
Projection Based Methods for
Conic Linear Programming

—

Optimal First Order Complexities
and

Norm Constrained Quasi Newton Methods

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Felix Lieder

aus Bremen

Düsseldorf, Juni 2018

aus dem Mathematischen Institut
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1: Prof. Dr. Florian Jarre
Heinrich-Heine-Universität Düsseldorf

2: Prof. Dr. Mirjam Dür
Universität Augsburg

3: Prof. Dr. Christian Kanzow
Universität Würzburg

Tag der mündlichen Prüfung: 31. August 2018

Abstract

This thesis is devoted to solving linear conic optimization problems via (accelerated) projec-
tion based algorithms. Making use of the existing duality theory and Moreau’s theorem, we
reformulate the sufficient optimality conditions via the nonexpansive gradient of a reduced
Lagrangian function, whose zeros are in a one to one relationship with the optimal solutions
of the initial problem. The reduced Lagrangian is nonconvex and therefore the zeros gener-
ally are saddle points. We proceed by investigating first order methods to tackle this saddle
point problem: A simple unitary transformation of the gradient is firmly nonexpansive al-
lowing the application of standard fixed point methods. The analysis of these methods
leads to the first main contribution of this thesis, which is the development of a general
concept for analyzing convergence rates of fixed point methods for Lipschitz continuous
mappings in an optimal fashion, resulting in unimprovable complexity estimates. Specifi-
cally we derive a novel mathematical toolbox for obtaining optimal worst-case complexities,
which is exemplarily used to establish the optimal worst-case complexity of the so-called
Krasnoselski-Mann (KM) iteration with fixed step length in real Hilbert spaces. Further-
more we address applications in designing fixed step methods with optimized worst-case or
average-case complexity as well as extensions to complex spaces. These first order methods
are then complemented by second order methods, leading to the second main contribution
of this thesis: The design of a norm constrained limited memory quasi Newton method,
which in combination with the KM iteration resulted in a competitive software package
written in MATLAB. This limited memory quasi Newton method uses a (low dimensional)
semidefiniteness constraint for the correction and a least-squares approach to determine the
information to be dropped from memory. We perform numerical experiments on a variety of
problems, including semidefinite (SDP) and doubly non-negative (DNN) programs, which
mostly arise from relaxations of NP-hard problems. First the fixed point approach is ap-
plied to about 80 large scale SDP/DNN test problems and it proves to be very competitive
for these problems. Finally a combination with the novel norm constrained limited memory
quasi Newton method leads to a further acceleration of our implementation.

Key words: conic programs, Krasnoselski-Mann iteration, tight worst-case complexity, norm
constrained quasi Newton method

Kurzfassung

Diese Dissertation beschäftigt sich mit dem Lösen von konischen Optimierungsproblemen
mit Hilfe von (beschleunigten) projektionsbasierten Algorithmen. Unter Ausnutzung der
existierenden Dualitätstheorie und Moreau’s Theorem, werden wir die hinreichenden Op-
timalitätsbedingungen durch den nicht expansiven Gradienten einer reduzierten Lagrange
Funktion reformulieren, dessen Nullstellen in einer eins zu eins Verbindung mit den opti-
malen Lösungen des initialen Problems stehen. Da die reduzierte Lagrange Funktion im
Allgemeinen nicht konvex ist, handelt es sich bei den Nullstellen um Sattelpunkte. Um
dieses Sattelpunkt-Problem zu lösen, fahren wir mit der Untersuchung von Verfahren er-
ster und zweiter Ordnung fort: Eine einfache orthogonale Transformation des Gradienten
ist “firmly nonexpansive” und erlaubt die Anwendung von standard Fixpunkt Verfahren.
Die Analyse dieser Vefahren führt zum ersten Hauptbeitrag dieser Arbeit, welcher in der
Bereitstellung eines mathematischen Konzepts besteht um Konvergenzraten von Fixpunkt
Verfahren für Lipschitz stetige Funktionen auf optimale Weise zu analysieren und zu un-
verbesserbaren Komplexitätschranken führt. Dieses neue mathematische Werkzeug nutzen
wir exemplarisch um eine optimale ”worst-case” Komplexität für die sogenannte
Krasnoselski-Mann (KM) Iteration mit konstanter Schrittweite in reellen Hilbert-Räumen
herleiten. Wir werden außerdem mögliche Anwendungen in Bezug auf das Herleiten neuer
Verfahren mit fixierten Schrittweiten sowohl für optimiertes ”worst-case-” als auch durch-
schnittlichem Verhalten, sowie Erweiterungen für komplexe Räume ansprechen. Diese Ver-
fahren erster Ordnung werden dann durch Verfahren zweiter Ordnung ergänzt, welche den
zweiten Hauptbeitrag dieser Arbeit darsteken: Dem Design einer neuen Klasse von Norm
restringierten Quasi-Newton-Verfahren mit limitiertem Speicher, welche in Verbindung mit
der KM Iteration in einem konkurrenzfähigem Software Packet für MATLAB resultiert.
Dieses normbeschränkte quasi Newton Verfahren mit limitiertem Speicher benutzt eine
(niedrig dimensionale) semidefinite Ungleichung für die Korrektur und einen kleinste Quadrate
Ansatz um Festzustellen welche Informationen den Speicher verlassen sollen. Wir führen nu-
merische Experimente an einer Auswahl von Problemen, einschließlich semidefiniter (SDP)
und doppelt nicht negativer (DNN) Programme durch, welche meist aus Relaxierungen von
NP-schweren Problemen entstehen. Zuerst benutzen wir den Fixpunkt Ansatz für circa
80 hochdimensionale SDP/DNN Testprobleme, für die sich der Ansatz als hochkompetetiv
herraustellt. Schließlich führt eine Kombination mit dem neuen normbeschränkten quasi
Newton Verfahren zu einer weitereren Beschleunigung unserer Implementation.

Stichwörter : Konische Programme, Krasnoselski-Mann Iteration, scharfe worst-case Kom-
plexität, normbeschränktes quasi Newton Verfahren

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Projections and the Generalized Absolute Value 4
2.2 The Reduced Lagrangian . 8
2.3 Generalized Derivatives . 14
2.4 A Conceptual Algorithm . 18

3 Selected Euclidean Spaces and Cones 20
3.1 Real Coordinate Space . 21

3.1.1 Nonnegative Orthant . 21
3.1.2 Weighted p-order Cones . 23

3.2 Space of Real Symmetric Matrices . 26
3.2.1 Semidefinite Cone . 26
3.2.2 Completely Positive and Copositive Cone Relaxations 30

4 First Order Approach 32
4.1 Worst-Case-Complexity of Krasnoselski-Mann Iteration 45
4.2 Worst-Case-Complexity of Fixed Step Methods 55

4.2.1 Optimizing the Worst-Case-Complexity 57
4.2.2 Statistical Point of Entry . 59
4.2.3 Selected Performance Criteria . 61

4.3 Extension to Contractions . 62
4.3.1 Zeros of Selected Strongly Monotone Operators 65

4.4 Extension to Complex Spaces . 70

5 Second Order Approach 72
5.1 Generalized Newton Approach . 73
5.2 Norm Constrained Quasi Newton Approach 78

5.2.1 NCQNM for the Generalized Absolute Value 82
5.2.2 Local Refinement . 85
5.2.3 Recursive Inversion . 90
5.2.4 Limited Memory via Compression 91

6 Numerical Results 95
6.1 Sparse Random SDPs . 96
6.2 Maximum Stable Set Relaxations . 99

7 Conclusion 108

8 References 109

9 Appendix 116
9.1 Proof of Proposition 4.8 . 116
9.2 Detailed Numerical Results . 120

1 Introduction

Let (E, 〈., .〉) be a Euclidean space, i.e. a real finite dimensional vector space E, equipped
with the symmetric inner product 〈., .〉 : E × E → R. Let K ⊂ E be a nonempty closed
convex cone, i.e. K is closed and X,Y ∈ K implies the membership αX+βY ∈ K ∀α, β ≥ 0.
In this thesis we analyze projection approaches for solving conic optimization problems in
standard primal form

minimize
X∈E

〈C,X〉

subject to A(X) = b

X ∈ K

(1)

where C ∈ E, b ∈ Rm, A : E → Rm is a linear operator and A∗ : Rm → E is the adjoint
operator ofA (i.e. A∗ is the unique linear operator that satisfies yTA(X) = 〈A∗(y), X〉 ∀ y ∈
Rm, X ∈ E). Focussing on this specific form is due to two reasons: First the wide field of
application, since generically convex, but also some problems that appear nonconvex at first
glance can be equivalently stated in the form above, see [22] for a survey. Examples range
from ”easy” to NP-hard problems, namely linear (LP), second order (SOP) and semidefinite
(SDP), but also completely positive (CPP) and copositive (COP) optimization problems.
Secondly this form is appealing because of its simplicity and well established duality theory,
which we are going to exploit in the following. Specifically the dual problem of (1) takes
the form

maximize
Y ∈E, y∈Rm

bT y

subject to A∗(y)− Y = C

Y ∈ KP
(2)

where KP := {Y ∈ E | 〈Y,X〉 ≤ 0,∀X ∈ K} ⊂ E denotes the polar cone. Note that
the polar is used instead of the dual cone KD := −KP for reasons of convenience later
on. For primal feasible X ∈ K with A(X) = b and dual feasible Y ∈ KP , y ∈ Rm with
A∗(y)− Y = C we immediately obtain the so-called weak duality

bT y − 〈C,X〉 = A(X)T y − 〈A∗(y)− Y,X〉 = 〈X,Y 〉 ≤ 0 (3)

implying that the optimal value of (1) will always be greater or equal than the optimal
value of (2), once both problems have feasible points. From (3) we can directly conclude
that points X,Y ∈ E, y ∈ Rm that satisfy the sufficient optimality conditions, the so called
Karush-Kuhn-Tucker (KKT) conditions

A(X) = b

A∗(y)− Y = C

X ∈ K, Y ∈ KP , 〈X,Y 〉 = 0

(4)

must be optimal solutions to (1) respectively (2). Such feasible points will be referred to
as KKT-points or optimal solutions in the following. Unfortunately conditions (4) are in
general not necessary optimality conditions: This usually depends on further assumptions
on either the involved cone or on some regularity assumptions regarding the feasible set,

1

e.g. Slater’s condition. The problem herein is that interesting problems, for example prob-
lems in [3], while possibly not satisfying these regularity assumptions, may still possess
KKT-points. For our further research we will therefore rather assume existence of points
satisfying (4), than enforce any other additional and limiting assumptions. Under this ex-
istence assumption, solving (1) is equivalent to finding X,Y ∈ E, y ∈ Rm satisfying (4).

This thesis is organized as follows: We start by recalling preliminaries, such as the
fundamental concept of projections in section two, which is then used to define a reduced
Lagrangian. Zeros of its (firmly nonexpansive) mirrored gradient are in a one to one re-
lationship to the optimal solutions of (1) and (2), allowing us to regard solving (4) as a
fixed point problem. We end the second section by recalling the concept of generalized
derivatives (which are later needed for section five). After presenting a selection of relevant
cones in section three, we will consider first order methods in section four. By starting with
some motivational numerical considerations and an exemplarily treatment of the (mirrored)
gradient of the reduced Lagrangian, we obtain an overview about known results regarding
the Krasnoselski-Mann iteration (KM iteration). We will then proceed by presenting a new
(optimal/unimprovable) result regarding the convergence rate of the KM-iteration with
fixed step length. Its proof leads us to a general concept of proving (optimal) worst-case
convergence rates for so called Fixed-step-methods (FSMs). We then extend this concept
in various directions, providing a mathematical toolbox for analyzing FSMs in an optimal
fashion. In section five we shift our focus back to finding zeros of the gradient of the reduced
Lagrangian, this time by means of second order methods. We briefly discuss the application
of generalized Newton methods but soon switch to a (new) modification of quasi Newton
methods, namely norm constrained quasi Newton methods. It should be noted that in
contrast to first order, the second order methods present a rather heuristic approach, as
convergence results rely usually on unreasonably strong assumptions. We will nevertheless
investigate computationally affordable realizations which are motivated by usual limited
memory variants, consider some further numerical results in section six and finally conclude
in section seven.

At this point we like to emphasize the points that are of interest in this thesis, and points
that are not. Let us therefore revisit some historical facts concerning algorithms for solving
(1). In 1948 Dantzig proposed his celebrated simplex algorithm to solve linear problems1,
i.e. K = Rn+ in our notation. Variants have been implemented in a fast and reliable fashion,
see for example [15], [26] or [61], making this algorithm a powerful tool and probably one of
the most applied algorithms in optimization. There are however two issues: First it is still
not clear whether the simplex algorithm is a polynomial time algorithm or not, which in
practice seems rather negligible, since it behaves well on most real world problems. Secondly
and more significantly the simplex-algorithm does not generalize to non-polyhedral cones,
which is a real limitation if one wants to solve more general optimization problems. It is
due to Karmarkar, who tackled both issues with his algorithm [39] in 1984: His method,
an interior point method (IPM), solves LPs in polynomial time2 and generalizes to more

1Dantzig started working on his algorithm in 1947. He presented it in 1948 at the meeting of the
Econometric Society at the University of Wisconsin in Madison and published it in 1949. For a historical
survey see[16], for Dantzig’s Publications from 1949 see [17] [18] [19].

2Khachian [40] had already established in 1979 that LPs could be solved via the ellipsoid method.

2

general convex cones. For example to the semidefinite cone K = Sn+ where

Sn+ := {X ∈ Rn×n | X = XT , yTXy ≥ 0 ∀y ∈ Rn} (5)

within the space E = Sn for Sn := {X ∈ Rn×n | X = XT } of real symmetric matrices
equipped with the inner product 〈X,Y 〉 = trace (XTY). For small and medium sized SDPs,
reliable variants have been implemented, see for example [77], [86], [84], [96]. One of the
drawbacks of these IPMs is the following bottleneck: At every iteration one has to compute,
store and factor a Schur complement matrix of dimension m×m, which requires substantial
computational effort if m is large. To overcome this issue, various approaches have been
proposed, including proximal-point [63]; proximal alternating direction [91], [79]; augmented
Lagrangian [99], [97]; spectral bundle [28]; inexact interior point [88]; augmented Lagrangian
penalty [69], [56]; quasi Newton [20]; low rank factorization [4]; augmented primal dual[32]
and many more methods (this is just a rather incomplete list). Very roughly all these
methods can be divided into two subcategories: methods that use second order information
of the conic structure, and methods that don’t. While the latter methods usually avoid a
changing Schur complement matrix, they cause a new bottleneck: Frequently suffering from
slow convergence near the optimal solution, variables have to be factored (or projected) more
often (for example X = V V T in the semidefinite case). Which method is suited best for
which problem, is then quite a hard question to answer. There are at least two unsatisfying
answers, a practical and a theoretical one: From a practical point of view one would say the
best method, is the one that solves all given problems to a given accuracy in the minimum
amount of time. This answer is however questionable: First it relies on the given problems,
so the best method for a set of problems, might not be the best method for a different set
of problems. Secondly we have to be more precise about the minimum amount of time: Do
we mean average time? Do we mean minimum time for each problem independently? How
does given hard- and software influence timing? What about implementation details?
The theoretical answer to the question of the best method would be the following: The
best method is the one with the lowest complexity, i.e. the method that involves the lowest
amount of numerical floating operations to solve any problem (of fixed size) to a given
accuracy. There are however two major issues with this answer: First it is usually very
hard to prove universal complexity bounds, and secondly, again from a practical point of
view, one is often more interested in an ”average” convergence behavior (e.g. as for the
simplex algorithm above). Our framework presented in section four will actually tackle both
issues, finding worst-case complexities and providing a new statistical point of entry into
designing first order methods with good ”average” performance. We do so by essentially
separating the problem of finding KKT-points (4), into two problems, the first is evaluating a
certain function (the mirrored gradient of the reduced Lagrangian) and the second is finding
a zero of this function via some method. Interestingly we will see that the method part is
significantly easier then the evaluation part. Now instead of giving another questionable
answer to the question of the best method, let us collect some desirable properties, that we
would like to accomplish with our first order methods.

1. We would like some kind of convergence guarantee, at least when provided with suf-
ficient computational accuracy.

2. The method should be simple and not demand unreasonable high computational re-
sources, ideally a linear demand in the problems dimension.

3

3. We would like a low worst case complexity (but not too low, see section 4.2.1).

4. We would like our method to have good average behavior, i.e. the majority of problems
should be solved significantly faster than the worst case complexity suggests.

Let us now end the philosophical discussion and start with our analysis.

2 Preliminaries

In this section we will lay the foundations of our framework by recalling the well known
concept of projections onto convex sets, introducing the reduced Lagrangian, investigating
some of its properties and also by recalling the concept of generalized derivatives.

2.1 Projections and the Generalized Absolute Value

Let us start with the most fundamental concept needed for our further analysis: For a
nonempty closed convex set C ⊂ E we define the orthogonal projection ΠC(X) of an arbi-
trary point X ∈ E onto C as

ΠC(X) := argmin{‖X − Y ‖ | Y ∈ C} (6)

where ‖.‖ :=
√
〈., .〉 denotes the induced norm. It is well know that (6) is well defined

and possesses refined and well studied properties. Some of these results are collected in the
following.

Lemma 2.1 (Properties of convex Projections). Let C ⊂ E be a nonempty closed convex
set. The orthogonal projection ΠC : E → E

• can be characterized as follows: for Z ∈ E and X ∈ C we have X = ΠC(Z) if and
only if 〈Z −X,Y −X〉 ≤ 0 ∀Y ∈ C

• is firmly nonexpansive (1-cocoercive), i.e. satisfies

‖ΠC(X)−ΠC(Y)‖2 ≤ 〈ΠC(X)−ΠC(Y), X − Y 〉 ∀X,Y ∈ E

• is nonexpansive (Lipschitz continuous with modulo one), i.e. satisfies

‖ΠC(X)−ΠC(Y)‖ ≤ ‖X − Y ‖ ∀X,Y ∈ E

• positively homogeneous if C = K is also a cone, i.e. ΠK(λZ) = λΠK(Z) ∀λ ≥ 0

The function Z 7→ 1
2 ‖Z −ΠC(Z)‖2 is convex, differentiable and has the derivative Z 7→

Z −ΠC(Z).

Proof. As was already mentioned these results are widely known. For a proof see for example
[98] Lemma 1.1 (characterization), Lemma 1.2 (cocoercivity), Theorem 4.1 (differentiabil-
ity). Nonexpansiveness follows from cocoercivity in combination with the Cauchy-Schwarz
inequality. �

4

In section three we will consider a selected collection of convex cones as well as their pro-
jections. Let us consider two (more fundamental) explicit examples here, namely weighted
projections onto an affine subspaces. For both examples it is convenient to introduce the
Moore-Penrose pseudo-inverse M+ of a linear operator M, i.e. M+ denotes the unique
linear operator that satisfies MM+M =M, M+MM+ =M+, (MM+)∗ =MM+ and
(M+M)∗ =M+M.

Example 2.2 (Primal Weighted Projection onto an affine Subspace). Let W : E → E
be some self-adjoint invertible Linear Operator. Assume that the affine space Lb := {X ∈
E | A(X) = b} is nonempty and consider for some Z ∈ E the optimization problem

ΠWLb(Z) :=argmin
X∈E

‖W[X − Z]‖

subject to A(X) = b (7)

then the solution is given by

ΠWLb(Z) = Z −W−2A∗(AW−2A∗)+[A(Z)− b]. (8)

Proof. Note that in comparison to Lemma 2.1 the norm in our example above can be
regarded as the result of a weighted inner product. In consequence the characterization
from Lemma 2.1 for our weighted projections changes: If X ∈ Lb then X = ΠWLb(Z) if and

only if 〈W[Z−X],W[Y −X]〉 ≤ 0 ∀Y ∈ Lb. Note that (AW−2A∗)(AW−2A∗)+A = A holds
true,which implies, since Lb is nonempty, that X = Z−W−2A∗(AW−2A∗)+[A(Z)−b] ∈ Lb
and therefore the following computation for some arbitrary Y ∈ Lb shows

〈W[Z −X],W[Y −X]〉
=〈W[W−2A∗(AW−2A∗)+[A(Z)− b]],W[Y − Z +W−2A∗(AW−2A∗)+[A(Z)− b]]〉
=〈A∗(AW−2A∗)+[A(Z)− b], Y − Z +W−2A∗(AW−2A∗)+[A(Z)− b]〉
=[A(Z)− b]T (AW−2A∗)+A[Y − Z +W−2A∗(AW−2A∗)+[A(Z)− b]]
=[A(Z)− b]T [(AW−2A∗)+A(Y − Z) + (AW−2A∗)+AW−2A∗(AW−2A∗)+[A(Z)− b]]
=[A(Z)− b]T [(AW−2A∗)+[b−A(Z)] + (AW−2A∗)+[A(Z)− b]]
=0

(9)
which completes the proof. �

Example 2.3 (Dual weighted Projection onto an affine Subspace). Let W : E → E be
some self-adjoint invertible Linear Operator. Here we consider the (nonempty by definition)
affine subspace L⊥ − C := {Y ∈ E | ∃y ∈ Rm : A∗(y)− Y = C} and for some Z ∈ E the
optimization problem

ΠWL⊥−C(Z) :=argmin
Y ∈E

‖W[Y − Z]‖

subject to
y∈Rm

A∗(y)− Y = C (10)

5

which attains the optimal solution

ΠWL⊥−C(Z) = A∗(AW2A∗)+[AW2(C + Z)]− C. (11)

Proof. It is obvious that Y = A∗(AW2A∗)+[AW2(C + Z)] − C satisfies Y ∈ L⊥ − C
Since we have again ”changed” the inner product it follows from the previous Lemma, that
Y = ΠWL⊥−C(Z) if and only if 〈W[Z − Y],W[X − Y]〉 ≤ 0 ∀X ∈ L⊥ − C. Therefore we

choose X = A(x)− C ∈ L⊥ − C for some arbitrary x ∈ Rm and derive

〈W[Z − Y],W[X − Y]〉
=〈W[C + Z −A∗(AW2A∗)+[AW2(C + Z)]],W[X −A∗(AW2A∗)+[AW2(C + Z)] + C]〉
=〈W2[C + Z −A∗(AW2A∗)+[AW2(C + Z)]],A∗(x)−A∗(AW2A∗)+[AW2(C + Z)]〉
=[AW2[C + Z −A∗(AW2A∗)+[AW2(C + Z)]]]T [x− (AW2A∗)+[AW2(C + Z)]]

=[AW2[C + Z]−AW2A∗(AW2A∗)+A︸ ︷︷ ︸
=A

[W2(C + Z)]]T [x− (AW2A∗)+[AW2(C + Z)]]

=0
(12)

which proves our claim. �

Remark 2.4. We note that one can derive similar results for the case when W is not self-
adjoint or even when it is singular. In the latter case however we would usually not speak
of a projection, but of a weighted least squares (potentially minimal norm) problem.

Linear subspaces pose the first example of what we are really interested: Convex cones. In
fact we will focus mostly on the situation when C is not only a convex set, but also a cone.
The following well established result traces back to a work of Moreau [60] from 1962 and
will be fundamental for our further analysis.

Lemma 2.5 (Moreau’s Decomposition). For a nonempty closed convex cone K ⊂ E and
an arbitrary Z ∈ E, the following two statements are equivalent:

1. Z = X + Y , X ∈ K , Y ∈ KP with 〈X,Y 〉 = 0

2. X = ΠK(Z) and Y= ΠKP (Z)

Definition 2.6 (Generalized Absolute Value). In order to keep our notation short we in-
troduce the generalized absolute value |.|K : E → E as

|Z|K := ΠK(Z)−ΠKP (Z) (13)

and recover the projections via

ΠK(Z) = 1
2(Z + |Z|K), ΠKP (Z) = 1

2(Z − |Z|K) (14)

which will be extensively used in the following.

Now obviously the properties from Lemma 2.1 and 2.5 translate from projections to the
generalized absolute value, let us collect the ones that we are going to use in the following.

6

Lemma 2.7 (Properties of the generalized absolute Value). Let K ⊂ E be a nonempty
closed convex cone. The generalized absolute value |.|K : E → E possesses the following
properties:

• The norm of the generalized absolute value is equal to the norm of its argument:

‖|Z|K‖ = ‖Z‖ ∀Z ∈ E

• |.|K is nonexpansive (Lipschitz continuous with modulo one), and

0 ≤|〈|X|K, Y 〉 − 〈X, |Y |K〉| ≤ 〈|X|K, |Y |K〉 − 〈X,Y 〉

=
1

2
‖X − Y ‖2 − 1

2
‖|X|K − |Y |K‖2 ∀X,Y ∈ E

(15)

is satisfied.

• |.|K is the derivative of the usually3 nonconvex function Z 7→ 1
2〈Z, |Z|K〉, in particular

0 ≤ |1
2
〈X, |X|K〉+

1

2
〈Y, |Y |K〉 − 〈|X|K, Y 〉| ≤

1

2
‖X − Y ‖2 ∀X,Y ∈ E (16)

holds true.

• |.|K is positively homogeneous |λZ|K = λ|Z|K ∀Z ∈ E and ∀λ ≥ 0

Proof. The norm property follows directly from Moreaus decomposition. Nonexpansive-
ness follows by rewriting the inequalities 〈ΠK(X),ΠKP (Y)〉 ≤ 0 and 〈ΠK(Y),ΠKP (X)〉 ≤
0 in terms of the generalized absolute value and proper rearrangement. The inequali-
ties for differentiability follow directly from rewriting the inequalities ‖X −ΠK(X)‖2 ≤
‖X −ΠK(Y)‖2 and ‖X −ΠKP (X)‖2 ≤ ‖X −ΠKP (Y)‖2. �

Of course there exist many other projection properties, most of which can be found in
Zarantonellos early work [98]. For example the following (which we will not explicitly use
and therefore not prove, but may still be of interest to other researchers).

Lemma 2.8 (Potentially useful equalities). Let K ⊂ E be a nonempty closed convex cone.
The generalized absolute value |.|K : E → E satisfies the following properties:

• 1
2 ‖X − Y ‖

2 + 1
2 ‖|X|K − |Y |K‖

2 = ‖ΠK(X)−ΠK(Y)‖2 + ‖ΠKP (X)−ΠKP (Y)‖2

• ‖X − Y ‖2 − ‖|X|K − |Y |K‖2 = 4〈ΠK(X)−ΠK(Y),ΠKP (X)−ΠKP (Y)〉

• ‖X − Y ‖2 − ‖|X|K − |Y |K‖2 = ‖|X|K + |Y |K‖2 − ‖X + Y ‖2

3Except for some generic case, for example when K = R, then |z|Rz = z2, which is obviously convex.

7

2.2 The Reduced Lagrangian

Now that we have recalled the basics about projections and the generalized absolute value,
let us go ahead and start by applying Moreau’s Decomposition together with our new
notation (14) to the sufficient optimality conditions (4). This yields the conditions

A∗(y)− 1
2(Z − |Z|K) = C

1
2A(Z + |Z|K) = b

Z ∈ E, y ∈ Rm
(17)

which we are going to reformulate further: By rewriting the first equation of (17) as 1
2 |Z|K =

C−A∗(y)+ 1
2Z and substituting this into the second equation yields A[Z+C−A∗(y)] = b. If

we assume that A is a surjective operator, which we do without loss of generality for the rest
of this thesis, we can express this equation in terms of y ∈ Rm as y = (AA∗)−1[A(Z+C)−b].
Eliminating y from the first equation of (17) gives the condition

∇f(Z) := 1
2(Z − |Z|K) + C −A∗(AA∗)−1[A(Z + C)− b] !

= 0 (18)

The fact that the right hand side in the definition (18) is the gradient of some function f
will be established in Lemma 2.10 below. The next result concerns the relation with (4):

Corollary 2.9. The connection between the KKT-conditions (4) and the function ∇f :
E → E is the following:

• If X(∗), Y (∗) ∈ E, y(∗) ∈ Rm satisfy the KKT-conditions (4) then ∇f(X(∗) +Y (∗)) = 0

• If Z(∗) ∈ E satisfies ∇f(Z(∗)) = 0 then X(∗) := ΠK(Z(∗)), Y (∗) := ΠKP (Z(∗)) and
y(∗) := (AA∗)−1A[C + ΠKP (Z(∗))] satisfy the conic KKT-conditions (4)

Proof. The first part follows directly from the derivation and definition of ∇f . To make the
second part clear, we note that for all Z ∈ E we can rewrite the definition of ∇f in (18) as

∇f(Z) = 1
2(Z − |Z|K)︸ ︷︷ ︸

=ΠKP (Z)

+ C −A∗(AA∗)−1[A(Z︸︷︷︸
=ΠK(Z)+ΠKP (Z)

+ C)− b]

= (I − A∗(AA∗)−1A)[ΠKP (Z)) + C]−A∗(AA∗)−1[A(ΠK(Z))− b]
(19)

and therefore obtain that by orthogonality

‖∇f(Z)‖2 =
∥∥A∗(AA∗)−1[A(ΠK(Z))− b]

∥∥2
+
∥∥(I − A∗(AA∗)−1A)[ΠKP (Z)) + C]

∥∥2
(20)

holds true. Any Z(∗) ∈ E satisfying ∇f(Z(∗)) = 0 then obviously implies A(ΠK(Z(∗))) = b
and A∗(y(∗))−ΠKP (Z(∗)) = C which proves our claim. �

In order to investigate properties of ∇f we shorten our notation by defining the generalized
Householder transformation

H := I − 2A∗(AA∗)−1A
(21)

8

where I denotes the identity operator. By using the above definition as well as the following
definition for the constant term

R := C −A∗(AA∗)−1[A(C)− b]

we see that

∇f(Z) =
1

2
H[Z]− 1

2
|Z|K +R (22)

holds true. Note that H is, with respect to the inner product 〈., .〉, self-adjoint and orthog-
onal (and therefore really is a generalization of Householder matrices with H2 = I) and
reflects/mirrors the term

R = (I − A∗(AA∗)−1A)[C] +A∗(AA∗)−1b

onto
H[R] = (I − A∗(AA∗)−1A)[C]−A∗(AA∗)−1b (23)

which we will use shortly. Keep in mind that in any practical implementation we would
usually not form any of the above terms explicitly. In fact we can even go a step further
by avoiding to form the operators A, A∗ and (AA∗)−1. Although these operators are of
course linear and therefore matrix-representable, it might be (and often is) computation-
ally beneficial to just implement their application A(X), A∗(y) and (AA∗)−1y to arbitrary
points X ∈ E, y ∈ Rm. While this makes mathematically no difference, the computational
effort may decrease dramatically if the operators are of special form, for example due to
some sort of Kronecker-, low-rank-, sparsity- and/or symmetry-structure. Another obser-
vation regarding the evaluation complexity that we can and should make is the following:
The evaluation of ∇f or of the ”reflected” function H∇f only involves one and not two
applications of A, A∗ and (AA∗)−1 each, if done efficiently. While for ∇f this is easily
seen from equation (18), let us derive the formula for H∇f here explicitly. From using (22),
orthogonality of H and (23) it follows that

H[∇f(Z)] =H[1
2H[Z]− 1

2 |Z|K +R] = 1
2Z −H[1

2 |Z|K] +H[R]

=1
2(Z − |Z|K) + C +A∗(AA∗)−1[A(|Z|K − C)− b]

(24)

holds true for arbitrary Z ∈ E. Above formula becomes especially important in our algo-
rithmic section, where the operator H∇f will be one of our main workhorses, making an
efficient evaluation essential. Now before we investigate further properties of ∇f , we justify
our notation. The following lemma shows that ∇f is in fact a gradient and additionally
supplies us with a connection to the optimal value of our initial problems (1) respectively
(2).

Lemma 2.10. ∇f(Z) is the gradient of the differentiable, but usually nonconvex function
f : E → R

f(Z) := 1
4〈Z,HZ − |Z|K〉+ 〈R, Z〉+ const (25)

which we will call reduced Lagrangian, explaining our notation in (18). For the choice
const = 1

2 ‖C‖
2− 1

2 [A(C)−b]T (AA∗)−1[A(C)−b] and any Z(∗) ∈ E satisfying ∇f(Z(∗)) = 0
we recover the optimal value of (1) via

f(Z(∗)) = 〈C,ΠK(Z(∗))〉 (26)

9

Proof. The form (25) follows immediately from equation (22) in combination with the an-
tiderivative of the generalized absolute value (in Lemma 2.7) and linearity of differentiation.
Note that an ε− δ-type of proof can also be easily derived from Lemma 2.14 below. We can
rewrite (25) by using (22) and obtain the identity

f(Z) = 1
2〈Z,∇f(Z)〉+ 1

2〈R, Z〉+ const ∀Z ∈ E. (27)

For Z(∗) ∈ E satisfying ∇f(Z(∗)) = 0 we therefore obtain, by using first the definition of R
and then corollary 2.9, that the equalities

〈R,ΠK(Z(∗))〉 = 〈C,ΠK(Z(∗))〉 − 〈A∗(AA∗)−1[A(C)− b],ΠK(Z(∗))〉
= 〈C,ΠK(Z(∗))〉 − [A(C)− b]T (AA∗)−1b

(28)

and, for y(∗) = (AA∗)−1A[C + ΠKP (Z(∗))] from corollary 2.9.,

〈R,ΠKP (Z(∗))〉 = 〈C −A∗(AA∗)−1[A(C)− b],A∗(y(∗))− C〉
= bT y(∗) − 〈C −A∗(AA∗)−1[A(C)− b], C〉

(29)

hold true. This implies together with (27)

f(Z(∗)) = 1
2〈Z

(∗),∇f(Z(∗))︸ ︷︷ ︸
=0

〉+ 1
2〈R, Z(∗)︸︷︷︸

=ΠK(Z(∗))+ΠKP (Z(∗))

〉+ const

= 1
2〈R,ΠK(Z(∗)) + ΠKP (Z(∗))〉+ const

(28),(29)
= 1

2〈C,ΠK(Z(∗))〉+ 1
2b
T y(∗)︸ ︷︷ ︸

=
1
2 〈C,ΠK(Z(∗))〉

(30)
where we used that the choice of const can be rewritten as

const =
1

2
‖C‖2 − 1

2
[A(C)− b]T (AA∗)−1[A(C)− b]

= [A(C)− b]T (AA∗)−1b+ 〈C −A∗(AA∗)−1[A(C)− b], C〉

which proves our claim. �

As we have seen, solving (1) respectively (2) is equivalent to finding a zero of ∇f . Therefore
it is obvious that it is also equivalent to finding a zero of H∇f . Now this trivial observa-
tion actually makes developing algorithms with global convergence behavior much simpler:
Since f is non-convex (except for some generic problems (1)) any zero of ∇f will (usually)
neither be a local minimum nor a local maximum, but a saddle point of f . Therefore the
gradient does not give us much information about the the direction towards this(these) sad-
dle point(s). Quite remarkable however, the reflected gradient H∇f will give us a sensible
direction. This is due to the fact that the operator H∇f is not only Lipschitz continuous
but in fact firmly nonexpansive (or 1-cocoercive). Recall that an operator g : E → E is
called firmly nonexpansive if the equation

‖g(X)− g(Y)‖2 ≤ 〈g(X)− g(Y), X − Y 〉

holds true for all X,Y ∈ E. Above claims and some other properties of ∇f are summarized
and proved next.

10

Proposition 2.11 (Properties of ∇f). Let ∇f : E → E be defined as in (18) respectively
(22). The following holds:

• ∇f is just an orthogonal factor (H) away from being firmly nonexpansive

‖∇f(X)−∇f(Y)‖2 ≤ 〈∇f(X)−∇f(Y),H[X − Y]〉 ∀X,Y ∈ E (31)

and together with the orthogonality and self-adjointness of H this implies that the
reflected gradient H∇f is firmly nonexpansive.

• ∇f is nonexpansive (Lipschitz continuous with modulo one), i. e.

‖∇f(X)−∇f(Y)‖ ≤ ‖X − Y ‖ ∀X,Y ∈ E (32)

holds true.

• On the other hand we also have

− 〈∇f(X)−∇f(Y), |X|K − |Y |K〉 ≤ ‖∇f(X)−∇f(Y)‖2 ∀X,Y ∈ E (33)

• And finally,

0 ≤ 1

2
‖X − Y ‖ − 1

2
‖|X|K − |Y |K‖ ≤ ‖∇f(X)−∇f(Y)‖ ∀X,Y ∈ E. (34)

Proof. By using (22), we can write ∇f(X)−∇f(Y) = 1
2H[X − Y]− 1

2(|X|K − |Y |K). The
first and third inequality then follow from

‖∇f(X)−∇f(Y)‖2 − 〈∇f(X)−∇f(Y),H[X − Y]〉
=〈∇f(X)−∇f(Y),∇f(X)−∇f(Y)−H[X − Y]〉
=〈12H[X − Y]− 1

2(|X|K − |Y |K),−1
2H[X − Y]− 1

2(|X|K − |Y |K)〉

=−1

4
‖X − Y ‖2 +

1

4
‖|X|K − |Y |K‖2︸ ︷︷ ︸

≤0

(35)

and
‖∇f(X)−∇f(Y)‖2 + 〈∇f(X)−∇f(Y), |X|K − |Y |K〉

=〈∇f(X)−∇f(Y),∇f(X)−∇f(Y) + (|X|K − |Y |K)〉
=〈12H[X − Y]− 1

2(|X|K − |Y |K), 1
2H[X − Y] + 1

2(|X|K − |Y |K)〉

=
1

4
‖X − Y ‖2 − 1

4
‖|X|K − |Y |K‖2︸ ︷︷ ︸

≥0

.

(36)

The second inequality is an obvious implication of the well known Cauchy-Schwarz inequal-
ity (i.e. 〈X,Y 〉 ≤ ‖X‖ ‖Y ‖ ∀X,Y ∈ E). The last inequality is implied by the inverse
triangle inequality (i.e. | ‖X‖− ‖Y ‖ | ≤ ‖X − Y ‖ ∀X,Y ∈ E) and Lipschitz continuity of
|.|K. �

11

Let us emphasize the importance above proposition and especially inequality (31). One
important implication concerns the shape of the set of points that we are looking for, i.e.
the set of all zeros of ∇f . While it is clear that the set of primal or dual optimal solutions
of (1) respectively (2) are convex sets, this is not strictly obvious for the set of zeros of ∇f .
Note that for example sine and cosine are globally 1-Lipschitz, but their sets of zeros are
not convex. Therefore (32) is not sufficient, but by using (31) we can show the following
result.

Lemma 2.12. The inverse image of zero

(∇f)−1(0) := {Z ∈ E | ∇f(Z) = 0} (37)

is a closed and convex set in E.

Proof. Since ∇f is continuous, the inverse image of the closed set {0} ⊂ E must be closed.
Let now X(∗), Y (∗) ∈ E satisfy ∇f(X(∗)) = ∇f(Y (∗)) = 0. For Z(∗) := 1

2(X(∗) + Y (∗)) the
computation

2
∥∥∥∇f(Z(∗))

∥∥∥2
=
∥∥∥∇f(Z(∗))−∇f(X(∗))

∥∥∥2
+
∥∥∥∇f(Z(∗))−∇f(Y (∗))

∥∥∥2

≤〈∇f(Z(∗))−∇f(X(∗)),H[Z(∗) −X(∗)]〉+ 〈∇f(Z(∗))−∇f(Y (∗)),H[Z(∗) − Y (∗)]〉
=〈∇f(Z(∗)),H[1

2(X(∗) + Y (∗))−X(∗)]〉+ 〈∇f(Z(∗)),H[1
2(X(∗) + Y (∗))− Y (∗)]〉

=0
(38)

where we used (31) in the second line, shows that Z(∗) ∈ E also satisfies ∇f(Z(∗)) = 0. Due
to continuity of ∇f this completes the proof. �

Note that above lemma implies a well defined projection operator onto the set (∇f)−1(0)
whenever it is nonempty, which is a fact that we can exploit for asymptotic convergence
behavior later on. There is one ambiguity that we address in the remaining subsection:
Most of our convergence results only rely on the firm-nonexpansiveness of H∇f . Now why
did we not simply define an operator g := H∇f , look for a zero Z(∗) ∈ E of g and never talk
about f again? After all, the objective values can be recovered not via a ”weirdly” defined
function f but simply by considering 〈C,ΠK(Z(∗))〉 for example. We could have saved so
many pages. Well... no! First of all: in practice we never really find any zero of g. What we
do find is a point Z ∈ E with g(Z) ≈ 0. Unfortunately the symbol ”≈” does not hold any
implications about the magnitude of

∥∥Z − Z(∗)∥∥, which could in fact be arbitrarily large.
What does this imply for the objective value 〈C,ΠK(Z)〉 ? Are we close to the optimal
value? The painful answer is: we don’t know. Meanwhile f(Z) is a much more educated
guess for the optimal value as we are going to show next. Our analysis is of course based
on essentially a Taylor expansion. First of all note that, by the definition (25) and equality
(22), the following equality

f(X)− f(Y)− 〈∇f(Y), X − Y 〉 = 1
2〈∇f(X)−∇f(Y), X − Y 〉+ 1

4(〈|Y |K, X〉 − 〈|X|K, Y 〉)
(39)

holds true for all X,Y ∈ E. Moreover we see that the following holds true (which requires
some very rough inequalities):

12

Lemma 2.13 (Sensitivity of f). Similar to the quadratic case we have

|f(X)− f(Y)| ≤ 1
2 ‖X − Y ‖ (‖∇f(X) +∇f(Y)‖+ ‖∇f(X)−∇f(Y)‖) (40)

for all X,Y ∈ E. which implies that for any Z(∗) ∈ E with ∇f(Z(∗)) = 0 and any Z ∈ E
the inequality

|f(Z)− f(Z(∗))| ≤ ‖∇f(Z)‖
∥∥∥Z − Z(∗)

∥∥∥ (41)

holds true.

Note that both factors of the right hand side of (41) tend to zero as Z approaches Z(∗). When
the constant part of f is defined according to Lemma 2.10, then f(Z(∗)) = 〈C,ΠK(Z(∗))〉
and the bound (41) provides a much better estimate for the optimal objective value than
the bound O(‖Z − Z(∗)‖) of a solution Z somewhere near the optimal solution Z(∗). In
fact, the definition of the function f by itself and the 1-Lipschitz continuity of its gradient
already allow the bound ‖Z −Z(∗)‖2 based on the Taylor expansion. This improved bound
is possible because of the fact that both primal and dual variables are condensed in Z. The
bound (41) typically improves the quadratic bound above since often ‖∇f(Z)‖ � ‖Z−Z(∗)‖
so that the bound (41) generally is also tighter.

Proof. Note that the second part follows instantly for X = Z and Y = Z(∗). In order to
prove the first part we can rewrite (39) as

f(X)− f(Y) =
1

2
〈∇f(X) +∇f(Y), X − Y 〉+

1

4
(〈|Y |K, X〉 − 〈|X|K, Y 〉) (42)

and take the absolute value on both sides. The triangle inequality implies

|f(X)− f(Y)| ≤ 1
2 |〈∇f(X) +∇f(Y), X − Y 〉|+ 1

4 |〈|Y |K, X〉 − 〈|X|K, Y 〉|

where the first summand can be upper bounded via the Cauchy-Schwarz inequality, i.e.

1
2 |〈∇f(X) +∇f(Y), X − Y 〉| ≤ 1

2 ‖∇f(X) +∇f(Y)‖ ‖X − Y ‖ (43)

and the second summand by using inequalities (15), (34) and again (15)

1
4 |〈|Y |K, X〉 − 〈|X|K, Y 〉|
≤1

8 ‖X − Y ‖
2 − ‖|X|K − |Y |K‖2

=1
4(‖X − Y ‖+ ‖|X|K − |Y |K‖)(1

2 ‖X − Y ‖ −
1
2 ‖|X|K − |Y |K‖)

≤1
4(‖X − Y ‖+ ‖|X|K − |Y |K‖) ‖∇f(X)−∇f(Y)‖
≤1

2 ‖X − Y ‖ ‖∇f(X)−∇f(Y)‖

(44)

which implies the first part and therefore our proof. �

To conclude our earlier argument, note that, if the constant part of f has been chosen
according to Lemma 2.10, inequality (41) implies that we can approximate the optimal
value f(Z(∗)) = 〈C,ΠK(Z(∗))〉 of (1) quite well with f(Z) whenever its gradients norm is
sufficiently small. However we also called the used inequalities ”quite rough” and in fact
we will use the following finer inequalities in our analysis later on.

13

Lemma 2.14. Let f : E → R be defined as in Lemma 2.10. then

1
2〈(I −H)(∇f(X)−∇f(Y)), X − Y 〉+ 1

2 ‖∇f(X)−∇f(Y)‖2

≤ f(X)− f(Y)− 〈∇f(Y), X − Y 〉
≤1

2〈(I +H)(∇f(X)−∇f(Y)), X − Y 〉 − 1
2 ‖∇f(X)−∇f(Y)‖2

(45)

hold true for all X,Y ∈ E.

Proof. This is an immediate consequence of equality (39) above and Lemma 2.7.: We
use 〈|X|K, Y 〉 − 〈X, |Y |K〉 ≥ 〈X,Y 〉 − 〈|X|K, |Y |K〉 for the first, 〈|X|K, Y 〉 − 〈X, |Y |K〉 ≤
〈|X|K, |Y |K〉 − 〈X,Y 〉 for the second inequality (both follow from (15)) and the equality

1
4(〈|X|K, |Y |K〉 − 〈X,Y 〉) = 1

8 ‖X − Y ‖
2 − 1

8 ‖|X|K − |Y |K‖
2

= 1
2〈∇f(X)−∇f(Y),H[X − Y]〉 − 1

2 ‖∇f(X)−∇f(Y)‖2

which we have essentially already seen in the proof of proposition 2.11. �

When it comes to a second order Taylor expansion, we can derive a partial quadratic
expansion from (39) via

f(X)− f(Y)− 〈∇f(Y), X − Y 〉 − 1
4〈X − Y,H(X − Y 〉

=− 1
4〈|X|K, X〉 −

1
4〈|Y |K, Y 〉+ 1

2〈|Y |K, X〉
(46)

where the absolute value of the right-hand-side is bounded above by 1
4 ‖X − Y ‖

2 according
to (16). The reason why it is difficult to obtain better quadratic models lies in our gen-
eralized absolute value |.|K, which is Lipschitz-continuous, but in general not differentiable
everywhere. In order to overcome this we need a concept of generalized derivatives, specifi-
cally we are going to use Clarke’s approach [11] here and remind the reader of this concept
in the next subsection.

2.3 Generalized Derivatives

This section recalls the concept of generalized derivatives in the sense of Clarke [11]. It is
not meant as a general discussion, nor is it in any sense complete: We will keep everything
as simple as possible, while maintaining suitability for our application. Ideally we would
simply define Clarke’s generalized Jacobian, but unfortunately there is a technical issue: We
do work in a finite dimensional Euclidean setting, i.e. a setting that is of course equivalent,
but not strictly the same as the real coordinate space Rn, which is the scenario that Clarke
considered originally. Let us sketch the differences by pointing out that in the real coordinate
space, we commonly understand the points as vectors and the Jacobian or the Hessian as
matrices. For us however even the points can for example be matrices, implying that
function derivatives at such points are not truly matrices but linear operators. These
operators are of course matrix representable, but we like to avoid the explicit isomorphism
as it is considered superfluous and less elegant. Below, we therefore summarize the main
results of Clarke in the abstract setting of a Euclidean space E suited for the framework
considered in this thesis. Before generalizing the concept of derivatives, it is probably best

14

to start with a definition fixing the common concept of derivatives for this subsection. Here
we will restrict ourselves to functions where domain and co-domain coincide, as this will be
sufficient for our needs.

Definition 2.15. A function F : E → E is called Fréchet- (or F-) differentiable at a point
Z ∈ E if there exists a bounded linear Operator ∇F (Z) : E → E such that

lim
∆Z→0

‖F (Z + ∆Z)− F (Z)−∇F (Z)[∆Z]‖
‖∆Z‖

= 0 (47)

We will call ∇F (Z) the Fréchet-derivative. We will say that F is continuously differentiable
in Z ∈ E if there exists an open neighborhood U ⊂ E of Z on which F is F -differentiable
and the Fréchet-derivative is continuous, i.e. the limit lim∆Z→0∇f(Z + ∆Z) exists and
coincides with ∇f(Z).

We kept the term ”bounded” in this definition to avoid confusion, but it is superfluous,
because E is finite dimensional. Also keep in mind that for Lipschitz-continuous functions in
a finite dimensional Euclidean space, the concepts of total- or Gateaux- differentiability are
essentially equivalent to F-differentiability. For our further analysis, Lipschitz-continuous
functions will play a crucial role due to the famous theorem of Rademacher [73]:

Theorem 2.16 (Rademacher). Let F : E → E be a (locally) Lipschitz-continuous function.
Then F is Fréchet-differentiable almost everywhere, i.e. the set ΩF ⊂ E where F is not
Fréchet-differentiable has Lebesgue measure zero.

Now in order to generalize derivatives, we start by defining the set

L(E,E) := {V : E → E | V is a bounded linear operator} (48)

of bounded linear operators. Note that the F-derivative can be seen as a well defined
function ∇F : E \ ΩF → L(E,E). The idea of generalized derivatives is to now ”smooth”
the gaps ΩF in a meaningful fashion. One way to accomplish this, is by defining a set-valued
function ∂F : E → P(L(E,E)), where P(L(E,E)) denotes the power set of L(E,E) in the
following way:

Definition 2.17 (Generalized Derivatives). Let F : E → E be a (locally) Lipschitz-
continuous function. For Z ∈ E the set

∂BF (Z) := {G ∈ L(E,E) | ∃{Z(k)}k∈N ⊂ E \ ΩF with Z(k) → Z, ∇F (Z(k))→ G} (49)

is called the Bouligand- (or B-) derivative of F and

∂F (Z) := conv(∂BF (Z)) (50)

Clarke’s generalized derivative, where conv denotes the convex hull.

15

Remark 2.18. Note that our definition is essentially a special case 4 of Clarke’s generalized
Jacobian (c.f. [11] definition 2.6.1): Since there exists an isometric isomorphism vec : E →
Rdim(E), i.e. vec is an isomorphism that satisfies 〈X,Y 〉 = vec(X)T vec(Y) ∀X,Y ∈ E, we
can define FR : Rdim(E) → Rdim(E) via

FR(z) := vec(F (vec−1(z))) (51)

and with a slight abuse of notation we obtain

∂F (Z) = vec−1 ◦ ∂FR(vec(Z)) ◦ vec (52)

where for ∂FR our definition coincides with the definition of Clarke’s generalized Jacobian
(i.e. ∂FR can be seen as a set of real quadratic matrices).

There are a couple of properties that we will repeatedly use. First of all note that for each
Z ∈ E the set ∂F (Z) is non-empty due to Rademacher’s theorem, it is convex by definition
and it is closed in L(E,E) because ∂BF (Z) is closed in L(E,E) (which follows from its
definition). If we define the usual operator norm

||V|| := sup
X∈E
{‖V[X]‖ | ‖X‖ = 1} (53)

then the norm of each element of ∂F (Z) will be upper bounded by the (local) Lipschitz
constant, because the F-derivative is locally bounded on its domain. Now we already said
that Clarke’s generalized derivative ”smoothes” the gaps ΩF where no F-derivative exists.
In fact it even does slightly more. For example differentiability of the function F at some
point Z ∈ E is not sufficient for single valuedness of ∂BF or ∂F as the following example
illustrates.

Example 2.19 (see [9]). Define the function F : R→ R

F (z) =

{
z2 sin(1

z) if z 6= 0
0 if z = 0

.

which is differentiable everywhere. Especially the derivative in zero is given by F ′(0) = 0
but Clarke’s generalized derivative is an interval ∂F (0) = [−1, 1].

In other words, to fully recover the usual F-derivative from the generalized derivative,
we need slightly more structure. By definition continuous differentiability is for example
sufficient:

4We could work with a more general definition of generalized derivatives, namely one where domain and
co-domain are not always equal but can differ from each other. However this usually leads to a certain amount
of confusion regarding componentwise derivatives. Since our definition is sufficient for all purposes of this
thesis, let us just note that Clarke’s generalized derivative can also be (and mostly is) defined componentwise
for operators F (Z) := (F1(Z), ..., Fm(Z)), such that the inclusion ∂F (Z) ⊂ ∂F1(Z) × ... × ∂Fm(Z) holds
true. For a two dimensional real example F : R2 → R2, F (Z) = (F1(Z), F2(Z)) F1 : R2 → R, F2 : R2 → R,
showing that the opposite inclusion is not true in general ∂F (Z) 6= ∂F1(Z) × ∂F2(Z), we refer to example
6.4 in [82]

16

Lemma 2.20. If a function F : E → E is continuously differentiable in an open neighbor-
hood of Z ∈ E then

∂BF (Z) = ∂F (Z) = {∇F (Z)}. (54)

Maybe most important for the design of quasi Newton methods is the following mean value
theorem which can be easily seen to hold true from [11] proposition 2.65 (the notation is
actually exactly the same, but the interpretation is slightly different):

Proposition 2.21. Let F : E → E be Lipschitz continuous and let X,Y ∈ E be two
arbitrary points. Then

F (Y)− F (X) ∈ conv(∂F ([X,Y]))(Y −X) (55)

holds true where ∂F ([X,Y]) :=
⋃

t∈[0,1]

∂F ((1− t)X+ tY) denotes the union of all generalized

derivatives on the line [X,Y] := {(1− t)X + tY | t ∈ [0, 1]}.

Let us come back to analyzing the reduced Lagrangian

f(Z) = 1
4〈Z,H[Z]〉 − 1

4〈Z, |Z|K〉+ 〈Z,R〉+ const (56)

from before. As we have seen in the previous section f is differentiable with nonexpansive
gradient. Due to Rademacher’s theorem ∇f is F-differentiable almost everywhere, i.e. the
set

Ω∇f := {Z ∈ E | ∇f is not F-differentiable in Z} (57)

of points where ∇f is not F-differentiable has Lebesgue measure zero. Let us define the
second derivative of f as the first F-derivative of ∇f whenever it exists i.e.

∇2f(Z) := ∇(∇f(Z)) (58)

for all Z ∈ E \ Ω∇f . We will say that f is twice (continuously) differentiable in Z ∈ E
whenever ∇f is (continuously) F-differentiable in Z ∈ E. Let us also fix our notation for
generalized second derivatives of f for which we define the sets

∂2
Bf(Z) := ∂B(∇f(Z)) ⊂ L(E,E) (59)

and
∂2f(Z) := ∂(∇f(Z)) ⊂ L(E,E) (60)

for all Z ∈ E. Note that we have the identity ∂2f(Z) = conv(∂2
Bf(Z)) by definition. Now

by using the remarkable result 3.3.4 from [67] , we know that the second derivative of f i.e.
the F-derivative of ∇f is self-adjoint whenever it exists. We write (∇2f(Z))∗ = ∇2f(Z)
meaning that for every Z ∈ E \ Ω∇f the identity

〈∇2f(Z)[H1], H2〉 = 〈H1,∇2f(Z)[H2]〉 (61)

holds for all H1, H2 ∈ E. By definition we immediately conclude the following result.

Proposition 2.22. Let Z ∈ E be arbitrary and f as in (56). Then every MB ∈ ∂2
Bf(Z)

and every M ∈ ∂2f(Z) is self-adjoint. Recall that this implies a real spectrum and the
existence of a basis of eigenvectors.

17

Above proposition is of special importance for the design of second order methods: Self-
adjoint (symmetric) linear systems are generally cheaper (than non-self-adjoint ones) to
form, store or solve. Note that while the dimension of L(E,E) is equal to dim(E)2, the

dimension of the subspace of self-adjoint bounded linear operators is only dim(E)2+dim(E)
2 .

When it comes to solving these systems, they are especially suitable for the application of
symmetric iterative methods, such as Minres [68] or MINRES-QLP [13], which obtain very
low data storage requirements. For the design of quasi Newton methods, its is crucial to
note the implication that mainly symmetric quasi Newton methods should be of interest to
us. Let us point out that in general both generalized derivatives operators ∂B and ∂ are
not linear, only

∂(F1 + F2)(Z) ⊂ ∂F1(Z) + ∂F2(Z) (62)

holds true. However for the generalized second derivative of our reduced Lagrangian we
still obtain the linearity that we would expect for normal F-derivatives.

Lemma 2.23. Let Z ∈ E be arbitrary. We have the equalities of sets:

∂2
Bf(Z) = 1

2H−
1
2∂B|Z|K and ∂2f(Z) = 1

2H−
1
2∂|Z|K

Proof. Both equalities follow from the fact that Z 7→ H[Z] is continuously differentiable
with derivative H. �

Now the real unknown in all of our analysis are of course the sets ∂B|Z|K and ∂|Z|K. We
will investigate further general and special properties of these sets later on.

2.4 A Conceptual Algorithm

We have now finished introducing the general analytical ”toolbox” and like to propose a
road map. Let to this end ∇f : E → E be defined as in the previous sections, i. e.

∇f(Z) = 1
2H[Z]− 1

2 |Z|K +R

and let us give a brief outlook to our algorithmic sections, where we consider various realiza-
tions of the following conceptual algorithm meant to approximate some Z(∗) ∈ E satisfying
∇f(Z(∗)) = 0.

Conceptual Algorithm 2.24. Let H : E → E and ∇f : E → E be defined as in the
previous section.

1. Input an initial point Z(0) ∈ E, a maximal number of iterations κ ∈ N ∪ {∞} and a
tolerance ε ≥ 0. Set k := 0.

2. Return Z(k) and stop if one of the criteria
∥∥∇f(Z(k))

∥∥ < ε or k ≥ κ is satisfied.

3. Choose a self adjoint linear operator V(k) : E → E

4. Choose δk ≥ 0 and a direction ∆Z(k) ∈ E such that∥∥∥1
2(H− V(k))[∆Z(k)] +∇f(Z(k))

∥∥∥ ≤ δk (63)

is satisfied.

18

5. Choose a step length tk ∈ R and set

Z(k+1) := Z(k) + tk∆Z
(k) (64)

6. Set k := k + 1 and go to 2.

This conceptual algorithm is kept rather vague and realizations may be trivial. Note however
that each step is satisfiable independently of all prior steps (For example for all choices of
V(k) in step 3, one can find some ∆Z(k) and δk ≥ 0 satisfying the condition in step 4.).
For ε = 0 and κ = ∞ it will therefore generate an infinite sequence {Z(k)}k∈N ⊂ E.
In order to transform the conceptual algorithm 2.24 into an implementable algorithm with

Z(k) k→∞−→ Z(∗), we obviously need to specify the choices of V(k), δk, ∆Z(k) and tk. Whenever
we choose δk = 0 ∀k ∈ N0 a priori, we will call 2.24 exact and inexact otherwise. If
we now want to design a well defined exact and globally convergent method from the
conceptual algorithm 2.24, we have to choose V(k) such that ∇f(Z(k)) is in the range
of H − V(k) for each k ∈ N0. On the other hand we would also like V(k) to contain
as much (generalized) derivative information of |.|K as possible in order to achieve fast
convergence (which might contradict the prior rank condition and invertibility of H−V(k)).
In the following subsections we will therefore first consider (the) two extremal methods and
afterwards present a ”reasonable” compromise (a new norm constrained limited memory
Quasi-Newton-Approach). Specifically, under the assumption of existence of some Z(∗) ∈ E
satisfying ∇f(Z(∗)) = 0, we will investigate the following :

1. The choice of V(k) = 0 ∀k ∈ N0 leads to a first order or fixed point approach, which
enjoys global (but potentially sub-linear) convergence and a low computational com-
plexity per iteration. The exact worst-case convergence analysis leads us to a much
broader concept, which is one of the main contributions in this thesis.

2. Choosing V(k) ∈ ∂|Z(k)|K ∀k ∈ N0 results in a generalized Newton Approach, which
is, under mild extra assumptions, locally (super-linearly) convergent, but suffers from
high computational complexity per iteration.

3. Iteratively updated low rank matrices V(k) = (P(k))∗W(k)P(k) containing partial (gen-
eralized) derivative information while also satisfying ||V(k)|| ≤ 1 ∀k ∈ N0 results in a
novel norm constrained limited memory Quasi-Newton-Approach. It enjoys a mod-
erate computational complexity per iteration and fast convergence in many practical
examples.

19

3 Selected Euclidean Spaces and Cones

Before we finally jump into explicit algorithms we present a few relevant examples of Eu-
clidean spaces and convex cones. We will use the following two subsections to briefly discuss
first the real coordinate space and second the space of real symmetric matrices. In each
of these two subsections we will then investigate the generalized absolute value function
of some convex cones embedded in these Euclidean spaces. Before we begin however let
us motivate working in the general setting of a Euclidean space equipped with some inner
product. The reasoning for this non-specialized strategy is manifold. Let us start with two
simple explanations.

The first reason is the ease of combining simpler spaces and cones: Let us assume that in
(1) or (2) we are given the Cartesian products

E := E1 × . . .× Es and K := K1 × . . .×Ks (65)

where E is equipped with the inner product 〈., .〉E :=
∑s

i=1〈., .〉Ei for a collection of Eu-
clidean spaces Ei equipped with inner products 〈., .〉Ei and an embedded collection of convex
cones Ki ⊂ Ei for 1 ≤ i ≤ s. Let us further assume that we also know how to (cheaply)
evaluate the generalized absolute value functions |.|Ki : Ei → Ei. Then we can evaluate the
combined absolute value function |.|K : E → E for an argument Z = (Zi)

s
i=1 ∈ E easily as

|Z|K =
(
|Zi|Ki

)s
i=1

(66)

and therefore employ the same techniques we described in the previous sections.

The second reason for working in a general setting is the possibility to decompose an inter-
section of convex cones easily: Let us now assume that our convex cone K in (1) is given
as

K :=
s⋂
i=1

Ki (67)

for some convex cones Ki ⊂ E. Now assume the evaluation of |.|K : E → E to be unavailable
(or unreasonably expensive to compute), but the evaluation of each absolute value function
|.|Ki : E → E for 1 ≤ i ≤ s to be easy enough. Then we can reformulate (1) as an equivalent
problem of the same form over the convex cone K̃ := K1× . . .×Ks for example by exploiting
the fact that K = {X1 | (Xi)

s
i=1 ∈ K̃, X1 = Xj ∀ 2 ≤ j ≤ s}. As described above, the cost

of evaluating |.|K̃ : Es → Es is bounded above by the sum of cost of the evaluations of |.|Ki
for 1 ≤ i ≤ s, which again enables us to use the techniques from the prior sections. We
stretch the fact that great care is necessary when employing such equivalent reformulations,
to in particular avoid redundant constraints within the new reformulation. We will address
this topic again later on.

Let us conclude that the general Euclidean setting is flexible and expandable, without
being overly complicated. What we can also conclude from this short motivation is the
importance of ’simple’ Euclidean spaces and ’simple’ convex cones since they may give rise
to the solution of problems with a much higher complexity.

20

3.1 Real Coordinate Space

In this subsection we will consider the Euclidean-Space E = Rn equipped with the standard
Scalar-product, i.e. 〈x, y〉 := xT y ∀x, y ∈ Rn. From equation (1), we recover the following,
well known, primal standard form:

minimize
x∈Rn

cTx

subject to x ∈ Ax = b

x ∈ K

(68)

for some c ∈ Rn, b ∈ Rm, and a matrix A ∈ Rm×n. Without loss of generality we will
assume rank(A) = m ≤ n throughout this section. Note that for appropriate choice of K
equation (68) includes the primal standard form of linear programming (K = Rn+) as well
as second order programming (K = L2), both of which we will address below. Also note
that Rn is in fact itself a convex cone, for which the polar cone takes the form (Rn)P = {0}.

3.1.1 Nonnegative Orthant

It is well known that the nonnegative orthant

Rn+ := {x ∈ Rn | xi ≥ 0 ∀ 1 ≤ i ≤ n} (69)

is a self-dual convex cone and therefore its polar cone is given by

(Rn+)P = −Rn+ =: Rn−. (70)

Note that the nonnegative orthant gives rise to one of the simplest and probably most
studied areas of conic programming, i.e. linear programming. One reason for calling it
simple is the easy solution of its membership problem: In fact we even can easily derive
closed form projection formulas

ΠRn+(z) = (max(zi, 0))ni=1, ΠRn−(z) = (min(zi, 0))ni=1

|z|Rn+ = (|zi|)ni=1 = −|z|Rn−
(71)

which can be computed exactly with no more than n sign changes. While we are not going
to investigate simplex- or interior point methods here, we emphasize the existence of very
efficient software for solving linear programs such as [15], [26] or [61] based on these methods.
Note however that generalizations to our setting, i.e. a closed convex, but possibly non-
self-dual, cone (e.g. K = K̃ × Rn+), can be tricky or even impossible. Let us now consider
Clarke’s generalized derivative of |.|Rn+ at a given point z = (zi)

n
i=1 ∈ Rn. It is well known

that the generalized derivative of the ”normal” absolute value takes the form

∂|zi| =


−1 if zi < 0

[−1, 1] if zi = 0
1 if zi > 0

(72)

implying a diagonal structure for the multidimensional case

∂|z|Rn+ = Diag((∂|zi|)ni=1) (73)

21

which we can readily use to prove the following result regarding the existence of zeros of
∇f from the previous subsection.

Proposition 3.1. Assume that (68) for K = Rn+ has an optimal solution x(∗) ∈ Rn+. If we
define ∇f : Rn → Rn as before with E = Rn and K = Rn+, i.e.

∇f(z) = (I −AT (AAT)−1A)[ΠRn−(Z)) + c]−AT (AAT)−1[A(ΠRn+(z))− b] (74)

then there exists z(∗) ∈ Rn such that ∇f(z(∗)) = 0. If z(∗) ∈ Rn is in addition unique,
i.e. the unique solution of ∇f(z) = 0 then ∂2f(z(∗)) is single valued and its element is
invertible.

Proof. Since (68) has an optimal solution and is a linear program (for K = Rn+) we know
that its dual must also attain an optimal solution. We also know that these solutions
will satisfy the conic KKT-conditions (4), which together with corollary 2.8. proves the
existence of some z(∗) ∈ Rn such that ∇f(z(∗)) = 0. If z(∗) ∈ Rn is the unique solution to
the equation then |z(∗)|Rn+ must be componentwise nonzero (since the solutions to both the
primal and dual problem are unique, they must also be strictly complementary in the linear
setting, see for example [93]). In other words |.|Rn+ is continuously differentiable at z(∗) and

therefore ∇f is too. We conclude that ∂2f(z(∗)) is single valued. The rest of this proof
follows via contradiction: Assume that the element in ∂2f(z(∗)) is not invertible, then there
exists 0 6= δz ∈ Rn such that ∂2f(z(∗))δz = 0 and sign(z) = sign(z + δz). We conclude
that ∂|z(∗)|Rn+ = ∂|z(∗) + δz|Rn+ and therefore (with a slight abuse of notation)

∇f(z(∗) + δz) = ∇f(z(∗))︸ ︷︷ ︸
=0

+ ∂2f(z(∗))δz︸ ︷︷ ︸
=0

−1

2
(|z(∗) + δz|Rn+︸ ︷︷ ︸
=∂|z(∗)+δz|Rn+ (z+δz)

−|z(∗)|Rn+ − ∂|z
(∗)|Rn+δz)

= −1

2
(∂|z(∗)|Rn+(z(∗) + δz)− |z(∗)|Rn+︸ ︷︷ ︸

=∂|z(∗)|Rn+z

−∂|z(∗)|Rn+δz)

= 0
(75)

holds true, which directly contradicts the uniqueness of z(∗) ∈ Rn. �

As a consequence, if we are sure that there exists exactly one zero ∇f , then the standard
Newton-method is locally (close to the unique zero) well defined. However, as reassuring
the above theorem might be, a slight modification of its proof reveals the following truth.

Lemma 3.2. Assume that (68) for K = Rn+ has two distinct optimal solutions x(∗1), x(∗2) ∈
Rn+, x(∗1) 6= x(∗2). Then the equation ∇f(z) = 0, for ∇f : Rn → Rn defined as in (74), will
have two distinct solutions z(∗1), z(∗2) ∈ Rn, z(∗1) 6= z(∗2) and for every solution z(∗) ∈ Rn
with ∇f(z(∗)) = 0 there exists a singular element G ∈ ∂2

Bf(z(∗)).

Proof. Again the existence of z(∗1), z(∗2) ∈ Rn, z(∗1) 6= z(∗2) follows from strong duality for
linear programs. Let us assume without loss of generality, that z(∗2) ∈ Rn is componentwise
non-zero. Then there exists 1 ≥ ε > 0 such that the points (1−λ)z(∗1) +λz(∗2) ∈ Rn are also
componentwise non-zero for all λ ∈ (0, ε). We conclude that ∇f(Z) = 1

2H[z]− 1
2 |z|Rn+ +R

22

must be continuously differentiable in all of these points. By possibly reducing ε > 0 we
can assume ∇2f((1− λ)z(∗1) + λz(∗2))[z(∗1)] = 1

2(H[z(∗1)]− |z(∗1)|Rn+) ∀λ ∈ (0, ε)

0 = ∇f((1− λ)z(∗1) + λz(∗2))

= ∇2f((1− λ)z(∗1) + λz(∗2))[(1− λ)z(∗1) + λz(∗2)] +R
= ∇2f((1− λ)z(∗1) + λz(∗2))[z(∗1)] +R︸ ︷︷ ︸

=∇f(z(∗1))=0

+λ∇2f((1− λ)z(∗1) + λz(∗2))[z(∗2) − z(∗1)]

= λ︸︷︷︸
>0

∇2f((1− λ)z(∗1) + λz(∗2))[z(∗2) − z(∗1)︸ ︷︷ ︸
6=0

]

(76)

implying that ∇2f((1 − λ)z(∗1) + λz(∗2)) is singular for all λ ∈ (0, ε). By taking the limit
λ → 0 we conclude that G := lim

λ→0
∇2f((1 − λ)z(∗1) + λz(∗2)) ∈ ∂2

Bf(z(∗1)) exists and is a

singular element of ∂2
Bf(z(∗1)). �

Now if we come back to the bigger picture, we see that assuming invertibility of all ele-
ments in the second generalized derivative of the reduced Lagrangian is a relatively strong
assumption even for the ”simple” cone Rn+ (which one should keep in mind for section 5).
Changing topics back to to the general theme of this section let us next consider slightly
more complex cones.

3.1.2 Weighted p-order Cones

Defining the componentwise multiplication of two vectors x ◦ y = (xiyi)i=1..n for x =
(xi)i=1..n, y = (yi)i=1..n ∈ Rn as well as the p norm (1 ≤ p) via

||x||p := (
n∑
i=1

|xi|p)
1
p (77)

for any x = (xi)i=1..n ∈ Rn gives rise to an infinite number of closed, convex cones. Namely
for ω = (w0, w) ∈ R× Rn we define

Lωp := {(x0, x) ∈ R× Rn | ||x ◦ w||p ≤ x0w0} ⊂ R× Rn (78)

the so-called weighted p-order cones (sometimes referred to as weighted norm cones). If ω
only contains ones we omit the term in the definition and simply refer to them as p-order
cones, where the dimension will be evident from the context. One of the main benefits
of these cones, is the possibility to reformulate many convex (and often non-differentiable)
optimization problems in our standard format (1). For example

minimize
x∈Rn

cTx+ ||Ax− b||2 + ||x||1 (79)

which is often found in sparse recovery applications, can be equivalently stated in its epi-
graph formulation

minimize
x∈Rn,r∈Rm,t2,t1∈R

cTx+ t2 + t1

subject to Ax− r = b

||r||2 ≤ t2
||x||1 ≤ t1

(80)

23

and readily be seen to be of the form (1) for appropriate space and operator choices (K =
L2×L1 ⊂ (R×Rm)×(R×Rn) =: E). Now while the second order cone L2 is self-dual (with
respect to the scalar product 〈x, y〉 =

∑n
i=0 xiyi) and the following closed form projection

formula exists (from [2] 3.3.6)

ΠL2((z0, z)) =


(z0, z) if ||z||2 ≤ z0

(0, 0) if ||z||2 ≤ −z0
||z||2+z0

2 (1, z
||z||2) else

(81)

for (z0, z) ∈ R×Rn, this can not be said for general (weighted) p-order cones. Nevertheless
we can often compute the projections quite efficiently anyway. For example we can project
onto the weighted first and infinite order cones Lω1

1 and Lω∞∞ , by exploiting a certain duality.
Let us be more precise here: For an arbitrary z ∈ R × Rn we are concerned with the
computation of the Euclidean projection, i.e. the unique solutions ΠLω1 (z) and ΠLω∞(z) of

minimize ‖z − x‖22 | x ∈ Lω1 respectively minimize ‖z − x‖22 | x ∈ Lω∞ (82)

where we identified R × Rn ∼= Rn+1 for matters of convenience. Note that the indexing
starts at zero until the end of this subsection. Let us denote the pointwise division by 1

ω

with the convention that wj = 0 implies that the j-th component of elements in L
1
ω∞ and L

1
ω
1

are both zero. Applying the definition of the dual cone KD := {y ∈ Rn+1 | yTx ≥ 0 ∀x ∈ K}
and the polar cone KP = −KD, leads us to the following duality relation between Lω1

1 and
Lω∞∞ .

Lemma 3.3. For all ω ∈ R 6=0 × Rn

• (Lω1)D = L
1
ω∞ and (Lω∞)D = L

1
ω
1

• z = ΠLω1 (z)−Π
L

1
ω∞

(−z)

Note that the case w0 = 0 is excluded for reasons of convenience in our notation.5

Proof. The first part follows immediately from the Hölder inequality. The second part is
then simply Moreaus decomposition [60]. �

I am not aware of any projection algorithm for the weighted cones Lω1 and Lω∞ in the
literature. However, in [75] an algorithm for projecting on the weighted l1-ball is discussed.
The following is a slight modification of the ideas from [75] to fit the conic setting considered
here. Since the conic projection algorithm is very similar to the l1-ball projection algorithm,
the notation is kept as close as possible. Before we state an algorithm that computes ΠK(z)
for any ω, z ∈ Rn, we will briefly describe the main ideas. We will not prove the algorithms
integrity. First we need a few reduction steps. The previous Lemma allows us to solve either
one of the problems in (82), so let K ∈ {Lω1 ,Lω∞} for some ω ∈ R 6=0. There are few simple

5 If w0 = 0, wi 6= 0 ∀i ∈ {1, .., n} then ΠLω
1

(z) = ΠLω
∞(z) =

(
z0

0

)
. In our notation we have Lω1 = R×{0}n

and (Lω1)P = {0} × Rn 6= −L
1
ω
∞.

24

observations to be made: First note that we can change signs of wj ∀j ∈ {1, .., n} without
changing the solution of (82). Secondly we see that changing the sign of j-th component
zj for some j ∈ {1, .., n} leads to a change of signs in the j-th component of the projection.

Specifically we will use ΠK(

(
z0

(zi)i=1..n

)
=

(
1

(sign(zi))i=1..n

)
◦ ΠK

(
z0

(|zi|)i=1..n

)
. Thirdly

we will exploit symmetry, namely the fact that for any permutation τ : {1, .., n} → {1, .., n}

it holds that (ΠK

(
z0

(zτ(i))i=1..n

)
)j = (ΠK

(
z0

(zi)i=1..n

)
)τ(j) ∀j ∈ {1, .., n}. Last but not least

if the j-th component of z is equal to zero for some j ∈ {1, .., n} then so will the j-th

component of its projection (∃j ∈ {1..n} : zj = 0 ⇒ (ΠK

(
z0

(zi)i=1..n

)
)j = 0). We are now

in the situation that we can assume without loss of generality ω =

(
w0

w

)
∈ R 6=0×Rn++, z =(

z0

(z)i=1,..,n

)
∈ R × Rn++ such that z1

w1
≥ z2

w2
≥ ... ≥ zn

wn
> 0. It is then easy to see that

the following algorithm computes for any z, ω ∈ Rn+1 the projection ΠLω1 (z). We omit the
details.

Algorithm 3.4. Projection of z ∈ Rn+1 on Lω1 (z)

0 Input: A weighting vector ω =

(
w0

(wi)i=1..n

)
∈ Rn+1 and an arbitrary z =

(
z0

(zi)i=1..n

)
∈

Rn+1.

1 Preprocessing:

(a) Set S := {i ∈ {1..n} | wi 6= 0} ∩ {i ∈ {1..n} | zi 6= 0}
i. If w0 = 0 set (ΠLω1 (z))i := zi ∀i 6∈ S, (ΠLω1 (z))i := 0 ∀i ∈ S and return

ii. If |S| = 0 and w0z0 < 0 set ΠLω1 (z) :=

(
0

(zi)i=1..n

)
and return

iii. If |S| = 0 and w0z0 ≥ 0 set ΠLω1 (z) := z and return
iv. Set (ΠLω1 (z))i := zi ∀i 6∈ S

(b) If
∑

i∈S |wizi| ≤ w0z0 set (ΠLω1 (z))i := zi ∀i ∈ S and return

(c) If maxi∈S | ziwi | ≤ −
z0
w0

set (ΠLω1 (z))i := 0 ∀i ∈ S ∪ {0} and return

2 Computation:

(a) Find Permutation: τ : {1, .., |S|} → S such that | zτ(1)

wτ(1)
| ≥ | zτ(2)

wτ(2)
| ≥ ... ≥ | zτ(|S|)

wτ(|S|)
| > 0

(b1) Find the smallest k∗ ∈ {0, .., |S| − 1} such that

|
zτ(|S|−k∗)

wτ(|S|−k∗)
| >

∑
i=1,..,|S|−k∗ |wτ(i)zτ(i)| − w0z0∑

i=0,...,|S|−k∗ w
2
τ(i)

(83)

(b2) or find the largest j∗ ∈ {1, .., |S|} such that

|
zτ(j∗)

wτ(j∗)
| >

∑
i=1,..,j∗ |wτ(i)zτ(i)| − w0z0∑

i=0,...,j∗ w
2
τ(i)

(84)

and set k∗ = |S| − j∗ + 1

25

3 Output: Set

(ΠLω1 (z))0 = −(−z0 − w0

∑
i=1,..,|S|−k∗ |wτ(i)zτ(i)| − w0z0∑

i=0,...,|S|−k∗ w
2
τ(i)

)

(ΠLω1 (z))τ(j) = sign(zτ(j))(|zτ(j)| − |wτ(j)|
∑

i=1,..,|S|−k∗ |wτ(i)zτ(i)| − w0z0∑
i=0,...,|S|−k∗ w

2
τ(i)

) ∀j ∈ {1, .., |S| − k∗}

(ΠLω1 (z))τ(j) = 0 ∀j ∈ {|S| − k∗ + 1, .., |S|}
(85)

and return

Note that the above algorithm can be implemented with no more than O(nlog2(n)) sorting
and O(n) arithmetic operations. For large n, |S| ∈ N the cost for finding the permutation
τ will generally dominate the cost of all other operations.

3.2 Space of Real Symmetric Matrices

In this subsection we will consider the Euclidean space E = Sn where

Sn := {Z ∈ Rn×n | Z = ZT } (86)

is the space of real symmetric matrices equipped with the trace product 〈X,Y 〉 := X •
Y ∀X,Y ∈ Sn where X • Y := trace(XTY) ∀X,Y ∈ Rn×n. Note that the trace product,
defined above, is actually a scalar product not only on the space of symmetric matrices, but
also on the space of rectangular real matrices Rn×k. This explains the use of the otherwise
superfluous transpose symbol within. The norm induced by the trace product is widely
known as the Frobenius-Norm and usually denoted by ||Z||2F := trace (ZTZ).

3.2.1 Semidefinite Cone

The probably most famous representative of convex cones in Sn is given as

Sn+ := {X ∈ Sn | yTXy ≥ 0 ∀ y ∈ Rn} (87)

and commonly referred to as positive semidefinite cone (or sometimes just semidefinite
cone). It is closed, convex, nonempty and self-dual (with respect to •). We write for its
polar cone (Sn+)P = −Sn+ =: Sn−. Let us, in order to project some Z ∈ Sn onto the positive
semidefinite cone, assume that a spectral decomposition has been computed a priori, i.e.

Z = V Diag(d)V T with V ∈ Rn×n such that V V T = In and d ∈ Rn (88)

are available. In terms of this decomposition, we obtain the following well known identities

ΠSn+(Z) = V Diag(max(di, 0)ni=1)V T , (89)

ΠSn−(Z) = V Diag(min(di, 0)ni=1)V T (90)

and
|Z|Sn+ = V Diag(|di|ni=1)V T (91)

26

for which we address the computational evaluation cost: Let us first note that, in general,
finding a spectral decomposition can not be done in an exact fashion6 (unless n ∈ N is
sufficiently small or Z ∈ Sn has some additional structure). However efficient iterative
methods exist and an approximate spectral decomposition of Z can for example be realized
by employing QR or Divide-and-conquer eigenvalue algorithms. Both of which usually need
O(n3) arithmetic operations to reach satisfactory precision. While it is difficult to choose
from the wide variety of possible eigenvalue algorithms, the Divide-and-conquer eigenvalue
algorithm employed by the LAPACK-Routine dsyevd in our numerical experiments is a
convincing choice, in terms of both speed and accuracy, for the setting of a single CPU with
multiple cores. In the setting of a heterogeneous computer architecture, for example with
one CPU and two GPUs, its hybrid brother (it employs the CPU and both GPUs simulta-
neously), the MAGMA-Routine [87] magma dsyevd m (from version 1.6.2, in combination
with Intels Math Kernel Library 2015), represent an even faster choice for sufficiently large
n ∈ N. To give an impression about the computational time needed, there is a MATLAB
graphic included below. Note that the data used to generate the plot is by no means re-
producible, mainly due to software and hardware upgrades, but also due to missing data
points (actually two data points are interpolated, due to minor inconveniences on the High
Performance Cluster). Note that all routines are either employed via Mex files or built-in
MATLAB algorithms (the rather technical and not fully optimized details are omitted here).
The point to be seen here is that we can, for large blocksizes (the largest matrix considered
here is 15000×15000) greatly benefit, in terms of time, from new and/or advanced software
as well as hardware.

6Note that this does not necessarily imply that |Z|Sn+ can not be evaluated in an exact fashion: Its
evaluation could still be possible via means that do not employ eigenvalues after all. For example note
the equality |Z|2Sn+ = Z2 and the fact that we can easily find a non-symmetric square root of a positive

definite matrix (namely through its Cholesky decomposition). While it remains unknown whether finding
its (unique) positive semidefinite symmetric square root in an exact fashion is possible, there exist methods
to approximate it iteratively (see for example [62] and [30]).

27

Figure 1: Approximate averaged timing in seconds to compute one symmetric eigenvalue
decompositions via divide and conquer (not reproducible and meant only to give a very
rough idea). We used a desktop pc with an Intel desktop CPU (Core(TM) i7-4770 CPU
@ 3.40GHz), as well as HPC-node(s) with a server CPU (Xeon) together with NVIDIA
Tesla K20Xm GPUs. Due to non-existing administrative privileges on the HPC node, we
unfortunately could not fully embrace the power of the Xeon CPU.

Now let us focus on the remaining computational cost to evaluate |Z|S+ , i.e. the multipli-
cation of a diagonal matrix with V and V T : Let us assume without loss of generality that
the vector d ∈ Rn is sorted such that d = (dT−, d

T
0 , d

T
+)T with component wise strictly pos-

itive d+ ∈ Rn+
++, a zero vector d0 = 0 ∈ Rn0 and a component wise strictly negative vector

d− ∈ Rn−−−. Let us also partition V = [V−, V0, V+] analogously, i.e. V− ∈ Rn×n− , V0 ∈ Rn×n0

and V+ ∈ Rn×n+ . Basic linear algebra shows that the projections now take the form

ΠSn+(Z) = V+ Diag(d+)V T
+ = (V+ Diag(d+)

1
2)(V+ Diag(d+)

1
2)T (92)

and
ΠSn−(Z) = V−Diag(d−)V T

− = −(V−Diag(−d−)
1
2)(V−Diag(−d−)

1
2)T . (93)

Since we can derive |Z|Sn+ from either one of the two formulas above via (14), we can
conclude that this second part of its evaluation does not exceed the number of arithmetic

28

operations of a symmetric rank k matrix multiplication7 for k := min(n−, n+) ≤ n
2 by more

than O(n2). This argument is quite compelling whenever k is much smaller then n
2 . In fact

it also reveals that it is not even necessary to compute a full spectral decomposition in the
first place. If one has prior knowledge about the numbers n+, n0, n− one could for example
be tempted to only compute all negative or only all positive eigenvalues together with
their eigenvectors. The reason for not following this temptation, is connected to the cheap
evaluation of the derivative of the generalized absolute value: Let us start by introducing

the well known (bijective) linear mapping svec : Sn → R
n2+n

2 defined via

svec (Z) :=
(
Z11

√
2Z21 . . .

√
2Zn1, Z22

√
2Z32 . . .

√
2Zn2, . . . , Z(n−1)(n−1)

√
2Zn(n−1), Znn

)T
(94)

which is obtained by multiplying all off-diagonal entries of Z by
√

2 and then stacking
all columns of the lower triangular part on top of each other. We can easily verify that
X • Y = svec(X)T svec(Y) holds for all X,Y ∈ Sn. In other words, the mapping svec is an

isometric isomorphism. We denote its inverse mapping smat : R
n2+n

2 → Sn. The generalized
absolute value |.|Sn+ is (continuously) differentiable at all full rank matrices Z ∈ Sn (i.e. when
d0 is of dimension zero). However as its derivative is an operator acting on matrices, rather
than vectors, it is matrix representable, but not truly a matrix itself. We can express the
action (see for example [99]) via

∇|Z|S+ [∆Z] = smat((I ⊗S |Z|S+)−1(I ⊗S Z) svec(∆Z)) (95)

where the symmetrized Kronecker product X ⊗S Y is implicitly defined via

(X ⊗S Y) svec(S) := 1
2 svec(Y SXT +XSY T) (96)

for arbitrary X,Y ∈ Rn×n and symmetric S ∈ Sn. We refer to the Appendix of [85], which
yields an excellent overview regarding properties of the symmetrized Kronecker product.
The properties considered, especially yield

∇|Z|S+
∼= (I ⊗S |Z|S+)−1(I ⊗S Z)

= (V ⊗S V)(I ⊗S Diag(|d|Rn+))−1(I ⊗S Diag(d))(V T ⊗S V
T)

(97)

for the eigenvalue decomposition Z = V Diag(d)V T , which leads to

∇|Z|S+ [∆Z] = V (Ω ◦ (V T∆ZV))V T (98)

for Ω :=
di+dj
|di|+|dj | ∈ Sn for i, j ∈ {1, .., n}. By realizing that Ω has large blocks containing

only ones or minus ones, this formula has been refined in [99], allowing relatively cheap
evaluations of ∇|Z|S+ [∆Z]. We will address possible computational benefits later on. For
now let us shift our focus to the generalized second derivative of the reduced Lagrangian.
When it comes to semidefinite programing, one of the major assumptions for showing fast
convergence of interior point methods, is the existence of strictly complementary optimal

7In the presence of Strassen and Coppersmith-Winograd algorithms it is quite unlikely for a tight upper
bound on the arithmetic operations, needed for a symmetric rank k matrix multiplication, to exist. A naive
bound is obviously given by (2k−1)n(n+1)

2
additions and multiplications.

29

primal and dual solutions, i.e. that some optimal solution X(∗) ∈ Sn+ of (1) and an optimal
solution Y (∗) ∈ S− of (2) satisfy X(∗)−Y (∗) � 0. If we translate this assumption to our case,
we realize that it implies that the generalized absolute value is continuously differentiable at
Z(∗) := X(∗) + Y (∗) ∈ Sn. In other words, the generalized second derivative of the reduced
Lagrangian will be single valued and the element will be equal to the (usual) second F-
derivative. Let us also point out, that by assuming (in addition to |Z(∗)|K = X(∗)−Y (∗) � 0)
that Z(∗) is not only one, but the unique zero of the gradient of the reduced Lagrangian we
can even show invertibility of this second derivative. The proof of this fact is omitted; it
would essentially follow the same reasoning, that was presented in [25]. This connection is
however worth keeping in mind when it comes to second order methods, presented later on.

3.2.2 Completely Positive and Copositive Cone Relaxations

The last example is connected to the completely positive cone

C∗n := conv{xxT | x ∈ Rn+} (99)

and its dual
Cn := {S ∈ Sn | xTSx ≥ 0 ∀x ∈ Rn+} (100)

the copositive cone. These cones are of great interest, because they can be used to refor-
mulate many NP-hard problems as conic optimization problems of the form (1). Let us
recall such a reformulation for the Max-Stable-Set (respectively the Max-Clique problem).
For a given simple graph G = (V,E(G)) with n = |V | vertices V , we denote the simple
complementary graph with Ḡ = (V,E(Ḡ)) and its adjacency matrix with AG (respectively
AḠ). Note that a simple graph is loopless and undirected. Therefore both AG and AḠ
are symmetric and we get AG + AḠ + I = J , where I denotes the identity and J the
matrix of all ones in Rn×n. In order to keep our notation short, we will define two vec-
tors XAG := (

Xij+Xji√
2

){i,j}∈E(G) ∈ R|E(G)| and XAḠ := (
Xij+Xji√

2
){i,j}∈E(Ḡ) ∈ R|E(Ḡ)| where

|E(G)| and |E(Ḡ)| denote the number of edges in G and Ḡ. The Max-Stable-Set problem
can be stated as follows: Find a maximal subgraph G′ ⊂ G such that the complementary
graph Ḡ′ is a complete graph. The stability number α(G) is then defined as the number
of vertices of G′. It was shown in [23] (with different scaling) that the following equivalent
conic formulation

α(G) =max
X∈Sn

J •X

subject to XAG = 0,
I •X√
n

=
1√
n

X ∈ C∗n

(101)

and its dual problem both attain optimal solutions with a non-zero duality gap. In theory we
could therefore use any of the algorithms (that we are going to present next) to approximate
the stability number. However, since tracing C∗n is in general an NP-hard problem, it is
unlikely that the projection operator ΠC∗ can be computed efficiently in practice. If one is
instead interested in finding upper bounds on the max clique number we can replace the
completely positive cone in (101) by a ”simpler” outer approximation. For example the
doubly nonnnegative cone

DNN := Sn+ ∩ Rn×n+ (102)

30

for which the dual cone is given by the nonnegatively decomposable cone

NND := (DNN)D = Sn+ + Rn×n+ (103)

is a suitable choice. After eliminating redundant constraints and some minor reformulations,
the resulting problem can be stated as

θ+(G) = max
X∈Sn,xḠ∈R|E(Ḡ)|

J •X

subject to XAG = 0,
I •X√
n

=
1√
n

XAḠ − xḠ√
2

= 0, xḠ ∈ R|E(Ḡ)|
+

X ∈ Sn+

(104)

and its optimal value θ+(G) is usually refered to as Lovasz-Schrijver-number. Relaxing the
problem even further leads to the so-called Lovasz-number which is defined as the following
optimal value

θ(G) :=max
X∈Sn

J •X

subject to XAG = 0,
I •X√
n

=
1√
n

X ∈ Sn+

(105)

and because of the inclusions
C∗ ⊂ DNN ⊂ Sn+ (106)

we obtain the well known inequalities

α(G) ≤ θ+(G) ≤ θ(G). (107)

Note that the affine constraints in (101),(104) and (105) are scaled such that the associated
linear operators have orthonormal (with respect to the canonical scalar product) ”rows”, i.e.
the resulting linear operator(s) AA∗ will be equal to some identity operator of appropriate
size.

31

4 First Order Approach

In the following subsections we will loosen our setting (to general nonexpansive operators
in Hilbert spaces). As a motivation, we first consider the conceptual algorithm 2.24 with
V(k) = 0 ∀k ∈ N. One may speak of a first order approach, because the operator of the
linear system is fixed and every (variable) curvature information of 〈|.|K, .〉 is disregarded.
If we also choose δk = 0 ∀k ∈ N, i.e. solve the linear system for ∆Z(k) ∈ E exactly, we end
up with the directions

∆Z(k) = −2H[∇f(Z(k))] (108)

and the simple iteration
Z(k+1) = Z(k) + tk∆Z

(k) (109)

which we will investigate in this and the next subsection. It turns our that iteration (109)
is a version of Krasnoselski-Mann iteration ([43] and [57]), an observation that will be dis-
cussed later. Let us first start with a numerical consideration and a chronological ranging.
In the early days of this thesis I implemented an inexact version of above iteration (i.e.
small but positive δk > 0, ∆Z(k) ≈ −2H[∇f(Z(k))] and fixed tk = t ∈ (0, 1) ∀k ∈ N0) in
MATLAB (2014a) for the case E = Sn and K = Sn+. This first8 implementation behaved
quite pleasing, especially its comparison to other methods (see details below). After more
numerical testing and validation, I intended to explain the observed behavior mathemati-
cally. I almost instantly hit a brick wall: Although proving (monotone) convergence is an
easy task, the obtained rates of convergence remained rather poor and in contrast to their
empirical counterpart. Initially I was convinced to be overlooking some structure of ∇f
coming from (1). As it will turn out in this section, this was not the case. After a short
numerical consideration, we will start by recalling some of the known results regarding iter-
ation (109), in particular one complexity bound. We will proceed by giving two examples of
the form (1), proving that for fixed step length t the rather poor known upper complexity
bounds on the convergence rate can not be improved significantly (implying that I did not
overlook any structure before). We will complete this subsection with a result showing that
these two examples actually reflect worst-case scenarios. The result is stated as a corollary
of a theorem of the next subsection. This theorem is stated for finding fixed points, rather
than finding zeros, since this seems more natural. Its proof and the resulting extensions,
are some of the main contributions of this thesis. Specifically the technique used consists
of numerical, statistical and algebraic tools to analyze complexities of given fixed point
iterations in an optimal fashion. Let us get back to the promised numerical consideration
and reveal some mathematically trivial, but numerically essential details. To start with,
our input data b ∈ Rm, C ∈ Sn is internally normalized in the sense that

||(I − A∗(AA∗)−1A)[C]||Sn ≈ ||A∗(AA∗)−1b||Sn ≈
1√
2

(110)

should be approximately satisfied which implies

||R||Sn ≈ 1 (111)

8The final (improved) implementation differs quite a lot, and we will therefore consider similar numerical
tests later on for the improved version.

32

as well a certain primal and dual balancing. In each iteration we have to approximately solve
one (not two) linear system of the form AA∗y = r, for which MATLABs standard precon-
ditioned CG-Method (pcg) is used. An incomplete Cholesky factor9 of AA∗ is computed as
a preconditioner and the final iterate of the previous CG-iteration is then used as a starting
point for the current CG-iteration. One finds that a relatively small tolerance is needed in
order to solve all problems below, so we set tolCGk := max[10−14, 10−7||∇f(Z(k))||Sn]. To
approximate |Z|Sn+ we can either use the same eigendecomposition that was used in [99]

based on a divide and conquer strategy10 or an inexact update strategy exploiting

|Z(k+j)|Sn+ ≈ |Z
(k)|Sn+ + ∂|Z(k)|Sn+ [Z(k+j) − Z(k)] (112)

whenever ||(Z(k+j) − Z(k))||Sn ≤ λmin(|Z(k)|Sn+) and 1 ≤ j ≤ 50, where λmin(.) denotes
the smallest eigenvalue of its argument. Note that ∂|Z|Sn+ [∆Z] can be computed with only

O(γkn
2) flops (see [99]), for γk = min[#{(λ(Z(k))i < 0)ni=1},#{(λ(Z(k))i > 0))ni=1}] where

λ(.) denotes the vector of eigenvalues of its argument. These updates are computationally
cheaper than a full eigenvalue decomposition and therefore counted (up). Infeasibility and
optimality are measured (only once) a posteriori as follows:

RD :=
||C + S(∗) −A(y(∗))||Sn

1 + ||C||Sn
, RP :=

||b−A(X(∗))||2
1 + ||b||2

, gap :=
bT y(∗) − C •X(∗)

1 + |bT y(∗)|+ |C •X(∗)|
(113)

where X(∗), S(∗) := −Y (∗) and y(∗) are computed from the final iterate Z(k) according to
corollary 2.9 while also undoing our initial normalization. Note that we internally only rely
on our (normalized) stopping criterion ||∇f(Z)||Sn ≤ tol. time (in seconds), CPU-time
(cpu), the number of iterations (it) are given as well as the total number of CG-iterations
CGit. Note that time includes the time for computing an incomplete Cholesky factor.
It should be mentioned that the implementation allows warm-starts, i.e. benefits from
”good” intial guesses Z(0) ∈ Sn. However in order to ensure comparability, we have re-
strained to Z(0) = 0 ∈ Sn in all cases considered here. The tests here were performed on a
Laptop with an Intel i7 quadcore 2,2Ghz processor and 8Gb memory running Ubuntu 14.04
and MATLAB 2014a. First, the implementation was tested on 24 random sparse problems
considered in [56]. The generator for these problems can be found on Franz Rendls Webpage
[74]. The random number generator is initialized with the parameter seed, where p controls
density. n is the size of the SDP-Block, m is the number of constraints. The results were
compared to the boundary point method [69] also available on Franz Rendls Webpage [74].
The boundary method stops when max[RP , RD] ≤ tol. Let us note that for these problems,
the boundary point method outperformed SDPNAL (see [99]). The numerical results of
SDPNAL’s performance are included below only for sake of completeness: Note that this
does not properly reflect SDPNAL average performance (which is much better). The first
test was performed with tol = 10−6 . The results are given in Table 1 and in Table 2 below:

9To be precise: An incomplete Cholesky factorization with threshold dropping (ICT) and drop tolerance
10−5. (MATLAB-code: ichol(M, struct(’type’,’ict’,’droptol’,10−5))

10LAPACK’s dsyevd. Let us however note, that the computational advantage over MATALB’s eig routine
is non-existent in MATLAB 2014a and newer, while it is up to 5 times faster in older versions.

33

seed (n2 + n)/2 m p it CGit up C •X bT y RP RD gap time cpu
3002030 45150 20000 3 100 213 46 7.61329e+02 7.61352e+02 1.7e-05 9.6e-08 1.5e-05 3.2 12.5
3002530 45150 25000 3 300 617 144 7.38372e+01 7.38384e+01 2.8e-06 1.5e-09 8.0e-06 15.9 60.2
3001040 45150 10000 4 166 341 65 1.65975e+02 1.65975e+02 4.7e-07 1.4e-08 1.4e-07 7.9 28.2
4003030 80200 30000 3 109 143 41 1.07214e+03 1.07214e+03 3.1e-06 5.5e-07 1.6e-06 4.6 19.4
4004030 80200 40000 3 167 350 59 8.05770e+02 8.05769e+02 2.8e-06 2.5e-09 1.1e-06 12.9 49.7
4001540 80200 15000 4 209 411 45 -6.55000e+02 -6.55000e+02 2.0e-07 7.5e-09 6.3e-08 16.1 64.4
5003030 125250 30000 3 158 169 58 1.10763e+03 1.10763e+03 6.8e-07 2.2e-08 1.1e-07 10.9 46.5
5004030 125250 40000 3 116 129 38 8.16611e+02 8.16611e+02 1.2e-06 1.5e-07 1.5e-07 9.6 40.1
5005030 125250 50000 3 103 140 27 3.64945e+02 3.64945e+02 1.5e-06 1.2e-07 2.7e-07 10.1 41.4
5002040 125250 20000 4 274 531 117 3.28004e+02 3.28004e+02 2.0e-07 9.2e-09 1.5e-08 22.3 86.2
6004030 180300 40000 3 171 182 79 3.06618e+02 3.06618e+02 1.2e-06 4.1e-08 6.1e-07 18.4 40.5
6005030 180300 50000 3 131 143 45 -3.86414e+02 -3.86413e+02 6.2e-07 1.5e-08 1.4e-06 17.5 38.1
6006030 180300 60000 3 114 127 38 6.41735e+02 6.41738e+02 2.0e-06 3.4e-07 2.1e-06 16.2 34.9
6002040 180300 20000 4 392 415 161 1.04527e+03 1.04527e+03 1.5e-07 1.0e-08 2.2e-07 42.9 93.5
7005030 245350 50000 3 197 205 7 3.13202e+02 3.13203e+02 2.1e-07 7.5e-09 1.1e-06 37.5 87.0
7007030 245350 70000 3 122 134 41 -3.69558e+02 -3.69558e+02 5.4e-07 1.4e-08 4.8e-07 21.5 47.6
7009030 245350 90000 3 110 136 37 -2.67562e+01 -2.67554e+01 1.6e-06 2.8e-07 1.5e-05 20.9 45.0
8007030 320400 70000 3 177 188 57 2.33140e+03 2.33140e+03 4.1e-07 1.2e-08 1.4e-07 36.7 85.3
80010030 320400 100000 3 116 129 9 2.25929e+03 2.25929e+03 1.3e-07 6.1e-09 2.9e-08 33.2 74.7
80011030 320400 110000 3 113 127 17 1.85792e+03 1.85792e+03 1.5e-07 3.2e-08 1.3e-07 31.0 68.5
90010030 405450 100000 3 150 161 16 9.54223e+02 9.54223e+02 2.9e-07 6.5e-09 2.9e-07 50.8 118.8
90014030 405450 140000 3 113 126 16 2.31983e+03 2.31983e+03 1.8e-07 2.5e-08 5.2e-08 40.9 96.7
100010030 500500 100000 3 204 213 56 3.09636e+03 3.09636e+03 2.2e-07 7.0e-09 4.2e-08 77.4 186.8
100015030 500500 150000 3 119 131 27 1.05289e+03 1.05289e+03 6.7e-07 2.0e-08 2.7e-07 50.3 117.5

Table 1: First-Algorithm-Performance with t = 0.95, tol = 10−6 and Z(0) = 0 on random
sparse SDPs considered in [56]
Results where the boundary point method performed ”better” than our first method are
marked in red in the columns RP and time. Half (12/24) of the considered problems were
solved in less time (factor 1-2.5) and to higher accuracy by our method. Three problems
were solved in more time but still to higher accuracy by our method. In these cases an
exact Cholesky factor was relatively cheap (see [69]), explaining the time advantage of the
boundary point method. The remaining 9 problems were solved less accurately, but also
in less time by our method. A lack of primal infeasibility of the very first problem stands
against a factor 3 in time. All eight remaining problems were solved within a range of
1.2 ∗ 10−6 − 3.1 ∗ 10−6 of primal infeasibility. Note that the relatively low number of CG
iterations is more a result of our starting point than of our preconditioner.

seed (n2 + n)/2 m p it C •X bT y RP RD gap time cpu
3002030 45150 20000 3 163 7.61352e+02 7.61352e+02 9.4e-07 3.2e-08 3.0e-07 10.7 18.9
3002530 45150 25000 3 244 7.38384e+01 7.38385e+01 9.3e-07 4.9e-08 8.2e-07 26.9 43.2
3001040 45150 10000 4 151 1.65975e+02 1.65975e+02 9.6e-07 7.5e-08 1.3e-06 12.3 21.4
4003030 80200 30000 3 143 1.07214e+03 1.07214e+03 9.9e-07 2.8e-08 9.4e-07 12.3 23.6
4004030 80200 40000 3 193 8.05770e+02 8.05769e+02 9.4e-07 3.4e-08 7.8e-07 40.0 70.8
4001540 80200 15000 4 171 -6.55000e+02 -6.54998e+02 9.8e-07 1.2e-07 1.3e-06 22.1 40.5
5003030 125250 30000 3 153 1.10763e+03 1.10763e+03 9.5e-07 8.6e-08 4.1e-07 15.2 33.8
5004030 125250 40000 3 137 8.16610e+02 8.16611e+02 9.4e-07 3.6e-08 3.2e-07 16.9 35.3
5005030 125250 50000 3 149 3.64946e+02 3.64945e+02 1.0e-06 2.4e-08 7.4e-07 29.0 54.5
5002040 125250 20000 4 201 3.28005e+02 3.28011e+02 9.6e-07 2.2e-07 9.4e-06 35.4 66.1
6004030 180300 40000 3 154 3.06618e+02 3.06618e+02 9.7e-07 8.5e-08 5.4e-07 22.0 49.7
6005030 180300 50000 3 143 -3.86414e+02 -3.86413e+02 1.0e-06 6.0e-08 5.9e-07 20.8 46.5
6006030 180300 60000 3 138 6.41737e+02 6.41737e+02 9.7e-07 3.1e-08 2.5e-08 26.1 54.2
6002040 180300 20000 4 231 1.04527e+03 1.04528e+03 9.8e-07 4.0e-07 7.5e-06 37.6 78.1
7005030 245350 50000 3 168 3.13203e+02 3.13206e+02 9.9e-07 1.2e-07 5.2e-06 31.7 74.0
7007030 245350 70000 3 138 -3.69559e+02 -3.69559e+02 9.6e-07 4.3e-08 9.6e-09 31.5 70.0
7009030 245350 90000 3 142 -2.67572e+01 -2.67555e+01 9.2e-07 2.1e-08 3.1e-05 61.1 121.4
8007030 320400 70000 3 161 2.33140e+03 2.33140e+03 9.6e-07 8.5e-08 4.9e-07 40.1 94.2
80010030 320400 100000 3 135 2.25929e+03 2.25929e+03 9.9e-07 3.1e-08 2.0e-07 49.3 105.9
80011030 320400 110000 3 140 1.85792e+03 1.85792e+03 9.4e-07 2.3e-08 3.0e-07 66.4 134.9
90010030 405450 100000 3 149 9.54223e+02 9.54224e+02 9.9e-07 5.8e-08 3.8e-07 53.0 124.6
90014030 405450 140000 3 139 2.31983e+03 2.31983e+03 9.5e-07 2.4e-08 1.4e-07 107.3 230.8
100010030 500500 100000 3 172 3.09636e+03 3.09637e+03 9.9e-07 1.1e-07 5.9e-07 73.8 180.3
100015030 500500 150000 3 138 1.05288e+03 1.05289e+03 9.6e-07 3.4e-08 8.2e-07 85.2 193.4

Table 2: Boundary-Method-Performance with σ = 0.1 and tol = 10−6 on random sparse
SDPs considered in [56]

34

As mentioned before, for sake of completeness, we include the performance results
of SDPNAL, again emphasizing that they are not representative in any average way.

seed (n2 + n)/2 m p it itsub CGit C •X bT y RP RD gap time cpu
3002030 45150 20000 3 7 46 4e+03 7.61352e+02 7.61371e+02 5.1e-07 6.6e-07 1.2e-05 31.0 85.7
3002530 45150 25000 3 5 61 5391 7.38394e+01 7.38586e+01 4.9e-07 6.8e-07 1.3e-04 51.3 156.6
3001040 45150 10000 4 11 51 985 1.65975e+02 1.66002e+02 2.0e-07 8.5e-07 8.3e-05 10.4 30.8
4003030 80200 30000 3 8 46 3219 1.07214e+03 1.07216e+03 8.4e-07 4.9e-07 9.2e-06 52.4 145.9
4004030 80200 40000 3 6 74 6206 8.06726e+02 8.05803e+02 8.2e-06 7.7e-07 5.7e-04 114.2 322.9
4001540 80200 15000 4 11 48 742 -6.55000e+02 -6.54964e+02 7.1e-07 8.0e-07 2.8e-05 15.8 45.8
5003030 125250 30000 3 10 49 2155 1.10763e+03 1.10766e+03 2.3e-07 7.1e-07 1.5e-05 47.1 154.6
5004030 125250 40000 3 9 45 2001 8.16612e+02 8.16655e+02 9.4e-07 8.1e-07 2.7e-05 50.6 147.3
5005030 125250 50000 3 7 45 3e+03 3.64946e+02 3.65005e+02 1.8e-07 9.5e-07 8.2e-05 90.3 267.3
5002040 125250 20000 4 11 52 819 3.28004e+02 3.28050e+02 3.2e-07 7.5e-07 7.0e-05 25.7 74.9
6004030 180300 40000 3 11 51 1859 3.06617e+02 3.06660e+02 1.9e-07 7.2e-07 7.0e-05 64.9 203.3
6005030 180300 50000 3 10 52 3e+03 -3.86413e+02 -3.86372e+02 2.5e-07 6.1e-07 5.3e-05 132.2 381.8
6006030 180300 60000 3 9 48 2374 6.41737e+02 6.41806e+02 1.1e-07 9.2e-07 5.4e-05 94.9 289.7
6002040 180300 20000 4 13 55 728 1.04527e+03 1.04530e+03 1.6e-07 5.5e-07 1.5e-05 29.6 86.3
7005030 245350 50000 3 11 51 1582 3.13203e+02 3.13260e+02 1.2e-07 7.7e-07 9.0e-05 85.8 265.3
7007030 245350 70000 3 10 49 2118 -3.69558e+02 -3.69504e+02 2.1e-07 6.3e-07 7.3e-05 127.0 365.1
7009030 245350 90000 3 9 46 2798 -2.67550e+01 -2.66947e+01 8.3e-07 6.4e-07 1.1e-03 202.0 615.5
8007030 320400 70000 3 11 51 1746 2.33140e+03 2.33146e+03 1.6e-07 7.2e-07 1.4e-05 135.2 408.2
80010030 320400 100000 3 10 52 3081 2.25929e+03 2.25935e+03 7.0e-07 5.2e-07 1.3e-05 259.4 811.3
80011030 320400 110000 3 10 51 2730 1.85792e+03 1.85796e+03 1.5e-07 3.8e-07 1.1e-05 260.3 787.3
90010030 405450 100000 3 11 52 2008 9.54223e+02 9.54298e+02 1.3e-07 6.3e-07 3.9e-05 223.5 692.6
90014030 405450 140000 3 9 49 2782 2.31983e+03 2.31997e+03 2.4e-07 9.2e-07 2.9e-05 356.8 1117.4
100010030 500500 100000 3 11 51 2e+03 3.09636e+03 3.09645e+03 6.9e-07 7.1e-07 1.5e-05 250.1 806.5
100015030 500500 150000 3 10 50 2956 1.05289e+03 1.05302e+03 1.7e-07 8.4e-07 6.3e-05 455.4 1441.7

Table 3: SDPNAL-Performance with tol = 10−6 on random sparse SDPs considered in [56]

For our second test the tolerance was dramatically reduced to tol = 10−11, for which the
boundary point method encountered issues, probably due to roundoff errors. Therefore we
only include the performance results of the boundary point method for tol = 10−10.

seed (n2 + n)/2 m p it CGit up C •X bT y RP RD gap time cpu
3002030 45150 20000 3 239 405 182 7.61352e+02 7.61352e+02 5.0e-11 9.1e-14 4.9e-11 8.6 15.3
3002530 45150 25000 3 809 1374 643 7.38384e+01 7.38384e+01 2.6e-11 2.9e-14 4.8e-11 37.6 56.5
3001040 45150 10000 4 404 652 299 1.65974e+02 1.65974e+02 2.2e-11 7.1e-13 4.8e-11 16.9 26.1
4003030 80200 30000 3 217 245 147 1.07214e+03 1.07214e+03 2.9e-11 1.0e-11 2.0e-11 10.3 20.1
4004030 80200 40000 3 419 712 306 8.05769e+02 8.05769e+02 3.5e-11 3.0e-14 2.2e-11 29.3 48.9
4001540 80200 15000 4 528 812 357 -6.55000e+02 -6.55000e+02 2.5e-12 9.8e-14 1.0e-12 29.2 51.2
5003030 125250 30000 3 390 401 286 1.10763e+03 1.10763e+03 2.5e-11 8.2e-13 4.3e-12 23.3 48.6
5004030 125250 40000 3 242 255 161 8.16611e+02 8.16611e+02 4.7e-12 8.4e-14 2.8e-12 16.9 34.9
5005030 125250 50000 3 209 242 131 3.64945e+02 3.64945e+02 1.2e-11 1.6e-12 2.0e-11 16.4 33.1
5002040 125250 20000 4 700 1044 535 3.28004e+02 3.28004e+02 3.1e-12 1.5e-13 1.5e-12 45.0 85.1
6004030 180300 40000 3 429 440 332 3.06617e+02 3.06617e+02 1.2e-11 4.2e-13 3.2e-12 33.1 70.6
6005030 180300 50000 3 323 335 233 -3.86414e+02 -3.86414e+02 2.9e-12 6.7e-14 4.1e-12 30.5 64.3
6006030 180300 60000 3 226 239 148 6.41737e+02 6.41737e+02 1.8e-10 7.6e-12 1.6e-10 21.9 47.2
6002040 180300 20000 4 1023 1046 780 1.04527e+03 1.04527e+03 2.0e-12 1.4e-13 2.2e-12 75.0 158.0
7005030 245350 50000 3 497 505 291 3.13203e+02 3.13203e+02 5.1e-12 1.9e-13 1.8e-11 63.9 144.0
7007030 245350 70000 3 291 303 207 -3.69559e+02 -3.69559e+02 1.7e-11 3.2e-13 8.7e-12 36.4 78.7
7009030 245350 90000 3 219 237 144 -2.67555e+01 -2.67555e+01 1.5e-11 5.5e-12 1.3e-10 32.1 67.6
8007030 320400 70000 3 444 455 319 2.33140e+03 2.33140e+03 1.4e-11 4.3e-13 8.3e-13 68.7 154.3
80010030 320400 100000 3 250 263 140 2.25929e+03 2.25929e+03 1.2e-11 1.8e-13 3.8e-12 50.6 113.2
80011030 320400 110000 3 223 232 125 1.85792e+03 1.85792e+03 6.5e-12 6.8e-13 2.9e-12 45.6 100.2
90010030 405450 100000 3 371 382 229 9.54223e+02 9.54223e+02 1.1e-11 2.6e-13 9.8e-12 87.4 199.4
90014030 405450 140000 3 223 233 124 2.31983e+03 2.31983e+03 9.8e-12 5.4e-13 5.6e-12 62.1 141.3
100010030 500500 100000 3 515 524 361 3.09636e+03 3.09636e+03 5.2e-12 1.7e-13 3.0e-13 131.7 308.9
100015030 500500 150000 3 274 286 178 1.05289e+03 1.05289e+03 3.6e-12 5.2e-14 5.9e-13 84.5 190.6

Table 4: First-Algorithm-Performance with t = 0.95, tol = 10−11 and Z(0) = 0 on random
sparse SDPs considered in [56]

35

seed (n2 + n)/2 m p it C •X bT y RP RD gap time cpu
3002030 45150 20000 3 610 7.61352e+02 7.61352e+02 8.1e-11 1.0e-10 1.7e-10 33.7 58.6
3002530 45150 25000 3 551 7.38384e+01 7.38384e+01 9.5e-11 9.9e-11 3.8e-10 56.5 83.8
3001040 45150 10000 4 1554 1.65974e+02 1.65974e+02 8.4e-11 1.0e-10 2.5e-09 103.0 165.2
4003030 80200 30000 3 733 1.07214e+03 1.07214e+03 9.2e-11 9.9e-11 8.9e-11 58.4 110.3
4004030 80200 40000 3 542 8.05769e+02 8.05769e+02 8.8e-11 9.9e-11 6.3e-11 103.9 156.8
4001540 80200 15000 4 2001 -6.55000e+02 -6.55000e+02 1.1e-10 1.3e-10 8.3e-10 227.7 370.9
5003030 125250 30000 3 1462 1.10763e+03 1.10763e+03 9.5e-11 1.0e-10 4.0e-10 132.1 298.3
5004030 125250 40000 3 993 8.16611e+02 8.16611e+02 8.2e-11 1.0e-10 5.9e-11 105.1 221.8
5005030 125250 50000 3 673 3.64945e+02 3.64945e+02 9.6e-11 1.0e-10 5.8e-10 115.3 204.4
5002040 125250 20000 4 2001 3.28004e+02 3.28004e+02 7.4e-10 8.8e-10 2.6e-08 321.2 555.8
6004030 180300 40000 3 1656 3.06617e+02 3.06617e+02 8.3e-11 1.0e-10 1.7e-09 215.2 494.5
6005030 180300 50000 3 1333 -3.86414e+02 -3.86414e+02 9.1e-11 1.0e-10 6.4e-10 183.2 409.5
6006030 180300 60000 3 915 6.41737e+02 6.41737e+02 9.5e-11 1.0e-10 6.8e-11 153.5 312.1
6002040 180300 20000 4 2001 1.04527e+03 1.04527e+03 3.9e-09 4.5e-09 5.2e-08 313.5 646.5
7005030 245350 50000 3 1986 3.13203e+02 3.13203e+02 8.2e-11 1.0e-10 3.0e-09 355.7 830.9
7007030 245350 70000 3 1213 -3.69559e+02 -3.69559e+02 8.6e-11 1.0e-10 8.6e-11 242.6 536.2
7009030 245350 90000 3 778 -2.67555e+01 -2.67555e+01 9.4e-11 1.0e-10 2.5e-09 271.1 481.0
8007030 320400 70000 3 1765 2.33140e+03 2.33140e+03 9.1e-11 1.0e-10 4.0e-10 428.6 1002.3
80010030 320400 100000 3 1052 2.25929e+03 2.25929e+03 8.3e-11 1.0e-10 3.0e-11 340.0 702.3
80011030 320400 110000 3 874 1.85792e+03 1.85792e+03 9.4e-11 1.0e-10 1.5e-10 373.1 697.7
90010030 405450 100000 3 1591 9.54223e+02 9.54223e+02 8.5e-11 1.0e-10 7.9e-10 529.4 1234.1
90014030 405450 140000 3 927 2.31983e+03 2.31983e+03 9.6e-11 1.0e-10 1.0e-10 550.7 1018.2
100010030 500500 100000 3 2001 3.09636e+03 3.09636e+03 1.0e-10 1.1e-10 5.3e-10 833.7 2017.6
100015030 500500 150000 3 1214 1.05289e+03 1.05289e+03 8.5e-11 1.0e-10 3.0e-10 640.3 1374.9

Table 5: Boundary-Method-Performance with σ = 0.1, tol = 10−10 and maxit = 2000 on
random sparse SDPs considered in [56]

It is not intended that these very limited results are used for ranking the methods. Although
this first implementation seems to be one step ahead for these specific random sparse SDPs,
there is no pretense that this would be the case in general. Some additional testing especially
on SDP-relaxations coming from Max-Clique/Max-Stable-Set problems, suggested that the
method is often, although not always, competitive due to its relatively low complexity per
iteration and especially due to the update strategy (112) for |Z|K described above. I do not
think that this simple update strategy has been exploited for SDPs in any implementation
before, therefore it might help researchers tuning their implementations in the future. There
are several observations to be made while working with such a code that are not entirely
obvious from the tables above. First of all the residuals

∥∥∇f(Z(k))
∥∥ decrease monotonically

with k, unless the approximation ∆Z(k) ≈ −2H[∇f(Z(k))] is ”too inexact”, independent of
the step length t ∈ [0, 1]. The second observation that one can make is that choosing step
lengths smaller than 1

2 often leads to much much slower convergence than step lengths larger
or equal to 1

2 . Especially values close to, but strictly smaller than one work surprisingly
well in practice (we will come back to this phenomenon later). Point three is not really
an observation that can be made from looking at our implementation: If Z(∗) ∈ E satisfies
∇f(Z(∗)) = 0 then the distance

∥∥Z(k) − Z(∗)∥∥ will decrease monotonically in k, if the

approximation ∆Z(k) ≈ −2H[∇f(Z(k))] is sufficiently exact. We especially acknowledge
the numerical stability of inexact versions of (109). Unfortunately a proper mathematical
treatment of inexact methods can (and usually does) get complicated very quickly. Our
goal in this subsection is to give a simple mathematical introduction, merely an impression
about what is to come. We will therefore prove all results only for an exact iteration
(i.e. ∆Z(k) = −2H[∇f(Z(k))]) making all considerations much simpler. Interesting and
extensive analysis of the inexact iteration can be found in [52] and the recent paper [5]. Now
let us give our observations a mathematical foundation and state and prove the following
lemma (with essentially well known results) concerning the step lengths tk ∈ R:

Lemma 4.1. For all Z ∈ E the direction ∆Z = −2H[∇f(Z)] is a (weak) descent direction

36

of the gradient norms, specifically for all t ∈ [0, 1] we obtain

‖∇f(Z + t∆Z)‖ ≤ ‖∇f(Z)‖ .

Furthermore, if Z(∗) ∈ E satisfies ∇f(Z(∗)) = 0, then∥∥∥Z + t∆Z − Z(∗)
∥∥∥2
≤
∥∥∥Z − Z(∗)

∥∥∥2
− 4t(1− t) 〈H[∇f(Z)], Z − Z(∗)〉︸ ︷︷ ︸

≥0

For Z ∈ E with ∇f(Z) 6= 0 the step length minimizing the distance to Z(∗) ∈ E is lower
bounded by 1

2 , i.e.

argmin
t∈R

∥∥∥Z + t∆Z − Z(∗)
∥∥∥ = 1

2
〈∇f(Z),H[Z−Z(∗)]〉

‖∇f(Z)‖2︸ ︷︷ ︸
≥1

≥ 1
2 (114)

Proof. By equation (22) we have the equality

∇f(Z − 2tH[∇f(Z)]) = (1− t)∇f(Z)− 1
2(|Z − 2tH[∇f(Z)]|K − |Z|K)

for all t ∈ R. For t ∈ [0, 1] this together with the triangle inequality and Lipschitz-Continuity
implies

‖∇f(Z − 2tH[∇f(Z)])‖ ≤ (1− t) ‖∇f(Z)‖+ 1
2 ‖|Z − 2tH[∇f(Z)]|K − |Z|K‖

≤ (1− t) ‖∇f(Z)‖+ 1
2 ‖2tH[∇f(Z)]‖ = ‖∇f(Z)‖

i.e. monotone decrease. Note that there is a different way for t ∈ (0, 1] to prove the above
, i.e.

‖∇f(Z − 2tH[∇f(Z)])‖2 = ‖∇f(Z)‖2 − (1−t)
t 〈∇f(Z − 2tH[∇f(Z)])−∇f(Z),−2t∇f(Z)〉

+ 1
4 ‖|Z − 2tH[∇f(Z)]|K − |Z|K‖2 − 1

4 ‖2t∇f(Z)‖2

≤ ‖∇f(Z)‖2 − (1− t)
t
‖∇f(Z − 2tH[∇f(Z)])−∇f(Z)‖2

(115)
which is probably more common knowledge as it often appears similarly when proving
convergence of gradients method for convex functions. Let now Z(∗) ∈ E satisfy ∇f(Z(∗)) =
0 then ∀Z ∈ E ∥∥∥Z − 2tH[∇f(Z)]− Z(∗)

∥∥∥2

=
∥∥∥Z − Z(∗)

∥∥∥2
+ 4t2 ‖∇f(Z)‖2︸ ︷︷ ︸

≤〈∇f(Z),H[Z−Z(∗)]〉

−4t〈∇f(Z),H[Z − Z(∗)]〉

≤
∥∥∥Z − Z(∗)

∥∥∥2
− 4t(1− t)〈∇f(Z),H[Z − Z(∗)]〉

(116)

is satisfied. Another way to express this monotone decrease comes from the equation∥∥∥Z − 2tH[∇f(Z)]− Z(∗)
∥∥∥2

=
∥∥∥Z − Z(∗)

∥∥∥2
− 4t(1− t) ‖∇f(Z)‖2︸ ︷︷ ︸

≥0

+ 4t(‖∇f(Z)‖2 − 〈∇f(Z),H[Z − Z(∗)]〉)︸ ︷︷ ︸
≤0

(117)

37

which we can also use to easily derive the optimal step length (i.e. t∗ ∈ R minimizing the
right hand side) for given Z ∈ E : ∇f(Z) 6= 0 by setting the derivative in t of the right
hand side equal to zero

8t∗ ‖∇f(Z)‖2 − 4〈∇f(Z),H[Z − Z(∗)]〉 !
= 0 (118)

we obtain

t∗ :=
1

2

〈∇f(Z),H[Z − Z(∗)]〉
‖∇f(Z)‖2︸ ︷︷ ︸

≥1

≥ 1

2
(119)

which also minimizes the distance
∥∥Z + t∆Z − Z(∗)∥∥ in t. �

Above lemma readily explains some of the observations that we made before and it suffices
to establish the following convergence result (which is not new, a proof can for example be
found (with different notation) in [14]):

Proposition 4.2. If there exists Z(∗) ∈ E satisfying ∇f(Z(∗)) = 0 and the step lengths
satisfy tk ∈ (0, 1) as well as limk→∞

∑k
i=0 4ti(1 − ti) = ∞. Then for any Z(0) ∈ E the

sequence defined by
Z(k+1) = Z(k) − 2tkH[∇f(Z(k))] ∀k ∈ N (120)

will converge to some Z∗∗ ∈ E satisfying ∇f(Z∗∗) = 0.

Proof. By the previous lemma we have for every k ∈ N

k∑
i=0

4ti(1− ti)
∥∥∥∇f(Z(k))

∥∥∥2
≤

k∑
i=0

4ti(1− ti)
∥∥∥∇f(Z(i))

∥∥∥2

≤
k∑
i=0

4ti(1− ti)〈H[∇f(Z(i))], Z(i) − Z(∗)〉 ≤
k∑
i=0

(
∥∥∥Z(i) − Z(∗)

∥∥∥2
−
∥∥∥Zi+1 − Z(∗)

∥∥∥2
)

=(
∥∥∥Z(0) − Z(∗)

∥∥∥2
−
∥∥∥Z(k+1) − Z(∗)

∥∥∥2
) ≤

∥∥∥Z(0) − Z(∗)
∥∥∥2

(121)

implying ∥∥∥∇f(Z(k))
∥∥∥2
≤ ‖Z

(0)−Z(∗)‖2∑k
i=0 4ti(1−ti)

(122)

and therefore limk→∞
∥∥∇f(Z(k))

∥∥ = 0. Since the sequence {Z(k)}k∈N ⊂ E is bounded and
E is a finite dimensional Euclidean space this implies its convergence to some Z∗∗ ∈ E
satisfying ∇f(Z∗∗) = 0. �

Note that above proof comes with a slightly better error bound for the residuals: Let us
denote the distance function with dist(Z,N) := ||Z − ΠN (Z)|| where ΠN (Z) ∈ E denotes
the orthogonal projections onto the set of zeros N := {Z ∈ E | ∇f(Z) = 0}. Then∥∥∥∇f(Z(k))

∥∥∥2
≤ dist(Z(0),N)2∑k

i=0 4ti(1−ti)
(123)

38

holds true. If for example there exists 1
2 ≥ ρ > 0 such that the step lengths tk ∈ [ρ, 1 −

ρ] ∀k ∈ N0 are bounded away from zero and one, then above bound implies asymptotically∥∥∇f(Z(k)
∥∥2 ∈ O(k−1) for k → ∞ whenever N 6= ∅. We can improve this bound in finite

dimension from O(k−1) to o(k−1) for k →∞ as is shown in the following corollary:

Corollary 4.3. If there exists Z(∗) ∈ E satisfying ∇f(Z(∗)) = 0 and there exists 1
2 ≥ ρ > 0

such that the step lengths satisfy tk ∈ [ρ, 1−ρ] ∀k ∈ N0. Then for any Z(0) ∈ E the sequence
defined by

Z(k+1) = Z(k) − 2tkH[∇f(Z(k))] ∀k ∈ N (124)

will satisfy

dist(Z(k+1),N)2 ≤ dist(Z(k),N)2 − 4tk(1− tk)
∥∥∥∇f(Z(k))

∥∥∥2
(125)

and ∥∥∥∇f(Z(k))
∥∥∥2
∈ o(k−1) for k →∞ (126)

Proof. The first part of our claim follows from the definition of the distance function and
our previous lemma

dist(Z(k+1),N)2 =
∥∥∥Z(k+1) −ΠN (Z(k+1))

∥∥∥2
≤
∥∥∥Z(k+1) −ΠN (Z(k))

∥∥∥2

≤
∥∥∥Z(k) −ΠN (Z(k))

∥∥∥2
− 4tk(1− tk)〈H[∇f(Z(k)]), Z(k) −ΠN (Z(k))〉

=dist(Z(k),N)− 4tk(1− tk)〈H[∇f(Z(k))], Z(k) −ΠN (Z(k))〉

≤dist(Z(k),N)− 4tk(1− tk)
∥∥∥∇f(Z(k))

∥∥∥2
.

(127)
This implies for k ≥ 1

2k
∥∥∥∇f(Z2k)

∥∥∥2 ∑2k
i=k 2ti(1−ti)

k ≤
2k∑
i=k

4ti(1−ti)
∥∥∥∇f(Z(i))

∥∥∥2
≤ dist(Z2k+1,N)2−dist(Z(k),N)2

k→∞
→ 0

(128)
and therefore proves our second claim, since our boundness assumption on tk translates to

the existence of two positive constants 0 < ρ1 ≤ ρ2 such that
∑2k
i=k 2ti(1−ti)

k ∈ [ρ1, ρ2] ∀k ∈ N
holds true. �

There are two problems regarding the above error bounds: First note that the term
1∑k

i=0 4ti(1−ti)
can very well be strictly larger than one, but the norm of the residuals of

(109) are always monotone in k implying that
∥∥∇f(Z(k))

∥∥ ≤ dist(Z(0),N) holds true
∀k ∈ N0. In other words, bound (123) may not hold any information. The second prob-
lem is the gap between our bounds and our numerical experiments: To obtain the re-
sults of Table (1) we chose tk = t = 0.95 and observed a maximal number of iterations
kmax := 392, i.e. 1∑kmax

i=1 4ti(1−ti)
= 1

0.19(kmax+1) = 100
19(392+1) = 100

7467 ≈ 0.0134. This means∥∥∇f(xkmax))
∥∥ ≤ √ 100

7467dist(Z
(0),N) =

√
100
7467︸ ︷︷ ︸

≈0.115725

dist(0,N). Note that our normalization

39

implies
∥∥Z(∗)∥∥ ≥ 1 ∀Z(∗) ∈ N , i.e. dist(Z(0),N) ≥ 1. Our theoretical bound is therefore

larger than
√

100
7467 ≈ 0.115725 which is several orders of magnitude larger than the observed

value of ‖∇f(xkmax)‖ ≈ 10−6. Obviously giving one set of example is not representative,
since our problems could simply be ”easy” to solve. Indeed if one replaces H∇f by some
firmly nonexpansive operator F , then it is known that for constant step length the (adapted)
bound (123) can not be improved by more than a constant (see e.g. [1]). However although
we encountered some ”harder” examples in our numerical tests, there always seemed to be
a gap between the theoretical bound and the observed numerical behavior. As mentioned
earlier, this gap initially led to the question of a possibly overlooked inner structure of
H[∇f(Z)]. We now consider two types of examples, to show that this was not the case.
The reason for stating them as theorems will unveil itself in corollary 4.7 and in the next
subsection, where we will see that they represent certain ”worst-case” examples.

Theorem 4.4 (Tightness of complexity for constant step length part 1). Let t ∈ [1
2 , 1) be

fixed. Then for every κ ∈ N satisfying κ + 1 > 1
4t(1−t) there exists a problem (Pκ) taking

the form (1) for a two dimensional Euclidean space E such that the via (18) associated
function ∇fκ : E → E has a unique zero Z(∗) ∈ E and the iterates defined via Z(k+1) :=
Z(k) − 2tHκ[∇fκ(Z(k))] will satisfy∥∥∥∇fκ(Z(k))

∥∥∥2
=

1

κ+ 1
(

κ

κ+ 1
)k
∥∥Z(0) − Z(∗)∥∥2

4t(1− t)
∀k ∈ N0 (129)

for every Z(0) ∈ E. Specifically∥∥∥∇fκ(Z(κ))
∥∥∥2

=
1

κ+ 1
(

κ

κ+ 1
)κ
∥∥Z(0) − Z(∗)∥∥2

4t(1− t)
>

1

κ+ 1

1

exp(1)

∥∥Z(0) − Z(∗)∥∥2

4t(1− t)
(130)

Remark 4.5. Now, one might look at the result above and be calmed by the term (κ
κ+1)k

which, afterall, will for k → ∞ converge to zero quite rapidly. This is however slightly
misleading: Yes, after the κth iterate the convergence turns out to be linear, but until then
it is sublinear. In other words the ”local” regime of quick convergence does exist (in this
example), but we have to endure the ”global” convergence regime first: not infinitely, but
arbitrarily long depending on κ. In fact note that (κ

κ+1)κ → exp(−1) ≈ 0.3679. Note that,
since our example is two dimensional, we can actually plot the iteration behavior, see figure
2.

Proof. Let t ∈ [1
2 , 1) be fixed and κ ∈ N such that κ+ 1 > 1

4t(1−t) . We define

cκ := 1− 1

2(κ+ 1)t(1− t)
∈ (−1, 1) and sκ :=

√
1− c2

κ ∈ (0, 1) (131)

as well as the 2-dimensional vector aTκ := [−1+cκ
sκ

, 1]. Let us consider the following opti-
mization problem

minimize
X∈R2

0TX

subject to aTκX = 0

X ∈ {0} × R

(132)

40

(a) t = 1
2 , κ = 100, ||Z(0) − Z(∗)|| = 1 (b) t = 1

2 , κ = 300, ||Z(0) − Z(∗)|| = 1

(c) t = 0.7, κ = 300, ||Z(0) − Z(∗)|| = 1 (d) t = 0.95, κ = 300, ||Z(0) − Z(∗)|| = 1

Figure 2: 2-dimensional examples with slow convergence (129) for different values of κ and
t. The iterates (marked by small circles) rotate around the unique solution which is located
in zero. The first κ iterates (black) converge sublinear. After κ iterates, the (faster) local
convergence regime takes over and we observe linear convergence of the latter iterates (blue
circles).

which clearly is of the form (1) for the (closed, convex) cone K = {0} × R. Its unique
optimal solution is trivially given by X(∗) = 0 ∈ R2. Now the dual problem takes the Form

maximize
Y ∈R2, y∈R

0y

subject to aκy − Y = 0

Y ∈ KP = R× {0}

(133)

Note that its unique optimal solution is attained at y(∗) = 0 ∈ R, Y (∗) = 0. Here the

generalized absolute value of some vector Z =
(
Z1 Z2

)T ∈ R2 takes the form |Z|K =

41

(
−Z1

Z2

)
. Using the definition from equation (18) we obtain the function ∇fκ : R2 → R2 via

∇fκ(Z) := 1
2(HκZ −

(
−Z1

Z2

)
) for the orthogonal and symmetric matrix

Hκ :=I2 − 2
aκa

T
κ

||aκ||2
= I − 2

1

1 + (1+cκ
sκ

)2

(
(1+cκ
sκ

)2 −1+cκ
sκ

−1+cκ
sκ

1

)
=I − 1

(1+cκ)
s2κ

(
(1+cκ
sκ

)2 −1+cκ
sκ

−1+cκ
sκ

1

)
=

(
−cκ sκ
sκ cκ

)
.

Note that by construction Z(∗) = 0 ∈ R2 is the unique point that satisfies ∇fκ(Z(∗)) = 0.

If we define the matrix Qκ := Hκ Diag([−1, 1]) =

(
cκ sκ
−sκ cκ

)
then it is orthogonal, i.e.

QTκQκ = I and satisfies

Qκ +QTκ = 2cκI

and

(I−t(I−QTκ))(I−t(I−Qκ)) = (1−t)I+t2QTκQκ+t(1−t)(Qκ+QTκ) = I(1−2t+2t2+cκt(1−t)).

Furthermore we can write

Hκ∇fκ(Z) =
1

2
(

(
Z1

Z2

)
−
(
cκ sκ
−sκ cκ

)(
Z1

Z2

)
)

=
1

2

(
1− cκ −sκ
sκ 1− cκ

)(
Z1

Z2

)
=

1

2
(I −Qκ)Z

and for arbitrary Z(0) ∈ R2 and k ∈ N

Z(k) =Z(k−1) − 2tHκ∇fκ(Z(k−1)) = (

(
1 0
0 1

)
− t
(

1− cκ −sκ
sκ 1− cκ

)
)Z(k−1)

=(

(
1 0
0 1

)
− t
(

1− cκ −sκ
sκ 1− cκ

)
)kZ(0) = (I − t(I −Qκ))Z(0).

By combining these equations we obtain

||∇fκ(Z(k))||22 = ||12(I −Qκ)Z(k)||22 = 1
4(Z(k))T (I −QTκ −Qκ +QTκQκ)Z(k)

=1
4(Z(k))T (I(2− 2cκ))Z(k) =

1− cκ
2
||Z(k)||22 =

1− cκ
2
||(I − t(I −Qκ))kZ(0)||22

=
1− cκ

2
(1− 2t+ 2t2 + 2cκt(1− t))k||Z(0)||2

=
1

(κ+ 1)4t(1− t)
(1− 2t+ t2 + 2t(1− t)− 1

κ+ 1
)k||Z(0)||22

=
1

(κ+ 1)4t(1− t)
(1− 1

κ+ 1
)k||Z(0)||22 =

1

κ+ 1
(

κ

κ+ 1
)k
||Z(0)||22
4t(1− t)

=
1

κ+ 1
(

κ

κ+ 1
)k
||Z(0) − Z(∗)||22

4t(1− t)

(134)

42

which yields the desired result. �

Theorem 4.4 excludes the case of a step length t close to one for a small number of iterations.
Indeed we made the assumption κ+ 1 > 1

4t(1−t) , leaving the case κ+ 1 ≤ 1
4t(1−t) open. Let

us close this gap by giving the second example below:

Theorem 4.6 (Tightness of complexity for fixed step length part 2). Let t ∈ (1
2 , 1) be fixed.

Then for every κ ∈ N satisfying κ+ 1 ≤ 1
4t(1−t) there exists a problem (P) taking the Form

(1) for a one dimensional Euclidean space E such that the via (18) associated function
∇f : E → E has a unique zero Z(∗) ∈ E and the iteration Z(k+1) = Z(k) − 2tH[∇f(Z(k))]
will satisfy ∥∥∥∇f(Z(k))

∥∥∥2
= (2t− 1)2k

∥∥∥Z(0) − Z(∗)
∥∥∥2

∀k ∈ N0 (135)

for every Z(0) ∈ E. Specifically∥∥∥∇f(Z(κ))
∥∥∥2

= (2t−1)2κ
∥∥∥Z(0) − Z(∗)

∥∥∥2
≥ (

κ

κ+ 1
)κ
∥∥∥Z(0) − Z(∗)

∥∥∥2
> exp(−1)

∥∥∥Z(0) − Z(∗)
∥∥∥2

(136)

Proof. Consider
minimize

X∈R
0X

subject to 1X = 0

X ∈ K := R

(137)

and its dual problem
maximize
Y ∈R, y∈R

0y

subject to 1y − Y = 0

Y ∈ KP = {0}

(138)

for which we obtain analogously to our first example H = 1−2(1(1
12)1) = −1 and a function

f : R→ R given by
f(Z) = ZHZ

4 − Z|Z|R
4 = −Z2

2 (139)

with deriative ∇f(Z) = −Z = − H︸︷︷︸
=−1

[∇f(Z)]. Obviously Z(∗) := 0 is its unique zero. Let

Z(0) ∈ E be arbitrary. If we rewrite the iterations

Z(k) = Z(k−1) − 2tH[∇f(Z(k−1))] = (1− 2t)Z(k−1) = (1− 2t)(k)Z(0) (140)

we obtain

||∇f(Z(k))||22 = (2t− 1)2k||Z(0) − 0||22 = (2t− 1)2k||Z(0) − Z(∗)||22 (141)

which proves our claim. �

43

Now the proof above did not really explain our reasoning for choosing these specific (and
essentially trivial) examples. In fact there is more to it, than the eye can see: They are
chosen as reverse-engineered solutions of a specific SDP-Relaxation. Namely a relaxation of
the worst-case-performance after κ steps problem. The idea behind this comes from worst-
case-performance-estimation for unconstrained convex optimization problems (derived in
the ground-breaking work in [24],[83]) and is transfered to the broader setting of fixed point
methods in this thesis: One tries to express all the inequalities from section 2 in terms of a
special Gram-Matrix and attempts to maximize

∥∥∇f(Zk))
∥∥ over all functions f by relaxing

the Gram-Matrix to a positive semidefinite Matrix. While the tightness of the approach
in [83] is guaranteed (via a convex interpolation theorem), it it is not guaranteed in our
situation (i.e. for H∇f), but luckily the reverse-engineered solutions fit our setting. The
main difference between our approach and the approach in [83], is that we do not make
any assumptions regarding convexity: This leads to a different angle, namely worst-case-
performance-estimation for finding fixed points. The following corollary anticipates the
main result from the next subsection:

Corollary 4.7 (Worst-case-complexity (tightness of complexity for constant step length
part 3)). Let κ ∈ N, t ∈ [1

2 , 1), ∇f : E → E defined as in (18) and Z(∗) ∈ E with

∇f(Z(∗)) = 0. For the iterates defined by Z(k+1) := Z(k) − 2tH[∇f(Z(k))] the following
inequality always holds true:

∥∥∥∇f(Z(κ))
∥∥∥2
≤

 1
κ+1(κ

κ+1)κ
‖Z(0)−Z(∗)‖2

4t(1−t) if 1
2 ≤ t ≤

1
2(1 +

√
κ
κ+1)

(2t− 1)2κ
∥∥Z(0) − Z(∗)∥∥2

if 1
2(1 +

√
κ
κ+1) < t < 1

(142)

Figure 3: Right hand side of (142) for
∥∥Z(0) − Z(∗)∥∥ = 1 and different values of κ

Proof. Let T : E → E be defined via

T (Z) := Z − 2H∇f(Z) = H[|Z|K − 2R] (143)

44

then T is nonexpansive (i.e. 1-Lipschitz continuous) and every Z(∗) ∈ E with ∇f(Z(∗)) = 0
is a fixed point of T , i.e. satisfies T (Z(∗)) = Z(∗). Furthermore we can rewrite the iteration
Z(k+1) = Z(k) − 2tH[∇f(Z(k))] = (1 − t)Z(k) + tT (Z(k)). Our corollary then follows from
theorem 4.9 and bound (146) below, which is proved for (possibly infinite dimensional) real
Hilbert spaces in section 4.1.

�

Let us close this subsection with pointing out that the bound (142) in corollary 4.7 above
is optimal (i.e. one can not improve the convergence rate without making further assump-
tions), since a better rate would contradict our examples from theorems 4.4 and 4.6 (note
the equality Now one might be disappointed by this insight, since we do know other methods
with much better worst case convergence rates (and will briefly discuss one in section 4.2).
However there is no need to disregard our method, especially since any rate of

∥∥∇f(Z(k))
∥∥

is in most cases only a vehicle to find the optimal value of (1). If we recall the rough
inequality (41), it is easily seen from monotonicity that

|f(Z(∗))− f(Z(k))| ≤
∥∥∥∇f(Z(k))

∥∥∥∥∥∥Z(k) − Z(∗)
∥∥∥ ≤ ∥∥∥∇f(Z(k))

∥∥∥∥∥∥Z(0) − Z(∗)
∥∥∥

holds and therefore the rate from our corollary readily implies |f(Z(∗))−f(Z(k))| ∈ O(k−
1
2).

However we can do significantly better by using the finer inequalities (45) and by averaging
over the function values f(Z(k)) as the next proposition shows.

Proposition 4.8. Let κ ∈ N0, t ∈ [1
2 , 1), f : E → R defined as in (25) and Z(∗) ∈ E

with ∇f(Z(∗)) = 0. For the κ-th iterate of the sequence Z(k+1) = Z(k) − 2tH[∇f(Z(k))] the
following inequality always holds true:

|f(Z(∗))− 1

κ+ 1

κ∑
k=0

f(Z(k))| ≤ 1

κ+ 1

∥∥Z(0) − Z(∗)∥∥2

8t(1− t)
(144)

The proof has been moved to the Appendix, since it is slightly longer than appropriate at this
point and does not directly fit into our upcoming analysis. Tackling this proof is encouraged
only after reading the next section, where underlying concepts are introduced.

4.1 Worst-Case-Complexity of Krasnoselski-Mann Iteration

For the rest of this section we will shift our focus from finding zeros to finding fixed points.
We will also loosen our setting a bit by not assuming finite dimensionality. Let H be a
Hilbert space equipped with a symmetric inner product 〈., .〉 : H×H→ R. Let T : H→ H
be a nonexpansive mapping and consider for fixed x0 ∈ H the Krasnoselski-Mann iteration
(KM iteration), see [43] and [57],

xk+1 := (1− tk)xk + tkT (xk) (145)

with tk ∈ (0, 1)∀k ∈ N0 for approximating a fixed point of T . Let ‖x‖ =
√
〈x, x〉 denote

the induced norm and Fix(T) := {x ∈ H | x = T (x)} the set of fixed points of T . It is
well known (and we also showed it in the previous section with different notation) that if

45

the set Fix(T) is nonempty and
∑∞

k=1 tk(1 − tk) = ∞, then the sequence of the norm of
residuals ‖xk − T (xk)‖ tends to zero, i.e. limk→∞ ‖xk − T (xk)‖ = 0. Our goal here is to
quantify their rate of convergence for constant step length tk ≡ t ∈ [1

2 , 1] in an optimal
fashion. Regarding related results concerning the case of Hilbert and normed spaces (and
non-constant tk), I would especially like to mention [90], [14], [46] and [47], which were
certainly quite relevant for my analysis. Here, to the best of my knowledge, all existing
results are substantially improved for the setting of (real) Hilbert spaces. The proof is
based on semidefinite programming and will be generalized in the next section. The proof
got strongly motivated by the recent work of Taylor et al. [83] on worst case performance
of first order unconstrained minimization methods. However its methodology is slightly
different and the focus is entirely different: The technique in [83] is meant for analyzing
first order methods for minimizing smooth convex functions, such as gradient method (GM)
or the famous method due to Nesterov [65]. Here we do not have a function to minimize
and in general T is not a gradient mapping11. At this point I would like to thank Adrien
Taylor and François Glineur, who I had the pleasure of first meeting on the ISMP conference
held in Pittsburgh in 2015. After attending François’s talk, we had a discussion regarding
my particular application. Although we came to no substantial conclusion, it seemed that
their technique could not be immediately transfered, as it relies on convex interpolation
(and the reduced Lagrangian is (usually) not convex). The main complication at the time
was thinking of iteration (109) as a ”mirrored” gradient method, rather than a fixed point
method (KM iteration), which as we have seen from the examples of the previous section,
does not lead to better convergence results. The paradigm shift from gradient based methods
towards fixed point methods, then finally led to the upcoming analysis presented next. Let
us stretch the fact, that our previous analysis shows that the following bound can not be
improved without further assumptions.

Theorem 4.9. Let (H, 〈., .〉) be a real Hilbert space, let T : H→ H be nonexpansive and let
x0 ∈ H be arbitrary but fixed. If T has fixed points, i.e. Fix(T) 6= ∅, then the KM iterates
defined in (145) for tk ≡ t ∈ [1

2 , 1] ∀k ∈ N0 satisfy

∥∥1
2(xk − T (xk))

∥∥2 ≤


1

k+1(k
k+1)k ‖x0−x∗‖2

4t(1−t) if 1
2 ≤ t ≤

1
2(1 +

√
k
k+1)

(2t− 1)2k ‖x0 − x∗‖2 if 1
2(1 +

√
k
k+1) < t ≤ 1

(146)

∀k ∈ N0 ∀x∗ ∈ Fix(T). This bound is tight.

Remark 4.10. The case of a fixed step length in the interval [0, 1
2) in the above theorem is

excluded, since all numerical evaluations suggested that such a small step length is inferior
to larger ones. However, as we shall see below, for fixed k we can actually plot the worst
case with respect to t. Matching these plots to conjecture 3 from [83] (regarding the worst
case complexity of gradients method for smooth convex functions) leads us to believe, that

∥∥1
2(xk − T (xk))

∥∥2 ≤


‖x0−x∗‖2
(2kt+1)2 if 0 ≤ t ≤ ck
1

k+1(k
k+1)k ‖x0−x∗‖2

4t(1−t) if ck ≤ t ≤ 1
2

(147)

11However if T is a gradient mapping, then the residual mapping g(x) := 1
2
(x − T (x)) is the gradient

of a smooth convex function. This implies that the class considered here, is strictly larger than the one
considered in [83].

46

is a tight worst case rate for t ∈ [0, 1
2), where ck ∈ (0, 1

2] is one of the two points where the
two components on the right hand side of (147) intersect given by

ck := 1
2

(k+1)−k(
k
k+1)k+

√
(k+1)2−(2k2+3k+1)(

k
k+1)k

k2(
k
k+1)k+k+1

(148)

(a) k = 1 and ||x0 − x∗|| = 1

(b) k = 2 and ||x0 − x∗|| = 1 (c) k = 3 and ||x0 − x∗|| = 1

Figure 4: MATLAB plot for different values of k with respect to t on the interval [0, 1], red
line marks conjecture 3 from [83], blue line marks our worst-case plot. We will see that the
blue line presents the worst-case correctly on the interval [1

2 , 1] and coincides with the right
hand side of (146).

47

We will partially prove conjecture 3 of Taylor et al. (on the interval [1
2(1+

√
k
k+1),≤ 1])

as the gradient method is equivalent to the KM-iteration for smooth convex functions.

Proof of Theorem 4.9: Let x∗ ∈ Fix(T). The KM iteration was stated in the form (145) to
comply with existing literature. For our proof however, it is more convenient to consider
the shifted sequence x̄1 := x0 and x̄k := xk−1 ∀k ∈ N 6=0 and to show ∀k ∈ N ∀x∗ ∈ Fix(T)
a shifted statement

∥∥1
2(x̄k − T (x̄k))

∥∥2 ≤


1
k (k−1

k)k−1 ‖x̄1−x∗‖2
4t(1−t) if 1

2 ≤ t ≤
1
2(1 +

√
k−1
k)

(2t− 1)2(k−1) ‖x̄1 − x∗‖2 if 1
2(1 +

√
k−1
k) < t ≤ 1

(149)

Let us define g(x) := 1
2(x− T (x)). It is well known that g is firmly nonexpansive. For sake

of completeness the argument is repeated here:

‖g(x)− g(y)‖2 − 〈g(x)− g(y), x− y〉

=
∥∥g(x)− g(y)− 1

2(x− y)
∥∥2 − 1

4 ‖x− y‖
2

=1
4 ‖T (x)− T (y)‖2 − 1

4 ‖x− y‖
2 ≤ 0 ∀x, y ∈ H.

Nonexpansiveness and the Cauchy-Schwarz inequality imply ‖g(x)− g(y)‖ ≤ ‖x− y‖
∀x, y ∈ H. For k = 1 the statement (149) follows immediately since g(x∗) = 0 and therefore
1
2 ‖x̄1 − T (x̄1)‖ = ‖g(x̄1)‖ = ‖g(x̄1)− g(x̄∗)‖ ≤ ‖x̄1−x∗‖

1 .
For fixed k ≥ 2 we first consider the differences x̄j − x̄1 for j ∈ {2, .., k}

x̄j − x̄1 = xj−1 − x̄1

= xj−2 − t(xj−2 − T (xj−2))− x̄1

= xj−2 − 2tg(xj−2)− x̄1

= x̄j−1 − 2tg(x̄j−1)− x̄1

which inductively leads to

x̄j − x̄1 = −2t

j−1∑
l=1

g(x̄l).

Let us shorten the notation and define gi := g(x̄i), R := ‖x̄1 − x∗‖ ≥ 0, the vector b =
(〈gi, x̄1 − x∗〉)ki=1, the matrices A := (〈gi, gj〉)ki,j=1 and

L := −2t


0 1 1 . . . 1
0 0 1 . . . 1
...

... 0
. . .

...
0 0 0 0 1
0 0 0 0 0

 ∈ Rk×k.

Note that

(
R2 bT

b A

)
∈ R(k+1)×(k+1) is a Gramian matrix formed from x̄1− x∗, g1, . . . , gk ∈

H and is therefore symmetric and positive semidefinite. We proceed by expressing the
inequalities from firm nonexpansiveness in terms of the Gramian matrix. Since L often is

48

of much lower dimension than H, this is sometimes referred to as ’Kernel-Trick’. Keeping
in mind that we can write x̄j − x̄1 = −2t

∑j−1
l=1 gl for j ∈ {1, .., k} we arrive at

AL = (〈gi, x̄j − x̄1〉)ki,j=1.

Let e ∈ Rk denote the vector of all ones. Then

diag(AL)eT −AL = (〈gi, x̄i − x̄j〉)ki,j=1.

where diag(.) denotes the diagonal of its (square) matrix argument. Let LT , eT denote the
transpose of L respectively e. Hence

diag(AL)eT + e diag(AL)T −AL− LTA = (〈gi − gj , x̄i − x̄j〉)ki,j=1

and
beT +AL = (〈gi, x̄j − x∗〉)ki,j=1,

diag(A)eT + e diag(A)T − 2A = (‖gi − gj‖2)ki,j=1.

The firm nonexpansiveness inequalities ‖gi − gj‖2 ≤ 〈gi − gj , x̄i − x̄j〉 are equivalent to the
component-wise inequality

diag(A)eT + e diag(A)T − 2A ≤ diag(AL)eT + e diag(AL)T −AL− LTA. (150)

Note that only k2−k
2 of these componentwise inequalities are non redundant. From g∗ :=

g(x∗) = 0 we obtain another k inequalities i.e. ‖gi‖2 ≤ 〈gi, x̄i − x∗〉 which translate to

diag(A) ≤ b+ diag(AL). (151)

Defining U := I − L , relations (150) and (151) can be shortened slightly to

diag(AU)eT + e diag(AU)T ≤ AU + UTA

and
diag(AU) ≤ b.

Let ek ∈ Rk denote the k-th unit vector, recall that Sn := {X ∈ Rn×n | X = XT } denotes
the space of symmetric matrices and Sn+ := {X ∈ Sn |xTXx ≥ 0 ∀x ∈ Rn} the convex cone
of positive semidefinite matrices. Consider the chain of inequalities

‖g(x̄k)‖2 = maximize
y0∈R,y1∈Rk,Y2∈Sk

(Y2)kk |
(
y0 yT1
y1 Y2

)
∈ Sk+1

+ , y0 ≤ R2, diag(Y2U) ≤ y1

| diag(Y2U)eT + e diag(UTY2)T ≤ Y2U + UTY2

| y0 = R2, y1 = b, Y2 = A

≤ maximize
y0∈R,y1∈Rk,Y2=Y T2 ∈Sk

(Y2)kk |
(
y0 yT1
y1 Y2

)
∈ Sk+1

+ , y0 ≤ R2, diag(Y2U) ≤ y1

| diag(Y2U)eT + e diag(UTY2)T ≤ Y2U + UTY2
(152)

49

≤ minimize
ξ∈R+,X∈Sk∩Rk×k+

R2ξ |
(

ξ −1
2 diag(X)T

−1
2 diag(X) UF (X) + F (X)UT

)
−
(

0 0
0 eke

T
k

)
∈ Sk+1

+

(153)
for F (X) := Diag(Xe)+ 1

2 Diag(diag(X))−X. The first equality follows from construction,
the first inequality from relaxing, and the second inequality from weak conic duality, which
we shall proof first: Define the Euclidean space E := R× Sk × Sk+1 and the self-dual closed
convex cone K := R+ × (Sk ∩ Rk×k+)× Sk+1

+ . Define C = (R2, 0, 0)∗ ∈ E and b̃ = e (k+1)(k+2)
2

.

The problem (152) can then be written as a conic optimization problem in dual standard

form, i.e. max{b̃Tλ | A∗(λ) + S = C, S ∈ K, λ ∈ R
(k+2)(k+1)

2 }
where A∗ : R

(k+2)(k+1)
2 → E is given as a composition A∗ = Ā∗(smat(λ)) for Ā∗ : Sk+1 → E

given by

Ā∗(
(
y0 yT1
y1 Y2

)
) =


y0

diag(Y2U)eT + e diag(UTY2)T − (Y2U + UTY2) + Diag(diag(Y2U)− y1)

−
(
y0 yT1
y1 Y2

)
 .

(Note that this is only true because diag(Y2U)eT +e diag(UTY2)T−(Y2U+UTY2) has an all
zero diagonal.) The dual of this problem (i.e. the primal standard form) then takes the form

min{〈C, X̃〉E | (A∗)∗(X̃) = b̃ X̃ ∈ E, X̃ ∈ K}

where (A∗)∗ : E→ R
(k+2)(k+1)

2 denotes the adjoint operator of A∗. For X̃ =

 ξ
X1

X2

 ∈ E we

have the explicit expression

smat((A∗)∗(X̃)) = (Ā∗)∗(X̃) =

(
ξ −1

2 diag(X1)T

−1
2 diag(X1) UF (X1) + F (X1)UT

)
−X2

as well as smat(b̃) =

(
0 0
0 eke

T
k

)
and 〈C, X̃〉E = R2ξ. By eliminating the variable X2 ∈ Sk+1

+

we obtain the claimed form (153).
We conclude the proof by showing feasibility of certain ξ̂ and X̂ for (153), which were
obtained by reverse engineering from numerical solution(s) of (153) for small values of k.
We note that even for fixed k and t (153) may have infinitely many optimal solutions.
Luckily however, we can construct tridiagonal solutions, which are much easier to handle as
they seem to be unique. Proving feasibility of these solutions involves a number of matrix
operations, which can in principle be done ”by hand”. This cumbersome task has been
performed and afterwards verified by using the computer algebra program MAPLE. Since
most of these calculations get rather long, only the main steps and results are presented
here. From this all intermediate steps are in principle reproducible. We distinguish two
cases:

Case 1: In our first case we will assume k ≥ 2 as well as 1
2 ≤ t ≤ 1

2(1 +
√

1− 1
k).

Tridiagonal matrices will be denoted by Tridiag(., ., .). Let us define the real number
ξ̂ = 1

4t(1−t)k (k−1
k)k−1 the componentwise nonnegative vectors xD ∈ Rk+ , xL ∈ Rk−1

+ and the

symmetric matrix X̂ ∈ Rk×k+ :

50

(x̂D)j :=
(k + 1− j)t− 1

k
(
k − 1

k
)k−1−j for j ∈ {1, .., k − 1}

(x̂D)k := (1− t)

(x̂L)j :=
j(1− t)

2
(
k − 1

k
)k−1−j for j ∈ {1, .., k − 1}

X̂ :=
1

k(1− t)t
T ridiag(x̂L, x̂D, x̂L)

=
1

k(1− t)t


. . .

. . .
. . . (k+1−j)t−1

k (k−1
k)k−1−j i(1−t)

2 (k−1
k)k−1−i

j(1−t)
2 (k−1

k)k−1−j . . .
. . .

. . . (1− t)

 .

(154)

Defining the k dimensional vector

(F̂D)j : =
(j(2(1− t)− 1

k) + 2t− 1)

2
(
k − 1

k
)k−1−j for j ∈ {1, .., k − 1}

(F̂D)k : =
k(1− t)

2

(155)

leads to the straightforward but tedious evaluation

F (X̂) = Diag(X̂e) + 1
2 Diag(diag(X̂))− X̂

=
1

k(1− t)t
T ridiag(−x̂L, F̂D,−x̂L)

=
1

k(1− t)t


. . .

. . .
. . .

(j(2(1−t)− 1
k

)+2t−1)

2 (k−1
k)k−1−j − i(1−t)

2 (k−1
k)k−1−i

− j(1−t)
2 (k−1

k)k−1−j . . .
. . .

. . . k(1−t)
2

 .

(156)
Now to prove the result in our first case, it suffices to show that the matrix inequality in
(153) holds true for the chosen values ξ̂ and X̂. In order to do so, we first apply a congruence
transformation, which converts the constraint of (153) to a tridiagonal matrix inequality
for the given values ξ̂ and X̂. For this purpose we define a vector a ∈ Rk with entries
a1 := 0, a2 := −t

k(1−t) , aj := aj−1(2− 1
k(1−t))− aj−2

k−1
k ∀3 ≤ j ≤ k and the Toeplitz matrix

Û =


1 a1 a2 . . . ak−1

0 1 a1 . . . ak−2
... 0

. . .
. . .

...

0
... 0 1 a1

0 0 0 0 1

 (157)

51

The vector a ∈ Rk has been chosen to satisfy (UF (X̂) + F (X̂)UT − ekeTk)a = −t diag(X̂)

and aT diag(X̂) = −4tξ̂. This implies

(
−2t aT

0 Û

)(
ξ̂ −1

2 diag(X̂)T

−1
2 diag(X̂) UF (X̂) + F (X̂)UT − ekeTk

)(
−2t 0

a ÛT

)
=

(
−2tξ̂ − 1

2 diag(X̂) tdiag(X̂)T + aT (UF (X̂) + F (X̂)UT − ekeTk)

−1
2 Û diag(X̂) Û(UF (X̂) + F (X̂)UT − ekeTk)

)(
−2t 0

a ÛT

)
=

(
0 0

−1
2 Û diag(X̂) Û(UF (X̂) + F (X̂)UT − ekeTk)

)(
−2t 0

a ÛT

)
=

(
0 0

0 Û(UF (X̂) + F (X̂)UT − ekeTk)ÛT

)
(158)

with a tridiagonal matrix

M :=Û(UF (X̂) + F (X̂)UT − ekeTk)ÛT

=



. . .
. . .

. . . j(k−1)k−2−j

kk−j+1
(kt−(k−1))2

t(1−t) + (j−1)(k−1)k−1−j

kk−j
1−t
t

i(k−1)k−2−i

kk−i
kt−(k−1)

t

j(k−1)k−2−j

kk−j
kt−(k−1)

t

. . .
. . .

. . . (1−t)
t


(159)

where i denotes the corresponding row and j the corresponding column. We identify M as

positive semidefinite by using the Schur-Complement: Define mj := j(k−1)k−2−j

kk−j+1
(kt−(k−1))2

t(1−t) >

0 for j ∈ {1, .., k}. Note that

Mkk −
M2
k,k−1

mk−1
= 0 (160)

and therefore the 2x2 matrix (
mk−1 M(k−1)k

Mk(k−1) Mkk

)
� 0 (161)

is positive semidefinite. By inductively using the equalities

Mj+1,j+1 −
M2
j+1,j

mj
= mj+1 > 0 (162)

for j ∈ {1, .., k − 2} we see that the matrices mj Mj(j+1) 0T

M(j+1)j

0
Mj+1:k,j+1:k

 � 0 (163)

are also positive semidefinite and since

M11 =
(k − 1)k−3

kk
(kt− (k − 1))2

t(1− t)
= m1 > 0 (164)

52

is positive, this concludes the first case of our proof.

Case 2: In our second case we will assume k ≥ 2 and 1 ≥ t > 1
2(1 +

√
1− 1

k). Again

we define the real number ξ̂ = (2t − 1)2k−2 and the componentwise nonnegative vectors
xD ∈ Rk+, xL ∈ Rk−1

+ and the matrix X̂ ∈ Rk×k+ (Note that the variables have changed in
comparison to the first part):

(x̂D)j := (4t(2t− 1)− 4(j−1)t+2
k)(2t− 1)2(k−1−j) for j ∈ {1, .., k − 1}

(x̂D)k := 2− 2
2t−1

k−1
k

(x̂L)j := j
2tk (2t− 1)2(k−1−j) for j ∈ {1, .., k − 1}

X̂ := Tridiag(x̂L, x̂D, x̂L)

=


. . .

. . .

. . . (4t(2t− 1)− 4(j−1)t+2
k

)(2t− 1)2(k−1−j) i
2tk

(2t− 1)2(k−1−i)

j
2tk

(2t− 1)2(k−1−j) . . .
. . .

. . . 2− 2
2t−1

k−1
k

 .

(165)

Defining the vector (which again has changed in comparison with the first part)

(F̂D)j : = (2t− 1)2(k−1−j)(2t− 1)(2t− 2j − 1

2tk
) for j ∈ {1, .., k − 1}

(F̂D)k : = 1− 1

(2t− 1)2t

k − 1

k

(166)

leads to the straightforward evaluation

F (X̂) = Diag(X̂e) + 1
2 Diag(diag(X̂))− X̂

= Tridiag(−x̂L, F̂D,−x̂L)

=


. . .

. . .

. . . (2t− 1)2(k−1−j)(2t− 1)(2t− 2j−1
2tk

) − i(1−t)
2
− i

2tk
(2t− 1)2(k−1−i)

− j
2tk

(2t− 1)2(k−1−j) . . .
. . .

. . . 1− 1
(2t−1)2t

k−1
k

 .

(167)
We now proceed similarly to the first case by applying a congruence transformation to

the matrix inequality (153). Here the transformation is slightly simpler and depends only
on the inverse of U = I − L given by

U−1 =


1 −2t(1− 2t)0 −2t(1− 2t)1 . . . −2t(1− 2t)k−2

0 1 −2t(1− 2t)0 . . . −2t(1− 2t)k−3

... 0
. . .

. . .
...

0
... 0 1 −2t(1− 2t)0

0 0 0 0 1

 . (168)

53

Another straightforward computation reveals (UF (X̂)+F (X̂)UT−ekeTk)U−T e = 1
2 diag(X)

and eTU−1 diag(X̂) = 2ξ̂ which implies(
−2t −2teTU−1

0 U−1

)(
ξ̂ −1

2 diag(X̂)T

−1
2 diag(X̂) UF (X̂) + F (X̂)UT − ekeTk

)(
−2t 0

−2tU−T e U−T

)
=

(
−2tξ̂ + teTU−1 diag(X̂) tdiag(X̂)T − 2teT (F (X̂) + U−1F (X̂)UT − U−1eke

T
k)

tU−1 diag(X̂) F (X̂) + U−1F (X̂)UT − U−1eke
T
k

)(
−2t 0

−2tU−T e U−T

)
=

(
0 0

tU−1 diag(X̂) F (X̂) + U−1F (X̂)UT − U−1eke
T
k

)(
−2t 0

−2tU−T e U−T

)
=

(
0 0

0 F (X̂)U−T + U−1F (X̂)− U−1eke
T
kU
−T

)
(169)

with tridiagonal matrix

F (X̂)U−T + U−1F (X̂)− U−1eke
T
kU
−T

=


. . .

. . .

. . . (2t− 1)2(k−1−j)(2(2t− 1)(2t− 2j−1
2tk

) + 2j
k
− 4t2) (2t− 1)2(k−1−i) i

k
(1

2t−1
− 1

t
)

(2t− 1)2(k−1−j) j
k

(1
2t−1

− 1
t
)

. . .
. . .

. . . 1− 1
t(2t−1)

k−1
k


(170)

If we diagonally scale the latter matrix in (170) with

D := Diag(((2t− 1)−(k−1−j))j=1,..,k) (171)

we see that the resulting tridiagonal matrix

M :=D(F (X̂)U−T + U−1F (X̂)− U−1eke
T
kU
−T)D

=


. . .

. . .
. . . (2(2t− 1)(2t− 2j−1

2tk) + 2j
k − 4t2) i

k (1−t
t)

j
k ((1−t)

t)
. . .

. . .
. . . (2t− 1)2 − 2t−1

t
k−1
k


(172)

is weakly diagonally dominant and therefore positive semidefinite: With the convention that
M(−1)1 = 1−1

k ((1−t)
t) = 0 we can handle the first k−1 columns: Note that for j ∈ {1, .., k−1}

Mjj ≥ |M(j−1)j |+ |M(j+1)j |

⇔(2(2t− 1)(2t− 2j−1
2tk) + 2j

k − 4t2) ≥ j−1
k ((1−t)

t) + j
k ((1−t)

t)

⇔4t2 − 4t− 4j−2
k + 2j−1

tk + 2j
k ≥

2j−1
k ((1−t)

t)

⇔− 4t(1− t) + 1
k ≥ 0

(173)

54

where the last inequalities hold true in this second case. For the last (k-th) column

Mk,k ≥ |Mk−1,k|
⇔(2t− 1)2 − 2t−1

t
k−1
k ≥

1−t
t
k−1
k

⇔(2t− 1)2 ≥ k−1
k

(174)

again the last inequality holds true for 1 ≥ t > 1
2(1 +

√
1− 1

k) which concludes the second

case and therefore our proof. �

As we shall see next, similar proof techniques can be applied in a much more general setting.

4.2 Worst-Case-Complexity of Fixed Step Methods

The purpose of this subsection is to deal with the worst-case complexity of generalized
iterations of the form (175), below, which we will refer to as fixed step methods (FSM).
Let T : H → H be some nonexpansive operator and assume that Fix(T) 6= ∅. Define the
residual mapping g(x) := 1

2(x− T (x)). Let x∗ ∈ Fix(T), x1 ∈ H and consider the iteration

xi :=x1 +
i−1∑
j=1

tij(T (xj)− xj) = x1 − 2
i−1∑
j=1

tijg(xj) (175)

for fixed k ∈ N and tij ∈ R ∀i, j ∈ {1, .., k} with i < j. The special case tij ≡ t corresponds
to the KM iteration. Here we will consider the general case and show that the worst case
complexity can always be derived from the solution of an SDP similar to the form of (152).
In fact the only difference is the definition of the strict upper triangular matrix

Lt := −2


0 t12 t13 . . . t1k
0 0 t23 . . . t2k
...

... 0
. . .

...
0 0 0 0 tk−1k

0 0 0 0 0

 ∈ Rk×k.

and therefore Ut := I − Lt. The trick again relies on expressing the inequalities

‖gi − gj‖2 ≤ 〈gi − gj , xi − xj〉 (176)

and
‖gi‖2 ≤ 〈gi, xi − x∗〉 (177)

in terms of the Gramian matrix

(
R2 bT

b A

)
∈ Sk+1

+ for R := ‖x̄1 − x∗‖ ≥ 0, b := (〈gi, x̄1 −

x∗〉)ki=1 and A := (〈gi, gj〉)ki,j=1 with gi := g(xi). Now with the same reasoning as in the
proof for the KM-iterations we can rewrite these inequalities as

diag(AUt)e
T + e diag(UTt A)T ≤ AUt + UTt A (178)

55

respectively
diag(AUt) ≤ b (179)

and then obtain

‖g(xk)‖2 ≤ maximize
y0∈R,y1∈Rk,Y2=Y T2 ∈Sk

(Y2)kk |
(
y0 yT1
y1 Y2

)
∈ Sk+1

+ , y0 ≤ R2, diag(Y2Ut) ≤ y1

| diag(Y2Ut)e
T + e diag(UTt Y2)T ≤ Y2Ut + UTt Y2

(180)
via an SDP relaxation. It turns out that an optimal solutions of (180) gives us in fact
something, that we will refer to as ”worst-case-complexity” in the following sense: For the
KM iteration we gave an example in order to show that our bound on the convergence
rate is tight, i.e. could not be improved without making further assumptions. To enhance
this reasoning we note that any feasible point of (180) actually corresponds to at least
one iteration of the form (FSM) for some nonexpansive operator T̃ respectively one firmly
nonexpansive operator g̃ := 1

2(I − T̃). Although not entirely accurate, one may think
of a surjective function from the set of nonexpansive operators with fixed points to the
feasible set of (180). As a consequence an optimal solution of (180) will in fact yield a
bound that is not improvable in the sense that the inequality for ||g(xk)||2 in (180) will be

tight for appropriately chosen T and x1. Now we prove our claim: Let Y :=

(
y0 yT1
y1 Y2

)
be a feasible point of the SDP in (180) with rank(Y) = d. Then Y can be rewritten

as Y =

(
x̃T1
GT

)(
x̃1 G

)
with G = [g̃1, ..., g̃k] ∈ Rd×k and x̃1, g̃1, ..., g̃k ∈ Rd. If we now

define x̃∗ := g̃∗ := 0 ∈ Rd and x̃i := x̃1 − GLtei ∀i ∈ {2, .., k}, then by construction
and since Y is feasible for (180) the points x̃i, g̃i will satisfy the equations ||g̃i − g̃j ||22 ≤
(g̃i − g̃j)T (x̃i − x̃j) for all i, j ∈ I := {∗, 1, .., k}. The following Proposition tells us that
we can find an operator extension to the whole space, i.e. a firmly nonexpansive operator
g̃ : Rd → Rd with g̃(x̃i) = g̃i ∀i ∈ I.

Proposition 4.11. Let d, k ∈ N 6=0 be two positive integers. Define the set I := {∗, 1, .., k}
with k + 1 elements. Let {xi, gi}i∈I ⊂ Rd satisfy

||gi − gj ||22 ≤ (gi − gj)T (xi − xj) for all i, j ∈ I.

Then there exists a firmly nonexpansive operator g : Rd → Rd, i.e.

||g(x)− g(y)||22 ≤ (g(x)− g(y))T (x− y) for all x, y ∈ Rd. (181)

that satisfies
g(xi) = gi ∀i ∈ I. (182)

56

Proof. Note that by assumption xi = xj implies gi = gj . This allows us to define the
operator T̃ : {x∗, x1, ..., xk} → Rd via T̃ (xi) := xi − 2gi ∀i ∈ I. Also note, that T̃ is a
nonexpansive mapping on its domain:

||T̃ (xi)− T̃ (xj)||22 − ||xi − xj ||22
=||xi − xj − 2(gi − gj)||22 − ||xi − xj ||22
=4||gi − gj ||22 − 4(gi − gj)T (xi − xj) ≤ 0

(183)

holds true. By employing the Kirszbraun theorem (see [41] page 94 Hauptsatz I) we can
extend T̃ to the whole space Rd in the following way: There exists a nonexpansive mapping
T : Rd → Rd such that T (xi) = T̃ (xi) ∀i ∈ I. By our reasoning from before, we know that
we can define the firmly nonexpansive operator g : Rd → Rd via g(x) := 1

2(x− T (x)). Now
g obviously satisfies

g(xi) =
1

2
(xi − T (xi)) =

1

2
(xi − T̃ (xi)) =

1

2
(xi − (xi − 2gi)) = gi ∀i ∈ I (184)

which concludes our proof and also the argument from before. �

Remark 4.12. Above we have proven that an optimal SDP solution of (180) yields an, in
a certain sense, optimal or unimproveable bound, i.e. a worst-case complexity. However in
a different sense these bounds may be very well improvable in at least three ways: First,
additional knowledge about the structure of the operator T (for example if T is the derivative
of some function), second, additional knowledge about the Hilbert space H (such as finite
dimensionality) and third, asymptotically (for example the squared norm of residuals when
using the KM iteration converges asymptotically with order o(k−1) for k → ∞ whenever
the iterates converge) .

Application 4.13. Let us mention one obvious extension of our previous analysis. Let
F : H→ H be some L-cocoercive operator, i.e. there exists L > 0 such that

1
L ‖F (x)− F (y)‖2 ≤ 〈F (x)− F (y), x− y〉 (185)

is satisfied for all x, y ∈ H. Assume that we are interested in finding a zero of F , i.e. x∗ ∈ H
such that F (x∗) = 0. Note that 1

LF (x) is firmly nonexpansive and therefore finding zeros of
F is equivalent to finding fixed points of the nonexpansive operator T (x) := x − 2

LF (x). If
we assume that there exists a zero of F , then we can estimate the worst case complexity of
any FSM (175) to find a zero of F . Specifically the squared norm ‖F (xk)‖2 can be upper
bounded by exploiting that the residual mapping g(x) := 1

2(x−T (x)) is upper bounded by the

SDP relaxation (180) and we have the identity ‖g(x)‖2 =
∥∥1

2(x− T (x))
∥∥2

= 1
L2 ‖F (x)‖2.

4.2.1 Optimizing the Worst-Case-Complexity

As optimizers we are of course very much interested in the minimal worst-case complexity.
If we see the SDP (180) not only as an optimization problem but also as a function of FSM

57

step lengths, i.e. φ : R
k2−k

2 → R̄ with

φ(t) := sup
y0∈R,y1∈Rk,Y2=Y T2 ∈Sk

(Y2)kk |
(
y0 yT1
y1 Y2

)
∈ Sk+1

+ , y0 ≤ R2, diag(Y2Ut) ≤ y1

| diag(Y2Ut)e
T + e diag(UTt Y2)T ≤ Y2Ut + UTt Y2

(186)

minimizing the worst case becomes achievable by solving the optimization problem

minimize

t∈R
1
2 (k2−k)

φ(t)
(187)

globally. In fact for small values of k the function φ seems to be well behaved, i.e. continuous
and possibly even (locally) Lipschitz-continuous (although not differentiable everywhere, as
one can see from our proof of Theorem 4.9 for the KM-iteration). Now by using the local
non-linear-programming (NLP) solvers min f [49] respectively min fc [31] (which are public
domain and available under [50]) to minimize φ, together with YALMIP [54] and SeDuMi
[78] to actually evaluate φ, for different values of k and random starting points, the final
iterates often ended up ”close” to the following FSM step lengths defined in (175)

tHalperni,j := i
j for i < j (188)

giving raise to the so-called Halpern iteration [27] (which I showed in [53]): Starting with
x1 = xH1 and setting

xHk+1 := 1
k+1x1 + (1− 1

k+1)T (xHk). (189)

In the paper [53], I used the dual problem (with t = tHalpern) of (180) to show the following
result:

Theorem 4.14. Let x1 = xH1 ∈ H be arbitrary but fixed. If T has fixed points, i.e. Fix(T) 6=
∅, then the iterates defined in (189) satisfy

1
2

∥∥xHk − T (xHk)
∥∥ ≤ ‖x1 − x∗‖

k
∀k ∈ N 6=0,∀x∗ ∈ Fix(T) (190)

It is not shown that this bound is optimal (although it is conjectured based on numerical
evidence, i.e. on approximate solutions of (180) for t = tHalpern). Based on numerical
experiments with the local NLP-solvers, I believe that the Halpern step lengths (188) might
actually yield a local (maybe even global) minimizer of (187). In practice however one
often finds the convergence rate of the Halpern iteration inferior to the convergence rate
of KM iteration. One reason for this phenomenon lies of course in the local or asymptotic
behavior of both iteration: Note that when T (xHk) is ”close” to a fixed point x∗ then the
term 1

k+1x1 in the definition of the Halpern iteration will ”pull” the iterates xk away from
x∗. Therefore the Halpern convergence rate will typically not be much faster then the upper
bound predicted in above theorem. On the other hand the worst-case-complexity of the KM
iteration (for ‖g(xk)‖) is much worse (O(

√
k−1) instead of O(k−1)), but it can sometimes

perform much better than our (unimprovable) bound in theorem 4.9 suggests in (146). Now

58

if tHalpern indeed happens to be a global minimizer of φ, and if it is also unique, then the
implication would be an unavoidable trade off between a ”good” worst-case complexity and
”fast” local/asymptotic convergence of FSM methods. In other words we could not find
an FSM such that it will obtain an optimal worst-case complexity (in the sense of globally
minimizing φ) and obtain fast local convergence at the same time.

4.2.2 Statistical Point of Entry

One of the main weak points of discussion about worst-case complexities is that their worst-
case scenarios seem to occur rarely in practice. So the natural questions to ask is, whether
we could not only quantify their likelihood, but also find an FSM that performs better in
practice with high probability and maybe find a method that is optimized for an ”average-
case”. In this section we will make a new, but small step in that direction. First note that
the feasible set of (180) can be written as the union

F t :=
⋃

0≤r≤R
F tr (191)

of sliced sets

F tr :=

{(
y0 yT1
y1 Y2

)
∈ Sk+1

+ | y0 = r2, diag(Y2Ut) ≤ y1,
diag(Y2Ut)e

T + e diag(UTt Y2)T ≤ Y2Ut + UTt Y2

}
(192)

which obviously satisfy F t0 = {0} and F tr = r2F t1. As we have seen in Proposition 4.11 and
the discussion before, each point in F t corresponds to at least one possible iteration. We can
therefore argue that the feasible set F t holds (to a certain degree) not only information about
the worst-case-complexity, but also about its likelihood and therefore about random-case-
and average-case-complexities. If we sample a nonexpansive operator T with Fix(T) 6= ∅ at
random: what can we expect how an FSM will behave? Allow us to be even sloppier here
and rephrase the idea in the following way: Let C ∈ Sk+1 be some a priori fixed matrix.
If Ω is some set of possible outcomes and Y : Ω → F t1 is a random matrix obeying some
probability distribution D. What is the probability distribution of C • Y ?

Y ∼ D =⇒ C • Y ∼ ???

One way to get an idea about the question above, is to employ Monte-Carlo Simulations:
one can sample (pseudo-)random points Y (1), ..., Y (p) according to the distribution D from
the set F t1 and then check (and save) for each point Y (l) the quantity C•Y (l) for l ∈ {1, .., p}.
The main difficulty is of course sampling from F t1. We recall the following well known (but
improvable) possibility to generate samples obeying a uniform distribution on F t1, namely
a rejection strategy, to generate p samples in F t1: First find a box Qt ⊂ Sk+1 with F t1 ⊂ Q,
i.e. ltb, u

t
b ∈ Rk, Ltb, U tb ∈ Sk such that

F t1 ⊂ Qt :=

{(
1 yT1
y1 Y2

)
∈ Sk+1 | ltb ≤ y1 ≤ utb, Ltb ≤ Y1 ≤ U tb

}
(193)

the feasible set is fully contained inside the box. Now sample uniform distributed (pseudo-)
random points from the box Qt (which is simple). Check for each sample point Ỹ ∈ Qt if

59

Ỹ ∈ F t1 is satisfied (not a strictly simple, but manageable task): if not, reject Ỹ and repeat;
if yes, accept Ỹ , save C • Ỹ and stop if p samples have been accepted, otherwise repeat.

For C :=

(
0 0T

0 eke
T
k

)
, i.e. the objective from (180) (C •

(
1 yT1
y1 Y2

)
= (Y2)kk), choosing

k = 2, p = 100000, t := t12 ∈ {0.5, 0.6, .., 1} the following MATLAB-plots of the empirical
probability density function (PDF) and empirical cumulative density function (CDF) below
were obtained.

Figure 5: Empirical PDF and CDF plots for (Y2)22 (∼= ||g(xk)||2) for fixed k = 2 and
different values of t = t12. The red line marks the theoretical worst-case described earlier.

One possible interpretation of above plots is that the sliced feasible set F t1 does not seem to
contain ”many” points that have an objective value close to the worst-case, i.e. the optimal
solution of (180) seems to be a relatively ”sharp” vertex of the feasible set. This does not
allow any conclusions about the likelihood of worst-case scenarios (although we are certainly
tempted to note, that they hint at a rather unlikely worst-case especially for larger t , we can
not do that in good conscience). The main reason is that we did not consider a distribution
on the feature space, i.e. the set of nonexpansive operators with fixed points, but only on F t1.
In other words, we are not sure if or how the uniform distribution on F t1 translates back to
a meaningful probability distribution on the feature space. Another difficulty to overcome,
lies within the proportion of F t1 and Qt: for k = 2 the sets F t1 occupied less then 0.25% of
the smallest boxes Qt that I could find and for k > 2 this ratio drops even further (making
the approach computationally expensive, because the ratio reflects the number of accepted
samples Ỹ). Although closer outer approximations, such as ellipsoids, could probably be
used to ensure viability for slightly larger k, I am hoping in fact for computationally more
attractive sampling strategies to arrive in the near future.

60

4.2.3 Selected Performance Criteria

So far we have focused on upper bounds on the squared norm of the residual of the last
iterate (‖g(xk)‖2), but we can easily handle different performance criteria by changing the
objective function of the SDP in (180). For example bounds on the quantity 〈g(xk), xk−x∗〉
can be realized by changing the objective to eTk (y1 + Y2Ltek). Some of these criteria are
collected in the table below.

Criterion Objective

‖g(xk)‖2 (Y2)k∑k
i=1 ‖g(xi)‖2 eT diag(Y2)

〈g(xk), xk − x∗〉 eTk (y1 + Y2Ltek)

‖xk − x∗‖2 y0 + eTk diag(LTt (2y1e
T + Y2Lt))

Table 6: Selected performance criteria and Objectives

We stretch the fact that some performance criteria will not trivially lead to new insights. For
example if one is interested in bounds on the worst-case-performance of the squared distance
between the last iterate xk and the fixed point x∗, i.e. in the quantity ‖xk − x∗‖2, then
the worst-case will be attained with ‖xk − x∗‖2 = R2 = ‖x1 − x∗‖2 and the corresponding
nonexpansive operator is the identity mapping. However we can again try to employ the
statistical point of view from the prior section this time for C •Y = y0 +eTk diag(LTt (2y1e

T +
Y2Lt)). As before I chose k = 2, p = 100000, t := t12 ∈ {0.5, 0.6, .., 1} and ended up with
the following MATLAB-plots of the empirical PDF and CDF below.

61

Figure 6: Empirical PDF and CDF plots for y0 + eTk diag(LTt (2y1e
T +Y2Lt)) for fixed k = 2

and different values of t = t12. The theoretical worst-case is always equal to one.

Drawing conclusions from these plots is a challenge that we should rather leave others. We
can not state with good conscience, that they hint at a decreasing worst-case probability
as t increases towards values larger than 1

2 .
Another reason, for including the distance criterion into the table from before, is the ex-
tension of our worst-case-complexity from nonexpansive operators with fixed points to con-
tracting operators in the next section.

4.3 Extension to Contractions

Although our main interest is finding fixed points of nonexpansive operators, our previous
work can be very easily extended to q-contractions. In fact we can handle all Lipschitz-
continuous operators with fixed points, but assuming contractions makes the existence
assumption on the fixed point superfluous, which is why they are considered here. Let
therefore q ∈ [0, 1) and T : H→ H be a q-contraction, i.e. satisfy

‖T (x)− T (y)‖ ≤ q ‖x− y‖ (194)

for all x, y ∈ H. As before we define the residual mapping g(x) := 1
2(x−T (x)). If we rewrite

(194) solely in terms of g, we obtain that g satisfies

1−q2

4 ‖x− y‖2 + ‖g(x)− g(y)‖2 ≤ 〈g(x)− g(y), x− y〉 (195)

for all x, y ∈ H. Let x1 ∈ H be an arbitrary point and let x∗ ∈ H be the unique fixed-point
of T , respectively the unique zero of g (which exists by the Banach fixed point theorem).

62

Here we consider again an FSM

xi :=x1 +
i−1∑
j=1

tij(T (xj)− xj) = x1 − 2
i−1∑
j=1

tijg(xj) (196)

for fixed k ∈ N and tij ∈ R ∀i, j ∈ {1, .., k} with i < j. Analogously to before we define
gi := g(xi)∀i ∈ {1, .., k}, as well as

Lt := −2



0 t12 t13 . . . t1k

0 0 t23 . . . t2k
...

... 0
. . .

...

0 0 0 0 tk−1k

0 0 0 0 0


∈ Rk×k.

and Ut := I − Lt. In order to express the inequalities in (195) we rewrite the quanti-

ties ‖xi − xj‖2 and ‖xi − x∗‖2 in terms of the Gramian matrix

R2 bT

b A

 ∈ Sk+1
+ for

R := ‖x̄1 − x∗‖ ≥ 0, the vector b = (〈gi, x̄1 − x∗〉)ki=1 and the matrix A := (〈gi, gj〉)ki,j=1.
Straightforward linear algebra calculations give us

diag(LTt ALt)e
T + e diag(LTt ALt)

T − 2LTt ALt = (〈xi− xj , xi− xj〉)ki,j=1 = (‖xi − xj‖2)ki,j=1

(197)
and

diag(R2eeT + LTt be
T + ebTLt + LTt ALt) = diag((〈xi − x∗, xj − x∗〉)ki,j=1) = (‖xi − x∗‖2)ki=1

(198)

Let us define the linear and invertible operator Uqt (A) := A−ALt+ 1−q2

4 LTt ALt (a generaliza-
tion of our previous definition of multiplication with Ut for which we see that U1

t (A) = AUt)
is satisfied). We rewrite

1−q2

4 ‖xi − xj‖2 + ‖gi − gj‖2 ≤ 〈gi − gj , xi − xj〉 (199)

by combining (178) and (197) as

diag(Uqt (A))eT + e diag(Uqt (A))T ≤ Uqt (A) + (Uqt (A))T

and by using (179) and (198)

1−q2

4 ‖xi − x∗‖2 + ‖gi‖2 ≤ 〈gi, xi − x∗〉 (200)

as
diag(Uqt (A)) ≤ b− (1−q2)

4 (R2e+ 2LTt b)

63

which we can again use to derive

‖g(xk)‖2 = maximize
y0∈R,y1∈Rk,Y2=Y T2 ∈Sk

(Y2)kk |

y0 yT1

y1 Y2

 ∈ Sk+1
+ , y0 ≤ R2

| diag(Uqt (Y2)) ≤ y1 − (1−q2)
4 (y0e+ 2LTt y1)

| diag(Uqt (Y2))eT + e diag(Uqt (Y2))T ≤ Uqt (Y2) + (Uqt (Y2))T

| y0 = R2, y1 = b, Y2 = A

≤ maximize
y0∈R,y1∈Rk,Y2=Y T2 ∈Sk

(Y2)kk |

y0 yT1

y1 Y2

 ∈ Sk+1
+ , y0 ≤ R2

| diag(Uqt (Y2)) ≤ y1 − (1−q2)
4 (y0e+ 2LTt y1)

| diag(Uqt (Y2))eT + e diag(Uqt (Y2))T ≤ Uqt (Y2) + (Uqt (Y2))T

(201)
where again the equality follows from construction and the inequality follows again from
relaxation. Note that we could actually replace the constraint y0 ≤ R2 (where R2 is a usually
unknown constant) with for example (Y2)11 ≤ ‖g(x1)‖2 (where ‖g(x1)‖2 is usually known)
and still obtain a finite value for the SDP, in fact even the worst-case-complexity. With the
same argument as in our discussion about nonexpansive operators, any feasible point with
rank d of the SDP relaxation can be decomposed back into a set of {x̃i, g̃i}i∈I ⊂ Rd for
I := {∗, 1, .., k} satisfying (199) (with g̃i and x̃i instead of gi and xi). The following result
ensures the existence of an operator extension to the full space Rd.

Proposition 4.15. Let d, k ∈ N 6=0 be two positive integers. Define the set I := {∗, 1, .., k}
with k + 1 elements. Let q ≥ 0 and let {xi, gi}i∈I ⊂ Rd satisfy

1−q2

4 ||xi − xj ||
2
2 + ||gi − gj ||22 ≤ (gi − gj)T (xi − xj) for all i, j ∈ I.

Then there exists an operator g : Rd → Rd that satisfies

1−q2

4 ||x− y||
2
2 + ||g(x)− g(y)||22 ≤ (g(x)− g(y))T (x− y) for all x, y ∈ Rd (202)

and
g(xi) = gi ∀i ∈ I. (203)

Proof. Our proof here again uses the work of Kirszbraun [41]: Analogously to our prior
proof we define the operator T̃ : {x∗, x1, ..., xk} → Rd via T̃ (xi) := xi − 2gi ∀i ∈ I. Note
that this is well defined since xi = xj implies gi = gj . Here the operator T̃ is a Lipschitz

64

continuous mapping with constant q on its domain:

||T̃ (xi)− T̃ (xj)||22 − q2||xi − xj ||22
=||xi − xj − 2(gi − gj)||22 − q2||xi − xj ||22
=(1− q2)||xi − xj ||22 + 4||gi − gj ||22 − 4(gi − gj)T (xi − xj) ≤ 0

(204)

By employing the second Kirszbraun theorem (see [41] page 104 Hauptsatz 2 I): There exists
a q-Lipschitz continuous mapping T : Rd → Rd such that T (xi) = T̃ (xi) ∀i ∈ I. Now the
operator g : Rd → Rd defined via g(x) := 1

2(x − T (x)) will satisfy the claimed inequalities
by reversing the calculations above. �

Remark 4.16. Proposition 4.11 and its generalization above were both stated for the space
Rd, but we like to emphasize that the results hold true for general (real) Hilbert spaces:
Assuming the Hilbert space’s inner product is in fact symmetric, the first proof part takes
exactly the same form as above with Rd and its standard scalar product replaced. Finally
the Lipschitz extension argument can be established by using Theorem 1.31. of [81].

4.3.1 Zeros of Selected Strongly Monotone Operators

In this subsection we shift our focus again to finding zeros of operators F : H→ H. Let us
start with stating and proving the following simple corollary of Proposition 4.15:

Corollary 4.17. Let d, k ∈ N6=0 be two positive integers. Define the set I := {∗, 1, .., k}
with k + 1 elements. Let 0 ≤ µ < L and let {xi, Fi}i∈I ⊂ Rd satisfy

1

1+
µ
L

(µ||xi − xj ||22 + 1
L ||Fi − Fj ||

2
2) ≤ (Fi − Fj)T (xi − xj) for all i, j ∈ I.

Then there exists an operator F : Rd → Rd with

F (xi) = Fi ∀i ∈ I. (205)

and such that I − 2
L+µF is a L−µ

L+µ -contraction (see (194)), and therefore (equivalently) F
satisfies

1

1+
µ
L

(µ||x− y||22 + 1
L ||F (x)− F (y)||22) ≤ (F (x)− F (y))T (x− y) (206)

for all x, y ∈ Rd.

Proof. Define gi := 1
L+µFi and q := L−µ

L+µ . Then we can rewrite the given inequalities as

1−q2

4 ||xi − xj ||
2
2 + ||gi − gj ||22 ≤ (gi − gj)T (xi − xj) for all i, j ∈ I.

By our previous Proposition 4.15 there exists a function g : Rd → Rd such that

1−q2

4 ||x− y||
2
2 + ||g(x)− g(y)||22 ≤ (g(x)− g(y))T (x− y) for all x, y ∈ Rd (207)

and
g(xi) = gi ∀i ∈ I. (208)

65

If we now define F (x) := (L+µ)g(x) then F (xi) = (L+µ)g(xi) = (L+µ)gi = (L+µ) 1
L+µFi =

Fi and from (g(x) = 1
L+µF (x)) we derive

0 ≥1−q2

4 ||x− y||
2
2 + ||g(x)− g(y)||22 − (g(x)− g(y))T (x− y)

=
1−(

L−µ
L+µ)2

4︸ ︷︷ ︸
=

µL
(L+µ)2

||x− y||22 + 1
(L+µ)2 ||F (x)− F (y)||22 − 1

(L+µ)(F (x)− F (y))T (x− y) (209)

which yields the claimed inequality after a multiplication with (L+ µ) and an appropriate
rearrangement. �

In [83] the inequalities from above corollary where identified as being necessary but not
sufficient for L-smooth and µ-strongly convex interpolatability. Here we see that they are
sufficient to yield an operator extension to the whole space. Let us recall that we say F is
µ-strongly monotone if there exists µ ≥ 0 such that

µ ‖x− y‖2 ≤ 〈F (x)− F (y), x− y〉 (210)

is satisfied for all x, y ∈ H. Also recall that we call F a gradient mapping, if there exists some
function f : H→ R with F = ∇f . The original idea was to somehow ”split” the contraction
property into the concept of L−cocoercive (cf. (4.13)) and µ-strongly monotone operators.
As it turns out, this contemplated ”splitting” is not as straightforward as one might think:
Consider for 0 ≤ µ < L the three statements:

(S0) F is a gradient mapping, L-Lipschitz and µ-strongly monotone

(S1) I − 2
L+µF is a L−µ

L+µ -contraction

(S2) F is µ-strongly monotone and L-cocoercive

Since we excluded the case L = 0, (S0) is basically the definition of an L-smooth and
µ−strongly convex function in the sense of [83], expressed solely in terms of its gradient.
If F is a gradient mapping, then one can verify that (S1) and (S2) are equivalent (for the
implication (S2)⇒ (S1) see for example Theorem 2.1.11 of [64]). Perhaps surprising is, that
in general only the implication (S1) ⇒ (S2) holds true (which we will show further down).
Let us first, in order to show that the reverse implication does not hold in general, give the
following example based on a Givens-Rotation:

Example 4.18. Let F : R2 → R2 be defined via F (x) := Qx for

Q :=

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 (211)

Then for |θ| < π
2 we calculate (F (x)−F (y))T (x−y) = (Q(x−y))T (x−y) = cos(θ)||x−y||22

and see that F is cos(θ)-strongly monotone. Similar ||F (x)−F (y)||2 = (x−y)TQTQ(x−y) =

66

Figure 7: For gradient mappings conditions (S1) and (S2) are equivalent, although (S1) and
(S2) are not equivalent in general.

||x − y||2 yields that F is 1
cos(θ) -cocoercive. In summary F satisfies (S2) with µ := cos(θ)

and L := 1
cos(θ) , where both constants are chosen optimally. On the other hand, we obtain

||x− y − 2
L+µ(F (x)− F (y))||2 − (L−µL+µ)2||x− y||2

=(x− y)T (I − 2
L+µ(Q+QT) + (2

L+µ)2QTQ)(x− y)− (L−µL+µ)2||x− y||2

=(1− 4µ
L+µ + (2

L+µ)2)||x− y||2 − (L−µL+µ)2||x− y||2

=4 1−µ2

(L+µ)2 ||x− y||2

(212)

and by setting θ := arccos(1√
3
) the factor 4 1−µ2

(L+µ)2 becomes equal to 1
2 , which implies that

F does not satisfy (S1). (I − 2
LF+µF

F is a
√

4 1−µ2

(L+µ)2 + (L−µL+µ)2 =
√

3
4 -contraction, but not

a
√

(L−µL+µ)2 = 1
2 -contraction.) Now on the other hand F is obviously, for LF := 1

cos(θ) +√
1

cos(θ)2 − 1 > 1
cos(θ) = L and µF := 1

cos(θ) −
√

1
cos(θ)2 − 1 < cos(θ) = µ, also µF -strongly

monotone and LF -cocoercive. Considering

||x− y − 2
LF+µF

(F (x)− F (y))||2 − (LF−µFLF+µF
)2||x− y||2

=(x− y)T (I − 2
LF+µF

(Q+QT) + (2
LF+µF

)2QTQ)(x− y)− (LF−µFLF+µF
)2||x− y||2

=(1− 4 cos(θ)
LF+µF

+ (2
LF+µF

)2)||x− y||2 − (LF−µFLF+µF
)2||x− y||2

=(1− 8
(LF+µF)2 + (2

LF+µF
)2)||x− y||2 − (LF−µFLF+µF

)2||x− y||2

=(1− (2
LF+µF

)2 − (LF−µFLF+µF
)2)||x− y||2

= 4LFµF−4
(LF+µF)2 ||x− y||2

=0

(213)

67

shows that I− 2
LF+µF

F is an LF−µF
LF+µF

= | sin(θ)|-contraction which yields, for θ = arccos(1√
3
),

a significantly smaller (|sin(arccos(1√
3
))| =

√
2
3) contraction constant. Also note that for

any fixed γ ∈ R ||(x−y)−γ(F (x)−F (y))||2 ≥ ||(x−y)− 2
LF+µF

(F (x)−F (y))||2 ∀x, y ∈ R2

holds true, implying that the contraction constant can not be improved.

Now let us show that statement (S1) implies (S2).

Lemma 4.19. Let 0 ≤ µ < L. If F : H → H satisfies (S1), i.e. I − 2
L+µF is a L−µ

L+µ -
contraction, then it also satisfies (S2), i.e. F is µ-strongly monotone and L-cocoercive.

Proof. Let us begin by proving µ-strong monotonicity of F : Analogously to the proof of
Theorem 2.1.11 in [64], we can rewrite the inequality

0 ≥
∥∥∥(x− y)− 2

L+µ(F (x)− F (y)
∥∥∥2
− (L−µL+µ)2 ‖x− y‖2

=(1− (L−µL+µ)2) ‖x− y‖2 − 4
L+µ〈F (x)− F (y), x− y〉+ 4

(L+µ)2 ‖F (x)− F (y)‖2 (214)

as
1

L−µ ‖F (x)− F (y)− µ(x− y)‖2 ≤ 〈F (x)− F (y)− µ(x− y), x− y〉 (215)

which implies 0 ≤ 〈F (x)− F (y)− µ(x− y), x− y〉 = 〈F (x)− F (y), x− y〉 − µ ‖x− y‖2, i.e.
that F is µ-strongly monotone. By the Cauchy-Schwarz inequality (215) also implies

‖F (x)− F (y)− µ(x− y)‖ ≤ (L− µ) ‖x− y‖ (216)

which we can, together with the triangle inequality, use

‖F (x)− F (y)‖ = ‖F (x)− F (y)− µ(x− y) + µ(x− y)‖
≤‖F (x)− F (y)− µ(x− y)‖+ µ ‖x− y‖
≤(L− µ) ‖x− y‖+ µ ‖x− y‖ = L ‖x− y‖

(217)

to show that F is L-Lipschitz. By rewriting (214) once more and using the Lipschitz
inequality as well as the Cauchy-Schwartz inequality, we conclude

〈F (x)− F (y), x− y〉 ≥ µL
L+µ ‖x− y‖

2 + 1
L+µ ‖F (x)− F (y)‖2

≥ µ
L+µ ‖F (x)− F (y)‖ ‖x− y‖+ 1

L+µ ‖F (x)− F (y)‖2

≥ µ
L+µ〈F (x)− F (y), x− y〉+ 1

L+µ ‖F (x)− F (y)‖2
(218)

and therefore
〈F (x)− F (y), x− y〉 ≥ 1

L ‖F (x)− F (y)‖2 ,

i.e. that F is L−cocoercive. �

As we have seen in our example, the reverse implication does not hold true in general.
Now to make things even more complicated, note that while I − 2

L+µF might not be an
L−µ
L+µ -contraction, it will still be some contraction with a different constant. Consider for
example the following reasoning:

68

Lemma 4.20. Let 0 < µ < L and F : H → H be µ-strongly monotone and L-cocoercive.

Then I − 2
L+µF is a

√
1− (2µ

L+µ)2-contraction.

Proof. ∥∥∥(x− y)− 2
L+µ(F (x)− F (y))

∥∥∥2

= ‖x− y‖2 − 4
L+µ〈F (x)− F (y), x− y〉+ 4

(L+µ)2 ‖F (x)− F (y)‖2

= ‖x− y‖2 − 4
(L+µ)2 ((µ+ L)〈F (x)− F (y), x− y〉 − ‖F (x)− F (y)‖2)

≤‖x− y‖2 − 4
(L+µ)2 (µ〈F (x)− F (y), x− y〉)

≤‖x− y‖2 − 4
(L+µ)2 (µ2 ‖x− y‖2)

=(1− 4µ2

(L+µ)2) ‖x− y‖2

(219)

�

Note that the above contraction constant is attained in the first case of our example
from before. In a way, this reflects two of the dilemmas that we are confronted with:
Consider the following situation: Let us assume we are given some µ-strongly monotone
and L-cocoercive operator F : H→ H for which we want to find a zero, i.e. a point x∗ ∈ H
such that F (x∗) = 0 is satisfied. Obviously we can restate the problem of finding a zero,
as finding a fixed point of Tγ(x) := x − γF (x). Our previous Lemma tells us that Tγ is
actually a q-contraction for appropriate γ and q. We now could choose one of the many
(possibly optimized) FSM, say M(γ, q) in order to generate a sequence with xk → x∗. Let
us explain the dilemma more carefully: assume our method M(γ, q) is tuned for the given
parameters γ and q. Who says that we have chosen them optimally? Our example clearly
shows, that even knowing the maximal 0 < µ and the minimal L, does not imply much
knowledge about the optimal values of γ and q. Which brings us to our second dilemma:
assume that µ and L are known to exist, but µ or L or both are not numerically available
to us. Now what? Well there are a couple of standard ways to tackle these scenarios:

1. Educated guessing, although slightly unpopular, can sometimes just work. Guesses
can come from application, rely on some additional structure or be simply empirical
values.

2. Simulations (Trial and Error) may work, but suffer of course from additional compu-
tational effort and relies (more problematic) on a suitable simulation, which can be
difficult to find.

3. Adaptive choice of parameters: If we define the optimal parameters

µ∗ := inf
x,y∈H, x6=y

〈F (x)−F (y),x−y〉
‖x−y‖2 (220)

and
1
L∗ := inf

x,y∈H, F (x)6=F (y)

〈F (x)−F (y),x−y〉
‖F (x)−F (y)‖2 (221)

69

it is easily seen that any two points x, y ∈ H with F (x) 6= F (y) yield upper bounds
on the optimal parameters. Two points x, y ∈ H, x 6= y with F (x) = F (y) imply that
F can not be µ-strongly monotone for µ > 0. Similarly we can consider the optimal
contraction constant

q∗ := inf
γ∈R

sup
x,y∈H,x6=y

‖Tγ(x)− Tγ(y)‖
‖x− y‖

(222)

Note that from the Max-Min inequality we obtain

inf
γ∈R

sup
x,y∈H,x6=y

‖Tγ(x)− Tγ(y)‖
‖x− y‖

≥ sup
x,y∈H,x6=y

inf
γ∈R

‖Tγ(x)− Tγ(y)‖
‖x− y‖

≥ sup
x,y∈H,F (x)6=F (y)

√
1− (〈F (x)−F (y),x−y〉

‖F (x)−F (y‖‖x−y‖)
2

(223)

and again any two points x, y ∈ H with F (x) 6= F (y) yield a lower bound on the
optimal contraction constant. Here two points x, y ∈ H, x 6= y satisfying F (x) = F (y)
results in q∗ = 1.

In summary, answers to the questions of how to find worst case complexities for the class
of L-cocoercive and µ-strongly monotone operators are difficult to obtain and may not be
extremely satisfactory. This explains the word ”selected” in the title of this section.

4.4 Extension to Complex Spaces

Being mathematicians, it is natural to ask what assumptions regarding the space (H, 〈., .〉)
are necessary for our analysis. For example we assumed the inner product to be symmetric,
which basically limited everything to a real vector space. In principle conjugate symmetry
(〈x, y〉 = 〈y, x〉), i.e. complex Hilbert spaces, can be handled as well, but one has to take
much greater care when it comes to inequalities. Let T be nonexpansive and define the
residual mapping g := 1

2(I − T) as usual. We see that the original definition of a firmly
nonexpansive operator makes only sense when 〈g(x)−g(y), x−y〉 is a real number. However,
g does satisfy

0 ≥ ||T (x)− T (y)||2 − ||x− y||2

= ||(x− y)− (T (x)− T (y))− (x− y)||2 − ||x− y||2

= 〈(x− y)− (T (x)− T (y))− (x− y), (x− y)− (T (x)− T (y))− (x− y)〉 − ||x− y||2

= 4||g(x)− g(y)||2 − 2〈g(x)− g(y), x− y〉 − 2〈x− y, g(x)− g(y)〉
= 4||g(x)− g(y)||2 − 2〈g(x)− g(y), x− y〉 − 2〈g(x)− g(y), x− y〉

(224)
which we can interpret as a complex version of firm-nonexpansiveness. Also note that for
a set of vectors {x1 − x∗, g1, ..., gk} an associated Gramian matrix will not be symmetric,
but Hermitian positive semidefinite. As a consequence expressing an FSM in terms of that
Gramian matrix, gets slightly more complicated, but is still possible. Note that in an SDP-
Relaxation we have to consider the Hermitian complex matrices as a vector space over the
real numbers (they are not a vector space over the complex numbers). Nevertheless one

70

can check that each and every argument can be transfered, giving us the possibility to also
consider worst-case complexities in complex Hilbert spaces.

What if we want to drop the assumption of working in a Hilbert space? Let us first note
that Banach-spaces which satisfy the Parallelogram law, i.e.

1
2 ||x+ y||2 + 1

2 ||x− y||
2 = ||x||2 + ||y||2 (225)

do not pose a problem at all, because by using the Jordan von Neumann theorem, we can
always define a scalar product that induces the norm and proceed analogously to the Hilbert
space setting. On the other hand, Banach-spaces that do not satisfy the Parallelogram law,
do pose a significant problem, as everything, we did requires the existence of a scalar
product. Honestly I can not give a satisfactory answer at this point: For example note that
the existence of an equivalent norm that is induced by a scalar product might still yield
valid upper bounds but problematically since nonexpansiveness relies on the used norm, T
might be a contraction in one norm but not in an equivalent one.

Leaving the extensions behind, let us conclude section four. In summary, the described
approach for finding tight convergence rates in real or complex Hilbert spaces of any fixed
step method is very attractive: We can use SDP solvers to find the optimal worst-case rates
numerically and also (with a little bit of hard work) analytically. In addition we took the
first step towards average-case optimized methods which may be taken further in the future.

71

5 Second Order Approach

Coming back to our original motivation of finding zeros of the gradient of the reduced
Lagrangian, we might ask whether additional structure can help us achieving faster conver-
gence. After all we have so far disregarded any curvature information of 〈., |.|K〉 by setting
V(k), in our conceptual algorithm 2.24, equal to zero for all k ∈ N0. In this section we
discuss the usage of (some) non-zero choices for V(k). Now ideally we would find a rule to
choose V(k) that is well defined, ensures invertibility of H − V(k) for all k ∈ N0, is imple-
mentable and leads to faster (super-linear) convergence of 2.24 than the zero choice. While
I do not think that this ’ideal’ algorithm is achievable in general, it is achievable under
suitable extra assumptions. It should be noted that in practice these methods are heuristic
methods to some extent, as the extra assumptions may not be matched by reality. When
dealing with second-order methods to find zeros of functions, we usually first think about
Newton’s method, i.e. (in Rn) following (negative) directions that are a product of the
inverse Jacobian times the function at the current iterate and repeating the procedure until
a convergence criterion is satisfied. Recall that we are especially interested in finding zeros
of

∇f(Z) = 1
2H[Z]− 1

2 |Z|K +R (226)

and that its ”Jacobian”, i.e. the true second derivative (the ”Hessian”) of f does not
necessarily exist.

Figure 8: Maple Plot of the generalized absolute value, its antiderivative and its ”derivative”
for K = R+. In zero there are multiple values shown, since the usual derivative is not well
defined, the plot actually shows Clarke’s generalized derivative.

The main idea is to now use a different but well defined operator instead of the possibly
non-existing inverse second derivative.

72

5.1 Generalized Newton Approach

If we employ our previous notation of generalized derivatives, then a generalized Newton
method could look like this:

Z(k+1) := Z(k) −M−1
k [∇f(Z(k))] (227)

where we choose the linear operator Mk ∈ L(E,E) either from the Bouligand derivative
Mk ∈ ∂2

Bf(Z(k)) or from Clarke’s generalized derivative Mk ∈ ∂2
Bf(Z(k)). While the choos-

ing rule is well defined, there is no reason for (227) to be well defined, because we have
in general no control over the invertibility of elements from ∂2

Bf(Z(k)) or from ∂2f(Z(k)) .
Recall that the sets have the forms

∂2
Bf(Z) = 1

2H−
1
2∂B|Z|K and ∂2f(Z) = 1

2H−
1
2∂|Z|K

and let us collect a few results on what we know about these generalized derivative sets.
From Lipschitz continuity of a function it is easy to see that the Lipschitz constant gives us
an upper bound on the operator norm of the derivative of that function whenever it exists.
For us this especially implies the following bounds.

Lemma 5.1. Let Z ∈ E be arbitrary. Then

||VB|| ≤ 1 and ||12(H− VB)|| ≤ 1 ∀ VB ∈ ∂B|Z|K (228)

as well as
||V|| ≤ 1 and ||12(H− V)|| ≤ 1 ∀ V ∈ ∂|Z|K (229)

hold true.

Proof. |.|K is nonexpansive, i.e. 1-Lipschitz continuous which implies the first inequality.
All other inequalities are then implied by the triangle inequality. �

One might be wondering whether it makes a difference to choose a Bouligand or a Clarke
derivative. While this might actually make a difference regarding condition numbers, it
does not make any difference regarding invertibility, as the the following lemma shows.

Lemma 5.2. Let Z ∈ E be arbitrary. Then the elements 1
2(H−VB) ∈ ∂2

Bf(Z) are invertible
for all VB ∈ ∂B|Z|K if and only if 1

2(H− V) ∈ ∂2f(Z) are invertible for all V ∈ ∂|Z|K.

Proof. Because of the inclusion ∂2
Bf(Z) ⊂ ∂2f(Z) one direction is trivial. We prove the

other direction by contradiction. Assume that all elements 1
2(H−VB) ∈ ∂2

Bf(Z) are regular,
but 1

2(H − V) ∈ ∂2f(Z) is singular. Then there exists ∆Z ∈ E with ‖∆Z‖ = 1 and
1
2(H − V)∆Z = 0. By Caratheordorys theorem we can write V ∈ ∂|Z|K as V =

∑l
i=1 λiVi

for some Vi ∈ ∂B|Z|K and λi > 0 with
∑l

i=1 λi = 1. If we use compatibility of the operator
norm well as our previous lemma, we see that

1 = ‖∆Z‖ = ‖H[∆Z]‖ = ‖V[∆Z]‖ =

∥∥∥∥∥
l∑

i=1

λiVi[∆Z]

∥∥∥∥∥ ≤
l∑

i=1

λi ‖Vi[∆Z]‖

≤
l∑

i=1

λi||Vi|| ‖∆Z‖ =

l∑
i=1

λi||Vi|| ≤
l∑

i=1

λi = 1

73

implies that in fact ‖Vi[∆Z]‖ = 1 ∀i ∈ {1, .., l} holds true. Therefore we can use the Cauchy
Schwarz inequality

1 = ‖∆Z‖2 = ‖H[∆Z]‖2 = ‖V[∆Z]‖2 =

∥∥∥∥∥
l∑

i=1

λiVi[∆Z]

∥∥∥∥∥
2

=

l∑
i,j=1

λiλj〈Vi[∆Z],Vj [∆Z]〉

≤
l∑

i,j=1

λiλj ‖Vi[∆Z]‖ ‖Vj [∆Z]‖ =

l∑
i,j=1

λiλj = (

l∑
i=1

λi)
2 = 1

and obtain 〈Vi[∆Z],Vj [∆Z]〉 = 1∀i, j ∈ {1, .., l}.∥∥1
2(H− Vj)[∆Z]

∥∥ = 1
4(‖∆Z‖︸ ︷︷ ︸

=1

−2〈H[∆Z]︸ ︷︷ ︸
=V[∆Z]

,Vj [∆Z〉+ ‖Vj [∆Z]‖︸ ︷︷ ︸
=1

= 1
2(1− 〈

l∑
i=1

λiVi[∆Z],Vj [∆Z]〉︸ ︷︷ ︸
=1

= 0

which yields a contradiction to the invertibility of 1
2(H− Vj). �

The usual argument in order to show convergence of generalized Newton methods now
starts with an assumption, namely that if all element of either ∂2

Bf(Z) or ∂2f(Z) are
invertible for some Z ∈ E, then there exists a neighborhood of NB ⊂ E of Z on which the
generalized derivatives are also invertible. Let us adapt the notation of the according result
from [71] Lemma 2.6., where this property is called strong BD-regularity.

Lemma 5.3. Let X ∈ E be arbitrary. If all elements of ∂2
Bf(X) are invertible, then there

exists a neighborhood NB of X and a constant γB > 0, such that for any Y ∈ NB and
MB ∈ ∂2

Bf(Y), MB is nonsingular and

||M−1
B || ≤ γB (230)

Together with our previous lemma we can state the following corollary specific to our
situation.

Corollary 5.4. Let X ∈ E be arbitrary. If all elements of ∂2
Bf(X) are invertible, then

there exists a neighborhood N of X and a constant γ > 0, such that for any Y ∈ N and
M∈ ∂2f(Y), M is nonsingular and

||M−1|| ≤ γ (231)

Proof. According to Lemma 5.3. there exists a neighborhood NB of X and and constant
γB such that for any Y ∈ NB and MB ∈ ∂2

Bf(Y), MB is nonsingular and ||M−1
B || ≤ γB.

By using Lemma 5.2 we know that any M ∈ ∂2f(Y) must also be invertible. Therefore
the inverse operator function inv : ∂2f(Y) → L(E,E),M 7→ M−1 is continuous. Since
∂2f(Y) is compact this implies that γY := sup

M∈∂2f(Y)

||M−1|| is finite. We can now choose

sufficiently small ε > 0 such that the (closed) ε-ball Bε(X) around X satisfies Bε(X) ⊂ NB

74

and γY is bounded on the intersection NB ∩ Bε(X), i.e. γ := sup
Y ∈NB∩Bε(X)

γY is finite.

Otherwise there would exist a sequence {Yk}k∈N converging to X and a sequence {Mk}k∈N
with ||M−1

k || → ∞. Moreover Mk ∈ ∂2f(Yk) is bounded in norm, and therefore without
loss of generality convergent to some M̄. By using the definition of Clarke’s generalized
derivative we see that M̄ ∈ ∂2f(X) is satisfied, yielding a contradiction to the finiteness of
γX . Specifically we obtain for all Y ∈ N := int(NB ∩Bε(Z)) the claimed inequality. �

Remark 5.5. Above corollary is highly dependent on the special form of ∂2f and does
not hold in general, as one can easily see from the normal absolute value function. Also
note that we can replace the open neighborhoods NB and N with for example a closed ε-ball
(for sufficiently small ε > 0) and then relate the ”smallest” constants from lemma 5.3 and
Lemma 5.4 via γB ≤ γ. Even on the same neighborhood there does not seem to be a reason
for the ”smallest” constants to be equal though, and I think that examples can be constructed
such that they are not. This could potentially affect the size of any area of attraction in a
local convergence result.

Additionally to invertibility, we make another assumption regarding the approximation
quality of the generalized derivatives in order to show local convergence of (227) (see [44]
2.3. for an example of non-convergence of the generalized Newton method). Specifically
one assumption to be considered is the situation where Z(∗) ∈ E satisfies ∇f(Z(∗)) = 0 and
for any V ∈ ∂|Z(∗) + ∆Z|K the relation

|Z(∗) + ∆Z|K − |Z(∗)|K − V[∆Z] ∈ o(‖∆Z‖) for ∆Z → 0 (232)

holds. Relation (232) was discussed in a more general setting in [42] (theorem 2). More
importantly though, it has also been identified to be essentially12 a necessary condition
for local convergence. Here we choose to use the slightly stronger, and more common,
concept of semismoothness, which was introduced for functionals in [59] and later extended
to vector-valued functions [70]. Although our functions here are not vector valued in the
usual sense, we can still think of them as such by employing an isometric isomorphism.
Therefore all known results regarding semi-smoothness can be applied in our situation. Let
us translate this property for our particular case.

Definition 5.6. For Z ∈ E we say that |.|K is semismooth at Z if the limit

lim
V∈∂|Z+t∆Z′|K

∆Z′→∆Z, t↓0

V[∆Z ′] (233)

exists for all ∆Z ∈ E.

The general definition includes local Lipschitz continuity as a requirement, which is of course
globally fulfilled by |.|K. In order to make above definition ”usable”, we need to introduce
the following notation of directional derivatives

|Z|′K(∆Z) := lim
t↓0

|Z + t∆Z|K − |Z|K
t

(234)

12If one uses Clarke’s generalized derivative in the generalized Newton method for finding a zero of a
Lipschitzian homeomorphism. See theorem 3 of [42]

75

of |.|K at Z ∈ E in direction ∆Z. Note that above limit does not need to exist in general,
but semismoothness actually implies its existence, as we see by considering the following
well known equivalences (see e.g. [70], [72] or [29] for proofs of a general version).

Lemma 5.7. The following statements are equivalent:

1. |.|K is semismooth at Z

2. |Z|′K(∆Z) exists for all ∆Z ∈ E and for any V ∈ ∂|Z + ∆Z|K∥∥V[∆Z]− |Z|′K(∆Z)
∥∥ = o(‖∆Z‖) (235)

for ∆Z → 0

3. |Z|′K(∆Z) exists for all ∆Z ∈ E and for any V ∈ ∂|Z + ∆Z|K

‖|Z + ∆Z|K − |Z|K − V[∆Z]‖ = o(‖∆Z‖) (236)

for ∆Z → 0

The last characterization (for Z = Z(∗)) obviously implies (232), but it is strictly stronger
because in general |.|K does not need to be directional differentiable (for an example of a
convex projection that is not directional differentiable everywhere, see for [76]). Another
reasonable and even stronger assumption is the concept of γ-order semismoothness.

Definition 5.8. For 0 < γ ≤ 1 the generalized absolute value |.|K is called γ-order-
semismooth at Z ∈ E if |Z|′K(∆Z) exists for all ∆Z ∈ E and for any V ∈ ∂|Z + ∆Z|K

‖|Z + ∆Z|K − |Z|K − V[∆Z]‖ = o(‖∆Z‖1+γ) (237)

for ∆Z → 0. We call |.|K strongly semismooth if it is 1-order semismooth.

Now luckily neither semismoothness nor γ-order semismoothness is a very restrictive as-
sumption in our case. For example the generalized absolute value is strongly semismooth if
the cone K is either the nonnegative orthant (trivial exercise), the second-order cone ([12]
proposition 4.3) or the semidefinite cone ([80] theorem 4.13). In fact a function is (γ-order)
semismooth if and only if its components are so(see e.g. [89] proposition 3.6) and therefore
the generalized absolute value of any direct product of the above cones will be strongly
semismooth. Let us write out the generalized Newton iteration without the index k. If we
assume that Z(∗) ∈ E satisfies ∇f(Z(∗)) = 0 and 1

2(H−V) =:M∈ ∂2f(Z) to be invertible
we obtain

Z − (M)−1[∇f(Z)]− Z(∗) =M−1[M[Z − Z(∗)]−∇f(Z)]

=M−1[1
2(H− V)[Z − Z(∗)]− (∇f(Z)−∇f(Z(∗)))]

=M−1[1
2(H− V)[Z − Z(∗)]− 1

2(H[Z − Z(∗)]− (|Z|K − |Z(∗)|K)]

= 1
2M

−1[|Z|K − |Z(∗)|K − V[Z(∗) − Z]]
(238)

and therefore∥∥∥Z − (M)−1[∇f(Z)]− Z(∗)
∥∥∥ ≤ 1

2 ||M
−1||

∥∥∥|Z|K − |Z(∗)|K − V[Z(∗) − Z]
∥∥∥ (239)

76

holds true. If we assume that Z approaches Z(∗), Z → Z(∗) and we further assume
M ∈ ∂2f(Z) to remain bounded, the rate of convergence relies greatly on the level of
semismoothness of |.|K and in fact the following result is true.

Theorem 5.9. Let ∇f : E → E be defined as in (226), suppose that Z(∗) ∈ E satisfies
∇f(Z(∗)) = 0 and that all elements of ∂2

Bf(Z(∗)) are invertible. Then the generalized Newton
method (227) converges Q-superlinearly in a neighborhood of Z(∗) if |.|K is semismooth in
Z(∗) and it converges quadratically if |.|K is strongly semismooth in Z(∗).

Proof. According to lemma 5.2 all elements of ∂2f(Z(∗)) are invertible. Since (strong)
semismoothness is closed under scalar multiplication as well as summation and H[Z] is
continuously differentiable and therefore strongly semismooth (see e.g. [89] propositions 3.4
and 3.5), ∇f is semismooth at Z(∗). The claim then follows from [71](theorem 3.1) if all
operators Mk are chosen from ∂2

Bf(Z(k)) or from [70] (theorem 3.2) if they are choosen
from ∂2f(Z(k)). �

Above theorem reflects the opportunities that the generalized Newton method yields as
well as its limitations. The fast local convergence relies on a certain amount of regularity
and on an approximation property. While semismoothness will in practice not really be
an issue, the locality argument and regularity assumption might. Let us address a possible
solution for the regularity issue first. One attempt to consider is of course the usage of
pseudo-inverses. Our previous theory fits another, and apparently well studied, approach
much better, which we briefly present here. Consider the regularized function

∇fλ(Z) := (1− λ)∇f(Z) + λ
2H[Z − Z(0)] (240)

for arbitrary but fixed Z(0) ∈ E. It is easy to see that

Tλ(Z) : = Z − 2H[∇fλ(Z)]

= λZ(0) + (1− λ)H[|Z|K − 2R]
(241)

is a contraction for every λ ∈ (0, 1]. By the Banach contraction theorem we conclude that
Tλ has a unique fixed point Zλ ∈ E and therefore ∇fλ a unique zero for every λ ∈ (0, 1]. We
will refer to the curve {Zλ} ⊂ E as Halpern implicit iteration, following the recent phd thesis
[58]. Note that the Halpern implicit iteration has been extensively studied by Browder (see
for example [6], [7]) and it is especially known ([8]) that, if Fix(T0) 6= ∅, than Zλ converges
to the fixed point closest to Z(0) for λ→ 0. Note that ∇fλ is semismooth if and only if ∇f
is too. The difference is that all elements of ∂∇fλ(Z) = 1

2H−(1−λ)∂|Z|K are invertible for
λ ∈ (0, 1], implying that we can in principle use the generalized Newton method to ”follow”
the curve for λ ↘ 0, even when some of the elements of ∂2f(Z(∗)) = ∂∇f0(Z(∗)) are not
invertible. In order to globalize the generalized Newton method, we can use a damped
version, i.e. we modify the iteration (227)

Z(k+1) := Z(k) − tkM−1
k [∇f(Z(k))] (242)

by introducing step lengths tk ∈ (0, 1], which can for example be chosen with respect to the
merit function 1

2 ‖∇f(Z)‖2. Similarly, for the implicit Halpern iteration we can consider

Z
(k+1)
λ := Z

(k)
λ − tλkM

−1
λk [∇fλ(Z

(k)
λ)] (243)

77

with Mλk ∈ ∂∇fλ(Z
(k)
λ), tλk ∈ (0, 1] and analogous merit function. Now the real issue of

(generalized) Newton methods is the high computational cost of solving the linear system.
First, we do know explicit representations of Clarke’s generalized derivative in some cases
(including the non-negative orthant, the second order cone (see [38] Lemma 2.6) and the
semidefinite cone (see [55] or [48]), but in general finding and choosing elements from the
generalized derivative of the generalized absolute value can be much harder than evaluating
the generalized absolute value itself (as we will see in the next section). Second even
if we obtain an explicit representation, the cost of actually solving systems of the form
1
2(H−V)[∆Z] = rhs may be out of scale. For example in the semidefinite case (K = Sn+) the

linear operator 1
2(H−V) can be regarded as a symmetric matrix in S

n2+n
2 ⊂ R

n2+n
2 ×n

2+n
2 .

Direct methods (such as LU- or LDLT-decompositions with backward substitution) would

potentially need O((n
2+n
2)3) = O(n6) floating point operations (as well as lots of memory),

which makes their application virtually impossible even for medium sized n ∈ N. We could
employ iterative methods such as Minres [68] or MINRES-QLP [13], but their convergence
rate relies heavily on the condition numbers of the linear systems (which might be very large
or even infinite). Let us conclude this section and state, that from a practical point of view,
the generalized Newton method is promising as long as the linear systems can be solved
quickly. Unfortunately we have no real control over their explicit forms nor their condition
numbers, as they are extremely problem dependent. In the next section we derive a new
technique that tries to avoid this complication and appears to be a reasonable compromise
between the KM iteration and the generalized Newton method, based on quasi Newton
methods.

5.2 Norm Constrained Quasi Newton Approach

Let us start by recalling the general idea of direct quasi Newton methods. Let us for
simplicity assume that we are given a differentiable function F : Rn → Rn. Assume further
that we are interested in finding a zero x∗ ∈ Rn of F , but we are only given an (arbitrary)
point xk ∈ Rn. Unlike the normal Newton method we do not explicitly use the (inverse)
derivative of F , but an (invertible) approximation Bk ∈ Rn×n to the (averaged) Jacobian
to perform one step. After taking this step

xk+1 := xk −B−1
k F (xk)

we can update the approximation Bk by exploiting the secant equation. This is usually
done by defining Bk+1 as the solution of the optimization problem

minimize
B̃∈Rn×n

||Mk(B̃ −Bk)Mk||F

subject to B̃s̃k = g̃k

(B̃ = B̃T)

for some (invertible) weight matrix Mk ∈ Rn×n, g̃k := F (xk+1)−F (xk) and s̃k := xk+1−xk,
which can be solved explicitly13. One drawback however which is easily seen, is that this

13For example, if Mk = M = MT is symmetric invertible, g = g̃k and s = s̃k then the solution is given by

B+ = B + (g−Bs)cT +c(g−Bs)T

cT s
− (g−Bs)T s

(cT s)2
ccT for c = M−2s, see for example [33].

78

update procedure ignores lots of (possibly available) information about the true Jacobian
of F . For example assume that we are trying to approximate a symmetric Jacobian and for
some reason (e.g. due to some known Lipschitz constant) we know that eigenvalues of the
true (averaged) Jacobian are contained in an interval [µ̃, L̃] for some µ̃, L̃ ∈ R with µ̃ ≤ L̃.
In this case, we might be tempted to solve

minimize
B̃∈Rn×n

||Mk(B̃ −Bk)Mk||F

subject to B̃s̃k = g̃k

B̃ = B̃T

µ̃I � B̃ � L̃I

(244)

instead, but unfortunately there does not seem to be an explicit formula for the solution
and in general the application of a general purpose SDP solver tends to be unreasonably
expensive. We will see shortly that we can dramatically decrease the computational cost
if Bk in (244) is of (shifted) low rank. Note that Bk needs to be of full rank for the outer
method to be well defined. In our case, the trick is to assume that the true Jacobian of
F is a linear combination of a known (symmetric) Matrix H(x) and another (unknown)
term V (x) (for example ∂2f = 1

2(H − ∂|.|K)). If our approximation Bk has inherited this
structure, for example if

Bk = 1
2(H − Vk) (245)

then we only need a new approximation Vk+1 of the unknown term and can define the new
approximation of the Jacobian immediately (for example via Bk+1 := 1

2(H−Vk+1)). Let us
also assume (known) bounds on the eigenvalues of the unknown term (∂|.|K), say µ,L ∈ R
with µ ≤ L. Instead of (244) we can now consider

minimize
Ṽ ∈Rn×n

||Mk(Ṽ − Vk)Mk||F

subject to Ṽ sk = gk

Ṽ = Ṽ T

µI � Ṽ � LI

(246)

for adapted sk, gk. The difference between (244) and (246) is that it may make sense
to assume a low rank structure of Vk (but it does not really for Bk). Let us now show
how we can exploit such a low rank of structure Vk. For a possible application in convex
unconstrained optimization we will actually go a step further and include a shifted low rank
structure (which will not be used here, but might be useful in other situations). If the
known matrix H(x) is a multiple of the identity, then one can skip (246) and immediately
consider (247) below. I am uncertain, whether the result from the next lemma has been
noted before or not. There exist so called self-scaling variable metric algorithms, see for
example [66], but I am not aware that this has been exploited in any practical algorithm.
We will, for now, drop the index k, assume that we are given constants µ ≤ γ ≤ L as well

79

as vectors s, y ∈ Rn, an invertible symmetric matrix M = MT ∈ Rn×n and consider

V+ :=minimize
Ṽ ∈Rn×n

||M(Ṽ − V−)M ||F

subject to Ṽ s = g

Ṽ = Ṽ T

µI � Ṽ � LI

(247)

instead of (246).

Lemma 5.10. Assume that (247) is feasible and that V− = γI + P T−Ŵ−P−, for some

P− ∈ Rp×n and Ŵ− = Ŵ T
− ∈ Rp×p with µ ≤ γ ≤ L are given. Let us define P+ :=

[P T− , s, y]T ∈ R(p+2)×n and assume that range(MP+) ⊂ range(P+) Then any solution of
(247) will have the form

V+ = γI + P T+W+P+

for some symmetric matrix W+ ∈ Rm+2×m+2.

Remark 5.11. Before we begin with the proof of Lemma 5.10 let us note, that we will show
feasibility of (247) (for certain parameter choices) in our situation later on. The reason
we have to assume feasibility here is simple: For arbitrary s, y, µ and L one can easily find
choices that make (247) infeasible (for example y = 2s 6= 0, L = 1). Secondly the condi-
tion range(MP+) ⊂ range(P+) is fulfilled by the PSB (Powell symmetric Broyden), DFP
(Davidon, Fletcher, Powell) and BFGS (Broyden, Fletcher, Goldfarb, Shanno) weighting
matrices 14. Thirdly for small p + 2 � n we can now focus on an optimization Problem
with less variables, namely

W+ ∈ argmin
W=WT∈R(p+2)×(p+2)

||MP T+ (W −W−)P+M ||F

subject to P T+WP+s = g − γs
µI � γI + P T+WP+ � LI

(248)

for W− :=

 Ŵ− 0p×2

02×p 02×2

. Note especially that the semidefinite inequalities can be equiva-

lently stated in the space of symmetric (p+ 2)× (p+ 2) matrices. For small p we can solve
these problems efficiently by for example interior point methods

Proof. Without loss of generality we can assume that P+ is of full row rank equal to p+ 2.
Now we choose U ∈ R(n−p−2)×n such that P+U

T = 0, UUT = In−p−2 and [P T+ , U
T] is

invertible. Since P T+ , U
T] is invertible, we can now write any feasible V of (247) in the form

V = γI + [P T+ , U
T]

W1 W2

W T
2 W3

 [P T+ , U
T]T (249)

14For BFGS we have to interchange the roles of s and y though.

80

for some W1 = W T
1 ∈ R(p+2)×(p+2),W2 ∈ Rp×(n−p−2) and W3 ∈ R(n−p−2)×(n−p−2). Our first

step now is to show that
V̂ = γI + P T+W1P+

is also feasible for (247). From Us = 0 and Ug = 0, we conclude that

g = V s = γs+ P T+W1P+s+ UT W2P+s︸ ︷︷ ︸
=0

= V̂ s (250)

holds true. By multiplying the chain of convex inequalities

µI � γI + [P T+ , U
T]

W1 W2

W T
2 W3

 [P T+ , U
T]T � LI (251)

with the orthogonal matrix [P T+ (P+P
T
+)−

1
2 , UT] from the right and its transpose from the

left one obtains the chain of inequalities

µI � γI +

(P+P
T
+)

1
2W1(P+P

T
+)

1
2 (P+P

T
+)

1
2W2

W T
2 (P+P

T
+)

1
2 W3

 � LI (252)

and together with µ− γ ≤ 0 and L− γ ≥ 0 this implies that

µI � γI +

(P+P
T
+)

1
2W1(P+P

T
+)

1
2 0

0 0

 � LI (253)

is fulfilled. If we now finally multiply (253) by [P T+ (P+P
T
+)−

1
2 , UT] from the left and with its

transpose from the right, we obtain the desired result: V̂ is feasible for (247). In our second
step will we show that the objective value of (247) does not increase when one replaces
V by V̂ . With the definition of W− from remark 5.11 we can write V− = P T+W−P+ and
therefore obtain

||M(V − V−)M ||F =||

P+M
2P T+ 0

0 In−m−2


1
2
W1 −W− W2

W T
2 W3

P+M
2P T+ 0

0 In−m−2


1
2

||F

≥||(P+M
2P T+)

1
2 (W1 −W−)(P+M

2P T+)
1
2 ||F

=||MP T+ (W −W−)P+M ||F
=||M(V̂ − V−)M ||

(254)
where we used the fact that PMUT = 0 as well as some well known trace identities for the
first equality. �

Let us now investigate the applicability for the derivative of the reduced Lagrangian and
the generalized absolute value.

81

5.2.1 NCQNM for the Generalized Absolute Value

Assume again that we are interested in finding a zero of

∇f(Z) = 1
2H[Z]− 1

2 |Z|K +R (255)

as before. We start by transferring the norm constrained quasi Newton method (NCQNM)
approach above to this function. In the Newton iteration (227) we replace the (generalized)
second derivativeMk with an (invertible) approximation Bk ≈Mk ∈ ∂2f(Z), i.e the quasi
Newton method could take the form

Z(k+1) := Z(k) − B−1
k ∇f(Z(k)) (256)

for k ∈ N0 and some initial iterate Z(0) ∈ E. The main questions to be answered is, how
can we choose the approximations Bk ∈ L(E,E) such that we can still (hope to) obtain
fast local convergence, but at the same time avoid the immense computational cost of the
generalized Newton method. Let us translate the usual approach and consider

∇f(Z(k+1)) = 1
2H[Z(k) − B−1

k ∇f(Z(k))]− 1
2 |Z

(k+1)|K +R
= ∇f(Z(k))− 1

2(|Z(k+1)|K − |Z(k)|K +H[B−1
k ∇f(Z(k))])

= ∇f(Z(k))− 1
2(|Z(k+1)|K − |Z(k)|K + (H− 2Bk + 2Bk)[B−1

k ∇f(Z(k))])

= −1
2(|Z(k+1)|K − |Z(k)|K + (H− 2Bk)[B−1

k ∇f(Z(k))])

(257)

which for Bk = 1
2(H− Vk) implies

∇f(Z(k) − B−1
k ∇f(Z(k))) = −1

2(|Z(k+1)|K − |Z(k)|K + Vk[B−1
k ∇f(Z(k))]

= −1
2(|Z(k+1)|K − |Z(k)|K − Vk[Z(k) − B−1

k ∇f(Z(k))− Z(k)]

= −1
2(|Z(k+1)|K − |Z(k)|K − Vk[Z(k+1) − Z(k)]

(258)
and therefore that in an ideal world we would choose Vk such that above quantity is equal
to zero. Since B−1

k depends on Vk this is to hard to achieve in general (as it is equivalent
to finding a zero of ∇f). We can however choose the next approximation Vk+1 ”close” to
Vk from the affine subspace of all linear operators that satisfy the secant equation,

{V ∈ L(E,E) | |Z(k+1)|K − |Z(k)|K = V[Z(k+1) − Z(k)]} (259)

which is non-empty and contains at least one element from conv(∂|[Z(k), Z(k+1)]|K due to
the mean value theorem (proposition 2.21). We have already seen that all operators in ∂|.|K
are self-adjoint, and therefore we can restrict the affine subspace above to the affine space
of self-adjoint linear operators that satisfy the secant equation,

SEC(Z(k), Z(k+1)) := {V ∈ L(E,E) | |Z(k+1)|K−|Z(k)|K = V[Z(k+1)−Z(k)], V = V∗} (260)

which is therefore again non-empty. In fact note that if VS is any self adjoint operator, then
the ”symmetrization” V + V∗ of any linear operator V yields a closer approximation to VS

82

in the operator norm

||12(V + V∗)− VS || = ||12(V + V∗)− 1
2(VS + V∗S)||

≤ ||12(V − VS)||+ ||12(V∗ − V∗S)||
= ||V∗ − V∗S ||
= ||V − VS ||

(261)

than either one of the operators V or V∗. Now to realize the norm constrained quasi New-
ton approach we obviously need to specify what exactly we mean by the words ”close”
and ”choose” and also address the computational cost. In order to choose the new linear
operator Vk+1 we will (again) follow the most common way of projecting the current ap-
proximating Vk onto a (non-empty, closed and convex) subset of L(E,E) with respect to
some (weighted) norm. Note that it is in principle possible to project with respect to the op-
erator norm, but also computationally challenging and therefore unfavorable in practice. In
fact we will use a, possibly weighted, Hilbert-Schmidt norm, which is essentially equivalent
to the Frobenius-Norm in finite dimension. We denote the Hilbert-Schmidt inner product
〈X ,Y〉HS : L(E,E)× L(E,E)→ R given by

〈X ,Y〉HS := Tr(X ∗Y) (262)

where Tr : L(E,E) → R denotes the trace operator Tr(Z) =
∑

k〈Z[ek], ek〉 for some
orthonormal Basis {ek}k ⊂ E of E. Note that this definition is in fact independent of the
orthonormal basis (Tr(Z) is equal to the sum of eigenvalues of Z which does not rely on
any basis representation). Note that 〈X ,Y〉HS is clearly bilinear and the equality

Tr(Z) = Tr(Z(∗)) (263)

implies symmetry 〈X ,Y〉HS = 〈Y,X〉HS as well as positive definiteness of 〈X ,X〉HS (i.e.
the Hilbert-Schmidt inner product, is really an inner product and L(E,E) equipped with
〈., .〉HS is a Euclidean space. We denote the induced norm by

||X ||HS :=
√
〈X ,X〉HS (264)

for X ∈ L(E,E). It is well known, that if we write

Sym(E) := {X ∈ L(E,E) | V = V∗} (265)

and
Skew(E) = {X ∈ L(E,E) | V = −V∗} (266)

then these spaces are orthogonal Sym(E) ⊥ Skew(E) (with respect to the Hilbert-Schmidt
inner product) and the space

L(E,E) = Sym(E)⊕ Skew(E) (267)

decomposes as a direct sum, especially implying that Sym(E) equipped with the Hilbert-
Schmidt inner product is again a Euclidean space. We have already seen that the operator
norm of every element in the generalized derivative is bounded by one, which especially

83

implies that the eigenvalues of any element of conv(∂|[Z(k), Z(k+1)]|K) are contained in the
interval [−1, 1]. As a consequence the optimization problem

minimize
Ṽ∈Sym(E)

||M(Ṽ − V−)M||HS

subject to Ṽ[S] = G

− I � Ṽ � I

(268)

has a non-empty feasible set for S = Z(k+1)−Z(k) and G = |Z(k+1)|K−|Z(k)|K independent
of k. Therefore, for self-adjoint invertibleM satisfying a range condition as in Lemma 5.10,
we know that (268) attains a unique optimal solution. If we now assume that V− = P∗W̃−P
satisfies ||V−|| ≤ 1 and is of low rank , i.e. p ∈ N is ”small”, P : E → Rp is a linear operator,
P∗ denotes its adjoint operator and W̃− = W̃ T

− ∈ Rp×p is a symmetric matrix, then we know
(from Lemma 5.10 and Remark 5.11) that the problem (268) can be reformulated as an SDP
of size (p+2)×(p+2). Specifically, if P+ : E → Rp+2 and W− = W T

− ∈ R(p+2)×(p+2) denote
”extended” operators (for example as in Lemma 5.11.), and W+ = W T

+ ∈ R(p+2)×(p+2) is
an optimal solution of

minimize
W̃=W̃T∈R(p+2)×(p+2)

||(P+M2P∗+)
1
2 (W̃ −W−)(P+M2P∗+)

1
2 ||HS

subject to P∗+W̃P+[S] = G

− I � (P+P∗+)
1
2 W̃ (P+P∗+)

1
2 � I

(269)

then V+ := P∗+W+P+ solves (268). Whenever p is relatively small, we can solve (269)
efficiently by iterative methods. Specifically we will use the PSB weight matrix

M := I (270)

in our numerical implementation, as this choice is always well defined and easy to implement.
We will address further implementation details later on, especially how to recursively form
the product P+P∗+. For now let us assume that this product is cheaply available and let us
point out that that if M2 is equal to the sum of the identity and a low rank matrix, then
PM2P∗ might also be cheaply available. This is for example the case for the DFP and
BFGS weighting matrices, although they need to be modified15 whenever the inner product
〈S,G〉 < 0 is negative and can not be defined when the inner product 〈S,G〉 = 0 is equal
to zero (as this would contradict positive definiteness of M2, assuming that G 6= 0 6= S).

Note that our work so far, can be easily transfered to the broader setting of locally
Lipschitz continuous gradients, whenever we know something about the (local) constants.
In the next subsection we will investigate a certain structure of the generalized absolute
value (which is not necessarily shared by the class of Lipschitz continuous gradients), that

15For example we can choose invertible M = MT conditionally such that

gT s > 0⇒M2g = s

gT s < 0⇒M2g = −s
(271)

is satisfied.

84

allows a certain local refinement. It turns out that our refinement exploiting this structure
will be in conflict with the full exploitation of certain averaged (or global) information, but
nevertheless seems to work well in our numerical examples.

5.2.2 Local Refinement

Our local refinement is based on the following observation. Although we do not know much
about the eigenvectors (apart from their existence) of 1

2(H−VB) ∈ ∂2
Bf(Z) we have access

to up to two eigenvectors of VB ∈ ∂B|Z|K, and their computation involves almost no extra
computational cost.

Proposition 5.12. Let Z ∈ E be arbitrary. Then the equalities

VB[ΠK(Z)] = ΠK(Z) ∀ VB ∈ ∂B|Z|K (272)

and
VB[ΠKP (Z)] = −ΠKP (Z) ∀ VB ∈ ∂B|Z|K (273)

hold true, i.e. whenever the projections are not zero (ΠK(Z) 6= 0 or ΠKP (Z) 6= 0) they are
eigenvectors (with eigenvalues one respectively minus one) of all elements VB ∈ ∂B|Z|K and
therefore of all elements V ∈ ∂|Z|K.

Remark 5.13. For Z ∈ E let us define the affine subspace

EIG(Z) := {V ∈ L(E,E) | V = V∗,V[ΠK(Z)] = ΠK(Z), V[ΠKP (Z)] = −ΠKP (Z)} (274)

and note that (7) readily provides a formula to project (with respect to any induced norm)
onto EIG(Z).

Proof of Proposition 5.12. Let VB ∈ ∂B|Z|K be arbitrary. Each equality is trivial whenever
the projections are equal to zero. Let us therefore assume that ΠK(Z) 6= 0 and ΠKP (Z) 6=
0. By definition of the B-derivative there exists a sequence {Zk}k∈N ⊂ E \ Ω∇f with
limk→∞ Zk = Z and limk→∞∇|Zk|K = VB . Let us assume without loss of generality that
ΠK(Zk) and ΠKP (Zk) are not equal to zero for all k ∈ N. If we replace Z with Zk and
∆Z = tΠK(Zk) in the definition of F-differentiability we obtain

0 = lim
t→0

‖|Zk + tΠK(Zk)|K − |Zk|K −∇|Zk|K[tΠK(Zk)]‖
‖tΠK(Zk)‖

= lim
t→0

‖|(1 + t)ΠK(Zk) + ΠKP (Zk)|K − |Zk|K −∇|Zk|K[tΠK(Zk)]‖
‖tΠK(Zk)‖

= lim
t→0

‖(1 + t)ΠK(Zk)−ΠKP (Zk)− |Zk|K −∇|Zk|K[tΠK(Zk)]‖
‖tΠK(Zk)‖

= lim
t→0

‖tΠK(Zk)−∇|Zk|K[tΠK(Zk)]‖
‖tΠK(Zk)‖

= lim
t→0

‖ΠK(Zk)−∇|Zk|K[ΠK(Zk)]‖
‖ΠK(Zk)‖

=
‖ΠK(Zk)−∇|Zk|K[ΠK(Zk)]‖

‖ΠK(Zk)‖

(275)

85

which implies ∇|Zk|K[ΠK(Zk)] = ΠK(Zk) ∀k ∈ N. This proves the equality of our claim,
since all terms in this equation are convergent for k → ∞. The second equality follows
by replacing Z with Zk and ∆Z = −tΠKP (Zk) in the definition of F-differentiability. We
obtain

0 = lim
t→0

‖|Zk − tΠKP (Zk)|K − |Zk|K −∇|Zk|K[−tΠKP (Zk)]‖
‖tΠKP (Zk)‖

= lim
t→0

‖|ΠKP (Zk) + (1− t)ΠKP (Zk)|K − |Zk|K +∇|Zk|K[tΠKP (Zk)]‖
‖tΠKP (Zk)‖

= lim
t→0

‖ΠK(Zk)− (1− t)ΠKP (Zk)− |Zk|K +∇|Zk|K[tΠKP (Zk)]‖
‖tΠKP (Zk)‖

= lim
t→0

‖tΠKP (Zk) +∇|Zk|K[tΠKP (Zk)]‖
‖tΠKP (Zk)‖

= lim
t→0

‖ΠKP (Zk) +∇|Zk|K[ΠKP (Zk)]‖
‖ΠKP (Zk)‖

=
‖ΠKP (Zk) +∇|Zk|K[ΠKP (Zk)]‖

‖ΠKP (Zk)‖

(276)

and therefore ∇|Zk|K[ΠKP (Zk)] = −ΠKP (Zk). Again our claim follows by noting that all
terms are convergent for k →∞. �

Remark 5.14. Let us also give an example of a possible further refinement for a certain
block structure. Assume that our cone K ⊂ E and our space E are given as Cartesian
products, i.e. K is given as a Cartesian product of two (non-empty, closed and con-
vex) cones K = K1 × K2 ⊂ E1 × E2 = E for some Euclidean spaces E1, E2 satisfy-
ing 〈., .〉E = 〈., .〉E1 + 〈., .〉E2. Then we obtain for Z = (Z1, Z2) ∈ E the decomposition
ΠK(Z) = (ΠK1(Z1),ΠK2(Z2)) = (ΠK1(Z1), 0)︸ ︷︷ ︸

∈K

+ (0,ΠK2(Z2))︸ ︷︷ ︸
∈K

and by transferring the limit

argument from our previous proof, we see that X1 = (ΠK1(Z1), 0), X2 = (0,ΠK2(Z2)) must
also satisfy the equation VB[Xi] = Xi, for i ∈ {1, 2}.

By linear combination, we see that knowledge about the generalized derivative implies
knowledge about the value of the generalized absolute value. This means that evaluating
the generalized derivative is always at least as ”difficult” as evaluating the function itself:

Corollary 5.15. Let Z ∈ E be arbitrary. Then the equalities

VB[Z] = |Z|K ∀ VB ∈ ∂B|Z|K (277)

and
VB[|Z|K] = Z ∀ VB ∈ ∂B|Z|K (278)

hold true.

Proof. By applying proposition 5.10 we see that VB[Z] = VB[ΠK(Z) + ΠKP (Z)] = ΠK(Z)−
ΠKP (Z) = |Z|K and VB[|Z|K] = VB[ΠK(Z) − ΠKP (Z)] = ΠK(Z) + ΠKP (Z) = Z hold true
for any VB ∈ ∂B|Z|K. �

86

Corollary 5.16. Let Z ∈ E \ {0} be arbitrary. Then the operator norm of the generalized
derivatives at Z is always equal to one, i.e.

||VB|| = 1 ∀ VB ∈ ∂B|Z|K (279)

and
||V|| = 1 ∀ V ∈ ∂|Z|K (280)

hold true.

Proof. We have already seen that the inequalities ||VB|| ≤ 1 and ||V|| ≤ 1 are true. Since
Z 6= 0 we obtain that ΠK(Z) and ΠKP (Z) can not be both equal to zero. With the
convention 0

0 = 0 we can use the operator norm definition in conjunction with proposition
5.10 to show

1 ≥ ||V|| = sup
X∈E
{‖V[Z]‖ | ‖X‖ = 1}

≥ max{
∥∥∥V[ΠK(Z)

‖ΠK(Z)‖]
∥∥∥ ,∥∥∥∥V[

ΠKP (Z)

‖ΠKP (Z)‖]

∥∥∥∥}
= max{

∥∥∥ ΠK(Z)
‖ΠK(Z)‖

∥∥∥ , ∥∥∥∥ ΠKP (Z)

‖ΠKP (Z)‖

∥∥∥∥} = 1

(281)

and therefore ||V|| = 1 ∀V ∈ ∂|Z|K. �

Let us define the unit sphere

SL := {V ∈ L(E,E) | V = V∗, ||V|| = 1} (282)

of self-adjoint linear operators with norm equal to one and the unit ball

BL := {V ∈ L(E,E) | V = V∗, ||V|| ≤ 1} (283)

of self-adjoint linear operators with norm smaller or equal to one. Then another way of
stating corollary 5.15 is that

∂|Z|K ⊂ SL ∀Z ∈ E \ {0} (284)

the generalized derivatives are contained in the unit sphere. Obviously we would like to
exploit the obtained equalities somehow for our quasi Newton method, but as one would
expect there is a compatibility issue. Recall the mean value theorem

|Z(k+1)|K − |Z(k)|K ∈ conv(∂|[Z(k), Z(k+1)]|K)[Z(k+1) − Z(k)] (285)

for the generalized absolute value. Even though the ”endpoints” ∂|Z(k)|K and ∂|Z(k+1)|K are
both contained in the unit sphere SL whenever Z(k) 6= 0 6= Z(k+1), there is no implication
for the set ∂|[Z(k), Z(k+1)]|K other than it being fully contained inside the unit ball BL.

Example 5.17. Consider the absolute value |.|R+ : R→ R and let Z := −1,∆Z = 2. Then
|Z|R+ = 1, |Z + ∆Z|R+ = 1, ∂|Z|R+ = −1, and ∂|Z + ∆Z|R+ = 1 holds true. On the other
hand 0 = 1 − 1 = |Z + ∆Z|R+ − |Z|R+ ∈ ∂|[Z,Z + ∆Z]|R+ [Z + ∆Z − Z] = ∂|[−1, 1]|R+ [1]
implies that the unique element from ∂|[Z,Z + ∆Z]|R+ that satisfies the secant equation is
given by V = 0 and its operator norm is clearly smaller than one.

87

On the other hand, consider a point Z ∈ E and some self-adjoint operator V = V∗ ∈
L(E,E), we consider now the optimization problem

ΠEIG(Z)(V) := argmin
Ṽ∈L(E,E),Ṽ∗=Ṽ

||Ṽ − V||HS

subject to Ṽ[ΠK(Z)] = ΠK(Z)

Ṽ[ΠKP (Z)] = −ΠKP (Z)

(286)

which we can solve by using (7) (where we replace E by Sym(E) and 〈., .〉 by 〈., .〉HS . Let
us give an explicit formula for E = Rn and the standard scalar-product (which is nicer to
write down and one can easily adapt the formula for the general case). Note that in this
case the Hilbert-Schmidt and Frobenius norm coincide. To keep our notation short we write
x and y in place of ΠK(Z) and ΠKP (Z).

Lemma 5.18. (Eigen-Update) Let V = V T ∈ Rn×n, x, y ∈ Rn with xT y = 0. Then the
unique solution of the problem

minimize
Ṽ=Ṽ T∈Rn×n

||Ṽ − V ||F

subject to Ṽ x = x

Ṽ y = −y

(287)

is given by

VEig := (In − xxT

||x||22
− yyT

||y||22
)V (In − xxT

||x||22
− yyT

||y||22
) + xxT

||x||22
− yyT

||y||22
(288)

where In ∈ Rn×n denotes the identity. We use the convention 0
0 = 0, in case x, y or both

are zero.

Proof. This can be easily derived from the projection formula for projecting onto affine
subspaces. �

Corollary 5.19. Let V = V T ∈ Rn×n with ||V || ≤ 1 be satisfied and x, y, VEig as in the
previous lemma, then we obtain

||VEig|| = 1 (289)

if at least one of the vectors x and y is not equal to zero (If they are both equal to zero we
obtain VEig = V).

Proof. If at least one of the vectors x, y is non-zero then VEig has one eigenvalue with
absolute value equal to one. We immediately conclude that ||VEig|| ≥ 1 must be satisfied.
Let us for simplicity assume x 6= 0 6= y. Since VEig is symmetric we can find n − 2 linear
independent Eigenvectors {ui}i=1..n−2 of VEig (with corresponding eigenvalues λi) that are
orthogonal to x and y. We obtain

|λi| = |
uTi VEigui
||ui||2 | = |

uTi V ui
||ui||2 | ≤ ||V || ≤ 1 (290)

and therefore ||VEig|| = max{1, |λ1|, ..., |λn−2|} ≤ 1, which proves our claim. �

88

Coming back to our general notation, we see that for V ∈ Sym(E) with ||V|| ≤ 1 the
equality

ΠEIG(Z)∩BL(V) = ΠEIG(Z)(V) (291)

and for Z 6= 0
ΠEIG(Z)∩SL(V) = ΠEIG(Z)(V) (292)

holds true. Let us summarize what we have learned so far. Assume that we are given
Z(k), Z(k+1) ∈ E and Vk ∈ L(E,E) with Vk = V∗k .

• The mean value theorem might yield relevant averaged curvature information, which
we can exploit by trying to satisfy the secant equation while taking into account that
the operator should be self-adjoint (260) and its norm smaller than or equal to one,
cf. (283). In formulas

V
k+

1
2
∈ SEC(Z(k), Z(k+1)) ∩BL. (293)

• Provided that Z(k+1) 6= 0, the new approximation should be self-adjoint, have oper-
ator norm equal to one and the projections ΠK(Z(k+1)) and ΠKP (Z(k+1)) should be
eigenvectors with eigenvalues one or minus one (whenever these projections are not
equal to zero). In formulas

Vk+1 ∈ EIG(Z(k+1)) ∩ SL (294)

is what we want. Note that the equality EIG(Z(k+1)) ∩ SL = EIG(Z(k+1)) ∩ BL is
true whenever Z(k+1) 6= 0.

• In the following we need to investigate realizations that are also computationally
affordable. We will essentially define the new approximation as projections

V++ := ΠEIG(Z(k+1))∩BL(ΠMk

SEC(Z(k),Z(k+1))∩BL
(Vk)) (295)

of the old ones with respect to some induced (weighted) norms. Specifically we can
control (up to a point) the rank of the new approximation, which motivates a limited
memory strategy, i.e. for an a priori fixed natural number r ≤ dim(E) we will use some
”dementia” functions Dk : L(E,E)→ L(E,E) that limits rank(Dk(Vk)) ≤ 2r but also
respects the operator norm ||Dk(Vk)|| ≤ 1 and self-adjointness Dk(Vk))∗ = (Dk(Vk).
Our final update procedure is then given by

Vk+1 := ΠEIG(Z(k+1))∩BL(ΠMk

SEC(Z(k),Z(k+1))∩BL
(Dk(Vk))) (296)

and can be used in combination with the Shermann-Morrison formula to make the
inversion of 1

2(H−Vk+1) relatively cheap for small r. The overall additional memory
requirement is upper bounded by 2r(dim(E) + m + 6r). The number of additional
flops per iteration will be in O(dim(E)r+r3) plus essentially one additional evaluation
of H[Z].

89

5.2.3 Recursive Inversion

Let us continue by adding one further ingredient in order to make our norm constrained
quasi Newton method efficient. We need to be able to ”cheaply” compute the directions
∆Z(k) = 2(H − Vk)−1∇f(Z(k)). We will do so, by ensuring that our approximation Vk =
P∗kWkPk are self-adjoint, low rank and then employ the following corollary from the well
known Woodbury matrix identity in combination with a recursion (in k).

Corollary 5.20. Let H : E → E be an orthogonal and self-adjoint linear operator. Let
V : E → E a linear self-adjoint operator with a decomposition V = P∗WP such that W is
invertible. If W−1 − PHP∗ is non-singular, then

(H− V)−1 = H+HP∗(W−1 − PHP∗)−1PH (297)

Proof. This is a direct implication from the well known Woodsbury matrix identity (see
[94]). �

Let us for simplicity assume that V+ is given as V+ = P∗+W+P+ for linear P+ : E → R2p+2

and invertible W+ ∈ R(2p+2)×(2p+2) such that W−1−P+HP∗+ ∈ R2(p+2)×2(p+2) is invertible.
In order to really exploit the Woodsbury formula we employ a ”trick”. Assuming that
the linear operator P+ : E → R2p+2 is a combination of an ”old” (known) linear operator
P : E → R2p and new information, say X,Y ∈ E, it is reasonable to assume that Φ := PP∗
and Ψ := PA∗(AA∗)−1AP∗ have been computed beforehand. Then the new quantities
Φ+ := P+P∗+ and Ψ+ := P+A∗(AA∗)−1AP∗+ can be computed relatively cheaply from the
old quantities Φ and Ψ. For example for

P+ =


P[.]

〈X, .〉

〈Y, .〉

 (298)

we obtain

Φ+ = P+P∗+ =


PP∗ P[X] P[Y]

P[X]T ‖X‖2 〈X,Y 〉

P[Y]T 〈Y,X〉 ‖Y ‖2

 =


Φ P[X] P[Y]

P[X]T ‖X‖2 〈X,Y 〉

P[Y]T 〈Y,X〉 ‖Y ‖2

 (299)

and similar

Ψ+ =P+A∗(AA∗)−1AP∗+

=


Ψ P[A∗(AA∗)−1A(X)] P[A∗(AA∗)−1A(Y)]

P[A∗(AA∗)−1A(X)]T
∥∥A∗(AA∗)−1A(X)

∥∥2 〈A∗(AA∗)−1A(X), Y 〉

P[A∗(AA∗)−1A(Y)]T 〈A∗(AA∗)−1A(Y), X〉
∥∥A∗(AA∗)−1A(Y)

∥∥2

 (300)

90

which can be explicitly computed with two evaluations of A∗(AA∗)−1A four evaluations of
P and no more then six additional evaluations of 〈., .〉. The formula

1
2∆Z :=(H− V+)−1∇f(Z)

=(H+HP∗+(W−1
+ − P+HP∗+)−1P+H)∇f(Z)

=(I +HP∗+(W−1
+ − P+HP∗+)−1P+)H∇f(Z)

=(I +HP∗+(W−1
+ − P+(I − 2A∗(AA∗)−1A)P∗+)−1P+)H∇f(Z)

=(I +HP∗+(W−1
+ − Φ+ + 2Ψ+︸ ︷︷ ︸
∈R2(p+1)×2(p+1)

)−1P+)H∇f(Z)

(301)

then implies that we can derive the directions ∆Z from H[∇f(Z)] with one application
of P∗, one of P and one of A∗(AA∗)−1A. Now depending on the evaluation cost of
A∗(AA∗)−1A it might make sense to trade reduced computational effort for additional
storage requirements. If we are willing to save Θ := (AA∗)−1AP∗ then

Θ+ :=(AA∗)−1AP∗+
=
(

(AA∗)−1AP∗, (AA∗)−1A(X), (AA∗)−1A(Y)
)

=
(

Θ, (AA∗)−1A(X), (AA∗)−1A(Y)
) (302)

can be used to derive

1
2∆Z :=(H− V+)−1∇f(Z)

=(I + (P∗+ − 2A∗Θ+)(W−1
+ − Φ+ + 2Ψ+︸ ︷︷ ︸
∈R2(p+1)×2(p+1)

)−1P+)H∇f(Z) (303)

which might reduce overall computational time. In fact a procedure of the following type

1. Input: X := ΠK(Z), Y := ΠKP (Z),P,Φ,Ψ,Θ,W

2. Output: H∇f(Z) and ∆Z := 1
2(H−P∗+W+P+)−1∇f(Z) as well as Φ+,Ψ+,Θ+,W+

can be realized where (AA∗)−1 has to be evalutated only twice. Note that the evaluation
of H∇f(Z) readily requires one evaluation of (AA∗)−1.

5.2.4 Limited Memory via Compression

The recursive inversion strategy of the last section is only meaningful if we limit the rank
of our approximations Vk ∈ Sym(E). Let us assume we want to enforce the condition
rank(Vk) ≤ 2r ∀k ∈ N and some r ∈ N and that we are given a representation

V− = P∗−W−P− (304)

for P− : E → R2p, symmetric W− ∈ R(2p)×(2p). If p < r holds true then we can easily
append new information as in (298) (with P− instead of P, and any X,Y ∈ E) without
risking to violate the condition rank(V+) ≤ 2r. In contrast if p ≥ r is satisfied, then any

91

appending, e.g. as in (298), is likely to violate the rank condition. The simplest way, that
comes to mind, to deal with this inconvenience is to simply delete old information. For
example if the linear operator is given as

P− =


〈Xold, .〉

〈Yold, .〉

P

 (305)

then we could simply work with P instead of P− as well as the corresponding submatrix
W ∈ R2(p−1)×2(p−1) of W−. Unfortunately the deletion of the first two ”rows” of P− might
yield

||P∗WP|| > 1 (306)

even if the operator norm of V− is bounded from above by one.

Example 5.21. Consider the matrix V− = 1√
2

 1 −1

−1 −1

 which has operator (spectral)

norm equal to one (its eigenvalues are plus and minus one). We can write V− = P T−W−P−

for P− =

1 −1

0 1

 and W− =

 1√
2

0

0 −
√

2

. If we delete the first row of P− and work only

with the corresponding submatrix of W−, we obtain the product
(

0 1
)T

(W−)22

(
0 1

)
=0 0

0 −
√

2

 which has spectral norm
√

2 > 1.

The obvious reason for this unwanted behavior can of course be traced back to the (possible)
non-orthogonality of the ”rows” of P−. For simplicity let us assume that P− is surjective
for now. We could then orthogonalize the ”rows” of P− by using the inverse symmetric

square root (P−P∗−)−
1
2 . In fact we could rewrite

V− = P∗−W−P− = P∗−(P−P∗−)−
1
2 (P−P∗−)−

1
2W−(P−P∗−)

1
2 (P−P∗−)−

1
2P∗ (307)

and use our deleting strategy on (P−P∗−)−
1
2 (instead of P−) without risking to violate

our operator norm condition (whenever ||V−|| ≤ 1 is satisfied). We will avoid this approach
because it does not necessarily follow our intention of forgetting ”old” information (it might
even eliminate ”new” information, because the orthogonalized rows are mostly independent
of their pre-orthogonalization numbering, an approach for which a reasonable justification
is not evident). Instead let us consider the following ”compression” approach, based on the
optimization problem

W ∈ argmin
W̃∈Rp×p,W̃ ∗=W̃

1
2 ||V− − P

∗W̃P||2HS

= argmin
W̃∈Rp×p,W̃ ∗=W̃

1
2 ||P

∗
−W−P− − P∗W̃P||2HS (308)

92

which we can solve explicitly (because it is essentially convex and quadratic). For example
the least squares minimum norm solution is obviously given as

Wmin := (P+)∗V−(P+) = (P+)∗P∗−W−P−P+ (309)

where P+ = P∗(PP∗)+ denotes the Moore-Penrose pseudoinverse of P. For P− =

Pold
P


we can also use the following slightly cheaper formula

W :=
(

(PP∗)+PP∗old I
)
W−

PoldP∗(PP∗)+

I

 (310)

which defines also a solution of (308), since

P∗WP = P∗WminP (311)

is satisfied due to the the equality

P∗
(

(PP∗)+PP∗old I
)

=
(
P∗(PP∗)+PP∗old P∗

)
=
(
P∗(P+)∗P∗old P∗(P∗)+P∗

)
= P∗

(
(P+)∗P∗old (P∗)+P∗

)
=P∗(P+)∗P∗−

(312)

which follows from the definition of the Moore-Penrose pseudoinverse. One benefit of this
approach is that setting our new approximation to

V := P∗WP (313)

respects the spectrum in a certain way, as we shall see below. Even more intriguing are the
low computational costs whenever 2p is small and we have already computed the quantity
Φ− := P−P∗− (which we would recursively update anyway, as discussed in the prior sub-
section.). Let us now specify what we mean by ”respecting” the spectrum and state the
following proposition.

Proposition 5.22. Assume that there exist constants µ ≤ γ ≤ L with

µI � γI + V− � LI (314)

for V− = P−W−P− and P− =

Pold
P

, then W defined as in (310) is a solution of the

optimization problem (308). The semidefinite inequalities

µI � γI + V � LI (315)

are satisfied for the linear operator V := P∗WP.

93

Remark 5.23. Again Proposition 5.22 states a slightly more general result with uncon-
strained convex optimization in mind (For this thesis, only the case µ = −1, γ = 0 and
L = 1 is needed).

Proof. Considering

V − (µ− γ)I = P∗(P+)∗V−P+P − (µ− γ)I
=P∗(P+)∗(V− − (µ− γ)I)P+P︸ ︷︷ ︸

�0

−(µ− γ)(I − P∗(P+)∗P+P︸ ︷︷ ︸
=P∗(PP∗)+P)

� (γ − µ)︸ ︷︷ ︸
≥0

(I − P∗(PP∗)+P)︸ ︷︷ ︸
�0

� 0

(316)

yields the first semidefinite inequality by rearranging the terms. Analogously we obtain

(L− γ)I − V = (L− γ)︸ ︷︷ ︸
≥0

(I − P∗(PP∗)+P)︸ ︷︷ ︸
�0

+P∗(P+)∗((L− γ)I − V−)P+P︸ ︷︷ ︸
�0

� 0
(317)

which shows the second semidefinite inequality. �

In practice, above approach might lead to a waste of reasonably relevant curvature infor-
mation. Let us try to overcome this shortcome by noticing that we don’t need to com-
pletely ignore the ”old” information. In fact we can ”overwrite” the old information in

P− =

Pold
P

 with the new information stored in P+ =

Pnew
P

 by considering

minimize
W̃=W̃T

||P∗+W̃P+ − P∗−W−P−||HS

subject to P∗+W̃P+[S] = G

− I � P∗+W̃P+ � I

(318)

which can again be efficiently solved by interior point methods, as it is in fact equiv-
alent to a (small dimensional) convex quadratic SDP whenever it is feasible (which we
can always enforce by adding the ”new” information appropriately). Let us give a sketch
here and assume, again for simplicity, that P+P∗+ is invertible. By using the transforma-

tion ξ = (P+P∗+)
1
2 W̃ (P+P∗+)

1
2 and together with the definitions B̃ := (P+P∗+)−

1
2P+[S]

g := (P+P∗+)
1
2P+[G], and B− := (P+P∗+)−

1
2P+P∗−W−P−PT+(P+P∗+)−

1
2 we can transform

(318) and see that if B+ is an optimal solution of

minimize
B̃=B̃T

||B −B−||F

subject to Bs = g

− I � B̃ � I

(319)

then the reverse transformed W+ := (P+P∗+)−
1
2B+(P+P∗+)−

1
2 will be a solution of (318).

Note that if V− = P∗−W−P− satisfies ||V−|| ≤ 1 then B− will have eigenvalues in the interval

94

[−1, 1]. We are not going to investigate this here, but there might be hints at the existence
of a (not fully, but relatively explicit) low rank update formula. In our implementation
we will instead use iterative methods to tackle (319) and then reconstruct an approximate
solution of (318). Now that we have all ingredients together, let us focus on computations
once more.

6 Numerical Results

The purpose of this section is to show that the KM iteration can, despite its (horrible
and tight, see section 4) worst-case complexity, in practice often yield an acceptable conver-
gence behavior and that this behavior may be improved by means of norm constrained quasi
Newton methods. The Euclidean spaces and convex cones considered in this section, have
already been discussed in section three. Let us first briefly explain the implementation and
consider some numerical results afterwards. Let us denote with r the (maximal) memory
size parameter (i.e. the upper bound on the rank of P∗ is 2r) and shorten our notation:
We will use NCQNM(r) instead of norm constrained limited memory quasi Newton method
with memory size r. The implementation to be considered in this subsection follows our
conceptual algorithm 2.24. For r = 0 and constant step length tk ≡ t, NCQNM(0) recovers
the (inexact) KM-iteration from section four. For r ∈ N the NCQNM(r) implementation
follows in principle the following path: We set the first16 non-zero linear operator, say V(0)

such that it has the conic projections (ΠK(Z(0)),ΠKP (Z(0))) of the first iterate (Z(0)) as
eigenvectors (with eigenvalues one and minus one) and a rank lower or equal than two.
After taking a step, we obtain the next linear operator V(k+1), until the memory specified
by r is exhausted, by (approximately) projecting the prior operator V− = V (k) first onto
the next operator that satisfies the secant equation and is bounded in operator norm by
one (i.e. solve (268) for M = I). The result of this projection, say V is then again pro-
jected such that it has the conic projections ΠK(Z(k+1)),ΠKP (Z(k+1)) of the current iterate
Z(k+1) as eigenvectors (i.e. exploit an adapted formula of (288)). This result then defines
the next V(k+1). By using a storage scheme that only saves the last r conic projections
(in P) and updates some auxiliary matrices (W,Φ,Ψ,Θ), any explicit formation of V(k) or
V(k+1) is successfully avoided and ||V(k+1)|| = 1 can be guaranteed for all k. Afterwards
we can proceed by computing the next step via recursive inversion discussed in section
5.2.3 (with some modifications for non-invertible approximations). Once the memory is
exhausted, the first projection strategy is adapted such that the oldest conic projections
(ΠK(Z(k−r)),ΠKP (Z(k−r))) are overwritten according to (318). Note that all subproblems
involving the secant equation are only approximately solved by using Dykstra’s projection
algorithm [10]. For small r ∈ N the reduced overhead outweighs the benefits of a more
accurate interior point method and therefore justifies its application. As in our first imple-
mentation considered at the beginning of section four, we again rescale the constant parts
b and C in the definition ∇f internally, essentially preassigning the goal of finding a point
Zfinal ∈ E such that√

‖A∗(AA∗)−1[A(ΠK(Zfinal))−b]‖2

2‖A∗(AA∗)−1[b]‖2 +
‖(I−A∗(AA∗)−1A)[ΠKP (Zfinal)+C]‖2

2‖(I−A∗(AA∗)−1A)[C]‖2 ≤ tol (320)

16By default this happens after a small number (default five) of (inexact) KM iteration steps.

95

is satisfied for some chosen tolerance tol > 0, whenever the denominators are sufficiently
positive. The final MATLAB implementation (1.0) is in fact quite different from the first
implementation. Mathematically it is of course still a version of the conceptual algorithm
2.24. One of these differences is connected to data representation: While we used explicit
sparse matrices in section four to represent the linear operators A, A∗, it is for many prob-
lems much more efficient to exploit the data structure and ”hard code” the application of
these operators, as we briefly discussed in section 2.2. We will start complementing the
results from section four for sparse random SDPs. This (short) subsection will give us an
expectation and we can then explain the implementation in more detail on a class of exam-
ples where above strategy makes a big difference, namely doubly non-negative relaxations
for the max-stable set problem. For all computational results below we used a desktop PC
from 2013 running Ubuntu 16.04 equipped with one Intel i7-4770 CPU which has four cores
clocked at 3.4GHz. The MATLAB version used on this PC was 2017a. In all computations
the initial point was chosen as the zero element Z(0) = 0.

6.1 Sparse Random SDPs

We have already seen some results on the second class of problems in section 4.1, namely
sparse random SDPs. Here we shall complement those tests with our final implementation
(1.0), again on the test set considered in [69] which are available on Franz Rendls Webpage
[74]. The difference is, apart from an upgraded PC (see above for details) as well as
an upgraded operating system and MATLAB version, mainly the possibility of (cheaply)
exploring the convergence behavior of NCQNM(r) for different values of r ∈ N.
In fact, despite relatively large average dimensions, all 24 problems can be solved up to a
tolerance tol = 10−6 in about 3 minutes on the earlier mentioned Desktop PC, on which all
test presented in this section were performed in order to maintain comparability, making it
easy to generate results for different parameters and perfect for testing. We start by estab-
lishing a baseline with the KM iteration (i.e. NCQNM(0)) and then compare NCQNM(r)
to that baseline with the same constant step length t = 0.95 and tolerance tol = 10−6. By
again employing the update scheme for |.|Sn+ as well as the CG method for solving the linear
systems (both have been explained in section four), some minor changes and additionally
exploiting symmetry of the constraint matrices, the numerical results did improve signifi-
cantly (in terms of accuracy and time spent.) over the earlier results to be found in table
(1) . Now the real surprise is that, despite a missing line-search, NCQNM(r) reached the

value value

min(n) 45150 min(m) 10000

rd(median(n)) 180300 rd(median(m)) 50000

rd(mean(n)) 212808 rd(mean(m)) 59583

max(n) 500500 max(m) 150000

Table 7: Minimum, maximum and rounded average number of variables (n) and con-
straints(m) for sparse random SDPs considered in [69].

96

1
2

(n2
s + ns) m it up C •X bT y RP RD gap time cpu

R3002030-p3.mat 45150 20000 100 45 7.61350e+02 7.61352e+02 1.1e-06 2.8e-09 1.1e-06 1.4 5.1

R3002530-p3.mat 45150 25000 300 143 7.38378e+01 7.38384e+01 1.4e-06 7.3e-10 3.8e-06 9.3 20.7

R3001040-p4.mat 45150 10000 166 64 1.65975e+02 1.65975e+02 2.4e-07 7.5e-09 2.4e-08 4.5 10.1

R4003030-p3.mat 80200 30000 109 40 1.07214e+03 1.07214e+03 2.6e-08 6.7e-09 -1.4e-08 1.8 6.3

R4004030-p3.mat 80200 40000 167 58 8.05769e+02 8.05769e+02 1.3e-06 1.1e-09 -5.7e-07 6.6 15.6

R4001540-p4.mat 80200 15000 209 45 -6.55000e+02 -6.55000e+02 2.0e-07 7.5e-09 6.3e-08 6.2 16.9

R5003030-p3.mat 125250 30000 158 57 1.10763e+03 1.10763e+03 2.5e-07 8.2e-09 3.9e-08 3.0 10.6

R5004030-p3.mat 125250 40000 116 37 8.16611e+02 8.16611e+02 9.3e-08 6.5e-09 1.7e-08 2.5 8.9

R5005030-p3.mat 125250 50000 103 26 3.64945e+02 3.64945e+02 6.1e-08 6.1e-09 1.5e-07 2.8 9.4

R5002040-p4.mat 125250 20000 274 116 3.28004e+02 3.28004e+02 1.6e-07 7.3e-09 -1.6e-08 7.4 22.5

R6004030-p3.mat 180300 40000 171 78 3.06617e+02 3.06617e+02 2.3e-07 7.8e-09 7.5e-08 4.4 14.9

R6005030-p3.mat 180300 50000 131 44 -3.86414e+02 -3.86413e+02 2.9e-07 6.6e-09 6.6e-07 3.9 13.2

R6006030-p3.mat 180300 60000 114 37 6.41737e+02 6.41737e+02 5.6e-08 6.1e-09 6.1e-08 3.7 12.4

R6002040-p4.mat 180300 20000 392 160 1.04527e+03 1.04527e+03 1.2e-07 8.4e-09 1.8e-07 9.8 33.4

R7005030-p3.mat 245350 50000 197 7 3.13202e+02 3.13203e+02 2.1e-07 7.5e-09 1.1e-06 8.5 29.1

R7007030-p3.mat 245350 70000 122 40 -3.69558e+02 -3.69559e+02 2.6e-07 6.0e-09 -2.3e-07 5.2 17.0

R7009030-p3.mat 245350 90000 110 36 -2.67555e+01 -2.67555e+01 2.1e-08 5.4e-09 1.5e-07 5.5 17.2

R8007030-p3.mat 320400 70000 177 56 2.33140e+03 2.33140e+03 2.3e-07 6.8e-09 7.0e-08 9.5 31.3

R80010030-p3.mat 320400 100000 116 8 2.25929e+03 2.25929e+03 1.2e-07 5.5e-09 2.7e-08 7.8 25.8

R80011030-p3.mat 320400 110000 113 16 1.85792e+03 1.85792e+03 2.6e-08 5.3e-09 6.3e-09 7.9 25.2

R90010030-p3.mat 405450 100000 150 15 9.54223e+02 9.54223e+02 2.6e-07 5.8e-09 2.6e-07 12.2 40.6

R90014030-p3.mat 405450 140000 113 15 2.31983e+03 2.31983e+03 3.7e-08 4.7e-09 -1.3e-08 10.6 33.0

R100010030-p3.mat 500500 100000 204 55 3.09636e+03 3.09636e+03 2.0e-07 6.5e-09 3.8e-08 19.0 61.6

R100015030-p3.mat 500500 150000 119 26 1.05289e+03 1.05289e+03 2.2e-07 4.8e-09 7.0e-08 12.9 41.2

Table 8: Final implementation (1.0) performance with r = 0, t = 0.95, tol = 10−6 and
Z(0) = 0 on random sparse SDPs considered in [56]. Results differ from (1) due to improved
implementation and/or rounding errors. Wall-clock (time) and total CPU-time (cpu) is
given in seconds.

97

Figure 9: MATLAB plot comparing the (natural) logarithmic advantage (in terms of number
of iterations) of NCQNM(r) for different values of r vs. NCQNM(0) constant step length
t = 0.95 on sparse random SDPs. Every entry below the black line implies that NCQNM(r)
needed less iterations than NCQNM(0) to reach a tolerance of tol = 10−6. The minimal
average number of iteration to solve all considered problems with NCQNM(r), is attained
for r = 22 leading to a speed up, with respect to the number of iterations, of about 210%.

desired tolerance for all problems and for all values of r ∈ {0, ..., 35}, which is an interesting
improvement over regular quasi Newton methods behavior and may be due to the norm
constraint. However for larger memory size r ∈ N the iteration may become less stable due
to multiple reasons, some of which will be addressed below. In figure (9) we compare the
relative number of iterations it takes to reach the desired tolerance tol = 10−6. Note that
the value r = 1 implies that we are only using the Eigenupdate (288) and do not benefit
from the secant equation, which results in additional time spent but not in a convergence
improvement. However for r ∈ {2, 3, 4, 5, 6} we do see significantly lower number of iter-
ations to reach convergence. We can also compare the relative time it takes to reach the
desired tolerance of tol = 10−6. In figure (10) we can clearly see the up- and downsides
of larger values of r. Choosing large values of r ∈ N does not necessarily improve conver-
gence rates significantly (here the improvement seems negligible for r larger then 20), but
it certainly raises the computational time per iteration. On the other hand if, for exam-
ple, we average the number of iterations over all problems, then the minimal number of

98

Figure 10: MATLAB plot comparing the (natural) logarithmic advantage (in terms of time)
of NCQNM(r) for different values of r vs. NCQNM(0) constant step length t = 0.95 on
sparse random SDPs. Every entry below the black line implies that NCQNM(r) needed less
time than NCQNM(0) to reach a tolerance of tol = 10−6. The minimal average time to
solve all considered problems with NCQNM(r), is attained for r = 6 leading to a speed up
in terms of time of about 20%.

iterations for all problems is actually attained for r = 22. While this trade off seems less
beneficial for small dimensions, it might, for large dimensions, be quite tempting to choose
r as large as the computer memory allows. Note however that larger r do not only result
in larger subproblems, but also in less adaptiveness: Old curvature information are kept
longer in memory although they might not be relevant anymore or even wrong due to the
non-differentiability of |.|K. Now as mentioned earlier let us next try to explain some of the
implementation ideas and its usage for another set of test problems.

6.2 Maximum Stable Set Relaxations

In this subsection we consider numerical results for computing the Lovasz numbers θ(G),
θ(Ḡ) and Lovasz-Schrijver numbers θ+(G), θ+(Ḡ) for simple graphs G = (V,E(G)) for
which we already stated the problem formulation in section 3.2.2. Our test graphs consist
of 62 graphs taken from the second DIMACS challenge [34]. Note that we are considering

99

the original graphs (indicated by G and their complement graphs (indicated by Ḡ). Their
roles are sometimes interchanged in the literature (for example in [99]), which does not
pose any problems as long as we are consistent.17 At the time of writing this passage, the
original source download link [36] seems to be broken, but an alternative is given by [37].
Since our problem formulation (1) is posed as a minimization problem, but the max stable
set relaxations (104) and (105) are posed as maximization problems we have to switch signs
and define C := −J . Recall that the scaling used in section 3.2.1 results in AA∗ being
equal to some identity operator of appropriate size, implying that there is no additional
computational cost in its inversion. Note however, that the applied scaling affects the
relative primal and relative dual infeasibility measures

RD :=
||C + S(∗) −A(y(∗))||E

1 + ||C||E
, RP :=

||b−A(X(∗))||2
1 + ||b||2

, gap :=
bT y(∗) − C •X(∗)

1 + |bT y(∗)|+ |C •X(∗)|
(321)

where X(∗), S(∗) := −Y (∗) and y(∗) are computed from the final iterate Zfinal according to
corollary 2.9. We will therefore still report these quantities, but avoid using them in our
analysis. The easiest way of presenting the implementation might be an ”applied” example:
After starting MATLAB and switching to the solvers main directory, the following code will
load the data, create the Lovasz problem, and approximate it with default options via the
(inexact) KM iteration:

pathsetup; % Sets all required paths

Libnum=3; % Corresponds to dimacs2nd

Probnum=2; % Second dataset, here brock200-2.clq

AG=LoadTestProblem(Libnum,Probnum); % Load data, adjacency matrix AG

[Afunc,b,c,K]=CellLovasz(AG); % Create Lovasz problem

[Var,info]=main(Afunc,b,c,K); % Solve problem with default options

Here, Afunc is a MATLAB function handle that can, depending on its input, evaluate the
operators action A(X), A∗(y) or (AA∗)−1y for the Lovasz number problem (105). For the
default options the step length is fixed to t = 0.95, the maximal number of iterations to
maxit = 106 and the tolerance tol = 10−6. This can be adjusted (as well as many other
options) by additionally using a separate options input:

options=setoptions(struct); % Load default options

options.maxit=3000; % Adjust maximal number of iterations

options.tol=0.0001; % Adjust tolerance

options.stepsize=0.5; % Adjust step length t

options.maxtime=600; % Set maximal time to 10 minutes

[Var,info]=main(Afunc,b,c,K,options); % Solve prob with adjusted options

In both cases, the main program prints some information and (upon normal termination)
returns the struct Var in which all final iterates are stored in cells, as well as the struct
info in which additional information is provided. Note that only the lower triangular part

17 Let us note (as an anchor), that the original c-fat200-1 graph has 1534 edges.

100

of symmetric matrix variables are stored in a column vector. The execution time should
be less than half a second on a reasonably new computer running Linux and MATLAB
2016b or 2017a (Probably also on other systems and versions, but there was no testing).
To activate the usage of the norm constrained quasi Newton method, we can use

options=setoptions(struct); % Load default options

options.qnewt.usequnewt=1; % Activate NCQNM

options.qnewt.maxr=10; % Set max approximation rank to ten

[Var,info]=main(Afunc,b,c,K,options); % Solve prob with adjusted options

Note however that there is absolutely no theoretical convergence guarantee (which is the
reason for turning this option off by default) and that there is no line-search implemented
(which would be rather expensive computationally) , i.e. the default step length (t = 0.95)
is used (here). Interestingly the method also converges reasonably well on this second set of
examples nevertheless. Instead of considering large tables with results here, let us try to give
an idea first about the test set in terms of dimensions (n) as well as number of constraints
(m) and secondly about convergence behavior in terms of both number of iterations (iter)
and timing (sec) for different values of r. For completeness the mentioned large tables
(created with a modified version of matrix2latex.m [45]) are included in the Appendix. The
DIMACS graphs vary heavily in the number of vertices and edges, rendering the resulting
Lovasz problems (105) and Lovasz-Schrijver problems (104) a great test set. For each
problem the Euclidean space’s dimension (n) is equal to the number of (non-redundant)

variables of the semidefinite block (ns(ns+1)
2 , note that ns is equal to the number of vertices)

plus the number of variables of the nonnegative block (nl) (zero for Lovasz problems, equal
to the number of edges in the complementary graph considered for the Lovasz-Schrijver
problems). The number of constraints is determined by one plus the number of edges plus
the number variables in the non-negative block. In order to give a rough idea, minimum,
maximum, rounded mean and rounded median of the dimensions are reported in the table
below as well as two histograms, the exact values for each individual problem can be found
in the Appendix.
Now when it comes to analyzing the convergence behavior, let us start again by establishing
a baseline with the KM iteration (NCQNM(0)) for a tolerance of tol = 10−6. What becomes
very clear from the large differences in mean and median values is that there are a couple of
problems for which the KM iteration needs a large amount of iterations respectively time to
reach the required tolerance. This is not an effect of rounding errors, but of highly degen-
erated problems resulting from the p hat500-2, p hat700-2, p hat1000-2 and p hat1500-2
graphs. For these problems it seems that (many) eigenvalues of the iterates SDP block
(Z(k)) are clustered around zero, resulting especially in non-differentiability of the general-
ized absolute value at those points and probably also at the optimal solution. This implies
that other methods, for example interior point methods, are also likely to suffer from slow
convergence for these problems. Note however that other methods do usually not rely on
the convergence criterion (320) and therefore may return early with an accuracy that users
might accept as sufficient, but that might be strictly worse than the goal defined by (320).
Note that in all examples the convergence rates are far better than the theoretical worst-case
of the KM-iteration (O(1√

k
)), proven in section 4.1, predicts. In fact the convergence rate

101

θ(G) θ+(G) θ(Ḡ) θ+(Ḡ)

min(n) 406 574 406 616

rd(median(n)) 80200 104136 80200 136060

rd(mean(n)) 270834 36813 270834 448154

max(n) 5649841 6676423 5649841 10269739

min(m) 211 379 169 379

rd(median(m)) 43307 79801 23428 79801

rd(mean(m)) 177322 270301 92980 270301

max(m) 4619899 5646481 1026583 5646481

Table 9: Minimum, maximum and rounded average number of variables (n) and con-
straints(m) for Lovasz problems and Lovasz-Schriver problems of 62 DIMACS graphs as
well as their complement graphs.

Figure 11: MATLAB histograms (hist) of (natural) logarithmic dimension n and number
of constraints m for Lovasz problem of G (dark blue), Lovasz-Schriver problem of G (blue),
Lovasz problem of Ḡ (green) and Lovasz-Schriver problem of Ḡ (yellow).

is even better than of the bound on the Halpern iteration O(1
k) considered in section 4.2.1.

One may certainly argue that the test set is not sufficiently large to experience worst-case
behavior, but another possible interpretation is that worst-case examples possess a certain
kind of rareness (as suggested by section 4.2.2).

102

θ(G) θ+(G) θ(Ḡ) θ+(Ḡ)

min(iter) 99 135 100 131

rd(median(iter)) 1463 1942 2303 4096

rd(mean(Iter)) 7295 9750 17135 14917

max(Iter) 65543 96758 301413 90934

min(sec) 0.1699 0.2970 0.0945 0.1320

rd(median(sec)) 6 8 24 36

rd(mean(sec)) 658 903 557 782

max(sec) 18423 24939 19729 27150

Table 10: Rounded average number of iterations (iter) and seconds (sec) to reach tol = 10−6

via the KM-iteration for 62 dimacs graphs. The high differences between median and
mean values are mainly causes by the degenerated problems p hat500-2.clq, p hat700-2.clq,
p hat1000-2.clq and p hat1500-2.clq .

Figure 12: MATLAB boxplots (boxplot) of (natural) logarithmic number of iterations and
of (natural) logarithmic time (in seconds) to reach tol = 10−6 via (inexact) KM-iteration
aka NCQNM(0). From MATLAB documentation: On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively.

Keeping in mind that the tolerance of (tol = 10−6) might smaller than needed, as the
Lovasz- respectively Lovasz-Schrijver numbers are often rounded down anyway, we might
also consider increased tolerances. We do this exemplarily for the Lovasz-Schrijver-problem
for all 62 graphs G in the box plot below.

103

Figure 13: MATLAB boxplots (boxplot) of (natural) logarithmic number of iterations
and of (natural) logarithmic time (in seconds) to to reach different tolerances for the
Lovasz-Schrijver problems θ+(G) of 62 DIMACS graphs via (inexact) KM-iteration aka
NCQNM(0). From MATLAB documentation: On each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the ’+’ symbol.

The real question to be answered now is whether for r ∈ N the NCQNM(r) can be com-
petitive or better than the KM-iteration. While there is of course no global convergence
guarantee (and any local convergence guarantee may depend on strong assumptions), the
method(s) seem(s) to converge surprisingly often, even with fixed step length. For the
Lovasz-Schrijver problem and values r ∈ {5, 10, 15} we can visualize the results by consider-
ing the following relative results, starting with comparing the number of iterations needed
to reach the desired tolerance tol = 10−6.
Note that in general the number of iterations is (obviously) not monotone decreasing in
r ∈ N. Sometimes smaller values of r ∈ N may actually result in faster convergence. This
may be explained by ”jumps” over points of non-differentiability of ∇f , where old and
inaccurate information is ”forgotten” faster for smaller values of r. For the graph c-fat200
NCQNM(r) does not converge for values of r ∈ {5, 10, 15} (within 100000 iterations), but
further testing revealed, that it does for larger values of r (for example r = 25). Choosing
r adaptively may possibly resolve these issues in a future version.

104

Figure 14: MATLAB plot comparing the (natural) logarithmic advantage (in terms of
number of iterations) of NCQNM(r) for r ∈ {5, 10, 15} vs. NCQNM(0). Every circle ’o’
below the black line implies that NCQNM(r) needed less iterations than NCQNM(0) to
reach a tolerance of tol = 10−6. Note that circles may overlap. We set a maximal number
of iterations of 100000 and non-convergence is marked with a red cross ’x’ through the
circle.

105

We can also compare the relative time it takes to reach the desired tolerance tol = 10−6.

Figure 15: MATLAB plot comparing the (natural) logarithmic advantage (in terms of
time) of NCQNM(r) for r ∈ {5, 10, 15} vs. NCQNM(0). Every circle ’o’ below the black
line implies that NCQNM(r) needed less time than NCQNM(0) to reach a tolerance of
tol = 10−6. We set a maximal number of iterations of 100000 and non-convergence is
marked with a red cross ’x’ through the circle.

106

Figure 16: Sparsity pattern of (symmetric) adjacency matrix for wing nodal graph.

Now to explore the limitations of our approach, we can also consider larger graphs, for
example the undirected graph wing nodal which has 10937 vertices and 75488 edges (this
graph was downloaded from the SuiteSparse Matrix Collection [21], but was originally
created by C. Walshaw for the 10th DIMACS challenge [35].) The resulting problem Lovasz-
Schrijver problem (104) has roughly 112 million variables and 60 million constraints. These
dimensions and the 32 Gigabyte of available memory on the desktop PC limits the size of
r effectively to six (larger values may be realized by further code improvements). The time
limit was set to 24 hours, which due to implementation reasons may be slightly exceeded
in reality. Details on further numerical experiments are omitted here, as I believe that this

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

wing nodal 59814453 59728028 59803517 843 0 -2.27507e+03 -2.27508e+03 1.3e-05 1.1e-03 -3.4e-07 86469.8 327891.9

Table 11: Algorithm-Performance NCQNM(6) for Lovasz-Schrijver problem on wing nodal
graph. The step length was set to t = 0.95 and max time was reached after about 24 hours.
The residual (320) was still 1.39170e-03.

would in total water down both, the good numerical results and the (optimal) theoretical
results from before. Let us therefore close this section by noting that, despite possible
improvements, the results look, especially for (relatively) large dimensions, quite promising.
This raises hopes that limited memory norm constrained quasi Newton methods may gain
recognition and popularity in the future.

107

7 Conclusion

In this thesis we tackled the important class of linear conic optimization problems by means
of projection based algorithms. We started with laying the foundations by recalling some
well known results and problems. We have then seen that there exists a gap between worst-
case complexities and average-case complexities for these methods and more generally FSMs,
by exemplarily calculating the worst case complexity (which was priorly unknown) for the
KM iteration with constant step length. This calculation revealed parts of a broad (and
new) concept, which can be used in the future to not only answer fundamental complex-
ity questions but also help in the development of new methods. Specifically, as first order
methods gain more and more popularity arising from new applications in data science, ma-
chine learning, neural networks and other fields, it might be useful for developing algorithms
that enjoy good average and worst case complexities simultaneously, potentially reducing
the earlier mentioned gap. The second main contribution of this thesis is the development
of efficient limited memory norm constrained quasi Newton methods, that, different from
FSMs, represent a member from the class of adaptive and therefore more heuristic methods.
While well chosen FSMs are numerically solid as a rock (i.e. converge whenever there is a
fixed/saddle point that they can converge to), adaptive methods are less stable but often
much faster in practice. The final implementation (1.0) considered in the previous section
seems to take one further step towards the goal of ”getting the best” or at least ”avoiding
the worst” from both worlds.

Acknowledgment

While writing this passage I realize that there are countless people that I am grateful
to. I will therefore not thank each and everyone personally here, as the list would be
unreasonably long and clearly misplaced (note, that this might be on the Internet forever
and not everyone is alright with that). However, even if I do not mention your name here,
let me say that your support is appreciated and not forgotten. Exceptions can be made
and therefore I would like to thank the, for this thesis, (second) most important person, my
supervisor and thesis adviser Florian Jarre. Florian has made this thesis possible, by giving
me a proper education in optimization, a job right after my Master’s thesis and countless
opportunities along the way especially when it came to choosing research topics or making
scientifically related business trips. He was always happy to support me scientifically, while
still giving me a lots of freedom. Most importantly, he did not put (much) pressure on me
when it came to finishing my thesis. Could I have finished earlier? Certainly yes. Would
the thesis have been similar in terms of research value? Absolutely not! In times where
morons think, that science is a machine that transforms work into valuable papers linearly
(the two factors are of course related, but in an unknown and highly non-linear way),
Florian’s characteristics are rather rare, but greatly appreciated. Secondly I would like to
address the current and former members of the mathematical institute at the Heinrich-
Heine university, i.e. my coworkers, which have been great to work with. Finally I like to
mention that ”Computational support and infrastructure was provided by the Centre for
Information and Media Technology (ZIM) at the University of Düsseldorf (Germany).”

108

8 References

[1] Baillion, J., & Bruck, R. E. (1996). The Rate of Asymptotic Regularity Is O(1/
√
n).

Lecture Notes in Pure and Applied Mathematics, 51-82.

[2] Bauschke, H. H. (1996). Projection algorithms and monotone operators (Doctoral dis-
sertation, Theses (Dept. of Mathematics and Statistics)/Simon Fraser University).

[3] Burer, S. (2009). On the copositive representation of binary and continuous nonconvex
quadratic programs. Mathematical Programming, 120(2), 479-495.

[4] Burer, S., & Monteiro, R. D. (2003). A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming, 95(2),
329-357.

[5] Bravo, M., Cominetti, R., & Pavez-Sign, M. (2017). Rates of convergence for inexact
Krasnosel’skii-Mann iterations in Banach spaces. arXiv preprint arXiv:1705.09340.

[6] Browder, F. E. (1966). Existence and approximation of solutions of nonlinear varia-
tional inequalities. Proceedings of the National Academy of Sciences, 56(4), 1080-1086.

[7] Browder, F. E. (1967). Convergence of approximants to fixed points of nonexpansive
nonlinear mappings in Banach spaces. Archive for Rational Mechanics and Analysis,
24(1), 82-90.

[8] Browder, F. E. (1967). Convergence theorems for sequences of nonlinear operators in
Banach spaces. Mathematische Zeitschrift, 100(3), 201-225.

[9] Borwein, J. M., & Zhu, Q. J. (1999). Multifunctional and functional analytic techniques
in nonsmooth analysis. In Nonlinear analysis, differential equations and control (pp.
61-157). Springer, Dordrecht.

[10] Boyle, J. P., & Dykstra, R. L. (1986). A method for finding projections onto the
intersection of convex sets in Hilbert spaces. In Advances in order restricted statistical
inference (pp. 28-47). Springer, New York, NY.

[11] Clarke, F. H. (1990). Optimization and nonsmooth analysis (Vol. 5). Siam.

[12] Chen, X. D., Sun, D., & Sun, J. (2003). Complementarity functions and numerical ex-
periments on some smoothing Newton methods for second-order-cone complementarity
problems. Computational Optimization and Applications, 25(1-3), 39-56.

[13] Choi, S. C. T., Paige, C. C., & Saunders, M. A. (2011). MINRES-QLP: A Krylov sub-
space method for indefinite or singular symmetric systems. SIAM Journal on Scientific
Computing, 33(4), 1810-1836.

[14] Cominetti, R., Soto, J. A., Vaisman, J. (2014). On the rate of convergence of
Krasnoselski-Mann iterations and their connection with sums of Bernoullis. Israel Jour-
nal of Mathematics, 199(2), 757-772.

109

[15] CPLEX, I. (2005). High-performance software for mathematical programming and op-
timization.

[16] Dantzig, G. B. (2002). Linear programming. Operations research, 50(1), 42-47.

[17] Dantzig, G.B. (1949). Programming in a linear structure, Econometrica 17 73-74

[18] Wood, M.K. & Dantzig, G.B. (1949). Programming of interdependent activities, I,
General discussion, Econometrica 17 193-199

[19] Dantzig, G.B. (1949). Programming of interdependent activities, II, Mathematical
model, Econometrica 17 200-211

[20] Davi, T. (2012). Lösung großer konischer Programme mit Hilfe primal-dualer
Methoden. Diss. Universitäts-und Landesbibliothek der Heinrich-Heine-Universität
Düsseldorf

[21] Davis, T., & Hu, Y. The SuiteSparse Matrix Collection (formerly known as the Univer-
sity of Florida Sparse Matrix Collection), University of Florida and AT&T Research.
https://sparse.tamu.edu/

[22] Dür, M. (2010). Copositive programminga survey. In Recent advances in optimization
and its applications in engineering (pp. 3-20). Springer, Berlin, Heidelberg.

[23] De Klerk, E., & Pasechnik, D. V. (2002). Approximation of the stability number of a
graph via copositive programming. SIAM Journal on Optimization, 12(4), 875-892.

[24] Drori, Y., & Teboulle, M. (2014). Performance of first-order methods for smooth convex
minimization: a novel approach. Mathematical Programming, 145(1-2), 451-482.

[25] Freund, R. W., & Jarre, F. (2004). A sensitivity result for semidefinite programs.
Operations Research Letters, 32(2), 126-132.

[26] Optimization, Gurobi. ”Gurobi Optimizer 5.0.” (2012).

[27] Halpern, B. (1967). Fixed points of nonexpanding maps. Bulletin of the American
Mathematical Society, 73(6), 957-961.

[28] Helmberg, C., & Rendl, F. (2000). A spectral bundle method for semidefinite program-
ming. SIAM Journal on Optimization, 10(3), 673-696.

[29] Hintermüller, M. (2010). Semismooth Newton methods and applications. Department
of Mathematics, Humboldt-University of Berlin.

[30] Higham, N. J. (2015). The Singular Value Decomposition.

[31] Jarre, F., & Lieder, F. (2017). A Derivative-Free and Ready-to-Use NLP Solver for
Matlab or Octave.

[32] Jarre, F., & Rendl, F. (2008). An augmented primal-dual method for linear conic
programs. SIAM Journal on Optimization, 19(2), 808-823.

110

[33] Jarre, F., & Stoer, J. (2013). Optimierung. Springer-Verlag.

[34] Johnson, D. S., & Trick, M. A. (Eds.). (1996). Cliques, coloring, and satisfiability:
second DIMACS implementation challenge, October 11-13, 1993 (Vol. 26). American
Mathematical Soc..

[35] Bader, D. A., Meyerhenke, H., Sanders, P., & Wagner, D. (2013). Graph Partitioning
and Graph Clustering: 10th DIMACS Implementation Challenge, vol. 588. American
Mathematical Society, 7, 210-223.

[36] Dimacs web page: ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/

[37] Alternative download of Dimacs graphs, Penn State Harrisburg:
https://turing.cs.hbg.psu.edu/txn131/clique.html

[38] Kanzow, C., Ferenczi, I., & Fukushima, M. (2009). On the local convergence of semis-
mooth Newton methods for linear and nonlinear second-order cone programs without
strict complementarity. SIAM Journal on Optimization, 20(1), 297-320.

[39] Karmarkar, N. (1984, December). A new polynomial-time algorithm for linear program-
ming. In Proceedings of the sixteenth annual ACM symposium on Theory of computing
(pp. 302-311). ACM.

[40] Khachian, L. G. (1979). A polynomial algorithm in linear programming. Doklady
Akademii Nauks SSR, 244(5), 1093-1096.

[41] Kirszbraun, M. D. (1934). Über die zusammenziehende und Lipschitzsche Transforma-
tionen”. Fund. Math. 22: 77-108.

[42] Kummer, B. (1992). Newtons method based on generalized derivatives for nonsmooth
functions: convergence analysis. In Advances in optimization (pp. 171-194). Springer,
Berlin, Heidelberg.

[43] Krasnoselski, M.A. (1955). Two remarks on the method of successive approximations,
Uspekhi Mat. Nauk 10:1(63), 123-127.

[44] Kummer, B. (1988). Newtons method for non-differentiable functions. Advances in
mathematical optimization, 45, 114-125.

[45] Koehler, M (2004) matrix2latex.m available at
https://de.mathworks.com/matlabcentral/fileexchange/4894-matrix2latex

[46] Kohlenbach, U. (2001). A quantitative version of a theorem due to Borwein-Reich-
Shafrir, Numer. Funct. Anal. and Optimiz. 22, 641-656

[47] Kohlenbach U. (2003). Uniform asymptotic regularity for Mann iterates, J. Math. Anal.
Appl. 279, 531-544.

[48] Kong, L., Tunel, L., & Xiu, N. (2009). Clarke generalized Jacobian of the projection
onto symmetric cones. Set-Valued and Variational Analysis, 17(2), 135-151.

111

[49] Lazar, M., & Jarre, F. (2016). Calibration by optimization without using derivatives.
Optimization and Engineering, 17(4), 833-860.

[50] Web page of Florian Jarre: http://www.opt.uni-duesseldorf.de/ jarre/dot/dot.html

[51] Leustean, L. (2007). Rates of Asymptotic Regularity for Halpern Iterations of Nonex-
pansive Mappings. J. UCS, 13(11), 1680-1691.

[52] Liang, J., Fadili, J., & Peyr, G. (2016). Convergence rates with inexact non-expansive
operators. Mathematical Programming, 159(1-2), 403-434.

[53] Lieder, F. (2017). On the Convergence Rate of the Halpern-Iteration. submitted.

[54] Löfberg, J. (2004, September). YALMIP: A toolbox for modeling and optimization
in MATLAB. In Computer Aided Control Systems Design, 2004 IEEE International
Symposium on (pp. 284-289). IEEE.

[55] Malick, J., & Sendov, H. S. (2006). Clarke generalized Jacobian of the projection onto
the cone of positive semidefinite matrices. Set-Valued Analysis, 14(3), 273-293.

[56] Malick, J., Povh, J., Rendl, F., & Wiegele, A. (2009). Regularization methods for
semidefinite programming. SIAM Journal on Optimization, 20(1), 336-356.

[57] Mann W.R. (1953). Mean value methods in iteration, Proceedings of the American
Mathematical Society 4(3), 506-510.

[58] Martin-Márquez, V. (2010). Fixed point approximation methods for nonexpansive map-
pings: optimizations problems. Universidad de Sevilla.

[59] Mifflin, R. (1977). Semismooth and semiconvex functions in constrained optimization.
SIAM Journal on Control and Optimization, 15(6), 959-972.

[60] Moreau, J. J. (1962). Décomposition orthogonale dun espace hilbertien selon deux
cones mutuellement polaires. CR Acad. Sci. Paris, 225, 238-240.

[61] Mosek, A. P. S. (2010). The MOSEK optimization software. Online at http://www.
mosek. com, 54(2-1), 5.

[62] Nakatsukasa, Y., Bai, Z., & Gygi, F. (2010). Optimizing Halley’s iteration for comput-
ing the matrix polar decomposition. SIAM Journal on Matrix Analysis and Applica-
tions, 31(5), 2700-2720.

[63] Nemirovski, A. (2004). Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization, 15(1), 229-251.

[64] Nesterov, Y. (1998). Introductory Lectures on Convex Programming : Volume I: Basic
course.

[65] Nesterov, Y. (1983, February). A method of solving a convex programming problem
with convergence rate O (1/k2). In Soviet Mathematics Doklady (Vol. 27, No. 2, pp.
372-376).

112

[66] Oren, S. S. (1974). On the selection of parameters in self scaling variable metric algo-
rithms. Mathematical Programming, 7(1), 351-367.

[67] Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations
in several variables (Vol. 30). Siam.

[68] Paige, C. C., & Saunders, M. A. (1975). Solution of sparse indefinite systems of linear
equations. SIAM journal on numerical analysis, 12(4), 617-629.

[69] Povh, J., Rendl, F., & Wiegele, A. (2006). A boundary point method to solve semidef-
inite programs. Computing, 78(3), 277-286.

[70] Qi, L., & Sun, J. (1993). A nonsmooth version of Newton’s method. Mathematical
programming, 58(1-3), 353-367.

[71] Qi, L. (1993). Convergence analysis of some algorithms for solving nonsmooth equa-
tions. Mathematics of operations research, 18(1), 227-244.

[72] Qi, L., & Sun, D. (1999). A survey of some nonsmooth equations and smoothing
Newton methods. In Progress in optimization (pp. 121-146). Springer, Boston, MA.

[73] Rademacher, H. (1919). Über partielle und totale Differenzierbarkeit von Funktionen
mehrerer Variabeln und über die Transformation der Doppelintegrale. Mathematische
Annalen, 79(4), 340-359.

[74] Web page with software of the working group of Franz Rendl:
https://www.math.aau.at/or/Software/

[75] Slavakis, K., Kopsinis, Y., & Theodoridis, S. (2010, March). Adaptive algorithm for
sparse system identification using projections onto weighted 1 balls. In Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on (pp.
3742-3745). IEEE.

[76] Shapiro, A. (2016). Differentiability properties of metric projections onto convex sets.
Journal of Optimization Theory and Applications, 169(3), 953-964.

[77] Sturm, J. F. (2002). Implementation of interior point methods for mixed semidefinite
and second order cone optimization problems. Optimization Methods and Software,
17(6), 1105-1154.

[78] Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization methods and software, 11(1-4), 625-653.

[79] Sun, D., Toh, K. C., & Yang, L. (2014). A convergent proximal alternating direction
method of multipliers for conic programming with 4-block constraints. Technical report.

[80] Sun, D., & Sun, J. (2002). Semismooth matrix-valued functions. Mathematics of Op-
erations Research, 27(1), 150-169.

[81] Schwartz, J. T. (1969). Nonlinear functional analysis (Vol. 4). CRC Press.

113

[82] Sweetser, T. H. (1977). A minimal set-valued strong derivative for vector-valued Lips-
chitz functions. Journal of Optimization Theory and Applications, 23(4), 549-562.

[83] Taylor, A. B., Hendrickx, J. M., Glineur, F. (2017). Smooth strongly convex interpola-
tion and exact worst-case performance of first-order methods. Mathematical Program-
ming, 161(1-2), 307-345.

[84] Tütüncü, R. H., Toh, K. C., & Todd, M. J. (2003). Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical programming, 95(2), 189-217.

[85] Todd, M. J., Toh, K. C., & Tütüncü, R. H. (1998). On the Nesterov–Todd Direction
in Semidefinite Programming. SIAM Journal on Optimization, 8(3), 769-796.

[86] Toh, K.C., Todd, M.J., & Tütüncü, R.H. (1999). SDPT3 — a Matlab software package
for semidefinite programming, Optimization Methods and Software, 11, 545–581.

[87] Tomov, S., Dongarra, J., & Baboulin, M. (2010). Towards dense linear algebra for
hybrid GPU accelerated manycore systems. Parallel Computing, 36(5-6), 232-240.

[88] Toh, K. C. (2004). Solving large scale semidefinite programs via an iterative solver on
the augmented systems. SIAM Journal on Optimization, 14(3), 670-698.

[89] Ulbrich, M. (2011). Semismooth Newton methods for variational inequalities and con-
strained optimization problems in function spaces (Vol. 11). SIAM.

[90] Vaisman J. (2005). Convergencia fuerte del mtodo de medias sucesi- vas para operadores
lineales no-expansivos, Memoria de Ingeniera Civil Matemtica, Universidad de Chile.

[91] Wen, Z., Goldfarb, D., & Yin, W. (2010). Alternating direction augmented Lagrangian
methods for semidefinite programming. Mathematical Programming Computation, 2(3-
4), 203-230.

[92] Wittmann, R. (1992). Approximation of fixed points of nonexpansive mappings. Archiv
der Mathematik, 58(5), 486-491.

[93] Wright, S. J. (1997). Primal-dual interior-point methods (Vol. 54). Siam.

[94] Woodbury, M. A. (1950). Inverting modified matrices. Memorandum report, 42(106),
336.

[95] Xu, H. K. (2002). Iterative algorithms for nonlinear operators. Journal of the London
Mathematical Society, 66(1), 240-256.

[96] Yamashita, M., Fujisawa, K., & Kojima, M. (2003). Implementation and evaluation
of SDPA 6.0 (semidefinite programming algorithm 6.0). Optimization Methods and
Software, 18(4), 491-505.

[97] Yang, L., Sun, D., & Toh, K. C. (2014). SDPNAL +: A Majorized Semismooth Newton-
CG Augmented Lagrangian Method for Semidefinite Programming with Nonnegative
Constraints. arXiv preprint arXiv:1406.0942 .

114

[98] Zarantonello, E. H. (1971). Projections on Convex Sets in Hilbert Space and Spectral
Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory. In Contributions
to nonlinear functional analysis (pp. 237-424). 1971, pp. 237-424

[99] Zhao, X. Y., Sun, D., & Toh, K. C. (2010). A Newton-CG augmented Lagrangian
method for semidefinite programming. SIAM Journal on Optimization, 20(4), 1737-
1765.

115

9 Appendix

9.1 Proof of Proposition 4.8

We still need to prove proposition 4.8. As in section 4.1 we again shift our index by one,
i.e. our initial point is not Z(0) but Z(1). We define the KM iterates as usual

Z(i+1) := Z(i) − 2tiH[∇f(Z(i))]

for i ∈ {1, .., k − 1} and see that the shifted statement

|(1
k

k∑
i=1

f(Z(i)))− f(Z(∗))| ≤ 1
k

∥∥Z(1) − Z(∗)∥∥2

8t(1− t)
(322)

is equivalent to the claim of proposition 4.8 for ti ≡ t ∈ [1
2 , 1). Since this is the Appendix,

it actually makes a lot of sense to include a construction for arbitrary ti ∈ (0, 1). Let us
start by defining the following quantities

R :=
∥∥∥Z(1) − Z(∗)

∥∥∥, RH := 〈Z(1) − Z(∗),H[Z(1) − Z(∗)]〉,

gi := H[∇f(Z(i))] ∀i ∈ {1, .., k},
a = (〈H[gi], Z

(1) − Z(∗)〉)ki=1 ∈ Rk, b = (〈gi, Z(1) − Z(∗)〉)ki=1 ∈ Rk

A = (〈gi, gj〉)ki,j=1 ∈ Sk+, B = (〈H[gi], gj〉)ki,j=1 ∈ Sk

fi := f(Z(k)) ∀i ∈ {1, .., k}
f∗ := 0 g∗ := ∇f(Z(∗)) = 0.

Then the easiest way to think of the upcoming analysis is to think of gi as vectors and to
think of the standard scalar product. If this was true, we could easily see the following
equations

G := [g1, . . . , gk]

A = GTG

B = GTHG
(323)

and


(Z(1) − Z(∗))T

(H[Z(1) − Z(∗)])T

GT

GTH




(Z(1) − Z(∗))T

(H[Z(1) − Z(∗)])T

GT

GTH



T

=


R2 RH bT aT

RH R2 aT bT

b a A B

a b B A

 ∈ S2k+2
+ (324)

as well as
GL = (Z(j) − Z(1))kj=1

HGL = (H[Z(j) − Z(1))kj=1

116

for

L :=



0 −2t1 −2t1 . . . −2t1

0 0 −2t2 . . . −2t2
...

... 0
. . .

...

0 0 0 0 −2tk−1

0 0 0 0 0


∈ Rk×k (325)

to be true. However in general gi are not vectors (they may for example be matrices) and
the (symmetric) scalar product is not the standard scalar product. We therefore have to
work with the (symmetric and positive semidefinite) Gramian matrix

R2 RH bT aT

RH R2 aT bT

b a A B

a b B A

 ∈ S2k+2
+

(or parts of it) directly. Especially the following equalities

AL = (〈gi, Z(j) − Z(1)〉)ki,j=1

LTAL = (〈Z(i) − Z(1), Z(j) − Z(1)〉)ki,j=1

BL = (〈H[gi], Z
(j) − Z(1)〉)ki,j=1

LTBL = (〈H[Z(i) − Z(1)], Z(j) − Z(1)〉)ki,j=1

aeT +BL = (〈H[gi], Z
(j) − Z(∗)〉)ki,j=1

RHee
T + LTaeT + eaTL+ LTBL = (〈H[Z(i) − Z(∗)], Z(j) − Z(∗)〉)ki,j=1

beT +AL = (〈gi, Z(j) − Z(∗)〉)ki,j=1

R2eeT + LT beT + ebTL+ LTAL = (〈Z(i) − Z(∗), Z(j) − Z(∗)〉)ki,j=1

diag(AL)eT −AL = (〈gi, Z(i) − Z(j)〉)ki,j=1

diag(BL)eT −BL = (〈H[gi], Z
(i) − Z(j)〉)ki,j=1

diag(LTAT)eT+e diag(LTAL)T−2LTAL = (〈Z(i)−Z(j), Z(i)−Z(j)〉)ki,j=1 = (
∥∥∥Z(i) − Z(j)

∥∥∥2
)ki,j=1

diag(LTBL)eT + e diag(LTBL)T − 2LTBL = (〈H[Z(i) − Z(j)], Z(i) − Z(j)〉)ki,j=1

117

diag(AL)eT + e diag(AL)T −AL− LTA = (〈gi − gj , Z(i) − Z(j)〉)ki,j=1

diag(BT)eT + e diag(BL)T −BL− LTB = (〈H[gi − gj], Z(i) − Z(j)〉)ki,j=1

diag(A)eT + e diag(A)T − 2A = (‖gi − gj‖2)ki,j=1

diag(B)eT + e diag(B)T − 2B = (〈H[gi − gj], gi − gj〉)ki,j=1

can be verified. Note that from firm nonexpansiveness (‖gi − gj‖2 ≤ 〈gi − gj , Z(i) − Z(j)〉)
we get the componentwise inequalities

diag(A)eT + e diag(A)T − 2A ≤ diag(AL)eT + e diag(AL)T −AL− LTA

of which only k2−k
2 are non redundant. From g∗ = 0 we get another k inequalities

diag(A) ≤ b+ diag(AL)

via ‖gi‖2 ≤ 〈gi, Z(i) −Z(∗)〉. For the actual proof we assume tk ≡ t ∈ (0, 1) ∀k ∈ N. We see

that in this case L+LT

2 = t(I − eeT) holds true. Now the main inequalities to be used here
are the ones from (45),

1
2〈(I −H)(∇f(X)−∇f(Y)), X − Y 〉+ 1

2 ‖∇f(X)−∇f(Y)‖2

≤ f(X)− f(Y)− 〈∇f(Y), X − Y 〉
≤1

2〈(I +H)(∇f(X)−∇f(Y)), X − Y 〉 − 1
2 ‖∇f(X)−∇f(Y)‖2

(326)

that allow (for Y = Z(∗)) the following

k∑
i=1

(f(Z(i))− f(Z(∗))) ≤ 1
2

k∑
i=1

(〈gi, Z(i) − Z(∗)〉+ 〈H[gi], Z
(i) − Z(∗)〉 − ‖gi‖2)

=1
2(eTa+ eT diag(BL) + eT b+ eT diag(AL)− trace(A))

=1
2(eTa+ trace(B L+LT

2) + eT b+ trace(AL+LT

2)− trace(A))

=1
4


1
t −

1
t eT eT

e −I + t(I − eeT) t(I − eeT)

e t(I − eeT) −I + t(I − eeT)

 •

R2 aT bT

a A B

b B A



=R2

4t + (2t− 1) trace(A)
2 + 1

4


−1
t eT eT

e −tI − teeT t(I − eeT)

e t(I − eeT) −tI − teeT

 •

R2 aT bT

a A B

b B A



=R2

4t + (2t− 1) trace(A)
2 − 1

4


1
t −eT −eT

−e tI + teeT t(−I + eeT)

−e t(−I + eeT) tI + teeT


︸ ︷︷ ︸

�0

•


R2 aT bT

a A B

b B A


︸ ︷︷ ︸

�0

≤R2

4t + (2t− 1) trace(A)
2

(327)

118

inequality. Positive semidefiniteness of the matrix before the last inequality above follows

for example by the following argument: For t ∈ (0, 1) we have

 tI −tI

−tI tI

 � 0 and by the

Schur complement we can conclude


1
t −eT −eT

−e tI + teeT t(−I + eeT)

−e t(−I + eeT) tI + teeT

 � 0. Now by using

the opposite inequalities of (45) we see that

k∑
i=1

(f(Z(i))− f(Z(∗))) ≥ 1
2

k∑
i=1

(〈H[gi], Z
(i) − Z(∗)〉 − 〈gi, Z(i) − Z(∗)〉+ ‖gi‖2)

=1
2(eTa+ eT diag(BL)− eT b− eT diag(AL) + trace(A))

=1
2(eTa+ trace(B L+LT

2)− eT b− trace(AL+LT

2) + trace(A))

=1
4


1
t −

1
t eT −eT

e I − t(I − eeT) t(I − eeT)

−e t(I − eeT) I − t(I − eeT)

 •

R2 aT bT

a A B

b B A



=− R2

4t − (2t− 1) trace(A)
2 + 1

4


1
t eT −eT

e tI + teeT t(I − eeT)

−e t(I − eeT) tI + teeT


︸ ︷︷ ︸

�0

•


R2 aT bT

a A B

b B A


︸ ︷︷ ︸

�0

≥− R2

4t +−(2t− 1) trace(A)
2

(328)

can be lower bounded. Note the lower bound is the negative of the upper bound, so implying

that |(1
k

∑k
i=1 f(Z(i)))−f(Z(∗))| ≤ 1

k (R
2

4t +(2t−1) trace(A)
2) = 1

k (
‖Z(1)−Z(∗)‖2

4t +
(2t−1)

∑k
i=1‖∇f(Z(i))‖2

2)︸ ︷︷ ︸
≤
‖Z(1)−Z(∗)‖2

8t(1−t)

holds true, where we used the inequality
∑k

i=1

∥∥∇f(Z(i))
∥∥2 ≤ ‖Z

(1)−Z(∗)‖2

4t(1−t) from the proof
of proposition 4.2. This concludes the proof of proposition 4.8.

119

9.2 Detailed Numerical Results

Here we include details about the numerical results of the final implementation discussed
in section six for sake of completeness.

1
2

(n2
s + ns) m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 14835 908 765 -7.74260e+00 -7.74260e+00 9.3e-08 4.2e-08 2.1e-08 1.6 6.2

brock200-2.clq 20100 9877 99 40 -1.47056e+01 -1.47056e+01 7.0e-08 3.8e-07 3.4e-07 0.3 1.1

brock200-3.clq 20100 12049 122 69 -1.12131e+01 -1.12131e+01 8.1e-08 2.5e-07 1.4e-08 0.4 1.5

brock200-4.clq 20100 13090 128 68 -9.86692e+00 -9.86692e+00 8.2e-08 1.9e-07 6.6e-08 0.3 1.2

brock400-1.clq 80200 59724 147 60 -1.03883e+01 -1.03883e+01 6.0e-08 1.3e-07 7.6e-08 1.4 4.9

brock400-2.clq 80200 59787 150 73 -1.04081e+01 -1.04081e+01 6.2e-08 1.3e-07 1.1e-07 1.4 4.7

brock400-3.clq 80200 59682 150 59 -1.04372e+01 -1.04372e+01 6.0e-08 1.3e-07 1.1e-07 1.5 5.1

brock400-4.clq 80200 59766 152 63 -1.04333e+01 -1.04333e+01 6.1e-08 1.3e-07 1.0e-07 1.5 5.1

brock800-1.clq 320400 207506 113 13 -1.92331e+01 -1.92331e+01 4.1e-08 1.3e-07 -1.0e-07 5.7 20.1

brock800-2.clq 320400 208167 113 19 -1.91281e+01 -1.91281e+01 4.2e-08 1.3e-07 -1.1e-07 5.5 19.3

brock800-3.clq 320400 207334 113 35 -1.92686e+01 -1.92686e+01 4.0e-08 1.2e-07 -9.5e-08 5.1 17.8

brock800-4.clq 320400 207644 113 38 -1.91803e+01 -1.91803e+01 3.9e-08 1.1e-07 -1.2e-07 5.0 17.4

c-fat200-1.clq 20100 1535 3566 3280 -1.84666e+01 -1.84666e+01 8.8e-08 4.4e-07 -1.2e-09 4.2 16.6

c-fat200-2.clq 20100 3236 911 772 -9.00001e+00 -8.99999e+00 2.9e-08 1.2e-06 1.4e-06 1.1 4.2

c-fat200-5.clq 20100 8474 329 276 -3.31768e+00 -3.31766e+00 4.4e-08 8.8e-07 2.3e-06 0.4 1.5

c-fat500-1.clq 125250 4460 4485 3368 -4.00000e+01 -4.00000e+01 1.5e-08 1.3e-06 -2.9e-09 35.3 120.0

c-fat500-10.clq 125250 46628 446 378 -4.00003e+00 -4.00000e+00 4.1e-08 7.6e-07 3.0e-06 3.0 9.5

c-fat500-2.clq 125250 9140 1540 1122 -2.00001e+01 -2.00000e+01 5.6e-08 4.9e-07 2.6e-06 11.5 39.1

c-fat500-5.clq 125250 23192 870 752 -7.99995e+00 -7.99999e+00 4.7e-08 7.7e-07 -2.4e-06 5.6 18.1

hamming10-2.clq 524800 518657 9834 7593 -2.00004e+00 -2.00000e+00 4.2e-08 2.2e-08 8.9e-06 436.4 1262.9

hamming10-4.clq 524800 434177 1515 1019 -2.00000e+01 -2.00000e+01 2.5e-08 4.6e-07 -4.9e-07 90.8 289.3

hamming6-2.clq 2080 1825 1171 1014 -2.00000e+00 -2.00000e+00 2.8e-08 4.1e-07 -1.5e-07 0.4 0.8

hamming6-4.clq 2080 705 1289 920 -1.20000e+01 -1.20000e+01 1.4e-07 4.4e-07 1.3e-06 0.5 2.1

hamming8-2.clq 32896 31617 3239 2702 -1.99998e+00 -2.00000e+00 8.1e-08 5.8e-08 -4.4e-06 5.8 22.9

hamming8-4.clq 32896 20865 1411 847 -1.60000e+01 -1.60000e+01 3.1e-08 7.7e-07 9.4e-08 3.3 13.2

johnson16-2-4.clq 7260 5461 1100 926 -1.50000e+01 -1.50000e+01 6.0e-08 5.7e-07 1.7e-07 0.9 3.6

johnson32-2-4.clq 123256 107881 2228 1763 -3.10000e+01 -3.10000e+01 5.8e-08 1.2e-07 8.6e-07 16.1 51.8

johnson8-2-4.clq 406 211 571 503 -6.99999e+00 -7.00001e+00 1.1e-07 7.4e-07 -8.5e-07 0.2 0.3

johnson8-4-4.clq 2485 1856 657 495 -4.99999e+00 -5.00000e+00 1.4e-07 1.1e-07 -1.1e-06 0.3 1.1

keller4.clq 14706 9436 638 337 -1.50000e+01 -1.50000e+01 9.7e-09 7.9e-07 1.5e-06 0.8 3.3

keller5.clq 301476 225991 1344 667 -3.10000e+01 -3.09999e+01 4.6e-08 2.3e-07 1.5e-06 35.7 117.7

keller6.clq 5649841 4619899 3550 963 -6.30001e+01 -6.30003e+01 1.7e-08 4.3e-07 -1.7e-06 9478.9 35698.9

p-hat1000-1.clq 500500 122254 3206 612 -9.07681e+01 -9.07681e+01 4.3e-08 1.6e-08 7.7e-09 260.7 924.7

p-hat1000-2.clq 500500 244800 64889 -6.16475e+01 -6.16475e+01 4.3e-08 8.2e-10 9.8e-08 5852.9 21104.6

p-hat1000-3.clq 500500 371747 2418 -1.82310e+01 -1.82310e+01 4.3e-08 1.2e-08 3.0e-08 211.1 751.2

p-hat1500-1.clq 1125750 284924 2382 319 -1.10996e+02 -1.10996e+02 3.5e-08 2.6e-08 3.6e-09 633.8 2312.5

p-hat1500-2.clq 1125750 568961 65543 -7.43815e+01 -7.43815e+01 3.6e-08 7.2e-10 9.8e-08 18423.4 68682.7

p-hat1500-3.clq 1125750 847245 2307 -2.15242e+01 -2.15242e+01 3.6e-08 6.7e-09 2.2e-08 628.1 2323.5

p-hat300-1.clq 45150 10934 4049 1201 -4.45819e+01 -4.45819e+01 7.7e-08 1.0e-08 1.3e-08 23.5 90.4

p-hat300-2.clq 45150 21929 39756 -2.91674e+01 -2.91674e+01 7.7e-08 1.4e-09 8.5e-08 272.0 1058.4

p-hat300-3.clq 45150 33391 2350 -1.04756e+01 -1.04756e+01 7.7e-08 1.5e-08 3.5e-08 16.1 62.9

p-hat500-1.clq 125250 31570 1808 858 -5.80355e+01 -5.80355e+01 6.0e-08 3.2e-08 1.1e-08 23.0 83.4

p-hat500-2.clq 125250 62947 57301 -3.94722e+01 -3.94722e+01 6.1e-08 8.2e-10 9.6e-08 972.1 3634.2

p-hat500-3.clq 125250 93801 2872 -1.28939e+01 -1.28939e+01 6.0e-08 3.9e-09 3.5e-08 47.9 178.9

p-hat700-1.clq 245350 61000 4960 888 -7.44577e+01 -7.44577e+01 5.1e-08 1.0e-08 1.0e-08 162.7 583.2

p-hat700-2.clq 245350 121729 63686 -5.25017e+01 -5.25016e+01 5.2e-08 7.2e-10 9.4e-08 2280.3 8326.7

p-hat700-3.clq 245350 183011 2802 -1.53169e+01 -1.53169e+01 5.1e-08 8.3e-09 3.6e-08 99.3 356.4

san1000.clq 500500 250501 7528 4854 -6.70001e+01 -6.70002e+01 3.3e-08 6.5e-07 -9.7e-07 378.6 1209.4

san200-0.7-1.clq 20100 13931 3904 2679 -9.04974e+00 -9.04973e+00 4.7e-09 7.7e-07 6.3e-07 7.4 29.5

san200-0.7-2.clq 20100 13931 1950 1232 -1.20000e+01 -1.19999e+01 8.3e-09 7.6e-07 2.7e-06 3.4 13.5

san200-0.9-1.clq 20100 17911 20751 -4.02410e+00 -4.02410e+00 9.3e-08 8.2e-09 3.7e-07 58.7 234.7

san200-0.9-2.clq 20100 17911 1004 298 -4.30710e+00 -4.30709e+00 8.9e-08 1.3e-07 5.0e-07 2.5 10.0

san200-0.9-3.clq 20100 17911 4430 -5.00000e+00 -5.00000e+00 9.3e-08 1.1e-08 9.9e-08 12.3 49.0

san400-0.5-1.clq 80200 39901 506 386 -3.42380e+01 -3.42380e+01 1.7e-08 9.4e-07 1.3e-07 3.7 12.7

san400-0.7-1.clq 80200 55861 492 167 -1.26410e+01 -1.26410e+01 6.5e-08 1.1e-07 6.1e-07 4.8 17.2

san400-0.7-2.clq 80200 55861 35660 26609 -1.50000e+01 -1.49998e+01 4.0e-08 6.2e-07 7.6e-06 207.7 698.2

san400-0.7-3.clq 80200 55861 9096 7069 -1.90000e+01 -1.89999e+01 6.1e-08 3.3e-07 2.3e-06 53.3 173.9

san400-0.9-1.clq 80200 71821 884 367 -5.20718e+00 -5.20717e+00 3.6e-08 3.7e-07 9.3e-07 7.7 27.5

sanr200-0.7.clq 20100 13869 271 84 -8.86497e+00 -8.86497e+00 9.0e-08 4.3e-08 2.6e-08 0.7 3.0

sanr200-0.9.clq 20100 17864 2273 677 -4.47872e+00 -4.47872e+00 9.3e-08 3.7e-09 4.2e-08 5.7 22.8

sanr400-0.5.clq 80200 39985 100 22 -2.03044e+01 -2.03044e+01 4.2e-08 5.5e-07 1.9e-07 1.2 4.0

sanr400-0.7.clq 80200 55870 130 49 -1.20403e+01 -1.20403e+01 6.1e-08 1.5e-07 1.3e-07 1.3 4.5

Table 12: Algorithm-Performance Table-Lovasz-dimacs2nd-t=0.95-maxr=0-maxtime=Inf-
maxit=Inf-tol=1e-06

120

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 1120 908 -7.71968e+00 -7.71968e+00 9.3e-08 3.9e-08 3.7e-08 2.3 9.2

brock200-2.clq 20100 10024 19901 141 69 -1.46054e+01 -1.46054e+01 8.3e-08 2.0e-07 3.1e-08 0.5 2.1

brock200-3.clq 20100 7852 19901 167 92 -1.11618e+01 -1.11618e+01 8.6e-08 1.6e-07 5.6e-08 0.5 1.8

brock200-4.clq 20100 6811 19901 183 64 -9.82463e+00 -9.82463e+00 8.6e-08 1.3e-07 6.9e-08 0.5 2.1

brock400-1.clq 80200 20077 79801 194 45 -1.03575e+01 -1.03575e+01 6.2e-08 1.0e-07 1.1e-07 2.2 7.8

brock400-2.clq 80200 20014 79801 202 3 -1.03755e+01 -1.03755e+01 6.3e-08 9.8e-08 1.1e-07 2.6 9.3

brock400-3.clq 80200 20119 79801 200 77 -1.04060e+01 -1.04060e+01 6.2e-08 9.9e-08 1.1e-07 2.0 7.4

brock400-4.clq 80200 20035 79801 198 102 -1.03995e+01 -1.03994e+01 6.3e-08 1.0e-07 9.9e-08 1.8 6.7

brock800-1.clq 320400 112095 319601 148 44 -1.91430e+01 -1.91430e+01 4.2e-08 1.4e-07 9.1e-08 7.1 24.8

brock800-2.clq 320400 111434 319601 147 58 -1.90365e+01 -1.90365e+01 4.4e-08 1.4e-07 7.5e-08 6.7 23.0

brock800-3.clq 320400 112267 319601 149 33 -1.91785e+01 -1.91785e+01 4.2e-08 1.4e-07 7.0e-08 7.4 26.0

brock800-4.clq 320400 111957 319601 146 27 -1.90932e+01 -1.90932e+01 4.3e-08 1.4e-07 9.2e-08 7.4 26.0

c-fat200-1.clq 20100 18366 19901 4293 3957 -1.84666e+01 -1.84666e+01 8.1e-08 5.4e-07 -4.9e-09 6.5 25.7

c-fat200-2.clq 20100 16665 19901 1238 1046 -9.00003e+00 -9.00001e+00 7.7e-08 5.8e-07 1.3e-06 1.8 7.0

c-fat200-5.clq 20100 11427 19901 475 417 -3.31769e+00 -3.31767e+00 9.0e-08 9.6e-08 3.6e-06 0.7 2.6

c-fat500-1.clq 125250 120291 124751 3805 2569 -4.00001e+01 -4.00000e+01 5.6e-08 4.0e-07 1.3e-06 39.3 141.2

c-fat500-10.clq 125250 78123 124751 629 557 -4.00004e+00 -4.00000e+00 5.5e-08 3.4e-07 4.5e-06 4.8 16.9

c-fat500-2.clq 125250 115611 124751 2267 1791 -2.00000e+01 -2.00000e+01 5.5e-09 1.1e-06 -1.1e-06 20.5 72.4

c-fat500-5.clq 125250 101559 124751 1261 1088 -7.99997e+00 -8.00001e+00 2.9e-08 9.0e-07 -2.4e-06 10.2 35.8

hamming10-2.clq 524800 5120 523777 14482 11534 -1.99996e+00 -2.00000e+00 3.6e-08 6.3e-08 -7.7e-06 628.4 1787.8

hamming10-4.clq 524800 89600 523777 2201 1578 -1.99999e+01 -2.00000e+01 4.3e-08 1.3e-08 -1.7e-06 134.1 426.1

hamming6-2.clq 2080 192 2017 1817 1541 -1.99999e+00 -2.00000e+00 1.6e-07 3.3e-08 -2.3e-06 0.7 1.4

hamming6-4.clq 2080 1312 2017 1847 1455 -1.20000e+01 -1.20000e+01 4.0e-08 8.7e-07 9.0e-07 0.9 3.4

hamming8-2.clq 32896 1024 32641 4931 4093 -1.99998e+00 -2.00000e+00 7.3e-08 9.8e-08 -4.1e-06 9.4 37.1

hamming8-4.clq 32896 11776 32641 2081 1280 -1.60000e+01 -1.60000e+01 6.1e-08 4.6e-07 -5.5e-07 6.0 23.9

johnson16-2-4.clq 7260 1680 7141 1670 1431 -1.50000e+01 -1.50000e+01 8.4e-08 3.8e-07 6.6e-08 1.4 5.7

johnson32-2-4.clq 123256 14880 122761 3375 2719 -3.10000e+01 -3.10000e+01 5.3e-08 1.9e-07 -9.4e-07 25.7 92.1

johnson8-2-4.clq 406 168 379 858 773 -6.99999e+00 -7.00000e+00 2.2e-07 9.3e-08 -7.8e-07 0.3 0.5

johnson8-4-4.clq 2485 560 2416 986 752 -5.00000e+00 -4.99999e+00 4.7e-08 5.0e-07 9.0e-08 0.5 1.9

keller4.clq 14706 5100 14536 796 474 -1.50000e+01 -1.50000e+01 5.1e-08 5.6e-07 -1.8e-06 1.1 4.5

keller5.clq 301476 74710 300701 1667 876 -3.10000e+01 -3.10001e+01 1.3e-08 5.4e-07 -2.4e-06 46.7 155.8

keller6.clq 5649841 1026582 5646481 4353 1274 -6.30001e+01 -6.30002e+01 2.1e-08 2.4e-07 -7.8e-07 11448.0 42893.9

p-hat1000-1.clq 500500 377247 499501 8292 3322 -8.94781e+01 -8.94781e+01 4.3e-08 4.5e-09 1.5e-08 704.4 2437.1

p-hat1000-2.clq 500500 254701 499501 84982 -6.08624e+01 -6.08624e+01 4.3e-08 6.1e-10 1.7e-07 8292.7 29540.1

p-hat1000-3.clq 500500 127754 499501 2323 -1.81366e+01 -1.81366e+01 4.3e-08 6.4e-09 3.1e-08 207.2 734.2

p-hat1500-1.clq 1125750 839327 1124251 5880 1900 -1.09265e+02 -1.09265e+02 3.6e-08 5.9e-09 1.6e-08 1539.1 5474.9

p-hat1500-2.clq 1125750 555290 1124251 83479 -7.33087e+01 -7.33086e+01 3.6e-08 6.3e-10 1.7e-07 24939.4 92015.6

p-hat1500-3.clq 1125750 277006 1124251 2646 -2.14138e+01 -2.14138e+01 3.6e-08 7.8e-09 3.2e-08 731.7 2691.9

p-hat300-1.clq 45150 33917 44851 6252 74 -4.40679e+01 -4.40679e+01 7.7e-08 4.8e-09 2.0e-08 47.5 183.4

p-hat300-2.clq 45150 22922 44851 34505 -2.89008e+01 -2.89008e+01 7.7e-08 1.9e-09 1.3e-07 254.9 989.6

p-hat300-3.clq 45150 11460 44851 2857 -1.04261e+01 -1.04261e+01 7.7e-08 7.1e-09 3.1e-08 19.7 77.4

p-hat500-1.clq 125250 93181 124751 6373 3279 -5.72741e+01 -5.72741e+01 6.0e-08 2.2e-08 1.6e-08 91.7 341.6

p-hat500-2.clq 125250 61804 124751 72103 -3.90749e+01 -3.90749e+01 6.1e-08 6.8e-10 1.6e-07 1308.9 5030.3

p-hat500-3.clq 125250 30950 124751 2037 -1.28265e+01 -1.28265e+01 6.0e-08 2.6e-08 3.0e-08 34.5 132.1

p-hat700-1.clq 245350 183651 244651 9643 1841 -7.34971e+01 -7.34971e+01 5.1e-08 3.4e-09 2.3e-08 357.9 1282.9

p-hat700-2.clq 245350 122922 244651 96758 -5.20063e+01 -5.20063e+01 5.2e-08 5.8e-10 1.7e-07 3785.5 13794.2

p-hat700-3.clq 245350 61640 244651 3553 -1.52407e+01 -1.52407e+01 5.1e-08 8.6e-09 4.7e-08 127.3 463.2

san1000.clq 500500 249000 499501 10350 6641 -6.70001e+01 -6.69998e+01 2.7e-08 6.4e-07 2.3e-06 582.0 1866.5

san200-0.7-1.clq 20100 5970 19901 12535 10704 -9.01999e+00 -9.01997e+00 2.4e-09 6.3e-07 1.0e-06 22.9 91.2

san200-0.7-2.clq 20100 5970 19901 3010 2086 -1.20000e+01 -1.20000e+01 6.0e-08 4.8e-07 -1.5e-06 5.5 22.0

san200-0.9-1.clq 20100 1990 19901 22876 -4.01912e+00 -4.01911e+00 9.1e-08 8.2e-08 6.2e-07 67.7 270.6

san200-0.9-2.clq 20100 1990 19901 1371 778 -4.30140e+00 -4.30140e+00 9.2e-08 3.1e-08 4.2e-07 2.8 11.3

san200-0.9-3.clq 20100 1990 19901 5380 -5.00000e+00 -5.00000e+00 9.3e-08 9.2e-09 1.1e-07 15.5 61.9

san400-0.5-1.clq 80200 39900 79801 604 326 -3.42059e+01 -3.42059e+01 1.8e-08 7.7e-07 1.3e-07 5.8 21.0

san400-0.7-1.clq 80200 23940 79801 611 246 -1.26148e+01 -1.26148e+01 6.5e-08 8.0e-08 6.2e-07 5.9 21.9

san400-0.7-2.clq 80200 23940 79801 51575 40599 -1.50000e+01 -1.50001e+01 6.4e-08 1.9e-07 -3.6e-06 308.8 1128.0

san400-0.7-3.clq 80200 23940 79801 13520 10609 -1.90000e+01 -1.90001e+01 3.0e-08 5.6e-07 -3.2e-06 85.7 306.8

san400-0.9-1.clq 80200 7980 79801 1086 299 -5.20012e+00 -5.20011e+00 5.2e-08 2.2e-07 1.2e-06 10.8 38.9

sanr200-0.7.clq 20100 6032 19901 349 103 -8.82922e+00 -8.82922e+00 9.1e-08 3.1e-08 1.7e-08 1.1 4.2

sanr200-0.9.clq 20100 2037 19901 1203 -4.47656e+00 -4.47656e+00 9.3e-08 5.4e-09 3.2e-08 3.7 14.9

sanr400-0.5.clq 80200 39816 79801 135 52 -2.01700e+01 -2.01700e+01 5.9e-08 1.9e-07 6.3e-08 1.5 5.3

sanr400-0.7.clq 80200 23931 79801 176 90 -1.19950e+01 -1.19950e+01 6.1e-08 1.2e-07 1.0e-07 1.6 6.0

Table 13: Algorithm-Performance Table-LovaszSchrijver-dimacs2nd-t=0.95-maxr=0-
maxtime=Inf-maxit=Inf-tol=1e-06

121

1
2

(n2
s + ns) m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5067 171 71 -2.74567e+01 -2.74566e+01 5.0e-08 8.6e-07 8.8e-07 0.5 1.8

brock200-2.clq 20100 10025 104 50 -1.42272e+01 -1.42272e+01 7.9e-08 2.8e-07 4.3e-08 0.3 1.1

brock200-3.clq 20100 7853 114 37 -1.88205e+01 -1.88205e+01 5.3e-08 6.1e-07 -7.0e-07 0.3 1.2

brock200-4.clq 20100 6812 134 58 -2.12934e+01 -2.12935e+01 6.4e-08 5.4e-07 -4.5e-07 0.3 1.3

brock400-1.clq 80200 20078 206 78 -3.97019e+01 -3.97019e+01 2.6e-08 1.0e-06 4.7e-07 2.0 6.9

brock400-2.clq 80200 20015 211 49 -3.95605e+01 -3.95606e+01 2.5e-08 1.0e-06 -4.8e-07 2.3 8.0

brock400-3.clq 80200 20120 209 78 -3.94806e+01 -3.94806e+01 5.2e-08 5.8e-07 4.7e-07 2.1 7.1

brock400-4.clq 80200 20036 200 79 -3.95996e+01 -3.95997e+01 2.7e-08 9.4e-07 -3.4e-07 1.9 6.6

brock800-1.clq 320400 112096 162 38 -4.22219e+01 -4.22219e+01 2.5e-08 7.5e-07 -8.6e-07 7.6 26.8

brock800-2.clq 320400 111435 162 51 -4.24659e+01 -4.24660e+01 1.9e-08 8.7e-07 -7.0e-07 7.3 25.5

brock800-3.clq 320400 112268 158 -4.22424e+01 -4.22423e+01 2.7e-08 7.4e-07 8.9e-07 8.2 29.6

brock800-4.clq 320400 111958 163 49 -4.23490e+01 -4.23491e+01 3.2e-08 6.1e-07 -9.3e-07 7.3 25.8

c-fat200-1.clq 20100 18367 1497 999 -1.20000e+01 -1.20000e+01 2.5e-08 3.7e-07 -1.1e-06 2.1 8.3

c-fat200-2.clq 20100 16666 18591 15981 -2.40000e+01 -2.40001e+01 8.4e-08 2.5e-07 -4.0e-07 22.3 89.1

c-fat200-5.clq 20100 11428 5709 4830 -6.03454e+01 -6.03453e+01 9.2e-08 1.5e-07 8.1e-07 6.6 26.4

c-fat500-1.clq 125250 120292 2784 1813 -1.40000e+01 -1.40000e+01 6.8e-09 2.6e-07 1.3e-06 23.2 77.0

c-fat500-10.clq 125250 78124 5369 3231 -1.26000e+02 -1.26000e+02 2.3e-08 7.9e-07 -7.5e-07 43.0 146.0

c-fat500-2.clq 125250 115612 2722 1632 -2.60000e+01 -2.59999e+01 1.3e-08 3.7e-07 8.2e-07 23.2 78.1

c-fat500-5.clq 125250 101560 4868 3120 -6.39999e+01 -6.39999e+01 5.0e-08 3.4e-07 2.6e-07 38.6 128.6

hamming10-2.clq 524800 5121 58578 52367 -5.12000e+02 -5.12001e+02 9.1e-09 1.4e-06 -1.1e-06 2137.8 6191.1

hamming10-4.clq 524800 89601 1686 1330 -5.12001e+01 -5.12000e+01 4.2e-08 1.5e-07 1.3e-06 90.0 290.9

hamming6-2.clq 2080 193 3800 3475 -3.20000e+01 -3.20001e+01 8.3e-08 1.1e-06 -1.1e-06 1.3 2.2

hamming6-4.clq 2080 1313 353 314 -5.33332e+00 -5.33333e+00 1.4e-07 2.4e-07 -5.7e-07 0.1 0.5

hamming8-2.clq 32896 1025 15565 13488 -1.28000e+02 -1.28000e+02 3.6e-08 1.2e-06 5.7e-07 25.4 101.1

hamming8-4.clq 32896 11777 726 591 -1.60000e+01 -1.60000e+01 8.0e-08 1.4e-07 -1.2e-06 1.5 6.0

johnson16-2-4.clq 7260 1681 558 446 -8.00002e+00 -7.99999e+00 6.0e-08 1.0e-06 1.4e-06 0.4 1.5

johnson32-2-4.clq 123256 14881 1041 794 -1.59999e+01 -1.60000e+01 5.9e-08 5.1e-08 -2.7e-06 7.3 24.4

johnson8-2-4.clq 406 169 302 267 -3.99999e+00 -4.00000e+00 1.1e-07 8.1e-07 -2.1e-07 0.1 0.2

johnson8-4-4.clq 2485 561 917 738 -1.40000e+01 -1.40000e+01 6.5e-08 1.1e-06 2.9e-07 0.4 1.5

keller4.clq 14706 5101 172 116 -1.40123e+01 -1.40122e+01 6.6e-08 6.5e-07 9.0e-07 0.3 1.0

keller5.clq 301476 74711 227 60 -3.09999e+01 -3.10000e+01 2.8e-08 8.7e-07 -1.4e-06 7.5 26.5

keller6.clq 5649841 1026583 324 138 -6.30000e+01 -6.29999e+01 4.1e-09 1.1e-06 8.2e-07 757.9 2832.6

p-hat1000-1.clq 500500 377248 2043 -1.76081e+01 -1.76081e+01 4.3e-08 1.3e-08 2.4e-08 179.4 639.0

p-hat1000-2.clq 500500 254702 51509 -5.56071e+01 -5.56071e+01 4.3e-08 9.4e-10 9.1e-08 4655.6 16825.3

p-hat1000-3.clq 500500 127755 2746 1169 -8.48020e+01 -8.48020e+01 4.3e-08 1.1e-08 3.5e-09 200.4 695.1

p-hat1500-1.clq 1125750 839328 2296 -2.20061e+01 -2.20061e+01 3.6e-08 1.2e-08 2.7e-08 633.2 2333.0

p-hat1500-2.clq 1125750 555291 71107 -7.75573e+01 -7.75573e+01 3.6e-08 6.0e-10 9.6e-08 19729.3 73328.0

p-hat1500-3.clq 1125750 277007 3329 803 -1.15434e+02 -1.15434e+02 3.6e-08 1.8e-08 8.3e-09 816.5 2960.7

p-hat300-1.clq 45150 33918 3636 -1.00680e+01 -1.00680e+01 7.7e-08 3.1e-09 4.1e-08 24.7 96.3

p-hat300-2.clq 45150 22923 31321 -2.69660e+01 -2.69660e+01 7.7e-08 1.7e-09 7.8e-08 215.6 838.4

p-hat300-3.clq 45150 11461 3676 2624 -4.11699e+01 -4.11699e+01 7.7e-08 2.8e-08 2.3e-08 14.6 56.0

p-hat500-1.clq 125250 93182 1623 -1.30741e+01 -1.30741e+01 6.0e-08 9.9e-09 3.0e-08 27.2 101.5

p-hat500-2.clq 125250 61805 41922 -3.89747e+01 -3.89747e+01 6.1e-08 1.1e-09 8.1e-08 710.6 2674.2

p-hat500-3.clq 125250 30951 2179 1294 -5.85679e+01 -5.85679e+01 6.0e-08 2.5e-08 1.2e-08 25.4 90.6

p-hat700-1.clq 245350 183652 2310 -1.51199e+01 -1.51199e+01 5.1e-08 9.8e-09 3.9e-08 81.5 292.4

p-hat700-2.clq 245350 122923 45757 -4.90193e+01 -4.90193e+01 5.2e-08 1.2e-09 8.2e-08 1652.7 6023.4

p-hat700-3.clq 245350 61641 5402 2595 -7.27350e+01 -7.27350e+01 5.1e-08 5.2e-09 8.2e-09 150.9 522.1

san1000.clq 500500 249001 3955 1710 -1.49999e+01 -1.50000e+01 4.0e-08 4.0e-07 -4.3e-06 242.8 805.9

san200-0.7-1.clq 20100 5971 21959 18901 -3.00000e+01 -3.00002e+01 7.2e-09 1.2e-06 -3.9e-06 29.4 117.4

san200-0.7-2.clq 20100 5971 129289 7303 -1.80000e+01 -1.80000e+01 1.1e-08 1.2e-06 4.1e-07 375.7 1498.4

san200-0.9-1.clq 20100 1991 22898 19953 -7.00001e+01 -7.00001e+01 8.7e-08 4.9e-07 -4.8e-08 30.4 121.4

san200-0.9-2.clq 20100 1991 22100 19119 -6.00001e+01 -5.99999e+01 8.8e-08 4.4e-07 1.4e-06 29.8 119.0

san200-0.9-3.clq 20100 1991 301413 123803 -4.40001e+01 -4.39999e+01 7.8e-08 7.3e-07 2.2e-06 649.2 2593.1

san400-0.5-1.clq 80200 39901 35743 26698 -1.30000e+01 -1.30001e+01 6.7e-08 1.5e-07 -1.6e-06 209.1 699.5

san400-0.7-1.clq 80200 23941 41409 35104 -3.99999e+01 -3.99999e+01 6.5e-08 2.8e-07 7.3e-07 203.8 669.6

san400-0.7-2.clq 80200 23941 35972 27672 -3.00000e+01 -2.99998e+01 6.1e-08 5.2e-07 4.0e-06 197.7 662.7

san400-0.7-3.clq 80200 23941 3305 1825 -2.20000e+01 -2.20000e+01 2.0e-08 1.1e-06 1.8e-07 23.8 84.6

san400-0.9-1.clq 80200 7981 44989 38974 -1.00000e+02 -9.99995e+01 9.5e-09 1.3e-06 2.5e-06 205.9 678.6

sanr200-0.7.clq 20100 6033 147 54 -2.38362e+01 -2.38361e+01 4.8e-08 8.2e-07 7.6e-07 0.4 1.5

sanr200-0.9.clq 20100 2038 298 121 -4.92735e+01 -4.92736e+01 3.7e-08 1.1e-06 -2.2e-07 0.7 2.8

sanr400-0.5.clq 80200 39817 100 23 -2.03177e+01 -2.03177e+01 3.2e-08 6.3e-07 -3.1e-07 1.2 4.0

sanr400-0.7.clq 80200 23932 168 62 -3.42783e+01 -3.42783e+01 2.6e-08 9.1e-07 4.6e-07 1.7 5.8

Table 14: Algorithm-Performance Table-LovaszComplement-dimacs2nd-t=0.95-maxr=0-
maxtime=Inf-maxit=Inf-tol=1e-06

122

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 14834 19901 179 86 -2.71967e+01 -2.71967e+01 6.6e-08 5.3e-07 4.8e-08 0.5 2.0

brock200-2.clq 20100 9876 19901 174 105 -1.41310e+01 -1.41310e+01 8.6e-08 2.0e-07 9.9e-09 0.5 1.8

brock200-3.clq 20100 12048 19901 156 86 -1.86718e+01 -1.86718e+01 7.4e-08 3.1e-07 -4.8e-08 0.4 1.6

brock200-4.clq 20100 13089 19901 159 86 -2.11211e+01 -2.11211e+01 6.5e-08 5.1e-07 -4.8e-08 0.4 1.6

brock400-1.clq 80200 59723 79801 198 82 -3.93310e+01 -3.93309e+01 4.2e-08 6.0e-07 1.1e-07 2.1 7.4

brock400-2.clq 80200 59786 79801 193 62 -3.91965e+01 -3.91964e+01 3.6e-08 7.1e-07 6.0e-07 2.2 7.8

brock400-3.clq 80200 59681 79801 198 78 -3.91604e+01 -3.91604e+01 3.4e-08 7.2e-07 -6.4e-07 2.1 7.5

brock400-4.clq 80200 59765 79801 194 32 -3.92314e+01 -3.92314e+01 4.6e-08 5.5e-07 7.3e-07 2.4 8.6

brock800-1.clq 320400 207505 319601 166 37 -4.18674e+01 -4.18673e+01 3.6e-08 4.8e-07 5.4e-07 8.7 30.3

brock800-2.clq 320400 208166 319601 166 51 -4.21043e+01 -4.21042e+01 3.4e-08 4.8e-07 5.7e-07 8.3 29.0

brock800-3.clq 320400 207333 319601 164 38 -4.18825e+01 -4.18825e+01 2.8e-08 5.9e-07 3.9e-07 8.5 29.9

brock800-4.clq 320400 207643 319601 166 31 -4.20006e+01 -4.20006e+01 3.6e-08 5.0e-07 6.1e-07 8.8 30.9

c-fat200-1.clq 20100 1534 19901 2261 1596 -1.20000e+01 -1.20000e+01 8.2e-08 1.5e-07 -2.3e-07 3.4 13.3

c-fat200-2.clq 20100 3235 19901 28263 24540 -2.40000e+01 -2.40000e+01 9.3e-08 5.1e-09 7.2e-07 36.4 145.5

c-fat200-5.clq 20100 8473 19901 8329 7236 -6.03453e+01 -6.03454e+01 3.8e-08 6.8e-07 -3.7e-07 11.9 47.3

c-fat500-1.clq 125250 4459 124751 4072 2796 -1.40000e+01 -1.40000e+01 3.0e-08 1.9e-07 -6.9e-07 35.0 117.5

c-fat500-10.clq 125250 46627 124751 6794 4283 -1.26000e+02 -1.26000e+02 1.7e-08 6.7e-07 -8.7e-07 58.8 214.5

c-fat500-2.clq 125250 9139 124751 4120 2782 -2.60000e+01 -2.60000e+01 5.8e-08 8.7e-08 9.9e-07 35.1 121.9

c-fat500-5.clq 125250 23191 124751 6216 4243 -6.40000e+01 -6.40002e+01 2.6e-08 4.5e-07 -1.1e-06 51.3 185.5

hamming10-2.clq 524800 518656 523777 88494 76427 -5.12001e+02 -5.12000e+02 4.3e-08 1.2e-07 8.1e-07 4316.0 12893.4

hamming10-4.clq 524800 434176 523777 2639 2123 -4.26668e+01 -4.26666e+01 3.9e-08 4.1e-07 1.6e-06 173.4 553.3

hamming6-2.clq 2080 1824 2017 6005 5312 -3.20000e+01 -3.20000e+01 1.5e-07 1.5e-07 8.1e-07 2.5 4.5

hamming6-4.clq 2080 704 2017 937 827 -3.99999e+00 -4.00000e+00 8.2e-08 5.5e-07 -1.0e-06 0.4 1.7

hamming8-2.clq 32896 31616 32641 22513 19670 -1.28000e+02 -1.28000e+02 5.7e-08 8.3e-07 1.2e-06 50.0 199.6

hamming8-4.clq 32896 20864 32641 1029 814 -1.60000e+01 -1.60000e+01 8.1e-08 1.2e-07 -7.9e-07 2.7 10.7

johnson16-2-4.clq 7260 5460 7141 832 681 -7.99999e+00 -7.99999e+00 4.9e-08 8.8e-07 -2.3e-07 0.7 2.7

johnson32-2-4.clq 123256 107880 122761 1537 1204 -1.59999e+01 -1.60000e+01 4.0e-08 7.9e-07 -2.3e-06 13.2 47.4

johnson8-2-4.clq 406 210 379 377 359 -4.00001e+00 -4.00000e+00 2.2e-07 8.3e-08 1.0e-06 0.1 0.2

johnson8-4-4.clq 2485 1855 2416 1248 1070 -1.40000e+01 -1.40000e+01 1.2e-07 5.9e-07 -1.8e-07 0.6 2.4

keller4.clq 14706 9435 14536 620 482 -1.34659e+01 -1.34659e+01 9.8e-08 1.1e-07 1.0e-07 0.9 3.6

keller5.clq 301476 225990 300701 5910 -3.09957e+01 -3.09957e+01 4.6e-08 3.3e-07 2.4e-08 244.5 888.7

keller6.clq 5649841 4619898 5646481 401 148 -6.30000e+01 -6.29999e+01 3.9e-09 9.7e-07 4.9e-07 1048.0 3887.8

p-hat1000-1.clq 500500 122253 499501 1897 -1.75222e+01 -1.75222e+01 4.3e-08 1.6e-08 4.2e-08 167.0 591.6

p-hat1000-2.clq 500500 244799 499501 57684 -5.48435e+01 -5.48435e+01 4.3e-08 4.9e-09 1.6e-07 5608.4 20023.1

p-hat1000-3.clq 500500 371746 499501 5553 3146 -8.35284e+01 -8.35284e+01 4.3e-08 3.8e-09 1.1e-08 435.1 1475.9

p-hat1500-1.clq 1125750 284923 1124251 2504 -2.18924e+01 -2.18924e+01 3.6e-08 9.4e-09 3.2e-08 698.6 2571.8

p-hat1500-2.clq 1125750 568960 1124251 90934 -7.64554e+01 -7.64554e+01 3.6e-08 2.7e-09 1.8e-07 27149.8 100289.9

p-hat1500-3.clq 1125750 847244 1124251 7637 931 -1.13655e+02 -1.13655e+02 3.6e-08 4.9e-09 2.0e-08 2216.7 8073.2

p-hat300-1.clq 45150 10933 44851 4506 -1.00202e+01 -1.00202e+01 7.7e-08 4.7e-09 4.0e-08 31.5 124.0

p-hat300-2.clq 45150 21928 44851 38848 -2.67137e+01 -2.67137e+01 7.7e-08 1.3e-09 1.2e-07 286.5 1115.2

p-hat300-3.clq 45150 33390 44851 4820 3434 -4.07003e+01 -4.07003e+01 7.7e-08 1.9e-08 3.1e-08 22.4 87.6

p-hat500-1.clq 125250 31569 124751 2958 -1.30079e+01 -1.30079e+01 6.0e-08 7.4e-09 3.8e-08 50.8 194.3

p-hat500-2.clq 125250 62946 124751 51263 -3.85594e+01 -3.85594e+01 6.1e-08 1.0e-09 1.4e-07 933.8 3587.1

p-hat500-3.clq 125250 93800 124751 5415 3178 -5.78110e+01 -5.78110e+01 6.1e-08 4.7e-09 1.6e-08 73.8 273.2

p-hat700-1.clq 245350 60999 244651 2856 -1.50451e+01 -1.50451e+01 5.1e-08 5.2e-09 3.1e-08 102.1 371.3

p-hat700-2.clq 245350 121728 244651 61179 -4.84400e+01 -4.84400e+01 5.2e-08 8.4e-10 1.5e-07 2392.1 8730.1

p-hat700-3.clq 245350 183010 244651 6887 3576 -7.17551e+01 -7.17551e+01 5.1e-08 4.2e-09 1.4e-08 217.8 754.8

san1000.clq 500500 250500 499501 4819 2177 -1.49998e+01 -1.50000e+01 4.3e-08 1.2e-07 -4.9e-06 321.2 1061.4

san200-0.7-1.clq 20100 13930 19901 32675 28874 -3.00000e+01 -2.99999e+01 8.1e-08 4.7e-07 2.5e-06 49.6 198.2

san200-0.7-2.clq 20100 13930 19901 12104 6859 -1.80000e+01 -1.80002e+01 5.6e-09 9.6e-07 -5.9e-06 27.2 108.5

san200-0.9-1.clq 20100 17910 19901 34299 30576 -7.00001e+01 -7.00002e+01 6.4e-08 7.9e-07 -9.0e-07 51.7 206.7

san200-0.9-2.clq 20100 17910 19901 33153 29369 -6.00000e+01 -6.00002e+01 5.2e-08 9.0e-07 -2.2e-06 51.4 205.1

san200-0.9-3.clq 20100 17910 19901 26556 17709 -4.39999e+01 -4.40001e+01 8.3e-08 5.0e-07 -2.0e-06 51.9 207.4

san400-0.5-1.clq 80200 39900 79801 52886 43255 -1.30000e+01 -1.29998e+01 5.4e-08 4.9e-07 9.2e-06 315.3 1139.9

san400-0.7-1.clq 80200 55860 79801 61721 53908 -3.99999e+01 -4.00002e+01 6.2e-08 3.8e-07 -2.9e-06 357.1 1257.5

san400-0.7-2.clq 80200 55860 79801 54095 44713 -3.00000e+01 -3.00005e+01 9.2e-09 9.5e-07 -7.5e-06 334.3 1180.1

san400-0.7-3.clq 80200 55860 79801 4725 2806 -2.20001e+01 -2.20000e+01 6.4e-08 3.0e-07 3.0e-06 37.3 135.7

san400-0.9-1.clq 80200 71820 79801 67364 59817 -1.00000e+02 -1.00000e+02 3.9e-08 8.9e-07 -1.8e-06 381.3 1350.5

sanr200-0.7.clq 20100 13868 19901 172 34 -2.36333e+01 -2.36333e+01 6.3e-08 6.0e-07 -2.8e-08 0.6 2.2

sanr200-0.9.clq 20100 17863 19901 322 149 -4.89046e+01 -4.89045e+01 4.7e-08 8.6e-07 1.3e-07 0.8 3.3

sanr400-0.5.clq 80200 39984 79801 131 55 -2.01782e+01 -2.01782e+01 6.0e-08 2.0e-07 1.4e-08 1.4 5.1

sanr400-0.7.clq 80200 55869 79801 173 62 -3.39666e+01 -3.39666e+01 4.2e-08 5.9e-07 -2.3e-07 1.9 6.8

Table 15: Algorithm-Performance Table-LovaszSchrijverComplement-dimacs2nd-t=0.95-
maxr=0-maxtime=Inf-maxit=Inf-tol=1e-06

123

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 16 -8.32421e+00 -7.43329e+00 6.9e-03 2.6e-02 5.3e-02 0.1 0.3

brock200-2.clq 20100 10024 19901 19 -1.46983e+01 -1.34880e+01 5.4e-03 5.4e-02 4.1e-02 0.1 0.3

brock200-3.clq 20100 7852 19901 18 -1.21018e+01 -1.07068e+01 6.0e-03 3.4e-02 5.9e-02 0.1 0.3

brock200-4.clq 20100 6811 19901 17 -1.04237e+01 -9.34865e+00 6.6e-03 3.4e-02 5.2e-02 0.1 0.3

brock400-1.clq 80200 20077 79801 17 -1.12225e+01 -1.03706e+01 5.2e-03 2.1e-02 3.8e-02 0.2 0.8

brock400-2.clq 80200 20014 79801 17 -1.12485e+01 -1.03663e+01 5.2e-03 2.1e-02 3.9e-02 0.2 0.9

brock400-3.clq 80200 20119 79801 17 -1.13097e+01 -1.03868e+01 5.2e-03 2.1e-02 4.1e-02 0.2 0.9

brock400-4.clq 80200 20035 79801 17 -1.12995e+01 -1.03856e+01 5.2e-03 2.2e-02 4.0e-02 0.2 0.9

brock800-1.clq 320400 112095 319601 19 -2.08527e+01 -1.96542e+01 3.4e-03 3.0e-02 2.9e-02 1.1 3.9

brock800-2.clq 320400 111434 319601 19 -2.06998e+01 -1.95431e+01 3.4e-03 2.9e-02 2.8e-02 1.1 3.9

brock800-3.clq 320400 112267 319601 19 -2.08947e+01 -1.96619e+01 3.4e-03 2.9e-02 3.0e-02 1.1 3.9

brock800-4.clq 320400 111957 319601 19 -2.07853e+01 -1.96023e+01 3.4e-03 3.0e-02 2.9e-02 1.1 3.9

c-fat200-1.clq 20100 18366 19901 38 -2.37676e+01 -1.90540e+01 8.0e-03 4.4e-02 1.1e-01 0.1 0.4

c-fat200-2.clq 20100 16665 19901 24 -8.73372e+00 -8.19391e+00 5.9e-03 6.7e-02 3.0e-02 0.1 0.2

c-fat200-5.clq 20100 11427 19901 21 -4.49968e+00 -3.34391e+00 8.2e-03 8.1e-03 1.3e-01 0.1 0.2

c-fat500-1.clq 125250 120291 124751 64 -2.62973e+01 -4.26320e+01 5.1e-03 5.7e-02 -2.3e-01 0.9 3.4

c-fat500-10.clq 125250 78123 124751 21 -4.04194e+00 -4.09274e+00 4.9e-03 2.2e-02 -5.6e-03 0.3 1.1

c-fat500-2.clq 125250 115611 124751 33 -1.11332e+01 -2.04595e+01 4.9e-03 4.9e-02 -2.9e-01 0.5 1.7

c-fat500-5.clq 125250 101559 124751 21 -9.47383e+00 -8.03843e+00 5.2e-03 2.9e-02 7.8e-02 0.3 1.1

hamming10-2.clq 524800 5120 523777 22 -2.89037e+00 -2.26740e+00 2.9e-03 7.6e-03 1.0e-01 1.9 6.8

hamming10-4.clq 524800 89600 523777 26 -1.76010e+01 -2.03199e+01 3.4e-03 2.0e-02 -7.0e-02 2.4 8.7

hamming6-2.clq 2080 192 2017 23 -1.93709e+00 -2.22150e+00 1.2e-02 1.9e-02 -5.5e-02 0.0 0.1

hamming6-4.clq 2080 1312 2017 134 -9.18996e+00 -1.17619e+01 1.5e-02 1.4e-02 -1.2e-01 0.1 0.3

hamming8-2.clq 32896 1024 32641 20 -2.25279e+00 -2.17652e+00 7.0e-03 7.3e-03 1.4e-02 0.1 0.3

hamming8-4.clq 32896 11776 32641 122 -1.90314e+01 -1.43786e+01 5.5e-03 5.1e-02 1.4e-01 0.4 1.6

johnson16-2-4.clq 7260 1680 7141 213 25 -1.31484e+01 -1.60591e+01 9.9e-03 3.0e-02 -9.6e-02 0.2 0.8

johnson32-2-4.clq 123256 14880 122761 472 5 -3.50578e+01 -2.92557e+01 5.5e-03 1.6e-02 8.9e-02 5.5 20.9

johnson8-2-4.clq 406 168 379 106 29 -7.52399e+00 -6.28139e+00 1.1e-02 6.2e-02 8.4e-02 0.0 0.2

johnson8-4-4.clq 2485 560 2416 88 -5.20716e+00 -4.44908e+00 2.3e-03 5.3e-02 7.1e-02 0.1 0.2

keller4.clq 14706 5100 14536 21 -1.31688e+01 -1.42288e+01 6.0e-03 2.8e-02 -3.7e-02 0.0 0.2

keller5.clq 301476 74710 300701 32 -3.31987e+01 -3.06092e+01 3.8e-03 3.1e-02 4.0e-02 1.3 4.6

keller6.clq 5649841 1026582 5646481 45 -5.27500e+01 -5.89292e+01 2.1e-03 1.7e-02 -5.5e-02 163.8 631.3

p-hat1000-1.clq 500500 377247 499501 27 -8.84995e+01 -8.58606e+01 2.2e-03 7.4e-02 1.5e-02 2.7 9.7

p-hat1000-2.clq 500500 254701 499501 20 -5.92983e+01 -5.14508e+01 2.2e-03 6.3e-02 7.0e-02 2.1 7.2

p-hat1000-3.clq 500500 127754 499501 15 -1.69298e+01 -1.84168e+01 3.2e-03 2.5e-02 -4.1e-02 1.5 5.4

p-hat1500-1.clq 1125750 839327 1124251 27 -1.07007e+02 -1.03162e+02 1.7e-03 7.3e-02 1.8e-02 8.6 31.4

p-hat1500-2.clq 1125750 555290 1124251 20 -7.09610e+01 -6.15436e+01 1.7e-03 6.2e-02 7.1e-02 6.2 22.8

p-hat1500-3.clq 1125750 277006 1124251 15 -2.00978e+01 -2.18155e+01 2.6e-03 2.4e-02 -4.0e-02 4.7 17.2

p-hat300-1.clq 45150 33917 44851 26 -4.33551e+01 -4.47333e+01 3.8e-03 6.8e-02 -1.5e-02 0.2 0.8

p-hat300-2.clq 45150 22922 44851 18 -2.99441e+01 -2.63918e+01 4.5e-03 5.8e-02 6.2e-02 0.1 0.6

p-hat300-3.clq 45150 11460 44851 15 -9.96007e+00 -1.04555e+01 5.4e-03 2.5e-02 -2.3e-02 0.1 0.5

p-hat500-1.clq 125250 93181 124751 26 -5.62556e+01 -5.69736e+01 2.9e-03 6.9e-02 -6.3e-03 0.5 1.9

p-hat500-2.clq 125250 61804 124751 19 -3.89517e+01 -3.43815e+01 3.2e-03 5.9e-02 6.1e-02 0.4 1.4

p-hat500-3.clq 125250 30950 124751 15 -1.21191e+01 -1.29747e+01 4.3e-03 2.4e-02 -3.3e-02 0.3 1.1

p-hat700-1.clq 245350 183651 244651 27 -7.12611e+01 -6.99765e+01 2.4e-03 7.1e-02 9.0e-03 1.1 4.0

p-hat700-2.clq 245350 122922 244651 20 -4.93465e+01 -4.26048e+01 2.5e-03 6.5e-02 7.3e-02 0.8 3.0

p-hat700-3.clq 245350 61640 244651 15 -1.43403e+01 -1.54622e+01 3.6e-03 2.4e-02 -3.6e-02 0.6 2.2

san1000.clq 500500 249000 499501 30 -6.31366e+01 -5.71781e+01 2.7e-03 5.2e-02 4.9e-02 3.0 10.7

san200-0.7-1.clq 20100 5970 19901 19 -9.95035e+00 -8.08326e+00 6.0e-03 3.9e-02 9.8e-02 0.1 0.3

san200-0.7-2.clq 20100 5970 19901 19 -1.21176e+01 -1.20027e+01 6.2e-03 3.2e-02 4.6e-03 0.1 0.3

san200-0.9-1.clq 20100 1990 19901 14 -4.21037e+00 -3.96735e+00 7.3e-03 1.5e-02 2.6e-02 0.1 0.2

san200-0.9-2.clq 20100 1990 19901 16 -4.56345e+00 -4.39166e+00 7.0e-03 1.0e-02 1.7e-02 0.1 0.2

san200-0.9-3.clq 20100 1990 19901 15 -5.24576e+00 -4.67924e+00 7.5e-03 1.3e-02 5.2e-02 0.1 0.2

san400-0.5-1.clq 80200 39900 79801 30 -3.95468e+01 -3.30856e+01 5.3e-03 3.9e-02 8.8e-02 0.4 1.5

san400-0.7-1.clq 80200 23940 79801 25 -1.45764e+01 -1.30042e+01 6.0e-03 2.0e-02 5.5e-02 0.3 1.2

san400-0.7-2.clq 80200 23940 79801 19 -1.59709e+01 -1.47347e+01 4.7e-03 3.0e-02 3.9e-02 0.3 0.9

san400-0.7-3.clq 80200 23940 79801 16 -1.77139e+01 -1.60973e+01 4.2e-03 3.3e-02 4.6e-02 0.2 0.8

san400-0.9-1.clq 80200 7980 79801 16 -5.64446e+00 -5.64107e+00 4.9e-03 1.8e-02 2.8e-04 0.2 0.8

sanr200-0.7.clq 20100 6032 19901 17 -9.41591e+00 -8.57730e+00 6.5e-03 2.6e-02 4.4e-02 0.1 0.3

sanr200-0.9.clq 20100 2037 19901 16 -4.95625e+00 -4.53049e+00 7.3e-03 1.0e-02 4.1e-02 0.1 0.2

sanr400-0.5.clq 80200 39816 79801 20 -2.16337e+01 -1.88655e+01 4.1e-03 4.8e-02 6.7e-02 0.3 1.0

sanr400-0.7.clq 80200 23931 79801 18 -1.33965e+01 -1.21954e+01 4.8e-03 2.4e-02 4.5e-02 0.3 0.9

Table 16: Algorithm-Performance with increased tolerance: Table-LovaszSchrijver-
dimacs2nd-t=0.95-maxr=0-maxtime=Inf-maxit=Inf-tol=0.1

124

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 36 -7.73551e+00 -7.73041e+00 7.4e-04 1.3e-03 3.1e-04 0.2 0.7

brock200-2.clq 20100 10024 19901 39 -1.46626e+01 -1.45368e+01 5.7e-04 4.3e-03 4.2e-03 0.2 0.7

brock200-3.clq 20100 7852 19901 36 -1.12415e+01 -1.11511e+01 7.2e-04 2.5e-03 3.9e-03 0.2 0.6

brock200-4.clq 20100 6811 19901 36 -9.87290e+00 -9.84497e+00 7.3e-04 2.3e-03 1.3e-03 0.1 0.6

brock400-1.clq 80200 20077 79801 37 -1.03183e+01 -1.03504e+01 5.2e-04 1.3e-03 -1.5e-03 0.5 1.8

brock400-2.clq 80200 20014 79801 37 -1.03330e+01 -1.03706e+01 5.2e-04 1.3e-03 -1.7e-03 0.5 1.8

brock400-3.clq 80200 20119 79801 37 -1.03581e+01 -1.04002e+01 5.2e-04 1.4e-03 -1.9e-03 0.5 1.8

brock400-4.clq 80200 20035 79801 37 -1.03564e+01 -1.03939e+01 5.2e-04 1.4e-03 -1.7e-03 0.5 1.8

brock800-1.clq 320400 112095 319601 38 -1.91097e+01 -1.92079e+01 3.5e-04 2.8e-03 -2.5e-03 2.1 7.6

brock800-2.clq 320400 111434 319601 38 -1.90093e+01 -1.90968e+01 3.4e-04 2.6e-03 -2.2e-03 2.2 7.6

brock800-3.clq 320400 112267 319601 38 -1.91446e+01 -1.92412e+01 3.4e-04 2.7e-03 -2.5e-03 2.1 7.6

brock800-4.clq 320400 111957 319601 38 -1.90581e+01 -1.91538e+01 3.5e-04 2.7e-03 -2.4e-03 2.1 7.6

c-fat200-1.clq 20100 18366 19901 203 1 -1.78458e+01 -1.83361e+01 8.1e-04 5.1e-03 -1.3e-02 0.5 2.1

c-fat200-2.clq 20100 16665 19901 101 7 -9.26163e+00 -9.11861e+00 5.8e-04 8.1e-03 7.4e-03 0.2 0.9

c-fat200-5.clq 20100 11427 19901 83 29 -3.26763e+00 -3.28454e+00 1.7e-04 8.2e-03 -2.2e-03 0.2 0.7

c-fat500-1.clq 125250 120291 124751 347 -4.06163e+01 -4.04576e+01 2.6e-04 1.0e-02 1.9e-03 5.3 20.0

c-fat500-10.clq 125250 78123 124751 59 5 -4.36080e+00 -4.02284e+00 5.2e-04 3.9e-03 3.6e-02 0.7 2.8

c-fat500-2.clq 125250 115611 124751 147 -2.02350e+01 -1.97641e+01 3.3e-04 8.6e-03 1.1e-02 2.0 7.4

c-fat500-5.clq 125250 101559 124751 116 15 -7.67593e+00 -7.88754e+00 3.2e-04 8.7e-03 -1.3e-02 1.4 5.4

hamming10-2.clq 524800 5120 523777 171 -2.33783e+00 -2.18000e+00 3.8e-04 5.3e-04 2.9e-02 13.4 48.4

hamming10-4.clq 524800 89600 523777 260 -1.93446e+01 -2.00798e+01 4.0e-04 1.5e-03 -1.8e-02 22.2 81.4

hamming6-2.clq 2080 192 2017 275 52 -1.89278e+00 -2.00537e+00 1.4e-03 1.3e-03 -2.3e-02 0.1 0.6

hamming6-4.clq 2080 1312 2017 477 104 -1.17603e+01 -1.20835e+01 1.3e-03 4.8e-03 -1.3e-02 0.3 1.1

hamming8-2.clq 32896 1024 32641 287 -2.17138e+00 -1.99072e+00 6.2e-04 1.3e-03 3.5e-02 0.9 3.4

hamming8-4.clq 32896 11776 32641 514 -1.56982e+01 -1.58373e+01 5.5e-04 5.1e-03 -4.3e-03 1.7 6.7

johnson16-2-4.clq 7260 1680 7141 505 278 -1.50610e+01 -1.51874e+01 3.3e-04 5.2e-03 -4.0e-03 0.5 1.9

johnson32-2-4.clq 123256 14880 122761 1053 420 -3.14188e+01 -3.11424e+01 5.7e-04 1.3e-03 4.3e-03 10.2 38.2

johnson8-2-4.clq 406 168 379 256 177 -6.89317e+00 -6.99401e+00 2.2e-03 5.2e-04 -6.8e-03 0.1 0.2

johnson8-4-4.clq 2485 560 2416 268 42 -5.03726e+00 -5.05317e+00 4.1e-04 5.1e-03 -1.4e-03 0.2 0.7

keller4.clq 14706 5100 14536 135 -1.51502e+01 -1.52925e+01 6.7e-04 4.7e-03 -4.5e-03 0.3 1.1

keller5.clq 301476 74710 300701 125 -3.03556e+01 -2.94901e+01 9.3e-05 5.5e-03 1.4e-02 4.7 17.2

keller6.clq 5649841 1026582 5646481 217 -6.28418e+01 -6.20364e+01 2.0e-04 2.5e-03 6.4e-03 770.8 2974.1

p-hat1000-1.clq 500500 377247 499501 108 -8.94539e+01 -8.74875e+01 1.7e-04 9.0e-03 1.1e-02 10.7 38.0

p-hat1000-2.clq 500500 254701 499501 128 -6.06763e+01 -5.89035e+01 1.3e-04 7.7e-03 1.5e-02 12.4 43.9

p-hat1000-3.clq 500500 127754 499501 35 -1.81843e+01 -1.81693e+01 3.6e-04 1.8e-03 4.0e-04 3.4 11.9

p-hat1500-1.clq 1125750 839327 1124251 118 -1.09173e+02 -1.06545e+02 1.3e-04 9.1e-03 1.2e-02 36.0 132.9

p-hat1500-2.clq 1125750 555290 1124251 138 -7.29887e+01 -7.06976e+01 1.0e-04 7.6e-03 1.6e-02 40.8 150.7

p-hat1500-3.clq 1125750 277006 1124251 35 -2.14808e+01 -2.14615e+01 3.0e-04 1.7e-03 4.4e-04 10.5 38.4

p-hat300-1.clq 45150 33917 44851 73 -4.40672e+01 -4.34590e+01 3.6e-04 8.5e-03 6.9e-03 0.6 2.2

p-hat300-2.clq 45150 22922 44851 82 -2.88892e+01 -2.82764e+01 3.0e-04 7.3e-03 1.1e-02 0.6 2.4

p-hat300-3.clq 45150 11460 44851 36 -1.04725e+01 -1.04197e+01 6.1e-04 2.2e-03 2.4e-03 0.3 1.1

p-hat500-1.clq 125250 93181 124751 84 -5.73066e+01 -5.62420e+01 2.6e-04 8.7e-03 9.3e-03 1.6 5.9

p-hat500-2.clq 125250 61804 124751 109 -3.89521e+01 -3.79550e+01 2.0e-04 7.5e-03 1.3e-02 2.0 7.6

p-hat500-3.clq 125250 30950 124751 35 -1.28753e+01 -1.28397e+01 5.0e-04 1.9e-03 1.3e-03 0.7 2.4

p-hat700-1.clq 245350 183651 244651 115 -7.34857e+01 -7.17007e+01 1.9e-04 9.0e-03 1.2e-02 4.6 16.6

p-hat700-2.clq 245350 122922 244651 151 -5.17165e+01 -5.01036e+01 1.4e-04 7.7e-03 1.6e-02 5.8 21.1

p-hat700-3.clq 245350 61640 244651 35 -1.52907e+01 -1.52649e+01 4.2e-04 1.8e-03 8.2e-04 1.4 5.0

san1000.clq 500500 249000 499501 234 -6.75641e+01 -6.55908e+01 3.8e-04 3.8e-03 1.5e-02 21.4 75.7

san200-0.7-1.clq 20100 5970 19901 59 -8.96491e+00 -9.08787e+00 6.9e-04 3.6e-03 -6.5e-03 0.2 0.8

san200-0.7-2.clq 20100 5970 19901 57 -1.16479e+01 -1.15035e+01 3.2e-04 5.8e-03 6.0e-03 0.2 0.8

san200-0.9-1.clq 20100 1990 19901 47 -4.07964e+00 -3.97131e+00 6.8e-04 2.3e-03 1.2e-02 0.2 0.6

san200-0.9-2.clq 20100 1990 19901 43 -4.36460e+00 -4.30649e+00 8.1e-04 1.4e-03 6.0e-03 0.1 0.6

san200-0.9-3.clq 20100 1990 19901 54 -5.02204e+00 -5.04936e+00 5.1e-04 2.2e-03 -2.5e-03 0.2 0.7

san400-0.5-1.clq 80200 39900 79801 58 -3.40707e+01 -3.43575e+01 4.4e-04 4.9e-03 -4.1e-03 0.8 2.8

san400-0.7-1.clq 80200 23940 79801 90 -1.24481e+01 -1.25538e+01 6.0e-04 2.2e-03 -4.1e-03 1.1 4.2

san400-0.7-2.clq 80200 23940 79801 40 -1.43344e+01 -1.42532e+01 4.8e-04 3.6e-03 2.7e-03 0.5 1.9

san400-0.7-3.clq 80200 23940 79801 421 -1.88422e+01 -1.85090e+01 4.1e-04 4.9e-03 8.7e-03 5.2 18.8

san400-0.9-1.clq 80200 7980 79801 48 -5.29960e+00 -5.18376e+00 4.9e-04 2.0e-03 1.0e-02 0.6 2.1

sanr200-0.7.clq 20100 6032 19901 36 -8.86193e+00 -8.84172e+00 7.2e-04 1.6e-03 1.1e-03 0.1 0.5

sanr200-0.9.clq 20100 2037 19901 39 -4.48831e+00 -4.47967e+00 7.8e-04 8.3e-04 8.7e-04 0.1 0.5

sanr400-0.5.clq 80200 39816 79801 40 -2.03422e+01 -2.01275e+01 4.5e-04 3.7e-03 5.2e-03 0.6 2.0

sanr400-0.7.clq 80200 23931 79801 37 -1.19300e+01 -1.20106e+01 5.1e-04 1.8e-03 -3.2e-03 0.5 1.8

Table 17: Algorithm-Performance with increased tolerance: Table-LovaszSchrijver-
dimacs2nd-t=0.95-maxr=0-maxtime=Inf-maxit=Inf-tol=0.01

125

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 60 -7.72323e+00 -7.72035e+00 8.2e-05 1.1e-04 1.8e-04 0.2 0.9

brock200-2.clq 20100 10024 19901 58 -1.46075e+01 -1.45994e+01 6.3e-05 3.9e-04 2.7e-04 0.2 0.9

brock200-3.clq 20100 7852 19901 57 -1.11601e+01 -1.11634e+01 7.6e-05 1.5e-04 -1.4e-04 0.2 0.8

brock200-4.clq 20100 6811 19901 58 -9.82803e+00 -9.82457e+00 7.6e-05 1.2e-04 1.7e-04 0.2 0.8

brock400-1.clq 80200 20077 79801 59 -1.03568e+01 -1.03578e+01 5.8e-05 7.8e-05 -4.3e-05 0.8 2.8

brock400-2.clq 80200 20014 79801 59 -1.03751e+01 -1.03760e+01 6.0e-05 8.4e-05 -4.4e-05 0.8 2.8

brock400-3.clq 80200 20119 79801 59 -1.04055e+01 -1.04066e+01 6.0e-05 8.7e-05 -5.0e-05 0.8 2.8

brock400-4.clq 80200 20035 79801 59 -1.03990e+01 -1.03999e+01 5.9e-05 7.8e-05 -4.3e-05 0.8 2.8

brock800-1.clq 320400 112095 319601 58 -1.91506e+01 -1.91389e+01 3.8e-05 1.7e-04 3.0e-04 3.3 11.5

brock800-2.clq 320400 111434 319601 58 -1.90437e+01 -1.90330e+01 3.8e-05 1.6e-04 2.7e-04 3.2 11.5

brock800-3.clq 320400 112267 319601 58 -1.91863e+01 -1.91746e+01 3.8e-05 1.7e-04 3.0e-04 3.2 11.5

brock800-4.clq 320400 111957 319601 58 -1.91012e+01 -1.90896e+01 3.8e-05 1.6e-04 3.0e-04 3.2 11.5

c-fat200-1.clq 20100 18366 19901 465 167 -1.85228e+01 -1.84834e+01 7.3e-05 6.5e-04 1.0e-03 1.0 3.8

c-fat200-2.clq 20100 16665 19901 385 201 -9.02601e+00 -8.98814e+00 5.9e-05 8.0e-04 2.0e-03 0.7 2.7

c-fat200-5.clq 20100 11427 19901 181 126 -3.34412e+00 -3.31843e+00 8.8e-05 1.9e-04 3.4e-03 0.3 1.2

c-fat500-1.clq 125250 120291 124751 811 77 -3.99087e+01 -3.99533e+01 3.7e-05 8.9e-04 -5.5e-04 11.0 41.5

c-fat500-10.clq 125250 78123 124751 200 132 -4.03372e+00 -4.00307e+00 4.8e-05 5.1e-04 3.4e-03 1.8 6.6

c-fat500-2.clq 125250 115611 124751 533 123 -2.00485e+01 -2.00324e+01 3.0e-05 9.6e-04 3.9e-04 6.5 24.3

c-fat500-5.clq 125250 101559 124751 402 237 -8.05744e+00 -8.00454e+00 5.6e-05 3.5e-04 3.1e-03 3.9 14.3

hamming10-2.clq 524800 5120 523777 3321 889 -1.99582e+00 -1.99859e+00 3.9e-06 1.1e-04 -5.6e-04 222.4 768.3

hamming10-4.clq 524800 89600 523777 742 147 -2.00035e+01 -2.00277e+01 2.1e-06 4.7e-04 -5.9e-04 57.5 204.4

hamming6-2.clq 2080 192 2017 661 397 -2.01153e+00 -1.99989e+00 1.6e-04 2.7e-05 2.3e-03 0.3 0.9

hamming6-4.clq 2080 1312 2017 819 437 -1.20063e+01 -1.20153e+01 3.4e-05 8.8e-04 -3.6e-04 0.4 1.7

hamming8-2.clq 32896 1024 32641 1448 646 -2.00273e+00 -1.99860e+00 9.9e-06 2.0e-04 8.3e-04 3.7 14.4

hamming8-4.clq 32896 11776 32641 905 120 -1.59803e+01 -1.60198e+01 3.6e-05 6.2e-04 -1.2e-03 2.9 11.7

johnson16-2-4.clq 7260 1680 7141 796 566 -1.50187e+01 -1.49898e+01 1.0e-04 2.9e-04 9.3e-04 0.7 2.7

johnson32-2-4.clq 123256 14880 122761 1633 994 -3.10334e+01 -3.10280e+01 4.5e-05 2.6e-04 8.5e-05 14.0 51.3

johnson8-2-4.clq 406 168 379 406 326 -7.00390e+00 -7.00779e+00 8.0e-05 6.7e-04 -2.6e-04 0.1 0.3

johnson8-4-4.clq 2485 560 2416 447 219 -4.98674e+00 -4.99925e+00 1.5e-04 7.2e-05 -1.1e-03 0.2 0.9

keller4.clq 14706 5100 14536 297 13 -1.49979e+01 -1.50491e+01 1.1e-05 6.5e-04 -1.6e-03 0.5 2.1

keller5.clq 301476 74710 300701 732 20 -3.09854e+01 -3.11382e+01 1.6e-05 5.3e-04 -2.4e-03 26.6 96.8

keller6.clq 5649841 1026582 5646481 2661 -6.29704e+01 -6.32831e+01 7.7e-06 4.6e-04 -2.5e-03 9304.9 35914.7

p-hat1000-1.clq 500500 377247 499501 351 -8.94998e+01 -8.93301e+01 2.7e-05 7.7e-04 9.4e-04 34.8 124.3

p-hat1000-2.clq 500500 254701 499501 489 -6.08771e+01 -6.07203e+01 2.2e-05 7.1e-04 1.3e-03 46.6 166.7

p-hat1000-3.clq 500500 127754 499501 94 -1.81472e+01 -1.81391e+01 4.1e-05 6.7e-05 2.2e-04 8.7 31.0

p-hat1500-1.clq 1125750 839327 1124251 393 -1.09290e+02 -1.09058e+02 2.1e-05 7.9e-04 1.1e-03 119.5 441.6

p-hat1500-2.clq 1125750 555290 1124251 553 -7.33235e+01 -7.30980e+01 1.6e-05 7.2e-04 1.5e-03 162.8 601.1

p-hat1500-3.clq 1125750 277006 1124251 97 -2.14263e+01 -2.14169e+01 3.4e-05 6.6e-05 2.1e-04 28.0 103.2

p-hat300-1.clq 45150 33917 44851 223 -4.40798e+01 -4.40251e+01 5.6e-05 6.7e-04 6.1e-04 1.7 6.6

p-hat300-2.clq 45150 22922 44851 313 -2.89105e+01 -2.88583e+01 4.8e-05 6.3e-04 8.9e-04 2.3 9.0

p-hat300-3.clq 45150 11460 44851 106 -1.04329e+01 -1.04276e+01 7.4e-05 6.9e-05 2.4e-04 0.8 3.0

p-hat500-1.clq 125250 93181 124751 279 -5.72873e+01 -5.71989e+01 3.8e-05 7.5e-04 7.7e-04 5.2 19.7

p-hat500-2.clq 125250 61804 124751 441 -3.90847e+01 -3.89824e+01 3.1e-05 6.9e-04 1.3e-03 7.9 30.5

p-hat500-3.clq 125250 30950 124751 101 -1.28343e+01 -1.28285e+01 5.9e-05 6.7e-05 2.2e-04 1.8 6.8

p-hat700-1.clq 245350 183651 244651 347 -7.35181e+01 -7.33778e+01 3.4e-05 7.3e-04 9.5e-04 13.7 49.9

p-hat700-2.clq 245350 122922 244651 628 -5.20142e+01 -5.18501e+01 2.3e-05 7.3e-04 1.6e-03 23.8 86.8

p-hat700-3.clq 245350 61640 244651 98 -1.52497e+01 -1.52428e+01 4.9e-05 6.5e-05 2.2e-04 3.6 13.3

san1000.clq 500500 249000 499501 1579 -6.69360e+01 -6.67701e+01 2.9e-05 6.0e-04 1.2e-03 141.2 498.5

san200-0.7-1.clq 20100 5970 19901 147 -9.02368e+00 -9.01168e+00 5.2e-05 5.1e-04 6.3e-04 0.5 2.0

san200-0.7-2.clq 20100 5970 19901 836 69 -1.20122e+01 -1.19541e+01 6.7e-05 4.4e-04 2.3e-03 2.4 9.6

san200-0.9-1.clq 20100 1990 19901 260 -4.02451e+00 -4.01344e+00 6.9e-05 2.4e-04 1.2e-03 0.8 3.2

san200-0.9-2.clq 20100 1990 19901 185 -4.30746e+00 -4.29957e+00 7.8e-05 1.9e-04 8.2e-04 0.6 2.3

san200-0.9-3.clq 20100 1990 19901 85 -5.00125e+00 -4.99701e+00 8.2e-05 1.3e-04 3.9e-04 0.3 1.0

san400-0.5-1.clq 80200 39900 79801 104 -3.42110e+01 -3.41988e+01 4.2e-05 6.1e-04 1.7e-04 1.4 5.0

san400-0.7-1.clq 80200 23940 79801 170 -1.26314e+01 -1.25988e+01 5.0e-05 3.9e-04 1.2e-03 2.1 7.8

san400-0.7-2.clq 80200 23940 79801 8889 1358 -1.49808e+01 -1.48717e+01 6.1e-05 2.6e-04 3.5e-03 93.3 353.6

san400-0.7-3.clq 80200 23940 79801 2776 540 -1.89815e+01 -1.88894e+01 4.6e-05 4.6e-04 2.4e-03 30.6 110.1

san400-0.9-1.clq 80200 7980 79801 220 -5.21509e+00 -5.20029e+00 6.5e-05 8.1e-05 1.3e-03 2.6 9.6

sanr200-0.7.clq 20100 6032 19901 58 -8.83203e+00 -8.82948e+00 8.3e-05 1.1e-04 1.4e-04 0.2 0.8

sanr200-0.9.clq 20100 2037 19901 107 -4.48027e+00 -4.47723e+00 9.0e-05 6.3e-05 3.1e-04 0.3 1.3

sanr400-0.5.clq 80200 39816 79801 59 -2.01823e+01 -2.01661e+01 4.6e-05 3.2e-04 3.9e-04 0.8 2.9

sanr400-0.7.clq 80200 23931 79801 58 -1.20015e+01 -1.19955e+01 5.7e-05 8.7e-05 2.4e-04 0.8 2.8

Table 18: Algorithm-Performance with increased tolerance: Table-LovaszSchrijver-
dimacs2nd-t=0.95-maxr=0-maxtime=Inf-maxit=Inf-tol=0.001

126

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 113 13 -7.71988e+00 -7.71970e+00 8.8e-06 8.9e-06 1.1e-05 0.4 1.6

brock200-2.clq 20100 10024 19901 79 9 -1.46060e+01 -1.46052e+01 7.4e-06 2.6e-05 2.6e-05 0.3 1.1

brock200-3.clq 20100 7852 19901 84 13 -1.11620e+01 -1.11619e+01 7.9e-06 1.7e-05 7.4e-06 0.3 1.2

brock200-4.clq 20100 6811 19901 88 -9.82492e+00 -9.82471e+00 8.3e-06 1.7e-05 1.0e-05 0.3 1.2

brock400-1.clq 80200 20077 79801 93 -1.03577e+01 -1.03575e+01 6.1e-06 1.1e-05 1.2e-05 1.2 4.3

brock400-2.clq 80200 20014 79801 96 -1.03759e+01 -1.03755e+01 6.0e-06 1.0e-05 1.9e-05 1.3 4.5

brock400-3.clq 80200 20119 79801 95 -1.04063e+01 -1.04060e+01 6.3e-06 1.1e-05 1.4e-05 1.2 4.5

brock400-4.clq 80200 20035 79801 94 7 -1.03999e+01 -1.03995e+01 6.0e-06 1.0e-05 1.8e-05 1.2 4.3

brock800-1.clq 320400 112095 319601 81 -1.91426e+01 -1.91431e+01 4.0e-06 1.0e-05 -1.2e-05 4.5 16.0

brock800-2.clq 320400 111434 319601 80 -1.90372e+01 -1.90366e+01 4.3e-06 1.1e-05 1.4e-05 4.4 15.7

brock800-3.clq 320400 112267 319601 81 -1.91781e+01 -1.91785e+01 4.0e-06 1.0e-05 -1.0e-05 4.5 16.0

brock800-4.clq 320400 111957 319601 80 -1.90939e+01 -1.90933e+01 4.3e-06 1.0e-05 1.3e-05 4.4 15.8

c-fat200-1.clq 20100 18366 19901 735 434 -1.84710e+01 -1.84686e+01 6.8e-06 7.4e-05 6.3e-05 1.3 5.3

c-fat200-2.clq 20100 16665 19901 670 484 -8.99780e+00 -8.99872e+00 5.0e-06 8.7e-05 -4.8e-05 1.1 4.3

c-fat200-5.clq 20100 11427 19901 279 223 -3.31605e+00 -3.31794e+00 5.4e-06 6.7e-05 -2.5e-04 0.4 1.7

c-fat500-1.clq 125250 120291 124751 1727 536 -4.00052e+01 -4.00072e+01 2.2e-06 1.0e-04 -2.5e-05 21.5 80.0

c-fat500-10.clq 125250 78123 124751 343 274 -3.99703e+00 -4.00037e+00 4.2e-06 6.2e-05 -3.7e-04 2.8 10.0

c-fat500-2.clq 125250 115611 124751 1111 647 -2.00031e+01 -2.00035e+01 1.9e-06 1.0e-04 -1.2e-05 11.4 41.1

c-fat500-5.clq 125250 101559 124751 688 520 -7.99417e+00 -8.00041e+00 5.7e-06 3.2e-05 -3.7e-04 6.0 21.5

hamming10-2.clq 524800 5120 523777 7041 4167 -1.99664e+00 -1.99990e+00 3.2e-06 7.7e-06 -6.5e-04 374.6 1172.2

hamming10-4.clq 524800 89600 523777 1229 615 -1.99951e+01 -2.00020e+01 3.0e-06 3.3e-05 -1.7e-04 83.5 280.2

hamming6-2.clq 2080 192 2017 1046 778 -1.99887e+00 -2.00003e+00 1.5e-05 8.4e-06 -2.3e-04 0.4 1.0

hamming6-4.clq 2080 1312 2017 1162 777 -1.20023e+01 -1.20009e+01 1.3e-05 5.3e-05 5.5e-05 0.6 2.3

hamming8-2.clq 32896 1024 32641 2609 1794 -1.99869e+00 -1.99988e+00 4.8e-06 1.7e-05 -2.4e-04 5.5 21.8

hamming8-4.clq 32896 11776 32641 1297 504 -1.60038e+01 -1.60012e+01 7.0e-06 3.6e-05 8.2e-05 4.0 16.0

johnson16-2-4.clq 7260 1680 7141 1087 854 -1.49984e+01 -1.49987e+01 8.6e-06 3.7e-05 -8.5e-06 0.9 3.5

johnson32-2-4.clq 123256 14880 122761 2214 1569 -3.10003e+01 -3.10042e+01 4.5e-07 4.0e-05 -6.1e-05 18.0 65.5

johnson8-2-4.clq 406 168 379 557 475 -7.00107e+00 -6.99998e+00 2.2e-05 2.1e-06 7.3e-05 0.2 0.4

johnson8-4-4.clq 2485 560 2416 627 397 -5.00127e+00 -4.99983e+00 1.4e-05 1.6e-05 1.3e-04 0.3 1.3

keller4.clq 14706 5100 14536 465 146 -1.49994e+01 -1.49954e+01 2.7e-06 6.2e-05 1.3e-04 0.8 3.1

keller5.clq 301476 74710 300701 1044 259 -3.09983e+01 -3.10137e+01 1.8e-06 5.2e-05 -2.4e-04 34.1 120.5

keller6.clq 5649841 1026582 5646481 3215 190 -6.29970e+01 -6.29608e+01 8.1e-07 4.6e-05 2.8e-04 10711.9 41093.7

p-hat1000-1.clq 500500 377247 499501 885 -8.94803e+01 -8.94782e+01 4.3e-06 5.7e-06 1.1e-05 88.9 315.3

p-hat1000-2.clq 500500 254701 499501 1812 -6.08660e+01 -6.08632e+01 4.3e-06 1.8e-06 2.2e-05 174.1 622.2

p-hat1000-3.clq 500500 127754 499501 274 -1.81372e+01 -1.81366e+01 4.3e-06 3.2e-06 1.4e-05 24.8 87.9

p-hat1500-1.clq 1125750 839327 1124251 968 -1.09267e+02 -1.09264e+02 3.5e-06 8.3e-06 1.6e-05 296.5 1096.5

p-hat1500-2.clq 1125750 555290 1124251 1863 -7.33130e+01 -7.33090e+01 3.6e-06 4.1e-06 2.7e-05 550.3 2030.8

p-hat1500-3.clq 1125750 277006 1124251 286 -2.14145e+01 -2.14139e+01 3.5e-06 3.0e-06 1.4e-05 81.4 298.7

p-hat300-1.clq 45150 33917 44851 654 -4.40689e+01 -4.40683e+01 7.7e-06 4.6e-06 7.0e-06 5.0 19.3

p-hat300-2.clq 45150 22922 44851 1343 -2.89023e+01 -2.89012e+01 7.7e-06 1.9e-06 2.0e-05 10.0 38.5

p-hat300-3.clq 45150 11460 44851 333 -1.04265e+01 -1.04261e+01 7.6e-06 2.9e-06 1.5e-05 2.3 9.2

p-hat500-1.clq 125250 93181 124751 725 -5.72753e+01 -5.72740e+01 6.0e-06 5.7e-06 1.1e-05 13.4 51.3

p-hat500-2.clq 125250 61804 124751 1640 -3.90771e+01 -3.90754e+01 6.0e-06 1.3e-06 2.1e-05 29.5 113.4

p-hat500-3.clq 125250 30950 124751 308 -1.28269e+01 -1.28265e+01 6.0e-06 2.8e-06 1.5e-05 5.3 20.2

p-hat700-1.clq 245350 183651 244651 1006 -7.34989e+01 -7.34978e+01 5.1e-06 4.1e-06 7.6e-06 39.9 144.8

p-hat700-2.clq 245350 122922 244651 2070 -5.20093e+01 -5.20064e+01 5.1e-06 9.2e-06 2.8e-05 78.8 287.1

p-hat700-3.clq 245350 61640 244651 311 -1.52413e+01 -1.52408e+01 5.1e-06 3.5e-06 1.5e-05 11.3 41.0

san1000.clq 500500 249000 499501 4503 1035 -6.70090e+01 -6.70092e+01 4.1e-06 2.4e-05 -1.4e-06 351.7 1209.7

san200-0.7-1.clq 20100 5970 19901 1641 542 -9.01978e+00 -9.01834e+00 3.7e-07 6.3e-05 7.6e-05 4.6 18.4

san200-0.7-2.clq 20100 5970 19901 1561 651 -1.20017e+01 -1.19991e+01 9.2e-06 1.0e-05 1.0e-04 3.7 14.7

san200-0.9-1.clq 20100 1990 19901 3087 -4.01900e+00 -4.01770e+00 1.5e-06 3.6e-05 1.4e-04 9.2 36.8

san200-0.9-2.clq 20100 1990 19901 502 24 -4.30186e+00 -4.30127e+00 8.7e-06 1.2e-05 6.2e-05 1.5 6.0

san200-0.9-3.clq 20100 1990 19901 266 -5.00014e+00 -4.99998e+00 9.2e-06 3.8e-06 1.4e-05 0.8 3.1

san400-0.5-1.clq 80200 39900 79801 244 14 -3.42062e+01 -3.42050e+01 2.5e-06 7.4e-05 1.8e-05 3.2 11.4

san400-0.7-1.clq 80200 23940 79801 303 -1.26165e+01 -1.26146e+01 6.5e-06 8.5e-06 7.2e-05 3.8 13.9

san400-0.7-2.clq 80200 23940 79801 23117 12512 -1.50008e+01 -1.50283e+01 2.5e-06 5.8e-05 -8.9e-04 179.0 667.6

san400-0.7-3.clq 80200 23940 79801 6357 3517 -1.90009e+01 -1.89856e+01 2.2e-06 5.9e-05 3.9e-04 51.8 186.2

san400-0.9-1.clq 80200 7980 79801 500 -5.20161e+00 -5.20003e+00 6.4e-06 1.0e-05 1.4e-04 6.0 21.7

sanr200-0.7.clq 20100 6032 19901 104 -8.82941e+00 -8.82925e+00 9.0e-06 8.1e-06 8.4e-06 0.4 1.5

sanr200-0.9.clq 20100 2037 19901 264 -4.47681e+00 -4.47658e+00 9.2e-06 3.7e-06 2.3e-05 0.8 3.3

sanr400-0.5.clq 80200 39816 79801 79 2 -2.01710e+01 -2.01701e+01 5.2e-06 2.3e-05 2.2e-05 1.1 3.8

sanr400-0.7.clq 80200 23931 79801 86 7 -1.19955e+01 -1.19950e+01 6.2e-06 1.1e-05 1.9e-05 1.1 3.9

Table 19: Algorithm-Performance with increased tolerance: Table-LovaszSchrijver-
dimacs2nd-t=0.95-maxr=0-maxtime=Inf-maxit=Inf-tol=0.0001

127

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 372 231 -7.71969e+00 -7.71968e+00 9.2e-07 5.3e-07 4.3e-07 1.8 4.4

brock200-2.clq 20100 10024 19901 106 34 -1.46054e+01 -1.46054e+01 7.9e-07 2.1e-06 4.1e-07 0.4 1.6

brock200-3.clq 20100 7852 19901 123 48 -1.11618e+01 -1.11618e+01 8.2e-07 1.6e-06 5.4e-07 0.4 1.7

brock200-4.clq 20100 6811 19901 133 18 -9.82465e+00 -9.82463e+00 8.6e-07 1.4e-06 7.3e-07 0.5 2.0

brock400-1.clq 80200 20077 79801 142 5 -1.03575e+01 -1.03575e+01 6.1e-07 1.0e-06 1.3e-06 2.1 7.1

brock400-2.clq 80200 20014 79801 147 -1.03755e+01 -1.03755e+01 6.2e-07 1.0e-06 1.3e-06 2.2 7.4

brock400-3.clq 80200 20119 79801 146 26 -1.04060e+01 -1.04060e+01 6.2e-07 1.0e-06 1.4e-06 2.0 6.7

brock400-4.clq 80200 20035 79801 144 49 -1.03995e+01 -1.03995e+01 6.2e-07 1.0e-06 1.2e-06 1.8 5.9

brock800-1.clq 320400 112095 319601 110 10 -1.91431e+01 -1.91430e+01 4.3e-07 1.4e-06 1.6e-06 7.6 22.6

brock800-2.clq 320400 111434 319601 110 23 -1.90366e+01 -1.90365e+01 4.3e-07 1.3e-06 1.6e-06 7.0 20.9

brock800-3.clq 320400 112267 319601 111 3 -1.91785e+01 -1.91785e+01 4.2e-07 1.3e-06 4.0e-07 7.7 23.4

brock800-4.clq 320400 111957 319601 109 -1.90933e+01 -1.90932e+01 4.3e-07 1.3e-06 3.5e-07 7.6 23.0

c-fat200-1.clq 20100 18366 19901 2037 1723 -1.84666e+01 -1.84666e+01 8.7e-07 3.9e-06 1.3e-08 4.3 16.3

c-fat200-2.clq 20100 16665 19901 954 765 -8.99971e+00 -9.00011e+00 6.6e-07 7.2e-06 -2.1e-05 1.9 7.4

c-fat200-5.clq 20100 11427 19901 377 320 -3.31753e+00 -3.31764e+00 4.5e-07 7.3e-06 -1.4e-05 0.7 2.7

c-fat500-1.clq 125250 120291 124751 2766 1540 -3.99990e+01 -3.99995e+01 4.3e-07 7.9e-06 -5.6e-06 34.8 111.5

c-fat500-10.clq 125250 78123 124751 486 416 -3.99977e+00 -3.99996e+00 3.2e-07 7.4e-06 -2.0e-05 4.3 12.0

c-fat500-2.clq 125250 115611 124751 1689 1219 -2.00001e+01 -2.00004e+01 7.6e-08 1.1e-05 -6.2e-06 18.0 54.3

c-fat500-5.clq 125250 101559 124751 975 804 -8.00056e+00 -7.99995e+00 5.5e-07 4.1e-06 3.6e-05 9.2 26.3

hamming10-2.clq 524800 5120 523777 10762 7851 -1.99955e+00 -2.00000e+00 4.2e-07 1.7e-07 -8.9e-05 574.2 1608.7

hamming10-4.clq 524800 89600 523777 1715 1097 -1.99994e+01 -2.00001e+01 3.9e-07 1.8e-06 -1.8e-05 118.5 367.1

hamming6-2.clq 2080 192 2017 1432 1160 -2.00012e+00 -2.00000e+00 1.6e-06 2.4e-07 2.3e-05 1.1 2.0

hamming6-4.clq 2080 1312 2017 1505 1117 -1.20003e+01 -1.20000e+01 1.5e-06 7.6e-07 1.2e-05 1.2 5.0

hamming8-2.clq 32896 1024 32641 3770 2944 -1.99978e+00 -2.00000e+00 8.1e-07 4.6e-07 -4.4e-05 9.4 34.4

hamming8-4.clq 32896 11776 32641 1689 892 -1.60003e+01 -1.59998e+01 5.0e-07 5.5e-06 1.4e-05 5.8 21.4

johnson16-2-4.clq 7260 1680 7141 1379 1143 -1.49998e+01 -1.50001e+01 1.0e-06 2.8e-06 -9.3e-06 1.6 6.4

johnson32-2-4.clq 123256 14880 122761 2795 2145 -3.09997e+01 -3.10003e+01 3.9e-07 3.1e-06 -9.7e-06 24.0 72.8

johnson8-2-4.clq 406 168 379 707 624 -6.99995e+00 -6.99993e+00 1.0e-06 6.4e-06 1.7e-06 0.5 0.8

johnson8-4-4.clq 2485 560 2416 806 574 -4.99998e+00 -5.00006e+00 1.7e-07 5.3e-06 -6.4e-06 0.7 2.7

keller4.clq 14706 5100 14536 629 308 -1.50002e+01 -1.49998e+01 9.4e-07 2.3e-06 1.3e-05 1.2 4.7

keller5.clq 301476 74710 300701 1497 568 -3.10002e+01 -3.10013e+01 1.8e-07 5.2e-06 -1.8e-05 60.3 183.8

keller6.clq 5649841 1026582 5646481 3780 707 -6.29997e+01 -6.30039e+01 7.9e-08 4.6e-06 -3.3e-05 10900.4 41793.6

p-hat1000-1.clq 500500 377247 499501 2451 -8.94782e+01 -8.94782e+01 4.3e-07 1.4e-07 3.8e-07 301.1 930.2

p-hat1000-2.clq 500500 254701 499501 13309 -6.08627e+01 -6.08624e+01 4.3e-07 2.2e-08 2.0e-06 1570.0 4896.9

p-hat1000-3.clq 500500 127754 499501 871 -1.81366e+01 -1.81366e+01 4.3e-07 1.2e-07 5.8e-07 92.1 293.5

p-hat1500-1.clq 1125750 839327 1124251 2475 -1.09265e+02 -1.09265e+02 3.6e-07 1.7e-07 3.9e-07 867.9 2833.8

p-hat1500-2.clq 1125750 555290 1124251 13486 -7.33090e+01 -7.33087e+01 3.6e-07 2.8e-08 2.0e-06 4587.0 15037.8

p-hat1500-3.clq 1125750 277006 1124251 874 -2.14139e+01 -2.14138e+01 3.6e-07 1.3e-07 5.8e-07 266.7 886.6

p-hat300-1.clq 45150 33917 44851 2068 74 -4.40680e+01 -4.40679e+01 7.7e-07 1.8e-07 5.0e-07 18.2 66.1

p-hat300-2.clq 45150 22922 44851 7999 -2.89009e+01 -2.89008e+01 7.7e-07 3.4e-08 1.6e-06 68.6 254.9

p-hat300-3.clq 45150 11460 44851 928 -1.04261e+01 -1.04261e+01 7.7e-07 1.5e-07 7.1e-07 7.4 28.1

p-hat500-1.clq 125250 93181 124751 2066 424 -5.72741e+01 -5.72741e+01 6.0e-07 1.3e-07 4.0e-07 45.5 144.7

p-hat500-2.clq 125250 61804 124751 11773 -3.90750e+01 -3.90749e+01 6.1e-07 3.2e-08 1.9e-06 278.7 909.1

p-hat500-3.clq 125250 30950 124751 849 -1.28265e+01 -1.28265e+01 6.0e-07 1.2e-07 6.6e-07 18.1 60.7

p-hat700-1.clq 245350 183651 244651 3165 -7.34972e+01 -7.34971e+01 5.1e-07 1.0e-07 5.2e-07 162.4 497.8

p-hat700-2.clq 245350 122922 244651 15666 -5.20065e+01 -5.20063e+01 5.1e-07 5.3e-08 2.0e-06 771.6 2400.1

p-hat700-3.clq 245350 61640 244651 1046 -1.52408e+01 -1.52407e+01 5.1e-07 1.4e-07 7.8e-07 46.5 147.8

san1000.clq 500500 249000 499501 7426 3746 -6.69991e+01 -6.70012e+01 4.0e-07 3.0e-06 -1.5e-05 558.7 1623.1

san200-0.7-1.clq 20100 5970 19901 6438 4711 -9.01999e+00 -9.01980e+00 2.5e-08 6.3e-06 9.7e-06 16.3 63.3

san200-0.7-2.clq 20100 5970 19901 2286 1369 -1.20001e+01 -1.20003e+01 8.2e-07 2.9e-06 -6.2e-06 5.7 22.3

san200-0.9-1.clq 20100 1990 19901 10196 -4.01912e+00 -4.01897e+00 2.4e-07 3.5e-06 1.7e-05 36.2 144.6

san200-0.9-2.clq 20100 1990 19901 924 344 -4.30144e+00 -4.30139e+00 9.2e-07 6.1e-07 5.0e-06 2.8 10.9

san200-0.9-3.clq 20100 1990 19901 1132 -5.00001e+00 -5.00000e+00 9.3e-07 2.0e-07 1.2e-06 3.9 15.7

san400-0.5-1.clq 80200 39900 79801 420 148 -3.42059e+01 -3.42058e+01 1.8e-07 7.6e-06 1.4e-06 5.2 17.3

san400-0.7-1.clq 80200 23940 79801 457 99 -1.26149e+01 -1.26148e+01 6.5e-07 8.0e-07 6.3e-06 5.7 19.4

san400-0.7-2.clq 80200 23940 79801 37346 26510 -1.50001e+01 -1.49972e+01 2.9e-07 5.7e-06 9.2e-05 275.4 872.3

san400-0.7-3.clq 80200 23940 79801 9939 7064 -1.90003e+01 -1.90000e+01 6.7e-07 1.1e-07 6.2e-06 78.4 241.2

san400-0.9-1.clq 80200 7980 79801 787 48 -5.20025e+00 -5.20010e+00 6.0e-07 1.5e-06 1.3e-05 10.0 35.1

sanr200-0.7.clq 20100 6032 19901 210 2 -8.82923e+00 -8.82922e+00 9.1e-07 3.6e-07 2.9e-07 0.9 3.4

sanr200-0.9.clq 20100 2037 19901 623 -4.47656e+00 -4.47656e+00 9.3e-07 9.8e-08 6.0e-07 2.3 9.2

sanr400-0.5.clq 80200 39816 79801 103 21 -2.01700e+01 -2.01700e+01 5.9e-07 1.9e-06 -3.4e-07 1.5 4.8

sanr400-0.7.clq 80200 23931 79801 129 44 -1.19950e+01 -1.19950e+01 6.1e-07 1.2e-06 1.1e-06 1.6 5.1

Table 20: Algorithm-Performance with increased tolerance: Table-LovaszSchrijver-
dimacs2nd-t=0.95-maxr=0-maxtime=Inf-maxit=Inf-tol=1e-05

128

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 351 86 -7.71968e+00 -7.71968e+00 5.2e-08 2.7e-07 -3.6e-09 2.4 9.5

brock200-2.clq 20100 10024 19901 106 48 -1.46054e+01 -1.46054e+01 6.3e-08 4.3e-07 2.5e-09 0.7 2.6

brock200-3.clq 20100 7852 19901 112 51 -1.11617e+01 -1.11617e+01 6.0e-08 4.1e-07 -5.3e-09 0.7 2.7

brock200-4.clq 20100 6811 19901 118 34 -9.82463e+00 -9.82463e+00 6.0e-08 3.2e-07 2.9e-09 0.8 3.0

brock400-1.clq 80200 20077 79801 95 18 -1.03575e+01 -1.03575e+01 4.4e-08 2.9e-07 -3.7e-09 1.8 6.7

brock400-2.clq 80200 20014 79801 98 1 -1.03755e+01 -1.03755e+01 4.5e-08 2.9e-07 1.1e-08 2.0 7.4

brock400-3.clq 80200 20119 79801 99 30 -1.04060e+01 -1.04060e+01 4.6e-08 3.2e-07 -7.8e-09 1.8 6.7

brock400-4.clq 80200 20035 79801 100 40 -1.03994e+01 -1.03994e+01 4.0e-08 2.9e-07 6.4e-09 1.7 6.6

brock800-1.clq 320400 112095 319601 87 22 -1.91430e+01 -1.91430e+01 2.9e-08 3.2e-07 5.7e-09 6.8 23.9

brock800-2.clq 320400 111434 319601 86 27 -1.90365e+01 -1.90365e+01 3.2e-08 3.6e-07 -3.5e-09 6.6 23.2

brock800-3.clq 320400 112267 319601 87 16 -1.91785e+01 -1.91785e+01 3.2e-08 3.5e-07 4.9e-09 6.9 24.6

brock800-4.clq 320400 111957 319601 86 13 -1.90932e+01 -1.90932e+01 3.1e-08 3.4e-07 -4.1e-09 6.9 24.7

c-fat200-1.clq 20100 18366 19901 100000 4930 -1.84661e+01 -1.84750e+01 5.7e-04 5.3e-03 -2.3e-04 683.8 2734.4

c-fat200-2.clq 20100 16665 19901 142 118 -9.00000e+00 -9.00000e+00 4.8e-08 5.6e-07 2.8e-07 0.7 2.8

c-fat200-5.clq 20100 11427 19901 98 86 -3.31767e+00 -3.31767e+00 4.5e-08 3.9e-07 6.1e-08 0.5 1.9

c-fat500-1.clq 125250 120291 124751 182 26 -4.00000e+01 -4.00000e+01 3.3e-08 6.3e-07 9.8e-08 5.0 19.2

c-fat500-10.clq 125250 78123 124751 145 132 -4.00000e+00 -4.00000e+00 3.0e-08 4.9e-07 -4.2e-07 2.9 10.8

c-fat500-2.clq 125250 115611 124751 79 35 -2.00000e+01 -2.00000e+01 2.8e-08 5.3e-07 1.8e-07 1.9 7.3

c-fat500-5.clq 125250 101559 124751 134 112 -8.00001e+00 -8.00000e+00 3.2e-08 7.3e-07 5.1e-07 2.9 10.9

hamming10-2.clq 524800 5120 523777 804 551 -2.00000e+00 -2.00000e+00 2.7e-08 7.2e-08 3.5e-08 81.5 260.1

hamming10-4.clq 524800 89600 523777 71 53 -2.00000e+01 -2.00000e+01 1.7e-08 1.0e-07 -1.5e-08 7.7 25.1

hamming6-2.clq 2080 192 2017 182 123 -2.00000e+00 -2.00000e+00 7.8e-08 2.5e-07 5.5e-09 0.3 1.3

hamming6-4.clq 2080 1312 2017 55 43 -1.20000e+01 -1.20000e+01 3.8e-08 2.3e-07 5.4e-09 0.1 0.4

hamming8-2.clq 32896 1024 32641 132 101 -2.00000e+00 -2.00000e+00 6.1e-08 1.0e-07 -2.0e-08 0.8 3.2

hamming8-4.clq 32896 11776 32641 51 38 -1.60000e+01 -1.60000e+01 1.7e-08 6.4e-08 -1.5e-07 0.3 1.3

johnson16-2-4.clq 7260 1680 7141 82000 81181 -1.50000e+01 -1.50000e+01 2.0e-08 3.1e-08 1.2e-09 187.6 746.8

johnson32-2-4.clq 123256 14880 122761 13 4 -3.10000e+01 -3.10000e+01 3.5e-09 4.2e-09 3.3e-08 0.2 0.9

johnson8-2-4.clq 406 168 379 13 5 -7.00000e+00 -7.00000e+00 5.2e-09 2.6e-09 -3.9e-09 0.0 0.0

johnson8-4-4.clq 2485 560 2416 27 14 -5.00000e+00 -5.00000e+00 2.3e-08 6.8e-08 -2.1e-07 0.0 0.2

keller4.clq 14706 5100 14536 84 15 -1.50000e+01 -1.50000e+01 3.3e-08 4.0e-07 3.7e-08 0.5 1.9

keller5.clq 301476 74710 300701 132 21 -3.10000e+01 -3.10000e+01 1.4e-08 3.0e-07 4.2e-08 8.1 29.0

keller6.clq 5649841 1026582 5646481 267 11 -6.30000e+01 -6.30000e+01 1.2e-08 2.7e-07 -3.1e-07 1057.9 3931.3

p-hat1000-1.clq 500500 377247 499501 9151 3877 -8.94781e+01 -8.94781e+01 3.3e-08 6.3e-07 2.2e-08 1292.7 4480.0

p-hat1000-2.clq 500500 254701 499501 100000 -6.08624e+01 -6.08624e+01 5.6e-08 1.0e-06 3.6e-09 14970.2 53006.5

p-hat1000-3.clq 500500 127754 499501 892 -1.81366e+01 -1.81366e+01 3.0e-08 3.4e-07 2.3e-08 122.4 430.2

p-hat1500-1.clq 1125750 839327 1124251 4129 1076 -1.09265e+02 -1.09265e+02 2.5e-08 6.1e-07 7.4e-09 1656.0 5828.8

p-hat1500-2.clq 1125750 555290 1124251 100000 -7.33086e+01 -7.33086e+01 4.7e-08 9.5e-07 3.5e-09 41950.3 150894.0

p-hat1500-3.clq 1125750 277006 1124251 1185 -2.14138e+01 -2.14138e+01 2.7e-08 3.5e-07 -8.4e-08 464.6 1664.4

p-hat300-1.clq 45150 33917 44851 4052 -4.40679e+01 -4.40679e+01 4.5e-08 5.6e-07 -1.3e-10 53.9 210.7

p-hat300-2.clq 45150 22922 44851 38240 -2.89008e+01 -2.89008e+01 5.9e-08 5.1e-07 5.8e-10 486.7 1910.0

p-hat300-3.clq 45150 11460 44851 1560 -1.04261e+01 -1.04261e+01 5.8e-08 3.6e-07 2.1e-09 18.8 74.2

p-hat500-1.clq 125250 93181 124751 4233 1228 -5.72741e+01 -5.72741e+01 4.6e-08 6.2e-07 2.7e-09 125.8 482.0

p-hat500-2.clq 125250 61804 124751 100000 -3.90748e+01 -3.90748e+01 6.2e-08 8.0e-07 1.7e-09 3032.9 11750.3

p-hat500-3.clq 125250 30950 124751 892 -1.28265e+01 -1.28265e+01 4.5e-08 3.6e-07 -3.6e-08 25.3 97.5

p-hat700-1.clq 245350 183651 244651 9003 1360 -7.34971e+01 -7.34971e+01 3.6e-08 5.8e-07 -3.9e-09 568.6 2070.8

p-hat700-2.clq 245350 122922 244651 100000 -5.20063e+01 -5.20063e+01 8.9e-08 1.3e-06 4.1e-09 6317.5 23221.2

p-hat700-3.clq 245350 61640 244651 2130 -1.52407e+01 -1.52407e+01 3.9e-08 3.6e-07 2.8e-08 123.1 450.2

san1000.clq 500500 249000 499501 268 -6.70000e+01 -6.70000e+01 2.7e-08 4.8e-07 1.0e-08 37.7 132.6

san200-0.7-1.clq 20100 5970 19901 2383 1430 -9.01999e+00 -9.01999e+00 5.6e-08 3.5e-07 2.0e-08 13.4 53.6

san200-0.7-2.clq 20100 5970 19901 141 -1.20000e+01 -1.20000e+01 4.6e-08 3.1e-07 -3.4e-11 0.9 3.6

san200-0.9-1.clq 20100 1990 19901 20281 -4.01912e+00 -4.01912e+00 6.4e-08 2.1e-07 3.9e-08 127.2 508.7

san200-0.9-2.clq 20100 1990 19901 588 255 -4.30140e+00 -4.30140e+00 6.6e-08 1.8e-07 1.1e-07 3.3 13.0

san200-0.9-3.clq 20100 1990 19901 3825 -5.00000e+00 -5.00000e+00 7.4e-08 2.2e-07 -1.2e-08 23.6 94.4

san400-0.5-1.clq 80200 39900 79801 326 136 -3.42059e+01 -3.42059e+01 4.1e-08 4.0e-07 -1.8e-09 6.0 22.6

san400-0.7-1.clq 80200 23940 79801 217 76 -1.26148e+01 -1.26148e+01 4.9e-08 3.2e-07 -5.0e-09 3.9 14.9

san400-0.7-2.clq 80200 23940 79801 343 28 -1.50000e+01 -1.50000e+01 3.0e-08 2.8e-07 -2.9e-09 6.5 25.0

san400-0.7-3.clq 80200 23940 79801 97 17 -1.90000e+01 -1.90000e+01 3.0e-08 4.3e-07 -3.0e-08 1.8 6.8

san400-0.9-1.clq 80200 7980 79801 472 120 -5.20011e+00 -5.20011e+00 4.8e-08 2.3e-07 -3.2e-08 8.1 31.0

sanr200-0.7.clq 20100 6032 19901 153 29 -8.82922e+00 -8.82922e+00 5.6e-08 3.1e-07 -6.5e-09 1.1 4.2

sanr200-0.9.clq 20100 2037 19901 442 -4.47656e+00 -4.47656e+00 6.7e-08 2.2e-07 -1.7e-07 2.8 11.2

sanr400-0.5.clq 80200 39816 79801 92 31 -2.01700e+01 -2.01700e+01 3.5e-08 4.2e-07 -1.1e-09 1.7 6.5

sanr400-0.7.clq 80200 23931 79801 93 38 -1.19950e+01 -1.19950e+01 4.3e-08 3.1e-07 2.2e-09 1.7 6.3

Table 21: Algorithm-Performance NCQNM(5): Table-LovaszSchrijver-dimacs2nd-t=0.95-
maxr=5-maxtime=Inf-maxit=100000-tol=1e-06

129

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 280 30 -7.71968e+00 -7.71968e+00 5.7e-08 3.2e-07 -1.1e-08 2.3 9.0

brock200-2.clq 20100 10024 19901 102 45 -1.46054e+01 -1.46054e+01 5.3e-08 4.1e-07 4.3e-10 0.7 3.0

brock200-3.clq 20100 7852 19901 104 46 -1.11618e+01 -1.11618e+01 6.8e-08 4.0e-07 -1.3e-09 0.8 3.1

brock200-4.clq 20100 6811 19901 105 27 -9.82463e+00 -9.82463e+00 5.3e-08 3.6e-07 1.9e-09 0.8 3.2

brock400-1.clq 80200 20077 79801 93 17 -1.03575e+01 -1.03575e+01 4.1e-08 2.7e-07 -6.7e-10 2.1 7.8

brock400-2.clq 80200 20014 79801 95 2 -1.03755e+01 -1.03755e+01 4.0e-08 2.6e-07 8.5e-10 2.2 8.4

brock400-3.clq 80200 20119 79801 95 27 -1.04060e+01 -1.04060e+01 4.4e-08 2.9e-07 2.4e-09 2.1 7.8

brock400-4.clq 80200 20035 79801 95 36 -1.03994e+01 -1.03994e+01 4.2e-08 2.7e-07 6.8e-10 2.0 7.5

brock800-1.clq 320400 112095 319601 84 20 -1.91430e+01 -1.91430e+01 3.1e-08 3.3e-07 -1.3e-09 7.5 27.3

brock800-2.clq 320400 111434 319601 84 26 -1.90365e+01 -1.90365e+01 3.0e-08 3.2e-07 -2.2e-09 7.3 26.3

brock800-3.clq 320400 112267 319601 84 15 -1.91785e+01 -1.91785e+01 3.2e-08 3.4e-07 4.0e-10 7.6 27.7

brock800-4.clq 320400 111957 319601 83 12 -1.90932e+01 -1.90932e+01 3.4e-08 3.5e-07 2.0e-09 7.6 27.5

c-fat200-1.clq 20100 18366 19901 100000 25760 -1.84782e+01 -1.84779e+01 5.0e-04 5.7e-03 8.6e-06 802.4 3208.7

c-fat200-2.clq 20100 16665 19901 131 109 -9.00000e+00 -9.00000e+00 3.6e-08 4.9e-07 6.1e-08 0.8 3.3

c-fat200-5.clq 20100 11427 19901 78 66 -3.31767e+00 -3.31767e+00 2.8e-08 2.3e-07 1.1e-07 0.5 1.8

c-fat500-1.clq 125250 120291 124751 168 13 -4.00000e+01 -4.00000e+01 3.4e-08 5.9e-07 -3.0e-08 5.7 22.2

c-fat500-10.clq 125250 78123 124751 135 122 -4.00001e+00 -4.00000e+00 2.5e-08 4.1e-07 9.4e-07 3.4 13.2

c-fat500-2.clq 125250 115611 124751 65 25 -2.00000e+01 -2.00000e+01 3.7e-08 6.2e-07 -2.7e-08 2.0 7.6

c-fat500-5.clq 125250 101559 124751 63 42 -8.00000e+00 -8.00000e+00 2.8e-08 5.7e-07 -1.7e-07 1.7 6.6

hamming10-2.clq 524800 5120 523777 2379 1892 -2.00004e+00 -2.00000e+00 3.8e-08 3.9e-08 7.3e-06 268.2 879.1

hamming10-4.clq 524800 89600 523777 40762 40340 -2.00000e+01 -2.00000e+01 1.6e-08 2.0e-07 6.0e-08 4886.4 16058.9

hamming6-2.clq 2080 192 2017 73 52 -2.00000e+00 -2.00000e+00 3.7e-09 1.1e-08 1.2e-10 0.1 0.5

hamming6-4.clq 2080 1312 2017 17 5 -1.20000e+01 -1.20000e+01 6.3e-08 9.1e-08 -4.0e-07 0.0 0.1

hamming8-2.clq 32896 1024 32641 307 184 -2.00001e+00 -2.00000e+00 5.9e-08 1.3e-07 1.2e-06 2.7 10.5

hamming8-4.clq 32896 11776 32641 19 6 -1.60000e+01 -1.60000e+01 8.2e-09 1.6e-07 -9.2e-08 0.1 0.6

johnson16-2-4.clq 7260 1680 7141 17 9 -1.50000e+01 -1.50000e+01 1.4e-08 2.7e-08 -5.5e-08 0.1 0.2

johnson32-2-4.clq 123256 14880 122761 13 4 -3.10000e+01 -3.10000e+01 2.6e-09 2.6e-09 1.2e-08 0.3 1.0

johnson8-2-4.clq 406 168 379 13 5 -7.00000e+00 -7.00000e+00 5.2e-09 2.6e-09 -3.9e-09 0.0 0.1

johnson8-4-4.clq 2485 560 2416 18 5 -5.00000e+00 -5.00000e+00 6.1e-09 1.4e-09 1.4e-09 0.0 0.1

keller4.clq 14706 5100 14536 83 28 -1.50000e+01 -1.50000e+01 4.7e-08 3.4e-07 1.6e-08 0.5 2.2

keller5.clq 301476 74710 300701 128 29 -3.10000e+01 -3.10000e+01 2.9e-08 3.0e-07 1.3e-07 9.0 33.2

keller6.clq 5649841 1026582 5646481 322 60 -6.30000e+01 -6.29996e+01 9.2e-09 4.5e-07 3.7e-06 1234.0 4545.8

p-hat1000-1.clq 500500 377247 499501 13163 9189 -8.94782e+01 -8.94780e+01 3.0e-08 6.5e-07 1.2e-06 1999.8 7026.3

p-hat1000-2.clq 500500 254701 499501 81197 -6.08624e+01 -6.08623e+01 3.2e-08 5.0e-07 5.7e-07 13866.4 50103.5

p-hat1000-3.clq 500500 127754 499501 736 -1.81366e+01 -1.81366e+01 2.9e-08 3.8e-07 4.6e-08 114.6 411.9

p-hat1500-1.clq 1125750 839327 1124251 2589 453 -1.09265e+02 -1.09265e+02 2.2e-08 5.3e-07 -1.2e-08 1206.6 4344.0

p-hat1500-2.clq 1125750 555290 1124251 82479 -7.33087e+01 -7.33086e+01 2.4e-08 5.2e-07 5.3e-07 38391.9 139839.8

p-hat1500-3.clq 1125750 277006 1124251 854 -2.14138e+01 -2.14138e+01 2.5e-08 3.7e-07 -4.3e-08 371.6 1344.3

p-hat300-1.clq 45150 33917 44851 2561 -4.40680e+01 -4.40679e+01 6.2e-08 5.6e-07 4.9e-07 41.7 163.7

p-hat300-2.clq 45150 22922 44851 19128 -2.89008e+01 -2.89008e+01 5.6e-08 5.0e-07 3.0e-07 295.4 1163.3

p-hat300-3.clq 45150 11460 44851 1184 -1.04261e+01 -1.04261e+01 5.6e-08 3.6e-07 6.4e-08 17.2 68.1

p-hat500-1.clq 125250 93181 124751 2786 680 -5.72741e+01 -5.72741e+01 4.4e-08 4.7e-07 5.7e-07 100.0 388.2

p-hat500-2.clq 125250 61804 124751 67415 -3.90749e+01 -3.90748e+01 4.1e-08 5.3e-07 5.4e-07 2405.5 9391.5

p-hat500-3.clq 125250 30950 124751 615 -1.28265e+01 -1.28265e+01 4.0e-08 3.4e-07 7.4e-09 20.4 79.0

p-hat700-1.clq 245350 183651 244651 12376 6836 -7.34971e+01 -7.34969e+01 3.3e-08 7.3e-07 1.3e-06 829.7 3044.7

p-hat700-2.clq 245350 122922 244651 92600 -5.20063e+01 -5.20062e+01 4.0e-08 4.7e-07 7.4e-07 6704.1 25105.4

p-hat700-3.clq 245350 61640 244651 1527 -1.52407e+01 -1.52407e+01 3.6e-08 4.0e-07 6.1e-08 102.5 381.5

san1000.clq 500500 249000 499501 261 -6.70000e+01 -6.70000e+01 2.8e-08 4.9e-07 -7.2e-08 42.1 150.9

san200-0.7-1.clq 20100 5970 19901 2036 1131 -9.01999e+00 -9.01999e+00 5.4e-08 3.8e-07 -8.5e-08 14.4 57.3

san200-0.7-2.clq 20100 5970 19901 130 -1.20000e+01 -1.20000e+01 5.7e-08 4.1e-07 -3.6e-08 1.0 3.9

san200-0.9-1.clq 20100 1990 19901 15774 -4.01912e+00 -4.01912e+00 6.9e-08 2.4e-07 1.5e-07 117.8 471.3

san200-0.9-2.clq 20100 1990 19901 574 278 -4.30140e+00 -4.30140e+00 6.0e-08 2.0e-07 1.1e-07 3.9 15.5

san200-0.9-3.clq 20100 1990 19901 2937 -5.00000e+00 -5.00000e+00 7.4e-08 2.2e-07 -6.9e-10 21.5 86.0

san400-0.5-1.clq 80200 39900 79801 316 131 -3.42059e+01 -3.42059e+01 4.5e-08 5.4e-07 -2.5e-10 7.0 26.8

san400-0.7-1.clq 80200 23940 79801 190 67 -1.26148e+01 -1.26148e+01 4.5e-08 3.3e-07 4.4e-09 4.0 15.5

san400-0.7-2.clq 80200 23940 79801 325 61 -1.50000e+01 -1.50000e+01 3.2e-08 4.5e-07 2.0e-08 7.0 27.1

san400-0.7-3.clq 80200 23940 79801 107 25 -1.90000e+01 -1.90000e+01 3.7e-08 2.5e-07 -3.4e-08 2.3 8.8

san400-0.9-1.clq 80200 7980 79801 388 103 -5.20011e+00 -5.20011e+00 4.4e-08 2.0e-07 5.9e-08 8.0 30.6

sanr200-0.7.clq 20100 6032 19901 135 23 -8.82922e+00 -8.82922e+00 7.0e-08 3.3e-07 5.1e-09 1.1 4.2

sanr200-0.9.clq 20100 2037 19901 336 33 -4.47656e+00 -4.47656e+00 6.3e-08 2.5e-07 -1.1e-07 2.5 10.1

sanr400-0.5.clq 80200 39816 79801 91 31 -2.01700e+01 -2.01700e+01 3.9e-08 3.9e-07 2.8e-09 2.1 7.8

sanr400-0.7.clq 80200 23931 79801 90 35 -1.19950e+01 -1.19950e+01 4.3e-08 3.0e-07 1.8e-09 1.9 7.2

Table 22: Algorithm-Performance NCQNM(10): Table-LovaszSchrijver-dimacs2nd-t=0.95-
maxr=10-maxtime=Inf-maxit=100000-tol=1e-06

130

1
2

(n2
s + ns) nl m it up C •X bT y RP RD gap time cpu

brock200-1.clq 20100 5066 19901 294 28 -7.71968e+00 -7.71969e+00 6.4e-08 3.8e-07 -4.1e-07 3.2 12.5

brock200-2.clq 20100 10024 19901 99 42 -1.46054e+01 -1.46054e+01 5.7e-08 4.1e-07 -4.5e-09 1.1 4.2

brock200-3.clq 20100 7852 19901 102 46 -1.11618e+01 -1.11618e+01 5.7e-08 4.1e-07 6.8e-08 0.9 3.7

brock200-4.clq 20100 6811 19901 103 28 -9.82463e+00 -9.82463e+00 4.8e-08 3.7e-07 -3.7e-08 1.0 4.1

brock400-1.clq 80200 20077 79801 92 16 -1.03575e+01 -1.03575e+01 5.5e-08 3.2e-07 3.7e-08 2.4 9.0

brock400-2.clq 80200 20014 79801 94 1 -1.03755e+01 -1.03755e+01 5.3e-08 3.2e-07 3.8e-08 2.6 9.9

brock400-3.clq 80200 20119 79801 94 27 -1.04060e+01 -1.04060e+01 5.3e-08 3.2e-07 4.3e-09 2.4 9.1

brock400-4.clq 80200 20035 79801 93 34 -1.03994e+01 -1.03994e+01 5.0e-08 3.2e-07 -3.5e-09 2.4 9.1

brock800-1.clq 320400 112095 319601 84 20 -1.91430e+01 -1.91430e+01 2.6e-08 3.3e-07 6.1e-10 8.6 31.4

brock800-2.clq 320400 111434 319601 83 25 -1.90365e+01 -1.90365e+01 3.3e-08 3.5e-07 -2.8e-09 8.3 30.3

brock800-3.clq 320400 112267 319601 84 15 -1.91785e+01 -1.91785e+01 3.1e-08 3.4e-07 7.7e-10 8.5 31.0

brock800-4.clq 320400 111957 319601 83 12 -1.90932e+01 -1.90932e+01 3.2e-08 3.4e-07 -2.9e-09 8.6 31.5

c-fat200-1.clq 20100 18366 19901 100000 42334 -1.84664e+01 -1.84704e+01 3.3e-04 3.9e-03 -1.1e-04 996.4 3984.6

c-fat200-2.clq 20100 16665 19901 135 114 -9.00000e+00 -9.00000e+00 3.6e-08 3.6e-07 -2.0e-07 1.2 4.6

c-fat200-5.clq 20100 11427 19901 331 316 -3.31767e+00 -3.31767e+00 8.8e-08 2.6e-07 9.0e-07 2.3 9.3

c-fat500-1.clq 125250 120291 124751 175 11 -4.00000e+01 -4.00000e+01 2.7e-08 5.4e-07 -1.3e-08 7.4 28.8

c-fat500-10.clq 125250 78123 124751 132 119 -4.00000e+00 -4.00000e+00 2.8e-08 2.9e-07 1.5e-07 4.1 15.9

c-fat500-2.clq 125250 115611 124751 65 26 -2.00000e+01 -2.00000e+01 2.1e-08 4.9e-07 7.6e-08 2.4 9.2

c-fat500-5.clq 125250 101559 124751 130 110 -8.00000e+00 -8.00000e+00 2.1e-08 6.0e-07 -2.0e-08 4.2 16.4

hamming10-2.clq 524800 5120 523777 192 141 -2.00000e+00 -2.00000e+00 4.6e-09 7.3e-09 -3.5e-07 24.9 84.4

hamming10-4.clq 524800 89600 523777 9101 8987 -2.00000e+01 -2.00000e+01 1.7e-08 1.7e-07 4.5e-07 1275.8 4339.1

hamming6-2.clq 2080 192 2017 30 9 -2.00000e+00 -2.00000e+00 5.2e-08 8.6e-09 1.4e-07 0.1 0.2

hamming6-4.clq 2080 1312 2017 17 5 -1.20000e+01 -1.20000e+01 4.7e-10 3.4e-10 1.7e-10 0.0 0.1

hamming8-2.clq 32896 1024 32641 10640 10462 -1.99999e+00 -2.00000e+00 3.6e-08 1.8e-08 -1.7e-06 85.9 342.1

hamming8-4.clq 32896 11776 32641 19 6 -1.60000e+01 -1.60000e+01 3.2e-10 2.3e-09 9.2e-10 0.2 0.6

johnson16-2-4.clq 7260 1680 7141 17 9 -1.50000e+01 -1.50000e+01 7.1e-10 1.4e-09 -2.7e-09 0.0 0.2

johnson32-2-4.clq 123256 14880 122761 13 4 -3.10000e+01 -3.10000e+01 2.6e-09 2.6e-09 1.2e-08 0.3 1.2

johnson8-2-4.clq 406 168 379 13 5 -7.00000e+00 -7.00000e+00 5.2e-09 2.6e-09 -3.9e-09 0.0 0.1

johnson8-4-4.clq 2485 560 2416 18 5 -5.00000e+00 -5.00000e+00 6.1e-09 1.4e-09 1.4e-09 0.0 0.1

keller4.clq 14706 5100 14536 76 21 -1.50000e+01 -1.50000e+01 3.7e-08 4.2e-07 -1.4e-07 0.5 2.0

keller5.clq 301476 74710 300701 144 44 -3.10000e+01 -3.09999e+01 2.1e-08 4.8e-07 1.8e-06 11.5 42.3

keller6.clq 5649841 1026582 5646481 373 128 -6.30000e+01 -6.29998e+01 1.2e-08 3.6e-07 1.9e-06 1335.3 4849.8

p-hat1000-1.clq 500500 377247 499501 13757 10149 -8.94782e+01 -8.94779e+01 2.7e-08 7.3e-07 1.5e-06 2380.9 8509.9

p-hat1000-2.clq 500500 254701 499501 53723 -6.08624e+01 -6.08623e+01 3.3e-08 4.4e-07 6.4e-07 10302.3 37681.2

p-hat1000-3.clq 500500 127754 499501 746 -1.81366e+01 -1.81366e+01 3.2e-08 3.5e-07 -9.8e-08 129.9 472.3

p-hat1500-1.clq 1125750 839327 1124251 3728 1797 -1.09265e+02 -1.09265e+02 2.5e-08 6.4e-07 7.1e-07 1788.9 6371.0

p-hat1500-2.clq 1125750 555290 1124251 52849 -7.33087e+01 -7.33086e+01 2.6e-08 5.0e-07 8.2e-07 27181.2 99882.0

p-hat1500-3.clq 1125750 277006 1124251 952 -2.14138e+01 -2.14138e+01 2.5e-08 3.8e-07 -4.8e-08 452.6 1657.3

p-hat300-1.clq 45150 33917 44851 2307 -4.40680e+01 -4.40679e+01 6.2e-08 4.6e-07 7.9e-07 44.7 175.6

p-hat300-2.clq 45150 22922 44851 14396 -2.89008e+01 -2.89008e+01 5.3e-08 4.7e-07 4.7e-07 264.9 1044.4

p-hat300-3.clq 45150 11460 44851 1297 -1.04261e+01 -1.04261e+01 5.5e-08 3.9e-07 -3.8e-08 22.8 90.2

p-hat500-1.clq 125250 93181 124751 4365 2479 -5.72741e+01 -5.72740e+01 4.5e-08 6.1e-07 1.2e-06 169.6 655.8

p-hat500-2.clq 125250 61804 124751 53048 -3.90749e+01 -3.90748e+01 4.3e-08 4.8e-07 9.3e-07 2190.6 8566.1

p-hat500-3.clq 125250 30950 124751 674 -1.28264e+01 -1.28265e+01 4.0e-08 3.7e-07 -8.6e-08 25.7 100.3

p-hat700-1.clq 245350 183651 244651 4630 259 -7.34972e+01 -7.34970e+01 4.4e-08 5.0e-07 1.5e-06 403.4 1519.2

p-hat700-2.clq 245350 122922 244651 70731 -5.20063e+01 -5.20062e+01 4.0e-08 4.3e-07 7.0e-07 5840.0 22022.9

p-hat700-3.clq 245350 61640 244651 1788 -1.52407e+01 -1.52407e+01 3.8e-08 3.9e-07 -3.1e-08 136.6 513.2

san1000.clq 500500 249000 499501 233 10 -6.70000e+01 -6.70000e+01 2.5e-08 4.7e-07 -2.1e-08 41.3 149.9

san200-0.7-1.clq 20100 5970 19901 1598 773 -9.01999e+00 -9.01999e+00 5.3e-08 3.2e-07 4.3e-07 14.7 58.4

san200-0.7-2.clq 20100 5970 19901 125 -1.20000e+01 -1.20000e+01 5.4e-08 3.5e-07 1.4e-08 1.2 4.7

san200-0.9-1.clq 20100 1990 19901 13593 -4.01912e+00 -4.01912e+00 6.9e-08 1.9e-07 3.0e-07 123.8 495.1

san200-0.9-2.clq 20100 1990 19901 469 206 -4.30141e+00 -4.30140e+00 5.2e-08 2.0e-07 9.6e-07 4.1 16.5

san200-0.9-3.clq 20100 1990 19901 3283 -5.00000e+00 -5.00000e+00 7.0e-08 2.3e-07 -2.3e-08 29.6 118.3

san400-0.5-1.clq 80200 39900 79801 312 134 -3.42059e+01 -3.42059e+01 4.9e-08 5.0e-07 -1.8e-07 8.4 32.1

san400-0.7-1.clq 80200 23940 79801 229 120 -1.26148e+01 -1.26148e+01 3.8e-08 3.5e-07 5.1e-09 5.5 21.3

san400-0.7-2.clq 80200 23940 79801 351 80 -1.50000e+01 -1.50000e+01 4.6e-08 3.9e-07 1.3e-06 8.9 34.5

san400-0.7-3.clq 80200 23940 79801 107 25 -1.90000e+01 -1.90000e+01 4.2e-08 3.6e-07 -1.7e-07 2.7 10.3

san400-0.9-1.clq 80200 7980 79801 404 111 -5.20011e+00 -5.20011e+00 4.7e-08 2.1e-07 2.1e-07 9.8 37.6

sanr200-0.7.clq 20100 6032 19901 203 91 -8.82923e+00 -8.82923e+00 6.2e-08 4.3e-07 8.1e-08 1.7 6.9

sanr200-0.9.clq 20100 2037 19901 294 23 -4.47656e+00 -4.47656e+00 5.5e-08 2.4e-07 -3.5e-08 2.8 11.1

sanr400-0.5.clq 80200 39816 79801 89 29 -2.01700e+01 -2.01700e+01 4.6e-08 4.2e-07 -9.5e-10 2.4 9.1

sanr400-0.7.clq 80200 23931 79801 89 34 -1.19950e+01 -1.19950e+01 5.2e-08 3.6e-07 -3.9e-08 2.2 8.5

Table 23: Algorithm-Performance NCQNM(15): Table-LovaszSchrijver-dimacs2nd-t=0.95-
maxr=15-maxtime=Inf-maxit=100000-tol=1e-06

131

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige
fremde Hilfe unter Beachtung der Grundsätze zur Sicherung guter wissenschaftlicher Praxis
an der Heinrich-Heine-Universität Düsseldorf erstellt worden ist.

Felix Lieder, Juni 2018, Düsseldorf

132

	Introduction
	Preliminaries
	Projections and the Generalized Absolute Value
	The Reduced Lagrangian
	Generalized Derivatives
	A Conceptual Algorithm

	Selected Euclidean Spaces and Cones
	Real Coordinate Space
	Nonnegative Orthant
	Weighted p-order Cones

	Space of Real Symmetric Matrices
	Semidefinite Cone
	Completely Positive and Copositive Cone Relaxations

	First Order Approach
	Worst-Case-Complexity of Krasnoselâ•ŽskiÄ±Ì„-Mann Iteration
	Worst-Case-Complexity of Fixed Step Methods
	Optimizing the Worst-Case-Complexity
	Statistical Point of Entry
	Selected Performance Criteria

	Extension to Contractions
	Zeros of Selected Strongly Monotone Operators

	Extension to Complex Spaces

	Second Order Approach
	Generalized Newton Approach
	Norm Constrained Quasi Newton Approach
	NCQNM for the Generalized Absolute Value
	Local Refinement
	Recursive Inversion
	Limited Memory via Compression

	Numerical Results
	Sparse Random SDPs
	Maximum Stable Set Relaxations

	Conclusion
	References
	Appendix
	Proof of Proposition 4.8
	Detailed Numerical Results

