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Over a period of time, several tumours acquire greater malignant abilities and 

consequently become more aggressive. This so called “tumour progression” can be 

explained with the genomic instability and the accumulation of multiple mutations in 

different cells which generate sub-clones with different phenotypes, leading to tumour 

heterogeneity. Moreover, during tumour progression, abnormal cells in the tumour mass are 

exposed to selection pressures which enrich sub-clones capable to survive, grow, invade 

surrounding tissues and metastasize (Figure 2) [2,4]. Both the concepts of heterogeneity and 

positive selection shed light on the trend for tumours to become more aggressive and 

resistant to therapies over the time. 

 

Figure 2. Tumour progression and heterogeneity, by Kumar et al., 2014 [2]  

The tumour mass is characterized by different sub-clones originated from the same tumour cell. Each of these 
sub-clones has different properties in terms of growth, survival, invasion and metastatic potential. The 
heterogeneity of the tumour mass is involved in treatment resistance. 1.2. Breast cancer 

1.2.1. Epidemiology and aetiology  
Breast Cancer is a disease caused by the rapid and abnormal growth of epithelial cells 

from breast tissues beyond their physiological boundaries [1]. Among women worldwide, 

this carcinoma was reported to be the most common form of cancer as well as the main 

cause of death, with 1.7 million of diagnosed cases in 2012 and nearly 31% of related 

deceases. According to predictions, the incidence of breast cancer will reach 3.2 million new 

cases per year by 2050, making this disease, a major health problem worldwide [5]. In 2012, 
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70.000 new cases of breast cancer were registered in Germany – of which ~26% died – and it 

was estimated that nearly 12.5% of German women will develop this disease in their life 

time, at onset of 64 years on average [6]. Major risk factors for female breast cancer are 

obesity together with lack of physical activity, old age, heavy alcohol intake, early menarche, 

assumption of hormonal contraceptives and late age at first birth [1,5]. The transformation 

of a normal cell into a cancerous one requires the combination of multiple factors: biological 

intrinsic (e.g. genetic background) and extrinsic (e.g. viruses), chemical (e.g. alcohol, 

tobacco) and physical ones (e.g. radiations) [7]. Typically, mutations occurring on critical 

genes involved in regulating cell growth, proliferation, differentiation can act as triggers for 

pre-cancerous lesions [8]. In breast carcinoma, there are several deregulated signalling 

pathways, among others: hormone receptor signalling (i.e. oestrogen receptor [ER], 

progesterone receptor [PR] and androgen receptor [AR]), cell growth signalling (i.e. tyrosine 

kinase receptor [i.e. HER2/neu]), cell cycle (e.g. PI3K, see chapter 1.2.4) and DNA 

damage/repair signalling (e.g. tumour protein p53, breast cancer 1 and 2 [BRCA1 and 2]) [8]. 

It was observed that 5-10% of all breast cancer cases are hereditary and linked to genetic 

mutations, comprising in about 90% of them the genes BRCA1 and BRCA2 [9,10].  

1.2.2. Histopathology  
Breast cancer is a considerably heterogeneous disease which comprises tumours with 

various intrinsic features, clinical characteristics and therapeutic responses [11]. Therefore, 

patient stratification is required for prognostic predictions and for the identification of 

effective treatment strategies.  

The human female breast is composed by lobes and ducts surrounded by adipose tissue. 

Each lobe consists of small glands named lobules, which are formed, in turn, by dozens of 

acini. The whole lobular architecture ends in several ducts, transferring milk provided by the 

acini, to the nipple. Both lobules and ducts are composed by a single layer of luminal 

epithelial cells, surrounded by a layer of myoepithelial cells, enclosed in turn, by the 

basement membrane. The basement membrane separates this epithelial bilayer from the 

stromal tissue, comprising the extracellular matrix, fibroblasts, immune cells, adipocytes, 

blood and lymphatic vessels (Figure 3) [1,11].   
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The stage of a tumour refers to how extended the cancer is and it is usually expressed as 

a number on a scale from 0 to IV, with “stage 0” describind non-invasive disease and “stage 

IV” invasive one which has disseminated over the breast tissues. Major factors taken in 

consideration for the staging are: size of the tumours, whether it has spread to lymph nodes 

and/or to a different site of the body, and whether it is invasive or non-invasive. 

It was observed that breast cancer usually develops in cells from the lining of the ducts 

(ductal carcinoma) and of the lobules (lobular carcinoma). The invasive ductal and lobular 

carcinomas represent together the 90% of the cases of breast cancer. Remaining “special 

cases” of this disease comprise medullary, neuroendocrine, tubular, apocrine, metaplastic, 

mucinous, inflammatory, comedo, adenoid cystic, and micro papillary breast cancers [11].  

1.2.3. Clinical subtypes and treatment approaches 
The identification of breast carcinoma subtypes is of great importance due to specific 

treatment approaches available and related different outcomes. The expression of the 

human epidermal growth factors 2 (HER2/neu) and of hormone receptors was identified to 

classify the three major clinical subtypes of breast cancer: HER2/neu-enriched, estrogene 

receptor (ER) positive and triple negative [15]. 

The “HER2/neu enriched” subtype is characterized by the overexpression of the 

HER2/neu oncogene and by a low/no expression of both ER and PR. This gene was found 

overexpressed in ~15% of the breast cancers and is currently aim of specific therapies which 

improved the overall survival (OS) of patiens suffering of this breast cancer subtype 

[11,16,17]. These targeted treatments mainly comprise monoclonal antibodies interfering 

with signalling pathways involved in carcinogenesis, such as tyrosine kinase receptors 

signalling inhibitors (e.g. trastuzumab [anti-HER2/neu], lapatinib [anti-ERK], PI3K inhibitors) 

[18]. 

The expression of both hormone receptors ER and PR defines the “luminal” subtype 

which can be further sub-classified according to the proliferation rate and to the HER2/neu 

status (positive or negative). Hormone receptor positive subgroups represent the most 

common molecular types of breast cancer (~70% of the cases) and are associated with the 

best OS [11,16,17,19]. Treatment strategies in luminal breast cancer often comprise 
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hormone receptor modulators (e.g. tamoxifen), inhibitors of oestrogen synthesis (e.g. 

aromatase inhibitors) or ER antagonists (e.g. fulvestrant) [18].  

Nearly 15% of breast cancer cases were observed to express low or no levels of the 

above mentioned molecular receptors and therefore they were grouped within the so called 

“triple negative” subtype. This breast carcinoma subgroup is commonly diagnosed among 

young women and associated with the worst prognosis due to the non-response to either 

endocrine treatment or monoclonal antibodies approaches [16,17].  Nevertheless, in the last 

decades, some studies have pointed out the existence of a subpopulation of triple negative 

breast cancer which might be sensitive to epidermal growth factor receptors inhibitors [18]. 

1.2.4. PI3K pathway and PIK3CA mutations  
The HER2/neu receptor is one of the major triggers of the Phosphatidylinositol 3-kinases 

(PI3K) pathway, which is named based on the PI3Ks proteins, a family of intracellular signal 

transducer proteins. Upon interaction with tyrosine kinase receptors, these kinases 

phosphorylate the 3-position hydroxyl group of the inositol ring of the phosphatidylinositol 

of protein kinases AKTs [20]. PI3Ks are classified in three major classes according to their 

structures and roles. The class IA of PI3Ks is the most involved in the development of cancer 

[21]. PI3Ks IA proteins are heterodimers comprising a regulatory subunit, the p85, and a 

catalytic subunit, the p110 which consists of subunits α and β, whose activity is inhibited 

upon binding to p85. The regulatory subunit, by interacting with HER2/neu, transduces 

activation signals to the p110 protein which, then, activates a cascade of signalling events 

involved in several vital functions such as cell survival, proliferation, differentiation, 

intracellular trafficking and migration (Figure 5) [8,21–23].   
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sensitive [33]. All these results combined with the reported oncogenic properties of PIK3CA 

hotspot mutations and with the frequent activation of the PI3K signalling observed in breast 

cancer, make this pathway a prime therapeutic target in patients. In the last decade, several 

pharmacological agents targeting PI3Ks proteins were designed. Those tested in clinical trials 

can be grouped into two classes: PI3K inhibitors and dual PI3K/mTOR inhibitors (Table 1).  

Table 1. PI3Ks inhibitors in clinical trials, based on Ma et al. 2015 [23]  

Pan-PI3K inhibitors 
GDC-0941 (pictilisib) 
BKM120 (buparlisib) 

XL147 
PX-866 

BAY 80-6946 
CH5132799 

p110α-specific inhibitors 
BYL719 (alpelisib) 

MLN1117 
GDC-0032 (taselisib, also 

targets p110g and d) 
p110β-specific inhibitors 

AZD8186 
SAR260301 

GSK2636771 
Dual PI3K/mTOR inhibitors 

BEZ235 
BGT226 
XL765 

GDC-0980 
 

Promising results were observed in metastatic ER+ breast cancer patients resistant to 

endocrine therapy, by including an anti-PI3K drug in the therapeutic approach [23]. As well 

as targeting both HER2/neu and PI3K pathway in patients suffering of HER2/neu+ breast 

cancers has been shown to effectively overcome hormonal treatment resistance [23].  

Despite all these promising results, the presence of PIK3CA mutations does not 

guarantee a clinical response to anti-PI3K drugs, since the downstream signalling cascade 

may be actvated by parallel pathways. [25]. Furthermore, the pharmacological combinations 

able to provide best clinical results in case of PIK3CA mutations still need to be determined. 
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disseminate into the blood circulation by mechanical processes only, thus preserving their 

epithelial phenotype [37]. 

1.3.2. Extravasation and colonization 
Tumour cells which gain access into the bloodstream are named “circulating tumour 

cells” (CTCs; comprehensively described in chapter 1.4). CTCs mostly circulate as single cells, 

but sometimes they aggregate to platelets which provide tumour cells some protection from 

host immune cells [2]. Furthermore, CTCs may survive immune defense mechanisms in 

blood by expressing PD-L1 on their surface, thereby binding to the receptor PD-1 expressed 

on T-cells. In fact, the bound of PD-L1 with PD-1 anergize these lymphocytes [52,53]. CTCs in 

the blood stream can potentially spread to all tissues. Although molecular mechanisms of 

tissue colonization have not been fully understood, yet, it is known that the extravasation 

takes place through inverse mechanisms to those involved in the intravasation: arrest and 

adhesion to the vascular endothelium, and access to the tissue parenchyma via enhanced 

focal adhesions with the basement membrane [2]. Thus, it was hypothesized that tumour 

cells which underwent EMT during the initial invasion may face the reverse process, named 

mesenchymal-to-epithelial transition (MET) [54–56].  The location of metastatic sites is 

usually associated to the entity of the primary tumour. For instance, breast cancer 

metastases are more likely to occur into brain, bones, liver and lungs [57]. This organ 

tropism may be explained with the expression of certain adhesion molecules and 

chemokines by the tumour cells, whose receptors are most likely to be expressed in specific 

organs. Binding of chemokines may prime the environment at specific sites to provide better 

seeding conditions for the arriving tumour cells [2].  However, not all tumour cells are able 

to successfully colonize certain organs, as well as some micro metastases can survive 

without any real progression in a quiescent status named “dormancy”  [2,3].  In a large 

pooled analysis of bone marrow micro metastases derived from breast cancer, Braun et al. 

observed that only half of the patients with hundreds of micro metastases at the time of 

diagnosis, actually developed macroscopic metastases [58].  

Concluding, as Stephen Paget already theorized for the first time in 1889, the outcome 

of the multi-step metastatization process depends on both properties of tumour cells 

(“seed”) and of host cells forming the microenvironment (“soil”), a concept known as “seed 
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and soil theory”[4,59,60]. In fact, failure of any of the mechanisms involved in the metastatic 

cascade could block the whole process [2,4,60]. 1.4. Circulating tumour cells 
1.4.1. Definition and characteristics 
CTCs are rare cells observed in the peripheral bloodstream (PB) of cancer patients and 

are believed to be released from primary tumours, their recurrences or from metastases 

[39]. CTCs were first described in 1869 by Ashworth and later in 1889 by Paget [59,61]. They 

may be found in PB of patients suffering of most solid epithelial tumours, with a frequency 

of 1-10 cells/ml PB surrounded by approximately 4x109 erythrocytes (RBCs), 2x108 platelets 

and 6x106 leukocytes [62,63]. Their half-life has been estimated to be 1.0 – 2.4 h [64]. 

According to the only FDA (Food and Drug Administration)-approved CTCs-enrichment 

system, CellSearch® (Menarini Silicon Biosystems, Bologna, Italy), a CTC is phenotypically 

determined by a regular, round shape of mainly 4 – 30 µm in diameter (Figure 10), with an 

intact, viable nucleus, expression of both cytokeratins (mainly cytokeratins 8, 18, and 19) 

and EpCAM and negativity for the expression of the hematopoietic marker CD45.  

 

Figure 10. Frequency and size of CTCs compared to blood cells, adapted from Stoecklein et al., 2016 [65] 

The extremely low frequency of CTCs in PB – compared to other cells in the blood (left) – together with their 
estimated size overlapping with the whole white blood cell population (right) make their isolation quite 
challenging.  
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However, CTCs with diverse phenotypes were described, in terms of irregular shape 

[66–68], lack of EpCAM expression and/or expression of mesenchymal markers [68–71], as 

well as clustering with other cancer cells [72–74] or leukocytes [75]. 

1.4.2. The EpCAMlow/negative subset of CTCs  
The glycosylated transmembrane protein EpCAM is located within intercellular 

adherents junctions and is involved in cellular migration, proliferation and differentiation 

[76]. Already in 1979, EpCAM was identified as one of the first tumour-associated 

antigens[77]. Subsequently, due to its strong expression in several cancers as well as to its 

absence on hematopoietic cells [78,79], EpCAM was taken in consideration as main antigen 

to identify CTCs. Thus, the CellSearch® system was designed to capture and detect EpCAM-

expressing cells [80,81]. However, in the last decade, several research groups have shown 

that EpCAM expression is heterogeneous and can even be absent on several cancers and 

CTCs [82–84]. Therefore EpCAM-based enrichment technologies of may overlook a 

considerable amount of CTCs (e.g. in breast [85] and lung cancer patients [68,86–88]). The 

existence of an EpCAM-negative subgroup of CTCs was reported in breast, lung, prostate 

[89], oesophageal [90] and colorectal cancers [91]. It was proposed that mesenchymal CTCs 

might actually represent a big portion of the total CTC population and that CTCs with a 

transient phenotype may also be present as a result of a partial EMT [69,88,92]. 

Several theories were postulated to explain the downregulation of EpCAM, such as the 

exposure to tumour necrosis-factor-α [93] or to cytokins [94], or the hypermethylation of 

the gene’s promotor [95,96]. Among all these potential mechanisms, EMT was hypothesized 

to be the most important process involved in the modulation of EpCAM expression [97]. This 

hypothesis could be supported by further studies which reported the presence of 

EpCAMnegative CTCs expressing EMT-related genes in metastatic breast cancer (mBC) patients 

[70,88].  Furthermore, EMT was theorized to play a central role in cancer dissemination and 

therapy resistance conferring more malignant phenotypes [37,98]. In agreement with this 

model, different groups observed a considerable amount of mesenchymal CTCs in cancer 

patients suffering of the progression of the disease [69,70,85].  Altogether, these findings 

suggest that only relying on EpCAM expression to enrich CTCs may lead to overlook relevant 

CTTC-subsets. 
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1.4.3. Challenges in CTC-research: rarity and 

heterogeneity 
Due to their low frequency in blood, CTCs require highly specific and sensitive 

enrichment techniques able to capture one single tumour cell in the background of millions 

of white blood cells (WBCs) and RBCs in order to limit the occurrence of false positive and 

false negative events [99]. Furthermore, capturing methods should guarantee high purity of 

the enriched cell fraction as well as high reproducibility and reliability – independently on 

the patient  [100]. As explained above, the most used technologies to enrich CTCs in blood 

samples rely on the expression of EpCAM protein by tumour cells. In the CellSearch® system, 

anti-EpCAM antibodies are coated to ferrofluidic paramagnetic nano-beads which can assure 

the automated enrichment of EpCAM-expressing cells. The subsequent CTC-detection is 

performed via immunofluorescence, focusing on the presence of nucleic signal, cytokeratin 

expression and lack of the hematopoietic marker CD45 [66,81,101]. However, as previously 

mentioned, EpCAM might be not the proper choice to collect a wide population of CTCs. 

Furthermore, Punnoose and colleagues demonstrated that the capturing efficiency of the 

CellSearch® system is approximately 75% for tumour cells expressing high levels of EpCAM 

and 42% for EpCAMlow tumour cells [102]. Therefore, in the last decades several alternative 

CTC enrichment technologies were designed and they can be mainly grouped in label-

dependent approaches – targeting antigens only expressed by CTCs – and label-free 

approaches, focusing on size, deformability, density and electrical properties of tumour cells 

[100,103,104]. Besides the low frequency, the second big challenge in CTC-research is the 

heterogeneity of tumour cells. Therefore, it is of major interest to singularize CTCs in order 

to perform a single-cell genomic, transcriptomic and proteomic (known as “-omic” analysis) 

characterization which may provide a comprehensive molecular portrait of the cancerous 

disease, absolutely necessary to better understand it [103,105].  

1.4.3.1. Label-dependent enrichment strategies 
Label-dependent CTC-capturing techniques may be categorized in positive selection and 

negative selection approaches, based on whether they focus on properties of tumour cells or 

on blood cells, respectively [88]. Positive selection aims to collect CTCs expressing certain 

surface proteins (e.g. EpCAM) by utilizing specific antibodies which are often conjugated to 
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immunomagnetic microbeads (e.g. CellSearch®) [106]. However, the choice of the target 

protein is challenging: it needs to be sufficiently expressed on the surface of the tumour cell 

and should specifically be related to cancer, in order to distinguish CTCs from WBCs and 

RBCs. To the end of overcoming limits related to the EpCAM expression, research groups 

have investigated the validity of alternative markers, such as: HER2/neu, mucin 1, EGFR, 

neural cadherin, the CUB domain-containing protein 1 (CDCP1, CD318), and the prostate-

specific membrane antigen [69,88,100,107–110]. Moreover, the feasibility of the 

combination of anti-EpCAM antibodies with further antibodies was tested for the Thomsen-

Friedenreich antigen (CD176), the melanoma cell adhesion molecule, the cell surface 

glycoprotein mucin18, and integrin alpha 6 (CD49f) [84,111,112]. An additional possibility is 

to perform a sequential enrichment on the EpCAM-depleted fraction of blood samples. By 

applying this approach, Schneck et al. managed to enrich EpCAMlow/negative CTCs in mBC 

samples, through nano-immunomagnetic beads coated to antibodies anti-CD49f, Trop2 and 

CK8, involved in the invasion-metastasis cascade [113]. However, to date, no specific 

“tumour-associated” mesenchymal markers are known to enrich and detect CTCs with 

epithelial-mesenchymal plasticity in a wide spectrum of cancers [88]. 

Another approach is the negative selection of CTCs via depletion of blood samples of 

WBC and RBC, by targeting antigens exlusively expressed by blood cells (e.g. CD2, CD16, 

CD19, CD38, CD45, CD66b, glycophorin A, and according to the type of cancer CD36 or 

CD56), with specific antibodies often conjugated to magnetic beads [114–116]. The major 

limit of this procedure consists in finding the right balance between blood cell depletion rate 

and CTC loss and these strategies were reported to be not so suitable to enrich consistent 

pure fractions of tumour cells [88,114–116]. 

Due to the above reported limits, many research groups and companies focus on the 

development of label-free collection approaches. 

1.4.3.2. Label-free enrichment strategies 
Label-free enrichment techniques are based on different biophysical properties of 

tumour cells compared to WBCs and RBCs, regardless of their protein expression. In the last 

decades, several CTC collection approaches were designed, such as density-based gradient 
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centrifugation, (micro) filtration systems, and microfluidic devices and each of them provides 

different capturing performances [88].  

The density-based centrifugation was the first enrichment approach already 

investigated in 1959, since CTCs were reported to possess similar density to the 

mononuclear blood cells [65,117,118]. In the following years, this method was implemented 

and improved by independent research groups. Nevertheless, the heterogeneous densities 

of tumour cells and the considerable leukocyte contamination still lead to poor recovery rate 

which is the major limit of this approach [88,119–122].  By exploiting the similar density of 

CTCs and leukocytes, a novel strategy was tested by Fischer and colleagues [118] which 

achieved considerable CTC-enrichment rates via diagnostic leukapheresis (DLA). During the 

DLA sampling, patients´ high blood volumes are continuously centrifuged on a density 

gradient to separates mononuclear cells and CTCs from the blood, which is then, 

immediately returned to the patients [65,118]. In 23 patients suffering from different 

cancers (breast, pancreatic and gastro-intestinal), the authors observed an increased CTC 

detection rate of 44% in comparison to standard PB volumes (7.5 Ml within the CellSearch®), 

by processing 2 mL DLA product for CTC detection [65,118]. However, this approach was and 

is still under extensive clinical validations within the European projects CTC-Trap [123] and 

Cancer-ID [124]. 

CTCs were described to be larger and stiffer then blood cells, therefore several 

technologies were designed to enrich them based on these physical properties 

[63,66,88,125–131]. The main investigated approach is the filtration of blood samples by 

utilizing filter membranes (e.g. VyCap®) [68,125,132–137], track-etched membranes (e.g. 

ISET®) [138–142], three-dimensional microfilters (e.g. Parsortix®)[87,89,143] and microfluidic 

devices (e.g. Vortex Chip®, Clear Cell®) [127,144–147]. Membrane-based filtration strategies 

were shown to be easy, quick and suitable for clinical routine in various types of cancer, 

although some aspects still require improvements, such as the purity of the enriched CTC 

fraction – essential for a proper CTC detection – and the detachment of cells retained by 

membranes, required for further molecular characterizations [68,88,141,148–152]. 

Moreover, these methods cannot enrich small CTCs whose role is still unknown. In fact, they 

might be either relevant in cancer dormancy or just the result of cell death[153]. Microfluidic 

platforms were shown to be able to capture CTCs in different types of cancer, in a fast high-
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throughput fashion, assuring consistent recovery, purity rates, and cell-viability [87–

89,127,143–147,154].  

Data reported so far suggest that the best strategy might be a subsequent application of 

label-based and label-free techniques in order to collect wider subsets of CTCs. 

1.4.3.3. Detecting and isolating CTCs 
The heterogeneity of cancer requires the single-CTC characterization which may be 

hampered by the leukocyte contamination affecting enrichment technologies. Therefore, it 

is of major interest to perform proper detection and isolation of single tumour cells, prior to 

molecular analysis. The field of the single cell-isolation is currently dominated by three major 

techniques: fluorescent activated cell sorting (FACS), dielectrophoresis (DEP) and 

micromanipulation [88].  

The FACS-sorting is automated, fast, robust and provides details about the expression of 

several biomarkers, due to the possibility of utilizing several fluorophores which is the major 

limit of other “classical” approaches [155,156]. However, flow cytometry does not provide a 

visual control of the isolated cell which may predict the suitability of the CTC for further 

analysis (i.e. DNA degradation) [88,157]. The automated DEPArray™ system (Menarini Silicon 

Biosystems) isolates CTCs based on their different dielectric properties compared to blood 

cells, and it also provides visual controls as well as information about biomarkers expression 

[157–159]. However, the whole processing may take up to 3 h and may lose relevant cells 

due to high volumes of sample lost in the tubing system [88]. Semi-automated 

micromanipulators such as the CellCelector™ may be effectively utilized to detect and isolate 

CTCs by combining an epifluorescence inverted microscope and a robotic arm with a glass 

capillary which can aspirate the selected cell and deposit it in a PCR tube or onto a glass 

slides [160]. Among its major advatages, the system provides a visual control during the cell 

isolation procedure and the sheer forces acting on cells are lower compared to these of the 

FACS-sorting. Furthermore, the risk of isolating unselected material is below ≤9% for a 

density of 25-50 cells/100 mm² [160]. 



 
20 

 

Each of these approaches was reported to be appropriate for effective isolation of single 

tumour cells to the end of molecular analysis [155–160]. However, according to the needs, 

one technology might be more suitable than another. 

1.4.4. Clinical role of CTCs in metastatic breast cancer 
Since the phenotype of primary tumours may differ from related metastases (e.g. 

HER2/neu status in mBC [161]), and since the sampling of both primary and metastatic 

lesions is an invasive and complex procedure, both the detection and characterization of 

CTCs in PB may represent a powerful alternative to investigate cancerous diseases. These 

tumour cells are, therefore, currently considered as a “liquid biopsy” [103]. However the 

topic is still in its infancy and no clinical applications based on CTCs are available so far, 

although some of the currently running clinical trials might be approved in the near future 

and subsequently applied in the clinical practice [162]. The discussion about the clinical role 

of CTCs can be mainly grouped in two topics: 1) the validity of CTC enumeration as a 

prognostic and therapy decision tool; 2) the clinical utility of CTC characterization in the 

treatment selection [163].  

1.4.4.1. Validity of CTC enumeration 
Even though the abundance of CTCs in PB is scant, their presence correlates with poor 

clinical outcomes in breast, colorectal, lung and prostate cancers [81,162,164,165]. CTCs’ 

prognostic significance in mBC was first investigated by Cristofanilli et al. in 2004, which 

reported a cut-off value of ≥5 CTCs/7.5 mL PB – detected via CellSearch® – to predict poor 

progression free survival (PFS) and OS for patients suffering of mBC [81]. After this 

milestone, the scientific community gradually shifted from the detection of disseminated 

tumour cells (DTCs) in bone marrow samples – as markers of minimal residual disease – to 

the detection of CTCs in PB samples, due to the invasiveness of the former procedure [62]. 

On the contrary, PB sampling is easy, painless and can be repeated several times to monitor 

patients´ treatment responses. However, any study on CTC enumeration highly depends on 

the technique used for both cell-enrichment and detection, as well as on the volume of the 

processed PB (see chapter 1.4.4). For this reason, most of the research groups rely on the 

only one FDA-approved CellSearch® system, missing though, CTCs with mesenchymal-like 

and intermediate phenotypes (see chapter 1.4.3) which might play a major role in metastasis 
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and treatment resistance [69,70,166,167]. After Cristofanilli and colleagues´ publication, the 

correlation between CTC enumeration and outcomes in mBC patients was further confirmed 

by other numerous studies [62,163]. The prognostic role of the CTC-count was investigated 

not only in terms of absolute quantification, but also in terms of dynamic variations. It was 

reported that mBC patients with a decreased CTC-count after the first line of treatment, 

have better PFS and OS than patients with constant high CTC numbers [81,168]. Comparable 

observations were described in metastatic cancers of colon, prostate and lung as well 

[164,165,169].  

Clinical trials involving mBC patients are currently investigating the efficacy of the CTC count 

for the choice of therapies. Within the clinical trial SWOG S0500 – involving 120/595 mBC 

with >5 CTCs after the first line of therapy – it was confirmed that high CTC counts predict 

disease progression. However, Smerage et al. reported that patients´ OS was not improved 

by an early switch to a second line chemotherapy [170]. In the ongoing study CirCe01 

(NCT01349842) clinicians are testing a similar approach to evaluate whether CTC-variations 

may guide the third line of chemotherapy [171]. The STITC-CTC study (NCT01710605) aims to 

test the validity to treat >700 hormone receptor positive mBC patients either with hormone 

therapy for baseline CTC count <5 or with chemotherapy in case of ≥5 CTCs [62,162].  

Although all together above reported studies suggest a valuable role of CTCs as therapy 

monitoring instrument, the clinical utility of CTC-enumeration  still requires further 

elucidations in order to be implemented in the clinical routine practice. 

1.4.4.2. Utility of CTC characterization 
In the last years, the characterization of CTCs has acquired lots of interest, mainly due to 

the availability of new high resolution technologies for “-omic” analysis on single cells, 

thereby required to investigate the cancer heterogeneity. Currently, there are no ongoing 

clinical trials based on CTC-“omic” analysis yet, although several research groups are 

investigating CTC genotypes to better understand the systemic disease [69,155,157,172]. On 

the contrary, the phenotypical characterization of CTC (biomarker expression) – typically 

based on immunofluorescence staining combined with high-resolution imaging – is already 

in its evaluation phase for clinical applications. Among these studies, the trials 

NCT00820924[173], NCT00820924[174], DETECT III (NCT01619111)[175] and DETECT IVa/b 
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(NCT02035813)[176] focus on the efficacy of HER2/neu-targeted therapies in patients 

suffering of HER2/neu-negative mBC but with HER2/neu-positive CTCs (NCT00820924, 

DETECT III/IV) or EGFR-positive CTCs (NCT00820924).  

However, the validity of CTC-characterization in the choice of treatments is in its very 

early stages and surely requires further investigations. 

1.4.4.3. Clinical relevance of CTCs with epithelial-

mesenchymal plasticity 
As above mentioned, the detection of EpCAMpositive CTCs in cancer patients generally 

predicts adverse prognoses. However, it was recently hypothesized that patients with 

undetectable CTCs might also encounter worse outcomes due to the existence of an 

EpCAMlow/negative subpopulation of CTCs [88,177]. Still very little is known about these cells 

and this hypothesis is currently investigated by several research groups. Mego and 

colleagues observed a correlation between the scarcity of  EpCAMpositive CTCs and the 

occurrence of brain metastasis in mBC patients [85]. Subsequently, Zhang et al. reported 

high brain metastatic potentials for an isolated EpCAMnegative subpopulation of CTCs injected 

in nude mice[178]. In agreement with these observations, Vishnoi and colleagues suggested 

that stem-cell-like EpCAMnegative CTCs, expressing markers for cancer dormancy (e.g. 

urokinase-type plasminogen activator receptor and integrin β1), might play a role in the 

development of brain metastases [179]. Furthermore, Lustberg et al. observed decreased OS 

in mBC patients presenting more than 100 EpCAMnegative CTCs/mL of blood. Interestingly, in 

contrast with these observations, de Wit and colleagues recently reported no inferior 

prognoses in metastatic lung cancer patients with EpCAMlow/negative CTCs [68]. Similar 

conclusions could be drawn for metastatic prostate cancer patients, investigated within the 

CTC-Trap consortium [180].  

To date, only few studies addressed the question whether this subset of CTCs might be 

of clinical relevance and all agree on the importance of investigating the presence and 

molecular signatures of EpCAMlow/negative CTCs, in order to acquire new insights into cancer 

development and progression. 
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2. Aim of the study 
Despite enormous efforts for therapeutic improvements, more than 30% of mBC 

patients from all over the world still die of distant metastases, due to a minimal residual 

disease. The major obstacle for effective cures is the heterogeneity of primary tumours. 

They are composed by various cellular subsets with different metastatic potentials and 

sensitivity to treatments. Therefore, investigating the heterogenous biology of CTCs – 

considered surrogates of minimal residual disease – is of major importance to select the 

optimal treatment and shed light on eventual therapeutic failures. The field of CTC analysis is 

still in its infant and most of the knowledge regards the enumeration of the EpCAMpositive 

tumour cells in relation to the patients´ prognosis.  

The aim of the study was to significantly contribute to the optimization of strategies to 

enrich, isolate and characterize two different subsets of CTCs – EpCAMhigh and 

EpCAMlow/negative – within same mBC patients´ blood and DLA samples. Both enrichment and 

molecular analysis are necessary for the real-time monitoring of the disease in the patients 

and to achieve personalized therapies which may help to overcome treatment failures. To 

this end, the European “CTC-Trap” consortium (funded through FP7 health.2012.1.2-1 

#305341) was founded [123,180,181]. The main goal of this consortium consisted in the 

validation of a filtration technique to enrich and detect the EpCAMlow/negative subpopulation of 

CTCs from EpCAM-depleted blood and DLA samples of mBC patients.  

Within the herein described study, additional methods enabling the enrichment as well 

as the isolation of patient-matched EpCAMhigh and EpCAMlow/negative CTCs were validated and 

subsequently, the enrichment/isolation workflow should be adapted for single cell molecular 

analysis. The second part of this study aimed to perform the comparative characterization of 

the status of the PIK3CA oncogene within patient-matched EpCAMhigh and EpCAMlow/negative 

CTCs, since PIK3CA activating mutations might be involved in HER2/neu-targeted treatment 

resistance. To this end, a protocol for PIK3CA-specific PCRs and Sanger sequencing of single 

cells should be validated to achieve mutational analysis of PI3KCA hotspots mutations 

E542K/E545K and H1047R. The above described aims should be achieved in a translational 

project connected to the studies DETECT III, DETECT IV, AUGUSTA and SEPTEMBRA. 
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In the future, the information on the presence of EpCAMlow/negative CTCs and on the 

presence of PIK3CA hotspot mutations, in both subsets of CTCs, will be correlated to 

patients´ follow-up data and might positively contribute to achieve more precise patients´ 

prognosis as well as personalized treatment choices. 
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3. Materials and Methods 3.1. Cell lines  
The MCF-7 and T47D breast cancer cell lines were purchased from the American Type 

Culture Collection (ATCC, Manassas, VA, USA; catalogue number: HTB-22™ and HTB-133™). 

The MCF-7 was generated from an adenocarcinoma of a 69-year old Caucasian woman. The 

T47D cell line was generated from a ductal carcinoma of a 54-year old Caucasian woman. 

3.1.1. Culture conditions 
All cell lines were cultured in RPMI 1640 L-glutamine containing 1% Penicillin-

Streptomycin and 10 % foetal calf serum (all Gibco, Karlsruhe, Germany). MCF-7 cells were 

further supplemented with 25 mM HEPES and the T47D cells with 10 mM HEPES, 1 mM 

sodium pyruvate and 0.45% D-(β) Glucose solution (Gibco). All cell lines were grown at 37°C 

in a humidified atmosphere with 5% CO2 and were subsequently authenticated through 

highly-polymorphic short tandem repeat loci (STRs) analysis. 

3.1.2. Sub-culturing of MCF-7 and T47D cells 
At a confluency of 60-80%, the culture medium was discarded and cells were washed 

with PBS (Gibco). After discarding the PBS, cells were incubated with 0.05% trypsin (Gibco) 

for 5 min at 37°C, in order to detach them from the surface of the culturing flasks. 

Afterwards, the proteolytic action of the trypsin was stopped by transferring the complete 

medium into the flasks. Cells were collected and transferred in 15 mL Falcon® tubes (Corning 

Incorporated, New York, USA) and then centrifuged at 1100 rpm for 5 min, in order to 

completely remove trypsin traces. To this end, the supernatant – consisting of medium and 

trypsin – was then discarded and the cell-pellet was resuspended in complete medium and 

sub-cultivated in new flasks with a ratio of 1:2 or 1:4, according to the density of the cells. 

3.1.3. Cryopreservation and re-culturing  
 Aliquots of cells were cryopreserved by transferring 1 mL of the resuspended pellet into 

2 mL cryo tubes (Greiner, Solingen, Germany) supplemented with 5% dimethyl sulfoxide 

(DMSO; Sigma-Aldrich, Munich, Germany) and slowly freezed in freezing container at -80°C, 

for 24 h. Afterwards, cryos were transferred in liquid nitrogen for long term storage.  
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In order to re-culture cryopreserved cells, frozen aliquots were thawed at 37°C, 

transferred into 15 mL Falcon® tubes along with new complete medium. Cells in new 

medium were centrifuged at 1100 rpm for 5 min, to remove traces of the DMSO. The 

supernatant was discarded and the cell-pellet was resuspended in new complete medium 

and transferred in a new flask for culturing. 3.2. Cytospins preparation  
To the end of validating different immunostainings utilized for CTC-detection, cytospins 

of MCF-7 cells and of leukocytes – isolated from healthy donor whole blood samples – were 

prepared. 

3.2.1. MCF-7 and whole blood fixation 
In order to simulate the conditions of CTCs in patients´ whole blood samples processed 

in the clinical routine, MCF-7 cells and whole blood were fixed. At a confluency of 60-80%, 

MCF-7 cells were processed for sub-culturing as above described, omitting the transfer of 

the cell-pellet into new flasks. Cells were instead resuspended in 7.2 mL of PBS, transferred 

into CellSave® preservative tubes (Menarini Silicon Biosystems) and incubated for 24 h at 

room temperature (RT). Afterwards, cells were centrifuged at 1100 rpm for 5 min, the 

supernatant was discarded and the cell-pellet was resuspended in 1 mL PBS. 

An amount of 7.5 mL of whole blood samples was transferred into CellSave® 

preservative tubes and incubated for 24 h, at RT. Afterwards, whole blood samples were 

processed to isolate leukocytes.   

3.2.2. Isolation of leukocytes from whole blood 
To the end of isolating leukocytes, fixed blood samples were diluted in PBS (1:2) and 

then slowly pipetted on  15 mL of Biocoll separating solution (Merck Millipore, Billerica, 

Massachusetts, USA), previously deposited into a new 50 ml Falcon® tube. Then, samples 

were processed for density gradient centrifugation at 1500 rpm, RT, for 30 min, without 

breaks (Figure 11). Afterwards, the supernatant was discarded and the interphase, 

comprising the majority of leukocytes, was carefully aspirated and transferred into a new 50 

ml Falcon® tube.  
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Figure 11. Whole blood centrifuged on a density gradient, from humanimmunologyportal.com [182] 

As a result of density gradient centrifugation, blood components are divided in three parts according to their 
densities: plasma in the supernatant, most of leukocytes and platelets in the interphase (buffy coat) and red 
cells in the pellet. 

The buffy coat was washed with 50 mL PBS and centrifuged again. Then, the 

supernatant was discarded and the pellet was resuspended in 1 mL PBS. 

3.2.3. Cell counting  
The amount of cells was determined through the improved Neubauer counting 

chambers (Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen, Germany) composed of 2 

sampling areas of 4 mm2, each divided into 4 squares. All 4 squares are further divided in 16 

squares. In order to determine the amount of the cells per mL of suspension, 10 µL of cells 

diluted in PBS were transferred into an Eppendorf tube (Eppendorf, Hamburg, Germany) and 

mixed with Trypan blue (Sigma-Aldrich) 1:1. Half of the suspension was pipetted into one 

sampling area and the chamber was examined under the microscope. The number of cells 

located in the 64 small squares was recorded and the total amount of cells per mL was 

calculated as following: Cell count x 2 x 10 000 / 4. 

3.2.4. Spinning of cells 
Resuspended MCF-7 and leukocytes were diluted with PBS down to a concentration of 

125 000 – 250 000 cells/mL. An amount of 400 µL of diluted cell suspensions were 

transferred onto SuperFrost glass slides (Paul Marienfeld GmbH & Co. KG) and centrifuged at 

600 g for 3 min though the ROTOFIX 32 A centrifuge (Hettich GmbH & Co.KG, Tuttlingen, 

Germany). The supernatant containing PBS was removed and cells were spun onto glass 

slides and dried overnight. Afterwards, cytospins were stored at -20 °C. 
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3.3.1.1. Immunocytostaining of cytospins 
In order to test the efficacy and specificity of the immunostaining mastermix #1 (Table 

2) targeting nuclei, cytokeratins and CD45 altogether, cytospins of fixed MCF-7 (expected 

cytokeratinpositive and CD45negative) and leukocytes (expected cytokeratinnegative and CD45positive) 

were washed with 200 µL PBS/BSA (Gibco/Sigma-Aldrich) 1 % and then incubated with 200 

µL PBS/BSA 1 %/saponin (Gibco/Sigma-Aldrich) 0.15 %, in order to permeabilize cells. During 

the incubation, the immunostaining mastermix solution was prepared diluting below 

reported antibodies in 200 µL PBS/BSA 1 %/saponin 0.05 %. 

Table 2. Immunostaining mastermix #1 

Antibody Clone Conjugation Final 
concentration Company 

Anti-CD45 HI30 [68] PerCP 1:25 Life Technologies, 
Carlsbad, California, USA 

Anti-
PanCytokeratins  

(1, 4, 5, 6, 8, 10, 13, 
14, 15, 16, 18, 19) 

C11/AE1/AE3 
[68,113] NanoParticles 575 1:50 Aczon srl, Monte San 

Pietro, Italy 

 

After the permeabilization, cells were incubated with the immunostaining mastermix, 

for 1 h, at RT, dark. Then, cells were washed twice with 200 µl PBS/BSA 1 %, in order to 

remove the unbound antibodies. Afterwards, 200 µL of ProLong® mounting medium 

containing DAPI (Life Technologies, Carlsbad, California, USA) were pipetted on cells and a 

glass coverslip (Paul Marienfeld GmbH & Co. KG) was placed on cytospins.  

3.3.1.2. Epifluorescence microscopy 
Glass slides were observed under the epifluorescence microscope Nikon Eclipse E400, 

located in Prof. Dr. Stoecklein´s research lab, and the whole area of the microsieve was 

automatically scanned with a 20 x objective in the following channels: DAPI for the detection 

of the nuclei, PE for the cytokeratins-NP575 and PerCP for the detection of the CD45 

antigen. The following exposure times were used: 10 ms for DAPI, 800 ms for PE and 300 ms 

for PerCP. 



 
31 

 

3.3.2. Validation of the workflow 
Prior to processing blood and DLA clinical samples, the recovery capability of the 

VyCAP™ filtration approach was tested on healthy donor blood samples previously 

processed within the CellSearch® system and then spiked with MCF-7 cells.  Since the 

enrichment of EpCAMhigh CTCs within the CellSearch® system has previously been 

established [113,172] and is currently performed in the clinical routine, the establishment of 

the herein described workflow focused on the novel part of the protocol only: the 

enrichment of EpCAMlow/negative CTCs via VyCAP™ filtration of patients´ blood samples, 

previously depleted of EpCAMhigh CTCs. 

3.3.2.1. Immunostaining of cells in suspension 
Prior to the spiking experiments, fixed MCF-7 cells were stained in suspension. To this 

end, the cell pellet was resuspended in 1 mL of PBS/BSA 1 %/saponin 0.15 % and incubated 

15 min at RT. Afterwards, cells were centrifuged at 1100 rpm for 5 min and the supernatant 

was discarded to remove the reagents. The cell pellet was washed with 1 mL PBS/BSA 1 % 

and further centrifuged. Cells were resuspended in 400 µL of the immunostaining mastermix 

solution #1 and incubated for 1 h, at RT, dark. 

3.3.2.2. Cell line spiking experiments 
In order to measure the capturing efficacy of the VyCAP™ filtration device, three 

independent spiking experiments were performed. Defined amounts of MCF-7 cells were 

pipetted into blood samples previously processed with the CellSearch® (Table 3). Then, 

spiked blood samples were processed with the VyCAP™ filtration device, as explained above.  

Table 3. Amount of MCF-7 cells spiked per each spiking experiment 

# Spiking experiment # Spiked MCF-7 cells 
Experiment 1 64 
Experiment 2 97 
Experiment 3 70 
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one coverslip of 0.85 cm2 (0.13-0.16mm thick; Menzel-Gläser, Saarbrückener, Germany) was 

applied on each side. Slides were stored at -20 °C, dark, until the scanning. Afterwards, the 

effective immunostaining of both MCF-7 and co-captured leukocytes was checked under the 

epifluorescence microscope Nikon Eclipse E400 according to the parameters above reported. 

As negative controls, unspiked blood samples of healthy donors were processed as well. 

The above described immunostaining protocol on microsieves is based on de Wit et 

al.[68] and was further improved within the CTC-Trap [180]. 

3.3.3. Processing mBC patients´ blood samples 
Blood samples of patients suffering from mBC were collected within the German 

DETECT III/IV (III: NCT01619111, IV: NCT02035813; for more information: www.detect-

studien.de) and AUGUSTA studies. Written informed consent was obtained from all 

participating patients and the studies were approved by the Ethical Committee of the 

Eberhard-Karls University Tuebingen (responsible for DETECT III: 525/2011AMG1) and the 

local Ethical Committee of the Heinrich-Heine University Duesseldorf (DETECT III: MC-531; 

DETECT IV: MC-LKP-668 AGUSTA: 3430). 

 

3.3.4. Processing mBC patients´ DLA samples 
DLA samples of patients suffering from mBC were collected within the German 

SEPTEMBRA study, in cooperation with Prof. Dr. Stoecklein´s research group (Department of 

General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the 

Heinrich-Heine University, Duesseldorf, Germany) as previously published.  Written 

informed consent was obtained from all participating patients and the study was approved 

by the local Ethical Committee of the Heinrich-Heine University Duesseldorf (AUGUSTA: 

3430; SEPTEMBRA: 3460).  

3.3.5. Detecting tumour cells:  image analysis 
For the detection of the cells retained by VyCAP™ filters, the open source image analysis 

software “ICY” was used. All the images of each sample were loaded simultaneously and 

separated series of time frames of images for each channel were automatically created. The 
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ANGLE plc) in height blocking the flow of most cells bigger than leukocytes, including CTCs. 

On the contrary, small cells can flow through the cassette and are discarded in the waste 

container (Figure 16).  

 

Figure 16. The Parsortix™ system, by Xu et al., 2015 [89] 

The Parsortix™ device is composed by an inner pump tubing system, a sampling area (at the centre), waste and 
buffer area (left side) and reagents and harvest area (right side) (a). On the top it is located the clamp (b) 
holding the enrichment cassette (c). The disposable cassette consists of several lanes. Each of them is formed 
by numerous separation steps which retain cells bigger than 6.5 µm (or 10 µm in the former version) (d). 

At first, the whole device was automatically primed through PBS and Ethanol 100% 

(Merck KGaA), in order to remove air bubbles and to sterilize both tubing systems and 

disposable cassettes. Then, blood samples were placed into their holder and the blood was 

pumped through the cassette. Afterwards, captured cells were permeabilized and stained in 

situ for nuclei, cytokeratins, EpCAM, and CD45. By inverting the flow of the buffer into 

cassette, stained cells are collected in a tube, outside the system. By virtue of an automated 

cleaning protocol based on Deconmatic reagent (Decon Laboratories Ltd, Hove, UK), clean 

and sterile working conditions could be guaranteed.  

At last, both EpCAMhigh and EpCAMlow/negative cells are detected and isolated in PCR tubes 

through the CellCelector™ (ALS, Jena, Germany), a semi-automated micromanipulator 
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3.4.1.1. Immunocytostaining of cytospins 
In order to test the efficacy and specificity of the immunostaining mastermix targeting 

nuclei, cytokeratins, EpCAM and CD45 altogether, cytospins of fixed MCF-7 (cytokeratinpos, 

EpCAMpos and CD45neg) and leukocytes (cytokeratinneg, EpCAMneg and CD45pos) were washed 

with 200 µL PBS and then incubated with 200 µL Triton X-100 (Sigma-Aldrich) 0.1 % for 10 

min, in order to permeabilize cells. During the incubation, the immunostaining mastermix 

solution #2 was prepared diluting reagents in DAKO antibody diluent, as described below  

(Agilent, Santa Clara, USA; Table 4).  

Table 4. The immunostaining mastermix #2. 

Reagent Antibody-
clone Conjugation Final 

concentration Company 

DAPI - - 1:20 Roche Diagnostics GmbH, 
Indiana, USA 

Anti-CD45 3S-Z5 [113] AlexaFluor647® 1:25 Santa Cruz Biotechnology 
Inc., Dallas, Texas, USA 

Anti-
PanCytokeratins  

(1, 4, 5, 6, 8, 10, 13, 
14, 15, 16, 18, 19) 

C11/AE1/AE3 
[68,113] TRITC 1:50 Aczon srl, Monte San 

Pietro, Italy 

Anti-EpCAM VU1D9 [113] AlexaFluor488® 1:50 
Cell Signaling Technology 

Inc., Danvers, 
Massachusetts, USA 

 

After the permeabilization, cells were incubated with 200 µL of the immunostaining 

mastermix, for 1 h, at RT, dark. Then, cells were washed twice with 200 µL PBS, in order to 

remove the unbound antibodies. Afterwards, 200 µL of DAKO mounting medium were 

pipetted on cells and a glass coverslip was placed on cytospins.  

3.4.1.2. Epifluorescence microscopy 
Glass slides were observed under the epifluorescence microscope integrated into the 

CellCelector™. The following channels were checked with a 20 x object: DAPI for the 

detection of nuclei, TRITC for the cytokeratins, FITC for EpCAM-AF488 and Cy5 for the 

detection of the CD45-AF647. The following exposure times were used: 50 ms for DAPI, 300 

ms for TRITC and FITC and 500 ms for Cy5. 
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3.4.2. Validation of the workflow 
Since the enrichment of EpCAMhigh CTCs within the CellSearch® system has previously 

been established [113,172] and is currently performed in the clinical routine, the 

establishment of the herein described workflow focused on the novel part of the protocol 

only: the enrichment of the EpCAMlow/negative CTCs via Parsortix™ processing of patients´ 

blood samples, previously depleted of the EpCAMhigh CTCs.  

3.4.2.1. Immunostaining of cells in suspension 
Prior to the spiking experiments, fixed MCF-7 cells were stained in suspension. To this 

end, the cell pellet was resuspended in 1 mL of Triton X-100 0.1 % in PBS and incubated 10 

min at RT. Afterwards, cells were centrifuged at 1100 rpm for 5 min and the supernatant was 

discarded to remove the Triton X-100. The cell pellet was washed with 1 mL PBS and further 

centrifuged. Cells were resuspended in 400 µL of the immunostaining mastermix solution #2 

and incubated for 1 h, at RT, dark. 

3.4.2.2. Cell line spiking experiments 
In order to measure capturing and harvesting efficacy of the 6.5 µm Parsortix™ cassette, 

three independent spiking experiments were performed. Blood samples of healthy donors 

were processed through the CellSearch® as above described, and the discarded blood was 

collected.  Defined amounts of MCF-7 were pipetted into the CellSearch®-processed blood 

samples (Table 5) which were subsequently processed with the Parsortix™ system, as 

explained above.  

Table 5. Amount of MCF-7 cells spiked per each spiking experiment. 

# Spiking experiment  # Spiked cells 
Experiment 1 41 
Experiment 2 105 
Experiment 3 48 

 

Recovered cells were counted before (capturing rate) and after harvesting (harvesting 

rate), under the epifluorescence microscope integrated into the CellCelector™. 
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3.4.2.3. Detection and isolation of tumour cells 
Recovered cells – either from Parsortix™ or from CellSearch® cartridges – were 

transferred onto glass slides, located on their magnetic holder on the motorized stage, and 

were allowed to settle for 10 min.  Instead, in order to evaluate the capturing of cells within 

the Parsortix cassettes, these were directly placed on the holder on the motorized stage. 

Analysis was performed using the CellCelector™ software 3.0 (ALS, Jena, Germany). 

Imaging 

By virtue of ferrofluid coating, EpCAMhigh cells could firmly settle onto glass slides and 

samples could be automatically scanned with a cross-stage speed of 20 % and 20 x 

magnification in the following epifluorescence channels: DAPI (for visualization of nuclei), 

TRITC (for CK) and Cy5 (for CD45). The following exposure times were used: 300 ms for 

TRITC, 500 ms for Cy5 and 50 ms for DAPI[160]. EpCAMlow/negative cells were manually scanned 

with a cross-stage speed of 20 % and 40 x magnification in the epifluorescence channels 

above listed, utilizing the same exposure times. Images of single cells in all epifluorescence 

channels were recorded and stored for later documentation.  

Selection criteria 

Detected cells were analysed utilizing the following scan parameters: diameter signals 

ranging from 5–40 µm and grey value mean (fluorescence intensity of >2000 for cytokeratins 

signal). DAPIpositive/Cytokeratinspositive/EpCAMlow/negative/CD45negative events were observed in 

the bright field as well (BF). Only events with a round shape in BF, specific epifluorescence 

signals, and without any sign of DNA fragmentation in DAPI – suggesting apoptosis – were 

isolated.  

Cell isolation parameters 

Cell isolation was performed with glass capillaries of 30 µm in diameter, in DAPI channel 

to ensure no co-isolation of surrounding cells. At first, the glass capillary was calibrated 15-

25 µm above the slide surface, then, selected cells were aspirated with a volume of 20–100 

nL using. For optimal cell deposition 2–9 µL PBS was aspirated prior to the isolation process. 

After aspiration, cells were deposited into PCR tubes prefilled with 50–100 µL PBS buffer.  

The whole cell isolation process for 50 CTCs took approx. 1–2.5 h. Therefore, fast processing 
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of samples was guaranteed. At last, PCR tubes containing single cells were centrifuged for 10 

min at 1300 rpm and the supernatant was removed leaving 1 µL of PBS in each tube. The 

cells were stored at -80°C until further use.  

The above reported protocol to isolate CTCs is based on Neumann et al., 2016[160]. 

3.4.2.4. Immunocytostaining in cassette 
In order to verify the effective immunostaining of tumour cells into the separation 

cassette, fixed un-stained MCF-7 cells (EpCAMhigh and cytokeratinshigh) were spiked into 

blood samples of healthy donors, previously processed within the CellSearch® (see above). 

Afterwards, spiked blood samples were processed within the Parsortix™ system, as above 

reported, and captured cells were stained in situ utilizing to the immunostaining mastermix 

#2. Afterwards, cells were harvested, transferred onto a glass slide and the effective 

immunostaining of both MCF-7 and co-captured leukocytes was checked under the 

epifluorescence microscope integrated into the CellCelector™. As negative controls, 

unspiked blood samples of healthy donors were processed as well. 

3.4.3. Processing MBC patients´ blood samples  
Blood samples of patients suffering from mBC were collected within the German 

DETECT III/IV and AUGUSTA studies. 

3.4.3.1. Statistical analysis 
The dependence of the EpCAMlow/negative CTC abundance on the frquency of the 

EpCAMhigh CTCs was investigated through a linear regression test for Gaussian distribution, 

with 95% of confidence. The significance of the MCF-7 recovery rate comparison between 

the VyCAP™ and the Parsortix™ approaches was investigated through the unpaired t-test. 
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cleaves the peptide bond in proteins next to the carboxyl group of hydrophobic aminoacid 

residues. It is often used at 50-65°C because most nucleases that would digest DNA are 

inactivated at these temperatures [187]. 

Then, the released genome was incubated for 3 h, at 37°C with a reagents mix based on 

MseI restriction endonuclease, in order to digest DNA. MseI is a unique restriction 

endonuclease which recognizes the palindromic sequence 5‘-TTAA-3' and cleaves between 

the two T residues to produce the following 2 base 5' extension:  [187]. 

Afterwards, digested DNA was ligated to two DNA adaptors designed according to the 

previously generated MseI-base extensions. A primer-specific PCR was performed 

afterwards, in order to amplify the genome of the single processed cell. At last, WGA 

products were stored at -20 °C. 

The WGA protocol is estimated to produce equally amplified DNA fragments of 0.2-2 

kb,~2 µg dsDNA/~5 µg ssDNA, starting from ~ 6pg of dsDNA of a single cell.  As positive and 

negative controls, 100 ng/µL of genomic DNA of MCF-7 cells and water (Menarini Silicon 

Biosystems) were respectively used. 

3.5.1.1. Quality control multiplex PCR 
The efficacy of the WGA was verified processing 1 µL of WGA products for a multiplex 

PCR of 4 markers located on the chromosomes 12p, 5p, 17p, 6p, by utilizing the Ampli1 

WGA-QC™ kit (Menarini Silicon Biosystems), according to manufacturer’s protocol. As 

positive and negative controls, 100 ng/µL of genomic DNA of MCF-7 cells and water were 

used, respectively. 

3.5.1.2. DNA Gel-electrophoresis 
In order to assess the multiplex PCR, a DNA gel-electrophoresis was performed. At first, 

a mixture of 2 % agarose/ 1 % TAE/0.01 % gel red (Sigma-Aldrich/Biotium Inc., Fremont, 

USA) was prepared and let it polymerize for 45 min, at RT. Then, 5 µL of PCR product 

together with 1 µL of Loading dye “LD 6x” (Thermo Fischer Scientific) were loaded into a gel 

well. As a marker, 6 µL of DNA Ladder “Mass ruler LR” (Thermo Fischer Scientific) were 

additionally loaded into a gel well. The gel run was performed in DNA electrophoresis 



 
43 

 

chambers, for 30 min at 100 V. Afterwards, gels were observed under UV lights, in a 

transilluminator. 

3.5.1.3. Statistical analysis 
The difference between high integrity WGA rates of EpCAMhigh and EpCAMlow/negative CTCs 

was investigated through a two-tailed t-test. 

3.5.2. PIK3CA Exons 9 and 20 specific PCRs 
WGA products were further processed for two separated PCRs amplifying PIK3CA exons 

9 and 20, through the primers reported in Table 6. 

Table 6. PIK3CA exons 9 and 20 PCR primers, adapted from Lampignano et al., 2017b [183] 

 

Per each PCR reaction, 1 µL of WGA products was added in 9 µL PCR mix consisting of: 

0.2 µM forward primer, 0.2 µM reverse primer (both Exiqon, Vedbaek, Denmark), 1 U 

DreamTaq (Thermo Fischer Scientific) polymerase and nuclease-free water. Then, samples 

were incubated according to the thermal cycler program reported in Table 7. 

Table 7. Thermal cycler program of PIK3CA exons 9 and 20 PCRs. 

Cycles Temperature °C Hold 
95 5 min 

35 
95 45 sec 
58 45 sec 
72 45 sec 

72 10 min 
4 ∞ 

 

Afterwards, PCR products were checked through a DNA-gel electrophoresis, according 

to the protocol described above. Amplified DNA was stored at -20 °C. 

PIK3CA 
exon 

Primer 
name Sequence (5´ 3´) 

Primer
size 
(bp) 

9 
forward CATCCGATGTACCTGATTGAACTGCATGCAGACAAAGAACAGCTCAAAGCAA 52
reverse CATTCCTTAGATAGCTCGGAAGTCCATTGCATTTTAGCACTTACCTGTGAC 52

  

20 forward CATCCGATGTACCTGATTGAACTGCATGCATTGATGACATTGCATACATTCG 52
reverse CATTCCTTAGATAGCTCGGAAGTCCATTGCGTGGAAGATCCAATCCATTT 50
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3.5.3. Cleaning of PCR products 
In order to remove unused primers and dNTPs, PCR products displaying amplicons of 

PIK3CA exons 9 and/or 20 were subsequently processed according to the ExoSAP-IT® 

(Affymetrix, Santa Clara, USA) protocol. In case of PCR products showing PIK3CA amplicons 

as well as primer dimers, a DNA-gel extraction procedure was preferred over the ExoSAP-IT®. 

3.5.3.1. ExoSAP-IT® protocol 
The ExoSAP-IT® PCR Product Cleanup is a reagents mix mainly based on Exonuclease I 

activity, consisting in the removal of nucleotides from ssDNA in the 3' to 5' direction. Two µL 

of this reagent were added to 5 µL of the amplified DNA and incubated according to the 

thermal program reported in the Table 8. 

Table 8. Thermal cycler program of ExoSAP-IT® cleaning protocol. 

Temperature °C Hold 
37 15 min 
80 15 min 

 

Afterwards, cleaned PCR products were stored at -20 °C. 

3.5.3.2. DNA gel-extraction 
In order to extract DNA from the agarose gel, the DNA band was excised with a scalpel 

and further processed within the QIAEX II Gel Extraction Kit (Qiagen, Hilden, Germany), 

according to the manufacturer´s protocol. 

Afterwards, cleaned PCR products were stored at -20 °C. 

3.5.4. DNA quantification 
At last, 1 µL of cleaned amplified DNA was quantified through the NanoDrop™ 

Spectrophotometer (Thermo Fischer Scientific) and if necessary, it was subsequently diluted 

in water, down to the optimal concentration for the Sanger sequencing (between 5 ng/µL 

and 15 ng/µL). 
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3.5.5. PIK3CA Exons 9 and 20 Sanger sequencing 
Sanger sequencing of PIK3CA exons 9 and 20 was performed by the Genomics & 

Transcriptomics Laboratory (GTL) of the Biological and Medical Research Centre of 

Düsseldorf (BMFZ) utilizing 1 µL of diluted cleaned PCR products and specific primers 

(Exiqon; Table 9), thought an Ion Torrent platform. 

Table 9. PIK3CA exons 9 and 20 sequencing primers, adapted from Lampignano et al., 2017b [183] 

 

 

 

3.5.6. Sequencing data analysis 
Sequencing data analysis was performed through the software “Chromas”. Sequencing 

profiles of CTCs were compared to these of MCF-7, T47D cells in order to detect hotspot 

base exchanges.  

  

Primer name Squence (5´ 3´) Product size (bp) 

forward TCCGATGTACCTGATTGAAC 20 
reverse TTCCTTAGATAGCTCGGAAG 20 
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4.1.2. Tumour cell recovery rates of VyCAP™ filters 
Prior processing patients´ blood and DLA samples, the enrichment of tumour cells via 

VyCAP™ filtration device was validated with 3 independent spiking experiments of pre-

stained MCF-7 cells into healthy donor blood samples, discarded after CellSearch® 

processing. The diameter of MCF-7 cells – measured via microscopy – was in average 18 ± 1 

µm. After filtration, filters were inspected in epifluorescence microscopy, in order to 

determine the recovery rate of tumour cells. Cells positive for nuclear (DAPI) and 

cytokeratins (PE) staining, negative for CD45 (PerCP) expression and with a round shape, 

were defined as tumour cells. In Table 10 amounts of pre-stained tumour cells spiked and 

subsequently enriched are reported. 

Table 10. Amount of MCF-7 cells spiked and enriched per each spiking experiment. 

# Spiking experiment # Spiked MCF-7 cells # Enriched MCF-7 cells 
Experiment 1 64 3 
Experiment 2 97 7 
Experiment 3 70 25 

 

The average recovery rate for MCF-7 cells was 16 ± 14 %. 

4.1.3. Validation of immunocytostaining on microsieves 
The effective immunostaining of tumour cells retained by VyCAP™ microsieves was 

validated through further spiking experiments. After spiked blood samples were processed 

with the VyCAP™ filtration device, cells retained by the filter were immunostained in situ and 

then inspected in epifluorescence microscopy. Captured tumour cells and co-enriched 

leukocytes were effectively stained for the expected markers (Figure 20).  
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Table 11. Clinical features of patients´ primary tumours. 

 

# Patients with 
EpCAMhigh and 

EpCAMlow/negative 

 CTCs (%) 

# Patients with 
only EpCAMhigh 

CTCs (%) 

# Patients with only 
EpCAMlow/negative 

CTCs (%) 

# Patients with 
no CTCs 

  
Total patients 7 (50) 2 (14) 2 (14) 3 (22) 

  
Tumour size   

T1 1 (25) 1 (50) 1 (50) 0 
T2 2 (50) 1 (50) 0 1 (33) 
T3 0 0  0 2 (67) 
T4 1 (25) 0  1 (50) 0 

Missing data 3 0 0 0 
  

Lymph nodes 
involved     

N-  2 (50) 0  0 1 (33) 
N+ 2 (50) 2 (100) 2 (100) 2 (67) 

Missing data 3 0 0 0 
  

Metastases 
status*     

M0 2 (50) 1 (50)  1 (50)  3 (100) 
M1  2 (50)  1 (50) 1 (50) 0 

Missing data 3 0 0 0 
  

Histological 
grade     

I 0  0 0 0 
II 2 (50)  1 (50) 0 1 (33) 
III  2 (50) 1 (50) 2 (100) 2 (67) 

Missing data 
 

3 
 

0
 

0
 

0 
 

Her2 positive 1 (25) 0 0 0 
Missing data 

 
3 
 

0
 

0
 

0 
 

ER positive 4 (80) 2 (100) 2 (100) 2 (67) 
Missing data 

 
2 
 

0
 

0
 

0 
 

Triple 
negative 0  0 0 1 (33) 

*: at the time of blood draw all patients were metastasized 

In 64% (n=9) of processed blood samples, the EpCAMhigh fraction of CTCs could be 

observed. In 78% (n=7) of these, the EpCAMlow/negative CTC subpopulation could be detected 

as well. The EpCAMlow/negative CTC-fraction was observed in ~14% (n=2) of samples (Figure 21). 
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Figure 21. Patient-matched EpCAMhigh and EpCAMlow/negative CTCs collected from blood samples with 
CellSearch® and VyCAP™ 

Five blood samples out of 14 (~36 %) showed no CTCs. Within CTC-positive samples, 78 % (n=7) had both 
fractions of tumour cells. VB: VyCAP blood. 

In Figure 22, CTCs detected in patients´ blood samples are depicted. 
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4.1.5. Processing patients´ DLA samples 
From 10/2015 to 09/2016, 8 DLA samples of 8 mBC patients were sequentially 

processed, starting from 2 ml of DLA product, as previously described (see chapter 3.3). 

Patients´ primary tumours characteristics are reported in Table 12. 

Table 12. Clinical features of patients´ primary tumours. 

 
# Patients with EpCAMhigh and 

EpCAMlow/negative CTCs (%) 
# Patients with only 
EpCAMhigh CTCs (%) # Patients with no CTCs 

 
Total patients 3 (37.5) 3 (37.5) 2 (25) 

 
Tumour size  

T1 1 (33) 1 (33) 0 
T2 1 (33) 1 (33) 2 (100) 
T3 0 1 (33) 0 
T4 0  0  0 

Missing data 1 0 0 
 

Lymph nodes 
involved    

N- 2 (66) 0  1 (50) 
N+ 0  3 (100) 1 (50) 

Missing data 1 0 0 
 

Metastases 
status*    

M0 0  0  2 (100) 
M1 2 (66) 3 (100) 0 

Missing data 1 0 0 
 

Histological 
grade    

I 0  0 0 
II 0  2 (66) 2 (100) 
III 1 (33) 1 (33) 0 

Missing data 
 

2 
 

0
 

0 
 

Her2 positive 0 1 (33) 2 (100) 
Missing data 

 
1 
 

1
 

0 
 

ER positive 2 (66) 3 (100) 1 (50) 
Missing data 

 
1 
 

0
  

Triple 
negative 0  0 0 

*: at the time of blood draw all patients were metastasized 
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The EpCAMhigh fraction of CTCs could be observed in 75% (n=6) of processed DLA 

samples. In 50% of these (n=3), the EpCAMlow/negative CTC subpopulation could be detected as 

well (Figure 23) [123]. No patient exhibited EpCAMlow/negative CTCs only [180]. 

 

Figure 23. Patient-matched EpCAMhigh and EpCAMlow/negative CTCs collected from DLA samples with 
CellSearch® and VyCAP™ 

Two DLA samples out of 8 (25 %) contained no CTCs. Within CTC-positive samples, the 50 % (n=3) had both 
fractions of tumour cells. 
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4.2.2. Tumour cell recovery rates of Parsortix™ system 
Prior processing patients´ blood samples, the enrichment of tumour cells via Parsortix™ 

system was validated through 3 independent spiking experiments of pre-labelled MCF-7 cells 

in healthy donor blood samples (Table 13), previously processed within the CellSearch® 

system.  

Table 13. Amount of MCF-7 cells spiked, captured and harvested per each spiking experiment. 

# Spiking experiment # Spiked MCF-7 cells # Captured MCF-7 cells # Harvested MCF-7 cells 
Experiment 1 41 20 15 
Experiment 2 105 85 35 
Experiment 3 48 48 14 

 

The diameter of MCF-7 cells – measured via microscopy – was in average 18 ± 1 µm. 

After processing via Parsortix™, in order to determine the recovery rates of tumour cells, the 

suspension of enriched MCF-7 was placed onto a glass slide and observed in epifluorescence 

microscopy. Cells positive for nuclear (DAPI), cytokeratins (TRITC), and EpCAM (FITC) 

staining, negative for CD45 (Cy5) expression and with a round shape, were defined as 

tumour cells.  

The average capturing rate of MCF-7 cells was 78 ± 25 %. Out of it, 48 ± 24 % tumour 

cells could be harvested. The global recovery rate was 33 ± 4 %. 

4.2.3. Validation of immunocytostaining inside 

Parsortix™ cassettes 
The effective immunostaining of tumour cells captured within Parsortix™ cassettes was 

validated through further spiking experiments. Fixed MCF-7 cells were spiked into healthy 

donor blood samples, previously processed within the CellSearch™ system, and were further 

processed through the Parsortix™ device. After capturing, enriched cells were 

immunostained inside the cassette and then collected outside the system. The suspension of 

the enriched cells was placed onto a glass slide and observed in epifluorescence microscopy. 

Captured tumour cells and co-enriched leukocytes showed to be effectively stained for the 

expected markers (Figure 26).  
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4.2.4. Processing patients´ blood samples through 6.5 µm 

Parsotix™ cassettes 
From 07/2015 to 11/2016, 52 blood samples of 47 mBC patients – diagnosed with 

HER2/neu-negative primary tumours and positive for EpCAMhigh CTCs – were sequentially 

processed. Patients´ primary tumours characteristics are reported in the Table 14. 

Table 14. Clinical features of patients´ primary tumours 

 
# Patients with EpCAMhigh and

EpCAMlow/negative CTCs (%) 
# Patients with only 
EpCAMhigh CTCs (%) 

Total patients 27 (57) 20 (43) 

Tumour size 
T1 12 (46) 7 (37) 
T2 13 (50) 8 (42) 
T3 0 1 (5) 
T4 1 (4) 3 (16) 

Missing data 1 1 

Lymph nodes 
involved   

N- 12 (48) 10 (50) 
N+ 13 (52) 10 (50) 

Missing data 2 0 

Metastases status* 
M0 19 (73) 14 (78) 
M1 7 (27) 4 (22) 

Missing data 1 2 

Histological grade 
I 1 (4) 0 
II 13 (52) 17 (94) 
III 11 (44) 1 (6) 

Missing data 2 2 

ER positive 23 (85) 13 (68) 
Missing data 0 1 

Triple negative 0 1 (5) 
*: at the time of blood draw all patients were metastasized 
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In 56 % (n=29) of processed blood samples, both EpCAMhigh and EpCAMlow/negative cell 

subpopulations could be detected (Figure 27). 

 

Figure 27. Patient-matched EpCAMhigh and EpCAMlow/negative CTCs enriched in blood samples with CellSearch® 
and Parsortix™, adapted from Lampignano et al., 2017b [183] 

Out of 52 blood samples, 56 % (n=29) exhibited both fractions of tumour cells. Remaining 44 % (n=23) had only 
EpCAMhigh CTCs. P: parsortix. 
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No linearity could be observed between the positivity rates of the two subpopulations of 

CTCs (R2 = 0.007; P = 0.57; Figure 28). 

 

Figure 28. Counts of EpCAMhigh and EpCAMlow/neg CTCs compared with a linear regression test   

At an increased abundance of EpCAMhigh CTCs does not correspond an increased frequency of EpCAMlow/negative 

CTCs (R2 = 0.007; P = 0.57; Gaussian distribution with 95% of confidence). 

 

4.2.5. Isolation of single tumour cells via CellCelector™ 
Tumour cells suitable for downstream applications were sorted according to their 

morphology and expression of proper markers, as previously described by Polzer and 

colleagues [157]. From 13 patients, 107 EpCAMhigh and 145 matched-EpCAMlow/negative cells 

were selected and successfully isolated via CellCelector™ micromanipulator (Figure 29). 
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4.3. Molecular characterization of single patient-matched EpCAMhigh and EpCAMlow/negative CTCs 
At first, the characterization workflow was tested on single isolated MCF-7 and T47D 

cells and then applied to patients´ CTCs. MCF-7 and T47D cells were chosen due to the 

harbouring of PIK3CA hotspot mutations respectively in exon 9 (amino acid change at 

position E542 and E545) and in exon 20 (amino acid change at position 1047) [185,186]. 

4.3.1. Amplification of whole genomes of single tumour 

cells 
In order to obtain sufficient quantity of DNA for sequencing analysis, genomes of single 

isolated tumour cells were amplified. At first, the technique was validated on single fixed 

and stained MCF-7 cells. Along with single MCF-7, no cell control buffer (NC) were processed 

for WGA, to verify the absence of contaminations of genomic DNA or circulating DNA of cells 

eventually destroyed during the workflow. The NC samples exhibited no DNA 

contaminations (Figure 30).   

 

Figure 30. Representative Gel-Electrophorese of WGA-QC PCR products 

The presence of 4 amplicons indicates high genomic integrity. L: ladder; NC: no cell control. Primer dimers have 
been confirmed by Sanger sequencing. 

Then, the protocol was applied to single CTCs isolated according to the workflow 

previously described (see chapter 3.5.1). Considering the total amount of processed CTCs, 

high genomic integrity was observed in ~28 % WGA libraries of EpCAMhigh CTCs vs. ~8 % 

WGA libraries of EpCAMlow/negative CTCs (Table 15). 



 
63 

 

Table 15. CTCs processed for WGA show different integrity of their amplified genomes, adapted from 
Lampignano et al., 2017b [183] 

  EpCAMhigh CTCs EpCAMlow/negative CTCs 

Sample 
number 

Patient 
ID 

Sorted 
CTCs 

High integrity 
WGA 

products 

Low Integrity 
WGA 

products 

Sorted 
CTCs 

High integrity 
WGA products 

Low Integrity 
WGA products 

1 PI 5 0 5 19 0 19 
2 PV 1 0 1 2 0 2 
3 PVI 11 5 6 24 3 21 
4 PVIII 8 0 8 12 0 12 
5 PIX 26 11 15 16 2 14 
6 PX 13 4 9 5 0 5 
7 PXI 7 3 4 6 0 6 
8 PXVI 9 1 8 27 1 26 
9 PXXIV (2) 6 1 5 4 0 4 

10 PXXXV 8 2 6 18 3 15 
11 PXXXVI 2 1 1 5 1 4 
12 PXLVI 7 2 5 4 0 4 
13 PXLVII 4 0 4 3 1 2 

107 30 77 145 11 134 
P: parsortix. 

The difference between mean values of high integrity WGA products of the two CTC 

subgroups showed to be statistically significant (p < 0.02 for 22.5 ± 18.4 % EpCAMhigh CTCs 

vs. 7.6 ± 10.2 % EpCAMlow/negative CTCs; Figure 31). 
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Figure 31. Comparison of high integrity WGA products of EpCAMhigh and EpCAMlow/negative CTCs sorted from 13 
patients 

Mean values of high integrity WGA products within EpCAMhigh and EpCAMlow/negative CTCs were respectively 22.5 
± 18.4 and 7.6 ± 10.2 % and in a comparison through a two-tailed t-test, they showed to differ significantly (*: p 
< 0.02). 

In all performed WGA reactions, no DNA contaminations could be detected within NC 

samples. 

4.3.2. Detection of PIK3CA exons 9 and 20 amplicons  
Prior sequencing, WGA libraries of CTCs were amplified for PIK3CA hotspot regions 

located on exons 9 and 20, using two exon-specific PCRs. At first, the protocol was assessed 

through cells of MCF-7 and T47D cell lines. Then, WGA libraries of 92 EpCAMhigh CTCs and of 

126 matched-EpCAMlow/negative CTCs from 10 patients were sorted and processed as 

described above (see chapter 3.5.2). In Figure 32, representative images of gel 

electrophoresis of PIK3CA exons 9 and 20 PCRs are depicted. 
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Table 16. Amplified genomes of CTCs processed for PIK3CA exons 9 and 20 PCRs may not exhibit the 
presence of the respective amplicon 

   EpCAMhigh CTCs EpCAMlow/negative CTCs 

Sample 
number 

Patient 
ID 

Sorted  
CTCs 

CTCs exhibiting 
exon 9 

amplicon 

CTCs exhibiting 
exon 20 

amplicon 

Sorted 
CTCs 

CTCs exhibiting 
exon 9 

amplicon 

CTCs exhibiting 
exon 20 

amplicon 
1 PI 5 2 1 19 13 10 
2 PVI 11 5 2 24 7 7 
3 PIX 26 14 11 15 6 3 
4 PX 13 9 5 5 5 1 
5 PXI 7 1 3 6 1 1 
6 PXVI 9 3 3 27 3 2 
7 PXXXV 8 1 3 18 8 8 
8 PXXXVI 2 1 1 5 3 3 
9 PXLVI 7 3 3 4 1 1 

10 PXLVII 4 2 2 3 2 2 

 92 41 34 126 49 38 
 P: Parsortix. 

4.3.3. Sequencing of PIK3CA hotspot regions  
Within the EpCAMhigh subpopulation of CTCs, 38 cells could be successfully sequenced 

for PIK3CA exon 9 and 32 cells for exon 20. Within the patient-matched EpCAMlow/negative 

CTCs, 39 cells could be successfully sequenced for PIK3CA exon 9 and 35 cells for exon 20. In 

order to detect the hotspot mutations E542K, E545K, H1047R known to induce the 

constitutive activity of the PI3K kinase, involved in tumorigenesis [185,186], CTCs sequencing 

profiles were compared to these of MCF-7 and T47D cells. 

In six patients out of ten, both fractions of CTCs were classified as wild-type (WT) for the 

investigated PIK3CA hotspot sequences. In CTCs of four patients (PI, PIX, PX, PXLVII), PIK3CA 

hotspots mutations were observed along with the WT form of the oncogene (Table 17 and 

Figure 33).  
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Table 17. Mutational analysis of PIK3CA hotspot regions in exons 9 and 20 within patient-matched EpCAMhigh 
and EpCAMlow/negative CTCs, adapted from Lampignano et al., 2017b [183] 

  EpCAMhigh CTCs 

  PIK3CA Exon 9 mutational analysis PIK3CA Exon 20 mutational analysis 

Sample 
number 

Patient 
ID 

Sequenced 
CTCs Mutational status Sequenced CTCs Mutational status 

1 PI 2 WT 1 WT 
2 PVI 5 WT 2 WT 

3 PIX 13 WT 11 2: p.H1047L (c.CAT > 
CTT); 9: WT 

4 PX 7 WT 5 2: p.H1047R (c.CAT > 
CGT); 3: WT 

5 PXI 1 WT 3 WT 
6 PXVI 3 WT 3 WT 
7 PXXXV 1 WT 3 WT 
8 PXXXVI 1 WT 1 WT 
9 PXLVI 3 WT 3 WT 

10 PXLVII 2 WT 2 1: p.H1047L (c.CAT > 
CTT); 1: WT 

38 34 

  EpCAMlow/negative CTCs 

  PIK3CA Exon 9 mutational analysis PIK3CA Exon 20 mutational analysis 

Sample 
number 

Patient 
ID 

Sequenced 
CTCs Mutational status Sequenced CTCs Mutational status 

1 PI 10 1: p.E545K (c.CAG > 
AAG); 9: WT 7 WT 

2 PVI 7 WT 7 WT 

3 PIX 5 1: p.E545K (c.CAG > 
AAG); 4: WT 3 WT 

4 PX 2 WT 1 WT 
5 PXI 1 WT 1 WT 
6 PXVI 0 n.d. 2 WT 
7 PXXXV 8 WT 8 WT 
8 PXXXVI 3 WT 3 WT 
9 PXLVI 1 WT 1 WT 

10 PXLVII 2 WT 2 WT 

39 35 
P: parsortix. 
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Figure 33. Representative PIK3CA Exons 9 and 20 sequencing profiles within CTCs and cell lines, by 
Lampignano et al., 2017b [183] 

In two EpCAMlow/negative CTCs from 2 different patients the mutation 9/E545K (**) could be observed when 
compared to the sequencing profile of a single MCF-7 cell (**). Two representative sequencing profiles of 
EpCAMhigh CTCs from different patients exhibit the mutations 20/H1047R and the 20/H1047L (**) in 
comparison to the sequencing profile of a single T47D cell (**). CTCs registered as PIK3CA wild-type show no 
mutations (*).**: base exchange; * wild-type base. 

 

Patient PI exhibited the PIK3CA mutation E545K (codon 545 of the exon 9, glutamine to 

lysine) within the EpCAMlow/negative CTC subpopulation only, in 1/10 sequenced cells; 9/10 

sequenced cells were, instead, WT. The two patient-matched EpCAMhigh CTCs were 

determined as PIK3CA-WT. 

Patients PX and PXLVII carried the mutated PIK3CA in EpCAMhigh CTCs only. In the 

patient PX, the mutation H1047R (codon 1047 of the exon 20, histidine to arginine) was 

recorded in 2/5 sequenced cells; 3/5 sequenced cells were, instead, WT. The one patient-

matched EpCAMlow/negative CTC exhibited the PIK3CA WT. In patient PXLVII the rare mutation 

H1047L (codon 1047 of exon 20, histidine to leucine) was observed in 1/2 sequenced cells; 
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1/2 sequenced cells were, instead, WT. The 2 patient-matched EpCAMlow/negative CTCs were 

recorded as PIK3CA WT. 

Patient PIX exhibited different PIK3CA hotspot mutations within both subpopulations of 

CTCs. In 1/5 EpCAMlow/negative CTCs, the mutation E545K was observed. Four residual 

EpCAMlow/negative CTCs were PIK3CA WT. Two out of eleven EpCAMhigh CTCs exhibited the rare 

mutation H1047L (codon 1047 of exon 20, histidine to leucine). Nine residual EpCAMhigh CTCs 

were classified as PIK3CA WT. 

No further base exchanges were observed within the amplicon sequences of both exons 

9 and 20 of PIK3CA. 

  

Results reported in the section above were included in Lampignano et al., 2017b [183] 
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5. Discussion 
The prognostic value of CTCs  was investigated and verified in different tumour entities 

– including mBC – by numerous studies [81,162,164,165]. Subsequently, several research 

groups started to evaluate the possibility to determine the optimal treatment for cancer 

patients based either on the enumeration of CTCs or on the characterization of these 

tumour cells (e.g. DETECT studies [62,162,170,171,173–176]). However, to date, studies on 

CTCs as prognostic and therapy decision tools mainly focused on the EpCAMhigh 

subpopulation, thereby overlooking EpCAMlow/negative CTCs with potential highly malignant 

phenotypes [167,177,179]. Very little is known about this transient/mesenchymal fraction of 

CTCs and intensive research is surely necessary to acquire further insights into their biology 

and potential role in tumor metastasis. 

Major obstacles in investigating CTCs are represented by: a) their low concentration in 

the PB, thereby requiring highly sensitive enrichment technologies; b) the absence of cancer-

specific markers which hampers both enrichment and detection of CTCs; c) the 

heterogeneity of tumour cells, which requires highly specific methods for both single cell 

isolation, and phenotypical/molecular characterization. Subsequently, intensive research to 

optimize workflows to enrich, isolate and characterise CTCs is of utmost importance. 

Furthermore, these workflows need to fit to the specific tumour entity at the core of the 

study.   

a-b) As it regards the enrichment and detection of EpCAMhigh CTCs within mBC patients, 

a gold standard technique (CellSearch® system) is already available and has been 

comprehensively validated [62,81]. On the contrary, the enrichment and detection of the 

remaining EpCAMlow/negative CTCs are still in their infant stages and definitely require further 

optimizations to shed light on this subpopulation of tumour cells. So far, these CTCs have 

mainly been collected either by focusing on specific mesenchymal markers [70,167], either 

on cancer-stemness traits [167],  or on markers alternative to EpCAM [113]. As a 

consequence, there is the chance that CTCs with epithelial-mesenchymal plasticity have 

been overlooked. c) Research on CTCs is further hampered by the absence of a gold-

standard technique for tumour cell-isolation, which is required to investigate the CTC-

heterogeneity on “omic” levels in order to better understand metastatic mechanisms of 
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cancerous lesions. Furthermore, of major importance is the identification of biomarkers to 

predict the resistance to treatments and to achieve personalised and more efficient CTC-

driven therapies. In this scenario, the identification of PIK3CA hotspot mutations, within 

primary tumours as well as within CTCs, has attracted the interest of the scientific 

community. The rationale behind this raising concern is that the detection of this mutated 

oncogene in ~40 % mBC cases – in higher rates in distant metastases – and that the 

increased resistance to anti-HER2/neu therapies often observed in mBC patients with PIK3CA 

activating mutations [8,25].  

The present work has been conceived to investigate the whole population of CTCs 

(epithelial, transient and mesenchymal) within mBC patients, with particular attention to an 

efficient recovery of CTCs and subsequent molecular characterization: three workflows were 

validated and successfully applied to patients´ samples. The first two workflows allow to 

enriching the EpCAMlow/negative fraction of CTCs a along with the collection of patient-matched 

EpCAMhigh CTCs, thus overcoming the major limit of the CellSearch® enrichment system, 

which is the dependence on the EpCAM expression on the surface of tumor cells. 

Furthermore, of these two workflows, the latter enables further single-cell molecular 

characterisation on the whole CTC-population. At last, the third workflow allows the analysis 

of genomic DNA in single CTCs which could support the identification of potential 

biomarkers of therapy resistance. 5.1. Enrichment and detection of patient-matched EpCAMhigh and EpCAMlow/negative CTCs combining CellSearch® and VyCAP™ systems 
As previously comprehensively explained (see chapter 1.4), the FDA-approved 

CellSearch® system enables the EpCAM-dependent enrichment of CTCs in various tumour 

entities. Their enumeration holds prognostic power when exceeding defined threshold levels 

(e.g. ≥5 CTCs/7.5 mL PB in mBC) [81,162,164,165]. The possibility to collect blood or DLA 

samples after CellSearch®-mediated EpCAM-depletion enabled to investigate the whole 

population of CTCs without any phenotypical restrictions, thus overcoming the major limit of 

the CellSearch®. Within the CTC-Trap consortium, a double CTC enrichment approach on 
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both blood and DLA was validated, by sequentially processing clinical samples via 

CellSearch® and VyCAP™ filters. The VyCAP™ microsieves are designed to retain all cells 

bigger than 5 µm, under a constant flow pressure of 100 mbar[68]. In order to apply VyCAP™ 

filtration to patients´ blood or DLA samples previously processed within the CellSearch®, this 

workflow was initially established via spiking experiments using a breast cancer cell line. First 

and foremost, the immunofluorescence staining required for the detection of tumour cells, 

was successfully validated on cytospins of fixed cells of MCF-7 breast cancer cell line and of 

leukocytes of healthy donors. Then, MCF-7 cells fixed and stained in suspension were spiked 

into healthy donors’ CellSearch®-processed blood samples and further filtered, to measure 

the collection rates of the VyCAP™ approach.  A successful enrichment of 16 ± 14 % MCF-7 

cells could be registered. This data fits to the range of capturing rates reported by de Wit 

and colleagues, who tested the same method with cell lines of different tumour entities 

(T24: 59 ± 9 %; SKBr3: 2 ± 1%; Colo-320: 18 ± 6 %; SW480: 6 ± 7 %; NCl-H1650: ± 7 %) [68]. 

The same spiking experiments were omitted for the CellSearch® system, since it already 

underwent a detailed establishment and it is currently utilized in the clinical routine within 

the German studies DETECT III/IV, AUGUSTA and SEPTEMBRA [113,172]. Afterwards, by 

applying this procedure to clinical samples, patient-matched EpCAMhigh and EpCAMlow/negative 

CTCs could be detected in 78 % (7/9) of processed blood samples without any correlation in 

positivity rates, while only EpCAMlow/negative CTCs could be observed in ~14 % of samples. 

Within patients’ samples, the recorded CTC enrichment rate via filtration was higher than 

that reported by de Wit et al., which, by utilizing the same approach on metastatic lung 

cancer blood samples, observed both EpCAMhigh and EpCAMlow/negative cells in 19 % (5/27) of 

the patients [68]. The higher frequency of the EpCAMlow/negative CTC-subgroup in mBC blood 

samples could be either due to the different size of the patient-cohort and/or to the 

different tumour entity investigated. However, in agreement to the herein presented results, 

de Wit et al. reported a lack of correlation between abundance of patient-matched 

EpCAMhigh and EpCAMlow/negative CTCs [68]. A possible, speculative explanation could be found 

in the postulation of two different, but coexistent, processes of dissemination and 

colonization of tumour cells (see chapter 1.3.1), which might be independent on each other 

[37]. However, further investigations are utmost needed to shed light on this difference of 

frequencies and to understand the role of EpCAMlow/negative CTCs in cancer dissemination. 
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The Workflow #1 was also applied to DLA samples of mBC patients, to the end of 

increasing the yeld of enriched CTCs and of implementing the DLA processing in the clinical 

routine [123]. In DLA products of 6 out of 8 patients, both subgroups of CTCs were found and 

50 % of them presented EpCAMlow/negative CTCs as well. However, this cohort of patients is still 

too restricted to draw any significant conclusions. In fact, even though the collection of DLA 

samples is relatively easy and painless, only 8 patients agreed to be enrolled into the study, 

due to the long collection time required (90 min to obtain 40 mL of DLA product [123]). 

Nevertheless, within DLA samples, similar tendencies to previously examined blood samples 

could be observed: lack of linearity between frequencies of epithelial and 

transient/mesenchymal CTCs and presence of EpCAMlow/negative tumour cells in at least half of 

the clinical samples.  

Even though this filtration approach was easy to integrate in the clinical routine and 

relatively inexpensive to perform, it showed some drawbacks requiring further 

optimizations. The major disadvantage is the high leukocyte contamination which in many 

cases hampers the clear detection of CTCs. Due to the same reason, the clogging of 

microsieves was often observed - especially when processing DLA samples- which then 

required further filtrations through more filters. Furthermore, it was observed a correlation 

between low phenotypical quality of retained cells and the time delay between CellSearch® 

processing and VyCAP™ filtration. Last but not least, some EpCAMhigh CTCs might be not 

captured by the CellSearch® system, thus, EpCAM-depleted blood and DLA samples might 

still contain some of these cells which could not be detected due to the lack of an EpCAM 

immunostaining, which could be, however, integrated in future experiments. Despite these 

limits, the double processing of both blood and DLA samples via CellSearch® and VyCAP™ 

systems, enabled the effective enrichment for different subgroups of CTCs. In order to 

investigate the molecular heterogeneity of EpCAMlow/negative CTCs compared to the 

EpCAMhigh, another label-free approach was chosen over VyCAP™ filtration, due to the 

impossibility to singularise stained and fixed CTCs enriched on microsieves. 
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5.2. Enrichment and isolation of patient-matched EpCAMhigh and EpCAMlow/negative CTCs combining CellSearch®, Parsortix™ and CellCelector™ systems 
The Parsortix™ system enables the size-dependent enrichment of cells regardless of 

their protein expression and allows their further collection in small buffer suspensions. In 

order to optimize the CTC detection for further single cell isolation via CellCelector™, a new 

immunofluorescence staining had to be established on fixed MCF-7 and leukocytes 

cytospins, since the micromanipulator integrates a different epifluorescence microscope 

than the one utilized for previous imaging. Within this second immunostaining mastermix, 

an anti-EpCAM antibody was included, to exclude potential EpCAMhigh events not captured 

by the CellSearch® system. After the successful establishment of the second 

immunostaining, fixed MCF-7 cells were labelled in suspension and further utilized for 

spiking experiments to assess the effective capturing and harvesting rates of the Parsortix™ 

system, utilizing disposable cassettes with narrow passages of 6.5µm. Average capturing and 

harvesting rates of 78 ± 25 % and 48 ± 24 %, respectively, were achieved for tumour cells of 

18 µm ± 1 in diameter. As expected, the capturing rate was slightly higher than that reported 

by Xu et al. and by Hvichia et al. who utilized cassettes with bigger narrow passages (10 µm) 

to capture MCF-7 cells (54.7 ± 6.1 % [89]) and cell lines of different tumour entities and cell 

size (PANC1: 23 µm, 70 %; A375: ~17 µm, 67 %; PC3: 30 µm, 68 %; A549: 15 µm, 60 %; T24: 

18 µm, 42 % [143]), spiked into blood samples. These data also confirm that the ~5-fold 

dilution of the CellSearch®-discarded blood occurring during its collection, does not seem to 

have a negative impact on the enrichment of tumour cells within the Parsortix™, as 

previously observed for VyCAP™ filtration [68]. Interestingly, both Xu et al. and Hvichia et al. 

reported higher harvesting rates than these herein described (MCF-7: 58.7 ± 13.3 % [89]; 

PANC1: 60 %; A375: 69 %; PC3: 68 %; A549: 67%; T24: 54 %) [89,143], suggesting that 

perhaps, smaller narrow passages may hamper the collection of the cells captured and 

immunostained in situ. However, in preliminary experiments on 14 mBC blood samples 

processed through 10 µm, the CTC recovery rate was quite scarce (4 cells within 3 blood 

samples; data not shown), indicating that the dimension of CTCs in mBC might be smaller 

than these of cell lines tested by Xu et al. and by Hvichia et al. Altogether, these data also 
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highlight that the dimension of cells is not the only parameter influencing their enrichment, 

but an important role may also be played by their deformability, as previously already 

postulated [87,89,143]. The global recovery rate of MCF-7 cells achieved via Parsortix™ was 

33 ± 4 %, hence higher than the 16 ± 14 % achieved via VyCAP™ filtration, although this 

difference was not significant, probably due to the high standard deviation registered with 

VyCAP™ (p = 0.17; Figure 34). In fact, the high variability of this latter approach is one of its 

major limits. 

 

Figure 34. Comparison of recovery rates of MCF-7 cells achieved via VyCAP™ and via Parsortix™ systems 

In a statistical comparison between Parsortix™ and VyCAP™ recovery rates of MCF-7 cells, the former approach 
shows higher performances. However the comparison was non-significant (p = 0.17). 

 

At the same time, greater cell purity could be achieved via Parsortix™ (Figure 35) which 

facilitated the CTC detection and made this approach sensitive and suitable enough for 

single cell downstream analysis.  

VyCAPTM ParsortixTM
0

10

20

30

40
VyCAPTM

ParsortixTM



 

Figure

In a quali
shows hig
leukocyte
 

Hig

system 

the follo

97 % of 

cells is 

suspens

immuno

first tim

double 

47 mBC

detecte

with Vy

In t

which t

e 35. Tumour 

itative compa
gher enrichm
es (L). Image m

gh tumour c

are the bas

owing single

f efficacy [1

of high imp

sion stainin

ostaining of

me. After a

enrichment

C patients. 

ed without a

CAP™ filtra

the future, 

his project 

cell/leukocyt

arison betwee
ent purity. In 
magnification 

cell recove

sis for the e

e cell isolat

60]. Theref

portance in

ng procedu

f enriched 

 first immu

t and isolat

In 56 % o

any significa

tion.  

as a conclu

is connecte

te ratio in blo

en the Parsort
fact, on micro
20 x. 

ries and lo

effective CTC

ion via Cell

ore, the op

order to m

res (own o

tumour cel

unocytostai

ion was suc

of them, bo

ant linearity

usion of the

ed to, patie

76 

od samples p

tix™ harvest a
osieves, tumo

ow leukocyt

C analysis s

Celector™ m

timization o

minimize th

observation

ls in the pa

ining valida

ccessfully a

oth EpCAM

y (p = 0.57)

e studies D

ents´ follow

processed via 

and the VyCAP
our cells (C) ar

te contamin

ince Neuma

micromanip

of the in sit

e cell loss, 

ns and [87,

arsortix cas

ation, the w

pplied to a 

Mhigh and Ep

), confirmin

DETECT III/IV

w-up data w

VyCAP™ and 

P™ microsieve
re totally surr

nations wit

ann et al. a

pulator can 

u immunos

otherwise 

89,143]). In

settes was 

whole work

cohort of 5

pCAMlow/neg

g previous 

V, AUGUSTA

will be collec

 
Parsortix™ d

e, the former 
rounded by co

thin the Pa

lready show

be perform

staining of c

occurring d

n this proj

performed

kflow cons

52 blood sam
gative CTCs c

observatio

A and SEPT

cted and re

 

evices. 

approach 
o-enriched 

arsortix™ 

wed that 

med with 

captured 

during in 

ject, the 

d for the 

isting of 

mples of 

could be 

ns made 

TEMBRA, 

elated to 



 
77 

 

the presence of EpCAMlow/negative CTCs, in order to further investigate their potential 

predictive and prognostic role in mBC.  

As briefly mentioned before, major advantages of the Parsortix™ system are the 

simplicity of use, considerable recovery rates, purity of cellular harvests, suitability for in situ 

immunostaining and the collection of the enriched cellular suspension which is useful for 

further downstream applications. As it regards the CellCelector™ micromanipulator, major 

merits are its versatility for different applications and the live monitoring of the CTC 

isolation, which may assure the cellular purity required for molecular analysis. However, 

some limits need to be taken in considerations for both systems and as a consequence, for 

the whole workflow. The processing through the Parsortix™ system is time consuming (4 h – 

4.5 h for one blood sample previously processed within the CellSearch®) and its integration 

into the clinical routine may, therefore, be tough. However, most available CTC-enrichment 

techniques which operate in a label-free fashion and which ensure high recoveries and 

purity, require long processing time [88]. Last but not least, since the positivity to anti-

EpCAM as well as to anti-cytokeratins immunostaining (together with the positive nuclear 

staining) are the only accepted proof for the CTC detection (see chapter 1.4.1), there is the 

possibility that tumour cells which underwent a complete EMT, might have been overlooked.  

As it regards the CTC-isolation approach via CellCelector™ micromanipulator, it requires an 

experienced user and the effective deposit of the selected cell cannot be assured due to the 

lack of a visual control. However, these disadvantages are also shared by the FACS-sorting, 

one of the other main CTC-isolation techniques [88].  Despites the described limits, the 

above illustrated novel approach allowed the molecular characterization of single CTCs.      5.3. Molecular characterization of single patient-matched EpCAMhigh and EpCAMlow/negative CTCs 
Immediately after the detection of CTCs, cells suitable for genomic analysis – identified 

according to Polzer and colleagues´ criteria [157]– were selected for isolation and were  

further processed for WGA and PIK3CA Sanger sequencing through an amplicon-based 

approach. At first, these protocols were successfully tested with MCF-7 cells and were then 

applied to patients´ CTCs.  
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In total, amplified genomes exhibited high integrity in 28% EpCAMhigh CTCs, in 

agreement with Polzer et al[157]. In contrast to their findings, only 8% WGA products of 

EpCAMlow/negative CTCs showed high integrity (p < 0.02 for mean values). This unexpected 

observation may suggest early apoptosis undetectable by the phenotypical analysis of CTCs’ 

nuclei. Several studies have already described the high frequency of apoptotic EpCAMpositive 

CTCs, which might play a role in patients´ outcomes [72,188–191]. Therefore, in future 

experiments, the different apoptosis rates between both CTC subgroups will be investigated 

by implementing the immunostaining protocol with early apoptosis indicators. 

After WGA, PIK3CA exons 9 and 20 were further amplified within both CTC-fractions and 

cells displaying the presence of the specific amplicons were processed for point mutation 

analysis. The hotspot mutation E545K was recorded in EpCAMlow/negative CTCs from 2 patients 

(patients PI and PIX) and the mutation H1047R was observed in EpCAMhigh CTCs from 

another patient (patient PX). These are the two most frequently described PIK3CA hotspot 

mutations in breast cancer tissues (www.mycancergenome.org) as well as in EpCAMpositive 

CTCs [157,172,173,192,193]. Interestingly, in EpCAMhigh CTCs from two different patients 

(patient PIX and PXLVII), also the rare mutation H1047L could be detected, which was 

already reported by Gasch et al. [194].  

Due to the genomic DNA amplification required for the mutational analysis, there is the 

possibility that artificial base exchanges may be introduced by DNA polymerases. However, 

considering sequencing results, this was excluded, since only specific PIK3CA hotspot 

mutations could be observed within sequencing profiles of both exons 9 and 20. The 

successful collection and isolation of different subpopulations of CTCs allowed to perform 

single cell mutational analysis and to asses for the first time, the heterogeneity of the PIK3CA 

status within single EpCAMlow/negative CTCs, besides patient-matched EpCAMhigh tumour cells. 

Even though based on a small cohort of patients, the detection of PIK3CA hotspot mutations 

in only EpCAMlow/negative CTCs in one patient (PI) and in both EpCAMlow/negative and EpCAMhigh 

CTCs in another one (PIX) is of high interest. These results suggest that implementing the 

PIK3CA mutational analysis with EpCAMlow/negative CTCs may be relevant for future CTC-based 

therapies targeting HER2/neu-positive CTCs, as envisioned in the DETECT III study. 

Furthermore, an increased resistance to anti-HER2/neu treatments could be induced by PI3K 

activating mutations [8,25] and in some studies on EpCAMpositive CTCs, PIK3CA hotspot 
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mutations were already presented [157,172,173,192,193] and related to patients´ overall 

survival and prognosis free survival [192]. Hence, numerous research groups are currently 

investigating the PIK3CA oncogene in both mBC primary tumours and CTCs, as a potential 

biomarker of therapy resistance, in order to achieve more precise personalized treatments 

in the near future. 5.4. Conclusions and outlooks 
CTCs are postulated to be precursors of distant metastatic lesions. In addition, their 

presence in PB is related to poor clinical outcomes in patients suffering of different cancers, 

including breast. Therefore, investigating the biology of these tumour cells is of utmost 

importance to better understand this systemic disease and to improve treatment options for 

patients. The optimization of approaches to enrich, detect and characterize CTCs is 

subsequently, a central topic in the field of the “liquid biopsy”. To this end, in the present 

work, three workflows were established and successfully validated on patients´ clinical 

samples. The first workflow allows the detection of a wide population of CTCs (EpCAMhigh 

and EpCAMlow/negative) within blood and DLA samples, by combining the sequential 

enrichment via CellSearch® and VyCAP™. The second workflow enables, besides the 

enrichment and the detection, also the isolation of these patient-matched tumour cells, by 

sequentially utilizing CellSearch®, Parsortix™ and CellCelector™ devices. The genomic 

characterization of isolated CTCs with a potential aggressive phenotype can be achieved 

within the third workflow. The final aim of the latest is to identify a potential treatment 

resistance mechanism (e.g. activating PIK3CA hotspot mutations) within patient-matched 

epithelial and transient/mesenchymal CTCs. Although the herein reported data are based on 

a small cohort of patients, they further confirm the frequent presence of the 

EpCAMlow/negative subpopulation of CTCs, undetectable via the only FDA-approved enrichment 

system (CellSearch®) and additionally highlight that the combination of two sequential CTC-

enrichment approaches, may be the optimal way to investigate the whole population of 

these tumour cells. Last but not least, the presented data point out that the investigation of 

the PIK3CA mutational status within patient-matched EpCAMhigh and EpCAMlow/negative CTCs 

may provide further knowledge about resistance to anti-HER2/neu therapies (e.g. lapatinib) 

and may help to identify optimal treatment strategies for patients. In future works, the 

patient cohort will be expanded and longitudinal follow-up studies will be performed to 
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investigate the evolution of both EpCAMlow/negative CTC abundance and PIK3CA mutational 

status during treatments as well as their potential correlation with clinical outcomes. 

Furthermore, apoptosis mechanisms and copy number alteration profiles will be 

investigated within the EpCAMlow/negative sub-group of CTCs with respect to the EpCAMhigh 

cells, in order to confirm and better understand the malignant origin of the former subgroup 

of tumour cells.  
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Summary 
Circulating tumour cells (CTCs) have been observed in the peripheral blood of cancer 

patients and their abundance has been correlated to poor clinical outcomes in metastatic 

breast cancer (mBC). CTCs are mostly enriched by EpCAM-based systems (e.g. CellSearch®) 

which overlook EpCAMlow/negative tumour cells with an epithelial/mesenchymal plasticity, 

postulated to be highly aggressive. Main goal of this project was to establish robust 

workflows to enrich, detect, isolate and characterize patient-matched EpCAMhigh and 

EpCAMlow/negative CTCs in blood as well as in leukapheresis (DLA) samples of metastatic breast 

cancer patients.  

The first enrichment-detection workflow combines the CellSearch® and VyCAP™ 

filtration systems and it was applied to a cohort of 14 blood samples and 8 DLA samples. In 

the second workflow, single CTC isolation was incorporated by combining the CellSearch®, 

the Parsortix™ and the CellCelector™ micromalipulation systems. This workflow was applied 

to a cohort of 52 mBC blood samples. Afterwards, isolated cells were characterized 

according to the third workflow: CTCs were processed for whole genome amplification 

(WGA) and sequenced for PIK3CA hotspot mutations through an amplicon-based approach.  

By virtue of the first workflow, both EpCAMhigh and EpCAMlow/negative CTCs could be 

observed in 78 % of blood samples and in 50 % of DLA samples, without any correlation in 

positivity rates. With the second workflow, both CTC-subpopulations could be detected in 56 

% of processed blood samples, confirming the lack of linearity in frequencies. High integrity 

WGA products were observed in 7% of isolated EpCAMlow/negative cells vs. 28% of patient-

matched EpCAMhigh cells, suggesting increased apoptosis within the first CTC-fraction. CTCs 

harbouring PIK3CA hotspot mutations were detected in 4/10 patients´ blood samples. One 

patient carried the E545K mutation in EpCAMlow/negative CTCs only and two patients showed 

H1047L and H1047R mutations within EpCAMhigh CTCs only. The fourth patient showed 

hotspot mutations in both CTC-subgroups: the E545K mutation in one EpCAMlow/negative CTC 

and the H1047L mutation in two EpCAMhigh CTCs. 

In summary, three robust workflows were successfully established and they respectively 

allow to enrich, isolate, and analyse patient-matched EpCAMhigh and EpCAMlow/negative CTCs in 

metastatic breast cancer. For the first time, the heterogeneous PIK3CA mutational status has 



 
82 

 

been observed within EpCAMlow/negative CTCs with regards to patient-matched EpCAMhigh cells. 

In future experiments, patient cohorts will be increased and follow up data will be related to 

the frequency of EpCAMlow/negative CTCs as well as to the presence of PIK3CA hotspot 

mutations to shed light on this subgroup of CTCs and to better investigate the potential role 

of the PIK3CA oncogene as treatment resistance biomarker. 
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Zusammenfassung 
Zirkulierende Tumorzellen (CTCs) können im peripheren Blut von Krebspatienten 

identifiziert werden und in verschiedenen Tumor-Entitäten korreliert ein erhöhtes 

Vorkommen von CTCs mit schlechterer Prognose. Die meisten Technologien zur 

Anreicherung von CTCs basieren auf dem epithelialen Marker EpCAM (CellSearch®), was 

jedoch zur Folge hat, dass Zellen, die sich in der epithelialen/mesechymalen Transition 

befinden und potenziell sehr aggressiv sind, übersehen werden können. Ziel dieser Arbeit 

war daher die Etablierung eines stabilen Arbeitsablaufs für die gleichzeitige Anreichung, 

Detektion, Isolierung und Charakterisierung von sowohl EpCAMpositiven als auch 

„EpCAMniedrig/negativen“ CTCs aus Blut- und Apheresat-Proben (DLA) von Patientinnen mit 

einem metastasierten Mammakarzinom. 

Die erste in dieser Arbeit etablierte Anreichungs- und Detektionsmethode kombiniert 

die Systeme CellSearch® und VyCAP™. Sie wurde zur Anreicherung von CTCs aus 14 Blut- und 

8 Apheresat-Proben von Mammakarzinom Patientinnen angewendet. Die zweite etablierte 

Methode zur Isolierung von CTCs umfasst die Systeme CellSearch®, Parsortix™ und 

CellCelector™. Mittels dieses Arbeitsablaufs wurden Blutproben von 52 Patientinnen 

analysiert. Die isolierten Zellen wurden im Anschluss mit einer dritten in dieser Arbeit 

etablierten Methode charakterisiert: zu diesem Zweck wurde die DNA der Zellen extrahiert, 

amplifiziert und mittels einer amplicon-basierten Methode sequenziert, um „Hot-spot“ 

Mutationen des Onkogens PIK3CA zu detektieren. 

Mit Hilfe der ersten Anreicherungsmethode konnten sowohl EpCAMhohe als auch 

EpCAMniedrig/negative CTCs in 78 % der Blutproben und in 50 % der Apheresat-Proben 

identifiziert werden, jedoch konnte keine positive Korrelation zwischen den CTC-Subtypen 

ermittelt werden. Mittels der zweiten Anreicherungsmethode konnten beide CTC-

Subpopulationen in 56 % der Blutproben detektiert und die fehlende Korrelation der 

Positivitätsrate bestätigt werden.  In 7 % der EpCAMniedrig/negativen Zellen konnte das Genom 

mit hoher Integrität amplifiziert werden, die DNA von EpCAMhohen Zellen, welche jeweils aus 

denselben Proben isoliert wurden, konnte dagegen in 28 %  mit hoher Integrität amplifiziert 

werden. Diese Ergebnisse suggerieren erhöhte Apoptoseraten innerhalb der ersten CTC-

Gruppe, die weitere Nachforschungen erfordern. CTCs mit PIK3CA-Mutationen wurden in 
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4/10 der Patientenprobenidentifiziert. Eine Patientin wies dabei nur in EpCAMniedrig/negativen 

CTCs die Mutation E545K auf und zwei Patientinnen wiesen die Mutationen H1047L und 

H1047R nur innerhalb der EpCAMhohen CTCs auf. Die vierte Patientin wies Mutationen in 

beiden CTC-Gruppe auf: die Mutation E545K in einer EpCAMniedrig/negativen CTC und die H1047L 

Mutation in zwei EpCAMhohen CTCs. 

In der vorliegenden Arbeit konnten drei stabile Arbeitsläufe erfolgreich etabliert 

werden. Sie ermöglichen die gleichzeitige Anreicherung, Isolation und Analyse von 

EpCAMhohen und EpCAMniedrig/negativen CTCs aus dem Blut metastatischer Mammakarzinom 

Patientinnen. Zum ersten Mal wurde ein heterogener PIK3CA-Mutationsstatus innerhalb 

EpCAMniedrig/negativer CTCs festgestellt. In zukünftigen Experimenten soll die Patientenkohorte 

erhöht werden. Außerdem werden die Follow-up-Daten der Patientinnen mit der Anzahl der 

EpCAMniedrig/negativen CTCs und der Anwesenheit von PIK3CA Mutationen korreliert, um diese 

CTC-Gruppe besser zu verstehen und die Rolle des PIK3CA Onkogens als Biomarker für 

Therapie-Resistenz zu erforschen.      
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