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List of included publications

S. Plugge, A. Zazunov, P. Sodano, and R. Egger, Majorana entanglement bridge, Phys.
Rev. B 91, 214507 (2015). [Selected as Editors’ Suggestion]

L.A. Landau, S. Plugge, E. Sela, A. Altland, S.M. Albrecht, and R. Egger, Towards real-
istic implementations of a Majorana surface code, Phys. Rev. Lett. 116, 050501 (2016).

S. Plugge, A. Zazunov, E. Eriksson, A.M. Tsvelik, and R. Egger, Kondo physics from
quasiparticle poisoning in Majorana devices, Phys. Rev. B 93, 104524 (2016).

S. Plugge, L.A. Landau, E. Sela, A. Altland, K. Flensberg, and R. Egger, Roadmap to
Majorana surface codes, Phys. Rev. B 94, 174514 (2016). [Selected as Editors’ Suggestion]

S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, Majorana box qubits, New J. Phys.
19 012001 (2017). [Fast-Track Communication; selected for Highlights of 2017 collection]

T. Karzig, C. Knapp, R. Lutchyn, P. Bonderson, M. Hastings, C. Nayak, J. Alicea, K.
Flensberg, S. Plugge, Y. Oreg, C. Marcus, and M. H. Freedman, Scalable Designs for
Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero
Modes, Phys. Rev. B 95, 235305 (2017). [Featured in Physics ]

M. Sekania, S. Plugge, M. Greiter, R. Thomale, and P. Schmitteckert, Braiding errors in
interacting Majorana quantum wires, Phys. Rev. B 96, 094307 (2017).

M. Gau, S. Plugge, and R. Egger, Quantum transport in coupled Majorana box systems,
Phys. Rev. B 97, 184506 (2018). [Selected as Editors’ Suggestion]

iii





Abstract

In condensed-matter physics, Majorana fermions are realized as emergent quasi-particle
excitations in the effective low-energy description of topological superconducting systems.
Majorana bound states harbor much potential, both from a fundamental-physics viewpoint
and for applications in quantum information processing, and their non-Abelian exchange
statistics are fundamentally different from those of conventional fermions or bosons.

We start by introducing Majorana systems that afford the topologically protected stor-
age and manipulation of quantum information. A braiding of Majorana fermions may
reveal their hallmark non-Abelian statistics, and forms the basic operation that is cru-
cial for applications in quantum information processing. We discuss both an ideal braid
scenario and corrections to this toy model view for interacting Kitaev chains. Next, the
inclusion of charging energy effects allows for charge transport to access the non-local char-
acter of Majorana bound states in mesoscopic topological superconductors. The relevant
physics of charge conservation are captured by a simple capacitor model, and we investigate
how entanglement spreads between quantum dots tunnel-coupled by such Majorana boxes.
Phase-coherent transport in coupled Majorana box devices also facilitates the formation of
strongly-correlated low-energy states in simply-coupled islands contacted by normal leads.
We here explain core solution strategies for quantum transport phenomena in Majorana
networks while reviewing the topological Kondo effect, followed by an investigation of
multi-junction geometries that go beyond the simple junctions considered before. In the
Majorana box and loop qubit devices that comprise basic hardware units towards quantum
computing applications, simple conductance or spectroscopic measurements can be used
to characterize the ensuing Majorana-based qubits. We then discuss fundamental concepts
and requirements for quantum information processing, starting from single- and two-qubit
operations all the way to large-scale and fault-tolerant quantum error correcting codes. An
extension of our basal hardware units to small networks allows for measurement-based pro-
tected quantum computations with Majoranas, up to and including Clifford-complete code
networks that can run arbitrary quantum error-correction protocols. A promising example
for Majorana-based quantum error-correction is the Majorana surface code shown in the
last part of this thesis. Finally, we give an outlook of the current experimental progress on
phase-coherent Majorana networks, and mention interesting directions of future research.
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Zusammenfassung

In der Festkörperphysik findet man Majorana-Fermionen als nieder-energetische Quasiteil-
chen in der effektiven Beschreibung von topologischen Supraleitern. Die hier realisierten
Majorana-Zustände haben viele interessante Anwendungen, sowohl vom Blickpunkt fun-
damentaler Physik als auch in der Quanteninformationsverarbeitung. Ihre nicht-Abelsche
Austauschstatistik unterscheidet sie grundlegend von normalen Fermionen oder Bosonen.

Wir beginnen mit einer Einleitung zu Majorana-Systemen, die eine topologisch geschützte
Speicherung und Manipulation von Quantenzuständen ermöglichen. Durch den Austausch
von Majorana-Fermionen kann man ihre nicht-Abelsche Statistik nachweisen, die für An-
wendungen in Quanten-Computern grundlegend ist. Zur Veranschaulichung betrachten
wir zuerst ideale Austauschprozesse, und diskutieren dann Korrekturen in realistischen
Systemen. Als nächstes betrachten wir Majorana-Boxen mit endlicher Ladungsenergie,
in denen Ladungstransport den nicht-lokalen Charakter von Majorana-Zuständen detek-
tieren kann. Die relevante Physik in ladungserhaltenden Systemen kann durch einfache
Kondensator-Modelle beschrieben werden. Durch korrelierten Ladungstransport kann so
ein verschränkter Zustand in mehreren an die Box gekoppelten Quantenpunkten entstehen.
Genauso erlaubt phasen-kohärentes Tunneln in Majorana-Boxen die Formation von korre-
lierten Niederenergie-Zuständen in normalleitenden Kontakten, die an das System gekop-
pelt sind. In diesem Zusammenhang erläutern wir allgemeine Lösungsstrategien für Quan-
tentransportprobleme in Majorana-Netzwerken anhand des topologischen Kondo-Effekts,
und gehen danach auf kompliziertere Kontakt-Geometrien ein. Majorana-Boxen und ver-
wandte Systeme stellen grundlegende Bausteine für Majorana-basierte Quantenarchitek-
turen dar, in denen Transport- oder spektroskopische Messungen zur Charakterisierung
von Quanten-Bits eingesetzt werden können. Hier diskutieren wir zuerst grundlegende
Konzepte der Quanteninformationsverarbeitung, angefangen mit einzelnen oder kleinen
Gruppen von Quanten-Bits bis hin zu skalierbaren Quantenfehler-korregierenden Kodes.
Die Erweiterung einzelner System-Bausteine zu Netzwerken erlaubt dann eine Messungs-
basiert geschütze Implementation von Quanten-Computern mit Majorana-Fermionen, bis
hin zu Kode-Netzwerken die beliebige Protokolle zur Quantenfehler-Korrektur realisieren
können. Ein vielversprechendes Beispiel für Majorana-basierte Quantenfehler-Korrektur ist
der Majorana surface code, den wir im letzten Teil der Arbeit diskutieren. Zum Abschluss
geben wir einen Ausblick auf aktuelle experimentelle Fortschritte zu phasen-kohärenten
Majorana-Netzwerken, und erwähnen einige interessante zukünftige Forschungsrichtungen.
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Chapter 1

Introduction

More than eighty years ago, the Italian physicists Majorana (1937) proposed to separate
the complex equations of Dirac (1934) and Heisenberg (1934) into real and imaginary parts.
What at first may seem like a mathematical exercise, indeed has profound implications for
the quantum-mechanical particles described by Majoranas’ and Diracs’ equations. A single
Dirac fermion with complex-valued wave function is split into two Majorana fermions with
real wave functions. Among other things, this implies that Majorana fermions are their
own anti-particle: taking the Hermitian adjoint of a Majorana operator gives back the
same, and creation or annihilation of Majorana particles are equivalent physical processes.
Consequently, if found at all, Majorana fermions should be charge-neutral and spin-less.

Aside from a few stints in particle physics, Majorana fermions (MFs) in form of Majorana
bound states (MBSs) can arise as low-energy quasi-particles in condensed-matter systems.
The topological superconductors (TSs) harboring such exotic particles in the past decades
have become an active and rapidly progressing area of research. Read and Green (2000)
showed that MBSs are hosted in vortices of p-wave superconductors, where electronic spin
does not play a role and charge conservation is broken. The low-energy excitations of
this system indeed are MFs, and Ivanov (2001) suggested that their non-Abelian exchange
statistics – a hallmark feature of MFs – can be tested by moving and braiding vortices.
Around the same time, Kitaev (2001) introduced his model for one-dimensional p-wave
superconductors, where MBSs appear naturally and are hosted at the edges of a TS phase.

Following these developments, Fu and Kane (2008) showed how MBSs can be engineered
as emergent quasi-particle excitations in the low-energy theory of hybrid semiconductor-
superconductor systems. Soon thereafter, the ideas of Kitaev (2001) were extended to a
concrete materials system by Oreg et al. (2010); Lutchyn et al. (2010). Rapid progress
ensued, and an experimental observation of MBSs was reported in Mourik et al. (2012).
The exponential ground-state degeneracy (Albrecht et al., 2016) and resonant transport
signatures (Nichele et al., 2017; Zhang et al., 2018) that are hallmarks of MBSs were sub-
sequently observed, cf. the review by Lutchyn et al. (2017). Still, a conclusive braiding
experiment (Ivanov, 2001; Alicea et al., 2011; Aasen et al., 2016), revealing the most in-
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CHAPTER 1. INTRODUCTION

teresting and crucial non-Abelian statistics of MFs, remains to be achieved.

The strong recent interest in Majorana bound states (MBSs) stems from their potential
for quantum information processing applications. Freedman et al. (2003); Kitaev (2003)
showed how anyons become useful tools for quantum computation, and related anyon fusion
to the braiding of excitations in quantum error correcting codes, cf. Nayak et al. (2008).
Beyond serving as protected quantum storage, adiabatic (Ivanov, 2001; Alicea et al., 2011)
or measurement-based braiding (Bonderson et al., 2008a) of Majorana fermions allows to
implement some quantum gates in a protected manner. The use of topological qubits then
incites hope for a reduced overhead in quantum error correction compared to conventional-
qubit implementations (Fowler et al., 2012; Terhal, 2015). This may become a powerful
tool on the long road towards large-scale, fault-tolerant and universal quantum computers.

Core parts of this work concern different levels of basic Majorana devices, Majorana-based
qubits or code-network architectures. The thesis is organized in according topical blocks:

• In Chapter 2 we introduce how Majorana bound states can arise in condensed-matter
systems. After an encoding of quantum information into Majorana fermions, braiding
is used to manipulate the stored quantum states. Finally, mesoscopic Majorana
boxes are topological superconductors with a large single-electron charging energy.
Quantum dots coupled to this system become entangled due to the phase-coherent,
non-local electron transport processes mediated by pairs of Majorana states.

• In Chapter 3 we analyze Majorana boxes coupled by normal-conducting leads. The
phase-coherent tunneling of electrons generates strongly-correlated states in leads
that reveal themselves in exotic low-energy physics, including unconventional Kondo
effects and quantum transport resonances. Setups with multi-junctions of leads and
Majorana bound states are instrumental to the operation of Majorana-based qubits.

• In Chapter 4 we engineer Majorana-based qubits and small-scale Majorana networks
towards the realization of measurement-based topological quantum computation.
Some of the few-qubit architectures we consider represent near-term experimental
setups that already are realized in the lab. We then extend such Majorana networks
to hardware platforms that are capable of running quantum error-correcting codes,
i.e., that in principle can implement large-scale universal quantum computers.

• In Chapter 5 we summarize our contributions to quantum transport and computation
in Majorana box systems. We review some of the recent experimental progress in this
rapidly evolving field, and conclude with an outlook on interesting future research.

In each chapter, we give a short introduction to the concepts and technical aspects that are
relevant to an understanding of our research. To this end, we review some relevant earlier
works, and discuss an embedding of our results into the bigger scientific context. We then
summarize our main contributions, and mention interesting ongoing research in the field.
All eight publications that are included in this thesis can be found in the attachment.
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Chapter 2

Majorana fermions in condensed
matter and quantum information

In this Chapter we give a basic introduction to Majorana fermions in condensed-matter
systems and their potential for quantum-information processing applications. Rather than
providing an exhaustive overview of this manifold and rapidly progressing field, we here
focus on the most important aspects towards a self-contained understanding of this thesis.

As starter, in Sec. 2.1 we discuss a simple lattice Hamiltonian introduced by Kitaev (2001)
in one of his many seminal works. The Kitaev chain harbors two distinct physical phases
which are conveniently described through the introduction of Majorana fermions (MFs).
We then explain how quantum information is encoded in Majorana zero-modes (MZMs),
and how one can represent MFs by sets of Pauli operators in Sec. 2.2. Following works of
Ivanov (2001); Alicea et al. (2011), in Sec. 2.3 we discuss how braiding of MFs – one of the
hallmark features of these exotic particles – can be understood in the context of quantum-
information processing (QIP). We here also review our investigation Sekania et al. (2017) of
braiding in interacting Kitaev chain systems. Finally, in Sec. 2.4 we introduce a toy-model
description of mesoscopic topological superconductors, cf. Fu (2010); Hützen et al. (2012).
Phase-coherent electron transport through such Majorana islands allows for generation
of correlations and entanglement between quantum dots, cf. Sec. 2.4.2, a system hence
dubbed Majorana entanglement bridge in Plugge et al. (2015). In Sec. 2.5, we conclude
with a short summary of results that are most important for later parts of the thesis.
As we will see, phase-coherent tunneling also facilitates the formation of strongly-correlated
states in leads attached to multi-terminal Majorana islands. Such scenarios are subject of
Chapter 3, where the presence of MZMs on the island has profound influences on the low-
energy and quantum transport behavior of the system. Further, quantum dots and leads
coupled to Majorana islands are of strong interest in recent proposals for Majorana-based
topological qubits and QIP-schemes, some of which are reviewed in Chapter 4.

For much of this chapter, we follow reviews by Alicea (2012); Leijnse and Flensberg (2012b);
Beenakker (2013) and the excellent online course by TU Delft et al. (2018).
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CHAPTER 2. MAJORANA FERMIONS

2.1 A toy model for topological superconductors

Following Kitaev (2001) and the review by Alicea (2012), the second-quantized Hamiltonian
of a 1D spinless p-wave superconductor described by an N -site Kitaev chain is given as

Hchain = −
N∑
j=1

μjc
†
jcj −

N−1∑
j=1

(
tc†j+1cj +Δeiφcj+1cj + h.c.

)
. (2.1)

Here μj is a chemical potential controlling the occupation nj = c†jcj of site j, where the
position-dependence of this parameter is a handle to control the system. Hopping and
pairing of electrons along the chain is described by a nearest-neighbor hopping amplitude t
and p-wave superconducting pairing strength Δ with phase φ. While anisotropies in both
hopping and pairing parameters can be easily included, we assume them to be uniform and
positive along the chain, t ≥ 0 and Δ ≥ 0. In order to access the physics of this system, it
is convenient to introduce two Majorana fermion (MF) operators γA,j and γB,j per lattice
site j by writing

cj =
e−iφ/2

2
(γB,j + iγA,j) , (2.2)

and conversely

γB,j = eiφ/2cj + e−iφ/2c†j , γA,j = −i
(
eiφ/2cj − e−iφ/2c†j

)
. (2.3)

Since the original fermion operators cj and c†j fulfill the Dirac fermion algebra, {ci, c†j} = δij,
it is easy to check that the Majorana operators fulfill a Clifford algebra, {γi, γj} = 2δij. This

implies γ2
j = 1, and we obtain the defining self-adjoint property γj = γ†

j of a MF (operator);
MFs are their own anti-particles (Majorana, 1937), and creation or annihilation describe
the same physical processes. Writing the Kitaev chain Hamiltonian Hchain in Eq. (2.1) in
MF representation, we find (up to a constant)

Hchain =
1

2

N∑
j=1

μj(iγA,jγB,j)−
1

2

N−1∑
j=1

[Δ+(iγB,jγA,j+1)−Δ−(iγA,jγB,j+1)] , (2.4)

with Δ± = t ±Δ. The decomposition of fermion sites into MFs with different pairings is
shown and discussed in Fig. 2.1 below. MF parity-pairs have eigenvalues ±1, as seen by
reinserting a complex-fermion representation, iγA,jγB,j = 1−2c†jcj = 1−2nj with nj = 0, 1.

Contributions ∼ μj, Δ± in Eq. (2.4) favor different types of MF pairing. After recombining
MFs to complex fermions, these correspond to the differing suitable eigenbases of the
problem, depending on which pairing terms dominate. It is instructive to consider two
limiting cases of the Kitaev chain that describe physically distinct phases. First, in the
absence of hopping- or pairing-terms, Δ± = 0, with chemical potential μj = μ we find

H ′
chain =

1

2
μ

N∑
j=1

(iγA,jγB,j) � −μ
N∑
j=1

c†jcj . (2.5)

4 2.1. A toy model for topological superconductors



CHAPTER 2. MAJORANA FERMIONS

Negative chemical potential (μ < 0) now penalizes occupation of the original fermion sites.
The ground state of the chain then is identified with fermion occupation numbers nj = 0,
i.e., with the locally paired even fermion-parity state, iγA,jγB,j = + for j = 1, ..., N .
A drastically different state is realized at zero chemical potential, μj = 0, with equal
hopping- and pairing-strengths Δ = t, translating to Δ+ = 2t and Δ− = 0. We note

H ′′
chain = −t

N−1∑
j=1

(iγB,jγA,j+1) � 2t
N−1∑
j=1

d†jdj . (2.6)

This situation is shown in the left part of Fig. 2.1. Importantly, only N − 1 fermion-
parity pairs appear in the Hamiltonian, identified with the shifted fermion operators
dj = (γA,j+1 + iγB,j)/2. These reflect non-local pairing in terms of the original sites of the
chain, and occupation of each state costs energy 2t, where the ground state has nd,j = 0
for j = 1, ..., N − 1. A single fermion state f = (γB,N + iγA,1)/2 can either be occupied
or empty, iγA,1γB,N = ± with corresponding states |0f〉 and |1f〉, at no additional energy
cost. This state is maximally nonlocal in that it contains one MF γA,1 from the first, and
one MF γB,N from the last site of the chain.
Non-locality and the fractionalization of fermionic states into MFs allows for protection
of Majorana-based qubits against decoherence. However, the Majorana non-locality also
makes it difficult to access and manipulate Majorana systems, as discussed extensively in
Sec. 2.4 and Chapters 3 and 4. Any physical process affecting the combined fermionic state
|nf〉 has to act on the system in a non-local fashion, where Hamiltonian-level terms ∼ f (†)

imply a coupling both to first and last sites in the original local-fermion basis.

We denote phases with or without Majorana edge states as topological and (topologically)
trivial, or topological superconductor (TS) and trivial superconductor, respectively. Here
the latter phase, even if pairing Δ± �= 0 is active, for large enough μ → −∞ is directly
connected to the (trivial) vacuum with nj=1,...,N = 0. In contrast, in the topological phase
the existence of Majorana edge states γA,1 and γB,N depends only on the presence of
boundaries/edges in the system (i.e., on its topology). To this end, consider deformation
of the chain to a ring with site j = N + 1 ≡ 1. We introduce additional MF pairings as

Hring = Hchain −
1

2

[
Δ̄+(iγB,NγA,1)− Δ̄−(iγA,NγB,1)

]
. (2.7)

For Δ̄ = t̄, with Δ̄+ = 2t̄ and Δ̄− = 0, these terms gap the previously non-local fermion-
parity pair iγB,NγA,1 = ± in H ′′

chain, leaving no free Majoranas in the system. Instead
choosing t̄ = −Δ̄, with Δ̄− = −2t̄ (and Δ̄+ = 0), corresponds to anti-periodic boundary
conditions identified with the insertion of a virtual flux π in the Kitaev ring. (Imagine an
electron tunneling once around the ring – it experiences a phase-shift π upon crossing the
final link with coupling t1,N = −t̄). In this case the Majorana pair iγB,NγA,1 remains free.

2.1. A toy model for topological superconductors 5



CHAPTER 2. MAJORANA FERMIONS

γL γR(x)

Δ0

Figure 2.1: Kitaev chain system with anisotropic couplings, cf. Eqs. (2.4) and (2.8). On
each original fermion site (ovals), left and right MFs are of A- and B-type, respectively.
Dotted (solid) ovals indicate absence (presence) of chemical potentials that favor local MF
pairing. Solid and dashed lines denote inter-site Majorana pairings Δ±. In the left part
(separated by vertical bold line), strong pairing Δ+ leaves behind one localized MZM γL.
The right side then contains 11 MFs in Eq. (2.8), where a single MZM γR(x) is localized
somewhere along the right chain, depending on pairings Δ± and chemical potentials μx.

2.1.1 About the localization of Majorana bound states

In this section, we discuss the localization of Majorana bound states (MBSs) in Kitaev
chains, and how it is affected by non-ideal parameter settings, i.e., taking μj �= 0 and
t �= Δ in Sec. 2.1. From there we also learn about the nature of the trivial-topological
phase transition, and how to manipulate the position of Majoranas in these systems, e.g.,
via chemical-potential manipulation protocols μj → μj(t). Ultimately this allows us to
braid MFs through sequential manipulations of local parameters, see Section 2.3 below.

Consider a Kitaev chain with sites j′ = −N ′, ..., 0 (left) and j = 1, ..., N (right) in Hchain,
cf. Eq. (2.4) and Fig. 2.1. The left part is at the Kitaev point with μj′ = 0, Δ′

+ = 2t′

and Δ′
− = 0, whereby all its Majorana pairs are frozen out into the even-parity state,

iγB,j′γA,j′+1 = + at j′ < 0. Any excitation in the left chain then costs energy 2t′ apart
from the free MF γA,−N ′ ≡ γL at the boundary, and we have a single central Majorana γB,0

coupling to the right chain at j > 0, cf. Fig. 2.1. This system is described by

H2ch = −Δ0

2
(iγB,0γA,1) +

1

2

N∑
j=1

μj(iγA,jγB,j)−
1

2

N−1∑
j=1

[Δ+(iγB,jγA,j+1)−Δ−(iγA,jγB,j+1)] .

(2.8)
We now are interested in the physics and localization of the rightmost free MF γR(x).
Because there is a free MF γL at the left end of the chain, and since we are dealing
with a finite system, there must exists such a mode that is localized at zero energy, i.e.,
it commutes with the Hamiltonian, [H2ch, γR(x)]− = 0. Alternatively, observe that the
reduced Hamiltonian above contains an odd number of MFs (exactly 2N + 1).
The right, non-ideal Majorana operator γR(x) can be constructed following Fendley (2012).

We start with a guess, e.g. γ
(0)
R (x) = γB,0 representing the Majorana zero-mode (MZM) at

Δ0 = 0 (decoupled chains), and then iteratively add corrections γ
(1)
R (x) = γB,0 + · · · that

eliminate non-vanishing contributions in the commutator with H2ch. Since γL is an A-type
MF, the operator γR(x) can have support only on B-type Majorana sites of the chain.

6 2.1. A toy model for topological superconductors
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With the ansatz γR(x) =
∑N

n=0 βnγB,n and from [H2ch, γR(x)]− = 0, we find

0 = (Δ0β0 + μ1β1 +Δ−β2) γA,1 + (μNβN +Δ+βN−1) γA,N (2.9)

+
N−1∑
n=2

(μnβn +Δ+βn−1 +Δ−βn+1) γA,n

We here sorted contributions according to their A-type Majorana operator content. Since
the operators γA,j act on distinct local-fermion basis states nj = 0, 1, from the N prefac-
tors in Eq. (2.9), we obtain a recursive set of equations for the coefficients βn=0,...,N . With
normalization γ2

R = 1, this recursion then fully determines the zero-mode operator γR(x).

It now is instructive to investigate two limiting cases. First, we consider a vanishing
chemical potential also in the right chain (μj = 0). Taking Δ0 ≡ Δ+, we obtain

βk =

(
−Δ−
Δ+

)(N−k)/2

βN , for k = N, N − 2, ... , (2.10)

and βk−1 = 0. The zero-mode operator has support on every second site of the chain, count-
ing from the right-most site. With Δ± = t±Δ, and taking Δ < t, we find Δ+ > Δ− > 0.
Coefficients βk then constitute a decreasing series, and the support on the last site (βN)
becomes dominant for Δ → t (Δ− → 0). We can interpret this in terms of a topological
phase that has extended across, where γR(x) → γB,N becomes (perfectly) localized as one
approaches the Kitaev point for the full chain. The envelope of this series matches an expo-
nential decay function ∼ e−x/ξ, with MBS localization length ξ. The latter often is used to
quantify the protection and residual overlaps of near-localized MBSs in topological phases.
With distance x = N − k from the right end of the chain, one finds ξ = 1/ ln

√
Δ+/Δ− in

Eq. (2.10), which correctly gives perfect localization (ξ → 0) at the Kitaev point Δ → t.

A π-shift of the sc phase φ is introduced by switching Δ → −Δ from middle to right end,
which implies Δ± → Δ∓ in Eqs. (2.9) and (2.10). With the new Δ±, one finds coefficients
β̃2m = (−Δ−/Δ+)

mβ0 that constitute a decreasing series at m ≥ 0. The MBS γR(x) then
is located at site “0”, with exponentially decaying tail into the right chain. By symmetry,
also the right segment generates a set of MBSs γ′

L (at x ≈ 0) and γ′
R (at the right end).

Chains with distinct pairing symmetries hence can host “accidental” MZMs at their junc-
tion that do not gap out. This situation is equivalent to that of the Kitaev ring under
anti-periodic boundary conditions, cf. Eq. (2.7), where a pair of MFs remains gapless even
though there is no (physical) boundary in the system. In this sense, the Kitaev chain hosts
two distinct topological phases for Δ > 0 and Δ < 0. The phase-transition point at μ = 0
is given by |Δ+| = |Δ−|, and for finite superconducting pairing Δ �= 0 (and hopping t �= 0)
one finds either of the topological phases with dominant Δ±-pairing.

2.1. A toy model for topological superconductors 7
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Finally we consider a spatially varying chemical potential, as used in the Majorana braiding
protocols of Sec. 2.3. With Δ = t, we have Δ+ = Δ0 = 2t and Δ− = 0 in Eq. (2.9), but
now allow μx �= 0. With ansatz γR(x) =

∑N
n≥0 βnγB,n, we find the series coefficients via

βn =
n∏

j>0

(
−Δ+

μj

)
β0 , n = 1, ..., N . (2.11)

MZM γR(x) now has finite operator support on all sites n ≥ 0, again with sign-fluctuations
between consecutive occupied sites. Taking isotropic μn = μ yields βn = (−2t/μ)nβ0,
where the MZM γR is exponentially localized in the middle (at the right end) of the chain
for |μ| > μc = 2t (for |μ| < μc). Unlike before, for |μ| > μc the right segment is not in a
topological phase anymore, but rather experiences a trivial pairing connected to the case
μ → ±∞, cf. Eq. (2.5) and discussion. We hence have identified the (full) phase diagram
of the Kitaev chain with the interesting topological phase(s) at |μ| < 2t hosting MFs, cf.
the reviews by Alicea (2012); Leijnse and Flensberg (2012b); Beenakker (2013).

Last, introducing a spatially varying chemical potential μx allows to localize the MZM
γR(x) in an arbitrary way in region x ≥ 0 of the chain. In principle one may imprint
a complicated spatial profile according to Eq. (2.11). We are more interested in simple
cases and choose, e.g., a linear ramp μn � αμcn with inclination α � 1. The wave-
function weights βn in γR(x) will increase up to the point μx = μc, up till where the
factor |Δ+/μn| > 1 is large. Afterwards, as μn>x > μc drives the system out of the
topological phase, the weights βn>x decline. Put together, we then observe a localization
of the MZM around point μx � μc. Taking a logarithm and switching to continuous
variables n, j → x, x′, for the envelope function of the prefactor in Eq. (2.11) we find

ln (β(x)/β0) � −
∫ x

0

dx′ ln
(
μ(x′)
μc

)
. (2.12)

These weights are subject to normalization
∫ L

0
dx[β(x)]2 = 1, with L ≡ N . As example,

for the linear ramp μ(x̃′) = μc(1+αx̃′) one finds a super-exponential decay β(x̃) ∼ e−αx̃2/2.
Here x̃ = x− α−1 is measured from the phase transition point at μ(x = α−1) = μc.

We conclude by noting that slow (adiabatic) manipulations of chemical potentials should
allow to shift around MBSs localized at distant points in Kitaev chains and networks.
Since the MZM wave-functions are exponentially decaying into both the topological and
trivially gapped regimes, moderate separations on scale of a few times the MBS localization
length ξ should suffice to consider them as independent. We hence proceed to introduce
their ideal-braiding properties in an independent single-particle picture below, cf. Sec. 2.3,
where corrections to this toy-model view are discussed in our work Sekania et al. (2017).

8 2.1. A toy model for topological superconductors
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2.2 Encoding qubits in Majorana zero-modes

Throughout this work, we extensively use the Majorana operator representation in both
condensed-matter and quantum-information related context. A very helpful way to rephrase
a system of 2N MFs is then not in terms of N complex fermions, see Sec. 2.1, but through
N qubits with associated Pauli operators σn=1,...,N

a=x,y,z . In condensed-matter context, this way
of rewriting complex fermions or MFs into Pauli operators is known as the Jordan-Wigner
transformation (Altland and Simons, 2010). In group-theoretical terms, the rephrasing

relies on realization of a 2N -component real Majorana “spin” 
S with entries Sjk = iγjγk
that belongs to the special orthogonal group SO(M). What is used below is the spinor
irreducible representation of the group SO(M) for even M = 2N (Zee, 2016).
Evidently, this representation or encoding of N qubits in 2N MFs reproduces the correct
Hilbert space dimension 2N ; the quantum dimension of Majorana operators is

√
2. As

an additional bonus, in the spin- or qubit-language, often it is more familiar to deal with
ambiguities of basis choice. There is no ad-hoc preferred way to pair the 2N MFs into
fermion states or spins, since they all belong to the low-energy sector of the system.

We now make contact between MFs with their underlying Clifford algebra and a description
via “conventional” qubits and qubit operators obeying a Pauli algebra. For Majoranas γj
and Pauli operators σn

a , recall part of their respective Clifford and Pauli algebras as

{γi, γj} = γiγj + γjγi = 2δijI2 , {σn
a , σ

m
b } = 2δabδnmI2 . (2.13)

Henceforth identity matrices I2 = diag(1, 1) are suppressed in our notation. We now start
an iterative construction of the Pauli representation for Majorana operators. Because of
anti-commutativity and since each Majorana should square to one, γ2

j = 1, we write

γ1 = σ1
x , γ2 = σ1

y . (2.14)

In order to anti-commute with γ1 and γ2, any further Majorana operators now have to
contain σ1

z . By analogy to the first two Majoranas above, we therefore continue as

γ3 = σ2
xσ

1
z , γ4 = σ2

yσ
1
z . (2.15)

Evidently these operators fulfill the Clifford algebra above. We hence identify the iterative
structure of representation for Majorana operators as

γ2j−1 = σj
x

∏
n<j

σn
z , γ2j = σj

y

∏
n<j

σn
z , for j = 1, ..., N . (2.16)

For each two Majoranas we have to add one additional set of Pauli operators, as expected
on grounds of their Hilbert-space dimensions. We also observe that the chains of Pauli
operators become increasingly non-local in terms of spins or fermion-sites as we keep adding
Majorana fermions that are to be represented. Luckily, in many cases that are of interest

2.2. Encoding qubits in Majorana zero-modes 9
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below, there exist local fermion-parity constraints for Majorana operators,

P̂m =
m∏
j=1

(iγ2jγ2j−1) =
m∏
j=1

σj
z , (2.17)

such that the fermion parity Pm = ± for a subgroup of Majoranas γj=1,...,2m stays fixed.
Physically, this implies that there is either an even or odd number of fermions hosted in the
low-energy sector of the 2m-Majorana subsystem (with m ≤ N). A Hamiltonian obeying
this constraint contains only terms that commute with P̂m, which necessarily comprise an
even number of operators γj=1,...,2m. For sites beyond this subsector, the extending strings
of Pauli-z matrices in Eq. (2.16) then square out.
In general TS setups, fixing only the fermion parity but not the fermion number itself is
warranted since pairs of electrons are freely (at zero energy cost) absorbed and emitted by
the host superconductor. A BCS superconductor like the Kitaev chain in Sec. 2.1 hosts a
Cooper-pair condensate and breaks fermion-number in favor of fermion-parity conservation.

As discussed extensively in Chapter 4, the most relevant setups for qubit applications
contain parity-constrained groups of four or six Majoranas. From our general construction
above, we understand that each such device realizes a single- or double-qubit, respectively.
In the minimal four-Majorana setting, with operators γ1,2,3,4 in Eqs. (2.14) and (2.15)
fulfilling the parity constraint Pbox = σ1

zσ
2
z = + in Eq. (2.17), we then define Pauli operators

σz = iγ2γ1 ≡ iγ4γ3 , σx = iγ3γ2 ≡ iγ4γ1 , σy = iγ1γ3 ≡ iγ4γ2 , (2.18)

σz = σ1
z ≡ σ2

z , σx = σ1
xσ

2
x ≡ −σ1

yσ
2
y , σy = σ1

xσ
2
y ≡ σ1

yσ
2
x .

For illustration, we here show both the Majorana representation and the reduction of two
Pauli-sets to a single Pauli-set due to the parity-constraint. The qubit eigenstates are
given as |0〉 = |0102〉 and |1〉 = |1112〉, representing occupation of neither (both) combined-
fermion states n1 and n2 of Majoranas γ1, γ2 and γ3, γ4. As one can easily check, the
Pauli operators σx,y,z indeed have the correct action on these states.

2.3 Majorana braiding in wire networks

We now introduce the concept of braiding for Majorana fermions. The exchange statistics
and inherent braid-properties of Majoranas are of adamant importance for their potential
in quantum-information processing and -computing applications, and behind much of the
interest in their realization. For the moment, we here mean braiding by slow and adiabatic
manipulations of local parameters that allow to spatially dislocate and move around (viz.
braid) Majorana zero-modes, following the principles of Ivanov (2001); Alicea et al. (2011).
In contrast, Chapter 4 focuses on measurement-based braiding and measurement-based
topological quantum computation, see Bonderson et al. (2008a); Nayak et al. (2008). While
these approaches are different in implementation and operation of the underlying Majorana
devices, they are practically equivalent in terms of (quantum) computational power.

10 2.3. Majorana braiding in wire networks
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Figure 2.2: (a) Y-junction of three Kitaev chains that allows for braiding of MZMs. In
the initial state, two Majorana bound-states (MBSs), depicted by red and yellow spheres,
reside at the ends of a TS segment (blue tube). (b) Braid sequence for exchange of the two
MBSs. Red (green) arrows indicate displacements of the MBSs by contraction (extension)
of the TS segment, implemented by ramping local chemical potentials above (below) the
critical value μc = 2t. By end of the braid protocol, the TS segment is in the same position
as before, but the MBSs are exchanged. Figure from Sekania et al. (2017).

2.3.1 Ideal Majorana braiding and statistics

We start with an introduction of ideal Majorana braiding that is independent of the specific
hardware or system considered. Still, for concreteness, we may think of networks of 1D TSs,
e.g. Kitaev chains as in Sec. 2.1, see also Fig. 2.2 and Sec. 2.3.2. For illustrative purposes,
it is sufficient to consider the two-fold degenerate Hilbert space of only two MZMs γn,m
described by a low-energy Hamiltonian H(t). All higher-energy excited states are discarded
based on the existence of an excitation gap Δtopo, as present in the Kitaev chain example.
Operations employed to move and braid MZMs then have to be adiabatic with respect to
the protective gap Δtopo, meaning that e.g. chemical-potential manipulations μ(x, t) are
performed slow with respect to an adiabaticity time-scale τad ∼ Δ−1

topo.
In addition, strictly one-dimensional systems do not support braiding of MFs, since the
MZMs that should be exchanged cannot pass through each other. As one moves domain
walls hosting MBSs γn,m closer to each other, the two MBSs become gapped and one ends
up removing the topological phase altogether. Fortunately it is possible to use branched TS
structures, e.g. the T- or Y-junctions of Alicea et al. (2011), to build quasi-one-dimensional
systems that support the exchange of MZMs. We investigate braiding in such branched
topological systems in Sekania et al. (2017), cf. Sec. 2.3.2 and Fig. 2.2.

Following TU Delft et al. (2018), we now consider a time-dependent but cyclic evolution of
Hamiltonian parameters H(t = 0) → H(T ) = H(0) that recovers the original Hamiltonian
after operation time T . During this evolution, since it is performed in an adiabatic way,
we assume that no excitations beyond the MZM sector γn,m are created. By virtue of the
adiabatic theorem, at each step of the operation we can characterize the state of the system

2.3. Majorana braiding in wire networks 11
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by the unitarily evolved ground-state

|ψ(t)〉 = U(t) |ψ(0)〉 , |ψ(0)〉 = α |0〉+ β |1〉 . (2.19)

Here the time evolution is described by a unitary matrix U(t), obtained from a reduced
Schrödinger equation acting on the 2-dimensional ground state Hilbert space of H(t). The
initial state |ψ(0)〉 is given by an arbitrary superposition of the Majorana-parity eigenstates
iγnγm = ±, denoted |0〉 and |1〉. Similarly, we can characterize the state of the system by
the time-dependent positions of its MZMs γn,m[xn,m(t)]. Each MZM is bound to a domain
wall between topological and trivial phases, cf. Eq. (2.12) and discussion. The MZMs
can therefore be moved by slowly shifting Hamiltonian parameters that adjust location
and extent of trivial and TS-segments, cf. Fig. 2.2. After the cyclic evolution has passed,
and since we return to the initial Hamiltonian H(T ) = H(0), we therefore expect to have
domain walls and MZMs located in the same spots as for the initial state of the system.
The only option by which a unitarily evolved state |Ψ(T )〉 can differ from the initial state
then is given by an exchange of the two indistinguishable MZMs, xn,m(0) → xm,n(T ).

The form of the resulting unitary transformation Unm, acting on the ground state sector
of our system in Eq. (2.19), can be deduced on quite general grounds and without explicit
knowledge of the Hamiltonian H(t). First, adiabatic manipulations should not change the
fermion parity P̂ = iγnγm in the ground-state sector. By definition, if the MZM parity
is changed during the braiding protocol, somewhere in between there must have been an
excitation out of the ground-state sector or an out-tunneling event of fermions from the
system. Such processes would contain only a single MZM γn or γm, and therefore anti-
commute with the MZM parity operator, {γn,m, P̂} = 0. Next, if only MZMs γn and γm
are affected by the braiding process, the net unitary operation achieved at final time t = T
should depend only on their Majorana operators γn,m. Even if other parts of the system
were involved, the MZM sector is energetically separated and therefore should be described
by a product state of |ψ(t)〉 in Eq. (2.19) and some unknown, unimportant state for the
remaining system. Together with the even-parity constraint, the only possible Hermitian
operator appearing in Unm is thus given by their fermion-parity iγnγm. Inserting into a
unitary exponential-operator form, we obtain

Unm = e−iα(iγnγm) = eαγnγm = cos(α) + γnγm sin(α) , (2.20)

with a real phase-parameter α, and we used (iγnγm)
2 = 1. Of course we can insert addi-

tional phase factors eiα0 which do not change any observables. Switching to the Heisenberg
picture, the action of U(T ) = Unm on the Majorana operators γn,m(0) → γn,m(T ) reads

γn → UnmγnU
†
nm = cos(2α)γn − sin(2α)γm , (2.21)

γm → UnmγmU
†
nm = cos(2α)γm + sin(2α)γn .

Since at time T we return to the initial configuration of domain walls and MZMs up to
exchanges of Majoranas, the only options for the acquired exchange phase are α = 0, ±π/4.
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The trivial result α = 0 corresponds to no exchange of Majoranas at all, where γn,m → γn,m.
The more interesting case is that of a finite braid phase α = ±π/4, where we have

α = +π/4 : γn → −γm , γm → γn , (2.22)

α = −π/4 : γn → γm , γm → −γn .

The different options can be identified with the two possible braid paths of the two MZMs:
a clockwise exchange giving transformation Unm followed by a counter-clockwise exchange
should retrace the unitary evolution, and yield back the initial state. In terms of the unitary
transformation in Eq. (2.20), we denote Bnm = U

π/4
nm = (1+ γnγm)/

√
2 by convention, and

for the inverse braid find U
−π/4
nm = (1− γnγm)/

√
2 = B†

nm = Bmn as expected.
In terms of quantum computations, consider the effect of a braid operation Bnm on a qubit
defined by the MZMs pair γn,m, as encoded in state |ψ(t)〉 in Eq. (2.19). We find

|ψ(T )〉 = Bnm |ψ(0)〉 = 1√
2
(1 + γnγm) [α |0〉+ β |1〉] � α |0〉+ iβ |1〉 , (2.23)

up to an overall phase. A braid operation Bnm = e(π/4)γnγm = e−iπσz/4 with MZM parity
operator σz = iγnγm hence produces the so-called S-gate Ŝz = e−iπσz/4 � diag(1, i) in
terms of the Majorana-encoded qubit, cf. Nielsen and Chuang (2010) and Chapter 4.

2.3.2 Braiding errors in interacting Majorana quantum wires

We now give a short overview on braiding of two MBSs in a Y-junction with interactions,
cf. Sekania et al. (2017) and Fig. 2.2. Motivated by Alicea et al. (2011), a wealth of earlier
research is available, and for an extensive discussion we refer to our publication.
We here aim at a general understanding of braid fidelity and exchange statistics without
any assumptions on the outcome of a MBS braiding operation. This includes a calculation
of the many-body exchange phase Φ(t) between even and odd total-parity states due to
cyclic manipulations of the time-dependent Hamiltonian H(t). We consider the full Hilbert
space of excited states, unlike in the two-MBSs toy model above, and hence can understand
how abstract braiding relates to an exchange of Majorana quasi-particles (MBSs) in non-
ideal TS condensed-matter systems. Further we take general measures for the performance
of quantum operations as conventionally used in quantum-information related context.

We first include interactions in the Kitaev chain model of Sec. 2.1. On a Hamiltonian level,
this can be done by adding terms ∼ V njnj+1 to the chain in Eq. (2.1), with interaction
strength V . The fermion densities in nearest-neighbor interactions enter through occupa-
tion number operators nj = c†jcj. Previous work on the ground-state phase diagram of
interacting Kitaev models (Gangadharaiah et al., 2011; Stoudenmire et al., 2011) shows
breakdown of superconductivity and the TS phase for strong interactions of either sign.
To allow braiding, we now arrange three chains into a Y-shape junction in Fig. 2.2, where
we also show the braid protocol. The movement of the trivial-TS domain walls and their
attached MBSs, leading to a braid transformation on the ground-state sector as in Sec. 2.3,
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is achieved by ramping local chemical potentials above or below the phase transition thresh-
old μc = 2t, cf. Sec. 2.1. During and after the braiding is carried out, we now track two
measures to characterize the braid performance of our protocol.
First we calculate the fidelity of state evolution. With instantaneous ground state |ψ(t0)〉
at time t0 before the braid operation as reference, we define the “loss function”

wloss(tf) = 1− [F (tf)]
2 = 1− | 〈ψ(tf)|ψ(t0)〉 |2 . (2.24)

Here F (tf) is the fidelity for pure states (Nielsen and Chuang, 2010), taken between the
initial and time-evolved (final) state |ψ(tf)〉. The system is parity-conserving, and there
are no transitions between total even- and odd-parity sectors. Since at t = tf we returned
to the initial state but for the braid transformation, under purely adiabatic evolution, the
loss functions in both parity sectors should be zero, w

e/o
loss = 0. If one finds w

e/o
loss > 0, this

indicates excitations above the even/odd ground-state sectors due to non-adiabacity.

For small (zero) loss, the only effect of the braid operation is an exchange phase between
states of both sectors, which does not show in the intra-sector loss functions. We here
quote the result by Samuel and Bhandari (1988); Mukunda and Simon (1993) as

φg(t) = arg 〈ψ(t0)|ψ(t)〉 − Im

∫ t

t0

〈ψ(t′)|ψ̇(t′)〉 dt′ . (2.25)

The first component describes the full phase acquired during the braid operation t′ ∈ [t0, t],
and with the second term we subtract dynamical phase contributions explicitly. As defined
in Eq. (2.25), φg(t) thus encodes the geometric many-body phase acquired by state |ψ(t)〉.
In our numerics, we employ a discretized variant of the functional in Eq. (2.25). Further we
calculate only the geometric exchange or braid phase between even and odd ground-states,
Φ(tf) = φo

g(tf)−φe
g(tf), that supposedly is a detail-independent and topologically protected

quantity. We expect |Φid| = π/2 from ideal Majorana exchange statistics, cf. Sec. 2.3.

Some results are shown in Fig. 2.3. The braid protocol in Fig. 2.2(b) has finished at time
tf = 6T , after six individual chemical-potential ramping steps, each with ramp time T . All
parameters are given in units of the (inverse) hopping strength t, cf. Eq. (2.1).
We observe that increasing the ramp time T reduces non-adiabatic losses, as found by
many other authors. However, the smoothness of ramp protocols has a more dramatic
effect on non-adiabatic errors. We here implement a “guillotine” (red) and “sine-squared”
(black) ramp that have discontinuities in first and second derivative, respectively. As also
shown in Knapp et al. (2016), the degree of smoothness is much more critical to avoiding
non-adiabatic errors than the ramp time T itself. We verify their result of an approxi-
mately exponential reduction of losses w

e/o
loss upon increasing the smoothness by one order.

Next, for the exchange phase Φ in Fig. 2.3, we find a systematic deviation from ideal braid-
ing statistics with |Φid| = π/2 upon departing from perfect localization (ξ = 0). While in
principle it is expected that MF statistics are recovered only for (fully) localized MBSs, be-
fore our work this effect had not been systematically quantified. We here essentially observe
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Figure 2.3: Exchange phase Φ (top row) and loss of fidelity w
e/o
loss (bottom row) after the

braid vs MBS localization length ξ, for two distinct ramp protocols. Plots from left to
right correspond to ramping time periods of T = 250, ..., 3000 as indicated. Data points
(left to right) are for pairing amplitudes Δ = 1.0, ..., 0.3, which translates to increasing
MBS localization length ξ(Δ) from left to right. Figure from Sekania et al. (2017).

an onset of the topological-trivial phase transition in our system of Fig. 2.2, through a shift
of exchange phase (statistics) from π/2 (Majorana) to multiples of π (regular fermions).
Remarkably, the non-adiabatic losses are almost completely uncorrelated with this shift of
exchange statistics: rapid braiding with strongly localized MBSs gives results much closer
to the ideal braid phase value than slow braid routines at larger hybridization length.
Finally, the effect of interactions on exchange statistics is discussed in Sekania et al. (2017).
As before, braid performance and MBSs localization length are strongly correlated, where
the latter is influenced by interactions that reduce or enhance the effective superconducting
pairing in the chain, cf. Gangadharaiah et al. (2011); Stoudenmire et al. (2011).

Our work in Sekania et al. (2017) contrasts the approach of other authors for the analysis
of braiding in Majorana systems, cf. Cheng et al. (2011); Clarke et al. (2011); Karzig et al.
(2013); Scheurer and Shnirman (2013); Karzig et al. (2015a,b); Amorim et al. (2015).
Time scales of near-adiabacity can give hints for a promising operation regime, but should
not be considered conclusive for a good braiding performance. Instead the smoothness of
the ramp protocols is a much more crucial indicator for the generation and propagation of
non-adiabatic errors, cf. Pedrocchi and DiVincenzo (2015); Knapp et al. (2016).
From the viewpoint of Majorana exchange statistics in the adiabatic limit, the localization
length and residual overlaps are simple but important figures of merit. Our results caution
to differentiate between “real” MFs (Majorana, 1937) and MBSs as low-energy excitations
in TSs (Kitaev, 2001; Ivanov, 2001). For the latter, only under near-perfect localization,
ideal braid statistics are realized and one can think of a “toy-model system” of independent
MZMs. Else one should consider the full many-body eigenstates of the underlying TS.
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2.4 Mesoscopic Majorana islands

In this section we introduce mesoscopic topological superconductors, also referred to as
(mesoscopic) Majorana islands or Majorana boxes. In contrast to grounded TSs, these
systems have a finite (large) charging energy and obey charge conservation in in- and out-
tunneling events. Floating (non-grounded) Majorana islands are interesting in many ways,
including for the generation of correlations in charge transport between quantum dots, cf.
Sec. 2.4.2. Further, Majorana boxes are important towards the formation of (topological)
Kondo effects, see Chapter 3, or as basis for topological qubits, see Chapter 4.
Multi-terminal coupled Majorana boxes were studied in Fu (2010); Zazunov et al. (2011);
Hützen et al. (2012) and Béri and Cooper (2012); Altland and Egger (2013); Béri (2013).

2.4.1 Charge conservation in Majorana boxes

A general mesoscopic Majorana island is described by a set of charge-neutral, fermionic
MZMs γj=1,...,M and a single pair of bosonic phase- and charge-variables. While the MZMs
are as before, charge conservation due to a finite charging energy on the island implies a
promotion of the conjugate bosonic phase- and charge-variables to operators. We write

[ϕ,Q]− = i , e±iϕ |Q〉 = |Q± 1〉 , (2.26)

where ϕ = φ/2 is half the superconducting phase and Q counts charges in units of the
electron charge e. The phase-exponential operator e±iϕ describes creation (annihilation)
of one charge or half a Cooper-pair, and above we denoted its action on charge states |Q〉.
(Operators and eigenvalues ϕ, Q share symbols; the distinction follows from context.)
Now recall the Kitaev chain Hamiltonian in Eq. (2.1). The superconducting pairing term
here comes with an amplitude Δ and phase φ, and the latter corresponds to the bosonic
variable appearing above. If one considers a charge conserving system, the attached phase
exponential eiφ = e2iϕ in sc pairing terms Δeiφcjcj+1 explicitly accounts for the creation of
a charge 2e Cooper pair upon pairing two electrons on sites j and j + 1. The Cooper pair
condensate of a BCS superconductor thus enables free absorption and emission of electron
pairs (with charge 2e) from its fermionic sector, cf. Bruus and Flensberg (2016).

A Hamiltonian term describing charging energy effects, depending on the overall charge Q
of the mesoscopic (topological) superconductor, can now be introduced as

Hc = Ec(Q− ng)
2 , Ec =

e2

2C
. (2.27)

Here Ec is a single-electron charging energy that is inversely proportional to the geometric
capacitance C of the island. The parameter ng ∼ Vg describes tuning of the equilibrium
box charge due to a nearby electrostatic gate with applied gate voltage Vg. In contrast to a
grounded island with fixed (superconducting) phase variable ϕ, a floating box with pinned
equilibrium charge 〈Q〉 = ng shows strong fluctuations of the conjugate phase-variable.
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A second characteristic term for charge transport in Majorana boxes describes the contact
to a bulk superconducting reservoir with phase ϕ0. It is captured by a Josephson term

HJ = −EJ cos[2(ϕ− ϕ0)] = −EJ

2

[
e2i(ϕ−ϕ0) + e−2i(ϕ−ϕ0)

]
, (2.28)

where EJ is the Josephson coupling that depends on details of the contact. The above
phase exponential operators describe transport of Cooper pairs (charge 2e) between the
mesoscopic island and the bulk sc with phase ϕ0. By definition, the reservoir is large and
its single-electron charging energy is negligible, such that ϕ0 enters as classical parame-
ter. A grounded Majorana island is recovered for EJ � Ec, where the islands sc phase
becomes pinned to that of the reservoir, ϕ ≈ ϕ0, and returns to being a classical instead of
quantum variable, cf. Sec. 2.1. The conjugate charge variable on the island then fluctuates
strongly in units 2e and the charging energy in Eq. (2.27) is suppressed (Hyart et al., 2013).

Another option for contacting Majorana boxes are leads or single-level quantum dots
(QDs), as used to probe MBSs by transport in Albrecht et al. (2016); Deng et al. (2016).
For a qualitative understanding, it often is sufficient to consider Majorana-dot or -lead
tunnel-junctions in terms of simple tunnel Hamiltonians (Fu, 2010; Hützen et al., 2012)

Ht = λd†γe−iϕ + h.c. . (2.29)

Here λ is the (complex) tunnel-matrix element between a MBS with MF operator γ and
the dot- or lead-fermion state annihilated by the fermion operator d. We assume point-like
tunneling, where (e.g.) a lead-fermion operator ψ(x) is taken at the contact point, with
d ≡ ψ(x = 0). All additional structure of wave-function overlaps that enable the tunneling
events is absorbed in the tunnel-coupling λ. At low energies λ, ω, ... � Δtopo (excitation
gap Δtopo on the box), the only fermionic states available for in- or out-tunneling are MBSs,
and no further contributions to Ht arise. Charge tunneling events thus have to involve the
charge-neutral Majorana operators, and an out-tunneling event ∼ d†γ is accompanied by
annihilation of a single charge on the island, captured by the phase-exponential e−iϕ.

Re-inserting the complex-fermion representation of Sec. 2.1, we note γ = eiϕf + e−iϕf †

and a secondary Majorana γ′ = −i
(
eiϕf − e−iϕf †). Majorana operators are gauged such

that they explicitly appear as charge-neutral, where annihilation (creation) by the fermion
operator f (†) comes with creation (annihilation) of a single charge in the bosonic sector.
In the charged-fermion language, we obtain (Fu, 2010; Hützen et al., 2012)

Ht = λd†
(
f + e−2iϕf †) + h.c. . (2.30)

Tunneling out of MBSs on a TS box implies an equal superposition of out-tunneling from
a fermion state (f), or in-tunneling into that state (f †) under simultaneous splitting of a
Cooper pair (e−2iϕ), and out-tunneling into the attached dot/lead (d†). For an extensive
discussion of charge transport in resonant or co-tunneling regimes of two-terminal Majorana
islands, we refer to the introductory works of Fu (2010); Hützen et al. (2012).
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QD1 QD2γ1 γ2

EJ

EC

TS

SCλ1 λ2

V1 Vg

ε1 ε2
εf

V2

Figure 2.4: Two-terminal Majorana island (TS, green) with two MBSs γ1,2 (red) contacted
by tunnel-coupling λ1,2 to left/right single-level quantum dots QD1,2 (yellow). In addition
we include a Josephson coupling EJ to a bulk superconductor (SC, teal). Gate potentials
V1,2 allow to adjust level energies ε1,2 on dots QD1,2, and the box equilibrium charge is
controlled by the gate parameter ng ∼ Vg. A residual Majorana hybridization εf enters as
level-energy for the composite-fermion state f . Figure from Plugge et al. (2015).

2.4.2 The Majorana entanglement bridge

We now review the Majorana-mediated generation of entanglement between distant single-
level quantum dots. To this end, consider a two-terminal island hosting MBSs γ1,2, tunnel-
coupled with strength λ1,2 to two quantum dots QD1,2 in Fig. 2.4. The low-energy eigen-
states, projected or truncated perturbative Hamiltonians and resulting entanglement and
correlations between the two quantum dots, with a detailed discussion of this setting, are
given in Plugge et al. (2015). A similar investigation, for a strongly reduced parameter
setting in near charge-degenerate islands, is published in Wang et al. (2013).
Here we summarize the concepts and results that are most relevant for later chapters. In
particular, the co-tunneling regime of Majorana boxes is accessible by perturbation theory
in scales ∼ λj/Ec, EJ/Ec. All Majorana-dot or Majorana-lead couplings λj or Josephson
couplings EJ are assumed to be small against the charging energy Ec in Eq. (2.27), while
the (topological) gap is always assumed to be large, i.e. λj, EJ , ... � Ec � Δtopo.

A practical and systematic approach to implement co-tunneling perturbation theory is the
generalized Schrieffer-Wolff (SW) transformation of Bravyi et al. (2011). This method
projects Hamiltonian terms that are off-diagonal matrix elements in the charge basis |Q〉,
e.g. e±iϕ or e±2iϕ in Eq. (2.26), onto the box charge ground state with 〈Q〉 = ng. Under
Coulomb blockade conditions, with gate parameter ng close to integer values, macroscopic
fluctuations of the box charge are then traded off against effective co-tunneling rates. The
latter take the form Γ ∼ tn/En−1

c for a n-th order tunneling event, where amplitudes t
comprise both single-charge and Cooper-pair tunnel-processes. Charge transport in this
picture takes place via n− 1 intermediate, excited charge states Q → Q± 1, Q± 2, etc.,
that are virtually occupied for short times τc ∼ E−1

c . The scale 1/Ec hence supplies a
short-time cutoff, and enters as energy denominator in the effective coupling amplitude Γ.
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|101, 0〉

ΔE � EC HT

|110, 0〉 |000, 1〉

HT

|011, 0〉

SW |101, 0〉 |011, 0〉

ΓTP

“A”

Figure 2.5: TP-mediated coupling of QDs, from co-tunneling perturbation theory for
small λ1,2 � Ec in HT . After a SW transformation, the low-energy projected theory with
island charge QA = 1 contains only two states |101, 0〉 and |011, 0〉. These are connected
by a second-order process with effective coupling amplitude ΓTP ∼ λ1λ

∗
2/Ec, cf. Eq. (2.32).

We denote occupation number states of the system as |n1n2nf , Nc〉, where n1,2 are fermionic
single-level states on QD1,2, nf is the combined fermion f of MFs γ1,2, andNc counts Cooper
pairs. The total box charge follows as Q = 2Nc + nf , where we explicitly switched to the
charged-fermion language in Eq. (2.30). Assuming a conserved overall fermion parity, we
can focus on the even-parity states with two different gate parameter settings ng = 0, 1.
(We disregard an unimportant offset ng → ng +2Nc by some number of Cooper pairs Nc.)

A projection to the box charge ground state with QA(B) = 0(1) yields two sets of states

A = {|10〉 , |01〉}n1n2 ⊗ |1, 0〉nf ,Nc
, B = {|00〉 , |11〉}n1n2 ⊗ |0, 0〉nf ,Nc

. (2.31)

As depicted in Fig. 2.5, for states of same fermion number and charge in set “A”, MBS-QD
tunnel couplings λ1,2 in a tunneling Hamiltonian HT similar to Eq. (2.30) can transport
an electron across the island. These processes take place via excited charge-states with no
(two) charges on the island which are gapped by the charging energy, ΔE � Ec. The choice
of excited state here depends on the order of tunneling events. An effective co-tunneling
rate results after SW-projection to the box charge ground-state QA = 1, and connects the
two low-energy states of sector “A′′. The reduced Hamiltonian of box-coupled QDs is

HTP = ΓTPd
†
1d2 + h.c. + HQDs , ΓTP ∼ λ1λ

∗
2/Ec , (2.32)

where d
(†)
j annihilates (creates) one electron on quantum dot QDj=1,2, and HQDs encodes

the remaining level-energies of the dots. Since the Majorana island facilitates non-local
electron transport, this process has been dubbed “electron teleportation” by Fu (2010).

One can also perform a SW projection for the ground-state sector with equilibrium charge
QB = 0 in Eq. (2.31). However, since the QD states in set “B” have different total charge,
a co-tunneling event connecting the two states has to comprise a Cooper-pair tunneling
between the bulk sc and Majorana island in Fig. 2.4. The latter is mediated by a Josephson
coupling ∼ EJ as in Eq. (2.28). The full third-order co-tunneling event then combines a
Cooper-pair tunneling with in- or out-tunneling of electrons at both quantum dots, ∼ λ1,2.
The reduced Hamiltonian describing the box-coupled QDs now reads

HCAR = ΓCARd
†
1d

†
2 + h.c. + HQDs , ΓCAR ∼ λ1λ2EJ/E

2
c . (2.33)
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This effective Hamiltonian describes pairing of electrons in the QDs under simultaneous
emission of Cooper pairs into the bulk sc, and vice versa. Such processes were investigated
for grounded devices with strong Majorana hybridization by Nilsson et al. (2008), and
dubbed crossed Andreev-reflection (CAR) in contrast to local Andreev-reflection (AR) of
a Cooper pair at a single QD or lead-contact.

After the basic introduction to co-tunneling perturbation theory for Coulomb-blockaded
Majorana boxes that will be used throughout this thesis, we now summarize the main
results of Plugge et al. (2015). Here we were interested in relating entanglement of box-
coupled QDs to the effective low-energy theories in Eqs. (2.32) and (2.33). For a detailed
discussion of entanglement and quantum correlations, see Nielsen and Chuang (2010) and
the review by Horodecki et al. (2009).

Based on the simple effective Hamiltonians above, if level energies and other contributions
in HQDs are negligible against the inter-dot coupling (ΓTP/CAR � ε1,2), diagonalization
yields eigenstates of the two coupled QDs as

|ψA
±〉 =

1√
2
(|10〉 ± |01〉)n1n2

, |ψB
±〉 =

1√
2
(|00〉 ± |11〉)n1n2

. (2.34)

The TP-generated states |ψA
±〉 are even and odd superpositions in subset A, cf. Eq. (2.31).

Eigenstates |ψA
±〉 are gapped by hybridization ±ΓTP, where the odd superposition becomes

the true ground state of the double-QD system. Since the box charge state is projected to
a fixed value QA = (2Nc+nf )A, the full eigenstates are product states |ΨA

±〉 = |ψA
±〉⊗|QA〉.

An analogous discussion follows for CAR-mediated states in set B.

We now observe that the QD eigenstates in Eq. (2.34) are nothing but the well-known Bell
states, where the entangled degrees of freedom are the occupation numbers n1,2 of QD1,2 in
Fig. 2.4. Bell states are maximally entangled, as measured for example by the concurrence
(Horodecki et al., 2009) of the two QDs. With HQDs → 0 in Eqs. (2.32) and (2.33), phase-
coherent electron teleportation (TP) or crossed Andreev-reflection (CAR) thus facilitates
full entanglement and maximum correlations between two distant quantum dots.

For a detailed discussion and further results, see Plugge et al. (2015). There we also
consider the dynamical problem after an initial switch-on of couplings, ΓTP(t) = ΓTP for
t ≥ 0, and confirm that the simple effective Hamiltonian in Eq. (2.32) does not only capture
static ground-state properties, but likewise the time-dependent generation of correlations.
A related study, but for a grounded Majorana island, was presented in Li et al. (2014).
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2.5 Summary: basics of Majorana fermions

We now give a summary of results that are most relevant towards the following chapters.

MBSs can be generated at the edges of TS systems like the Kitaev chain, cf. Sec. 2.1.
Implementations of 1D TSs in semiconductor-superconductor quantum wires have shown
promising signatures of MBSs in quantum transport experiments, see Mourik et al. (2012);
Albrecht et al. (2016); Deng et al. (2016); Nichele et al. (2017); Zhang et al. (2018) and
the review by Lutchyn et al. (2017). Such systems combine several ingredients, including
magnetic Zeeman fields, strong spin-orbit coupling and (induced) s-wave superconducting
pairing in low-density semiconductor wires, to achieve an effective low-energy TS phase
(Oreg et al., 2010; Lutchyn et al., 2010; Alicea, 2012). Nevertheless, for energies well below
the topological gap Δtopo, a toy-model description of TS systems in terms of localized MBSs
plus Cooper pairs is valid. The discussion in the following chapters can thus be considered
as universal and independent of a specific Majorana platform, though for concreteness we
may sketch 1D TS wire systems as promising experimental candidates.

In Sec. 2.2 we learned how to reformulate the ground-state sector of a Majorana box in a
language suitable for QIP applications. Majorana-based qubits are highly unconventional
in the sense that different Pauli operators become spatially non-local distributed objects
due to their origin from Majorana operators and MZMs, cf. Chap. 4. The underlying topo-
logical character validates the notion of topologically protected qubits on Majorana islands,
and their highly degenerate ground states should allow to store quantum information for
rather long times; the protection of Majorana-based qubits and quantum memories against
decoherence and noise is inherited from the MZMs that serve as their building blocks.

A possible route to protected manipulation of a two-MZM system was shown in Sec. 2.3.
Unfortunately, the hardware platform of Alicea et al. (2011) is difficult to realize, and al-
ternative schemes for Majorana-fusion experiments were proposed in Aasen et al. (2016).
In our work, we investigate alternative access- and manipulation-protocols for Majorana
systems that respect the inherent protection of Majorana-based qubits, and benefit from the
underlying Majorana non-locality. This includes a detailed analysis of quantum transport
in Majorana boxes, cf. Chapter 3, and leads to the development of protected manipulation
protocols for Majorana qubits and code networks in Chapter 4.

As mentioned in Sec. 2.2, most schemes that are under discussion recently do not encode
qubits into the total-parity state of a TS system. Instead it is desirable to work in a fixed
total-parity sector and define qubits within the residual degenerate ground state space.
The braid protocols in Sec. 2.3 also work in subsectors, and by exchanging different MZMs
in a system with M = 4 or 6 Majoranas, one can employ protected S-gate rotations around
arbitrary Pauli axes, Ŝa=x,y,z = e−i(π/4)σa . As a consequence, the full single-qubit Clifford
group for quantum computations can be realized by braiding. Supplementing this with
two-qubit (4-MZM) measurements, the full Clifford group including e.g. the two-qubit
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controlled-NOT gate can be realized in a protected manner, cf. Chapter 4. This is a good
basis for quantum storage and information processing, but not yet sufficient for universal
quantum computations. We discuss strategies on how to extend Majorana qubits to code
networks, and how to implement quantum error-correcting codes and reach code-based
universality (Preskill, 2018; Terhal, 2015) in these networks in much of Chapter 4.

In mesoscopic Majorana islands, charge-conservation on the device and in tunneling to its
MBSs becomes crucial, cf. Sec. 2.4. In addition to MFs as charge-neutral fermions, one then
includes a dual pair of bosonic phase- and charge-variables on the box. The most important
aspect of Majorana boxes is that charging energy facilitates phase-coherent single-electron
transport across the island. In non-TS context, this is known for tunneling in mesoscopic
metallic islands or QDs with large fermionic level spacing (Bruus and Flensberg, 2016).
To this end, we remark that a Majorana island with two MBSs essentially behaves like a
single-level QD (occupation nf = 0, 1) with charging energy Ec and level spacing Δtopo,
by which all other fermionic states are gapped, cf. Fu (2010) and Sec. 2.4.2.

In Plugge et al. (2015), we extend earlier work on transport (Fu, 2010; Hützen et al., 2012)
and correlations (Wang et al., 2013; Li et al., 2014) mediated by such islands to general
parameter regimes. We then show how the generation of entanglement in quantum dots
attached to Majorana boxes can be understood in terms of simple effective Hamiltonians.
By employing similar peturbative methods, in the following this allows to reduce the com-
plexity of charge tunneling and quantum transport phenomena in general Majorana devices.
Our findings give confidence that – at least on a qualitative level – strongly correlated quan-
tum states in Majorana networks with multiple tunnel-coupled islands, leads and quantum
dots, cf. Chapters 3 and 4, are well-described by effective co-tunneling theories.

Finally, remark that the requirement of large topological gaps and adiabatic operations,
e.g. in braiding, in practice poses serious constraints on the viability of (topological)
quantum computation with MZMs. A significant part of the experimental efforts towards
realization of Majorana-based topological quantum computation (TQC) hence focuses on
engineering and materials design for larger protective gaps. We gave some references
to Majorana experiments above, and review more recent experimental advances on the
fabrication of Majorana platforms in the concluding Chapter 5 of this thesis. For the
remainder of our discussion, unless explicitly stated otherwise, we cast aside materials
engineering problems and assume large protective gaps and a clean isolation of MZMs in
the topological superconducting structures under investigation.
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Chapter 3

Quantum transport in Majorana
boxes

In this Chapter we discuss low-energy quantum transport phenomena in Majorana boxes.
Since this is an almost endlessly manifold field, we here focus on effective toy-models of
mesoscopic Majorana islands, see the introduction in Chapter 2. This is in contrast to
detailed studies of “realistic” and microscopically-modeled systems that aim toward the
experimental-realization and materials-engineering part of Majorana research. Therefore
most of our results and conclusions, while robust against some degree of error in Majorana
realization, should be considered as qualitative instead of precise quantitative statements.
At the same time, this approach allows us to go well beyond “simple” single-wire devices,
and to unveil qualitatively new effects emerging in more general Majorana networks.

An example of exotic quantum transport in Majorana networks is the topological Kondo
effect (TKE), cf. Béri and Cooper (2012); Altland and Egger (2013); Béri (2013), which
in Secs. 3.1 and 3.2 we take as a basic setup to introduce concepts and techniques used in
our later works. In Plugge et al. (2016b); Gau et al. (2018) we aim at an understanding
of general Majorana-Majorana and lead-Majorana junction geometries, where we present
two important examples in Sec. 3.3. Finally, in Sec. 3.4, we summarize the main ideas and
solution strategy for tackling quantum transport problems in general Majorana networks.
We note that multi-junctions between Majoranas, leads and quantum dots are of adamant
importance in quantum-information processing applications, e.g., for the development of
Majorana-based qubit and network architectures in Chapter 4. Recent progress towards
the experimental realization of network devices is reviewed in the concluding Chapter 5.

In much of this Chapter we use books by Gogolin et al. (2004); Altland and Simons (2010);
Bruus and Flensberg (2016) and the excellent review of Von Delft and Schoeller (1998).
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3.1 Junctions in Majorana networks

We start with the most essential ingredients for quantum transport in Majorana networks:
simple and multi-junction tunnel contacts between islands, leads and quantum dots (QDs).
While here we focus on the case of Majorana boxes coupled to normal non-interacting leads,
many aspects also transfer to islands in contact with QDs. First, for uncoupled boxes and
leads, the basic Hamiltonian describing such a system is given by

H0 = Hboxes +Hleads =
∑

j∈boxes
Hbox,j +

∑
k∈leads

Hlead,k . (3.1)

Here Hbox,j encodes charging energy effects on a Majorana box, cf. Eq. (2.27), and depends
only on variables of island j. Similarly, Hlead,k contains kinetic energy terms of the lead
fermions in the normal lead k. By definition, H0 above does not contain any off-diagonal
terms that facilitate charge transport between different leads or boxes of the system. The
physical implications of charge conservation on H0 are minimal, in particular Hleads is as in
the non-conserving setting (Altland and Simons, 2010). In contrast, for tunneling between
different parts of the system, charge conservation becomes an important ingredient.

We now recapitulate a few basic types of tunnel-Hamiltonians for Majorana networks, cf.
Sec. 2.4. Tunneling between MBSs on distinct islands can be described by

Ht = tjkγjγke
i(ϕj−ϕk) + h.c. , (3.2)

where γj,k is hosted on the island with phase ϕj,k. On a microscopic level, point-like
tunneling amplitudes as tjk are determined from propagation of the transferred electron
through an intermediate non-topological segment that separates the islands. Here we take
them as simple phenomenological parameters that enter our effective description. Ht then
describes transfer of a single charge under simultaneous effect on the islands fermion-sector
encoded by Majoranas γj,k. Two consecutive tunnel events yield a transferred Cooper
pair, where the Majorana-part squares out, γ2

j = γ2
k = 1. Therefore single-charge transfer

processes in Eq. (3.2) also facilitate Josephson coupling between islands, cf. Eq. (2.28).
Next, tunneling between Majoranas and leads is given by (cf. Eq. (2.29))

Hλ = λjkΨ
†
jγke

−iϕk + h.c. , (3.3)

where Ψj = ψj(x = 0) is the lead fermion operator at the contact point x = 0, and λjk is
the tunneling amplitude connecting MBS γk and the lead. Hλ above describes transport
of a single charge, through the MBSs, into a charged fermion of the attached lead.
Finally, we do not consider direct tunneling between distinct leads, i.e., terms ∼ JjkΨ

†
jΨk.

In principle they could be present, but in the systems below are forbidden by spatial
distance between lead contacts; the latter is overcome only by tunneling through the MBSs.
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3.1.1 Bosonization and Majorana-Klein fusion

A basic motivation behind field-theoretical bosonization is that 1D fermion systems, much
unlike their higher-dimensional counterparts, harbor long-lived, low-energy bosonic quasi-
particle excitations. These manifest in charge-density waves that propagate through the
system, where individual fermions cannot move past each other due to the constrained
dimensionality. Exchange statistics thus do not become apparent in 1D systems, instead
fermions behave like hard-core colliding bosons. Based on the wave-like collective excita-
tions, in seminal work Haldane (1981a,b) coined the term Luttinger liquids for such systems
that are equivalently described by a fermionic or bosonic theory.
We now reduce the above Hamiltonians by applying field-theoretical bosonization to the
lead-fermion operators. This method allows for significant technical simplifications in the
analysis of low-energy properties and quantum transport in Majorana networks. Details
are delegated to introductory chapters of our works Plugge et al. (2016b); Gau et al. (2018)
and books by Altland and Simons (2010) and Gogolin et al. (2004). Here we recall only
the most important “recipes” for switching between fermionic and bosonic languages.

Throughout our discussion, we consider leads as half-infinite, non-interacting normal wires
(coordinate x ≤ 0) that terminate at the Majorana island, x = 0. Each lead contains
right- and left-moving electrons that represent in- and out-going fermions for the island,
respectively. The lead fermion operator for a given lead j can be written as

ψ†
j,R/L(x) ∼ κje

i[φj(x)±θj(x)] . (3.4)

The dual boson-fields φj(x) and θj(x) obey an algebra [φj(x
′), ∂xθk(x)]− = iπδ(x′ − x)δjk,

and κj is a Klein factor that ensures anti-commutation between different lead-fermions and

with Majoranas. It can be represented by a MF, where κj = κ†
j fulfill a Clifford algebra

between each other and with the island Majoranas γn. The dual pairs of one-dimensional
boson fields are the phase- and charge-variables for the original electrons, while the Klein-
factors capture their fermionic statistics. With the above algebra, and in close analogy to
the island phase- and charge-variables in Eq. (2.26), a phase-exponential operator e±iφj(x)

describes creation (annihilation) of a charge in lead j. This charge is centered at position
x, and after integration over the lead-charge density ρj(x) ∼ ∂xθj(x), the total lead-charge
field ∼ θj(x

′ ≥ x) experiences a shift by one unit.
The description of lead fermions via bosonization in Eq. (3.4) thus is in full analogy to the
separation of phase- and charge-variables from the fermionic sector on Majorana islands.
By switching to this analogue language for islands and leads, the physical processes cou-
pling both often become more transparent. A remaining difference is that lead variables
φ(x), θ(x) are given as one-dimensional bosons, while those on the islands are local, zero-
dimensional objects ϕ,Q in Eq. (2.26). Instead of charging energy, the only Hamiltonian
term appearing for lead bosons then is a kinetic energy contribution, where we write

Hlead,j =
vF
2π

∫ 0

−∞
dx[(∂xφj)

2 + (∂xθj)
2] . (3.5)
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Here vF is the Fermi velocity in lead j, and integration runs over the full lead at x ≤ 0.
At x = 0, for decoupled leads, we have open boundary conditions where left- and right-
movers coincide, ψj,R(0) = ψj,L(0). In Eq. (3.4) this condition implies θj(x = 0) = 0, which
physically means that there is no net charge accumulation at the contact point where the
lead terminates. The lead boundary-fermion operators in Eqs. (3.3) hence are written as

Ψ†
j ∼ κje

iΦj , with Φj = φj(0) ; Θ′
j = ∂xθj(x = 0) , (3.6)

i.e., uppercase symbols denote boundary fields at x = 0. For the remainder of our discussion
we focus on these variables, where only the boundary phase fields Φj or charge densities
Θ′

j enter in the boundary Hamiltonian describing tunneling at the islands or junctions.
Fermions in each wire experience the outside world only once, namely due to the boundary
coupling to the box at x = 0, and via that island or box also to other leads or islands.
Translating Hλ in Eq. (3.3) into the bosonic language yields

Hλ = λjkκjγke
i(Φj−ϕk) + h.c. . (3.7)

For general Majorana islands, in many cases, the separation into charge-neutral fermions
and bosonic variables is not a tautology. Instead, it elegantly affords the correct physical
basis for describing transport in strongly-coupled Majorana systems. A prime example
is the topological Kondo effect (TKE) (Béri and Cooper, 2012; Altland and Egger, 2013;
Béri, 2013), arising in multi-terminal devices contacted by simple lead-Majorana junctions.

A simple lead-Majorana junction here means that a MBS γk on a given box with phase
variable ϕk is contacted by only one lead j, cf. Fig. 3.1 below. At the same time lead j with
Klein factor κj and boundary phase-field Φj only couples to one MBS k, i.e., their relation
is monogamous. The combined-fermion parity iκjγk = ± in Eq. (3.7) then is conserved,
and tunneling at that contact point becomes a purely bosonic problem. We note

Hsimple = −iλjke
i(Φj−ϕk) + h.c. = λjk sin(Φj − Φk) , (3.8)

up to phases. Due to gauge freedom for the lead-j bosons, λjk can be chosen real positive.

The strategy of combining Majoranas and Klein factors into locally conserved fermion-sites
was dubbed Majorana-Klein fusion by Béri (2013). It implies the choice of an entangled
fermion-basis between coupled leads and island Majoranas. For the Coulomb-blockaded
TS wire in Sec. 2.4.2, both the two-Majorana parity on the box (states nf = 0, 1) and the
combined fermion-parity of the attached QDs/leads are conserved separately. Physically,
this results in resonant charge-transport for near charge-degenerate two-terminal islands
(Fu, 2010), but Coulomb-blockade at integer gate parameters (Hützen et al., 2012).
The TKE is thus reserved to multi-terminal Majorana boxes with M ≥ 3 leads, where
fermion-parity conservation between any two Majoranas or any two Klein factors (leads) is
broken. Resulting low-energy physics and transport features, based on the islands residual
fermionic degeneracy under Coulomb-blockade, are discussed below. Since the MFs can
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be represented by a SO(M) algebra in Sec. 2.2, making connection to conventional Kondo
effects (Gogolin et al., 2004) or quantum-information applications in Chapter 4 is natural.

To exemplify the physics of TKE, consider the co-tunneling regime for a single box (ϕ,Q) in
contact to M leads. Integrating out charge-fluctuations e±iϕ in Eq. (3.8) gives an effective
theory in the lead boundary phase-fields Φj=1,...,M as (Béri, 2013; Altland and Egger, 2013)

HK = −
∑
j �=k

Jjk cos(Φj − Φk) . (3.9)

Here Jjk ∼ λjλk/Ec are real, positive co-tunneling amplitudes, as in Sec. 2.4.2, Eq. (2.32).
The cosine potential for the lead-boundary phase fields j, k encodes a phase-exponential
ei(Φj−Φk) and its hermitian conjugate, describing charge transport by co-tunneling between
the two leads. In Sec. 3.2.1 below, we discuss how couplings Jjk renormalize when going
to low frequencies or temperatures. Finally, in Sec. 3.2.2, HK is found to also describe the
strong-coupling low-temperature fixed-point of the TKE.

3.2 Effective low-energy description

In this section, we develop a further reduced and effective low-energy theory that captures
the most relevant physical aspects of the system. This theory should be justified when
going to low frequencies ω, that is if reference energies such as the temperature T or applied
bias voltages Vj in the leads are small against contributions of the boundary Hamiltonian.
In a sense, we then are interested in the “true” quantum-mechanical ground state that
is reached at zero temperature, and that is shared between islands and leads. Such a
description often is referred to as strong-coupling theory or -solution, since the boundary
coupling between boxes and leads dominates the low-energy physics. In contrast, at high
frequencies or weak coupling, the lead-fermion and box variables show weak correlations.
Their states then are well described by thermal-, gate- or voltage-controlled distribution
functions (Bruus and Flensberg, 2016) that are only weakly altered by tunneling.

3.2.1 Renormalization-group theory

Our first step towards an effective low-energy description is renormalization-group theory
(RG) as pioneered by Wilson (1975). The general scheme comprises a renormalization of
scales (space, time, fields, ...), and identification of self-similar structures that re-appear
on larger scale in a physical system. The idea is that “small-scale” properties are less
important or washed out in many physical observables, and instead the coarse-grained
“large-scale” description gives an at least qualitatively good understanding of the physics.
The particular method we seek to apply is time- or frequency-shell RG, which is a variant
of perturbation theory for systems with continuous excitation spectra. For a detailed dis-
cussion, we refer to the introductions in Altland and Simons (2010); Gogolin et al. (2004).
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Here we rather give the broad picture of ideas and concepts behind the RG method, and
discuss application recipes in terms of the TKE model mentioned in Sec. 3.1.1.
First, recall that we projected out conserved fermion parities and integrated out charge
fluctuations in Sec. 3.1.1, cf. also Sec. 2.4.2. The latter step already reflects a reduction
towards an effective theory, where we take the remaining energy scales of lead electrons
to be small against charging energy. This equivalently can be seen as a coarse-graining
approach, where we forget about virtual occupations of excited charge states that last for
short times τc ∼ 1/Ec. Our ansatz therefore should be justified as effective low-energy
model at low frequencies ω < Ec, or for slow dynamical time-scales δτ > τc.
We now want to focus on the most relevant low-energy degrees of freedom also for the leads.
However there is a fundamental problem in applying standard perturbative methods: the
leads are normal-conducting (metallic) electron reservoirs, i.e., they have an approximately
constant density of states over a wide range of energies (Bruus and Flensberg, 2016). We
hence are unable to define a “high-energy” and “low-energy” sector that are separated by
a large gap ΔE. This is in contrast to the case of box charge states, cf. Sec. 2.4.2, where in
floating islands distinct charge states are energetically split by charging energy, ΔE ∼ Ec.

In time- or frequency-shell RG, the idea now is to define a high-energy cut-off D beyond
which all lead-fermion states are regarded to be high-energy states. A-priori the choice of
cutoff is arbitrary, though in our TKE setting we pick D0 < Ec since we already integrated
out charge-fluctuations at energies Ec. The reduction to a low-energy theory at small
frequencies ω < D can now be made systematic by investigating how the system behaves
under rescaling or renormalization of the cutoff D(�),

D0 → D(�) = D0e
−� , (3.10)

with renormalization flow parameter �. The choice of a logarithmic renormalization scheme
turns out to be convenient in the analysis of RG flow equations below. Through downward
renormalization of the high-energy cutoffD, we gradually reduce what is seen as low-energy
sector of the system. Equivalently, we increase the short-time cutoff τc,0 → τc(�) = D−1

0 e�,
where high-energy fermion states can only be virtually occupied for short times δτ < τc. We
now are set to integrate out high-energy lead-fermion states that live at energies ω > D(�),
blurring out fast processes that happen on time scales δτ < τc(�).

For the boundary Hamiltonian with couplings between different leads, cf. Eq. (3.9), under
the RG flow in Eq. (3.10), there are two distinct scenarios. First assume we combine
two co-tunneling events ∼ Jjn, Jnk, at slightly delayed times τ and τ ′, that comprise an
intermediate excitation of high-energy fermion states in lead n. As the intermediate state
is only virtually occupied for times |Δτ | = |τ − τ ′| < τc, in our coarse-grained view of time,
we are unable to detect this fluctuation. We write a contraction of operators

Jjne
i(Φj(τ)−Φn(τ)) × Jnke

−i(Φn(τ ′)−Φk(τ
′)) ∼ JjnJnke

i(Φj(τ̄)−Φk(τ̄)) , (3.11)

with τ̄ = (τ + τ ′)/2. Since we are interested in slow time-scales δτ > τc, we integrated
out the intermediate step and obtained an effective process that directly implements the
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combined co-tunneling event between leads j and k. Instead, if the intermediate state
in lead n is at energies ω < D, it can be occupied for long times |Δτ | > τc. We then
consider the two tunneling processes as independent events in the low-energy sector. In
each renormalization step � → �′ = �+ δ� in Eq. (3.10), we therefore integrate out virtual
excitations only in the frequency shell D(�′) ≤ ω < D(�) or time shell τc(�) < |Δτ | ≤ τc(�

′).

The precise way of performing the integrations in Eq. (3.11) involves methods of quantum
field theory, including Wick contractions and the operator-product expansion. We delegate
these technical aspects to Altland and Simons (2010); Gogolin et al. (2004). Due to the
contraction of two phase-exponential operators that encode a charge-fluctuation at lead n
in Eq. (3.11), for example, phase-field correlation functions like ∼ 〈Φn(τ)Φn(τ

′)〉 enter the
evaluation. Expectation values here are taken with respect to the free Hamiltonian Hlead,n

in Eq. (3.5), i.e., we assume that initially the leads are weakly-coupled via the island.
We note that the integration over high-energy states after a differential reduction of the
cutoff D(�) proceeds via arbitrarily small steps δ� in Eq. (3.10). The change of coupling
parameters due to the feedback mechanism in Eq. (3.11) can then be paraphrased through
differential equations. We use the RG flow parameter � = ln(τc), cf. Eq. (3.10), where
� → ∞ indicates going to low energies (slow dynamics). The RG flow equations for the
TKE with boundary Hamiltonian in Eq. (3.9) are (Altland and Egger, 2013; Béri, 2013)

(
dJjk
d�

)
j �=k

=
∑
n �=j,k

JjnJnk , (3.12)

where we absorbed some constants. The RG equations are understood as discussed above:
tunneling between any two leads j �= k is enhanced upon going to lower energies, as we can
combine consecutive co-tunneling events which excite a high-energy intermediate state in
some lead n �= j, k. Without loss of generality, we can choose Jjk > 0 as initial parameters
in the weak-coupling Hamiltonian in Eq. (3.9). Since all couplings feed back into each
other, the RG equations in Eq. (3.12) imply a flow to strong, isotropic couplings Jjk � J .
Taking this simplification, we find growing dJ/d� = (M − 2)J2 where M is the number
of attached leads at the island. For M = 2, there is no RG flow as in Eq. (3.12) and the
co-tunneling couplings J are not enhanced as one goes to low energies; the TKE only arises
in multi-terminal islands with M ≥ 3, cf. also the discussion in Sec. 3.1.1.

An important aspect for the simplicity of the TKE RG equations in Eq. (3.12) was that
the contraction of any two lead boundary-coupling operators, each containing two phase-
exponentials in Eq. (3.11), gives back another boundary operator of similar kind. In this
sense, the Hamiltonian in Eq. (3.9) already contains all qualitatively distinct, relevant op-
erators that can arise in the boundary-coupling theory of the TKE. There are no new,
different operators that are generated in the RG analysis and have to be included.
In fact, our ability to find a closed set or group of most relevant operators that enter the
RG flow and boundary-coupling Hamiltonian is of crucial importance for the usefulness of
the renormalization-group approach. (That’s why it enters in the name of the method!)
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In general systems, there is no guarantee that there exists a finite number of “relevant”
physical processes, described by a closed set of operators (and associated Hamiltonian
terms). Only if we identify such a group of operators, we are able to analyze a finite set
of RG equations that describe feed-back mechanisms between them via renormalization of
their coupling amplitudes, cf. Eq. (3.12). By integrating the RG equations (for � → ∞),
we can find out which couplings grow large quickest and dominate as we reduce to lower
energies. In turn, this allows us to write a tentative strong-coupling theory containing the
most relevant physical processes and degrees of freedom, cf. Sec. 3.2.2 below.

This discussion also illustrates why RG methods are so tremendously successful in the
analysis of quantum impurity problems (Gogolin et al., 2004). As for TKE, in such systems
one or multiple species of fermions or bosons interact at fixed points with an impurity. The
latter usually defines a fixed set of rules by which it can interact with the reservoirs; these
range from charge- or spin-conservation in tunneling to more exotic symmetries of the
problem at hand. Based on such rules, one identifies allowed operators and Hamiltonian
terms that couple impurity and reservoirs. For those one can perform the RG analysis,
derive flow equations, and find the most relevant low-energy degrees of freedom.
The TKE-impurity is the “spin” defined on a Majorana box, cf. Sec. 2.2, and interactions
happen only at the lead-boundaries, at x = 0. Allowed processes are defined by the box
layout, and any but the simple couplings in Eq. (3.8) are precluded by non-locality and
the (topological) protection of Majoranas; hence the name topological Kondo effect.
In Plugge et al. (2016b); Gau et al. (2018), we extend Majorana box transport problems
beyond the case where a purely bosonic theory in Eq. (3.8) is applicable. Local multi-
junctions between leads and Majoranas allow for less protected couplings, and the ensuing
low-energy physics will depend on those parameters. Nevertheless, since these setups
are built from coupled Majorana boxes that serve as “quantum impurities”, RG analysis
provides powerful insights into the most relevant physics at low energies, cf. Sec. 3.3.

3.2.2 Strong-coupling theory of Majorana boxes

After performing a weak-coupling RG analysis in Sec. 3.2.1, we now are set to write down
a tentative strong-coupling theory at low energies. A fixed-point in the weak-coupling RG
of Eq. (3.9) is identified as a limit to which the corresponding RG equations (3.11) flow.
In general, tentative strong-coupling fixed-points do not need to be stable. A reason
for this can be a lack of information about the “true” low-energy physics in the original
weak-coupling theory on which we performed the RG. We recall that the weak-coupling
RG approach in Sec. 3.2.1 was based on initially weakly-coupled leads, i.e., in absence of
strong correlations between the leads (working in the original decoupled-leads basis).
If we are after strongly-correlated low-energy states like the (topological) Kondo effect,
naturally, we then have to perform a separate strong-coupling analysis. To this end, a
relation between multi-channel Kondo effects and quantum Brownian motion in periodic
potentials by Yi and Kane (1998); Yi (2002) is essential. It shows that the TKE fixed
point indeed is stable, and describes a so-called non-Fermi liquid state that reveals itself
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in unconventional finite-temperature and -voltage corrections of conductance and other
physical observables. Here and in the following we discuss only fixed-point theories, with
an understanding that they are stable and indeed describe physical low-energy states of
the system. For corrections around the fixed point and further discussion, we refer to the
extensive literature on the TKE, e.g. Béri and Cooper (2012); Altland and Egger (2013);
Béri (2013); Zazunov et al. (2014); Béri (2017) and Plugge et al. (2016b); Gau et al. (2018).

For the TKE, in Sec. 3.2.1 we have identified the limit of strong, isotropic co-tunneling
couplings as tentative fixed point. We reproduce the boundary Hamiltonian in Eq. (3.9),

HK = −J
∑
j �=k

cos(Φj − Φk) . (3.13)

The energy scale controlling the flow to strong coupling is the so-called Kondo temperature.
It can be estimated from the point where couplings J reach magnitude ∼ 1 in integration of
the flow equations dJ/d� = (M − 2)J2, and the validity of our weak-coupling RG analysis
breaks down. We find TK � D0e

−1/(M−2)J with high-energy cutoff D0 ≤ Ec in Eq. (3.10).
While we assumed isotropic couplings to obtain this simple form, J can also be taken as
mean magnitude in the case of moderately anisotropic initial couplings.
At energy scales below TK , we observe that HK defines a strong pinning-potential for the
lead phase-field differences in Eq. (3.13). The low-energy solution for the TKE then is
accessible by a quasi-classical picture where all phase-differences Φj − Φk are frozen out,

and only their center-of-mass (com) variable Φ0 = 1√
M

∑M
j=1 Φj stays free. We note that

HK [Φj] is invariant under shifts along the com-direction ∼ Φ0. It then is instructive to
switch to a new basis of phase-fields Φ̃j and com-phase Φ0, where

Φ0 = g0

M∑
j=1

Φj , g̃jΦ̃j = Φj − g0Φ0 , (3.14)

with prefactors g0 = 1/
√
M and g̃j =

√
2(M − 1)/M . Note that while Φ̃j is orthogonal

on Φ0, the M fields Φ̃j are not orthogonal to each other: the new basis {Φ0, Φ̃j} is over-
complete, and we additionally impose the zero-com constraint

∑
j Φ̃j = 0 by construction.

Strong couplings J result in quasi-classical pinning of the M −1 phase differences Φ̃j − Φ̃k,
and imply that charges fluctuate freely between leads. The only free quantum variable
then is the com-phase Φ0 that describes simultaneous, collective transport from/to all M
leads attached to the Majorana island hosting the TKE. A physical observable reflecting
these collective transport processes is given by the zero-bias zero-temperature conductance
of a TKE Majorana box (Altland and Egger, 2013; Béri, 2013; Zazunov et al., 2014)

Gjk =
2e2

h

(
δjk −

1

M

)
. (3.15)

Electrons incident from lead j experience resonant, correlated Andreev reflections (AR) due
to the residual fermionic degeneracy of the island. A Cooper pair (charge 2e) absorbed at
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lead j upon resonant AR is split democratically among all leads, i.e., each lead participates
by absorbing charge 2e/M . In a sense, at low temperatures the island thus rejects single-

electron tunneling or standard AR. Instead it implements processes e∓ig̃jΦ̃j ∼ e∓i(Φj−g0Φ0)

that involve balanced splitting of charge among the leads, described by a phase-exponential
of their free com-phase variable. The conductance at each lead then is the conductance
quantum (e/h) times the net transferred charge, giving the result in Eq. (3.15) above.
Such reduced, collective variables and transport mechanisms are key to our analysis of more
general Majorana box networks below. As we will see, it then is instructive to introduce
bosonic subsectors for simply-coupled Majorana boxes, where transport between distinct
subsectors happens only via their respective com-phase variables.

3.3 Non-simple lead-Majorana multi-junctions

In many Majorana devices and networks, there exist local tunnel-junctions between multi-
ple leads and/or Majoranas, see Figure 3.1. We dub these more complicated multi-junction
geometries non-simple, in contrast to the simple lead-Majorana junctions of Eq. (3.8). For
the design of quantum-computing architectures in Chapter 4, non-simple multi-junctions
are unavoidable. They facilitate access to distinct Pauli-operator components in Majorana-
based qubits and networks, thus allowing for qubit measurements and manipulations.
In this section we introduce two pedagogical examples of accidental or intentional lead-
Majorana multi-junctions, see Fig. 3.1, that are investigated in detail in published works.
Apart from providing a comprehensive overview of the main ideas entering the analysis
of such junction geometries, we also summarize general results and conclusions for more
complicated networks in Sec. 3.4 below. Since the later work Gau et al. (2018) revisits the
two-Majorana single-lead setup of Plugge et al. (2016b), we combine their discussion.

3.3.1 Two Majoranas coupled to single lead: the loop qubit

We start with two Majoranas coupled to a single lead on an otherwise simply-coupled
box, see Fig. 3.1. This scenario can model accidental low-energy states at lead-Majorana
contacts, dubbed “quasi-particle poisoning” in Plugge et al. (2016b), and a similar setup
was investigated by Kashuba and Timm (2015). Recently, the loop qubit of Karzig et al.
(2017) is a three-terminal device with a single central lead “c” coupled to two MFs γx,y, and
two (or more) simply-coupled leads for the rest of the box, cf. Fig. 3.1. Measurements at the
central lead (or quantum dot) then should allow to determine the joint-parity eigenvalues
σz = iγyγx = ± of the two central MFs. In turn one can hope to probe topological-qubit
features on this Majorana box, cf. Chapter 4. Devices like the loop qubit constitute
minimalistic but doable realizations of Majorana physics beyond the simpler two-terminal
measurements of Albrecht et al. (2016), and are of strong current interest in theory and
experiment. It hence is of critical importance to achieve a detailed understanding of the
low-energy physics and quantum transport phenomena in lead-Majorana multi-junctions,
which was our goal in Plugge et al. (2016b); Gau et al. (2018).
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Figure 3.1: Lead-Majorana multi-junctions. a), simple junction between one Majorana
γ (red dot) hosted on a box (outlined), and one lead contact (grey) with Klein factor κ
(red circle) and lead phase-field φ. b) and c), non-simple junctions with one Majorana
coupled to two leads, and vice-versa. Right: loop qubit device (Karzig et al., 2017) with a
central multi-junction as in c), and two simple outer junctions as in a). A superconducting
bridge (SC) connects the TS wire segments into a single box with 4 MFs, and forms a
phase-coherent loop in the system. Insertion of magnetic flux ϕ0 then allows to tune
transport properties of the device. Two MFs and one Klein-MF at the central junction are
represented by components of a spin 
σ, cf. Eq. (3.16). Figures from Gau et al. (2018).

Following Sec. 3.1, all simple junctions in Fig. 3.1 afford a purely bosonic description,
while for the central multi-junction this is not true anymore. However, any charge out/in-
tunneling e∓iΦc at the central lead c conserves the junctions overall fermion-parity due to
simultaneous in/out-tunneling at one of the two MFs. Therefore a representation of the
two MFs γx,y and one Klein-MF κc of the central lead via a spin becomes possible. For m
MFs, the latter corresponds to a SO(m) real spin-object living at the junction, cf. Sec. 2.2.
Here, for m = 3 MFs that are constrained in their overall parity, we retain a single spin 
σ.
We note the junction Hamiltonian at the central lead in Fig. 3.1 as

Hcentral =
(
λxσx + λye

iϕ0σy

)
ei(ϕ−Φc) + h.c. , (3.16)

with Pauli operators σx,y = iκcγx,y. Amplitudes λx,y are real positive, and we extracted
the loop-phase parameter ϕ0 that is identified with a magnetic flux piercing the device in
Fig. 3.1. It is convenient to switch to Pauli operators σ± = (σx ± iσy)/2, where

Hcentral = (λ+σ+ + λ−σ−) ei(ϕ−Φc) + h.c. , with λ± = λx ∓ iλye
iϕ0 . (3.17)

In order to obtain a simplified description, we now employ co-tunneling perturbation theory
as in Sec. 2.4.2 and for the TKE above. However, because of the local spin 
σ at the central
junction, there are qualitatively new terms in the boundary theory. Including all RG-
relevant contributions, we then find an effective boundary-coupling Hamiltonian as

Hc = −J
∑

j �=k∈B
cos(Φj − Φk) − 1√

2

∑
j∈B

[
(L+σ+ + L−σ−)ei(Φj−Φc) + h.c.

]
− ΛσzΘ

′
c . (3.18)

Tunneling within a bosonic subsector B of simply-coupled leads j = 1, ...,M does not affect
the spin, and we have terms ∼ J connecting leads j �= k ∈ B as before, cf. Eq. (3.13).
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Similarly, there are processes that describe co-tunneling from the central lead c to simply-
coupled leads j ∈ B of the bosonic subsector. However these events now necessarily affect
the spin at the central junction, where we have two path-options L± ∼ λλ±/Ec with dis-
tinct spin-operator content σ±, cf. Eq. (3.17). Finally, because there exists a closed loop
that permits fluctuations in the spin-sector while leaving lead- and island-charge states
invariant, we obtain spin-density hybridization terms. In the loop qubit of Fig. 3.1, the
closed loop encircles a (virtual) magnetic flux ϕ0, which hence becomes a gauge-invariant
quantity that affects the low-energy physics of the system. The hybridization term in
Eq. (3.18) is qualitatively new compared to the TKE, and comprises an interaction be-
tween the Majorana pair σz = iγyγx and the boundary-charge density ρc ∼ Θ′

c of lead c.

Detailing the generation of interactions Λ is useful also to understand their renormalization.
It here suffices to consider only the central-junction Hamiltonian in Eq. (3.16), where a
closed loop is formed by two non-equivalent tunnel paths ∼ λ± that invoke the same charge
dynamics. Upon contraction of two slightly delayed tunneling events ∼ σs=± at times τ
and τ ′, in time-ordered perturbation theory (Altland and Simons, 2010) we obtain

T [σs(τ) · σ−s(τ
′)] ∼ 1 + s sgn(Δτ)σz(τ̄) , (3.19)

with Δτ = τ − τ ′ and τ̄ = (τ + τ ′)/2. Since σ2
s = 0, only above terms ∼ |λ±|2 contribute.

The second term in Eq. (3.19) contains a sign-function, making it odd under integration of
the time difference Δτ over the time shell 0 ≤ |Δτ | ≤ τc with short-time cutoff τc ∼ E−1

c .
(This time-shell integration is a field-theoretical variant of co-tunneling perturbation theory
in Sec. 2.4.2; it is identical to a single step of the differential time-shell integration in the
RG-analysis of Sec. 3.2.1 and below, with fixed cutoff τc.) To obtain a non-vanishing
contribution, we then have to produce an odd-in-Δτ dependence also from the bosonic
operator-content of the contraction. For boson-dynamics as triggered by Eq. (3.17), an
expansion of the phase-exponentials that describe charge-tunneling events gives

ei(ϕ(τ)−Φc(τ)) · ei(Φc(τ ′)−ϕ(τ ′)) ∼ [1 + Δτ · i∂τ̄ϕ(τ̄)] · [1−Δτ · i∂τ̄Φc(τ̄)] . (3.20)

The leading constant-in-Δτ term does not produce relevant contributions when combined
with the first term of the spin-operator contraction in Eq. (3.19) (no left-over operators).
Similarly, combined with the sign-function of the second term it vanishes under time-
shell integration. Last, matching the two sub-leading time-derivative terms in Eq. (3.20)
generates density-density terms that are strongly irrelevant in RG. The only RG-relevant
contribution from Eq. (3.20) then comes from pairing terms ∼ Δτ with the sign-function
in Eq. (3.19), where integration over the time-shell |Δτ | ≤ τc gives a cutoff-factor 1/Ec.
Using the chiral-boson identity −i∂τΦc = ∂xΘc = Θ′

c, relating the above phase-dynamics to
a boundary-charge density (Gogolin et al., 2004), we find that one generates spin-density
hybridizations ∼ σzΘ

′
c as already noted in the boundary Hamiltonian Hc in Eq. (3.18).

Similarly, we have −i∂τϕ(τ) = Q for the box boson-variables in Sec. 2.4. After projection
to the charge ground-state Q → 〈Q〉 = Δng with gate-detuning Δng � 1, we find a term
∼ σzΔng. The latter does not renormalize under RG, and hence is dropped in Hc.
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We note that because of the spin-index s in Eq. (3.19), contributions ∼ |λs=±|2 come with
opposite signs. The initial value of the spin-density hybridization Λ, entering in the RG
flow equations below, then follows as Λ(� = 0) ∼ (|λ+|2 − |λ−|2)/Ec ∼ (λxλy/Ec) sin(ϕ0).
Crucially it depends on the coupling-amplitudes and loop-phase in Eqs. (3.16) and (3.17).

We now analyze how couplings of the boundary Hamiltonian in Eq. (3.18) renormalize
under RG, employing the same quantum field-theoretical methods as in Sec. 3.2.1. After
the above discussion of contractions and time-shell integration for tunneling events with
non-commuting spin-operators, the RG flow equations follow as (Gau et al., 2018)

dJ

d�
= (M − 2)J2 + |L+|2 + |L−|2 ,

dL±
d�

= [(M − 1)J ± Λ]L± , (3.21)

dΛ

d�
= (M + 1)

(
|L+|2 − |L−|2

)
.

The flow of subsector-couplings J is as in the TKE, cf. Eq. (3.12), where we now have two
additional options ∼ |L±|2 of co-tunneling via the central lead c. Likewise, tunneling ∼ L±
between the central lead c and j ∈ B is enhanced due to M − 1 options of first tunneling
from lead c to a different lead n �= j ∈ B, followed by subsector-transition n → j with am-
plitude ∼ J . Processes ∼ |L±|2, comprising back-and-forth tunneling between leads j ∈ B
and c, enhance the spin-density hybridization Λ. Due to their spin-operator content, the
two contributions enter into Λ with opposite sign, see the discussion above. By a similar
analysis as in Eqs. (3.19) and (3.20), the hybridization also feeds back into couplings L±,
again with opposite signs for spin-flip directions ∼ σ±.

One can now access the systems low-energy physics by the RG flow of the loop phase ϕ0(�).
The latter is encoded in couplings L± ∼ λ± = λx ∓ iλye

iϕ0 , cf. Eq. (3.17), and we find

ϕ0(�) = arg[i(L+ − L−)/(L+ + L−)]� . (3.22)

By convention we take λx,y > 0 as real and positive, where the only gauge-invariant and
physical phase in the system is ϕ0. Further it is sufficient to consider bare initial loop
phases ϕ0 ∈ [0, π). Together this implies |L+(�)| ≥ |L−(�)| and ϕ0(�) ∈ [0, π) throughout.

Inspecting the RG flow in Eqs. (3.21), we note that the coupling J is independent of ϕ0

and grows strong as we go to low energies (� → ∞). For M ≥ 3 it benefits from a TKE-like
self-enhancement. The spin-density hybridization is enhanced by couplings L±, following
Λ(�) ∼ sin[ϕ0(�)], and grows strong and positive for ϕ0 > 0. Due to spin-selective feed-
back into L±, the hybridization then further enhances L+ while suppressing the opposite
coupling L−. In total, couplings J, L+ and Λ become strong, while L− is suppressed. The
phases of couplings L± are fixed, since both J and Λ are real and positive. For the loop-
phase ϕ0(�) in Eq. (3.22) this implies a flow to the asymptotic fixed-point value ϕ0 → π/2.
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An exception is the fine-tuned value ϕ0 = 0, where the hybridization Λ → 0 is absent.
Rewriting in terms of couplings Jx = (L++L−) and Jy = i(L+−L−) to the original central-
junction Majoranas γx,y, cf. Eqs. (3.16) and (3.17), the flow equations (3.21) translate to

dJ

d�
= (M − 2)J2 +

∑
a=x,y

J2
a ,

dJa
d�

= (M − 1)JJa , (3.23)

Importantly, while both Ja=x,y grow, their ratio dJx/dJy = Jx/Jy follows from that of the
fundamental couplings λx,y in Eq. (3.16) and stays fixed throughout the flow. For M ≥ 3
the subsector-coupling J experiences a self-enhanced RG flow as before.

For the loop qubit system in Fig. 3.1 and Eq. (3.18) we thus have identified two candidate
fixed-points with loop-phase pinning to different values. The latter value ϕ0 = 0 is fine-
tuned and unstable against variations of the phase δϕ0 �= 0. Instead ϕ0 = π/2 represents
a stable phase-flow fixed point that is approached for arbitrary initial value ϕ0 ∈ (0, π),
where the fixed-point theory was investigated in Plugge et al. (2016b).

3.3.2 Low-energy quantum transport in the loop qubit device

After identification of candidate strong-coupling fixed-points in Sec. 3.3.1, we now explore
the low-energy physics and quantum transport features of the loop qubit device in Fig. 3.1.
To this end we employ simplification strategies as developed by Nayak et al. (1999) for
resonant tunneling between multiple boson species. Similar ideas were used by Béri (2017)
to obtain exact non-equilibrium transport results for the TKE.
In our case, once co-tunneling couplings J between simply-coupled leads j �= k ∈ B grow
strong, we can reduce the bosonic subsector B to its com-phase variable ΦB = gB

∑
j∈B Φj.

Here gB = 1/
√
M indicates effectively attractive interactions for this new collective-boson

species (Nayak et al., 1999). All relative shifts between lead boundary phase-fields Φj −Φk

in the bosonic subsector are then pinned to zero by the cosine-potentials in Eq. (3.18).
A bosonic subsector therefore interacts with its environment – either individual leads or
other subsectors – only via collective charge-dynamics ∼ e±igBΦB , see also Sec. 3.2.2.
From Eq. (3.18), we write a reduced strong-coupling theory at phase-value ϕ0 = π/2 as

Hϕ0=π/2
c = −

[
L̃+σ+e

i(gBΦB−Φc) + h.c.
]

− ΛσzΘ
′
c , (3.24)

with collective coupling L̃+ ∼ ML+. Terms ∼ L−σ− are dropped and the purely bosonic
part in Eq. (3.18) is rendered constant. For the case M = 1, in Plugge et al. (2016b) we

have shown that H
ϕ0=π/2
c above maps to a version of the well-known single-channel Kondo

model (Gogolin et al., 2004). This becomes possible since lead- and island-fermion parities
in a two-terminal version of Fig. 3.1 are conserved separately. The three island-Majoranas
then provide a fermion-degeneracy (represented as spin-1/2) even under Coulomb-blockade,
and facilitate resonant transport between a single outer and the central lead in Fig. 3.1.
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In contrast, for M ≥ 2 outer leads only local fermion-parities are conserved, cf. Sec. 3.1.1.
The spin in Eq. (3.24) then blocks any net transport at the central contact due to an onset
of “helicity”: each in-tunneling is followed by a subsequent out-tunneling event. However,
since charge-fluctuations at the central lead break parity conservation for the remaining
M island-Majoranas, Eq. (3.24) facilitates transport resonances between the outer leads.
With M = 2 outer leads, we observe that their coupling J grows strong only based on this
mechanism, cf. Eqs. (3.21). AtM ≥ 3 we instead find an enhanced TKE in the outer sector.

For a strong-coupling solution at fine-tuned ϕ0 = 0, we can make progress by returning
to a representation as for the central-junction Hamiltonian in Eq. (3.17). With the Pauli
operators σx,y = iκcγx,y, after equivalent steps as those leading to Eq. (3.24), we find

Hϕ0=0
c = −iκc

(
J̃xγx + J̃yγx

)
ei(gBΦB−Φc) + h.c. = −J̃(iκcγ)e

i(gBΦB−Φc) + h.c. . (3.25)

In the last step we defined a combined MF γ = (J̃xγx + J̃yγy)/J̃ , which together with
the Klein-MF κc can be removed by Majorana-Klein fusion, iγκc → ±. This procedure
becomes possible since J̃x,y are real and have a fixed ratio during the flow, cf. the RG equa-
tions (3.23). At fine-tuned magnetic flux, the central lead in the loop qubit of Fig. 3.1 thus
behaves like a conventional, simple lead-Majorana junction. The island then undergoes a
Meff = M + 1 - lead TKE, where in Eq. (3.25) we have artificially pulled out the central
lead c. In fact this mimicks the approach of Béri (2017) to describe low-energy transport
for a single biased lead “c” in a Majorana island otherwise hosting an equilibrium TKE.
For fine-tuned phase ϕ0 = 0, we hence have access to the full non-equilibrium transport
results between lead c and the collective outer sector B with M ≥ 1 leads.

Finally we summarize our predictions for the loop qubit device in Fig. 3.1. By tuning the
magnetic flux ϕ0 piercing its loop (Gazibegovic et al., 2017; Vaitiekėnas et al., 2018), one
might reveal drastically different and quite non-trivial quantum transport behavior.

First, since experiments are done at low but non-zero temperatures and voltages, features
of the unstable phase-flow fixed-point should widen to a region around ϕ0 ≈ 0, π with
small but non-zero hybridization. Around these flux-values, our theory predicts Coulomb
blockade in transport between the central and a single external lead (e.g. no. 1, Fig. 3.1).
This case is similar as for standard two-terminal devices (Fu, 2010; Hützen et al., 2012),
since the central contact effectively sees a single Majorana in Eq. (3.25). In contrast, for a
multi-terminal setting with M ≥ 2 external leads, we expect formation of the TKE with
resonant transport at the central lead (Altland and Egger, 2013; Béri, 2013, 2017).

Conversely, at far-detuned flux values ϕ0 �= 0, π with a single external lead, we predict
a single-channel Kondo effect with resonant transport between leads 1 and c in Fig. 3.1.
Instead now the multi-terminal setting with M ≥ 2 external leads facilitates a strong
blocking at the central contact, but allows for resonant transport between the outer leads.
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3.3.3 Single Majorana with multiple leads

As second example, we briefly run through the case of a single Majorana γ coupled to
multiple (two or three) leads on an otherwise simply-coupled island, cf. Fig. 3.1. Again
all simple lead-Majorana junctions afford a purely bosonic description. Further since any
charge-tunneling e∓iϕ at island Majorana γ conserves the junctions fermion-parity P =
γκxκyκz due to simultaneous in/out-tunneling at leads x, y or z, representation of MFs
plus Klein factors by a spin is possible. The junction Hamiltonian at Majorana γ reads

Hγ =
(
λxσxe

iΦx + λyσye
iΦy + λzσze

iΦz
)
e−iϕ + h.c. , (3.26)

with Pauli operators σa = iγκa and Klein factor κa of lead a = x, y, z with boundary
phase-field Φa. Employing co-tunneling perturbation theory as before, we find the effective
boundary-coupling Hamiltonian at energies ω � Ec as

Hb = −J
M∑

j �=k=1

cos(Φj − Φk) −
∑

a=x,y,z

Jaσa

M∑
j=1

cos(Φj − Φa) . (3.27)

We assume isotropy for couplings J within the bosonic subsector B with leads j = 1, ...,M .
Similarly, one can take isotropic couplings Ja from the bosonic subsector B to outer leads
a = x, y, z. Since this setup does not contain any closed loops, by gauge-invariance shifts,
all couplings Ja ∼ λλa/Ec and J ∼ λ2/Ec can be chosen real and positive.

In order to derive RG equations for couplings in Hb, we follow the same strategies as for
the TKE and loop qubit, paying due attention to the presence of Pauli operators σa. In
the contraction of two tunneling operators, pairs of anti-commuting Pauli-operators give
a sign-factor, cf. Eq. (3.19), and the corresponding RG contribution vanishes. Since the
setting in Eq. (3.27) does not contain closed loops, a generation of hybridizations is not
possible and the resulting RG equations are simplified. We obtain (Gau et al., 2018)

dJ

d�
= (M − 2)J2 +

∑
a=x,y,z

J2
a ,

dJa
d�

= (M − 1)JJa . (3.28)

In absence of spin-density hybridizations, the RG equations can be understood on a purely
combinatorial basis. Though in completely different context of two or three leads coupled
to one Majorana, cf. (3.26), these RG equations are equivalent to those for the loop qubit
at ϕ0 = 0, cf. Eq. (3.23). We note that while all couplings J and Jx,y,z grow strong, the
coupling ratios dJx/dJy = Jx/Jy and dJy/dJz = Jy/Jz are fixed throughout the flow.
For subsector B with M ≥ 3 simply-coupled leads, coupling J benefits from a self-enhanced
RG flow similar to that in the TKE. Instead for M = 2 one recovers a multi-component
version of the celebrated Kosterlitz-Thouless RG equations (Gogolin et al., 2004), where
dJ/d� =

∑
a J

2
a and dJa/d� = JJa. In this case, coupling J renormalizes only due to

growing Ja=x,y,z, where it also feeds back into the RG equations of these couplings.
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Simplification of the boundary theory again is possible by reduction of bosonic subsectors
to their center-of-mass phases. This approximation is justified at energies well below the
Kondo temperature in B, cf. Sec. 3.2.2, or for energy below J in the case of M = 2 leads.
The reduced low-energy Hamiltonian then contains only the com-phase ΦB = gB

∑
j∈B Φj,

with gB = 1/
√
M , and the individual lead-phase fields Φa as dynamic variables. We write

H ′
b = −

∑
a=x,y,z

J̄aσa cos(gBΦB − Φa) , (3.29)

where the first term in Eq. (3.27) was dropped. In each contribution ∼ Ja we summarized
the terms for different fields j ∈ B after projection to their com-phase content, leading to
the collective tunneling strength J̄a � MJa. H

′
b in Eq. (3.29) describes tunneling from any

of the three leads a = x, y, z to a collective chiral boson with boundary phase-field ΦB,
formed by the M strongly-coupled leads in the bosonic subsector B.

While drastically simpler than the full theory, H ′
b in Eq. (3.29) is still a complicated prob-

lem. To make analytical progress, we consider the case J̄z = 0 with only two leads coupled
to one MF, cf. Fig. 3.1. By rotating to new phase-field combinations Φc,s = (Φx±Φy)/

√
2

for the two multi-junction leads, and after combining gΦ = (gBΦB − Φc/
√
2), we find

H̄b = −1

2

(
Γb + Γ†

b

)
, with Γb =

(
J̄xσxe

−iΦs + J̄yσye
iΦs

)
eigΦ . (3.30)

Note the interaction parameter g =
√

g2B + 1/2. We observe that only the relative phase-
field combination Φs couples to the spin in an essential way, while the new field Φ describes
collective charge transport between sector B and the two non-simple contacts x, y.
Following Emery and Kivelson (1992), a unitary rotation U = eiσzΦs with subsequent
rotating-wave approximation allows to decouple Φs from the boundary-coupling term Γb.
As trade-off, since U also acts on the lead Hamiltonian Hlead[φs, θs] in Eq. (3.5), we intro-
duce interactions between σz and the boson species s at the junction. We finally obtain

Hb,full = Hleads −
1

2

(
Γ′
b + Γ′†

b

)
+ ΛsσzΘ

′
s , with Γ′

b =
(
J̄xσ+ + iJ̄yσ−

)
eigΦ . (3.31)

At general M this is an interacting boson problem because of g =
√

(M + 2)/2M ≤ 1.
However for M = 2 (g = 1), refermionization of the spin and phase-exponential operators
(Ψ ∼ κeiΦ, reverting Eq. (3.4)) allows for an exact solution. The theory in Hb,full then
describes an asymmetric two-channel Kondo model (Fabrizio et al., 1995; Gogolin et al.,
2004). It captures collective transport between two simple leads in B and the two leads
x, y coupled to one Majorana, cf. Fig. (3.1), in a four-lead three-terminal geometry.
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3.4 Summary: Quantum transport in Majorana boxes

We now summarize the main strategies and results for tackling quantum transport prob-
lems in coupled Majorana boxes, as published in Plugge et al. (2016b); Gau et al. (2018).
Of course some of the results listed below were known before, and we gave the most relevant
references to our work throughout the chapter. This overview also serves as convenient
step-by-step guide for the understanding of transport in complicated Majorana network
settings that are relevant in quantum-information processing applications of Chapter 4.
There we apply insights on the transport processes in Majorana networks to engineer
current- and charge-based protected manipulation schemes for Majorana qubits.
As instructive examples, we discussed the TKE hosted in simply-coupled multi-terminal
islands, cf. Secs. 3.1 and 3.2, as well as more complicated multi-junction setups in Sec. 3.3.

• Field-theoretical bosonization drastically simplifies the analysis of tunnel-coupled
Majorana boxes. This technique separates bosonic charge- and phase dynamics from
fermionic statistics encoded in charge-neutral Majoranas and Klein factors.

• By inspection of junction geometries and the device layout, one may employ local
fermion-parity constraints. Phase-coherent tunneling that connects leads and boxes
necessarily is local, unless facilitated by additional islands (see Chapter 4).

• Isolated pairs of MFs and Klein factors can be removed from the low-energy theory,
their joint fermion-parities are conserved. Local sets of m MFs and Klein-MFs can
be viewed as real spin-objects of group SO(m), cf. Sec. 2.2. One can represent the
associated Majorana operators by ∼ m/2 sets of Pauli-operators.

• After projecting to box charge ground-states, the theory reduces to a set of 1D boson
fields coupled via several spin-objects at their junction. Near charge-degenerate boxes
behave as “charge spins”, cf. Herviou et al. (2016); Michaeli et al. (2017), and do not
fundamentally change the theoretical description. In fact one may decouple center-
of-mass boson variables attached to such islands by Emery-Kivelson-style rotations.
As with many quantum-impurity problems, renormalization-group analysis provides
useful tools for finding the most relevant low-energy degrees of freedom.

• Groups of leads that couple without affecting the spin-sector, i.e. their interactions
are purely bosonic, can be identified as bosonic subsectors. At low energies they
enter the effective description only as collective degrees of freedom, through their
center-of-mass phases; such collective bosons generally harbor attractive interactions.
Corrections on top of this can be included as for the TKE, see e.g. Béri (2013);
Altland and Egger (2013). From a general set of coupled leads and boxes, we arrive
at a theory containing only the independent bosonic subsectors and sets of Pauli
operators by which those couple.
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• In a setup with tunnel-loops that harbor gauge-invariant physical phases, tunneling
between two subsectors can occur by path-options with anti-commuting spin-operator
content. For leads in these subsectors, one generates a hybridization between the spin
causing anti-commutation and the attached lead boundary-charge densities. Unless
one fine-tunes hybridizations to vanish, e.g. by inserting magnetic fluxes in tunnel-
loops, at low energies the associated boson-fields tend to decouple.

• After orthogonal rotations for lead-boson fields that employ the “correct” strong-
coupling basis of the problem, for remaining non-hybridized spins we may perform
Emery-Kivelson rotations. This allows to decouple one relative phase-field per spin,
traded off against a hybridization with the boundary charge-density of the decoupled
boson species. (In contrast, “charge spins” decouple center-of-mass bosons.)

• Consider a problem with M independent bosonic subsectors and m local fermion-
groups forming spin-variables. At low energies, after Emery-Kivelson rotations that
decouple center-of-mass or relative phases, this system reduces to coupling of M −m
possibly interacting boson species at their junction. In addition, for each of the m
spins we have interactions with an independent boson-species that was decoupled.

• Even at a “Toulouse point” with quenched interactions, coupling of interacting bosons
via impurities is a rich and complicated problem. Further progress then is possible
by numerics, or in some special cases also by analytical calculation. The analytically
tractable cases often correspond to well-known multi-channel Kondo models, but in
starkly different context of quantum transport through coupled Majorana boxes.

Naturally we urge caution in application of the above strategies to more general cases.
Systems of coupled Majorana boxes harbor rich and complex transport phenomena, as we
have seen throughout this Chapter. Not all approximations are always equally justified,
and which steps are best to take depends on the problem and physical question at hand.
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Chapter 4

Topological Quantum Computation
with Majorana fermions

In this Chapter we discuss implementations of measurement-based topological quantum
computation (TQC) with Majorana fermions. As core part of the thesis this includes a
rich variety of topics, from experiments- and application-driven design of topological qubits
to large-scale quantum error-correcting codes (QECCs) in Majorana networks. In fact, a
major motivation behind research on Majoranas is their potential for highly-protected
(topological) quantum computations, both on the fundamental-qubit level and towards
code-based quantum-information processing (QIP) and quantum error-correction (QEC).

The main ideas behind measurement-based quantum gates and computation are discussed
in Sec. 4.1. From there we develop practical schemes for measurement-based protected QIP
and TQC with Majoranas in Sec. 4.2 and Plugge et al. (2017); Karzig et al. (2017). After
introducing the basal Majorana box qubit, including the access hardware for its operation,
we then sketch concepts of QEC in Sec. 4.3. The design of Majorana network architectures
towards the implementation of QECCs is subject of Sec. 4.4. Here we mention the general
code networks of Karzig et al. (2017), and a particular promising QECC as realized in the
so-called Majorana surface code (MSC) of Landau et al. (2016); Plugge et al. (2016a).
In Sec. 4.5 we give a short summary of our main results, and review some of the most rele-
vant previous works and interesting recent theoretical efforts on measurement-based TQC.
An outlook on the current experimental progress towards a realization of Majorana-based
qubits and networks is given in the concluding Chapter 5 of this thesis

While we motivate basic principles of QEC and discuss some ingredients needed for its
implementation, from there it is still a long shot to an understanding of full-fledged QECCs.
Aside from our short introduction, we hence refer to the excellent books by Nielsen and
Chuang (2010); Lidar and Brun (2013), lecture notes by Preskill (2018) and review articles
of Gottesman (1997, 2010); Fowler et al. (2012); Terhal (2015) which we follow throughout.
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4.1 Quantum gates and measurements

We here introduce the basic concepts of quantum gates, circuits and computation along
with their possible measurement-based implementation. For an extensive overview, see e.g.
the book by Nielsen and Chuang (2010) and lecture notes of Preskill (2018). During our
discussion we freely switch between the action of quantum operators and circuits on states
(Schrödinger picture) and on the corresponding qubit operators (Heisenberg picture), cf.
Gottesman (1998), depending on which picture is convenient and offers more clarity.
In contrast to adiabatic quantum computation that describes the manipulation of quantum
information stored in the Hilbert space of a system with Hamiltonian H[λ(t)] by a gradual
change of Hamiltonian parameters λ(t) (cf. the braiding of Majoranas in Sec. 2.3), we
here consider digital quantum computers. These rely on the circuit model for quantum
computation, where a small universal set of quantum gates allows to manipulate input
states of the computation efficiently and in an arbitrary manner. Clearly this approach is
motivated from the functionality of classical computers, where similar circuit logic allows
to construct arbitrary (classical) computations – using a fixed set of rules implemented
on a corresponding “computationally-universal” hardware. For many quantum computing
protocols and algorithms of interest, e.g., in quantum cryptography, we then do not need
the ability to perform unitary simulations of a physical quantum system. Rather it is
advantageous to consider a digitized, abstract quantum-circuit “programming language”
that works hardware-independent on any complete “programmable” quantum computer,
i.e., given it supplies a basal universal set of quantum gates.

4.1.1 A universal set of quantum gates

We now discuss the most commonly used quantum gates that re-appear below, up to
and including a universal gate set. Note that such a set never represents a unique choice.
Rather there is an infinite manifold of different minimal sets that allow to achieve quantum-
computational universality; which ones are best to take or easiest to implement depends
on the quantum-computing hardware under consideration.
We follow the notation of Nielsen and Chuang (2010), denoting all operators with “hats”
and their eigenvalues as bare symbols. The single-qubit Pauli operators X̂, Ŷ and Ẑ are

X̂ =

(
0 1
1 0

)
, Ŷ =

(
0 −i
i 0

)
, Ẑ =

(
1 0
0 −1

)
. (4.1)

We write the corresponding Pauli-eigenstates as |0〉 and |1〉 (with eigenvalues Z = ±1),
|+〉 and |−〉 (X = ±1), |y〉 and |ȳ〉 (Y = ±1). Note the Pauli operator identity iX̂Ẑ = Ŷ .
Next the single-qubit Clifford gates, in addition to Pauli-flips X̂, Ŷ , Ẑ above, also include
more general qubit rotations of Hadamard Ĥ and phase- or S-gates Ŝz and Ŝx. We have

Ĥ =
1√
2

(
1 1
1 −1

)
, Ŝz = e−iπẐ/4 �

(
1 0
0 i

)
, Ŝx = e−iπX̂/4 =

1√
2

(
1 −i
−i 1

)
. (4.2)
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Remark the identities Ĥ = (X̂+Ẑ)/
√
2 � ŜzŜxŜz, Ŝ

2
z = Ẑ and Ŝ2

x = X̂. (Writing “�” here
means equivalence up to irrelevant global phases.) Therefore the two phase-gates Ŝz and
Ŝx that describe π/4-rotations around Z- and X-Pauli axis of the qubit, respectively, span
the full single-qubit Clifford group. The commonly-used Hadamard gate Ĥ corresponds to
an exchange of x- and z-eigenstates (or X̂ and Ẑ Pauli operators) on the affected qubit,
and can be implemented by consecutive π/4-rotations as noted above.
To achieve single-qubit universality, we additionally consider a single non-Clifford gate that
goes beyond the simple rotations in Eq. (4.2). We write two more general phase gates

P̂ (θ) = e−iθẐ , T̂ =

(
1 0
0 eiπ/4

)
� P̂ (θ = π/8) . (4.3)

Here P̂ (θ) is called (general) phase gate and describes arbitrary rotations with angle θ
around the z-axis of the qubit. A popular choice for a non-Clifford phase gate is given by
the phase-angle θ = π/8 above, which often is referred to as π/8- or T -gate. We note that
T̂ 2 = Ŝz and T̂ 4 = Ẑ, which is useful in practical implementations; in this sense the T -gate
is the simplest extension of the single-qubit Clifford group to a universal gate set.
Last, for quantum-computational universality we need the ability to couple different qubits
and to generate entanglement between them. The most common way to do this is by a
two-qubit entangling gate, in this case the controlled-NOT or controlled-X gate

Ĉx =
1

2

(
1 + Ẑ

)
C
⊗ 1T +

1

2

(
1− Ẑ

)
C
⊗ X̂T =

(
1T 0
0 XT

)
C

. (4.4)

The CNOT gate Ĉx acts between a control qubit C and a target qubit T . It applies a
Pauli-X flip to the target qubit, X̂T |0T 〉 = |1T 〉 (i.e., it implements the NOT-operation), if
and only if the control qubit is in the |1C〉-state (eigenvalue ZC = −1). Hence the matrix
representation in Eq. (4.4) acts on the 4-dimensional Hilbert space of the two qubits.

Subscripts for Pauli eigenstates (operators) indicate the qubit or subspace they belong to
(act on). Pauli operator eigenvalues often are simply denoted as X = ± etc., and also
referred to as parities of the corresponding Majorana pair (or subspace), cf. Sec. 2.2. A
particular set of universal quantum gates that we consider below is given by the four basal
gates {Ŝx, Ŝz, T̂ , Ĉx}; we note that Ŝz = T̂ 2 can be discarded, but having more than mini-
mal operations – including also the Pauli flips of Eq. (4.1) – is very convenient in practice.
For now, we continue with an understanding that the ability to perform such operations
between nearby qubits, hosted e.g. in a 2D lattice, allows for universal quantum computa-
tions using the full system. Quantum gates between distant qubits then are performed by
iteration of elementary two-qubit operations. Here we first aim to develop measurement-
based quantum gate routines without considering an explicit hardware, and later show how
to implement them for Majorana-based qubits in Sec. 4.2. We discuss further details on
qubit networks and the necessary basal code-operations in context of QECCs in Sec. 4.4,
where our few-qubit approaches indeed scale towards 2D network architectures.
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4.1.2 Measurement-based quantum computation

In this section we introduce measurement-based quantum gates and circuits, cf. Nielsen
and Chuang (2010); Preskill (2018). Anticipating the detailed discussion of their design in
Majorana-based TQC or QECCs, Secs. 4.2 and 4.4, we here only give a short overview.
Rather than a pure measurement-only approach that operates on large and complicated
input states supplying resources for the full computation (Briegel et al., 2009), we here
consider a mix of direct quantum-gate applications and measurement-based gates. To this
end, we remark that in many (useful) qubit platforms one can naturally implement some
minimal set of quantum gates, given e.g. by the Pauli gates {X̂, Ŷ , Ẑ}, with high fidelity.
In addition one usually has the ability to measure in (at least) two qubit bases X̂ and Ẑ.

Rotations Ŝx,z (or Ĥ) and the two-qubit CNOT Ĉx often are more difficult to implement

than elementary Pauli-flips. Even more so this is true for non-Clifford gates (T-gate T̂ )
that one needs to reach computational universality. We can then ask whether – given the
ability to perform some specific two-qubit entangling measurements – it is possible to pro-
vide resource input states to the computation that allow to implement the above universal
gates {Ŝx, Ŝz, T̂ , Ĉx} in a simpler fashion. The preparation of resource or ancilla states,
hosted on additional ancilla qubits entering the quantum circuit, then is delegated to some
special routines that happen “offline” (i.e., independent of “computational” qubits that
host the quantum information we wish to process). This suggestive question constitutes
the basic idea behind measurement-based quantum circuits and gate routines.

We start by discussing a measurement-based implementation of the CNOT Ĉx in Eq. (4.4).
This gate acts between two qubits, flipping the state of target T (applying x̂T ) if and only
if control C is in state |1C〉. In a measurement-based approach we need at least one addi-
tional ancilla qubit A1 by which the two logical qubits can interact, allowing us to perform
measurements in the enlarged Hilbert space that do not collapse the logical states.
Running the circuit in Fig. 4.1, we note that after initial preparation of |0A1〉 it contains
two two-qubit entangling measurements between T and A1 as well as C and A1. These
measurements act in x̂- and ẑ-bases of the participating qubits, respectively, and are fol-
lowed by a final control measurement on ancilla A1. Last one applies Pauli flips ẑC or x̂T

as recovery operations, conditioned on intermediate measurement outcomes. The protocol
is guaranteed to give a CNOT gate between control and target, as indicated in the inset
of the figure. For illustration purposes one may consider the action of the CNOT-gate
circuit in quantum-state representation, assuming measurement outcomes “+” in all steps.
It then is easy to verify that the circuit in Fig. 4.1 indeed performs the CNOT in Eq. (4.4).

A second important quantum gate circuit, often referred to as phase-teleportation circuit,
serves for implementation of an arbitrary phase gate P̂ (θ) = e−iθẐ in Eq. (4.3). This circuit
is also shown in Fig. 4.1, where initial preparation of an ancilla state

|Aθ〉 = P (θ) |+A〉 =
1√
2

(
e−iθ |0A〉+ eiθ |1A〉

)
(4.5)
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|ψC〉

|ψT 〉

|0A1〉 〈x̂A1x̂T 〉
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ẑ
(a1a3)
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〈x̂A1〉
→ a3

x̂
(a2)
T

a

〈ẑCẑA1〉
→ a2

|ψ〉

|Aθ〉 MZ

P̂ (2θ) P̂ (θ)|ψ〉

Z = ±

Figure 4.1: Measurement-based implementation of Clifford gates, cf. Preskill (2018).
Left: CNOT gate. After initializing qubit A1 in |0〉A1, one measures joint parities 〈x̂A1x̂T 〉
and 〈ẑC ẑA1〉 with respective results a1 = ± and a2 = ±. Finally, qubit A1 is read out,
〈x̂A1〉 = a3 = ±, followed by controlled Pauli flips on qubits C and T . The flips are
conditioned on intermediate outcomes a1,2,3, where ẑC and x̂T is not applied (is applied) for
a1a3 = +(−) and a2 = +(−), respectively. With these recovery operations, the protocol
gives a CNOT gate between qubits C and T , cf. the inset. Right: phase gate P̂ (θ).
After preparing an ancilla state |Aθ〉 in Eq. (4.5) on the bottom ancilla qubit, a CNOT-
gate entangles both qubits. Subsequently, readout of the Ẑ-eigenvalue (measurement MZ)
collapses the state of the ancilla. With recovery P̂ (2θ) not applied (applied) for outcome

Z = +(−), the protocol implements a phase gate P̂ (θ) = e−iθẐ on the top qubit hosting
state |ψ〉. Figures from Plugge et al. (2017) (left) and Plugge et al. (2016a) (right).

on the ancilla qubit “A” becomes necessary. The circuit affects two qubits, one hosting the
computational state |ψ〉 and another the ancilla state |Aθ〉 (top and bottom in Fig. 4.1). Af-
ter an entangling CNOT-gate beween computational (control) and ancilla (target) qubits,
with outcome Z = + of the ancilla measurement MZ , we find (up to normalization)

initial : |ψ〉 ⊗ |Aθ〉 � (α |0〉+ β |1〉)⊗
(
e−iθ |0A〉+ eiθ |1A〉

)
CNOT : α |0〉

(
e−iθ |0A〉+ eiθ |1A〉

)
+ β |1〉

(
e−iθ |1A〉+ eiθ |0A〉

)
(4.6)

ZA = + :
(
αe−iθ |0〉+ βeiθ |1〉

)
⊗ |0A〉 =

(
P̂ (θ) |ψ〉

)
⊗ |0A〉

A similar result is achieved for measurement outcome ZA = −, but with opposite rotation
P̂ (−θ) on the logical-qubit state |ψ〉. A recovery operation P̂ (2θ) can then restore the
desired phase gate P̂ (θ), cf. Fig. 4.1. Double-lines here indicate classical information that
conditions whether or not to apply a correction, similar as in the CNOT-gate circuit.

We now give important examples for phase-teleportation circuits that re-appear below.
With phase θ = π

4
, we can implement the S-gate Ŝz = e−iπẐ/4 in Eq. (4.2). The recovery

operation P̂ (2θ) = [P̂ (θ)]2 = Ŝ2
z = Ẑ corresponds to a Pauli-flip Ẑ, which is simpler than

the original gate. The resource state for S-gate application is given by |yA〉 = Ŝz |+A〉 in
Eq. (4.5), which can be obtained by a Pauli-Ŷ measurement. Further, with essentially the

same routines one may also implement π/4-rotations around the X̂-axis, i.e., Ŝx = e−iπX̂/4

in Eq. (4.2). Last, for a measurement-based version of the π/8- or T-gate T̂ � e−iπẐ/8,
the recovery operation in the phase-teleportation circuit becomes a S-gate with Ŝz = T̂ 2.
However this circuit requires a more complicated ancilla state given by |Aπ/8〉 = T̂ |+A〉.
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We find that by use of ancilla states in Eq. (4.5) and the phase-teleportation circuit in
Fig. 4.1, one can reduce the need for phase gate applications to a correction in form of
twice the original phase-value. This also highlights why the universal set of single-qubit
phase gates {Ŝx, Ŝz, T̂} in measurement-based gate implementations is a particularly con-
venient choice: corrections in their corresponding phase-teleportation circuits reduce to
simpler Pauli-flips or Clifford phase gates {X̂, Ẑ, Ŝz}, respectively.

To conclude, we require ancilla qubits and -states in order to execute gates in a measurement-
based way. If we were to perform direct measurements on the logical qubits, we would
collapse their encoded states and lose parts of the stored quantum information. The full
computational Hilbert space will thus grow (significantly) larger than that of the logical,
information-encoding qubits only, in particular for the QECCs in Secs. 4.3 and 4.4.
For the ancilla states to enter in a useful way, we need entangling measurements between
ancillas and logical/computational qubits, which we tacitly assumed as given in Fig. 4.1.
Otherwise, e.g., the ancillary phase-content of a state in Eq. (4.5) cannot be transferred
into and used in the computational logic circuit. Overall, the performance of measurement-
based quantum computations thus crucially depends on a supply of high-fidelity ancilla
states, and on our ability to generate entangling two- or multi-qubit measurements.

Here we would like to caution that the ideas introduced above of course can not magically
solve all challenges that appear in the implementation of universal quantum computation.
However the fact that ancilla preparation can be done “offline”, independent of the logical
computations we want to perform, is a powerful tool in QECCs. Much effort has been
put in the development of so-called magic-state distillation schemes, e.g. to prepare states
|Aπ/8〉 as input for the T -gate, pioneered in seminal work by Bravyi and Kitaev (2005).
Nevertheless, as extensively discussed in literature (Fowler et al., 2012; Terhal, 2015), the
preparation of ancillary input states becomes a serious bottleneck in code-based QIP.

4.2 Majorana box qubits and beyond

In this section we discuss elements of Majorana box qubits as example for partially pro-
tected, measurement-based topological quantum computation with Majorana fermions.
The core of these devices are qubits encoded in mesoscopic four-Majorana islands (boxes),
cf. the introduction in Sec. 2.2. With basic knowledge of quantum gates and circuits in
Sec. 4.1 and a detailed discussion of basal Majorana systems, qubit-encoding and transport
in Majorana boxes in Chapters 2 and 3, in principle our work Plugge et al. (2017) should
be self-contained. Nevertheless, inspecting the Majorana box qubit (MBQ) in more detail
allows us to introduce most ideas, concepts and setups used extensively in other works.
In particular the more exhaustive publication Karzig et al. (2017) deals with more general
Majorana qubit- and code-networks. Majorana boxes and their extensions also re-appear
as fundamental units in Majorana-based QECCs, e.g. in the Majorana surface code of
Landau et al. (2016); Plugge et al. (2016a), cf. Sec. 4.4.
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Figure 4.2: Majorana box qubit and readout based on conductance interferometry. (a)
Two long TS wires (blue) are shunted by a superconducting bridge (S, orange) to form
a floating island hosting four Majoranas γj (crosses). With electrostatic gates (gray) one
can adjust the box charge state and tunnel-couplings through semiconductor segments
(green). A semiconducting reference arm (R) forms an interference loop with the box,
enclosing a magnetic flux ϕ. Readout of the MBQ Pauli operator ẑ = iγ2γ3 is possible
via conductance interferometry between two normal leads (yellow). (b) The conductance
Gz(ϕ) is 2π-periodic in ϕ, with a relative π-shift for the two qubit states |0〉 and |1〉 with
z = +(−), respectively. Figure from Plugge et al. (2017).

4.2.1 Basic hardware and readout schemes

We start by introducing the basic central unit of the Majorana box qubit: a mesoscopic
four-Majorana island with large charging energy, cf. Sec. 2.4, which hereafter is referred
to as Majorana box. Such a device with some access hardware is shown in Fig. 4.2, where
we recall the encoding of a single qubit into a Majorana box, cf. Sec. 2.2, as

ẑ = iγ2γ3 � iγ1γ4 , x̂ = iγ1γ2 � iγ3γ4 , ŷ = iγ3γ1 � iγ2γ4 . (4.7)

The representation of Pauli operators by complementary Majorana contents is possible due
to the box parity constraint Pbox = γ1γ2γ3γ4 = ±. Based on the design of a Majorana
box in Fig. 4.2, the encoded qubit in Eq. (4.7) has highly unusual but very useful properties.

First, MBSs on the device are far-separated, meaning that Pauli operators defined from
Majoranas are highly nonlocal and the box qubit has a protected ground-state degeneracy
inherited from the MZMs (wires much longer than MBSs localization length, LW � ξ).
Second, different qubit operators are distributed in spatially distinct ways, with Pauli-x̂
and -ẑ operators encoded along horizontal and vertical dimension of the device in Fig. 4.2,
respectively. Measurements and manipulations of such operators are then identified with
spatially distinct access operations: topological protection of the MZMs enters our proto-
cols and computations in precisely this way, also in the Majorana-based QECCs of Sec. 4.4.

Non-locality of access points in Majorana boxes and networks is a virtue (and challenge)
which was already present in our analysis of charge transport, see Chapter 3. It prohibits
“erroneous” processes of tunneling through MZMs which are not meant to be coupled at
a given lead or quantum dot, but also implies that multi-junctions or loops necessary for
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QIP applications need to be formed by hardware that allows for phase-coherent electron-
transport over long distances. To this end, note that experiments finding highly degenerate
MBSs employ TS wires that are several micrometers in length, cf. Albrecht et al. (2016).
Coherent transport on such scales can be facilitated by using additional mesoscopic TS
wires, or via low-density semiconductors (Gazibegovic et al., 2017; Vaitiekėnas et al., 2018)
that also form the basis to implement TSs. This allows for reference arms with sufficient
phase-coherence length Lφ in Fig. 4.2, while also keeping MZMs far-distant.

The first access operation we discuss is a measurement of the Pauli-ẑ operator. To this end
we consider two leads or QDs attached at the right side of the device in Fig. 4.2. Tunneling
between the contact points in the co-tunneling regime, cf. Chapter 3, is described by

Ht = d†2(t0 + t1ẑ)d3 + h.c. , (4.8)

where d2,3 are lead fermion operators tunnel-coupled to MZMs γ2,3. Co-tunneling between
the leads (QDs) here can proceed either via the box (∼ t1ẑ), picking up the two Majorana
operators ẑ = iγ2γ3 in the process, or via the reference arm in Fig. 4.2 (amplitude ∼ t0).
An interferometric conductance measurement between the lead contacts in Fig. 4.2 gives

Gz(ϕ) =
e2

h
ν2ν3|tz|2 , with tz = t0 + t1z . (4.9)

Here ν2,3 is the density of states in the leads. More importantly, the conductance depends
on the total inter-lead transfer amplitude tz of the cotunneling Hamiltonian in Eq. (4.8),
and therefore also on the MBQ state. The dependence of transport on the magnetic flux
ϕ = arg(t1/t0), piercing a phase-coherent loop of the system, goes back to the celebrated
gauge-invariance effect first unveiled by Aharonov and Bohm (1959). Electrons tunneling
through the Majorana pair ẑ = iγ2γ3 now experience a relative π phase-shift depending on
the fermion-parity state z = ±, cf. Fu (2010). In Plugge et al. (2017) we show that the
conductance measurement in Eq. (4.9) and Fig. 4.2 then indeed implements a projective
measurement of the MBQ state, collapsing the MBQ towards states |0〉 or |1〉.

An alternative and likely less invasive readout mode is implemented by coupling Majorana
boxes via quantum dots. These are also highly useful in the manipulation of MBQs, and
described by the same effective Hamiltonian as in Eq. (4.8), but where d2,3 are fermion
operators for single-level QDs. This setup is shown in Fig. 4.3 for a device with two MBQs.

We first focus on single-qubit operation of the right MBQ “a” coupled by QDs 1, 2 and 3
in Fig. 4.3. A measurement of the Pauli operator ẑa is implemented by tuning QDs 2 and
3 close to resonance and activating the reference arm connecting those two dots, while all
other dots are far-detuned and cut off. The effective Hamiltonian of this setting reads

HQDs,23 =
ε

2

(
d†2d2 − d†3d3

)
+ d†2(t0 + t1ẑa)d3 + h.c. , (4.10)
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Figure 4.3: Device hosting two MBQs a and b, with QD-based readout and manipulation.
Quantum dots (light red) are formed on semiconducting wire segments (green), where dot
levels and tunnel couplings can be adjusted by gates (gray). Dark squares indicate e.g.
charge sensors or resonator systems used for qubit readout via the QDs. Removing the
central dots, a single MBQ a with three QDs 1, 2, 3 and interference links allows for
readout of all Pauli operators and full single-qubit control, see text. Similar for qubit b.
The full device with MBQs a and b, connected by dots 4 and 5, allows for readout of their
joint parity via a MBQ product operator. Figure from Plugge et al. (2017)

where we add a dot-detuning energy ε to Eq. (4.8). Diagonalization yields the double-QD
(DQD) hybridization energies ωza =

√
ε2 + |tza |2 that depend on the MBQ state za = ±.

Detection of the MBQ state is possible by a measurement of the DQD spectrum ∼ ωza

via photons in a microwave resonator that is capacitively coupled to one of the dots, cf.
Fig. 4.3 and Plugge et al. (2017). Similarly one may detect spectral-derivative properties,
e.g. differential charge or quantum-capacitance shifts on the dots, cf. Karzig et al. (2017).

By using different combinations of QDs one may now access all single-qubit operators of
MBQ a (or b) in Fig. 4.3. To this end one simply identifies which Pauli operators are
picked up in tunneling around a loop of the Majorana device coupled by QDs. In fact we
learned in Chapter 3, e.g. for the loop qubit in Fig. 3.1, that a spin-charge coupling sets in
only based on closed loops in the system; such hybridizations are exactly what is reflected
in the dependence of spectral- or charge-shifts of the QDs on MBQ Pauli operators.
As discussed above, QDs 2 and 3 allow readout of the Pauli-ẑ operator, cf. also Fig. 4.2.
Similarly, QDs 1 and 2 allow readout of the horizontal Majorana-pair x̂ = iγ1γ2, if phase-
coherent electron transfer on the long side of the MBQ is facilitated by another single TS
wire with fixed fermion-parity (the top TS wire(s) in Fig. 4.3), cf. Sec. 2.4.2 and Fu (2010).
Last, QDs 1 and 3 allow readout of the diagonal combination ŷ = iγ3γ1, also employing the
single TS wire as coherent link while detuning or cutting off QD 2. Similar combinations
with dots 6, 7 and 8 allow for measurements of all Pauli operators on qubit b in Fig. 4.3.

4.2.2 Joint-parity measurement and single-qubit rotations

The central QDs 4 and 5 facilitate a two-qubit entangling measurement between two MBQs
a and b in Fig. 4.3. The total tunneling amplitude here reads tzazb = taẑa + tbẑb, where the
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first (second) term refers to co-tunneling through qubit a (b). The corresponding Hamilto-
nian is as in Eq. (4.10) but with the new inter-dot tunneling, where the DQD hybridization
frequency ωzazb =

√
ε2 + |tzazb |2 now depends on the joint-parity state 〈ẑaẑb〉 = ±.

Loop-coupling and measurement via QDs hence allows to implement highly protected and
ancilla-free entangling measurements, in particular also of stabilizers in the context of
QECCs, cf. Secs. 4.3 and 4.4. Any perturbation to the joint-parity measurements above
has to be non-local, i.e., coupling the distant QDs 4 and 5 via an additional route other than
co-tunneling through the MBQs or interference links. In contrast, decay and dephasing of
the quantum dots (acting diagonally in QD-space) does not affect the above projection to
a joint-parity eigenstate, but may reduce readout fidelity in measurement due to blurring
of the QD spectra and charges, cf. Plugge et al. (2017); Karzig et al. (2017).

We now show how controlled charge-pumping allows to apply Pauli flips (Flensberg, 2011).
Such operations are used in measurement-based gate circuits, cf. Sec. 4.1, in addition to
the single-qubit and entangling two-qubit measurements above. Taking again QDs 2 and
3 in Fig. 4.3, and decoupling all interference links, a controlled charge pumping can be
performed by sweeping the dot energy levels encoded in ε. With inter-dot transfer ampli-
tude tza = t1ẑa (interference link t0 → 0) in Eq. (4.10), once a charge has been transferred
between the dots, this operation necessarily applies the Pauli-flip ẑa on MBQ a.

Similar but less protected, by tuning the magnetic flux piercing interferometric loops, i.e.
ϕ = Re(t1/t0) = 0, a geometric phase gate P̂ (θ) = e−iθẑa with θ = − arctan [Im(t1/t0)]
can be performed. While this protocol includes some fine-tuning, it is protected on a
Clifford-level in the sense that we only act on the Pauli-ẑ axis of MBQ a. Errors due to
non-ideal execution hence also only act on this qubit component, since effects on other
Pauli operators or qubits would involve spatially distinct, quenched tunneling paths.
In QIP context, one can understand the phase gate as a QD-steered rotation in the coupled
two-qubit Hilbert space of MBQ a and a double-dot charge qubit hosted in QDs 2 and 3.
Here the fine-tuning ϕ = 0 of coupling between both qubits allows to avoid any dynamical
phases, and steering the DQD along |1203〉 → |0213〉 (dot-occupations |n2n3〉) by adjust-
ing the dot detuning ε employs a coupled evolution of both qubits. After confirming the
transferred charge on dot 3 (state |0213〉) by measurement, the za = ± states of MBQ a
have encircled a geometric phase-angle ±θ, undergoing the phase gate P̂ (θ).

Last, Majorana fermions only supply a Clifford algebra and corresponding Clifford-group
rotations in a protected way. Any non-Clifford gate for Majoranas involves fine-tuning,
and there has been a substantial effort to find optimal routines for such protocols, see e.g.
Karzig et al. (2016); Knapp et al. (2016). Even though an arbitrary phase gate is not fully
protected, it should at least be partially protected on the Clifford-level as discussed above.
Rotations on other qubit axes x̂ and ŷ can be performed using the corresponding QDs.
Similar protocols are available for encoded qubits in QECCs, cf. Plugge et al. (2016a).
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Figure 4.4: Four-qubit device. (a) Similar to Fig. 4.3, but with four MBQs allowing for
measurement-based implementation of a two-qubit protected Clifford quantum computer.
Two data qubits, denoted target (T ) and control (C) for the CNOT-operation in Fig. 4.1,
are coupled and manipulated via two ancillas A1 and A2. Using the ancillas one can also
implement π/4-rotations around both qubit axes x̂ and ẑ on both data qubits C and T . (b)
Protocols for the four-qubit device. With the indicated dot pairs, any single-qubit and the
product operators of adjacent qubits can be addressed. Figure from Plugge et al. (2017).

4.2.3 A Clifford quantum computer: towards code networks

The two-qubit device in Fig. 4.3 does not yet allow implementation of the full two-qubit
Clifford group in a protected way. To this end, a simple extension with two additional
qubits in the 2 × 2 qubit array of Fig. 4.4 suffices to implement a two-qubit protected
Clifford quantum computer. We here consider an operation of the device with two data
qubits C and T , and two ancilla qubits A1 and A2. The measurement-based CNOT gate
circuit in Fig. 4.1 can then directly be implemented, using pairs of QDs for measurements
and application of Pauli-flips as incicated in Fig. 4.4(b). A flipped CNOT, with exchanged
control and target qubits as compared to the figures, can also be implemented using ancilla
A2 instead of A1. The Ŝx,z-gates, employing π/4-rotations around x̂- and z-axis of qubits
C or T , can be generated from a simplified phase-teleportation circuit compared to that
in Fig. 4.1. Instead of a CNOT-gate between ancilla- and data-qubit one can use a simple
two-qubit entangling measurement that is available in our architecture (Plugge et al., 2017).

4.2.4 Summary and discussion: Majorana box qubits

We conclude that the MBQ architecture allows for (topologically) protected Clifford-group
operations and a semi-protected geometric phase gate. The latter could serve as a simple
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semicond.supercond.top. supercond. MZM quantum dot gate

Figure 4.5: Hexons and their embedding into a network architecture. A one-sided hexon
(left) is a comb-shaped six-Majorana island that can host one data- and one ancilla-qubit.
Quantum dots in the underlying semiconductor network (right) are defined by local gates,
and coupled to or decoupled from hexons as needed, cf. Fig. 4.3. Two-Majorana measure-
ments on the hexon facilitate measurement-based braiding of Majoranas, and thus allow
to locally generate the full single-qubit Clifford group. The network graph of this architec-
ture is hexagonal, i.e., each hexon has one horizontal and two diagonal neighbors. Further
details and discussion, see Karzig et al. (2017). Figure from Karzig et al. (2017).

approximate universal-gate implementation in small networks, or as a good starting point
to ancilla distillation (Bravyi and Kitaev, 2005; Terhal, 2015) in the larger QEC-networks
of Secs. 4.3 and 4.4. The simple single-qubit Pauli gates {x̂, ŷ, ẑ} can be directly imple-
mented by controlled charge-pumping protocols. Instead the phase gates Ŝx,z with resulting

Hadamard Ĥ and the two-qubit CNOT Ĉx are constructed from standard measurement-
based gate routines (Nielsen and Chuang, 2010; Preskill, 2018), given our capability to
perform high-fidelity two-qubit entangling measurements in Sec. 4.2.2.
We note that the MBQ architecture is scalable and can be extended to linear arrays as in
Fig. 4.3, and by stacking rows into a 2D array similar to Fig. 4.4. As shown in Karzig et al.
(2017), with Pauli-flips on all qubits, Pauli measurements on ancilla qubits and ẑ−ẑ (x̂−x̂)
entangling joint-parity readouts between horizontal (vertical) neighbors, the resulting 2D
network is Clifford-complete. This means that the architecture allows for all Clifford-group
operations between nearby qubits of the network, and thus has sufficient capabilities to
run an arbitrary quantum error-correcting code (Terhal, 2015).

Several alternative Clifford-complete architectures are discussed in Karzig et al. (2017).
There we also consider six-Majorana devices, see Fig. 4.5, that in addition to the data
qubit directly host an ancilla qubit on the box. Such a strategy and encoding is slightly
more complicated on the elemental-qubit level, but overall may be more versatile since it
allows for all single-qubit Clifford operations to be performed locally, using only the on-
box ancilla. Entangling measurements between different boxes then exclusively are used
to perform two-qubit gates such as the CNOT, and there are no separate ancilla-boxes. In
contrast, in the MBQ architecture of Fig. 4.4, half of the box qubits are used as ancillas.
Last, let us also mention the interesting parallel work of Vijay and Fu (2016b) on braiding
of Majoranas in TS wire-networks as facilitated by the measurement-based approach.
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4.3 Quantum error-correction

As last part of the thesis, we turn to the concept of quantum error-correction (QEC) and
quantum error-correcting codes (QECCs). While of course we hope that Majorana-based
qubits – the Majorana box qubit of Plugge et al. (2017) or tetron- and hexon-designs in
Karzig et al. (2017) – will outperform other platforms already on the basic hardware level,
for serious QIP tasks involving many qubits and quantum gates, error correction becomes
inevitable. We here seek to design stabilizer measurement and code operation protocols
that benefit from the inherent protection of qubits, basal protected Clifford-gate operations
and high-fidelity entangling measurements in the Majorana architectures of Sec. 4.2.

For reviews on QEC and QECCs see Gottesman (2010); Fowler et al. (2012); Terhal (2015),
books by Nielsen and Chuang (2010); Lidar and Brun (2013) and lectures by Preskill (2018).
We here motivate basic requirements for a QEC hardware-platform and QECC operations,
and introduce some of the fundamental ideas of QEC following Nielsen and Chuang (2010)
and Preskill (2018). All further details are delegated to our works Landau et al. (2016) and
Plugge et al. (2016a) on the Majorana surface code as one example QECC, and to Karzig
et al. (2017) for more general Clifford-complete networks that can run arbitrary QECCs.

4.3.1 Quantum error-correcting codes: basics

Following Nielsen and Chuang (2010), we introduce two simple example (Q)ECCs that can
be implemented with few qubits, e.g., in the systems of Sec. 4.2. Nevertheless they serve
to illustrate general principles that re-appear in more complicated codes, cf. Sec. 4.4 below.

The three-qubit bit-flip code is a classical code that allows to correct a single bit-flip error
x̂j=1,2,3 on any of its qubits 1, 2 or 3. It describes encoding of a single logical qubit (k = 1)
into the larger Hilbert space of three qubits (n = 3), employing the logical qubit states

|0L〉 = |010203〉 , |1L〉 = |111213〉 , (4.11)

with associated logical qubit operators ẐL = ẑ1ẑ2ẑ3 and X̂L = x̂1x̂2x̂3. We here denote
code- and logical-qubit operators with uppercase, and physical-qubit operators by lowercase
symbols. This code can be implemented and checked by the two stabilizers (n− k = 2)

Ẑ1 = ẑ1ẑ2 , Ẑ2 = ẑ2ẑ3 , (4.12)

which for a measurement on the logical state |ψL〉 = α |0L〉+β |1L〉 always return the trivial
syndrome 〈Z1, Z2〉 = 〈+,+〉, indicating no error. A readout of the two stabilizers does not
collapse the encoded state |ψ〉, and logical qubit operators ẐL and X̂L commute with all
elements of the stabilizer group S = {Ẑj}. By this property, the logical qubit states and
associated operators form the code space of the QECC that is stabilized by S.
We now want to understand the error-correction capabilities of the code. With a bit-flip
error x̂j=1,2,3 on any of the three physical qubits, we find the associated error syndromes

x̂1 : 〈−,+〉 , x̂2 : 〈−,−〉 , x̂3 : 〈+,−〉 . (4.13)
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Since the syndromes of all three errors are distinct, we can identify which bit-flip error has
happened and subsequently correct it. Applying bit-flips x̂j=1,2,3 according to the above
syndromes, thus giving x̂2

j = 1 in total, we finally recover the correct logical state |ψL〉.
The next more complicated error is a simultaneous bit-flip on two qubits. We find

x̂2x̂3 : 〈−,+〉 , x̂3x̂1 : 〈−,−〉 , x̂1x̂2 : 〈+,−〉 . (4.14)

The error syndromes pairwise are the same as for single-qubit bit-flips x̂j above, hence we
are unable to distinguish the two cases. For any reasonable (correctable) source of errors,
we assume that low-weight errors acting on fewer qubits are more likely than high-weight
errors. The weight of an error (or operator) here corresponds to the number of physical
qubits it affects. Hence our decoding for error x̂2x̂3 (weight 2) would read x̂1 (weight 1), and
cyclic permutations. If we apply bit-flips x̂j=1,2,3 to fix the two-qubit errors in Eq. (4.14),

we generate a logical qubit error x̂1 · (x̂2x̂3) → X̂L (and cyclic permutations).

While we cannot be pleased with the existence of a logical error, this example allows us
to deduce general rules for (quantum) error correction. Our approach in (Q)ECCs is to
transform back the system, such that the error syndrome revealed by the code stabilizers Sj

goes back to the code-space configuration with trivial syndrome, 〈S1, S2, · · ·〉 → 〈+,+, · · ·〉.
The strategy fails if we deduce the wrong error from a given syndrome, where the actual
error and our correction add up to a logical error. The two errors are said to differ by
logical qubit operators, and have the same syndrome since the latter necessarily commute
with all elements of the stabilizer group S = {Sj}. In contrast, two operators that differ
by elements of S are regarded as equivalent, since they have the same action on the code
space. A QECC can correct errors up to weight t, with code distance d = 2t+ 1 bound by
the minimum weight of its encoded Pauli operators (for linear codes).

The three-qubit bit-flip code serves as instructive example, but it is a classical code that
lacks the capability to correct arbitrary single-qubit errors. While the above representation
of operators X̂L and ẐL is appealing and elegant, it may mislead to overestimate the code
distance as dwrong = 3. The logical bit-flip X̂L has weight 3, and we are able to correct
one single-qubit bit-flip error in Eq. (4.13). The logical phase-flip, however, can also be
represented as the weight-1 operator Ẑ ′

L = ẐLẐ2 = ẑ1, equivalent up to the stabilizer Ẑ2 in
Eq. (4.12). Phase-flip errors ẑ1,2,3 commute with the stabilizers Ẑ1,2, and therefore cannot
be detected. A combined bit-phase-flip ŷj=1,2,3 is misidentified as bit-flip error, ŷj = ix̂j ẑj,
where a phase-flip ẑj goes unnoticed. For our purposes it is sufficient to consider single-
qubit bit- and phase-flip errors x̂j and ẑj, since the combined bit-phase-flip is their product
and all higher-weight errors can be represented by products of single-qubit Pauli operators.

As seen above, and as used extensively below and in our publications, to describe a QECC
it is sufficient to specify its stabilizers and logical qubit operators. The action of quantum
gates and errors on the code and its operators then is captured by using the Heisenberg
representation of QECCs and associated quantum gate circuits, cf. Gottesman (1998).
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We now discuss the Steane or 7-qubit code (Nielsen and Chuang, 2010) as basic example of a
functional QECC that can correct an arbitrary single-qubit error. The so-called generators
of the Steane code, similar to those of the bit-flip code in Eq. (4.12), are given as

X̂1 = x̂4x̂5x̂6x̂7 , X̂2 = x̂2x̂3x̂6x̂7 , X̂3 = x̂1x̂3x̂5x̂7 , (4.15)

Ẑ1 = ẑ4ẑ5ẑ6ẑ7 , Ẑ2 = ẑ2ẑ3ẑ6ẑ7 , Ẑ3 = ẑ1ẑ3ẑ5ẑ7 .

The stabilizer group S = {X̂j, Ẑj} is equivalently generated by any other six independent
stabilizers that are obtained after multiplication of the ones in Eq. (4.15). Since we start
with n = 7 qubits and employ k = |S| = 6 constraints on their Hilbert space in form of the
stabilizers above, the code space contains only a single qubit (n− k = 1). The associated
logical qubit operators can be written as X̂L =

∏7
j=1 x̂j and ẐL =

∏7
j=1 ẑj, and evidently

commute with all stabilizers. They are equivalently represented by X̂ ′
L = XLX1 = x̂1x̂2x̂3

and Ẑ ′
L = ZLZ1 = ẑ1ẑ2ẑ3, making more apparent the actual (minimal) code distance d = 3.

Note that here even the logical qubit states can directly be identified as |0L〉 =
⊗

j |0j〉
and |1L〉 =

⊗
j |1j〉, which for larger codes in Sec. 4.4 is not practical anymore.

The Steane code hence can correct one arbitrary single-qubit error. By checking (anti-)
commutativity of all 3 · 7 = 21 Pauli operators x̂j, ŷj and ẑj with stabilizers X̂j and Ẑj,
one may identify their associated error syndromes 〈X1, X2, X3, Z1, Z2, Z3〉 = 〈±,±, · · ·〉.
Evidently, the 26 − 1 = 63 available non-trivial syndromes (excluding 〈+, · · ·〉 → no error)
are significantly more than the minimum 21 needed to distinguish the single-qubit errors.
In this sense, the Steane 7-qubit code is not optimal and comprises a significant overhead.
The slightly more complicated but efficient 5-qubit code (Nielsen and Chuang, 2010) can
also correct an arbitrary single-qubit error and is optimal, employing four stabilizers with
24 − 1 = 15 non-trivial error syndromes to detect 3 · 5 = 15 independent Pauli errors.

4.3.2 Fault-tolerant quantum computation

After learning how to store quantum information in a well-protected way using QECCs in
Sec. 4.3.1, we now discuss fault-tolerance of measurements, gates and computations.
Since we have encoded logical states in blocks of physical qubits, e.g. using the Steane
7-qubit code above, our measurements, quantum gates and other manipulations now have
to work on the encoded logical qubit operators. Roughly speaking, if this was an easy task,
also the environment could achieve it and trigger logical errors. Hence we should revisit
and reconsider the design of logical qubit operations and quantum gates in Sec. 4.1 very
carefully for the case of QECCs. However, luckily, there are systematic approaches to the
design of fault-tolerant operations, cf. Nielsen and Chuang (2010) and Preskill (2018).

Following Nielsen and Chuang (2010), fault-tolerant quantum gates usually will consist of
multiple operations, manipulations or measurements on individual or groups of physical
qubits. They then should be designed such that at as many intermediate points as possible,
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during and between execution of logical gates, we can run QEC by employing the stabiliz-
ers of our QECC. This prevents an accumulation of errors simply because the execution of
gates or a computation takes long, and allows to spread operations over multiple rounds of
error-correction, in each of which we measure the stabilizers. However, simply employing
error-correction during or between the effective logical gates is not sufficient.
Another criterion for fault-tolerant operations is how they affect the propagation of errors
in a quantum circuit. An action on single or groups of qubits that spreads an individual
correctable error on one physical qubit into multiple errors that become non-correctable,
i.e., they are turned into logical errors by subsequent QEC protocols, is not fault-tolerant.
Hence our second requirement for good quantum gates and operations is that a single
initial error is spread into at most one error per participating block of encoding qubits.
Therefore the additional induced errors can still be coped with by QEC in each block.
Further, errors can not only spread, but also be introduced into the code by the physical
operations implementing quantum gate circuits. These include physical-qubit gates, mea-
surements or classical communication in Sec. 4.1 that are noisy. We hence also require that
each faulty operation or component of a logical quantum gate circuit, beyond propagation
of existing errors, generates at most one output error per block that encodes a logical
qubit. Again, in this case the resulting errors should be correctable for each of the encoded
qubits, i.e., by performing QEC on each qubit block after the gate circuit has finished.

Other operations that have to be performed fault-tolerantly are the measurement of sta-
bilizers, preparation of ancillas and readout of logical qubit states. Again, measurements
performed on the code should not introduce a substantial amount of errors to the system.
Therefore any components used in these protocols have to be fault-tolerant with reasonably
high fidelity. For stabilizer and qubit measurements to be conclusive, they are performed
and kept track of over as many individual rounds of error correction as the code distance d
prescribes. In a sense, QEC then does not only track the spatial, but also the time-evolved
propagation of errors. This allows to discard measurement errors, e.g., based on majority-
voting with outcomes over a few rounds, which otherwise introduce faulty corrections in
the resulting QEC. More sophisticated algorithms are discussed in Terhal (2015).

The simplest and best-case example for fault-tolerant gate implementations are so-called
transversal gates. To this end, some QECCs allow to perform a logical gate by parallel
implementation of physical-qubit gates on each unit in a logical-qubit encoding block, i.e.,
gates can be applied in a bit-wise fashion. Recalling the Steane code, its simple logical
operators indicate a potential for transversal gates. Here the Hadamard gate Ĥ can be
constructed similar as the logical qubit operators X̂L, ẐL, i.e., by taking individual-qubit
Hadamards ĤL =

∏7
j=1 Ĥj. With Ĥ† = Ĥ, cf. Sec. 4.1, it exchanges qubit operators as

ĤLX̂LĤL =
7∏

j=1

(
ĤjX̂jĤj

)
=

7∏
j=1

Ẑj = ẐL , (4.16)

and ĤLẐLĤL = X̂L. Since different qubits j in the encoding block do not communicate
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with each other, error propagation between qubits is precluded. Further there is only one
gate with error probability pH applied to each qubit, and the probability for simultaneous
errors on n qubits is suppressed as pn ∼ (pH)

n. This exponential protection against errors
in the number of affected qubits indicates a sufficient degree of fault-tolerance.
For the Steane code one can similarly implement Pauli-flips, S-gates and the two-qubit
CNOT in a transversal fashion, but there is no fault-tolerant transversal non-Clifford gate.
In fact, there exists no QECC with fault-tolerant implementation of a simultaneous fully
transverse and universal gate set (Nielsen and Chuang, 2010; Terhal, 2015).

4.4 Quantum error-correction in Majorana networks

In this section, we summarize the central results of our works on quantum error correction
and -correcting codes in Majorana-based qubits and network architectures. The Majorana
box qubits of Plugge et al. (2017), cf. Sec. 4.2, and various designs of Karzig et al. (2017)
allow to construct Clifford-complete code networks. They therefore can implement in prin-
ciple arbitrary QECCs, including the Steane code introduced in Sec. 4.3.

The motivation behind the Majorana surface code (MSC) of Landau et al. (2016); Plugge
et al. (2016a) is different. We here aim to implement the surface code approach to QEC
in a maximally efficient way, using a network architecture with readout and manipulation
routines tailored specifically to the needs of this QECC (Fowler et al., 2012). To contrast
the idea, the MSC networks discussed below may perform poorly when implementing a
Steane code or any other QECC. But they should outperform the general-purpose Clifford-
complete networks of Karzig et al. (2017) when it comes to running the surface code.
In taking this route, all the semiconductor-electronics hardware we want to utilize should
be readily accessible to experiments. We recall that the Majorana box qubits in Sec. 4.2
rely on hardware and measurement- or manipulation-protocols that are commonly used
in a non-topological qubit context. Since the MSC employs MBQs as fundamental units,
the hardware for most of its operations can be directly adapted. Further discussion on
experimental realizations of general code networks are given in the outlook to this thesis.

4.4.1 Majorana surface code: architecture and access hardware

We now introduce the basic hardware platform of the Majorana surface code architecture.
Many QEC aspects such as the form of stabilizers and logical qubit operators follow rather
directly from this construction, where the MSC employs a hybrid Hamiltonian- and digital
stabilizer-measurement approach. We also discuss aspects of earlier work on this system,
cf. Terhal et al. (2012), or for a different platform, cf. Xu and Fu (2010); Vijay et al. (2015).

The basal hardware architecture of the MSC is shown in Fig. 4.6. By connecting a square
lattice of MBQs via tunnel-coupling t between MBSs on adjacent boxes, after projection
to the charge ground state on each box as in Sec. 2.4.2 and Chapter 3, fourth-order tun-
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Figure 4.6: MSC architecture and access hardware. Left: MBSs (a, red dots) hosted on
four-Majorana boxes (b) implement MBQs, cf. Sec. 4.2. By connecting boxes into loops
via tunnel-couplings tll′ , one enables ring-exchange processes involving the eight Majoranas
surrounding each plaquette (c). Gray and white plaquettes in the ensuing checkerboard-
lattice (d) implement stabilizers of the surface code. Right: Pairs of normal leads (indicated
by vertical lines) are tunnel-coupled to adjacent MBSs γ1,2 located on neighboring boxes.
A two-terminal conductance measurement then provides information about plaquettes OA

and OB. Using SETs (quantum dots) connected to MBSs γ and γ′, plaquettes O1,2 can be
flipped and manipulated. Further discussion, see text. Figures from Landau et al. (2016).

neling processes define the ring-exchange amplitudes cn ∼ t4/E3
c . For plaquette number n,

the plaquette operator On =
∏8

j=1 γ
(n)
j picked up during loop-tunneling is defined by the

surrounding eight MBSs γ
(n)
j . Equivalently these are represented by four Pauli operators

x̂j or ẑj, one for each of the participating MBQs, cf. Secs. 2.2 and 4.2. In our convention,
ẑj (x̂j) is defined from vertical (horizontal) pairs of MBSs on MBQs in every even row,
and vice versa for odd rows. One then obtains a checkerboard-pattern in Fig. 4.6, where
every other plaquette is similar while neighboring plaquettes implement distinct types of
stabilizers Ẑa =

∏4
j=1 ẑ

(a)
j and X̂b =

∏4
j=1 x̂

(b)
j in the ensuing surface code below.

The low-energy Hamiltonian of the MSC then reads (Kitaev, 2006; Terhal et al., 2012)

Hcode = −
∑
n

Re(cn)On = −
∑
a

JaẐa −
∑
b

JbX̂b , (4.17)

which as ground state admits the code space 〈Za, Xb〉 = 〈+,+〉 with stabilizers {Ẑa, X̂b},
assuming Ja,b > 0. Since excitations in form of flipped stabilizers can propagate freely
once created, unfortunately, Hcode does not implement a self-correcting quantum memory
(Brown et al., 2016). We hence have to employ active measurements to fight the genera-
tion and propagation of errors, i.e., to implement QEC. Nevertheless, with stabilizers that
are directly encoded in a Hamiltonian, stabilizer measurements in the MSC can be imple-
mented by a single-shot readout operation (Vijay et al., 2015). This is to be contrasted
against the complicated entangling-gate quantum circuits using ancilla qubits, necessary
to employ stabilizers, e.g., in superconducting qubit architectures (Fowler et al., 2012).
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We have discussed practical approaches to joint-parity and stabilizer readout for MBQs
in Sec. 4.2. Taking for example a conductance measurement between leads contacting
neighboring MBSs γ1 and γ2 in Fig. 4.6, due to interfering tunneling paths, one is able
to determine the state of neighboring plaquettes O1 and O2 (Landau et al., 2016). These
correspond to Ẑ- and X̂-type stabilizers of the MSC, respectively. A MSC network with
N MBQs thus is fully stabilized by readout at ∼ N suitably chosen pairs of leads.

Controlled Majorana-flips facilitate the application of physical and logical Pauli operators
in the MSC, and can be employed by controlled charge-pumping via quantum dots, cf.
Sec. 4.2 and Flensberg (2011). In Fig. 4.6, a variant of QDs is denoted “SET”, where each
individual Majorana can selectively be coupled to its own access hardware. The action of
a charge-pumping protocol is most transparently analyzed in the Majorana representation.
For example, the setup in Fig. 4.6 allows to insert one charge at MBS γ under extraction
of another charge at different MBS γ′. Inter-code tunnelings between adjacent MBSs then
restore equilibrium charges on all MBQs. Since these commute with the plaquettes they
generate, the full operator action on the code is described by the Majorana pair (γ, γ′).
The latter pairs are uniquely identified by the contact points we choose, and controlled
Majorana-flips implement topologically protected operations on the code, cf. Sec. 4.2.

A charge pumping now flips zero, two or four stabilizers if the pair (γ, γ′) shares two, one or
no plaquettes. The case of zero flips and two shared plaquettes was employed for stabilizer
readout with contacts (γ1, γ2). With (γ, γ′) in Fig. 4.6 we show the case of a single shared
plaquette OB, where two stabilizers of same type, hosted on plaquettes O1,2, are flipped.
In surface code language, a Majorana pair (γ, γ′) can thus equivalently be represented as

the product of four Pauli operators X̂
(γ/γ′)
a and Ẑ

(γ/γ′)
b that are conjugate to the stabilizers

Ẑ
(γ/γ′)
a and X̂

(γ/γ′)
b on plaquettes that are flipped by γ/γ′, respectively. We note

iγγ′ � X̂(γ)
a Ẑ

(γ)
b · X̂(γ′)

a Ẑ
(γ′)
b , (4.18)

where in contrast to stabilizers these objects are often referred to as (Pauli) string operators.
As with any QECC operator, their representation is unique up to stabilizers {Ẑa, X̂b}. For
MSC networks that encode multiple qubits and hence are not fully stabilized, see below,
path-information about the intermediate intra-code tunneling events becomes important.

4.4.2 Measurements and basal gate operations

As last part, we discuss how measurements and quantum gate operations are performed
in the MSC. This involves adaptation or clever extension of methods used in conventional
surface codes (Fowler et al., 2012; Terhal, 2015), and for a MSC based on different hard-
ware in Vijay et al. (2015). We hence only give a short overview of our main contributions
in Plugge et al. (2016a), for the MSC architecture in Sec. 4.4.1 and Landau et al. (2016).
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We start with a short general introduction to surface code operation (Fowler et al., 2012).
First, unfortunately, surface codes do not afford transversal applications of quantum gates.
We discussed the appealing simplicity of such gates in Sec. 4.3. As trade-off, surface codes
have rather high error-thresholds for both measurement and gate-induced errors, and are
based on particularly simple four-qubit stabilizers in Eq. (4.17). Many advanced codes
have lower error-thresholds and/or comprise high-weight stabilizers that in practice are
more difficult to access. For a discussion of more general Majorana fermion codes that
could be implemented in the Clifford-complete Majorana networks of Karzig et al. (2017),
see e.g. Vijay and Fu (2017); Litinski and von Oppen (2018). In any case, the MSC should
be seen as an example QECC that can efficiently be implemented with Majoranas.

From our introduction of small-scale Majorana-TQC networks in Sec. 4.2, we know that
single-qubit Clifford gates and two-qubit entangling measurements can be performed in a
(topologically) protected fashion. Similarly, the implementation of a non-Clifford phase
gate is at least partially protected, i.e., its constituent operations for the preparation of
ancilla states are protected on the Clifford level. As minimum ask, all good, high-fidelity
operations in Majorana-based QECCs should therefore afford a (topological) protection on
the Clifford level, i.e., to the degree that Majoranas and measurement-based TQC permit.
This basic rule is overlooked in surprisingly many works which do not utilize the underlying
topological Majorana hardware to its fullest.

A few aspects of QEC in the MSC are shown in Fig. 4.7. We here focus on basic func-
tionality, where larger code distances and fault-tolerance can be achieved as outlined in
Plugge et al. (2016a). While individual patches of surface code can also encode qubits,
for practical applications, we consider a virtually infinite system in which logical qubits
are embedded. This is possible by omitting select stabilizers from the otherwise complete
cyclic measurement of syndromes in each round of QEC (Fowler et al., 2012). In addi-
tion, we cut the tunnel-couplings which give rise to their plaquette energy in Eq. (4.17).
All surface code operations in the MSC can then be implemented by weight-4 stabilizers,
weight-2 string operator measurements and controlled charge-pumping between QDs.

A double-cut qubit is based on two stabilizers Ẑa1 and Ẑa2 that redundantly encode a
quantum state, e.g., in their even-parity subspace 〈Ẑa1Ẑa2〉 = +, as

|Ψa〉 = α |0a〉+ β |1a〉 ≡ α |0a10a2〉+ β |1a11a2〉 . (4.19)

The Pauli operators of double-cut qubit a are given as Ẑa = Ẑa1 � Ẑa2 and X̂a = X̂a1X̂a2,
and contain only Pauli-ẑ and -x̂ operators of MBQs, respectively. We usually note only one
stabilizer and the connecting string operator. In Fig. 4.7, the first stabilizer is highlighted
and the emanating string attached, while the second stabilizer – if at all – is shown with
a dashed outline. The same principles apply to the X-type double-cut qubit b in Fig. 4.7.

Measurement and initialization now are possible by measuring the stabilizer Ẑa, or by bit-
wise readout of the string X̂a that contains the Pauli-x̂ operators of all MBQs it crosses.
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Ẑb

P̂

Ẑa
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ẑ
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Figure 4.7: Elements of QEC in the MSC. Top left: MSC hardware, cf. Fig. 4.6. MBSs
on adjacent MBQs are tunnel-coupled to form a checkerboard of Z- and X-type stabilizers
(in yellow and blue, respectively). Boxes and circles on MBQs are QDs and lead-contacts,
with interference links (dashed) for MBQ readout. A pair of Z(X)-type stabilizers, one
highlighted and other with dashed outline, is omitted from measurement. It encodes a
Z(X)-type double-cut qubit a(b), with Pauli operators (Ẑa, X̂a) (resp. (X̂b, Ẑb)). Bottom
left: a two-box interference link (green line) connects the orange and blue lead contacts
(filled circles), allowing readout of the string operator x̂aẑb. Right: Braiding of qubits.
Initially, qubits A and B are hosted in (ẐA, XA) = (Ẑ0, X0) and (X̂B, ZB) = (X̂�

0, Z
�
0). By

a sequence of moves, qubit A encircles the X-type plaquette hosting qubit B. The string of
qubit A then is transformed as X̂A → X̂ ′

A � X̂A · X̂B, where X̂�
0 is the only non-measured

stabilizer of those tiling the loop X̂� =
∏

j X̂
�
j . Figures adapted from Plugge et al. (2016a).

Movement of qubits between plaquettes of same kind is possible by measurement of MBQ
Pauli operators, followed by a readout of stabilizers. To this end, consider two stabilizers
Ẑa1 and Ẑa2 connected by a string operator X̂a = X̂a1X̂a2 in Fig. 4.7 as independent.
With qubit a1 hosting an encoded state, both qubits can be entangled by a readout of the
intermediate MBQ operator x̂a1,a2 = X̂a1X̂a2. Activating (omitting) the stabilizer readout

of Ẑa1 (Ẑa2) in the next code cycle then shifts the encoded logical state onto qubit a2.

Next, consider a measurement of the weight-2 string operator x̂aẑb in Fig. 4.7. Equiv-
alently, this two-MBQ operator comprises the product of string operators X̂aẐb on the
two double-cut qubits a and b. Its measurement requires an additional interference link
beyond single-MBQ measurements, and allows to entangle the Z- and X-type qubits. We
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Ẑb

X̂∗ x̂a

ẑa

X̂b Ẑ

γ1 γ2γ′
0

γ0

γ3 γ4

Figure 4.8: Ancilla preparation for phase gates in the MSC. Left: An auxiliary MBQ a is
tunnel-coupled to a MBQ belonging to the MSC, but located at the boundary. Arbitrary
ancilla states |ψa〉may be prepared on the decoupled MBQ a, using the methods of Sec. 4.2.
Subsequently, by employing a joint-parity readout via operator X̂∗ = x̂aX̂b, the ancilla
MBQ and a double-cut qubit (Ẑb, X̂b) of the code can be entangled. The ancilla state |ψa〉
can thereby be injected into the code. Right: Controlled charge-pumping between quantum
dots, e.g. connected to MBSs γ0 (dark blue) and γ2 (light blue), allows to implement semi-
protected qubit rotations on a double-cut qubit (Ẑ, X̂). Figures from Plugge et al. (2016a).

hence are able to move logical states between distinct-type qubits. Since their definitions
of Pauli-Ẑ and -X̂ operators are inverted, such inter-species moves implement a Hadamard
gate Ĥ on the logical encoded state (Fowler et al., 2012; Vijay et al., 2015).

Last, Fig. 4.7 shows how to braid different-type qubits. Here a sequence of single-step qubit
moves allows a Z-type qubit (ẐA, X̂A) to encircle the plaquette that encodes a different
X-type qubit (X̂B, ẐB). Since we perform a closed loop movement, the string operators
of both qubits necessarily have crossed at some point, and non-trivial transformations can
take place. Usually, additional loops in string operators X̂A → X̂ ′

A � X̂AX̂� can be removed
by employing the syndromes of stabilizers tiling the loop. For the situation in Fig. 4.7,
we find X̂� =

∏
j X̂

�
j = X̂B · (X̂�

1X̂
�
2X̂

�
3) � X̂B, where all stabilizers but X̂�

0 = X̂B are in
known eigenstates. Hence the string of qubit A is multiplied by the stabilizer of qubit B,
and after changing perspective, the opposite is also true. The braid transformation reads

(ẐA, X̂A) → (Ẑ ′
A, X̂

′
A) = (ẐA, X̂AX̂B) , (X̂B, ẐB) → (X̂ ′

B, Ẑ
′
B) = (X̂B, ẐAẐB) ,

(4.20)
which is nothing but the Heisenberg representation of a CNOT gate with control qubit
A and target qubit B, cf. Sec. 4.1. Similarly, by using ancilla qubits as intermediaries,
CNOT gates between same-type qubits become possible (Fowler et al., 2012).

64 4.4. Quantum error-correction in Majorana networks



CHAPTER 4. TOPOLOGICAL QUANTUM COMPUTATION

Finally, the setups in Fig. 4.8 show how ancilla states can be injected into or directly
generated in the MSC. First, by coupling individual or small networks of auxiliary MBQs
to the code boundaries, ancilla states and computations as in Sec. 4.2 can be supplied
to the MSC. Such setups also establish how the MSC platform can interact with other
types of Majorana architectures or qubits. Alternatively, charge-pumping protocols that
employ superpositions of non-equivalent tunneling paths ∼ (txX̂ + tyŶ ) in Eq. (4.18)
allow to implement qubit rotations directly on double-cut qubits of the MSC. They are
similar to those discussed for MBQs, cf. Sec. 4.2, and semi-protected on the Clifford-level.
For details, see Plugge et al. (2016a). In order to obtain arbitrarily good, high-fidelity
ancilla states towards phase gate implementation in extended and fault-tolerant quantum
computations, the use of ancilla distillation becomes unavoidable. Given the availability
of high-fidelity Clifford group operations and good approximate ancilla states in the MSC,
standard distillation schemes (Bravyi and Kitaev, 2005; Fowler et al., 2012; Terhal, 2015)
should find a reasonable starting point with the routines discussed above.

4.5 Summary: quantum computing with Majoranas

We now shortly summarize the final chapter of this thesis. After a basic introduction to
measurement-based quantum gates and gate circuits in Sec. 4.1, we discussed their possible
realization in the Majorana-based topological qubits and small-scale networks of Sec. 4.2.
Measurement-based TQC here comes with an inherent high level of protection due to the
non-locality of MBQs that are encoded in the mesoscopic Majorana islands of Sec. 2.2.
These devices do not only function as hosts for highly degenerate qubit ground states,
but also facilitate topologically protected access operations due to the select and non-local
addressing of distinct Majoranas in the network by charge transport, cf. Chapter 3.
In the context of QIP and QEC, this translates to the select addressing of individual or
groups of Pauli operators in Sec. 4.2, and of stabilizers in the QECCs of Secs. 4.3 and 4.4.
Using two-terminal conductance measurements, or by coupling the topological hardware
to auxiliary charge qubits in form of quantum dots, a direct single-shot readout of MBQ
Pauli operators, joint-parities or stabilizers in the MSC becomes possible. Majorana-based
qubits and code networks hence show a potential for high-fidelity stabilizer measurements
and Clifford group operations, which form the backbone of any QECC, cf. Terhal (2015).
In combination with protocols for the semi-protected preparation of approximate ancilla
states, they may then incite hope for a reduced overhead of QEC in Majorana-based QIP.

A wealth of related research has investigated TQC in different anyon systems or using
other approaches to QEC, and for a detailed discussion we refer to our published works.
Starting from ideas of Freedman et al. (2003); Kitaev (2003), measurement-based TQC and
interferometric readout for general anyons was studied by Bonderson et al. (2007, 2008a,b,
2009). These works are abstract, and mostly focus on the mathematical and quantum-
information theoretical foundations of anyon-based TQC, reviewed in Nayak et al. (2008).
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For Majorana fermions (or general anyons), the parity-readout discussed in Sec. 4.2.1 can
also be achieved by flux- instead of charge-tunneling, inspired by gauge invariance effects
of Aharonov and Casher (1984). A setup was suggested by Hassler et al. (2010), where
the topological charge (parity) of an encircled group of anyons (MFs) in an interferometric
setting imprints a phase-shift on the flux that is tunneling around it. The converse effect
of Aharonov and Bohm (1959), entering in the interferometric conductance (Fu, 2010) and
quantum dot spectral readouts of MBQs, experimentally is more robust. A phase-gate
implementation, similar to our charge-pumping protocols, is also possible by a tunneling
of flux vortices, cf. Clarke et al. (2016); Dua et al. (2018).

Majorana devices interacting with charge, spin or superconducting qubits are discussed
in Flensberg (2011), Leijnse and Flensberg (2011, 2012a) and Bonderson and Lutchyn
(2011); Jiang et al. (2011). The top-transmon of Hassler et al. (2011) is a Majorana qubit
coupled with a superconducting transmon, and an extension of this hybrid architecture
to networks is investigated in Hyart et al. (2013). Here for readout purposes the charge
states on an otherwise grounded Majorana island are energetically split by reducing the
Josephson-coupling with a bulk superconductor, and the Majorana sector is read out by a
parity-to-charge conversion. Further, large-scale Majorana and spin-qubit hybrid systems
are discussed in detail by Hoffman et al. (2016).

MBQ networks and the Majorana surface code are adaptations of our hardware platform
for quantum error correction, and up to date with current experimental challenges and
opportunities in the implementation of MBSs. Here the strongly related MSC platforms of
Terhal et al. (2012); Vijay et al. (2015); Vijay and Fu (2016a) are of particular relevance.
Motivated by our work, Li (2016) showed that MSCs can have substantially higher error
thresholds compared to conventional-qubit code realizations. Further, Litinski et al. (2017)
consider a color code that affords transversal Clifford gates, and Bravyi et al. (2010); Vijay
and Fu (2017); Hastings (2017); Litinski and von Oppen (2018) discuss Majorana fermion
codes beyond standard (bosonic) QECCs. While box charging energies for locally-encoded
Majorana qubits are useful to suppress quasi-particle poisoning (Karzig et al., 2017), such
devices utilize only the emergent bosonic qubit degrees of freedom on a box.

Last, our proposals are in-line with the device development for ad-hoc simpler Majorana-
fusion experiments (Aasen et al., 2016), which operate on tunable-interaction setups similar
to those of Sau et al. (2011); van Heck et al. (2012). MBQs were also adapted to other
material platforms (Manousakis et al., 2017) and to parafermions (Snizhko et al., 2018).
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Chapter 5

Conlusions and outlook

In the last Chapter of this thesis, we conclude with a short summary of our contributions to
the fields of quantum transport and topological quantum computation in Majorana boxes.
Afterwards we give an outlook on interesting recent experimental progress towards the re-
alization of Majorana qubits and network devices, and possible future directions of research.

In Chapter 2, we introduced basic Majorana systems that afford the topologically protected
storage and manipulation of quantum information. Corrections to toy models and ideal
braiding statistics were investigated for interacting Kitaev chains in Sekania et al. (2017).
Next, the inclusion of charging energy effects onmesoscopic Majorana islands allows charge
transport to access the non-local character of Majorana bound states in topological super-
conductors. In Plugge et al. (2015), we discussed how correlations and entanglement spread
between distant quantum dots that are coupled by such Majorana boxes. Phase-coherent
transport in the coupled Majorana box devices of Chapter 3 facilitates the formation of
a topological Kondo effect in simply-coupled islands, and we investigated related quantum
transport phenomena in multi-junction setups of Plugge et al. (2016b); Gau et al. (2018).
In the Majorana box qubit of Plugge et al. (2017) and loop qubit of Karzig et al. (2017),
see Chapter 4, simple conductance or spectroscopic measurements can characterize the
performance of the ensuing Majorana-based topological qubits. Extension of these devices
to small networks allows for measurement-based protected quantum computations with
Majoranas, including Clifford-complete code networks that can run arbitrary quantum
error-correcting codes. One particular promising example for Majorana-based quantum
error correction is the Majorana surface code of Landau et al. (2016); Plugge et al. (2016a).

Experiments on mesoscopic TS wires (Albrecht et al., 2016), including systems coupled
by quantum dots (Deng et al., 2016, 2017), have shown promising signatures of MBSs.
Further, experimental progress towards the realization of phase-coherent transport in the
semiconductor-superconductor platforms hosting Majorana devices was motivated also by
our work, and has been achieved by Gazibegovic et al. (2017); Vaitiekėnas et al. (2018).
This includes directly-grown, complex 1D TS wire network systems (Zhang et al., 2018),
MBSs hosted in effective 1D channels that are gate-defined in a 2D hybrid architecture
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(Nichele et al., 2017), and a selectively grown 2D semiconductor network platform that
can be extended essentially indefinitely (Krizek et al., 2018). Our qubit and code network
designs can freely be adapted to such settings, cf. the discussion of the 2D materials plat-
form in Hell et al. (2017b,a). With these and further near-term experimental advances, an
integrated-circuit version of Majorana devices moves into closer reach. If the fundamental
units work reasonably well, a fully scalable Majorana code network based on selectively-
grown 2D architectures may thus be realized in the not-too-far future.

Depending on results of ongoing experiments, many avenues of future research are open
and further work is to be done. Certainly, a more detailed analysis of realistic Majorana
hardware platforms is needed towards the realization of Majorana-based topological qubits.
Hybrid semiconductor-superconductor systems generally are difficult to simulate in numer-
ics, but guidance from theory is needed for the engineering of advanced network systems.
In order to make useful quantitative predictions, the necessary level of detail in materials
and hardware simulation is far beyond analytical methods. Examples for such simulations
include the decay- and dephasing-mechanisms in Majorana boxes, and the characterization
of these qubit properties from conductance or spectroscopic measurements.

As an outlook, we hope to extend insights from our detailed investigations of transport in
Majorana devices to further useful applications in Majorana-based qubits. An interesting
task for future research is the engineering of protected, passive mechanisms that suppress
the generation of errors in Majorana-based QECCs. Similar ideas were put forward by
Bardyn and Karzig (2016), but in a rather abstract setting and using a complicated driven-
dissipate mechanism with additional coupled ancilla qubits. A relevant question is how far
one can simplify their scheme, e.g., using leads or quantum dots (with resonators) that
are selectively coupled to Majorana boxes in a code network. If it is possible to achieve
passive error-suppression that reduces the need for active stabilizer readout in the MSC
architecture, this would be a major step towards feasibility of large-scale QECCs.
Thermodynamic properties of the isolated Majorana surface code system were discussed
in Terhal et al. (2012); Roy et al. (2017), and aspects of error correction for quantum
memories at finite temperature are reviewed in Terhal (2015); Brown et al. (2016).
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