine Spezi-
fikationssprache wie B zu überprüfen. Da das Ziel, ein simples Werkzeug mit dem Ziel ein performantes
Werkzeug zu schreiben, im Konflikt steht, wurde hierbei an zwei unterschiedlichen braches entwickelt.
Überprüft wurde die Performance mit der Methode der Micro-Benchmarks und Benchmarks bestehend
aus industriellen Beispielen. Im Ergebnis hat sich für das Modelprüfen von simplen Modellen ein
speed up von einer Größenordnung (im Vergleich zu ProB) ergeben, während bei Beispielen welche
constraint solving erfordern, die Performance um Größenordnungen schlechter sein kann. Als Fazit wird
die Anwendung von der RPython-JIT Technologie auf B dennoch als nützlich bewertet. Wenn PyB um
komplexe Features wie constraint solving erweitert wird, sind auch hier bessere Ergebnisse zu erwarten.
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1
Introduction

1.1. Formal methods and tools

Reliability and safety of computer systems are an evermore important issue of modern
life. Computers can be found not only inside many devices in our everyday life, but also
as part of safety critical systems like trains, airplanes, space probes and many more.

In some cases computers are just an addition to improve some devices in some way. In
other cases computers are critical. The signals or switches of a railway-system, displays
containing critical data like the altitude and speed of a plane or the angle, position and
distance of a space probe are just a few examples where reliable computers are a necessity.

As a man made machine, a computer can always fail. In some cases, like desktop PC
applications, a failure is annoying, but the resulting damage is low or at least acceptable.
In other cases, like the case of safety critical systems, a failure means risking a vast
amount of money at the best or human lives at the worst.

Even though it is clear that a perfect machine can never be built by man, it is obvious
that some applications need a failure tolerance that is as close to zero as possible. In
computer science, one approach to solve this problem are formal methods.

Formal methods are a way of building computer software and hardware using mathemat-
ical notations like predicate logic or set-theory. These formalisms describe software- or
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1. Introduction

system-abstractions which are called models (or machines in the case of the B-Method).
The goal of formal methods is to prove certain properties of the software and if it is
possible, to find false predicates, traces or counter examples describing undesired be-
havior. This sort of behavior can be found and refuted or eliminated from the software.
This abstraction is similar to that introduced by programming languages: Programming
languages introduce a formalism more easy to understand by a human, but typically not
executed on computer, Formal methods introduce a formalism more easy to be analyzed,
but typically not executable on a computer. The focus of this theses is the B-Method, a a
correct by construction approach and example of a formal method.

Finding bugs inside models, writing models, proving model properties or the analysis
of models can be done using software tools: for example model-checkers, animators or
automatic provers. These tools will be described in more detail later. One problem of
formal methods in practice can be the lack of good development (software)-tools. A
bug inside such a tool (for example the ProB tool) should never lead to bugs in the
safety critical software. Such tool bugs have also to be detected, corrected and removed.
This thesis is a contribution to the reliability of formal method tooling using the ProB

tool as an example. The goal of this work is to find a way to e�ciently detect errors in
such tools (focusing on the ProB tool) using a second tool chain approach (introduced
in section 1.3.1). One of two topics of thesis is how this is done, which problems have
occurred, and how are they solved.

1.1.1. The B-Method

General Concept

There are a great variety of formal methods. The method used in this thesis is the
B-Method [2]. It is a formal method based on set-theory and predicate logic. This
thesis is concerned with the B-Method and the B language, which was invented by
Jean-Raymond Abrial.

Using the B-Method, software (or hardware) is modeled at a high level of abstraction
using set-theory and predicate logic which typically cannot be run but be analyzed on a
computer. Analyzing means checking the model of undesired behavior, i.e failures and
bugs. This can be done by software tools. A B model abstraction uses decomposition: it
typically consists of some sub-models which can be seen as state machines. A state is
a set of constants and variable values of all machines. B models are also called B machines.

The set of reachable states is called a state space. A state space and its transitions
can be seen as a graph: the nodes are states and the edges are state transitions, which
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1.1. Formal methods and tools

donate how executing a statement changes the variables. Every state should satisfy
safety properties stated in the properties and invariant clause of a machine. Clauses are
subsections of a B machine file. Invariant- and properties- clauses are predicates. A false
invariant is called invariant violation and represents undesired model behavior.

A transition between two states is performed by operations on the machine variables.
Operations consist of (possibly non deterministic) substitutions which change the variable
values of the machine. Examples of substitutions are assignments or if-then-else blocks.
The operations can be disabled by preconditions (operation guards). Preconditions are
predicates which must be true in the current state. Otherwise, an operation can not be
executed. An invariant violation corresponds to undesired behavior of modeled software.

There are some aspects of the B-Method which have no further relevance in this the-
sis. They are only introduced with an intentionally short summary to let the reader
understand the correct by construction approach and how the B method can be used for
verification:

The B model can be refined stepwise to less abstract software until it is an executable
implementation. This means that there are di�erent levels of abstraction and develop-
ment states. The developed software, PyB (which is introduced later) does not check
refinements steps from model to model. One goal of formal methods is to find bugs or
show the correctness of software in an early development state. This is done by showing
that an invariant violation is not possible. One possibility is proof. A proof can be
automated or aided by proving tools. An other possibility is model checking (described
later). This thesis is not about proving but about model checking. If the machine is
valid, i.e the correct system described by the requirements is modeled, and no invariant
violation is present in development step, this approach leads to correct software. Code
can be generated from the most concrete level in this chain of refinements. For example,
this generated code can be C, Ada or Java code [62]. PyB does not do any code generation.

Another B application is data validation. In this approach data must satisfy some safety
properties which can be expressed as a B model. The B-Method is not only used in an
academic context but also in industry for real world software: B was used for software
development of railway applications or smart card technology [29] (and many more
software projects).

An overview about the B syntax can be found in Appendix B. ( It only covers the syntax
which is implemented by PyB)

5



1. Introduction

1 MACHINE L i f t
2 CONCRETE VARIABLES f l o o r
3 INVARIANT f l o o r : 0 . . 1 0 /ú NAT ú/
4 INITIALISATION f l o o r := 4
5 OPERATIONS
6 inc = PRE f l o o r <10 THEN f l o o r := f l o o r + 1 END ;
7 dec = BEGIN f l o o r := f l o o r ≠ 1 END
8 END

Figure 1.1.: A simple B machine example

B example

Figure 1.1 shows a simple B machine textbook example without properties- and constants
clauses. The machine is faulty: The value of floor can be negative which violates the
invariant in line 3.

• The first line gives a name to the machine file.

• The second line introduce a variable floor inside the variables clause.

• The third line states an invariant. The variable floor is only allowed to take an
integer value from 0 to 10

• The fourth line assigns the value 4 to floor. This is the initial machine state.

• The sixth line adds the inc operation to the B machine. This operation can be
executed if floor has an value below 10 and increments floor by one.

• The seventh line adds the dec operation to the B machine. This operation decre-
ments the variable floor by one. The execution of this operation is unconditional.

No tools are needed to see the possible invariant violation in this machine. The missing
precondition of the dec operation can cause a value of floor below zero which is an
invariant violation. A possible fix of this B machine would be adding an additional pre-
condition to the dec operation to prevent this behavior. This bug can be found by model
checking (which is described later in more detail) because the state {floor=-1} violates the
invariant and can be produced from the initial state {floor=4} by the repeated call of the
dec operation. Real life examples used in industry are not that obviously faulty or correct.

1.1.2. ProB

ProB [53] [43] is a B-Method tool. Its main features and applications are model-checking,
data-validation, constraint-based checking, and model-animation. The ProB-core is
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1.1. Formal methods and tools

written in Prolog, a logic programming language which also supports constraint solving.
Constraint solving is a technique which can be used to solve predicates, i.e. finding
values of bound variables satisfying a predicate. The ProB tool was originally written
by Michael Leuschel and has been in development for more than 13 years [42]

Interesting features in more detail:

• model-checking:
A set of B machines is seen as an abstraction for a state-machine describing real
software. A state is a set of all variables and constants in the software. The
machine starts in an initial state which fulfills the properties and invariant of
the machine. Constants are assigned once at the set up of the machine, and can
violate the safety properties expressed by the properties clause. Variables can be
changed by any operation. If the machine contains operations, (a set of guarded
substitutions, which may change variable values) these operations may change the
state. Executing an enabled operation means switching the machine state from the
current state to a following state. Typically there is more than one successor state.
The set of all states is called a state-space.

Model-checking is the process of exploring the whole state-space and checking
the safety properties (B-properties for constants and B-invariant for variables and
constants) for every possible state. Of course, this can be done by performing a
breadth-first search from the initial states, if previously visited states (cycles in
the state-space) are memorized. Another possibility is starting at a undesired false
state and checking if there is a path from the initial state to this faulty one (see
constraint based checking). One obvious use case of model checking is finding a
sequence of operations in a model, which produce a invariant violation. The cause
can be a wrong invariant1, a false operation precondition (guard), or substitution
body. Also other checks than the violation of safety properties like deadlock freeness
are possible. If the set of states is very large, this approach can result in a (too) long
computation. This combinatoric problem is called state space explosion. Model
checkers typically used advanced techniques to speed up this naive approach.

• constraint-based checking:
This technique uses constraint solving to check if a B operation can produce a
state which violates the invariant. This state must not be reachable from the set
of initial machine states. If such a state can not be produced by any operation,
this kind of checking can be faster than model checking because it avoids the state
space explosion problem.

• data-validation:
1the author of the B machine used a wrong invariant predicate which is false in at least one state
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1. Introduction

Data validation means checking some properties and assertions for a given set of
data. It can be seen as special case of model checking, where only one state is
checked. A use case may be checking a railway-system [52] against some undesired
properties. For example ProB has been used for data validation in railway topolo-
gies or on university time sheets [34].

• model-animation:
Animation of a model is a step-by-step interactive model-checking that may be used
for model validation or teaching. The use case of animation may not be finding
an invariant violation (except in the case of model-debugging), but understanding
the model. Using animation, it is possible to evaluate if the model is modeling
the correct thing corresponding to the requirements. Animation helps to answer
the question “Am I building the right thing”. For example a model that can not
perform all desired operations may not enter a faulty2 state but is still does not
perform correctly.

To check the computation of a model checker, a re-evaluation of the safety properties (B
invariant) in all states must be computed by a second tool. If all state-transitions are
possible or if possible state transitions are absent3 must be computed by a second tool
too. Since most B-operations are guarded by a predicate to check if a state-transition
is possible a case of predicate evaluation. Also a reevaluation of a safety property (B
invariant) is a case of predicate evaluation. This second tool chain approach will be
discussed in more detail in subsection 1.3.1.

Figure 1.2 shows a screen shot of ProB Version 1.3 in animation mode. The view
consists of four frames: The B machine code on the top, the B machine state on the
bottom left, the enabled B operations inside this state on the bottom middle and the
animation history (previous executed operations) on the bottom right.

1.1.3. Other B-Method tools

There are other tools for the B-Method. For example the AtelierB provers pp and
ml. It may be used for automated or interactive proof of B machines. As ProB

the PyB implementation is compatible (besides some few exceptions) to the AtelierB
implementation as defined in its reference manual [60]. More tools are discussed in the
related work section 8.1.1.

2a faulty state violates the invariant
3e.g. found by the main tool but not by the second
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1.1. Formal methods and tools

Figure 1.2.: ProB screen shot (gui)

1.1.4. Norms and external requirements in industry

There are european and international standards for safety critical software like EN 50128
[26] or IEC 61508 [13] (railroad), or ISO 26262 (cars) which define safety integrity levels
from 0 to 4 (SIL4= highest safety). For example the company ClearSy presented a
Double-Core SIL4 architecture 45 in May 12th 2016, Jussieu (Paris). These documents
also define a tool qualification level TCL. A tool used in a SIL project must match a tool
qualification class. The qualification classes are from T1 to T3 [26].

• T1:
Tool output does not contribute to executable code.

• T2:
Tool tests / verifies design or executable code. It cannot introduce defects into the
executable code but may fail to detect existing defects

• T3:
Tool output contributes to executable code

A tool is certified by an external organization ( e.g. SGS TUV Saar) to match that level
of safety. Its intended to reach T3 for ProB, the main tool. One usual certification
approach is using a second tool.

4http://www.atelierb.eu/en/2016/03/15/double-core-sil4-architecture-presented-during-open-source-
innovation-spring-paris/

5http://www.clearsy.com/en/systems-and-projects/railway-systems/urbalis-evolution/
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1 f i s h ( s o l e ) .
2 f i s h ( tuna ) .
3
4 meat ( pork ) .
5 meat ( bee f ) .
6
7 d e s s e r t ( cake ) .
8 d e s s e r t ( f r u i t ) .
9

10 appe t i z e r ( r ad i s h e s ) .
11 appe t i z e r ( pate ) .
12
13 meal (A,M,D) :≠ appe t i z e r (A) , main (M) , d e s s e r t (D) .
14 main (M) :≠ f i s h (M) .
15 main (M) :≠meat (M) .

Figure 1.3.: Simple Prolog example taken from [27]

1.2. Dynamic languages

Two languages are of interest in the context of this thesis. Prolog is the language of
the main tool: ProB. Python, the language of the second tool: PyB. Both languages
have an impact on the implemented tools. Some language features have to be introduced
in order to understand the PyB implementation, the evaluation and the comparison
between PyB/ ProB.

1.2.1. Prolog

The ProB core is implemented in Prolog [28], a logical programing language invented by
Alain Colmerauer et. al. in 1973. Prolog is a declarative language which was originally
developed for natural language processing. In contrast to imperative languages, Prolog
programs describe no algorithms but rather problems and relationships expressed by
facts and rules which are horn clauses. A Prolog [61] program can be seen as a set of
predicates: a database of facts and (horn) clauses. Even though its late binding and
dynamic typing are dynamic features, Prolog is no typical example of a dynamic language.
A Prolog interpreter typically processes a user query via resolution to do computations
and produce an answer/solution. There are di�erent Prolog implementations for example
the free SWI Prolog [67]6 or the commercial Sicstus Prolog [24]7.

Figure 1.3 shows a intentionally simple Prolog example which should help explain the
6http://www.swi-prolog.org
7https://sicstus.sics.se
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1.2. Dynamic languages

previous paragraph without describing complex Prolog techniques. Line 1. to 11. show
Prolog facts. One of these declares that pork is a meat. The last three lines show Prolog
rules. The capital letters A, M and D are variables. The “:-” can be understood as a logical
implication. For example the rule meal will only be satisfied if a solution for appetizer,
main and dessert is found at which time the variables A, M and D are set to a value. One
possible solution of a query meal(A,M,D) would be {A = radishes, M = sole, D = cake}.
This tuple will be found by the Prolog system using SLD-resolution and unification. The
Prolog system is able to find all possible solutions. More complex terms and relations
can also be expressed. For example, data structures like ASTs can be used instead of
atoms like pork. The example is taken from ”Prolog in 10 Figures” [27].

Some important features of Prolog are:

• Unification.
Unification a process similar to pattern matching on Prolog terms. This feature
can be used for type checking, allowing the introduction of type variables. PyB’s
implementation of unification is explained in chapter 2 (2.1.2).

• Non-determinism.
If there is more than one possibility to satisfy a Prolog clause, a Prolog system
explores every possibility by using backtracking. This feature can be used to
sequentially execute nondeterministic B-substitutions. The approach in PyB can
be found in chapter 2 (2.1.6).

• CLP(FD).
SWI [65] [25] and Sicstus Prolog are equipped with constraint solving features
for finite domains. This feature comes in use when dealing with the enumeration
of sets defined by predicates. It has an impact on Prolog software like ProB,
because it enables such tools to find solutions for quantified predicates. PyBs
reimplementation of (simple and less powerful) constraint solving is introduced in
chapter 3 (3.1).

• Purity.
It is possible to modify a Prolog database at runtime (using assert and retract
built-ins), but most Prolog predicates are pure. Data structures are immutable.
For example an environment (program state) will not be directly changed by a
statement predicate, but by producing another modified environment (without a
side-e�ect).

1.2.2. Python

Python [56] is a popular [64] imperative, object-oriented, dynamic language. It was
written by Guido van Rossum8 in 19899. The language is described by its developers as

8http://www.artima.com/intv/pythonP.html
9http://python-history.blogspot.de/2009/01/brief-timeline-of-python.html
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1 class NaturalNumbers :
2 def g t ( s e l f , o ther ) :
3 for e in other :
4 i f e <0:
5 return False
6 return True
7
8 >>> A = frozenset ( [ 1 , 2 , 3 ] )
9 >>> B = frozenset ( [ ≠1 ] )

10 >>> C = NaturalNumbers ( )
11 >>> B > A
12 False
13 >>> C > B
14 False
15 >>> C > A
16 True

Figure 1.4.: Python special method example and usage (simplified)

follows :
“Python is an interpreted, interactive, object-oriented programming language. It incor-
porates modules, exceptions, dynamic typing, very high level dynamic data types, and
classes. Python combines remarkable power with very clear syntax”10 Python is now at
version 3, but the PyB implementation is based on version 2.6 because PyPy (see next
subsection) does not support all 3.0 features. Both versions were released in 2008 and
are still supported.

Some important features of Python are:

• Object oriented
PyB does not use Python’s multiple inheritance feature. All classes have only
one base class at most. PyB also does not use prototype based object creation.
No class attributes/methods are added or removed during runtime (but only at
import time). Only values are changed. All methods behave in the same way for
all instances of any PyB (“old-style”) classes. The main reason for this limitation
are the RPython restrictions (discussed in chapter 5).

• Dynamic (duck-)typing
Data in Python is typed. Every variable is instance of a built-in type or is an
object-instance of some class. In contrast to languages like Java or C++, this type
is determined at runtime. Declaration and definition happens at the same time.
For example an assignment “x=1” creates an integer with the value one at runtime,
without a declaration like “int x;” (in C++ or Java). This binding at runtime

10https://docs.python.org/2/faq/general.html#what-is-python
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1 def g e n e r a t e i n f i n i t e i n t e g e r s e t ( ) :
2 y i e l d 0
3 i = 1
4 while True :
5 y i e l d i
6 y i e l d ≠ i
7 i = i +1
8
9 for value in g e n e r a t e i n f i n i t e i n t e g e r s e t ( ) :

10 r e s u l t = e v a l p r e d i c a t e ( value , p r ed i c a t e )
11 i f r e s u l t==True :
12 break

Figure 1.5.: Python generator example (simplified)

1 class SymbolicSet :
2 def i n i t ( s e l f ) :
3 s e l f . g ene rator = s e l f . generator method ( )
4
5 def generator method ( s e l f ) :
6 for i in range (10) :
7 y i e l d i
8
9 def i t e r ( s e l f ) :

10 return s e l f
11
12 def next ( s e l f ) :
13 return s e l f . g ene ra tor . next ( )
14
15 S1 = SymbolicSet ( )
16 for x in S1 :
17 print x
18
19 S2 = SymbolicSet ( )
20 print S2 . next ( )

Figure 1.6.: Alternative generator example. Outputs 0, .. 9 in line 17 and 0 in line 20
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is called late binding. If x were the parameter of a function, its type would be
known at runtime. If x implements a set of operations (for example addition) these
methods will be available at runtime: x is dynamically-typed.

For example, a Python-function that adds two arguments but has no static type
information about its parameters and will work properly if the types of arguments
support the plus operation. The arguments may be of the type integer, float,
string (plus is concatenation) or of a class instance. This dynamic typing feature
is called duck typing. If all needed operations are supported by a data type, it is
of no interest which type it is. This is summarized by the duck test from James
Whitcomb Riley: “If it looks like a duck, swims like a duck, and quacks like a
duck, then it probably is a duck.”. Duck typing allows a higher level of abstraction.
Implementations of algorithms can be used with di�erent data types if all needed
operations are implemented on these types, for example by replacing a built-in set
type like frozenset with object instances.

• Special methods and operator overwriting
Of course, Python allows the definition of objects and methods, but some methods
with predefined names (which all start with a double underscore11 ) are called
magic methods or special methods. These methods are called (when present) if a
corresponding operator is used on an object instance. The python manual describes
special methods as follows:
“A class can implement certain operations that are invoked by special syntax [...]
by defining methods with special names. This is Python’s approach to operator
overloading, allowing classes to define their own behavior with respect to language
operators.”12

Figure 1.4 shows a Python class example and lines 8 to 14 show how it can be
used in Python’s interactive mode. Blocks are expressed by indentations which
are mandatory in Python. In line 8, 9 and 10 three sets are created. Two use the
built-in type frozenset and one is represented by an object instance of the class
NaturalNumbers seen from line 1 to 6. Line 11 to 14 show a Python expression
using the greater operator and its evaluation True and False. The greater operator
is syntactic sugar for the superset operation and can be implemented by overwriting
the special gt method of a class. The greater than operation in the expression
C > B cause a call of this method and returns True or False. This version of
NaturalNumbers is simplified, assuming that the duck typed variable other supports
iteration (line 3) and that all elements support a comparison with zero.

• Meta programming

11https://wiki.python.org/moin/DunderAlias
12Quote from https://docs.python.org/2.5/ref/specialnames.html
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Code which generates code. This is possible at any time (RPython at import time).
This is used in the PyB parser.

• Generators
A useful aspect of Python’s dynamic features are generators. These are special
functions which use the yield keyword instead of return to leave a function. After
a generator function returns a value, they can be reentered at this point instead of
the function beginning. The local variables of the function at these exit-points are
restored. This feature can be used to generate large or infinite sets lazily.

Figure 1.5 shows a code-snippet of a Python generator and its application in a
simplified existence-quantor evaluation. It generates the values {0,1,-1,2,-2,...}.
One value is generated at every loop iteration. The loop terminates if the predicate
is True or a timeout-exception (not shown in the listing) is thrown.

An alternative is the iteration protocol: Generators can also be added to objects by
overwriting the iter and a next method. The iter method implicitly returns
the generator object, while the next method can explicitly be called to generate an
element. Figure 1.6 shows an example. This technique was used in the symbolic
set implementation in chapter 3.

• Batteries included
Like many modern programming languages, Python comes with a large module li-
brary. Modules containing data structures, sockets, and threading implementations
are installed by default and don’t have to be added afterwards. This advantage
for the Python programmer becomes a burden for the Python implementor. For
example a new Python implementation (like PyPy) is expected to support this
large variety of standard modules. Also, Python’s functionality is extended with a
large third party module library (PyPi) which includes more than 50000 modules13.
Python has no build in constraint solving features.

1.2.3. Python and Prolog as implementation language

This subsection is a small language comparison between Python and Prolog.

• Nondeterminism
This can be more easily implemented in Prolog, because of the ”automatic” back-
tracking while a Python implementation needs to use generators (see 2.1.6).

• Type checking
Also typing using unification is much more easy in Prolog. But this feature is only

13https://pypi.python.org/pypi
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introduced to PyB because of compatibility with ProB (see 2.1.2).

• Infinite sets
Because of the clean room implementation approach, the implementation in Prolog
is unknown. Anyway a symbolic representation of sets should be equally di�cult
in both languages (see 3.1).

• Constraint solving
Most Prolog implementation come with built-in constraint solving capabilities [25].
This is a main disadvantage of Python (see 3.2, chapter 4 and chapter 6)

Prolog is the better choice for a formal tool implementation. Despite constraint solving
Python is also a good choice. Anyway using Python was a necessity to do the RPython
experiments (next subsection). A comparison of code is not presented because it would
violate the clean room approach of this thesis.

1.2.4. PyPy

Originally PyPy [54] was a Python implementation (an interpreter) written in a Python
subset. Today it is also the name of a tool-chain which can be used for automated
interpreter generation, i.e. translating an interpreter written in Python (like PyB) to C
and possibly adding a meta-tracing just-in-time compiler to this code. PyPy is a Python
VM that is fully compatible with the ‘standard’ C Python VM (known as ‘CPython’) [17].
In more recent papers, this is referred to as the RPython tool chain instead of the PyPy

tool chain.

RPython

The name PyPy is short of “Python in Python”. PyPy is implemented using a subset
of Python called RPython [6] (restricted Python). This RPython code can be translated
to C code. “ PyPy is written as an interpreter in RPython, a statically typed subset of
Python that allows translation to (e�cient) C” [17]. The restrictions and their impact
on PyB are discussed in subsection 5.1

RPython Toolchain

The Python subset RPython and the RPython tool chain have to be distinguished. The
tool chain is also a part of PyPy. It enables the translation of VMs and interpreters
written in RPython to C. The RPython code can be viewed as a language specification
of a dynamic language (or any language). One design goal of this translation is the
separation of concerns: After a successful translation to C, it is possible to weave low
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level aspects into the generated code. A important examples is to add a tracing just-
in-time compiler (JIT). ”RPython is not a thin skin over C: it is fully garbage collected
and contains several high-level data-types. More interestingly, RPython automatically
generates a tracing JIT customized to the interpreter. ” [17]. Also RPython is code on a
higher level of abstraction than C code which is an advantage for language implementers.

Meta-tracing JIT

There are two ways of implementing a programming language: Typically a compiler
generates low level machine code while an interpreter executes a program without gener-
ating code. Interpretation supports some dynamic language features at runtime, while
compiled programs are usually much faster. A hybrid between these two approaches is
just in time (JIT) compilation [7]. To merge the positive aspects of interpretation and
compilation, low level code is not generated ahead of time but at runtime. The decision
which code is translated at a given time is the result of program analysis at runtime.
One possible kind of analysis records executed operations into a trace. Recurring traces
of code become hot after some time. In simple words: The interpreter search for hot
loops in the source program and translates these loops to machine language. Executing
machine language is faster than interpretation. Another analysis could be to record
which method is called very often. In this case, only the trace approach is of interest.
In these concept two levels can be identified: The source program (e.g. Python or B)
on the one level and the interpreter and its JIT target code (e.g. machine language)
on the other.The basic approach of a tracing JIT is to only generate machine code for
the hot code paths of commonly executed loops and to interpret the rest of the program. [16]

In contrast to other JITs, meta tracing involves a third level. The source program of the
tool chain is not the program to be executed but an interpreter executing these programs.
This interpreter can be seen as language description. The goal of a meta tracing JIT
is to find loops in these first level of the program (e.g. B) to speed up the program
by speeding up the interpreter (e.g. PyB). The PyPy-tool chain is able to weave the
aspect of a meta tracing JIT into a interpreter written in RPython. PyB is such an
RPython interpreter. The cross cutting concern of adding a JIT is not the task of the
interpreter implementer. He only has to add some JIT hints in the code (chapter 5).
“When a ‘hot’ loop is detected at run-time, RPython starts tracing the interpreter (‘meta-
tracing’), logging its actions. When the loop is finished, the trace is heavily optimized
and converted into machine code. Subsequent executions of the loop then use the machine
code version.” [17]. A meta tracing JIT is added to the PyB implementation. It will be
discussed in chapter 5 and 6. The usage of the translation from RPython to C, the JIT
and its evaluation are the second contribution of this thesis.
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1.3. Motivation and Research Questions

The general topic of this thesis is the implementation of B and its evaluation. Two
questions are of main interest: The implementation of a second tool chain and the
experimentation with a formal language implementation in RPython using the PyPy

project.

1.3.1. A second tool chain

PyB is a B implementation in Python. It may be used in the context of data validation
as a second tool chain. To do this, it validates data by comparing a computed solution
against some predicates. PyB evaluates predicates14 and expression in a given state.
This state can be precomputed by an other tool. In this case ProB is the main tool,
and PyB the second tool.

Figure 1.7.: Second tool chain concept. Picture taken from [69]

Figure 1.7 illustrates this approach. The main tool, ProB, computes solutions for a
formal B model, and this output can be used by the second tool. The second tool, PyB,
evaluates the formal model again using the computed solution. The second tool should
not compute a new solution. Computing a solution is much more complex than using
it. After the evaluation, the second tool checks its evaluation (typically True or False)
against that from the main tool. If the evaluation di�ers, a bug has been found inside
the main tool or the secondary tool. One assumption is that implementing a tool which
is using a solution results in a less complex tool than implementing a tool which is used
to find a solution. Notice this approach is not an alternative to a tool proof.

Research questions:
14for example a B invariant
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• Is the usage of a second tool chain a good way to raise reliability of a tool? When
is this the case and when not?

• Does a second tool chain become as complex as the main tool?

• How much e�ort is needed to implement a second tool chain using an language like
Python and how is it done?

• Which aspects of B can be easily implemented? Which aspects are more di�cult
to be implemented and how is this done?

These questions lead to the following thesis goals:

• Documentation:
Implement a second tool chain and describe how it was implemented in Python.
This includes B aspects which are especially di�cult.

• Correctness:
Use an implementation style which produces easily verified Python code or code
which is obviously correct.

• Completeness:
Implement the full B syntax. Support every B construct.

• Speed:
Ensure a good performance. Be able to evaluate predicates and states very quickly
(compared to other tools).

• Time:
Use much less time to accomplish these goals compared with the verification with
the main tool ProB.

• Independence:
Writing a clean room implementation: not using any code or algorithms from
ProB.

• Evaluation and Discussion:
Evaluate the tool performance, complexity and correctness.

Some of these goals conflict with each other. Simplicity may be in conflict with speed.
Nearly all goals are in conflict with the time goal.

The implementation of the tool can be found in chapter 2 and 3. An evaluation and
discussion can be found in chapter 4. Speed is discussed in chapter 6. The development
process can be found in chapter 7.
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1.3.2. Using PyPy on a B implementation

The PyPy tool chain was used on implementations of languages like Smalltalk [20]
or Prolog [18] but never on a formal language like B. The second goal of this thesis
is to find out whether a B implementation can also benefit from choosing a high level
language like Python, translation to C and adding a meta-tracing JIT [15]. In the context
of this topic, B is a language which is executed by an RPython interpreter: (PyB).
The implementation of features like model checking is useful to evaluate the RPython
translation and JIT impact. The prior expectation was a speedup by translation and
JIT.

Research question:

• What is Python’s impact on B implementations in terms of performance and
simplicity?

• What are the di�erences of using an imperative high level language like Python
instead of a declarative language like Prolog for implementing B?

• Can the RPython C translation and meta tracing JIT generation be successfully
used on a B implementation? What are the benefits and what are the costs? Which
tool refactoring is necessary?

• Which B machines can benefit from a translation to C and a meta tracing JIT and
which can not?

These questions lead to the following goals:

• C translation:
Use PyPy to speed up PyB by translating from RPython to C.

• JIT:
Use PyPy to speed up PyB by adding a meta tracing JIT.

• Input analysis:
Determine which B machines or B constructs can benefit from a meta tracing JIT
and which can not.

The translation and refactoring process from PyB-Python to C and the JIT extension
is described in chapter 5. The result, benchmarks and an analysis of how machines
performance was improved can be found in chapter 6.

1.3.3. PyB

PyB is an implementation of the B-Method in Python. It is designed to be used as a
second tool chain for the ProB tool. PyB is able to evaluate predicates, enumerate
set’s and execute substitutions. The development was done via test-driven development.
PyB was developed by myself from 2011 to 2016 and is the main contribution of this
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thesis. PyB’s main features are:

• Loading, parsing (using a Java parser) and type checking B machines and predicates
e.g. ProB solution files

• Predicate and expression evaluation, e.g. invariant and properties clauses of B
machines

• Substitution execution e.g. exploring a state space of a machine by performing its
operations

Apart from the Java-written parser, PyB is a Python clean room implementation. A
detailed overview of the supported B syntax can be found in Appendix B. The main
reason for choosing Python as an implementation language, was to use the C-translation
and JIT feature of the PyPy project on this interpreter.

Notice: PyB is not a B prover.

1.4. Outline

The thesis is organized as follows:

• Chapter 2. introduces the simple parts of the PyB implementation.

• Chapter 3. discusses the more complex parts of the PyB implementation such as
infinite sets and csp enumeration problems

• Chapter 4. presents the second tool chain evaluation results

• Chapter 5. describes the translation from Python to RPython, the translation
itself, and how a a JIT was added.

• Chapter 6. evaluates the RPython implementation using benchmarks.

• Chapter 7. is about the development process.

• Chapter 8. compares PyB to other tools and implementations and contains the
thesis conclusion.

1.5. Summary

This chapter introduced the two topics of this thesis, their motivation and their goals. It
also introduces some aspects of the second tool chain approach, B, Python, Prolog, model
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checking, data validation, RPython, and JIT-compilation which are the foundation to
understand the remaining thesis.
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2
Tool Overview

2.1. Architecture of PyB

This section presents the PyB implementation. It also discusses implementation alterna-
tives to justify design decisions and to present wrong approaches. Purpose of this sections
is to convince the reader of the simplicity of the tool which is mostly implemented using
standard techniques of compiler and interpreter construction [4]. Di�cult implementation
aspects are presented in chapter 3. Table 2.1 summarizes the modules in PyB.

Figure 2.2 shows the initial steps taken by PyB when processing a B model: parsing,
AST generation, definition handling and type checking. These steps are presented in the
next subsections. The definition handling step is optional, because the definitions clause
can be omitted in a B model. The steps performed after start up (at runtime) depend
on operation mode and input. PyB behaves di�erently when it is used as repl, simple
predicate checker or when it processes whole B machines. PyB’s operation modes will
be discussed in subsection 2.2.1. The PyB start up should not be confused with the
start up for a B machine which is something entirely di�erent (see B state subsection).

2.1.1. Parsing and Definition Handling

The task of parsing is to generate Python data structures from B input files. The data
structure is an abstract syntax tree (AST).

23



2. Tool Overview

Figure 2.1.: Module Overview
Name Summary
animation clui.py console interface for animation mode and repl
animation.py main animation computation
ast nodes.py classes representing AST-nodes
bexceptions.py custom exception objects
bmachine.py a class representing one B machine
boperation.py a class representing one B machine operation
bstate.py a class representing one B machine state
btypes.py type classes
config.py main config file
constrainsolver.py PyB constraint solving code
definition handler.py main definition handling code
enumeration.py enumeration methods for sets, functions, relations and more
environment.py code for managing B machine state
external functions.py implementation of external functions
helpers.py miscellaneous helper functions
interp.py main interpreter code. Predicate/expression evaluation code.

Substitution execution code
parsing.py helper functions to execute Python AST-code
pretty printer.py pretty printer for B predicates and expressions
pyB.py main module
quick eval.py special case membership evaluation
repl.py read-eval-print-loop code
statespace.py implementation of the state space
symbolic sets.py symbolic set classes
symbolic function sets.py symbolic function set classes
typing.py main type checking code

The Java Parser

PyB is an independent clean-room implementation except for its B parser which is
written in Java. This Java parser was written by Fabian Fritz in 2008 and has been
maintained and extended by others and is also used by ProB. This parser is generated
by a parser generator named SableCC [31]. SableCC was originally developed for the
master thesis of Etienne Gagnon in 1998. SableCC automatically creates a lexer, parser,
and other helper classes from a set of regular expressions, grammar definitions, and
productions. The generated code is Java. The Java parser outputs an (abstract) syntax
tree for every input which is a valid program defined by the grammar.

The developers describe SableCC as follows: ”SableCC is a parser generator which
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generates fully featured object-oriented frameworks for building compilers, interpreters
and other text parsers.”1

PyB uses ProB’s parser to recognize B-constructs like predicates, expressions, and
substitutions. These constructs are translated to an intermediate representation: an
abstract syntax tree (AST) represented by Java classes. This is done by a mapping
concrete productions to abstract ones (of a second abstract grammar) inside the SableCC
input file. These AST Java objects are translated to Python objects via an AST-visitor,
an addition to the Java code written only for PyB. The AST-visitor is a Java class
which performs operation on some AST nodes without modifying any of the Java objects.
It can easily be written by extending (Java inheritance) the auto generated SableCC
depth-first helper classes. The visitor is the only contribution of this thesis on the Java
parser level.

In “Design Patterns Elements of Reusable Object-Oriented Software” (Erich Gama et
al.) a visitor is described as follows:
”Represent an operation to be performed on the elements of an object structure. Visitor
lets you define a new operation without changing the classes of the elements on which it
operates.” [32]

The AST-visitor emits a string of Python code by performing a depth first walk over
the Java AST. The dynamic features of Python enable the execution of this Python
code after the Java visitor execution has terminated. This is used by PyB to generate a
Python AST representation from the Python string output.

The listing in Figure 2.3 shows the Python code created by the Java visitor for the
simple predicate 1+1 = x. Figure 2.4 shows the corresponding AST. This data structure
is hierarchical: the expression evaluation of 1+1 and the lookup of the variable x has
to be done before the check of equality. The example is very simple on purpose. More
complex ASTs are generated exactly the same way.

The AST identifier objects are numbered from 0 to 5. The last one is the root of the
tree. All these Python objects are derived from one node class. Code like this can be
evaluated by Python and is the main input for most PyB evaluation methods.

The visitor consists of 1830 lines of code.

1http://sablecc.org/
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Figure 2.5.: A B machine using definitions
MACHINE Test
VARIABLES z, b, x
INVARIANT x:NAT & z:NAT & b:BOOL
INITIALISATION x:=2 ; Assign (x+1, z) ; Assign (TRUE , b)
DEFINITIONS Assign (Expr , VarName ) == VarName := Expr;
END

Definitions - B macros

Figure 2.5 shows a B machine which can be processed by PyB. This B machine contains a
definition clause. Definitions can be compared to C macros: They are a text replacement
mechanism. All definitions are listed in the definition clause. A definition consists of a
declaration of a name and parameter names on the left side and an expression on the
right side of the two equal symbols. A definition can be used in predicates, expressions
and substitutions. The definition’s name in Figure 2.5 is Assign. The parameter names
are Expr and VarName. It is used in the initialisation clause. After the replacement,
the initialisation clause consists of three substitutions: x:=2; z:=x+1; b:=TRUE.
While x and z are of type integer, b is of type boolean. Depending on the parameters in
the application of a definition, the type of the generated B code may be di�erent. This
is why definitions should be evaluated before type checking. Like ProB PyB applies
definitions on the AST before type checking is performed.

The Java/Python parser generates two kinds of definition nodes. The first kind is only
present in subtrees of the definition clause node and represents the pattern of a B
definition. The other kind represents the application of a definition pattern and may be
found at any AST location where expressions, predicates or substitutions are possible.
The implementation of B definitions by PyB is done in 3 steps:

1. parsing all definitions inside the definition clause. Storing definition pattern
represented by ASTs.

2. whenever a definition is used construct new sub ASTs corresponding to the given
parameter values using a clone of the AST definition pattern.

3. replace the definition call with the new tree.

The replacement phase is also used to replace AST nodes calling external functions. This
is also a ProB feature. External functions are not written in B and need additional
verification. In contrast to definition replacement, the node is replaced with a custom
external function node which wrap a Python function written by the user. It is the only
kind of AST node which cannot be generated by the parser.

Figure 2.6 shows a B example using an external function length which computes the length
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Figure 2.6.: A B machine using an external function (simplified)
MACHINE LibraryStrings
CONSTANTS length
PROPERTIES

/* compute the length of a string */
length : STRING --> INTEGER &
length = %x.(x: STRING | STRING_LENGTH (x))

DEFINITIONS
STRING_LENGTH (x) == length (x);
EXTERNAL_FUNCTION_STRING_LENGTH == STRING --> INTEGER ;

END

of a string. The external function is introduced with a prefix EXTERNAL FUNCTION
inside the definition clause.

PyB’s AST is a immutable data-structure (at runtime) and no node will be altered. The
only exception is the evaluation of B definitions after Java parsing and before Python
type checking. There is no change of the AST node instances after this step. This fact is
important to the RPython translation (see chapter 5).

Every node of the AST is only visited once which means the algorithm is linear. The
algorithm terminates because the tree consists of a finite number of nodes.

External functions

Like ProB, PyB supports external functions. These functions are not checked for
correctness by PyB and are a responsibility of the tool user. Examples are printing
functions or missing string operations not supported by classical B. Typically they are
introduced with an external function prefix and some type information into the B machine.
The implementation is done with external code. In ProB this is done using Prolog, in
PyB is it done in Python (the external functions module).

Implementation Alternatives

The obvious alternative to using the Java parser is implementing a new parser in Python.
This violates the clean room implementation goal: A parsing bug inside the main tool
would also be inside the second tool. However there are good reasons for this exception.

Parsers are typically not written by hand but generated from grammars and regular
expressions using tools like SableCC. The temptation of using parts of these grammar is
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high and writing them new from scratch would likely not lead to a more reliable version
of the parser. Furthermore doing this would be very time consuming. Last of all, a parser
can still be written in Python at any time. When considering limited time resources
there are simply other implementation issues which are more important.

Printing executable Python code can cause performance problems on large B machines.
If the Java parser is not replaced by a Python parser in the future, this can be still be
improved by using a more direct communication between the Java and Python part, e.g.
using sockets.

There is no good alternative in the case of definition handling. Modifying the AST after
its creation is the obvious implementation. This is equivalent to generating a new AST
in a second pass.

2.1.2. Type Checking

The type checking phase is performed after parsing and definition handling. It uses the
ASTs (one AST per B machine) as input to produce a mapping of identifier AST-nodes
to PyB’s B type tree instances. A type tree is only a single node in the case of a scalar
type like boolean or integer and a tree of nodes in the case of a function type or a set
(see example). The motivation of type checking is error detection in B machines and to
provide type informations for enumeration methods discussed in chapter 3.

To sum up, the goals for type checking:

• map every identifier node to a type tree.

• compute all type trees independent of the predicate subterm order (compatibility
with ProB).

• keep the AST data structure immutable in order to separate concerns. Store type
informations in a di�erent data structure.

• keep the implementation simple
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the whole predicate, an exact typing is not possible but the order of the subpredicates
should not a�ect the type checking. Otherwise PyB would not be compatible with
ProB. If the ordering of subpredicates is irrelevant, type checking of predicates like
x = y · x = 42 must be possible. This problem is solved by the introduction of type
variables [51].

Beside the subpredicate order, another problem to be solved is the consideration of scopes.
B allows nested quantified predicates like ’m.(m œ N =∆ ÷n.(n œ N æ m < n)). The
variable m is bound to the universal quantifier and may appear in the outer and inner
parenthesis pair while the variable n is bound to the existential quantifier and may only
appear in the inner pair of parenthesis. Any other use of this variable would be a type
error and will be detected by the type checker.

Other examples of scopes are bound variables within substitutions, operations or variables
of other (included, seen ..etc.) B machines. The B specification does not forbid reusing
identifier names in di�erent scopes, but some B tools prohibit this not or at least give
warnings(ProB)) to the user.

Implementation of Type Checking

The type checking implementation consists of two functions operating on two kinds of
trees which should not be confused: The AST (handled by a type checking function) and
the type trees (handled by a unification function). Some AST nodes are used to construct
a mapping from identifiers to type trees. For example equality (x=y) or membership
(x:S) will cause the type checking function to call the unification function. Initially,
every identifier node is mapped to a type variable. The AST is visited by a depth first
algorithm while propagating type informations from the leaves to the root. Leaves may
return concrete B types or other type variables. Di�erent unification steps are performed
depending on the visited node.

PyB uses a simple unification algorithm [51] to implement type checking. PyB’s
unification is a pattern matching algorithm performed on two type trees. Both trees are
traversed in the same order while comparing each node. Step by step a third type tree
(the output) is constructed, which contains fewer or an equal number of type variable
nodes than each unified tree. That means the new tree is more or equally concrete to
both trees. This procedure can be summarized by these three steps:

• (TYPE 1) If a type variable is unified with a concrete type, the variable is set to
this type.

• (TYPE 2) If a type variable X is unified with an other type variable Y, then a
pointer is set from X to Y to save the information that both variables point to the
same type. In the case of a chain of type variables (starting from X), the reference
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to a concrete type is set by the last type variable. The type of the AST node
of type variable X is the type of the last node in the chain (see example in next
subsection). This step can also be used in the case of a membership relation by
passing a subtype argument to the unification step.

• (TYPE 3) If a concrete type is unified with another concrete type (or type con-
structor), the unification continues if the types are equal or if a type error has been
found (unequal types) .

Inner nodes of type trees are only concrete types (corresponding to cartesian product
or powerset) and not type variables (except the A-B and A*B special case of the next
paragraph). Before any unification is performed, a closure function walks the chain of
type variables finding the last variable. Every unification is performed only at the last
type variable (which is implicitly stated in step TYPE 2). Because of this cycles (type
variable pointing at each other) are not possible (see example in figure 2.10).

After the ASTs have been fully visited, a resolve phase walks over every type tree again.
If it is not possible to find a path from every type tree root to a concrete type (which
means that a type tree still contains a unresolved type variables), a type error has been
found.

There are two special cases of type variable nodes created by expressions A*B and A-B.
The operations can be multiplication or cartesian product and integer subtraction or
set subtraction. In both cases A and B can be of type integer or set. This can also be
resolved after the whole AST has been visited.

PyB uses a standard approach to solve the scope problem: a stack. Every time a new
scope is entered or left, a new hash map (identifier nodes to type trees) is pushed or
popped. A id lookup method always traverses down this stack from the top and throws
an exception if no entry is found. Variable names are known before their use. Quantified
variables are introduced explicitly and global variables can be found in the SETS or
VARIABLES clause of the B machine.

The operator precedence is encoded inside the AST by the parser. If the parser is correct,
PyB automatically uses the right precedence.

The type checking algorithm visits every AST node only once. Because of the finite
number of nodes, the algorithm will terminate. Of course the unification step adds extra
computation time to the type checking computations. It terminates because cycles inside
type trees will not be produced and the number of variables is finite. Termination of
type checking may also be caused by throwing a type error.
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Figure 2.9.: AST of x = y · x = 42 Order of type checking traversal from 1 to 7, returned
types or type variables

Type Checking Example

Figure 2.9 shows an AST and figure 2.10 shows a stepwise computation of a type tree.
The numbers in 2.9 indicate the order in which nodes are visited. The edges show the
type of the lower nodes which are returned to the upper node. Unification computations
are performed in the equal node 3 (TYPE 2), equal node 6 (TYPE 1) and conjunct
node 7 (TYPE 3). Figure 2.10 shows the stepwise computation of the type trees on
initialization of the map (step A), after unification in equal node 3 (step B) and after
unification in equal node 6 (step C). The resolve phase is omitted in figure 2.10. Both
variables x and y are of type integer.

Figure 2.10.: Stepwise computation of type trees of example from Figure 2.9 ‡ :=
{typevar0 æ integer, typevar1 æ integer}
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The algorithm does not produce any type variable cycles. For example in x = y & y =
x & x = 42 the second subpredicate y = x has no e�ect on the type tree because both
x and y already point to the same type variable. When the type checking functions
encounters x = y the type variables (argument to the unification function) are di�erent.
At the equal node of y = x the type variables are already equal.

Implementation Alternatives

Variable renaming (e.g. in quantified predicates) was unnecessary because of the stack
usage inside the type environment and the mapping from identifier nodes to type trees
instead of the mapping of strings (id names). The implemented solution uses a 1:1 relation
between nodes and type trees. A type ambiguity (e.g. of di�erent bound variables in
a nested quantified predicate) is impossible. Also, a stack is needed in the renaming
solution too.

Instead of creating a map from id nodes to type trees an annotation of the tree could
be an alternative. This violates the immutability of AST and is not really a di�erent
approach. There is no advantage in using the standard approach of an attributed ASTs
(nodes contain type information). The only di�erence is where informations are stored.

The unification could have been avoided at the price of lower compatibility to ProB.
This would make PyB a more simple tool and would be consistent to the Atelier B
specification. Atelier B can not type predicates of arbitrary order without explicit type
informations. If compatibility is mandatory, the alternative to unification would be a
reordering of terms by PyB (at type checking phase). For example, x = y · x = 42 can
be reordered to x = 42·x = y. A reordered term with explicit type information would be
x œ Integer · y œ Integer · x = 42 · x = y This reordering approach is more error prone
than the unification solution and violates the intended immutability of the ASTs. The
explicit typed version would also needs a rewrite of the predicate by the B machine author.

2.1.3. Implementation of B’s data types

B’s basic and composed data types are easily implemented by Pythons built-in data
types. There is no distinction between primitive and others types in Python. Every value
is an instance of a subclass of the class object. Every operation can be expressed using a
method call. For example x + y is equivalent to x. add (y).

Furthermore, mapping infinite data objects (even a set of integers) to finite ones is a
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problem even if Python supports data types which are only limited by machine memory.
This aspect is addressed in chapter 3.

Explicit implementation of B’s integer types

B’s integer type is represented by Pythons integer type. It supports numbers from
≠231 to 231 ≠ 1 and even larger numbers at the expense of more memory usage:
Plain integers:These represent numbers in the range -2147483648 through 2147483647.
[...] When the result of an operation would fall outside this range, the result is normally
returned as a long integer. [...] Long integers. These represent numbers in an unlimited
range, subject to available (virtual) memory only.2

Explicit implementation of B’s set types

The most important type in B is the set. While there are B built-in sets for boolean,
natural and integer numbers, there are also ways to declare user defined sets using the
sets clause or simply set operations like intersection, union etc.

Python o�ers two built-in set types: set and frozenset. The explicit B set representation
is done using Pythons built-in type frozenset. The name explicit is used in this thesis to
distinguish the set representation introduced by this subsection from that of chapter 3.
Instances of the built-in set type can be modified after creation (adding and removing
elements at runtime), while frozensets are immutable. The set type is an unhashable
type, i.e. it is not possible to use the set type to build a set of sets. The frozenset type
is hashable because of its immutability.

Both the set and the frozenset type implement most of the needed set operations. Figure
2.11 shows the built-in methods and a short description. The table is a modified copy
from the Python documentation3. S and T are sets and x is an element.

Sets of sets or sets of tuples are created using a combination of frozensets and Python’s
built-in tuple type. More complex sets can be created implementing the cartesian product
or the powerset operation. For example the poweset of the set {1, 2} is represented
by frozenset([frozenset([]),frozenset([1]), frozenset([2]), frozenset([1,2])]). Relations are
represented as a set of tuples. Functions and sequences are a special case of rela-
tions. For example, a finite B-function f which maps the numbers 1 to 3 to its square
numbers “f = %x.(x > 0 & x < 4|x ú x)” is represented on the Python level as

2https://docs.python.org/2/reference/datamodel.html
3https://docs.python.org/2.4/lib/types-set.html
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Operation Description
len(S) cardinality of set S
x in S test x for membership in S

x not in S test x for non-membership in S
S.issubset(T) test whether every element in S is in T

S.issuperset(T) test whether every element in T is in S
S.union(T) new set instance with elements from both T and S

S.intersection(T) new set instance with elements common to T and S
S.di�erence(T) new set instance with elements in S but not in T

S.symmetric di�erence(T) new set instance with elements in either S or T but not both
S.copy() new set with shallow copy of s

Figure 2.11.: Taken from Python documentation 2.3.7 Set Types: Possible operations of
set and frozenset instances

frozenset([(1,1),(2,4),(3,9)]). Instances like this can be created at runtime during the
interpretation of B.

Explicit implementation of B’s record types

Structs are also implemented using Python’s frozenzet type. Every record is a set of
2-tuples, containing a string key and a B value. Python dictionaries (hash maps) are not
chosen for the implementation because they are not hashable. Every set content must be
hashable to enable sets of sets.

Implementation Alternatives

Since any B implementation needs to represent set of sets, Pythons mutable set type is
not suitable. The Python documentation about set types:
2.3.7 Set Types [...] The set type is mutable [...] it has no hash value and cannot be used
as either a dictionary key or as an element of another set.
An object is hashable if it has a hash value which never changes during its lifetime [...]
Hashability makes an object usable as a dictionary key and a set member, because these
data structures use the hash value internally. All of Python’s immutable built-in objects
are hashable, while no mutable containers (such as lists or dictionaries) are. 4

As a frozenset is immutable and hashable, it can be used again as an element of another
set, or as a dictionary key. 5

4https://docs.python.org/2/glossary.html#term-hashable
5https://docs.python.org/3/reference/datamodel.html
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2.1.4. B state representation

A B state is a set of variable (or constant) name-value pairs. Every variable change
can create a new B state. The set of all states is the state space. Figure 2.12 shows all
reachable states of a fixed B Lift example from Figure 1.1 (last chapter) after init and
one inc operation execution.

B states are implemented using a stack of dictionaries (Python hashmaps). Each dic-
tionary maps an identifier key (represented as string) to an explicit or symbolic value.
Symbolic values will be introduced in chapter 3. Explicit values are those of the last
subsection. The dictionary is the obvious implementation for a state. The usage of a stack
is the result of the B scoping (variable visibility) rules. If a new scope is entered, a new
dictionary is pushed on the stack containing only the keys and a None value. Values are set
using an PROPERTIES/INITIALISATION-clause in the (special-)case of the initial state
with possible parameter values using OPERATION preconditions or assignments. If a
scope is left, the dictionary is popped from the stack. If a value should be written or read,
a lookup algorithm searches from the top of the stack down to the stack bottom, until it
finds an entry. This allows identical variable names on di�erent scope levels. If no entry
is found an exception is raised. This means an unknown variable is accessed which must
be a bug inside PyB. This solution is common in programming language implementations.

Each B machine instance keeps its own state. Which state should be used is managed by
the environment. The environment changes and resets the current machine scope. An
alternative implementation would be a static analysis of duplicate variable names. The
disadvantage would be the constraint prohibiting identical identifier names, which would
be a problem for bound variables. This issue was already discussed in the last subsection.

This implementation is wrapped by a environment class which is used for example by
the interpreter evaluation function.
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Figure 2.12.: Simple state space, gray states are visited
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1 MACHINE Scope /ú modi f i ed Schnieder book page 115ú/
2 SETS S
3 PROPERTIES card (S)=3
4 VARIABLES f
5 INVARIANT f : S ≠≠> 0 . . 6
6 INITIALISATION f :=Sú{0}
7 OPERATIONS
8 op1 ( rr , nn ) = PRE r r : S & nn : 1 . . 6 & f ( r r )=0
9 THEN f ( r r ) := nn

10 END;
11 nn <≠≠ op2 = nn:= SIGMA( zz ) . ( zz : S | f ( zz ) )
12 END

Figure 2.13.: B scoping example

The scoping rules of one single B machine is as follows (Atelier B reference [60] pages are
shown in parentheses):

• (abstract) Constants and Sets are visible inside the INVARIANT-, PROPERTIES-,
ASSERTIONS-, INITIALISATION-, OPERATIONS-, INCLUDES- and EXTENDS-
clause. (7.15)

• Variables are visible inside the INVARIANT-, ASSERTIONS and OPERATIONS-
clause. (7.19)

• Bound variables of set comprehensions or existential or universal quantified are
visible in their corresponding predicates. (5.7, 4.2)

• Bound variables in a lambda expression, generalized summation or production and
quantified unions or intersections are visible in their corresponding predicate and
expression. (5.16, 5.8, 5.4)

• Local variables introduced in a ANY, VAR or LET substitution are only visible in
the substitution itself. (6.10, 6.14, 6.11)

• Operation parameters are visible in the operation body. (7.23)

• Operation return values are visible for write mode in the operation body.

Figure 2.13 shows a simple (simplified) textbook example, to demonstrate scoping. The
CONSTANTS- and ASSERTIONS-clause is omitted in the example. The state consists
of a deferred set S of three elements and a variable f which is a function from S to integer.
The machine o�ers two operations: changing the functions mapping or performing a
summation on the functions image.

Figure 2.14 shows a possible state change of this machine at the Python level. It can
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Figure 2.14.: PyB state representation and state change
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occur during machine animation or model-checking. Every square represents a state or
an intermediary state. The arrows represent a computation step. The call of op2 is split
into more steps. Only the aspects relevant for scoping are described:
First a mapping from identifier to None (no value) is added to the lowest level of the
stack. After the execution of the INITIALISATION-clause, the variables are bound to a
possible value. Deferred sets are filled with a number of dummy elements: S1, S2, S3 (or
more), defined in a PyB config file. Now the machine startup is done. After operation
op2 has been called, the parameters (if present) and return values are added to a new
frame. The evaluation of a predicate with a bound variable (zz) adds a new frame for
every nested predicate. The expression f(zz) is evaluated for every (this is omitted from
the figure) possible value of zz e.g. S1. After the evaluation of the predicate, the frame
of the bound variables is dropped. Operation parameters and return values are dropped
when the operation execution finishes. The return value will be used by the caller.

2.1.5. Interpretation

Explicit evaluation of B expressions

The explicit interpretation of B formulas is done using a depth first algorithm on the
AST. This algorithm is recursive: every node is evaluated using the evaluated expressions
of its subtrees. The leaves of the AST may be identifier-, number-, set- nodes etc. The
value of the whole expression represented by an AST is generated this way. It is the
usual approach of writing interpreters. This subsection does not describe the evaluation
of symbolic values (introduced in chapter 3) but rather B data represented using Python
types like string, integers, frozensets or tuples introduces in the previous subsection

PyB’s evaluation method uses two parameters: an AST node and an environment. The
AST node may also be the root of an AST. The environment delivers a link to the current
B state. The evaluation method is pure: it does not change the B state which means it
has no side e�ects. This is an advantage for the independent evaluation of subexpressions
(chapter 3) and an important property for the correctness of the PyB code. Substitutions
are evaluated with a di�erent method.

Figure 2.15 shows the evaluation of the predicate 5+3<card(S) represented by an AST.
The nodes are visited using a depth first search. The edges of the tree are labeled with
the expression returned by the node evaluation. The evaluation of the identifier S is done
by a lookup inside the environment. The RPython version of the ”interpret” method
uses wrapped types and is discussed in chapter 6.

Figure 2.16 shows an excerpt of the ”interpret” method. This method is basically a big
switch over all node cases. Inner nodes like add or card use the evaluation of their child
nodes to compute their value. Leaf nodes like integer or identifier just return a value.
Because ASTs are finite, the algorithm obviously terminates if every implemented case
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Figure 2.17.: An (artificial) B machine containing a nondeterministic operation
1 MACHINE NonDet
2 VARIABLES x , y
3 INVARIANT x :NAT & y :NAT1
4 INITIALISATION x:=3 ; y:=3
5 OPERATIONS
6 op = BEGIN x : : { 0 , 1 , 2 } ; y : : { x+1}≠{1} END
7 END

terminates. Of course other node evaluation cases are more complicated than the nodes
in this example.

Implementation Alternatives

It would be more object oriented to add the evaluation methods like type checking or
interpretation to the corresponding node class. This approach was not implemented
because of readability of PyB code. It is used in the RPython branch of PyB for
performance reasons (see chapter 5)

2.1.6. Substitution execution

B’s substitution statements can be compared to statements used by many programming
languages. The di�erence to other languages is the high level of abstraction of some
substitutions. While usual substitutions like direct assignments or if-then-else statements
exist, there are other substitutions which allow nondeterminism. One challenge when
implementing B is to implement these nondeterministic substitutions and their possible
parallel execution6. Also, the B implementor must keep in mind that substitutions will
be used to implement7 animation and explicit state model checking into PyB, which is a
technique which computes every reachable state (section 2.1.9).

Figure 2.17 shows an artificial B machine example. This machine is purposely simple to
demonstrate implementation issues introduced by B’s nondeterminism. The machine’s
initial state sets the variable x and y to a valid state (3,3) which does not violate the
invariant (the maximal Nat set value is greater than 3 ). The value both of x and y
must be greater than or equal to zero. The operation op consists of a sequence of two
nondeterministic substitutions: x will be assigned to the value 0, 1 or 2, and y will be
assigned after x has been set to a value. Y will be set to the value x+1 unless x’s value

6Parallel at B level (modeling), not at interpreter level
7The PyB code of substitutions is used by the model checking loop code to compute the transition

from one state to another
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is 0. In this case the whole operation is impossible because one of its substitutions is
impossible: The set di�erence {0 + 1} ≠ {1} will produce an empty set.

This machine shows how values of variables can be constrained by the values of other
variables which are chosen nondeterministically. Possible value pairs for x and y are: (1,2),
(2,3) and (3,3). The implementation obviously needs some kind of backtracking algorithm.
The e�ect of nondeterminism and the constraints between variables expressible by B can
be much less obvious than in this simple example. The expression or predicate evaluation
needed to compute a value can be much more complicated and time consuming than in
this example. Not only the assignment of values to variables, but also which execution
branch is chosen can be nondeterministic in some cases (not shown in example).

Table 2.18 shows all implemented substitution names, an example, when they are disabled
(execution is not possible), and if they are deterministic. A substitution is only enabled
when its body is enabled (recursion) and when its condition (if present) is true.

A substitution can be indirectly nondeterministic when is body contains at least one
nondeterministic substitution. For example when one (or more) non deterministic
substitutions are a part of substitution sequence. An other example would be an if then
else substitution (which is deterministic), which will become potentially nondeterministic
if one branch contains nondeterminism. The table only marks substitutions with a yes in
the last column when they are always nondeterministic.

Some notes have to be made on this table:

• Becomes Element of and Becomes such that are nondeterministic if the set contains
more than one element

• precondition and assertion conditions should not be false.

• a loop is not possible if no iteration is possible i.e the body is not enabled. This is
di�erent from a loop which is not entered because its condition is false.

Implementation of B’s Substitution Statements

Figure 2.19 shows a code snippet of PyB’s substitution implementation. The implemen-
tation uses Python’s generator feature to implement the nondeterminism. Generators and
the yield keyword were introduced in section 1.2.2. The generator uses two arguments:
an AST node sub and an environment env. The generator returns true if a possible
substitution branch has been found. In most cases, the environment was changed if one
or more variables have been set to a value. A state change may be the side-e�ect of a
substitution execution. The implementation of three nodes is shown in these examples:

• The first example ranges from line 2 to 3. The skip substitution implementation is
always True, even if no value was changed.
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Figure 2.18.: B substitutions and its PyB implementation [60]
name example disabled / non

not feasible deterministic
Block BEGIN x:=42 END if body is disabled -
Skip skip never -

Becomes Equal x:=42 never -
Precondition PRE x:NAT if precondition is false (error)

THEN x:=42 END or body disabled -
Assertion ASSERT x:NAT if assertion is false (error)8

THEN x:=42 END or body disabled -
Bounded choice CHOICE x:=1 if every choice body

OR x:=2 END is disabled yes
IF conditional IF x:1,2,3 if every body of every

THEN x:=42 END enabled branch (condition
True) is disabled and the -
ELSE branch is present
but its body is disabled9

Conditional SELECT x > 0 if every body of every
Bounded choice THEN y:=x-1 enabled branch (condition -

WHEN x < 0 True) is disabled
THEN y= x+1 END

Case Conditional CASE x-10 OF
EITHER 2 THEN y:= 2 if every body of every
OR 7,13 THEN y:= 3 enabled branch (condition -
OR 8,11 THEN y:= 4 True) is disabled and the

ELSE y:= 5 END ELSE branch is present
END but its body is disabled10

Unbounded choice ANY x BE if precondition is false
x = 42 or body disabled yes

IN y=x+2 END for all values
Local definition LET x WHERE

x = 4 if body disabled -
THEN y=x+2 END

Becomes x:: 4 .. 10 if set of values
Element of is empty yes
Becomes x : (x : Nat · x < 42) if set of values
such that is empty yes

Local Variable VAR v IN if body is disabled
v:=y+1; y:=v*2 END -

Sequencing x:=4; y:=x+1 if one substitution is disabled -
Operation Call op(42,TRUE) if operation is disabled -

While Loop WHILE cpt<5 DO
varLoc := varLoc + 1 ;

cpt := cpt+1
INVARIANT
cpt : NAT & if no iteration possible -
cpt<= 5 &

varLoc : NAT &
varLoc = var1 + cpt

VARIANT 5 - cpt
END

Simultaneous x:=y || y:=x if one body is disabled -
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2.1. Architecture of PyB

Figure 2.19.: PyBs substitution implementation (excerpt). omitted code: [...]
1 def e x e c s u b s t i t u t i o n ( sub , env ) :
2 i f isinstance ( sub , ASkipSubst i tut ion ) :
3 y i e l d True # always p o s s i b l e
4 [ . . . ]
5 e l i f isinstance ( sub , ABecomesElementOfSubstitution ) :
6 va lue s = i n t e r p r e t ( sub . c h i l d r e n [ ≠1] , env )
7 i f va lues==frozenset ( [ ] ) : #empty s e t has no e lements ≠>

Òæ s u b s t . impo s s i b l e
8 y i e l d Fa l se
9 else :

10 for value in va lues :
11 for c h i l d in sub . c h i l d r e n [ : ≠ 1 ] :
12 a s s e r t isinstance ( ch i ld ,

Òæ AIden t i f i e rExp r e s s i on )
13 env . s e t v a l u e ( c h i l d . idName , va lue )
14 y i e l d True # ass i gn was s u c c e s s f u l
15 [ . . . ]
16 e l i f isinstance ( sub , ABlockSubst i tut ion ) :
17 ex gene ra to r = e x e c s u b s t i t u t i o n ( sub . c h i l d r e n [ ≠1] , env )
18 for p o s s i b l e in ex gene ra to r :
19 y i e l d p o s s i b l e
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• The second example ranges from line 5 to 14. This is an example of nondeterminism.
This substitution implementation computes the set of possible values. If it is empty,
the substitution is disabled and False is returned. Otherwise, all variables (possibly
only one) are set to a value in line 13 and True is returned. Because the for loop
successively ses every possible value when the generator is invoked again, every
possible solution will be generated.

• the last example ranges from line 16 to 19. It is an example of recursion inside
the generator. The block substitution is enabled when the generator for the body
substitution returns true, so the result of this generator is returned. Of course, paths
may be enabled and disabled if the substitution in the body is nondeterministic.
For that reason, every result is successively checked in the for loop.

The substitution implementation uses side-e�ects to change states. A new state has
been created for every choice point introduced by a non deterministic substitution. This
happens also in the animation method.

Implementation Alternatives

Nondeterministic statements can of course not be implemented using random numbers. If
the substitution implementation is used to enable model checking which needs to explore
every possible state the substitution implementation must be able to systematically follow
every possible execution path. Also, some kind of back tracking is needed to implement
the nondeterminism. This back-tracking is automatically possible with generators. This
back-tracking is e�cient: For example, if a sequence of substitutions starts with complex
computation (before a choice point) followed by a non deterministic substitution, the
complex computation has only been computed once.

2.1.7. Structuring B machines

B o�ers a variety of methods to structure, reference and link B machines. Keywords are
USES, SEES, INCLUDES, IMPORTS, EXTENDS. which express di�erent visibility rules
between machine components. This mechanism is complicated. Because this feature is
not fully supported by PyB it will not be described any further.

2.1.8. Animation of B

Animation is the interactive exploration of a state space by a user to explore the B model’s
behavior. In this case, the transition from one state to an other is selected by the user.
Animation is implemented by operation execution. After analyzing which operations
are enabled and the execution of substitutions is added to PyB, an implementation of
the interactive animation is simple. Animation may not be used to check a state, but
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1 compute i n i t i a l s t a t e s
2 add i n i t i a l s t a t e s to s t a t e s # e . g a s t a c k
3 while s t a t e s i s not empty :
4 get next s t a t e from s t a t e s
5 compute i nva r i an t
6 i f i n va r i an t i s f a l s e :
7 print h i s t o r y
8 qu i t with e r r o r message
9 compute next s t a t e s

10 i f next s t a t e s i s empty :
11 deadlock found
12 qu i t with e r r o r message
13 remove cur rent s t a t e from s t a t e s
14 for s t a t e in set o f next s t a t e s :
15 i f s t a t e i s new s t a t e :
16 add s t a t e to s t a t e s
17 print number o f checked s ta t e s , and su c c e s s message

Figure 2.20.: Model checking algorithm (pseudo code)

to check if a transition between states exists and behaved correct. For example, this
includes (manually) verifying that a faulty state (violation of the invariant) is really
reachable from the initial states or validating the model’s behavior.

2.1.9. Model Checking Algorithm

The goal of model checking is to check the invariant for every reachable state.

Figure 2.20 shows PyB’s model checking algorithm. To avoid confusion with the imple-
mentation details, the algorithm is presented in pseudo code. The algorithm is a naive
search of all reachable states of the model. If all states are checked against the invariant
without finding any violation, the model checking was successful. If the state space is
very large or infinite, this algorithm will not terminate.

The algorithm will be presented in more detail:
First, all initial states are computed. This can di�er from machine to machine depending
on whether the model has a properties clause, parameters or deferred sets. For example,
constants must be checked against the properties clause. The main algorithm is the a
loop from line 3 to 16. If the state space is finite, it will terminate because only new
states are added to the states data structure and a state is removed in every iteration.
Of course checking if a state is new depends on the number of visited states because
every visible state is compared to the new state.
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The term “state” has to be clarified in this context: If more than one machine is involved,
every machine maintains its own B machine state (for example a main B machine which
includes an other B machine). Of course in this algorithm a state refers to the a tuple
of states of all involved B machines. This implementation detail is only revealed to
show that there is no inconsistency with the B state representation subsection (2.1.4) i.e.
algorithm also works on more than one machine.

Optionally, a history of visited states and predecessor states can be recorded during state
computation in line 9. This history is printed after a faulty state has been found. This
information can be useful to understand which operation sequence led to the invariant
violation.

The exploration of the state space can be done using a depth-first search or a breadth-first
search depending on a PyB flag. The flag is modified by the PyB user. If depth-first
search is performed, the states data structure is a stack. Otherwise it is a queue. New
states are always added at the end of the states data structure data structure.

States are compared using a hashing algorithm. Of course, a hash collision is always
possible. If two states have the same hash, a comparison by value is performed.

Considering data validation the model checking feature is not necessary for a second
tool chain because this can be done by the main tool. However, it is useful for PyPy

experiments, to investigate if a language like B can benefit from tracing JITs.

This algorithm is quadratic in the number of states. Every state has to be compared
against all seen states. Hashing can only speed up the comparison computation.

2.2. Using PyB

2.2.1. PyB operation modes

There are various features within PyB. Some of them are only useful as second tool
chain. Others are only justified as part of the PyPy experiments and some of them are
useful for both topics of this thesis.

• Check precomputed states:
Checking a precomputed state is PyBs primary function as a second tool chain.
PyB reads in the state, starts the machine to be checked and evaluates its properties
and invariant clause. PyB outputs which values were successfully used from the
solution file. If no violation occurred with the used values, PyB returns True. This
feature can be used at the command line for a single state and extended (e.g. by a
script) to a check the state space of a machine (example in the next subsection).
An example call and output:
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$ python pyB . py ≠c C r u i s e f i n i t e 1 . mch
Òæ C r u i s e f i n i t e 1 s t a t e . txt

read ing s o l u t i o n f i l e examples /
Òæ C r u i s e f i n i t e 1 v a l u e s . txt . . .

l ea rned from s o lu t i on ≠f i l e ( cons tant s and v a r i a b l e s
Òæ ) : [ ’ CruiseSpeedAtMax ’ , ’ Cru i seAct ive ’ , ’
Òæ NumberOfSetCruise ’ , ’ Obstac leRe lat iveSpeed ’ ,
Òæ ’ VehicleTryKeepTimeGap ’ , ’
Òæ CruiseSpeedChangeInProgress ’ , ’ CruiseAl lowed ’
Òæ , ’ VehicleTryKeepSpeed ’ , ’
Òæ Vehic leAtCruiseSpeed ’ , ’ VehicleCanKeepSpeed ’ ,
Òæ ’ SpeedAboveMax ’ , ’ ObstacleStatusJustChanged ’
Òæ , ’ Obstac lePresent ’ , ’ Obstac leDis tance ’ , ’
Òæ C C I n i t i a l i s a t i o n I n P r o g r e s s ’ ]

check ing p r o p e r t i e s ( with prob s o l u t i o n s ) now . .
. . . no v i a l a t i o n found
Invar i an t : True

• Model checking mode: The model checking mode explores the whole state space
as described in the previous section and figure 2.20. It does not use an external
solution file and was added to PyB to evaluate the PyPy goals in this thesis (see
)1.3.2). An example call and output:

$ python pyB . py ≠mc examples / L i f t 2 . mch
checked 100 s t a t e s . No i n va r i an t v i o l a t i o n found .
$

• Interactive animation: The animation mode is inspired by ProB which also o�ers
this feature. Every transition from one state to the next can be chosen by the user.
The state and the status of the invariant is printed after every action. The user
can explore the behavior of the model, e.g. to check if it matches the requirements
or to debug it. The feature was included because of the small e�ort needed after
model checking was added to PyB. In the context of a second tool chain it can be
used (to some extent) to check which operations are enabled in a state and which
transitions between states are possible. It can be used to validate a model. PyB

o�ers no graphical interface but only text mode. Here is an example call, user
input, and tool output:
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$ python pyB . py examples / s chedu l e r . mch
[ 0 ] : INITIALISATION( a c t i v e ={} ready={} wait ing={} )
[ 1 ] : l e ave PyB

Input (0≠1) : 0
a c t i v e ={} wait ing={} proce s s1=’ p1 ’ p roce s s3=’ p3 ’

Òæ proce s s2=’ p2 ’ ready={} PID={ ’ p1 ’ , ’ p3 ’ , ’ p2 ’ }
[ 0 ] : new(pp=’ proce s s1 ’ )
[ 1 ] : new(pp=’ proce s s3 ’ )
[ 2 ] : new(pp=’ proce s s2 ’ )
[ 3 ] : undo
[ 4 ] : l e ave PyB

Input (0≠4) : 1

• REPL: PyB o�ers a read–eval–print loop (REPL). This interactive operation mode
can be used to evaluate B predicates to quickly compute values or test the tool.
Because this mode is of little interest in the context of a second tool chain or
the intended PyPy experiments, it is not fully implemented. For example most
computation of bound variables are done brute force. An example:

$ python pyB . py ≠r e p l
>>{x | x>5 & x<10 & x mod 2=0}

{8 , 6}
>>

Some of these operation modes can be modified by a config file. For example the checking
of assertion can be enabled.

2.2.2. Linking PyB with ProB

Below we use an example of a complex B machine (cruise control model 4.1.3) with a
simple state. Figure 2.21 shows ProB in its animation-mode for this example. At some
point the user can save the B-state to a file (Figure 2.22 ).
This solution-file contains a list of constant and variable values. The right side of each
equation may be any B-formula: a number, a set, a relation, a function or even a lambda-
expression. The state does not contain informations about constants like MAX INT
values or about bound variables, e.g. when dealing with existential quantified predicates.
Eventually PyB reads this file, generates a B-state, evaluates the Properties- and In-
variant clause of the B-file and outputs if a safety property was violated in this state.
Currently this process is automated via a Python script, but this will be fully included
into the o�cial ProB release in the future.
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Figure 2.21.: ProB animating a B machine: The B machine code, the B-state (values
and constants), enabled operations, history

/* Variables */
# PREDICATE

CruiseAllowed = FALSE
& CruiseActive = FALSE
& VehicleAtCruiseSpeed = FALSE
& VehicleCanKeepSpeed = FALSE
& VehicleTryKeepSpeed = FALSE
& SpeedAboveMax = FALSE
& VehicleTryKeepTimeGap = FALSE
& NumberOfSetCruise = 0
& CruiseSpeedAtMax = FALSE
& ObstacleDistance = ODnone
& ObstacleStatusJustChanged = FALSE
& CCInitialisationInProgress = FALSE
& CruiseSpeedChangeInProgress = FALSE
& ObstaclePresent = TRUE
& ObstacleRelativeSpeed = RSequal

Figure 2.22.: A simple input example of PyB: This file contains all values and constants
of a B-state. the first line #PREDICATE was added for parsing reasons
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Possible Linking Modes:

• A script drives the process: Every state is created and double checked via a
ProB/PyB cli call.

• ProB drives the process: PyB is called by ProB after every state creation/
transition. The result from PyB can be used by ProB to create error messages
although this is not implemented yet

• Manual use: The input is manually checked using both tools separately. For
example, the animation mode or a complete model checking of both tools can be
used without the exchange of state informations.

More detailed examples can be found in the case studies subsection of this thesis. This
example is taken my paper at FIDE [69]

2.3. Summary

This chapter described the tool implementation. This included why the clean room
approach was violated for parsing, how typing was solved using unification, how data is
represented, how predicates can be evaluated, how nondeterminism was implemented
using Python generators, the operation modes available in PyB, how the main tool
was linked and how model checking was implemented. Apart from constraint solving
and infinity (discussed in the next chapter), the tool is a simple, straight forward
implementation which uses standard approaches.
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Implementation Challenges for B

As can be seen in the last chapter, most of the implementation of B described by this
thesis was straightforward: PyB is a simple implementation, easy to test and maintain.
Despite its simplicity, there are always some aspects in language implementations which
are less obvious. In this case, the concept of infinite set possible in B, and solving of
quantified predicates were di�cult. This was more complex than simple interpreter
construction which only requires receiving input, program and producing the correct
output. These two aspects are described below by showing ‘di�cult’ B expressions
and how they are evaluated by PyB. The third subsection is about timeouts and data
representation which was not particularly di�cult but is related to the other two topics.

3.1. Infinite and large sets

Because of the set-based nature of the B-Language, a good set implementation is the key
to an e�cient tool. PyB uses two types of set representation: explicit set representations
(in chapter 2) and symbolic set representations (this chapter). The next two subsections
introduce and compare representations. The reasons for introducing the symbolic set
representation will also be described.

3.1.1. Explicit Set Representation

The notation explicit set refers to the data representation discussed in the previous
chapter. As a summary: Explicit sets are constructed using built-in Python data types.
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Figure 3.1.: PyB’s explicit set representation (selective)
no. B expression Name Explicit PyB Mathematical

(Python) Representation equivalent
1 {1, 2, 3} Set Enumeration frozenset([1,2,3]) {1,2,3}
2 {x|x : NATURAL & x < 5} Set Comprehension frozenset([0,1,2,3,4]) {x|x œ N · x < 5}
3 %(x).(x : NATURAL Lambda frozenset([(0,0),(1,1), ⁄x.x œ 0..4|x2

& x < 5|x ú x) Abstraction (2,4),(3,9),(4,16)])
4 {x, y|x : NATURAL & x < 5 Set Comprehension frozenset([(0,0),(1,1), {x, y|x œ N · x < 5

y = x ú x} (2,4),(3,9),(4,16)]) · y = x2}

These types are frozenset1, tuple, integer, boolean and string. It is possible to represent
every finite (and small) B-set with these basic types i.e. with a combination of frozenset,
tuples and primitive types (see section 2.1.3). For example, a function can be expressed
as a set of tuples of other types (like integers).

The advantage of this representation is simplicity. The simplicity of the set representation
a�ects the entire PyB implementation. Because a lot of B predicates and expressions
use set expressions, most of B is easily implemented whenever sets are finite. The code
that is produced is maintainable. One of the main goals of a second tool chain: ”writing
a simple tool to check a complex tool”, can be achieved this way.

Sadly this approach has limitations. B sets can be very large (e.g 232 elements) or infinite.
Even if it was possible to hold many large sets in main memory, the computation of
these sets may take too much time if an explicit representation is used. Large sets are an
issue because time and memory-resources are limited. Particularly in the case of infinite
sets, an alternative representation is mandatory. An explicit set must consist of a limited
number of elements. A symbolic set can be either finite or infinite.

The table in Figure 3.1 shows some examples of B-sets (Name and Syntax), their
chosen explicit Python implementation and a mathematical formula representing this set.
Column 3 shows Python code: Frozenset is the constructor call of the build-in frozenset
type. Square brackets and round brackets are syntactic sugar used for the list constructor
and the tuple constructor.

3.1.2. Symbolic Set Representation

Motivation

An explicit set representation limits the number of possible B machines which can be
processed. In the context of data validation, it will limit the number of solution files
which can be used. Even if the amount of solutions to be checked is small (less then
1000 elements per set), finite sets, large and infinite sets require another implementation,

1https://docs.python.org/2.4/lib/types-set.html
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because large or infinite sets may not occur in the solution file but in the machine code
to be checked. This problem is not rare or theoretical, but occurs in machines from
industry. And if a solution of a B property or B invariant is an infinite set, this set
will also appear in a solution (file) and must be handled by PyB. A solution may
contain variables bound to a (infinite) set comprehension or a lambda expression, i.e. a
predicate with bound variables. In this case, the value of such a variable will always be a
set defined by a predicate if no explicit finite set representation exists.

There is no alternative to an infinite set representation: Sometimes the explicit repre-
sentation is not practical for performance reasons. In other cases, when PyB checks a
solution using finite sets in the bounds of the minimum and maximum integer ranges,
may simply not be correct. Checking the computation of a complex tool like ProB only
in the bounds of finite integer ranges may not be su�cient for a convincing double check.
Of course it can still be useful if the main tool behaves similar but the evaluation of
large or infinite sets must be possible. PyB solves this problem by not using explicit set
representation whenever possible. This is realized using a symbolic set representation
and (simple) “constraint based” enumeration2 (next subsection).

An example of an infinite set is f=x.(x:INTEGER|-x), which is the set of tuples
mapping any integer number (except zero) to its negative ( f={(1,-1), (-1,1), (2,-2)... }).
In a solution file (compute by ProB), the variable f will be assigned to that set. This
set can not be represented using a finite set and will always appear as this expression
inside a solution file.

Even if a set is not infinite, a symbolic representation is used if its very large 3 . Figure
3.2 shows the performance problems which occur when explicit sets are used inside a
counter B machine (like the lift from Figure 1.1). The Figure shows the time to check
the simple invariant x œ 0..n with values of n from 100 to 100000. In this case, there are
n states. If the interval (set of numbers from 0 to n) is created in every check, the tool
becomes unable to check this property in reasonable time. Caching can also not solve this
problem at some set size. So even if this set is always finite, a symbolic representation is
needed to avoid a timeout. The symbolic version in contrast performs very well. Not
every large set can be identified as easily as in this example. A large set can be the
product of set operations like powerset or the cartesian product.

Implementation

A symbolic set is implemented by a Python class. The term symbolic was chosen to
imply an implementation at a higher level of abstraction, which does not use concrete

2set enumeration should not be confused with Bs enumerated sets, which are something completely
di�erent

3e.g 232 elements
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Figure 3.2.: Checking a invariant x:0..n using explicit or symbolic sets

data to represent set elements. Examples of symbolic sets are the infinite INTEGER set,
STRING set, an interval set, composed symbolic sets like the powerset of a symbolic set,
the union of two symbolic sets, the set of relations or a set defined by a predicate like a
lambda expression. Forty symbolic set classes are implemented in PyB(which are listed
in appendix E).

Symbolic sets can be categorized in four kinds of sets:

• Sets representing infinite B sets, for example the NATURAL set (natural numbers).

• Sets representing large B sets, for example the NAT1 set (which is bound by the
MAX INT value)

• Set operations between at least one symbolic set (potentially infinite) and any other
set. For example the union of NATURAL and some set enumeration or the power
set of a power set of a symbolic set. These sets will be referenced in this and the
next subsection as composed symbolic sets.

• Set expressions using bound variables and quantifiers. Those expressions can be
finite and small, finite and large or infinite. Without any analysis, this is unknown
(see constraint solving in the next subsection).

Depending on the kind of symbolic set, certain properties for the set instance may be:
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set name, number of bound variables, the predicate defining the set, an expression (for
lambda expressions) and other (explicit or symbolic) sets defining the symbolic set. All
symbolic sets inherit from a base class, which implements all default set operations using
brute force (conversion to explicit sets). To achieve better performance, these operations
are overwritten by the subclasses. Membership and enumeration methods are nearly
always overwritten. A set generator method must be implemented. A membership test
can be evaluated without enumerating the whole set which is important for the common
case of using membership in B to express typing informations of a set like S : NAT úNAT

When an explicit set representation is used, the AST interpreter can treat predicate
and expression nodes in the same way in one recursive evaluation method (see 2.1.5).
This approach treats predicates like functions which return the value True or False. For
example, a membership test is implemented by recursively walking the AST, generating
the set and element and returning True or False by using the built-in frozenset method,
e.g. 1 in frozenset([1,2,3]). Symbolic sets must behave like explicit sets if both imple-
mentations should be interchangeable.

Using symbolic sets, every set expression (AST node) has a symbolic counterpart. A class
represents the set expression, and the class methods implements boolean functions (e.g.
membership) and basic set operations like union or subset (see table 3.1 and 3.2.). Every
symbolic set implements a method for every possible B set operation. Set operations
are those operations which return a set (e.g. intersection). Non-set operations such as
conjunction, disjunction, implication, equivalence, negation, and quantified predicates
have no method counterparts, with the exception of equality, inequality and function
application (which returns data of some B type).

The set operations are implemented via the Python special methods4. This feature is
comparable to operator overwriting in C/C++. For example, a membership test like x : S
calls the contains method of S. In this example, the argument will be x and the return
value will be True or False. A overview of important special methods is shown in table 3.1
and 3.2. If this method is implemented (or overwritten by a subclass), S can be replaced
by a symbolic set instead of a frozenset. In some cases, default implementations of the
symbolic set base class may be su�cient. In other cases, an adjusted implementation for
the class is a necessity for performance reasons.

Every symbolic set class inherits from a base class: SymbolicSet. This class implements
(brute-force) default implementations for the operations: union, intersection, subset,
superset, equality, inequality, cartesian product and set di�erence. Some methods of the
base class are delegating to other methods. For example, le is delegated to issubset
(which is a frozenset method) and rand (operand on the right side) switches operands

4https://docs.python.org/2/reference/datamodel.html#special-method-names
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Table 3.1.: Set predicates and their special method counterparts
name example special method

membership x : S contains
equality P = Q eq

inequality P /= Q ne
superset T <: S ge
subset S <: T le

Table 3.2.: Basic set operations and their special method counterparts
name example special method
union S\/T or

intersection S/\T and
set di�erence S ≠ T sub

cartesian product S ú T mul
function application f(x) getitem

relational image r[S] getitem

and calls and . Every subclass must implement a membership method, a generator
method for the set, and overwrite many other operations. A generator method must
satisfy the following properties:

• (1) It yields only one element of the set at every call

• (2) No element is generated twice

• (3) It guarantees the same enumeration order on multiple enumerations

Points 2-3 are about correctness and determinism. For example, a quantified sum ex-
pression will produce a false sum value if a solution is generated twice, while a random
enumeration order would result in di�erent tool behaviors (produce timeout or evaluation
result), e.g. when evaluating a existential quantified predicate over an infinite set. Point
1 is about performance, because sometimes only a subset of the whole set needs to be
enumerated. For example, if a symbolic set is used in a quantified expression, then the
enumeration loop will terminate if a False (universally quantified) or a True (existen-
tially quantified) element is found because of a break in the implementation method of
quantified predicates inside the interpreter. Enumeration is introduced in detail in the
next subsection.

PyB’s predicate evaluation uses procedural programming when dealing with explicit
finite sets, but it is an object oriented interpreter when dealing with symbolic sets. In
the case of explicit sets the computation is done in one interpretation function which
consists of a case for every kind of operation. In the case of symbolic sets the methods
of the symbolic set classes are called. This is transparent because of the use of special
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1 class Symbo l i c In te rva lSe t ( LargeSet ) :
2
3 def i n i t ( s e l f , l , r ) :
4 SymbolicSet . i n i t ( s e l f )
5 s e l f . l = l
6 s e l f . r = r
7
8 def c o n t a i n s ( s e l f , e lement ) :
9 i f not isinstance ( element , int ) :

10 raise PyBException ( ” Fa i l : membership t e s t with non≠
Òæ i n t e g e r ” )

11 i f element<=s e l f . r and element>=s e l f . l :
12 return True
13 else :
14 return False
15
16 def r e tu rn g ene r a t o r ( s e l f ) :
17 for i in range ( s e l f . l , s e l f . r+1) :
18 y i e l d i
19
20 def e q ( s e l f , o ther ) :
21 i f s e l f . c l a s s == other . c l a s s :
22 return other . l==s e l f . l and other . r==s e l f . r
23 return SymbolicSet . e q ( s e l f , o ther )

Figure 3.3.: Python symbolic set example

methods. The reason for this design decision is the re-usability of the AST interpreter
which was written only for explicit sets. This way the simplicity of the interpreter and
evaluation method is preserved.

Figure 3.3 shows a simple example of a symbolic set implementation. Most functions
like set union or subset are inherited from the LargeSet class (which is a subclass of
SymbolicSet class) and are not shown. The default implementation of set membership
( contains ) and equality ( eq ) are overwritten for performance reasons. Computing
the equality of two interval sets is very quick, but every other comparison would cause a
call of the default implementation (line 23), for example the expression {1,2,3,4,5}=1..5.
All other operations are implemented by the SymbolicSet class and may be overwritten
for better performance (omitted). Anyway, this small example would be already enough
to work with the implementation of the last chapter. It can transparently replace a
frozenset. The code introduced in interpretation subsection (Figure 2.16) is also used
on symbolic sets, but the set operations are dispatched to the dedicated symbolic set
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methods instead to the frozenset built-in implementation.

All implementations are recursive methods. If a symbolic set is defined with other sym-
bolic sets, usually their methods are called as well because such symbolic sets are tree like
structures. For example, consider the set of all functions F between two sets F = S ¡ T .
A membership test of a function f (f œ F ) is done by checking the membership of fs
elements in S and T. If they are symbolic sets, their membership method is called. This
is done for all these methods, e.g. for set enumeration.

The equality method ( eq ) checks if the other instance is also an interval set. Otherwise,
the default implementation is called, for example in the case {1, 2, 3} = 1..3. Instances
of this class behave like the built-in frozenset type. In a language like C++ this would
be solved by operator overwriting.

3.1.3. Limitations and Alternatives

Limitations

The symbolic approach is limited. All sorts of comparisons of sets (S=T) are an issue.
In general, it is not possible to e�ciently check if two symbolic sets are equal. If the sets
are instances of the same class, a AST comparison is done. For example, the expression
x.(x : NAT |x + 1) = y.(y : NAT |y + 1) can be successfully checked. Also some special
cases like (x, y).(x : N & y : N | x) = prj1(N, N) are implemented because they are
common in ProB solution files. In general, the comparison of a symbolic set with an
other symbolic set leads to enumeration of the symbolic sets. For example, checking
{x, y|x : {1, 2, 3} & y = x + 1} = x.(x : {1, 2, 3}|x + 1) is true can only be done by PyB

after enumeration (conversion to explicit set) has been done. PyB will compare two
explicit sets in this case. Usually PyB is unaware if a quicker enumeration (than brute
force) of a symbolic set is possible. The enumeration is also unavoidable in the case of a
comparison with an explicit set. A membership check of all explicit elements is of course
not correct, because it has to be assured that the symbolic set does not contain any
other elements. Every operation which needs an equality check (like strict inclusion of a
set) su�ers from this limitation. Also, it is not possible to check function properties like
injectivity, surjectivity or if a function is total if the underlying sets are infinite.

The enumeration of infinite sets leads to a timeout. When PyB is checking solutions
generated by ProB, the enumeration is always be possible in theory if the ProB result
is correct. Unfortunately, PyB has limited constraint solving capabilities which are
presented in the next subsection.

There is one exception to the reusage of the evaluation method of the AST interpreter
for symbolic sets: the usage of symbolic sets which represent set operations. For example
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the test if an element is member of a infinite sets x œ S fi NATURAL (e.g. S=1..3)
will cause an infinite enumeration of NATURAL if the union is performed. This is
prevented by a symbolic union set. A symbolic union set delegates a membership tests
to NATURAL and the set S. Creating this symbolic union set by default inside the
AST interpreter would cause problems for other examples. An example is a while loop
substitution which adds an integer element at every iteration by starting from the empty
set. Using an explicit set in this while-loop case would be fine, using the symbolic union
set will create a linked list of symbolic union sets. Figure 3.4 illustrates this problem,
leading to ine�cient membership checks. This is solved by analyzing the operands of
every set operation inside the evaluation method: operations on explicit sets never create
an union set instance but are computed using the built-in frozenset union. So the tool
needs both set representations.

The symbolic set implementation indirectly uses a blacklist of excluded elements. For
example, the expression NAT-{0} causes the creation of a symbolic di�erence set instance
and two pointers to a symbolic NAT set and an explicit set containing the integer zero
(frozenset([0])). This is a tree data structure which can only be collapsed by PyB using
explicit enumeration. If the infinite or large set is assigned to a variable and elements
or finite subsets are removed or added in a loop, this representation becomes larger
and larger, because the enumeration to an explicit representation is neither possible nor
desired. This is not considered a big problem because the occurrence of this scenario is
unlikely to be found in machines from industry and not relevant for double checking of
only one state.

Alternatives

An alternative to symbolic set classes is the usage of modified AST nodes: Instead of
introducing symbolic set classes, the AST nodse of sets and set expressions could have
been extended by methods which are now part of the symbolic set classes. This approach
was discarded because the immutability of the AST is desired for the RPython translation
(next chapter) and to separate of concerns. The AST is the input for the interpreter and
not data to be mutated. Also, one single function (a big switch) for every membership,
enumeration etc. of every AST node would be an alternative to symbolic sets, but it
would be less readable than the object oriented approach of using a symbolic set class
for every set AST node. Every AST node has its symbolic instance counterpart. This
avoids enumeration problems if an expression contains more than one set of the same
kind. Also, symbolic sets which represent set operations cannot be expressed this way.

A check if an enumeration must lead to a timeout (for example by checking if the domains
of lambda expressions are infinite) could be future work. This could be useful but would
need additional time and e�ort.

The symbolic set base class was not inherited from the built-in frozenset type and the
frozenset type was not modified. This would not have worked because RPython doesn’t
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support subclassing built-in types. Also, deriving a potentially infinite set from a class
which represents finite sets is bad design because this could cause bugs inside PyB.
Historically, a common base class was removed from Python’s two set types frozenset
(immutable and hashable) and set (mutable). Also, the Python coercion exceptions are
avoided (3.4.9 Python manual).

3.2. Set enumeration

3.2.1. Motivation and Introduction

Set enumeration is the process of generating all elements of a set. In some cases, this
process can be time consuming. Symbolic set representations can delay or avoid the
enumeration of a set depending on the expression. For example, a member check (x œ S)
does not cause enumeration. However, in some cases the enumeration is unavoidable.
When two sets are in relation to each other, a partial enumeration of one set (e.g. in
case of subset predicates) or a full enumeration of both (e.g. in case of equality) may be
necessary. In most cases, evaluating a predicate between sets causes the evaluation of
set equality. Evaluating equality is very important in the context of ProB-PyB data
validation. Of course, in some cases an enumeration is not needed to evaluate equality:

Enumeration not needed to check equality, when:

1. two explicit frozensets are compared: They are already enumerated.

2. the equality of a finite and an infinite set is evaluated: it is obviously False. (e.g. a
frozenset instance an a smybolic NaturalSet instance)

3. sets of di�erent types are compared (e.g NAT=S*T). This was done by type
checking.

Not every possible B expression can be checked by PyB: If two sets are infinite or very
large, the question of equality remains unknown for PyB in most cases. In practice (e.g.
data validation), a symbolic set is usually compared with a finite explicit frozenset or
itself (one in the B file the other in the solution file). Two instances of the same set
(apart from variable renaming) can be compared using AST comparison.

Composed symbolic sets which are not defined by a predicate (not one of the predicates
in the enumeration below) can be enumerated by (lazy and recursive) brute force
enumerators as described in the last section (e.g. figure 3.3 and 3.6). But the enumeration
implementation of sets defined by a predicate is not obvious or trivial. Figure 3.5 is a
simplified set example from a industrial data validation file which can be computed by
PyB:

The example 3.5 illustrates the complexity of the class of problems that has to be solved.
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{x|x œ (Z ú Z) ú Z · (x /œ {((1 ‘æ 2) ‘æ 3), ((4 ‘æ 5) ‘æ 6)} ‚
(prj1(Z ú Z,Z)(x) /œ dom({((1 ‘æ 2) ‘æ 83), ((1 ‘æ 15) ‘æ 83)})

· x œ ((0..209) ú (0..209)) ú {≠1}))}

Figure 3.5.: A B set from a ProB solution file of a industrial machine. prj1(X, Y ) =
{x, y, z|x, y, z œ X ◊ Y ◊ X · z = x}

The set is defined by one predicated over x. It can be split into several subpredicates
(conjunctions).

Many B constructs can be defined by a predicate. Here is a list of all B predicates,
expressions, and substitutions which can cause an enumeration:

1. Universal quantification ’ (x0 . . . xn) · P (x0 . . . xn)

2. Existential quantification ÷ (x0 . . . xn) · P (x0 . . . xn)

3. General sum q (x0 . . . xn) · (P (x0 . . . xn)|E(x0 . . . xn))

4. General product � (x0 . . . xn) · (P (x0 . . . xn)|E(x0 . . . xn))

5. Lambda expressions ⁄ (x0 . . . xn) · (P (x0 . . . xn)|E(x0 . . . xn))

6. Set comprehensions {(x0 . . . xn) · P (x0 . . . xn)}

7. Quantified intersections u (x0 . . . xn) · P (x0 . . . xn)

8. Quantified unions t(x0 . . . xn).P (x0 . . . xn)

9. Any-, Let- and Becomes substitutions

10. Parameter values of operations

The enumeration of those constructs are the topic of the next paragraphs.

PyBs enumeration of symbolic sets which are defined by a predicate can be summarized
as follows: The input is a set of bound variables (x1 . . . xn) and a predicate. For each
variable there is a set of values determined by the type of the variable which is called
a domain. The predicate, which can be a conjunction (c1 . . . cn) of subpredicates must
be fulfilled. These subpredicates are constraints for possible elements of the sets. PyB

has to compute variable value combinations from their domains which fulfill all the
predicates. A solution is a tuple of values corresponding to every bound variable which
fulfills the predicate. This problem is called the constraint satisfaction problem. In
“Artificial Intelligence: A Modern Approach” Stuart Russell and Peter Norvig [57] define
this problem as follows:

A constraint satisfaction problem (or CSP) is defined by a set of variables, X1, X2, . . . , Xn,
and a set of constraints, C1, C2, . . . , Cm. Each variable Xi has a nonempty domain Di of
possible values. Each constraint Ci involves some subset of the variables and specifies
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the allowable combinations of values for that subset. A state of the problem is defined
by an assignment of values to some or all of the variables, {Xi = vi, Xj = Vj, . . . }. An
assignment that does not violate any constraints is called a consistent or legal assignment.
A complete assignment is one in which every variable is mentioned, and a solution to a
CSP is a complete assignment that satisfies all the constraints.

If the domains are finite, this search problem can be solved by a brute force algorithm
which checks all possible value combinations for all (sub-)predicates. If the domains
contain only a few elements and the number of variables is small, this strategy will quickly
compute a B set. Otherwise it will run into a timeout (next subsection). Not all domains
in B are finite and discrete5. An algorithm must find not one but all solutions to this
problem. The set of all solutions is desired (every solution is a complete assignment).
This aspect is important to understand the chosen implementation.

For example in a set comprehension {x œ NAT · x < 3 · x > 0} got the solution x=1
and x=2. Both solutions are needed to enumerate the set. So the set of all solutions
would be {(x, 1), (x, 2)} and the set itself would be {1, 2}.

The constraints of this problem are the B predicates. Only constraints which involve one
bound variable are implemented in the domain restriction computation (next subsection).
Constraints involving only one variable are called unary constraints.

The simplest type is the unary constraint, which restricts the value of a single variable.
[...] A binary constraint relates two variables.[...] Higher-order constraints involve three
or more variables. [57]

Binary and higher-order constraints (more than 2 variables) are used by PyB by enumer-
ating the domains of all involved variables. They are only used to alter the domain of a
single variable if all other depended variables have already reduced to a finite domain (see
example in 3.2.2). For example the constraint w = x + y + z will only be used by PyB

to constrain w if finite domains of x, y and z have already been computed. A heuristic
and variable ordering is used to improve the performance of this labeling approach.

A CSP can be represented as a directed graph. The nodes are the variables and their
current domains, and the edges (also called arcs) are the constraints which a�ect these
variables. There are di�erent kinds of consistency for the CSP. This definition is from A.
K. Mackworth [47]:

1. (A) Node consistency
Node i is node consistent i� for any value x œ Di, Pi(x) holds.

2. (B) Arc consistency
Arc (i,j) is arc consistent i� for any value x œ Di such that Pi(x), there is a value
y œ Dj such that Pj(y) and Pij(x, y).

3. (C) Path consistency
A path of length m through the nodes (i0, i1, . . . , im) is path consistent i� for any

5The approach in this chapter will only work on finite discrete domains
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value x œ Di0 and y œ Dim such that Pi0(x) and Pim(y) and Pi0Im(x, y), there is a
sequence of values z1 œ Di, . . . , zm≠1 œ Dim≠1 such that

a) Pi1(z1) and . . . and Pim≠1(zm≠1),

b) Pi0i1(x, z1) and Pi1i2(z1, z2) and . . . and Pim≠1im(zm≠1, y)

In this implementation Di are the possible variable values and Pi are the subpredicates
constraining those variables. The next subsection will describe how PyB archives all
those kinds of consistencies with a labeling phase after domain reduction (constraint
usage).

3.2.2. Implementation

There are di�erent kinds of enumerations implemented in PyB.

1. enumeration of a type, e.g integer

2. enumeration of symbolic sets.

a) defined by a predicate or not defined by a predicate

b) lazy or non lazy (full enumeration)

An enumeration is triggered by calling a symbolic set’s enumeration method. Every
symbolic set implements its own enumeration method. Whether this enumeration is a
simple or a complex one depends on the set type. This means that whether or not the
constraint solver is called depends on the kind of set. If it is a full enumeration of all
elements, the result is cached and reused on further enumeration calls.

A simple enumeration of a composed set (see last section and appendix E) without any
predicate can easily be implemented by recursively calling generators. This can be seen
in figure 3.6. For example, the composed symbolic set of all relation between S and T
(S ¡ T ) can be enumerated by calling the generator for S and T and combining the
result to a set element. The recursion base case is a non composed set like an explicit
frozenset or a symbolic set like NAT1. It can be implemented by using Python generators.
This can be seen in Figure 1.5(chapter 1). If a symbolic set is not defined by a predicate,
it is not composed of more than two other sets. This simple algorithm is used to solve
the more complex enumeration problem of sets defined by predicates.

This implementation is lazy: A caller of this method does not have to generate all
elements of this set. The implementation generates one element after another and does
not generate an element twice. If all involved sets are finite, it can be used to enumerate
all elements.

The following text is about the enumeration of sets defined by predicates:
This problem is solved by a naive constraint solver implementation (contribution of this
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1 enumerate set ( astNode ) :
2 i f composed set :
3 for every l v a l u e in enumerate set ( astNode . l e f tCh i ldNode

Òæ ) :
4 for every rva lue in enumerate set ( astNode .

Òæ r ightChi ldNode ) :
5 element = compute tuple ( rvalue , l v a l u e )
6 y i e l d element
7 else :
8 for element in l a zy enumerate gene ra to r ( astNode ) :
9 y i e l d element

Figure 3.6.: Naive enumeration of set defined by two other sets and no predicate (pseudo
code)

thesis) which uses unary constraints to check node consistency of finite domains. Also,
unary constraints are used for domain reduction. PyB-Constraint restricts seemingly
infinite domains to finite ones if possible. In other words: it recognizes whether only
a finite subset of an infinite domain is needed to enumerate all elements of a set (see
section below). Also binary and n-ary constraints are used in combination with variable
labeling. Finally, a consistency check (labeling) is performed using a depth first search
strategy.

The predicate to be checked and the conjunction of constrains (or subpredicates) will be
used synonymously in this subsection.

The motivation of constraint solving in general:
Of course, a brute force algorithm which computes every combination of values, checks
them against the predicate (constraints), and returns the correct results will solve the
constraint satisfaction problem if domains are finite. Such an algorithm will be easy,
correct, and in most cases useless. It will be useless because of combinatorial explosion.
B does not only allow boolean and integer arithmetic but also sets of sets. The set of all
variable combinations will be too large: even computing less complex set definitions will
take too much time. So the goal of the PyB constraint solver is improving performance
(compared to the naive brute force approach). Every computation which is done by
the constraint solver must result in a reduced amount of computations in the labeling
phase. In most cases, computing a superset of the desired domain will be good enough.
Some few wrong combinations can be quickly eliminated by checking them against the
predicates. Thus, an over approximation of the desired domain and removing the false
elements in the last phase can be less time consuming than an exact domain computation
before labeling.

69



3. Implementation Challenges for B

Recognizing finite domains is a necessity. e.g. in x : INTEGER & x = 42 the domain of
x is obviously not infinite. In this case constraint solving is not only about performance
but about enabling PyB to check a larger class of predicates. Without constraint solving,
such simple examples would not work.

Figure 3.7 shows the implemented constraint solving algorithm in pseudo code. Brackets
show the parameters used to compute a step. The algorithm consists of three phases:
An analysis phase, a domain reduction (solving) phase and a labeling (checking) phase.
The analysis phase collects information about the problem while the domain reduction
phase uses this informations to constrain the variables domains. Finally, the labeling
phase (lazily) computes one solution after another.

Analysis phase

The first five lines show the analysis phase. This predicate is split into its conjuncts.
Every subpredicate is a constraint. At least one constraint is always present.

Every constraint is evaluated by a (domain specific) heuristic function which outputs an
estimation of the expected computation time. Constraints which involve a (potentially)
infinite computation (e.g. x:INTEGER) will not be used for domain restriction and are
only used to check a solution in the checking phase in the last four lines of the algorithm
after the variable domains have successfully been constrained. The estimation of the
computation time is hard coded into PyB. For example a constraint like x = 42 is
considered as fast while x <: S (x subset of S) is considered slow if S is a large set (see
example in the next subsection).

A second function analyses all involved constraints if these are implemented6 cases which
can be used by PyB in the second phase. Which variable domains can be restricted by
the constraints and what other domains have to be known to use a (n-ary) constraint is
saved. For example, the domain of a variable on the left side of a membership predicate
(x œ S) or a single variable on either side of equation can be directly computed if no other
bound variables are involved. This information is used to find unary constraints which
can be used in less time to constrain the domain of a variable without the knowledge of
other bound variables at the evaluation time. Binary and higher order constraints are
used with much more e�ort.

In the last step an ordering of bound variables is computed. It is done by a topological sort
using the information obtained as explained in this paragraph. After those steps, the con-
straint graph can be constructed and used in the domain reduction phase. A failure in this
phase means that PyB was unable to find at least on contraint to compute a finite domain
of at least one bound variable or was not able to compute a possible ordering. A correct
enumeration cannot be done without at least one usable (implemented) constraint present

6not all constrains are implemented because of the big time e�ort need
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1 // a n a l y s i s
2 for every c o n s t r a i n t :
3 e s t imate computation time
4 determine invo lved v a r i a b l e s
5 compute v a r i a b l e o rde r ing ( con s t r a i n t s , v a r i a b l e s )
6 compute c o n s t r a i n t o rde r ing ( con s t r a i n t s , v a r i a b l e s )
7
8 // domain reduct ion ( s o l v e )
9 for every v a r i a b l e :

10 domain = None
11 for every c o n s t r a i n t o f v a r i a b l e :
12 i f domain i s not None and c o n s t r a i n t computation time

Òæ i s high :
13 break
14
15 i f c o n s t r a i n t i s not unary :
16 l a b e l dependent domains
17 va lues = r e v i s e ( cons t ra in t , v a r i a b l e )
18
19 i f domain i s None :
20 domain = va lue s
21 else :
22 domain = domain i n t e r s e c t i o n with va lues
23 i f domain i s empty set or None :
24 f a i l
25 save domain o f v a r i a b l e
26
27 // l a b e l i n g ( check ing )
28 for every v a r i a b l e :
29 for every value in domain :
30 i f check p r ed i c a t e i s True :
31 y i e l d va lue combination

Figure 3.7.: Constraint solving algorithm (pseudocode)
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for every variable in the domain reduction phase. If a variable cannot be constrained,
PyB assumes its domain is infinite which means a full enumeration is impossible for PyB.

Domain reduction phase

The remaining lines (8 to 25) of code describe the domain reduction phase. Another
possible name for this phase, would be the solving phase. The first line iterates over every
node (bound variables) in the constraint graph. The inner loop iterates over every arc /
edge adjacent to this node, which is every (usable) constraint that makes a statement
about this variable. The inner loop distinguishes two cases: unary constraints and all
other types of constraints. If the unary constraint can be used with low computation
time, a constraint domain is computed. Otherwise, the domain of dependent variables is
enumerated and the n-ary (higher order) constraint is used for all combinations (This
is similar to labeling at the end). Because a variable ordering has been found in the
analysis phase, the domain of the depended variables can always be enumerated in finite
time. After every loop, the actual domain of the variable is computed by the intersection
of the partial result computed by previous iterations and this iteration.

If the intersection results in an empty set, an inconsistency (e.g. x = 1 & x = 2) has been
found and an exception is thrown. This exception will be handled by the caller and can
have di�erent e�ects: For example, in the case of nested quantified expressions, this can
be caused by a wrong value of an outer bound variable, which may lead to a retry with a
di�erent value (e.g. x = 1 & x = y with y:{1,2,3}) In the case of a set comprehension,
this will result in an empty set expression.

If a constraint domain of a variable has been found, constraints with a long computa-
tion time (found by the heuristic) are skipped. This means a possible further domain
restriction is not used. This is a trade-o� between solving and checking computation time.

Labeling phase

In the last loop, a combination of all possible values is computed using the restricted
domains and all constraints. The domains can still include some wrong results. If the
constraint solving was successful, wrong results can now be removed very quickly. A
combinatoric explosion is still possible but does usually not occur (see next chapter). As
always, the tuples of values are returned lazily using Python’s generators.

The labeling is a breadth first search [57]. No solution is generated twice because at
every level of the search tree only one variable has been set to a value. For example, a
solution to the predicate x = 1 & y = x + 1 can be found by setting x to a value first,
and then computing y (x at the root of the search tree) or setting y first and then x.
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Both would result in the solution {x=1,y=2}. The second case is avoided because of the
fix variable ordering (in this case x before y).

Solving/Checking time trade-o�

The analysis phase is linear in the number of constraints (constraint computation time
estimation) and variables. The topological sorting can be quadratic. The real performance
problem is caused by the labeling in the solving phase and the checking phase which
scales with the number of combinations of the domain values of each variable to be
computed and checked. If the domains are large, a timeout is likely. The algorithm
must find a good balance between solving (domain restriction) and checking (labeling)
computation time.

Concerning this trade-o�: Using a constraint to restrict a domain can take di�erent
amounts of time. In practice, this matter is relevant. For example, consider the constraint
x : NAT & x = 42. The constraint x : NAT will not be used in the solving phase if the
number of elements of NAT is very large and a faster constraint has already been used.
In this case, this would obviously an useless computation because x has already been
constrained to 42. In other cases, this second computation can still be a good decision,
for instance if the constraint domain of x would include more than one element and NAT
is small. For example in the case x : NAT & x : {≠1, 0, 1} . A intersection of three
elements and a small NAT set can be computed fast and really reduce the computation
time in the labeling phase (for example a combinatoric blow up if other variables are
involved).

On the one hand, allowing many wrong values to not to be detected until the last phase,
can lead to a long computation for combinatoric reasons because the combination of
all domain values of all bound variables is checked. On the other hand, performing an
useless computation in the solving phase with little hope of discovering many new wrong
values will also cause performance issues. If the analysis phase estimates the computation
time of a constraint correctly as large (thresholds can be modified by the PyB user),
and the solving phase uses this information to make the right decisions, this will cause a
speedup.

Full example

Consider the example predicate x = 42 & x : INTEGER & y : S & y = x + 1 with the
bound variables x and y. S is some finite set (free variable). Figure 3.8 shows the graph.
The nodes are the bound variables and the edges are the constraints. The heuristic will
estimate the computation time (in the solving phase) of the four constraints as follows:

1. x=42 : fast

2. x:INTEGER : infinite/useless
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3. y:S : fast or slow (depending on the size of S )

4. y=x+1 : fast (if the domain of x is computed before y)

The constraint y=x+1 will cause the variable x to proceed y (example of variable ordering).
Because a finite unary constraint can be found for every variable, both orderings (x,y or
y,x) would be possible in this case, but x,y is preferable. While the height of the search
tree is 2, the number of branches is infinite if no constraint is successfully used. An
infinite amount of branches in the checking phase is impossible, because this would have
already caused a failure in an earlier phase. If S is not infinite but very large (e.g S=NAT
with MAXINT=232 ) setting y before x causes a failure in all but one case, while setting
x first and then using the constraint y = x + 1 results in only one computation. Figure
3.9 shows the e�ect of variable ordering on the search trees for the case S = {41, 42, 43}.

PyB can not transform y=x+1 to x=y-1. Only when the computation of the domain of
x was successful, can the binary constraint about y be propagated. This means that the
variable ordering leads to a fail early behavior in the solving phase. After the constraint
x = 42 is used, the constraint propagation causes a limitation of the domain of x to only
one value (42) and the constraint y = x + 1 limits the domain of y in the same way after
a labeling of x. After that, the checking phase has only to check one combination, which
fulfills the whole predicate.

3.2.3. Limitations and Alternatives

Limitations

The implemented constraint solving algorithm can only use unary constraints to restrict
domains. All constraints which involve more than one bound variable can only be solved
via brute force. PyB cannot break down higher order constraints to binary constraints or
solve binary constraints at all without any labeling. Therefore, arc- and path consistency
are not checked without enumerating at least one bound variable. Table 3.3 shows
some examples of unary constraints implemented by PyB. In general, every expression
which only involves one bound variable can be used directly. PyB is not able to use
any constraint which needs to be transformed into the supported form. Example are
polynomial or exponential equations, inequation or indirect variable domain definitions
like f(x) /œ g(y), or mutual definitions like x = y + 1 · y = x ≠ 1. Implementing all cases
is a big task, because B allows not only boolean and integer arithmetic but also sets of
sets. Also infinite domains cannot be handled if they can not be reduced to finite ones
using unary constraints. Even if there is a solution, it may not be found in reasonable
time.

Boolean CSPs include as special cases some NP-complete problems, such as 3SAT. [...]
In the worst case, therefore, we cannot expect to solve finite-domain CSPs in less than
exponential time. [57]
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Table 3.3.: Examples of unary constraints used by PyB

name example
Match tuple of identifiers a ‘æ b ‘æ c = expression
Membership of finite set x œ expression
Equality and inequality x = expression

If a bound variable is defined by a useless constraint like x : INTEGER and other
constraints which are not implemented in PyB, the computation can only be done if
the B machine author rewrites its predicate by finding a finite domain for the variables
and adding this information to the predicate, e.g x : NAT (or what ever is correct in the
concrete case). Thus the constraint solver works if the domain of every bound
variable can be reduced to a small finite domain using a unary constraint.
If PyB-compatible constraint cannot be found by a machine author then PyB can
not check the predicate an will likely run into a timeout. This case is unlikely in data
validation applications for the second tool chain. The comparison of infinite sets is not
implemented except from a few special cases.

Alternatives

The enumeration is a problem where several implementation goals are in conflict (see
1.3.1). Goals that are in conflict are the goals of completeness of the tool, the implemen-
tation time constraints of the tool, and the goal of tool simplicity. In theory, the tool is
also complete without a constraint solver. A brute force algorithm is able to compute all
finite expressions. In practice, a tool which uses this approach will be useless because
some simple and all complex expressions would cause a timeout and return a ”dont know”
result instead of a true or false value. Also, the constraint solver will only be useful if
it can handle n-ary constraints more e�ciently. This would be useful but would need
months of e�ort without investigating the real questions and goals of the thesis. Also,
this would be to unlikely lead to “obviously correct” code. Also, this simple constraint
solver needs some explanation to be understood.

There are many constraint solving algorithm alternatives. One alternative is the AC-3 [47]
implementation which is similar to the PyB constraint solving algorithm. It is used
in simple constraint solvers and operates on finite domains using unary and binary
constraints. Figure 3.10 shows the implementation introduced by A. K. Mackworth.
The example of AC-3 is used to express the similarities and di�erences between PyB’s
constraint solving implementation and that of other simple algorithms.

1. infinite sets:
AC-3 does not operate on infinite sets. Actually, it assumes a superset of the
searched domain is present from the beginning. As a result, an analysis phase
which drops infinite constrains is unnecessary. Also, a final check of all computed
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3.2. Set enumeration

1 begin
2 for i := 1 until n do NC( i ) ;
3 Q := { ( i . j ) | ( i , j )œ arcs (G) , i ”= j }
4 while Q not empty do
5 begin
6 s e l e c t and d e l e t e any arc (k ,m) from Q;
7 i f REVISE ( ( k ,m) ) then
8 Q := Q fi { ( i . k ) | ( i , k ) œarcs (G) , i ”= k , i ”= m}
9 end

10 end
11
12 procedure NC( i ) :
13 Di := Di fl {x | Pi ( x )}
14 begin
15 for i := 1 until n do NC( i )
16 end
17
18 procedure REVISE( ( i , j ) ) :
19 begin
20 DELETE := fa l se
21 for each x œ Di do
22 i f the re i s no yœ Dj such that Pij (x , y ) then
23 begin
24 d e l e t e x from Di ;
25 DELETE := true
26 end ;
27 re turn DELETE;
28 end

Figure 3.10.: AC-3 , NC and REVISE procedure [47]. An alternative to the PyB

constraint solver
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domains is unavoidable.

2. unary constraints and NC procedure:
AC-3 handles unary constraints in a single pass to assure node consistency. PyB

uses all kinds of constraints in one loop and decides by a heuristic which constraint
should be used first. Not the arity of the constraint but its expected impact and
computation time are relevant. This is because a unary constraint may not always
be the best choice to constrain a domain, and an exact result is not a necessity
because of the checking phase.

3. binary and n-ary constraints:
AC-3 only uses binary constraints, while PyB can uses any constraint as long as all
domains are known at the time revise is called, and the constraint is implemented.

4. revise procedure:
AC-3 assumes that every binary constraint can be used. PyB cannot use every
kind of constraint (not all types implemented)in its reduction phase. Also PyB

searches a value y œ Dj by enumerating Dj and trying every element, while AC-3
is less specific.

5. arc and path consistency:
AC-3 assures consistency by using every constraint. This is done by visiting every
edge (arc) of the constraint graph for all n nodes and revisiting all edges of a
modified nodes (domain of the node) again to check e�ects on a third variable.
Because PyB assures consistency by the checking phase at the end, a fixpoint loop
over all edges (AC-1) or a revisit of other edges is not implemented. This results in
a less exact solving result but spares implementation time.

6. predicate evaluation
AC-3 assumes a finite domain is present from the beginning. Because of that
it is possible to use every constraint by systematically generating and testing of
every domain value. Only an interpreter is needed to do that. But if a domain is
potentially infinite, a finite domain is not always present. Because of this, PyB

needs much more implementation e�ort to evaluate a predicate and revise a domain.

Obviously writing and extending a constraint solver from scratch is not the best approach.
It is a trade-o� between invested implementation time and completeness. Verifying
a simple constraint solver is possible [21]. A better solution would be to stop the
development of the PyB constraint solver and instead writing a B interface which is
able to compute B expressions by using an external (and possibly verified) constraint
solver. Python bindings for some popular constraint solvers already exist7. Of course,
some time would also need to be invested for the integration.

7https://github.com/pysmt/pysmt
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3.3. Timeout Implementation

3.3. Timeout Implementation

3.3.1. Motivation and Introduction

Some computations may take more time than a user is willing to accept. The cause of a
long computation may be a missing optimization inside PyB (e.g. the constraint solver)
or it is simply inherent to the problem for combinatoric reasons. This problem can be
solved by adding a timeout feature to PyB. Every computation has a limited time to be
completed which is defined by the user. After that, the tool will output a warning. So
two threads are involved: a computation thread(worker) and a timer(master). The result
of a computation with a timeout is neither true or false.

The implementation of a timeout is related to the data representation of PyBs output.
In case of a timeout, users may be interested in similar information as with a failure or
violation: In the case of data validation, the user is interested which parts of a safety
property caused a timeout with which data. In the case of model checking, the user is also
interested in which operation sequence lead to the timeout. A partial result/information
will be useful in this case: showing which parts of a safety property are true, false or not
computed because of a timeout.

In this context, the term “computation” needs to be defined. Implementing the timeout
on the state level (computation = computing a full state) will not result in useful tool
outputs. When model checking is performed only the information about which operation
caused the timeout will be present. When performing data validation, no information at
all will be present because there is only one state.

Implementing a timeout on the AST node level (computation = evaluation one node) may
result in a complicated tool which creates and kills threads constantly. An implementation
must therefore find some compromise between a simple maintainable implementation,
useful precise data output, and acceptable performance.

It is also worth noting that Python implementations use a “global interpreter lock”.
The Python manual defines the global interpreter lock as: The mechanism used by the
CPython interpreter to assure that only one thread executes Python bytecode at a time.
[...] Locking the entire interpreter makes it easier for the interpreter to be multi-threaded,
at the expense of much of the parallelism a�orded by multi-processor machines.8 Although
the timeout is implemented using concurrency, this is not done for performance reasons.

8https://docs.python.org/2/glossary.html#term-global-interpreter-lock
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3.3.2. Implementation

The timeout was implemented with a simple master-worker pattern. The master thread
starts a worker which computes a subpredicate and will be killed after the defined time
has passed. The master accumulates the results and computes the overall result. Again
this implementation is not about parallelism. The Workers are executed not concurrently
but sequentially one after another. Only one worker exists at a time. Any parallelism is
future work.

The implementation uses the Python multiprocessing module instead of the threading
module. The multiprocessing module starts processes instead of threads. The threading
module does not support killing a thread. It works on the invariant clause subpredicate
level and the properties subpredicate level. Only the invariant level is explained, the
properties clause level is implemented in the same way.

The safety properties introduced by an invariant clause are a conjunction of predicates
which are broken into subpredicates. These subpredicates are evaluated separately in
a thread. If one of them causes a timeout, the truth value of the whole invariant is
unknown but the evaluation results of the other subpredicates can still be delivered to
the user. Also, only two code positions were modified to create the thread implement
the, timeout and termination of the thread. This is still easy and maintainable.

An inconsistent state is not possible:

1. PyBs evaluation function is pure. It has no side-e�ects, and only reads variables
but does not write them. The only exception is the scope of variables (explained
below).

2. The evaluation function: no threads are created, no unsharable recourses are used

3. Subpredicates can be evaluated separately. They do not a�ect each other.

The only implementation detail which can cause corruption is a killed thread which does
not pop something from the value stack (see subsection about state representation in
chapter 2). This may be caused by entering a new scope but not leaving it properly
because of the kill. For example, this can happen if the computation was canceled during
the evaluation of a quantified predicate. This can easily be handled by saving the stack
height of each value stack of the current state and restoring the correct height. Cloning
the environment is not necessary. It can simply be passed to the next worker.

Figure 3.11 shows the simplified version of the algorithm. Line 4 starts a process p by
calling the interpret method (predicate evaluation) with a node n and the environment
(the state) env. The result of the computation is placed inside a queue. If the queue is
empty (line 11) the computation was canceled early and a timeout message is given to the
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3.3. Timeout Implementation

1 for n in l s t :
2 import mul t i p ro c e s s i ng
3 que = mu l t i p ro c e s s i ng . Queue ( )
4 p=mu l t i p ro c e s s i ng . Process ( t a r g e t=lambda q , n , env : q . put (

Òæ i n t e r p r e t (n , env ) ) , a rgs=(que , n , env ) )
5
6 # code to s a f e s t a t e / s t a c k h i g h t omit ted
7 p . s t a r t ( )
8 p . j o i n (PROPERTIES TIMEOUT)
9 i f not que . empty ( ) :

10 value = que . get ( )
11 else :
12 p . terminate ( )
13 print ”TIMEOUT: ( ”+p r e t t y p r i n t (n)+” ) ”
14
15 # code to r e s t o r e s t a t e / s t a c k h i g h t omit ted
16 timeout = timeout +1
17 continue

Figure 3.11.: PyB timeout implementation. One iteration of a evaluation loop

user. The value PROPERTIES TIMEOUT (line 8) is a user defined value inside config.py

No timeout is added at the substitution level because this is not relevant in the case
of data validation. The timeout feature is not implemented in the RPython version
of PyB. Generally, multithreading and software transactional memory is supported by
RPython [50]9. Timeouts of five seconds shown to be a good choice in most case studies
(see next chapter).

3.3.3. Limitations and Alternatives

In general killing a thread is bad programming style. If the function executed by a thread
has any side-e�ects, a corrupted program state is possible. Thinking of all possibilities
which can cause such a state is error prone and may result in source code which is simply
not correct. The alternative implementation would be a thread which terminated itself,
for example using notification mechanism or setting a stop flag.

In this particular case this implementation alternative would be the inferior choice because
is has some disadvantages. The problem is checking the flag at the right position. To

9https://morepypy.blogspot.de/2015/03/pypy-stm-251-released.html
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do this a tool implementer must find a good source code position to add this check. An
implementor must assume which computation likely would consume much time, and
if there is more than one, then any of the time consuming code candidates must be
extended by a termination check. Doing that would violate the design goal to write
a simple maintainable tool, because the check must be added at many source code
positions and it would not be possible to be sure that all possible positions have been
considered. Also the main argument against the killing solution (the corrupted state)
can be invalidated by the fact that a corrupted state is not possible when dealing with
simple evaluation because the interpret function (evaluates predicates and expressions) is
without any side-e�ect and in the case of operation execution the state is already created
by cloning an uncorrupted copy state. Corruption is therefore not a problem in either case.

3.4. Summary

This chapter described the implementation for some complicated aspects of B: infinite
sets, enumeration using constraint solving and timeouts. PyB is limited by those aspects.
Further implementation is in conflict with the simplicity goal of the tool.
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4
Second Tool Chain Case Studies

This section evaluates the second tool chain approach on machines from industry instead
of constructed artificial or text book examples. It is of particular interest what PyB’s
limitations are, i.e which expressions can not be computed. This chapter is not about
performance, which will be discussed separately in chapter 6. This section is also not
concerned with the discussion and conclusion of the thesis goals. That can be found in
chapter 8.

4.1. B Case Studies

Some B machines are fully compatible with the implemented second tool chain, others
are not. B expressions that can be easily checked and those which cannot are described.
The details of the machines cannot be shown or discussed for reasons of confidentiality.
However, the complexity and relevant aspects are presented. This chapter presents test
results using industrial machines: i.e. machines which are used in real live and not only
for academic purposes or teaching.

The input files were checked using the standard second tool chain approach from chapter
1(subsection )1.7). The main tool, ProB computes a state by setting machine constants
to values which are constrained by predicates in the properties clause and computes
the initialization clause or an operation. Those state values are written to a file. Every
solution value is double checked by PyB by reevaluating the predicates inside the
properties and invariant clause. PyBs output is a list in which the predicates from the
properties and invariant clauses are True, False or causing a timeout.
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4.1.1. Alstom Case Study

Alstom is a company in the railroad sector.12. The Alstom case study consists of 3
industrial size B machines. The following machines were double checked using PyB.

• Rule DB Route 0001ori:
The first machine consists of 35 constants defined by properties about sequences
and 30 variables. The invariant mostly consists of typing information expressed
via membership expressions. The operations use lambda and other quantified
expressions to assign values to variables. Model checking explores 2076 states.
Some states need more than 2500 msec to be computed by ProB. The machine is
model checked by ProB in approximately 2.5 seconds. Some states are deadlocks.
PyB checks all B states in about 156 minutes3. No false state is found.

• Rule DB Route 0001ori modified:
The second machine is a modified version of the first and shows similar behavior
when processed by ProB. PyBalso checks all B states in about 156 minutes. No
false state is found.

• Rule DB SIGAREA 0024 ori:
The third machine has only 36 states. The number of variables and constants is of
the same order of magnitude as that of the other machines. Also, the operations
construct sets via quantified expressions. PyBchecks all B states in about 3 minutes
and 22 seconds. No false state is found.

The Alstom examples work very well with PyB. The invariants which are mostly typing
predicates can be computed using symbolic sets. PyBs constraint solving can compute
all quantified expression because of their finite domains. However, in some cases the
performance was not very good.

4.1.2. Systerel Case Study

Systerel is a company specialized in critical software and RAMS(Reliability /Availability
/Maintainability /Safety)4. The Systerel Case Study consists of 134 B machines. These B
machines contain no invariants, but a CONSTANTS, PROPERTIES, and ASSERTIONS-
clause. The value of these constants are defined by predicates in the PROPERTIES-clause.
The number of constants range from 10 to 200. Some constants are defined by simple
expressions, but most of them by quantified predicates. Without the features described
in chapter 3, even simple expressions would cause a timeout. Other simple expressions

1Alstom describes itself as follows: As a promoter of sustainable mobility, Alstom develops and markets
systems, equipment and services for the railway sector.

2http://www.alstom.com/about-us/
3
PyB opens and parses a state file for every state. The double checking performance can be improved
by using an other kind of ProB-PyB communication which is currently not implemented

4http://www.systerel.fr/en/company/
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Figure 4.1.: Example of predicates successfully double checked by the ProB-PyB tool
chain. [...] indicates omitted ProB solution code.

no. Predicate ProB Solution
1. f=INTEGER * NATURAL1 INTEGER*NATURAL1

2. f:INTEGER ¡ INTEGER {(0 ‘æ 1), (1 ‘æ 2), [...], (253 ‘æ
≠1), (254 ‘æ ≠1)}

3. f = %x.(x : INTEGER|{FALSE ‘æ
x, TRUE ‘æ ≠x}(bool(x < 0)))

%x.(x : INTEGER|{FALSE ‘æ
x, TRUE ‘æ ≠x}(bool(x < 0)))

4. f = %(x, y).(x : STRING& y :
STRING|STRING APPEND(x, y))

%(x, y).(x : STRING& y :
STRING|STRING APPEND(x, y))

5.
f=(bf/\bg ≥ ||ah ‘æ ah)(bf/\bf ≥
||{ah ‘æ ag})(bg/\bf ≥
||ag ‘æ ag)(bg/\bg ≥ ||{ag ‘æ ah})

{((0 ‘æ 1) ‘æ (2 ‘æ 1)), ((1 ‘æ
0) ‘æ (3 ‘æ 0)), ((2 ‘æ 0) ‘æ
(0 ‘æ 0)), [...]((233 ‘æ 1) ‘æ (227 ‘æ
1)), ((234 ‘æ 0) ‘æ (228 ‘æ 1))}

like x œ NAT ¡ NAT need a symbolic representation to be computed. PyB operates
in min and max integer ranges of ≠232 to 232. These machines only generated one state.
The case study is more concerned with data validation, than the other examples. Solution
values (the constants) are checked against one (large) property.56

Table 4.1 shows five representative examples of predicates and ProB Solutions, which
can be successfully checked by the ProB-PyB tool chain. Table 4.3, 4.3, 4.4 list the
detailed results of every machine.

• 1. The first expression is the cartesian product of two infinite sets. The ProB

solution file contains the same B expression as predicate solution. Because both
sets are infinite, a explicit enumeration is not possible. PyB needs its symbolic
features to check machines containing such expressions.

• 2. The second example also requires symbolic features to be evaluated. The
predicate is a check if a set of tuples is a relation between INTEGER and INTEGER.
Here the check must be possible without generating the (infinite) set of INTEGER
relations.

• 3. The third example is an infinite set represented with a lambda expression.
Members of this set are tuples like (1,1), (0,0) or (-1,1). The function calculates
the absolute value of an integer. The domain of this function is infinite, so again a
finite enumeration of tuples is not possible. PyB gets the same function as result

5A solution file can be computed by probcli BFile.mch -init -p MAXINT 2147483648 -p MININT
-2147483648 -p TIME OUT 1000000 -sptxt Solution.txt and checked by python pyB.py -c BFile.mch
Solution.txt

6 The ProB column can be reproduced by probcli -init -p SYMBOLIC TRUE -p MAXINT 2147483648
-p MININT -2147483648 -p TIME OUT 500000 BFile.mch
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Figure 4.2.: Systerel case study details
name total ok failures timeouts comment PyB time ProB time

151 001.mch 41 41 0 0 11sec 0,220 sec
verdi1.mch PyB Time-out 7m 53sec 0,350 sec
verdi2.mch PyB Time-out 7m 50sec 0,350 sec

623 001.mch 52 50 0 2 131sec 2620 sec
m-PROP REG VM 04 002.mch 150 136 0 14 190sec 2,120 sec

m-PROP SCL VTT 0304 001.mch 109 109 0 0 7sec 0,140 sec
590 004.mch 63 60 0 3 83sec 2,650 sec

m-PROP SCL VTT S 0316 001.mch 109 109 0 0 27sec 0,160 sec
machines2/0670 003.mch 34 30 0 4 345 sec 0,450 sec
machines2/0664 001.mch 75 72 0 3 385 sec 2,080 sec
machines2/0682 001.mch 20 15 0 5 460sec 0,190 sec
machines2/0682 002.mch 20 15 0 5 425sec 0,200 sec

CF CV 1.mch 83 70 0 13 69sec 3,640 sec
590 004.mch 63 60 0 3 49sec 2,440 sec
670 005.mch 24 8 0 16 163sec 3,090 sec
670 006.mch PyB Time-out 22m10sec 51,020 sec
590 005.mch 37 35 0 2 297sec 2,480 sec

CC ZAUM 1.mch 179 168 0 11 71sec 87,150 sec
CF ZSM CBTC 7.mch 160 137 0 2 147sec 9,270 sec
CF SEGMENT 9.mch 288 262 0 26 161sec 12,070 sec

590 007.mch 41 39 0 2 303sec 2,670 sec
CF ZSM SIG 3.mch 130 114 0 16 87sec 3,400 sec
CF ZSM SIG 4.mch 181 162 0 19 107sec 3,640 sec
CF ZSM SIG 6.mch 171 154 0 17 94sec 3,470 sec

CC PLACE MAINTENANCE 1.mch 207 188 0 19 126sec 104,290 sec
580 001 adapted.mch 72 71 0 1 20sec 0,370 sec

600 001.mch 60 58 0 2 306sec 2,540 sec
CF ZAUM 12.mch 211 191 0 20 124sec 90,980 sec

062 101.mch 104 94 2 8 67sec 1,190 sec
CF TVD 4.mch 334 311 0 23 153sec 6,850 sec

360 002.mch 72 70 0 2 18sec 0,250 sec

of the ProB computation and checks its equality using an AST comparison of
these two expressions. It is a check using syntactically equality.

• 4. The fourth predicate is a call to an external function which concatenates strings.
The external function was reimplemented in Python and is hooked into the call as
described in chapter 2.

• 5. Finally, the fifth example is a set which can be represented with a finite
enumeration of tuples. The set is generated by PyB and successfully compared to
the ProB solution.

The case study consists of 134 machines. The machines consist of 20 to 512 subpredicates.
6 machines are correctly double checked in an average time of 16 seconds. A solutions
is not found by ProB in the case of 21 machines in a time less than 60 seconds. 17
machines can not be checked. The remaining machines contain at least one subpredicate
which cannot be checked by PyB in less than 2.5 seconds. This means that that there is
room for improvement for PyB in this case study.
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Figure 4.3.: Systerel case study details
name total ok failures timeouts comment PyB time ProB time

049 001.mch PyB Time-out 9m32.694 0,180 sec
CF ZACP 8.mch 318 287 0 31 182sec 17,440 sec
CF TVD 8.mch 117 105 0 12 60sec 3,140 sec

R ZAUHT 2.mch 117 106 0 11 57sec 39,230 sec
680 001.mch 74 49 1 24 409sec 47,410 sec

CF ZAUM 1.mch 181 166 0 15 95sec 88,030 sec
019 100 adapted.mch 56 52 0 4 42sec 0,200 sec

330 001.mch 27 26 0 1 84 sec 0,230 sec
610 001.mch 67 64 0 3 335sec 2,530 sec
612 001.mch 67 64 0 3 311sec 2,510 sec
614 001.mch 69 66 0 3 323sec 2,510 sec
651 001.mch 80 78 0 2 305sec 2,470 sec
652 001.mch 67 65 0 2 339sec 2,490 sec

CF ZMS AUM 2.mch 351 331 0 20 140sec 143,940 sec
CF ZMS AUM 3.mch 216 196 0 20 121sec 9,5610 sec

CF ZMA PRUD 1.mch 104 97 0 7 60sec 1,570 sec
CF CBTC TER 1.mch 177 166 0 11 48sec 1,160 sec
CF ZMA PRUD 7.mch 104 97 0 7 55sec 1,570 sec
019 100 corrected.mch 56 52 0 4 41sec 0,200 sec

CF ZAUHT 2.mch 236 216 0 20 111sec 54,730 sec
005 100.mch PyB Time-out 8m15 0,200 sec

CF CBTC TER 9.mch 334 310 0 24 146sec 4,930 sec
R PLACE MAINTENANCE 1.mch 408 388 0 20 233sec 345,840 sec

620 001.mch 37 13 0 24 -killed 2,370 sec
CF LD 1.mch 130 118 0 12 71sec 3030 sec

R PLACE MAINTENANCE 2.mch 183 172 0 11 84sec 103,030 sec
CF AIG 2.mch 368 352 0 16 132sec 4,040 sec
623 001.mch 52 50 0 2 364sec 2,530 sec

CF CORR LOC 1.mch 187 172 0 15 106sec 107,920 sec
CF CORR LOC 3-1.mch 351 323 0 28 216sec 108,790 sec

380 002.mch 66 64 0 2 23sec 0,260 sec
CF CORR LOC 2.mch 182 170 0 12 91sec 101,000 sec

CF CORR LOC 3-2.mch 292 271 0 21 193sec 112,650 sec
580 001.mch 72 71 0 1 32sec 0,360 sec

CF ZGAR 2.mch 146 131 0 15 99sec 36,910 sec
CF CORR LOC 4.mch 198 181 0 17 144sec 106,620 sec

662 001.mch 65 62 0 3 370sec 2,500 sec
CF CORR LOC 5.mch 270 249 0 21 138sec 136,620 sec

664 001.mch 75 72 0 3 329sec 2,470 sec
CF ZTR 2.mch 503 485 0 18 122sec 4,000 sec
CF ZCH 1.mch 181 166 0 15 78sec 23,100 sec

CF ZACQ FU MR 1.mch 196 185 0 11 66sec 7,500 sec
CF ZCH 4.mch 211 188 0 23 115sec 22,920 sec

CC ZSUIVI 2.mch 393 376 0 17 110sec 4,030 sec
CC LD 1.mch 143 131 0 12 80sec 3,900 sec
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Figure 4.4.: Systerel case study details
name total ok failures timeouts comment PyB time ProB time

019 100.mch 56 52 0 4 42sec 0,200 ms
435 002.mch 118 113 0 5 39sec 0,360 ms
670 002.mch PyB Time-out 2m46 sec 4,600 ms

CF ZSM CBTC 4.mch 93 78 0 15 104sec 6,440 ms
670 004.mch PyB Time-out 4m46sec 55,630 ms

bug72ano.mch PyB Time-out 4m35 sec 4,140 ms
0050 001.mch 70 64 0 6 58sec 0,290 ms
0670 004.mch PyB Time-out 4m53 sec 195,590 ms
0590 004.mch 63 60 0 3 70sec 3,080 ms
0670 005.mch 24 8 0 16 179sec 2,360 ms
0670 006.mch PyB Time-out 4m50 sec 213,160 ms
03 001.mch 61 53 0 8 59 sec 0,440 ms

0622 001.mch 55 53 0 2 74 sec 3,130 ms
SIM 11 001.mch 87 82 0 5 26 sec 0,280 ms
PL 01 001.mch 64 59 0 5 28 sec 0,290 ms

410 002.mch 58 57 0 1 21 sec 0,230 ms
861 001 corrected.mch 15 14 0 1 11sec 0,140 ms
Z 01 001 modified.mch 103 90 0 13 63sec 3,660 ms

Z 01 001.mch 96 84 0 12 115sec 0,650 ms
440 004.mch 78 77 0 1 25sec -
435 002.mch 119 114 0 5 31sec 0,310 ms
440 006.mch 95 91 0 4 38sec 0,330 ms

PS 00611 006.mch 42 41 0 1 12 sec 0,150 ms
410 002 simple.mch 3 3 0 0 4 sec 0,050 ms

861 001.mch 15 14 0 1 13 sec 0,140 ms
670 004.mch PyB Time-out 4m49 sec 157,890 ms
10 001.mch 85 74 0 11 40sec 0,280 ms
590 004.mch 63 60 0 3 14 sec 3,140 ms
02 001.mch 496 490 0 6 207sec 1,450 ms
670 006.mch PyB Time-out 4m52 sec 140,780 ms
03 001.mch 61 53 0 8 55sec 0,450 ms
04 002.mch 152 138 0 14 322sec 2,290 ms

590 004 simplified 63 60 0 3 3,150 ms
I 01 001.mch 72 63 1 8 40 sec 0,520 ms

PB 00611 005.mch 62 61 0 1 12 sec 0,150 ms
0021 002.mch 44 44 0 0 17 sec 0,230 ms
R 02 002.mch 522 516 0 6 219 sec 1,590 ms
R 03 001.mch 75 67 0 8 195sec 0,360 ms
0050 001.mch 69 63 0 6 61sec 0,330 ms
R 04 001.mch 23 23 0 0 8sec 0,160 ms
R 07 001.mch 512 506 0 6 224sec 1,590 ms
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4.2. Summary

Some machines only have 2 to 5 subpredicates which run into a timeout. Others have
20 or more. Examples of predicates in which a timeout occurs are predicates which
contain expressions like closure or predicates which contain a lot of bound variables (up
to 23). This causes timeouts for combinatoric reasons and because of the simple CSP
implementation of PyB.

One assumption of a the second tool chain approach to this thesis is that it is more
simple to check solutions than to compute one. One observation from this case study is,
that a language like B is able to express predicates which are hard to check in reasonable
time even if the solution is already present. This is not only the case if a solution is
complicated but can also occur if the checking causes a (re-)computation of a set.

Checking if every element of a solution set can be generated by a predicate is easy, but it
is not enough. The tool must (of course) compute the full set to exclude the possibility
that elements are missing or more elements are present. This can be very time consuming
using brute force enumeration. Implementing more advanced constraint solving features
to avoid brute force enumeration is needed to check all examples. This is in conflict with
the development goal to write an easy tool in reasonable time.

4.1.3. Volvo Case Study

The Volvo case study is a model of a cruise control system. It is a good example of a
model which works very well with PyB. Double checking states with ProB and stand
alone model checking without ProB was successful. Stand alone model checking is only
relevant in the next chapters. The B machine uses non deterministic substitutions and
initializations. The integer min. and max values range are ≠231 and 231 respectively,
but the states of the model are very simple. The states are consist of variables of type
boolean and integer, and two are of a custom set type.

PyB explored the same 1360 states as ProB in 1.7 seconds without any invariant
violation (stand alone mode). When PyB is used as a second tool chain the checking of
1360 state files (generated by ProB) takes 32 minutes and no error was found.

4.2. Summary

This chapter examines the second tool chain approach by using PyB and the main tool
ProB on industrial machines. PyB is less useful at “real life” examples if advanced
constraint solving is need.
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5
RPython - C Translation and JIT

This chapter describes the adaptations which have to be made on PyB to transform
its Python code to RPython code and automatically add a just in time compiler (JIT)
when translating to C1. PyPy, RPython and the RPython toolchain were introduced in
subsection 1.2.4

5.1. RPython and translation to C

Programs which are written in RPyhon can be translated to C with the RPython
toolchain. It is also possible to add a JIT into the translation process (see figure 5.1).
The contribution of this chapter is the RPython-PyB code. The translation procedure
was used and developed by others [19].

RPython is a statically typed subset of Python. PyB was originally written in Python.
This section describes the di�erences between Python and RPython and shows adaptations
which have made to PyB to enable the translation process. An unmodified branch of the
interpreter was developed in parallel to the RPython version to compare the modified
and unmodified version. This is found in chapter 6.

1 run PYTHONPATH=<PYPYDIR>:. python <PYPYDIR>/rpython/translator/goal/translate.py
–batch pyB RPython.py to build the c executable
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5.1. RPython and translation to C

• generator expressions
- problem:
RPython supports generators to some extent. Generator expressions like frozenset((x,y)
for x in S for y in T) are not supported.
- solution:
generator expressions can easily implemented using two (or more) nested loops

• exponents of expression
- problem:
RPython does not support exponent expressions like basis ú úexp.
- solution:
a for-loop can be used for the reimplementation

• built-in string functions
problem:
string functions like replace() only work on characters, the empty string is not
supported at all.
solution:
comparing each character one by one when dealing with replace(). Obviously the
performance of this solution is not very good.

• None check
problem: Tests like X==None or dic=={} are not implemented
solution:
those were replaced by X is None and len(dic)==0

• problem: Slicing is not fully implemented.
For example in classical Python the expression L[1:5] donates a sublist from indexes
1 to 4. The expression L[-1] returns the last element
solution:
compute explicit indexes

5.1.3. Exec and meta programming at import time

The PyB Python version uses the exec command to generate AST nodes from the Java
parser output. Exec executes a string if the string contains valid Python code. For
example, exec(“id2=AAddExpression()”) will create an instance of an add AST (class
must be known) node and assign it to id2. This dynamic feature is not supported by
RPython. The AST generation was discussed in chapter 2. An output of the Java visitor
can be seen in Figure 2.3.

The PyB RPython version implements all possible AST inputs of the exec function
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5. RPython - C Translation and JIT

1 def i n t e rp ( node ) :
2 i f node ==” Int Node ” :
3 return 42
4 else :
5 return frozenset ( [ 1 , 2 , 3 ] )
6
7 i n t e rp ( ’ ’ Int Node ” )
8 i n t e rp ( ’ ’ Set Node ” )

Figure 5.2.: Incompatible with RPython: A function without a static return type

with simple string parsing. All node names are known and node numbers can also be
easily parsed from the string. This exec replacement is a big switch over all cases and is
generated by meta programming at import time.

5.1.4. Object model modification

RPython code must be statically typeable: RPython does not support functions with
di�erent parameters or return types. Writing an interpreter method like the function
shown in Figure 5.2 is not possible. Calling this function with di�erent arguments would
cause a RPython UnionError between the type frozenset and integer (last two lines)
during the translation process. Using the same object model introduced in chapter 2 (for
example primitives like ‘True’, ‘42’ or built-ins like ‘tuple’) is not possible.

This problem can be solved by changing the object model in the interpreter: All possible
types (parameters and return values) must be wrapped and inherit from the same base
class. Figure 5.3 shows a wrapping example for booleans and integers. In this case, the
function in Figure 5.2 would return a W Object.

The object model of the RPython version of PyB contains 7 concrete classes: W Tuple,
W Integer, W Boolean, W None, W Set Element, W String and frozenset. All these
classes and the SymbolicSet class (chapter 3) are subclasses of W Object. Operations are
implemented by overwriting special methods. Using these wrapped objects, a interpreter
function can still return values of any (wrapped) type.

5.1.5. RPython generator implementation

A more subtle version of the typing problem from the last subsection occurs with the
use of generators. Figure 5.4 shows a code snippet which is not RPython. It shows
two (very simplified) versions of a symbolic NAT and Relation-set. Both sets can be
lazily enumerated with their enumerate set method. The caller of the method should

94



5.1. RPython and translation to C

1 class W Object :
2 pass
3
4 class W Integer ( W Object ) :
5 def i n i t ( s e l f , i ) :
6 s e l f . i v a l u e = i
7
8 class W Boolean ( W Object ) :
9 def i n i t ( s e l f , b ) :

10 s e l f . bvalue = b
11
12 class frozenset ( W Object ) :
13 [ . . . ]

Figure 5.3.: Wrapped object attributes

not need any knowledge about which set implementation he is calling. The return types
are wrapped. All classes are a sub class of W Object. The code can not be translated to C.

The program entry point is the main function which creates two instances and iterates
over all elements in the symbolic set. This is enabled by the implementation of the iter
and next method which are indirectly called by the loop. Of course a real computation
method would be more complicated. The translation fails with a UnionError in line 14.
At this line two generator objects of di�erent type are returned. This is not statically
typed.

Figure 5.5 shows the solution to this problem. If an iter method is added to every
implementation and the next method contains explicit type information (by moving it
up to the concrete sets), the UnionError cannot occur because the enumerate set method
then called is unambiguous. Figure 5.6 shows the output for the correct implementation
(not all Nat values are shown).

5.1.6. Unit testing

PyB already has hundreds of tests (see chapter 7). However, it is also of some interest to
see if the refactoring from Python to RPython or the translation to C introduces new bugs.

It is not possible to write good unit tests to check the translation process for small
RPython code snippets. When more and more features are added to the RPython version
of PyB, tests which passed at the beginning will fail later because the PyPy annotator
is not able to infer all information from a small example. More informations mean more
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5. RPython - C Translation and JIT

1 MAX INT = 2úú32
2
3 class W Object :
4 # omit ted
5
6 class W Tuple ( W Object ) :
7 # omit ted
8
9 class W Integer ( W Object ) :

10 # omit ted
11
12 class Set ( W Object ) :
13 def i t e r ( s e l f ) :
14 s e l f . g enera tor = s e l f . enumerate set ( )
15 return s e l f
16
17 def next ( s e l f ) :
18 s e l f . g enera tor . next ( )
19
20 class NATSet( Set ) :
21 def enumerate set ( s e l f ) :
22 for i in range (MAX INT+1) :
23 y i e l d W Integer ( i )
24
25 class Relat ion ( Set ) :
26 def enumerate set ( s e l f ) :
27 S = [ 1 , 2 , 3 ]
28 T = [ 4 , 5 , 6 ]
29 for x in S :
30 for y in T:
31 y i e l d W Tuple ( ( x , y ) )
32
33 def compute (S) :
34 for e in S :
35 print e . r e p r ( )
36
37 def main ( argv ) :
38 S = NATSet ( )
39 compute (S)
40 S = Relat ion ( )
41 compute (S)
42 return 0
43
44 def t a r g e t (ú args ) :
45 return main , None # re turns the entry po in t

Figure 5.4.: Not RPython: Can not be translated because of UnionError in line 14
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5.1. RPython and translation to C

1 # . . . . l i k e b e f o r e
2
3 class NATSet( Set ) :
4 def enumerate set ( s e l f ) :
5 for i in range (MAX INT+1) :
6 y i e l d W Integer ( i )
7
8 def i t e r ( s e l f ) :
9 s e l f . g enera tor = s e l f . enumerate set ( )

10 return s e l f
11
12 def next ( s e l f ) :
13 return s e l f . g enera tor . next ( )
14
15 class Relat ion ( Set ) :
16 def enumerate set ( s e l f ) :
17 S = [ 1 , 2 , 3 ]
18 T = [ 4 , 5 , 6 ]
19 for x in S :
20 for y in T:
21 y i e l d W Tuple ( ( x , y ) )
22
23 def i t e r ( s e l f ) :
24 s e l f . g enera tor = s e l f . enumerate set ( )
25 return s e l f
26
27 def next ( s e l f ) :
28 return s e l f . g enera tor . next ( )
29
30 def compute (S) :
31 # . . . . l i k e b e f o r e
32
33 def main ( argv ) :
34 # . . . . l i k e b e f o r e
35
36 def t a r g e t (ú args ) :
37 # . . . . l i k e b e f o r e

Figure 5.5.: Correct RPython generator implementation
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5. RPython - C Translation and JIT

1 0
2 1
3 2
4 3
5 [ . . . ]
6 4294967296
7 (1 , 4)
8 (1 , 5)
9 (1 , 6)

10 (2 , 4)
11 (2 , 5)
12 (2 , 6)
13 (3 , 4)
14 (3 , 5)
15 (3 , 6)

Figure 5.6.: Output of generator implementation

possible conflicts.

For example PyPy (RPython toolchain) can not assure the existence of an object’s field
if this object is never created (or if its constructor has not been reached) by the PyPy

analysis. Also, an argument of a function may only identified as not statically typed
when the function is called a second time with an argument of a di�erent type. The
PyPy annotator must therefore see the whole picture. If a small test checks only one
aspect of PyB like the environment value storage, AST parsing, set enumeration, etc..
then a failure may not indicate that this part of PyB was the reason for this failure.

Tests which only cover a limited part of the PyB-RPython code will not be reliable to
test the translation process. Of course, it is possible to translate the whole tool and
check it with complete machines after the translation has succeed. These test machines
can contain every aspect of B which is implemented by the Python PyB version.

5.2. Adding a JIT

This section is not about the modifications needed to enable a PyB translation to C but
rather those needed to add a JIT to the generated C code and improve its performance.
The concept of a meta tracing jit was introduced in 1.2.4. A JIT can be added to a
RPython interpreter when being translated to C by creating a JitDriver (a Python object)
instance and annotating possible loops inside the RPython interpreter. The arguments
of the JIT driver are green and red variables for the loop. Green variables are those
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5.2. Adding a JIT

1 j i t d r i v e r = j i t . J i tDr i v e r ( greens =[ ’ inv ’ , ’mch ’ ] , r eds =[ ’ s spac e
Òæ ’ , ’ env ’ , ] , g e t p r i n t a b l e l o c a t i o n=
Òæ g e t p r i n t a b l e l o c a t i o n , name=” run model checking mode ” )

2 def run model checking mode ( env , mch) :
3 inv = mch . aInvar iantMachineClause
4 s spac e = env . s t a t e s p a c e
5 while not env . s t a t e s p a c e . empty ( ) :
6 j i t d r i v e r . j i t m e r g e p o i n t ( inv=inv , s spac e=s space , env

Òæ =env , mch=mch)
7
8 # s t a t e check ing code

Figure 5.7.: Jit merge point of the model checking loop

which do not change during the loop, for example an AST. Red variables are those which
change on every loop iteration, for example the B state. The JitDriver annotation is not
a contribution but only its usage by PyB

Figure 5.7 shows the most important jit merge point in PyB at the model checking loop.
Relevant lines are line 1-3 and 8. The JIT driver is created and called inside the loop.
Green variables are the invariant AST node and machine object. Red variables are the
state space and environment. The function get printable location is used for debugging
and will be used in a trace output. Other merge point are found in quantified expression
like sum or inside the while loop substitution.

The normal work flow of jitting (annotation+translation) an RPython program is adding
JIT merge points at potential loop bodies and examining the recorded traces. The traces
are the main source of optimizations hints for the interpreter implementor and can be
printed by PyPy after the C version of PyB has run in a loop for some time. A trace is
a very largely piece of code and can be seen in appendix D.

5.2.1. Annotations

There are some Python decorators and hints which can improve the JIT results. Deco-
rators are function annotations (with a @ symbol) which wrap the annotated function
into another function. One main goal is to remove slow function calls inside the JIT.
Some hints are not added with decorators but by adding attributes to classes. These
decorators are a part of PyPy [15]2 and are used by PyB. Also it is important to keep
in mind that the traces of the JIT will be optimized and translated to machine code to
understand their purpose.

2see chapter 5
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5. RPython - C Translation and JIT

• settled :
Attributes of an subclass are not copied to its base class. This hint avoids big base
class objects. An example is the W Object hierarchy from the last section.

• immutable fields and attrs :
Attributes of an object which are constant can be marked as such. For example,
the string of an identifier node is set only once at node creation.

• promote(x):
Indicates that a variable may be constant most of the time. Notice: it must only
be constant in the same trace position. For example the return value of the get
children method of a AST node is variable but not at a specific code position
because ASTs are immutable.

• @jit.elidable:
A function is elidable if the arguments of the function never change at the trace
position. That means that a trace always puts the same arguments at the same code
position into that function. This does not indicate that these functions are constant
or pure. Only the concrete trace position is relevant and not the function behavior
over the whole program. An example is a dictionary lookup. The argument of a
lookup function is variable, but not at a concrete trace position. @jit.elidable can
be used for constant folding inside a trace.

• @jit.unroll safe:
A loop can be unrolled (replaced by a sequence of equivalent instructions) if the
arguments of a loop (e.g. elements of a list) never change at this trace position.
An example is a scoping lookup loop.

5.2.2. Fragmentation of eval and exec functions

A profiling of the PyB Python version revealed that most of the execution time (25%
of the time) was consumed by isinstance (a Python built-in) checks in the evaluation
of an execution switch. The switch tested which AST node has to be processed and
called the corresponding code. This overhead could be removed by adding an exec
(substitutions) and eval (expressions and predicates) method to every AST node using
meta programming at import time instead of using a big switch. This resulted in a
slight speedup (the interpretation overhead can not be avoided). The AST nodes are
still immutable at runtime.

Another reason for the splitting of the substitution execution function into separate
functions is to get better JIT traces when dealing with nondeterminism. If done correctly
a speedup in the deterministic case (only one path of execution) and no e�ect in the
nondeterministic case is achieved.
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5.3. Summary

5.2.3. Removing dictionary lookups

Dictionary (hashmap) lookups inside a trace are one source of a bad JIT performance.
These lookups can be replaced by array lookups. These lookups are faster and still
constant (O(1)) if the index of the array is always known and no linear search is needed.
This is done by adding an dictionary class implementation similar of that proposed by C.
F. Bolz [15]3.
The implementation uses a map structure for every kind of map. The structure adds every
key to a index dictionary which maps the key to an index inside the array. These contain
the values. If the keys of the map are unlikely to change in a trace, this implementation
leads to a better trace.

5.2.4. State hashing

The Python version of PyB was already able to hash B states to improve the model
checking performance. States are transformed to a simple string representation and
processed by a RPython hash function. Hash collisions are possible. States of the
same hash are compared using an value by value comparison during model checking.
This comparison is unlikely and costly. The hashing turned out to be one performance
bottle-neck and was improved (e.g. by adding hash functions to W Objects ) which
caused a speedup of some examples by one order of magnitude.

5.3. Summary

This chapter describes the di�erences between Python and RPython and which adapta-
tions had to be made to PyB to generate a C-JIT version and improving its performance.
Adaptations were wrapped types, built-in reimplementations, general code optimizations,
state hashing and JIT annotations.

3figure chapter 14
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6
RPython - Benchmarks

There are many reasons for insu�cient tool performance. Ine�cient algorithms, internal
data structures or B data representation, the overhead introduced by the programming
language (for example the CPython byte code interpreter) or the absence of features like
constraint solving.

This chapter evaluates the performance of PyB. Three di�erent versions of PyB are used
to investigate the benefits (or drawbacks) of a C translation of PyB and the addition of
a JIT. The versions are:

• PyB-Python:
The version of PyB which was discussed in chapter 2 and 3. It is an unmodified
non RPython version which is executed by the CPython interpreter.

• PyB-RPython:
This is a branch of PyB which is modified respective to the last chapter. This
version is also executed by the CPython interpreter. It is not translated to C.

• PyB-C-JIT:
This is the translated C version of PyB. This version contains a JIT.

All tables in this chapter contain the performance results of these three versions. All
benchmarks are compared to a reference B implementation: ProB.

The set of benchmarks also contains of small B machines which investigate the performance
loses or benefits of one specific B feature. Machines from industry are used in the last
subsection to investigate if performance boosts which can be observed on large machines
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6. RPython - Benchmarks

and to avoid a methodical error by only using artificial micro benchmarks. The number
of states or iterations needed to start the JIT is stated in the subsections1.

6.1. Benchmarks

A performance advantage of PyB-C-JIT is expected whenever the interpreter is entering
a loop (meta or interpreter level). Therefore B machines which contain loops are subject
of the benchmarks, because their evaluation cause a loop inside the PyB interpreter too.
There are two kinds of loops:

• Meta loops
which are loops of the interpreted B machine.

• Interpreter level loops:
which are loops inside the RPython interpreter itself.

Interesting loops are: Quantified predicates2, model checking loop, while substitution
loops and constraint solving loops of quantified predicates. Di�erent kind of operation
also examined inside the loops: For example a loop containing integer arithmetic or set
operations.

This section consider these examples because speedups and or performance losses (ex-
pected to be caused by constraint solving) may be most likely discovered by them. It is
expected to get better JIT results if the number of states increase: the recording of traces,
code generation and optimization takes some time. This time investment pays o� when
the much faster machine code is executed a large number of times. The time measurement
accuracy can vary by one second. So results in this range are unreliable. The benchmarks
were executed on a MacBookPro with 3 GHz dual Core processor and 8 GB main memory.

6.1.1. Metaloop: model checking (integer arithmetic)

Model checking can be seen as a meta loop, because the B model performs an operation
execution loop: Possibly executing the same operation multiple times.

Table 6.1 shows the benchmark results of the model checking example shown in figure
6.1. The number of states was increased by setting the variable n. The JIT generates
code when 633 or more states have been computed. PyB-C-JIT’s performance is much

1execute sh run benchmarks.sh to reproduce the results
2quantified predicates are implemented by a loop which checks every possible value of the bound

variables
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6.1. Benchmarks

1 MACHINE L i f t
2 CONCRETE VARIABLES f l o o r , n
3 INVARIANT n :NAT & f l o o r : 0 . . n
4 INITIALISATION n:=99 ; f l o o r := 4
5 OPERATIONS
6 inc = PRE f l o o r <n THEN f l o o r := f l o o r + 1 END ;
7 dec = PRE f l o o r >0 THEN f l o o r := f l o o r ≠ 1 END
8 END

Figure 6.1.: A simple model checking example

Table 6.1.: model checking benchmark results of MACHINE Lift. Time in seconds
States ProB PyB-Python PyB-RPython PyB-C-JIT

10 1.9 0.8 1.5 0.7
100 1.9 0.9 1.7 0.7
633 1.9 1.2 2.5 0.7
1000 2.1 1.8 2.9 0.7
10000 3.7 7.5 14.9 0.8
100000 23.9 68.7 167.6 1.9
1000000 213.8 740.3 >18min 14.0

better than ProB’s at this benchmark. Notice that the benchmark does not contain a
complex invariant and only performs simple integer arithmetic. A JIT C implementation
was expected to be faster than a Prolog implementation because C performs better at
integer arithmetic than prolog in general.

1 MACHINE SetUnion
2 VARIABLES n , x , S
3 INVARIANT n :NATURAL & x :NATURAL & S<:NATURAL
4 INITIALISATION n:=1000; x :=0; S:={}
5 OPERATIONS
6 add = PRE x+1<n & x / : S THEN S:= S\/{x } ; x:=x+1 END;
7 op = sk ip
8 END

Figure 6.2.: A set union loop
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Table 6.2.: Union of sets. MACHINE SetUnion. Time in seconds
n ProB PyB-Python PyB-RPython PyB-C-JIT

500 2.1 1.2 10.1 0.8
1000 2.8 1.9 37.6 0.9
2000 5.5 3.6 144.8 2.0
4000 15.7 8.9 597.8 5.5
8000 54.6 26.7 >20Min 24.8
16000 221.4 110.2 - 162.4

Table 6.3.: while loop benchmark results. MACHINE WhileLoop. Time in seconds
States ProB PyB-Python PyB-RPython PyB-C-JIT
10000 2.2 6.6 4.3 0.6
100000 7.8 56.9 38.2 0.9
1000000 57.6 553.9 322.1 3.6
10000000 516.2 >10 min >10 min 28.3

6.1.2. Metaloop: model checking (sets)

Table 6.2 shows the benchmark results of a slightly more complex example found in figure
6.2. Instead of increasing an integer variable floor, a set S is extended by an element x at
every new state. PyB is also faster than ProB, but not by much. The RPython and
PyB-C-JIT di�erences are a result of a more e�cient hashing implementation which
only works on the C level. This benchmarks shows that PyB’s union operation and set
representation does not as much benefit from translation and JIT than integer arithmetic.
This is no surprise. A big surprise is the PyB-Python result, which is faster than the C
version. This is caused by a less e�cient reimplementation of the built-in frozenset type
in PyB (chapter 5).

Table 6.4.: while loop benchmark results.modified MACHINE WhileLoop. Loop inside
operation. Time in seconds

States ProB PyB-Python PyB-RPython PyB-C-JIT
10000 2.2 8.3 5.7 0.6
100000 7.0 76.9 41,4 1.0
1000000 61.1 750.4 451.7 4.0
10000000 532.0 - >21 min 34.5
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1 MACHINE WhileLoop
2 VARIABLES sum , i , n
3 INVARIANT
4 sum :NATURAL & i :NATURAL & n :NATURAL
5 INITIALISATION
6 BEGIN
7 BEGIN
8 n := 10 ;
9 sum := 0 ;

10 i := 0
11 END;
12 WHILE i<n DO
13 sum := sum + i ;
14 i := i+1
15 INVARIANT
16 i :NATURAL & sum :NATURAL & sum = (( i ≠1) ú ( i ) ) /2
17 VARIANT
18 n ≠ i
19 END
20 END
21
22 OPERATIONS
23 r r <≠≠ op = r r :=sum /ú avoid deadlock ú/
24 END

Figure 6.3.: A simple while substitution example
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1 MACHINE SigmaLoop
2 VARIABLES n , sum
3 INVARIANT n :NAT & sum=((n+1+1) ú (n+1) ) /2
4 INITIALISATION n:=10 ; sum:=(SIGMA i . ( i : 0 . . n | i +1) )
5 OPERATIONS op = sk ip /ú avoid deadlock ú/
6 END

Figure 6.4.: A simple sigma expression example

Table 6.5.: sigma loop benchmark results. MACHINE SigmaLoop. Time in seconds
n ProB PyB-Python PyB-RPython PyB-C-JIT

1000 1.7 1.7 1.6 0.7
1038 1.7 1.7 1.6 0.7
10000 1.8 4.0 2.9 0.7
100000 1.9 32.5 15.8 0.8
1000000 4.2 326.6 144.1 3.0
10000000 28.3 - >13 min 25.5

6.1.3. Metaloop: While substitutions

While loops are not allowed in abstract B models. Anyway they are used in industry
examples and they are a good way to check the performance of PyB-C-JIT. The
benchmark code can be found in figure 6.3. Table 6.3 shows the results. Table 6.4 shows
the results of a modified version of figure 6.3 where the loop has been moved from the
initialization to the operation. The JITs starts at n=1039, but its performance impact
compared to the no JIT C version is low. PyB-C-JIT handles long iterations much
better than ProB. Its not important if the loop is inside an initialization or inside a B
operation. The performance results are the same. Also this result can be explained by
a better performance of machine code and C of integer arithmetic compared to that of
Prolog.

6.1.4. Interpreter level loop: quantified predicates

Table 6.5 shows the benchmark results of a sigma expression(sum of integers) example
shown in figure 6.4. The domain of the bound variable i can be used by PyB. The
machine consists of only one state. The number of iterations was increased by setting
the variable n. The JIT generates code when 1038 or more states have been computed.
PyB-C-JIT and ProB show the same performance. The second Table 6.6 shows the
results after line 4 was modified to SIGMA i. (i:0..n & i > 0 & i < 2| i+1) and sum=2
which can not be handled e�ciently by PyB. The limitations of the PyB constraint
solver and their performance implications have been introduced in chapter 3.
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Table 6.6.: modified (i > 0 & i < 2) sigma loop benchmark results. Time in seconds
n ProB PyB-Python PyB-RPython PyB-C-JIT

1000 1.7 1.0 1.6 0.6
1038 1.7 1.1 1.6 0.6
10000 1.8 3.3 2.6 0.7
100000 1.8 26.7 13.9 0.8
1000000 1.8 262.3 - 3.0
10000000 1.9 - - 26.1

Table 6.7.: B models from textbooks and industry. Time in seconds
Name States ProB PyB-Python PyB-RPython PyB-C-JIT

Cruise finite1.mch 1360 4.9 54.5 93.3 1.9
scheduler.mch 66 1.3 1.0 2.8 0.8

Doors.mch 8 1.8 0.8 1.5 0.6
Sets2.mch 1 1.8 0.8 1.9 0.6
spec.mch 1352 5.5 79.3 - -

6.1.5. Machines from industry and publications

This subsection contains benchmarks not using artificial B machines, but examples from
textbooks and industry. Table 6.7 shows the results. Table 6.8 and 6.93 show the results
of a sorting benchmark.

Table 6.7 shows some B benchmarks also used by ProB. Most of these benchmarks do
not run long enough to get an impression of PyB’s performance in real world applications.
The cruise control example turns out to be faster than PyB. The runtime is to small
to evaluate if the model can benefit from a JIT. The sorting algorithm consists of
nested loops which perform better an PyB-C-JIT for the same reasons as the while loop
example.

3to reproduce the result: ./probcli sort m2 data2000.mch -mc 1000000 -noass -noinv

Table 6.8.: Quadratic sorting algorithm. Time in seconds
n states ProB PyB-Python PyB-RPython PyB-C-JIT

100 5050 7.2 33.9 1143.4 7.6
200 20100 27.5 225.8 - 75.9
500 125250 322.8 - - >11min
1000 500500 - - - >31min
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Table 6.9.: Quadratic sorting algorithm. Invariant check disabled. Time in seconds
n states ProB PyB-Python PyB-RPython PyB-C-JIT

100 5050 5.3 11.0 80.7 1.5
200 20100 21.3 46.7 529.1 2.6
500 125250 263.5 331.8 - 17.6
1000 500500 1888.0 - - 109.1
2000 2001000 - - - 813. 0

Figure 6.5.: Graph of table 6.1. No constraint solving. PyB shows good performance
results

6.2. Summary

This chapter evaluates the performance results of the C-JIT version of PyB. PyB-C-JIT

shows a better performance on arithmetic loops compared to ProB. This is a result of
the C translation and the JIT. Its is slow on set operations because of the PyB data
representation. PyB shows good results by one magnitude compared to ProB when
ever constraint solving is not involved (see figure 6.5 and 6.6). A language like B can
also benefit from the application of the PyPy translation tool chain and generation of a
JIT.
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6.2. Summary

Figure 6.6.: Graph of table 6.6. Needs constraint solving. PyB shows bad performance
results
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7
Development Process

7.1. Timeline

PyB consists of 15510 lines of Python code, 16271 lines of test code and 1880 lines of
Java code. Approximately 71 000 lines of code were committed and 39 000 lines of code
where deleted in the four years of tool development. The first year (Aug. 2011-2012) was
characterized by a rapid growth of tool features. The second year (Aug. 2012-2013) was
used to include many B details and the first successful applications of the second tool
chain. The third year (Aug. 2013-2014) was used to support more complex B features by
implementing symbolic representation and naive constraint solving. The last year (Aug.
2014-2015) was used for the RPython adoptions and PyPy experiments. In retrospective
much of the work of the third year was unnecessary to answer the questions of this thesis.
Anyway, if the tool will be used after this thesis is published, this e�ort was not in vein.
Tables 7.1 7.2 7.3 7.4 show the time line of the project in more detail. The tables do not
cover 12 months, but logical project sets.
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7. Development Process

Table 7.1.: Project time line (first year): simple B implementation
Date milestone

August 2011 project start

September 2011 evaluation of simple arithmetic, set-predicates, functions and rela-
tions

October 2011 type-checking of simple arithmetic, set-predicates, functions and
relations

November 2011 type-checking with simple unifications and replaced interpreter state
by an more complex environment

December 2011 typing and evaluation of more complex constructs. Added a simple
(brute force) enumerator. First parsing of whole B machines

January 2012 first evaluation of simple B machine assertions

February 2012
implementation of more complex functions like closure and UNION.
First evaluation of simple B machine PROPERTIES-, CONSTANT-
and DEFINITION-clauses

March 2012 implementation of IF-THEN, CHOICE and SELECT-substitutions
April 2012 implementation of lookup of SEEN or INCLUDE B machines

Table 7.2.: Project time line (second year): advanced B features and completion of second
tool chain prototype

Date milestone
September 2012 implemented quick eval functions to speed up tool performance
October 2012 first successful usage of an extern constraint solver

November 2012 first introduction of state-space.
December 2012 successful animation of simple B machines.
January 2013 implementation of a small B-REPL
February 2013 successful usage of ProB solutions

March 2013 successful run of Alstom case-study

April 2013 complex animation-refactoring to enable nondeterministic substitu-
tions

May 2013 animation of SEEN or INCLUDED B machines/operations
June 2013 documentation of tool-features and implementation details
July 2013 implementation of complex nondeterministic substitutions

August 2013 implementation of nondeterministic set up constants and init phase.
Added pretty printer for predicates.

September 2013 typing and execution of external functions
October 2013 usage of more complex ProB solutions
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Table 7.3.: Project time line (third year): di�cult aspects, symbolic sets and constraints
Date milestone

November 2013 added symbolic representation for large and infinite sets

December 2013 some Systerel (industrial B machines) successfully checked with
PyB/ProB

April 2014 refactorings, tests and debugging. e.g. purity of interpreter and
removal of dynamic code

May 2014
simple membership and equality constraints added e.g. {x|x : NAT +
≠ > NAT & x = {(1, 1), (2, 2), (3, 3)}} or {x|x : NAT & x :
{1, 2, 3}} . First estimation of expression evaluation time.

June 2014
using more complex constraints like disjunctions, function domains.
Added more complex symbolic sets e.g. symbolic relations, functions
and lambda expressions

July 2014 operations on symbolic sets e.g. union. constraint usage of tuples.
lazy enumerators of symbolic sets

August 2014 symbolic sequences and set comprehension. functions app. con-
straints e.g. {x, y|x : S& y = f(x)}

November 2014 more symbolic set implementations
December 2014
January 2015 timeout and detailed (sub-)predicate output

Table 7.4.: Project time line (forth year): RPython adaptions and translation to C
Date milestone

February 2015 RPython: translation of AST nodes. Basic data type wrappers.
March 2015 RPython: Usage of parsing module
April 2015 Added model checking to PyB

May 2015 RPython: parsing of B machines e.g. Lift example
June 2015 RPython: arithmetic and simple predicate evaluation
July 2015 RPython: evaluation of simple B invariants

August 2015 RPython: execution of simple B machines e.g. Lift example
September 2015 RPython: relations, functions, sequences
October 2015 RPython: most B constructs supported
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7.2. Clean room approach, workflow and Testing

PyB is a clean room implementation, a technique originally used to avoid copyright
issues. It was implemented without any knowledge or usage of the ProB code or the code
of any other B implementation. A clean room implementation is a form of software design
diversity [9]. In the special case of a ProB-PyB-chain it is a N-version implementation
of B with N=2. The hope of a reliability increase by N-version programming is based
on an independence assumption of the versions. This assumption was investigated by
Knight at al [37]. The assumption holds not in all cases. Di�cult implementation issues
often lead to bugs in di�erent versions. Anyway the authors conclude that N-version
programming is still to be believed to lead to a greater reliability, but may not be as
high like in theory.

Of course when a second tool has to check the computations of another tool, some design
decisions of the main tool a�ect the second tool. For example the setup constants process
when constants are searched which fulfill the machines property clause (which is a single
step in ProB) or the typing of B expressions using unification. Also this clean room
technique should not be mistaken with clean room software engineering [12]

PyB was developed using a test driven development (TDD) approach [11]. This is a
software development processes which is often used along with dynamic languages like
Python. The basic procedure can be seen in the flow graph of figure 7.1

• Missing feature:
The first step is the identification of a missing tool feature. The correct specification
of the desired behavior is be found in a B language manual. Finally a test is written
to document the missing feature. In this step, the programmer is forced not only
to think about the problem, but also to write code (the test) to specify what to be
added to the tool.

• Testing
All present test (not written in this cycle) are automatically run by a testing
framework. Only the new test should not pass in this run. This assures that the
new feature is not already included into the software. After this phase the new test
should not be modified.

• Implementation
In the last step, the feature is implemented, when the test passes.

• Refactoring
The code is refactored to a more maintainable and e�cient code base, without
adding any new features. The test driven process starts again at the beginning.
All tests are run together to assure the implementation does not introduces a bug
which violates other tests.
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8
Conclusion

8.1. Related Work

This section summarizes related work to PyB considering B implementations, second
tool chains and B, and RPython interpreters.

The first subsection will answer the question if a B implementation is something unique
and new contribution. The section compares how similar these tools are to PyB i.e
how meaningful the comparison is. There are some implementations but ProB is the
implementation most similar to PyB. None of them can be used as a complete alternative
to the PyB implementation. Basically for two reasons:

• Not all of them implement the full B language. Also some features are not present.
(e.g. substitution execution or model checking)

• None of them is implemented in the RPython subset, which makes RPython JIT
experiments impossible.

PyB is not compared to proving tools like Click’n’Prove [3] or parts of Rodin, because
this approach is too di�erent from PyB. The ProB tool, which is important related
work, was presented in chapter 1.1.2

The second subsection lists up second tool chains using B. It will give an overview if this
approach is new to B tools. The section compares how the second tool chains have been
used and what are the results of the usage. Are errors in the main tool detected?
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8. Conclusion

The last subsection lists up RPython implementations. It will show if a RPython
implementation and translation of some language are something new. The completeness
of the implementation is examined and its JIT performance results. Are good results are
only reached for a prototype or for a full language implementation like PyB does?

8.1.1. B Implementations

Most B Tools listed below have been developed in an academic context and have been
replaced by other tools or the development has simply stopped. The most comparable
tool is ProB. How issues of PyB have been solved by ProB is unknown to me because
of the clean room implementation approach.

Atelier-B

Atelier-B [60]1 is a set of B and Event-B tools developed by the company ClearSy. It is
one of the main B tools still in development and maintenance. It contains an automatic
refinement tool (BART), syntax analysers (e.g. a type checker), proofing tools, automatic
translators and a project management tool. It does not contain a model checker.

Older versions of Atelier B run out of memory in the context of data validation. Atelier
B quite often runs out of memory. For example, for the San Juan development, 80
properties (out of the 300) could not be checked by Atelier B. [45]

B-Toolkit

The B-Toolkit was developed at B-Core by Ib Sorensen and David Neilson from 1992.. The
B-Toolkit [8]2 was developed by B-Core UK. The development has stopped.”The B Toolkit
is a configuration tool that manages developments under the B Method, generating proof
obligations and supporting tools for the discharge of those proof obligations. There is also
support for the generation of documentation, and for the browsing of developments.” [55]

B4Free

B4Free were a set of B tools who are not in development anymore. The authors of
the tool recommend to use AtelierB in the future.3. B4Free is described as ”Academic
tool enabling the operational use of formal Method B for proven software development.”
B4Free was used together with the emacs editor and contained proving tools and a project

1Atelier-B download: http://www.atelierb.eu/en/
2https://github.com/edwardcrichton/BToolkit
3http://www.b4free.com/index-en.php
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managing tool4 B4Free has been in uses for many years and is mentioned here in the
sense of completeness.

Brilliant and UML-B

Brilliant [58] is an open B tool written in OCaml5 . It consists of a type checker and can
generate B POs. Also Brilliant can be used together with UML-B6, a Tool to generate B
specifications from UML [41].

B2RODIN + Rodin, AnimB

The Rodin platform [23] is an extensible eclipse based toolset, used to develop software
using Event-B. Event-B is a successor of B. Rodin design goals were ease of use and
extensibility. Rodin does not directly support classical B, but it is possible to translate
some B models to event-B using the B2RODIN7 tool. The number of machines which
can be translated by B2RODIN are limited. For example the guards of a lift example
using preconditions must be manually added after translation.

Event-B machines can be animated by AnimB8, an animator written in Java which
is based on the predicate evaluator PredicateB. AnimB9 was considered to be used as
second tool but not used because of some limitations: Parameter or constant values can
not be found automatically and must be set by the user while variable values can be
found at runtime. Also AnimB lacks of constraint solving features. Like PyB it can not
handle complicated predicates e�ciently and su�ers from performance problems when
dealing with large sets [44].

Also it is possible to generate code using Rodin plug-ins like EventB2Java10, but code
generation was not in scope of PyB.

Bcomp Atelier B Parser

Bcomp is the parser of Atelier B. It is written in C++11 Eventually this parser will be
used by PyB to make it a full clean room implementation. The main task will be a
translation of the C AST to Python.

4http://www.b4free.com/tutoriels/sampleB4free.php
5Brilliant download: https://gna.org/projects/brillant/
6more information about UML-B: http://wiki.event-b.org/index.php/UML-B
7http://www.methode-b.com/en/tools/rodin/b2rodin/
8B2RODIN is only supported by Rodin 2.8 while AnimB needs 3.0 or better. This makes a comparison

to PyB complicated.
9http://wiki.event-b.org/index.php/AnimB and http://www.animb.org

10http://poporo.uma.pt/EventB2Java/EventB2Java.html
11https://sourceforge.net/projects/bcomp/
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JeB

JEB [70] [71]1213 is a Event-B implementation in JavaScript. The name JEB is a short
form for JavaScript simulation framework for Event-B. Important features [49] are
predicate evaluation and the animation of nondeterministic operation on all abstraction
levels and deadlock checks of models. JEB translates Event-B machines to a JavaScript
representation (executable model) and simulates the machines for validation purposes.
Quantified predicates are evaluated only in bounds of min and max values by the
JavaScript library. Unary membership constraints are used to reduce the domain of
bound variables.

JEB supports a graphical animation of B machines which can be compated to the flash
animation of AnimB or Brama [59] or the graphical animation of BMotion Studio [38]
(which is used by ProB). Also JEB can not be directly compared to PyB because PyB

implements B instead of Event-B. JEB has been integrated into the Rodin platform.

8.1.2. Second Tool Chains and the B-Method

Redundancy i.e. double checking is no new concept in formal methods or computing [9].
It was used in the Ovado [39] [1] [40] project which performed formal data validation in
the railroad sector using the B method. Ovado uses ProB as its main tool and Predicate
B (later PredicateB++) as second tool. PredicateB++ it the counterpart to PyB in
this second tool chain. PredicateB su�ers from the same limitations of PyB of finding
solution by itself. Also PyB and PredicateB are not implementing exactly the same
features, because PyB also pursued other goals. The double chain ProB/PredicateB
was successful used on large data in industrial size projects. The clean room approach
and research results of N-version programming [37] were presented in 7.2.

8.1.3. RPython Interpreter Implementations

There are other RPython language implementations like Python (PyPy), Ruby, Smaltalk [20]
and Prolog. A formal language like B was never implemented and examined in RPython.
This subsection contains an overview about other RPython implementations, their devel-
opment status and performance results, to set the RPython results of this thesis into
relation: Most implementations are only reached a prototype development stage. Most
of them showed good tracing JIT results when loops are involved. So PyBs JIT results
meet the expectations by previous work.

12https://hal.inria.fr/tel-00951922/document
13JEB download: http://dedale.loria.fr/tiki-list file gallery.php?galleryId=13 or

http://dedale.loria.fr/?q=en/JeB
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PyPy RPython Python Implementation

The most important RPython example is PyPy [54], a Python implementation in
RPython. The implementation contains a JIT and is faster than C Python on specific
benchmarks [16].

Spy: RPython SmallTalk Implementation

Spy is a RPython Smalltalk [20] implementation. The implementation is not complete
but was faster on some benchmarks compared to Slang.

Also an other small subset of Smalltalk, SOM [48]. was implemented in RPython by Marr
et. al. to compare the performance, weaknesses, commonalities and potential improve of
the meta tracing- and the ast self-optimization approach, concluding that both make
”valuable contributions”.

Topaz: RPython Ruby Implementation

Topaz14 is an RPython Ruby implementation15 created by Alex Gaynor. Ruby is a
dynamic imperative language. Topaz does not fully support the full Ruby language. For
example the standard library is missing and threading is not supported [5]. At present,
Topaz is not considered stable or tested in the real world, and is extremely incomplete.
We do not yet consider Topaz to be production ready (but it gets closer every day!). All
that said, if Topaz does run your program correctly, it is likely to continue to work. The
Topaz results have not been published.

PyJS: RPython JavaScript Implementation

PyJs16 ia JavaScript implementation which was written by Stephan Zalewski [72] in 2012.
Java Script [66] is a popular object-oriented dynamic language used in web development.
PyJS does not fully implement the ECMA specification, for example regular expressions
are missing. The performance of PyJS was bad except on loop examples. In most cases
the reference implementation spidermonkey were faster to a factor of 100 or more.

14Topaz download: https://github.com/topazproject/topaz
15http://topazruby.com
16PyJS download: https://bitbucket.org/pypy/lang-js
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RPython Java Implementation

A JVM Python17 implementation was written by myself in 2009 [68]. It contained a parser,
bytecode interpreter, JNI-Interface, threading and parts of the java standard library. It
was not fully RPython compatible and no JIT was added successfully. Compared to
state of the art Java implementations, no speedup was created.

Rapydo: RPython R Implementation

Rapydo is a RPython implementation of R which was written by Sven Hager [33]18 in
2012. R is a language used for statistical data analysis [36] developed by Ross Ihaka and
Robert Gentleman. The implementation only reached prototype status. A speedup up to
the factor 57 compared to the reference implementation was reached on loop execution.
Benchmarks without loops produced worse results.

Pyrolog: RPython Prolog Implementation

Pyrolog19 is a Prolog implementation written by C.F. Bolz [14] [18]. Prolog is a declarative
logical programming language. A Jit was sucessfully added by the PyPy JIT generator.
On some benchmarks (arithmetic) the implementation achieved a speedup up to the
factor 10 compared to state of the art Sicstus Prolog.

PyHaskell: RPython Haskell Implementation

PyHaskell [63] is a RPython Haskell implementation20 written by E. Thomassen in 2013.
Haskell is a general purpose, purely functional programming language [35]. PyHaskell
is only a prototype. A JIT speedup was successfully created, but Py Haskell does not
beat the reference implementation GHC. Anyway the author concludes that the RPython
translation tool chain is suitable for purely functional, lazy languages.

Pixie: RPython Lisp Implementation

Pixie21 is a RPython Lisp implementation done by Timothy Baldridge in 2015. The
implementation is in a ”pre-alpha” phase . There are no published articles about pixie.
The author describes the performance as ”good-enough”22

17JVM donwload: https://github.com/hhu-stups/python jvm
18Rapydo download: https://bitbucket.org/cfbolz/rapydo/
19Pyrolog download: https://bitbucket.org/cfbolz/pyrolog/
20PyHaskell download: https://bitbucket.org/cfbolz/haskell-python/
21Pixie download: https://github.com/pixie-lang/pixie
22http://www.thestrangeloop.com/2015/pixie—a-lightweight-lisp-with-magical-powers.html
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Pycket: RPython Racket (Scheme) Implementation

Pycket [10]23 is a RPython implementation of Racket. Racket is a Lisp dialect [30], which is
a functional programming language. The implementation was advanced: Pycket supports
a wide variety of the sophisticated features in Racket such as contracts, continuations,
classes, structures, dynamic binding, and more. Pycket was faster on average compared
to the Racket reference implementation.

Pydgin: RPython ISS

Pydgin [46] is a fast instruction set simulator24 written in RPython. An instruction set
simulator (ISS) is a special kind of functional-level model that simulates the behavior of
a processor or system-on-chip (SOC)25. The implementation turned out to be fast.

PyGirl: RPython hardeware emulation

An other RPython implementation of a hardware simulator is PyGirl26.Pygirl [22] is
a whole system virtual machine (WSVM) written by Verwaest Toon in 2009. The
performance was comparable to an other java vm implementation.

8.2. Future Work

While the goals of this thesis have been reached, there is still interesting work to be done
in the future:

One possibility would be the extension of PyB by and external constraint solver or
theorem prover: Then an e�cient check of quantified safety properties would also be
possible. This would extend PyBs set of compatible machines. The second tool chain
can then be used on more models from industry and it would be possible to investigate if
a formal language implementation can also gain a speedup from the translation process
if more complex examples are processed.

8.3. Conclusion

This thesis examined and discussed two di�erent issues, which both needed an imple-
mentation of B. This implementation is PyB, the main contribution of this thesis. The
23Pycket download: https://github.com/samth/pycket
24Pydgin download: https://github.com/cornell-brg/pydgin
25http://morepypy.blogspot.de/2015/03/pydgin-using-rpython-to-generate-fast.html
26PyGirl download: https://github.com/camillobruni/pygirl
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first issue was the implementation of a second tool chain. The second topic was the
application of the RPython tool chain on a B implementation. Both topics pursued
di�erent goals. While correctness of the implementation was an issue of both topics,
simplicity was important for the second tool chain, while performance was vital to the
RPython goal.

8.3.1. Second Tool Chain

PyB, the second tool was implemented and successfully used with the main tool, ProB.
Except the parser, it is a clean room implementation written in Python. PyB implements
all important B constructs27. It handles infinite sets, nondeterministic substitutions,
simple constraints and performs model animation, single state checking and model
checking. The implementation time was four years. While simple machines without
quantified predicates perform very good, constraint solving and infinite sets have to
emerge as the bottleneck of this simple tool: In this case PyB has also to find solutions
itself instead of just checking solutions of the main tool. By computing constraint sets,
the second tool becomes equally complex as the main tool. If quantified predicates are
extended by finite domain informations, the tool may still handle complex B machines
in reasonable time. The tool was used on textbook examples and on machines from
industry. Bugs inside the main tool where not discovered.

8.3.2. RPython Translation and JIT

The RPython tool chain was successfully used on dynamic language implementations
in the past. The contribution of this thesis was its usage on B, which is di�erent from
dynamic languages. Even if Python lacks some useful build-in Prolog features like
nondeterminism and unification, Python was shown to be a good language to implement
B. The one exception is the absence of constraint solving features.

The C translation of PyB was successfully after some RPython adaptions. Performance
improvements where accomplished after JIT specific refactorings of the tool. The tool
is faster than ProB by a factor of 10 on artificially constructed arithmetic examples
and faster on some industry machines by the factor of 5. In general a speedup can be
expected form every type of loop which contains only arithmetic operations. Machines
using constraint solving are still computed slower then by ProB. This is not a result of
the approach but of the limited constraint solving capabilities of PyB. The bottom line
is, a language like B can profit from a Python implementation, C translation and just in
time compilation.

27B Trees are not implemented, but usually not used in industry
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A
Individual Contribution to Articles

Author : John Witulski and Michael Leuschel Booktitle: Proceedings of the 1st Workshop
on Formal-IDE Year 2014 Series EPTCS 149, 2014 Publisher: Electronic Proceedings
in Theoretical Computer Science Parts of chapter one and chapter two are based on
a workshop paper ”Checking Computations of Formal Method Tools - A Secondary
Toolchain for ProB” written by John Witulski and Michael Leuschel.
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B
Implemented B Syntax and Constructs

B.1. Implemented B Syntax and Constructs

This appendix summarizes the B syntax mainly to address readers who are not familiar
with B. The implementation is explained in more detail in chapter 2 and 3. Its only
intended to give a short overview about B machines and the capabilities of PyB. A full
B specification can be found in the reference manual[60].

• Components: Clauses.

– The machine HEADER: defining the machine name and (non-empty) set- and
scalar-parameters

– The CONSTRAINTS clause: A predicate constraining parameters. Scalar
parameters are typed by this clause. The type of set parameters can not be
modified.

– The SETS clause: A list of sets used by this machine. There are two types
of sets: Sets can be explicit by enumerating every element or be de�ered by
just giving them a name. Be convention, set-identifiers are written in capital
letters.

– The CONSTANTS clause: A list of machine constants.

– The PROPERTIES clause: A predicate constraining the machines sets and
constants.

– The VARIABLES clause: A list of machine variables.
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– The INVARIANT clause: A predicate constraining the machines variables,
sets and constants.

• Simple expressions.

– Set enumeration, set of tuples and the empty set.

– Set comprehensions: sets defined by a predicate.

– Predefined sets: natural/integer numbers and their subsets from a min int up
to a max int value. boolean and stringsets.

– Common set operations: union, intersection, di�erence, cartesian product,
powerset and cardinality

– Integer expressions: addition, subtraction, multiplication, division, modulo,
minimum and maximum.

– Special cases of unions and intersections, defined on sets of sets or by a
predicate and an expression.

– Set summation and product, defined on sets of integers.

• Predicates

– Set predicates: membership, subset, superset, equality

– Predicate operations: conjunction, disjunction, implication, equivalence, nega-
tion, equality and inequality

– quantified predicates: universal- and existential quantified predicates.

– number predicates: greater, less, equality and inequality

– boolean operator. Returing the value True or False of a predicate.

• Relations.

– Relation expressions. Returning a set of tuples, with defined domain and
image.

– Relation operations: dom and range expressions. Returing domain set or
image set.

– composition expression concatenating two relations.

– Id expression creating the identical relation of a set: domain and image set
are equal.

– domain and range restrictions (or subtraction) returning a a subset of the
relation which only use the subset of the domain set or image set.

– Inverse relation: switching image and domain.
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– Overwriting: change mapping of some tuple elements, defined by an other
relation

– Relational Image: returning the set of elements mapped from a specified
domain set.

– direct and parallel product.

– first and second projection.

– iteration: n-th composition of the relation with itself

– closure: (possible infinite) composition of the relation and with itself until a
fixpoint is reached.

• Functions.

– a special case of relations. constraint by the properties of totality, injectivity,
surjectivity or a combination of these.

– function application. Like relational image, but only defined for elements
instead of sets.

– lambda functions. A function defined by a predicate and an expression.

• Sequences.

– a special case of functions: Ordered set of tuples mapping natural numbers
(except zero) to a set (like arrays)

– sequence construction: returning the set of all finite sequences mapping to a
specified set. Also the set of injective, bijective and non empty sequences is
possible.

– : sequence operations: concatenation, element append and prepend, sequence
size, the reverse sequence, element drop and take, last, tail, front and first
operations returning specified sequence parts and generalized concatenation
defined on sequences of sequences.

– Strings: sequences on the set of possible characters.

• Substitutions. Substitutions are abstract statements and assignments. A list can
be found in table 2.18.

Some clauses are optional. Some constructs are only allowed in abstract B machines.
Others are only allowed in concrete implementations. Also the reference suggests imple-
mentation conventions. For example that a PROPERTIES clause is follow by a conjunct
of predicates (page 140 [60]).

Figure B.1 shows a list of PyB’s implemented features. Not all features have been
implemented in the C version. The yellow partial entry means that the implementation
does not cover all possible cases but the most. The entry naive usually means that a
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B. Implemented B Syntax and Constructs

complex feature is not implemented using symbolic representations but by a brute force
enumeration loop. All features can be implemented in the C version. A partial, naive or
missing implementation is just caused by limited time.
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B.1. Implemented B Syntax and Constructs

Figure B.1.: Implemented B features of PyB-Python and PyB-C-JIT
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C
PyB Short User Manual

C.1. Build PyB

You need Python 2.x, PyPy (source checkout), Py.test, Java, SableCC, gcc. Tested on
MacOs and Ubuntu Linux.

C.2. PyB Short User Manual

This section is a short summery how to uses PyBs features. It can be used to reproduce
the results of this thesis. It can be downloaded at https://github.com/hhu-stups/pyB
PyBs features are:

1. animation of a B machine (python PyB.py MCH):

2. double checking of a state (python PyB.py -c MCH STATE):

3. stand alone model checking of a machine (python PyB.py -mc MCH):

4. interactive eval mode (python PyB.py -repl):

PyB can be configured by changing the flags in config.py
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C. PyB Short User Manual

C.3. Other tools

A ProB solution file can be generated by executing probcli MCH -sptxt Solution.txt
The tool can be translated using pypy by executing python pypy/rpython/transla-
tor/goal/translate.py pyB RPython.py The PYTHONPATH enivorment variable
has to be set to the pypy path and the pyB RPython.py path.
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D
JIT Trace Example

Figure D.2, D.3, D.4, D.5, D.6 and D.7 shows a trace of a while loop substitution
during model checking (100000 interations). It can be seen in Figure D.1. The output
is generated by PYPYLOG=jit-log-opt:- ./RPython pyB-c -mc < Machine >.
The purpose of this section is to give the reader a better impression of what is a trace.
The trace consists of a long list of assignments and guard instructions. For example
guard nonnull class, guard no exception, guard false and guard true. Guard instructions
are used to check if a trace condition holds or the trace has to be left. For example last
iteration of the loop.
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D. JIT Trace Example

1 MACHINE WhileLoop
2 VARIABLES sum, i , n
3 INVARIANT
4 sum :NATURAL & i :NATURAL & n :NATURAL & i :{0 , n}
5 INITIALISATION
6 BEGIN
7 BEGIN
8 n := 100000 ;
9 sum := 0 ;

10 i := 0
11 END;
12 WHILE i<n DO
13 sum := sum + i ;
14 i := i+1
15 INVARIANT
16 i :NATURAL & sum :NATURAL & sum = (( i ≠1) ú ( i ) ) /2
17 VARIANT
18 n ≠ i
19 END /ú ; i :=≠1 ú/
20 END
21
22 OPERATIONS
23 r r <≠≠ op = r r :=sum /ú avoid deadlock ú/
24 END

Figure D.1.: B machine containing a while loop
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[ 947 c566951d ] { j i t ≠log≠opt≠loop
# Loop 0 (( j i t d r i v e r : no g e t p r i n t a b l e l o c a t i o n ) ) : loop with 282 ops

[ p0 , p1 , p2 , p3 , p4 , p5 , p6 , p7 , p8 ]
+121: l a b e l ( p0 , p1 , p2 , p3 , p4 , p5 , p6 , p7 , p8 , de sc r=TargetToken (4310106432) )
debug merge point (0 , 0 , ’ ( j i t d r i v e r : no g e t p r i n t a b l e l o c a t i o n ) ’ )
+128: i 9 = g e t f i e l d g c ( p2 , de sc r=<Fie ldS l i s t . l ength 8>)
+139: i 11 = i n t s u b ( i9 , 1)
+143: p12 = g e t f i e l d g c ( p2 , de sc r=<FieldP l i s t . i tems 16>)
+147: p13 = g e t a r r a y i t e m g c ( p12 , i11 , de sc r=<ArrayP 8>)
+152: s e t a r r a y i t e m g c ( p12 , i11 , ConstPtr ( n u l l ) , de sc r=<ArrayP 8>)
+161: i 15 = a r r a y l e n g c ( p12 , de sc r=<ArrayP 8>)
+165: i 17 = i n t r s h i f t ( i15 , 1)
+168: i 19 = i n t s u b ( i17 , 5)
+172: i 20 = i n t l t ( i11 , i 19 )
+183: c o n d c a l l ( i20 , ConstClass (

Òæ l l l i s t r e s i z e h i n t r e a l l y l o o k i n s i d e i f f l i s t P t r S i g n e d B o o l ) , p2 , i11 , 0 ,
Òæ desc r=<Cal lv 0 r i i EF=5>)

+247: guard no except ion ( desc r=<Guard0x100e82758 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , i 11 ]
+267: p23 = g e t f i e l d g c ( p0 , de sc r=<FieldP environment . Environment . i n s t s t a t e s p a c e

Òæ 128>)
+281: p24 = g e t f i e l d g c ( p23 , de sc r=<FieldP s t a t e s p a c e . StateSpace . i n s t s t a c k 16>)
+285: s e t f i e l d g c ( p2 , i11 , de sc r=<Fie ldS l i s t . l ength 8>)
+289: i 25 = g e t f i e l d g c ( p24 , de sc r=<Fie ldS l i s t . l ength 8>)
+293: i 27 = i n t s u b ( i25 , 1)
+297: p28 = g e t f i e l d g c ( p24 , de sc r=<FieldP l i s t . i tems 16>)
+301: p29 = g e t a r r a y i t e m g c ( p28 , i27 , de sc r=<ArrayP 8>)
+301: s e t a r r a y i t e m g c ( p28 , i27 , ConstPtr ( n u l l ) , de sc r=<ArrayP 8>)
+310: i 31 = a r r a y l e n g c ( p28 , de sc r=<ArrayP 8>)
+314: i 33 = i n t r s h i f t ( i31 , 1)
+317: i 35 = i n t s u b ( i33 , 5)
+321: i 36 = i n t l t ( i27 , i 35 )
+332: c o n d c a l l ( i36 , ConstClass (

Òæ l l l i s t r e s i z e h i n t r e a l l y l o o k i n s i d e i f f l i s t P t r S i g n e d B o o l ) , p24 , i27 , 0 ,
Òæ desc r=<Cal lv 0 r i i EF=5>)

+401: guard no except ion ( desc r=<Guard0x100e83ca8 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , i27 ,
Òæ p24 ]

+421: s e t f i e l d g c ( p24 , i27 , de sc r=<Fie ldS l i s t . l ength 8>)
+425: p40 = c a l l ( ConstClass ( BState . c l one ) , p13 , de sc r=<C a l l r 8 r EF=5>)
+520: guard no except ion ( desc r=<Guard0x100e83bf8 >) [ p23 , p40 , p8 , p7 , p13 , p3 , p2 , p1 ,

Òæ p0 ]
+540: i 41 = g e t f i e l d g c ( p24 , de sc r=<Fie ldS l i s t . l ength 8>)
+551: i 43 = int add ( i41 , 1)
+555: p44 = g e t f i e l d g c ( p24 , de sc r=<FieldP l i s t . i tems 16>)
+559: i 45 = a r r a y l e n g c ( p44 , de sc r=<ArrayP 8>)
+563: i 46 = i n t l t ( i45 , i 43 )
+574: c o n d c a l l ( i46 , ConstClass (

Òæ l l l i s t r e s i z e h i n t r e a l l y l o o k i n s i d e i f f l i s t P t r S i g n e d B o o l ) , p24 , i43 , 1 ,
Òæ desc r=<Cal lv 0 r i i EF=5>)

+639: guard no except ion ( desc r=<Guard0x100e83ba0 >) [ i41 , p24 , p40 , p8 , p7 , p13 , p3 , p2 ,
Òæ p1 , p0 , i 43 ]

+659: p49 = g e t f i e l d g c ( p24 , de sc r=<FieldP l i s t . i tems 16>)
+702: s e t a r r a y i t e m g c ( p49 , i41 , p40 , de sc r=<ArrayP 8>)
+707: p50 = g e t a r r a y i t e m g c ( p49 , i41 , de sc r=<ArrayP 8>)
+712: p51 = g e t f i e l d g c ( p0 , de sc r=<FieldP environment . Environment . i n s t r o o t m c h 96>)
+723: s e t f i e l d g c ( p24 , i43 , de sc r=<Fie ldS l i s t . l ength 8>)
+727: g u a r d n o n n u l l c l a s s ( p51 , ConstClass ( BMachine ) , de sc r=<Guard0x100e83af0 >) [ p8 , p7 ,

Òæ p13 , p3 , p2 , p1 , p0 , p51 , p50 ]

Figure D.2.: Rpython trace of a B While loop
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D. JIT Trace Example

+746: p53 = g e t f i e l d g c ( p50 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+750: i 54 = g e t f i e l d g c ( p51 , de sc r=<Fie ldS bmachine . BMachine . i n s t i n d e x 208>)
+757: p55 = g e t f i e l d g c ( p53 , de sc r=<FieldP l i s t . i tems 16>)
+761: p56 = g e t a r r a y i t e m g c ( p55 , i54 , de sc r=<ArrayP 8>)
+766: i 57 = g e t f i e l d g c ( p56 , de sc r=<Fie ldS l i s t . l ength 8>)
+770: i 59 = i n t s u b ( i57 , 1)
+774: i 61 = i n t l e ( i59 , ≠1)
g u a r d f a l s e ( i61 , de sc r=<Guard0x100e83a98 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p51 , p50 , i59 ,

Òæ p56 ]
+784: i 63 = int add ( i59 , ≠1)
+788: p64 = g e t f i e l d g c ( p56 , de sc r=<FieldP l i s t . i tems 16>)
+792: p65 = g e t a r r a y i t e m g c ( p64 , i59 , de sc r=<ArrayP 8>)
+797: p66 = g e t f i e l d g c ( p65 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+801: guard va lue ( p66 , ConstPtr ( ptr67 ) , de sc r=<Guard0x100e83a40 >) [ p8 , p7 , p13 , p3 , p2 ,

Òæ p1 , p0 , p51 , p50 , i63 , p56 , p66 , p65 ]
+820: p68 = g e t f i e l d g c ( p65 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+824: p70 = g e t a r r a y i t e m g c ( p68 , 2 , de sc r=<ArrayP 8>)
+828: p71 = g e t a r r a y i t e m g c ( p49 , i41 , de sc r=<ArrayP 8>)
+833: p72 = g e t f i e l d g c ( p71 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+837: p73 = g e t f i e l d g c ( p72 , de sc r=<FieldP l i s t . i tems 16>)
+841: p74 = g e t a r r a y i t e m g c ( p73 , i54 , de sc r=<ArrayP 8>)
+846: i 75 = g e t f i e l d g c ( p74 , de sc r=<Fie ldS l i s t . l ength 8>)
+850: i 77 = i n t s u b ( i75 , 1)
+854: i 79 = i n t l e ( i77 , ≠1)
g u a r d f a l s e ( i79 , de sc r=<Guard0x100e839e8 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p70 , p51 , p71 ,

Òæ i77 , p74 ]
+864: i 81 = int add ( i77 , ≠1)
+868: p82 = g e t f i e l d g c ( p74 , de sc r=<FieldP l i s t . i tems 16>)
+872: p83 = g e t a r r a y i t e m g c ( p82 , i77 , de sc r=<ArrayP 8>)
+877: p84 = g e t f i e l d g c ( p83 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+881: guard va lue ( p84 , ConstPtr ( ptr85 ) , de sc r=<Guard0x100e83990 >) [ p8 , p7 , p13 , p3 , p2 ,

Òæ p1 , p0 , p70 , p51 , p71 , i81 , p74 , p84 , p83 ]
+900: p86 = g e t f i e l d g c ( p83 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+904: p88 = g e t a r r a y i t e m g c ( p86 , 1 , de sc r=<ArrayP 8>)
+908: g u a r d n o n n u l l c l a s s ( p70 , ConstClass ( W Integer ) , de sc r=<Guard0x100e838e0 >) [ p8 , p7

Òæ , p13 , p3 , p2 , p1 , p0 , p88 , p70 ]
+928: g u a r d n o n n u l l c l a s s ( p88 , ConstClass ( W Integer ) , de sc r=<Guard0x100e83830 >) [ p8 , p7

Òæ , p13 , p3 , p2 , p1 , p0 , p88 , p70 ]
+947: i 91 = g e t f i e l d g c ( p70 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e 24>)
+951: i 92 = g e t f i e l d g c ( p88 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e 24>)
+955: i 93 = i n t s u b ( i91 , i 92 )
+958: p94 = g e t a r r a y i t e m g c ( p49 , i41 , de sc r=<ArrayP 8>)
+963: p95 = g e t f i e l d g c ( p94 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+967: p96 = g e t f i e l d g c ( p95 , de sc r=<FieldP l i s t . i tems 16>)
+971: p97 = g e t a r r a y i t e m g c ( p96 , i54 , de sc r=<ArrayP 8>)
+976: i 98 = g e t f i e l d g c ( p97 , de sc r=<Fie ldS l i s t . l ength 8>)
+980: i100 = i n t s u b ( i98 , 1)
+984: i102 = i n t l e ( i100 , ≠1)
g u a r d f a l s e ( i102 , de sc r=<Guard0x100e837d8 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p51 , p94 ,

Òæ i100 , p97 , i 93 ]
+994: i104 = int add ( i100 , ≠1)
+998: p105 = g e t f i e l d g c ( p97 , de sc r=<FieldP l i s t . i tems 16>)
+1002: p106 = g e t a r r a y i t e m g c ( p105 , i100 , de sc r=<ArrayP 8>)
+1007: p107 = g e t f i e l d g c ( p106 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+1012: guard va lue ( p107 , ConstPtr ( ptr108 ) , de sc r=<Guard0x100e83780 >) [ p8 , p7 , p13 , p3 ,

Òæ p2 , p1 , p0 , p51 , p94 , i104 , p97 , p107 , p106 , i 93 ]
+1031: p109 = g e t f i e l d g c ( p106 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+1036: p111 = g e t a r r a y i t e m g c ( p109 , 1 , de sc r=<ArrayP 8>)
+1040: i 112 = g e t f i e l d g c ( p111 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)

Figure D.3.: Rpython trace of a B While loop
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+1045: i114 = i n t g e ( i112 , 0)
+1057: guard true ( i114 , de sc r=<Guard0x100e836d0 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , i114 ,

Òæ i 93 ]
+1066: p115 = g e t a r r a y i t e m g c ( p49 , i41 , de sc r=<ArrayP 8>)
+1071: p116 = g e t f i e l d g c ( p115 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+1076: p117 = g e t f i e l d g c ( p116 , de sc r=<FieldP l i s t . i tems 16>)
+1080: p118 = g e t a r r a y i t e m g c ( p117 , i54 , de sc r=<ArrayP 8>)
+1085: i 119 = g e t f i e l d g c ( p118 , de sc r=<Fie ldS l i s t . l ength 8>)
+1089: i 121 = i n t s u b ( i119 , 1)
+1093: i 123 = i n t l e ( i121 , ≠1)
g u a r d f a l s e ( i123 , de sc r=<Guard0x100e83678 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p51 , p115 ,

Òæ i121 , p118 , None , i 93 ]
+1103: i 126 = int add ( i121 , ≠1)
+1107: p127 = g e t f i e l d g c ( p118 , de sc r=<FieldP l i s t . i tems 16>)
+1111: p128 = g e t a r r a y i t e m g c ( p127 , i121 , de sc r=<ArrayP 8>)
+1116: p129 = g e t f i e l d g c ( p128 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+1120: guard va lue ( p129 , ConstPtr ( ptr130 ) , de sc r=<Guard0x100e83620 >) [ p8 , p7 , p13 , p3 ,

Òæ p2 , p1 , p0 , p51 , p115 , i126 , p118 , p129 , p128 , None , i 93 ]
+1139: p131 = g e t f i e l d g c ( p128 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+1143: p133 = g e t a r r a y i t e m g c ( p131 , 0 , de sc r=<ArrayP 8>)
+1147: i 134 = g e t f i e l d g c ( p133 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+1151: i 136 = i n t g e ( i134 , 0)
+1163: guard true ( i136 , de sc r=<Guard0x100e835c8 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , i136 ,

Òæ None , i 93 ]
+1172: p137 = g e t a r r a y i t e m g c ( p49 , i41 , de sc r=<ArrayP 8>)
+1177: p138 = g e t f i e l d g c ( p137 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+1181: p139 = g e t f i e l d g c ( p138 , de sc r=<FieldP l i s t . i tems 16>)
+1185: p140 = g e t a r r a y i t e m g c ( p139 , i54 , de sc r=<ArrayP 8>)
+1190: i 141 = g e t f i e l d g c ( p140 , de sc r=<Fie ldS l i s t . l ength 8>)
+1194: i 143 = i n t s u b ( i141 , 1)
+1198: i 145 = i n t l e ( i143 , ≠1)
g u a r d f a l s e ( i145 , de sc r=<Guard0x100e83570 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p51 , p137 ,

Òæ i143 , p140 , None , None , i 93 ]
+1208: i 147 = int add ( i143 , ≠1)
+1212: p148 = g e t f i e l d g c ( p140 , de sc r=<FieldP l i s t . i tems 16>)
+1216: p149 = g e t a r r a y i t e m g c ( p148 , i143 , de sc r=<ArrayP 8>)
+1221: p150 = g e t f i e l d g c ( p149 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+1225: guard va lue ( p150 , ConstPtr ( ptr151 ) , de sc r=<Guard0x100e83518 >) [ p8 , p7 , p13 , p3 ,

Òæ p2 , p1 , p0 , p51 , p137 , i147 , p140 , p150 , p149 , None , None , i 93 ]
+1244: p152 = g e t f i e l d g c ( p149 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+1248: p154 = g e t a r r a y i t e m g c ( p152 , 0 , de sc r=<ArrayP 8>)
+1252: p157 = c a l l m a y f o r c e (4295756688 , ConstPtr ( ptr156 ) , p0 , de sc r=<C a l l r 8 r r EF=7>)
g u a r d n o t f o r c e d ( desc r=<Guard0x100e98320 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p154 , p157 ,

Òæ None , None , i 93 ]
+1378: guard no except ion ( desc r=<Guard0x100e834c0 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p154 ,

Òæ p157 , None , None , i 93 ]
+1398: i 158 = g e t f i e l d g c ( p157 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+1402: i 160 = i n t f l o o r d i v ( i158 , 2)
+1422: i 162 = i n t l s h i f t ( i160 , 1)
+1428: i 163 = i n t s u b ( i158 , i 162 )
+1438: i 165 = i n t r s h i f t ( i163 , 63)
+1442: i 166 = int add ( i160 , i 165 )
+1445: g u a r d c l a s s ( p154 , ConstClass ( W Integer ) , de sc r=<Guard0x100e83468 >) [ p8 , p7 , p13 ,

Òæ p3 , p2 , p1 , p0 , p154 , i166 , None , None , i 93 ]
+1464: i 168 = g e t f i e l d g c ( p154 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+1468: i 169 = i n t e q ( i168 , i 166 )
+1479: guard true ( i169 , de sc r=<Guard0x100e83410 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , i169 ,

Òæ None , None , None , i 93 ]
p171 = new with vtab le (4299529960)
+1567: s e t f i e l d g c ( p171 , ConstPtr ( ptr172 ) , de sc r=<FieldP rpython . f l owspace . genera to r .

Òæ Entry . i n s t g s e l f 16>)

Figure D.4.: Rpython trace of a B While loop
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+1581: s e t f i e l d g c ( p171 , p0 , de sc r=<FieldP rpython . f l owspace . genera to r . Entry . i n s t g e n v
Òæ 8>)

+1592: p174 = c a l l m a y f o r c e ( ConstClass ( ASequenceSubst i tut ion .
Òæ exec ASequenceSubst i tu t i on next ) , p171 , de sc r=<C a l l r 8 r EF=7>)

g u a r d n o t f o r c e d ( desc r=<Guard0x100e982c0 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p174 , i 93 ]
+1691: guard no except ion ( desc r=<Guard0x100e83308 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p174 ,

Òæ i 93 ]
+1711: p175 = g e t f i e l d g c p u r e ( p174 , de sc r=<FieldP tup le2 . item0 8>)
+1715: i 176 = g e t f i e l d g c p u r e ( p174 , de sc r=<FieldU tup le2 . item1 16>)
+1720: guard true ( i176 , de sc r=<Guard0x100e83258 >) [ p8 , p7 , p13 , p3 , p2 , p1 , p0 , p175 ,

Òæ i 93 ]
+1729: p177 = g e t f i e l d g c ( p0 , de sc r=<FieldP environment . Environment . i n s t s t a t e s p a c e

Òæ 128>)
+1743: p178 = g e t f i e l d g c ( p177 , de sc r=<FieldP s t a t e s p a c e . StateSpace . i n s t s t a c k 16>)
+1747: i 179 = g e t f i e l d g c ( p178 , de sc r=<Fie ldS l i s t . l ength 8>)
+1751: i 181 = int add ( i179 , ≠1)
+1755: p182 = g e t f i e l d g c ( p178 , de sc r=<FieldP l i s t . i tems 16>)
+1759: p183 = g e t a r r a y i t e m g c ( p182 , i181 , de sc r=<ArrayP 8>)
+1764: p184 = g e t f i e l d g c ( p0 , de sc r=<FieldP environment . Environment . i n s t r o o t m c h 96>)
+1768: g u a r d n o n n u l l c l a s s ( p184 , ConstClass ( BMachine ) , de sc r=<Guard0x100e83200 >) [ p13 ,

Òæ p2 , p1 , p0 , p184 , p183 , p175 , i 93 ]
+1787: p186 = g e t f i e l d g c ( p183 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+1791: i 187 = g e t f i e l d g c ( p184 , de sc r=<Fie ldS bmachine . BMachine . i n s t i n d e x 208>)
+1798: p188 = g e t f i e l d g c ( p186 , de sc r=<FieldP l i s t . i tems 16>)
+1802: p189 = g e t a r r a y i t e m g c ( p188 , i187 , de sc r=<ArrayP 8>)
+1807: i 190 = g e t f i e l d g c ( p189 , de sc r=<Fie ldS l i s t . l ength 8>)
+1811: i 192 = i n t s u b ( i190 , 1)
+1816: i 194 = i n t l e ( i192 , ≠1)
g u a r d f a l s e ( i194 , de sc r=<Guard0x100e831a8 >) [ p13 , p2 , p1 , p0 , p184 , p183 , i192 , p189 ,

Òæ p175 , i 93 ]
+1826: i 196 = int add ( i192 , ≠1)
+1830: p197 = g e t f i e l d g c ( p189 , de sc r=<FieldP l i s t . i tems 16>)
+1834: p198 = g e t a r r a y i t e m g c ( p197 , i192 , de sc r=<ArrayP 8>)
+1839: p199 = g e t f i e l d g c ( p198 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+1843: guard va lue ( p199 , ConstPtr ( ptr200 ) , de sc r=<Guard0x100e83150 >) [ p13 , p2 , p1 , p0 ,

Òæ p184 , p183 , i196 , p189 , p199 , p198 , p175 , i 93 ]
+1862: p201 = g e t f i e l d g c ( p198 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+1866: p203 = g e t a r r a y i t e m g c ( p201 , 2 , de sc r=<ArrayP 8>)
+1870: p204 = g e t a r r a y i t e m g c ( p182 , i181 , de sc r=<ArrayP 8>)
+1875: p205 = g e t f i e l d g c ( p204 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+1879: p206 = g e t f i e l d g c ( p205 , de sc r=<FieldP l i s t . i tems 16>)
+1883: p207 = g e t a r r a y i t e m g c ( p206 , i187 , de sc r=<ArrayP 8>)
+1888: i 208 = g e t f i e l d g c ( p207 , de sc r=<Fie ldS l i s t . l ength 8>)
+1892: i 210 = i n t s u b ( i208 , 1)
+1897: i 212 = i n t l e ( i210 , ≠1)
g u a r d f a l s e ( i212 , de sc r=<Guard0x100e830f8 >) [ p13 , p2 , p1 , p0 , p203 , p184 , p204 , i210 ,

Òæ p207 , p175 , i 93 ]
+1907: i 214 = int add ( i210 , ≠1)
+1911: p215 = g e t f i e l d g c ( p207 , de sc r=<FieldP l i s t . i tems 16>)
+1915: p216 = g e t a r r a y i t e m g c ( p215 , i210 , de sc r=<ArrayP 8>)
+1927: p217 = g e t f i e l d g c ( p216 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+1931: guard va lue ( p217 , ConstPtr ( ptr218 ) , de sc r=<Guard0x100e830a0 >) [ p13 , p2 , p1 , p0 ,

Òæ p203 , p184 , p204 , i214 , p207 , p217 , p216 , p175 , i 93 ]
+1950: p219 = g e t f i e l d g c ( p216 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+1954: p221 = g e t a r r a y i t e m g c ( p219 , 1 , de sc r=<ArrayP 8>)
+1958: g u a r d n o n n u l l c l a s s ( p203 , ConstClass ( W Integer ) , de sc r=<Guard0x100e83048 >) [ p13 ,

Òæ p2 , p1 , p0 , p221 , p203 , p175 , i 93 ]
+1976: g u a r d n o n n u l l c l a s s ( p221 , ConstClass ( W Integer ) , de sc r=<Guard0x100e82ff0 >) [ p13 ,

Òæ p2 , p1 , p0 , p221 , p203 , p175 , i 93 ]
+1994: i 224 = g e t f i e l d g c ( p203 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+1998: i 225 = g e t f i e l d g c ( p221 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+2002: i 226 = i n t s u b ( i224 , i 225 )
+2005: i 227 = i n t l t ( i226 , i 93 )

Figure D.5.: Rpython trace of a B While loop
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guard true ( i227 , de sc r=<Guard0x100e82f98 >) [ p13 , p2 , p1 , p0 , i226 , p175 , i 93 ]
+2018: p228 = g e t a r r a y i t e m g c ( p182 , i181 , de sc r=<ArrayP 8>)
+2023: i 229 = g e t f i e l d g c ( p2 , de sc r=<Fie ldS l i s t . l ength 8>)
+2034: i 231 = int add ( i229 , 1)
+2038: p232 = g e t f i e l d g c ( p2 , de sc r=<FieldP l i s t . i tems 16>)
+2042: i 233 = a r r a y l e n g c ( p232 , de sc r=<ArrayP 8>)
+2046: i 234 = i n t l t ( i233 , i 231 )
+2057: c o n d c a l l ( i234 , ConstClass (

Òæ l l l i s t r e s i z e h i n t r e a l l y l o o k i n s i d e i f f l i s t P t r S i g n e d B o o l ) , p2 , i231 , 1 ,
Òæ desc r=<Cal lv 0 r i i EF=5>)

+2132: guard no except ion ( desc r=<Guard0x100e82f40 >) [ i229 , p228 , p13 , p2 , p1 , p0 , i231 ,
Òæ i226 , p175 , i 93 ]

+2152: p237 = g e t f i e l d g c ( p2 , de sc r=<FieldP l i s t . i tems 16>)
+2195: s e t a r r a y i t e m g c ( p237 , i229 , p228 , de sc r=<ArrayP 8>)
+2200: s e t f i e l d g c ( p2 , i231 , de sc r=<Fie ldS l i s t . l ength 8>)
+2204: i 238 = g e t f i e l d g c ( p178 , de sc r=<Fie ldS l i s t . l ength 8>)
+2208: i 240 = int add ( i238 , ≠1)
+2212: p241 = g e t f i e l d g c ( p178 , de sc r=<FieldP l i s t . i tems 16>)
+2216: p242 = g e t a r r a y i t e m g c ( p241 , i240 , de sc r=<ArrayP 8>)
+2221: p243 = g e t f i e l d g c ( p242 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+2225: p244 = g e t f i e l d g c ( p243 , de sc r=<FieldP l i s t . i tems 16>)
+2230: p245 = g e t a r r a y i t e m g c ( p244 , i187 , de sc r=<ArrayP 8>)
+2235: i 246 = g e t f i e l d g c ( p245 , de sc r=<Fie ldS l i s t . l ength 8>)
+2240: i 248 = i n t s u b ( i246 , 1)
+2244: i 250 = i n t l e ( i248 , ≠1)
g u a r d f a l s e ( i250 , de sc r=<Guard0x100e82ee8 >) [ p228 , p13 , p2 , p1 , p0 , p184 , p242 , i248 ,

Òæ p245 , i226 , p175 , i 93 ]
+2254: i 252 = int add ( i248 , ≠1)
+2258: p253 = g e t f i e l d g c ( p245 , de sc r=<FieldP l i s t . i tems 16>)
+2270: p254 = g e t a r r a y i t e m g c ( p253 , i248 , de sc r=<ArrayP 8>)
+2275: p255 = g e t f i e l d g c ( p254 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+2279: guard va lue ( p255 , ConstPtr ( ptr256 ) , de sc r=<Guard0x100e82e90 >) [ p228 , p13 , p2 , p1

Òæ , p0 , p184 , p242 , i252 , p245 , p255 , p254 , i226 , p175 , i 93 ]
+2298: p257 = g e t f i e l d g c ( p254 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+2302: p259 = g e t a r r a y i t e m g c ( p257 , 1 , de sc r=<ArrayP 8>)
+2306: p260 = g e t a r r a y i t e m g c ( p241 , i240 , de sc r=<ArrayP 8>)
+2311: p261 = g e t f i e l d g c ( p260 , de sc r=<FieldP b s t a t e . BState . i n s t s t a c k l i s t 40>)
+2315: p262 = g e t f i e l d g c ( p261 , de sc r=<FieldP l i s t . i tems 16>)
+2320: p263 = g e t a r r a y i t e m g c ( p262 , i187 , de sc r=<ArrayP 8>)
+2325: i 264 = g e t f i e l d g c ( p263 , de sc r=<Fie ldS l i s t . l ength 8>)
+2330: i 266 = i n t s u b ( i264 , 1)
+2334: i 268 = i n t l e ( i266 , ≠1)
g u a r d f a l s e ( i268 , de sc r=<Guard0x100e82e38 >) [ p228 , p13 , p2 , p1 , p0 , p259 , p184 , p260 ,

Òæ i266 , p263 , i226 , p175 , i 93 ]
+2344: i 270 = int add ( i266 , ≠1)
+2348: p271 = g e t f i e l d g c ( p263 , de sc r=<FieldP l i s t . i tems 16>)
+2353: p272 = g e t a r r a y i t e m g c ( p271 , i266 , de sc r=<ArrayP 8>)
+2358: p273 = g e t f i e l d g c ( p272 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t r u c t u r e 16>)
+2362: guard va lue ( p273 , ConstPtr ( ptr274 ) , de sc r=<Guard0x100e82de0 >) [ p228 , p13 , p2 , p1

Òæ , p0 , p259 , p184 , p260 , i270 , p263 , p273 , p272 , i226 , p175 , i 93 ]
+2381: p275 = g e t f i e l d g c ( p272 , de sc r=<FieldP b s t a t e . RPythonMap . i n s t s t o r a g e 8>)
+2385: p277 = g e t a r r a y i t e m g c ( p275 , 2 , de sc r=<ArrayP 8>)
+2389: g u a r d c l a s s ( p259 , ConstClass ( W Integer ) , de sc r=<Guard0x100e82d88 >) [ p228 , p13 ,

Òæ p2 , p1 , p0 , p259 , p277 , i226 , p175 , i 93 ]
+2401: i 279 = g e t f i e l d g c ( p259 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+2405: i 280 = g e t f i e l d g c ( p277 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+2409: i 281 = i n t l t ( i279 , i 280 )
+2420: guard true ( i281 , de sc r=<Guard0x100e82c80 >) [ p228 , p13 , p2 , p1 , p0 , i281 , i226 ,

Òæ p175 , i 93 ]
+2429: p282 = g e t a r r a y i t e m g c ( p241 , i240 , de sc r=<ArrayP 8>)
+2429: s e t a r r a y i t e m g c ( p241 , i240 , ConstPtr ( n u l l ) , de sc r=<ArrayP 8>)
+2438: i 284 = a r r a y l e n g c ( p241 , de sc r=<ArrayP 8>)
+2442: i 286 = i n t r s h i f t ( i284 , 1)

Figure D.6.: Rpython trace of a B While loop

143



D. JIT Trace Example

+2445: i288 = i n t s u b ( i286 , 5)
+2449: i 289 = i n t l t ( i240 , i 288 )
+2460: c o n d c a l l ( i289 , ConstClass (

Òæ l l l i s t r e s i z e h i n t r e a l l y l o o k i n s i d e i f f l i s t P t r S i g n e d B o o l ) , p178 , i240 , 0 ,
Òæ desc r=<Cal lv 0 r i i EF=5>)

+2524: guard no except ion ( desc r=<Guard0x100e82bd0 >) [ p228 , p13 , p2 , p1 , p0 , i240 , p178 ,
Òæ None , i226 , p175 , i 93 ]

+2544: s e t f i e l d g c ( p178 , i240 , de sc r=<Fie ldS l i s t . l ength 8>)
+2548: p293 = c a l l ( ConstClass ( BState . c l one ) , p13 , de sc r=<C a l l r 8 r EF=5>)
+2647: guard no except ion ( desc r=<Guard0x100e82b20 >) [ p293 , p177 , p228 , p13 , p2 , p1 , p0 ,

Òæ None , i226 , p175 , i 93 ]
+2667: i 294 = g e t f i e l d g c ( p178 , de sc r=<Fie ldS l i s t . l ength 8>)
+2678: i 296 = int add ( i294 , 1)
+2682: p297 = g e t f i e l d g c ( p178 , de sc r=<FieldP l i s t . i tems 16>)
+2686: i 298 = a r r a y l e n g c ( p297 , de sc r=<ArrayP 8>)
+2690: i 299 = i n t l t ( i298 , i 296 )
+2701: c o n d c a l l ( i299 , ConstClass (

Òæ l l l i s t r e s i z e h i n t r e a l l y l o o k i n s i d e i f f l i s t P t r S i g n e d B o o l ) , p178 , i296 , 1 ,
Òæ desc r=<Cal lv 0 r i i EF=5>)

+2765: guard no except ion ( desc r=<Guard0x100e82a70 >) [ i294 , p293 , p178 , p228 , p13 , p2 ,
Òæ p1 , p0 , i296 , None , i226 , p175 , i 93 ]

+2785: p302 = g e t f i e l d g c ( p178 , de sc r=<FieldP l i s t . i tems 16>)
+2828: s e t a r r a y i t e m g c ( p302 , i294 , p293 , de sc r=<ArrayP 8>)
+2833: s e t f i e l d g c ( p178 , i296 , de sc r=<Fie ldS l i s t . l ength 8>)
+2837: p304 = c a l l m a y f o r c e ( ConstClass ( ASequenceSubst i tut ion .

Òæ exec ASequenceSubst i tu t i on next ) , p175 , de sc r=<C a l l r 8 r EF=7>)
g u a r d n o t f o r c e d ( desc r=<Guard0x100e980e0 >) [ p228 , p13 , p2 , p1 , p0 , p304 , None , i226 ,

Òæ None , i 93 ]
+2940: p306 = guard except ion ( ConstClass ( S t o p I t e r a t i o n ) , de sc r=<Guard0x100e82a18 >) [

Òæ p228 , p13 , p2 , p1 , p0 , p304 , None , i226 , None , i 93 ]
+3006: i 307 = g e t f i e l d g c ( p2 , de sc r=<Fie ldS l i s t . l ength 8>)
+3017: i 309 = i n t n e ( i307 , 0)
guard true ( i309 , de sc r=<Guard0x100e82968 >) [ p228 , p13 , p2 , p1 , p0 , i307 , None , i226 ,

Òæ None , i 93 ]
debug merge point (0 , 0 , ’ ( j i t d r i v e r : no g e t p r i n t a b l e l o c a t i o n ) ’ )
p311 = new with vtab le ( ConstClass ( W Boolean ) )
p313 = new with vtab le ( ConstClass ( W Integer ) )
p315 = new with vtab le ( ConstClass ( W Boolean ) )
+3131: s e t f i e l d g c ( p311 , 1 , de sc r=<FieldU rpython b objmodel . W Object . i n s t b v a l u e 104>)
p318 = new with vtab le ( ConstClass ( W Integer ) )
+3147: s e t f i e l d g c ( p313 , i93 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+3158: s e t f i e l d g c ( p315 , 1 , de sc r=<FieldU rpython b objmodel . W Object . i n s t b v a l u e 104>)
+3163: s e t f i e l d g c ( p318 , i226 , de sc r=<Fie ldS rpython b objmodel . W Object . i n s t i v a l u e

Òæ 24>)
+3526: jump ( p0 , p1 , p2 , p311 , p13 , p313 , p315 , p318 , p228 , de sc r=TargetToken

Òæ (4310106432) )
+3568: ≠≠end o f the loop≠≠
[ 947 c5cc5697 ] j i t ≠log≠opt≠loop }
checked 2 s t a t e s . No i n v a r i a n t v i o l a t i o n found .

Figure D.7.: Rpython trace of a B While loop
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E
Symbolic Sets

The symbolic set classes can be found in the modules: symbolic sets.py, symbolic functions.py
and symbolic functions with predicate.py. Composed sets are symbolic set classes which
need to reference other sets (explicit frozenset or symbolic)
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E. Symbolic Sets

Class name Description or B name
SymbolicSet Base class (contains default implementations)

LargeSet Abstract class
InfiniteSet Abstract class
NaturalSet Natural
Natural1Set Natural1
IntegerSet Integer

NatSet Nat
Nat1Set Nat1
IntSet Int

StringSet String
SymbolicIntervalSet A ... B

Figure E.1.: Symbolic set classes of PyB(not composed)
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Class name Description or B name
SymbolicUnionSet S fi T

SymbolicIntersectionSet S fl T
SymbolicDi�erenceSet S - T

SymbolicCartSet S*T
SymbolicPowerSet Pow(S)
SymbolicPower1Set Pow1(S)
SymbolicIntervalSet A ... B
SymbolicStructSet structs

SymbolicRelationSet S < ≠ > T
SymbolicPartialFunctionSet S + ≠ > T
SymbolicTotalFunctionSet S ≠ ≠ > T

SymbolicPartialInjectionSet S > + > T
SymbolicTotalInjectionSet S > ≠ > T

SymbolicPartialSurjectionSet S + ≠ >> T
SymbolicTotalSurjectionSet S ≠ ≠ >> T
SymbolicTotalBijectionSet S > ≠ >> T

SymbolicPartialBijectionSet S > + >> T
SymbolicFirstProj prj1(S,T)

SymbolicSecondProj prj2(S,T)
SymbolicIdentitySet id(S)

SymbolicCompositionSet f ; g
SymbolicTransRelation rel(f)
SymbolicTransFunction fnc(r)
SymbolicInverseRelation r≠1

SymbolicLambda lambda functions
SymbolicComprehensionSet set comprehensions

SymbolicQuantifiedIntersection u
x.(P (x)|E)

SymbolicQuantifiedUnion t
x.(P (x)|E)

AbstractSymbolicSequence Abstract class
SymbolicSequenceSet seq(S)
SymbolicSequence1Set seq1(S)
SymbolicISequenceSet iseq(S)
SymbolicISequence1Set iseq1(S)

SymbolicPermutationSet perm(S)

Figure E.2.: Symbolic set classes of PyB(composed)
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E. Symbolic Sets

Class name Description or B name
SymbolicLambda lambda functions

SymbolicComprehensionSet set comprehensions
SymbolicQuantifiedIntersection u

x.(P (x)|E)
SymbolicQuantifiedUnion t

x.(P (x)|E)

Figure E.3.: Symbolic set classes of PyB(defined by predicate)
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Colloque avec actes et comité de lecture. internationale. Tampa Bay, Florida, USA,
Oct. 2001, 12 p.

[42] Michael Leuschel and Michael Butler. “ProB: A Model Checker for B”. In: FME.
Ed. by Araki Keijiro, Stefania Gnesi, and Mandrio Dino. Vol. 2805. Lecture Notes
in Computer Science. Springer-Verlag, 2003, pp. 855–874. isbn: 3-540-40828-2.

[43] Michael Leuschel and Michael Butler. “ProB: An Automated Analysis Toolset for
the B Method”. In: Software Tools for Technology Transfer (STTT) 10.2 (2008),
pp. 185–203.
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