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Abstract

In this thesis, we deal with mixtures of macromolecules in good solvent. Star
polymers are used as a model system for colloids with soft interactions. In the first
part of the thesis we consider mixtures of star polymers with linear polymer chains.
On the basis of computer simulations and theory an effective interaction between
stars and chains is derived and subsequently used in order calculate the structure
of the fluid. We find evidence for the formation of clusters in the system which we
compare with experimental results. Moreover, we study the influence of the linear
chains on the glass transition of the star polymers. Afterwards, we turn our at-
tention to binary star polymer mixtures. By using the Mode Coupling Theory for
the glass transition, glass lines are calculated and compared to rheological measure-
ments of the same system. Subsequently, we calculate the dynamical properties of
the system by molecular dynamics simulations. Finally, we investigate star polymers
with attractive interactions. As a first model system we consider solutions of macro-
molecules which attract each other and study their glass formation. Afterwards, we
study so called telechelic star polymers with mutually attracting end groups. We
study the conformations of a single molecule depending on the temperature and the
transition to collapsed states.





Zusammenfassung

In der vorliegenden Dissertation haben wir uns mit Mischungen von Makro-
molekülen in gutem Lösungsmittel beschäftigt. Als Modellsystem für Kolloide mit
weicher Wechselwirkung wurden dabei Sternpolymere verwendet. Im ersten Teil der
Arbeit betrachten wir Mischungen von Sternpolymeren mit linearen Polymerketten.
Auf der Basis von Computersimulationen und Theorie wird eine effektive Wech-
selwirkung zwischen Sternen und Ketten hergeleitet und anschließend verwendet,
um die Struktur der Flüssigkeit zu berechnen. Dabei finden wir Hinweise auf die
Bildung von Clustern in dem System, die wir mit experimentellen Ergebnissen
vergleichen. Außerdem untersuchen wir den Einfluss der linearen Ketten auf den
Glasübergang der Sternpolymere. Danach wenden wir uns binären Mischungen von
Sternpolymeren zu. Mit Hilfe der Modenkopplungstheorie des Glasübergangs wer-
den Glaslinien berechnet und mit rheologischen Messungen am selben System ver-
glichen. Anschließend berechnen wir die dynamischen Eigenschaften der Mischung
mit Molekulardynamik-Simulationen. Zuletzt studieren wir Sternpolymere mit at-
traktiven Wechselwirkungen. Als erstes Modellsystem betrachten wir Lösungen von
Makromolekülen, die sich gegenseitig anziehen und untersuchen ihre Glasbildung.
Danach betrachten wir so genannte telechelische Sternpolymere, bei denen sich die
Enden jedes Arms wechselseitig anziehen. Wir untersuchen die Konformationen ei-
nes einzelnen Moleküls in Abhängigkeit von der Temperatur und den Übergang zu
einem kollabierten Zustand.
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Chapter 1

Introduction

Soft matter science deals with the study of systems that have structure on a meso-
scopic length scale, i.e., ranging typically from 1 nm to 1 µm [1, 2], dispersed in
molecular or atomic solvents. All soft matter systems (also called complex fluids
or colloidal dispersions) are easily deformable, giving rise to their name. An abun-
dant number of soft matter systems exist in nature. Viruses, proteins, and DNA
molecules all share this characteristic length scale. Additionally, many products in
use in everyday life belong to this class. Indeed, most products of food, pharma-
ceutical, and the chemical industry fall into this category. Examples for soft matter
systems are ink used in ball point pens and xerography, as well as many varieties of
paints and cosmetics [1]. Therefore there is a great deal of interest in understanding
the macroscopic properties (statics and dynamics) of these systems based on their
composition and molecular architecture. The fact that the constituent particles of
complex fluids have an enormous number of internal degrees of freedom renders
the problem even more challenging than in simple classical fluids. The possibility
to synthesize the constituents in the laboratory allows for the opportunity to de-
sign material properties (almost) at wish, a possibility that is completely absent in
atomic systems, where the properties of the individual particles cannot be altered.

There are two basic scenarios for the formation of colloidal dispersions. In the
first case, the solute already has dimensions between 1 nm and 1 µm, e.g., proteins,
polysaccharides, and many synthetic polymers [1]. In the second case, the sys-
tems consist of small molecules which form aggregates in solution; the mesoscopic
structures are not synthesized chemically, but self-organize in the solution. Soap
molecules for example form micellar structures at high concentrations [1].

The macroscopic states of condensed matter can be characterized as fluids or
solids. While the latter systems are shear-resistant, the former ones flow. Usually
with solid-like behavior a regular crystal structure is associated. However, glasses
show solid-like macroscopic dynamics but feature the microscopic structure of a
disordered fluid. One of the most interesting phenomena in soft condensed matter
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12 1. INTRODUCTION

systems is the slowing down at dynamical arrest, related to the glass transition [3,4].
Under the influence of concentration or temperature changes dense systems show a
slowing-down of their dynamics, characterized by an increase of their viscosity by
several orders of magnitude for small variations of the external parameters. However,
while for crystallization the arrested state is connected to a breaking of the symmetry
of the fluid, glasses show a structure which is very similar to that of the underlying
supercooled liquid. So while the structure of the system is unchanged at the glass
transition, the dynamics of fluid and glass becomes completely different, with density
fluctuations not relaxing in time in the latter state.

In atomic and molecular systems, dynamical arrest is usually related to the glass
transition [4]. In soft condensed matter there exist a lot of different arrested states:
repulsive and attractive glasses, gels, associating polymers, and so on [4]. The abun-
dance of arrested states is due to the vast range of effective interaction potentials
in soft matter. Therefore, a large number of studies has dealt with the simplest
colloidal dispersion which consists of spherical hard particles of mesoscopic size [5].
In the theoretical description they are modeled as ideal hard spheres which show no
interactions when their center-to-center distance is larger than their diameter and
exhibit an infinite interaction energy when they overlap. One of the most commonly
studied experimental systems consists of poly-(methyl methacrylate) (PMMA) par-
ticles with grafted poly-(12-hydroxy stearic acid) (PHSA) to stabilize the system
against van der Waals attraction [6]. This has been shown to be a very good realiza-
tion of a hard sphere system [6]. The ideal hard sphere system is a commonly used
reference system for the study of the structure and dynamics of fluids and solids,
especially for the colloidal glass transition (for a recent review, see [4]). Due to the
form of the potential, hard spheres are athermal and can be characterized by one
single parameter, the volume fraction η = πρσ3/6, where ρ is the number density
and σ the diameter of the spheres. It has been shown in the 1950s by computer
simulations that this system has a phase transition from a fluid to a face centered
cubic crystal with a coexistence region between 0.49 < η < 0.545 [7]. However,
it was found experimentally, that for η > 0.58 no crystallization happens in the
experimental time window [8]. The studies of the dynamics of hard sphere colloids
have been an important confirmation [4] of the quantitative predictions of Götze’s
Mode Coupling Theory (MCT) for the glass transition [3]. Nevertheless, questions
like the influence of gravitation on the colloidal glass transition are still debated [4].

Another success in the understanding of colloidal glasses was the study of colloids
with short range attractions. In mode coupling theory a reentrant glass transition
was found [9], i.e., with increasing strength of the attraction the system goes from a
repulsive glass to a fluid and becomes again arrested in an attractive glass. The shape
of the phase diagram was confirmed in experiments on colloid-polymer mixtures
[10,11]. Moreover, computer simulations of short range attractive colloids confirmed
the experimental and theoretical findings [12, 13].
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In this thesis, however, we will turn our attention to the influence of particle soft-
ness on the macroscopic properties of the system, especially on cluster formation
and vitrification. Star-shaped polymers [14,15] have emerged as a well-characterized,
tunable and highly versatile model colloidal system which displays very rich equi-
librium and dynamical behavior. Additionally, star polymers are also interesting
from a technical point of view. Hydrogenated polyisoprene star polymers are used
as viscosity index modifiers in the oil industry [14], other star systems are used in
coating materials, as binders in toners for copying machines, and in pharmaceutical
and medical applications [14]. The physical parameter that determines the soft-
ness of these macromolecular aggregates is the number f of polymer chains that
are anchored on a common center, also called functionality of the star. Focus-
ing on the mesoscopic length scales, the fluctuating monomers of the f chains in
a concentrated star-polymer solution can be integrated out, leaving behind a col-
lection of ‘effective point particles’ (the star centers) that interact by means of a
monomer-mediated, soft effective repulsion [16]. The versatility of star polymers
arises physically from the influence of the functionality f on the softness of this
repulsion: it has been shown [17,18] that it depends logarithmically on the star-star
separation for overlapping distances, crossing over to an exponential decay for larger
ones. The functionality influences both the overall strength of the repulsion, in the
form of a f 3/2-prefactor, and the decay length of the exponential tail which scales
as σf−1/2, with σ denoting the corona diameter of the star [18].

Whereas for sufficiently low functionalities, f ≤ fc = 32, the star-star repul-
sion is too weak to sustain stable crystals at arbitrary concentrations, for f > fc

and above the stars’ overlap density, stable bcc (body centered cubic)and fcc (face
centered cubic) crystals are predicted to be the equilibrium structures, accompa-
nied by reentrant melting and formation of open crystal structures at even higher
densities [19,20]. The formation of ordered fcc- and bcc-crystals has recently found
experimental confirmation for various star-like systems stemming from self-organized
block copolymers [21–24]. Yet, for real star-polymer samples, the development of
periodic structures is usually hindered by glass formation, which is further encour-
aged by the inherent polydispersity of the solutions [25,26]. A recent, mode coupling
analysis based on the effective interaction of Ref. [18], has shown that the vitrifica-
tion of star polymers can be understood along the same lines as the dynamical arrest
of a hard-sphere system, driven by the existence of a density-dependent, effective
hard-sphere diameter between the stars [27]. Accordingly, the observed melting of
the star-polymer glass upon addition of shorter homopolymer chains has been at-
tributed to the ability of the additives to bring about a softening of the star-star
repulsion and a concomitant reduction of the effective hard-sphere diameter between
the same [28].

In the course of this dissertation, we study in detail mixtures of star polymers
with linear chains as well as binary star polymer mixtures. We focus on two aspects
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of these systems: depletant induced cluster formation and the influence of the addi-
tives on the rheological properties of the system. The rest of this thesis is organized
as follows. In chapter 2 we introduce a model for star polymer-chain mixtures. We
show cluster formation and glass transitions in the system and compare our results
to recent experimental data. In chapter 3, we investigate the dynamics of binary
star polymer mixtures and compare the data to rheological measurements, before
we show a detailed study of the relaxation dynamics of such systems in chapter 4.
In chapter 5, we present data for a one component model of star polymers with
competing short range attraction and long range repulsion. Moreover, we study
star polymers with mutually attractive end groups on each arms in dilute solution.
Finally, we summarize and draw our conclusions in chapter 6.



Chapter 2

Mixtures of Star Polymers and
Linear Chains

In this section, we study dynamics and equilibrium structure of mixtures of polymer
chains and stars in solution. We propose an accurate model for the star-chain effec-
tive interaction. Employing this model, we study the formation of clusters and the
long-time dynamics of the mixture and compare our results to recent experimental
data.

2.1 Effective Interactions

The strategy employed throughout this work is that of coarse-graining of both com-
ponents, the stars and the linear chains (coded with the subscripts ‘s’ and ‘c’, respec-
tively, in what follows.) In this approach, which enables us to form a bridge between
the microscopic and the mesoscopic scales, suitable coordinates that characterize the
star and the chain as a whole are chosen and all the remaining fluctuations of the
monomers are traced out in a well-defined statistical mechanical fashion [16]. In
particular, the effective coordinates are kept fixed in any prescribed configuration
and the restricted, canonical partition function of all the remaining ones is (approx-
imately) calculated. To simplify the situation, suppose that we are having only two
mesoscopic particles (regardless of their type) in the system and let r1,2 denote the
fixed position vectors of their respective effective coordinates. Denote as Zαβ(r1, r2)
the aforementioned restricted partition function, where α, β = c, s. The quantity of
interest is then the effective interaction Vαβ(r1, r2), defined as

Vαβ(r1, r2) = −kBT ln

[ Zαβ(r1, r2)

Zαβ(|r1 − r2| → ∞)

]
, (2.1)

with Boltzmann’s constant kB and the absolute temperature T . We also define
here β = (kBT )−1 for future reference. In other words, the effective interaction is

15



16 2. MIXTURES OF STAR POLYMERS AND LINEAR CHAINS

the free energy cost for bringing the two particles from infinity to their prescribed
positions r1 and r2. When averaging over all but a single effective coordinate of a
macromolecule and there are only two such present, we have Vαβ(r1, r2) = Vαβ(r),
where r = |r1 − r2|. In general, many-body effective terms result from the process
of coarse-graining but they are ignored in the pair-potential approximation. In a
system containing Ns stars and Nc chains, the total effective potential energy U
reads then as:

U =
Ns∑
i<j

Ns∑
j=1

Vss(|ri − rj|) +
Nc∑
i<j

Nc∑
j=1

Vcc(|ri − rj|) +
Ns∑
i=1

Nc∑
j=1

Vsc(|ri − rj|). (2.2)

Hence, both species, stars and chains are figured as soft spheres interacting with the
corresponding soft potentials Vαβ(r).

2.2 Early Approaches

In this section, we keep our attention on star-chain mixtures while turning our
focus to the regime of low- or intermediate concentrations of the stars, i.e., far
from their overlap concentration and the associated crystallization or vitrification
phenomena. Our theoretical modeling will be based on a heuristic ansatz for the
effective star-chain interactions which was already used with great success to explain
experimental data in [28]. In Sec. 2.4, we will derive an accurate expression for the
interaction and verify it by monomer resolved simulation. We consider a mixture of
star polymers with functionality f with smaller linear chains. Following a coarse-
graining procedure for both species, we describe the stars by their centers and the
chains by their centers of mass. With r denoting the separation between any two
such coordinates, the mesoscopic structure of the system can then be determined by
using the three effective interaction potentials Vij(r), i, j = s, c, together with the
physical characteristics of the system: the star functionality f , the chain-to-star size
ratio ξ < 1, as well as the partial number densities ρi = Ni/Ω, where Ni denotes
the number of stars (i = s) or chains (i = c) enclosed in the macroscopic volume Ω.
As we are dealing with polymers in athermal solvents throughout, the temperature
appears in all effective interactions involved exclusively in the form of a prefactor
kBT (with kB being Boltzmann’s constant), and therefore does not play any role in
the structure of the system.

2.2.1 Interactions

For the three effective interactions Vij(r), we adopt the same expressions used in
preceding studies of the vitrification properties of star-chain mixtures [28]. The star-
star interaction, Vss(r), is given by a combination of a logarithmic and a Yukawa



2.2. Early Approaches 17

potential of Ref. [18]

βVss(r) =
5

18
f 3/2





− ln

(
r

σs

)
+

1

1 +
√

f/2
for r ≤ σs;

1

1 +
√

f/2

σs

r
exp

[
−
√

f

2σs

(r − σs)

]
else,

(2.3)

featuring a crossover from the logarithmic to the exponential form at the aforemen-
tioned length scale σ. Extensive computer simulations have established between this
length and the radius of gyration Rg of the stars the relation σ ∼= 1.2 Rg [29]. The
chain-chain effective potential has been derived in the work of Louis et al. [30, 31]:

Vcc(r) = 1.87 kBT exp[−(r/τ)2], (2.4)

where τ = 1.13 Rlin
g and Rlin

g is the linear chains’ gyration radius. Finally, a heuristic
form for the cross interaction, based on typical overlap energy estimates, has been
adopted in Ref. [28,32], which reads as

Vsc(r) = 1.387 kBT (r/δ)−12, (2.5)

with δ = (σ + 2σ/
√

f + Rg)/2. The size asymmetry is expressed through the ratio
ξ = τ/σ < 1.

2.2.2 Fluid Structure in Dilute Star Solutions

In order to determine the pair structure of the mixture we have solved the two-
component Ornstein-Zernike equation with hypernetted chain (HNC) closure [16,
33] for given sets of physical parameters (f, ξ; ρs, ρc), obtaining thereby the radial
distribution functions gij(r) and the structure factors Sij(q). In order to maintain
contact with currently available experimental samples, we have considered three
different values of the star functionality f = 73, 122, and 270, as well as two different
values of the size ratio ξ = 0.3 and 0.5. The density ρs was always kept within the
dilute regime, ρsσ

3 ¿ 1, whereas ρc was varied at wish.
Selected results for the star-star structure factors Sss(q) are shown in Fig. 2.1.

Upon the addition of a small amount of chains, the star system displays weakened
correlations, as witnessed by the drop of the height of the main peak of Sss(q) and
the virtual disappearance of the second one. However, as ρc further increases, a
new feature shows up: the structure factor develops a double-peak structure with
two peaks that correspond to two independent length scales: whereas a ‘particle
peak’ shows up at q2σ ∼= 6, a ‘cluster peak’ appears at much smaller wave-numbers,
q1σ ∼= 2, the position of which changes with chain density. In fact, as ρc grows,
the latter peak moves to lower q-values, indicating the growth of the cluster size
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Figure 2.1: Star-star structure factors Sss(q) for star polymers at density ρsσ
3 = 0.1

and chain densities ρcτ
3 as indicated in the legends, for different star functionalities

f and chain-to-star size ratios ξ. (a) f = 73, ξ = 0.3; (b) f = 122, ξ = 0.3; (c)
f = 122, ξ = 0.5. The arrows in (a) denote the cluster-peak position q1 and the
particle-peak position q2 introduced in the text, whereas the peak position q0 for
the chain-free star solution is also marked for comparison.
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Figure 2.2: The star-star radial distribution function gss(r) at ρsσ
3 = 0.1 and chain

densities ρcτ
3 as indicated in the legend. Here f = 122 and ξ = 0.3.

(and the concomitant intercluster separation). Eventually, at sufficiently high chain
densities, the peak moves towards q = 0 and a spinodal line, Sss(q = 0) → ∞, is
reached. The double-peak structure factor is strongly reminiscent of features present
in model systems for which the development of clusters has been detected, both in
experiment [32,34,35] and in theory [35–42]. We will return to a comparison between
our system and some of these models at the end of this section.

Comparing now the quantitative features of Figs. 2.1(a)-(c), we see that the
occurrence of a double peak (and thus of the clusters) takes place at lower chain
densities for f = 73 than for f = 122, at fixed size ratio ξ = 0.3. In fact, for
star functionality f = 270, which we also examined, we did not find any clustering
phenomena. Moreover, the interparticle distance within the clusters, rm, which is
given roughly as rm

∼= 2π/q2, has a dependence both on f and on ξ. Comparing
Figs. 2.1(a) and (b) we see that, for fixed ξ, the particles within the clusters come
somewhat closer to each other as f increases. On the other hand, by comparing
the position of q2 between Figs. 2.1(b) and (c) we see that, for fixed f , an increase
in ξ leads to a concomitant increase of the particle separation within the clusters,
witnessed by the significant shift of q2 to the left. Otherwise, the position of q2 is
rather insensitive on the value of the density ρc of the additives: clusters are formed
and grow in size upon increasing ρc but, otherwise, the particle-particle distance
within a cluster is not influenced by the chain concentration.

Fig. 2.2 shows the evolution of the radial distribution function gss(r) of the stars
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Figure 2.3: The chain-induced star-star effective interaction Veff(r; ρc) for various
chain densities, as indicated in the legends. (a) f = 73; (b) f = 122. The size ratios
ξ are also shown in the legends.

upon chain addition for the same parameter combination as in Fig. 2.1(b). The
initial ‘softening’ of the star-star repulsion and the subsequent accumulation of stars
are witnessed by the ‘leaking-in’ of gss(r) and the development of an increasingly
high peak at r & σ, respectively. Note that, in agreement with the interpretation
given above, the peak position is hardly affected by ρc; it corresponds to the length
scale rm introduced above. On the other hand, the integral below the peak, which
gives the cluster size, does grow upon increase of ρc.

2.2.3 Chain-Mediated Effective Interaction

The formation of clusters as well as the trends regarding their size and stability
depending on f and ξ can be rationalized through the concept of the effective star-
star interaction in the presence of the chains, Veff(r; ρc). This quantity is derived
from the stars’ radial distribution function g11(r) through

Veff(r; ρc) = − lim
ρs→0

ln gss(r; ρs, ρc) (2.6)

and includes all the effects from the chains through its dependence on the chain
density ρc. In the absence of chains, we have Veff(r; ρc → 0) = Vss(r). In Fig.
2.3 we show characteristic results for this quantity for different values of f , ξ and
ρc. Whereas for small values of ρc the effect of the chains is just a reduction of
the repulsion strength of the interaction, upon sufficient increase of ρc a ‘well-and-
shoulder’ form of the effective interaction arises. The attractive well is a typical
depletion effect and is caused by the osmotic pressure of the chains surrounding two
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stars that are sufficiently close to each other, so that polymer chains are excluded
from the inter-star space. The repulsive shoulder is a feature arising from the chain
interactions and correlations, as the latter become crowded in the inter-star region
for larger inter-star distances, a phenomenon also known from asymmetric hard
sphere mixtures [43].

2.2.4 Experimental Findings

Stiakakis et al. [32, 44] have also performed experiments employing mixtures of
f = 122, regular 1, 4-polybutadiene stars with homopolymer chains of size ratio
δ = 0.4. Dynamic light scattering experiments yielded the intermediate scattering
function C(q, t) which was analyzed via an inverse Laplace transform, determining
the characteristic relaxation times through the peak distribution of the same [45].
Such measurements allow for the independent determination of both the hydrody-
namic radius and the radius of gyration of the dissolved objects for any given chain
density. Indeed, the relaxation peaks resulting from the self-diffusion of the stars
(slow) and the collective diffusion of the chains (fast) are well-separated in time,
allowing for the identification of two distinct relaxation processes in the system.
Calling Γ(q) the q-dependent inverse decay time associated with the stars, the self-
diffusion coefficient Dstar of the same was calculated as Dstar = Γ(q)/q2 and the
Stokes-Einstein relation yielded the star hydrodynamic radius. On the other hand,
the integrated intensity under the peak gives the static scattering intensity I(q)
from the stars, allowing then for a determination of the gyration radius Rg through
a Guinier fit for the cluster-free case and by a Debye-Bueche fit in the clustered
phase [46].

Both methods yielded identical results regarding the dependence of the radii
on ρc. In Fig. 2.4 we show the result for Rg. There is an initial shrinkage of the
stars, caused by the osmotic pressure of the chains and lasting up to a concentration
clin/c

∗
lin
∼= 0.4, where c∗lin denotes the overlap concentration of the chains. Thereafter,

a rapid increase of Rg was measured with growing chain concentration, pointing to
the development of clusters with Rg as large as 10 times the value of an isolated star.
After a period of several weeks, the clusters did not grow in size, suggesting their
equilibrium nature. These trends are in agreement with the theoretical predictions.

2.2.5 Cluster Formation in Other Systems

Cluster formation has been recently observed in protein solutions and charged
colloid-polymer mixtures [34]; their stability was attributed to the presence of an
effective potential with a short-range attraction and a long-range repulsion. The
presence of both an attractive well and a repulsive shoulder is very common in the
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Figure 2.4: The ratio Rg/R
0
g of the measured star radius of gyration over its value

at zero chain concentration in a dilute star solution containing linear chains, plotted
against the concentration of the latter. Here, clin denotes the weight fraction of
linear chains with c∗lin standing for the value of this quantity at the chains’ overlap
concentration. Inset: the measured scattering intensity at the blue and red points.
Notice the dramatic increase of the latter at low scattering wave vectors q at the
red point, indicating the presence of clusters in the system. Figure courtesy of
E. Stiakakis.
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formation of finite, stable clusters. Indeed, in a number of recent works effective po-
tentials of this kind have been employed in order to explain the emergence of meso-
scopic structures (clusters or stripes) in soft matter. However, Mladek et al. [47] also
observed the formation of clusters for bound potentials which are purely repulsive.
Sear and Gelbart worked with a hard-sphere potential, dressed by the superposition
of two ‘Kac-tail’, long-range interactions, one attractive, causing the well, and one
repulsive, giving rise to the shoulder [36]. Sciortino et al. introduced an effective
potential consisting of a superposition of a generalized n−2n Lennard-Jones poten-
tial and a long-range Yukawa repulsion [37,38], finding the formation of spherical or
linear clusters, depending on parameter values. Liu et al. investigated the structural
properties of double Yukawa (attractive/repulsive) fluids, finding macrophase sepa-
ration or cluster formation, depending on the relative strength of the attractive and
repulsive parts [39], whereas Imperio and Reatto employed a model similar to that
of Ref. [36] and discovered cluster- and stripe formation in two dimensions [40, 41].
Also two dimensional mixtures of superparamagnetic colloids were investigated in
two dimensions [35, 42]. Also in this system aggregation of particles into clusters
was observed. The physics behind the cluster stability lies in the tendency of the
attractive well to cause particle aggregates, whose size is thereafter limited by the
repulsive barrier that prevents the growth of an infinite cluster. In this respect, the
particle separation within the clusters, rm, is set by the minimum in the effective
potential Veff(r; ρ2). This explains the observation that q2 decreases (rm grows) as ξ
increases, cf. Fig. 2.3(b) with Figs. 2.1(a) and (b). Moreover, the fact that cluster
formation is easier at fixed ρc for smaller ξ, can be understood if one takes into
account that, for given ρcτ

3, the number density of the small stars is larger for
smaller ξ, i.e., ρcσ

3 = ρcτ
3/ξ3. Hence, the smaller-ξ chains can bring about a higher

osmotic pressure that leads to cluster formation. Without the barrier, the system
would be driven to phase separation without the occurrence of clusters, i.e., Scc(q)
would develop a peak at q = 0 and not at finite q-values [36]. Note, however, that
the presence of clusters does not exclude macroscopic phase separation. Whereas
one can choose the potential parameters in such a way that a binodal is completely
eliminated or strongly suppressed [36–38], one can have situations in which a bin-
odal line is preceded by a region of stability of finite clusters, as found by Liu et al.
in their study of the double-Yukawa system [39]. Here, we find a similar scenario,
in which cluster formation is followed by indications of a macroscopic phase separa-
tion, i.e., star-chain demixing, witnessed by the drifting of the cluster peak towards
q = 0 as ρc is increased. Due to lack of experimental samples, the chain concen-
tration could not be increased beyond the values quoted here. On the basis of the
theoretical analysis, a macrophase separation is expected upon further increase of
ρc. The theoretical investigation of this question is left for future studies. However,
we will address the related questions on the influence of the added chains on the
gelation and vitrification properties of the stars in the following sections. We will
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now abandon the purely heuristic approach taken until now and will base our study
on an effective interaction derived in theoretical modeling of the star and chain and
confirmed by extensive monomer-resolved computer simulations.

2.3 Star-Star and Chain-Chain Interactions

In the following sections we perform an accurate calculation of the effective interac-
tions use to model the mixture of star polymers and chains. In this way, we extend
and improve the model presented in Sec. 2.2.1.

The question that arises is which coordinates should be chosen as effective ones.
For the star polymers, and in particular in the case of high functionality f , the
position of their central particle, on which all chains are grafted, is the natural one.
The corresponding effective interaction Vss has been derived a long time ago [17,18]
and its validity has been confirmed through extensive comparisons with scattering
data [18, 24] and computer simulations [29]. It is the same interaction as we use in
Eq. (2.3). We quote it again for the sake of completeness [18]:

βVss(r) =
5

18
f 3/2





− ln

(
r

σs

)
+

1

1 +
√

f/2
for r ≤ σs;

1

1 +
√

f/2

σs

r
exp

[
−
√

f

2σs

(r − σs)

]
else.

(2.7)

Again, σs is the corona diameter of the star. The distance σs/2 marks the crossover
between the inner part of the macromolecule, where the latter resembles a semidilute
polymer solution and the outer part, in which loose chains form a local, dilute
solution [18]. The Yukawa part of the interaction decays with the characteristic
length 2σs/

√
f , set by the diameter of the outermost star blob [15]. Monomer-

resolved computer simulations have shown that the relation σs
∼= 4/3 R

(s)
g holds,

where R
(s)
g is the radius of gyration of the star polymer.

The choice of the effective coordinate for the linear chains is less obvious. At least
three possibilities have been employed repeatedly in the literature. Witten and Pin-
cus [17] considered the coordinate of the end-monomer as an effective one that char-
acterizes the whole chain. In computer simulations [31, 48–54] and field-theoretical
approaches [48] the polymer’s center of mass is an oft-used coordinate, resulting into
a Gaussian effective interaction of strength ∼ 2 kBT and range set by the chain’s
radius of gyration, R

(c)
g . This approach was also employed by us in Sec. 2.2.1. Fi-

nally, another alternative is given by choosing the central monomer as an effective
coordinate, a choice that is more symmetric than that of the end-monomer [48,55].
The latter choice establishes a certain symmetry between multiarm star polymers
and linear chains, since a chain of polymerization Nc now becomes equivalent to a
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star of functionality f = 2 and polymerization Nc/2 per arm. Accordingly, this is
the choice we follow in the next sections. In this representation, the effective inter-
action between the polymer chains has been calculated by theory and simulation in
Ref. [55]. The interaction energy between two polymer chains as a function of the
distance r between their central monomers is given by:

βVcc(r) =
5

18
23/2





− ln

(
r

σc

)
+

1

2α2σ2
c

for r ≤ σc;

1

2α2σ2
c

exp
[−α2(r2 − σ2

c )
]

else.

(2.8)

As for multiarm stars the scale σc satisfies the relation σc
∼= 4/3 R

(c)
g [55]. The

parameter α is given by ασc = 1.03, a choice that guarantees the correct value
of the second virial coefficient of a polymer solution [55]. The similarity between
high-f (f & 10) stars and linear chains (f = 2) is manifest by comparing the
interactions of Eqs. (2.7) and (2.8). Both feature a logarithmic divergence for close
approaches, scaling with the prefactor (5/18)f 3/2. This feature arises from general
scaling considerations, as it will be demonstrated shortly. However, the type of
decay for larger separations is different: a Yukawa-type decay holds for multiarm
stars, whereas a Gauss-type decay is valid for linear chains. The physical reason
for this difference lies in the fact that high-f stars feature geometric blobs in their
exterior, which arise from the crowding of the f chains in a sphere. The size of the
outermost blob sets the scale for the decay of the Yukawa part of the potential [18].
Such blobs are absent in linear chains and the interaction decays in a different way,
which is much better modeled by a Gaussian [55].

Evidently, it remains to specify the cross-interaction Vsc(r) in order to have a full,
mesoscopic description of the mixture. In Refs. [28, 32, 44] and Sec. 2.2, in which
star-chain mixtures have also been considered, the approach of using the chain’s
center of mass as effective coordinate has been adopted. Accordingly, the chain-
chain interaction was modeled by a Gaussian [31], and for the cross-interaction a
heuristic power-law form with additive length scale was assumed. That modeling
led to a satisfactory description of experimental observations. Here, however, we
aim at a realistic modeling of the cross interaction and thus a more detailed analysis
is necessary, also in view of the fact that a different effective coordinate (the central
monomer) is used to coarse-grain the linear polymer. This is the subject of the
following section.
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2.4 Star-Chain Interactions

2.4.1 Molecular Dynamics Simulations

One strategy leading to the determination of the unknown interaction Vcs(r) is to
employ computer simulations. These also serve as a stringent test for theoretical
approximations. Computer simulations are, at the same time, limited by the degree
of polymerization N and the star functionality f that can be simulated. For this
purpose, we limited ourselves to moderate values of these parameters and subse-
quently compared the simulation results with those from theory. The maximum
number of monomers of the star in the simulations is 5000. The excellent agreement
between the two allows us then to apply the theoretical approach to arbitrary star
functionalities.

We performed Molecular Dynamics (MD) simulations in which each monomer
is resolved and calculated the effective force Fsc(r) acting on the star center in the
presence of a chain whose own central monomer is held at distance r from the former;
clearly, Fcs(r) = −Fsc(r) and the relation to Vsc(r) reads as

Fsc(r) = −∂Vsc(r)

∂r
r̂, (2.9)

where we position the star at the origin and the mid-monomer of the chain at r = rr̂.
The simulation model employed is the same used in various previous studies of star
polymers and polymer chains [29,56]. In order to mimic good solvent conditions, all
monomers interact with each other via a purely repulsive and truncated Lennard-
Jones potential, namely

VLJ(r) =





4ε

[(σLJ

r

)12

−
(σLJ

r

)6

+
1

4

]
for r ≤ 21/6σLJ;

0 else.

(2.10)

Here, σLJ is the monomer size and ε sets the energy scale. As in previous simu-
lations [29], we use kBT = 1.2ε. The monomer mass m is also taken as unitary,
setting thereby the time scale of the MD simulation as τMD =

√
mσ2

LJ/ε. Connected
monomers along each star arm and along the chain experience an additional bonding
interaction, expressed by the finite extensible nonlinear elastic potential (FENE):

VFENE(r) =




− 15ε

(
R0

σLJ

)2

ln

[
1−

(
r

R0

)2
]

for r < R0;

∞ else,

(2.11)

where R0 = 1.5σLJ.
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f Ns Nc R
(s)
g /σLJ R

(c)
g /σLJ σs/σLJ σc/σLJ Rd/σLJ

20 50 40 11.6 4.36 15.46 5.82 0.5
35 50 40 12.6 4.36 16.8 5.82 0.5
50 100 200 20.2 11.9 27 15.8 0.5
100 50 200 15.1 11.9 20.1 15.8 0.8

Table 2.1: List of the parameters of the simulated systems. The corona diameters
σα (α = s, c) were taken to be 4/3 of the respective radii of gyration, R

(α)
g , as

discussed in the text.

Due to the high monomer concentration in the center of the star, a hard core with
radius Rd is introduced [29]. The interaction between the core and the monomers
is the same as between the monomers, but shifted by a distance Rd of microscopic
order; all parameters are summarized in Table 2.1. The effective force Fsc(r) above
is then simply the average over all microscopic forces acting on the center of the
star [16,29]. We simulated four different pairs consisting of one star and one chain;
the parameter combinations are given in Table 2.1. The equations of motion were
integrated using a time step ∆t = 2×10−3 τMD. For every different separation r, the
system was first equilibrated during 106 time steps and up to an additional 5× 107

time steps were used to gather the statistics. During equilibration, we couple the
system to a heat bath [49] that acts as a thermostat, which is switched off at the
end of equilibration time. A typical simulation snapshot is shown in Fig. 2.5. The
results from the MD simulations will be discussed in what follows, in conjunction
with the theoretical modeling.

2.4.2 Theory of the Star-Linear Effective Interaction

In developing a theoretical approach for the unknown quantity Vsc(r), two different
regimes for the interparticle separation r must be considered. When the two are
sufficiently close together, r . (σs + σc)/2, analytical considerations from scaling
theory can be employed. We denote this range of separations as the scaling regime,
whereas the domain r & (σs + σc)/2 defines the weak overlapping regime.

1. The scaling regime. In the scaling regime, we can invoke arguments from
scaling theory [57]. The partition function Z1 of a linear chain with N monomers
scales as

Z1(N) ∼ zNN−νη2 , (2.12)

where the fugacity z is a quantity depending on microscopic details but the Flory
exponent ν ∼= 3/5 and the exponent η2 are universal for all polymers in good solvent
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Figure 2.5: Simulation snapshot of a star polymer with f = 35 arms and Ns = 50
monomers (dark beads) per chain and a linear chain with Nc = 40 monomers (light
gray beads) at a center-to-center distance r = 10 σLJ.

conditions. Eq. (2.12) above can be generalized to f -arm stars and reads as

Zf (N) ∼ zfNN ν(ηf−fη2), (2.13)

with the family of exponents ηf being known from renormalization group analysis
and simulations [58] and scaling as ηf ∼ −f 3/2 for f > 1. Note that Eqs. (2.12) and
(2.13) above immediately imply that η1 = 0. At the same time, it can be seen that a
linear chain can be simultaneously seen as a star with f = 1 arm and N monomers
(end-monomer representation) or as a star with f = 2 and N/2 monomers (mid-
monomer representation): the partition functions Z1(N) and Z2(N/2) have the same
N -dependence.

When two stars with different functionalities, f1 and f2 are brought to a small
separation r of the order of the monomer length a, their partition function takes the
form:

Zf1f2(r; N1, N2) ∼ Cf1f2(r)Zf1+f2(N), (2.14)

which reflects the fact that two stars held close together resemble a new star with
functionality f1 + f2. Here N stands for either N1 or N2, supposing that the two
are not too dissimilar, so that the radii of the two stars, which scale as N ν

i can
be identified with a single length scale R ∼ N ν

i . When r → ∞, Zf1f2(N1, N2)
factorizes into the partition functions of the individual components, Zf1f2(N1, N2) =
Zf1(N1)Zf2(N2).
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At the same time, since the monomer length scale is irrelevant for scaling argu-
ments, the only remaining length is the aforementioned star size R. On dimensional
grounds, the partition function Zf1f2(N1, N2) must take the form

Zf1f2(r; N1, N2) ∼ Bf1f2(r/R)Zf1Zf2 , (2.15)

with some unknown function Bf1f2(r/R). Taking into account Eq. (2.13) above,
Eqs. (2.14) and (2.15) imply that

Bf1f2(r/R) ∼ N−νθf1f2 , (2.16)

with

θf1f2 = ηf1 + ηf2 − ηf1+f2 . (2.17)

Taking into account the scaling R ∼ N ν , we see that Eq. (2.16) can be fulfilled only
if the function B(z) is a power law of z: B(z) ∼ zθf1f2 . Finally, Eq. (2.15) is written
as:

Zf1f2(r; N1, N2) =
( r

R

)θf1f2 Zf1Zf2 . (2.18)

Combined with the definition of the effective interaction, Eq. (2.1), the last equation
gives the asymptotic behavior of Vf1f2(r) for small r as βVf1f2(r) ∼ −θ ln(r/R).
Inserting the scaling ηf ∼ −f 3/2, we obtain therefore

βVf1f2(r) = −α
[
(f1 + f2)

3/2 −
(
f

3/2
1 + f

3/2
2

)]
ln

( r

R

)
+ K, (2.19)

with some unknown constants α and K. The constant α can be fixed by requiring
that Vf1f2 reduces to Eq. (2.7) in the case f1 = f2 = f . Thereby, we obtain

βVf1f2(r) = −Θf1f2 ln
( r

R

)
+ K, (2.20)

where

Θf1f2 =
5

36

1√
2− 1

[
(f1 + f2)

3/2 −
(
f

3/2
1 + f

3/2
2

)]
. (2.21)

Eq. (2.20) above is the expression that we adopt for small star-chain separations,
setting f1 = f and f2 = 2. It remains to specify what is meant by ‘short’. The scaling
argument above holds for separations r of the order of the monomer length. However,
monomers of length a can be regrouped into effective ones with increased length,
a → λa, provided one simultaneously rescales the polymerization, N → λ−1/νN ,
thereby increasing the range of validity of the asymptotic regime. Clearly, this
procedure can be carried until the rescaled monomer length has reached a size of
the order of the gyration radius. We expect, thus, Eq. (2.20) to hold for r . R, and
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Figure 2.6: The inverse force Fcs(r) = r̂ · Fcs(r) [see Eq. (2.9)] between stars of
different functionalities and chains of different lengths, as indicated in the legend.
The symbols denote simulation results, shifted by the star core, whereas the lines
are the predictions of the theory according to Eq. (2.22). The slope in the linear
part is in agreement with the theoretical description but the scaling breaks down
for separations r > σsc.

in the following we will test this assumption. A consequence of Eq. (2.20) is that
the force Fcs(r) = r̂ · Fcs(r) [see Eq. (2.9)] takes the form:

βFsc =
Θf2

r
, (2.22)

implying that the inverse force scales linearly with r.
In Fig. 2.6 we show a comparison of the results from the computer simulations

and scaling theory regarding the inverse force. It can be seen that the scaling regime
holds up to a separation σsc = (σs+σc)/2, i.e., the cross-diameter for the logarithmic
interaction is additive. Thus, we write the star-chain effective potential as

βVsc(r) = −Θf2 ln

(
r

σsc

)
+ K̄ for r ≤ σsc, (2.23)

with an additive constant K̄ to be fixed later. It remains, thus to determine the
interaction in the weak overlapping regime, r > σsc.

2. The weak overlapping regime. For large separations between the star center
and the central monomer of the chain, we use a Flory-type approach, which has been
shown to yield accurate results for dendritic macromolecules [59,60]. The interaction
energy between the star and the chain is now estimated by a simple overlap integral
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between the undisturbed density profiles of the two objects. This is justified, since
we use this theoretic approach only for large distances. We assume that the density
profiles are the profiles of the two objects for an infinite separation. Thus, Vsc(r)
reads as

βVsc(r) = β

∫∫
d3r′ d3r′′ cs(r

′)cc(|r′′ − r|)v(|r′ − r′′|). (2.24)

Here, cs(r) and cc(r) are the density profiles of the star and chain, respectively,
and v(r) is the monomer interaction. The interaction between the monomers is
approximated by a δ-function [61–63]:

βv(|r′ − r′′|) = v0δ(r
′ − r′′), (2.25)

where v0 has the dimension of a volume and is called excluded volume parameter.
Using this interaction in Eq. 2.24 we obtain

βV (r) = v0

∫
d3r′ cc(r

′)cs(|r′ − r|). (2.26)

The modeling of the density profile of the star polymers is based on the consid-
erations in Ref. [55]. According to the blob model of star polymers by Daoud and
Cotton [15], for sufficiently long arms the largest part of the star is in good solvent
conditions and the monomer density follows a power-law:

cs(r) ∼ r−4/3. (2.27)

The length σs/2 is the distance from the star center up to which the scaling Eq.
(2.27) holds. Outside of this region there is a layer of free rest chains. In Ref. [55],
it was found that the local osmotic pressure in the outer region takes the form

Π(r) ∝
(

1

r2
+ 2κ2

)
ζ

σs

exp
{−κ2

[
r2 − (σs/2)2]} , (2.28)

where κ is a fit parameter of the order 1/R
(s)
g and

ζ =
1

1 + κ2σ2
s /2

.

In this outer region, the monomer density is very low and the region can be locally
seen as a dilute polymer solution. Therefore, c ∝ Π and the resulting density profile
of a single star is then given by

cs(r) = A





r−4/3(σs/2)−5/3 for r ≤ σs/2(
1

r2
+ 2κ2

)
ζ

(σs/2)
exp

{−κ2
[
r2 − (σs/2)2]} else.

(2.29)
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Figure 2.7: The monomer density profiles cs(r) of three different star polymers.
Each panel shows a comparison of the the simulation results and the theoretical
modeling according to Eq. (2.29). (a) f = 20, Ns = 50; (b) f = 35, Ns = 50; and
(c) f = 50, Ns = 100.

The profile is continuous at r = σs. The prefactor A is determined by the mass
conservation condition:

Nsf =

∫
d3r cs(r). (2.30)

Eq. (2.29) above satisfies known conditions from scaling theory. First, since A ∝ f
and σs ∼ af 1/5, for fixed Ns, it yields cs(r) ∝ r−4/3f 2/3 for r < σs. Subsequently,
the relation Π ∝ c9/4 in the semidilute regime formed in the star interior yields
Π(r) ∝ r−3f 3/2 there.

In Fig. 2.7 we show a comparison between the theoretical model for the star
density profiles and the simulation results. There is a single fitting parameter,
namely κ, which must be of the order of 1/R

(s)
g . Indeed, the fits shown in Fig.

2.7 were achieved for a value κR
(s)
g = 0.95 for all three cases. Subsequently, we

employ this value for all stars modeled in the theory. Apart from a region close to
the grafting core, in which the local steric-induced ordering of the monomers causes
oscillations in the density profile, the agreement is good. Notice, in any rate, that
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Figure 2.8: The monomer density profiles cc(r) of two different polymer chains.
Each panel shows a comparison of the the simulation results and the theoretical
modeling. (a) Nc = 40; (b) Nc = 200.

f Ns Nc v0σ
3
LJ

20 50 40 0.957
35 50 40 0.955
50 100 200 0.445
100 50 200 0.546

Table 2.2: List of the parameters of the simulated systems. The excluded volume
parameter v0 is determined by the condition that the force be continuous at r = σsc.

we are going to make use of the profiles only in their outermost domain, since the
interaction for short distances is given by the scaling form, Eq. (2.23).

For the linear polymer chains, we model the profile cc(r) around the mid-monomer
in the same way as for the stars, since in the inner region theory again predicts a
r−4/3-scaling [64, 65], and in the outer region we expect some exponential decay.
Only the normalization condition changes and reads now as

Nc =

∫
d3r cc(r). (2.31)

Again κR
(c)
g = 0.95 was employed. The comparison of the model and the simulation

data is shown in Fig. 2.8.
Using these density profiles, we can now calculate effective interactions between

the two macromolecular objects for r > σsc. Note that the only remaining free
parameter in the theory is the excluded volume parameter v0. This, along with the
additive constant K̄ in Eq. (2.23), is uniquely determined by the constraints that
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Figure 2.9: Mean force between the star and chain as a function of the distance
of the star and chain center. The circles denote the simulation results, the solid
line the results from the theoretic modeling. The force is calculated for (a) f = 20,
Ns = 50, Nc = 40; (b) f = 35, Ns = 50, Nc = 40; (c) f = 50, Ns = 100, Nc = 200;
and (d) f = 100, Ns = 50, Nc = 200.
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both the interaction Vsc(r) and its first derivative with respect to r be continuous at
the matching point r = σsc. The resulting values for v0 are shown in Table 2.2. In
Fig. 2.9 we show the comparisons between the effective forces obtained in the MD
simulations and the ones resulting from the above theoretical modeling, for which
the force is given by Eq. (2.9). It can be seen that for the first three combinations,
there is excellent agreement between the two whereas for Fig. 2.9(d) the agreement
is still good. It should be pointed out, however, that for a star with f = 100 and
N = 50 there is an inner region with strongly stretched monomers and that the
size ratio with the associated chain is ξ = 0.8 (see Table 2.1), which is larger than
the size ratios ξ ≤ 0.5 considered in this work. Therefore, the predictions of scaling
theory are not expected be very accurate in this case. The agreement between theory
and simulations for the parameter combinations considered gives confidence in the
theoretical modeling of the profiles and the associated effective interaction.

We now need to provide a general scheme for the consistent calculation of Vsc(r)
for arbitrary functionalities f and size ratios ξ, defined as

ξ =
σc

σs

.

Here, a difficulty arises at first, since, in a mesoscopic description, the degrees of
polymerization Ns and Nc of the star and the chain should drop out of sight and
they should enter the effective interactions solely through the dependence of the
scales σs,c on them, namely [14,61]:

σs ∼ f 1/5N3/5
s (2.32)

and
σc ∼ N3/5

c . (2.33)

At the same time, explicit values for Ns,c are required for the normalization condi-
tions of the density profiles. It appears that one obtains, then, different effective
interactions for different Ns,c values at fixed ξ and f . The problem, however, is only
an apparent one and it is removed because the part of the effective interaction for
r < σsc provides a strong constraint. One may choose some arbitrary (large) value
for Ns and subsequently determine uniquely the corresponding value of Nc from the
given size ratio ξ and Eqs. (2.32) and (2.33) above. Using these scaling relations
and calculating the convolution integral from Eq. (2.26) above, one finds that the

effective interaction Vsc(r) in the region r > σsc scales proportionally to ṽ = v0N
1/5
s

and that the remaining factor depends only on the scaled separation x = r/σsc.
This expression, and its derivative, have to be matched with Eq. (2.23), valid in
the strong overlap region, at x = 1. The latter, however, depends exclusively on
x, without any additional dependence on Ns. Therefore, ṽ turns Ns-independent.
This property gives a N

−1/5
s -dependence on v0, which shows that the latter should
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not be interpreted literally as the true monomer-monomer excluded volume but
rather as a parameter that allows the smooth crossover from the scaling- to the
weak-overlapping regimes. To put it differently: one can assume just any degree of
polymerization for the star. The scaling expression, Eq. (2.23), will then force the
effective interaction to lose any explicit dependence on Ns also in the outside region,
as long as it is expressed in terms of the scaled variable x = r/σsc, as should indeed
be the case. The only dependence of the interaction on Ns and Nc enters implicitly
through the dependence of the length scales σs, σc, and σsc = (σs + σc)/2 on these
quantities, see Eqs. (2.32) and (2.33) above.

2.5 The Many-Body Problem

Having now obtained the star-star, star-chain and chain-chain effective interactions,
we can turn our attention to finite mixture concentrations, employing for the coarse-
grained description of the mixture the effective potential energy function of Eq. (2.2).
The associated physical parameters are the star functionality f as well as the chain-
to-star size ratio ξ; the relevant thermodynamic parameters are the two partial
densities ρα = Nα/Ω, α = c, s, where Nc,s denote the numbers of stars and chains,
respectively, enclosed in the macroscopic volume Ω. For the calculation of the pair
structure, the sought-for quantities are the corresponding partial distribution func-
tions gαβ(r) or, equivalently, the partial structure factors Sαβ(k), defined as [33]

Sαβ(k) = δαβ +
√

ραρβ

∫
d3r [gαβ(r)− 1] exp (−ik · r). (2.34)

The distribution functions have been calculated by employing standard tools from
integral equation theory. In particular, we solved the two-component Ornstein-
Zernike equation [16,33] complemented with the Rogers-Young closure [66].

2.5.1 Mixtures at Low Star Concentrations

1. Chain-modified star-star interaction. We can make one more step in the coarse-
graining process and integrate out the linear chains, describing thereby the system
as an effective, one-component star solution. In this way, the star-star interaction
Vss(r) gets renormalized and a higher-level effective interaction between the stars,
Veff(r) arises, which depends on f , the size ratio ξ, and, most importantly, the chain
concentration ρc. In this way, we can gain insight into the ways of modifying the
behavior of a concentrated star solution by changing any of the above characteristics
of the mixture. The quantity Veff(r) can be obtained within the framework of two-
component integral equations. Starting from the radial distribution function in the
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limit of infinite dilution of star polymers, the effective interaction between them in
the presence of polymer chains is given by [67]

Veff(r; ρc) = − lim
ρs→0

ln gss(r; ρs, ρc). (2.35)

and depends parametrically on the (reservoir) density of the linear chains.
In Fig. 2.10 we show the dependence of the effective interaction on the properties

of the added polymer, taking now a typical experimental functionality f = 73 as
a representative. It is instructive to see how different the effect of the linear ad-
ditives is depending on the size ratio ξ. For ξ = 0.1, Fig. 2.10(a), the addition of
polymer chains leads first to a weakening of the repulsion between the stars, until a
strong depletion attraction is induced. Notice that the chain density in the legend
is expressed in units of the chain size; it lies well below its overlap value but it
is nevertheless large when expressed in units of the star size, as it gets multiplied
by a factor ξ−3. An attractive part develops, which is due to the osmotic pressure
of the many small chains pushing the two stars together, a depletion phenomenon
well-known also from the case of colloid-polymer mixtures. This attraction is de-
void of any significant secondary maximum (hump) at larger separations and can
lead to a star-chain demixing transition. In the intermediate region of size ratios,
ξ = 0.3, shown in Fig. 2.10(b), the resulting interaction displays a competition of
short range attractions and long range repulsions, which lead to the formation of
finite equilibrium clusters, to be discussed below. Here, the presence of the repulsive
hump plays the decisive role in stabilizing the multistar aggregates [32,44].

An unusual feature develops for the case of the largest size ratio considered,
ξ = 0.5, shown in Fig. 2.10(c). The chains bring about no attraction between the
stars, only a reduction of the repulsion range. The striking effect, however, lies in
the fact that beyond the overlap density of the chains, ρ∗cσ

3
c ≈ 1, the interaction

remains virtually unchanged by the addition of more chains. The phenomenon is
unknown for the usual cases of colloid-polymer or colloid-colloid depletion, for which
the effective potential has a strong dependence on the depletant density [16]. Here,
it seems that the effect of the chains saturates when they reach their overlap density
and that this feature is present only when the chains have a size comparable to
that of the stars. The novelty arises from the soft nature of the cross-interaction
potential, Vsc(r), as opposed to the hard interactions encountered in colloid mixtures
and can be traced back to the increased penetration of the chains into the stars as
their density grows.

To provide an independent check on this phenomenon and to understand better
the role of the penetrability, we have calculated the depletion force between the stars
using an alternative approach, the superposition approximation [68]. The geometry
is shown in Fig. 2.11. Let the star on the left be placed at the origin and a second
star be at separation r from the first. The two are immersed in a solution of linear
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Figure 2.10: Effective interaction between the stars modified by the presence of
the chains. The functionality is f = 73 in all cases, the size ratio is indicated in the
figure.
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Figure 2.11: The geometry of two stars, separated by the vector r and being
immersed in a sea of linear chains (not drawn). The star on the left is positioned
at the origin. At the point described by the position vector s, the chain density is
ρc(s; r), where the second argument indicates its dependence on the star separation
r. The arrow denotes the direction along which the effective force acting on the star
on the left is chosen as positive.

chains and the local chain density at position s is ρc(s; r), depending parametrically
on the star-star separation. We consider the chain-mediated force acting on the star
at the origin, which we call depletion force, Fdep(r); it is positive if it repels the two
stars and negative otherwise. With this convention, we consider now the quantity
Fdep(r) = −r̂ · Fdep(r), which is given by

Fdep(r) = −2π

∫ ∞

0

r2 dVsc(r)

dr

∫ 1

−1

ρc(r;R1,R2)ωdωdr, (2.36)

where ω = cos θ. In the superposition approximation, the chain density ρc(s; r) is
decomposed as a product of the radial distributions of two isolated stars, shifted by
the distance r, i.e.,

ρc(s; r) = ρcgsc (s) gsc (|s− r|) . (2.37)

With this approximation we obtain

Fdep(r) = −2π

∫ ∞

0

h(r, s) ds, (2.38)

where

h(r, s) = ρcs
2 dVsc(s)

ds
gsc(s)f(r, s) (2.39)

and

f(r, s) =

∫ 1

−1

gsc

(√
r2 + s2 − 2rsω

)
ωdω. (2.40)
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Figure 2.12: (a) The star-linear cross-distribution function gsc(r) for f = 73,
ξ = 0.5, star density ρs = 0 and chain densities as indicated in the legend; (b) The
function f(r; s) of Eq. (2.40) at r = 1.5 σs; (c) The function ρch(r, s) defined in Eq.
(2.39) for r = 1.5 σs; (d) The full depletion force in the superposition approximation.
Note the insensitivity to ρc for r > 1.5 σs.
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In Fig. 2.12 we show the individual terms that are involved in Fdep(r), in order to
gain some insight into the mechanism that leads to the insensitivity of the depletion
force and thus of the effective one, since the latter is the sum of the depletion force
and the direct star-star force. When functions of the two variables r and s are
shown, we fix the inter-star separation to the value r = 1.5 σs, for which, according
to Fig. 2.10(c), Veff(r) hardly changes with ρc, and we plot the functions against the
integration variable s.

The angularly averaged radial distribution f(r = 1.5σs, s), Fig. 2.12(b) is strongly
dependent on depletant density. Interestingly, though, it is most negative for the
lowest density and its magnitude decreases for increasing density. The reason for
this behavior lies in the penetrability of gsc(r) shown in Fig. 2.12(a). Due to the
additional presence of the ω-term in the integrand, the function f(r, s) would vanish
identically if the function gsc(z) were equal to unity for all z. An increase in ρc

and the concomitant penetration inside the soft core, pushes gsc precisely in this
direction and causes f(r, s) to decrease in magnitude.

This decrease is compensated again upon multiplication with ρc and gsc(s), which
yield the function h(r, s) [Eq. (2.39)] shown in Fig. 2.12(c). Indeed, the three curves
for the three different densities integrate to very similar values. Again, a partial role
is played by the multiplication of f(r, s) with gsc(s), which penetrates deeper into
the star when ρc increases without developing any pronounced correlation structure.
These are the signatures of the ultrasoft cross-interactions, thus this phenomenon is
absent for the depletion force between impenetrable colloids. Finally, in Fig. 2.12(d),
we show the resulting depletion force from the superposition approximation. In full
consistency with the results from the inversion of gss(r; ρs, ρc) [Eq. (2.35)], there is
hardly any variation with ρc for r & 1.5 σs when ρcσ

3
c & 1. Note that the depletion

force does change with ρc for smaller separations, yet this effect is masked by the
direct force Fss(r) = −dVss(r)/dr, which is much larger in magnitude than the
depletion force at such length scales.

It is tempting to associate this phenomenon with a worsening of solvent quality
for the stars as chains are added. Once the latter have reached and exceeded their
overlap concentration, the solvent has reached the vicinity of the Θ-point and hence
the stars feel the effective interaction akin to Θ-like conditions. Further increase
of the chain concentration within the semidilute regime does not bring about any
additional change of solvent quality, hence the effective interaction does not change
any more. It is intriguing that the coarse-grained description may be able to re-
produce such a behavior and further investigations are needed to explore a possible
deeper connection with the classical theory of polymers. Our findings may explain,
however, the experimentally observed insensitivity of the behavior of star polymer
gels upon addition of linear chains, when the chain-star size ratio exceeds, roughly,
the value 0.5, see Ref. [28].

2. Cluster formation. An interesting phenomenon taking place in star-linear
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mixtures at very low concentrations, is that of cluster formation between the stars,
when the added chains approach or exceed their overlap concentration [32,44]. The
results of our previous heuristic approach are confirmed by our study employing the
realistic potential we derived. For a discussio of cluster formation in other systems
see Sec. 2.2.5.

Here, we employ the accurate cross-interaction Vsc(r), along with the other two
interactions, Vss(r) and Vcc(r), to investigate the existence and stability of star clus-
ters due to the added chains. In this way, we improve over previous studies that
employed a heuristic cross-interaction in the center-of-mass representation [32, 44].
In order to investigate cluster formation, we examine the star–star structure factor of
the system. We probe the dependence of the cluster formation on the star function-
ality and the size ratio between the stars and the added polymers. The presence of
clusters is signaled by the appearance of a new length scale in the star-star structure
factor that is larger than the typical star-star separation as = ρ

−1/3
s .

In Fig. 2.13 we show the development of the structure factor at fixed star density
ρsσ

3
s = 0.05 on increasing the chain concentration for a star functionality f = 73 and

a chain-to-star size ratio ξ = 0.3. Upon increasing ρc, the peak height first decreases
and shifts to larger q, then the peak splits and a new peak at small q appears.
The length scale which is associated with this value is much larger than the size of
the individual stars, therefore we associate this length scale with the formation of
equilibrium clusters in the system. Eventually, for even higher chain concentrations,
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the maximum in the structure factor will shift to q = 0, signaling the approach of a
macroscopic phase separation for large polymer densities. Note that the equilibrium
clusters, as signaled by the development of a prepeak in the star-star structure
factor, appear when the chains reach their overlap concentration, in agreement with
experimental measurements [44]. The organization of the stars into aggregates is in
agreement with the characteristics of the effective star-star interaction shown in Fig.
2.10(b). Indeed, for this particular size ratio, ξ = 0.3, Veff(r) displays a short-range
attraction, followed by a repulsive hump. The rather weak prepeak in the structure
factor points to the existence of fluctuating clusters, which exchange particles, as
opposed to a cluster phase with tightly bounded supramolecular aggregates. For
small size ratios, e.g., ξ = 0.1, the effective interaction is devoid of a repulsive
hump, see Fig. 2.10(a), and thus the system is driven into macrophase separation
that is not preceded by the appearance of stable clusters with a well-defined size.
For higher ξ-values, the chains do not induce any attraction between the stars, see
Fig. 2.10(c), thus again no clusters appear. These facts demonstrate that cluster
formation is very sensitive on the physical characteristics of the constituents and
can be steered by external control of the size ratio, for instance.

2.5.2 Mixtures for High Star Concentrations

Finally, here we turn our attention to a physical situation that is specular to the
one discussed in the preceding subsection, namely high star concentration and low
chain concentration. Also in this case, the chains can have a dramatic impact in the
behavior of the dense star solution. It is known that high functionality star polymers
undergo a dynamical arrest transition at a certain critical density ρcr

s , roughly at
ρcr

s σ3
s
∼= 0.4. This structural arrest, seen in rheological [25,26,69] and light scattering

experiments [32], has also been investigated theoretically within the framework of
mode-coupling theory [27] (MCT) based on the interaction potential Vss(r). For
details of the method see Appendix B. The arrest can be identified with a glass
transition that arises from the mutual repulsions between stars that lead to caging,
i.e. the stars cannot diffuse due to being blocked by their neighbors. Accordingly, it
is absent for functionalities f . 50, for which the interstar repulsion of Eq. (2.7) is
not strong enough to sustain self-supporting cages.

The influence of multiarm star additives on this soft colloidal glass has been
investigated for binary star polymer mixtures [70]. As far as the effect of linear
additives is concerned, experimental studies of star polymer-linear chains mixture
find a chain induced melting of the star polymer glass, which is caused by a softening
of the star-star repulsion [28]. Here, we investigate the phenomenon applying the
accurate cross-interaction potential Vsc(r). Already the information encoded in Fig.
2.10 points to the fact that the additives should have the effect of melting the star
glass. Indeed, they bring about invariably a reduction of the interstar repulsion,
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the nonergodicity factor is finite, corresponding to an arrested state, whereas at
ρcσ

3
c = 0.26, fss(q) = 0, denoting restoration of ergodicity.
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due to a classical depletion effect. In this way, the stars, in the presence of the
linear polymer, become more penetrable and this leads to a reduction of both the
interstar correlations and the peak height in the star-star structure factor Sss(q).
This can be seen in the main plot of Fig. 2.14, which shows a characteristic example
for Sss(q) of f = 122-arm stars at density ρsσ

3
s = 0.4, slightly above the critical

glass concentration. There is a small reduction of the peak height upon addition of
chains, which is nevertheless sufficient to cause restoration of ergodicity, since we
are right at the brink of the ergodic-to-non-ergodic transition.

To study the dynamics and vitrification in this system, we employ ideal mode
coupling theory [3, 71]. Assuming that the polymer remains mobile in the mixture,
we can base our analysis on one-component MCT, using only the structure factors
of the stars as input [70,72]. The object of main interest from MCT is the star-star
nonergodicity factor fss(q), which expresses the t → ∞ limit of the density time-
autocorrelation function. Thus, fss(q) = 0 for an ergodic state in which all density
fluctuations decay exponentially in time but fss(q) 6= 0 for an ideal glass. The inset
of Fig. 2.14 shows the evolution of the nonergodicity factor upon addition of chains
and manifests the transition from a glassy to an ergodic state at some critical chain
concentration. A compilation of MCT-results for various parameter combinations
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is finally show in Fig. 2.15. This represents a kinetic phase diagram of the system,
as obtained by ideal MCT, and again manifests the influence of the composition
of the mixture on the dynamics of the system. The basic trends are in agreement
with the experimental findings in Ref. [28], as well as comparable to the behavior
for binary star polymer mixtures when the small component remains mobile in the
matrix formed by the big one [70]. The chain number density required to melt the
glass decreases with increasing size ratio ξ. The glass melting of the stars can be
interpreted as a worsening of the solvent quality for the stars upon addition of the
chains [73].

2.6 Conclusions

We have derived accurate effective interactions between star polymers of function-
ality f and linear homopolymer chains. The latter have been coarse-grained in the
mid-monomer representation, a choice that renders them equivalent to f = 2-stars
with half the degree of polymerization per arm. Together with the previously de-
rived star-star and chain-chain interactions, this allows for a full, coarse-grained
description of star-linear polymer mixtures and the calculation of the static pair
structure of the system. To the extent that statics dictates also dynamical arrest,
as in the case of the MCT-scenario for the glass transition, the coarse-grained de-
scription also allows for predictions regarding the rheological state of the mixture
and the influence of the chains on the flow of the stars. We have confirmed a host of
phenomena observed experimentally, such as cluster formation and glass melting, by
using this accurate representation. It is rewarding that this approach does not alter
the results obtained previously, when the chains were coarse-grained in the center-
of-mass representation and a more empirical form of the cross-interaction was used
to describe the vitrification [28] and cluster formation [32,44] (see Sec. 2.2). In this
respect, the results of this work are compatible with the requirement that the choice
of the effective coordinates should not change the physics of the problem at hand,
although, of course, it alters the form of the effective interactions employed. The
equivalence of the physical results is only guaranteed, however, when the employed
effective interactions do not involve too drastic approximations, i.e., when they cap-
ture the physics of the system correctly. A similar equivalence of the center-of-mass
vs. mid-monomer representations was recently established for colloid-polymer mix-
tures [74]. Moreover, since we not only changed the effective coordinate but also the
theoretic approach for the interactions was improved, we note that the two differ-
ent approaches yield qualitatively similar physical properties of the system. Cluster
formation and polymer induced melting are general phenomena that do not depend
very sensitively on the modeling of the interactions employed.

A very useful tool that arises out of a second coarse-graining procedure is the
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chain-modified star-star effective interaction potential. In this work, we established
that the form of the latter strongly depends on size ratio. It can feature attrac-
tive wells with or without subsequent repulsive humps or it can differ only slightly
from the bare star-star interaction as the size ratio grows. The present work deals
with good and athermal solvents. A question of great interest is the coarse-grained
description of star-linear mixtures in marginal or even Θ-solvents. Experimental re-
sults on such systems suggest that, once more, the size ratio of the mixture plays a
crucial role [73]. For small size ratios, the chains penetrate into the innermost part of
the stars, thereby effectively improving solvent quality, an effect opposite to that in
good solvents. For large size ratios, however, the chains cause star shrinking [73]. It
is a challenging task to attempt a coarse-graining procedure for the case of marginal
solvents and to investigate the systematic differences with the good-solvent effective
interactions and their ability to describe the experimental findings of Ref. [73].
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Chapter 3

Binary Star Polymer Mixtures:
Dynamical Phase Behavior

In this chapter, we examine the rheological transition from an arrested to a fluid
state for different mixtures of star polymers with varying functionality and size
ratios. As a general trend, we find that addition of smaller star polymers in an
arrested, concentrated solution of larger ones brings about melting of the large star
glass. At the same time, the dependence of the amount of additives needed to melt
the glass has a nontrivial dependence on the size ratio. Theoretical analysis, based
on effective interactions and mode coupling theory, reproduces the experimental
results and helps identify two distinct types of glasses in the composite system.

3.1 Introduction

Perhaps the most spectacular changes of the rheological state of a fluid are those
encountered in the neighborhood of the glass transition, in which the many-body
system runs into a state of dynamical arrest. Although dynamical arrest has no
visible signature in the structural properties of the system, its dynamical response
(viscosity, viscoelastic moduli etc.) varies by orders of magnitude when external
control parameters (temperature or concentration) are changed by tiny amounts.
Accordingly, the understanding of the glass transition has been a topic of vivid in-
terest for decades and it has experienced explosive growth in the realm of soft matter
physics [75–79]. Here, the ability to molecularly design various colloidal systems and
chemically tune their architecture, composition and physical characteristics opens
up a wealth of novel scenarios and paths to various arrested states.

Recently, a great deal of attention has been devoted to the study of the glassy
states emerging in colloid-polymer (CP) mixtures, the former being hard, spherical
colloids and the latter soft fractals. It has been found that the addition of a small
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amount of polymer brings about melting of the colloidal glass and, upon increase
of the polymer concentration, a new, attractive glass re-emerges [10–13] but this
phenomenon is restricted to a small range of polymer-to-colloid size ratios [72]. Low-
density dynamically arrested states, akin to a colloidal gel, arise when the colloids
in the CP-mixture have an additional, long-range repulsion, the phenomenon being
intricately connected to the formation of stable clusters in the system [37].

A different direction of investigation lies in replacing the hard, glass-forming
colloids with softer ones, such as star polymers [14, 16, 25]. The ability to synthe-
size well-characterized and reasonably monodisperse stars, both in size and in arm
number (functionality) has indeed promoted these systems into excellent models for
studying the effects of softness in the glass formation. Similar to CP-mixtures, it
has been found experimentally that the addition of linear homopolymer melts the
glass formed by the star polymers with functionality f1 = 122 [28] but the range of
size ratios for which this occurs is much broader than in CP mixtures. The theoretic
interpretation of this phenomenon has been given in Sec. 2.5.2 The possibilities to
tailor the system’s rheology grow even broader when large, glass-forming stars of
functionality f1 À 1 are mixed with smaller ones with functionality f2 < f1.

3.2 Experiments

Different mixtures of small and large stars were measured by Vlassopoulos et al.
[70, 80]. All large stars were synthesized using a dendrimer scaffold [81] or a hy-
drosilylated 1,2-polybutadiene backbone [82] and chlorosilane coupling chemistry in
order to assemble living linear 1,4-polybutadiene arms and form colloidal stars with
nominal functionality f1 = 128 or 270. Small stars were synthesized with the den-
drimer scaffold technique and yielded nominal f2 = 16, 32 or 64 [83, 84]. Table 3.1
lists the characteristics of the stars used in this study (extracted from [76,81–84]).

Several asymmetric binary mixtures were prepared. Most mixtures consisted of
large stars of nominal f1 = 270 (LS4, LS5 or LS6) at a high fixed concentration
(about 1.4c∗, c∗ being the overlapping concentration) in the glassy state (rheological
solid); different small stars were added to these glasses, with varying functionality
(18, 32, 64) and arm molecular weight (see Table 3.1), at different concentrations.
Some mixtures consisted of a large star with nominal f1 = 128, at the same volume
fraction as the LS samples, in the glassy state; similarly, different small stars were
added to this glass as well.

Preparation of the mixtures involved forming the glassy state of the large star in
toluene and adding the small star (under gentle and prolonged stirring, sometimes
using excess solvent and subsequently evaporating to the desired concentration); the
original glass was therefore ‘broken’ and the mixture was then left still to ‘equilibrate’
for at least 24 hours. Special care was taken to reduce the risk of degradation by
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Code f Mw (106 g/mol) Rh (nm)

2518 19 0.541 20.0
3718 18 0.762 25.3
3210 31 0.301 11.5
3220 33 0.644 18.8
3237 35 1.33 27.2
3280 34 3.01 44.5
64015 56 0.0741 5.8
6405 57 0.258 12.3
6430 56 1.34 31.2
6460 61 2.89 49.6

LS4 267 4.9 38.3
LS5 269 7.9 50.7
LS6 263 11.2 63.2

12880 122 8.8 64

Table 3.1: Summary of the physical properties of the polybutadiene stars used in
the experiments. The last four entries (separated from the rest by the horizontal
line) denote the f À 1-systems that were kept at their vitrification concentration,
whereas the preceding ones denote various stars of lower f and smaller size that
were used as additives. Table courtesy of D. Vlassopoulos.
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Figure 3.1: Dynamic frequency sweeps depicting the storage G′ (closed symbols)
and loss G′′ (open symbols) moduli as function of frequency for different mixtures
consisting of large star s coded 12880 at c12880 = 2.55% wt and small stars coded
3210 at different concentrations: c3210 = 0% (circles); c3210 = 0.066% (triangles up);
c3210 = 0.21% (squares); c3210 = 0.50% (diamonds) ; c3210 = 0.82% (triangles right).
Note that for solid samples, G′ > G′′ holds, whereas the opposite is true for fluid
ones. Solid lines with slopes 1 and 2 represent the terminal scaling for G′′ and G′,
respectively. Figure courtesy of D. Vlassopoulos.

adding a small amount of antioxidant [85].

The state of a given sample was investigated with linear rheological measure-
ments; they were carried out with a sensitive strain-controlled rheometer (Rheomet-
ric Scientific ARES-HR 100FRTN1). A cone-and-plate geometry (25 mm diameter,
0.04 rad cone angle) was used and the temperature was set at 20 ± 0.1◦C with a
recirculating water/ethylene glycol mixture.

A home-made evaporation blocker system was used (with water as the ‘sealant’
fluid in the area between the sample in the cone-plate fixture and an outer ring; water
content was controlled and renewed when needed), similar to that reported recently
in literature by Sato [86]. Once conditions for reproducible, time-independent and
linear measurements were established, small amplitude oscillatory shear measure-
ments were performed in the frequency range 100–0.03 rad/s.

Typical results obtained with a mixture consisting of large stars with f1 = 122
(coded 12880 in Table 3.1), and small stars with f2 = 32 are depicted in Fig. 3.1. In
the experiments the storage modulus G′ and the loss modulus G′′ were determined.
It is clear that the large stars exhibit solid-like behavior, since G′ > G′′ and G′

is virtually frequency independent. The particular frequency dependence of G′′ is
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3
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a solid (glass) state. Only the data points closest to the melting lines are shown
here. The lines through the data, passing above the full symbols and below the
empty ones, are guides to the eye. Figure courtesy of D. Vlassopoulos.

typical for a colloidal glass [87–89]. As we add the small star at constant function-
ality and molecular weight (sample 3210 in Table 3.1), the glass is weakened with
increasing 3210 concentration, as judged by its rheological signal; more specifically,
as c3210 rises to 0.21% wt, the mixture’s plateau modulus (high-frequency G′ limit)
decreases substantially, i.e., by 42% with respect to the 12880 value (of 260 Pa); at
the same time, the G′′ remains virtually unchanged, suggesting that the key effect
of the additive is the softening of the cage elasticity of the large stars. Eventually,
at c3210 = 0.5% wt, the cage apparently opens up, the glass melts, and the classic
viscoelastic liquid response (G′ ∼ ω2, G′′ ∼ ω, G′′ > G′) is reached. This remarkable
finding, and in particular the change of viscoelastic moduli by orders of magnitude
upon changing the concentration of the small star (here, basically doubling the con-
centration), suggests that linear rheological measurements serve as a very sensitive
indicator of liquid-to-solid transitions. The same diagnostics has been applied also
to determine, e.g., the rheology and dynamics of micellar solutions of block copoly-
mers [90]. Note that the same behavior is observed qualitatively when we keep the
concentration of the added small star constant while changing its molecular weight
(data are not shown here).

By using the rheological information obtained as outlined above, it is possible
to construct a ‘kinetic state’ diagram of density of the added small star against the
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ratio of hydrodynamic radii ξ = R
(small)
h /R

(large)
h , number density of the large ones. In

this diagram, shown in Fig. 3.2, we map the rheological behavior of the star mixture
as we change the additive. One can observe that by increasing the concentration of
a given small star, the mixture is transformed from a solid (glass) to a viscoelastic
liquid. On the other hand, at constant concentration of the small star, increasing its
hydrodynamic radius yields a melting of the glass; eventually, for very large stars,
there is an apparently tendency for a re-entrant vitrification of the mixture.

3.3 Structure of the System

We consider a binary mixture of N1 large stars of functionality f1 and N2 smaller
ones of functionality f2 in a macroscopic volume V . The theoretical description
of the binary star-polymer mixture is based on the knowledge of the three partial
structure factors of the system, which describe the correlations between the centers of
the stars. In order to calculate these data, we use the concept of effective interactions
[16] between the star cores. In this coarse-grained method, the monomer degrees
of freedom are traced out and the star polymers are modeled as soft colloids, an
approach pertinent to the problem at hand, as indeed the monomers continue to
fluctuate even in the glassy state and only the stars as whole objects arrest. Thus,
the positions of the star centers and the correlations between them are the dynamical
degrees of freedom of interest. They interact via an ultrasoft pair potential that
depends on their relative separation.

The effective interaction between particles of species i and j reads as [57]:

βVij = Θij





− ln

(
r

σij

)
+

1

1 + σijκij

for r ≤ σij;

1

1 + σijκij

(σij

r

)
exp(σijκij − rκij) else,
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Again, β = (kBT )−1 is the inverse temperature, with kB being Boltzmann’s constant
and σi is the corona diameter of species i that turns out to coincide numerically with
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the corresponding hydrodynamic radius R
(i)
h [70]. Accordingly, we define the size

ratio of the system ξ as

ξ ≡ σ2

σ1

< 1. (3.2)

The origin of this interaction is entropic, therefore the potential scales linearly with
temperature.

Fig. 3.3 contains a comparison of structure factors of the system, as obtained
from molecular dynamics (MD) simulations and from solving the OZ equation with
the RY closure [66].1 The interactions between the stars are given by Eq. (3.1). The
RY approximation provides an excellent description of the structural properties of
the mixture.

The dynamics of the stars can be studied employing one- or two-component
mode coupling theory. For details of the two methods see Appendix B. The major
difference between the two approaches is the treatment of the small component,
which is in the two-component approach dealt with on equal footing as the large
stars. Thakur and Bosse [91] show the size ratio dependence of the non-ergodicity
parameter in binary hard sphere mixtures, where the ergodic to non-ergodic tran-
sition is consistent with our results (Fig. 3.4). The plot shows the development of
the large and small star non-ergodicity parameters (f11(q) and f22(q), respectively)
on increasing the size ratio. While f11(q) is virtually independent of ξ (except for

1We simulated a system of 500 large and 5000 small stars to calculate the structure factor. We
let the simulation run for 106 steps after equilibration.
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ξ = 0.3 where the system is ergodic), f22(q) shows a dramatic change in the shape.
For small ξ, f22(q) is nonzero only in a very small range of q. The length scale
corresponding to this region is the size of the larger stars. This behavior can be
interpreted in terms of a fluid small component [91, 92]. For large ξ, the system
displays the behavior of a solid state.

3.4 Phase Diagram

We investigate how the dynamic properties of a solution of large star polymers
can be influenced by small star additives. Fig. 3.5 summarizes the result of the
MCT calculations. We start from a glassy sample (f1 = 270, ρ1σ

3
1 = 0.345) and

investigate the shape of the melting line as a function of the size ratio ξ for different
functionalities of small stars in order to show how the dynamics of the system depend
on size and functionality of the additives. We find a U-shaped line separating the
ergodic from the non-ergodic regions in the parameter space. A similar U-shape was
found in the experimental data presented in Fig. 3.2.

For small ξ, the melting of the glass can be interpreted in terms of a standard
depletion mechanism where the small component remains mobile. This is corrob-
orated by the fact that for small ξ one- and two-component MCT yield the same
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trends and that the f22(q) in Fig. 3.4 show fluid-like behavior. The melting is driven
by the fact that the depletion mechanism leads to a decrease of the repulsion be-
tween the large particles and thus to a softening of the cages. Within the effective,
one-component approximation the depletion effect grows stronger with increasing ξ,
as this leads to a concomitant increase of the depletion range and depth, i.e., to a
more drastic effective weakening of the inter-star repulsions. However, the essential
question is whether the aforementioned one-component approximation indeed holds
as ξ increases.

For large ξ, the simple depletion scenario does not hold anymore. The smaller
stars become now as large as the voids in the glassy matrix of the large ones and
they can get trapped there, forming themselves a glass within the glass. The as-
sumption of small star mobility breaks down. Therefore, the one-component MCT
completely fails to describe the experimental results in Section 3.2. Since the small
stars become trapped in the cages formed by the large ones, they start to contribute
to cage formation themselves. When ξ grows, this trapping mechanism becomes
more effective. This leads to a reversal of the slope of the vitrification line. Fi-
nally the caging mechanism gets dominant, so that for ξ > 0.45 no melting is found
within MCT. Therefore, we distinguish between two states under the melting line:
a single glass when the small component remains mobile and a double glass when
both species become arrested. The same type of behavior is found in experiments
of hard sphere mixtures with large size asymmetries [93]. However, in hard sphere
mixtures a melting of the large sphere glass upon adding the second component was
not observed. This distinction is further supported by a quantitative analysis of the
trends in the elastic moduli, presented below.

3.5 Elastic Modulus

The properties of the glass depend on the non-ergodicity parameters of the system.
A quantity that readily allows comparisons with experiments is the elastic modulus
G′(ω). The zero-frequency limit2 ω → 0 of the modulus is given by [94,95]:

G′ =
kBT

60π2

∫ ∞

0

dq q4Tr




(
ρ
dC̃(q)

dq
· P̄(q, t →∞)

)2

 , (3.3)

where C̃(q) is the 2 × 2 matrix of the direct correlation functions defined in Eq.
(A.2) and Tr stands for the trace of the resulting matrix. The matrix P̄(q, t) is the

2The term zero-frequency (or t → ∞) refers here to the ideal MCT-result, according to which
the glass (a non-equilibrium state) survives infinitely long.
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dynamical generalization of Eq. (B.8) from Appendix B:3

[P̄(q, t)]ij =
√

xixjSij(q, t) (3.4)

and the long time limit of the dynamic structure factors is given by

Sij(q, t →∞) = Sij(q)fij(q). (3.5)

Clearly, in the ergodic state, fij(q) = 0, the elastic modulus G′ vanishes, whereas in
non-ergodic states a finite result is obtained. The order of magnitude of the latter
is set by G′ ∼ kBT/σ3, where σ is the particle size, resulting into typical numbers
G′ ∼ 102 Pa at room temperature.

In Fig. 3.6 we show the theoretical results for G′, demonstrating that, for ξ ≤ 0.3,
the elastic modulus has a (local) maximum at ρ2 = 0, whereas for the larger size
ratio, ξ = 0.4, it has a minimum there: the double glass displays a higher mechanical
resistance to shear than the single one, whereas in the latter the fluid-like second
component does not contribute to G′. Its effect is to lower G′ through the softening
of the cages formed by the large component.4 These findings offer additional support
to the single/double glass picture put forward above. Indeed, at the small ξ-regime,

3In this notation, S̄(q) = P̄(q, t = 0), obtaining the equal-time static structure factors.
4For ξ = 0.1 the maximum of G′ at ρ2 = 0 is only local because as ρ2 grows, a short-range

attraction between the large stars develops, leading to a temporary stabilization of the cages formed
by the latter. This attraction is absent for higher ξ-values, see, e.g., [96].
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the small star polymers act as agents that tend to break the cages of the large
stars, without taking part in glass formation themselves. Accordingly, they lower
the total elastic modulus. But as ξ grows and the additives actively participate to
cage formation themselves, they contribute in the elastic modulus in their own right,
leading to an increase of its value up to a factor 1.6. Similar trends have also been
seen in the experiments [70]. At fixed ρ2, the ξ-dependence G′ is non-monotonic,
showing decrease up to ξ ≈ 0.4 and a growth thereafter [70].

3.6 Summary and Conclusions

We have presented experimental and theoretical results on the ways in which the
rheology of soft colloidal systems can be influenced by the addition of chemically
identical but physically distinct additives. Colloidal star polymers, which have been
used in the present study, provide indeed a clean, versatile and controllable system
to this purpose.

The phenomenon of glass melting is similar to the one encountered in colloid-
polymer mixtures [10–13]. The physics and implications of this are, however, in
our case very different. Whereas in colloid-polymer mixtures the solid melts due to
the induction of short range attractions on the colloids, which eventually drive the
formation of a reentrant attractive glass, in our case effective attractions are com-
pletely absent for the low density of depletants studied. This fundamental difference
is witnessed by the fact that, in colloid-polymer mixtures, melting takes place only
for very asymmetric size ratios, ξ ≤ 0.1, whereas in the present case it persists to
ξ ' 1. The melting of the solid in colloid-polymer mixtures requires the fluidity of
the added polymer [72]. To the contrary, for star mixtures, the addition of a second
component which becomes increasingly glassy is capable of bringing about melting
of the double glass.

Moreover, the ability to melt the glass formed by the large component for large
size ratios between the large stars and the smaller additives, can be traced back to
the softness of the glass-forming component. Moreover, two distinct types of glasses
have been identified, one in which the additives are ergodic at all concentrations
and one in which they actively participate in cage formation, thus giving rise to a
double glass. On the basis of the evidence at hand, we anticipate that there exists
no sharp transition between the two types of glasses but rather a diffuse ‘crossover
domain’, because due to the softness of the pair interactions the movement of the
small stars is not completely blocked, but becomes gradually slower. To answer this
question, to address the issue of aging, and to draw a more complete ‘kinetic phase
diagram’ encompassing also the region of high additives concentration, more detailed
theoretical and simulation work, as well as additional experimental measurements,
including rheology and dynamic scattering, are required. In the next chapter, we
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present a detailed study of the phase diagram based on theory and simulation in
order to contribute to the solution of this problem.
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Chapter 4

Binary Star Polymers: Relaxation
Dynamics

As we have shown in the previous chapter, the addition of small stars to a glass
of large ones leads to a recovery of ergodic behavior in the system, confirmed by
theory and experiment. However, we only studied properties of the mixture dor
t → ∞. Here, we examine the full time dependence of the coorelation functions
by molecular dynamics simulations. Moreover, at large concentration of additives
an arrested state is expected again. We compare simulation data to theoretical
predictions based on mode coupling theory. We find multiple distinct glassy states
in the system.

4.1 Asymptotic Solutions of the MCT Equations

The mode coupling equations we use to theoretically describe the dynamics are de-
scribed in Appendix B. In general, multiple glassy solutions of Eq. (B.9) can exist
within mode coupling theory, due to higher order bifurcation singularities. This
case has been extensively studied for effective one-component systems for attractive
colloids, where higher order MCT singularities have been predicted theoretically [9]
and verified by numerical simulations [97,98] and experiments [10,11,90]. For mul-
ticomponent systems, a detailed MCT study has not been performed yet. However,
suggestions of higher order singularities and glass-glass transitions, in particular of
one of the involved species, have started to emerge from simulations of asymmet-
ric polymer blends and soft sphere mixtures [99–101]. In the case of distinct glassy
states, the non-ergodic properties will be different, thus the fij(q, t) will also be differ-
ent. Also, close to such singularities, competition between the different glassy states
modifies the standard MCT dynamical behavior close to the liquid-glass transition
(labeled usually of type B or A2). For such an A2 transition, a two-step relaxation
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Figure 4.1: Sketch of a density correlator in a fluid close to the glass transition.
Following the initial microscopic decay, there is a time window where universal
features of MCT are observed. The leading order terms in time at the approach and
departure of the plateau are power laws (see Eqs. (4.2) and (4.3)). The final decay
of the correlator can be modeled as a stretched exponential (Eq. (4.4)).

is well described by MCT, through an asymptotic study of the correlators near the
ideal glass solutions.

The density correlators are defined as

φij(q, t) = 〈ρ∗i (q, 0)ρj(q, t)〉 / 〈ρ∗i (q, 0)ρj(q, 0)〉 , (4.1)

where

ρj(q, t) =

Nj∑

l=1

exp
[
iq · r(j)

l (t)
]
,

with r
(j)
l the coordinates of the l-th particle of species j (j = 1, 2) and the asterisk

denotes the complex conjugate. A sketch of the behavior of a typical density corre-
lator close to the glass transition is shown in Fig. 4.1. From the density correlator
φ in the liquid the critical non-ergodicity parameters f c(q) can be extracted. The
approach to the plateau is described by a power law, regulated by the exponent a,
i.e.

φ(q, t)− f c(q) ∼ h(1)(q)(t/t0)
−a + h(2)(q)(t/t0)

−2a (4.2)

with t0 the microscopic time, while the departure from the plateau, i.e. the start of
the α-process, is expressed in terms of another power law, called the von Schweidler
law, regulated by the exponent b,

φ(q, t)− f c(q) ∼ −h(1)(q)(t/τ0)
b + h(2)(q)(t/τ0)

2b (4.3)
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with τ0 being the characteristic time of the relaxation. The exponents a and b are
related to each other and to the exponent parameter λ [3] via a transcendental

relation, and are independent of the particular q-vector considered. h
(1)
ij (q) and

h
(2)
ij (q) are referred respectively as critical amplitude and correction amplitude [3].

On the other hand, the α−relaxation process is usually also well described by a
stretched exponential, i.e.

φij(q, t) = Aij(q) exp [−(t/τq)
βq ] (4.4)

where the amplitude Aij(q) determines the plateau value, and the stretching expo-
nent βq ≤ 1. For large q values, it has been shown that βq → b.

On the other hand, close to higher order singularities, the dynamical behavior is
predicted to obey a logarithmic behavior. In particular, it holds,

φ(q, t) ∼ f c(q)− h(q)
[
B(1) ln(t/τ) + B(2)

q ln2(t/τ)
]
. (4.5)

Here τ stands for a time-scale which diverges if the state approaches the mathe-
matical singularity. The formula is obtained by asymptotic solution of the MCT
equations [102]. The first term f c(q) is the sum of the non-ergodicity parameter at
the singularity plus a correction which depends on the distance from the singularity.

In the following, when we find that correlators are not described by power-laws or
stretched exponentials, we will adopt the expression in Eq. (4.5) to extract the non-
ergodicity parameters from the simulations to compare the different glassy states.

4.2 MCT Results

Following the experimental setup discussed in Chapter 3, we investigate the effect
of the addition of a second component of varying size and concentration on the glass
formed by the one-component large stars with f1 = 263. Here, we do not consider the
issue of varying functionality of the small stars, partially discussed in [70], thus we
fix f2 = 64. Further studies with different f2 will be presented elsewhere. Therefore,
we consider a glass of large stars only, with density ρ1σ

3
1 = 0.345, corresponding

to a glassy state within MCT [27]. At this fixed large star density, we add small
stars and study within MCT (and later by simulations) the stability of the large
star glass.

MCT long-time limit equations are solved iteratively discretizing the wave vector
integrals on a grid of 1000 points for the binary equations (Eq. B.7) and 1600 for the
one-component ones (Eq. B.5), with a mesh in wave vectors respectively of 0.1/σ1

and 0.0625/σ1.
From the MCT analysis, we determine a glass transition diagram in the (ξ, ρ2)

plane, that is reported in Figure 4.2. Results obtained, both in the full binary treat-
ment of the mixture and in the effective one-component representation, are shown.
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In the diagram, we only show the closest two points bracketing the liquid-glass tran-
sitions. Lines are a guide to the eye. With respect to the (ρ, T ) phase diagrams
that are usually shown in colloid-polymer (CP) mixtures [10,18], we focus here on a
single isochore and consider the addition of small stars with different concentrations,
analogous to the T -axis, modulating the strength of the (attractive) depletion in CP
mixtures, as well as of different size, which sets the effective attractive range in CP
mixtures.

Examining Fig. 4.2, a liquid island appears to be surrounded by a sea of glasses.
With respect to the reentrance in small additives concentration that is observed
in CP mixtures upon increasing additive concentration, we detect two of these,
respectively at small and large size of the additives, as well as a reentrance (or two)
in size ratio. For convenience, we can roughly divide the phase diagram of star-star
mixtures in four different regions to be discussed in the following:

1. small size and small concentration of the additives (region I);

2. large size and small concentration of the additives (region II);

3. large size and large concentration of the additives (region III);

4. small size and large concentration of the additives (region IV).

Let us start by examining region I. The addition of small stars with size ratio up
to ξ ≈ 0.2 causes the large glass star to melt due to a mechanism that is similar to
depletion, although the effective interactions involved here are still repulsive, but the
repulsion is softened with respect to the one-component case [96]. Indeed, within this
region, a regime where effective attractive interactions between large stars become
present is not expected [96], but will occur at larger ρ2 (region IV). The small stars
produce however a softening of the repulsion, thus a melting mechanism for the large
star glass. In this respect the small stars are always liquid in this regime, even in
those states in which the large ones are arrested, therefore we name for simplicity
this glass a single glass [70].

On the other hand, moving into region II by increasing the small star diameter,
the addition of a second component of not-so-small stars, with 0.2 . ξ . 0.45,
is still capable to produce a melting of the glass but through an entirely different
mechanism, found in MCT and also confirmed by experiments (see Chap. 3). In-
deed, the glass becomes stiffer through the addition of a second glassy component,
as signaled by the study of the elastic modulus in theory and experiments reported
in [70,80], up to a certain density where it becomes more convenient entropically to
free available volume for both stars simultaneously, paying a (finite) penalty price by
decreasing the nearest neighbor distance, hence causing again liquidification upon
further ρ2 increase. Therefore, this melting mechanism is entirely due to the soft-
ness of interactions involved, and it does not have an equivalent in terms of mixtures
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involving hard-spheres. This second glassy state we identify as a double glass, since
both species are now glassy. Thus, it undergoes a double melting mechanism, when
both glassy components are liquefied. We note, however, that the presence of two
different glasses for asymmetric mixtures, from a single to a double glass, upon in-
creasing the density was already found for hard spheres [91–93], but the new feature
of the presently investigated soft mixtures is that both glasses can be simultaneously
melted by increasing the amount of the small additives in the mixture.

Clearly, a theoretical framework capable to correctly describe the single glass case
should be based on the slowing down of just the large stars, thus one-component
MCT, where the smaller stars are assumed to form a fluid medium that does not
participate in the glass formation, is the conceptually right framework to use. On
the other hand, the double glass corresponds to both species being comparably slow,
thus compelling the use of binary MCT. The problem to switch continuously from
one to two-component description cannot be incorporated within MCT, because
it is based on the assumption of a single slow timescale in the system, and thus
it cannot take into account a difference in particle mobilities. However, it turns
out that in the case of star polymers mixtures, differently from that of colloid-
polymer mixtures [72], at low ξ, i.e. in the single glass regime, both treatments give
qualitatively the same behavior, as illustrated also in Figure 4.2, while at large ξ,
in the double glass regime, the discrepancy becomes large, signaling the tendency
of the small component to also arrest, and only binary MCT can be used, giving
rise to the U-shape also observed in the experiments for low ρ2. Otherwise the
one-component curves provide a monotonic behavior as a function of ξ (see Fig.
4.2). The deviation between the two approaches at large ξ can also be understood
in terms of the scaling of the relative short-time mobilities of the two species with
size ratio [72]: as ξ → 1 the time-scale separation between the degrees of freedom of
the small and large stars disappears. We just rely on two-component MCT in the
following, unless explicitly mentioned.

In the present work we complete the picture of previous results shown in Chapter
3 with the investigation of Regions III and IV. Moreover, we study the full dynamics
of the density correlators in the different glasses. In region III, for large concentration
of not-so-small additives ξ ∼ 0.4, we find a reentrance in the glassy regime with
respect to ρ2, with the appearance of a new glassy state (second double glass) for
large ξ and large ρ2. Such a new glass originates from a change of the localization
length of the original double glass, which is entirely due to the softness of the
repulsions. When small stars are added to the double glass, at first there is a liquid
where where the interstar distance decreases opening up space for diffusion. But a
further increase causes a second jamming at a new length scale that will depend on
the particular parameters of the mixture. Interestingly, due to the ultrasoft nature
of star polymers, one could in principle speculate that a cascade of reentrant glassy
phases of decreasing localization length could be generated upon systematic increase
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of ρ2, in analogy to what happens in the equilibrium phase diagram of star polymer
one-component solutions [19], where a cascade of different crystal structures is found.
Moreover, the theory predicts the window of melting of the double glass just up to
ξ ∼ 0.45, but experimental results have already confirmed [70] that this can happen
up to much larger ξ, and it might be a limitation of MCT which always tends to
overestimate the tendency of glassification.

Finally in region IV, at low ξ, the depletion mechanism can finally induce effective
attractions between the large stars [96], causing a liquid-gas phase separation, in
complete analogy with colloid-polymer mixtures. Of course, such phase separation
is accompanied by an increase in S(0), that could cause a problem in MCT, and
predicting a glassy state close to phase separation, exactly like as in CP mixtures
[95, 103]. However, with the use of RY structure factors, we can only find a glass
within binary MCT for ξ = 0.1, while the one-component treatment always provides
a liquid state up to the maximum investigated ρ2 approaching phase separation. We
could not push the analysis to larger ρ2 and ξ = 0.2, 0.3, and for larger ρ2 for ξ = 0.1
due to a breakdown in the convergence of the Rogers-Young, as well as the simplest
HNC closure in this region. It is interesting to ask the question whether, for low ξ
where the emergence of attractive interactions is detected, an attractive glass can
be found in star polymer systems, i.e., also in systems with soft interactions. To
elucidate this issue, we refer to the simulation results reported below.

The interesting question whether MCT predicts any sharp glass-glass transitions
between single and double glass, or between double to second double glass, or to-
wards attractive glass will be the subject of a future study. However, the anomalous
dynamics, to be discussed within the analysis of the simulation results, suggests the
possibility of the existence of a higher order MCT singularity connected to such
glass-glass transitions. It is just to be noted the richness of the glassy phase dia-
grams of star polymer mixtures, where in principle four distinct glassy states and
four kind of glass-glass transition (either sharp or smooth) are found within the
present study.

To summarize, MCT predicts, for the chosen ρ1σ
3
1 = 0.345 an almost O-shaped

liquid region, that is surrounded by four different glassy states and phase separation
and/or attractive glass. We can complement the study of phase diagram by looking
at the non-ergodic properties of the four glasses. To do so, we report in Figure 4.3,
the calculated MCT partial non-ergodicity parameters, both for collective (bottom)
and self (top) relaxation dynamics. The results reported here correspond to those for
the first glassy points observed theoretically coming from the liquid while increasing
ρ2, hence they are ‘critical’ non-ergodicity parameters. The small stars f s

2 (q) allows
us to distinguish immediately a single from a double glass, since it is identically zero
for the single glass, as already found in binary asymmetric hard sphere mixtures [92].
Thus, although, in binary MCT the broken ergodicity transition is postulated to
happen simultaneously for both species, the self non-ergodicity parameter allows to
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Figure 4.2: Kinetic phase diagram of the system as predicted by ideal MCT. The
points are the state points closest to the transition. For a comparison, see Fig. 3.5.
The lines are guides to the eye.

distinguish between mobile and immobile species. Also, the partial f s
i (q) for both

types of stars are larger both in range and in amplitude in the second double glass
than in the standard one. Fitting f s

i (q) to a Gaussian curve exp(−q2/6l20) provides
an estimate for the localization length l0 within the glass. Fits are also reported in
the figure. The Gaussian fit works very well for large stars, but deviations to it are
observed for small stars, in both double glasses. The extracted localization length is
l0 ≈ 0.26σ1 for large stars both in single and double glass, while it is l0 ≈ 0.14σ1 for
the second double glass, thereby a factor of 2 reduction in the cage length is predicted
by the theory. A larger variation in l0 is predicted for the small stars from 0.51σ1 for
the double glass at low ρ2 to 0.11σ1 for the double glass at high ρ2. For the collective
fii(q), the results are very similar to those of the self, only much stronger oscillations,
in phase with static structure factor peaks, are observed. For the small stars, these
are much more pronounced in the second double glass regime than in the standard
double glass case, where they weakly appear only at the first peak of S11(q). We
notice that upon changes in ρ2 within the glassy phases, we detect no change in fq for
the double glass while a significant increase is observed for large ρ2, accompanied
also by an increase in the range, for both star species. This finding is similar to
that for attractive glasses in colloid-polymer mixtures, where further increase of the
additives leads to an increase in nonergodicity parameter both in amplitude and
range. Therefore, in the second double glass regime, although effective interactions
remain repulsive, the small stars produce a strong localizing mechanism, that has
some similarities with an effective attraction. However, looking at the partial Sij(q)
we do not see an increase in the compressibilities or a non-monotonic dependence
in the growth of peaks. Simply, the structure factor peaks for large stars continue
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to decrease upon addition of small stars, while these display themselves more and
more enhanced peaks.

4.3 Simulations: Iso-diffusivity Lines

We performed standard Newtonian dynamics simulations for stars interacting via
the effective potential in Eq. (3.1). Although the use of Brownian dynamics simula-
tions would be more realistic for star-star mixtures to mimic the solvent effect, this
is by far less efficient and it would not allow us to probe the slow dynamics regime.
Moreover, several confirmations of independence of long-time properties from micro-
scopic dynamics have been provided so far [27,104]. We investigate several mixtures,
in order to have a complete picture of the phase diagram and of the dynamical slow-
ing down. Due to the various conditions to be investigated, the number of particles
varies throughout the diagram. In general, we fix N1 = 1000 and vary N2 conse-
quently. However, under particular extreme conditions, like that of the attractive
glass study (see below), we use N1 = 250, due to the large ρ2 investigated. Also, for
low values of ρ2 e.g. in single and double glass regimes, we fix the minimum number
of small particles to N2 = 500 and vary N1 accordingly.

The first issue to take into account is how to fix the short-time mobilities of the
small particles with respect to the large ones. As already noticed in earlier simula-
tions of explicit colloid-polymer mixtures, the simple addition of small particles of
same mass for MD (and corresponding of same diffusivity for Brownian dynamics),
simply increasing the total number density in a state that is already glassy, has the
result of just slowing down further the dynamics, even in the case of star polymers.
This would imply no melting at any given ρ2 and ξ in full contrast with MCT pre-
dictions and experimental results. Thus, following the ideas in [70], in this paper we
adopted the mobility ratio corresponding to the square root of the mass ratio, using
the scaling for the mass m of star polymers, namely m ∼ f 2/3σ5/3 [14, 16]. In this
case, we indeed observe a speeding up of the dynamics upon addition of the second
component. Units of length, mass and energy are σ1, m1 and kBT , respectively.
Time is measured in τMD =

√
m1σ2

1/(kBT ) and the integration time step is varied

according to the mass ratio, as ∆τ = 5 · 10−3
√

m2/m1τMD. Our simulations are
done for f1 = 263 and f2 = 64 as the MCT study presented above.

We fixed the density of the large stars to ρ1σ
3
1 = 0.345, as in the MCT calcula-

tions. Indeed, this was the last point accessible in simulations, for a one-component
system of 263−armed star polymers before crystallization takes place. For this state
point, the diffusion coefficient, that will be our reference for the mixture cases, is
D0 = 0.0119σ2

1/τMD. This value is rather high, and, indeed, the mean squared dis-
placement of the single-component case for ρ1σ

3
1 = 0.345 does not show the presence

of a plateau, i.e., no signature of a clear slowing down of the dynamics. Nonetheless,
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Figure 4.3: Partial non-ergodicity parameters from MCT. The top figure shows
the self dynamics for the three different glasses and Gaussian fits to extract the
localization length. In the bottom part we show the collective dynamics. For all
curves it is ρ1σ

3
1 = 0.345. For the single glass it holds ρ2σ

3
2 = 0.12 and ξ = 0.1,

while in the double glass it is ξ = 0.4. The second double glass corresponds to
ρ2 = 1.27 and ξ = 0.4. The Gaussian fits are the dotted lines. The self non-
ergodicity parameter of the large stars in the single and double glass is virtually
identical, therefore the lines fall on top of each other, however the self dynamics for
the small ones is very different in both cases. Also the Gaussian fits fall on top of
the MCT data for the self non-ergodicity parameter of the large ones. Therefore
they are indistinguishable in the figure. The collective dynamics of the large stars
in the single and double glass only shows deviations for small q.
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Figure 4.4: Iso-diffusivity lines from MD simulations in the (ρ2, ξ)-representation.
The density of large stars is kept constant at ρ1σ

3
1 = 0.345. The line for the smallest

value of the diffusivity is not closed because the chosen value of D is smaller than
the diffusivity of the reference one-component system (D0).

this choice of ρ1 allows us to calculate quite complete iso-diffusivity lines, in a rea-
sonable computer time. Such lines are precursors of the glass transition lines, and
they always display a similarity in shape as the MCT line, as demonstrated already
for one-component star polymers [27], for other repulsive potentials [105], as well as
for short-range attractive square well [13].

To study iso-diffusivity lines we calculate the mean-squared displacement (MSD)
〈r2(t)〉 of large and small stars separately. From the long-time behavior, we extract
the respective self-diffusion coefficient defined as, following Einstein relation,

D = lim
t→∞

〈r2(t)〉/(6t). (4.6)

In Fig. 4.4, we report the iso-diffusivity lines for three different values of D/D0

in the (ξ, ρ2) plane. The fact that we examine only a decade in decrease of D/D0

is due to the many constraints to study the whole phase diagram in very different
conditions between the different four regions of small/large ξ and small/large ρ2

and to the one-component tendency to crystallize for ρ1σ
3
1 > 0.345 (see below).

Also, the line corresponding to the slowest states is drawn only on the large ξ
side, since D < D0 and hence slower than the one-component case (ρ2 = 0-axis
and ξ = 0-axis). The upper left corner is missing, again, due to the intervening
phase separation. Notwithstanding all these details, it is evident the shape of an
asymmetric “O” that resembles the shape of the MCT phase diagram. Moreover, we
know that the shape of the iso-diffusivity lines is robust with respect to the decrease
of D/D0, thus we can assume these results to be general enough for the description
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of star-star mixtures. The agreement with experiments that was found for the low
ρ2 U-shape is confirmed also by simulations incorporating the mobility issue in the
right way, while further experiments at large ρ2 are needed to confirm the O−shape
predictions of both MCT and simulations.

Interestingly, from the simulations we can also trace out correctly the iso-diffusivity
lines of the small stars. Within binary MCT there should be no distinction between
the glass lines of the large and small stars respectively, however this is based on
the wrong approximation that small stars are as slow as the large stars. Removing
this constraint in the simulations, we also report in Figure 4.4 an iso-diffusivity line
of the small stars. It has a similar shape as the large ξ/large ρ2 region while the
dynamics of the small stars is much faster for low ξ.

We can now exploit the simulation results to directly probe the four regions of
slowing down and compare the different glasses, in order to clarify the characteristics
of the multiple glassy states appearing in these types of mixtures, in comparison with
the MCT results. However, to do so, we need to overcome the crystallization problem
for small ρ2, which does not allow to see a real slowing down of the dynamics for the
one-component system, and consequently also the single and double glass. Hence,
we considered the addition of polydispersity in the large stars diameter only, chosen
to follow a Gaussian distribution with a width of 10% [106]. We also checked that,
compared to the one-component case, the dynamics is not substantially affected.
In this way, we could reach low values of diffusivity by increasing ρ1, as illustrated
in Figure 4.5 compiling together results for the monodisperse and polydisperse one-
component reference system. Hence, we selected the value ρ1σ

3
1 = 0.41 to investigate

the dynamics of single and double glass respectively. To improve statistics, we
average over 5 independent runs for each studied state point. Each independent
run for the three studied state points required about 3 months CPU time. On the
other hand, for the other two glasses at large ρ2, we still consider our initial value
ρ1σ

3
1 = 0.345, since it is now the crucial presence of large additives affecting the

dynamics, and therefore we do not need to go to higher ρ1. In this respect, it is
perhaps useful to think of the phase diagram of Figs. 4.2 and 4.4 in terms of different
ρ1 values. At lower ρ1, the single and double glass phase will disappear, while the
attractive glass will be still competing with phase separation, as in CP mixtures.
The only glass which should still be stable is the second double glass. At this point it
would be interesting to ask the question of which minimum f1 and f2 are necessary
for this to happen, as we know that one-component star polymer systems with less
than ≈ 40− 45 arms do not ever glassify.
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Figure 4.5: Diffusivity of the one-component system as a function of star den-
sity. The circles correspond to the monodisperse case. The squares correspond to
simulations with added polydispersity to prevent the system from forming a crystal.

4.4 Multiple Glassy States

4.4.1 Region I: Single Glass

The state point reported here corresponds to ρ1 = 0.41, ρ2 = 0.1 and ξ = 0.1. Since
f2 = 64, we have a mass ratio m2/m1 = 8.4 × 10−3, and we are in the effective
one-component regime.

Indeed, the mean squared displacement shows a clear separation in time-scales
between the two species. After the initial ballistic regime, the small stars simply
become diffusive, while the large ones display a long plateau, lasting about 3 decades
in time, before eventually reaching the diffusive regime, so that there is a clear
separation of time-scales. Correspondingly, a difference in the diffusion coefficient
(and relaxation time) of about 3 orders of magnitude is observed. Thus, we can
argue convincingly that the large stars are nearly arrested in a jammed state, with
a localization length that can be extracted from the plateau height l0 ∼ 0.25σ1

(horizontal line in Figure). By convention, we define the localization length as
l0 =

√
〈r2(t∗)〉, where t∗ is the point of inflection of the MSD. A similar value could

be extracted from a simulation of star polymers in theta-solvent [106], as well as
from the MCT results above, suggesting rather robustly that the localization length
of a soft star glass is slightly higher than of the typical hard sphere one due to the
softness of the cages which allows more flexibility in the rattling than the rigid hard
sphere ones.

We now turn to examine the density correlators. In Fig. 4.7, we show the behavior
of φii(q, t) for large (top panel) and small stars (bottom panel), respectively, for
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several wave vectors. As for the MSD, the large stars display a marked plateau, at
all wave vectors, lasting for about three decades in time, and showing an oscillatory
behavior in the height of the plateau with wave-vectors, as commonly found in
standard glasses. We extract the non-ergodicity parameter of the system by fitting
with a stretched exponential law the φ11(q, t) for the large stars. We find that f11(q)
oscillates in phase with the static structure factor, but in contrast to the MCT
predictions (that are quite independent in the single glass region of the specific
considered state point as discussed previously), it shows a marked increase at low q,
while beyond the first peak the agreement is very good. We find that the stretching
exponent βq as a function of qσ1 also oscillates in phase with f11(q), and tends
for large q approximately to 0.6. Indeed, using this as b exponent for the von
Schweidler law (Eq. (4.3)), we find that all curves are well-fitted with this type
of law, in the region of departure from the plateau, and the estimate for f11(q) is
in perfect agreement with that obtained from the stretched exponential fits. This
also corresponds to an exponent parameter λ ≈ 0.7, which is consistent with that
calculated within MCT.

A similar analysis can be done on the small stars correlators. However, here
the plateaus are so small that no accurate analysis can be performed. Nonetheless
at small wave vectors, the stretched exponential fits work quite well. We find a
tiny signal for the f22(q) just close to the first peak of the S11(q) for the large stars,
suggesting a small loss of ergodicity of the small stars in the frozen cages of the large
stars. This is in good agreement with the MCT predictions, but we do not detect
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Figure 4.7: Density correlators for the large (top) and small (bottom) stars in the
single class for different values of q. The parameters are the same as in Fig. 4.6.
The dashed lines are stretched exponential fits to the curves. The inset in the lower
figure show a magnification with the fits close to the peak in f22(q).
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Figure 4.8: Comparison of partial non-ergodicity parameters from MCT and simu-
lation in the single glass. The values from the simulations are obtained by stretched
exponential fits for both types of stars. Also shown are von Schweidler fit results for
large stars with b = 0.6. The simulation parameters are the same as in Fig. 4.6. The
MCT results refer to critical parameters for ρ1σ

3
1 = 0.345, ρ2 = 0.12 and ξ = 0.1.

any increase of non-ergodicity at large length-scales. While MCT underestimates
the non-ergodicity parameter of the large stars at low q, it overestimates the same
for the small stars compared to the simulation results. Nonetheless, it is interesting
to note that the small stars, although being very mobile, do display appreciable
plateaus at the S11(q) peak, whose time duration is the same as those of the large
star plateaus (see curve for qσ = 5.2 in Figure 4.7 b). Thus a coupling in time
between large and small stars exists only at the peak of S11(q), which might explain
why two-component MCT is still capable of correctly describing the general behavior
of the mixture in this regime.

We can conclude from the combined study of MCT and simulations of the single
glass that it really corresponds to a glass formed by the large stars only, whose
properties are those typical of star polymer ultra-soft glasses. The small stars pres-
ence induces a weakening of the stability of such glass, until eventually melting it,
and we observe this in the behavior of the large stars diffusion coefficient which
increases with increasing density of the additives. Finally the small stars are truly
ergodic and very mobile, they are never trapped in a metastable glass state, but do
show a reduced loss of ergodicity for length-scales of the order of the static structure
factor first peak for the large stars. We remark that this behavior is seen both in
binary MCT and simulations, while it could not have been detected by an effective
one-component treatment of large stars only.
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Figure 4.9: Mean squared displacement for the large and small stars in the double
glass.The densities are ρ1σ

3
1 = 0.41 and ρ1σ

3
1 = 0.1; the size ratio is ξ = 0.4.

4.4.2 Region II: Double Glass

We now turn to examine the arrested state in the low ρ2 at large ξ. We consider the
case ρ1σ

3
1 = 0.41, ξ = 0.4 and ρ2σ

3
1 = 0.1, so that the composition of the mixture

is the same as for the single glass examined above. However, the additives are
larger and, consequently, also their mass is larger. Here the mass ratio is m2/m1 =
8.5 · 10−2, which is one order of magnitude larger than in the single glass. Therefore
we treat both components in this case on equal footing in the theoretic approach,
i.e., we use binary MCT. Indeed, the simulations confirm an arrest of both species.

In Fig. 4.9, we show the MSD for both components in the mixture. Differently
from the single case, we observe a significant slowing down also in the small compo-
nent behavior, suggested by the intermediate time regime where the slope of < r2 >
versus time is smaller than 1, indicating a subdiffusive regime in the dynamics. In
the same time window, the large stars are more confined, as suggested by the pres-
ence of a plateau, whose height provides a localization length l0 that is equal to
that of the single glass. This is in agreement with the MCT predictions discussed
above, which suggest that the glassy properties of the large stars are unchanged, in
terms of non-ergodicity parameter and localization length, upon moderate addition
of small stars of different size. For the small stars we can deduce instead a local-
ization length of the order of 0.5σ1, about twice as large as that of the large stars,
again in agreement with MCT predictions.

Looking at the partial density correlators for the double glass in Figure 4.10,
we see a close similarity for the large stars correlators to those of the single glass.
Only the time duration of the plateau is different, due to the relative position of
the chosen state point with respect to the glass transition. Indeed, it can be seen in
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Figs. 4.2 and 4.4 that this state point is ‘more liquid’ than the one we studied for the
single glass. Similarly to the previous paragraph, we can analyze the decay in terms
of a stretched exponential and of a von Schweidler law and the results are totally
equivalent to those of the single glass for what concerns the large stars dynamics.
The resulting fq is reported in Fig. 4.11 together with corresponding critical MCT
predictions in this regime.

The story is completely different for the small stars. The density correlators
are not describable in terms of stretched exponentials. Indeed, they are best fitted
with a ln(t) second order polynomial of Eq. (4.5), as in other systems where a
competition between two glassy states originates an anomalous dynamical behavior
[99–101, 107, 108]. This seems to suggest the possible existence of a MCT a higher
order singularity [102]. Interestingly, the logarithmic behavior is found only for the
small stars, while the large stars remain close to a standard liquid-glass transition or
A2 singularity. Indeed, small stars are those exhibiting a clear change of dynamics
upon increasing ξ: from highly mobile in a frozen matrix to becoming arrested
themselves, so that the logarithmic behavior could arise from a competition between
these two dynamics. Although no explicit studies for binary mixtures exhibiting
higher order singularities are available, we will perform further MCT analysis in
the next future to study if the single-to-double glass transition is a true glass-glass
transition, corresponding to two distinct solutions of MCT equations, or if it is just
a smooth crossover.

Performing the fits following Eq. (4.5), we extract a non-ergodicity parameter for
the small component in good agreement with the one calculated within MCT close
to the liquid-glass transition (ρ2σ

3
1 = 0.05, see Fig. 4.2). Also, by looking at the h

(2)
q

extracted from the fits, we can find out what is the optimal wave vector q∗ at which
the decay is purely logarithmic [102,109]. This indicates the dominant length scale
in the arrest process, and indeed it was estimated before for the attractive glass [107].

Here, h
(2)
q ∼ 0 for qσ1 ≈ 4, corresponding to a length-scale slightly larger than the

nearest-neighbor length for the large stars, indicating that small stars are mostly
trapped between neighboring large stars. Around this q∗-value there is the expected
crossover between concave and convex shape for the φ(q, t). As for the single glass
case, the estimates of fij(q) from the simulations differ from the MCT ones especially
at low q, thought the discrepancy is reduced in this case.

4.4.3 Region III: Second Double Glass

We analyze the state point ρ1 = 0.345, ρ2σ
3
1 = 3.4 and ξ = 0.4, where a further

decrease in diffusivity is observed upon addition of small stars, as it can be seen in
Fig. 4.4 .

From the MSD reported in Fig. 4.12, we see that both components exhibit a
slowing down in the dynamics, therefore we have evidence of a second double glassy
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Figure 4.10: Density correlators for the large (top) and small (bottom) stars in the
double glass for different values of q. The parameters are the same as in Fig. 4.9.
The dashed lines for the large stars are stretched exponential fits, for the small stars
we use logarithmic fits.
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Figure 4.11: Comparison of partial non-ergodicity parameters from MCT and
simulation in the double glass. The values from the simulations are obtained by
stretched exponential fits for the large stars and from logarithmic fits for the small
stars. The MCT results refer to critical parameters for ρ1σ

3
1 = 0.345, ρ2 = 0.05 and

ξ = 0.4. The simulation parameters are the same as in Fig. 4.9.

state. However, the localization lengths that can be extracted from the MSD are
smaller than those for the double glass discussed above. Indeed, we find l0 ≈ 0.14
for the large stars, corresponding to about half of the cage length that we found
both in single and double glass, while l0 ≈ 0.2 for the small stars, again at least
twice as small as that of the other (conventional) double glass. These values are
again in remarkable agreement with those predicted by MCT .

The fitting procedure to the density correlators turns out to be opposite to that
of the standard double glass. Indeed, we cannot fit the correlators for the large stars
with stretched exponentials, but rather they are found to follow the logarithmic
decay of Eq. (4.5). On the other hand, the small stars φ22(q, t) are well described
are well described by a stretched exponential decay for small wave vectors, while
this fitting procedure becomes unreliable at large q. The logarithmic behavior for
large stars suggests the possibility of the presence of a higher order MCT singularity
for the large stars or, at least, a competition between two different glassy states.
Indeed, upon increasing ρ2 at fixed ξ = 0.4, the large stars are passing from the
standard glass to a much more localized one. The same is true for the small stars
in this region, so that a similar log-behavior could be also, in principle, observed
for the small stars for some more accurate choice of the parameters, but, within
the present study, we are not able to detect that. However, we do observe here a
deviation from standard stretched exponential behavior at large q even for the small
stars.

From the logarithmic fits for the large stars, we find the non-ergodicity parameter
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Figure 4.12: Mean squared displacement for the large and small stars in the second
double glass. The densities are ρ1σ

3
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1 = 3.4; the size ratio is ξ = 0.4.

for large stars, again in quite good agreement with MCT predictions, as shown in
Fig. 4.14. Also, we can determine the q∗ where the log behavior is enhanced, i.e.
q∗σ1

∼= 16.6, thus invoking smaller length scales than those of nearest-neighbor as
responsible for the mechanism of arrest. We notice that this length is much smaller
than that found for attractive glasses in CP mixtures [107], consistently with the
fact that here no attractive bonding is present. For the small stars, the Kohlrausch
fits are good at small wave-vectors, but become more uncertain for large q values.
This does not allow to detect a robust b exponent to apply the Von Schweidler
fits. However, the fits are good enough for a good agreement for fq with the MCT
predictions for the critical parameters ρ1 = 0.345, ρ2 = 1.27 and ξ = 0.4.

4.4.4 Region IV: Attractive Glass and Phase Separation

For large asymmetries in the size ratio we reach an increase of the small star density
leads finally to an attraction between the large stars and a demixing transition [96].
Therefore the investigation of this part of the phase diagram and the study of a
formation of an attractive glass is hindered by a phase separation.

Indeed, the RY closure does not allow us to investigate this part of the phase
diagram as the convergence of the closure already breaks down before reaching the
demixing line. An increase in the q → 0-limit is observed for all partial structure
factors. However, at ρ2σ

3
1 = 4.45 two-component MCT predicts a arrested state (see

Fig. 4.2). Within one-component MCT this state is still fluid. The properties of
the non-ergodicity parameters of the large stars found by binary MCT however are
typical of an attractive glass.

Simulations in this part of the phase diagram are very time consuming due to the
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Figure 4.13: Density correlators for the large (top) and small (bottom) stars in
the second double glass for different values of q. The parameters are the same as in
Fig. 4.12. Here the large stars are described by logarithms, for the small ones we
use stretched exponentials.
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Figure 4.14: Comparison of non-ergodicity parameters from MCT and simulation
in the second double glass. The values from the simulations are obtained by loga-
rithmic fits for large stars and stretched exponentials for small stars. The simulation
parameters are the same as in Fig. 4.9.

large density ratio investigated. A decrease of the diffusivity of the large stars was
observed only for ρ2σ

3
1 ∼ 15, that means there are more than 40 times as many small

as large particles in the simulation box, making it necessary to simulate a huge total
number of particles. Additionally, the proximity of the demixing line even further
complicates the simulation study. A detailed study of the attractive glass will be
the subject of a future study.

4.5 Conclusions

Additionally to the previously found glassy states in binary star polymer mixtures
we find new arrested states at high density of the smaller additives. These arrested
states are found within the framework of mode coupling theory as well as in MD
simulations. Indeed, the iso-diffusivity lines from the simulations capture the fea-
tures of the ideal MCT transition line. The dynamical properties of these arrested
states, however, are clearly distinct. In the simulations we find density correlators
that show the typical stretched exponential behavior as well as logarithmic decays,
as predicted by MCT in the vicinity of a higher order singularity. The non-ergodicity
parameters extracted from the simulation data are in qualitative agreement with the
MCT results.



Chapter 5

Ultrasoft Systems with Attractive
Interactions

In this chapter we are dealing with star polymers with explicit attractive interac-
tions. In the first part, we study a one-component model for star polymer solutions
with competing attractive and repulsive interactions. In the second part, we in-
vestigate the conformations of star polymers with attractive end groups, so called
telechelic or end-functionalized star-polymers, in dilute solution.

5.1 Attractive Forces in Star Polymer Solutions

5.1.1 Theoretical Model

There are several origins of attractive forces in star polymers solutions. One pos-
sibility is the introduction of depletants, e.g. polymers or star polymers, with a
smaller size than the main component (see Secs. 2.2.3 and 2.5, [28, 32, 44, 96]). As
we have seen, the attraction can be influenced by modifying the softness and/or size
of the depletants. In this case, as for purely repulsive stars, the interaction is en-
tropic and thus the system is athermal. The interaction between the stars acquires
a dependence on the depletant concentration which can be interpreted as an inverse
temperature.

A second possibility is to consider residual dispersion forces in solution due to
a non-perfect matching of the refraction index between solute and solvent. Here
the attractive forces can be influenced by screening the dipole-dipole interaction
through addition of salt, which remains mainly in the intermolecular space, not
affecting therefore the conformation of the stars. The system is not athermal. For
this case we concentrated on intermediate/small functionality stars described in
terms of a one component model potential, discussing the phase diagram and the

85
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Figure 5.1: Total interaction potential between the stars as a function of the center-
to-center distance. It is A = 1.35σ and f = 32 for all curves, the other parameters
are indicated in the legend.

dynamics. In the following we will study a system with an effective one-component
interaction which mimics these effects.

Again, we start from the repulsive star-star interaction given by Eq. (2.3). Figs.
2.3 and 2.10 show the modification of the effective interaction adding polymer chains
to a star solution. Similar effects have been found for binary star polymer solu-
tions [96]. Depending on the composition of the mixture, very different interactions
can be obtained which cause a rich equilibrium and non-equilibrium behavior. As
we have seen, for different parameter combinations the mixture exhibits micro- or
macrophase separation. Lo Verso et al. proposed a simple one-component potential
to describe such depletion effects [110]. This potential was used to study fluid-
fluid demixing [110] and dynamical arrest for stars with intermediate functionalities
(50 < f < 100) [111]. A shift of the glass transition lines to higher densities was
observed. Recently, the same model was used to study cluster formation in low-
functionality star polymers (f = 32) [112]. Here, we use this modeling to describe
the vitrification of low-functionality star polymers with short-range attractions.

The attractive contribution is chosen to have the same functional form as a Fermi
distribution, i.e.

Vattr(r) = − C

exp[(r − A)/B] + 1
. (5.1)

A and B determine the width and the position of the minimum of the potential.
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C sets the strength of the attraction. This simple model can be used to describe
dispersion or depletion effects. Since the attractive part of the interaction is not
entropic, the system depends on the temperature. However, when we deal with
depletion effects, we can interpret T as the inverse depletant density. Attraction
range and depth depend on size and concentration of the depletants in this case.

The total interaction potential is then given by

Vtot(r) = Vss(r) + Vattr(r), (5.2)

where Vss(r) is the plain star-star interaction which is given by equation (2.3). In
the following, we keep A fixed at A = 1.35σ and vary B and C to study the dynamic
properties of the system. The functionality is kept constant at f = 32. The total
potential for several parameter combinations is shown in Fig. 5.1. As can be seen in
the figure, the potential displays short range attractions and long range repulsions.
Indeed, the interplay of the repulsive and attractive parts of the potential leads to
cluster formation also in this model [112].

5.1.2 Mode Coupling Results

The structure of the star polymer solution was calculated using the modified hyper-
netted chain (MHNC) closure (see Appendix A). These were used to determine the
freezing line according to the Hansen-Verlet criterion [113], i.e. the lines where the
main peak of the structure factor exceeds a value of 2.85. Moreover, we used the
structures factor as input to calculate the nonergodicity parameters with MCT.

In Figure 5.2, we show typical repulsive glass non-ergodicity factors for different
temperatures, densities and values of B. We added the ideal MCT transition lines
to the phase diagram presented in Ref. [112]. As can be seen from the figure, the
arrested region of the phase diagram shrinks as B is increased. This arrested state
is completely absent for purely repulsive star polymers [27], where an arrested state
is only found for higher functionalities. Accordingly, the arrested region vanishes
for high temperatures.

Additionally, in Ref. [114] Brownian dynamics simulations [115] were performed
in order to determine the long-term self diffusion coefficient of the system. It was
found that the additional long-range repulsion leads to a dramatic slowing down of
the dynamics, which is absent for systems which do not exhibit this repulsion. The
region of the phase diagram corresponds to the one where MCT predicts an arrested
state.

As already stated, in these systems the strength of the attraction and the long
range repulsion become stronger on decreasing the temperature and the value of
B. Moreover, the range of the attraction decreases with B. As a consequence, in
the arrested region, the first shell of neighbors progressively becomes more localized
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in the minimum of the well potential while the second-neighbor shell experiences
an increase of the repulsive barrier. These effects stabilize the cage and lead to a
slowing down of the dynamics.

5.1.3 Conclusions

We have shown that the interplay of long-range repulsion and short-range attraction
in star polymers changes the dynamics fundamentally. This opens new ways to steer
the rheological behavior of soft colloidal dispersions. The nature of this previously
unknown arrested state and possible glass/glass transitions remain a challenging
task for future investigations. Moreover, an experimental study of mixtures low-
functionality star-polymers and polymer chains might be able to verify this new
phenomenon.

5.2 Collapse of Telechelic Star Polymers

Conformational properties of star-shaped polymer aggregates that carry attractive
end-groups are investigated by simulation and analytical theory. We focus on the
case of low telechelic star polymer functionalities, f ≤ 5, a condition which allows ag-
gregation of all attractive monomers on one site. By performing extensive computer
simulations and introducing a variational free energy expression for the conforma-
tions, we establish the functionality- and polymerization-number dependence of the
transition temperature from the “star burst” to the “water melon”macroparticle
structure. Extensions to multi-armed telechelic star polymers that feature partially
collapsed configurations are also discussed.

5.2.1 Introduction

Self-organizing soft materials are relevant in developing novel macromolecular com-
pounds with peculiar structural and dynamical properties, which are related to
mesoscopic aggregation as well as intra- and inter-molecular association [116, 117].
In this context, progresses in the synthesis of well-characterized chains with attrac-
tive end-groups, called telechelic polymers, allowed the study of star polymers with
attractive polar end groups, telechelic associating polymers with hydrophobic ter-
minal groups, associating polyelectrolytes in homogeneous solutions, and telechelic
planar brushes [118–121]. The thermodynamics and the structure of planar telechelic
brushes have been recently analyzed also from a theoretical point of view, shedding
light into the quantitative characteristics of both the conformations and the inter-
actions of the same [122–124]. Further theoretical approaches have been developed
to describe flower-like micelles with hydrophobic terminal groups that self-assemble
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in water. Such aggregates show a characteristic ‘bridging attraction’ [122,125] that
can even lead to a liquid-vapor phase transition [126]. The interesting feature of
telechelic star polymers is the possibility of attachment between the attractive termi-
nal groups. In dilute solutions, this gives rise to intra-molecular association as well as
inter-association between micelles, depending on the details of the molecular struc-
ture. Examples of low-functionality telechelic stars, very similar to the ones con-
sidered in this work, are mono-, di-, and tri-ω-zwitterionic, three-arm star symmet-
ric polybutadienes. Experiments have shown that these self-assemble into distinct
supramolecular structures, including collapsed, soft-sphere conformations [119,127].
In particular, using low-angle laser light scattering and dynamic light scattering, it
was found that samples with three zwitterion end groups present a low degree of
inter-association between macromolecules, showing instead a preference for intra-
association and formation of collapsed soft spheres [118, 128]. X-ray scattering and
rheological experiments support the conclusion that this tendency persists at higher
concentrations, all the way into the melt [119]. There, the formation of transient
gels has been found for the case of two- and three-zwitterion macromolecules, with
the network characteristics depending on the molecular weight of the arms [127].

The conformations of telechelic micelles are evidently determined by the com-
petition between entropic and energetic contributions. A detailed investigation, by
theory and simulation, of the mechanisms leading to the formation of collapsed
soft spheres is, however, still lacking. In this section we perform extensive com-
puter simulations, accompanied by a scaling analysis of the free energies of can-
didate structures of telechelic micelles with small functionality, f ≤ 5. We find
that at high temperatures the system assumes the usual star burst (sb) configura-
tion. On the contrary, at sufficiently low temperatures, the end-monomers attach
to each other and the micelles assume an overall closed configuration, akin to the
collapsed soft spheres conjectured in the experimental study of Ref. [119]. Due
to the peculiar shape of these aggregates, featuring two points of aggregation, one
at each end, we term them “water melons” (wm). For intermediate temperatures,
the macromolecules exhibit several configurations that correspond to a partial as-
sembling of the terminal groups. The number of chains connected at their ends
depends on the temperature T , the functionality f and the degree of polymerization
N (molecular weight) of the chains. In particular, at a given, sufficiently low T ,
the wm-configuration becomes more stable with respect to the sb-one with decreas-
ing N and increasing f , as will be demonstrated in what follows. Our theoretical
predictions are found to agree well with simulation results.

5.2.2 Molecular Dynamics simulations

We employed monomer-resolved molecular dynamics simulations to examine the
conformations of isolated telechelic micelles. The use the same simulation model
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as in Sec. 2.4.1. The pair interaction between the terminal monomer of each arm,
however, is given by a full Lennard-Jones potential:

βVtt = 4ε

[(σLJ

r

)12

−
(σLJ

r

)6
]

. (5.3)

The time step was ∆t = 10−3τ , with a total of 2×105 time steps used for equilibration
and 5 × 107 to gather statistics. The characteristic quantities measured in the
simulation were the radius of gyration Rg of the molecules, the radial distribution
function gt(r) between the terminal monomers as well as the expectation value Et of
the interaction energy between the terminal groups. The latter quantity is defined
via

Et = 〈
f∑

i=1

∑
j>i

VLJ(|ri − rj|)〉, (5.4)

where 〈· · · 〉 denotes a statistical average and ri stands for the coordinates of the end
monomer of the i-th chain.

We considered temperatures between kBT = 0.01ε and kBT = 1.2ε. For kBT &
0.2ε, we found that the micelle configuration is similar to that of a star polymer
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without attractive ends, i.e., the aforementioned sb-configuration. However, a mor-
phological transition of the micelles takes place upon lowering the temperature. In
Fig. 5.4 we show the probability distribution function P (Et) for the end-monomer
interaction energy Et for the case f = 3, at different temperatures and number of
monomers. At kBT = 1.0ε, Fig. 5.4(a), P (Et) shows almost all the events around
Et = 0, meaning that in the vast majority of configurations the end-monomers
are sufficiently far apart, so that the attractions are vanishing. For kBT = 0.2ε,
Fig. 5.4(b), P (Et) takes a bimodal form with two peaks, one at Et = 0 and one
at Et = −ε. The latter corresponds to a conformation in which two chains are
end-attached, with their terminal monomers at a distance rmin, whereas the third
chain is still free (intermediate configuration). Note that the molecule does fluctuate
between the two conformations, as witnessed both by the bimodal character of the
probability distribution and by the non-vanishing values of P (Et) for −ε < Et < 0.
Upon further lowering of the temperature at kBT = 0.1ε, Fig. 5.4(c), P (Et) develops
a peak at Et = −3ε, corresponding to a configuration in which all three terminal
monomers are confined at a distance rmin from each other. This is the state in
which the micelle has aggregation points at both ends, which we termed ‘water
melon’ (wm)-conformation. The trend described above, is qualitatively the same for
the different N . However in each panel we can notice a higher probability to have
a wm decreasing the number of monomers. For fixed N the probability increases
with the arm number. We further find a considerable sharpening of the peak at
Et = −3ε for lowered temperature since fluctuations around the ground state are
getting more suppressed. Similar results have been found for the cases f = 2, 4, and
5. The minimum value of Et for f = 2 is −ε and for f = 4 it is −6ε, corresponding
to a wm-configuration in which every end-monomer is confined at a distance rmin

from every other one, i.e., an arrangement at the vertices of a regular tetrahedron
of edge length rmin. Due to geometrical constraints, for f = 5 it is not possible to
have all five end-monomers at contact with each other; the minimum value assumed
Et is −9ε in this case, corresponding to the arrangement of the terminal segments
on the vertices of two regular tetrahedra of edge length rmin, which share a common
face.

The temperature dependence of the gyration radius Rg for fixed N = 10 and dif-
ferent f -values is shown in the main plot of Fig. 5.5. At high temperatures, Rg has
a plateau that corresponds to sb-case and scales as f 1/5N3/5 [15]. As T is lowered,
we find a rapid decrease of Rg within a narrow temperature range and a saturation
to a lower plateau value that corresponds to the size of the wm-configuration. The
attachment of the terminal monomers leads to a shrinking of the molecule, in agree-
ment with the experimental findings of collapsed soft-sphere conformations [119].
The wm-configuration persists to higher T -values upon increasing the functionality
f , a trend that can be attributed to the increasingly strong attractive-energy con-
tributions to the wm-free energy as f grows. In the inset of Fig. 5.5 we show the
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Figure 5.5: Temperature dependence of the radius of gyration Rg obtained by
simulations of telechelic micelles (N = 10). From top to bottom: f = 5 (black),
f = 4 (blue), f = 3 (green), and f = 2 (red). Inset: the end-monomer radial
distribution function gt(r) obtained from simulations at kBT = 0.1ε (solid curves);
the sequence from top to bottom and the color coding are the same as those in the
main plot. The dashed line is gt(r) for f = 3 and kBT = 1.0ε for comparison. For
clarity, each curve has been multiplied by a different, arbitrary constant.
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l

r0

 (a) (b)

Figure 5.6: (a): Schematic representation of a water-melon with 3 arms; we depict
it geometrically as a double cone of half-chains. (b): The corresponding blob model
of two arbitrarily chosen, attached arms.

terminal-segment radial distribution function for the various f -values at kBT = 0.1ε,
where the wm-conformation is stable and compare it with the one obtained for f = 3
at kBT = 1.0ε, where the micelles assume a sb-conformation. The aggregation of the
end-monomers is clearly witnessed by the high peak at r = rmin, which is present
at kBT = 0.1ε, as opposed by the flat shape of gt(r) at kBT = 1.0ε. Whereas for
f = 2, 3 and 4 a single accumulation peak can be seen, a double peak is present
for the case f = 5. This feature arises from the arrangement of the five terminal
monomers at the vertices of two tetrahedra that share a common face. The most
distant vertices of the two are separated by a distance

√
8/3rmin, at which indeed

the second peak in gt(r) shows up.

5.2.3 Free Energy

Lo Verso et al. [129] proposed a scaling theory for the free energy of the two states
considered. The excluded volume parameter v is set to unity, consistent with the
choice σLJ = 1 above (v ∼= σ3

LJ). In the case of the sb-configuration, the free energy
is entirely entropic in nature and can be expressed as a sum of the elastic and
excluded-volume contributions. For a single chain, minimization of this sum with
respect to the chain radius Rg leads to the scaling laws

Rg ∼ N3/5 (5.5)

and

F ∼ kBTN1/5. (5.6)

For high-functionality star polymers, Flory theory can be improved in order to better
take into account the inter-chain correlations by invoking the blob model of Daoud
and Cotton [15,17]. For the small f -values at hand, instead each chain was modeled
as a blob of radius ∼ Rg that occupies a section of space delimited by a solid angle
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4π/f . Accordingly, the total free energy of the sb-configuration is approximated by

Fsb = kBTfN1/5. (5.7)

. The attractive, energetic contribution of the terminal monomers is very small,
since the latter are far apart in the sb-state, and therefore it can be ignored.

In the wm-configuration, there are two accumulation points: the first is the
point in which the chains are chemically linked and the second is at the other end,
at which the end-monomers stick together. In order to properly take into account
the monomer correlations within the macromolecule [130], Lo Verso et al. [129]
employed a blob model to estimate the excluded-volume contributions to the free
energy Fwm [123, 131] . A schematic representation of the water melon and the
associated blob model are shown in Fig. 5.6(a); the wm is thereby modeled as a
double cone. With r0 and l being the radius and height of the cone that contains
nb blobs of a single chain, we obtain

Fwm

kBT
=

3

2
f

r2
0 + l2

N
+ 2fnb + Eattr. (5.8)

The first term at the right-hand side of Eq. (5.8) above is the stretching contribution
of f chains, each having an extension

√
r2
0 + l2. The second is the excluded-volume

cost and arises from the total number of 2fnb blobs, each contributing an amount
kBT [123, 130, 131]. Finally the third term is the attractive energy contribution
arising from the total number of contacts between terminal monomers. Accordingly,

Eattr = −f(f − 1)ε

2kBT
(5.9)

for f = 2, 3, and 4, whereas

Eattr = − 9ε

kBT
(5.10)

for f = 5. For given N , f , and T , Fwm depends variationally on r0, l, and nb but
two constraints must be considered. First, blobs are close-packed within each cone,
hence:

l

cos(α/2)
= D

nb−1∑
n=0

(
1 + sin(α/2)

1− sin(α/2)

)
, (5.11)

where α = arctan(r0/l) and D is the diameter of the first, smallest blob, which is
taken equal to the monomer size. Second, the monomer number N is obtained by
summing over the monomers of all blobs of a chain, taking into account that a blob
of size b contains Nb ∼ b5/3 monomers. This results into the constraint:

N(r0, l) = 2D5/3

nb−1∑
n=0

(
1 + sin(α/2)

1− sin(α/2)

)(5n/3)

. (5.12)
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Figure 5.7: Temperature versus N diagram corresponding to the sb- and wm-
morphological transitions of telechelic micelles. Main figure: theoretical results.
Inset: transition lines in simulations, determined via the T dependence of Rg .
From bottom to top (full/empty symbols): f = 2 (circle), f = 3 (square), f = 4
(triangle up), f = 5 (triangle down).

Eqs. (5.11) and (5.12) were solved numerically to express nb and l in terms of r0

and then we minimized numerically Fwm with respect to r0 using Eq. (5.8). We
found that the cone angle α between two arms increases rapidly with N for small
N -values: for 5 . N . 20 it changes from 20 to 40 degrees. This trend reflects the
physical impossibility for the chains to form an aggregate for short chains. Once
the excluded volume interactions are balanced, the angle increases slowly, by about
5 degrees for 25 . N . 400.

Comparing the resulting, minimized free energies Fwm with Fsb, we obtained the
transition temperature between sb and wm as a function of the degree of polymer-
ization 1. In Fig. 5.7 we show the T vs. N transition lines, separating the wm-state
(below) from the sp-one (above). The ‘critical number’ Nc increases with decreasing
T . and the transition temperature increases with f . Stated otherwise, for fixed N
the theoretical model gives evidence to a stronger stability of the wm configuration
on increasing f and lowering the temperature. On the other hand, keeping f and
T fixed, the sb-configuration is stable above a certain value of Nc. The dependence
of the repulsive contribution in the free energy on the number of monomers is not
trivial: increasing N , the number of blobs nb increases and so does the contribution

1As we are dealing with finite systems, these are not sharp transitions but rather crossover
phenomena.
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due to the excluded volume interaction. The entropic contribution is proportional to
r2
0, which increases with N , and to 1/N . The balance between all these terms in Eq.

(5.8) determines the stable micelle conformation: it is physically more expensive for
the molecule to assume a wm-configuration the lower f and the higher N is. Nc de-
creases rapidly with T and the wm-state becomes unstable for kBT & 0.3ε. The inset
of Fig. 5.7 show the results coming from simulation: notice the full agreement of the
theoretical prediction trends. The value of transition temperature is overestimated
in theory, reflecting the mean-field nature of the latter, which ignores fluctuation ef-
fects. There exist also configurations intermediate to the wm- and sb-ones, in which
only a partial association of arms takes place. Such configurations are also expected
to be dominant as f further increases, due to the very high entropic penalty inherent
to a complete intramolecular association. These conformations can also be analyzed
theoretically along the lines put forward in this work, since intermediate states can
be looked upon as a combination of smaller water melons that are all attached on a
common center. These are results of work which is in progress.

5.2.4 Conclusions

We have studied the dependence of the equilibrium conformations of telechelic mi-
celles on the temperature, arm number and functionality of the same. The associa-
tion number of the terminal groups is strongly temperature dependent. The system
presents a stable, water-melon configuration for low temperatures that opens up as
T grows. We expect that dynamical properties of such macroparticles in solution
will have unusual characteristics. For instance, at low temperatures and near the
overlap concentration, various types of gels can appear, owing their viscosity either
to transient network formation or to the existence of entangled loops. A more accu-
rate comprehension of the changes in the micelle conformations is a relevant starting
point aiming at gaining control over the supramolecular structural and dynamical
properties of the system [132]. This is an issue of major importance for molecular
design, targeting specific biological and technical applications.
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Chapter 6

Conclusions and Outlook

In this thesis we presented results adding to the understanding of the mechanisms
leading to dynamical arrest in soft condensed matter. We focused on studies of soft
colloidal mixtures. The first system that we dealt with consists of star polymers
and polymer chains in a good solvent. We proposed an effective star-chain interac-
tion and confirmed it by extensive molecular dynamics simulations. In agreement
with experimental findings [32] we observed the formation of star clusters for low
star concentration and low functionalities. Accordingly, the chain-mediated effec-
tive interaction between the stars exhibits a short-ranged attraction an long-ranged
repulsion. However, for larger functionalities the cluster phase is completely absent.
Moreover, we investigated the long-time dynamics of the system by mode coupling
theory. We found polymer induced melting of the solution of glassy stars. Again,
our results are in agreement with previous experimental studies [28]. However,
the melting mechanism only persists up to chain sizes of about half the star sizes.
Stiakakis et al. [28] suggested that larger chains form transient networks in the solu-
tion. It would be very interesting to study the microscopic details of the mixture in
monomer resolved computer simulations. Additionally, a comparison with dynamic
light scattering data from experiments would give valuable insights in the dynamics
of soft colloids.

Furthermore, we studied a binary mixture of star polymers. Here the softness
of the additive can also be altered, opening an additional parameter to steer the
macroscopic flow of the stars. Following the experimental setup, we considered only
small densities of additives. Both the rheological measurements and the theoretic
calculations based on the mode coupling theory point to the existence of two clearly
distinct glassy states. While the dynamics of the large stars is almost identical in
both glasses, the small stars turn from a fluid in the matrix consisting of the large
stars to being arrested themselves. Moreover, both theory and experiment predict
the same melting behavior.

To study the dynamics of the binary star polymer system in greater detail, we
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performed additional mesoscopic molecular dynamics simulations to study the full
time dependence of the density correlators. The simulations confirmed the melting
lines and the shape of the nonergodicity parameters from mode coupling theory. We
were also able to find additional arrested states for high densities of additives. One
of them has the typical features of an attractive glass [9], while the other one consists
of distorted cages with low coordination which can only exist in systems with soft
interactions. It will be a very interesting task to characterize the change in local
order which brings about the anisotropy. Moreover, experimental studies for high
densities of additives would be important in order to verify the simulation results.
Additionally, it would be interesting to abandon athermal solvents and study the
influence of solvent quality on the properties.

Furthermore, we studied a one-component model of star polymers with com-
peting short range attraction and long range repulsion. The additionally induced
local order brings about arrested states even for very low functionalities. Finally, we
investigated star polymers with attractive end groups in dilute solution by simula-
tions. Changes of the temperature cause a collapse of the stars to dense water-melon
structures. The phase behavior of such telechelic micelles for finite concentrations,
especially focusing on bridging attractions and phase separation, will constitute a
very interesting field of research in the future.



Appendix A

Ornstein-Zernike Equation for
Binary Mixtures

In the two-component case the Ornstein-Zernike (OZ) equation reads as [33]:

H̃(q) = C̃(q) + C̃(q) ·D · H̃(q), (A.1)

where H̃(q) and C̃(q) are symmetric 2× 2 matrices with

[H̃(q)]ij = h̃ij(q) and [C̃(q)]ij = c̃ij(q). (A.2)

D is a diagonal 2× 2 matrix containing the number densities ρi = Ni/V of the two
species

[D]ij = ρiδij. (A.3)

The total correlation functions hij(r) (i, j = 1, 2) are related to the radial distribu-
tion functions via hij(r) = gij(r) − 1, whereas the cij(r) are the direct correlation
functions of the system.

Due to the symmetry of the interactions it holds hij(r) = hji(r). Therefore the
OZ equation (A.1) provides three equations for the six unknown functions hij(r)
and cij(r). In order to compute these functions, we need additional three closure
equations. For the kind of soft mixtures we investigate, the Rogers-Young closure
turns out to be very accurate. In the multicomponent version it reads as [16]:

gij(r) = exp [−βVij(r)]

[
1 +

exp[γij(r)f(r)]− 1

f(r)

]
. (A.4)

Here γij(r) = hij(r) − cij(r) and f(r) = 1 − exp(−αr) (α > 0). The value for
the parameter α is determined by requiring the equality of the ‘fluctuation’ and
‘virial’ total compressibilities of the system [66, 96]. For α → 0 one obtains the
Percus-Yevick closure, for α →∞ the hypernetted chain closure.
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In order to obtain thermodynamic consistency, we have to calculate the com-
pressibilites. The total pressure of the system is given by [133]

βP = ρ− 2π

3

∑
i

∑
j

ρ2xixj

∫ ∞

0

dr r3∂Vij(r)

∂r
gij(r), (A.5)

where ρ is the total number density and the xi are the partial concentrations xi =
ρi/ρ. By differentiation of the pressure with respect to the total density ρ at fixed
xi we obtain the virial compressibility:

ρkBTκvir
T =

[
∂βP

∂ρ

]−1

. (A.6)

Another possibility to calculate the compressibility of the mixture is based on
the structure factors of the system, which are defined as

Sij(q) = δij +
√

ρiρjh̃ij(q). (A.7)

For binary mixtures, the fluctuation compressibility is given by [134]:

ρkBTκfl
T =

S11(0)S22(0)− S2
12(0)

x2S11(0) + x1S22(0)− s
√

x1x2S12(0)
. (A.8)

The other closure we used in this thesis for one-component systems is the modi-
fied hypernetted chain (MHNC) closure. In general, every closure can be written in
the form [33]

g(r) = exp[−βV (r) + h(r)− c(r) + B(r)], (A.9)

where B(r) is the bridge function, which is in general not known. In the MHNC,
B(r) is approximated by the bridge function of hard spheres with diameter d. The
parameter d is determined by minimizing the free energy [135] via the relation

∫
d3r[g(r) = gHS(r, ηHS)]

∂NHS(r,ηHS)

ηHS

= 0, (A.10)

where ηHS = πρd3/6, with ρ denoting the density. For the hard sphere radial
distribution function we use the parametrization of Verlet and Weis [136].



Appendix B

Mode Coupling Theory

Our theoretical study of the glass transition is based on the ideal Mode Coupling
Theory (MCT), a theory that describes the time evolution of the density auto-
correlation functions, starting only from the knowledge of the static structure fac-
tors, via a set of coupled integro-differential equations [3]. The normalized time-
dependent collective density autocorrelation functions are defined as,

φij(q, t) = 〈ρ∗i (q, 0)ρj(q, t)〉 / 〈ρ∗i (q, 0)ρj(q, 0)〉 , (B.1)

where

ρj(q, t) =

Nj∑

l=1

exp
[
iq · r(j)

l (t)
]
,

with r
(j)
l the coordinates of the l-th particle of species j (j = 1, 2) and the asterisk

denotes the complex conjugate. It is also useful to focus on the self part of the
density correlation functions, which describes the dynamics of a tagged particle,

φs
j(q, t) =

〈
Nj∑

l=1

exp
{

iq ·
[
r
(j)
l (t)− r

(j)
l (0)

]}〉
. (B.2)

The long-time limit value of φij(q, t), i.e. the partial non-ergodicity factor, re-
spectively for the collective and self correlation functions, is defined as,

fij(q) = lim
t→∞

φij(q, t) (B.3)

f s
j (q) = lim

t→∞
φs

j(q, t). (B.4)

A glass transition is identified within MCT as an ergodic to non-ergodic transition,
when the non-ergodicity factor discontinuously jumps from zero, typical of a fluid,
to a finite value typical of a glass [3].
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In binary mixture for large size asymmetries, there is a vast separation of time-
scales between large (species 1) and small (species 2) stars due to the enormous
difference in masses. Therefore we can use one-component MCT for the large stars
only, and solve the equation for the non-ergodicity parameter f11(q),

f11(q)

1− f11(q)
=

1

2

∫
d3k

(2π)3
V (q,k)f11(k)f11(|q− k|), (B.5)

with

V (q,q) =
ρ1

q4
[q · (q− k)c̃11(|q− k|) + q · kc̃11(k)]

× S11(q)S11(k)S11(|q− k|), (B.6)

where c̃11(q) is the Fourier transform of the direct correlation function of the large
stars. The solution with the largest f11(q) is the real long-time limit [3] of the
density correlators. We note here that, in the one-component effective treatment
of the binary mixture, we use S11(q) calculated still from solving the binary OZ
equation within RY closure, arising from the full binary interactions of the studied
model. In this respect, we are treating the small stars as an effective medium, and
their influence on the interactions between the large stars is taken into account
explicitly and not through an effective one-component picture [96].

MCT assumes on a vast separation of time scales between the slow and fast de-
grees of freedom. For smaller size asymmetries, the separation of timescales between
the different star species decreases and one-component MCT cannot be used [72].
In the general case of a mixture, when relaxation time-scales are comparable, MCT
equations are easily generalized [137, 138]. In the two-component description, we
include all the partial structure factors [137]. We have to consider a 2× 2 matrix f̄
of the partial non-ergodicity parameters:

[̄f(q)]ij = fij(q).

The long-time limit is in this case given by

f̄(q) = S̄(q)− {
S̄(q)−1 + F([̄f ], q)

}−1
, (B.7)

where the matrix S̄(q) depends on the partial structure factors in the form

[S̄(q)]ij =
√

xixjSij(q), (B.8)

where xi = Ni/(N1 + N2) is the number concentration of species i. The functional
F([̄f ], q) is defined as

Fij([̄f ], q) =
1

2q2

ρ

xixj

∑

mnm′n′

∫
d3k

(2π)3
Vimm′(q,k)

× fmn(k)fm′n′(p)Vjnn′(q,k), (B.9)
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with ρ = ρ1 + ρ2. The vertices Vimm′(q,k) depend on the equilibrium structure of
the system and are given by

Vimm′(q,k) =
q · k

q
c̃im(k)δim′ +

q · (q− k)

q
c̃im′(|q− k|)δim.

In the case of binary or multicomponent MCT, the theory predicts, through the
couplings between species in Eq. (B.7) a simultaneous jump from zero to a finite
value for all partial collective non-ergodicity parameters fij(q). However, this does
not hold for the self f s

i (q), for which the equations are [92],

Ki(q) =
1

ρiq2

∑

j,k

∫
d3q′

(2π)3
f s

i (|q− q′|)c̃ij(q′)c̃ik(q′)
√

Sjj(q′)Skk(q′)fjk(q
′), (B.10)

where

f s
i (q) =

1

1 + q2/Ki(q)
, (B.11)

so that it is possible to distinguish also the case of mobile particles in a frozen
environment, for example for the small stars in our case, when f22(q) 6= 0 but
f s

22(q) = 0 [91,92].
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[48] B. Krüger, L. Schäfer, and A. Baumgärtner, J. Phys. (Paris) 50, 3191 (1989).

[49] G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).

[50] O. F. Olaj, W. Landschbauer, and H. Pelinka, Macromolecules 13, 299 (1980).



110 BIBLIOGRAPHY

[51] O. F. Olaj, G. Zifferer, and H. Rehmann, Monatsh. Chemie 116, 1395 (1985).

[52] A. Y. Grosberg, A. R. Khalatur, and A. R. Khokhlov, Makrom. Chem. Rapid
Commun. 3, 709 (1982).
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H. Löwen, and D. Vlassopoulos, to appear in Rheol. Acta (2007).

[81] J. Roovers, L. L. Zhou, P. M. Toporowski, M. Vanderzwan, H. Iatrou, and
N. Hadjichristidis, Macromolecules 26, 4324 (1993).

[82] J. Roovers, P. Toporowski, and J. Martin, Macromolecules 22, 1897 (1989).

[83] P. M. Toporowski and J. Roovers, J. Polym. Sci. A: Polym. Chem. 24, 3009
(1986).

[84] L. L. Zhou, N. Hadjichristidis, P. M. Toporowski, and J. Roovers, Rubber
Chemistry and Technology 65, 303 (1992).

[85] E. Stiakakis, D. Vlassopoulos, B. Loppinet, J. Roovers, and G. Meier, Phys.
Rev. E 66, 051804 (2002).

[86] J. Sato and V. Breedveld, Appl. Rheol. 15, 390 (2005).



112 BIBLIOGRAPHY

[87] T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 75, 2770 (1995).

[88] J. J. Crassous, R. Regisser, M. Ballauff, and N. Willenbacher, J. Rheol. 49,
851 (2005).

[89] L. Raynaud, B. Ernst, C. Verge, and J. Mewis, J. Colloid Interface Sci. 181,
11 (1996).

[90] J. Grandjean and A. Mourchid, Europhys. Lett. 65, 712 (2004).

[91] J. S. Thakur and J. Bosse, Phys. Rev. A 43, 4378 (1991).

[92] J. S. Thakur and J. Bosse, Phys. Rev. A 43, 4388 (1991).

[93] A. Imhof and J. K. G. Dhont, Phys. Rev. Lett. 75, 1662 (1995).
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