
Classical electron
magnetotransport in controlled

potential landscapes

Inaugural-Dissertation

zur Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Jakob Schluck
geboren am 4. Mai 1988 in Leverkusen

Düsseldorf, März 2018



aus dem Institut für Experimentelle Physik der kondensierten Materie
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter
1. Prof. Dr. Thomas Heinzel
2. Prof. Dr. Jürgen Horbach
3. Prof. Dr. Klaus Ensslin

Tag der mündlichen Prüfung: 14. Juni 2018



Zusammenfassung
Diese Arbeit beschäftigt sich mit klassischem zweidimensionalem Elektronentrans-
port in künstlichen Potentiallandschaften. Ausgangsmaterial ist das hochbewegliche
zweidimensionale Elektronengas in modulationsdotierten GaAs/AlxGa1−xAs Het-
erostrukturen.
Zunächst wurden sogenannte magnetische Barrieren untersucht. Hierbei handelt
es sich um auf einer sub-Mikrometerskala lokalisierte Magnetfelder, die durch
ferromagnetische Schichten erzeugt werden können. Wir konnten zeigen, dass eine
Vermessung der Magnetisierung der Schicht mittels Hall-Magnetometrie durch
einen ballistischen Effekt erschwert wird. Mit Hilfe von numerischen Simulationen
konnte das korrekte Magnetisierungsverhalten bestimmt werden.
Durch das Hinzufügen eines homogenen Hintergrundmagnetfeldes, das dem Barri-
erenfeld entgegengesetzt ist, konnten wir experimentell Widerstandsoszillationen
nachweisen. Quantenmechanische Computersimulationen wiesen deren Ursprung
in kommensurablen Schlangenbahnen nach.
Der zweite Teil der Arbeit beschäftigt sich mit Aspekten des Elektronentransports
in lateralen Übergittern. So nennt man periodische Modulationen des elektrostatis-
chen oder magnetischen Potentials. Wir untersuchten so genannte Antidotgitter,
eine zweidimensionale Anordnung von kreisförmigen Verarmungszonen, in einem
Regime, in dem Quantenoszillationen den klassischen Kommensurabilitäten über-
lagert sind. Wir beobachteten erstmalig die Koexistenz von Quantensignaturen
sowohl des Band- als auch des Hüpftransports in der selben Resistivitätskompo-
nente.
Weiterhin wurde ein neuartiges magneto-elektrisches Hybridgitter, bestehend aus
einem quadratischen Antidotgitter kombiniert mit einem eindimensionalem mag-
netischen Übergitter bestehend aus magnetischen Barrieren wechselnden Vorze-
ichens, untersucht. Durch Variieren der Magnetisierung fanden wir Widerstand-
soszillationen, deren Minima an das Auftreten klassischer Schlangenbahnen koppeln,
die mit dem Antidotgitter kommensurabel sind.
Im letzten Teil der Arbeit werden sogennante klassische Lorentzgase betrachtet.
Dieses Modell beschreibt die Streuung von Elektronen in Festkörpern auf Basis
zufällig verteilter kurzreichweitiger Streuer. Auf Grund der hohen Beweglichkeiten
unserer Heterostruktur, konnten wir solche Streuer im klassischen Regime kün-
stlich in das Material einbringen und deren Auswirkungen studieren. Wir konnten
erstmals eindeutig die Existenz eines Maximums in der Magnetoleitfähigkeit nach-
weisen und dessen Ursprung diskutieren. Weiterhin beschäftigten wir uns mit der
Abhängigkeit des Magnetowiderstands von der Form der Streuer im Bereich kleiner
Felder.



Abstract
This thesis deals with classical two-dimensional electron transport in artificial
potential landscapes. The starting point is the two-dimensional electron gas in
modulation doped high-mobility GaAs/AlxGa1−xAs heterostructures.
First we studied magnetic fields localized on a sub-micron scale, so-called magnetic
barriers. We could demonstrate how a measurement of the magnetization via
conventional Hall magnetometry of such a structure can be hampered by a ballistic
effect. With the help of numerical simulations, the correct magnetization trace
could be recovered.
By adding a homogeneous background magnetic field with anti-parallel orientation
to the barrier, we could experimentally observe resistance oscillations. Their
origin is traced back to commensurate snake trajectories by quantum mechanical
simulations.
The second part of the thesis treats aspects of electron transport in periodically
modulated potentials, so-called lateral superlattices. We studied antidot lattices,
two-dimensional arrangements of circular depletion zones, in a regime where
quantum oscillations are superimposed to the classical commensurabilities. For
the first time, we find the coexistence of quantum signatures of band- and hopping
transport in the same resistivity component.
Furthermore, a novel magneto-electric hybrid lattice, a combination of a square
antidot lattice with a one-dimensional magnetic superlattice comprised of magnetic
barriers with alternating direction, was studied. By tuning the magnetization, we
find resistance oscillations, whose minima are linked to the existence of classical
snake trajectories that are commensurate with the antidot lattice.
In the last part we consider so-called classical Lorentzgases. This model describes
the scattering of electrons in solids on the basis of randomly placed short-ranged
scatterers. Due to the high mobility of our heterostructure, we could artificially
introduce such scatterers in the classical regime into the material and study their
effect on transport. For the first time we could unambiguously demonstrate the
existence of a maximum in magnetoconductivity and discuss its origin. Finally we
deal with the dependence of the magnetoresistivity on the shape of the scatterers
for the regime of low magnetic fields.



Contents

Introduction 1

1 Fundamental concepts 4
1.1 The two-dimensional electron gas in GaAs/AlxGa1−xAs . . . . . . 4
1.2 Semiconductor processing techniques . . . . . . . . . . . . . . . . 7

1.2.1 Lithographic techniques . . . . . . . . . . . . . . . . . . . 7
1.2.2 Etching techniques . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Magnetotransport . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 The Boltzmann model . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Quantizing magnetic fields . . . . . . . . . . . . . . . . . . 13

1.4 Experimental techniques . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Cryogenic setup . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Electronic measurement setup . . . . . . . . . . . . . . . . 15

1.5 Numerical techniques . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.1 Classical Kubo formalism . . . . . . . . . . . . . . . . . . 17
1.5.2 Classical Landauer-Büttiker formalism . . . . . . . . . . . 18
1.5.3 Tight-binding calculations based on Kwant . . . . . . . . . 19

2 Transport in controlled potential landscapes 22
2.1 Ballistic effects in single magnetic barriers . . . . . . . . . . . . . 22
2.2 Ballistic transport in lateral superlattices . . . . . . . . . . . . . . 26
2.3 Classical transport properties of Lorentz gases . . . . . . . . . . . 31

3 Publications 36

4 Conclusion and outlook 91

Bibliography 106

Kwant-code example 107

Danksagung 112



Introduction
An ever increasing understanding of electronic transport in solids is at the heart
of the tremendous change brought upon us by the digital revolution. Without
knowledge of the properties of electrons in semiconductors, Bardeen and Brattain [1]
could not have designed the first functional transistor in 1948. From that point on,
huge technological progress has been made, leading to the ongoing miniaturization
of electronics affecting our everyday life so profoundly.
Also from the viewpoint of a fundamental scientist, important breakthroughs
were achieved. The integer- and the fractional quantum Hall effect [2,3] and the
conductance quantization in one-dimensional channels [4, 5] were discovered, while
Coulomb blockade oscillations demonstrated the possibility of transport through
tailored zero-dimensional systems [6, 7], to name just a few of the most prominent
developments. Many more are covered in dedicated textbooks, see e.g. Refs. [8–10].
Although in recent years a lot of attention has been paid to novel material types like
graphene [11,12] or topological insulators [13–16], the two-dimensional electron gas
formed at the interface between gallium arsenide and aluminum gallium arsenide
still offers rich research opportunities. The huge mobilities and corresponding
mean free paths routinely reached within this material system [17], make it an ideal
candidate to study the scattering of electrons in a controlled environment. It allows
us to operate in a regime, where the extension of artificially introduced scattering
potentials is large compared to the Fermi wavelength of the electrons, but small
compared to their mean free path. This is the so called classical ballistic regime.
With this at hand, we can test fundamental transport theories in a controlled
way. A magnetic field applied perpendicular to the plane of the electron gas is
an invaluable tool for doing so. In classical terms, it leads to a deformation of
electron trajectories into circles with a cyclotron radius inversely proportional
to the magnetic field strength. This tunes the electron’s sensitivity to the exact
details of the potential landscape and allows for its characterization. For instance,
in disordered systems, a negative magnetoresistance is predicted for the case
of randomly placed short range scatterers [18], whereas it should be positive
for correlated soft potentials [19]. In the case of mixed disorder, the outcome
depends sensitively on the respective potential strengths [20,21]. These theoretical
predictions are always made under limiting assumptions and it is therefore of high
fundamental interest, to experimentally verify their range of validity.
Regular arrangements of scattering centers have also attracted a lot of attention
since their first realizations [22–31]. Here, the electron cyclotron radius and the
lattice constant of the scattering centers can become commensurate, leading to
periodic resistance oscillations. These systems have mostly been used to test, which
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aspects of electronic transport can be understood in classical terms and at what
point, a quantum mechanical description becomes necessary.
Not only the case of homogeneous magnetic fields, but also strongly localized ones
have been considered. The simplest one is probably the magnetic barrier [32–36],
which is highly localized in one direction, but translationally invariant in the
other. Depending on the strength of the field, electrons may be able to pass
the barrier or will get reflected. It can be utilized as a building block for more
complex structures [37–40], where, of course, the effect of a single barrier needs to
be well-understood.
This thesis is devoted to a study of magnetotransport of all three aforementioned
cases, namely single magnetic barriers and ordered as well as disordered systems.
The availability of high-mobility heterostructures enables us to explore the so-called
classical ballistic regime in artificially created potential landscapes. Here, we can
test the validity of a description of electronic transport in terms of trajectories
under controlled conditions. The thesis is structured as follows.
In chapter 1, the fundamental concepts necessary for an understanding of advanced
studies are introduced. First, we discuss the formation of a two-dimensional
electron gas in a semiconductor heterostructure, which lies at the foundation of
all experiments in this thesis. We argue how the high mobilities are obtained
and what limits them in state of the art heterostructures. Next we give a brief
introduction to the semiconductor processing technologies, which are used within
the course of sample preparation. In section 1.3 a brief overview on the main
results of the Drude-Boltzmann theory for electronic transport in magnetic fields is
given. The effect of Landau quantization and the resulting quantum Hall effect as
well as the Shubnikov-de Haas oscillations are also introduced. The experimental
setup, including the cryogenics as well as the electronics, is described in section 1.4.
Finally, the numerical schemes employed for the planning of the experiments as
well as their interpretation are presented in section 1.5.
The second chapter consists of a detailed introduction to the state of research
concerning the topics covered in this thesis.
We begin with a discussion of the effect of the highly localized magnetic field
profiles called magnetic barriers. Their experimental realization is presented and
the current state of the literature is reviewed. These preparations lead over to
the first two papers in chapter 3, where we first demonstrate how a ballistic
effect impedes Hall magnetometry of a magnetic barrier structure and show how
it can be overcome with the help of classical simulations. Secondly, we study
the influence of a homogeneous background magnetic field on the transmission
properties of a magnetic barrier. The experimentally observed resistance oscillations
are interpreted as caused by commensurate snake trajectories with the help of
quantum simulations.
In section 2.2, the topic of lateral superlattices is introduced. A superlattice denotes
a regular modulation of the potential landscape, be it via electric or magnetic
fields. One-dimensional as well as two-dimensional superlattices are discussed.
Emphasis is put on the nature of transport within these structures, which is
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usually classified as being classical, semi-classical or purely quantum mechanical.
Lateral superlattices are an ideal playground to test the validity of the related
transport models. Within this thesis, we studied magnetotransport in a so-called
antidot lattice, a two-dimensional regular pattern of depletion zones, and found
quantum signatures of different transport mechanisms that could be related to
classical trajectories. In a secondary paper, we combined an antidot lattice with a
regular arrangement of magnetic barrier structures. We found classical resistance
oscillations coinciding with the appearance of classical snake trajectories. These
results are summarized in papers three and four in chapter 3.
Finally, section 2.3 deals with the transport properties of classical Lorentz gases.
In such systems, static hard-wall obstacles are placed randomly within the plane
and function as the only source of scattering for the electronic movement. The
related phase diagram is discussed and theoretical as well as experimental studies
are reviewed. Within this thesis, two papers comprising Lorentz gas systems
were published, which can be found as the final two papers in chapter 3. In the
first, we experimentally observe a numerically predicted [41] maximum in the
magnetoconductivity of dense Lorentz gases. An explanation is given in terms of
a qualitative change of the nature of electronic transport. Secondly, we studied
the influence of the shape of the obstacles on the low-field magnetoresistance.
Previously, mostly circular obstacles were considered and to the best of our
knowledge we were the first to produce disordered arrays of scatterers of square
and retroreflective shape.
The thesis ends with some conclusive remarks towards potential future research
opportunities in chapter 4.
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1 Fundamental concepts

1.1 The two-dimensional electron gas in
GaAs/AlxGa1−xAs

The two-dimensional electron gas (2DEG) formed at the interface between the two
III-V semiconductors GaAs and AlxGa1−xAs is the foundation of all experiments
discussed in this thesis. To generate such heterostructures, the technology of
molecular beam epitaxy is used [42, 43]. Materials are slowly deposited upon a
heated substrate by evaporating them in an ultra-high vacuum chamber. When
done correctly, atomically sharp layers can be grown. In the following, we will
briefly discuss the physics leading to 2DEG formation as well as its merits in
comparison to similar systems. A review of the early developments of the electronic
properties of two-dimensional systems is given in Ref. [44]. For more details on the
recent state of the art of 2DEG formation, the reader is referred to Refs. [45,46]
and references therein.
The band gap Eb of GaAs lies completely within the band gap of AlxGa1−xAs, as
is visualized in Fig. 1.1a). Tuning the parameter x allows one to vary the gap in
AlxGa1−xAs ranging from the value for pure GaAs (x = 0), Eb = 1.42 eV to the
one for pure AlAs (x = 1), where Eb = 2.16 eV [47]. When the two semiconductors
are grown upon each other, and n-dopants are placed within the AlxGa1−xAs, the
Fermi level will equilibrate along the crystal. This results in a rearrangement
of the doping-electrons, where they can reduce their energy by occupying the
states in the conduction band of the GaAs. When this process is treated in a
self-consistent way, one can find parameters for the doping density, where the
bottom of the conduction band lies below the Fermi energy only in a very small
interval near the interface of the two semiconductors. This can be engineered to
be of a size, which is comparable to the Fermi-wavelength of the electrons. In this
case, size quantization sets in in the direction of growth. The resulting situation
is schematically shown in Fig. 1.1b). Typically, the level spacing is of the order
of ΔE ≈ 10 meV. If one wants to create a true 2DEG, only the lowermost state
in this direction with energy E0 must be occupied. Therefore, all experiments on
2DEGs in this thesis were performed at cryogenic temperatures (see chapter 1.4),
where the thermal energy is well below the level spacing. In a real structure, an
additional capping layer of GaAs is grown on top again, to prevent oxidation of
the aluminum.
The movement of the electrons is tightly confined in one direction, while it is
well described by the Hamiltonian of a free electron gas within the effective mass
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1.1. The two-dimensional electron gas in GaAs/AlxGa1−xAs

a) b)
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Figure 1.1: Sketch of the band structure of a GaAs/AlxGa1−xAs heterostructure.
a) shows the band diagrams of a doped AlxGa1−xAs and a GaAs semi-
conductor without contact. ECB, ED, EF , EV B denote the conduction
band bottom, the doping levels, the Fermi energy and the valence band
top respectively. In b) the equilibrated band structure is sketched,
when both materials are grown on top of each other. The space charges
induce a band bending, which leads to the formation of bound states
in growth-direction at the interface (red lines) lying beneath the Fermi
energy.

approximation in the other two directions. One has

H =
�

2
(
k2

x + k2
y

)
2m∗ + E0, (1.1)

where the z-direction is taken as the growth direction and m∗ = 0.067me is the
effective mass of electrons in GaAs, with me the electron rest mass.

For the experiments conducted within this thesis, additional potentials enter
the Schroedinger equation. While electrostatic potentials are straightforward to
include, for magnetostatic fields the so called Peierls substitution is used [48]. The
resulting Hamiltonian then reads:

H =

(
�p + e �A

)2

2m∗ + φ(x, y) + E0, (1.2)

where φ is the electrostatic potential and �A the magnetic vector potential. This
Hamiltonian is not only valid for this specific type of heterostructure, but also for
other material combinations as well as the inversion channels in silicon MOSFETs.
However, the GaAs/AlxGa1−xAs heterostructure has the advantage of AlAs and
GaAs having almost the same lattice constant, which leads to negligible strain at
the interface [47]. This results in an increased mobility μ of the charge carriers,
since scattering at lattice imperfections is reduced. A further improvement was
made by inventing the technique of modulation doping [49], where an additional
spacer layer, with thickness d, of undoped AlxGa1−xAs is grown on top of the
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1.1. The two-dimensional electron gas in GaAs/AlxGa1−xAs

GaAs before the doped one. The resulting band rearrangement stays qualitatively
unchanged, but now one has a spatial separation of the ionized donor atoms and
the 2DEG. Combined with the screening present in conductive systems (see e.g. [8]),
this reduces the scattering of electrons from the charged donor ions. The remaining
scattering events are typically of small-angle type, but are still one of the dominant
mobility limiting processes [45, 50]. The silicon atoms, conventionally used as
n-type dopants, can either take the form of a shallow or a deep donor state. The
deep state is called a DX center and at low temperatures is usually negatively
charged, therefore trapping two electrons [45]. When briefly exposing the sample
to infrared radiation, the charge is transferred to the the 2DEG and the donor is
now positively charged. The number of charged impurities has not changed, but
since in modern high-mobility heterostructures it holds μCI ∝ d3n3/2

e N−1
CI , where

ne is the 2DEG electron density, μCI is the mobility due to charged impurities
and NCI is their density, this leads to an increase in the overall mobility [45].
The spacer width d cannot be increased at will to enhance the mobility, since the
electron density is inversely proportional to it. Another source of scattering are
unintentionally introduced background impurities (BIs), which originate from the
growth process. Since they can be found also in the plane of the 2DEG, their
screening is not as efficient and also large-angle scattering is possible [50]. The
mobility due to them scales as μBI = nδ

eNBI , where μBI and NBI are the BI
induced mobility and their density respectively. The exponent δ is of the order of
one, with the exact value still under debate [45]. Other mobility limiting factors,
like interface roughness and alloy scattering, only play a minor role in modern
high-mobility heterostructures, where currently the BIs are the limiting factor [45].
Increasing the material purity and optimizing the growth design, modern 2DEGs
in GaAs/AlxGa1−xAs heterostructures can reach electron mobilities, which are
equivalent to transport mean free paths of about 300μm [51–53].
In recent years, quite a variety of novel two-dimensional systems emerged. For
example, the Dirac type fermions in graphene monolayers [11, 12, 54] or van der
Waals heterostructures [55], topological insulators [13–16] or the interfaces of
oxide structures [56–58]. Although these material systems all have fascinating
properties and rightfully attracted tremendous interest within the last years, for
experiments on basic ballistic transport properties, they are still inferior to high-
mobility GaAs/AlxGa1−xAs heterostructures.
All heterostructures used within this thesis were grown by Klaus Pierz at PTB
Braunschweig within the group of H.W. Schumacher. A model calculation of the
band structure based on realistic assumptions [59] for the heterostructure H012
is shown in Fig. 1.2. Here the Schrödinger-Poisson solver by Gregory Snyder [60]
was used.
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1.2. Semiconductor processing techniques
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Figure 1.2: Calculated conduction band bottom in the direction of growth of
heterostructure H012. The red dashed line indicates the Fermi energy.
The inset is a zoom-in of the interface between Al0.315Ga0.685As and
GaAs. The green line is the only electron state below the Fermi level,
whereas the gray lines indicate the two first states above the Fermi
energy. The teal line is the square of the electron wave function in
growth direction.

1.2 Semiconductor processing techniques
In this section some commonly used semiconductor processing techniques are
discussed. Starting from the host material featuring a 2DEG, as introduced in the
previous section, multiple patterning steps are required on the way to a working
sample (cf. Fig. 1.3). We will briefly introduce the two most common lithographic
techniques, which were extensively used for all the samples produced within this
thesis. Furthermore, some etching and metallization schemes are presented. The
techniques used here are well established in semiconductor processing and their
presentation will necessarily be brief. For a more comprehensive picture of the
current state of the art, the reader is referred to the specialized literature [61–63].
The exact parameters used to produce the samples we conducted experiments on
within this thesis can be found in Ref [64].

1.2.1 Lithographic techniques
Once the growth of the semiconductor crystal as described in the previous section
is finished, one usually wants to pattern it laterally. This is conventionally done by
so called lithographic techniques. The semiconductor is covered with a thin film of
a resist, which consists of a polymer in an organic solvent. Spinning the sample on
a vacuum chuck at several thousand rounds per minute assures a uniform coverage.
The solvent is removed by heating the sample, which leaves it with a hardened
resist layer. When exposed to radiation, the polymer chains in the resist break and
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1.2. Semiconductor processing techniques

a) b) c)

Chip carrier Sample Bond wire
Ohmic contact Structure Hall bar

Regular array of dysprosium stripes

10 μm300 μm6 mm

Figure 1.3: a) Finished sample, glued to a chip carrier and wire bonded. b) Optical
micrograph of a Hall bar structure. c) Optical micrograph of a single
structure under study consisting of a regular array of dysprosium
stripes.

are consequently more susceptible to certain solvents, which are called developers
in this context. Two types of lithography were used to produce the samples under
study within this thesis. The first is the so called optical lithography utilizing
visible light as radiation. Since light sources with large output powers are readily
available, it is possible to expose a sample as a whole to the light at once. The
structural information, which one wants to transfer to the resist, is carried by a so
called mask. This is a glass disk, where certain areas are made optically opaque
by deposition of a chromium layer. The areas hidden behind these structures are
protected from the radiation and therefore remain chemically inert to the developer.
This allows for good reproducibility and high speed processing of samples, but
lacks flexibility. Also the resolution is limited by the diffraction, which sets the
minimal structure size d to d ≈ λ, where λ is the wavelength of the light. For
these reasons, optical lithography is most often used to produce coarse structures
on the sample, like the Hall bar and Ohmic contacts. Schematically, the process
is shown in Fig. 1.4 a)-c) as well as d)-f). In the latter case, a so called image
reversal is employed. After breaking the polymer chains in the resist, the sample is
heated. This induces a cross-linking of said polymer remains. Exposing the whole
sample to light again, the areas featuring cross-linked polymers are now more
resistant to the radiation and subsequently also the developer. The resulting edge
profile of the resist remaining after developing, is advantageous for the deposition
of thicker films. When one needs to transfer small patterns or a very high overlay
accuracy is desired, a second lithographic technique is frequently used. In electron
beam lithography (EBL), electrons take the role of the radiation. The samples are
introduced to a scanning electron microscope equipped with a controllable beam.
With the help of a software interface, patterns created by computer aided design
systems can directly be transferred to the resist. This allows for high flexibility.
Furthermore, the achievable resolution is no longer diffraction limited, since the
de-Broglie wavelength of the electrons is smaller than the polymers used for the
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1.2. Semiconductor processing techniques
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Figure 1.4: Illustration of sample processing starting from a GaAs/AlxGa1−xAs
heterostructure. A Hall bar is defined via positive optical lithography
and wet chemical etching. Ohmic contacts are produced by negative
optical lithography followed by deposition of a AuGe layer and subse-
quent annealing. In the next step, antidots are introduced via electron
beam lithography and reactive ion etching. A ferromagnetic film is
selectively deposited on the surface by electron beam lithography and
subsequent metalization. Finally the sample is glued to a chip carrier
and bonded by gold wires. More detailed descriptions of each step can
be found in the main text.
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1.2. Semiconductor processing techniques

resist, but rather depends on the quality of the electron microscope optics. With
modern systems, a resolution below 100 nm is routinely achieved. In Fig. 1.4j)-l)
and m)-p), processes making use of EBL are sketched. If a high overlay accuracy
is required, one makes use of so called marker structures. Mostly these are metal
structures, which are placed outside of the actual area of interest on the sample.
The electron microscope can then read in their positions and all following exposures
are made relative to these.

1.2.2 Etching techniques
Within the context of this thesis, etching techniques were employed to deplete the
2DEG spatially selectively. In the so called mesa etching process, the Hall bar
structure is defined (cf. section 1.4), while subsequent etching steps were used
to induce artificial scattering centers. Based on the discussion in section 1.1, it
is easy to see that a physical destruction of the semiconductor crystal up to the
layer of the 2DEG leads to its depletion. Aiming for this, one usually creates a
pattern within a resist using a lithographic technique. One possibility to etch
away from the sample surface is to immerse it in a etching solution. The chemicals
attack the semiconductor material, whereas the resist is inert to them. For the
GaAs/AlxGa1−xAs material under study here, one usually combines an oxidizing
agent with an acid in the etching solution. The oxide forming at the surface is
removed by the acid, which leads to a steady removal of material. Wet chemical
etching (WCE) processes are often isotropic, leading to rather ill defined depletion
zones around the edges of the resist films. When this is of critical relevance,
one often prefers to rely on so called dry etching processes. Here the sample is
introduced to a vacuum chamber, in which a low-density plasma is ignited. Linking
the sample to the cathode leads to an acceleration of the plasma ions towards it.
The etching effect can now be achieved either by the pure physical bombardment,
or, by selecting a proper gas, combining it with a chemical reaction. In the latter
case one speaks of reactive ion etching (RIE). This kind of process allows for
a highly anisotropic etching, but the requirements are harder to meet than in
WCE. Not only does one need the RIE apparatus, but also the selection of the
lithographic resist is way more critical. Furthermore, the involved energies of the
accelerated ions can lead to sample damage, if not handled carefully. In the sample
production process, schematically shown in Fig. 1.4, WCE is used to define the
Hall bar structure, while the antidots are introduced by RIE.

1.2.3 Metalization
There are many reasons, why one would want to put a metal layer on top of a
semiconductor. Three of them play a role for work presented here and are therefore
discussed in the following. Let us note first that a metal film put on top of a GaAs
forms a Schottky barrier. The 2DEG and the metal are only capacitively coupled
within a certain range of voltage applied between them. This is made use of in so
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1.3. Magnetotransport

called top gate structures. Certain areas of the semiconductor are covered with a
metallic layer, usually gold. By applying a voltage to this top gate with respect to
the 2DEG, one has the possibility to tune the electron density externally. This
is frequently used to test the density dependence of physical effects. An example
can be seen in chapter 2.1. In other cases the formation of Schottky barriers is
highly undesirable. To probe the properties of the 2DEG, one needs to directly
contact it. This can be done by depositing materials selectively on the sample
surface, which are made to diffuse into the semiconductor. They act as dopants and
thus create a local Ohmic connection between the 2DEG and the sample surface,
allowing for the performance of electronic measurements. In all samples under
study in this thesis, an eutectic alloy of gold and germanium was used as contact
material. After deposition, the sample is heated, which leads the germanium atoms
to diffuse into it. Being a group IV semiconductor, they act as n-dopands in
the III-V semiconductor AlxGa1−xAs. The last use of metal structures on top of
the semiconductor of relevance here, is the deposition of ferromagnetic materials.
They posses a non-vanishing internal magnetization, which goes along with a
corresponding local magnetic field. By tailoring the geometric properties of the
ferromagnetic film, one can study the influence of inhomogeneous magnetic fields
on electronic transport. This is discussed in more detail in chapter 2.1.

Since one usually does not want to cover the whole sample surface, the desired
structure is first transferred to a resist pattern via a lithographic technique. The
metal deposition process itself is realized by introducing the sample into a vacuum
chamber and exposing it to a low pressure gas flow of the intended material. The
necessary evaporation of the metal can be realized either by bombarding it with an
electron beam, which is accelerated onto it via a high voltage, or by Ohmic heating
by letting a current pass through it. While in principle the former is preferable,
since it creates a more well defined gas flow and allows for the evaporation of
materials with a higher boiling temperature, the high energy electrons can be back
scattered by certain materials and create severe sample damage. This is why the
ferromagnetic structures within this thesis were produced using Ohmic heating.
Once the metalization is done, the remaining resist with the surplus metal parts
on top are cleaned off in a so-called lift-off process. The whole procedure necessary
for metalization can be found schematically in Fig. 1.4e)-i) and m)-p).

1.3 Magnetotransport

1.3.1 The Boltzmann model
The Boltzmann equation describes the phase-space evolution of a thermodynamic
system due to collisions. In its full generality it is a multidimensional, non
linear, integro-differential equation, which is hard to treat analytically and even
numerically. Nevertheless, using suitable approximations, electron transport in
solids was treated within this framework first by P. Drude [65] and later by H.A.
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a) b)

Figure 1.5: Left: Magnetic field dependence of the normalized conductivities as
predicted by the simplified Boltzmann equation. Right: Resulting
normalized magnetoresistivities. An explanation is given in the text.
(Figure taken from [9]).

Lorentz [66]. Their results were necessarily wrong, since quantum theory was not
yet formulated and they could not use the correct electron statistics to derive them.
However, the concepts introduced by those for the first time made a connection
between the microscopic structure of a solid and the measurable quantities of
conductance and heat capacitance. Their ideas were later on refined with the
concepts of quantum theory by A. Sommerfeld [67] to give the results, which we
want to briefly review in this section.
A central ingredient leading to the Boltzmann equation is the so called Stoßzahl-
ansatz, or molecular chaos, which implies the lack of correlation between particle
collisions. It is the justification for describing a system of N -particles with a single
particle distribution function. In later chapters we will discuss the consequences,
when this assumption fails. By limiting oneself to the case of small perturbations
from thermal equilibrium, one can linearize the equation, making it way more
treatable. The relaxation time approximation finally summarizes all types of
collisions as an effective friction force. The picture here is that, if a given system
is brought out of equilibrium by, say, a small electric field, it will relax within a
typical time scale τ , called the Drude scattering time. Applied to the system of a
2DEG, this means that all scattering the electrons undergo, like with phonons or
impurities, is summarized within the Drude scattering time. It is connected to the
mean free path �f via the electron velocity v, such that �f = vτ . If one further
incorporates a magnetic field into the equation, the magnetoconductivity tensor σ
can be calculated. By this tensor, the response of a system to an external electric
field is quantified. It holds:

�j = σ �E, (1.3)
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σ =

⎛
⎜⎝σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎟⎠ . (1.4)

Since we are dealing with two-dimensional systems in this thesis, we can omit the
entries regarding the z-direction. Furthermore we can also restrict our considera-
tions to a magnetic field perpendicular to the plane of the 2DEG, because, to a
first approximation, parallel magnetic field components will not affect it. Doing
the calculation (cf. e.g. in Ref. [9]) leads to:

σxx = σyy = σ0

1 + ω2
c τ 2 , (1.5)

σyx = −σxy = σ0ωcτ

1 + ω2
c τ 2 , (1.6)

where σ0 = ne2τ/m∗ and ωc = eB/m∗ is the cyclotron frequency, and e, m∗, n
and B denote the electron charge, its effective mass, the electron density and the
perpendicular magnetic field strength, respectively. Via tensor inversion, one can
obtain the corresponding resistivities as

ρxx = ρyy = 1
σ0

(1.7)

ρyx = −ρxy = B

ne
. (1.8)

A plot can be found in Fig. 1.5. Notably, the diagonal resistivity is predicted
to be independent of an applied magnetic field, although the conductivity drops
monotonically. This is a result of the tensorial nature of resistivity and conductivity.
The off-diagonal resistivity gives the classical Hall effect.

1.3.2 Quantizing magnetic fields
It was first noticed by L. Landau that a magnetic field applied to a free electron
gas, leads to a quantization of the electron motion in the plane perpendicular to
it [68], which is in turn called Landau quantization. In two-dimensional systems,
one can imagine the self interference of an electron undergoing cyclotron motion
to result in a discrete energy spectrum. At a given magnetic field, only certain
energies correspond to cyclotron circumferences, where an integer multitude of
Fermi wavelengths can be placed upon. This mechanism leads to a transition of
the otherwise constant density of states (DOS) to a discrete spectrum. In ideal
two-dimensional systems the DOS would consist of a series of δ-functions, while
the always present disorder causes a broadening of those. The situation is depicted
in Fig. 1.6a), where also the lifting of the spin degeneracy is taken into account.

In our semiclassical picture above, the quantization can only play a major role,
when a significant number of electrons can complete their cyclotron motion before
they experience scattering. This implies that for ωcτ > 1 significant changes to
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a) b)

Figure 1.6: a) Change of the DOS of a 2DEG from a constant value (dashed line) to
δ-functions in an idealized system and the more realistic broader peaks.
(Taken from [9]). b) Magnetoresistance measurement of a 2DEG at
T = 0.1 K. For B ≥ 1 T well defined plateaus can be seen in the Hall
resistance, whereas Shubnikov-de Haas oscillations are visible in the
longitudinal resistance. (Taken from [9])

transport can be expected. Landau quantization profoundly affects transport in
the on- as well as the off-diagonal components of the magnetoresistivity tensor
mentioned above. In the on-diagonal elements, a vanishing DOS also leads to a
vanishing conductivity, since there are no free electron states available to carry the
current. Via tensor inversion, this also translates to a state of zero resistivity. As a
result the diagonal resistivity oscillates as a function of a perpendicular magnetic
field. This effect was first described in bismuth crystals by L. Shubnikov and
W.J. de Haas [69] and was coined in their honor as Shubnikov-de Haas oscillation
(SdH) later on. Similarly, since the electrons cannot travel freely across the sample,
they cannot equilibrate the effect of a magnetic field, leading to a constant Hall
voltage over the range of vanishing DOS. Only when the DOS is finite, the system
can relaxate and the Hall resistance jumps from one quantized value to the next
one. The effect was therefore coined the quantum Hall effect. As it turns out, the
quantization condition reads RH = (1/j) (h/e2), with j integer, in the spin-resolved
case [2]. An example of a measurement of both resistivity components is shown in
Fig. 1.6. Later on, Tsui et al. used high-mobility 2DEGs in strong magnetic fields
to reveal the existence of further plateaus at certain fractions of h/e2, which was
consequently called the fractional quantum Hall effect [3].
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1.4 Experimental techniques

1.4.1 Cryogenic setup
In section 1.1 we discussed the high mobility of electrons in 2DEGs based on
GaAs/AlxGa1−xAs heterostructures. We identified the origins of the high mobility
within the properties of the crystal. But this is only partly true. At room
temperature, electron-electron and electron-phonon scattering will inhibit reaching
the mean free paths, which are necessary for ballistic experiments. For more
details concerning the temperature dependence of various scattering mechanisms cf.
Refs. [70–72]. Therefore, transport experiments are usually conducted at cryogenic
temperatures. A machine that is used to generate and maintain such a temperature
is called a cryostat. In the following we will discuss the two types of refrigerators
used for the experiments in this thesis. A more thorough introduction to the field
of cryogenics can be found for example in Refs. [73,74].

For temperatures in the range of T = 1.4 − 100 K a helium bath cryostat of
Oxford Instruments is used. Liquid He4 has a temperature of 4.2 K at atmospheric
pressure. By pumping from the surface it can be further reduced. The sample
chamber is connected to the helium reservoir via a needle valve, which allows
control over the helium gas flow and can be used to set the temperature between
1.4 K and 4.2 K. Elevated temperatures can be obtained with the help of additional
heating elements in the sample chamber. The system is furthermore equipped with
a superconducting solenoid, producing magnetic fields up to 8 T.

When lower temperatures are needed, a cryo-free dilution refrigerator by Leiden
Cryogenics pre-cooled by a pulse tube cooler is used. Here the quantum properties
of the different helium isotopes He3 and He4 are exploited. Even at T = 0 the
miscibility of these two isotopes remains finite, since He3 behaves like an ideal
Fermi gas in liquid He4. The increase in the Fermi energy at some point outweighs
the gain of mixing the two components. This leads to the formation of a pure He3

and a mixed phase. By distilling He3 atoms out of this mixture at a point remote
from the phase boundary, one can create a constant flow of He3 across it. This is
thermodynamically identical to conventional evaporative cooling. The concept of
the dilution refrigerator goes back to a proposal by H. London et al. [75]. Although
in principle there is no lower limit for the temperature one can reach with this,
the cooling power decreases with the temperature and at some point reaches an
equilibrium with the inevitable heat leaks present in any real setup. The system
in use here has a base temperature of 25 mK. A superconducting solenoid allows
for magnetic fields up to 12 T, while a piezoelectric rotating stage can set the
alignment of the sample to the magnetic field with a precision better than 0.01◦.

1.4.2 Electronic measurement setup
Magnetotransport experiments are conventionally conducted electronically. One
monitors the response of a system by probing, for example, the voltage drop as a

15



1.4. Experimental techniques
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Figure 1.7: Typical Hall bar geometry used for all samples. A resistor with a
resistance large compared to the sample resistance ensures a constant
low frequency current, which is passed through the structure under
investigation. Voltage probes are used to pick up the longitudinal as
well as the Hall resistance. The effect of a magnetic field �B can be
studied.

reaction to an applied current. Within this thesis, all of the experiments are done
in a so called four-terminal geometry. By picking up the voltage drop from contacts
close to the region of experimental interest and separate from the current leads,
one avoids to probe the additional contact resistances stemming, for example, from
the wires and the ohmic contacts. To do so, the semiconductor is patterned via
the techniques presented in section 1.2 to the shape of a Hall bar. A sketch is
given in Fig. 1.7. Outside of the Hall bar, the 2DEG is depleted, which allows
measurements of the longitudinal (V1) as well as the transverse (V2) voltage drop
within the structure of interest. When a constant current I is passed through it,
these quantities are directly related to the corresponding resistances and can be
converted to the resistivities of this structure. It holds

Rxx = V1

I
= ρxx

L

W
, (1.9)

Rxy = V2

I
= ρxy, (1.10)

where L and W are the geometry factors of the Hall bar as in the sketch. The
constant current is generated by attaching an ohmic resistor with a resistance
R large compared to the one of the sample (typically R = 10 MΩ) to the signal
generator of a lock-in amplifier. The lock-in technique is also used to measure
the voltage drops. The principle behind it is the frequency and phase sensitive
detection of signals. The incoming signal is mixed with a reference at the detection
frequency and subsequently transmitted through a low-pass filter. Noise signals
with a frequency unlike the reference are thus eliminated. This reduces the noise
level significantly. Furthermore it is possible to distinguish between ohmic and non-
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ohmic parts of a signal via the phase information. A sine signal of a frequency of
f ≈ 17 Hz is used, for at this low frequency, conventional theories of dc-conductivity
are still valid. Also it is far away from the 50 Hz power line noise, but high enough
for operating the lock-in amplifier at a reasonable rate.

1.5 Numerical techniques
Numerical simulations are an invaluable tool for experimental physicists. Before a
sample is designed and the first experiments are done, one will often want to get
an idea what to expect. Can the effect of interest be made visible using the range
of realizable experimental parameters? Of course one must not confuse the results
of a simulation with reality, but if, for example, we want to observe a ballistic
effect and it does not show up in a classical simulation, it is unlikely to appear
in experimental results and either the sample design or our understanding of the
effect needs to be revised. This procedure makes it possible to reduce the number
of experimental iterations, necessary for success. Since sample preparation is time
consuming and prone to mistakes, this alone would justify the use of numerical
simulations. But they can also support the interpretation of experimental data.
For example, by looking at trajectories, in the classical case, or wave-functions,
in the quantum case, one can strengthen the physical idea underlying a certain
effect. Also it is possible to vary parameters, even to values outside experimental
reach, demonstrating the necessary conditions for observing it or study the scaling
behavior. Therefore we made frequent use of numerical simulations to obtain the
results within this thesis. The techniques within reach of an experimental physicist
will be presented in the following. The numerical results concerning chapter 2.3
and the related manuscripts were obtained by N. Siboni and J. Horbach using
more sophisticated models from classical molecular dynamics and are beyond our
discussion here.

1.5.1 Classical Kubo formalism
For the case of linear response, i.e. small perturbations, R. Kubo could derive a
relation between physical quantities of a given system and the dynamics of particles
within [76]. Applied to the problem of electron conductivity in a solid, this means
that for small electric fields, it can be calculated from the velocity auto-correlation
function.

σij = m∗e2

π�2

∫ ∞

0
〈vi(0)vj(t)〉 exp (−t/τ) dt (1.11)

Here, i, j = x, y, while the 〈..〉 brackets denote an ensemble averaging and the
exponential function takes care of the inclusion of background scattering by
weighting the calculation with the Drude scattering time τ . The procedure now
consists of solving Newtons equations of motion for an ensemble of electrons, which
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c)

Figure 1.8: Schematics of a) the classical Kubo formalism, b) the classical Landauer-
Büttiker formalism and c) a tight-binding calculation based on the
Kwant package.

are placed with random initial positions inside a given system. The only admission
to quantum mechanics is the fixed total velocity of the electrons at the Fermi level.
The results obtained from this type of formalism have proven to be most reliable
in describing periodic systems. Here all unit cells are identical and the ensemble
averaging is therefore not critical. A sketch of the procedure is shown in Fig. 1.8a).
The code used to perform the classical simulations in 2.2 and the related paper was
adapted from code written by S. Meckler and H. Xu, which proved its reliability
in earlier publications [77,78].

1.5.2 Classical Landauer-Büttiker formalism

While the Kubo formalism is well suited for infinite and periodic systems, this is
often not appropriate for describing a given experiment. In such cases, calculations
based on the classical Landauer-Büttiker formalism may be preferential [79–81].
The idea behind this is to link the conductivity of a system to the transmission
between contacts. For this purpose one looks at the quasi-one-dimensional modes
of a system, that is finite in all but one direction. A contact is then modeled as
a semi-infinite lead, which emits electrons. These electrons can then either enter
another contact or be reflected to their original one. This probability translated to
the transmission T . In the simplest two-contact case this results in a two-terminal
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conductance G given by

G =
N∑

i=1

2e2

h
Ti, (1.12)

where N is the number of occupied modes and Ti is their respective transmis-
sion. For the more complicated case of several contacts, one has to calculate the
transmission Tij from contact i to contact j. In Ref. [9] an instructive example
is shown how to translate these coefficients to resistivities. In the classical case,
Tij is calculated by injecting electrons with a given distribution of electrons into
a so called scattering region, solving Newtons equation of motion and tracking
their final destination. The procedure as implemented is described in more detail
in [82], while a sketch is shown in Fig. 1.8b). The classical Landauer-Büttiker
formalism was used extensively in the work covered in chapter 2.1 and is based
on code written by M. Cerchez. Previous publications including content from this
code are Refs. [38,82–86].

1.5.3 Tight-binding calculations based on Kwant
Classical simulations are already of great help to an experimentalist, while quan-
tum transport calculations usually require more demanding numerical techniques
and were therefore not readily available. This changed with the publication of
Kwant [87]. The authors published a powerful tight-binding package as free soft-
ware under a BSD license, which allows for the efficient implementation of transport
calculations on systems, whose dimensions are at least close to actual samples.
The package is designed as such that the user only has to define the geometry
as well as the Hamiltonian of the sample under study. The actual numerics is
hidden from the user. The procedure is shown schematically in Fig. 1.8c). In the
following we want to give a brief summary of the underlying concepts as they are
used for the 2DEGs in GaAs/AlxGa1−xAs heterostructures. The starting point is
the effective mass approximation. Without a magnetic field, the Hamiltonian H
can then be written as

H = �p2

2m∗ + V (x, y), (1.13)

where p = −i�∇ is the momentum operator and V is a static potential. The
tight-binding approximation now consists of reduction of the continuous system
to a grid and accordingly the discretization of the derivative in the momentum
operator. It holds in two dimensions

∇2f(x, y) =f(x + a, y) + f(x − a, y) + f(x, y + a) + f(x, y − a) − 4f(x, y)
a2 +

+ O(a2),
(1.14)

where a is the tight-binding lattice constant. One speaks of a tight-binding system,
since only the nearest neighbor coupling is included. With the introduction of the
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tight-binding energy t = �
2/2a2m∗, this allows to write the Schroedinger equation

as
Hψ(x, y) =Eψ(x, y)

=(4t + V (x, y))ψ(x, y)−
− t(ψ(x + a, y) + ψ(x − a, y) + ψ(x, y + a) + ψ(x, y − a)).

(1.15)

One usually refers to 4t+V (x, y) as on-site and −t as hopping energy. If one orders
the sites of the lattice, this can be understood as a matrix eigenvalue problem. The
solving of this problem results in an energy eigenvalue of an allowed state, while
the eigenvector is the corresponding wave function. In this way, the problem of
tackling a differential equation is transformed to one of linear algebra. The solving
of this is implemented efficiently in Kwant. In the presence of a magnetic field,
the hopping elements are modified according to the Peierls substitution [48]:

tij = −t �→ tij = −t exp
(

−ie

�

∫ �ri

�rj

�A · d�r.

)
(1.16)

Here, �A is the magnetic vector potential and the integral connects two neighboring
sites in real space �ri and �rj. With this at hand, it is now possible to calculate the
states within a closed system, say a quantum dot. However, transport experiments
are done on open experiments, where a scattering region is connected to semi-
infinite leads. Since these feature translational invariance in one direction, one has
the formation of modes at every energy. These modes are grouped into outgoing,
incoming and evanescent ones. From the matching of the modes in the leads with
the wave function in the scattering region one can now derive the coefficients of the
scattering matrix Snm connecting the n−th with the m−th lead. The transmission
probability is then simply calculated by Tnm = |Snm|2. With these, the resistivity
can be calculated as in the classical case. By similar means also other output is
available, like the local density of states and the wave function inside the scattering
region, which emerges from a single mode in a single lead. To ensure the validity
of ones calculations, the condition EF < t, which can also be written as k2

F a2 < 1,
with kf the Fermi wave vector, must be met. This can be done by setting the
value of the lattice constant a. The physical picture behind this is the need for the
lattice constant to be considerably smaller than the Fermi wavelength in order to
prevent numerical artifacts. Since Kwant was not used in this group before, a code
sample for the calculation of the density states as well as the diagonal and Hall
resistance of a Hall bar structure with a multi-probe arrangement can be found in
the appendix. The implementation of leads pointing in different directions is done
by the method developed by Baranger and Stone in Ref. [88]. Residual disorder
can be taken into account via random on-site disorder. At each lattice point a
random potential is added, whose value obeys a Gaussian distribution with zero
mean. The width of the distribution V0 can be adjusted to result in a certain mean
free path � (see e.g. Ref. [89])

V 2
0 = a

�
2t3/2

√
EF , (1.17)
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for a spin-degenerate 2DEG. Calculations based on Kwant are included in the
publications covered in chapters 2.1 and 2.2.
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2 Transport in controlled potential
landscapes

2.1 Ballistic effects in single magnetic barriers
The effect of spatially inhomogeneous magnetic fields on ballistic 2DEGs has been
extensively studied over the past decades [90]. One of the simplest systems that
can be thought of is the so-called magnetic barrier structure. It comprises the case
of a localized magnetic field spike perpendicular to the plane of the 2DEG, which
is constant in one direction, while rapidly decaying in the other. The concept of
magnetic barriers was first proposed from a theoretical perspective [91]. Soon after,
it was realized that magnetic barriers act as an angle filter on ballistic electrons [92].
This can easily be understood in a classical picture. An electron entering the
magnetic field region will undergo cyclotron motion. At a constant velocity it
will depend on the angle of incidence, whether the electron will be reflected by
the barrier or can be transmitted. The situation is sketched in Fig. 2.1a). When
the strength of the barrier field is increased the interval of passing angles gets
reduced until at some field the barrier is closed and classically no electron can
pass. In experiments where one usually measures the voltage drop across the
barrier region (contacts 1 and 2 in the figure), this manifests itself in an increasing
resistance with barrier strength. It could be shown, however, that due to the
always present edges as well as residual disorder scattering, the resistance stays
finite, even if the barrier is classically closed [82]. The first experimental realization
of a magnetic barrier made use of a non-planar 2DEG topology [32,33], while later
experiments preferred the stray fields of ferromagnetic films [34–36]. Since this is
the approach also followed within in this thesis, we shall briefly discuss this concept
here. When a thin rectangular film of a ferromagnetic material is deposited upon
a semiconductor (cf. section 1.2) and magnetized by an external field parallel to
the plane of the 2DEG, the resulting fringe field has a component perpendicular
to it right underneath the edge of the film. Assuming homogeneous magnetization,
it can be described by

Bz(x) = μ0M(B‖)
4π

ln
(

x2 + z2
0

x2 + (z0 + h)2

)
, (2.1)

where z0 is the depth of the 2DEG, h the height of the magnetic film and μ0M the
magnetization of the film, which depends on the external magnetic field. A sketch
of the resulting field profile is shown in Fig. 2.1a). By sweeping the external field,
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Figure 2.1: a) Top: Top view of a Hall bar structure with a ferromagnetic film
deposited upon. An external magnetic field parallel to the plane of
the 2DEG is applied to magnetize the film uniformly. Middle: Cross-
sectional view of the structure. The stray field of the ferromagnet
has a component perpendicular to the plane of the 2DEG, which is
largest just beneath its edge. The resulting magnetic field profile for
typical parameters is shown underneath. Bottom: Sketch of classical
ballistic electron trajectories. The magnitude of the magnetic field
perpendicular to the plane of the 2DEG is given by the grey scale.
Depending on the angle of incidence, they are either transmitted or
reflected by the magnetic barrier. b) Top: Tilting the sample away
from the magnetic field by a small angle θ (greatly exaggerated in the
sketch) leads to an additional homogeneous magnetic field component
perpendicular to the plane of the 2DEG, while, to a first approximation,
the magnetization remains unchanged. Middle: The magnetic profile
within the Hall bar. The barrier field gets shifted up- or downwards
depending on the angle. The dotted line corresponds to B = 0. Bottom:
Sketch of a classical ballistic electron trajectory. Outside of the barrier
region, the electron travels along the sample edges. Upon entering
the barrier, it gets channeled downwards in a snake-orbit. In the
sketched case a resonant reflection by the barrier is shown. (Modified
after [82,83])
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the strength of the magnetic barrier can be controlled, without affecting the 2DEG
outside of the barrier region. The tunability is limited by the saturation magneti-
zation of the ferromagnetic material. Using shallow 2DEGs and ferromagnets with
a high saturation magnetization, like dysprosium, this allows for the realization
of peak barrier fields of up to ≈ 500 mT [40] and corresponding magnetic field
gradients of ≈ 3 MT/m. As a potential application for such structures their use as
spin-filters has been discussed [93–97]. Also they form building blocks for more
advanced experiments, for example when combined with quasi one-dimensional
constrictions, so called quantum points contacts, where they can lead to the for-
mation of magnetically bound states [37–40], which are of particular interest for
realizing confinement in graphene based structures [98].

Naturally, the question arises, how one can determine the magnetization of the
ferromagnet as a function of the external field in-situ. This information is crucial
for interpreting the experimental results and also for modeling. A typical approach
is the technique of Hall magnetometry. Here a magnetic structure is placed within
a Hall cross and the Hall resistance is measured (contacts 3 and 4 in the figure).
Conventionally one has the relation (cf. section 1.3) RH = B/ne, but how is this
modified, when the magnetic field is no longer homogeneous? The first naive idea
might be to use the average magnetic field within the Hall cross B �→ 〈B〉. This
allows one to calculate the magnetization from the measured Hall resistance using
suitable models for the expected shape of the magnetic field profile under study.
However, it turns out the introduction of an additional factor α, which takes care
of the specific geometry of the localized field, is necessary [99]. The relation now
reads RH = α〈B〉/ne. Early studies discussed the properties of α in the case
of diffusive [100, 101] and ballistic [99, 102] transport in the 2DEG and derived
numerical values of it for different magnetic field profiles as well as for different Hall
cross shapes. In case the 2DEG behaves ballistically on the scale of the Hall cross,
the situation can get even more complex by making α directly dependent on the
magnetization [85]. In classical terms this can be understood as an effect caused
by certain types of trajectories, which are stable for a range of magnetizations and
lead to an either enhanced or reduced accumulation of electrons on one side of the
Hall-bar. Within the work of this thesis, we could demonstrate experimentally
for the first time a situation, where the Hall resistance actually decreases in an
interval of increasing magnetization due to such ballistic effects. Additionally we
showed how the dependence of the magnetization on the external magnetic field
could still be recovered from these data by making use of numerical simulations
within a classical framework [103]. Our results are confirmed by an independent
superconductive quantum interference device (SQUID, see e.g. [104]) measurement
performed by our collaborators at PTB Braunschweig.

Another question that is tackled in this thesis concerns the effect that a homo-
geneous magnetic background field has on the transport of electrons through a
magnetic barrier. Experimentally this can be realized by tilting away the sample
from the parallel alignment to the external magnetic field. When the angle is
small, the magnetization of the ferromagnetic film can be considered unchanged,
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but an additional perpendicular field component is imposed. In this way, the
localized magnetic field profile of the barrier is shifted up- or downwards as a whole.
First studies of this were already reported [83], but the comparably low quality
of the semiconductor heterostructure impeded the observation of ballistic effects.
Of particular interest is the situation, where the magnetic barrier field and the
external field are in an anti-parallel configuration. For external fields smaller than
the amplitude of the barrier field, this leads to a situation, where there are two
zero-magnetic-field crossings close to each other, as is sketched in Fig. 2.1b). In
a classical ballistic picture, this leads to the formation of so called snake-orbits,
were electrons are channeled along the zero-field line in a characteristic way [105].
Signatures of such snake trajectories have previously been reported for similar
structures [106–109]. We could demonstrate, how by adjusting the offset field,
one can tune the period of these snake-orbit trajectories and generate resistance
oscillations stemming from their commensurability with the extension of the Hall
bar [110]. With the help of tight-binding calculations based on the Kwant package
(cf. section 1.5), we could clarify that the resonant reflection or transmission of
electrons moving in snake-orbits is indeed the source of the observed oscillations.
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2.2. Ballistic transport in lateral superlattices

2.2 Ballistic transport in lateral superlattices

a) b)

Figure 2.2: a) Two possible experimental realizations of a one-dimensional electro-
static lateral superlattice. Top: A structured top-gate is created by not
removing the photoresist after lithography (taken from [24]). Bottom:
Holographic scheme, where the persistent photocurrent effect is used
to create a density gradient (taken from [22]). b) Magnetoresistance
trace related to the latter scheme. Pronounced oscillations can be seen
as a function of the magnetic field. The inset demonstrated their 1/B
periodicity. (Taken from [22])

In the previous section we dealt with the interaction of a single magnetic barrier
with the electrons in a 2DEG. In a way we can understand this as studying the scat-
tering properties of an artificially introduced potential landscape. In this section
we will now generalize this to situation, where there are lots of artificial scatterers,
arranged in a periodic fashion. Such structures are commonly referred to as (lateral)
superlattices. Their study became possible by advances in 2DEG quality as well
as improved lithographic techniques. It became possible to generate extended
systems, where the scattering of the electrons predominantly takes place at the
artificially introduced structures and not the residual disorder. It is immediately
clear that the Stoßzahlansatz of the Boltzmann model can not be the correct way
to describe conductivity in such a system, since the scattering is highly correlated.
From a theoretical point of view, superlattices are intriguing, since they allow one
to study the validity of different models of electronic transport in solids. In the
literature, it is often distinguished between, so called, classical, semi-classical and
fully quantum mechanical models [111]. In this context, classical means that one
considers the electrons as point particles moving according to Newton’s equations
of motion, but obeying the Fermi-Dirac statistics. An additional phase factor is
taken into account within semi-classical models. They can already make features
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2.2. Ballistic transport in lateral superlattices

as the Shubnikov-de Haas oscillations plausible, as a cyclotron orbit is only stable,
when the resonance condition 2πRc = nλF , with n an integer and λF the Fermi-
wavelength, is met. One also calls this the quantization of a classical trajectory.
Fully quantum mechanical models start from the Schroedinger equation and do
not regard electron trajectories. Although it must necessarily be the most cor-
rect description of a given system, it is usually not the most intuitive and simple one.

Historically, the first superlattices studied, consisted of a one-dimensional periodic
electric field modulation [22, 24, 112] with lattice constant a. The modulation
was generated using either a holographic scheme [22] or a lithographically nano-
patterned gate electrode [24,112]. Sketches of the sample geometry are shown in
Fig. 2.2a). In both cases, for low magnetic fields, the authors found pronounced
magnetoresistance oscillations periodic in 1/B in the direction of the potential
gradient, say the x-direction, and weaker ones parallel to it, in y-direction. An
example for a measurement is shown in Fig. 2.2b. Their origin was discussed
quantum mechanically as resulting from an evolution of the Landau levels to
Landau bands as a result of the superlattice potential [23, 24, 113]. Wide bands
correspond to a high group velocity of electrons in y-direction, resulting in an
increased conductivity. Due to the tensorial nature of resistivity, this manifests
itself in an increased resistivity ρxx. The position of the resistivity can be calculated
by the formula [22]

Rc = a

2

(
n − 1

4

)
, (2.2)

where n is a positive integer and Rc the cyclotron radius. Here we have again an
interplay between two length-scales, the lattice constant and the cyclotron radius,
and the oscillations in ρxx are therefore also called commensurability oscillations
(COs). A classical model, given by Beenakker [114], was able to reproduce the oscil-
lations in ρxx in terms of a guiding center drift resonance, but failed to account for
the weak oscillations in ρyy. Only by the incorporation of the residual disorder into
a quantum mechanical treatment [113,115] they could be recovered. Contrary to
σyy, dominated by band conductivity, σxx is mainly affected by scattering between
bound states, which is enlarged, when the density of states (DOS) is high. This
type of conductivity is sometimes denoted as collisional or hopping conductivity.
A high DOS corresponds to a situation of a narrow bandwidth, which explains,
why the oscillations in ρxx and ρyy were found to be out of phase. The correct way
of treating residual disorder attracted the interest of further theoretical [116–118]
as well as experimental [119] studies. The temperature dependence of the COs
was studied in Refs. [120, 121] and found to be rather weak, which is in agreement
with an interpretation in classical terms. In this context the relevance of classical
chaos was also discussed [122]. Later on, Messica et al. studied the zero-field
resistance as a function of temperature and dc-bias and interpreted their results as
signatures of the importance of electron-electron scattering in superlattices [123].
Further experimental studies were devoted to the DOS [124], the high field mag-
netoresistance [125] and the development of the quantum Hall effect for strong
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2.2. Ballistic transport in lateral superlattices

modulations [126].

The transition from electrostatic to magnetic superlattices in principle is straight
forward. Similar to the setup in the last section, a periodic array of ferromagnets
placed on top of a 2DEG and magnetized by an external field perpendicular to
the 2DEG, should introduce a periodic magnetic modulation. Calculations had
already shown that very similar COs should exist in this case. The condition for
minima in resistivity then reads

Rc = a

2

(
m + 1

4

)
, (2.3)

for m = 0, 1, 2... [127]. Studies of the quantum transport properties followed
soon after [128,129]. However, early attempts of realizing magnetic superlattices
failed [130, 131], because the ferromagnetic gate electrodes deposited upon the
semiconductor were accompanied by a piezoelectric strain potential [132–135],
which was in itself an electrostatic superlattice shading the effect of the magnetic
modulation. These difficulties were overcome, by either applying a positive gate
voltage to the ferromagnet [28], changing to dysprosium as ferromagnet [30] or
instead using superconductive materials [29] and the theoretical predictions could
be confirmed. Subsequent studies revealed for example a large positive magne-
toresistance for magnetization profiles with large in-plane components [136] or
focused on the electron-electron scattering properties in such an environment [137].
A reversal of the phase of the Shubnikov-de Haas oscillations was discovered in
electric [138,139] as well as magnetic [140,141] superlattices. The authors explained
it in terms of a Landau band broadening, manifesting itself in a rearranged DOS,
where the position of maxima and minima are opposite to the unpatterned case.

As one could expect, next we will consider two-dimensional lateral superlattices.
Although there exist some experimental [31,142–145] as well as theoretical [146–148]
works on two-dimensional magnetic superlattices, they never received as much
attention as their electrostatic counterpart.
Weak two-dimensional modulations were studied both, experimentally [149–151]
and theoretically [152–156] in their own right, but were mostly utilized in the hunt
for signatures of Hofstadters butterfly. By this we mean a self-similar quantum
mechanical level structure, predicted by D. Hofstadter in 1976 [157], which should
evolve for electrons on a square lattice and in a magnetic field. Later similar
patterns were found e.g. for hexagonal lattices [158]. While it should also be
present in regular crystal lattices, the magnetic fields, necessary in this case, are
out of experimental reach. But since electrons in a high-mobility 2DEG essentially
behave as free electrons, the introduction of a two-dimensional superlattice allowed
for a scaling of the required magnetic field. Despite numerous theoretical predic-
tions, see e.g. [159–161], the butterfly remained elusive [162,163] at first, but could
eventually be detected in the Hall conductance [164,165].
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2.2. Ballistic transport in lateral superlattices

Particular interest was gained by so called antidot structures. These are electro-
static superlattices in the strong modulation limit, i.e. their amplitude is above the
Fermi level. They were named antidots, since they generate zones, where electrons
cannot enter, often of circular shape. An example of such a lattice is shown in
Fig. 2.3a). Their first implementations [25–27] focused on the classical transport
properties. Pronounced COs were revealed and their origin was linked to the
existence of stable electron trajectories not colliding with the antidots. A typical
magnetoresistance trace is shown in Fig. 2.3b). Later on, a more involved classical
analysis emphasized the dominant role of classical chaos for the emergence of the
COs in antidot lattices [166–168]. Quantum effects were discovered soon after, see
e.g. Refs. [169–171], and could be sufficiently understood within a semi-classical
analysis [172,173], using the framework of periodic orbit theory [174]. In parallel,
a large body of theoretical works, dealt with a correct quantum mechanical de-
scription of antidot lattices and discussed extensively the origins of deviations to
semi-classical concepts [175–183]. A surprising connection to composite fermions
(CFs) was drawn by Kang et al. [184]. They could demonstrate COs in the frac-
tional quantum Hall regime and drew the conclusion that CFs must be real objects,
if they follow ballistic classical dynamics. Other experimental studies dealt with e.g.
the effects of a strong parallel magnetic field component [185], the interplay with
residual disorder [186], the impact of microwave radiation [187] or the influence of
grain boundaries in the superlattice [78].

Similar to the situation in one-dimensional superlattices described above, also in
antidot lattices, the conductivity is often considered to be split between band and
hopping contributions. In classical trajectories, the first originates from electrons
being channeled from one antidot to another, a so called skipping orbit, whereas the
latter is a result of electrons being scattered from one localized state to the next one
(see sketch in Fig. 2.3a). Experimental studies on the relative importance of each
transport type were conducted in square lattices [188], but due to their anisotropy
rectangular lattices became the model system of choice [188–190]. There, transport
is also highly anisotropic and ρxx and ρyy are dominated by band and hopping
conductivity respectively. This manifests itself also in the superimposed quantum
oscillations, which turned out to be out of phase, due to their different dependence
of the DOS [191]. Within this work, we studied square and hexagonal antidot
lattices in high-mobility heterostructures, where pronounced quantum oscillations
coexist over a wide range with the COs [192]. We show experimentally and with
the help of a tight-binding simulation based on the Kwant package, how in such a
setup traces of both conductivity components can be found in the same resistivity
component. As the magnetic field is changed, one can therefore keep track of
the dominating transport mechanism, by analyzing the superimposed quantum
oscillations.

A different experiment presented within this thesis combines an antidot lattice
with a one-dimensional magnetic superlattice with zero mean field, which we call a
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Figure 2.3: a) Electron micrograph of a hexagonal antidot lattice produced by
RIE with a lattice constant of a = 1.5μm and an antidot diameter
of d = 450 nm. The red lines sketch the different electron transport
mechanisms in classical trajectories. b) Related magnetoresistance
trace at T = 0.1 K. Prominent oscillations appear for low magnetic
fields, whereas for B ≥ 0.25 T SdH type oscillations are visible.

magneto-electric hybrid lattice [193]. Hybrid systems had been considered before
in the literature, but usually under the restriction of equal lattice constants and
only varying relative phases [194–198]. Superlattices with vanishing mean field
were studied theoretically [199,200] and experimentally [201] before, but, to the
best of our knowledge, never in combination with an antidot lattice. We find
experimentally the emergence of pronounced COs as a function of the magnetization
of the one-dimensional stripe lattice. We interpret them as indications of snake
trajectories being commensurate with the antidot lattice period.
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Figure 2.4: a) Phase diagram of a Lorentz gas consisting of circular obstacles. Two
insulating phases are separated by a conductive phase. The insets
sketch characteristic electron trajectories. In the low-density insulating
phase, all electron are either undergoing undisturbed cyclotron motion
in the void or are trapped at obstacles. In the conductive region, the
electron are scattered from one cluster to another and can therefore
traverse the whole sample region. For a further increased density of
obstacles, they get trapped in pockets between obstacles. (Modified
after [41]) b) Magnetoresistivity for a Lorentz gas in the Grad limit.

2.3 Classical transport properties of Lorentz gases
As was already briefly mentioned in section 1.3, in 1905 H.A. Lorentz proposed
a model to describe electronic transport in solids [66], which was named the
Lorentz gas due to its analogy with an ideal gas later on. The following assump-
tions are made in its formulation nowadays, when dealing with magnetotransport
problems [18].

1. The electrons are pointlike particles, which do not interact with each other.

2. They move with constant overall velocity in two dimensions under the
influence of an external perpendicular magnetic field.

3. Throughout the plane obstacles of uniform size and shape are randomly
distributed with a certain density. Mutual overlaps are allowed.

4. The interaction of electrons with obstacles is short ranged. Scattered electrons
are reflected specularly.

Of course, these can be modified to deal with e.g. uncharged or three-dimensional
particles, which is also a topic of ongoing interest, see e.g. Refs. [202–207], but not
at the scope of this work. Similar to what we discussed in the previous section,
also in the Lorentz model the scattering takes place in a correlated way, since
the positions of the scattering centers are fixed. The Stoßzahlansatz is not valid
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2.3. Classical transport properties of Lorentz gases

a)

b)

c)

2 μm

Figure 2.5: Sketch of different types of classical memory effects overlayed on top
of a SEM image of an actual Lorentz model sample. a) Unperturbed
cyclotron motion, either in the void or around single obstacles. b)
Skipping motion along the contour of a cluster of obstacles for stronger
magnetic fields. c) Backscattering by an angle of π is suppressed as
the magnetic field is increased. (The e-beam lithography as well as
the RIE were done by D. Kazazis, who also took the SEM image, at
CNRS-C2N in Marcoussis)

and the Drude-Boltzmann description of magnetotransport is bound to fail. This
complicates the theoretical description of this system and it has therefore attracted
a lot of research interest over the course of the last century. Earlier studies are
reviewed for example in Refs. [208–210], but here we want to focus on more recent
developments.
First, we take a look at the two-dimensional phase diagram of a Lorentz system,
where the magnetic field B is one and the dimensionless density of obstacles
n∗ = na2, with the number density n and the characteristic obstacle length scale
a, the other parameter. It is obvious that if the obstacle density is high enough to
form a continuous cluster throughout the whole system, it will be in an insulating
state. Such a cluster is called percolating. The critical densities for circles, squares
and rods can be found in [211]. It is clear that the magnetic field does not have an
impact on this phase boundary. When there is no open path, electrons will not
be able to traverse the system, no matter if they are moving in straight lines or
in circles. However, in 1978, Baskin et al. published a theoretical study on the
existence of a second phase boundary, which depends on the magnetic field [212].
At a given obstacle density, there exists a critical magnetic field Bc, from which on
all electrons are localized. They either move in cyclotron orbits in the void between
the obstacle clusters or are trapped at their surface, moving in skipping orbits.
When the cyclotron radius Rc is sufficiently small, there is no way an electron
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can be transferred from one cluster to another and the system is again insulating.
Kuzmany and Spohn presented the intuitive picture for circular obstacles, that for
the system to be conductive, obstacles of the effective radius ae = a + Rc need to
percolate [41]. This way, the electrons can reach every point in the system. The
resulting phase diagram is given in Fig. 2.4a).
First quantitative theories for the magnetoconductivity were published by Bobylev
et al. for the case of low obstacle densities in the so called Grad limit, which
assumes n → ∞ and a → 0, but na = const. [18,213]. They calculated the fraction
P of electrons, which undergo undisturbed cyclotron motion and therefore do not
contribute to the diagonal conductivity and found

P = exp (−4πRcan). (2.4)

Since the scattering centers are fixed, an electron, which can complete one cyclotron
orbit, will remain in it forever. Furthermore, so called recollisions with an obstacle
already visited before are possible. These kind of effects were related to the memory
of the electrons, which is in stark contrast to the Stoßzahlansatz of the Boltzmann
model.
The resulting magnetoresistance was found to be negative [214,215]. In the Grad
limit it reads ρ = ρ0(1 − P ), where ρ0 is the zero field resistivity. A sketch is shown
in Fig. 2.4b). Interestingly this is in contrast to the case of long-range scattering,
where a positive magnetoresistance was predicted [19, 21] and observed in mag-
netic [216–219] and electrostatic [220] environments. Negative magnetoresistance
can also be caused by weak localization [221], which is a true quantum effect.
Due to the increased quality of 2DEGs in semiconductor heterostructures and
progress in lithographic techniques, experimental realizations of Lorentz models
became feasible. Residual disorder could be reduced, allowing for the introduction
of artificial obstacles, which were big enough for treating their interaction with
electrons classically. Soon after the first antidot lattices (see previous section)
interest also moved to randomized arrangements of scatterers. An example of an
experimental realization produced by etching circular holes at random positions
into an semiconductor featuring a 2DEG beneath its surface is shown in Fig. 2.5.
Early studies focused on the vanishing of the commensurability oscillations present
in regular antidot lattices by adding random displacements to the antidot cen-
ters [222,223]. While the results clearly showed a negative magnetoresistance, these
could not be considered as true realizations of a Lorentz model, since there is still
a non-negligible degree of order in their samples. This was changed in the work of
Lütjering [224], who systematically studied random arrangements as a function
of their obstacle density. Nachtwei et al. made use of Lorentz systems in the
context of the quantum Hall effect [225,226], while Yevtuchenko et al. discussed
their relation to weak localization [227]. A different approach to generate short
range scatterers with a random position was taken by Cina et al., who performed
cyclotron resonance experiments on a 2DEG with embedded InAs dots [228].
Progress in the theoretical description allowed for a treatment of mixed disor-
der [20,21], which was successfully applied to analyze the magnetoresistance found
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in experiments on high-mobility heterostructures with few and large strong scatter-
ers [229]. Rather surprising analogies to the Lorentz gas in 2DEGs were found to be
realized in biological systems, namely for bacteria in the vicinity of a surface [230],
magnetotactic bacteria [231] and active matter [232].
Despite all this progress in understanding and applying the properties of the
Lorentz model, there still remain unanswered questions. In computer simulations
of dense Lorentz gases, which defy an analytical treatment, a maximum in diagonal
conductivity for finite magnetic fields is observed [41,233], contradicting the find-
ings of Bobylev et al. in the Grad limit. Up to now, an unambiguous experimental
verification of this effect has not been published and its origin remained unclear. We
studied the magnetoconductivity of dense Lorentz gases in a high-mobility 2DEG
and could demonstrate the existence of a maximum for different obstacle sizes
and densities [234]. With the help of molecular dynamics simulations, we could
point its origin to a qualitative change of electron motion from diffuse scattering to
directed transport along obstacle clusters. We interpret it as a signature of the two
metal insulator transitions present in the phase-diagram of the two-dimensional
Lorentz gas.
Another aspect of the Lorentz model, which has been neglected so far, is the
dependence of magnetotransport on the shape of the obstacle. Almost all studies
consider circular obstacles, which may partly be due to practical issues. Whenever
one depletes a 2DEG locally, say by RIE, there is always some collateral damage
in the surroundings. This so-called depletion zone leads to a rounding of any
introduced shape. When the electron mobility of a 2DEG is low and the structural
size needs to be small in order to observe ballistic effects, this makes it difficult
to discriminate between different shapes. However, the depletion zone can be
considered independent of the structure size and therefore has a relatively lower
impact on bigger structures. We utilize this in our high-mobility 2DEG to study
magnetotransport in Lorentz gases composed of circular, square and cross-shaped
obstacles [235]. For square scatterers there exist some theoretical predictions for
the zero magnetic field case [211, 236], whereas cross-shaped antidots were studied
on a regular lattice experimentally [237]. However, to the best of our knowledge,
no systematic studies concerning magnetotransport in Lorentz gases composed of
these obstacles exist. Our main focus is on a memory effect, which was identified
as the source of a linear negative magnetoresistance by Dmitriev et al. [238]. The
authors gave a phenomenological picture, where electron backscattering by an
angle of π is reduced by increasing the magnetic field. In the zero magnetic field
case, a backscattered electron moves along the same trajectory it came before.
The probability of it being scattered again is therefore zero for a certain interval
of time. This leads to an increase in resistance, which is then suppressed by the
bending of the trajectory as the magnetic field is ramped up. Later on a more
sophisticated model was built around this intuitive picture [239–241]. Although
this linear negative magnetoresistance was observed before in randomized antidot
arrays [222], corrugated surfaces [242] and systems with interface roughness [243],
it was never systematically studied in terms of its dependence of obstacle size,
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shape and density.

35



3 Publications
The papers resulting from this work are given in this chapter. Four of them are
already published, one is accepted for publication and one is still under review.
The papers related to chapter 2.1 are:

1. Probing magnetic microstructures with quasi-ballistic Hall crosses, S. Fas-
bender, J. Schluck, M. Cerchez, T. Heinzel, S. Sievers, K. Pierz, and H. W.
Schumacher, Journal of Applied Physics 119, 094302 (2016)

2. Commensurability oscillations by snake-orbit magnetotransport in two-dimensional
electron gases, A. Leuschner, J. Schluck, M. Cerchez, T. Heinzel, K. Pierz,
and H. W.Schumacher, Phys. Rev. B 95, 155440 (2017)

The papers related to chapter 2.2 are:

1. Quantum signatures of competing electron trajectories in antidot superlattices,
J. Schluck, J. Feilhauer, D. Kazazis, U. Gennser, K. Pierz, H.W. Schumacher,
and T. Heinzel, submitted to Phys. Rev. B.

2. Commensurability resonances in two-dimensional magnetoelectric lateral su-
perlattices, J. Schluck, S. Fasbender, T. Heinzel, K. Pierz, H. W. Schumacher,
D. Kazazis, and U. Gennser, Phys. Rev. B 91, 195303 (2015)

The papers related to chapter 2.3 are:

1. Nonmonotonic Classical Magnetoconductivity of a Two-Dimensional Electron
Gas in a Disordered Array of Obstacles, N. H. Siboni, J. Schluck, K. Pierz, H.
W. Schumacher, D. Kazazis, J. Horbach, and T. Heinzel, Phys. Rev. Lett.
120, 056601 (2018)

2. Linear negative magnetoresistance in two-dimensional Lorentz gases, J.
Schluck, M. Hund, T. Heckenthaler, D. Kazazis, D. Mailly, U. Gennser,
K. Pierz, H. Schumacher, N. Siboni, J. Horbach, and T. Heinzel, accepted
for publication in Phys. Rev. B (2018)

36



Reference

S. Fasbender, J. Schluck, M. Cerchez, T. Heinzel, S. Sievers, K. Pierz, and H. W.
Schumacher, Journal of Applied Physics 119, 094302 (2016), c©2016 AIP Publishing
LLC

Copyright statement

AIP Publishing permits authors to include their published articles in a thesis or
dissertation. It is understood that the thesis or dissertation may be published in
print and/or electronic form and offered for sale on demand, as well as included in
a university’s repository. Formal permission from AIP Publishing is not needed.

Contributions

I designed and prepared the sample. I participated in the conductance of the
experiments and contributed to manuscript writing.

37



Probing magnetic microstructures with quasi-ballistic Hall crosses

S. Fasbender,1 J. Schluck,1 M. Cerchez,1 T. Heinzel,1,a) S. Sievers,2 K. Pierz,2

and H. W. Schumacher2
1Solid State Physics Laboratory, Heinrich-Heine-Universit€at D€usseldorf, 40204 D€usseldorf, Germany
2Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany

(Received 5 October 2015; accepted 15 February 2016; published online 2 March 2016)

Hall sensing is performed on a localized magnetic field pattern using a quasi-ballistic Hall cross

device. The Hall resistance shows a pronounced peak as a function of the magnetic field amplitude

which is absent in the magnetization hysteresis loop. This non-monotonic response exemplifies

qualitatively the failure of conventional Hall sensing. It is demonstrated how, by using a numerical

simulation based on the Landauer-B€uttiker model, the amplitude of the magnetic field profile can

be determined from such measurements.VC 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4942981]

I. INTRODUCTION

Quantifying magnetic fields via the Hall resistance Rxy

in thin conductive layers like metal sheets or low-

dimensional electron gases in semiconductors is a standard

concept of magnetometry.1 If the transport in the Hall cross

is diffusive and the magnetic field is homogeneous, its quan-

titative determination is well established. In fundamental

science, however, magnetometry faces additional challenges.

Ferromagnets with Curie temperatures below room tempera-

ture, like Gd or Dy, require studies in a cryogenic environ-

ment. Also, structures like magnetic domain patterns,2,3

ferromagnetic (FM)4–8 or superconducting9–11 nanoparticles

or superlattices,12,13 as well as small paramagnets14,15 gener-

ate inhomogeneous magnetic fields on a sub-micrometer

scale,10 the probing of which requires magnetic field sensors

with high spatial resolution. A self-evident way to perform

magnetometry on these objects is by placing them on a Hall

cross prepared in a suitable semiconductor heterostructure

that contains a two-dimensional electron gas (2DEG).2–11

The small lateral dimension of the Hall cross provides

spatial resolution down to the sub-micrometer regime, while

the low electron density ensures a high resolution of about

1000 Bohr magnetons.10

Particularly relevant for the present work is the fact that

many experiments comprising inhomogeneous or localized

magnetic field textures are carried out at low temperatures,

for example, in relation to mesoscopic systems like magnetic

superlattices,12,13,16 magnetic stripes as spin filters for elec-

trons in a semiconductor heterostructure,17 or quantum dot

systems where the inhomogeneous magnetic field is a part of

the spin readout concept.18 In these studies, the Ga[Al]As

heterostructure is frequently used due to its superior per-

formance in terms of electron mobility and versatility.

Therefore, there is a common interest to characterize the

magnetic properties in such structures on-chip.

However, quantitative magnetometry is non-trivial

under these conditions, due to the fact that the magnetic field

is not uniform. It is well known that this non-uniformity

causes deviations of Rxy from the homogeneous case and has

been frequently accounted for using the rough approximation

that the Hall voltage is proportional to the average magnetic

field in the Hall cross using the correction factor a

Rxy ¼ a
hBzi
ne

; (1)

where hBzi denotes the average perpendicular magnetic field

in the Hall cross, e is the elementary charge, and n is the

two-dimensional electron density. In the diffusive case, the

problem can be solved by calculating the response function

of the Hall cross.19 This must be completed for every partic-

ular size and geometry of the Hall cross-magnetic structure

system. The same is true for the ballistic case where

Landauer-B€uttiker formalism is employed20,21 to calculate

the Hall voltage depending on the shape and geometry of the

system. The conclusion from these studies is that a is not a

proportionality constant, but rather a nontrivial function of

the magnetic field profile Bz(x, y) and of the geometry of the

Hall sensor.21 It is further known that for some shapes of

Bz(x, y) whose lateral extensions are small in comparison to

the size of a ballistic Hall cross, a� 1,4,20,22 and a> 1 is pos-

sible for extended magnetic fields.3,10 In general, however,

the dependence of a on the parameters of the system is not

well known. This has impeded quantitative Hall magnetome-

try in many experimental studies.7,8,16,23–32 The problem has

been dealt with in different ways. Some authors restrict

themselves to a qualitative discussion,7,26–29 while others

assume a¼ 1 as a coarse approximation,8,11,23,24,31,32 discuss

only the measurements for extremal values of a,25 or use an

ad hoc approximation based on a comparison to numerical

studies of a.16 Therefore, a method to evaluate a as a func-

tion of the applied magnetic field for a given sample geome-

try and for typical experimental parameters, in particular, for

some specific magnetic structures on top of quasi-ballistic

Hall crosses, is desirable.

Here, we demonstrate that a can be obtained combining

experiment and numerical simulations based on the Landauer-

B€uttiker model in the semiclassical limit and used to determine

the amplitude of a magnetic field profile Bz(x, y) for a magnetica)thomas.heinzel@hhu.de
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barrier having a width of roughly 400 nm. The method is uni-

versal in the sense that it works for arbitrary geometries, pro-

vided that the functional form of Bz(x, y) is known, the Hall

sensor is in the quasi-ballistic regime, and quantization effects

can be neglected. The magnetic barrier is produced by a ferro-

magnetic film that partially covers a quasi-ballistic Hall cross.

It generates a pronounced peak in Rxy as a function of its mag-

netization l0M. As the temperature is increased, the peak van-

ishes and a conventionally shaped Hall resistance Rxy(l0M)

develops. This is a clear example where the assumption of a

constant a fails.
The paper is organized as follows. In Section II, the

sample layout and the experimental setup are described.

Section III focuses on the experimental results and their

interpretation. The method for determining the magnetic

field amplitude from ballistic Hall data is presented in

Section IV. We end with a summary and our conclusions in

Section V.

II. SAMPLE PREPARATION AND EXPERIMENTAL
SETUP

A Hall cross is prepared from a GaAs/Al0.3Ga0.7As het-

erostructure that contains a 2DEG 90 nm below the surface.

In order to ensure the experiment takes place well into the

ballistic regime, a high mobility heterostructure is used.

After illuminating the sample with an infrared light pulse of

5 s duration, an electron density of n¼ 3.36� 1015m�2 and a

mobility of 574 m2/V s are measured at a temperature of

T¼ 1.5K. This corresponds to an elastic mean free path of

‘¼ 55 lm. A Hall cross with an area of 10 lm� 10 lm is

defined using optical lithography and subsequent wet chemi-

cal etching. We have opted for a one-dimensional magnetic

barrier as a model structure, since the analytical expression

for its magnetic field profile Bz(x, y) has been shown in sev-

eral experiments16,25,31,33 to describe accurately the barrier’s

effects on the electron transport in a 2DEG underneath. The

sample layout is shown in Fig. 1. After covering the surface

with a Cr film of 5 nm thickness, a dysprosium (Dy) pad

with a thickness of h¼ 250 nm is deposited with one edge

located at the center of the Hall cross (x¼ 0) and aligned

parallel to the direction of the Hall field, i.e., along the y
direction, see Fig. 1. Dy is used due to its large saturation

magnetization l0Ms� 3.7 T (Ref. 34) and its compatibility

with the GaAs processing technology. To ensure identical

conditions, the section of the Hall bar used to measure the

carrier density and the scattering times was also covered by

the Cr electrode. A second Dy film with an area of

4mm� 4mm and of the same thickness was prepared

on GaAs under identical conditions for comparative super-

conducting quantum interference device (SQUID)

magnetometry.

The transport experiments were performed in a 4He gas

flow cryostat with a variable temperature insert and a mini-

mum temperature of T¼ 1.5K. The cryostat is equipped

with a solenoid of 8 T maximum magnetic field strength. For

comparison, SQUID-magnetometry was performed in a 4He

gas flow cryostat equipped with a 7 T magnet and with a

base temperature of 1.8K. The magnets are used to apply a

homogeneous magnetic field Bx along the transport (x) direc-
tion, which magnetizes the Dy film according to an a priori
unknown magnetization function l0M(Bx). The 2DEG

responds predominantly to Bz, which is formed by the z com-

ponent of the Dy film’s fringe field given by25

Bz x;Bxð Þ ¼ l0M Bxð Þ
4p

ln
x2 þ d2

x2 þ d þ hð Þ2
" #

; (2)

where d is the distance of the Dy pad to the 2DEG. This

magnetic barrier has a full width at half maximum of

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd þ hÞp

which in our implementation equals 370 nm.

Rxy(Bx) is obtained by applying an AC current of 100 nA am-

plitude with a frequency of 17.7Hz from source S to drain

D, and by measuring the voltage difference between the two

Hall probes.

III. EXPERIMENTAL RESULTS AND INTERPRETATION

In Fig. 2(a), the magnetization of the Dy film is shown

as a function of Bx as measured by SQUID magnetometry at

T¼ 1.8K. A typical, monotonic magnetization curve is

observed with a coercive magnetic field of Bc¼ 740mT and

a maximum magnetization, which is not yet fully saturated

at jBxj ¼ 7 T, of l0Mmax� 2.7 T. The Hall resistance Rxy(Bx)

at an electron temperature T¼ 1.5K shows a strikingly dif-

ferent behavior. As Bx is varied from 8T to �8 T, Rxy shows

extreme points at Bx¼�0.32 T and �1.1 T and reveals a

coercive magnetic field of Bc¼ 670mT. This is somewhat

smaller than the value found in SQUID magnetometry, prob-

ably because the SQUID probes the average magnetization

of the film while the Hall sensor detects the fringe field at its

edge. The trace is antisymmetric under reversal of the sweep

direction. The Hall resistance at the extremes is roughly a

factor of two larger than its value at large jBxj. Notably, the
traces show no further conductance fluctuations as frequently

observed in semiconductor nanostructures,35 also in some

structures containing local magnetic fields.32 We attribute

this to the absence of closed electron trajectories in our Hall

crosses, which impedes interference of the electron waves.

Apparently, the Hall resistance is a non-monotonic

function of both Bx and l0M, and it is not a priori clear how
the film magnetization can be extracted from the Hall

measurement. In other words, a is a nontrivial function of Bx

and can be determined from the experimental data via

FIG. 1. Left: top view of the Hall cross as seen in an optical microscope.

Right: schematic cross section in the xy plane and sketch of the perpendicu-

lar magnetic field Bz(x).

094302-2 Fasbender et al. J. Appl. Phys. 119, 094302 (2016)



aðBxÞ ¼ enRxyðBxÞ=hBziðBxÞ, where hBziðBxÞ is obtained

from the SQUID magnetometry and with Equation (2). The

resulting a(Bx)-function, shown in the inset, varies by more

than a factor of 4 and peaks at Bx � Bc� 350mT, with a

maximum value of �1.3.

As T is increased, the non-monotonic behavior becomes

weaker and finally vanishes at T� 48K, see Fig. 2(b). The

SQUID measurement shows that the magnetization at

Bx¼ 7T has decreased to 2.33T and the coercive magnetic

field to 360mT. Despite this qualitative convergence of the

SQUID- and the Hall measurement, a is still magnetic field

dependent and differs significantly from 1, as shown in the

inset. The qualitative dependence of l0M on Bx as measured

with the SQUID is, in several respects, expected for granular

Dy films. First of all, saturation of the magnetization may

require magnetic fields larger than 8 T.34,36 Second, a compar-

ison of Bc and the shape of l0M(Bx) to reports in the literature

shows consistency with the assumption of a granular structure

that has been reported to comprise a mixture of strained hcp

and fcc granules of typical sizes around 20 nm.34,37 Also, it

has been shown that the FM-antiferromagnetic (AFM) transi-

tion of Dy single crystals at a Curie temperature of Tc¼ 85K

(Refs. 38 and 39) can be replaced by multiple magnetic transi-

tions in granular films.34 The onset of the AFM state can be

increased to about 100K,40 above which the AFM and FM

phases can coexist, such that the ferromagnetic response can

persist up to T¼ 172K.34 This is in agreement with our

SQUID measurements, which reveal a vanishing magnetiza-

tion at a temperature of 171K (not shown).

Therefore, it becomes apparent that the anomalous Hall

resistance must be related to the electronic properties of the

Hall cross. This cannot be explained by a temperature-

dependent electron density n, which only decreases by 4% as

the temperature is increased from 1.5K to 48K, similar to

earlier observations.41 However, the Drude scattering time s
varies by about one order of magnitude over this temperature

interval, and the elastic mean free path ‘ ¼ �h
ffiffiffiffiffiffiffiffi
2pn

p
s=m�

decreases from 55 lm at 1.5K to 3.2 lm at 48K. Therefore,

the increase in temperature causes a transition from the

quasi-ballistic into the quasi-diffusive regime, and the previ-

ous considerations thus suggest that this transition substan-

tially influences the Hall signal.

To gain more insight into the non-monotonic evolution

of Rxy(Bx), we simulated Rxy while varying the saturation

magnetization between l0Ms¼ 0 and l0Ms¼ 3 T, using the

Landauer-B€uttiker formalism in the semiclassical limit,42

which excludes quantum interference effects. The geometry

and sizes given in Fig. 1 are used, and the corners of the Hall

cross are assumed to be sharp. 106 electrons are injected with

the Fermi velocity from each contact, using a cosine distribu-

tion of the initial velocity orientations. The starting points

are randomly distributed along a cross-sectional line of the

contact. Scattering is included with a Poisson distribution of

scattering times with the expectation value sq, the quantum

scattering time. The width of the gaussian scattering angle

distribution is chosen such that the calculated resistivity,

which determines the Drude scattering time s, agrees with

the experimental one in the Hall bar at zero magnetic field.

We can determine sq, which is obtained from the envelope

of the Shubnikov–de Haas oscillations at low magnetic

fields,43 up to a temperature of 4K and find the values

sqð1:5KÞ ¼ 0:6 ps; sð1:5KÞ ¼ 218 ps; sqð4KÞ ¼ 0:35 ps;
sð4KÞ ¼ 89 ps, and s(48K)¼ 16 ps. The electron trajecto-

ries are calculated, solving the classical equations of motion

of the electrons in the presence of a magnetic field, and zero-

electric field. Hard walls are simulated by mirror reflections

at the edges of the Hall bar. Calculating the electron trans-

mission probability between each contact and any other

allows us to obtain the elements of the conductance matrix

Gij(l0M), (i, j� {1.4}) which, in turn, determines Rxy(l0M)

(see also Ref. 44). The Landauer-B€uttiker formalism

extended here into the semi-classical limit is strictly precise

in the absence of random scattering. The electrons move in

zero-bias, with constant velocity, and the Hall voltage cannot

be correctly calculated in the diffusive regime due to the

lack of drift velocity in the absence of an electric field. The

potential difference between Hall probes is given by the

number of electrons that pile up in the two contacts, however

if randomizing scattering is present, the model will fail and

the predicted difference between Hall probes will be zero.

The details of this simulation method and its limitations have

been described in Refs. 21 and 31. Since both scattering

times are strongly temperature dependent, the simulations

FIG. 2. (a) SQUID-magnetometry measurement and hysteretic Hall resist-

ance as a function of Bx at T¼ 1.8K and 1.5K, respectively. The inset shows

the magnetic field dependence of a as obtained from these measurements.

The results of the same experiments carried out at 48K are shown in (b).
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become less reliable for temperatures above 4K where the

width of the scattering angle distribution can only be

guessed; hence, Section IV will focus on the low temperature

regime.

Fig. 3(a) shows the simulation results for Rxy(l0M) for

different quantum scattering times. For an unrealistically

large sq¼ 100 ps, corresponding to a quantum scattering

length of 25 lm and a mean free path in the millimeter range,

the Hall cross resides deep inside the ballistic regime. For

low values of the magnetization (l0M< 1 T), Rxy(l0M) is

linear. A pronounced peak develops at l0M� 1.4 T. As l0M
is further increased, Rxy decreases and saturates at about one

third of the peak value. Decreasing sq leads to a successive

suppression of the peak in Rxy(l0M). The correction factor

a(l0M) is obtained by inserting the calculated values for hBzi
according to Eq. (2) and the simulated Rxy(l0M) into Eq. (1).

The result is shown in the inset of Fig. 3(a), where a has

been plotted as a function of the characteristic cyclotron

radius inside the Hall cross, defined as r�c ¼ �h
ffiffiffiffiffiffiffiffi
2pn

p
=jehBzij.

It can be seen that the peak appears close to 2r�c � w, the
width of the Hall cross.21 As r�c decreases, a decreases signif-
icantly below 1 to a minimum value of 0.2.

To shed some light on the origin of the Rxy peak, it is

helpful to look at some characteristic trajectories of electrons

after their injection into the Hall cross from the left contact,

see Fig. 3(b). At small magnetization, the electrons typically

probe the whole Hall cross and can be collected in all con-

tacts, depending on their angle of injection c, similar to their

motion in a homogeneous magnetic field. Therefore, a is �1

for large r�c . Close to the Rxy peak, the collection by the bot-

tom contact is increased, while at the same time, collection

by the top contact takes place for an interval of positive c in
which the trajectories contain self-intersecting loops, see the

case of l0M¼ 1.4 T in Fig. 3(b) for an illustration. For large

c, however, the magnetic barrier is open, and the electrons

end up in the right contact. This scenario contributes to the

increase of Rxy corresponding to a> 1. The presence of

trajectories in the shape of deformed cyclotron semicircles,

corresponding to transmission from the left into the right

contact, is characteristic here. This explains qualitatively the

rule of thumb that the peak in Rxy appears roughly where

r�c � w. At larger magnetization, like l0M¼ 2.5 T in Fig.

3(b), the magnetic barrier is closed, and the electrons enter-

ing at large c are now also transmitted into the top contact.

This decreases the difference between the number of elec-

trons collected at the top and bottom contacts, and conse-

quently, a decreases. The residual value of Rxy reflects the

fact that the injected electron distribution is deflected

towards the bottom contact by the tail of the magnetic bar-

rier, which makes a collection by the bottom contact more

likely. In this scenario, the microscopic role of randomizing

scattering can also be readily explained. An electron suffer-

ing a scattering event inside the magnetic barrier may change

its direction such that it gets transmitted into the right

contact. Thus, scattering effectively reopens the magnetic

barrier, and the electrons can probe the full Hall cross area

again. The characteristic trajectories furthermore illustrate

that the non-monotonic behavior depends only weakly on the

sharpness of the corners of the Hall cross, since the causal

scattering takes place close to the center of the magnetic

barrier. This is confirmed by calculations for a Hall cross

with rounded corners with a radius of curvature of 1lm, see

the lower right part of Fig. 3(b), and stands in contrast to the

prominent role the shape of the Hall cross edges plays in

smaller ballistic Hall crosses exposed to homogeneous mag-

netic fields for the observed non-monotonic or even negative

Hall resistance.45–48

IV. QUANTITATIVE HALL SENSING FOR CORRECTION
FACTORS a 6¼ 1

The results described above suggest that even from Hall

measurements in the quasi-ballistic regime, the amplitude of

Bz(x, y), or in our present example equivalently the magnet-

ization of the Dy pad, can be determined by dividing the

measured Hall resistance by the calculated correction factor

a. The validity of this approach can be demonstrated by

FIG. 3. (a) Simulation of the Hall resistance as a function of the magnetiza-

tion for various quantum scattering times, some of which correspond to a

temperature in the experiment as indicated. Inset: the corresponding calcu-

lated correction factors as a function of the characteristic cyclotron radius

r�c . (b) Characteristic trajectories for a magnetization below (upper left), at

(lower left), and well above (upper right) the maximum of Rxy(l0M) for

sq¼ 100 ps. Bz(x) is indicated by the gray tone and points into the plane.

Lower right: Calculated function Rxy(l0M) for a magnetic barrier on top of a

Hall cross with sharp as well as for one with rounded corners.
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comparing the corrected ballistic trace Rxy(Bx)/a(l0M) at

T¼ 1.5K with the corresponding SQUID measurement of

the magnetization. Equating the measured Hall resistance

Rxy(Bx), shown in Fig. 2(b), with the computed values

Rxy(l0M) in Fig. 3(a) allows us to transform the magnetiza-

tion into the corresponding value for Bx. Due to the non-

monotonic functions, this must be done in two intervals, the

first one ranging from Bx, l0M¼ 0 to the maximum of Rxy,

and the second one for larger Bx and l0M values. It should

be noted that close to the maximum, there is a small interval

0.25 T<Bx�Bc< 0.4 T where this mapping fails since the

computed values for Rxy exceed the measured ones, and

where therefore the relation Bx(l0M) cannot be defined.

The measured Hall resistance is transformed into

l0M(Bx) by dividing each measured value Rxy(Bx�Bc) by

the computed a(Bx�Bc), and the subsequent replacement of

hBzi by l0M according to Eq. (2). The a-corrected magnet-

ization as obtained this way from the Hall measurement is

shown in Fig. 4. Its dependence on Bx is now monotonic and

the values obtained for the magnetization, shown at the right

vertical axis, are in good agreement with the SQUID meas-

urements, in particular at large magnetic fields Bx�Bc> 3 T,

where the magnetizations differ by less than 4%.

In smaller magnetic fields, the deviations become larger.

This may be due to the different spatial regions probed by

the two techniques: while the SQUID magnetometry meas-

ures the averaged magnetization of the whole Dy film, the

Hall measurement determines the magnetization from the

stray field at the edge. As the magnetic field is increased,

the magnetization homogenizes and thereby leads to a con-

vergence of the two measurement concepts. This method of

determining the amplitude of Bz(x, y) is of potential rele-

vance for experiments where Hall magnetometry is to be per-

formed with Hall crosses that cannot be driven into the

diffusive regime: it shows that by computing a numerically,

the strength of Bz(x, y) can still be determined, although the

result is conditioned by its functional form that is required as

an input. It should be noted that this analysis requires the

experimental determination of sq, which via transport experi-

ments is only possible at sufficiently low temperatures. The

discussion also suggests application of the presented

approach to scanning Hall probe microscopy.49,50 Here, the

position of the Hall cross with respect to the magnetic tex-

ture is varied quasi-continuously. Since the correction factor

may be a function of the probe position, the quantification of

the magnetic profile could be improved by weighing the Hall

resistance by the computed function a(x, y).
At elevated temperatures like the one shown in Fig.

2(b), a quantitative correction of Rxy along these lines is no

longer possible. First of all, the angular distribution of the

scattering is required as an input, and therefore the quantum

scattering time is required. Second, as the Hall cross enters

the quasi-diffusive regime, electric fields build up and gener-

ate ~E � ~B-drifts, which in the diffusive limit cause the Hall

voltage. These effects are disregarded in our model. The

data, however, show that even for T¼ 48K, the assumption

of a constant a is too simplistic and tends to underestimate

the true value of the magnetization of the Dy film close to

saturation.

V. SUMMARYAND CONCLUSIONS

Hall sensing of a magnetic nanostructure with a rela-

tively large Hall cross well inside the ballistic regime was

performed. A strongly non-monotonic Hall resistance as a

function of the amplitude of the localized magnetic field pat-

tern Bz(x, y) was observed, an effect which impedes quantita-

tive Hall sensing. This anomaly is quite robust and persists

even when the electron mean free path is smaller than the

width of the Hall cross, a regime usually classified as diffu-

sive or quasi-diffusive. Conventional, monotonic response

can be recovered when the Hall cross is deep inside the dif-

fusive regime, i.e., the mean free path should be at least one

order of magnitude smaller than the dimensions of the Hall

bar. This is not always possible. For example, increasing the

temperature to reach the diffusive regime may be hampered

by exceeding the Curie temperature for ferromagnetic nano-

structures, or by the limits set by the transition temperature

for superconductive samples. It may also be difficult to

increase the size of the Hall bar, since the sensitivity will

suffer. Therefore, it is of relevance to be able to correct for

the deviations generated by the ballisticity, and we have

demonstrated that this can be done by a numerical simulation

of the Hall correction factor a as a function of the amplitude

of Bz(x, y), the functional form of which, however, is

required as an input and therefore represents a possible error

source. In the presented example, the error of the magnetom-

etry at large magnetization has been decreased from a factor

of 3.5 to /4%. Moderate thermal smearing as well as imper-

fections of the Hall cross geometry have only a marginal

effect on the correction factor.

In situations where both the amplitude and the spatial

distribution of the magnetic field are unknown, it will most

likely not be possible to extract both from the measured

magnetic field dependent Hall resistance. Rather, the concept

presented in this work should be useful for experiments

where a micromagnet of a well-defined shape is used to gen-

erate a certain magnetic texture. In addition to the magnetic

barrier we have used, the arrays thereof as well as

FIG. 4. Comparison between the a-corrected magnetization as obtained

from the Hall measurement, and the SQUID magnetometry in the ballistic

regime. The measured data of Rxy(Bx) are shown as well.
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ferromagnetic or superconducting cylinders, both single and

in arrays, and thin ferromagnetic wires are typical examples.

For such structures, the ideal (monodomain) magnetic fringe

field is well-known and can therefore be used as an input. It

would be useful to establish a set of a-functions for the most

common magnetic microstructures as a reference for magne-

tometry on such ferromagnet/heterostructure systems.
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Commensuratemagnetoresistance periodic oscillations generated by transversal electron snake orbits are found
experimentally. A two-dimensional electron gas is exposed to a magnetic field that changes sign along the current
longitudinal direction and is homogeneous in the transverse direction. The change in sign of the magnetic field
directs the electron flow along the transversal direction, in snake orbits. This generates resistance oscillations
with a predictable periodicity that is commensurate with the width of the electron gas. Numerical simulations are
used to reveal the character of the oscillations.

DOI: 10.1103/PhysRevB.95.155440

I. INTRODUCTION

Magnetotransport phenomena in magnetic fields localized
at least in one direction have been reported for some time,
and the interest has been both at the fundamental and
application levels [1]. Various magnetic field profiles led
to effects such as commensurate oscillations [2,3], a giant
magnetoresistance [4], and snake-orbit dominated transport
[5]. Also magnetic wave guiding of electrons [6], resistance
oscillations at magnetic edge states [7], detection of spin
resonance by electron channeling along snake orbits [8], and
snake-orbit induced rectification [9] were reported. Magnetic
barriers, i.e., localized magnetic fields in the direction of the
current which are homogeneous in the transverse direction,
have been studied in great detail [10–17], and typically show
a smooth magnetoresistance which is influenced by both
momentum-randomizing scattering in the bulk and �E × �B
drift at the sample edges [18]. Inhomogeneous magnetic
fields in quantum wires, on the other hand, show phenomena
such as transmission and reflection resonances [19] and can
host quantum states which have no semiclassical analog
[20–22]. Two-dimensional electron gases (2DEGs) exposed
to inhomogeneous magnetic fields raise application interest
in particular in relation to Hall magnetometry on magnetic
micro- or nanostructures [23–29] and to solid-state spin
filters [30–35]. More recently, localized magnetic fields at
quantum dots were used to manipulate single spins [36,37]
and to demonstrate electrical control of a spin qubit [38]. In
applications such as these, it is potentially important to develop
a thorough understanding of the possible magnetotransport
outcome that the magnetic field profile may generate.
In the general effort of understanding and exploiting the

potential of localized magnetic fields, this paper reports
the observation of magnetoresistance periodic oscillations
in localized magnetic fields, which are due to transverse
electron snake orbits commensurate with the spatial exten-
sion of the 2DEG. The interpretation of the experimental
results is based on classical and quantum simulations show-
ing, through classical electron trajectories as well as the

*mihai.cerchez@hhu.de

electron local density of states, how the transversal snake-orbit
electron transport is responsible for the magnetoresistance
oscillations.
Section II describes the geometry and preparation of the

samples. The experimental results and their interpretation are
presented in Sec. III. The paper closes with conclusions in
Sec. IV.

II. SAMPLE PREPARATION, EXPERIMENTAL SETUP,
AND CHARACTERIZATION MEASUREMENTS

The samples were prepared from two GaAs/Al0.3Ga0.7As
heterostructures (samples A and B). The 2DEG in sample
A is located d = 150 nm below the surface and had, after
illumination with an infrared light-emitting diode for a few
seconds, an electron density of n = 2.7× 1015 m−2 and a
mobility of μ = 168 m2/Vs at a temperature of ≈100 mK.
The corresponding values for sample B were d = 90 nm, n =
3.5× 1015 m−2, andμ = 131 m2/Vs. Optical lithography and
wet chemical etching were used to define a Hall bar of
w = 10 μm width in the y direction. This is smaller than the
mean free path of 14 μm in sample A and 12 μm in sample
B, such that the electrons could cross the Hall bar ballistically.
After covering the surface with a Cr film of 5 nm thickness,
a ferromagnetic Dy platelet with a thickness of h = 250 nm
was deposited by thermal evaporation in a vacuum chamber.
Finally, the samples were covered by a Cr/Au gate that protects
the Dy from oxidation and could be used to tune the electron
density.
The experimentswere carried out at an electron temperature

of T ≈ 100 mK in a dilution refrigerator, equippedwith a 12 T
superconducting magnet. The sample holder had a rotatable
stage such that the sample could be oriented with respect to
themagnetic field by rotation about the y axis. TheDy filmwas
magnetized by applying an in-plane magnetic field B‖ in the
transport (x) direction. The 2DEG responds predominantly to
the perpendicular magnetic field Bz(x) via the Lorentz force.
Effects due to in-plane magnetic fields and to spin splitting
were much weaker and are neglected in the following. The
perpendicular magnetic field in the plane of the 2DEG close
to x = 0 in the configuration shown in Figs. 1(a) and 1(b) is

2469-9950/2017/95(15)/155440(5) 155440-1 ©2017 American Physical Society
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FIG. 1. (a) Top-view scheme of the sample layout. The Dy film is
magnetized in the transport direction, creating a localized magnetic
field profile under the edges. The homogeneous Cr/Au gate that
covers the whole structure is not shown. (b) Sketch of the sample
orientation with respect to the magnetic field �Bext generated by the
superconducting magnet. (c) Longitudinal resistance of the magnetic
barrier as a function ofB‖ for parallel alignment of the sample.Arrows
indicate the sweep direction. (d) The barrier’s Hall resistance (blue)
and the extracted magnetization trace of the Dy film (red).

given by [15]

Bz(x,Bx) = B⊥ − μ0M(Bx)

4π
ln

[
x2 + d2

x2 + (d + h)2

]
, (1)

whereB⊥ denotes the homogeneous component that was tuned
by rotating the sample. The second term originates from the
fringe field generated by the Dy platelet. This structure is
usually denoted asmagnetic barrier and has an approximately
Lorentzian shape with a full width at half maximum of
2
√

d(d + h), which amounted to 420 nm for sample A and
350 nm for sample B. At our maximum Dy magnetization
of μ0Ms = 2.1 T (see below), its peak reaches values as
high as 370 mT for sample A and 440 mT for sample B,
respectively. Consequently, magnetic field gradients of the
order of 2× 106 Tm−1 can be generated by magnetic barriers
in 2DEGs. Offsetting the magnetic barrier by applying B⊥ of
opposite sign thus forces the electrons on snake trajectories,
oriented in the y direction along the roots of Bz(x,Bx). This
concept is used in the following to generate and tune snake
trajectories. As shown in Fig. 1(a), one edge of the Dy platelet
resides in between contacts 2 and 3. This allows studies
of the longitudinal magnetoresistance Rxx produced by the
corresponding magnetic texture. The opposite edge is located
inside contacts 4 and 5 in order to measure the Hall voltage
generated by the magnetic barrier and thereby to determine the
magnetization of the Dy film.
Rotating the sample about the y axis by small angles α � 3◦

with respect to the parallel configuration, in a magnetic field of
10 T, allows the saturation magnetization to remain in the x-y
plane to a very good approximation (99.8%), while B⊥ with
strengths up to the order of the magnetic barrier amplitude can
be added [39]. A scheme of the rotated sample is shown in
Fig. 1(b).

An ac current of 50 nA amplitude and with a frequency of
37 Hz is maintained through the sample. The Dy film and the
magnetic barrier are characterized by resistancemeasurements
in applied parallel magnetic fields; see Fig. 1(c). The longitu-
dinal magnetoresistance R23 shows the typical hysteretic B‖
dependence of magnetic barriers [14,15]. In our sample, the
relative increase of the magnetic barrier resistance of more
than a factor of 20 is quite large, which can be traced back to
the small rate of elastic scattering that promotes transmission
through the barrier [18]. The large ballisticity of our samples
is also reflected in the Hall resistance R45(B‖), which shows
a characteristic maximum at intermediate magnetic fields
(B‖ = 2.2T for the up-sweep). It has been shown recently
that this structure is due to a ballistic focusing effect, but
the Hall voltage may nevertheless be used to determine the
Dy film magnetization [40,41], which for our samples gives
the magnetization trace shown in Fig. 1(d). It saturates for
B‖ � 7 T at a value of μ0Ms = 2.1 T. Furthermore, we have
studied the Hall resistance as a function of α up to α = 3◦ and
confirmed that the homogeneous perpendicular componentB⊥
in this interval is a simple superposition to the magnetic barrier
field, in agreement with findings reported earlier [39].

III. RESULTS AND DISCUSSIONS

In order to study the effects of B⊥, the external magnetic
field is set to Bext = 10 T and R23 is measured as a function of
the rotation angle α. The Hall voltage between probes 1 and 2
was simultaneously recorded and was used to determine B⊥.
The results are shown in Fig. 2, where R23(B⊥) is plotted
for both samples and as a function of the electron density. In
sample A [Fig. 2(a)], up to three resistance peaks are observed
on top of a smoothly varying background in the interval where
B⊥ is antiparallel to the magnetic barrier (α < 0 in Fig. 1)
but of smaller amplitude. The peak positions shift slightly
towards more negative values of B⊥ as n is increased, while
their amplitude is most pronounced for slightly negative gate
voltages, around electron densities of 2.4× 1015 m−2. Further-
more, the amplitude tends to decrease as B⊥ becomes more
negative. We note that the tuning range of n is quite limited, a
well-known problem in high-mobility heterostructures which
has been traced back to hysteresis effects [42]. In addition,
one resistance peak is observed in the interval where B⊥
and the magnetic barrier are coparallel (for positive values
of B⊥). Similar features are observed in sample B, where the
background resistance has a different shape, while the peak
at coparallel alignment is absent. A corresponding experiment
in the quasidiffusive regime where the mean free path was
smaller than w has been carried out by Hugger et al. [39]. In
that experiment, a magnetoresistance with a similar smooth
variation was observed and could be explained by competing
contributions of snake and cycloid orbits in the y direction, in
combination with �E × �B drifts at the sample edges. However,
the periodic oscillations reported in this work were absent in
that experiment. The appearance of these oscillations in the
range of B⊥ where Bz(x) changes its sign suggests that they
may be related to electron transport along snake trajectories,
which are oriented in the y direction, along the roots of Bz(x).
We proceed by interpreting the origin of the oscillations

with guidance from numerical simulations. Semiclassical
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simulations are carried out within the Landauer-Büttiker
formalism [43], in the ballistic limit [44]. Electrons are
treated as point particles and injected at the Fermi energy
in a four-probe geometry with parameters identical to those
of sample B, and the magnetoresistance components are
calculated as described in detail elsewhere [39]. In Fig. 3,
the results of the simulation (trace b) are compared to the
experimental trace. Five magnetoresistance peaks are found
for the antiparallel alignment of the magnetic barrier and B⊥,
and an additional peak is observed for the coparallel alignment
very close to B⊥ = 0. The positions of peaks 1 to 3 agree
reasonably well with the measurements, while peaks 4 and 5
are not observed experimentally. This is due to the effect of
scattering which is absent in simulations. For B⊥ < −0.2 T,
no further oscillations appear and a smooth, almost constant
magnetoresistance is found.
These simulations show that the oscillations have a classical

character. By inspection of the calculated trajectories, it is
conceptually possible to find characteristic orbits that move
along the y direction at the magnetoresistance maxima for
B⊥ < 0. If Bz(x) has no sign change and the magnetic barrier
is closed, electrons in the bulk are reflected, but transmission
is still possible by �E × �B drifts at the Hall bar edges. As was
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FIG. 3. Experimental data from sample B in comparison with the
semiclassical and the quantum simulations, for the electron density
n = 3.5× 1015 m−2. The dotted lines indicate the position of the
oscillations that are visible in the experimental curve (corresponding
to peaks 1, 2, and 3).

already shown inRef. [39], by superimposingB⊥with opposite
orientation to themagnetic barrier, two lines of zero field along
the y direction are generated, and the �E × �B drift at one edge
changes sign, thereby suppressing the edge transmission. On
the other hand, this structure can enable a guided transfer of
electrons from one Hall bar edge to the other, where they
either pass the barrier or are reflected, depending on the exact
position and angle at which the electrons hit the edge.
To understand the relevance of this interplay for the

oscillatory behavior, one needs either to look at classical
trajectories from a statistical point of view in the classical
picture or calculate the local density of states (LDOS) in the
barrier region within a quantum mechanical treatment which,
for sufficiently many occupied states, should be interpretable
in terms of classical trajectories.
In the following, we opt for the second possibility and show

that the oscillations can be interpreted in a straightforward
way with the help of the local density of states. We use
the KWANT package [45] for the implementation of the
quantum simulations, where again the geometry (with slight
modifications for the contacts) and parameters of sample
B form the starting point [46]. Electron waves enter the
Hall bar via the leads formed by contacts S, 1, and 2 in
Fig. 1(a). The tight-binding model is used to calculate the
electronic wave functions inside the Hall bar, the resulting
local density of states (LDOS), as well as the longitudinal
resistance R23. The results (trace c in Fig. 3) agree well with
those of the classical simulations, thereby supporting the view
that quantum aspects are of minor relevance. The oscillation
amplitude in the quantum simulation is larger compared to the
classical one, which is most likely due to elastic scattering
which is included in the Landauer-Büttiker model, but not
in the quantum simulation. In Fig. 4, the local density of
states is shown for the states that are occupied by electron
injection from contacts S, 1, and 2 for selected values of
B⊥. For B⊥ = −48 mT [Fig. 4(a)], R23 is at the maximum
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of peak 2. Since this magnetic field is chosen to point in the
−z direction, the electrons move towards the magnetic barrier
preferably via the lower edge of the Hall bar due to �E × �B
drift, are reflected at the barrier with a large probability, and
move towards contact 2 along the upper Hall bar edge. Close
to the magnetic barrier, the LDOS develops a localized shape
which we interpret as the superposition of electronic waves
that form snake trajectories.
For an illustration of this interpretation, a calculated classi-

cal representative trajectory is superimposed to the LDOS.
In this picture, the electrons leave the lower sample edge
within one cyclotron radius from the magnetic barrier, but
still some distance away from the root of the magnetic profile.
They move in the +y direction via snake trajectories that are
quasicommensurate with the width of the Hall bar, i.e., their
period is approximately w/2 in this particular case. Due to
this commensurability, the electrons hit the upper edge also at
a relatively large distance from the magnetic barrier to its left
side, which ensures backscattering towards lead 2.
This pattern reappears qualitatively at the peak of oscillation

3 [B⊥ = −85 mT, Fig. 4(b)]. Here, the snake trajectory shows
a period of w/3. The LDOS for B⊥ = −65 mT, at the resis-
tance minimum between peaks 2 and 3, is shown in Fig. 4(c).
Again, a snake trajectory along the magnetic barrier is visible,
but it is incommensurate withw. The small LDOS at the upper

left edge of the Hall bar and the increased one at the lower right
edge agree with the reduced backscattering and the increased
transmission. Here, the fact that approximately 2.5 snake-
trajectory periods fit in theHall bar ensures thatmany electrons
occupying the snake trajectories hit the upper Hall bar in the
interval where Bz > 0, and they therefore cross the magnetic
barrier. We have also calculated the magnetoresistance for the
same magnetic structure in a Hall bar with smaller width of
w = 5 μm (trace d in Fig. 3). Within the commensurability
picture, resistance peak 2 (Fig. 3) is attributed to approximately
two snake periods across the Hall bar. This oscillation is thus
shifted to a more negative value of B⊥, i.e., to −115 mT. The
corresponding LDOS at this peak position is reproduced in
Fig. 4(d), where again quasicommensurate snake orbits can
be identified. We emphasize that further trajectories, such
as cycloid and incommensurate snake orbits, do exist for
all magnetic fields. However, the LDOS suggests that they
contribute with a lower weight to the oscillations. Within this
picture, it furthermore becomes apparent why the oscillations
disappear for more negative values of B⊥. The zeros of Bz(x)
approach the center of the magnetic barrier and finally vanish,
together with the snake orbits, as Bz(x) becomes unipolar.
Finally, we comment on the peak observed in the absence

of a sign change of Bz(x) at sample A [first marked peak
on the right-hand side in Fig. 2(a)]. This peak appears in
the simulations very close to B⊥ = 0 on top of a strongly
increasing background. While it is clear that this peak must
have a different character than those due to the snake-orbit elec-
tron motion, we could not identify characteristic trajectories.
Comparing the quantum simulations for w = 10 and 5 μm,
we notice that this peak does not change its position. This
suggests that it does not originate from a commensurability
effect of some orbit across the Hall bar, but may be due
to noncommensurate cycloid orbits or related to the sharply
changing �E × �B drift at the intersections of the magnetic
barrier with the Hall bar edges.

IV. CONCLUSIONS

We have observed commensurability oscillations in two-
dimensional electron gases exposed to an inhomogeneous
magnetic field in the transport direction, which is translation-
ally invariant in the transverse direction. For magnetic field
profiles with two sign changes in series, resistance oscillations
are observed as a function of the homogeneous magnetic
field component. Based on our simulations, we interpret the
resistance oscillations as dominated by snake-orbit enhanced
backscattering, an effect which is particularly strong when
the snake trajectories are commensurate with the Hall bar in
the sense that the Hall bar width is a multiple integer of the
snake-trajectory period.
The effect can thus be interpreted in classical terms, in con-

trast to the resonances in a magnetic field profile with a single
sign change. The observation is based on electrons that cross
the Hall bar ballistically in the transverse direction. Therefore,
the conditions for the width of the Hall bar are quite stringent,
since on the other hand in the implementation presented here,
the period of the snake orbit cannot bemademuch smaller than
about 2 μm due to the available magnetic barrier amplitudes.
A comparison of the simulated amplitudes to the experimental
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ones also suggests that unknown imperfections, such as
inhomogeneities of the magnetic barrier or additional diffusive
scattering at the edge of the Hall bar, have some influence on
the visibility of these commensurability oscillations.
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I. INTRODUCTION

Antidot superlattices in two-dimensional electron gases
(2DEGs) have been an active field of research since
their first implementations. Originally studied mostly in
Ga[Al]As-heterostructures1–3, more recent experiments
focused on novel materials like graphene4,5, topological
insulators6,7 and black phosphorus8. In the semiclassical
regime, which can be characterized by a lattice constant
a significantly larger than the electron Fermi wavelength
λF but small compared to the mean free path � of the
electrons in the absence of the superlattice, the longitu-
dinal magnetoresistivity ρxx(B) shows prominent com-
mensurability resonances, which demonstrates the inad-
equacy of the Boltzmann model that predicts ρxx to be
independent of the applied perpendicular magnetic field
B. Rather, the dominant scattering takes place at the
superlattice potential, and neither the location nor the
shape and strength of the scatterers are random. This
correlated scattering leads to a mixed phase space for the
conduction electrons, where regular and chaotic regions
coexist, the relevance of which depends on the experi-
mental parameters.9,10

In extension to these classical effects, superimposed
quantum oscillations have been observed in several
experiments11–15. They can be modeled semiclassically
using the periodic orbit theory16,17, but also fully quan-
tum mechanical calculations have been reported18–21. In
case they are B-periodic, they indicate electronic inter-
ferences along trajectories which are commensurate with
the superlattice potential but independent of B within
a certain magnetic field interval,11–13,16,17. 1/B-periodic
quantum oscillations, on the other hand, are attributed
to Landau quantization where the electron trajectories
are cyclotron orbits which remain essentially undisturbed
by the weak superlattice potential15. The type of period-
icity may furthermore depend on the magnetic field. For

example, Weiss et al. have reported 1/B-periodicity for
magnetic fields where the cyclotron orbit fits in the area
in between the antidots, and B-periodicity for smaller
magnetic fields.11 In this way, antidot lattices have also
been test systems for the relation between classical tra-
jectories and the quantum properties of the system. The
resulting contributions to conductivity are often grouped
as being related to either scattering or band transport.
In a classical picture, the former describes a hopping be-
tween localized states, while the latter is associated with
extended states in the antidot lattice that skip along the
lines of antidots. The relevance of each contribution de-
pends on the sample parameters and the magnetic field
range. An instructive demonstration was reported for
rectangular lattices22–24, where electrons were found to
skip along the short lattice direction and hop along the
long one.

In the present work we demonstrate experimentally
how hopping and skipping transport contribute to the
conductivity in square and hexagonal antidot lattices.
Our samples are in a regime, where quantum signatures
of both transport mechanisms coexist in the magnetore-
sistance over a wide magnetic field range. We identify
the underlying semiclassical dynamics via a comparison
to the quantum features visible in the Hall resistance.
By this means we are able to deduce a B - dependent
relevance of the classical trajectories for transport from
tracking the amplitude of their corresponding quantum
oscillations. In Section II we present our experimental
setup and details on the sample preparation. Our exper-
imental findings are discussed in Section III and inter-
preted with the help of numerical simulations in Section
IV. The paper ends with a conclusion in Section V.
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II. SAMPLE PREPARATION AND
EXPERIMENTAL SETUP

A Ga0.7Al0.3As heterostructure with a 2DEG formed
90 nm below the surface is used. After infrared il-
lumination the pristine 2DEG has a density of n =
4.0 × 1015 m−2 and a mobility of 890m2/Vs at liquid
helium temperature, corresponding to a mean free path
of 92μm. Antidot lattices with square and hexagonal
symmetries are prepared by electron beam lithography
and subsequent reactive ion etching. A lattice constant
of a = 750 nm and a lithographic antidot diameter of
d = 150 nm is used for both geometries, cf. Fig. 1(c)
for atomic force microscope (AFM) images. The deple-
tion zone can be estimated from Aharonov-Bohm like
oscillations25 in strong magnetic fields to be smaller than
50 nm26. The resulting aspect ratio d/a thus lies in the
range 0.2 < d/a < 0.33. The lattices extend over 250μm
in length and 100μm in width, which is also the width of
the Hall bar. The spacing between the voltage probes is
150μm. The samples are transferred to a dilution refrig-
erator with a base temperature of 25mK and an electron
temperature estimated to be 0.1K. Measurements at el-
evated temperatures are performed in a Helium gas flow
cryostat with a variable temperature insert. The diago-
nal and Hall resistance are probed by applying a low fre-
quency ac current and measuring the voltage drop across
the Hall bar with a lock-in amplifier.

III. EXPERIMENTAL RESULTS

In Fig. 1 we show the results of the magnetoresistance
measurements. For both the square (Fig. 1(a)) and the
hexagonal (Fig. 1(b)) lattice a series of pronounced com-
mensurability oscillations (COs) is observed, with the
principal peak at a magnetic field around 270mT. The
numbers labeling the resistance maxima in the figure in-
dicate the number of antidots that are encircled at the
given magnetic field. Superimposed to this, a short pe-
riod oscillation emerges at about 100mT at 0.1K. It gets
rapidly suppressed as one increases the temperature and
has a 1/B periodicity. It is straightforward to interpret it
as a type of Shubnikov de-Haas(SdH) oscillation. Spin-
splitting becomes visible for magnetic fields B ≥ 700mT
and will therefore be neglected in the following. For some
magnetic fields, deviations from the periodicity can be
observed. In the hexagonal lattice at 330mT and at
300mT in the square lattice there appears an additional
maximum in the resistance accompanied by a suppres-
sion of the amplitude of the neighboring peaks. At lower
magnetic fields additional distortions can be seen in both
amplitude and periodicity. In Fig. 1(c) the Hall effect for
both samples is shown. From the comparison of the clas-
sical extrapolation to the data one can see that for low
magnetic fields (B ≤ 250mT ) the modification induced
by the antidots is negligible. For magnetic fields beyond
the principal CO, quantum Hall signatures are found and
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FIG. 1. (color online). (a) Rxx(B) of the sample with square
symmetry at several temperatures. (b) Rxx(B) of the sample
with hexagonal symmetry at several temperatures. Numbers
label the resistance maxima by the number of antidots en-
circled at the given magnetic field. The traces at elevated
temperatures are vertically offset for clarity. (c) Insets: AFM
pictures of the two samples. The lattice constant a is 750 nm
in both cases. Main figure: Hall resistance for both sample
types at base temperature. The hexagonal trace is vertically
offset by 100Ω for clarity. The classical extrapolation is shown
in red.

the average slope of the data coincides with the classical
extrapolation. In the magnetic field range of the prin-
cipal CO however, the Hall resistance is increased with
respect to the classical extrapolation, although plateaus
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are already formed.
We proceed by studying the interplay of diagonal and

Hall resistance. For pristine 2DEGs the maxima in the
SdH oscillations coincide with the transitions between
quantum Hall plateaus. This can be understood in terms
of the formation of extended states throughout the sam-
ple. To check this connection in our system, we numer-
ically take the derivative of the Hall resistance with re-
spect to the magnetic field dRxy/dB and compare it to
the diagonal resistance. The result is shown in Fig. 2(a)
and Fig. 2(b) for the square and hexagonal lattice, re-
spectively. Here we have plotted the data against the
spin-resolved Landau-level filling factor ν = hn/eB. In
this representation it becomes visible that in fact the
superimposed quantum oscillation has a more complex
structure. Besides a dominant large amplitude oscilla-
tion, there is also a small amplitude oscillation visible
(marked by the pink arrows), which is out of phase with
the former one. It is more prominent in the case of the
square lattice, but also visible in the hexagonal lattice.
For a pristine 2DEG one can expect the maxima in Rxx

and dRxy/dB to occur at odd integers, corresponding to
half filled Landau-levels. For magnetic fields beyond the
principal CO, this is also what we observe in our sam-
ples. Interestingly the situation changes for lower mag-
netic fields. For filling factors ν ≥ 50, the resistance
maxima in Rxx still coincide with odd filling factors, but
the maxima in dRxy/dB can be found at even integers.
This oscillation is now in-phase with the small amplitude
oscillation observed in Rxx.

IV. INTERPRETATION AND NUMERICAL
SIMULATIONS

Previously, quantum effects in antidot superlattices
were often interpreted semiclassically16,17. The frame-
work of periodic orbit theory allows for a calculation of
the contributions to the density of states (DOS) stem-
ming from various periodic orbits. From this the periods
and occurrences of quantum oscillations were predicted.
In our case such a treatment is not justified. Our sam-

ple design leads to a situation, where the potential out-
side of the antidots is almost constant. Therefore, the
previously reported oscillations caused by electron cy-
clotron motion being strongly modified11,13, observed for
antidot lattices with large d/a ratio, are expected to play
only a minor role in our case. The only significant pe-
riodic orbits remaining are the ones where the electron
undergoes cyclotron motion undisturbed by the superlat-
tice. The effects observed by us are also unlikely to orig-
inate from the Hofstadter butterfly27–30. Such effects are
periodic in φ/φ0 = BAe/h, where A is the size of the unit
cell of the superlattice, in contrast to the 1/B-periodicity
seen here.
Instead we propose an explanation in terms of the rela-

tion between the density of states (DOS) and ρxx, which
can be connected to skipping and hopping transport as
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FIG. 2. (color online). Comparison of the diagonal resistance
Rxx and the derivative of the Hall resistance Rxy/dB for the
square(a) and hexagonal(b) lattice as a function of the filling
factor ν = hn/eB. The dashed lines indicate the magnetic
field where the cyclotron circle just fits in between two nearest
neighbor antidots (see the insets), thereby marking the limit
for skipping transport.

used for a description within a classical picture. We first
take a look at the elements of the conductivity tensor.
Assuming isotropic transport we have σxx = ρxx

ρ2
xx+ρ2

xy

and σxy =
−ρxy

ρ2
xx+ρ2

xy
. For the whole range of interest

(0.1T < B < 0.5T), we find the Hall conductivity to
be at least one order of magnitude larger than the diago-
nal one. We can conclude σxx ≈ ρxx/ρ

2
xy, which implies

maxima in resistivity to coincide with maxima in con-
ductivity. This is in contrast to earlier works by Ishizaka
et al.21,31, who reported changes in the interplay of resis-
tivity and DOS over the course of the COs, but in their
system σxx ≈ σxy and thus the relevant structure was
caused by the Hall conductivity.
More relevant to our situation, Schuster et al. stud-

ied rectangular antidot lattices22 and found a magnetic
field range, where quantum oscillations were present in
ρxx and ρyy that were out of phase. Neudert et al. ex-
plained this in terms of transport being dominated by
skipping along the short period of the lattice and by hop-
ping between bound states along the long period23. In
this picture the conductance by hopping is enlarged at
the maxima in the density of states, where many bound
states exist. The electrons then travel along the lattice
via a so-called scattering conductivity, i.e. by being scat-
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tered from one bound state to another. In contrast to
this the skipping along a line of antidots is identified as
a band transport mechanism. The associated group ve-
locity and thus also the contribution to conductivity was
found to be enhanced for situations where there are few
bound states. Intuitively one can consider the skipping
orbits to carry current most efficiently when there are
no bound states for them to scatter into; therefore their
contribution to conductivity is biggest for a low density
of states.

To apply these finding to our observations we assume
the peaks in the dRxy/dB trace to be indicative of the
centers of the Landau levels, i.e. coinciding with maxima
in the DOS. As Ishizaka et al. argued21, skipping orbits
do not contribute to the Hall conductivity. Therefore,
a change in σxy must be caused by hopping transport,
which is in phase with the DOS. This means that within
the principal CO in our sample the Landau level centers
are shifted from odd to even integer filling factor values.
The assumption of such a level shift is consistent with
the shift of the Hall resistance seen in Fig. 1(c). An in-
crease of the energy of the Landau levels causes a relative
increase of the Hall resistance compared to the classical
extrapolation. This effect was already reported for uni-
directional electric32 and magnetic33–35 superlattices and
it is plausible to occur also in two-dimensional superlat-
tices. In this case we conclude that the dominant contri-
bution to the conductivity, and thus also the resistivity
within the principal CO, is caused by band transport,
since it is out of phase with the DOS. The low amplitude
quantum oscillation which is in phase with the DOS signi-
fies the small but visible contribution of hopping trans-
port to the overall conductivity in this magnetic field
range. For stronger magnetic fields (B ≥ 0.35T ), hop-
ping dominates the transport and consequently, the tran-
sitions in the Hall effect coincide with resistance max-
ima and odd filling factors again. In a classical picture
this corresponds to the magnetic field range where the
condition 2Rc < a − d is fulfilled, and is readily inter-
preted as the vanishing of skipping orbits. Electrons can
no longer travel along a line of antidots, but are rather
bound to closed orbits either around antidots or in the
void space between them. Judging from the amplitude
of the oscillations, at filling factor 50 the significance of
band and hopping transport is equally strong, resulting
in the prominent triple peak.

A similar analysis in terms of electron trajectories was
done by Schuster et al.36. There the authors increased
the diameter of the antidots by a top gate and observed a
change from band to hopping transport within the clas-
sical CO. Lüthi et al.24 described the influence of both
transport mechanisms in terms of trajectories in rect-
angular lattices. They clearly state the coexistence of
pinned and skipping orbits in their lattice, but, in con-
trast to our findings, each type of orbit only affects either
σxx or σyy.

To substantiate our interpretation we employ numeri-
cal simulations based on the Kwant transport package37.

Kwant allows for the implementation of finite tight bind-
ing scattering regions connected to semi-infinite leads,
which models our Hall bar structure connected to voltage
probes. It gives access to various transport properties,
like the transmission between the contacts, which can
be converted to a resistance via the Landauer-Büttiker
formalism38. We calculate the 4-terminal resistance39 as
well as the DOS of a 6×4.5μm2 scattering region. Larger
arrays are beyond the scope of the present work due to
technical limitations. A tight-binding lattice constant of
3 nm and Fermi energy corresponding to the density of
our 2DEG was used. A square lattice antidot potential
is implemented via the on-site potential

V (x, y) = V0

(
sin

πx

a
sin

πy

a

)β

, (1)

where V0 is chosen such that the Fermi energy is crossed
at the lithographic diameter of the antidots. The steep-
ness parameter is set to β = 16 reflecting the low value of
d/a in our samples. The simulation does not take ther-
mal smearing into account, but its effect is emulated by
numerical smoothing of the results. Scattering at resid-
ual impurities is included via random on-site disorder. In
Fig. 3 the resistance and the DOS are shown as a func-
tion of the filling factor in the range of the principal CO.
The position of the classical resistance peak around fill-
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FIG. 3. (color online). Fully quantum mechanical calculation
of the magnetoresistance (blue) and the density of states (red)
of a square antidot lattice as a function of the filling factor at
T = 0 based on the Kwant package. Green arrows exemplify
resistance maxima that are out of phase with the DOS, while
pink arrows point to maxima in phase with it.

ing factor 60 is well reproduced. Additional oscillations
with varying amplitudes are superimposed. In the DOS a
series of well developed peaks, which are periodic in 1/B,
can be observed. Qualitatively we can observe similar be-
haviour in the relation between DOS and resistance as in
our experiment. The position of the DOS peaks is shifted
away from odd filling factors towards even ones over the
magnetic field range of the classical peak. Also in the sim-
ulation we can see resistance maxima, which are in phase
with the DOS (pink arrows) and should therefore be in-
terpreted as being caused by hopping transport. They
correspond to the small amplitude quantum oscillation in
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our measurements. Furthermore there are peaks in the
simulated resistance that occur for minima in the DOS
(green arrows) and are thus indicative of band transport.
The experimental counterpart of this oscillation is the
dominating quantum oscillation within the principal CO
in both lattices. To bring measurements and simulation
into better agreement, one would have to increase the
simulated sample size and include thermal broadening.
This is beyond our scope here.

V. SUMMARY AND CONCLUSIONS

In conclusion we have demonstrated experimentally
the coexistence of quantum signatures of hopping and
skipping transport in antidot superlattices with low as-
pect ratio within one resistivity component. Within the
principal commensurability resonance, skipping trans-
port dominates the resistivity as is indicated by a super-
imposed quantum oscillation which is out of phase with
the density of states. As the magnetic field is increased,
the behavior of a pristine 2DEG is gradually recovered,
implying the dominance of hopping transport. Also a

shift of the Landau levels from odd to even integer fill-
ing factors is observed in this range in accordance with
earlier observations in unidirectional superlattices32–35.
For stronger magnetic fields, the transition to hopping
dominated transport is seen and the behavior of a con-
ventional pristine 2DEG is recovered. Our findings are
in qualitative agreement with tight-binding calculations.
The results show that the dominating transport mecha-
nism can be determined experimentally from a compar-
ison of the quantum effects visible in diagonal and Hall
resistivity. The small d/a ratio corresponds to an ap-
proximately constant potential in between the antidots.
The resulting 1/B-periodicity of the quantum oscillations
allows a straightforward interpretation of the oscillatory
structures. This way, the classical commensurability res-
onances and the superimposed quantum oscillations are
intimately related.
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and W. Klein, Phys. Rev. B 55, 13088 (1997).
25 Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
26 J. Schluck, S. Fasbender, T. Heinzel, K. Pierz, H. W. Schu-

macher, D. Kazazis, and U. Gennser, Phys. Rev. B 91,
195303 (2015).

27 D. Hofstadter, Phys. Rev. B 14, 2239 (1976).



6

28 F. H. Claro and G. H. Wannier, Phys. Rev. B 19, 6068
(1979).
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Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic
modulation are prepared in Ga[Al]As heterostructures. The two-dimensional electron gases exposed to these
superlattices are characterized by magnetotransport experiments in vanishing average perpendicular magnetic
fields. Despite the absence of closed orbits, the diagonal magnetoresistivity in the direction perpendicular to
the magnetic modulation shows pronounced classical resonances. They are located at magnetic fields where
snake trajectories exist which are quasicommensurate with the antidot lattice. The diagonal magnetoresistivity
in the direction of the magnetic modulation increases sharply above a threshold magnetic field and shows no
fine structure. The experimental results are interpreted with the help of numerical simulations based on the
semiclassical Kubo model.

DOI: 10.1103/PhysRevB.91.195303 PACS number(s): 73.23.−b, 73.63.−b

I. INTRODUCTION

Artificial lateral superlattices (LSLs) in two-dimensional
electron gases (2DEGs) [1–5] are of great interest for funda-
mental studies of the electron dynamics in periodic potentials.
Since it is very common that the artificial lattice constants place
the systems in the transition region between the quantum and
the classical regime, classical, semiclassical, as well as quan-
tum descriptions are all justifiable and enable studies of the
validity of these approaches including their limits. Besides the
Fermi wavelength λF and the electronic coherence length, the
elastic mean-free path is an important parameter as well, since
it defines the length scale belowwhich interactionwith theLSL
potential dominates over random scattering. Many different
variants of LSLs have been investigated in great depth. One-
dimensional electrostatic [1,2] and magnetic [6–8] lattices,
where the modulation extends along one spatial coordinate
and the structure is homogeneous along the second one, show
magnetoresistivity resonances that can be explained in terms of
guiding center drift resonances of the cyclotron motion within
a classical picture [9] or by miniband formation in a quantum
picture [2,10,11]. One-dimensional magnetoelectric hybrid
LSLs have been studied in some experiments as well, where
the strain imposed by the ferromagnetic or superconductive
electrodes used to define the magnetic LSL also generates an
electrostatic superlattice [12]. Two-dimensional LSLs, both
magnetic [7,13] and electrostatic [3–5], have been studied
thoroughly as well. Their classical dynamics corresponds to
a mixed phase space where chaotic and regular dynamics
coexist [14,15] and causes commensurability resonances that
are characteristic for the type of Bravais superlattice employed,
such as square [3–5], rectangular [16], or hexagonal [17,18].
Within a quantum picture, on the other hand, a fractal energy

*thomas.heinzel@hhu.de

spectrum, also known as the Hofstadter butterfly [19,20],
is seen for weak electrostatic modulation amplitudes [21].
B-periodic oscillations on top of commensurability reso-
nances [16,18,22] can be explained within a semiclassical
approach by the Aharonov-Bohm [23]—or Altshuler-Aronov-
Spivak [24]—effect in terms of quantized motion along closed
trajectories defined by the LSL potential and the magnetic
field [25].
2DEGs with very high electron mobilities [26,27] have

recently been developed into mature systems. They enable the
preparation of LSLs with large lattice constants in the classical
ballistic regime and facilitate the definition of novel types of
LSLs with more complex unit cells. Here, the study of such a
hybrid LSL, composed of a a two-dimensional, square antidot
lattice and a one-dimensional magnetic array is reported. The
magnetic LSL consists of approximately Lorentzian shaped
peaks of alternating sign and thus has a vanishing average
magnetic field. Snake trajectories, i.e., trajectories formed
by the superposition of an oscillatory motion along the first
direction and a motion with nonvanishing average velocity
along the second direction [28], can become commensurate
with the antidot lattice, and magnetoresistivity resonances are
to be expected. Furthermore, for the magnetic modulation
amplitudes applied here, closed electronic orbits are absent.
After the sample preparation and the experimental setup

are introduced in Sec. II, the measurements are presented in
Sec. III and interpreted with the help of numerical simulations
in Sec. IV. The paper concludeswith a summary and an outlook
in Sec. V.

II. SAMPLE PREPARATION AND EXPERIMENTAL SETUP

A GaAs/Al0.3Ga0.7As heterostructure with a 2DEG 90 nm
below the surface is used. After a brief illumination with
infrared light, the unpatterned 2DEG has a density of
3.6× 1015 m−2 and a mean-free path of 88 μm at liquid

1098-0121/2015/91(19)/195303(7) 195303-1 ©2015 American Physical Society
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FIG. 1. (Color online) (a) Scheme of the hybrid lateral superlat-
tice geometry. Circular holes (red circles) that form the antidots are
etched into the sample. Every second line of antidots is covered by a
Dy stripe of 1 μm width. The top view of the pattern is shown in the
uppermost part. In themiddle, a cross section in the yz plane at x = 0 is
shown. The 2DEG is depleted underneath the etched regions. The Dy
stripes are magnetized in the y direction, as indicated by the arrows.
The corresponding electrostatic potential (possible strain effects are
neglected) and the perpendicular magnetic field Bz(y) are shown in
the lowermost part. (b) Sketch of the sample layout. Two identical
hybrid LSLs, (i) and (ii), are defined in an L-shaped Hall bar. The
two components of the hybrid LSL, namely the antidot lattice (iii)
and ferromagnetic stripes (iv) are defined separately, and the edge of
a Dy pad centered in a Hall cross (v) enables Hall magnetometry. The
coordinate system shows the crystallographic orientation of the Hall
bar. (c) ρxx of array (iii) as a function of a homogeneous perpendicular
magnetic field. Here, the peaks are labeled by the number of antidots
in one cyclotron orbit. (d) ρxx(By) of array (iv).

helium temperatures. The sample geometry is sketched in
Figs. 1(a) and 1(b). An L-shaped Hall bar, oriented parallel to
the natural GaAs cleavage directions, was prepared by optical
lithography. Three identical, square antidot lattices (lattice
constant a = 1.0 μm) were patterned on one Hall bar by
electron beam lithography and subsequent reactive ion etching.
Lithographic antidot diameters of dlith = 200 nm (sample A)
aswell as dlith = 300 nm (sampleB)were prepared on separate
Hall bars. As a consequence of a lateral depletion length
of 45 nm around the antidots, this corresponds to electronic
diameters of d ≈ 290 nm and d ≈ 390 nm, respectively, as
measured by the Aharonov-Bohm oscillation period observed
in large magnetic fields [29,30]. Since (a − d)/λF ≈ 17 for
sample A and ≈14 for sample B, these LSLs reside well
inside the classical regime. After the definition of the antidots,
Dy stripes of width a and a period of 2a were prepared
on top of two antidot lattices by electron beam lithography,

enabling measurements of all resistivity components in one
cool-down; see Fig. 1(b). The Dy stripes have a thickness of
h = 250 nm to ensure a strong fringe field when magnetized.
In sample A, they were deposited directly on the GaAs, while
in sample B, a homogeneous film of 5 nm Cr plus 5 nm Au
thickness was evaporated on top of the antidot lattice prior
to the Dy deposition. This allows us to estimate the role of
strain effects [7,31] possibly induced by the Dy stripes, which
are centered at the columns of antidots and aligned parallel to
the x direction. The lateral size of the superlattices is 100 μm
in longitudinal and 50 μm in transverse direction (100× 25
unit cells). For control measurements, the Hall bar furthermore
contains a nominally identical magnetic stripe array without
the antidots underneath, and the edge of a Dy film in a Hall
cross for Hall magnetometry [32,33].
The samples were inserted in a 4He gas flow cryostat with

a variable temperature insert and a base temperature of 1.4 K.
The system is equipped with a magnet of 8 T maximum field
strength. The external magnetic field By was applied in the
y direction. It magnetizes the Dy stripes to a magnetization
of μ0M(By). The 2DEG responds predominantly to the z
component of the fringe field of the Dy stripes, and we
therefore neglect the influence of in-plane magnetic fields on
the 2DEG throughout this paper. The magnetic field profile
Bz(y) is indicated in the lowermost section of Fig. 1(a).
From the fringe field of a perfectly magnetized stripe, one
expects [34]

Bz(y,By) = μ0M(By)

4π

N−1∑
j=0

ln

(
A−

A+

)
,

(1)

A± =
[
y − a

(
2j ∓ 1

2

)]2 + z20[
y − a

(
2j ∓ 1

2

)]2 + (z0 + h)2
,

where z0 is the distance between the 2DEG and the bottom of
the Dy film, j is an integer, and N denotes the total number
of Dy stripes. This magnetic profile has peaks of alternat-
ing sign with amplitudeBmax

z (By) ≡ |Bz(y = [2j − 1
2 ]a,By)|.

The maximummagnetization of our Dy films is μ0M ≈ 2.7 T
for By > 5 T, corresponding to an upper limit of Bmax

z ≈
480 mT. The coercive magnetic field is Bc = 670 mT. The
resistivity components ρij (B) with i,jε{x,y}were determined
by applying an ac current of 100 nA with a frequency of
17.7 Hz from source S to drain D, see Fig. 1(b), and by
measuring the electrostatic potentials in the x and y directions
at voltage probes with a lock-in amplifier.

III. EXPERIMENTAL RESULTS

In Figs. 1(c) and 1(d), the magnetoresistivities of the LSL
components of sample A for the two hybrid LSL components,
namely the square antidot lattice (iii) and the array of magnetic
stripes (iv), respectively, are reproduced. The antidot lattice
reveals the well-known commensurability resonances with
resistivity maxima at perpendicular magnetic fields where the
cyclotron orbit is commensurate with one, two, four, or nine
enclosed antidots [3–5]. For Bz > 250 mT, Shubnikov–de
Haas oscillations set in. ρxx(By) of the Dy stripes shows
a peak centered at Bc and some weak features at larger
magnetizations. This type of magnetoresistivity of magnetic
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FIG. 2. (Color online) (a) Magnetoresistivities ρxx(By − Bc) of
the hybrid superlattices of samples A and B, shown for the up-sweeps
(increasing By). The inset shows the hysteretic behavior, exemplified
for sample A. The dashed lines indicate Bc. (b) Temperature
dependence of ρxx(By) for sample A, as observed in a different
cool-down. Only the down-sweep direction is shown for clarity. The
measurement of ρyy(By) for sample A is reproduced in (c).

stripe arrays in in-plane magnetic fields has been studied
theoretically [35], while to the best of our knowledge, experi-
ments have been reported only in related configurations [36].
Numerical simulations based on the classical Kubo formalism
(see below for details) give a weak, positive magnetoresistivity
without fine structure [30], as measured for |By | � 4 T. This
indicates that the peak atBc is not an intrinsic classical property
of the magnetic profile itself, and we tentatively attribute it to
the frequently observed and still not fully understood negative
colossal magnetoresistance in high-mobility 2DEGs [37–39],
which is beyond our focus here, possibly in combination
with other effects such as weak localization. The strength
of this feature depends on the cool-down cycle. It should be
emphasized that ρxx of the 2DEG underneath the Dy array
is constant over the full scan range within ±0.8 �. For the
following, this contribution can therefore be neglected.
The diagonal magnetoresistivities ρxx(By) and ρyy(By) of

the hybrid LSLs are reproduced in Fig. 2, and we first focus on
ρxx(By) as observed on samples A and B (a). As By is detuned
away from Bc, a positive magnetoresistivity is observed.
As By is further increased, two peaks are seen, separated
by a pronounced minimum. Around By − Bc ≈ 600 mT, a
decrease of ρxx by roughly a factor of 2 is seen, followed by

a broad maximum that extends up to By − Bc ≈ 2 T. These
most prominent features appear in sample B at somewhat
larger magnetic fields than in sample A. Also, even though
the positive magnetoresistance is less pronounced in sample
A than in sample B, sample A shows clear additional finer
structures, some of which are also adumbrated in ρxx(By) of
sample B. These differences can be traced back to the Cr/Au
electrode present in sample B, as will be discussed below in
more detail. In the following,we focus on sampleA. In the inset
of Fig. 2(a), the hysteretic behavior of ρxx(By) is reproduced.
The features observed in a single sweep are fairly symmetric
about Bc, while reflection of the up-sweep about By = 0
coincides very well with the down-sweep. This behavior
reflects the hysteretic magnetization of the Dy stripes which is
not perfectly antisymmetric aboutBy = Bc (see below). These
magnetoresistivity features show a weak temperature depen-
dence, see Fig. 2(b), and the most pronounced ones remain
visible up to T ≈ 16 K. This suggests that they should be
interpretable within a classical picture. They are furthermore
superimposed on a slowly varying negative magnetoresistivity
that extends to |By − Bc| ≈ 1.6 T, after which it increases
slightly. This background depends somewhat on the cool-down
cycle. The strong positive magnetoresistivity in a narrow
interval around Bc is still clearly visible at 32 K, and behaves
similarly to that one observed in two-dimensional antidot
lattices; see also Fig. 1(c). It is due to a Bz-induced increase
in scattering at the antidots and is of no further interest
here.
A smooth increase of ρyy(By) is observed as By is driven

away from Bc. A sharp increase sets in for |By − Bc| ≈ 1.6 T
and stops for |By − Bc| ≈ 3.5 T; see Fig. 2(c). The shape
of ρyy(By) strongly resembles the one observed for single
magnetic barriers [34], as well as magnetic barriers in series
of alternating polarity [40]. Within a classical picture, the
increasing amplitude of Bz(y) reflects an increasing fraction
of the incident electrons that gets reflected at the magnetic
barrier. Above a threshold amplitude of Bz(y), electrons
can only pass the barrier via �E × �B drift at the edges of
the Hall bar, or by scattering events inside the magnetic
barrier [41]. These effects cause a saturation of ρyy at
large Bmax

z . Since our ferromagnetic array represents an
array of magnetic double barriers in series [40], ρyy(By)
can thus be qualitatively understood in terms of the
properties of magnetic double barriers with the antidots
acting as scatterers [30] and is not a unique signature
of the hybrid lattice. The onset of the sharp increase of
ρyy furthermore correlates with the end of the negative
magnetoresistivity in the x direction. Comparison of ρxx(By)
to ρyy(By) reveals that the transport at large magnetic fields is
highly anisotropic. For example, for |By − Bc| = 2.5 T, the
ratio ρyy/ρxx reaches a value of ≈230. This suggests that for
sufficiently large magnetization of the Dy stripes, the electrons
are guided along the x direction by the magnetic modulation,
while crossing the magnetic walls is highly unlikely.
The off-diagonal components of the magnetoresistivity

tensor were measured as well [30]. Since the average per-
pendicular magnetic field is zero, they vanish to a good ap-
proximation in the magnetic field range where the resonances
in ρxx(By) appear and are thus not very helpful for their
interpretation.
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IV. MODEL CALCULATION AND DISCUSSION

A coarse estimation, to be substantiated below, reveals
that for Bmax

z � 500 mT, Bz(y) is too weak to generate
closed cyclotron-type orbits. Therefore, the magnetoresistivity
resonances must originate from open trajectories. This situ-
ation is quite different in comparison to antidot lattices in
homogeneous magnetic fields where closed orbits, runaway
trajectories, and chaotic orbits coexist and all contribute
to the magnetoresistivity with a magnetic field-dependent
weight [42]. Open cycloid orbits are absent as well in the
interval where the resonances appear, and it is therefore
expected that snake trajectories play an important role, the
most obvious type ofwhich is centered at the roots ofBz(y) and
runs along columns of antidots in the x direction. Since this is a
classical picture andmoreover themost pronounced features of
the magnetoresistivity show a weak temperature dependence,
it appears plausible to model them using the classical Kubo
formalism. The code we use has been presented in detail
elsewhere [43] and is therefore only briefly sketched here. We
show the simulations for the parameters of sampleA. Electrons
are injected at random locations inside a unit cell of the LSL.
They initially move in random directions with their Fermi
velocity of vF = 2.6× 105 m/s. The incremental change of
the direction of motion by the inhomogeneous magnetic field
given by Eq. (1) is calculated with a step width of 2 nm,
and specular reflection at the antidots with d = 290 nm is
assumed. Furthermore, z0 = 90 nm is used, and we assume
that the antidot potential is hard wall, as justified by the large
a/d ratio. The simulations are carried out for zero temperature.
From the simulated diffusion tensor obtained via the Kubo
formula, the magnetoresistivity components are obtained via
the Einstein relation for a degenerate 2DEG.
Figure 3(a) shows the simulated magnetoresistivity ρxx as a

function of the maximum of the perpendicular magnetic field
Bmax

z ; see also Figs. 1(a) and 1(b).
As in the experiment, several features in ρxx are observed.

Close to Bmax
z = 0, a positive magnetoresistivity is present.

For Bmax
z < 250 mT, a series of resistivity minima at Bmax

z =
32 mT, 53 mT, and≈110 mT is visible. A clear butweaker ad-
ditional minimum is visible atBmax

z ≈ 170 mT. Above a sharp
decrease of ρxx at Bmax

z ≈ 260 mT, a broad minimum around
280 mT is present, followed by some weakly pronounced
maxima and minima. Finally, another sharp decrease of ρxx

aroundBmax
z = 500 mT is observed. A direct comparison with

the measurements requires knowledge of the transformation
functionμ0M(By). Conceptually, it can be determined by Hall
magnetometry of the stripe array on top of Hall crosses well
inside the diffusive regime. In the ballistic or quasiballistic
regime, the Hall voltage translates into the magnetization by
nontrivial correction factors [33,44], the detailed discussion
of which is beyond our scope here. Since such an estimation
would still assume perfect, monodomain magnetization of the
Dy stripes as well as a certain shape of the fringe field, some
uncertainty would remain. Therefore, in order to estimate
μ0M(By), we restricted ourselves to Hall magnetometry of
the edge of a Dy film, prepared in the same process step
as the magnetic lattice. The measured Hall voltage as a
function of By , reproduced in Fig. 3(b), shows a marked
peak where the average cyclotron diameter equals the width

(b)

6T→-6T

-6T→6T

By(T)

R
xy

(
)

0 2 64-6 -2-4

40

-40

0

20

-20

0 50 100 150 200 250 300 350

30

40

50

60

xx
(

)

70

80

Simulation

Measurement, -6T→6T, T=1.4 K

400 450 500

(c)

yy
(

)

0 0.4 0.50.1 0.30.2

Simulation

Measurement

(a)

Bz (mT)max

Bz (T)max

101

102

103

104

T = 1.4 K T = 1.4 K

6a

4a

2a

FIG. 3. (Color online) (a) ρxx(Bmax
z ) as simulated within the

Kubo model, plotted as a function of the maximum of Bz. The
period of the commensurate snake trajectories is indicated at the most
prominent resistivity minima. The experimental trace of sample A
has been scaled to Bz with the help of the magnetization trace, as
obtained from the Hall resistance of one Dy edge centered inside a
Hall cross (b). (c) Simulation results for ρyy(Bmax

z ) in comparison to
the scaled experimental data of sample A.

of the voltage probe. The decrease of the Hall voltage at
largermagnetic fields originates fromballistic effects [33]. The
asymmetry of the Hall voltage furthermore indicates that the
magnetization of the film is not perfect. Therefore, we compare
the measured data to the simulations by scaling it with an
approximated function μ0M(By), obtained numerically along
the lines of Ref. [33], where μ0M is roughly proportional to
By for |By − Bc| < 600 mT and depends only weakly on By

for larger applied magnetic fields. This analysis of the Hall
magnetometry indicates a saturation magnetization for the Dy
stripes of ≈2.7 T, and Bc = 670 mT can be read out directly.
The data measured at sample A in the up-sweep for By > Bc

in Fig. 2(a) are scaled accordingly and replotted in Fig. 3(a) as
a function of Bmaxz , which allows a more direct comparison to
the simulations.
Even though the simulated function ρxx(Bmax

z ) deviates
from the experimental trace in several aspects, the most
prominent features are reproduced qualitatively, namely the
positive magnetoresistivity around Bmax

z = 0, minima close to
Bmax

z = 53 mT, 110 mT, 170 mT, and 280 mT, the decrease
of ρxx at Bmax

z ≈ 260 mT, and some weakly pronounced
maxima and minima at larger magnetic fields. The sharp
decrease of of ρxx around Bmax

z = 500 mT is not observed
experimentally, most likely because our fringe fields are too
weak.
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The simulation of ρyy(Bmax
z ) is compared to the scaled

experimental data in Fig. 3(c). Very good agreement is found
for Bmax

z � 0.3 T, while the strong increase of the resistivity
around Bmax

z ≈ 0.4 T is reproduced as well, though shifted to
slightly higher magnetic fields. Further simulations [30] show
that the presence of the antidots does influence ρyy(Bmax

z )
to some extent, but the overall behavior is dominated by the
magnetic barriers and is not an effect of the hybrid superlattice.
We proceed by interpreting the magnetoresistivity features

in terms of the electron dynamics which determines the
components of the magnetoconductivity tensor [30]. The off-
diagonal elements σxy and σyx are approximately independent
of Bmax

z and of the order of 0.1 mS. σyy decreases from 18 mS
at Bmax

z = 0 to almost zero at Bmax
z ≈ 0.5 T. Only σxx shows

resonances as Bmax
z is changed. This implies that ρxx ≈ 1/σxx

and ρyy ≈ 1/σyy , while ρxy(By) ≈ σxy/(σxxσyy). The sharp
increase of ρxy (see Ref. [30]) and ρyy at Bmax

z = 0.5 T has
thus its origin in the strongly suppressed diagonal conductivity
in the y direction.
A deeper insight into the underlying electron dynamics can

be gained by looking at characteristic electron trajectories.
They can be identified with the help of Poincaré sections,
which illustrate the dynamics of the electrons by their
coordinates in a (i,vj ) cross section of the phase space (i = x,y

and vj ,j = x,y denote the position and velocity coordinates,
respectively). We start with a discussion of the minima of
ρxx at smaller magnetic fields, Bmax

z < 280 mT. Each dot
in Figs. 4(a)–4(e) represents the coordinates of an electron
passing with vx > 0 through one of the (y,vy) planes located
at x = ma, where m is an integer. The Poincaré section for
Bmax

z = 265 mT (a) shows a pronounced accumulation of the
electrons in a semicircle-like structure that extends over 85%of
possible vy components. This region hosts quasicommensurate
snake trajectories with a wavelength very close to 2a. They
run parallel to the magnetic stripes, as illustrated by the
sample trajectories shown in Fig. 4(f), and typically get
scattered at the antidots after less than 30 snake periods.
Likewise, the Poincaré sections for the minima of ρxx at
Bmax

z = 170 mT (b), 108 mT (c), and at 53 mT (d) reveal
that here, quasicommensurate snake trajectories of various
periodicity exist. They extend along the x direction, and their
weight decreases as the magnetic field is decreased, which
correlates with the magnitude of the corresponding resistivity
dips. Outside the resistivity minima, such an accumulation
of electrons in snake trajectories is not seen in the Poincaré
sections, as illustrated for Bmax

z = 240 mT in Fig. 4(e).
In addition, snake orbits exist which run at an angle 
= 0

to the x direction, as exemplified in Fig. 4(f). In the Poincaré
sections, such trajectories form white regions, since the
electrons do not return to the column in which they start.
They can be found over the whole interval where resonances
are observed, and we do not find a correlation between their
weight in the Poincaré section and the magnetoresistivity.
We furthermore emphasize that, as anticipated above, closed
orbits are absent. It thus emerges that the minima of ρxx(By)
for Bmax

z � 280 mT correlate with the presence of quasicom-
mensurate snake trajectories that run parallel to the magnetic
stripes for many antidot periods, while snake trajectories
running in other directions do not show such a correlation.
Both the depletion and accumulation regions of the Poincaré

(d)
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v y
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0

-1
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(e)
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0 0.5-0.5
240 mT

FIG. 4. (Color online) Poincaré sections for various values of
Bmax

z (a)–(e). Some characteristic trajectories are shown in (f),
the initial conditions of which are indicated by full circles in the
corresponding Poincaré sections.

sections are embedded in an approximately homogeneously
filled background, which is due to electrons that move in
snake orbits as well, but experience frequent scattering at the
antidots. Typically, such trajectories complete no more that
two snake periods before they get scattered [30]. We note
that both the accumulation and the depletion regions contain
mostly not perfectly periodic trajectories and are thus chaotic
as well. Regular orbits should exist inside the accumulation
regions, but we have been unable to identify such points in
the Poincaré sections, which indicates that the regular regions
have a very small volume. The composition of the phase space
of this hybrid LSL is thus different to that of antidot lattices
where disjunct, extended regular and chaotic regions coexist.
It is remarkable that adjacent resistivity minima sometimes

correlate with accumulations of snake orbits of the same
periodicity. For example, theminima atBmax

z = 170 mT and at
108 mTboth correlate with the accumulation of snake trajecto-
ries with a period close to 4a. While the snake trajectories that
belong to the pronounced minimum of ρxx at 108 mT remain
commensurate over a relatively large interval of magnetic
fields and initial conditions, those found at the weak minimum
at 170 mT, like the two shown in (f) with their location
indicated in the Poincaré section in (b), are more fragile.
For Bmax

z > 280 mT, the simulation shows a series of
weakly pronounced features that end with a strong decrease
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FIG. 5. (Color online) (a) Poincaré section for Bmax
z = 375 mT.

(b) Some typical trajectories atBmax
z = 375 mTwith initial conditions

as indicated by full circles in (a), and a cycloid trajectory for Bmax
z =

650 mT.

of ρxx at Bmax
z ≈ 500 mT. Qualitatively similar features are

observed experimentally for sample A and can be only guessed
for sample B. In this interval, the Poincaré sections show
a rich pattern of accumulation regions, together with a few
depleted areas; see Fig. 5(a). This pattern evolves smoothly as
a function ofBmax

z without changing its qualitative appearance.
The snake trajectories in this interval have a period close to 2a
and show only a few oscillations before they get scattered.
We also find occasional trajectory segments of skipping
orbits; see Fig. 5(b). Thus, the magnetoresistivity features in
the interval 280 mT < Bmax

z < 500 mT do not correlate in a
straightforward way with characteristic trajectories.
The limit of large magnetic fields is characterized by

Bmax
z ≈ 500 mT. It is not experimentally accessible in our
samples. The simulations suggest that the decrease of ρxx

originates from the formation of cycloid trajectories which
drift along the magnetic field peaks. An example of such
a trajectory is shown in Fig. 5(b). For Bmax

z > 520 mT,
cycloid orbits exist that never hit an antidot. Therefore, highly
conductive channels in the x direction are formed.
We conclude this section by discussing possible reasons

for the differences observed between sample A and sample B,
as well as for the deviations between the simulations and the
experiments. The most prominent features in sample B appear
at higher magnetic fields than their respective counterparts in
sample A. With the support of the corresponding numerical
simulations, this can be traced back to the larger distance
of the Dy stripes to the 2DEG due to the Cr/Au layer in
between, which makes a higher magnetization necessary to
achieve a fringe field of the same magnitude at the depth
of the 2DEG. Also, the less prominent features observed at
sample A are suppressed in sample B. This may be due to
the larger antidot diameters in sample B which are known to
smear out commensurability resonances [3]. Also, gating of
high-mobility heterostructures can decrease the mobility [27].
The simulated amplitudes of the commensurability oscilla-

tions are furthermore stronger than the measured ones. We
attribute this partly to the deviations of the real magnetic
field profile Bz(y) from the simulated one, which is to be
expected from the asymmetric magnetization characteristics
of the Dy film. Deviations from the assumed hard-wall
potential may deform the trajectories, thereby weakening the
resonances. Another possible reason is piezoelectric effects

due to strain imposed by the Dy stripes, which could modulate
the electron density and the mobility for our crystallographic
orientation of the Hall bars. This effect has been reported
in the literature to get attenuated by depositing the stripes
on top of a homogeneous metallic layer [7]. Therefore, by
comparing themeasurements of sampleAwith those of sample
B, we conclude that if strain effects were relevant, they would
generate additional fine structure rather than smearing it out.
To further elucidate this issue, we have performed numerical
simulations as described above, with an additional electrostatic
potential of a cosine shape in the y direction with the period of
themagnetic stripes and a rather strong amplitude of 1 meV, in
accordance with typical values found in the literature [31,45].
Somewhat surprisingly, we do not find significant deviations
of the resistivity from the unmodulated case (not shown) and
therefore conclude that the magnetic field gradient dominates
over electrostatic effects in the regime where the resonances
are observed. Strain effects thus do not play a prominent role.
Also, the simulation neglects finite-size effects. For example,
a magnetic barrier close to the Hall bar edges induces �E × �B
drift, and electron scattering at the Hall bar edges may provide
additional conductance channels. Finally, at the large in-plane
magnetic fields present in our implementation, magnetic mass
effects can deform the snake trajectories to a small extent [46].

V. SUMMARY AND CONCLUSIONS

Hybrid magnetoelectric lateral superlattices composed of a
two-dimensional antidot array and a one-dimensional mag-
netic modulation have been defined in high-mobility two-
dimensional electron gases and studied by transport experi-
ments in a configuration with vanishing average perpendicular
magnetic field. Despite the absence of closed trajectories,
pronounced classical magnetoresistivity resonances have been
observed. The magnetoresistivity minima correlate with the
accumulation of electrons in snake trajectories, as observed in
Poincaré sections, that are quasicommensurate with the antidot
lattice and oriented along the direction in which the magnetic
field is homogeneous. Snake trajectories running in other
directions are present as well, but their appearance does not
correlate with the resistivity minima. The Poincaré sections do
not show extended regular islands. We hope that these results
will trigger quantum simulations of this system which should
be able to interpret themagnetoresistivity resonances on amore
fundamental level. The longitudinal magnetoresistivity is fur-
thermore strongly anisotropic, with resistivity ratios above 200
for large magnetic fields. To a good approximation, however,
the magnetoresistance in the direction perpendicular to the
magnetic stripes can be understood as a resistance of magnetic
barriers in series and does not reveal superlattice-specific
properties. Further experiments may comprise the application
of additional homogeneous perpendicular magnetic fields, a
more detailed study of ρyy , the interaction of the electrons in
snake trajectories with resonant electromagnetic radiation, or
magnetic mass effects.
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FIG. 1. Magnetoresistivity of an antidot lattice prepared by an identical process to that one in the paper, with the same
lithographic diameter of dlith = 100 nm, without the magnetic stripes on top, in high magnetic fields. On top of the Shubnikov
- de Haas resonance, a B-periodic modulation with a period of ΔB = 61mT is observed, that is interpreted as the Aharonov-
Bohm oscillations around single antidots. It corresponds to a lateral depletion width of 45 nm.
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FIG. 2. Simulated classical ρxx(By) of the Dy stripe array without the antidots underneath. A weak positive magnetoresistivity
without fine structure up to Bmax

z ≈ 0.48 T is observed.
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FIG. 3. (color online). Measurement of ρxy(By). The absence of a Hall voltage for small By reflects that the average magnetic
field in z-direction is zero. At larger B-fields, a non-zero Hall voltage is measured. It originates from the suppression of the
off-diagonal components of the conductivity tensor, see Fig. 4.
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used to determine the elements of the resistivity tensor shown in the paper.
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Magnetotransport measurements in combination with molecular dynamics simulations on two-
dimensional disordered Lorentz gases in the classical regime are reported. In quantitative agreement
between experiment and simulation, the magnetoconductivity displays a pronounced peak as a function of
the perpendicular magnetic field B which cannot be explained by existing kinetic theories. This peak is
linked to the onset of a directed motion of the electrons along the contour of the disordered obstacle matrix
when the cyclotron radius becomes smaller than the size of the obstacles. This directed motion leads to
transient superdiffusive motion and strong scaling corrections in the vicinity of the insulator-to-conductor
transitions of the Lorentz gas.

DOI: 10.1103/PhysRevLett.120.056601

A system of noninteracting particles moving in a
Poisson-distributed array of identical obstacles is known
as a Lorentz gas. Originally proposed for the motion of
electrons in a metal [1], the Lorentz gas has developed into
a universal model for transport phenomena in many types
of heterogeneous media, like anomalous diffusion in
colloidal and biosystems [2–10], microwave-induced mag-
netoresistance oscillations [11], or negative magnetore-
sistance in metallic and semiconductor systems [12–17].
Versatile implementations of Lorentz gases can be rea-
lized experimentally by two-dimensional electron gases
(2DEGs) exposed to a random array of obstacles. Such
systems provide a high intrinsic electron mobility and the
option to pattern the obstacles lithographically. A
perpendicular magnetic field B tunes the cyclotron radius
Rcy ∝ B−1 of the electronic motion, acting as an additional
characteristic length scale.
Experimental studies of the magnetotransport of 2DEGs

in disordered obstacle arrays have been scarce (see, e.g.,
Refs. [18–23]). Especially, the magnetoconductivity σxxðBÞ
in a regime of high obstacle densities n⋆ and large magnetic
fields has not been systematically explored up to now. Here,
n⋆ denotes the dimensionless number density of obstacles,
n⋆ ¼ ðN=AÞR2

int, with N the number of obstacles, A the
area of the system, and Rint the interaction distance between
an electron and an obstacle, i.e., the effective radius of the
(circular) obstacles. In this Letter, we present a classical
experimental realization of a Lorentz gas in combination
with classical molecular dynamics (MD) simulations and
demonstrate that the electron transport qualitatively
changes if the cyclotron radius Rcy becomes smaller than

the interaction distance Rint. As expected from kinetic
theories, the conductivity σxxðBÞ is a monotonically
decaying function at low densities. For large densities
and Rcy ≲ Rint, however, it exhibits a maximum that moves
to larger values of Bwith increasing n⋆. This maximum has
been observed in simulations [24,25], but it has hitherto
remained unexplained and not been observed experimen-
tally. Our study provides the first experimental verification
of the phase diagram for the magnetotransport in the 2D
Lorentz gas, and our simulation analysis elucidates a so far
unexplored dynamic regime.
The magnetotransport in the 2D Lorentz gas is associated

with two insulator-to-conductor transitions at high and low
obstacle density n⋆ which are due to underlying static
percolation transitions [24,25]. The location of the transition
at a high density is independent of the magnetic field B
and located at a critical density n⋆c ¼ 0.359 for a Poisson-
distributed arrangement of overlapping disks: While for
n < n⋆c the electron exhibits diffusive transport through the
void space between the obstacles, for n > n⋆c the void space is
disconnected into finite pockets in which the electron is
trapped. The second, B-dependent localization transition
occurs at a density n⋆ld;cðBÞ < n⋆c. It can be understood in
terms of skipping orbits that the electrons, acting as tracer
particles in this experimental implementation, perform around
the obstacles, or clusters thereof. This localizes all particles as
n⋆, or the cyclotron radiusRcy, respectively, is decreased [24].
For a fixed B field, the magnetoconductivity exhibits a

maximum as a function of n⋆ which is located at
n⋆ld;c < n⋆max < n⋆c . This maximum is intimately related to
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the maximum in σxxðBÞ. The line of maxima, n⋆maxðBÞ, is
the geometric mean of the two critical densities. The
change of the transport for Rcy ≲ Rint along the line
n⋆maxðBÞ is due to a change of the motion of the tracer
particles (electrons) from a diffuse scattering by the
obstacles to a directed motion along the contour of the
obstacle arrangement. In the limit B → ∞, this directed
motion completely dominates the transport and suppresses
the critical slowing down at n⋆ld;c and n⋆c . At finite but high
B fields, it leads to strong corrections to the scaling
behavior in the vicinity of the critical points.
A GaAs=Al0.3Ga0.7As heterostructure with a 2DEG

located 150 nm below the surface is used. The ele-
ctron density and mobility are ne ¼ 2.5 × 1015 m−2 and
340 m2=V s, respectively, corresponding to amean free path
of 31 μm at temperatures below 1 K. The repulsive Lorentz
obstacles are formed by circular holes in the 2DEG.They are
patterned by electron beam lithography and subsequent
reactive ion etching. Within each array, the obstacles are of
identical size, while their positions are Poisson distributed,
with mutual overlaps allowed. All disks have a lithographic
radius of 425 nm; see Fig. 1(a). From Aharonov-Bohm
measurements in largemagnetic fields [26],we estimate [27]
the lateral depletion length to≈75 nm, such that the effective
electronic disk radius is Rint ≈ 500 nm. The chip contains

four Lorentz arrays with disk densities n⋆ ¼ 0.065, 0.13,
0.195, and 0.26. The arrays have an area of 200 μm by
100 μm. Themean free path due to the scattering at the disks
is 4.0, 2.0, 1.3, and 1.0 μm, respectively.
The samples were measured in a dilution refrigerator

with a base temperature of 8 mK. The electron temperature
is estimated to ≈80 mK. A 4He gas flow cryostat with a
variable temperature insert and a base temperature of 1.4 K
is used for measurements at temperatures above 1 K. An ac
current (500 nA, 17.7 Hz) is injected. The longitudinal and
Hall voltages are measured using lock-in amplifiers.
The longitudinal magnetoresistivity ρxxðBÞ [see Fig. 1(a)]

shows a strong peak around B ¼ 0 which in some arrays
extends well into the range where Shubnikov–de Haas
oscillations [28] are observed. As n⋆ is increased from
0.065 to 0.26, ρxxð0Þ increases by approximately a factor of
50. In addition, a small, narrow peak on top at B ¼ 0 is
observed which will be discussed elsewhere.
The longitudinal magnetoconductivity is obtained from

the measured resistivity components via σxxðBÞ ¼ ρxxðBÞ=
½ρ2xxðBÞ þ ρ2xyðBÞ�, where ρxyðBÞ denotes the Hall resistiv-
ity (see Supplemental Material [29]). In Fig. 1(b), the
obtained σxxðBÞ is shown for the array with n⋆ ¼ 0.195 for
various temperatures. A pronounced maximum at B ≈
140 mT is observed. It shows a weak temperature depend-
ence and evolves at higher temperatures into a shoulder that
is still visible at 32 K. This weak temperature dependence
indicates a classical origin. We have observed the same
phenomenology in a set of scaled samples with identical
number densities but with Rint ¼ 1 μm [29]. This behavior
is in qualitative contradiction to both the Boltzmann model
as well as to the Bobylev model valid for Lorentz gases
with small n⋆ [30]. Rather, it is associated with the above-
mentioned conductivity maximum as predicted by numeri-
cal simulations for high-density Lorentz gases [24,25]. A
magnetoconductivity maximum in 2D arrays of randomly
placed obstacles is actually visible in the data reported by
Lütjering [20]. It has, however, a different phenomenology
than the data discussed here and is probably related to the
anomalous weak localization present in these samples [23].
We note that, in arrays of periodic obstacles, magneto-
conductivity peaks are well known; see, e.g., Refs. [31,32].
They have their origin in electron trajectories commensu-
rate with the lattice [33] and are thus of a distinctly different
character.
MD simulations of a system of noninteracting fluid

particles in a 2D matrix of randomly placed obstacle
particles are performed using LAMMPS [34]. Matrix (index
M) and fluid particles (F) interact via a shifted, purely
repulsive Weeks-Chandler-Andersen potential, uFMðrÞ ¼
4ε½ðRint=rÞ12 − ðRint=rÞ6 þ 1=4� for r < 21=6Rint and
uFMðrÞ ¼ 0 otherwise. Here, we have set the energy
parameter to ε ¼ 0.1εM and the interaction range to
Rint ¼ 0.5σM, where εM ¼ 1.0 and σM ¼ 1.0 correspond
to the energy parameter and the diameter of the obstacle

(b)

(a)

FIG. 1. (a) Longitudinal magnetoresistivities ρxx for various
obstacle densities n⋆, measured at a temperature of ≈80 mK.
(b) The magnetoconductivity σxxðBÞ and its temperature depend-
ence for n⋆ ¼ 0.195. Insets: Scanning electron microscope
picture of a Lorentz array section with n⋆ ¼ 0.195 and magnified
view of a single disk.
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particles, respectively. For the comparison between the
simulation and experiment, exactly the same configurations
of obstacles as in the experiment are implemented.
Otherwise, we use 100 statistically independent matrix
structures at each density n⋆ ¼ ðN=L2ÞR2

int, with N the
number of matrix particles and L the linear dimension of
the simulation square.
Newton’s equations of motion are integrated using the

velocity-Verlet algorithm [35] with a time step of 10−3t0
with t0 ≔ ½mðσMÞ2=εM�1=2 and m ¼ 1.0 the mass of a fluid
particle. The particles carry a charge e ¼ 1 and a mass
m ¼ 1 and are subjected to a uniform magnetic field B that
acts perpendicular to the plane of motion. The velocity of
the fluid particles is fixed to a constant magnitude
vF ¼ ffiffiffi

2
p

, which corresponds to the Fermi velocity of
the 2DEG in the experiment, i.e., vF ¼ ℏ

ffiffiffiffiffiffiffiffiffiffi
2πne

p
=m ¼

2.17 × 105 m=s, where m denotes the effective electron
mass in GaAs. It is associated with a cyclotron radius
of Rcy ¼ mvF=ðeBÞ or Rcy ¼ Rint= ~B, with ~B being

the dimensionless magnetic field ~B ¼ B=B0 (with B0 ¼
ðmvF=eRintÞ). Between 100 and 2400 fluid particles per
host structure are used for runs of up to 106t0. For the
calculation of time averages, ten time origins per run are
used, spaced equidistantly over the whole simulation time.
The conversion of units between the simulation and

experiment is as follows: σM ¼ 10−6 m (obstacle diam-
eter), m ¼ 6.097 × 10−32 kg, t0 ¼ 9.226 × 10−12 s, e ¼
1.6 × 10−19 C (electron charge), and B0 ¼ 0.168 T.
For a system of noninteracting charged particles, the

conductivity σxx is directly related to the self-diffusion
constant D via σxx ¼ ðnee2=mÞD. Hence, we can directly
compare the experimentally obtained conductivity, norma-
lized to its value at ~B ¼ 0, σxxð ~BÞ=σxxð0Þ, to the corre-
sponding ratio of diffusion constants from the MD simu-
lation, Dð ~BÞ=Dð0Þ. In the simulation, the self-diffusion
constant can be obtained from the long-time limit of the
mean-squared displacement (MSD) of a tagged particle,
δr2ðtÞ, using the Einstein relation D ¼ limt→∞δr2ðtÞ=4t.
Here, the MSD is defined as δr2ðtÞ ¼ h½r⃗ðtÞ − r⃗ð0Þ�2i, with
r⃗ðtÞ the position of the particle at time t and h…i an
ensemble average.
The comparison of σxxð ~BÞ=σxxð0Þ from the experiment

with Dð ~BÞ=Dð0Þ from the simulation is shown in Fig. 2(a)
for different number densities. Close to the σxx maximum,
the simulation and experiment are in good agreement
except for the highest n⋆. Thus, both weak localization
corrections [37] and interaction effects [38] can be
excluded as possible origins. The experimental values
are significantly larger than the ones from the simulation
at high ~B fields. We tentatively attribute these deviations to
a combination of quantum effects like the onset of
Shubnikov–de Haas oscillations and depinning of electrons
from the obstacle clusters by the residual random disorder

[13]. However, different from the monotonic decay of
σxxð ~BÞ=σxxð0Þ and Dð ~BÞ=Dð0Þ at low densities, a maxi-
mum occurs at large densities (see, e.g., the results for
n⋆ ¼ 0.195, where the simulation and experiment are in
very good agreement around the maximum).
To get further insight into the nature of this change, we

plot in Fig. 2(b) the diffusion constant from the simulation
as a function of the number density, Dðn⋆Þ, for different
values of ~B, including ~B ¼ 0. At a given finite value of ~B,
the diffusion coefficients vanish at the critical densities n⋆c
and n⋆ld;cð ~BÞ < n⋆c . Therefore, at a given value of ~B, the
function Dðn⋆Þ exhibits a maximum in the interval
½n⋆ld;cðBÞ; n⋆c �. The snapshots in Fig. 2 show typical trajec-
tories for different densities corresponding to the maxima in
Dðn⋆Þ at ~B ¼ 0.35, 1.0, and 6.95 from left to right
(cf. corresponding movies in Supplemental Material
[29]). These snapshots indicate a qualitative change of
the motion around ~B ¼ 1, from a diffuse scatter of the
tracer particle by the obstacle for ~B ≪ 1 to a directed
motion along the contour of the obstacle network for
~B ≫ 1. The trajectory at ~B ¼ 1.41 indicates a mixture of
diffuse scattering and directed motion.
The phase diagram in Fig. 3 shows ~B vs n⋆=n⋆c , with the

two lines of critical points at low and high density. While
the critical points at high density are independent of ~B at
n⋆=n⋆c ¼ 1, the low-density critical points are located at
~Bld;c ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi

n⋆c=n⋆
p

− 1Þ−1 [24]. The dashed red line in
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FIG. 2. (a) σxxð ~BÞ=σxxð0Þ from the experiment (full lines) in
comparison to Dð ~BÞ=Dð0Þ from the simulation (full circles) for
different values of n⋆. (b) Dðn⋆=n⋆c Þ from the simulation for
different values of ~B. The vertical lines correspond to the
locations of n⋆c (solid line) and n⋆ld;cð ~BÞ (dashed lines). The
snapshots correspond to the location of the maxima in Dðn⋆Þ for
~B ¼ 0.35, 1.0, and 6.95 (from left to right). The trajectories are
illustrated using OVITO [36].
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between the two critical lines in Fig. 3 corresponds to the
points of maximal diffusion. Its form can be understood as
follows: The density nmaxð ~BÞ at which the diffusion
coefficient is maximal is associated with two limiting
cases. The maximum vanishes towards ~B→0, i.e.,
nmaxð ~B→0Þ¼0, and it should coincide with n⋆c in the
limit ~B → ∞ (then Rcy ¼ 0 and n⋆c ¼ n⋆ld;c). A function that
interpolates between these two limiting cases is n⋆max ¼
n⋆cRintðRint þ RcyÞ−1. When this expression is solved for ~B,
one obtains the following law for the density dependence of
the reduced magnetic field at maximal diffusion:

~Bmax ¼ ðn⋆c=n⋆ − 1Þ−1: ð1Þ

The points that are on the maximal diffusion curve in Fig. 3
are directly obtained from the data in Fig. 2(b), confirming
that Eq. (1) indeed holds. Thus, remarkably, n⋆ð ~BmaxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

n⋆ld;cn⋆c
p

. Along this line of maxima, the transport of the

tracer particle changes around ~B ¼ 1. This can be inferred
from the inset in Fig. 3, where the ratio of the diffusion
constant at the maximum to that at ~B ¼ 0 at the corre-
sponding density, Ωmax ¼ DmaxðBÞ=Dðn⋆max; ~B ¼ 0Þ, is
plotted as a function of the distance between the two
critical lines at a given value of ~B,Δ ¼ ðn⋆c − n⋆ld;cÞ=n⋆c . For
Δ≲ 0.7, the ratio Ωmax is larger than 1.0 (corresponding
also to ~B > 1.0), and the data can be fitted with a power
law, Ωmax ∝ Δ−1.25, indicating a divergence of this ratio
towards ~B → ∞. As a consequence, one expects at least
strong corrections to the asymptotic critical behavior for
large ~B fields, and, in the limit ~B → ∞, where the two
critical points meet, the diffusion constant does not vanish
but becomes infinite.

On a microscopic scale, the qualitative change of the
tracer particle motion around ~B ¼ 1 can be analyzed in
terms of MSDs. Figure 4(a) displays MSDs at three
different states of maximal diffusion, ðn⋆max; ~BÞ (cf. the
snapshots in Fig. 2 at the same states). Also included are
MSDs for ~B ¼ 0 (dashed lines) at the corresponding
densities. The onset of a directed motion along the contour
of the obstacles is associated with a superlinear regime in
the MSD at intermediate times for t≳ 3t0. This is espe-
cially evident from the behavior of the local exponent of the
MSD, γðtÞ ¼ d log½δr2ðtÞ�=d logðtÞ, which is shown in
Figs. 2(b)–2(d) for the three different densities. At n⋆ ¼
0.078 the diffusive regime is already reached around
t ¼ 10t0, and the diffusion for ~B ¼ 0.36 is slightly slower
than for ~B ¼ 0 due to the existence of the low-density
critical point in the former case. At n⋆ ¼ 0.195,
there is a superlinear regime for 1.0t0 ≲ t≲ 100t0 at
~B ¼ 1.02, while in the case of ~B ¼ 0, a sublinear regime
is seen in the same time range. A similar effect, albeit much
more pronounced, is present for n⋆ ¼ 0.33. Here, the ~B ¼ 0
curve shows an extended sublinear regime over about 2–3
orders of magnitude due to the vicinity of the critical
density n⋆c. This regime is almost suppressed for ~B ¼ 7.09;
instead, a pronounced superlinear regime and a faster
transition towards normal diffusion are observed. This
indicates that particularly in a dense matrix the application
of a magnetic field ~B ≫ 1.0 leads to a very efficient
exploration of the matrix due to the directed motion along
the contour of the obstacle matrix.
In summary, we have studied the magnetotransport

through 2D disordered Lorentz gases in the classical
regime. Our focus was on the nonmonotonic behavior of
the conductivity and diffusion which is seen for magnetic
fields ~B≳ 1.0. We emphasize that the system under study is
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also related to the active motion of microswimmers [7–10]
and thus has a more general relevance. The threshold ~B ≈
1.0 marks the point where the cyclotron radius becomes
smaller than the obstacle radius. This leads to the change in
the motion of the tracer particle from a diffuse scatter by the
obstacles to a directed motion along the obstacle contour.
The latter directed motion is associated with an intermedi-
ate superlinear regime in the MSD that becomes more
pronounced with increasing ~B.
We have shown that one can draw a line of maximal

diffusion into the phase diagram that follows the law given
by Eq. (1). Along this line, the diffusion constant ratioΩmax

(see above) diverges in the limit ~B → ∞. Thus, in this limit
the directed motion dominates the transport and leads to a
divergence instead of a vanishing of the diffusion coef-
ficient. For finite ~B, at least strong scaling corrections are
expected in the vicinity of the two critical points.
The findings presented in this Letter open the door to

further experimental studies in combination with quanti-
tative comparisons to the theory and simulation, consider-
ing different nonspherical obstacle shapes, quantum
corrections, or the role of additional Gaussian disorder [13].
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Nonmonotonic Classical Magnetoconductivity of a Two-Dimensional Electron Gas in
a Disordered Array of Obstacles - Supplement
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Here we present the measurement of the Hall resistitivities that enter the calculation of the
conductivities as well as the temperature-dependent magnetoconductivies for all samples studied.
Furthermore, a plot with a direct comparison between simulation and experiment of the diffusion
constant as function of density at B = 0 is shown.



2

FIG. 1. (color online) Measurement of the Hall resistivites, which were used to calculate the respective conductivities. The
traces are offset by 100Ω with respect to each other for clarity. For stronger magnetic fields quantum Hall plateaus are formed.



3

FIG. 2. (color online) Temperature dependence of the magnetoconductivity for all samples. (a)-(d) show the results for
obstacles with a diameter of d = 1μm. Note that the trace for T = 0.1K was taken in a different cooldown from the others.
(e)-(h) show the results for obstacles with a diameter of d = 2μm.
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FIG. 3. Direct comparison between simulation and experiment of the diffusion constant as function of density n� at zero
magnetic field, B = 0.



Linear negative magnetoresistance in two-dimensional Lorentz gases
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Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares and retrore-
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Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares and retrore-
flectors are reported to show a pronounced linear negative magnetoresistance at small magnetic
fields. For circular obstacles at low number densities, our results agree with the predictions of a
model based on classical retroreflection. In extension to the existing theoretical models, we find that
the normalized magnetoresistance slope depends on the obstacle shape and increases as the number
density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic
fields as well as by elevated temperatures. These results suggest that classical retroreflection can
form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while
contributions from weak localization cannot be excluded, in particular for large obstacle densities.
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I. INTRODUCTION

The magnetoresistivity of two-dimensional electron
gases defined in semiconductor heterostructures can show
pronounced deviations from the behavior expected within
the Drude-Boltzmann model, i.e. a constant longitudi-
nal and a linear Hall magnetoresistivity. The deviations
can be traced back to various origins. For example, the
quantization of the cyclotron motion in a perpendicular
magnetic field B⊥ lies at the heart of the Quantum Hall
effect and of the Shubnikov - de Haas oscillations in the
longitudinal resistivity ρxx(B⊥),1 while weak localization
increases ρxx(B⊥) at B⊥ = 0, which decays in a charac-
teristic, nonlinear way asB⊥ is increased.2 Weak localiza-
tion also occurs in disordered arrays of classical scatterers
as a consequence of an interplay between classical chaos
and interference of the electron waves.3,4 Interaction ef-
fects typically generate a relatively broad negative, ap-
proximately parabolic correction to ρxx(B⊥).5 Within a
hydrodynamic model that includes a B-dependent viscos-
ity of the electron liquid, interactions have been used to
explain the giant negative magnetoresistance (GNMR),6

observed in two-dimensional electron gases with high
electron mobilities.7–11 One further possible origin of a
negative magnetoresistance are memory effects. They are
caused by time-independent components in the scattering
potential which do not randomize the electron momen-
tum in the sense of the relaxation time approximation
and thus generate deviations from the Boltzmann ex-
pressions for the magnetoresistivities.12 A suitable model
system for studying memory effects, which have a clas-
sical character, is an electron gas exposed to a static,

Poisson-distributed array of identical obstacles. It was
first proposed by Lorentz13 and is therefore known as
Lorentz gas. Two-dimensional Lorentz gases (2DLGs) are
of particular interest since a perpendicular magnetic field
has profound effects on their transport properties. Sev-
eral theoretical studies on the magnetotransport prop-
erties of 2DLGs have been reported, which has resulted
in the identification of various memory effects14–19. A
prominent example are electrons that do not contribute
to the longitudinal transport since they move forever in
an undisturbed cyclotron orbit. For circular obstacles
acting as scatterers at low number densities ns, it has
been shown that this memory effect causes an exponen-
tial decrease of ρxx as B⊥ increases.14,15 Such analytic ex-
pressions originate from kinematic models which require
a dimensionless obstacle number density n� = 1

4nsd
2
s to

be small compared to 1. Here, ds denotes the character-
istic size of the scatterers. Extensions to larger number
densities have been carried out numerically for circular
obstacles, using molecular dynamics simulations. They
have revealed that the conductivity as a function of n�

and B⊥ forms a delocalized, conductive phase, which is
sandwiched between two localized phases at low and at
high obstacle densities.20–22

Of particular relevance to the present study are the works
of Dmitriev et al.18 and Cheianov et al.19 on retroreflec-
tion in dilute 2DLGs with circular obstacles. This type of
memory effect can be understood in terms of an electron
that gets scattered at an obstacle by an angle close to π
after having travelled a certain distance L ballistically.
This distance is related to a two-dimensional corridor of
area L × ds which is free of obstacle centers, see Fig. 1
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(a) for an illustration. After the electron has undergone
backscattering, it probes the same corridor again which
is still free of obstacles, due to the static character of the
scattering potential. This memory term increases the
resistance since any scattering event at time-dependent
potentials in this corridor would give the electron a mo-
mentum component in forward direction. The overlap
between the corridors related to the incoming and the
backscattered electron trajectory (see Fig. 1 (a)) equals
the area probed twice, and is thus a measure of this mem-
ory term. As B⊥ is increased, this overlap decreases
due to the Lorentz deflection. Consequently, B⊥ sup-
presses this memory term and causes the resistance to
decrease. Remarkably, this negative magnetoresistivity
has been predicted to be linear.18 Experiments by Gusev
et al.23 are in agreement with this prediction. Magneto-
transport in 2DLGs formed by arrays of circular obstacles
has been studied experimentally by Yevtushenko et al.3,
also at relatively low n�. The authors observe a negative
magnetoresistance which they explain by ballistic weak
localization. This takes into account correlations in the
electronic motion as well as the classical character of the
obstacles. Due to their much larger size than the Fermi
wavelength, they do not split the wave functions in time-
reversed backscattering paths as assumed within the con-
ventional weak localization description. However, it has
been argued later on that this phenomenology can also
be explained by classical retroreflection.18 Thus, the rele-
vance of these two mechanisms, namely classical retrore-
flection and quantum mechanical ballistic weak localiza-
tion, for the observed negative magnetoresistance of two-
dimensional electron gases exposed to random arrays of
classical obstacles is still an open question.
Here, we report magnetotransport measurements on

2DLGs composed of classical scatterers. We find an
approximately linear negative magnetoresistivity close to
B⊥ = 0. The dependencies of the peaks on the param-
eters shape and density of the obstacles, temperature
as well as on in-plane magnetic field is reported. Our
data suggest, in brief, that classical retroreflection does
contribute significantly to the measured peaks while
a contribution of ballistic weak localization cannot be
excluded.
The paper is organized as follows. In Section II, we
describe the sample preparation and the measurement
setup. The experimental results are presented and
interpreted in Section III. We end with a summary and
conclusion in Section IV.

II. SAMPLE PREPARATION AND
EXPERIMENTAL SETUP

A GaAs/Al0.3Ga0.7As heterostructure with a two-
dimensional electron gas (2DEG) 150 nm below the sur-
face is used. The pristine 2DEG has a density of
2.5 × 1015 m−2 and an electron mobility of 340m2/Vs,

corresponding to a mean free path of � = 31μm at liquid
helium temperatures. The quantum scattering time as
determined from the envelope of the Shubnikov-de Haas
oscillations24 amounts to τq = 2.4 ps which gives a quan-
tum scattering length of �q = 530 nm. The Lorentz array
is prepared by generating two sets of random numbers
which define the x- and y-coordinates of the obstacle cen-
ters. The correct statistical properties of the arrays are
checked by a Voronoi tessellation of the array, where each
obstacle center defines a cell containing all points closer
to this center than to any other, see Fig. 1 (b).

FIG. 1. (color online). (a) Illustration of the memory term
caused by retroreflection at B⊥ = 0 (left) and B⊥ > 0 (right).
The electron moves through the obstacles (circles) which de-
fine the ballistic corridors before and after backscattering
(light gray, right), with their overlap area marked in dark
gray. (b) Scanning electron micrograph of the 2DLG with cir-
cular obstacles of radius ds = 2μm and ns = 1.95× 1011m−2

(n� = 0.195). The obstacle centers and the corresponding
Voronoi tessellation are shown as an overlay. (c) Histogram
of the normalized Voronoi cell areas A for our arrays with
number density ns = 1.95× 1011m−2, and the fit (red curve)
to the probability density function p(A) as described in the
text.

The probability density function p(A) of the Voronoi
cell areas has no known analytical expression, but can
be well approximated by p(A) = 343

15

√
7/2πA2.5e−3.5A,

where A denotes the normalized cell area.25 This expres-
sion provides excellent fits to our arrays for all obstacle
densities, and the average value 〈A〉 = 1 as well as the

standard deviation σA ≈ √
2/7 are well reproduced, see

Fig. 1 (c). The obstacles in one array have identical
shapes (circles, squares and retroreflectors, see the insets
in Fig. 2) and sizes characterized by a lateral extension
ds = 1μm and 2μm, respectively. Here, ds is the diam-
eter of the circles or the edge length of the squares and
retroreflectors, respectively. For the implementation of
an array, one shape is allocated with random orientation
to each center coordinate by a pattern generator and then
transferred to the samples by electron beam lithography
and subsequent reactive ion etching. The etch depth of
roughly 150 nm in all samples ensures depletion of the
electron gas in the etched regions. An example of such
an array is shown in Fig. 1 (b).
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From Aharonov-Bohm experiments on comparable struc-
tures in large magnetic fields,26, we estimate the lateral
depletion length around the etched structure to ≈ 75 nm.
Taking this depletion into account, the corresponding
densities of the arrays of circles and retroreflectors are
n� = 0.065, 0.13, 0.195 and 0.26, while for the arrays of
squares, the densities are smaller by a factor of π/4. This
choice of parameters ensures that on the one hand, the
obstacle size is large compared to the Fermi wavelength
of ≈ 50 nm such that the scattering can be regarded as
classical, while on the other hand, the resistivity of the ar-
rays is dominated by the patterned obstacles. The mean
free path of the Lorentz gas composed of circular disks in
the dilute limit is given by �s = (nsds)

−1, corresponding
to values below 8μm for all obstacle densities, signifi-
cantly smaller than �. Only the arrays with the smallest
ns values of ns = 6.5 × 1010 m−2 can be considered as
dilute, which defines the range of validity of the mod-
els mentioned above, i.e., in Refs. 14–19. Furthermore,
the absolute number of obstacles varies between 975 and
20000 which should ensure reasonable ensemble averag-
ing. All arrays are located in Hall bar structures and
have a size of 100μm × 200μm. The insets in Fig. 2
illustrate the geometries of the individual obstacles.
Measurements are carried out in the mixing chamber of
a 3He/4He dilution refrigerator with a base temperature
of 25mK and in a 4He gas flow cryostat that can be op-
erated at temperatures between 1.4K and 300K. Both
cryostats are equipped with superconducting solenoids
and a rotatable sample stage. They are used for ap-
plying perpendicular magnetic fields B⊥ as well as for
in-plane components B‖. An AC current (amplitude
500 nA, 17.7Hz) is applied, and the magnetoresistance
components Rxx(B⊥) and Rxy(B⊥) are measured via
voltage probes using lock-in amplifiers.

III. EXPERIMENTAL RESULTS AND
DISCUSSION

Figure 2 shows the measured longitudinal magnetore-
sistivities ρxx(B⊥) of the 2DLGs formed by circles (ds =
1μm and 2μm) as well as by squares and retroreflectors
with ds = 2μm. A pronounced peak centered at B⊥ = 0
is observed in all samples which, for larger n�, extends
well into the regime where Shubnikov- de Haas oscilla-
tions are visible. For small B⊥, the magnetoresistivity
within the peak is approximately linear and develops a
nonlinear behavior as B⊥ increases. Note that the re-
sisivity of the arrays of squares with the largest n� is
significantly larger than that one of the circles at the
same obstacle density. We attribute this to the fact that
the array of squares is much closer to the percolation
threshold of n�

c = 0.246 for the squares vs. 0.359 for
the circles27 (the percolation threshold for the arrays of
retroreflectors has not been determined yet to the best of
our knowledge). This may also explain the structures vis-
ible in the flanks of the peaks in these samples, since the

proximity to the percolation threshold makes the trans-
port more sensitive to local details of the potential.
At first sight, the magnetoresistance peaks resemble
those observed on pristine high-mobility 2DEGs, which
are usually referred to as giant negative magnetoresis-
tance (GNMR).7–11 This structure, which is also present
in our pristine samples, shows, besides a marked depen-
dence on the width of the Hall bar,28 the parametric de-
pendencies as reported earlier: a rapid suppression as
the temperature is increased to 1K as well as by parallel
magnetic fields.9,29 The amplitude of the GNMR struc-
ture in our samples is in the range of a few Ω only and
thus negligible in the arrays containing artificial obsta-
cles at all our obstacle number densities. Our data even
suggest that already at our lowest obstacle density, the
GNMR is strongly suppressed.29 Furthermore, the dom-
inant magnetoresistance peak observed in our samples
does not depend significantly on in-plane B fields and is
much more robust with respect to thermal smearing.

As n� is increased, the linear part of the peak tends
to get more pronounced and increases both in amplitude
and width. For large obstacle densities, the amplitude
of the corresponding conductance dip is in the range of
2e2/h, the maximum possible amplitude of weak local-
ization. For low densities, however, the amplitude is sig-
nificantly larger, reaching values as high as ≈ 50e2/h,29

which excludes weak localization as the dominant ori-
gin. Furthermore, the peak is more prominent in the
Lorentz gases formed by retroreflectors in comparison to
those formed by circles and squares of size 2μm. We
have also measured arrays of squares and retroreflectors
with ds = 1μm and found no significant differences to
the corresponding arrays of circles.29 We take this as an
indication that for the obstacles with the smaller size, the
geometric smearing of the obstacle shape by the lateral
depletion is already significant and leads to a convergence
of the scattering cross sections. In Fig. 3 (a), the tem-
perature dependence of the peak is exemplified using the
retroreflector array of density n� = 0.195. A qualitatively
similar behavior is observed for the other arrays. As the
sample is warmed from 25mK to 800mK, the peak shape
remains nearly unaffected while the Shubnikov-de Haas
oscillations show thermal smearing. This can be seen as
an indication that weak localization does not dominate
the peak shape. As the temperature is increased to 8K,
the linear part of the peak, visible for magnetic fields be-
low 30mT in this case, decays to zero amplitude. The
background peak has a much weaker temperature depen-
dence and is still clearly visible at 32K.
The influence of in-plane magnetic fields B‖ is shown in
Fig. 3 (b), exemplified for the array of circles with with
ds = 1μm and n� = 0.195. These data have been ob-
tained by rotating the samples with respect to the fixed
magnetic field by angles up to ≈ 1.4◦ around π/2, such
that a change of the perpendicular component B⊥ by
±0.15T was reached under approximately constant B‖
(changes of less than 2mT). The peak is suppressed as
B‖ is increased and remains barely visible at B‖ = 12T.
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FIG. 2. (color online). Longitudinal magnetoresistance of
the 2DLGs with various obstacle densities n� for circles with
ds = 2μm (a) and 1μm(b), squares with ds = 2μm (c) and
retroreflectors with ds = 2μm (d). The interval of the lin-
ear regime is indicated by the dashed, vertical lines. Scan-
ning electron electron microscope pictures of the correspond-
ing obstacles that form the arrays are shown in the insets.
The temperature was 1.4K in all measurements.

In order to narrow down the character of this peak fur-
ther, we have carried out molecular dynamics simulations
for an array formed by circles with ds = 1μm and n� =
0.225. The electrons and scatterers interact via a stan-
dard shifted, purely repulsive Weeks-Chandler-Andersen
(WCA) potential, u(r) = 4ε

[
(rs/r)

12 − (rs/r)
6 + 1/4

]
for r < 21/6rs and u(r) = 0 otherwise. Here, we have
set the energy parameter to ε = 0.1EF . We use 100 sta-
tistically independent matrix structures. Newton’s equa-

FIG. 3. (color online). (a) Temperature dependence of Rxx

for the array formed by retroreflectors with a density of n� =
0.195 and ds = 2μm. (b) Effect of in-plane magnetic fields on
the magnetoresistivity, for the array of circles with ds = 1μm
and n� = 0.195. The traces are offset by 50Ω each for clarity.

tions of motion are integrated using the velocity-Verlet
algorithm30 with a time step of 10−3t0 with t0 being the
time an electron needs to travel ballistically the distance
ds, i.e. t0 = 9.23 ps for our samples. All electrons move
with the Fermi velocity in regions where u = 0. At each
magnetic field, 2400 electrons are used for runs of 106t0
duration. In Fig. 4, the result of such a model calculation
is shown. Both features of the magnetoresistance, namely
the broad shoulder and the smaller, approximately linear
peak close to B⊥ = 0, are reproduced. The linear regime
extends up to B⊥ ≈ 30mT, which is of the same order
of magnitude as observed experimentally for compara-
ble parameters. A linear negative magnetoresistivity is
also obtained in corresponding simulations for lower n�

(not shown). These model calculations demonstrate that
classical effects can generate the measured structure also
in the regime of large obstacle densities and justifies its
discussion in terms of memory effects.
We attribute the broad background component of the

peak predominantly to undisturbed cyclotron motion of
electrons in between the obstacles.15 This structure is of
no further interest here. Rather, we focus on the approx-
imately linear peak close to B⊥ = 0. As mentioned in the
Introduction, theoretical studies were carried out for low
obstacle densities,18 showing that retroreflection causes
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FIG. 4. (color online). Result of a model simulation (blue
circles) of ρxx(B) for a 2DLG formed by an array of circles
(ds = 1μm and n� = 0.225). The red line shows a linear
approximation of the data points at the seven lowest magnetic
fields (B ≤ 34mT).

the resistance to decrease linearly as a function of B⊥
in the regime ωcτs � 0.2 where ωc denotes the cyclotron
frequency and τs the obstacle-generated scattering time,
i.e. τs = (nsdsvF )

−1 with the Fermi velocity vF . Here,
ds takes the role of the total scattering cross section for
circles. These results have been derived for the limit of
low obstacle densities, characterized by ds � �s with the
obstacle-dominated mean free path of �s = vF τs. Inter-
estingly, the normalized slope α of ρxx(⊥), defined as

α ≡ 1

ρxx(0)τs

d(δρxx(B⊥))
dωc

(1)

is independent of the obstacle density in this regime and
has a value which is characteristic for the obstacle shape.
For circular obstacles, α◦ = −0.04 has been reported,18

while to the best of our knowledge, other shapes have
not yet been considered in this context. The numerical
studies have shown that such a linear magnetoresistivity
is still to be expected at relatively large obstacle densities
of n� ≈ 0.05. These results are in agreement with the ex-
periments of Gusev et al. in Ref. 23. The fact that the
obstacle positions were not random but showed Gaussian
deviations from a periodic arrangement is of minor rel-
evance in that context, since at low obstacle densities,
retroreflection is a single-obstacle process.
In Fig. 5(a), we show the normalized magnetoresistiv-

ities for the arrays presented in Fig. 2. Here, we have
followed Ref. 18 and determined the scattering times
according to τs = (nsσsvF )

−1, where σs is the total
scattering cross section of one obstacle, i.e. σs,◦ = ds,

σs,� = 4ds

π and σs,× = 2
π

[
(2−√

2)w +
√
2ds

] ≈ 0.98ds,
where w denotes the width of the retroreflector bars (see
also Fig. 2), in our case w = 0.45μm for the samples
with ds = 2μm and w = 0.3μm for the samples with
ds = 1μm, respectively. A linear regime is found for all
arrays, with an interval of varying size, extending up to
ωcτs ≈ 0.4, 0.5 and 0.9 for the arrays of retroreflectors,
squares and circle with ds = 2μm, respectively. The ar-

FIG. 5. (color online). (a) Experimentally determined nor-
malized magnetoresistivity of the studied arrays and the cor-
responding linear fits for the different arrays. The traces at
larger n� are vertically offset by 0.2 for clarity. (b) Normal-
ized slopes α of the normalized linear negative magnetore-
sistivities as a function of n�. The inset shows exemplified
retroreflected trajectores at clusters of circles and squares,
as well as a bound trajectory in a resonator formed by two
retroreflectors. All data have been obtained for T = 1.4K.

ray formed by circles with ds = 1μm shows a smaller
interval, with an upper limit of ωcτs ≈ 0.2. This is in
rough agreement with the interval sizes of ωcτs ≈ 0.2
found in numerical simulations for the dilute case,18,19 as
well as with the results of our molecular dynamics simu-
lations, see Fig. 4. Within the retroreflection picture, it
corresponds the the magnetic field where the overlap be-
tween the ballistic corridors of injected and retroreflected
electrons becomes insignificant.

The values of α are plotted as a function of the scat-
tering times in Fig. 5(b). Here, τ0 denotes the time the
electron needs to move ballistically the distance ds, i.e.
τ0 = 4.3 ps for ds = 1μm and τ0 = 8.6 ps for ds = 2μm.
As τs/τ0 reaches values af 2 or above, α is comparable
to the value of 0.04 as predicted theoretically for the di-
lute case.18 For all obstacle shapes, α increases as τs is
decreased. This increase is largest for the retroreflectors
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with ds = 2μm, reaching a value as high as α× = 0.48
for the sample with n� = 0.26.
These observations are interesting in two respects. First
of all, they represent an experimental verification of the
suggestion by theory that α is a measure of the retrore-
flectivity of the individual obstacle. While our data do
not show a clear difference in this respect between circles
and squares, α is enhanced for the retroreflectors with
ds = 2μm in comparison to the arrays of circles and
squares of the same size. Second, if α is interpreted this
way, our data suggest that the retroreflectivity increases
with increasing obstacle density. We are not aware of any
theoretical work in relation to this issue, but provide a
simple geometrical interpretation, illustrated in the inset
of Fig. 5(b). As n� increases, the probability of finding
two obstacles close together or even overlapping increases
as well. This leads to additional backscattering (in the
sense of Ref. 18) when the corridor of the incoming elec-
tron overlaps with that one of an outgoing electron after
multiple reflections at more than one obstacle, i.e., for
spatial separations of the two trajectories smaller than
ds. The contribution of this effect could be tested by
future studies on arrays with increased obstacle density
but with a different spatial distribution statistics, for ex-
ample by excluding overlaps or by periodic arrays with
large Gaussian disorder. In addition, in particular for
the retroreflector arrays, the formation of random res-
onators that localize electrons in between two obstacles
will increase as the scatterer density increases. Electrons
may scatter into or out of such resonators by random
background scattering on phonons or residual impurities.
A clarification of how these effects contribute quantita-
tively to α requires extensive theoretical studies that are
beyond the scope of this work.

In Fig. 6, the dependencies of α on the temperature
and on in-plane magnetic fields B‖ are shown. We ob-
serve that in general, α decays as T is increased and van-
ishes at a temperature of about 8K. Among other effects
like thermal smearing, this may originate from acoustic
phonons that scatter the electrons off the ballistic corri-
dors, thereby decreasing their length. This is in tune with
our observation that the mean free path � decreases from
31μm at 25mK to 20μm at 8K, the largest temperature
where the peak can still be analyzed. Yevtushenko et al.3

have reported a much weaker temperature dependence of
the corresponding peak in their arrays, which remained
visible up to temperatures of 44K. This may be due to
the significantly smaller obstacle sizes of ds ≈ 200 nm in
those arrays, as well as due to the possible domination
of these peaks by ballistic weak localization. Further-
more, in Ref. 3, the conductivity amplitude of this peak
is studied as a function of temperature, which lead to
its interpretation in terms of ballistic weak localization
with the Ehrenfest and the dephasing times as character-
istic time scales.31 In our data, such an analysis is ham-
pered by the gradual and temperature dependent transi-
tion between the linear and the background peak, which
impedes a meaningful subtraction of some background

FIG. 6. (color online). Dependence of α on the temperature
(a) and on in-plane magnetic fields B‖ (b), exemplified by two
arrays (see Fig. 3 for examples of the raw data).

conductance.
A decrease of α is also observed as a function of increas-
ing B‖, see Fig. 6 (b). For the retroreflectors, a rapid
suppression of the peak is observed as B‖ is increased
from zero to ≈ 8T, while at a further increase of B‖, the
suppression is less pronounced. For the circles, the sup-
pression of the peak by B‖ is weaker. Also, the α values
of different obstacle shapes tend to converge towards sim-
ilar values at large in-plane magnetic fields. In relation
to the well-known suppression of the conventional weak
localization peak2, it has been established that due to the
diamagnetic shift, the increase of the electron density of
states and the modification of electron wave functions,
the electrons develop a larger sensitivity to the rough-
ness of the GaAs−AlxGa1−xAs interface which causes
a reduction of the mean free path.32 Also, B‖ is known

to deform the cyclotron orbits in a characteristic way.33

In the pristine 2DEG, we observe a decrease of � from
31μm at B‖ = 0 to 16μm at B‖ = 12T, which demon-
strates that in fact a process is active which suppresses
the mobility in parallel magnetic fields. This effect leads
to a modified overlap of the incoming and reflected cor-
ridors. A model for the effect of in-plane magnetic fields
on retroreflection is presently not available. However,
it appears plausible that the additional scattering gen-
erated by B‖ also reduces the extension of the ballistic
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corridors, thereby suppressing the retroreflection. The
observed convergence of the α values for different obsta-
cle shapes as B‖ is increased is in tune with this picture,
considering thatB‖ effectively shortens the ballistic corri-
dor and thus reduces the relevance of the obstacle-specific
reflectivity.
All results presented above are influenced not only by
the artificial array of obstacles, but also by the back-
ground disorder. Effects of background disorder on mem-
ory effects have been discussed so far, to the best of our
knowledge, only in relation to the depinning of electrons
from single obstacles or obstacle clusters.34 The small-
angle (quantum) scattering time of τq implies that the
electrons undergo a random scattering event after trav-
elling an average distance of �q = 530 nm in our samples.
These small deflections can scatter the electrons out of
the retroreflection corridor, thereby limiting its length.
Thus, small-angle scattering may contribute to our obser-
vation that retroreflection is more visible in arrays with
larger obstacle density where the ballistic corridors are
shorter. A quantitative description of these effects are
beyond the scope of the present manuscript and requires
extensive numerical simulations. However, since we ex-
pect that quite a few small-angle deflections will be nec-
essary to remove the electron from the reflective corridor,
the electrons will still probe a significant fraction of the
overlap of the corridors for the incoming and the reflected
electron, namely over a length scale comparable to the
distance between the artificial obstacles.
It should be noted that a parabolic magnetoresistivity
has been predicted for very small magnetic fields as a
consequence of memory effects.19 For our samples, the
upper magnetic field limit for this interval is of the or-
der of 100μT and thus not resolvable in the measure-
ments reported here. Furthermore, for ωcτs � nsd

2
s, a

B
−1/2
⊥ - dependence has been predicted.19 We do not find

such a dependence in any of our samples. This could be
due to the relatively large values of n� in our samples,
or a consequence of distortions by residual background
scattering.34

We end this Section by returning to the GNMR effect
and its relation to our measurements. Typical GNMR
data show a broad peak in ρxx(B⊥) with the phenomenol-
ogy as described above, plus a small peak close to B⊥ = 0
on top, which has been attributed to sparse oval defects
that act as Lorentz array and shows a remarkable ro-
bustness with respect to elevated temperatures8 as well

as to in-plane magnetic fields8,29. Within this picture,
it would thus correspond to the broad maximum we ob-
serve in our 2DLGs. On the other hand, the small peak
we interpreted in terms of retroreflection is not resolved
in the GNMR measurements.

IV. SUMMARY AND CONCLUSIONS

A linear negative magnetoresistance is observed in two-
dimensional Lorentz gases in the classical regime, in qual-
itative agreement with both the predicted magnetore-
sistivity due to retroreflection at the obstacles at small
scatterer densities and a numerically calculated classical
magnetoresistivity at large scatterer densities. It can be
concluded that retroreflection, one member of the family
of classical memory effects, is the dominant origin of this
peak in our samples. A comprehensive phenomenology
of this peak has been presented, including its dependence
on the density and shape of the obstacles, on the temper-
ature as well as on in-plane magnetic fields. The mea-
surements confirm the existing theory which has focused
on circular-shaped obstacles in the low density regime.
However, the normalized slope α of the magnetoresis-
tance decreases as the temperature or the in-plane mag-
netic field is increased and increases with a larger density
or retroreflectivity of the obstacles. These results cannot
be understood within the presently available models. We
have tentatively explained the behavior of α as a function
of the obstacle density in terms of additional retroreflec-
tion that emerges due to the formation of clusters and/or
resonators by the obstacles. Although our molecular dy-
namics simulations suggest that retroreflection does con-
tribute to the experimentally observed structure, we can-
not exclude an additional contribution by ballistic weak
localization, which however would be non-negligible only
for arrays with large obstacle densities. A further clar-
ification would require theoretical work that extends to
larger obstacle densities and includes the effects of the
obstacle shape as well as of in-plane magnetic fields.
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Phys. Rev. B 64, 205306 (2001).
18 A. Dmitriev, M. Dyakonov, and R. Jullien, Phys. Rev.

Lett. 89, 266804 (2002).
19 V. V. Cheianov, A. P. Dmitriev, and V. Y. Kachorovskii,

Phys. Rev. B 68, 201304 (R) (2003).
20 A. Kuzmany and H. Spohn, Phys. Rev. E 57, 5544 (1998).

21 W. Schirmacher, B. Fuchs, F. Höfling, and T. Franosch,
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FIG. 1. (color online) Magnetoresistivity of the pristine 2DEG used for all 2DLG experiments. The typical features of the giant
negative magnetoresistance are observed, namely a strong and broad peak with a much smaller peak on top, both centered at
B⊥ = 0. The broad peak decays rapidly as the temperature is increased, while the small peak on top is more robust. Moreover,
both peaks are suppressed by moderate in-plane magnetic fields B‖. In (b), the corresponding measurements for the 2DLG
formed by circles with ds = 2μm and n� = 0.065 are shown. Its resistivity is about one order of magnitude larger, and the
weak temperature dependence between 100mK and 800mK indicates that the disorder has already suppressed the GNMR
contribution. Also, both components of the peak are quite robust with respect to in-plane magnetic fields.

∗ thomas.heinzel@hhu.de
† Present address: Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
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FIG. 2. (color online) Magnetoresistances of the 2DLGs formed by crosses (a) and squares (b), both with ds = 1μm, measured
at a temperature of 1.4K.
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FIG. 3. (color online) Examples of the longitudinal magnetoconductivities σ(B⊥) as calculated from the measured magnetore-
sistivities for the arrays of retroreflectors with n� = 0.13 , ds = 2μm (a) and of circles with n� = 0.195 , ds = 1μm (c). The
amplitude of the magnetoconductivity peak is estimated by removing the magnetoconductivity measured at 32K in (a) and at
16K in (c), respectively from all data obtained at lower temperatures. The corresponding conductivity differences are shown
in (b) and (d). While the amplitude is of the order of e2/h in the arrays of circles with lare n�, it is much larger in the array
of retroreflectors with small n�.



4 Conclusion and outlook
Within this thesis, we discussed several aspects of classical electron transport.
The main results are briefly summarized here and potential consecutive research
projects are presented.
First we discussed the properties of single magnetic barriers. We could experi-
mentally demonstrate, how a ballistic effect impedes Hall magnetometry in such
structures and how this problem can be overcome using classical numerical sim-
ulations [103]. Naturally, one could now try to vary the shape of the magnetic
profile, but it might be more interesting to instead study the effects of electrostatic
potentials. Consider the case of a depletion zone introduced into the center of a
Hall cross. Certainly this should also modify the Hall resistance in the ballistic
case. This can now be used to generate a better understanding of the precise
potential shape of the depletion zone, since it might be possible to distinguish e.g.
between soft and hard potentials. Knowledge about this would in turn be very
useful in setting up numerical simulations for other transport experiments and
interpreting experiments in general.
By superimposing a homogeneous offset magnetic field anti-parallel to the magnetic
barrier profile, we observed a series of commensurability oscillations, which we
interpreted as snake-orbit resonances with the help of numerical simulations [110].
It would be interesting to include spin effects in these simulations and see if,
by choosing appropriate dimensions, spin-filtering can be achieved within these
structures.
The second building block of this thesis comprised the study of lateral superlattices.
We discovered a regime in antidot lattices, where quantum oscillations coexisted
over a wide range with the conventional commensurability oscillations [192]. By
tracking their relative phase to the quantum Hall effect and with the help of
quantum numerical simulations we could trace back their origin to the coexistence
of hopping- and band-transport in these lattices. There is an interesting prediction
about the influence of hard-walls on semi-classical electron transport, where it
is stated, that the walls can influence the electronic phase, without affecting the
electron trajectory [244]. An experimental verification has not been undertaken to
date, but it might be possible to observe this effect in transport in antidot lattices
or billiard-like systems.
The second superlattice we studied was a novel type of magneto-electric hybrid
lattice, combining a two-dimensional square antidot lattice with a one-dimensional
ferromagnetic stripe lattice [193]. In the case of zero magnetic mean field, we could
show the emergence of pronounced resistance oscillations as a function of the stripe
magnetization. We linked their origin to the existence of commensurate snake
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trajectories. Preliminary experiments on this system in perpendicular magnetic
fields showed a drastic modulation of the commensurability oscillations expected
for the cases of the singular lattices. However, no conclusive picture about the
nature of the underlying transport phenomena could be obtained and is left for
further studies. Similarly, experiments in tilted magnetic fields proved to show
interesting transport features, but an understanding could not yet be reached.
Finally, we studied controlled experimental realizations of a two-dimensional
Lorentz gas in a magnetic field. We could experimentally verify the existence of a
numerically predicted [41] maximum in conductivity for finite magnetic fields [234].
With the help of classical molecular dynamics simulations we could relate this
maximum to a qualitative change in the electron transport mechanism. It can
be interpreted as a signature of the two metal-insulator transitions present in
the phase-diagram of the Lorentz gas. Furthermore, we demonstrated how the
low-field magnetoresistance is influenced by the shape of the artificially introduced
scattering potentials [235]. We found a strongly enhanced zero-field resistance for
the case of retroreflectively shaped obstacles. This is in accordance with a theory
based on a classical memory effect [238–240]. There is still much to learn from
this implementation of the classical Lorentz model. Naturally, one must ask the
question, if the maximum in magnetoconductivity is also influenced by the shape
of the obstacles and, if yes, can it be linked to an underlying phase diagram? It
would also be of highest fundamental interest to not only introduce artificial hard-
wall scatterers, but also control the correlated background disorder. Theoretical
predictions exist for some cases [20, 21], but a well defined experimental study has
not been conducted to the best of our knowledge. Preliminary experiments on
non-linear magnetotransport in Lorentz gases also exhibited interesting features,
which were reminiscent of results obtained in Ref. [245], although their setup did
not include artificial disorder. The link between these experiments remains unclear
to date.
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Kwant-code example
1 # import relevant packages
2 import math
3 from cmath import exp
4 from cmath import cos
5 import numpy
6 import kwant
7 import sys
8 import random
9

10 # this is just for numbering the output files
11 nametag =1
12
13 # define parameters
14 e =1.602e -19
15 hb =6.626e -34/2/ math.pi
16 h =6.626e -34
17 nm=1e-9
18 ms =0.067*9.109e -31
19
20 a=6* nm # tight - binding constant
21 t=hb*hb /2/a/a/ms #tight - binding energy t
22 # magnetic field range of interest
23 B= numpy . linspace ((0.) ,(.5) ,1001)
24
25 mfp =90.* nm *1000./ a # Mean free path
26 EF =2.1273e -21 # Fermi energy
27 V0=math.sqrt (2* math.pow(t ,1.5) *math.sqrt(EF)/mfp)/t # sigma of

gaussian distribution used to calculate random on -site
disorder corresponding to given mean free path

28
29 # define Hall bar geometry
30 W =2500.* nm/a # Half width of the Hall bar
31 L =3000.* nm/a # Half length of the Hall bar
32 WC =1.5*1000.* nm/a # Width of voltage probes
33 DC =2.5*1000.* nm/a # Distance of outer end of voltage probes from

center of Hall bar
34
35 #this function rho takes care of rotating the magnetic vector

potential over the course of the Hall bar , thus allowing for
leads that are perpendicular to each other

36 def rho(x):
37 a1 =2./(DC -L)**3
38 b1 =3.*( DC+L)/(DC -L)**3
39 c1 =6.* DC*L/(DC -L)**3
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40 d1=L **2*(3.* DC -L)/(DC -L)**3
41
42 if x<=-DC:
43 return a1*x**3+ b1*x**2+ c1*x+d1
44 if -DC <x<DC :
45 return 1
46 if x>=DC :
47 return -a1*x**3+ b1*x**2-c1*x+d1
48
49 # On -site disorder within the scattering region . The random part

takes care of residual disorder , 4 is from tight - binding model
. Additional potential should be entered here.

50 def osd(site1 , site2 =0., phi =0.0):
51 x,y=site1.pos
52 return random . gauss (0,V0)+4.
53 # hoppings in the scattering region . rho mediates between the

hoppings in the leads .
54 def hopy(site1 , site2 , phi =0.0):
55 x,y = site1.pos
56 x2 ,y2=site2.pos
57 return -exp (1j *2.* math.pi*(y2 -y)* (x+x2)/2.* phi*rho ((x+x2

)/2.))
58 def hopx(site1 , site2 ,phi =0.0):
59 x,y = site1.pos
60 x2 ,y2=site2.pos
61 return -exp (1j *2.* math.pi*(y+y2) /2.*(( x2*rho(x2)-x*rho(x)

) -(x2 -x))*phi)
62 # hoppings in leads with symmetry in x- direction
63 def hopylx (site1 , site2 , phi =0.0):
64 return -1
65
66 def hopxlx (site1 , site2 ,phi =0.0):
67 x,y = site1.pos
68 x2 ,y2=site2.pos
69 return -exp (-1j *2.* math.pi*(y+y2)/2*(x2 -x)*phi)
70 # hoppings in leads with symmetry in y- direction
71 def hopyly (site1 , site2 , phi =0.0):
72 x,y = site1.pos
73 x2 ,y2=site2.pos
74 return -exp (1j *2.* math.pi*(y2 -y)* (x+x2)/2.* phi)
75
76 def hopxly (site1 , site2 ,phi =0.0):
77 return -1
78
79
80 def make_system (a_=1, t_ =1):
81
82 lat = kwant . lattice . square (a_)
83 sys = kwant . Builder ()
84 # defide Hall bar dimensions
85 def bar(pos):
86 (x, y) = pos
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87 if abs(x)>L or abs(y)>W:
88 return 0
89 return 1
90
91 # define on site and hopping elements inside Hall bar
92 sys[lat.shape(bar , (0 ,0))] = osd
93 sys[kwant. builder . HoppingKind ((1, 0), lat , lat)] = hopx
94 sys[kwant. builder . HoppingKind ((0, 1), lat , lat)] = hopy
95
96 # define lead symmetry and geometry
97 sym_lead = kwant . TranslationalSymmetry (( -a_ ,0))
98 sym_lead2 = kwant. TranslationalSymmetry ((0,a_))
99 sym_lead3 = kwant. TranslationalSymmetry ((0,a_))

100 lead = kwant. Builder ( sym_lead )
101 lead2 = kwant . Builder ( sym_lead2 )
102 lead3 = kwant . Builder ( sym_lead3 )
103
104 def lead_shape (pos):
105 (x, y) = pos
106 return (-W <= y<= W )
107
108 def lead_shape2 (pos):
109 (x, y) = pos
110 return (-DC <= x <= -(DC -WC) )
111 def lead_shape3 (pos):
112 (x, y) = pos
113 return (DC -WC <= x <= (DC) )
114
115
116 # define on site and hoppings in the leads
117 lead[lat.shape(lead_shape , (-L, 0))] = 4 * t_
118
119 # current leads
120 lead[kwant. builder . HoppingKind ((1 , 0) , lat , lat)] = hopxlx
121 lead[kwant. builder . HoppingKind ((0 , 1) , lat , lat)] = hopylx
122
123 sys. attach_lead (lead)
124 sys. attach_lead (lead. reversed ())
125
126
127 # voltage probes
128 lead2[lat.shape( lead_shape2 , (-(DC -WC /2.) , W))] = 4 * t_
129 lead2 [ kwant . builder . HoppingKind ((1 , 0) , lat , lat)] = hopxly
130 lead2 [ kwant . builder . HoppingKind ((0 , 1) , lat , lat)] = hopyly
131
132 sys. attach_lead ( lead2 )
133 sys. attach_lead ( lead2 . reversed ())
134
135
136 lead3 [lat. shape ( lead_shape3 , (DC -WC /2. , W))] = 4 * t_
137 lead3 [ kwant . builder . HoppingKind ((1 , 0) , lat , lat)] = hopxly
138 lead3 [ kwant . builder . HoppingKind ((0 , 1) , lat , lat)] = hopyly
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139
140 sys. attach_lead ( lead3 )
141 sys. attach_lead ( lead3 . reversed ())
142
143
144 return sys
145
146
147 def main ():
148 sys = make_system ()
149 # finalize system
150 sys=sys. finalized ()
151 # convert magnetic field to magnetic flux
152 phi=B*a*a*e/h
153
154 # enter energy to calculate
155 E=numpy. linspace (EF/t,EF/t ,1)
156
157 Resistance1 = []
158 Resistance2 = []
159 Resistance3 = []
160 Resistance4 = []
161 dos =[]
162
163 # iterate over Fermi - energies and magnetic fields
164 for ef in E:
165 for bf in phi:
166 # construct Landauer Buttiker Matrix with drain

contact set to V=0
167 V= numpy . zeros ( shape =(5 ,5))
168 smatrix = kwant. smatrix (sys , ef ,args =[bf])
169 num= numpy .int_ ([0 ,2 ,3 ,4 ,5])
170 for i in numpy. linspace (0,4,5, dtype= int):
171 for j in numpy . linspace (0,5,6, dtype =int):
172 if j!= num[i]:
173 V[i,i]+= smatrix . transmission (num[i],j)*2*e*e/

h
174 for i in numpy. linspace (0,4,5, dtype= int):
175 for j in numpy . linspace (0,4,5, dtype =int):
176 if j!=i:
177 V[i,j]=- smatrix . transmission (num[i],num[j

]) *2*e*e/h
178
179
180 # Calculate potentials
181 K1=numpy. linalg .solve(V ,(1 ,0 ,0 ,0 ,0))
182
183 Resistance1 . append (K1[2]-K1 [4])
184 Resistance2 . append ((K1[1]-K1 [2]))
185 Resistance3 . append (K1[1]-K1 [3])
186 Resistance4 . append (K1[3]-K1 [4])
187
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188 # save Resistances , Bfields and energy
189 name="E"+str( nametag )+".txt"
190 file_E = open(name ,’wb’)
191 numpy . savetxt (file_E ,E)
192 file_E . close ()
193
194 name="B"+str( nametag )+".txt"
195 file_B = open(name , ’wb’)
196 numpy . savetxt (file_B ,B)
197 file_B . close ()
198
199 name="Rxx1"+str( nametag )+".txt"
200 file_Rxx = open(name , ’wt’)
201 file_Rxx . write (str( Resistance3 )[1: -1])
202 file_Rxx . close ()
203 name="Rxy1"+str( nametag )+".txt"
204 file_Rxy = open(name ,’wt’)
205 file_Rxy . write (str( Resistance2 )[1: -1])
206 file_Rxy . close ()
207 name="Rxx2"+str( nametag )+".txt"
208 file_Rxx2 = open(name , ’wt’)
209 file_Rxx2 .write(str( Resistance1 )[1: -1])
210 file_Rxx2 .close ()
211 name="Rxy2"+str( nametag )+".txt"
212 file_Rxy2 = open(name , ’wt’)
213 file_Rxy2 .write(str( Resistance4 )[1: -1])
214 file_Rxy2 .close ()
215
216 # calculate ldos , sum to dos and save
217 ldos=kwant.ldos(sys , ef ,args =[bf])
218 dos. append ( numpy .sum(ldos))
219 name="DOS"+str( nametag )+".txt"
220 file_dos = open(name ,’wt’)
221 file_dos . write (str(dos)[1: -1])
222 file_dos . close ()
223
224 main ()
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