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Zusammenfassung 
 
Multivariate Merkmalsanalysemethoden wurden bisher sehr häufig in den 
Neurowissenschaften eingesetzt, um eine Beziehung zwischen unterschiedlichen 
phänotypischen und behavioralen Messgrößen und bildgebenden neuronalen 
Korrelaten herzustellen. In diesem Zusammenhang ist man zusätzlich mit dem 
Problem konfrontiert, dass hochdimensionale voxelbasierte bildgebende Daten eine 
hohe Rechenleistung erfordern und gleichzeitig ein schwaches Signal-Rausch 
Verhältnis aufweisen. Des Weiteren bieten MRT basierte bildgebende Verfahren die 
Möglichkeit, funktionale und anatomische Informationen des Gehirns, die auf 
unterschiedliche Modalitäten beruhen, zu erfassen. Daher war das Ziel dieser Arbeit, 
den Fluch der Dimensionalität in Verbindung mit hochdimensionalen Voxel-Level-
Informationen durch die Optimierung und Bewertung verschiedener Methoden auf der 
Basis von funktionellen und strukturellen MRT-Daten zu untersuchen. In diesem 
Rahmen wurden besonders die Aspekte der Reliabilität und Interpretierbarkeit 
betrachtet. Der erste Teil des Projekts konzentrierte sich auf die Untersuchung der 
Effekte von verschiedenen Verfahren zur Beseitigung von konfundierten Variablen 
auf die Test-Retest Reliabilität der funktionalen Konnektivitätsschätzungen von a 
priori definierten funktionalen Netzwerken. Im Allgemeinen liefert eine voxelbasierte 
Berechnung der funktionalen Konnektivität des gesamten Gehirns eine Vielzahl von 
Konnektivitätsmaßen (z.B. (344843 x (344843-1))/2). Dabei sind jedoch für eine 
gegebene interessierende Variable nur wenige dieser Verbindungen in der 
multivariaten Merkmalsanalyse informativ. Aufgrund dessen sind a priori definierte 
seed-basierte FC Messungen rechnerisch weniger aufwendig und informativer. Die 
beste Strategie zum Extrahieren der Konnektivitätsmatrizen aus a priori Netzwerken 
bleibt jedoch immer noch ungeklärt. Daher konzentriert sich Studie 1 hauptsächlich 
auf das Erreichen zuverlässiger funktionaler Konnektivitätsmaße. Weiterhin 
untersuchten wir unsere Annahmen in Studie 2 und 3 mit funktionellen MRT-Daten, 
indem wir die Merkmalsreduktion auf Grundlage von Fachwissen (d.h. a priori 
definierte meta-analytische Netzwerke) und unter der Anwendung der multivariaten 
Merkmalsanalyse implementierten. Der letzte Teil des Projekts zielte darauf ab, eine 
alternative Dimensionsreduktionmethode zu implementieren, nämlich die nicht-
negative Matrixfaktorisierung (NNMF). Im Gegensatz zu der häufig verwendeten 
Hauptkomponentenanalysemethode erhöht die neue Methode die Qualität der 
Interpretierbarkeit der Niedrigrang-Approximation. Hauptsächlich wurde NNMF auf 
die voxelbasierte morphometrische (VBM) Messung angewendet, die aus 
anatomischen MRT Daten berechnet wurde. In diesem zweiten Teil des Projekts 
wurde die NNMF-basierte Reduktion von VBM-Daten zur Vorhersage des Alters 
evaluiert. Darüber hinaus ermittelten wir die Eigenschaften der Gehirnregionen, die in 
die Vorhersageanalyse eingeflossen sind.  



Zusammenfassend wurde in Studie 1 überprüft, welchen Einfluss verschiedene 
Confound-Entfernungsverfahren und Signalextraktionsansätze auf die Reliabilität von 
funktionalen Konnektivitätswerten in a priori definierten kanonischen Netzwerken 
haben. Die drei folgenden Arbeiten bewerteten verschiedene 
Merkmalsreduktionsstrategien in auf Machine Learning basierenden Studien, die 
entweder funktionelle oder strukturelle MRT-Daten verwendeten. Die Ergebnisse 
dieser Studien veranschaulichen effiziente und zuverlässige Strategien, wie der 
hochdimensionale Merkmalsraum in biologisch plausibel abgegrenzte Merkmale für 
die Analyse von Gehirn-Verhalten oder Gehirn-Phänotyp reduziert werden kann. 



Abstract 
 
Multivariate approaches have been increasingly applied in the field of neuroscience, 
to relate neuroimaging pattern to various phenotypical or behavioral measures. In this 
context, high-dimensional voxel wise neuroimaging data lead to multiple issues such 
as heavy computational demand, as well as poor signal to noise ratio. In addition, MRI 
based neuroimaging offers the opportunity of capturing the functional and anatomical 
information of the brain based on different modalities. Therefore, in this project, we 
aimed to address the curse of dimensionality associated with high-dimensional voxel 
level information by optimizing and evaluating various methods used within either 
functional or structural MRI data, giving particular attention to reliability and 
interpretability. The first part of the project focused on investigating the effects of 
various confounds removal approaches on the test-retest reliability of functional 
connectivity estimates of a-prior defined functional networks. In general, voxel-wise 
whole brain functional connectivity computation provides a multitude of connectivity 
measures (i.e., (344843 x (344843-1))/2), while only few of these connections are 
informative during the multivariate approaches for a given variable of interest. In turn, 
a priori defined seed based FC measures are computationally more tractable and more 
informative. However, the best strategy to extract the connectivity matrices from a 
priori networks still remains as a question. Hence, study 1 mainly focuses on 
achieving reliable functional connectivity measures. Study 2 and study 3 then further 
examined our assumptions by implementing the feature reduction based on domain 
knowledge (i.e., a priori defined meta-analytic networks) during the investigation of 
the multivariate approaches implicated to the given target function using the 
functional MRI data. The last part of the project aimed to implement an alternative 
dimensionality reduction method namely, non-negative matrix factorization, which 
promotes the quality of interpretability of the low-rank approximations in contrast to 
the frequently used principle component analysis method. Mainly, NNMF was applied 
to voxel based morphometric (VBM) measure computed from anatomical MRI data. 
In this second part of the project, NNMF based reduction of VBM data has been 
evaluated for prediction of age. Furthermore, we investigated the patterns of brain 
regions contributed in the prediction analysis.  
In sum, study 1 has been dedicated to investigate the influence of various confound 
removal procedures and signal extraction approaches on the reliability of the 
functional connectivity scores in a priori defined canonical networks. The three 
following studies assessed various feature reduction strategies in machine learning 
based studies using either functional or structural MRI data. These results of these 
studies demonstrated efficient and reliable strategies to reduce the high dimensional 
feature space into biologically plausible confined features for brain-
behavior/phenotype relationship analyses.   



General Introduction 
 
Here in this section, the fundamentals of the concepts and techniques used within the 
thesis are explained. However, a detailed explanation of the rationale of the study is 
presented in the next section. In this section, first the basics of MRI are introduced. 
Later a brief introduction of data reduction and multivariate approaches implemented 
in this thesis are presented.  
 
1 Basics of the concepts and techniques implemented in the study 
 
1.1 The Physics of Magnetic Resonance Imaging  
Magnetic resonance imaging (MRI) relies on the signal acquired from the nuclear 
resonance properties of hydrogen atoms present in the water molecules of the tissues 
(Brown et al. 2004; Weishaupt et al. 2007). In the presence of an external magnetic 
field, hydrogen atoms are aligned either in the direction or opposite direction to the 
magnetic field. In addition, nucleus present in an atom consists of a property known as 
precession, which means the atom is constantly spinning about an axis at a constant 
rate. The frequency of precession is proportional to the strength of the magnetic field 
as expressed in the Larmor equation.  
 

 
 
where  is the Larmor frequency,  is the magnetic field strength and  is a 
constant, known as gyromagnetic ratio. In order to activate the protons into higher 
energy state, a radio frequency pulse is applied in the perpendicular direction to the 
magnetic field. Thus, the hydrogen atom experiences a flip away from direction of the 
magnetic field. Proton in the excited state returns into the equilibrium state by 
emitting the excess energy into the surrounding. MRI is based on this energy 
generated by the proton, known as MR signal (Brown et al. 2004). The MR signal can 
be measured based on processes known as spin-lattice interaction and spin-spin 
interaction triggering T1 relaxation and T2 relaxation, respectively.  
 
T1: Longitudinal Relaxation: 
 
After switching off the radio frequency, the proton flipped away from the magnetic 
field returns into the normal condition. The time constant for the recovery of the 
longitudinal component (i.e., longitudinal relaxation) is called T1. This process is 
called as spin-lattice interaction as the excess energy is released into the surroundings.  
 



 
Figure 1: T1 relaxation. Re-growth of longitudinal magnetization requires an 
exchange of energy. Mxy is the longitudinal component of the magnetization and Mz is 
the transversal component of the magnetization (Weishaupt et al. 2007). 
 
T2/T2*: Transverse Relaxation:  
 
Initially, all the neighboring atoms exhibit coherent precession (i.e., to spin in phase 
with others) in the direction of the external magnetic field. However, immediately 
after excitation, the atoms experience a flip into the transversal plane (i.e., 
perpendicular to the external field direction). However, preserve the phase coherence. 
The interaction that all atoms eventually have with each other generates a loss of the 
phase coherence due to the local variation in their magnetic field environment. Hence, 
magnetization in the transverse plane is lost. The time constant for the decay of this 
transverse component (i.e., transversal relaxation) is called T2. Besides, it is also 
possible to define a time constant for the decay of transverse component occurred due 
to the in homogeneities induced by the local magnetic field, called T2*. This process 
is called spin-spin interaction as the exceeding energy from one proton is transferred 
to the neighboring proton.  
 
 
 



 
Figure 2: T2 and T2* relaxation. Lose phase coherence resulting in the loss of 
transverse magnetization without energy dissipation. Mxy is the longitudinal 
component of the magnetization (Weishaupt et al. 2007). 
 
1.2 Signal contrast and voxel-wise measures in structural and functional 
modalities of MRI 
 
MRI based neuroimaging offers the opportunity of capturing the anatomical and 
functional information of the brain based on different modalities. These modalities 
allow us to examine the most fundamental question of the neuroscience community. 
The former modality answers how does the spatial representation of the brain 
characterize the structural information, the latter allows us to understand how does 
brain function and further understand how this information alters over time.  
 
First, Structural magnetic resonance imaging (sMRI) is a technique, which identifies 
differences among tissues of the brain and further measures the density of each tissue 
(Symms et al. 2004). Variation in the water content among tissue types originates 
differences in the relaxation timings. Thereby, different relaxation rates produce 
substantial signal contrast among tissues to achieve significant morphological 
representation (Brown et al. 2004; Weishaupt et al. 2007). For instance, cerebrospinal 
fluid with more water content has a longer T2 compared to grey matter. Thus, 
differentiation of various tissue types based on T1 or T2 weighted imaging is rather 
evident (for example, on a T1-weighted image the cortex appear brighter than 
ventricles) to measure the structural changes of the brain. Usually, sMRI is used to 
explore the anatomy of the brain, measured based on T1-weighted imaging. Here, 
each voxel of the brain image contains the volume of grey matter at that spatial 
location. Voxel based morphometry (VBM) is one of the most commonly used 
methods to measure grey matter volume (Good et al. 2001). It provides structural 
measures, which convey biologically meaningful information and capture brain 
changes related to age and pathology, as well as brain plasticity (Good et al. 2001; 



Tisserand et al. 2002; May 2011). Structural MRI data was preprocessed with the 
VBM8 toolbox (http://www.neuro.uni-jena.de/vbm8) to derive voxel-wise grey matter 
volumes for each subject. A detailed explanation of this procedure is explained in the 
section 2.2 of study 4.  
 
Furthermore, Functional magnetic resonance imaging (fMRI) is a technique of brain 
imaging, which relies on identification of the blood oxygenation fluctuations 
associated with the neural activity (Buxton 2002; Scott A. Huettel; Allen W. Song; 
Gregory McCarthy et al. 2004). fMRI is widely used to study alterations in brain 
functions between healthy and clinical disordered subjects In the absence of oxygen, 
the field inhomogeneities are enhanced due to the paramagnetic property of the 
hemoglobin (Ogawa et al. 1992). Therefore, deoxygenated hemoglobin exhibits faster 
decay of T2* due to the increased de-phasing of the water molecules.  When a 
particular region is functionally active, brain tissue in that region encounters an 
increase in the flow of oxygenated blood and further leads to a longer T2*. Thus, 
fMRI measures the brain activity based on the concentration of the oxygenated blood 
(also known as Blood Oxygenation Level Dependent (BOLD) signal), which is 
sensitive to T2* and further investigates how this activity (i.e., BOLD signal) 
fluctuates over time (Schölvinck et al. 2010). To note, several confounding factors 
(such as system noise, thermal noise and noise induced by non-neuronal physiological 
processes) may impact the BOLD signal and hence apparently brain activity. 
Therefore, fMRI data was preprocessed using SPM8, (www.fil.ion.ucl.ac.uk/spm) to 
derive voxel-wise BOLD signal over time for each subject. The functional 
connectivity between two regions (or voxels) was then computed as the correlation 
coefficient between these time series, which were transformed to Fisher’s Z scores to 
render them normally distributed. A detailed explanation of this procedure is 
explained in the section 2.2.2 of study 1. 
 
1.3 Fundamentals of various techniques used in this thesis  
 
Univariate analysis has been the classical approach applied at voxel level, to 
investigate the group differences in the brain (Bandettini et al. 1992; Friston et al. 
1994; Friston 1997; Mukamel et al. 2005). Despite the approach proved to effectively 
provide inferences about the brain regions associated with a given task, the results are 
merely specific to the type of research question examined (i.e., univariate analysis is 
generally used for hypothesis-driven study while multivariate analysis is generally 
more exploratory). In addition, univariate voxel-wise analysis infers on identical 
information from several single voxels (Gonsalves and Cohen 2010) and thus fails to 
explicate patterns based on integrated information from multiple voxels, even when 
the voxels share non-identical variance (i.e., univariate analysis fails to identify 



complex relationships between different regions). In contrast, multivariate analyses 
aim to estimate a given phenotypical or behavioral measure by capitalizing on the 
spatially distributed patterns over a set of voxels (Haxby et al. 2001; Kamitani and 
Tong 2005; Pereira et al. 2009). Given the advantage of multivariate analysis 
exploiting information from several voxels with different properties, the results 
obtained with these approaches remain more stable and can be analyzed in several 
directions (O’Toole et al. 2007; Yoon et al. 2008; Habeck 2010). Thus, multivariate 
approaches have been increasingly applied in the field of neuroscience, to investigate 
neuroimaging patterns associated with various phenotypical or behavioral measures 
(Cox and Savoy 2003; Craddock et al. 2009; Franke et al. 2010; Davatzikos et al. 
2011). However, the efficiency of the multivariate approaches greatly relies on 
multiple dimensions of the neuroimaging data. Briefly, there are three dimensions of 
the neuroimaging data: number of variables (number of voxels), number of 
observations (sample size), and multitude of modalities (data from different 
modalities). The current study attempted to address the challenges associated with 
these dimensions, in particular to provide solutions to meaningfully reduce the 
dimensionality associated with the number of voxels, in the context of multivariate 
approaches. Thus, a brief introduction is presented below about the different data 
reduction techniques with different multivariate approaches used in this dissertation.  
 
1.3.1 Dimensionality reduction techniques 
 
1.3.1.1 Coordinate-based meta-analysis 
 
Coordinate-based meta-analysis (CBMA) yields a quantitative summary of brain 
regions identified to answer a certain research question, exploiting the reported results 
(such as, coordinates of the activated regions) across neuroimaging literature. 
Therefore, networks derived using a coordinate-based meta-analysis technique have 
been used as the ground truth to investigate the reliability of the connectivity measure 
using different preprocessing methods in study 1. Furthermore, coordinate-based 
meta-analysis technique has been mainly used to reduce the features based on existing 
‘domain knowledge’ in study 2 and study 3.  
 
In order to obtain CBMA networks, revised activation likelihood estimation (ALE) 
algorithm is performed (Turkeltaub et al. 2002; Laird et al. 2005; Eickhoff et al. 2009; 
Yarkoni et al. 2011; Eickhoff et al. 2012) employing MATLAB packages. Normally, 
ALE aims to capture the uncertainty in spatial location related to each of the reported 
coordinate, by modeling an isotropic Gaussian probability distribution around the 
reported foci. Moreover, the size of the Gaussian kernel is modeled by accounting the 
spatial uncertainty (estimated by computing the Euclidean distance) of both between-



template variance (i.e., bias initiated by different normalization strategies) and 
between-subject variance (i.e., smaller sample sizes based bias). These empirical 
estimates can be described by the Maxwell-Boltzmann distribution, which exhibits 
isotropic normal distribution. The underlying isotropic normal distribution (i.e., 
displacement in X, Y, Z directions) has zero-mean and standard deviation (denoted as 
α) based on the Maxwell-Boltzmann distribution, where α-parameter resembles the 
standard deviation of the underlying Gaussians displacement (i.e., desired kernel size, 
denoted as σ). The point-estimate (μ) of Maxwell-Boltzmann distribution is replaced 
by the Euclidean distance computed from our data, and derived the α-parameter 
(hence the σ of the Gaussian displacement) by solving the following equation.  
 

 

 

 

 
Here,  is the mean Euclidean Distance between corresponding foci of different 
subjects and is the mean Euclidean Distance between corresponding maxima 
as observed in the different group-analyses (due to the different normalization 
strategies). 
 
The corresponding Full width at half maximum (FWHM)) parameter is assessed as 
following, using the σ of a Gaussian distribution. 
 

 
 

 
 
Influence of the inter-subject variability on the spatial uncertainty in a group of N 
subjects can be measured as 
 

 

 
Subsequently, the uncertainty of the spatial location of a given coordinate is modeled 
by combining the empirical estimations of the between-template and between-subjects 



variance outlined above. 
 

 

 
Thus, for a given study, modeled activation map is computed by integrating the 
probabilities associated to all the foci of that particular study (specific to one) (i.e., 

Here,  is the probability of ith focus at a given voxel. 
Finally, combining these MA maps across studies reveals convergence of results from 
multiple studies at a particular brain location. Thus, the most probable regions 
associated to the given research question is achieved.  
 
1.3.1.2. Principal component analysis 
 
Principal component analysis (PCA) is one of the most commonly used methods with 
multiple applications. For instance, in this dissertation, PCA is used as de-noising 
strategy in study 1, and as dimensionality reduction technique in study 4. Typically, 
PCA aims to achieve reduced representation with uncorrelated features explaining 
highest variation in the dataset, which are linear combinations of the original 
correlated features (Jolliffe 2005; Mourão-Miranda et al. 2005; Mourão-Miranda et al. 
2012). PCA thus decomposes the entire original representation into low rank 
approximations with a combination of positive and negative weights, which does not 
promote spatially localized components. PCA decomposition captures the component 
with highest variance as the most dominant principal component, followed by 
maximum fit of the remaining variance by the successive components (Jolliffe 2002).  

Principal components  are a linear combination of the original parameters: 

 

 

 

Where -1 <  < 1 are the coefficients of the linear transformation,  are the original 
features and is the number of original features. In other words, PCA minimizes 
the following optimization problem: 



 

 

 
 

 
Here, W indicates the component space and H represents the loading coefficients of 
the components. The original features (V) are decomposed using singular value 
decomposition (SVD) into eigenvalues of the covariance matrix. Capitalizing on the 
sample size of the data, most relevant components are computed and denoted as 
principal components. However, the signed components within the PCA 
decomposition engage complex cancellations during the reconstruction of the original 
representation. Therefore, the use of PCA-based dimensionality reduction on brain 
voxels results in hardly interpretable components, which can in turn prevent the 
interpretation of a predictive model based on PCA-derived components.  
 
1.3.1.3. Non-negative matrix factorization 
 
Non-negative matrix factorization (NNMF) has recently been suggested as a plausible 
factorization of high-dimensional VBM data. Non-negativity and sparsity the 
components trend to reflect distinct, anatomically interpretable “building blocks” 
rather than whole-brain patterns of positive and negative values obtained from, e.g., 
PCA, (Lee and Seung 1999). Therefore, in study 4, we use the same orthonormal 
projective non-negative matrix factorization (OPNMF) approach as described by 
(Sotiras et al. 2015) that reduces computation time and yields deterministic solutions 
(Yang et al. 2007; Yang and Oja 2010a) OPNMF factorized the data ‘X’ into two non-
negative sub matrices (W and H) representing the sparse components (the dictionary) 
and the subject-specific loading coefficients in the ensuing low-rank space by solving 
the following optimization problem through minimization of the squared Frobenius 
norm (i.e., reducing the reconstruction error).  
 

 

 
 

 
As stated, OPNMF is an extended framework of the standard NNMF. The constraint 

, was one of the extended constraint (i.e., the projective basis function). 
The loading coefficient matrix was estimated by projecting the input matrix onto the 
estimated component matrix. Estimating H using projection basis function would 
provide more localized representation, as well as decline the overlap between the 



estimated components (i.e., reduce the risk of overcomplete low rank representation 
without exceeding the dimensionality of the input, which allows us to accurately 
reconstruct the original representation (Yang et al., 2007)). In addition, this constraint 
has improved the representation by inducing the sparsity into the component matrix 
‘W’ (Yang et al., 2007, Yang and Oja, 2010). In addition,  promotes the 
orthogonality which allows the components to be independent of each other. Yang and 
Oja 2010 mathematically demonstrated that the addition of orthonormal constraint 
reduced computational complexity.  
 
In order to find the solution, NNMF employed multiplicative update rule, which 
facilitates the non-negativity into the solutions. However, the multiplicative update 
rule has been modified as reported by Yang and Oja 2010, in order to satisfy the 
additional constraints of orthonormal projection basis function. The following update 
rule has been iteratively applied until it converges to achieve an optimal solution. 
 

 

 
Where, i = 1…Number of voxels, j = 1…Number of components. Prior to the 
optimization scheme, a dual initialization step termed as non-negative double singular 
decomposition (NNSVD) has been implemented (Boutsidis and Gallopoulos 2008). 
This initialization step aimed to provide a good approximation by reducing the 
residual error relatively faster, as well as to enable reproducible final solutions. 
Furthermore, initialized sparse components ensure the final sparsity. Lastly, NNSVD 
initialization attempts to enable reproducible solutions across several runs. 
 
To summarize the factorization process, W is first initialized through non-negative 
double singular value decomposition. Later, W is iteratively updated with the 
multiplicative update rule, until it converges to an optimal solution. Finally, projecting 
X onto W to obtain a solution that minimizes the reconstruction error yields H. 
 
1.3.2 Multivariate approaches for prediction or classification: 
 
1.3.2.1 Support Vector Machine 

Support Vector Machines (SVMs) are a popular machine learning method for 
classification (Vapnik 1998). In study 2, we implemented classification-based 
machine learning approach to classify patients and healthy controls into separate 
groups. Hence, we implemented SVM in this study 2.  In study 2, non-sparse linear 
two-class SVMs were computed using LibSVM (Chang and Lin 2011) [Chang and 



Lin, 2011] (https://www.csie.ntu.edu.tw/~cjlin/ libsvm). When the training dataset of 
n points are given in the form, , where , indicating the 
class each point  belongs. SVM solves the following optimization problem, which 
aims to find a hyper plane that divides the two groups.  

 

 

 
 

 
Where  is the normal vector to the hyperplane;  maps  into a higher 
dimensional space and  gives the regularization factor. Usually, the following 
dual optimization problem is solved, given the high dimensionality of the hyperplane 
vector (w). 
 

 

 
 

 
where e = is the vector of all ones, Q is a positive semidefinite matrix with 
entries , and the kernal functions are . 
After solving the aforementioned dual optimization problem, using the primal-dual 
relationship, the optimal w satisfies 
 

 

 
Finally the decision function is 
 

 

 
In the model for prediction or classification, the following parameters are saved, 

, support vectors and label names. 
 
 



1.3.2.2 Relevance Vector Machine 
 
The Relevance Vector Machine (RVM) is another machine learning approach, which 
was developed from support vector machine, but provides solutions employing 
probabilistic Bayesian learning (Tipping 2001; Tipping and Faul 2003a). Most 
importantly, In contrast to SVM, RVM induces sparsity into the regression model, 
which ultimately overcomes the over fitting issue for high dimensional data. 
Therefore, RVM is implemented as the sparse regression model to predict various 
personality traits in Study 3. For doing so, statistical learning of the sparse regression 
model employing RVM was implemented using the SparseBayes package 
(http://www.miketipping.com/index.htm). When the training dataset of n points are 
considered in the form  . The following generalized linear model is 
trained on the training dataset.  
 

 

 
where ,  is a bivariate kernel function centered on each of the 
training data points,  are the regression coefficients and  is the 
noise. Here, the output is assumed to follow a Gaussian distribution with mean y(xi) 
and uniform variance  of the noise , so Conditional 
probability of the target variables following those assumptions is expressed as 
 

 

 
Here, the kernel function matrix  represents all the pairs 

. In order to induce the sparsity, an additional vector of 
hyper parameters  is introduced to parametrize the width of the normal prior 
distribution.  
 

 

 
The goal of the RVM is to iteratively solve (the following steps) the type II 
maximization of the marginal likelihood  with respect to  and , which 
reduces the dimensionality of the problems when any of the  is larger than the 
defined threshold. Finally, the algorithm stops, when there is no further improvement 
in the likelihood  (Tipping 2001). 



 

 

 

 
The unknowns are computed as following, where,  and A = 

. 
 

 
 

 
1.3.2.3 Regularized (sparse) regression model 
 
As an alternative approach to RVM, LASSO (least absolute shrinkage and selection 
operator) has been the most commonly implemented sparse regression model in the 
machine learning studies. LASSO is known to perform both variable selection and 
regularization to improve the precision and interpretability of the prediction model 
(Tibshirani 1996). Regularization, in general, is to introduce an additional penalty 
term, which can improve the generalizability of the learning model. Therefore, in 
study 4, we performed an additional comparison between LASSO and RVM 
regression models, given that both the methods induce sparsity into the learning 
model. However, in study 4, LASSO for learning a (sparse) linear regression model 
predicting the subjects’ age is implemented as in the ‘glmnet’ package, 
https://www.jstatsoft.org/article/view/v033i01 (Tibshirani 1996). To note, elastic net 
regularization based framework is employed within the ‘glmnet’ package, which can 
easily be adapt into purely LASSO regularized framework. The mathematical 
definition of Elastic net is explained below. Elastic net regularization is alternative 
regularization and variable selection model with sparsity of representation similar to 
LASSO (Zou and Hastie 2005).  
 
When the training dataset of n points are considered in the form   
the response y is predicted as following using a regular linear regression model.  
 

 
 
In the model fitting procedure using ordinary least square (OLS), a vector of 
coefficients ( ) is estimated by minimizing the residual sum of squares 
(where, k is the number of features). However, to improve the prediction accuracy and 
interpretation of the learning model, penalized least square techniques have been 



introduced (Tibshirani 1996; Zou and Hastie 2005), which introduces a regularization 
term to the ordinary least square estimations (such as L1 and L2 norm regularization 
(Horn, R. A. and Johnson 1973)). The elastic net regularization framework that 
linearly combines the L1 and L2 norm regularizations, calculated the vector of 
coefficients by minimizing the following penalized least square function (Zou and 
Hastie 2005; Bunea et al. 2011). 
 

 

 
 
Where,  
 

 

 

 
Here,  is the hyper parameter defining the amount of penalty, which controls the 
complexity of the regression model (i.e., balance between sparsity and high prediction 
accuracy). The elastic net parameter is , further defined as LASSO when  
= 1 and ridge when  = 0. To note, sparsity of the solution is encouraged by L1 
penalty term and stability of the solution is promoted by L2 penalty term (Hastie et al. 
2009; Friedman et al. 2010).  
  



2 Rationale of the study 
 
Until recently, most of the multivariate and also univariate analysis were applied on 
smaller sample sizes, which have been shown to be prone to false positives (i.e., 
reduced chance of the effect being biologically plausible) (Button et al. 2013; Button 
2014). Analysis performed on smaller sample size allows only a confined set of 
outcomes, which are specific to the given sample. To note, any minor methodological 
manipulation could easily deviate the results in such underpowered sample-sized 
analysis. In addition, taking the highly variant inter-individual difference into account, 
systematic examination of the pattern within brain regions can only be achieved by 
increasing the sample size. Thus, one needs to implement the multivariate approaches 
on very large sample size i.e., for thousands of subjects, to enhance the stability of the 
outcomes. Even though, recent studies began to investigate the pattern of the brain 
regions on relatively larger sample size datasets, yet, the sample size hasn’t been more 
than 6000 subjects (Miller et al. 2016a). In contrast, the voxel-wise data contains more 
than 300000 voxels. Therefore, even with the recent experimental settings, the 
dimensionality associated with voxel-wise data has greatly exceeded the sample size 
(Guyon and Elisseeff 2003; Schrouff et al. 2013; Mwangi et al. 2014). Such high-
dimensional voxel wise neuroimaging data lead to multiple issues such as heavy 
computational demand, as well as poor signal to noise ratio. Normally, voxel wise 
data is a mixture of noise, redundant, and information of interest with multivariate 
properties. Therefore, voxel-wise representation could potentially fit several 
multivariate models for the same data, (i.e. voxel-wise representation goes with ‘risk 
of overfitting’ (Guyon and Elisseeff 2003; Hua et al. 2009)). To avoid the risk of 
overfitting and improve the signal to noise ratio, a dimensionality reduction technique 
is crucially needed. Given the aim of dimensionality reduction technique is to 
eliminate the influence of the noisy and redundant features, the pattern of brain 
regions identified after data reduction are expected to offer a deeper interpretation of 
the research question. Therefore, the dimensionality reduction has to transform the 
high-dimensional data into low rank approximations, while still retaining the most 
influential structure of the original data (Guyon and Elisseeff 2003; Fan et al. 2007; 
Mwangi et al. 2014). Hence, the inevitability of data reduction associated with high 
dimensional voxel wise data motivated our study to evaluate different methods 
addressing this particular issue (i.e., dimensionality related to the number of variables 
The major objectives of these dimensionality reduction techniques are: 1) 
improvement in the accuracy of the multivariate approaches 2) reduction of the 
computational demand issue 3) offering a deeper and better understanding of the 
underlying processes (Mwangi et al. 2014). Most of the previous studies had focused 
on improving the first and second objectives (Hua et al. 2009; Franke et al. 2010; 
Wang et al. 2010; Chu et al. 2012). Until recently, there has been no detailed 



investigation on the third objective. Thus, our project intended to improve the third 
objective without making any detrimental impact on the first and second objectives.  
 
Recently, neuroimaging based studies focus greatly on multimodal setups. Through 
multimodal data analysis, integration of the complimentary information derived from 
different magnetic resonance imaging (MRI) measurements is possible, (Rykhlevskaia 
et al. 2008; Ritter et al. 2015; Miller et al. 2016; Liem et al. 2017). In this framework, 
implementation of the multivariate approaches on a multimodal setup improves the 
sensitivity and specificity of the outcomes, as multimodal data provide a more 
comprehensive representation of the brain than individual modalities (Erus et al. 2015; 
Davatzikos 2016; Liem et al. 2017). However, practical concatenation of multimodal 
data has to deal with several methodological limitations. Thus, the modern neuro-
scientific community has spurred improvements within computation of multimodal 
neuroimaging, including pre-processing, feature extraction and fusion of the data. 
Given the dependency of the data fusion on the prior steps, our project is mainly 
dedicated for those prior steps, i.e. pre-processing and feature extraction (partly 
referring to the dimensionality reduction) at the individual modality level. Even 
though the information and the source of information differ between the modalities, 
some communal information is most likely shared among the modalities (Groves et al. 
2012; Liu et al. 2015). Therefore, it is crucial to examine the latent dimensions of the 
data for each modality individually, prior to the investigation of patterns among the 
multimodal data obtained by linking different modalities together. In this framework, 
the, most frequently acquired modalities in big MRI data samples available for the 
research community are resting state functional MRI data and T1 based structural 
MRI data. Therefore, our studies focus on the influence of various data reduction 
techniques used in functional and structural MRI data. 
 
Altogether, in this project, we mainly aimed to address the curse of dimensionality 
associated with high-dimensional voxel wise information by optimizing and 
evaluating various methods used in functional and structural MRI data separately, 
which can provide reliable and interpretable solutions. First part of the dissertation 
focused on functional MRI based data reduction methods, giving particular attention 
on reliability of the functional connectivity measures. Second part of the dissertation 
intended to examine the latent dimensionality of the structural MRI data, which 
predominantly improves the interpretability of the outcomes. 
 
2.1 Reliability of the functional connectivity measures 
 
When performing a multivariate approaches using functional MRI data, functional 
connectivity (FC) measure between different regions of the brain is considered to be 



the dimensionality of variables. Nevertheless, voxel-wise whole brain functional 
connectivity profile provides a multitude of connectivity measures (i.e., 300000 x 
300000), while only few of these connections are informative during the multivariate 
analysis of a given variable of interest (Wang 2011; Mwangi et al. 2014). In turn, a 
priori defined canonical networks yield considerably less connections, which in fact 
eliminate the influence of irrelevant features and retain the relevant ones for a given 
variable. Hence, a priori defined seed based FC measures are computationally more 
tractable and more informative.  Therefore, our study 1 focused on region-to-region 
connectivity within a priori meta-analytically-defined networks (Wager et al. 2007; 
Schilbach et al. 2014).  
 
Coordinates-based meta-analysis techniques are intended to reduce the features based 
on existing ‘domain knowledge’ (Dukart et al. 2013; Tench et al. 2013; Mwangi et al. 
2014). The strength of this technique is to provide robust, functionally specific regions 
of interest (ROI) by integrating the outcomes from several different studies, which 
overcomes the limitation of false-positives ensuing due the low statistical power (i.e., 
smaller sample size) within a single study (Rottschy et al. 2012; Hardwick et al. 2013; 
Tench et al. 2013). Therefore, feature reduction based on meta-analysis techniques 
avoids the potentially poor reliability limitation encounter when selecting feature 
based on individual sample size study. However, the best strategy to extract the 
connectivity matrices from a priori networks still remains as a question. Impediment 
of the true measurement of neuronal activity from functional MRI signals caused by 
various nuisance signals leads to an unstable assessment of functional connectivity 
(Fox et al. 2005; Bright et al. 2017). Furthermore, the reliability of the functional 
connectivity might also be influenced based on different procedures of signal 
extraction from an ROI.  Given the crucial importance of reliability for the 
development of clinical applications, study 1 aimed to identify the combination of 
signal extraction and confound removal approaches that yields the highest test-retest 
reliability when assessing resting-state functional connectivity in meta-analytically 
defined networks, using standard acquisitions as feasible in clinical practice. In study 
1, we even investigated reliability from the two different but complementary 
perspectives that is, reliability at the subject level (RoSO) and reliability at the 
connection level (RoCO). 
 
2.2 Feature reduction and feature selection 
 
After addressing the best strategies to reliably extract the connectivity measures, the 
focus of our project is shifted towards evaluation of dimensionality reduction methods 
with a particular interest in reducing the high-dimensional feature space into 
biologically plausible reduced features. Feature reduction and feature selection are 



two closely related terms in the context of multivariate approaches. As previously 
described, transformation of high dimensional voxel wise data into low rank 
approximations is considered as dimensionality reduction, also commonly known as 
feature reduction. In the feature reduction process, entire representation of the data is 
compressed into reduced number of features/components. The categorization of the 
data-driven feature reduction happens by inferring a hidden pattern of the data across 
the observations, which is also called as generative modeling or unsupervised learning 
of the data (Fukunaga 1990; Van Der Maaten et al. 2009). Nevertheless, inspite of an 
optimistically efficient feature reduction using data-driven methods, there still might 
be irrelevant or redundant features among the reduced set of features, influencing the 
performance of a multivariate approaches of a particular target variable. Hence, 
further selection of features that are relevant for that particular target variable is 
expected to diminish the influence of irrelevant or noisy features on the performance 
(Tipping and Faul 2003b; Hastie et al. 2015). This procedure of curbing the features 
contributed in the analysis is named as feature selection. With the recent 
developments in the field, sparse regression models allow us to perform a feature 
selection by learning the data in a supervised fashion or descriptive modeling. 
Therefore, second part of this dissertation (i.e., study 3 and study 4) was designed to 
evaluate the combination of sparse feature reduction procedure with a sparse 
supervised algorithm (to implement feature selection), aiming to provide solutions 
which can better interpret the patterns of brain regions contributed in the multivariate 
analysis. This is also called as Generative-descriptive method (Chu et al. 2012; 
Davatzikos 2016).  
 
As introduced in the previous section, feature reduction technique depending on the 
existing domain knowledge (such as meta analytically derived networks) is an 
alternative procedure commonly employed for reducing the functional MRI data 
(Yarkoni et al. 2011; Dukart et al. 2013; Schilbach et al. 2014). Here, each node 
within a network is defined by consolidated evidence from multiple task-based fMRI 
studies. Thus, spatial correspondence of each node within the entire network reflects 
consistently co-activated brain region pertaining to the specific target behavioral 
condition across individuals (Laird 2009; Eickhoff et al. 2011). A priori defined meta 
analytical networks presumably indirectly induce sparsity to yield considerably less 
features among the whole brain connectivity by retaining the relevant features for the 
given target variable. Hence, study 2 and 3 attempted to implement the feature 
reduction based on domain knowledge during the investigation of the pattern 
implicated to the given variable using the functional MRI data. Here, study 2 aimed to 
examine the results obtained by employing an indirect sparse feature reduction 
procedure (i.e., meta analytically derived networks) to classify different 
neuropsychological disorders among each other’s and also with the healthy controls 



using a classical non-sparse regression model (i.e., support vector machine). In 
addition, study 3 focused on investigating the prediction performance of various meta 
analytically derived networks, when implementing a sparse regression model (which 
enforces feature selection procedure, i.e., relevance vector machine) to predict various 
personality traits.  
 
Importantly, activations-based meta-analytic data representations are assumed to 
optimally summarize functional MRI data. In contrast, such representation might not 
be optimal for structural MRI data. Thus, in study 4 using structural MRI data, we 
investigate data representation based on structural modality. More concretely, study 4 
strictly focused on evaluating data-driven techniques involved in reducing the 
dimensionality associated with the variables (i.e., voxel number) derived from voxel 
based morphometric (VBM) measure computed from anatomical MRI data. 
Importantly, while the results obtained from study 4 have been analyzed from an 
anatomical perspective of the brain, this technique may be applicable to other 
modalities. To note, our study 4 was performed on considerably large sample sizes to 
tackle the limitations associated with the statistical power of observations (between 
700 to 1000 subjects). Given the interest for deeper understanding of the outcomes, 
study 4 attempted to implement an alternative dimensionality reduction method 
namely, non-negative matrix factorization (NNMF), which improves the quality of 
interpretability of the low-rank approximations in contrast to the frequently used 
principal component analysis method (Sotiras et al. 2015). NNMF based reduction of 
VBM data has been evaluated for prediction of age, using a sparse regression model 
(i.e., LASSO regularization model). To address the issue of computational demand, 
we examined the transferability of the NNMF between two independent datasets with 
different age distribution and acquisition protocols. Lastly but most importantly, as 
our project aimed to focus on the interpretability of the underlying processes, we 
investigated the association of the pattern of brain regions (i.e., reduced interpretable 
features) contributed in the regression analyses with the phenotype or behavioral score 
examined in each of the last three studies. 
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Abstract Resting-state functional connectivity analysis

has become a widely used method for the investigation of

human brain connectivity and pathology. The measurement

of neuronal activity by functional MRI, however, is

impeded by various nuisance signals that reduce the sta-

bility of functional connectivity. Several methods exist to

address this predicament, but little consensus has yet been

reached on the most appropriate approach. Given the cru-

cial importance of reliability for the development of clin-

ical applications, we here investigated the effect of various

confound removal approaches on the test–retest reliability

of functional-connectivity estimates in two previously

defined functional brain networks. Our results showed that

gray matter masking improved the reliability of connec-

tivity estimates, whereas denoising based on principal

components analysis reduced it. We additionally observed

that refraining from using any correction for global signals

provided the best test–retest reliability, but failed to

reproduce anti-correlations between what have been pre-

viously described as antagonistic networks. This suggests

that improved reliability can come at the expense of

potentially poorer biological validity. Consistent with this,

we observed that reliability was proportional to the retained

variance, which presumably included structured noise, such

as reliable nuisance signals (for instance, noise induced by

cardiac processes). We conclude that compromises are

necessary between maximizing test–retest reliability and

removing variance that may be attributable to non-neuronal

sources.

Keywords Test–retest � fMRI � Resting-state functional

connectivity � Reliability � Confound removal

Introduction

Functional magnetic resonance imaging (fMRI) relies on

the measurement of changes in blood oxygenation (i.e.,

BOLD) and plays a vital role in understanding normal and

abnormal brain functioning. For instance, functional con-

nectivity of distant brain regions can be investigated

through the statistical analysis of coherent low-frequency

BOLD fluctuations. Synchronized signal fluctuations can

be observed even when the subject is at rest, without per-

forming any task, and the analysis of resting-state data has

become a popular means of studying ongoing brain acti-

vations and functional connectivity between brain regions

(Biswal et al. 1995; Fox and Raichle 2007). There are both

indirect (from comparison with task co-activation patterns,

(Kwong et al. 1992; Hinke et al. 1993; Buckner et al. 1996;

Huettel et al. 2004; Barch et al. 2013)) and direct (from

invasive recordings (He et al. 1999; Lai et al. 2011; Lu

et al. 2014) supports toward this notion. Several con-

founding effects, including system noise, thermal noise,

and noise induced by non-neuronal physiological pro-

cesses, may influence the measured signal and hence
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apparent brain activity. Therefore, interpretation of brain

activity depends on the ability to mitigate their influences

(Fox et al. 2009).

Participant-induced artifacts, such as motion and phys-

iologically induced artifacts (i.e., due to respiration and

cardiac processes), comprise the largest component of

noise affecting the BOLD signal (Windischberger et al.

2002). Motion artifacts have been shown to produce spu-

rious correlations in a systematic way (Van Dijk et al.

2012; Power et al. 2012; Satterthwaite et al. 2013),

implying that the removal of motion related artifacts is a

prerequisite for further analysis. Various approaches have

been proposed for dealing with noise effects post hoc, i.e.,

after the data have been acquired (Behzadi et al. 2007; Fox

et al. 2009; Murphy et al. 2009; Chai et al. 2012; Griffanti

et al. 2014; Patriat et al. 2015; Power et al. 2015; Soltysik

et al. 2015; Wong et al. 2016). In addition to motion-re-

lated artifacts, one particular aspect that has received a lot

of attention is the use of nuisance regressors reflecting

global signals, derived either from the whole brain or from

specific tissue types, such as white-matter or cerebrospinal

fluid. However, removal of various global nuisance

regressors alters the variance of the residual signal and has

been shown to modify the correlational structure (Fox et al.

2009). In line with it, Friston (2011) showed that changing

the signal-to-noise ratio can change the correlation coeffi-

cient, which indicates that the level of observable noise

influences the correlation coefficient.

Both the definition of the ROI from which BOLD sig-

nals are extracted and the means by which voxel-wise

signals are summarized across a given ROI are critical

considerations in a functional connectivity analysis. An

ROI can be derived through various approaches, including

(most simply) a single voxel or sphere of a fixed radius

around a voxel, histological parcellation in standard space

(Eickhoff et al. 2005), clustering approaches based on

functional or structural connectivity estimates (Eickhoff

et al. 2015), thresholded statistical maps, or meta-analytic

approaches such as ALE (Eickhoff et al. 2009, 2012). In

this study, we focused on region-to-region connectivity

within a priori meta-analytically defined networks (Schil-

bach et al. 2014; Schilbach 2016). This approach has

several advantages. In particular, meta-analyses provide

robust, functionally specific ROIs based on observations

across many studies. Analyzing functional connectivity on

this network combines its functional specificity with the

advantages of task-free imaging, i.e., an acquisition that

poses little demands on the subjects and is not confounded

by a specific task paradigm. Similarly, the extraction of a

summary signal across an ROI can be performed in various

ways that may impact the reliability of connectivity esti-

mates. In particular, the exclusion of voxels based on their

gray matter probabilities may help improve signal to noise

by removing signal not originating in the gray matter tissue

of interest. In this study, we compared three signal

extraction approaches using different gray matter masking

techniques.

Many clinical studies currently rely on functional con-

nectivity measures in understanding normal and abnormal

brain functioning. The appeal for resting-state functional

connectivity analyses in clinical applications lies in the fact

that such data are easy to acquire without any specific

setup, do not require active participation by the subjects,

and in contrast to task-based data, are less influenced by

compliance and performance. Nevertheless, several con-

cerns have been raised regarding the reproducibility and

statistical power of classical neuroimaging studies (Button

et al. 2013a, b). Clinical application, however, can only be

useful if the analyses yield reliable measures. Various

studies have also been performed to test the reliability of

functional or effective connectivity measures using differ-

ent modalities (such as fMRI or diffusion MRI) and

reported moderate to high test–retest reliability of con-

nectivity measures across moderate to long-term scans.

(Chen et al. 2015; Frässle et al. 2016; Song et al. 2016;

Zhong et al. 2015). Shehzad et al. (2009) investigated the

test–retest reliability of global connectivity patterns using

resting-state fMRI and observed that significant connec-

tivity scores are more reliable than non-significant con-

nectivity scores. Wang et al. (2011) evaluated short-term

(less than 1 h apart) and long-term (more than 5 months

apart) test–retest reliability for topological metrics of

functional networks and observed that long-term scans had

better reliability than short-term scans. Later, Raemaekers

et al. (2012) analyzed the reliability of BOLD activation

and reported that patterns of BOLD activation were rela-

tively stable across sessions, while the amplitude of the

activations is more variable. Gorgolewski et al. (2013)

studied the test–retest reliability of confound removal at the

subject level (by focusing on the single subject reliability)

and showed that subject motion can detrimentally impact

reliability. Yan et al. (2013b) investigated the influence of

post-acquisition standardization techniques on traditional

fMRI measures, test–retest reliability, and phenotypic

relationships, as well as nuisance variables (mainly mean

global signal) and reported that global signal regression is

identical to gray matter regression and both should be

avoided. Subsequently, Birn et al. (2014) evaluated the

influence of various physiological noise correction methods

on test–retest reliability and found that it was reduced by

physiological noise correction, as it reduced the variability

between subjects as well as within the subject. Shirer et al.

(2015) investigated various means of confound removal

across multiple outcome measures and demonstrated that

noisiness, reliability, and heterogeneity of the data varies

based on the preprocessing parameter chosen. In turn, the
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influence of various gray matter masking approaches on the

reliability has not been addressed in any of the previous

test–retest studies. Therefore, using meta-analytically

derived networks, we assessed the influence of different

signal extraction and noise regression approaches on the

reliability of the resting-state functional connectivity

measures.

In this study, we evaluated test–retest reliability of

resting-state functional connectivity in a cohort of 42

subjects scanned twice with a between-scan interval of

175 ± 75 days. We assessed two networks: the extended

socio-affective default mode network (eSAD) (Amft et al.

2015); and the working-memory network (WMN) (Rotts-

chy et al. 2012). Both networks were derived from previous

meta-analytic studies, which used anatomical likelihood

estimation (ALE; (Eickhoff et al. 2009, 2012)) to identify

regions that are robustly activated across studies, for

specific task paradigms. Both networks have been

hypothesized to anti-correlate with each other (Fox et al.

2005; Reid et al. 2016). Thus, the reliability of connectivity

estimates within, as well as between, the specified meta-

analytically derived networks was evaluated.

A literature survey was conducted, to investigate the

popularity of various methods for confound removal in

recent fMRI studies. Using PubMed database, all the arti-

cles with the terms ‘‘fMRI,’’ ‘‘resting-state,’’ and ‘‘seed-

based,’’ published from the beginning of 2014 until the

time of this study (June 2016) were identified, reflecting the

recent work most in line with the focus of our work on

seed-based analyses. A total number of 239 studies were

identified. Among them, 33 studies had to be excluded,

because the articles were either not relevant to the study

(such as studies on animals) or not accessible. Therefore, a

total number of 206 studies were investigated. We then

computed the percentage of studies using the different

confounds removal methods, which is shown in Fig. 1. The

frequency of studies when using a certain confound has

been demonstrated separately (in the categories of ‘Only’)

and in combination with the other confounds in the Fig. 1.

Based on this literature examination, we assessed the

effects of the most commonly used confound removal

approaches in resting state fMRI studies; namely, global

and tissue-class specific (either only WM and CSF or in

addition also GM) mean signal regression, as well as

Fig. 1 Percentage of studies using a certain confound removal

method [i.e., white matter and cerebral spinal fluid signal regression

(WMCSF), global signal regression (GSR), principle component

analysis-based corrections (PCA), tissue signal regression (TSR),

physiological recordings-based corrections (physiological correction),

independent component analysis-based corrections (ICA), and other

correction methods such as ANATICOR or gray matter atrophy

regression (others)]. The colors represent the interactions of each

method with other methods. The first fraction of section which is

consistent over the approaches, represented with the word ‘‘Only’’ (in

blue) shows the percentage of studies performing only a certain

confound removal without any interactions. Additional colors

assigned to the other confound removal appears only when there is

an interaction. Of note, the interactions of motion regression with

other methods are not explicitly shown in this figure. However,

almost all the studies involved in this literature survey have removed

the motion effects along with the other confound removal approaches

demonstrated in the figure
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principal components analysis (PCA) denoising. We also

examined three approaches for extracting the regional

time-series based on different methods for gray matter

masking. Above mentioned approaches were assessed

separately and in combination with each other. To observe

the consequences of the interactions, the approaches were

evaluated in combinations (cf. ‘‘Assessed (combinations

of) signal processing steps’’). We note that physiological

noise regression (i.e., elimination of artifacts induced by

respiration and cardiac processes) requires recordings of

parameters, such as heartbeat and breathing. Such physio-

logical recordings, however, are rarely acquired in standard

(clinical) resting-state acquisitions and were hence not

considered in the current investigation. Independent com-

ponent analysis (ICA)-based denoising is another emerging

approach to confound removal (Griffanti et al. 2014; Sal-

imi-Khorshidi et al. 2014; Pruim et al. 2015a, b). However,

ICA-based denoising approaches (excluding the ICA-

AROMA, as the pre-defined spatial features included

within in the package itself) require effective individual

segmentation from high-resolution T1 images, which were

not available for the current data. Acknowledging the

future potential of ICA-based denoising, we thus focused

our work on the evaluation of the presently most widely

used approaches.

Another common application of ICA is the examination

of the functional connectivity networks. Recently, such

ICA method followed with the dual regression is used to

assess the functional connectivity for group comparisons,

instead of seed-based functional connectivity. Zuo et al.

(2010) reported moderate-to-high test–retest reliability.

Furthermore, Smith et al. (2014) claimed that ICA fol-

lowed with the dual regression performs better than the

seed-based connectivity measures. Even though, such

methods may lead to higher reliability. Zuo et al. (2010)

reported moderate-to-high test–retest reliability, while

computing the functional connectivity networks using ICA

combined with the dual regression. Furthermore, Smith

et al. (2014) investigated that ICA followed with the dual

regression performs better than the seed-based connectivity

measures. Even though such methods may lead to higher

reliability (Zuo et al. 2010), seed-based functional con-

nectivity is still very widely used for the examination of a

priori hypotheses in both basic and clinical studies (Smith

et al. 2014). Thus, we here focused on the test–retest

reliability of the seed-based functional connectivity

measures.

Importantly, reliability can be examined from two per-

spectives: at the subject level and at the connection level.

One the one hand, meaningful group comparisons largely

depend on reliability at the subject level, i.e., over scans the

order of subjects should remain as similar as possible for any

given connection. One the other hand, network modeling

capitalizing on within-subject connectivity requires relia-

bility at the connection level (cf. ‘‘Indices of reliability’’),

i.e., for any given subjects, the order of connectivity

strengths should remain as similar as possible over scans.

Therefore, in this study, we investigated reliability from the

two different but complementary perspectives, that is, reli-

ability at the subject level (RoSO) and reliability at the

connection level (RoCO). To sum up, this study aimed to

identify the combination of signal extraction and confound

removal approaches that yield the highest test–retest relia-

bility when assessing resting-state functional connectivity in

meta-analytically defined networks, using standard acquisi-

tions as feasible in clinical practice. In other words, this

study aims to provide a ranking of methods in terms of their

potential to yield stable connectivity patterns over time.

Materials and methods

Networks of interest

The influence of different processing steps on the test–

retest reliability of resting-state functional connectivity

analyses was assessed in two canonical networks related to

cognitive and socio-affective processing. In particular, the

two networks were defined by large-scale synthesis of

neuroimaging findings using coordinate-based meta-anal-

yses (Fox et al. 2014). As a prototypical ‘‘task-positive’’

cognitive network (regions exhibiting increase in activity

during task performance), we assessed the core working

memory network (WMN) described by Rottschy et al.

(2012), consisting of nine bilateral fronto-parietal regions

(Fig. 2a; Table 1). As a ‘‘task-negative’’ network (regions

exhibiting decrease in activity during task performance),

we included the extended socio-affective default mode

(eSAD) network identified by Amft et al. (2015), which

extended a previous meta-analytical definition of the

default mode (Schilbach et al. 2012) and comprised 12

regions mainly corresponding to cortical midline structures

(Fig. 2b; Table 1). Importantly, both of these networks

have shown a strong positive coupling among their

respective nodes but were anti-correlated with each other.

They may thus be considered as robustly a priori defined

network models for the often-proposed large-scale anti-

correlated systems in the human brain (Fox et al. 2005).

Sample characteristics, preprocessing and RS-FC

computation

Images acquisition

Resting-state fMRI data of 42 healthy subjects including 19

females with an average age of 42 ± 20 (mean ± std)
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years were obtained in two sessions with an average time

interval of 175 ± 75 (mean ± std) days. In each session,

250 resting state EPI images were obtained on a Siemens

3T Scanner (Scanning parameters: TR 2200 ms, TE 30 ms,

flip angle 90�, 36 slices, a voxel size 3.1 mm isotropic)

corresponding to a scanning time of 9.2 min, which stays

well in line with the reliable intersession scanning time of

8–12 min suggested by Birn et al. (2013). High-resolution

Fig. 2 Nodes of meta-analytically derived networks used for the reliability assessment. a The core working memory network (Rottschy et al.

2012). b The extended socio-affective default mode network (Amft et al. 2015)

Table 1 Coordinate details and cluster size (k) of the regions, within the WMN and eSAD involved in this study

Macro-anatomical labels Abbreviation Side k (voxels of size

3.1 mm isotropic)

MNI coordinates in standard RAS orientation

X Y Z

Working memory network (WMN) nodes

1 Anterior insula aINS L 276 32 22 -4

2 R 182 34 28 -2

3 Dorsolateral prefrontal cortex DLPFC L 1331 50 12 22

4 R 1032 44 34 32

5 Pre-supplementary motor area preSMA 1035 2 20 50

6 Intraparietal sulcus IPS L 543 30 56 48

7 R 310 36 48 44

8 Dorsal premotor cortex dPMC L 190 28 0 58

9 R 243 30 2 56

Extended socio-affective default mode (eSAD) network nodes

10 Pregenual anterior cingulate cortex ACC 180 0 36 10

11 Anterior middle temporal sulcus aMTS L 468 54 10 -20

12 Amygdala/hippocampus Amy/hippo L 86 24.0 10 -20

13 R 141 24 -8.0 -22.0

14 Basal ganglia BG L 146 -6 10 -8

15 R 188 6 10 -8

16 Dorsomedial prefrontal cortex dmPFC 204 -2 52 14

17 Precuneus PrC 145 -2 52 26

18 Subgenual anterior cingulate cortex sACC 244 -2 32 -8

19 Temporo-parietal junction TPJ L 251 46 66 18

20 R 373 50 60 18

21 Ventromedial prefrontal cortex vmPFC 114 -2 50 -10
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T1-weighted structural images were not acquired for the

data set used in this study. The original study protocol of

the data used here has been approved by the local ethics

committees of the university hospital Aachen, and

informed consent was obtained by all the participants prior

to the examination. The current data were analyzed

anonymously.

Images preprocessing

Prior to further processing (using SPM8, http://www.fil.

ion.ucl.ac.uk/spm), the first four images were discarded

allowing for magnetic field saturation. The EPI images

were corrected for head movement by affine registration

using a two-pass procedure. In a two-pass procedure, all

the EPI images were aligned to the first EPI image. Then, a

mean over the aligned EPI images was computed. Finally,

all the EPI images were again aligned to the first pass mean

EPI image. The mean EPI image for each subject was non-

linearly normalized to the MNI152 non-linear template

space template using the ‘‘unified segmentation’’ approach

(Ashburner and Friston 2005). The ensuing deformation

field was applied to the individual EPI volumes and

smoothed with a 5-mm FWHM Gaussian kernel. Prepro-

cessed images were visually checked for any processing

artifacts.

Each node of the assessed functionally defined networks

(cf. ‘‘Networks of interest’’) available in the same space

was represented by its peak’s coordinate. The time series

for all voxels within a priori meta-analytically derived

clusters were then extracted. Following gray matter

masking if applicable (cf. ‘‘Assessed (combinations of)

signal processing steps’’), we then employed a multiple

regression approach to control for different confounds in

the EPI time series. While the choices for dealing with

global signals were outlined below, we always included the

six motion parameters derived from the image realignment

as well as their derivative as the first-order (linear) and

second-order (quadratic) terms as evaluated by (Satterth-

waite et al. 2013). That is, in addition to the approach-

specific confounds, these 24 movement regressors were

used in all analyses. Following the removal of any variance

in the individual voxels’ time series that could be explained

by the respective confounds, the data were band pass fil-

tered preserving BOLD frequencies between 0.01 and

0.08 Hz (Biswal et al. 1995; Fox and Raichle 2007). We

computed the frame-to-frame differences from the six

motion parameters derived from the image realignment to

assess frame-wise displacements (FD). An FD threshold of

0.5 mm was used to discard potentially motion-contami-

nated images, before bandpass filtering (Power et al. 2012;

Yan et al. 2013a). Finally, the characteristic time series of

each seed was computed as the first eigenvariate of the

preprocessed time series for the individual voxels within

that seed. The functional connectivity between every pair

of nodes was then computed as the correlation coefficient

between these time series, which were transformed to

Fischer’s Z scores to render them normally distributed

(Fig. 3). Here, in this study, tissue class segmentation is

performed on a mean EPI volume due to the lack of high-

resolution T1 structural scans. Nevertheless, the registra-

tion of EPI images to T1 structural scans may fail to detect

the non-linear distortions of the EPI images, especially in

the absence of the field maps or such relevant images.

However, partial volume effects may exist in the mean EPI

volume based segmentation. To avoid such partial volume

effects, gray matter masking along with a median-split

approach, which extracts the signal only from 50 % of the

voxels with high gray matter probability, has been imple-

mented and evaluated in this study. In addition, median-

split approach has an advantage of accounting similar

number of voxels while extracting the signal, particularly

when using meta-analytically derived clusters.

Assessed (combinations of) signal processing steps

As the key aim of this study was to assess the impact of

different commonly used processing steps on the reliability

of RS-FC measurements, we focused on three different

domains as follows.

(I) Extraction of time series: Evidently, meaningful

signal should mainly be found in gray matter (GM). Hence,

the voxels within 5 mm of the seed’s coordinate might be

anatomically constrained based on tissue class segmenta-

tion as provided by SPM (Ashburner and Friston 2005).

Here, we evaluated three options:

No gray matter mask (NoGM) All voxels within 5 mm

of the seed coordinate were included, processed by con-

found removal and temporal filtering, and summarized by

their first eigenvariate. No gray matter masking is the most

commonly used approach in RS-FC analysis. Conceptually,

NoGM considered the influence of cortical anatomy as

minor relative to the spread of BOLD data and spatial

smoothing.

Individual gray matter mask (IndGM) The GM proba-

bility as estimated by the unified segmentation for that

particular subject was extracted for each voxel within

5 mm of the seed coordinate and a median-split approach

was then performed retaining those 50 % of voxels with

highest GM probabilities. This approach was based on the

argument that the individual anatomy should be most

important for tissue classification.

Group gray matter mask (GrpGM) The tissue class

segmentations of all individual subjects were first averaged

and a median-split approach of the voxels was then per-

formed based on these average GM probabilities. In this
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method, the focus on GM was retained but rather than

basing the masking on the (prominently noisy) individual

segmentation, group data (considered as more robust) were

used. For reader’s information, the overlap between the

IndGM and GrpGM was computed and is shown in Fig. 4.

(II) PCA denoising: It has been suggested (Behzadi et al.

2007; Soltysik et al. 2015) that computing a principal

component analysis (PCA) decomposition across the WM

and CSF regions of the brain and removing variance

associated with the most dominant five components might

remove many sources of artificial and confounding signals

and hence increase the specificity of RS-FC results. We

thus performed all analyses both with (PCA) and without

(NoPCA) PCA denoising.

(III) Global signal removal: As removing the global

signal had received a lot of attention in recent discussions

(Murphy et al. 2009; Chai et al. 2012; Saad et al. 2012; Fox

et al. 2013), we assessed seven different methods for this

particular aspect. In that context, tissue class-specific glo-

bal signals were computed based on the SPM8 segmenta-

tion of the (mean) EPI into GM, WM, and CSF regions,

then averaged the signal time series of the voxels specific

to each tissue class.

Global signal regression (GSR) Removes all variance

explained by the first-order effects of the global (average

across all voxels at each time point) signal.

Tissue signal regression (TSR) Removes variance

explained by the first-order effects of the mean GM, WM,

and CSF signals.

WM and CSF signal regression (WMCSF) The mean

signals of the WM and CSF were removed, i.e., only the

first-order effects.

No global signal regression (NoGSR) No removal of any

global signal.

Fig. 3 Pipeline of the entire

preprocessing steps until the

RS-FC computation: the

assessed combinations (inside

the red dotted box) indicate the

signal processing methods for

which the reliability is evaluated

in three different domains

((I) extraction of time series, (II)

PCA denoising, (III) global

signal removal)
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Importantly, the different choices for each of the three

main factors may be implemented independently of the

other factors, allowing for a full permutation of the dif-

ferent analyses options and hence 42 (3 9 2 9 7) different

combinations for signal extraction and confound removal.

We, therefore, performed reliability analysis for all of these

42 combinations, i.e., analytical approaches.

Indices of reliability

To quantify the test–retest reliability of the 42 different

approaches, we used two complementary measures that

were each applied from two different perspectives. Test–

retest reliabilities are quite often assessed using intra-class

correlations (ICC), which takes into account inter-subjects

variability in relation with the intra-subject variability. The

intention of our study, however, was to examine one effect

at a time, i.e., to evaluate inter-subject variability (i.e.,

RoSO) separately from intra-subject variability (i.e.,

RoCO). Therefore, reliability was tested using two mea-

sures. The first employed measure was Kendall’s rank

correlation (to quantify the consistency in relative order;

Zang et al. 2004; Shehzad et al. 2009; Guo et al. 2011;

Thomason et al. 2011; Li et al. 2012; Patriat et al. 2013)

between the functional connectivity scores obtained at the

first and second sessions, which quantifies the degree to

which the order of observations is similar across both

sessions. Modifications in the signal extraction and con-

found removal methods alter the residual signal fluctua-

tions, which lead to variation in the connectivity measures.

Thus, the stability of the relative orders when comparing

different connections/subjects was measured using Ken-

dall’s correlations. Complementing this index, we com-

puted the absolute difference between functional

connectivity scores to probe the numerical test–retest

reliability. This index should be less sensitive to single

outliers, in comparison with other alternatives like sum of

squared measures. Thus, numerical differences when

comparing different connections/subjects were measured

using mean absolute differences.

These indices were computed from two different per-

spectives, reflecting the reliability at the subject level and

at the connection level, respectively. In that context, reli-

ability at the connection level (RoCO) addresses the

question ‘‘are, for a given subject, the connections in the

same order across sessions?’’ which was a prerequisite for

any within-subject network modeling. We thus computed

for each subject the correlation (across connections)

between the first and second sessions (Fig. 5a) as well as

the absolute difference between the two sessions by aver-

aging them over connections (Fig. 5c). This perspective

thus yields for every approach as many data points as there

were subjects’ within/between the two networks. Relia-

bility at the subject level (RoSO) addresses the question

‘‘are, for a given connection, the subjects in the same order

across sessions?’’ which was a prerequisite for group

comparisons. Here, we computed for each connection the

correlation (across subjects) between the first and second

sessions (Fig. 5b) as well as the absolute differences

between the two sessions by averaging them over subjects

(Fig. 5d). This perspective thus yields, for every approach,

the same number of data points, as there are connections in

the respective network.

Finally, we computed two further important parameters

in addition to these indices of reliability. First, the amount

of variance within the extracted time series at the two time

points was computed for each combination of methods to

quantify the influence of confound removal on the variance

of the residual resting-state signal (Fig. 5e). Second, for

every approach, we computed percentage of positive con-

nectivity scores among within-network (i.e., within eSAD

and WMN regions) and between-network connections (i.e.,

between eSAD and WMN regions).

Aggregation and evaluation

The 42 different approaches defined by the combination of

different masking/confound removal approaches were

compared using a non-parametric Friedman ANOVA for

each of the assessed parameters (correlations and absolute

differences, each assessed at subject and connection level

(Supplementary figures S5–S7), as well as residual vari-

ance in the time series). To aggregate these findings, the

individual approaches were ranked according to their

Fig. 4 Percentage of voxels that overlap between the individual and

group masks, relative to the GrpGM for each of the 21 seed regions
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reliability scores for each parameter. Subsequently, these

reliability ranks were added over the different perspectives

to obtain an overall reliability ranking. The overall relia-

bility ranks allowed to identify reliable combination of

different confound removal approaches at different

perspectives.

Supplementary analysis

Given that the focus of our study was to investigate, which

(combination of) analytical choices result in the best test–

retest reliability functional connectivity estimates for meta-

analytically defined networks, the main analyses used the

entire significant clusters of the previously defined eSAD

and WM networks as regions of interest (ROIs).

Acknowledging the alternative strategy of representing

these ROIs by spheres around their center coordinates, we

then repeated all analyses using spherical ROIs of 5 mm

radius.

Results

The setup of our study allows us to perform a large number

of different analyses. We first provide an overview on the

test–retest reliability as reflected by the two different

measures, i.e., rank-correlations and absolute differences.

Here, the rankings based on the reliability of subject order

Fig. 5 Indices of the reliability: the four indices of reliability used

here are shown. a, b Functional connectivity at two time points (a) at
connection level, i.e., for all connections within a given subject (b) at
subject level, i.e., for all the subjects within a given connection [here

between left and right anterior insula (LaIns–RaIns)]. c, d Absolute

differences of functional connectivity scores between the two sessions

(c) at the connection level, i.e., the mean of the absolute differences

over subjects for the 210 connections, and d at the subject level, i.e.,

the mean of the absolute differences over connections for the 42

subjects. e The variance within the BOLD signal time series of the left

anterior Insula for two different combinations of signal processing

methods [‘‘GrpGM NoPCA NoGSR’’ (black), ‘‘NoGM PCA TSR’’

(red)]
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(RoSO) and those based on the reliability of connection

order (RoCO) are combined. Next, we present an overview

on the reliability from either perspective, combining the

two measures. Finally, we provide the overall summary

together with the ranking based on the residual variance in

the time series as well as the information on the proportion

of positive vs. negative connections. The individual test

retest rankings by the two different methods and different

perspectives are presented in the supplementary results (cf.

Supplementary figures S1–S4).

In addition, we would like to note that we present

findings for ‘‘within-network’’ and ‘‘between-network’’

connectivity. The former represents a summary of the

rankings obtained for the extended socio-affective default

mode as well as the working memory network, each

showing strong, positive coupling among their respective

nodes. The latter represents the connections between all

possible pairs of nodes from either of these two major

networks that are often conceptualized as being antago-

nistic to each other.

Reliability using different indices

The combined ranks, based on Kendall’s rank correlations

as the measure of subject- and connection-order, are shown

in Fig. 6. The approaches are ordered such that the most

reliable method is placed on the top, the least reliable on

the bottom. It may be noted that for both within- and

between-network connections, PCA denoising seems to

have a rather detrimental effect on test–retest reliability, as

most combinations including PCA denoising rank in the

lower half and none is found in the top 10. On the other

hand, gray matter masking, which is part of more than half

of the ten most reliable approaches, seems to improve

reliability. In particular, individual gray matter masking for

within-network connections and group gray matter mask-

ing for between-network connections provide a better

reliability. Global signal removal seems to have detri-

mental effect on the overall pattern for both within- and

between-network connections. No removal again provided

the most reliable correlation values for between-network

Fig. 6 Combined rankings of the test–retest reliability at the subject

and connection level for Kendall’s correlations and absolute differ-

ences. The ‘‘within networks’’ ranking refers to intra-network

connections of the working memory and the default mode network

and the ‘‘between networks’’ to inter-network connections. The gray

bar represents the summed ranks for the respective categories
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connections. Nevertheless, the rank-order stability of

within-network connections was improved by removal of

WM and CSF signals (WMCSF).

The assessment of reliability, by measuring absolute

differences rather than measuring Kendall’s correlations,

corroborated most of these observations. In particular, we

again found that using gray matter masking and refraining

from PCA denoising yielded more reliable estimates of

functional connectivity. While this pattern is not as clear-

cut as for the correlation-based measure, it again held true

for both within- and between-network connections. There

is, however, a striking change in the overall pattern with

respect to the effects of global signal removal. No removal

again provided the most reliable absolute values for within-

network connections. Nevertheless, the numerical stability

of between-network connections was clearly improved by

removing the global signal in all three-tissue classes (TSR).

Reliability from the subject and connection

perspective

As noted in the methods, RoSO assesses how well the

relative differentiation between subjects is reproduced at a

second time point and is hence of particular relevance for

between-subject analyses, e.g., in clinical application. In

contrast, RoCO assesses how well the relative differentia-

tion between connections in a particular subject is repro-

duced and is hence of particular relevance for within-

subject analyses, e.g., in connectome modeling.

Several major trends of reliability noted in the previous

section are again well observable in this analysis (Fig. 7).

In particular, we again found that PCA denoising has a

rather detrimental effect on reliability. In contrast, when

considering within-network RoCO, PCA denoising has

improved the reliability, namely, in the absence of global

signal regression. Moreover, gray matter masking, in par-

ticular when using the mean tissue probabilities across the

entire group, generally yields more reliable estimates of

functional connectivity, although individual gray matter

masking is more prominent when considering within-net-

work connections, especially RoCO. With respect to the

influence of global signal removal, we again found a more

heterogeneous pattern with a clear distinction between

within-network and between-network connections. With

respect to the former, both RoSO and RoCO are highest

when no global signal removal is performed, followed by

approaches involving the removal of WM and CSF signals

(WMCSF). For between-network connections, linear

Fig. 7 Summary rankings for RoSO and RoCO. Reliability for within network (WMN and eSAD) and between networks is shown separately

each combining Kendall’s correlations and absolute difference. The gray bar represents the summed ranks for the respective categories
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removal of the global signal for all three-tissue classes

(TSR) yields the highest RoSO and RoCO, but for RoCO,

neither removing any global signal nor performing a PCA

denoising yields the highest reliability with no gray matter

masking.

Summary of reliability ranking

The summary ranking across both indices (Kendall’s cor-

relations and absolute differences) and both perspectives

(RoSO and RoCO) of reliability reflects the major patterns

noted in the individual analyses (Fig. 8). Gray matter

masking improves reliability. PCA denoising leads to

lower test–retest reliability. Within-network connections

are most reliably estimated when using no global signal

regression and with removing the global WM and CSF

signal representing the next-best approach. In contrast,

between-network connections are most reliably measured

by linear and second-order removal of global signals of all

three-tissue classes.

Proportion of positive vs. negative connectivity

scores and residual variance in the time series

Addressing the issue of anti-correlations, we assessed the

proportion of positive vs. negative connections, i.e., con-

nections with r (and hence Z-scores) below zero (Fig. 9).

As expected, within-network connections are predomi-

nantly positive. It is, moreover, interesting to note that the

least reliable approaches, i.e., those at the bottom of the

list, also featured (somewhat) less consistent positive

connections. The more striking observation, however,

relates to the between-network connections. These are

consistently negative when any form of global signal

regression is used. If neither global signal regression nor

PCA denoising are used, however, all connections are

positive. Finally, when PCA denoising but no global signal

regression is used, roughly half of the connections are

positive.

Assessment of residual variance in the extracted time

series expectedly reveals that refraining from PCA

Fig. 8 Summary rankings of reliability across Kendall’s correlations and absolute differences as well as RoSO and RoCO, separately for within

(WMN and eSAD) and between networks. The gray bar represents the summed ranks for the respective categories
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denoising and using no global signal regression retained

more variance. Gray matter masking also seemed to

perform well with regard to this measure.

Supplementary analysis

The results of the supplementary analysis conducted

using spherical ROIs of 5 mm radius rather than the

actual cluster volumes are detailed in the supplementary

material. The summary ranking across both indices

(Kendall’s correlations and absolute differences) and

both perspectives (RoSO and RoCO) of reliability

reflect the major patterns noticed in the main analysis,

except for the gray matter masking. The supplementary

results associated with the PCA denoising and the mean

global signal regression remain the same as in the main

analysis. In turn, the supplementary results illustrate

that using spherical ROI of 5 mm radius (i.e., smaller

VOIs) favor No GM masking (cf. Supplementary

figure S7).

Discussion

The key idea behind resting-state fMRI analyses is to

estimate functional connectivity between distant brain

regions based on the correlation of their BOLD time series

(Biswal et al. 1995, 1997). The fundamental assumption

behind this conceptualization is that the extracted time

series reflect the effects of ongoing neuronal computation

through hemodynamic coupling, such that correlated signal

changes reflect inter-regional synchronization. However,

systematic sources of non-neuronal fluctuations in EPI

signals likely influence these functional connectivity esti-

mates (Biswal et al. 1995; Friston et al. 1996; Fox and

Raichle 2007; Buckner 2010; Cole et al. 2010). Addressing

these non-neuronal signals is, therefore, a critical consid-

eration in any functional connectivity approach. In this

study, we investigated the influence of various prepro-

cessing approaches meant to deal with this issue, including

gray matter masking, PCA denoising, and global signal

regression. Our findings are based on investigating two a

Fig. 9 The variance left within the time series (far left column) and

the percentage of positive correlations (columns on the far right) for

both within and between networks arranged by the overall ranking of

the reliability. The plots on the right side exemplify the difference of

the distribution of the connectivity scores at different combinations

[‘‘GrpGM NoPCA NoGSR’’ (top), ‘‘GrpGM NoPCA WMCSF’’

(bottom)]
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priori defined networks (the extended socio-affective

default mode network and the working-memory network)

in a sample of 42 subjects scanned twice, with an average

retest-delay of 175 days. We found that gray matter

masking based on group-average GM probabilities

improved reliability, while confound removal approaches

(either PCA denoising or global signal regression) reduced

it. However, the study has yielded some mixed results that

will be discussed in this section.

Recently, Shirer et al. (2015) investigated a confound

removal pipeline that optimizes resting state fMRI data,

which is comparable to our study. They performed a reli-

ability study dealing with confound removal combined

with various bandpass filter selections. In contrast, in this

study, the focus is mainly on seed region time-series

extraction methods based on different methods for gray-

matter masking, combined with various confound removal

techniques. There are several additional differences

between both studies. Shirer et al. (2015) used ten com-

ponents for the PCA model (5 from WM and 5 from CSF)

and computed WM and CSF signals using a 3-mm radius

spherical ROI centered on (arbitrary) WM and CSF

regions. In contrast, we here used a five components PCA

model, noting that five dominant principle components

have been shown to effectively remove the relevant noise

(Chai et al. 2012). Moreover, the mean WM and CSF

signal was computed using the entire segmented WM and

CSF regions in our study, assuming that signal from small

regions may not model the appropriate noise term. In

addition, they performed reliability analyses to evaluate the

motion parameters, whereas we included them in the

standard pre-processing given convincing previous evi-

dence for using a 24-parameter motion regression model

(Power et al. 2015; Satterthwaite et al. 2013) and bandpass

filtered frequencies between 0.01 and 0.08 Hz (Biswal

et al. 1995; Cordes et al. 2001; Fox et al. 2005; Zou et al.

2008; Van Dijk et al. 2012; Tsvetanov et al. 2015).

Therefore, both studies deal with similar issues but address

complementary aspects.

Different perspectives

Reliability of subjects (RoSO) and reliability of connec-

tions (RoCO) represent two fundamentally different views

on reliability of resting-state measurements (Gorgolewski

et al. 2013). Conceptually, assessing the RoSO allows us to

identify which combinations of processing steps that yield

a reproducible relationship between subjects for each

connection, while RoCO identifies the combinations that

yield the relationship between different connections in the

same subject. RoSO is fundamental for any analysis

focusing on between-subject differences. Example appli-

cations would include brain-phenotype associations, e.g.,

the correlation of connectivity estimates with neuropsy-

chological or other behavioral measures (Müller et al.

2014), including clinical analyses comparing patients to

healthy control subjects (Zhang and Raichle 2010; Hopt-

man et al. 2012; Müller et al. 2013). In contrast, RoCO is

most relevant when performing any within-subject mod-

eling, either as a primary goal, e.g., when performing

connectivity-based parcellation, or to compute derivative

measures characterizing the individual connectome (Eick-

hoff et al. 2011; Bzdok et al. 2013; Clos et al. 2013).

Examples of the latter include graph-theory-based analyses

that compute characteristic network measures from the

individual connectome (Shen et al. 2010; Wang et al. 2011;

Reid and Evans 2013). In other words, the results from the

RoSO are particularly pertinent, when the focus is on group

comparison or across-subject associations, whereas the

results from the RoCO are relevant when the focus is on the

structure of an individual subject’s connectivity matrix.

Assessed (combinations of) signal processing steps

Here, we addressed the effects of gray-matter masking

during the ROI time-series extraction (which has received

rather little attention up to now), the influence of PCA

denoising (which has at times been suggested but is not

commonly used), and global signal regression (which is

still highly controversial). The extracted ROI time series

characterizes the temporal dynamics of the selected region

as captured by the evoked BOLD response. While ROI

time-series extraction plays a key role when studying the

regional specific BOLD signal, the respective methods are

rarely discussed even though it may affect reliability of

subsequent analyses. For example, gray-matter masking is

frequently used to restrict signal extraction to gray matter

as much as possible, even though the benefits of doing so

have not been explicitly demonstrated. In this study, we

thus investigated this issue by examining the reliability of

various gray-matter masking approaches.

Probably, the best-investigated source of spurious vari-

ance in RS time series is head motion (Van Dijk et al.

2012; Satterthwaite et al. 2013; Griffanti et al. 2014; Patriat

et al. 2015; Power et al. 2015; Wong et al. 2016). Sat-

terthwaite et al. (2013), using a 24-parameter motion

regression approach, found that the first derivative as well

as the quadratic effects of both realignment parameters and

derivatives could account for these effects. In addition, in

this study, the residual signal after removal of the variance

associated with confounds variables is band pass filtered

between 0.01 and 0.08 Hz, which is unfortunately known

to be influenced by various noise components (Birn et al.

2006). Niazy et al. (2011) indicated that resting-state net-

works show temporal correlations across a wide frequency

range, even though the resting-state networks are
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dominated by low frequencies of the BOLD signal. How-

ever, there is ample evidence that the BOLD signal which

is measured by fMRI and from which functional connec-

tivity maps are derived is dominated by low-frequency

fluctuations (Biswal et al. 1995; Cordes et al. 2001). Thus,

to stay in line with standard applications, we followed the

well-established standard of bandpass filtering and motion

regression (Satterthwaite et al. 2013). Furthermore, it has

been argued that global signal regression may be beneficial

to deal with motion effects (Murphy et al. 2009; Power

et al. 2012). In contrast, previous studies addressing the

influence of global signal removal (Weissenbacher et al.

2009; Chai et al. 2012; Chen et al. 2012) and those

assessing test–retest reliability (Shehzad et al. 2009; Gor-

golewski et al. 2013; Birn et al. 2014) used less extensive

motion regression protocols. Acknowledging new approa-

ches based on automatically classifying and removing

noise components have recently emerged (Behzadi et al.

2007), we here focused on three steps commonly used in

settings in which physiological noise recording is not

available and data quality is not sufficient for reliable

estimation of noise components in individual subjects.

Therefore, the paper aims to study the reliability and

reproducibility of functional connectivity patterns in

‘‘clinical quality’’ data rather than in optimal datasets with

low spatial and temporal resolution as well as physiological

recordings.

Gray matter masking during time-series extraction

The time series extracted from an ROI represents the time-

varying BOLD fluctuations within that region. Using one

of the common approaches (Friston et al. 2006), we com-

puted the first eigenvariate to obtain the characteristic time

series for each ROI that accounts for the largest proportion

of the variance in the set of voxel-wise time series. In

general, voxels comprising the ROI may extend into the

WM or CSF region, especially for a priori meta-analyti-

cally defined clusters, which usually do not respect the

tissue class locations of the subjects under study. However,

signals obtained from either WM or CSF voxels are not of

interest in the functional connectivity analysis, as they

should be of non-neuronal origin. One approach to reduce

the influence of these unwanted signals and locally opti-

mize the time-series extraction toward the biologically

relevant voxels is to use gray matter masking. In that

context, however, a fixed threshold for GM segmentation

seems inappropriate, given that it could lead to exclusion of

entire regions as well as having no effect in others. Our

results indicates that using gray-matter masking when

extracting the time series, i.e., considering only those

voxels in the ROI that are above the median GM proba-

bility, yield more reliable connectivity scores.

Since there are no previous investigations into the effect

of performing local optimization of ROIs toward gray-

matter voxels, we here investigated two different approa-

ches (median split based on the individual and group-av-

eraged GM probabilities) and compared them to the

‘‘baseline’’ approach of using the entire ROI volume

without masking. Factors like head motion could influence

the outcome of various GM masks used for time-series

extraction investigated in this study. Subjects with higher

head motion may benefit either less (due to reduced fit) or

more (due to poor individual segmentation) from the

group-level GM masking. Therefore, the rationale for

evaluating both approaches is that individual GM proba-

bilities should best reflect a particular subject’s anatomy

after spatial normalization, but comes at the disadvantage

of being potentially noisier given that they are based on a

single scan. In contrast, group-level GM probabilities

should be less specific but more robust. Our results are

particularly true when the mean tissue probabilities across

the entire group were used. In our view, this not only

indicates the beneficial effects of gray matter masking and

hence supports the aforementioned motivation to perform a

local optimization, but also suggests that group-level

masking, albeit potentially less specific, may be the

preferable choice due to increased robustness. In addition,

individual GM probabilities produce reliable results for

within subject studies. Nevertheless, the segmentations and

spatial normalization of the EPI images might be less

precise as compared to that of high-resolution T1 images,

due to the lower resolution and poorer contrast. This may

entail somewhat higher registration inaccuracies, which, in

turn, may have had some influence on the results. A

straightforward and more traditional approach for gray

matter masking would be to use a population-based a priori

tissue mask (e.g., ICBM gray matter map). However, the

use of such mask to define gray matter in the ROI may be

more sensitive to (systematic) registration errors stemming,

e.g., from differences in the studied population to the

population that was used to construct the a priori tissue

masks. In summary, we would thus recommend the use of a

study specific group gray matter mask when dealing with

large clusters such as derived from neuroimaging meta-

analyses.

Interestingly, a somewhat different pattern emerges

when representing the regions of interest not by the full

highly threshold clusters derived from the meta-analyses

(cf. Table 1) but rather by spheres of 5 mm radius around

their peak coordinate (cf. Supplementary figures S5–S7).

These definitions differ from those used in the main anal-

ysis in several aspects. In particular, these spherical ROIs

contain a more uniform (compared to the cluster-based

ones) and smaller number of voxels. In analyzing the effect

of gray matter masking on these spherical ROIs, we found
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that no masking yielded the best reliability and would

propose two possible explanations (cf. Supplementary fig-

ures S5–S7). First, the smaller extent of these spherical

ROIs most likely yielded a lower proportion of voxels

located in WM and CSF, as indicated by a higher mean

GM probability, although this is not a criterion for their

definition. Second, given the smaller size of the spherical

ROIs, the performed median split may have resulted in a

critical further reduction of available voxels that renders

the results unstable due to session-to-session misalignment,

noise, or other factors. As a conclusion, it is advisable to

implement gray matter masking for larger, a priori defined

clusters based on the group-averaged GM probabilities to

improve the reliability. In turn, when using smaller,

spherical ROIs, no gray matter masking seems preferable.

PCA denoising

Cleaning the data with PCA denoising has been introduced

by Behzadi et al. (2007) and frequently used since (e.g.,

Kellermann et al. 2013). In this study, we performed PCA

denoising using the time course of the five most dominant

principal components as confound regressors, effectively

removing signal correlated with these. In an evaluation

study, Chai et al. (2012) reported that removing principal

components derived from WM and CSF regions is advis-

able to reduce the influence of physiologically induced

artifacts, as components derived from WM and CSF

regions are unlikely to include neural activity. In particular,

it has been argued that physiologically induced artifacts

should be particularly present within WM, ventricles, and

large vessels (Chang et al. 2009). In addition, PCA

denoising should remove effects that are widely distributed

over the brain, including again variance related to physi-

ological sources (Chai et al. 2012). Finally, it is worth

mentioning that the first principle component is closely

related to the global mean signal.

Our results focusing on test–retest reliability from two

different perspectives (RoSO and RoCO), however, indi-

cate that PCA denoising is not beneficial under either

perspective, irrespectively of the remaining settings. These

findings thus replicate the findings by Power et al. (2014)

that PCA denoising does not yield encouraging results. In

addition, Shirer et al. (2015) observed a decrease in test–

retest reliability with PCA denoising. We note that, fol-

lowing the proposed method by Behzadi et al. (2007), the

main analysis presented here obtain the principal compo-

nents from the segmented white matter and CSF masks. As

an alternative approach, principle components may also be

computed from the whole brain mask, i.e., GM, WM, and

CSF. We thus performed an additional analysis using PCA

components derived from the entire brain, but observed

similar results to those obtained from using WM/CSF

derived components (cf. Supplementary figures S8–S10).

These results converge with those of Soltysik et al. (2015),

which reveal that PCA extracted from whole brain yield

similar results to those obtained from using WM and CSF

regions. In summary, we would thus argue that PCA

denoising has no beneficial effect on the test–retest relia-

bility of RS-FC estimates, at least within the settings

evaluated in this study. When investigating resting-state

functional connectivity between a priori specified regions

of interest refraining from PCA denoising should hence

provide the more reliable results.

Global signal regression

Global signal regression, i.e., the removal of variance in the

individual voxels’ time series that can be explained by the

average (global) signal across the entire brain, has become

a controversial topic recently. Historically, it was based on

the global scaling approaches utilized in the early (func-

tional) PET studies, which were necessary to allow infer-

ence on localized and hence specific changes in blood flow.

The key idea behind this approach has been retained in

virtually all MRI-based neuroimaging studies, rendering

global signal regression a common feature for both task-

and resting-state fMRI. Similar to its origins in PET, the

purpose is again to facilitate the detection of localized

neuronal effects. Using GSR assumes that meaningful

effects (reflecting activations or functional connectivity)

are based on local variations in neuronal activity. Conse-

quently, global signals, which are thought to mainly orig-

inate from physiological rather than neuronal sources,

should be treated as a confounding influence. In line with

this view, Power et al. (2014) observed that global signal

regression is also an effective means of reducing motion-

related effects in resting-state fMRI data.

Following the outlined logic, global signal removal has

been the standard approach for many years until, more

recently, it has been argued (Murphy et al. 2009; Weis-

senbacher et al. 2009; Saad et al. 2012) that GSR might

introduce artificial anti-correlations. In addition, Chen et al.

(2012) quantified the global noise levels, and based on the

noise level within the data set, they advised to determine

whether to include or exclude the global signal regressors

based on this information. Ultimately, the issue of whether

GSR should be employed or not remains contentious.

Likewise, the effects of removing global vs. tissue-class

specific mean signals, in particular only those for WM and

CSF are still unclear. In this study, we thus investigated

seven different variants of global signal removal involving

global, mean tissue class and mean WM/CSF signal

removal at the first or second order as well as no GSR.

Regarding the effects of global signal removal on test–

retest reliability, our investigation yields somewhat mixed
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results. Overall, we found that without any mean signal

regression yields the highest reliability over both subjects

and connections. However, when looking at the results in

more detail, it may be noted that these overall findings are

strongly driven by the within-network analyses. Here, not

removing any GSR clearly yields the most reliable mea-

sures of functional connectivity. In turn, estimates for

functional connectivity between the two assessed networks

(WMN and eSAD) are most reliable when mean signal

time courses for all three-tissue classes were removed from

the data. Finally, we noted that removing the mean WM

and CSF signal seems to provide a good compromise, as

this approach yields reliable estimates of within- and

between-network connections, although it is not the best

approach in either case. Furthermore, Yan et al. (2013b)

suggested that global signal regression is nearly identical to

gray matter regression. Thus, both the results from Yan

et al. (2013b) and our present data argue for using only the

mean WM and CSF signal (but not the mean gray matter)

for nuisance signal regression.

The issue of global signal regression is strongly tied to

the question of (spurious or induced) anti-correlations. This

is also evident in our data. Without any global signal

removal, both within- and between-network connections

correlate positively. This indicates that global fluctuations

override any potential local anti-correlations. Yet, when

variance explained by the global signal or the mean WM

and CSF is removed, between-network connections

become predominantly negative. That is, only when global

changes in the BOLD signal are removed, do the estimated

functional connectivity values reflect the repeatedly advo-

cated anti-correlated structure of ‘‘task-positive’’ and

‘‘task-negative’’ networks. Should these thus be considered

spurious? One argument against this rather critical view

comes from task-based fMRI studies (Greicius et al. 2003;

Greicius and Menon 2004), which have clearly shown that

regions such as the eSAD reduce their activity during

cognitive tasks, which in order recruit fronto-parietal net-

works such as the working-memory network investigated

here. However, global signal removal or, more commonly,

scaling is also a standard approach also in task-fMRI

(Macey et al. 2004). Another possibility is that global

signal may be comprised primarily of non-neuronal sour-

ces, rendering the positive correlation between any two

parts of the brain in the absence of global signal regression

spurious (Murphy et al. 2009). We would, therefore, argue

that global (positive) correlation and between-network

anti-correlations might be considered as two aspects of a

more complex situation. In particular, it seems that anti-

correlative structures between large-scale networks are

superimposed on larger waves of global signal changes,

which may be non-neuronal in origin (Fox et al. 2009).

Nevertheless, more recently, Schölvinck et al. (2013)

suggested that the global signal is tightly coupled to the

neuronal signal. In addition, Pisauro et al. 2016 showed

that global components in mice are coupled to pupil dila-

tion as a measure of sympathetic function. Thus, they may

be partially neuronal and non-neuronal in origin. In such

case, removal of global signals likewise acts as a focus on

(smaller) local effects of anti-correlated nature while

ignoring the large-scale synchronization of BOLD patterns.

In turn, not removing any global signal would preserve the

latter and hence bring the positive relation between all

time-series that is present in the acquired data into focus.

General discussion

When assessing the test–retest reliability of resting-state

fMRI connectivity estimates, one unlikely but still impor-

tant caveat must be considered. It is possible that increased

reliability, i.e., higher correlation and lower absolute dif-

ference, will be caused by excessive removal of variance.

In the extreme case, when the time series would be reduced

to a flat line, test–retest reliability would be perfect.

However, beyond this hypothetical extreme case, the

relationship between reliability and variance is interesting;

as it sheds light on the question to what extent our methods

remove noise (in that case residual variance and reliability

would be positively related) or relevant signal (which

would render the relationship negative). In our assessment,

we found that methods providing results that are more

reliable also feature higher residual variance within the

extracted time series (Fig. 9, the correlation between

residual variance and reliability scores is 0.87) Therefore,

reliability seems proportional to the retained variance,

reinforcing the observations by Birn et al. (2014) and Yan

et al. (2013a).

Another point to consider is the relationship between

reliability and validity. The underlying idea of all prepro-

cessing approaches is to remove variance in the data that

may be attributable to noise or, more generally, non-neu-

ronal sources. This naively assumes that more aggressive

confound removal should increase the biological validity of

the obtained results. However, this assumption has been

challenged, most notably with respect to global signal

regression. Here, it has been argued that removing global

signal as a confound may actually introduce a bias in the

analysis (Murphy et al. 2009; Weissenbacher et al. 2009;

Saad et al. 2012), that may lead to reduction in validity.

Conversely, the argument has been made that global signal

regression is the most effective approach to remove the

effect of motion-related variance (Power et al. 2014) and

hence should increase validity. This already illustrates that

the relationship between data preprocessing, and in par-

ticular confound removal, and validity is not trivial. The

present results add another layer of complexity by showing
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that refraining from using global signal regression and PCA

denoising, i.e., using less confounds removal, actually lead

to better test–retest reliability. In other words, removing

variance that is related to potentially confounding factors

reduces reliability, pointing to the possibility that struc-

tured noise may be beneficial for test–retest reliability. In

addition, indeed, it may be assumed that vascular of

physiological factors remain largely stable between ses-

sions and hence help to increase reliability, even though

their removal should, in theory, improve the validity of the

results. Maximizing (test–retest) reliability and biological

specificity/validity may hence represent (partially) con-

flicting aims.

The functional connectivity strength (i.e., correlation

coefficients) between regions might vary with changes in

the level of observation noise (Friston 2011). In this study,

two resting-state networks (eSAD and WMN), which may

be considered as robustly a priori defined resting state

networks has been chosen, with prior assumptions such as

strong positive coupling among them and anti-correlated

with each other (Fox et al. 2005). When there is not any

change in the observational noise, then the functional

connectivity strength (i.e., correlation coefficients) is

expected to be stable (Friston 2011). Therefore, instead of

quantifying the connectivity strengths, we mainly focused

on reproducibility of the connectivity strength with a cer-

tain confound removal within a subject from one session to

another session. Furthermore, following the current stan-

dard in the field, our study quantified functional connec-

tivity by the Pearson correlations between the time series of

two regions. Consequently, other regions within or outside

the network could influence such correlations. Such influ-

ences, however, were not specifically investigated, given

that they should be likewise present in both sessions and,

most importantly, the focus of our work is to provide an

assessment of how the reproducibility of the widely used

time-series correlation measures are based on different

approaches to confound removal. That is, we here

addressed the pragmatic question, which confound removal

strategy yields the highest reliability for a standard analysis

approach, rather than addressing which analysis approach

may yield the most appropriate representation of a network.

Evidently, more investigations are needed to better

understand the sources of both noise and signal in resting-

state fMRI data, a question that is complicated by a lack of

ground truth. Nevertheless, the current results thus point to

a potential tradeoff between reliability (which may benefit

from structured noise) and biological validity (which

should be optimal if all non-neuronal variance is removed

(Huettel et al. 2004; Chang et al. 2009; Kim and Ogawa

2012). Based on the present results, we would thus tenta-

tively propose that in cases in which reliability should be of

particular importance, for example, in clinical applications,

it may be advisable to refrain from global signal regression

and PCA denoising to maximize the reliability albeit

potentially through the influence of structured noise.

ICA-based denoising is one of the recently emerging

confound removal approaches. A recent study showed that

it can effectively remove the artifacts coupled with motion

(Pruim et al. 2015b) and potential other sources of noise

(Griffanti et al. 2014). The entire resting-state scan is

decomposed into independent components (IC) (using FSL

melodic, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC).

ICs coupled with various artifacts were identified with the

help of a classifier. ICs classified as noise is then regressed

out of the raw fMRI time series. Thus, ICA-based

denoising aims to automatically classify and remove the

components representing mostly noise rather than neuronal

signal (Salimi-Khorshidi et al. 2014; Pruim et al. 2015b).

The effectiveness of the strategies mainly depends on the

feature selection and the sensitivity of the classifier, as

these parameters play a major role in identifying the arti-

factual signals. In recent evaluation studies, ICA-based

denoising strategies resulted in an increase of the between

subjects reproducibility (Griffanti et al. 2014; Pruim et al.

2015a). In this study, however, we did not address ICA-

based denoising approaches, as we mainly focused on the

currently most widely used approaches. In turn, ICA-based

denoising is a very promising but yet emerging approach as

also demonstrated in our survey. Therefore, further inves-

tigations are needed to address the reliability of ICA-based

approach both in comparison to and in combination with

conventional confound removal strategies. Along with it,

there are methods that mainly address local and global

artifacts induced by the hardware and partial volume

effects (such as: ANATICOR (Jo et al. 2010, 2013)). As

the current study mainly studied the influences of biolog-

ically induced artifacts, methods like ANATICOR were not

addressed here. Furthermore, it has been observed from the

literature survey (Fig. 1) that ANATICOR (which has been

reported in the categories named ‘others’) is not a standard

method and poorly used in the recent studies.

In this study, the connectivity measures were obtained

with standard Pearson correlations. Other approaches have

also been applied to this computation, with partial corre-

lation becoming an increasingly advocated alternative

(Cole et al. 2010). Partial correlation computes the corre-

lations between two ROIs after regressing out the shared

variance of all other ROI time series in the model. How-

ever, we are here concerned with testing the effects of

several widely used analysis-choices on the reliability of

the most common approach. Therefore, given that the

overwhelming majority of all resting-state analyses employ

full correlations, we here performed a practical evaluation

of the impact of currently debated analyses choices on the

estimation of functional connectivity by Pearson
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correlations. Nevertheless, testing the test–retest reliability

using partial correlation could be one perspective study of

the current one. Furthermore, the subjects were instructed

to close their eyes during the resting state session, to reduce

the external (visual) stimulation and eye movements. All

the subjects included in this study had confirmed to be

awake while debriefing. The condition of eyes closed (EC)

may be considered as a limitation of the study, as Patriat

et al. (2013) showed higher reliability with eyes open (EO)

condition rather than eyes closed (EC) condition. However,

Patriat et al. (2013) also reported that the connectivity

strengths are not sensitive to the global noise variations.

Therefore, further investigations of reliability of EO and

EC with and without global noise regression are needed to

provide recommendations regarding this parameter.

Finally, it has to be noted that the recommendations in this

paper may not necessarily apply to brain-behavior analysis

examining the relationship between behavioral measures

and functional connectivity measures. That is, we here

focused on a priori defined meta-analytical networks and

their (known) relationships to each other as large-scale

anti-correlated systems in the human brain (Fox et al.

2005). What remains to be assessed using a dedicated

sample for which test–retest data not only of imaging

measures, but also behavioral information is available is

this, whether the methods yielding the best reliability in our

analysis also provide the most reliable brain-behavior

relationships. Likewise, it remains to be tested, whether the

identified recommendations also hold for multivariate

analyses, e.g., in the context of group classification.

Conclusions

This study assessed test–retest reliability of resting-state

fMRI analyses based on a priori ROIs using methods that

are applicable without direct recordings of physiological

signals (heartbeat, breathing), as is common in clinical and

neuro-scientific practice. In particular, our results showed

that, when using the larger clusters as regions of interest,

gray matter masking based on the group-average GM

probabilities is advisable. However, In addition, PCA

denoising reduces the reliability of connectivity estimates.

Finally, with respect to global signal regression, we

observed that refraining from this approach enhances test–

retest reliability but comes at the expense of potentially

poorer biological validity, including missing anti-correla-

tions between what has been previously described as

antagonistic networks. Here, removal of global white

matter and CSF signals seems to provide a good compro-

mise, as this approach yielded more reliable and potentially

meaningful estimates of within- and between-network

connections. Importantly, we note that reliability is

proportional to the retained variance, presumably including

structured noise. Consequently, a compromise exists

between maximizing the test–retest reliability and remov-

ing variance that may be attributable to non-neuronal

sources.
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Supplementary material: 

Supplementary figure S1: Individual rankings using a non-parametric Friedman ANOVA of 
the test-retest reliability on connection level are shown for Spearman correlations of the main 
analysis conducted using meta-analytically derived cluster volumes. 



Supplementary figure S2: Individual rankings using a non-parametric Friedman ANOVA of 
the test-retest reliability on subject level are shown for Spearman correlations of the main 
analysis conducted using meta-analytically derived cluster volumes. 
 



 Supplementary figure S3: Individual rankings using a non-parametric Friedman ANOVA of 
the test-retest reliability on connection level are shown for absolute differences of the main 
analysis conducted using meta-analytically derived cluster volumes. 
 



 Supplementary figure S4: Individual rankings using a non-parametric Friedman ANOVA of 
the test-retest reliability on subject level are shown for absolute differences of the main 
analysis conducted using meta-analytically derived cluster volumes. 



Supplementary figure S5: Combined rankings of the test-retest reliability on subject and 
connection level are shown for Spearman correlations and absolute differences of the 
analysis conducted using spherical ROIs of 5 mm radius rather than the actual cluster 
volumes  
 
 



 Supplementary figure S6: Combined rankings of the test-retest reliability on subject and 
connection level are shown for RoSO and RoCO of the analysis conducted using spherical 
ROIs of 5 mm radius rather than the actual cluster volumes 
 



 Supplementary figure S7: Summary rankings of reliability across Spearman correlations and 
absolute differences as well as RoSO and RoCO are shown separately for WMN and eSAD 
networks for the analyses that defined the volume of interest A) by using spherical ROIs of 5 
mm radius and B) by using the actual cluster volumes 
 



 Supplementary figure S8: Combined rankings of the test-retest reliability on subject and 
connection level are shown for Spearman correlations and absolute differences of the 
analysis conducted using 5 components of PCA derived from the whole brain rather than 
only the WM and CSF regions. 



 

 Supplementary figure S9: Combined rankings of the test-retest reliability on subject and 
connection level are shown for RoSO and RoCO of the analysis conducted using 5 
components of PCA derived from the whole brain rather than only the WM and CSF regions. 
 
 



Supplementary figure S10: Summary rankings of reliability across Spearman correlations 
and absolute differences as well as RoSO and RoCO are shown separately for within (WMN 
& eSAD) and between networks for the analyses A) PCA components derived from the 
entire brain and B) PCA components derived from the WM & CSF regions.  
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Abstract: Previous whole-brain functional connectivity studies achieved successful classifications of
patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we
examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Par-
kinson’s disease (PD), or normal aging equally translate into high classification accuracies for these
conditions. We compared classification performance between pre-defined networks for each group
and, for any given network, between groups. Separate support vector machine classifications of 86
SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls,
respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined net-
works using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of
the various networks clearly differed between conditions, as those networks that best classified one
disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy,
and cognitive action control networks distinguished patients most accurately from controls. For PD,
but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-
of-mind cognition yielded the best classifications. In contrast, young–old classification was excellent
based on all networks and outperformed both clinical classifications. Our pattern-classification
approach captured associations between clinical and developmental conditions and functional network
integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our
results support resting-state connectivity as a marker of functional dysregulation in specific networks
known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more
global way. Hum Brain Mapp 38:5845–5858, 2017. VC 2017 Wiley Periodicals, Inc.

Key words: schizophrenia; Parkinson’s disease; normal aging; support vector machine; resting-state
fMRI; functional connectivity; brain networks; machine learning
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INTRODUCTION

Schizophrenia (SCZ) and Parkinson’s disease (PD) are
two of the most prevalent and socio-economically relevant
brain diseases [Andlin-Sobocki et al., 2005]. Although SCZ
onset typically emerges during adolescence and early adult-
hood [H€afner et al., 2013], PD is characterized by an onset
during late adulthood [Hughes et al., 1992; Poewe et al.,
2017] and has been associated with premature aging, that is,
earlier and more rapid neurodegeneration as compared
with the course of normal aging (NA) [Rodriguez et al.,
2015]. Both SCZ and PD are characterized by disease-
specific pathophysiological changes of the dopaminergic
system [Jankovic, 2008; Toda and Abi-Dargham, 2007], con-
trasting with a more global dopamine decline in NA
[B€ackman et al., 2006]. However, it has been proposed that
dopaminergic dysfunction in SCZ arises as a secondary
effect due to alterations of the glutaminergic system [Lar-
uelle et al., 2003]. In contrast, in PD dopaminergic deficiency
represents the primary cause leading to pathophysiological

upstream dysregulations of different neural systems [Obeso
et al., 2008]. These neurobiological features of SCZ, PD and
NA [B€ackman et al., 2006; Jankovic, 2008; Laruelle et al.,
2003; Obeso et al., 2008; Rodriguez et al., 2015; Toda and
Abi-Dargham, 2007] may manifest themselves in functional
connectivity alterations at the level of large-scale brain net-
works [Cole et al., 2013; Kelly et al., 2009; Narr and Leaver,
2015; Prodoehl et al., 2014; Sala-Llonch et al., 2015]. How-
ever, some putative commonalities (neurodegeneration,
dopaminergic dysregulations, and altered connectivity)
need to be juxtaposed with the prominent phenotypical dif-
ferences between SCZ, PD, and NA [B€ackman et al., 2006;
Jankovic, 2008; Narr and Leaver, 2015; Prodoehl et al., 2014;
Sala-Llonch et al., 2015; Toda and Abi-Dargham, 2007] and
the fact that the clinical presentations of SCZ and PD are
very different [Eaton et al., 1995; Jankovic, 2008; Kalia and
Lang, 2015; van Os and Kapur, 2009], raising the question
whether various functional systems are differentially
affected in the three conditions. Rather than assessing
altered activations in different functional systems by

r Pl€aschke et al. r
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conducting task-based functional magnetic resonance imag-
ing (fMRI) studies, we examined altered functional connec-
tivity within various functional networks robustly defined
by meta-analyses of task-based neuroimaging studies in a
comparative fashion [cf. New et al., 2015; Schilbach et al.,
2016]. This has the practicable advantage of using easily
accessible, short and standardized resting-state (RS) data
while at the same time incorporating the consolidated
knowledge based on task-based imaging into the analysis.
We argue that such an approach is particularly relevant
given that in contrast to RS imaging, task-based assessments
will rarely be feasible in a routine clinical setting.

Alterations in functional network integrity patterns in
SCZ, PD or older adults (compared with respective
healthy/young controls) can be captured by using
machine learning-based classification. For extracting a
diagnostically relevant marker that allows the classification
of individual subjects based on the connectivity in func-
tional brain networks, multivariate decoding algorithms
like support vector machine (SVM) should provide the
most appropriate approach for this endeavor. Rather than
testing each connection independently for group differ-
ences, SVMs are trained on part of the data by weighting
all connections in order to separate the known clinical sta-
tus from healthy controls (HCs). Classification accuracy
can then be determined by assessing the ability to predict
group membership of previously unseen subjects. Applied
to (whole-brain) connectivity data, this approach has pre-
viously been found to distinguish SCZ patients [cf. Arbab-
shirani et al., 2016; Kambeitz et al., 2015; Wolfers et al.,
2015] or PD patients [cf. Chen et al., 2015; Long et al.,
2012] from HCs, as well as aged from young subjects (NA)
[cf. Meier et al., 2012; Vergun et al., 2013].

Previous pattern-classification studies aimed at providing
the best possible classification performance on whole-brain
connectivity. In contrast, the aim of this work was to assess
whether specific functionally defined networks are altered in
SCZ, PD, and NA. Although previous studies mainly used
Independent Component Analysis (ICA) based data-driven
methods to extract major RS networks [Damoiseaux et al.,
2006; Smith et al., 2009], our work is based on a priori meta-
analytically defined networks associated with specific sets of
behavioral functions such as working memory [Rottschy
et al., 2012] or emotional processing [Sabatinelli et al., 2011].
In contrast to well-established RS networks, these networks
represent the consolidated information from hundreds of
task-based fMRI studies and hence those locations in the
brain that are reliably activated when subjects perform tasks
pertaining to a particular mental function. We thus argue
that these nodes define robust functional networks in the
brain related to specific mental domains. In turn, the func-
tions associated with RS networks are usually derived from
a reverse inference approach, as these lack any direct rela-
tionship to mental functions [Poldrack, 2011]. We suggest
that this more direct relationship between the network-
nodes and actual task-demands is an important advantage
of our approach. Moreover, the employed strategy results in

an a priori, unbiased definition of the respective networks,
whereas ICA-based networks are usually defined from the
current data [Cole et al., 2010]. Our meta-analytically derived
network model approach thus offers the potential to investi-
gate functional connectivity within robust a priori brain net-
works that are implicated in processing a specific mental
process.

Therefore, this study aimed to examine whether the
known impairment of different functions in SCZ, PD, or
aging, respectively, would equally translate into a high
classification accuracy for a given network in the respec-
tive group, based on the connectivity pattern within this
network. As a “proof-of-principle” approach we therefore
intended to investigate whether various a priori networks
based on task-activation findings carry differential disease-
related information assessable by RS imaging. To this end,
we examined two diseases which are clinically very dispa-
rate but well studied in the previous neuroimaging litera-
ture. The findings were then juxtaposed to findings on
age-related effects in the same networks. Thereby, we
could evaluate whether the respective networks carry dif-
ferential information related to the different conditions or,
conversely, whether the different networks carry differen-
tial information related to a particular condition. Given
some putative commonalities and especially phenotypical
differences, the aim was to examine the possibility for dif-
ferential classification of SCZ, PD, und age, rather than to
primarily study the specific diseases and their clinical sep-
aration from each other or aging per se. In our investiga-
tion, these three groups thereby serve as examples to
evaluate this approach. For example, we assume that con-
nectivity in the reward (Rew) network will be potent in
differentiating SCZ patiens from matched HCs, as several
studies have shown impairments related to reward learn-
ing in SCZ, and the neurobiology of this network has been
linked to psychosis [Deserno et al., 2013; Heinz and Schla-
genhauf, 2010; Radua et al., 2015]. Likewise, we would
expect a good classification accuracy for PD patients based
on FC in the motor network, given that motor impair-
ments represent the core feature of this disease [Jankovic,
2008], and motor circuits in the brains of PD patients are
altered during motor tasks and at rest [Herz et al., 2014;
Prodoehl et al., 2014; Tessitore et al., 2014]. Finally, NA is
accompanied by cognitive decline in various domains
[Glisky, 2007], such as deterioration in working memory
function [Braver and West, 2008]. For the latter, age-
related neural changes have repeatedly been shown at task
[Dennis and Cabeza, 2008; Rajah and D’Esposito, 2005]
and rest [Keller et al., 2015]. Accordingly, we assume that
the working memory (WM) network allows a clear distinc-
tion between old and young adults.

In an explorative manner, we furthermore assessed a
broad set of networks associated with different behaviou-
ral domains (cognitive, social-affective, motivational, and
motor-related) since all three conditions (PD, SCZ, and
NA) show alterations in various functional domains on the
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behavioral and neural level [Barch, 2005; Duncan et al.,
2013; Seidler et al., 2010]. Importantly, in our approach, we
reasoned that classification performance may be interpreted
as an indication for the amount of information contained in
a given network regarding a particular disease or age sta-
tus, and thus of the degree of change observed in the integ-
rity of particular networks under these conditions.

We assume that classification performance will be best for
connectivity in those networks that subserve mental func-
tions known to be affected in SCZ and PD. SCZ is character-
ized by prominent social-affective/motivational alterations
[Brunet-Gouet and Decety, 2006; Deserno et al., 2013; Heinz
and Schlagenhauf, 2010; Kring and Elis, 2013; Radua et al.,
2015], whereas in PD motor impairments are most affected
[Herz et al., 2014; Rowe and Siebner, 2012; Tessitore et al.,
2014]. We, therefore, hypothesized that social-affective/moti-
vational and motor-related networks provide a superior clas-
sification of SCZ and PD patients, respectively. As both
diseases are accompanied by cognitive impairments as well,
we assumed that cognitive networks may also be predictive
to some degree [Barch, 2005; Duncan et al., 2013; Elgh et al.,
2009; Nieoullon, 2002]. As NA is associated with a broad
spectrum of decline affecting various functional systems
(albeit to a varying degree) [Hedden, 2007; Mather, 2016;
Seidler et al., 2010], we expected that most networks allowed
for an accurate discrimination of old from young adults.

MATERIALS AND METHODS

Samples

Schizophrenia

RS fMRI data and phenotypical information of 86 SCZ
patients and 84 HCs obtained from the COBRE sample
(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html)
and the University Hospital of G€ottingen, Germany, were
included in the analysis. SCZ diagnosis was assigned as
assessed by the DSM-IV-TR based on the structured clinical
interview (SCID-P) and the International Classification of
Diseases (ICD-10), respectively. SCZ symptom severity was
assed using the Positive and Negative Symptom Scale
(PANSS) [Kay et al., 1987] evaluating the severity of positive
and negative symptoms as well as the general psychopa-
thology. Patients received their regular medication therapy
with considerable variability in the exact compounds used
and a high prevalence of combination drug therapy (medi-
cated patients but exact medication and dose unknown for
Olanzapine equivalent dose [Gardner et al., 2010]: COBRE:
50.9%; G€ottingen: 25.8%; medication status unknown:
COBRE: 1 SCZ patient; G€ottingen: 2 SCZ patients).

Parkinson’s disease

RS fMRI data of 80 PD patients and 84 HCs obtained from
the RWTH Aachen University Hospital and the University
Hospital D€usseldorf, Germany, were included in the

analysis. Diagnosis of PD was assigned by consultant neu-
rologists with longstanding expertise in movement disor-
ders based on clinical examination and review of the
medical history. Included PD patients fulfilled the standard
UK Brain Bank criteria for PD and had on average a mild
cognitive impairment as confirmed by the Montreal Cogni-
tive Assessment (MoCA) but no major depression symp-
toms [Hoops et al., 2009; Hughes et al., 1992; Nasreddine
et al., 2005].

To assess PD symptom severity and evaluate motor
impairments the Unified Parkinson’s Disease Rating
Scale Part III [Movement Disorder Society Task Force on
Rating Scales for Parkinson’s Disease, 2003] (UPDRS)
and Hoehn and Yahr Scale (H & Y Scale) [Hoehn and
Yahr, 1967] were applied. All patients were medicated
with their regular individual PD-related treatment (medi-
cation and dose unknown for Levodopa equivalent daily
dose [Tomlinson et al., 2010]: Aachen: 28.1%; D€usseldorf:
12.5%).

Healthy controls

RS fMRI data of HC (HCSCZ and HCPD) were obtained
from the four different sites as respective clinical subjects
(SCZ and PD), and were without any record of neurologi-
cal or psychiatric disorders as confirmed via structured
clinical screening.

Normal aging

RS fMRI data of 95 old (age range: 55–70 years) and 93
young (age range: 20–35 years) participants with an age
range of 15 years in each group were obtained from the
population-based 1000BRAINS study [Caspers et al., 2014]
and another separate study at the Research Centre J€ulich,
Germany. This relative small age-range aims to enhance
the subsample homogeneity. “NA” in old participants
refers to the absence of neurodegenerative diseases. Older
adults showed cognitive performance adequate for their
age (DemTect> 13) as assessed by the Mild Cognitive
Impairment and Early Dementia Detection (DemTect)
assessment [Kalbe et al., 2004] and all participants did not
exhibit clinically relevant symptoms for depression (BDI-
II< 13) as evaluated via the Beck Depression Inventory-II
[Beck et al., 1996].

Importantly, target and control groups (i.e., patients vs.
HCs, old vs. young adults) of all three samples (PD, SCZ,
NA) represent subsamples from larger samples that were
post-hoc matched for gender, within-scanner movement
and (only for the clinical samples) age (cf. Table I for sam-
ple and group matching characteristics). Written informed
consent from all subjects and approval by the local ethics
committees was obtained from all sites. Joint reanalysis of
the anonymized data was approved by the ethics commit-
tee of the Heinrich Heine University D€usseldorf.
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RS fMRI Data Acquisition, Preprocessing, and

Analysis

During image acquisition (see Supporting Information
Table SI for fMRI parameters), participants were instructed
to lie still, let their mind wander and not fall asleep (con-
firmed at debriefing). SPM8 (www.fil.ion.ucl.ac.uk/spm)
was used for image realignment, spatial normalization to
the MNI-152 template using the unified segmentation
approach [Ashburner and Friston, 2005], and smoothing
“5-mm full-width at half-maximum Gaussian kernel”.

We investigated 12 functional networks, robustly defined
by previous quantitative meta-analyses, to reflect neural
correlates of a broad set of cognitive, social-affective/

motivational and motor functions (see Table II for an over-
view and Supporting Information Table SII for detailed net-
work coordinates and corresponding brain regions). Only
meta-analytic networks with a minimum of 10 nodes were
included, since a lower number of features are uninforma-
tive for robust classification. RS functional connectivity
(RSFC) within each network was computed per subject by
first extracting the time-series for each node within 6 mm of
the meta-analytic peaks. To reduce spurious correlations,
variance explained by the six movement parameters and
their derivatives (modeled as first and second order effects)
as well as the mean white-matter and cerebrospinal fluid
signal time-courses was removed from the time series [Sat-
terthwaite et al., 2013; Varikuti et al., 2016]. Subsequently,

TABLE I. Sample and group matching characteristics

Sample n (males)
Age

(years)

Head
movement
(DVARS)

Age at
onset
(years)

Illness
duration
(years)

Antipsychotic/
dopaminergic
medication

Neuropsychology and
psychopathology

SCZ sample OZP-equivalent PANSS: Total/PS/NS/GEN

COBRE
SCZ patients 55 (46) 386 14 1.666 0.55* 206 8 176 14 136 8 586 14/146 5/146 5/296 8
HCscz 55 (42) 386 12 1.446 0.41

G€ottingen
SCZ patients 31 (25) 326 10 1.476 0.30* 256 8 76 8 146 9 526 11/126 3/136 4/286 6
HCscz 29 (22) 326 9 1.316 0.23

Total
SCZ patients 86 (71) 366 13 1.596 0.48*
HCscz 84 (64) 366 11 1.396 0.36

PD sample LEDD H & Y Scale UPDRS-III MoCA

Aachen
PD patients 32 (21) 646 9 0.516 0.16 596 8 66 5 4496 238 26 1 236 12 276 2
HCPD 33 (20) 636 6 0.626 0.29

D€usseldorf
PD patients 48 (30) 596 9 0.696 0.26 516 9 86 6 10296 416 2.56 1 166 8 246 4
HCPD 51 (30) 576 9 0.686 0.22

Total
PD patients 80 (51) 616 9 0.626 0.24
HCPD 84 (50) 596 8 0.666 0.25

NA sample DemTect BDI-II

J€ulich
Old 48 (26) 616 5 1.586 0.41* 166 2 56 5
Young 52 (26) 266 3 1.246 0.24 56 4

1000BRAINS J€ulich
Old 47 (25) 646 4 1.796 0.43* 156 2 66 5
Young 41 (23) 286 4 1.286 0.26 46 4

Total
Old 95 (51) 636 5 1.686 0.43*
Young 93 (49) 276 4 1.266 0.25

SCZ, schizophrenia; HCSCZ, matched healthy controls (HCs) of SCZ sample; PD, Parkinson’s disease; HCPD, matched HCs of PD sam-
ple; NA, normal aging; characteristic values in mean6 standard deviation; DVARS, derivative of root mean squared variance over vox-
els (head movement parameter) [Power et al., 2012]; significant difference in age (clinical samples), gender and movement are marked
with * for P< 0.05; SCZ: OZP-equivalent [Gardner et al., 2010], Olanzapine equivalent dose; PANSS, Positive and Negative Symptom
Scale, (PS, Positive Symptoms Scale/NS, Negative Symptoms Scale/GEN, General Psychopathology Scale); PD: LEDD [Tomlinson et al.,
2010], Levodopa equivalent daily dose; H & Y Scale, Hoehn and Yahr Scale; UPDRS-III, Unified Parkinson’s Disease Rating Scale Part
III; MoCA, Montreal Cognitive Assessment; NA: DemTect, Mild Cognitive Impairment and Early Dementia Detection, BDI-II, Beck
Depression Inventory II.
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time series were high-pass filtered retaining frequencies
above 0.01 Hz. Connectivity was computed as the Fisher’s
Z-transformed Pearson correlation between the time series
of each network’s nodes; connectivity values were adjusted
for effects of acquisition site, gender, movement, total brain
volume, and (only for the clinical samples) age [cf. Schilbach
et al., 2014, 2016] to avoid classification based on spurious
between-subject effects.

SVM Features and Classification

To examine whether the RSFC pattern of a network con-
tains predictive information on the respective groups (SCZ
vs. HCSCZ, PD vs. HCPD, old vs. young) non-sparse linear
two-class SVMs were computed using LibSVM [Chang
and Lin, 2011] (https://www.csie.ntu.edu.tw/~cjlin/
libsvm). SVMs’ were trained separately for each of all
three analyses (PD, SCZ, NA) and each of the functional
networks. Of note, we did not attempt between-patient
classification (i.e., PD vs. SCZ), as the different groups
were closely matched to their respective controls but sub-
stantially different from each other with respect to age,
gender, and movement. The input variables (features) to
the SVM consisted of edge-wise RSFC between all nodes
of a given network. Each SVM was trained and tested by a
nested 10-fold cross-validation scheme for each individual
group (see e.g., Fig. 1 [Xia et al., 2013]) [cf. Lemm et al.,
2011]. The inner loop used a 10-fold cross-validation
within the training group to optimize the soft-margin slack
parameter. For each fold of the outer loop, the left-out
(unseen) 10% were then classified using the SVM trained
on the (entire) training-set using the optimized parameter.
This nested scheme ensured that classifier optimization
and evaluation was performed independent of each other
[Kriegeskorte et al., 2009]. Classification performance was
evaluated based on accuracy (Acc.) balanced accuracy
(bAcc.), sensitivity (Sens.), and specificity (Spec.) as well as
two measures derived from signal-detection theory: the
area under the receiver operating characteristics (ROC)
curve (AUC) [Fawcett, 2004] and d’. Acc. denotes the over-
all proportion of subjects correctly classified as patients
(PD, SCZ) or advanced age versus healthy or younger age,
respectively. The bAcc. is calculated as the average pro-
portion of subjects correctly classified as patients (PD,
SCZ) or advanced age versus healthy or younger age,
respectively. Sens. indicates the percentage of patients
(SCZ or PD) correctly classified as ill or subjects correctly
classified as old in the aging sample (true positives). Spec.
in turn represents the fraction of HCs correctly classified
as healthy or subjects correctly identified as young in the
aging sample (true negatives). AUC refers to the area
under the ROC curve. An ROC curve depicts the relation-
ship between true positive rate and false positive rate, and
its AUC value indicates the sensitivity of the diagnostic
process independent of any specific decision criterion.
Finally, we assessed d’, an alternative index of diagnostic
sensitivity independent of the decision criterion, calculated
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as z(true positive rate) – z(false positive rate). To increase
robustness, the entire procedure was repeated 25 times,
and each performance measures was averaged across repe-
titions. To examine significant differences in classification
performance between networks within each group, pair-
wise t-tests were performed for each of the 12 networks
based on the accuracies obtained from the 25 cross-
validation outer loop replications of the separate SVMs
(significance threshold of P< 0.05, Bonferroni-corrected for
the number of pairwise network comparisons).

To compare the separately conducted classifications for
SCZ versus HCSCZ and PD versus HCPD subgroups, accu-
racies obtained for each individual analysis for every net-
work were converted to standardized z-scores by reference
to the binomial distribution reflecting chance level and
corrected for multiple comparisons by the amount of
networks-based classifications. Log-likelihood ratios were
estimated to identify networks showing better classifica-
tion performance for one patient group than the other. To

investigate significant differences in classification perfor-
mance between the groups, t-tests were calculated based
on the 25 accuracies obtained from the cross-validation
outer loop replications of the separate SVMs performed in
each group (SCZ, PD, NA) for each of the 12 networks
(significance threshold of P< 0.05, Bonferroni-corrected for
the number of groups and networks).

RESULTS

As expected, SCZ patients could be distinguished above
chance from matched HCs based on RSFC in the Rew net-
work (Acc.5 68%; AUC 50.73). In turn, PD patients were
distinguished above chance from their matched HCs based
on RSFC in the motor network (Motor; Acc.5 70%;
AUC5 0.77). Finally, old and young subjects were differ-
entiated very well from each other based on RSFC in the
WM network (Acc.5 79%; AUC5 0.84). Results are

Figure 1.

Linear two-class SVM nested 10-fold cross-validation scheme.

Illustration of a SVM example for classification of the SCZ sample

based on the EmoSF network. As input variables (DATA) (5 fea-

tures) served the subjects’ RSFCs of all edges of every network.

The inner loop was performed in a 10-fold manner with 10 repeti-

tions conducted as parameter setting optimization on a training

sample. The outer loop was performed in a 10-fold manner with

25 repetitions conducted as classification accuracy testing on an

unseen test set. Classification performance measures are com-

puted based on the confusion matrix. Acc., accuracy; Sens., sensi-

tivity; Spec., specificity; AUC, area under the ROC curve and d’

(see “Materials and Methods” section for explanation). [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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summarized as follows: Figure 2A for polar plot of group
classification accuracies, Table III for Acc., Sens., Spec. and
AUC, Supporting Information Table SIII for bAcc., Sup-
porting Information Table SIV for d’, Supporting Informa-
tion Figure S1 for z-standardized accuracies of all groups
and Supporting Information Figure S2 for variance of
accuracies.

Considering the performance of all functional networks
in distinguishing SCZ and PD patients from their respec-
tive HCs, a clear differentiation between networks

becomes evident, even though only 2 (SCZ) and 1 (PD)
out of 12 networks, respectively, did not significantly
exceed chance accuracy (Fig. 2B). The following results
and discussion are focused on networks with superior
classification performance for the respective disorders. In
this context, we would like to re-iterate that we did not
attempt to train any classifier to distinguish SCZ from PD
patients, since the two samples differed substantially from
each other in various confounding factors such as age,
gender distribution, and within-scanner movement.

Figure 2.

Group classification results of the SVM. (A) Polar plot of group

classification accuracies based on all 12 networks for SCZ (in

green), PD (in blue) and NA (in yellow). Accuracy refers to the

proportion of subjects correctly classified as patients (PD, SCZ)

or older age and subjects correctly classified as being HCs or

younger age. (B) Polar plot of z-standardized accuracies

(corrected for multiple comparisons) of patients classification

for SCZ (in green) and PD (in blue). (C) Log-likelihood ratios of

classification performance for networks showing higher classifi-

cation for one patient group vs. the other. [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE III. Classification results of the SVM of all groups based on specific networks

Network (Abbr.)
SCZ vs. HCSCZ

Acc. (Sens./Spec.) AUC
PD vs. HCPD

Acc. (Sens./Spec.) AUC
Old vs. Young

Acc. (Sens./Spec.) AUC

EmoSF 72% (77%/68%) 0.79 63% (64%/63%) 0.68 88% (89%/86%) 0.93
ER 71% (77%/65%) 0.76 69% (74%/64%) 0.74 78% (79%/76%) 0.86
ToM 61% (74%/46%) 0.62a 67% (70%/64%) 0.71 78% (77%/80%) 0.84
Empathy 71% (73%/69%) 0.78 63% (61%/65%) 0.69 78% (80%/75%) 0.83
Rew 68% (73%/62%) 0.73 66% (70%/63%) 0.71 87% (85%/88%) 0.93
AM 62% (67%/57%) 0.71 75% (78%/73%) 0.76 80% (80%/80%) 0.89
SM 61% (67%/54%) 0.68a 69% (65%/73%) 0.75 84% (85%/83%) 0.90
WM 62% (65%/60%) 0.66 65% (68%/63%) 0.71 79% (80%/77%) 0.84
CogAC 68% (73%/63%) 0.69 62% (66%/57%) 0.67 73% (73%/74%) 0.83
VigAtt 68% (72%/63%) 0.72 65% (68%/63%) 0.67 80% (78%/83%) 0.89
MNS 64% (65%/63%) 0.73 57% (64%/51%) 0.53a 84% (83%/84%) 0.91
Motor 61% (72%/50%) 0.61 70% (68%/73%) 0.77 80% (79%/81%) 0.90

Abbreviations: Acc., Accuracy (in %)/Sens., sensitivity (in %)/Spec., specificity (in %)/AUC, area under the ROC curve.
aNetwork with no significant classification result.
Acc. refers to the proportion of subjects correctly classified as patients (PD, SCZ) or older age and subjects correctly classified as being
healthy or younger age (mean of sensitivity and specificity). Sensitivity relates to the percentage of patients (SCZ or PD) correctly classified
as being ill or else subjects correctly identified as old in the aging sample (true positives). Specificity relates to the percentage of healthy sub-
jects correctly classified as being healthy or else subjects correctly identified as young in the aging sample (true negatives). AUC refers to
the area under the ROCs curve. The ROC curve depicts the relationship between true positive rate and false positive rate.
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For SCZ, the emotional scene and face processing
(EmoSF) network (Acc.5 72%; AUC5 0.79) as well as the
networks for empathic processing (Empathy; Acc.5 71%;
AUC5 0.78) and cognitive action control (CogAC;
Acc.5 68%; AUC5 0.69) distinguished patients most accu-
rately from their HCs. Hence these networks’ connectivity
patterns may be considered to contain the highest level of
information with respect to SCZ. The EmoSF network was
significantly better in the SCZ classification compared with
all other networks (P< 0.001). For PD, the networks sub-
serving autobiographical memory (AM; Acc.5 75%;
AUC5 0.76), motor execution (Motor; Acc.5 70%;
AUC5 0.77), semantic memory (SM; Acc.5 69%;
AUC5 0.75), and theory-of-mind cognition (ToM;
Acc.5 67%; AUC5 0.71) yielded the highest classification
accuracies, that is, contained the most informative PD-
related differences in RSFC. The AM network was signifi-
cantly better in the PD classification compared with all
other networks (P< 0.001). All network comparison results
within the patient groups are summarized in Supporting
Information Tables SV and SVI.

The between-network comparison of classification per-
formance with respect to SCZ and PD revealed that the
networks discriminating either disorder from their respec-
tive controls were highly specific (Fig. 2B,C), indicating
that these networks carry differential amounts of informa-
tion regarding SCZ and PD, respectively. In particular,
both EmoSF and Empathy networks showed the best per-
formance at distinguishing SCZ patients from HCs
(EmoSF: z5 5.9; Empathy: z5 5.5) but were notably worse
at discriminating PD patients from their HCs (EmoSF:
z5 3.2; Empathy: z5 3.2). Similarly, the CogAC network
exhibited high accuracy at classifying SCZ patients and
their respective HCs (z5 4.7) but inferior performance at
distinguishing PD patients from their HCs (z5 2.7).

In turn, the motor network very well classified PD
patients and their HCs (z5 5) but was remarkably ineffec-
tive at classifying SCZ patients and their HCs (z5 2.9).
Likewise, the AM and SM networks achieved high accura-
cies in classifying PD patients and controls (AM: z5 6.3;
SM: z5 4.5) but performed much less well when classify-
ing SCZ patients and controls (AM: z5 3.2; SM: z5 2.5).
Networks which were most accurate in distinguishing SCZ
from HCs (EmoSF, Empathy, and CogAC) exhibited signif-
icant better classification performance in the SCZ group
compared to the PD group (EmoSF: P< 0.001; Empathy:
P< 0.001; CogAC: P< 0.001; Supporting Information Table
SVII). Likewise, networks which performed best at dis-
criminating PD patients from HCs (AM, Motor, SM, and
ToM) showed significant better classification performance
in the PD group compared with the SCZ group (AM:
P< 0.001; Motor: P< 0.001; SM: P< 0.001; ToM: P< 0.001;
Supporting Information Table SVII).

This differential picture markedly contrasted with the
results obtained for the classification between old and
young subjects. In the aging sample, each network yielded

accuracies� 73% (see Supporting Information Table SVIII
for network comparison results within NA), significantly
outperforming every classification obtained in the SCZ or
PD samples (P< 0.001; see Fig. 2A, Supporting Information
Figure S1, Table III, Supporting Information Tables SIX
and SX).

In particular, for each network the accuracy for classify-
ing a previously unseen participant as young or old was
about 10% higher than any clinical classification based on
the same network. Additionally, the comparison of all
three separate group classifications revealed that the vari-
ance of the classification accuracies over the 25 replications
of the outer loop was distinctively lower for the classifica-
tion of age, as compared with classifying the clinical status
(Supporting Information Fig. S2).

DISCUSSION

We assessed whether RSFC patterns in a diverse set of
functionally defined brain networks allowed for a classifi-
cation of patients with SCZ or PD or healthy older adults
on the one hand, and their respective healthy or young
controls on the other. Thereby, we evaluated which func-
tional system was most informative for a given condition
(i.e., SCZ, PD, or higher age). Conversely, our analysis also
assessed the amount of information on each condition
found in a given network. Our results show in a proof-of-
principle manner that networks pertaining to functions
known to be affected by SCZ, PD, or aging indeed exhib-
ited good classification performance for the respective con-
dition. Furthermore, each network’s young–old
classification outperformed any disease-related classifica-
tion. This indicates that specific networks are affected by
and associated with the diseases, whereas for healthy
older adults RSFC appears to be altered rather globally.

Conceptual Considerations

Our study demonstrates that machine-learning techni-
ques can be successfully used to assess whether RSFC in
functional systems known to be affected in SCZ, PD, or
advanced age exhibits high classification capacity for the
respective condition. Further, our approach compared the
classification capacity of RSFC patterns between different
functional networks and between several clinical and
physiological states. Of note, for each classification, target
and control groups (i.e., SCZ vs. HCscz, PD vs. HCPD, old
vs. young) were well matched with respect to gender and
(for the clinical samples) age. In addition, RSFC variance
attributable to these confounding factors or within-scanner
movement was regressed out of the data before the SVM
analyses. Therefore, these confounds were evidently het-
erogeneous across the three groups (SCZ, PD, NA) but
should not have influenced classification accuracy within
each condition. In spite of proper matching and state-of-
the-art removal of variance related to motion [cf. Power

r Schizophrenia, Parkinson’s Disease and Aging Classification r

r 5853 r



et al., 2012; Satterthwaite et al., 2013], residual effects that
only manifest in the multivariate pattern cannot be fully
ruled out. However, one factor worth noting is that, for
example, we observed differential classification perfor-
mance across networks in the SCZ sample, largely ruling
out a dominant general effect of head motion.

Given that both groups were assessed under their regular
medication, differences in classification performance may
be influenced by pharmacological treatment. In particular,
we cannot exclude that classification results of networks
modulated via dopaminergic transmission (e.g., reward or
motor system) might originate from interactions between
disease condition and medication. Unfortunately, however,
we could not perform a more detailed assessment of the
influence of medication, as the compounds, duration of
treatment and doses varied considerably between subjects,
with many receiving a combination of drugs.

When comparing classification performance to previous
work based on whole-brain functional connectomes [cf.
Chen et al., 2015; Long et al., 2012; Meier et al., 2012; Su
et al., 2013; Tang et al., 2012; Vergun et al., 2013; Yu et al.,
2013], we note that our approach yielded higher functional
specificity, allowing inference on the amount of disease-
specific information in well-defined functional systems.
We acknowledge that even though most of the classifica-
tions well exceeded chance level, the achieved network-
based classification accuracies are not strong enough for
successful connectivity-based single-subject diagnosis. Still,
our “sparse” approach achieved classification accuracies
comparable to those reported in previous whole-brain
studies, whose feature space obviously was substantially
larger than ours. This is particularly noteworthy given that
two further aspects besides feature space could be
expected to decrease classifier performance in our study
[Arbabshirani et al., 2016; Haller et al., 2014; Kambeitz
et al., 2015; Schnack and Kahn, 2016; Varoquaux et al.,
2016]: First, all of our three groups were based on rela-
tively large samples that were combined from two differ-
ent measurement sites and hence should be more
heterogeneous than usual. Second, we used replicated 10-
fold cross-validation, rather than the more optimistic
leave-one-out approach [Varoquaux et al., 2016]. We thus
argue that the chosen combination of examining robustly
defined functional networks and optimized analysis
through replicated and nested 10-fold cross-validation
may provide valuable new insights into the pathophysiol-
ogy of brain disorders that is not attainable through global
analyses of the entire functional connectome.

Classification of SCZ Patients and Controls

We found that the networks subserving EmoSF,
empathic processing as well as CogAC yielded the best
performance. Aberrant processing of emotional stimuli
[Takahashi et al., 2004] and impaired abilities to relate to
others’ affective states [Benedetti et al., 2009; Derntl et al.,

2012; Harvey et al., 2012] are features of SCZ and mirrored
in the degree of SCZ-related information that is contained
in the EmoSF (AUC5 0.79) and Empathy (AUC5 0.78)
networks. Further, the good classification performance of
the CogAC network resonates well with alterations in cog-
nitive control processes as a core deficit in SCZ [cf. Lesh
et al., 2011].

Somewhat surprisingly, the Rew network did not differ-
entiate SCZ from HCs with high accuracy, given the prom-
inent role of the dopaminergic system [Toda and Abi-
Dargham, 2007] and aberrant salience processing in psy-
chosis [Heinz and Schlagenhauf, 2010; Radua et al., 2015]
and the association with the reward system in this disor-
der. We conjecture that this lack of predictive information
could arise from the fact that in contrast to task-activation
data, RSFC analyses primarily capture the tonic rather
than phasic state of these networks [Schultz et al., 1997].

Classification of PD Patients and Controls

The superior classification performance observed for the
motor execution network (AUC5 0.77) is hardly surpris-
ing, since motor impairments represent a key clinical fea-
ture of PD, and differences in action-related brain circuitry
are well established in this disorder [Herz et al., 2014;
Rowe and Siebner, 2012; Tessitore et al., 2014]. The finding
that the AM (AUC5 0.76) and SM (AUC5 0.75) networks
also achieved a very good differentiation of PD patients
from HCs was rather surprising, though. Although PD is a
neurodegenerative disorder and dementia is common in
PD patients [Aarsland et al., 2001, 2003], several patients
showed evidence for mild cognitive impairment, using the
MoCA for screening. We can hence only speculate that the
RSFC differences in AM and SM networks may pick up
these deficits as revealed by standard behavioral screening
instruments.

Finally, the good classification performance achieved by
the ToM network (AUC5 0.71) was unexpected but
matches a growing literature of impaired social cognition
in PD patients [Bora et al., 2015; Poletti et al., 2011; D�ıez-
Cirarda et al., 2015].

Age Group Classification

One of the most striking observations from this study
was that every single network achieved a better classifica-
tion with respect to age group than with respect to SCZ or
PD. While we hypothesized that the broad spectrum of
age-related changes in various mental functions [Craik
and Salthouse, 2011; Glisky, 2007; Seidler et al., 2010]
would be reflected by changes in several networks [Craik
and Salthouse, 2011; Hedden, 2007; Mather, 2016; Seidler
et al., 2010], the consistency (across both networks and
replications) of high classification accuracies is intriguing.
It stands to reason that the mechanisms underlying the
discriminative changes in functional connectivity patterns

r Pl€aschke et al. r

r 5854 r



may be diverse. In particular, they should include neuro-
degeneration (cognitive networks [Hedden, 2007]), neuro-
chemical changes (Rew networks [B€ackman et al., 2006]),
altered affective processing (social-affective networks
[Mather, 2016]) and use-dependent plasticity (motor net-
works [Demirakca et al., 2016]). In addition, it may be
argued that in spite of all inter-individual variability age-
related changes represent a more homogeneous change of
the neuro-functional architecture [Ferreira et al., 2016;
Meier et al., 2012] relative to the inevitable heterogeneity
among clinical populations.

Given that connectivity patterns of all systems differenti-
ated very well between young and old participants, we
acknowledge the possibility that the relevant drivers may
be of non-neural origin. In particular, despite of our opti-
mized confound removal [Power et al., 2012; Satterthwaite
et al., 2013; Varikuti et al., 2016], we cannot exclude that
residual effects related to motion or brain atrophy as well
as physiological effects such as macro- and microvascular
changes and their cumulative impact on hemodynamic
signals [D’Esposito et al., 2003] may have contributed to
our findings.

Although the contributions of neural and non-neural
effects outlined in this section certainly warrant further
investigation, one of the most critical conclusions that
should be taken from the high classification accuracy
between younger and older participants is the danger of
obtaining spuriously high accuracies in clinical classifica-
tion studies if patients and HCs are not carefully matched
for age.

Conclusions and Outlook

We investigated the potential of RS connectivity patterns
in a wide variety of functional networks to distinguish
SCZ and PD patients from matched HCs as well as old
from young adults. We showed that networks defined by
robust activation due to mental operations known to be
affected in the respective condition indeed contained infor-
mation on the respective condition that is captured by our
pattern-classification approach and translates into good
classification accuracies. Classification accuracies obtained
through replicated, nested 10-fold cross-validation were
not only generally comparable to those obtained from
whole-brain analyses but also revealed a differentiated pic-
ture for both disorders in comparisons. Both SCZ and PD
were specifically well predicted by distinct networks that
resonate well with known clinical and pathophysiological
features. The presented approach thus opens an avenue
toward robust and more specific assessments of clinical
and developmental differences in functional systems than
previous whole-brain analyses. One of the most striking
findings of this work was the fact that integrity in all net-
works was much better at identifying participants with
advanced age than with any of the two disorders. While
the most likely heterogeneous mechanisms behind this

phenomenon certainly need to be addressed in more
detail, the current findings highlight the importance of
considering age-related effects as a potential source of bias
in clinical classification studies.
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Table SI: Functional magnetic resonance imaging parameters 

Acquisition Site Measurement Parameters: 
Scanner/volumes/TR/TE/FA/voxel size 

Schizophrenia Sample  
Mind Research Network, Center for 
Biomedical Research Excellence (COBRE), 
The University of New Mexico, Albuquerque, 
NM, USA 

3 T/300/2000/29/75°/3 x 3 x 4 mm3 

University Hospital Göttingen, Germany 3 T/156/2000/30/70°/3 x 3 x 3 mm3 

Parkinson’s Disease Sample  
RWTH, University Hospital Aachen, 
Germany 

3 T/165/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

HHU, University Hospital Düsseldorf, 
Germany 

3 T/300/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

Normal Aging Sample  
Research Centre Jülich, Germany 3 T/200/2200/30/80°/3.1 x 3.1 x 3.1 mm3 
1000BRAINS [Caspers et al., 2014],  
Research Centre Jülich, Germany 

3 T/300/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

Measurement parameters:   

Scanner: magnetic field strength of the scanner/ number of acquired volumes/TR: repetition 
time (in ms)/TE: echo time (in ms)/ FA: flip angle/ voxel size. 

 



Table SII: Network coordinates and corresponding brain regions 
 

Emotional Scene / Face Processing (EmoSF) 
[Sabatinelli et al., 2011] 

x y z Macroanatomical Region 

4 47 7 R Anterior Cingulate Cortex 

42 25 3 
R Inferior Frontal Gyrus (p. 

Triangularis) 

-42 25 3 
L Inferior Frontal Gyrus (p. 

Triangularis) 

48 17 29 
R Inferior Frontal Gyrus (p. 

Opercularis) 

-42 13 27 
L Inferior Frontal Gyrus (p. 

Triangularis) 
-2 8 59 L Posterior Medial Frontal 
20 -4 -15 R Amygdala 
-20 -6 -15 L Amygdala 
-20 -33 -4 L Hippocampus 
14 -33 -7 R Lingual Gyrus 
53 -50 4 R Middle Temporal Gyrus 
38 -55 -20 R Anterior Fusiform Gyrus 
-40 -55 -22 L Anterior Fusiform Gyrus 
38 -76 -16 R Posterior Fusiform Gyrus 
-40 -78 -21 L Cerebellum 
-4 52 31 L Superior Medial Gyrus 
36 25 -3 R Anterior Insula 
-38 25 -8 L Inferior Frontal Gyrus (p. Orbitalis) 
2 19 25 R Anterior Cingulate Cortex 
0 -15 10 Thalamus 
-2 -31 -7 Superior Colliculus 

-28 -70 -14 L Fusiform Gyrus 
46 -68 -4 R Inferior Temporal Gyrus 
-48 -72 -4 L Inferior Occipital Gyrus 

 
Cognitive Emotion Regulation (ER) 

[Buhle et al., 2014] 

x y z Macroanatomical Region 

48 24 9 
R Inferior Frontal Gyrus (p. 

Triangularis) 



42 21 45 R Middle Frontal Gyrus 
9 30 39 R Superior Medial Gyrus 
0 -9 63 L Posterior Medial Frontal 
-3 24 30 L Anterior Cingulate Cortex 

-33 3 54 L Middle Frontal Gyrus 
-36 21 -3 L Anterior Insula 
-42 45 -6 L Inferior Frontal Gyrus (p. Orbitalis) 
63 -51 39 R Inferior Parietal Lobule 
-42 -66 42 L Angular Gyrus 
-63 -51 -21 L Inferior Temporal Gyrus 
-51 -39 3 L Middle Temporal Gyrus 
30 -3 -15 R Amygdala 
-18 -3 -15 L Amygdala 

 
Theory-of-Mind Cognition (ToM) 

[Bzdok et al., 2012] 

x y z Macroanatomical Region 

0 52 -12 R Mid Orbital Gyrus 
2 58 12 R Superior Medial Gyrus 
-8 56 30 L Superior Medial Gyrus 
2 -56 30 L Precuneus 

56 -50 18 R Superior Temporal Gyrus 
-48 -56 24 L Angular Gyrus 
54 -2 -20 R Anterior Middle Temporal Gyrus 
-54 -2 -24 L Anterior Middle Temporal Gyrus 
52 -18 -12 R Middle Temporal Gyrus 
-54 -28 -4 L Middle Temporal Gyrus 
50 -34 0 R Posterior Superior Temporal Sulcus 
-58 -44 4 L Posterior Superior Temporal Sulcus 

54 28 6 
R Inferior Frontal Gyrus (p. 

Triangularis) 
-48 30 -12 L Inferior Frontal Gyrus (p. Orbitalis) 
48 -72 8 R Occipital Lobe (V5/MT) 

 
Empathic Processing (Empathy) 

[Bzdok et al., 2012] 

x y z Macroanatomical Region 

2 56 18 L Superior Medial Gyrus 
36 22 -8 R Inferior Frontal Gyrus (p. Orbitalis) 



-30 20 4 L Anterior Insula 
50 12 -8 R Anterior Insula 
-44 24 -6 L Inferior Frontal Gyrus (p. Orbitalis) 
-4 18 50 L Posterior Medial Frontal 
-2 28 20 L Anterior Cingulate Cortex 
-4 42 18 L Anterior Cingulate Cortex 
-2 -32 28 Posterior Cingulate Cortex 
52 -58 22 R Posterior Superior Temporal Gyrus 
-56 -58 22 L Posterior Superior Temporal Gyrus 
22 -2 -16 R Amygdala 
54 -8 -16 R Middle Temporal Gyrus 
52 -36 2 R Posterior Superior Temporal Sulcus 
-12 -4 12 L Anterior Thalamus 
6 -32 2 R Posterior Thalamus 

26 -26 -12 R Hippocampus 
2 -20 -12 Midbrain 

14 4 0 R Globus Pallidum 
 

Reward-related Decision Making (Rew) 
 [Liu et al., 2011] 

x y z Macroanatomical Region 

12 10 -6 R Nucleus Caudate 
-10 8 -4 L Pallidum 
36 20 -6 R Anterior Insula 
-32 20 -4 L Anterior Insula 
0 24 40 L Superior Medial Gyrus 
0 54 -8 L Mid Orbital Gyrus 

24 -2 -16 R Amygdala 
6 -14 8 R Thalamus 
-6 -16 8 L Thalamus 
0 8 48 L Posterior Medial Frontal Gyrus 
8 -18 -10 R Brainstem 
-6 -18 -10 L Brainstem 
2 44 20 L Anterior Cingulate Cortex 

-24 2 52 L Middle Frontal Gyrus 
-38 -4 6 L Insula  
24 40 -14 R Superior Orbital Gyrus 
-16 42 -14 L Superior Orbital Gyrus 
40 32 32 R Middle Frontal Gyrus 



-28 -56 48 L Inferior Parietal Lobule 
28 -58 50 R Superior Parietal Lobule 
0 -32 32 L Posterior Cingulate Cortex 

-36 50 10 L Middle Frontal Gyrus 
-46 42 -4 L Inferior Frontal Gyrus (p. Orbitalis) 
30 4 50 R Middle Frontal Gyrus 
-22 30 48 L Superior Frontal Gyrus 

 
Autobiographical Memory (AM) 

[Spreng et al., 2009] 

x y z Macroanatomical Region 

-1 -53 21 L Precuneus 
-26 -28 -17 L Parahippocampal Gyrus 
-49 -61 31 L Angular Gyrus 
-2 51 -11 L Mid Orbital Gyrus 

-60 -9 -18 L Middle Temporal Gyrus 
-50 27 -12 L Inferior Frontal Gyrus (p. Orbitalis) 
26 -33 -15 R Fusiform Gyrus 
-1 20 57 L Posterior Medial Frontal 
55 -58 30 R Angular Gyrus 
-47 9 46 L Precentral Gyrus 
-42 53 7 L Middle Frontal Gyrus 
26 -14 -23 R Parahippocampal Gyrus 
54 -5 -20 R Middle Temporal Gyrus 
-39 13 -41 L Inferior Temporal Gyrus 
-38 -82 38 L Middle Occipital Gyrus 

-48 29 17 
L Inferior Frontal Gyrus (p. 

Triangularis) 
-11 62 9 L Superior Medial Gyrus 
4 -8 2 Thalamus 
-4 39 16 L Anterior Cingulate Cortex 
-5 -34 36 L Midcingulate Cortex 

-29 16 51 L Middle Frontal Gyrus 
31 1 -26 R Amygdala 

 
Semantic Memory (SM) 

[Binder et al., 2009] 

x y z Macroanatomical Region 

-46 -69 28 L Angular Gyrus 



-50 -56 31 L Angular Gyrus 
-64 -44 -4 L Posterior Middle Temporal Gyrus 
-47 -24 -17 L Middle Temporal Gyrus 
-40 -12 -30 L Inferior Temporal Gyrus 
-8 -57 17 L Precuneus 

-20 36 44 L Superior Frontal Gyrus 
-53 27 -4 L Inferior Frontal Gyrus (p. Orbitalis) 
54 -59 30 R Angular Gyrus 
43 -72 31 R Middle Occipital Gyrus 
-1 51 -7 L Mid Orbital Gyrus 
-5 56 24 L Superior Medial Gyrus 

-31 -34 -16 L Fusiform Gyrus 
-8 29 -10 L Anterior Cingulate Cortex 

-46 25 23 
L Inferior Frontal Gyrus (p. 

Triangularis) 
64 -41 -2 R Posterior Middle Temporal Gyrus 
-43 -53 55 L Inferior Parietal Lobule 
-1 -18 40 L Midcingulate Cortex 
-2 -56 46 L Precuneus 

51 20 26 
R Inferior Frontal Gyrus (p. 

Triangularis) 
64 -38 32 R Supramarginal Gyrus 
-23 26 -16 L Inferior Frontal Gyrus (p. Orbitalis) 
-5 -39 40 L Midcingulate Cortex 

 
Working Memory (WM) 

[Rottschy et al., 2012] 

x y z Macroanatomical Region 

-32 22 -2 L Anterior Insula  

-48 10 26 
L Inferior Frontal Gyrus (p. 

Opercularis) 

-46 26 24 
L Inferior Frontal Gyrus (p. 

Triangularis) 
-38 50 10 L Anterior Middle Frontal Gyrus 
36 22 -6 R Anterior Insula  

50 14 24 
R Inferior Frontal Gyrus (p. 

Triangularis) 
44 34 32 R Middle Frontal Gyrus 
38 54 6 R Anterior Middle Frontal Gyrus 



2 18 48 L Posterior Medial Frontal 
-28 0 56 L Posterior Middle Frontal Gyrus 
30 2 56 R Posterior Middle Frontal Gyrus 

-42 -42 46 
L Inferior Parietal Lobule/Intraparietal 

Sulcus 

-34 -52 48 
L Inferior Parietal Lobule/Intraparietal 

Sulcus  
-24 -66 54 L Superior Parietal Lobule 

42 -44 44 
R Inferior Parietal Lobule/Intraparietal 

Sulcus 
32 -58 48 R Angular Gyrus/Intraparietal Sulcus 
16 -66 56 R Superior Parietal Lobule 
-12 -12 12 L Thalamus 
-16 2 14 L Nucleus Caudate 
-16 0 2 L Globus Pallidum 
12 -10 10 R Thalamus 
-34 -66 -20 L Cerebelum/Fusiform Gyrus 
32 -64 -18 R Cerebelum/Fusiform Gyrus 

 
Cognitive Action Control (CogAC) 

[Cieslik et al., 2015] 

x y z Macroanatomical Region 

36 22 -4 R Anterior Insula 
2 16 48 L Posterior Medial Frontal 

48 12 30 
R Inferior Frontal Gyrus (p. 

Opercularis) 
36 2 54 R Middle Frontal Gyrus 

48 30 24 
R Inferior Frontal Gyrus (p. 

Triangularis) 

-38 -44 46 
L Inferior Parietal Lobule/Intraparietal 

Sulcus 
-24 -66 48 L Superior Parietal Lobule 

40 -46 46 
R Inferior Parietal Lobule/Intraparietal 

Sulcus 
60 -44 24 R Supramarginal Gyrus 
30 -62 52 R Superior Parietal Lobule 
-44 10 30 L Precentral Gyrus 
-34 20 -4 L Anterior Insula  
-26 2 52 L Middle Frontal Gyrus 



6 -18 -2 R Thalamus 
-40 -66 -10 L Inferior Occipital Gyrus 

48 19 6 
R Inferior Frontal Gyrus (p. 

Opercularis) 
8 29 30 R Midcingulate Cortex 

-45 27 30 
L Inferior Frontal Gyrus (p. 

Triangularis) 
11 7 7 R Nucleus Caudate 

 
Vigilant Attention (VigAtt) 
[Langner and Eickhoff, 2013] 

x y z Macroanatomical Region 

-2 8 50 L Posterior Medial Frontal 
8 32 46 R Superior Medial Gyrus 
0 26 34 L Midcingulate Cortex 

50 8 32 R Precentral Gyrus 
40 22 -4 R Anterior Insula  
46 36 20 R Anterior Middle Frontal Gyrus 
-40 -12 60 L Precentral Gyrus 
-46 -68 -6 L Inferior Occipital Gyrus 
-48 8 30 L Precentral Gyrus 
62 -38 17 R Inferior Parietal Lobe 
8 -12 6 R Thalamus 

32 -90 4 R Middle Occipital Gyrus 
-42 12 -2 L Anterior Insula 
-10 -14 6 L Thalamus 
6 -58 -18 Cerebellar Vermis 

44 -44 46 R Inferior Parietal Lobule 
 

Mirror Neuron System (MNS) 
[Caspers et al., 2010] 

x y z Macroanatomical Region 

-56 8 28 L Precentral Gyrus 
-54 6 40 L Precentral Gyrus 

58 16 10 
R Inferior Frontal Gyrus (p. 

Opercularis) 
44 -54 -20 R Fusiform Gyrus 

-38 -40 50 
L Inferior Parietal Lobule/Intraparietal 

Sulcus 



51 -36 50 
R Inferior Parietal Lobule/Intraparietal 

Sulcus  
-1 16 52 L Posterior Medial Frontal 

-54 -50 10 L Posterior Middle Temporal Gyrus 
-52 -70 6 L Occipital Lobe (V5) 
54 -64 4 R Occipital Lobe (V5) 
30 -62 63 R Superior Parietal Lobule 

 
Motor Execution (Motor) 

[Witt et al., 2008] 

x y z Macroanatomical Region 

-39 -21 54 L Postcentral Gyrus 
41 -16 57 R Precentral Gyrus 
-3 -2 54 L Posterior Medial Frontal 

-57 2 32 L Precentral Gyrus 
-53 -24 21 L Supramarginal Gyrus 
45 -38 48 R Inferior Parietal Lobule 
-23 -7 1 L Globus Pallidum 
25 -8 3 R Globus Pallidum 
-22 -52 26 L Cerebellum 
18 -54 -22 R Cerebellum 

R= right; L = left; for consistency coordinates (MNI-space) are assigned to the most 
probable brain areas as revealed by the SPM Anatomy Toolbox (Version 2.1) [Eickhoff et 
al., 2005; Eickhoff et al., 2006; Eickhoff et al., 2007]. 



Table III: Classification results of the support vector machine of all groups based on specific 
networks (balanced accuracy) 

Network (abbr.) SCZ vs. HCSCZ PD vs. HCPD Old vs. Young 

EmoSF 73% 64% 88% 
ER 71% 69% 78% 

ToM 60% 67% 79% 
Empathy 71% 63% 78% 

Rew 68% 67% 87% 
AM 62% 76% 80% 
SM 61% 69% 84% 
WM 63% 66% 79% 

CogAC 68% 62% 74% 
VigAtt 68% 66% 81% 
MNS 64% 58% 84% 
Motor 61% 71% 80% 

Balanced accuracy is calculated as the average proportion of subjects correctly classified as 
patients (PD, SCZ) or advanced age versus healthy or younger age, respectively. 

 
Table SIV: Classification results of the support vector machine of all groups based on 
specific networks (d’) 

Network (abbr.) SCZ vs. HCSCZ PD vs. HCPD Old vs. Young 

EmoSF 1.19 0.69 2.33 
ER 1.13 1.00 1.52 

ToM 0.57 0.89 1.56 
Empathy 1.12 0.68 1.52 

Rew 0.92 0.86 2.23 
AM 0.63 1.36 1.67 
SM 0.54 0.99 1.99 
WM 0.63 0.79 1.59 

CogAC 0.95 0.60 1.25 
VigAtt 0.92 0.79 1.71 
MNS 0.72 0.38 1.95 
Motor 0.59 1.06 1.67 

d’: sensitivity index calculated as z (true positive rate) – z (false positive rate).  



  

 
Figure S1: Group classification results of the support vector machine (z-values)  

Polar plot of z-standardized accuracies (corrected for multiple comparisons) of group 
classification based on all 12 networks for schizophrenia (in green), Parkinson’s disease (in 
blue) and normal aging (in yellow). 
  



 
Figure S2: Variance of group classification results of the support vector machine 
(accuracies) 

Polar plot of variance for group classification accuracies over all 25 repetitions in the outer 
loop based on all 12 networks for A) schizophrenia (in green), B) Parkinson’s disease (in 
blue) and C) normal aging (in yellow). 



Table SV: Differences in classification performance between networks within schizophrenia  

Network (abbr.) 
comparison 

Mean difference 
(Acc.) 

T P 

EmoSF - ER 3.320 6.211 < 0.0001 
EmoSF - ToM 11.240 23.735 < 0.0001 
EmoSF - Empathy 2.920 6.704 < 0.0001 
EmoSF - Rew 5.080 10.098 < 0.0001 
EmoSF - AM 8.720 14.498 < 0.0001 
EmoSF - SM 11.840 28.255 < 0.0001 
EmoSF - WM 10.800 22.358 < 0.0001 
EmoSF - Cog 7.040 14.735 < 0.0001 
EmoSF - VigAtt 4.360 9.375 < 0.0001 
EmoSF - MNS 7.280 14.510 < 0.0001 
EmoSF - Motor 15.640 22.506 < 0.0001 
ER - ToM 7.920 15.540 < 0.0001 
ER - Empathy 0.400 0.679 0.5034 
ER - Rew 1.760 2.903 0.0078 
ER - AM 5.400 7.991 < 0.0001 
ER - SM 8.520 12.649 < 0.0001 
ER - WM 7.480 11.821 < 0.0001 
ER - Cog 3.720 7.318 < 0.0001 
ER - VigAtt 1.040 1.996 0.05745 
ER - MNS 3.960 6.678 < 0.0001 
ER - Motor 12.320 16.991 < 0.0001 
ToM - Empathy 8.320 17.512 < 0.0001 
ToM - Rew 6.160 11.083 < 0.0001 
ToM - AM 2.520 4.016 0.0005 
ToM - SM 0.600 1.200 0.2419 
ToM - WM 0.440 0.751 0.4602 
ToM - Cog 4.200 9.635 < 0.0001 
ToM - VigAtt 6.880 14.633 < 0.0001 
ToM - MNS 3.960 7.251 < 0.0001 
ToM - Motor 4.400 7.738 < 0.0001 
Empathy - Rew 2.160 4.018 0.0005 
Empathy - AM 5.800 10.307 < 0.0001 
Empathy - SM 8.920 15.942 < 0.0001 
Empathy - WM 7.880 13.114 < 0.0001 
Empathy - Cog 4.120 7.771 < 0.0001 
Empathy - VigAtt 1.440 3.490 0.0019 



Empathy - MNS 4.360 7.966 < 0.0001 
Empathy - Motor 12.720 24.253 < 0.0001 
Rew - AM 3.640 7.888 < 0.0001 
Rew - SM 6.760 12.987 < 0.0001 
Rew - WM 5.720 9.981 < 0.0001 
Rew - Cog 1.960 4.876 < 0.0001 
Rew - VigAtt 0.720 1.705 0.1012 
Rew - MNS 2.200 3.755 0.0010 
Rew - Motor 10.560 14.881 < 0.0001 
AM - SM 3.120 6.227 < 0.0001 
AM - WM 2.080 3.125 0.0046 
AM - Cog 1.680 3.072 0.0052 
AM - VigAtt 4.360 8.557 < 0.0001 
AM - MNS 1.440 2.138 0.0429 
AM - Motor 6.920 9.538 < 0.0001 
SM - WM 1.040 2.279 0.0319 
SM - Cog 4.800 11.314 < 0.0001 
SM - VigAtt 7.480 13.647 < 0.0001 
SM - MNS 4.560 8.771 < 0.0001 
SM - Motor 3.800 4.961 < 0.0001 
WM - Cog 3.760 7.556 < 0.0001 
WM - VigAtt 6.440 10.398 < 0.0001 
WM - MNS 3.520 7.179 < 0.0001 
WM - Motor 4.840 5.933 < 0.0001 
Cog - VigAtt 2.680 6.650 < 0.0001 
Cog - MNS 0.240 0.448 0.6585 
Cog - Motor 8.600 12.820 < 0.0001 
VigAtt - MNS 2.920 4.985 < 0.0001 
VigAtt - Motor 11.280 17.871 < 0.0001 
MNS - Motor 8.360 13.116 < 0.0001 

Comparison between networks with highest classification performance and all other 
networks in schizophrenia (in bold); significance threshold Pcorr < 0.001. 

 

Table SVI: Differences in classification performance between networks within Parkinson’s 
disease  

Network (abbr.) 
comparison 

Mean difference 
(Acc.) 

T P 

EmoSF - ER 6.000 8.721 < 0.0001 



EmoSF - ToM 3.560 4.799 < 0.0001 
EmoSF - Empathy 0.680 1.034 0.3114 
EmoSF - Rew 1.720 3.149 0.0043 
EmoSF - AM 10.400 18.196 < 0.0001 
EmoSF - SM 3.080 4.447 0.0002 
EmoSF - WM 1.520 2.354 0.0271 
EmoSF - Cog 1.480 2.128 0.0438 
EmoSF - VigAtt 0.120 0.197 0.8455 
EmoSF - MNS 8.200 10.645 < 0.0001 
EmoSF - Motor 5.440 7.566 < 0.0001 
ER - ToM 2.440 5.160 < 0.0001 
ER - Empathy 6.680 11.148 < 0.0001 
ER - Rew 4.280 7.546 < 0.0001 
ER - AM 4.400 10.184 < 0.0001 
ER - SM 2.920 4.276 0.0003 
ER - WM 4.480 10.267 < 0.0001 
ER - Cog 7.480 13.724 < 0.0001 
ER - VigAtt 6.120 10.185 < 0.0001 
ER - MNS 14.200 21.168 < 0.0001 
ER - Motor 0.560 1.212 0.2374 
ToM - Empathy 4.240 9.021 < 0.0001 
ToM - Rew 1.840 3.100 0.0049 
ToM - AM 6.840 15.085 < 0.0001 
ToM - SM 0.480 0.762 0.4536 
ToM - WM 2.040 4.270 0.0003 
ToM - Cog 5.040 10.325 < 0.0001 
ToM - VigAtt 3.680 5.075 < 0.0001 
ToM - MNS 11.760 16.039 < 0.0001 
ToM - Motor 1.880 3.969 0.0006 
Empathy - Rew 2.400 3.811 0.0008 
Empathy - AM 11.080 29.641 < 0.0001 
Empathy - SM 3.760 6.317 < 0.0001 
Empathy - WM 2.200 4.260 0.0003 
Empathy - Cog 0.800 1.469 0.1549 
Empathy - VigAtt 0.560 0.854 0.4017 
Empathy - MNS 7.520 11.205 < 0.0001 
Empathy - Motor 6.120 9.394 < 0.0001 
Rew - AM 8.680 18.136 < 0.0001 
Rew - SM 1.360 2.134 0.0433 
Rew - WM 0.200 0.447 0.6587 



Rew - Cog 3.200 5.409 < 0.0001 
Rew - VigAtt 1.840 3.145 0.0044 
Rew - MNS 9.920 12.435 < 0.0001 
Rew - Motor 3.720 7.566 < 0.0001 
AM - SM 7.320 12.510 < 0.0001 
AM - WM 8.880 25.177 < 0.0001 
AM - Cog 11.880 25.859 < 0.0001 
AM - VigAtt 10.520 18.683 < 0.0001 
AM - MNS 18.600 29.167 < 0.0001 
AM - Motor 4.960 11.639 < 0.0001 
SM - WM 1.560 3.019 0.0059 
SM - Cog 4.560 6.384 < 0.0001 
SM - VigAtt 3.200 3.687 0.0016 
SM - MNS 11.280 14.155 < 0.0001 
SM - Motor 2.360 3.432 0.0022 
WM - Cog 3.000 6.000 < 0.0001 
WM - VigAtt 1.640 2.605 0.0155 
WM - MNS 9.720 14.409 < 0.0001 
WM - Motor 3.920 8.699 < 0.0001 
Cog - VigAtt 1.360 2.091 0.0473 
Cog - MNS 6.720 9.333 < 0.0001 
Cog - Motor 6.920 11.815 < 0.0001 
VigAtt - MNS 8.080 9.150 < 0.0001 
VigAtt - Motor 5.560 7.835 < 0.0001 
MNS - Motor 13.640 18.569 < 0.0001 
Comparison between networks with highest classification performance and all other 
networks in Parkinson’s disease (in bold); significance threshold Pcorr < 0.001. 
 
Table SVII: Group differences between schizophrenia and Parkinson’s disease classification 
based on specific networks 

Network (abbr.) Mean difference 
(Acc.) 

T P 

EmoSF 9.120 14.028 < 0.0001 
ER 0.200 0.376 0.7088 

ToM 5.680 12.267 < 0.0001 
Empathy 6.880 12.561 < 0.0001 

Rew 2.320 4.011 0.0002 
AM 10.00 19.240 < 0.0001 
SM 5.800 8.985 < 0.0001 



WM 3.200 6.137 < 0.0001 
CogAC 3.560 6.908 < 0.0001 
VigAtt 4.880 7.593 < 0.0001 
MNS 10.040 14.013 < 0.0001 
Motor 11.960 18.011 < 0.0001 

Networks with highest classification performance in schizophrenia (in green); networks with 
highest classification performance in Parkinson’s disease (in blue); significance threshold 
Pcorr < 0.001. 

 

Table SVIII: Differences in classification performance between networks within normal 
aging 

Network (abbr.) 
comparison 

Mean difference 
(Acc.) 

T P 

EmoSF - ER 9.640 24.386 < 0.0001 
EmoSF - ToM 10.080 20.307 < 0.0001 
EmoSF - Empathy 10.080 29.131 < 0.0001 
EmoSF - Rew 0.080 0.267 0.7917 
EmoSF - AM 8.000 24.495 < 0.0001 
EmoSF - SM 2.400 8.668 < 0.0001 
EmoSF - WM 8.840 23.167 < 0.0001 
EmoSF - Cog 12.160 29.018 < 0.0001 
EmoSF - VigAtt 8.080 22.727 < 0.0001 
EmoSF - MNS 4.400 12.882 < 0.0001 
EmoSF - Motor 8.400 18.046 < 0.0001 
ER - ToM 0.440 0.910 0.3717 
ER - Empathy 0.440 1.204 0.2404 
ER - Rew 9.560 25.526 < 0.0001 
ER - AM 1.640 4.194 0.0003 
ER - SM 7.240 19.286 < 0.0001 
ER - WM 0.800 1.668 0.1083 
ER - Cog 2.520 4.573 0.0001 
ER - VigAtt 1.560 3.576 0.0015 
ER - MNS 5.240 10.324 < 0.0001 
ER - Motor 1.240 2.055 0.0510 
ToM - Empathy 0.000 0.000 1.0000 
ToM - Rew 10.000 31.109 < 0.0001 
ToM - AM 2.080 4.578 0.0001 
ToM - SM 7.680 17.663 < 0.0001 



ToM - WM 1.240 3.303 0.0030 
ToM - Cog 2.080 3.864 0.0007 
ToM - VigAtt 2.000 4.082 0.0004 
ToM - MNS 5.680 9.435 < 0.0001 
ToM - Motor 1.680 2.929 0.0073 
Empathy - Rew 10.000 30.151 < 0.0001 
Empathy - AM 2.080 5.316 < 0.0001 
Empathy - SM 7.680 26.755 < 0.0001 
Empathy - WM 1.240 3.059 0.0054 
Empathy - Cog 2.080 4.219 0.0003 
Empathy - VigAtt 2.000 5.477 < 0.0001 
Empathy - MNS 5.680 11.537 < 0.0001 
Empathy - Motor 1.680 2.959 0.0068 
Rew - AM 7.920 28.654 < 0.0001 
Rew - SM 2.320 7.632 < 0.0001 
Rew - WM 8.760 27.573 < 0.0001 
Rew - Cog 12.080 28.233 < 0.0001 
Rew - VigAtt 8.000 21.381 < 0.0001 
Rew - MNS 4.320 10.832 < 0.0001 
Rew - Motor 8.320 16.671 < 0.0001 
AM - SM 5.600 17.421 < 0.0001 
AM - WM 0.840 2.227 0.0356 
AM - Cog 4.160 9.744 < 0.0001 
AM - VigAtt 0.080 0.219 0.8283 
AM - MNS 3.600 8.647 < 0.0001 
AM - Motor 0.400 0.747 0.4623 
SM - WM 6.440 21.435 < 0.0001 
SM - Cog 9.760 23.380 < 0.0001 
SM - VigAtt 5.680 16.235 < 0.0001 
SM - MNS 2.000 5.410 < 0.0001 
SM - Motor 6.000 14.412 < 0.0001 
WM - Cog 3.320 6.565 < 0.0001 
WM - VigAtt 0.760 2.156 0.0413 
WM - MNS 4.440 9.320 < 0.0001 
WM - Motor 0.440 0.938 0.3578 
Cog - VigAtt 4.080 7.955 < 0.0001 
Cog - MNS 7.760 15.809 < 0.0001 
Cog - Motor 3.760 6.014 < 0.0001 
VigAtt - MNS 3.680 9.227 < 0.0001 
VigAtt - Motor 0.320 0.730 0.4727 



MNS - Motor 4.000 8.281 < 0.0001 

Significance threshold Pcorr < 0.0001. 

Table SIX: Group differences between schizophrenia and normal aging classification based 
on specific networks 

Network (abbr.) Mean difference 
(Acc.) 

T P 

EmoSF 14.480 35.469 < 0.0001 
ER 8.160 14.995 < 0.0001 

ToM 15.640 31.139 < 0.0001 
Empathy 7.320 16.128 < 0.0001 

Rew 19.480 43.003 < 0.0001 
AM 15.200 29.173 < 0.0001 
SM 23.920 57.946 < 0.0001 
WM 16.440 32.283 < 0.0001 

CogAC 9.360 18.938 < 0.0001 
VigAtt 10.760 24.556 < 0.0001 
MNS 17.360 33.451 < 0.0001 
Motor 21.720 31.016 < 0.0001 

Significance threshold Pcorr < 0.001. 

Table SX: Group differences between Parkinson’s disease and normal aging classification 
based on specific networks 

Network (abbr.) Mean difference 
(Acc.) 

T P 

EmoSF 23.600 40.347 < 0.0001 
ER 7.960 16.335 < 0.0001 

ToM 9.960 19.051 < 0.0001 
Empathy 14.200 27.574 < 0.0001 

Rew 21.800 47.139 < 0.0001 
AM 5.200 14.720 < 0.0001 
SM 18.120 32.350 < 0.0001 
WM 13.240 31.323 < 0.0001 

CogAC 12.920 22.726 < 0.0001 
VigAtt 15.640 25.407 < 0.0001 
MNS 27.400 40.190 < 0.0001 
Motor 9.760 18.737 < 0.0001 

Significance threshold Pcorr < 0.001. 
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Abstract
Personality is associated with variation in all kinds of mental faculties, including affective, social, executive, and memory 

functioning. The intrinsic dynamics of neural networks underlying these mental functions are reflected in their functional 

connectivity at rest (RSFC). We, therefore, aimed to probe whether connectivity in functional networks allows predicting 

individual scores of the five-factor personality model and potential gender differences thereof. We assessed nine meta-

analytically derived functional networks, representing social, affective, executive, and mnemonic systems. RSFC of all 

networks was computed in a sample of 210 males and 210 well-matched females and in a replication sample of 155 males 

and 155 females. Personality scores were predicted using relevance vector machine in both samples. Cross-validation 

prediction accuracy was defined as the correlation between true and predicted scores. RSFC within networks representing 

social, affective, mnemonic, and executive systems significantly predicted self-reported levels of Extraversion, Neuroticism, 

Agreeableness, and Openness. RSFC patterns of most networks, however, predicted personality traits only either in males 

or in females. Personality traits can be predicted by patterns of RSFC in specific functional brain networks, providing new 

insights into the neurobiology of personality. However, as most associations were gender-specific, RSFC–personality rela-

tions should not be considered independently of gender.

Keywords Functional networks · Gender differences · Hormonal influence · Machine learning · NEO-FFI · Resting-state 

functional connectivity

Introduction

Inter-individual differences in personality permeate all 

aspects of life, from affective and cognitive functioning to 

social relationships. One of the most comprehensive and 

most widely recognized models of personality is the Five-

Factor Model (FFM; Costa and McCrae 1992), consisting 

of five broad dimensions: Openness to experience/Intel-

lect, Extraversion, Neuroticism, Agreeableness, and Con-

scientiousness. Openness to experience/Intellect reflects 

the engagement with aesthetic/sensory and abstract/intel-

lectual information, as well as the degree of appreciation 

and toleration for the unfamiliar (Nicholson et al. 2002; 

Fleischhauer et al. 2010; Fayn et al. 2015). Extraversion 

relates to approach behaviour of driving toward a goal that 

contains cues for reward, and tendency to experience posi-

tive emotions given by the actual attainment of that goal 

(Depue and Collins 1999; DeYoung 2015). Neuroticism 

relates to a person’s emotional life and reflects the tendency 
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to heightened emotional reactivity to negative emotions 

(Goldberg and Rosolack 1994; Rusting and Larsen 1997; 

Gray and Mcnaughton 2000). Agreeableness relates to inter-

personal behaviour and reflects the degree of avoidance of 

interpersonal conflicts (stability between individuals) (Gra-

ziano et al. 2007; Butrus and Witenberg 2013). Conscien-

tiousness reflects the degree to which individuals perform 

tasks and organize their lives, exhibiting a tendency to show 

self-discipline, act dutifully, and aim for achievement (sta-

bility within individuals) (Ozer and Benet Martínez 2006; 

Roberts et al. 2009) (cf. for more details McCrae and Costa 

2004; DeYoung and Gray 2009).

Since the FFM of personality is based on language 

descriptors of adjectives applied to human and human 

behaviour in English lexicon, rather than neurobiological 

features, many attempts have been made to explore the 

neural bases of these five factors. At first, each trait has 

been associated with its most crucial and characterizing 

psychological functions (e.g., Neuroticism and Extraver-

sion to sensitivity to punishment and reward, respectively, 

Agreeableness to social processes, Conscientiousness to 

top–down control of behaviour and Openness cognitive 

flexibility), and hypotheses have been developed about the 

associations between brain systems supporting those psy-

chological functions, and the respective trait, paving the 

way for a biology of personality traits (c.f. DeYoung and 

Gray 2009). It has, therefore, been suggested that Neuroti-

cism is associated (functionally or structurally) to affec-

tive regions that had been linked to respond to threat and 

punishment like amygdala, hippocampus, cingulate cortex, 

and medial prefrontal cortex (Kumari 2004; Cremers et al. 

2010; DeYoung et al. 2010; Tzschoppe et al. 2014; Mad-

sen et al. 2015; Pang et al. 2016). Extraversion has been 

linked to regions responding to reward-related stimuli like 

nucleus accumbens, striatum, amygdala, and orbitofron-

tal cortex (DeYoung et al. 2010b; Adelstein et al. 2011; 

Pang et al. 2016, c.f.; Lei et al. 2015). Conscientiousness 

has been related to the lateral prefrontal cortex (Asahi 

et al. 2004; Passamonti et al. 2006; DeYoung et al. 2010; 

Kunisato et al. 2011), deputed to the planning, following 

complex rule and voluntarily control of behaviour. Simi-

larly, Openness has also been associated with the functions 

of the lateral PFC (DeYoung et al. 2005; Kunisato et al. 

2011), but, in contrast to Conscientiousness, more because 

of its role in attention, working memory, and cognitive 

flexibility. Finally, Agreeableness has been associated 

with regions involved in the processing of social informa-

tion, such as temporo-parietal junction, superior temporal 

gyrus and posterior cingulate cortex (Hooker et al. 2008; 

DeYoung et al. 2010; Adelstein et al. 2011). However, 

the associations between brain systems underlying spe-

cific mental functions and personality traits might be more 

complex than such one-to-one mapping; instead, it is much 

more plausible that the mapping between traits and brain 

systems is rather many-to-many (c.f. Yarkoni 2015; Allen 

and DeYoung 2016). One example is provided by Neu-

roticism, which has not only been associated to affective 

regions, but also to regions exerting cognitive functions, 

e.g., dlPFC (Kunisato et al. 2011; Pang et al. 2016), or 

behavioural performances probing attention (MacLean 

and Arnell 2010), working memory (Studer-Luethi et al. 

2012), verbal fluency (Sutin et  al. 2011), and explicit 

memory (Pearman 2009; Denkova et al. 2012). It is, there-

fore, possible that these systems (affective and executive) 

both contribute in explaining variance in Neuroticism. The 

potential contribution of other regions rather than the ones 

originally suggested also holds for other traits. For exam-

ple, increasing evidence points to a link between Openness 

and the functional organization and global efficiency of 

the default mode network (DeYoung 2014; Sampaio et al. 

2014; Beaty et al. 2016). Similarly, even if not directly 

investigating the trait of Agreeableness, there is evidence 

(Gazzola et al. 2006; c.f.; Iacoboni 2009) showing a pos-

sible association between one of its facet, empathy, with 

the mirror neuron system.

Furthermore, one of the major challenges of using func-

tional studies for the association between personality traits 

and brain systems is the fact that the latter can only be based 

on specific implementations such as behavioural tests or 

paradigms used in experimental research. Moreover, there 

is a general consensus that mental functions arise from the 

coordinated activity within distributed networks rather than 

any individual brain region (Eickhoff and Grefkes 2011). 

Therefore, relating a personality trait to a particular function 

only because a brain region correlates with both is problem-

atic. These considerations have prompted a network-centered 

perspective of brain organization (c.f. De Vico Fallani et al. 

2014), highlighting the importance of functional integration 

for mental processes and their inter-individual differences. 

However, this approach, which requires a priori defined 

seeds, suffers from an important methodological limita-

tion. That is, by choosing pre-defined nodes from a single 

task-based fMRI study, the findings might be biased toward 

that particular paradigm operationalization. Furthermore, 

task-based fMRI literature often suffers from low statistical 

power and low reproducibility, due to the small sample sizes 

typically used and considerable heterogeneity in the analysis 

pipeline (cf. Samartsidis et al. 2017). To solve the problem 

of a more objective definition of relevant nodes in a given 

functional network, quantitative meta-analyses of task-based 

neuroimaging studies aggregate the findings of many indi-

vidual task-activation studies into a core network represent-

ing those locations that are reliably recruited by engaging 

in a given kind of mental process (cf. Fox et al. 2014). The 

investigation of RSFC in meta-analytically defined networks 

representing specific social, affective, executive, or memory 
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functions, therefore, provides a viable approach to capturing 

the complex intrinsic neural architecture underlying person-

ality (Adelstein et al. 2011; Sampaio et al. 2014).

Given that network connectivity data are almost inevi-

tably high-dimensional, consisting of many correlated fea-

tures, univariate analyses of associations between connectiv-

ity measures and phenotypical traits such as personality may 

not represent an optimal strategy (Orrù et al. 2012). Moreo-

ver, univariate analyses will likely fail to elucidate associa-

tions that depend on the pattern of connectivity within a 

network rather than any specific individual connection. On 

the other hand, machine learning and multivariate pattern 

analysis (MVPA), suitable for analysing neuroimaging data 

(cf. Oktar and Oktar 2015; Gael; Varoquaux and Thirion 

2014), provides an approach that overcomes these limita-

tions by searching for patterns in the connectivity matrix that 

allow the prediction of a continuous target variable (Doyle 

et al. 2015). In this article, the term “prediction” refers to the 

out-of-sample evaluation of a statistical model’s ability to 

predict the personality score for previously unseen individu-

als based on their RSFC. The potential of such approaches 

to predict behavioural scores from resting-state connectivity 

data has already been demonstrated with respect to sustained 

attention (Rosenberg et al. 2016), autistic traits (Plitt et al. 

2015), and impulsivity in economic decision-making (Li 

et al. 2013). Conversely, personality traits have been pre-

dicted from cyber records such as personal websites (Marcus 

et al. 2006) or social networks (Golbeck 2011; Golbeck et al. 

2011; Bachrach et al. 2012) but not yet from neuroimaging 

data.

Bringing together the different aspects outlined above, 

the current study explored whether individual levels of five 

major personality traits can be predicted from RSFC pro-

files in a priori defined brain networks representing specific 

cognitive functions. The selection of the networks used a 

priori knowledge based on the associations reported in the 

literature between psychological functions (and deputed net-

works) with personality. Accordingly, we chose functional 

networks associated with affective (emotion processing, 

reward, and pain) functions given their main associations 

with both Extraversion and Neuroticism, social (empathy 

and face processing) functions in relation to Agreeable-

ness, executive functions as linked to Conscientiousness 

and Openness (vigilant attention and working memory to 

represent, respectively, rigid control and flexibility), and 

memory (autobiographic and semantic) functions as many 

traits were also found to be associated with them. However, 

it is important to note that we refrained from having hypoth-

eses about network—predicted traits associations, since we 

believe that multiple brain systems, among the selected ones, 

can contribute to explaining inter-individual variance in one 

trait (e.g., Openness being predicted from networks outside 

the executive domain). We additionally used a network with 

whole-brain coverage consisting of 264 nodes (we here refer 

to it as Connectome; Power et al. 2011) to predict the five 

personality traits to test if personality can be better predicted 

by specific functional networks or a rather unspecific whole-

brain network. In addition, in light of the previous findings 

of sexual dimorphism in the relationships between brain 

structure and personality traits (Nostro et al. 2016) as well as 

gender differences in RSFC (Allen et al. 2011; Filippi et al. 

2013; Hjelmervik et al. 2014; Weis et al. 2017) and person-

ality (Yang et al. 2015), these analyses were performed in 

a gender-mixed sample as well as separately in male and 

female subsamples.

Materials and methods

Participants

All data were obtained from the Human Connectome Pro-

ject (HCP) WU-Minn Consortium as provided in the cur-

rent “S1200” release (http://www.human conne ctome .org, 

Van Essen et al. 2013). The HCP was funded by the 16 NIH 

Institutes and Centers that support the NIH Blueprint for 

Neuroscience Research; and by the McDonnell Center for 

Systems Neuroscience at Washington University. Our analy-

ses of the HCP data were approved by the ethics committee 

of the Heinrich Heine University Düsseldorf.

The HCP sample is composed of monozygotic and dizy-

gotic twins as well as not-twins, the latter including siblings 

of twins, just siblings, and only-children (including those 

that have an as-yet not scanned sibling but not twin). Given 

this structure of related and unrelated subjects, we paid par-

ticular attention to select a well-matched sample of males 

and females that was as large as possible, while, at the same 

time, controlling for possible effects of heritability by creat-

ing a sample of only unrelated subjects. Evidently, we first 

selected all participants from the HCP sample for whom 

resting-state fMRI volumes and personality data were avail-

able. Out of this sample, we then selected groups of unre-

lated males and females (i.e., only one representative of a 

given family), matched for age, years of education, and twin 

status. This last match (twin or not twin) was preferred over 

the match for zygosity (not twin, dizygotic or monozygotic) 

as it enabled us to select a higher number of participants 

while not introducing dependencies in the sample. In fact, 

Kolmogorov–Smirnov test showed that zygosity does not 

lead to any significant difference in the five scores distribu-

tion, cf. supplementary Table S1. Importantly, we created a 

first main sample (Sample 1), where we aimed for the high-

est number of participants according to the inclusion criteria, 

but, since a considerable number of individuals were left out 

from the first selection, we additionally created a “replica-

tion” sample, (Sample 2). Sample 2 was thus created by 
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removing the subjects belonging to the Sample 1 from the 

main release (S1200) and re-applying the selection criteria 

on the remaining participants.

The final selection procedure of Sample 1 resulted in a 

total of 420 subjects: 205 males (119 non-twins, 91 twin 

subjects; aged 22–37 years, mean: 28.3 ± 3.5; years of edu-

cation: 14.9 ± 1.8) and 205 females (117 non-twins, 93 twin 

subjects; aged 22–36 years, mean: 28.8 ± 3.5; years of edu-

cation: 15.0 ± 1.8).

From the remaining subjects not selected for Sample 1, 

Sample 2 was obtained resulting in a sample of 302 subjects: 

151 males (75 non-twins, 76 twins subjects; aged 22–36 

years, mean: 28.2 ± 3.4; years of education: 14.8 ± 1.8) and 

151 females (76 non-twins, 75 twin subjects; aged 22–35 

years, mean: 28.9 ± 3.5; years of education: 15.0 ± 1.8). For 

an overview on the samples selection, see Fig. 1.

In addition, Sample 1 and Sample 2 were combined to 

form the largest group of subjects available from the HCP 

data that are gender-balanced and matched for age and edu-

cation (Sample 3). This allowed us to investigate the stability 

of the results discovered in the two unrelated samples (i.e., 

that did not contain related individuals) and screen for addi-

tional relationships. The latter, however, need to be taken 

with caution, as the pooled sample does systematically con-

tain closely related individuals (siblings and twins). Please 

refer to the supplementary material for a more detailed over-

view of the sample and the results of this analysis.

Self-report data

Personality was assessed using the English-language ver-

sion of the NEO Five-Factor Inventory (NEO-FFI; McCrae 

and Costa 2004). The NEO-FFI consists of 60 items in the 

form of statements describing behaviours that are char-

acteristic for a given trait, 12 for each of the five factors 

(Openness, Conscientiousness, Extraversion, Agreeable-

ness, and Neuroticism). Each factor is assessed by aggre-

gating individual responses given on five-point Likert-

type ratings scales, yielding sum scores between 0 and 60 

for each factor. Data were analyzed using SPSS 20 (IBM 

Corp. Released 2011); scores of males and females were 

compared via t tests (p < 0.05, Bonferroni-corrected for 

multiple comparisons) for each personality trait. In case 

of significant group differences, we estimated effect sizes 

using Cohen’s d measure (Cohen 1988). Furthermore, 

correlations among factors were calculated and tested 

for significance (Bonferroni-corrected) separately for 

males and females (for details, see supplementary mate-

rial). Importantly, as reported on the HCP listserv (https 

://www.mail-archi ve.com/hcp-users @human conne ctome 

.org/msg05 266.html), the Agreeableness factor score in 

the HCP database was erroneously calculated due to item 

59 not reversed. We addressed this issue by reversing it 

and using the correct score of Agreeableness.

Fig. 1  Samples selection overview: first Sample 1 (or “main” sam-

ple) was created aiming for the largest number of participants. Once 

430 subjects were selected for this sample, the same procedure was 

applied on the remaing subjects of the HCP to generate Sample 2 

(or “replication” sample). The two samples result in this was related 

to each other (as siblings of the subjects in Sample 1 are present in 

Sample 2), but, within each sample, there are no subjects related to 

each other
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Meta-analytically derived networks

Selection of networks

We selected nine meta-analytic networks representing 

regions consistently activated by various social, affective, 

executive, and memory functions. Specifically, we used two 

networks related to social cognition: empathy (Emp; Bzdok 

et al. 2012) and static face perception (Face; Grosbras et al. 

2012); three networks related to affective processing: reward 

(Rew; Liu et al. 2011), physiological stress/pain (Pain; 

Kogler et al. 2015), and perception of emotional scenes and 

faces (Emo; Sabatinelli et al. 2011); two networks related to 

executive functions: working memory (WM; Rottschy et al. 

2012) and vigilant attention (VA; Langner and Eickhoff 

2013); two networks related to long-term memory: auto-

biographic memory (AM; Spreng et al. 2008) and semantic 

processing (SM; Binder et al. 2009).

Selection of coordinates

From each meta-analysis, we selected the reported coordi-

nates of the networks to include in our analyses and mod-

elled a 6-mm sphere around each coordinate. This ensured 

that all nodes were represented by region of interest of 

equal size (ROIs) within and across networks. Within each 

single network, we only selected peaks that either repre-

sented different anatomical regions, preventing multiple 

representations of a single region, or were at least 15 mm 

apart from each other [according to the SPM anatomy tool-

box 2.1; (Eickhoff et al. 2005, 2007)]. In cases of multiple 

peaks within an anatomical region that were closer to each 

other, we included the peak showing the highest Z-score. 

Please note that these criteria were only applied for multiple 

regions within a single network, while we did not exclude 

any regions that were found also in another network. That is, 

even if different networks featured peaks at the same loca-

tion, these presumably shared nodes were retained. Given 

that little is yet known about the effect of the networks’ sizes 

on the outcome predictability, we also had to consider the 

size of the networks (i.e., number of nodes) to make sure 

that possible differences in their predictive power were not 

due to the number of nodes included. As a result, the size of 

the networks ranged between 16 (VA) and 24 (Emo) nodes. 

Further details on the meta-analytic networks can be found 

in Table 1, supplementary Table S3 and supplement Fig S1.

Connectome analysis

In addition, we employed a brain-wide network of 264 

functional areas from Power and colleagues (Connectome; 

Power et al. 2011) to compare the predictive power of RSFC 

from the whole-brain and from meta-analytic networks. For 

the coordinates of this Connectome, please refer to the sup-

plementary Table S2 of Power et al.

Resting-state fMRI data: acquisition, preprocessing, 
and functional connectivity analyses

As part of the HCP protocol (Glasser et al. 2013), images 

were acquired on a Siemens Skyra 3T Human Connec-

tome scanner (http://www.human conne ctome .org/about /

proje ct/MR-hardw are.html) using a 32-channel head coil. 

Resting-state (RS)-BOLD data (voxel size = 2 × 2 × 2  mm3, 

FoV = 208 × 180  mm2, matrix = 104 × 90, 72 slices in a sin-

gle slab, TR = 720 ms; TE = 33.1 ms, flip angle = 52°) were 

collected using a novel multi-band echo planar imaging 

pulse sequence that allows for the simultaneous acquisition 

of multiple slices (Xu et al. 2013). RS-fMRI data were then 

cleaned of structured noise through the Multivariate Explor-

atory Linear Optimized Decomposition into Independ-

ent Components (MELODIC) part of FSL toolbox (http://

www.fmrib .ox.ac.uk/fsl). This process pairs independent 

component analysis with a more complex automated com-

ponent classifier referred to as FIX (FMRIB’s ICA-based 

X-noisifier) to automatically remove artefactual components 

(Salimi-Khorshidi et al. 2014).

The FIX-denoised RS-fMRI data were further preproc-

essed using SPM12 (Statistical Parametric Mapping, Well-

come Department of Imaging Neuroscience, London, UK, 

http://www.fil.ion.ucl.ac.uk/spm/), running under Matlab 

R2016a (Mathworks, Natick, MA). For each participant, 

the first four EPI images were discarded prior to further 

analyses. Then, EPI images were corrected for head move-

ment by affine registration using a two-pass procedure: in the 

first step, images were aligned to the first image, and in the 

second step to the mean of all volumes. Next, the mean EPI 

image was spatially normalized to the non-linear MNI152 

template (Holmes et al. 1998) using the “unified segmenta-

tion” approach to account for inter-individual differences in 

brain morphology (Ashburner and Friston 2005). Finally, 

images were smoothed with an isotropic Gaussian kernel 

(full-width at half-maximum = 5 mm).

The activity time series of each voxel was further cleaned 

by excluding variance that could be explained by mean 

white-matter and cerebrospinal-fluid signal (Satterthwaite 

et al. 2013). Data were then band-pass filtered with cut-off 

frequencies of 0.01 and 0.08 Hz.

To identify participants with aberrant RSFC patterns, 

we computed each subject’s entire connectome sampled 

on a 1-cm grid. We then computed the pairwise Euclid-

ean distance between the subjects and identified the near-

est neighbour for each subject. We excluded the subjects 

whose distance to their nearest neighbour was in the highest 

2.5% and at least 3 SD away from the average distance. This 

procedure was done separately for men and women (Sample 



 Brain Structure and Function

1 3

Ta
bl

e 
1 

 D
es

cr
ip

ti
o

n
 o

f 
th

e 
m

et
a-

an
al

y
ti

c 
d

er
iv

ed
 n

et
w

o
rk

s

D
o

m
ai

n
M

et
a-

an
al

y
ti

c 
n

et
w

o
rk

A
b

b
re

v
ia

ti
o

n
A

u
th

o
r,

 y
ea

r
R

ef
er

en
ce

 o
f 

th
e 

n
et

w
o

rk
 i

n
 t

h
e 

o
ri

g
in

al
 p

ap
er

N
u

m
b

er
 o

f 

in
cl

u
d

ed
 

N
o

d
es

N
et

w
o
rk

 d
es

cr
ip

ti
o
n

S
o
ci

al
E

m
p
at

h
y

Em
p

B
zd

o
k

, 
2

0
1

2
T

ab
le

 n
.1

 (
A

L
E

 m
et

a-
an

al
y
si

s 
o

f 
em

p
at

h
y

)
2

2
R

eg
io

n
s 

co
n

si
st

en
tl

y
 a

ct
iv

at
ed

 d
u

ri
n

g
 t

as
k

s 
re

fe
rr

in
g

 t
o

 

co
n

sc
io

u
s 

an
d

 i
so

m
o

rp
h

ic
 e

x
p

er
ie

n
ce

 o
f 

so
m

eb
o

d
y

 

el
se

’s
 a

ff
ec

ti
v
e 

st
at

e

S
o
ci

al
S

ta
ti

c 
fa

ce
 p

er
ce

p
ti

o
n

Fa
ce

G
ro

sb
ra

s,
 2

0
1

2
T

ab
le

 n
. 

7
 (

S
ta

ti
c 

fa
ce

 p
er

ce
p

ti
o

n
)

1
9

C
o

n
v
er

g
en

ce
 a

cr
o

ss
 t

as
k

s 
co

n
si

st
in

g
 i

n
 v

ie
w

in
g

 p
h

o
to

-

g
ra

p
h

s 
o

f 
fa

ce
s 

o
r 

v
ie

w
in

g
 o

b
je

ct
s/

 s
cr

am
b

le
d

 i
m

ag
es

A
ff

ec
ti

v
e

R
ew

ar
d

Re
w

L
iu

2
0

1
1

T
ab

le
 n

. 
1

2
3

C
o
n
v
er

g
en

ce
 a

cr
o
ss

 r
ew

ar
d
 v

al
en

ce
 a

n
d
 d

ec
is

io
n
 s

ta
g
es

 

co
n
tr

as
ts

A
ff

ec
ti

v
e

P
h
y
si

o
lo

g
ic

al
 s

tr
es

s
Pa

in
K

o
g

le
r,

 2
0

1
5

T
ab

le
 n

.1
 (

A
ct

iv
at

io
n

 p
h
y
si

o
lo

g
ic

al
)

1
8

R
eg

io
n

s 
co

n
si

st
en

tl
y

 a
ct

iv
at

ed
 d

u
ri

n
g

 t
as

k
s 

re
fe

rr
in

g
 t

o
 

u
n

p
le

as
an

t 
se

n
so

ri
c,

 e
m

o
ti

o
n

al
 a

n
d

 s
u

b
je

ct
iv

e 
ex

p
er

i-

en
ce

 t
h

at
 i

s 
as

so
ci

at
ed

 w
it

h
 p

o
te

n
ti

al
 d

am
ag

e 
o

f 
b

o
d

y
 

ti
ss

u
e 

an
d
 b

o
d
il

y
 t

h
re

at

A
ff

ec
ti

v
e

P
er

ce
p
ti

o
n
 o

f 
em

o
ti

o
n
al

 

sc
en

es
 a

n
d

 f
ac

es

Em
o

S
ab

at
in

el
li

, 
2

0
1

2
T

ab
le

 n
.2

 (
em

o
ti

o
n

al
 f

ac
e 

>
 n

eu
tr

al
 f

ac
e)

 a
n

d

T
ab

le
 n

.3
 (

em
o
ti

o
n

al
 s

ce
n

es
 >

 n
eu

tr
al

 s
ce

n
es

)

2
4

R
eg

io
n

s 
co

n
si

st
en

tl
y

 a
ct

iv
at

ed
 d

u
ri

n
g

 t
as

k
s 

re
fe

rr
in

g
 

to
 d

is
cr

im
in

at
io

n
 o

f 
em

o
ti

o
n
al

 f
ac

es
 >

 n
eu

tr
al

 f
ac

es
 

co
n
tr

as
t 

co
m

b
in

ed
 w

it
h
 e

m
o
ti

o
n
al

 s
ce

n
es

 >
 n

eu
tr

al
 

sc
en

es
 c

o
n
tr

as
t

E
x
ec

u
ti

v
e

W
o

rk
in

g
 m

em
o

ry
W

M
R

o
tt

sc
h
y,

 2
0

1
2

T
ab

le
 n

. 
2

2
2

R
eg

io
n

s 
co

n
si

st
en

tl
y

 a
ct

iv
at

ed
 d

u
ri

n
g

 a
ll

 W
M

 c
o

n
-

tr
as

ts
/ 

ex
p

er
im

en
ts

 (
m

ai
n

ly
 n

-b
ac

k
, 

S
te

n
b

er
g

, 
D

M
T

S
, 

d
el

ay
ed

 s
im

p
le

 m
at

ch
in

g
)

E
x
ec

u
ti

v
e

V
ig

il
an

t 
at

te
n

ti
o

n
VA

L
an

g
n

er
, 

2
0

1
2

T
ab

le
 n

.1
1

6
R

eg
io

n
s 

co
n

si
st

en
tl

y
 a

ct
iv

at
ed

 d
u

ri
n

g
 t

as
k

s 
p

o
si

n
g

 o
n

ly
 

m
in

im
al

 c
o

g
n

it
iv

e 
d

em
an

d
s 

o
n

 t
h

e 
se

le
ct

iv
it

y
 a

n
d

 

ex
ec

u
ti

v
e 

as
p

ec
ts

 o
f 

at
te

n
ti

o
n

 f
o

r 
m

o
re

 t
h

an
 1

0
 s

M
em

o
ry

A
u
to

b
io

g
ra

p
h
ic

 m
em

o
ry

AM
S

p
re

n
g
, 
2
0
0
8

T
ab

le
 n

. 
6

2
3

C
o
n
v
er

g
en

ce
 a

cr
o
ss

 t
as

k
s 

re
fe

rr
in

g
 t

o
 a

u
to

b
io

g
ra

p
h
ic

al
 

re
ca

ll
: 

ep
is

o
d
ic

 r
ec

o
ll

ec
ti

o
n
 o

f 
p
er

so
n
al

 e
v
en

ts
 f

ro
m

 

o
n

e’
s 

o
w

n
 l

if
e

M
em

o
ry

S
em

an
ti

c 
m

em
o

ry
SM

B
in

d
er

, 
2
0
0
9

O
n
 r

eq
u
es

t 
to

 t
h
e 

au
th

o
r

2
3

R
eg

io
n
s 

co
n
si

st
en

tl
y
 a

ct
iv

at
ed

 d
u
ri

n
g
 a

ll
 S

M
 c

o
n
tr

as
ts

/

ex
p
er

im
en

ts
 (

m
ai

n
ly

 w
o

rd
s 

v
s.

 p
se

u
d
o
w

o
rd

s,
 s

em
an

-

ti
c 

v
s.

 p
h

o
n

o
lo

g
ic

al
 t

as
k

, 
h

ig
h

 v
s.

 l
o
w

 m
ea

n
in

g
fu

l-

n
es

s)

W
h
o
le

-b
ra

in
C

o
n
n
ec

to
m

e
Co

nn
ec

to
m

e
P

o
w

er
, 

2
0

1
1

S
u

p
p

le
m

en
t 

m
at

er
ia

l
2

6
4

M
et

a-
an

al
y

ti
c 

R
O

Is
 a

n
d

 F
C

-m
ap

p
in

g
 R

O
I 

m
er

g
ed

 

to
 f

o
rm

 a
 m

ax
im

al
ly

-s
p

an
n

in
g

 c
o

ll
ec

ti
o

n
 o

f 
R

O
Is

. 

M
et

a-
an

al
y
ti

c 
R

O
Is

 w
er

e 
g
iv

en
 p

re
fe

re
n
ce

, 
an

d
 n

o
n
-

o
v
er

la
p
p
in

g
 f

c-
m

ap
p
in

g
 R

O
I 

w
er

e 
th

en
 a

d
d
ed



Brain Structure and Function 

1 3

1: 5 males, 5 females; Sample 2: 4 males, 4 females). No 

subjects were excluded due to outlier motion parameters 

(DVARS and FD both displaying zero-centered values) 

(Salimi-Khorshidi et al. 2014; Varikuti et al. 2016; Ciric 

et al. 2017). For RSFC analyses, the subject-specific time 

series for each node of each network were computed as the 

first eigenvariate of the activity time courses of all gray-

matter voxels within 6 mm of the respective peak coordinate. 

We then computed pairwise Pearson correlations between 

the eigenvariates of all nodes in each network, which then 

were transformed using the Fischer’s Z scores and adjusted 

(via linear regression) for the effects of age and movement.

RSFC-based prediction of personality traits 
by relevance vector machine learning

We examined if the RSFC patterns within each network pre-

dicted personality scores by means of statistical learning 

via the Relevance Vector Machine (RVM; Tipping 2001) 

as implemented in the SparseBayes package (http://www.

miket ippin g.com/index .htm). The RVM is a machine learn-

ing technique that can learn to predict a continuous target 

value given explanatory variables (also called features). In 

our case, the features were the RSFC values between all 

nodes of a meta-analytic network, while the score of a spe-

cific personality factor scale was the target value.

Briefly, RVM is a multivariate approach that was devel-

oped from the Support Vector Machine (SVM) to induce 

sparseness in the model’s parameters. The RVM, in contrast 

to SVM, implements a fully probabilistic Bayesian frame-

work: for each possible value of the input vector (e.g., set 

of FC values), the RVM algorithm provides a probability 

distribution of the predicted target value (e.g., FFM person-

ality score), unlike a point estimate obtained by the SVM:

In the RVM formulation above, the kernel K is a mul-

tivariate zero-centered Gaussian with standard deviation 

σ (estimated by the algorithm) and every parameter wi, 

assigned to each subject xi in the training set, is assumed to 

follow a Gaussian with mean zero and standard deviation 

σi. The standard deviations σi that describe the probability 

distribution of the parameters wi are iteratively estimated 

from the training data to maximize the likelihood of the 

model. Sparseness is achieved by discharging parameters 

wi converged to zero. Once σ0 and σi have been estimated, 

the trained model can be used to predict the target value 

(e.g., FFM personality score) from a previously unseen input 

vector (RSFC data from participants that were not part of the 

training data) by computing the predictive distribution (for a 

more detailed description, see Tipping 2001).

ŷ(x, w) = w0

(
0; 𝜎0

)
+

n∑

i=1

wi

(
0; 𝜎i

)
K
𝜎

(
xi, x

)
.

In our study, we implemented the RVM algorithm with a 

10-fold cross-validation. That is, the sample was randomly 

split into 10 equally sized groups of which 9 were used for 

training, while one was held back and used for assessing the 

performance of the prediction in previously unseen data. 

Holding out each of the 10 groups in turn then allowed com-

puting the prediction performance across the entire data set. 

Importantly, this procedure was repeated 250 times using 

random initial splits of the data to obtain robust estimates of 

the RVM performance for predicting a given NEO-FFI score 

from a particular network’s RSFC pattern. For each subject, 

the predicted values resulting from each cross-validation 

(i.e., one replication) were averaged over the 250 replica-

tions and ultimately correlated with the real score.

As we performed 250 replications of a 10-fold cross-val-

idation, in total 2500 models were computed to predict each 

trait. We thus quantified the contribution of each connection 

by the fraction of these 2500 models in which the weight for 

the respective connection was non-zero. The connections 

that had a non-zero weight in at least 80% of all models were 

identified as the connections that were most robustly part of 

the predictive model. The brain networks were visualized 

with the BrainNet Viewer (http://www.nitrc .org/proje cts/

bnv/) (Xia et al. 2013).

For both the “main” (Sample 1) and “replication” 

(Sample 2) samples, predictions were first carried out for 

all subjects with males and females combined  (AllSample1: 

n = 410  AllSample2: n = 302), and then separately for the male 

 (MenSample1: n = 210;  MenSample2: n = 151) and female groups 

 (WomenSample1: n = 210;  WomenSample2: n = 151) to assess 

gender differences in predictability. Predictive power was 

assessed by computing Pearson correlations between real 

and predicted NEO-FFI scores and mean absolute error 

(MAE). Importantly, results were only regarded as signifi-

cant when they were significant at a threshold of p < 0.05 in 

both samples (Sample 1 and Sample 2). The p value was 

computed via permutation testing between real and predicted 

values with 10,000 runs. For each run, we shuffled the pre-

dicted scores across subjects in either the entire sample (for 

“All”) or in the gender groups (for “Men” and “Women”) 

without replacement. From here, the definition of the p value 

as the fraction of runs when the correlation between real and 

the shuffled predicted score was higher than the one obtained 

between the real and the original predicted value.

For all significant results in either “All”, “Men” or 

“Women”, we further tested for significant differences in 

prediction performance (i.e., correlation between real and 

predicted value) between males and females in the main 

sample. Pearson correlation coefficients (r) were trans-

formed into Fisher’s Z and the difference between ZMen and 

ZWomen calculated and then 95% confidence intervals (CI) 

were computed based on these difference scores. The differ-

ence in correlation coefficients between males and females 
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were regarded as significant if the 95% confidence interval 

did not contain zero (Lane 2013).

Results

NEO-FFI scores

Subjects scored in the same range as reported by McCrae 

and Costa (McCrae and Costa 2004) in both the samples.

Correlations between factors were calculated separately 

for males and females and in the entire sample (see Sup-

plementary Table S2 for more detailed information). Most 

of them were significant at p < 0.05 (Bonferroni-corrected) 

in both males and females and the entire sample. Openness, 

however, was found to be independent of most of the other 

factors, except for Agreeableness (in Sample 1 for All, Men, 

and Women), and Conscientiousness (in All for both Sam-
ple 1 and Sample 2). Furthermore, Neuroticism was the 

only factor correlating negatively with almost all the others 

(except for Openness in Men of Sample 1 and in All, Men, 

and Women of Sample 2).

Comparison of the scores for the five personality traits 

between Men and Women revealed a significant difference 

for Agreeableness in both samples (Sample 1: t407 = − 4.95; 

p < 0.05, d = − 0.49; Sample 2: t299 = − 2.2; p < 0.05, d = 

− 0.27), with females scoring higher than males. For Neurot-

icism, Women significantly scored higher than Men in Sam-
ple 1 (t407 = − 2.8; p < 0.05, d = − 0.28), while in Sample 2, 

this difference only showed a trend (t299 = − 1.93; p = 0.055, 

d = − 0.2). For Openness (Sample 1: t407 = 0.1; p = 0.9; 

Sample 2: t299 = 1.64; p = 0.1) and Extraversion (Sample 1: 

 t407 = 1.1; p = 0.3; Sample 2: t299 = − 0.68; p = 0.5) no sig-

nificant gender differences were found. For Conscientious-

ness, Women significantly scored higher than Men in Sam-
ple 2 (t299 = − 2.11; p < 0.05, d = − 0.245), while in Sample 
1 Women scored higher than Men, but not significantly (t407 

= − 0.41; p = 0.15).

RVM: predicting personality traits based on RSFC

Results are only be reported if they were significant both in 

the main (Sample 1) and in the replication sample (Sample 
2).

Predictions in the entire sample (balanced males 
and females)

In the entire sample, the RSFC pattern of four networks 

significantly predicted personality factors: Pain and VA 

predicted Openness, AM predicted Agreeableness and Con-
nectome predicted Neuroticism (see Table 2; Fig. 2 for an 

overview of the results and Fig. 3 for the correlation plots).

Predictions of personality traits in the gender-split groups

In the gender-split groups, we also found a significant pre-

diction of Openness scores based on FC patterns within the 

Pain network in Women as well as prediction of Neuroticism 

based on the Connectome FC in Men. In contrast, the VA- 
and AM-related networks did not significantly predict Open-

ness and Agreeableness in either sub-group. However, in 

the gender-specific groups, additional significant predictions 

were observed: in males, Extraversion was predicted by the 

Table 2  Results of the relevance 

vector machine

Predicted trait: O openness, E extraversion, A agreeableness, N neuroticism

Predicting network: VA: vigilant attention; Pain: pain processing; Rew: reward; AM: autobiographic mem-

ory; Face: face perception; Connectome: whole-brain network; Emo: emotional processing

Correlation coefficients between real and predicted values which resulted significant at p < 0.05 in both 

samples in either across the entire sample (“All”), or in gender groups (“Men” or “Women”)

Predicted trait Predicting network Group r (Sample 1) p value 

(Sample 
1)

r (Sample 2) p value 

(Sample 
2)

O VA All 0.12 0.006 0.17 0.001

O Pain All 0.1 0.018 0.2 0.0

O Rew Women 0.17 0.006 0.2 0.006

O Pain Women 0.12 0.048 0.29 0.0

E Face Men 0.18 0.005 0.14 0.04

E Rew Women 0.14 0.02 0.23 0.002

E Connectome Women 0.29 0.0 0.23 0.002

A AM All 0.1 0.018 0.18 0.001

N Connectome All 0.14 0.018 0.14 0.04

N Connectome Men 0.17 0.0 0.37 0.0

N Emo Men 0.2 0.002 0.42 0.0
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RSFC patterns of Face and Neuroticism by Emo networks 

(Table 2; Figs. 2, 3). In females, Openness was predicted by 

Rew network. Furthermore, in females, Extraversion was 

predicted by Rew network and the Connectome (Table 2; 

Figs. 2, 3).

Gender differences in personality predictability

For all the predictions that were significant in at least one 

group (All/Males/Females), we tested if prediction perfor-

mance was significantly different between the male and 

female sub-groups. Significantly better predictability in Men 

than Women was found for Neuroticism predicted from Emo 

network (Table 3, supplementary Fig S2). In Women com-

pared with Men, Openness was significantly better predicted 

from Rew network and Extraversion from the entire Con-
nectome (Table 3, supplementary Fig S2).

Notably, not all associations that were only found pre-

dictive in one sub-group showed significant differences in 

predictability between males and females. In particular, no 

gender differences were found in predicting Openness from 

Pain, and VA networks, Neuroticism from Connectome, 

Agreeableness from AM, and Extraversion from Face and 

Rew networks (Table 3, supplementary Fig S2).

Discussion

Here, we report associations between major dimensions of 

personality and RSFC in functional brain networks. In par-

ticular, individual scores of various personality traits of the 

Five-Factor Model (McCrae and Costa 2004) could be pre-

dicted from patterns of RSFC in specific meta-analytically 

defined networks as well as from the whole-brain FC pattern. 

In assessing the generalizability of our findings, we focused 

Fig. 2  Emp: empathy; AM: Autobiographic memory; WM: work-

ing memory; Emo: emotional processing; Face: face processing; 

Rew: reward; SM: semantic memory; VA: vigilant attention; Pain: 

pain processing. Summary of the networks for which FC patterns 

significantly predicted the five personality traits. For each network-

trait combination in either Men or Women, and here, it is reported 

the conjunction between the correlation coefficients (i.e., minimum r 

value). Only predictions with r > 0.1 are displayed. While the nine 

meta-analytic networks are represented as slices (triangles) of the five 

personality circles, the connectome is represented as well as a circle. 

Triangles and circles are scaled based on the r values of the predict-

ing networks (r values reported in the axis). Meta-analytic networks 

are underlined if a significant prediction is detected in either Men or 

Women. Asterisks mark significant gender differences in Sample 1 
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on the predictions that replicated in two different samples 

within the HCP data set.

These results capitalize on the as-yet largely untapped 

potential (though cf. Schilbach et al. 2016; Varikuti et al. 

2016) of neuroimaging meta-analyses to provide robust, 

functionally specific ROIs to investigate individual task-

free data (Lee et al. 2012). These can help to constrain the 

otherwise vast feature space for statistical learning on rest-

ing-state data in a functionally meaningful and anatomically 

specific manner (Wang et al. 2010). As we demonstrate here, 

combining meta-analytic network definitions with statistical 

learning approaches allows, at a moderate level, not only 

predicting complex individual characteristics such as per-

sonality traits, but also the characterization of functional 

brain networks by their capability to do so. Nonetheless, our 

results of prediction of personality based on whole-brain FC 

pattern highlight that, for some traits, it might be crucial to 

consider the global connectivity as well.

In the overall (gender-mixed) sample, RSFC within net-

works representing affective and executive brain systems 

predicted Openness, RSFC within mnemonic network pre-

dicted Agreeableness, while RSFC from the whole brain 

predicted Neuroticism. In the gender-split samples, however, 

the prediction of Openness from the executive network VA 

and that of Agreeableness from the mnemonic network AM 

were not replicated in any of the two sub-groups, an effect 

likely related to the moderate effect present in the overall 

sample not specifically driven by a particular sex. In con-

trast, the prediction from the affective network Pain was also 

predicted in the female-only subsample, indicating that more 

information on the respective phenotypes can be gained from 

RSFC data in one gender. The gender-specific analyses 

revealed further constellations in which personality traits 

could be predicted from particular networks (see Fig. 2). In 

fact, none of the network–trait combination was predictive in 

both female and male subsamples, but several functional net-

works were found to differentially predict personality traits 

in females vs. males. In addition, Connectome successfully 

predicted Extraversion (in Women) and Neuroticism (in the 

entire sample, but then also in Men only). This underlines 

the notion that gender is a fundamental factor with regard to 

brain–personality relationships.

Methodological considerations and limitations

In our analysis, we combined a priori selection of networks 

of interest, built upon the existing literature (cf. Kennis 

et al. 2013; Hu et al. 2011; DeYoung 2010), together with a 

data-driven approach for learning of the predictive models. 

The benefits of this approach were twofolds: on one hand, 

with the a priori selection of networks, we could narrow 

down the networks of interest, which allowed us for a better 

functional interpretation of the results as the nodes repre-

sent brain regions robustly associated with the respective 

mental functions; on the other hand, the data-driven predic-

tive models allowed for an explanatory analysis investigat-

ing which networks were informative in predicting a single 

trait, assuming, therefore, that many biological systems 

could contribute in explaining its inter-individual variance 

(Yarkoni 2015). Given that if only meta-analytically defined 

functional networks were employed, less consistently linked 

yet potentially critical regions might have been left out, we 

included also a purely explorative analysis employing the 

whole-brain FC.

In addition, as noted above, using a sparsity inducing 

method (RVM) which yielded compact regional modes 

has the advantage of providing regionally specific predic-

tion models. As outlined above, our procedure provided a 

biologically informed feature reduction, as only the most 

relevant connections were taken in account in the prediction 

models. This has the advantage of reducing the complexity 

of the models avoiding overfitting (Hastie et al. 2009).

With respect to the prediction model, we here employed 

Relevance Vector Machine (RVM), which, in contrast to 

support vector regression or ridge regression, yields con-

siderably sparser solutions (Tipping 2001). This allowed for 

identifying the most used connections and nodes (Fig. 4) that 

mainly drove the prediction and hence enabled a more spe-

cific interpretation of its neurobiological underpinnings. In 

this context, it is important to note that, for any given model, 

the entire set of connections with non-zero coefficients pro-

vides information about the personality trait (Orrù et al. 

2012). For interpretation, however, we focused on the most 

consistently utilized connections (over 250 replications) as 

key components of the given prediction.

In accordance with recent recommendations, the current 

study used 10-fold cross-validation, which has been showed 

to be less susceptible to overly optimistic estimates as com-

pared with a leave-one-out approach (LOO-CV) (Varoquaux 

et al. 2016). Moreover, we repeated the cross-validation pro-

cedure 250 times, averaging the prediction performance over 

all replications to obtain robust and generalizable estimates 

of the capability of different brain networks to predict per-

sonality scores in new individuals.

A last important methodological reflection is that, 

although it might be tempting to make use of the entire 

HCP sample (which, if requiring an equal number of males 

and females, and if considered the matching factors of age, 

education and twin status, would yield about 800 individu-

als), it systematically consists of related subjects (siblings 

and twins). In addition, there is considerable evidence for 

Fig. 3  Scatter plots of the predictions of personality scores significant 

at p < 0.05 in both samples. Continuous regression lines, dashed lines, 

representing the standard deviation, and mean absolute errors (MAE) 

are displayed

◂
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genetic influence on both personality (Jang et al. 1996; 

Bouchard and McGue 2003; Verweij et al. 2012; Power and 

Pluess 2015) and brain function (van den Heuvel et al. 2013; 

Colclough et al. 2017; Ge et al. 2017; Ktena et al. 2017). 

Consequently, the relationship structure in the HCP data is 

a critical aspect to this work, as the inclusion of related sub-

jects would potentially hurt the model fitting but even more 

importantly would introduce an (optimistic) bias into the 

cross-validation. As a result, we thus performed our analyses 

primarily in the largest possible set of matched, unrelated 

subjects, replicate it in the then largest possible independent 

set of matched, unrelated subjects and only in a supplemen-

tary analysis pooled both of these sets for the analysis of 

around 750 subject.

Our approach, by building upon these methodologi-

cal considerations, yielded insights into the relationships 

between brain, behaviour, and personality. However, there 

are some limitations which are worth consideration in the 

future studies. First, gender-stratified sub-analyses may 

reduce statistical power because of the smaller sample 

sizes. Further studies with a larger sample size, designed 

to separately analyze men and women, are required, espe-

cially monitoring their hormonal levels (Arélin et al. 2015; 

Weis et al. 2017). Second, even though meta-analytic net-

works are among the most reliable ways to infer a mental 

function given a set of brain regions, we acknowledge that 

some regions of different functional networks can overlap. 

As a matter of fact, the employment of meta-analytically 

derived networks does not necessarily ensure a stringent and 

univocal relationship between the mental function supported 

by a particular network and a personality trait. Nonetheless, 

this approach can at least provide some confidence for the 

implication that a specific trait is related to a particular men-

tal function in terms of the network that subserves them. A 

third consideration relates to the measurement of personal-

ity, i.e., the use of self-reported questionnaires. Self-reported 

questionnaire might have, indeed, contributed in increasing 

the noise in the data, as perception and report of own per-

sonality traits can be affected by many factors, e.g., men 

usually scoring low on Neuroticism as socialization effect 

(Viken et al. 1994).

Predicting Openness to experience

Our results indicated that self-reported Openness to experi-

ence can be linked to RSFC patterns in the networks sub-

serving reward (Rew) and pain (Pain) processing in Women, 

while, in the overall sample, Openness was significantly pre-

dicted by RSFC in the vigilant attention (VA) network and, 

again, from Pain. Openness to experience has been linked 

Table 3  Gender differences in 

personality predictability

Comparison of the correlation coefficients between males and females and effect size of significant gender 

differences. Confidence intervals (CI) are computed on the Z-transformed difference between correlations 

in men and women for each prediction

*Significant gender difference at 95% of confidence

Predicted trait Predicting network Group r (Sample 1) ZMen − ZWomen 

(Cohen’s q)

CI (lower limit/

upper limit)

O VA Men 0.06 0.013 − 0.176/0.205

Women 0.07

O Pain Men 0.08 0.039 − 0.153/0.231

Women 0.12

O Rew Men − 0.06 0.236* 0.044/0.428

Women 0.17

O Pain Men 0.08 0.039 − 0.153/0.231

Women 0.12

E Face Men 0.18 0.054 − 0.138/0.246

Women 0.12

E Rew Men 0.08 0.055 − 0.137/0.247

Women 0.14

E Connectome Men − 0.03 0.323 * 0.131/0.515

Women 0.29

A AM Men 0.10 0.190 − 0.002/0.382

Women − 0.09

N Connectome Men 0.17 0.119 − 0.073/0.311

Women 0.06

N Emo Men 0.2 0.276* 0.084/0.468

Women − 0.07
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to “need for cognition,” that is, an individual’s tendency 

to engage in effortful cognitive processing (Fleischhauer 

et al. 2010): high levels of Openness were found to posi-

tively affect work outcomes for highly complex jobs while 

increasing dissatisfaction when jobs become mechanical and 

unchallenging (Mohan and Mulla 2013). Such monotonous 

and intellectually unchallenging tasks were exactly the tasks 

investigated in the VA meta-analysis of Langner and Eick-

hoff (2013), which revealed the brain network involved in 

dealing with sustained attentional demands in boring situ-

ations. Thus, the predictability of Openness from FC in the 

VA network may reflect a neural substrate of the challenge 

experienced by individuals scoring high on Openness when 

faced with repetitive tasks and standardized routines. High-

Openness participants might, therefore, need to recruit this 

network differently than low-Openness individuals to keep 

focused on a tedious, repetitive task over time. Indeed, con-

nections used throughout all prediction models from the 

VA network of Openness in both samples is between pre-

supplementary motor cortex and medial prefrontal cortex 

(both involved in task-set re-energizing and outcome moni-

toring), between left inferior occipital gyrus (IOG) and right 

temporo-parietal junction (crucial for re-orienting the sig-

nalling), and left IOG and inferior frontal junction (known 

for its contribution in the input/output transformation) (see 

Fig. 4 for the most informative connections and Langner and 

Eickhoff 2013 for more details on the regions’ functions).

Behaviours associated with the trait of Openness, such as 

cognitive exploration, have been attributed to high dopamine 

(DA) functioning (DeYoung et al. 2005). This, indeed, led to 

Fig. 4  Summary of the most used nodes (i.e., above 80% of the mod-

els) between regions from a the reward (Rew), vigilant attention (VA), 

and pain processing (Pain) networks in the prediction of Openness; 

b the Rew and face processing (Face) networks in the prediction 

of Extraversion. Summary of the most used connections between 

regions from c the autobiographic memory (AM) network in the pre-

diction of Agreeableness, d the Pain and emotional processing (Emo) 

networks in the prediction of Neuroticism
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the inclusion of Openness in the meta-trait “β” (or plasticity, 

c.f. DeYoung 2010), a higher order factor representing the 

shared variance between Openness and Extraversion, which 

are suggested to be both modulated by the dopaminergic 

system. DA is the main neurotransmitter modulating the 

reward network (cf. Berridge and Robinson 1998), and, in 

line with this, RSFC within the Rew network could predict 

both Openness and Extraversion (in Women and in Men, 

respectively), possibly via affecting the reactivity of the 

dopaminergic system. Interestingly, in predicting Openness, 

the weights of the nodes (i.e., number of incident edges) 

most used across the predictive models showed a stronger 

involvement of the dlPFC, corroborating previous findings 

that showed an association between Openness and the dopa-

minergic mesocortical branch, which projects directly onto 

the dlPFC (DeYoung 2013; Passamonti et al. 2015). On 

the other hand, regions like amygdala, nucleus accumbens 

(NAc), and orbitofrontal cortex (OFC), which constitute the 

other main dopaminergic branch, the mesolimbic pathway, 

were significantly less recruited. We would thus suggest that 

DA neurons populating the mesocortical branch, by encod-

ing specifically the saliency of the stimulus (i.e., reward 

value of information, cf. Bromberg-Martin et al. 2010), can 

be potentially more informative for high-Open individuals, 

characterized by the automatic tendency to perceive sali-

ent information in everyday experience (DeYoung 2013). 

Interestingly, we found that Openness could be predicted 

by FC of the Rew network significantly better in Women, 

compared to Men (r = 0.17 in Women and r = − 0.06 in Men 

of Sample 1). This might be explained by the fact that Rew 

functioning is highly influenced by the ovarian hormones 

estrogen and progesterone during the menstrual cycle (Dre-

her et al. 2007). In addition, estrogens have been related 

to dlPFC functioning, going along with cognitive decline 

which follows the drop of estrogens in menopause (Shanmu-

gan and Epperson 2014). Despite the lack of studies explor-

ing a direct relationship between females’ hormonal cycling 

and the trait of Openness, there is evidence for its indirect 

modulation by estrogen. That is, the catechol-O-methyltrans-

ferase gene, which is associated with the trait of Openness 

(Konishi et al. 2014), is influenced by estrogen (Harrison 

and Tunbridge 2008). We thus suggest that the influence of 

ovarian hormones on RSFC in the Rew network as well as on 

perceived Openness induces joint intra-individual variation 

(i.e., shared variance), which in turn increases the strength 

of the neural and phenotypical association across women. 

This should then result in the observed higher predictability 

of Openness in female participants.

Across the entire sample, but then also in the female sub-

group only, Openness could additionally be predicted in 

both samples based on FC within the pain network (Pain). 

Relationships between pain and Openness have been dem-

onstrated in terms of a higher threshold for pain tolerance 

(Yadollahi et al. 2014) and as protective factor in migraine 

occurrence (Magyar et al. 2017) in individuals reporting 

higher levels of Openness. However, very little is known 

about the association between this trait and the neural cor-

relates of pain. Indirect evidence, however, comes from 

research in avoidance learning, which suggests that the suc-

cessful avoiding of an aversive stimulus is experienced as 

an “intrinsic” reward (Kim et al. 2006). Endogenous opioid 

peptides, which are highly dense in the pain network (Baum-

gartner et al. 2006), were, indeed, found to modulate the 

dopaminergic system in response to aversive stimuli, result-

ing in the enhancement of a pleasure feeling boosted by DA 

(Sprouse-Blum et al. 2010). We thus suggest that high- and 

low-Open individuals differ in their ability to detect possible 

aversive stimuli (via diverse reactivity of the Pain network) 

and, by avoiding them, differently experience “intrinsic” 

reward.

In summary, the predictions from the Rew, VA, and Pain 

networks of Openness might, therefore, jointly point to the 

importance of saliency processing of stimuli, which can be 

rewarding (Rew), monotonous (VA), or aversive (Pain), turn-

ing high Open individuals as highly receptive and permeable 

to relevant information. Ultimately, connections between 

regions specially targeted by ovarian hormones (e.g., dlPFC) 

might underlie the significant gender difference in the pre-

dictability of Openness from FC in Rew network (Fig. 4).

Predicting Extraversion

Extraversion was predicted by the RSFC patterns within 

the networks of reward (Rew) in Women and face percep-

tion (Face) in Men. Moreover, in Women, this trait was also 

significantly predicted by the whole-brain (Connectome) 

RSFC. Extraversion is generally described as behavioural 

exploration and sensitivity to specific rewards. Importantly, 

a distinction has been also made between “Agentic Extra-

version”, reflected in assertiveness, dominance, and ambi-

tion aspects, and a “Affiliative Extraversion” which is more 

related to sociability and affiliative social bonding (DeYoung 

et al. 2007; c.f. Allen and DeYoung 2016).

As discussed previously in the paragraph “Predicting 

Openness to experience”, the traits of Extraversion and 

Openness exhibit a shared variance, known as “β” factor, 

and are genetically influenced by the dopaminergic system 

(c.f. Allen and DeYoung 2016). Notably, while for Open-

ness, Rew’s most used nodes encompassed the mesocortical 

pathway (see above), for Extraversion, it was regions along 

the mesolimbic branch that were mostly used (amygdala, 

NAc and OFC). Thus, we suggest that even though FC of 

Rew predicts both Openness and Extraversion, the functional 

connectivity of two different subsystems of the Rew network 

is informative for the two different traits, namely the meso-

cortical and mesolimbic pathway, respectively. In favour of 
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this distinction, extraverts were shown to be more sensi-

tive toward the motivational content of the reward stimu-

lus, encoded by DA neurons along the mesolimbic pathway 

(Bromberg-Martin et al. 2010; DeYoung 2013). We thus 

believe that the prediction of Extraversion from the FC 

within Rew might well-capture the “Agentic” dimension of 

Extraversion, given the motivational value of the rewarding 

stimuli and drive toward a goal prompted by the dopamin-

ergic mesolimbic system.

While extraversion in Women was found to be associ-

ated with FC of Rew, relationships of this trait, in Men, 

were found with FC in Face network. Faces are arguably 

the most important social stimuli for humans and it has been 

shown that extraverts compared to introvert, by spending 

more time on people, are significantly better at recognizing 

faces (Li and Liu 2010). Extraversion’s hedonic experience 

of goal achievement is enclosed in the “Affiliative” compo-

nent (DeYoung et al. 2007; c.f.; Allen and DeYoung 2016) 

and its genetic variation has been also pointed to the opiate 

system, due to its involvement in the hedonic response to the 

stimulus (Peciña et al. 2006). It is, therefore, possible that 

the endogenous opioid system via modulation of amygdala 

and medial prefrontal cortex (Tejeda et al. 2015; Selleck 

and Baldo 2017), most used regions in the connections of 

Face, mediate both the perception of faces (Martin et al. 

2006) and the social bonding (Pasternak and Pan 2013). We 

thus suggest that functional connectivity within the Face 

network in Men is mostly related to the “Affiliative” aspect 

of Extraversion.

The last prediction of Extraversion is based on whole-

brain FC in Women (Sample 1: r = 0.29; Sample 2: r = 0.23, 

both p < 0.05; for gender comparison in Sample 1, Cohen’s 

q = 0.323, p < 0.05). However, a major issue using whole-

brain connectivity patter might be the lack of anatomical 

localization for the most informative features, as none of 

them resulted to be used more than 40% of the predictive 

models, indicating a heterogeneous mosaic of connections 

which contribute to the prediction of Extraversion. The only 

theory in personality neuroscience which relates the func-

tioning of entire cortex to Extraversion (and Neuroticism, 

see below “Predicting Neuroticism”) is Eysenck’s biological 

theory of personality (Eysenck 1967). Here, Extraversion 

is thought to depend on the variability in cortical arousal, 

with introverted individuals having lower response thresh-

olds consequently more cortical arousal compared to extra-

verts. In favour of this hypothesis, the topological proper-

ties of whole-brain RSFC have shown that brains of more 

extraverted individuals behave more similarly to a “small-

world” compared to a “random” network, with higher clus-

tering coefficient compared to introverts (Gao et al. 2013). 

A “small-world” clustered configuration, which supports 

a more modularized information processing and fault tol-

erance, can, therefore, be associated with higher arousal 

threshold in extraverts’ cortex. We also observed that this 

prediction performance was significantly stronger in Women 

compared to Men (r = 0.29 in Women and r = − 0.03 in 

Men of Sample 1). Again, a possible cause might be the 

involvement of ovarian hormones, targeting specifically the 

most densely interconnected hub structures of the connec-

tome (Alawieh et al. 2015) as well as influencing level of 

Extraversion (Jokela et al. 2009; Ziomkiewicz et al. 2012). 

However, more studies are needed to prove this interaction 

between Extraversion, estrogen, and the topographical prop-

erties of whole-brain functional connectivity.

To sum up, connectivity of regions encoding the moti-

vational value and the drive toward a goal (Rew) and the 

hedonic processing of the goal itself (Face) were informa-

tive to predict inter-individual variability in the trait of 

Extraversion possibly capturing the “Agentic” and “Affilia-

tive” aspects of the trait, respectively (Fig. 4). Importantly, 

given the modulation of ovarian hormones on both the trait 

of Extraversion and on the topological properties of the Con-
nectome, we would suggest that sex hormones might be a 

possible mediator of this trait–network relationship, result-

ing in better prediction performance in Women.

Predicting Agreeableness

RSFC patterns in the AM network could predict the indi-

vidual level of perceived Agreeableness while grouping men 

and women in both samples. This trait reflects a high desire 

to avoid interpersonal conflicts (Jensen-Campbell and Grazi-

ano 2001) and strong affect regulation (Ryan et al. 2011). In 

line with this, positive correlations have been demonstrated 

between Agreeableness and regions supporting social func-

tioning (Hooker et al. 2008; DeYoung et al. 2010; Hassabis 

et al. 2014) and midline regions of the default mode network 

(DMN), as deputed to self-referential process (Adelstein 

et al. 2011; Sampaio et al. 2014). Our prediction of Agree-

ableness from the AM network supports a crucial role of 

self-reference, strongly linked to autobiographical memory 

(Molnar-Szakacs and Arzy 2009), in how high agreeable 

individuals deal with social demands. Self-related cognition 

has been often discussed at the neural level as the product 

of interaction between the DMN and the mirror neuron sys-

tem (MNS), the first responsible for high-level mentalizing 

function and the second for embodied simulation-based rep-

resentation (Keysers and Gazzola 2007; Qin and Northoff 

2011; c.f.; Molnar-Szakacs and Uddin 2013). As a result, 

the privileged access to the own physical and mental states 

would allow a better insight into others’ physical and mental 

states, and consequent appropriate social responses.

Interestingly, within the AM network, most used connec-

tions that informed about the trait in both samples reflected 

the interaction between the DMN and MNS systems: nodes 

with highest weights belonged, indeed, to DMN subsystem, 
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such as medial PFC, posterior cingulate cortex, medial tem-

poral lobe (amygdala and hippocampus) and lateral parietal 

cortex (temporo-parietal junction). The remaining nodes 

with the highest weights belonged to the MNS, such as infe-

rior frontal gyrus, precentral gyrus, inferior parietal cortex, 

and superior temporal sulcus. Our result, hence, supports 

the interplay of these two subsystems in the context of self-

processing (here expressed via memory recollection about 

past experiences, AM) and that this knowledge about the 

self can significantly predict Agreeableness, the trait most 

reflecting enhanced social skills.

Predicting Neuroticism

In Men, self-reported Neuroticism was predicted by RSFC 

within the emotional processing network (Emo). In addition, 

the RSFC from the whole brain (Connectome) significantly 

predicted this trait across the entire sample and then specifi-

cally in Men only. Neuroticism represents a broad dimen-

sion of individual differences in the tendency to experience 

negative, distressing emotions. High-Neuroticism scores 

entail the experience of fear, anger, sadness, embarrassment, 

the incapacity to control cravings and urges, and to cope 

with stress (Costa and McCrae 1987). Within this trait, it 

is possible to delineate two major divisions: one related to 

the experience of anxiety, fear and passive avoidance, and 

referred in literature as the aspect Withdrawal, and the other 

related to irritability, anger and active defensive responses, 

or Volatility (DeYoung et al. 2007). Neuroticism is argu-

ably the most studied personality trait and is an important 

predictor of many different mental and physical disorders 

(Lahey 2009). Furthermore, the two aspects of Neuroticism 

(Withdrawal and Volatility) highly reflect the dimension of 

Behavioural Inhibition System (BIS) and Fight-Flight-Free-

ing System (FFFS) from the Gray’s Reinforcement Theory 

(Gray and Mcnaughton 2000), conceptualized in term of 

their neurobiology. Interestingly, this distinction between the 

Volatility/FFFS and Withdrawal/BIS seems to be captured 

by the two networks showing predictability power for Neu-

roticism, Emo and Pain. Even though this last prediction 

(Pain) was found significant in Sample 1 (with r = 0.15, 

p < 0.05 in Men) but not fully replicated in the Sample 
2 (with r = 0.2, p = 0.05 in Men) (Fig. 4), we would still 

suggest that recruitment of this network in association to 

Neuroticism might indicate that perception of the aversive 

stimulus via the Pain network (Iannetti and Mouraux 2010; 

Hayes and Northoff 2012) could lead high-Neuroticism men 

to inhibit their behaviours such to avoid potential threats 

and punishments (Withdrawal). Conversely, Emo network 

would trigger emotional responses for either escaping or 

eliminating the threat, but in both cases showing a strong 

emotional lability (Volatility). Beyond associations with spe-

cific networks, Neuroticism could also be predicted from 

the whole-brain RSFC (Connectome) in Men and across 

genders. This is nicely in line with graph analysis studies 

(Gao et al. 2013; Servaas et al. 2015), showing that the 

neurotic brain displays topological properties of a “random 

network” and overall weaker FC. Here, cortisol might play 

a specific role, the hormone that is most closely associated 

with a biological reaction to stress and found to correlate 

with Neuroticism. However, the directionality of correla-

tion seems to depend on gender: many studies converged in 

discovering that Neuroticism was positively correlated with 

baseline cortisol in men, but the opposite was true in women 

(Zobel et al. 2004; Oswald et al. 2006; DeSoto and Salinas 

2015). Thus, especially in men, the overabundance of corti-

sol by potentiating neuronal degeneration (Sapolsky 1994) 

might be responsible for the overall smaller brain volume 

(Liu et al. 2013), white-matter (Bjørnebekk et al. 2013), and 

gray-matter (Servaas et al. 2015) functional disconnectiv-

ity found in high-Neuroticism individuals compared to the 

more emotional stable. Given that all the three networks 

(Emo, Pain, Connectome) showed a stronger predictability 

in Men compared to Women (statistically significant for the 

first two, and a strong trend for the third, see Table 3), we 

suggest that gender may moderate Neuroticism’s relation-

ship to cortisol. However, more (direct) studies are needed to 

better understand this intricate relationship between RSFC, 

cortisol, Neuroticism, and gender, and to shed light on the 

neural mechanisms that make women’s brain more suscep-

tible to Neuroticism-related mental disorders (Jorm 1987).

Implications for the neurobiology of FFM

Contrary to other important theories of personality, such 

as Cloninger’s Tridimensional Personality Questionnaire 

(TPQ) or Gray’s Reinforcement Sensitivity Theory (RST), 

the FFM is not based on biological grounds. However, vari-

ability in its personality factors had been associated with 

the brain, given that personality traits are the product of our 

actions, emotions and, more generally, cognitive processes. 

In this way, the cognitive mechanisms work as intermediate 

bridge between the psychometric constructs of personality 

and plausible biological substrates. However, the relation-

ships among these factors (brain, behaviour, and personality) 

can be misleading in the context of personality predictions, 

which, in fact, were significant only to a moderate level, 

compared to other findings: contrary to predictions of sus-

tain attention (Rosenberg et al. 2016) or reading comprehen-

sion (Cui et al. 2017) which tap predictability of cognitive 

process itself, personality traits are mostly modulators of 

these cognitive processes. This may make it more difficult 

to find brain correlates of personality in specific networks 

associated with those functions.

In addition, the hierarchy of the FFM model might 

have contributed in enlarging the gap: in our findings, we 
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highlighted the possibility that the predictions of one trait 

from different networks could reflect different components 

within this trait, also known as aspects and facet (cf. DeY-

oung et al. 2007; Koelsch et al. 2013; Haas et al. 2015). For 

example, we discussed the prediction of Extraversion from 

Rew and Face as potentially capturing the “Agentic” and 

“Affiliative” aspects, respectively, or the prediction of Neu-

roticism from Pain and Emo as linked to Withdrawal and 

Volatility. Conversely, when the same network was predict-

ing two different traits (e.g., Rew predicting Openness and 

Extraversion, discussed in light of the saliency and motiva-

tional contribution for the two traits), the prediction might 

have, indeed, boosted if investigating the meta-trait “β”, 

which reflects their shared variance within the dopaminergic 

system and thus more prone to be predicted by the network 

of reward processing (DeYoung 2013). Therefore, the level 

of abstraction of the five traits might not mapped well to par-

ticular brain systems, and more studies are encouraged for 

testing both more specific and homogeneous sub-dimensions 

as well as more heterogeneous higher order factor structure. 

Finally, many biological mechanisms participate in evoking 

the same cognitive process, e.g., changes in brain structure, 

function, or genetic, which are then intrinsically connected 

with personality. We here used RSFC as “marker” for the 

individual expression of personality traits, enduring across 

time and situations. However, a downside of FC in resting 

conditions might be that it has not so much to do with how 

personality factors come together to “produce” stable modu-

lations of a whole range of cognitive processes. Therefore, 

other brain measurements (as structural connectivity, task-

based functional activation, or molecular genetics) might 

be also useful in gaining more knowledge on the biology of 

personality and its relationship with specific mental func-

tions. Keeping in mind that we cannot expect biological 

mechanisms to show clear-cut as the respective psycho-

metric dimensions (Yarkoni 2015), but, conversely, many 

biological mechanisms (function, structure, neurotransmit-

ters) as well as many mental functions can be informative 

for a given personality trait, we, therefore, support the need 

for a multi-level approach in future studies as proposed by 

Yarkoni to achieve a unified description of the biological 

bases of personality traits.

However, even though all these aspects might affect the 

relationship between brain function (and structure) and per-

sonality, we here do provide insights on the relation between 

brain and personality: when analysing the entire sample while 

adjusting for gender effects, only two predictions (VA predict-

ing Openness and AM predicting Agreeableness) can be found 

not specifically driven by one gender-group. However, when 

looking at men and women separately, we observed much 

more and larger effects, evidence which highly remarks the 

importance of gender while investigating the neural correlates 

of personality. Specifically, the current findings propose a link 

between Openness and executive and affective domain. Agree-

ableness with memory domain. Extraversion with social and 

affective networks and lastly Neuroticism with the affective 

system. Interestingly, these last two traits could be predicted as 

well from the entire Connectome. An interesting consideration 

is that Openness could be significantly predicted by three dif-

ferent, barely overlapping networks (Pain, Rew, VA), but could 

not be predicted from the whole-brain, which was covering 

the nodes of all the three at the same time. We thus argue for 

a better predictability of Openness from specific and separate 

functional networks. Contrarily, Extraversion and Neuroti-

cism could be significantly predicted by both meta-analytic 

networks and the whole brain, pointing to the importance of 

also global effects, besides specific functions. This is particu-

larly true for Extraversion, which showed significantly higher 

prediction performance from global RSFC (Connectome) with 

a very vast nodes contribution, rather than from the specific 

networks of Rew and Face, thus favouring the global effects 

over the specific functions for this trait.

Conclusions

Using multivariate machine learning, we showed that person-

ality traits can be predicted from RSFC patterns in affective, 

social, executive, and memory networks of the brain, as well 

as from the whole-brain. Our observation that for most of these 

networks predictive power was gender-specific complements 

previous morphometric findings (Nostro et al. 2016) in high-

lighting the crucial role of gender when trying to understand 

the neurobiology of personality. In addition, the many-to-many 

associations between mental functions and personality traits 

indicate the complexity of the biological substrates of per-

sonality, as many functional systems may contribute to the 

observable differences in each trait (for a critical review see 

Yarkoni 2015). Maybe, even more fundamental are the impli-

cations for the concept of personality, given that even a trait 

as complex and broad as, for instance, Openness, seems to 

have a neurobiological underpinning in pre-defined functional 

networks that enables estimation of the individual level of that 

trait in a new subject.
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Supplementary material 
Table S1: Influence of zygosity on the traits distribution  
We performed a Kolmogorov-Smirnov (KS) test in order to verify that the distribution for 
each trait in monozygotic and dizygotic twins was not significantly different (null 
hypothesis). Therefore, from the S1200 release we selected only twin participants (N= 563) 
and later extracted a subsample of unrelated subjects (N = 262, 131 males and 131 females). 
All the statistics result not significant, i.e. the distribution of each trait in Mz and Dz does not 
differ. 
 
Trait K-S statistic (Mz vs Dz) P value 
Openness 0.10 0.47 
Conscientiousness 0.06 0.96 
Extraversion 0.07 0.87 
Agreeableness 0.13 0.23 
Neuroticism 0.07 0.93 
 
Table S2: Correlations between factors 
Supplementary Table 1: Intercorrelations (Pearson’s r) among the 5 personality factors 
for Sample 1 and Sample 2, across the overall samples, in males, and females. 
 
Sample 1 

  Openness Conscientiousness Extraversion Agreeableness Neuroticism 

Openness Overall 
Males 

Females 

- -0.14*/ 
-0.15/ 
-0.11 

0.07/ 
0.06/ 
0.09 

0.17*/ 
0.17*/ 
0.18* 

0.0/ 
0.07/ 
-0.08 

Conscientious
ness 

Overall 
Males 

Females 

- - 0.27*/ 
0.32*/ 
0.24* 

0.19*/ 
0.24*/ 
0.12 

-0.35*/ 
-0.37*/ 
-0.36* 

Extraversion Overall 
Males 

Females 

- - - 0.26*/ 
0.23*/ 
0.34* 

-0.32*/ 
-0.32*/ 
-0.3* 

Agreeableness Overall 
Males 

Females 

- - - - -0.26*/ 
-0.29*/ 
-0.31* 

Neuroticism  - - - - - 

 
Sample 2 

  Openness Conscientiousness Extraversion Agreeableness Neuroticism 

Openness Overall 
Males 

Females 

- -0.17*/ 
-0.11/ 
-0.2 

0.13/ 
0.09/ 
0.18 

0.13/ 
0.13/ 
0.18 

0.07/ 
0.09/ 
0.08 



Conscientious
ness 

Overall 
Males 

Females 

- - 0.25*/ 
0.32*/ 
0.17 

0.21*/ 
0.26*/ 
0.13 

-0.47*/ 
-0.54*/ 
-0.43* 

Extraversion Overall 
Males 

Females 

- - - 0.43*/ 
0.40*/ 
0.46* 

-0.41*/ 
-0.42*/ 
-0.41* 

Agreeableness Overall 
Males 

Females 

- - - - -0.39*/ 
-0.39*/ 
-0.45* 

Neuroticism  - - - - - 

 
* Marks significance at p<0.05 (Bonferroni corrected) 
 
Table S3: Coordinates of each network included in the RS functional connectivity 
network analysis 

Empathy 
Bzdok et al., 2012 

x y z Macroanatomica
l location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

2.0 56.0 18.0 rdmPFC dmPFC Area p32 
-8.0 54.0 34.0 ldmPFC dmPFC - 
36.0 22.0 -8.0 raIns/IFG raIns - 
54.0 16.0 20.0 rIFG rIFG Area45 
50.0 30.0 4.0 rIFG (p.Tr) rIFG - 
-30.0 20.0 4.0 laIns laIns - 
50.0 12.0 -8.0 rSTG rIFG - 
-44.0 24.0 -6.0 lIFG(p.Orb) lIFG - 
-4.0 18.0 50.0 SMA SMA  
-2.0 28.0 20.0 aMCC aMCC Area 33 
-4.0 42.0 18.0 pACC rostral ACC Areap32 
-2.0 -32.0 28.0 PCC PCC Retrosplenial Area 

a30 
52.0 -58.0 22.0 rTPJ rTPJ Area PGp 
-56.0 -58.0 22.0 lTPJ lTPJ Area PGa 
22.0 -2.0 -16.0 rAm rAm Amygdala: SF, CM 
54.0 -8.0 -16.0 rMTG rMTG - 
52.0 -36.0 2.0 rpSTS            rpSTS - 
-12.0 -4.0 12.0 laTh laTh Th:Prefrontal,  



6.0 -32.0 2.0 rpTh rpTh  
26.0 -26.0 -12.0 r Hippo rHippo Subiculum 
2.0 -20.0 -12.0 Midbrain Midbrain - 

14.0     4.0 0.0 rGP rGP Th:Prefrontal 

Face processing 
Grosbras et al., 2012 

x y z Macroanatomica
l Location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment  

42.0     -78.0    -8.0    r lOcC r lOcC hOc4la 
-40.0     -82.0 -8.0    lOcC l lOcC hOc4la 
26.0     -100.0   2.0      rOcPole rOcPole hOc2 
-14.0     -98.0 -4.0     lOcPole lOcPole hOc1 
52.0      -44.0 8.0      rMTG rMTG/pSTS - 
-56.0     -58.0 36.0     lTPJ lMTG/pSTS Area PFm 
28.0     -52.0    42.0 rIPS rSPL Area hIP1 
4.0      -58.0    28.0     rPrc rPCC - 

52.0     24.0     26.0     rIFS rIFG Area45 
-46.0    20.0     22.0     lIFG lIFG IFS1/IFS2 
0.0      20.0     54.0     l pre-SMA pre-SMA - 

42.0     12.0     30.0     rIFS rMFG IFS4 
12.0     52.0     16.0     pACC rMFG Area p32 
8.0       46.0 36.0 r amSFG rmPFC - 

14.0     28.0     50.0 r pmSFG rSFG - 
-24.0    24.0     42.0     lMFG lSFG - 
36.0     2.0      42.0     rMFG rPrG - 
20.0     -8.0    -14.0 rAm rAm Am: SF 
-16.0 -6.0 -12.0 lAm lAm - 

Reward 
Liu et al., 2011 

x y z Macroanatomica
l Location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

12.0     10.0     -6.0 rNAc rNAc NAc_fundus 
-10.0    8.0      -4.0   lPal lPal Striatum_scgp 
36.0      20.0 -6.0 raIns rIns - 
-32.0    20.0     -4.0 laIns lIns - 



0.0      24.0     40.0 aMCC dmPFC Area 32’ 
0.0      54.0     -8.0    mOFC mOFC Fp2 

24.0      -2.0    -16.0    rAm rAm Am: LB 
4.0     -14.0    8.0      rTh rTh Th: Temp 
0.0      8.0      48.0     l pre-SMA SMA - 
8.0      -18.0    -10.0    rBrainstem rBrainstem - 
2.0      44.0     20.0     rpACC rACC Area p32 

-24.0     2.0 52.0 lpMFG lMFG - 
-38.0    -4.0     6.0      lpIns lIns Area Id3 
24.0      40.0 -14.0 r SOrbG r midOFC Area Fo3 
-16.0    42.0     -14.0    lSOrbG l midOFC - 
40.0      32.0 32.0     rpMFG rMFG - 
-28.0    -56.0    48.0     lIPS lIPL hIP3 
28.0     -58.0    50.0     rIPS rAG hIP3 
0.0       -32.0    32.0 PCC PCC  

-36.0    50.0     10.0 laMFG lFP - 
-46.0    42.0     -4.0 lIFG l lOFC - 
30.0     4.0      50.0     raMFG rMFG - 
-22.0    30.0     48.0   lSFG lSFG - 

Pain 
Kogler et al., 2015 

x y z Macroanatomica
l Location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

38.0 18.0 0.0 rIns rIns - 
52.0      12.0 -4.0     rSTG rSTG Area 44  
60.0     6.0      2.0      rIFG rTP Area 44 
22.0     0.0      -4.0     rPal rPal - 
-38.0    14.0     4.0      laIns lIns OP7 
-58.0    0.0      6.0      lfOP lOP4 OP6 
-20.0    6.0      2.0      lPut lPut Striatum_PM 
4.0      6.0      46.0     rSMA rSMA Area 24dv 
0.0      14.0     36.0     laMCC lMCC Areas 24c’v,24c’d 

-42.0     -18.0   18.0     lpOP lOP3 OP3 
-54.0    -24.0    24.0     lSMG lSMG Area PFop 
-36.0     -20.0 2.0      lpIns lIns OP7, OP6 
-14.0    -12.0    10.0     lTh lTh Th: Pref 
10.0     -18.0    4.0      rTh rTh Th: Pref 



56.0     -24.0    24.0     rSMG rSMG Area PFop 
44.0     -14.0    16.0     r pOP rOP3 OP3 
38.0     50.0     12.0     rMFG rMFG - 
-24.0     -66.0   -26.0    lCb lCb LobuleVI 

Emotion perception 
Sabatinelli et al., 2012 

x y z Macroanatomica
l location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

4.0 47.0 7.0 pACC medPFC pv24c; pd24cv; 
pd24cd 

42.0 25.0     3.0 rIFG rIFG  
-42.0 25.0 3.0      lIFG(p.Tr) lIFG - 
48.0 17.0     29.0     rIFJ rMFG IFJ1 
-42.0 13.0 27.0     lIFJ lMFG IFJ1 
-2.0 8.0      59.0     l pmSFG lSFG  
20.0 -4.0 -15.0 rAm rAm Amygdala: SF 
-20.0 -6.0     -15.0 lAm lAm Amygdala:SF 
-20.0 -33.0 -4.0     lHippo lPHG . 
14.0 -33.0    -7.0     rHippo rPHG Subiculum 
53.0 -50.0    4.0      rMTG rMTG - 
38.0 -55.0 -20.0 r aFFG rFFG FG3 
-40.0 -55.0 -22.0 l aFFG lFFG Lobule VI 
38.0 -76.0   -16.0 r pFFG rpFFG hOc4v 
-40.0 -78.0 -21.0 lpFFG lpFFG hOc4v 
-4.0 52.0 31.0   lamSFG medPFC - 
36.0 25.0 -3.0 rIns rOFC - 
-38.0 25.0     -8.0     lIFG(p.Orb) lOFC - 
2.0 19.0 25.0 aMCC rACC Area a24a’, a23b’ 
0.0 -15.0 10.0 lTh Th Th: Temporal 
-2.0 -31.0    -7.0     Superior 

Colliculus 
Pulvinar - 

-28.0 -70.0 -14.0    lFFG lFFG FG1 
46.0 -68.0 -4.0     r lOcC r lOcC hOc4lp 
-48.0 -72.0    -4.0     l lOcC  l lOcC hOc4lp 

Working Memory 
Rottschy et al., 2012 

x y z Macroanatomica Original Cytoarchitectonic 



l location labeling in 
the Meta-
analysis 

Assignment  

-32.0 22.0     -2.0     l aIns laIns - 
-48.0 10.0     26.0     lIFG lIFG (p.Orb) Area 44 
-46.0 26.0     24.0     lIFS l plPFC IFS1/IFS2 
-38.0 50.0     10.0 lMFG l alPFC - 
36.0 22.0     -6.0     r aIns raIns - 
50.0 14.0     24.0     rIFG rIFG (p.Tr) Area44 
44.0 34.0     32.0     rpMFG r plPFC - 
38.0 54.0     6.0      raMFG r alPFC - 
2.0 18.0     48.0 r dmPFC pmedFC - 

-28.0 0.0      56.0 lSFG l pSFG - 
30.0 2.0      56.0     rSFG r pSFG - 
-42.0 -42.0 46.0 lIPS lIPS hIP2 
-34.0 -52.0    48.0     lSPL lSPL/IPS hIP3 
-24.0 -66.0    54.0 lSPL lpSPL Area7A 
42.0 -44.0    44.0     rIPS rIPS hIP2 
32.0 -58.0    48.0 rIPS rIPS hIP3 
16.0 -66.0    56.0     rSPL rpSPL Area7A 
-12.0 -12.0    12.0     lTh lTh Th: Pref 
-18.0 4.0      6.0 lPutament lPutamen Striatum:PoStP 
12.0 -10.0 10.0 rTh rTh Th: Pref 
-34.0 -66.0    -20.0 lFFG/Cb lCb/FFG FG2 
32.0 -64.0    -18.0 rFFG/Cb rCb/FFG FG1 

Vigilant Attention 
Langner et al., 2012 

x y z Macroanatomica
l location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

-2.0 8.0 50.0 l pre-SMA   a paracentral 
lobule 

- 

8.0 32.0 46.0 r mSFG r pmed SFG - 
0.0 26.0 34.0 l MCC l/r dorsal 

MCC 
Area 32’ 

50.0 8.0 32.0 r IFJ r IFJ  
40.0 22.0 -4.0 r aIns r aIns - 
46.0 36.0 20.0 r MFG r IFS - 



-40.0 -12.0 60.0 l PrG l PrG - 
-46.0 -68.0 -6.0 l IOG l IOG hOc4lp; hOc4d; 

hOc3d 
-48.0 8.0 30.0 l IFJ l IFJ area 44 
62.0 -38.0 17.0 r IPL r TPJ area PF 
8.0 -12.0 6.0 r Th r a/mTh Th: temporal 

32.0 -90.0 4.0 r MOG r MOG hOc4la 
-42.0 12.0 -2.0 l aIns l aIns - 
-10.0 -14.0 6.0 l Th l a/m Th Th: prefrontal 
6.0 -58.0 -18.0 r Cb l/r Cb lobule V 

44.0 -44.0 46.0 r IPS r IPL hIP2 
Autobiographical memory 

Spreng et al., 2008 
x y z Macroanatomica

l location 
Original 

labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

-1.0 -53.0    21.0     lPrc l/rPrc - 
-26.0 -28.0    -17.0    lHippo lHippo Subiculum 
-49.0 -61.0    31.0     lTPJ lTPJ Area PGa 
-2.0 51.0     -11.0    lFP l medPFC Fp2 

-60.0 -9.0     -18.0    lSTS lSTS/MTG - 
-50.0 27.0     -12.0    lSOrbG l vlPFC Fo5 
26.0 -33.0    -15.0    rHippo rpHippo Subiculum 
-1.0 20.0     57.0     lmSFG MFG - 
55.0 -58.0    30.0     rTPJ rTPJ Area PGa 
-47.0 9.0      46.0     lPrG l plPFC - 
-42.0 53.0     7.0      lFP l lFP - 
26.0 -14.0    -23.0    rHippo raHippo DG 
52.0 -5.0     -18.0    rMTG rTP/MTG - 
-39.0 13.0     -41.0    lTP lTP - 
-38.0 -82.0    38.0     lIPL lOC Area PGp 
-48.0 29.0     17.0     lIFG l dlPFC Area 45 
52.0 31.0     -11.0    rSOrbG r vlPFC Fo5 
-11.0 62.0     9.0      lFP lmedFP Fp1 
4.0 -8.0     2.0      rTh rTh Th: Temporal  
-4.0 39.0     16.0     lACC lrACC Area pv24c, 

pd24cv,  pd24cd 
-5.0 -34.0 36.0 lPCC lPCC - 



-29.0 16.0     51.0     lSFG lSFS - 
31.0 1.0      -26.0    rAm rAm Amygdala: LB 

Semantic Memory 
Binder et al., 2009 

x y z Macroanatomica
l Location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

-46 -70 21 lIPL lSTG Area PGp 
-50 -56 31 lAG lSTG Area PGa 
-64 -44 -4 lMTG lMTG - 
-47 -24 -17 lMTG lFFG - 
-55 -3 -24 laMTG lMTG - 
-7 -57 17 lPrc lPCC - 

-20 36 44 lSFG lSFG - 
-31 29 45 lMFG lMFG - 
-53 26 -1 lIFG lMFG Area 45 
-39 17 44 lMFG lIFG - 
53 -59 29 rAG rSTG Area PGa 
43 -72 31 rpIPL rMTG Area PGp 
-1 51 -7 medFP lACC Area Fp2 
-5 56 24 lmSFG lSFG Area p32 

-31 -34 -16 lFFG lParaHippo - 
-8 29 -10 sACC lACC Area s32 

-46 25 23 lIFS lMFG IFS1/IFS2 
64 -41 -2 rMTG rMTG - 
-43 -53 55 rIPL lIPL Area PFm 
-1 -18 40 rMCC lCC - 
51 20 26 rIFJ rMFG IFJ1 
64 -38 32 raIPL rSMG Area PF 
-23 26 -16 rFP lIFG Area Fo3 

 
x, y and z coordinates denote the center of gravity in MNI space. 
Reference for probabilistic cytoarchitectonic mapping of amygdala and hippocampus 
(Amunts et al. 2005)); superior parietal cortex (Scheperjans et al. 2008); intraparietal sulcus 
(Choi et al. 2006); parietal operculum (Eickhoff et al. 2006); ventral extrastriate cortex 
(Rottschy et al. 2007); dorsal extrastriate cortex (Kujovic et al. 2013); gyrus fusiformis 
(Caspers et al. 2013); lateral occipital cortex (Malikovic et al. 2016); Broca’s regions 



(Amunts et al. 1999); Cingulate cortex (Palomero-Gallagher et al. 2015). Cerebellar atlas 
(Diedrichsen et al. 2009). Thalamic connectivity atlas (Behrens et al. 2003). 
 
Abbreviations: r= right; l= left; a= anterior; p= posterior; s= sub-genual; m/med=medial; 
Tr.= pars; triangularis; Orb. = pars orbitalis; dmPFC= dorso-medial prefrontal cortex; SMA= 
supplementary motor area; MCC= middle cingulate cortex; ACC= anterior cingulate cortex; 
PCC= posterior cingulate cortex; Am= amygdala; Th= thalamus; Hippo= hippocampus; 
GP/Pal= globus pallidus; Prc= precuneus; mSFG= superior medial gyrus; Nac= nucleus 
accumbens; Put= putamen; PrG= pre-central gyrus; Ins= insula; IFS= inferior frontal sulcus; 
IFJ= inferior frontal junction; IFG= inferior frontal gyrus; MFG= middle frontal gyrus; 
SFG= superior frontal gyrus; OFC= orbito-frontal cortex; SOrbG= superior orbital gyrus; 
FP= frontal pole; STS= superior temporal gyrus; STG= superior temporal gyrus; MTG= 
middle temporal gyrus; ITG= inferior temporal gyrus; FFG= fusiform gyrus; SPL= superior 
parietal lobe; IPL= inferior parietal lobe; IPS= intra-parietal sulcus; fOP= frontal operculum; 
pOP= parietal operculum; TPJ= temporo-parietal junction; SMG= supramarginal gyrus; AG= 
angular gyrus; lOcC= lateral occipital cortex; OcPole= occipital pole; MOG= middle 
occipital gyrus; IOG= inferior occipital gyrus; Cb= cerebellum 
 
 

 
 



 

 

 



 

 

 



 

 
 
 
Regions constituting the meta-analytically defined network defined according to the SPM 
anatomy toolbox 2.1 (Eickhoff et al. 2005, 2007). Red labels indicated regions already 
defined in previous sections. 
Supplement Fig S1: Meta-analytically derived networks 
 



 

 

 
Supplement Fig 2: Comparison of the predictions across groups. Scatter plots of real 
and predicted personality score in the entire samples (all) as well as for males and 
females separately. Predictions are reported if they are significant in at least one out of 
the three groups.  
References: 
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A B S T R A C T

The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern
analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-
sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote
relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix
factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age
prediction frameworks in healthy and clinical populations.

This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single
site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with
Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were
preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and
modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM
voxel-wise values for a range of granularities (50–690 components) and LASSO (Least Absolute Shrinkage and
Selection Operator) regression were used for age prediction. First, we compared the performance of our data
compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based
factorization and parcellation-based compression). We then investigated the impact of the granularity on the
accuracy of age prediction, as well as the transferability of the factorization and model generalization across
datasets. We finally validated our framework by examining age prediction in ADNI samples.

Our results showed that our framework favorably compares with other approaches. They also demonstrated
that the NNMF based factorization derived from one dataset could be efficiently applied to compress VBM data of
another dataset and that granularities between 300 and 500 components give an optimal representation for age
prediction. In addition to the good performance in healthy subjects our framework provided relatively localized
brain regions as the features contributing to the prediction, thereby offering further insights into structural
changes due to brain aging. Finally, our validation in clinical populations showed that our framework is sensitive
to deviance from normal structural variations in pathological aging.
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Introduction

The structural dynamics of the human brain during adulthood is a
highly complex process. Machine-learning algorithms have been used to
capture the multivariate pattern of structural brain changes (Franke
et al., 2010) that relate to age with a brain-based age prediction frame-
work. By suggesting an age for any individual based on his/her brain's
structural scan, such approaches can provide new insights into brain
plasticity, into accelerating cerebral aging, as well as into the influence of
several variables such as genes, pharmacological intervention and
cognitive training in both healthy and clinical populations. Voxel based
morphometry (VBM) is one of the most commonly used methods to
measure greymatter volume (Good et al., 2001). It provides non-negative
measures, which convey biologically meaningful information and cap-
ture brain changes related to age and pathology, as well as brain plas-
ticity related to training (Good et al., 2001; Tisserand et al., 2002; May
2011). Previous studies have shown that machine-learning methods
applied to VBM data allow prediction of brain age (Franke et al., 2010).
In these studies, brain age was estimated by applying a support vector
machine approach on the high dimensional voxels' data (Erus et al.,
2015). However, in voxel-wise representation of structural data, features
may convey redundant information and/or noise and may promote
overfitting due to a higher number of features relative to the number of
subjects (Guyon and Elisseeff, 2003; Hua et al., 2009; Mwangi et al.,
2014). To address this issue, Franke et al. (2010) examined brain age
prediction based on the simple and fast application of the principle
component analysis (PCA) to the data and subsequent brain age predic-
tion with a relevance vector machine approach. This combination
allowed them to predict the brain age with an absolute error of 5 years.
Ever since, Franke et al., 2010's framework has been employed to
investigate other concepts in relation to healthy aging (such as different
age groups i.e., children and adolescents (Franke et al., 2012), gender
differences (Franke et al., 2014)), as well as differences between healthy
aging and various neurocognitive deviancies (such as cognitive impair-
ments (Gaser et al., 2013) and psychiatric disorders (Koutsouleris et al.,
2014)).

Most of the above-mentioned studies have implemented principle
component analysis (PCA) to counter the curse of dimensionality asso-
ciated with multivariate analysis of neuroimaging data (Franke et al.,
2010, 2012, 2013; Liem et al., 2017). PCA decomposes the entire
non-negative representation into a low rank approximation with a
combination of positive and negative weights (Jolliffe, 2002), which
does not promote spatially localized components. Furthermore, the
signed components within the PCA decomposition engage complex
cancellations during the reconstruction of the original representation.
Therefore, the use of PCA-based dimensionality reduction on brain voxels
hardly results in interpretable components, which can in turn prevent the
interpretation of a predictive model based on PCA-derived components.
Non-negative matrix factorization (NNMF) is an alternative decomposi-
tion method promoting relatively localized (spatial) representation that
has gained more attention in the past years. NNMF can factorize a given
dataset into low-ranking approximations capturing a parts-based repre-
sentation (Lee and Seung, 1999). The non-negativity constraint leads to
only additive combinations of the components, which allows the
factorization to reconstruct the original high dimensional data from the
parts-based representation. As a result, NNMF provides a more inter-
pretable factorization compared to standard decomposition approaches
such as PCA and ICA (Independent Component Analysis) (Lee and Seung,
1999; Sotiras et al., 2015). Recently, Sotiras et al. (2015) investigated the
application of NNMF to neuroimaging data, by decomposing the struc-
tural MRI data with an extended version of NNMF, the orthonormal
projective non-negative matrix factorization (OPNMF). This approach
provided components that could be considered as a biologically more
meaningful parts-based representation of the brain as compared to more
standard approaches such as PCA and ICA. To note, OPNMF to some
extent, generate bilaterally symmetric spatial features, despite being an

unsupervised data-driven factorization approach (Sotiras et al., 2017).
Accordingly, OPNMF promotes relatively localized (spatially) brain
components for post-hoc examinations compared to the standard ap-
proaches. Hence, OPNMF could open new perspectives for dimension-
ality reduction of VBM data, in particular in a prediction framework.
However, to the best of our knowledge, these perspectives have remained
unexplored. Therefore, the current study aimed at examining the appli-
cation of OPNMF to VBM data in a brain-age prediction framework. To
note, we have used the term NNMFwhen denoting to the whole family of
the technique, whereas, OPNMF when referring to the more the specific
variant, which we have employed in this study.

We first compared the performance of OPNMF-based factorization to
the performance of plain VBM data for age prediction. Then, in order to
provide direct comparison with previous studies, we evaluated different
strategies combining either PCA or OPNMF as a data compression
approach with either LASSO or RVM as sparse regression models. In
addition to the sparseness inducting methods described above, several
parcellations of the human brain have been proposed in the last two
decades (Eickhoff et al., 2017), which could potentially offer another
efficient approach for data compression into relatively localized spatial
units for age prediction. In particular, many whole-brain parcellations
have been derived from voxels/vertex functional signal at rest (RS, e.g.:
Bellec et al., 2010; Craddock et al., 2012; Gordon et al., 2016; Schaefer
et al., 2017) and such RS-based parcellation has been used for the
compression of RS functional connectivity (RSFC) data in a brain age
prediction framework (Liem et al., 2017). However, we assume that such
a representation based on functional parcellation is, by nature, less
optimal than a representation based on the structural properties of the
voxels as used in the current VBM-based framework. To investigate this
hypothesis, we compared the pattern of representation, as well as the
prediction performance of our data reduction approach OPNMF capi-
talizing on structural covariance with an independent brain representa-
tion derived from resting-state functional data in healthy adults.

OPNMF is computationally more expensive than popular decompo-
sition methods such as PCA (see methods). Nevertheless, transferring the
factorization derived from one dataset onto another dataset could save
this computational cost. Furthermore, using factorization from an inde-
pendent dataset for training or testing a prediction model can assess the
robustness of the model. We, therefore, evaluated the transferability of
the OPNMF onto an unseen dataset, that is, we examined the trans-
ferability of the components derived from one dataset onto an indepen-
dent (new) dataset, hence avoiding the time-consuming step of
factorization in the new dataset. Importantly, transferring the already
computed components onto a new dataset is particularly useful in clinical
and research practices, as the datasets often come from different sites and
scanners and may have different demographic characteristics. Recently,
Liem et al. (2017) suggested that combining datasets from different
protocols could reduce the bias of the predictive model towards the
characteristics of a single protocol. Therefore, the effect of data acqui-
sition and demographic heterogeneity on the transferability of the
components is an important aspect to evaluate in the perspective of
application of our framework in future studies. Here, we examined a
dataset from a uniform protocol constituting older subjects (age range
55–76) vs. a heterogeneous multi-site dataset whose age range covers the
adult life span (19–81, Fig. 1A)). Thus, we assessed the performance of
the prediction model trained on a dataset compressed using its own
factorization, as well as, when this dataset was compressed based on an
independent factorization (that is, when the dataset has been projected
onto a factorization derived from a different dataset).

In addition, the difference in the sample characteristics of the two
cohorts further offer the opportunity to investigate the extrapolation of
the prediction model trained on one dataset onto an independent dataset.
That is, in the present study, we investigated both, the transferability of
the components among datasets and the generalization of the prediction
among datasets, on the age prediction performance. Relatedly, one
crucial objective in age prediction is the identification of aging
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trajectories deviating from normal range, i.e., pathological aging. Pre-
vious studies have shown dramatic brain structural alterations in par-
ticipants with deviations from healthy aging such as Mild Cognitive
Impairment (MCI) and patients with pathological aging such as Alz-
heimer's Disease (AD) resulting in systematic overestimation of their age
by an algorithm trained on healthy populations (Davatzikos et al., 2009;
Gaser et al., 2013; Moradi et al., 2015). Therefore, as a validation of our
framework for clinical research, we further evaluated its performance in
age prediction of healthy and clinical samples from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database.

To sum up, in this study, we aimed to evaluate a new framework for
brain-age prediction, which used dimensionality reduction of VBM data
using OPNMF followed by a sparse regression model. In order to evaluate
the advantages and limitations of this framework over the other ap-
proaches proposed in the previous studies, we compared the performance
of our model with 1) model based on voxel-wise VBM data (uncom-
pressed VBM data), 2) model based on PCA data reduction and 3) model
based on data reduction based on RS-based parcellation. In the sake of
reducing computational cost in future studies, we examined the trans-
ferability of the OPNMF between two independent datasets differing in
demographic characteristic and acquisition protocols. Importantly, the
localized properties of the components in our framework allowed us to
explore brain regions contributing to the predictiveness in the healthy
samples. Finally, we tested the performance of our prediction model on a

clinical sample, in order to validate the predictive utility of our frame-
work in clinical research.

Material and methods

Sample characteristics and preprocessing

We used structural MRI data from two large, independent datasets.
The first was obtained from the population-based 1000BRAINS study
(Caspers et al., 2014) and represents a single-site assessment of 693 older
adults (age: 55–75 years; 53% males) using the same imaging protocol
for all subjects. The other “MIXED” dataset consists of 1084 healthy
adults (age: 18–81 years; 51% males) that were derived by pooling data
from many different individual studies at various sites (Fig. 1A; for
further details see Supplementary methods). Furthermore, in order to
validate our framework of age prediction on clinical data, we included a
dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (www.loni.ucla.edu/ADNI). This ADNI dataset sample included
244 cognitively normal elderly subjects (HC, age: 55–90; 48%males), 64
mild cognitively impaired (MCI) subjects (age: 55–87; 60% males), and
163 Alzheimer's disease (AD) subjects (age: 56–91; 56% males), for
further details see Supplementary methods.

Structural MRI data was preprocessed with the VBM8 toolbox (http://
www.neuro.uni-jena.de/vbm8) to derive voxel-wise greymatter volumes

Fig. 1. The two healthy datasets and the non-negative matrix components derived the these datasets. A: Overview of the sample characteristics of the two datasets
(i.e., range of age distributed in each dataset, as well as the scanner protocol). B: Brain spatial representation of the factorization derived from the two datasets at two
different resolutions. C: Similarity between the factorizations derived from the two datasets.

D.P. Varikuti et al. NeuroImage 173 (2018) 394–410

396



for each subject of the two datasets using standard settings. T1-weighted
structural brain images were normalized by the high-dimensional DAR-
TEL normalization (Ashburner, 2007) combined with tissue class seg-
mentation and bias field correction. The normalized grey matter
segments were modulated for non-linear transformations only and
smoothed with an 8-mm FWHM Gaussian kernel. The local grey matter
volumes (following adjustment of head size given that the affine part of
the registration did not enter the modulation) were then extracted in a
whole-brain grey matter mask (with a threshold of 0.2 to eliminate the
voxels with partial volume effect (Ashburner et al., 1985)) and for each
sample individually stored in a Number of subjects by Number of voxels
matrix (with Number of voxels¼ 344,383). These matrices provided the
input for the age-prediction model based on the full (uncompressed)
VBM data as detailed in section 2.4 and the input to which matrix
factorization (i.e., non-negative matrix factorization and principle
component analysis) and resting-state (RS) based parcellation (see
below) were applied.

Data reduction

Orthonormal projective non-negative matrix factorization
We used the same orthonormal projective non-negative matrix

factorization (OPNMF) approach (Yang et al., 2007; Yang and Oja, 2010)
as described by Sotiras et al. (2015). OPNMF factorizes a data matrix ‘X’
into two non-negative sub matrices (W and H) representing the sparse
components (the dictionary i.e., W of size, Number of voxels by Number
of components) and the subject-specific loading coefficients (H of size,
Number of components by Number of subjects) in the ensuing low-rank
space, min

W�0;H�0
k X� WHk2F, which minimizes the squared Frobenius

norm (i.e., reducing the reconstruction error), subject to the conditions
H ¼ WTX and WTW ¼ I where, k :k2F referred to the squared Frobenius
norm and I denotes the identity matrix.

To summarize the factorization process, W is first initialized through
non-negative double singular value decomposition (NNSVD; cf. Boutsidis
and Gallopoulos, 2008)). Later, W is iteratively updated with the multi-
plicative update rule, until it converges to an optimum solution. The
multiplicative update rule is modified as reported by Yang and Oja
(2010), to satisfy the additional constraints of an orthonormal projection

basis function, W'
ij ¼ Wij

ðXXTWÞij
ðWWTXXTWÞij

, where, i¼ 1 … Number of voxels,

j¼ 1 … Number of components. Finally, projecting X onto W to obtain a
solution that minimizes the reconstruction error yields H. Following
OPNMF, the VBM data are represented by two matrices, denoting the
sparse components (W) and the corresponding subject-specific loading
coefficients (H). The former (W) represent the latent structure in the data,
the latter (H) represents the individual volumetric data in the low-rank
space spanned by these components and provides the features for the
age-prediction model. Of note, the highest possible OPNMF granularity is
the lowest dimension of the input matrix (X) (which in our case is the
number of the subjects in 1000BRAINS dataset being the smallest sample
size). Accordingly, in this study, to explore the effects of different gran-
ularity, i.e., number of components, on prediction accuracy, we
computed and evaluated compressions employing 50 to 690 components
in steps of 25.

Principle component analysis (PCA)
PCA is one of the most commonly used dimensionality reduction

techniques and, accordingly, has been used in previous studies exam-
ining age prediction based on structural MRI data. In order to provide a
direct comparison of the OPNMF's performance with the previous in-
vestigations, we ran PCA on the voxel-wise VBM data by using the PCA
function implemented in MATLAB 2014. This transformed the high-
dimensional voxel wise data (i.e., X) into low-rank approximations
using an orthogonal linear transformation. The resulting PCA based low-
rank approximations represented the principle components of the data

(computed by solving an eigenvalue problem) arranged in descending
order of the variance explained by each component (Jolliffe, 2002). The
subject-specific loading coefficients were obtained by projecting the
high-dimensional voxel wise data onto the component space (eigenvec-
tors, i.e., PCA based low-rank approximations) thereby providing the
features for age-prediction model. Finally, we computed and evaluated
the effect of PCA compressions on prediction accuracy, in the range of
granularity aforementioned for OPNMF (i.e., 50 to 690 components in
steps of 25.)

Resting-state (RS) based parcellation
Recently, Schaefer et al., 2017 reported a parcellation based on RS

fMRI providing neurobiologically-valid brain parcels by capitalizing on a
new hybrid approach integrating the local gradient approach for
boundary-mapping with a global similarity approach. As this atlas does
not cover subcortical and cerebellar structures, we added these from
another widely used RS fMRI parcellation (BASC, Bellec et al., 2010).
This resulted in a whole brain parcellation of 470 parcels that was used
here as an alternative dimensionality reduction approach for VBM data.
For each subject, an average grey matter volume within each parcel was
computed and used as inputs for the age-prediction model.

Sparse regression model

We primarily used LASSO (Least Absolute Shrinkage and Selection
Operator) for learning a (sparse) linear regression model predicting the
subjects' age from their structural data as compressed in the loading
coefficients (as implemented in the ‘glmnet’ package, https://www.
jstatsoft.org/article/view/v033i01 (Tibshirani, 1996)). LASSO regu-
lates the parameters (alpha and lambda) to optimize the sparsity and the
complexity of the regression model to improve the performance (i.e.,
prediction accuracy) and interpretability of the model (Zou and Hastie,
2005; Zhang and Huang, 2008). An inner loop was incorporated to
optimize the hyper-parameter (lambda). LASSO with alpha set to 0.99
and lambda that gives minimum mean cross validation error of the inner
loop was employed for predicting the age in our study.

As an alternative approach to LASSO, Relevance Vector Machine
(RVM; Tipping, 2001) has been commonly implemented by the previous
studies exploring prediction of age using structural MRI. Therefore, we in
this study performed an additional comparison between LASSO and RVM
regression models. For doing so, statistical learning of the sparse
regression model employing RVM was implemented using the Sparse-
Bayes package (http://www.miketipping.com/index.htm). This
approach uses a probabilistic Bayesian framework with specific priors
over the parameters, which favors sparse prediction model. The algo-
rithm iteratively and automatically optimizes the parameters and hyper
parameters, hence reducing prior control on the parameters. As kernel,
we chose a multivariate zero-centered Gaussian with standard deviation
estimated by the algorithm. This RVM implementation from the Spar-
seBayes package has been shown to improve the initialization procedure,
which maximizes the likelihood function and hence accelerates the
procedure (Tipping and Faul, 2003).

Prediction analyses

Previous studies of age prediction from MRI data in life span cohorts
have used linear regression model (Franke et al., 2010, 2012; Gaser et al.,
2013; Mwangi et al., 2013; Franke et al., 2014; Koutsouleris et al., 2014;
Erus et al., 2015; Liem et al., 2017). For the sake of comparability, we
likewise used a (sparse) linear regression model for predicting the sub-
jects' age from their structural data as compressed in the loading co-
efficients. Furthermore, in the present study, combining sparse
decomposition method with a sparse regression model came with the
advantage of providing an anatomically well interpretable model for
estimating age based on a limited number of spatially compact structural
features.
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Model generalization was evaluated by 10-fold cross-validation. That
is, the dataset was randomly split in ten equal parts that each, in turn,
served as the test set for the model fitted on the remaining 9/10th of the
data. To reduce dependency on the cross-validation split, this procedure
was replicated 100 times. Splitting the dataset into ten equal parts has
been initiated every time within each repetition, which allowed us to
train the model on different training samples in each repetition. Predic-
tion accuracy was quantified by the mean absolute deviation (across
subjects) between real age and predicted age (averaged across

repetitions), and also, the correlation between the real age and that
average of the predicted (across repetitions) in previously unseen sub-
jects from their VBM data.

Assessed prediction approaches

We note that performing OPNMF only on the training dataset in each
cross-validation fold would be computationally expensive and hence
practically infeasible. But prediction performed on loading coefficients

Fig. 2. Different prediction approaches evaluated in the study. A&B illustrate the procedure of a 10 fold cross-validation when compressing a dataset using the
components derived from itself (A) MIXED dataset (B) 1000BRAINS. C&D illustrate the procedure of a 10 fold cross-validation performed on features extracted by
using the components derived from the other dataset (C) MIXED dataset projected on to 1000BRAINS based factorization, and (D) 1000BRAINS projected on to
factorization derived from MIXED. E,F&G illustrate the approaches utilizing an independent dataset to validate the model trained on the dataset compressed using the
components derived from itself (E) training the model on 1000BRAINS dataset projected on to its own factorization and later validate the model on OldMIXED dataset,
(F) training the model on OldMIXED dataset projected on to OldMIXED based factorization and later validate the model on 1000BRAINS and (G) training the model on
MIXED dataset projected on to MIXED based factorization and later validate the model on 1000BRAINS.
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obtained from the OPNMF decompositions including the entire sample
(including the 1/10th that is denoted the test-set in the respective fold)
could bias the cross-validation towards overly optimistic performance
estimates. Given this consideration would also hold for all future uses of
our approach, we were particularly interested in investigating whether
components derived from one dataset were also good encoders (repre-
sentative) for the structural features of another dataset.

Consequently, we performed cross-validation analyses using the
loading coefficients derived from OPNMF of that particular dataset as
(an overly optimistic) reference (Fig. 2: A&B) but importantly focused
on assessing the possibility to predict subjects' age after projecting the
raw VBM data on the component space estimated for the other dataset
(Fig. 2C&D). That is, we derived the OPNMF components of the
1000BRAINS dataset, and performed cross-validation within the MIXED
dataset projected onto the components estimated from the
1000BRAINS. This approach has the advantage that the subjects in the
test set were truly independent and have not been involved in any prior
processing steps. In addition, we could investigate the effects of dataset
(in-) homogeneity, as the 1000BRAINS data comes from a single-site
study with uniform protocol, whereas the MIXED dataset was deliber-
ately chosen to be very heterogeneous. We would thus expect that the
components derived for the MIXED dataset show a better generalization
than those from the 1000BRAINS dataset, i.e., projecting the
1000BRAINS data onto the components from the MIXED dataset will
yield prediction models that are closer in performance to the (opti-
mistically biased) analysis with the projection of the data components
derived from the MIXED data itself.

Later, we also tested whether the actual models transfer between
datasets by deriving the OPNMF components in one dataset (e.g.,
MIXED), fitting the sparse regression model in that same dataset
(MIXED), projecting the other dataset (1000BRAINS) onto the factor-
ization of the former (MIXED) and applying the prediction model trained
on that (MIXED) data (Fig. 2: E, F&G). In this context, we note that the
1000BRAINS dataset has a more restricted age-range (55–76) than the
MIXED dataset (18–81). Therefore, we evaluated the model transfer
between the portion of MIXED subjects corresponding to 1000BRAINS
age range (55–75; i.e., OldMIXED), see Fig. 2: E&F. The computational
times for each prediction approach at different levels of granularity are
reported in supplementary material (Table S3).

Finally, our age estimation framework was validated using the ADNI
database. Here we compared the estimated BrainAGE between healthy
controls (HC¼ , subjects with mild cognitive impairment (MCI) and
Alzheimer's disease (AD), given that apparent older brains have been
previously demonstrated in the latter two groups (Franke et al., 2010;
Franke and Gaser, 2012). As AD patients sample mainly consisted of
older subjects, the prediction model was trained on the aforementioned
samples of elderly subjects (i.e., 1000BRAINS or MIXED_55–90). In
detail, all data (training sample and ADNI) were projected onto the
factorization derived from the respective training sample (either the
1000BRAINS or MIXED). The model was trained on the each of the
training sample (1000BRAINS or MIXED_55–90 (i.e., Subjects above 55
years from MIXED dataset)) and then evaluated it in the ADNI data. In
line with previous studies (Davatzikos et al., 2008; Franke et al., 2010;
Franke and Gaser, 2012; Moradi et al., 2015), we hypothesized, that for
the ADNI controls, the brain age gap estimation (BrainAGE), i.e., the
difference between the predicted age and the chronological age, should
be centered around zero. In turn, MCI subjects and in particular AD pa-
tients were expected to show an increased BrainAGE score.

Identification of the regions influencing the prediction

As noted above, combining a sparse decomposition yielded compact
regional modes with a sparse regression model (LASSO) has the advan-
tage of providing regionally specific relevant features. As a final step
allowing the neurobiological interpretation of our age-prediction model,
we identified those parts of the brain that underpinned the reported

predictions. As we performed 100 replications of a 10-fold cross-
validation, in total 1000 models were computed per granularity (num-
ber of components). We then quantified the contribution of each
component by the fraction of these 1000models in which the coefficients
assigned by the predictive model for the respective component was non-
zero. The components that contributed in at least 95% of all models were
identified as the components that were robustly part of the predictive
model (Fig. 3 (5)). Concretely, we first identified the components
consistently contributing to the prediction as defined by non-zero beta
value in 95% of the models. Second, the components were mapped to the
brain space at each respective level of granularity. That is, we built a
“contributor map” at each level of granularity, in which the voxel values
represent their (binary) contribution (Fig. 3 (5)). Combining those maps
(by summing up the values) resulted in a contributor “summary” map in
which a non-zero value represents a contribution in at least 95% of the
1000 prediction models) and higher value represent more overlap across
different granularities (Fig. 3 (6)). As we found that prediction perfor-
mance stabilizes after around a granularity of 300 components (Fig. 6),
only the contributor maps of granularity>300 components were merged
into a summary map. Given that the relationship between the OPNMF
components at high granularities could be hierarchically inconsistent,
this approach yielded a higher effective resolution of the relevant brain
areas than the actual granularity of the factorizations itself, and hereby
alleviated the reliance of the spatial inference on any particular set of
components.

Results

Brain age estimation using the uncompressed VBM data

Training LASSO models on the full, i.e., uncompressed voxel-wise
VBM data allowed to predict the age of previously unseen subjects
with relatively high accuracy. For the 1000BRAINS data, the mean ab-
solute error (MAE) between real and predicted age of the test set was 3.4
years. While for the MIXED dataset, the MAE was 4.9 years. While these
numbers compare favorably with previous reports, Fig. 4 illustrated the
critical drawback of using sparse regression models on voxel-wise data.
That is, isolated voxels scattered across the brain were selected as rele-
vant features by the prediction model. In addition to being computa-
tionally prohibitive, the ensuing models are basically uninterpretable as
the predictions were driven by individual voxels (Fig. 3).

Compression of brain age estimation using different compression methods
and sparse regression models

Fig. 5 illustrated the performance of each of the four combinations of
approaches. Across different cross-validation approaches (Fig. 5A),
OPNMF either slightly outperformed or remained analogous to PCA,
especially at higher level of granularity. In particular, when the
factorization has been transferred from one dataset to another dataset
(Fig. 5A: plots on the right compared with plots on the left), OPNMF
reported more accurate age prediction with stable performance across
different levels of granularity compared to PCA. Thus, we could infer
from our results that OPNMF derived from one dataset could provide a
better representation of the structural data of an independent dataset
than PCA. With respect to the sparse regression approach, LASSO and
RVM resulted in comparable cross-validation accuracies, but LASSO was
shown to yield superior performance when predicting age across sam-
ples (Fig. 5B), irrespective of the employed factorization. Additionally,
the application of LASSO together with OPNMF performed better than
the other combinations in most of the scenarios, supporting the com-
bination of LASSO with OPNMF for age prediction analyses. Accord-
ingly, we focused on investigating the brain age prediction using LASSO
sparse regression model, in the subsequent analyses (such as, compari-
son of OPNMF with a previous RS-parcellation, examination of the
OPNMF transferability, identification of the relatively localized features
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contributing to the prediction analyses in healthy datasets and finally
validation of our framework (i.e., combination of OPNMF with sparse
regression model) in a clinical dataset).

As suggested by our comparative analyses, based on the prediction
accuracies reported by the LASSO (sparse) regression model, we
compared the performance of the OPNMF factorization with a RS-
parcellation of the brain (Bellec et al., 2010; Schaefer et al., 2017; cf
Section 2.2.3). As illustrated in Fig. 6, at comparative levels of granu-
larity (i.e., 475 OPNMF factors vs. 470 brain parcels), the age prediction
model tended to be more accurate when the data have been compressed
with OPNMF than when the data have been compressed based on an
independent representation derived from RS fMRI signal. Nevertheless, it
has to be noted that the latter also compressed data into localized brain
parcels, which by itself showed surprisingly good performance, sug-
gesting that different spatial representations into local components can
be efficient (see discussion). In the scope of the current study, altogether,
our preliminary comparative analyses supported the use of OPNMF for
data compression in an age prediction framework.

Influence of different datasets on the OPNMF & age prediction

As previously reported, OPNMF provided sparse and spatially
compact components, which essentially reflect local structural covari-
ance (Fig. 1B). While not the primary focus of this work, we noted that
labeling each grey-matter voxel by the most strongly reflected compo-
nent, provided a map of the human brain that in many aspects seemed to
resemble those derived from other modalities. Across the whole range of
granularity, although there seems to be a decent agreement, these maps
were slightly different between both investigated datasets (1000BRAINS
and MIXED) as reflected in the adjusted rand index (aRI, Fig. 1C). This
latter quantifies the similarity between the clusters (Hubert and Arabie,
1985; Santos and Embrechts, 2009)) between the respective parcellation
and can range between þ1 and �1, with 1 reflecting perfect spatial
correspondence, 0 indicating spatial agreement with certain probability,
and smaller than 0 representing disagreement which is worse than con-
tingency (Hubert and Arabie, 1985)). However and more importantly,
both factorization (1000BRAINS and MIXED) at the similar level of

Fig. 3. Main processing steps for age prediction based on GMV and the post-hoc examination of regions contributing to the prediction. 1) Voxel-based morphometric
(VBM) data for each subject are used as input for OPNMF 2) Following OPNMF, the VBM data are represented by two matrices, denoting the corresponding subject-
specific loading coefficients (H) and the sparse components (W). 3) Application of sparse regression model, in which H provides the features for the prediction model
4) Evaluation of the prediction model using a test sample (different prediction models described in section 2.5 & Fig. 2). 5&6) Identification of the regions contributing
in the prediction analysis; 5) First the respective components with non-zero coefficients assigned by the prediction models were identified. Then, we built a
“contributor map” at each level of granularity, in which the voxel values represent their (binary) contribution in at least 95% of the models. 6) Combining those maps
(by summing up the values) resulted in a contributor “summary” map in which a non-zero value represents a contribution in at least 95% of all the prediction models)
and higher value represent higher overlap across different granularities. As our analyses revealed that prediction performance stabilizes around 300 components
(Fig. 6), only the contributor maps of granularity >300 components were merged into the summary map.
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granularity (i.e., 475 granules) showed good convergence with the
RS-parcellation (470 parcels) with, respectively, aRI¼ 0.28 and
aRI¼ 0.29 (Fig. 5).

Brain age estimation using the OPNMF-compressed VBM data

Considering the models based on the loading coefficients for com-
ponents derived from the (full) data of the same sample (rendering data
compression not independent from the latter cross-validation), several
important observations can be made. First, while very low-rank ap-
proximations only yielded poor prediction accuracy, the mean absolute
error (MAE) quickly declines with increasing granularity, i.e., higher
number of components. Once the number of components passes
approximately 300–400 (Fig. 6), however, prediction accuracy seems to
remain stable or at best improve asymptotically.

Model validation within the same dataset using a cross-validation approach
In details, these unbiased models yielded an overall MAE of 3.6 years

(males: 3.7 and females: 3.6) and an overall correlation of 0.65 (male:
0.62 and female: 0.61) between real and predicted age in the
1000BRAINS data (using components derived from the MIXED dataset;
Table S1 & Table S2). For the MIXED data, we found an overall MAE of
6.1 years and a correlation of 0.88 (MAE of 6 and r¼ 0.88 in the males
and MAE of 6.3 and r¼ 0.86 in the females) when using components
derived from the 1000BRAINS dataset (see Table S1 & Table S2 for
detailed results; also see the supplementary material for the discussion on
association between the two measures (i.e., MAE and correlation) of the
performance (Fig S6)). Further examining the prediction performance
across the different scanning sites forming the MIXED dataset (16
different sites) revealed that in most of them (14 sites) the MAE varied
between 5 and 7 years and the MAE from the two other sites were 4 years
and 9 years (of note, the scanning protocols used in these latter remained
analogous to the 14 other sites, i.e., we did not note any specific technical
factor accounting for the differences in prediction accuracies). Overall,

these results showed the stability of our prediction framework across
genders and scanning sites.

Model validation with prediction in independent datasets
Transfer of the whole pipeline (factorization and model training) was

evaluated by predicting the age of the subjects in the respective other,
independent sample (Figs. 6B and 7B). In our study, transferability of the
prediction model was evaluated in two different aspects, extrapolation of
the prediction model onto an independent dataset, which differs in
subjects' demographic characteristics, such as age, and then onto an in-
dependent dataset, which differs in scanner protocols. In the context of
dataset (in-) homogeneity from different age groups, models trained on
broader age range of the heterogeneous dataset (MIXED) showed
reduced precision of age prediction in an independent dataset
(1000BRAINS) while the model trained on a restricted age range for this
restricted heterogeneous dataset (OldMIXED) was more accurate in
predicting the age of the latter independent dataset (1000BRAINS). In the
context of dataset (in-) homogeneity from different protocols, our results
surprisingly showed that models trained on single-site study
(1000BRAINS) also performed efficiently, when predicting the age of
highly heterogeneous dataset (OldMIXED). In contrast, models trained
on the 1000BRAINS data consisting exclusively of older subjects showed
a very poor performance when trying to predict age of the younger
subjects in the MIXED sample (Fig S2). While the model correctly pre-
dicted the young subjects to be younger than the young examples in the
training set, it was grossly inaccurate in predicting how much younger
they actually were. Put pointedly, having no information about how a 20-
year old brain looks like, a model trained on subjects aged between 55
and 76 can only derive that the subject in question should be younger
than the youngest it has seen in the training data (Fig S2). Thus, testing
for generalization of the model to an independent dataset showed good
prediction accuracy for the subjects within the training sample's age
range (Figs. 6B and 7B), but also indicated that the prediction model
cannot extrapolate to the subjects whose age is (far) beyond the training

Fig. 4. Chronological age plotted against the age predicted using the high-dimensional VBM data. The lower figure exhibits the isolated voxels that contributed in the
prediction analysis. Here, the voxels, which contributed in all the models across 25 replications of 3-fold cross-validation, are displayed.
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samples age distribution (Fig S2).
As ultimately one main application of our framework will be research

in clinical populations, we also tested our framework in the ADNI dataset.
Here, the mean BrainAGE scores (reflecting, for each subject, the
discrepancy between brain-based estimated age and chronological age)
was zero in the healthy control group (for models trained on either the
1000BRAINS or the MIXED_55–90 datasets). In contrast, BrainAGE
scores were 6.2 years (for models trained on 1000BRAINS) and 5.4 years
(for model trained on MIXED_55–90) in the MCI group, indicating that
these subjects' brains looked about 5–6 years older. Finally, the BrainAGE
scores reached 8.5 years (for models trained on 1000BRAINS) and 10.7
years (for models trained on MIXED_55–90) in the group of patients
diagnosed with Alzheimer's disease. These results, illustrated in Fig. 8
demonstrated that our framework can accurately capture the range of
normal structural variation relating to age in healthy subjects and
building on this normal range, captures dramatic deviance in both pa-
tients with Mild Cognitive Impairment and patients with Alzheimer's
disease.

Identification of the regions influencing the prediction

The framework we examined in this paper, i.e., applying a sparse
regression model onto the sparse decompositions, should yield rather
confined and hence neurobiologically interpretablemaps of brain regions
contributing to the age prediction. In more detail, as previously noted,

the OPNMF components themselves were circumscribed rather than
representing a mixture of voxel-wise positive and negative weights as
would be the case for PCA (cf. Sotiras et al. (2015), Sotiras et al. (2015)).
LASSO then selected a small number of these spatially confined compo-
nents for the actual prediction. This allowed us to identify, which brain
regions consistently contributed to the age estimation. As demonstrated
in Fig S7, many of the regions that were selected by the models are also
the regions that show the highest correlation with age. This suggests that,
to some extent, the observed contributors are consistent with age-related
GMV changes.

As illustrated in Fig. 9, more brain regions were engaged in estimating
age in the MIXED as compared to the 1000BRAINS dataset, which could
be expected given the much broader age distribution. More specifically,
the regions contributing to the prediction model in the 1000BRAINS
cohort (older subjects) included regions around the central sulcus, the
inferior temporal cortex, the occipital and posterior temporal cortices
and area 44. Regions contributing to the predictions in this older adult
cohort also included bilateral midline areas such as, the superior medial
frontal gyrus, the medial fronto-orbital regions, the anterior and middle
cingulate cortices and the retrosplenial cortex. Furthermore, the pattern
of regions weighting in the prediction model in this cohort further
included bilateral subcortical regions such as the thalamus, the basal
ganglia and the posterior hippocampus, as well as the bilateral cere-
bellum. On the lateral surface, the pattern included regions in prefrontal
regions (frontal areas anterior to the precentral gyrus), oribitofrontal

Fig. 5. Illustration of the mean absolute error of the prediction models using different compression methods with various sparse regression models (LASSOþOPNMF
in black; LASSOþPCA in blue; RVMþOPNMF in red; RVMþPCA in magenta) at different levels of granularity, and separately for each prediction approach. A)
represents the approach where 10 fold cross-validation is performed and B) illustrates the approaches in which an independent dataset is used to validate the model
trained on the dataset compressed based on the components derived from itself.
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regions and temporal poles. In contrast, the pattern of regions for age
prediction in the MIXED dataset (heterogeneous dataset covering the
whole life span) was less spatially specific, covering most of the brain
lateral surface bilaterally (including for example the whole bilateral
middle and superior frontal gyri, as well as the bilateral posterior supe-
rior and inferior parietal cortices), almost the entire medial structures,
and, the bilateral anterior hippocampus and amygdala. In other words,
the prediction models of age in this heterogeneous dataset built on most
of the brain regions.

Supplementary analysis

Spatial smoothing on the VBM data promotes homogeneity of the
data by attenuating small differences between individuals. In turn, age
prediction may rely on those subtle effects. Thus, we also evaluated,
whether the subjects' age could be predicted based on the unsmoothed
VBM. As could be expected from the aggregation of individual voxels into
components, refraining from smoothing prior to projection resulted in
highly similar results as shown above for the smoothed data (see Sup-
plement, Table S4 & Fig S1).

Discussions

In this study, we showed that non-negative sparse coding through the
combination of data compression using OPNMF with LASSO regression
could predict age of previously unseen subjects in an unbiased manner
from structural neuroimaging data. Several key observations emerged
from this work. i) The precision of age prediction compares well to that
based on uncompressed, i.e., voxel-wise VBM data and to that based on
non-sparse factorization (PCA). ii) Even though the components estimated
for the two datasets differed from each other, the (unbiased) prediction
accuracy after projection onto the respective other set of components is
only slightly worse than the (biased) accuracy obtained when performing
factorization of the entire dataset that was later used for cross-validation.
iii) OPNMF-based brain partitions show some convergence with an in-
dependent parcellation based on resting-state (RS) fMRI, but the former
gave slightly better prediction performance iv) Finally, in contrast to ap-
proaches used in previous age prediction studies, combination of data
compression using OPNMF with sparse (LASSO) regression yields a su-
perior interpretability of the weight maps allowing interpretations about
the mechanisms underlying the prediction.

Fig. 6. Illustration of the mean absolute error of the prediction models using different spatially localized compression models (OPNMF and RS-parcellation) with
sparse (LASSO) regression model at different levels of granularity, and separately for each prediction approach. A) represents the approach where 10 fold cross-
validation is performed and B) illustrates the approaches in which an independent dataset is used to validate the model trained on the dataset compressed based
on components derived from itself.
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Prediction from uncompressed VBM data

Our results showed that age prediction of unseen subjects using the

full (uncompressed) VBM data reported only slightly better prediction
accuracies than one based on the (OPNMF) compressed (Table S1). This
comparable level of performance for compressed and uncompressed data

Fig. 7. Chronological age plotted against the age predicted using the VBM data compressed with OPNMF. The predicted age plotted in this figure is an average of the
predicted age across different levels of granularity.

Fig. 8. Validation approach in ADNI samples.
BrainAGE scores (reflecting the difference between
predicted age and the chronological age) are showed
for all the three subsamples (i.e., Healthy controls
(HC), Mild Cognitive Impairment (MCI), Alzheimer's
Disease (AD). The left plot refers to the approach in
which the model was trained on OldMIXED sample
compressed using factorization derived from the
whole MIXED sample. The right plot refers to the
approach in which the model was trained on
1000BRAINS compressed using factorization derived
from 1000BRAINS.
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has also been observed in previous brain age studies employing PCA
compression (Franke et al., 2010; Liem et al., 2017). However, in the
current study, predicting age using sparse regularization (LASSO) pre-
diction model on uncompressed VBM data is highly inefficient in terms of
memory usage, especially for large datasets (for example, MIXED dataset
with 1084 subjects). In particular, the memory load of this
high-dimensional approach (>700 subjects x 344383 voxels) only
allowed a 3-fold cross-validation on a high-performance server. While
high dimensional voxel wise data could also lead to overfitting of pre-
diction model, due to the larger number of features than subjects (i.e.,
several models potentially could fit the same data), comprehensively
investigating this issue was not possible in the present study due to the
computational limitations. Beside this still open issue, the recent avail-
ability of MRI data in very large sample sizes, i.e., for thousands of
subjects (e.g. (Miller et al., 2016),) and the growing interest for the
prediction of phenotype or behavioral measures from MRI data,
dramatically underpin the need of dimensionality reduction preserving
prediction accuracy (Davatzikos, 2016).

The key limitation of voxel-wise analysis, however, is the poor inter-
pretability of the relevant features. As shown in Fig. 4, the sparse regres-
sionmodel on the voxel-wise data in our study highlighted isolated voxels
scattered over the brain as relevant features for predicting subjects' age.
Nevertheless, the individual anatomical correspondence of a particular
voxel chosen by the prediction model, can be variable across subjects
(Davatzikos, 2004). In addition, LASSO regression is known to perform
reliable feature selection, providing that the features have followed
“irrepresentable condition” (Zhao and Yu, 2006). That is, features should
be independent of each other in order to obtain reliable outcomes.
Therefore, when LASSO is applied to voxel-wise VBM data, the isolated
voxels from the highly correlated voxel-wise VBMdata contributing to the
prediction cannot really be interpreted. In other words, voxel-wise sparse
regression models pose a decoding problem (Kampa et al., 2014). Thus,
the poor interpretability of prediction models based on raw VBM data
(Lakkaraju et al., 2016), in addition to their computational costs, advocate
for data compression, ideally with a factorization approach that offers
interpretability of the representations such as the current implementation

of OPNMF on VBM data for prediction of brain age.

Compression of brain age estimation using different compression methods
with various sparse regression models

When comparing the performance of OPNMF with PCA, particularly
at higher level of granularity, our results demonstrated that OPNMF
either slightly outperformed or remained analogous to PCA. Any data
reduction procedure aims to address the curse of dimensionality without
any loss of information. In this context, both PCA and OPNMF provide
low rank approximations representing the most influential structure
within the original data, however, each decomposition method captures
different aspects of the similar information (PCA captures the compo-
nents with the most variance explained across the dataset, while OPNMF
captures the spatially more localized components that consistently co-
vary across the dataset), leading in the present study to comparable
performance of both approaches in age prediction. Importantly, our re-
sults also further showed that OPNMF provided more stable performance
at high granularities (>200), when compression is transferred across
datasets (Fig. 5A: cf. right vs. left plots). This finding confirms previous
hypotheses that the ‘projectivity’ of OPNMF supports the efficient
transferability of the factorization onto a new unseen dataset (Yuan et al.,
2007). Therefore, we would argue that OPNMF, compared to PCA, en-
hances the generalizability of the low rank approximations onto an in-
dependent dataset. Thus, OPNMF not only promotes relatively localized
brain representation, but also yields more generalizable low-rank
approximation than PCA.

Our evaluation further revealed that LASSO regularization performed
either similarly or slightly better than RVM. Both LASSO and RVM yield
sparse regression models with the advantage of performing feature se-
lection by capitalizing only on the features that improve the prediction
accuracy and allow comparable accuracies. However, an additional
argument for the use of LASSO, this model allows the selection of the
regularization parameter. Hence, LASSO optimizes the trade-off between
stability and interpretability of the prediction model (i.e., optimizing the
sparsity) by tuning the regularization parameter (i.e., alpha), which

Fig. 9. Summary map of the regions that contributed in the prediction analysis when performing 10-fold cross-validation and compressing the dataset using the
components derived from the other dataset, in which brighter shade represents more frequently used parts of the brain. Plain anatomical slices are displayed as
reference in the top raw. The middle raw illustrates the MIXED dataset compressed with the 1000BRAINS-based factorization while the bottom row illustrates
1000BRAINS dataset compressed with the MIXED-based factorization.
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linearly combines the L1 and L2 penalties (cf. Zou and Hastie, 2005 for
more technical details). Therefore, the LASSO regression model can
convert the sparse regression model into a purely non-sparse model
(using the elastic net regularization model) and can therefore be
considered as a relatively more flexible regression model than RVM.
Furthermore, Bunea et al., 2011 demonstrated that LASSO could be
implemented in many conditions including when the feature size is
exceeding the sample size for prediction analyses. Indirect support for
this property of LASSO can be seen in top left plot of Fig. 5B, in which
LASSO works particularly better than RVM after crossing the granularity
level of 250 (with the training sample size approximating 230 subjects in
this specific case). As reduction techniques have shown best prediction
accuracies at higher level of granularity and given previous consider-
ations, we focused on LASSO for subsequent prediction analyses.

Compression of OPNMF with resting-state based brain parcellation (RS-
parcellation)

The well above chance level (�.30) adjusted rand index between the
RS-parcellation and the OPNMF indicates that the spatial representations
derived form OPNMF based on structural covariance converge well with
the spatial representation derived from resting-state functional signal in
health adults. Of note, the used RS-parcellations have both been exten-
sively evaluated in their respective studies, namely with regards to sta-
bility and convergence with histological mapping and alternative
parcellations (Bellec et al., 2010; Schaefer et al., 2017). The
RS-parcellations also define spatially homogenous regions, suggesting
that the structural representations identified here capture segregated
patterns of brain functional organization (Sporns, 2013). Thus, the sim-
ilarity between the brain partitions derived from OPNMF and the “opti-
mized” RS-parcellation that we found in the current study allows us to
assume that our OPNMF brain partitions have some biological validity.
Similar observations have been reported recently by Sotiras et al. (2017)
who showed that at low granularity (<60), the components derived by
OPNMF resembles previously evidenced functional brain networks.
Together, these findings thus suggest that OPNMF of VBM data to some
extend captures meaningful patterns of brain functional organization,
both at the network and areal level.

While OPNMF-based factorization and RS-parcellation showing good
convergence, they did not show a perfect agreement. This is in line with
the few multi-modal mapping studies showing that brain maps from
different features (such as structure and function) converge towards
similar brain partition schemes, but also suggesting that each feature
targeting a specific aspect of the brain tissue, each feature can capture a
unique aspect of brain organization (Kelly et al., 2012; Genon et al.,
2016, 2017; Glasser et al., 2016). In other words, different features (i.e.
modalities) are to some extend sensitive to different aspects of brain
organization (for a more detailed discussion see Eickhoff et al., 2017).
From the perspective of data compression, the most efficient partitions
should thus come from the same modality. And indeed, RS-parcellations
provides more homogeneous parcels when assessing resting-state images
than histologically defined brain regions (Craddock et al., 2012). This
leaves the question, whether the amount of transferable information is
still sufficient for a useful representation. Our results also provided evi-
dence that this is the case by showing that a more accurate age prediction
model is built from VBM data when this data is compressed directly as
compared to representing it based on a functional parcellation of the
brain (Fig. 5) even if the latter yields very good accuracies. Overall, in the
context of multivariate pattern analysis, we suggest that brain parcella-
tion derived from one modality is transferable to another modality for
data reduction even though it does not reach within-modality
performance.

Influence of different datasets on the OPNMF

Despite the brain topographical pattern of the OPNMF components

derived from the two different datasets show similar convergence with
the independent RS-parcellation and general good agreement between
them, they are not perfectly similar (Fig. 1B and C; Fig S5), However, it
has to be noted that the similarity between the factorizations derived
from the two datasets has been measured at a level of granularity that
does not favor reproducibility (even between datasets which are age,
gender and site matched) according to previous work (Sotiras et al.,
2015, 2017; Fig S5). As the granularity increases, the resolution of
structural covariance increases resulting in a finer representation of
covariance patterns, but that are, in turn, more influenced by covariance
trends specific to the dataset used. Thus, we assumed that the difference
in sample characteristics between the two cohorts could explain the
slight differences in the brain topographical pattern of the factorizations.

Impact of granularity on age prediction

Importantly, our study showed that despite the fact that reproduc-
ibility may decrease at high level of granularity (Sotiras et al., 2017),
prediction performance did increase as granularity increases (as previ-
ously suggested by Sotiras et al., 2015). Our results demonstrated that
when the number of components reaches approximately 300–400, pre-
diction accuracy remains largely stable, particularly when the factor-
ization is derived from the same dataset. However, when the
factorization is derived from an independent dataset, a somewhat higher
granularity (i.e., a few more than 400 components) might be required to
reach stability. At a level of granularity around 300–400 components,
OPNMF seemed to factorize the entire voxel-wise data into efficient
subdivisions, which allowed the LASSO regression model to capture only
the relevant features (i.e., ~116 features when predicting MIXED sample
and ~52 features when predicting 1000BRAINS sample) and ignore the
unnecessary/noisy features relatively better than at coarser granularity.
Our finding converges with the study of Franke et al. (2010), in which the
data compression was performed using PCA. These authors found that
the lowest mean absolute error of the prediction analysis was reached at
around 350 components. Of note, this level of granularity (or factoriza-
tion) seems also convergent with the range of subdivisions of the brain
that emerged as stable in functional MRI data, which lies between 200
and 500 parcels (Tucholka et al., 2008; Thirion et al., 2014; Gordon et al.,
2016, Schaefer et al., 2017). We could assume that a lower level of
subdivision (i.e., < �200 components) provides less homogeneous re-
gions (i.e., regions mixing different functional and structural properties,
cf. Eickhoff et al., 2017), while a higher level of subdivisions (>� 500
components) might spatially narrow the components but without
importantly improving the homogeneity within regions. Thus, the cur-
rent study suggests that a factorization of VBM data into 300 to 500
components optimally organizes voxel-wise structural data into homo-
geneous brain regions for age prediction.

Model validation within the same dataset using a cross-validation approach

In the model validation within the same dataset, our study showed
that the performance of the brain age prediction using the framework of
non-negative sparse coding (i.e., non-negative matrix factorization with
LASSO regression model) was similar to the prediction accuracy found in
previous studies (Franke et al., 2010; Liem et al., 2017). It is important to
note that predicting the age of subjects compressed using the components
derived from the same dataset violates the test set independence. Even
though the subjects in the test dataset were separated from the training
dataset at the prediction level, the used factorization reflects the best
factorization of the entire dataset, including the test dataset (Yuan et al.,
2007; Liu et al., 2010). In other words, the test dataset cannot be
considered as strictly unseen because the test data has been “optimally
spatially organized” with its own factorization scheme. Hence, per-
forming the brain age estimations on the dataset compressed using the
same dataset's factorization facilitates optimistic predictions. Therefore,
in this study we compared the performance of the proposed prediction
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framework with this later over-optimal approach.
Our results demonstrated that the LASSO regression, when applied on

the dataset compressed with components derived from an independent
dataset, estimated the brain age with a precision comparable to that
achieved when compressing the dataset with its own factorization. This
finding confirms the previous literature arguing that the ‘projectivity’ of
OPNMF allows the efficient transferability of the factorization onto a new
unseen dataset (Yuan et al., 2007). Our results showed that the differ-
ences between the factorizations derived from the two datasets (cf. sec-
tion 4.3) did not influence the prediction of brain age when transferring
the components onto the other dataset. Furthermore, our supplementary
results (Fig S3) illustrated that the pattern of regions selected by the
prediction approach remained similar when the factorization was
derived from another dataset. That is, the prediction model recollected
the same anatomical regions regardless of which factorization scheme
was applied. Again, this pattern of findings converges with what has been
previously observed in data reduction of fMRI data for subsequent
functional connectivity analyses. Those parcellation studies have
observed that at an optimal resolution, parcellation from one dataset can
provide a relevant spatial representation of the functional signal in other
datasets, despite the topographical pattern of the parcellation between
the datasets being different (Bellec et al., 2010; Finn et al., 2015; Gordon
et al., 2016). Similarly, OPNMF factorization based on a different dataset
did not prevent an optimal compression of the data for age prediction or
the selection of the relevant (anatomical) features. Thus, overall, our
results demonstrated that despite the fact that factorization results from
different datasets may comprise slightly different spatial components,
any of the stable factorizations offers an efficient data compression for
prediction analyses.

Model validation on an independent dataset

In the context of dataset (in-) homogeneity from different protocols,
we observed that the prediction model extrapolated quite well to an in-
dependent dataset (Figs. 6B and 7B: Top left & bottom left plots). Firstly,
model trained on a highly heterogeneous dataset, better predicted the
subjects' age in an independent dataset. Thus, our study supported Liem
et al., 2017's recent suggestions that merging datasets from multiple
protocols could avoid fitting the model to the characteristics of a
particular scanner protocol. In other words, heterogeneous datasets allow
the model to encounter a wider range of variations, helping it to disen-
tangle non-relevant inter-individual variations from relevant variations
for prediction. Surprisingly, model trained on single-site study also per-
formed efficiently, when predicting the age of highly heterogeneous
dataset (OldMIXED). To note, the single-site study consists of 693 sub-
jects between 55 and 75 years (Fig. 1A). Therefore, the model trained on
this dataset encountered a wide range of variation at each age point. We
suppose that this exposure to wide range of variation might have allowed
overcoming the scanner effects with a robust regression model. Thus, we
would recommend to train a given prediction model on a heterogeneous
dataset (either with multi-sited examples or with multiple examples,
ideally both) to ensure that true relevant variations are learned, which in
turn may support good prediction performance. Importantly, the two
cohorts also differed in their age distribution. Therefore, in addition to
the generalizability over different protocols, these datasets also allowed
us to evaluate the generalization of the prediction model over different
age distributions (Figs. 6B and 7B: Top row plots). Not unexpectedly,
models trained on restricted age range of the heterogeneous dataset
(OldMIXED) provided better age prediction for test sample coming from
an independent dataset within the age range of the training sample
(1000BRAINS) when compared to the model trained on broader age
range (MIXED). Again to be expected, models trained on narrow age
range single-site study (1000BRAINS) failed to predict the age of subjects
(MIXED) that were out of the training sample's age range. Together, these
observations further confirmed the general recommendation for the
prediction model to be trained on data comprising variations due to

distinct parameters (such as the acquisition protocol and demographic
characteristic). Despite the fact that this recommendation might sound
trivial, it actually complements previous recommendations emphasizing
the importance of sample size for good prediction performance (Varo-
quaux et al., 2012, 2017), but further points out that, not the size per se
matters, but the range of variations that are covered.

When applied in a clinical context, i.e. when evaluated on the ADNI
dataset, the proposed framework not only showed good age-prediction
for the healthy subjects but in particular also captured premature aging
in the context of MCI and dementia as indicated by positive BrainAGE
scores (Fig. 8). More specifically, the dramatic atrophy of AD patients was
reflected by a mean BrainAGE score of almost 10 years, which is com-
parable to the findings of a previous study conducted by Franke et al.
(2010). The sensitivity of our framework to brain structural changes in
clinical populations was underscored by the likewise elevated BrainAGE
for MCI participants, which was lower than for those with AD but still on
average in the rage of 5–6 years, i.e., above the MAE in the
population-based samples (Davatzikos et al., 2008; Franke and Gaser,
2012). In other words, our framework accurately ranked the HC, MCI and
AD groups with regards to their clinical progression from healthy to
demented (considering MCI as a transitional stage between normal aging
and dementia; Petersen, 2010). However, statistically discriminating
those individuals among MCI patients who will progress towards Alz-
heimer's disease is a challenging issue (Davatzikos et al., 2009; Petersen,
2010; Gaser et al., 2013; Moradi et al., 2015). While a classification
approach could be more powerful for such purpose than age prediction
(Franke and Gaser, 2014; Wang et al., 2016; Beheshti et al., 2017), the
latter could be combined with the former to quantify deviations from
normal aging trajectories across clinical stages.

Brain age estimation using our framework

Overall, our results demonstrate that models trained on highly het-
erogeneous life span sample (MIXED) can predict the age of any unseen
subject with a precision of 6 years (irrespective of approach i.e., either on
a cross-validation on MIXED dataset or on an independent dataset).
Given the broad age range of the training sample (18–81 years), a pre-
cision of 6 years can be considered as a good performance from the
technical side. Importantly, all previous brain age prediction studies
likewise reported a precision of approximately 5–6 years in the context of
life-span samples. The relationship between GMV and the chronological
age is modulated by many factors (both environmental and genetic fac-
tors (Burgmans et al., 2009; Giedd et al., 2010; Harada et al., 2013;
Luders et al., 2016; Cole et al., 2017)). When aiming to identify the
relationship between brain structural pattern and age, those factors may
introduce noise obscuring the systematic effects of age on brain structure.
In addition to these factors, inclusion of participant with certain char-
acteristics (such as, participants in younger age with unidentified sub-
clinical brain alterations, or older adults representing above-normal (i.e.
“super healthy”) aged participants) might as well deviate the prediction
model to capture the systematic effect of age on brain structure (Burg-
mans et al., 2009). Accordingly, these factors and the noise they intro-
duce could account for the precision gap of 5–6 years in brain age
prediction studies. That is, the limited precision of life-span age predic-
tion may less relate to technical limitations but rather indicate that
structural changes over a period of around 5 years are smaller than
variations related to confounding factors that would represent “non-rel-
evant” noise to the model. However, this hypothesis might not hold true
for all life periods. For instance, one can observe dramatic age-related
structural changes in childhood (cf. Erus et al., 2015) the late life pe-
riods (cf. the higher precision of ~4 year MAE for 1000BRAINS or
MIXED_55–90), while age-related grey matter changes could be rela-
tively minor during early and middle adulthood (Schippling et al., 2017).
Further examinations of these issues in future studies could provide
better understanding of neurobiological aging. Nevertheless, in the scope
of the present study, these confounding factors do not prevent our
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framework (combining OPNMF with sparse regression model) to accu-
rately capture normal variations related to age and deviance from normal
variations in clinical populations.

Identification of the regions influencing the prediction

Our results revealed that the regions involved in the age prediction
model in 1000BRAINS were sparser than those underlying the prediction
of age in MIXED. In contrast, most of the brain regions (representing 73%
of the total grey matter volume) seemed to underpin the prediction when
the model was trained in the MIXED dataset (which covers the adult
lifespan with subjects between 18 and 81 years old). Put simply, the
model cannot be consistently restricted to a few regions for inferring
subjects' age when the cohort covers the adult lifespan. Such a pattern
could argue for a more complex pattern of grey matter variations across
the whole adult life span than in the later life periods. Previous studies
have demonstrated that many different patterns of changes occur across
the adult life span in grey matter volume with notably some regions
showing monotonic decrease of GM and other showing a clear inverted
U-shape grey matter volume (GMV)-age relationships or a “delayed
decline” (Ziegler et al., 2012, 2014; Douaud et al., 2014). Furthermore, as
aforementioned, several factors may induce brain structural variations in
the young and middle-aged adult brain, such as life style and environ-
mental factors (Miller et al., 2016) complicating the relationship between
age and grey matter.

In our study, in addition to the regions highlighted for age prediction
in older sample, some regions, such as the amygdala, and the superior
parietal lobule further contributed to age prediction when the model was
trained on the young and middle age adults (MIXED) dataset. Interest-
ingly, the amygdala is one region where GMV has been found to increase
with age in relatively younger samples (8–30 years old (Ostby et al.,
2009);) and some authors have noted no age-related GMV changes in the
amygdala in older samples (Good et al., 2001). Furthermore, structural
covariance of the amygdala (with other brain regions) is known to be
modulated by several factors such as gender (Mechelli, 2005). Thus, we
could assume that, in a prediction model mixing genders, the amygdala
could be selected as an indicator modulating the pattern of relationship
between other brain regions and age, despite this region per se does not
show a strong, linear and universal GMV decrease with age. Accordingly,
when examining the pattern of association between GMV and age, we
observed a mild general linear decline of grey matter volume with age,
but with a high variance across the subjects in the MIXED sample (see Fig
S4) suggesting that very different age-related grey matter change pat-
terns might be observed in this brain region. Such a pattern allows us to
assume that the GMV in the amygdala, taken as isolated information,
cannot significantly contribute to the age prediction, particularly in the
case of older participants. In other words, we assume that the grey matter
changes in the amygdala are diverse and occur mainly in the young and
middle age adult lifespan rendering this specific region informative for
predicting age in the whole adult life span sample in combination with
information from other regions. However, on its own, this region would
not be particularly informative for age prediction in older populations.

The superior parietal cortex is another example of regions contrib-
uting to the prediction analysis when the training sample consisted of
young adults in addition to the older adults, but not when the model was
trained on older adults only. Terribilli et al. (2011) conducted a study
mainly focusing on young and middle age adults (18–50 years old), in
which GMV of the lateral parietal cortex (i.e., supramarginal, angular and
superior parietal cortex) exhibited a nonlinear relationship with age. The
non-linear trend reported by the authors could be explained by a
quadratic fit, that is, GMV followed a linear decline until the end of the
fourth decade and then showed a mild increase. When examining the
relationship between GMV and age in the superior parietal region in our
study, we observed a similar trend (see Fig S4), in which the mean GMV
of the superior parietal region showed a sharp decrease until 40 years of
age, but less pronounced change with age in later life. Thus, despite the

fact that prediction models in general, (specially LASSO regression
models) are inherently linear, identification of GMV in the superior pa-
rietal cortex as relevant for age prediction converges with previous data
demonstrating that structural changes in this region occur mainly in the
first decades of adult life, but not in periods later in life. Thus, visually
examining the pattern of associations between GMV and age in regions
contributing to the prediction in MIXED suggest that some regions may
be informative for their relatively systematic changes in the first period of
adult life (such as the superior parietal cortex) while others regions could
contribute by introducing complementary information (such as the
amygdala) despite not exhibiting a clear linear relationship with age
across the sample.

The pattern of regions consistently contributing to the prediction in
the older sample appeared more spatially specific. Many of the regions
highlighted by these analyses such as the hippocampus, the temporo-
occipital region and the medial superior frontal gyrus have been shown
to be strongly affected by aging in the older life period and more spe-
cifically, to follow a strong linear decrease in this life period (after 40–50
years old; Raz et al., 2010; Douaud et al., 2014). However, some other
regions, such as the regions around the central sulcus are not known to
show systematic change with age in later life period. Thus, the pattern of
regions contributing to the predictions in 1000BRAINS suggests that
when the training sample is restricted to older populations, the model can
be restricted to a few regions, whose grey matter volumes is systemati-
cally affected by the aging process in the later life period, as well as other
regions that might not appear particularly informative form a neurobi-
ological point of view but complement the information conveyed by the
former regions.

Interpreting the multivariate brain pattern weighting in the predic-
tion is usually not recommended (e.g. (Haufe et al., 2014) since the
prediction is underlined by the combination of several element/feature
(i.e. voxels in a voxel-wise representation of the data and components in
the present study) and that the individual elements on themselves, taken
in isolation, may not convey any neurobiological relevant information.
However, we would argue that the relationship between the brain and
the predicted variable should not be kept as a conceptually locked black
box, that is, the multivariate aspect of the prediction does not imply that
we should not at least try to understand why the given pattern is relevant
for the model. As a metaphor, if a model uses the variable “number of
children” and “country” for predicting the age of a person, obviously the
variable “country” on its own is not informative for predicting the age of
a person, in contrast, the number of children is partly informative. Hence,
examining the combination of those two variables for predicting the age
of a person can provide us more insight by suggesting that the relation-
ship between age and the number of children is modulated by cultural
factors. Similarly, the pattern of relationship between grey matter vol-
ume and age is assumed to be modulated by several factors, but whose
influence remained relatively poorly understood. However, the current
framework promoting relatively localized component as relevant fea-
tures could help to explore this issue in future studies (such as how the
complex pattern of structural variations in the amygdala influenced by
gender can contribute to age prediction in healthy adults).

Conclusions and practical considerations for future studies

In conclusion, our study, which evaluated OPNMF-based compression
of VBM data for age prediction in two different healthy adult cohorts,
opens several new perspectives. First, we demonstrated that OPNMF
compression allows age prediction with a precision that is well compa-
rable to that achieved following PCA compression but yields substantially
more interpretable results. It also outperformed an atlas-based approach
based on resting-state whole-brain parcellation, even though the preci-
sion obtained by cross-model atlas based data compression is in itself
remarkable. Considering the declining return of investment when going
to higher granularities, we would thus suggest that OPNMF at a granu-
larity of 300 and 500 components may provide the optimal data
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compression for age prediction.
While the exact OPNMF solution obviously depends on the examined

sample, we here showed that prediction accuracies are basically
uncompromised when employing a factorization derived from an inde-
pendent dataset. That is, a factorization derived from one dataset can be
used to efficiently compress VBM data of a second, independent dataset
in a prediction framework. To note, the MIXED dataset used in the cur-
rent study covers a wide range of variation over a broad age range while
the (single-site) 1000BRAINS datasets can be assumed to capture struc-
tural covariance in older populations. Accordingly, the factorization
derived from MIXED could be used for data compression in age predic-
tion studies across adulthood whereas the factorization derived from
1000BRAINS may be particularly well suited for studying the aging
brain. In addition to structural covariance-based factorization, our study
offers robust prediction models trained on life span sample from het-
erogeneous sites (MIXED), an advantage on which future studies could
capitalize to better understand the effects of different factors on the
neurobiological aging.
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I. Supplementary methods 
 
I.1. Scanning parameters:  
The dataset termed “1000BRAINS” was obtained from a unique data collection [Caspers et 
al., 2014] of 693 healthy older adults (age: 55-75 years) that were scanned on a 3T scanner. 
Scanning parameters for the 1000BRAINS dataset were as given: Repetition time = 2.25 s, 
Echo time = 3.03 ms, Inversion time= 900ms, Field of view = 256 x 256 mm2, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3.  
Whereas, the dataset termed “Mixed” comprised 1084 healthy adults (age: 18-81 years) that 
were collected by merging samples of healthy adults from multiple sites. Scanning 
parameters for the individual samples that were merged to form the Mixed dataset were as 
following. 

Dataset-1: No of subjects = 91, Repetition time = 2.25 s, Echo time = 3.03 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-2: No of subjects = 83, Repetition time = 2.4 s, Echo time = 2.14 ms, flip angle = 80, 
voxel resolution = 0.7 x 0.7 x 0.7 mm3, 3T Skyra Siemens scanner. 

Dataset-3: No of subjects = 306, Repetition time = 1.9 s, Echo time = 2.52 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-4: No of subjects = 127, Repetition time = 2.5 s, Echo time = 3.5 ms, flip angle = 80, 
voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-5: No of subjects = 50, Repetition time = 2.25 s, Echo time = 3.26 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-6: No of subjects = 26, Repetition time = 3 s, Echo time = 4 ms, flip angle = 80, 
voxel resolution = 1 x 1 x 1 mm3, Philips Achieva 3T scanner. 

Dataset-7: No of subjects = 42, Repetition time = 2.25 s, Echo time = 3.82 ms, flip angle = 
90, voxel resolution = 1.04 x 1.04 x 1 mm3, 3T Siemens scanner. 

Dataset-8: No of subjects = 78, Repetition time = 2.3 s, Echo time = 2.92 ms, flip angle = 90, 
voxel resolution = 1 x 1 x 1.1 mm3, 3T TimTrio Siemens scanner. 

Dataset-9: No of subjects = 13, Repetition time = 2.3 s, Echo time = 3.03 ms, flip angle = 90, 
voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-10: No of subjects = 17, Repetition time = 1.9 s, Echo time = 2.52 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1.1 mm3, 3T Magnetom Prismatit Siemens scanner. 

Dataset-11: No of subjects = 72, Repetition time = 2.53 s, Echo time = 1.64 ms, flip angle = 
70, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-12: No of subjects = 35, Repetition time = 2.25 s, Echo time = 3.26 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 



Dataset-13: No of subjects = 31, Repetition time = 2.4 s, Echo time = 4.6 ms, flip angle = 
300, voxel resolution = 1 x 1 x 1 mm3, PHILIPS Intera Achieva 3T scanner. 

Dataset-14: No of subjects = 16, Repetition time = 10 ms, Echo time = 4.6 ms, flip angle = 
80, voxel resolution = 1 x 1 x 1 mm3, 3T IRM Philips scanner. 

Dataset-15: No of subjects = 77, Repetition time = 7.2 s, Echo time = 3.3 ms, flip angle = 80, 
voxel resolution = 0.89 x 0.89 x 0.9 mm3, PHILIPS Achieva 3T scanner. 

Dataset-16: No of subjects = 20, Repetition time = 9.86 s, Echo time = 4.6 ms, flip angle = 
80, voxel resolution = 0.875 x 0.875 x 1 mm3, PHILIPS Achieva 3T scanner. 

 

I.2. ADNI dataset 

For the clinical validation of our framework, we used data from the “ADNI” (Alzheimer's 
Disease Neuroimaging Initiative) database (www.loni.ucla.edu/ADNI) including the subjects 
that was scanned on a 3T scanner. The entire ADNI sample collection consists of three 
different phases i.e., ADNI-1, ADNI-GO and ADNI-2, with various modifications in the 
study design across phases. Hence, 3-0T MRI image acquisition scheme of ADNI-2 was 
modified according to the upgraded systems over the period of time. The subjects included in 
the current study were obtained from both ADNI-1 and ADNI-2 datasets. Scanning 
parameters for the ADNI-1 dataset were as follow: Repetition time = 0.65 s, Echo time = min 
full, Field of view = 256 x 256 mm2, flip angle = 80, slice thickness = 1.2mm and scanning 
parameters for the ADNI-2 dataset were as follow: Repetition time = 0.4 s, Echo time = min 
full, Field of view = 256 x 256 mm2, flip angle = 110, slice thickness = 1.2mm. General 
inclusion criteria and classification of the participants are described here: 
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf. Briefly, 
cognitively healthy participants do not report any specific memory complaints, neither show 
objective memory dysfunction. MCI, have both a subjective and an objective memory 
concern measured by education adjusted scores on Wechsler Memory Scale Logical Memory 
II, but an absence of significant levels of impairment in other cognitive domains, essentially 
preserved activities of daily living, and an absence of dementia. Finally, AD subjects who 
meet NINCDS/ADRDA criteria for probable AD were selected. 

 

I.3. Association between the two measures (i.e., MAE and correlation) of the performance 

We could assume that the range of variations supported by the data can, differently influence 
the two measures of the performance, MAE and correlation. That is, overall the variation of 
age prediction follows well the variation in real age (i.e. higher real age goes with higher 
predicted age), hence driving the very high correlation in MIXED. However, the gap 
between real age and predicted age (i.e., precision) could be relatively big in that sample. In 
contrast, in 1000BRAINS, the range of variations between real age and predicted age is 



smaller allowing relatively higher precision even though the overall correlation is lower due 
to a more restricted range of the data. We thus note, that such observation demonstrates the 
advantage of employing different metrics of performance as they can provide complementary 
information in the evaluation of a prediction framework. 

 

 

  



II. Supplementary results 
 

 
Fig S1. Illustration of the mean absolute error at different levels of granularity using 
smoothed and unsmooth VBM data 

 



 
Fig S2. Illustration of the mean absolute error of the prediction model approach: 
1000BRAINS  train on 1000BRAINS & test on MIXED: Training the prediction model on 
1000BRAINS dataset projected on to its own factorization and later tested on MIXED 
dataset 

 



 
Fig S3. Summary map of the regions that contributed in the prediction analysis when 
performing 10-fold cross-validation and compressing the dataset using the components 
derived from its own dataset or their respective other group’s dataset. 

A) MIXED dataset compressed, a) with its own factorization, b) projected onto the 
factorization derived from 1000BRAINS.  

B) 1000BRAINS dataset compressed, a) with its own factorization, b) projected onto 
factorization derived from MIXED. 

 



 
Fig S4. Scatter plots of the mean grey matter volume (GMV) of superior parietal lobule 
(SPL; top left) and amygdala (top right) across distinct age groups in the MIXED dataset 
(middle panel) and the full age range of the 1000BRAINS dataset (bottom panel). These 
regions were highlighted in the age prediction when the model was trained on the MIXED 
dataset, but were not selected when the model was trained on the 1000BRAINS dataset. The 
age range (y axis) on the scatter plots was displayed separately for the early adulthood (18-40 
years) and the second life period (41-81) in the MIXED dataset illustrating different trends 
across the two life periods. The reported r values suggest a moderate negative correlation 
between superior parietal GMV and age in early adulthood and a weaker correlation in later 
life periods. In contrast, amygdala GMV show no GMV decrease with age in the early 
adulthood.  
 



 
Fig S5. Similarity between factorizations from two datasets measured with adjusted Rand 
Index. Red: 1000BRAINS and MIXED; Cyan: 1000BRAINS and OldMIXED. Note: due to 
the small size of the OldMIXED (n = 239), granularity in this sample has been limited to 225 
components. 
 



 
Fig S6. Predicted age plotted against chronological age, with fitted regression lines. In the 
bottom panel, both individual top plots have been combined together for subjects aged 
between 55 and 75. 
 



 
Fig S7. Summary map of the regions that contributed in the prediction analysis, when 
performing the cross-validation approach in either of the datasets (i.e., MIXED and 
1000BRAINS). a) Summary map of the regions that contributed in the prediction analysis, b) 
Regions whose loading coefficients showed high correlations (i.e., anything above mean 
correlation) with age (among the regions contributing in age prediction) 

 
Table S1: Mean absolute error averaged across different levels of granularity 
 

Components 
derived 

Training Test 
Whole 
sample 

Males Females 

1000BRAINS 

1000BRAINS 1000BRAINS 3.6 3.7 3.5 

MIXED MIXED 6.1 6 6.3 

1000BRAINS OldMIXED 3.7 3.7 3.7 

MIXED 

1000BRAINS 1000BRAINS 3.6 3.7 3.6 

MIXED MIXED 6.3 6 6.5 

MIXED 1000BRAINS 6.1 6 6.2 

OldMIXED 1000BRAINS 3.8 3.8 3.8 

Raw VBM 
1000BRAINS 1000BRAINS 3.4 3.4 3.3 

MIXED MIXED 5 4.9 5.1 



Table S2: Correlations (predicted age with real age) averaged across different levels of 
granularity 

Components 
derived Training Test 

Whole 
sample Males Females 

1000BRAINS 

1000BRAINS 1000BRAINS 0.63 0.63 0.62 

MIXED MIXED 0.87 0.88 0.86 

1000BRAINS OldMIXED 0.53 0.53 0.53 

MIXED 

1000BRAINS 1000BRAINS 0.62 0.62 0.61 

MIXED MIXED 0.86 0.87 0.85 

MIXED 1000BRAINS 0.55 0.55 0.54 

OldMIXED 1000BRAINS 0.54 0.54 0.54 

Raw VBM 
1000BRAINS 1000BRAINS 0.69 0.68 0.69 

MIXED MIXED 0.91 0.91 0.91 

Table S3: Computational time for each assessed prediction approach with 100 repetitions 
(in hours) 

Cross-validation approaches Out of Sample approach 

OPNMF 
from 

1000BRAINS MIXED 1000BRAINS MIXED MIXED 1000BRAINS MIXED 

Granularity 

CV 1000BRAINS CV MIXED 

Train 
MIXED 

Test 
1000BRAINS 

Train 
1000BRAINS   

Test 
OldMIXED 

Train 
OldMIXED 

Test 
1000BRAI

NS 

25 0.25 0.22 0.21 0.21 0.02 0.03 0.01 

50 0.39 0.47 0.44 0.38 0.03 0.03 0.03 

75 0.57 0.78 0.57 0.53 0.04 0.04 0.04 

100 1.09 1.31 1.59 1.16 0.09 0.99 0.10 

125 1.88 1.92 2.29 1.88 0.15 0.12 0.23 

150 2.21 2.22 2.73 2.02 0.13 0.16 0.34 

175 4.43 3.07 3.99 3.30 0.22 0.30 0.92 

200 5.39 3.94 4.94 4.31 0.28 0.34 0.67 

225 8.79 5.03 6.46 6.25 0.41 0.55 0.29 

250 8.46 6.44 8.07 6.94 0.41 0.51 0.25 

275 10.91 7.83 10.41 8.96 0.53 0.76 0.27 

300 20.36 8.21 13.07 11.55 0.57 1.44 0.24 

325 30.79 12.29 18.08 22.84 0.79 2.10 0.26 



350 31.09 17.99 19.50 31.16 1.24 2.06 0.26 

375 58.08 21.64 29.39 40.62 1.59 3.99 0.29 

400 60.23 27.17 30.70 54.32 1.96 4.58 0.30 

425 86.04 36.04 39.61 90.69 2.16 5.38 0.31 

450 111.19 51.88 48.85 118.91 3.35 7.49 0.31 

500 236.95 115.08 139.27 275.45 7.83 15.58 0.33 

525 242.68 110.21 136.26 288.07 6.98 13.27 0.31 

550 320.67 133.47 167.08 252.93 6.12 15.62 0.31 

575 249.60 155.10 169.46 240.85 9.82 14.50 0.35 

600 272.75 139.47 179.44 217.41 8.98 11.82 0.30 

625 26.48 155.89 210.86 21.04 9.55 1.50 0.33 

650 25 159.82 190.28 21.15 10.55 1.38 0.29 

690 27.8 215.78 220.66 22.45 9.50 1.52 0.32 

 

Table S4: Mean absolute error averaged across different levels of granularity 

Components 
derived 

Train Test 

Raw predictions Adjusted predictions 

Unsmoothed 
data 

Smoothed 
data 

Unsmoothed 
data 

Smoothed 
data 

1000BRAINS 

1000BRAINS 1000BRAINS 3.6 3.6 4.6 4.5 

MIXED MIXED 6.3 6.2 6.9 6.7 

1000BRAINS MIXED 18.8 18 12.7 12 

Mixed 

1000BRAINS 1000BRAINS 3.6 3.6 4.6 4.55 

MIXED MIXED 6.4 6.3 7 6.9 

MIXED 1000BRAINS 6.1 6.1 8.1 8 

Raw VBM 
1000BRAINS 1000BRAINS 3.4 3.3 3.3 3.4 

MIXED MIXED 4.92 5 4.86 5 

 

 
 
  



General Discussion 
 
1 Extraction of functional connectivity measure in a reliable fashion 
 
The first study was dedicated to investigate the influence of various confound removal 
procedures and signal extraction approaches on the reliability of the functional connectivity 
scores in a priori defined canonical networks. The results related to the extraction of the 
signal demonstrated that implementation of the grey matter masking based on the group-
averaged GM probabilities improved the reliability of the connectivity measures for larger, a 
priori defined clusters, while no grey matter masking seems favorable when using smaller, 
spherical ROIs. In details, when using larger, a priori defined clusters, restricting the 
extraction of the signal from the grey matter masking based on individual GM probabilities 
has shown to improve the reliability at the connection level (i.e., within-subject 
connectivity). In turn, group grey matter masking enhances the reliability of the connectivity 
measures at group level. This finding argues for best fit of spatial correspondence reflecting 
individual subject’s anatomy to produce reliable measure within a single subject. When 
performing a multivariate approaches, connectivity measures characterizing dynamics of the 
spatial information on individual basis is essential to improve the performance of the analysis 
(Davatzikos 2016). Therefore, individual grey matter masking seems advisable for 
optimizing the performance of a machine-learning algorithm on the larger, a priori defined 
clusters.  
 
Our results further demonstrated that the confound removal strategy which retains the most 
variance is the most reliable strategy. One assumption behind this outcome was the that 
highest retained variance presumably included structured noise, such as reliable nuisance 
signals induced by physiological processes hence contributing to the reliability. In line with 
this assumption, Birn et al. 2014 reported a reduction in the test-retest reliability particularly 
after elimination of artifacts induced by physiological processes (i.e., cardiac and respiratory 
processes) and suggested reducing the spatially structured fluctuations in order to improve 
the validity of the functional connectivity measures. Therefore, we infer that structured noise 
caused by the systematic and cyclic physiological processes might have contributed to the 
highest reliability for the connectivity measures with no confound removal. Nevertheless, 
influence of physiological noise correction on the reliability of functional connectivity 
measures was not explicitly investigated in our study 1, due to the lack of physiological 
recordings of parameters such as heartbeat and breathing. In turn, we investigated PCA de-
noising which has been introduced by Behzadi et al. (2007) as an alternative de-noising 
strategies and was shown to effectively eliminate the influence of physiologically induced 
artifacts (Chai et al. 2012). Even though, our main findings indicated that PCA denoising 
reduced the reliability of the connectivity measures, implementation of PCA denoising led 
high reliability at the connection level (i.e., within subject connectivity; RoCO) for within 



network connections (only). Importantly, Shirer et al. in a study investigating the test-retest 
reliability of the connectivity measures has reported an increase in the group discriminability 
(i.e., an increase in the machine learning classification accuracy between Alzheimer’s 
patients and healthy controls) after regressing out the PCA components. Together, we could 
assume that PCA denoising has a potential to reduce the intra-subject variability, preferably 
by eliminating the structured noise. Nevertheless, it has to be noted that PCA denoising 
aggressively remove the variance, which could make the time series reach a flat line, hence, 
resulting in a higher reliability at the connection level reported in our study. Thus, excessive 
removal of variance using PCA denoising might not be advisable. In sum, removal of 
physiological noise allow us to improve the validity of the measure by diminishing the 
detrimental structured noise, however, PCA denoising might not be the suitable approach. 
Furthermore, we note that physiological recordings are rarely acquired in standard (clinical) 
resting-state acquisitions, and hence remain challenging to precisely model the physiological 
noise regressors. Recently, Salimi-Khorshidi et al. 2014 proposed an ICA based FIX 
denoising strategy, which performs an automatic identification of confounds addressing the 
structured noise and regress them out. However, FIX denoising approaches require effective 
individual segmentation from high-resolution T1 images, which were not available for the 
data used in study 1. Hence, unfortunately, our study 1 failed to explicitly investigate the 
impact of the FIX denoising strategy on the reliability of the connectivity measures. 
However, we assume this automated denoising approach could efficiently model the true 
noise components in the existing data, given the main strength of this automated denoising, 
to detect the noise components based on machine-learning approach using data-driven 
feature selection strategy. Therefore, along with the confound removal suggested in our study 
1 (i.e., 24 motion regressors and mean signal from WM and CSF), we suggest to improve the 
validity by eliminating the accurately modeled physiologically induced nuisance regressors 
either by using pre-acquired physiological recordings or by an automated data driven 
approaches (such as ICA-based FIX denoising).  
 
2 Sparsity induced feature reduction 
 
In this section, we discuss the results from study 4 based on the anatomical data, focusing on 
the performance and interpretability of a sparse supervised regression model employed with 
three different form of the data representation, i.e., 1) high-dimensional Voxel Based 
Morphometric (VBM) data without any implementation of data reduction procedure 
(uncompressed data), 2) Non-negative matrix factorization (NMF) based VBM data 
reflecting a sparse decomposition of the data and 3) PCA based VBM data representing a 
non-sparse data reduction procedure (implemented by the previous studies).  
 
An interesting outcome of study 4 is that prediction accuracy remains analogous employing 
the three forms of data representation (i.e., using the full (uncompressed) VBM data, sparse 



NMF compressed data and non-sparse PCA decomposition from the previous studies). 
However, investigation of underlying pattern within the prediction revealed that isolated 
voxels scatter all over the brain were identified as relevant features by the sparse regression 
model on the voxel-wise (uncompressed) data rather than forming clusters in definite 
regions. In addition, as reported in the Table 1, on an average each regression model selected 
236 and 508 voxels (i.e., features) for 1000BRAINS and MIXED, nevertheless, only 5 and 
24 features (for 1000BRAINS and MIXED) among these selected features remain consistent 
over (only) 50 percent of the regression models. This observation clearly suggest that high 
dimensional voxel wise data due to the highly correlated features allowed several potential 
models accurately fitting on the same data. This problem reveals lack of stability in the 
prediction model due to the multicollinearity of the data (Zhao and Yu 2006), which 
implicitly questions the interpretability of the pattern associated with the features contributed 
in the prediction model. In addition to this issue, as suggested by Wang et al. 2010, the small 
sample size relative to the high dimensional voxel-wise data (commonly known as small-n-
large-p issue) can challenge the computation of a regression model. Thus, implementation of 
dimensionality reduction procedure, prior to the sparse supervised machine-learning 
algorithm is recommended to avoid the above-mentioned issues (namely, multicollinearity 
and small-n-large-p issues) and enhance the accuracy and stability of the results. In support 
to the above discussion, our study 2 focusing on functional MRI data actually had reported 
an increase in the classification accuracy for a non-sparse supervised machine-learning 
algorithm using a meta-analytically derived networks (domain knowledge based data 
reduction method) compared to the whole brain functional connectivity networks. This result 
further supports the argument of implementing a feature reduction method before the 
supervised learning to reduce the detrimental impact of the redundant, as well as noisy 
features.  
 
Although, efficient feature reduction or dimensionality reduction has been the biggest 
concern in the field (Hua et al. 2009; Chu et al. 2012), deeper understanding on the pattern 
associated with the regions contributed within the supervised learning remains an open 
question which deserve equal attention (Franke et al. 2012). Thus, our project intended to 
evaluate an alternative dimensionality reduction method (i.e., NMF) that converts the high 
dimensional voxel-wise data into biologically plausible spatial units of the brain. As stated 
above, accuracy of the brain age prediction using NMF (sparse) data compression favorably 
compares with previous reports employing PCA (non-sparse) data compression. 
Furthermore, as reported in the study 4, NMF attempted to capture the most influential 
spatial information among the entire high-dimensional representation (Kim and Tidor 2003; 
Sotiras et al. 2015). Therefore, NMF has a potential for being less affected by the 
measurement and processing artifacts. Most importantly, study 4 demonstrated that 
implementation of a sparse regression model on to the sparse decomposition method (in 
particular, NMF) allowed us to investigate the underlying pattern contributing to the 



prediction analysis. As enlightened by Davatzikos 2016, and supported by Wang et al. 2010, 
categorizing spatially consistent brain voxels (i.e., voxels of similar signals) across 
individuals into each component allowed us to partly articulate which groups of components 
(or features) provide discriminative information about the variable of interest. Thus, deeper 
and better understanding of the underlying biological processes can be achieved by 
Generative-discriminative methods (i.e., combination of sparse unsupervised feature 
reduction with a sparse supervised learning (Davatzikos 2016)), particularly when generative 
method promotes biologically plausible factorization of brain data.  
 
In addition, results from study 3 focusing on the functional MRI data implementing domain 
knowledge based data reduction procedure (i.e., a-priori defined meta analytical networks) 
allowed us to strengthen our assumptions. Here, implementation of meta-analytically derived 
networks on a sparse regression model offered a deeper interpretation of the neurobiological 
underpinnings of personality traits. Our a-priori defined meta-analytically derived networks 
have a great potential in improving the signal to noise ratio of the feature space, which is a 
representation of relatively small number of brain regions implicated in the functional 
processing of the variable of interest. Relatedly, Chu et al. 2012 has evaluated the influence 
of different sample sizes along with different feature selection methods on classification 
accuracy and demonstrated that feature selection procedure capitalizing on the prior 
knowledge (with a prerequisite of high reliability) resulted in an improvement in the 
performance of the regression model. Most importantly, even though, study 2 has employed 
non-sparse supervised regression model (meaning when there isn’t any explicit feature 
selection method implemented), application of the prior knowledge based functionally 
relevant features (i.e., meta-analytically defined networks as a feature reduction step) has 
partly allowed us to interpret the underlying pattern across the neurodegenerative biological 
processes. Altogether, feature reduction with an inherent or indirectly induced sparsity is 
highly beneficial for understanding the pattern associated within the analysis. 
 
  



Table 1: proportion of features contributing in the prediction analysis on high dimensional 
voxel wise 

No of features 
(i.e., voxels) 

Cross validation in 
1000BRAINS Cross validation in MIXED 

Average No 
of features 

selected per 
model 

(among 75 
models) 

Features 
contributed 

consistently in 
50 % of the 

models 

Average No of 
features 

selected per 
model (among 

75 models) 

Features 
contributed 

consistently in 
50 % of the 

models 

344383 236 5 508 24T 

 
 
 
3 To what extent do we need to reduce the features? 
 
Furthermore, study 4 demonstrated that prediction accuracy improves with an increase in the 
level of granularity. To note, sparse and non-sparse unsupervised models encounter a 
downside of the procedure, which is user-specified definition of the level of granularity as a 
prerequisite (Mwangi et al., 2015). In this context, study 4 suggested an optimal choice of 
granularity at 300 to 400 components using NMF (sparse representation), particularly for the 
VBM data in a prediction’s purpose. Consistent with our finding, Franke et al. 2010 reported 
a comparable level of factorization (i.e., 350) using PCA (non-sparse representation). 
Importantly, the level of granularity reflecting a stable subdivision of the brain in functional 
MRI data also converged with our findings (i.e., ranging between 200 and 500 parcels 
(Tucholka et al. 2008; Thirion et al. 2014; Gordon et al. 2016)). Thus, granularities between 
300 and 400 components might optimally compresses the voxel-wise structural MRI data 
into homogeneous spatial components. Importantly, this level of compression could also 
favorably subdivide the brain into stable functionally homogenous when considering fMRI 
data (Schaefer et al., 2017). Of note, sparse descriptive (supervised) models applied on the 
low rank approximations has a potential to enforce an automated selection of as many 
features as required by the regression model to provide relevant discriminative information 
about the variable of interest (Tipping and Faul 2003; Zhao and Yu 2006). Nevertheless, 
study 4 demonstrated that accuracy of the descriptive models improves with an increase in 
the level of granularity for the generative models. In addition, Table 2 depicts that the 
relevant number of features consistently contributing among 95 % of the prediction models 



reaches a plateau after a certain level of granularity. These observations strengthen our 
assumption that determining a precise granularity for the generative reduction step is a 
fundamental requirement to achieve better precision of the descriptive models. Therefore, 
even though the descriptive models can perform an automated feature selection, an optimal 
a-priori definition of granularity for the feature reduction is imperative.  

 
Table 2: proportion of features contributed in the prediction analysis on NMF based VBM 

data 

Total No of 
features  

(Granularity) 

Comp FZJ Cross Mixed  Comp Mixed Cross FZJ  

Average No 
of features 

selected per 
model 

Features 
contributed 

consistently in 
95 % of the 

models 

Average No 
of features 
selected per 

model 

Features 
contributed 

consistently in 
95 % of the 

models 
25 24 21 24 20 
50 48 40 39 27 
75 65 51 42 29 

100 91 75 49 25 

125 113 86 74 35 
150 124 83 90 40 

175 136 88 98 53 

200 142 92 94 46 
225 149 91 106 55 

250 175 113 103 49 
275 186 115 106 45 
300 181 114 111 51 
325 195 118 111 50 

350 206 120 117 50 

375 220 124 127 46 

400 215 113 118 53 
425 210 105 121 46 
475 237 110 138 52 

500 225 114 128 43 

525 255 126 147 57 

550 233 110 142 57 



575 229 111 131 50 

600 252 122 130 52 

625 258 109 155 48 

650 275 126 143 56 
690 248 111 167 64 

 
4 Generalizability 
 
It has been emphasized in the previous section that outcomes of the generative models (i.e., 
models enforcing unsupervised learning of the data by inferring a hidden pattern of the data 
across the observations) can impact the accuracy of the descriptive models (i.e., models 
learning the data in a supervised fashion). However, generative or unsupervised models 
based solutions aim to discover groups that share similar information across the individuals 
(i.e., observations) without any pre-defined regulations, which might raise a question of 
generalizability. In support to this assumption, study 4 reported a slightly different NMF 
estimated from two different datasets with distinct parameters (such as the acquisition 
protocol and demographic characteristic). As discussed in the Study 4, these differences 
might have been driven from the inter-individual variations in the topographical patterns of 
the brain. However, the most important observation from the study 4 is that factorization 
derived from one dataset can be efficiently implemented to reduce the dimensions of an 
independent dataset in a (sparse supervised learning) prediction framework. This observation 
advocates for the generalizability of the unsupervised learning (particularly, NMF) for an 
unseen data, which is not only independent but also, differs with acquisition protocol and 
demographic characteristics. In contrast, Study 4 also demonstrated that supervised learning 
or descriptive models failed to generalize for the test sample with target variable out of the 
range of variations covered by the training samples. However, supervised prediction model 
trained on data comprising largely heterogeneous variations due to divergent and wide range 
of parameters (such as acquisition protocol and demographic characteristic), efficiently 
performed the predictions on an independent dataset. Therefore, our results emphasize the 
importance of big sample sizes with large and heterogeneous range of target variables for 
effectively improving the generalizability of the supervised learning or descriptive modeling.   
 
  



5 Summary 
 
In the current thesis, best combination of confound removal strategies and signal extraction 
approaches to compute reliable functional connectivity measures were examined along with 
the evaluation of various data reduction methods. Firstly, to summarize the outcomes of the 
test-retest reliability study, when implementing meta-analytic approach as a feature reduction 
method, extraction of the signal by employing the grey matter masking has shown to 
improve the reliability of the connectivity measures for large, a priori defined clusters, in turn 
there is no requirement of implementing a grey matter masking for smaller, spherical ROIs. 
Along with the 24 motion regressors and mean signal from WM and CSF, physiologically 
induced noise regression should also be given adequate consideration. Now coming to the 
summary of the data reduction strategies, prior to the supervised machine-learning 
application, reduction of high dimensional data into fewer dimensions seems promising. In 
addition, feature reduction procedure with an inherent or indirectly induced sparsity resulting 
biologically plausible reduced units is highly beneficial to interpret the underlying pattern of 
the biological processes. Definition of a precise optimal latent dimension of the entire voxel 
wise representation is crucially required to attain reliably meaningful results from generative-
descriptive methods. Generalization of the unsupervised learning (particularly, NNMF) for 
an unseen data, which is not only independent but also, differs with acquisition protocol and 
demographic characteristics seems achievable. Finally, we proposed that not only the size of 
the observation (i.e., sample size), but also heterogeneity on the variations associated to the 
range of target variables is crucial for enhancing the generalizability of the machine learning 
approach.  
 
6 Future work 
 
While this thesis has demonstrated the potential of sparse feature reduction techniques to 
better understand the prediction analysis, many opportunities for extending the scope of this 
thesis remain open. The following ideas could be explored in future studies.  
 
1. Given the main objective of this dissertation was to investigate approaches that would 
promote biologically meaningful compression of the high-dimensional space in the context 
of multivariate analysis. A linear regression model was preferred for the sake of comparison 
and complementation of previous studies, as most of the previous studies have implemented 
linear regression models. Despite the potential benefits of the linear regression models, it is 
indeed interesting to implement a non-linear regression model, which might increase the 
accuracy of the multivariate approaches, an issue that should be further investigated in future 
work.  
 



2. Even though, application of prior knowledge based meta-analytically defined 
networks has allowed us to efficiently perform the prediction or classification analysis. It is 
crucial to perceive for the global effects of the multivariate approaches based on whole-brain 
FC patterns. Therefore, in future studies, it will be interesting to evaluate the performance of 
multivariate approaches on whole brain FC pattern compressed using Non-negative matrix 
factorization (yielding spatially localized sub units).  
 
3. One major aspect that could be investigated as an extension to this dissertation is to 
address the curse of dimensionality at multimodal level. The fundamental issue underlying 
this aspect is the data fusion, which requires compressed representation in identical forms for 
all the modalities. Thus, either standardizing the low-rank approximations at each modality 
or implementing the same data compression method on all the modalities could support to 
explore this issue in future studies. 
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