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Abstract

Recent studies describe that the level of gene expression between species is positively

correlated with the time that has passed since the species split from a common ancestor

(Ranz and Machado, 2006). Moreover, Khaitovich et al. (2004) found a linear relation-

ship between divergence time and expression differences. This linearity can be explained

by the neutral theory (Kimura, 1983). Consequently, a neutral model for gene expres-

sion evolution was suggested (Khaitovich et al., 2005b). The model describes mutations

in the regulatory region of a gene by a compound Poisson process. The strength of

changes in the expression level is described by a continuous distribution, the so-called

mutation effect distribution. That is, whenever a mutation occurs, the gene expression

level changes according to the mutation effect distribution.

In this thesis the model by Khaitovich et al. (2005b) is extended in two ways. In a first

extension a gamma distribution is used to describe mutation effects which is more flexible

than the distributions used in the original model. In a second extension, non-mutational

effects are taken into account. These effects (e.g., metabolism and environmental effects)

overlay mutational changes of gene expression. To describe them a new parameter is

introduced which provides a better fit to evolutionary data. This makes it possible to

estimate influences of mutational and non-mutational changes of the gene expression

level. According to this, a Bayesian method to detect genes with mutations in their

regulatory regions is suggested. Furthermore, a non-neutrality test is presented which

can be applied to gene expression data sampled from individuals of a population. Based

on this test one can detect those genes that show a significant deviation from expression

levels under neutrality. The test is an adaptation of the widely used Tajima’s D test

(Tajima, 1989). Finally, a medical application is applied in which carcinogenesis is

considered as an evolutionary process. All models and methods described in this thesis

are evaluated with synthetic data and applied to biological data.
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1. Introduction

1.1. Motivation

It has been first proposed in the 1970s that evolution occurs on two levels, since Wilson

et al. (1974) observed that rates of morphological evolution are weakly correlated with

rates of protein evolution. An explanation is that mutations can affect a phenotype by

altering coding regions of gene products or by altering regulatory regions which control

the level of gene expression. Reasoning from the study by Wilson et al. (1974), it was

suggested that morphological evolution depends mainly on changes in gene regulation

rather than changes in coding sequences. However, most of the geneticists in that time

focused their research on the evolution of deoxyribonucleic acid (DNA) sequences, since

molecular techniques to explore gene expression on a large scale were not available.

Hence, today evolution of DNA sequences on genome level is widely understood, but

mechanisms and evolution of gene regulation which affects the transcript abundance of

all genes referred to as the transcriptome are still in its infancy. A difficulty is that

the expression of a gene is a continuous trait which depends on several influences, for

example, the developmental state, the tissue examined or the environment. Thus, it has

to be measured many times under different conditions. Expression of some genes is also

influenced by trans-effects, resulting from activation or repression by products of other

genes. Thus, a single mutation might change the expression level of several genes, since

the transcriptome has a very complex structure of dependencies.

Fortunately, new techniques arose in the last decade. Since microarray technology is

available, it is possible to measure levels of gene expression for a large proportion of

genes of a genome (Baldi and Hatfield, 2002; Speed, 2003). Thus, it is possible to quan-

tify results of gene regulation at a time-point in a tissue. Since diseases like cancer affect

the transcriptome, a large number of medical studies were carried out. For example,

1



1.1. Motivation 2

gene expression between normal tissues and tumour tissues or gene expression between

untreated tissues and tissues under drug response were compared (cf. Driscoll et al.

(2003); Dudoit et al. (2002); Golub et al. (1999); Li et al. (2001); Ramaswamy et al.

(2001)). An important goal is to discover the mechanisms of cancer and other diseases

to enable improved diagnoses and to find new methods of treatment. Beside these med-

ical applications, microarrays are also an appropriate tool to address the pre-discussed

problem of exploring the evolution of gene expression. Thus, the technology has been

applied in a rich variety of studies to identify gene expression variation within species

and expression divergence between species to infer mode and rate of evolution on the

level of transcriptome.

Within species variation was observed, for example, for yeast (Cavalieri et al., 2000),

Drosophila (Jin et al., 2001; Nuzhdin et al., 2004; Gibson et al., 2004; Wayne et al.,

2004), teleost fishes (Oleksiak et al., 2005), mice (Enard et al., 2002; Schadt et al.,

2003), and human (Enard et al., 2002; Morley et al., 2004; Storey et al., 2007) (cf. a

review by Ranz and Machado (2006)). In some cases a large proportion of genes showed

significant differences in gene expression among individuals, for example, Storey et al.

(2007) observed that 83 % of the genes in human individuals are differentially expressed,

while 17 % of the genes between human populations are differentially expressed. Oleksiak

et al. (2005) observed in heart tissue of teleost fish Fundulus heteroclitus that 94 % of

the genes are significantly different among individuals. Further, it was suggested that

differing life conditions can cause gene expression differences, for example, adaptation

of teleost fish species to different water temperatures (Oleksiak et al., 2002). A fraction

of measured variation in species is the result of reactions to environmental and internal

influences. Variation can correlate with phenotypic differences or can be heritable. It

is a great challenge to identify the non-mutational effects and to distinguish them from

gene expression changes resulting from mutations on DNA sequence level. This is also

important when studying differences between different species in order to observe changes

caused by evolution.

Divergence between species was examined, for example, between different Drosophila

species (Rifkin et al., 2003), different teleost fish species (Oleksiak et al., 2002), different

mice species, and different primate species (Enard et al., 2002). A frequent observa-

tion is that expression divergence between species differ the more the more time has

passed, since species split from an ancestor. Rifkin et al. (2003), for instance, reported

for Drosophila species during metamorphosis that the number of genes with significant

changes in developmental expression between two lineages are consistent with the genetic
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distance. In a study by Khaitovich et al. (2004) it was observed that gene expression

differences between human, chimpanzee, orangutan, and rhesus macaque accumulate

approximately linearly with time in brain and liver tissues. The same results were ob-

tained for three mice species (Khaitovich et al., 2004). However, Gilad et al. (2006b) used

multi-species arrays containing probes of the same primate species used in Khaitovich

et al. (2004) without observing a linear trend. Evidence for a non-constant gene ex-

pression evolution between different tissues was found, since an acceleration in human

brain in comparison to chimpanzee brain was observed (Enard et al., 2002; Khaitovich

et al., 2005b). Nevertheless, most studies indicate an approximately constant increase

of expression differences with time (cf. review by Khaitovich et al. (2006)) which can

be explained by a neutral model. According to the neutral theory by Kimura (1983)

the majority of genetic changes on DNA sequence level are selectively neutral so that

most of the genetic variability is the result of an equilibrium between mutations and

genetic drift. Indeed, the theory alludes to the genome, but as a result of the previous

cited studies it seems to be reasonable to apply it to the transcriptome. However, it

is assumed that the expression of some genes evolved non-neutral, but under selection.

Thus, since the neutral theory constitutes a null hypothesis, it can be used to identify

those genes which are under selection.

The identification of gene expression differences under selection was addressed in numer-

ous studies. Rifkin et al. (2003) found evidence for stabilising selection as the henpecking

mode in Drosophila, but they found also genes which indicate directional selection or

neutrality. Lemos et al. (2005) analysed different data sets of mice, Drosophila, and

primates with an ANOVA (=Analysis of variance) based method (Kerr et al., 2000) and

came to the conclusion that the majority of genes evolves under stabilising selection. As

stated above, analysis of different primate species indicates a faster evolution in human

brain in comparison to chimpanzee brain (Enard et al., 2002; Khaitovich et al., 2005b).

Further, an overall up-regulation of expression was observed in human in comparison to

chimpanzee (Caceres et al., 2003; Hsieh et al., 2003). These results can be explained

by directional selection affected some genes during evolution. However, other reasons

were discussed, for example, effects of differential hybridisation. Furthermore, positive

selection in primate testes was suggested by Khaitovich et al. (2005a). It is noted that

selection does not reject the applicability of the neutral theory (Kimura, 1983).

For a better understanding of gene expression evolution it is indispensable to describe it

by appropriate models. To this end, a simple neutral stochastic model has been devel-

oped by Khaitovich et al. (2005b). This thesis discusses the development of advanced
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stochastic models to describe the evolution of gene expression in more detail. The model

by Khaitovich et al. (2005b) is used as a starting point. Based on extensions of that

model like including non-mutational effects or more complex descriptions of mutation ef-

fects, new analysis methods for gene expression data are suggested. The performance of

the extended models is evaluated with synthetic data and applied to biological samples

of different species. This thesis is focused on the evolution of nearly related species and

also on the processes leading to variability within species which is related to the field

of population genetics. Furthermore, a medical application of the models is presented

in an additional chapter. All models and methods are implemented into two software

package termed EMOGEE and EMOGEE Tools.

1.2. Organisation of the thesis

Chapter 2: This chapter comprises an introduction to the biological and mathematical

background. First, the neutral theory is explained and motivated. Subsequently, gene

expression is described followed by a section about the microarray technology which is

used to measure the level of gene expression on a large scale. The third part explains

the relevant mathematical theory. It starts with basic facts about stochastic models

and describes specially the basic evolutionary models used in bioinformatics. Addition-

ally, methods to estimate model parameters from data are illustrated. Furthermore,

the Wright-Fisher model and the coalescent process which are necessary to understand

chapter 5 are explained. Finally, optimisation methods used in this thesis are explicated.

Chapter 3: The gamma distribution is introduced as an alternative characterisation

of the mutation effects. The gamma distribution is defined by two parameters (shape

and scale) and allows a more flexible description of observed data than the basic model.

Since analytic estimation of the parameters is not possible in this extended model, an

optimisation method is presented.

Chapter 4: Here so-called non-mutational effects are included into the analysis of gene

expression. These effects are caused by metabolism in the cells and measurement errors.

They overlay expression changes depending on mutations. The problem is addressed by

adding a normal distributed error which summarises all non-mutational effects. For pa-
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rameter estimation two methods are suggested: (1) a χ2-fit method and (2) a maximum-

likelihood (ML) method. The incorporation of non-mutational effects provides a better

fit to the data than the basic model. Furthermore, a simple detection method for single

genes mutated in their regulatory region is suggested.

Chapter 5: The neutral theory assumes that the majority of new variants arisen from

mutations are not affected by selection. However, in some cases these variants can

have real advantages or disadvantages. For homologous gene sequences sampled from a

natural population statistical tests exist to find out if genes evolved under the influence

of selection. One of such tests, the Tajima’s D test, is adapted to be used for the analysis

of gene expression data from individuals sampled from populations. To this end, the

underlying stochastic model which is based on discrete sequence evolution in the origin

test is replaced by the gene expression evolution model.

Chapter 6: While chapters 3–5 address evolutionary questions, a medical application

is considered in this chapter. The emergence and development of cancer which depend

on mutations on DNA sequence level change the level of gene expression of many genes.

Thus, the carcinogenesis is regarded here as an evolutionary process which is described

by the same models as the evolutionary data in the previous chapters. The mutation

detection method described in chapter 4 is applied to medical data. The genes with

mutations in their regulation are used for clustering. The results are compared with the

SAM (=Significance analysis for microarrays) method widely used for gene expression

analysis.



2. Background

2.1. The Neutral Theory

2.1.1. Definition

“The neutral theory asserts that the great majority of evolutionary changes at the molec-

ular level, as revealed by comparative studies of protein and DNA sequences, are caused

not by Darwinian selection but by random drift of selectively neutral or nearly neutral

mutants. The theory does not deny the role of natural selection in determining the

course of adaptive evolution, but it assumes that only a fraction of DNA changes in

evolution are adaptive in nature, while the great majority of phenotypically silent molec-

ular substitutions exert no significant influence on survival and reproduction and drift

randomly through the species.” (Kimura, 1983)

Today, the neutral theory (or rather the neutral mutation-random drift hypothesis) has

been accepted by most scientists. This was not always the case. When the theory was

proposed in the 1960s, it led to a great dispute known as the ’neutralist-selectionist

controversy’, since it was different to the former view of the synthetic theory (Campbell

and Reece, 2005). To explain this development of evolutionism, it is necessary to go

back more than one century in time.

2.1.2. Formation of the synthetic theory

At the beginning of the 19th century it was generally assumed that all species had been

once created and do not evolve. Lamarck was the first to consider evolution. In 1801 he

suggested that individuals lost traits which are not used and develop traits by strengthen-

ing through use. The use and disuse depends on the environment. Further, he assumed

6



2.1. The Neutral Theory 7

that acquired attributes are inherited to the offspring which induces a direction in evo-

lution. The modern theory of evolution goes back to Charles Darwin (Darwin, 1859).

He discovered a large number of fossils and species and recognised variations between

individuals of the same species. He came to the conclusion that some individuals of a

species have a better chance to survive than others which is due to small advantages de-

pending on environmental factors (e.g., white rabbits have an advantage to grey rabbits

in snow landscapes to hide out from predators). Thus, these individuals have a higher

chance to breed. The offspring inherits the advantages and the population fits to the

environment better and better over generations. This process is referred to as natural

selection. By separation into different isolated sub-populations with independent devel-

opment new species can emerge. However, in the time when the theory was suggested,

it was neither known how variations within species arise nor how inheritance works.

Darwin’s theory was doubted strongly after publication and it took decades until the

basics of mutation and natural selection were approved. More and more people believed

in these mechanisms, since new evidences were found. As an example, Weldon (1901)

first reported stabilising selection instancing the number of turns in snail shells (cf.

chapter 2.1.5). More evidence came from cell biology and genetics, for example, the

rediscovery of Mendelian rules of inheritance in 1900 or the discovery that genes are

located on the chromosomes by Thomas Hunt Morgan in 1908. All these findings have

been merged with Darwin’s evolution theory to the so called ’synthetic theory’. The

claim of that theory is that directional selection is the mainspring of evolution (Campbell

and Reece, 2005).

From the beginning of the 20th century biologists and mathematicians started to develop

models and methods to study evolution. To this end, Pearson, influenced by Weldon,

started to develop statistical methods like the χ2-method. Hardy (1908) and Weinberg

(1908) established science which was called population genetics later with an equation to

describe the equilibrium of genotypic frequencies under the assumption of random mating

and Mendelian inheritance. Fisher (1922) first used stochastic methods to describe

fluctuations in gene frequencies by random sampling of gametes. He also developed

the diffusion equation method. In contrast to others in due time, Wright recognised

the importance of the disappearance of alleles in evolution by chance. He developed

the later called shifting balance theory of evolution (Wright, 1932). Wright and Fisher

also introduced the important Wright-Fisher model to describe genealogical relations

within populations (Fisher, 1930; Wright, 1931) (this model is discussed in detail later

in this chapter). Haldane suggested a method to estimate the time for a dominant allele
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to spread in a population from a small ratio of carriers to a larger one, but without

applying random effects. Later, he extended his work by addressing various factors on

the change of gene frequencies (see Haldane (1932)). Together, Fisher, Wright, and

Haldane nearly completed the field of classical population genetics in the 1930s.

2.1.3. The emergence of the neutral theory

In the 1960s the molecular biology arose and new techniques were developed: It became

possible to compare amino acid sequences of closely related organisms and to estimate

substitution rates (Zuckerkandl and Pauling, 1965). Furthermore, the variability of

enzymes among individuals could be detected by electrophoretic techniques (Harris, 1966;

Lewontin and Hubby, 1966). These improvements made it possible to explore evolution

on a large scale by estimating rates of amino acid substitutions and genetic variability.

In that time it was expected that these new findings would confirm directional selection

as the most important factor in evolution.

But disbelief emerged by applying the mathematical theory. An approximately uniform

rate of amino acid substitutions per year for each protein between different lineages was

observed. Substitutions seemed to have random patterns and the rate seemed to be

very high. Kimura discovered that an unusually high rate of production of advantageous

mutants would be required to explain the high rate of molecular evolution. However,

this conflicted with the observation of constant substitution rates over long time periods,

since a population would fit the environment perfectly someday. Furthermore, no visible

correlation between the high variability within populations and environmental factors

was found.

Due to these facts Kimura suggested the later-called ’neutral theory’ (first published in

Kimura (1968a,b)). He concluded that the majority of nucleotide substitutions must be

the result of random fixation of selectively neutral mutants rather than Darwinian selec-

tion. Kimura got great encouragement for his thesis, but also much criticism. Kimura’s

arguments for the neutral theory depended on results from the analysis with population

models. It can be shown by simulations that for a large population also a large number

of mutants arise. Admittedly, the majority of these mutants are lost by random drift

within a few generations. Thereby, it does not matter whether a mutant is deleterious,

neutral or advantageous unless the advantage is exceedingly large.
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In evolutionary models the fitness of an allele is described by a numerical value, the

so-called fitness value. Kimura developed equations to calculate a critical value for the

effect of a mutation on the fitness value: Mutations which change the fitness value

with a magnitude below this critical value are called nearly neutral, since they have no

significant effect on the fate of the allele. If a mutant has a fitness value which differs

below the critical value from the fitness value of its ancestral allele which is fixed in

the population, the fate of the mutant to establish in the population or to disappear is

determined by chance.

It is assumed that the allele composition of a population changes approximately con-

stantly over time. This explains the correlation of the number of substitutions between

species and the time since these species emerged from a common ancestor. This contin-

uously changing gene pool is known as random genetic drift.

2.1.4. Further cases for the neutral theory

A lot of criticism of the neutral theory depends on misunderstandings. The neutral the-

ory does not state that genes which evolve neutrally have no function. It merely claims

that the mutant forms of these genes are selectively nearly equivalent to the precursors.

An explanation for the assumption that a majority of mutations have no major effect is

the physiological homeostasis. Especially in higher organisms this equilibrium of bodily

functions is a buffer against external dysfunctions from the environment and also against

internal incidents (Kimura, 1983). Thus, a slightly disadvantageous mutation could be

regarded as an internal incident which can be adjusted by the homeostasis.

The neutral theory also does not contradict the existence of selection. It merely consti-

tutes that the majority of mutated alleles is not affected by selection effects, since the

influence on the fitness is too small. However, there might be a large number of mu-

tations which are deleterious, but these mutations are weeded out from the population

and therefore evolution is not affected.

Some mutations on sequence level are apparently neutral. This is due to the redundancy

of the genetic code which maps three bases of a gene sequence to one amino acid of the

corresponding protein (cf. chapter 2.2.1). The sequence is composed of four types of

bases: Adenine (A), cytosine (C), guanine (G), and uracil (U). The genetic code is

shown in table 2.1. Particularly, mutations in the third base do not lead to an amino
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Table 2.1.: The genetic code. Three bases encode one amino acid, when a protein is

built. The bases are abbreviated: U = uracil, C = cytosine, A = adenine, G

= guanine. The three bases for methionine symbolise the starting position

at which the translation begins. The sequences UAA, UGA, and UAG stop

the translation (cf. chapter 2.2.1).

1st base 2nd base 3rd base U 3rd base C 3rd base A 3rd base G

U U Phenylalanine Phenylalanine Leucine Leucine
C Serine Serine Serine Serine
A Tyrosine Tyrosine STOP STOP
G Cysteine Cysteine STOP Tryptophan

C U Leucine Leucine Leucine Leucine
C Proline Proline Proline Proline
A Histidine Histidine Glutamine Glutamine
G Arginine Arginine Arginine Arginine

A U Isoleucine Isoleucine Isoleucine Methionine (START)
C Threonine Threonine Threonine Threonine
A Asparagine Asparagine Lysine Lysine
G Serine Serine Arginine Arginine

G U Valine Valine Valine Valine
C Alanine Alanin Alanine Alanine
A Aspartic acid Aspartic acid Glutamic acid Glutamic acid
G Glycine Glycine Glycine Glycine

acid substitution in many cases. Thus, these mutations have no effect on the amino acid

sequence. They are termed as synonymous mutations (in comparison to non-synonymous

mutations which change the amino acid sequence). However, the speed of synthesis of

the sequence is influenced by the quantity of so-called transfer ribonucleic acid (tRNA)

molecules which are used to translate the genetic code (cf. chapter 2.2.1). Some tRNAs

are more frequent than others which depends on the organism. This phenomenon is

referred to as codon bias and might cause selection effects (Bulmer, 1991).

The neutral theory is widely used as a ”null model” for statistical tests to detect selection

during evolution. Although the majority of mutations are neutral, some mutations

have significant positive or negative effects on the fitness of an individual so that the

fate of the mutated allele cannot be explained by chance. Please note that extremely

deleterious effects cannot be recognised, since carriers of such mutated alleles became

extinct. In most of the tests within or between species variation in sequences or other
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traits are estimated. Thereupon, this variation is compared to the expected variation

estimated from a neutral model. A significant difference in this comparison rejects the

neutral hypothesis and indicates selectional effects. Examples of tests are the followings:

The HKA test (Hudson et al., 1987) compares the ratio of within species diversity and

between species divergence. The McDonald-Kreitman test (McDonald and Kreitman,

1991) considers the ratio of synonymous and non-synonymous base substitutions. Fu’s

test (Fu and Li, 1993) compares the number of mutations on internal and external

branches of a genealogy. Finally, the Tajima’s D test (Tajima, 1989) compares two

different estimators for the mutation rate within a population. It will be explained in

chapter 5.

2.1.5. Modes of selection

It is assumed that a gene can be under different modes of selection: Stabilising selection

(also termed as negative, normalising, purifying or centripetal selection) occurs if the

trait corresponding to the gene has reached the optimal characteristic concerning the

ecological niche which means that the carrier of that allele fits the environment perfectly.

All other alleles of that trait are inferior. Thus, their frequencies fall off over the time and

the chance to become fixed in the population is poor. If environmental influences change,

the adaptation is getting suboptimal which leads to a trend explained by directional

selection (also termed positive selection). Related to the new environment, a mutation

leading to a new allele might be superior in comparison to the former allele. Thus, the

frequency of the new allele is increased and the trait changes towards an optimum. In

some cases the combination of two different alleles of a gene provides the highest fitness

in a diploid population in which individuals contain two sets of chromosomes. Although

one of the alleles might have a weak fitness in the homozygous case in which an individual

contains two identical alleles. However, both alleles become fixed in the population at

stable frequencies which is called balancing selection.
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Figure 2.1.: The process of gene expression.

2.2. Gene expression

2.2.1. The process of gene expression

Gene expression is the process in which the DNA sequence of a gene is used to provide cell

structures and functions. This complex process consists of different steps depending on

the gene product and the type of the cell, for example, in cells with a nucleus (eukaryotes)

the process is more complex than for cells without a nucleus (prokaryotes). The gene

products can be very different, since a gene can encode a structure protein, an enzyme

protein or a special RNA molecule which is necessary for different cell functions. For

proteins the process is also called protein biosynthesis. The steps of gene expression are

illustrated in figure 2.1. In all cases the first step is the transcription.

In the transcription a DNA region containing a gene is copied into an complementary
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single-stranded ribonucleic acid (RNA) molecule by an RNA polymerase enzyme. The

process begins by the binding of a RNA polymerase to the so-called promoter region of

that gene which should be transcribed. From the start the RNA polymerase moves base-

by-base along the DNA and catalyses covalent linking of ribonucleotides which match

with the current position of the DNA sequence. A is transcribed into U, T (= thymine)

into A, C into G, and G into C (in comparison to DNA, in RNA uracil is used instead of

thymine). The process of transcription stops if a the RNA polymerase reaches a specific

termination sequence. The resulting RNA molecule is called messenger RNA (mRNA).

In eukaryote cells it is referred to as pre-mRNA, since the so-called splicing is performed

as an additional step which results in the (mature) mRNA. During the splicing some

parts, the introns, are removed from the RNA sequence, while the exons remain there.

In some cases different variants of mRNA are produced by skipping or shuffling exons

in the sequence which is referred to as alternative splicing.

The mRNA is used for the translation which takes places at small cell organelles called

ribosomes. In the translation mRNA is decoded to produce a specific polypeptide ac-

cording to the genetic code. In that code, three bases which are called codon encode

one amino acid (cf. table 2.1). A sequence of non-overlapping codons encodes a series

of amino acids which are bind to polypeptides. Important for the decoding are transfer

RNAs (tRNAs) which bind to specific amino acids. A tRNA has a three-base-pairs

long region, the anti-codon which is specific for the bonded amino acid. The anti-codon

matches with a codon of the mRNA by complementary base pairing so that a tRNA

molecule translates the sequences of three bases into a corresponding amino acid. The

translation process starts with a special codon on the mRNA with the sequence AUG,

the starting symbol. Then tRNAs with bonded amino acids bind to the matching codons

in series. The amino acids of adjacent tRNAs form peptide bonds and are released from

the tRNA which leads to a growing amino acid chain. The translation stops at a so-called

stop codon which can be UAA, UGA or UAG.

The amino acid sequence adopts a three-dimensional structure which enables its function,

for example, to be a structure protein in the cell membrane or an enzyme protein with

a special role in metabolism. The level of gene expression which results in the level

of protein production or directly used RNAs depends on many different influences like

metabolic pathways or epistatic effects, but also on the tissue, the developmental stage

or the physiologic state of the cell. It is controlled by complex mechanisms like different

affinity of the RNA polymerase to the promoter region, inhibitors or activators which

influence the chance of transcription. Inhibitors and activators are even proteins so
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that expression levels of different genes are not independent from each other. It is an

important issue to understand the regulation of gene expression, since changes in the

expression levels of some genes play an important role in different diseases.

Detailed introductions into the process of gene expression are described in the books

Alberts et al. (2002), Campbell and Reece (2005), and Griffiths et al. (2002).

2.2.2. Measuring the level of gene expression with microarrays

The amount of mRNA copies of a gene present in the cell is a quantitative measure for the

level of expression of that gene, since mRNAs are digested in the cell plasma (Campbell

and Reece, 2005). The amount is also an indirect measure for the corresponding protein,

but this is very imprecise, since some proteins, for example, structure proteins, exist in

the cells for a long time after the mRNAs have been digested.

Microarrays are a valuable tool to measure the level of gene expression. Typical mi-

croarrays are assemblies of thousands of small spots of DNA on a solid surface (e.g.,

glass). The spots are arranged in a rectangular array. Each spot contains a large num-

ber of immobilised copies of a particular sequence which are referred to as probes. They

exclusively correspond to a segment of one gene of a species. The expression level of

that gene can be measured. Depending on the large number of spots, the expression of

thousands of genes can be measured simultaneously with one microarray. The resulting

data is termed expression profile. When a microarray is used to measure the level of

gene expression in a tissue, the mRNAs are extracted from the tissue. These mRNAs are

typically converted to complementary DNAs (cDNA) which are the reverse transcripts

of the mRNAs. The cDNAs are amplified and used to produce complementary RNAs

(cRNA) which are RNAs transcribed from cDNAs. The cRNAs are cut into small frag-

ments and labelled with fluorescent dye. Subsequently, the labelled cRNAs are attached

to the microarrays. Sequences of cRNA which are complementary to the DNA in the

spots hybridise with them. After being cleaned from remaining unbound cRNAs, the mi-

croarrays are scanned with special scanners to produce digital images of the spots. The

fluorescent intensity of a spot is a measure for the amount of cRNAs complementary to

the gene which is represented by the spot. Therefore, it is a measure for the level of

expression of that gene.

Microarrays differ in array surface, number of measurable genes and labelling methods.
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Two widely used technologies are the oligonucleotide arrays from Affymetrix (Affymetrix,

2004) and spotted arrays. Affymetrix produces ready to use chips for different organisms.

The probes are synthesised by a masking technology in situ on the chip. The arrays

have 25 bases long oligonucleotides as probes which are representative for one gene. For

each gene between 11 and 20 spots of oligonucleotides from different sections of the gene

exist which are distributed over the chip. These spots are called perfect matches (PM),

since the oligonucleotides are complementary to the subsequences of the gene. For each

oligonucleotide exits one additional spot with mismatching oligonucleotides (mismatches,

MM). They differ in the 13th base and are used to detect non-specific hybridisation. All

probes for one gene (PM and MM) form a probe set. Another technology are spotted

arrays which are typically custom-designed. A robot spotter fills small quantities of

oligonucleotides or longer sequences on a glass slide. The quality of the spots is not

as good as those from Affymetrix chips. An advantage is that one chip can be used to

measure the expression in two tissues simultaneously, for example, one tissue of a special

phenotype of interest against one of its normal counterpart. In this case a different dye

is used for the cRNAs of each tissue (e.g., green and red). The colour mixture of the

result show which genes have increased or decreased their expression in the phenotype

in comparison to the normal case.

A more detailed description of microarray technologies is described in the books by Baldi

and Hatfield (2002) and Schena (2003).

2.2.3. Analysis of microarray data

Since the number of spots on a microarray is very large, visual inspection is infeasible.

Thus, computer analysis is necessary. Therefore, a large number of methods have been

developed. Their application depends on the type of experiment. In most cases two or

more phenotypes, for example, normal tissue and tumour tissue or tissues of different

subtypes of a disease are profiled with microarrays to compare the difference in gene

expression intensities between the phenotypes. Another application is the measurement

of the change of gene expression during the course of a disease or during drug treatment.

Figure 2.2 shows the typical workflow of a microarray analysis. At first, the microar-

rays are scanned after hybridisation to get digital images of the fluorescence intensities.

Figure 2.3 shows an enlarged image of a typical Affymetrix microarray surface after

hybridisation.
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Figure 2.2.: Typical workflow of a microarray analysis. After scanning, quantification,

and normalisation the expression profiles can be analysed in different ways.

Oftentimes only the significantly expressed genes detected by a significance

analysis are used for clustering or classification.

After scanning, it is necessary to convert the spot intensities from digital images into

numerical quantities. This process is called quantification (Schena, 2003). Since scanning

is performed with high resolution, each spot of a microarray is represented by a large

number of pixels. A common method is to take the mean colour intensity of the inner

spot area as the signal which represents the gene expression level. The mean intensity of

the diffuse border area is called background. It results from inferring biochemical events

like substrate reflection and is regarded as noise. The ratio of signal and noise can be used

as a quality criterion. Some methods subtract the background from the signal to correct

the intensity, since spurious events also take place in the inner spot area. Saturated spots

which exceeds an upper limit of accurate intensity detection are problematic. Thus, all
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Figure 2.3.: Scanned image of an Affymetrix HG-Focus microarray after hybridisation

(the image originates from the University Hospital Düsseldorf). The picture

has been enlarged. The scanned area of a HG-Focus array has a size of

about 0.9 cm× 0.9 cm.

saturated spots are identical in appearance and cannot be compared. Ways to avoid

saturation are the limitation of quantity of RNA which is put on the chip and the choice

of a shorter time interval for hybridisation.

After quantification one can compare the data from different microarray experiments.

To this end, normalisation of spot intensities is necessary to make the expression values
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comparable, for example, to detect those genes which changed their expression level

between two observed phenotypes. If the expression values are distributed linearly, a

linear function can be applied to set the mean intensities of all expression profiles to the

same level. For non-linear data it is necessary to separate the range of the distribution

in different parts and scale these parts with different linear functions or alternatively

to apply a polynomial. Further, for Affymetrix arrays it is necessary to combine the

intensities of all probes of a probe set to one absolute measurement which represents the

expression of the corresponding gene. A very simple method takes the mean value of

the differences of the PM and the corresponding MM probes. However, some complex

model-based normalisation methods have been developed (e.g., by Chu et al. (2002)).

Widely used methods performing absolute measurement calculation and normalisation

for Affymetrix microarray data which are implemented in software packages are the RMA

(=Robust Multichip Average) method (Bolstad et al., 2003; Irizarry et al., 2003a,b)

and the VSN method (=Variance stabilisation and calibration for microarray data)

(Huber et al., 2002). The former one uses quantile normalisation on the individual

probe intensities with a different form of background correction not taking MM probes

into account. The latter one uses the method of variance stabilising transformations for

normalisation.

After normalisation users often want to detect genes which show significant expression

differences between the examined phenotypes, since this might indicate a biological

reason for the phenotypical difference. A simple significance analysis is the t-test. The

null hypothesis of this test is that the mean values of two distributions are identical (the

distributions are assumed to be normal distributions). To apply it to gene expression

data it is assumed that the distributions of expression values of a gene in a number of

expression profiles of two phenotypes have the same mean. Then the t-test is used to

calculate a critical value on a specified significance level. If this limit is exceeded, the null-

hypothesis is rejected and the considered gene expression levels are significantly different.

A more sophisticated analysis is implemented in the SAM package (Significance Analysis

for Microarrays) (Tusher et al., 2001). This method is based on a permutation test

and can be applied also to multi-class data sets which contain more than two different

phenotypes. In case of multi-class data also the ANOVA method (=Analysis of variance)

is widely used (Kerr et al., 2000).

While the significance analysis filters out those genes which might be non characteris-

tic for the examined phenotypical difference, clustering methods are used to show the

relations between the expression profiles. Clustering belongs to unsupervised learning.
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Thereby, it is assumed that one has no a priori knowledge of the data analysed. Thus,

for microarray analysis the phenotypes of the tissues are not taken into account. An

expression profile is commonly regarded as a vector in which each dimension represents

the expression level of one gene. Different clustering methods are used: In hierarchical

clustering (Johnson, 1967) the expression profiles are ordered in a tree-like structure. In

the beginning, each expression profile is regarded as one cluster. The two most similar

clusters are then summarised to one cluster. This procedure is iterated until one cluster

(the root of the tree) remains. The k-means method (McQueen, 1967) maps the set of

expression profiles to k groups which are represented by the centroids (average vector) of

its members. The method is iterative and starts with a random mapping and subsequent

centroid calculation. Afterwards, each expression profile is mapped to the class which

is equal to that one of the nearest centroid, and the centroids are calculated again. The

method stops if no class membership changes during one iteration. More complex are

self-organising maps (Kohonen, 2001). Thereby, the expression profiles are mapped to

a two-dimensional grid. Similar expression profiles are mapped to the same or nearby

positions. Before any clustering method is performed, the dimension of the gene space

is typically reduced by significance analysis to lower the noise in the data. Instead of

clustering the expression profiles in the gene space it is also possible to cluster the genes

in the space of expression profiles.

In comparison to clustering, methods of classification belong to supervised learning : A

training set of expression profiles is compiled in which each expression profile is labelled

with a so-called class label representing its phenotype. Then a classification algorithm

is trained onto this set to build a classifier. The classifier is then applied to expression

profiles of unknown state to make a class prediction. Different classification methods are

common. Like in clustering methods the expression profiles are regarded as vectors. In k-

nearest neighbours (Cover and Hart, 1967) a new expression profile is assigned to the class

to which the majority of the k nearest neighbouring expression profiles belongs. Support

Vector Machines (Christianini and Shawe-Taylor, 2000) use a training phase to calculate

a hyperplane which separates the two classes of expression profiles (the basic form is used

for binary classification, but more complex variants exist). To classify an expression

profile, its position to the hyperplane is calculated and thereupon a decision is made.

Another method to build a classifier is Genetic Programming (Banzhaf et al., 1998; Koza,

1992), a machine learning method inspired by the biological evolution. The classifiers are

represented by computer programs which evolve many iterations based on evolutionary

principles. Starting from random programs, those programs with the best classification



2.3. Stochastic models for evolutionary processes 20

accuracy on the training expression profiles are selected for the next iteration. These

programs are copied and changed slightly by random (mutation). Furthermore, program

code from different programs is merged to new programs (recombination). Then the

accuracy on the training set is checked again. An important application of classification

in future might be the subtype prediction of similar cancers which is often difficult with

histological inspections, but necessary to enable the best possible therapy.

More detailed introductions into the field of microarray analysis are Baldi and Hatfield

(2002), Knudsen (2002), and Speed (2003).

2.3. Stochastic models for evolutionary processes

2.3.1. Mathematical background of models and parameter

estimation

Stochastic models are widely used in bioinformatics to describe different processes (e.g.,

growth of a population or evolutionary processes). Stochastic models are mathematical

models which consist of equations to describe quantities. Additionally, they take random

effects into account. These effects are specified by random variables with particular

probability distributions which are incorporated into the equations describing the model.

Stochastic models can be used to analyse experimental data. In this case it is assumed

that the model is an adequate description of the corresponding observed data. The

goal is to estimate an assignment for the model parameters which describe the real

data best. In other words, the intention is to find the parameter assignment so that

data generated by the model has similar properties than the observed real data. To

this end, one common way is the method of moments (Pearson, 1894). Moments are

characteristics of a distribution which describe their shape and scale, for example, the

mean (first moment), the variance (second central moment which is a measure for the

width), the skewness (third central moment which is a measure for symmetry), and the

kurtosis (fourth central moment which is a measure for the concavity). Moments can be

described by equations. These equations characterise the expectations for the moments

depending on the model parameters. To estimate the model parameters for real data,

the moment equations are equated with the observed moments from the data. Then

the equations are transformed so that the parameters can be computed by the observed
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moments.

The equations for the moments of a stochastic process can be derived by the so-called

characteristic functions. A characteristic function for a continuous random variable X

is a mapping ϕX : R → C which is defined by

ϕX(t) = E[eitX ], (2.1)

whereas t ∈ R and E is the expectation (i is the imaginary unit of the complex numbers).

For discrete random variables the characteristic function is given by

ϕX(t) =
∞∑

k=1

eitxkP (X = xk). (2.2)

If the characteristic function of a continuous random variable X can be differentiated m

times, the m-th moment will be generated (details are described in Feller (1957)):

E[Xm] = (−i)mϕ
(m)
X (0). (2.3)

Another way to estimate model parameters from data is the Maximum-likelihood (ML)

method (cf. Bickel and Doksum (2001)). The method maximises the so-called likeli-

hood function. The likelihood is the probability for the observed data given a parameter

assignment. Assume that a model with parameters Θ from a parameter space T gener-

ates data x. This induces a family of probability density functions x → p(x|Θ). The

likelihood function is

L(Θ|x) = p(x|Θ). (2.4)

Thus, the ML is

max(L(Θ|x)) = max{p(x|Θ)|Θ ∈ T}. (2.5)

To find the maximum, an optimisation method is used (cf. chapter 2.4).
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Parameters of a model can also be estimated by a Bayesian method which depends on

the Bayes’ theorem for two stochastic events A and B with probabilities P (A) and P (B),

respectively:

P (A|B) =
P (B|A)P (A)

P (B)
(2.6)

P (A|B) is the so-called posterior probability. P (B|A) is the conditional probability of

B given A which is the likelihood function for B given A. P (A) is the prior probability

of A. It does not take B into account. The prior probability P (B) acts as a normalising

constant. Let now Θ be the parameters of a model (corresponding to A in equation 2.6)

and x be observed data (corresponding to B in equation 2.6). To estimate the parameters

for observed data by a Bayesian method, those values for Θ have to be chosen which

maximises the posterior probability P (Θ|x). To this end, an optimisation method is

used (cf. chapter 2.4).

2.3.2. The Poisson process and the compound Poisson process

To model evolutionary processes it is necessary to describe genetic changes caused by

mutations. Since mutations are typically random events, the Poisson process (cf. Taylor

and Karlin (1998) or Ewens and Grant (2001)) is used. The Poisson process describes

the number of random events occurring within a time interval. The Poisson process is

based on the Poisson distribution

pk =
dke−d

k!
(2.7)

with the parameter d and k = 0, 1, . . .. The expectation and the variance of the Poisson

distribution are both equal to µ.

A Poisson process M is defined by its rate µ > 0 (e.g., the mutation rate) and is

referred to as M(t), whereas t is a time point with t ≥ 0. The expected number of

events up to time t is Poisson distributed with parameter µt. The process increments

M(t1)−M(t0), M(t2)−M(t0), . . . ,M(tm)−M(tm−1) are independent random variables

for any time points t0 = 0 < t1 < t2 < . . . < tm. Thus, for s ≥ 0 and t > 0 the random
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variable M(s + t)−M(s) has the Poisson distribution

Pr{M(s + t)−M(s) = k} =
(µt)ke−µt

k!
(2.8)

for k = 0, 1, . . . and M(0) = 0. Time can be considered on an evolutionary scale that

is real time t scaled by the mutation rate µ which is d = µt. In this case the process is

referred to as a Poisson process M(d).

A more complex process is the compound Poisson process (Taylor and Karlin, 1998).

Given a Poisson process M(t), an independent random variable is used to describe each

event of M(t). These random variables X1, X2, . . . share the same distribution function.

They are added up to describe the change of a value over time. Thus, the value at time

t is defined by

Y (t) =

M(t)∑
k=1

Xk, (2.9)

with t ≥ 0. If φ and σ2 are the common mean and variance of X1, X2, . . ., then mean

and variance of Y (t) are

E[Z(t)] = φµt, (2.10)

V ar[Z(t)] = (φ2 + σ2)µt. (2.11)

2.3.3. The Wright-Fisher model and the coalescent process

A simple stochastic model to describe genealogical relations of individuals within a

population is the Wright-Fisher model (Fisher, 1930; Wright, 1931). This important

model for population genetics describes the gene transmission in an idealised population

from one generation to the next. It is assumed that the population consists of N diploid

or 2N haploid individuals. Here, haploid individuals are regarded. The entity ’individual’

is defined by its gene, so it is referred to as ’gene’ here. The basic Wright-Fisher model

makes the following simplifications:

1. Discrete and non-overlapping generations
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Figure 2.4.: Simulations on the Wright-Fisher model with 10 individuals over 10 gener-

ations. The lineages are sorted to get a tree-like structure. Those lineages

which have not become extinct are drawn in bold face.

2. Haploid individuals

3. Constant population size

4. Equal fitness of all individuals (this makes it a neutral model)

5. No geographical or social structure

6. No recombination of genes

The model can be simulated as follows: For a generation at time t the next generation at

t+1 is simulated by randomly selecting 2N new genes from the parental genes (without

replacement). An example of this process for 10 generations is presented in figure 2.4.

The chance to choose one specific gene from generation t as a parent is 1/2N . Since

the number of genes in generation t + 1 is also 2N , the chance of a gene to produce v

successors is described by a binomial distribution:

P (v = k) =

(
2N

k

)(
1

2N

)k (
1− 1

2N

)2N−k

(2.12)
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Figure 2.5.: Examples of coalescent trees with 10 genes.

If 2N is large, v is approximately Poisson distributed with mean of one and variance of

one:

P (v = k) ≈ 1

k!
e−1 (2.13)

The genealogy of a population which has been generated by a Wright-Fisher model can

be described by the coalescent process (Kingman, 1982; Hudson, 1991). In contrast

to the Wright-Fisher model the coalescent process goes back in time. It describes the

time to a so-called coalescent event in the past at which the lineages of two or more

genes from the population descended from a most recent common ancestor (MRCA).

The coalescence time T2 for two genes to find a MRCA is described by the geometric

distribution

P (T2 = j) =

(
1− 1

2N

)j−1
1

2N
, (2.14)

whereas j = 1, 2, . . . is the number of generations to the MRCA back in time. This

equation can be extended, for example, to describe the coalescence time Tk for a coales-

cent event of two genes out of k genes. Since the time is measured in discrete units, the
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model is called discrete time coalescent. In contrast, the continuous time coalescent uses

the average time that two genes find a common ancestor in one unit of time, whereas

one unit of time is 2N generations. The distribution function of the waiting time Tk in

the continuous representation for k genes to have k − 1 ancestors is

P (Tk ≤ t) = 1− e−(k
2)t (2.15)

for t = j/(2N), whereas j is the time measured in generations. Hence, the waiting time

follows an exponential distribution with parameter
(

k
2

)
(referred to as Exp

((
k
2

))
). Thus,

the expectation of P (Tk ≤ t) is E[Tk] = 1/
(

k
2

)
. With this equation the simulation of a

genealogy of size n which shows the ancestral relations of the n genes can be performed.

For this purpose the time to merge two lineages is drawn from Exp
((

k
2

))
for k = n. The

two genes which merge are randomly chosen from all genes in the sample. k− 1 lineages

remain and the process is iterated with k → k − 1 until the last two lineages merge.

Then the coalescent tree is complete. Figure 2.5 shows examples of four coalescent trees

with 10 genes. Different properties of coalescent trees have been derived: The expected

height Hn of a tree with n genes is

E[Hn] =
n∑

j=2

E[Tj] = 2
n∑

j=2

1

j(j − 1)
= 2

(
1− 1

n

)
. (2.16)

If n tends to infinity, the expected height tends to 2 for a scaling of 2N generations. This

is only twice of the expected waiting time for two genes to find their common ancestor.

The expected total branch length Ln of a coalescent tree with n genes is

E[Ln] =
n∑

j=2

jE[Tj] = 2
n−1∑
j=1

1

j
. (2.17)

Coalescent trees can be used together with mutation models to describe the sequence

evolution in a population. In this case mutations are simulated along coalescent trees.

Since the underlying Wright-Fisher model does not consider selection, simulations of

genealogies are useful for statistical tests to create a null-hypothesis distribution. The

Tajima’s D test (Tajima, 1989) which is used to detect genes under selection in a pop-

ulation is important in this context (cf. chapter 5). A detailed introduction into the

Wright-Fisher model and the coalescent process is given in Hein et al. (2005).
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2.3.4. Mutation models

Two important mutation models are the infinite alleles model and the infinite sites

model. Both contain a parameter θ describing the population mutation rate. That is the

expected number of mutations between two individuals of a Wright-Fisher population.

The infinite alleles model assumes that each mutation creates a new allele. The only

piece of information about two alleles is whether they are identical or different. If they

are different, nothing is stated about the quantity of the difference. The population

mutation rate θ can be estimated from the number of different alleles a in a sample of

size n (Ewens, 1972):

a =
n−1∑
j=0

θ

j + θ
(2.18)

The infinite sites model is more complex. It is assumed that each site in a sequence

can be subject to not more than one substitution in its entire history. It is a reasonable

approximation for slowly evolving sequences and/or short time scales. Hence, each

mutation occurs at a different site. Thereby, not the actual nucleotide is regarded, but

its state “not mutated” or “mutated”. However, in comparison to an infinite alleles

model it is possible to count the number of mutations which have occurred between two

alleles. The population mutation rate θ can be estimated from the number of segregating

sites s which are variable positions due to mutations (Watterson, 1975):

θ =
s∑n−1

j=1
1
j

(2.19)

When mutation models are used with genealogies, the number of mutations on each

branch is drawn. To this end, a Poisson distribution with parameter lθ/2 is used for a

branch length l. The division by two is necessary, since the individuals are connected

over two branches by a MRCA. More details are described in Hein et al. (2005).

Another group of models are the finite site models which describe substitutions in the

loci of a finite string. The first finite site model was developed by Jukes and Cantor

(1969). In this model all possible mutations of a position are equally likely. Kimura

(1980) extended this model to take into account the observation that transition events

(a substitution from a purine to another purine nucleotide (A↔G) or from a pyrimidine

to another pyrimidine nucleotide (C↔T)) occur at a faster rate than transversion events
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(substitution from a purine to a pyrimidine or the other way round). Thus, in the

model the probability for transitions is greater than for transversions. Felsenstein (1981)

introduced unequal base frequencies which are superior in describing real DNA sequences.

Hasegawa et al. (1985) combined the two models of Kimura (1980) and Felsenstein

(1981).

2.3.5. Models for continuous traits

While DNA sequences have discrete states which are changed by mutations, other traits,

for example, body size or extremity length, are described by continuous quantities. The

expression of a gene can be regarded as a continuous trait as well. Lande (1976) de-

veloped a model for phenotypic selection which acts on quantitative characters. He

described selection effects and random genetic drift. Later, Lynch and Hill (1986) de-

scribed a general neutral model of genetic variance within populations and the rate of

divergence of quantitative traits under random drift and mutation.

Some models were originally designed to describe evolution of gene expression. Gu

(2004) developed a statistical framework for phylogenomic analysis of gene family ex-

pression profiles using Brownian motion: Expression changes are assumed to follow a

normal distribution with variance proportional to the time which has passed since the

evolutionary process has started. Gu (2004) introduced a number of random variables to

describe lineage-specific evolutionary rates, directional trends resulting from directional

selection, and dramatic shift which may happen after a gene duplication. Unfortunately,

the number of parameters is greater than the degree of freedom which makes an accurate

parameter estimation impossible. Thus, the different random variables were summarised

by their sum which is possible according to the additive nature of the model. Thereupon,

a ML approach was used for parameter estimation.

Khaitovich et al. (2005b) used a compound Poisson process to describe the evolution of

gene expression: The Poisson process is used to model the number of mutations in the

regulatory region of a gene which occur in a time period. For each mutation a random

variable following a so-called mutation effect distribution (MED) is used to describe the

mutation effect on the level of expression of that gene. Since the chosen MED can

be arbitrary, the model is more flexible than a Brownian motion model. The work by

Khaitovich et al. (2005b) represents the fundamentals of this thesis. Thus, it is described

in detail later.
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2.4. Optimisation

2.4.1. Overview

Optimisation aims to compute the optimal parameters of a complex system or model.

“Optimal” means here the minimum or maximum of an objective function. Optimisation

is used, when an analytic solution cannot be found. One of the simplest optimisation

problems is the search for the root of a one-dimensional function.

2.4.2. Bracketing

A commonly used optimisation method is the bracketing method (Brent, 1972). It finds

the root of a one-dimensional continuous and monotonic function f . The algorithm

starts with the search for an interval with the limits x1 and x2 which brackets the root.

This is performed by iteratively increasing the width of a randomly chosen initialisation

interval. The searched interval is detected if the signs of f(x1) and f(x2) are different.

In this case, the root is, due to the intermediate value theorem, in-between x1 and x2.

Subsequently, the first iteration of the optimisation starts. A split point x with x1 < x <

x2 is chosen (e.g., randomly or by selecting the mean value of x1 and x2). If the signs of

f(x1) and f(x) are identical, the root is in-between the interval [x, x2]. Otherwise the

root is in-between the interval [x1, x]. The new interval is used for the next iteration

step recursively. The method stops if the range of the bracketed interval falls below a

predefined value. After this, the mean value of the interval limits is presented as the

estimate for the root of f .

2.4.3. The Brent’s method

Another optimisation method is Brent’s method (also referred to as Golden Section

Search) (Brent, 1972). The method finds a minimum or maximum of a one-dimensional

function f without using derivatives. It is assumed that the algorithm searches for a

minimum (when searching for a maximum the ≤-signs have to be replaced by ≥-signs

below). Before starting, it is essential to bracket a minimum in an interval which is then

downsized iteratively. A minimum is known to be bracketed for three points x, y, and z
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Figure 2.6.: Search for the minimum of a one-dimensional function. In the beginning the

minimum is bracketed by a, c, and e. In step 1 the function is evaluated at

d which replaces e. In step 2 the function is evaluated at b which is a better

minimum. Thus, d is replaced by c as the new upper limit of the interval

which brackets the minimum.

with x < y < z so that f(y) ≤ min{f(x), f(z)}. Thus, the best minimum found so far

is f(y).

The algorithm starts in one of the two intervals (x, y) or (y, z). The interval can be

chosen either by random or by size. In the latter case the larger interval is chosen.

It is assumed that the algorithm selects the interval (x, y). Then a new point v is

chosen which separates (x, y) into two intervals by the ratio of golden section so that

v := y − g(y − x), whereas g = 0.38197 is the golden section constant (if the interval

(y, z) has been chosen, it is separated by v := y+g(z−y)). It was shown that the choice

of the golden section constant provides the fastest convergence (Press et al., 1992).

If f(v) ≤ f(y), a better minimum has been found and the procedure is started again with

the points x, v, and y. Otherwise the points v, y, and z are used, since y is still minimal.

Thus, the range containing the minimum is downsized. The method is iterated until a

sufficiently small interval has been found. Then the point with the smallest function
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(a)

(b) (d)

(c)

Figure 2.7.: Downhill Simplex Method in two dimensions. All four types of steps are

demonstrated which are (a) reflection, (b) reflection and expansion, (c) con-

traction, and (d) multiple contraction. The arrows symbolise the change of

vector-positions during a step and the spotted lines show the resulting new

shape.

value is presented as the minimum (cf. figure 2.6 for an example of the Brent’s method).

For minimising functions of higher dimension a generalised Brent’s method is available.

It minimises the first dimension using the one-dimensional Brent’s method, then the

second and so forth. Subsequently, a new iteration starts with the first dimension again.

This continues until the so far best minimum is not changed more than a predefined

value within one iteration over all dimensions. A problem of the Brent’s method is that

it is possible to get stuck in local minima. However, this is a problem of all optimisation

methods.

2.4.4. The Downhill Simplex Method

The Downhill Simplex Method by Nelder and Mead (1965) is a multi-dimensional opti-

misation method which can be used to find the optimum of a non-linear function f of

more than one independent variable. Here it is assumed that the method searches for
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Algorithm 2.1: Downhill simplex method

Data: Multi-dimensional function f

Result: Optimum of f

Initialisation;

while stop criterion is false do
Calculate the function values and the best, worst and second-worst vector;

Try a reflection from the worst vector;

if the reflection leads to a vector better than the best vector then
try an additional expansion;

if the reflection leads to a vector worse than the second-worst vector then
try a contraction from the worst vector;

if the contraction leads to a vector worse than the worst vector then
make a multiple contraction;

a minimum. The method merely requires function evaluation, but no derivatives. How-

ever, it needs more computational time than methods which can make use of derivatives

(e.g., the Newton-Raphson method (Whittaker and Robinson, 1967)). The method uses

a geometric structure, the simplex, which manoeuvres through the search space towards

the optimum. The shape of the simplex depends on the dimension of the search space.

For a search space with k dimensions the simplex consists of k +1 vectors with k dimen-

sions each and all edges which connect the vectors. Thus, a simplex in a 2-dimensional

space is a triangle, a simplex in a 3-dimensional space is a tetrahedron et cetera. Please

note that the simplexes used by the method have to be non-degenerated so that for each

vector of the simplex, all other vectors span the vector space of k dimensions.

In the beginning an initial simplex from a vector P0 is chosen by adding unit vectors

ei, scaled by constants λi with 1 ≤ i ≤ k, to define the remaining k vectors Pi. The

constants λi can be chosen randomly by using a distribution depending on the length

scale of the problem. Then the function value for each vector is calculated. After

that a series of steps is performed. The steps are of four different types: (a) reflection,

(b) reflection and expansion, (c) contraction, and (d) multiple contraction. Figure 2.7

illustrates these four cases for a search in a 2-dimensional space. In a reflection the vector

with the largest function value which is the worst vector in order to find the minimum is

moved through the opposite face of the simplex. If the new vector has a smaller function

value, an expansion is tried by expanding the distance orthographically to the axis of

reflection in order to find a better vector and to make larger steps towards the optimum.
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If the function values describe a valley in a region of the search space which is reached by

the simplex, a contraction of the simplex is performed to seep through the valley. The

simplex can also contract around its best vector to pass through “bottlenecks” within

a region surrounded by larger function values. The method terminates if the distance

bridged in a reflection step and the decrease of the function value are smaller than

predefined constants. An informal description of the method is algorithm 2.1. Like other

optimisation methods the downhill simplex method may get stuck in a local optimum.

To avoid this, the method should be restarted many times with different initial vectors.

After accomplishing the procedure the best vector is returned as the result.



3. A model with gamma-distributed

mutation effects

In this chapter a gene expression evolution model is presented which uses a gamma

distribution to describe the mutation effects on the level of gene expression. The gamma

distribution is more complex and flexible than the distributions used in the basic gene

expression evolution model.

3.1. Introduction

Kimura’s neutral theory constitutes that the majority of genetic changes on DNA level

are selectively neutral so that the future of most mutations whether to establish in a

population or to disappear is less the result of selection, but the result of random genetic

drift (Kimura, 1983). This theory alludes to the genome, but many studies addressing

gene expression evolution make it reasonable to apply it to the transcriptome which

describes the set of all mRNA molecules in a cell. It was characterised many times that

gene expression between species differ the more the more time has passed, since the taxa

split from a common ancestor (cf. reviews by Ranz and Machado (2006) and Khaitovich

et al. (2006)). Moreover, Khaitovich et al. (2004) found a positive linear correlation

between evolutionary time between taxa and the divergence of gene expression strength

which can be explained by the neutral theory.

Thereupon, Khaitovich et al. (2005b) suggested a neutral model in which a changing

of the expression level of a gene is induced by a mutation in the regulatory sequence

(on DNA level) of that gene. Here, this model is referred to as the M model (M means

mutation). Whenever a mutation happens, the expression level changes according to

the so-called mutation effect distribution (MED) with expectation zero. Two types of

MEDs were used to test their applicability to describe expression changes: (1) a normal

34
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distribution and (2) a positively skewed extreme value distribution. Both distributions

are governed by only one parameter. Because mutations are modelled by Poisson events

that occur with rate µ per time unit t the expression level of a gene at a given time point

is distributed according to a compound Poisson process. Using this model the authors

estimated the parameters of the model from comparative expression array studies from

primate liver and brain. Khaitovich et al. (2005b) asserted that the extreme value

distribution is superior to describe the gene expression changes in all examined data

sets. Due to the asymmetry of the extreme value distribution, it was suggested that

upward changes in expression during evolution are less frequent, but of greater average

magnitude than downward changes.

In this chapter the gamma distribution is suggested as the MED. The gamma distribu-

tion is determined by two parameters for shape and scale and therefore a better fit of

the predicted data to the measured data seems plausible. Unfortunately, the gamma

distributed MED makes an analytical solution to estimate the model parameters impos-

sible. Thus, an optimisation method is applied. In the following the theory is explained

in detail. Subsequently, applicability of the optimisation method based on synthetic

data is displayed and finally a biological example is discussed.

3.2. Materials and methods

3.2.1. The M-gamma model

A sample 1 is assumed. Consider the fate of the expression level of a single gene from

sample 1: The expression level is influenced by mutations in the regulatory region of

the gene. Following standard assumptions, the number of mutations M(d1) follows a

Poisson process with time unit t1 scaled by the rate µ. Thus, d1 = µt1 which denotes

the expected number of mutations. Conditioned on a mutation, the level of expression

of a gene changes according to a MED X. Here a gamma distribution with density

gα,β(x) =
(x + αβ)α−1e−

x+αβ
β

βαΓ(α)
, α > 0, β > 0, x > −αβ (3.1)

is used as MED. With this setting the mean is zero, the variance is αβ2, and skewness

is 2/
√

α. If a negatively skewed distribution is required, the mirrored version of the
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gamma distribution is used. The Poisson process and the MED are combined to the

compound Poisson process

Y1(d1) = Y1(0) +

M(d1)∑
i=1

Xi (3.2)

which describes the logarithm of the expression level for a gene after M(d1) mutations.

Thereby, X1, . . . , XM(d1) follow to the same gamma distribution as X. Y (0) describes

the logarithm of expression level at time zero. Depending on the used MED, the model

is referred to as M-gamma model. Assume another sample 2, whereas the samples 1 and

2 descended from a common ancestor independently with d1 and d2 expected mutations,

respectively. Let Z1,2 be the random variable describing the difference in expression of

the gene between the samples 1 and 2. Thus, Z1,2 is the difference of two independent

compound Poisson processes Y1(d1) and Y2(d2), described by

Z1,2 = Y1(d1)− Y2(d2) =

M(d1)∑
i=1

Xi −
M(d2)∑
j=1

Xj. (3.3)

The moments of the distribution Z1,2 can be derived using characteristic functions (cf.

chapter 2.3.1 or Feller (1957) for details):

Variance v
(gamma)
1,2 = µ2(Z1,2) = αβ2(d1 + d2) (3.4)

Coefficient of skewness s
(gamma)
1,2 = γ1(Z1,2) =

2(d1 − d2)√
α(d1 + d2)3/2

(3.5)

Coefficient of kurtosis k
(gamma)
1,2 = γ2(Z1,2) = 3 +

3α + 6

α(d1 + d2)
(3.6)

To avoid notational difficulties v1,2, s1,2, and k1,2 are used in this chapter to refer to the

moments of Z1,2.

3.2.2. Parameter estimation

Applying the model to data: If the M-gamma model is applied to real data taken from

microarray experiments, it is assumed that all genes on the array are independent of each



3.2. Materials and methods 37

a
Sample 2

d

Sample 3Sample 1

2

Common ancestor

(Outgroup)

d3

d4

d1

b Sample 1 Sample 2

Sample 3
(Outgroup)

d2d1

d3 +d4

Figure 3.1.: Trees used by the model. The rooted tree (a) distinguishes between the

branch to the ancestor of sample 1/2 with parameter d4 and to the outgroup

with parameter d3. The unrooted tree (b) combines the branches with the

parameters d3 and d4 to one branch with parameter d3 + d4.

other and followed the same evolutionary process described by equations 3.2. Therefore,

gene expression changes caused by trans-effects are neglected. In order to find out those

values for the parameters α, β, d1, and d2 which describe the data best, the moments from

the distribution of gene expression differences of the real data are estimated. These ones,

referred to as v̂1,2, ŝ1,2, and k̂1,2, are equated with the equations 3.4–3.6. Unfortunately,

it is not possible to yield a unique solution by transformation, since the model contains

four parameters α, β, d1, and d2, but only three equations for the moments v1,2, s1,2,

and k1,2. However, one could use a higher moment to obtain a fourth equation. But

for practical reasons this is not advisable, since single outliers in the data would lead

to large variation in the estimates. This is due to large exponents in equations of high

moments.

Use of an outgroup: Another way to derive additional equations is to add a third

sample which acts as an outgroup. This can be represented by the tree illustrated in

figure 3.1. In comparison to the use of two samples, the use of an outgroup leads to

two additional branches representing compound Poisson processes with parameters d3

and d4, respectively. Hence, the model has six parameters. The procedure provides two

additional random variables Z1,3 and Z2,3 describing the differences between sample 1

or sample 2, respectively, and the outgroup sample 3. Thus, the following system is
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obtained:

Variance v
(gamma)
1,3 = µ2(Z1,3) = αβ2(d1 + d3 + d4) (3.7)

Coefficient of skewness s
(gamma)
1,3 = γ1(Z1,3) =

2(d1 − d3 + d4)√
α(d1 + d3 + d4)3/2

(3.8)

Coefficient of kurtosis k
(gamma)
1,3 = γ2(Z1,3) = 3 +

3α + 6

α(d1 + d3 + d4)
(3.9)

Variance v
(gamma)
2,3 = µ2(Z2,3) = αβ2(d2 + d3 + d4) (3.10)

Coefficient of skewness s
(gamma)
2,3 = γ1(Z2,3) =

2(d2 − d3 + d4)√
α(d2 + d3 + d4)3/2

(3.11)

Coefficient of kurtosis k
(gamma)
2,3 = γ2(Z2,3) = 3 +

3α + 6

α(d2 + d3 + d4)
(3.12)

For clarity, v1,3, s1,3, k1,3, v2,3, s2,3, and k2,3 are used to refer to the moments in this

chapter. Estimates from real data are referred to as v̂1,3, ŝ1,3, k̂1,3, v̂2,3, ŝ2,3, and k̂2,3.

Unfortunately, the parameter α appears as a pure scaling parameter of the parameters

d1, d2, d3, and d4. Thus, it is not possible to determine α, and therefore, also the

collective of nine equations cannot be used to yield an analytic solution. However, it is

possible to derive partial solutions. The variances v1,2, v1,3, and v2,3 are proportional.

Thus, d1, d2, and d3 + d4 can be estimated directly from the three variances except for

the factor αβ2/2 that is

d1 =
v1,2 + v1,3 − v2,3

2αβ2
, (3.13)

d2 =
v1,2 − v1,3 + v2,3

2αβ2
, (3.14)

d3 + d4 =
−v1,2 + v1,3 + v2,3

2αβ2
. (3.15)

In other words the unrooted tree in figure 3.1 b reflects the evolutionary distance between

the three samples, but depending on αβ2/2 the tree either shrinks or grows in total length.
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To determine this scaling factor, the coefficient of kurtosis is used to scale the branch

lengths. Pertaining to the data, k1,2 is applied, since it is assumed that this is the most

robust estimate of the coefficient of kurtosis. This trick yields a solution depending on

the parameter α. Now, it is obtained that

β̂ =

√
v̂1,2(k̂1,2 − 3)

3α + 6
, (3.16)

d̂1 =
(1.5α + 3)(v̂1,2 + v̂1,3 − v̂2,3)

α v̂1,2(k̂1,2 − 3)
, (3.17)

d̂2 =
(1.5α + 3)(v̂1,2 − v̂1,3 + v̂2,3)

α v̂1,2(k̂1,2 − 3)
, (3.18)

ˆ(d3 + d4) =
(1.5α + 3)(−v̂1,2 + v̂1,3 + v̂2,3)

α v̂1,2(k̂1,2 − 3)
. (3.19)

Thus, an estimate for α leads to a unique solution for the remaining parameters. It is

possible to split the branch with parameter d3 + d4 to estimate d3 and d4 unique (illus-

trated by the tree in 3.1 a). In this case, one coefficient of skewness from a comparison

with the outgroup is essential, since it is a measure for the ratio of mutations between

two branches (Khaitovich et al., 2005b). If, for example, the coefficient of skewness s1,3

is used to split the path over the root into two branches with parameters d3 and d4,

respectively, it follows

d̂3 =
c ŝ1,3

√
(2 + α)3v̂3

1,3

α v̂
3/2
1,2 (k̂1,2 − 3)3/2

+
(1.5α + 3)v̂1,3

v̂1,2(k̂1,2 − 3)
, (3.20)

d̂4 =
c ŝ1,3

√
(2 + α)3v̂3

1,3

α v̂
3/2
1,2 (k̂1,2 − 3)3/2

+
(−1.5− 3

α
)v̂1,2 + 1.5v̂2,3 + 3v̂2,3

α

v̂1,2(k̂1,2 − 3)
, (3.21)

whereas c =≈ 1.29904 (Note: c results from transformations during solving the system

of equations for v1,2, v1,3, v2,3, s1,3, and k1,2).
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Sample-i-intermediate genes to estimate α: To estimate the parameter α, the rela-

tion of sample-i-intermediate genes is used here which was suggested in Khaitovich et al.

(2005b). This relation subdivides the collection of genes into three classes C1, C2, C3.

The genes in Ci with i = {1, 2, 3} are called sample-i-intermediate. Let x
(i)
j be the gene

expression value of gene j in sample i. A gene j is in Ci if its expression value x
(i)
j lies

in between the expression level of the other two samples:

C1 = {j|x(2)
j < x

(1)
j < x

(3)
j ∨ x

(2)
j > x

(1)
j > x

(3)
j } (3.22)

C2 = {j|x(1)
j < x

(2)
j < x

(3)
j ∨ x

(1)
j > x

(2)
j > x

(3)
j }

C3 = {j|x(1)
j < x

(3)
j < x

(2)
j ∨ x

(1)
j > x

(3)
j > x

(2)
j }

The class C1 is enriched with genes in which changes on the branch with parameter d2

caused the difference in expression between sample 1 and 2, while the class C2 rather

contains genes which changed their expression level on the branch with parameter d1. It

is assumed that the expression values of the majority of genes in C1 and C2 are closer to

the expression values of the corresponding genes in the ancestor of sample 1 and sample 2

in comparison to genes in C3. A reason for this is that sample 1 and sample 2 evolve

together on the branch with parameter d4. The distributions of differences between

expression values in sample 1 and sample 2 for genes in C1, C2, and C3 are denoted with

ZS1I , ZS2I , and ZS3I , respectively.

The distributions ZS1I and ZS2I were used by Khaitovich et al. (2005b) to show that

positively skewed MEDs are superior than symmetric MEDs in primates for an M model.

If a positively skewed MED is used, ZS1I is expected to be negatively skewed and ZS2I

is expected to be positively skewed. If the MED is negatively skewed, it is vice versa. In

contrast, for symmetric MEDs the coefficients of skewness of ZS1I and ZS2I are expected

to be zero (cf. Khaitovich et al. (2005b) for more details). Thus, the coefficients of

skewness of ZS1I and ZS2I are affected by the skewness of the MED. The skewness of

the used gamma distributed MED is 2/
√

α (the skewness of the mirrored variant is

−2/
√

α). Hence, both distributions ZS1I and ZS2I can be used to estimate α, since

the skewness of the gamma distributed MED depends only on α. However, there are

no equations known to describe the coefficients of skewness of ZS1I and ZS2I . Hence,

computer simulations of the model are performed to estimate them from the simulated

data. In this study the more robust second coefficient of the Pearson’s skewness [3(mean−
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median)/standard deviation] is applied to estimate the skewnesses of ZS1I and ZS2I

annotated as sS1I and sS2I , respectively.

Simulation of the process: A simulation of the evolutionary process according to

the M-gamma model takes place as follows: At first values for the parameters α, β,

d1, d2, d3, and d4 are chosen. Then the expression value at the root (or the inner

node in case of an unrooted tree) is initialised with 0 (other values can be used as well

without consequence, since only the differences between the values in the leaves are

used after simulation). Subsequently, the following procedure is performed for the whole

tree according to a depth first search: To simulate the process from an ancestor to a

child along the branch with parameter di with i ∈ {1, 2, 3, 4}, the number of mutations

occurring on that branch is drawn from a Poisson distribution with parameter di. The

resulting M(di) changes in gene expression are drawn from the gamma distribution with

parameters α and β (cf. equation 3.1) (or its mirrored variant for negatively skewed

mutation effects). These changes are added to the expression value of the ancestor to

calculate the expression value in the child. Expression values in the leaves are stored

as the results. The whole simulation is repeated many times to get a distribution of

simulated expression values (e.g 107 genes evolving according to the process).

A particular case of simulation is referred to as simulation depending on α. Here at first

a value for α is chosen. Then the parameter estimates β̂, d̂1, d̂2, d̂3, and d̂4 (or ˆ(d3 + d4)

instead) are calculated using equations 3.16–3.21. Accordingly, the simulation process

is started with these parameter values. As a result of computer simulation depending

on α, the second coefficients of Pearson’s skewness sS1I and sS2I referred to as sS1I(α)

and sS2I(α), respectively, are estimated.

Optimisation of α: If one wants to estimate parameters for real data, the goal is to

find an estimate α̂ so that sS1I(α̂) = ŝS1I and sS2I(α̂) = ŝS2I . Thereby, ŝS1I and ŝS2I are

estimated from the real data. The estimated α̂ together with the parameter estimates

from equations 3.16–3.21 are a good description of the evolutionary process leading to

the observation. Thus, an optimisation strategy is used. Let α′ be an estimate for α.

The distance of α′ to the optimal solution is defined by the following objective functions:

δ1(α
′) := sS1I(α

′)− ŝS1I (3.23)
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Figure 3.2.: α′ plotted against δ1(α
′) (grey) and δ2(α

′) (black) in 0.01-steps. The plot

shows the cases 1 to 4 described in table 3.1. Each point is based on 106

simulations.

δ2(α
′) := sS2I(α

′)− ŝS2I (3.24)

Thus, the nulls of equations 3.23 and 3.24 have to be found. Figure 3.2 shows δ1(α
′)

and δ2(α
′) each in the interval [0.01, 10.00] for four different parameter assignments

(the cases are described in table 3.1). The nulls of the two functions are determined
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Table 3.1.: Test cases for the parameter estimation method.

Case α β d1 d2 d3 d4

1 1.0 1.0 1.0 1.0 2.0 1.0

2 1.0 1.0 2.0 1.0 2.0 1.0

3 4.0 0.5 1.0 1.0 2.0 1.0

4 4.0 0.5 2.0 1.0 2.0 1.0

independently with the bracketing method (cf. chapter 2.4.2 or (Brent, 1972)). Before

this method is started, it is checked whether to choose the gamma distribution or its

mirrored variant as the MED: If ŝS1I < 0 and ŝS2I > 0 the gamma distribution is used.

If ŝS1I > 0 and ŝS2I < 0 the mirrored gamma distribution is used. For each step of

the bracketing method a series of 107 simulations is performed to generate sS1I(α
′) and

sS2I(α
′), respectively. Optimisation stops if the width of the bracketed interval falls

below 0.001. The best α-estimates from the optimisation of δ1(α
′) and δ2(α

′) are called

α̂δ1 and α̂δ2 , respectively. Please note that α̂δ1 = α̂δ2 for idealised data. To address noise

in the data, the final estimate α̂ is calculated by the mean value of α̂δ1 and α̂δ2 weighted

by the sizes of the sample-i-intermediate subsets:

α̂ =
α̂δ1 · |C1|
|C1|+ |C2|

+
α̂δ2 · |C2|
|C1|+ |C2|

(3.25)

The weighting is used, since the size of the subsets depends on the ratio of d1 and d2. In

extreme cases, subsets might get very small and therefore become very sensitive against

outliers.

3.3. Experiments and results

3.3.1. Evaluation of the parameter estimation method

In order to validate the parameter estimation method, synthetic data sets were generated

by simulation of the process corresponding to the tree in figure 3.1a (cf. chapter 3.2.2).

For each gene in a synthetic data set one simulation was performed to generate the gene

expression values in the three samples. This was repeated numerous times to simulate
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Table 3.2.: Parameters estimates for synthetic data sets. The table shows the mean val-

ues and 95 % confidence intervals of the estimates of 1, 000 data sets generated

with the parameters in table 3.1.

Case #Genes α̂ β̂ d̂1 d̂2 d̂3 d̂4

1 104 1.273 0.968 1.030 1.031 1.957 1.142

(0.570 , 2.435) (0.776 , 1.135) (0.499 , 1.913) (0.506 , 1.938) (0.906 , 3.680) (0.534 , 2.177)

1 105 1.057 0.992 0.986 0.986 1.940 1.019

(0.834 , 1.359) (0.935 , 1.044) (0.774 , 1.252) (0.771 , 1.252) (1.505 , 2.488) (0.792 , 1.288)

2 104 1.177 0.990 2.220 1.109 2.239 1.099

(0.388 , 2.613) (0.860 , 1.125) (1.107 , 3.876) (0.551 , 1.917) (1.043 , 4.152) (0.564 , 2.007)

2 105 1.020 0.999 2.026 1.013 2.030 1.011

(0.771 , 1.372) (0.954 , 1.042) (1.640 , 2.470) (0.823 , 1.233) (1.620 , 2.523) (0.817 , 1.243)

3 104 5.280 0.475 1.011 1.011 1.876 1.163

(2.257 , 11.302) (0.308 , 0.637) (0.697 , 1.558) (0.708 , 1.571) (1.164 , 2.950) (0.764 , 1.836)

3 105 4.171 0.494 0.996 0.966 1.947 1.041

(3.341 , 5.133) (0.442 , 0.542) (0.881 , 1.129) (0.883 , 1.136) (1.694 , 2.234) (0.905 , 1.187)

4 104 5.300 0.501 2.087 1.041 2.112 1.020

(2.003 , 16.903) (0.377 , 0.621) (1.439 , 3.059) (0.708 , 1.535) (1.252 , 3.378) (0.551 , 1.634)

4 105 4.110 0.499 2.006 1.003 2.004 1.005

(3.154 , 5.385) (0.460 , 0.536) (1.782 , 2.273) (0.891 , 1.135) (1.700 , 2.325) (0.857 , 1.168)

the large number of genes on a microarray. Afterwards, the estimation method was

applied to the synthetic data sets and the estimates were compared to the parameter

values used for generation.

Four different parameter assignments were selected to generate synthetic data sets. They

are shown in table 3.1. Case 1 and 2 represent a situation in which the gamma distri-

bution assumes the shape of an exponential distribution. In case 3 and 4 the MED is

rather similar to a normal distribution, but nevertheless with a skewness of 2/
√

α = 1.

Please note that there are no test cases with a negatively skewed MED, since the results

are analogous (not shown). Case 1 and 3 represent clock-like trees with an equal number

of expected mutations on each branch from the root to the leaves. Case 2 and 4 show

accelerated evolution on the branch to sample 1. However, the parameters were chosen

so that the variance αβ2 of the gamma distributed MED is 1 in each case. Thus, the

variance between two samples is assumed to be the same for both MEDs if the branches

connecting them have equal parameter values. For each of the test cases series of 1, 000

data sets each with (1) 10, 000 and (2) 100, 000 genes were generated.

The parameters were estimated for each of the sets with the optimisation method (cf.

chapter 3.2.2). Mean estimates and 95 % confidence limits of the 1, 000 estimations were
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Table 3.3.: Comparison of the primate data sets. The table shows the sample sizes of

the different species and the number of genes.

Data set #Human #Chimpanzee #Orangutan #Genes

Liver 95 6 6 2 1,971

Brain 95 6 3 1 1,998

Liver 133 6 5 5 8,036

Brain 133 6 5 1 10,444

calculated for each case. The results are presented in table 3.2. In each case the mean

estimates correspond approximately to the true parameters. For 10, 000 genes the devi-

ation from the true parameters is stronger than for 100, 000 genes. The deviation of the

estimates for α is stronger than for the other parameters. However, the estimators look

asymptotically unbiased overall. The confidence limits are decreased with an increase

of the number of genes from 10, 000 to 100, 000. The confidence limits correlate roughly

linearly with the values of the parameters, for example, the limits of d̂1 are twice as large

in the cases in which d1 = 2 in comparison to the cases in which d1 = 1 (for the same

number of genes). Further, the shape of the MED affects the variance of d1, d2, d3, and

d4 estimates, since in case 1 and 2 (α = 1.0, β = 1.0) the confidence limits are slightly

greater than in case 3 and 4 (α = 4.0, β = 0.5).

3.3.2. Analysis of primate data

The M-gamma model was applied to different primate data sets containing expression

profiles from liver and brain of human, chimpanzee, and orangutan (Khaitovich et al.,

2005b). The common ancestor of human and chimpanzee lived about 6 million years ago

and the common ancestor of all three species lived about 13 million years ago (Glazko

and Nei, 2003). Thus, the orangutan species was used as the outgroup sample 3, while

the human species and the chimpanzee species were regarded as sample 1 and sample 2,

respectively. Table 3.3 gives an overview over all data sets which were collected with

Affymetrix HG U95Av2 arrays (liver95 and brain95) and Affymetrix U133plus2 arrays

(liver133,brain133). Both array types are designed for human samples. To avoid artifacts,

only expression values of those genes were included in which the corresponding oligonu-

cleotide sequences match between human and chimpanzee. However, all these expression
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Figure 3.3.: The gene expression difference distributions ZS1I , ZS2I , and ZS3I between

human and chimpanzee.

values were also measured from orangutan without checking the match between the cor-

responding oligonucleotides from human and orangutan, since the orangutan genome

data was not available. Thus, gene expression measured from orangutan is controversial,

since measurements might be misleading as a result of weak hybridisation caused by

mismatching human specific oligonucleotides.

After scanning, the raw data was normalised with the Bioconductor RMA function

(Bolstad et al., 2003; Irizarry et al., 2003a,b). Thereby, only those probe sets were taken

into account in which expression was significantly above background level in all samples
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Table 3.4.: Parameter estimates from primate data. 95% confidence limits of 1, 000

bootstrap estimates are shown in brackets.

Data set α̂ β̂ d̂1(human) d̂2(chimpanzee) d̂3(orangutan) d̂4

Liver 95 68.339 0.056 0.353 0.331 -3.221 3.974

932 valid (5.256 , 1197.6) (0.013 , 0.230) (0.264 , 0.582) (0.228 , 0.577) (-15.83 , -0.406) (1.174 , 16.54)

Brain 95 9.904 0.112 0.478 0.198 -1.909 3.007

926 valid (1.515 , 1094.7) (0.014 , 0.283) (0.288 , 1.067) (0.077 , 0.683) (-18.531 , -0.352) (1.494 , 20.010)

Liver 133 10.240 0.272 0.539 0.550 0.000 1.004

987 valid (4.201 , 282.58) (0.179 , 0.362) (0.376 , 0.936) (0.325 , 1.060) (-0.100 , 0.285) (0.589 , 1.670)

Brain 133 5.373 0.354 1.557 0.884 -0.176 4.476

991 valid (0.458 , 523.80) (0.296 , 0.392) (0.826 , 2.449) (0.399 , 1.760) (-0.785 , 0.000) (2.297 , 7.870)

of the corresponding data set. In the primate data sets the species are represented by

more than one individual in most cases. Thus, the sample size of the three samples is

greater than 1. Let n1 be the size of sample 1, n2 be the size of sample 2, and n3 be the

size of sample 3. Before starting the parameter estimation method, the moments v̂1,2, v̂1,3,

v̂2,3, ŝ1,3, k̂1,2, ŝS1I , and ŝS2I were estimated from the data. To this end, these moments

were first estimated for all pairs of individuals of the two respective species (n1 · n2

comparisons between human and chimpanzee, n1 · n3 comparisons between human and

orangutan, and n2 · n3 comparisons between chimpanzee and orangutan). Subsequently,

for each moment the mean value from all pairwise comparisons was calculated and then

used for the parameter estimation method. For all primate data sets a positively skewed

distribution was assumed, since sS1I < 0 and sS1I > 0 in each set. Figure 3.3 shows

exemplarily the distributions ZS1I , ZS2I , and ZS3I for the sets “Liver 133” and “Brain

133” to illustrate the difference of the skewness. Obviously the ZS3I-distributions consists

mainly of larger gene expression differences (indicated by the minimum around zero),

since there is a great chance for genes in C3 that the gene expression in sample 1 and

2 drifted in different directions, while it stayed unchanged in sample 3. In addition to

parameter estimation for the original data sets, the bootstrapping resampling method

(Efron, 1979) was used over the genes and the individuals to construct 95 % confidence

regions. For each data set 1, 000 bootstrap data sets were generated and the parameter

estimation method was applied to the resampled data.

Table 3.4 shows the parameter estimates and 95 % confidence intervals from bootstrap-

ping. The results for α and β are very different in the data sets. However, within the

two different types of microarrays (HG U95Av2 and U133plus2) the estimates for α are

greater and for β are smaller in liver than in brain. Thus, for the same type of array the
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Figure 3.4.: Density of the mutation effects estimated from the liver (grey) and brain

(black) data sets with the M model with extreme value distributed MED

eβ(x) (estimates for β were taken from Khaitovich et al. (2005b): Liver

95 (β = 0.383), Brain 95 (β = 0.293), Liver 133 (β = 0.457), Brain 133

(β = 0.330)) and with the M-gamma model.

skewness of the MED 2/
√

α is greater in the brain sets than in the liver sets. However,

the confidence limits have a wide range, especially for the parameter α. The ranges

of the confidence intervals for α and β are greater in the “95”-data sets than in the

“133”-sets which can be explained by the considerably smaller number of genes. To illus-

trate the shapes of the gamma distributed MEDs depending on the α- and β-estimates

from the four data sets, figure 3.4 shows a comparison of the corresponding density func-

tions ga,b(x) (equation 3.1). In order to compare these densities with previous results by

Khaitovich et al. (2005b), figure 3.4 also shows density functions of the corresponding

extreme value distributed MEDs eβ(x) of the M model. The estimates for β were taken

from Khaitovich et al. (2005b). The gamma distributions of the “133” data sets have a



3.3. Experiments and results 49

orang

orang

Liver 95

Brain 95

orang

Liver 133

orang

Brain 133

1.0

human

human

human chimpanzee

chimpanzee

chimpanzee human

chimpanzee

Figure 3.5.: Expected number of mutations represented by different branch lengths for

the primate data sets.

greater variance αβ2 (Liver 133: 0.758, Brain 133: 0.673) than the ones estimated from

the considerably smaller “95” sets (Liver 95: 0.214, Brain 95: 0.124) and they also differ

more greatly from the corresponding extreme value distributions (cf. figure 3.4).

When analysing the estimates for the expected number of mutations d1, d2, d3, and d4,

it is noticeable that they are about three to four times greater for “Brain 133” than for

the other three data sets. However, the ratios of these estimates between human and

chimpanzee (d̂1/d̂2) are consistent in the different data sets: In the two liver sets the

ratios d̂1/d̂2 are nearly equal (Liver 95: 0.353/0.331 = 1.066, Liver 133: 0.539/0.550 =

0.98). In contrast, the two brain sets show an acceleration on the human lineage (Brain

95: 0.478/0.198 = 2.414, Brain 133: 1.557/0.884 = 1.761). However, the confidence

intervals of d̂1 and d̂2 overlap in both brain sets. While the ratio of d̂1 and d̂2 depends

on the ratios between the three variances v̂1,2, v̂1,3, and v̂2,3 (cf. equations 3.13–3.15), the

ratio between d̂3 and d̂4 depends on the coefficient of skewness ŝ1,3 (cf. equations 3.20



3.3. Experiments and results 50

Table 3.5.: Comparison of the mice data sets

Data set #dom #mus #spretus #Genes

Brain 6 6 3 19,406

Liver/Kidney 6 6 3 19,510

Testis 6 6 3 19,348

and 3.21) which is a more sensitive criterion against outliers in the empirical data than

the variances. This would explain the negative d̂3 in all four data sets. However, if the

position of the root of the tree is not considered, equation 3.19 can be used to estimate

the sum ˆ(d3 + d4). The resulting unrooted trees which show the ratios between the three

species are depicted in figure 3.5. Here the differences in size between the tree for “Brain

133” and the remaining ones is eye-catching.

3.3.3. Analysis of mice data

To present a second biological example, data sets of brain, testis and a mixture of liver

and kidney tissues of mice were applied to the model. These data sets are part of the

data analysed by Voolstra et al. (2007) using spotted arrays (OligoLibrary by Sigma-

Genosys /Compugen spotted on Schott Nexterion Slides H). Table 3.5 gives an overview

of the data sets. Mus musculus domesticus (dom) and Mus musculus musculus (mus)

are subspecies of Mus musculus. They were regarded as sample 1 and 2, respectively.

The species Mus spretus (spretus) was used here as the outgroup (regarded as sample 3).

The split between Mus musculus and Mus spretus occurred about 1.1 million years ago

(She et al., 1990). The data sets are analysed in the same manner as the primate sets

(cf. chapter 3.3.2).

The results are shown in table 3.6. Interestingly, a positively skewed MED could not fit

the liver/kidney data, since ŝS1I > 0 and ŝS2I < 0. Thus, the mirrored version of the

gamma distribution was used in this case (cf. chapter 3.2.2). Again, the estimates for

α are very different between the data sets. The corresponding confidence intervals are

extremely wide. For a small number of bootstrap data sets the optimisation algorithm

could not find an estimate, since the upper limit of the search space for α′ was reached

which was set to 4,096. In these cases the algorithm stopped. The number of valid runs
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Table 3.6.: Parameter estimates from mice data. 95% confidence limits of 1, 000 boot-

strap estimates are shown in brackets. For the Liver/Kidney a mirrored ver-

sion of the gamma distribution was applied. A small number of estimations

on the 1, 000 bootstraps per data set reached the limits of the search space

of the optimisation method. Therefore, no results were obtained. These runs

are invalid. The number of valid results is denoted in the first column.

Data set α̂ β̂ d̂1(dom) d̂2(mus) d̂3(spretus) d̂4

Brain 13.155 0.350 0.108 0.192 0.100 0.103

953 valid (3.534 , 2156.7) (0.179 , 0.539) (0.079 , 0.124) (0.128 , 0.399) (0.024 , 0.177) (0.028 , 0.595)

Liver/Kidney 275.41 0.066 0.124 0.132 -0.040 0.449

833 valid* (9.324 , 1428.4) (0.012 , 0.227) (0.103 , 0.187) (0.102 , 0.195) (-1.446 , 0.235) (0.133 , 1.948)

Testis 3.586 0.301 0.107 0.079 0.046 0.157

965 valid (1.698 , 309.76) (0.035 , 0.475) (0.078 , 0.124) (0.051 , 0.125) (-0.700 , 0.101) (0.071 , 0.921)

Liver/Kidney
Mus spretusMus spretus

Brain

Mus musculus
Mus musculus

domesticus

Mus musculus
domesticus

Mus musculus

0.1

Mus spretus

Testis

Mus musculus
domesticus

Mus musculus

musculus

musculus

musculus

Figure 3.6.: Expected number of mutations represented by different branch lengths for

the mice data sets.

in which the optimisation method terminates is denoted in the first column of table 3.6.

In comparison to the primate data sets, the di estimated from the mice sets are substan-

tially smaller. In brain an acceleration on the mus-lineage (0.192) in comparison to the

dom-lineage (0.108) with non-overlapping confidence intervals can be observed, while in

liver/kidney the estimates d̂1 and d̂2 are very similar (0.124 and 0.132, respectively). In

testis might be a slight acceleration in dom (0.107 against 0.079), but the confidence
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intervals overlap. Like in the primate sets, the ratios between d̂3 and d̂4 are problematic.

Thus, unrooted trees were used for illustration (cf. figure 3.6).

3.4. Discussion

The presented M-gamma model provides a deeper analysis of gene expression evolution

than the former model by Khaitovich et al. (2005b), since it uses a gamma distributed

MED. Depending on its additional parameter, the gamma distribution is more flexible

than the normal or the extreme value distribution. Moreover, the gamma distribution

should summarise effects of different magnitude more accurately which was shown by

Uzzel and Corbin (1971) for the discrete version of the gamma distribution. This might

be useful when modelling evolution of gene expression, since it is reasonable to assume

that the expression of genes evolve with different magnitude over all genes. However,

further research is necessary to get a deeper view into these processes. By then, it is

assumed that all genes evolve under the same model without any dependencies among

each other which neglects trans-effects. A problem related to this simplification is that

some genes might affect the expression levels of many other genes which would lead to

imprecise estimates. However, it has been suggested that evolution of cis-effects and

single gene affecting trans-effects are prevalent (Morley et al., 2004).

To estimate the model parameters, a method of moments is used (Pearson, 1894). To

this end, the relation of sample-i-intermediate genes is applied to obtain the distributions

ZS1I and ZS2I whose skewnesses are necessary for the estimation. Unfortunately, closed

equations for these characteristics are unknown. Thus, computer simulation is used

to estimate the them from the simulated data. To adjust the best fitting parameter

assignment a bracketing method is applied. Thereby, it is searched for the null of δ1(α
′)

(equation 3.23) and δ2(α
′) (equation 3.24).

The method was validated with synthetic data sets which revealed large confidence

intervals (cf. table 3.2). However, this depends on the number of genes. For 10, 000 genes,

the typical number of genes on a microarray, variation of the estimates is greater than

in the model by Khaitovich et al. (2005b). However, the number of model parameters is

larger. While estimates for di with i ∈ {1, 2, 3, 4} do not differ much from the former M

model (Khaitovich et al., 2005b), it is noticeable that α varies greatly (cf. table 3.2). A

reason for the considerable variation in α is the nature of the gamma distribution. Its
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Figure 3.7.: Examples of the density of three gamma distributions with the same variance

of 2 and α = 2, β = 1 (black), α = 20, β =
√

0.1 (dark grey), α = 200, β =
√

0.01 (light grey).

variance is αβ2 and its skewness is solely determined by α which is 2/
√

α. Thus, if α

tends to ∞, the distribution tends to symmetry. For large α small changes in α would

not dramatically affect the shape of the distribution if β is adjusted to fix the variance

αβ2. To illustrate this, figure 3.7 shows density functions of three gamma distribution

with α = 2, α = 20, and α = 200, but all with a variance αβ2 = 2 adjusted by a

corresponding value for β (1,
√

0.1, and
√

0.01, respectively). While a difference in

the distributions for α = 2 and α = 20 can be observed, the distributions for α = 20

and α = 200 almost superimpose each other. Thus, for large numbers changes of α have

practically no effect on the shape of the distribution, because β is adjusted automatically

by the equation 3.16 if the optimisation method is used.

The estimation method restricts the search space by the use of the equations 3.16–3.21

which do not contain all moments. Naturally, the use of all moments derived from

the three pairwise comparisons and the sample-i-intermediate distributions would be an

improvement in order to estimate a parameter assignment which describes examined

data best. Then an alternative is to search in the space of all 6 parameters α, β, d1,

d2, d3, and d4. This was tried out (not shown here). To measure the quality of an

estimate, the χ2-score between the moments taken from simulations and the moments

taken from the real data was used. In a different approach the likelihood was calculated

and used as a criterion for the quality of an estimate (the likelihood function for a general

model is introduced in chapter 4.2.3). However, the problem to find the optimum in
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this 6-dimensional search space is non-linear, the fitness-landscape is cliffy, and each

query of the χ2-score function or likelihood function as well results in a large number

of simulations, because there are no closed equations for the moments of ZS1I and ZS2I .

Another problem is to get stuck in local optima. To optimise the χ2-score or likelihood

function (1) the Downhill Simplex Method by Nelder and Mead (1965) and (2) an

evolutionary algorithm (cf. Bäck and Schwefel (1993)) were tested. Unfortunately, both

methods are extremely time consuming and therefore not efficient. Thus, the approach

described in chapter 3.2.2 was used.

The M-gamma model was applied to microarray data from primates and mice. Thereby,

one simplification was made: It was abstracted from the genealogies of the different

individuals of the compared species. However, one can neglect this, since the diver-

gence times between the compared species are exceedingly greater than the times to

the common ancestors of the individuals within the species. The results for primates

agree with previous results: Khaitovich et al. (2005b) observed an acceleration on the

human lineage in brain but not in liver. However, another explanation for the different

speed of evolution between human and chimpanzee brain is a decelerated evolution in

chimpanzee brain instead of an acceleration in the human brain. Admittedly, these re-

sults depend on the ratios of the three robust and time-linear variances v̂1,2, v̂1,3, and

v̂2,3. However, estimates for the expected number of mutations di with i ∈ {1, 2, 3, 4}
differ much among the two brain data sets (cf. figure 3.5). This might be due to the

challenging estimation for α, since α scales the di parameters. Thus, one can conclude

that these estimates are weak and more research is necessary.

The estimates for d3 are problematic, since they are negative in all four primate data sets.

The summary statistics used to estimate the ratio between the mutations on the branch

to human/chimpanzee and the branch to the outgroup is ŝ1,3. If this estimate differs

strongly from the expectation, it is possible that one of the estimates d̂3 or d̂4 describing

the mutations on the branches outgoing from the root is greater than expected for the

variance between sample 1 and 3. Then the other parameter compensates it by a negative

value. However, it is not necessary to regard this root placement problem if being only

interested in the overall number of mutations d3+d4. Nevertheless, it is relevant to know

why the problem of negative values for d3 occurs in all primate data sets. A reason for

this might be the used orangutan outgroup. The four different data sets consist of those

genes whose probe oligonucleotide sequences match between human and chimpanzee.

However, it was not checked whether they also match the orangutan sequences. Thus,

the negative values might be the result of weak hybridisation depending on mismatching
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bases which led to a poor estimate for s1,3. However, it is not easy to simulate such a

situation in order to prove this assumption, since the M-gamma model simulates gene

expression differences between samples, but no absolute gene expression levels, because

the real ancestral states are unknown. Thus, it is critical to simulate weak hybridisation

by decreasing the signal in simulated outgroup data to check whether it results in poor

estimates for d3 and d4.

The estimates for α and β which describe the gamma distributed MED provide inter-

esting results. However, all results for α have large confidence limits. Indeed, this can

be explained by the nature of the gamma distribution as discussed previous. The dif-

ferences in the results between the two array technologies Affymetrix HG U95Av2 and

Affymetrix U133plus2 are greater than between the two different tissues. The MEDs

estimated from the “133”-sets have a greater skewness and a greater variance than the

MEDs estimated from the “95”-sets (cf. figure 3.4) for the same tissue. Since the “133”-

sets have a four to five times greater number of genes than the “95”-sets, the results are

statistically more powerful.

The results on the three mice data sets are not directly comparable with the results

from Voolstra et al. (2007), since a different approach was used. Beside a SAM analysis

(Tusher et al., 2001) in which genes with differential expression between the species and

subspecies were picked out, Voolstra et al. (2007) used the scaled divergence measure

introduced by Lemos et al. (2005) that is the quotient of the between-species component

of variance and the within-species component of variance. With this approach it was

observed that testis has a large scaled divergence between species in comparison to the

other tissues, but a small scaled divergence between subspecies. Indeed, 3-4 different

subspecies were used. In the analysis with the M-gamma model only the subspecies dom

and mus were used together with Mus spretus as the outgroup. However, the overall

number of mutations between dom and mus is the smallest for testis. Since the variance

of mutation effects is αβ2 = 0.325 for testis (1.611 for brain and 1.200 for liver/kidney),

it is in good agreement with the results by Voolstra et al. (2007). In contrast, the length

of the branch to spretus is smaller than in liver which is twice as big there. However,

a reason for this might be that the additional subspecies were not taken into account.

Hence, a useful extension would be a model which can consider more than three samples

together.

The use of a negatively skewed distribution for the liver/kidney mice data set extends the

results by Khaitovich et al. (2005b). They suggested a positively skewed distribution for
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the mutation effects (indeed, only for the primate data). However, the estimated MED

for liver/kidney is merely slightly negatively skewed with −0.121. Thus, an explanation

for this result is noise in the data set, particularly all other data sets can be described

by a positively skewed distribution. From the statistical point of view, the data sets are

all critical anyway, because of the small sample size for each species.

3.5. Conclusion

The described M-gamma model provides additional information about the process of

gene expression evolution, since it extends the MED by an additional parameter which

makes it more flexible. The results from biological data sets indicate that a positively

skewed MED is in most cases superior than a negatively skewed MED or a symmetric

MED. Unfortunately, some model parameters estimated from applied data sets have

large confidence intervals. Beside properties of the gamma distribution, this can be

attributed to the small size of the data sets. Small sets are more sensitive against

environmental effects, metabolic processes, and other non-mutation effects. Thus, a

beneficial extension would be a method to estimate the influence of all non-mutational

effects. This problem is addressed in the next chapter.



4. A model with mutational and

non-mutational effects

In this chapter a gene expression evolution model is presented which includes effects

that change the level of gene expression without mutating regulatory regions on DNA

sequence level. These so-called non-mutational effects are caused, for example, by the

environment and the cell cycle. The resulting model describes real data in a better way.

4.1. Introduction

In recent years several studies have been published with special focus on the evolution

of gene expression. Typically, differences in gene expression between closely related

species were compared (cf. reviews by Gilad et al. (2006b), Ranz and Machado (2006),

and Khaitovich et al. (2006)). Accumulation of differences with time was reported

frequently which led to the idea to apply the neutral theory by Kimura (1983) to the

transcriptome. Thus, Khaitovich et al. (2005b) developed a neutral model for evolution

of gene expression which is referred to as M model here. In this model (and also in the

M-gamma model in chapter 3) random mutations occur in the regulatory region of a

gene which increase or decrease the mRNA abundance of that gene. Other effects which

change the level of gene expression are not addressed. Hence, all the differences between

two samples (e.g., from two different species) are completely attributed to evolution.

This is a strong simplification, since mutations cause only a fraction of expression

changes. Moreover, the expression level of a gene is influenced by non-mutational ef-

fects like all kinds of metabolic pathways, the cell cycle, epistatic effects, life history,

and potential diseases. Furthermore, expression measurements by microarrays are noisy

caused by variance in the hybridisation process and technical measurement errors while

scanning (Baldi and Hatfield, 2002; Speed, 2003). Lemos et al. (2005) conjectured that

57
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half of the variance in gene expression within a population is caused by environmen-

tal variance. Khaitovich et al. (2004) estimated that the environmental component of

variation is roughly three times greater than the genetic component.

For a better understanding of gene expression evolution it is indispensable to differentiate

between mutational and non-mutational effects. A first step towards this goal is to

estimate the impact of these two kinds of effects. The problem is addressed in this

chapter by embedding all non-mutational effects into the M model by Khaitovich et al.

(2005b). To this end, another random variable is introduced which summarises all

influences not depending on mutations. This extended model is referred to as M&E-

model (=Mutation and error). The non-mutational influences can be regarded as noise

if one wants to observe evolutionary differences. To estimate the model parameters of

this more complex model, an optimisation method is required. Two types of optimisation

methods are discussed: (1) a χ2-fit method which can be used for normal distributed

and extreme value distributed mutation effects and (2) a maximum-likelihood (ML)

method which provides a convenient solution for normal distributed mutation effects.

The methods are applied to biological data to illustrate their applicability.

Finally, the M&E-model leads to a methodology that detects genes which changed their

expression level due to mutations in regulatory regions during evolution. These genes are

of special interest, since they might be the cause for phenotypic differences depending

on regulatory differences. A simple Bayesian method is presented to detect these genes.

4.2. Materials and methods

4.2.1. The M&E model

The M&E-model is an extension of the M model by Khaitovich et al. (2005b). Corre-

sponding to the M model, mutations in the regulatory region of a gene in a sample 1

affect the expression level of that gene. For time t1 scaled by the mutation rate µ it is

described by the compound Poisson process

Y1(d1) = Y1(0) +

M(d1)∑
i=1

Xi, (4.1)



4.2. Materials and methods 59

Sample 2

Observation 2

d

Common ancestor

Sample 1

Observation 1

Non−mutational effects

2d1

Figure 4.1.: Tree of two samples descended from a common ancestor. Mutation based

variations in the difference of gene expression levels of the samples are not

observable, since the mutational changes are overlayed by non-mutational

effects.

whereas d1 = µt1. M(d1) is the Poisson distributed random variable to describe the

number of mutations and Xi is a random variable which describes the effect of the i-th

mutation on the log-scaled gene expression level. All Xi follow the same mutation effect

distribution (MED) X. Y1(0) is the initial expression level (cf. chapter 3.2.1 for more

detail). In the M&E-model non-mutational effects are modelled additionally by another

random variable E1 with a mean of zero which can be taken as statistical noise (E

means error). The distribution of E1 is referred to as non-mutational effect distribution

(N-MED). With E1 the process of gene expression evolution is described by

Y E
1 (d1) = Y1(d1) + E1. (4.2)

Let ZE
1,2 be a random variable describing the difference in expression of a gene between

two samples 1 and 2 which diverged from a common ancestor independently with pa-

rameters d1 and d2, respectively. Let E1 and E2 be the corresponding non-mutational

effects. E1 and E2 follow the same N-MED (cf. figure 4.1). Then ZE
1,2 is defined by

ZE
1,2 =

Y1(0) +

M(d1)∑
i=1

Xi

+ E1

−

Y2(0) +

M(d2)∑
j=1

Xj

+ E2

 . (4.3)

Please note that Y1(0) = Y2(0). It follows that

ZE
1,2 = Y E

1 (d1)− Y E
2 (d2). (4.4)
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The parameters of this model are d1 and d2. Remaining parameters are those specifying

the MED and the N-MED. The two types of MEDs used by Khaitovich et al. (2005b) are

also applied here: (1) a normal distribution and (2) an extreme value distribution. The

corresponding variants of the M&E model are referred to as M&E-normal and M&E-

extreme model, respectively. The non-mutational effects are always assumed to follow a

normal distribution with standard deviation σe. The moments of ZE
1,2 for the model with

both types of MEDs can be derived by using characteristic functions (cf. chapter 2.3.1

or Feller (1957) for details).

Moments of ZE
1,2 of the M&E-normal model: Let σm be the standard deviation of

the normal distributed MED. Then the moments are

Variance v
(normal)
1,2 = µ2(Z

E(normal)
1,2 ) = σ2

m(d1 + d2) + 2σ2
e , (4.5)

Coefficient of skewness s
(normal)
1,2 = γ1(Z

E(normal)
1,2 ) = 0, (4.6)

Coefficient of kurtosis k
(normal)
1,2 = γ2(Z

E(normal)
1,2 ) = 3 +

3σ4
m(d1 + d2)

(σ2
m(d1 + d2) + 2σ2

e)
2
. (4.7)

In Khaitovich et al. (2005b) the coefficient of skewness of Z1,2 is used to separate the two

parameters d1 and d2. However, the coefficient of skewness is zero for normal distributed

MEDs. Thus, one cannot estimate d1 and d2 separately. Therefore, d = d1 + d2 is

estimated in this chapter, whenever a normal distributed MED is used.

Moments of ZE
1,2 of the M&E-extreme model: Let β be the parameter of the extreme

value distributed MED. Then the moments are

Variance v
(extreme)
1,2 = µ2(Z

E(extreme)
1,2 ) =

π2

6
β2(d1 + d2) + 2σ2

e , (4.8)

Coefficient of skewness s
(extreme)
1,2 = γ1(Z

E(extreme)
1,2 ) =

c(d1 − d2)(
d1 + d2 + 12σ2

e

π2β2

)3/2
, (4.9)

Coefficient of kurtosis k
(extreme)
1,2 = γ2(Z

E(extreme)
1,2 ) = 3 +

3π2β4(d1 + d2)

20(µ2(Z1,2))2
. (4.10)
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The constant c is 12
√

6ζ(3)/π3 ≈ 1.13955 . . ., whereas ζ(.) is the ζ-function.

To avoid notational difficulties the moments are referred to as v1,2, s1,2, and k1,2 if

the described properties do not depend on the used MED. The moments estimated

from distributions of gene expression difference of real data are abbreviated as v̂1,2, ŝ1,2,

and k̂1,2. The goal is to estimate the model parameters for the M&E-normal and the

M&E-extreme model from real data. To do this one assumes that all gene expression

differences follow the same evolutionary process described by equation 4.4. Since the

genes are independent of each other in the model, trans-effects are not described.

4.2.2. Parameter estimation with a χ2-fit method

One way to estimate parameters is the method of moments (Pearson, 1894) which has

been used by Khaitovich et al. (2005b) for the M model. To this end, the moment

estimates v̂1,2, ŝ1,2, and k̂1,2 are inserted into the equations 4.5–4.7 for the M&E-normal

model or into the equations 4.8–4.10 for the M&E-extreme model. However, in both

cases it is not possible to get a unique solution.

If the MED is a normal distribution, only the equations 4.5 and 4.7 can be used, since

the equation for the coefficient of skewness (equation 4.6) is always zero. Since the model

has three parameters, a unique solution cannot be obtained with two equations. If the

MED is an extreme value distribution, four parameter have to be estimated which is not

possible with the three equations 4.8–4.10.

However, it is possible to give a partial solution depending on one of the parameters by

transforming the equation system of the moments. For instance, a solution depending on

σe for the M&E-normal model looks as follows (a solution for the M&E-extreme model

can be given analogous):

σ̂m = v̂1,2

√
k̂1,2 − 3

3v̂1,2 − 6σ2
e

(4.11)

d̂ =
3(2σ2

e − v̂1,2)

(v̂1,2)2(k̂1,2 − 3)
(4.12)

Thus, if one can estimate σe, a solution for the remaining parameters can be obtained
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by applying equations 4.11 and 4.12. To this end, a χ2-fit approach is applied which

uses model-based computer simulation.

Simulation of gene expression differences: The parameters of the M&E-normal

model are summarised by Θ(normal) = (σm, σe, d), and the parameters of the M&E-

extreme model are summarised by Θ(extreme) = (β, σe, d1, d2). If the model is not speci-

fied, Θ is used instead. A simulated distribution of gene expression differences depending

on the model parameters Θ is denoted as S(Θ). After specifying the parameters, the

process is simulated by choosing zero as the initial gene expression value.

For normal distributed MEDs the two samples are simulated (cf. figure 4.1) by adding

M(d/2) mutation effects for each of the two lineages to the initial value. Please note that

the position of the root has no effect here (cf. chapter 4.2.3 for an explanation that the

root position does not matter in the M&E-normal model). For extreme value distributed

MEDs the two samples are determined (cf. figure 4.1) by adding independently to the

initial value M(d1) mutation effects for the first sample and M(d2) mutation effects for

the second sample.

Thereupon, the non-mutational effects are simulated for both samples in each case by

adding a number drawn from a normal distribution with standard deviation σe. After

that, the gene expression difference between sample 1 and 2 is calculated. The simula-

tion is iterated up to 107 times to obtain a large number of simulated gene expression

differences.

Optimisation: Let O = (o1, . . . , oη) be the collection of all η gene expression differences

between the two samples in an applied data set (O =observation). It is the objective

to choose the model parameters Θ that way that a distribution S(Θ) generated by

the parameters Θ matches O best (S =simulation). To this end, a χ2-fit approach is

used. Let minO be the smallest element of O and let maxO be the largest element of

O. According to O, a partition of the real-numbers into 100 disjoint intervals Ii with

i = 1, . . . , 100 is introduced. These intervals are

I1 =]−∞, minO], I2 =]minO, minO + δ], . . . , I100 =]maxO,∞], (4.13)
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each with interval length

δ =
maxO − minO

100− 2
. (4.14)

S(Θ) is binned into the same intervals I1, . . . , I100. Let pi be the size of the subset of O

which is mapped to interval Ii divided by η, and let qi(Θ) be the size of the subset of

S(Θ) which is mapped to interval Ii divided by |S(Θ)|. Then the following χ2 objective

function is minimised:

χ2(Θ) =
100∑
i=1

(pi − qi(Θ))2

qi(Θ)
(4.15)

However, there might be different assignments of Θ with the same minimal χ2(Θ) value.

To solve this problem of local optima, the moments of ZE
1,2 are used. For the M&E-

normal model an estimate for σe is inserted into the equations 4.11 and 4.12 to calculate

σ̂m and d̂. The moments v̂1,2 and k̂1,2 required for the equations 4.11 and 4.12 are

estimated from O. Afterwards, σ̂e and the calculated σ̂m and d̂ are used to generate

S(Θ) by simulations. Thereafter, χ2(Θ) is calculated. Hence, the χ2-value depends only

on σe. Thus, it can be described by a one-dimensional function referred to as χ2(σe)

(analogous for the M&E-extreme model).

χ2(σe) can be minimised by using the Brent’s method (cf. chapter 2.4.3 or Brent (1972)).

Before starting the Brent’s method, it is necessary to initialise it with three points

x < y < z with χ2(y) ≤ min{χ2(x), χ2(z)} so that y is a best estimate for the minimum

(starting condition).

To find these starting values, one chooses x := 0, y := σemax/2 and z := σemax , whereas

σemax <
√

v̂1,2/2 is the largest possible value for σe which is defined by the domain of

equation 4.11 in case of a normal distributed MED (analogous for an extreme value

distributed MED).

If χ2(x) < χ2(y) < χ2(z), one chooses x := 0, y := y/2, z := z/2 and checks the

starting condition recursively. If χ2(x) > χ2(y) > χ2(z), one chooses x := y, y :=

y + (z − y)/2, z := z and checks the starting condition recursively. If the starting

condition is fulfilled, the Brent’s method is started (cf. Brent (1972)).

Within each optimisation step a series of 107 simulations is accomplished to regenerate

S(Θ). The method stops if the distance between x and z is smaller than 0.001.
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4.2.3. Parameter estimation with a ML method

A ML method provides an alternative to estimate model parameters. To build the

likelihood function, the probability mass/density functions of the used random variables

must be derived. The number of mutations on the lineage to sample 1 depending on

parameter d1 is described by the discrete Poisson distribution. Its probability mass

function is given by

pi =
e−d1di

1

i!
, (4.16)

for i = 0, 1, . . .. The density function of the MED is denoted by fX(x). The density

function of the N-MED is referred to as fE(x). Let f
(i)
X be the i-th convolution of

the MED which describes the sum X1 + . . . + Xi. Thus, the density function for the

compound Poisson process Y E
1 (d1) is

fY E
1

(x) =

(
∞∑
i=0

e−d1di
1

i!
f

(i)
X (x)

)
∗ fE(x), (4.17)

whereas ∗ indicates the convolution of mutational effects and non-mutational effect.

Please note that f
(0)
X = 1. Due to the monotone convergence theorem and because

the convolution satisfies distributivity, it follows

fY E
1

(x) =
∞∑
i=0

e−d1di
1

i!
(f

(i)
X (x) ∗ fE(x)) (4.18)

(cf. Taylor and Karlin (1998) for details about compound Poisson processes). This equa-

tion describes the evolution of gene expression on the branch to sample 1. Unfortunately,

the ancestral strength of the gene expression level Y1(0) is not observable. However, two

contemporary samples derived from the same ancestor are considered. The gene expres-

sion difference between them is computable and is described by the random variable

ZE
1,2 (cf. equation 4.4). The density function of ZE

1,2 is the convolution of fY E
1

(x) and

fY E
2

(−x) which is

fZE
1,2

(x) =

∫ ∞

−∞
fY E

1
(y) · fY E

2
(y − x)dy. (4.19)
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This equation does not make any assumptions about the MED and the N-MED. However,

it might be difficult to obtain an analytical formula for the integral. In the following a

M&E-normal model is considered. Thus, the Xi with 1, 2, . . . follow a normal distribution

with standard deviation σm, and E1 and E2 follow a normal distribution with standard

deviation σe. Since a convolution of two normal distributed random variables with

variances σ2
1 and σ2

2 is equal to a normal distributed random variable with variance

σ2
1 + σ2

2, it follows that the i-th convolution of fX is

f
(i)
X (x, σm) =

1√
2πiσ2

m

e−x2/2iσ2
m (4.20)

under the M&E-normal model. The density function of the N-MED is given by the

normal distribution

fE(x, σe) =
1√

2πσe

e−x2/2σ2
e . (4.21)

Thus, the convolution of f
(i)
X and fE is also a normal distribution with variance iσ2

m +σ2
e

described by

f
(i)
X (x, σm) ∗ fE(x, σe) =

1√
2π
√

iσ2
m + σ2

e

e−x2/2(iσ2
m+σ2

e). (4.22)

Since all effects are normal distributed, it is not necessary to calculate a complex numer-

ical solution for the integral to describe ZE
1,2 in equation 4.19. It is rather possible to

replace the difference of two compound Poisson processes with parameters d1 and d2 by

one Poisson process with parameter d = d1 + d2 to describe the same gene expression

difference, since it is not possible to estimate the ratio between d1 and d2 anyway. To

prove this claim two propositions have to be shown: (1) the sum of the expected number

of events of two Poisson processes with parameters k and l is equal to the expected

number of events of a Poisson process with parameter k + l. This is well known (cf.

Taylor and Karlin (1998)). Hence, the expected number of events is equal. (2) it has

no effect on the gene expression difference whether mutation effects are subtracted or

summed up for random variables Xi which follow to the same normal distribution. To

prove this it has to be shown that X(i−1) + X = X(i−1) −X. The equalisation of both

density functions is∫ ∞

−∞
f

(i−1)
X (y) · fX(x− y)dy =

∫ ∞

−∞
f

(i−1)
X (y) · fX(y − x)dy. (4.23)
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A value inserted into the density function of a normal distribution is squared. Thus,

the term fX(x − y) = fX(y − x) holds for the density function of any normal distribu-

tion. Therefore, the proposition is proved, and the density function of ZE
1,2 for normal

distributed mutational and non-mutational effects is

fZE
1,2

(x) =
∞∑
i=0

e−ddi

i!
(f

(i)
X (x) ∗ f

(2)
E (x)). (4.24)

Please note that f
(2)
E (x) is used (2-fold convolution of the N-MED), because non-mutational

effects take place at both samples. Equation 4.24 allows a complete ML estimation of

the parameters σm, σe, and d. Assume now that O = (o1, . . . , oη) is the collection of

all η gene expression differences between the two samples in the data set. Under the

assumption that these differences are independently and identically distributed and that

all genes follow the same process, the likelihood to observe these values is

fZE
1,2

(o1) · . . . · fZE
1,2

(oη) =

η∏
i=1

fE
Z1,2

(oi). (4.25)

To maximise this likelihood function, the downhill simplex search is applied with a stop

value of 0.0001 (cf. chapter 2.4.4 or Nelder and Mead (1965)). If not stated otherwise,

10 repeats of the downhill simplex search are performed for each estimation, and the

parameters leading to the smallest log-likelihood constitute the final estimates.

4.2.4. A Bayesian method to detect the number of mutations

When the M&E-normal model is applied to microarray data of two samples, estimates

for σm, σe, and d are obtained. However, it is important to get more information about

single genes. It is a major task to decide between genes mutated in their regulatory

region during evolution and genes in which only non-mutational effects caused gene

expression differences. To this end, a Bayesian method is applied. This method estimates

the number of mutations which describes the expression difference of a gene between

two samples best. For this purpose it is necessary to calculate the likelihood that a

fixed number of mutations cause an observed gene expression difference given σ̂m, σ̂e,

and d̂. These parameter values have been estimated before with the ML method (cf.
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chapter 4.2.3). Corresponding to equation 4.16 the probability for k mutations is given

by

P (M(d̂) = k) =
e−d̂d̂k

k!
(4.26)

which is the prior probability for the Poisson distributed number of mutations M(d). The

likelihood for a gene expression difference x given k mutations and the non-mutational

effects is calculated by the k-fold convolution of the MED with standard deviation σ̂m

convolved with the 2-fold convolution of the N-MED with standard deviation σ̂e. This is

equal to a normal distribution with standard deviation
√

σ̂2
mk + 2σ̂2

e . Its density function

is, corresponding to equation 4.24, given by

h(x|k) =
1√

2π
√

σ̂2
mk + 2σ̂2

e

e−x2/(2σ̂2
mk+4σ̂2

e). (4.27)

Combining now equation 4.26 and 4.27, the likelihood to observe x is

∞∑
k=0

P (M(d̂) = k) · h(x|k). (4.28)

It follows that the posterior density is

pp(k|x) =
P (M(d̂) = k) · h(x|k)∑∞

k=0 P (M(d̂) = k) · h(x|k)
, (4.29)

whereas the denominator is the normalising constant. Let ω be the number of all gene

expression difference for a gene j between two samples (which is greater 1 if at least one

sample contains more than one individual). For this collection Oj = (o1,j, . . . , oω,j) it is

the goal to find that value for k so that

ω∏
i=1

pp(k|oi,j) (4.30)

is maximal. Then k is the number of mutations which has the largest posterior proba-

bility.
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4.3. Experiments and results

4.3.1. Evaluation of the parameter estimation method

Gene expression differences from synthetic data sets were used to evaluate and compare

the estimation methods. The synthetic data sets were generated for different parameter

assignments via computer simulation as described in chapter 4.2.2. For each gene one

simulation was performed. Depending on the random nature of the stochastic process for

each selected parameter assignment 1, 000 data sets were generated each with (1) 1, 000

genes, (2) 10, 000 genes, and (3) 100, 000 genes, respectively. Accordingly, an estimation

method was used to estimate the parameters from the synthetic data sets. The resulting

estimates were compared with the real parameter values used for generation.

M&E-normal model: At first the M&E-normal model was evaluated. Here, both the

χ2-fit method and the ML method were applied. The test cases are shown in the first

column of table 4.1. They have all been chosen that way that one mutation takes place

between the two samples in expectation. The standard deviation of non-mutational

effects differs between 0.1 and 1. Mean estimates and 95 % confidence limits (in brackets)

from all 1, 000 data sets are presented in the remaining columns of table 4.1.

A general observation is that the distance of the mean estimates from the selected

parameters is increased if the standard deviation of non-mutational effects σe is increased.

An increase of σe also increases the width of the confidence limits. Deviation from the

selected parameters and the confidence limit as well, are also affected by the number of

genes. If their number is increased, deviation and confidence limit width are decreased

in the majority of cases. One would expect this, since the number of realisations of the

stochastic process is increased which result in better estimates (i.e., closer to the selected

parameters).

Overall the ML method is superior to the χ2-fit method. Especially in those cases

in which the variance caused by non-mutational effects is equal or greater than the

variance of mutational effects the mean d-estimates are extremely overestimated by the

χ2-fit method (up to five times greater than expected, cf. the case (1,
√

1/2, 1) and

the case (1, 1, 1) in table 4.1). In contrast, the ML method seems to be asymptotically

unbiased. With the smallest standard daviation of non-mutational effects σe = 0.1 the

estimates with the ML method are nearly perfect on the third decimal place, even when
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Table 4.1.: Results for synthetic data with the M&E-normal model. In some cases

σe was set to
√

1/2 ≈ 0.70711 so that the variance of mutational and

non-mutational effects is equal (to 1).

(σm, σe, d) χ2-fit ML

#genes σ̂m σ̂e d̂ σ̂m σ̂e d̂

(1, 0.1, 1) 0.975 0.096 1.098 1.001 0.100 1.000

103 (0.764 , 1.257) (0.067 , 0.130) (0.636 , 1.687) (0.920 , 1.090) (0.087 , 0.114) (0.872 , 1.120)

(1, 0.1, 1) 0.998 0.100 1.011 1.000 0.100 1.001

104 (0.921 , 1.091) (0.090 , 0.111) (0.842 , 1.170) (0.971 , 1.028) (0.095 , 0.105) (0.959 , 1.042)

(1, 0.1, 1) 1.002 0.103 0.994 1.000 0.100 1.000

105 (0.973 , 1.035) (0.096 , 0.106) (0.933 , 1.052) (0.988 , 1.013) (0.098 , 0.102) (0.981 , 1.019)

(1, 0.5, 1) 0.999 0.459 1.390 1.028 0.484 1.110

103 (0.583 , 1.587) (0.100 , 0.689) (0.261 , 4.047) (0.726 , 1.457) (0.227 , 0.673) (0.296 , 2.440)

(1, 0.5, 1) 0.993 0.491 1.063 1.004 0.499 1.015

104 (0.844 , 1.163) (0.398 , 0.567) (0.638 , 1.636) (0.866 , 1.159) (0.413 , 0.574) (0.646 , 1.524)

(1, 0.5, 1) 0.998 0.497 1.016 1.005 0.501 0.997

105 (0.935 , 1.071) (0.431 , 0.538) (0.804 , 1.274) (0.920 , 1.098) (0.448 , 0.548) (0.762 , 1.273)

(1,
p

1/2, 1) 0.934 0.500 3.458 1.212 0.818 1.331

103 (0.378 , 1.983) (0.000 , 0.905) (0.101 , 12.43) (0.794 , 1.990) (0.360 , 1.119) (0.128 , 2.860)

(1,
p

1/2, 1) 1.002 0.660 1.372 1.011 0.697 1.097

104 (0.672 , 1.498) (0.304 , 0.865) (0.225 , 3.914) (0.797 , 1.317) (0.550 , 0.825) (0.377 , 2.087)

(1,
p

1/2, 1) 0.985 0.688 1.123 0.994 0.698 1.073

105 (0.802 , 1.142) (0.484 , 0.770) (0.630 , 2.405) (0.854 , 1.167) (0.607 , 0.777) (0.596 , 1.720)

(1, 1, 1) 0.938 0.543 5.374 1.080 1.018 0.993

103 (0.467 , 2.861) (0.008 , 1.184) (0.037 , 13.25) (0.224 , 1.946) (0.698 , 1.223) (0.043 , 2.330)

(1, 1, 1) 0.749 0.586 5.534 1.064 1.007 1.027

104 (0.471 , 1.517) (0.015 , 1.115) (0.227 , 12.92) (0.774 , 1.677) (0.858 , 1.152) (0.129 , 2.088)

(1, 1, 1) 0.811 0.665 4.230 1.016 0.995 1.088

105 (0.547 , 1.346) (0.000 , 1.102) (0.314 , 9.854) (0.819 , 1.355) (0.888 , 1.102) (0.326 , 2.064)

using only 1, 000 genes per data set. Actually, this is a more precise result than with

the χ2-fit method with 100, 000 genes. The ranges of the confidence limits are smaller

in almost each case if the ML method is applied. Thus, as the conclusion ML should be

used, when using the M&E model.

M&E-extreme model: The situation for the M&E-extreme model is different. Thereby,

it is not practical to use a ML method, since the convolution of extreme value distribu-

tions is not as easy to calculate as the convolution of normal distributions. Since numer-

ical methods and simulations would be necessary, the computational resources would

become very large, particularly because the search space has one additional dimension

depending on the separation of d̂1 and d̂2. Thus, only results for the χ2-fit method are

presented here. They are shown in the tables 4.2 and 4.3, whereupon table 4.2 contains
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Table 4.2.: Results for synthetic data with the M&E-extreme model (clock-like cases with

d1 = d2). The variance of the mutation effect distribution was set to 1 by

choosing β =
√

6/π2 ≈ 0.77970. In some cases σe was set to
√

1/2 ≈ 0.70711

so that the variance of mutational and non-mutational effects is equal.

(β, σe, d1, d2),#genes β̂ σ̂e d̂1 d̂2

(β, 0.1, 0.5, 0, 5), 103 0.759 0.103 0.567 0.564

(0.552 , 1.104) (0.070 , 0.200) (0.154 , 1.062) (0.145 , 1.075)

(β, 0.1, 0.5, 0.5), 104 0.780 0.102 0.508 0.503

(0.700 , 0.888) (0.089 , 0.125) (0.354 , 0.657) (0.349 , 0.660)

(β, 0.1, 0.5, 0.5), 105 0.780 0.102 0.499 0.501

(0.751 , 0.810) (0.096 , 0.105) (0.448 , 0.548) (0.451 , 0.554)

(β, 0.5, 0.5, 0.5), 103 0.736 0.432 0.779 0.789

(0.445 , 1.191) (0.135 , 0.630) (0.107 , 2.245) (0.090 , 2.138)

(β, 0.5, 0.5, 0.5), 104 0.783 0.498 0.525 0.519

(0.643 , 0.988) (0.408 , 0.598) (0.244 , 0.868) (0.233 , 0.871)

(β, 0.5, 0.5, 0.5), 105 0.778 0.497 0.506 0.508

(0.722 , 0.840) (0.431 , 0.537) (0.397 , 0.651) (0.398 , 0.649)

(β,
√

1/2, 0.5, 0.5), 103 0.699 0.528 1.354 1.421

(0.347 , 1.299) (0.002 , 0.849) (0.037 , 4.818) (0.042 , 5.021)

(β,
√

1/2, 0.5, 0.5), 104 0.779 0.689 0.582 0.581

(0.579 , 1.047) (0.477 , 0.813) (0.184 , 1.327) (0.168 , 1.361)

(β,
√

1/2, 0.5, 0.5), 105 0.777 0.702 0.522 0.520

(0.687 , 0.859) (0.623 , 0.748) (0.359 , 0.782) (0.360 , 0.799)

(β, 1.0, 0.5, 0.5), 103 0.571 0.544 5.668 5.671

982 valid (0.157 , 1.411) (0.000 , 1.137) (0.002 , 28.34) (0.002 , 26.53)

(β, 1.0, 0.5, 0.5), 104 0.727 0.863 1.310 1.313

(0.402 , 1.183) (0.029 , 1.118) (0.103 , 5.161) (0.106 , 5.317)

(β, 1.0, 0.5, 0.5), 105 0.729 0.891 1.026 1.027

(0.455 , 0.943) (0.038 , 1.071) (0.232 , 4.225) (0.242 , 4.313)

results on clock-like cases with d1 = d2 and table 4.3 exemplifies parameter settings

which were used to simulate accelerated evolution on one branch. The parameter β was

always set to
√

6/π2 ≈ 0.77970 so that the variance of mutation effects is 1 which is

equal to the variance of mutation effects in the test cases used for the M&E-normal

model (cf. table 4.1).
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Table 4.3.: Results for synthetic data with the M&E-extreme model (asymmetric cases

with d1 > d2). The variance of the mutation effect distribution was set to 1 by

choosing β =
√

6/π2 ≈ 0.77970. In some cases σe was set to
√

1/2 ≈ 0.70711

so that the variance of mutational and non-mutational effects is equal.

(β, σe, d1, d2),#genes β̂ σ̂e d̂1 d̂2

(β, 0.1, 2/3, 1/3), 103 0.757 0.101 0.752 0.389

(0.546 , 1.085) (0.070 , 0.159) (0.290 , 1.302) (0.046 , 0.841)

(β, 0.1, 2/3, 1/3), 104 0.779 0.102 0.675 0.337

(0.694 , 0.885) (0.089 , 0.120) (0.494 , 0.854) (0.213 , 0.466)

(β, 0.1, 2/3, 1/3), 105 0.780 0.101 0.666 0.334

(0.749 , 0.815) (0.096 , 0.105) (0.600 , 0.725) (0.294 , 0.376)

(β, 0.5, 2/3, 1/3), 103 0.739 0.435 1.028 0.565

(0.429 , 1.271) (0.160 , 0.635) (0.182 , 2.648) (0.014 , 1.968)

(β, 0.5, 2/3, 1/3), 104 0.779 0.496 0.699 0.356

(0.647 , 0.981) (0.411 , 0.588) (0.349 , 1.085) (0.153 , 0.628)

(β, 0.5, 2/3, 1/3), 105 0.778 0.497 0.676 0.341

(0.725 , 0.837) (0.431 , 0.537) (0.544 , 0.844) (0.255 , 0.440)

(β,
√

1/2, 2/3, 1/3), 103 0.674 0.500 1.920 1.136

(0.318 , 1.242) (0.002 , 0.842) (0.121 , 6.780) (-0.010 , 4.440)

(β,
√

1/2, 2/3, 1/3), 104 0.766 0.686 0.798 0.416

(0.560 , 1.007) (0.479 , 0.809) (0.286 , 1.865) (0.097 , 1.098)

(β,
√

1/2, 2/3, 1/3), 105 0.775 0.699 0.702 0.354

(0.640 , 0.863) (0.498 , 0.748) (0.499 , 1.428) (0.220 , 0.799)

(β, 1.0, 2/3, 1/3), 103 0.594 0.583 7.173 3.340

983 valid (0.177 , 1.391) (0.000 , 1.118) (0.102 , 27.07) (-0.097 , 19.24)

(β, 1.0, 2/3, 1/3), 104 0.707 0.847 1.736 1.079

(0.387 , 1.145) (0.055 , 1.111) (0.176 , 6.587) (0.058 , 4.682)

(β, 1.0, 2/3, 1/3), 105 0.724 0.889 1.315 0.778

(0.456 , 0.934) (0.150 , 1.065) (0.357 , 5.064) (0.150 , 3.458)

Similar to the M&E-normal model, the deviations in the mean estimates from the se-

lected parameters and the ranges of the confidence limits as well are increased with

an increase of the non-mutational component described by its standard deviation σe.

Again, both are reduced with an increase of the gene number. In the case σe = 1.0 the

estimates for d1 and d2 are extremely overestimated, actually for the case with 100, 000
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genes (about twice as big). A comparison of the tables 4.2 (d1 = d2) and 4.3 (d1 > d2)

shows that there are no big differences in the magnitude of deviation from the real values

or the confidence limits. Please note that in the cases with σe = 1.0 and 1, 000 genes

a small number of parameter estimations stopped (18 in table 4.2 → 982 valid, 17 in

table 4.3 → 983 valid), because the algorithm reached the limits of its search space. In

these cases, the model could not fit the generated data. This is neglected here, since it

occurred very infrequently.

4.3.2. Evaluation of the Bayesian mutation detection methods

The Bayesian mutation detection method described in chapter 4.2.4 was evaluated with

synthetic data. To this end, different assignments for the parameters σm, σe, and d

were used for simulation. A major difference to the simulation approach to generate

data described in chapter 4.2.2 is that the number of mutations was set to a fixed value

k instead of using a Poisson process, for example, for k = 1 exactly 1 mutation was

simulated in each gene. For each assignment 100, 000 genes were generated. Subse-

quently, the Bayesian mutation detection method was applied to each gene of each data

set and the percentages of the correctly predicted numbers of mutations were calculated.

Table 4.4 shows the results.

All differences in the data sets with no mutation (k = 0) were caused by non-mutational

effects. The chance to detect a mutation in these data sets which would be a false positive

is low, but it depends strongly on the parameters. For example, in the case (0.5, 0.5, 1.0)

the percentage to detect one mutation is 26.93 %, since thereby it is likely that a mutation

occurred, because the expectation for the number of mutations is 1 (d = 1). Additionally,

the non-mutational component overlays the mutational component which complicates a

prediction. The other way round, false negatives occur (genes in which a given mutation

is not detected) if the chance for a mutation is low, for example, in the case (0.5, 0.5, 0.5).

Thereby, 94.22 % of the genes were predicted as not mutated, although one mutation

had occurred. If in the same case two mutations had occurred, still 89.89 % of the genes

were predicted as not mutated. However, the percentage of correct predictions increases

if the standard deviation of non-mutational effects decreases. Thus, in applications it

depends on the parameter estimates σ̂m, σ̂e, and d̂ which are summary statistics for all

genes.
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Table 4.4.: Results of the evaluation of the Bayesian mutation detection method on

synthetic data. The first column shows the real number of mutations in the

data. The next three columns show the distribution of percentages, how

many mutations have been detected. The corresponding parameter values

used by the mutation detection method are presented in the last column.

Number of Predicted mutation class Parameter

mutations k 0 1 ≥2 (σm, σe, d)

0 96.20% 3.80% 0.00% (0.5, 0.1, 0.5)

90.75% 9.25% 0.00% (0.5, 0.1, 1.0)

97.96% 2.04% 0.00% (0.5, 0.5, 0.5)

72.93% 26.93% 0.14% (0.5, 0.5, 1.0)

97.98% 2.02% 0.00% (1.0, 0.1, 0.5)

95.54% 4.46% 0.00% (1.0, 0.1, 1.0)

94.50% 5.50% 0.00% (1.0, 0.5, 0.5)

79.80% 20.18% 0.02% (1.0, 0.5, 1.0)

1 42.93% 56.32% 0.75% (0.5, 0.1, 0.5)

35.01% 61.01% 3.98% (0.5, 0.1, 1.0)

94.22% 5.74% 0.04% (0.5, 0.5, 0.5)

63.43% 35.63% 0.94% (0.5, 0.5, 1.0)

25.65% 73.53% 0.82% (1.0, 0.1, 0.5)

22.11% 73.76% 4.14% (1.0, 0.1, 1.0)

73.47% 26.16% 0.37% (1.0, 0.5, 0.5)

54.25% 42.83% 2.92% (1.0, 0.5, 1.0)

2 31.64% 62.93% 5.43% (0.5, 0.1, 0.5)

25.85% 60.14% 14.01% (0.5, 0.1, 1.0)

89.89% 9.87% 0.24% (0.5, 0.5, 0.5)

56.54% 41.01% 2.54% (0.5, 0.5, 1.0)

18.31% 75.55% 6.14% (1.0, 0.1, 0.5)

15.86% 69.64% 14.51% (1.0, 0.1, 1.0)

61.46% 35.86% 2.68% (1.0, 0.5, 0.5)

43.26% 47.57% 9.16% (1.0, 0.5, 1.0)
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Table 4.5.: Overview about the primate (Khaitovich et al., 2005a) and mice (Voolstra

et al., 2007) data sets.

Data set Sample 1 Sample 2 #Genes

#Individuals #Individuals

human/chimpanzee brain 6 5 15,526

human/chimpanzee heart 6 5 14,988

human/chimpanzee kidney 6 5 17,865

human/chimpanzee liver 6 5 15,046

human/chimpanzee testis 6 5 21,731

dom/mus brain 6 6 19,406

dom/mus liver/kidney 6 6 19,510

dom/mus testis 6 6 19,348

ssp/cas brain 6 3 19,406

ssp/cas liver/kidney 6 3 19,510

ssp/cas testis 6 3 19,348

4.3.3. Analysis of primate data

The M&E-normal and the M&E-extreme model were both applied to analyse the gene

expression differences between human and chimpanzee (regarded as sample 1 and 2,

respectively) in five different tissues: Brain, heart, kidney, liver, and testis. The data

was collected at the Max-Planck-Institute for Evolutionary Anthropology in Leipzig with

Affymetrix U133plus2 arrays and was published in Khaitovich et al. (2005a). Table 4.5

gives an overview about the used data sets. In case of the M&E-normal model, the ML

parameter estimation method was used, since validation with synthetic data comprises

superior results for the ML method than for the the χ2-fit method. In case of the

M&E-extreme model the χ2-fit method was applied.

Since the samples 1 and 2 both consist of more than one individual, the data was treated

as follows: Let sample 1 consists of n1 individuals, let sample 2 consists of n2 individuals,

and let g be the number of genes. All gene expression differences from the η = n1 ·n2 · g
pairwise comparisons between the samples over all genes were regarded as the observation

from the data O = (o1, . . . , oη). Additionally, when using the M&E-extreme model with

the χ2-fit method, the mean values of v̂1,2 and k̂1,2 of all ω = n1 ·n2 pairwise comparisons
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Table 4.6.: ML parameter estimates from the real data sets (M&E-normal model). The

95 % confidence intervals from 1, 000 bootstraps are shown in brackets.

Data set σ̂m σ̂e d̂

human/chimpanzee brain 0.737 0.205 0.330

(0.686 , 0.807) (0.188 , 0.255) (0.273 , 0.387)

human/chimpanzee heart 0.955 0.322 0.339

(0.817 , 1.169) (0.266 , 0.402) (0.188 , 0.492)

human/chimpanzee kidney 0.749 0.206 0.561

(0.693 , 0.822) (0.183 , 0.236) (0.434 , 0.689)

human/chimpanzee liver 0.878 0.257 0.569

(0.809 , 0.966) (0.236 , 0.282) (0.391 , 0.767)

human/chimpanzee testis 0.711 0.231 0.851

(0.664 , 0.781) (0.210 , 0.259) (0.636 , 1.061)

dom/mus brain 0.515 0.125 0.177

(0.418 , 0.634) (0.109 , 0.144) (0.119 , 0.268)

dom/mus liver/kidney 0.490 0.125 0.164

(0.440 , 0.554) (0.111 , 0.140) (0.123 , 0.209)

dom/mus testis 0.440 0.118 0.233

(0.374 , 0.555) (0.099 , 0.143) (0.120 , 0.329)

ssp/cas brain 0.498 0.165 0.343

(0.450 , 0.708) (0.137 , 0.274) (0.136 , 0.463)

ssp/cas liver/kidney 0.460 0.129 0.319

(0.426 , 0.524) (0.114 , 0.153) (0.180 , 0.457)

ssp/cas testis 0.362 0.097 0.346

(0.310 , 0.404) (0.077 , 0.120) (0.200 , 0.475)

between the samples were calculated. These mean values were used to calculate χ2(σe)

(cf. chapter 4.2.2). The simulation of one gene was performed n1 times for sample 1 and

n2 times for sample 2 accordingly which led to ω gene expression differences. Thus, the

dependencies between the individuals were described corresponding to the data analysis.

Please note that the overall number of simulations of gene expression differences per

optimisation step was 107. If this number had been reached, simulations were stoped

and the χ2 was calculated. Additionally, 95 % confidence limits were constructed with

bootstrapping (Efron, 1979) over the genes and the individuals for both types of models.
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Table 4.7.: Parameters estimates with the χ2-fit method from the real data sets (M&E-

extreme model). The 95 % confidence intervals from 1, 000 bootstraps are

shown in brackets.

Data set
√

π2β̂2

6 σ̂e d̂1 d̂2

human/chimpanzee brain 0.720 0.206 0.279 0.045
(0.640 , 0.835) (0.177 , 0.249) (0.175 , 0.373) (0.004 , 0.095)

human/chimpanzee heart 1.129 0.363 0.130 0.016
(0.871 , 1.483) (0.282 , 0.425) (0.055 , 0.290) (-0.011 , 0.095)

human/chimpanzee kidney 0.745 0.194 0.330 0.264
(0.667 , 0.845) (0.172 , 0.232) (0.219 , 0.461) (0.155 , 0.405)

human/chimpanzee liver 0.867 0.241 0.447 0.177
(0.757 , 0.991) (0.209 , 0.278) (0.302 , 0.678) (0.089 , 0.290)

human/chimpanzee testis 0.695 0.227 0.577 0.324
(0.605 , 0.791) (0.185 , 0.271) (0.376 , 0.853) (0.186 , 0.531)

dom/mus brain 0.705 0.132 0.074 0.024
(0.554 , 0.841) (0.115 , 0.149) (0.052 , 0.113) (0.010 , 0.048)

dom/mus liver/kidney 0.531 0.124 0.061 0.089
(0.450 , 0.636) (0.109 , 0.139) (0.026 , 0.104) (0.051 , 0.139)

dom/mus testis 0.795 0.136 0.015 0.051
(0.596 , 0.972) (0.113 , 0.154) (0.002 , 0.048) (0.032 , 0.092)

ssp/cas brain 0.557 0.168 0.122 0.158
(0.441 , 0.823) (0.131 , 0.271) (0.011 , 0.195) (0.051 , 0.261)

ssp/cas liver/kidney 0.567 0.135 0.105 0.109
(0.467 , 0.661) (0.115 , 0.168) (0.048 , 0.167) (0.052 , 0.192)

ssp/cas testis 0.584 0.114 0.047 0.076
(0.419 , 0.766) (0.092 , 0.135) (0.013 , 0.122) (0.032 , 0.168)

For each data set 1, 000 bootstrap data sets were generated and the parameters were

estimated on the resampled data. The results of the analysis with both types of models

are presented in table 4.6 and 4.7, respectively.

When using the M&E-normal model, the largest estimate for the standard deviation

in mutation effects σ̂m can be observed in heart (0.955), while the smallest is in testis

(0.711). The estimate for the standard deviation of non-mutational effects σ̂e is also

largest for heart (0.322). For brain and kidney σ̂e is roughly 30% smaller (0.205 and

0.206, respectively). The greatest differences within the tissues can be observed for d̂.

For testis d̂ is 0.851, while for brain d̂ is merely 0.330. The result for heart is 0.339,

while the d-estimates for kidney and liver are 0.561 and 0.569, respectively.
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The results from the M&E-extreme model are in good agreement with the results from

the M&E-normal model. Please note that the parameter β has a different meaning than

the standard deviation σm for the normal distributed MED in the M&E-normal model.

In order to make comparisons between the two models easier, the standard deviations√
(π2β2)/6 of the extreme value distributed MEDs are presented in table 4.7. Again,

heart comprises the largest result (1.129), while testis has the smallest estimate for the

standard deviation in the mutation effects (0.695). For the non-mutational effects the

largest estimate for the standard deviation sigmae is in heart likewise (0.363), whereas

the smallest ones are in brain and kidney as well (0.206 and 0.194). When using the

M&E-extreme model, the split of d in d1 and d2 is estimated: The results of d̂1 + d̂2

agree roughly with the results of d̂ from the M&E-normal model. One exception is heart

tissue. Thereby, the sum d̂1+d̂2 = 0.146 is considerably smaller than d̂ = 0.339 estimated

with the M&E-normal model. It is noticeable that in all cases d̂1 > d̂2 which indicates

an acceleration on the human lineage (for brain and liver even with non-overlapping

confidence limits).

Subsequently, the data was applied to the Bayesian mutation detection method. Thereby,

the estimates of the M&E-normal model were used. For each gene j within a data set all

ω = n1 · n2 pairwise gene expression differences between sample 1 and 2 were regarded

as the observation Oj = (o1,j, . . . , oω,j). The results are presented in table 4.8. The

percentages of genes which mutated in their regulatory regions correlate roughly with

the estimates for d which means that the larger d̂ the larger is the percentage of mutated

genes. The largest number of mutated genes can be observed in testis (40.68 %), while in

brain and heart only 13.73 % and 11.58 % genes, respectively, mutated during evolution.

4.3.4. Analysis of mice data

Additionally, the M&E-normal and the M&E-extreme models were applied to different

mice data sets, collected with spotted arrays (OligoLibrary by Sigma-Genosys /Compu-

gen spotted on Schott Nexterion Slides H) (Voolstra et al., 2007). An overview of the

data sets is given in table 4.5. In two approaches expression profiles of two different

subspecies of Mus musculus were compared. In the first approach, differences between

individuals of Mus musculus domesticus (dom, corresponding to sample 1) and Mus

musculus musculus (mus, corresponding to sample 2) were examined. Free-living indi-

viduals of these species were captured in Czech Republic and kept individually under
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laboratory conditions. Subsequently, individuals of Mus musculus ssp. (ssp, regarded as

sample 1) and Mus musculus castaneus (cas, regarded as sample 2) were analysed. Both

subspecies had been kept between two and ten generations under laboratory conditions.

The analysis was performed accordingly to the analysis of the primate data. The results

for the M&E-normal model from the ML method are shown in table 4.6. The results for

the M&E-extreme model estimated with the χ2-fit method are presented in table 4.7.

When using the M&E-normal model, the estimates for the standard deviation of mu-

tation effects σm are slightly greater in the comparison between dom and mus than

between ssp and cas. Thereby, in brain σ̂m is the largest (0.515 and 0.498, respectively),

while in testis that parameter has the smallest estimates (0.440 and 0.362, respectively).

The standard deviation estimate of non-mutational effects σ̂e is greater in dom/mus

testis (0.118) than in ssp/cas testis (0.097). For the remaining two tissues brain and

liver/kidney the σe-estimates are greater in the ssp/cas- (0.165 and 0.129) than in the

dom/mus comparison (both 0.125). It is noticeable that the d-estimates are smaller in

dom/mus than in ssp/cas for all three tissues. Thereby, also testis has the largest d̂ with

0.233 and 0.346, respectively. Liver/kidney shows the smallest d-estimates with 0.164

and 0.319, respectively.

When the M&E-extreme model is applied, the magnitude of the parameter estimates

is similar. An exception is that the estimate for the standard deviation of the MED√
(π2β2)/6 is smaller for liver/kidney in dom/mus than ssp/cas which is different from

the other model. Furthermore, it is noticeable that dom/mus testis has the largest

estimate for σe within the dom/mus tissues, while the same estimate is the second

smallest of all mice sets when using the M&E-normal model. However, all estimates are

in the same range. Larger differences can be observed for the d-estimates. While for

the M&E-normal model testis shows the largest d̂ of all tissues, for the M&E-extreme

model the sum of d̂1 and d̂2 is the smallest for testis. Within the comparisons of the

same subspecies, differences in the ratios of d̂1 and d̂2 can be observed. Dom shows

a greater number of mutations than mus in brain (0.074 against 0.024), while mus

shows a greater number of mutations than dom in liver/kidney and in testis (0.061

against 0.089 and 0.015 against 0.051, respectively). In the ssp/cas data sets, cas has a

slightly greater number of mutations than ssp in all three tissues (brain: 0.158 against

0.122, liver/kidney: 0.109 against 0.105, testis: 0.076 against 0.047). Overall, in some

comparisons the sum of d̂1 + d̂2 is considerably smaller than the d-estimate from the

M&E-normal model.
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Table 4.8.: Results of the Bayesian mutation detection method for the primate and mice

data sets. The second column shows the number of genes in which no muta-

tion was detected. The third column shows genes with at least one mutation.

Data set No mutation At least one mutation %

human/chimpanzee brain 13,395 2,131 13.73

human/chimpanzee heart 13,252 1,736 11.58

human/chimpanzee kidney 12,422 5,443 30.47

human/chimpanzee liver 10,281 4,765 31.67

human/chimpanzee testis 12,890 8,841 40.68

dom/mus brain 17,945 1,461 7.53

dom/mus liver/kidney 18,326 1,184 6.07

dom/mus testis 17,479 1,869 9.66

ssp/cas brain 16,901 2,505 12.91

ssp/cas liver/kidney 16,484 3,026 15.51

ssp/cas testis 15,415 3,933 20.33

Finally, the parameter estimates from the M&E-normal model were used to apply the

data to the Bayesian mutation detection method. The results are presented in table 4.8.

Like in the primate data sets, the percentages of mutated genes correlates roughly with

the d-estimates. For dom/mus the percentages are smaller in all three tissues in com-

parison to ssp/cas. Within each tissue the percentages for testis are greatest (dom/mus:

9.66 %, ssp/cas: 20.33 %). For dom/mus the smallest ratio of mutated genes can be

observed in liver/kidney tissue (6.07 %), while for ssp/cas the smallest ratio can be

observed in brain (12.91 %).

4.3.5. Comparison of the data fit of the different models

The M&E-normal and the M&E-extreme model were compared with the M model

(Khaitovich et al., 2005b) which has extreme value distributed mutation effects but

no non-mutational effects. To this end, the χ2-score was used as a criterion to measure

the goodness of fit to the data. To compare the the models, data sets were applied

which were originally used with the M model. These data sets are liver 95, brain 95,

liver 133, brain 133 (cf. chapter 3 or Khaitovich et al. (2005b) for details). Parameter
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Table 4.9.: Comparison between χ2-scores (cf. Equation 4.13) of real data and simulated

data as a measure of goodness (calculated with 1, 000 bins). The results

of the M model were taken from Khaitovich et al. (2005b) (extreme value

distributed mutational effects and no non-mutational effects). The results

for the M&E-normal model were estimated with the ML method, while the

results for the M&E-extreme model were estimated with the χ2-fit method.

M model β̂ d̂1 d̂2 χ2-score

Liver 95 0.38 0.83 0.45 0.70482

Brain 95 0.29 0.87 0.47 0.67673

Liver 133 0.44 1.07 0.58 0.54605

Brain 133 0.33 0.83 0.25 0.85037

M&E-normal σ̂m σ̂e d̂ χ2-score

Liver 95 0.639 0.217 0.483 0.33651

Brain 95 0.507 0.194 0.435 0.30688

Liver 133 0.784 0.273 0.570 0.13484

Brain 133 0.612 0.197 0.345 0.23418

M&E-extreme β̂ σ̂e d̂1 d̂2 χ2-score

Liver 95 0.436 0.189 0.475 0.206 0.27968

Brain 95 0.385 0.179 0.308 0.099 0.28752

Liver 133 0.512 0.234 0.571 0.338 0.08525

Brain 133 0.425 0.192 0.337 0.065 0.24564

estimates for the M model were taken from Khaitovich et al. (2005b). Parameters of

the M&E-normal model were estimated with the ML method, and parameters of the

M&E-extreme model were estimated with the χ2-fit method. The results are depicted

in table 4.9.

Thereupon, one synthetic data sets with 107 genes was generated for each of the param-

eter sets in table 4.9 with the corresponding model. Accordingly, the χ2-scores between

the synthetic data sets and the original data sets were calculated with equation 4.15 (cf.

last column of table 4.9). However, 1, 000 bins were used instead of 100. For instance,

the distributions of gene expression differences for two of the data sets (liver133 and

brain133) and for their corresponding synthetic data sets are illustrated in figure 4.2.

Please note that the distributions of synthetic data generated with the M model contain
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Figure 4.2.: Comparison between distributions of gene expression differences from real

data (black) and distributions from simulations based on the corresponding

parameter estimates (grey).

a peak at zero which results from those genes in which no mutations occurred during

simulation. Therefore, their expression level did not changed (the M model does not

contain non-mutational effects). The M&E model has smaller χ2-scores than the basic

model in all data sets. Skewed mutation effects were superior in three of four cases, since

the χ2-scores for the M&E-extreme model are smaller than for the M&E-normal model

with one exception in brain 133. However, the difference in the χ2-scores for brain 133

is small between the two different M&E models. Therefore, the fit of the M&E-normal

model is only slightly better.
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Figure 4.3.: Density functions of the gene expression difference x given a fixed number of

mutations. The parameters which have been used are σm = 1.0 and σe = 0.5.

The picture show h(x|0) (black), h(x|1) (dark grey), h(x|2) (medium grey),

and h(x|3) (light grey).

4.4. Discussion

The data fit of the models extended by non-mutational effects is superior than the data

fit of the M model. This was shown exemplarily for a number of data sets. To esti-

mate the model parameters, two methods were presented. Therefrom, the ML method

is substantially better on synthetic data sets, particularly for non-mutational effects

with a large standard deviation in comparison to the standard deviation of mutation

effects (cf. table 4.1). However, at present the ML method is only practical for the

M&E-normal model which has a normal distributed MED. Normal distributed random

variables have the advantage that their convolution can be calculated easily. In contrast,

for the M&E-extreme model the χ2-fit method is used, since the convolution of extreme

value distributed random variables is difficult to calculate. Unfortunately, the use of the

χ2-fit method is problematic for a large standard deviation in non-mutational effects.

However, in all applied biological data sets the estimated standard deviation of non-

mutational effects is considerably smaller than standard deviation of mutation effects.

Since estimates are relatively accurate in this case, one can trust in the results of the

M&E-extreme model on the biological data sets (cf. table 4.2 and 4.3). Furthermore,
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the estimates of the M&E-normal and the M&E-extreme model show similar patterns

which is another evidence that the χ2-fit method works well for the applied data sets.

The better fit to data of the M&E-extreme model in comparison to the M&E-normal

model in three of four cases (cf. table 4.9) supports the suggestion by Khaitovich et al.

(2005b) that positively skewed mutation effects are superior than symmetric ones. In-

deed, for brain 133 the M&E-normal model shows a slightly better fit to the data.

However, the gene expression difference distribution of brain 133 seems to be slightly

shifted to the right side (cf. figure 4.2). Thereby, a particular good fit was not observed

with both MEDs (cf. figure 4.2). Thus, it is possible that the slightly superior result

with a normal distributed MED might be due to the shift of the distribution.

In addition, a Bayesian method was used to detect mutations. However, the results on

synthetic data sets are weak for some parameter assignments, since large percentages of

false negative or false positive predictions were obtained. Indeed, this is caused by the

nature of the gene expression difference distributions. To demonstrate the difficulties

of the method, examples of different density functions of the gene expression difference

given a fixed number of mutations are shown. Please note that the result of the mutation

detection method also depends on the Poisson distribution with parameter d which

describes the probability for the number of mutations (cf. equation 4.26). Figure 4.3

shows densities of gene expression difference distributions h(x|k) with a fixed number

of mutations k with k ∈ {0, 1, 2, 3} and σm = 1.0 and σe = 0.5. A large part of

the probability masses overlap between different distributions. For example, a gene

expression difference between −0.71 and 0.71 does not indicate a mutation, since h(x|0)

has the highest frequency in this interval. Consequently, one would expect that the

results of the mutation detection method have a large error. Admittedly, the robustness

is increased with an increase of the number of individuals in the two samples which

increases the number of pairwise gene expression differences. This could explain the

correlation between d-estimates and percentages of mutated genes in the different data

sets, because the data sets contain up to 36 differences per gene (dom/mus with 6 · 6
comparisons).

To detect the exact number of mutations is particularly problematic. If there is a gene

expression difference between two samples caused by one mutation, the chance is great

that this difference is reduced by a second mutation (because the mean of the MED

is always zero). However, the chance to see that at least one mutation has occurred,

increases with the overall number of mutations, since the variance of the gene expression
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difference is increased linearly to the number of mutations. Thus, the method is useful

if one is interested to decide between genes with fixed expression levels and genes with

changes in regulation between two samples.

The results of the analysis on the primate data sets are in good agreement with previous

results by Khaitovich et al. (2005a). It has been reported that gene expression patterns

differ less between human and chimpanzee in brain than in the other four examined

tissues. This could be confirmed by the d-estimates of both types of the M&E model

and the percentages of mutated genes from the Bayesian mutation detection method

as well. According to this, only 13.73 % of genes changed their expression in brain (cf.

table 4.8). Further, it was reported that the ratio of divergence between species to

diversity within species is greatest in testis in comparison to the other tissues. This can

be explained by directional selection during speciation Khaitovich et al. (2005a). While

the within species diversity is not estimated here, the d-estimate for testis (0.851) is the

largest of all tissues applied to the M&E-normal model. For the M&E-extreme model

also the sum of d̂1 (0.577) (branch to human) and d̂2 (0.324) (branch to chimpanzee) is

the largest in comparison to the other tissues. This is important, since the sum of d̂1 and

d̂2 is similar to d̂ estimated from the M&E-normal model for all primate sets, except for

heart. However, this might be an outlier due to variation in the small data set. Estimates

from the M&E-extreme model provide additional results: The ratios between d̂1 and d̂2

can indicate accelerated evolution on the branch to human in comparison to the branch

to chimpanzee. Since, this ratio depends on the estimate for the coefficient of skewness

ŝ1,2, it is potentially not very robust. However, faster evolution on the human lineage can

be observed for all tissues. The d̂1/d̂2 ratio which is expected with 1 in the neutral case

is especially large for brain (0.279/0.045 = 6.200) and for heart (0.130/0.016 = 8.125).

The result for brain agrees with the suggestion that gene regulation in brain evolved

faster in human than in chimpanzee (Khaitovich et al., 2005b). However, it will be

necessary to apply larger data sets to the models to reinforce these findings.

The results on mice data show that the compared subspecies of mice (dom vs mus and

ssp vs cas) have smaller divergence times than the primate species (< 1 million years).

Altogether, the estimates for d and d1/d2, respectively, are smaller than in the primates.

However, different array technologies and normalisation techniques were used. Thus,

the results are difficult to compare. Overall, within the mice data sets the number of

mutations are greater in the comparisons between ssp and cas than between dom and

mus which indicates a closer connection between dom and mus than between ssp and cas.

Unfortunately, it is unknown, when the subspecies split. The parameter estimates d̂1+d̂2
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from the M&E-extreme model and d̂ from the M&E-normal model are very different in

some data sets which might be a result of outliers in the small data sets. Since ssp

and cas were kept under laboratory conditions over several generations, it would be

reasonable to observe non-mutational effects with a smaller standard deviation than for

dom and mus. Indeed, it seems that actually the standard deviation of non-mutational

effects in dom and mus is slightly smaller. Like in the primate sets, a larger sample size

would be preferable. For mice it should be easy to keep all subspecies under exactly the

same conditions which leads to more accurate results.

4.5. Conclusion

Both types of the M&E model give a better description of data taken from real microarray

experiments than the M model, since they do not neglect the large influence of non-

mutational effects. With the separation into mutational and non-mutational changes of

gene expression a better fit to the data is achieved. Moreover, the additional parameter

for the non-mutational effects enables a more detailed data analysis. This improves, for

example, comparative studies between different tissues which are affected by a different

amount of non-mutational effects. The analysis of primate data provides new evidence

for different rates of gene expression evolution in different tissues. Results on mice

data indicate a closer connection between Mus musculus domesticus and Mus musculus

musculus than between Mus musculus ssp and Mus musculus castaneus. Under the

assumption of the model one can trust in the results, since the estimated parameter

values are in intervals for which simulation studies achieved good results. However,

after incorporating the non-mutational effects, further research is necessary to get more

precise models. An extension should address trans-effects on the gene expression level,

since changes in the regulation of a transcription factor for many genes lead to wrong

parameter estimates in the current models.



5. A Tajima-type test for gene

expression data

A statistical test is introduced in this chapter in order to detect selection effects in gene

expression data sampled from natural populations. The test depends on the comparison

of two estimators for the population mutation rate. Therefore, it is similar to the

Tajima’s D test.

5.1. Introduction

A large amount of variability is typically maintained in natural populations. Some

variants on sequence level lead to phenotypic differences which can change the fitness

of individuals in positive or negative way. These variants are under selection. However,

there is also large variability on the transcriptome level. Microarray technology (Baldi

and Hatfield, 2002; Speed, 2003) provides insights into this variability among individuals

in populations. Gene expression differences within populations have been examined in

numerous studies (Cavalieri et al., 2000; Enard et al., 2002; Gibson et al., 2004; Jin et al.,

2001; Morley et al., 2004; Nuzhdin et al., 2004; Oleksiak et al., 2005; Schadt et al., 2003;

Storey et al., 2007; Wayne et al., 2004), cf. Ranz and Machado (2006) for a review. Since

it is assumed that evolution in gene regulation plays an important role in phenotypic

evolution (Wilson et al., 1974; King and Wilson, 1975), it is important to determine

which gene expression changes lead to variation are under selection.

In several studies two populations are compared to infer the mode of gene expression

evolution. Thereby, mainly the ratios of within species variation and between species

divergence are estimated and explained by neutral, directional or stabilising selection.

Oleksiak et al. (2002) supposed adaptation to different life conditions for different teleost

fish species which would be a result of directional selection. Rifkin et al. (2003) exam-

86
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ined different species of Drosophila during early metamorphosis. They found evidence

for stabilising selection as the main mode of evolution, but they also found genes which

indicate directional selection or neutrality. Lemos et al. (2005) analysed different data

sets of mice, Drosophila, and primates with an ANOVA based method (Kerr et al., 2000)

and concluded that the majority of genes evolve under stabilising selection. Analysis of

different primate species indicate accelerated evolution in human brain in comparison

to chimpanzee brain (Enard et al., 2002; Khaitovich et al., 2005b). Further, an overall

up-regulation of gene expression in human brain in comparison to chimpanzee brain

was observed (Caceres et al., 2003; Hsieh et al., 2003). These result might be due to

directional selection (Khaitovich et al., 2005b). Indeed, other effects might lead to the

same results, for example, a relaxation of selective constraints or differential hybridisa-

tion due to loss of perfect sequence matching. However, results for liver tissue from the

same primate species do not show acceleration or up-regulation in human which con-

tradicts differential hybridisation. Khaitovich et al. (2004) observed a linear correlation

between divergence time and sample difference for different primate species which can

be explained by neutrality as the main mode of evolution. However, Gilad et al. (2006b)

explained this correlation by effects of differential hybridisation depending on human-

specific microarrays. They found evidence for stabilising selection in primates obtained

with multispecies arrays. In Khaitovich et al. (2005a) patterns of gene expression were

compared with differences in the corresponding DNA sequences. The results suggest also

stabilising selection as an important factor. However, they suppose directional selection

in primate testis.

Thus, these interpretations lead to discussions about the mode of evolution in gene

regulation, for example, a recent review by Gilad et al. (2006a) concludes that stabilising

selection is likely to be the dominant mode of gene expression evolution. However, a

review by Khaitovich et al. (2006) postulates a neutral model as a useful null hypotheses,

since the neutral theory by (Kimura, 1983) does not eliminate the role of selection. A

large number of mutations might be deleterious if the corresponding alleles are under

strong stabilising selection. Indeed, deleterious mutants disappear from the population

over the years. Thus, one would not expect large differences in present days individuals.

This would explain the relatively small expression differences for many genes. However,

Khaitovich et al. (2005b) postulated that a small fraction of genes which evolved under

directional selection might cause patterns observed in human brain. This would also not

contradict the neutral theory, since this theory alludes to the majority of all genes. Thus,

here it is assumed that the majority of gene expression differences which are observed
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can be explained by neutral or nearly neutral evolution. Mutations occur according

to a molecular clock so that the variation in a population can give information about

selection.

In this chapter within-species variation on gene expression level is analysed to detect se-

lection in natural populations. On DNA level the variation in sequences is conveniently

summarised by the population mutation rate θ = 2Nµ, whereas N being the number

of (diploid) individuals in the population (or 2N haploid individuals instead), and µ

being the mutation rate per sequence and per generation. To estimate θ from n individ-

uals sampled from a population, various sequenced based summary statistics have been

suggested. Well known are (1) the average pairwise distance π̂ (Tajima, 1983) which

depends on the frequency of variants, (2) the Watterson’s estimator θ̂W calculated by

the number of segregating sites (Watterson, 1975), and (3) the number of alleles (Ewens,

1972) ((2) and (3) are independent of the frequency of a variant in the population) (cf.

chapter 2.3.4).

Tajima (1989) suggested a test to detect selection in a sample of n sequences which is

based by and large on the normalised difference between π̂ and θ̂W . The n sequences

in the sample have been randomly drawn from a population. Thereby, a Wright-Fisher

population is assumed (cf. chapter 2.3.3 or Hein et al. (2005)) which is used as a

null model. It assumes discrete and non-overlapping generations, haploid individuals,

constant population size, equal fit of all individuals (no selection), no geographical or

social structure and no recombination. The genealogy of a Wright-Fisher population

can be described by the coalescent process (Hudson, 1991). The test statistic D of the

Tajima’s D test is given by

D =
π̂ − θ̂W√

V ar(π̂ − θ̂W )
(5.1)

which is zero in expectation. The distribution of D resembles a beta distribution which

is used to calculate confidence limits. If the test is applied to real data, the Wright-

Fisher model is falsified if D which is estimated from the data is outside the confidence

limits. If D is smaller than the lower limit, it can be explained by directional selection.

If so, the estimator from segregating sites θ̂W exceeds the frequency dependent mean

pairwise distance π̂ which is not affected much by slightly deleterious mutants in the

population. In the case that D is greater than the upper limit, balancing selection is an

explanation, because in this case one would assume a small number of different alleles



5.2. Materials and methods 89

which are fixed in the population. Then the mean pairwise distance π̂ is greater than

θ̂W estimated from the number of segregating sites. However, there are other effects like

bottlenecks or population subdivisions which can influence D (Hein et al., 2005).

While analysis of population history is well understood if sequences are used, the analysis

is still in its infancy for gene expression data. In this study two estimators for θ from gene

expression variation in natural populations are presented. A model is used to correct

the estimates for noise caused by non-mutational effects. Depending on the corrected

estimates, a Tajima-type test to detect selection is suggested. The applicability of the

test is illustrated with synthetic data and finally, a biological example is discussed.

5.2. Materials and methods

5.2.1. The evolution model

The Tajima’s D test is based on the discrete nature of sequence evolution. Since gene

expression is a continuous trait, a gene expression evolution model (Khaitovich et al.,

2004) is mapped on the genealogy of individuals in a population. Since non-mutational

effects overlay gene expression changes caused by mutations, an extension of the basic

model is applied here which takes non-mutational effects into account (cf. chapter 4).

It is assumed that the mutation effect distribution (MED) is a normal distribution with

standard deviation σm, and the non-mutational effect distribution (N-MED) is a normal

distribution with standard deviation σe (M&E-normal model). The M&E-normal model

can be easily superimposed on genealogies relating n individuals from a Wright-Fisher

population which is described in algorithm 5.2. For each iteration of the main loop of that

algorithm, gene expression values of one gene in each individual are generated together

with the underlying genealogy. The output file contains the synthetic microarray data.

5.2.2. Estimators for θ

In the following two approaches are described to estimate the population mutation rate

θ from gene expression data for n individuals from a Wright-Fisher population.
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Algorithm 5.2: Create synthetic data along genealogies

Data: Sample size n, number of genes g, model parameters (σm, σe, θ)

Result: Synthetic data set described by matrix S with n individuals and g genes

Initialise matrix S with the dimensions n× g;

Initialise global counter variables i and j;

for j := 1 to g do
Generate a genealogy G of size n with mutation rate θ by the coalescent process

(Hudson, 1991);

Let i := 1;

Start DepthFirstSearch(0) in the root of G;

end

Procedure DepthFirstSearch(x)

Data: Gene expression value x

if current root is a leaf then
Draw the non-mutational effect from the N-MED with standard deviation

σe, add it to the gene expression value x, and store the result in S(i, j);

i := i + 1;

else

if current root has a left child then
Let l be the length of the edge to the left child;

Draw the number of mutations on this edge from a Poisson distribution

with parameter lθ/2;

For each mutation draw a mutation effect from the MED with standard

deviation σm and let x′ be the sum of these mutation effects;

Start DepthFirstSearch(x + x′) in the left child of G;

end

if current root has a right child then
Let l be the length of the edge to the right child;

Draw the number of mutations on this edge from a Poisson distribution

with parameter lθ/2;

For each mutation draw a mutation effect from the MED with standard

deviation σm and let x′ be the sum of these mutation effects;

Start DepthFirstSearch(x + x′) in the right child of G;

end

end
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θ̂var from the variance of gene expression: The variance of the expression level of a

gene which evolves according to the gene expression evolution model correlates linearly

with time (Khaitovich et al., 2005b). Time is measured here in units of 2N generations.

Thus, the variance correlates linearly with θ. Since the gene expression evolves along

genealogies, the variance of expression is (σ2
mθ)/2. The division by 2 is necessary, since

lθ/2 mutations occur on each edge of a genealogy, whereas l is the length of the edge (cf.

algorithm 5.2). Additionally, each gene expression value is influenced by non-mutational

effects. Hence, the variance of the expression values of a gene is

V ar(Gene expression) = σ2
m

θ

2
+ σ2

e (5.2)

After transformation the following estimate θ̂var is derived from the gene expression

variance:

θ̂var =
2 · (V ar(Gene expression)− σ2

e))

σ2
m

(5.3)

The estimate θ̂var is similar to the mean pairwise distance π̂ estimated from sequences.

It is linearly to time except for the correction of non-mutational effects.

θ̂alleles from the number of alleles: The Tajima’s D test uses the number of segre-

gating sites to derive the second estimate θ̂W . This is not possible here, since microarray

data comprises only a single expression value per gene and per individual. However,

an infinite alleles model can be assumed (Ewens, 1972), since one can count different

gene expression values. Under the assumption of an idealised situation without any

non-mutational effects, all differences between gene expression values would result from

mutations. Thus, it can be assumed that two individuals carry two different alleles of

the analysed gene if their expression level in the gene is different. Under this assumption

it is easy to count the number of alleles a. Hence, the estimate θ̂alleles can be derived

by the following equation (Ewens, 1972):

a =
n−1∑
i=0

θ̂alleles
θ̂alleles + i

(5.4)

There is no closed form for equation 5.4, but it can be solved with a root find method

(cf. chapter 2.4 or Brent (1972)). Please note that the maximum value for a is restricted
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Algorithm 5.3: Count the number of alleles

Data: Expression values of a gene from n different individuals, model parameters

σm, σe

Result: The number of alleles a

Let a := 0;

Let distanceToLastAllele := 0;

Sort the n individuals according to their expression level in the analysed gene. Let

xi be the gene expression level in individual i after sorting so that

x1 ≤ . . . ≤ xi ≤ · · · ≤ xn;

for i := 1 to n− 1 do
distanceToLastV alue := xi+1 − xi;

distanceToLastAllele := distanceToLastAllele + distanceToLastV alue;

if distanceToLastV alue > 2σe OR distanceToLastAllele > 2σm then
a := a + 1;

distanceToLastAllele := 0;

end

end

to n − 1, because the solution for a = n is infinite. This has no effect for large sample

sizes, since it is unlikely to count as much alleles as individuals except for cases in

which θ is extremely large. Unfortunately, real data is not ideal which is caused by non-

mutational effects. However, the estimates for the standard deviations of mutational and

non-mutational effects can be used to develop a heuristic implemented in algorithm 5.3.

The algorithm counts a new allele if the distance between two gene expression values is

greater than twice of the standard deviation of non-mutational effects. A new allele is

also counted if the difference of the expression value of the current individual and the

expression level of the first individual of the current allele is greater than twice of the

standard deviation of mutation effects. The algorithm was tested on synthetic data and

percentages of correct predicted number of alleles of about 80 % to 90 % were observed.

However, the percentages depend on the parameters and the sample size (not shown

here).
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5.2.3. The Tajima-type test

Following Tajima’s D-test (Tajima, 1989) a neutrality test based on the following statis-

tic is suggested:

∆ = θ̂var − θ̂alleles (5.5)

Unfortunately, the complex nature of the model does not allow an analytical treatment of

the test statistic to estimate the confidence limits. Hence, algorithm 5.2 is used to create

genealogies which depend on σm, σe and θ estimated from the data under the assumption

that the majority of gene expression levels evolved neutral. The resulting distribution

of ∆-values describes the assumed neutral case and is used to calculate the confidence

limits. According to the Tajima’s D-test, genes from the real data which have a ∆-value

smaller than the lower limit might be under directional selection, whereas genes with a

∆-value greater than the upper limit might be under balancing selection. However, as

mentioned before, other effects might influence the ∆-value of a gene.

5.3. Experiments and results

5.3.1. Analysing the ratios of the two θ-estimators

In order to show the ratios between the two estimators for θ, simulations with different

sample sizes n and mutation rates θ were carried out. Four cases were tested: (a) n =

10, θ = 0.1, (b) n = 100, θ = 0.1, (c) n = 10, θ = 1, (d) n = 100, θ = 1. Please note that

the choice of σm and σe is nonrelevant, since both estimators for θ use these parameters

to correct the estimates again. For each of the cases (a)–(d) 10, 000 genealogies were

created, and on each genealogy evolution of gene expression was simulated 1, 000 times.

The mean variances and allele-numbers of the 1, 000 simulations were used to determine

the estimates θ̂var and θ̂alleles. Subsequently, scatter plots were used to illustrate the

estimates θ̂var and θ̂alleles for the 10, 000 genealogies (cf. figure 5.1). The θvar-estimates

were mapped to the x-axis, while the θalleles-estimates were mapped to the y-axis.

With an increase of the mutation rate, a corresponding linear increase of the θ-estimates

can be observed (cf. the scaling of the axis in figure 5.1). With an increase of the
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Figure 5.1.: θvar/θalleles-plots from 10, 000 genealogies for four cases. Each point results

from the mean values of estimates from 1, 000 simulations per genealogy.

sample size n, the variance in the estimates is reduced, since the scatter plots are more

compact for n = 100 than for n = 10. This decrease of the variance is stronger in the

θalleles-estimates than in the θvar-estimates which results in a curve in the scatter plots

(cf. cases with n = 100 in figure 5.1).
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Table 5.1.: Mean values and empirical 95% confidence intervals of the ∆ statistics from

simulations on 100, 000 Wright-Fisher genealogies.

n θ = 0.1 θ = 0.5 θ = 1.0

5 -0.048 -0.280 -0.559

(-0.685 , 0.393) (-2.195 , 2.043) (-6.354 , 3.909)

10 -0.021 -0.102 -0.219

(-0.429 , 0.550) (-1.653 , 2.152) (-2.905 , 3.836)

50 -0.008 -0.026 -0.051

(-0.404 , 0.651) (-1.030 , 2.212) (-1.717 , 3.797)

100 -0.005 -0.027 -0.029

(-0.381 , 0.686) (-0.925 , 2.171) (-1.554 , 3.795)

5.3.2. Analysing the distribution of ∆-values

After comparing the distributions of the two different estimators for θ, the distribution of

their difference ∆ = θvar−θalleles was considered. Thereby, a larger number of different

parameter values were used to determine the distributions of ∆ in a larger number of

cases. Table 5.1 displays parameter settings for the mutation rates (θ = 0.1, 0.5, 1.0) and

sample sizes (n = 5, 10, 50, 100). Algorithm 5.2 was used to generate the corresponding

distributions of ∆-values. Mean values and 95% confidence intervals are presented

in table 5.1. Here, the results base on simulated 100, 000 genealogies. The range of

the confidence intervals correlates positively with θ. The mean estimates for θ are

underestimated in all cases, since the expectation E[∆] is zero. However, if the sample

size n grows, ∆ tends to zero. Beside, the ranges of the confidence intervals are decreased

and shifted if n is increased. However, the differences of means values and confidence

limits between the cases with n = 50 and n = 100 are marginal in comparison to the

differences between n = 5 and n = 10. Thus, one would not await large changes in the

results if n is set to a value substantially greater than 100.

Four of the distributions described by their mean values and confidence limits in table 5.1

were illustrated in figure 5.2. As already discussed, the distributions are more wide in

case of a larger θ-value. In addition, the distributions are affected by the sample size n

which can be observed especially for the cases with θ = 1.0. Thereby, the distribution

for n = 10 shows several peaks. In contrast, the peaks disappear nearly completely for
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Figure 5.2.: ∆-distributions for four different cases.

Table 5.2.: Results from the analysis with model with mutational and non-mutational

effects.

Data set #Individuals #Genes σ̂m σ̂e θ̂

Brain 6 15,104 0.519 0.167 0.221

Heart 6 14,582 0.665 0.234 0.264

Kidney 6 17,387 0.594 0.198 0.492

Liver 6 14,668 0.622 0.195 0.426

Testis 6 21,164 0.367 0.133 0.249

n = 100 (cf. figure 5.2).
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Table 5.3.: Results of the Tajima-type test. The second and the third column represent

the 95 % confidence limits, ∆Mean is the mean ∆-values of the real data, and

the last two columns show the number of genes falsifying the null hypothesis

at the lower (#Genes <) and the upper limit (#Genes >), respectively.

Data set Lower limit Upper limit ∆Mean #Genes < #Genes >

Brain -1.359 1.215 0.024 39 (0.25%) 214 (1.38%)

Heart -1.531 1.423 0.038 42 (0.28%) 185 (1.23%)

Kidney -2.224 2.226 0.117 60 (0.34%) 277 (1.55%)

Liver -1.780 1.990 0.106 94 (0.62%) 272 (1.81%)

Testis -1.479 1.371 0.087 15 (0.07%) 359 (1.65%)

5.3.3. Human data

The Tajima-type test was applied to expression profiles from five different tissues of

human: Brain, heart, kidney, liver, and testis (Khaitovich et al., 2005a). The data

sets were derived from six individuals. Sex-related genes had been filtered out before

the analysis to avoid sex-bias. Subsequently, the ML method (cf. chapter 4.2.3) was

used to estimate σ̂m, σ̂e, and θ̂ for all n(n − 1)/2 pairs of individuals in a sample. The

mean values of the respective n(n− 1)/2 estimates were calculated and used as the final

results. They are shown in table 5.2. The smallest estimate for the standard deviation

in mutation effects σm is shown for testis (0.367), whereas this estimate varies for the

other four tissues between 0.519 and 0.665. Testis also shows the smallest standard

deviation in non-mutational effects σe (0.133). The second smallest estimate for σe is

in brain (0.167), whereas the largest estimate for σe is in heart (0.234). The estimates

for the population mutation rate θ are similar in brain (0.221), heart (0.264), and testis

(0.249), while they are larger in kidney (0.492) and liver (0.426).

Subsequently, the parameter estimates were used to perform the Tajima-type test. The

mutation rates θ̂var and θ̂alleles were estimated for each gene in the five data sets and

the distributions of ∆-values were calculated. Furthermore, distributions were generated

under neutrality with algorithm 5.2 depending on the corresponding parameter estimates

in order to obtained the lower and the upper 95 % confidence limits. The confidence

limits and the number of genes located outside of these limits are presented in table 5.3

for each of the data sets. Figure 5.3 displays the corresponding distributions of ∆-values.
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Figure 5.3.: ∆-distributions for the different tissues for the real data and simulations

using the estimated parameters from the real data.
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The range of the confidence limits correlates positively with θ. Thus, the largest range

can be observed in kidney (−2.224, 2.226), while the smallest is in brain (−1.359, 1.215).

In all five data sets the number of genes whose ∆-estimates are greater than the upper

confidence limit exceeds the number of genes whose ∆-estimates are smaller than the

lower confidence limit by far. However, the number of genes which are significantly

smaller than the lower limit or greater than the upper limit is smaller than one would

expect in all five cases: Based on a 95 % confidence interval, one would await about 5 %

of genes in each tissue in which the neutrality hypothesis is rejected. All distributions

of ∆-values from real data show a peak around ∆ = 0 (cf. figure 5.3). However, their

mean values are slightly greater than zero (cf. the column ∆Mean in table 5.3). This

differs from the mean of the ∆-values describing the neutral case which is smaller than

zero (cf. test cases in table 5.1).

5.4. Discussion

For DNA sequences different estimators are widely known to evaluate the population

mutation rate θ from samples of natural populations. Tajima (1989) used the difference

of two estimators to decide whether observed sequences evolved neutrally or not. Here,

the estimators were first adapted to the transcriptome level, to analyse the variability in

gene expression within populations. Thereby, it is assumed that variability in gene ex-

pression depends on mutations in regulatory regions which change the level of transcript

abundance (Khaitovich et al., 2005b). Considered as a mathematical problem, the ma-

jor difference between sequences and gene expression levels is that differences between

sequences are discrete, and differences between gene expressions levels are continuous.

Therefore, the discrete mutation model which describes mutations on genealogies of

sequences was replaced by a continuous gene expression evolution model.

The first estimator for the population mutation rate under the continuous model is θ̂var.

This estimator is based on the linear correlation of gene expression variance and time. It

can be considered as an adaptation of the average pairwise distance π̂ used for sequences.

Both, θ̂var and π̂, grow linearly in time under a neutral model and both depend on the

frequency of the variants in the population. A relative small number of sequences from

a new allele in a population would not change π̂ much. Likewise, a few individuals with

a different level of gene expression would not change the variance of gene expression

much.
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The second estimator θ̂alleles used here is not frequency dependent which is related to

the estimator taken from the number of alleles (Ewens, 1972). On the level of sequences

and on the level of gene expression as well, already one mutated individual changes the

estimate in the same way as many other mutants of the same type. This is equal to the

estimator from the number of segregating sites used by Tajima (1989).

Thus, the test statistic θ̂var − θ̂alleles has the same meaning as the Tajima’s D test

statistic. Assume a population in which the appearance of different alleles of a gene is

advantageous. In such a situation of balancing selection the estimator θ̂var is assumed

to be greater than θ̂alleles. Under directional selection a single allele is preferred so that

the allele frequencies shift in one direction over the time. Thus, θ̂alleles should exceed

θ̂var. Indeed, corresponding to the Tajima’s D test, other effects like bottlenecks in the

population size or linkages of neutral sites to selective sites can influence the distribution

of ∆.

A problem is that non-mutational effects exacerbate the counting of different alleles in

gene expression data. Thus, here the M&E-normal model was applied which considers

non-mutational effects (cf. chapter 4). Admittedly, the estimate of the standard devia-

tion of non-mutational effects σ̂e is a summary over all genes. A less simple consideration

would be beneficial, since non-mutational impact differs between different genes. How-

ever, if one takes this into account, a larger sample size would be necessary to obtain

faithful results. Relating to the data currently available, this would not be practical.

An advantage of the M&E model is its additivity. Thus, the variance of non-mutational

effects can be subtracted from the overall variance of gene expression.

In chapter 5.3 simulation studies were performed to examine the distributions of the two

θ-estimators and their difference ∆. It was shown that ∆ is smaller than zero for small

values of the population size n. This deviation is reduced if n is increased. Furthermore,

the asymmetric distribution of ∆ shows conspicuous peaks for small n (cf. the case

with n = 10 and θ = 1.0 in figure 5.2). For larger n the peaks do not appear in the

distributions. A reason for these peaks is that the method of moments to estimate

θ̂alleles is biased under an infinite alleles model (Joyce, 1995). This bias depends on

the discrete nature of the number of alleles. If n is increased, the number of possible

states to describe the diversity by a is increased. Then the resulting estimate θ̂alleles
is more accurate which results in a ∆-value closer to the expectation of zero. By the

reason that the number of possible states to describe diversity is increased, the peaks in

the distribution of ∆ disappear (cf. the case with n = 100 and θ = 1.0 in figure 5.2).
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In this study, simulations were performed for various choices of the parameter values. In

the test by Tajima (1989) the beta distribution was used to approximate the distribution

of D. Depending on the speed of present time computers, it is unproblematic to simulate

the distribution for the neutral case for each situation. The advantage of this approach

is that the discussed problem of bias resulting from small n is included.

All simulations were performed to examine the neutral case. It would be favourable to

observe the distribution of ∆-values under a non-neutral model to see the differences

between the neutral case and a case with directional or balancing selection. However,

this causes difficulties so that further research is necessary. The main problem is that

under selection not only the genealogies differ from the neutral case but also the level

of gene expression itself. With the current model it is not possible to describe both.

Further, one has to decide how strong influences of selection are. However, even without

regarding the non-neutral case explicitly, the simulations from the neutral case can be

used to decide which genes from real data do not correspond to the expectations of the

neutral theory.

An analysis of microarray data from different human tissues found only a very small

number of genes which deviate significantly from a neutral model. Its number is below

the expectation for the 5 % confidence limits. Furthermore, the number of genes which

are greater than the upper limit exceeds the number of genes which are smaller than

the lower limit by far. Since this picture is consistent in all five data sets, one suspects

that a general problem exists. One can argue that the small number of individuals (6

in each set) is problematic for this kind of analysis, for example, because of the biased

estimator θ̂alleles. Thus, in further studies one should use data sets with a larger sample

size. Additionally, a comparison between the genes of different tissues which rejected

the neutral model might lead to interesting results. Because of the small n, this kind of

analysis was abandoned here.

However, the results on the real data show some interesting aspects, even if the sam-

ple size is small. The parameter estimates for the M&E-normal model signify a small

influence of non-mutational effects on the level of gene expression in testis in compari-

son to the other tissues. Also for brain, these influences are relatively small. One can

argue that these two tissues are more insulated from environmental effects than heart,

kidney, and liver. Gene expression in heart is assumed to change according to the phys-

ical situation of an individual, while gene expression in kidney and liver is affected by

numerous metabolic processes. The standard deviation estimate of mutation effects σm
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is comparatively small in testis. Together with the relatively small θ-estimate (0.249), it

reflects observations from other studies. In these studies small changes in testis within

primates species (Khaitovich et al., 2005a) and within mice subspecies (Voolstra et al.,

2007) in comparison to other tissues were observed. The θ-estimates differ between 0.221

(brain) and 0.492 (kidney). This indicates a relatively large number of gene expression

differences caused by mutations among the individuals, since it describes the expected

number of mutations per gene between two randomly chosen individuals from the popu-

lation. This large number of differences agrees with results by Storey et al. (2007). They

obtained in a different human data set that even 83 % of all genes show differential gene

expression among individuals which evinces large variation.

Although, the sample size of the data sets is very small for a population study, the

results of the Tajima-type test are in good agreement with other recent studies: The

gene expression of the majority of genes in the human data evolved according to a neutral

model as suggested by Khaitovich et al. (2004). However, the results can be explained

by stabilising selection as well. Genes whose regulation is under stabilising selection will

not change their expression much. Thus, large variation will not be obtained from the

data sets. In this case one would expect a ∆-value close to zero. Thus, also stabilising

selection might be an important factor which has been considered, for example, by Rifkin

et al. (2003) and Lemos et al. (2005) (cf. Gilad et al. (2006b) for a review).

5.5. Conclusion

In this chapter the Tajima’s D test was adapted to gene expression data by changing

the underlying evolutionary model. The simulation studies show that it is possible to

estimate the population mutation rate θ from gene expression data with two different

estimators. The difference of the resulting estimates is zero in expectation under a

neutral model. For human data the majority of genes does not contradict the neutral

theory. Unfortunately, the gene expression data sets currently available are too small

for a meaningful population analysis. However, one can suppose that the data sets grow

in the next years and more detailed analyses become possible. In that time complex

stochastic models become more important. Hence, the way to combine the coalescent

theory and gene expression evolution models might be a starting point for further re-

search, for example, to adapt other important tests used for DNA sequences like the

Hudson-Kreitman-Aguade test (Hudson et al., 1987).



6. Using gene expression evolution

models for medical applications

In this chapter the process of carcinogenesis is considered as an evolutionary process.

Under this assumptions medical data is analysed with a gene expression evolution model

in order to detect genes which are involved in the disease.

6.1. Introduction

This thesis is focused mainly on the development of models for evolution of gene expres-

sion which is regarded as a result of sequence evolution in regulatory sequences. The

observed time periods of evolution between near related species are in the range of a few

million years. In contrast, in this chapter relatively small time periods are considered:

Medical data sets from different types of malignant diseases are analysed. First, it is dis-

cussed why gene expression evolution models can be applied to that type of data, since

the biological process of carcinogenesis is apparently different from species evolution.

Subsequently, the experimental design and the analysis is explained.

Tumours and stem cell diseases originate from a formerly normal cell. By mutations in

specific regions which cannot be repaired gene products are changed in a fashion that

the transformation to a malignant cell occurs. These mutations affect proliferation and

apoptosis which results in an uncontrolled cell division. Evidence exist that mutations

which take place in regulatory regions can lead to that process by changing the expression

level. For instance, it is known that specific mutations permit the transcription of genes

which induce the transformation to a malignant cell. These genes are called oncogenes.

However, it is supposed that in most cases a number of mutations must occur, before

malignant growing starts. Later, mutations accumulate faster during progress of the

disease, since cell repair functions break down, and the disease becomes more aggressive.

103



6.2. Materials and methods 104

Hence, the gene expression profile of a malignant cell depends strongly on the phase of

the disease. Because of this progression starting from a first mutation, the process can

be regarded as an evolutionary process. A more detailed introduction into the biology

of human cancers is given by Schulz (2005).

Altogether, it is beyond all questions that the gene expression profiles of tumour tissues

or malignant stem cells are different from their normal counterparts. Furthermore, the

expression profiles of different kinds of cancers, even in the same tissue type, are variable.

Thus, in many studies microarray experiments were used to classify cancer types by

their specific expression profiles (e.g., by Golub et al. (1999); Ramaswamy et al. (2001);

Driscoll et al. (2003)). The goal is an accurate diagnosis which is necessary for the best

possible treatment. To this end, a big number of supervised machine learning methods

and unsupervised clustering algorithms have been developed and applied. Before using

one of these methods, the large number of genes typically obtained with microarrays has

often been reduced to those ones with a significant gene expression difference between

the examined types of cancer (cf. chapter 2.2.3). Thereby, in many cases a large ratio

of genes show a significant gene expression difference, although it is assumed that only

a relatively small number of mutations has occurred on sequence level. It is suggested

that the majority of differences results from variations in transcription factors.

In this chapter a model based analysis is performed on a lung cancer and a leukaemia data

set. First, the model parameters are estimated. Subsequently, the Bayesian mutation

detection method is used to find out those genes which are involved in the disease. The

method is compared with the significance analysis of microarrays (SAM) (Tusher et al.,

2001) which is a common approach to analyse microarray data of different classes to find

out significantly expressed genes.

6.2. Materials and methods

6.2.1. The model

The gene expression evolution model with non-mutational effects (M&E model) is ap-

plied to microarray data of two different classes. It is noted that the expression of

each gene evolves independently of each other in this model. This simplification might

be too strong when using medical data, since the majority of gene expression changes
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might be no direct result of mutations but of interactions between genes. Thus, a mu-

tation is interpreted here as a variation in the expression level of a gene which is a

result of the carcinogenesis, but not necessarily a result of a mutation in the regulatory

sequence of that gene. Mutation effects are assumed to follow a normal distribution

with standard deviation σm. There are other expression level changes resulting from the

environment and different pathways not affected by the disease. They are summarised

by a random variable describing non-mutational effects. This variable follows a normal

distribution with standard deviation σe. Thus, the model parameters can be estimated

by a maximum-likelihood (ML) method (cf. chapter 4.2.3). The parameter estimates are

used to perform the Bayesian mutation detection method to select genes which changed

their expression level by a mutation (cf. chapter 4.2.4). These genes are referred to as

’mutated genes’ here even if their regulatory sequences are unchanged. They considered

as candidates to cause the transformation to a cancer cell.

Microarray data sets which are applied to the model can contain either two different

classes of cancer which evolved from the same type of normal cells or they can describe

a time series, for example, a disease which evolved from normal tissue.

6.2.2. Significance analysis of microarrays (SAM)

Beside analysis with the gene expression evolution model, SAM (Tusher et al., 2001) is

used to find out genes which are significantly different expressed between two classes of

expression profiles. SAM assigns a score to each gene. This score depends on the expres-

sion change of that gene between the classes relative to their standard deviations. For

genes with scores greater than a selected threshold, a number of permutations are used

to estimate the false discovery rate (FDR) which is the percentage of genes significant

by chance. Each permutation permutes the class labels which signifies the affiliation of

an expression profile to its class.

6.2.3. Data sets

Two data sets each with data from two classes are analysed here. The data sets have been

collected at the University Hospital Düsseldorf with Affymetrix HG Focus microarrays

which measure expression levels of 8, 746 genes (and some housekeeping genes). The

first set contains expression profiles from two types of lung cancer: Adeno carcinomas



6.3. Experiments and results 106

Table 6.1.: Medical data sets which have been applied to SAM and the Bayesian muta-

tion detection method to detect genes with differences in expression between

both classes.

Data set Array Class 1 Class 2

Lung cancer Affy HG Focus Adeno carcinoma Squamous cell carcinoma

8746 genes 10 profiles (A1–A10) 10 profiles (P1–P10)

Leukaemia Affy HG Focus Normal bone marrow Chronic myeloid leukaemia

8746 genes 8 profiles (N1–N8) 9 profiles (C1–C9)

Table 6.2.: ML parameter estimates from the M&E-normal model for the lung cancer

and leukaemia data sets.

Data set σ̂m σ̂e d̂

Lung cancer 0.956 0.203 0.560

Leukaemia 0.430 0.114 0.516

(class 1 of the lung cancer set) and squamous cell carcinomas (class 2 of the lung cancer

set) (Rohr et al., 2005). The second set includes expression profiles sampled from CD34+

hematopoietic stem and progenitor cells from bone marrow of healthy volunteers (class 1

of the leukaemia set) and CD34+ cells from bone marrow of patients with chronic

myeloid leukaemia (CML) in chronic phase (class 2 of the leukaemia set) (Diaz-Blanco

et al., 2007). Table 6.1 gives an overview on the data. In the first set the two classes

descended from former normal undifferentiated lung tissue. The situation in the second

set corresponds to a time series in which normal cells transform to malignant cells.

6.3. Experiments and results

The ML parameter estimation method was used to estimate the model parameter values

σ̂m, σ̂e, and d̂ for both data sets (cf. chapter 4.2.3). The data sets were applied in the

same way as the primate and mice data sets (cf. chapter 4.3.3). The expression profiles of

class 1 were regarded as the sample 1 and the expression profiles of class 2 were regarded

as the sample 2, respectively (cf. table 6.1). For both data sets 100 independent runs
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Table 6.3.: Results of the Bayesian mutation detection method. The rows show the

number of genes which changed their expression by the same number of

mutations. The values in the S2N columns are mean values of all signal-to-

noise values from all genes with the corresponding number of mutations.

#Mutations Lung cancer Leukaemia

#Genes Mean value of |S2N|-scores #Genes Mean value of |S2N|-scores

0 4,754 0.254 6,010 0.437

1 3,917 0.403 2,665 0.849

2 72 0.793 64 1.046

3 3 1.444 6 0.899

4 0 - 1 1.606

of the ML method were performed and the corresponding results with the smallest log-

likelihood were considered as best estimates (cf. table 6.2). The parameters σm and σe

are about twice as large in the lung cancer set than the corresponding estimates in the

leukaemia set. The estimates for parameter d are similar in both sets.

After parameter estimation the Bayesian mutation detection method was used to esti-

mate how many mutations occurred in each gene. The results are depicted in table 6.3.

In the lung cancer set the Bayesian mutation detection method found 3, 992 genes in

which the expression level is influenced by at least one mutation (45.65 %). In the

leukemia set only 2, 736 genes (31.28 %) were found in which at least one mutation af-

fects the expression level. The number of genes in the categories for exactly two or more

mutations is very small in comparison to the overall number of 8, 746 genes measured

with the microarrays. However, it has been shown that partitions of the exact number

of mutations are weak (cf. chapter 4.3.2).

Additionally, for each category the mean values of the absolute values of signal-to-noise

ratios (S2N) over all genes in that category were calculated. S2N is a measure which

reflects the gene expression difference between two classes relative to the standard de-

viations within the classes. The measure has been used, for example, by Golub et al.

(1999) or Ramaswamy et al. (2001). It is calculated for a single gene by the equation

S2N(Gene) =
µ1(Gene)− µ2(Gene)

σ1(Gene) + σ2(Gene)
, (6.1)
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At least one mutation At least two mutations

Adeno carcinomas vs. squamous cell carcinomas

Normal vs. CML

Figure 6.1.: Dendrograms resulted from hierarchical clustering of the lung cancer and

leukaemia data.

whereas µ1 and µ2 are the mean gene expression levels in the classes 1 and 2 and σ1

and σ2 are the corresponding standard deviations. In the results in table 6.3 the mean

values of the |S2N|-scores over all genes in the same category correlates positively with

the number of mutations for each gene. The only exception is in the leukaemia set. The

64 genes with two mutations have a greater mean value of |S2N|-scores than the genes

with three mutations. Indeed, there are only six genes with three mutations, whereby

the corresponding mean value of the six |S2N|-scores might be instable against outliers.

The mean values of |S2N|-scores for zero and one mutation are twice as large in the

leukaemia set than in the lung cancer set.
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Table 6.4.: Comparison of SAM and the Bayesian mutation detection method. The

second column shows the number of genes found by SAM. The last two

columns show the number of genes which have been found exclusively by

SAM and the number of genes which have been found also with the Bayesian

mutation detection method.

Data set #Significant q ≤ 5 % Fold Change #Exclusive genes #Overlapping genes

Lung cancer 389 2.0 216 173
Leukaemia 315 1.5 151 164

The genes which were detected as mutated in the regulatory region by the Bayesian

mutation detection method were used to perform a hierarchical clustering to order the

expression profiles in each data sets in a tree-like fashion referred to as dendrogram. For

both data sets two different analyses were performed. In the first one genes with at

least one detected mutation were used, whereas in the second one genes with at least

two detected mutations were selected for clustering. Although estimation of the exact

number of mutations is imprecise, genes in which two mutations have been detected have

a higher chance that at least one mutation occurred than genes in which just one muta-

tion has been detected (cf. chapter 4.3.2). The dendrograms resulting from hierarchical

clustering are illustrated in figure 6.1. A good clustering into adeno carcinomas and

squamous cell carcinomas was achieved in both analyses. However, the squamous cell

carcinoma expression profile P10 clusters closer to the adeno carcinoma profiles than to

the other squamous cell carcinoma profiles. In the leukaemia set also a good clustering

was obtained with one exception in both cases. C6 is an outlier, since it clusters with

the normal CD34+ cells. In both data sets the branches are considerably longer in the

analysis with at least two mutations.

The two data sets were also applied to SAM. SAM was used in the “two-class unpaired

mode” and 1, 000 permutations were generated (cf. Tusher et al. (2001) for details).

Genes which were considered as significant for a FDR of 5 % were selected if their fold

change was greater than 2.0 in the lung cancer set (or smaller than 0.5) and greater than

1.5 in the leukaemia set (or smaller than 0.666), respectively. The fold change is the ratio

of gene expression mean values of both classes µ1(Gene)/µ2(Gene). The different fold

change cut-off values for the data sets were chosen in order to get a comparable number

of genes. Altogether, the gene expression differences in the leukaemia set are smaller so

that a fold change of 2 would have decreased the number of genes too strong. With the
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Adeno carcinomas vs. squamous cell carcinomas

SAM Bayesian mutation detection

Figure 6.2.: Cluster plots with dendrograms of 389 genes of adeno carcinoma (A1–A10)

and squamous cell carcinoma (P1–P10) microarray data. On the left side

the genes have been selected by SAM (Fold change = 2, q-value ≤ 5 %). On

the right side the ML method have been used to select mutated genes (the

number of mutations is shown left of the heat map).

restriction of the fold change 389 significant genes were found in the lung cancer set and

315 ones were found in the leukaemia set. The results are presented in table 6.4.

The genes which were selected by SAM were used to perform hierarchical clustering.

The dendrograms are shown in figure 6.2 for the lung cancer set and in figure 6.3 for

the leukaemia set. Heat maps of the gene expression values are also shown in the same

figures. Before plotting, all selected genes were sorted according to their fold change
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Normal vs. CML

SAM Bayesian mutation detection

Figure 6.3.: Cluster plots with dendrograms of 315 genes from microarray data of CD34+

hematopoietic stem and progenitor cells from bone marrow of healthy vol-

unteers (N1–N8) and patients with CML (C1–C9). On the left side the

genes have been selected by SAM (Fold change = 1.5, q-value ≤ 5 %). On

the right side the ML method have been used to select mutated genes (the

number of mutations is shown left of the heat map).

in a decreasing order. The expression profiles P2 and P10 in the lung cancer set were

clustered closer to the adeno carcinoma profiles than to their own class of squamous cell

carcinomas. Altogether, a correct clustering was found in both data sets except for C6

in the leukaemia set.

Finally, the results from the Bayesian mutation detection method were compared with
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the results by SAM. With SAM 389 genes were detected in the lung cancer set and 315

genes were found in the leukaemia set. With the Bayesian mutation detection method

each gene was mapped to the number of mutations with the largest posterior probability.

All these genes were ranked in a decreasing order according to the number of mutations.

In a second step the genes with the same number of mutations were sorted in a decreasing

order according to their posterior probability. From the resulting list the first 389 genes

from the lung cancer set and the first 315 genes from the leukaemia set were selected

for hierarchical clustering. Thus, the results are comparable with the SAM approach,

since an equal number of best genes from both methods are compared and used for

clustering. The number of genes selected by both methods is 173 for lung cancer and

164 for leukaemia. The number of genes selected exclusively by one of the methods

is 216 for lung cancer and 151 for leukaemia (cf. table 6.4). Dendrograms and heat

maps resulting from clustering for genes selected with the Bayesian mutation detection

method are shown in figure 6.2 for the lung cancer set and in figure 6.3 for the leukaemia

set. The genes are sorted in the previous described manner. The dendrograms look very

similar to those resulting from genes selected by SAM. Again, the expression profiles P2

and P10 were clustered closer to the other class than to their own class, while C6 was

clustered wrong.

6.4. Discussion

It is shown that it is possible to apply the M&E-normal model to gene expression profiles

of malignant diseases. It is assumed that the process of carcinogenesis is an evolutionary

process on the level of gene expression in which gene expression changes accumulate over

time as a result of a transformation of the cells and the progress of the disease. Two data

sets are analysed. The results of parameter estimation show that the standard deviation

of mutations σm and of environmental effects σe are smaller in leukaemia than in lung

cancer. This indicates smaller gene expression differences, since the expected number of

mutations d is similar in both sets. However, smaller gene expression differences between

the two classes within the data sets are confirmed by SAM. Thereby, it was necessary

to set the fold change to 1.5 instead of 2.0 to get a similar number of significant genes

for the leukaemia and the lung cancer set. Also the branch lengths in the dendrograms

are longer in the lung cancer set than in the leukaemia set which indicates larger gene

expression differences, too.
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The calculation of the mean values of the |S2N|-scores show that genes with a larger

number of mutations discriminate better between the two classes according the common

measure S2N. Indeed, there are overlapping regions (e.g., some genes with two mutations

have a smaller |S2N|-score than other genes with one mutation) so that the |S2N|-score
is no single criterion which can be used to decide how many mutations happened.

The genes which were detected as mutated were subject to a hierarchical clustering.

Perfect clustering was yielded expect for a few outliers. Interestingly, the clustering

results for the lung cancer set on genes with at least one (3, 992 genes) and with at least

two mutations (75 genes) (cf. figure 6.1) are better than for a cluster with 389 genes (cf.

figure 6.2). The genes with at least two mutations have strong expression differences

between the two classes, while there might be genes with weak differences in the group of

genes with exact one mutation. This would increase the noise and is an explanation for

the fact that both P2 and P10 are clustered beyond the other squamous cell carcinoma

profiles. In contrast, the very large number of 3, 992 genes which contains only genes

with at least one mutations might have more statistical power than the 389 genes so

that outliers have no large impact. Indeed, these results depend on the used data set.

They are not a general condition.

If one compares the gene lists of the Bayesian mutation detection method and SAM, a

large number of genes is observed which was found exclusively by one of the methods.

These genes might be important. Other methods might also deliver important results.

Thus, if data is analysed, one should use different methods in combination in order to

infer the cause or the state of a disease.

6.5. Conclusion

As a conclusion, the use of the ML parameter estimation method and the Bayesian

mutation detection method is a possibility and alternative if medical data of different

groups but the same origin are analysed. This fact makes the gene expression evolution

models more valuable and enables more possibilities to analyse medical data, even on

the base of a solid stochastic model.



7. Summary

Numerous recent studies deal with the examination of differences between gene expres-

sion profiles of nearly related species (cf. Ranz and Machado (2006) for a review). The

evolutionary process leading to the differences is of special interest. In most studies

a positive correlation of time distance between species and gene expression divergence

between species was observed. Khaitovich et al. (2004) showed for primate species that

gene expression differences accumulate linearly with time which can be explained by a

neutral model according to the neutral theory by Kimura (1983). Thus, Khaitovich et al.

(2005b) suggested a neutral model for evolution of gene expression, referred to as the M

model here. The M model describes mutations in the regulatory region of a gene which

alter the expression level of that gene. The mutations are Poisson distributed. The mu-

tation effects on the level of gene expression are described by a continuous distribution,

referred to as mutation effect distribution (MED). Thus, the occurrence and the effect

of mutations are combined to a compound Poisson process. This thesis deals with exten-

sions of the M model. After motivating the topic (Chapter 1) and an introduction into

the biological and mathematical background (Chapter 2), more complex variants of the

M model are described. Furthermore, new applications for data analysis are suggested.

Finally, a medical application is given.

A model with gamma-distributed mutation effects (Chapter 3): The M-gamma

model is introduced which uses a gamma distributed MED. This distribution is more

flexible than previous used ones. Therefore, a better fit to analysed data seems plausible.

Furthermore, the shape of the mutation effects can be analysed in more detail. In order

to estimate the model parameters an optimisation method is used. After validating this

method, biological gene expression data sets from different species are analysed. For

primates the results show an acceleration in gene expression evolution on the human

lineage in brain in comparison to the chimpanzee lineage. Furthermore, the results

indicate that a positively skewed MED is better than other MEDs.
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A model with mutational and non-mutational effects (Chapter 4): The M&E model

is introduced which incorporates all kinds of non-mutational effects including, for exam-

ple, environmental effects, the cell cycle, epistatic effects, and measurement errors. In

order to estimate the model parameters, a χ2-fit method and a maximum-likelihood

method are presented. Furthermore, a Bayesian method is suggested to detect those

genes mutated in their regulatory region. It is shown that the M&E model fits real

data taken from microarray experiments better than the M model. Additionally, a more

detailed analysis of data is enabled, since it is possible to estimate the impact of non-

mutational effects. The results on primate data sets indicate differences in the number

of mutations between different tissues, for instance testis show the largest and brain

the smallest number of mutations between human and chimpanzee. Results on mice

data indicate a closer connection between Mus musculus domesticus and Mus musculus

musculus than between Mus musculus ssp and Mus musculus castaneus.

A Tajima-type test for gene expression data (Chapter 5): According to the neutral

theory it is assumed that the majority of gene expression changes depending on muta-

tions in regulatory regions are neutral. However, the level of expression of some genes

might evolve under selection. In this chapter a statistical test related to the Tajima’s D

test is suggested which can be applied to gene expression data sampled from a natural

population. A Wright-Fisher model is assumed so that the genealogy of a sample from

the population can be described by the coalescent process. In order to create a test

statistic, the M&E model is applied to genealogies. Two estimators for the population

mutation rate are suggested. The difference of these estimators is assumed to be zero

under a neutral model and can be used to decide which genes reject the neutral model.

The test is evaluated with synthetic data. Results on real data taken from a human

population indicate that the majority of genes do not reject the neutral model.

Using gene expression evolution models for medical applications (Chapter 6): In

this chapter the carcinogenesis of a former normal cell to a malignant cancer cell is

regarded as an evolutionary process. Thus, the M&E-normal model is applied, since it

is known that expression profiles differ between normal cells and cancer cells. Parameter

estimates from real data are used to detect those genes which changed their expression

as a result of the carcinogenesis. The method is applied to two types of lung cancer and

to normal stem cells and stem cells taken from patients with chronic myeloid leukaemia.

The resulting genes are used to generate clusters which are almost perfect.



8. Zusammenfassung

Verschiedene Studien beschäftigen sich mit der Untersuchung von Genexpressionsun-

terschieden zwischen nahe verwandten Arten (siehe Review von Ranz and Machado

(2006)). Ein besonderes Interesse gilt dabei dem Evolutionsprozess, der zu diesen Unter-

schieden führt. In vielen Fällen wurde eine positive Korrelation zwischen der Zeit, die

seit der Aufspaltung der betrachteten Arten vergangen war, und dem Genexpressions-

unterschied festgestellt. Bei verschiedenen Primatenarten beobachteten Khaitovich et al.

(2004) sogar eine lineares Verhältnis zwischen diesen Größen. Dies spricht, gemäß der

neutralen Theorie von Kimura (1983), für ein neutrales Evolutionsmodell. Daher ent-

wickelten Khaitovich et al. (2005b) ein erstes neutrales Modell zur Beschreibung der Evo-

lution von Genexpression, hier als M Model bezeichnet. Dieses Modell beschreibt Muta-

tionen in der regulativen Sequenz eines Gens, wobei jede Mutation eine Veränderung in

der Expressionsstärke zur Folge hat. Das Auftreten von Mutationen folgt einer Poisson-

Verteilung. Jede Änderung in der Expressionsstärke wird durch eine kontinuierliche

Zufallsverteilung beschrieben, die sogenannte Mutationseffektverteilung (MED). Diese

Dissertation schließt an das M Modell an. Nach einer Einleitung (Kapitel 1) und einer

Einführung in den biologischen und mathematischen Hintergrund (Kapitel 2) werden

Erweiterungen des M Modells behandelt und Anwendungen diskutiert.

M-gamma Modell (Kapitel 3): In diesem Kapitel wird eine komplexere MED ein-

geführt. Im M Modell wurden zuvor nur 1-parametrige Verteilungen genutzt. Die hier

vorgestellte Gammaverteilung ist durch zwei Parameter definiert und somit flexibeler,

wodurch eine detailliertere Datenanalyse möglich ist. Zur Schätzung der Modellpa-

rameter wird ein Optimierungsverfahren benutzt. Dieses wird durch Simulation mit

künstlichen Daten evaluiert und auf echte Daten angewendet. Dabei zeigt sich, dass Mu-

tationseffekte durch schiefe Verteilungen besser beschrieben werden können als durch

symmetrische. Außerdem läßt sich bei Menschen eine im Vergleich zu Schimpansen

beschleunigte Evolution im Gehirn festgestellt.
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M&E Modell (Kapitel 4): In diesem Kapitel wird das M&E Modell als Erweiterung

des M Modells vorgestellt. Dieses Modell beschreibt auch solche Effekte, welche die

Expressionsstärke eines Gens verändern, aber nicht auf Mutationen, sondern auf Umwel-

teinflüssen, dem Zellzyklus, Messfehlern und ähnlichen Effekten beruhen. Zum Schätzen

der Modellparameter werden eine χ2- und eine Maximum-Likelihood-Methode vorgestellt.

Zusätzlich wird eine einfache bayesianische Methode zum Auffinden der Gene mit Muta-

tionen in regulativen Regionen diskutiert. Es wird gezeigt, dass das M&E Modell echte

Daten besser beschreibt als das M Modell. Außerdem ermöglicht es eine detailliert-

ere Datenanalyse. Eine Anwendung auf Daten von Menschen und Schimpansen zeigt

eine unterschiedlich schnelle Evolution zwischen verschiedenen Geweben, z.B. gibt es in

Hodengewebe mehr Mutationen in regulativen Regionen als im Gehirn. Analysen von

Mäusen zeigen eine engere evolutionäre Distanz zwischen Mus musculus domesticus und

Mus musculus musculus als zwischen Mus musculus ssp und Mus musculus castaneus.

Tajima’s D Test für Genexpressionsdaten (Kapitel 5): In diesem Kapitel werden evo-

lutionäre Veränderungen der Expressionsstärke innerhalb von Arten betrachtet und auf

Einfluss von Selektion getestet. Dazu wird eine Adaption des Tajima’s D Tests vorgenom-

men. Es wird angenommen, dass sich Populationen gemäß eines Wright-Fisher Modells

verhalten und sich ihre Genealogie somit durch einen Coalescent-Prozess beschreiben

läßt. Um Varianz in Genexpression zu beschreiben wird das M&E Modell angewendet.

Es werden zwei Schätzer für die Populationsmutationsrate präsentiert, deren Differenz

gemäß des Tajima’s D Tests im neutralen Fall Null ergibt. Signifikante Abweichungen

deuten dagegen auf gerichtete oder balancierende Selektion hin. Eine Analyse mit echten

Expressionsdaten von Menschen zeigt, dass sich die überwiegende Mehrheit der Gene

neutral verhalten.

Medizinische Anwendung (Kapitel 6): In diesem Kapitel wird Entstehung und Ver-

lauf einer Krebserkrankung als ein evolutionärer Prozess betrachtet, der ebenfalls die

Expressionsstärke von Genen beeinflusst. Unter dieser Annahme werden medizinis-

che Expressionsdaten von zwei Lungenkrebsarten sowie von normalen Stammzellen und

solchen von Patienten mit chronischer myelotischer Leukämie analysiert. Mit Hilfe der

bayesianischen Methode aus Kapitel 4 werden Gene herausgefiltert, bei denen Muta-

tionen Expressionsänderungen hervorgerufen haben. Diese Gene werden zur Erstel-

lung von Dendrogrammen verwendet, die eine fast perfekte Aufteilung der Datensätze

entsprechend ihres Phänotyps anzeigen.



A. Software packages

All models and applications described in this thesis were implemented into two software

packages called EMOGEE and EMOGEE Tools, respectively. Both programs use a

configuration file to set up the program functions.

EMOGEE contains the M, the M-gamma, the M&E-normal and the M&E-extreme

model. It is possible to apply these models to experimental data sets to estimate the

model parameters with the presented optimisation methods. Furthermore, it is possible

to generate data.

EMOGEE Tools implements the Bayesian mutation detection method and the Tajima-

type test. Before using one of these applications it is necessary to estimate the model

parameters of the corresponding data with EMOGEE. The respective results have to be

feeded into the configuration file of EMOGEE Tools.

The C++ source code of both packages is available on the homepage

http://www.cibiv.at/software/emogee

Detailed manuals for the programs are stored as .pdf-files on the same homepage.
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B. Abbreviations

A – Adenine

ANOVA – Analysis of variance

cDNA – Complementary deoxyribonucleic acid

cRNA – Complementary ribonucleic acid

C – Cytosine

cas – Mice subspecies Mus musculus castaneus

G – Guanine

DNA – Deoxyribonucleic acid

dom – Mice subspecies Mus musculus domesticus

EMOGEE – Estimator for models of gene expression evolution

FDR – False discovery rate

M model – The basic gene expression evolution model by Khaitovich

et al. (2005b)

M-gamma model – The gene expression evolution model with gamma distributed

mutation effects

M&E model – The general gene expression evolution model with

non-mutational effects, but without specifying the mutation

effect distribution

M&E-normal model – The gene expression evolution model with normal distributed

mutation effects and normal distributed non-mutational effects

M&E-extreme model – The gene expression evolution model with extreme value

distributed mutation effects and normal distributed

non-mutational effects

MED – Mutation effect distribution
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B. Abbreviations 120

ML – Maximum-likelihood

MM – Mismatch

MRCA – Most recent common ancestor

mRNA – Messenger ribonucleic acid

mus – Mice subspecies Mus musculus musculus

N-MED – Non-mutational effect distribution

PM – Perfect match

RMA – Robust multichip average

RNA – Ribonucleic acid

S2N – Signal to noise ratio

SAM – Significance analysis for microarrays

spretus – Mice species Mus spretus

ssp – Mice subspecies Mus musculus ssp

T – Thymine

tRNA – Transfer ribonucleic acid

U – Uracil

VSN – Variance stabilisation and calibration for microarray data
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Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A. and Vingron, M. (2002)

Variance stabilization applied to microarray data calibration and to the quantification

of differential expression. Bioinformatics, 18, S96–S104.

Hudson, R.-R. (1991) Gene genealogies and the coalescent process. Oxford Surveys in

Evolutionary Biology, 7, 1–49.

Hudson, R.-R., Kreitman, M. and Aguado, M. (1987) A test of neutral molecular evolu-

tion based on nucleotide data. Genetics, 116, 153–159.

Irizarry, R.-A., Bolstad, B.-M., Collin, F., Cope, L.-M., Hobbs, B. and Speed, T.-P.

(2003a) Summaries of affymetrix genechip probe level data. Nucleic Acid Research,

31, 1–8.

Irizarry, R.-A., Hobbs, B., Collin, F., Beazer-Barclay, Y.-D., Antonellis, K.-J., Scherf, U.

and Speed, T.-P. (2003b) Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Biostatistics, 4, 249–264.

Jin, W., Riley, R.-M., Wolfinger, R.-D., White, K.-P., Passador-Gurgel, G. and Gibson,

G. (2001) The contribution of sex, genotype and age to transcriptional variance in

drosophila melanogaster. Nature Genetics, 29, 389–395.

Johnson, S.-C. (1967) Hierarchical clustering schemes. Psychometrika, 2, 241–254.

Joyce, P. (1995) Robustness of the ewens sampling formula. J. Appl. Prob., 32, 602–622.



Bibliography 125

Jukes, T.-H. and Cantor, C.-R. (1969) Evolution of protein molecules. In Munroe, H.-N.

(ed.), Mammalian Protein Metabolism, pages 21–132, Academic Press.

Kerr, M., Martin, M. and Churchill, G. (2000) Analysis of variance for gene expression

microarray data. J. Comput. Biol., 7, 819–837.

Khaitovich, P., Enard, W., Lachmann, M. and Pääbo, S. (2006) Evolution of primate
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