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A B S T R A C T

Glucosinolates are sulphur-rich secondary metabolites found in the

plants of Brassicacea family. Glucosinolates play an important role

in plants defence from pathogens. Depending on the type of mi-

crobes, specific glucosinolates can act as feeding deterrents or stim-

ulants. A particular difficulty in the analysis of secondary metabo-

lites is the vast diversity of different chemical structures. Consid-

ering the types of biochemical transformations, which could be in-

volved in any secondary metabolite biosynthesis, in principle an

infinite number of chemical structures could be produced. This is

true for the experimental identification of secondary metabolites but

the theoretical description of secondary metabolite biosynthesis is

equally challenging. Developing models wherein all possible struc-

tures are represented as a unique variable is very challenging. In

the present study, we developed a mathematical model of the chain-

elongation pathway of aliphatic glucosinolates, which are derived

from methionine, found in Arabidopsis thaliana. These glucosinolates

show a structural diversity arising from the variation in the chain-

elongation pathway taking place during biosynthesis. By providing

the mathematical description of the rate laws governing the chain-

elongation of aliphatic glucosinolates, we illustrate how the biosyn-

thetic rates in the system depend on all other metabolite concentra-

tions, a behaviour originating from the broad-range substrate speci-

ficity of the metabolic enzymes. Considering the pathway structure

and the measured enzymatic properties, model simulation shows

all characteristics of the actual differences between wild-type and

mutants. The simulation allowed us to assess the individual effects

of two processes—the knocking out of an enzyme and the compen-
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satory expressions of other metabolic enzymes—that are difficult to

dissect experimentally. The variation in glucosinolate concentration

across Arabidopsis ecotypes could be a result of allelic compositions

at different biosynthetic loci. By addressing the diversity induced by

the chain-elongation process, our model illustrates how and why

methionine-derived glucosinolates with a particular frequency are

produced. Furthermore, by relating the allelic differences to the en-

zymatic properties, our model provides a theoretical framework to

investigate how different metabolic phenotypes arise from genetic

differences.
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Z U S A M M E N FA S S U N G

Glucosinolate sind schwefelreiche Sekundärmetabolite, die in den

Pflanzen der Familie Brassicacea gefunden werden. Glucosinolate

spielen eine wichtige Rolle bei der Abwehr von Pflanzen gegen

Krankheitserreger. Abhängig von der Art der Mikroben, kön-

nen bestimmte Glucosinolate als Abwehrsmittel oder Stimulanzien

auf sie wirken. Eine besondere Schwierigkeit bei der Analyse

von Sekundärmetaboliten ist deren große Vielfalt von vorhande-

nen chemischen Strukturen. Berücksichtigt man die Möglichkeiten

der biochemischen Transformationen, die an der Biosynthese von

Sekundärmetaboliten beteiligt sein könnten, wären im Prinzip

eine unendliche Anzahl chemischer Strukturen erzeugbar. Dies

gilt für die experimentelle Identifizierung von Sekundärmetabo-

liten, jedoch ist die theoretische Beschreibung der Biosynthese

gleichermaßen anspruchsvoll. Modelle zu entwickeln, bei denen

alle möglichen Strukturen als einzelne Variablen dargestellt wer-

den, ist sogar unmöglich. In der vorliegenden Arbeit haben wir

ein mathematisches Modell entwickelt, welches die Biosynthese

von aliphatischen, Methionin abgeleiteten Glucosinolate in Ara-

bidopsis thaliana beschreibt. Die strukturelle Vielfalt der Glucosino-

late resultiert aus Variationen in der Kettenverlängerung während

derer Biosynthese. Durch die mathematische Beschreibung der

Geschwindigkeitsgesetze für die Kettenverlängerung von aliphatis-

chen Glucosinolaten wird gezeigt, wie die Biosyntheseraten im

System von allen anderen Metabolitkonzentrationen abhängen, ein

Verhalten, das auf der breiten Substratspezifität der metabolis-

chen Enzyme beruht. Unter Berücksichtigung der Syntheseweg-

Struktur und der gemessenen enzymatischen Eigenschaften, zeigt
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die Modellsimulation alle Merkmale der tatsächlichen Unterschiede

zwischen Wildtyp und Mutanten. Die Simulation erlaubte es uns,

die individuellen Auswirkungen von zwei Prozessen— dem Ent-

fernen eines Enzyms und der kompensatorischen Expression an-

derer metabolischer Enzyme— zu untersuchen, die experimentell

nur schwer zu analysieren sind. Die Variation in der Glucosino-

latkonzentrationen in verschiedenen Arabidopsis-Ökotypen kön-

nte das Ergebnis einer individueller Zusammensetzung von an

der Biosynthese beteiligter Allele sein. Unter Berücksichtigung der

durch den Kettenverlängerungsprozess induzierten Diversität ver-

anschaulicht unser Modell, wie und warum Methionin abgeleitete

Glucosinolate mit einer bestimmten Häufigkeit synthetisiert wer-

den. Indem wir die allelischen Unterschiede auf die enzymatischen

Eigenschaften beziehen, liefert unser Modell einen theoretischen

Rahmen, um zu untersuchen, wie sich verschiedene metabolische

Phänotypen aus genetischen Unterschieden ergeben.
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Part I

G L U C O S I N O L AT E S : I M P O RTA N C E A N D

B E Y O N D

Glucosinolates are a fascinating class of natural sub-

stances found in the plants of Brassicaceae family.

Breakdown products of glucosinolates facilitate defence

against plant pathogens. The distinct taste and flavour

of certain Brassica vegetables (broccoli, cauliflower and

cabbage) and condiments (mustard, horseradish and

wasabi) is because of the presence of glucosinolates. For

humans, glucosinolates functions as cancer-preventive

agents and flavour compounds. Thus, to fully exploit the

potential of glucosinolates in agriculture and medicine,

complete understanding of why and how plants synthe-

sise glucosinolates is important.





1
I N T R O D U C T I O N

1.1 glucosinolates : what, why, where and how?

Glucosinolates are sulphur-rich secondary metabolites, found in the

plants of Brassicaceae family. Glucosinolates upon hydrolysis by en-

dogenous thioglucosidases called myrosinases produce several dif-

ferent products (e.g., isothiocynates, thiocynates and nitriles) [36].

These products have different biological functions as defence com-

pounds or attractants. Originally known as mustard oil glycosides, Glucoinolates:

mustard oil

glucosides
glucosinolates have been a part of human life for many centuries

because of the strong flavours and tastes they elicit in Brassica veg-

etables that include cabbage, broccoli, and condiments like mustard

and wasabi. Over the past few decades, the major focus of research

have been on the negative aspects because of the prevalence of cer-

tain antinutritional or goitrogenic glucosinolates in the protein-rich

meal from widely grown domesticated vegetable crops and condi-

ments. However, there also exists a positive side, represented by

the therapeutic and prophylactic properties of glucosinolates. The

importance of glucosinolates has increased further following dis-

covery of their potential as cancer-preventive agents, biofumigation,

and crop-protection compounds [9, 31, 100].

1.1.1 Chemical structure and hydrolysis

Glucosinolates are anionic compounds, where a variable side chain

(R) is attached to a common core glucosinolate structure that

constitutes a β-D-Glucopyranose (Glc) residue linked to a (Z)-N-
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hydroximininosulphate ester via a sulphur atom (see Figure 1). The

Figure 1: A schematic of the basic structure of a glucosinolate molecule. A
variable side-chain (R) is attached to a core glucosinolate struc-
ture that constitutes a β-D-Glucopyranose (Glc) residue linked
to a (Z)-N-hydroximininosulphate ester via a sulphur (S) atom.

first elucidated glucosinolate structures were of sinigrin and sinal-

bin in 1956 [20], however the term glucosinolate appeared first time

in 1961 [19]. Till date, more than 135 different glucosinolates have

been identified [2]. Glucosinolates are classified by their precur-

sor amino acid. While glucosinolates derived from Alanine (Ala),

Leucine (Leu), Isoleucine (Ile), Methionine (Met), or Valine (Val) are

referred to as aliphatic, those derived from Phenyalanine (Phe) or

Tyrosine (Tyr) are called aromatic, and those derived from Tryp-

tophan (Trp) are called indolic glucosinolates. The variable group

(-R) of most glucosinolates are elongated by one or more methy-

lene moieties [22]. Both elongated and non-elongated R groups are

subject to a wide range of modifications including hydroxylation,

S-oxygenation, alkenylation, glycosylation, desaturation, and acyla-

tion [2, 22, 36].

Plants accumulating glucosinolates always possess an endoge-

nous thioglucosidase known as myrosinase, which hydrolyses the

glucose moiety on the main skeleton [83]. The hydrolysis prod-

ucts are glucose and an unstable aglycone that can rearrange to

form products such as isothiocyanates, thiocyanates and nitriles (cf.

Fig. 2). Formation of the hydrolysis products, however, depends on

the physiological conditions under which the reaction takes place.

The primary product at neutral pH is isothiocyanate, while under

acidic conditions (pH < 3) and in the presence of ferrous ions or

epithiospecifier proteins nitriles are formed [36, 61]. Hydrolysis in

intact plants seems to be prevented by the spatial separation of glu-
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Figure 2: A schematic of the hydrolysis of a glucosinolate by myrosinase.

cosinolates and myrosinase. However, upon tissue damage these

components mix together and lead to the rapid formation of glu-

cosinolate hydrolysis products [36, 106]. The biological activities

of glucosinolates are attributed to the activities of their hydrolysis

products [106].

1.1.2 Biological function of glucosinolates

The activities of glucosinolate hydrolysis products upon plant dam-

age have suggested that the major function of these glucosinolates

in plants is to defend against herbivores and pathogens. Although

the myrosinase system has been actively investigated as a feature of

plant defence for about 100 years, there are still many gaps in our

knowledge. The current research is replete with studies that demon-

strate the outright toxicity, growth inhibition, or feeding deterrence

induced by glucosinolates to a wide range of potential herbivores,

including mammals, birds, insects, mollusks, aquatic invertebrates,

nematodes, bacteria, and fungi (e.g., [8, 62, 101]). Based on current

knowledge [8, 65, 98], isothiocyanates are known to be frequently

responsible for the activity of the hydrolysed glucosinolates. How-

ever, little is known about the specific mechanism by which isoth-

iocyanates exert their toxicity aside from their general propensity

to react with amino and sulfhydryl groups of proteins in vitro [51].
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Several studies demonstrate the toxicity of glucosinolate hydroly-

sis products to bacteria and fungi in vitro [6, 68, 94]. Thus, glucosi-

nolates could be expected to defend plants against pathogens. Al-

though resistance to pathogens in vivo is positively correlated with

glucosinolate content, a defensive role cannot be assumed. It stems

from the fact that many pathogens, especially biotrophic organisms,

may not cause enough cell damage to activate the glucosinolate-

myrosinase system.

Depending on the herbivore, the same glucosinolate that serve as

general deterrents can also function as attractants. Many insect her-

bivores have specialised on glucosinolate-containing plants, and of-

ten use these compounds as cues for feeding or oviposition [28, 70,

86]. Herbivores that specialise on glucosinolate-containing plantsEvidence for insect

attraction comes

from

electrophysiological

investigations,

wherein the receptor

organs (cells)

respond directly to

glucosinolates.

must have some mechanism to overcome the toxicity induced by

the glucosinolate hydrolysis products. Theoretically, they could in-

stantly excrete glucosinolates from their bodies, metabolise them

into non-toxic compounds, or be insensitive to the toxic actions

of the glucosinolates. The larvae of two lepidopteran species are

known to employ metabolic strategies to circumvent the toxicity of

glucosinolates [84, 106]. Both species bypass the formation of isoth-

iocyanate in their digestive tracts.

Different glucosinolates seem to have varying effects on differ-

ent herbivores [6, 87]. Once glucosinolates are released into the soil

due to the decay of plant organs, or from root exudates, they may

have important effects on the rhizosphere community. Studies have

shown that the soil fungal species near glucosinolate-containing

plants are different than the fungal species found elsewhere and

exhibit increased tolerance to isothiocyanates [48].

6



1.1.3 General biosynthesis of glucosinolates

Biosynthesis of glucosinolates constitutes three independent steps:

(i) chain elongation of selected precursor amino acids (only Met and

Phe), (ii) formation of the core glucosinolate structure, and (iii) sec-

ondary modifications of the amino acid side chain. A schematic rep-

resentation of the general biosynthesis of aliphatic glucosinolates,

which are derived from Met, is shown in Figure 3. Together with

the side-chain elongation, secondary modifications are responsible

for more than 135 known glucosinolate structures [2], of which Ara-

bidopsis has about 40, mainly derived from Met and Trp [52].

1.1.3.1 Chain elongation of Methionine

Before entering the core structure pathway, methionine (Met) under-

goes chain-elongation (Figure 3a). The process starts in the cytosol,

with the deamination of Met by a branched-chain amino acid amino-

transferase (BCAT) and thus forming a 2-oxo acid (Fig. 3 Step 1 to

2) [92]. The 2-oxo acid then enters a cycle of three successive trans-

formations (Fig. 3 Steps 3 to 5): condensation with acetyl-CoA by

a methylthioalkylmalate synthase (MAM), isomerisation by an iso-

propylmalate isomerase (IPMI), and oxidative decarboxylation by

an isopropylmalate dehydrogenase (IPM-DH). The product of these

steps is a 2-oxo acid that has been elongated by a methylene group

(–CH2–). Hereupon, the molecule can either be transaminated by a

plastid-localised BCAT to yield homo-methionine (homo-Met) (Fig.

3 Step 3 to 6) and enter the core glucosinolate structure pathway or

proceed through another round of chain elongation. Consequently,

the chain-elongation process yields various homo-Met of increasing

chain-lengths.

The cloning studies of the GS-ELONG quantitative trait locus

(QTL), which is known to control the variation in the side chain

length of aliphatic glucosinolates, led to the identification of three
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Figure 3: Schematic diagram of the chain-elongation of aliphatic glucosino-
lates, which are derived from methionine. (a) Chain-elongation
of Met, (b) Constructing the GSL core, and (c) Secondary mod-
ifications. Metabolite 3 represents both the entry substrate and
the chain-elongated product of each elongation cycle. The differ-
ent steps are numbered and explained in detail in the main text.
Enzymes are colour coded based on their activity in different
steps of biosynthesis: red, chain elongation pathway; blue, core
structure formation; and green, secondary modification. QTLs
are marked in black italics.
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genes MAM1, MAM2 and MAM3 [58, 59]. In vitro, MAM1 is able

to catalyse the condensations in the first three elongation cycles,

MAM2 only the first one, and MAM3 the first six [5, 96, 97]. Addi-

tionally, knockout analyses showed that MAM2 plays an important

role in the production of aliphatic glucosinolates derived from a sin-

gle elongation cycle, whereas MAM1 is involved in the production

of glucosinolates derived from two elongation cycles, and MAM3

contributes to the production of all aliphatic glucosinolates [58, 59,

97]. IPMIs catalysing the isomerisation reaction (Fig. 3, step 4 to

5) are composed of a large and a small subunits. Knockdown mu-

tants of the only gene encoding for the IPMI large subunit (IPMI-

LSU1) accumulated both the putative substrate in Leu biosynthe-

sis, 2-isopropylmalate and an oxidated derivative of the correspond-

ing intermediate in the first chain elongation cycle of Met, 2-(3 0-

methylsulfinyl)propylmalate [56, 89]. This suggests that IPMI-LSU1

plays a role in aliphatic glucosinolate biosynthesis. The IPMI small

subunit (IPMI-SSU1) is encoded by three genes. Single knockout

mutants of the two other genes, IPMI-SSU2 and IPMI-SSU3, re-

vealed small changes in amino acid and glucosinolate levels in

both leaves and seeds. However, their co-expression with glucosino-

late biosynthetic genes implies a role in glucosinolate biosynthesis

[56, 89]. IPMDH1 was identified based on the knowledge of Leu

biosynthesis and strong co-expression with glucosinolate biosyn-

thetic genes [40, 44, 89]. Moreover, an ipmdh1 knockout mutant

showed a decrease in glucosinolate content [40, 89].

1.1.3.2 Constructing the glucosinolate core

The precursor amino acid derivatives are converted to aldoximes by

cytochromes P450 of the CYP79 family (Fig. 3 Step 7 to 8). CYP79F1

converts all chain-elongated Met derivatives, and CYP79F2 only

converts the long-chained Met derivatives [10, 39]. Further, the

aldoximes are oxidised to activated compounds by cytochromes
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P450 of the CYP83 family, where CYP83A1 converts aliphatic al-

doximes [3, 39, 78] (Fig. 3 Step 8 to 9). Following conjugation of

the activated aldoximes to a sulphur donor, the produced S-alkyl-

thiohydroximates are converted to thiohydroximates by the C-S

lyase SUR1 [73] (Fig. 3 Step 9 to 12). Thiohydroximates are in turn

S-glucosylated by glucosyltransferases of the UGT74 family to form

desulfoglucosinolates. UGT74B1 metabolise the Phe-derived thiohy-

droximates [17], and UGT74C1 has been suggested to glucosylate

Met-derived substrates [29] (Fig. 3 Step 12 to 13). The glucosylation

gives rise to desulfoglucosinolates, which are finally sulfated by the

sulfotransferases SOT17 and SOT18 to form glucosinolates [81] (Fig.

3 Step 13 to 14). The sulphur donor that is conjugated to the acti-

vated aldoxime has long been thought to be Cys [33, 36]. However,

recent investigations have made glutathione (GSH) a more likely

sulphur donor [4, 91].

1.1.3.3 Secondary Modifications

For aliphatic glucosinolates secondary modifications include oxy-

genations, hydroxylations, alkenylations and benzoylations (Figure

3c). QTL analyses have identified four gene loci (GS-ELONG, GS-

OX, GS-AOP and GS-OH) as responsible for the side-chain vari-

ability of aliphatic glucosinolates in Arabidopsis [52]. Based on co-

expression with aliphatic glucosinolate genes and the knowledge

that FMO (flavin monooxygenase) catalyzes heteroatom oxygena-

tion, the FMO GS-OX1, localised within the GS-OX locus, was identi-

fied as a candidate for S-oxygenation of aliphatic glucosinolates [38].

Moreover, phylogenetic analysis identified a Brassicaceae-specific

subgroup of FMO genes, named FMO GS-OX1-5 [38, 64]. Enzy-

matic assays showed that FMO GS-OX1-5 S-oxygenate both short-

and long-chain aliphatic glucosinolates, albeit with different chain-

length specificity [38, 64] (Fig. 3 Step 14 to 15). GS-AOP is the

collective QTL name of the linked loci GS-ALK and GS-OHP [52].
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A fine-scale investigation identified two 2-oxoglutarate-dependent

dioxygenases:AOP2 and AOP3. AOP2 catalyses the conversion of

S-oxygenated glucosinolates to alkenyl glucosinolates (Fig. 3, step

15 to 17), whereas AOP3 catalyzes the conversion to hydroxyalkyl

glucosinolates (Fig. 3, step 15 to 16) [52]. The GS-OH locus is respon-

sible for the biosynthesis of the hydroxylated alkenyl glucosinolate

2-hydroxybut-3-enyl glucosinolate [76] (Fig. 3 metabolite 21). High

levels of 2-hydroxybut-3-enyl glucosinolate pose one of the major

obstacles for using Brassica crops as animal feed because its specific

breakdown product, an oxazolidine-2-thione, causes goitre in pigs

and poultry [24, 80]. Siliques and seeds of Arabidopsis contain ben-

zoylated glucosinolates, whose formation requires the co-substrate

benzoyl-CoA. Absence of benzoylated glucosinolates was observed

in the knockout of CHY1, which seems to be responsible for the pro-

duction of benzaldehyde based on in vitro enzyme activity [47]. In

a screen for changes in seed glucosinolate content, benzoylated glu-

cosinolates were absent from seeds of a mutant in the BZO1 gene

[54]. Recombinant BZO1 could synthesize benzoyl-CoA from ben-

zoic acid, implying BZO1 to function in production of benzoyl-CoA

[54].

1.2 research objectives and thesis structure

The aim of this study is to develop mathematical models of chain-

elongation of aliphatic glucosinolates, found in Arabidopsis thaliana.

This is an effort to investigate and understand the chain-length dis-

tribution of aliphatic glucosinolates and identify major regulators of

flux through the biosynthetic pathway. The present study also aims

to provide new insights of relating genetic variations to metabolic

diversity, and to illustrate how exclusive patterns of glucosinolate

accumulation emerge out of genetic variations.

11



Chapter 2 outlines the lineage of model construction traced from

the fundamentals of kinetic modelling, and model assumptions.

Starting from a general introduction to mathematical modelling

and the chain-elongation pathway of Met-derived glucosinolates, it

includes the mathematical description of rate laws governing the

chain-elongation process. We extend the width of this chapter by

presenting some model-based analyses to illustrate systemic proper-

ties of the chain-elongation pathway of Met-derived glucosinolates.

Chapter 3 deals with the application of developed model to re-

produce patterns of glucosinolate concentrations in the leaves of

different Arabidopsis thaliana ecotypes. Starting from simulating the

glucosinolate profile of wild-type Arabidopsis thaliana Columbia eco-

type, we further showcase some model-based analyses of the knock-

out mutants. By briefly introducing the concept of metabolic control

analysis, we quantify the extent to which different metabolic en-

zymes limit the metabolic fluxes. This analysis serves to be highly

relevant for experimental investigations, however, we discuss the

theoretical aspects with application to the chain-elongation pathway

of Met-derived glucosinolates in the wild-type Columbia ecotype.

Chapter 4 is meant to investigate the link between the metabolic

genotypes and the associated phenotypes. By relating the allelic dif-

ferences to metabolic diversity, we provide new insights of inter-

preting genomic variations in context of enzymatic properties of

metabolic enzymes. By providing some results from bioinformat-

ics analyses, we showcase how a metabolic phenotype is a conse-

quence of an interplay of the genome architecture and expression of

metabolic enzymes.

Chapter 5 summarises the key findings of this study and future

directions. We discuss the importance and applications of mathe-

matical modelling in pushing the envelope of our understanding

of natural variation in the patterns of glucosinolate accumulation.

We extend the width of the chapter by providing theoretical predic-
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tions, which can be verified later by experiments, of how exclusive

patterns of glucosinolate accumulation emerge out of genetic differ-

ences.
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Part II

T H E M O D E L C O N S T R U C T I O N

Any scientific description is a simplification, based on

our understanding, of reality.





2
M AT H E M AT I C A L M O D E L L I N G O F T H E

C H A I N - E L O N G AT I O N O F A L I P H AT I C

G L U C O S I N O L AT E S

Mathematical modelling is a powerful tool for the analysis of

complex biological systems. It has been used extensively to study

metabolic networks, resulting in a theory, termed metabolic control

analysis, that describes in quantitative terms the role of metabolic

enzymes in the regulation of pathway fluxes and metabolite con-

centrations [41]. Mathematical modelling is useful for describing

experimental data, deducing regulatory principles, and understand-

ing more complex dynamic phenomena such as oscillations in

metabolic pathways (cf. [42]). Every mathematical model is based

on some simplifying assumptions to facilitate the analytical or com-

putational treatment and interpretation of the results. The iterative

model-building process eliminates the unjustified assumptions, but

a certain level of imprecision is deliberately accepted for simplicity.

Metabolic systems are defined by two types of data, where one en-

compasses the system variables like concentrations and fluxes, the

other type comprises the system parameters such as stoichiometric

coefficients and rate constants. The classical approach of metabolic

modelling is concerned with simulating the time-dependent be-

haviour of the system variables for a given value of parameters by

using ordinary differential equations. The approach dates back to

the pioneering work on the glycolytic pathway [27]. The current re-

search is replete with studies illustrating mathematical modelling

of metabolic networks. A few examples of biochemical pathways

are reminded in [11, 16, 42]. In this study, we use mathematical
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modelling to study the chain-elongation of aliphatic glucosinolates,

derived from methionine.

Aliphatic glucosinolates are a major class of glucosinolates

found in the model plant Arabidopsis thaliana. These are derived

from methionine (Met) and have a variable side chain (R) at-

tached to a common core glucosinolate structure, which con-

stitutes a β-D-Glucopyranose (Glc) residue linked to a (Z)-N-

hydroximininosulphate ester via a sulphur atom. The structural di-
Structure of a

glucosinolate

molecule

versity of aliphatic glucosinolates arises from the variation in side-

chain elongation and patterns of secondary oxidation and esterifica-

tion [99]. The biosynthesis of Met-derived glucosinolates starts with

the chain-elongation of Met, followed by the construction of core

glucosinolate structure, and side chain modification [36]. As a major

contributor to the diversity of glucosinolates, the chain-elongation

pathway has gained considerable focus over the time. Met-derived

glucosinolates in Arabidopsis have side-chain lengths of three to

eight carbon atoms with the three- and four- carbon chain-lengths

being predominant [45]. Studies have shown that chain elongation

of Met involves a repetitive cycle of three reactions that result in the

net addition of one methylene (−CH2−) group for each cycle [12, 32,

63]. This cycle is known to run up to six times in A. thaliana, thus,

yielding glucosinolates of six different chain-lengths [45].

In the present study, we focus on the kinetic modelling of the

chain-elongation pathway of aliphatic glucosinolates, which are de-

rived from methionine. Here, we describe the lineage of construct-

ing the mathematical model of chain-elongation pathway traced

from fundamental principles of deterministic kinetic modelling.

Moreover, the model is used to investigate generic properties exhib-

ited by the chain-elongation pathway. The results presented in this

chapter are based on simulations using a reference set of kinetic pa-

rameters, wherein all of the metabolic enzymes are assumed to have

equal catalytic efficiency, i.e. all dissociation constants, Kd and maxi-

18



mum velocity, Vmax values corresponding to different substrates are

set to 1.0 (arbitrary units). This is an effort to investigate and under-

stand the systemic properties of the chain-elongation pathway. In

this study, these parameters will be referred to as "vanilla" parame-

ters.

2.1 the fundamentals of kinetic modelling

The principal notions are the concentration (i.e. number of moles of

given substance per unit volume) and the reaction rates (expressed

in terms of change in concentration per unit time). This type of

modelling is also referred to as phenomenological modelling, as the

molecules and their interactions are considered as fundamental con-

cepts. Starting from general balance equations, the subsequent sub-

sections highlight the fundamentals of kinetic modelling concerning

rate laws and steady states of nonlinear enzymic systems.

2.1.1 Balance Equations

Chemical or biochemical kinetics are based on the postulate that the

rate (v) of a reaction at a point r = (x,y, z) in space at time t can be

expressed in terms of the concentration of all participating reactants.

v(r, t) = v[S(r, t), t], (2.1)

where S denotes the vector of concentration. An essential charac-

teristics of metabolic networks is their stoichiometry. It indicates

the molecularity with which substrates and products enter the re-

actions. The signs of the stoichiometric coefficients depend on the

chosen orientation of the reaction. Production and consumption of

metabolites by a reaction are denoted by positive and negative sto-
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ichiometric coefficients, respectively. In case the (bio)chemical sys-

tem constitutes more than one reaction, the reaction rates can be

denoted by vj (j = 1, . . . , r) and the stoichiometric coefficients by

nij, where i and j refer to the subscripts of the substance and the

reaction, respectively. In such cases, it is useful to arrange the sto-

ichiometric coefficients in a matrix, where the rows refers to the

substances, and the columns refer to the reactions.

When the (bio)chemical reactions are the only cause of change in

concentration (i.e., there is no mass flow due to convection, diffu-

sion, etc.), the temporal change in the concentrations is given by the

balance equation

dSi

dt
=

r∑

j=1

nijvj. (2.2)

This equation is a consequence of conservation of mass, so that the

contribution of all reactions can be summed. Equation 2.2 can be

written in a matrix form as

dS

dt
= N · v, (2.3)

where S, N, and v denote the vector of concentrations, the stoichio-

metric matrix, and the vector of reaction rates, respectively.

2.1.2 The Steady-state approximation

The concept of steady state plays an important role in kinetic mod-

elling. A metabolic system is said to subsist in a steady state if

the metabolic variables (usually concentrations and fluxes) do not

change within a tolerable accuracy over a certain time span of inter-

est. As a matter of course, the concept of steady state is a mathemat-

ical idealisation that can describe real situations only in an approx-

imative way, due to fluctuations of different nature. It implies that
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the rate of formation of a metabolite is equal to the rate of its con-

sumption. Therefore, at steady-state, the concentration of metabolite

remains constant over time. Thus, equation 2.3 is represented as

N · v =
dS

dt
= 0. (2.4)

Equation 2.4 limits the solution space, however, many values of v

could still satisfy the equation. To restrict modelling analyses to es-

sential features, one often investigates the potential solutions to the

Eq. 2.4 satisfying some additional criteria.

Static situations are very common in biolgy. Popular examples

include fairly constant body temperature of homeothermic animals,

the glucosose concentration in blood and the pH in diverse range of

living cells. Biochemical examples of virtually time-invariant states

are reminded in [23, 42, 49, 105].

2.2 the chain-elongation of aliphatic glucosino-

lates

Based on current understanding [95], the biosynthesis of aliphatic

glucosinolates, derived from methionine (Met), is highly compart-

mentalised in Arabidopsis thaliana. Figure 4 shows a schematic of

the chain-elongation of Met-derived glucosinolates in Arabidopsis

thaliana. It starts in the cytosol where the initial substrate Met is

deaminated to form 4-methylthio-2-oxobutanoate (MTOB, a 2-oxo

acid) by a branched-chain aminotransferase (BCAT4) [92]. MTOB,

the initial substrate capable of undergoing elongation, is trans-

ported into the plastid by the bile acid transporter 5 (BAT5) [30].

In the plastid, methylthioalkylmalate synthases (MAM1, MAM2

and MAM3) catalyse a condensation reaction where MTOB re-

acts with acetyl-CoA to form 2-(2’methylthio)ethylmalate, which is

isomerised to 3-(2’-methylthio)ethylmalate by isopropylmalate iso-
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Figure 4: Schematic diagram of the chain-elongation of Met-derived glu-
cosinolates. It starts with the deamination of Met by BCAT4 in
cytosol. The product MTOB is transported into the plastid, where
it goes through a three step cyclic chain-elongation process. The
chain-elongated products can proceed through further steps of
biosynthesis, and form Met-derived Met-derived glucosinolates.
The different enzymatic steps are explained in detail in the main
text.
AATR, amino acid transporter; Met, methionine; MTOB, 4-
methylthio-2-oxobutanoate and; BAT5, bile acid transporter 5.

merase (IPMI) [12, 32, 63, 97]. The 3-alkylmalic acid is then decar-

boxylated by isopropylmalate isomerase dehydrogenase (IPMDH)

to form 5-methylthio-2-oxopentanoate (MTOP) which is a homo-

keto (2-oxo) acid, similar to MTOB, with an additional carbon in

the side chain [32, 95, 97]. Hereupon, the chain-elongated keto acid

has one of the following possibile fates: (i) proceed through a new

cycle of chain elongation and thus forming a homo-keto acid of in-

creasing side chain length, or (ii) get transaminated by a plastidic

branched-chain aminotransferase (BCAT3) [55] and the resulting

chain-elongated amino acid can proceed with the further steps of

glucosinolate metabolism, or (iii) get exported by BAT5 to cytosol,

where it is transaminated by BCAT4 or some other branched-chain

aminotransferase to result in a chain-elongated amino acid, which

can proceed to further steps of metabolism. For simplification, the

transporter used for exporting the plastidic chain-elongated amino
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acid to the cytosol is referred as amino acid transporter (AATR). The

exact transporter is not yet identified.

2.3 the model scheme

For modelling purpose, we adopt the following simplifying assump-

tions: (i) the concentration of Met is maintained by a constant influx,

(ii) the concentrations of amino-group donor and acceptor required

for transamination reactions are assumed to be non-limiting and are

not expressed explicitly in the model description, (iii) the Acetyl-

CoA required for the condensation reaction, and the CO2 produced

during the decarboxylation reaction are assumed to have constant

concentrations, and are not expressed explicitly in the model de-

scription, and lastly (iv) the series of three irreversible reactions of

the chain-elongation cycle have been lumped to be represented as

one. The rationale behind the last assumption arises from the fact

that the enzyme catalysing the first irreversible reaction exerts full

control over the metabolic flux in a branch, if there is no feedback

from the downstream intermediates [41, 42]. Hence, all subsequent

enzymes can be considered to exert virtually no control over flux,

and the branch is effectively shortened.

In Arabidopsis thaliana, the chain elongation cycle is known to

run for a maximum of six times, thus yielding six differentially-

elongated products [45]. For mathematical convenience, the chain-

elongation pathway of the Met-derived glucosinolates is redrawn as

shown in Fig. 5. The influx of Met is denoted by v0. The amino acid

intermediates are denoted by Ac,i and Ap,i, where i corresponds to

the number of additional carbon atoms, c and p denote the sub-

cellular locations cytosol and plastid. Thus, Ac,0 denotes cytosolic

methionine, Ac,1 cytosolic homomethionine, etc. Similarly, the keto

acid intermediates are denoted by Kc,i and Kp,i with Kc,0 represent-

ing the cytosolic MTOB, Kc,1 cytosolic MTOP, etc. The three-step
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Figure 5: Schematic representation of the model of the chain-elongation
of Met-derived glucosinolates. The influx of Met is denoted by
v0. The amino acid intermediates are denoted by Ac,i and Ap,i.
The subscripts c and p denote the sub-cellular location cytosol
and plastid, respectively. Whereas i denotes the number of addi-
tional carbon atoms in its side-chain. Thus, Ac,0 denotes Met in
cytosol. Similarly, keto acid intermediates in cytosol and plastid
are denoted by Kc,i and Kp,i, respectively, with Kc,0 represent-
ing MTOB. Gi denotes the Met-derived glucosinolates. The three-
step elongation cycle is represented by the reactions between Kp,i
and Kp,i+1. The downstream steps that produce glucosinolates
are represented by the cytosolic reactions between Ac,i and Gi,
where (1 � i � 6). Thus, G1 denotes glucosinolate with one addi-
tional carbon atom in its side-chain, G6 denotes the glucosinolate
with six additional carbon atoms.

elongation cycle is represented by the reactions between Kp,i and

Kp,i+1. The rate of condensation reactions catalysed by MAM en-

zymes are denoted by vK,i. Whereas, the rate of transamination re-

actions catalysed by the plastidic BCAT3 and the cytosolic BCAT4

enzymes are denoted by vAp,i and vAc,i, respectively. The transport
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reactions transporting keto acids Ki and amino acids Ai across the

plastidial membrane are denoted by vBAT5,i and vAATR,i, respectively.

Lastly, the cytosolic chain-elongated amino acids (Ac,1, . . . Ac,6) are

catalysed by CYP79 enzymes to form substrates that lead to the pro-

duction of glucosinolates denoted by Gi. The rate of these reactions

are denoted by vG,i.

2.4 the rate laws

A very well-known and fundamental kinetic function is the mass-

action rate law proposed by Guldberg and Waage (cf. [104]). It was

derived from the idea that rate of a reaction is proportional to the

probability of collision of reactants, which in turn is proportional to

the concentration raised to the power of their molecularity, which is

the number of molecules that have to meet to initiate the reaction.

However, the kinetics of an enzyme catalysed reaction exhibit fea-

tures like saturation and inhibition that cannot, immediately, be de-

scribed by mass-action kinetics. Saturation of enzymes, for example,

arises from the fact that at high substrate concentration, nearly all

enzyme molecules are bound to the substrate, so that a further in-

crease in substrate concentration has almost no effect on reaction

rate. To address such phenomena in enzyme kinetics Victor Henri,

Leonor Michaelis and Maud Leonora Menten proposed a mecha-

nism that was conceptually similar to mass-action law but was ex-

pressed in more precise mathematical and chemical terms, with an

equilibrium between free enzyme and the enzyme-substrate and

enzyme-product complexes [43, 72]. This mechanism is generally

known as Michaelis-Menten kinetics. It applies to the enzymes that

follow one-enzyme-one-substrate mechanism shown in scheme 2.5.

E + S
k+1

k−1
ES

k+2

k−2
E + P, (2.5)
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where k+1 and k+2 denote the rate of the reactions in forward direc-

tion, and k−1 and k−2 denote the reaction rates in reverse direction.

While it was first derived for irreversible reactions, it was later gen-

eralised for reversible reactions [35].

Based on current understanding [55, 92], the glucosinolate biosyn-

thetic enzymes generally possess a broad-range substrate specificity,

which means an enzyme E exerts activity on different substrates de-

noted by Si(i = 1 . . . n) (cf. Scheme 2.6).

E + S1
k+1,1

k−1,1
ES1

k+1,2

k−1,2
E + P1

E + S2
k+2,1

k−2,1
ES2

k+2,2

k−2,2
E + P2

...

E + Sn
k+n,1

k−n,1
ES6

k+n,2

k−n,2
E + Pn

(2.6)

The time-dependent changes in the concentration of the enzyme-

substrate complex are determined by

dES1

dt
= k+1,1S1 · E− (k−1,1 + k+1,2)ES1 + k−1,2 · E · P1

dES2

dt
= k+2,1S2 · E− (k−2,1 + k+2,2)ES2 + k−2,2 · E · P1
...

dESn

dt
= k+n,1Sn · E− (k−n,1 + k+n,2)ESn + k−n,2 · E · Pn

(2.7)

Using the quasi steady-state assumption [72], one obtains the gener-

alised rate law for the production of Pi with n competing substrates

for the binding of enzyme E. A full derivation of the kinetic rate law

for monomolecular reactions is given in Appendix B. The transami-

nation reactions catalysed by BCAT3 and BCAT4, and the plastidial

26



transport mediated by BAT5 and AATR transporters are modelled

by the reversible rate law, which has the general form [69, 90] as

vrevi =

V+
mi

Si
K+
di

− V−
mi

Pi
K−
di

1+

n∑

j=1

Sj

K+
dj

+

n∑

j=1

Pj

K−
dj

, (2.8)

where V+
mi

and V−
mi

denote the maximum velocities of the reactions

catalysing substrate Si and product Pi, respectively. Similarly, K+
di

and K−
di

are the dissociation constants of the reactions catalysing

substrate Si and product Pi, respectively. Whereas K+
dj

and K−
dj

de-

scribe the dissociation constants with respect to substrates Sj(j =

1 . . . n) and products Pj(j = 1 . . . n), respectively.

The condensation and outflux reactions catalysed by MAM and

CYP79 enzymes, respectively, are modelled by the irreversible rate

law, which has the general form [13] as

virri =
Vmi

Si
Kdi

1+

n∑

j=1

Sj

Kdj

, (2.9)

where Vmi
and Kdi are the maximum velocity and dissociation con-

stant, respectively, of the reaction catalysing substrates Si. Whereas

Kdj describe the dissociation constants of the respective substrates

Sj(j = 1 . . . n).

The rate laws, which are used to construct the mathematical

model of chain-elongation of Met-derived glucosinolates are given

in Table 1.
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reactions rate laws

Kp,i
MAM1 Kp,i+1 vK,i =

Vmi

Kpi
Kdi

1+

1∑

j=0

Kpj

Kdj

Kp,i
MAM3

Kp,i+1 vK,i =
Vmi

Kpi
Kdi

1+

5∑

j=0

Kpj

Kdj

Ac,i
BCAT4

Kc,i vAc,i =

V
m+

i

Aci
K
d+
i

−V
m−

i

Kci
K
d−
i

1+

6∑

j=0

Acj

Kd+j

+

6∑

j=0

Kcj

Kd−j

Ap,i
BCAT3

Kp,i vAp,i =

V
m+

i

Api
K
d+
i

−V
m−

i

Pi
K
d−
i

1+

6∑

j=0

Apj

Kd+j

+

6∑

j=0

Kpj

Kd−j

Ac,i
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Gi vG,i =
Vmi

Aci
Kdi

1+
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Kdj

Ac,i
CYP79F2

Gi vG,i =
Vmi

Aci
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1+

6∑

j=5

Acj

Kdj

Table 1: Rate laws used in building the chain-elongation model. The cy-
tosolic amino acid intermediate i is denoted by Ac,i, while the
plastidic amino acid intermediate is denoted by Ap,i. Similarly,
Kc,i and Kp,i denote the cytosolic and plastidic keto acid interme-
diate i, respectively.
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2.5 results

2.5.1 Model formulation

Based on current understanding [45], the maximum number of

elongation cycle in Arabidopsis thaliana is six. Moreover, there ex-

ist isoforms for some enzymes [95], for example, there exist three

MAM synthases, MAM1, MAM2 and MAM3. While MAM3 cataly-

ses the condensation reaction of keto acid intermediates of different

chain lengths (Kp,0 . . . Kp,5), the isoforms MAM1 and MAM2 catal-

yse the condensation of MTOB (Kp,0) and MTOP (Kp,1), only [58,

59, 97]. However, the majority of Arabidopsis ecotypes possess ei-

ther MAM1 or MAM2 [59]. There also exist two CYP79 enzymes,

CYP79F1 and CYP79F2, where the former accepts as substrates

all chain-elongated amino acids (Ac,1 . . . Ac,6) and the latter only

pentahomomethionine (Ac,5) and hexahomomethioinine (Ac,6) [10].

Also, we consider two isoforms of brached-chain aminotransferases

BCAT3 and BCAT4 active in the plastid and cytosol, respectively. We

assume that both, BCAT4 and BCAT3, can deaminate amino acids

of variable chain lengths. Lastly, we also consider the activity of two

transporters BAT5 and AATR, where the former mediates the trans-

port of keto acid intermediates of variable chain lengths, the lat-

ter mediates the transport of amino acid intermediates of all chain

lengths across the plastidial membrane. Thus, our model constitutes

the activity of six enzymes, namely MAM1, MAM3, BCAT3, BACT4,

CYP79F1, and CYP79F2, and two transporters, namely BAT5, and

AATR. These have a broad-range substrate specificity and exert ac-

tivity on 28 intermediates (A0 . . . A6 and K0 . . . K6). These 28 metabo-

lites act as substrate in 72 reactions (see Table 3 for details) taking

place across two sub-cellular compartments, i.e. plastid and cytosol.

The mathematical description of the rate laws is derived from

Michaelis-Menten kinetics to reflect the broad-range substrate speci-

29



ficity of metabolic enzymes. The rate of ith cytosolic and plastidic

transamination reaction is denoted by vBCAT4,i and vBCAT3,i, respec-

tively. The MAM-catalysed ith condensation reaction rate is denoted

by vMAM,i, while the CYP79-catalysed ith reaction rate is given by

vCYP,i. Lastly, vBAT5,i and vAATR,i denote the ith transport reactions

with keto and amino acid intermediates, respectively. Refer Table 1

for details.

The time-dependent changes in the concentrations of ith amino

acid intermediate (Ac,i, Ap,i) and keto acid intermediate (Kc,i, Kp,i)

are calculated by the following ordinary differential equations

(ODEs):

dAc,i

dt
= −vBCAT4,i − vAATR,i − vCYP,i (for 1 � i � 6) (2.10)

dKc,i

dt
= vBCAT4,i − vBAT5,i (for i = 0, . . . , 6) (2.11)

dAp,i

dt
= vAATR,i − vBCAT3,i (for i = 0, . . . , 6) (2.12)

dKp,i

dt
= vBAT5,i+ vMAM,i−1− vMAM,i− vBCAT3,i (for 1 � i � 5).

(2.13)

Whereas, for i = 0, the temporal change in the concentrations of

Ac,i and Kp,i is given by

dAc,i

dt
= v0 − vBCAT4,i − vAATR,i (2.14)

dKp,i

dt
= vBAT5,i − vMAM,i − vBCAT3,i (2.15)
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However, the temporal change in the concentrations of Kp,i for

i = 6 is calculated by

dKp,i

dt
= vBAT5,i + vMAM,i−1 − vBCAT3,i. (2.16)

At steady-state, equations 2.10, 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16

are reduced to the following equations:

dAc,i

dt
= 0

dKc,i

dt
= 0

dAp,i

dt
= 0

dKp,i

dt
= 0.

(2.17)

2.5.2 Effect of varying influx

Influx of metabolites plays an important role in governing the

steady-state concentrations in an enzymatic system [41]. Thus, to

study the effect of varying influx, we used vanilla parameters (Ta-

ble 4) to simulate the steady-states for different values of Met influx

(v0). Figure 6 shows the steady-state concentrations of keto acid in-

termediates Kc,i(i = 1, . . . , 6), simulated for different Met influx v0

values. With increasing influx concentration, we see a nonlinear in-

crease in the steady-state concentrations of the keto acid intermedi-

ates. Around 15 fold higher concentration, in comparison to v0, of

intermediates is observed at v0 = 0.45. However, a further increase

in v0 does not yield a steady-state. This behaviour is often known as

substrate overloading, wherein the metabolic enzymes are saturated

resulting in high accumulation of substrates.

Conversely, when we studied the effect of varying influx v0 on the

steady-state outfluxes (vcyt,i in Fig. 5) that contributes to the produc-

tion of different Met-derived GSLs (3C, . . . , 8C), we observed an in-
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Figure 6: Effects of varying influx on the steady-state concentrations of
keto acid intermediates. While x-axis quantifies influx v0 concen-
tration, y-axis quantifies the steady-state concentration of Kc,i(i =
0, . . . , 6). The subscript c stands for cytosol, whereas the numbers
stand for additional number of carbon atoms in the side-chain
of the keto acid intermediate (cf. Fig. 5). Values are given in ar-
bitrary units. Results are based on the simulations performed
using vanilla parameters (Table 4).

Figure 7: Effects of varying influx v0 on the normalised steady-state con-
centrations of Met-derived glucosinolates (3C, . . . , 8C). The val-
ues on y-axis are normalised to v0 plotted on x-axis. Results are
based on the simulations performed using vanilla parameters (Ta-
ble 4).
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teresting phenomenon. The steady-state flux can be compared with

the steady-state concentrations if we assume that the steady-state

flux is diluted by plants growth. Figure 7 shows the normalised

steady-state concentrations of Met-derived GSLs at different con-

centrations of v0. Fig. 7 clearly shows that with increasing influx

v0 concentration, the chain-length distribution shifts toward higher

production of long-chain (8C) GSLs. Whereas, a reduction in 3C

GSLs is also observed.

2.5.3 Effect of transporters

To study the behaviour originating from an extra cellular compart-

ment, we consider the following two scenarios: (i) the reactions

of chain-elongation of Met-derived GSLs take place in respective

compartments (cf. Fig. 5), and (ii) all the reactions of the chain-

elongation pathway take place in one compartment. The two mod-

els depicting the two aforementioned scenarios will referred to as

"Generic" and "Compartmentalised" models.

Figure 8 shows a schematic of the generic model, where all the

reactions are assumed to take place in one compartment. In such a

case, the chain-elongation pathway can be represented as an inter-

play of 14 metabolic intermediates (A0,...,6 and K0,...,6). While A and

K, respectively, denote the amino and keto acid intermediates, G rep-

resents the Met-derived glucosinolates. The numbers in subscript

denote the additional number of carbon atoms in the molecule.

We simulated the steady-states at v0 = 0.4 using vanilla parame-

ters (Table 4) for the set of reactions depicted in two model schemes

shown in Fig. 5 and 8. The steady-state outflux from the generic

and compartmentalised models will be referred to as Jg and Jc, re-

spectively, which comprise six flux values denoted by respective

vCYP,i(i = 1, . . . , 6, cf. Fig. 5 and 8). Further, to investigate the role

of transporters in regulating the steady-state fluxes, we simulated
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Figure 8: Schematic representation of the generic model of the chain-
elongation of Met-derived glucosinolates. The chain-elongation
pathway can be represented as an interplay of 14 metabolic
intermediates (A0...6 and K0...6) if all the reactions of chain-
elongation pathway takes place in one compartment. While A

and K denote the amino and keto acid intermediates, respec-
tively, G represents the Met-derived glucosinolates. The numbers
in subscript denote the additional number of carbon atoms in the
molecule.

the steady-states for different rate constants of the transport reac-

tions, vAATR,i and vBAT5,i, in the compartmentalised model. We varied

the rate constants by varying the enzyme concentration (Et), which

changes the maximum velocity as

Vmax = Et · kcat, (2.18)

where kcat is the rate by which the substrate is catalysed to form

product.

Figure 9 shows a heatmap of the difference between the steady-

state fluxes, Jg and Jc, at different rate constants of the transport
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Figure 9: Heatmap of the difference between the steady-state fluxes from
generic and compartmentalised model simulated for different rate
constants Et. The difference is measured in terms of euclidean
distance Δ, which is given in log10 scale. Along the x-axis the
concentration (Et,AATR) of AATR is varied, whereas on y-axis
the concentration (Et,BAT5) of BAT5 transporter is varied. The
values are presented as fold changes in the concentration of trans-
porters at reference (Ref) state. Results are based on simulations
performed using vanilla parameters (Table 4) for v0 = 0.4 (arbi-
trary units).

reactions vAATR,i and vBAT5,i. The difference between steady-state

fluxes is measured as euclidean distance, Δ =‖ Jg − Jc ‖. A decrease

in Δ with increasing values of the Et,BAT5 and Et,AATR is seen in

Fig. 9. It highlights the fact that for cases where the transport re-

actions are very fast, the metabolites attain rapid equilibrium, and

the metabolite concentrations in the cytosol is in equilibrium with

plastidial concentrations. In such cases, it is plausible to assume the

non-limiting effects of compartmentalisation.

A fine-scale investigation of the Jc at different Et,BAT5 and Et,AATR

is shown in Fig. 10. The steady-state flux is comparable to the steady-

state concentration if we assume that the steady-state flux is diluted

by growth. To investigate the chain-length distribution, the steady-

state values are normalised to the v0 concentrations. At high Et,BAT5

the steady-state chain-length distribution of GSLs shifts towards the
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(a) (b)

Figure 10: Effects of varying concentrations of BAT5 and AATR trans-
porters on the steady-state concentrations of different Met-
derived GSLs (3C . . . 8C). Figure (a) shows the normalised
steady-state concentrations of Met-derived GSLs at different
concentrations (Et,BAT5) of BAT5 transporter. Whereas, figure
(b) shows the normalised steady-state concentrations of Met-
derived GSLs at varying concentration (Et,AATR) of AATR trans-
porter.
The values on x-axis are presented as fold changes in the con-
centration of BAT5 and AATR transporters with respect to the
reference concentration marked as "Ref". Results are based on
simulations performed using vanilla parameters (Table 4).

production of short-chains GSLs (3C and 4C), while low Et,BAT5 di-

verts the chain-length distribution towards the production of long-

chain GSLs (refer Fig. 10a). A similar behaviour is exhibited, when

we varied Et,AATR, and is shown in Fig. 10b. A quantitative differ-

ence, however, in the chain-length distribution at low Et,BAT5 and

Et,AATR is observed.

2.5.4 Effect of enzyme concentration

Variation in glucosinolate accumulation at different developmental

stages of Arabidopsis thaliana is often observed [7]. It could be a result

of varying expression of metabolic genes, which can amount to the

total concentration of respective enzymes. Thus, to study the effects

of varying enzyme concentrations on the steady-state distribution

of Met-derived GSLs of different chain-length, we used vanilla pa-

rameters to simulate the steady-state for different concentrations of
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metabolic enzymes. According to Eq. 2.18, enzyme concentration

(Et) changes Vmax of respective enzyme-catalysed reactions.

Figure 11 shows the normalised steady-state concentrations of dif-

ferent Met-derived GSLs (3C, . . . , 8C) at different concentrations of

metabolic enzymes: (a) MAM1, (b) MAM3, (c) BCAT3, (d) BCAT4,

(e) CYP79F1, and (f) CYP79F2. To reflect the change in concentra-

tion, the values on x-axis is given as fold changes in the concentra-

tion to the reference marked with "Ref". Figure 11a shows that at

low concentration of MAM1 chain-length distribution shifts toward

high production of 3C GSLs. Whereas high concentration of MAM1

shifts the distribution towards higher production of 4C GSLs than

3C. Next, in Fig. 11b we show how variation in the concentration

of MAM3 regulates the steady-state chain-length distribution. We

see that at low MAM3 concentration the chainlength distribution

is favoured towards the production of short-chain GSLs, while high

concentration favour the production of long-chain GSLs. Conversely,

Fig. 11c and 11d show that a low concentrations of transaminases,

BCAT3 and BCAT4, shifts the steady-state chain-length distribution

toward high concentrations of long-chain GSLs. Whereas high con-

centrations of transaminases favour high production of short-chain

GSLs. Lastly, the effect of varying concentration of CYP79 enzymes

is recorded in Fig. 11e and 11f. While low concentration of CYP79F1

favours the high production of 7C and 8C GSLs, high concentration

of CYP79F1 enzyme leads to a shift towards the short-chain GSLs (cf.

Fig. 11e). Whereas, varying the concentration of CYP79F2 enzymes

shows almost no effect on the chain-length distribution of GSLs.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Effect of varying enzyme concentrations (Et) on the steady-state
concentrations of Met-derived glucosinolates (3C, . . . , 8C). Nor-
malised steady-state concentration of different GSLs at different
concentrations of (a) MAM1, (b) MAM3, (c) BCAT3, (d) BCAT4,
(e) CYP79F1, and (f) CYP79F2 is presented. The values on y-axis
is normalised to the influx concentration. Whereas, the values
on x-axis is presented as fold changes in Et with resepct to refer-
ence marked as "Ref". Simulations are performed using vanilla
parameters (Table 4).
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2.5.5 Effect of enzyme specificity

In 1995, Radzicka and Wolfenden [82] introduced the idea of cat-

alytic efficiency, as a measure of the capacity of an enzyme to ac-

celerate a reaction beyond its uncatalysed rate. Specificity is a fun-

damental property of an enzyme that does not illustrate how en-

zymes are excellent catalysts for certain reactions but how they are

extremely poor catalysts for the majority of other reactions. Most of

the enzymes, for example the ones involved in GSL biosynthesis, are

not perfectly specific for a single substrate and often select between

several substrates that are available simultaneously [95]. Therefore,

enzyme specificity can be defined as how the enzymes discriminate

between substrates present in the same reaction mixture.

Met-derived glucosinolates in Arabidopsis have side-chain

lengths of three to eight carbon atoms, i.e. one to six additional

carbon atoms [45]. These glucosinolates are referred to as 3C to 8C

glucosinolates. Additionally, the accumulation of glucosinolates is

evaluated in terms of accumulation of short- and long- chain glu-

cosinolates. For mathematical convenience, we will use the terms

3Cness and 7Cness that define the relative concentrations of the

short- and long- chain glucosinolates as

3Cness =
[3C]

[3C] + [4C]
7Cness =

[7C]

[7C] + [8C]
. (2.19)

To investigate the regulation of 3Cness and 7Cness, we simulated

the steady-states for different values of dissociation constant (Kdi,j)

of the reaction, where substrate of chain-length j = 0 is catalysed

by the enzyme i. The reactions catalysing substrates of chain-length

j = 0 of different metabolic enzymes are reminded here;
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Symbol Reaction Enzyme

R1 Kp,0 Kp,1 MAM3

R7 Kp,0 Kp,1 MAM1

R10 Kc,1 Kp,1 BAT5

R16 Kp,0 Kc,0 BAT5

R23 Ac,0 Ap,0 AATR

R30 Ap,0 Ac,0 AATR

R37 Ac,0 Kc,0 BCAT3
R44 Kc,0 Ac,0 BCAT3
R51 Ac,0 Kc,0 BCAT4
R58 Kc,0 Ac,0 BCAT4
R65 Ac,1 Ac,1 CYP79F1

Table 2: List of reactions catalysing substrates Si,j of chain-length j = 0

by different metabolic enzymes. While A and K denote the amino
and keto acid intermediates, the subscript c and p denote the sub-
cellular localisation cytosol and plastid, respectively.

The change in the steady-state 3Cness (7Cness) is measured in

terms of coefficients of response CR, which is calculated by

CR =
R ′ − R

R
(2.20)

where R and R ′ denote the 3Cness (7Cness) at Kdi,j at 1.0 and new

value, respectively. Further, we assume that the Kdi,j(j = 0, . . . ,n)

of the reaction with substrate of chain-length j = n of an enzyme i

depends on the Kdi,j(j = 0) as

Kdi,n = 2−Kdi,0 , (2.21)

where 2 (arbitrary units) is a chosen maximum of the Kdi,j values.

Moreover, the Kdi,j depends on the dissociation constant of the reac-

tion catalysing substrate with j− 1 as

Kdi,j = m×Kdi,j−1
. (2.22)

In Eq. 2.22, m is a constant, which is calculated as a ratio between
where m is the slope

caluclated as

m = Δx/Δy.
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the change in Kdi,j values to the number of substrates that can be

catalysed by the enzyme i.

(a)

(b)

Figure 12: Heatmap showing the coefficients of response (CR) to 3Cness

and 7Cness at different Kdi,j of reaction with substrate of
chain-length j = 0 catalysed by enzyme i. Figure (a) shows
the heatmap of CR to 3Cness, whereas figure (b) presents
the heatmap of CR to 7Cness. Different values of Kdi,j is pre-
sented on y-axis. Whereas, along the x-axis symbols of reactions
catalysing substrate with j = 0 are given. Details on the reaction
symbols are given in Table 2. Results are based on simulations
performed using vanilla parameters (Table 4).
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Figure. 12 shows heatmaps of the coefficients of response to (a)

3Cness and (b) 7Cness calculated for different Kdi,j of reactions

catalysing substrate with chain-length j = 0 of enzyme i. Fig.

12a shows that a decrease in Kdi,0 of R7 catalysed by MAM1 re-

sults in high CR value. According to Eq. 2.21 and 2.9, low Kdi,0 re-

sults in faster rate of reaction that catalyses Kp,0 than the reaction

catalysing Kp,1. Consequently, the flux is directed towards more pro-

duction of 3C GSLs, thus increasing 3Cness. However, a high Kdi,0

results in slower rate of the reaction that catalyses Kp,0 than reaction

catalysing Kp,1. Thus, the flux is diverted towards the production

of longer chain GSLs, and thus decreasing the 3Cness. Varying the

Kdi,0 of reaction R1, where MAM3 catalyses Kp,0, negatively regu-

lates (negative coefficient values) the 3Cness. Further, variation in

the Kdi,0 of BAT5-mediated transport reactions (R10), shows an in-

crease in 3Cness at low Kdi,0 and vice-versa. Whereas, the other trans-

port reactions (R17,R23,R30) show a negative regulation of 3Cness if

the Kdi,0 is varied. A similar behaviour is seen if the Kdi,0 values

of the transamination reactions (R37,R44,R51,R58) catalysed BCAT3

and BCAT4 are varied. Lastly, a mariginal change in the 3Cness is

observed if the Kdi,0 of reaction R65 catalysed by CYP79F1 is varied.

Similarly, we studied the effect of varying Kdi,0 on the 7Cness of

stead-state flux. Figure 12b shows a heatmap of the coefficients of re-

sponse (CR) to 7Cness. Decreasing the Kdi,0 of the MAM3-catalysed

reaction R1, increases the 7Cness. As per Eq. 2.22, the Kdi,0 of reac-

tion catalysing Kp,4 is smaller than Kp,5, which results in the faster

kinetics leading to the diversion of flux towards the production of

7C glucosinolates. Thus, increasing the 7Cness. However, increasing

the Kdi,0 results in the diversion of flux towards the 8C glucosino-

lates, and thus decreasing the 7Cness. Conversely, the reactions R23

and R51 increase the 7Cness with increasing value of Kdi,0 , and vice-

versa. Whereas, the other reactions (R10,R17,R30,R37,R44,R58) show

a marginal decrease in the 7Cness if Kdi,0 is varied. However, no
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change in the 7Cness is observed if the Kdi,0 of reaction R65 catal-

ysed by CYP79F1 is varied.

2.6 discussion

The structural diversity of aliphatic glucosinolates arises from

the differential elongation of its side-chain. Moreover, the chain-

elongation pathway is an interplay of various enzyme isoforms that

are localised in different cellular compartments. The corresponding

metabolic network is so complicated that mathematical modelling

is required to try to understand it. Based on our knowledge of

the pathway, kinetic properties of the metabolic enzymes and some

simplifying assumptions, we developed a mathematical model of

the chain-elongation of Met-derived glucosinolates in Arabidopsis

thaliana.

The presented model is based on a similar idea conceived by Knoke

et al., 2009 [57] concerning the chain-length distribution of Met-

derived glucosinolates. We extend the model capabilities, by em-

ploying rate laws that account for the broad-range substrate speci-

ficity of metabolic enzymes. By providing the mathematical descrip-

tion, we illustrate how different biosynthetic rates are affected by

all metabolite concentrations, a behaviour originating from broad-

range substrate specificity of the metabolic enzymes.

Using a reference set of kinetic parameters, we showcase an impor-

tant phenomenon of enzyme-catalysed reactions, i.e. the overload-

ing of substrates. Model simulations showed that at high concen-

tration of methionine influx, the chain-elongation pathway became

overloaded, and high accumulation of intermediate metabolites is

observed. This may result in unusual characteristics. A biochemical

example of the substrate overloading has been shown in a previous

study [21], which showed how fatty acid β − oxidation becomes

vulnerable to substrate overload. Such kind of studies are an ef-
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fort to estimate the critical flux that can be handled by a metabolic

pathway and can produce desired concentrations of biosynthetic

products. Furthermore, model simulations showed that at high sub-

strate concentration the chain-length distribution shifts toward the

production of long-chain GSLs. A plausible explanation for this be-

haviour is that at high Met concentrations, the transamination reac-

tion is favoured in the direction, which results in the production of

keto acids. As keto acids are direct substrates of chain-elongation,

high availability of substrates leads to high production of chain-

elongated products. Thus, the chain-length distribution shifts to-

ward the production of long-chain GSLs.

Different sub-cellular localisations of metabolic enzymes make the

chain-elongation pathway highly compartmentalised [30, 36, 92].

Knock-out studies revealed that the activity of bile-acid transporter

5 (BAT5) as the only transporter in the biosynthesis of Met-derived

glucosinolates is not true, and the presence of an unidentified yet

amino acid transporter is highly speculated [30]. Model simulations

showed that for very fast reversible transport reactions, the metabo-

lite concentrations in different cellular compartments attain equilib-

rium. Thus, the steady-state chain-length distribution is not limited

by the compartmentalisation of the glucosinolate biosynthesis. In

such cases, skeleton (referred to as generic in this chapter) models

that consist of fewer reactions can be used to reduce modelling com-

plexities. Skeleton models have turned out to be useful in previous

studies [42, 57]. Furthermore, a fine-scale investigation showed that

for slow transport kinetics the steady-state biosynthetic flux is di-

verted towards the production of long-chain GSLs (see Fig. 10). A

plausible explanation is the increase in residence time of the sub-

strates, capable of undergoing elongation, in the scope of elonga-

tion. However, the quantitative difference (cf. Fig. 10a and 10b) in

the steady-state chain-length distribution for slow kinetics of BAT5

and AATR is observed. It originates from the fact that BAT5 exerts
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activity on the keto acid intermediates, whereas AATR mediates the

transport of amino acid intermediates. While the chain-elongated

amino acid intermediates are direct substrates that can lead to the

production of GSLs, the keto acid intermediates needs to undergo

a transamination reaction before it enters downstream steps of GSL

biosynthesis (cf. Fig. 4). Thus, the chain-length distribution of Met-

derived GSLs is also limited by the transamination reaction, which

further increases the residence time of the substrates within the

scope of further elongation.

Differential expression of metabolic genes could result in different

concentrations of respective enzymes. Model simulations showed

that the chain-length distribution is highly regulated by the concen-

trations of different metabolic enzymes (cf. Fig. 11). The reversal in

3C to 4C ratio seems to be associated with the activity of MAM1

enzyme (cf. Fig. 11a). Since MAM1 exerts activity on MTOB and

MTOP only, high concentrations of MAM1 enzyme will increase

the Vmax of the respective reactions. This results in the diversion of

metabolic flux towards the production of 4C GSLs, given Vmax of

all other reactions constant. A similar behaviour is exhibited at high

concentration of MAM3 enzyme, which catalyses keto acids of vari-

able chain-lengths (Kp,0, . . . ,Kp,5, cf. Fig. 5). Thus, at high MAM3

concentrations the chain-length distribution favours high produc-

tion of 8C GSLs. Varying the concentrations of transaminases show

an interesting phenomenon. While at low enzyme concentrations

the chain-length distribution shifts toward longer chain GSLs, high

transaminase concentrations lead to the production of short-chain

GSLs. This behaviour stems from the fact that low tranaminase con-

centration implies low Vmax of respective transamination reactions,

which in turn increases the residence time of the substrates capa-

ble of elongation within the scope of further elongation, vice-versa.

Lastly, variation in the concentrations of CYP79 enzymes show a

typical behaviour. The low concentration of CYP79F1 enzyme di-
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verts the flux towards reactions catalysed by CYP79F2, which cataly-

ses the substrates Ac,5 and Ac,6 (cf. Fig. 5). Thus, producing high con-

centrations of 7C and 8C glucosinolates. Whereas, the chain-length

distribution is not limited by high concentrations of CYP79F1. How-

ever, an almost no effect on the chain-length distribution during the

variation in CYP79F2 concentration arises from the compensatory

activity of CYP79F1 enzyme. These analyses are important for find-

ing the enzymes that are important, and should be amplified (su-

pressed) for a desired pattern of glucosinolate accumulation.

Enzyme affinities play an important role in the steady-state concen-

trations of GSLs. By varying enzyme affinities toward substrates of

different chain-lengths, model simulations allowed us to calculate

the extent of regulation of steady-state chain-length distribution by

different metabolic enzymes. The analyses indicate which parame-

ters have to be engineered to produce a desired distribution toward

short- and long-chain GSLs. The response analysis (cf. Fig. 12) only

provides reliable predictions when small changes are considered.

Although we considered some simplifying assumptions, model sim-

ulations provide insights and explain the systemic behaviour of the

chain-elongation of Met-derived GSLs. Such analyses are important

to investigate, moreover to understand, the functioning of enzymes-

catalysed biosynthetic network. A practical application of such anal-

yses is to detect which enzymes should be amplified by genetic ma-

nipulation to give the highest effect in increasing the biosynthesis

of a target product.

The presented mathematical model is developed for a certain prag-

matic purpose. We intend to give a detailed mathematical repre-

sentation of the underlying reactions catalysed by broad-range sub-

strate specific enzymes, which will be very important for fitting ex-

perimental data in the best possible way.
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3
M AT H E M AT I C A L M O D E L L I N G O F T H E

C H A I N - L E N G T H D I S T R I B U T I O N O F A L I P H AT I C

G L U C O S I N O L AT E S I N A R A B I D O P S I S E C O T Y P E S

It doesn’t make a difference how beautiful the guess is. It doesn’t make a

difference how smart you are, who made the guess, or what his name is. If

it disagrees with experiments, it’s wrong.

— Richard P. Feynman

Aliphatic glucosinolates are a major class of glucosinolates in Ara-

bidopsis thaliana. These are metabolically derived from methion-

ine (Met) [36]. Diversity of Met-derived glucosinolates depends on

the variation in the chain-length and patterns of secondary oxida-

tion and esterification [52, 99]. Glucosinolates of six variable chain-

lengths, referred to as 3C to 8C glucosinolates, are found in A.

thaliana [32]. Although, the genes involved in the biosynthesis have

been identified, but much more of discovery awaits before we fully

understand how certain glucosinolates with a particular pattern are

produced. To address the long-standing question about the major

regulators of metabolic fluxes through the biosynthetic pathway, we

use our mathematical model (described in chapter 2) to reproduce

patterns of glucosinolate accumulation in the leaves of A. thaliana

Columbia (Col) ecotype. The model uses pathway architecture and

experimentally measured enzyme kinetics data to evaluate the role

of different metabolic enzymes/transporters in determining the di-

versity of Met-derived glucosinolates in Col leaves. However, the

missing kinetic parameters are estimated using genetic algorithm

(GA) [46], which is based on evolutionary concepts such as selec-

tion, reproduction, crossover and mutation. In its original form, GA
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optimises the value(s) of the decision variables that would minimise

a given objective function. The generic steps involved in GA are: (i)

random initialisation (generation of random individuals to form ini-

tial population), (ii) selection (selection of individuals from the popu-

lation based on some fitness measure), (iii) reproduction (generation

of new individuals to maintain the population size), (iv) crossover

(generation of new individuals by mutually exchanging the stochas-

tic self-contained parts of the existing individuals), and (v) muta-

tion (diversification of existing individuals by making a stochastic

change in the population). Steps (ii-v) are repetitively performed to

minimise a given objective function.

In the present chapter, we showcase the simulated results not only

for the wild-type ecotype, but also for different mutant backgrounds

of Col ecotype. Furthermore, the model is used to reproduce exper-

imentally measured patterns of glucosinolate concentrations found

in various other Arabidopsis ecotypes. Due to the gap in our knowl-

edge of kinetic parameters in these ecotypes, we estimated the val-

ues to make a good agreement of the model simulations with the

experimentally measured concentration of glucosinolates as good

as possible.

3.1 estimation of the required influx of methionine

To estimate the methionine influx required to produce a typical con-

centration of Met-derived glucosinolates in the Columbia ecotype

of A. thaliana, we did a back-of-the-envelope calculation shown in

figure 13. We assume that the biosynthesis of Met-derived glucosi-

nolates scales linearly with the growth rate of a plant cell. Given that

the biosynthesis involves different cellular compartments, which

have different volumes, we choose to discuss the glucosinolate

biosythesis per unit cell volume. Later, we multiply by a typical

growth rate of a plant cell to get the turnover per unit time. Our es-
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Figure 13: A back-of-the-envelope calculation of the methionine flux to
produce a typical concentration of Met-derived glucosinolates
in A. thaliana leaves. Estimation is based on generic parameter
values [55, 75, 92, 97].

timate relies on generic values of the parameters. The typical concen-

tration of Met-derived glucosinolates is taken from [92]. A typical

growth rate and volume of plant cell are taken from the BioNum-

bers database (cf. [75], also see BNID: 107725, 108685). From our

calculations, an influx of 0.42 μM ·min−1 is required to produce

a typical concentration (20 μmol · g−1 dry weight) [55, 92, 97] of

Met-derived GSLs in the Col ecotype of A. thaliana.

3.2 kinetic parameters

The presence of glucosinolates in the model plant, Arabidopsis

thaliana, has boosted the glucosinolate research significantly, result-

ing in kinetic studies of various metabolic enzymes. Our model con-

stitutes the activity of eight enzymes/transporters that correspond

to 144 kinetic parameters, of which 25 values are known [10, 55, 58,

92, 97]. However, the measured values are based on in vitro assays,

thus using them directly for quantitative modelling is not straight-

forward. Vmax, for example, is proportional to the enzyme concen-

trations that is not known for any of the enzymes involved in chain-

elongation. As a rough estimation, protein concentration scales lin-
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early with cell mass and volume. Given cell volume can change

several folds as a consequence of growth, it seems reasonable to

discuss the Vmax values per unit volume. Thus, we rescale all exper-

imentally measured Vmax such that the virtual concentration of each

enzyme in the wild-type is 1 mg−1 · l−1; V ′
max = Vmax/mg−1 · l−1.

A similar approach has been used in [57]. Thus, the rescaled Vmax

is denoted as V ′
max in Table 4.

3.3 estimation of the missing kinetic parameter val-

ues

Our model constitutes 144 kinetic parameters, of which 119 values

are yet unknown. Thus, the missing kinetic values are estimated,

so as to optimise the agreement between the model-simulated and

the experimentally-measured Met-derived glucosinolate (GSL) con-

centrations in the leaves of A. thaliana Col ecotype. GA is used to

estimate the missing values of kinetic parameters. By an iterative

process, GA optimises the parameter values to minimise the follow-

ing objective function:

Δ =‖ G− Ĝ ‖ (3.1)

where, Δ corresponds to the euclidean distance between the

experimentally-measured GSL concentration vector G (G =

3C, . . . , 8C) and model simulated steady-state flux vector Ĝ (Ĝ =

vG,1, . . . , vG,6). Since we assume that the steady-state flux is diluted

by growth to produce respective GSL concentration, the flux is

compared to the steady-state concentration. For the purpose of

comparison, the values are normalised to the experimentally mea-

sured total concentration [92] of Met-derived GSLs and influx v0

(v0 = 0.42μM ·min−1) for vectors G and Ĝ, respectively.
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GA based parametrisation does not yield just one best set of ki-

netic parameters but rather a high number of parameter sets char-

acterised by similar agreement between the model-predicted and

the experimentally-determined GSL profile. A fiducial set of kinetic

parameters that reproduces the wild-type and mutant patterns of

GSL accumulation in the leaves of A. thaliana Col ecotype is given in

Table 4.

3.4 results

3.4.1 Reproducing the pattern of glucosinolate accumulation in the

Columbia ecotype

Met-derived GSLs of six variable chain-lengths are found in Ara-

bidopsis thaliana. The wild-type Columbia (Col) ecotype of A. thaliana

accumulates high concentrations of GSLs that are four-carbon long

and low concentrations of other chain-elongated glucosinolates. To

reproduce the GSL pattern of wild-type Col ecotype, we used the

fiducial parameters (Table 4) to simulate the steady-state chain-

length distribution of GSLs for influx v0 = 0.42 μM ·min−1.

Figure. 14 shows a comparison of experimentally measured GSL

concentrations to the model simulated steady-state GSL concentra-

tions of Met-derived GSLs in the leaves of A. thaliana Col wildtype

ecotype. While the blue bars denote the experimentally measured

concentrations of the different Met-derived GSLs, orange bars de-

note the steady-state GSL concentrations from model simulations.

For the purpose of comparison, the values are normalised to the to-

tal concentration of Met-derived GSLs. Model simulation of chain-

length distribution is in good agreement with the experimentally-

measured GSL profile.
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Figure 14: Comparison of the experimentally measured concentrations
with the model-simulated concentrations of Met-derived glu-
cosinolates in A. thaliana Col wildtype (WT) ecotype. The val-
ues are normalised to the the total concentration of Met-derived
GSLs. 3C, three carbon GSLs; 4C, four carbon GSLs; 5C, five
carbon GSLs; 6C, six carbon GSLs; 7C, seven carbon GSLs; 8C,
eight carbon GSLs. Experimental data of GSL concentrations in
the WT ecotype is taken from [92]. Simulation is performed us-
ing the parameters given in Table 4.

3.4.2 Reproducing the GSL profiles of knockout mutants of Col ecotype

From literature [95], we know that there exist different isoforms

of GSL biosynthetic enzymes in Col ecotype. MAM synthases, for

example, exist as MAM1 and MAM3 enzymes. While MAM3 ac-

cepts as substrates all six of the 2-oxo acid intermediates of chain-

elongation reactions, MAM1 exerts activity only on the two shortest

2-oxo acids, MTOB and MTOP [58, 97]. Likewise, the chain elon-

gation pathway includes several transamination reactions with Met

or amino-acid derivatives and 2-oxo acids of variable side chains.

In principle, BCAT4 and BCAT3, respectively, could catalyse all

cytosolic and plastidic transamination reactions with differentially-

elongated 2-oxo acid intermediates of the chain-elongation pathway.

Lastly, there also exist two CYP79 enzymes, CYP79F1 and CYP79F2.

While the former catalyses the conversion of homomethionines of
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various chain-lengths to their respective aldoximes, the latter cataly-

ses the conversion of the two longest chain homomethionines, only.

To investigate the role of different enzymes (isoforms) in regulating

the steady-state concentrations of GSLs, we used the kinetic parame-

ters (Table 4) to simulate the steady-state for v0 = 0.42μM ·min−1 in

different mutant conditions. To model the knockout, we set the max-

imum velocity Vmax of their catalysed reactions to zero. Moreover

for the mathematical clarity, we assume that there exist no compen-

satory expression of other enzymes.

Figure. 15 shows a comparison of the experimentally-measured leaf

GSL profile with the model-simulated profile in Col MAM1 and

MAM3 knockout mutants. The length of the bars in Fig. 15 are

Figure 15: Comparison of the experimental (Exp) leaf GSL profile with
the model simulated (Sim) GSL profile in MAM1 and MAM3
knockout (KO) and knockdown (KD) mutants of Col ecotype.
"KD : 0.1" refers to the knockdown to 10 percent of original
MAM3 concentration. The length of the bars are normalised to
the total concentration of Met-derived GSLs. Results are based
on simulations performed using parameters (Table 4). Experi-
mental data on mutant profiles are taken from [58, 97].

normalised to the total concentration of Met-derived GSLs. Model

simulations show a good agreement with the experimental obser-

vations. The reversal in the distribution of 3C to 4C glucosinolates

attributes to the loss of MAM1 activity. Whereas, the loss of MAM3
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activity leads to the diversion of flux towards the production of

3C and 4C glucosinolates only (see Fig. 15). The simulations of the

MAM3 knockout mutant also showed no flux towards the produc-

tion of longer-chain glucosinolates (5C . . . 8C), while low amounts

of 5C and 6C glucosinolates were observed in the actual plant anal-

yses [97]. A possible explanation of the consequence could be the

residual activity of MAM3. Thus, to test our speculation we per-

formed a knockdown to 10 percent of original MAM3 concentration.

To model the knockdown of an enzyme, we set the Vmax values of

their catalysed reaction to 10 percent of the original Vmax values.

Figure 15 also shows a comparison of the experimentally-measured

concentrations to the model simulated knockdown (KD) concentra-

tions of different Met-derived GSLs in MAM3 mutants. Simulations

show a good agreement with the experimental observations. Thus, it

is plausible to assume a knockdown of MAM3 rather than a knock-

out.

Further, we simulated the knockout of transaminases, BCAT3 and

BCAT4. Figure 16 shows a comparison of the experimentally-

observed leaf GSL profiles with the simulated GSL profile of BCAT3

and BCAT4 mutants. While the simulated BCAT4 knockout mu-

tants showed a qualitative agreement with the experimental obser-

vations, BCAT3 mutants showed a profile that cannot be explained

directly. For theoretical explanation of the observed GSL profile in

BCAT3 knockout mutants, we investigated different knockdown

concentrations of BCAT3. Figure 16 also shows a comparison of

the simulated steady-state GSL profile in the knockdown of BCAT3

enzyme. A good agreement with the experimental observations was

found at knockdown to 40 percent of original BCAT3 concentration.

Thus, a plausible explanation of the experimental observations is a

knockdown of BCAT3 rather than a knockout.

Lastly, we simulate the steady-state GSL profiles in CYP79F1 and

CYP79F2 mutants. Figure 17 shows a comparison between the
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Figure 16: Comparison of the experimental (Exp) GSL profile with the
model simulated (Sim) GSL profile in BCAT3 and BCAT4 knock-
out (KO) and knockdown (KD) mutants of Col ecotype. "KD :
0.4" refers to the knockdown to 40 percent of original BCAT3
concentration. Results are based on simulations performed us-
ing parameters (Table 4). Experimental data on mutant profiles
are taken from [55, 92].

Figure 17: Comparison of the experimental (Exp) GSL profile with the
model simulated (Sim) profile in CYP79F1 and CYP79F2 knock-
out (KO) mutants of Col ecotype . Results are based on simula-
tions performed using parameters (Table 4). Experimental data
on mutant profiles are taken from [10].

experimentally-measured and model simulated knockout GSL pro-

files in CYP79F1 and CYP79F2 mutants. Model simulations showed
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a qualitatively-good agreement with the experimental observations.

When we simulated the knockout of CYP79 enzymes, we were

able to reproduce the qualitative distribution of the different Met-

derived GSLs. However, the quantitative discrepancies may have

arisen due to the compensatory expression of other metabolic en-

zymes.

3.4.3 Metabolic control analysis of the chain-length distribution of GSLs

From biological point of view, it is important to characterise the role

of particular reactions taking place within a cell in determining the

various dynamic modes of metabolism. Due to high number of vari-

ables and strong stoichiometric and regulatory relations, it seems to

be impossible to gain such insights by qualitative considerations. A

theoretical framework, known as metabolic control analysis, was devel-

oped to quantitatively explain to what extent the various reactions

of a metabolic pathway determine the fluxes and concentrations [41,

50].

To investigate and quantitatively estimate the control possessed by

different kinetic parameters on steady-state chain-length distribu-

tion of GSLs, we use the concepts of control coefficients proposed,

independently, by Kacser and Burns [50], and Heinrich and Rap-

poport [41]. In its original form, metabolic control analysis was de-

signed to quantify the concept of rate limitation in complex enzyme-

catalysed systems. The steady-state fluxes Jj in a metabolic system

depend on the values of total enzyme concentrations Ek [50] and

other kinetic parameters [41], that affect reaction rates. Correspond-

ingly, the flux control coefficients are defined as:

C
Jj
Ek

=

(
Ek

Jj

ΔJj

ΔEk

)
ΔEk→0

=
EkδJj

JjδEk
(3.2)
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C
Jj
vk =

(
vk

Jj

ΔJj

Δvk

)
Δvk→0

=
vkδJj

Jjδvk
, (3.3)

which relates the fractional change in the steady-state fluxes to the

fractional change in the total enzyme concentrations (Ek) and kinetic

parameter (vk) in Eq. 3.2 and 3.3, respectively. ΔEk and Δvk denote

the change in the activity of reaction k due to the influence of a

change of the enzyme concentration and kinetic parameter, respec-

tively. As mathematically, the fluxes Jj cannot be only expressed as

functions of the rates vk, the Eq. 3.3 regards a kinetic parameter pk

that affects only reaction k directly, that is,

δvk

δpk
�= 0;

δvj

δpk
= 0 for any(j �= k). (3.4)

Thus, Eq. 3.3 can be written as

C
Jj
vk =

vkδJj/δpk

Jjδvk/δpk
. (3.5)

Thus, the coefficients defined in Eq. 3.5 can be used to interpret the

extent to which reaction k controls the steady-state flux.

We used the aforementioned control coefficient concept to quantita-

tively investigate the role of different kinetic parameters in shaping

the steady-state GSL profile in Col ecotype. Using Eq 3.5, we derive

the following equation:

CR
pk

=

(
pk

R

ΔR

Δpk

)
Δpk→0

=
pkδR

Rδpk
, (3.6)

where R denotes the 3Cness (7Cness),

3Cness =
[3C]

[3C] + [4C]
7Cness =

[7C]

[7C] + [8C]
, (3.7)

of a steady-state GSL profile of Col ecotype. Thus, the Eq. 3.6 is

used to investigate the control of 3Cness and 7Cness by different
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kinetic parameters of enzyme-catalysed reaction of chain-elongation

pathway. Figure 18 shows the coefficients of response to 3Cness and

7Cness of GSL profile to a finite perturbation in the kinetic parame-

ters. Practically, we varied the model parameters (pk, in Eq. 3.6) by

1 percent and calculated the change in the 3Cness and 7Cness.
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The analysis showed that the methionine influx v0 plays an impor-

tant role in controlling the chain-length distribution. While it neg-

atively regulates (negative coefficients) the steady-state 3Cness, it

positively regulates (positive coefficients) the 7Cness. It is under-

standable in a way that an increase in the substrate concentration

will accelerate all the reactions producing substrates for further

chain-elongation. Activity of MAM synthases, MAM1 and MAM3,

have a higher control (coefficient) on the steady-state 3Cness and

7Cness of the GSL profile. While the Vmax of MAM1 positively reg-

ulates the 3Cness, the Kd of MAM1 negatively regulates the 7Cness.

Whereas, activity of MAM3 regulates both 3Cness and 7Cness of

the GSL profile.

3.4.4 Simulating the GSL profiles from different Arabidopsis ecotypes

Depending upon the herbivores, several glucosinolates can act as

feeding deterrents or stimulants [36]. One possible effect of this het-

erogeneous natural selection on glucosinolates is the rapid evolu-

tion of new GSLs or new patterns GSL accumulation. If we assume

that the glucosinolate biosynthesis pathway is conserved across dif-

ferent Arabidopis ecotypes, we can use our model to simulate the

steady-state GSL concentrations in different ecotypes.

In this section, we present the results of model simulations to re-

produce different patterns of glucosinolate accumulation that are

reported in a study by Kliebenstein et al., 2001 [52]. For the purpose

of this study, we have selected a few ecotypes, namely Pi-0, Cvi,

Aa-0, and Mt-0, that show diverse patterns of GSL concentrations.

While Pi-0 ecotype exhibits high accumulation of 3C glucosinolates,

Cvi ecotype exhibits an intermediate distribution of 3C and 4C glu-

cosinolates, and Aa−0 and Mt−0 ecotypes exhibit high accumula-

tion of 4C glucosinolates. The unavailability of kinetic studies in

these ecotypes leaves a gap in our knowledge of the kinetic param-
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eters in these ecotypes. Nevertheless, we use the genetic algorithm

to estimate kinetic parameter values to individually find a good

agreement between the model simulated and the target glucosino-

late profiles.

Figure 19 shows a comparison between the experimentally-

measured and model simulated steady-state concentrations of Met-

derived GSLs from the leaves of Pi-0, Cvi, Aa-0, and Mt-0 wild-type

ecotypes. The length of the bars in Fig. 19 are normalised to the total

Figure 19: Comparison of the experimentally-measured (Exp) and model
simulated (Sim) steady-state concentrations of Met-derived
GSLs from Pi−0, Cvi, Aa−0, and Mt−0 wild-type Arabidopsis
ecotypes. The experimental data of GSL concentrations in the
wild-type ecotypes are taken from [52]. Results are based on
simulations performed using the kinetic parameters given in
Table 5

concentrations of Met-derived GSLs in the ecotypes. Model simula-

tions show a good agreement between between the experimentally-

measured and model simulated GSL concentrations in the ecotypes.

Simulations are performed using the kinetic parameters given in

Table 5.
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3.5 discussion

The chain-length distribution is highly variable in Arabidopsis

thaliana species. Most ecotypes accumulate glucosinolates with ei-

ther three carbon (3C) or four carbon (4C) molecules. In A. thaliana,

the production of 3C and 4C glucosinolates is largely controlled

by the MAM synthases, MAM1, MAM2 and MAM3 [58, 59, 97].

Interestingly enough, majority of conclusions on the accumulation

3C versus 4C glucosinolates are based on the guilt-by-association of

genes. However, the mechanistic understanding of the biosynthesis

as an interplay of different metabolic enzymes is poorly understood.

In this chapter, we used our mathematical model (cf. Chapter 2) to

investigate the regulators of chain-elongation of Met-derived glu-

cosinolates in A. thaliana ecotypes.

Influx of metabolites plays an important role in governing the

steady-state concentrations in an enzymatic system [41]. Based on

generic values of parameters [75] in this study, we estimated the

required influx (v0 = 0.42μM ·min−1) to produce a typical steady-

state concentration (20μmol · g−1DW) [55, 92, 97] of Met-derived

glucosinolates in the leaves of A. thaliana Columbia (Col) wild-type

ecotype.

Our model constitutes 144 kinetic parameter values, of which 119

are not known yet. To bridge the gap in our knowledge of kinetic

parameters, we used the genetic algorithm (GA) to estimate the val-

ues of missing kinetic parameters to find a good agreement between

the experimental observations and model simulations. Since GA per-

forms a stochastic optimisation of parameter value(s), it yielded not

just one best set of parameter values but a number of parameter sets

that can be simulated to reproduce equally-good agreement with

the target GSL profile. However, we selected the parameter values

(Table 4) that showed a good agreement between the experimental

observation and model simulation in Col wild-type and mutants.
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With the adjusted set of kinetic parameters, we were able to repro-

duce the steady-state GSL concentrations in the leaves of Col wild-

type ecotype (see Fig. 14). The good agreement of the model simu-

lations with experimental observation suggests that the parameter

values are a good estimation of the in-vivo kinetic properties of the

metabolic enzymes, given the pathway structure and model assump-

tions.

We were also able to simulate different knockout mutants of Col

ecotype. Model simulations showed how the steady-state GSL con-

centrations are changed as a consequence of enzyme knockouts,

given the expression of other metabolic enzymes are constant in

mutants. The reversal in the 3C/4C distribution correlated with the

loss of MAM1 activity. However, the elevated levels of 8C GSLs,

as reported in [58], cannot be explained directly. Whereas, the shift

towards only production of 3C and 4C GSLs is attributed to the ac-

tivity of MAM3. However, a small production of long-chain GSLs,

as reported in [97], is associated to the residual activity of MAM3.

The aforementioned speculation is tested in our model, and the re-

sult is shown in Fig. 15, where we also showcase the steady-state

GSL concentrations for a knockdown of MAM3 to 10 percent of

the original MAM3 concentration. The analysis allowed us to dis-

sect the behaviour originating from knockdown of MAM3 rather

than a knockout. When we simulated the knockouts of the cytosolic

BCAT4 and the plastidic BCAT3 enzymes, a qualitative agreement

and difference were observed during BCAT4 and BCAT3 knock-

outs, respectively. Model simulations showed that in BCAT3 knock-

out mutants, the chain-length distribution of GSL concentrations

shifts towards the longer chain GSLs (cf. Fig. 16). It originates from

the fact that a loss of the only plastidic transaminase, BCAT3, will

increase the residence time of the substrates capable of undergo-

ing chain elongation within the scope of further elongation. Thus,

enabling the production of GSLs with longer chains. However, a
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plausible explanation of the experimental observations may be the

residual activity of BCAT3 enzyme. We tested the speculation us-

ing our model. Figure 16 also shows a simulated GSL profile for a

knockdown of BCAT3 to 40 percent of the original BCAT3 concen-

tration. The good agreement between the experimental observations

and model simulations allows us to propose, in quantitative terms,

that the experimental GSL profile in BCAT3 knockout mutants may

arise from the knockdown of BCAT3 rather than a knockout. How-

ever, the presence of another plastidic aminotransferase, also stated

in [55], which can partially maintain the biosynthetic flux can also

be speculated. Lastly, we were able to simulate the GSL profiles of

CYP79F1 and CYP79F2 mutants. Model simulations showed a good

agreement with the experimental observations. The principal focus

of the analyses was to investigate the role of enzyme knockouts

in carving the chain-length distribution of Met-derived glucosino-

lates in Col ecotypes. Moreover, we dissect the behaviour originating

from a knockdown rather than a knockout of metabolic enzymes.

Metabolic control analysis provides a theoretical framework that

shows how understanding the role of different enzymes in an

enzyme-catalysed reactions network is mainly achieved by measur-

ing the changes around the in-vivo state after perturbations, rather

than by only determining the state itself. The analysis indicates

which quantities have to be measured to determine the response

of a metabolic system. In this chapter, we have used the concepts

from the metabolic control analysis to characterise the regulation

of the chain-length distribution of Met-derived GSLs, in terms of

3Cness and 7Cness. We were able to show, in quantitative terms,

that the influx v0, activity of MAM1, MAM3, BCAT3 enzymes and

BAT5 transporter have strong control (high coefficient values) on

the 3Cness and 7Cness of GSL profile (cf. Fig. 18) of wild-type

Col ecotype. Although control analysis only provides reliable pre-

dictions when small changes are considered, this may not be suf-
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ficient for estimating a global effect by which various reactions of

chain-elongation pathway could regulate the fluxes and concentra-

tions. Nevertheless, an important practical application of metabolic

control analysis is reminded here. Often, in glucosinolate research,

one is interested in suppressing the metabolic activity in different

biotic (abiotic) stress environments. In such cases, it is important to

know the enzymes with highest control coefficients. Consequently,

one can derive estimates for the gain in the desired output when

the enzymes are altered in concentration or kinetic parameters. In

this way, metabolic control analysis may provide tools for pathway

engineering.

In the pre-final section of this chapter, we present how the model

parameters are fitted to individually reproduce different patterns of

glucosinolate accumulation observed in A. thaliana ecotypes. For the

purpose, we selected four A. thaliana ecotypes, namely Pi−0, Cvi,

Aa−0, and Mt−0, which exhibit different patterns of Met-derived

GSL concentrations. With the adjusted set of model parameters, we

were able to reproduce the steady-state concentrations of different

Met-derived GSLs in these ecotypes. The good agreement between

the experimental observations and model simulations shows result

which is two folds. First, the model parameter values are a good es-

timate of in vivo kinetics of metabolic enzymes. Second, the model

parameters can be easily fitted to reproduce any desired pattern

of GSL concentrations. Practically, optimising a parameter space

that constitutes 144 values to reproduce a glucosinolate profile that

composes six concentration values is not challenging, given no con-

straints on parametrisation.

Natural phenotypic variation within or between species is regulated

by complex networks of genes and associated polymorphisms [26,

36, 52, 66]. However, less is known about how the genetic differ-

ences shape the metabolic diversity. Glucosinolate metabolism is an

excellent example that exhibits within and between species natural
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variation in the accumulation of glocosinolates [36, 52]. Although

much has been learned in recent years, still there exists a gap in our

knowledge of understanding why and how genetic differences lead

to synthesising particular glucosinolates with a fixed frequency.

66



Part III

I N V E S T I G AT I N G T H E

G E N O T Y P I C - P H E N O T Y P I C L I N K





4
I N V E S T I G AT I N G T H E N AT U R A L VA R I AT I O N I N

T H E A C C U M U L AT I O N O F G L U C O S I N O L AT E S

A C R O S S A R A B I D O P S I S T H A L I A N A E C O T Y P E S

Depending upon the herbivore, specific glucosinolates (GSLs) can

act as feeding deterrents or stimulants [8, 28, 62, 70, 74, 79]. A possi-

ble outcome of this heterogeneous natural selection on GSLs is the

quick evolution of new compounds or new patterns of compound

accumulation [15, 85]. New GSLs may increase resistance to herbi-

vores that have become adapted to existing defences, whereas new

patterns of GSL accumulation may provide a unique complement

of defences by slowing down the counter-adaptation of herbivores.

The glucosinolate defence system is one of the few systems wherein

between and within species variation is being assessed at both phe-

notypic and causal genetic level [36, 95]. Almost all of the genes

involved in the glucosinolate biosynthesis have been completely

cloned, enabling us a deeper understanding of the roles of genome

and gene duplication in the evolution of various glucosinolate path-

ways [18, 53]. Natural variation within or between species is regu-

lated by a complex network of genes and associated polymorphisms

[26, 52, 66]. These variations, however, complicate our understand-

ing of how certain genes behave in context of a species as we often

study a single genotype. Thus, understanding a gene, moreover a

pathway, requires studies involving more than one ecotype.

The structural diversity of Met-derived GSLs can be explained by

polymorphism at five genetic loci [52]. The locus that is responsi-

ble for determining the chain-elongation of Met-derived glucosino-

lates is GS-ELONG [67]. However, the constitution of GS-ELONG
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is highly variable across different Arabidopsis ecotypes, moreover

indel polymorphism of large regions are common [59]. In addition

to MAM3 gene, present in all ecotypes, GS-ELONG harbours two

more genes, namely MAM1 and MAM2. Some ecotypes constitute

both, whereas others possess either of MAM1 and MAM2, or, as

Ler-0 ecotype, a truncated (non-functional) MAM1 can be present

in addition to MAM2 [59].

Figure 20: Clustered heatmap of the absolute concentrations of Met-
derived glucosinolates (3C, . . . , 8C) in the leaves of different
Arabidopsis ecotypes. The concentrations are given in μmol ·
(g dryweight)−1. The red label corresponds to the ecotypes
having high accumulation of 3C GSLs, whereas the blue label
corresponds to the ecotypes accumulating high concentrations
of 4C GSLs. See Table 10 for absolute values. 3C, three carbon
GSLs; 4C, four carbon GSLs; 7C, seven carbon GSLs; 8C, eight
carbon GSLs.

In a noteworthy study, Kliebenstein et. al have reported Met-derived

GSL profiles from leaves of 35 different Arabidopsis ecotypes rep-
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resenting a diverse sample of the geographical and environmental

range of this species [52]. Figure 20 shows the concentrations of four

different Met-derived GSLs, namely 3C, 4C, 7C and 8C, that are re-

ported in [52]. It shows that the Arabidopsis ecotypes exhibit high

level of diversity in both total accumulation and the chain-length

distribution of Met-derived glucosinolates.

Figure 21: Clustered heatmap of the relative concentrations of Met-derived
GSLs in the leaves of different Arabidopsis ecotypes. The val-
ues are normalised to the total concentration of 3C, 4C, 7C and
8C GSLs. The red coloured label corresponds to the ecotypes
having high accumulation of 3C GSLs, whereas the blue label
corresponds to the ecotypes accumulating high concentrations
of 4C GSLs.

Furthermore in Fig. 21, we show a relative distribution of the four

Met-derived GSLs, namely 3C, 4C, 7C and 8C, that are reported

in [52]. It clearly shows that the Arabidopsis ecotypes either accu-

mulate high concentrations of 3C or 4C GSLs. While the red label
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corresponds to the ecotypes having high concentration of 3C GSLs,

the blue label corresponds to the ecotypes accumulating high con-

centrations of 4C GSLs. It must be noted that no concentrations of

5C and 6C GSLs were found in these ecotypes, as reported in [52].

Thus, the normalisation will not be affected by the concentrations

of 5C and 6C GSLs.

In this chapter, we investigate the link between the polymorphisms

in GSL biosynthesis enzymes and their associated GSL profiles

across different A. thaliana ecotypes. The metabolic properties of an

enzyme depend on the specific order of amino acids encoded by the

DNA sequence of the corresponding gene. All the enzymes have

an active site, where the reactions are catalysed. Thus, the active

sites compose a small number of amino acids that are essential for

catalysing the reaction. Polymorphisms in the active sites of an en-

zyme, in principle, can change the dissociation constant (Kd) of the

enzyme-substrate complex in an enzyme catalysed reaction. How-

ever, the gene regulatory networks may influence the maximum

velocity (Vmax) of respective enzyme-catalysed reaction. Thus, by

relating the allelic differences to enzymatic properties, we illustrate

how exclusive patterns of GSL concentrations can be produced due

to the genetic variations.

4.1 results

4.1.1 Level of polymorphism in GSL biosynthesis genes

Natural phenotypic variation within and between species is con-

trolled by gene regulatory networks and associated polymorphisms

in metabolic genes [26, 36, 52, 66]. However, there is less clar-

ity about the effect of polymorphisms on enzymatic properties of

metabolic genes. To get an overview of the genetic diversity of

GSL genes across different Arabisopsis ecotypes, we analysed the
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amino acid sequences of the GSL biosynthesis genes from an exam-

ple dataset constituting 343 different A. thaliana ecotypes taken from

1001 genome project database [1].

Figure 22 shows the diversity of GSL biosynthesis genes from 343

Arabidopsis ecotypes. The level of polymorphism of different GSL

Figure 22: The level of polymorphism in the amino acid sequences of GSL
genes from 343 ecotypes [1]. The bars quantify the average shan-
non entropy on y-axis across the amino acid sequence length of
GSL genes plotted on x-axis. The red, blue and green bars de-
note entropy of genes active in the chain-elongation, core-GSL
structure formation and side-chain modification of Met-derived
GSLs, respectively.

genes at amino acid level is represented on y-axis in terms of aver-

age Shannon entropy across the gene length. Shannon entropy, H,

associated with each data value at a position is negative logarithm

of the probability of occurrence for that value [93]. It is calculated

using the relation:

H = −
∑

i

pilogpi, (4.1)

where pi is the probability of occurrence of a particular amino acid i

at a given position. For the purpose of comparison of entropy across

different genes, H is averaged across the gene length. Thus, the bars
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in Fig. 22, represent the diversity of respective GSL gene. For vi-

sual convenience, the bars are colour coded to denote genes active

in the chain-elongation process, core-structure formation and sec-

ondary chain modifications by red, blue and green colours, respec-

tively. While we see high diversity (high entropy) exhibited by the

MAM1 gene, we also see genes like BAT5 that is very conserved

(low entropy) across 343 ecotypes. Moreover when the diversity of

coding region was analysed, we see a different level of polymor-

phisms in GSL genes. Figure 23 shows the diversity in the coding

regions of different GSL genes. The results cannot be explained di-

rectly but leaves a scope of further investigations of how or why

variations in the coding regions are not reflected at amino acid level.

Figure 23: The level of polymorphism in the coding region GSL genes from
343 ecotypes [1]. The bars quantify the average shannon entropy
on y-axis across the coding region length of GSL genes plotted
on x-axis.

The prime focus of this study is to investigate the level of poly-

morphism in GSL genes at the amino acid level. Polymorphisms

in the amino acid sequences can change the enzymatic properties

of respective genes, given they are localised in the active sites of
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the gene. However, we still have gaps in our knowledge about the

presence (absence) of different GSL genes across these 343 ecotypes,

before we draw any further conclusion.

4.1.2 Insights into the MAM gene conundrum

The genetic basis of chain-length distribution of Met-derived glu-

cosinolates became evident with the identification of a locus in Ara-

bidopsis and Brassica napus [67]. The locus was mapped in Ara-

bidopsis by using a cross between two ecotypes, Columbia (Col)

and Landsberg erecta (Ler), where the major glucosinolates are 4-

carbon and 3-carbon long, respectively [58]. The candidate, MAM

(Methylthioalkylmalate synthase), genes are two adjacent sequences

with high similarity to genes encoding isopropylmalate synthase

that catalyses the condensation of chain elongation in leucine

biosynthesis. Later, a third MAM-like gene, MAM2, was identified

at the same locus as MAM1 [59]. The majority of Arabidopsis eco-

types examined possessed functional copies of either MAM1 or

MAM2 genes. A functional MAM1 sequence has been correlated

with the accumulation of 4C GSLs, whereas a functional MAM2 se-

quence has been correlated with the accumulation of 3C GSLs.

To gain more insights on the MAM synthases, we analysed the sim-

ilarity of the annotated MAM1 gene across an example set of 343

Arabidopsis ecotypes taken from 1001 genome project database [1].

Next, we extracted the published MAM1 and MAM2 amino acid

sequences from UniProt database [14]. The annotated MAM1 se-

quences from 343 ecotypes were compared against the extracted

MAM1 and MAM2 sequences.

Figure 24 shows a mid-point rooted phylogenetic tree showing the

evolutionary relationship between 343 ecotypes based on the simi-

larities and differences to the coding region of the published MAM1

and MAM2 sequences. Based on maximum likelihood estimation

75



0.008

93
2

96
61

9508

9131

955
7

9562

96
06

956
9

95
26

9801

5907

95
67

99
08

95
58

95
83

1
3
9

99
26

9125

6434

959
7

96
57

9607

59
50

9667

95
37

9798

95
42

9599

80
1

49
31 9595

9811

428

9578

58
11

9608

99
23

9716

9744

95
74

97
26

9519

96
13

5577

870

978197
75

9638

96
53

96
34

9668

98
08

1925

9645

8428

97
06

9626
95
51

9594

951
8

9593

9785

95
36

72
31

57
68

9636

95
15

98
09

9739

9532

9916

9810

96
52

99
11

63
96

96
10

15
9

9654

9552

95
88

M
AM
2

991
8

9601

9503

97
30

5023

952
0

9586

95
55

9665

5890

84
72

96
49

9619

5644

49
58

2016

992
8

9907

95
38

96
46

969
9

9529

2276

9816

9915

99
22

M
A
M
1

9643

9130

99
17

9745

58
74

577
2

9790

9771

95
98

97
49

52
53

9909

9800

6390

9741

9937

97
89

9563

265

97
25

93
14

9579

953
1

9659

5104

9813

95739570

9134

9517

1
0
8

9628

9797

9629

9587

9779

9633

18
53

99
25

99
29

96
81

9919

9780

9788

95
45

9550

9777

9712

98
14

978497
72

9932

97
02

97
93

5353

9632

97
68

52
76

57
79

7296

8132

70
15

9663

95
54

350

58
00

97
46

95
60

9133

96
58

5726

9540
9539

95
22

9662

5210

96
96

9565

9719

9580

1890

93
12

95
14

9591

9627

82
66

18
72

95
33

9714

9737

410

5165

9769

9637

7158

9524

9566

58
93

48
26

960
0

2171

9596

96
71

9721

84
11

969
7

9805

95
84

9561

970
4

9576

9924

18
29

9128

9815

9807

96
50

5784

9933

9568

9639

958
5

9794

96
22

9553

95
21

9938

4807

59
84

9757

741
8

9642

9615

9782

9718

95
28

95
07

9624

96
66

6
3
0

9506

9748

9609

95
11

9575

95
90

9774
9727

9803

1954

9723

74
77

99
20

97
28

959
2

9535

9796

9778
96
02

7947

95
59

961295
47

9792

96
11

4884

73
46

9581

95
71

954
6

22
78

5151

96
95

4779

91
02

9791

403 95
41

6744

95
30

9523

99
27

9930

96
98

424

5236

980459
93

95
77

99
10

97
70

96
44

9635

9934

9799

8077

95
64 9630

9617

4900

58
18

95
89

9733

9104

9527

96
55

62
96

64
45

95
10

9931

97
76

9743

9543

9572

3
5
1

9913

9806

9669

9786

91
00

9556

95
12

9783

95
44

9640

9534

9625

64
2497
36

9660

9914

9713

9620

8
8

91
5

952
5

95
82

95
49

96
51

Figure 24: Mid-point rooted phylogentic tree showing the evolutionary re-
lationship among 343 Arabidopsis thaliana ecotypes based sim-
ilarities and differences in their annotated MAM1 amino acid
sequences. While the blue branch represents ecotypes showing
high similarity to the published MAM1 sequence [103], the red
branch represents ecotypes showing high similarity to the pub-
lished MAM2 sequence [102]. The scale bar is substitutions per
position.

[34], the tree shows two main branches, clustering different eco-

types. While 226 out of 343 ecotypes, composed in the blue branch,

possess high similarity to the coding region of published MAM1

gene, 117 out of 343 ecotypes in the red branch possess high sim-

ilarity to the coding region of MAM2 gene. For details see Table

12. Thus, we assume that the ecotypes composed in blue and red

branches possess MAM1 and MAM2 genes, respectively.

Now, we investigated the level of polymorphism in the GSL genes

across ecotypes of blue and red branches by using the approach of

calculating the Shannon entropy as discussed in Section 4.1.1. Figure

25 and 26 show the diversity of GSL genes across the ecotypes which

are classified to possess MAM1 and MAM2 gene, respectively.

A key difference, exhibited in Fig. 25, from analysing 343 ecotypes

together is the two-folds reduction in the entropy of MAM1 gene.
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Figure 25: Diversity of GSL genes across MAM1 ecotypes from blue
branch of the phylogenetic tree in Fig. 24. These ecotypes share
high similarity with the amino acid sequence of published
MAM1 gene [103].

Figure 26: Diversity of GSL genes across MAM2 ecotypes from red branch
of the phylogenetic tree in Fig. 24. These ecotypes share high
similarity with the amino acid sequence of published MAM2
gene [102].

However, a more-or-less similar pattern of polymorphism as before

is reflected by the other genes possesed by the MAM1 ecotypes. A

similar feature, that is two folds reduction in the diversity of anno-
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tated MAM1 gene is also seen in Figure 26. Since, the annotated

MAM1 gene in the ecotypes of red branch shows high sequence

similarity to the published MAM2 sequence, it is plausible to as-

sume the presence of MAM2 gene rather than MAM1. The above

analyses provide a general insight into the diversity of GSL genes.

These analyses form the basis of dissecting the behaviour originat-

ing from presence or absence of MAM1 and MAM2 genes in the

ecotypes under study.

4.1.3 Analysing the metabolic genotypes and the associated metabolic

phenotypes

For practical interpretation of the genetic diversity and relating it

to enzymatic properties, we studied the polymorphisms in GSL

biosynthesis genes from 22 Arabidopsis ecotypes, where informa-

tion about both the amino acid sequencess and the associated GSL

profiles are known. These ecotypes are marked with ∗ in Table 10.

Using the approach of calculating shannon entropy, we calculated

the genetic diversity of GSL genes across the 22 ecotypes. Figure 27

shows the diversity of GSL genes from 22 ecotypes. Similar to Fig.

22, the annotated MAM1 genes of the considered 22 ecotypes show

high diversity. Similar to previous analyses, the published MAM1

and MAM2 sequences were used to dissect ecotypes possessing

MAM1 or MAM2 genes. From our analyses, 17 out of 22 ecotypes

possess MAM1 gene. Whereas five ecotypes possess MAM2 gene.

See Table 10 for details.

To investigate the genetic differences across different metabolic

genotypes, we calculated the genotypic distance between the

metabolic genotypes of 22 ecotypes. In our study, the metabolic

genotype is composed of the amino acid sequences of metabolic

genes, namely MAM1, MAM3, BCAT3, BCAT4, and BAT5. Since,

the chain-elongation pathway is highly influenced by the CYP79
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Figure 27: Diversity of GSL genes from 22 ecotypes, where information
on both amino acid sequences and associated metabolic pheno-
types is available [52]. The bars quantify the average shannon
entropy on y-axis across the amino acid sequence length of GSL
genes plotted on x-axis. The red, green and blue bars denote
entropy of genes active in chain-elongation, core-GSL structure
formation and side-chain modification, respectively.

genes [10], we included the respective amino acid sequences in the

metabolic genotype. To calculate the genotypic distance we used

a commonly-used measure called Hamming distance [37]. From

information theory, the Hamming distance between two strings

(in this case is the amino acid sequences) of equal length is the

number of positions at which the corresponding characters are dif-

ferent. Thus, the hamming distance between metabolic genotypes

MG,i(i = 1 . . . 22) is calculated, such that every metabolic genotype

MG,i gets a distance from all other genotypes. In such cases, it is

useful to store the distances in a matrix. For the purpose of visual-

ising the level of similarity of genotypes, we use multi-dimensional

scaling (MDS), which is a set of ordination techniques used to visu-

alise the information contained in a distance matrix [60]. Figure 28

shows the distances between 22 metabolic genotypes using an MDS

plot. The MDS scaling of the distance matrix shows three groups
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Figure 28: Multi dimensional scaling of the genotypic distance between
different metabolic genotypes MG,i. The genotypic distance is
calculated in terms of hamming distance. The MAM1 ecotypes
are denoted with circles, whereas the MAM2 ecotypes are rep-
resented by triangles. The ecotypes are colour coded as red and
blue to represent high concentration of 3C and 4C GSLs, respec-
tively. Whereas, the ecotypes that show an intermediate con-
centrations of 3C and 4C GSLs are denoted by black coloured
marker.

of ecotypes. The ecotypes those show high similarity to the coding

region of MAM1 are denoted by circles, whereas the ecotypes with

high similarity to MAM2 are denoted by triangles in Fig. 28. The

ecotypes are further classified as 3Cprofile, 4Cprofile and interme-

diate. While 3Cprofile and 4Cprofile refer to the high concentration

of 3C and 4C GSLs, respectively, an intermediate profile refers to the

intermediate concentrations of 3C and 4C GSLs. The ecotypes are

colour coded as red, blue and black to denote 3Cprofile, 4Cprofile

and intermediate profiles, respectively. A key feature seen in Fig. 28

is a clear separation of the MAM1 and MAM2 ecotypes. Also, we

see one red and black circles within the group of blue circles. The

results cannot be explained directly, however, investigating these
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ecotypes may provide a further basis of approximating a 3C versus

4C GSL profile.

Figure 29: Multi dimensional scaling of the phenotypic distance between
different metabolic phenotypes (Table 10). The phenotypic dis-
tance is measured in terms of euclidean distance. The MAM1
ecotypes are denoted with circles, while MAM2 ecotypes are
represented by triangles.

Next, we shall analyse the metabolic phenotypes, i.e. the GSL pro-

files, corresponding to the 22 ecotypes from [52]. Details on the

metabolic phenotypes are given in Table 10. An MDS plot scaling

the phenotypic distances between different metabolic phenotypes

MP,i(i = 1 . . . 22) is shown in figure 29. We used Euclidean distance

to calculate the phenotypic distance between the metabolic pheno-

types. The euclidean distance Δ between phenotypes MP,1 and MP,2

is calculated by (Δ =‖ MP,1 −MP,2 ‖). Thus, every metabolic pheno-

type MP,i gets a distance from other metabolic phenotypes. Similar

to the previous analysis of the metabolic genotypes (cf. Fig. 28), also

in Fig. 29 we see three separate clusters of ecotypes. We see a clear

separation of the MAM2 ecotypes denoted by triangular markers

from MAM1 ecotypes denoted by circular markers.
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To gain some insights on how different genotypes and their asso-

ciated metabolic phenotypes are linked, we analysed the genotypic

and phenotypic distance matrices together. A summary of our anal-

yses is shown in Figure 30, where the genotypic distances are plot-

ted against the phenotypic distances. Every dot in the plot denotes

a pair of ecotypes. For the purpose of visual convenience, the dots

are colour coded based on their amino acid sequence similarity to

MAM1 or MAM2 gene. While the red and blue dots represent pairs

that constitute MAM1 and MAM2 ecotypes, respectively, green dots

represent heterogeneous pairs. In the bottom left of the Fig. 30, we

Figure 30: The genotypic versus phenotypic distance. Each dot represents
a pair of ecotypes based on their sequence similarity to MAM1
or MAM2 genes. While the colours red and blue denote the pair,
where both the ecotypes have MAM1 and MAM2 sequence, re-
spectively, the green dots denote the heterogeneous pairs.

see ecotype pairs that are genetically similar and exhibit similar

metabolic phenotypes. Whereas the top right of the Fig. 30 shows

pairs (e.g. Aa−0/Wl−0), which are genetically very different and

exhibit very different GSL profiles. The two aforestated cases are
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understandable in the sense that similar metabolic genotypes shall

exhibit similar metabolic phenotypes, and vice-versa. However, eco-

type pairs located at the upper left (e.g. Aa−0/Pi−0) in Fig. 30 show

high genetic similarity but high phenotypic variations. Investigat-

ing the factors affecting the variations in the metabolic phenotypes

in this group of ecotypes will provide deeper insights into how ge-

netic differences carve out the metabolic phenotypes. Moreover, in-

formation on the localisation of polymorphisms in GSL genes will

provide a deeper understanding of how genetic differences are re-

lated to the enzymatic properties of the genes.

4.1.4 Assessing the polymorphisms in GSL genes

Polymorphisms in the active sites of an enzyme, in principle, can

change the catalytic properties of the enzyme. A previous study

showed that a mutagenesis of Serine to Phenylalanine, and Alanine

to Threonine in MAM1 enzyme of A. thaliana Columbia ecotype lead

to the loss of conversion of 3C to 4C glucosinolates [58]. However,

the exact effect on the enzymatic properties is poorly understood.

To gain some insights on the localisation of polymorphisms in the

active sites of the metabolic enzymes, we extracted the information

from the NCBI’s conserved domain database [77]. The key MAM

synthases, for example, are known to harbour their active sites in

the region 92− 294 amino acid positions of the amino acid sequence.

We used the information to assess the polymorphisms in the MAM

synthases across the 22 Arabidopsis ecotypes.

Figure 31 shows a pairwise comparison of polymorphisms in the

active site of MAM synthases to the total polymorphisms in the

metabolic genotypes from 22 A. thaliana ecotypes. We clearly see

that the number of substitutions in the active site of MAM synthases,

increases with the the genotypic distance between the metabolic

genotypes. Importantly, MAM synthases accumulate significantly
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Figure 31: Polymorphisms in the active region of MAM synthases versus
the genotypic distance between different metabolic genotypes.
Each dot represents a pair of ecotypes. The red and blue dots de-
note pairs, where both the ecotypes possess MAM1 and MAM2
genes, respectively. Whereas, the green dots denote heteroge-
neous pairs.

higher number of substitutions in its active sites than any random

substitution (Fishers test [25], p < 0.001).

4.2 discussion

Natural variation within species is regulated by complex networks

of genes and their polymorphisms [26, 66]. Allelic composition at

several glucosinolate biosynthetic loci results in different glucosi-

nolate profiles among Arabidopsis thaliana ecotypes [52]. These varia-

tions, however, complicates our understanding of how genetic varia-

tions lead to metabolic properties of respective genes. The metabolic

properties of a gene depend on the specific order of amino acids en-

coded by the DNA sequence of the respective gene. Thus, given a
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similar environment for growth, enzymes with similar amino acid

sequences are assumed to have similar intrinsic properties such as

the dissociation constant (Kd) of enzyme-substrate (E-S) complexes

in a reaction catalysed by the enzyme. However, the gene regula-

tory networks may change the maximum velocity of the enzyme-

catalysed reaction. Moreover, polymorphisms in the active sites,

where the reactions are catalysed, of an enzyme can change the Kd

of E-S complexes in a reaction catalysed by the enzyme. To dissect

the behaviour originating from the genetic variations and gene reg-

ulatory networks, we investigate the level polymorphism in GSL

biosynthesis genes from different Arabidopsis ecotypes.

The diversity analysis of GSL genes from 343 Arabidopsis ecotypes

[1] showed that there exist genes that are highly diverse and highly

conserved in their amino acid sequence across the 343 ecotypes (cf.

Fig. 22). Our analyses showed a normal distribution of diversity in

the genes active in three different stages of glucosinolate biosyn-

thesis. The MAM synthases (MAM1/MAM2 and MAM3) showed a

high level of polymorphism (high entropy) in their amino acid se-

quences, whereas BAT5 transporter showed low diversity (low en-

tropy) across its amino acid sequence. A possible explanation of

the aforementioned observation could be the high specificity of the

MAM synthases towards respective substrates and high generality

of BAT5 towards different substrates transported across the plas-

tidial membrane. As BAT5 exerts activity on compounds that are

a part of both GSL biosynthesis and Met-salvage pathway [30, 88],

thus, mutations in the coding region of BAT5 may impair the func-

tioning of both pathways. However, a further analysis of the diver-

sity in the coding region of BAT5 showed a high level of polymor-

phism but they are not reflected at the amino acid level (cf. Fig. 23).

The results cannot be explained directly, but it could be a conse-

quence of purifying natural selection. The analysis provides a gen-

eral insight to the diversity of GSL genes across an example set 343
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Arabidopsis ecotypes. However, it leaves a gap in our knowledge

of presence (absence) of different GSL genes acroos these ecotypes,

given the highly debatable MAM gene conundrum [59, 95].

To bridge the gap in our knowledge of presence (absence) of MAM

synthases across different Arabidopsis ecotypes, we performed a

phylogenetic analysis based on the sequence similarity of MAM1

and MAM2 genes. The phylogenetic analyses yielded a mid-point

rooted tree (Fig. 24) with two major branches based on the simi-

larity and differences to MAM1 and MAM2 amino acid sequences.

Thus, it is plausible to assume that ecotypes that show high similar-

ity to MAM2 sequence, actually possess MAM2 genes rather than

MAM1 gene. Such kind of analyses is crucial for dissecting the ef-

fects arising out of presence (absence) of MAM1 gene. Moreover, it

encourages for studies involving reannotation of sequences in dif-

ferent Arabidopsis ecotypes as the presence of MAM1 cannot be

assumed automatically.

The investigation of genotypic and phenotypic distances between

different Arabidopsis ecotypes showed that there exist ecotypes that

have identical metabolic genotype but exhibit high diversity in their

associated metabolic phenotype, and vice versa (cf. Fig. 30). To dis-

sect the behaviour originating from the genetic differences and re-

lating it to the enzymatic properties, we investigated the polymor-

phisms in the active sites of metabolic enzymes. In this study, we

analysed the polymorphisms in the active sites of MAM synthases.

To our surprise, the probability of observing a substitution in the

active sites of MAM synthases is significantly higher compared to

a random substitution across the genes. Polymorphisms in the ac-

tive sites of MAM synthases, in principle, can alter the dissociation

constants of the enzyme-substrate complex in MAM-catalysed reac-

tions. Moreover, based on the level of polymorphisms in active sites,

the amount of change in the dissociation constants can be expected

across different ecotypes. To test this speculation, studies involving
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several targetted mutations are required. With the current advance-

ment of biotechnology, we can expect some research in the proposed

direction.

The current research is replete with how genetic variations lead

to different phenotypes. However, very less is known about how

these variations are or can be associated to the enzymatic proper-

ties. Moreover, the link between metabolic genotypes and the asso-

ciated phenotypes is poorly understood. In this study, by providing

new insights of integrating the genetic information, we push the en-

velope a bit further towards having a deeper understanding of how

the variations in a metabolic genotype can carve exclusive metabolic

phenotypes.

87





Part IV

S U M M A RY, O U T L O O K A N D

C O N C L U S I O N S





5
S U M M A RY A N D O U T L O O K

The presence of glucosinolates in the model plant Arabidopsis

thaliana has benefitted glucosinolate research tremendously from

the ’omics databases, bioinformatic tools, natural variation and mu-

tant collections that are available for A. thaliana. Although the genes

involved in the biosynthesis of glucosinolates are well known by

now, much more discovery awaits before we fully understand why

and how plants synthesise certain glucosinolates with particular fre-

quencies.

Till date, more than 135 structurally-different glucosinolates are

known [2]. The structural diversity of glucosinolates arises from

a three-phase biosynthesis. First, an aliphatic and aromatic amino

acids are elongated by adding a methylene group into their side

chains. Second, the amino acid moeity is metabolically reconfig-

ured to form a core-structure of glucosinolates. Third, the formed

glucosinolates are modified by different secondary modifications.

The chain-elongation process has gained considerable attention over

the past decades, as it is the branching point for the diversion of

metabolic flux from primary to secondary metabolism.

In this study, we have developed a mathematical model of the chain-

elongation of Met-derived glucosinolates in A. thaliana, based on

our knowledge of the pathway structure and kinetic properties of

the metabolic enzymes. The presented model is based on a simi-

lar idea conceived by Knoke et al. [57] concerning the chain-length

distribution of Met-derived glucosinolates. We extend the model ca-

pabilities, by employing rate laws that account for the broad-range

substrate specificity of metabolic enzymes. By providing the math-
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ematical description, we illustrate how different biosynthetic rates

are affected by all metabolite concentrations, a behaviour originat-

ing from broad-range substrate specificity of the metabolic enzymes.

With our model, we intend to give a detailed mathematical repre-

sentation of the underlying reactions catalysed by broad-range sub-

strate specific enzymes, which is very important for fitting experi-

mental data in the best possible way.

With the adjusted set of kinetic parameters, we were able to repro-

duce the GSL profiles of wild-type and mutant backgrounds of A.

thaliana Columbia ecotype. Furthermore, we showcased how the

model parameters are fitted to individually reproduce patterns of

GSL accumulation observed in different A. thaliana ecotypes.

Significant progress has been made in the past decades in making

the glucosinolate pathway a model system in ecology and evolution

to identify causal genes underlying natural variation and testing

consequences of polymorphisms at different biosynthetic loci. This,

however, represents only the first dabble into the true complexity

of this system. The metabolic diversity of glucosinolates, like any

other metabolites, is carved by the genome (g) and the environment

(e). Thus, a metabolic phenotype (P) is an interplay of the genome

and environment,

g× e −→ P.

The genome encodes amino acid sequences that define the catalytic

properties of the enzyme, whereas the environment additionally

influences the gene expression, which in turn regulates enzyme

abundance and thus the maximum velocity of respective enzyme-

catalysed reaction. However, it complicates our understanding of

metabolic diversity as we often study only one ecotype. Thus, to

fully understand the diversity of glucosinolates will require studies

involving many ecotypes.
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An important aim of mathematical models is to provide theoretical

predictions that can be later verified by experiments. Our model pro-

vides a theoretical framework, where the link between the metabolic

genotype and the associated phenotype can be investigated. With

some preliminary results, we provide new insights into how dif-

ferent metabolic phenotypes can be produced by varying the enzy-

matic properties of metabolic enzymes.

Intuitively, one would assume that a genetically similar ecotype

should exhibit a similar metabolic phenotype, given a similar condi-

tions for growth. The dissociation constants of the enzyme-substrate

(E-S) complexes in an enzyme-catalysed reaction depend on the cod-

ing region of respective enzyme, whereas the maximum velocity of

the reaction depends on the promoter regions of DNA that initi-

ates transcription of a particular gene. Thus, for genetically-similar

ecotypes, it is plausible to assume similar values of dissociation con-

stants of E-S complexes, while different maximum velocities can still

exist. From our analyses (Fig.30), we know that there exist a few

Arabidopsis ecotypes that have identical (zero genotypic distance)

metabolic genotypes but very different metabolic phenotypes. We

hypothesize that by varying the enzyme expressions, which eventu-

ally translates to enzyme concentration, in identical metabolic geno-

types, different metabolic phenotypes can be produced. To investi-

gate how such metabolic genotypes can exhibit different metabolic

phenotypes, we selected an ecotype pair, Aa− 0/Pi− 0, which com-

poses identical metabolic genotypes with highest phenotypic dis-

tance (cf. Fig. 30). By adjusting the model parameters, we were able

to reproduce the chain-length distribution of GSLs in the wild-type

Aa− 0 ecotype. The kinetic parameters that reproduced the Aa− 0

profile will be referred to as fiducial parameters, and are given in Ta-

ble 6. Further, we used the fiducial parameters to vary the concentra-

tions Et of different metabolic enzymes to reproduce the GSL profile

of the wild-type Pi− 0 ecotype. By varying Et, one changes the Vmax
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of the enzyme-catalysed reaction as Vmax = Et · kcat, where kcat is

the turnover number. Figure 32 shows a comparison between the

model simulated and experimentally-observed GSL profiles from

wild-type Aa− 0 and Pi− 0 ecotypes. Model simulations showed

Figure 32: A comparison between the model simulated (Sim) and
experimentally-measured (Exp) GSL profiles of wild-type Aa−
0, Pi−0, and Wl−0 ecotypes. Length of the bars are normalised
to the total accumulation of Met-derived GSLs in repective eco-
types. The kinetic parameters used for simulation are given in
Table 6.

a good agreement with the experimental observation. Moreover, it

showcases that by varying Vmax of different enzyme-catalysed reac-

tions different metabolic phenotypes can be produced. Furthermore,

to investigate whether or not the GSL profile of a genetically differ-

ent ecotype can be reproduced by varying Vmax, in terms of enzyme

concentrations. For this purpose, we selected Wl− 0 ecotype, which

has very different metabolic genotype than Aa− 0, and estimating

the enzymatic properties is not intuitive. To our surprise, by vary-

ing the Vmax values in the fiducial parameters we managed to re-

produce the GSL profile of Wl− 0 ecotype. The agreement between

the experimentally measured and model simulated GSL concentra-
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tions is shown in Fig. 32. It, however, complicates our understanding

of whether the exhibited metabolic phenotype originates from the

regulatory or genetic plasticity. Moreover, dissecting the effect from

one plasticity versus the other will require the analysis of metabolic

phenotypes that could emerge due to all possible combinations of

dissociation constants and maximum velocities.

Model simulations showed that by just changing the enzyme con-

centrations, in principle, one can reproduce different metabolic phe-

notypes. Similarly, the dissociation constants with respect to differ-

ent substrates of respective enzyme-catalysed reactions can be al-

tered to reproduce different metabolic phenotypes. The enzyme con-

centrations are regulated by the gene regulatory network, whereas

the dissociation constants are regulated by the genome. While

changes in gene regulation can take place in due course of plants

life cycle due to fluctuating physical environment, the changes in

genetics occur in evolutionary time-scale. It is not straightforward

to understand why changes in evolutionary time-scale are required,

when a similar outcome can be achieved by instant (faster) adjust-

ments. It could be a consequence of neutral or random mutations

that plants accumulate due to changing environmental conditions.

A typical example of such evolutionary changes is the existence of

highly variable MAM1 and MAM2 genes across different Arabidop-

sis ecotypes. Although the metabolic diversity created due to the

presence of either of the MAM genes can be compensated by the reg-

ulatory plasticity, the coding regions of MAM1 and MAM2 evolved

in due course of evolution. We can speculate it to be a strategy to in-

crease plants fitness in challenging environmental conditions. Nev-

ertheless, the faster adjustments, i.e. the alterations in Vmax, could

be a strategy adopted by plants to combat sudden demands of a

specific metabolic phenotype.
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To fully understand why plants produce different phenotypes, one

would need to perform studies involving n plant ecotypes under m

physiological conditions;

n×m −→ Model −→ P.

Thus, by integrating the experimental data, our model can be used

to predict the conditional probabilities of a particular phenotype.

An interesting future strategy would be to employ the model to pre-

dict posterior plausibility based on the prior distribution of model

parameters.
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6
C O N C L U S I O N S

It is fortunate for glucosinolate research that the glucosinolate-

producing Arabidopsis thaliana was selected as the model plant to

have its genome sequenced, a choice that was based on its small

genome and short life cycle [71]. The glucosinolate research has

benefitted tremendously from the availability of genetic sequences,

mutant collections, and tools for expression profiling. In addition

to the natural variation among Arabidopsis ecotypes, recombinant

inbred lines and markers for mapping have greatly facilitated the

elucidation of the biosynthetic pathway. Although much has been

learned over past decades, much more of discovery awaits before

we completely understand why and how plants synthesise glucosi-

nolates. Application of systems biology approaches to link genetic,

protein, and metabolite data should ensure further advancement in

glucosinolate research. Precisely, identification of major regulatory

factors that control flux through the biosynthetic pathway will allow

the metabolic engineering of glucosinolate profiles to progress from

the empirical to the predictive stage.

A particular difficulty in the analysis of glucosinolates is the vast

diversity of chemical-structures. As much as it is true for experi-

mental identification, theoretical descriptions are equally challeng-

ing. In this work, we focussed our attention on the most-abundant

class of aliphatic glucosinolates, which are derived from methion-

ine (Met), found in Arabidopsis thaliana. The structural diversity of

methionine-derived glucosinolates arises from variation in the side

chains. Given the broad-range substrate specificity of metabolic en-

zymes, it was impossible to draw conclusions on how changes in
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kinetic properties would result the accumulation of glucosinolates

by simple inspection. The corresponding metabolic network of the

chain-elongation pathway is so complex that mathematical mod-

elling is required to understand and investigate the regulators of

metabolic flux.

In this study, we have developed a mathematical model of the chain-

elongation of Met-derived glucosinolates in A. thaliana, based on

our knowledge of the pathway structure and kinetic properties of

the metabolic enzymes. The model elucidates how Met-derived glu-

cosinolates with a particular frequency are produced in A. thaliana

plants.

With the adjusted set of kinetic parameters, model simulations

for wild-type and knockout mutants showed a surprising agree-

ment with the actual patterns of glucosinolate concentrations in A.

thaliana Columbia ecotype. Model simulations allowed us to elu-

cidate how different patterns of glucosinolate concentrations origi-

nate from knockdown rather than a knockout of metabolic enzymes,

which cannot be assumed automatically.

A long-standing question in the evolution of glucosinolates is how

certain plants can exhibit different metabolic phenotypes. By provid-

ing new insights to integrate the information on genetic differences

and enzyme expressions in governing the enzymatic properties of

metabolic enzymes, our model provides a framework where the link

between the genotype and phenotype can be investigated.

The presented model is more powerful and its capabilities are far

from being exploited. The Model will allow the posterior plausibilty

based on the prior distributio of model parameters. Often, these

parameters are not known or estimating these involves a tedious

and costly task owing to extensive experimentation. In such cases,

data-driven methods like artificial intelligence (AI) can be used to

develop modelling applications, which can be used for parameter

estimation. By incorporating the data-driven modelling formalisms
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into the phenomenological models, we can bridge the gap in your

knowledge of system parameters.

On the final remarks, we would like to mention that the principal

aim of this work was to develop a mathematical model of glucosi-

nolate metabolism, and elucidate how plants accumulate certain

glucosinolates with particular frequency. By providing insights into

metabolic diversity, we provide a theoretical framework to investi-

gate how exclusive traits emerge out of genomic variations. Thus,

we push the boundaries of our understanding of how the interplay

of the genome and enviornment shapes metabolic phenotypes.
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Part V

A P P E N D I X





A
D I R E C T I O N S T O U S E T H E M O D E L

The calculations presented in this study have been facilitated by

computer software developed as a part of this research project. The

software architecture is designed using the programming language

Python. The software is available on Gitlab (www.gitlab.com), and

can be accessed by request. A detailed documentation is being writ-

ten presently, and it will be available for public use soon.

a.1 software architecture

In order to be able to describe the model capabilities, we provide an

overview of the software architecture. This documentation is an ef-

fort to facilitate other programmers to use and extend or modify the

existing packages. An overview of the model structure is depicted

in Fig. 33.

Figure 33: A overview of the software architecture
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biosynthesis.py

Instance of this class is used to describe the biosynthesis of

metabolic intermediates (Ai and Ki). It uses methods defining rate

laws and kinetic parameters. By keeping the attributes free, we al-

low flexibility and a wide range of implementation of the biosynthe-

sis model.

run.py

The method defined in this python file can be used to simulate a

typical steady-state concentration of metabolic intermediates of the

biosynthesis model with a reference parameters.

simulation.py

Instance of this class is used to perform the analyses presented in

this study. By keeping the attributes free, we provide high flexibility

in the implementation of different methods.

plotresults.py

It exclusively composes the methods used to produce plots pre-

sented in this study.
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B
D E R I VAT I O N O F K I N E T I C R AT E L AW F O R

M O N O M O L E C U L A R R E A C T I O N S

To derive enzymatic rate laws, usually certain assumptions are em-

ployed. For example, the rapid-equilibrium assumption says that

the enzyme bound to intermediates are at equilibrium with the sub-

strates, or the quasi-steady-state assumption, which says that the

enzymic intermediates attain a quasi-steady-state even when the

concentrations of the nonenzymic reactants still change in time. In

principle, the steady state rate equations can be derived in the same

way as two-step Michaelis-Menten mechanism [72]. First leg starts

by writing down the expressions for rate of change of concentra-

tions of all reactions catalysed by one enzyme (isoform). Secondly,

by setting these expression to zero, write an equation to express the

sum of all the concentrations as constant. Lastly, solve the set of

ordinary differential equations.

The reaction scheme for n substrates competing for the binding site

of an enzyme E:

S1 + E
k1,1

k−1,1
ES1

k2,1

k−2,1
P1 + E

S2 + E
k1,2

k−1,2
ES2

k2,2

k−2,2
P2 + E

...

Sn + E
k1,n

k−1,n
ES6

k2,n

k−2,n
Pn + E

(B.1)

The list of differential equations for the metabolites in Scheme B.1:
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dS1

dt
= −k1,1E · S1 + k−1,1ES1

dS2

dt
= −k1,2E · S2 + k−1,2ES2

...

dSn

dt
= −k1,nE · S6 + k−1,nES6

dE

dt
= −(k1,1E · S1 + k1,2E · S2 + . . .+ k1,nE · Sn)

+(k−1,1ES1 + k−1,2ES2 + . . .+ k−1,nESn)

+(k1,1E · P1 + k1,2E · P2 + . . .+ k1,nE · Pn)
dES1

dt
= k1,1E · S1 − k−1,1ES1 − k2,1ES1 + k−2,1E · P1

dES2

dt
= k1,2E · S1 − k−1,2ES1 − k2,2ES1 + k−2,2E · P2

...

dESn

dt
= k1,nE · S1 − k−1,nES1 − k2,nES1 + k−2,nE · Pn

dP1

dt
= k2,1ES1 − k−2,nE · Pn

dP2

dt
= k2,2ES2 − k−2,nE · Pn

...

dPn

dt
= k2,nESn − k−2,nE · Pn

For n = 6;

Conservation relation:

Et = E+ ES1 + ES2 + ES3 + ES4 + ES5 + ES6 (B.2)

dES1
dt = 0 :

k1,1E · S1 − k−1,1ES1 − k2,1ES1 + k−2,1E · P1 = 0
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E =
(k−1,1 + k2,1)ES1
k1,1S1 + k−2,1P1

(B.3)

dES2
dt = 0 :

E =
(k−1,2 + k2,2)ES1
k1,2S2 + k−2,2P2

. (B.4)

Since, Eq. B.3 = Eq. B.4:

ES2 = ES1
(k−1,1 + k2,1)(k1,2S2 + k−2,2P2)

(k1,1S1 + k−2,1P1)(k−1,2 + k2,2)
(B.5)

dES3
dt = 0 :

E =
(k−1,3 + k2,3)

k1,3S3 + k−2,3P3
(B.6)

dES4
dt = 0 :

E =
(k−1,4 + k2,4)

k1,4S4 + k−2,4P4
(B.7)

dES5
dt = 0 :

E =
(k−1,5 + k2,5)

k1,5S5 + k−2,5P5
(B.8)

dES6
dt = 0 :

E =
(k−1,6 + k2,6)

k1,6S6 + k−2,6P6
(B.9)

Using Eq. B.6, B.7, B.8 and B.9:
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ES3 = ES1
(k−1,1 + k2,1)(k1,3S3 + k−2,3P3)

(k1,1S1 + k−2,1P1)(k−1,3 + k2,3)

ES4 = ES1
(k−1,1 + k2,1)(k1,4S4 + k−2,4P4)

(k1,1S1 + k−2,1P1)(k−1,4 + k2,4)

ES5 = ES1
(k−1,1 + k2,1)(k1,5S5 + k−2,5P5)

(k1,1S1 + k−2,1P1)(k−1,5 + k2,5)

ES6 = ES1
(k−1,1 + k2,1)(k1,6S6 + k−2,6P6)

(k1,1S1 + k−2,1P1)(k−1,6 + k2,6)

From Eq. B.2:

Et = ES1

(
1+

(k−1,1 + k2,1)ES1
k1,1S1 + k−2,1P1

+

(k−1,1 + k2,1)(k1,2S2 + k−2,2P2)

(k1,1S1 + k−2,1P1)(k−1,2 + k2,2)
+

(k−1,1 + k2,1)(k1,3S3 + k−2,3P3)

(k1,1S1 + k−2,1P1)(k−1,3 + k2,3)
+

(k−1,1 + k2,1)(k1,4S4 + k−2,4P4)

(k1,1S1 + k−2,1P1)(k−1,4 + k2,4)
+

(k−1,1 + k2,1)(k1,5S5 + k−2,5P5)

(k1,1S1 + k−2,1P1)(k−1,5 + k2,5)
+

(k−1,1 + k2,1)(k1,6S6 + k−2,6P6)

(k1,1S1 + k−2,1P1)(k−1,6 + k2,6)

)

ES1 =
Et

(k−1,1+k2,1)ES1
k1,1S1+k−2,1P1

(1+
(k1,2S2+k−2,2P2)

(k−1,2+k2,2)
+ . . .+

(k1,6S6+k−2,6P6)
(k−1,6+k2,6)

(B.10)

E =
Et

(1+
(k1,2S2+k−2,2P2)

(k−1,2+k2,2)
+ . . .+

(k1,6S6+k−2,6P6)
(k−1,6+k2,6)

(B.11)

Using Eq. B.10 and B.11 → dP1
dt :

dP1

dt
= k2,1ES1 − k−2,1E · P1
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dP1

dt
=

k2,1Et
S1
K+
d,1

− k−1,1Et
P1
K−
d,1

S1
K+
d,1

+ S2
K+
d,2

+ . . .+ S6
K+
d,6

+ P1
K−
d,1

+ P2
K−
d,2

+ . . .+ P6
K−
d,6

+ 1

=
k2,1Et

S1
K+
d,1

− k−1,1Et
P1
K−
d,1

∑6
i=1

(
Si
K+
d,i

+ Pi
K−
d,i

)
+ 1

Thus, the generalised rate law for the production of product Pi with

n competing substrates for the binding of an enzyme E reads:

dPi

dt
=

V+
m

Si
K+
d,i

− V−
m

Pi
K−
d,i

∑n
j=1

(
Sj

K+
d,j

+
Pj

K−
d,j

)
+ 1

, (B.12)

where V+
m = k2,iEt and V−

m = k−1,iEt.
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C
R E A C T I O N S A N D K I N E T I C PA R A M E T E R S

c.1 list of reactions used for modelling

Table 3: List of reactions used for modelling the chain-elongation of Met-
derived glucosinolates.

Symbol Reaction Enzymes

R1 Kp,0

MAM3
Kp,1 MAM3

R2 Kp,1

MAM3
Kp,2

R3 Kp,2

MAM3
Kp,3

R4 Kp,3

MAM3
Kp,4

R5 Kp,4

MAM3
Kp,5

R6 Kp,5

MAM3
Kp,6

R7 Kp,0
MAM1 Kp,1 MAM1

R8 Kp,1
MAM1 Kp,2

R9 Kc,0

BAT5
Kp,0 BAT5

R10 Kc,1

BAT5
Kp,1

R11 Kc,2

BAT5
Kp,2

R12 Kc,3

BAT5
Kp,3

R13 Kc,4

BAT5
Kp,4

R14 Kc,5

BAT5
Kp,5

R15 Kc,6

BAT5
Kp,6

R16 Kp,0

BAT5
Kc,0

R17 Kp,1

BAT5
Kc,1

R18 Kp,2

BAT5
Kc,2

R19 Kp,3

BAT5
Kc,3

continues on next page
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R20 Kp,4

BAT5
Kc,4

R21 Kp,5

BAT5
Kc,5

R22 Kp,6

BAT5
Kc,6

R23 Ac,0
AATR Ap,0 AATR

R24 Ac,1
AATR Ap,1

R25 Ac,2
AATR Ap,2

R26 Ac,3
AATR Ap,3

R27 Ac,4
AATR Ap,4

R28 Ac,5
AATR Ap,5

R29 Ac,6
AATR Ap,6

R30 Ap,0
AATR Ac,0

R31 Ap,1
AATR Ac,1

R32 Ap,2
AATR Ac,2

R33 Ap,3
AATR Ac,3

R34 Ap,4
AATR Ac,4

R35 Ap,5
AATR Ac,5

R36 Ap,6
AATR Ac,6

R37 Ac,0

BCAT3
Kc,0 BCAT3

R38 Ac,1

BCAT3
Kc,1

R39 Ac,2

BCAT3
Kc,2

R40 Ac,3

BCAT3
Kc,3

R41 Ac,4

BCAT3
Kc,4

R42 Ac,5

BCAT3
Kc,5

R43 Ac,6

BCAT3
Kc,6

R44 Kc,0

BCAT3
Ac,0

R45 Kc,1

BCAT3
Ac,1

R46 Kc,2

BCAT3
Ac,2

R47 Kc,3

BCAT3
Ac,3

R48 Kc,4

BCAT3
Ac,4

R49 Kc,5

BCAT3
Ac,5

R50 Kc,6

BCAT3
Ac,6

R51 Ac,0

BCAT4
Kc,0 BCAT4

R52 Ac,1

BCAT4
Kc,1
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R53 Ac,2

BCAT4
Kc,2

R54 Ac,3

BCAT4
Kc,3

R55 Ac,4

BCAT4
Kc,4

R56 Ac,5

BCAT4
Kc,5

R57 Ac,6

BCAT4
Kc,6

R58 Kc,0

BCAT4
Ac,0

R59 Kc,1

BCAT4
Ac,1

R60 Kc,2

BCAT4
Ac,2

R61 Kc,3

BCAT4
Ac,3

R62 Kc,4

BCAT4
Ac,4

R63 Kc,5

BCAT4
Ac,5

R64 Kc,6

BCAT4
Ac,6

R65 Ac,1

CYP79F1
Ac,1 CYP79F1

R66 Ac,2

CYP79F1
Ac,2

R67 Ac,3

CYP79F1
Ac,3

R68 Ac,4

CYP79F1
Ac,4

R69 Ac,5

CYP79F1
Ac,5

R70 Ac,6

CYP79F1
Ac,6

R71 Ac,5

CYP79F2
Ac,5 CYP79F2

R72 Ac,6

CYP79F2
Ac,6
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c.2 kinetic parameters used for model simulations

Table 4: Fiducial set of kinetic parameters used for simulations. While the
data marked with * is sourced from the works of [10, 55, 92, 97],
the others are obtained from numerical optimisation. pV , vanilla
parameters; pC, Col parameters; p1, Cvi parameters

Reaction Km(μM) V ′
max(μmol/min · l)

pV pC p1 pV pC p1

R1 1 932* 810 1 2.896 1.163
R2 1 476* 80 1 2.99 0.705
R3 1 463* 221.741 1 5.738 2.901
R4 1 300 836.548 1 3.4 13.003
R5 1 253* 69.226 1 0.728 21.438
R6 1 81* 1.4 1 0.062 13.003
R7 1 3000* 1568.875 1 47.61 124.334
R8 1 640* 707.495 1 75.737 344.747
R9 1 1978.24 753.705 1 81.874 340.376
R10 1 2138.53 829.396 1 88.47 315.179
R11 1 2310.82 936.782 1 95.057 274.68
R12 1 2482.88 1066.513 1 101.066 228.855
R13 1 2639.84 1195.439 1 105.904 186.257
R14 1 2766.2 1291.846 1 109.048 150.997
R15 1 2848.3 3424.209 1 37.466 99.584
R16 1 863.7 3729.357 1 39.913 98.21
R17 1 933.68 4104.308 1 43.921 94.202
R18 1 1008.91 4522.942 1 49.608 87.883
R19 1 1084.031 4940.483 1 56.478 79.741
R20 1 1152.56 5299.883 1 63.305 70.371
R21 1 1207.728 5544.076 1 68.411 60.401
R22 1 1243.576 1467.988 1 225.739 232.288
R23 1 2474.039 1563.868 1 240.755 234.203
R24 1 2638.601 1720.92 1 255.758 224.668
R25 1 2803.037 1943.737 1 269.858 204.497
R26 1 2957.571 2212.916 1 282.111 178.026
R27 1 3091.854 2480.426 1 291.621 150.36
R28 1 3196.086 2680.462 1 297.653 124.929
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R29 1 3262.19 2448.426 1 10.323 61.685
R30 1 410.615 2399.944 1 8.301 66.684
R31 1 437.434 2260.182 1 41.173 72.056
R32 1 481.364 2045.097 1 8.345 77.421
R33 1 543.689 1777.922 1 1.499 82.315
R34 1 618.982 1485.046 1 0.222 86.256
R35 1 693.808 1191.777 1 3.453 88.816
R36 1 749.76 534.549 1 27.26 282.541
R37 1 2000 582.185 1 23.695 274.891
R38 1 2000 640.718 1 27.001 254.183
R39 1 2000 706.071 1 27.656 224.246
R40 1 2000 771.252 1 5.281 189.757
R41 1 2000 827.358 1 0.818 154.822
R42 1 2000 865.479 1 13.129 122.301
R43 1 2000 459.268 1 0.036 77.744
R44 1 1000 405.302 1 0.036 77.744
R45 1 1000 278.56 1 0.037 77.744
R46 1 1000 149.102 1 0.04 77.77
R47 1 1000 62.155 1 0.047 78.608
R48 1 1000 20.179 1 0.057 88.265
R49 1 1000 5.102 1 0.067 124.898
R50 1 1000 2586.622 1 0.002 13.804
R51 1 45* 2758.673 1 0.002 11.422
R52 1 45 2930.591 1 0.002 7.39
R53 1 45 3092.157 1 0.002 3.75
R54 1 45 3232.552 1 0.002 1.511
R55 1 45 3341.527 1 0.003 0.533
R56 1 45 3410.639 1 0.003 0.187
R57 1 45 0 1 6.256 0.262
R58 1 930* 3.041 1 10.07 0.289
R59 1 930 35.748 1 0.138 0.318
R60 1 930 209.827 1 0.15 0.347
R61 1 930 200.748 1 5.684 0.373
R62 1 930 6.481 1 3.604 0.39
R63 1 930 457.865 1 49.377 1.265
R64 1 930 321.192 1 69.87 0.767
R65 1 30 0 1 12.7 2.901
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R66 1 34* 9.899 1 42.5 0.238
R67 1 37* 2586.638 1 33.067 94.295
R68 1 194* 2550.961 1 35.746 100.567
R69 1 216* 2446.855 1 38.626 106.834
R70 1 74* 2282.7 1 41.502 112.724
R71 1 374* 2071.218 1 44.126 117.842
R72 1 26* 1827.843 1 46.238 121.815

Table 5: Kinetic parameters used for simulating the glucosinolate profiles
of Aa−0, Pi−0 and Wl−0 Arabidopsis ecotypes. p3, Aa−0 parame-
ters; p4, Pi−0 parameters; p5, Wl−0 parameters.

Reaction Km(μM) V ′
max(μmol/min · l)

p3 p4 p5 p3 p4 p5

R1 932 1286.23 103.47 1.73 21.2 12.84
R2 476 276.04 22.21 1.79 30 7.79
R3 463 2358.97 2563.41 3.44 4.25 2.41
R4 300 2081.79 2262.2 2.04 19.04 10.82
R5 253 1430.79 1554.78 0.44 31.4 17.84
R6 81 765.85 832.22 0.04 19.04 10.82
R7 3000 1184.75 4296.72 1.31 29.4 74.7
R8 640 32.22 1374.07 2.08 13.18 109.42
R9 1978.24 34.32 1463.81 2.25 11.54 119.31
R10 2138.54 37.77 1610.82 2.43 8.52 126.75
R11 2310.82 42.66 1819.38 2.61 5.33 130.49
R12 2482.88 48.57 2071.34 2.78 2.87 130.88
R13 2639.84 54.44 2321.73 2.91 1.37 129.48
R14 2766.2 58.83 2508.97 3 0.59 127.93
R15 2848.31 196.45 572.37 76.25 2.99 23.36
R16 863.7 196.45 577.47 81.23 2.83 22.1
R17 933.69 196.45 596.21 89.38 2.4 18.71
R18 1008.91 196.51 648.41 100.96 1.82 14.17
R19 1084.03 198.63 756.54 114.94 1.23 9.61
R20 1152.56 223.03 917.52 128.83 0.75 5.83
R21 1207.73 315.6 1075.13 139.22 0.41 3.16
R22 1243.58 2382.82 139.69 459.4 0.25 95.73
R23 2474.04 2254.05 140.93 489.96 0.25 90.56
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R24 2638.6 1908.01 145.51 520.5 0.25 76.66
R25 2803.04 1445.25 158.25 549.19 0.25 58.07
R26 2957.57 979.61 184.64 574.13 0.25 39.36
R27 3091.85 594.16 223.93 593.48 0.28 23.87
R28 3196.09 322.48 262.39 605.76 0.4 12.96
R29 3262.19 2184.27 733.29 9.21 6.73 13.79
R30 410.62 2378.92 798.63 7.41 7.28 14.69
R31 437.43 2618.1 878.93 36.75 7.86 16.16
R32 481.36 2885.14 968.58 7.45 8.45 18.25
R33 543.69 3151.48 1057.99 1.34 8.98 20.78
R34 618.98 3380.74 1134.96 0.2 9.41 23.29
R35 693.81 3536.51 1187.25 3.08 9.69 25.17
R36 749.76 4497.42 592.02 24.33 3.27 17.08
R37 2640.6 4796.57 597.29 21.15 3.61 19.64
R38 2854.56 5095.49 616.69 113.35 4.04 23.03
R39 3084.54 5376.41 670.68 24.68 4.53 26.36
R40 3314.21 5620.52 782.51 4.71 5.04 28.1
R41 3523.72 5810 949.03 0.73 5.48 27.86
R42 3692.38 5930.16 1112.05 11.72 5.78 26.88
R43 3801.98 2239.83 4346.54 0.03 3.91 18.41
R44 1000 2195.48 4635.65 0.03 4.16 19.64
R45 1000 2067.63 4924.54 0.03 4.58 20.86
R46 1000 1870.87 5196.03 0.04 5.18 22.01
R47 1000 1626.45 5431.95 0.04 5.9 23.01
R48 1000 1358.53 5615.07 0.05 6.61 23.79
R49 1000 1090.24 5731.21 0.06 7.14 24.28
R50 1000 192.96 2218.23 0 45.43 36.08
R51 45 194.68 1957.58 0 47.02 46.51
R52 45 201 1345.43 0.01 47.2 76.36
R53 45 218.6 720.15 0.16 44.35 158.83
R54 45 255.05 300.21 6.09 37.62 416.39
R55 45 309.32 97.46 664.64 29.04 1370.51
R56 45 362.46 24.64 1000 21.49 5647
R57 45 0.92 49.89 2.71 0.21 0.01
R58 930 30.32 23.13 4.36 1.01 14.72
R59 564.07 369.39 805.06 0.06 0.2 0.16
R60 125.86 1655.47 1804.01 0.06 0.22 0.17
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R61 10.33 2729.41 2974.31 2.46 0.21 0.02
R62 0.31 1655.47 2146.77 1.56 0.27 0.18
R63 0.1 1569.84 727.85 0.51 0.26 0.11
R64 0.1 105.06 13.64 0.73 0.37 18.97
R65 30 319.25 346.92 2.34 4.25 2.41
R66 34 103.65 112.63 7.85 0.35 0.2
R67 37 1953.33 2653.8 0.91 21.75 56.66
R68 194 1926.38 2890.29 0.98 20.57 60.42
R69 216 1847.77 3180.88 1.06 17.41 64.19
R70 74 1723.8 3505.33 1.14 13.19 67.73
R71 374 1564.1 3828.93 1.21 8.94 70.8
R72 26 1380.31 4107.46 1.27 5.42 73.19

Table 6: Estimated relative concentrations of metabolic enzymes in differ-
ent Arabidopsis ecotypes: Aa−0, Pi−0, Wl−0. Et stands for the
total enzyme concentration. The Et values in Aa−0 ecotype are
arbitrarily set to 1.0.

Parameter Aa−0 Pi−0 Wl−0

Et,AATR 1.0 4.41 1.32
Et,BAT5 1.0 3.22 1.07
Et,BCAT3 1.0 1.75 0.42
Et,BCAT4 1.0 3.0 3.80
Et,CYP79F1 1.0 0.015 1.02
Et,CYP79F2 1.0 0.139 0.01
Et,MAM1 1.0 0.05 0.01
Et,MAM3 1.0 0.73 0.84
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E X P E R I M E N TA L D ATA U S E D F O R M O D E L L I N G

d.1 experimental data on col wt

Profile 3C 4C 5C 6C 7C 8C Source

1 3.8 25.4 0.6 0.2 0.9 4.5 [58]
2 2.53 18.16 0.49 0.04 0.28 1.47 [92]
3 2.7 16.3 0.5 0.3 0.4 2.2 [97]
4 2.87 26.03 1.2 0.15 0.56 3.11 [55]

Table 7: Glucosinolates concentration in the leaves of Arabidopsis thaliana
Col wild-type ecotype. The shown profiles are the experimentally-
measured GSLs (3C . . . 8C) concentration in the leaves of 5-6 weeks
old Arabidopsis thaliana Col wild-type plants. Quantities are given
in μ mole g−1 dry weight. 3C, three carbon GSLs; 4C, four carbon
GSLs; 5C, five carbon GSLs; 6C, six carbon GSLs; 7C, seven carbon
GSLs; and 8C, eight carbon GSLs.

d.2 experimental data on col mutants

Mutant 3C 4C 5C 6C 7C 8C Source

mam1 16.03 0.4 0.0 0.0 0.6 7.0 [58]
mam3 2.5 18.2 0.6 0.2 n.d n.d. [97]
bcat3 3.8 25.4 0.6 0.2 0.9 4.5 [55]
bcat4 0.7 6.73 0.0 0.0 0.26 0.64 [92]
cyp79f1 2.53 18.16 0.49 0.04 0.28 1.47 [10]
cyp79f2 2.7 16.3 0.5 0.3 0.4 2.2 [10]

Table 8: Glucosinolate content in leaves of Arabidopsis thaliana mutant back-
grounds. Quantities are given in μ mole g−1 dry weight. n.d.
stands for not detectable.
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d.3 metabolic phenotype of 35 ecotypes

Ecotype 3C 4C 7C 8C MAM type
Ag-0* 1.53 14.34 0.31 1.82 MAM1
Bla-10* 1.03 9.91 0.27 1.53 MAM1
Bs1* 1.24 11.37 0.34 1.43 MAM1
Cal* 5.06 13.32 0.57 2.29 MAM1
Cnt* 0.28 22.46 0.51 3.56 MAM1
Ema-1* 0.21 16.17 0.45 2.26 MAM1
Pog-1* 0.27 20.42 0.43 2.23 MAM1
Tac 0.40 16.61 0.31 1.67
Kas* 5.31 11.66 0.10 0.78 MAM1
Sorbo* 4.55 20.96 0.24 1.50 MAM1
Cvi 10.03 24.40 0.38 2.62
Di-1* 1.82 4.13 0.29 1.44 MAM1
Aa-0* 0.07 2.29 0.11 1.29 MAM1
Col* 0.40 5.93 0.19 1.18 MAM1
Ma-0 0.00 2.54 0.10 0.93
Mt-0 0.00 4.28 0.15 1.28
Can 22.70 0.67 0.33 2.77
Kondara* 26.14 0.47 0.14 2.42 MAM2
Ei-2* 16.79 0.23 0.20 2.62 MAM1
Hodja 13.10 0.18 0.03 0.91
Kil-0* 14.63 0.19 0.22 2.40 MAM1
Mrk-0 20.42 0.29 0.18 2.68
Rsch-0 10.02 0.22 0.10 1.58
Su-0* 14.29 0.13 0.13 2.15 MAM2
Wl-0* 14.45 0.16 0.17 1.40 MAM2
Bl-1* 7.60 0.08 0.13 2.35 MAM1
Ka-0 14.36 0.00 0.12 1.99
Ler 9.24 0.02 0.10 1.65
Lip-0* 5.86 0.00 0.10 1.31 MAM1
No-0 7.65 0.11 0.07 1.40
Pet 9.38 0.09 0.12 2.19
Pi-0* 2.07 0.08 0.04 0.64 MAM1
Sei-0* 4.77 0.07 0.10 1.18 MAM2
Tsu-1 6.02 0.11 0.14 1.53
Yo-0* 6.01 0.21 0.11 1.16 MAM2

Table 10: Glucosinolate contents in the leaves of Arabidopsis ecotypes.
Quantities are given in μmol g dry wt−1. Ecotypes are marked
with *, where information on both amino acid sequences of
metabolic genes and GSL concentrations are known.

120



E
S H A N N O N E N T R O P Y O F G L U C O S I N O L AT E

G E N E S

Table 11: Average shannon entropy across the length of glucosinolate
genes of Arabidospsis thaliana ecotypes taken from [1] and [52].
ASE1, average shannon entropy of 343 ecotypes from [1]; ASE2,
average shannon entropy of 22 ecotypes from [52].

Glucosinolate Gene Average shannon entropy

ASE1 ASE2

SOT17 0.000486 0.000363
BCAT4 0.000704 0.000355
CYP79B2 0.000619 0.000307
GSTF11 0.002284 0.002487
CYP79A2 0.002308 0.001961
BCAT3 0.001281 0.000631
MAM3 0.002427 0.002296
FMO-GSOX3 0.005172 0.004464
GSTF10 0.0 0.0
UGT74C1 0.001672 0.000890
GSTU20 0.002062 0.001937
APK1 0.000872 0.001545
IPMI SSU2 0.001638 0.001441
CYP79F1 0.002459 0.001729
GS-OH 0.002389 0.002724
AOP3 0.003192 0.005107
GSH1 0.000817 0.000871
GGP1 0.000466 0.000251
IPMI SSU3 0.001810 0.001773
UGT74B1 0.006034 0.005173
BAT5 0.000169 0.000460
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CYP83B1 0.0 0.000126
CYP79F2 0.001400 0.000980
AAO4 0.002284 0.001910
SOT18 0.001525 0.001611
SOT16 0.000779 0.000744
CYP83A1 0.000263 0.000250
FMO-GSOX2 0.009534 0.007247
CHY1 0.001987 0.000191
IPMDH1 0.001090 0.001212
IPMI LSU1 0.000397 0.000247
BZO1 0.001638 0.001122
FMO-GSOX4 0.001699 0.001059
FMO-GSOX5 0.000857 0.000429
CYP81F2 0.002731 0.002880
GSTF9 0.000116 0.0
IPMDH3 0.002906 0.001930
FMO-GSOX1 0.001665 0.001095
MAM1 0.009653 0.007920
SUR1 0.005192 0.004651
CYP79B3 0.002359 0.002245
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Table 12: Evolutionary distances based on sequence similarity to MAM1
and MAM2 genes from 343 ecotypes [1]. The values are substitu-
tions per site.

Ecotype ID dMAM1 dMAM2 MAM type
9602 0.08784039 0.02538253 MAM2
9547 0.0878203 0.02536244 MAM2
9789 0.08430283 0.02184497 MAM2
9589 0.08430284 0.02184498 MAM2
9588 0.08430285 0.02184499 MAM2
9584 0.08430286 0.021845 MAM2
9577 0.08430287 0.02184501 MAM2
9567 0.08430288 0.02184502 MAM2
9564 0.08430289 0.02184503 MAM2
9558 0.0843029 0.02184504 MAM2
9557 0.08430291 0.02184505 MAM2
9546 0.08430292 0.02184506 MAM2
9592 0.09142665 0.02896879 MAM2
9520 0.08430298 0.02184512 MAM2
9525 0.0843031 0.02184524 MAM2
9531 0.08430335 0.02184549 MAM2
2278 0.08430207 0.02184421 MAM2
1853 0.08430193 0.02184407 MAM2
932 0.0914688 0.02901094 MAM2
4931 0.08430175 0.02184389 MAM2
5768 0.08430146 0.0218436 MAM2
9534 0.08782646 0.0253692 MAM2
9594 0.10211517 0.03965791 MAM2
6744 0.09135594 0.02889868 MAM2
7947 0.08430097 0.02184373 MAM2
8132 0.08430085 0.02184385 MAM2
870 0.08430056 0.02184416 MAM2
9572 0.07716042 0.02898428 MAM2
9932 0.07716041 0.02898429 MAM2
9723 0.05495774 0.05118724 MAM2
9576 0.05486184 0.0654996 MAM1
9556 0.05486201 0.06549977 MAM1
9580 0.05486202 0.06549978 MAM1
9581 0.05486203 0.06549979 MAM1
9637 0.04033725 0.06580797 MAM1
9553 0.02920676 0.0769385 MAM1
2171 0.02555834 0.08058686 MAM1
265 0.02555785 0.08058685 MAM1
403 0.02555773 0.08058697 MAM1
424 0.02555748 0.08058722 MAM1
5104 0.02555727 0.08058743 MAM1
5165 0.02555701 0.08058769 MAM1
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Ecotype ID dMAM1 dMAM2 MAM type
6390 0.02555688 0.08058782 MAM1
6434 0.02555681 0.08058789 MAM1
7296 0.02555678 0.08058792 MAM1
9924 0.02922231 0.08425409 MAM1
9783 0.02922232 0.0842541 MAM1
9782 0.02922233 0.08425411 MAM1
9601 0.02922234 0.08425412 MAM1
9591 0.02922235 0.08425413 MAM1
9587 0.02922236 0.08425414 MAM1
9586 0.02922237 0.08425415 MAM1
9532 0.02922238 0.08425416 MAM1
9529 0.02922239 0.08425417 MAM1
5151 0.0292224 0.08425418 MAM1
5784 0.0292224 0.08425418 MAM1
9718 0.03653978 0.09157216 MAM1
9757 0.03653978 0.09157216 MAM1
9524 0.03292223 0.08795461 MAM1
9540 0.03292237 0.08795475 MAM1
9568 0.03292251 0.08795489 MAM1
9748 0.03658714 0.09161952 MAM1
9719 0.03658715 0.09161953 MAM1
9539 0.03658716 0.09161954 MAM1
9716 0.04379787 0.09883025 MAM1
9714 0.03658717 0.09161955 MAM1
9639 0.03288362 0.087916 MAM1
9125 0.029198 0.08423038 MAM1
9662 0.02919817 0.08423055 MAM1
9638 0.02919818 0.08423056 MAM1
9636 0.02919819 0.08423057 MAM1
9624 0.0291982 0.08423058 MAM1
9563 0.02919821 0.08423059 MAM1
1890 0.02919822 0.0842306 MAM1
9527 0.029202 0.08423494 MAM1
9133 0.02920251 0.08423545 MAM1
9543 0.02920238 0.08423532 MAM1
9745 0.02920267 0.08423561 MAM1
9617 0.02920268 0.08423562 MAM1
9609 0.02920269 0.08423563 MAM1
9134 0.02920284 0.08423578 MAM1
9627 0.03284003 0.08787297 MAM1
9919 0.03645794 0.09149088 MAM1
9635 0.01824216 0.08790278 MAM1
7158 0.02187712 0.091538 MAM1
9608 0.01822533 0.09523297 MAM1
9665 0.01456878 0.09157642 MAM1
9535 0.01091336 0.10250538 MAM1
9593 0.00727631 0.09886891 MAM1
1925 0.00365802 0.10248668 MAM1
1954 0.00365801 0.10248669 MAM1
9128 0.003658 0.1024867 MAM1
9130 0.00365799 0.10248671 MAM1
9131 0.00365798 0.10248672 MAM1
9744 0.00365797 0.10248673 MAM1
9933 0.00365796 0.10248674 MAM1
MAM1 0 0.10614468 MAM1
108 3.00E-08 0.10614469 MAM1
139 4.00E-08 0.1061447 MAM1
2276 5.00E-08 0.10614471 MAM1
351 6.00E-08 0.10614472 MAM1
4779 7.00E-08 0.10614473 MAM1
4807 8.00E-08 0.10614474 MAM1
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Ecotype ID dMAM1 dMAM2 MAM type
4826 9.00E-08 0.10614475 MAM1
4958 1.00E-07 0.10614476 MAM1
5253 1.10E-07 0.10614477 MAM1
5276 1.20E-07 0.10614478 MAM1
5779 1.30E-07 0.10614479 MAM1
5818 1.40E-07 0.1061448 MAM1
630 1.50E-07 0.10614481 MAM1
7015 1.60E-07 0.10614482 MAM1
8266 1.70E-07 0.10614483 MAM1
8411 1.80E-07 0.10614484 MAM1
8472 1.90E-07 0.10614485 MAM1
88 2.00E-07 0.10614486 MAM1
9100 2.10E-07 0.10614487 MAM1
9102 2.20E-07 0.10614488 MAM1
9312 2.30E-07 0.10614489 MAM1
9314 2.40E-07 0.1061449 MAM1
9507 2.50E-07 0.10614491 MAM1
9510 2.60E-07 0.10614492 MAM1
9511 2.70E-07 0.10614493 MAM1
9512 2.80E-07 0.10614494 MAM1
9514 2.90E-07 0.10614495 MAM1
9515 3.00E-07 0.10614496 MAM1
9521 3.10E-07 0.10614497 MAM1
9522 0.003585 0.10972966 MAM1
9526 3.70E-07 0.10614503 MAM1
9537 3.90E-07 0.10614505 MAM1
9538 4.00E-07 0.10614506 MAM1
9544 4.10E-07 0.10614507 MAM1
9559 4.20E-07 0.10614508 MAM1
9560 4.30E-07 0.10614509 MAM1
9571 4.40E-07 0.1061451 MAM1
9590 4.50E-07 0.10614511 MAM1
9606 4.60E-07 0.10614512 MAM1
9646 4.70E-07 0.10614513 MAM1
9649 4.80E-07 0.10614514 MAM1
9650 4.90E-07 0.10614515 MAM1
9651 5.00E-07 0.10614516 MAM1
9652 5.10E-07 0.10614517 MAM1
9653 5.20E-07 0.10614518 MAM1
9655 5.30E-07 0.10614519 MAM1
9657 5.40E-07 0.1061452 MAM1
9658 5.50E-07 0.10614521 MAM1
9661 5.60E-07 0.10614522 MAM1
9698 5.70E-07 0.10614523 MAM1
9702 5.80E-07 0.10614524 MAM1
9725 5.90E-07 0.10614525 MAM1
9726 6.00E-07 0.10614526 MAM1
9746 6.10E-07 0.10614527 MAM1
9809 6.20E-07 0.10614528 MAM1
9908 6.30E-07 0.10614529 MAM1
9910 6.40E-07 0.1061453 MAM1
9911 6.50E-07 0.10614531 MAM1
9917 6.60E-07 0.10614532 MAM1
9920 6.70E-07 0.10614533 MAM1
9922 6.80E-07 0.10614534 MAM1
9923 6.90E-07 0.10614535 MAM1
9925 7.00E-07 0.10614536 MAM1
9926 7.10E-07 0.10614537 MAM1
9927 7.20E-07 0.10614538 MAM1
9929 7.30E-07 0.10614539 MAM1
9574 0.00358633 0.10973099 MAM1
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Ecotype ID dMAM1 dMAM2 MAM type
9555 0.00358634 0.109731 MAM1
9554 0.00358635 0.10973101 MAM1
9545 0.00358636 0.10973102 MAM1
9541 0.00358637 0.10973103 MAM1
9533 0.00358638 0.10973104 MAM1
9530 0.00358639 0.10973105 MAM1
9518 0.0035864 0.10973106 MAM1
7418 0.00358641 0.10973107 MAM1
9569 0.01821266 0.12435732 MAM1
9600 0.01079627 0.11694093 MAM1
5772 0.01084111 0.11698577 MAM1
9928 0.01084125 0.11698591 MAM1
9918 0.01084126 0.11698592 MAM1
9704 0.01084127 0.11698593 MAM1
9699 0.01084128 0.11698594 MAM1
9697 0.01084129 0.11698595 MAM1
9597 0.0108413 0.11698596 MAM1
9585 0.01084131 0.11698597 MAM1
9579 0.01084132 0.11698598 MAM1
9575 0.01084133 0.11698599 MAM1
9573 0.01084134 0.116986 MAM1
9570 0.01084135 0.11698601 MAM1
9566 0.01084136 0.11698602 MAM1
9565 0.01084137 0.11698603 MAM1
9562 0.01084138 0.11698604 MAM1
9523 0.01084139 0.11698605 MAM1
9517 0.0108414 0.11698606 MAM1
9508 0.01084141 0.11698607 MAM1
9506 0.01084142 0.11698608 MAM1
9104 0.01084143 0.11698609 MAM1
350 0.01084144 0.1169861 MAM1
9934 9.00E-07 0.10614556 MAM1
9938 1.06E-06 0.10614572 MAM1
9937 0.0035964 0.10974106 MAM1
9931 0.00359641 0.10974107 MAM1
9913 0.00359642 0.10974108 MAM1
9909 0.00359644 0.1097411 MAM1
5210 0.00359653 0.10974119 MAM1
5023 0.00359664 0.1097413 MAM1
4900 0.00359685 0.10974151 MAM1
4884 0.00359702 0.10974168 MAM1
2016 0.00359715 0.10974181 MAM1
9663 0.00717825 0.11332291 MAM1
9660 0.00359648 0.10974114 MAM1
9659 0.00359649 0.10974115 MAM1
9519 0.0035965 0.10974116 MAM1
9503 0.00359651 0.10974117 MAM1
5726 0.00359652 0.10974118 MAM1
5644 0.00359653 0.10974119 MAM1
5577 0.00359654 0.1097412 MAM1
5236 0.00359655 0.10974121 MAM1
5353 0.00359655 0.10974121 MAM1
9914 0.02555677 0.08058795 MAM1
9907 0.02555678 0.08058796 MAM1
9816 0.02555679 0.08058797 MAM1
9815 0.0255568 0.08058798 MAM1
9810 0.02555681 0.08058799 MAM1
9806 0.02555682 0.080588 MAM1
9799 0.02555683 0.08058801 MAM1
9797 0.02555684 0.08058802 MAM1
9794 0.02555685 0.08058803 MAM1
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Ecotype ID dMAM1 dMAM2 MAM type
9792 0.02555686 0.08058804 MAM1
9774 0.02555687 0.08058805 MAM1
9771 0.02555688 0.08058806 MAM1
9769 0.02555689 0.08058807 MAM1
9737 0.0255569 0.08058808 MAM1
9727 0.02555691 0.08058809 MAM1
9669 0.02555692 0.0805881 MAM1
9668 0.02555693 0.08058811 MAM1
9667 0.02555694 0.08058812 MAM1
9654 0.02555695 0.08058813 MAM1
9643 0.02555696 0.08058814 MAM1
9642 0.02555697 0.08058815 MAM1
9640 0.02555698 0.08058816 MAM1
9633 0.02555699 0.08058817 MAM1
9632 0.025557 0.08058818 MAM1
9630 0.02555701 0.08058819 MAM1
9629 0.02555702 0.0805882 MAM1
9628 0.02555703 0.08058821 MAM1
9626 0.02555704 0.08058822 MAM1
9625 0.02555705 0.08058823 MAM1
9620 0.02555706 0.08058824 MAM1
9619 0.02555707 0.08058825 MAM1
9615 0.02555708 0.08058826 MAM1
9612 0.02555709 0.08058827 MAM1
9607 0.0255571 0.08058828 MAM1
9599 0.02555711 0.08058829 MAM1
9596 0.02555712 0.0805883 MAM1
9595 0.02555713 0.08058831 MAM1
9578 0.02555714 0.08058832 MAM1
9561 0.02555715 0.08058833 MAM1
9552 0.02555716 0.08058834 MAM1
8428 0.02555717 0.08058835 MAM1
9550 0.02555717 0.08058835 MAM1
9713 0.09142973 0.02185727 MAM2
9721 0.08785888 0.01828642 MAM2
MAM2 0.10614468 0 MAM2
8077 0.10211924 0.02546664 MAM2
9739 0.11648327 0.03983067 MAM2
9813 0.10918339 0.03253079 MAM2
9712 0.11270204 0.03604944 MAM2
9645 0.10918381 0.03253121 MAM2
9733 0.11623687 0.03958427 MAM2
9743 0.11981574 0.04316314 MAM2
9741 0.11623849 0.03958589 MAM2
428 0.11269986 0.03604726 MAM2
5907 0.11269987 0.03604727 MAM2
410 0.11974177 0.04308917 MAM2
5890 0.11621853 0.03956593 MAM2
9930 0.11270034 0.03604774 MAM2
9916 0.11270035 0.03604775 MAM2
9915 0.11270036 0.03604776 MAM2
9811 0.11270037 0.03604777 MAM2
9807 0.11270038 0.03604778 MAM2
9805 0.11270039 0.03604779 MAM2
9804 0.1127004 0.0360478 MAM2
9803 0.11270041 0.03604781 MAM2
9801 0.11270042 0.03604782 MAM2
9800 0.11270043 0.03604783 MAM2
9798 0.11270044 0.03604784 MAM2
9796 0.11270045 0.03604785 MAM2
9791 0.11270046 0.03604786 MAM2
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Ecotype ID dMAM1 dMAM2 MAM type
9790 0.11270047 0.03604787 MAM2
9788 0.11270048 0.03604788 MAM2
9786 0.11270049 0.03604789 MAM2
9785 0.1127005 0.0360479 MAM2
9784 0.11270051 0.03604791 MAM2
9781 0.11270052 0.03604792 MAM2
9780 0.11270053 0.03604793 MAM2
9779 0.11270054 0.03604794 MAM2
9778 0.11270055 0.03604795 MAM2
9777 0.11270056 0.03604796 MAM2
9776 0.11270057 0.03604797 MAM2
9775 0.11270058 0.03604798 MAM2
9772 0.11270059 0.03604799 MAM2
9770 0.1127006 0.036048 MAM2
9768 0.11270061 0.03604801 MAM2
9749 0.11270062 0.03604802 MAM2
9730 0.11270063 0.03604803 MAM2
9728 0.11270064 0.03604804 MAM2
9644 0.11270065 0.03604805 MAM2
9622 0.11270066 0.03604806 MAM2
915 0.11270067 0.03604807 MAM2
801 0.11270068 0.03604808 MAM2
6445 0.11270069 0.03604809 MAM2
6424 0.1127007 0.0360481 MAM2
6396 0.11270071 0.03604811 MAM2
6296 0.11270072 0.03604812 MAM2
5993 0.11270073 0.03604813 MAM2
5984 0.11270076 0.03604816 MAM2
5950 0.11270081 0.03604821 MAM2
5874 0.11624406 0.03959146 MAM2
9736 0.11620074 0.03954814 MAM2
5811 0.11622692 0.03957432 MAM2
7477 0.11626203 0.03960943 MAM2
1829 0.11270197 0.03604937 MAM2
9814 0.11620437 0.03955177 MAM2
1872 0.11270232 0.03604972 MAM2
5893 0.11269929 0.03604669 MAM2
5800 0.11269942 0.03604682 MAM2
9793 0.11621172 0.03955912 MAM2
7346 0.12330107 0.04664847 MAM2
9808 0.1233009 0.0466483 MAM2
7231 0.12328998 0.04663738 MAM2
9598 0.1057551 0.0291025 MAM2
9634 0.10569533 0.02904273 MAM2
9551 0.09497428 0.01832168 MAM2
9706 0.0985351 0.0218825 MAM2
9696 0.09497466 0.01832206 MAM2
9695 0.09854056 0.02188796 MAM2
9583 0.0949744 0.0183218 MAM2
9542 0.10226349 0.02561089 MAM2
9582 0.09497471 0.01832211 MAM2
9666 0.10216021 0.02550761 MAM2
9681 0.109342 0.0326894 MAM2
9528 0.09856749 0.02191489 MAM2
9610 0.11338273 0.03673013 MAM2
9611 0.11338286 0.03673026 MAM2
9549 0.11338287 0.03673027 MAM2
159 0.09141115 0.02183843 MAM2
9671 0.09494334 0.02537062 MAM2
9613 0.08785886 0.01828614 MAM2
9536 0.08785887 0.01828615 MAM2
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