
Improving Explicit-State Model
Checking for B and Event-B

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Ivaylo Miroslavov Dobrikov
aus Pleven (Bulgarien)

Düsseldorf, April 2018

Aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Michael Leuschel
Heinrich-Heine-Universität Düsseldorf

Korreferent: Dr. David Williams
University of Surrey

Tag der mündlichen Prüfung: 15. Dezember 2017

Parts of this thesis have been published in the following peer-reviewed articles, conference
proceedings and book chapters:

• [DL14]

• [DL16b]

• [DL16a]

• [DL17]

Other peer-reviewed publications:

• [LDL15]

• [DLP16]

Appendix G provides detailed information on my individual contributions to each of the
above-mentioned articles. The algorithms mentioned in this thesis are implemented as
part of the animator and model checker ProB. It is available under the Eclipse Public
License Version 1.0 from http://stups.hhu.de/ProB/w/Main_Page.

Keywords: formal verification, temporal logic, model checking, state-space explosion
problem, partial order reduction, ample set approach, static analysis, ProB, high-level
formalisms, concurrent systems, Event-B, classical B.

Abstract

Explicit-state model checking is a verification method for checking automatically prop-
erties on formal models relying on the explicit construction of the model’s state space.
The effectivity of such techniques depends mostly on the complexity and the size of the
system being verified. In most of the time, the number of states of a formal model grows
exponentially in the number of variables in the model. Such an explosion of the state
space is often the cause for very large runtimes of verification techniques based on the
explicit exploration of the state space. The verification of systems using explicit-state
exploration can get even more problematic when the system under consideration has
many components, which are executed concurrently. Also in this case the state space
size of a model representing such a system usually grows exponentially in the number
of concurrent components in the system. This problem is also known as the state space
explosion problem.

This thesis develops two optimisation approaches for combatting the state space explosion
problem in the context of automatic verification of classical B and Event-B models. The
first optimisation approach reduces the costs of exploring explicitly the state space
of classical B and Event-B machines by using the information about how transitions
in a machine influence each other. Using such a type of information one can predict
the enabling status of transitions in a state, aiming in this way to avoid the guard
evaluation of these transitions in the state. The approach, which develops a new state
space exploration technique, speeds up significantly the process of verification for large
state models by avoiding a chief part of the guard tests needed to explore the state space
of models by classical methods. The evaluation of the technique has shown that for
some examples the new state space exploration method can reduce the model checking
runtimes by a factor of three.

The second approach developed in this work represents a method of partial order reduction,
a technique for combatting the state space explosion problem by reducing the size of
the system’s state space. The method makes use of the commutativity of independent
transitions to prune redundant paths in the state space. The reduction algorithms
developed in this work represent the first successful attempt to apply partial order
reduction for both formalisms classical B and Event-B. The reduction algorithms are
vastly effective for model checking classical B and Event-B models with loosely coupled
events, significantly reducing the size of the state space to be searched and consequently
the runtimes for checking such models. The evaluation of the reduction algorithms
showed that significant reductions could often be obtained by model checking classical B
and Event-B models describing concurrent and reactive systems.

Both optimisation approaches use the information provided by two static analyses, called
enabling and independence analysis, to optimise model checking of classical B and Event-
B specifications. Both analyses use syntactic and constraint-solving techniques to decode

the mutual influence of transitions in classical B and Event-B machines. The use of the
constraint-solving techniques for computing the enabling and independence relations can
increase significantly the effectivity of the optimisation techniques in this work, as the
accuracy of both types of relations is often decisive for the efficacy of the methods. In
addition, this work describes the foundations of the enabling and independence analyses
and shows that the output of the analyses is not only very valuable for improving model
checking of B systems, but also very beneficial for understanding the control flow of
classical B and Event-B models.

The static analyses and all optimisation algorithms described in this thesis have been
implemented in the ProB toolset. The implementations are discussed and evaluated on
a variety of classical B and Event-B models, a large part of which represent real-world
systems. Additionally, the reduction results provided by the reduction algorithms in this
thesis and the reduction algorithm implemented in LTSmin are compared and thoroughly
discussed.

vi

Zusammenfassung

Explizite Modellprüfung ist ein Verifikationsverfahren zur automatischen Prüfung von Ei-
genschaften von formalen Modellen, das auf die explizite Konstruktion des Zustandsraums
des Modells baut. Die Effektivität der Modellprüfung ist zumeist eng mit der Größe des
Zustandsraums des zu prüfenden Modells verknüpft. In den meisten Fällen wächst die
Anzahl der Zustände eines Modells exponentiell mit der Anzahl der Variablen im Modell.
Eine solche Explosion der Anzahl der Zustände im Modell ist oft die Ursache dafür, dass
die Verifikation von Modellen via explizite Modellprüfung sehr oft als nicht praktikabel
bewertet wird. Die Verifikation von formalen Modellen via explizite Modellprüfung kann
noch problematischer werden, wenn die Modelle nebenläufige Systeme beschreiben. Auch
in diesem Fall wächst die Anzahl der Zustände der formalen Modelle, die solche Systeme
beschreiben, in der Regel exponentiell mit der Anzahl der parallel ausgeführten Kompo-
nenten im System. Dieses Problem ist auch unter dem Namen Zustandsexplosionsproblem
bekannt.

Diese Arbeit präsentiert zwei Methoden für die Bekämpfung des Zustandsexplosionspro-
blems, das im Kontext von automatischer Verifikation von klassischen B und Event-B
Modellen behandelt wird. Das erste Verfahren nutzt Informationen über die Art und
Weise wie Operationen in einer Maschine sich gegenseitig beeinflussen können. Durch
das Nutzen solcher Informationen kann man voraussagen, welche Operationen in einem
Zustand aktiviert oder deaktiviert sind und somit die Evaluierung der Guards dieser
Operationen im Zustand vermeiden. Dadurch können überflüssige Berechnungen gespart
und die Kosten für die Zustandsexploration eines klassischen B oder Event-B Modells
gesenkt werden. Die neue Technik kann den Prozess der Verifikation von zustandsin-
tensiven Modellen signifikant beschleunigen, durch Vermeidung der Evaluierung eines
beträchtlichen Teils der Guard-Tests, die gebraucht werden, um den Zustandsraum einer
Maschine durch klassische Explorationstechniken zu untersuchen. Dadurch können in
manchen Fällen die Laufzeiten der Modellprüfung von B Spezifikationen bis zum 3-fachen
beschleunigt werden.

Das zweite Verfahren präsentiert eine Methode von Partial Order Reduction, eine Technik,
die durch Zustandsreduktion eine Lösung des Zustandsexplosionsproblems anbietet. Die
Methode nutzt die Kommutativität unabhängiger Zustandsübergänge, um redundante
Pfade im Zustandsraum zu kürzen. Die Reduktionsalgorithmen, die in dieser Arbeit
entwickelt wurden, präsentieren den ersten erfolgreichen Versuch für die Anwendung von
Partial Order Reduction für beide Formalismen B und Event-B. Die Evaluierung der
Reduktionsalgorithmen hat gezeigt, dass die Reduktionstechnik für die Modellprüfung
von klassischen B und Event-B Modellen, die einen hohen Grad von Unabhängigkeit und
Nebenläufigkeit aufweisen, enorm effektiv ist. Darüber hinaus wurde beobachtet, dass
die Reduktionsalgorithmen eine sehr gute Reduktion des Zustandsraums von klassischen
B und Event-B Modellen von reaktiven Systemen erzielen konnten.

Beide Verfahren nutzen die Informationen von zwei statischen Analysen, die Enabling-
und die Unabhängigkeitsanalyse, um die Modellprüfung von B Spezifikationen zu op-
timieren. Diese zwei Analysen nutzen syntaktische und Constraintsolving-Techniken
um das gegenseitige Beeinflussen von Operationen in einer klassischen B und Event-B
Maschine zu entschlüsseln. Die Nutzung der Constraintsolving-Techniken ist von großem
Vorteil für die Optimierungsverfahren, da die präzisere Berechnung der Enabling- und
Unabhängigkeitsrelationen von Operationen oft die Effektivität der Optimierungsalgo-
rithmen erhöht. Diese Arbeit beschreibt die Grundlagen der beiden Analysen und zeigt,
dass die Ergebnisse beider Analysen nicht nur für die Optimierung der Modellprüfung
von B Systemen enorm nützlich sein können, sondern auch für das Verständnis des
Kontrollflusses von klassischen B und Event-B Modellen.

Die statischen Analysen und alle Optimierungsalgorithmen, die in dieser Arbeit präsentiert
werden, wurden in das ProB-Toolset integriert. Alle Implementierungen wurden an
einer großen Anzahl von klassischen B und Event-B Modellen evaluiert und ausgiebig
diskutiert. Anschließend werden die Reduktionsergebnisse der Reduktionsalgorithmen
im ProB mit den Reduktionsergebnissen des Reduktionsalgorithmus im LTSmin-Tool
verglichen und analysiert.

viii

Acknowledgements

First, I want to thank my supervisor, Michael Leuschel. Without his valuable support,
advices and encouragements this work would not have been possible. As a part of Micheal
Leuschel’s team at the University of Düsseldorf, I spent more than five wonderful years in
which I was introduced into the field of formal verification and learned so much about this
exciting area. The work at the chair of Michael opened the door for me in the research
community and I will always be grateful to Michael for giving me this opportunity.

I also want to thank all my former colleagues at the STUPS group, especially for their
valuable suggestions, advices, impartial critic and for the splendid time that I spent
playing foosball. I would like to give special thanks to Jens Bendisposto, Joy Clark, Marc
Fontaine, Dominik Hansen, Sebastian Krings, Lukas Ladenberger, Daniel Plagge, David
Schneider, Harald Wiegard and John Witulski.

I also want to thank David Williams for arousing my interest into the field of linear
temporal logic and for the collaboration during the years.

I wish to thank Philipp Körner for his outstanding support on installing and using the
LTSmin tool. I enjoined very much the time assisting his work on the ProB LTSmin
extension module for enabling LTSmin to check B specifications using partial order
reduction.

This work was partly carried out within the GEPAVAS project supported by the Deutsche
Forschungsgemeinschaft (DFG) and within the ADVANCE project supported by the EU
Commission.

Finally, I would like to thank my family and friends for their constant support, and
especially my wonderful wife, Aneliya Dobrikov, for her love, continuous support, for her
patience, and for helping me to get through this challenging time.

ix

Contents

1. Introduction 1
1.1. Background . 2

1.1.1. The B-Method . 2
1.1.2. Event-B . 7
1.1.3. Explicit-State Model Checking . 10
1.1.4. Linear-Time Temporal Logic . 16
1.1.5. LTL[e] Model Checking by Tableau 20
1.1.6. ProB . 24

1.2. Scope and Goals of the Work . 26

2. Event Relations 29
2.1. Preliminaries . 29
2.2. Enabling Analysis . 36

2.2.1. Implementation . 44
2.3. Independence . 50

2.3.1. Refining the Dependency Relation 52
2.4. Enabling and Independence Analysis for Classical B 56
2.5. Discussion . 59
2.6. Related Work . 62

3. Partial Guard Evaluation 65
3.1. Predicting Enabledness . 65
3.2. State Space Exploration by Guard Prediction 68
3.3. Evaluation . 72
3.4. Discussion . 76
3.5. Related Work . 79

4. Partial Order Reduction 81
4.1. The Ample Set Approach . 82

4.1.1. Ample Set Conditions . 82
4.2. Partial Order Reduction for Deadlock and Consistency Checking 86

4.2.1. Local Criteria for (A 2) . 86
4.2.2. Computing Ample Sets . 90
4.2.3. The Ignoring Problem . 95
4.2.4. Striving for More Reduction . 98
4.2.5. Heuristics for Ample Sets . 103

4.3. Partial Order Reduction for LTL . 104
4.3.1. Stutter Events and LTL[e] Formulae Preserved by Partial Order

Reduction . 105
4.3.2. Off-line Reduction . 107

xi

Contents

4.3.3. On-the-fly Reduction . 107
4.4. Evaluation . 108

4.4.1. Consistency Checking . 109
4.4.2. Comparing POR in ProB with POR in LTSmin 114

4.5. Discussion and Related Work . 119
4.5.1. Approach . 120
4.5.2. Correctness of the Approach . 121
4.5.3. Ample Set Selection Heuristics . 123
4.5.4. Comparison to LTSmin . 125
4.5.5. Other Related Work . 127

5. Conclusions and Future Work 129
5.1. Summary . 129
5.2. Future Work . 132

A. Summary of the Rules for the Guard of a Generalised Substitution 135

B. Detailed Experiment Results (PGE) 137

C. POR1 vs. POR2 143

D. ProB vs. LTSmin without Guard-Splitting 147

E. Detailed Description of the Benchmarks 149

F. Experimental Setup 153

G. Contribution Papers 155

Bibliography 157

List of Figures 167

List of Tables 169

xii

1
Introduction

The development of highly reliable software and hardware systems is usually accompanied
with the use of techniques that can guarantee a sufficient high degree of trust in the
correctness of the system. In many cases standard validation methods such as testing
and peer reviewing fail to provide a formal proof of correctness for the system being
developed. This is mainly because testing and peer reviewing are often very limited
in covering and verifying all possible behaviours of the developed system, especially
when the complexity of the system is increasing and its state space grows to astronomic
sizes. Therefore, the use of alternative methods is often encouraged, which can provide
supplementary instruments for simplifying, improving and verifying the system’s design
with the purpose of eliminating as many errors as possible in earlier stages of the system’s
development. Eliminating errors in earlier stages of the system’s development saves costs
and is very beneficial for the deployment of faultless software and hardware systems.

Formal specification and formal verification are concepts that provide a set of mathemat-
ically based techniques for modelling, analysing and proving the correctness of system
designs. Both, formal specification and formal verification, are often seen as indispensable
methods for developing safety-critical systems, where a single failure can cause enormous
costs and even jeopardise the health and life of humans. The benefit of using formal
methods for the development of complex safety-critical systems has been reported in many
articles. The full formal verification of seL4 [Kle+10], a third-generation L4 microkernel
consisting of more than 8000 lines of C code and 600 lines of assembler, the use of the
process algebra CSP [Hoa78] and the automatic refinement checker FDR [Gib+14] for
breaking and fixing the Needham-Schroeder public-key protocol [Low96], and the use of
the B method for the development of the first driverless metro-line in Paris [Beh+99] are
only a few examples of the numerous success stories in using formal techniques to assist
and facilitate the development of systems requiring a high degree of reliability.

There are several methods that have been suggested for providing formal proofs on
abstract models describing the system under consideration in some formal description
language. Model checking is such a method that is used to verify the behavioural
requirements of a system by generating and inspecting all reachable states of the model
representing the system. The main advantage of the technique is that it is fully automatic,
which means that the interaction of the user is not required in the process of checking
the respective property on the model. There are two general approaches for checking
automatically a property on some model: explicit-state model checking and symbolic

1

1. Introduction

model checking. This thesis concentrates on the explicit-state model checking approach,
where the method requires the explicit generation of all reachable states of the model
being checked to prove the desired property.

The main drawback of explicit-state model checking is that even for, at first sight,
small systems the number of states of their models can become very large and thus
make checking such models by exhaustive state space search very inefficient or even
impossible. The state space of a model can become enormously large especially when the
model describes a concurrent system having many components executed in parallel. The
problem is also known as the state space explosion problem and a lot of work has been
devoted to cope with this problem. In this work, we develop optimisation techniques for
combating the state space explosion problem for checking models specified in classical B
and Event-B, state-based specification languages based on the abstract machine notation.
In addition, we propose a theory for revealing the relations between events for classical
B and Event-B machines and show how one can make use of these to optimise a model
checker for B. Furthermore, we develop algorithms for applying partial order reduction
for classical B and Event-B models, an advanced technique that is used to optimise model
checking by reducing the state space of the checked model and whose impact has yet
not been investigated on classical B and Event-B. All analyses and techniques presented
in this work have been integrated into the ProB tool set and evaluated on a variety of
models.

1.1. Background

1.1.1. The B-Method

The B-Method [Abr96] is a theory and methodology for developing zero-fault software
systems. It comprises a precise and very expressive language, referred to as classical B,
allowing to describe formally large industrial systems. The notation of B is based on set
theory and first-order predicate logic.

A system is specified in B using the abstract machine notation which provides a framework
for building models at different levels of abstraction and relating these by refinement. In
other words, a system is specified by means of an abstract machine which is systematically
refined until the refined machine represents a model that corresponds to an implementation
of the system. Using the technique of refinement enables the modeller of the system to
begin to describe the behaviour of the system at hand by an abstract model that is closer
to the problem domain (the informal specification) and by adding more details to the
abstract model to produce a more concrete model that is closer to the implementation.

A model in B is represented by an abstract machine, which constitutes mainly of the
following constructs:

• Variables which form the state of the abstract machine.

2

1.1. Background

MACHINE MutualExclusion
SETS

STATE = {non critical, waiting, critical}
VARIABLES p1, p2, x
INVARIANT

p1 ∈ STATE ∧ p2 ∈ STATE ∧ x ∈ 0..1 ∧
¬(p1 = critical ∧ p2 = critical)

INITIALISATION
p1 := non critical ‖ p2 := non critical ‖ x := 1

OPERATIONS
request1 =̂

SELECT p1 = non critical THEN p1 := waiting END;
enter1 =̂

SELECT p1 = waiting ∧ x = 1 THEN p1 := critical ‖ x := 0 END;
leave1 =̂

SELECT p1 = critical THEN p1 := non critical ‖ x := 1 END;
request2 =̂

SELECT p2 = non critical THEN p2 := waiting END;
enter2 =̂

SELECT p2 = waiting ∧ x = 1 THEN p2 := critical ‖ x := 0 END;
leave2 =̂

SELECT p2 = critical THEN p2 := non critical ‖ x := 1 END
END

Figure 1.1.: Simple B model of a semaphore-based mutual exclusion algorithm

• An invariant which is specified by means of predicate logic and expresses a property
that must be fulfilled in every reachable state of the machine. The variables of
the machine are typed and constrained in the invariant using sets, relations and
functions.

• Operations that define the system’s behaviour. An operation alters the state of
the abstract machine causing thus a state change, which should be within the
scope of the invariant. An operation of a machine is specified by generalised
substitutions[Abr96, Chapter 5.1]. The operation may be limited to fulfil a certain
condition in order to be executed. Such a condition on the execution of the operation
is referred also as an enabling condition or a guard.1 Operations may have input
and output arguments.

The initial states of a B machine are determined by means of a special clause called
INITIALISATION. The INITIALISATION clause is comprised by a set of substitutions

1In classical B a distinction is made between a guard and a precondition in operations. If the guard of
an operation is not satisfied, then the operation is not executed. On the other hand, if a precondition
is false, then the effect of the operation is termination [Abr96]. In this work we will treat the
outermost precondition of an operation as a guard.

3

1. Introduction

that sets the possible initial values of the machine’s variables.

An example of a B machine is given in Figure 1.1. The machine represents a model
describing a simple algorithm in concurrent computing for guaranteeing that no two
concurrent processes can be simultaneously in their critical sections. The requirement
that at every moment at most one process can be in its critical section is also known
as the mutual exclusion property. In Figure 1.1 mutual exclusion is guaranteed by
means of a binary semaphore that is modelled by the variable x. If 1 is assigned to
x, then this means that no process is performing critical actions. Otherwise, if x = 0,
then one of the processes is in its critical section. Further, the machine models two
processes each of which is assumed to have three possible states: non critical (the
process performs non-critical actions), waiting (the state in which an access to the
critical section has been acquired), and critical (the state in which the respective process
performs critical actions). For each of the processes we have defined three operations
(requesti, enteri and leavei) that formalise the state changes of the process. The control
flow 〈requesti, enteri, leavei, requesti, . . .〉 of the processes is ensured by the variables p1
and p2.

The invariant of the MutualExclusion machine can be generally divided into two
predicates. The first one (“p1 ∈ STATE ∧ p2 ∈ STATE ∧ x ∈ 0..1”) specifies the types
of the variables, whereas the second one (“¬(p1 = critical ∧ p2 = critical)”) states the
property that both processes are not simultaneously in their critical sections. Stated in
the invariant, the predicate “¬(p1 = critical ∧ p2 = critical)” is assumed to be satisfied
in every state of the machine and thus expresses a global property requiring that at any
instant no two processes are in their critical sections.

The machine in Figure 1.1 comprises six operations, three operations for each of both
processes of the system we have modelled. Each operation of the machine has an enabling
condition. For example, the operation enter1 has the guard “p1 = waiting ∧ x = 1”
stating that the operation is enabled when process 1 has sent a request for entering in
its critical section. Further, each operation in Figure 1.1 has a set of substitutions for
updating the state variables of the machine. The list of substitutions of an operation
will be denoted as the action part of the operation. When an operation is executed all
its actions are performed atomically, i.e. there is no sequencing or loop in the action
part of the operations in an abstract machine. Classical B allows also non-deterministic
substitutions in the action part of an operation. For example, the substitution x :∈ T
assigns non-deterministically an element from set T to x.

In some cases the action part of an operation can happen to be non-feasible. That is,
even when the operation is enabled at certain states of the machine the operation may
have substitutions such as x :∈ {} that are no feasible substitutions. In such cases we say
that the action part of the operation is non-feasible. Otherwise, when all substitutions of
an operation are feasible, the respective action part of the operation will be denoted as
feasible. The feasibility of the action part T of an operation we will denote by fis(T). A
formal definition of fis(T) will be given later in this section.

4

1.1. Background

Another concept that will be used throughout this work is the set of all machine variables.
If M is a classical B machine, then the set of all variables of M will be denoted by VarM .
In the case of the machine shown in Figure 1.1 the set VarM is equal to {p1, p2, x}.

One of the main proof activities in B is consistency checking. Consistency checking is
used to prove for a given machine that the initialisation confirms the invariant and each
operation of the machine preserves the invariant. If T represents the list of substitutions in
the INITIALISATION clause, then the proof obligation for initialisation is the following:

[T]I (1.1)

An operation Op is said to preserve the invariant I of a machine when one proves the
following statement: providing that the enabling condition of Op and I hold, then I
holds after the execution of Op. If we assume that GOp is the enabling predicate of Op
and S is the set of generalised substitutions of Op, then we can express the invariant
preservation assertion for Op by the following proof obligation:

GOp ∧ I ⇒ [S]I (1.2)

The constructs [S]I in (1.1) and (1.2) are used to express the predicate that is obtained
after replacing all free occurrences of substitute variables from S in I. Informally, [S]I
stands for the condition that needs to be fulfilled in order I to be satisfied after the
execution of S, i.e. the condition on states before performing S. This condition is also
denoted as the weakest precondition for S to reach I [Dij97], [Sch01].

Using the construct [S]I, one can formally define the feasibility of the action part of an
operation as follows.

Definition 1.1 (Feasibility of an action part of operation fis(T)). The action part T of
an operation Op is called feasible, denoted by fis(T), if for every (generalised) substitution
S of T the condition ¬[S](x �= x) is fulfilled. �
For the deduction of feasibility conditions of the various generalised substitutions in
classical B we refer to [Abr96, Chapter 6.3.2].

Returning to the example of the mutual exclusion machine in Figure 1.1, we can deduce
some interesting properties using the notion of the weakest precondition. Take, for
example, the action part of the operation enter1 and the predicate expressing the mutual
exclusion property. Replacing all free occurrences of the variables used in the predicate
and applying some of the transformation laws of the propositional logic we can infer the
following weakest precondition:

[p1 := critical ‖ x := 0]
(
¬(p1 = critical ∧ p2 = critical)

)
= ¬(critical = critical ∧ p2 = critical)
= ¬(p2 = critical)
= p2 �= critical

5

1. Introduction

To guarantee that the execution of the actions of enter1 satisfy the postcondition
“¬(p1 = critical ∧ p2 = critical)” we need to ensure that “p2 �= critical” holds in every
state from which enter1 is executed. Accordingly, (a simplified version of) the proof
obligation for invariant preservation for enter1 is stated by the following predicate:

I ∧ (p1 = waiting ∧ x = 1) ⇒ p2 �= critical (1.3)

where I denotes the invariant of the MutualExclusion machine. The predicate “p1 =
waiting ∧ x = 1” in (1.3) is the guard of operation enter1.

Observing (1.3) we can infer the following. In order to prove that after each execution of
enter1 the mutual exclusion property is preserved, one needs to guarantee that in each
state in which enter1 is enabled the condition p2 �= critical must be satisfied. However,
the information provided in the invariant is not sufficient in order to discharge the proof
obligation (1.3). That is, we have to strengthen the invariant of the machine in Figure 1.1
in order to make the mutual exclusion property provable in regard to enter1.

The reason for the impossibility to discharge (1.3) is because of the lack of further
information about the relationship between the values of the semaphore (x) and the
possible states of both concurrent processes. Revisiting once more the requirements of
the semaphore-based mutual exclusion algorithm we can see that a process can enter
its critical section when the semaphore is free, i.e. x = 1. In other words, when the
semaphore is free no one of both processes is in its critical section. This requirement can
be stated by means of the following predicate

x = 1 ⇒ (p1 �= critical ∧ p2 �= critical). (1.4)

Adding (1.4) as a conjunct to the invariant will enable us to discharge safely (1.3).

The way we have formalised the mutual exclusion algorithm above and consequently
analysed the consistency of the B model (by means of logical reasoning) is an example of
a field in formal verification known also as deductive verification. Proving correctness
by means of deductive verification usually requires a very good understanding of the
system and a strong background in logical reasoning and the theory of the method being
used for proving the correctness of the system. Deductive verification is supported by
verification tools that typically consist of proof obligation generator, automatic and
interactive provers.

AtelierB [Cle09] is a verification tool for the B-method which is developed by ClearSy
and provides a set of features for assembling, automatically and interactively proving
specifications formalised in classical B, and translating concrete B models to executable
source code such as Ada and C. Additionally, AtelierB provides also tools for type-checking
and automatic refinement of classical B models.

The consistency of the machine in Figure 1.1 can be proven, for example, with AtelierB.
In case the predicate in (1.4) is added as a conjunct to the machine’s invariant, one can
prove the consistency using the automatic provers of AtelierB. Proving consistency of B

6

1.1. Background

machines by deductive verification is not always an easy task since one needs to examine
very carefully the model and additionally to have a good knowledge about the B-method.

Model checking is another prominent technique in formal verification. In case the model
is finite-state one can prove various of properties via model checking in a fully automatic
way. This technique is supported, for example, by ProB [LB03], [LB08], a toolset that
provides various features for validating and verifying B specifications. Using ProB’s
model checkers one can automatically prove the consistency of the B machine in Figure 1.1.
In this case, no strengthening of the invariant is needed in order to prove the consistency
of the model. On the other hand, model checking computes all reachable states of the
model and checks if each reachable state satisfies the invariant. If the model checker
finishes successfully, then the set of reachable states corresponds to a stronger invariant
that is needed to prove the model via inductive verification [LB03]. A more detailed
introduction to ProB will be given in Section 1.1.6.

1.1.2. Event-B

Event-B [Abr10] is an extension of the B-method. The formalism embraces the techniques
of refinement and decomposition for achieving structured and maintainable development
of systems with huge complexity. The development of a system via refinement in Event-B
intends to formally construct the system by gradually adding more details to each next
refinement level of the formal model. On the other hand, decomposition intends to break
down the model into several components in order to allow the independent development
of each single component.

While in classical B the modeller has to define all possible operations from the very
beginning (i.e., all operations should be declared in the abstract model), in Event-B one
can add extra events to the formal model in later refinement stages. As for B, the formal
development of a system in Event-B is a state-based approach. That is, the system is
represented as a directed state graph where the nodes of the graph represent the various
states of the system and the transitions the state changes. Such a directed state graph
will also be referred to as state space.

In Event-B a system is described by means of two types of components: contexts and
machines. The static properties of the model are expressed by carrier sets, constants,
axioms, and theorems. These can be specified in several contexts which are seen by the
machines of the specification. On the other hand, the machines represent the dynamic
part of the model and each machine is comprised primarily of variables, invariants, and
events. The variables are typecast and constrained by the invariants. The variables
determine the states of the machine, i.e. each state assigns values to all the variables of
the machine. In turn, the states of the machine are related to each other by means of
the events.

Each event consists of two main parts: a guard and an action part. An event can be
executed from a state of the machine if the guard of the event is satisfied in that state.

7

1. Introduction

Event without parameters:

event e =̂
when

G(x) /* guard */
then

S(x) /* substitutions */
end

Event with parameters:

event e =̂
any

t /* the local variables */
where

G(x, t) /* guard */
then

S(x, t) /* substitutions */
end

Figure 1.2.: A general event structure

The action part of an event consists of a set of assignments, which are also denoted as
actions, that modify a set of variables. As for classical B, a variable can be altered in
at most one action of the action part and all actions are performed atomically when an
event is executed. An event can have also non-deterministic substitutions in its action
part.

In Event-B events are much more fine-grained than typical operations in classical B.
For instance, in classical B one can use more expressive constructs such as guarded and
conditional substitutions in the action part of an operation [Abr96, Chapter 4], while
in Event-B such general substitutions are not allowed. In Event-B one would need two
separate events to model, for example, an if-then-else construct.

Formally, an Event-B event can be generally described as shown in Figure 1.2. Two forms
of an event are presented in Figure 1.2. The left event declaration in Figure 1.2 presents
an event with parameters. The parameters t of an event are given in the any clause.
These are also denoted as local variables to the event and are typecast and restricted
in the guard G(x, t) of the event. Basically, in Event-B G(x, t) is a predicate which is a
conjunction of first-order logic predicates. Further, the then-block of an event comprises
all event actions. The expression denoting the substitutions of an event with parameters
will be denoted by S(x, t).

Events may have no parameters. In that case, the any clause will be omitted and the
keyword when is used instead of where. The guard of an event without parameters will
be denoted by G(x), whereas the number of event assignments by S(x). In both event
definitions in Figure 1.2 the identifier x denotes the variables of the machine to which
the respective event belongs. Note that it is possible that an event does not assign any
variable of the machine. In this case, all variables remain unchanged and the action part
consists of the skip declaration only.

In this work, we expect that each event is provided with a guard that determines for
which states of the machine the event is enabled. In case that there is no specific guard

8

1.1. Background

given in the definition of the event we assume that the guard of this event is equal to
TRUE . The next definition summarises the notion of guard of an event with respect to
all possible ways in which one can define an event in Event-B.

Definition 1.2 (Guard of an Event). Let e be an event. The guard of e, denoted by Ge,
is defined as follows:

Ge =

⎧⎪⎪⎨
⎪⎪⎩

TRUE , if e =̂ begin S end
G(x), if e =̂ when G(x) then S(x) end
∃ t · G(x, t), if e =̂ any t where G(x, t) then S(x, t) end

�

An event e is said to be enabled in a particular state s of the machine if Ge holds for
the current evaluation of the variables of s. This we denote by means of the satisfaction
relations as follows s |= Ge. Otherwise, if Ge does not hold in s, which is denoted by
s �|= Ge, we say that the event e is disabled at s. An event e that is enabled in some state
s can be executed and as a result of the execution a state s′ is reached. Each state s at
which e is enabled we will denote as a before-state of e and each state reached by e will
be characterised as an after-state of e.

An event performs certain modifications on the variables of a machine. To describe
formally the effect of an event on the machine’s variables one usually uses the so called
before-after predicates. A before-after predicate is, in general, a logical statement that
relates the values of the variables before the execution of an event to the values of the
variables just after its execution [Abr96]. To differentiate the values of the variables
after the execution of an event from the values just before its execution we will use the
technique of priming, i.e. we prime all identifiers in the before-after predicate that appear
on the left-hand side in an assignment in the action part of the corresponding event. For
example, for the event

e =̂ when x > 1 then x := y + x end

the before-after predicate looks as follows

x > 1 ∧ x′ = y + x.

In words, the predicate states that in case that x is greater than 1 the after-value of x
(denoted by x′) will be equal to the sum of the values of the variables x and y in the
after-state of e. In Chapter 2 we will introduce formally the definition of before-after
predicates.

One further notion used throughout this work is that of the action part feasibility of an
event. In the following definition, we will introduce this notion formally.

Definition 1.3 (Feasibility of an action part of an event fis(Te)). The feasibility of each

9

1. Introduction

Event-B action T is defined as follows:

fis(T) = TRUE ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T =̂ skip

T =̂ x := E

S �= ∅, if T =̂ x :∈ S

{x′ | P} �= ∅, if T =̂ x :| P

fis(T1) ∧ fis(T2) if T =̂ T1 ‖ T2

The action part Te of an event e is feasible, denoted by fis(Te), if for every action T of Te

the feasibility condition fis(T) holds. �

As for B, there are two principal proof activities in Event-B: consistency checking and re-
finement checking. The support of these activities is provided by Rodin [Abr+06], [Abr+10],
an extensible toolset for Event-B. Rodin is an Eclipse-based toolset that provides among
others various plugins for constructing, analysing and visualising formal models in Event-
B. Rodin is equipped with a proof obligation generator and a proof obligation manager
that supports both automatic and interactive proving. Compared to B, the design of
the Event-B language allows the generation of simpler proof obligations that, on the
one hand, are easier to be discharged from the Rodin’s provers and, on the other hand,
easier to be understood by the user. If finite-state, the consistency as well as various of
properties can be proven on the Event-B model using the ordinary [LB03], [LB08] and
the LTL [PL10] model checkers of ProB that come with the ProB’s plugin for Rodin.

1.1.3. Explicit-State Model Checking

The correctness of a finite-state model can be determined by model checking. The
advantage of verification via model checking is that the method is fully automatic and
as such does not require any interaction with the user. Model checking aims to give an
answer to the following question: Given a finite-state model M and a property φ, does
M satisfy φ (M |= φ)? The answer of the question is established by an algorithm that
inspects the entire state space of the finite-state model.

When we talk about the state space of a model we mean the resulting state transition
graph after the exploration of all possible states of the model. The state transition graph
of a model will be also denoted as a transition system and is defined as follows.

Definition 1.4 (Transition System). A transition system TS is a 6-tuple

TS = (S, S0, Σ, R, AP, L)

where

• S is a set of states,

• S0 ⊆ S is a set of initial states,

10

1.1. Background

• Σ is a set of actions,

• R ⊆ S × Σ × S a ternary relation between states, denoted also as the transition
relation,

• AP is a set of atomic propositions, and

• L : S → 2AP is a state-labelling function.

�

We will often write s
e−→ s′ to indicate that (s, e, s′) ∈ R. The state-labelling function

assigns to each state s a set of atomic propositions L(s), where L(s) comprises all atomic
propositions from AP that hold in s.

In the context of classical B and Event-B we will use the following notation. For a given
classical B or Event-B machine M we will denote the state space of M by TSM , where
TSM is defined as in Definition 1.4. The set of initial states S0 (of TSM) represents
the initial states of M . Additionally, Σ, the set of actions, comprises all representatives
of the events of M in the state space of M . In case all events of an Event-B machine
are deterministic the set of actions Σ is equal to EventsM . In the context of classical B
and Event-B, the set of atomic propositions AP comprises well-formed first-order logic
formulae that are built from terms and predicates over the set of variables and constants
of M .

In many textbooks and articles on model checking another version of a transition system,
known as Kripke structure, is used to represent the behaviour of a system by means of
a directed graph. The main difference between a Kripke structure and the transition
system in Definition 1.4 is that the set of actions Σ in a Kripke structure is omitted and
the transition relation is defined as a subset of the cartesian product S × S. In other
words, the action labels of transitions in Kripke structures are abstracted away. There are
also definitions of Kripke structures which consider that the transitions have action labels.
This variant of a Kripke structure is referred as a labelled Kripke structure [Cha+04].

The automatic verification of certain properties on a machine demands the exploration
of the transition systems of the given machine. In the following, a definition will be
provided showing how the transition system of a B machine can be formally unfolded.
To introduce the definition of how a transition system of a B machine can be unfolded,
we will use the concept of the variable evaluations.

Definition 1.5 (Set of Variable Evaluations Eval(VarM)). Let M be a classical B or an
Event-B machine and VarM be the set of all variables of M . Then, the set of all possible
variable evaluations according to the domains of the variables of M will be denoted
by Eval(VarM). A particular evaluation of VarM = {x1, x2, . . . , xn} will be denoted by
[x1 = v1, x2 = v2, . . . , xn = vn], where vi with 1 ≤ i ≤ n denotes a particular value from
the domain of xi. �

If, for example, an Event-B machine M consists of two variables x and y from type

11

1. Introduction

BOOL, then the machine has overall four distinct variable evaluations of VarM :

Eval(VarM) = {[x = FALSE , y = FALSE], [x = TRUE , y = FALSE],
[x = FALSE , y = TRUE], [x = TRUE , y = TRUE]}.

Typically, Eval(VarM) denotes the set of all possible states of M since in B the variables
form the state of the machine. A particular evaluation of the variables of a machine
will usually be denoted by η. Executing an operation from some state (i.e., a particular
evaluation) of the machine will have a certain effect on the current evaluation of the
variables resulting possibly in new states of the machine. The effect of an operation of a
machine will be formalised by means of the function

effect : EventsM × Eval(VarM) → 2Eval(VarM)

that indicates in which way the action part of the operation may change the evaluation
of the variables. The effect-function maps to the power set of Eval(VarM) since the
operation can have non-deterministic substitutions. For example, if the set of substitutions
of an operation op consists of the two feasible substitutions x := x + 1 and y :∈ {1, 2},
then the effect of op from η = [x = 2, y = 0] results in effect(op, η) = {[x = 3, y = 1], [x =
3, y = 2]}.

In the definition below we will use the concept of the structured operation semantics
(SOS) notation from [Plo04]. The SOS notation will be used in this work to define
formally how the transition relation R of each transition system TSM of some B or
Event-B machine M is explored. In particular, the SOS notation

premisse1 ∧ . . . ∧ premissen

s
e−→ s′

is used to define the following: the fulfilment of which premisses is required in order to
conclude that there is a transition labelled by e which goes from state s and reaches
state s′.

Definition 1.6 (Unfolding the Transition System of a B Machine). Let M be an Event-B
or a classical B machine. Further, let VarM denotes the set of variables of M , Eval(VarM)
the set of all possible evaluations of the variables of the machine, and InitM the initial
action of M . Then

TSM = (S, S0, Σ, R, AP, L),

where

• S = Eval(VarM),

• S0 = {s0 | fis(InitM) ∧ s0 is an after-state of InitM},

• Σ = EventsM ,

• R ⊆ S × Σ × S is defined by the following rule. For each event e ∈ EventsM we
denote by Ge the guard and by Te the action part of e, respectively. Then:

12

1.1. Background

η |= Ge ∧ fis(Te) ∧ η′ ∈ effect(e, η)
η

e−→ η′ ,

where η
e−→ η′ denotes the effect of executing e in η resulting in η′,

• AP = the set of all first-order B predicates over VarM ,

• L(η) = {P ∈ AP | η |= P}.

�
In this work we will also use the notion of a path which formalises a possible execution
of a machine. Paths are introduced in the following definition.

Definition 1.7 (Path). Let TSM = (S, S0, Σ, R, AP, L) be the transition system of a
classical B or an Event-B machine. A finite path of TSM is a finite alternating sequence
of states and events, denoted by

s0
e0−→ s1

e1−→ . . .
en−1−→ sn,

such that for all 0 ≤ i ≤ n − 1 the tuple (si, ei, si+1) is an element of R. The set of all
finite paths in TSM is denoted by Pathsfinite(TSM).

Accordingly, an infinite path of TSM is an infinite alternating sequence of states and
events, denoted by

s0
e0−→ s1

e1−→ . . . ,

such that for all i ≥ 0 the tuple (si, ei, si+1) is an element of R. The set of all infinite
paths in TSM is denoted by Pathsinfinite(TSM). �
Using the definition of finite paths, we can introduce another concept, namely the one of
reachable states.

Definition 1.8 (Reachable States). Let TSM = (S, S0, Σ, R, AP, L) be the transition
system of a classical B or Event-B machine. Then, a state s ∈ S is said to be reachable
if there is an initial state s0 ∈ S0 such that

s0
e0−→ s1

e1−→ . . .
en−→ s ∈ Pathsfinite(TSM).

The set of all reachable states in a transition system TSM is denoted by Reach(TSM). �
Each label L(s) of a state in a transition system reflects the set of atomic propositions
that are satisfied in the respective state. At the same time, each transition label reveals
which operation of the system is executed at some point. Observing both, the state
labels and transition labels, helps us to reason about certain properties of the system.
For example, the property

“every execution of evt results in a deadlock”

can be proven on a finite transition system by checking that for each (s, evt, s′) ∈ R the
membership test deadlock ∈ L(s′) is fulfilled, where deadlock is an atomic proposition

13

1. Introduction

marking the states without outgoing transitions. Therefore, when viewing the possible
paths of some machine, we will often consider just the sequences of state and transition
labels induced by the respective paths in regard to a set of atomic propositions AP and
a set of transition propositions TP . The next definition formally introduces this concept.

Definition 1.9 (Trace). Let TSM = (S, S0, Σ, R, AP, L) be the transition system of a
classical B or an Event-B machine and let TP ⊆ Σ be a set of transition propositions.
Further, let τ be a special symbol such that τ /∈ Σ. The trace of a finite path π = s0

e0−→
s1

e1−→ . . .
en−1−→ sn of TSM is defined as

trace(π) = L(s0)�0L(s1)�1 . . . �n−1L(sn),

where �i is equal to τ whenever ei /∈ TP and �i is equal to ei otherwise. Accordingly, the
trace of an infinite path π = s0

e0−→ s1
e1−→ . . . of TSM is defined as an infinite alternating

sequence of state and transition labels as

trace(π) = L(s0)�0L(s1)�1 . . . ,

where �i is equal to τ whenever ei /∈ TP and �i is equal ei otherwise. �
Model-checking algorithms search the state space of the specified system to show whether
a given property is fulfilled by the model of a system. Depending on the property being
checked, a specific type of search should be performed in order to show whether the
property is satisfied by the model. For example, if we check a finite-state model for
deadlock freedom, then it suffices to check whether each state that is reachable from an
initial state of the respective transition system has an outgoing transition. Such a type of
reachability analysis, where all reachable states of the system are checked for satisfaction
of a certain state property, can be used for verifying a certain class of properties called
also invariant properties. An invariant property describes a condition that has to be
satisfied by each state of the reachable fragment of the respective transition system.

As already mentioned in Sections 1.1.1 and 1.1.2, consistency of classical B and Event-B
machines can be proven when one shows that the invariant is satisfied by all initial
states of the respective machine and the machine’s events preserve the invariant. Proving
consistency of a finite-state classical B or Event-B machine is sufficient when one proves
that all reachable states of the machine fulfil the invariant of the machine (see also
Section 5.3 in [LB08]). This can be automated by a graph traversal algorithm that
explores the entire reachable fragment of the state space of the machine and, at the
same time, tests whether each state of the resulted transition system fulfils the invariant.
Algorithm 1, which was introduced in [LB08], represents such a graph traversal algorithm
that can be used to check (finite) classical B and Event-B machines for deadlocks,
invariant violation errors, assertion violation errors, as well as for user-specified goal
predicates. Algorithm 1 can be used for verifying only invariant properties.

The pseudo code in Algorithm 1 describes a graph traversal algorithm for exhaustive
error search in a directed transition system. All unexplored nodes in the state space are
stored in a standard queue data structure Queue while running the consistency check

14

1.1. Background

for the particular machine. By popping unexplored states from the front or the end of
the queue a depth-first search or a breadth-first search through Graph can be achieved,
respectively. A mixed breadth- and depth-first search can be simulated by a randomised
popping from the front and end of the queue. We start the search from the initial states
of the machine and thus we first push the initial states of the machine S0 to the queue
(line 4).

Algorithm 1: Consistency Checking
1 queue of state Queue := 〈〉 ;
2 set of state Visited := {}; set of transition Graph := {};
3 foreach init ∈ S0 do
4 push to front(init,Queue);
5 Graph := Graph ∪ {root Init−→ init}
6 end foreach
7 while Queue is not empty do
8 if random(1) < α then
9 state := pop from front(Queue) /* depth-first */

10 else
11 state := pop from end(Queue) /* breadth-first */
12 end if
13 if error(state) then
14 return counter-example path in Graph from root to state
15 else
16 for all succ,evt such that state evt−→ succ do
17 Graph := Graph ∪ {state evt−→ succ};
18 if succ �∈ Visited then
19 push to front(succ, Queue);
20 Visited := Visited ∪ {succ}
21 end if
22 end for
23 end if
24 end while
25 return ok

Once an unexplored state is chosen from the queue, it will be checked for errors by the
function error (line 13). An error state, for example, can be a state that violates the
invariant of the machine or that has no outgoing transitions.

If no error was found in the current state, then it will be expanded. In this context,
expansion means that all events from the current machine will be applied to the current
state. Each event whose guard G(x, t) holds for the current variables’ evaluation will
be executed and possible new successor states succ will be generated. Subsequently, a
transition will be added to the state space (line 17) if not already present in Graph,

15

1. Introduction

and the state succ will be adjoined to the queue (line 19) if not already visited. The
algorithm runs as long as the queue is non-empty and no error state is found.

Note that in Algorithm 1 the identifier root represents just a dummy state used for
tracking the counter-example trace to an error state.

In the course of this thesis, we will also consider other, more elaborate, model-checking
algorithms that are used for proving more expressive properties allowing us to reason
about the temporal behaviours of models. These and Algorithm 1 are the main subject of
this work for which methods and techniques will be explored and developed for optimising
the process of model checking for classical B and Event-B machines.

1.1.4. Linear-Time Temporal Logic

Both, classical B and Event-B, are methods for the formal development and verification
of systems. The formal model of the system in classical B and Event-B is represented by a
machine, which in turn represents the behaviour of the system. Using simple state-space
search algorithms such as Algorithm 1 we can prove a variety of properties, more precisely
invariant properties, that we expect to be fulfilled by the model. However, invariant
properties are not expressive enough to state, for example, system properties required
not to be true or false all the time. For instance, the sentence “eventually the event
request will be enabled” states a possible requirement on the model of a system that at
some instant the event request will be enabled, but not always. (This requirement, for
example, cannot be checked by using Algorithm 1.) For reasoning about propositions
whose truth values may change in time a logical formalisms such as Linear-Time Temporal
Logic (LTL) [Pnu77] can be used.

LTL is a temporal logic that enables us to make assertions about the temporal behaviour
of a system. Properties specified in LTL are regarded as linear where every moment in
time has a unique possible future. The interpretation of LTL formulae is determined
in terms of paths. Formally, an LTL formula φ is said to be satisfied in some state s
of a transition system if all paths starting at s fulfil φ. Accordingly, an LTL formula
is satisfied by a transition system TSM if all initial paths, i.e. all paths starting in the
initial states of TSM , satisfy the formula.

Basically, LTL formulae are composed of a finite set of atomic propositions AP, the
Boolean connectives for negation ¬ and conjunction ∧, and the basic temporal operators X
(next) and U (until). An extension of LTL, denoted by LTL[e], was introduced in [PL10]
that allows us to state propositions also on transitions. A similar event/transition
extension of LTL was also introduced in [Cha+04], where the extended version of LTL is
denoted as State/Event-LTL and the definition there is limited to infinite paths.

Definition 1.10 (LTL[e] Formulae). For a finite set of atomic propositions AP and a
finite set of transition propositions TP , an LTL[e] formula is formed inductively as follows:

• true and each a ∈ AP is an LTL[e] formula,

16

1.1. Background

• [e] is an LTL[e] formula for each e ∈ TP, and

• if φ, φ1 and φ2 are LTL[e] formulae, then so are ¬φ, φ1 ∧ φ2, Xφ, and φ1 U φ2.

�

In the context of classical B and Event-B, an atomic proposition is, in general, a well-
formed first-order logic formula over a set of variables and constants; for a given Event-B
machine M , the set of atomic propositions are first-order logic formulae that are built
from B predicates over the variables and constants of M . For example, if we check the
LTL[e] formula φ = (x > 1) U (y = 1 ∧ z > x), then the set of atomic propositions APφ

with respect to φ is equal to {x > 1, y = 1, z > x}, where x > 1, y = 1, and z > x are
the atomic propositions of φ.

Using the boolean connectives ¬ and ∧ other boolean operators such as ∨ and ⇒ can be
derived: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) and φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2. The temporal operators F
(finally), G (globally), R (release), and W (weak-until) can be derived using the LTL
operators ¬, ∨, and U :

F φ ≡ true U φ

G φ ≡ ¬(true U ¬φ)

φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2)

φ1Wφ2 ≡ ¬(true U ¬φ1) ∨ (φ1 U φ2)

The semantics of LTL[e] are defined in terms of paths. For some path π = s0
e0−→ s1

e1−→ . . .
of TSM we denote by πi = si

ei−→ si+1
ei+1−→ . . . the suffix π which represents the alternating

sequence of states and events starting at si.

Definition 1.11 (Interpretation of LTL[e] Formulae over Paths). An LTL[e] formula φ is
said to be satisfied by a path π in TSM (denoted by π |= φ) for a given set of transition
propositions TP by means of the following semantics:

• π |= true

• π |= a ⇔ π = s0 . . . and a ∈ L(s0), for a ∈ APφ

• π |= [e] ⇔ |π| ≥ 2 and π = s0
e−→ π1 for e ∈ Σ ∩ TP

• π |= ¬φ ⇔ π � φ

• π |= φ1 ∨ φ2 ⇔ π |= φ1 or π |= φ2

• π |= Xφ ⇔ |π| ≥ 2 and π1 |= φ

• π |= φ1 U φ2 ⇔ there is a k ≥ 0 such that πk |= φ2 and πi |= φ1 for all 0 ≤ i < k

�

We say that a state s in TSM satisfies an LTL[e] formula φ, denoted by s |= φ, if for every
path π starting at s we have π |= φ. Accordingly, a transition system TSM satisfies an

17

1. Introduction

LTL[e] formula φ if for each initial state s0 ∈ S0 of TSM we have s0 |= φ. By M |= φ we
will denote that the corresponding transition system TSM of M satisfies the formula φ
(TSM |= φ).

Take, for example, the transition system over AP = {a, b} shown in Figure 1.3, where s0
is the only initial state. The finite path π = s0

e2−→ s1 satisfies the formula φ = a U b
since b ∈ L(s1) and in all preceding states the atomic proposition a is fulfilled (a ∈ L(s0)).
At the same time, the transition system from Figure 1.3 does not satisfy φ as there is an
infinite path s0

e1−→ s0
e1−→ . . . which does not fulfil φ.

s0 s1
e2

e1 e1

{a} {b}

Figure 1.3.: Example of a transition system with stutter-equivalent paths

Stutter equivalence. Observing in more detail the transition system in Figure 1.3, one
can see that all transitions labelled by e1 do not change the labelling sets with atomic
proposition between any two states where e1 is executed. Such events are denoted also as
stutter or invisible since their executions in a transition system do not bring any progress
in terms of changing the labelling sets. Furthermore, such events often do not have any
influence on proving certain properties such as φ = a U b. For instance, executing e1
from s0 infinite many times does not have any effect on the evaluation of φ as it cannot
change the evaluation of any atomic proposition in φ. At the same time, event e2 in
Figure 1.3 is a typical example for a non-stutter event.

Further, there are temporal logics such as LTL[e] that allow to state propositions also
on transitions. In that case, executing certain transitions can have an effect on the
LTL[e] formula being checked. For example, the execution e2 in the transition system in
Figure 1.3 does not have an effect on the evaluation of the formula ψ = GF [e1] and thus
can be seen as a stutter event regarding ψ. On the other hand, e1 is a non-stutter event
for ψ as it appears as a transition proposition in ψ. A formal characterisation of stutter
events is given in Definition 1.12.

Definition 1.12 (Stutter Transition/Event). Let TSM = (S, S0, Σ, R, AP, L) be the
transition system of a classical B or Event-B machine M and let TP ⊆ Σ be a set
of transition propositions. A transition (s, e, s′) ∈ R is called a stutter transition if
L(s) = L(s′) and e /∈ TP.

Further, an event e ∈ EventsM is called a stutter event if for every transition (s, e, s′) ∈ R
we have that L(s) = L(s′) and e /∈ TP. �

Another key concept is that of stutter-equivalent paths, which is captured in the next
definition.

18

1.1. Background

Definition 1.13 (Stutter-Equivalent Paths). Let TSM = (S, S0, Σ, R, AP, L) be the
transition system of a classical B or an Event-B machine M and TP ⊆ Σ a set of transition
propositions. Let π1 = s0

e0−→ s1
e1−→ . . .

en−1−→ sn and π2 = t0
f0−→ t1

f1−→ . . .
fm−1−→ tm

be two finite paths from Pathsfinite(TSM) and let τ /∈ TP be the symbol denoting each
action in a trace that is not in TP. Further, let squash be the operator which collapses
each maximal subsequence in a trace trace(π) that is of the form

L(sik
)τL(sik+1)τ . . . τL(sik+n

),

where L(sik
) = L(sik+1) = . . . = L(sik+n

), to L(sik
). Then, π1 and π2 are said to be

stutter-equivalent paths, denoted by π1 ∼st π2, if squash(trace(π1)) = squash(trace(π2)).

The definition of stutter-equivalence can be easily extended to infinite paths. Let π1 =
s1

e1−→ s2
e2−→ . . . and π2 = t1

f1−→ t2
f2−→ . . . be two infinite paths from Pathsinfinite(TSM).

Then, π1 and π2 are said to be stutter-equivalent paths if

squash(trace(π1)) = squash(trace(π2)).

�
Note that in the case of finite paths it is not required that both paths are of the
same length. For example, the paths π1 = s0

e2−→ s1 and π2 = s0
e1−→ s0

e2−→ s1
from Figure 1.3 are stutter-equivalent for TP = {e2} since trace(π1) = {a}e2{b} and
trace(π2) = {a}τ{a}e2{b}, and both can be collapsed by the squash operator to {a}e2{b}.
The notion of stutter-equivalence can be lifted to transition systems as follows. Two
transition systems TS1 and TS2 are stutter-equivalent if for each path π1 in TS1 there
exists a path π2 in TS2 that is stutter-equivalent to π1 and vice versa.

In the literature stutter-equivalence of paths is often defined just in terms of the state
labels of the paths, i.e. that the transition labels between the states are not considered
in the definition of stutter-equivalence (see, for example, [Cla+99], [BK08]). However, in
Definition 1.13 we took into consideration both, the state and transition labels. This is
due to the fact that we are interested in determining which properties expressed in LTL[e]

are invariant under stuttering, and LTL[e] includes both, states and events, to express
properties about the temporal behaviour of systems. The notion of stutter-equivalence
as introduced in Definition 1.13 is also known as state/event stutter-equivalence and it
was first suggested in [Ben+09].

Certain LTL properties are invariant under stuttering, i.e. that for certain LTL formulae
it is satisfied that for every two stutter-equivalent paths π1 and π2 the equivalence
π1 |= φ ⇐⇒ π2 |= φ holds. Generally, an LTL formula is invariant under stuttering if
it does not contain the next-time operator X as shown in [PW97]. For example, the
LTL formula (a U b) is invariant under stuttering and both finite paths s0

e2−→ s1 and
s0

e1−→ s0
e2−→ s1 from Figure 1.3 are stutter-equivalent for TP = ∅ and both satisfy the

formula.

In general, LTL[e] formulae incorporating propositions on transitions are not invariant
under stuttering. Take, for example, the paths π1 = s0

e1−→ s0
e2−→ s1 and π2 = s0

e2−→ s1

19

1. Introduction

of the transition system depicted in Figure 1.3 which, according Definition 1.13, are
stutter-equivalent for TP = {e2}. However, both paths yield different results for the
evaluation of the LTL[e] formula φ = [e2] as π1 �|= φ, whereas π2 |= φ. This and the results
from [PW97] yield the following lemma.

Lemma 1.1 (Stutter Equivalence and LTL−X Equivalence). For any two paths π1 and
π2 and for any LTL[e] formula φ that does not contain the next-time operator X and the
transition proposition operator [·] the following implication holds:

π1 ∼st π2 ⇒ π1 |= φ if and only if π2 |= φ.

By LTL−X we will denote the class of LTL[e] formulae without the next-time operator X
and the transition proposition operator [·]. Consequently, we can state that each LTL−X

formula is invariant under stutter-equivalence.

1.1.5. LTL[e] Model Checking by Tableau

In this section, we introduce the tableau algorithm from [PL10] for checking LTL[e]

formulae. The algorithm from [PL10] is a modified version of the tableau algorithm
presented in [LP85], [CGP99], which is adjusted for checking also systems with deadlock
states and augmented to support checking of temporal formulae containing proposi-
tions on transitions. For a given LTL formula f and some model M , the approach
from [PL10], [LP85] checks whether M satisfies f by constructing a directed graph, called
also tableau, from the state space of M and the negation of the formula ¬f . Then,
the algorithm decides whether M |= f by searching for a path in the tableau that is a
computation of M . Before presenting how this graph is constructed, we will introduce
some basic definitions.

Definition 1.14 (Closure of an LTL[e] Formula). A closure of an LTL[e] formula φ,
denoted by Cl(φ), is the smallest set of formulae containing φ, which satisfies the
following rules:

• true, false ∈ Cl(φ)

• ψ ∈ Cl(φ) ⇒ ¬ψ ∈ Cl(φ) (¬¬φ is identified with φ)

• ψ1 ∨ ψ2 ∈ Cl(φ) ⇒ ψ1, ψ2 ∈ Cl(φ)

• Xψ ∈ Cl(φ) ⇒ ψ ∈ Cl(φ)

• ¬Xψ ∈ Cl(φ) ⇒ X¬ψ ∈ Cl(φ)

• ψ1 U ψ2 ∈ Cl(φ) ⇒ ψ1, ψ2, X(ψ1 U ψ2) ∈ Cl(φ)

�
The tableau graph of an LTL[e] formula is a directed graph whose nodes are denoted as
atoms.

20

1.1. Background

Definition 1.15 (Atom of a State). Let S be the set of states of a given transition
system TSM and φ an LTL[e] formula. Further, let AP and TP be the sets including all
atomic and transition propositions, respectively. An atom of a state s ∈ S is a tuple
(s, F), where F is a subset of formulae from Cl(φ) such that the following rules are
satisfied for F :

• for each atomic proposition the equivalence a ∈ F ⇔ a ∈ L(s) is fulfilled,

• for each transition proposition [e] ∈ Cl(φ) the implication [e] ∈ F ⇒ e ∈ enabled(s)
is fulfilled,

• ψ ∈ F ⇔ ¬ψ /∈ F for every ψ ∈ Cl(φ),

• ψ1 ∨ ψ2 ∈ F ⇔ ψ1 ∈ F or ψ2 ∈ F for every ψ1 ∨ ψ2 ∈ Cl(φ),

• if s is not a deadlock, then ¬Xψ ∈ F ⇔ X¬ψ ∈ F for every ¬Xψ ∈ Cl(φ),

• if s is a deadlock, then (¬Xψ) ∈ F for every Xψ ∈ Cl(φ),

• if e /∈ enabled(s), then ¬[e] ∈ F for every [e] ∈ Cl(φ),

• if [e] ∈ F , then ¬[e′] ∈ F for all [e′] ∈ Cl(φ) where e �= e′, and

• ψ1 U ψ2 ∈ F ⇔ ψ2 ∈ F or ψ1, X(ψ1 U ψ2) ∈ F for every ψ1 U ψ2 ∈ Cl(φ).

�

A set of formulae that fulfils the conditions in Definition 1.15 is said to be consistent. If
we denote the set of all atoms of a given transition system by At, then |At| ≤ |S| · 2α·|φ|

for some constant α [LP85], where |At| denotes the number of all atoms, |S| the number
of all states of TSM , and |φ| the length of the formula φ.

In the next definition, we will use again the SOS notation from [Plo04], introduced in
Definition 1.6 to define the transition relation of a tableau graph of an LTL[e] formula.

Definition 1.16 (Tableau Graph of an LTL[e] Formula). Let φ be an LTL[e] formula and
TSM = (S, S0, EventsM , R, AP, L) be a transition system. The tableau graph ATSM ,φ of
φ and TSM is given by:

ATSM ,φ = (At, At0, R),

where

• At = {(s, F) | s ∈ S ∧ F ⊆ Cl(φ) is consistent according Definition 1.15},

• At0 = {(s0, F0) | s0 ∈ S0 ∧ F0 ⊂ Cl(φ) is consistent set according Definition 1.15
and φ ∈ F0}, and

• R is the transition relation of ATSM ,φ defined by the following rule:

s1
e−→ s2 ∧ ∀ Xψ ∈ Cl(φ) · Xψ ∈ F1 ⇔ ψ ∈ F2 ∧ [e] ∈ F1 ⇔ [e] ∈ Cl(φ)

(s1, F1) e−→ (s2, F2)
,

21

1. Introduction

where s1
e−→ s2 ∈ R, and F1 and F2 are consistent subsets of formulae for s1 and

s2, respectively.

�
Definition 1.17 (α-Path). Let ATSM ,φ = (At, At0, R) be the tableau graph of an LTL[e]

formula φ and a transition system TSM . A labelled infinite sequence of atoms in ATSM ,φ

πα = (s0, F0) e1→ (s1, F1) e2→ (s2, F2) e3→ . . .

is called an infinite α-path if for every φ1 U φ2 ∈ Fi with i ≥ 0 there is an atom (sj, Fj)
with j ≥ i such that φ2 ∈ Fj.

A labelled finite sequence of atoms in ATSM ,φ

πα = (s0, F0) e1→ (s1, F1) e2→ . . .
en→ (sn, Fn)

is called a finite α-path if sn is a deadlock state in the transition system TSM and for
every φ1 U φ2 ∈ Fi with 0 ≤ i ≤ n there is an atom (sj, Fj) with i ≤ j ≤ n such that
φ2 ∈ Fj. �

Clearly, (si, Fi)
ei−→ (si+1, Fi+1) is an edge in ATSM ,φ if and only if si

ei−→ si+1 is a
transition in TSM and for every formula Xψ ∈ Fi it follows that ψ ∈ Fi+1. For a
finite-state system M the transition system TSM and so the graph ATSM ,φ have finite
number of states. An infinite α-path πα then consists of a finite path that is followed by
a cycle. Note that if (sn, Fn) is an atom in ATSM ,φ such that sn is a deadlock state in
TSM , then for every Xψ ∈ Cl(φ) we have ¬Xψ ∈ Fn and X¬ψ /∈ Fn.
Example 1.1 (Constructing a Tableau). Let us observe the transition system TS in
Figure 1.4, where s0 is the only initial state and AP = {a}. The labelling of the states
is L(s0) = ∅ and L(s1) = {a}. Further, let φ = true U (X a) be an LTL formula. To

s0 s1
e

∅ {a}

Figure 1.4.: Example of a transition system

derive the tableau graph of TS and φ we need first to determine the closure of φ by
Definition 1.14:

Cl(φ) = {true, false, a, ¬a, Xa, ¬Xa, X¬a, φ, ¬φ, Xφ, ¬Xφ, X¬φ}.

Using the rules from Definition 1.15 and Definition 1.16 we can as next obtain the tableau
graph of TS and φ. Since s1 is a deadlock state and L(s1) = {a} there is only one
consistent set of formulae F = {a, ¬Xa, ¬φ, ¬Xφ} in regard to s1 and Cl(φ). Note that
because of the deadlock condition in Definition 1.15 the formulae X¬a and X¬φ cannot
be included in F . Further, the tableau graph has only one α-path

π1 = (s0, {true, ¬a, Xa, φ, ¬Xφ, X¬φ}) e→ (s1, {true, a, ¬Xa, ¬φ, ¬Xφ})

22

1.1. Background

(s0, {true, ¬a, Xa, φ, Xφ})

(s0, {true, ¬a, Xa, φ, ¬Xφ, X¬φ})

(s0, {true, ¬a, ¬Xa, X¬a, φ, Xφ})

(s0, {true, ¬a, ¬Xa, X¬a, ¬φ, ¬Xφ, X¬φ})

(s1, {true, a, ¬Xa, ¬φ, ¬Xφ})

e

Figure 1.5.: Example of a tableau graph construction

since π1 is the only finite2 path that starts in an atom including φ and ends in an atom
(si, Fi) for which si is a deadlock state. �
The LTL model checking problem is reduced to searching for an α-path in the tableau
graph that starts in an initial state of the tableau graph. In [LP85] (see Proposition 1 a))
the authors have shown that if there is an infinite α-path

πα = (s0, F0) e1→ (s1, F1) e2→ (s2, F2) e3→ . . .

in the tableau graph, which is constructed from a finite-state transition system TS
and LTL formula φ, then πα fulfils φ if and only if φ ∈ F0. In other words, if there is
such a path in the tableau graph, then the formula φ is satisfiable on the underlying
transition system. The definition of α-paths was extended in [PL10] by introducing also
the definition of finite α-paths. The results of both papers are summarised in Lemma 1.2.
For the proof of Lemma 1.2 we refer to [LP85] and [PL10].

Lemma 1.2 (α-Path Satisfiability). Let ATSM ,φ be the tableau graph of the finite-state
transition system TSM and the LTL formula φ. There is a path π in TSM starting in a
state s0 with π |= φ if and only if there exists an α-path in ATSM ,φ

πα = (s0, F0) e1→ (s1, F1) e2→ . . .

such that φ ∈ F0.

The general idea of the tableau algorithm for checking an LTL[e] formula φ on some model
M is to construct a tableau graph ATSM ,¬φ and search for an α-path πα = (s0, F0) e1→ . . .
in ATSM ,¬φ such that ¬φ ∈ F0 and s0 is an initial state of M . Using the result from
Lemma 1.2, we can easily infer that if such a path πα is found, then M �|= φ. Otherwise,
if there is no such a path, the model M satisfies the LTL[e] formula φ. The search for
πα is reduced to searching strongly connected components (SCCs) in ATSM ,φ that fulfil
certain properties.

Definition 1.18 (Self-fulfilling SCC). Let ATSM ,φ be the tableau graph of an LTL[e]

formula φ and a transition system TSM . A nontrivial SCC C of ATSM ,φ is called a
2All paths in the tableau graph are finite.

23

1. Introduction

self-fulfilling SCC if and only if for every atom (s, F) in C and for every φ1 U φ2 ∈ F
there is an atom (s′, F ′) in C with φ2 ∈ F ′.

A trivial SCC C of ATSM ,φ is said to be a self-fulfilling SCC if and only if the state s
of the only atom (s, F) of C is a deadlock state and for every φ1 U φ2 ∈ F we have
φ2 ∈ F . �

The LTL[e] model checking algorithm from [PL10] is based on the following corollary.

Corollary 1.1. Let TSM be the transition system of some model M and φ some LTL[e]

formula. Then, TSM |= φ if and only if there is no initial atom (s0, F0) ∈ At0 of
ATSM ,¬φ such that ¬φ ∈ F0 and, at the same time, there exists a finite α-path

πα = (s0, F0) e1→ (s1, F1) e2→ . . .
ek→ (sk, Fk)

in ATSM ,¬φ where (sk, Fk) is an atom belonging to a self-fulfilling component of ATSM ,¬φ.

1.1.6. ProB

Initially developed for the B-method, ProB [LB03], [LB08] is a toolset providing a rich
set of validation and verification techniques for a variety of formalisms such as Event-B,
CSP, TLA+, Z. In addition, ProB supports animation and verification of specifications
specified in CSP‖B [LB05b], a notation that represents a combination of CSP [Hoa78]
and B. ProB has proven as a practical and efficient tool for analysing formal models in
various critical domains [Han+14], [Leu+09], [LO07], especially in the development of
railway systems [Fal+13], [LBL12].

ProB is developed using SICStus Prolog [CF14], a logic programming language that is
declarative in nature. Making use of the constraint solving facilities and the native support
for coroutines of SICStus Prolog, ProB provides various techniques for constraint-solving
analysis and validation. In addition, SICStus Prolog comes with a set of libraries that
enable an easy integration of applications written in other programming languages such
as Java, C, Tcl/Tk into SICStus Prolog programs.

An integral part of ProB are the model checking capabilities of the tool. Besides the
capability to check for consistency classical B and Event-B machines via exhaustive
consistency checking (see Algorithm 1), ProB is capable to check classical B and Event-B
models for deadlock states, user-specified goals, assertion violation errors, and temporal
properties expressed in the temporal logics LTL[e] and CTL. The following model checking
techniques are incorporated into ProB:

• Exhaustive consistency checking. Referred also as the ordinary model checker of
ProB, the consistency checker can be used to search for invariant violation errors,
assertion violation errors, deadlock errors, and user-specified goals. The search
algorithm of the ordinary model checker can perform three different types of state
space exploration: breadth-first, depth-first, and mixed breadth- and depth-first

24

1.1. Background

search. In case the checked model has a finite number of states one can prove if the
model is deadlock-free or consistent with respect of the given invariant property
(in case of classical B and Event-B an invariant property could be the invariant of
the respective machine).

• Checking of temporal properties. Temporal properties expressed in LTL[e], Past-
LTL[e] and CTL can be checked on models within ProB. Apart from supporting
checking LTL[e] formulae comprising transition propositions, the ProB LTL model
checker can also cope with deadlock states, partially explored state spaces and be
combined with the symmetry reduction techniques of ProB [Tur+07], [Leu+07],
[LM10]. Checking LTL[e] formulae in ProB is based on the tableau approach
described in Section 1.1.5. The LTL model checking algorithm is implemented
in C, where the SICStus Prolog’s interface is used to integrate it in ProB. On
the other hand, the CTL model checker of ProB is implemented completely in
SICStus Prolog and similarly to the LTL model checker can deal with deadlock
states and partially explored state spaces.

• Automated refinement checking. Refinement checking is used to show that a classical
B or an Event-B machine M1 is a sound refinement of another classical B resp.
Event-B machine M0.3 Usually, to prove that M1 refines M0 via the proof-based
approach a predicate needs to be provided for M1 that relates the states of M1
with the states of M0. Such a predicate is called also a gluing invariant. The trace
refinement checker of ProB is an alternative approach for proving that a machine
is a refinement of another machine which does not require a gluing invariant to
be issued. On condition that M0 and M1 are finite-state machines, one can check
automatically whether M1 is a refinement of M0 via the trace refinement checking
algorithm of ProB [LB05a]. Basically, the refinement checking algorithm of ProB
checks whether the set of traces that M1 can perform is a subset of the set of traces
of M0. If there is a possible trace of M1 that cannot be performed by M0, then we
can conclude that M1 is not a valid refinement of M0. Further, ProB supports
also singleton failure refinement checking for B.

• Constraint-based model checking. An alternative approach to explicit-state model
checking for proving deadlock absence and invariant preservation of classical B
and Event-B machines is offered by the constraint-solver of ProB. For instance,
deadlock states of an Event-B model can be found via constructing a formula
comprising a conjunction of the invariant I and the negation of the guard Gei

of every event ei and then feeding the formula to the constraint-based solver of
ProB [HL11]. If we assume that the corresponding Event-B machine defines n
events, then the formula for constraint-solving deadlock freedom checking can be
given in terms of the following formula

I ∧ ¬Ge1 ∧ ¬Ge2 ∧ . . . ¬Gen . (1.5)

If the constraint-solver finds a solution for (1.5), then a deadlocking state has
3Often, one uses M0 � M1 to denote that M1 is a valid refinement of M0.

25

1. Introduction

been found. Note that there is no guarantee that this state is reachable from an
initial state of the machine. On the other hand, finding a solution for (1.5) gives
useful insights that proving deadlock freedom by deductive verification will fail. In
case that no solution is found for (1.5) one has proven that the machine does not
have any deadlock states. Besides using the constraint solver of ProB for proving
deadlock freedom one can check via constraint-based checking if the invariant of
a machine is provable by induction or there is a refinement proof obligation that
cannot be proven via deductive verification [Leu+14].

The mentioned model checking capabilities of ProB are not restricted just to classical B
and Event-B. One can use most of the implemented model checking techniques also for
other formalisms that are supported by ProB. For instance, properties such as deadlock
freedom, trace refinement and failure refinement can be proven on CSP specifications
using some of the techniques mentioned above [LF08], [LB05b].

1.2. Scope and Goals of the Work

This work explores methods for improving explicit-state model checking for systems
specified in classical B and Event-B. Being one of the main drawbacks in model checking,
the state space explosion problem is the major issue which is handled in this work. In
general, the state space of an Event-B model grows exponentially with the number of
variables in the model. Additionally, the more atomic structure of events in Event-B, as
well as the interleaving semantics of Event-B increase the possibility of exponential state
space explosion, especially when modelling concurrent systems. The more fine-grained
events in Event-B and the increased potential for event-independence in specifications
describing concurrent systems give rise to apply techniques such as partial order reduction
for improving model checking of concurrent systems specified in Event-B. Partial order
reduction is a method that tends to explore a fraction of the original state space of the
system that is relevant for the verification of the checked property. The method generally
takes advantage of the properties of independent events in order to reduce the number of
possible event orderings and thus the number of explored states and transitions.

Not only the large number of states can impede the verification of systems, but also
the time needed for exploration of the state space of the system. In model checking
jargon a state is explored when all successor states are computed. The computation of
the successor states of a state demands the identification of all enabled events in this
state. In general, the computation of all enabled events is an exhaustive approach where
the enabling conditions of each event of the model are tested in the currently processed
state. This way of state exploration can, in general, be considered as inefficient and
expensive. A static analysis for determining the way of how events influence each other
can be used to reduce the exploration complexity of each state. By using event relations
one can predict the result of certain guard evaluations in some states and thus omit the
exhaustive guard testing in these states.

26

1.2. Scope and Goals of the Work

The main contributions of this thesis are detailed below:

Event relations. The types of event relations are studied and categorised to reveal the
way in which events in a B specification can influence each other. In defining the different
categories of event relations, two static analyses are proposed for revealing the way events
influence one another. Both analyses use syntactic and constraint-solving techniques
for the computation of the event relations. The use of constraint-solving techniques
increases the potential of determining exactly the way an event can influence the enabling
condition of another event. The first static analysis, denoted as enabling analysis, is
used to determine the effect on the guard of an event caused by the execution of another
event. The information provided by the enabling analysis is expressed by means of event
relations, called also enabling relations. The enabling relations can be used to reveal the
control flow of a formal model and optimising the state space exploration of a formal
model. The second static analysis, called an independence analysis, is used to compute
all pairs of events whose executions are independent of the order in which the events are
performed. The precise computation of all pairs of independent events is essential for the
application of partial order reduction since the technique makes use of the independence
between events. The use of the constraint-solving techniques in the independence analysis
contributes to the computation of more precise independence relations. Algorithms are
suggested for both static analyses for computing all enabling relations in a B specification,
as well as the set of all pairs of independent events.

Partial guard evaluation. Two new state space exploration techniques are developed
for optimising the state space exploration of B specifications. The new exploration
techniques make use of the results of the enabling analysis. Both techniques use enabling
relations for replacing the exhaustive guard testing in each state by testing only a subset
of events for enabledness in that state. The set of the events skipped to be tested for
enabledness in a state is determined by the transitions by which the currently processed
state is reached and the event relations being established by the enabling analysis. The
new state space exploration techniques are insensitive to the type of properties and can
be used to increase the performance of model checkers for classical B and Event-B.

Partial order reduction. Two techniques for reduced state space exploration are developed
for model checking classical B and Event-B specification using partial order reduction. The
reduction methods in this work are based on the linear-time ample set approach [Cla+99]
and are utilised to be performed for different search strategies: depth-first, breadth-first,
and mixed breadth- and depth-first search. The soundness of the methods is provided
formally by mathematical proofs. This work presents the optimisation of two types of
model checking algorithms by partial order reduction:

• invariant checking algorithm:
checking deadlock freedom and invariant properties

• LTL model checking algorithm involving implicit tableau construction:
checking linear-time properties expressed in LTL[e] using the tableau construction
approach from [PL10]

27

1. Introduction

Two approaches, static and dynamic, are differentiated in regard to LTL model checking
with partial order reduction. The reason for distinction of both is clarified and the
advantages and disadvantages for each of both are discussed. In addition, various experi-
ments are reported using the reduction techniques for both model checking algorithms
on finite-state models specified in classical B and Event-B. Further, we discuss in which
cases the reduced search can be used for checking infinite-state models. We consider
also three different heuristics for the ample set selection in each state and evaluate the
reduction approach for all three heuristics. Finally, we compare and discuss thoroughly
the reduction gains of our reduction algorithms with the reduction gains of the reduction
algorithm of the LTSmin model checker.

28

2
Event Relations

In classical B a machine consists of a set of operations. An operation usually has a guard
and an action part. The guard represents an enabling condition which states when the
corresponding operation can be executed. When an operation is executed from some
state of the machine it modifies the current values of the machine’s variables. These
state modifications cause usually a state change, which we also denote as the effect of the
operation. The execution of a certain operation may have a definite effect on the guard
of some of the machine’s operations. For instance, the execution of some operation can
always disable another operation or it can guarantee that some operations are always
enabled after its execution. In other words, the operations in a machine may influence
each other.

Knowing in which way operations in a machine may influence one other can be beneficial
for determining the control flow of the machine or optimising validation techniques such as
animation and model checking. This section intends to introduce formally different classes
of operation relations. The introduced relations will provide a comprehensive foundation
on which the developed optimisation techniques in this work are based. Furthermore,
knowing in which way operations in a machine influence each other can give a helpful
feedback for the modeller and thus to easy the formal development process of a system.

The set of relations that are going to be introduced later in this section can be applied
for both formalisms classical B and Event-B. For simplicity, we will concentrate on
Event-B only. In Section 2.4 we give a short discussion concerning some subtle differences
between determining the relations of operations in classical B and the relations of events
in Event-B.

2.1. Preliminaries

The before-after predicate of a substitution S is a statement that relates the values of
the variables before executing S with the values of the variables after executing S. The
concept of before-after predicates was introduced in [Abr96, Chapter 6] on generalised
substitutions of B operations. In this section we will use this notion on Event-B constructs
and define formally what is the before-after predicate of an event. In the following, x′

29

2. Event Relations

denotes the values of the variables after the execution of the respective statement or
event.

Definition 2.1 (Before-After Predicate of an Event-B Substitution). Let x be some
variable of an Event-B machine. The before-after predicate prdx(T) of an Event-B
substitution T is defined as follows:

prdx(T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′ = x, if T =̂ skip

x′ = E, if T =̂ x := E

x′ ∈ S, if T =̂ x :∈ S

x′ ∈ {z | P ∧ z = x′}, if T =̂ x :| P

x′ = x �− {t �→ E}, if T =̂ x(t) := E

prdx(T1) if T =̂ T1 ‖ T2 and T2=̂skip

prdx(T2) if T =̂ T1 ‖ T2 and T1=̂skip

prdx(T1) ∧ prdx(T2) if T =̂ T1 ‖ T2 and neither T1=̂skip nor T2=̂skip

x = x′, if x does not appear on the LHS of an assignment in T

The definition of the before-after predicate can be lifted to a list of variables as follows:

prd〈x1,...,xk〉(T) = prdx1(T) ∧ . . . ∧ prdxk
(T)

�
For the sake of brevity, we will often write just prdv(T) to denote the before-after predicate
of T in regard to all variables of the respective machine. Formally, if {x1, . . . , xk} is the
set of all variables of a given machine M , then prdv(T) denotes the before-after predicate
prd〈x1,...,xk〉(T).

To each event of an Event-B machine one can provide a logical statement which states the
relation between the before-states and after-states of an event. Such a logical statement
can be built as described in Definition 2.2. In the following, for a given event e we will
denote by v1 the list of all variables that are assigned in the action part of e and by v
the list of variables declared in the machine to which e belongs.1

Definition 2.2 (Before-After Predicate of an Event). Let M be an Event-B machine, e
an event of M , and let v be the list of variables of M . Further, let v′ be the set of the
primed representants of v. The before-after predicate BAe(v, v′) of each type of an event
e in Event-B is defined as follows:

BAe(v, v′) =

⎧⎪⎪⎨
⎪⎪⎩

prdv(T), if e =̂ begin T end
G(v) ∧ prdv(T), if e =̂ when G(v) then T end
∃ t · G(v, t) ∧ prdv(T), if e =̂ any t where G(v, t) then T end

�
1If v0 denotes the list of all variables that are not altered by e, then it holds that v = (v0, v1).

30

2.1. Preliminaries

In the following, we are interested in studying the event feasibility under certain conditions.
In particular, if an event e is possible to be executed from some state of the machine in
which a pre-condition P is fulfilled, then the possibility is tested whether the execution
of e from such a state can make a given post-condition Q true.

Definition 2.3 (Conditional Event-Feasibility �e). Let M be a machine and e an event
belonging to M . Further, let P and Q be valid B predicates for M . Then, we say that e
can establish Q from P , denoted by P �e Q, if and only if

there exists a state s of M such that s |= P and s |= ∃ v′ · (BAe(v, v′) ∧ [v1 := v′
1]Q),

where [v1 := v′
1]Q represents the predicate in which all occurrences of v1 in Q are replaced

by their primed versions v′
1. If there is no such a state s, then we write P ��e Q to denote

that e cannot establish Q from P . �
In Definition 2.3 the expression s |= ∃ v′ ·(BAe(v, v′)∧[v1 := v′

1]Q) should be understood as
there exists an evaluation of the variables v′ such that the predicate BAe(v, v′)∧[v1 := v′

1]Q
holds in s. In other words, we search for a state s′ of the respective machine that is an
after-state of e and at the same time s′ |= Q. The identifier v′ stands for the values of
the variables after e.
Example 2.1. Recall the model of the semaphore-based mutual exclusion algorithm from
Section 1.1.1. The classical B machine in Figure 1.1 can be easily translated into Event-B.
For example, the operations can simply be turned into Event-B events by replacing each
SELECT key word with WHEN. Observing the enter1 event, for example, we can
obtain the before-after predicate of the event by means of Definition 2.1 and Definition 2.2.
The before-after predicate of enter1 is then derived as follows:

BAenter1(〈p1, p2, x〉, 〈p′
1, p′

2, x′〉)
= (p1 = waiting ∧ x = 1) ∧ prd〈p1,p2,x〉(p1 := critical ‖ x := 0)
= (p1 = waiting ∧ x = 1) ∧ (prd〈p1,p2,x〉(p1 := critical) ∧ prd〈p1,p2,x〉(x := 0))
= (p1 = waiting ∧ x = 1) ∧ (p′

1 = critical ∧ x′ = 0)

Further, suppose that we want to test whether enter1 can establish Q = (p2 = waiting ∧
x = 1) from P = �, where Q represents the enabling condition of the event enter2.
According to Definition 2.3, one can conclude that � ��enter1 (p2 = waiting ∧ x = 1).
This can be proven by checking whether there is a state s of the machine such that
s |= ∃ v′ · (BAenter1(v, v′) ∧ [v1 := v′

1]Q). We can derive the following equivalences:

∃ v′ · (BAenter1(v, v′) ∧ [v1 := v′
1]Q)

= ∃ v′ ·
(
(p1 = waiting ∧ x = 1) ∧ (p′

1 = critical ∧ x′ = 0)

∧ [x := x′](p2 = waiting ∧ x = 1)
)

= ∃ v′ ·
(
(p1 = waiting ∧ x = 1) ∧ (p′

1 = critical ∧ x′ = 0) ∧ (p2 = waiting ∧ x′ = 1)
)

≡ ∃ p′
1, p′

2, x′ · (⊥) ≡ ⊥

31

2. Event Relations

Obviously, there is no state satisfying ⊥ and therefore the second condition for proving
P �enter1 Q is not fulfilled. Thus, we can infer that � ��enter1 (p2 = waiting ∧ x = 1).
Showing that � ��enter1 (p2 = waiting ∧ x = 1) infers that enter2 cannot be enabled
after the execution of the event enter1.

On the other hand, one can show that � �leave1 (p1 = non critical). This could also
be inferred by analysing the second conditional feasibility requirement for �e from
Definition 2.3.

∃ v′ · (BAleave1(v, v′) ∧ [v1 := v′
1]Q)

= ∃ p′
1, p′

2, x′ ·
(
(p1 = critical) ∧ (p′

1 = non critical ∧ x′ = 1) ∧ (p′
1 = non critical)

)
≡ ∃ p′

1, p′
2, x′ · (p1 = critical ∧ p′

1 = non critical ∧ x′ = 1)

In the context of the Mutual Exclusion machine the expression ∃ p′
1, p′

2, x′ should be read
as a short hand for ∃ p′

1, p′
2, x′ · (p′

1 ∈ STATE ∧ p′
2 ∈ STATE ∧ x′ ∈ 0..1). That is, the

inferred before-after predicate for � �leave1 (p1 = non critical)

∃ p′
1, p′

2, x′ · (p1 = critical ∧ p′
1 = non critical ∧ x′ = 1),

should be read as a short hand for the before-after predicate

∃ p′
1, p′

2, x′ ·
(
(p′

1 ∈ STATE ∧ p′
2 ∈ STATE ∧ x′ ∈ 0..1) ∧ (p1 = critical ∧ p′

1 = non critical ∧ x′ = 1)
)
.

Looking at the predicate above, one can find a state s = 〈p1 = critical, . . .〉 and a solution
for p′

1 and x′ such that the predicate is satisfied. Note that s must be a valid state of the
machine, i.e. the values of the variables in s must be conform with the domains of the
variables of the respective machine. �
An alternative characterisation of the conditional event feasibility relation �e can be
given using the definition of a transition system of an Event-B machine.

Definition 2.4 (Alternative Characterisation of �e). Let M be an Event-B machine
and let TSM = (S, S0, Σ, R, AP, L) be the corresponding transition system of M . Then,
an event e can establish Q from P , denoted by P �e Q, if and only if

∃ s ∈ S such that s |= P and ∃(s, e, s′) ∈ R such that s′ |= Q.

Accordingly, we write P ��e Q if e cannot establish Q from P . �
In Event-B, a machine has a special event denoted as the initialisation event of the
machine, which we will indicate with Init. The initialisation event of a machine has no
guard and it determines the initial states of the machine which means that it is executed
just one time from a state in which just the initialisation event can be performed.
Therefore, the conditional event feasibility for Init represents a special case which does
not take into regard condition P .

32

2.1. Preliminaries

Remark 2.1 (Conditional Event-Feasibility of the Initialisation Event). Let Init be the
initialisation event of an Event-B machine M . Then, Init is said to establish Q if and
only if

∃ v′ · (BAInit(v, v′) ∧ [v1 := v′
1]Q).

In the context of Definition 2.4, we say that Init can establish Q if and only if

∃ s ∈ S0 such that s |= Q,

where S0 denotes the initial states of the transition system of M .

To reveal that P is not regarded for the conditional event feasibility relation P �e Q in
the case of Init we will write just � �Init Q. �
In some cases when some of the �e-conditions are trivial (e.g. Q = � or P = ⊥) one
needs to prove simpler statements as these required in Definition 2.3 and Definition 2.4.
The following lemma gathers simpler assertions for showing P �e Q when P and/or Q
represent certain predicates.

Lemma 2.1. Let e be an event of an Event-B machine M . Further, let Ge and Te denote
the guard and the action part of e, respectively. Further, let P and Q be valid B predicates
for M . Then, the following statements hold:

(a) If P = ⊥, then P ��e Q.

(b) If Q = ⊥, then P ��e Q.

(c) If Q = �, then

P �e Q if and only if there is a state s of M such that s |= P ∧ Ge and fis(Te).

Proof. The proofs of (a) and (b) are trivial. The proof of (c) is straightforward. Let
TSM be the corresponding transition system of M . After Definition 2.4, we know that
P �e Q iff there is a state s such that s |= P and there is a transition (s, e, s′) ∈ R such
that s′ |= Q. A transition of the form (s, e, s′) ∈ R exists if s |= Ge and Te contains
feasible substitutions (see Definition 1.6). Since every state s′ fulfils � it follows that
P �e Q is satisfied if one shows that there is a state s ∈ S such that s |= P ∧ Ge and
fis(Te).

The feasibility of an event concerns not only the question whether the event has feasible
substitutions, but also if it is possible to be executed from some state of the machine at
all. In case that there is no state in which an event is enabled we will denote this event
as infeasible. The following definition formalises the notion of event feasibility in terms
of the machine in which this event is declared.

Definition 2.5 (Event Feasibility). Let M be an Event-B machine and let e be an
event of M . Further, let Ge and Te be the guard and the action block of e, respectively.
Then, e is feasible if there exists a state s in M such that s |= Ge and fis(Te) holds.

33

2. Event Relations

Accordingly, e is infeasible if either fis(Te) does not hold or there is no state s in M such
that s |= Ge. �

One can also define the event feasibility in terms of �e. It is easy to see that � �e �
proves that e is feasible, whereas � ��e � confirms that e is infeasible.

In Example 2.1, we have seen how one can use the notion of the conditional event-
feasibility to show some interesting facts about how events may influence each other. For
example, we could prove that � ��enter1 (p2 = waiting ∧ x = 1), where the predicate
“(p2 = waiting ∧ x = 1)” represents the guard of enter2. From this, one can infer that
enter2 is disabled in every after-state of enter1. However, in the Mutual Exclusion model
there are also pairs of events that one can prove to not influence or affect each other in
any way by analysing just their syntactic structure. For example, the events request1
and request2 read and write different sets of variables. On the other hand, the fact that
request1 writes a variable that is read in the guard of enter1 supposes that request1 may
influence the enabling condition of enter1 in some way.

To get a rough notion of that what effect the execution of an event may have on the
enabling condition of an another event, we need to determine first the set of variables that
are read and/or written by the events. In other words, we analyse the syntactic structure
of the events in terms of the variables used in their definitions. Before introducing
formally the definition of read and write sets of an event, consider first the following
event.

event evt=̂
any

t
where

t ∈ {2, 3, 4} ∧ (x = 2 ∗ t) ∧ (z > 10)
then

y := t + y

end

Figure 2.1.: Example of an event with local variables read in the action part

Suppose that evt is the event of some Event-B machine M which has three variables:
x, y, and z. At first sight, considering the only substitution in the action part of evt,
we can remark that evt reads only one machine variable in its action part, namely y.
However, taking into account that the local variable t is also read on the right hand
side of the substitution and that the values of t are restricted among others by x (t is
restricted by x in the conjunct x = 2 ∗ t), we need to assume that x is also read in the
action part of evt. This is due to the fact that in the action part of evt the new value of
y depends on both x and y. The following definition introduces formally the concept of
read variables in the action part of an event.

Definition 2.6 (Read Variables in an Action Part of an Event). Let e be an event of

34

2.1. Preliminaries

some Event-B machine M . In the following, varsM will denote the set of variables of
M and ids(E) the set of all identifiers occurring in some expression E. The set of all
machine variables occurring as read variables in a substitution is defined as follows:

r(S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∅, if S =̂ skip

ids(E) ∩ varsM , if S =̂ x := E or S =̂ x :∈ E or S =̂ x :| E

(ids(E) ∪ {f}) ∩ varsM , if S =̂ f(x) := E

r(S1) ∪ r(S2), if S =̂ S1 ‖ S2

If the event e has no local variables, i.e.

e =̂ begin S end or e =̂ when G then S end,

then the set of variables read in the action part of e is defined by readS(e) = r(S).

Let e be an event with local variables, i.e.

e =̂ any t1, . . . , tk where G1 ∧ . . . ∧ Gn then S end,

where G1, . . . , Gn with n ≥ 1 denote all conjuncts in the enabling condition of e and
t1, . . . , tk with k ≥ 1 the local variables of the event. Further, let

Rx(e) = {(x, t) | t ∈ {t1, . . . , tk} ∧ ∃ Gi ∈ {G1, . . . , Gn} · {x, t} ⊆ ids(Gi)}
∪ {(t, t′) ∈ {t1, . . . , tk} × {t1, . . . , tk} | ∃ Gi ∈ {G1, . . . , Gn} · {t, t′} ⊆ ids(Gi)}

be the relation with respect to some machine variable x and the event e that constitutes
all tuples (x, t), where x and the temporal variable t of e occur in at least one of the
guard conjuncts of e, as well as all tuples of temporal variables of e that occur in the
same guard conjunct in the enabling condition of e. If R+

x (e) denotes the transitive
closure of Rx(e), then the set of variables in the action part of e is defined as follows

readS(e) = r(S) ∪ {x ∈ varsM | ∃(x, t) ∈ R+
x (e) · t ∈ ids(S)}.

�

The use of the transitive closure R+
x (e) in Definition 2.6 is necessary to recognise more

involved relations between local variables and machine variables in the guard of an event
in order to determine all read variables in the action part of the event. For example, in
the case of the following event

e =̂ any t1, t2 where x = t1 ∧ t1 = t2 then y := t2 end

x is an element of readS(e) since R+
x (e) = {(x, t1), (t1, t2), (x, t2)} and t2 occurs on the

right hand side of the substitution of e. In the next definition we present formally the
read and write sets of an event.

35

2. Event Relations

Definition 2.7 (Read and Write Sets of an Event). Let e be an event of some Event-B
machine M and let ids(E) denote the set of all identifiers occurring in some expression
E. Further, let G and S denote the guard and the action part of e, respectively.
The set of all variables read by e is defined by read(e) = readG(e) ∪ readS(e), where
readG(e) = ids(G) ∩ varsM is the set of variables that are read in the guard of e and
readS(e) is the set of variables read in the action part of e as defined in Definition 2.6.

Accordingly, the set of all variables written by e is defined by write(e) = write(S),
where write(S) comprises the set of all variables that appear on the left-hand side in the
substitutions of the action part of the event:

write(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if S =̂ skip

{x} if S =̂ x := E or S =̂ x :∈ E

{x1, . . . , xn} if S =̂ x1, . . . , xn :| P

{f}, if S =̂ f(x) := E

write(S1) ∪ write(S2), if S =̂ S1 ‖ S2

�
Note that the local variables of an event are not considered in the read sets of the event
in both Definition 2.6 and Definition 2.7.

Example 2.2 (Read/Write Sets). The event evt from Figure 2.1 has the following read
sets: read(evt) = {x, y, z}, readG(evt) = {x, z}, and readS(evt) = {x, y}. The variable x
is included in readS(evt) as it is used in the guard part of evt to restrict the values of the
local variable t, which in turn is read in the action part of evt (see also Definition 2.6).
On the other hand, the write set of evt consists only of the variable y as this is the only
variable which is assigned in the action part of evt. �

2.2. Enabling Analysis

In this section, we study the effect of an event on the enabling status of another event.
More concretely, we reveal how the events of an Event-B machine can influence each
other with regard to enabledness and characterise different classes of event relations
which are formally defined.

Based on the �e-relation, we can characterise certain possible effects of an event e1
on the enabling condition of another event e2. These event relations are formalised in
Definition 2.8.

Definition 2.8 (guaranteed, impossible). Let e1 and e2 be two events of an Event-B
machine. Further, suppose that e1 is a feasible event and let Ge2 denotes the guard of e2.
Then, event e2 is guaranteed after e1 if and only if � ��e1 ¬Ge2 . Event e2 is said to be
impossible after e1 if and only if � ��e1 Ge2 . �

36

2.2. Enabling Analysis

In Example 2.1 we have shown that the statement � ��enter1 Genter2 holds, where Genter2

is the enabling condition of enter2. Thus, after Definition 2.8 enter2 is impossible after
enter1. Further, one can easily prove, for example, that � ��leave1 ¬Grequest1 , which
means that request1 is guaranteed to be enabled after leave1.

A more precise characterisation of the effect of an event e1 on the enabling status of
another event e2 can be provided if we also consider the status of the guard of e2 in the
before-states of e1. Consider, for example, the event request1 in Example 2.1 for which
the effect by enter1 on its enabling status should be determined. One can easily prove
that request1 is impossible after enter1. If we consider in which states of the machine
both events request1 and enter1 are enabled, then we can derive that there is no such a
state since

Grequest1 ∧ Genter1 =̂ p1 = non critical ∧ (p1 = waiting ∧ x = 1) ≡ ⊥.

That is, in addition to the impossibility of request1 after enter1, the event request1 cannot
be enabled in any before-state of enter1. In other words, we can imply that request1 is
disabled at every before-state of enter1 and that enter1 keeps request1 disabled. This
observation, for example, gives rise for defining a new more precise enabling relation that
encodes that request1 is impossible after enter1 and that enter1 cannot enable request1
from any state of the machine.

To generalise the notion of the enabling relation we are going to observe four different
conditions for the effect of an event e1 on the enabling status of e2:

1. e1 can enable e2

2. e1 can keep e2 enabled

3. e1 can disable e2

4. e1 can keep e2 disabled

Since to each of these conditions there are two possibilities, either meet or not meet
the condition, there exist overall 16 combinations. This, we formalise by means of the
following definition, where we use ⊥ to denote that the guard of an event is disabled and
� to denote that the guard of an event is enabled.

Definition 2.9 (Enabling Relation ER). Let e1 and e2 be two events and let Ge2 denote
the guard of e2. The enabling relation ER(e1, e2) ⊆ {�, ⊥} × {�, ⊥} denoting the effect
of e1 on the enabling condition of e2 is characterised as follows:

• ⊥ �→ ⊥ ∈ ER(e1, e2) if and only if ¬Ge2 �e1 ¬Ge2

• ⊥ �→ � ∈ ER(e1, e2) if and only if ¬Ge2 �e1 Ge2

• � �→ ⊥ ∈ ER(e1, e2) if and only if Ge2 �e1 ¬Ge2

• � �→ � ∈ ER(e1, e2) if and only if Ge2 �e1 Ge2

�

37

2. Event Relations

Note that in Definition 2.9 we do not require that e1 is feasible since one wants to
allow also the empty set as a possible result of ER(e1, e2). One can define the relations
guaranteed and impossible from Definition 2.8 by means of the enabling relation ER as
follows. An event e2 is guaranteed after another event e1 if and only if ER(e1, e2) �= ∅ and
for all tuples b �→ a ∈ ER(e1, e2) it holds that a = �. The definition of the guaranteed
relation in terms of ER(e1, e2) simply infers that both ¬Ge2 �e1 ¬Ge2 and Ge2 �e1 ¬Ge2

do not hold, which in turn is equivalent to proving that � ��e1 ¬Ge2 . Analogously, one
can define the impossible relation in terms of ER: e2 is impossible after e1 if and only if
ER(e1, e2) �= ∅ and for all tuples b �→ a ∈ ER(e1, e2) it holds that a = ⊥.

The feasibility of an event can be defined also in terms of the enabling relation ER as
shown in the following lemma.

Lemma 2.2. Let M be an Event-B machine and let e1 be an event of M . Then, for
every event e2 of M the following equivalence hold:

e1 is a feasible event ⇔ ER(e1, e2) �= ∅.

Proof. ⇒ : Let e1 be a feasible event. That is, there exists a state s such that
e1 ∈ enabled(s) and the action block Te1 of e1 is feasible, denoted also as fis(Te1).
The fact that e1 ∈ enabled(s) and Te1 is a feasible action block implies that there
exists a transition s

e1−→ s′ in TSM . The existence of the transition s
e1−→ s′ in

TSM infers that there is at least one relation in ER(e1, e2).

⇐ : This direction we prove by contradiction. We have ER(e1, e2) �= ∅ for every event
e2 and assume that e1 is infeasible. Further, assume that � �→ ⊥ ∈ ER(e1, e2).
That is, Ge2 �e1 ¬Ge2 and after the definition of �e1 there exists a state s such
that s |= Ge2 and ∃(s, e1, s′) ∈ R such that s′ |= ¬Ge2 . The existence of a transition
s

e1−→ s′ infers that s |= Ge1 und fis(Te1), which is a contradiction to the assumptions
that e1 is infeasible.

In the following, we try to group all possible enabling relations into classes in order to
give a more compact overview of the different enabling relations.

Definition 2.10 (Classes of Enabling Relations). Let e1 and e2 be two events. We say
that

• e1 is infeasible if ER(e1, e2) = ∅

In case that e1 is a feasible event (i.e., ER(e1, e2) �= ∅), then we say that

• e2 is impossible after e1 if ER(e1, e2) ⊆ {⊥ �→ ⊥, � �→ ⊥},

• e2 is guaranteed after e1 if ER(e1, e2) ⊆ {⊥ �→ �, � �→ �},

• e1 keeps e2 if ER(e1, e2) ⊆ {⊥ �→ ⊥, � �→ �},

• e1 toggles e2 if ER(e1, e2) = {⊥ �→ �, � �→ ⊥},

38

2.2. Enabling Analysis

• e1 can enable e2 if ⊥ �→ � ∈ ER(e1, e2) and � �→ ⊥ /∈ ER(e1, e2),

• e1 can disable e2 if � �→ ⊥ ∈ ER(e1, e2) and ⊥ �→ � /∈ ER(e1, e2),

• e2 is possible after e1 if there exists a tuple b �→ a ∈ ER(e1, e2) such that a = �.

�

Definition 2.10 gathers all possible relations in regard to determining the effect of an event
on the enabling status of another event. The definitions of guaranteed and impossible in
Definition 2.10 are in fact equivalent to those in Definition 2.8. An interesting fact is
that when a pair of events (e1, e2) belongs to one of these two relations, one can make
conclusions about the enabling status of e2 in every after-state of e1. For instance, if e2
is impossible after e1, then one can safely assume that in every after-state of e1 the event
e2 is disabled.

An event e1 is said to keep another event e2 if the effect of e1 cannot change the enabling
status of e2. This means that if, for instance, we are in some state s in which e1 is
enabled, then the enabling status of e2 in s surely cannot change in every after-state
s′ such that s

e1−→ s′ ∈ R. One can deduce that e1 keeps e2 if, for example, e1 does
not write any variable that is read in the guard of e2 (i.e., writes(e1) ∩ readG(e2) = ∅).
The opposite relation of keep is the toggle relation, which ensures that every time e1 is
executed the enabling status of e2 will change in the after-state of e1.

The can enable relation intends to determine the pairs of events (e1, e2) encoding the
information that e1 enables at some moment e2. An important point is to guarantee
that e1 cannot disable e2, which makes the relation to be disjoint to can disable and
toggle. Furthermore, the relations keep and impossible are also disjoint to can enable
since ⊥ �→ � is a prerequisite to every set of the can enable relation. At last, the possible
relation summons all pairs of events (e1, e2), for which one can find an after-state of e1
in which e2 is enabled. This is the most general relation and it is easy to see that every
pair of events that is determined, for example, as guaranteed is also assigned as possible.
On the other hand, if an event e2 is computed to be impossible after e1, then we can for
sure say that (e1, e2) cannot be regarded as possible.

The whole picture how the different enabling relations from Definition 2.10 are related to
each other could be presented graphically as in Figure 2.2. In Figure 2.2, one visualises
an enabling relation ER(e1, e2) by means of a directed graph with four nodes, where the
nodes represent the status of the enabling condition of e2 before and after the execution
of e1 and the edges the way of how the execution influences the guard of e2.

In some cases one is interested to determine the enabling relations between events in
regard to certain conditions. For instance, when we want to observe the enabling relations
in those states of the machine that satisfy the invariant. This fact motivates the next
definition.

Definition 2.11 (Extended Enabling Relation ER). Let e1 and e2 be two events and let
Ge2 denote the guard of e2. Further, let P be a predicate. The extended enabling relation

39

2. Event Relations

can disable can enable

possible

impossible guaranteed

toggle

infeasible

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤
⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤ ⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

keep

⊥

⊤

⊥

⊤

Figure 2.2.: Classification of enabling relations ER

ER(e1, e2, P) ⊆ {�, ⊥} × {�, ⊥} denoting the effect of e1 on the enabling condition of
e2 under P is characterised as follows:

• ⊥ �→ ⊥ ∈ ER(e1, e2, P) if and only if (P ∧ ¬Ge2) �e1 (P ∧ ¬Ge2)

• ⊥ �→ � ∈ ER(e1, e2, P) if and only if (P ∧ ¬Ge2) �e1 (P ∧ Ge2)

• � �→ ⊥ ∈ ER(e1, e2, P) if and only if (P ∧ Ge2) �e1 (P ∧ ¬Ge2)

• � �→ � ∈ ER(e1, e2, P) if and only if (P ∧ Ge2) �e1 (P ∧ Ge2)

�

Accordingly, we can accommodate the definition of the extended ER to the definitions
of the classes of enabling relations introduced in Definition 2.10. For example, for a
given condition P and two events e1 and e2 we say that e2 is impossible after e1 if
ER(e1, e2, P) ⊆ {� �→ ⊥, ⊥ �→ ⊥}. Note that imposing an additional condition P by
means of the extended enabling relation usually restricts the domain of states to which the
enabling analysis is performed and thus we can easily infer that ER(e1, e2, P) ⊆ ER(e1, e2)
for any predicate P . In case one has proven that an event e1 can preserve P , it will
be sufficient to add P as a conjunct only on the left side of �e in Definition 2.11. For

40

2.2. Enabling Analysis

instance, if we have shown that the invariant InvM of a machine is preserved by the
events, then it is enough to test (InvM ∧ ¬Ge2) �e1 Ge2 in order to find out whether
⊥ �→ � ∈ ER(e1, e2, InvM).

The information delivered by the enabling analysis can find practical applications, for
example, in determining the control flow of an Event-B machine or in optimising state
space exploration methods. One can get a coarse picture of the control flow of an Event-B
model using the concepts of the enabling relations. The next definition introduces the
definition of an event control-flow graph that aims to summon all possible orders in
which events can be executed in the respective Event-B machine. Below we will use
the notation EventsInit

M to denote the set of all events of a given Event-B machine M
including the initial event of M , i.e. EventsInit

M = EventsM ∪ {InitM}.

Definition 2.12 (Event Control Flow Graph). Let M be an Event-B machine and let
EventsM represents the set of events of M . Further, let InitM be the initial event of M .
The event control-flow graph of M is a directed graph

ControlFlowGraphM = (EventsInit
M , E),

where

• EventsM constitutes the set of vertices of ControlFlowGraphM , and

• E ⊆ EventsInit
M × EventsInit

M is the set constituting the directed edges of the graph
and defined as follows

E = {InitM �→ e | � �InitM
e} ∪ {e1 �→ e2 | e2 �= InitM ∧ e2 is possible after e1}.

�
Intuitively, the event control-flow graph of an Event-B machine M represents all possible
orders of events that can be performed by M . From the control-flow graph of MutualEx-
clusion, for example, we can conclude that 〈enter1, enter2〉 never appears in any trace of
the machine since enter2 is impossible to immediately appear after enter1 and thus there
is no edge enter1 �→ enter2 in the control-flow graph. The event control-flow graph of
the MutualExclusion model is depicted in Figure 2.3. In Figure 2.3 each edge is coloured
in a unique colour representing a respective class of an enabling relation as defined in
Definition 2.10. Each green coloured edge stands for the guaranteed enabling relation,
each black edge for the can enable enabling relation and each grey coloured edge for the
keep enabling relation.

The event control-flow graph could give very useful insights about the model under
consideration. However, a control-flow graph is a too general concept as it tries to
encode all possible orders of events that could appear in a path of the model. Thus,
in some cases the control-flow graph could be unreadable for the modeller. In Event-B
parallel activity can be easily modelled since a model in Event-B is viewed as a system
in which enabled events are executed in an interleaved manner. What Event-B misses

41

2. Event Relations

InitM

request1 request2

enter1 enter2

release1 release2

Figure 2.3.: The event control-flow gaph of MutualExclusion

is a construct for modelling sequential activity. This drawback is usually overcome in
Event-B by introducing abstract program counters (i.e., variables) in order to organise
the order in which certain events should be executed. To visualise just the “intended”
orders of events in an Event-B model one needs a more refined version of a control-flow
graph. The next definition introduces the concept of an enabling graph.

Definition 2.13 (Enabling Graph). Let M be an Event-B machine and let EventsM

represents the set of events of M . Further, let InitM be the initial event of M . The
enabling graph of M is a directed graph

EnablingGraphM = (EventsInit
M , E),

where

• EventsM constitutes the set of vertices of EnablingGraphM , and

• E ⊆ EventsInit
M × EventsInit

M is the set constituting the directed edges of the graph
and defined as follows

E = {InitM �→ e | � �InitM
e} ∪ {e1 �→ e2 | ⊥ �→ � ∈ ER(e1, e2)}.

�
The enabling graph of an Event-B machine is not just useful for giving a more clear
view of the control flow of the model, but also a helpful construct to get a notion of that
which sequence of events one should perform in order to enable a particular event. In
fact, the enabling graph comprises all enabling relations ER(e1, e2) for which e1 may at
some point enable e2, i.e. there is a transition s

e1−→ s′ such that s |= ¬Ge2 and s′ |= Ge2 .
An interesting fact is that event e1 can enable another event e2 if it writes a variable that

42

2.2. Enabling Analysis

InitM

request1 request2

enter1 enter2

release1 release2

C1

C2

Figure 2.4.: Partition of the enabling graph of MutualExclusion

is read in the guard of e2. That is, they share at least one variable of the machine. In
this case we also say that e2 is coupled with e1. An enabling graph shows how closely
connected are the events of an Event-B model. The degree of coupling in an enabling
graph could sometimes reveal how high is the possibility for applying optimisations such
as partial order reduction, the effectivity of which relies on how tightly coupled are the
actions of a formal model.

To get a notion how tightly coupled are the events of an Event-B machine, we introduce
the following definition.

Definition 2.14 (SCC Partition of an Enabling Graph). Let EnablingGraphM be the
enabling graph of an Event-B machine M . Then,

P = {C1, C2, . . . , Ck} ⊆ 2EventsM

is defined as the partition of EventsM that is built by decomposing EnablingGraphM into
maximal strongly connected components (SCCs), where each Ci is a non-empty set of
events comprising the nodes of a maximal SCC. �
As we already have mentioned in Chapter 1, the initial event of an Event-B machine
is a special event that is executed just once at the beginning. That makes the vertex
representing the initial event to have no incoming edges and thus to be a trivial SCC
in every enabling graph. In other words, for each EnablingGraphM there is a set Cj

from the partition such that Cj = {InitM}. Further, we know that each set Ci of the
partition is disjoint to the rest of the partition sets since they represent maximal SCCs.
For example, we can see in Figure 2.4 that the enabling graph of the MutualExclusion
model is decomposed into two SCCs. In the case of the MutualExclusion we can see, for
example, that the events of the machine are very tightly coupled since we have only two
SCCs in the enabling graph.

43

2. Event Relations

2.2.1. Implementation

The enabling analysis has been implemented within the ProB toolset. The implementa-
tion is based on the ideas presented in this chapter. Each event relation is determined by
means of a combination of syntactic and constraint-solving analyses. In this subsection,
we propose an algorithm for computing the enabling relations presented in Definition 2.9
and explain shortly how the approach is implemented in ProB.

The enabling analysis uses the conditional event feasibility relation �e from Definition 2.3
to compute certain effects on the guard of an event. Every time when we want to test
whether an event e can establish Q from P (i.e., we test if P �e Q holds) we construct
a respective before-after predicate. The satisfiability of this before-after predicate could
be checked automatically, for example, by using a constraint solver. In Example 2.1,
we have seen two examples for the event feasibility of the events enter1 and leave1 of
the mutual exclusion model presented in Section 1.1.1. Deductively, we have shown
that � ��enter1 (p2 = waiting ∧ x = 1) and that � �leave1 (p1 = non critical). Both
feasibility statements can also be proved by means of the ProB’s constraint solver.
For the first assertion, the constraint solver will not find a solution for the before-after
predicate of � �enter1 (p2 = waiting ∧ x = 1), whereas for the latter the answer of the
constraint solver will be affirmative.

For testing the mentioned event feasibility conditions of the events enter1 and leave1 the
constraint solver has searched for solutions of relatively simple constraints. However,
for more elaborate Event-B models the constraints for checking some event feasibility
conditions can become much more complex. Considering also that for each event pair
one needs to find solutions for four different before-after predicates, the computation of
all enabling relations ER(e1, e2) of a model can become a very time-expensive task. If
an Event-B model has n events (without counting the initial event), then we need to
call the constraint solver exactly 4 · n2 + 2 · n times. In order to get simpler constraints
for the constraint solver and minimise the number of calls of the constraint solver, we
analyse the syntactic structure of the events. The following lemma summarises a few
optimisations for deriving simpler constraints and eliminating calls of the constraint
solver based on simple syntactic conditions.

Lemma 2.3. Let e1 and e2 be two events for which we want to determine the enabling
relation ER(e1, e2).

(a) If e1 = e2, then
¬Ge2 ��e1 Ge2 and ¬Ge2 ��e1 ¬Ge2 .

(b) If e1 does not write any variable read in the guard of e2, then it holds that there is no
state from which e1 can change the enabling status of e2. Formally, the following
implication holds:

write(e1) ∩ readG(e2) = ∅ =⇒
(
(¬Ge2 ��e1 Ge2) ∧ (Ge2 ��e1 ¬Ge2)

)

44

2.2. Enabling Analysis

(c) Let Ge2 = Gstatic
e2 ∧ Gdynamic

e2 such that the following equation is fulfilled

write(e2) ∩ (ids(Gstatic
e2) ∩ varsM) = ∅,

where ids(Gstatic
e2) is the set of all identifiers occurring in Gstatic

e2 and varsM is the
set of variables of the machine M to which both events e1 and e2 belong. Then, the
following equivalences hold

(i) Ge2 �e1 Ge2 if and only if Ge2 �e1 Gdynamic
e2

(ii) Ge2 �e1 ¬Ge2 if and only if Ge2 �e1 ¬Gdynamic
e2

(iii) ¬Ge2 �e1 Ge2 if and only if (Gstatic
e2 ∧ ¬Gdynamic

e2) �e1 Gdynamic
e2

Algorithms 2 and 3 present two procedures for computing the respective enabling relation
ER(e1, e2) of two events (e1, e2) when e1 is equal to e2, and e1 and e2 are two different
events, respectively. Both algorithms use the results presented in Lemma 2.3 in order
to minimise the number of calls and to construct simpler constraints for the constraint
solver. Further, in both it is assumed that e1 is a feasible event. In case we compute
ER(e1, e1), the maximum number of calls is equal to two. This can occur when e1 keeps
in some cases its guard enabled (line 5 in Algorithm 2) and when there is at least one
possible state from which e1 can disable itself (line 6 in Algorithm 2). Note that we do
not have to test if ¬Ge1 �e1 Ge1 and ¬Ge1 �e1 ¬Ge1 hold since it is not possible that
an event can enable itself.

Algorithm 2: Enabling Analysis’ Procedure for e1 = e2

1 procedure ER identifier enabling relation(e1)
2 if writes(e1) ∩ readG(e1) = ∅ then
3 return keep
4 else
5 if Ge1 �e1 Gdynamic

e1 then
6 if Ge1 �e1 ¬Gdynamic

e1 then
7 return can disable
8 else
9 return guaranteed

10 end if
11 else
12 return impossible
13 end if
14 end if
15 end procedure

If we want to compute ER(e1, e2) for e1 �= e2, then in the worst-case we have to construct
and test four different constraints as shown in Algorithm 3 (in case we reach line 11 or
line 17). If event e1 does write at least one variable that is read in the guard of e2, then
we test further the conditional feasibilities of e1 with respect to the guard status of e2.

45

2. Event Relations

The first two if -branches in the outer else-statement (line 5 and line 7) test if we can
find a definite status for the enabledness of e2 after e1. If there is no after-state of e1
where the guard of e2 is disabled (line 5), then we can conclude that e2 is guaranteed
enabled after e1. If this is not the case, then we test for the impossibility of the guard of
e2 after e1 (line 7).

Algorithm 3: Enabling Analysis’ Procedure for e1 �= e2

1 procedure ER identifier enabling relation(e1, e2)
2 if write(e1) ∩ readG(e2) = ∅ then
3 return keep
4 else
5 if � ��e1 ¬Ge2 then
6 return guaranteed
7 else if � ��e1 Ge2 then
8 return impossible
9 else if (Gstatic

e2 ∧ ¬Gdynamic
e2) �e1 Gdynamic

e2 then
10 if Ge2 �e1 ¬Gdynamic

e2 then
11 return possible
12 else
13 return can enable
14 end if
15 else
16 if Ge2 �e1 ¬Gdynamic

e2 then
17 return can disable
18 else
19 return keep
20 end if
21 end if
22 end if
23 end procedure

By the time we test the if -condition in line 9, we know that the former two if -tests failed,
which means that there is an after-state of e1 in which e2 is disabled and there is an
after-state of e1 in which e2 is enabled. Thus, it remains to determine whether e1 can
actually change the status of e2. If the test

(Gstatic
e2 ∧ ¬Gdynamic

e2) �e1 Gdynamic
e2

succeeds, then we have to test further whether e1 can also disable e2. If this is the case,
then we have shown that e2 is possible after e1. Otherwise, we can assume that e1 can
enable e2.

In case all three if -branches at lines 5, 7 and 9 are disabled we know that there is an
after-state in which e2 is disabled, and that there is an after-state in which e2 is enabled,
and that e1 cannot enable e2. The three statements imply that the remaining results for

46

2.2. Enabling Analysis

ER(e1, e2) is that either e1 can disable e1 at some moment or e1 keeps e2 although e1
writes variables read in the guard of e2.

Note that Algorithm 3 cannot determine if e1 toggles e2. In case e1 toggles e2 the
procedure will return possible as a result. The procedure could be enhanced such that
the toggle relation is recognised. For example, in the if -case in line 10 one could add
two further tests to check if there are cases in which e1 keeps the enabling status of e2.
However, the two additional tests will increase the complexity of Algorithm 3, which is
the reason why we do not test explicitly for the toggle relation.

Consider also that the procedure in Algorithm 3 is constructed such that it can find
the most specific enabling relation for the input arguments. For instance, if e2 is always
enabled after e1, enabling relation(e1, e2) will return guaranteed and not possible. The
computation of the enabling relations in ProB is, in general, based on both procedures
presented in Algorithm 2 and Algorithm 3. For the sake of completeness, we summarise
in Algorithm 4 the way how all enabling relations are computed for a given Event-B
machine M .

Algorithm 4: Enabling Analysis for Event-B
1 ER := ∅;
2 foreach e ∈ EventsM do
3 if � ��InitM

¬Ge then
4 ER := ER ∪ {(InitM , guaranteed, e)}
5 else if � ��InitM

Ge then
6 ER := ER ∪ {(InitM , impossible, e)}
7 else
8 ER := ER ∪ {(InitM , possible, e)}
9 end if

10 end foreach
11 foreach e1 ∈ EventsM do
12 if e1 is infeasible then
13 ER := ER ∪ {(e1, infeasible, e2) | e2 ∈ Events}
14 else
15 foreach e2 ∈ EventsM do
16 if e1 = e2 then
17 ER := ER ∪ {(e1, enabling relation(e1), e1)} /* Algorithm 2 */
18 else
19 ER := ER ∪ {(e1, enabling relation(e1, e2), e2)} /* Algorithm 3

*/
20 end if
21 end foreach
22 end if
23 end foreach

All enabling relations with respect to the initial event InitM are computed in the first

47

2. Event Relations

foreach-loop of Algorithm 4. Note that we need to perform at most two conditional
feasibility tests for each non-initial event in order to determine the status of this event
after InitM . In worst-case, the initial event InitM can have after-states in which the
respective event is enabled and after-states in which the respective event is disabled.
The second foreach-loop computes all enabling relations of the non-initial events of the
model. If the currently tested event e1 is infeasible, then we infer that ER(e1, e2) = ∅

for all non-initial events e2 (see also Lemma 2.2). Otherwise, in case e1 is feasible, we
compute the respective enabling relation by means of the procedures that we introduced
above. The worst-case time complexity in terms of the number of times �e is called is
4 · n2, where n is the number of non-initial events. This result we claim formally in the
following corollary.

Corollary 2.1 (Complexity of the Enabling Analysis). Let M be an Event-B model
and let n be the number of non-initial events, i.e. n =| EventsM |. Then, to determine
all enabling relations ER(e1, e2) for M by means of Algorithm 4 we have to test the
conditional feasibility �e at most 4 · n2 times.

Proof. To compute all enabling relations ER(InitM , e) we need to perform n-times �InitM

(this happens in the first foreach-loop of Algorithm 4). In the next foreach-loop we
determine ER(e1, e2) for all tuples of non-initial events (e1, e2). For n tuples we have
to execute enabling relation(e) and for n2 − n tuples enabling relation(e1, e2). The
execution of n times enabling relation(e) yields at most 2 · n calls of �e. Accordingly,
since each execution of enabling relation(e1, e2) calls at most four times �e, we have
maximum 4 · (n2 − n) �e-calls. Thus, the maximum number of �e-calls in the second
foreach-loop (in lines 11-23) is 4 · n2 − 2 · n. Taking also the number of �InitM

-calls into
account yields the claim of the corollary.

The number of times the constraint solver of ProB is called can be crucial for the
scalability of the enabling analysis. For complicated constraints the constraint solver may
need a huge amount of time in order to find a solution for the constraints. A possibility
for guaranteeing reasonable execution times for the analysis is to set for each call of the
constraint solver a timeout. In terms of the notation in this section we set a timeout
for every �e-query. In case a timeout occurs for an inquiry P �e Q we interpret this
as a positive answer. For example, if a timeout occurs when testing the if -condition
Ge2 �e1 ¬Gdynamic

e2 in line 10 in Algorithm 3, then we assume that the test is positive and
in that case return possible. On the other hand, if a timeout occurs for P ��e Q, then
we understand this as a negative answer for the query. For instance, in case of a timeout
for the if -condition � ��e1 ¬Ge2 in line 5 in Algorithm 3 the test will be negative and
the algorithm will continue with testing the next if -condition.

In the presence of timeouts, when computing an enabling relation ER(e1, e2) we cannot
definitely say how exactly e1 can influence the enabling status of e2. For example, the
occurrence of a timeout in the test of the if -condition in line 9 of Algorithm 3 yields
that the condition is fulfilled and either possible or can enable will be returned as result.
However, the result is not reliable since a timeout simply means that the constraint solver

48

2.2. Enabling Analysis

has not found an answer for the respective test in the time given by the user, which means
that accepting (Gstatic

e2 ∧ ¬Gdynamic
e2) �e1 Gdynamic

e2 to be true does not present a proof for
the condition. In this case we only guess that e1 can enable e2. On the other hand, there
are certain enabling relations computed by means of the enabling relation-procedure in
Algorithm 3 for which one can safely infer that the respective relation is not guessed even
if timeouts occur for some of the �e- and ��e-tests. We outline these in the following
corollary.

Corollary 2.2 (Reliability of Enabling Relations under the Presence of Timeouts). Let
e1 and e2 be two events. If the procedure in Algorithm 3 returns guaranteed, impossible,
or keep as result for ER(e1, e2), then the result is reliable.

Proof. In case the test � ��e ¬Ge2 in line 5 succeeds we can infer that no timeout has
occurred and thus, e2 is guaranteed after e1. In the case of impossible, we perform
two ��e-tests (line 5 and line 7). The first one � ��e ¬Ge2 should fail (either because
of a non-fulfilment or an occurrence of a timeout), whereas the second one � ��e Ge2

should pass. The latter test cannot pass in case of a timeout, which infers that the
constraint-solver has not found a solution in which e2 is enabled after e1. Hence, the
result e2 impossible after e1 is reliable.

In the case of e1 keeps e2, we have two possibilities: either e1 cannot write a variable read
in the guard of e2 (the test in line 2) or the conditional-feasibility tests in lines 5, 7, 9,
and 16 have failed. The first possibility is trivial. In the second one, the non-fulfillment
of (Gstatic

e2 ∧ ¬Gdynamic
e2) �e1 Gdynamic

e2 and Ge2 �e1 ¬Gdynamic
e2 simply means that no case

could be discovered for changing the enabling status of e2 by e1. Since the procedure
assumes that in case of a timeout a �e-test should pass, we can safely assume that the
keep relations is reliable. A timeout occurrence in a ��e-tests in line 5 or line 7 does not
have an influence on the reliability of the keep relation as the non-fulfillments of the tests
in lines 9 and 16 are sufficient to prove that e1 keeps e2.

An evaluation of the enabling analysis implementation in ProB is given in Section 3 of
the conference paper [DL16a] presented at the ABZ conference in 2016. The reported
timing results of the analysis show that the technique scales even for complex classical B
and Event-B models from the industry and provides for these useful feedback.

To show one particular result of Algorithm 4, we analyse the enabling relations of the
mutual exclusion model from Section 1.1.1. The results of the analysis can be depicted
by means of a table as shown in Figure 2.5. Each table cell in Figure 2.5 represents an
enabling relation ER(e1, e2) of a pair of events, where e1 is represented by the row-event
in the table and e2 by the column-event. To produce the results from the table the
enabling analysis algorithm needs to make 52 �e-queries to the constraint solver to
determine the enabling relations for all 42 pairs of events.

49

2. Event Relations

ER request1 enter1 leave1 request2 enter2 leave2

InitM guaranteed impossible impossible guaranteed impossible impossible
request1 impossible can enable impossible keep keep keep
enter1 impossible impossible guaranteed keep impossible keep
leave1 guaranteed impossible impossible keep can enable keep
request2 keep keep keep impossible can enable impossible
enter2 keep impossible keep impossible impossible guaranteed
leave2 keep can enable keep guaranteed impossible impossible

Figure 2.5.: Result of the enabling analysis of the MUTEX model shown as table

2.3. Independence

There is another class of an event relation that will play an important role in applying
model checking of classical B and Event-B models via partial order reduction. This is the
class of independent events. Formally, one can define independence between two events
by means of the following definition.

Definition 2.15 (Independence of Events). Let

TSM = (S, S0, EventsM , R, AP, L)

be the transition system of an Event-B machine M and let e1 and e2 be two events of M .
Then, e1 and e2 are said to be independent if for every state s with e1, e2 ∈ enabled(s)
both conditions are fulfilled:

1. each finite path s
e1−→ s1

e2−→ s′ implies that the following predicate holds

∃ s2 ∈ S · s
e2−→ s2

e1−→ s′

2. each finite path s
e2−→ s2

e1−→ s′ implies that the following predicate holds

∃ s1 ∈ S · s
e1−→ s1

e2−→ s′

�
Intuitively, Definition 2.15 states, in general, two conditions for the independence of two
events e1 and e2:

(I 1) Both events cannot disable one another. Formally, this means that for each
transition s

e1−→ s1 it holds that if e2 ∈ enabled(s), then e2 ∈ enabled(s1), and for
each transition s

e2−→ s2 it holds that if e1 ∈ enabled(s), then e2 ∈ enabled(s2).

(I 2) The events do not interfere, which formally means that if there is a path s
e1−→

s1
e2−→ s′ where e2 ∈ enabled(s), then there should be also a path of the form

s
e2−→ s2

e1−→ s′.

50

2.3. Independence

In the literature [CGP99], [BK08], the first condition is often referred as enabledness,
whereas the second one as commutativity. One possibility to determine whether two
events are independent is by analysing their read and write sets.

Definition 2.16 (Syntactic Independence of Events). Two events e1 and e2 are said to
be syntactically independent if the following three conditions are satisfied:

(SI 1) The read set of e1 is disjoint to the write set of e2 (read(e1) ∩ write(e2) = ∅).

(SI 2) The write set of e1 is disjoint to the read set of e2 (write(e1) ∩ read(e2) = ∅).

(SI 3) The write sets of e1 and e2 are disjoint (write(e1) ∩ write(e2) = ∅).

�

From the three conditions above one can infer that two events that are syntactically
independent cannot disable each other since the effect of executing the one event cannot
change the value of each variable in the guard of the other event ((SI 1) and (SI 2)). And,
additionally, both events cannot interfere each other as they write different variables
((SI 3)), and each variable written by the one event is not read in the action part of the
other event ((SI 1) and (SI 2)). Thus, the definition of syntactic independence ensures
independence according to Definition 2.15. This conclusion is stated in Lemma 2.4.

Lemma 2.4. Two syntactically independent events e1 and e2 are independent in terms
of Definition 2.15.

Syntactic independence is obviously a quite coarse concept: two events of an Event-B
machine can be independent even if some of the conditions (SI 1) - (SI 3) are violated.
Take, for example, the events in Example 2.3. Apparently, e1 and e2 are not syntactically
independent as (SI 1) is violated (read(e1) ∩ write(e2) = {x}). However, e2 cannot affect
the guard of e1 because e2 can assign to x only values between 1 and 10, and e1 is enabled
when x is a natural number. Since additionally write(e1) ∩ read(e2) = ∅, it follows that
the enabledness condition (I 1) for independence for e1 and e2 is fulfilled. Further, no
variable written by the one event will be read in the action part of the other event and
the write sets of e1 and e2 are disjoint. Thus, both events cannot interfere each other
and herewith the commutativity condition (I 2) for independence is fulfilled for e1 and e2.
Hence, e1 and e2 are indeed independent events.

Example 2.3 (Event Dependency).

event e1 =
when

x ∈ N

then
y := y + 1

end

event e2 =
when

z ≥ 1 ∧ z ≤ 10
then

x := z ‖ z := z + 1
end �

51

2. Event Relations

Since partial order reduction takes advantage of the independence between events, it is
important to determine independence as accurately as possible. The higher the degree of
independence in a system, the higher is the chance to reduce its state space significantly.
This motivates to consider additional techniques for determining the independence
relation between the events of Event-B models.

2.3.1. Refining the Dependency Relation

In this section, we present an approach for a more precise computation of the set of
independent events in Event-B. Instead of determining the pairs of independent events
we compute the set of all pairs of dependent events, which we formalise as a binary
relation over the set of events EventsM .

Definition 2.17 (The Dependency Relation DependentM). Let M be an Event-B ma-
chine and EventsM the set of events of M . The dependency relation DependentM ⊆
EventsM × EventsM comprises all pairs of dependent events and is defined as follows

DependentM := {(e1, e2) | (e1, e2) ∈ EventsM × EventsM ∧ (e1 = e2 ∨ dependent(e1, e2))},

where dependent is the procedure shown in Algorithm 5. �
With regard to Definition 2.17, two events e1 and e2 are considered to be dependent if
both represent the same event or if the dependent procedure returns true for e1 and e2.
Otherwise, if (e1, e2) /∈ DependentM , then e1 and e2 are considered to be independent.

The set of independent events can be defined in terms of DependentM as follows

IndependentM = (EventsM × EventsM) \ DependentM .

Note that the dependency relation DependentM is a reflexive and symmetric relation. At
the same time, the definition of IndependentM infers that the relation is irreflexive and
symmetric.

Algorithm 5 presents a refined strategy for determining the dependency between two
events. On syntactic level we would say that two events are dependent if their write sets
are not disjoint or if the write set of the one event has variables in common with the read
set of the other one. As we already have seen (in Example 2.3), the syntactic analysis
is not precise enough to exactly determine how two events are related to each other.
Therefore, in lines 7-8 in Algorithm 5 we further check if the events can disable each
other by means of �e. In order to test whether two events are independent, we need
to check the two independence conditions: enabledness and commutativity. Obviously,
the commutativity condition for two events cannot be satisfied if both events have write
variables in common (line 2) or if at least one of the events may write a variable that is
read in the actions part of the other event (line 4). If the tests in line 2 and in line 4 do
not pass, then we just need to examine if some of the events can disable the other one in
order to show whether they are independent (the enabledness condition).

52

2.3. Independence

Algorithm 5: Determining Dependency of Events
1 procedure boolean dependent(e1, e2)
2 if write(e1) ∩ write(e2) �= ∅ then
3 return true /* events are syntactically race dependent */
4 else if (readS(e1) ∩ write(e2) �= ∅ ∨ write(e1) ∩ readS(e2) �= ∅) then
5 return true /* events can interfere each others’ effect */
6 else
7 return

(
(readG(e1) ∩ write(e2) �= ∅ ∧ Ge1 �e2 ¬Ge1)

8 ∨ (write(e1) ∩ readG(e2) �= ∅ ∧ Ge2 �e1 ¬Ge2)
)

9 end if
10 end procedure

Once we have entered the else branch, we test the enabledness condition. The enabledness
condition is tested by the two disjunction arguments in lines 7 and 8. If at least one of the
arguments is fulfilled, we have deduced that e1 and e2 are indeed dependent. Otherwise,
we have proven that e1 and e2 are independent.

Checking whether the events can disable one other is realised by means of the �e

relation. If, for example, e2 assigns a variable that is read in the guard Ge1 of e1 (i.e., if
readG(e1) ∩ write(e2) �= ∅), then we can further check whether e2 eventually can disable
e1. This can be additionally examined by testing whether Ge1 �e2 ¬Ge1 holds. The
event-feasibility test Ge1 �e2 ¬Ge1 for e2 simply checks whether it is possible that e2
disables e1 at some point. Analogously, we test if there is a possibility that e1 disables e2
in some moment.

In case the predicate in lines 7-8 evaluates to true we can conclude that one of the events
may disable the other one. Otherwise, if the result of evaluating the predicate is false,
we have shown that neither of the events can disable the other one.

Note that the dependency relation DependentM is an over-approximation of the set of
the dependent event pairs. For example, the following two events

event e1=̂
when

x ≥ 1
then

y := y · x + 1
end

event e2=̂
when

x = 1
then

x := 1
end

are independent, but after definition of DependentM will be considered to be dependent
since the if -condition in line 4 of Algorithm 5 is fulfilled. Consequently, it follows that
the dependent-procedure sets a stronger condition on event independence than Defini-
tion 2.15. This could be explained by the fact that in Definition 2.15 independence
is defined in terms of the transition system TSM , whereas DependentM is determined

53

2. Event Relations

by analysing statically the events without exploring the transition system of M . The
next remark shows the need for differentiating between the variables read in the guard
and the variables read in the action part of the events when determining statically the
independence of events.

Remark 2.2 (The Necessity for Clear Separation of read into readS and readG). If two
events e1 and e2 are considered as independent by means of procedure dependent in
Algorithm 5, then one of the conditions that must be satisfied is the following one:

readS(e1) ∩ write(e2) = ∅ ∧ write(e1) ∩ readS(e2) = ∅.

The predicate implies that any two independent events should satisfy the requirement:
no one of the events should write variables that are read in the action part of the other
event. A requirement for independent events that may not be obvious at first glance.
Let us observe, for example, the following two events:

event e1=̂
when

x ≥ 1
then

x := x + 1
end

event e2=̂
any

t

where
y ≥ 1 ∧ t = 2 ∗ x

then
y := y + t

end

Both events are not race dependent as they write different variables and additionally,
neither e1 nor e2 can disable the other one because no one can influence the guard of
the other event. However, e1 and e2 do not satisfy the commutativity condition for
independent events from Definition 2.15. This can be readily sketched if we execute the
event sequences · e1−→ · e2−→ · and · e2−→ · e1−→ · from some state in which the variables x
and y are both greater than or equal to 1. In that case, the effect of executing · e1−→ · e2−→ ·
will be different from the effect of executing · e2−→ · e1−→ · i.e. that both orders of executing
the events reach different states in the transition system. This behaviour clearly violates
the commutativity condition for independence of events as one can see in Figure 2.6. In
such a case we also say that e1 and e2 interfere. Note that x is an element of readS(e2)
as it restricts the value of t in the guard of e2 and in turn t appears on the right-hand
side of the e2 substitution (see also Definition 2.6). �

Note that we used the conditional feasibility of an event �e to refine the definition of
syntactic independence between two events. The independence relation cannot be defined
in terms of the enabling relation introduced in Definition 2.9. If two events e1 and e2 are
independent, then it holds that

ER(e1, e2) ⊆ {⊥ �→ ⊥, ⊥ �→ �, � �→ �} ∧ ER(e2, e1) ⊆ {⊥ �→ ⊥, ⊥ �→ �, � �→ �}.

54

2.3. Independence

x = 1, y = 1

x = 2, y = 1 x = 1, y = 3

x = 2, y = 5 x = 2, y = 3

e1 e2

e2 e1

Figure 2.6.: Execution of dependent events

However, the reverse implication in general does not hold. For example, both events e1
and e2 in Remark 2.2 cannot change the guard status of the other event (e1 keeps e2 and
e2 keeps e1), but they are not independent since they interfere.

In Chapter 4, we will often talk about events that are dependent or independent to
a set of events. The following definition defines what the relations dependency and
independence of event with regard to a set of events mean.

Definition 2.18 (Set Dependency/Independence). Let e be an event of some given
Event-B machine M and E ⊆ EventsM a non-empty set of events of M . We say that e is
dependent on E if there is at least one event e′ ∈ E such that dependent(e, e′) evaluates
to true. Otherwise, if for all events e′ ∈ E the procedure call dependent(e, e′) evaluates
to false, then we say that e is independent to E, i.e. e is independent to each e′ ∈ E. �

Remark 2.3 (Independence of Deterministic Events). A more simple definition of inde-
pendence between events can be given if one assumes that all events in the underlying
transition system are deterministic. An event e is considered to be deterministic if in
every state s of the transition system there is at most one outgoing transition from s
labelled with e. In fact, each transition system TSM can be transformed into an event-
deterministic transition system if, for example, to each non-deterministic representation
of an event a unique event name is given. For instance, each non-deterministic event in
Event-B can be converted into an event of the following form

e =̂ any t where G(x, t) then S(x, t) end

such that S(x, t) consists of just deterministic substitutions. Then, for each possible
parameter t that is in the set of values allowed by G(x, t) we create a new event et. At
the end, each non-deterministic event e is replaced by a set of events {et1 , . . . , etn} that
are all deterministic.

If we assume that all events in a transition system TSM are deterministic, then the
independence relation can be defined as follows.

55

2. Event Relations

Two events e1 and e2 are said to be independent if for every state s in TSM with
e1, e2 ∈ enabled(s) the two conditions hold:

Enabledness: s
e1−→ s1

e2−→ s′ ∈ Paths(TSM) and s
e2−→ s2

e1−→ s′′ ∈ Paths(TSM).

Commutativity: If the Enabledness condition is satisfied for s, then s′ = s′′.

�

2.4. Enabling and Independence Analysis for Classical B

The presentation of the static analyses discussed in this chapter was focused on Event-B.
One of the reasons to choose Event-B rather than classical B for the presentation of both
analyses was because of the relatively simple form of the events. While operations in B can
have nested conditionals and much more involved substitutions, using constructs such as
IF-THEN-ELSE-END, SELECT-WHEN*-END, and WHILE-DO-END, events in Event-
B have straightforward constructs allowing no branching and no nested substitutions and
permitting just one enabling condition per event. This difference between the actions in
classical B and Event-B raises the question if there is a distinction in the theory of the
enabling and independence analyses for both formalisms. This section gives an overview
of the impact, which the more complex constructs of B operations have, on the two
static analyses. Further, in the following we explain whether it is necessary to make
some considerable changes in the theory of the enabling and independence analyses in
order to adopt both approaches for classical B. In the following, we will use just the
word operation to denote an operation in classical B. In this section we do not consider
operations with WHILE-loops.2

In first place, we need to establish the guard of an operation in regard to the enabling
relation ER. In particular, a guard of an operation can be seen as a condition for the
operation stating when a substitution of the operation can be performed. For example,
the operation

Op =̂ SELECT x > 1 THEN x := x − 1 END

has only one substitution which is preceded by the condition x > 1 that is also said to
be the guard for x := x − 1. Since x := x − 1 is the only substitution of Op we can treat
x > 1 as the guard of Op. A SELECT-statement in B can have multiple branches that
can be executed when the corresponding statement conditions are satisfied. For instance,

2The extraction of the guard of an operation with a WHILE-loop may be very complicated since one
usually does not know how many iterations does the loop have or whether the loop can terminate.
Even if there is a way to extract the guard of a loop, for some loops the guards may become very
complex predicates whose interpretation may turn into a very expensive task.

56

2.4. Enabling and Independence Analysis for Classical B

the operation

Op1 =̂ SELECT x > 1 THEN x := x − 1
WHEN x < 1 THEN x := x + 1
WHEN y > 2 THEN y := y + x

END

has three branches that are respectively guarded by the conditions x > 1, x < 1 and
y > 2. Note that multiple branches can be enabled simultaneously if the corresponding
conditions hold. In the case of Op1 the guard of the operation is determined by building
the disjunction of all three statement conditions:

GOp1 = (x > 1) ∨ (x < 1) ∨ (y > 2)

since Op1 can execute one of its statements if at least one of the conditions is satisfied.
Note that if we add an ELSE-branch to the declaration of Op1, then GOp1 will be equal
to TRUE as the ELSE-branch will take effect when none of the conditions of Op1 is
true. Operations in B can be even more elaborate since non-trivial substitutions can be
nested as, for example, in the following operation:

Op2 =̂ SELECT x > 1 THEN x := x − 1
WHEN y > 2 THEN SELECT x > y THEN y := y + x END
END.

In the body of Op2 we have two conditions y > 2 and x > y for the execution of the
statement y := y+x. This fact and the fact that Op2 offers another substitution x := x−1
under the condition x > 1 yields the following guard for Op2:

GOp2 = (x > 1) ∨
(
(y > 2) ∧ (x > y)

)
.

The examples above have shown that in some cases a more careful inspection is needed
to determine the guard of an operation. The next definition states how the guard of an
operation is formally derived.

Definition 2.19 (Computing the Guard of a B Operation). The guard guard(T) of a
generalised substitution T is defined inductively as follows:

guard(skip) = TRUE
guard(x := E) = TRUE
guard(S [] T) = guard(S) ∨ guard(T)
guard(G | S) = G ∧ guard(S)
guard(G =⇒ S) = G ∧ guard(S)
guard(@x · S) = ∃ x · guard(S)

57

2. Event Relations

Note that the way of determining the guard of the substitution P | S in Definition 2.19
is identical to P =⇒ S since in this work we treat the precondition of an operation
as a guard (see also Section 1.1.1). Further, Definition 2.19 defines the guard of a
substitution in terms of the primary classical B substitution forms (see also [Abr96,
Section 5.1]). The guard of a generalised substitution using syntactic extensions such
as SELECT-WHEN*-END, CHOICE-OR+-END, etc. can be extracted by using the
rewriting definition rules for the syntactic extensions from [Abr96, Section 5.1]. In other
words, we first transform each operation into a normal form and then extract the guard
of the normalised operation by means of Definition 2.19. For instance, the guard of Op1
is derived by guard as follows:

guard(SELECT x > 1 THEN x := x − 1
WHEN x < 1 THEN x := x + 1
WHEN y > 2 THEN y := y + x

END)
= guard((x > 1) =⇒ x := x − 1 [] (x < 1) =⇒ x := x + 1 [] (y > 2) =⇒ y := y + x) =
= (x > 1) ∨ (x < 1) ∨ (y > 2)

�

A complete list of rules for derivation of the guard of a generalised substitution (using
the syntax extensions) is given in Appendix A.

Having determined the guards of the operations, in the next step we need to define the
before-after predicate of an operation in order to introduce the definition of conditional
feasibility of operations. In general, an operation Op in classical B is a generalised
substitution S. Thus, the before-after predicate predicate BAOp(v, v′) of Op corresponds
to the before-after predicate prdv(S) of S.3 Formally, the conditional operation feasibility
relation can be defined as follows:

Definition 2.20 (Conditional Operation Feasibility �Op). Let Op (=̂S) be an operation
of a classical B machine M . Further, let P and Q be valid B predicates for M . Then, we
say that Op establish Q from P , if and only if

there exists a state s of M such that s |= P and s |= ∃ v′ · (prdv(S) ∧ [v1 := v′
1]Q),

where prdv(S) represents the before-after predicate of the operation’s generalised substi-
tution S as defined in [Abr96, Chapter 6], and [v1 := v′

1]Q represents the predicate in
which all occurrences of v1 in Q are replaced by their primed versions v′

1. In case there is
no such a state we write P ��Op Q to denote that Op cannot establish Q from P . �

As in Definition 2.3 the identifier v1 used in Definition 2.20 denotes the list variables
written by the operation Op. The guard of an operation and the conditional operation

3For the formal definition of before-after predicate prdv(S) of a generalised substitution we refer to
[Abr96, Chapter 6].

58

2.5. Discussion

feasibility �Op are the necessary constructs needed for adapting the definitions of enabling
relations for classical B. As a result of this observation, we can infer that the procedure
for applying the enabling analysis for classical B does not differ much from that for
Event-B. However, we think that it is important to keep in mind that the computation of
the guard and before-after predicate of an operation may require much more effort than
the computation of the guard and before-after predicate of an event in Event-B, especially
when the operations in a classical B machine become more involved. This additional
complexity often results in producing more complex constraints for the enabling analysis,
which in turn increases the possibility for more timeouts during the computation of the
enabling relations. A typical example of a classical B machine for which the enabling
analysis does not scale very well represents the classical B machine Traveling Agency
presented as a benchmark in Table 1 in [DL16a]. For nearly 70 percent of all operation
tuples there is a timeout which occurs during the test one of the �Op-relations of
ER(e1, e2). The high percentage of timeouts is mainly due to the use of complicated
substitutions in the Traveling Agency machine, where there are some operations consisting
of up to 98 lines of nested conditionals and ANY-statements.

The specification languages TLA+ and Z are supported by ProB by translating both
formalisms to classical B. While ProB translates each TLA+ specification into a readable
classical B machine [HL12], each Z specification is translated into a ProB’s internal
representation of a B machine [PL07]. The fact that TLA+ and Z share the same
representation in the ProB toolset enables the use of the enabling analysis to these two
formalisms in ProB.

2.5. Discussion

In Section 2.2, we suggested that in some particular cases it is reasonable to compute
the event relations in regard to certain conditions using the extended enabling relation
ER(e1, e2, P) from Definition 2.11. In this way, we concentrate the computation of
event relations to a specific fragment of the state space of a B machine by adding more
constraints. One possible constraint could be, for example, the invariant of the machine.
Often, one wants to determine the event relations assuming that the invariant is fulfilled
in all before- and after-states of the particular events or operations. Furthermore, taking
also the invariant of the machine into account often yields more specific enabling and
independence relations than taking only the type information as the only constraint for� e. Consider, for example, the B machine shown in Figure 2.7.

If only the type information of the machine’s variables (i.e., x ∈ N ∧ y ∈ N ∧ z ∈ N)
is considered for the computation of the enabling relations, then we get the following
results for ER(Op1, Op1) and ER(Op1, Op2):

ER(Op1, Op1) = {� �→ ⊥, � �→ �}, ER(Op1, Op2) = {⊥ �→ ⊥, ⊥ �→ �}.

In terms of Definition 2.10 we can infer that Op1 can disable Op1 and that Op1 can enable

59

2. Event Relations

MACHINE Inc
VARIABLES x, y, z
INVARIANT

x ∈ N ∧ y ∈ N ∧ z ∈ N // type information
∧(x ≥ y − 1) ∧ (x > z) // invariant conditions

INITIALISATION
x := 1 ‖ y := 1 ‖ z := 0

OPERATIONS
Op1 =̂

SELECT x < y THEN x := x + 1 ‖ z := z + 1 END;
Op2 =̂

SELECT x = y THEN y := y + 1 END;
Op3 =̂

SELECT y > z THEN skip END
END

Figure 2.7.: Example for the effect of including the invariant as additional constraint

Op2. In particular, the membership � �→ ⊥ ∈ ER(Op1, Op1) is fulfilled since for
GOp1 �Op1 ¬GOp1 the constraint solver of ProB will find a solution, e.g. the state
s = 〈 x = 0 , y = 1 , z = 0 〉 fulfils the statement

s |= x < y and s |= ∃ x′ · (x < y ∧ x′ = x + 1 ∧ ¬(x′ < y)),

which yields the conditional feasibility GOp1 �Op1 ¬GOp1 . In addition, � �→ � is a
member of ER(Op1, Op1) as, for example, the state 〈x = 0, y = 2, z = 0〉 is a possible
solution for showing GOp1 �Op1 GOp1 . In a similar fashion, we can deduce that Op1
can enable Op2.

For both enabling relations, ER(Op1, Op1) and ER(Op1, Op2), the only restrictions that
were considered for the variables x, y and z is that they are integer variables greater or
equal than zero. In other words, for the computation of both enabling relations we took
only the type information of the variables. On the other hand, if we include also x ≥ y −1
as a constraint to �Op, then we get different results for the effect of Op1 on the guards
of Op1 and Op2. In this case we use the definition for the extended enabling relation
introduced in Definition 2.11. Thus, for testing � �→ � ∈ ER(Op1, Op1, (x ≥ y − 1)) we
check whether there exists a state s such that

s |= (x = y − 1) and s |= ∃ x′ · (x < y ∧ x′ = x + 1 ∧ x′ = y − 1).4

Obviously, the statement is not satisfied for any state in which y is greater than x + 1
and thus we can conclude that there is no transition s

Op1−→ s′ such that s |= (x = y − 1)
4The predicates “x = y − 1” and “x′ = y − 1” are the equivalent simplifications of “x < y ∧ x ≥ y − 1”

and “x′ < y ∧ x′ ≥ y − 1”, respectively.

60

2.5. Discussion

ER Op1 Op2 Op3

Init impossible guaranteed guaranteed
Op1 can disable can enable can disable
Op2 guaranteed impossible can enable
Op3 keep keep keep

ER Op1 Op2 Op3

Init impossible guaranteed guaranteed
Op1 impossible guaranteed guaranteed
Op2 guaranteed impossible guaranteed
Op3 keep keep keep

Figure 2.8.: Enabling analysis for Inc without and with Inv

and s′ |= (x = y − 1). Hence,

ER(Op1, Op1, (x ≥ y − 1)) = {� �→ ⊥}
which means that Op1 is impossible after Op1. Correspondingly, one can show that
⊥ �→ ⊥ /∈ ER(Op1, Op2, (x ≥ y − 1)) and thus infer that Op2 is guaranteed to be enabled
after Op1 upon the condition that x ≥ y − 1 is fulfilled in every before- and after-state of
Op1.

In Figure 2.8 we show two particular results of the enabling analysis for the B machine
from Figure 2.7. The left table shows the enabling relations of the machine if only the
type information from the invariant is taken into account, whereas the right one shows
the enabling relations of the operations upon the condition that in all considered states
the invariant conditions (x ≥ y − 1) ∧ (x > z) are satisfied. Clearly, one can see that the
enabling analysis for the effect of Op1 on the guards of all operations yields more specific
enabling relations when the invariant conditions are considered in the analysis (see also
the Op1-row in the right table) than the enabling relations of Op1 without taking the
invariant into account (see also the Op1-row on the left table). These examples confirm
the property of the extended enabling relation which we stated in Section 2.2, namely
that ER(Op1, Op2, P) ⊆ ER(Op1, Op2) for any P .

Another aspect of the extended enabling relation is that usually the additional constraints
reduce the set of possible solutions for the constraint solver. For example, the predicate
x ≥ y − 1 excludes all states of the machine Inc in which y is greater than x + 1 for the
computation of the enabling relations. Considering additional constraints for computing
ER can often lead to smaller execution times of the enabling analysis. Thus, taking also
the invariant into account often reduces the number of timeouts while performing the
analysis. However, the use of the invariant of a machine for computing the enabling
relations for an optimisation of a model checking algorithm has to be sound with the
intention for which the enabling relation results are used. For instance, if the enabling
relations are used for optimising a model checker for B, we need to determine the relations
by means of the standard enabling relation when we check only for deadlock freedom.
Considering also the invariant as a constraint for the enabling analysis when checking a
machine for deadlock freedom can in some cases yield unsound results. In Section 3.4,
we discuss this issue in more detail.

The inclusion of the invariant as an additional constraint may influence the results of

61

2. Event Relations

the dependency analysis presented in Section 2.3 as well. As an example we can take
the operation tuple (Op1, Op3) of the machine in Figure 2.7 to see what effect on the
dependency relation the inclusion of the invariant would have. Both operations are
visibly not syntactically independent as Op1 writes variables read in the guard of Op3.
Further, both operations do not interfere and visibly Op3 cannot influence the guard of
Op1. Thus, it remains to check whether Op1 can disable Op3 at some moment in order
to see whether the operations are independent. In other words, we test the conditional
feasibility GOp3 �Op1 ¬GOp3 . The test will succeed since, for example, both operations
are enabled in state s = 〈x = 0, y = 1, z = 0〉 and executing Op1 from that state clearly
disables Op3 as in the respective after-state of Op1 (this is s′ = 〈x = 1, y = 1, z = 1〉)
the guard of Op3 is not satisfied. Hence, both operations are dependent. However,
if we add the constraint z < x, given in the invariant of the machine, to the test of
GOp3 �Op1 ¬GOp3 , then the test will fail. In this case, the operations Op1 and Op3
are independent to each other. In particular, we have shown that both operations are
independent to each other in that fragment of the state space of the machine in which
the condition z < x is fulfilled. Otherwise, if we observe the whole state space of the
machine, then the operations are dependent to each other.

In summary, the discussion gives an insight into the computation of the event relations
in ProB and focuses attention on providing additional constraints for the event relation
analyses. Including more constraints for the determination of the event relations often
results in different, frequently more specific, event relations. On the one hand, this can
in some cases lead to smaller execution times of the respective analysis as usually the
increasing number of constraints minimise the solution set for the constraint solver. On
the other hand, this could be used as a way of providing more specific feedback for the
user and the technique intended to use the results of the analyses.

2.6. Related Work

A large part of the ideas and results introduced in this chapter were presented in two
conference papers [DL14], [DL16a] and two journal articles [DL16b], [DL17]. The notion
of determining more exact enabling relations by means of constraint-solving techniques
was first introduced in [DL14]. In particular, in [DL14] we propose a definition of an
enabling graph that gathers all possible relations between events in terms of which events
can enable other events in a given Event-B model. The definition of enabling graph
from [DL14] is semantically equivalent to the definition of enabling graph introduced
in Definition 2.13. The notion of enabling relation was generalised and elaborated
in [DL16a] and [DL17], where different relations were proposed for the ways an event
can influence another one. The journal article [DL17] and Section 2.2 extend the work
in [DL16a] in terms of proving some properties of certain enabling relations, showing the
relationships between the different classes of enabling relations, and proposing algorithms
for performing an enabling analysis on Event-B models.

62

2.6. Related Work

Independence of events is one of the key concepts for the optimisation of the ProB model
checker presented in [DL14] and [DL16b]. In [DL14] and [DL16b], independence between
events is defined by making the assumption that events are always deterministic. The
assumption is made in order to simplify the presentation of the work introduced in both
papers. A more general definition of independence between events (see Definition 2.15)
is given in Section 2.3, which takes also into account that events may be also non-
deterministic. The discussion in Remark 2.3 should make clear why the assumption that
events are always deterministic is not, in general, a strong restriction. In addition, in
Section 2.4 we discussed some particulars of classical B to show how the enabling and
independence analyses can be adopted for classical B.

The refinement of the dependency relation of an Event-B machine as introduced in
Section 2.3.1 can be essential for the application of the relation in techniques making
use of it. Partial order reduction, for example, is a technique for optimising state space
exploration methods which takes advantage of the independence of events. Usually, the
smaller the size of the dependency relation DependentM , the greater is the possibility to
improve the performance of verification techniques using partial order reduction. The
small size of the dependency relation infer more independent event pairs in the machine
and thus more potential for partial order reduction. The refinement of the dependency
relation in Section 2.3.1 relies on constraint-solving techniques used to give a more precise
answer of the question whether two events may disable each other. An alternative method
for refining the dependency relation was presented in [GP93], where the authors propose
a more refined version of the dependency relation called also conditional dependency
relation. The idea of the conditional dependency relation in [GP93] is to set conditions
for each pair of events that are used to test in every state of the system whether the
events are dependent or independent when executed from this state. If the respective
condition evaluates to true, then the events are identified as dependent, otherwise they
are considered to be independent.

At the beginning of this chapter, we have given two examples where the information
about the event relations can be applied: revealing the hidden control-flow information
of an Event-B model and optimising a model checker for Event-B. Another application of
the enabling analysis was suggested in [Sav+15], where the authors use enabling relations
similar to infeasible, can enable, and possible to improve the test-case generation time
for their model-based testing approach in Event-B. The approach generates automatically
tests representing bad behaviours of a program by means of event mutation. After the
approach in [Sav+15] a test is basically a sequence of events. Particularly, the algorithm
for test-case generation in [Sav+15] uses the infeasibility of events to skip test-paths with
unreachable events, whereas the enabling relations are used to find feasible sequences of
events. Similarly to the enabling and independence analysis, the approach in [Sav+15]
uses ProB’s constraint solving capabilities to generate the test cases. The experiments
have shown that the technique scales for interesting Event-B specifications and it is much
more efficient than the previous approach of the authors [SFL13].

An alternative approach for revealing the control-flow information of Event-B models was

63

2. Event Relations

proposed in [BL11]. In [BL11] the authors use similar definitions for the independence
of events and for representing the enabling information as a graph. However, there are
some subtle differences in regard to the definitions of independence and enabling graphs
presented in this chapter. In comparison to the definition of independence in Section 2.3,
in [BL11] event independence is not a symmetric relation since for each tuple of events
(e1, e2) only the influence of e1 on the enabling status of e2 is considered. In [BL11], the
tuple (e1, e2) is assumed to be an element of the set of independent event tuples if e1
cannot change the enabling status of another event e2, which in the sense of the enabling
relations from Section 2.2 is semantically equivalent to the keep relation. Further, in
[BL11] a notion of an enabling graph is introduced for storing the enabling information
between non-independent events. The definition of enabling graph in [BL11] is quite
different from that in Definition 2.13 since the information for enabling other events
is encoded in (enabling) predicates labelling the edges of the graph. These predicates
are usually derived by means of proof generators and predicate simplifiers and often are
less explicit than the enabling relations ER(e1, e2) presented in this chapter. Thus, the
approach for presenting the enabling informations in Section 2.2 could be seen as more
accurate and fine-grained than the approach from [BL11].

The enabling relations between events and their representation by a graph (Definition 2.12
and Definition 2.13) reflect the behaviour of the respective machine. The advantage of the
approach presented in Section 2.2 is that one does not need to explore the state space of
the machine in order to determine the order in which events can appear. In this way, one
can compute the behaviour of machines with very large state spaces or even infinite-state
machines. An alternative approach was presented in [LT05] and [LL15], where techniques
are presented for building a more compact view of the state space of classical B and
Event-B machines. The techniques in [LT05] and [LL15] require the construction of the
state space of the respective model and are more precise than the enabling analysis from
Section 2.2. However, the techniques in [LT05] and [LL15] cannot be applied for large-
or infinite-state machines and obviously cannot be used for optimising a model checker
for B.

Another approach for representing the behavioural aspects of B machines was presented
in [BPS05] and [BC00]. The approach from [BPS05] and [BC00] intends to construct
a symbolic labelled transition system (SLTS) from the B model, which represents an
abstraction of the behaviour of the respective B system. The generation of the SLTS
is proof-based, where the transitions between the states of the SLTS are computed by
means of proving certain proof obligations. The generation of the respective SLTS can
be either automatic, resulting in a less precise presentation of the system’s behaviour,
or user-interactive, where the user completes the proofs that could not be completed
by the respective prover. In the latter case, the generated automaton reflects precisely
the behaviour of the system. On the other hand, the approach presented in Section 2.2
is fully automatic and is more fine-grained than the approach in [BC00] as it provides
information how exactly an event influences the enabling conditions of the rest of the
events.

64

3
Partial Guard Evaluation

The ProB model checker has been the target of an intensive analysis for applying a
variety of techniques for improving automatic verification via model checking for classical
B and Event-B. There are several methods that intend to make model checking more
efficient for large finite-state systems by reducing the number of states that need to be
explored. In this case not the entire state space of the checked model is built, but just a
fraction of it, which is sufficient for proving the checked property.

Another possibility for optimising a model checker for B specifications is to skip certain
(redundant) computations while exploring the state space of a model. In this way one
can reduce the complexity of the state space exploration. Optimisation methods that
improve state space exploration by avoiding redundant computations usually rely on
certain facts known about the system, which can be obtained, for example, by means
of a static analysis. In this chapter, we study the possibilities for optimising the state
space exploration of classical B and Event-B machines by using the information provided
by the enabling analysis (see Section 2.2). In the following, we will use the Event-B
formalism for introducing the optimisation approach.

3.1. Predicting Enabledness

The exploration of a particular state s of an Event-B machine can be divided into two
consecutive steps: determining the set of all enabled events enabled(s) in s and then
executing the actions of every event from enabled(s) at s. The effort for exploring a
state s of an Event-B machine is thus equal to the effort of testing for enabledness all
events of the machine in s plus the effort for computing all successor states of s with
respect to enabled(s). For the exploration of the whole state space of a machine one
has to evaluate the guards of all events in every reachable state of the machine; if n is
the number of events and N the number of reachable states, then we have to perform
n · N guard tests in order to explore the machine’s state space. The increasing number
of states and the increasing complexity of enabling conditions of events are some of the
determining factors for the increasing complexity of state space exploration.

In many cases the enabling status of an event can be predicted if we know how the events
are related to each other in the respective machine. For example, if the currently explored

65

3. Partial Guard Evaluation

s1

s2

s3

e3

e2

e1

e1

e3

e2

� �

⊥ ⊥

Ge2 Ge2

e1

� �

⊥ ⊥

Ge1 Ge1

e2

� �

⊥ ⊥

Ge3 Ge3

e2

Figure 3.1.: Exploring a state using the information of the enabling analysis (I)

state has an incoming transition labelled with e1 and we know that e2 is impossible after
e1, then we can safely skip the test for enabledness of e2. Similarly, one can predict the
enabling status of events using the enabling relations guaranteed und keep. The example
shown in Figure 3.1, should clarify how the enabling relations impossible, guaranteed,
and keep can be used to predict the enabledness of events.

Suppose that we intend to explore state s3 in Figure 3.1 and assume that the respective
machine has three non-initial events without local parameters: e1, e2, and e3. Further,
assume that states s1 and s2 are already explored and reach s3 by means of e2 and
e1, respectively. In addition, we have the following enabling relations, depicted on the
right-hand side of Figure 3.1: e2 is impossible after e1, e1 is guaranteed after e2, and
e2 keeps e3. Using the exhaustive approach for exploring a state, we need to test the
enabling condition of every non-initial event in s3. On the other hand, the enabling
information provided in the example is sufficient to explore s3 without performing a
single guard test. For example, we can deduce that e2 is disabled at s3 since s3 is an
after-state of e1 and e2 is impossible to be enabled after e1. The enabledness of e3 can
be inferred by using the information that e3 is enabled in s1 and e2 cannot affect the
guard status of e3 (e2 keeps e3). In a similar fashion, we can conclude the enabledness of
e1 by observing the enabling relation ER(e2, e1).

The following lemma summarises the ideas from above using some of the enabling relation
classes from Definition 2.10.

Lemma 3.1. Let s be a state of an Event-B machine M which is yet unexplored. Further,
let e1 and e2 be two events of M and let s be an after-state of e1. Then, the following
properties for the enabling status of e2 can be inferred:

(a) e2 is enabled in s, if e2 is guaranteed after e1,

(b) e2 is disabled in s, if e2 is impossible after e1,

66

3.1. Predicting Enabledness

s1

s2

e2
e1

e2

� �

⊥ ⊥

Ge2 Ge2

e1

Figure 3.2.: Exploring a state using the information of the enabling analysis (II)

(c) if there is a before-state s′ of e1 such that s′ e1−→ s is a transition in TSM and e1
keeps e2, then the enabling status of e2 in s is the same as the enabling status of e2
in s′.

Lemma 3.1 forms the basis for optimising the state space exploration by skipping the
evaluation of certain event guards. However, we can also make use of enabling relations
that are more general than guaranteed, impossible and keep. Consider, for example,
the situation depicted in Figure 3.2, where s2 is a successor state of s1 reached by the
event e1 and s2 is intended to be explored next. Further, the event e2 is enabled in s1
and we know that e2 is possible after e1, but e1 cannot keep e2 enabled (see also the
enabling relation illustrated on the right side of Figure 3.2). In this case, we can predict
the status of the enabling condition of e2 in state s2 although the enabling relation
ER(e1, e2) depicted in Figure 3.2 is none of the enabling relations in Lemma 3.1. We can
conclude that e2 is disabled at s2 since e1 always changes the status of the guard of e2
from enabled to disabled (i.e., � �→ ⊥ ∈ ER(e1, e2)) and e1 cannot keep e2 enabled (i.e.,
� �→ � /∈ ER(e1, e2)). This example gives rise for the following lemma, in which four
conditions are observed for the prediction of the guard status of an event.

Lemma 3.2. Let s be a state of an Event-B machine M , which is yet unexplored. Further,
let e1 and e2 be two events of M and ER(e1, e2) the enabling relation from Definition 2.9.
In addition, let s′ e1−→ s be a transition in TSM . Then, the enabling status of e2 can be
predicted under the following conditions:

(a) e2 is enabled in s, if
e2 ∈ enabled(s′) and � �→ ⊥ /∈ ER(e1, e2), or
e2 /∈ enabled(s′) and ⊥ �→ ⊥ /∈ ER(e1, e2).

(b) e2 is disabled in s, if
e2 ∈ enabled(s′) and � �→ � /∈ ER(e1, e2), or
e2 /∈ enabled(s′) and ⊥ �→ � /∈ ER(e1, e2).

Proof. Since the properties above may not be obvious at first sight we will provide the
proof for these. In the following, we investigate the enabledness of e2 in s and we know
that there is a transition s′ e1−→ s in TSM . Further, we can conclude that ER(e1, e2) is
not an empty set as e1 is obviously a feasible event.

67

3. Partial Guard Evaluation

(a)

• Let e2 be enabled in s′. This infers that ER(e1, e2) ∩ {� �→ �, � �→ ⊥} �= ∅.
The inequality and the fact that � �→ ⊥ /∈ ER(e1, e2) implies that � �→ � ∈
ER(e1, e2), which means that e1 keeps e2 enabled when executed from s′ and
therefore e2 is enabled in s.

• Let e2 be disabled in s′ and let ⊥ �→ ⊥ /∈ ER(e1, e2). Both conditions and
the fact that e1 is enabled in a state in which e2 is disabled implies that
⊥ �→ � ∈ ER(e1, e2). This means that e1 enables e2 and there is no situation
in which e1 may keep e2 disabled. Hence, e2 is enabled at s.

(b) Similarly to (a), we can prove that e2 is disabled at s if one of both conditions in
(b) is satisfied.

Note that some of the conditions stated in Lemma 3.2 cover also the enabling relations
guaranteed, impossible, and keep. Further, note that in both cases, (a) and (b), in
Lemma 3.2 at most one of the respective conditions can be fulfilled.

3.2. State Space Exploration by Guard Prediction

In this section, we suggest two techniques for optimising the state space exploration for
classical B and Event-B machines. The techniques are based on the concepts shown
in Lemma 3.1 and Lemma 3.2, and in this section they are applied for optimising the
consistency checking algorithm of ProB (Algorithm 1).

Before coming to the presentation of the optimisations we will introduce some definitions
regarding testing the enabledness of events with parameters by means of guard prediction.
The parameters of an event are typed and constrained in the guard of the event and the
values of the parameters can be read in the action part of the event. For example, the
event

event evt =̂
any t where

t ∈ S ∧ t < x ∧ y < x

then
y := x + t

end

has one parameter t that, in particular, may have several values satisfying the enabling
predicate of the event. Additionally, t is used to update the variable y in the action part
of evt. Suppose that we predicted that in some state s the event evt is enabled using,
for example, the guaranteed enabling relation. In this case, we do not have to evaluate
the guard of evt in s in order to determine whether evt is enabled at s. However, the

68

3.2. State Space Exploration by Guard Prediction

guard of evt, or more precisely a part of the guard, needs to be evaluated since the value
of t is used to update y in the action part of the event. Hence, the information that
evt is surely enabled at s is not sufficient in order to apply the actions of evt in s. This
motivates the following definition which uses the definition of the before-after predicate
prdv for substitutions (see Definition 2.1).

Definition 3.1 (Before-After Predicate for the Action Block of an Event). Let e be an
event of some Event-B machine M . The before-after predicate for the action part of an
event, denoted by BAact

e (v, v′), with no parameters is defined as follows:

BAact
e (v, v′) = prdv(T), where T is the action block of e.

Let e be an event with parameters, i.e. e =̂ any t1, . . . , tk where G then T end with
k ≥ 1. Further, let Gfree ∧ Gnonfree be the decomposition of G that splits the guard of e
into two parts: the conjuncts in which the parameters of the event occur free (Gfree) and
the conjuncts in which no parameter of e occurs free (Gnonfree). Then, the before-after
predicate for the action block of e is defined as follows:

BAact
e (v, v′) =

⎧⎨
⎩

prdv(T), if ids(prdv(T)) ∩ {t1, . . . , tk} = ∅

∃ t1, . . . , tk · Gfree ∧ prdv(T), otherwise,

where ids(prdv(T)) denotes the set of all identifiers occurring in the before-after predicate
prdv(T) of T . The equality ids(prdv(T)) ∩ {t1, . . . , tk} = ∅ means that none of the local
variables of e is read in the action part T of e. �
The definition of the before-after predicate of the action block of an event BAact

e is needed
when one wants to compute the successor states of some state s in which e is known to
be enabled. In case the after-states of an event with parameters are calculated only that
part of the guard of the event is evaluated which is essential for the computation of the
after-states. In regard to Definition 3.1, this is the predicate ∃ t1, . . . , tk · Gfree which use
only this part of the guard which is relevant for determining the values of the parameters.
Note that the equivalence

(∃ t1, . . . , tk · Gfree) ∧ Gnonfree ⇔ ∃ t1, . . . , tk · (Gfree ∧ Gnonfree)

is fulfilled as none of the parameters t1, . . . , tk occurs free in Gnonfree. Consider, for
example, event evt that we have mentioned above. Regarding Defintion 3.1, the guard of
evt is decomposed as follows

Gevt ≡ (∃ t · t ∈ S ∧ t < x)︸ ︷︷ ︸
Gfree

∧ y < x︸ ︷︷ ︸
Gnonfree

.

Thus, the before-after predicate for the action block of evt is

BAact
evt (〈x, y〉, 〈x′, y′〉) = ∃ t · ((t ∈ S ∧ t < x) ∧ y′ = x + t ∧ x′ = x),

where without loss of generality we assume that x and y are the only variables of the
machine to which evt belongs.

69

3. Partial Guard Evaluation

Having specified which part of an event needs to be computed in order to determine the
after-states of an event from a state in which it is known to be enabled, we can introduce
formally how the consistency checking algorithm (Algorithm 1) can be optimised using
the enabling relation ER(e1, e2). The optimisation of Algorithm 1, which is based on the
results of Lemma 3.1, is outlined in Algorithm 6.

The pseudo code in Algorithm 6 represents a consistency checking technique for Event-B
and classical B using a more elaborate state space exploration aiming to reduce the
complexity of the state space generation. To each generated state s two additional
attributes s.enabled and s.disabled are assigned which intend to store the set of enabled
events at s and the set of disabled events at s, respectively. The idea is to carry the
information about the enabled and disabled events in a state in order to avoid as many
guard evaluations as possible when it comes to the exploration of the state.

Starting at the initial states of the checked machine, Algorithm 6 searches for a state
violating one of the properties intended to be checked on the model. Once a state is
popped from the queue Queue, it is checked for errors (line 9). If no error has been
discovered, then the state is explored. The state exploration takes place in lines 12 to 29
in Algorithm 6. Every event that is not an element of s.disabled will be tested for being
enabled at s. If the enabledness of the currently chosen event evt can be determined by
testing the membership evt ∈ s.enabled (line 13), then we compute all successor states
of s by applying BAact

evt (s, s′) from Definition 3.1. Otherwise, if evt is not an element of
s.enabled, then we evaluate the enabling condition of evt at s (line 15) and in case it
evaluates to true we compute the successor states of s by evt and add evt to the enabled
events’ set of s (line 17). When an event is not enabled it will be marked as disabled at
s and the exploration of the state proceeds to the next event. For each enabled event
evt in s and each after-state s′ of evt from s we add a transition s

evt−→ s′ to the state
space graph and in case s′ is yet not visited we add this state to the queue and mark it
as visited.

After the currently processed state s has been explored, we compute for each successor
state s′ of s the sets of enabled and disabled events at s′ with respect to evt and the
enabling relations guaranteed, keep, and impossible (lines 31 and 32). Concretely, in
Disabled we include every non-initial event of the checked machine that is impossible to be
enabled after evt and every non-initial event known to be disabled at s and whose enabling
status is kept by evt. Similarly, we compute the set of enabled events Enabled. The sets
Disabled and Enabled are unified with s′.disabled and s′.enabled (line 33), respectively,
as s′ could already have been generated in a previous state exploration.

Note that it is preferable to determine the sets of enabled and disabled events in the
successor states after the full exploration of the state. Knowing exactly which events are
enabled and disabled at s increases the potential for predicting the enabling status of as
many events as possible at the successor states of s by means of the keep relation.

The approach presented in Algorithm 6, designated also as partial guard evaluation
(PGE), can be refined in terms of more precise guard prediction using Lemma 3.2. To

70

3.2. State Space Exploration by Guard Prediction

Algorithm 6: Consistency Checking with Partial Guard Evaluation
1 queue of state Queue := 〈〉;
2 set of state Visited := {}; set of transition Graph := {};
3 foreach init ∈ S0 do
4 push to front(init,Queue); Graph := Graph ∪ {root Init−→ init};
5 init.disabled := {}; init.enabled := {}
6 end foreach
7 while Queue is not empty do
8 s := get state(Queue);
9 if error(s) then

10 return counter-example path in Graph from root to s
11 else
12 foreach evt ∈ EventsM such that evt /∈ s.disabled do
13 if evt ∈ s.enabled then /* avoid guard computation */
14 Succ := {s′ | BAact

evt (s, s′)}
15 else if s |= Gevt then
16 Succ := {s′ | BAact

evt (s, s′)};
17 s.enabled := s.enabled ∪ {evt}
18 else
19 s.disabled := s.disabled ∪ {evt};
20 continue
21 end if
22 foreach s′ ∈ Succ do
23 Graph := Graph ∪ {s evt−→ s′};
24 if s′ /∈ Visited then
25 push to front(s′, Queue) ; Visited := Visited ∪ {s′};
26 s′.disabled := {}; s′.enabled := {}
27 end if
28 end foreach
29 end foreach
30 foreach s evt−→ s′ ∈ Graph do
31 Disabled := {e ∈ EventsM | e impossible after evt}

∪ {e ∈ s.disabled | evt keeps e};
32 Enabled := {e ∈ EventsM | e guaranteed after evt}

∪ {e ∈ s.enabled | evt keeps e};
33 s′.disabled := s′.disabled ∪ Disabled; s′.enabled := s′.enabled ∪ Enabled
34 end foreach
35 end if
36 end while
37 return ok

71

3. Partial Guard Evaluation

apply guard prediction using the results from Lemma 3.2, we need just to change the
way both sets of events Disabled and Enabled are computed. That is, we only have to
replace the definitions for Disabled and Enabled in Algorithm 6. The set of disabled
events Disabled for some state s′ that has a predecessor state s reaching s′ by means of
the event evt, i.e. s

evt−→ s′ is a transition in TSM , is computed by means of Lemma 3.2
(b) as follows

Disabled :={e ∈ s.enabled | � �→ � /∈ ER(evt, e)}
∪ {e ∈ s.disabled | ⊥ �→ � /∈ ER(evt, e)}.

Similarly, we compute Enabled for for some state s′ that has a predecessor state s reaching
s′ by evt using Lemma 3.2 (a) as follows

Enabled :={e ∈ s.enabled | � �→ ⊥ /∈ ER(evt, e)}
∪ {e ∈ s.disabled | ⊥ �→ ⊥ /∈ ER(evt, e)}.

3.3. Evaluation

Both approaches introduced in Section 3.2 have been tested on a variety of classical B
and Event-B models, where most of which represent real-world systems. The aim of
these experiments was to determine the improvement that can be achieved when using
partial guard evaluation (PGE) as an optimisation technique for model checking, and to
evaluate the respective impact of these techniques on state space exploration.

Intuitively, we focused on large-state models, so that a large number of skipped guard
evaluations allows us to recover the cost of the static enabling analysis and improve
the performance of state space exploration. However, the performance of Algorithm 6
does not depend solely on the overall number of skipped guard evaluations, but also on
the guard complexity of the events whose enabledness tests have been omitted in the
various states. That is, if we skip only the evaluations of guards that are very simple to
be checked (e.g., guards such as “x = 1”), then we cannot expect a great performance
improvement. This is due to the fact that the tests of such guards do not cause a
considerable overhead in the standard model checking algorithm (Algorithm 1). On the
other hand, sparing a notable number of evaluations of events with complex guards infers
a greater possibility for significant performance improvements.

For this reason, we expected PGE to be a reasonable optimisation for checking classical
B and Event-B models with large state spaces upon condition that a considerable number
of (complex) guard evaluations will be recognised by the technique as redundant. The
recognition of the redundant guard evaluations depends also on the fact how the events
influence each other in the respective model, as well as on the accuracy of the results of the
enabling analysis. In Table 3.1 we have listed a part of the results of the evaluation using
version 1.7.0-beta1 of ProB. The models and their evaluations can be obtained from
the following web page https://www3.hhu.de/stups/internal/benchmarks/pge/.

72

3.3. Evaluation

Table 3.1.: Part of the PGE experimental results (times in seconds)
Model & Analysis Skipped/Total Model Checking

State Space Stats. Algorithm Time Guard Tests Time
Complex Guards BF/DF - 0/2,099,622 478.105

(Best-Case) BF/DF+PGE1 5.297 1,899,620/2,099,622 153.052
BF/DF+PGE2 13.505 1,899,620/2,099,622 154.727

Events: 21 BF - 0/2,099,622 470.782
States: 99,982 BF+PGE1 5.404 1,899,620/2,099,622 156.004
Transitions: 99,984 BF+PGE2 13.246 1,899,620/2,099,622 152.664

DF - 0/2,099,622 465.024
DF+PGE1 5.434 1,899,620/2,099,622 151.406
DF+PGE2 12.748 1,899,620/2,099,622 152.634

CAN BUS BF/DF - 0/2,784,600 166.194
BF/DF+PGE1 0.928 2,715,252/2,784,600 85.933
BF/DF+PGE2 5.007 2,716,188/2,784,600 91.353

Events: 21 BF - 0/2,784,600 161.356
States: 132,600 BF+PGE1 0.932 2,751,150/2,784,600 86.365
Transitions: 340,267 BF+PGE2 5.000 2,752,136/2,784,600 90.830

DF - 0/2,784,600 168.386
DF+PGE1 0.937 2,705,587/2,784,600 89.829
DF+PGE2 4.932 2,706,548/2,784,600 93.065

Lift BF/DF - 0/1,222,746 144.514
BF/DF+PGE1 6.111 954,955/1,222,746 122.749
BF/DF+PGE2 18.740 1,110,840/1,222,746 124.571

Events: 21 MC-BF - 0/1,222,746 141.637
States: 58,226 BF+PGE1 6.141 1,079,490/1,222,746 123.832
Transitions: 357,147 BF+PGE2 18.433 1,110,840/1,222,746 125.231

DF - 0/1,222,746 144.532
DF+PGE1 6.126 943,396/1,222,746 124.196
DF+PGE2 18.549 970,605/1,222,746 126.773

Cruise Control BF/DF - 0/35,386 3.906
BF/DF+PGE1 1.766 33,317/35,386 3.730
BF/DF+PGE2 8.362 34,143/35,386 3.967

Events: 26 MC-BF - 0/35,386 3.937
States: 1,361 BF+PGE1 1.769 34,356/35,386 3.750
Transitions: 25,697 BF+PGE2 8.343 34,757/35,386 3.975

DF - 0/35,386 3.974
DF+PGE1 1.760 32,915/35,386 3.772
DF+PGE2 8.530 33,964/35,386 4.006

Landing Gear v4 BF/DF - 0/552,224 108.281
BF/DF+PGE1 38.139 509,175/552,224 34.335
BF/DF+PGE2 94.5889 509,285/552,224 36.554

Events: 32 BF - 0/552,224 108.780
States: 17,257 BF+PGE1 38.143 539,388/552,224 34.601

Continued on next page

73

3. Partial Guard Evaluation

Table 3.1 – continued from previous page
Model & Analysis Skipped/Total Model Checking

State Space Stats. Algorithm Time Guard Tests Time
Transitions: 100,878 BF+PGE2 94.592 539,715/552,224 36.321

DF - 0/552,224 109.052
DF+PGE1 38.181 496,645/552,224 36.193
DF+PGE2 94.590 497,371/552,224 37.824

All Enabled BF/DF - 0/600,012 82.845
(Worst-Case) BF/DF+PGE1 0.285 0/600,012 100.536

BF/DF+PGE2 6.565 0/600,012 108.987
Events: 6 BF - 0/600,012 81.752
States: 100,002 BF+PGE1 0.278 0/600,012 99.427
Transitions: 550,003 BF+PGE2 6.582 0/600,012 109.318

DF - 0/600,012 78.217
DF+PGE1 0.293 0/600,012 97.480
DF+PGE2 6.543 0/600,012 106.851

For each model we carried out three types of performance comparisons: mixed breadth-
and depth-first search, breadth-first search, and depth-first search. For each of the search
strategies we analysed the performance of checking the respective model by means
of Algorithm 1 and the performance of checking the respective model by means of
Algorithm 6. In some cases the type of search strategy may have an impact on the
overall number of skipped guard evaluations when exploring the state space of a model
by means of Algorithm 6. For instance, one would expect that more guard evaluations
are skipped when one uses breadth-first search instead of depth-first search since the
number of skipped guards in a state depends also on that how many of its predecessor
states have been already explored.

The different types of checks in Table 3.1 are abbreviated as follows:

BF/DF: Consistency checking using mixed breadth- and depth-first search.

BF/DF+PGE: Consistency checking with partial guard evaluation using mixed
breadth- and depth-first search.

BF: Consistency checking using breadth-first search.

BF+PGE: Consistency checking with partial guard evaluation using breadth-first
search.

DF: Consistency checking using depth-first search.

DF+PGE: Consistency checking with partial guard evaluation using depth-first search.

All types of consistency checks with one of the options PGE1 and PGE2 in the table
represent searching for errors in a classical B or an Event-B model by means of Algorithm 6

74

3.3. Evaluation

with a respective search strategy. In case the concepts from Lemma 3.1 are used for
optimising consistency checking by means of Algorithm 6 we denote this by PGE1 in
Table 3.1. Accordingly, if the set of enabled and disabled events in each state are
determined by means of the ideas in Lemma 3.2 for optimising model checking by partial
guard evaluation, then we denote this by PGE2 in Table 3.1. All other types of checks
in column Algorithm represent consistency checking by means of Algorithm 1 for the
three possible search strategies in ProB. The model checking times and the times for
performing the enabling analysis (in case one of the PGE optimisations is used) are given
in the table. We also reported for each model the number of the overall guard tests and
the number of the skipped guard evaluations.1 Other statistics like number of states,
transitions, and events of every Event-B model can be obtained in the first column of
the Table 3.1. Each of the experiments has been performed ten times and the geometric
means of the model checking and enabling analysis times are reported. All measurements
were made on an Intel(R) Xeon(R) CPU E5-2650L v3 @ 1.80GHz with 67 GB RAM
running Ubuntu 12.04.3 LTS.

The models Complex Guards and All Enabled are toy examples created in order to show
the best and worst case when model checking B models using PGE, respectively. The
best case example, Complex Guards, constitutes a model with 21 events in which only
one event is enabled per state and, in addition, each event has a guard which is relatively
expensive to be checked. On the other hand, the worst case example, All Enabled,
represents a simple model in which all events are non-deterministic and enabled in every
state of the model and thus the evaluation of no guard can be omitted. The test cases
CAN BUS and Lift represent real-world systems specifying a Controller Area Network
bus and a lift system, respectively. Both models have large state spaces and considerably
many events. In addition, we consider the evaluation of the PGE optimisation in regard to
two machines that have a lot of events that may influence each other, but comparatively
small state spaces. One of the them, is the Cruise Control model written in B with 26
operations representing a case study at Volvo on a typical vehicle function, whereas the
other one, Landing Gear v4, is an Event-B specification of a controller of landing gear
system [Han+14].

In almost all test cases, except for Cruise Control and All Enabled, the more elaborate
consistency checking algorithm (Algorithm 6) has shown a performance improvement
compared to Algorithm 1. The number of skipped guard evaluations varies for the
different types of search strategies. Thus, for some test cases, e.g. for the case study
CAN BUS, using a particular type of search strategy exhibits smaller runtimes than the
runtimes for the other two types of search strategies. However, observing the rest of the
benchmarks, we can infer that the search strategy is not the only criterion for a faster
state space exploration by means of Algorithm 6.

In the worst case (test case All Enabled), the performance of Algorithm 6 is not signifi-
cantly different from the performance of Algorithm 1. In this case no guard evaluation

1The number of the overall guard tests can be determined by multiplying the number of events of the
respective model by the number all reachable states of the checked machine.

75

3. Partial Guard Evaluation

was skipped since the model is developed such that there is no state in the state space in
which at least one of the six events is disabled or there is no event where the local variables
in the guard do not influence the action part of the event. No or very minor performance
improvements have been exhibited for all types of searches in the Cruise Control test
case, although a considerable number of guard evaluations was omitted. However, in this
case the state space of the model Cruise Control is relatively small in comparison to the
other test cases in Table 3.1.

The comparisons in Table 3.1 have shown that the model checking runtimes of both
PGE approaches are very similar. Contrary to the model checking times, we observed
huge differences between the static analysis times of the PGE1 optimisation and the
static analysis times of the PGE2 optimisation. In all test cases in Table 3.1 the static
analysis for determining the enabling relations for the PGE2 optimisation took much
longer than for PGE1. This can be explained by the fact that to apply the ideas from
Lemma 3.2 one needs to test all four conditions for the enabling relation of almost every
pair of events. As a result, the overhead caused by the static analysis used for the PGE2
optimisation can often outweigh the improvement gained by the PGE2 optimisation
(see Cruise Control and Landing Gear v4 in Table 3.1). Indeed, the results in Table 3.1
show that the amount of skipped guard tests gained by the PGE2 optimisation is not
significantly different from that of the PGE1 optimisation.

3.4. Discussion

The approach introduced above presents a more elaborate method for exploring efficiently
the state space of classical B and Event-B machines using the results from the enabling
analysis from Chapter 2. The results in Table 3.1 demonstrated that the new state space
exploration method performs considerably better for very large state models than the
ordinary state space exploration. Basically, what has changed is the way each state in the
state space is explored. Instead of testing each event for enabledness when expanding a
state, in Algorithm 6 we check for enabledness just the guards of those events that could
not be determined statically as disabled or enabled. However, the information from the
enabling analyses used to optimise the consistency algorithm is not always insensitive
with respect to the property being checked. There can be a difference when checking
a model for deadlock freedom only and when we consider to check the model also for
invariant violations.

Consider, for example, the machine in Figure 3.3, which has the state space depicted
on the right-hand side. The initial state of the machine violates the invariant and there
is one deadlock state that is reachable after executing consecutively the operations Op1
and Op2. When running a model checker on the machine, an invariant violation in the
initial state will be reported, which is the expected behaviour of the model checker. If
we want to check the machine just for deadlock freedom, then we expect that the model
checker will return the path · Op1−→ · Op2−→ · as a counterexample.

76

3.4. Discussion

MACHINE M
VARIABLES x
INVARIANT

x ∈ N ∧ x �= 1
INITIALISATION

x := 1
OPERATIONS

Op1 =̂
SELECT x < 2 THEN x := x + 1 END;

Op2 =̂
SELECT x = 2 THEN x := 3 END;

Op3 =̂
SELECT x �= 3 THEN skip END

END

x = 1

x = 2

x = 3

Op1

Op3

Op2

Op3

s0

s1

s2

Figure 3.3.: Model Checking with Partial Guard Evaluation

When checking an Event-B or a classical B machine just for deadlock freedom using PGE
as optimisation it is important to not consider the invariant of the machine as a constraint
in the enabling analysis.2 For instance, if we check the machine in Figure 3.3 for deadlock
freedom and include x �= 1 as an additional constraint into the enabling analysis, then
the extended exhaustive search (Algorithm 6) will not find the deadlock. This is due to
the fact that ER(Op1, Op2, (x ∈ N ∧ x �= 1)) = {⊥ �→ ⊥} (see Definition 2.11), which
means that Op2 is found to be impossible after Op1. As a consequence, checking the
machine in Figure 3.3 for deadlock freedom by means of Algorithm 6 will fail to reach
the deadlock state s2 of the machine, since Op2 is considered to be disabled at s1.

This example shows that deadlock searching by Algorithm 6 might not be sound when
the invariant is regarded in the enabling analysis. However, considering the invariant
in the enabling analysis when a machine is checked for invariant violations makes sense
since the model checker stops the search as soon as an error state violating the machine’s
invariant is discovered. Concretely in the example in Figure 3.3, once Algorithm 6 finds
out that s0 is an error state because of the violation of the invariant, it will halt and
return the path to the error state. In this case, state s1 will not be explored and thus it
is not of importance that Op2 is considered as disabled at state s1.

Additionally to consistency checking, the approach can also be used for optimising anima-
tion and any other verification approach requiring the explicit-state space exploration of
Event-B and B machines such as LTL and CTL model checking techniques. Note that in

2Note that the invariant of a classical B or an Event-B machine determines the types of the variables
of the machine. By mentioning that we do not consider the invariant of the machine in the enabling
analysis we mean that we exclude only these constraints of the invariant that are not relevant for
identifying the types of the variables.

77

3. Partial Guard Evaluation

each of these cases we need to consider only the type information of the respective machine
in the enabling analysis to guarantee the correctness of the approaches as discussed above.
In other words, we use the enabling relation ER from Definition 2.9. In this chapter, we
presented two techniques for optimising the state space exploration of classical B and
Event-B machines using the enabling relations introduced from Chapter 2. Although the
second method (PGE2 in Table 3.1) tends to be more effective in terms of skipping guard
evaluations, the performance improvement appears to be not notably different from the
performance gain of the first approach (PGE1 in Table 3.1). Furthermore, we have seen
that the demand for more specific information about the enabling relations of the PGE2
method leads to longer runtimes of the corresponding static analysis that in some cases
may outweigh the performance improvements gained by the PGE2 optimisation (see, for
example, Landing Gear v4 in Table 3.1). As a consequence, the PGE1 technique appears
to be in practice more appropriate for improving state space exploration as the PGE2
method.

In some cases it is worth to consider using just the information for predicting the
disabledness of events since the number of guard evaluations skipped by using the
“s.enabled” set in every state is very often relatively small in comparison to the number of
skipped guard evaluations yielded by “s.disabled” (see Table B.1 in Appendix B). Using
the enabling relations’ information for predicting only the disabledness of events can
minimise, on the one hand, the overhead of the PGE state space exploration technique
and, on the other hand, decreases the effort for determining the respective enabling
relations.

Even though the PGE approach provides good performance improvements for verification
techniques using exhaustive state space exploration, the times required for determining
the enabling relations of the respective static analysis are sometimes very large. This is
due to the fact that the approach used for determining the enabling relations is based
on constraint solving and in some cases, when the constraint solver has to deal with
complex constraints, the analysis may not scale (see, for instance, Landing Gear v4 in
Table 3.1). One possibility to make the analysis more efficient is to try to yield simpler
constraints for the analysis by using, for example, guard splitting. Instead of testing for
each event tuple (e1, e2) the effect of e1 on the whole guard Ge2 of e2, one can try to
split up Ge2 into several conjuncts and then establish the effect of e1 on every of these
conjuncts. Further, we can benefit from guard splitting by minimising the number of
computations for determining the effects of the events on the different guard conjuncts
by identifying common conjuncts appearing in different events of the machine. In this
way, for each event e and each distinct conjunct C being a part of the guard in one or
more events we test the effect of e on C only once.

Despite the fact that the static analysis times for the PGE optimisations may sometimes
be very time-consuming we observed good performance improvements using the new state
space exploration technique for large-state classical B and Event-B models of real-world
systems. We witnessed promising results where by using the PGE state space exploration
technique the verification times of some models could be reduced by a factor of three.

78

3.5. Related Work

Furthermore, using the PGE optimisation resulted in skipping more than 90 percent of
the overall number of guard evaluations needed for exploring the state space. We believe
that the development of a more efficient way to yield the enabling relations for the static
analysis accompanying the respective PGE optimisation would make the technique even
more attractive for using it in tools supporting explicit-state verification techniques for
classical B and Event-B machines.

3.5. Related Work

A version of partial guard evaluation (PGE) as a technique for optimising model checking
of classical B and Event-B machines was first introduced in [DL16a], where the technique
is proposed as a possible application of the enabling analysis (see Section 2.2). While
the method of PGE in [DL16a] is restricted only to the avoidance of guard evaluations
of events that are known to be disabled in a state, in this work we presented a more
elaborate version of the PGE optimisation that considers also the events that are known
to be enabled in the respective states and avoids the evaluation of that part of the
guard that is not crucial for the computation of the respective successor states. In
addition, in this work we have introduced two variants for computing statically the sets
of enabled and disabled events in the successor states based on the results obtained in
Lemma 3.1 and Lemma 3.2. A subtle difference between the algorithm using PGE in
Section 3.2 and the one in [DL16a] is that the approach in Section 3.2 computes the sets
of enabled and disabled events after the full exploration of a state, whereas in [DL16a]
the computation of these sets is performed while the state exploration. The approach of
determining statically the enabled and disabled sets after the full exploration of a state
does visibly lead to more guard evaluation avoidance and thus to better performance
than the approach of PGE in [DL16a]. Algorithm 6 was also presented in the extended
journal version [DL17] of the conference article [DL16a].

Another related work represents the approach in [BL09], which intends to improve the
efficiency of model checking B and Event-B models using proof-information concerning
the invariant preservation by events. The general idea of the optimisation in [BL09] is
to avoid the evaluation of those parts of the invariant in a state that are known to be
preserved by the incoming events of that state. The information about the preservation
of some part of the invariant by the events of the machine can be provided, for example,
by a prover for B. Similarly to the partial guard evaluation optimisation, the optimisation
in [BL09] has shown a considerable performance improvement on various industrial
models.

79

4
Partial Order Reduction

In my experience with partial order
reduction, it is very easy to make a
mistake. From a distance, it seems
easy but, like so many things, as soon
as you get into it, all kinds of small
problems crop up. It is therefore
VITAL to be as (mathematically)
correct as possible.

Anonymous Reviewer

Partial order reduction has proven to be a very effective technique to tackle the state
space explosion problem for finite-state concurrent systems. The method aims to reduce
the number of states of the system being checked and thus concentrating the search for
errors in just a fragment of the original state space of the system, which is sufficient for
proving the property. With the reduced number of states that need to be checked partial
order reduction intends to yield smaller runtimes for the verification of the system. The
effectivity of the reduction depends generally on two conditions: how tightly coupled is
the system under consideration and what type of property we intend to verify.

Proposed as a method for optimising explicit-state model checking in the late 80s, partial
order reduction still arouses a lot of interest in the model checking community as a
technique for optimising existing verification tools. There are different forms of partial
order reduction, the most prominent of them are the ample set method [Pel93], the
stubborn set method [Val89], and the persistent set method [God96]. So far, very little
work has been done in investigating the impact of the technique on higher-level formalisms
such as B, Z, Event-B, and TLA+. In this chapter we attempt to remedy this issue
in the context of classical B and Event-B by providing a detailed description of the
way how partial reduction reduction can be applied for both formalisms. Our approach
is implemented within the ProB toolset and uses the ample set theory. Additionally,
we evaluate the implementation on a variety of classical B and Event-B machines.
Furthermore, we compare the implementation of partial order reduction in ProB with
that in LTSmin [Kan+15], a model checker supporting among others on-the-fly LTL
checking with partial order reduction. The comparison of both implementations is
performed on a set of B specifications, where the link implementation from [Ben+16] is

81

4. Partial Order Reduction

used to check classical B and Event-B machines with the model checker of LTSmin.

It is worth mentioning that events in Event-B are much more fine-grained than typical
operations in classical B. This increases the potential for more independent components
in an Event-B machine than in a classical B machine. As a result of this observation, we
expect a greater potential for practical application of partial order reduction in Event-B.

4.1. The Ample Set Approach

This section gives a concise introduction to the ample set method. The method takes
advantage of the independence between the events of the system being checked. In
many cases the order in which concurrently executed, independent events occur is not
always relevant for proving certain properties of the system, e.g. deadlock freedom. Thus,
examining only a few of the event orders could be sufficient to prove the checked property.
To reduce the number of event orders and thus the number of states to be examined, the
ample set method selects for each state of the system only a subset of the enabled events
in the state. Such a subset is called also an ample set and for a given state s it is usually
denoted by ample(s) .

4.1.1. Ample Set Conditions

An ample set is a subset of the enabled events (ample(s) ⊆ enabled(s)), chosen for
exploring the respective state. All events outside the ample set will be ignored (leading
to a possible state space reduction). There are four requirements that should be satisfied
by each ample set in order to make the reduction of the state space sound:

(A 1) Emptiness Condition
ample(s) = ∅ ⇔ enabled(s) = ∅

(A 2) Dependency Condition
Along every finite path in the original state space starting at s, an event dependent
on ample(s) cannot appear before some event e ∈ ample(s) is executed.

(A 3) Stutter Condition
If ample(s) � enabled(s), then every e ∈ ample(s) has to be a stutter event.

(A 4) Cycle Condition
For any cycle C in the reduced state space, if a state in C contains an enabled
event e, then there exists a state s in C such that e ∈ ample(s).

The intuition behind the first requirement (A 1) is to guarantee that each state having at
least one successor state in the original state space also has at least one successor state
in the reduced state space. At the same time, (A 1) states that each deadlock state in
the full state space is preserved by the reduction method.

82

4.1. The Ample Set Approach

The most important condition (and, at the same time, the hardest one to check) for
the correctness of the approach is the Dependency Condition (A 2). The Dependency
Condition ensures that each path being excluded in the process of reduction can be
reconstructed from a path in the reduced state space using the properties of independent
events, making sure in this way that no paths that may be crucial for the verification of
the system are omitted. In other words, condition (A 2) implies that if there is a finite
path in the full state space

π = s0
f−→ s1

e1−→ . . .
en−1−→ sn

en−→ sn+1

such that f ∈ ample(s0) and each ei is independent of ample(s0), then there exists also a
path

π′ = s0
e1−→ s′

1
e2−→ . . .

en−→ s′
n

f−→ sn+1.

Guaranteeing both ample set conditions (A 1) and (A 2) suffices to use ample set reduction
for checking models for deadlock freedom [Val89], [GW91], [God96]. In other words, a
reduction method, which chooses only a subset of all enabled events fulfilling conditions
(A 1) and (A 2) in each state, preserves all deadlocks from the full state space.

To check more involved properties such as invariant preservation or linear-time properties
expressed in LTL−X by means of partial order reduction one needs to guarantee that
also conditions (A 3) and (A 4) are satisfied by the produced ample sets. In particular,
condition (A 3) ensures the exclusion only of paths that are stutter-equivalent to the
paths being added to the reduced state space, whereas the last ample set condition (A 4)
makes sure that events are not ignored in the reduced state space. In this way, the Cycle
Condition (A 4) guarantees that the full and the reduced transition systems are stutter
equivalent (see also Definition 1.13 and Lemma 1.1).

Thus, the satisfaction of all ample set requirements in some state s0 implies that if

π1 = s0
e1−→ s1

e2−→ s2
e3−→ . . .

is some path in the full state space excluded by the ample set approach, then there exists
a path

π2 = s0
f1−→ s′

1
f2−→ s′

2
f3−→ . . .

in the reduced state space with f1 ∈ ample(s0) that is stutter-equivalent to π1. From the
stutter-equivalence of π1 and π2 one can yield that for every LTL−X formula φ we have

π1 |= φ ⇐⇒ π2 |= φ.

Consequently, if every state in some B machine M is explored by executing only a subset
of all enabled events satisfying (A 1) through (A 4), then the resulted (reduced) transition
system T̂ SM is stutter-equivalent to the full transition system TSM of M , which infers
that for every LTL−X formula we have

T̂SM |= φ ⇐⇒ TSM |= φ.

83

4. Partial Order Reduction

The following example should demonstrate how model checking can profit from reduction
methods such as the ample set method.

Example 4.1 (State Space Reduction with the Ample Set Method). Consider the classical B
machine in Figure 4.1 that models the concurrent execution of two programs P1 and P2
that communicate from time to time. The executions of P1 and P2 are formalised by
means of the operations Step1 and Step2, respectively. The communication between both
programs is modelled by the Sync operation. Each of the programs is performed n times
before both communicate with each other.

MACHINE SyncThreads
CONSTANTS n
PROPERTIES n = 2
VARIABLES pc1, pc2, v1, v2
INVARIANT pc1 ∈ N ∧ pc2 ∈ N ∧ v1 ∈ Z ∧ v2 ∈ Z

INITIALISATION
pc1 := 0 ‖ pc2 := 0 ‖ v1 := 0 ‖ v2 := 0

OPERATIONS
Step1 =̂

SELECT pc1 < n THEN pc1 := pc1 + 1 ‖ v1 := v1 + 1 END;
Step2 =̂

SELECT pc2 < n THEN pc2 := pc2 + 1 ‖ v2 := v2 + 1 END;
Sync =̂

SELECT pc1 = n ∧ pc2 = n THEN
pc1 := 0 ‖ pc2 := 0 ‖ v1 := v1 mod 2 ‖ v2 := v2 mod 2 END

END

Figure 4.1.: Example of a simple B machine formalising concurrently executed threads

Observing the operations of SyncThreads, we can infer that the operations Step1 and
Step2 are independent to each other as they are syntactically independent (see also
Definition 2.16). On the other hand, the machine operation Sync is race dependent
to both Step1 and Step2 and thus dependent to both operations. In summary, the
independent relation of the SyncThreads machine is defined as follows

IndependentM = {(Step1, Step2), (Step2, Step1)}.

Explicit-state deadlock checking will explore overall nine states to prove that the machine
SyncThreads has no deadlock state for n = 2. However, to demonstrate that no deadlock
is present in the state space of SyncThreads one does not have to explore all reachable
states of the machine as shown in Figure 4.2. The reduction in Figure 4.2 benefits from
the independence of the operations Step1 and Step2 and from the fact that Sync is never
simultaneously enabled with one of the operations Step1 and Step2. The latter gathers
the concept of co-enabled events to which we will come in the next subsection.

84

4.1. The Ample Set Approach

pc1 = 0, v1 = 0,
pc2 = 0, v2 = 0

pc1 = 1, v1 = 1,
pc2 = 0, v2 = 0

pc1 = 0, v1 = 0,
pc2 = 1, v2 = 1

pc1 = 2, v1 = 2,
pc2 = 0, v2 = 0

pc1 = 1, v1 = 1,
pc2 = 1, v2 = 1

pc1 = 0, v1 = 0,
pc2 = 2, v2 = 2

pc1 = 2, v1 = 2,
pc2 = 1, v2 = 1

pc1 = 1, v1 = 1,
pc2 = 2, v2 = 2

pc1 = 2, v1 = 2,
pc2 = 2, v2 = 2

Step1 Step2

Step1 Step2 Step1 Step2

Step2 Step1 Step2 Step1

Step2 Step1

Sync
s0

s1 s2

s3 s4 s5

s6 s7

s8

Figure 4.2.: State space of the SyncThreads model for n = 2

Concretely, the state space of the SyncThreads machine is reduced by choosing to perform
only the Step2 operation in both states s0 and s2 instead of both enabled operations in
these states. In other words, during the exploration of the state space of the machine we
have chosen {Step2} as an ample set for s0 and s2. Obviously, both ample sets ample(s0)
and ample(s2) satisfy the ample set condition (A 1). Furthermore, both ample sets fulfil
(A 2) since along every finite path (in the original transition system) starting at s0 and s2
no operation dependent on Step2 can appear before Step2, which is the only element in
ample(s0) and ample(s2). There is only one operation in SyncThreads which is dependent
to Step2, namely Sync. �

85

4. Partial Order Reduction

4.2. Partial Order Reduction for Deadlock and
Consistency Checking

Partial order reduction is a technique that makes a heavy use of independence between
events. The rule of thumb is that the potential to reduce significantly the state space of a
classical B or an Event-B model using partial order reduction increases with the growing
degree of independence in the respective model. Stated differently, the performance of
partial order reduction often relies on the size of the dependency relation DependentM of
the given model M . This fact was one of the main motivations for refining the dependency
relation (see also Section 2.3.1) in order to get a more precise dependency relation and
thus possibly a smaller size for DependentM . Another concept that we have introduced
in Chapter 2 was that of the enabling graph EnablingGraphM (Definition 2.13) which
represents a refined version of a control flow graph (Definition 2.12). Using the enabling
graph one can determine the sequence of events that needs to be performed in order to
enable a certain event. Both concepts, the dependency relation DependentM and the
enabling graph EnablingGraphM , are used in this section to guarantee the correctness
of our ample set approach for classical B and Event-B in regard to the Dependency
Condition (A 2).

In the following subsections, we will present procedures for computing ample sets based
on the dependency relation DependentM and the enabling graph EnablingGraphM . The
efficiency of the method is guaranteed by using local criteria to ensure the fulfilment
of the Dependency Condition (A 2), which are introduced in the next subsection. The
method for computing an ample set for a given state is presented by two procedures,
where the first one computes an ample set satisfying conditions (A 1), (A 2), and (A 3)
and the second one performs the exploration of the state using only the ample set events
from the first procedure and ensuring that the Cycle Condition (A 4) is fulfilled. The
algorithm for the computation of the ample sets is accompanied by a mathematical proof
which is outlined mainly in Section 4.2.2.

4.2.1. Local Criteria for (A 2)

We are interested in how efficiently each of the requirements can be checked. For some
state s, the conditions (A 1) and (A 3) can be checked by examining the events in
ample(s). In contrast, condition (A 2) is a global property which requires for ample(s)
the examination of all possible paths (in the original state space) starting at s. A
straightforward checking of (A 2) will demand at worst case the exploration of the
original state space. Local criteria thus need to be given for (A 2) that facilitate an
efficient computation of the condition.

For our approach, we define the following two local conditions (which will replace (A 2)),
where M is the observed B machine and s a state in the original state space:

86

4.2. Partial Order Reduction for Deadlock and Consistency Checking

(A 2.1) Direct Dependency Condition
Any event e ∈ enabled(s) \ ample(s) is independent of ample(s).

(A 2.2) Enabling Dependency Condition
Any event e ∈ EventsM \ enabled(s) that depends on ample(s) may not become
enabled through the activities of events e′ /∈ ample(s).

The second condition (A 2.2) states that every event that is disabled in s and dependent
on ample(s) cannot become enabled by executing a sequence of events in which no event
from ample(s) is included. The fulfilment of both conditions (A 2.1) and (A 2.2) is
sufficient for guaranteeing (A 2). Before stating and proving this claim, we first show
that events being elements of a set ample(s) satisfying conditions (A 2.1) and (A 2.2)
cannot be disabled by performing events outside ample(s).

Lemma 4.1 (Enabledness of Ample Events). Let conditions (A 1), (A 2.1) and (A 2.2)
hold for ample(s0) and

π = s0
e1−→ s1

e2−→ . . .
en−→ sn

be a finite path in TSM , where e1, e2, . . . , en /∈ ample(s0). Then, all events e1, e2, . . . , en

are independent of ample(s0) and ample(s0) � enabled(si) for 0 ≤ i ≤ n.

Proof. By (A 1) one can deduce that ample(s0) �= ∅. The claim is proven by induction
on i.

Base Case: For i = 1. By assumption e1 is not in ample(s0) and by (A 2.1) it holds that
e1 is independent of ample(s0). Since e1 is independent of every event in ample(s0) we have
that e1 cannot disable any e ∈ ample(s0) and thus it holds that ample(s0) � enabled(s1)
as e1 /∈ ample(s0).

Inductive Step: Assume that the claim holds for the path fragment

πi = s0
e1−→ s1

e2−→ . . .
ei−→ si,

where 0 < i < n. Since πi is a fragment of π, we know that there is one event ei+1 ∈
enabled(si) for which ei+1 /∈ ample(s0) holds. By assumption, ample(s0) � enabled(si)
and each ej with 1 ≤ j ≤ i is independent of ample(s0). Consider the event ei+1. There
are two possibilities for the enabledness of ei+1 at si:

1. ei+1 ∈ enabled(s0) and cannot become disabled after the execution of the event
sequence · e1−→ · e2−→ . . .

ei−→ ·,
2. there is a maximal index 0 < j ≤ i such that ei+1 /∈ enabled(sj−1) and ei+1 ∈

enabled(sj) and for all j < k ≤ i event ei+1 cannot become disabled by ek; in other
words, there is an event ej which enables ei+1 and all residual events ej+1, . . . , ei

cannot disable ei+1.

In the first case, ei+1 is independent of ample(s0) since ei+1 is enabled in s0 and ample(s0)
fulfils (A 2.1). In the second case, we can conclude also that ei+1 is independent of
ample(s0) since (A 2.2) holds for ample(s0) and as a consequence ej cannot enable an

87

4. Partial Order Reduction

event that is dependent on an event in ample(s0). The enabledness of all events from
ample(s0) in si+1 follows from the fact that ei+1 is independent of all e ∈ ample(s0) and
ample(s0) � enabled(si), which holds by assumption.

Using the result from Lemma 4.1 we can easily yield that (A 2.1) and (A 2.2) are sufficient
criteria for (A 2).

Theorem 4.1 (Sufficient Local Criteria for (A 2)). Let s be a state in the original state
space. If ample(s) is computed with respect to the local criteria (A 2.1) and (A 2.2) and
(A 1) holds for ample(s), then ample(s) satisfies the Dependency Condition (A 2) for all
paths in the original state space starting at s.

Proof. The proof is by contradiction. Let conditions (A 1), (A 2.1) and (A 2.2) hold for
ample(s). Assume that (A 2) does not hold for ample(s). Then, there exists a path

π = s
e1−→ s1

e2−→ . . .
en−→ sn

en+1−→ . . .

where e1, e2, . . . , en, en+1 /∈ ample(s) and en+1 is dependent on ample(s).

By Lemma 4.1 we can follow that e1, . . . , en, en+1 are independent of ample(s). The
independence of en+1 to ample(s) contradicts the assumption that there exists a finite
path π for which (A 2) is violated. Hence, (A 2) is satisfied by any ample(s) fulfilling
conditions (A 1), (A 2.1) and (A 2.2).
Remark 4.1 ((A 2.1) and (A 2.2) are Sufficient, but not Necessary Criteria for (A 2)). The
local conditions (A 2.1) and (A 2.2) are sufficient local criteria for (A 2), but not necessary.
Note that (A 2.1) and (A 2.2) together set a stronger condition on the ample sets than
(A 2) as there could be sound ample sets that indeed fulfil the Dependency Condition
(A 2), but not the local dependency conditions. Recall the SyncThreads machine from
Example 4.1 where Step1 and Step2 are pairwise independent and both can enable an
event that is dependent on both, namely Sync. Looking at the full transition system of
the machine we can easily conclude that both sets {Step1} and {Step2} are valid ample
sets for both states s0 and s2 with respect to the Dependency Condition (A 2). However,
neither {Step1} nor {Step2} fulfil the local condition (A 2.2) since both events Step1 and
Step2 can enable Sync which in turn depends on both. At the same time, considering
both sets as invalid ample sets in regard to (A 2.2) is too restrictive since in fact Step1
and Step2 can enable Sync, but both of them cannot be simultaneously enabled with
Sync in any state of TSSync. In this way, Sync cannot influence the execution of any of
both events Step1 and Step2. This motivates the next definition and the refined version
of (A 2.2). �
Definition 4.1 (Co-enabled Events). Let TSM = (S, S0, Σ, R, AP, L) be the transition
system of some classical B or Event-B machine M . Two events e1 and e2 are said to be
co-enabled in a state s ∈ S if both are simultaneously enabled at s, i.e. e1, e2 ∈ enabled(s).

Two events e1 and e2 are said to be possibly co-enabled in TSM if there exists a state
s ∈ S such that e1, e2 ∈ enabled(s).

88

4.2. Partial Order Reduction for Deadlock and Consistency Checking

If two events e1 and e2 are not possibly co-enabled in TSM , then we say that e1 and e2
cannot be co-enabled in TSM . �
Using the definition of possibly co-enabled events, we can define the following binary
relation over EventsM × EventsM :

CoEnabledM = {(e1, e2) ∈ EventsM × EventsM | e1 and e2 are possibly co-enabled}.

The CoEnabledM relation is a symmetric relation and it is reflexive in case all events of
M are feasible (see also Definition 2.5).

Note that two possibly co-enabled events e1 and e2 can be simultaneously enabled at
states that are not reachable in the respective transition system TSM . Clearly, if two
events e and e′ cannot be co-enabled in TSM and e is enabled at some state s, then there
exists no path

π = s
e1−→ . . .

en−→ s′ ∈ Pathsfinite(TSM)
such that both events e and e′ are simultaneously enabled at s′. Consequently, if there is
no event e′ that is dependent to some e ∈ ample(s) and potentially co-enabled with e,
then trivially ample(s) fulfils condition (A 2). This fact implies that if we weaken the
Enabling Dependency Condition (A 2.2) by requiring to observe only events that are
dependent and possibly co-enabled with an event in a given ample(s), then Lemma 4.1
and Theorem 4.1 will still hold. This can be demonstrated by proving the following
lemma.

Lemma 4.2. Let conditions (A 1), (A 2.1) and (A 2.2) hold for ample(s0). Then, for
all finite paths

π = s0
e1−→ s1

e2−→ . . .
en−→ sn

starting at s0 with e1, e2, . . . , en /∈ ample(s0) and n ≥ 0 there exists no event e′ ∈
enabled(sn)\ample(s0) which is dependent on some e ∈ ample(s0) and (e, e′) /∈ CoEnabledM .

Proof. By contradiction. Suppose that there exists a path

π = s0
e1−→ s1

e2−→ . . .
en−→ sn

with e1, e2, . . . , en /∈ ample(s0) such that there is an event e′ ∈ enabled(sn) \ ample(s0)
and (e, e′) ∈ DependentM \CoEnabledM for some e ∈ ample(s0). By Lemma 4.1 we know
that ample(s0) � enabled(sn) which implies that e and e′ are simultaneously enabled at
sn. This, however, is a contradiction to the assumption that (e, e′) /∈ CoEnabledM . Thus,
the claim of this lemma holds.

Now, we can state the following refined version of the Enabling Dependency Condition:

(A 2.2’) Enabling Dependency Condition
Any event e ∈ EventsM \ enabled(s) that depends on some f ∈ ample(s) and is
possibly co-enabled with f may not become enabled through the activities of events
e′ /∈ ample(s).

89

4. Partial Order Reduction

As a result of the observations above we can yield the following corollary.

Corollary 4.1. Let s be a state in the original state space. If ample(s) ⊆ enabled(s) is
computed with respect to the local dependency conditions (A 2.1) and (A 2.2’), and (A 1)
holds for ample(s), then ample(s) satisfies the Dependency Condition (A 2).

4.2.2. Computing Ample Sets

We can now present our algorithm for computing an ample set satisfying (A 1) through
(A 3). The procedure computeAmpleSet in Algorithm 7 gets as an argument a set of
events T that actually represents the set of all enabled events of the currently processed
state. DependentM and EnablingGraphM are the dependent relation and the enable
graph computed for the corresponding classical B or Event-B machine M , respectively
(see Definition 2.17 and Definition 2.13). The procedure computeAmpleSet uses the
computeDependencySet procedure for computing a set E satisfying the local dependency
condition (A 2.1). In the body of procedure computeDependencySet the set G is regarded
as a directed graph where the vertices are represented by the events of T and the edges
by tuples α �→ β. The tuple α �→ β, for example, represents an edge from vertex α to
vertex β. By reachable(α, G) we denote the set of vertices that are reachable from vertex
α in G. The set T is meant to be enabled(s), where s is the currently processed state.
Accordingly, the set E in Algorithm 7 is intended to be ample(s). The output of the
computeAmpleSet is an ample set satisfying the first three conditions of the ample set
constraints.

The first step of computing ample(s), in case that T is a non-empty set, is choosing
randomly an event α from T . After that, a subset E of all enabled events in s with
regard to α is computed such that condition (A 2.1) is satisfied (line 6). The set of events
E is determined by means of the computeDependencySet procedure (lines 23-29). Once
the set E is computed with respect to the randomly chosen event α, we test whether
there may be an event β that is not from E and from which a possible finite path

π = s
β−→ s1

γ1−→ . . .
γn−→ sn+1

γ−→ s′

may start such that an event γ can be enabled before executing an event from E (i.e.,
γ1, . . . , γn /∈ ample(s)), and γ is dependent to some event α ∈ E which is possibly
co-enabled with γ. This we do by searching for paths in EnablingGraphM having as a
starting point the event β and reaching an event γ /∈ E such that ∃ α ∈ E · (γ, α) ∈
DependentM ∩CoEnabledM . In other words, in lines 9-16 of procedure computeAmpleSet
we further test if E violates the second local dependency condition (A 2.2’). If there
is some event β ∈ I for which condition (A 2.2’) is violated, then we proceed to select
randomly the next event from T ′ in order to compute a new potential ample set. Note
that in case of refusing E as an ample set we subtract all events of E from T ′ (line 7) since
for each pair of dependent events (e, e′) the procedure computeDependencySet computes
exactly the same sets. Otherwise, if for all β ∈ I there is no path in EnablingGraphM

90

4.2. Partial Order Reduction for Deadlock and Consistency Checking

that presumptively represents an execution in TSM violating (A 2.2’), we check whether
E fulfils the stutter condition (line 17). The procedure computeAmpleSet in Algorithm 7
runs until a valid ample set has been found or all potential ample sets fail to satisfy
conditions (A 2) and (A 3) (then we return T).

Algorithm 7: Computation of ample(s)
Data: EnablingGraphM , DependentM , CoEnabledM

Input: The set of events T enabled in the currently processed state s
(T = enabled(s))

Output: A subset of T satisfying (A 1) - (A 3)
1 procedure set of event computeAmpleSet(set of event T)
2 set of event T ′ := T ;
3 while T ′ �= ∅ do
4 choose randomly α ∈ T ′;
5 boolean b := true;
6 set of event E := computeDependencySet(α, T); /* (A 2.1) holds */
7 T ′ := T ′ \ E;
8 set of event I := T \ E ;
9 foreach β ∈ I do /* checking whether E fulfils (A 2.2’) */

10 if there is a path β �→ γ1 �→ . . . �→ γn �→ γ in EnablingGraphM such
that γ1 , . . . , γn, γ /∈ E then

11 if ∃ α ∈ E · (γ, α) ∈ DependentM ∩ CoEnabledM then
12 b := false;
13 break
14 end if
15 end if
16 end foreach
17 if b ∧ (E is a stutter set) ∧ E �= T then /* checking (A 3) */
18 return E
19 end if
20 end while
21 return T
22 end procedure

23 procedure set of event computeDependencySet(event α, set of event T)
24 set of event tuple G := ∅;
25 foreach (β, γ) ∈ DependentM ∩ (T × T) do
26 G := {β �→ γ} ∪ G
27 end foreach
28 return reachable(α,G)
29 end procedure

In the following, we will present our proof of correctness for computing an ample set

91

4. Partial Order Reduction

satisfying condition (A 1) to (A 3) by means of Algorithm 7. The main statement, which
asserts that the procedure computeAmpleSet returns a set satisfying (A 1) to (A 3),
will be given by means of a theorem (see Theorem 4.2). We will prove Theorem 4.2
with the aid of three lemmas where each of them states that the result returned by
computeAmpleSet satisfies respectively the ample set conditions (A 1), (A 2.1), and
(A 2.2’). The stutter condition (A 3) will not be handled specifically for the theorem’s
proof as we assume at this point that the procedure for checking whether E is a stutter
set is correct. In the rest of this subsection we will denote enabled(s) by T .

Lemma 4.3. Let E be a set computed by means of the procedure computeAmpleSet for
some set of events T (= enabled(s)). Then, E = ∅ if and only if T = ∅.

Proof. Let T = ∅. In this case the while-loop will not be entered and the argument
T of the procedure computeAmpleSet will be returned as a result (line 21). This infers
that E is also an empty set.

Let T �= ∅. Then, there are two ways of computing E. The first one is when for
no event α ∈ T procedure computeAmpleSet can compute a set E which is returned
as a result at line 18. In this case computeAmpleSet will return the set T , which by
assumption is a non-empty set. The second possibility for computing E by means of
computeAmpleSet is when there exists an event α ∈ T such that a set E is determined
which is returned in line 18. In this case E is computed by the computeDependencySet
procedure and accordingly we can conclude that it has at least one element, the event α,
since α ∈ reachable(α, G). Thus, E is a non-empty set also in the second case.

Lemma 4.3 states that computeAmpleSet(T) = ∅ if and only if T = ∅. Hence, (A 1) is
satisfied by the procedure computeAmpleSet in Algorithm 7. As next, we want to show
that each set E computed by the procedure computeAmpleSet fulfils condition (A 2).
This statement is shown by proving that E satisfies both local dependency conditions
(A 2.1) and (A 2.2’). We already have shown in Theorem 4.1 and Lemma 4.2 that (A 2.1)
and (A 2.2’) are sufficient criteria for (A 2). Thus, proving that E satisfies (A 2.1) and
(A 2.2’) will infer that E also fulfils the Dependency Condition (A 2).

Lemma 4.4. Let E be a set of events computed by means of the computeAmpleSet
procedure for some set of events T . Then, any β ∈ T \E is independent of E, i.e. (A 2.1)
is fulfilled by E.

Proof. First, if the procedure computeAmpleSet returns T as a result, it is clear that E
(= T) satisfies condition (A 2.1). If E � T , then E is a set computed by the procedure
computeDependencySet for some event α ∈ T . Thus, showing that all events β ∈ T \ E
are independent of E, it is equivalent to showing the following claim:

Let E be a set of events computed by means of the procedure computeDependencySet
in regard to a set of events T and an event α ∈ T . Then, any β ∈ T \ E is
independent of E.

92

4.2. Partial Order Reduction for Deadlock and Consistency Checking

We prove the claim by contradiction. Assume that there is an event γ ∈ T \ E such
that γ depends on E. That is, γ is dependent on some event β which is an element of
E. Recall that the set G in procedure computeDependencySet is regarded as a directed
graph where the vertices are the elements of T . The procedure spans a directed graph G
by adding an edge β �→ γ for each tuple of events (β, γ) in DependentM for which both
events β and γ are elements of T (see lines 25-27 in Algorithm 7).

Remark that reachable(α, G) denotes the set E that is returned in line 6 in procedure
computeAmpleSet. By assumption, there is an event γ ∈ T \ reachable(α, G) such
that there exists an event β ∈ reachable(α, G) with (β, γ) ∈ DependentM . Since β ∈
reachable(α, G) there is a path α �→ α1 �→ . . . �→ αn �→ β in G where (α, α1), (αn, β) ∈
DependentM and (αi, αi+1) ∈ DependentM for all 1 ≤ i ≤ n − 1. The foreach-block in
procedure computeDependencySet guarantees that each pair (α′, β) ∈ DependentM is
added as an edge to G if α′ and β are elements of T . Since γ and β are elements of T ,
and β is dependent on γ (by assumption) it follows that there is also an edge β �→ γ in G.
This implies that γ is also reachable from α which is a contradiction to the assumption
γ ∈ T \ reachable(α, G).

Since for each set computed by the computeDependencySet procedure Lemma 4.4 is
satisfied, we can deduce that the Local Dependency Condition (A 2.1) is fulfilled for
each set returned by the procedure computeAmpleSet. It remains to show that the sets
computed by Algorithm 7 fulfil also condition (A 2.2’). This, we will demonstrate by
means of the following lemma.

Lemma 4.5. Let E be an ample set computed by the procedure computeAmpleSet in
Algorithm 7 at some state s and let T denotes the set enabled(s). For each β ∈ T \ E
and for all n ≥ 0 there exists no path

π = s
β−→ s1

γ1−→ s2
γ2−→ . . .

γn−→ sn+1
γ−→ s′

in TSM such that γ1, . . . , γn, γ /∈ E and γ depends on some event α ∈ E which is possibly
co-enabled with γ.

Proof. By Lemma 4.4 we know that E fulfils the local dependency condition (A 2.1).
In other words, for each β ∈ T \ E we know that β is independent of all events in E.
Without loss of generality, we assume that E � T . Let β be some event from T \ E. As
next, we show that for all n ≥ 0 the path

π = s
β−→ s1

γ1−→ s2
γ2−→ . . .

γn−→ sn+1
γ−→ s′

with γ1, . . . , γn, γ /∈ E and (α, γ) ∈ DependentM ∩ CoEnabledM for some α ∈ E does not
exist in TSM .

We carry out the proof of the claim by induction on n. In the following, we will
denote by πi, where i ≥ 0, the path s

β−→ s1
γ1−→ s2

γ2−→ . . .
γi−→ si+1

γ−→ s′, and by

93

4. Partial Order Reduction

Paths(EnablingGraphM) the set of all paths in the enabling graph EnablingGraphM of
the currently checked machine M .

Base Case: Let n = 0. Suppose the path π0 = s
β−→ s1

γ−→ s′ where β, γ /∈ E and let
α ∈ E be an event such that (α, γ) ∈ DependentM ∩ CoEnabledM . Then, there are two
cases to consider.

(1) β �→ γ /∈ Paths(EnablingGraphM): If β cannot enable γ, then γ must be enabled in
s. By assumption γ /∈ E. We also know that E satisfies condition (A 2.1) and thus by
Lemma 4.4 γ is independent of E. This, however, is a contradiction to the assumption
that γ depends on E. It follows that π0 does not exist for this case.

(2) β �→ γ ∈ Paths(EnablingGraphM): If there is a path β �→ γ in EnablingGraphM such
that β, γ /∈ E and (γ, α) ∈ DependentM ∩CoEnabledM for some α ∈ E, then the set E will
be refused as an ample set in procedure computeAmpleSet as the if -conditions in line 10
and line 11 hold for this case. Since E is returned as an ample set by computeAmpleSet
we can infer that π0 with β, γ /∈ E and (γ, α) ∈ DependentM ∩ CoEnabledM for some
α ∈ E does not exist in TSM for this case.

Inductive Step: Assume, for n = k, that there is no path s
β−→ s1

γ1−→ s2
γ2−→ . . .

γk−→
sk+1

γ−→ s′ in TSM such that γ1, . . . , γk, γ /∈ E and (γ, α) ∈ DependentM ∩ CoEnabledM

for some α ∈ E. We show that there is no path

πk+1 = s
β−→ s1

γ1−→ s2
γ2−→ . . .

γk−→ sk+1
γk+1−→ sk+2

γ−→ s′

in TSM such that γ1, . . . , γk+1, γ /∈ E and (γ, α) ∈ DependentM ∩ CoEnabledM for some
α ∈ E.

Suppose that there is such a path πk+1 in TSM . Then, we need to consider again two
cases.

(1) γk+1 �→ γ /∈ Paths(EnablingGraphM): The absence of such an edge γk+1 → γ in
EnablingGraphM infers that γ cannot become enabled after the execution of the event
γk+1 and as a consequence we can deduce that γ must already be enabled in sk+1. This,
however, contradicts with the induction hypothesis for πk. Hence, in this case there is no
such a sequence πk+1.

(2) γk+1 �→ γ ∈ Paths(EnablingGraphM): In the following, we intend to construct an
enabling path σk+1 ∈ Paths(EnablingGraphM) from the path πk+1 by means of the
following procedure: Beginning with σ0 = γk+1 �→ γ and starting with γk+1 we examine
whether γk may enable γk+1. If γk �→ γk+1 ∈ Paths(EnablingGraphM), then we create a
new enabling path as follows σ1 = γk �→ σ0. Otherwise, if γk cannot enable γk+1, we set
σ1 to be equal to σ0. Continuing this procedure inductively until s is reached at the end,
we have constructed as a result from πk+1 an enabling path σk+1 that is an element of
Paths(EnablingGraphM). Then, we consider two cases for the enabling path σk+1.

(2.1) In the first case the enabling path starts with β, i.e. σk+1 = β �→ γ̂1 �→ . . . �→
γ̂j �→ γk+1 �→ γ, where each γ̂i corresponds to some event γl in πk+1 with 1 ≤ i ≤ j

94

4.2. Partial Order Reduction for Deadlock and Consistency Checking

and 1 ≤ l ≤ k. Note that j ≤ k as there may be events in πk+1 that cannot be
enabled by its preceding events in the path πk+1. The path σk+1 is an enabling path
in EnablingGraphM , which means that in this case the if -conditions in line 10 and
line 11 in Algorithm 7 hold and as a consequence E will be refused as an ample set
in procedure computeAmpleSet. Owing to the fact that E was returned as a result by
computeAmpleSet, it follows that there is no path πk+1 such that γ1, . . . , γk+1, γ /∈ E
and (γ, α) ∈ DependentM ∩ CoEnabledM for some α ∈ E.

(2.2) The second case we need to observe is when σk+1 = γ̂1 �→ . . . �→ γ̂j �→ γk+1 �→ γ,
where each γ̂i corresponds to some event γl in πk+1 with 1 ≤ i ≤ j and 1 ≤ l ≤ k and
γ̂1 �= β. In this case, we know that γ̂1 is enabled in state s since all preceding events
of γ̂1 in πk+1 cannot enable γ̂1. By assumption of πk+1 we know that γ̂1 /∈ E. Thus, it
follows that there exists a path γ̂1 �→ . . . �→ γ̂j �→ γk+1 �→ γ in EnablingGraphM such that
γ̂1, . . . , γ̂j, γk+1, γ /∈ E and γ dependent and is potentially co-enabled with some α ∈ E
for some event γ̂1 ∈ T \ E. This, however, contradicts with the choice of the set E since
no such a set can be returned by the procedure computeAmpleSet when the variable b is
set to false (the foreach-loop in lines 9-16 considers all enabled events at s in T \ E).

Thus, we can conclude from the induction proof that for β ∈ T \E and for all n ≥ 0 there
is no path πn in TSM such that γ1, . . . , γn, γ /∈ E and γ is dependent and potentially
co-enabled with some event α ∈ E. It is readily to see that the proposition is fulfilled for
all β ∈ T \ E.

Now using the results from Lemma 4.3, 4.4, and 4.5 we can state the following theorem.

Theorem 4.2. Every ample set computed by means of the procedure computeAmpleSet
in Algorithm 7 satisfies the ample set conditions (A 1) to (A 3).

4.2.3. The Ignoring Problem

Condition (A 3), which requires that each ample set that is a proper subset of enabled(s)
consists only of stutter events (assuming that (A 1) and (A 2) are also satisfied), can
sometimes cause ignoring of certain (non-stutter) events in the reduced state space.
Ignoring of non-stutter events may happen when the reduction results in a cycle of stutter
events only. If some events are ignored in the reduced state space of the model, then
computing ample sets with respect to (A 1) through (A 3) may not be sufficient to
preserve some of the LTL−X properties or the invariant satisfaction of a classical B or an
Event-B machine. The issue is also known as the ignoring problem [Val89].

To ensure that no events in the reduced state space are ignored, the Cycle Condition
(A 4) should be guaranteed by the reduced state space. The Cycle Condition (A 4) can
be established, for example, by means of the following (stronger) condition:

(A 4’) Strong Cycle Condition
Any cycle in the reduced state space has at least one fully explored state.

95

4. Partial Order Reduction

s1

s2 s3

s1

s2 s3

s4 s5

Figure 4.3.: Unnecessary full state exploration

Using the strong cycle condition (A 4’) is a sufficient criterion for (A 4) (see Lemma 25
in [CGP99, Chapter 10] or Lemma 8.23 in [BK08, Chapter 8]).

Since at least one of the states should be fully explored in any cycle, one can, for example,
explore fully each state s with an outgoing transition reaching an explored state generated
before s, as well as each state with a self loop. Note that this method of implementing
the strong cycle condition (A 4’) is not exact because sometimes it unnecessarily expands
states fully as illustrated in Figure 4.3.

In Figure 4.3 we show two possible cases in which the approach of full exploration of
each state s that has a successor state explored before s may unnecessarily fully explore
states if one of their successors is explored before them. In the left example in Figure 4.3
state s3 will be fully explored if s2 has been explored before s3 in the reduced state space.
The full exploration of s3 will be forced although the transition s3 → s2 does not close a
cycle, a situation that may occur when performing, for instance, mixed breadth- and
depth-first search. At the same time, the right example in Figure 4.3 shows an example
of unnecessarily full state exploration that typically occurs when breadth-first search is
performed.

Although such a method of guaranteeing (A 4’) may fully explore more states than
necessarily needed, it permits to generalise the ample set approach for different exploration
strategies such as depth-first, breadth-first, and mixed breadth- and depth-first search.
Similar techniques of implementing (A 4) have been proposed, for instance, in [BLL09]
and [BBR10].

Ample-Set State Space Exploration. To apply the ample set approach for the
consistency checking algorithm (Algorithm 1), we change the way each state is explored.
Thus, the respective changes in Algorithm 1 take place in lines 16-22 of the algorithm.
Basically, we can replace the pseudo code in the else branch of Algorithm 1 by calling
the procedure computeAmpleTransitions in Algorithm 8 with the currently processed
state s as an argument.

Algorithm 8 summarises the computation of the ample events in each state and the
execution of those in the reduced state space. The procedure computeAmpleTransitions
gets as an argument the state being currently processed. The computation of the successor

96

4.2. Partial Order Reduction for Deadlock and Consistency Checking

states and the insertion of the transitions in the state graph are realised by the procedure
executeEvent in lines 15-25.

In Algorithm 8 all enabled events in the currently processed state s will be assigned to T
(line 2). After that, an ample set E satisfying (A 1) through (A 3) is computed by means
of the procedure computeAmpleSet. If the test of the cycle condition in line 7 fails for
each loop-iteration, then only the events from E will be executed in s. Otherwise, the
full exploration of s will be forced (lines 8-10), if a transition from E reaches an already
explored state s′ (s′ /∈ Queue). Note that the procedure executeEvent in Algorithm 8
returns a set of states since evt can be a non-deterministic event.

Algorithm 8: Computation of the Ample Transitions

1 procedure computeAmpleTransitions(state s)
2 set of event T := compute all enabled events in s;
3 set of event E := computeAmpleSet(T);
4 foreach evt ∈ E do
5 set of state S ′ := executeEvent(s,evt);
6 T := T \ {evt}
7 if ∃ s′ ∈ S ′ · (s′ /∈ Queue) then /* check (A 4) */
8 foreach e ∈ T do
9 executeEvent(s,e)

10 end foreach
11 break /* state s was fully explored */
12 end if
13 end foreach
14 end procedure

15 procedure set of state executeEvent(state s, event evt)
16 compute set of successor states S ′ by executing evt from s;
17 foreach s′ ∈ S ′ do
18 Graph := Graph ∪ {s evt−→ s′};
19 if s′ �∈ Visited then
20 push to front(s′, Queue);
21 Visited := Visited ∪ {s′}
22 end if
23 end foreach
24 return S ′

25 end procedure

97

4. Partial Order Reduction

s0

s1 s2 s3

e1 e2 e3

e5 e3 e6 e4e1 e2

Figure 4.4.: Computing ample sets

4.2.4. Striving for More Reduction

The algorithm for state space reduction introduced so far can be improved in terms of
providing more satisfactory state space reductions. The ample sets returned by Algo-
rithm 8 for each state in the reduced state space are mainly determined by means of the
computeDependencySet procedure from Algorithm 7, which returns a set of interdepen-
dent events (i.e., events which are enabled and dependent on one of the other events in
the set).

Example 4.2. Assume a machine M with six events {e1, . . . , e6} and a state s0 of M such
that enabled(s0) = {e1, e2, e3} and none of the events in enabled(s0) is dependent on one
of the other enabled events at s0. Further, we know that

{(e1, e4), (e2, e4), (e3, e5)} ⊆ DependentM ∩ CoEnabledM and
{e1 �→ e5, e3 �→ e4, e2 �→ e6} ∈ E, where EnablingGraphM = (EventsM , E)

Figure 4.4 illustrates the example above. The two transitions in state s1 represent
a possible situation in the transition system, where the events e3 and e5, which are
dependent on each other, may be co-enabled. We can infer that e3 is enabled at s1 as
e1 cannot disable e3, which can be deduced by the property of independent events (by
assumption (e1, e3) is an independent pair of events). The possibility of the enabledness
of e5 at s1 follows from the fact that e1 may enable e5. Analogously, one can infer the
co-enabledness of e1 and e2 with e4.

For state s0 Algorithm 7 will not find any ample set which is a proper subset of enabled(s0).
Indeed, each of the possible subsets determined by the computeDependencySet procedure
(i.e., {e1}, {e2}, and {e3}) will be rejected as a valid ample set as for each of these there is
an event outside the respective set ample(s0) that may enable an event that is dependent
and co-enabled to an event of ample(s0) (see also lines 10-11 in Algorithm 7). For example,
in case of {e3}, e1 can enable e5 which is dependent on e3 and may be co-enabled with e3.
As a consequence, procedure computeAmpleSet will return enabled(s0) as an ample set.
However, observing the enabled events at s0, we can find a proper subset of enabled(s0)
which is a valid ample set for s0. The subset {e1, e3}, for example, visibly fulfils both
local dependency conditions (A 2.1) and (A 2.2’).

�

98

4.2. Partial Order Reduction for Deadlock and Consistency Checking

In the following, we will adapt the procedure for computing ample sets satisfying
conditions (A 1) through (A 3) to be able also to find sets such as the one given in
the example above. This can be achieved, for instance, by constructing the ample sets
in a different fashion. That is, initially we choose an enabled event e from enabled(s)
and compute a set of events E containing e by adding iteratively events to E that are
dependent on one of the events in E or may enable an event g such that ∃ e′ ∈ E · (e′, g) ∈
DependentM ∩CoEnabledM . The procedure of adjoining events to E is repeatedly applied
until no further events can be added to E. At the end, the ample set ample(s) is then
the set of all events from E that are enabled at s. The new procedure of computing
ample sets is presented in Algorithm 9. Note that in Algorithm 9 the obtained set E can
contain events that are disabled at the currently explored state.

Algorithm 9: Computation of ample(s)
Data: EnablingGraphM , DependentM , CoEnabledM

Input: The set of events T enabled in the currently processed state s
(T = enabled(s))

Output: A subset of T satisfying (A 1) - (A 3)
1 procedure set of event computeAmpleSetNew(set of event T)
2 foreach α ∈ T such that α randomly chosen do
3 set of event E := {α};
4 set of event E1 := ∅;
5 while E �= E1 do
6 E1 := E;
7 foreach α ∈ E1 do
8 if α ∈ T then
9 E := E ∪ {β ∈ EventsM | (α, β) ∈ DependentM ∩ CoEnabledM}

10 else
11 E :=

E ∪ {β ∈ T | ∃ β �→ γ1 �→ . . . �→ γn �→ α in EnablingGraphM}
12 end if
13 end foreach
14 end while
15 E := E ∩ T ;
16 if (E is a stutter set) ∧ E �= T then /* checking (A 3) */
17 return E
18 end if
19 end foreach
20 return T
21 end procedure

Similarly to the computeAmpleSet procedure in Algorithm 7, the procedure in Algorithm 9
starts with a randomly chosen event α and computes the respective ample set in regard

99

4. Partial Order Reduction

to α. The procedure constructs E iteratively for some state s by adding events to E
using the following two rules:

(1) Every event dependent on and co-enabled with an event α ∈ E ∩ T will be added to
E,

(2) Every event from enabled(s) that may enable the execution of a sequence of events
enabling an event from (EventsM \ enabled(s)) ∩ E will be added to E.

The idea behind these two rules is similar to the idea of determining ample sets by means
of Algorithm 7. We try to build a subset E of enabled(s) for which all enabled events
at s, which are not elements of the subset, are independent to E (to satisfy condition
(A 2.1)) and there is no event outside E that may violate condition (A 2.2’). The second
rule (2) above can be understood as: every event that may enable a sequence of events
enabling an event dependent to an event of E and disabled at enabled(s) is added to E.
The intersection (EventsM \ enabled(s)) ∩ E contains all events in E which are disabled
at enabled(s) and dependent to at least one of the events from E ∩ enabled(s). The
mentioned properties of the sets that are returned by Algorithm 9 can be stated in the
following theorem.

Theorem 4.3. Every ample set computed by means of Algorithm 9 satisfies the ample
set conditions (A 1) to (A 3).

Proof. Let T be the set of all enabled events in some state s and let E be the set returned
by means of the procedure computeAmpleSetNew. Obviously, the procedure fulfils the
emptiness condition (A 1). In case T = ∅ the outer foreach-loop will not be entered
and as a result of this the set T will be returned by computeAmpleSetNew. If T �= ∅,
then there are two possibilities, either T will be returned as result in line 20 or some
proper subset of T is returned at line 17. In the former case, E is equal to T and trivially
T is an ample set satisfying (A 1) through (A 3) since T = enabled(s). In the latter
case, E cannot be an empty set since E contains at least one event chosen in the outer
foreach-loop, namely the event used to build E.

If E = T , then conditions (A 2.1) and (A 2.2’) are fulfilled. In the following, we prove
conditions (A 2.1) and (A 2.2’) for the case E � T . The proof of (A 2.1) is provided
by contradiction. Let E be some set computed by means of computeAmpleSetNew and
assume that there is some event β ∈ T \ E which is dependent on E, i.e. there is some
α ∈ E such that (α, β) ∈ DependentM . The events α and β are co-enabled since both
are elements of T , which represents the set of all enabled events in some state. As a
consequence, we have (α, β) ∈ DependentM ∩ CoEnabledM , which in turn implies that β
will be added as an event to E at line 9. Adding β to E is guaranteed by means of the
while-loop in lines 5-14, which in each new turn adds to E all events that are dependent
on and may be co-enabled with an event from E which is enabled at the current state.
This implies a contradiction to the assumption that β ∈ T \ E.

To prove that the refined enabling dependency condition (A 2.2’) is guaranteed by
Algorithm 9, we will prove the following claim:

100

4.2. Partial Order Reduction for Deadlock and Consistency Checking

Let E � T be the set of events computed by the procedure computeAmpleSetNew,
where T is equal to enabled(s). Then, for every β ∈ T \ E there is no path

π = s
β−→ s1

γ1−→ s2
γ2−→ . . .

γn−→ sn+1
γ−→ s′,

in TSM with n ≥ 0 such that γ1, . . . , γn, γ /∈ E and γ depends on some α ∈ E
such that (α, γ) ∈ CoEnabledM .

For the proof of the claim we need to take into consideration both cases in which events
are added to E. In the first case, when an event α ∈ E is enabled at the currently
processed state (α ∈ T), we add to E all events of the respective machine that are
dependent on α and possibly co-enabled with α. Consequently, we consider also events
that are currently disabled at s. In the second case, when the observed event is disabled
at s (α /∈ T), we add to E all events from T that may enable a sequence of events which
in turn may enable α.

The proof of the claim is provided by contradiction. Assume that there is some β ∈ T \ E
such that there is a path

π = s
β−→ s1

γ1−→ s2
γ2−→ . . .

γn−→ sn+1
γ−→ s′,

where γ1, . . . , γn /∈ E and γ /∈ T with (α, γ) ∈ DependentM ∩ CoEnabledM for some
α ∈ E ∩ T . For every event α that is enabled at s and adjoined to E we add at line 9
all events that are dependent on α and co-enabled with α. If in this step events are
added that are dependent on α, but not enabled at s, then in the next step of the
while-loop the else-branch in line 11 ensures that all events β ∈ T will be added to E
from which an event sequence is possible to start that enables an event dependent on E
and currently disabled at s. In this way, it is guaranteed that the set returned by the
procedure computeAmpleSetNew contains all events β ∈ T such that

π = s
β−→ s1

γ1−→ s2
γ2−→ . . .

γn−→ sn+1
γ−→ s′,

where γ1, . . . , γn /∈ E and γ /∈ T with (α, γ) ∈ DependentM ∩ CoEnabledM for some
α ∈ E. Hence, the contradiction to the assumption above.

Algorithm 9 represents an alternative approach for computing ample sets intending to
produce smaller sets for the reduced state space generation. In the following, we will
show that in general the procedure presented in Algorithm 9 generates sets that are
smaller or equal to the ample sets produced by means of the procedure in Algorithm 7.
To show this, we first need to note that for every state both procedures can find more
than one valid ample set. Let

Es = {E | E = computeAmpleSet(enabled(s))}
denote the set of all possible ample sets computed by means of computeAmpleSet.
Accordingly, let

E ′
s = {E | E = computeAmpleSetNew(enabled(s))}

101

4. Partial Order Reduction

denote the set containing all possible subsets of enabled(s) that can be computed by
computeAmpleSetNew. Using this notation we can prove the following theorem.

Theorem 4.4. Let TSM be the transition system of some classical B or Event-B machine.
Then, for every state s in Reach(TSM) we have Es ⊆ E ′

s.

Proof. Visibly, each ample set calculated by means of computeAmpleSet and which is
not equal to enabled(s) is determined by means of the procedure computeDependencySet
at lines 23-29 in Algorithm 7. What the computeDependencySet procedure returns, is a
set E of enabled events that are dependent to each other such that condition (A 2.1) is
satisfied (see also Lemma 4.4). The set E is computed with respect to some randomly
chosen event α from enabled(s). Thus, for every E the predicate

∀ α ∈ E · ∃ β ∈ E \ {α} ∧ (α, β) ∈ DependentM ∩ CoEnabledM

holds and additionally there is no event β ∈ enabled(s) \ E such that (A 2.2’) is violated.

Let E ′ be the ample set computed by computeAmpleSetNew by choosing the same event
α as for the computation of E by means of computeAmpleSet, where E � enabled(s).
Since for all enabled events added to E ′ we add also each event β dependent and possibly
co-enabled to an event in E ′, we can infer that E ⊆ E ′. Further, assume that there is an
event β ∈ E ′ such that β /∈ E. In this case β is added as an event to E ′ at line 11 in
Algorithm 9. However, if there is such an event, then E will be rejected as a possible
ample set in Algorithm 7 (see lines 9-16) and since E is by assumption not equal to
enabled(s), we can imply that E = E ′ ∩ enabled(s). Consequently, we can follow that
every ample set produced by means of the computeAmpleSet procedure in Algorithm 7
can also be computed by the computeAmpleSetNew procedure in Algorithm 9. Hence,
the inclusion Es ⊆ E ′

s is satisfied for every state s.

In general, the other inclusion Es ⊆ E ′
s does not hold. Recall Example 4.2, where we

showed that the subset {e1, e3} is an ample set for s0 satisfying (A 1)-(A 3), but cannot
be returned as an ample set by computeAmpleSet. Using the computeAmpleSetNew we
can determine {e1, e3} as an ample set for s0 if we start either with e1 or e3 in the
foreach-loop in line 2 of Algorithm 9. Using the notation above we can easily see
that Es0 = {{e1, e2, e3}} and E ′

s0 = {{e1, e3}, {e1, e2, e3}}. In this case Es0 �⊆ E ′
s0 . If we

change both procedures computeAmpleSet and computeAmpleSetNew such that always
the smallest ample set (the set with the least number of events) is returned, then we can
easily prove the following corollary using the result from Theorem 4.4.

Corollary 4.2 (The procedure computeAmpleSetNew in Algorithm 9 produces potentially
smaller sets than the procedure computeAmpleSet in Algorithm 7). Let computeAmpleSet
and computeAmpleSetNew be rebuilt such that for every state always the ample set is
returned with the smallest size. Then, the method for computing ample sets presented in
Algorithm 9 produces for every state smaller ample sets or ample sets having the same
size as the method presented in Algorithm 7.

102

4.2. Partial Order Reduction for Deadlock and Consistency Checking

Note that Corollary 4.2 holds only by the assumption that both algorithms are recon-
structed such that both return the smallest set of events satisfying the ample conditions
(A 1) to (A 3). If both algorithms use the random approach for computing the ample
sets, then, in general, the corollary does not hold.

4.2.5. Heuristics for Ample Sets

In the presentation of the reduction methods we used a randomised approach for the
computation of the ample sets. For every state s the method selects randomly an event
e from the set of all enabled events enabled(s). Accordingly, this event e is used to
construct a valid ample set for the processed state s, which we will denote by amplee(s).
The computed ample set is returned by the procedures in Algorithm 7 and Algorithm 9 if
amplee(s) is a proper subset of enabled(s) and all events from amplee(s) are stutter events.
Otherwise, if amplee(s) is not selected as an ample set, then both algorithms proceed
to the next event, which is randomly chosen from enabled(s) \ {e}. The procedure is
repeated until an ample set amplee(s) � enabled(s) is found or all events from enabled(s)
are processed (then enabled(s) is returned as an ample set).

For a state s there can be more than one ample set that is a proper set of enabled(s).
In some cases the effectiveness of the reduction can depend on the choice of the ample
sets computed by Algorithm 7 and Algorithm 9. One possible heuristic for the choice of
appropriate ample sets to impose larger state space reduction can be, for example, the
selection of the ample set with the least number of elements. Intuitively, the choice of the
smallest ample set in each state is expected to be a good heuristic since the number of the
successor states of a state is mainly determined by the number of events applied for the
exploration of that state. However, always choosing the ample set with the least number
of events is not a premise for achieving a maximal state space reduction as discussed
in [Val89]. Furthermore, the computation of all possible ample sets in every state, which
is a prerequisite step for determining the smallest set, can lead to larger exploration
times in some states, especially in states with a large number of enabled events.

As a consequence of the above observations, we have applied three different heuristics
for the choice of the ample sets in each state, which are evaluated for both reduction
approaches (Algorithm 7 and Algorithm 9) in Section 4.4.1. The three heuristic approaches
can be described as follows, where s denotes the state intended to be explored:

• first: going through each event e ∈ enabled(s) in an alphabetical order we compute
amplee(s) and if amplee(s) � enabled(s), then we return amplee(s) as an ample set
for s and proceed to the next state;

• random: by randomly choosing events from enabled(s), we compute amplee(s) and
in case amplee(s) � enabled(s) we return amplee(s) as an ample set for s and
proceed to the next state;

• least: for every event e ∈ enabled(s) we compute the respective ample set amplee(s)

103

4. Partial Order Reduction

and return as a result the ample set with the least number of events.

4.3. Partial Order Reduction for LTL

The ample set approach introduced in Section 4.2 can be applied for checking invariant
properties of classical B and Event-B machines by partial order reduction. In this section,
we extend the ample set approach from Section 4.2 to check also temporal properties
expressed by LTL using partial order reduction. In particular, we will concentrate on the
application of the reduction method from Section 4.2 for the tableau approach, which
was introduced in Section 1.1.5.

To recall, the idea of the tableau approach is to build a directed graph ATSM ,¬φ from
the transition system TSM of a model M and the negation of the LTL[e] formula φ
intended to be checked on M . If there is a α-path πα in ATSM ,¬φ which is a model for
¬φ, then we can infer that there is a path in TSM satisfying ¬φ and thus M �|= φ (see
also Corollary 1.1). In this case we also say that the path in TSM derived from πα is a
bad path for the formula φ. Otherwise, if there is no such a path in ATSM ,¬φ, we can
safely assume that φ is satisfied by M . We can distinguish between two approaches of
checking an LTL[e] formula φ on some model M by the tableau approach:

• Off-line approach: exploring the entire state space TSM of M and then checking φ
by means of the tableau search algorithm, or

• On-the-fly approach: expanding the state space TSM of M while applying the
tableau search algorithm.

The main advantage of the off-line approach is that once the entire state space of the
respective model has been explored, one can check various of LTL[e] formulae without
re-exploring the entire state space every time. In the same time, by using the on-the-fly
approach one may profit from the fact that the state space may not be required to be
fully explored. The full state space exploration is usually avoided when a bad path for
the checked LTL[e] property is found in the tableau search graph explored so far. The
on-the-fly approach can be very effective especially when the model being checked has a
very large state space.

In the following, we consider two further aspects needed for the application of the ample
set approach for checking LTL[e] formulae on classical B and Event-B models. The
first one focuses on the determination of the fragment of LTL[e] that is invariant under
partial order reduction, and on the formal definition of stutter events and operations
in Event-B and classical B with respect to an LTL[e] formula, respectively. The second
aspect discusses which ample set conditions from Section 4.2 need to be adapted to
ensure efficient LTL[e] model checking by the off-line and on-the-fly approach using the
ample set approach.

104

4.3. Partial Order Reduction for LTL

4.3.1. Stutter Events and LTL[e] Formulae Preserved by Partial
Order Reduction

Let TSM and T̂ SM denote the full and the reduced transition system of a classical B or
an Event-B machine M , respectively. Since condition (A 3) ensures that TSM and T̂SM

are stutter-equivalent ([Pel94]) and the fact that two stutter-equivalent paths preserve
each LTL[e] formula that does not contain the operators X and [·] (Lemma 1.1) we can
infer that each formula from LTL−X is invariant under partial order reduction. In other
words, for every LTL−X formula φ the following equivalence is always satisfied:

TSM |= φ ⇔ T̂SM |= φ. (4.1)

In the following, we will concentrate on checking LTL−X formulae using partial order
reduction. Recalling Definition 1.12, an event e of some machine M with a transition
system TSM = (S, S0, Σ, R, AP, L) is said to be a stutter event if and only if for every
transition (s, e, s′) ∈ R we have that L(s) = L(s′) and e /∈ TP, where TP is a set of
transition propositions. Similarly, an event e is said to be stutter in regard to some
LTL−X formula φ if and only if L(s) ∩ APφ = L(s′) ∩ APφ for all (s, e, s′) ∈ R, where
APφ is the set of all atomic propositions appearing in φ.1 Simply, one can identify an
event e as stutter in regard to an LTL−X formula φ, if e does not write any variable of
M that is used in some of the atomic propositions in φ. Formally, if VarM(ap) denotes
the set of all variables occurring in an atomic proposition ap, then e is a stutter event
with respect to φ if and only if the following equation is fulfilled

writes(e) ∩ ⋃
ap∈APφ

VarM(ap) = ∅. (4.2)

Obviously, the prerequisite in (4.2) is too coarse since the validity of some atomic
propositions may be preserved by events that do write variables used in those atomic
propositions. If, for example, we consider the LTL−X formula “G{x ≤ 5}”, then every
event e that writes x, but cannot assign to x a value greater than 5 is also a stutter event
in regard to the formula. Such events can be recognised as stutter events, for instance, by
the conditional event-feasibility operator �e from Definition 2.3. The following definition
gives a more precise characterisation for the event stuttering with respect to LTL−X

properties.

Definition 4.2 (Stutter Events in regard to an LTL−X Formula). Let φ be some LTL−X

formula and TSM = (S, S0, Σ, R, AP, L) the transition system of some classical B or
Event-B machine M . Further, let APφ denotes the set of all atomic proposition occurring
in φ. Then, an event e is said to be a stutter event in regard to φ if and only if

∀ ap ∈ APφ · writes(e) ∩ VarM(ap) �= ∅ ⇒ ¬
(
(¬ap �e ap) ∧ (ap �e ¬ap)

)

�
1Since the set of transition proposition TPφ is an empty set for each LTL−X formula, the requirement

e /∈ TPφ is always satisfied.

105

4. Partial Order Reduction

By Definition 4.2, an event is identified as a stutter event with respect to some LTL−X

formula φ if whenever it writes a variable used in an atomic proposition ap the truth
value of ap cannot be changed by e. In case of checking a classical B or an Event-B
machine for invariant violation then every event which is proven to preserve the invariant
of the machine is a stutter event. In some cases there are events that can be proven
to preserve the invariant of the machine to which they belong by type checking. Thus,
one does not have to provide exhaustive invariant violation search in order to prove
that some of the events preserve the invariant of the machine. Since invariant checking
is concerned only with proving that the invariant is satisfied at every reachable state
of the machine and an explicit-state model checking algorithm is usually designed to
terminate as soon as an invariant violation state is discovered, then each event e for
which ¬(InvM �e ¬InvM) is satisfied can be considered as a stutter event, where InvM

denotes the invariant of the machine M .

Not only the number of independent pairs of events plays an essential role for the
effectivity of partial order reduction, but also the number of stutter events with respect
to the property being checked. Visibly, Condition (A 3) forces only stutter events to
be selected in every ample set ample(s) which is a proper subset of enabled(s). Thus,
the large number of stutter events increases the possibility for more reductions and in
this way the effectiveness of the reduction algorithm. Referring to Definition 4.2, we
can conclude that the possibility for good reduction declines with the number of atomic
propositions in an LTL−X formula. This observation implies that the simplification of
the properties can be beneficial for the reduction algorithm. For example, if we want
to check some classical B or Event-B machine for invariant preservation using partial
order reduction, it is useful to split the predicate InvM , which represents the invariant
of the machine, into multiple predicates InvM = inv1 ∧ . . . ∧ invn and check G {inv1},
G {inv2}, . . ., G {invn} separately rather than proving G {InvM} in one run. Similarly,
various LTL−X formulae can be rewritten as a combination of simpler LTL−X formulae
joined by boolean operators such as ∧ (conjunction) and ∨ (disjunction).2 For instance,
the formula “φ = F {x > 2 ∨ y = 10}” can be rewritten in “(F {x > 2}) ∨ (F{y = 10})”
using the equivalence rules of the linear time logic. Then, it is possible to prove φ via
the reduced exhaustive search by showing that one of the disjuncts, “φ1 = F {x > 2}”
or “φ2 = F{y = 10}”, is fulfilled by the respective classical B or Event-B machine M . In
this way, checking φ1 and φ2 separately by partial order reduction may be more effective
than checking φ in one run of the model checker using partial order reduction. This can
be inferred by the fact that one may identify more events to be stutter with respect to
φ1 or φ2 than in regard to φ1 ∨ φ2.

2For a more thorough discussion on how explicit-state model checking using partial order reduction
can become more effective by rewriting LTL−X formulae using the equivalence rules of LTL see, for
example, [Pel94].

106

4.3. Partial Order Reduction for LTL

4.3.2. Off-line Reduction

The off-line approach for checking LTL[e] may be explained as a two-step process:
expanding the state space of the model M and in the subsequent step checking a set of
LTL[e] formulae by means of the tableau approach. The main advantage of the approach
is that various formulae can be checked once the entire state space of the model has been
explored. On the contrary, the off-line approach demands the exploration of the entire
state space which in many cases can be very large.

Applying partial order reduction for the off-line approach has some subtle differences
from the off-line approach without reduction. The off-line approach with reduction is
also completed in two steps: constructing the reduced state space and then using the
tableau algorithm to check the respective LTL−X formula in the reduced state space. In
comparison to the original off-line approach, the reduced version demands the exploration
of the state space for every LTL−X formula. The set of the stutter events of some classical
B or Event-B machine is determined in regard to the property being checked, and since
the Stutter Condition (A 3) is one of the key properties ensuring the correctness of the
reduction we are forced to generate the reduced state space of the machine every time a
new LTL−X formula is checked.

The algorithm for constructing the reduced state space for the first step of checking an
LTL−X formula by the off-line approach is a simple graph traversal algorithm that uses
the procedure computeAmpleTransitions from Algorithm 8 to explore each reachable
state of the respective model. Basically, one can reuse the consistency checking algorithm
(Algorithm 1) from Section 1.1.3 by replacing the state exploration procedure in lines 16-
22 by computeAmpleTransitions(state), where state is the currently explored state, and
removing the test for an error state in line 13. To achieve an optimal reduction in the
first step of the off-line approach one can use depth-first search as exploration technique
(see also Section 4.2.3).

4.3.3. On-the-fly Reduction

In contrast to the off-line approach, the on-the-fly approach explores the state space of
the respective model while constructing the tableau graph. As for the off-line approach,
one could consider to use computeAmpleTransitions from Algorithm 8 as a procedure
for the expansion of the reduced transition system to apply on-the-fly model model
checking by tableau using partial order reduction. However, we should look closely at
the way the Strong Cycle Condition (A 4’) can be ensured for the on-the-fly approach.
In the first place, a cycle in the transition system TSM does not necessarily correspond
to a cycle in the search graph ATSM ,φ. This means that having a cycle

π = si → si+1 → . . . → si+k → si

in TSM does not imply that we have a path in ATSM ,φ of the form
ρπ = (si, Fi) → (si+1, Fi+1) → . . . → (si+k, Fi+k) → (si, Fi+k+1)

107

4. Partial Order Reduction

with Fi = Fi+k+1. Moreover, the path ρπ may not exist in ATSM ,φ since the condition for
the existance of an edge (sj, Fj) → (sj+1, Fj+1) in ATSM ,φ additionally requires that for
every formula Xψ ∈ Fj the subformula ψ is an element of Fj+1 (see also Definition 1.16).

Additionally, the tableau approach for checking whether an LTL formula φ is satisfied
by some transition system TSM is based on finding self-fulfilling SCCs in the tableau
graph ATSM ,¬φ. Further, most of the algorithms for finding SCCs, such as the Tarjan
algorithm [Tar71], use a depth-first search as a technique for discovering SCCs. In this
way, one can profit from the depth-first search using the fact that an atom having an
outgoing edge to an atom on the search stack is closing a cycle in ATSM ,¬φ.

To make use of the observations above, one has to revise the way condition (A 4’) is
ensured for the on-the-fly approach. The idea is to fully expand a state s of the reduced
transition system T̂SM if it is certain that there is a back transition from an atom (s, F)
closing a cycle in ATSM ,¬φ. Therefore, we replace the Strong Cycle Condition (A 4’) for
checking LTL−X formulae by the tableau approach by the following condition:

(D 4) On-the-fly Cycle Condition
Every cycle in the reduced tableau graph ATSM ,φ has at least one atom (s, F) such
that state s is fully expanded in T̂SM , i.e. ample(s) = enabled(s).

4.4. Evaluation

All techniques, except for the on-the-fly approach of LTL−X model checking, introduced
in this section have been implemented in the ProB toolset. We have evaluated both
implementations (Algorithm 7 and Algorithm 9) of partial order reduction on various
classical B and Event-B machines that we have received from academia and industry.3
Additionally, we have analysed the performance of the reduction algorithms with all
three heuristics discussed in Section 4.2.5. We also performed various experiments to
measure the payoff of partial order reduction (POR) in combination with the partial
guard evaluation (PGE) optimisation, which was introduced in Chapter 3. And finally,
we compare the implementation of partial order reduction in ProB with that of LTSmin.

In particular, we wanted to study the benefit of the optimisation on models with large
state spaces. In addition, the particular models should also have a certain number of
independent concurrent events. Otherwise, the possibility of reducing the state space
is very minor. If, for instance, we have a system where there is no pair of independent
events or a system where any two independent events are never simultaneously enabled,
then no reductions of the state space can be gained at all.

We have performed different types of checks in order to measure the performance of
our implementation of partial order reduction. In all types of tests, where the type of

3The models and their evaluations can be obtained from the following web page
https://www3.hhu.de/stups/internal/benchmarks/por/.

108

4.4. Evaluation

exploration strategy is not explicitly indicated, we use the mixed breadth- and depth-
first search of ProB for the exploration of the state space. The abbreviations in the
benchmark tables below should be understood as follows.

Dlk: Checking the model for the existence of deadlock states.

Inv: Checking invariant preservation for the respective machine.

Dlk+Inv: Checking simultaneously for deadlock freedom and invariant preservation.

In this work, all listed types of checks are performed either using the associated ordinary
model checking algorithm without using any type of non-default optimisation4 or combined
with one of the optimisation algorithms introduced so far in this thesis. The respective
optimisation is given in parentheses right after the abbreviation of the respective check. In
the evaluation, we use the following abbreviations for the different sorts of optimisations:

POR: Partial order reduction by means of the first reduction approach (Algorithm 7
and Algorithm 8) using one of the heuristics from Section 4.2.5

PGE: Partial guard evaluation, which was introduced in Chapter 3.

In case one particular heuristic (first, random, or least) from Section 4.2.5 for computing
the ample sets is used we write its name after the respective annotation of the reduction
algorithm being used. The standard heuristic for checking models with partial order
reduction is the randomised selection of events from enabled(s) for the computation of
the ample sets (i.e., random).

Every experiment in the performance results below was repeated ten times and its
respective geometric means (states, transitions and times) are reported in the respective
tables. More detailed statistics such as minimum and maximum time of all possible
executions or standard deviations can be obtained from the Excel tables on the following
web page https://www3.hhu.de/stups/internal/benchmarks/por/. All measurements
except for those in Section 4.4.2 were made on an Intel(R) Xeon(R) CPU E5-2650L v3 @
1.80GHz with 67 GB RAM running Ubuntu 12.04.3 LTS.

For the sake of better readability, we do not include the evaluation results of the second
reduction approach presented in Section 4.2.4. A thorough comparison of both reduction
methods presented in this chapter is given in Appendix C.

4.4.1. Consistency Checking

First, we present the results of the experiments for the consistency checking algorithm,
where we performed two types of analyses: deadlock freedom (Dlk) and deadlock freedom
with invariant checking (Dlk+Inv). We distinguish between both types of analyses since

4As non-default optimisation we mean each improvement of the model checker that is not used by
default by the model checking approach. An example of a non-default optimisation are the symmetry
reduction techniques of the ProB model checker.

109

4. Partial Order Reduction

it is sufficient to fulfil only the first two ample set conditions (A 1) and (A 2) in order to
preserve all deadlock states of the full transition system by the reduced search (see, for
example, Theorem 4.3 in [God96] or Theorem 1.23 in [Val89]). In the case of Dlk+Inv
the reduction method presented above needs to guarantee also the fulfilment of (A 3)
and (A 4). The intuition behind this distinction is that deadlock checking by partial
order reduction can yield more reduction gains because of the fewer criteria which are
needed to be satisfied.

Table 4.1.: Part of the experimental results for POR (times in seconds)
Analysis Model Checking

Model Algorithm States Transitions Time Time
Concurrent Dlk + Inv 5,866 16,967 - 1.972∗

Counters Dlk + Inv (POR) 827 1,527 0.167 0.375∗

Dlk 110,813 325,004 - 29.640
Dlk (POR) 152 154 0.181 0.080

CAN BUS Dlk + Inv 132,600 340,267 - 201.784
Dlk + Inv (POR) 113,103 262,291 1.912 214.235
Dlk 132,600 340,267 - 160.279
Dlk (POR) 81,591 141,496 1.454 125.426

Mechanical Press Dlk + Inv 2,817 18,946 - 3.633
Machine v7b Dlk + Inv (POR) 2,815 14,080 0.484 5.435

Dlk 2,817 18,946 - 3.705
Dlk (POR) 629 1,510 0.477 1.227

BPEL v6 Dlk + Inv 2,248 4,960 - 3.000
Dlk + Inv (POR) 2,248 4,960 1.234 3.765
Dlk 2,248 4,960 - 2.256
Dlk (POR) 538 602 0.381 0.675

Conc v1 Dlk + Inv 128,562 290,558 - 268.084
Dlk + Inv (POR) 128,562 290,558 4.059 311.727
Dlk 128,562 290,558 - 97.659
Dlk (POR) 82,551 124,411 0,575 89.881

Threads Dlk + Inv 20,810 41,213 - 5.756
Dlk + Inv (POR) 20,810 41,213 0.147 7.831
Dlk 20,810 41,213 - 4.558
Dlk (POR) 408 409 0.163 0.142

Sieve Dlk + Inv 48,486 174,626 - 142.086
Dlk + Inv (POR) 48,028 156,405 15.237 162.352
Dlk 48,486 174,626 - 121.190
Dlk (POR) 35,851 89,105 4.140 107.132

Phil v2 Dlk + Inv 2,351 4,528 - 4.563
Dlk + Inv (POR) 2,339 4,267 0.426 5.524
Dlk 2,351 4,528 - 4.315
Dlk (POR) 2,126 3,249 0.372 4.695

(*) Invariant Violation

For each of the analyses we have performed two types of exhaustive search: ordinary
error search and reduced error search by means of the first reduction approach presented

110

4.4. Evaluation

earlier in this chapter (see Algorithm 7 and Algorithm 8). All four different types of
checks are reported in Table 4.1. The analysis times in Table 4.1 are the measured
runtimes for the static analysis of each machine. If the POR option is not set in an
experiment, then no static analysis is performed.

One specification, Concurrent Counters, in Table 4.1 is given that represents the best
case for the reduced search in ProB. Concurrent Counters is a toy example aiming to
show the benefit of partial order reduction when each event in the model is independent
from the executions of all other events. The worst case, when no reductions of the
state space are gained, is represented by checking BPEL v6, Conc v1, and Threads with
Dlk+Inv.(POR). BPEL v6 is a classical B machine representing the last refinement of
a case study of a business process for a purchase order [AA09], Conc v1 is an Event-B
model of a four-slot fully asynchronous mechanism [Sim90] represented as an example
for concurrent program development in [Abr10, Chapter 7], and Threads the classical B
machine from Example 4.1 for n = 51. It should be noticed that the original machine
Conc v1 from [Abr10, Chapter 7] has an infinite state space. As a consequence, some
minor changes in the Event-B model have been done in order to make the model finite
state. Two further examples for the development of concurrent systems using the Event-B
approach are represented by the test cases Phil v2 and Sieve in Table 4.1. Phil v2 is the
second refinement machine of the solution of the dinning philosophers problem presented
in [Bos+12] and Sieve represents an Event-B model of a parallel algorithm for finding
the first 40 prime numbers via the Sieve of Eratosthenes using four processes. The test
case CAN BUS is the Event-B model of a Controller Area Network bus, which was
also used as an experiment for measuring the improvement gained by the partial guard
evaluation optimisation. The CAN BUS model was developed by John Colley within the
ADVANCE project5 and represents a typical real-world model of a safety-critical system.

In general, the most considerable reductions of the state space were gained with the
reduced search when only deadlock freedom checks were performed. We consider both
the reductions of the number of states and transitions. For three test cases (BPEL v6,
Conc v1, and Threads), no reductions of the state space were gained using the reduced
search Dlk+Inv (POR). However, the model checking runtimes in these cases are
not significantly different from the model checking runtimes for the standard search
Dlk+Inv. As expected, significant reductions of the state space and thus the overall time
for checking the Concurrent Counters model were gained by both reduction approaches.
For the first three types of test cases of Concurrent Counters an invariant violation
was found which led to a termination of the respective search. Considerable reductions
when checking for deadlock freedom only could be observed by all test cases except for
Sieve, Set Laws, and Phil v2. Interestingly, although Phil v2 has a great magnitude of
independence, the coupling between the events in the model seems to be so tight that no
significant reductions could be gained.

5http://www.advance-ict.eu/

111

4. Partial Order Reduction

Comparing Different Heuristics. As we mentioned previously, in some states there
could be more than one ample set that can be a proper subset of enabled(s). One can use
different heuristics for choosing the respective ample set whose events will be executed
from each reachable state in the reduced state space. In Section 4.2.5 we proposed three
heuristics for the choice of an appropriate ample set. This is motivated by the fact that
sometimes the choice of a specific heuristic for a model may be crucial for that how good
the reduction for the model being checked will be. In Table 4.2 we have listed some
experiments on classical B and Event-B machines comparing the gain of the state space
reductions with different heuristics for deadlock checking. To compare the benefits of
the reduction using different heuristics, we reported for each experiment the number
of states and transitions generated after the respective reduced search, as well as the
execution times. The state space statistics of each model and the time needed for the full
state space exploration without performing any reduction are reported in the leftmost
column of Table 4.2. In each experiment in Table 4.2 we used the depth-first strategy for
exploring the state space of the model.

In three of the test cases, Set Laws Nat, Token Ring, and Reading, in Table 4.2 we
observed better state space reductions for using heuristics different from the random
heuristic, which is the default heuristic for both reduction algorithms presented above.
Set Laws Nat is a classical B machine specifying formally various laws of the set algebra
using the predicate logic and the set-theoretic constructs supported by the B language.
The machine defines three groups of operations over sets where each operation of a group
is independent to the operations of the other two groups. The other two test cases
Token Ring and Reading represent a classical B model of a token ring protocol and a
B specification of a book tracking system presented introduced in [Sch01, Section 7.7],
respectively.

The most notable state space reductions could be observed for the Set Laws Nat model
when using the least heuristic, which chooses in every state the ample set with the
least number of events. For this particular experiment the reduction algorithm improves
significantly the performance for deadlock checking, from two minutes for the non-reduced
search to less than a half second for the reduced search with the least heuristic. Good
reductions have been observed for the same model with the first heuristic. Significant
improvements with both heuristics, first and least, are obtained for the models Token Ring
and Reading as well. On the other hand, for these three models the reduction search with
the random heuristic has brought minor performance improvements in comparison to
the other two heuristics. A different behaviour for the random heuristic in the reduction
gain is examined in two test cases in Table 4.2. Visibly, for CAN BUS and Conc v1
a better reduction and improvement in the model checking times is observed for the
Dlk (POR-random) experiments as for Dlk (POR-first) and Dlk (POR-least).
And at last, changing the partial order reduction heuristic for the Phil v2 model has
brought no performance gain for the execution times of the reduced search, as well as no
reduction gain in the number of states and transitions.

On the whole, the results in Table 4.2 have shown that none of the heuristics from

112

4.4. Evaluation

Section 4.2.5 can provide optimal reduction gains all the time. Intuitively, one would
assume that the least heuristic is a good choice since it guarantees always selecting the
least ample set in every state and thus possibly fewer successor states for each explored
state. However, we were able to find examples in which the least heuristic is less effective
than, for instance, the random heuristic. Furthermore, in cases where the least heuristic
does not provide better reductions than the other two heuristics one would expect even
a poorer performance of the reduction search with the least heuristic than for the other
two. This could be explained by the fact that in comparison to first and random the least
heuristic forces the computation of all possible ample sets in each state before choosing
which ample set to be executed. Therefore, the least heuristic requires more computation
steps than the other two heuristics.

Table 4.2.: Part of the experimental results - POR heuristics (times in seconds)
Analysis Model Checking

Model Algorithm States Transitions Time Time
Set Laws Nat Dlk (POR - first) 350 3,465 0.356 1.128
States: 35,938 Dlk (POR - random) 34,748 345,467 0.337 110.244
Transitions: 1,016,039 Dlk (POR - least) 33 280 0.369 0.168
MC Time (no opt.): 124.358
Token Ring Dlk (POR - first) 4,148 16,501 0.114 3.446
States: 16,389 Dlk (POR - random) 14,274 36,300 0.114 11.878
Transitions: 90,133 Dlk (POR - least) 4,148 16,501 0.115 3.631
MC Time (no opt.): 12.975
CAN BUS Dlk (POR - first) 85,515 145,421 1.441 129.348
States: 132,600 Dlk (POR - random) 81,605 141,510 1.477 125.389
Transitions: 340,267 Dlk (POR - least) 85,515 145,421 1.445 132.628
MC Time (no opt.): 160.279
Reading Dlk (POR - first) 5 12 0.176 0.052
States: 115 Dlk (POR - random) 81 568 0.183 0.216
Transitions: 965 Dlk (POR - least) 5 12 0.182 0.056
MC Time (no opt.): 0.328
Conc v1 Dlk (POR - first) 97,649 141,094 0.518 86.156
States: 128,562 Dlk (POR - random) 82,527 124,378 0.519 77.450
Transitions: 290,558 Dlk (POR - least) 97,649 141,094 0.517 88.196
MC Time (no opt.): 153.875
Phil v2 Dlk (POR - first) 2,126 3,249 0.350 4.306
States: 2,351 Dlk (POR - random) 2,126 3,249 0.348 4.275
Transitions: 4,528 Dlk (POR - least) 2,126 3,249 0.348 4.352
MC Time (no opt.): 4.315

Combining Partial Order Reduction with Partial Guard Evaluation. In ad-
dition to analysing the runtime improvements of the reduced search with different
heuristics, we performed various experiments for assessing the performance gains when
using partial order reduction (POR) in combination with partial guard evaluation (PGE).
In Table 4.3 we report some experiments to compare the performances of deadlock
checking with the non-reduced search (Dlk), the reduced search using the random
heuristic (Dlk (POR - random)), and the reduced search using additionally the PGE
optimisation from Chapter 3 (Dlk (POR - random + PGE)).

113

4. Partial Order Reduction

Table 4.3.: Part of the experimental results - POR+PGE (times in seconds)
Analysis Model Checking

Model Algorithm States Transitions Time Time
CAN BUS Dlk 132,600 340,267 - 155.035

Dlk (POR - random) 81,619 141,524 1.446 121.148
Dlk (POR - random + PGE) 81,591 141,496 1.577 52.203

Sieve Dlk 48,486 174,626 - 119.721
Dlk (POR - random) 35,863 89,117 4.151 105.233
Dlk (POR - random + PGE) 35,854 89,108 6.695 86.709

Mechanical Press Dlk 2,817 18,946 - 3.475
Machine v7b Dlk (POR - random) 628 1,510 0.459 1.132

Dlk (POR - random + PGE) 629 1,510 0.587 0.719
Conc v1 Dlk 128,562 290,558 - 81.460

Dlk (POR - random) 82,450 124,269 0.516 76.319
Dlk (POR - random + PGE) 82,473 124,306 0.859 55.548

Conc v4 Dlk 202,746 416,260 - 145.359
Dlk (POR - random) 178,180 279,455 0.789 178.620
Dlk (POR - random + PGE) 178,128 279,397 1.453 139.440

Threads Dlk 20,810 41,213 - 4.364
Dlk (POR - random) 408 409 0.159 0.138
Dlk (POR - random + PGE) 408 409 0.161 0.150

Incorporating the PGE optimisation into the reduction algorithm can additionally speed
up model checking. In most of the cases we have observed considerable improvements
in the runtimes of model checking when also the partial guard evaluation optimisation
is enabled. For example, a speedup factor of three was observed for the CAN BUS
model when both optimisations are enabled simultaneously, while the results for deadlock
checking of the same model using only partial order reduction were not very impressive. In
some cases the improvement gained by the PGE optimisation compensated the overhead
caused by the reduction algorithm for models for which minor reductions could be
acquired (see the test case Conc v4 in Table 4.3). At the same time, it is unlikely to get
smaller runtimes using PGE in combination with POR for models with great potential for
state space reductions as shown by the experiments for the Threads model in Table 4.3.

4.4.2. Comparing POR in ProB with POR in LTSmin

In this section, we compare the performance results of the partial order reduction imple-
mentations in ProB and LTSmin. While the partial order reduction implementation in
ProB is based on the ample set approach developed for classical B and Event-B in this
chapter, the LTSmin implementation of partial order reduction [Pat11], [Laa+13] relies
on the stubborn set theory of Antti Valmari [Val92]. The link implementation between the
ProB interperter and LTSmin from [Ben+16], which is facilitated by means of the PINS
interface of LTSmin, enables model checking of classical B and Event-B machines using
the LTSmin model checking capabilities. Identically to ProB, the reduction algorithm of
LTSmin makes use of event relations similar to those presented in Chapter 2. To perform

114

4.4. Evaluation

a reduced search, the model checker of LTSmin uses concepts such as independence,
co-enabledness, necessary enabling sets, and necessary disabling sets. The concept of
enabling necessary set, for example, is used to determine all transitions that may enable
a particular transition in the observed model. Similarly, the concept of the necessary
disabling set is used to determine the set of transitions that may disable a particular
transition. Using these two concepts and the notions of independency and co-enabledness
the reduction algorithm of LTSmin assures the correct reduction of the state space.

The concepts of the necessary enabling set and the necessary disabling set can be seen as
different versions of the concepts of the can enable and can disable enabling relations
presented in Chapter 2, respectively. Unlike the reduction algorithms presented in this
work, the reduction algorithm of LTSmin makes use of the can disable relation to improve
the state space reductions even more (see also [Pat11, Section 4.2]).

A comparison of the reduction algorithms in both tools intends to show the benefits of the
state space reductions of both implementations. Furthermore, such a comparison will give
us a good overview about the efficiency of the reduction algorithm developed in this section,
and about the correctness of the reduction approaches implemented in both tools. As a
matter of fact, during the evaluation of both reduction algorithms of ProB and LTSmin,
we have encountered some flaws in the POR implementation of the PINS interface of
LTSmin that in certain cases led to incorrect state space reductions. Consequently, the
failure behaviours were reported to the development team of the LTSmin tool and fixed
in the scope of the master thesis of Philipp Körner [Kör16], [Kör17].

Table 4.4 shows some of the experiments that we have performed on both reduction
algorithms in ProB and LTSmin. The tests in Table 4.4 intend to show the reduction
gains of both tools on models with potential for reductions via partial order reduction.
For each of the test cases we conducted two types of checks: deadlock checking using
partial order reduction with ProB (denoted by ProB (POR)) and deadlock checking
using partial order reduction with LTSmin (denoted by LTSmin (POR)). For each
test, we reported the state space statistics and the runtimes needed for performing the
respective static analyses and checking the model for deadlock freedom. The tests in
this section were carried out on a Mac Book Pro, 2,9 GHz Intel Core i5 with 16 GB
running MacOS Sierra (Version 10.12.3). For the following experiments we used version
1.7.0-beta1 of ProB, and the LTSmin version from 11th of January 2017 of the next
branch of the LTSmin’s Github repository [Mei17].

The experiments that we performed for the comparison of both tools have shown that in
general LTSmin provides better reductions than ProB (see Table 4.4). The most notable
distinction between both tools in regard to state space reduction could be observed for the
Sieve model. While the reduction algorithm of ProB has obtained only minor reductions
for the Sieve model, the POR implementation of LTSmin produced a state space which
was about ten times smaller than the full state space. The difference in the reduction gain
by both tools can be explained by the fact that the stubborn sets algorithm implemented
in LTSmin uses a finer heuristic for fulfilling the Enabling Dependency Condition (in
this work denoted by (A 2.2’)) than the one used in ProB. ProB’s reduction algorithm

115

4. Partial Order Reduction

Table 4.4.: Deadlock checking ProB vs. LTSmin (times in seconds)
Analysis Model Checking Model Checking

Model Tool (Approach) States Transitions Time Time Speedup Time (no opt.)
CAN BUS ProB (POR) 81,625 141,530 1.191 55.765 1.22 67.042
States: 132,600 LTSmin (POR) 67,007 100,915 0.442 51.477 8.25 421.909
Transitions: 340,267
Phil v2 ProB (POR) 2,126 3,249 0.180 1.933 0.96 1,851
States: 2,351 LTSmin (POR) 1,567 1,998 1.008 1.338 5.55 7.423
Transitions: 4,528
Set Laws Nat ProB (POR) 34,761 345,721 0.173 47.758 1.01 48.510
States: 35,938 ProB (POR + least) 34 280 0.172 0.07 693.0 48.510
Transitions: 1,016,039 LTSmin (POR) 34 280 0.016 0.131 756.41 99.089
Conc v1 ProB (POR) 82,448 124,283 0.432 39.820 0.94 37.601
States: 128,562 LTSmin (POR) 65,303 100,991 24.281 45.103 5.48 247.311
Transitions: 290,558
BPEL v6 ProB (POR) 537 601 0.172 0.289 3.59 1.038
States: 2,248 LTSmin (POR) 525 588 5.230 0.420 18.16 7.628
Transitions: 4,960
Threads ProB (POR) 408 409 0.090 0.066 38.74 2.557
States: 20,810 LTSmin (POR) 408 408 1.921 0.138 99.67 13.755
Transitions: 41,213
Concurrent Counters ProB (POR) 152 154 0.092 0.034 327.24 11.126
States: 110,813 LTSmin (POR) 154 154 0.102 0.052 866.23 45.044
Transitions: 325,004
Sieve ProB (POR) 35,838 89,092 4.011 59.855 1.21 72.338
States: 48,486 LTSmin (POR) 4,402 5,713 132.452 438.220 - >45 min
Transitions: 174,626

uses the enabling graph EnablingGraphM of the checked classical B or Event-B machine
to detect whether certain events can be enabled by other events. In EnablingGraphM , an
event e is considered to enable another event e′ when e can at some point make the guard
of e′ true (see also Definition 2.13). This, however, is a too coarse heuristic since in some
cases e may affect only some part of the guard of e′ and computing the relation e can
enable e′ in regard to the complete guard of e′ may be a too rough overapproximation in
certain states. For instance, if the guard of e′ is of the form G1 ∧ G2 and e can affect
only G1, then it will be superfluous to assume that e can enable e′ by executing e from
some state where G2 evaluates to false.

Contrary to the ample set approach implemented in ProB, the stubborn sets algorithm
of LTSmin makes use of guard splitting to consider only those events that are sufficient
for fulfilling (A 2.2’) in the currently explored state. Concretely, if s �|= Ge′(≡ G1 ∧ G2)
and G1 is true in s, and e′ is dependent on some of the enabled events in s, then LTSmin
will consider only those events that affect G2 in order to compute the stubborn sets
in s. This heuristic is finer than the one we use in ProB and is one of the reasons
why LTSmin provides better reduction results than ProB. In fact, disabling the guard
splitting mechanism in LTSmin, we were able to obtain for LTSmin reduction results for
the test cases in Table 4.4 that are similar to those obtained by ProB. For the interested
reader, the results of the LTSmin experiments where no guard splitting is performed
prior to the reduced deadlock search can be viewed in Table D.1 in Appendix D.

Observing the rest of the experiments in Table 4.4, one can see that the reduction
results produced by both tools are identical for the models representing the best cases

116

4.4. Evaluation

for partial order reduction (Concurrent Counters and Threads). A large discrepancy
in the reduction results produced by LTSmin and ProB could be observed for the
Set Laws Nat model. Using the default heuristic (random) for the reduced deadlock
search in ProB provided minor state space reductions, while a substantial reduction gain
could be obtained by LTSmin and by ProB using the least heuristic for the selection of
the ample set transitions. The default LTSmin heuristic for selecting a stubborn set for
every state picks the “cheapest” stubborn set by associating some cost to each transition
in the stubborn set [Pat11], [Laa+13]. In most of the cases the “cheapest” stubborn set
in LTSmin corresponds to the ample set with the least elements in ProB. Note that
although the reduction impact of the random heuristic is for some cases very minor in
comparison to the least heuristic, it is still preferable to use since it does not require to
compute all possible ample sets in each state. At last, as for ProB we have observed
very minor reduction gain for the Phil v2 model with LTSmin.

Considering the execution times for model checking by means of the reduction algorithms
of LTSmin and ProB, we observed very different runtimes. For test cases where the
reduction gains of both tools are almost identical, the reduced deadlock search of ProB
obtained smaller execution times in comparison to the model checker execution times of
LTSmin. For some experiments, where LTSmin has constructed a smaller state space
than ProB, the runtimes of LTSmin were, as we expected, smaller than those of ProB.
Contrary to our expectation, in two test cases (Conc v1 and Sieve) in Table 4.4 the
model checker of LTSmin needed much more time than the model checker of ProB,
although LTSmin obtained (considerably) better reductions than ProB.

This unexpected behaviour can be explained by the way the state information is commu-
nicated between the ProB interpreter and LTSmin in the ProB’s PINS interface. In
LTSmin every state is represented by a list of chunks, where each chunk is the binary
representation of the Prolog’s term representing the value of some variable in a classical
B or an Event-B machine. Every time when the LTSmin model checker wants to explore
a new state it sends a list of chunks to the ProB interpreter. In turn, this list of
chunks is converted into Prolog terms in order to determine the successor states of the
respective state using the ProB interpreter. The recovering of the state from the chunks
is performed by the ProB’s LTSmin extension module (see also [Ben+16, Section 4]).
In case a state carries a great amount of data, the LTSmin extension module of ProB
has to transform more chunks into Prolog terms and vice versa. Initial experiments have
shown that this transformation can be very costly if the checked machine has considerable
number of state variables and constants. This is also the case for the Sieve6 and Conc v1
models in Table 4.4.

Differences in the comparison between both tools are witnessed also in the runtimes of
the static analyses. As mentioned earlier in this section, the static analysis performed
for deriving the required information for effectively applying partial order reduction by
LTSmin uses the same constraint-solving approach for calculating the dependencies

6The machine representing the sieve model has overall 29 variables and 11 constants, which means that
every state of the machine consists of 40 bindings.

117

4. Partial Order Reduction

Table 4.5.: Deadlock checking ProB vs. LTSmin second round (times in seconds)
Analysis Model Checking Model Checking

Model Tool (Approach) States Transitions Time Time Speedup Time (no opt.)
CAN BUS ProB (POR + PGE) 81,600 141,505 1.270 27.476 2.44 67.042
States: 132,600 LTSmin (POR + Caching) 67,007 100,915 0.430 0.813 518.95 421.909
Transitions: 340,267
Conc v1 ProB (POR + PGE) 82,495 124,435 0.734 28.909 1.30 37.601
States: 128,562 LTSmin (POR + Caching) 65,303 100,991 24.289 1.040 237.80 247.311
Transitions: 290,558
Sieve ProB (POR + PGE) 35,855 89,109 6.481 60.035 1.20 72.338
States: 48,486 LTSmin (POR + Caching) 4,402 5,713 132.373 2.440 - >45 min
Transitions: 174,626
BPEL v6 ProB (POR + PGE) 531 595 0.242 0.194 11.63 2.256
States: 2,248 LTSmin (POR + Caching) 525 588 5.236 0.085 121.92 10.363
Transitions: 4,960
Threads ProB (POR + PGE) 408 409 0.095 0.072 35.51 2.557
States: 20,810 LTSmin (POR + Caching) 408 408 1.925 0.120 114.63 13.755
Transitions: 41,213

between events, and the enabling and disabling relations as our reduction algorithm
does. The experiments have shown that the times for computing the respective static
information needed by LTSmin are usually larger than the static analysis times for
our reduction algorithm. One reason for the large static analysis times in the case of
LTSmin is that LTSmin makes use of an additional event relation denoted in [Laa+13]
as necessary disabling sets, which is not used by our reduction algorithm. Additionally,
the event relations transferred to LTSmin require much more fine-grained information
since one has to determine potentially for every guard conjunct the way every event in
the model may affect it. For example, for Sieve the static analysis for LTSmin demands
to compute the effect of each event on overall 43 guards7, while ProB has to do this for
only 17 guards8. As a result, the static analysis for LTSmin needed about 132 seconds
to determine all required relations while the static analysis for ProB needed only 4
seconds.

From the results in Table 4.4 we can deduce that even when the reduction algorithm of
LTSmin has generated a smaller state space than the reduction algorithm of ProB’s
model checker, the runtimes of both tools are not significantly different. Moreover, we
observed test cases in which LTSmin performed much worse than ProB, although the
state space reductions performed by LTSmin were significantly better than the state
space reductions performed by ProB (see, for example, the Sieve test case in Table 4.4).
However, the reason for this behaviour lies not in the reduction algorithm of LTSmin,
rather in the current implementation of the ProB’s LTSmin extension module as we
explained earlier above.

The performance of the LTSmin model checker can be significantly improved by enabling
the caching mechanism of LTSmin as one can see in Table 4.5. Running LTSmin using
partial order reduction in combination with caching outperforms the ProB model checker
even when we enable both optimisation techniques (POR and PGE) presented in this

7The number of guards after splitting the guard of each event in different non-independent conjuncts.
8The number of all non-initial events in Sieve.

118

4.5. Discussion and Related Work

work. Notable improvements of the model checking times for the reduced search by
using the caching mechanism in the case of LTSmin could be observed for the models
Conc v1, Sieve, and CAN BUS. Similarly to the ProB results (see Table 4.3), the use
of an additional optimisation technique such as caching for LTSmin brought minor
improvements for the runtimes of the model checker for machines for which significant
reductions of the state space have been gained.

4.5. Discussion and Related Work

The approach for optimising explicit-state model checking for classical B and Event-B
using the ample set theory was first presented at the SEFM conference in 2014 [DL14] as
a part of the optimisations developed for improving the ProB model checker during the
GEPAVAS project9 funded by the Deutsche Forschungsgemeinschaft (DFG). Later, the
work was proposed for publication for the special issue dedicated to SEFM 2014 in the
journal Formal Aspects of Computing. Consequently, an extended version of the article
was accepted for publication in the journal [DL16b]. In [DL16b] we presented a corrected
version of the reduction algorithm from [DL14], as we have encountered failure behaviours
by proving the approach for correctness. The corrected version of the reduction algorithm
from [DL16b] and its proof have been presented mainly in Section 4.2.

In this work, we refined the reduction algorithm presented in [DL16b] by using an
additional relation CoEnabledM in order to obtain better reductions. In fact, including the
co-enabled relation as a a further constraint in the process of the ample sets computation
allowed the improvement of model checking by partial order reduction for some of the
models evaluated in Section 4.4. For instance, no reductions could be gained for models
such as the CAN BUS model and the Event-B machine modelling the mechanical press
machine in [Abr10, Chapter 3] without the use of the co-enabled relation CoEnabledM in
Algorithm 7 and Algorithm 9. The importance of weakening the Enabling Dependency
Condition (A 2.2) by the CoEnabledM relation was recognised during the work on the
journal article [DL16b] and later, applied in this thesis (see also (A 2.2’)). The importance
of the co-enabled relation was also identified among others in [FG05] and [Laa+13].

An alternative reduction algorithm which in some cases may provide better reductions
than the reduction algorithm in [DL16b] was introduced in Section 4.2.4. The alternative
reduction approach from Algorithm 9 builds the respective ample sets iteratively by adding
conflicting events to the set as long as there are no further events to be added. The idea
of computing ample sets by means of Algorithm 9 is similar to the reduction approaches
presented for the computation of stubborn and persistent sets from [God96], [Val98].
Additionally, we showed that Algorithm 9 is prone to compute smaller ample sets than
the procedure in Algorithm 7. Formally, we proved that for every state s and every
amplee(s) computed by Algorithm 7 there exists an event e′ ∈ enabled(s) such that
amplee′(s) is computed by Algorithm 9 and amplee′(s) ⊆ amplee(s).

9https://www3.hhu.de/stups/gepavas/

119

4. Partial Order Reduction

4.5.1. Approach

The reduction algorithms that we developed for classical B and Event-B in this chapter
are based on the ample set theory. In general, the ample set theory makes use of the
independence between events. Our reduction algorithms reduce the original state space of
a classical B and Event-B machine M by using the dependency relation DependentM (Def-
inition 2.17), the co-enabled relation CoEnabledM (Definition 4.1) and the enabling graph
EnablingGraphM (Definition 2.13). DependentM , CoEnabledM and EnablingGraphM are
computed prior to model checking by using a static analysis on the events of M . We
chose to determine the dependency and enabling relations between the events in this way
for performance reasons. Computing the respective relations between events on-the-fly
in each state can sometimes be expensive since we use constraint-solving analyses in
addition to the syntactic analyses. In fact, timeouts are set by default in ProB for
diminishing the possibility that the overhead caused by the static analysis and partial
order reduction outweighs the improvement achieved by the reduction of the state space.
ProB can also apply partial order reduction without using its constraint solving facilities.
In this case, the determination of the dependency and enabledness between events is
provided by inspecting their syntactic structure only. This, however, often results in less
state space reduction.

The reduction of the state space by using partial order reduction cannot only be influenced
by the independence of the events of the model being verified, but also by the type of
the checked property. For instance, deadlock preservation is guaranteed by any ample
set satisfying conditions (A 1) and (A 2) [Val89], [GW91], [God96]. We adapted the
implementation to this fact to gain more state space reduction when a model is checked
for deadlock freedom only.

Another factor that can influence the effectiveness of the reduction is the number of
the stutter events. For example, if we check the full invariant Inv of a machine, then
every event that trivially fully preserves Inv is a stutter event. Systems specified in
classical B and Event-B often have a very low number, if any, of events that trivially
fulfil the invariant. As we have seen in Section 4.4.1, partial order reduction yields minor
state space reduction in such cases. A possible way to detect more stutter events with
respect to Inv is to use either proof information (e.g., from the Rodin provers) or ProB
for checking invariant preservation for operations: every event which we can prove to
preserve the invariant will be considered as a stutter event when the respective model is
checked using the reduced search.

Explicit-state model checking is a practical and convenient method for automatic verifica-
tion of finite state systems. On the other hand, verification of infinite-state systems will
be not possible by means of model checking as not all possible states of the system can
be explored. Thus, model checking is generally considered as unsuitable for verification
of infinite-state systems. However, as discussed in earlier work [Leu08], [LB08] ProB
can deal quite well with infinite-state systems, in the sense that counterexamples can be
discovered by means of different state space exploration strategies: depth-first, breadth-

120

4.5. Discussion and Related Work

first, and mixed breadth- and depth-first search. This was also one of the motivations
to design the implementation of the ample set method to guarantee sound state space
reductions for different exploration strategies (see Section 4.2.3).

If the ProB model checker is run on a machine with infinite state space, then verification
will never be possible as one can keep running the model checker until it either finds
a counterexample or it runs out of memory. However, explicit-state model checking in
ProB with partial order reduction can sometimes be used for verifying deadlock absence
of infinite-state machines. Recall that for checking a system just for deadlocks using the
ample set technique for state space reduction it suffices to require that only the ample
set conditions (A 1) and (A 2) are satisfied by each ample set of each state. Using this
fact one can infer that for certain infinite-state systems the absence of deadlock can
be verified when model checking with partial order reduction. This relies on the fact
that both conditions (A 1) and (A 2) together cannot guarantee that events will not be
ignored in the reduced state space.

To make this more clear, consider an Event-B machine M with one initial state s0 and
with two events e1 = skip and e2 = x := x + 1, where x ∈ Z. Obviously, M has an
infinite state space as e2 is enabled in each state and increments the variable by one.
Choosing {e1} as an ample set in the initial state s0 can be considered as a sound ample
set at s0 if we look just for deadlock states. As a consequence, the reduction algorithms
from Section 4.2 will reduce the state space of M to one state with e1 as a self loop. In
this case the reduced search will terminate and exit with the result that M is deadlock
free. Thus, explicit-state model checking in ProB with partial order reduction can in
some cases verify certain infinite-state machines to be deadlock free.

4.5.2. Correctness of the Approach

During the development we tested our reduction algorithms at first on different models
that we constructed in order to demonstrate its correctness. One way of demonstrating
the correctness of the algorithms was to show that the reduction techniques preserve the
relevant error states from the original (full) state space. With relevant error states we
mean the states that are intended to be found or not found in the state space of the
model. If, for example, we perform just deadlock freedom check the relevant error states
are the deadlocks. In case the model has no error states we will expect that the reduced
search will not find any error states.

The correctness of the reduction algorithms could be to some extent confirmed by testing
whether errors such as deadlock and invariant violation are also preserved in the reduced
state space of the model being checked. However, in case the model is error-free we
needed to test the correctness of the reduction by means of other heuristics. We could to
some degree assure that the reductions in such cases were sound by performing coverage
analyses after the verification with the reduced search. We have used two types of
coverage analyses for ensuring the soundness of the reductions for the particular model:

121

4. Partial Order Reduction

coverage of the events presented in the model and domain coverage of the variables and
constants in the model. The events coverage analysis checks whether all events executed
in the non-reduced system have been executed at least once in the reduced system, while
the domain coverage analysis examines whether the intervals in which the single variables
range match for the reduced and the non-reduced system.

Using both analyses for advocating the correctness of the reduction search for an error-
free model makes sense when invariant violation search is performed. Checking only for
deadlock freedom does not explicitly require that all events executed in the original state
space should be also executed in the reduced state space. If, for example, the observed
specification has a pure skip event evt := skip and only deadlock absence checking is
performed, then in each state the set {evt} is a valid ample set since evt does not read
or write any variables and only conditions (A 1) and (A 2) should be satisfied (both
conditions are sufficient to guarantee deadlock preservation). In that case, choosing for
some states only evt to be executed will lead to ignoring all other enabled events in those
states and possibly to ignorance of some of the events in the reduced state space of the
model. However, in this case ignorance of events is not relevant for proving the model
for deadlock absence since an evt loop is always present in each state of the state space.

In addition, we have formally proven the correctness of our reduction algorithms (see
Section 4.2 and Section 4.2.4). Indeed, in the course of providing a formal proof for
Algorithm 7 in [DL14] we have found particular cases for which the algorithm may
calculate ample sets that do not satisfy the local dependency condition (A 2.1). As a
result of this, we revised the algorithm in [DL14] and presented the fixed version of the
algorithm in [DL16b]. Accordingly, a proof of correctness of Algorithm 7 and Algorithm 9
was presented in Section 4.2 and Section 4.2.4, respectively.

One could ask why not use a formal language to specify the reduction algorithms and
then proving whether the specification satisfies the desired properties, for example, by
using a proof assistant tool such as Rodin [Abr+10] or Isabelle [NWP02]. In the first
place, proving the correctness of the reduction algorithms presented in this work appeared
to be essential as in our experience with partial order reduction there had been so many
little details that were of importance to be regarded that one could easily lose track of
the correctness of the approach. Therefore, providing a proof of correctness is vital to
convince ourself that the method we have presented is sound. In the second place, giving
the proof of correctness in a fully mathematical way is in our opinion more concise and
does not distract from the main contribution in this work, namely tackling the state
space explosion problem for classical B and Event-B by means of partial order reduction.

Providing a formal verification of the reduction algorithms in this work using a proof
assistant tool is of practical interest and it will be worth to formally prove our algorithms
by using a proof assistant tool in future. An interesting approach similar to that
presented in [Esp+13] could be to specify and verify the model checking algorithms from
Section 1.1.3 and this chapter using a theorem prover such as Isabelle. After proving
the correctness of the algorithms one could let the theorem prover to generate code that
could be used as a reference implementation of the implementations of partial order

122

4.5. Discussion and Related Work

reduction introduced in this work.

4.5.3. Ample Set Selection Heuristics

Both reduction approaches presented in this chapter were evaluated for three different
heuristics (first, random, and least) used for the selection of the ample sets in the process
of exploration of the reduced state space. The evaluation has shown that neither of
these three heuristics can guarantee a maximum state space reduction all the time. We
observed that in some cases the least heuristic can lead to significantly greater reductions
than the other two. On the other hand, we have seen that for some classical B and
Event-B machines the random heuristic can provide better state space reductions than
the heuristics first and least. Moreover, the least heuristic can in some cases be very
expensive since it forces the computation of all possible ample sets in every state of
the system. Contrary to the least heuristic, the first and random heuristics are, in
general, less expensive as the reduction algorithms Algorithm 7 and Algorithm 9 return
for these two heuristics an ample set as soon as an ample set amplee(s) for some event
e ∈ enabled(s) is computed such that ample(s) � enabled(s).

An evaluation of the ample set approach using different heuristics for the choice of the
explored ample set was also performed in [GHV09]. In [GHV09] the authors use also three
different heuristics for their ample set approach evaluated on various models specified
in the DVE modelling language [11], one of the input languages of the DiVinE model
checker [Bar+13], that were proposed as benchmarks for evaluating explicit-state model
checking techniques in [Pel07]. The ample set choice heuristics from [GHV09], referred
as first choice, random choice, and minimal choice, are identical to those that we applied
for our reduction algorithms. In comparison to our approach, in [GHV09] for the case
of random choice the authors select randomly an ample set for the exploration of the
respective state s after computing all possible ample sets for s. Although the ample set
selection heuristics applied for the reduction algorithms in [GHV09] are identical with
the ample set selection heuristics proposed in Section 4.2.5, we have experienced different
results by evaluating the heuristics in comparison to the results observed in [GHV09].
Changing the ample set selection strategy by performing a reduced search on each of the
models from [Pel07] showed in [GHV09] that it does not lead to more significant reductions.
Contrary to the results and conclusions in [GHV09], we have seen in Section 4.4 that for
some classical B and Event-B machines changing the ample set selection strategy from
random to least, for example, resulted in considerably greater reductions of the state
space of various models for the least heuristic.

There could be different explanations for this phenomenon. One possible explanation
could be that the relations determined for the computation of the ample sets in [GHV09]
are not optimal, which may make the reduction algorithms in [GHV09] insensitive to the
use of different heuristics for the selection of an ample set in every state. That is, if the
computed relations are too rough overapproximations of the actual relations between the
transitions of the model, then the respective reduction algorithm is limited in computing

123

4. Partial Order Reduction

different ample sets in each state as the information about then relations between the
different transitions is not very specific. In this case the probability that a different
heuristic for selecting an ample set will increase the reduction gain is very minor. On the
other hand, the static analyses used for the computation of the relevant event relations
in this work use advanced constraint-solving techniques that help to provide more precise
event relations and thus increase the possibility for finding more than one suitable ample
set in some states.

Another possible explanation for the insensitivity of the reduction algorithms in [GHV09]
towards changing the ample set selection heuristics is that the reduction approach
presented in [GHV09] is based on a different model of computation as the one observed in
this work. The ample set approaches presented in [GHV09] assume that each model is set
up of three components: variables, transitions, and processes. Such a type of models are
basically used for modelling concurrent systems and communication protocols, where each
model often consists of several processes running in parallel that communicate by means
synchronisation and shared memory. Indeed, the formal models used as benchmarks for
evaluating the ample set approaches [GHV09] are written in the DVE modelling language,
which similarly to Promela [Hol03], is designed to model concurrent systems by the
concept of processes. In [GHV09] the computation of an ample set in some state s is
generally based on choosing the set of all transitions of some process Pi, denoted by eni(s),
that are enabled in s such that none of these transitions is in conflict with any transition
of some other process in the model. This approach of determining the ample set in a
state based on choosing all enabled transitions of one process to be executed in a state
can prevent the respective reduction algorithm to compute an optimal ample set. This
can be explained by the fact that in some cases not all transitions of a process need to be
added to the respective ample set in order to guarantee the correctness of the reduction.
Our reduction approach, on the other hand, is based on observing just the individual
enabled transitions in a state by the computation of the ample sets which suggests that
the probability of having more varied ample sets in a state is higher. The reduction
approach in [Laa+13] computes the stubborn sets also by observing only the individual
transitions enabled or disabled in every state. This difference in the computation of the
stubborn sets in [Laa+13] and the computation of the ample sets in [GHV09] could be
the explanation why the authors in [Laa+13] experienced very different reduction gains
for some models by the comparison of both approaches.

At last, one explanation for not discovering significant differences in the reduction gain
when using ample sets-selection heuristics distinct from the ordinary heuristic (first
choice) in [GHV09] is that simply for none of the DVE models used for the evaluation of
the reduction algorithms the application of a heuristic different from first choice leads to
significantly different results in the number of reduced states. It would be interesting
to translate some of the classical B and Event-B models used for the evaluation in
Section 4.4 into DVE and then apply the ample sets approaches from [GHV09] with
different heuristics on the translated models in order to examine whether one can replicate
the behaviour observed by model checking with our reduction algorithms.

124

4.5. Discussion and Related Work

4.5.4. Comparison to LTSmin

In Section 4.4.2, we compared the results of the exhaustive deadlock search in ProB and
LTSmin using partial order reduction. We performed two sorts of comparison, where
the first one aims to show the performance gains of the reduction algorithms of LTSmin
and ProB using only partial order reduction as an optimisation technique for model
checking (Table 4.4). The second one aims to show both tools in their best shape by using
additional optimisation techniques implemented in the tools for achieving maximum
performance gains (Table 4.5).

It is importantly to note that the information computed for the model checker of LTSmin
for the application of partial order reduction for classical B and Event-B is mainly based
on the ideas from Chapter 2. Furthermore, the static analysis from [Kör17] implemented
for the reduction algorithm of LTSmin uses the same constraint-solving procedures
implemented for the static analyses in ProB with the same timeouts for solving the
respective constraints. This fact allows us to evaluate and compare directly the reduction
gains of the reduction algorithms in LTSmin and ProB without taking into account
how precise are the computed relations. Both tools use identical procedures for the
computation of the relations and thus the analyses in LTSmin and ProB provide the
same degree of event relation overapproximations.

The comparisons have shown that, in general, the reduction algorithm of LTSmin
provides better state space reduction than the ProB reduction algorithms. As noted
in Section 4.4, the LTSmin model checker tends to provide better reductions than
our approach mainly because of the use of a finer heuristic for satisfying the Enabling
Dependency Condition (A 2.2’). Instead of considering all events that may enable a
given event by observing which events may make the entire guard of the event true, the
LTSmin reduction algorithm takes advantage of guard splitting. The idea behind guard
splitting is to divide each guard of an event e into several conjuncts and then to consider
in each state s only those events as events that can enable e that can make the disabled
guards of e from s true. Making use of guard splitting by computing the respective subset
of enabled events has shown that for some models (see, for example, the benchmarks of
the Sieve model in Table 4.4) one can achieve more significant reduction gains than for
the standard approach, where the whole guard of an event e for determining all events
that may enable e from some state is considered. Furthermore, we could to some extent
replicate the reduction gains provided by our reduction algorithms by disabling the guard
splitting procedure in the ProB’s LTSmin extension module (see Table D.1).

One drawback of the reduction algorithm in the LTSmin tool is that the requirement to
split each guard into several conjuncts often increases the computation effort of the static
analysis that determines the event relations used by the LTSmin partial order reduction
algorithm. The increased computation effort of the static analysis in the case of LTSmin
can be explained by the fact that for each event tuple (e1, e2) we are forced to determine
the effect of e1 on each of the conjuncts in the guard of e2 instead of determining the
effect of e1 on the whole guard Ge2 . As we have seen (see also the Sieve benchmark in

125

4. Partial Order Reduction

Table 4.4), this can in some cases be very costly and lead to very large static analysis
times that can outweigh the improvement achieved by the reduction of the state space
of the respective model. Additionally to the demand for more fine-grained information
about the enabling event relations in LTSmin, the LTSmin model checker computes
an additional event relation (necessary disabling sets10) for obtaining better state space
reductions [Laa+13, Section 4.2]. The determination of this additional relation required
by the stubborn sets algorithm in LTSmin adds an additional effort to the static analysis
of the respective classical B or Event-B machine intended to be checked.

Obviously, the reduction algorithm of LTSmin is designed to squeeze out the maximum
possible reduction for each model by making use of supplementary relations such as the
can disable event relation and the guard splitting technique11. As we have seen, this
striving for maximum reduction gain in the case of LTSmin sometimes comes at the
price of large runtimes for the static analysis. In some cases the overhead caused by the
static analysis for LTSmin was so time-expensive that the overall time for analysing and
checking a B system with the reduction approach of LTSmin outweighed the overall time
for analysing and checking the same B system with the reduction approach of ProB,
although LTSmin provided considerably better reduction gains than ProB.

On the other hand, the reduction algorithm of ProB is implemented to reduce the
overhead caused by the static analysis for each classical B and Event-B model as much
as possible, and in the same time to guarantee good state space reductions for models
appropriate for checking with partial order reduction. Furthermore, in most of the cases
where optimal reduction gains could be achieved, the reduction algorithms of ProB
and LTSmin performed equally good. So far, from the set of experiments that we have
performed, we only have found two Event-B models for which the LTSmin model checker
provides more significant reduction gains than the ProB model checker. In the rest of
the experiments we witnessed that the reduction algorithm of ProB obtained reduction
gains that were not significantly different from the reduction gains of the reduction
algorithm of LTSmin.

In addition, the comparisons of the execution times of ProB and LTSmin have revealed
some shortcomings in the implementation of the ProB-PINS module for LTSmin and
the reduction algorithm of LTSmin. We observed very large model checking times for
LTSmin by checking models having a great amount of information in each state, even
when the number of states is relatively small. As we have seen, the model checking times
of LTSmin improved significantly for such models by enabling the caching mechanism
of LTSmin, which leads to a notable reduction of the number of chunks communicated
between the ProB interpreter and the LTSmin model checker. Enabling the caching
optimisation in the case of LTSmin outperformed the model checker of ProB even when
the PGE optimisation was used as we can see in Table 4.5.

10The necessary disabling sets relation can be identified with the can disable relation from Chapter 2.
11 The guard splitting heuristic for satisfying (A 2.2) is often used in the stubborn set method [GHV09],

which is the reduction method on which the reduced search in LTSmin model checker is based.

126

4.5. Discussion and Related Work

The comparison of both tools helped us to validate the implementation and the efficiency
of the ProB’s reduction algorithm. Various experiments have been performed to
compare and analyse the behaviour of the reduction techniques in LTSmin and ProB.
In some particular cases, incorrect reductions of the state space were encountered when
checking classical B and Event-B machines with LTSmin using partial order reduction.
By analysing the reduction algorithm of LTSmin it was detected that the reduction
algorithm failed to identify a particular write dependence between events. Concretely,
the algorithm failed to recognise the dependency between two events when both events
are writing the same variables, but none of the written variables of each of the events
was read in the action part of the other one. Consequently, the reduction algorithm of
LTSmin has been fixed [Kör16] and we performed the experiments from Section 4.4.2
using the fixed version of the algorithm.

4.5.5. Other Related Work

Partial order reduction has been shown to be a very effective technique for optimising
automatic verification of concurrent systems by means of model checking. Many prominent
model checkers make use of partial order reduction for yielding smaller verification times.
In this subsection, we will give a short overview of the application of the method in various
model checkers and its impact on verifying systems formalised in low-level formalisms.

SPIN [Hol03] is a verification tool primarily used for the formal verification of multi-
threaded software applications specified in Promela, the formalism supported by SPIN.
Partial order reduction has been established as an effective technique for optimising
the verification runs of Promela models [HP95], [Cla+99]. As in our case, the partial
order reduction algorithm implemented in SPIN is based on the ample set theory. The
implementation of partial order reduction in SPIN looks for one process satisfying the
ample set conditions in the currently processed state. If such a process is found, then
only the actions of this process are executed in the particular state. As discussed in
Section 4.5.3, our approach is more fine-grained than the process-based approach in
SPIN since to each ample set we add only those events to the computed ample set whose
exclusion violates the ample set conditions. We observed that changing the ample set
selection heuristic for our reduction algorithms yielded better state space reductions for
some models, behaviour that was not observed for a similar process-based ample set
implementation in [GHV09].

DiVinE [Bar+13] is another explicit-state model checker which uses partial order
reduction for better runtime performance. In particular, DiVinE supports state space
reduction by means of partial order reduction for parallel LTL model checking [BBR10].
The implementation of partial order reduction in DiVinE uses a topological sort proviso
for guaranteeing the correct construction of the reduced state space graph with respect
to the cycle condition (A 4) in order to be also compatible with parallel exploration
strategies. The reduced search in DiVinE is available for the DVE specification language,
which is one of its input languages. Similar to Promela the DVE specifications are

127

4. Partial Order Reduction

composed of processes specifying the behaviour of the system that are the basic modelling
unit in DVE.

Partial order reduction is used for improving LTL model checking and refinement checking
in PAT [SLD08], a framework which among others provides support for analysing and
verifying concurrent systems formalised in the process algebra CSP#. The reduction
technique implemented in PAT exploits and extends the ideas for applying partial order
reduction for process algebras and refinement checking in [Val97] and [Weh99].

The result in Section 4.3.1, which states that partial order reduction does not preserve
LTL[e] formulae with the execute operator, was also obtained in [Ben+09] for the
state/event-LTL (SE-LTL) formalism in [Cha+04]. To overcome this limitation the
authors in [Ben+09] propose a new type of stutter-equivalence, state/event stutter-
equivalence, as well as a new logic fragment of SE-LTL, weak SE-LTL. Properties
specified in the weak SE-LTL fragment are preserved by state/event stutter-equivalence.
Both, the state/event stutter-equivalence and the weak SE-LTL fragment, enable one to
apply partial order reduction for SE-LTL.

128

5
Conclusions and Future Work

5.1. Summary

In this thesis, we described the development of two approaches for optimising explicit-state
model checking for classical B and Event-B: partial guard evaluation (PGE) and partial
order reduction (POR). Both approaches are orthogonal to each other and can be used
for improving algorithms for automatically checking both invariant and linear-temporal
properties on B systems. The PGE approach presents two novel state space exploration
techniques, denoted as PGE1 and PGE2, for reducing the costs of state space exploration
by predicting the guard status of events in each state. The POR approach comprises two
methods of partial order reduction, denoted also as POR1 and POR2, for tackling one
source of the state space explosion in B specifications: modelling of independent events
in classical B and Event-B by interleaving.

Event relations. Additionally, the foundations of two static analyses are described,
called also enabling and independence analysis. The analyses are based on syntactic and
constraint-solving techniques for deriving event relations about the mutual influence of
events in B specifications. The use of constraint-solving techniques enables the analyses
to provide event relations that are often more precise than the event relations provided by
proof-based techniques and techniques based solely on expecting the syntactic structure
of events. The fact that the presented analyses are fully automatic makes these even more
attractive to be used for inferring, for example, the control flow of B systems. The more
precise event relations obtained by both static analyses are not only very beneficial for
getting a better view of the control flow of B systems, but they also contribute to increase
significantly the effectivity of the optimisation techniques presented in this thesis.

The evaluations demonstrated that the performance of the static analyses depends mainly
on the level of detail at which the event relations need to be determined. For instance, to
determine for every event tuple (e1, e2) which of the 16 possible enabling relations from
Figure 2.2 the enabling relation ER(e1, e2) represents is much more time-expensive than
computing to which class of enabling relations the enabling relation ER(e1, e2) belongs.
In the former case, if e1 and e2 are two different events and writes(e1) ∩ readG(e2) �= ∅,
one needs to call the constraint solver four times to test each possible way of how e1 may
influence the guard of e2, whereas in the latter case one has to call the constraint solver at

129

5. Conclusions and Future Work

most four times. Although providing an optimisation algorithm for model checking with
more detailed information from the enabling and independence analyses often increases
the efficiency of the respective algorithm, it does not always pay off as the effort for
executing the analyses increases too.

Based on our experience, it is preferable to determine the respective enabling and
independence relations in a way in which one tries to eliminate as many calls to the
constraint solver as possible since constraint solver calls can sometimes be very expensive.
The algorithms from Chapter 2 suggested for both types of static analyses are able to
compute the most of the described event relations in this work making use of simple
syntactic criteria to minimise the number of calls to the constraint solver and to yield
simpler constraints.

Partial guard evaluation. The first approach for optimising model checking of B
specifications presents two new state space exploration techniques, PGE1 and PGE2,
based on using the notion of enabling relations for predicting the enabledness of events.
The first technique, PGE1, uses only three classes of enabling relations, guaranteed,
impossble and keep, to forecast which events are enabled or disabled in each state. The
evaluation showed that the PGE1 method can improve significantly the state space
exploration for large-state classical B and Event-B machines. For most of the tests, which
have been performed, the new state space exploration technique PGE1 recognised more
than 90 percent of all guard evaluations as redundant, which are needed to explore the
full state space of the respective B machines with the original state space exploration
approach.

Better results in regard to saving more guard evaluations could be obtained by the
second new state space exploration technique PGE2. The PGE2 technique makes use of
more specific enabling relations as the PGE1 method. The state space algorithm of the
PGE2 method requires the computation of all four possible effects of e1 on the guard
of another event e2 to determine the enabling relation ER(e1, e2) for each event tuple
(e1, e2). Although PGE2 turned out to be more effective than PGE1 with respect to
recognising more guard evaluations as redundant, one has witnessed larger runtimes for
the enabling analysis used to compute the required enabling relations for PGE2 as for
PGE1. In some cases, the runtime of the enabling analysis for PGE2 even outperformed
the performance improvement of PGE2. Therefore, PGE1 is often considered as more
attractive than PGE2 since the runtimes of the enabling analysis for PGE1 are usually
smaller and, at the same time, the performance improvement of PGE1 is similar to
that of PGE2. Both new state space exploration techniques can be used for optimising
explicit-state model checking algorithms for classical B and Event-B machines and have
been integrated into the ProB tool.

Partial order reduction. The application of partial order reduction for classical B
and Event-B is the second approach in this work developed for combatting the state
space explosion problem for B specifications. The work on optimising model checkers
for B using partial order reduction includes two main contributions: the development of

130

5.1. Summary

algorithms for applying the reduction technique on B specifications and the comparison
of the reduction algorithms with the reduction algorithm implemented in LTSmin.

The development of algorithms for applying the reduction technique on classical B
and Event-B models is the first successful attempt to apply partial order reduction
for both formal methods. The approach uses the ample set theory to develop the two
reduction algorithms presented in this work, denoted also as POR1 and POR2. Both
algorithms can be used for model checking invariant and LTL−X properties of B systems
by exploring only a fragment of the full state space of the checked B machine. Further,
the reduction algorithms guarantee the proper reduction of the state space using three
different exploration strategies: depth-first, breadth-first, and mixed breadth- and depth-
first search. This makes the reduction techniques highly beneficial for models that have
a huge number of states or infinite-state models; using a specific exploration strategy can
in some cases find an error in a model faster or even enable the reduced search algorithm
to find error states in infinite-state machines. Furthermore, the techniques can be applied
for three different heuristics, which are used for the selection of the ample set whose
transitions will be executed instead of enabled(s). The evaluation has shown that in
some cases the reduction gain can be significantly improved by changing the ample set
selection heuristic.

The reduction algorithms have been integrated in the ProB toolset and evaluated on a
large set of classical B and Event-B machines, many of which represent real-world systems.
The tests performed on both algorithms demonstrated that considerable reductions of
the state space could be obtained by classical B and Event-B models with a high degree
of independence between the events. This can be explained by the fact that partial order
reduction makes use of the commutativity of independent events. Contrary, minor or
no reductions are observed for B systems with very tight coupling between the events.
In cases, when minor or no reductions were observed, the runtimes of the reduction
algorithms were not very different from the runtimes of the ordinary exhaustive search.
The evaluation of the reduction algorithms has shown that noticeable reductions could
be mostly obtained for B specifications describing concurrent and reactive systems.

The research on investigating the application of partial order reduction on classical B and
Event-B has stimulated the enhancement of ProB’s LTSmin extension module [Ben+16]
to enable the LTSmin model checker to perform exhaustive error search using partial order
reduction for classical B and Event-B machines. The comparison of the ProB reduction
algorithms with the LTSmin reduction algorithm is the second main contribution in this
work concerning the optimisation of model checkers for B using partial order reduction.
The comparison showed that the LTSmin reduction algorithm makes use of a finer
heuristic for the satisfaction of the Dependency Enabling Condition (A 2.2’), which was
the main cause for the better reduction gain achieved by the LTSmin model checker in
comparison to the ProB model checker. Although LTSmin provides generally better
reduction gains than ProB, one has seen that the ProB reduction algorithms performed
equally good as the LTSmin reduction algorithm for B specifications where optimal
reduction gains could be achieved. Furthermore, for the most of the B specifications it

131

5. Conclusions and Future Work

was witnessed that the reduction gains provided by ProB were not significantly different
from the reduction gains by LTSmin; from the set of models that have been tested, only
two Event-B models have been found for which LTSmin performed much better than
ProB in regard to reducing the number of states.

The comparison between our reduction algorithms and the reduction algorithm imple-
mented in LTSmin was valuable not just to get an insight into the particulars of the
reduction approaches applied in ProB and LTSmin, but also to validate both implemen-
tations. The analysis of the reductions performed by both model checkers revealed an
error in the reduction algorithm of the LTSmin model checker, which was reported and
for which a solution was proposed for fixing the LTSmin reduction algorithm [Kör16].

5.2. Future Work

The reduction techniques presented in this work are used to optimise the ordinary and
LTL[e] model checkers of ProB. At the moment, checking LTL−X formulae by the
reduced search in ProB is facilitated using an off-line approach for checking LTL−X

properties. That is, for each LTL−X property φ the LTL[e] model checker of ProB
explores first the fragment of the state space of the respective model M needed to prove
φ and then constructs the tableau graph to prove whether M |= φ. One disadvantage
of the off-line approach is that it requires the exploration of the whole fragment of the
state space required to prove the respective LTL−X formula using partial order reduction.
Contrary to the off-line approach, the on-the-fly approach constructs the tableau during
the state space exploration and terminates as soon as an error state in the tableau is
found or it proves that all paths in the tableau cannot violate the checked LTL[e] formula.
In this way, enabling the LTL[e] model checker to check LTL−X formulae using partial
order reduction by means of the on-the-fly approach, one can profit from the reduced
search and the possibility to find error states earlier without exploring the necessary
fragment of the state space for checking the respective LTL−X formula. Future work will
involve the extension of the ProB LTL[e] model checker to support checking LTL−X

formulae by the reduced search using the on-the-fly approach.

Two reduction approaches have been developed in this thesis for improving the ProB
model checkers by means of partial order reduction. It was shown that the second
approach, also denoted as POR2, usually guarantees better state space reduction than
the first reduction approach, POR1, that we presented in this work. So far, no realistic
classical B or Event-B model has been found, except for some toy examples, for which
POR2 provides much better reductions than POR1. Future work will concentrate in
extending the set of B machines for comparing the reduction gains of both techniques
and systematically analyse the reductions performed by both reduction algorithms.

To satisfy the Dependency Enabling Condition (A 2.2’) for computing proper ample
sets the concept of the enabling graph EnablingGraphM was used, as introduced in

132

5.2. Future Work

Definition 2.13. Using EnablingGraphM , one can examine whether there are sequences of
events that may potentially enable an event which is dependent to some event of ample(s)
and in this way decide if ample(s) is a valid ample set for s with respect to (A 2.2’).
This, however, is a too restrictive condition since every edge e1 �→ e2 in EnablingGraphM

encodes the following information: e2 may become enabled after executing e1 from some
state in the machine (and not particularly from the currently explored state s). One
possible way for relaxing the condition is to augment the definition of the enabling graph
by providing all edges in EnablingGraphM with the so called enabling predicates (see
also Definition 1 in [BL11]). An enabling predicate in B for a tuple of events (e1, e2) is a
predicate which represents a condition P indicating under which circumstances e2 can
become enabled after the execution of e1. In case e1 has no parameters the enabling
predicate can be computed by means of [Se1]Ge2 , where Se1 represents the list of actions
in the action part of e1. The enabling predicate of the event tuple (Step1, Sync) of the
SyncThread machine from Example 4.1 can be determined as follows:

[SStep1](GSync) = [pc1 := pc1 + 1 ‖ v1 := v1 + 1](pc1 = n ∧ pc2 = n)
= (pc1 + 1 = n ∧ pc2 = n).

Consequently, one can determine from which states the execution of Step1 enables the
Sync event by evaluating (pc1 + 1 = n ∧ pc2 = n) in these states. Future work will be
concentrated in refining the reduction algorithms presented in this work by using the
notion of enabling predicates in order to weaken the Dependency Enabling Condition
(A 2.2’) and thus providing better state space reductions.

133

A
Summary of the Rules for the Guard of

a Generalised Substitution

This appendix summarises the list of rules for deriving the guard of generalised sub-
stitutions built by means of the syntactic extensions introduced mainly in [Abr96,
Chapter 4 and Chapter 5]. The rules should be viewed as a more concise way for deriving
the guard of a generalised substitution in comparison to the method for deriving the
guard of an substitution in Section 2.4. As in Section 2.4, the guard of a substitution is
inductively defined as shown in the table below.

S (Generalised Substitution) guard(S) (Guard)
skip TRUE
x := E TRUE
f(x) := E TRUE
x := bool(P) TRUE
BEGIN S END guard(S)
PRE P THEN S END P ∧ guard(S)
ANY t1, . . . , tn WHERE P THEN S END ∃(t1, . . . , tn) · P ∧ guard(S)
x :∈ U ∃ t · t ∈ U
x : (P) ∃ x′ · ([x, x′ := x0, x]P)
S || T guard(S) ∧ guard(T)
IF P THEN S ELSE T END (P ∧ guard(S)) ∨ (¬P ∧ guard(T))
IF P THEN S END ¬P ∨ guard(S)
IF P1 THEN S1 (P1 ∧ guard(S1))
ELSIF P2 THEN S2 ∨(¬P1 ∧ guard(IF P2 THEN S2
. . . ELSIF P3 THEN S3
ELSIF Pn THEN Sn . . .
END ELSIF Pn THEN Sn END))
IF P1 THEN S1 (P1 ∧ guard(S1))
ELSIF P2 THEN S2 ∨(¬P1 ∧ guard(IF P2 THEN S2
. . . ELSIF P3 THEN S3
ELSIF Pn THEN Sn . . .
ELSE T ELSIF Pn THEN Sn

END ELSE T END))

135

A. Summary of the Rules for the Guard of a Generalised Substitution

S (Generalised Substitution) guard(S) (Guard)
CHOICE S1 OR . . . OR Sn END guard(S1) ∨ . . . ∨ guard(Sn)
SELECT P THEN S END P ∧ guard(S)
SELECT P1 THEN S1 (P1 ∧ guard(S1))
WHEN P2 THEN S2 ∨(P2 ∧ guard(S2))
. . . ∨ . . .
WHEN Pn THEN Sn ∨(Pn ∧ guard(Sn))
END
SELECT P1 THEN S1 (P1 ∧ guard(S1))
WHEN P2 THEN S2 ∨(P2 ∧ guard(S2))
. . . ∨ . . .
WHEN Pn THEN Sn ∨(Pn ∧ guard(Sn))
ELSE T ∨(¬(P1 ∨ P2 ∨ . . . ∨ Pn) ∧ guard(T))
END
SELECT P1 THEN S1 TRUE , if guard(S1) = TRUE ,
WHEN P2 THEN S2 guard(S2) = TRUE
.
WHEN Pn THEN Sn guard(Sn) = TRUE ,
ELSE T guard(T) = TRUE
END
VAR t1, . . . , tn IN S END ∃(t1, . . . , tn) · guard(S)
ASSERT P THEN S END guard(S)
LET t1, . . . , tn BE ∃(t1, . . . , tn) · (

t1 = E1 t1 = E1
. . . ∧ . . .
tn = En ∧ tn = En

IN S END ∧ guard(S))
CASE E OF

EITHER l1 THEN S1 (E ∈ {l1} ∧ guard(S1))
OR l2 THEN S2 ∨(E ∈ {l2} ∧ guard(S2)

.
OR ln THEN Sn END ∨(E ∈ {ln} ∧ guard(Sn)

END ∨(E /∈ {l1, l2, . . . , ln})
CASE E OF

EITHER l1 THEN S1 (E ∈ {l1} ∧ guard(S1))
OR l2 THEN S2 ∨(E ∈ {l2} ∧ guard(S2)

.
OR ln THEN Sn ∨(E ∈ {ln} ∧ guard(Sn)
ELSE T END ∨(E /∈ {l1, l2, . . . , ln} ∧ guard(T))

END
S ; T guard(S)

136

B
Detailed Experiment Results (PGE)

The results listed in Table B.1 represent a more detailed version of the results presented in
Section 3.3, where we added for each of both PGE optimisations two further experiments.
The abbreviations of the experiments in Table B.1 should be read as follows:

• (BF/DF|BF|DF)+PGE (disabled): consistency checking by the respective search
strategy using the first PGE optimisation method (Lemma 3.1) predicting only the
disabled events in each state,

• (BF/DF|BF|DF)+PGE (enabling): consistency checking by the respective search
strategy using the first PGE optimisation method (Lemma 3.1) predicting only the
enabled events in each state,

• (BF/DF|BF|DF)+PGE (full): consistency checking by the respective search strategy
using the first PGE optimisation method (Lemma 3.1) predicting both the enabled
and disabled events in each state,

• (BF/DF|BF|DF)+PGE2 (disabled): consistency checking by the respective search
strategy using the second PGE optimisation method (Lemma 3.2) predicting only
the disabled events in each state,

• (BF/DF|BF|DF)+PGE2 (enabling): consistency checking by the respective search
strategy using the second PGE optimisation method (Lemma 3.2) predicting only
the enabled events in each state,

• (BF/DF|BF|DF)+PGE2 (full): consistency checking by the respective search
strategy using the second PGE optimisation method (Lemma 3.2) predicting both
the enabled and disabled events in each state.

All measurements in Table B.1 were made on an Intel(R) Xeon(R) CPU E5-2650L v3 @
1.80GHz with 67 GB RAM running Ubuntu 12.04.3 LTS.

Table B.1.: Detailed experimental results for PGE (times in seconds)
Model & Analysis Skipped/Total MC

State Space Stats. Algorithm Time Guard Tests Time
Complex Guards BF/DF - 0/2,099,622 478.105

(Best-Case) BF/DF+PGE (full) 5.297 1,899,620/2,099,622 153.052
Continued on next page

137

B. Detailed Experiment Results (PGE)

Table B.1 – continued from previous page
Model & Analysis Skipped/Total MC

State Space Stats. Algorithm Time Guard Tests Time
Events: 21 BF/DF+PGE (disabled) 2.399 1,899,620/2,099,622 153.151
States: 99,982 BF/DF+PGE (enabled) 17.644 0/2,099,622 510.349
Transitions: 99,984 BF/DF+PGE2 (full) 13.505 1,899,620/2,099,622 154.727

BF/DF+PGE2 (disabled) 2.403 1,899,620/2,099,622 152.348
BF/DF+PGE2 (enabled) 11.055 0/2,099,622 517.860
BF - 0/2,099,622 505.372
BF+PGE (full) 5.404 1,899,620/2,099,622 156.004
BF+PGE (disabled) 2.416 1,899,620/2,099,622 150.417
BF+PGE (enabled) 11.824 0/2,099,622 509.082
BF+PGE2 (full) 13.246 1,899,620/2,099,622 152.664
BF+PGE2 (disabled) 2.438 1,899,620/2,099,622 156.891
BF+PGE2 (enabled) 11.824 0/2,099,622 509.471
DF - 0/2,099,622 499.130
DF+PGE (full) 12.748 1,899,620/2,099,622 151.406
DF+PGE (disabled) 2.416 1,899,620/2,099,622 150.417
DF+PGE (enabled) 16.929 0/2,099,622 510.709
DF+PGE2 (full) 12.381 1,899,620/2,099,622 152.634
DF+PGE2 (disabled) 2.246 1,899,620/2,099,622 151.176
DF+PGE2 (enabled) 10.874 0/2,099,622 507.880

CAN BUS BF/DF - 0/2,784,600 166.194
BF/DF+PGE (full) 0.928 2,715,252/2,784,600 85.933

Events: 21 BF/DF+PGE (disabled) 0.852 2,434,135/2,784,600 87.437
States: 132,600 BF/DF+PGE (enabled) 2.763 281,153/2,784,600 189.087
Transitions: 340,267 BF/DF+PGE2 (full) 5.007 2,716,188/2,784,600 91.354

BF/DF+PGE2 (disabled) 1.900 2,433,758/2,784,600 88.584
BF/DF+PGE2 (enabled) 3.377 282,185/2,784,600 191.130
BF - 0/2,784,600 161.356
BF+PGE (full) 0.932 2,751,150/2,784,600 86.365
BF+PGE (disabled) 0.851 2,464,391/2,784,600 81.300
BF+PGE (enabled) 2.760 286,759/2,784,600 189.084
BF+PGE2 (full) 5.000 2,752,136/2,784,600 90.830
BF+PGE2 (disabled) 1.894 2,464,391/2,784,600 83.243
BF+PGE2 (enabled) 3.383 287,745/2,784,600 195.041
DF - 0/2,784,600 168.386
DF+PGE (full) 0.937 2,705,587/2,784,600 89.829
DF+PGE (disabled) 0.845 2,422,033/2,784,600 89.856
DF+PGE (enabled) 2.767 283,554/2,784,600 192.368
DF+PGE2 (full) 4.932 2,706,548/2,784,600 93.065
DF+PGE2 (disabled) 1.905 2,422,033/2,784,600 91.947
DF+PGE2 (enabled) 3.382 284,515/2,784,600 196.508

Lift BF/DF - 0/1,222,746 144.970
BF/DF+PGE (full) 6.111 954,955/1,222,746 122.749

Continued on next page

138

Table B.1 – continued from previous page
Model & Analysis Skipped/Total MC

State Space Stats. Algorithm Time Guard Tests Time
Events: 21 BF/DF+PGE (disabled) 3.933 762,939/1,222,746 119.782
States: 58,226 BF/DF+PGE (enabled) 3.372 190,827/1,222,746 156.482
Transitions: 357,147 BF/DF+PGE2 (full) 18.740 1,110,840/1,222,746 124.571

BF/DF+PGE2 (disabled) 6.317 790,456/1,222,746 121.301
BF/DF+PGE2 (enabled) 12.526 196,294/1,222,746 157.568
BF - 0/1,222,746 141.637
BF+PGE (full) 6.141 1,079,490/1,222,746 123.167
BF+PGE (disabled) 3.864 863,494/1,222,746 113.382
BF+PGE (enabled) 3.309 215,996/1,222,746 155.947
BF+PGE2 (full) 18.433 1,110,840/1,222,746 125.230
BF+PGE2 (disabled) 6.336 891,217/1,222,746 113.960
BF+PGE2 (enabled) 12.581 219,623/1,222,746 157.500
DF - 0/1,222,746 144.532
DF+PGE (full) 6.126 943,396/1,222,746 124.196
DF+PGE (disabled) 3.856 760,944/1,222,746 123.770
DF+PGE (enabled) 3.280 182,452/1,222,746 160.342
DF+PGE2 (full) 18.549 970,605/1,222,746 126.773
DF+PGE2 (disabled) 6.294 783,908/1,222,746 122.496
DF+PGE2 (enabled) 12.545 186,697/1,222,746 160.674

Cruise Control BF/DF - 0/35,386 3.906
BF/DF+PGE (full) 1.766 33,317/35,386 3.720

Events: 26 BF/DF+PGE (disabled) 1.112 17,709/35,386 3.776
States: 1,361 BF/DF+PGE (enabled) 1.252 15,504/35,386 4.268
Transitions: 25,697 BF/DF+PGE2 (full) 8.362 34,143/35,386 3.967

BF/DF+PGE2 (disabled) 4.878 18,068/35,386 3.927
BF/DF+PGE2 (enabled) 3.966 16,076/35,386 4.392
BF - 0/35,386 3.937
BF+PGE (full) 1.769 34,356/35,386 3.750
BF+PGE (disabled) 1.153 18,239/35,386 3.810
BF+PGE (enabled) 1.235 16,117/35,386 4.289
BF+PGE2 (full) 8.343 34,757/35,386 3.975
BF+PGE2 (disabled) 4.908 18,383/35,386 3.891
BF+PGE2 (enabled) 4.005 16,374/35,386 4.396
DF - 0/35,386 3.974
DF+PGE (full) 1.760 32,915/35,386 3.772
DF+PGE (disabled) 1.143 17,630/35,386 3.872
DF+PGE (enabled) 1.234 15,285/35,386 4.483
DF+PGE2 (full) 8.530 33,964/35,386 4.006
DF+PGE2 (disabled) - 17,955/35,386 2.519
DF+PGE2 (enabled) 3.940 16,009/35,386 4.423

Landing Gear v1 BF/DF - 0/2,320 0.190
BF/DF+PGE (full) 0.27 2,184/2,320 0.134

Continued on next page

139

B. Detailed Experiment Results (PGE)

Table B.1 – continued from previous page
Model & Analysis Skipped/Total MC

State Space Stats. Algorithm Time Guard Tests Time
Events: 16 BF/DF+PGE (disabled) 0.206 1,535/2,320 0.132
States: 145 BF/DF+PGE (enabled) 0.270 654/2,320 0.194
Transitions: 674 BF/DF+PGE2 (full) 0.370 2,192/2,320 0.144

BF/DF+PGE2 (disabled) 0.278 1,536/2,320 0.128
BF/DF+PGE2 (enabled) 0.316 653/2,320 0.204
BF - 0/2,320 0.182
BF+PGE (full) 0.274 2,260/2,320 0.130
BF+PGE (disabled) 0.206 1,598/2,320 0.120
BF+PGE (enabled) 0.268 664/2,320 0.196
BF+PGE2 (full) 0.374 2,258/2,320 0.138
BF+PGE2 (disabled) 0.278 1,596/2,320 0.132
BF+PGE2 (enabled) 0.312 664/2,320 0.206
DF - 0/2,320 0.184
DF+PGE (full) 0.278 2,160/2,320 0.126
DF+PGE (disabled) 0.204 1,514/2,320 0.130
DF+PGE (enabled) 0.276 648/2,320 0.185
DF+PGE2 (full) 0.366 2,158/2,320 0.138
DF+PGE2 (disabled) 0.272 1,512/2,320 0.136
DF+PGE2 (enabled) 0.314 648/2,320 0.206

Landing Gear v2 BF/DF - 0/31,128 1.564
BF/DF+PGE (full) 0.348 30,115/31,128 1.096

Events: 24 BF/DF+PGE (disabled) 0.247 24,278/31,128 1.166
States: 1,297 BF/DF+PGE (enabled) 0.344 7,958/31,128 2.097
Transitions: 6,338 BF/DF+PGE2 (full) 0.496 30,143/31,128 1.208

BF/DF+PGE2 (disabled) 0.348 24,455/31,128 1.186
BF/DF+PGE2 (enabled) 0.396 6,116/31,128 2.161
BF - 0/31,128 1.555
BF+PGE (full) 0.350 20,356/31,128 1.092
BF+PGE (disabled) 0.276 16,769/31,128 1.134
BF+PGE (enabled) 0.379 7,643/31,128 2.251
BF+PGE2 (full) 0.496 20,340/31,128 1.196
BF+PGE2 (disabled) 0.352 16,769/31,128 1.160
BF+PGE2 (enabled) 0.396 6,299/31,128 2.176
DF - 0/31,128 1.541
DF+PGE (full) 0.340 29,862/31,128 1.106
DF+PGE (disabled) 0.274 24,025/31,128 1.186
DF+PGE (enabled) 0.340 7,710/31,128 2.159
DF+PGE2 (full) 0.498 29,903/31,128 1.218
DF+PGE2 (disabled) 0.354 24,022/31,128 1.198
DF+PGE2 (enabled) 0.400 5,859/31,128 2.184

Landing Gear v4 BF/DF - 0/552,224 108.618
BF/DF+PGE (full) 38.139 509,175/552,224 34.335

Continued on next page

140

Table B.1 – continued from previous page
Model & Analysis Skipped/Total MC

State Space Stats. Algorithm Time Guard Tests Time
Events: 32 BF/DF+PGE (disabled) 27.232 412,100/552,224 38.358
States: 17,257 BF/DF+PGE (enabled) 18.983 95,605/552,224 115.509
Transitions: 100,878 BF/DF+PGE2 (full) 94.589 509,285/552,224 36.554

BF/DF+PGE2 (disabled) 49.802 413,712/552,224 40.415
BF/DF+PGE2 (enabled) 45.148 95,839/552,224 117.083
BF - 0/552,224 108.780
BF+PGE (full) 38.143 539,388/552,224 38.601
BF+PGE (disabled) 27.237 440,249/552,224 33.591
BF+PGE (enabled) 18.985 99,139/552,224 114.411
BF+PGE2 (full) 94.592 539,715/552,224 36.321
BF+PGE2 (disabled) 49.791 440,576/552,224 34.667
BF+PGE2 (enabled) 45.151 99,140/552,224 116.782
DF - 0/552,224 109.052
DF+PGE (full) 38.181 496,645/552,224 36.193
DF+PGE (disabled) 27.233 401,795/552,224 39.297
DF+PGE (enabled) 19.091 94,849/552,224 114.558
DF+PGE2 (full) 94.590 497,371/552,224 37.784
DF+PGE2 (disabled) 49.787 402,522/552,224 40.170
DF+PGE2 (enabled) 45.155 94,850/552,224 116.613

All Enabled BF/DF - 0/600,012 82.845
(Worst-Case) BF/DF+PGE (full) 0.285 0/600,012 100.536

Events: 6 BF/DF+PGE (disabled) 0.202 0/600,012 96.667
States: 100,002 BF/DF+PGE (enabled) 0.221 0/600,012 98.481
Transitions: 550,003 BF/DF+PGE2 (full) 6.565 0/600,012 108.987

BF/DF+PGE2 (disabled) 6.506 0/600,012 98.692
BF/DF+PGE2 (enabled) 0.261 0/600,012 104.742
BF - 0/600,012 81.509
BF+PGE (full) 0.296 0/600,012 99.427
BF+PGE (disabled) 0.198 0/600,012 97.587
BF+PGE (enabled) 0.214 0/600,012 98.632
BF+PGE2 (full) 6.582 0/600,012 109.318
BF+PGE2 (disabled) 6.492 0/600,012 98.755
BF+PGE2 (enabled) 0.263 0/600,012 103.845
DF - 0/600,012 78.217
DF+PGE (full) 0.293 0/600,012 97.480
DF+PGE (disabled) 0.198 0/600,012 93.795
DF+PGE (enabled) 0.212 0/600,012 95.827
DF+PGE2 (full) 6.543 0/600,012 106.851
DF+PGE2 (disabled) 6.495 0/600,012 96.313
DF+PGE2 (enabled) 0.262 0/600,012 100.560

141

C
POR1 vs. POR2

Table C.1 lists some of the results of the comparison of both reduction Algorithms
presented in Chapter 4. Each experiment in Table C.1 has been performed ten times and
the geometric means of the results (states, transitions, runtimes) have been reported in
Table C.1. For both reduction algorithms (POR1 and POR2) we used a mixed breadth-
and depth-first search and the random heuristic for computing the respective ample set
in each state. The abbreviations in Table C.1 should be read as follows:

• Dlk: Checking the respective model for deadlock freedom.

• Dlk (POR1): Checking the respective model for deadlock freedom using Algorithm 7
for performing reduced search.

• Dlk (POR2): Checking the respective model for deadlock freedom using Algorithm 9
for performing reduced search.

• Dlk + Inv: Checking simultaneously for deadlock freedom and invariant preserva-
tion.

• Dlk + Inv (POR1): Checking simultaneously for deadlock freedom and invariant
preservation using the first reduction approach (Algorithm 7 and Algorithm 8).

• Dlk + Inv (POR2): Checking simultaneously for deadlock freedom and invariant
preservation using the first reduction approach (Algorithm 9 and Algorithm 8).

All measurements in Table C.1 were made on an Intel(R) Xeon(R) CPU E5-2650L v3 @
1.80GHz with 67 GB RAM running Ubuntu 12.04.3 LTS.

Table C.1.: Part of the experimental results for POR1 vs. POR2 (times in seconds)
Analysis MC

Model Algorithm States Transitions Time Time
Concurrent Dlk 110,813 325,004 - 29.640
Counters Dlk (POR1) 152 154 0.181 0.080

Dlk (POR2) 152 154 0.185 0.069
Dlk + Inv 5,866 16,967 - 1.972∗

Dlk + Inv (POR1) 827 1,527 0.167 0.375∗

Dlk + Inv (POR2) 907 1,694 0.169 0.378∗

CAN BUS Dlk 132,600 340,267 - 160.279
Continued on next page

143

C. POR1 vs. POR2

Table C.1 – continued from previous page
Analysis MC

Model Algorithm States Transitions Time Time
Dlk (POR1) 81,591 141,496 1.454 125.426
Dlk (POR2) 81,588 141,493 1.451 125.364
Dlk + Inv 132,600 340,267 - 201.784
Dlk + Inv (POR1) 113,103 262,291 1.912 214.235
Dlk + Inv (POR2) 113,101 262,432 1.946 211.415

Mechanical Press Dlk 2,817 18,946 - 3.705
Machine v7b Dlk (POR1) 629 1,510 0.477 1.227

Dlk (POR2) 629 1,524 0.455 1.313
Dlk + Inv 2,817 18,946 - 3.633
Dlk + Inv (POR1) 2,815 14,080 0.484 5.435
Dlk + Inv (POR2) 2,815 14,097 0.457 5.466

BPEL v6 Dlk 2,248 4,960 - 2.256
Dlk (POR1) 538 602 0.381 0.675
Dlk (POR2) 537 601 0.386 0.689
Dlk + Inv 2,248 4,960 - 3.000
Dlk + Inv (POR1) 2,248 4,960 1.234 3.765
Dlk + Inv (POR2) 2,248 4,960 1.143 3.692

Conc v1 Dlk 128,562 290,558 - 97.659
Dlk (POR1) 82,551 124,411 0.575 89.881
Dlk (POR2) 82,537 124,391 0.584 87.914
Dlk + Inv 128,562 290,558 - 268.084
Dlk + Inv (POR1) 128,562 290,558 4.059 311.727
Dlk + Inv (POR2) 128,562 290,558 4.067 308.722

Siemens Mini Dlk 180 992 - 0.178
Pilot v0 Dlk (POR1) 60 212 0.143 0.079

Dlk (POR2) 91 316 0.137 0.090
Dlk + Inv 180 992 - 0.225
Dlk + Inv (POR1) 180 992 0.219 0.236
Dlk + Inv (POR2) 180 992 0.215 0.228

Token Ring Dlk 16,389 90,133 - 12.975
Dlk (POR1) 14,127 35,991 0.112 11.542
Dlk (POR2) 14,079 35,718 0.112 11.013
Dlk + Inv 16,389 90,133 - 12.969
Dlk + Inv (POR1) 16,220 67,527 0.118 13.852
Dlk + Inv (POR2) 16,226 67,422 0.123 13.400

Cruise Control Dlk 1,361 25,697 - 3.709
Dlk (POR1) 1,361 25,661 1.725 5.683
Dlk (POR2) 1,361 25,674 1.687 14.145
Dlk + Inv 1,361 25,697 - 4.225
Dlk + Inv (POR1) 1,361 25,697 2.358 6.244
Dlk + Inv (POR2) 1,361 25,697 2.368 14.634

Reading Dlk 115 965 - 0.328
Continued on next page

144

Table C.1 – continued from previous page
Analysis MC

Model Algorithm States Transitions Time Time
Dlk (POR1) 51 318 0.196 0.175
Dlk (POR2) 47 302 0.185 0.162
Dlk + Inv 115 965 - 0.368
Dlk + Inv (POR1) 115 965 0.237 0.301
Dlk + Inv (POR2) 115 965 0.234 0.280

Peterson Dlk 19 33 - 0.077
Dlk (POR1) 8 12 0.200 0.036
Dlk (POR2) 8 12 0.198 0.029
Dlk + Inv 19 33 - 0.101
Dlk + Inv (POR1) 19 33 0.266 0.051
Dlk + Inv (POR2) 19 33 0.267 0.042

Threads Dlk 20,810 41,213 - 4.558
Dlk (POR1) 408 409 0.163 0.142
Dlk (POR2) 408 409 0.164 0.141
Dlk + Inv 20,810 41,213 - 5.756
Dlk + Inv (POR1) 20,810 41,213 0.147 7.831
Dlk + Inv (POR2) 20,810 41,213 0.155 7.219

Sieve Dlk 48,486 174,626 - 121.190
Dlk (POR1) 35,851 89,105 4.140 107.132
Dlk (POR2) 37,202 96,078 4.148 116.228
Dlk + Inv 48,486 174,626 - 142.086
Dlk + Inv (POR1) 48,028 156,405 15.237 162.352
Dlk + Inv (POR2) 48,120 156,949 15.252 167.574

Set Laws Nat Dlk + Inv+ —– —— - -
Dlk + Inv (POR1)+ —– —— - -
Dlk + Inv (POR2)+ —– —— - -
Dlk 35,938 1,016,039 - 124.358
Dlk (POR1) 34,740 345,598 0.340 109.616
Dlk (POR2) 34,719 345,311 0.344 109.772

Phil v1 Dlk 82 234 - 0.135
Dlk (POR1) 31 48 0.153 0.044
Dlk (POR2) 31 48 0.162 0.040
Dlk + Inv 82 234 - 0.139
Dlk + Inv (POR1) 31 48 0.154 0.050
Dlk + Inv (POR2) 31 48 0.170 0.051

Phil v2 Dlk 2,351 4,528 - 4.315
Dlk (POR1) 2,126 3,249 0.372 4.695
Dlk (POR2) 2,126 3,249 0.364 4.700
Dlk + Inv 2,351 4,528 - 4.563
Dlk + Inv (POR1) 2,339 4,267 0.426 5.524
Dlk + Inv (POR2) 2,339 4,263 0.464 5.449

(*) Invariant Violation
(+) Experiment terminated unexpectedly due to an instantiation error 129 is 135 + 1.

145

D
ProB vs. LTSmin without

Guard-Splitting

The tests in Table D.1 show some of the results performed for comparing the reduction
algorithms of ProB and LTSmin. The results produced by the LTSmin model checker
in Table D.1 represent the performance of the reduced search of LTSmin when no guard
splitting is applied. The comparison intends to show the importance of using guard
splitting to weaken the Enabling Dependency Condition (A 2.2’) in order to achieve
better state space reductions. As the results in Table D.1 show, disabling the division
of the event guards leads to reduction results similar to those of the ProB’s reduction
algorithm. The abbreviations in Table D.1 should be understood as follows:

• ProB (POR): Deadlock checking using the first reduction algorithm of ProB (see
also Algorithm 7 and Algorithm 8 presented in Chapter 4).

• ProB (POR+least): Deadlock checking using the first reduction algorithm of
ProB with the least heuristic for selecting the ample set with the least number of
elements in each state.

• LTSmin (POR): Deadlock checking with the reduction algorithm of LTSmin with
disabled guard splitting.

• LTSmin (POR+Caching): Deadlock checking with the reduction algorithm of
LTSmin with disabled guard splitting and using the caching mechanism for opti-
mising the exploration of the state space.

The tests in Table D.1 were carried out on a Mac Book Pro, 2,9 GHz Intel Core i5 with
16 GB running MacOS Sierra (Version 10.12.3).

Table D.1.: ProB vs. LTSmin with disabled guard splitting (times in seconds)
Analysis MC

Model Tool (Approach) States Transitions Time Time
CAN BUS ProB (POR) 81,612 141,517 1.188 59.002
States: 132,600 LTSmin (POR) 80,292 140,195 0.398 62.922
Transitions: 340,267
Phil v1 ProB (POR) 31 48 0.078 0.022
States: 82 LTSmin (POR) 33 48 0.101 0.020

Continued on next page

147

D. ProB vs. LTSmin without Guard-Splitting

Table D.1 – continued from previous page
Analysis MC

Model Algorithm States Transitions Time Time
Transitions: 233
Phil v2 ProB (POR) 2,126 3,249 0.183 2.016
States: 2,351 LTSmin (POR) 2,126 3,248 0.963 6.243
Transitions: 4,528
Set Laws Nat ProB (POR) 34,739 345,547 0.168 44.791
States: 35,938 ProB (POR+least) 34 280 0.172 0.07
Transitions:
1,016,039

LTSmin (POR) 34 280 0.078 0.095

Conc v1 ProB (POR) 82,484 124,331 0.429 37.791
States: 128,562 LTSmin (POR) 65,303 100,991 14.012 38.118
Transitions: 290,558
Conc v4 ProB (POR) 178,131 279,392 0.698 93.229
States: 202,746 LTSmin (POR) 164,972 265,073 7.458 138.165
Transitions: 416,259
Cruise Control ProB (POR) 1,361 25,661 0.806 2.636
States: 1,361 LTSmin (POR) 1,362 25,661 0.932 4.374
Transitions: 25,697
Fact v1 ProB (POR) 112,185 380,702 1.023 43.707
States: 112,185 LTSmin (POR) 112,185 380,701 16.553 115.608
Transitions: 380,701
Fact v2 ProB (POR) 112,185 381,510 0.109 42.316
States: 112,185 LTSmin (POR) 112,185 381,510 17.145 114.516
Transitions: 381,510
Mechanical Press v7 ProB (POR) 629 1,510 0.227 0.536
States: 2,817 LTSmin (POR) 351 755 0.399 0.249
Transitions: 18,946
Siemens Mini Pilot v0 ProB (POR) 60 212 0.071 0.032
States: 181 LTSmin (POR) 61 212 0.091 0.041
Transitions: 991
BPEL v6 ProB (POR) 534 598 0.175 0.294
States: 2,248 LTSmin (POR) 525 588 20.709 0.481
Transitions: 4,960
Threads ProB (POR) 408 409 0.086 0.068
States: 20,810 LTSmin (POR) 408 408 1.924 0.148
Transitions: 41,213
Concurrent Counters ProB (POR) 152 154 0.088 0.031
States: 110,813 LTSmin (POR) 154 154 0.101 0.044
Transitions: 325,004
Sieve ProB (POR) 35,838 89,092 4.011 64.588
States: 48,486 LTSmin 31,873 66,181 139.980 3.188
Transitions: 174,626 (POR+Caching)

148

E
Detailed Description of the

Benchmarks

This appendix gives a short overview of some of the most notable classical B and Event-B
models used in the tests performed for the evaluation of the optimisation techniques in
this thesis. Additionally, there is some statistical information provided such as the number
of variables and events defined in the machines presenting the respective models. All
classical B and Event-B machines listed below can be downloaded from https://www3.
hhu.de/stups/internal/benchmarks/. The names used for denoting the machines
being tested in the evaluation tables above denote the following specifications:

• BPEL v6
BPEL v6 is a classical B machine representing the last refinement of a case study
of a business process for a purchase order [AA09].
Stats: states: 2,248, variables: 14, lines: 371, operations: 15.

• CAN BUS
A model of a controller area network (CAN) bus. This Event-B model was developed
by John Colley as part of the European Commission ADVANCE Project1 and was
used as a benchmark for evaluating validation and verification techniques in various
works such as [HL14], [Ben15], and [Ben+16].
Stats: states: 132,600, variables: 18, lines: 315, events: 21.

• Cruise Controller
Volvo Vehicle Function. This B specification was developed by Volvo as part of the
European Commission IST Project PUSSEE (IST-2000-30103).
Stats: states: 1,361, variables: 15, lines: 604, operations: 26.

• Fact
Fact v1 and Fact v2 represent the first and the second refinement level of an
Event-B model of a simple parallel algorithm for integer factorisation. The model
was recreated from [Deg12] for three computational slave processes searching for a
factor of the integer 53.
Stats for Fact v2 : states: 112,185, variables: 10, lines: 171, events: 9.

1http://www.advance-ict.eu/

149

E. Detailed Description of the Benchmarks

• Lift
Lift represents a classical B machine modelling a lift system.
Stats: states: 58,226, variables: 10, lines: 231, operations: 21.

• Landing Gear
The Landing Gear machines used for the evaluation of the optimisations in this
work represent different refinement levels of an Event-B specification modelling the
landing gear system from [BW14]. The Event-B model was presented within the
scope of the case study track of the ABZ 2014 conference [Han+14]. The machines
tested in this work are denoted by Landing Gear v1, Landing Gear v2, and Landing
Gear v4, which represent the first, second and the fourth refinement level of the
respective Event-B model, respectively.
Stats for Landing Gear v1 : states: 145, variables: 6, lines: 242, events: 16.
Stats for Landing Gear v2 : states: 1,297, variables: 10, lines: 428, events: 24.
Stats for Landing Gear v4 : states: 17,257, variables: 25, lines: 1021, events:
32.

• Peterson
Peterson represents a classical B machine of the Peterson algorithm presented
in [Att05].
Stats: states: 115, variables: 7, lines: 131, operations: 6.

• Phil
Phil v1 and Phil v2 represent the first and the second refinement level of an Event-B
model representing a case study of the dinning philosophers problem with four
philosophers. The Event-B model was recreated from [Bos+12].
Stats for Phil v1 : states: 82, variables: 4, lines: 70, events: 5.
Stats for Phil v2 : states: 2,351, variables: 8, lines: 354, events: 21.

• Siemens Mini Pilot v0
The classical B model Siemens Mini Pilot v0 models a fault-tolerant automatic
train protection system used for preventing that more than one train can enter a
track at the same time. The model was created within the DEPLOY project2.
Stats: states: 181, variables: 9, lines: 33, operations: 9.

• Sieve
Sieve represents an Event-B model formalising a parallel version (for four processes)
of the algorithm of the sieve of Eratosthenes for computing all prime numbers from
2 to 30.
Stats: states: 48,486, variables: 28, lines: 409, events: 17.

• Threads
Threads is the classical B machine from Figure 4.1 for n = 51.
Stats: states: 20,810, variables: 3, lines: 32, operations: 3.

• Token Ring
2http://www.deploy-project.eu

150

Token Ring is the classical B model of a token ring protocol.
Stats: states: 16,389, variables: 3, lines: 24, operations: 4.

Short overview of the Event-B models from the Abrial’s book “Modeling in Event-B:
System and Software Engineering” [Abr10] used for the evaluation of the optimisation
algorithms is listed below.

• Conc v1 and Conc v4
Both machines Conc v1 and Conc v4 represent the first and the fourth refinement
level of an Event-B model of a four-slot fully asynchronous mechanism [Sim90]
presented as an example for concurrent program development in [Abr10, Chapter 7].
For the evaluation of the optimisation techniques both Event-B models were made
finite state.
Stats for Conc v1 : states: 128,562, variables: 14, lines: 246, events: 12.
Stats for Conc v4 : states: 202,746, variables: 25, lines: 513, events: 10.

• Mechanical Press v7
An Event-B machine representing the seventh and last refinement of a mechanical
press controller presented in [Abr10, Chapter 3].
Stats: states: 2,817, variables: 14, lines: 946, events: 28.

151

F
Experimental Setup

The purpose of this appendix is to give an overview of how the experiments in the tables
above were carried out and enable the readers to experiment with the model checkers of
ProB and LTSmin. This overview should help the interested readers to reproduce the
experiments in this work.

The benchmarks in this work were ran with the command line version of ProB (version
1.6.2-beta1) and the sequential command line tool prob2lts-seq of the LTSmin tool
installed using the version from 11th of January 2017 of the next branch from the
LTSmin’s Github repository [Mei17]. The ProB tool can be downloaded from https:
//www3.hhu.de/stups/prob/index.php/Download and the LTSmin toolset is available
on http://fmt.cs.utwente.nl/tools/ltsmin/. It is recommended to use the probcli
command release version 1.7.0-final. To apply model checking on classical B and Event-B
models you have to install LTSmin locally after checking out the next branch from the
LTSmin’s Github repository [Mei17]. A short guide of how to build LTSmin from the
Git repository can be found here: http://fmt.cs.utwente.nl/tools/ltsmin/#sec7.

ProB. To check exhaustively a classical B or an Event-B machine for consistency
and deadlock freedom use one of the model checking options of probcli: -mc <nr>
(model checking, where the maximum number of states to check is limited to <nr>) or
-model check to check a machine without limiting the number of states being checked.
In case no invariant checking or deadlock checking should be performed use the options
-noinv and -nodead, respectively. It is recommended to add the options -nogoal and
-noass to every execution of the probcli command in order to avoid the interruption of
the ordinary ProB model checker by finding a user-defined goal or an assertion violation
in the checked machine. By default the probcli command uses a mixed breadth- and
depth-first exploration strategy. Performing exhaustive search for errors using only the
depth-first or breadth-first search use the options -bf and -df, respectively. To check,
for example, the classical B machine from Figure 4.1 for deadlock freedom only using a
depth-first search strategy enter the following command:

probcli -model check -noinv -df SyncThreads.mch

To enable the optimisation approaches (PGE and POR) presented in this work use the
preference option -p PREF Val, where PREF is the preference to which the value Val is
assigned. In the case of the PGE approach the preference is pge and possible values are:

153

F. Experimental Setup

off, full, disabled, enabled, full2, disabled2, enabled2. All option values ending
with 2 are for using the second partial guard evaluation approach (PGE2).1 The option
value disabled means that only the guard tests of these events are skipped that are
found to be disabled at the respective states by means of Algorithm 6. Accordingly,
enabled stands for skipping the guard tests of those events that are found to be enabled
at the respective states. The option full sets the PGE algorithm to make use of both:
predicted enabled and disabled events. To perform, for example, exhaustive error search
on SyncThreads.mch using the PGE optimisation that makes use only of the predicted
disabled events enter the following command:

probcli -model check -p pge disabled SyncThreads.mch

To use the reduced search of ProB from Chapter 4 use the por preference. There are
three possible values for the por preference: off, ample sets, and ample sets2. The
preference values ample sets and ample sets2 are used to enable the ProB model
checker to perform reduced error search using the techniques POR1 (see also Algorithm 7
and Algorithm 8) and POR2 (see also Algorithm 9 and Algorithm 8), respectively.
Both optimisation approaches POR and PGE are orthogonal to each other and can be
used simultaneously for optimising model checking of B specifications. For instance, to
perform reduced deadlock error search using additionally the PGE optimisation on the
SyncThreads machine enter the following command:

probcli -model check -p por ample sets -p pge full SyncThreads.mch

LTSmin. To perform model checking of classical B and Event-B machines with the
LTSmin model checker one needs both command line tools probcli and prob2lts-seq.
The command tool prob2lts-seq is one of the LTSmin command tools, which is
used to check specifications in one of the formal languages supported by ProB by
means of the sequential state space generator of LTSmin. To check B specifications by
prob2lts-seq one has to start first the LTSMin server from ProB using the -ltsmin2
option giving an endpoint path as an argument and the path to the B model intended
to be checked. The command for starting the LTSmin server using the endpoint path
/tmp/ltsmin-seq-dead-por.probz to check the SyncThreads machine looks as follows:

probcli -ltsmin2 /tmp/ltsmin-seq-dead-por.probz SyncThreads.mch

As next, one has to run the prob2lts-seq command line tool to check the model. To
perform deadlock error search by LTSmin use the option -d. For enabling the reduced
error search of the LTSmin tool use the option --por. To check SyncThreads.mch for
deadlock freedom using the reduced search algorithm of LTSmin, provided an LTSMin
server with the endpoint path /tmp/ltsmin-seq-dead-por.probz is already started,
enter the following command:

prob2lts-seq -d /tmp/ltsmin-seq-dead-por.probz --por

Note that the endpoint path for the LTSMin server has to end with the suffix .probz.
1See also Lemma 3.2.

154

G
Contribution Papers

This thesis is mainly based on the work of four papers: two conference and two journal
articles. The journal articles are the extended versions of the conference papers. All
articles have successfully undergone the rigorous peer review process of the respective
conference or journal.

The first article “Optimising the ProB model checker for B using partial order reduc-
tion” [DL14] was co-authored with Michael Leuschel and was published in the proceedings
of the Software Engineering and Formal Methods (SEFM) conference in 2014 (LNCS
8702). Michael Leuschel contributed to the improvement of the presentation of the paper
and the writings. We were invited to publish an extended version of the paper in the
journal for Formal Aspects of Computing (FAoC) [DL16b]. In the process of work on the
journal article we found an error in the reduction algorithm presented in the conference
paper. As a result, we fixed the reduction algorithm and provided a proof of correctness.
Additionally, the journal article also extended the work of the conference paper by adding
a thorough discussion on how the reduction algorithm can be applied for checking LTL
formulae with the ProB LTL[e] model checker using partial order reduction.

The second conference paper “Enabling Analysis for Event-B” [DL16a] was also co-
authored with Michael Leuschel. The paper was published in the proceedings of the
ABZ conference in 2016 (LNCS 9675). The paper includes both the presentation of the
enabling analysis (Section 2) and the partial guard evaluation optimisation (Section 3).
Michael Leuschel contributed a lot to the presentation of the theory of the enabling
analysis. The visualisation of the enabling relations by means of a directed graph with
four nodes (see, for example, Figure 2.2) was his idea, as well as the categorisation of
the enabling relations in different groups. Michael Leuschel also implemented the initial
version of the enabling analysis. An extended version of the paper was submitted and
accepted for publication in the journal for Science of Computer Programming [DL17]. The
journal version improves the presentation of the enabling analysis, presents an algorithm
for the computation of the enabling relations of classical B and Event-B machines, adds
a thorough discussion about the application of the enabling analysis on classical B, and
presents an improved version of the partial guard evaluation approach.

155

Bibliography

[11] DVE and meanDVE Language Specification. https://is.muni.cz/www/208047/
meandve.pdf. Jan. 3, 2011.

[AA09] Idir Ait-Sadoune and Yamine Ait-Ameur. ”A Proof Based Approach for Modelling
and Verifying Web Services Compositions“. In: ICECCS ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 1–10. isbn: 978-0-7695-3702-3. doi: 10.1109/
ICECCS.2009.48.

[Abr+06] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. ”An
Open Extensible Tool Environment for Event-B“. In: Formal Methods and Software
Engineering: 8th International Conference on Formal Engineering Methods, ICFEM
2006, Macao, China, November 1-3, 2006. Proceedings. Ed. by Zhiming Liu and
Jifeng He. Vol. 4260. LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 588–605. isbn: 978-3-540-47462-3. doi: 10.1007/11901433_32.

[Abr+10] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. ”Rodin: an open toolset for modelling and reasoning in
Event-B“. In: International Journal on Software Tools for Technology Transfer 12.6
(2010), pp. 447–466. issn: 1433-2787. doi: 10.1007/s10009-010-0145-y.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
1st. New York, NY, USA: Cambridge University Press, 2010. isbn: 0521895561,
9780521895569.

[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. New York,
NY, USA: Cambridge University Press, 1996. isbn: 0-521-49619-5.

[Att05] Christian Attiogbé. ”A Stepwise Development of the Peterson’s Mutual Exclusion
Algorithm Using B Abstract Systems.“ In: ZB. Ed. by Helen Treharne, Steve King,
Martin C. Henson, and Steve A. Schneider. Vol. 3455. LNCS. Springer, May 3, 2005,
pp. 124–141. isbn: 3-540-25559-1. doi: 10.1007/11415787_8.

[Bar+13] Jǐŕı Barnat, Luboš Brim, Vojtěch Havel, Jan Havĺıček, Jan Kriho, Milan Lenčo,
Petr Ročkai, Vladimı́r Štill, and Jǐŕı Weiser. ”DiVinE 3.0 – An Explicit-State Model
Checker for Multithreaded C & C++ Programs“. In: Computer Aided Verification:
25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings. Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. LNCS. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 863–868. isbn: 978-3-642-39799-8.
doi: 10.1007/978-3-642-39799-8_60.

[BBR10] Jiri Barnat, Lubos Brim, and Petr Rockai. ”Parallel Partial Order Reduction with
Topological Sort Proviso.“ In: SEFM. IEEE Computer Society, 2010, pp. 222–231.
isbn: 978-0-7695-4153-2. doi: 10.1109/SEFM.2010.35.

157

Bibliography

[BC00] Didier Bert and Francis Cave. ”Construction of Finite Labelled Transition Systems
from B Abstract Systems“. In: Integrated Formal Methods, IFM2000. Vol. 1945.
LNCS. Springer-Verlag, Nov. 2000, pp. 235–254. doi: 10.1007/3-540-40911-4_14.

[Beh+99] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. ”Météor: A
Successful Application of B in a Large Project“. English. In: FM’99 — Formal
Methods. Ed. by JeannetteM. Wing, Jim Woodcock, and Jim Davies. Vol. 1708.
LNCS. Springer Berlin Heidelberg, 1999, pp. 369–387. isbn: 978-3-540-66587-8. doi:
10.1007/3-540-48119-2_22.

[Ben+09] Nikola Beneš, Lubos Brim, Ivana Černá, Jiri Sochor, Pavlina Vařeková, and Barbora
Zimmerova. ”Partial Order Reduction for State/Event LTL“. In: Integrated Formal
Methods: 7th International Conference, IFM 2009, Düsseldorf, Germany, February
16-19, 2009. Proceedings. Ed. by Michael Leuschel and Heike Wehrheim. Vol. 5423.
LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 307–321. isbn:
978-3-642-00255-7. doi: 10.1007/978-3-642-00255-7_21.

[Ben+16] Jens Bendisposto, Philipp Körner, Michael Leuschel, Jeroen Meijer, Jaco van de Pol,
Helen Treharne, and Jorden Whitefield. ”Symbolic Reachability Analysis of B Through
ProB and LTSmin“. In: Integrated Formal Methods: 12th International Conference,
IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings. Ed. by Erika Ábrahám
and Marieke Huisman. Vol. 9681. LNCS. Cham: Springer International Publishing,
2016, pp. 275–291. isbn: 978-3-319-33693-0. doi: 10.1007/978-3-319-33693-0_18.

[Ben15] Jens Marco Bendisposto. ”Directed and Distributed Model Checking of B-Specifications“.
PhD thesis. June 2015.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008. isbn: 026202649X, 9780262026499.

[BL09] Jens Bendisposto and Michael Leuschel. ”Proof Assisted Model Checking for B“. In:
Proceedings of ICFEM 2009. Ed. by Karin Breitman and Ana Cavalcanti. Vol. 5885.
LNCS. Springer, 2009, pp. 504–520. isbn: 978-3-642-10372-8. doi: 10.1007/978-3-
642-10373-5_26.

[BL11] Jens Bendisposto and Michael Leuschel. ”Automatic Flow Analysis for Event-B“.
In: Proceedings of Fundamental Approaches to Software Engineering (FASE) 2011.
Ed. by Dimitra Giannakopoulou and Fernando Orejas. Vol. 6603. LNCS. Springer,
2011, pp. 50–64. isbn: 3642198104. doi: 10.1007/978-3-642-19811-3_5.

[BLL09] Dragan Bosnacki, Stefan Leue, and Alberto Lluch-Lafuente. ”Partial-Order Reduction
for General State Exploring Algorithms.“ In: International Journal on Software Tools
for Technology Transfer 11.1 (2009), pp. 39–51. doi: 10.1007/11691617_16.

[Bos+12] Pontus Boström, Fredrik Degerlund, Kaisa Sere, and Marina Waldén. ”Derivation
of Concurrent Programs by Stepwise Scheduling of Event-B Models“. English. In:
Formal Aspects of Computing (2012), pp. 1–23. doi: 10.1007/s00165-012-0260-5.

[BPS05] Didier Bert, Marie-Laure Potet, and Nicolas Stouls. ”GeneSyst: A Tool to Reason
About Behavioral Aspects of B Event Specifications. Application to Security Proper-
ties.“ In: ZB 2005. Vol. 3455. LNCS. 2005, pp. 299–318. doi: 10.1007/11415787_18.

158

Bibliography

[BW14] Frédéric Boniol and Virginie Wiels. ”The Landing Gear System Case Study“. In: ABZ
2014: The Landing Gear Case Study: Case Study Track, Held at the 4th International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, Toulouse,
France, June 2-6, 2014. Proceedings. Ed. by Frédéric Boniol, Virginie Wiels, Yamine
Ait Ameur, and Klaus-Dieter Schewe. Vol. 433. CCIS. Cham: Springer International
Publishing, 2014, pp. 1–18. isbn: 978-3-319-07512-9. doi: 10.1007/978-3-319-
07512-9_1.

[CF14] Mats Carlsson and Thom Fruehwirth. Sicstus PROLOG User’s Manual 4.3. Books
On Demand - Proquest, 2014. isbn: 3735737447, 9783735737441.

[CGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Checking.
Cambridge, MA, USA: MIT Press, 1999. isbn: 0-262-03270-8.

[Cha+04] Sagar Chaki, EdmundM. Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant
Sinha. ”State/Event-Based Software Model Checking“. English. In: Integrated Formal
Methods. Ed. by EerkeA. Boiten, John Derrick, and Graeme Smith. Vol. 2999. LNCS.
Springer Berlin Heidelberg, 2004, pp. 128–147. isbn: 978-3-540-21377-2. doi: 10.
1007/978-3-540-24756-2_8.

[Cla+99] E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. ”State Space Reduction using
Partial Order Techniques“. English. In: International Journal on Software Tools
for Technology Transfer 2.3 (1999), pp. 279–287. issn: 1433-2779. doi: 10.1007/
s100090050035.

[Cle09] ClearSy. User Manual of Atelier B 4.0. English. tools.clearsy.com/wp-content/
uploads/sites/8/resources/User_uk.pdf. 2009.

[Deg12] Fredrik Degerlund. ”Scheduling Performance of Compute-Intensive Concurrent Code
Developed Using Event-B“. English. In: TUCS Technical Reports 1051 (2012), pp. 1–
20.

[Dij97] Edsger Wybe Dijkstra. A Discipline of Programming. 1st. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 1997. isbn: 013215871X.

[DL14] Ivaylo Dobrikov and Michael Leuschel. ”Optimising the ProB Model Checker for B
using Partial Order Reduction“. In: SEFM 2014. Ed. by Dimitra Giannakopoulou
and Gwen Salaün. Vol. 8702. LNCS. Grenoble, 2014, pp. 220–234. doi: 10.1007/978-
3-319-10431-7_16.

[DL16a] Ivaylo Dobrikov and Michael Leuschel. ”Enabling Analysis for Event-B“. In: Abstract
State Machines, Alloy, B, TLA, VDM, and Z: 5th International Conference, ABZ
2016, Linz, Austria, May 23-27, 2016, Proceedings. Ed. by Michael Butler, Klaus-
Dieter Schewe, Atif Mashkoor, and Miklos Biro. Vol. 9675. LNCS. Cham: Springer
International Publishing, 2016, pp. 102–118. isbn: 978-3-319-33600-8. doi: 10.1007/
978-3-319-33600-8_6.

[DL16b] Ivaylo Dobrikov and Michael Leuschel. ”Optimising the ProB Model Checker for
B using partial order reduction“. In: Formal Aspects of Computing 28.2 (2016),
pp. 179–323. doi: 10.1007/s00165-015-0351-1.

159

Bibliography

[DL17] Ivaylo Dobrikov and Michael Leuschel. ”Enabling Analysis for Event-B“. In: Science
of Computer Programming. Aug. 2017. doi: 10.1016/j.scico.2017.08.004.

[DLP16] Ivaylo Dobrikov, Michael Leuschel, and Daniel Plagge. ”LTL Model Checking under
Fairness in ProB“. In: Software Engineering and Formal Methods: 14th International
Conference, SEFM 2016, Held as Part of STAF 2016, Vienna, Austria, July 4-8,
2016, Proceedings. Ed. by Rocco De Nicola and Eva Kühn. Vol. 9763. LNCS. Cham:
Springer International Publishing, 2016, pp. 204–211. isbn: 978-3-319-41591-8. doi:
10.1007/978-3-319-41591-8_14.

[Esp+13] Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf,
and Jan-Georg Smaus. ”A Fully Verified Executable LTL Model Checker“. In: Com-
puter Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings. Ed. by Natasha Sharygina and Helmut Veith.
Vol. 8044. LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 463–478.
isbn: 978-3-642-39799-8. doi: 10.1007/978-3-642-39799-8_31.

[Fal+13] Jérôme Falampin, Hung Le-Dang, Michael Leuschel, Mikael Mokrani, and Daniel
Plagge. ”Improving Railway Data Validation with ProB“. In: Industrial Deployment
of System Engineering Methods (2013). Ed. by Alexander Romanovsky and Martyn
Thomas, pp. 27–43. doi: 10.1007/978-3-642-33170-1_4.

[FG05] Cormac Flanagan and Patrice Godefroid. ”Dynamic Partial-order Reduction for
Model Checking Software“. In: Proceedings of the 32Nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’05. Long Beach, Cali-
fornia, USA: ACM, 2005, pp. 110–121. isbn: 1-58113-830-X. doi: 10.1145/1040305.
1040315.

[GHV09] Jaco Geldenhuys, Henri Hansen, and Antti Valmari. ”Exploring the Scope for Par-
tial Order Reduction“. In: Automated Technology for Verification and Analysis:
7th International Symposium, ATVA 2009, Macao, China, October 14-16, 2009.
Proceedings. Ed. by Zhiming Liu and Anders P. Ravn. Vol. 5799. LNCS. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 39–53. isbn: 978-3-642-04761-9.
doi: 10.1007/978-3-642-04761-9_4.

[Gib+14] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and Andrew W.
Roscoe. ”FDR3 — A Modern Refinement Checker for CSP“. In: Tools and Algorithms
for the Construction and Analysis of Systems: 20th International Conference, TACAS
2014, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. Ed. by
Erika Ábrahám and Klaus Havelund. Vol. 8413. LNCS. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 187–201. isbn: 978-3-642-54862-8. doi: 10.1007/978-3-
642-54862-8_13.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem. Vol. 1032. LNCS. Springer, 1996. isbn:
3-540-60761-7.

160

Bibliography

[GP93] Patrice Godefroid and Didier Pirottin. ”Refining Dependencies Improves Partial-
Order Verification Methods (Extended Abstract)“. In: Computer Aided Verification,
5th International Conference, CAV 93, Elounda, Greece, June 28 - July 1, 1993,
Proceedings. Ed. by Costas Courcoubetis. Vol. 697. LNCS. Springer, 1993, pp. 438–449.
isbn: 3-540-56922-7. doi: 10.1007/3-540-56922-7_36.

[GW91] Patrice Godefroid and Pierre Wolper. ”Using Partial Orders for the Efficient Verifica-
tion of Deadlock Freedom and Safety Properties“. In: CAV. Ed. by Kim Guldstrand
Larsen and Arne Skou. Vol. 575. LNCS. Springer, 1991, pp. 332–342. isbn: 3-540-
55179-4. doi: 10.1007/3-540-55179-4_32.

[Han+14] Dominik Hansen, Lukas Ladenberger, Harald Wiegard, Jens Bendisposto, and Michael
Leuschel. ”Validation of the ABZ Landing Gear System using ProB“. In: ABZ 2014:
The Landing Gear Case Study. Vol. 433. CCIS. 2014. doi: 10.1007/978-3-319-
07512-9_5.

[HL11] Stefan Hallerstede and Michael Leuschel. ”Constraint-Based Deadlock Checking of
High-Level Specifications“. In: Theory and Practice of Logic Programming 11.4–5
(2011), pp. 767–782.

[HL12] Dominik Hansen and Michael Leuschel. ”Translating TLA+ to B for Validation with
ProB“. In: Proceedings iFM’2012. Vol. 7321. LNCS. Springer, 2012, pp. 24–38. doi:
10.1007/978-3-642-30729-4_3.

[HL14] Dominik Hansen and Michael Leuschel. ”Translating B to TLA + for Validation with
TLC“. In: Abstract State Machines, Alloy, B, TLA, VDM, and Z: 4th International
Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceedings. Ed. by Yamine
Ait Ameur and Klaus-Dieter Schewe. Vol. 8477. LNCS. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 40–55. isbn: 978-3-662-43652-3. doi: 10.1007/978-3-
662-43652-3_4.

[Hoa78] C. A. R. Hoare. ”Communicating Sequential Processes“. In: Commun. ACM 21.8
(Aug. 1978), pp. 666–677. issn: 0001-0782. doi: 10.1145/359576.359585.

[Hol03] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual. First.
Addison-Wesley Professional, 2003. isbn: 0-321-22862-6.

[HP95] Gerard J. Holzmann and Doron Peled. ”An improvement in formal verification“. In:
Proceedings of the 7th IFIP WG6.1 International Conference on Formal Description
Techniques VII. IFIPAICT. London, UK, UK: Chapman & Hall, Ltd., 1995, pp. 197–
211. isbn: 0-412-64450-9. doi: 10.1007/978-0-387-34878-0_13.

[Kan+15] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and
Tom van Dijk. ”LTSmin: High-Performance Language-Independent Model Checking“.
English. In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by Christel Baier and Cesare Tinelli. Vol. 9035. LNCS. Springer Berlin Heidelberg,
2015, pp. 692–707. isbn: 978-3-662-46680-3. doi: 10.1007/978-3-662-46681-0_61.

[Kle+10] Gerwin Klein et al. ”seL4: Formal Verification of an Operating-system Kernel“. In:
Commun. ACM 53.6 (June 2010), pp. 107–115. issn: 0001-0782. doi: 10.1145/
1743546.1743574.

161

Bibliography

[Kör16] Philipp Körner. fix wrong independence of transition groups. https://github.com/
utwente - fmt / ltsmin / commit / 38187546eaaa9a3f0e29299dc25175ef6ce7b4b1.
2016.

[Kör17] Philipp Körner. ”An Integration of ProB and LTSmin“. MA thesis. University of
Düsseldorf, Feb. 2017.

[Laa+13] Alfons Laarman, Elwin Pater, Jaco van de Pol, and Michael Weber. ”Guard-Based
Partial-Order Reduction“. In: Model Checking Software: 20th International Sympo-
sium, SPIN 2013, Stony Brook, NY, USA, July 8-9, 2013. Proceedings. Ed. by Ezio
Bartocci and C. R. Ramakrishnan. Vol. 7976. LNCS. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 227–245. isbn: 978-3-642-39176-7. doi: 10.1007/978-3-
642-39176-7_15.

[LB03] Michael Leuschel and Michael Butler. ”ProB: A Model Checker for B“. In: FME.
Vol. 2805. LNCS. Springer-Verlag, 2003, pp. 855–874. isbn: 3-540-40828-2. doi:
10.1007/978-3-540-45236-2_46.

[LB05a] Michael Leuschel and Michael Butler. ”Automatic Refinement Checking for B“. In:
LNCS 3785 (May 2005). Ed. by Kung-Kiu Lau and Richard Banach, pp. 345–359.
doi: 10.1007/11576280_24.

[LB05b] Michael Leuschel and Michael Butler. ”Combining CSP and B for Specification
and Property Verification“. In: FM’2005. Ed. by John Fitzgerald, Ian Hayes, and
Andrzej Tarlecki. Vol. 3582. LNCS. Springer-Verlag, Jan. 2005, pp. 221–236. doi:
10.1007/11526841_16.

[LB08] Michael Leuschel and Michael Butler. ”ProB: An Automated Analysis Toolset for
the B Method“. In: International Journal on Software Tools for Technology Transfer
10.2 (2008), pp. 185–203. doi: 10.1007/s10009-007-0063-9.

[LBL12] Thierry Lecomte, Lilian Burdy, and Michael Leuschel. ”Formally Checking Large
Data Sets in the Railways“. In: CoRR abs/1210.6815 (2012).

[LDL15] Lukas Ladenberger, Ivaylo Dobrikov, and Michael Leuschel. ”An Approach for Creat-
ing Domain Specific Visualisations of CSP Models“. In: Software Engineering and
Formal Methods: SEFM 2014 Collocated Workshops: HOFM, SAFOME, OpenCert,
MoKMaSD, WS-FMDS, Grenoble, France, September 1-2, 2014, Revised Selected
Papers. Ed. by Carlos Canal and Akram Idani. Vol. 8938. LNCS. Cham: Springer In-
ternational Publishing, 2015, pp. 20–35. isbn: 978-3-319-15201-1. doi: 10.1007/978-
3-319-15201-1_2.

[Leu+07] Michael Leuschel, Michael Butler, Corinna Spermann, and Edd Turner. ”Symmetry
Reduction for B by Permutation Flooding“. In: Proceedings B’2007. Vol. 4355. LNCS.
Springer-Verlag, 2007, pp. 79–93. doi: 10.1007/11955757_9.

[Leu+09] Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel Plagge. ”Automated
Property Verification for Large Scale B Models“. English. In: FM 2009: Formal
Methods. Ed. by Ana Cavalcanti and DennisR. Dams. Vol. 5850. LNCS. Springer
Berlin Heidelberg, 2009, pp. 708–723. isbn: 978-3-642-05088-6. doi: 10.1007/978-3-
642-05089-3_45.

162

Bibliography

[Leu+14] Michael Leuschel, Jens Bendisposto, Ivaylo Dobrikov, Sebastian Krings, and Daniel
Plagge. ”From Animation to Data Validation: The ProB Constraint Solver 10 Years
On“. In: Formal Methods Applied to Complex Systems: Implementation of the B
Method. Ed. by Jean-Louis Boulanger. Hoboken, NJ: Wiley ISTE, 2014. Chap. Chapter
14, pp. 427–446. doi: 10.1002/9781119002727.ch14.

[Leu08] Michael Leuschel. ”The High Road to Formal Validation“. In: Proceedings of the
1st international conference on Abstract State Machines, B and Z. Vol. 5238. LNCS.
London, UK: Springer-Verlag, 2008, pp. 4–23. isbn: 978-3-540-87602-1. doi: 10.1007/
978-3-540-87603-8_2.

[LF08] Michael Leuschel and Marc Fontaine. ”Probing the Depths of CSP-M: A New fdr-
Compliant Validation Tool“. In: Proceedings of the 10th International Conference on
Formal Methods and Software Engineering. Vol. 5256. LNCS. Kitakyushu-City, Japan:
Springer-Verlag, 2008, pp. 278–297. isbn: 978-3-540-88193-3. doi: 10.1007/978-3-
540-88194-0_18.

[LL15] Lukas Ladenberger and Michael Leuschel. ”Mastering the Visualization of Larger
State Spaces with Projection Diagrams“. In: Proceedings ICFEM’2015. Vol. 9407.
LNCS. Springer-Verlag, 2015, pp. 153–169. doi: 10.1007/978-3-319-25423-4_10.

[LM10] Michael Leuschel and Thierry Massart. ”Efficient approximate verification of B and Z
models via symmetry markers“. In: Annals of Mathematics and Artificial Intelligence.
Vol. 59. 1. May 1, 2010, pp. 81–106. doi: 10.1007/s10472-010-9208-8.

[LO07] Vesa Luukkala and Ian Oliver. ”Model Based Testing of an Embedded Session and
Transport Protocol“. In: Testing of Software and Communicating Systems: 19th IFIP
TC6/WG6.1 International Conference, TestCom 2007, 7th International Workshop,
FATES 2007, Tallinn, Estonia, June 26-29, 2007. Proceedings. Ed. by Alexandre
Petrenko, Margus Veanes, Jan Tretmans, and Wolfgang Grieskamp. Vol. 4581. LNCS.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 212–227. isbn: 978-3-540-
73066-8. doi: 10.1007/978-3-540-73066-8_15.

[Low96] Gavin Lowe. ”Breaking and Fixing the Needham-Schroeder Public-Key Protocol
Using FDR“. In: Proceedings of the Second International Workshop on Tools and
Algorithms for Construction and Analysis of Systems. Vol. 1055. LNCS. London, UK,
UK: Springer-Verlag, 1996, pp. 147–166. isbn: 3-540-61042-1. doi: 10.1007/3-540-
61042-1_43.

[LP85] Orna Lichtenstein and Amir Pnueli. ”Checking That Finite State Concurrent Pro-
grams Satisfy Their Linear Specification“. In: Proceedings of the 12th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. POPL ’85. New
Orleans, Louisiana, USA: ACM, 1985, pp. 97–107. isbn: 0-89791-147-4. doi: 10.
1145/318593.318622.

[LT05] Michael Leuschel and Edward Turner. ”Visualizing Larger States Spaces in ProB“.
In: Proceedings ZB’2005. Ed. by Helen Treharne, Steve King, Martin Henson, and
Steve Schneider. Vol. 3455. LNCS. Springer-Verlag, Apr. 2005, pp. 6–23. doi: 10.
1007/11415787_2.

163

Bibliography

[Mei17] Jeroen Meijer. LTSmin. https://github.com/utwente- fmt/ltsmin/commit/
11f3140ddab925108d33c6f8570d487e8d1a912c. Jan. 11, 2017.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Berlin, Heidelberg: Springer-Verlag, 2002. isbn:
3-540-43376-7. doi: 10.1007/3-540-45949-9.

[Pat11] Elwin Pater. ”Partial Order Reduction for PINS“. MA thesis. Mar. 2011.

[Pel07] Radek Pelánek. ”BEEM: Benchmarks for Explicit Model Checkers“. In: Model Check-
ing Software: 14th International SPIN Workshop, Berlin, Germany, July 1-3, 2007.
Proceedings. Ed. by Dragan Bošnački and Stefan Edelkamp. Vol. 4595. LNCS. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 263–267. isbn: 978-3-540-73370-6.
doi: 10.1007/978-3-540-73370-6_17.

[Pel93] Doron Peled. ”All from one, one for all: on model checking using representatives“.
In: Computer Aided Verification: 5th International Conference, CAV ’93 Elounda,
Greece, June 28–July 1, 1993 Proceedings. Ed. by Costas Courcoubetis. Vol. 697.
LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 409–423. isbn:
978-3-540-47787-7. doi: 10.1007/3-540-56922-7_34.

[Pel94] Doron Peled. ”Combining Partial Order Reductions with On-the-fly Model-checking“.
In: Computer Aided Verification. Ed. by DavidL. Dill. Vol. 818. LNCS. Springer-
Verlag, 1994, pp. 377–390. doi: 10.1007/BF00121262.

[PL07] Daniel Plagge and Michael Leuschel. ”Validating Z Specifications Using the ProB
Animator and Model Checker“. In: Integrated Formal Methods: 6th International
Conference, IFM 2007, Oxford, UK, July 2-5, 2007. Proceedings. Ed. by Jim Davies
and Jeremy Gibbons. Vol. 4591. LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 480–500. isbn: 978-3-540-73210-5. doi: 10.1007/978-3-540-73210-5_25.

[PL10] Daniel Plagge and Michael Leuschel. ”Seven at one stroke: LTL model checking
for High-level Specifications in B, Z, CSP, and more“. In: International Journal on
Software Tools for Technology Transfer 12.1 (Feb. 2010), pp. 9–21. issn: 1433-2779.
doi: 10.1007/s10009-009-0132-3.

[Plo04] Gordon D Plotkin. ”The origins of structural operational semantics“. In: The Journal
of Logic and Algebraic Programming 60-61 (2004). Structural Operational Semantics,
pp. 3–15. issn: 1567-8326. doi: 10.1016/j.jlap.2004.03.009.

[Pnu77] Amir Pnueli. ”The Temporal Logic of Programs“. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science. SFCS ’77. Washington, DC, USA:
IEEE Computer Society, 1977, pp. 46–57. doi: 10.1109/SFCS.1977.32.

[PW97] Doron Peled and Thomas Wilke. ”Stutter-Invariant Temporal Properties are Express-
ible Without the Next-Time Operator.“ In: Inf. Process. Lett. 63.5 (1997), pp. 243–
246. doi: 10.1016/S0020-0190(97)00133-6.

164

Bibliography

[Sav+15] Aymerick Savary, Marc Frappier, Michael Leuschel, and Jean-Louis Lanet. ”Model-
Based Robustness Testing in Event-B Using Mutation“. In: Software Engineering and
Formal Methods: 13th International Conference, SEFM 2015, York, UK, September 7-
11, 2015. Proceedings. Ed. by Radu Calinescu and Bernhard Rumpe. Vol. 9276. LNCS.
Cham: Springer International Publishing, 2015, pp. 132–147. isbn: 978-3-319-22969-0.
doi: 10.1007/978-3-319-22969-0_10.

[Sch01] S. Schneider. The B-method: An Introduction. Cornerstones of computing. Palgrave,
2001. isbn: 9780333792841.

[SFL13] Aymerick Savary, Marc Frappier, and Jean-Louis Lanet. ”Detecting Vulnerabilities
in Java-Card Bytecode Verifiers Using Model-Based Testing“. In: Integrated Formal
Methods: 10th International Conference, IFM 2013, Turku, Finland, June 10-14, 2013.
Proceedings. Ed. by Einar Broch Johnsen and Luigia Petre. Vol. 7940. LNCS. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 223–237. isbn: 978-3-642-38613-8.
doi: 10.1007/978-3-642-38613-8_16.

[Sim90] H R Simpson. ”Four-slot fully Asynchronous Communication Mechanism“. In: IEEE
Proceedings 137 (1) (Jan. 1990).

[SLD08] Jun Sun, Yang Liu, and Jin Song Dong. ”Model Checking CSP Revisited: Introducing a
Process Analysis Toolkit“. In: Leveraging Applications of Formal Methods, Verification
and Validation: Third International Symposium, ISoLA 2008, Porto Sani, Greece,
October 13-15, 2008. Proceedings. Ed. by Tiziana Margaria and Bernhard Steffen.
Vol. 17. CCIS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 307–322.
isbn: 978-3-540-88479-8. doi: 10.1007/978-3-540-88479-8_22.

[Tar71] R. Tarjan. ”Depth-first search and linear graph algorithms“. In: 12th Annual Sympo-
sium on Switching and Automata Theory (swat 1971). IEEE, Oct. 1971, pp. 114–121.
doi: 10.1109/SWAT.1971.10.

[Tur+07] Edd Turner, Michael Leuschel, Corinna Spermann, and Michael Butler. ”Symmetry
Reduced Model Checking for B“. In: Proceedings TASE 2007. IEEE, 2007, pp. 25–34.
doi: 10.1109/TASE.2007.50.

[Val89] Antti Valmari. ”Stubborn Sets for Reduced State Space Generation“. In: Applications
and Theory of Petri Nets. 1989, pp. 491–515. doi: 10.1007/3-540-53863-1_36.

[Val92] Antti Valmari. ”A stubborn attack on state explosion“. In: Formal Methods in System
Design 1.4 (1992), pp. 297–322. issn: 1572-8102. doi: 10.1007/BF00709154.

[Val97] Antti Valmari. ”Stubborn Set Methods for Process Algebras“. In: Proceedings of the
DIMACS Workshop on Partial Order Methods in Verification. POMIV ’96. Princeton,
New Jersey, USA: AMS Press, Inc., 1997, pp. 213–231. isbn: 0-8218-0579-7.

[Val98] Antti Valmari. ”The state explosion problem“. In: Lectures on Petri Nets I: Basic
Models: Advances in Petri Nets. Ed. by Wolfgang Reisig and Grzegorz Rozenberg.
Vol. 1491. LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 429–528.
isbn: 978-3-540-49442-3. doi: 10.1007/3-540-65306-6_21.

165

Bibliography

[Weh99] Heike Wehrheim. ”Partial order reductions for failures refinement“. In: Electronic
Notes in Theoretical Computer Science 27 (1999), pp. 71–84. issn: 1571-0661. doi:
10.1016/S1571-0661(05)80296-8.

166

List of Figures

1.1. Simple B model of a semaphore-based mutual exclusion algorithm 3
1.2. A general event structure . 8
1.3. Example of a transition system with stutter-equivalent paths 18
1.4. Example of a transition system . 22
1.5. Example of a tableau graph construction 23

2.1. Example of an event with local variables read in the action part 34
2.2. Classification of enabling relations ER 40
2.3. The event control-flow gaph of MutualExclusion 42
2.4. Partition of the enabling graph of MutualExclusion 43
2.5. Result of the enabling analysis of the MUTEX model shown as table . . 50
2.6. Execution of dependent events . 55
2.7. Example for the effect of including the invariant as additional constraint 60
2.8. Enabling analysis for Inc without and with Inv 61

3.1. Exploring a state using the information of the enabling analysis (I) . . . 66
3.2. Exploring a state using the information of the enabling analysis (II) . . . 67
3.3. Model Checking with Partial Guard Evaluation 77

4.1. Example of a simple B machine formalising concurrently executed threads 84
4.2. State space of the SyncThreads model for n = 2 85
4.3. Unnecessary full state exploration . 96
4.4. Computing ample sets . 98

167

List of Tables

3.1. Part of the PGE experimental results (times in seconds) 73

4.1. Part of the experimental results for POR (times in seconds) 110
4.2. Part of the experimental results - POR heuristics (times in seconds) . . . 113
4.3. Part of the experimental results - POR+PGE (times in seconds) 114
4.4. Deadlock checking ProB vs. LTSmin (times in seconds) 116
4.5. Deadlock checking ProB vs. LTSmin second round (times in seconds) . 118

B.1. Detailed experimental results for PGE (times in seconds) 137

C.1. Part of the experimental results for POR1 vs. POR2 (times in seconds) . 143

D.1. ProB vs. LTSmin with disabled guard splitting (times in seconds) . . . 147

169

