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1. Introduction

1.1. Hallmarks of (breast) cancer

Cancer is a genetic disorder caused by a rapid and abnormal growth of cells beyond
physiological boundaries of the related tissue [1]. The process which leads a normal cell to
progressively acquire the malignant phenotype is named “carcinogenesis” and requires the
accumulation of multiple genetic alterations [2]. As result of many research studies
performed in the last decade, the malignant cell phenotype has been depicted by eight
fundamental biological capabilities [3]. The so called “hallmarks of cancer” comprise
sustaining proliferative signalling, evasion of growth inhibition, tissue invasion and spreading
to distant sites (metastasis; see chapter 1.3), replicative immortality, sustained angiogenesis,
evasion of apoptosis and the “emerging hallmarks”, deregulation of energy metabolism and
evasion of the immune system [3]. Last but not least, genome instability, mutations, and
tumour-promoting inflammation enable the acquisition of both core and emerging cancer

traits (Figure 1) [3].

Sustaining Evading
proliferative growth
signaling suppressors

Deregulating Avoiding
immune
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Inducing Activating
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Figure 1. The Hallmarks of Cancer, adapted from Hanahan and Weinberg, 2011 [3]

The phenotype of a malignant tumour cell is characterized by eight properties, named hallmarks of cancer,
which are all required for the tumorigenesis. Any lack within them, may block the whole invasion and
metastatic process.




Over a period of time, several tumours acquire greater malignant abilities and
consequently become more aggressive. This so called “tumour progression” can be
explained with the genomic instability and the accumulation of multiple mutations in
different cells which generate sub-clones with different phenotypes, leading to tumour
heterogeneity. Moreover, during tumour progression, abnormal cells in the tumour mass are
exposed to selection pressures which enrich sub-clones capable to survive, grow, invade
surrounding tissues and metastasize (Figure 2) [2,4]. Both the concepts of heterogeneity and
positive selection shed light on the trend for tumours to become more aggressive and

resistant to therapies over the time.
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Figure 2. Tumour progression and heterogeneity, by Kumar et al., 2014 [2]

The tumour mass is characterized by different sub-clones originated from the same tumour cell. Each of these
sub-clones has different properties in terms of growth, survival, invasion and metastatic potential. The
heterogeneity of the tumour mass is involved in treatment resistance.

1.2. Breast cancer

1.2.1. Epidemiology and aetiology

Breast Cancer is a disease caused by the rapid and abnormal growth of epithelial cells
from breast tissues beyond their physiological boundaries [1]. Among women worldwide,
this carcinoma was reported to be the most common form of cancer as well as the main
cause of death, with 1.7 million of diagnosed cases in 2012 and nearly 31% of related
deceases. According to predictions, the incidence of breast cancer will reach 3.2 million new

cases per year by 2050, making this disease, a major health problem worldwide [5]. In 2012,




70.000 new cases of breast cancer were registered in Germany — of which ~26% died —and it
was estimated that nearly 12.5% of German women will develop this disease in their life
time, at onset of 64 years on average [6]. Major risk factors for female breast cancer are
obesity together with lack of physical activity, old age, heavy alcohol intake, early menarche,
assumption of hormonal contraceptives and late age at first birth [1,5]. The transformation
of a normal cell into a cancerous one requires the combination of multiple factors: biological
intrinsic (e.g. genetic background) and extrinsic (e.g. viruses), chemical (e.g. alcohol,
tobacco) and physical ones (e.g. radiations) [7]. Typically, mutations occurring on critical
genes involved in regulating cell growth, proliferation, differentiation can act as triggers for
pre-cancerous lesions [8]. In breast carcinoma, there are several deregulated signalling
pathways, among others: hormone receptor signalling (i.e. oestrogen receptor [ER],
progesterone receptor [PR] and androgen receptor [AR]), cell growth signalling (i.e. tyrosine
kinase receptor [i.e. HER2/neu]), cell cycle (e.g. PI3K, see chapter 1.2.4) and DNA
damage/repair signalling (e.g. tumour protein p53, breast cancer 1 and 2 [BRCA1 and 2]) [8].
It was observed that 5-10% of all breast cancer cases are hereditary and linked to genetic

mutations, comprising in about 90% of them the genes BRCA1 and BRCA2 [9,10].

1.2.2. Histopathology

Breast cancer is a considerably heterogeneous disease which comprises tumours with
various intrinsic features, clinical characteristics and therapeutic responses [11]. Therefore,
patient stratification is required for prognostic predictions and for the identification of

effective treatment strategies.

The human female breast is composed by lobes and ducts surrounded by adipose tissue.
Each lobe consists of small glands named lobules, which are formed, in turn, by dozens of
acini. The whole lobular architecture ends in several ducts, transferring milk provided by the
acini, to the nipple. Both lobules and ducts are composed by a single layer of luminal
epithelial cells, surrounded by a layer of myoepithelial cells, enclosed in turn, by the
basement membrane. The basement membrane separates this epithelial bilayer from the
stromal tissue, comprising the extracellular matrix, fibroblasts, immune cells, adipocytes,

blood and lymphatic vessels (Figure 3) [1,11].
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Figure 3. The human female breast, adapted from National Cancer Institute and Afairgo.net [12,13]

The human female breast mainly consists of ducts, lobes, and adipose tissue in proximity of the axillar lymph
nodes. Tumour masses may originate either within the ducts (ductal-tumour) or within the lobes (lobular-
tumour).

During the progression of the pre-cancerous lesion, the destruction of the basement
membrane by the tumour cells, distinguishes between carcinoma in situ and invasive
carcinoma (Figure 4) and contributes to define the staging of the disease. With the breach of
the basement membrane, tumour cells can spread in various sites of the body through

tissues, lymph and blood vessels, thus starting an invasive tumour [11].
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Figure 4. The formation of an invasive carcinoma, adapted from RNCeus.com [14]

The formation of an invasive carcinoma is a multistep process during which cells proliferate more than usual
(phase named “hyperplasia), no longer lined up in two layers (phase named “atypical hyperplasia), then these
cells may originate an abnormal structure and loss of differentiation (phase named “carcinoma in situ”). The
hyperproliferation of these tumour cells over the physiological tissue boundaries defines the “invasive
carcinoma”.




The stage of a tumour refers to how extended the cancer is and it is usually expressed as
a number on a scale from 0 to IV, with “stage 0” describind non-invasive disease and “stage
IV” invasive one which has disseminated over the breast tissues. Major factors taken in
consideration for the staging are: size of the tumours, whether it has spread to lymph nodes

and/or to a different site of the body, and whether it is invasive or non-invasive.

It was observed that breast cancer usually develops in cells from the lining of the ducts

(ductal carcinoma) and of the lobules (lobular carcinoma). The invasive ductal and lobular

carcinomas represent together the 90% of the cases of breast cancer. Remaining “special
cases” of this disease comprise medullary, neuroendocrine, tubular, apocrine, metaplastic,

mucinous, inflammatory, comedo, adenoid cystic, and micro papillary breast cancers [11].

1.2.3. C(linical subtypes and treatment approaches

The identification of breast carcinoma subtypes is of great importance due to specific
treatment approaches available and related different outcomes. The expression of the
human epidermal growth factors 2 (HER2/neu) and of hormone receptors was identified to
classify the three major clinical subtypes of breast cancer: HER2/neu-enriched, estrogene

receptor (ER) positive and triple negative [15].

The “HER2/neu enriched” subtype is characterized by the overexpression of the

HER2/neu oncogene and by a low/no expression of both ER and PR. This gene was found
overexpressed in ~15% of the breast cancers and is currently aim of specific therapies which
improved the overall survival (OS) of patiens suffering of this breast cancer subtype
[11,16,17]. These targeted treatments mainly comprise monoclonal antibodies interfering
with signalling pathways involved in carcinogenesis, such as tyrosine kinase receptors
signalling inhibitors (e.g. trastuzumab [anti-HER2/neu], lapatinib [anti-ERK], PI3K inhibitors)
[18].

The expression of both hormone receptors ER and PR defines the “luminal” subtype
which can be further sub-classified according to the proliferation rate and to the HER2/neu
status (positive or negative). Hormone receptor positive subgroups represent the most
common molecular types of breast cancer (~70% of the cases) and are associated with the

best OS [11,16,17,19]. Treatment strategies in luminal breast cancer often comprise




hormone receptor modulators (e.g. tamoxifen), inhibitors of oestrogen synthesis (e.g.

aromatase inhibitors) or ER antagonists (e.g. fulvestrant) [18].

Nearly 15% of breast cancer cases were observed to express low or no levels of the
above mentioned molecular receptors and therefore they were grouped within the so called

“triple negative” subtype. This breast carcinoma subgroup is commonly diagnosed among

young women and associated with the worst prognosis due to the non-response to either
endocrine treatment or monoclonal antibodies approaches [16,17]. Nevertheless, in the last
decades, some studies have pointed out the existence of a subpopulation of triple negative

breast cancer which might be sensitive to epidermal growth factor receptors inhibitors [18].

1.2.4. PI3K pathway and PIK3CA mutations

The HER2/neu receptor is one of the major triggers of the Phosphatidylinositol 3-kinases
(PI13K) pathway, which is named based on the PI3Ks proteins, a family of intracellular signal
transducer proteins. Upon interaction with tyrosine kinase receptors, these kinases
phosphorylate the 3-position hydroxyl group of the inositol ring of the phosphatidylinositol
of protein kinases AKTs [20]. PI3Ks are classified in three major classes according to their
structures and roles. The class IA of PI3Ks is the most involved in the development of cancer
[21]. PI3Ks IA proteins are heterodimers comprising a regulatory subunit, the p85, and a
catalytic subunit, the p110 which consists of subunits a and B, whose activity is inhibited
upon binding to p85. The regulatory subunit, by interacting with HER2/neu, transduces
activation signals to the p110 protein which, then, activates a cascade of signalling events
involved in several vital functions such as cell survival, proliferation, differentiation,

intracellular trafficking and migration (Figure 5) [8,21-23].
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Figure 5. The simplified PI3K pathway, adapted from Weigelt and Downward, 2012 [24]

The PI3K signalling pathway is involved in cell growth and survival. It is mainly triggered by the HER2 receptor,
trasducing then the signal to PI3K proteins which phosphorylate the protein kinase AKT. AKT activates the
mTOR complex 1, which can then migrate into the nucleus and promote the translation of proteins.

Abnormal activation and (epi)genetic alterations in the PI3K signalling pathway
components are commonly observed in several types of cancer (gastric, ovarian, breast and
lung) and are involved in tumour initiation and progression [8,21,23]. Among these involved
components, the PIK3CA is the most mutated oncogene in breast cancer [8,21-23]. The
PIK3CA gene is located on the long arm (q) of the Chromosome 3 and encodes for the
catalytic subunit p110a, ubiquitously expressed in all types of cells [25]. The p110a subunit is
composed by 5 domains: an N-terminal binding subunit p85 (ABD), a RAS-binding domain
(RBD), a C2 domain binding to the cell membrane, a helical domain and a C-terminal kinase
catalytic domain involved in regulating the catalytic activity of PI3K [8,21]. The PIK3CA gene
was reported to be mutated in up to 40% of primary breast cancer cases[8], and in higher
frequency in related metastasis [26]. Most common breast carcinomas harbouring PIK3CA
mutations express ER at frequency of 30%-50% and HER2/neu in 15%-30% of the cases
[8,22,23]. The majority of PIK3CA oncogenic mutations are “gain of function” changes
occurring in exons 9 (kinase domain) and 20 (helical domain), more precisely in the

“hotspots” codons E542, E545 (exon 9) and H1047 (exon 20; Figure 6) [8,21-23].
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Figure 6. The PIK3CA oncogene, adapted from Troxell, 2015 [22]

The PIK3CA oncogene consists of following domains: p85-binding ABD, RAS-binding RBD, cell membrane-
binding C2, Helical, and catalytic Kinase. Major mutations occur within the helical and the kinase domains,
mainly within exons 9 and 20.

The most frequently reported amino acid substitutions are the E542K, E545K (glutamine
to lysine) and H1047R (histidine to arginine) which were reported in 86% of PIK3CA-mutated

breast cancer cases [27].

Even though all the mechanisms underlying the effects of the PIK3CA oncogenic
mutations have not been fully clarified yet, it has been already suggested that they activate
the PI3K kinase activity and therefore the PI3K pathway, in different ways [28,29]. Oncogenic
mutations in the helical domain were reported to promote a gain of function by enabling the
catalytic subunit p110a to escape the inhibitory effect of the regulatory subunit p85 [28,29].
On the contrary, it was suggested that mutations in the kinase domain activate the PI3K
signalling independently on interactions with p85 [29]. Moreover, recent results showed that
the E545K mutation, unlike the H1047R, is associated with the activation of the kinase AKT1,
a downstream target of PI3K [30]. The different prognostic value of exon 9 and 20 PIK3CA
mutations is, to date, controversial. Preliminary data suggest better prognosis in case of
mutations in the exon 20 than in exon 9, which correlate, instead, with early recurrence

[31,32]. However, further investigations are surely needed to confirm these suggestions.

1.2.4.1. Targeting the PI3K pathway

Initial studies reported contradictory results regarding the correlation of PIK3CA hotspot
mutations and clinical outcomes [8,22]. Several research groups observed an increased
resistance to HER2/neu targeted therapies caused by PI3K activating mutations, [8,25]
although mechanisms of this resistance have not been clarified, yet [8]. Interestingly, it was
demonstrated that the two breast cancer cell lines MDA-361 (ER+, HER2/neu+) and HCC-202
(ER-, HER2/neu+) harbouring the oncogenic mutation E545K, were resistant to the anti-
HER2/neu, lapatinib. On the contrary, the breast cancer cell lines HCC-1954 (ER-, HER2/neu+)
and SUM-190 (ER-/HER2/neu+) harbouring the oncogenic mutation H1047R were lapatinib
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sensitive [33]. All these results combined with the reported oncogenic properties of PIK3CA
hotspot mutations and with the frequent activation of the PI3K signalling observed in breast
cancer, make this pathway a prime therapeutic target in patients. In the last decade, several
pharmacological agents targeting PI3Ks proteins were designed. Those tested in clinical trials

can be grouped into two classes: PI3K inhibitors and dual PI3K/mTOR inhibitors (Table 1).

Table 1. PI3Ks inhibitors in clinical trials, based on Ma et al. 2015 [23]

Pan-PI3K inhibitors
GDC-0941 (pictilisib)
BKM120 (buparlisib)
XL147
PX-866
BAY 80-6946
CH5132799
p110a-specific inhibitors
BYL719 (alpelisib)
MLN1117
GDC-0032 (taselisib, also
targets p110g and d)
p110B-specific inhibitors
AZD8186
SAR260301
GSK2636771
Dual PI3K/mTOR inhibitors
BEZ235
BGT226
XL765
GDC-0980

Promising results were observed in metastatic ER+ breast cancer patients resistant to
endocrine therapy, by including an anti-PI3K drug in the therapeutic approach [23]. As well
as targeting both HER2/neu and PI3K pathway in patients suffering of HER2/neu+ breast

cancers has been shown to effectively overcome hormonal treatment resistance [23].

Despite all these promising results, the presence of PIK3CA mutations does not
guarantee a clinical response to anti-PI3K drugs, since the downstream signalling cascade
may be actvated by parallel pathways. [25]. Furthermore, the pharmacological combinations

able to provide best clinical results in case of PIK3CA mutations still need to be determined.




1.3. The invasion-metastasis cascade

The ability of a tumour cell to invade the surrounding tissue and to spread to distant
organs is one of the major traits which distinguishes cancer from benign tumour [2,3]. This
process involves several steps which are altogether known as “invasion-metastasis cascade”
and consists of: local invasion and intravasation into blood and lymphatic vessels, transit
through the haematogenous and lymphatic systems, extravasation from vessels, and
formation of micro metastases which subsequently grow into macroscopic tumours (a

process named “colonization”; Figure 7)[4].

Primary tumour Proliferation/ Detachment/ Embolism/circulation
angiogenesis invasion

Lymphatics

venules

capillaries Interaction with platelets
lymphocytes and other
blood components

Extravasation Adherence to Arrest in organs Transport
vessel wall

Lung Heart

Establishment of a Proliferation/
microenvironment angiogenesis|

Figure 7. The invasion-metastasis cascade, adapted from Fidler, 2003 [4]

In order to form metastasis, tumour cells of the primary tumour need to invade blood and/or lymph vessels,
circulate within the respective system and then extravasate in proximity of these organs which they possess a
specific trophy to. Afterwards, tumour cells need to find an optimal niche for their growth and survival, thereby
leading to the origin of a new tumour mass. Permission to reproduce and adapt this figure has been granted by
Springer Nature.

1.3.1. Invasion and intravasation

In order to disseminate into blood and lymphatic vessels, a tumour cell must first disrupt
the basement membrane and then cross the interstitial connective tissue. This multi-step

process starts by loosening intercellular junctions between tumour cells. In fact, in human
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epithelial cancers, the downregulation of the major cell-to-cell adhesion molecules was
often reported [2]. The best characterized alterations involve the cell-cell interaction protein
E-cadherin, frequently reported to be downregulated, mutated [34,35] and/or suppressed
by other proteins (e.g. the epithelial cell adhesion molecule [EpCAM]) [36]. After the loss of
intercellular connections, tumour cells actively remodel components of the basement
membrane (e.g. collagen IV and laminin) either by secreting proteolytic enzymes (e.g. matrix
metalloproteinases [MMPs]) or by inducing stromal cells to produce them. In parallel,
MMPs-inhibitors are downregulated in order to facilitate the tissue degradation [2].
Afterwards, tumour cells downregulate their receptors for the ligands expressed by the
basement membrane, to enhance their own migration into blood and lymphatic vessels. The
last step involves several receptors and extracellular signalling proteins (e.g. tumour cell-
derived cytokines, products of membrane degradation and growth factors with a

chemotactic activity) which lead to the migration of the tumour cells [2].

It was recently suggested that the dissemination of tumour cells might occur in different
ways which would however coexist: a) mechanical dissemination: cancer cells disseminate
into the circulation by preserving their epithelial phenotype; b) epithelial-to-mesenchymal
transition (EMT): cancer cells gradually acquire mesenchymal phenotypes which supports

their extra- and intravasation (Figure 8) [3,37,38].
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Figure 8. The dissemination and colonization of tumour cells, adapted from Joosse et al., 2015 [39]

The coexistence of two different processes of dissemination and colonization has been proposed. CTCs may
require a change from an epithelial to a mesenchymal phenotype in order to intravasate and vice versa, from
the mesenchymal to the epithelial to extravasate and colonize. Alternatively, CTCs may disseminate and
colonize without any phenotypic changes.
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1.3.1.1. The epithelial-to-mesenchymal transition

Several studies postulated that, within the first steps of the metastatic cascade, tumour
cells may lose some typical epithelial traits (e.g. polygonal shape, apical-basal polarity, cell-
cell junctions and cell-basement membrane connections, expression of e-cadherin, mucini,
laminin-1, EpCAM) to gain, among others, some mesenchymal properties (e.g. spindle shape,
lack of both cell polarity and cell-cell junctions, expression of vimentin, fibronectin,
transcriptional factors SNAI1, SNAI2, TWIST) which would facilitate both migration and
invasion [40—42]. This process is named epithelial-to-mesenchymal transition (EMT) and is
involved in different biological contexts such as embryo development, tissue regeneration

and tumour progression (Figure 9) [43].

Epithelial phenotype Intermediate phenotypes Mesenchymal phenotype
as cells transition )
TR (AT LRI (LRI iyl . >
| y "
i 8 g ] i H £ H —
Epithelial e — (a1 Mesenchymal
cells ) ) ) J ) Y ~) ~ > cells

Basement membrane

Progressive loss of epithelial markers
and gain of mesenchymal markers

Figure 9. The epithelial to mesenchymal transition, adapted from Kalluri and Weinberg, 2009 [43]

During the epithelial to mesenchymal transition, epithelial cells progressively lose their phenotype in order to
acquire mesenchymal traits. Permission to reproduce and adapt this figure has been granted by the American
Society for Clinical Investigation.

However, the difficulty to live monitor such phenotypic changes in human tumours
makes the involvement of EMT in tumour progression still subject of debate [40—-42],
although one hypothesis is that EMT supports the invasion steps within the metastatic
cascade. In fact, immunohistochemical and expression analysis on diverse human tumours,
including breast cancer, showed a reduction of epithelial markers (e.g. E-cadherin) and/or an
increased expression of mesenchymal traits (e.g. vimentin and EMT-associated transcription
factors) which are correlated with poor prognostic outcomes [44-48]. Furthermore, the
existence of an intermediate CTC-phenotype (between the epithelial and the mesenchymal)
was suggested as result of the progressive EMT [43,49]. In fact, independent research groups
have recently postulated that a complete EMT process is not mandatory for a tumour cell to
acquire invasive properties and to disseminate into the circulation. A partial EMT would

already be adequate to produce cancer-initiating cells [50,51]. Moreover, tumour cells might
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disseminate into the blood circulation by mechanical processes only, thus preserving their

epithelial phenotype [37].

1.3.2. Extravasation and colonization

Tumour cells which gain access into the bloodstream are named “circulating tumour
cells” (CTCs; comprehensively described in chapter 1.4). CTCs mostly circulate as single cells,
but sometimes they aggregate to platelets which provide tumour cells some protection from
host immune cells [2]. Furthermore, CTCs may survive immune defense mechanisms in
blood by expressing PD-L1 on their surface, thereby binding to the receptor PD-1 expressed
on T-cells. In fact, the bound of PD-L1 with PD-1 anergize these lymphocytes [52,53]. CTCs in
the blood stream can potentially spread to all tissues. Although molecular mechanisms of
tissue colonization have not been fully understood, yet, it is known that the extravasation
takes place through inverse mechanisms to those involved in the intravasation: arrest and
adhesion to the vascular endothelium, and access to the tissue parenchyma via enhanced
focal adhesions with the basement membrane [2]. Thus, it was hypothesized that tumour
cells which underwent EMT during the initial invasion may face the reverse process, named
mesenchymal-to-epithelial transition (MET) [54-56]. The location of metastatic sites is
usually associated to the entity of the primary tumour. For instance, breast cancer
metastases are more likely to occur into brain, bones, liver and lungs [57]. This organ
tropism may be explained with the expression of certain adhesion molecules and
chemokines by the tumour cells, whose receptors are most likely to be expressed in specific
organs. Binding of chemokines may prime the environment at specific sites to provide better
seeding conditions for the arriving tumour cells [2]. However, not all tumour cells are able
to successfully colonize certain organs, as well as some micro metastases can survive
without any real progression in a quiescent status named “dormancy” [2,3]. In a large
pooled analysis of bone marrow micro metastases derived from breast cancer, Braun et al.
observed that only half of the patients with hundreds of micro metastases at the time of

diagnosis, actually developed macroscopic metastases [58].

Concluding, as Stephen Paget already theorized for the first time in 1889, the outcome
of the multi-step metastatization process depends on both properties of tumour cells

(“seed”) and of host cells forming the microenvironment (“soil”), a concept known as “seed
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and soil theory”[4,59,60]. In fact, failure of any of the mechanisms involved in the metastatic

cascade could block the whole process [2,4,60].

1.4. Circulating tumour cells

1.4.1. Definition and characteristics

CTCs are rare cells observed in the peripheral bloodstream (PB) of cancer patients and
are believed to be released from primary tumours, their recurrences or from metastases
[39]. CTCs were first described in 1869 by Ashworth and later in 1889 by Paget [59,61]. They
may be found in PB of patients suffering of most solid epithelial tumours, with a frequency
of 1-10 cells/ml PB surrounded by approximately 4x10° erythrocytes (RBCs), 2x10° platelets
and 6x10° leukocytes [62,63]. Their half-life has been estimated to be 1.0 — 2.4 h [64].
According to the only FDA (Food and Drug Administration)-approved CTCs-enrichment
system, CellSearch® (Menarini Silicon Biosystems, Bologna, Italy), a CTC is phenotypically
determined by a regular, round shape of mainly 4 — 30 um in diameter (Figure 10), with an
intact, viable nucleus, expression of both cytokeratins (mainly cytokeratins 8, 18, and 19)

and EpCAM and negativity for the expression of the hematopoietic marker CD45.
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Figure 10. Frequency and size of CTCs compared to blood cells, adapted from Stoecklein et al., 2016 [65]

The extremely low frequency of CTCs in PB — compared to other cells in the blood (left) — together with their
estimated size overlapping with the whole white blood cell population (right) make their isolation quite
challenging.
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However, CTCs with diverse phenotypes were described, in terms of irregular shape
[66—68], lack of EpCAM expression and/or expression of mesenchymal markers [68-71], as

well as clustering with other cancer cells [72—-74] or leukocytes [75].

1.4.2. The EpCAM!ow/negative gyhset of CTCs

The glycosylated transmembrane protein EpCAM is located within intercellular
adherents junctions and is involved in cellular migration, proliferation and differentiation
[76]. Already in 1979, EpCAM was identified as one of the first tumour-associated
antigens[77]. Subsequently, due to its strong expression in several cancers as well as to its
absence on hematopoietic cells [78,79], EpCAM was taken in consideration as main antigen
to identify CTCs. Thus, the CellSearch® system was designed to capture and detect EpCAM-
expressing cells [80,81]. However, in the last decade, several research groups have shown
that EpCAM expression is heterogeneous and can even be absent on several cancers and
CTCs [82-84]. Therefore EpCAM-based enrichment technologies of may overlook a
considerable amount of CTCs (e.g. in breast [85] and lung cancer patients [68,86—88]). The
existence of an EpCAM-negative subgroup of CTCs was reported in breast, lung, prostate
[89], oesophageal [90] and colorectal cancers [91]. It was proposed that mesenchymal CTCs
might actually represent a big portion of the total CTC population and that CTCs with a
transient phenotype may also be present as a result of a partial EMT [69,88,92].

Several theories were postulated to explain the downregulation of EpCAM, such as the
exposure to tumour necrosis-factor-a [93] or to cytokins [94], or the hypermethylation of
the gene’s promotor [95,96]. Among all these potential mechanisms, EMT was hypothesized
to be the most important process involved in the modulation of EpCAM expression [97]. This
hypothesis could be supported by further studies which reported the presence of
EpCAM™9°™¢ CTCs expressing EMT-related genes in metastatic breast cancer (mBC) patients
[70,88]. Furthermore, EMT was theorized to play a central role in cancer dissemination and
therapy resistance conferring more malignant phenotypes [37,98]. In agreement with this
model, different groups observed a considerable amount of mesenchymal CTCs in cancer
patients suffering of the progression of the disease [69,70,85]. Altogether, these findings
suggest that only relying on EpCAM expression to enrich CTCs may lead to overlook relevant

CTTC-subsets.
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1.4.3. Challenges in CTC-research: rarity and

heterogeneity

Due to their low frequency in blood, CTCs require highly specific and sensitive
enrichment techniques able to capture one single tumour cell in the background of millions
of white blood cells (WBCs) and RBCs in order to limit the occurrence of false positive and
false negative events [99]. Furthermore, capturing methods should guarantee high purity of
the enriched cell fraction as well as high reproducibility and reliability — independently on
the patient [100]. As explained above, the most used technologies to enrich CTCs in blood
samples rely on the expression of EpCAM protein by tumour cells. In the CellSearch® system,
anti-EpCAM antibodies are coated to ferrofluidic paramagnetic nano-beads which can assure
the automated enrichment of EpCAM-expressing cells. The subsequent CTC-detection is
performed via immunofluorescence, focusing on the presence of nucleic signal, cytokeratin
expression and lack of the hematopoietic marker CD45 [66,81,101]. However, as previously
mentioned, EpCAM might be not the proper choice to collect a wide population of CTCs.
Furthermore, Punnoose and colleagues demonstrated that the capturing efficiency of the
CellSearch® system is approximately 75% for tumour cells expressing high levels of EpCAM
and 42% for EpCAM”’W tumour cells [102]. Therefore, in the last decades several alternative
CTC enrichment technologies were designed and they can be mainly grouped in label-
dependent approaches — targeting antigens only expressed by CTCs — and label-free
approaches, focusing on size, deformability, density and electrical properties of tumour cells
[100,103,104]. Besides the low frequency, the second big challenge in CTC-research is the
heterogeneity of tumour cells. Therefore, it is of major interest to singularize CTCs in order
to perform a single-cell genomic, transcriptomic and proteomic (known as “-omic” analysis)
characterization which may provide a comprehensive molecular portrait of the cancerous

disease, absolutely necessary to better understand it [103,105].

1.4.3.1. Label-dependent enrichment strategies
Label-dependent CTC-capturing techniques may be categorized in positive selection and
negative selection approaches, based on whether they focus on properties of tumour cells or

on blood cells, respectively [88]. Positive selection aims to collect CTCs expressing certain

surface proteins (e.g. EpCAM) by utilizing specific antibodies which are often conjugated to
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immunomagnetic microbeads (e.g. CellSearch®) [106]. However, the choice of the target
protein is challenging: it needs to be sufficiently expressed on the surface of the tumour cell
and should specifically be related to cancer, in order to distinguish CTCs from WBCs and
RBCs. To the end of overcoming limits related to the EpCAM expression, research groups
have investigated the validity of alternative markers, such as: HER2/neu, mucin 1, EGFR,
neural cadherin, the CUB domain-containing protein 1 (CDCP1, CD318), and the prostate-
specific membrane antigen [69,88,100,107-110]. Moreover, the feasibility of the
combination of anti-EpCAM antibodies with further antibodies was tested for the Thomsen-
Friedenreich antigen (CD176), the melanoma cell adhesion molecule, the cell surface
glycoprotein mucin18, and integrin alpha 6 (CD49f) [84,111,112]. An additional possibility is
to perform a sequential enrichment on the EpCAM-depleted fraction of blood samples. By
applying this approach, Schneck et al. managed to enrich EpCAM™ /%" CTCs in mBC
samples, through nano-immunomagnetic beads coated to antibodies anti-CD49f, Trop2 and
CK8, involved in the invasion-metastasis cascade [113]. However, to date, no specific
“tumour-associated” mesenchymal markers are known to enrich and detect CTCs with

epithelial-mesenchymal plasticity in a wide spectrum of cancers [88].

Another approach is the negative selection of CTCs via depletion of blood samples of

WBC and RBC, by targeting antigens exlusively expressed by blood cells (e.g. CD2, CD16,
CD19, CD38, CD45, CD66b, glycophorin A, and according to the type of cancer CD36 or
CD56), with specific antibodies often conjugated to magnetic beads [114-116]. The major
limit of this procedure consists in finding the right balance between blood cell depletion rate
and CTC loss and these strategies were reported to be not so suitable to enrich consistent

pure fractions of tumour cells [88,114-116].

Due to the above reported limits, many research groups and companies focus on the

development of label-free collection approaches.

1.4.3.2. Label-free enrichment strategies
Label-free enrichment techniques are based on different biophysical properties of
tumour cells compared to WBCs and RBCs, regardless of their protein expression. In the last

decades, several CTC collection approaches were designed, such as density-based gradient
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centrifugation, (micro) filtration systems, and microfluidic devices and each of them provides

different capturing performances [88].

The density-based centrifugation was the first enrichment approach already

investigated in 1959, since CTCs were reported to possess similar density to the
mononuclear blood cells [65,117,118]. In the following years, this method was implemented
and improved by independent research groups. Nevertheless, the heterogeneous densities
of tumour cells and the considerable leukocyte contamination still lead to poor recovery rate
which is the major limit of this approach [88,119-122]. By exploiting the similar density of
CTCs and leukocytes, a novel strategy was tested by Fischer and colleagues [118] which

achieved considerable CTC-enrichment rates via diagnostic leukapheresis (DLA). During the

DLA sampling, patients” high blood volumes are continuously centrifuged on a density
gradient to separates mononuclear cells and CTCs from the blood, which is then,
immediately returned to the patients [65,118]. In 23 patients suffering from different
cancers (breast, pancreatic and gastro-intestinal), the authors observed an increased CTC
detection rate of 44% in comparison to standard PB volumes (7.5 Ml within the CellSearch®),
by processing 2 mL DLA product for CTC detection [65,118]. However, this approach was and
is still under extensive clinical validations within the European projects CTC-Trap [123] and

Cancer-ID [124].

CTCs were described to be larger and stiffer then blood cells, therefore several
technologies were designed to enrich them based on these physical properties
[63,66,88,125-131]. The main investigated approach is the filtration of blood samples by
utilizing filter membranes (e.g. VyCap®) [68,125,132—-137], track-etched membranes (e.g.
ISET®) [138—-142], three-dimensional microfilters (e.g. Parsortix®)[87,89,143] and microfluidic

devices (e.g. Vortex Chip®, Clear Cell®) [127,144-147]. Membrane-based filtration strategies

were shown to be easy, quick and suitable for clinical routine in various types of cancer,
although some aspects still require improvements, such as the purity of the enriched CTC
fraction — essential for a proper CTC detection — and the detachment of cells retained by
membranes, required for further molecular characterizations [68,88,141,148-152].
Moreover, these methods cannot enrich small CTCs whose role is still unknown. In fact, they
might be either relevant in cancer dormancy or just the result of cell death[153]. Microfluidic

platforms were shown to be able to capture CTCs in different types of cancer, in a fast high-
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throughput fashion, assuring consistent recovery, purity rates, and cell-viability [87-

89,127,143-147,154].

Data reported so far suggest that the best strategy might be a subsequent application of

label-based and label-free techniques in order to collect wider subsets of CTCs.

1.4.3.3. Detecting and isolating CTCs

The heterogeneity of cancer requires the single-CTC characterization which may be
hampered by the leukocyte contamination affecting enrichment technologies. Therefore, it
is of major interest to perform proper detection and isolation of single tumour cells, prior to
molecular analysis. The field of the single cell-isolation is currently dominated by three major
techniques: fluorescent activated cell sorting (FACS), dielectrophoresis (DEP) and

micromanipulation [88].

The FACS-sorting is automated, fast, robust and provides details about the expression of
several biomarkers, due to the possibility of utilizing several fluorophores which is the major

IH

limit of other “classical” approaches [155,156]. However, flow cytometry does not provide a
visual control of the isolated cell which may predict the suitability of the CTC for further
analysis (i.e. DNA degradation) [88,157]. The automated DEPArray™ system (Menarini Silicon

Biosystems) isolates CTCs based on their different dielectric properties compared to blood

cells, and it also provides visual controls as well as information about biomarkers expression
[157-159]. However, the whole processing may take up to 3 h and may lose relevant cells
due to high volumes of sample lost in the tubing system [88]. Semi-automated

micromanipulators such as the CellCelector™ may be effectively utilized to detect and isolate

CTCs by combining an epifluorescence inverted microscope and a robotic arm with a glass
capillary which can aspirate the selected cell and deposit it in a PCR tube or onto a glass
slides [160]. Among its major advatages, the system provides a visual control during the cell
isolation procedure and the sheer forces acting on cells are lower compared to these of the
FACS-sorting. Furthermore, the risk of isolating unselected material is below <9% for a

density of 25-50 cells/100 mm? [160].
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Each of these approaches was reported to be appropriate for effective isolation of single
tumour cells to the end of molecular analysis [155—-160]. However, according to the needs,

one technology might be more suitable than another.

1.4.4. Clinical role of CTCs in metastatic breast cancer

Since the phenotype of primary tumours may differ from related metastases (e.g.
HER2/neu status in mBC [161]), and since the sampling of both primary and metastatic
lesions is an invasive and complex procedure, both the detection and characterization of
CTCs in PB may represent a powerful alternative to investigate cancerous diseases. These
tumour cells are, therefore, currently considered as a “liquid biopsy” [103]. However the
topic is still in its infancy and no clinical applications based on CTCs are available so far,
although some of the currently running clinical trials might be approved in the near future
and subsequently applied in the clinical practice [162]. The discussion about the clinical role
of CTCs can be mainly grouped in two topics: 1) the validity of CTC enumeration as a
prognostic and therapy decision tool; 2) the clinical utility of CTC characterization in the

treatment selection [163].

1.4.4.1. Validity of CTC enumeration

Even though the abundance of CTCs in PB is scant, their presence correlates with poor
clinical outcomes in breast, colorectal, lung and prostate cancers [81,162,164,165]. CTCs’
prognostic significance in mBC was first investigated by Cristofanilli et al. in 2004, which
reported a cut-off value of 25 CTCs/7.5 mL PB — detected via CellSearch® — to predict poor
progression free survival (PFS) and OS for patients suffering of mBC [81]. After this
milestone, the scientific community gradually shifted from the detection of disseminated
tumour cells (DTCs) in bone marrow samples — as markers of minimal residual disease — to
the detection of CTCs in PB samples, due to the invasiveness of the former procedure [62].
On the contrary, PB sampling is easy, painless and can be repeated several times to monitor
patients” treatment responses. However, any study on CTC enumeration highly depends on
the technique used for both cell-enrichment and detection, as well as on the volume of the
processed PB (see chapter 1.4.4). For this reason, most of the research groups rely on the
only one FDA-approved CellSearch® system, missing though, CTCs with mesenchymal-like

and intermediate phenotypes (see chapter 1.4.3) which might play a major role in metastasis
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and treatment resistance [69,70,166,167]. After Cristofanilli and colleagues” publication, the
correlation between CTC enumeration and outcomes in mBC patients was further confirmed
by other numerous studies [62,163]. The prognostic role of the CTC-count was investigated
not only in terms of absolute quantification, but also in terms of dynamic variations. It was
reported that mBC patients with a decreased CTC-count after the first line of treatment,
have better PFS and OS than patients with constant high CTC numbers [81,168]. Comparable
observations were described in metastatic cancers of colon, prostate and lung as well

[164,165,169].

Clinical trials involving mBC patients are currently investigating the efficacy of the CTC count
for the choice of therapies. Within the clinical trial SWOG S0500 — involving 120/595 mBC
with >5 CTCs after the first line of therapy — it was confirmed that high CTC counts predict
disease progression. However, Smerage et al. reported that patients” OS was not improved
by an early switch to a second line chemotherapy [170]. In the ongoing study CirCe01
(NCT01349842) clinicians are testing a similar approach to evaluate whether CTC-variations
may guide the third line of chemotherapy [171]. The STITC-CTC study (NCT01710605) aims to
test the validity to treat >700 hormone receptor positive mBC patients either with hormone

therapy for baseline CTC count <5 or with chemotherapy in case of 25 CTCs [62,162].

Although all together above reported studies suggest a valuable role of CTCs as therapy
monitoring instrument, the clinical utility of CTC-enumeration still requires further

elucidations in order to be implemented in the clinical routine practice.

1.4.4.2. Utility of CTC characterization

In the last years, the characterization of CTCs has acquired lots of interest, mainly due to

{i

the availability of new high resolution technologies for “-omic” analysis on single cells,
thereby required to investigate the cancer heterogeneity. Currently, there are no ongoing
clinical trials based on CTC-“omic” analysis yet, although several research groups are
investigating CTC genotypes to better understand the systemic disease [69,155,157,172]. On
the contrary, the phenotypical characterization of CTC (biomarker expression) — typically
based on immunofluorescence staining combined with high-resolution imaging — is already

in its evaluation phase for clinical applications. Among these studies, the trials

NCT00820924[173], NCT00820924([174], DETECT Ill (NCT01619111)[175] and DETECT IVa/b
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(NCT02035813)[176] focus on the efficacy of HER2/neu-targeted therapies in patients
suffering of HER2/neu-negative mBC but with HER2/neu-positive CTCs (NCT00820924,
DETECT II/1V) or EGFR-positive CTCs (NCT00820924).

However, the validity of CTC-characterization in the choice of treatments is in its very

early stages and surely requires further investigations.

1.4.4.3. Clinical relevance of CTCs with epithelial-

mesenchymal plasticity

As above mentioned, the detection of EpCAMP*"™"

CTCs in cancer patients generally
predicts adverse prognoses. However, it was recently hypothesized that patients with
undetectable CTCs might also encounter worse outcomes due to the existence of an
EpCAM™"/™9tve s hpopulation of CTCs [88,177]. Still very little is known about these cells
and this hypothesis is currently investigated by several research groups. Mego and
colleagues observed a correlation between the scarcity of EpCAMP*™¢ CTCs and the
occurrence of brain metastasis in mBC patients [85]. Subsequently, Zhang et al. reported

negative

high brain metastatic potentials for an isolated EpCAM subpopulation of CTCs injected
in nude mice[178]. In agreement with these observations, Vishnoi and colleagues suggested
that stem-cell-like EpCAM™%™¢ CTCs, expressing markers for cancer dormancy (e.g.
urokinase-type plasminogen activator receptor and integrin 1), might play a role in the
development of brain metastases [179]. Furthermore, Lustberg et al. observed decreased OS

negative

in mBC patients presenting more than 100 EpCAM CTCs/mL of blood. Interestingly, in
contrast with these observations, de Wit and colleagues recently reported no inferior
prognoses in metastatic lung cancer patients with EpCAM™"/"%ve cTcs [68]. Similar
conclusions could be drawn for metastatic prostate cancer patients, investigated within the

CTC-Trap consortium [180].

To date, only few studies addressed the question whether this subset of CTCs might be

of clinical relevance and all agree on the importance of investigating the presence and

low/negative

molecular signatures of EpCAM CTCs, in order to acquire new insights into cancer

development and progression.

22



2.Aim of the study

Despite enormous efforts for therapeutic improvements, more than 30% of mBC
patients from all over the world still die of distant metastases, due to a minimal residual
disease. The major obstacle for effective cures is the heterogeneity of primary tumours.
They are composed by various cellular subsets with different metastatic potentials and
sensitivity to treatments. Therefore, investigating the heterogenous biology of CTCs —
considered surrogates of minimal residual disease — is of major importance to select the
optimal treatment and shed light on eventual therapeutic failures. The field of CTC analysis is
positive

still in its infant and most of the knowledge regards the enumeration of the EpCAM

tumour cells in relation to the patients” prognosis.

The aim of the study was to significantly contribute to the optimization of strategies to
enrich, isolate and characterize two different subsets of CTCs - EpCAMhigh and
EpCAM™"/"€94tve _ \yithin same mBC patients’ blood and DLA samples. Both enrichment and
molecular analysis are necessary for the real-time monitoring of the disease in the patients
and to achieve personalized therapies which may help to overcome treatment failures. To
this end, the European “CTC-Trap” consortium (funded through FP7 health.2012.1.2-1
#305341) was founded [123,180,181]. The main goal of this consortium consisted in the

low/negative

validation of a filtration technique to enrich and detect the EpCAM subpopulation of

CTCs from EpCAM-depleted blood and DLA samples of mBC patients.

Within the herein described study, additional methods enabling the enrichment as well
as the isolation of patient-matched EpCAM™" and EpCAM""/"¢9°t"e cTCs were validated and
subsequently, the enrichment/isolation workflow should be adapted for single cell molecular
analysis. The second part of this study aimed to perform the comparative characterization of
the status of the PIK3CA oncogene within patient-matched EpCAM"" and EpCAM"/nedative
CTCs, since PIK3CA activating mutations might be involved in HER2/neu-targeted treatment
resistance. To this end, a protocol for PIK3CA-specific PCRs and Sanger sequencing of single
cells should be validated to achieve mutational analysis of PI3KCA hotspots mutations
E542K/E545K and H1047R. The above described aims should be achieved in a translational
project connected to the studies DETECT Ill, DETECT IV, AUGUSTA and SEPTEMBRA.
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In the future, the information on the presence of EpCAM™"/™%%"e cTCs and on the
presence of PIK3CA hotspot mutations, in both subsets of CTCs, will be correlated to
patients” follow-up data and might positively contribute to achieve more precise patients’

prognosis as well as personalized treatment choices.
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3. Materials and Methods

3.1. Cell lines

The MCF-7 and T47D breast cancer cell lines were purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA; catalogue number: HTB-22™ and HTB-133™).
The MCF-7 was generated from an adenocarcinoma of a 69-year old Caucasian woman. The

T47D cell line was generated from a ductal carcinoma of a 54-year old Caucasian woman.

3.1.1. Culture conditions

All cell lines were cultured in RPMI 1640 L-glutamine containing 1% Penicillin-
Streptomycin and 10 % foetal calf serum (all Gibco, Karlsruhe, Germany). MCF-7 cells were
further supplemented with 25 mM HEPES and the T47D cells with 10 mM HEPES, 1 mM
sodium pyruvate and 0.45% D-(B) Glucose solution (Gibco). All cell lines were grown at 37°C
in a humidified atmosphere with 5% CO, and were subsequently authenticated through

highly-polymorphic short tandem repeat loci (STRs) analysis.

3.1.2. Sub-culturing of MCF-7 and T47D cells

At a confluency of 60-80%, the culture medium was discarded and cells were washed
with PBS (Gibco). After discarding the PBS, cells were incubated with 0.05% trypsin (Gibco)
for 5 min at 37°C, in order to detach them from the surface of the culturing flasks.
Afterwards, the proteolytic action of the trypsin was stopped by transferring the complete
medium into the flasks. Cells were collected and transferred in 15 mL Falcon® tubes (Corning
Incorporated, New York, USA) and then centrifuged at 1100 rpm for 5 min, in order to
completely remove trypsin traces. To this end, the supernatant — consisting of medium and
trypsin — was then discarded and the cell-pellet was resuspended in complete medium and

sub-cultivated in new flasks with a ratio of 1:2 or 1:4, according to the density of the cells.

3.1.3. Cryopreservation and re-culturing

Aliquots of cells were cryopreserved by transferring 1 mL of the resuspended pellet into
2 mL cryo tubes (Greiner, Solingen, Germany) supplemented with 5% dimethyl sulfoxide
(DMSO; Sigma-Aldrich, Munich, Germany) and slowly freezed in freezing container at -80°C,

for 24 h. Afterwards, cryos were transferred in liquid nitrogen for long term storage.
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In order to re-culture cryopreserved cells, frozen aliquots were thawed at 37°C,
transferred into 15 mL Falcon® tubes along with new complete medium. Cells in new
medium were centrifuged at 1100 rpm for 5 min, to remove traces of the DMSO. The
supernatant was discarded and the cell-pellet was resuspended in new complete medium

and transferred in a new flask for culturing.

3.2. Cytospins preparation

To the end of validating different immunostainings utilized for CTC-detection, cytospins
of MCF-7 cells and of leukocytes — isolated from healthy donor whole blood samples — were

prepared.

3.2.1. MCF-7 and whole blood fixation

In order to simulate the conditions of CTCs in patients” whole blood samples processed
in the clinical routine, MCF-7 cells and whole blood were fixed. At a confluency of 60-80%,
MCEF-7 cells were processed for sub-culturing as above described, omitting the transfer of
the cell-pellet into new flasks. Cells were instead resuspended in 7.2 mL of PBS, transferred
into CellSave® preservative tubes (Menarini Silicon Biosystems) and incubated for 24 h at
room temperature (RT). Afterwards, cells were centrifuged at 1100 rpm for 5 min, the

supernatant was discarded and the cell-pellet was resuspended in 1 mL PBS.

An amount of 7.5 mL of whole blood samples was transferred into CellSave®
preservative tubes and incubated for 24 h, at RT. Afterwards, whole blood samples were

processed to isolate leukocytes.

3.2.2. Isolation of leukocytes from whole blood

To the end of isolating leukocytes, fixed blood samples were diluted in PBS (1:2) and
then slowly pipetted on 15 mL of Biocoll separating solution (Merck Millipore, Billerica,
Massachusetts, USA), previously deposited into a new 50 ml Falcon® tube. Then, samples
were processed for density gradient centrifugation at 1500 rpm, RT, for 30 min, without
breaks (Figure 11). Afterwards, the supernatant was discarded and the interphase,
comprising the majority of leukocytes, was carefully aspirated and transferred into a new 50

ml Falcon® tube.
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Figure 11. Whole blood centrifuged on a density gradient, from humanimmunologyportal.com [182]

As a result of density gradient centrifugation, blood components are divided in three parts according to their
densities: plasma in the supernatant, most of leukocytes and platelets in the interphase (buffy coat) and red
cells in the pellet.

The buffy coat was washed with 50 mL PBS and centrifuged again. Then, the

supernatant was discarded and the pellet was resuspended in 1 mL PBS.

3.2.3. Cell counting

The amount of cells was determined through the improved Neubauer counting
chambers (Paul Marienfeld GmbH & Co. KG, Lauda-Konigshofen, Germany) composed of 2
sampling areas of 4 mm?, each divided into 4 squares. All 4 squares are further divided in 16
squares. In order to determine the amount of the cells per mL of suspension, 10 uL of cells
diluted in PBS were transferred into an Eppendorf tube (Eppendorf, Hamburg, Germany) and
mixed with Trypan blue (Sigma-Aldrich) 1:1. Half of the suspension was pipetted into one
sampling area and the chamber was examined under the microscope. The number of cells
located in the 64 small squares was recorded and the total amount of cells per mL was

calculated as following: Cell count x 2 x 10 000 / 4.

3.2.4. Spinning of cells

Resuspended MCF-7 and leukocytes were diluted with PBS down to a concentration of
125 000 — 250 000 cells/mL. An amount of 400 uL of diluted cell suspensions were
transferred onto SuperFrost glass slides (Paul Marienfeld GmbH & Co. KG) and centrifuged at
600 g for 3 min though the ROTOFIX 32 A centrifuge (Hettich GmbH & Co.KG, Tuttlingen,
Germany). The supernatant containing PBS was removed and cells were spun onto glass

slides and dried overnight. Afterwards, cytospins were stored at -20 °C.
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3.3. Enrichment, detection and isolation of patient-
matched EpCAM"gh and EpCAM!ow/negative CTCs
combining CellSearch® and VyCAP™ systems

The first workflow is based on de Wit et al. [68] and on Fischer et al. [118] and was
further improved within the CTC-Trap, as illustrated below [123,180]. First, blood and DLA
samples were drawn from patients, discarding the first 2-3 mL of samples in order to dispose
of possible skin contaminating cells which may be responsible of false positivity during the
following CTC detection. Then, an aliquot of DLA and 7.5 mL blood samples were fixed in
CellSave® preservative tubes for up to 96 h. The processed volumes of DLA aliquots which
usually ranged between 2 mL and 4 mL depend on the concentration of mononuclear blood
cells which has to be 200x10° in total. After fixation, samples are sequentially processed

high and

trough CellSearch® and then via VyCAP™ filtration, in order to enrich EpCAM
EpCAMW/Mesetive cTcs  respectively. The CellSearch® is composed by the CellTracks®
Autoprep® system, designated to capture and stain CTCs, and by the CellTracks Analyzer II®

designated todetect them (Figure 12).

7.5 mL patient blood
or 2 mL DLA samples

1B
=

EpCAMhigh EpCAMlow/neg
Enrichment and detection Enrichment and staining
. EpCA‘MIow/neg
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’lfj lf 5
//" e

CellSearch®

Detection

Figure 12. Workflow #1 for CTC-enrichment and detection, adapted from Lampignano et al., 2017b [183]

The first workflow combines CellSearch® and VyCAP™ systems to enrich respectively patient-matched
EpCAM"™" and EpCAM™ /9% CTCs, by sequentially processing blood or DLA samples.
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Within the CellTracks® Autoprep® system, CTCs are captured by virtue of anti-EpCAM
antibodies coated to immunomagnetic ferrofluids. Captured cells are stained with DAPI for
nuclei detection, anti-cytokeratins 8, 18, 19/PE conjugated, and anti-CD45/APC conjugated
and then, are collected in disposable magnetic cartidges. At last, cartridges are scanned
within the CellTracks Analyzer 1I® and EpCAMhigh CTCs are identified according to positive
staining signals for nuclei and cytokeratins and negative for the leukocyte marker CD45.
Blood or DLA samples depleted of EpCAMhigh CTCs are collected and further processed within
48 h via VyCAP™ filtration device (VyCAP™, Deventer, Netherlands) which consists of a pump
unit and of disposable slides with a microsieve composed of a silicon nitride filters with 5 um

pores (Figure 13).

Blood sample

Silicon nitride filter

-~ Waste
Pump unit

Figure 13. The VyCAP™ filtration device

The VyCAP™ filtration device is composed by a pump unit and two 50 ml tubes separated by a slide with a
microsieve. Each microsieve is composed of thousands 5 um pores.

Blood or DLA samples are transferred into the upper tube, then, are filtered under a
constant pressure of 100 mbar. Big and stiff cells are retained by the microsieve and all cells
smaller than 5 um are collected into the lower tube. Afterwards, retained cells are stained
for nuclei, cytokeratins and CD45, and then observed under an epifluorescence microscope

for the detection of EpCAM/®*/"e9ative cTCg.

3.3.1. Validation of the immunocytostaining

Prior to the establishment of the workflow described above, the immunostaining

mastermix utilized within the CTC-Trap consortium to detect CTCs was validated on cell lines.
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3.3.1.1. Immunocytostaining of cytospins

In order to test the efficacy and specificity of the immunostaining mastermix #1 (Table
2) targeting nuclei, cytokeratins and CD45 altogether, cytospins of fixed MCF-7 (expected
cytokeratin®™¢ and CD45"™9"""¢) and leukocytes (expected cytokeratin™9™*¢ and CD45°°""*¢)
were washed with 200 uL PBS/BSA (Gibco/Sigma-Aldrich) 1 % and then incubated with 200
uL PBS/BSA 1 %/saponin (Gibco/Sigma-Aldrich) 0.15 %, in order to permeabilize cells. During
the incubation, the immunostaining mastermix solution was prepared diluting below

reported antibodies in 200 uL PBS/BSA 1 %/saponin 0.05 %.

Table 2. Inmunostaining mastermix #1

. . . Final

Antibody Clone Conjugation concentration Company
. Life Technologies,

Anti-CD4 HI PerCP 1:2

nti-CDA4> 30 [68] erC > Carlsbad, California, USA
Anti-
PanCytokeratins C11/AE1/AE3 . Aczon srl, Monte San
N Particles 575 1:50 !
(1,4,5,6,8,10,13,  [68,113] anorarticles Pietro, Italy

14, 15, 16, 18, 19)

After the permeabilization, cells were incubated with the immunostaining mastermix,
for 1 h, at RT, dark. Then, cells were washed twice with 200 ul PBS/BSA 1 %, in order to
remove the unbound antibodies. Afterwards, 200 uL of ProlLong® mounting medium
containing DAPI (Life Technologies, Carlsbad, California, USA) were pipetted on cells and a

glass coverslip (Paul Marienfeld GmbH & Co. KG) was placed on cytospins.

3.3.1.2. Epifluorescence microscopy

Glass slides were observed under the epifluorescence microscope Nikon Eclipse E400,
located in Prof. Dr. Stoecklein’s research lab, and the whole area of the microsieve was
automatically scanned with a 20 x objective in the following channels: DAPI for the detection
of the nuclei, PE for the cytokeratins-NP575 and PerCP for the detection of the CD45
antigen. The following exposure times were used: 10 ms for DAPI, 800 ms for PE and 300 ms

for PerCP.
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3.3.2. Validation of the workflow

Prior to processing blood and DLA clinical samples, the recovery capability of the
VyCAP™ filtration approach was tested on healthy donor blood samples previously
processed within the CellSearch® system and then spiked with MCF-7 cells. Since the
enrichment of EpCAMhigh CTCs within the CellSearch® system has previously been
established [113,172] and is currently performed in the clinical routine, the establishment of
the herein described workflow focused on the novel part of the protocol only: the
enrichment of EpCAMPY/"€99t¢ cTCs via VyCAP™ filtration of patients’ blood samples,

previously depleted of EpCAMhigh CTCs.

3.3.2.1. Immunostaining of cells in suspension

Prior to the spiking experiments, fixed MCF-7 cells were stained in suspension. To this
end, the cell pellet was resuspended in 1 mL of PBS/BSA 1 %/saponin 0.15 % and incubated
15 min at RT. Afterwards, cells were centrifuged at 1100 rpm for 5 min and the supernatant
was discarded to remove the reagents. The cell pellet was washed with 1 mL PBS/BSA 1 %
and further centrifuged. Cells were resuspended in 400 puL of the immunostaining mastermix

solution #1 and incubated for 1 h, at RT, dark.

3.3.2.2. Cell line spiking experiments

In order to measure the capturing efficacy of the VyCAP™ filtration device, three
independent spiking experiments were performed. Defined amounts of MCF-7 cells were
pipetted into blood samples previously processed with the CellSearch® (Table 3). Then,

spiked blood samples were processed with the VyCAP™ filtration device, as explained above.

Table 3. Amount of MCF-7 cells spiked per each spiking experiment

# Spiking experiment # Spiked MCF-7 cells
Experiment 1 64
Experiment 2 97
Experiment 3 70
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3.3.2.3. Immunocytostaining on microsieves

In order to verify the effective immunostaining of tumour cells retained by the VyCAP™
microsieve, fixed un-stained MCF-7 cells were spiked into blood samples of healthy donors,
previously processed within the CellSearch® (see above). Afterwards, spiked blood samples
were filtered through the VyCAP™ device as reported above. Then, the slide was transferred
into its holder (Figure 14) and the microsieve was washed with 50 uL PBS/BSA 1 %/saponin
0.15 %.

Immunofiluorescence labels,
Wash buffer, Fixation buffer,

FISH probes, ...... . .
Microsieve

@ Absorber i 'll!,"f
5 =% Incubate

Figure 14. VyCAP™ slide holder, by VyCAP™ [184]

In order to proceed with the in situ immunostaining, VyCAP™ slides are placed into their holders, equipped
with a disposable sponge to remove exceeding reagents.

Retained cells were incubated with 50 puL PBS/BSA 1 %/saponin 0.15 % for 15 min at RT
to allow the transient permeabilization of the cells membrane. In order to remove the
solution, the microsieve was gently pressed down on the sponge. Then, 50 uL of the staing
mastermix solution #1 was prepared as above reported. Cells were incubated with the
immunostaining solution for 1 h, at RT, dark. Then, reagents were removed through the
sponge and the microsieve was incubated with 50 uL PBS/BSA 1 %, for 5 min to remove
unbound antibodies. After the incubation, the solution was removed and the microsieve was
incubated with 50 puL 1 % formaldehyde (Merck KGaA, Darmstadt, Germany), for 10 min, at
RT, dark, in order to fix the cells. The formaldehyde was removed and the microsieve was
washed twice with 50 puL PBS/BSA 1 %. At last, 10 uL of ProLong® mounting medium

containing DAPI were pipetted on the upper side and on the lower of the microsieve. Then,
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one coverslip of 0.85 cm? (0.13-0.16mm thick; Menzel-Glaser, Saarbriickener, Germany) was
applied on each side. Slides were stored at -20 °C, dark, until the scanning. Afterwards, the
effective immunostaining of both MCF-7 and co-captured leukocytes was checked under the
epifluorescence microscope Nikon Eclipse E400 according to the parameters above reported.

As negative controls, unspiked blood samples of healthy donors were processed as well.

The above described immunostaining protocol on microsieves is based on de Wit et

al.[68] and was further improved within the CTC-Trap [180].

3.3.3. Processing mBC patients” blood samples

Blood samples of patients suffering from mBC were collected within the German
DETECT HI/IV (Ill: NCT01619111, IV: NCT02035813; for more information: www.detect-
studien.de) and AUGUSTA studies. Written informed consent was obtained from all
participating patients and the studies were approved by the Ethical Committee of the
Eberhard-Karls University Tuebingen (responsible for DETECT IIl: 525/2011AMG1) and the
local Ethical Committee of the Heinrich-Heine University Duesseldorf (DETECT IIl: MC-531;
DETECT IV: MC-LKP-668 AGUSTA: 3430).

3.3.4. Processing mBC patients” DLA samples

DLA samples of patients suffering from mBC were collected within the German
SEPTEMBRA study, in cooperation with Prof. Dr. Stoecklein’s research group (Department of
General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the
Heinrich-Heine University, Duesseldorf, Germany) as previously published.  Written
informed consent was obtained from all participating patients and the study was approved
by the local Ethical Committee of the Heinrich-Heine University Duesseldorf (AUGUSTA:
3430; SEPTEMBRA: 3460).

3.3.5. Detecting tumour cells: image analysis

For the detection of the cells retained by VyCAP™ filters, the open source image analysis
software “ICY” was used. All the images of each sample were loaded simultaneously and

separated series of time frames of images for each channel were automatically created. The
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three different channels were merged and all the positive events for DAPI and cytokeratins,

negative for CD45 and with a spherical shape bigger than 4 um were recorded.

3.4. Enrichment and isolation of patient-matched
EpCAMPhigh and EpCAM/ow/negative CTCs combining

CellSearch®, Parsortix™ and CellCelector™ systems

The workflow #2 consists in a sequential processing of patients” blood samples via
CellSearch® first and then via Parsortix™, in order to enrich EpCAM™" and EpCAM/"e9ative
CTCs, respectively. A fixed volume of 7.5 mL of blood were processed via CellSearch® system,

as above explained. After depletion of EpCAM™"

CTCs, blood samples were collected and
further processed within the Parsortix™ system (Angle plc, Guildford, UK) to enrich

EpCAM/"/"e9ative cTcs uncaptured by the CellSearch® (Figure 15).

7.5 mL patient blood
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EpCAM™" EpCAM®""* Detection and isolation
Enrichment and detection Enrichment and staining
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Figure 15. Workflow #2 for CTC-enrichment, detection and isolation, adapted from Lampignano et al., 2017b
[183]

The second workflow combines the CeIISearch®, the Parsortix™ and the CellCelector™ systems to enrich, detect
and isolate patient-matched EpCAM™" and EpCAM**/"*9°%*¢ cTCs,

The Parsortix™ system is a semi-automated microfluidic device capable to enrich cells
based on their size and stiffness, in a label-free fashion. It consists of a pumping system
which draws blood samples into a disposable cassette at a pressure of 99 mbar. Each

cassette is composed by separation steps of 6.5 um (Cell Separation Cassette GEN3D6.5,
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ANGLE plc) in height blocking the flow of most cells bigger than leukocytes, including CTCs.
On the contrary, small cells can flow through the cassette and are discarded in the waste

container (Figure 16).
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Figure 16. The Parsortix™ system, by Xu et al., 2015 [89]

The Parsortix™ device is composed by an inner pump tubing system, a sampling area (at the centre), waste and
buffer area (left side) and reagents and harvest area (right side) (a). On the top it is located the clamp (b)
holding the enrichment cassette (c). The disposable cassette consists of several lanes. Each of them is formed
by numerous separation steps which retain cells bigger than 6.5 um (or 10 um in the former version) (d).

At first, the whole device was automatically primed through PBS and Ethanol 100%
(Merck KGaA), in order to remove air bubbles and to sterilize both tubing systems and
disposable cassettes. Then, blood samples were placed into their holder and the blood was
pumped through the cassette. Afterwards, captured cells were permeabilized and stained in
situ for nuclei, cytokeratins, EpCAM, and CD45. By inverting the flow of the buffer into
cassette, stained cells are collected in a tube, outside the system. By virtue of an automated
cleaning protocol based on Deconmatic reagent (Decon Laboratories Ltd, Hove, UK), clean

and sterile working conditions could be guaranteed.

At last, both EpCAM™" and EpCAM"/"é9°t¢ ce||s are detected and isolated in PCR tubes

through the CellCelector™ (ALS, Jena, Germany), a semi-automated micromanipulator
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consisting of an inverted epifluorescence microscope (CKX41, Olympus) with a CCD camera

system (XM10-IR, Olympus) and a robotic arm with a vertical glass capillary (Figure 17).
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Figure 17. The CellCelector™ micromanipulator, inspired by Neumann et al., 2016 [160]

The CellCelector™ device is composed by a micromanipulator (A) with a robotic arm ending with a glass
capillary (C, D), a motorized stage (G) and a deposit tubes holder (B, H). The integrated fluorescence
microscope (E) enables the visual control of the single cell isolation (F).

Enriched cells were deposited onto a glass slide located on a magnetic slide holder
placed in the motorized stage of the microscope. CTCs could be detected through
observation under the epifluorescence microscope and subsequently isolated. The robotic
arm with a glass capillary is able to aspirate selected cells from the glass slide and to deposit

them into PCR tubes located into the deposit holders.

3.4.1. Validation of the immunocytostaining

Prior to the establishment of the workflow described above, the staining of markers
whose expression is required for the CTC-detection, was validated on cell lines. As described
above, MCF-7 cells and whole blood samples were fixed in CellSave®. Then, leukocytes were
isolated from whole blood and both white blood and MCF-7 cells were spun onto different

glass slides.
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3.4.1.1. Immunocytostaining of cytospins

In order to test the efficacy and specificity of the immunostaining mastermix targeting
nuclei, cytokeratins, EpCAM and CD45 altogether, cytospins of fixed MCF-7 (cytokeratin®®,
EpCAMP* and CD45"9) and leukocytes (cytokeratin™?, EpCAM" and CD45°*) were washed
with 200 pL PBS and then incubated with 200 pL Triton X-100 (Sigma-Aldrich) 0.1 % for 10
min, in order to permeabilize cells. During the incubation, the immunostaining mastermix

solution #2 was prepared diluting reagents in DAKO antibody diluent, as described below

(Agilent, Santa Clara, USA; Table 4).

Table 4. The immunostaining mastermix #2.

Antibody- . . Final
R
eagent clone Conjugation concentration Company
Roche Diagnostics GmbH,
DAPI i i 1:20 Indiana, USA
. Santa Cruz Biotechnology
- - ® .
Anti-CD45 3S-75[113] AlexaFluore47 1:25 Inc., Dallas, Texas, USA
Anti-
PanCytokeratins C11/AE1/AE3 TRITC 1:50 Aczon.srl, Monte San
(1, 4,5,6,8,10, 13, [68,113] Pietro, Italy

14, 15, 16, 18, 19)
Cell Signaling Technology
Anti-EpCAM VU1D9 [113] AlexaFluor488® 1:50 Inc., Danvers,
Massachusetts, USA

After the permeabilization, cells were incubated with 200 uL of the immunostaining
mastermix, for 1 h, at RT, dark. Then, cells were washed twice with 200 uL PBS, in order to
remove the unbound antibodies. Afterwards, 200 uL of DAKO mounting medium were

pipetted on cells and a glass coverslip was placed on cytospins.

3.4.1.2. Epifluorescence microscopy

Glass slides were observed under the epifluorescence microscope integrated into the
CellCelector™. The following channels were checked with a 20 x object: DAPI for the
detection of nuclei, TRITC for the cytokeratins, FITC for EpCAM-AF488 and Cy5 for the
detection of the CD45-AF647. The following exposure times were used: 50 ms for DAPI, 300
ms for TRITC and FITC and 500 ms for Cy5.
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3.4.2. Validation of the workflow

Since the enrichment of EpCAI\/Ihfgh CTCs within the CellSearch® system has previously
been established [113,172] and is currently performed in the clinical routine, the
establishment of the herein described workflow focused on the novel part of the protocol
only: the enrichment of the EpCAM™"/9%ve cTCs via Parsortix™ processing of patients’

blood samples, previously depleted of the EpCAM™" CTCs.

3.4.2.1. Immunostaining of cells in suspension

Prior to the spiking experiments, fixed MCF-7 cells were stained in suspension. To this
end, the cell pellet was resuspended in 1 mL of Triton X-100 0.1 % in PBS and incubated 10
min at RT. Afterwards, cells were centrifuged at 1100 rpm for 5 min and the supernatant was
discarded to remove the Triton X-100. The cell pellet was washed with 1 mL PBS and further
centrifuged. Cells were resuspended in 400 uL of the immunostaining mastermix solution #2

and incubated for 1 h, at RT, dark.

3.4.2.2. Cell line spiking experiments

In order to measure capturing and harvesting efficacy of the 6.5 um Parsortix™ cassette,
three independent spiking experiments were performed. Blood samples of healthy donors
were processed through the CellSearch® as above described, and the discarded blood was
collected. Defined amounts of MCF-7 were pipetted into the CellSearch®-processed blood
samples (Table 5) which were subsequently processed with the Parsortix™ system, as

explained above.

Table 5. Amount of MCF-7 cells spiked per each spiking experiment.

# Spiking experiment # Spiked cells
Experiment 1 41
Experiment 2 105
Experiment 3 48

Recovered cells were counted before (capturing rate) and after harvesting (harvesting

rate), under the epifluorescence microscope integrated into the CellCelector™.
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3.4.2.3. Detection and isolation of tumour cells

Recovered cells — either from Parsortix™ or from CellSearch® cartridges — were
transferred onto glass slides, located on their magnetic holder on the motorized stage, and
were allowed to settle for 10 min. Instead, in order to evaluate the capturing of cells within
the Parsortix cassettes, these were directly placed on the holder on the motorized stage.

Analysis was performed using the CellCelector™ software 3.0 (ALS, Jena, Germany).

Imaging

By virtue of ferrofluid coating, EpCAMhigh cells could firmly settle onto glass slides and
samples could be automatically scanned with a cross-stage speed of 20 % and 20 x
magnification in the following epifluorescence channels: DAPI (for visualization of nuclei),
TRITC (for CK) and Cy5 (for CD45). The following exposure times were used: 300 ms for
TRITC, 500 ms for Cy5 and 50 ms for DAPI[160]. EpCAM™"/"¢9%t ca||s were manually scanned
with a cross-stage speed of 20 % and 40 x magnification in the epifluorescence channels
above listed, utilizing the same exposure times. Images of single cells in all epifluorescence

channels were recorded and stored for later documentation.

Selection criteria

Detected cells were analysed utilizing the following scan parameters: diameter signals
ranging from 5-40 um and grey value mean (fluorescence intensity of >2000 for cytokeratins
signal). DAPIP*"¢/Cytokeratins?®"¢/EpCAMW/94tve /D459 ayents were observed in
the bright field as well (BF). Only events with a round shape in BF, specific epifluorescence
signals, and without any sign of DNA fragmentation in DAPI — suggesting apoptosis — were

isolated.

Cell isolation parameters

Cell isolation was performed with glass capillaries of 30 um in diameter, in DAPI channel
to ensure no co-isolation of surrounding cells. At first, the glass capillary was calibrated 15-
25 um above the slide surface, then, selected cells were aspirated with a volume of 20-100
nL using. For optimal cell deposition 2—9 uL PBS was aspirated prior to the isolation process.
After aspiration, cells were deposited into PCR tubes prefilled with 50—-100 uL PBS buffer.

The whole cell isolation process for 50 CTCs took approx. 1-2.5 h. Therefore, fast processing
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of samples was guaranteed. At last, PCR tubes containing single cells were centrifuged for 10
min at 1300 rpm and the supernatant was removed leaving 1 pL of PBS in each tube. The

cells were stored at -80°C until further use.

The above reported protocol to isolate CTCs is based on Neumann et al., 2016[160].

3.4.2.4. Immunocytostaining in cassette

In order to verify the effective immunostaining of tumour cells into the separation

high high

cassette, fixed un-stained MCF-7 cells (EpCAM and cytokeratins™”") were spiked into
blood samples of healthy donors, previously processed within the CellSearch® (see above).
Afterwards, spiked blood samples were processed within the Parsortix™ system, as above
reported, and captured cells were stained in situ utilizing to the immunostaining mastermix
#2. Afterwards, cells were harvested, transferred onto a glass slide and the effective
immunostaining of both MCF-7 and co-captured leukocytes was checked under the
epifluorescence microscope integrated into the CellCelector™. As negative controls,

unspiked blood samples of healthy donors were processed as well.

3.4.3. Processing MBC patients” blood samples

Blood samples of patients suffering from mBC were collected within the German

DETECT lI/IV and AUGUSTA studies.

3.4.3.1. Statistical analysis

The dependence of the EpCAMP "/t cTC abundance on the frquency of the
EpCAMhigh CTCs was investigated through a linear regression test for Gaussian distribution,
with 95% of confidence. The significance of the MCF-7 recovery rate comparison between

the VyCAP™ and the Parsortix™ approaches was investigated through the unpaired t-test.
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3.5. Molecular characterization of single patient-

matched EpCAM"gh and EpCAM!ow/negative CTCs

The PIK3CA mutational status was investigated on single isolated EpCAM*/"e9°tve cTCg

high cTCs. To this end, isolated cells were lysed

in comparison with patient-matched EpCAM
and their genomes amplified. Then, PI3KCA hotspot regions were Sanger sequenced through
an amplicon-based approach. Prior processing patients” CTCs, the characterization workflow
was tested on single isolated MCF-7 and T47D cells, known to harbour the PIK3CA hotspot
mutations in exon 9 (amino acid change at position E542 and E545) and in exon 20 (amino

acid change at position 1047) respectively [185,186].

3.5.1. Whole genome amplification

In order to obtain optimal genomic DNA concentration for sequencing analysis, isolated
cells were processed for whole genome amplification (WGA) through Amplil WGA™ kit
(Figure 18; Menarini Silicon Biosystems), according to the manufacturer’s protocol which is

based on Klein and colleagues” protocol [187].

—H——h——A—
— > " \ \
Cell lysis DNA digestion
(Proteinase-K digestion) (Msel restriction endonuclease)
4— -
DNA Amplification Annealing and Ligation
(ligation-mediated PCR) of adaptors

Figure 18. Amplil™ WGA steps

Within the AmpliI™ WGA protocol, single cells are lyzed and their genomes digested trough Msel restriction
endonucleases. Afterwards, DNA fragments are ligated to adaptors and subsequently amplified through
adaptor-specific primers.

At first, cells isolated in 1 pL of PBS were incubated overnight at 65°C with Proteinase-K

and co-adjuvant reagents in order to lyse cell membranes. Proteinase-K is an enzyme that
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cleaves the peptide bond in proteins next to the carboxyl group of hydrophobic aminoacid
residues. It is often used at 50-65°C because most nucleases that would digest DNA are

inactivated at these temperatures [187].

Then, the released genome was incubated for 3 h, at 37°C with a reagents mix based on
Msel restriction endonuclease, in order to digest DNA. Msel is a unique restriction

endonuclease which recognizes the palindromic sequence 5‘-TTAA-3' and cleaves between

5 TITAA 3
the two T residues to produce the following 2 base 5' extension: 3 AATTT 5[187].

Afterwards, digested DNA was ligated to two DNA adaptors designed according to the
previously generated Msel-base extensions. A primer-specific PCR was performed
afterwards, in order to amplify the genome of the single processed cell. At last, WGA

products were stored at -20 °C.

The WGA protocol is estimated to produce equally amplified DNA fragments of 0.2-2
kb,~2 ug dsDNA/~5 ug ssDNA, starting from ~ 6pg of dsDNA of a single cell. As positive and
negative controls, 100 ng/uL of genomic DNA of MCF-7 cells and water (Menarini Silicon

Biosystems) were respectively used.

3.5.1.1. Quality control multiplex PCR

The efficacy of the WGA was verified processing 1 puL of WGA products for a multiplex
PCR of 4 markers located on the chromosomes 12p, 5p, 17p, 6p, by utilizing the Amplil
WGA-QC™ kit (Menarini Silicon Biosystems), according to manufacturer’s protocol. As
positive and negative controls, 100 ng/uL of genomic DNA of MCF-7 cells and water were

used, respectively.

3.5.1.2. DNA Gel-electrophoresis

In order to assess the multiplex PCR, a DNA gel-electrophoresis was performed. At first,
a mixture of 2 % agarose/ 1 % TAE/0.01 % gel red (Sigma-Aldrich/Biotium Inc., Fremont,
USA) was prepared and let it polymerize for 45 min, at RT. Then, 5 puL of PCR product
together with 1 uL of Loading dye “LD 6x” (Thermo Fischer Scientific) were loaded into a gel
well. As a marker, 6 pL of DNA Ladder “Mass ruler LR” (Thermo Fischer Scientific) were

additionally loaded into a gel well. The gel run was performed in DNA electrophoresis
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chambers, for 30 min at 100 V. Afterwards, gels were observed under UV lights, in a

transilluminator.

3.5.1.3. Statistical analysis

The difference between high integrity WGA rates of EpCAM™" and EpCAM"*/"¢94tve cTCg

was investigated through a two-tailed t-test.

3.5.2. PIK3CA Exons 9 and 20 specific PCRs

WGA products were further processed for two separated PCRs amplifying PIK3CA exons

9 and 20, through the primers reported in Table 6.

Table 6. PIK3CA exons 9 and 20 PCR primers, adapted from Lampignano et al., 2017b [183]

. Primer

PIK3CA Primer Sequence (52 3") size
exon name

(bp)
forward CATCCGATGTACCTGATTGAACTGCATGCAGACAAAGAACAGCTCAAAGCAA 52
reverse CATTCCTTAGATAGCTCGGAAGTCCATTGCATTTTAGCACTTACCTGTGAC 52
20 forward CATCCGATGTACCTGATTGAACTGCATGCATTGATGACATTGCATACATTCG 52
reverse CATTCCTTAGATAGCTCGGAAGTCCATTGCGTGGAAGATCCAATCCATTT 50

Per each PCR reaction, 1 puL of WGA products was added in 9 pL PCR mix consisting of:
0.2 uM forward primer, 0.2 uM reverse primer (both Exiqon, Vedbaek, Denmark), 1 U
DreamTaq (Thermo Fischer Scientific) polymerase and nuclease-free water. Then, samples

were incubated according to the thermal cycler program reported in Table 7.

Table 7. Thermal cycler program of PIK3CA exons 9 and 20 PCRs.

Cycles Temperature °C Hold
95 5 min
95 45 sec
35 58 45 sec
72 45 sec
72 10 min
4 oo

Afterwards, PCR products were checked through a DNA-gel electrophoresis, according

to the protocol described above. Amplified DNA was stored at -20 °C.
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3.5.3. Cleaning of PCR products

In order to remove unused primers and dNTPs, PCR products displaying amplicons of
PIK3CA exons 9 and/or 20 were subsequently processed according to the ExoSAP-IT®
(Affymetrix, Santa Clara, USA) protocol. In case of PCR products showing PIK3CA amplicons

as well as primer dimers, a DNA-gel extraction procedure was preferred over the ExoSAP-IT®.

3.5.3.1. Exo0SAP-IT® protocol

The ExoSAP-IT® PCR Product Cleanup is a reagents mix mainly based on Exonuclease |
activity, consisting in the removal of nucleotides from ssDNA in the 3' to 5' direction. Two pL
of this reagent were added to 5 pL of the amplified DNA and incubated according to the

thermal program reported in the Table 8.

Table 8. Thermal cycler program of ExoSAP-IT® cleaning protocol.

Temperature °C Hold
37 15 min
80 15 min

Afterwards, cleaned PCR products were stored at -20 °C.

3.5.3.2. DNA gel-extraction

In order to extract DNA from the agarose gel, the DNA band was excised with a scalpel
and further processed within the QIAEX Il Gel Extraction Kit (Qiagen, Hilden, Germany),

according to the manufacturer’s protocol.

Afterwards, cleaned PCR products were stored at -20 °C.

3.5.4. DNA quantification

At last, 1 pL of cleaned amplified DNA was quantified through the NanoDrop™
Spectrophotometer (Thermo Fischer Scientific) and if necessary, it was subsequently diluted
in water, down to the optimal concentration for the Sanger sequencing (between 5 ng/ulL

and 15 ng/uL).
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3.5.5. PIK3CA Exons 9 and 20 Sanger sequencing

Sanger sequencing of PIK3CA exons 9 and 20 was performed by the Genomics &
Transcriptomics Laboratory (GTL) of the Biological and Medical Research Centre of
Disseldorf (BMFZ) utilizing 1 pL of diluted cleaned PCR products and specific primers

(Exigon; Table 9), thought an lon Torrent platform.

Table 9. PIK3CA exons 9 and 20 sequencing primers, adapted from Lampignano et al., 2017b [183]

Primer name Squence (5> 37) Product size (bp)
forward TCCGATGTACCTGATTGAAC 20
reverse TTCCTTAGATAGCTCGGAAG 20

3.5.6. Sequencing data analysis

Sequencing data analysis was performed through the software “Chromas”. Sequencing
profiles of CTCs were compared to these of MCF-7, T47D cells in order to detect hotspot

base exchanges.

45



4. Results

4.1. Enrichment and detection of patient-matched
EpCAMM"gh and EpCAM!ew/negative CTCs combining
CellSearch® and VyCAP™ systems

4.1.1. Validation of immunostaining on cytospins

Prior proceeding with the establishment of the workflow, the immunostaining
mastermix #1 necessary to identify CTCs was validated on cell lines, in order to verify
potential interferences between fluorophores directly conjugated to the antibodies. The
breast cancer cell line MCF-7 was utilized as positive control for cytokeratins expression
(clones C11/AE1/AE3) and as negative control for CD45 expression (clone HI30). On the
contrary, leukocytes were utilized as positive control for CD45 and as negative control for
cytokeratins. MCF-7 cells and leukocytes were effectively stained for the expected markers

(Figure 19).
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Figure 19. Validation of the immunostaining #1 on cytospins

In epifluorescence microscopy, MCF-7 cells exhibit positivity for nuclear (DAPI) and cytokeratins (PE) staining
and negativity for CD45 (PerCP). Leukocytes shows positive staining of the nucleus (DAPI) and of CD45 (PerCP)
and no expression of cytokeratins (TRITC). Magnification: 40 x.

No interferences among utilized fluorophores could be detected.
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4.1.2. Tumour cell recovery rates of VyCAP™ filters

Prior processing patients” blood and DLA samples, the enrichment of tumour cells via
VyCAP™ filtration device was validated with 3 independent spiking experiments of pre-
stained MCF-7 cells into healthy donor blood samples, discarded after CellSearch®
processing. The diameter of MCF-7 cells — measured via microscopy — was in average 18 + 1
um. After filtration, filters were inspected in epifluorescence microscopy, in order to
determine the recovery rate of tumour cells. Cells positive for nuclear (DAPI) and
cytokeratins (PE) staining, negative for CD45 (PerCP) expression and with a round shape,
were defined as tumour cells. In Table 10 amounts of pre-stained tumour cells spiked and

subsequently enriched are reported.

Table 10. Amount of MCF-7 cells spiked and enriched per each spiking experiment.

# Spiking experiment # Spiked MCF-7 cells # Enriched MCF-7 cells
Experiment 1 64 3
Experiment 2 97 7
Experiment 3 70 25

The average recovery rate for MCF-7 cells was 16 + 14 %.

4.1.3. Validation of immunocytostaining on microsieves

The effective immunostaining of tumour cells retained by VyCAP™ microsieves was
validated through further spiking experiments. After spiked blood samples were processed
with the VyCAP™ filtration device, cells retained by the filter were immunostained in situ and
then inspected in epifluorescence microscopy. Captured tumour cells and co-enriched

leukocytes were effectively stained for the expected markers (Figure 20).
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Figure 20. Validation of the immunostaining #1 on the microsieve

In epifluorescence microscopy, MCF-7 cells exhibit positivity for nuclear (DAPI) and cytokeratins (PE) staining
and negativity for CD45 (PerCP). Leukocytes shows positive staining of the nucleus (DAPI) and of CD45 (PerCP)

and no expression of cytokeratins (PE). Magnification: 40 x.

Within unspiked blood samples, only leukocytes could be detected.

4.1.4. Processing patients” blood samples
From 09/2015 to 06/2016, 14 blood samples of 14 mBC patients were sequentially

processed as described above (see chapter 3.3). Patients” primary tumours characteristics

are reported in the Table 11.
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Table 11. Clinical features of patients” primary tumours.

# Patients with # Patients with  # Patients with only

EpCAM"™" and i " # Patients with
h p‘(’: Anownegatve  Only ERCAM™" EpCAMo/reseve o CTCs
0, 0,
CTCs (%) CTCs (%) CTCs (%)
Total patients 7 (50) 2 (14) 2 (14) 3(22)
Tumour size
T1 1(25) 1 (50) 1 (50) 0
T2 2 (50) 1 (50) 0 1(33)
T3 0 0 0 2(67)
T4 1(25) 0 1 (50) 0
Missing data 3 0 0 0
Lymph nodes
involved
N- 2 (50) 0 0 1(33)
N+ 2 (50) 2 (100) 2 (100) 2 (67)
Missing data 3 0 0 0
Metastases
status*®
MO 2 (50) 1 (50) 1 (50) 3 (100)
M1 2 (50) 1 (50) 1 (50) 0
Missing data 3 0 0 0
Histological
grade
| 0 0 0 0
I 2 (50) 1 (50) 0 1(33)
1l 2 (50) 1 (50) 2 (100) 2(67)
Missing data 3 0 0 0
Her2 positive 1(25) 0 0 0
Missing data 3 0 0 0
ER positive 4 (80) 2 (100) 2 (100) 2(67)
Missing data 2 0 0 0
Triple 0 0 0 1(33)
negative

*: at the time of blood draw all patients were metastasized

high traction of CTCs could be

In 64% (n=9) of processed blood samples, the EpCAM
observed. In 78% (n=7) of these, the EpCAM"*/™99t"e cTC subpopulation could be detected

as well. The EpCAM""/"¢9%tve CTC_fraction was observed in ~14% (n=2) of samples (Figure 21).
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Figure 21. Patient-matched EpCAM"™" and EpCAM™*/™°" CTCs collected from blood samples with
CellSearch® and VyCAP™

Five blood samples out of 14 (~¥36 %) showed no CTCs. Within CTC-positive samples, 78 % (n=7) had both
fractions of tumour cells. VB: VyCAP blood.

In Figure 22, CTCs detected in patients” blood samples are depicted.
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"5h and one EpCAM™*/"*9°" CTC collected from blood samples via CellSearch® and via

VyCAP™, respectively

Figure 22. Two EpCAM

Enriched CTCs could be detected through their positivity for nuclear (DAPI) and cytokeratins staining (PE) and
negativity for the expression of the leukocyte marker CD45 (APC or PerCP). Cells surrounding CTCs are
identified as co-captured leukocytes by virtue of positive nuclear and CD45 staining and of negativity for
cytokeratins expression. C: CTC; L: leukocytes.

Results reported in the paragraph above were generated within the CTC-Trap and included in de Wit et al., 2017,
submitted [180]
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4.1.5. Processing patients” DLA samples

From 10/2015 to 09/2016, 8 DLA samples of 8 mBC patients were sequentially
processed, starting from 2 ml of DLA product, as previously described (see chapter 3.3).

Patients” primary tumours characteristics are reported in Table 12.

Table 12. Clinical features of patients” primary tumours.

Figh

# Patients with EpCAM ™" and # Patients with only . .
EpC ANY/O/negative (%) EpC AM" CTCs (%) # Patients with no CTCs
Total patients 3(37.5) 3(37.5) 2 (25)
Tumour size
T1 1(33) 1(33) 0
T2 1(33) 1(33) 2 (100)
T3 0 1(33) 0
T4 0 0 0
Missing data 1 0 0
Lymph nodes
involved
N- 2 (66) 0 1(50)
N+ 0 3 (100) 1(50)
Missing data 1 0 0
Metastases
status*®
MO 0 0 2 (100)
M1 2 (66) 3(100) 0
Missing data 1 0] 0
Histological
grade
I 0 0 0
Il 0 2 (66) 2 (100)
1] 1(33) 1(33) 0
Missing data 2 0 0
Her2 positive 0 1(33) 2 (100)
Missing data 1 1 0
ER positive 2 (66) 3 (100) 1 (50)
Missing data 1 0
Tr|pl.e 0 0 0
negative

*: at the time of blood draw all patients were metastasized
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The EpCAMhigh fraction of CTCs could be observed in 75% (n=6) of processed DLA

samples. In 50% of these (n=3), the EpCAM™"/™€99%e cTC subpopulation could be detected as

well (Figure 23) [1

23]. No patient exhibited EpCAM™*/€9°e cTCs only [180].

— W 659
VDVIII p—
vovii{ 5
320
vovid °
11
0
o vovd °
T:' 0
5 voiv{ o
]
& 0
voi ©
voild 3
4
0
vDi{ ©
0 50 100 150 200 250 300 350 1000 2000 3000

Figure 23. Patien

Detected events

EpCAMhighCTCs mm EpCAMlow/negativeCTCs

t-matched EpCAM"™" and EpCAM""/™9°"¢ €TCs collected from DLA samples with
CellSearch® and VyCAP™

Two DLA samples out of 8 (25 %) contained no CTCs. Within CTC-positive samples, the 50 % (n=3) had both
fractions of tumour cells.
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In Figure 24, CTCs detected in patients” DLA samples are depicted.
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Figure 24. Two EpCAM"®" and one EpCAM"®*/"9°"2 CTC collected from DLA samples via CellSearch® and via
VyCAP™, respectively

Enriched CTCs could be detected through their positivity for nuclear (DAPI) and cytokeratins staining (PE) and
negativity for the leukocyte marker CD45 expression (APC or PerCP). Cells surrounding the CTC are identified as
co-captured leukocytes by virtue of positive nuclear and CD45 staining and of negativity for cytokeratins
expression.

Results reported in the paragraph above were generated within the CTC-Trap and included in Andree et al., AACR
annual meeting 2017 [123]
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4.2. Enrichment and isolation of patient-matched
EpCAM®high and EpCAM!/ow/negative CTCs combining

CellSearch®, Parsortix™ and CellCelector™ systems

4.2.1. Validation of immunostaining on cytospins

Prior proceeding with the establishment of the workflow, the immunostaining
mastermix #2 necessary to identify CTCs was validated with cell lines, in order to analyse
potential interferences between fluorophores directly conjugated to each antibody. The
breast cancer cell line MCF-7 was utilized as positive control for cytokeratins (clones
C11/AE1/AE3) and EpCAM (clone vul4D9) expression and as negative control for CD45
(clone 3Z5S) expression. On the contrary, leukocytes were utilized as positive control for
CD45 and as negative control for cytokeratins and EpCAM immunostaining. Each cell line was

effectively stained for the expected markers (Figure 25).
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Figure 25. Validation of immunostaining #2 on cytospins, adapted from Lampignano et al., 2017b [183]

In epifluorescence microscopy, MCF-7 cells exhibit positivity for nuclear (DAPI), cytokeratins (TRITC) and
EpCAM (FITC) staining and negativity for CD45 (Cy5). Leukocytes shows positive staining of the nucleus (DAPI)
and of CD45 (Cy5) and no expression of cytokeratins (TRITC) and EpCAM (FITC). Magnification: 40 x.

No interferences among utilized fluorophores could be detected.
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4.2.2. Tumour cell recovery rates of Parsortix™ system

Prior processing patients” blood samples, the enrichment of tumour cells via Parsortix™
system was validated through 3 independent spiking experiments of pre-labelled MCF-7 cells
in healthy donor blood samples (Table 13), previously processed within the CellSearch®

system.

Table 13. Amount of MCF-7 cells spiked, captured and harvested per each spiking experiment.

# Spiking experiment # Spiked MCF-7 cells # Captured MCF-7 cells # Harvested MCF-7 cells
Experiment 1 41 20 15
Experiment 2 105 85 35
Experiment 3 48 48 14

The diameter of MCF-7 cells — measured via microscopy — was in average 18 £ 1 um.
After processing via Parsortix™, in order to determine the recovery rates of tumour cells, the
suspension of enriched MCF-7 was placed onto a glass slide and observed in epifluorescence
microscopy. Cells positive for nuclear (DAPI), cytokeratins (TRITC), and EpCAM (FITC)
staining, negative for CD45 (Cy5) expression and with a round shape, were defined as

tumour cells.

The average capturing rate of MCF-7 cells was 78 £ 25 %. Out of it, 48 + 24 % tumour

cells could be harvested. The global recovery rate was 33 + 4 %.

4.2.3. Validation of immunocytostaining inside

Parsortix™ cassettes

The effective immunostaining of tumour cells captured within Parsortix™ cassettes was
validated through further spiking experiments. Fixed MCF-7 cells were spiked into healthy
donor blood samples, previously processed within the CellSearch™ system, and were further
processed through the Parsortix™ device. After capturing, enriched cells were
immunostained inside the cassette and then collected outside the system. The suspension of
the enriched cells was placed onto a glass slide and observed in epifluorescence microscopy.
Captured tumour cells and co-enriched leukocytes showed to be effectively stained for the

expected markers (Figure 26).
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Figure 26. Validation of immunostaining #2 inside Parsortix™ cassette, adapted from Lampignano et al.,
2017b [183]

In epifluorescence microscopy, MCF-7 cells exhibit positivity for nuclear (DAPI), cytokeratins (TRITC) and
EpCAM (FITC) staining and negativity for CD45 expression (Cy5). A representative leukocyte shows positive
staining of the nucleus (DAPI) and of CD45 (Cy5) and no expression of cytokeratins (TRITC) and EpCAM (FITC).
Magnification: 40 x.

Within the unspiked blood samples, only leukocytes were deteced.
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4.2.4. Processing patients” blood samples through 6.5 pm

Parsotix™ cassettes

From 07/2015 to 11/2016, 52 blood samples of 47 mBC patients — diagnosed with
HER2/neu-negative primary tumours and positive for EpCAMhigh CTCs — were sequentially

processed. Patients” primary tumours characteristics are reported in the Table 14.

Table 14. Clinical features of patients” primary tumours

high

# Patients with EpCAM ™™ and # Patients with only
EpCAM""/"e9°ve CTCs (%) EpCAM™" CTCs (%)
Total patients 27 (57) 20 (43)
Tumour size
T1 12 (46) 7(37)
T2 13 (50) 8 (42)
T3 0 1(5)
T4 1(4) 3 (16)
Missing data 1 1
Lymph nodes
involved
N- 12 (48) 10 (50)
N+ 13 (52) 10 (50)
Missing data 2 0
Metastases status*®
MO 19 (73) 14 (78)
M1 7(27) 4(22)
Missing data 1 2
Histological grade
[ 1(4) 0
I 13 (52) 17 (94)
1 11 (44) 1(6)
Missing data 2 2
ER positive 23 (85) 13 (68)
Missing data 0 1
Triple negative 0 1(5)

*: at the time of blood draw all patients were metastasized
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In 56 % (n=29) of processed blood samples, both EpCAM™®" and

subpopulations could be detected (Figure 27).
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Figure 27. Patient-matched EpCAM"®" and EpCAM™*/™°!" CTCs enriched in blood samples with CellSearch®

and Parsortix™, adapted from Lampignano et al., 2017b [183]

Out of 52 blood samples, 56 % (n=29) exhibited both fractions of tumour cells. Remaining 44 % (n=23) had only

high

EpCAM ™" CTCs. P: parsortix.
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No linearity could be observed between the positivity rates of the two subpopulations of

CTCs (R? = 0.007; P = 0.57; Figure 28).
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Figure 28. Counts of EpCAM"™" and EpCAM""/™? CTCs compared with a linear regression test

high low/negative

At an increased abundance of EpCAM™" CTCs does not correspond an increased frequency of EpCAM
CTCs (R® = 0.007; P = 0.57; Gaussian distribution with 95% of confidence).

4.2.5. Isolation of single tumour cells via CellCelector™

Tumour cells suitable for downstream applications were sorted according to their
morphology and expression of proper markers, as previously described by Polzer and
colleagues [157]. From 13 patients, 107 EpCAM™" and 145 matched-EpCAM"/€99ve cq||s

were selected and successfully isolated via CellCelector™ micromanipulator (Figure 29).
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Figure 29. Isolated EpCAM""/"°" cells and EpCAM"™@" cells, by Lampignano et al., 2017b [183]

During the detection of EpCAM""/"*9°% ce||s, glass slides were scanned at a magnification of 40 x in

the following channels: DAPI for nucleic DNA, TRITC for cytokeratins, FITC for EpCAM, Cy5 for CD45.
EpCAM™ /691 colls show positivity for nuclear and cytokeratins staining, very weak or no
expression of EpCAM, and no expression of CD45. EpCAMh'gh cells enriched in CellSearch® cartridges
were automatically scanned at a magnification of 20 x in same epifluorescence channels. They show
positivity for nuclear and cytokeratins staining, and no expression of CD45. After scanning, single
cells were isolated in DAPI to guarantee the purity of the isolation.

Results reported in the section above (except for the paragraph 4.2.2.) were included in Lampignano et al., 2017b [183]
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4.3. Molecular characterization of single patient-

matched EpCAM"igh and EpCAM!/ow/negative CT(Cs

At first, the characterization workflow was tested on single isolated MCF-7 and T47D
cells and then applied to patients” CTCs. MCF-7 and T47D cells were chosen due to the
harbouring of PIK3CA hotspot mutations respectively in exon 9 (amino acid change at

position E542 and E545) and in exon 20 (amino acid change at position 1047) [185,186].

4.3.1. Amplification of whole genomes of single tumour

cells

In order to obtain sufficient quantity of DNA for sequencing analysis, genomes of single
isolated tumour cells were amplified. At first, the technique was validated on single fixed
and stained MCF-7 cells. Along with single MCF-7, no cell control buffer (NC) were processed
for WGA, to verify the absence of contaminations of genomic DNA or circulating DNA of cells
eventually destroyed during the workflow. The NC samples exhibited no DNA

contaminations (Figure 30).

WGA  QC-PCR
L 1 2 NC 3 4 5NC 6 NCTV B8 9 + - + -
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Figure 30. Representative Gel-Electrophorese of WGA-QC PCR products

The presence of 4 amplicons indicates high genomic integrity. L: ladder; NC: no cell control. Primer dimers have
been confirmed by Sanger sequencing.

Then, the protocol was applied to single CTCs isolated according to the workflow
previously described (see chapter 3.5.1). Considering the total amount of processed CTCs,
high genomic integrity was observed in ~28 % WGA libraries of EpCAMhigh CTCs vs. “8 %
WGA libraries of EpCAM"*/"é9%te cTCs (Table 15).
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Table 15. CTCs processed for WGA show different integrity of their amplified genomes, adapted from
Lampignano et al., 2017b [183]

EpCAM"®"

CTCs

EPCAMIow/negative CTCs

High integrity

Low Integrity

Sample  Patient Sorted WGA WGA Sorted High integrity Low Integrity
number ID CTCs products products CTCs WGA products WGA products

1 PI 5 0 5 19 0 19

2 PV 0 1 2 0 2

3 PVI 11 5 6 24 3 21

4 PVIII 8 0 8 12 0 12

5 PIX 26 11 15 16 2 14

6 PX 13 4 9 0

7 PXI 7 3 4 0

8 PXVI 9 1 8 27 1 26

9 PXXIV (2) 6 1 5 4 0 4

10 PXXXV 8 2 6 18 3 15

11 PXXXVI 2 1 1 5 1

12 PXLVI 7 2 5 0

13 PXLVII 4 0 4 3 1 2

107 30 77 145 11 134
P: parsortix.

The difference between mean values of high integrity WGA products of the two CTC

subgroups showed to be statistically significant (p < 0.02 for 22.5 + 18.4 % EpCAMhigh CTCs

vs. 7.6 + 10.2 % EpCAM™¥/"¢9%t CTCs: Figure 31).
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Figure 31. Comparison of high integrity WGA products of EpCAM"" and EpCAM""/"9"¢ cTCs sorted from 13
patients

Mean values of high integrity WGA products within EpCAM™" and EpCAM"*/"9%%¢ CTCs were respectively 22.5
+18.4and 7.6 £ 10.2 % and in a comparison through a two-tailed t-test, they showed to differ significantly (*: p
<0.02).

In all performed WGA reactions, no DNA contaminations could be detected within NC

samples.

4.3.2. Detection of PIK3CA exons 9 and 20 amplicons

Prior sequencing, WGA libraries of CTCs were amplified for PIK3CA hotspot regions
located on exons 9 and 20, using two exon-specific PCRs. At first, the protocol was assessed
through cells of MCF-7 and T47D cell lines. Then, WGA libraries of 92 EpCAMhigh CTCs and of
126 matched-EpCAM™®Y/"91¢ cTCs from 10 patients were sorted and processed as
described above (see chapter 3.5.2). In Figure 32, representative images of gel

electrophoresis of PIK3CA exons 9 and 20 PCRs are depicted.
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Figure 32. Representative pictures of gel-electrophoresis of PIK3CA exons 9 and 20 PCR products of amplified
genomes of CTCs

The detection of a band at the same height of the positive control (PCR+) indicates the success of the
amplification protocol. Sometimes, an excess of unutilized primers could be observed as primer dimers. All the
detected bands, including primer dimers, were confirmed by sequencing. Pseudogenes have not been
amplified.

Within the EpCAMhigh subpopulation of CTCs, 41 cells exhibited the exon 9 amplicon and
34 cells exhibited the exon 20 amplicon. Within patient-matched EpCAM™"/9°tve cTCg 49
CTCs exhibited the exon 9 amplicon and 38 CTCs exhibited the exon 20 amplicon (Table 16).
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Table 16. Amplified genomes of CTCs processed for PIK3CA exons 9 and 20 PCRs may not exhibit the
presence of the respective amplicon

EpCAM™" CTCs EpCAM"*/"e8°tve cTCg

sample | Patient | Sorted CTCsei);:il;iting CTC: :::i:(i)ting sorted CTCsei)c()P:‘iI;iting CTC: :c))(:izb(i)ting
number b cres amplicon amplicon cres amplicon amplicon

1 Pl 5 2 1 19 13 10

2 PVI 11 5 2 24 7 7

3 PIX 26 14 11 15 6 3

4 PX 13 9 5 5 5 1

5 PXI 7 1 3 6 1 1

6 PXVI 9 3 3 27 3 2

7 PXXXV 8 1 3 18 8 8

8 PXXXVI 2 1 1 5 3 3

9 PXLVI 7 3 3 4 1 1

10 PXLVII 4 2 2 3 2 2

92 41 34 126 49 38

P: Parsortix.

4.3.3. Sequencing of PIK3CA hotspot regions

Within the EpCAM™" subpopulation of CTCs, 38 cells could be successfully sequenced

for PIK3CA exon 9 and 32 cells for exon 20. Within the patient-matched EpCAM/"/nesetive

CTCs, 39 cells could be successfully sequenced for PIK3CA exon 9 and 35 cells for exon 20. In

order to detect the hotspot mutations E542K, E545K, H1047R known to induce the

constitutive activity of the PI3K kinase, involved in tumorigenesis [185,186], CTCs sequencing

profiles were compared to these of MCF-7 and T47D cells.

In six patients out of ten, both fractions of CTCs were classified as wild-type (WT) for the

investigated PIK3CA hotspot sequences. In CTCs of four patients (PI, PIX, PX, PXLVII), PIK3CA

hotspots mutations were observed along with the WT form of the oncogene (Table 17 and

Figure 33).
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Table 17. Mutational analysis of PIK3CA hotspot regions in exons 9 and 20 within patient-matched EpCAM

high

and EpCAM™"/™9°"e cTCs, adapted from Lampignano et al., 2017b [183]

EpCAM

hish c1Cs

PIK3CA Exon 9 mutational analysis

PIK3CA Exon 20 mutational analysis

szmzleer Pa::: nt Squfgs ced Mutational status Sequenced CTCs Mutational status
1 PI 2 WT WT
2 PVI 5 WT 2 WT
2: p.H1047L (c.CAT >
’ P 3 wT 1 CTT); 9: WT
2: p.H1047R (c.CAT >
) P ’ WT > CGT); 3: WT
5 PXI 1 WT 3 WT
6 PXVI 3 WT 3 WT
7 PXXXV 1 WT 3 WT
8 PXXXVI 1 WT 1 WT
9 PXLVI 3 WT 3 WT
1: p.H1047L (c.CAT >
10 PXLVII 2 WT 2 CTT): W
38 34
Ep C AMIow/negative CTCs
PIK3CA Exon 9 mutational analysis PIK3CA Exon 20 mutational analysis
:3$E::r Pa:ll)ent Seqcu:(;ced Mutational status Sequenced CTCs Mutational status
1: p.E545K (c.CAG >
1 PI 10 AAG); 9: WT 7 WT
2 PVI 7 WT 7 WT
1: p.E545K (c.CAG >
3 PIX 5 AAG): 4: WT 3 WT
5 PXI 1 WT 1 WT
6 PXVI 0 n.d. 2 WT
7 PXXXV 8 WT 8 WT
8 PXXXVI 3 WT 3 WT
9 PXLVI 1 WT 1 WT
10 PXLVII 2 WT 2 WT
39 35
P: parsortix.

67



PIK3CA Exon 9

PIK3CA Exon 20

*k

%%

E545K H1047R
2} /“”\\-‘\
@) \Ldfg.____h, AA /_ ;\ B /M\ - /X s ,/ ) D. b - ) m
(4] ©
'->-. bk - Ll - - - - - - *I* | ] - O
"'c's [l - - - - - - . - = >
e)) E545K H1047L <
o =
= /N & Q
g ’ \ /.’ \.‘.‘\ 3-
R NN XA AN X T NN X AN X { ) o)
= E545 N (_.l)
= - H1047
L
Y ~ .\ y
e — - . AN AN _‘/ > e N e A N . AU G
- - - - - - ** - - - - - * L ] -
N~
i E545K A —
(L_IS H1047R ﬁ
> N\ / [\ : O
N A XAA X XX X VN ANSNNY NAA XK X/

Figure 33. Representative PIK3CA Exons 9 and 20 sequencing profiles within CTCs and cell lines, by
Lampignano et al., 2017b [183]

In two EpCAM™/™9e cTCs from 2 different patients the mutation 9/E545K (**) could be observed when
compared to the sequencing profile of a single MCF-7 cell (**). Two representative sequencing profiles of
EpCAMhigh CTCs from different patients exhibit the mutations 20/H1047R and the 20/H1047L (**) in
comparison to the sequencing profile of a single T47D cell (**). CTCs registered as PIK3CA wild-type show no
mutations (*).**: base exchange; * wild-type base.

Patient Pl exhibited the PIK3CA mutation E545K (codon 545 of the exon 9, glutamine to
lysine) within the EpCAM™*/™99tve cTC subpopulation only, in 1/10 sequenced cells; 9/10

high

sequenced cells were, instead, WT. The two patient-matched EpCAM CTCs were

determined as PIK3CA-WT.

Patients PX and PXLVII carried the mutated PIK3CA in EpCAMhigh CTCs only. In the
patient PX, the mutation H1047R (codon 1047 of the exon 20, histidine to arginine) was
recorded in 2/5 sequenced cells; 3/5 sequenced cells were, instead, WT. The one patient-
matched EpCAM™¥/"€99ve cTC exhibited the PIK3CA WT. In patient PXLVII the rare mutation

H1047L (codon 1047 of exon 20, histidine to leucine) was observed in 1/2 sequenced cells;
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low/negative

1/2 sequenced cells were, instead, WT. The 2 patient-matched EpCAM CTCs were

recorded as PIK3CA WT.

Patient PIX exhibited different PIK3CA hotspot mutations within both subpopulations of
CTCs. In 1/5 EpCAM“/n€99tve cTCs the mutation E545K was observed. Four residual
EpCAMw/Mesetive cTcs were PIK3CA WT. Two out of eleven EpCAM™" CTCs exhibited the rare
mutation H1047L (codon 1047 of exon 20, histidine to leucine). Nine residual EpCAMhigh CTCs
were classified as PIK3CA WT.

No further base exchanges were observed within the amplicon sequences of both exons

9 and 20 of PIK3CA.

Results reported in the section above were included in Lampignano et al., 2017b [183]
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5.Discussion

The prognostic value of CTCs was investigated and verified in different tumour entities
— including mBC — by numerous studies [81,162,164,165]. Subsequently, several research
groups started to evaluate the possibility to determine the optimal treatment for cancer
patients based either on the enumeration of CTCs or on the characterization of these
tumour cells (e.g. DETECT studies [62,162,170,171,173-176]). However, to date, studies on

CTCs as prognostic and therapy decision tools mainly focused on the EpCAMhigh

low/negative

subpopulation, thereby overlooking EpCAM CTCs with potential highly malignant
phenotypes [167,177,179]. Very little is known about this transient/mesenchymal fraction of
CTCs and intensive research is surely necessary to acquire further insights into their biology

and potential role in tumor metastasis.

Major obstacles in investigating CTCs are represented by: a) their low concentration in
the PB, thereby requiring highly sensitive enrichment technologies; b) the absence of cancer-
specific markers which hampers both enrichment and detection of CTCs; c) the
heterogeneity of tumour cells, which requires highly specific methods for both single cell
isolation, and phenotypical/molecular characterization. Subsequently, intensive research to
optimize workflows to enrich, isolate and characterise CTCs is of utmost importance.
Furthermore, these workflows need to fit to the specific tumour entity at the core of the

study.

a-b) As it regards the enrichment and detection of EpCAMhigh

CTCs within mBC patients,
a gold standard technique (CellSearch® system) is already available and has been
comprehensively validated [62,81]. On the contrary, the enrichment and detection of the

low/negative

remaining EpCAM CTCs are still in their infant stages and definitely require further
optimizations to shed light on this subpopulation of tumour cells. So far, these CTCs have
mainly been collected either by focusing on specific mesenchymal markers [70,167], either
on cancer-stemness traits [167], or on markers alternative to EpCAM [113]. As a
consequence, there is the chance that CTCs with epithelial-mesenchymal plasticity have
been overlooked. c) Research on CTCs is further hampered by the absence of a gold-

standard technique for tumour cell-isolation, which is required to investigate the CTC-

heterogeneity on “omic” levels in order to better understand metastatic mechanisms of

70



cancerous lesions. Furthermore, of major importance is the identification of biomarkers to
predict the resistance to treatments and to achieve personalised and more efficient CTC-
driven therapies. In this scenario, the identification of PIK3CA hotspot mutations, within
primary tumours as well as within CTCs, has attracted the interest of the scientific
community. The rationale behind this raising concern is that the detection of this mutated
oncogene in ~40 % mBC cases — in higher rates in distant metastases — and that the
increased resistance to anti-HER2/neu therapies often observed in mBC patients with PIK3CA

activating mutations [8,25].

The present work has been conceived to investigate the whole population of CTCs
(epithelial, transient and mesenchymal) within mBC patients, with particular attention to an
efficient recovery of CTCs and subsequent molecular characterization: three workflows were
validated and successfully applied to patients” samples. The first two workflows allow to
enriching the EpCAM™"/"€99 fraction of CTCs a along with the collection of patient-matched
EpCAMh’gh CTCs, thus overcoming the major limit of the CellSearch® enrichment system,
which is the dependence on the EpCAM expression on the surface of tumor cells.
Furthermore, of these two workflows, the latter enables further single-cell molecular
characterisation on the whole CTC-population. At last, the third workflow allows the analysis
of genomic DNA in single CTCs which could support the identification of potential

biomarkers of therapy resistance.

5.1. Enrichment and detection of patient-matched
EpCAMMgh and EpCAM/ow/negative CTCs combining
CellSearch® and VyCAP™ systems

As previously comprehensively explained (see chapter 1.4), the FDA-approved
CellSearch® system enables the EpCAM-dependent enrichment of CTCs in various tumour
entities. Their enumeration holds prognostic power when exceeding defined threshold levels
(e.g. 25 CTCs/7.5 mL PB in mBC) [81,162,164,165]. The possibility to collect blood or DLA
samples after CellSearch®-mediated EpCAM-depletion enabled to investigate the whole
population of CTCs without any phenotypical restrictions, thus overcoming the major limit of

the CellSearch®. Within the CTC-Trap consortium, a double CTC enrichment approach on

71



both blood and DLA was validated, by sequentially processing clinical samples via
CellSearch® and VyCAP™ filters. The VyCAP™ microsieves are designed to retain all cells
bigger than 5 um, under a constant flow pressure of 100 mbar[68]. In order to apply VyCAP™
filtration to patients” blood or DLA samples previously processed within the CellSearch®, this
workflow was initially established via spiking experiments using a breast cancer cell line. First
and foremost, the immunofluorescence staining required for the detection of tumour cells,
was successfully validated on cytospins of fixed cells of MCF-7 breast cancer cell line and of
leukocytes of healthy donors. Then, MCF-7 cells fixed and stained in suspension were spiked
into healthy donors’ CellSearch®-processed blood samples and further filtered, to measure
the collection rates of the VyCAP™ approach. A successful enrichment of 16 + 14 % MCF-7
cells could be registered. This data fits to the range of capturing rates reported by de Wit
and colleagues, who tested the same method with cell lines of different tumour entities
(T24: 59 = 9 %; SKBr3: 2 £ 1%; Colo-320: 18 + 6 %; SW480: 6 + 7 %; NCI-H1650: £ 7 %) [68].
The same spiking experiments were omitted for the CellSearch® system, since it already
underwent a detailed establishment and it is currently utilized in the clinical routine within
the German studies DETECT llI/IV, AUGUSTA and SEPTEMBRA [113,172]. Afterwards, by
applying this procedure to clinical samples, patient-matched EpCAM™" and EpCAM/"/negctive
CTCs could be detected in 78 % (7/9) of processed blood samples without any correlation in

low/negative

positivity rates, while only EpCAM CTCs could be observed in ~14 % of samples.
Within patients’ samples, the recorded CTC enrichment rate via filtration was higher than
that reported by de Wit et al., which, by utilizing the same approach on metastatic lung
cancer blood samples, observed both EpCAM™" and EpCAM™"/™€99ve ca|ls in 19 % (5/27) of
the patients [68]. The higher frequency of the EpCAM™"/9°t"e cTC-subgroup in mBC blood
samples could be either due to the different size of the patient-cohort and/or to the
different tumour entity investigated. However, in agreement to the herein presented results,
de Wit et al. reported a lack of correlation between abundance of patient-matched
EpCAM™" and EpCAM™¥/"e9etve cTCs [68]. A possible, speculative explanation could be found
in the postulation of two different, but coexistent, processes of dissemination and
colonization of tumour cells (see chapter 1.3.1), which might be independent on each other
[37]. However, further investigations are utmost needed to shed light on this difference of

low/negative

frequencies and to understand the role of EpCAM CTCs in cancer dissemination.
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The Workflow #1 was also applied to DLA samples of mBC patients, to the end of
increasing the yeld of enriched CTCs and of implementing the DLA processing in the clinical
routine [123]. In DLA products of 6 out of 8 patients, both subgroups of CTCs were found and
50 % of them presented EpCAM™"/"¢9%t¢ CTCs as well. However, this cohort of patients is still
too restricted to draw any significant conclusions. In fact, even though the collection of DLA
samples is relatively easy and painless, only 8 patients agreed to be enrolled into the study,
due to the long collection time required (90 min to obtain 40 mL of DLA product [123]).
Nevertheless, within DLA samples, similar tendencies to previously examined blood samples
could be observed: lack of linearity between frequencies of epithelial and

low/negative

transient/mesenchymal CTCs and presence of EpCAM tumour cells in at least half of

the clinical samples.

Even though this filtration approach was easy to integrate in the clinical routine and
relatively inexpensive to perform, it showed some drawbacks requiring further
optimizations. The major disadvantage is the high leukocyte contamination which in many
cases hampers the clear detection of CTCs. Due to the same reason, the clogging of
microsieves was often observed - especially when processing DLA samples- which then
required further filtrations through more filters. Furthermore, it was observed a correlation
between low phenotypical quality of retained cells and the time delay between CellSearch®

processing and VyCAP™ filtration. Last but not least, some EpCAMhigh

CTCs might be not
captured by the CellSearch® system, thus, EpCAM-depleted blood and DLA samples might
still contain some of these cells which could not be detected due to the lack of an EpCAM
immunostaining, which could be, however, integrated in future experiments. Despite these
limits, the double processing of both blood and DLA samples via CellSearch® and VyCAP™
systems, enabled the effective enrichment for different subgroups of CTCs. In order to

investigate the molecular heterogeneity of EpCAM"/edative

CTCs compared to the
EpCAM™" another label-free approach was chosen over VyCAP™ filtration, due to the

impossibility to singularise stained and fixed CTCs enriched on microsieves.
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5.2. Enrichment and isolation of patient-matched
EpCAMMgh and EpCAM/ow/negative CTCs combining

CellSearch®, Parsortix™ and CellCelector™ systems

The Parsortix™ system enables the size-dependent enrichment of cells regardless of
their protein expression and allows their further collection in small buffer suspensions. In
order to optimize the CTC detection for further single cell isolation via CellCelector™, a new
immunofluorescence staining had to be established on fixed MCF-7 and leukocytes
cytospins, since the micromanipulator integrates a different epifluorescence microscope
than the one utilized for previous imaging. Within this second immunostaining mastermix,

an anti-EpCAM antibody was included, to exclude potential EpCAMhigh

events not captured
by the CellSearch® system. After the successful establishment of the second
immunostaining, fixed MCF-7 cells were labelled in suspension and further utilized for
spiking experiments to assess the effective capturing and harvesting rates of the Parsortix™
system, utilizing disposable cassettes with narrow passages of 6.5um. Average capturing and
harvesting rates of 78 + 25 % and 48 + 24 %, respectively, were achieved for tumour cells of
18 um £ 1 in diameter. As expected, the capturing rate was slightly higher than that reported
by Xu et al. and by Hvichia et al. who utilized cassettes with bigger narrow passages (10 um)
to capture MCF-7 cells (54.7 + 6.1 % [89]) and cell lines of different tumour entities and cell
size (PANC1: 23 um, 70 %; A375: ~17 um, 67 %; PC3: 30 um, 68 %; A549: 15 um, 60 %; T24:
18 um, 42 % [143]), spiked into blood samples. These data also confirm that the ~5-fold
dilution of the CellSearch®-discarded blood occurring during its collection, does not seem to
have a negative impact on the enrichment of tumour cells within the Parsortix™, as
previously observed for VyCAP™ filtration [68]. Interestingly, both Xu et al. and Hvichia et al.
reported higher harvesting rates than these herein described (MCF-7: 58.7 + 13.3 % [89];
PANC1: 60 %; A375: 69 %; PC3: 68 %; A549: 67%; T24: 54 %) [89,143], suggesting that
perhaps, smaller narrow passages may hamper the collection of the cells captured and
immunostained in situ. However, in preliminary experiments on 14 mBC blood samples
processed through 10 um, the CTC recovery rate was quite scarce (4 cells within 3 blood
samples; data not shown), indicating that the dimension of CTCs in mBC might be smaller

than these of cell lines tested by Xu et al. and by Hvichia et al. Altogether, these data also
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highlight that the dimension of cells is not the only parameter influencing their enrichment,
but an important role may also be played by their deformability, as previously already
postulated [87,89,143]. The global recovery rate of MCF-7 cells achieved via Parsortix™ was
33 + 4 %, hence higher than the 16 + 14 % achieved via VyCAP™ filtration, although this
difference was not significant, probably due to the high standard deviation registered with

VyCAP™ (p = 0.17; Figure 34). In fact, the high variability of this latter approach is one of its

major limits.
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Figure 34. Comparison of recovery rates of MCF-7 cells achieved via VyCAP™ and via Parsortix™ systems

In a statistical comparison between Parsortix™ and VyCAP™ recovery rates of MCF-7 cells, the former approach
shows higher performances. However the comparison was non-significant (p = 0.17).

At the same time, greater cell purity could be achieved via Parsortix™ (Figure 35) which
facilitated the CTC detection and made this approach sensitive and suitable enough for

single cell downstream analysis.
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Figure 35. Tumour cell/leukocyte ratio in blood samples processed via VyCAP™ and Parsortix™ devices.

In a qualitative comparison between the Parsortix™ harvest and the VyCAP™ microsieve, the former approach
shows higher enrichment purity. In fact, on microsieves, tumour cells (C) are totally surrounded by co-enriched
leukocytes (L). Image magnification 20 x.

High tumour cell recoveries and low leukocyte contaminations within the Parsortix™
system are the basis for the effective CTC analysis since Neumann et al. already showed that
the following single cell isolation via CellCelector™ micromanipulator can be performed with
97 % of efficacy [160]. Therefore, the optimization of the in situ immunostaining of captured
cells is of high importance in order to minimize the cell loss, otherwise occurring during in
suspension staining procedures (own observations and [87,89,143]). In this project, the
immunostaining of enriched tumour cells in the parsortix cassettes was performed for the
first time. After a first immunocytostaining validation, the whole workflow consisting of
double enrichment and isolation was successfully applied to a cohort of 52 blood samples of
47 mBC patients. In 56 % of them, both EpCAM™ and EpCAM™“/"9°"e cTCs could be
detected without any significant linearity (p = 0.57), confirming previous observations made
with VyCAP™ filtration.

In the future, as a conclusion of the studies DETECT Ill/IV, AUGUSTA and SEPTEMBRA,

which this project is connected to, patients” follow-up data will be collected and related to
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the presence of EpCAMP"/"9%¢ cTCs in order to further investigate their potential

predictive and prognostic role in mBC.

As briefly mentioned before, major advantages of the Parsortix™ system are the
simplicity of use, considerable recovery rates, purity of cellular harvests, suitability for in situ
immunostaining and the collection of the enriched cellular suspension which is useful for
further downstream applications. As it regards the CellCelector™ micromanipulator, major
merits are its versatility for different applications and the live monitoring of the CTC
isolation, which may assure the cellular purity required for molecular analysis. However,
some limits need to be taken in considerations for both systems and as a consequence, for
the whole workflow. The processing through the Parsortix™ system is time consuming (4 h —
4.5 h for one blood sample previously processed within the CellSearch®) and its integration
into the clinical routine may, therefore, be tough. However, most available CTC-enrichment
techniques which operate in a label-free fashion and which ensure high recoveries and
purity, require long processing time [88]. Last but not least, since the positivity to anti-
EpCAM as well as to anti-cytokeratins immunostaining (together with the positive nuclear
staining) are the only accepted proof for the CTC detection (see chapter 1.4.1), there is the
possibility that tumour cells which underwent a complete EMT, might have been overlooked.
As it regards the CTC-isolation approach via CellCelector™ micromanipulator, it requires an
experienced user and the effective deposit of the selected cell cannot be assured due to the
lack of a visual control. However, these disadvantages are also shared by the FACS-sorting,
one of the other main CTC-isolation techniques [88]. Despites the described limits, the

above illustrated novel approach allowed the molecular characterization of single CTCs.

5.3. Molecular characterization of single patient-

matched EpCAM"igh and EpCAM!ow/negative CT(Cs

Immediately after the detection of CTCs, cells suitable for genomic analysis — identified
according to Polzer and colleagues’ criteria [157]—- were selected for isolation and were
further processed for WGA and PIK3CA Sanger sequencing through an amplicon-based
approach. At first, these protocols were successfully tested with MCF-7 cells and were then

applied to patients” CTCs.
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In total, amplified genomes exhibited high integrity in 28% EpCAMhigh CTGCs, in
agreement with Polzer et al[157]. In contrast to their findings, only 8% WGA products of
EpCAMP"/"e9ative cTCs showed high integrity (p < 0.02 for mean values). This unexpected
observation may suggest early apoptosis undetectable by the phenotypical analysis of CTCs’
nuclei. Several studies have already described the high frequency of apoptotic EpCAMP*""
CTCs, which might play a role in patients” outcomes [72,188—-191]. Therefore, in future

experiments, the different apoptosis rates between both CTC subgroups will be investigated

by implementing the immunostaining protocol with early apoptosis indicators.

After WGA, PIK3CA exons 9 and 20 were further amplified within both CTC-fractions and
cells displaying the presence of the specific amplicons were processed for point mutation

low/negative

analysis. The hotspot mutation E545K was recorded in EpCAM CTCs from 2 patients
(patients Pl and PIX) and the mutation H1047R was observed in EpCAMhigh CTCs from
another patient (patient PX). These are the two most frequently described PIK3CA hotspot

mutations in breast cancer tissues (www.mycancergenome.org) as well as in EpCAMP"e

CTCs [157,172,173,192,193]. Interestingly, in EpCAMhigh CTCs from two different patients
(patient PIX and PXLVIl), also the rare mutation H1047L could be detected, which was

already reported by Gasch et al. [194].

Due to the genomic DNA amplification required for the mutational analysis, there is the
possibility that artificial base exchanges may be introduced by DNA polymerases. However,
considering sequencing results, this was excluded, since only specific PIK3CA hotspot
mutations could be observed within sequencing profiles of both exons 9 and 20. The
successful collection and isolation of different subpopulations of CTCs allowed to perform
single cell mutational analysis and to asses for the first time, the heterogeneity of the PIK3CA
status within single EpCAM™"/€99tve cTCs, besides patient-matched EpCAM™" tumour cells.
Even though based on a small cohort of patients, the detection of PIK3CA hotspot mutations
in only EpCAM""/"¢94t¢ CTCs in one patient (Pl) and in both EpCAM*/"e9°te 5ng EpcAM™"
CTCs in another one (PIX) is of high interest. These results suggest that implementing the
PIK3CA mutational analysis with EpCAM™*/"¢9°t"e cTCs may be relevant for future CTC-based
therapies targeting HER2/neu-positive CTCs, as envisioned in the DETECT Il study.
Furthermore, an increased resistance to anti-HER2/neu treatments could be induced by PI3K

activating mutations [8,25] and in some studies on EpCAMP®™¢ CTCs, PIK3CA hotspot
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mutations were already presented [157,172,173,192,193] and related to patients” overall
survival and prognosis free survival [192]. Hence, numerous research groups are currently
investigating the PIK3CA oncogene in both mBC primary tumours and CTCs, as a potential
biomarker of therapy resistance, in order to achieve more precise personalized treatments

in the near future.

5.4. Conclusions and outlooks

CTCs are postulated to be precursors of distant metastatic lesions. In addition, their
presence in PB is related to poor clinical outcomes in patients suffering of different cancers,
including breast. Therefore, investigating the biology of these tumour cells is of utmost
importance to better understand this systemic disease and to improve treatment options for
patients. The optimization of approaches to enrich, detect and characterize CTCs is
subsequently, a central topic in the field of the “liquid biopsy”. To this end, in the present
work, three workflows were established and successfully validated on patients” clinical
samples. The first workflow allows the detection of a wide population of CTCs (EpCAI\/Ihigh
and EpCAMP"/"eative) \vithin blood and DLA samples, by combining the sequential
enrichment via CellSearch® and VyCAP™. The second workflow enables, besides the
enrichment and the detection, also the isolation of these patient-matched tumour cells, by
sequentially utilizing CellSearch®, Parsortix™ and CellCelector™ devices. The genomic
characterization of isolated CTCs with a potential aggressive phenotype can be achieved
within the third workflow. The final aim of the latest is to identify a potential treatment
resistance mechanism (e.g. activating PIK3CA hotspot mutations) within patient-matched
epithelial and transient/mesenchymal CTCs. Although the herein reported data are based on
a small cohort of patients, they further confirm the frequent presence of the
EpCAMw/Mesetive o\ hnopulation of CTCs, undetectable via the only FDA-approved enrichment
system (CellSearch®) and additionally highlight that the combination of two sequential CTC-
enrichment approaches, may be the optimal way to investigate the whole population of
these tumour cells. Last but not least, the presented data point out that the investigation of
the PIK3CA mutational status within patient-matched EpCAM™" and EpCAM*/Meeetve ccs
may provide further knowledge about resistance to anti-HER2/neu therapies (e.g. lapatinib)
and may help to identify optimal treatment strategies for patients. In future works, the

patient cohort will be expanded and longitudinal follow-up studies will be performed to
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investigate the evolution of both EpCAM"*/"¢9¢ cTC abundance and PIK3CA mutational
status during treatments as well as their potential correlation with clinical outcomes.
Furthermore, apoptosis mechanisms and copy number alteration profiles will be
investigated within the EpCAM™"/99tve ¢l oroup of CTCs with respect to the EpCAM™"
cells, in order to confirm and better understand the malignant origin of the former subgroup

of tumour cells.
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Summary

Circulating tumour cells (CTCs) have been observed in the peripheral blood of cancer
patients and their abundance has been correlated to poor clinical outcomes in metastatic
breast cancer (mBC). CTCs are mostly enriched by EpCAM-based systems (e.g. CellSearch®)
which overlook EpCAM™*/"9%% tumour cells with an epithelial/mesenchymal plasticity,
postulated to be highly aggressive. Main goal of this project was to establish robust

high and

workflows to enrich, detect, isolate and characterize patient-matched EpCAM
EpCAM™"/Mesetive T in blood as well as in leukapheresis (DLA) samples of metastatic breast

cancer patients.

The first enrichment-detection workflow combines the CellSearch® and VyCAP™
filtration systems and it was applied to a cohort of 14 blood samples and 8 DLA samples. In
the second workflow, single CTC isolation was incorporated by combining the CellSearch®,
the Parsortix™ and the CellCelector™ micromalipulation systems. This workflow was applied
to a cohort of 52 mBC blood samples. Afterwards, isolated cells were characterized
according to the third workflow: CTCs were processed for whole genome amplification

(WGA) and sequenced for PIK3CA hotspot mutations through an amplicon-based approach.

By virtue of the first workflow, both EpCAM™" and EpCAM™"/™99%“¢ cTCs could be
observed in 78 % of blood samples and in 50 % of DLA samples, without any correlation in
positivity rates. With the second workflow, both CTC-subpopulations could be detected in 56
% of processed blood samples, confirming the lack of linearity in frequencies. High integrity
WGA products were observed in 7% of isolated EpCAM™*/"€9%%ve ca|is vs. 28% of patient-
matched EpCAMhigh cells, suggesting increased apoptosis within the first CTC-fraction. CTCs
harbouring PIK3CA hotspot mutations were detected in 4/10 patients” blood samples. One
patient carried the E545K mutation in EpCAM™*/"¢9%"¢ cTCs only and two patients showed
H1047L and H1047R mutations within EpCAM™" CTCs only. The fourth patient showed
hotspot mutations in both CTC-subgroups: the E545K mutation in one EpCAM™*/€94tve cT¢

and the H1047L mutation in two EpCAMhigh CTCs.

In summary, three robust workflows were successfully established and they respectively
allow to enrich, isolate, and analyse patient-matched EpCAM"™" and EpCAM""/"¢94t¢ CTCs in

metastatic breast cancer. For the first time, the heterogeneous PIK3CA mutational status has
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been observed within EpCAM"*/"¢9°e cTCs with regards to patient-matched EpCAM™" cells.
In future experiments, patient cohorts will be increased and follow up data will be related to
the frequency of EpCAMPY/"€99ie¢ cTCs as well as to the presence of PIK3CA hotspot
mutations to shed light on this subgroup of CTCs and to better investigate the potential role

of the PIK3CA oncogene as treatment resistance biomarker.
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Zusammenfassung

Zirkulierende Tumorzellen (CTCs) kdonnen im peripheren Blut von Krebspatienten
identifiziert werden und in verschiedenen Tumor-Entitditen korreliert ein erhdhtes
Vorkommen von CTCs mit schlechterer Prognose. Die meisten Technologien zur
Anreicherung von CTCs basieren auf dem epithelialen Marker EpCAM (CellSearch®), was
jedoch zur Folge hat, dass Zellen, die sich in der epithelialen/mesechymalen Transition
befinden und potenziell sehr aggressiv sind, ibersehen werden kénnen. Ziel dieser Arbeit
war daher die Etablierung eines stabilen Arbeitsablaufs fir die gleichzeitige Anreichung,
Detektion, Isolierung und Charakterisierung von sowohl EpCAMP*™¢" als auch
, EpCAMMedria/megativen” creq qus Blut- und Apheresat-Proben (DLA) von Patientinnen mit

einem metastasierten Mammakarzinom.

Die erste in dieser Arbeit etablierte Anreichungs- und Detektionsmethode kombiniert
die Systeme CellSearch® und VyCAP™. Sie wurde zur Anreicherung von CTCs aus 14 Blut- und
8 Apheresat-Proben von Mammakarzinom Patientinnen angewendet. Die zweite etablierte
Methode zur Isolierung von CTCs umfasst die Systeme CellSearch®, Parsortix™ und
CellCelector™. Mittels dieses Arbeitsablaufs wurden Blutproben von 52 Patientinnen
analysiert. Die isolierten Zellen wurden im Anschluss mit einer dritten in dieser Arbeit
etablierten Methode charakterisiert: zu diesem Zweck wurde die DNA der Zellen extrahiert,

amplifiziert und mittels einer amplicon-basierten Methode sequenziert, um ,Hot-spot

Mutationen des Onkogens PIK3CA zu detektieren.

hohe  41s auch

Mit Hilfe der ersten Anreicherungsmethode konnten sowohl EpCAM
EpCAM™edria/negative c1cs in 78 % der Blutproben und in 50 % der Apheresat-Proben
identifiziert werden, jedoch konnte keine positive Korrelation zwischen den CTC-Subtypen
ermittelt werden. Mittels der zweiten Anreicherungsmethode konnten beide CTC-
Subpopulationen in 56 % der Blutproben detektiert und die fehlende Korrelation der
Positivititsrate bestatigt werden. In 7 % der EpCAM"e¥9/M€dativen 7a )10 konnte das Genom

hohen 7allen, welche jeweils aus

mit hoher Integritdt amplifiziert werden, die DNA von EpCAM
denselben Proben isoliert wurden, konnte dagegen in 28 % mit hoher Integritat amplifiziert
werden. Diese Ergebnisse suggerieren erhohte Apoptoseraten innerhalb der ersten CTC-

Gruppe, die weitere Nachforschungen erfordern. CTCs mit PIK3CA-Mutationen wurden in
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niedrig/negativen

4/10 der Patientenprobenidentifiziert. Eine Patientin wies dabei nur in EpCAM
CTCs die Mutation E545K auf und zwei Patientinnen wiesen die Mutationen H1047L und
H1047R nur innerhalb der EpCAM™"" CTCs auf. Die vierte Patientin wies Mutationen in
beiden CTC-Gruppe auf: die Mutation E545K in einer EpCAM™¢d9/negativen o1 ynd die H1047L
Mutation in zwei EpCAM™"" CTCs.

In der vorliegenden Arbeit konnten drei stabile Arbeitslaufe erfolgreich etabliert
werden. Sie ermoglichen die gleichzeitige Anreicherung, Isolation und Analyse von
EpCAM™™" und EpCAM™Medra/megativen c1cq qus dem Blut metastatischer Mammakarzinom
Patientinnen. Zum ersten Mal wurde ein heterogener PIK3CA-Mutationsstatus innerhalb
EpCANM™edria/negativer cTcg fastgestellt. In zukiinftigen Experimenten soll die Patientenkohorte
erhoht werden. AuBerdem werden die Follow-up-Daten der Patientinnen mit der Anzahl der
EpCAMMedria/negativen c1cs ynd der Anwesenheit von PIK3CA Mutationen korreliert, um diese

CTC-Gruppe besser zu verstehen und die Rolle des PIK3CA Onkogens als Biomarker flr

Therapie-Resistenz zu erforschen.
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