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Abstract 

Process optimization problems emerge frequently in industry as well as in academia. 

Here, parameter sets must be found that maximize or minimize defined quality criteria. 

In particular in biotechnology, the high complexity of the investigated system and the 

high costs of the experiments make the usage of mathematical models attractive. These 

enable estimating the effect of process parameters on targeted objectives as well as the 

localization of potential optima. 

In practice, empirical models, such as artificial neural networks and Kriging, have proven 

useful for solving process optimization problems. These kinds of models have in 

common that they are primarily based on the provided experimental data set but not on 

mechanistic knowledge. Using Kriging, the functional relationship between input and 

output variables is modeled as Gaussian process. Beside the interpolation capability, 

the stochastic ansatz allows further the direct estimation of the model uncertainty, which 

can be used for statistical approaches such as hypothesis tests.  

Different to other empirical modelling approaches, Kriging also cares the possibility to 

integrate mechanistic models into the prediction. This feature makes Kriging to a hybrid 

modeling approach and is in particular helpful if the data density is low. However, at the 

present state of research, only models can be integrated that are linear in their 

parameters. As many models in biotechnology do not match this criterion, the aim of this 

thesis is inter alia to extent the Kriging methodology by the capability to integrate also 

nonlinear models. 

The here presented works focusses further on the development and application of 

Kriging based optimization strategies. State-of-the-art Kriging based optimization 

algorithms are restricted on the single-objective case. However, in particular in 

biotechnology, there exists a need for multi-objective optimization regarding objectives 

such as purity, yield, and productivity. A further contribution of this thesis is therefore the 

development of the “Multi-Objective Gaussian Optimization” (MOGO) that integrates 

latest methods for Kriging based Design of Experiment and for the estimation of the 

model uncertainty. 

Further, state-of-the-art Kriging based optimization algorithms are not flexible with 

respect to the changes in the range of input variables nor do they support parallel 
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experimentations. However, in biotechnology, there is a clear trend forward 

parallelization and the high complexity of biological systems makes it hard to define 

appropriated the range of input variables a priori. An additional contribution of this thesis 

is therefore the development of an optimization strategy that cares in its core an iterative 

Kriging based optimization but is extended by elements to tackle the mentioned 

deficiencies. 

The effectiveness, efficiency as well as the practical feasibility of the here introduced 

approaches are examined and discussed in three case studies. Moreover, the 

reproducibility as well as the convergence behavior of the MOGO-algorithm are 

investigated in a comprehensive in silico study.  
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Zusammenfassung 

Sowohl in der Industrie als auch in der Forschung sind Prozessoptimierungen 

allgegenwärtig. Optimale Prozessparameterwerte, die definierte Zielkriterien 

maximieren oder minimieren, müssen gefunden werden. Die, insbesondere in der 

Biotechnologie auftretende, hohe Komplexität des zu optimierenden Systems und der 

hohe Kostenaufwand der Versuchsdurchführung machen die Nutzung von 

mathematischen Modellen attraktiv. Diese erlauben die Abschätzung des Einflusses der 

Prozessparameter auf die Zielgrößen als auch die Lokalisierung potentieller Optima. 

In der Praxis haben sich bzgl. initialer Prozessoptimierung insbesondere empirische 

Modelle, wie künstliche neuronale Netze und Kriging, bewährt. Diese Art von Modellen 

teilen die Eigenschaft, dass sie hauptsächlich auf experimentellen Information 

aufbauen, nicht aber auf mechanistischen Wissen. 

Die hier vorliegende Doktorarbeit beschäftig sich mit der Entwicklung und Anwendung 

von Kriging-basierten Optimierungsstrategien. Kriging ist ein empirisches 

Schätzverfahren bei dem der Zusammenhang zwischen Eingangs- und Ausgangsgröße 

als Gaußprozesses beschrieben wird. Der stochastische Ansatz erlaubt neben der 

Interpolation auch die direkte Abschätzung der Modellunsicherheit und somit die 

Anwendung von statistische Verfahren wie Hypothesentests. Anders als bei anderen 

empirischen Modellen besteht bei Kriging die Möglichkeit, zusätzlich mechanistische 

Modelle in die Vorhersage zu integrieren. Dies ist insbesondere bei geringer Datendichte 

hilfreich und macht Kriging somit zu einem hybriden Modellierungsansatz. Zum 

derzeitigen Stand der Technik können jedoch nur Modelle integriert werden, die linear in 

ihren Parametern sind. Da dies aber für viele in der Biotechnologie verwendeten Modelle 

nicht der Fall ist, beschäftigt sich die vorliegende Doktorarbeit u.a. mit der Fragestellung 

wie die Kriging-Methodologie um die Integration nichtlinearer Modelle erweitert werden 

kann. 

Des Weiteren beschränken sich gängige Kriging-Optimierungsmethoden auf einzelne 

Zielkriterien. Insbesondere in der Biotechnologie besteht jedoch der Bedarf nach 

mehrkriterieller Optimierung bzgl. Zielgrößen, wie Reinheit, Ertrag und Produktivität.  Ein 

wesentlicher Beitrag dieser Arbeit ist deshalb die Entwicklung des „Multi-Objective 
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Gaussian Optimization“ (MOGO) Algorithmus, welcher neueste Methoden zur Kriging-

basierten Versuchsplanung und zur Abschätzung der Modellunsicherheit in sich vereint. 

Derzeitige Kriging-basierte Optimierungsalgorithmen bieten weder die Flexibilität, 

gewählte Parameterbereiche zu erweitern, noch unterstützen sie paralleles 

Experimentieren. Insbesondere in der Biotechnologie zeichnet sich jedoch derzeit ein 

Trend zur Parallelisierung ab, und die hohe Komplexität biologischer Systeme erschwert 

zusätzlich eine geeignete a priori Abschätzung von Parameterbereichen. Ein weiterer 

Beitrag dieser Arbeit ist deshalb die Entwicklung einer Optimierungsstrategie die im Kern 

eine iterative Kriging-basierte Optimierung ist, aber um Elemente erweitert wurde, um 

die oben genannten Schwächen zu überwinden. 

Die Effektivität, Effizienz sowie die Praxistauglichkeit der in dieser Arbeit entwickelten 

Verfahren werden anhand von drei Fallstudien geprüft und diskutiert. Des Weiteren wird 

die Reproduzierbarkeit sowie das Konvergenzverhalten des MOGO-Algorithmus in 

einer umfangreichen in silico Studie untersucht. 
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1. Introduction 

1.1 Aim of the Thesis 

This thesis has three major aims. First, it focusses on the extension of the Kriging 

methodology by the ability to integrate trend functions that are non-linear in their 

parameters. As discussed in section 1.3, using appropriate trend functions leads 

potentially to better model predictions, in particular in areas with low data density. In 

particular, this extension is essential for biotechnology, as here many mechanistic 

models are non-linear in their parameters, such as the Michaelis-Menten enzyme 

kinetic. The approach is derived in section 2.1 and is based on Taylor linearization, 

leading to an iterative parameter estimation procedure. This iterative procedure is 

subsequently interpreted as a root-finding problem making it accessible to numeric 

solvers specialized on this type of problems. 

Furthermore, in section 1.5, the practice feasibility of state-of-the-art Kriging based 

optimization algorithms is discussed with focus on biotechnological problems. It is 

explained that current procedures would be more attractive to biotechnology if they 

would support the three following aspects: 1) an initial screening for input variables with 

(non-)significant effect 2) support of parallel experimentation and 3) the possibility to 

change the range of input variables. As a result, a Kriging based optimization strategy is 

introduced that considers these aspects with particular focus on parallel experimentation 

in section 1.5.1. The application of this optimization strategy is demonstrated in two 

experimental case studies in section 2.2&2.3. 

A further goal of this thesis is the development of a Kriging based algorithm for multi-

objective optimization. The resulting “Multi-Objective Gaussian Optimization” (MOGO) 

algorithm is described in section 2.4 and transfers the state of the art algorithm “Efficient 

Global Optimization” (EGO) [1] to the multi-objective case. In a comprehensive in silico 

case study from the field of preparative chromatography, the convergence behaviors as 

well as the reproducibility of the results and the parallelization capability are investigated. 

Moreover, the MOGO is discussed as alternative to currently used multi-objective 

optimization algorithms that are based on genetic algorithms. 
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1.2 General Introduction 

Mathematical models have been proven useful tools for generating knowledge and for 

efficiently optimizing complex and nonlinear systems. In particular, biological processes 

show a high degree of complexity making an intuitive overall understanding impossible. 

Additionally, using mathematical simulations instead of “real” experiment often 

represents an economical advantage. Moreover, effective mathematical optimization 

algorithms, such as the simplex algorithm or genetic algorithms, require in many cases 

a high number of samples. Therefore, only the mathematical abstraction of the physical 

system enables the application of these optimization algorithms.  

Mechanistic models are constructed based on a priori knowledge, such as physical, 

chemical or biological laws. These laws define the overall structure of the model 

including several adjustable parameters. They find applications in a variety of 

biotechnological fields, for example in chromatography [2], microfluidic single-cell 

cultivation [3], metabolic engineering [4], or for modeling enzyme kinetics [5]. 

Mechanistic models can be used for estimating quantifiable variables that are not directly 

measureable, such as concentration values or diffusion coefficients. Furthermore, by 

using appropriate mechanistic models and optimal experimental design, the number of 

needed experiments for the modeling procedure can be kept low. 

However, the development of an adequate mechanistic model and the associated 

parameter identification are non-trivial problems. Franceschini et al. [6] provide a good 

overview of parameter identification strategies with focus on applications regarding 

biochemical networks and biological processes. In addition, complex mechanistic 

models, as used in Computational Fluid Dynamic (CFD), often suffer from long 

simulation times. 

For process optimization, it is often sufficient to use empirical models, which are mainly 

data driven. In comparison with mechanistic models, they carry the advantage to be 

universally applicable and computationally cheap. Typical empirical modeling 

approaches are fitting polynomials [7], deep learning via artificial neural network [8], or 

Kriging [9].  

In particular, the polynomial modeling based Design of Experiment (DoE) is very popular 

and finds a variety of applications in academia and industry. The associated full factorial, 

fractional factorial or central composite designs help to efficiently estimate the effects of 
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input variables on the objective of interest. Mandenius et al. [10] reviewed common 

applications of this “classic” DoE in the development of biotechnological processes. 

However, for highly nonlinear systems and wide ranges of input values, the prediction 

accuracy can be insufficient. 

In these cases, more sophisticated modeling approaches should be preferred, such as 

Kriging. Simpson [11] and Cock [12] have demonstrated that Kriging typically 

outperforms the polynomial fit with respect to prediction accuracy when nonlinear 

systems are investigated. Kriging based optimization is already applied in many fields, 

in particular in fluid dynamics [13], [14].  

In biotechnology, however, Kriging has only rarely been used with main focus on data 

visualization, e.g. [15], [16]. Therefore, this thesis concentrates on developing Kriging 

based optimization approaches adapted to the needs in biotechnology. This includes 

both single-objective optimization as well as multi-objective optimization. The 

approaches are applied to experimental and in silico studies. Moreover, the convergence 

behavior, the reproducibility of the optimization results as well as the use of parallel 

experimentation is investigated. Further, the integration of mechanistic models into the 

Kriging methodology is discussed and a method for integrating mechanistic models that 

are nonlinear in their parameter is introduced in this thesis. 

 

1.3 Brief Introduction to Kriging 

When Daniel Krige first published his prediction method (later called Kriging) in 1951 

[17], he could not foresee how popular and important his method would become in the 

future. At the time point of writing this thesis, the original publication was cited 2118 

times! However, it should also be noted that Georges Matheron later developed the 

mathematical derivation of Kriging that it is used nowadays [18].  

In the following, if not stated otherwise, Kriging refers to the most commonly used 

approach: Universal Kriging (UK). However, it is worth mentioning that there are many 

different approaches associated with the term Kriging (e.g. Indicator Kriging [19], 

Bayesian Kriging [20], etc.). UK originates from the statistical frequentist perspective and 

its prediction results are identical to the outcome of the Gaussian Process Regression 

(GPR) methodology originating from the perspective of the Bayesian statisticians. 
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Although the model predictions are identical for UK and GPR, the mathematical 

derivations differ from each other. In all my publications (section 2) I provide the 

derivation of UK from the frequentist viewpoint. Here, I want to take the opportunity to 

provide the derivation of GPR in order to emphasize differences and similarities between 

these two different ansatzes. 

In both cases, it is assumed that the measured sample data result from a Gaussian 

process, as visualized in Figure 1. That is, each measured output originates from a 

stochastic process  comprising a basic trend  and the stochastic variable , 

with . Here,  has zero mean, and a defined 

covariance . 

 (1) 

 (2) 

 (3) 

In the frameworks of UK and GPR, the basic trends can be furthermore represented by 

a linear combination of  functions  with the coefficients : 

 (4) 

The coefficients  are implicitly estimated by Kriging, which is in detail discussed in 

publication I, see section 2.1, and not repeated here. 
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Figure 1: Schematic illustration of a Gaussian process. Red dots depict sample data and the blue dot is 

the model prediction  at the point . The black curve represents the “true” functional relationship. The 

blue curves indicate the Gaussian probability distribution . 

1.3.1 Gaussian Process Regression 

GPR originates from the Bayesian perspective and aims to estimate the conditioned 

output distribution  at arbitrary input locations 

  for a given set of measured output values 

 at the input locations , with  as the 

number of measured data points,  the number of points of interest and  as the 

number of input variables. Rasmussen [21] provides a detailed overview about the 

mathematical derivation, different covariance models, and applications of GPR.  

The mathematical ansatz of GPR is to interpret the Gaussian process in eqs. (1)-(3) as 

prior distribution for , eq. (5).  

 (5) 

The term prior refers to the Bayesian approach and implies that eq. (5) represents the 

probability distribution of  before the measured observations are taken into account. 

The prior distribution is determined by choosing an appropriate trend function and 

covariance model  and by estimating the associated parameters. The influence 
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of the trend function  is later discussed in section 1.3.3. In the following, the 

estimation of the covariance model is described. 

The covariance model , also known as covariogram model, describes 

covariance of the output values, , as function of the associated locations  

and . Three covariogram model types are commonly applied: the spherical, the 

Matérn, and the exponential model [22]. All three models have in common that they are 

secondary stationary, i.e. they depend on the distance between the inputs  and  and 

not on the actual input values. 

 (6) 

The final choice for one of these covariograms depends on the provided data set. Details 

about the chosen covariogram functions for my studies can be found in the respective 

publication (section 2), and is not discussed here. 

Each covariogram contains model parameters  that have to be estimated from the 

given data set. In context of GPR, the covariogram parameters are determined using 

the Maximum Likelihood Estimation (MLE) [23]. Here, in agreement with the Gaussian 

process assumption, it is assumed that the set of measurements 

 follows a multivariate Gaussian distribution with the expected 

values  and the covariance of . 

Eq. (7) describes the associated probability density function. 

 (7) 

The entries in the covariance matrix  are calculated by the covariance function 

using the parameters . For a fixed data set , the probability in eq. (7) only 

depends on the covariogram parameters and can be used for determining the best 

parameter set. In practice, the best parameter set maximizes the logarithm of eq. (7). 

 (8) 

Figure 2A depicts the prior distribution  for a schematic example using 

a constant trend function and a Matérn class covariogram with a smoothing parameter 

of 3/2, given in eq. (9) 
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 (9) 

With  representing the absolute dististance 

between  and .  

Gray curves in Figure 2A represent stochastic simulations following the prior distribution, 

eq. (5). The covariogram parameters were estimated using the maximum likelihood 

approach. The smoothness of the curves is controlled by the covariance function while 

the trend function defines the expectation values over the input space. 

A B 

  
Figure 2: Stochastic simulation of A) the prior distribution B) the posteriori distribution. Gray curves 

represent 20 stochastic simulations over a grid with 1000 sample points. The black bold lines indicate the 

expectation curves and the dashed lines represent the 67% confidence tube. Red dots are the given 

sample points used for the covariagram estimation and for the conditioning. 

In the second step, the posterior distribution is calculated by conditioning the prior 

distribution with the information about the measured samples. The joint distribution of 

the measured and estimated output is given by eq. (10). 

 (10) 

It can be shown [24] that the resulting conditioned posteriori distribution is given by  

 (11) 

with  (12) 

and  (13) 
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Eq. (12)-(13) can be rewritten into a more readable form, by defining the GPR 

coefficients . 

 (14) 

 (15) 

With  (16) 

As discussed in further detail in section 1.3.3, with increasing distance between the test 

point and the sample points, GPR coefficients  converge to zero. Consequently, the 

posteriori variance  and the posteriori expectation value  converge to their prior 

correspondents. That is, the trend function  and the modeled variance .  

Figure 2B depicts the posterior distribution  for the schematic 

example. Stochastic simulations were calculated in the same way as already done for 

the prior distribution. The conditioning step causes the expectation curve to follow the 

sample points.  

1.3.2 Universal Kriging 

The most commonly cited literature regarding Universal Kriging (UK) is the book 

Statistics for Spatial Data from Noel Cressie [9]. From the frequentist perspective, UK 

aims at constructing a linear predictor , that is unbiased, and has minimal error 

variance. 

 (17) 

 (18) 

 (19) 

With the estimation point , the sample locations 

, and the Kriging coefficients . 

The unbiasedness condition leads to  additional constraints regarding the trend 

function. 

 

             
(20) 
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With  and  Eqs. (4) and (20) then lead to:  

.  (21) 

By comparing eq. (14) and eq. (17), it becomes clear that the unbiasedness condition is 

necessary in order to make the result from GPR and UK equivalent. 

Calculating the Kriging coefficients  represents a minimization problem with  

equality constraints. The method of Lagrange multipliers can be applied for finding the 

optimal  vector that minimizes the prediction variance and fulfils the conditions given 

by eq. (21). In this context, the constraint minimization problem is translated to an 

unconstrained extreme point problem of the Lagrange function: 

 

(22) 

With  as Lagrange multiplier,  is a matrix with entries , and 

 is a vector with entries . The second term in eq. (22) represents the equality 

constraints and has to be zero. The first term can be reformulated to eq. (23). 

 (23) 

For an extreme point of  it holds that all partial derivatives, eq. (22), w.r.t.  and 

 are equal to zero. 

 (24) 

 (25) 

With  representing a zero vector. Eqs. (24)-(25) can be reformulated in a matrix 

presentation eq. (26). 

 (26) 

Here,  is a matrix with entries ,  is a 

vector with entries , and .  
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An explicit formula for an inverse of a 2x2-block matrix can be found in the literature [25] 

and leads to eq. (27). 

 (27) 

The explicit calculation formula for the Kriging coefficients  can consequently be 

formulated. 

 

(28) 

Using eq. (28) a direct conversion between the GPR coefficients , eq. (16), 

and the UK coefficients , eq. (29), can be formulated. 

 
(29) 

With  (30) 

The reader might be confused at this point why different coefficients are needed for GPR 

and UK. The reason lies in the different formulation of the prediction formulas, i.e. 

eq. (14) for GPR and eq. (17) for UK. While the GPR prediction formula explicitly 

includes the trend functions, the UK prediction formula does not. That is, the effect of the 

trend functions  has to be implicitly included through the calculation of the UK 

coefficients . 

In contrast to the Bayesian statisticians, the frequentists estimate the covariogram model 

parameters by least square fitting based on the related stationary variogram [26]: 

 (31) 

Sample data for the least square fit are approximated using Matheron’s estimator [18]: 

 (32) 

In case of replicates,  is calculated by averaging eq. (32).  

In order to demonstrate the UK prediction approach, the same schematic example is 

applied as in section 1.3.1. The results are visualized in Figure 3. The red dots in Figure 

3A depict the data set that is used for constructing the Kriging model. At each of the nine 

sample locations, three replicates are measured. The associated least-square fitted 
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variogram is depicted in Figure 3B. It is typical that the estimated variogram shows a 

better agreement with the data in the near vicinity to the coordinate origin. The Kriging 

prediction curve is depicted in Figure 3A in black and the associated 67% confidence 

tube has been drawn in blue. The Kriging prediction curve as well as the confidence tube 

are approximately the same as for GPR, in section 1.3.1. However, it should be noted 

that in some cases, the estimated covariogram parameter values depend on the 

estimation approach, i.e. MLE or variogram fitting. In these cases, the different 

parameter values will automatically also influence the model prediction. In practice, the 

variogram fitting approach has proven less robust than MLE. A possible reason for this 

phenomenon represents the Matheron’s estimator for the variance, eq. (32), that 

introduces an additional source of inaccuracy. 

A B 

   
Figure 3: Schematic example. A) Kriging approximation. Sample data are indicated by red dots and the 

black line represents the Kriging prediction . The 67% confidence is visualized in blue. B) Variogram. 

Red dots indicate the Matheron estimation of the variance. The black line represents the estimated 

variogram function. 
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1.3.3 Kriging with Nonlinear Basis Functions 

The results from the GPR derivation in section 1.3.1 demonstrate that the posteriori 

distribution converges towards the prior distribution when the distance between the test 

locations  and the sample points  increases. This statement can be easily concluded 

from eq. (14)-(15) as with increasing distance, the covariance  converges 

towards a zero matrix.  As a result, the posteriori expectation curve  and 

covariance  converge towards eqs. (33)-(34). 

 (33) 

 (34) 

This explains why in sparsely sampled areas an appropriate trend function is necessary 

for sufficiently modeling of the underlying stochastic process.  

However, universal Kriging and other state of the art Kriging approaches are limited to 

the use of trend functions that are linear in their parameters, see eq. (4). A workaround 

is to estimate the nonlinear parameter values via least-square-fitting. That is, using a 

local or global optimizer for minimizing the sum of squares of the residuals between 

trend function output and measurement data. Kriging can then use the originally 

nonlinear trend function by fixing the model parameters to their previously estimated 

values. However, in publication I (section 2.1), a more elegant way is provided by 

integrating the nonlinear parameter estimation into the framework of Kriging. The 

approach is based on Taylor linearization, leading to an iterative parameter estimation 

procedure. This iterative procedure is subsequently interpreted as a root-finding problem 

making it accessible to numeric solvers specialized on this type of problems. 

1.4 Kriging Based Optimization 

In addition to using Kriging for visualization purposes, the Kriging approach also 

represents a useful tool for optimization tasks, i.e. maximizing or minimizing an objective 

of interest. For the sake of clarity, in this thesis, the term optimization always refers to a 

maximization problem. Note that any minimization problem can easily be converted to a 

maximization problem by multiplying the output values by minus one. A Kriging based 

optimization procedure comprises in general an iterative cycle. In each iteration, the 

functional relationship between the input variables and the output variable is modeled 
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by applying the Kriging methodology, based on the current data set. Utilizing the Kriging 

prediction as well as the prediction error variance, new experiments can be designed for 

the optimization process. The designed experiments are performed afterwards and the 

Kriging model is updated. As a Kriging model also takes measurement noise into 

account, Kriging based optimization can conceptually be applied to both wet-lab and in 

silico experimentation. 

Using the Kriging model for designing new experiments at promising regions during the 

iterative optimization process is in the following called “Kriging Based Design of 

Experiment” (KBDoE). The aim of KBDoE is to determine a promising sample location 

that leads to an improvement compared to the current data set. That is, an improvement 

 is achieved if the measured output  at the new designed sample location  

is higher than the best output value  in the current data set, eq. (35). 

if
otherwise  (35) 

In this section, existing KBDoE approaches are introduced that are the basis for the 

novel Kriging based optimization strategies, developed in this thesis, see section 1.5 and 

1.6. Jones [27] provides a good overview about existing KBDoE approaches. Four main 

types of KBDoE can be found: 

1) maximizing the Kriging prediction 

2) maximizing the upper confidence bound 

3) maximizing the probability of improvement 

4) maximizing the expected improvement. 

These maximization tasks can be solved using numerical optimization algorithms, such 

as gradient based, population based, or Markov-Chain Monte-Carlo based algorithms. 

For the first approach, the numerical optimization algorithm is applied directly to the 

Kriging model prediction and a new experiment is performed at its maximum. However, 

as illustrated in a schematic example in Figure 4A, this approach can be misleading. The 

black bold line visualizes the Kriging prediction curve. The maximal prediction value can 

be found at location . However, three measurements have already been performed at 

this location. Adding an additional one would be pointless as it would lead most likely to 

no improvement. In fact, the first approach fails in many cases, i.e. new data points are 



 14 

designed around the same spot over many iterations and consequently, no improvement 

is achieved. 

A B 

   
C D 

  
Figure 4: Schematic illustration of A) Kriging approximation. Black line represents Kriging prediction . 

The 67% confidence is visualized in blue. B) Probability of improvement calculation. The blue horizontal 

line is the best so far found output value . Gray curves depict the respective probability density 

function of the Kriging prediction. C) Probability of improvement at different input locations D) Expected 

improvement at different input locations. Red dots indicate sample points 

In addition to the prediction value, the prediction variance is considered in the second 

approach by maximizing the upper bound of the Kriging confidence tube. Figure 4A 

illustrates the 67% confidence tube in blue. The maximum of the upper bound is located 

at . As the prediction value at  is not maximal but relatively high and the confidence 

interval is broad, the chance is high that a new measurement at this location will lead to 

an improvement. However, the outcome of the upper bound maximization depends on 
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the choice of the confidence level. For instance, in the extreme case of choosing a 

confidence level of 0%, the second approach is identical to the first approach. In fact, it 

is generally not a trivial task to define an appropriate confidence level. 

A more sophisticated approach is to maximize the probability of improvement (PI). As 

illustrated in Figure 4B, the probability of an improvement is the integral under the 

Gaussian curve for output values  that are bigger than the best output value in the 

current data set , eq. (36). 

PDF  (36) 

With PDF  as the probability density function of a Gaussian distribution with the 

expected value , eq. (17), and the variance , eq. (23). As shown in eq. (37), 

the calculation of PI eq. (36) is related to the calculation of the cumulative probability 

PDF . After normalizing the output values, i.e. subtracting  and 

dividing by , the cumulative probability of the standard normal distribution () can 

be used instead. 

PDF

 

(37) 

Figure 4B illustrates the calculation of  at the locations  and , for the schematic 

example. While at  the expected value is bigger than at , the prediction variance is 

smaller, leading to a smaller area under PDF  for . Figure 4C depicts the PI 

values over the full input range with its maximum value at . These results look 

promising but Jones [27] points out that a PI based optimization is sometimes very 

inefficient as, in some cases, an excessively high number of experiments is designed 

around “good” data points.  

Figure 5 demonstrates this effect assuming a scenario in which the first data set on the 

right hand-side of  is missing. In this case, the prediction curve is already decreasing 

at  and the PI value at this location will be much smaller than before. Consequently, a 

location in the near vicinity of  is preferred.  
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The fourth KBDoE approach is more robust regarding this described scenario. Here, the 

new experiments are designed by maximizing the chance of achieving a “large” 

improvement value. This chance is quantified by the expected improvement EI, meaning 

the integration over the improvement  weighted with the probability PDF  that 

the output value  is achieved, eq. (38). 

PDF  (38) 

Similar to eq. (37), after a normalization step, eq. (39), the cumulative distribution 

function and the probability density function of the standard normal distribution can be 

used for the calculation of , eq. (40). 

 (39) 

 (40) 

The derivation of eq. (40) is out of the scope of this thesis and can be found in [28]. 

Figure 4D and  

Figure 5C visualize the EI function over the input space for the schematic example for 

both scenarios, with the full and reduced data set, respectively. In contrast to PI, the 

maximum of the EI function is in both scenarios around . This demonstrates that the 

EI is more robust with respect to variations in the data set.  

An EI based optimization, also known as Efficient Global Optimization (EGO) [1], 

represents in fact the most common used Kriging based optimization strategy. EGO is 

an iterative optimization procedure, i.e. a Kriging model is constructed based on the 

current data set. A new experiment is designed at the location that is associated with the 

maximal EI value. After performing the designed experiment, the new data point is added 

to the current data set and the Kriging model is updated. This way, the data set as well 

as the Kriging model prediction accuracy is successively increasing. The optimization 

stops as soon as the maximal EI value drops under a defined threshold. 
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A 

 
B C 

  
Figure 5: Modified schematic example with one missing data set: A) Kriging approximation B) Probability 

of improvement C) Expected Improvement. 

1.5 Kriging Based Optimization in Biotechnology 

The EGO algorithm has proven to be useful for optimizing computer simulations [29]. 

Here, a mechanistic model is used for simulating the input-output relationship and the 

optimization goal is to maximize or minimize the model output. Since mechanistic 

models can be computationally expensive and the EGO algorithm is used for keeping 

the number of required function evaluations at a minimum. However, three 

characteristics of the EGO algorithm make it disadvantageous for applications to 

biotechnological optimization tasks.  

First, when designing a biotechnological study, relevant input variables are often not 

clearly identifiable. Instead, based on experiences and literature research, many input 

variables are chosen that have a potential effect on the output variable. On the other 
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hand, the number of possible experiments is limited caused by long experiment duration 

and by high costs. Under these conditions, an iterative EI based optimization is often not 

possible, as it requires too many experiments for determining the optimum with sufficient 

accuracy. Consequently, a prescreening for input variables with significant effects is 

necessary. 

Second, using the EGO algorithm, fixed ranges for the input variables must be given. 

However, caused by the high complexity of biological systems, it is in general not trivial 

to identify an appropriate range for the chosen input variables a priori. If the input variable 

ranges are chosen too narrow, the optimum might lie outside of this defined range. If the 

input variable range is chosen to broad, a high number of experiments are needed to 

locate the optimum. An appropriate optimization procedure therefore should be flexible 

in defining these ranges.  

A third disadvantage of the EGO algorithm is the fact that only one experiment is 

designed at each iteration. However, motivated by the long experiment duration, there 

exists a clear trend towards parallel experimentation in biotechnology [30]–[32]. 

In conclusion, an appropriated Kriging Based Optimization (KBO) strategy should 

consider the following three points 

1. A sensitivity analysis is performed before entering an iterative optimization cycle 

2. During the optimization cycle, the range of the input variables can be adjusted 

3. In each iteration, multiple experiments can be designed 

A major aim of this thesis is to introduce a KBO strategy that considers all the above-

mentioned concerns. Section 1.5.1 focuses on a novel KBDoE approach for designing 

multiple experiments on the basis of EI, while sections 1.5.2-1.5.3 introduce the 

developed KBO strategy. The introduced KBO strategy represents rather a framework 

than a defined algorithm. That is, some steps in the framework require to be manually 

adapted to the experimental circumstances. For example, in the “Statistic Analysis” step, 

several tools are mentioned. The experimentalist must decide which of the tools are 

appropriate. There is no strict rule but rather some advices supporting this decision, see 

section 1.5.3. The framework consequently provides main instructions for the 

experimentalist and the data analyst on how to conduct the optimization.  



 19 

1.5.1 Designing Multiple Experiments Using Expected Improvement 
and Markov Chain Monte Carlo 

As pointed out earlier, in order to be attractive for biotechnology, a KBO strategy must 

allow parallel optimization, i.e. the design of multiple experiments in each iteration. The 

original EGO algorithm [1] does not include this feature. The here introduced approach 

comprises a combination of the concepts of Markov-Chain Monte-Carlo (MCMC) 

sampling and the expected improvement (EI) based experimental design. Both, MCMC 

and EI, are already established approaches but, the combination of both concepts for 

designing multiple experiments is, to the best of my knowledge, novel in its application 

w.r.t. designing new experiment in the field of biotechnology.  

Figure 6A illustrates the EI curve for the same schematic example as used in section 

1.4. The curve has a clear maximum that represents the best sample location for a 

sequential optimization strategy. However, other locations are also associated with high 

EI values and are consequently promising. Therefore, in case of designing multiple 

experiments, sample points with high EI values should have a higher chance to be 

chosen than other points. 

In other words, the expected improvement value at location , , is proportional to 

the probability density of sampling at this location. This interpretation leads to the MCMC 

sampling approach that aims at approximating the probability density distribution.  

A popular MCMC algorithm is the Metropolis-Hasting algorithm [33]. It is an iterative 

procedure where in each iteration one sample point is generated. As visualized in Figure 

6A, for a sufficient number of iterations, the histogram of sample locations approximates 

well the actual probability density distribution.  

A pseudo code of the Metropolis-Hasting algorithm is given in Figure 6B. The procedure 

is initialized by generating a sample point  from an a priori defined proposal distribution 

 The proposal distribution can for example be a multivariate Gaussian distribution 

with an expectation point and a covariance matrix that are defined from the 

measurement data. For each of the following iterations, a new sample is generated 

following a modified proposal distribution  by taking into account the last drawn 

sample location . For example, the expectation point of the multivariate Gaussian 

distribution might shift to . The new drawn sample point  is accepted as part of the 

Markov chain with the probability , eq. (41). If the candidate was 
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rejected, the proposal distribution stays untouched and a new candidate is drawn. The 

iterative sampling continues until the MCMC comprises  locations. 

 (41) 

A more advanced version of MCMC represents the Delayed Rejection Adaptive 

Metropolis algorithm (DRAM) [34]. The term “delayed rejection” indicates that rejected 

candidates have an additional chance of being accepted. The second term “Adaptive 

Metropolis” refers to the adaptation of the proposal distribution . In context of 

DRAM,  represents a Gaussian distribution with a covariance matrix that is 

calibrated using the sample path of the MCMC chain. 

Multiple experiments can therefore be designed by first approximating the sample 

distribution using DRAM. Afterwards, an arbitrary number of sample points are drawn 

uniformly from the Markov chain. Sample locations with high EI values are more often 

represented in the Markov chain and have therefore a higher chance to be drawn. This 

way, designed multiple experiments are distributed over the entire input space but 

concentrated at promising areas. In the publication III and IV (section 2.3-2.4), DRAM in 

combination with EI could be usefully applied to two case studies. 

A B 

   
Figure 6: A) Histogram of MCMC sampling for EI. The heights of bars are normalized to the EI values for 

better visualization. The black line is the EI curve and red dots are the locations of the measurement data 

used for constructing the Kriging model. B) Pseudo code of the Metropolis-Hasting algorithm. 

Initialization: ,  

while  

  

 if   

  % with  

   

   

 end 

end 
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1.5.2 Designing the Study and Performing the Sensitivity Analysis 

The framework, visualized in Figure 7, starts by designing the fundamentals of the 

optimization study. That is, the experimentalist must choose the objective of interest, 

input variables with a potential effect on the chosen objective, and an initial range for the 

input variables. The objective should be easily measurable with sufficient accuracy. If 

the actual objective is not easily detectable, the experimentalist can think about indirect 

measurement procedures such as fluorescence detection for the determination of 

protein concentration. The accuracy and reproducibility of the measurements can often 

be improved by applying robot automation [35]. The choice of input variables and their 

initially investigated ranges are usually based on expert knowledge. It is common 

practice to define a reference experiment to which the optimization results are 

compared. The defined ranges of the input variables should comprise the reference 

values. 

In general, the experimentalist can find a high number of input variables that potentially 

affect the measured output. However, limitations in the number of performable 

experiments allow only the detailed optimization of a limited number of input variables. 

Therefore, a sensitivity analysis is needed that helps to identify input variables with 

significant effect. Afterwards, a detailed optimization is performed based on the reduced 

number of input variables. 

Classical design of experiments (DoE) [7] is applicable for this task as it aims at efficiently 

estimating the main and combinatorial effects of the input variables on the output. This 

approach was already invented 1935 by Ronald Fisher and is nowadays well established 

in biotechnology [10]. Classical DoE is based on the estimation of the input-output 

relationship by a polynomial, eq. (42). 

 (42) 

The interpretation of the estimated polynomial coefficients  allow the identification of 

significant main factor effects (e.g. , ) and combinatorial effects (e.g. ). In 

classic DoE, an optimal experimental design refers to the accurate estimation of , i.e. 

minimization of the estimation error. These optimal experimental designs can be found 

in textbooks [36] or can be looked up in the internet [37].  
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As a result, the sensitivity analysis reveals for which input variables a variation inside 

the defined range has a significant effect on the output variable. In many cases, only a 

minority of the initially chosen input variables affects the objective of interest in a 

statistically relevant manner. For the further optimization, the values of these not relevant 

input variables are set to their reference value. 

 
Figure 7: Framework for KBDoE in biotechnology 

1.5.3 Iterative Optimization Cycle 

After conducting the sensitivity analysis and reducing the number of relevant input 

variables the Kriging based optimization starts. In the first iteration, initial experiments 

are conducted. The experimental results from the sensitivity analysis cannot be used for 

the further optimization as all experiments were performed using the extreme values of 

the defined range for the input variables. However, during the further study, the not 
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relevant input variables are fixed to their reference values and consequently, the results 

are not comparable anymore to the previously performed experiments. 

In this context, an optimal design for the initial experiments refers to optimal model 

prediction using Kriging. In general, it is recommend use a space-filling design. As 

explained in section 1.3, the Kriging prediction is calculated by a weighted sum of the 

sample points, eq. (17), whereby sample points in the near environment are stronger 

weighted than others. A high overall prediction accuracy is achieved by distributing the 

sample points equally over the hypercube. A broader discussion about good initial 

experimental design for constructing Kriging models can be found elsewhere [38]. 

From my experience, it is recommended to plan the initial designs according to the 

classical DoE approach. These designs are space-filling as the experiments are located 

in the corners of a hypercube with the axes representing the individual input variables. 

Consequently, the extreme cases are examined during the first iteration. If more 

experiments can be performed than the classical DoE suggests, the remaining points 

should be distributed in a space filling manner using for example Latin hypercube 

sampling.  

After conducting the experiments, the data set is used for constructing a Kriging model, 

as explained in section 1.3. In order to keep the effort for the experimentalist and the 

data analyst to a minimum, the Kriging toolKit (KriKit) was developed, which is 

implemented in MATLAB and is freely available under https://github.com/modsim/KriKit.  

KriKit not only enables the user to construct a Kriging model, but also provides tools for 

the effective use of the Kriging model for next step; the statistical analysis. In this context, 

the most important features comprise data visualization, numerical optimization, and 

hypothesis testing. The various visualization tools of KriKit support the gain of an intuitive 

understanding about the functional relationship between the input variables and the 

measured output. Moreover, potential optima can be found applying local and global 

optimization algorithms on the Kriging prediction. These potential optima can 

furthermore be tested for significance using statistical hypothesis testing. 

After the statistical analysis was performed, new experiments are designed for the next 

iteration. Usually, the optimum lies inside the defined range of the input variables and 

new experiments are designed based on the EI. That is, a numerical optimizer is applied 

to find the set of input variables that maximizes the EI function. The numerical optimizer 



 24 

can be a gradient, population based, or MCMC based algorithm. The new experiment is 

then performed at the identified point. If a parallel experimental strategy is applied, 

multiple experiments are designed using the KBDoE approach explained in section 

1.5.1. The use of MCMC and EI for the experimental designs is an integrated part of 

KriKit. This multiple experimental design was already successfully applied to a medium 

optimization of a lipid production process using Chlorella vulgaris and is documented in 

publication III (section 2.3).  

It is possible that the initial range of the input variables has been chosen too narrow. In 

this case, the optimum, identified during the statistical analysis, lies on the boundary of 

the defined range and the range has to be expanded. New experiments are placed in 

the not yet considered area using a space filling design, i.e. similar to the initial 

experimental design in the first iteration. In publication II (section 2.2), the range had to 

be extended several times. In fact, it was necessary to increase the maximum value of 

one input variable to the 32-fold of the initial maximum value. 

After completing the experimental design, the iteration loop is closed by performing the 

designed experiments. The optimization proceeds until the maximum number 

experiments has been reached. Alternatively, the optimization can be stopped as soon 

as the data density is sufficiently high or the Kriging model prediction is overall accurate 

enough. For the last criterion, the cross-validation  is helpful.  is calculated by the 

squared difference between Kriging prediction , after removing the point  from 

the data base, and the measured value . The squared differences are summed 

over all points, eq. (43). 

 (43) 

1.6 Multi-Objective Gaussian Optimization 

In section 1.5, a framework for biotechnological optimization tasks was introduced that 

aims at exploiting the full potential of Kriging based design of experiment and data 

analysis. However, the framework is only designed for single-objective optimization 

problems.  
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In many biotechnological applications, multiple objectives need to be optimized 

simultaneously. Typical examples can be found in the field of biocatalysis [39], where 

the reaction quality is assessed by purity, yield, and productivity. Similar performance 

indicators are also known from preparative chromatography [40] as well as from fed-

batch bioprocess reactors [41]. This proves that there is a demand for effective and 

efficient multi-objective optimization algorithms. 

A scientific goal of this thesis was the development of a multi-objective optimization 

algorithm, called MOGO, that utilizes the characteristics of Kriging [42]. In contrast to the 

framework for single-objective optimization in section 1.5, MOGO can be used for 

automated processes. This comes at the cost that the input ranges have to be fixed over 

the entire optimization procedure.  

In the following, section 1.6.1 provides an overview about the concept of multi-objective 

optimization. Section 1.6.2-1.6.3 concentrates on already published work in the field of 

multi-objective KBDoE that represents the basis of MOGO. Details about the MOGO 

algorithm can be found in publication IV (section 2.4). 

1.6.1 Concept of Multi-Objective Optimization 

Multi-Objective Optimization (MOO) aims at finding the best compromises between 

several competing objectives , . For the 

sake of simplicity, the optimization problem is in the following considered as 

maximization problem. 

 (44) 

As illustrated in Figure 8, these objectives are competing with each other, meaning that 

not all objectives can be optimized simultaneously without compromising each other. 

The best compromises of a data set , with the output values 

 at the input locations , are known as a 

set of Pareto optimal points  with . In context 

of Pareto optimization a point  dominates a point  

denoted by , iff ,  and . A measured output that is not a 

member of the Pareto set, , is dominated by at least one point in . 
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, if , with  (45) 

Vice versa, for each Pareto optimal point , it holds true that there is no point in 

the overall data set  that is better in all objectives. 

, with  (46) 

Conceptually, there exists a curve or surface where all Pareto optimal points are located, 

called the Pareto front . A multi-objective optimization algorithm aims at 

approximating  and comprises in general an iterative optimization procedure. 

Starting with an initial Pareto front approximation , the approach will converge 

towards , eq. (47). 

 (47) 

 
Figure 8: Schematic illustration of a Pareto optimization problem. Gray and blue dots indicate, respectively, 

the non-optimal and Pareto optimal solutions. The blue curve represents the “true” Pareto front . 
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1.6.2 Multi-Objective KBDoE 

The vast majority of MOO algorithms belongs to the class of Multi-Objective Evolutionary 

Algorithms (MOEA). Zhou et al. [43] and Lücken et al. [44] provide comprehensive 

surveys about MOEA. The most popular algorithm of this class is the Non-dominated 

Sorting Genetic Algorithm II (NSGA-II) [45]. Although MOEAs are very effective, the high 

number of experiments they need for convergence makes them impracticable for many 

biotechnological applications. The experimental effort can be reduced by using 

surrogate models, such as Kriging [46]. For example, Li et al. [47] could reduce the 

experimental effort for the NSGA-II by partially replacing the costly experiment by the 

Kriging model prediction. Here, the Kriging model prediction is accepted if the associated 

prediction error is lower than a defined threshold. 

A major aim of this thesis is the development of the Multi-Objective Global Optimization 

(MOGO) algorithm, publication IV (section 2.4). MOGO is based on only recently 

published state-of-the-art methods that allow the transfer of the established EGO 

algorithm [1] to the multi-objective case.  

As explained in section 1.4, EGO is the most common KBDoE approach for single-

objection optimization. Using EGO, new experiments are planned based on the 

Expected Improvement (EI) and the optimization stops as soon as the Kriging model is 

reliable enough. The transfer of these two key parts to MOO was only accomplished in 

the recent years. While in 2006, Emmerich et al. already have developed the concept of 

Expected HyperVolume Improvement (EHVI) as equivalent to EI [48], only 2015, 

Hupkens et al. [49] provided an algorithm that allows the fast calculation of EHVI. Also 

in 2015, Binois et al. [50] published an approach for quantifying the prediction uncertainty 

of the Kriging based Pareto front estimation. This quality indicator is successfully used 

in publication IV for detecting convergence (section 2.4). While in publication IV the 

procedure for quantifying the prediction uncertainty is derived and discussed in detail, 

the derivation of the EHVI is held compact there and is discussed in more detail in 

section 1.6.3. 

MOGO [42] comprises these recently developed concepts as well as the Markov chain  

Monte Carlo based approach for designing multiple experiments, introduced in section 

1.5.1. This makes MOGO an effective and efficient algorithm for automated parallel 

multi-objective optimization. 
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1.6.3 Expected Hypervolume Improvement 

The Expected HyperVolume Improvement (EHVI) is the multi-objective equivalent to the 

Expected Improvement (EI). The EI quantifies the potential of achieving an improvement 

by adding an additional data point to the current data set. As the term indicates, in 

context of EHVI, the HyperVolume (HV) is used for quantifying the improvement during 

the MOO. For the calculation of the HV, it is first necessary to determine the Pareto set 

 and to define a reference point 

.  is the set of Pareto optimal points of the current data set and  is dominated by 

all points in . The HV measures the volume  of the subspace between  and . 

HV with  (48) 

With  representing a 2-D rectangles or a hyper-rectangles with  and  located 

in the corners and  is the Lebesgue measure.  

As visualized in Figure 9A, an improvement during the MOO is achieved if the added 

data point either completes the current Pareto set , such as  does, or replaces 

members of , as in case of  . In both cases, after adding the new data point , the 

HV is extended and the extension represents the associated improvement , eq. (49).  

HV HV  (49) 

In general, MOO represents an iterative optimization procedure where in each iteration 

new data points are added and the Pareto front is updated. During the iterative 

procedure, the approximated Pareto front  will converge to the “true” Pareto front , 

eq. (50), and the HV is increasing monotonically, eq. (51). 

 (50) 

 (51) 

In fact, the hypervolume reaches its maximum value if  converges to the “true” Pareto 

front  [51], eq. (52). 

 (52) 
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In analogy to the single-objective EI, EHVI is defined as the integration of the 

improvement  weighted by the probability that the improvement value will be 

achieved at point , eq. (53). 

PDF  (53) 

PDF  represents a multivariate Gaussian distribution originating from the Kriging 

models for the individual objectives with the expected point , 

eq. (54), and the covariance matrix , eq. (55).  

 (54) 

 

(55) 

 is the Kriging prediction value, eq. (17), and  is the Kriging variance, 

eq. (23), of th objective at location . As eq. (55) indicates, it is assumed that all Kriging 

models are independent although it might be useful to overcome this assumption if the 

objectives do influence each other. However, to the best of my knowledge, there is 

currently no analytical calculation of EHVI published for this scenario. 

As depicted in Figure 9B, algorithms for the calculation of EHVI partition the output space 

into rectangles, or hyper-rectangles in case of more than two objectives. For each hyper-

rectangle, the associated contribution to the EHVI can be calculated individually and 

summed up afterwards. Based on this ansatz, several algorithms exist that mainly differ 

in how the rectangles are defined. For example, the efficiency of the algorithm can be 

increased by choosing only rectangles that are not dominated and consequently have 

an EHVI contribution larger than zero. In publication IV (section 2.4), an algorithm was 

used that is in particularly efficient for three objectives [49], but it is noteworthy that very 

recently an algorithm was published that handles the bi-objective case more efficiently 

[52]. 
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A B 

  
Figure 9: Visualization of A) HV associated with an extended data set and B) Calculation of the EHVI. Red 

dots indicate Pareto optimal points of the current data set and the blue area the associated HV. Gray area 

indicates the HV extension after adding the respective blue dots to the data sets. Dashed lines indicate 

the separation of the output space into rectangles for efficient calculation of the EHVI.  
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1 Introduction

In chemistry and biochemistry, technical production processes
are often to be optimized with respect to the maximization of
product yield, productivity and/or selectivity. Such processes
typically depend on operating conditions such as solvent con-
centrations, pH-values and temperature. These tunable factors
often have unclear and complex impacts on system performance.

Empirical models, for instance response surface methodology
(RSM), are commonly applied to approximate relationships be-
tween impact factors and system output. In RSM, these relations
are mathematically described by polynomials whose coefficients
are typically estimated by least squares fitting of the model to ex-
perimental data. The articles [1] and [2] provide good overviews
of the use of RSM in chemistry and biochemistry.

Alternatively, mechanistic models can be used for describ-
ing the dependency of the system output on input factors. The
mathematical structure of mechanistic models is based on a pri-
ori knowledge. For example, the Michaelis–Menten equation
describes the impact of substrate concentration on the reaction
rate of enzymes. Compared to empirical models, appropriately
chosen mechanistic models generally have the advantage of pro-
viding more reliable predictions. On the other hand, choosing
appropriate model structures can be challenging. Moreover, pa-
rameter estimation for nonlinear models typically requires com-
putationally expensive global optimization.

Correspondence: Dr. Eric von Lieres (e.von.lieres@fz-juelich.de),
IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Ger-
many

Kriging is a statistical interpolation method which allows in-
tegrating both empirical and mechanistic modeling approaches.
While Kriging is commonly applied in geostatistics and fluid
dynamics [3, 4], the method is only recently recognized in
biotechnology [5,6]. The empirical part of Kriging analyzes first
how the covariance of given measurement data depends on the
distance of the respective measurement points. Based on this
statistical information, a smooth prediction curve/surface and
the associated confidence tube is calculated. In addition, basic
trends can be incorporated by mechanistic models which allows,
to some extent, to extrapolate over the range of data used for
model calibration.

However, the standard Kriging framework only allows linear
trend functions in their parameters but the majority of mecha-
nistic models used in biochemistry are nonlinear. For instance,
the well-known Michaelis–Menten equation (1) is linear with
respect to its maximal conversion rate Vmax but, nonlinear with
respect to the second parameter K m which describes the substrate
concentration at half saturation (v = Vmax/2)

v = Vmax [S]

K m + [S]
. (1)

The next sections are structured as following: First, Sections
2.2 and 2.3 introduce the theoretical background of the standard
Kriging framework that is illustrated by example data sampled
from the Michaelis–Menten equation (1). In Section 2.4, the
parameter estimation procedure for linear trend functions in
the Kriging framework is described. In Section 3, our Kriging
based interpolation approach with nonlinear trend functions is
introduced in two steps. At first, the nonlinear parameters are
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determined by fixed point iteration using Taylor based lineariza-
tion [7]. In the second step, this approach is extended by refor-
mulating the parameter estimation problem into a root-finding
problem. Finally, in Section 3.1, the Kriging approach with non-
linear trend functions is demonstrated using the two-substrate
Michaelis–Menten equation.

Kriging with nonlinear trend functions should not be con-
fused with disjunctive Kriging, which is also referred to as nonlin-
ear Kriging [8,9]. Disjunctive Kriging describes the measurement
data using a nonlinear estimator, while our approach preserves
the linear characteristics of the predictor but integrates trend
functions that are nonlinear with respect to their parameters.

2 Materials and methods

2.1 Universal Kriging

Kriging, also referred to as Gaussian process regression [10], is
a statistical approach for interpolating functional relationships.
Its origins goes back to the work of Krige (1951) [11]. This
section provides a brief introduction to Kriging, further details
can be found in [12]. In general, a Kriging prediction is based on
n observations Z(x1), . . . , Z(xn) each of which depends on m
input variables, xi ∈ R

m. Each observation Z(x) ∈ R is assumed
to follow a Gaussian process that can be decomposed into a
deterministic trend function m(x) ∈ R and a random function
Y(x) ∈ R with zero mean and standard deviation σ(x) ∈ R

Z (x) = m (x) + Y (x) (2)

E [Y (x)] = 0 (3)

σ (x) =
√

Var (Y (x)). (4)

Basic trends can be described by a linear combination of k
functions f l(x) ∈ R with coefficients al

m (x) =
k∑

l=1

alfl (x) . (5)

Kriging is a linear smoother [13] computing predictions Z ∗

of unknown observations at points x̂ by a linear combination of
the given data Z(xi) with coefficients λi ∈ R

Z ∗ (x̂) =
n∑

i=1

λi (x̂) Z (xi) . (6)

In the Kriging context, the coefficients λi , which depend on
x̂, are determined such as to provide unbiased predictions (7)
and to minimize the prediction variance (8)

E
[
Z (x̂) − Z ∗ (x̂)

] = 0 (7)

Var
[
Z (x̂) − Z ∗ (x̂)

] → min. (8)

Using (2) and (6), the Kriging unbiasedness condition (7) can
be expressed as

E
[
Z(x̂) − Z ∗(x̂)

] = E

[
Z (x̂) −

n∑
i=1

λiZ (xi)

]

= E

[
m (x̂) + Y(x̂) −

n∑
i=1

λi(m (xi) + Y(xi))

]

= E

[
m (x̂) −

n∑
i=1

λim (xi)

]
= 0. (9)

Inserting the trend functions (5), this can be further refor-
mulated to

E[Z(x̂)− Z ∗(x̂)] = E

[
k∑

l=1
alf l(x̂) −

n∑
i=1

λi

k∑
l=1

alf l(xi)

]
= 0.

(10)

A sufficient condition for (10) to hold is

alf l (x̂) =
n∑

i=1

λialf l (xi) with l = 1, . . . k. (11)

The Kriging prediction variance furthermore is given by (12)
[14]:

Var [Z (x) − Z ∗ (x)] = Cov (Z (x̂) , Z (x̂))

−2
n∑

i=1
λiCov (Z (xi) , Z (x̂))

+
n∑

i=i

n∑
j =1

λiλj Cov
(
Z (xi) , Z

(
xj

))
.

(12)

Coefficients λi that satisfy the fundamental Kriging condi-
tions (7) and (8) are calculated by minimizing the prediction
variance given by (12) under the linear constraints posed by
(11) using the method of Lagrange multipliers. This leads to the
following system of linear equations:

n∑
i=1

λiCov
(
Z (xi) , Z

(
xj

)) +
k∑

l=1
μl f l (xi)

=
n∑

i=1
λiCov (Z (xi) , Z (x̂))

(13)

n∑
i=1

λi fl (xi) = fl (x̂) . (14)

Equations (13) and (14) can be expressed more compactly in
matrix notation: [

C F
F T 0

] [
λ

μ

]
=

[
c
f

]
. (15)

Here, C ∈ R
n×n is a matrix with entries Ci,j =

Cov(Z(xi), Z(xj )), F ∈ R
n×k is a matrix with entries F i,l =

fl (xi), c ∈ R
n is a vector with entries c i = Cov(Z(xi), Z(x̂)),

and f ∈ R
k is a vector with entries fl(x̂). The vectors λ ∈ R

n and
μ contain the n coefficients λi and the k Lagrange multipliers μl ,
respectively.

2.2 Covariogram model

The coefficient λ, as determined by (15), depends on the mu-
tual covariances between data points Ci,j = Cov(Z(xi), Z(xj ))
and on the covariances between data points and the point of

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 917



www.els-journal.com Eng. Life Sci. 2017, 17, 916–922

interest x̂, c i = Cov(Z(xi), Z(x̂)). These covariances are gen-
erally unknown and, consequently, are approximated using a
covariogram model. The covariogram model, C(h), depends
only on the distance h = xi − xj of any two points xi and xj

and not on their absolute positions.
Mainly three types of covariogram models can be found in

the literature [15]: the spherical, the Matérn, and the exponential
model. The Matérn function is known to be particularly suitable
for representing various covariance–distance relationships [16]
and is used in this study, with a smoothing parameter of 5/2,
(16).

C (h) = θ2
Nugget + θ2

σ

(
1 + √

5r + 5

3
r2

)
exp

(
−√

5r
)

,

with r =
√

m∑
l=1

h2
l

θ2
l

.

(16)

The parameter θ2
Nugget, which is historically referred to as

nugget factor, introduces an extra offset at h = 0, which pro-
vides more flexibility in modeling the measurement error. The
covariogram converges toward θσ for h → 0 and toward zero
for h → ∞, and θl determines the characteristic length-scale for
input variable xl .

In this study, the covariogram parameters are deter-
mined by Maximum Likelihood Estimation (MLE) [17]. In
this context, it is assumed that the set of measured out-
puts Z (X ) = (Z(x1), . . . , Z(xn))T ∈ R

n follows a multivari-
ate Gaussian distribution with the expected values m(X ) =
(m(x1), . . . , m(xn))T ∈ R

n and the covariance C ∈ R
n×n, (17)

p (Z(X) |θ ) = 1

(2π)n/2 det(C)1/2

exp

(
−1

2
(Z(X) − m(X))TC−1(Z(X) − m(X))

)
.

(17)

The entries in the covariance matrix C ∈ R
n×n are calculated

by the covariance function using parameters θ. Using (17) the
resulting log-likelihood function for a given set of covariogram
parameters θ is defined by (18)

log p (θ|Z(x)) = − 1

2
(Z(X) − m(X))TC−1(Z(X) − m(X))

−1

2
log(|C |) − n

2
log(2π) .

(18)

2.3 Estimating parameters of linear trend functions

The Kriging principles of unbiasedness and minimal prediction
variance are also used for determining the coefficients al in which
the trend functions are linear (5). Matheron (1971) [18] intro-
duced this ansatz to estimate each individual parameter a∗

l ∈ R

as a linear combination of the observations Z(xi):

a∗
l =

n∑
i=1

λl
iZ (xi) . (19)

In analogy to calculating the coefficients λi(x) of the Kriging
prediction in Section 2.2, the values of λl

i are determined such
as to achieve unbiasedness and to minimize variance. The esti-
mate a∗

l and the “true” parameter al have the following expected
difference:

E
[
al −a∗

l

] = E

[
al −

n∑
i = 1

λl
iZ(xi)

]

= E

[
al −

n∑
i = 1

λl
i (m (xi)+Y (xi))

]

= E

[
al −

(
k∑

j = 1
aj

n∑
i = 1

λl
i f j (xi)+

n∑
i = 1

λl
iY (xi)

)]
= al −

k∑
j = 1

aj

n∑
i=1

λl
i f j (xi) .

(20)

Sufficient conditions for the unbiasedness condition (20) to
hold are given by:

n∑
i=1

λl
i fj (xi) = 1 for j = l

n∑
i=1

λl
i fj (xi) = 0 for j �= l.

(21)

Using these conditions the variance can be estimated by (22)

Var
(
al − a∗

l

) =
n∑

i=1

n∑
q=1

λl
iλ

l
qCov

(
Z (xi) , Z

(
xq

))
. (22)

The optimal coefficients λl
i are also calculated using the

method of Lagrange multipliers, resulting in the following sys-
tem of linear equations:[

C F
F T O

] [
λl

μl

]
=

[
0
δl

]
. (23)

The left-hand side of (23) is identical to that of (15), and
hence, the inverse of the block matrix can be reused here. The
Dirac symbol δl ∈ R

k denotes a vector with entry 1 at index l
and 0 elsewhere. The vectors λ ∈ R

n and μ contain the n sought
coefficients λl

i and the k Lagrange multipliers μl
j , respectively.

This entire procedure needs to be repeated for each of the
k parameters al which are calculated from the resulting coeffi-
cients λl (19). Alternatively, all k parameters can be determined
simultaneously by solving the following matrix equation:[

C F
F T O

] [
�

M

]
=

[
O
I

]
. (24)

Here, � ∈ R
n×k is a matrix with entries �i,l = λl

i , M ∈ R
k×k

is a matrix with entries M j ,l = μl
j , and I ∈ R

k×k is the identity
matrix.

Computing � from (24) requires inversion of a 2 × 2 block
matrix, for which Lu and Shiou [19] provide an explicit formula.
Exploiting the specific structure of the right-hand side of (24)
and applying the dataset z = (Z(x1), . . . , Z(xn))T ∈ R

n, the
coefficients a can be estimated by (25)

a = �z = (
F TC−1F

)−1
F TC−1z. (25)
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2.4 Kriging with nonlinear trend functions (KNT)

In this section, we extend the Kriging method to nonlinear trend
functions. Consider a trend function m(x) that depends non-
linearly on some parameters p ∈ R

s . For technical reasons, the
trend functions must linearly depend on at least one parameter
a0

m(x) = a0 f (x, p ) . (26)

In order to make the nonlinear parameters accessible to the
Kriging method, we apply Taylor expansion of m(x, p ) around
an initial guess p (0), resulting in a linear approximation m̃(x, p ):

m̃ (x, p ) = a0 m (x, p ) +
s∑

l=1

a0

(
p l − p (0)

l

) ∂m (x, p )

∂p l

∣∣∣∣
p l=p (0)

l

(27)

Now, the procedure from Section 2.4 can be applied for esti-
mating the linear coefficients al of the linearized trend function
m̃(x, p ), as defined by (28) for l ≥ 1

al = a0

(
p l − p (0)

l

)
. (28)

The resulting estimates al are then used to compute new
estimates of the nonlinear parameters p (1)

l from the initial

guesses p (0)
l :

p (1)
l = al

a0
+ p (0)

l . (29)

For linear trend functions, the estimated values in p (1) would
be the final result. However, for nonlinear trend functions the
above steps (27) to (29) have to be repeated with p (1) as new
linearization point [7]. This leads to an iterative procedure which
continues until the estimation is sufficiently accurate, i.e. the
difference of p (i+1) and p (i) drops below a predefined threshold ε:

‖p (i+1) − p (i)‖ ≤ ε (30)

It should be noted here that the procedure described in this
section depends on the choice of the initial guess and may result
in local optima for the estimated parameters. For this reason, a
multi-start strategy is suggested. In the following, the iterative
procedure is reformulated into a root-finding problem. This
allows the application of efficient standard algorithms [20].

Convergence of the iterative estimation procedure for the
nonlinear parameters requires that for an infinite number of
iterations the linearization point p (i) and the previous parameter
estimation p (i+1) become identical (31)

lim
i→∞

‖p (i+1) − p (i)‖ = 0. (31)

From (29) it follows, that (31) is satisfied if and only if all co-
efficients al of the Taylor polynomial with l ≥ 1 are zero (28) and
(29). This can be used to reformulate the nonlinear parameter
estimation problem as a root finding problem:

k∑
l=1

a2
l = aT

2:k+1 a2:k+1 = 0. (32)

Applying (25) we can rewrite (32) as:

(
F̃

T
C−1F̃

)−1

F̃
T

C−1z =

⎡⎢⎢⎢⎣
a0

0
...
0

⎤⎥⎥⎥⎦ (33)

where F̃ ∈ R
n× (s+1) contains the evaluation of the trend func-

tion m(x, p ) and its s partial derivatives at each of the n given
observation points.

As the values of a0 do not enter in 2.31, the first row of (33)
can be ignored:

Ĩ
(

F̃
T

C−1F̃
)−1

F̃
T

C−1z =

⎡⎢⎣0
...
0

⎤⎥⎦ (34)

where Ĩ represents the identity matrix but with zero at the first
entry.

3 Results and discussion

3.1 Numerical case study

In this section, we apply Kriging with nonlinear trend functions
(KNT) to the two-substrate Michaelis–Menten equation (35)
and study the robustness of the parameter estimation under the
influence of noise

m(x, a, b, p ) = ax1x2

b + p 1x1 + p 2x2 + x1x2
(35)

The model is linear with respect to the parameter a and
nonlinear with respect to the parameters b, p 1 and p 2. The
linear parameter a is not considered in the following analysis,
since its value does not depend on the linearization point, and
the parameter b is set to a fixed value for clarity and better
visualization.

The nonlinear parameters p 1 and p 2 are estimated by KNT
from a series of data sets with increasing noise levels. Ar-
tificial data are generated using the two-substrate Michaelis-
Menten equation (35) with parameters a = 10, b = 15, p 1 =
10, p 2 = 5, following a Gaussian process with varied noise level
r ∈ R

+:

N (m (x, p ) , r · m (x, p )) . (36)

Several datasets are generated on a 5 × 5 grid, with both
variables x1 and x2 (35) taking any of the values {1, 5, 10, 15, 20}.

We first consider data without artificial noise (r = 0).
Figure 1A shows the generated data set. The nonlinear trend
function parameters p 1 and p 2 are determined as described in
Section 3: The two-substrate Michaelis-Menten equation (35) is
linearized and the corresponding parameters p 1 and p 2 are de-
termined by Kriging according to (25). The optimal parameter
values are then determined such that the corresponding Taylor
coefficients a1 and a2 become zero. Figure 1B illustrates that both
zero contour lines intersect at the “true” parameter set p 1 = 10
and p 2 = 5.
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Figure 1. (A) Artificial
dataset without noise.
Generated data points are
indicated as red dots. The
mesh represents the two-
substrate Michaelis–Menten
kinetic (35) with parameters
a = 10, b = 15, p1 =
10 and p2 = 5. (B) Contour

plot of the Taylor coefficients
a1 (black) and a2 (red) as
functions of the linearization
point for p1 and p2.

Next, the influence of noise on KNT is investigated using the
following workflow:

(i) Value of r is chosen and 50 data sets are generated as previ-
ously described following (36).

(ii) Parameters of the covariogram model are estimated for each
data set by maximum likelihood estimation applying the
fitrgp implementation from MATLAB [21].

(iii) The nonlinear parameters p 1 and p 2 are determined for
each data set as previously described, using the trust-
region Dogleg method in the MATLAB function fsolve
and a multi-start strategy for solving the root finding
problem.

(iv) Points 1-3 are repeated for all noise levels of interest.

In total, 10 × 50 = 1000 data sets are generated with 10
different noise levels of r and 50 independent data sets at each
noise level. The chosen noise levels are equally distributed in the
range 0 ≤ r ≤ 0.09.

Figure 2 A and B visualize the residuum distribution in depen-
dency of the noise level. Variation in the parameter estimation
increases with the noise level while the median stays near 0 and
indicates an unbiased estimation. For comparison, the parame-
ter estimation was repeated using the least squares (LSQ) method
implemented by the MATLAB function lsqnonlin. In the numer-
ical case study, LSQ leads to a smaller variance of the estimated
parameters, as shown in Fig. 2 C and D. However, the linear
parameter estimated by the LSQ method is not used in the Krig-
ing prediction, as the Kriging method includes another estimate
of this parameter. Hence, the LSQ estimates of the non-linear
parameters might not be consistent with the Kriging estimate
of the linear parameter. In the KNT framework, the non-linear
parameters are estimated independently of the linear parame-
ter. Moreover, Kriging does generally not aim at determining
the most accurate parameter estimates but at minimizing the
prediction variance.

3.2 Case study with real measurement data

Finally, we demonstrate the application of our nonlinear Kriging
procedure to real measurement data from the field of biocatal-
ysis. Kulig et al. [22] characterized an alcohol dehydrogenase
from Ralstonia sp. (RADH) which can reduce sterically hindered

ketones. The authors have investigated inter alia the influence
of pH and temperature on the acceptance of different substrates
(aldehydes, ketones and alcohols) and of the resulting kinetic
parameters of the enzyme. In this section, we use the measured
data of specific RADH activities for varying concentrations of
Cyclohexanol (CycloHex) and NADP+. The authors of [22] have
varied only one factor at a time, assuming that no cooperative
effects between the two impact factors are present.

The parameters of the Matern covariogram model are again
determined by maximal likelihood estimation. Figure 3A shows
the ordinary Kriging interpolation of the specific RADH activ-
ity using a constant as trend function. This leads to unphysical
Kriging predictions in the poorly sampled regions. In particular,
negative values such as predicted at the coordinate origin, are
biologically not feasible. These deficiencies can be overcome by
using a suitable trend function, for example the two-substrate
Michaelis-Menten equation (35), introduced in Section 3.1 with
CycloHex as x1 and NADP+ as x2. This study does not aim
at identifying the correct mechanistic model for this enzyme.
However, the trend function reflects some fundamental prop-
erties of enzyme-catalyzed reactions, i.e. no conversion at zero
substrate concentrations, initial reaction velocities at low sub-
strate concentrations, and saturation at high substrate concen-
trations. A more detailed mechanistic model is not required, as
the Kriging model captures deviations from the fundamental
trend.

In this case study, using KNT the parameter set a =
7.36 U/mg, b = 0.14 mM2, p 1 = 0.05 mM, p 2 = 3.13 mM
was estimated. In the two-substrate Michaelis-Menten equation,
a is the specific activity, p 1 and p 2 are the Michaelis constants
of both substrates, and b is the mathematical product of the
Michaelis constant of one substrate and the inhibition constant
of the other substrate. Figure 3b shows the Kriging prediction
surface using the estimated two-substrate Michaelis-Menten ki-
netic as trend function. The results show that the application of
KNT clearly leads to much more realistic predictions. Further-
more, the prediction accuracy was evaluated by cross-validation.
That is, the Kriging prediction Z ∗(xi) is calculated after removing
the point xi from the data base and compared to the Kriging pre-
diction Z(xi) with point xi . The squared differences are summed
over all points, (37)

CV = 1

n

n∑
i=1

(Z (xi) − Z ∗ (xi))2
. (37)

920 C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.els-journal.com Eng. Life Sci. 2017, 17, 916–922

Figure 2. Dependency of the
estimation error on the rela-
tive noise using KNT (A: p1

and B: p2) and LSQ (C: p1 and
D: p2). Red line indicates the
median, the bottom and top
edge blue box represent the
25 and the 75% quantile. The
bottom and top edge of the
whiskers represent the 1.5-fold
of the 25% and the 75% quan-
tile. In case of a normal dis-
tribution, approximately 99.3%
of all samples are contained in
this range. Red stars represent
outliers.

Figure 3. (A) Kriging in-
terpolation surface with a
constant as trend function.
(B) Kriging interpolation
surface with two-substrate
Michaelis–Menten kinetic
as trend function.

The prediction error of KNT, CVK NT = 2.45, is significantly
lower than of ordinary Kriging, CVOrdinary = 36.7. This demon-
strates that, in case of small data sets, KNT can outperform or-
dinary Kriging by combining the best of both worlds, statistical
data analysis and mechanistic modeling.

4 Conclusions

Kriging is a powerful tool for approximating functional rela-
tionships between input and output factors in complex sys-
tem analysis, combining features of statistical data analysis
and mechanistic modeling. In this context, deterministic trend

functions can be particularly useful for compensating lack of
experimental information in poorly sampled regions. However,
Kriging so far only allows trend functions that are linear with re-
spect to their parameters. In this contribution, we have presented
a practical procedure for applying Kriging with nonlinear trend
functions, based on Taylor linearization and leading to a root
finding problem, shortly referred to as Kriging with nonlinear
trend functions (KNT). In two case studies, KNT is applied on
the two substrate Michaelis–Menten equation. First the method
is studied using synthetic data with increasing noise levels. Then,
KNT is applied for analyzing real measurement data with rather
low and irregular sample density. The results demonstrate that
KNT outperforms ordinary Kriging, as the mechanistic trend
function can compensate for missing experimental information.
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Practical application

Kriging is a statistical interpolation method which allows
integrating both empirical and mechanistic modeling
approaches. While Kriging is commonly applied in geo-
statistics and fluid dynamics, the method is only recently
recognized in biotechnology. The empirical part of Kriging
analyzes first how the covariance of given measurement
data depends on the distance of the respective mea-
surement points. Based on this statistical information
a smooth prediction curve/surface and the associated
confidence tube can be calculated. In addition, basic
trends can be incorporated by mechanistic models which
allows, to some extent, to extrapolate over the range of
data used for model calibration.
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Nomenclature
Z Output/process variable
Z∗ Kriging estimation
x Input/design variable
x̂ point of interest
E Expected Value
Cov Covariance
Var Variance
C Covariance matrix
H0 Null hypothesis
σ(x) Standard deviation of the random process
m(x,p) Complete trend function of random process
fl(x) Sub-trend function
al Coefficient associated with fl(x)
λ Kriging coefficient
μ Lagrange multiplier
Km Michaelis–Menten constant
p Parameter of trend function
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The production of bulk enzymes used in food industry or organic chemistry consti-
tutes an important part of industrial biotechnology. The development of production
processes for novel proteins comprises a variety of biological engineering and bio-
process reaction engineering factors. The combinatorial explosion of these factors
can be effectively countered by combining high-throughput experimentation with
advanced algorithms for data analysis and experimental design. We present an exper-
imental optimization strategy that merges three different techniques: (1) advanced
microbioreactor systems, (2) lab automation, and (3) Kriging-based experimental
analysis and design. This strategy is demonstrated by maximizing product titer of
secreted green fluorescent protein (GFP), synthesized by Corynebacterium glutam-
icum, through systematic variation of CgXII minimal medium composition. First,
relevant design parameters are identified in an initial fractional factorial screening
experiment. Then, the functional relationship between selected media components
and protein titer is investigated more detailed in an iterative procedure. In each iter-
ation, Kriging interpolations are used for formulating hypotheses and planning the
next round of experiments. For the optimized medium composition, GFP product
titer was more than doubled. Hence, Kriging-based experimental analysis and design
has been proven to be a powerful tool for efficient process optimization.
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1 Introduction

1.1 Protein production in industrial biotechnology

The production of proteins that are needed in high quantities
is a major part of industrial biotechnology. Such bulk enzymes
(e.g. lipases, proteases, amylases) are found widely in daily ap-
plications [1].

Correspondence: Dr. Eric von Lieres (e.von.lieres@fz-juelich.de)
IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-
Straße 1, 52425 Jülich, Germany

Abbreviations: DoE, design of experiments; GFP, green fluorescent
protein; MBR, microbioreactor

Developing a protein production process includes both bio-
logical engineering (i.e. the expression host) and the bioprocess
reaction engineering (i.e. cultivation control). The first aspect
covers methods that have evolved with the advent of mod-
ern recombinant gene technology, e.g. promotor libraries for
fine-tuning of gene expression [2], homologous, and heterolo-
gous signal peptide libraries for enhanced protein secretion [3],
adjustment of codon usage to control translation speed [4],
or customizing the glycosylation profile of recombinant pro-
teins [5]. The second above-mentioned aspect, the bioprocess
engineering, includes also a wealth of parameters that are known
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affect overall productivity, e.g. induction strategy [6], the feeding
rate [7], controlling the specific growth rate [8], adjustment of
cultivation temperature [9], or the nutrient supply in basal and
feed media [10–12].

Clearly, the high number of biological and process engi-
neering aspects leads to a combinatorial explosion of pos-
sible experiments. This problem can be addressed applying
high-throughput experimentation in combination with sophis-
ticated algorithms for interpretation and planning of cultivation
experiments.

1.2 Microbioreactor systems for high-throughput
experimentation

Nowadays, microbioreactor (MBR) systems are emerging tools
in bioprocess development. Such systems provide the possibil-
ity to conduct several cultivation experiments in parallel on a
small footprint and thus, increase experimental throughput.
Typically, reaction volumes are in the range of several hundred
μL to several mL. Scalability to lab-scale stirred tank reactors
has been demonstrated several times for different MBR [13–16].
Research and development on MBR is still ongoing, with the
ultimate goal to minimize laborious and low-throughput con-
ventional laboratory scale experimentation (see also literature re-
views in [17–19]). Within this context, several demands on high-
throughput process development have been formulated [20], in-
cluding the incorporation of mathematical methods for experi-
mental planning and data evaluation, both of which is addressed
in this study. Due to the high number of generated samples
using MBR, the current bottleneck in bioprocess development
is shifted toward analytics. Furthermore, a simultaneously up-
coming limitation is the interpretation of results and subsequent
planning of new experiments during iterative optimization of
bioprocesses.

1.3 Cultivation medium optimization

Optimization of medium is a typical task in bioprocess de-
sign. In general, several strategies are found in studies con-
cerning medium optimization focusing on various optimiza-
tion targets. A comprehensive overview and discussion is given
by Kennedy and Krouse [21], Weuster-Botz [22], and Zhang
and Greasham [23]. The here presented study aims to maxi-
mize product titer (i.e. amount of secreted recombinant GFP
(green fluorescent protein)) as this is a typical objective of in-
dustrial process optimization rather than, e.g. biomass-specific
product concentrations, which reflect a biological property of
the cell. GFP was chosen as model protein due to its easy de-
tection by fluorescence of the active protein and by doing so,
analytics was prohibited from becoming a bottleneck and fur-
ther impact of noise on the optimization response caused by wet
lab assays for product estimation is minimized. Besides, use of
GFP as model protein is widespread in characterization studies
on MBR [13, 24, 25].

1.4 Design of experiments and Kriging

“Classic” design of experiments (DoE) is a powerful tool for
efficiently estimating single and combinatorial effects of input
variables on noisy system outputs. It has a long tradition and was
introduced by Fisher in 1935 [26]. DoE is established in several
biotechnological fields and has been applied for optimization
of, e.g. nutrition media or process operation (cultivation, prod-
uct recovery, purification) as summarized by Mandenius and
Brundin [27].

Although DoE is popular for identifying significant input
variables, the methodology usually lacks in approximating highly
nonlinear functional relationships. For this purpose, the Kriging
approach is often more appropriate [28]. Kriging provides a data
driven, unbiased linear estimator with minimal mean square
prediction error. Technical details of the Kriging methodology
can be found in Sections 2.3–2.5.

In this study, a combination of “classic” DoE and Kriging
is demonstrated to enable efficient iterative experimental opti-
mization. First, a fractional factorial DoE is applied for screening
for media components that have a major impact on the optimiza-
tion objective, the GFP signal. On this basis, the functional rela-
tionship between selected key components and the GFP signal is
iteratively analyzed using the Kriging methodology. In each iter-
ation, Kriging interpolations are used for planning experiments
for the next iteration. Afterwards, the Kriging interpolation and
its corresponding error estimate are used in a statistic test for
identifying promising media compositions. A final DoE is ap-
plied for checking if the results of the initial screening with all
media components are also valid around this optimal medium
composition.

1.5 Aim of the study

The study aims to demonstrate how current technology of MBR,
lab automation, and algorithm-based planning and evaluation of
cultivation experiments can be hyphenated to boost bioprocess
development. A Kriging-based DoE approach is applied to inves-
tigate the influence of media composition on secretory protein
production in Corynebacterium glutamicum. The here described
process optimization framework yielded a considerably raised
overall process performance in a statistically secured fashion.
Moreover, the findings of the study indicate that the optimized
medium provides a general trigger to enhance secretory protein
production with C. glutamicum.

2 Materials and methods

2.1 Strain and cultivation conditions

C. glutamicum ATCC13032 with pEKEx2 expression plasmid
containing the fusion of phoD signal peptide from B. subtilis and
GFP (resulting plasmid: pCGPhoDBs-GFP) was used as model
protein secretion strain [29]. The phoD signal peptide medi-
ates secretion of folded GFP via Tat-pathway, whereas pEKEx2
plasmid gives Kanamycin resistance. In all cultivations selection
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pressure for maintaining the expression plasmid was established
by adding 25 mg/L of Kanamycin.

For the study, a working cell bank was made by overnight
culturing of the model strain in complex BHI-medium contain-
ing 37 g/L of brain heart infusion broth powder. Afterwards, one
volume of overnight culture was combined with one volume of
sterile glycerol solution (500 g/L) as cyro-preservative and deep-
frozen at -80°C as cryo-stock 1-mL-aliqouts. Conditions for this
overnight cultivation were as follows: 50 mL culture volume,
four-baffled shaking flask with a nominal volume of 500 mL,
30°C, 250 rpm at 25 mm shaking diameter.

For each medium optimization experiment, a preculture was
inoculated with a complete cryo-stock aliqout and grown in BHI-
medium until an optical density (OD600) of 3–4 was reached after
an incubation time of approx. 5 h. Then, then preculture was used
to inoculate the main culture as described below. Conditions for
precultures were as described above for generation of the working
cell bank.

All main cultivations were carried out using a microbioreac-
tor system (“BioLector,” Art.-No. G-BL-100, m2p-labs GmbH,
Baesweiler, Germany), capable of sensing biomass concentration
via backscatter light at 620 nm, GFP concentration via fluores-
cence (Ex.: 488 nm, Em.: 520 nm) and pH and dissolved oxygen
via optical sensing spots located at the bottom of 48-well flower-
shaped microtiterplates (“Flowerplate,” Art.-No. MTP-48-BOH,
m2p-labs GmbH, Baesweiler, Germany). Cultivation conditions
were as described in [15].

For main cultivations CgXII minimal medium and variants
according to the experimental planning were used. The com-
position of CgXII minimal medium used in several other stud-
ies (e.g. [30] and references therein) is referred to as “refer-
ence” throughout the study. Variations of the CgXII medium
included different concentrations of medium components un-
der investigation, including a zero concentration (i.e. omitting
the specific components). Modifications of the medium com-
position are shown in the results section. Glucose as main car-
bon source was fixed to 10 g/L. For induction of recombinant
gene expression, all main cultivation media were prepared with
100 μM Isopropyl-β-D-1-thiogalactopyranoside (IPTG) final.
Recipes for CgXII standard medium (“reference”) and finally op-
timized composition with respect to highest achieved GFP titer
are given in the supplement (Supporting Information Table S3).
In each MBR cultivation five replicates using CgXII reference
medium composition were conducted as internal standard to
correct for possible systemic effects during automated medium
preparation or resulting from different production batches of
stock solutions. After automated media preparation and inocu-
lation, the MBR cultivation was started and terminated after a
minimum incubation time of 18 h. At this time point, all cultiva-
tions throughout the study had reached stationary growth phase,
indicated by online measured biomass and dissolved oxygen
signal.

The normalized GFP fluorescence signal after 17 h of incu-
bation was used for data analysis. The data were normalized
by division with the mean GFP fluorescence signal of all five
reference cultivations to enhance plate to plate comparability.

All reagents used for media preparation were purchased
from Carl Roth, Merck, or Sigma and were of analytical
grade.

2.2 Analytics

Cultivation supernatants were obtained by centrifugation for 10
min at 13 000 rpm (“Biofuge pico,” Heraeus). Protein content
of supernatant was determined with a Bradford assay kit accord-
ing to the supplier’s instructions using BSA as protein standard
(“Bradford Reagent,” Sigma). Amount of secreted GFP was visu-
alized by denaturing SDS-page of supernatants in 12% Bis-Tris
Gel according to the suppliers instructions (“TruPage,” Sigma),
with a microwave-based staining protocol [31].

2.3 Automated media preparation

Variations of CgXII medium were made using appropriate stock
solutions of medium components. Depending on target concen-
tration of selected medium components, different amounts of
stock solutions were pipetted by an automated liquid handling
station, which has been described and characterized earlier [15].
For the liquid handling station used in this study, the pipetting
accuracy was determined to be better than 2.5% for 10 μL, better
than 2% for 50 μL and better than 0.5% for 100 μL and above.
The pipetting precision was determined to be better than 5% for
10 μL, better than 2% for 50 μL and better than 1% for 100 μL
and above (personal communication with A. Radek, [32]).

Additionally, the minimal volume to be pipetted was set to
10 μL with increments of 5 μL up to 1000 μL. A volume of
950 μL of the completely prepared medium was filled into each
well of a Flowerplate. Then, 50 μL of freshly grown preculture
was added to each well with the liquid handling robot, yielding
the final cultivation volume of 1000 μL. To assess positional
effects, reference cultivations were located in the corners and
in the center of each Flowerplate; no positional effects were
observed throughout the whole study.

2.4 Ordinary Kriging

Data analysis and experimental design were performed using
the Kriging method for data interpolation/extrapolation and
visualization. In this section, a brief introduction to Kriging
is given, while further details and mathematical deviations are
described elsewhere [33].

In Kriging, the system output Z(x) is assumed to follow a
basic trend m(x) and the noise in the data is assumed to be
caused by a random process Y(x) with zero mean and standard
deviation σ(x).

Z (x) = m (x) + Y (x) (1)

E [Y (x)] = 0 (2)

σ (x) =
√

Var (Y (x)) (3)

Even though more complex trend functions can be used, it is
often sufficient to assume a constant trend, m (x) = c , which is
referred to as ordinary Kriging.
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In Kriging, predictions Z ∗ of unknown observations at points
x̂ are calculated by linear combination of the given data Z(xi)
with coefficients λi ∈ R.

Z ∗ (x̂) =
n∑

i=1

λi (x̂) Z (xi) (4)

The coefficients λi , which depend on x̂, are determined such as
to provide unbiased predictions, eq. (5), and to minimize the
prediction variance, eq. (6).

E
[
Z (x̂) − Z ∗ (x̂)

] = 0 (5)

Var
[
Z(x̂) − Z ∗(x̂)

] → min (6)

For finding appropriate Kriging coefficients that satisfy eq. (5)
and eq. (6), the covariance Cov(Z(xi), Z(xj )) between two ob-
servations at positions xi and xj needs to be approximated by
a covariogram model, as described in Section 2.4. Using the
covariogram model, Kriging coefficients can be calculated by
eq. (7) [33]. [

λ

μ

]
=

[
C 1
1T 0

]−1 [
c
1

]
(7)

In eq. (7), C ∈ R
n×n is a matrix with entries Ci,j = Cov(Z(xi),

Z(xj )), 1 ∈ R
n is a vector with entries 1, and c ∈ R

n is a vec-
tor with entries c i = Cov(Z(xi), Z (̂x)). The vector λ ∈ R

n con-
tains the n coefficients λi , and μ is a Lagrange multiplier. The
Lagrange multiplier is required for solving eq. (6) constrained by
eq. (5), but not required for calculating the Kriging prediction
in eq. (4) [33].

By minimizing the prediction variance, Kriging inherently
provides an estimation of the confidence interval. The variance
of the Kriging prediction in eq. (4), indicating the prediction
accuracy, can be estimated by eq. (8).

Var
[
Z (x) − Z ∗ (x)

] = Cov (Z (x̂) , Z (x̂))

−2
n∑

i=1

λiCov (Z (xi) , Z (x̂))

+
n∑

i=1

n∑
j =1

λiλj Cov
(
Z (xi) , Z

(
xj

))
(8)

The first term in eq. (8) represents measurement noise. The sec-
ond term contains information about the significance of individ-
ual measured observations Z(xi) for predicting the observation
at x̂. Usually, the absolute value of this term is larger for measure-
ment points xi that are closer to x̂. The third term quantifies the
information content of the entire dataset as its value increases
for high correlation between the data points. Consequently, the
Kriging prediction variance increases with increasing noise and
decreasing information content of the data, and it adapts to the
location of the points of interest.

2.5 Covariogram model

The Kriging coefficients, as computed by eq. (7), depend
on the mutual covariances between the data points Ci,j =

Cov(Z(xi), Z(xj )) and on the covariances between the data
points and the point of interest x̂, c i = Cov(Z(xi), Z(x̂)).
These covariances are generally unknown and, consequently,
need to be approximated using a covariogram model. The
covariogram model C(h) depends only on the distance h =
xi − xj of any two points xi and xj and not on their absolute
positions.

Mainly three types of covariogram models can be found in
the literature [34]: the spherical, the Matérn and the exponential
model. In the following sections, the exponential model is used,
eq. (9), as suggested in [35].

C (h) =

⎧⎪⎨⎪⎩
σ + σNugget f or h = 0

σ exp

(
−

d∑
q=1

θq

∣∣hq

∣∣p q

)
f or h �= 0

(9)

Here, p q characterizes the steepness and θq the width of the tran-
sition for varying hq . The parameter σ represents the maximal
covariance value for h → 0, and σNugget, which is historically
referred to as nugget factor, introduces an extra offset at h = 0.
This extra offset provides more flexibility in modeling the mea-
surement error. The values of p q , θq , σ, and σNugget must be
larger than 0, and p q is furthermore restricted to the interval
0 < p q < 2, since otherwise the resulting covariance matrix is
not strictly positive definite [36]. In the present study, the pa-
rameters of the Covariogram model are estimated using the
cross-validation method.

2.6 Cross-validation

In cross-validation, the quality of the estimated covariogram
parameters is directly assessed by the quality of the associated
Kriging interpolation. A good Kriging interpolation should ap-
proximate the measurement data and the normalized residual
should follow a standard normal distribution. Consequently,
two optimization criteria are formulated, as described by [37].
First, minimizing the sum of the mean squared error between the
observation Z(xi) and the Kriging estimation Z ∗i(xi), computed
with the point xi excluded from the data base:

c1 = 1

n

n∑
i=1

(
Z (xi) − Z ∗i (xi)

)2
(10)

Second, minimizing the difference of the corresponding square
error normalized by the estimated standard deviation, eq. (8), to
its ideal value of one:

c2 =
∣∣∣∣∣1 − 1

n

n∑
i=1

(
Z (xi) − Z ∗i (xi)

σ∗i (xi)

)2
∣∣∣∣∣ (11)

Finally, the optimization problem for estimating the covari-
ogram model parameters σ, σNugget, θ, and p is formulated as:

min
σ,σNugget,θ,p

(
c1

max(z)2
+ c2

)
(12)

Here, z ∈ R
n is a vector containing the provided observations.

Minimizing the criterion c1 leads to an accurate interpolation
and minimizing c2 leads to a reliable estimation of the confidence
interval. However, the actual values of c1 and c2 may vary by

4 C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.els-journal.com Eng. Life Sci. 2016, 0, 1–12 www.biotecvisions.com

orders of magnitude that may lead to a bias. Hence, c1 is scaled
by the squared maximal observation value.

Equation (12) is minimized by subsequent application of,
first, the genetic algorithm implemented in the MATLAB
global optimization toolbox [38] as global optimizer, and
then the sequential quadratic programming algorithm imple-
mented in the MATLAB optimization toolbox [39] as local
optimizer.

2.7 Statistical identification of optimal regions

As described in Section 1.2, goal of the optimization is to max-
imize the measured GFP signal by varying the medium compo-
sition. However, noisy data make it difficult to identify optimal
composition(s). The acquired data are always associated with
some noise, and thus the identification of an optimal medium
composition is in consequence associated with some uncertainty.
Statistical hypothesis tests can help to overcome this problem,
as they are based on statistical properties such as expected value
and variance.

Such statistical hypothesis tests, e.g. Student t-test and z-test,
allow to compare two random variables and to decide if they are
significantly different from each other. In general, two variables
are considered to be significantly different if their expected values
differ with a probability of at least p = 1 − α. Typical values
for α, which is also referred to as significance level, are 0.10, 0.05,
and 0.01. An overview about statistical hypothesis tests can be
found in [40].

Although the Student t-test is often used for experiments
with small samples sizes, the z-test is better suited to be used in
combination with Kriging. It is suggested to apply the z-test on
random variables that follow a normal distribution and when the
associated variance σ2 is known [40]. In Kriging, it is generally
assumed that the output value Z(x) is normally distributed, and
Kriging provides an estimation of the prediction error variance
σ2

x = Var[Z(x) − Z ∗(x)], see eq. (8).
Since the optimization goal is to maximize the GFP signal, it

seems reasonable to avoid parameter values (i.e. medium com-
positions) that correspond to significantly smaller GFP signals
than the maximum that was found so far. Statistically speaking,
it is tested if the output prediction Z ∗(xi) at point xi is signifi-
cantly smaller than the maximal predicted GFP signal Z ∗(x̂op t).
The hypothesis H0 is consequently formulated as follows:

H0 : Z ∗ (xi) ≤ Z ∗ (
x̂op t

)
(13)

That is, the point of interest is significantly worse if H0 is accepted.
Following the framework of the z-test, the standard score zxi

is calculated as:

zxi = Z ∗ (xi) − Z ∗ (
x̂op t

)
σxi

(14)

With a given significance level α, the parameter set xi is consid-
ered to be “suboptimal” if zxi is smaller than the (1-α)-quantile
of the standard normal distribution. In this study, α was set to a
value of 0.01, i.e. a confidence of 99%.

3 Results and discussion

3.1 Optimization of medium composition

Despite having the possibility to conduct 48 experiments in
parallel, it is still needed to focus on a certain number of de-
sign variables in order to cope with the combinatorial explosion
mentioned earlier. The here used CgXII reference recipe com-
prises 16 components [41], which would lead to a total number
of 216 � 65000 experiments using a full factorial experimental
layout.

To narrow the window of design variables, it was decided
not to alter the following medium components: glucose as the
main carbon source fixed to 10 g/L, nonmetabolizable 3-(N-
morpholino)propanesulfonic acid (MOPS) to provide buffering
capacitiy, KH2PO4 and K2HPO4 providing also buffering ca-
pacity and serving as phosphate source, urea as basal nitrogen
source and pH-stabilizing agent, biotin for complementation of
biotin auxotrophy, protocatechuic acid (PCA) as iron chelating
agent. Thus, there are still nine medium components left for in-
vestigation, namely (NH4)2SO4, FeSO4 • 7 H2O, MnSO4 • H2O,
ZnSO4 • 7 H2O, CuSO4 • 5 H2O, NiCl2 • 6 H2O, CaCl2 • 2 H2O,
MgSO4 • 7 H2O, and CoCl2 • 6 H2O (cf. Supporting Infor-
mation Table S3). Additionally, Na2MoO4 • 2 H2O and H3BO3

were included as design variables, as those were described as
additives in another CgXII formulation [42]. The medium com-
ponents of interest (i.e. design variables) can be divided into
three groups:

First, (NH4)2SO4 as standard nitrogen source is a major nu-
trient. As mentioned before, the basal nitrogen source urea was
not altered, thus the nitrogen supply was expected not to be-
come growth limiting. In another study, modulating the ni-
trogen source was determined as promising target, although the
overall optimization goal was to maximize biomass-specific GFP
signal [15].

Second, FeSO4 • 7 H2O, MnSO4 • H2O, ZnSO4 • 7 H2O,
CuSO4 • 5 H2O, NiCl2 • 6 H2O, and CoCl2 • 6 H2O represent the
group of trace elements, which seem to be inherited from the first
publication of the CgXII medium recipe by Keilhauer et al. [41].
To add more variations of this theme, Na2MoO4 • 2 H2O
and H3BO3 were also investigated as mentioned
before.

MgSO4 • 7 H2O and CaCl2 • 2 H2O constitute the third
group, as those exceed clearly the concentration range of trace
elements and thus, their necessary presence to promote growth
is most likely from other nature as for trace elements. Ter-
amoto et al. reported that increased Ca2+ concentration cor-
relates with increased GFP and Amylase secretion using the Tat
pathway [43]. It was speculated that varying concentrations of
Mg2+ and Ca2+ show significant effects on secretion of GFP, de-
spite different conditions were used than by Teramoto et al. who
applied C. glutamicum R as background strain, medium con-
taining yeast extract and casamino acids, and CgR0949 as sig-
nal peptide. In this study, C. glutamicum ATCC13032, minimal
medium, and PhoD as signal peptide was employed. It should be
pointed out that even the choice of a signal peptide determines
secretion efficiency heavily and in a nonpredictable manner
[3, 44].
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Figure 1. (A) Time course of nor-
malized GFP signal during growth of
reference cultivation experiments in
one microbioreactor run (n = 16 bi-
ological replicates, depicted as mean
value ± SD). (B) Effect of investigated
medium components on GFP signal.
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3.2 Screening analysis

The initial experiments were designed such as to identify compo-
nents, here also referred to as design variables, with potentially
significant impact on the GFP signal. As described in Section 1.4,
classic design of experiment (DoE) is well suited for efficiently
estimating single and combinatorial effects. Therefore, DoE is
used for an initial screening in order to reduce the number of
medium components for further, more detailed, analysis. A frac-
tional factorial with 32 experiments was chosen, which allows an
analysis of main factor effects without confounding with pairwise
interaction. In order to determine biological reproducibility, 16
experiments were additionally run using the reference medium
CgXII. The complete experimental design can be found in the
Supporting Information.

The statistics of all 16 normalized GFP signal curves are de-
picted Fig. 1A. The relative standard deviation of the curves
increases with time but never exceeds 1.7%. Screening analysis
results are listed and visualized in Fig. 1B. The results indi-
cate that NH4

+ has a strong negative effect on GFP signal due
to lower biomass production, whereas Ca2+ and Mg2+ show a
positive effect on GFP signal. Thus, these three medium compo-
nents are investigated more in detail in an iterative optimization
procedure.

3.3 Iterative medium optimization

The experiments of the first iteration were planned such as
to extend the knowledge obtained by the initial screening by

investigating also potential interactions between the previously
identified medium components of influence. For sake of clar-
ity, all following concentrations refer to the concentrations used
in the original reference medium (CgXII), indicated by ×Ref.
Furthermore, since the screening revealed that NH4

+ has a sig-
nificant negative effect on the GFP-Signal, it was also of interest
if NH4

+ could be omitted. A full factorial experimental design
with eight experiments was applied. Concentration ranges for
Ca2+ and Mg2+ are chosen to be the same as in the screening
analysis, i.e. minimal concentration was 0.4 ×Ref and maximal
concentration was 2 ×Ref. For NH4

+, the concentrations were
set in the range of 0 ×Ref to 2 ×Ref. The GFP signal between
the sample points was estimated using Universal Kriging as de-
scribed in Section 2.3 (see Fig. 2). As predicted by the screening
analysis, Ca2+ and Mg2+ have a positive influence on the GFP
signal, with the effect of Ca2+ being more pronounced. Further-
more, the negative effect of NH4

+ was confirmed. Consequently,
by omitting NH4

+, the maximal GFP signal could be increased
by ca. 30% (from 1.03 to 1.36, see Fig. 2A and B). The Kriging
interpolations in Fig. 2A indicate that high concentrations of
Ca2+ and Mg2+ lead to high GFP signals. In order to validate this
hypothesis, the maximal concentrations of Ca2+ and Mg2+ were
doubled in the next experimental iteration.

Zimmermann [45] formulated two criteria that satisfy a
good experimental design for Ordinary Kriging: First, the de-
sign should be space filling for exploring the system and sec-
ond, the design should comprise some points in close proximity
for studying the dependency of the covariance between these
neighboring sample points. Following these two criteria, the new
experiments for the second iteration were designed using a full
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Figure 3. Contour plots (left column) and
3D plots (right column) of the Kriging-
interpolated GFP signal. Results of itera-
tions 3, 4, and 6 are shown in rows 1, 2,
and 3.

factorial in the upper right quarter of the extended parameter
space with one point located near to the maximal concentration
level of Ca2+ and Mg2+ in iteration 1, see Fig. 3A. Experimental
results and the Kriging interpolation of iteration 2 confirmed
the positive correlation of the GFP signal with Ca2+ and Mg2+.
Therefore, further enhancement of GFP signal was expected for
increased concentrations of both Ca2+ and Mg2+.

The experiments of the third iteration were planned in a
similar manner as in the second iteration: The maximal concen-
tration of Ca2+ and Mg2+ was again doubled and a full factorial
was placed in the upper right part of the new parameter space.
Experimental data of the iterations 1–3 and the associated Krig-
ing interpolation are presented in Fig. 3A and B. Apparently,

samples with a Mg2+ concentration of 8 ×Ref do not lead to
higher GFP signals compared to samples with a Mg2+ concentra-
tion of 4 ×Ref, indicating that an optimal concentration range
of Mg2+ has potentially been found. However, still no indication
for a saturation of the response of GFP for increasing Ca2+ con-
centrations could be found in the third iteration. Consequently,
the experimental design for iteration 4 was placed around the
potential optimal Mg2+ concentration (4 ×Ref) and an increase
in the Ca2+ concentration range from 9.6 ×Ref to 16 ×Ref.

The results of iteration 4 are visualized in Fig. 3C and D
and show that the GFP signal could be doubled compared
to the reference cultivations when applying a Ca2+ concentra-
tion of 16 ×Ref and a Mg2+ concentration of 3 ×Ref. Kriging
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interpolation predicts a steep increase in the GFP signal in the
Ca2+ concentration range from 8 ×Ref to 16 ×Ref. Although
a clear explanation for this phenomenon cannot be given, in-
creased Ca2+ concentrations have been described to enhance
recombinant protein secretion before [43]. Furthermore, the
optimum with respect to Mg2+ found in the previous iteration
could be confirmed.

Since an optimal Ca2+ concentration was not detected yet, the
experimental design from iteration 4 was again shifted toward a
higher Ca2+ concentration range in iteration 5. That is, Ca2+ con-
centration was varied in a range from 19.2 ×Ref to 32 ×Ref, and
range of Mg2+ was not changed due to the confirmed optimum.
Experiments of iteration 5 and associated Kriging interpolation
gave first indications for a limitation of the positive effect of Ca2+

on GFP signal (Fig. 3E and F).
In order to verify this finding, the experimental plan for iter-

ation 6 was constructed likewise as for iterations 4 and 5 by dou-
bling the concentration range for Ca2+, see Fig. 3E. Experimental
data from iterations 1–6 and the associated Kriging interpolation
are depicted in Fig. 3F. The Kriging interpolation clearly shows
a flattening of the GFP signal at high Ca2+ concentrations. As
will be discussed in more detail in Section 3.6, the plateau is
most likely caused by precipitation of solid Ca-complexes in
combination with other medium components, which leads to
limited accessibility of soluble Ca2+ ions to the cells. Hence,

no further increase in GFP signal is expected for higher Ca2+

concentrations due to the formation of solid non-bioavailable
Ca-complexes and not due to saturated uptake of Ca2+ by the
biological system. Moreover, it appears that the negative effect
of high Mg2+ concentrations can be neutralized by high Ca2+

concentrations.
The final iteration 7 was planned with the intention to ex-

plore the boundaries of the parameter space, i.e. for the applied
minimal and maximal Mg2+ concentrations. Results are shown
in Fig. 4. The Kriging interpolation reveals that very low Mg2+

concentrations lead to a significant decrease in the GFP signal,
especially in the case of high Ca2+ concentrations. Consequently,
the data of Fig. 4 justifies the assumption that both cations Ca2+

and Mg2+ cannot replace each other.

3.4 Identifying optimal parameter regions

The results of Section 3.3 show that an optimal region with
respect to Ca2+ and Mg2+ concentration exists. Identifying the
boundaries of this region is a nontrivial task since noisy measure-
ments and low number of data points may lead to inaccuracies
in the Kriging prediction model, but Kriging provides an esti-
mation of the prediction error. This allows to make a statement
about the significance of differences in predicted output signals.
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In Section 2.6, a method is described that is based on a z-test
and uses the Kriging interpolation as well as its estimated predic-
tion error. Figure 5 visualizes the results of the z-test: The blue
region indicates medium compositions that lead to significantly
lower GFP signals than the best prediction. Parameter values in
the red region will most likely lead to high GFP signals. The iden-
tified optimal region is located in the upper right corner of the
investigated design space that is, high Mg2+ and Ca2+ concentra-
tions. It is not expected that higher concentrations of Mg2+ and
Ca2+ ions will lead to further improvements of GFP secretion.
Considering Mg2+, the results of iteration 3 showed that for a
low Ca2+ concentration, high amounts of Mg2+ lead eventually
to decreasing values in the GFP signal. It seems likely that this
also holds for high Ca2+ concentration, although the positive
effect is believed to be limited by precipitation of Ca2+ salts.

3.5 Validation screening

The identified optimal concentrations for Ca2+ and Mg2+ cause
a doubled GFP signal compared to the reference composition of
CgXII medium. To confirm the optimized medium composition
finally, a validation screening was conducted to show that the
results of the screening analysis in Section 3.2 are also valid with
optimized concentrations of Ca2+ and Mg2+. Consequently, all
initial medium components of interest were varied except for
Ca2+ and Mg2+. These were fixed at values of Ca2+

opt = 32 ×Ref

and Mg2+
opt= 6.8 ×Ref that yield optimal GFP signals and re-

sult in feasible pipetting volumes for the liquid handling system
(compare Section 2.2). This sample point is part of the predicted
optimal region in Section 3.4, near the left border (see Fig. 5), as
higher Ca2+ concentrations are not expected to cause a signif-
icant increase in GFP signal. The applied fractional factorial is
similar to the experimental design of the initial screening with a
resolution of IV and allows an analysis of main factor effects with-
out confounding with pairwise interaction. Additionally, eleven
samples were placed at the defined optimal point for assessing
biological reproducibility.

Figure 6A depicts the statistics of ten normalized GFP signal
curves at the optimal point. The remaining eleventh curve was
excluded as an experimental outlier as it differed significantly
from the other curves. It can be seen that the mean normalized
GFP value from the cultivations with optimized Ca2+ and Mg2+

concentration is doubled compared to the reference cultivations.
The mean value of the curves converges to 2 ×Ref. The relative
standard deviation of the GFP signal increases with time but
never exceeds 3.7%, which is below the maximum standard de-
viation (5%) of the BioLector device measurements, according
to manufacturer data.

The screening analysis results are visualized in Fig. 6B and
indicate that NH4

+ still has a strong negative effect on the GFP
signal. Remaining components seem to have a very low or no
effect. It can consequently be concluded that changes in Ca2+

and Mg2+ concentrations do not affect the impact of the other
medium components on the GFP signal.

For the used expression strain, it was reported that the ma-
jority of the mature GFP is located extracellularly [29]. Conse-
quently, the GFP fluorescence of the fermentation suspension
can be considered to be appropriate for capturing the amount of

A

B

C

Figure 6. (A) Comparison normalized GFP signal over time for
reference cultivations (n = 16 replicates) and cultivations with
optimized medium composition as determined after iterative op-
timization supported by Kriging interpolation (n = 10 replicates).
Mean values ± standard deviation are shown. (B) Impact of
medium components on GFP signal at optimized medium com-
position. (C, top) SDS-page analysis of cultivation supernatants in
reference medium (n = 5) and in optimized medium (n = 6), GFP
band (26 kDa) is indicated by an arrow. (C, bottom) Comparison
of GFP fluorescence from whole cultivation broth and supernatant
after cultivation and protein content in supernatant, made from
reference (n = 6) and optimized medium (n = 6).
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Figure 7. Kriging interpolation of functional relationship between
medium component Ca2+ and Mg2+ and backscatter as indicator
for precipitation.

secreted GFP. However, additional analytics have been conducted
from a separate cultivation run with six biological replicates for
both reference and optimized medium composition. As depicted
in Fig. 6C, both fluorescence and protein content of cultivation
supernatants from optimized cultivations have doubled com-
pared to those from reference medium. This is in agreement
with GFP signals from the whole fermentation suspension. In-
deed, analysis by SDS-page verifies that the amount of secreted
GFP is higher for the optimized medium.

3.6 Interpretation of results

Response data of the optimized medium composition was reeval-
uated to give indication of the previously speculated underlying
reason of the limited effect of increased Ca2+ and Mg2+ addi-
tion. In cultivation wells with high CaCl2 concentrations (ap-
proximately 0.1–5.5 mM, i.e. � 10 to 50 ×Ref), white turbid-
ity of the medium was observed by optical inspection. There-
fore, it can be assumed that Ca2+ forms complexes with other
medium components like PO4

3−, which results in precipitation
as soon as Ca2+ concentration reaches a certain threshold in
CgXII medium. Consequently, associated calcium ions are tem-
porarily not accessible to the microorganism, but may redissolve
during growth when soluble Ca2+ is incorporated into increas-
ing biomass. However, associated reduction in turbidity will be
covered by increasing turbidity due to biomass formation.

For the optimized medium, only concentrations of Ca2+ and
Mg2+ have been increased, thus cultivation data for all iterations
regarding initial backscatter have been related to the applied con-
centration of those cations. We used Kriging for interpolating the
functional relationship between the concentration of Ca2+ and
Mg2+ and backscatter. As illustrated in Fig. 7, the backscatter
shows a positive correlation with increasing Ca2+ concentration,
which is most likely caused by precipitation. Mg2+ shows only a
positive influence for high Ca2+ concentration. Thus, the con-

clusion is hardened by combinatorial output from qualitative
optical properties showing turbidity of medium, experimental
output in terms of limited effect of increased Ca2+ addition on
GFP secretion and statistical evaluation of presumed correlation
between initial backscatter and Ca2+ concentration.

Despite the verified finding that increased concentrations of
Ca2+ promote enhanced secretion of recombinant GFP in C.
glutamicum, the underlying reason is not clear. In the following,
three hypotheses are presented:

In some cases, an increase of Ca2+ ions in the medium has
been reported to increase the amount of active (i.e. correctly
folded) secreted protein. This phenomenon was explained by
the need for divalent cations to support correct folding of the
target protein that incorporates those cations as cofactor. In case
of GFP, such an effect can be ruled out here, as GFP does not
need divalent cations as folding cofactors [46].

Another hypothesis considers the cell wall as several layers of
a molecular sieve acting as a depth filter, whose pores are perme-
able for endogenous extracellular proteins due to evolutionary
adaption. This may not be the case for secretory heterologous
proteins during their passage to the outside of the cell, but the
incorporation of Ca2+ may enlarge the pore size of this assumed
depth filter around the cell which the facilitates the release of
recombinant GFP.

Furthermore, Ca2+ ions might neutralize negative charges
of the “continuum of anionic charge” formed by lipoteichonic
acids and wall teichonic acids found in the cell wall of gram
positives [47]. In combination with indications that GFP
presents positive charges on the outer side [48], reduction of
electrostatic interaction could facilitate the passage of GFP to
the extracellular medium.

For Bacillus brevis it was shown that with increasing concen-
trations of MgSO4, MgCl2, or CaCl2 (up to 5 mM) the expres-
sion of certain cell wall proteins is remarkably decreased [49].
In our study, we identified optimal concentrations of � 7 mM
(6.8 ×Ref) for MgSO4 • 7 H2O and � 2.9 mM (32 ×Ref) of
CaCl2 • H2O, which are in the same order of magnitude. Maybe
a similar phenomenon as described for B. brevis occurs also in
C. glutamicum as it is also a gram-positive organism. Thus, it
is speculated that a high load of Ca2+ causes downregulation of
cell wall protein synthesis and induces a “leaky” cell wall.

However, the last two assumptions imply that fluorescence
of cell wall retained GFP is shadowed compared to GFP located
in the medium and clearly, the presented hypotheses remain
speculative.

4 Concluding remarks

In this study, we have presented an experimental optimization
strategy that merges three different aspects: (1) Current tech-
nology of microbioreactor systems, (2) lab automation, and (3)
Kriging-based experimental analysis and design. The overall op-
timization goal was defined by maximization of the product titer
of secreted GFP, synthesized by C. glutamicum, through variation
of media component concentrations.

Starting with 11 media components, a fractional factorial-
based screening analysis was performed in order to reduce the
number of design parameters. While too high concentrations of
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NH4
+ had a strong negative impact, only the divalent metal ions

Ca2+ and Mg2+ showed a clear positive effect on the performance
criterion.

In an iterative Kriging-based procedure, the functional rela-
tionship between the divalent metal ions and the protein titer
was investigated in more detail. In each iteration, Kriging was
used for approximating and visualizing this relationship. Based
on Kriging estimation, hypotheses were formulated and used for
planning new experiments.

Instead of defining one optimal point, an optimal parameter
region was identified based on a statistical hypothesis test. In
this region, high protein titer values are expected. For one of
the optimal parameter sets, it was verified that the results of the
initial screening are still valid and consequently, the optimization
based on only two components is justified.

As major result, by increasing the Ca2+ and Mg2+ concen-
trations, the performance criterion could be more than doubled
compared to its initial value. However, the positive effect of both
components is limited. In case of Ca2+, the limitation was caused
by precipitation.

Compared to other statistical optimization procedures, such
as response surface by polynomial approximation, the suggested
Kriging-based optimization approach has the advantage that all
successively collected data are used. This allows a global ap-
proximation of the dependency of the performance criterion
on the input variables and consequently a robust optimization.
Moreover, Kriging is well suited to approximate even highly
nonlinear functional relationships and the provided prediction-
uncertainty can be used for statistical analysis. The presented
workflow can easily be adapted to other experimental settings,
e.g. bioprocess operation or genetic engineering of recombinant
expression hosts.

Practical application

Advanced microbioreactor systems, lab automation,
Kriging-based data analysis, and experimental design are
combined for process optimization. An iterative strategy al-
lows to effectively cope with the combinatorial explosion of
impact factors typically encountered in optimizing indus-
trial production processes. The approach is demonstrated
by maximizing the product titer of an example cultivation
through variation of growth medium composition.
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Nomenclature

Z [-] Output/process variable
Z∗ [-] Kriging estimation
x [-] Input/design variable
x̂ [-] Point of interest
Cov [-] Covariance
Var [-] Variance
C [-] Covariance matrix
H0 [-] Null hypothesis
i×Ref [-] i-times reference concentration of the CgXII medium
σ(x) [-] Standard deviation of the random process
m(x) [-] Mean/trend function of random process
λ [-] Kriging coefficient
α [-] Significance level
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[6] Pinsach, J., de Mas, C., López-Santı́n, J., Induction strategies in
fed-batch cultures for recombinant protein production in Es-
cherichia coli: Application to rhamnulose 1-phosphate aldolase.
Biochem. Eng. J. 2008, 41, 181–187.

[7] Jian Li, Z., Zhao, Q., Liang, H., Jiang, S. et al., Control of re-
combinant human endostatin production in fed-batch cultures
of Pichia pastoris using the methanol feeding rate. Biotechnol.
Lett. 2002, 24, 1631–1635.

[8] Puertas, J., Ruiz, J., de la Vega, M., Lorenzo, J. et al., Influence
of specific growth rate over the secretory expression of recom-
binant potato carboxypeptidase inhibitor in fed-batch cultures
of Escherichia coli. Proc. Biochem. 2010, 45, 1334–1341.
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Abstract 

Background: Even though microalgae-derived biodiesel has regained interest within the last decade, industrial pro-

duction is still challenging for economic reasons. Besides reactor design, as well as value chain and strain engineering, 

laborious and slow early-stage parameter optimization represents a major drawback.

Results: The present study introduces a framework for the accelerated development of phototrophic bioprocesses. A 

state-of-the-art micro-photobioreactor supported by a liquid-handling robot for automated medium preparation and 

product quantification was used. To take full advantage of the technology’s experimental capacity, Kriging-assisted 

experimental design was integrated to enable highly efficient execution of screening applications. The resulting 

platform was used for medium optimization of a lipid production process using Chlorella vulgaris toward maximum 

volumetric productivity. Within only four experimental rounds, lipid production was increased approximately three-

fold to 212 ± 11 mg L−1 d−1. Besides nitrogen availability as a key parameter, magnesium, calcium and various trace 

elements were shown to be of crucial importance. Here, synergistic multi-parameter interactions as revealed by the 

experimental design introduced significant further optimization potential.

Conclusions: The integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted 

experimental design proved to be a fruitful tool for the accelerated development of phototrophic bioprocesses. By 

means of the proposed technology, the targeted optimization task was conducted in a very timely and material-

efficient manner.
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Background

By virtue of significant advantages offered over agricul-

tural crops [1–6], microalgae are generally accepted as 

promising feedstock for bio-economy applications [7–9]. 

However, until now, their industrial exploitation remains 

mostly uneconomic, especially when lower-priced 

products like biofuels are targeted [10]. Currently, the 

integrated utilization of biomass is intensively inves-

tigated as a promising concept to improve the overall 

efficiency in terms of cost and energy [9, 11, 12]. In this 

context, intracellular lipids represent a compound class 

of special interest as they can be either transesterificated 

to biodiesel [7] or boost the nutritional quality of algae 

for functional food applications [13].

Regarding phototrophic bioprocess development, 

early-stage strain and parameter screening are of cru-

cial importance to the successful set-up of economic 
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processes [14]. Today, these aspects are typically studied 

by means of only marginally parallelized reactor systems 

like shake flasks, test tubes or even single-vessel reactors 

[15–18]. Consequently, experimental throughput is fairly 

limited rendering screening tasks rather laborious and 

highly time consuming. Only recently a strong demand 

for high throughput micro-photobioreactors has been 

identified, based on which some prototype systems have 

been developed [19–27]. To take full advantage of photo-

trophic microscale cultivation, supporting methodologies 

and technologies, such as simplified strain maintenance 

[28], high throughput analytics [29, 30], and automated 

processing [20, 31], are needed.

In the medium term, these initial developments and 

especially further progress in high throughput technology 

and laboratory automation will clearly boost the efficiency 

of phototrophic process development. Phototrophic pro-

cesses are characterized by their intrinsic complexity 

induced by a high number of potentially interacting input 

variables. Hence, experimental capacities, i.e., mainly cul-

tivation, will be always a crucial factor due to the trade-

off between throughput and the necessary laboratory 

resources. Current micro-photobioreactors mainly rely 

on standardized microtiter plates. Thus, a further rise of 

cultivation capacity by intensifying parallelization would 

need to be based on scale out and inevitably be accompa-

nied by increasing cost. Hence, an alternative strategy to 

focus cultivation activities on only the most informative 

experiments is the ultimate solution to tackle the omni-

present challenge of restricted experimental throughput.

One approach to achieve this efficiently, which is 

already well-established for microbial bioprocess devel-

opment [32], is the use of Design of Experiments (DoE) 

to focus on experiments providing the highest informa-

tion content in a targeted parameter space. Despite hav-

ing been established during the early twentieth century 

[33], there is still ongoing research into this methodology 

[34]. This approach is regarded to be particularly suit-

able to deal with the combinatorial explosion typically 

occurring when investigating multi-parameter relations 

[35]. Moreover, DoE overcomes a critical limitation of 

“conventional” one-factor-at-a-time experiments, as such 

approaches often fail in locating global optima by not 

taking potentially synergistic or antagonistic interactions 

of input variables into account [36]. Regarding bioprocess 

development, the most prominent application of DoE is 

the culture media optimization [32]. During such tasks, 

the omnipresent interactions between single compounds 

render locating a global optimum by “conventional” 

experimental planning to chance.

In the above context, the current study aims at the 

combination of emerging technologies for parallelized 

microscale cultivation and analytics to phototrophic 

microorganisms with elaborate experimental design as 

has previously been fruitfully applied for heterotrophic 

systems by [37]. Thereby, an integrated framework for the 

accelerated development of phototrophic bioprocesses 

is to be set up. Optimizing medium composition toward 

maximized lipid productivity of the unicellular microalga 

Chlorella vulgaris was chosen as a model process for the 

above purpose.

Methods

Chemicals, strain
All chemicals were purchased either from Sigma-Aldrich 

(Steinheim/Germany) or Roth (Karlsruhe/Germany) and 

were of analytical grade. The unicellular microalga C. vul-
garis 211-11b [38], purchased from the Culture Collection 

of Algae at the University of Göttingen (Germany), was 

used throughout all cultivation experiments.

Medium
Cultivations were carried out in variations of an enriched 

Bold’s Basal Medium [39] prepared from stock solutions. 

The previously established reference medium [27, 28] was 

composed of chemicals as follows: 9.76  g  L−1 2-(N-mor-

pholino)ethanesulfonic acid (MES), 0.6  g  L−1 K2HPO4, 

1.4  g  L−1 KH2PO4, 1.5  g  L−1 NaNO3, 187.5  mg  L−1 

MgSO4·7  H2O, 6.25  mg  L−1 NaCl, 125  mg  L−1 

CaCl2·2  H2O, 17.64  mg  L−1 ZnSO4·7  H2O, 2.88  mg  L−1 

MnCl2·4 H2O, 2.4 mg L−1 Na2MoO4·2 H2O, 3.14 mg L−1 

CuSO4·5  H2O, 0.94  mg  L−1 CoSO4·7  H2O, 22.8  mg  L−1 

H3BO3, 9.96  mg  L−1 FeSO4·7  H2O, 3.68  mg  L−1 H2SO4, 

100  mg  L−1 Na2EDTA·2  H2O, 62  mg  L−1 KOH and 

100 mg L−1 penicillin-G sodium salt. The pH value was set 

to 6.5 with 5 M NaOH. Ultrapure water (type 1) was used 

for the preparation of all cultivation media.

During optimization experiments, the medium com-

position was varied according to the respective experi-

mental plan by adjusting the applied volumes of the 

individual stock solutions. These media variants were 

prepared by a liquid-handling platform as previously 

described in literature. Medium preparation was carried 

out in a fully automated manner, while a surrounding 

laminar flow hood ensured sterile conditions [34, 40, 41]. 

Media were prepared at 2.5 mL scale in an MTP-R-48-B 

“Round Well Plate” (m2p-labs, Baesweiler/Germany) 

under continuous shaking at 500  rpm on an integrated 

Teleshake  95 (Inheco, Martinsried/Germany), while 

the minimum volume to be pipetted was set to 10  μL. 

Thereby, achieving sufficiently high accuracy (±0.3%) 

and precision (±0.3%) could be ensured [34]. Subse-

quently, 950 μL of each medium was transferred to a well 

of an MTP-48-B “FlowerPlate®” (m2p-labs, Baesweiler/

Germany) in which the cultivation took place (see “Main 

cultivation” section).
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Strain maintenance and pre-cultivation
Chlorella vulgaris was maintained as glucose-adapted 

cryocultures. Preserved cells were re-adapted to light 

during phototrophic pre-cultivation in illuminated shake 

flasks. A detailed description of strain maintenance and 

pre-cultivation strategy can be obtained from [28]. After 

60  h of incubation, the cells were harvested by 5  min 

centrifugation at 3939×g and 4  °C in a Labofuge 400R 

(Heraeus Instruments, Hanau/Germany). The super-

natant was discarded, and the pellet re-suspended in 

0.9% (w v−1) NaCl to a biovolume of 2 μL mL−1 to gener-

ate the stock solution required for the inoculation of sub-

sequent main cultivations.

Main cultivation
Main cultivations were conducted in pre-sterilized, dis-

posable 48-well MTP-48-B “FlowerPlates®” (m2p-labs, 

Baesweiler/Germany). Each well was filled with 950  μL 

of medium and inoculated to a biovolume of 0.1 μL mL−1 

with 50  μL of the inoculation stock solution generated 

as described in “Strain maintenance and pre-cultivation” 

section. The plates were sealed using an F-R48-10 “per-

forated sealing foil for evaporation reduction” (m2p-labs, 

Baesweiler/Germany), pasted over with an F-GP-AB10 

“gas-permeable seal” (m2p-labs, Baesweiler/Germany).

The microtiter plates were incubated using a micro-

photobioreactor prototype. The system relies on bottom-

side illumination with a set of blue and white LEDs and 

indirect temperature control via placement of the plates 

in a tempered incubation chamber. A detailed description 

and the schematic representation of the system are given 

in [27]. The following cultivation conditions were applied: 

25  °C, continuous shaking at 1200  rpm, 3  mm shaking 

diameter, 2.5% (v v−1) CO2, 200 μmol m−2 s−1 photon flux 

density (constant), and ≥85% relative humidity.

Biomass detection
Optical density (OD) was acquired using 10-mm polysty-

rene semi-micro cuvettes (ratiolab, Dreieich/Germany) 

and an UV-1800 photometer (Shimadzu, Duisburg/Ger-

many) at 750 nm, while desalted water served as a blank. 

If needed, samples were diluted to OD750  ≤  0.3 using 

0.9% (w v−1) NaCl solution to fit the linear range of the 

photometer.

The biovolume was measured taking advantage of a 

particle counter (MultiSizer 3, Beckman Coulter, Krefeld/

Germany) using the “Coulter principle” [42]. The device 

was equipped with a 30  μm capillary which had been 

calibrated using a suspension of 3 μm latex beads (Beck-

man Coulter, Krefeld/Germany) according to the manu-

facturer’s specification and was operated in volumetric 

control mode. Prior to measurement, cell suspensions 

were diluted to OD750 ≤ 0.025 in CASYton buffer (Omni 

Life Science, Bremen/Germany), and only particles in the 

range of 1.8–14 μm were analyzed.

The cell dry weight was determined by means of gravim-

etry. Culture liquid from two replicate wells of a microti-

ter plate was pooled to obtain sufficient sample amounts 

for the analysis. Cells were spun down in pre-dried and 

weighed 2-mL reaction tubes for 5  min at 16,060×g 

(Biofuge Pico, Heraeus Instruments, Hanau/Germany). 

The supernatants were discarded and the pellets freeze-

dried in an LT-105 freeze dryer (Christ Gefriertrocknung-

sanlagen, Osterode am Harz/Germany) until attaining a 

constant weight. After acclimatization to room tempera-

ture in a desiccator, weighing was repeated, and the cell 

dry weight was derived from the resulting mass difference.

Lipid quantification
The intracellular accumulation of neutral lipids was 

quantitatively monitored by means of an automated 

high throughput Nile red staining assay as previously 

described in [29].

Nitrate quantification
Cells were removed by filtration using 0.2  μm cellulose 

acetate syringe filters (DIA-Nielsen, Düren/Germany), 

and the cell-free supernatant was stored at −20 °C prior 

to analysis, if needed. Nitrate was quantified using the 

Spectroquant 1.09713.0002 nitrate test (Merck, Darm-

stadt/Germany) according to the manufacturer’s specifi-

cations, scaled down to one quarter of the recommended 

volume. Supernatants were pre-diluted with desalted 

water to fit the linear range of the assay, if needed. The 

measurements were conducted in UV semi-micro 

cuvettes (Brand, Wertheim/Germany) using an UV-1800 

photometer (Shimadzu, Duisburg/Germany).

Acquisition of fatty acid fingerprints
Lyophilized biomass from cell dry weight determination 

(see Sect. 2.5) was in-situ transesterificated using acidic 

methanol [10%  (w  w−1) H2SO4], and the resulting fatty 

acid methyl esters were subsequently extracted with hep-

tane. Semi-quantitative fingerprints were accessed by gas 

chromatography time-of-flight mass spectrometry of the 

extracts. A detailed description of the methodology can 

be obtained from [43].

Experimental design
Media composition was optimized with respect to lipid 

productivity using a Design of Experiments methodol-

ogy. The applied optimization strategy was adopted from 

[34]. Initially, fractional and full  factorial experimental 

designs were applied for estimating single  component 

effects and combinatorial interactions. Myers et  al. [44] 

provide a good overview of these classical DoE methods.
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Based on the initially collected data, the statistically 

more advanced concept of Kriging was applied for data 

analysis, visualization, and for designing further experi-

ments with potentially improved lipid productivity. Krig-

ing is an interpolation method that provides unbiased 

approximations of the underlying nonlinear functional 

relationships between media composition and lipid pro-

ductivity with minimal prediction error. This method 

originates in geostatistics and has recently been adapted 

for optimizing biotechnology processes [34]. Further 

mathematical details of the Kriging method can be found 

in the monograph of Cressie [45]. The statistical analy-

sis tools applied in this study are part of the open source 

Kriging toolkit “KriKit”, which can be freely downloaded 

at https://github.com/modsim/KriKit.

Expected Improvement
Given a Kriging model of the current dataset, further 

experiments were designed to maximize the Expected 

Improvement (EI). This experimental design strategy 

seeks a compromise between maximizing lipid produc-

tivity and reducing prediction uncertainty of the Kriging 

approximation in relevant regions of the parameter space 

[46]. In a comparative study, EI has been found to outper-

form other sampling strategies in Kriging-based optimi-

zation [47].

In sequential optimization, new experiments are typi-

cally planned at maximal EI. Parallel experiments, as in 

the present study, are most efficiently planned by sam-

pling from the EI distribution. In a non-deterministic 

sampling process, using the Markov Chain Monte Carlo 

(MCMC) method, new experiments are selected with 

probability proportional to their EI. Naturally, experi-

ments with high EI are preferred over experiments with 

lower EI, which nonetheless have a reduced chance of 

being selected, while experiments with zero EI are strictly 

excluded. Freier et  al. have demonstrated that MCMC 

sampling can significantly reduce the number of required 

experiments in process optimization [48]. In the present 

study, the Delay Rejection Adaptive Metropolis algorithm 

[49] was applied with a chain length of 10,000 elements, 

of which the first 1000 are discarded (burn in phase of 

the MCMC method).

Results and discussion

Choice of relevant media components
The medium targeted for optimization incorporates 17 dif-

ferent components (see “Medium”) with phosphate salts 

counted as one compound due to their pH-dependent equi-

librium. This number is too high to efficiently perform the 

experimental study with a manageable number of experi-

ments, since a full factorial design with two concentration 

levels would result in 217 ≈ 130,000 experiments. In order 

to keep the number of components of interest, preselection 

was completed based on the literature information. Table 1 

summarizes the known biological effects of the individual 

components. Penicillin-G concentration was kept constant 

under all conditions, and all trace elements were clustered 

to one single input variable as a similar effect on cultivation 

was expected. Sulfuric acid and potassium hydroxide had to 

be varied together with FeSO4 and Na2EDTA, respectively, 

as they were needed to keep the latter two components 

dissolved in their stock solutions. Thereby, the number of 

input variables was reduced by almost 50% from 17 to 9.

Kriging-assisted optimization
Fractional factorial
Starting with the nine remaining media components of 

interest, a full factorial design would require 29  ≈  500 

experiments. Making full use of 48-fold parallelized micr-

otiter plate cultivation (see “Main cultivation” section), 

this leads to a total of 11 experimental runs, equivalent to 

4 months of cultivation time. In 12-fold parallelized shake 

flasks, the experiments would even take 14 months. Yet, 

such time scales are clearly far from feasible, underlining 

the necessity to effectively reduce the experimental effort.

Fractional factorial designs allow the reduction of the 

number of experiments by estimating only single  com-

ponent effects and a subset of combinatorial effects 

[44]. The chosen design (see Additional file  1 for both, 

design and corresponding measurement data) com-

prises 37 experiments, five of which represent the refer-

ence point using the enBBMref medium (see Additional 

file 2 for medium composition). Taking reference points 

into account allows for the investigation of measure-

ment noise and normalization. The other experiments 

allowed for a statistical analysis of the effect of single 

components, as well as the interaction with magnesium 

ions. The interaction with this divalent metal ion was 

analyzed, as it is reported to be an effector of the acetyl-

CoA carboxylase, an enzyme essential for lipid biosyn-

thesis responsible for the initial step of carbon dioxide 

fixation to malonyl-CoA (see Table 1). An overview of the 

functionality of this enzyme complex and its regulation 

is given by Ohlrogge and Browse [67]. Thus, any interac-

tions with this input variable are of special interest with 

respect to product accumulation in the cells.

Figure 1a shows the resulting statistical analysis of the 

fractional factorial experiments. The green bars indi-

cate the expected effect of varying the medium concen-

trations between their minimal and maximal values (see 

Additional file 1). The error bars indicate the uncertainty 

of the estimations. In the following, the main and com-

binatorial effects of the components are checked for sig-

nificance using a t test with a significance level of p = 0.1. 

Using a lower significance level would increase the risk of 
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false negatives, i.e., excluding relevant components from 

the remaining study. The diagram shows that an increase 

in the concentration of NaNO3 has a significant negative 

effect on lipid productivity. On the other hand, an increase 

in the trace element’s concentration results in a significant 

(p  <  0.1, t test) productivity improvement. Furthermore, 

the analysis indicates a positive tendency with the increas-

ing CaCl2 concentration and the lowering EDTA concen-

tration. However, because of measurement noise and the 

comparably low number of experiments, the uncertainty 

of the estimation is relatively high and leads to no reliable 

statement about the effects of CaCl2 and EDTA, respec-

tively. Similarly, this holds true for MgSO4, but here, the 

pairwise interaction with another component was addi-

tionally investigated. As shown in Additional file 3, a sig-

nificant negative combinatorial effect was identified with 

the sodium salts, NaNO3 and NaCl.

For visual inspection of the negative combinatorial 

effect, a Kriging model was constructed based on the 

given data. The predicted functional relationship between 

MgSO4, NaNO3, and the lipid productivity is displayed in 

Fig. 1b. In case of low NaNO3 concentration, the interpo-

lation reveals a positive correlation between an increase 

in MgSO4 and that of the performance indicator. With 

the increasing NaNO3 concentration, this positive effect 

is weakened.

In conclusion, significant effects of NaNO3 and the 

trace elements were identified, as well as positive ten-

dencies of MgSO4 and CaCl2. Furthermore, the effect of 

MgSO4 appears to depend on the sodium salts, NaNO3 

and NaCl. The remaining components have only low 

potential to affect the lipid productivity and were thus 

excluded from further analysis.

Full factorial
In order to verify the observed tendencies and to inves-

tigate potential pairwise or higher combinatorial effects, 

a full factorial design was constructed for the remaining 

five input variables: NaNO3, MgSO4, CaCl2, NaCl, and 

the clustered trace elements. This design again comprises 

five reference points and 32 experiments with minimal/

maximal concentration (see Additional file  4 for the 

individual designs and the corresponding measurement 

data).

Figure 2a shows the updated statistical results after per-

forming the full factorial design. The previously observed 

effects of NaNO3 and the trace elements were confirmed. 

The positive tendency of CaCl2 turned out to be signifi-

cant, while the effect of NaCl remained insignificant. 

However, the interaction of MgSO4 with the sodium salts 

could be investigated in more detail. Figure 2b shows the 

opposing effect of MgSO4 dependent on NaNO3. This 

Table 1 Initial evaluation of the medium components’ potentials for the optimization of lipid productivity

a All trace elements were clustered to one single input variable
b Varied together with FeSO4 as provided in one single stock solution
c Varied together with Na2EDTA as provided in one single stock solution

Component Evaluation Reference Variation

CaCl2 Versatile effector in plant cells; reported to be essential for induction of lipid synthesis [50–52] Yes

FeSO4 Influence on growth and lipid metabolism reported [51, 53–55] Yes

H2SO4 Sulfur supply ensured by sulfate anions from diverse other medium components; never-

theless varied as provided together with FeSO4 in one stock solution

Yesb

K2HPO4/KH2PO4 Essential phosphorus source (nucleic acid synthesis) [54] Yes

KOH Potassium excess by phosphate salts; nevertheless varied as provided together with 

Na2EDTA in one stock solution

Yesc

MES Trade-off between osmotic inhibition and buffer capacity; alkaline pH may inhibit cell 

cycle

[56] Yes

MgSO4 Influence on growth and lipid production reported; effector of acetyl-CoA carboxylase, 

an essential enzyme during lipid biosynthesis; central atom of chlorophyll

[51, 57, 58] Yes

NaCl Reported to increase lipid production; excess may cause metabolic burden (ATP 

dependent sodium exporters) and thus inhibit growth

[59, 60] Yes

Na2EDTA Commonly used metal chelator; excess may cause growth repression due to ion deple-

tion

[51, 55] Yes

NaNO3 Essential nitrogen source (protein synthesis) [54] Yes

Penicillin-G Support of long-time sterile conditions; not metabolized (data not shown) No

Trace elements (CoSO4, CuSO4, 

H3BO3, MnCl2, Na2MoO4, 

ZnSO4)

Numerous studies about wastewater detoxification available, but only limited informa-

tion concerning metabolism and lipid production; general pattern: little amounts 

essential, but high level cytotoxic (e.g., inhibition of photosynthesis); thus clustered to 

one input variable

[61–66] Yesa
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interaction leads to a non-distinguishable single compo-

nent effect of MgSO4, as indicated in Fig. 2a. The analy-

sis also revealed a negative interaction between CaCl2 

and the trace elements, as indicated in the screening plot 

shown in Additional file 5.

Locating optimal medium composition
In “Full factorial” section, single and combinatorial 

effects of the media components were investigated on 

the basis of a full factorial design providing a rough esti-

mate about optimal medium. The goal of the next step 

was to examine limitations of the particular effects and 

to identify potential optimal media compositions. To 

achieve this, the minimum and maximum concentrations 

were adjusted, and a more complex experimental design 

scheme was applied, comprising several nested factorial 

designs (see Additional file  6 for the full experimental 

design including the corresponding measurement data).

The maximum concentration of NaNO3 was lowered 

from 1.7 × Ref to 1 × Ref. The upper bound of the con-

centration of the clustered trace elements was increased 

by 50% to 3.75 × Ref. The concentration of CaCl2 could 

not be increased, as various types of precipitation effects 

were observed that distorted lipid analysis (see Addi-

tional file 7).

However, MgSO4 was varied over three levels, as illus-

trated in Fig.  3a. For each level, the concentrations of 

NaNO3, CaCl2, and trace elements were distributed using 

a full factorial design. For the intermediate concentration of 

MgSO4, the remaining components were varied only over 

half of their total ranges. A center point was located in each 

of these full factorial cubes. An additional nine points were 

space filling distributed over the edges of the cubes. In total, 

39 experiments were performed and analyzed, including 

four reference replicates.

Figure 3b shows the Kriging interpolation based on all 

the data available after the third round of experiments. 

The figure shows three contour plots where the third 

component was fixed to the front, bottom–left corner 

of the inner cube as shown in Fig. 3a. The contour plots 

clearly show an interaction of the trace elements with 

NaNO3 and CaCl2, whereas MgSO4 influences the lipid 

productivity only slightly positively. Moreover, an opti-

mal region for the medium composition can be identi-

fied around MgSO4  =  3.25  ×  Ref, CaCl2  =  1.5  ×  Ref, 

Trace  =  2  ×  Ref, and NaNO3  =  0.3  ×  Ref (A three-

dimensional plot of the Kriging model together with the 

measured data can be obtained from Additional file 8).

Refining the optimum
In the fourth and last round of the experiments, twelve 

experiments were placed around the optimum predicted by 

the Kriging interpolation. These experiments were planned 

by sampling the EI distribution, as described in “Expected 

Improvement” section, for maximizing the lipid productiv-

ity and minimizing the prediction uncertainty of the Krig-

ing model. In addition, 23 experiments were uniformly 

distributed over the parameter space in a random man-

ner, in order to improve prediction accuracy also in non-

optimal regions. In total, 39 experiments were performed, 

including the four reference experiments (The full experi-

mental design including the respective measurement data 

can be obtained from Additional file 9).

Figure  4 shows predictions of the updated Kriging 

model in the same fashion as described in “Locating 

optimal medium composition” section. The location 

of the optimum shifted toward MgSO4  =  3.25  ×  Ref, 

CaCl2  =  1.25  ×  Ref, trace elements  =  2.5  ×  Ref, and 

NaNO3 =  0.45 × Ref (A three-dimensional plot of the 

Kriging model together with the measured data can 
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be obtained from Additional file  10). For the optimal 

medium composition, the Kriging model predicts an 

increase by a factor of 3.03 ± 0.81 in lipid productivity 

compared with the reference medium.

Validating the optimal medium composition
In order to validate the determined optimal medium 

composition (see “Kriging-assisted optimization” section) 

and to highlight potential changes of process kinetics, 
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cultivations using enBBMref and enBBMopt were carried 

out (see Additional file 2 for medium composition). Both 

processes were monitored in-depth by sequential harvest 

of replicate wells from microtiter plate cultivations (see 

Fig.  5). To maximize comparability with the literature 

reports, biomass concentration at harvest was acquired 

as cell dry weight rather than biovolume in this context.

Medium optimization resulted in a series of signifi-

cant changes in process performance as summarized 

in Table  2. While the exponential growth rates in both 

media did not differ significantly (p < 0.05, t test), times to 

nitrogen depletion were 84 h and 52 h for enBBMref and 

enBBMopt, respectively. This was due to the reduction 

of nitrate concentration during medium optimization 

down to 0.45 × Ref. In the reference process, exponen-

tial growth shifted to linear kinetics reaching an optical 

density of 4.94  ±  0.06 typically indicating the onset of 

light limitation and in clear accordance with prior experi-

ments [27]. This effect was not observed for the opti-

mized medium before nitrogen depletion. Neutral lipid 

accumulations started within 36  h (enBBMref) and 20  h 

(enBBMopt) after nitrogen limitation which corresponds 

to a reduction of approx. 45%. Moreover, the biomass-

specific lipid accumulation rate (estimated by linear fit) 

increased by approx. 32% from 4.87 ± 0.53% (w w−1) d−1 

to 6.43 ±  0.17%  (w  w−1)  d−1 due to medium optimiza-

tion. Most probably, both effects are attributable to the 

increased availability of magnesium and calcium ions, as 

well as trace elements in the medium. This might result in 

a boost of the enzymatic turnover of lipid synthesis, espe-

cially regarding acetyl-CoA carboxylase (see Table 1).

Alternatively, a kinetic limitation of ion import into the 

cells at the low concentrations in the reference medium 

could be an explanation. Regarding downstream pro-

cessing, the increased magnesium concentration offers 

another positive aspect, as it was previously reported 

to assist flocculation of the cells at high pH [68]. This 

mechanism is currently being investigated as an alter-

native to the comparably costlier biomass separation by 

centrifugation.

Most strikingly, cell dry weight at harvest did not differ 

significantly (p < 0.05, t test) for both media, despite the 

nitrate concentration being reduced to 45% in enBBMopt. 

This indicates the nitrate-specific biomass yield as being 

a function of the initial nitrate availability, a phenom-

enon that has recently been recognized and discussed 

for a fairly comparable Chlorella process [27]. Together 

with an increase in the neutral lipid content from 

10.55 ± 0.35% (w w−1) to 23.9 ± 1.2% (w w−1), this trans-

lated into a 2.3-fold increase of volumetric productivity 

up to 169 ± 7 mg L−1 d−1.

Besides the evaluation of productivity-related issues, 

the relative composition of the fatty acids from the neu-

tral lipid product fraction was compared by gas chroma-

tography time-of-flight mass spectrometry (see Fig. 6).

The obtained fingerprints were in clear agreement with 

the previous literature reports [69] as palmitic, oleic, lin-

oleic, and α-linolenic acids made up the major product 

fractions of 85% (enBBMref) and 89% (enBBMopt). There 

are indications that the lipid fingerprint largely depends 

on cultivation conditions such as temperature [70], illu-

mination [71], etc. However, our results demonstrate 

that changes in the medium composition can also lead 

to differences in the fatty acid fingerprint. The fractions 

of palmitoleic (16:1  Δ9), hexadecadienoic (16:2  Δ7,10), 

hexadecatrienoic (16:3 Δ7,10,13), stearic (18:0), and linoleic 

(18:2  Δ9,12) remained nearly unchanged. On the con-

trary, the proportions of palmitic (16:0) and α-linolenic 

(18:3  Δ9,12,15) acids shrank by 22 and 42%, respectively, 

while linoleic (18:1  Δ9) acid increased by 92% to a total 

share of 48 ± 1.8% using enBBMopt. With respect to bio-

diesel synthesis, this reduction in the polyunsaturated 

fatty acids’ fraction is clearly advantageous, increasing 

the fuel’s oxidative stability [72].

Final medium simplification
In “Kriging-assisted optimization” section, several 

input variables were identified to be ‘non-relevant’ and 

thus kept at the respective reference values throughout 

the whole study. However, for MES and especially for 
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EDTA, a negative, but still non-significant (p  <  0.05, t 
test) trend was observed. Besides economic aspects, 

culture media should only contain the necessary ingre-

dients in appropriate concentrations to ensure high 

nutrient usage efficiency. Thus, an additional variant, in 

the following denoted as enBBMopt,min, was investigated. 

Here, the concentrations of all ‘non-relevant’ compo-

nents were set to the respective minimum values during 

the screening analysis. In particular, this included the 

complete omissions of MES buffer and the chelator 

EDTA, as well as NaCl (see Additional file 2 for medium 

composition), while phosphate availability was reduced 

to 0.125 × Ref.

In comparison with the results using enBBMref, as 

well as enBBMopt, these adaptations did not change the 

overall obtained cell dry weight significantly (p  <  0.05, 

t test) but led to an increase of the neutral lipid to 

30.1 ± 1.6% (w w−1), while the respective lipid fingerprint 

remained unchanged in comparison with enBBMopt (see 

Additional file  11). The resulting volumetric productiv-

ity of 212  ±  11  mg  L−1  d−1 represents a total 2.9-fold 

improvement compared with the reference. Leaving out 

EDTA and especially the MES buffer drastically reduces 

the medium costs, so that the price per liter is lowered 

by 96%. Most probably, MES is not required as the phos-

phate salts offer sufficient pH stabilization capacity. 

Although EDTA is commonly used as a metal chelator 

to improve long-term stability of algae cultivation media, 

the results clearly indicate that its usage is not beneficial 

for this specific application. Moreover, the reduction of 

phosphate concentration to 12.5% is advantageous for 

large-scale application where the recovery of excess 
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Fig. 5 Comparison of the processes using reference and optimized medium. a enBBMref, b enBBMopt; 25 °C, 2.5% (v v−1) CO2, 200 μmol m−2 s−1 
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Table 2 Comparison of  process performance indicators 

using reference and optimized media. Error bars represent 

min/max from biological replicates (n = 2)

Parameter enBBMref enBBMopt

Exponential growth rate (d−1) 1.49 ± 0.06 1.45 ± 0.1

Time to nitrate depletion (h) 84 52

Delay from nitrate depletion to onset of lipid 

synthesis [h]

36 20

Biomass-specific lipid accumulation rate [% 

(w w−1) d−1]

4.87 ± 0.53 6.43 ± 0.17

Cell dry weight at harvest (g L−1) 4.95 ± 0.06 4.93 ± 0.01

Neutral lipid content at harvest [% (w w−1)] 10.55 ± 0.35 23.9 ± 1.2

Volumetric productivity (mg L−1 d−1) 74 ± 1 169 ± 7



Page 10 of 13Morschett et al. Biotechnol Biofuels  (2017) 10:26 

nutrients to prevent overfertilization by wastewater is 

an important economic aspect. Yet, these results clearly 

confirm the validity of the initial screening analysis.

Assessment of achieved volumetric productivity
In the last decade, numerous studies addressed the lipid 

production of diverse C. vulgaris strains in different lab-

oratory-scale batch processes [6, 17, 58, 70, 71, 73–81]. 

Among these, the average volumetric productivity was 

approximately 51 ± 36 mg L−1 d−1 and thus was compa-

rable to the achieved value of 74 ±  1 mg L−1 d−1 using 

the enBBM reference medium. However, the reported 

values exhibit a wide spread, and it has to be assumed 

that these differences do not only originate from the dif-

ferent strains used, but from process conditions and reac-

tor design as well. Some studies report productivities in 

the range of 130 mg L−1 d−1 when cultivating C. vulgaris 

in laboratory-scale batch processes with optimized nitro-

gen availability [17, 80]. Unfortunately, it is not gener-

ally clarified if productivities refer to the neutral lipid or 

the total lipid content. In this study, the volumetric pro-

ductivity of neutral lipids of up to 212 ± 11 mg L−1 d−1 

clearly exceeds previous reports and thereby underlines 

the importance of medium optimization not only for 

nitrate as commonly done, but especially for the concen-

trations of further salts and trace ions.

Conclusions

In this study, a blueprint strategy for the accelerated 

development of phototrophic bioprocesses is presented. 

This strategy is very efficient in terms of time and mate-

rial, by incorporating state-of-the-art phototrophic 

cultivation and analytics with higher throughput that 

is closely linked to sophisticated experimental design 

strategies.

Taking neutral lipid production by the unicellular 

microalga C. vulgaris as a model process, the cultivation 

medium was optimized toward volumetric productivity. 

Fractional and full factorial designs in combination with 

Kriging-based approaches for data analysis, visualiza-

tion, and experimental design allowed for an efficient and 

effective optimization in terms of time and cost. The opti-

mized process has an approximately threefold increased 

lipid productivity of 212  ±  11  mg  L−1  d−1, which was 

achieved with only four experimental rounds with one 

microtiter plate each.

Besides the commonly addressed concentration of the 

nitrogen source (here nitrate), especially magnesium, 

calcium, and various trace elements were shown to be of 

crucial importance. Analysis tools furthermore revealed 

multi-parameter interactions that could have been over-

looked otherwise. Over and above this, the concentration 

of non-relevant medium components was successfully 

minimized, contributing to reducing medium cost. Tak-

ing all the above results together, a smart combination of 

microscale phototrophic cultivation with sophisticated 

design of experiments led to a tremendous improve-

ment of neutral lipid production with C. vulgaris, at the 

same time reducing cost for media components by 96%, 

while all other process performance indicators were kept 

constant.
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Additional files

Additional file 1. Fractional factorial design for the initial screening anal-

ysis and corresponding measurement data of the individual cultivations.

Additional file 2. Medium composition of enBBMref, enBBMopt and 

enBBMopt,min.

Additional file 3. Estimated effect of two factor interactions with MgSO4. 

Estimations are based on the experiments in section “Fractional factorial” 

using the fractional factorial design and the corresponding measurement 

data given in Additional material 1.

Additional file 4. Experimental design and corresponding measurement 

data evaluated in section “Full factorial”.

Additional file 5. Screening plot around reference point (enBBMref 

medium). Estimation of the functional relationship between media com-

ponents and lipid productivity was done by Kriging. The Kriging model is 

based on the experiments in section “Kriging-assisted optimization” using 

the open source software KriKit.

Additional file 6. Experimental design and corresponding measurement 

data evaluated in section “Locating optimal medium composition”.
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1  Introduction

Multiple performance indicators, also referred to as objec-
tives, are often required in the assessment of industrial 
processes. In many cases, these are conflicting each 
other, i.e. one objective can only be improved at the cost 
of compromising with another. For such situations, the 
concept of Pareto optimization has been developed [1], 
i.e. instead of finding one unique optimum for all objec-
tives, one aims at finding the full set of best compromises 

between them. Pareto optimization is commonly applied 
in (bio-)chemical engineering [2].

For instance, Zhang et al. [3] have used a genetic algo-
rithm (GA) for the multi-objective optimization of continu-
ous countercurrent chromatography units. In fact, differ-
ent GA variants are very popular for solving Pareto opti-
mization problems [4]. However, these algorithms gener-
ally require many experiments. The experimental effort 
can potentially be reduced by using surrogate models. 
Such models utilize the set of currently known data for 
estimating functional relationships between process 
parameters and objectives. Santana-Quintero et al. [5] 
provide a good review of techniques for applying surro-
gate modeling in Pareto optimization.

Emmerich et al. [6] propose the application of Gauss-
ian Process Regression Modeling (GPM) in multi-objec-
tive optimization. The authors compare four different 
options for using GPM in this context: mean value, prob-
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ability of improvement, lower confidence bound, and 
expected improvement prescreening. In single-objective 
optimization, it is well-known that the last option results 
in the most robust and effective optimization strategy [7]. 
However, only very recently an efficient algorithm has 
been published that allows fast calculation of the multi-
objective equivalent to expected improvement [8].

Finally, Binois et al. [9] have developed a single-valued 
measure of model uncertainty using random set theory, in 
order to assess the quality of a given GPM. This measure 
allows observing convergence of the optimization process 
and consequently helps to avoid unnecessary experi-
ments.

This publication presents an algorithm and software 
that combine key scientific advances made in GPM 
assisted multi-objective optimization in the recent last 
years. Starting with an initial set of experiments, a GPM 
is constructed and iteratively updated during the optimi-
zation process. In each iteration, new experiments are 
designed by maximizing expected improvement. The 
optimization algorithm is continued until model uncer-
tainty drops under a defined threshold.

The presented Multi-Objective Global Optimization 
(MOGO) algorithm is a direct but conceptually and com-
putationally non-trivial extension of the single-objective 
equivalent, Efficient Global Optimization (EGO) devel-
oped by Jones et al. [10]. Important properties of the 
MOGO algorithm, such as efficiency, effectiveness, and 
robustness are investigated by optimizing operating con-
ditions (gradient shape, pooling strategy) in elution chro-
matography of a three-component system (lysozyme, 
cytochrome, ribonuclease) with respect to three conflict-
ing objectives (purity, yield, process time). 

2  Theory

2.1  Gaussian process regression

The proposed optimization algorithm is based on the pre-
diction of a Gaussian Process Regression Model (GPM). 
Rasmussen [11] gives a good overview of the derivation 
and applications of GPM. In geostatistics, GPM is also 
referred to as Kriging [12]. We have implemented the 
GPM concept in MATLAB as part of the Kriging ToolKit 
(KriKit), which is open source and freely available at 
 https://github.com/modsim/KriKit.

In GPM, it is assumed that the output Z(x) follows a 
basic trend m(x) and that random fluctuation in the data 
is caused by a stochastic process Y(x) with zero mean, 
Eq. (2), and standard deviation (x), Eq. (3).

( ) ( ) ( )= +Z m Yxx xx xx  (1)

( ) =YE[ ] 0xx  (2)

σ ( )( ) ( )= YVarxx xx  (3)

Even though more complex trend functions can be 
applied, it is often sufficient to assume a constant trend, 
Eq. (4). 

( ) =m cxx  (4)

Predictions Z* of unknown observations at points x̂ are 
described by a linear combination of the given data Z(xi) 
with coefficients I  , Eq. (5).

∑λ ( )( ) ( )=
=

Z Zˆ ˆ
i

n

i i
*

1
xx xx xx  (5)

The coefficients i are determined such that the predic-
tion is unbiased, Eq.  (6), and has minimal variance, 
Eq. (7).

( ) ( )− =Z ZE[ ˆ ˆ ] 0*xx xx  (6)

( ) ( )−⎡⎣ ⎤⎦ →Z ZVar ˆ ˆ min*xx xx  (7)

The corresponding values of the coefficients  are deter-
mined using statistical information on the covariance 
Cov (Z(xi), Z(xj)) between observations at points xi and xj. 
This covariance is approximated using a covariogram 
model, as described in more detail in the following sec-
tion. Using the covariogram model, the coefficients  can 
be calculated using Eq. (8).
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In Eq. (8), C  n×n is a matrix with entries Ci,j = Cov (Z(xi), 
Z(xj)), 1  n a vector with entries 1, and c  n a vector 
with entries ci = Cov (Z(xi), Z(x̂)). The vector   n con-
tains the n coefficients i, and  is a Lagrange multiplier. 
The Lagrange multiplier is required for solving Eq.  (7) 
constrained by Eq.  (6) but not used for calculating the 
prediction in Eq. (5).

GPM inherently provides an estimation of the confi-
dence interval. The prediction error can be estimated by 
Eq. (9) [12].
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(9)

The variance usually increases with the distance between 
the point of interest x̂ and points xi of the given measure-
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ment data. It is further increased by measurement noise 
and correlations between measurements.

2.2  Covariogram model

The coefficients , as computed by Eq. (8), depend on the 
mutual covariances between data points Ci,j = Cov (Z(xi), 
Z(xj)) and on the covariances between data points and the 
point of interest x̂, ci = Cov(Z(xi), Z(x̂)). These covariances 
are generally unknown and need to be approximated 
using a covariogram model. The covariogram model, C(h), 
depends only on the distance h = xi  xj of any two points 
xi and xj and not on their absolute positions.

Mainly three types of covariogram models can be 
found in the literature [13]: the spherical, the Matérn, and 
the exponential model. The Matérn function is known to 
be particularly suitable for representing various covari-
ance-distance relationships [14] and is hence used in this 
study, with a smoothing parameter of 3/2, Eq. (10).

∑

θ θ ( ) ( )
( )

= + + −

=
θ

σ

=

r r

r
h

 C( ) 1 3 exp 3 ,

with
l

k

Nugget
2 2

1

l
2

l
2

hh

 (10)

The covariogram converges toward  for h  0 and 
toward zero for h  , and 1 determines the character-
istic length-scale for input variable xl. The parameter 

Nugget, which is historically referred to as nugget factor, 
introduces an extra offset at h = 0, which provides more 
flexibility in modeling the measurement error.

In this study, the covariogram parameters are esti-
mated using the Maximum Likelihood Estimation (MLE) 
approach [15]. In this context, the output variables are 
considered to follow a multivariate Gaussian distribution 
with probability distribution function defined by Eq. (11).

θθ

π ( )
( )

( ) ( )
( ) ( )

=

− − −−

p

Z Z

|
1

2 det C
exp

1
2

CT
n/2 1/2

1

zz

mm mm
 (11)

Here, the vector m  n contains the trend function 
evaluations and Z the measured values at the sample 
points. The entries in the covariance matrix C  n×n are 
calculated by the covariance function using parameters . 
Using Eq. (11), the resulting log-likelihood function for a 
given set of covariogram parameters  is defined by 
Eq. (12).

θθ

π( )( )( ) ( )
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− − − − −−

p Z

Z Z
n

log ( | ( ))
1
2

C
1
2

log C
2

log 2T 1

xx

mm mm
 (12)

Optimal covariogram parameter values are determined by 
maximizing Eq. (12). In this study, the trend function is a 
constant m, whose value is estimated by Eq. (13) [12].

( )= − − −m ZC CT T1 1 11 1 1  (13)

2.3  Pareto optimality

In multi-objective optimization, each input vector x  m 
is associated with more than one objective, summarized 
in the vector Z  d with d > 1 [1]. The aim of the optimi-
zation is to maximize all objectives, Eq. (14).

( )( ) ( )…Z Zmax , , d1 xx xx
xx

 (14)

In case of conflicting objectives, no input vector maxi-
mizes all objectives at the same time. However, Pareto 
optimal solutions Z (xopt) can be identified, i.e. points at 
which no objective can be improved without deteriorat-
ing at least one other objective. A set of Pareto optimal 
solutions is referred to as Pareto front, Eq. (15).

{ }( )=P Z optxx  (15)

Conceptually, there is a “true” Pareto front Ptrue with all 
optimal solutions. Multi-objective optimization aims at 
approximating this front, mostly using iterative proce-
dures. Such algorithms typically start with an initial data 
set, of which the subset of Pareto optimal outputs is deter-
mined, here denoted by P1. In contrast to the “true” 
Pareto front Ptrue which contains infinitely many points, 
the front P1 contains finitely many points which are 
Pareto optimal only with respect to the other points in the 
initial database. In following iterations, this database is 
systematically extended by planning and performing fur-
ther experiments following specific experimental design 
strategies that will be discussed later in more detail. The 
results of new measurements are added to the existing 
database, and the Pareto front is correspondingly updat-
ed. In each iteration i, the current Pareto front Pi weakly 
dominates all previous Pareto fronts Pj with j < i, Eq. (16).

P P i ji j≥ ∀ ≥  (16)

New points that exceed the previous Pareto front, Pi 1, are 
added to the current set Pi. They complement the previ-
ous optimal points and potentially (but not necessarily) 
replace some of them. If a suitable experimental design 
strategy is used, the current Pareto front will eventually 
converge towards the “true” Pareto front, Eq. (17).

P Plim
i i true=
→∞  (17)

In order to monitor convergence of the optimization pro-
cedure, the progress between Pareto fronts Pj and Pi 
needs to be quantified. In a comprehensive study, Zitzler 
et al. [16] have assessed several quality indicators. Zitzler 
and Thiele [17] have developed the hypervolume indicator 
H, which is commonly applied. The indicator H is defined 
as the area, volume or hypervolume (in two, three and 
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higher dimensions, respectively) between the positive 
coordinate axes and the Pareto front. Obviously, H 
increases monotonically during the iterative optimization 
procedure, Eq.  (18), as the successively updated Pareto 
curves dominate each other.

H P H P i j( )  i j( )≥ ∀ ≥  (18)

The indicator reaches its maximum as the Pareto front Pi 
converges towards the “true” Pareto front [18].

H P H Plim
i truei ( )( ) =
→∞  (19)

There are several algorithms for efficiently calculating the 
hypervolume. In this study, the dimension-sweep algo-
rithm is used [19].

2.4  Expected Hypervolume Improvement (EHVI)

As visualized in Fig. 1A, an important part of the optimi-
zation algorithm is to new experiments. This requires to 
be able to quantify of the potential improvement of the 
current database when additional measurements are per-
formed. In single-objective optimization, the improve-
ment achieved through an experiment at point x can be 
quantified by comparing the associated output value 
Z(x)    to the best value in the current database, Zmax, 
Eq. (20).

( )( ) ( )
( )=

<
−

⎧
⎨
⎪

⎩⎪
Z

if Z Z
Z Z

I
0

otherwise
max

max
xx

xx

xx
 (20)

The output values of future experiments are generally 
unknown. However, the expected improvement EI(x) can 
be estimated by taking the average of all possible out- 
put values, weighted by their respective probabilities, 
Eq. (21).

∫ ( ) ( )( ) = ⋅
∈

EI I Z PDF Z dZ
Z

xx xx  (21)

In Eq.  (21), PDFx(Z) is the probability density function 
of  the GPM. The PDF is by definition normalized to 

Z  PDFx(Z)dZ = 1 and, hence, the integral in Eq. (21) can 
be interpreted as a weighted average. In the single objec-
tive case, this integral can be solved analytically [10]. 
Sasena et al. [7] have shown that the GPM based expect-
ed improvement is particularly effective for single-objec-
tive optimization, as not only model prediction but also 
the associated model uncertainty are considered.

Emmerich et al. [6] have extended the concept of 
expected improvement to multi-objective optimization. 
They propose using the hypervolume indicator H for 
defining a scalar measure of improvement when the out-
put vector Z(x)  d of an experiment at point x is added 
to the current database, Eq. (22).

( ) ( )= ∪ −I Z H P Z H P( ) ( ) ( )xx xx  (22)

By definition, I (Z(x)) is zero if Z(x) is dominated by the 
current approximation of the Pareto front P and a positive 
scalar otherwise. In analogy to the single objective case, 
the Expected Hypervolume Improvement (EHVI) of a 
point x  is calculated by integrating the improvement, 
Eq.  (22), weighted by the probability PDFx(Z) that the 
respective output value Z is actually measured at point x, 
over the solution space, Eq. (23).

∫ ( ) ( )( ) = ⋅
∈

EHVI I Z PDF Z dZ
Z d

xx xx  (23)

The probability density function PDFx (Z) is a multidi-
mensional Gaussian distribution from the GPM (Fig. 1B). 
The calculation of EHVI is difficult, even if statistical 
independency is assumed. Emmerich et al. [6] propose 
to approximate the integral by a Monte Carlo approach. 
However, many samples may be required to reach suffi-
cient accuracy, which can be computationally demand-
ing. In later work, Emmerich et al. [20] provide a more 
efficient algorithm for the exact calculation of EHVI in 
the two-dimensional case. This algorithm was most 
recently extended to higher dimensions by Hupkens et 
al. [8], who also provide a fast algorithm for the three 
dimensional case. An implementation of this algorithm 
can be downloaded at http://moda.liacs.nl/index.php. 
(We have tuned the original implementation for numeri-
cal performance without changing the mathematical 
algorithm.)

2.5  Conditional simulation

Conditional simulation (CS) is often used in spatial statis-
tics for generating realizations of a given GPM. CS can be 
applied to assess extremes, to estimate uncertainties, and 
for multi-point statistics. The books of Goovaerts [21] and 
Chiles and Delfiner [22] provide several algorithms for CS, 
such as the sequential simulation algorithm, the p-field 
approach, the simulated annealing approach, and the 
residual algorithm. In this study, the residual algorithm is 
used. Detailed mathematical derivations can be found in 
[22] or [23]. The main idea is to calculate the CS in two 
steps, first generating samples from the prior distribution 
and then conditioning these samples using measurement 
data from the current database.

For a given Gaussian process, as introduced in Sec-
tion 2.1, the set of non-conditioned samples ZNC(Xq) at 
points Xq = x1, … , xq  is defined by Eq. (24).

Z X N Z X C X( ) ~ ,NC
q q q

*( )( ) ( )  (24)

In Eq. (24), Z* (Xq) denotes the GPM prediction, and C (Xq) 
the covariance matrix, as introduced in Section 2.2. 
Hansen (2016) [24] has shown that ZNC (Xq) can be calcu-
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lated using a standard normal random number generator, 
Eq. (25) with Z* = Z* (Xq) and C = C (Xq).

N Z C Z N C

Z C N I
Z BD B N I
Z BD N I

, ~ 0,

~ 0,
~ 0,
~ 0,

T

* *

* 1/2

* 1/2

* 1/2

( ) ( )
( )

( )
( )

+
+
+
+

 (25)

A schematic example for non-conditioned simulations is 
presented in Fig. 1C. In a second step, the conditioned 
samples ZC (X) are calculated using the data Z (Xn), 
Eq. (26).

λλ( )( ) ( ) ( ) ( )= + −Z X Z X Z X Z X Z X|   ( )C
q

NC
q q

NC
q

T NC
n

*  (26)

In Eq.  (26),  are the Kriging coefficients, Eq.  (8), and 
ZNC (Xn) the non-conditioned values at points Xn. Hence, 
the measurement points, Xn, must be included in the CS 
sample points, Xq. Chevalier et al. [23] have proven that 
ZC (Xq) and the underlying GPM have equal distributions, 
and that different CSs are stochastically independent 
from each other. Figure 1D depicts a schematic example 
for conditioned simulations.

2.6  Uncertainty estimation

Asymptotic convergence is important, but practical 
applications also require an appropriate stopping criteri-
on. In the case of single-objective optimization, criteria 
are applied that are based on the GPM prediction and 
error estimate [25] [10]. Chevalier et al. [26] have shown 

Figure 1. (A) MOGO algorithm flowchart, (B) Schematic of EHVI calculation. Contour lines indicate probability density function of the GPM predicted out-
put Z at point x, (C) Schematic of an example GPM with six samples and fifty CS (non-conditioned simulation), (D) Schematic of an example GPM with six 
samples and fifty CS (conditioned simulation)
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that the GPM prediction and the associated model uncer-
tainty can also be estimated using random set theory. 
Binois et al. [9] have extended this approach to the esti-
mation of Pareto fronts and their variability using several 
GPMs for the individual objectives.

The distribution of the current Pareto front is esti-
mated based on s different CSs of the underlying Gauss-
ian processes, as introduced in Section 2.5. In contrast to 
the GPM prediction, each CS preserves not only the 
expected value but also the variance of the underlying 
Gaussian process. Pareto fronts P P, ,C

S
C

1  are determined 
for each of the CS. Then, a so-called coverage function 
p(Z) is defined by counting the frequency of how often a 
point in the solution space is dominated by a CSs. Finally, 
the quantile surface Z  is defined as the set of points with 
a coverage function value equal to , Eq. (27).

Z Z Z Z p Z: , , , , withj k j1 β{ } ( )… … =β β β β β  (27)

The expected Pareto front Pexp is estimated by adjusting 
the quantile  such that the hypervolume H of Z  is equal 
to the mean hypervolume of the Pareto fronts P P, ,C

n
C

1  of 
all CSs, Eq. (28).

P Z H Z H P: , with
1
n

( )
i

s

exp
1

i∑( ) =β β

=
 (28)

A scalar stopping criterion G can be formulated that 
quantifies the global uncertainty of the Pareto front esti-
mation. The global uncertainty G is estimated by the 
normalized symmetric difference between the CSs Pi and 
the expected Pareto front Pexp, Eq. (29).
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1
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=
∪ − −

∪=
 (29)

The optimization is stopped once G drops under a defined 
threshold. In Section 4.4, suitable values for G are dis-
cussed based on the calculation of 500 conditional simula-
tion. 

3  Case study

3.1  Example system

The proposed MOGO algorithm is demonstrated by opti-
mizing ion-exchange chromatography of lysozyme (lys), 
cytochrome c (cyt), and ribonuclease a (rna) on the cation-
exchanger SP Sepharose FF. The optimization aims to 
separate cyt from lys and rna by simultaneous variation of 
the operating conditions (gradient shape, pooling times). 
The quality of the resulting separation process is charac-
terized by three conflicting objectives, namely purity, 
yield, and process time. Experiments are performed in 
silico using the Chromatography Analysis and Design 

Toolkit (CADET) [27, 28]. CADET is based on the general 
rate model of column liquid chromatography with steric 
mass action binding model [29]. The applied model 
parameters can be found in the Supporting information 
S1.

Figure 2A visualizes the investigated chromatography 
process. The system comprises four components (salt, 
lysozyme, cytochrome, and ribonuclease) with load, wash, 
and elution phases. For the combined load and wash 
phases (step I, 0–990 s), a salt concentration of 10 mol/m³ 
is applied. In the load phase, the three protein compo-
nents are supplied at a concentration of 1  mol/m³. The 
elution phase starts with an immediate increase in salt 
concentration and has two parts with linear gradients but 
different slopes (step II and step III, 990–8000 s). The initial 
increase in salt concentration is specified by the process 
parameter. Both slopes are specified by parameters p2, 
and the time point of transition between step II and 
step III by parameter. Step IV (8000–9000 s) has a fixed salt 
concentration that forces complete elution of all compo-
nents at the end of the process. The pooling times t1 and 
t2, between which the effluent with the desired target 
component is collected, are parameterized by tpeak  t1 
and t2  tpeak where tpeak is the time point where the 
concentration of cyt reaches its maximum.

The process parameters are bound by ranges listed in 
Table 1. For numerical reasons, only nonzero values are 
used for p3, t1, and t2. The salt concentration of the load 
and wash phases is used as lower bound for p1 and p2. 
p3 is restricted by the start and end times of the elution 
phase. The salt concentration during step IV is used as 
upper bound for p2.

3.2  Three conflicting performance indicators

The present case study aims at separating cyt from lys 
and rna. Purity and yield of cyt and the overall process 
time are used as performance indicators. All three objec-
tives are conflicting each other, which leads to a Pareto 
optimization problem as defined in Section 2.3. Purity and 
yield are functions of the sampled amounts Nj of compo-
nents j lys, cyt, rna  in the central effluent pool that is 
collected between times t1 and t2. The amounts Nj are 
determined by integrating the respective concentration 
peak cj between the pooling times, Eq. (30).

N c t dt( )j j
t

t

1

2∫=  (30)

Table 1. Process parameter ranges

Parameter Lower Bound Upper Bound

p1 10 mol/m³ 300 mol/m³
p2 10 mol/m³ 1500 mol/m³
p3 10 s 6990 s

t1, t2 5 s 1000 s
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Figure 2. (A) Schematic of the gradient elution chromatography process with five design variables (gradient shape, pooling times) that are to be opti-
mized. (B) Visualization of the Pareto Front as determined by brute force. The process time is scaled to the interval [0,1] and reversed. Values 0 and 1 indi-
cate worst and best performance, respectively.
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Purity is defined as the amount of the target component 
cyt relative to the total amount of all components in the 
collected pool, Eq. (31).

N NPurity
j

jcyt
lys,cyt,rna
∑=

{ }∈
 (31)

Yield is defined as the amount of the target component cyt 
in the collected pool relative to the amount of cyt loaded 
to the column, Eq. (32).

N NYield /cyt cyt,load=  (32)

In this study, the loaded amount is Nj,load is 10 mol for all 
components j lys, cyt, rna .

The separation is defined to end at time point tfinal 
when 99.9% of Nj,load of all components are eluted from the 
column. 

Lu and Anderson-Cook [30] suggest to scale the per-
formance indicators to the interval [0,1] for graphical 
representation of the Pareto front, where zero indicates 
the worst and one the best possible value. Purity and 
yield, as defined by Eq. (31) and Eq. (32), already fulfill this 
criterion. The process time tfinal is correspondingly scaled 
with respect to the maximal simulation time tmax = 9000 s, 
Eq. (32).

t tProcess Time (1 / )final max= −  (33)

Consequently, the Pareto front has a theoretical maxi-
mum hypervolume of Hmax = 1.

3.3  Brute force analysis

For illustration, the “true” three-dimensional Pareto front 
Ptrue is first approximated in a brute force study using 
random sampling and manually chosen data points. In 
fact, approximately 11 million samples were calculated to 
make sure that the Pareto front approximation is reliable. 
The shape of the chromatogram and the process time only 
depend on the gradient parameters, p1, p2, p3, while 
purity and yield additionally depend on the pooling times, 
t1, t2. Hence, the chromatography experiment is per-
formed (in silico) once for each gradient shape, and shape, 
purity and yield are subsequently calculated for 100 differ-
ent pairs of pooling times using Latin hypercube sam-
pling for t1 and t1. The extremes are included by manu-
ally placing sample points at the upper and lower bounda-
ries of t1 and t2.

Figure 2B shows the Pareto front determined by brute 
force in the region of purity and yield above 80%. The plot 
reveals that both purity and yield benefit from shallow 
elution gradients, which in turn requires long process 
times. For fixed process times, yield increases and purity 
decreases with increasing width of the collected product 
pool. The hypervolume of this brute force approximation 

to the “true” Pareto front is Hmax
*  = 0.8123, which is used 

as reference value in the following study.

4  Results and discussion

In this section, Multi-Objective Global Optimization 
(MOGO) is demonstrated using the previously introduced 
case study. MOGO is a direct extension of the well-known 
single-objective Efficient Global Optimization (EGO) algo-
rithm [10] to the multi-objective case. The general MOGO 
procedure is illustrated in Fig.  1A, while the individual 
steps are detailed in the following sections. In particular, 
accelerating convergence is discussed in Section 4.3, and 
stopping criteria are investigated in Section 4.4. The 
impact of parallel experimentation on the required num-
bers of iterations and total experiments is studied in Sec-
tion 4.5. MOGO represents a statistical optimization pro-
cedure and can be applied to systems with continues 
input and outputs. 

4.1  Initial experimental design

GPM cannot be applied without database. Hence, func-
tional relationships between process parameters and 
performance indicators are initially studied by classical 
design of experiments. After defining appropriate param-
eter ranges, a 23 full factorial design with center point is 
used for the gradient parameters p1, p2, and p3. For each 
simulation, the effect of t1 and t2 is investigated by 
calculating purity and yield for ten pooling times that are 
placed by Latin hypercube sampling. The extremes are 
included by manually placing sample points at the upper 
and lower boundaries of t1 and t2. The resulting twelve 
samples per gradient shape were found sufficient for 
investigating the influence of t1 and t2 on purity and 
yield of the studied system. 

Based on the resulting data set with 108 sample points 
in total, a GPM is created using the five process parame-
ters (p1,2,3 and t1,2) as input variables and the three per-
formance indicators (purity, yield, process time) as output 
variables.

4.2   Iterative optimization based on expected 
improvement

In further iterations of the MOGO algorithm, additional 
experiments are designed such as to maximize the EHVI, 
as defined in Section 2.4. In analogy to the single-objec-
tive equivalent, EHVI quantifies the potential improve-
ment with respect to a scalar optimality criterion (the 
hypervolume under the Pareto front), which is based on 
the GPM prediction and its estimated error. The expected 
improvement represents a trade-off between refining 
promising areas with high predicted objectives and 
exploring areas with high uncertainty [7]. Jones et al. [10] 
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have demonstrated that optimization strategies which 
are based on expected improvement can handle highly 
nonlinear functional relationships. 

As a key step in the MOGO algorithm, the additional 
experiments are designed according to their EHVI distri-
bution, as determined by Markov Chain Monte Carlo 
(MCMC) sampling. I.e. the probability of new experiments 
to be chosen is directly proportional to their EHVI values. 
This approach allows to draw one or several samples in 
each iteration of the optimization procedure, elegantly 
enabling the design of both serial and parallel experi-
ments with maximal information content. In this study, 
the Delayed Rejection Adaptive Metropolis (DRAM) algo-
rithm which was developed and implemented by Haario 
et al. [31] is applied with a chain length of 10 000 and all 
other algorithm parameters at their default values. The 

pooling times are varied as in Section 4.1, using twelve 
samples for each gradient shape, as these function evalu-
ations are much cheaper than calculating the chromato-
gram.

Purity, yield, and process time are calculated for each 
of the new samples, and the amended data set is used for 
updating the GPM. The experiments are performed in 
series, i.e. the GPM is updated for each gradient shape 
(serial experiments are discussed in Section 4.5). The 
iterative optimization procedure is continued until a 
defined stopping criterion is fulfilled (see Section 4.4 for 
details). For illustration, Fig. 3A compares the results of 
twenty MOGO optimizations with 50 iterations each, 
including the initial experimental design. The y-axis indi-
cates the currently estimated hypervolume, Hrel relative to 
the reference value, Hmax

* , from Section 3.3. 

Figure 3. (A) Results of 20 complete optimization runs with 50 iterations each (grey lines). Black line and bars indicate mean value  standard deviation. 
(B) Scheme for decreasing the exploration factor from iteration to iteration in order to speed up convergence (Section 4.3). (C) Comparison of different 
cooling strategies with varied initial values and slopes (iterations until g = 1 is reached). (D) Results of 20 complete optimization runs using the best cool-
ing strategy (grey lines). Black line and bars indicate mean value  standard deviation.
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Variation of Hrel in the first iteration is caused by ran-
domness in the Latin hypercube sampling, and in the 
other iterations additionally by stochasticity of the DRAM 
method. Technically, the uncertainty caused by Latin 
hypercube sampling can be reduced by refining the grid; 
however, the time for computing the EHVI increases 
exponentially with the number of samples. In the present 
study, twelve samples have been found to be a good com-
promise between computational effort and variability of 
the optimization process. Figure  3A demonstrates that 
the hypervolume increases with the number of iterations, 
indicating improvement of the corresponding estimated 
Pareto front. Options for speeding up convergence of the 
MOGO method are discussed in the next section. Optimi-
zations resulted in 163.0   14.5 Pareto optimal points. 
Pareto front is more densely sampled near to the extremes: 
high purity/low yield and vice versa. If a higher density is 
needed, the optimization can be continued for further 
iterations. Using a PC with four cores (Intel Core i5-4570), 
an optimization with 50 iterations took in average 8 h. The 
computation time is increasing with number of samples, 
mainly influenced by the calculation of the EHVI which 
scales with a complexity of O(n3).

4.3  Improving convergence speed and robustness

According to Ponweiser et al. [33], the GPM potentially 
underestimates the prediction error. Consequently, the 
optimizer can be caught by local optima until the predic-
tion in their neighborhood is excessively accurate. This 
can dramatically increase the number of iterations 
required for finding the global optimum. Schonlau et al. 
[10, 34] have addressed this problem by introducing an 
exploration factor, g. This factor can be used to increase 
the weight of the prediction error in the GPM, and thus to 
improve exploration of the parameter space. However, 
appropriate values of the exploration factor are not trivial 
to determine. Sasena et al. [35] have suggested a cooling 
strategy, in analogy to the simulated annealing algorithm. 
This strategy starts with a high value of g which is then 
successively reduced in the course of the optimization 
procedure. 

Interpreting the exploration factor g as an amplifier of 
the prediction error, Eq. (34), helps to define an analog in 
the multi-objective case. This concept can be directly 
transferred to the multi-objective case by adjusting 
PDFx(Z) that used for the EHVI calculation, see section 2.4.

σ( )( ) ( ) ( )= +Z m N gˆ ˆ 0, ˆxx xx xx  (34)

The accelerating effect of g is studied for different cooling 
strategies. Generally, the exploration factor is linearly 
decreased with varying initial value and slope and a 
minimum value of g = 1 (Fig. 3B). The studied initial val-
ues are 10, 30, and 50, and the slope is specified by taking 
20, 35, or 50 iterations until the exploration factor is 

decreased to one. Results of different cooling strategies 
are compared to the standard case, i.e. a constant explo-
ration factor of g = 1 (Fig. 3C). Each cooling strategy is 
evaluated for 20 complete optimization runs with 50 itera-
tions each. 

Figure  3C reveals that the global optimizer perfor-
mance is better when the exploration factor is decreased 
more slowly, in particular for smaller initial values. The 
cooling strategy with initial value g = 10 and a decrease 
over 50 iterations shows the best performance, i.e. lowest 
variation and highest hypervolume on average. Figure 3D 
shows the results of twenty optimization runs using this 
cooling strategy. The comparison to Fig. 3A clearly shows 
the benefit of a well-chosen cooling strategy for the explo-
ration factor. The adjusted MOGO converges not only 
faster but is also more robust, i.e. has a reduced run-to-run 
variability.

4.4  Stopping criterion

Experimental effort can potentially be reduced by stop-
ping the MOGO algorithm as soon as the result is suffi-
ciently close to the optimum. In Section 2.6, the measure 
G was introduced for estimating global uncertainty of the 
multi-objective GPM prediction. In this section, a stop 
criterion based on estimated global uncertainty is studied 
using all 420 optimization runs from Section 4.3. The cal-
culation of G is based on 500 conditional simulations. 
Here, the optimization progress is defined as the hyper-
volume reached after n iterations, relative to the maximal 
hypervolume reached after 50 iterations in the same opti-
mization run. This approach also accounts for conver-
gence towards local optima with reduced maximal hyper-
volume. The optimization progress stands in contrast to 
the relative hypervolume used in Fig.  4B. The relative 
hypervolume refers to the approximation of maximal 
achievable hypervolume Hmax

*  for an infinitive long opti-
mization.

Figure 4A shows the correlation between the global 
model uncertainty G and the associated hypervolume 
value, based on 420 optimization runs and independent of 
the actual iteration number. Clearly, if lower threshold 
values for G are used, the optimization process continues 
longer and higher hypervolume values are achieved. 
However, the figure also illustrates that 98% of the refer-
ence value is already reached on average using an thresh-
old level of G = 0.043. This result is independent of the 
cooling strategy (data not shown). Hence, the value G = 
0.04 can be applied as a threshold which indicates that 
the optimization process can be terminated. This stop-
ping criterion is tested in a study with 260 optimization 
runs, applying the best cooling strategy. On average, less 
than 26 iterations are required before the optimization is 
terminated, which is a significant reduction of experi-
mental effort. According to the histogram in Fig. 4B, the 
stopping criterion is effective in determining when the 
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current hypervolume is sufficiently close to the optimum. 
In fact, 90% or more of the reference hypervolume is 
reached in ¾ of the optimization runs. Each optimization 
runs resulted in 120.5   27.0 Pareto optimal points. The 
distribution of the number of Pareto optimal points is 
illustrated in the Supporting information S2.

4.5  Parallel experiments

In Section 4.2, the MOGO algorithm was explained to be 
equally suitable for designing serial or parallel experi-
ments, using the DRAM method for MCMC sampling. In 
this section, the efficiency of parallelization is evaluated 
for 4, 7, and 10 parallel experiments, i.e. gradient shapes, 
in each iteration. As in the previous sections, each sce-
nario is evaluated using 20 optimization runs with the 
best cooling strategy. The term experiment refers to a 
simulation with a unique gradient parameter set. Sample 
time variation after performing the simulations is not 
taken into account, as this procedure is computationally 
cheap.

Figure  4C shows that parallelization can effectively 
reduce the number of required iterations for reaching the 
stopping criterion. The first iteration contains the initial 
experimental design of nine experiments. The figure illus-
trates that the number of iterations on average decreases 
by factor of three when four experiments are performed in 
each iteration, and by a factor of five for ten parallel 
experiments. However, the experimental effort increases 
with the degree of parallelization. For ten parallel experi-

ments, the total number of experiments increases on aver-
age by a factor of 1.5. Hence, parallel experiments are only 
advisable when the saved time is worth the increased 
experimental effort. In all cases, the histogram of reached 
hypervolumes for parallel optimization does not differ 
significantly from the sequential case (data not shown).

5  Conclusions 

We have introduced a novel algorithm for multi-objec- 
tive optimization, Multi-Objective Global Optimization 
(MOGO). The MOGO algorithm is a direct but non-trivial 
extension of the single-objective equivalent EGO, devel-
oped by Jones et al. [10], for efficiently determining multi-
dimensional Pareto fronts. Experimental data are ana-
lyzed by Gaussian process regression modeling (GPM), 
starting with an initial data set. In an iterative procedure, 
additional experiments are designed such as to maximize 
the expected hypervolume under the Pareto front, as cal-
culated by Markov Chain Monte Carlo (MCMC) sampling. 
This way, process performance is maximized while pre-
diction uncertainty is minimized in promising regions of 
the parameter space. New performed experiments are 
added to the data set and used for updating the GPM. The 
algorithm allows efficient design of both serial and parallel 
experiments with maximal information content. A global 
uncertainty indicator can be used for stopping the algo-
rithm when the optimizer has converged with sufficient 
accuracy. 

Figure 4. (A) Functional relationship between the esti-
mated global uncertainty G and the reached hyper-
volume, relative to the reference value (mean value and 
standard deviation over 420 optimization runs with vary-
ing cooling strategies). (B) Histogram of reached hyper-
volumes for 260 optimization runs using the best cool-
ing strategy and a threshold G = 0.043 for the stopping 
criterion. (C) Comparison of serial and parallel experi-
mentation for 20 optimization runs each.
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Approach and performance of the MOGO algorithm 
are demonstrated with a relevant case study from chemi-
cal engineering, chromatographic separation of three 
chemical components with five process parameters and 
three conflicting objectives. Elution gradient shape and 
pooling strategy are varied such as to optimize purity, 
yield, and process time. The MOGO algorithm effectively 
approximates the Pareto front in only 26 iterations. Parallel 
experiments allow reducing the number of iterations even 
further.
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Nomenclature

Symbol (unit) description
t1, t2 …  (s) distance leftwards/rightward to the 

maximum of the peak of Cyt
p1 … (mol/m³) offset variable
p2 …  (mol/m³) concentration at point of 

 transition
p3 … (s) time point of transition
t1, t2 … (s) cut times for pooling
CS  … Conditional Simulation
cyt … cytochrome c
EHVI … Expected HyperVolume Improvement
GA … Genetic Algorithm 
GPM … Gaussian Process Regression Model
lys … lysozyme
MCMC … Markov Chain Monte Carlo
MLE … Maximum Likelihood Estimation
MOGO … Multi-Objective Global Optimization
rna … ribonuclease A

Math symbols
P …  Pareto front in the current iteration
Ptrue …  True (ideal) Pareto Front
x …  Input point
Xopt …  Pareto optimal set
Z(x) …  Output value
H(X) …  Hypervolume of the set X 
Hmax …   Maximal theoretical achievable hyper-

volume
Hmax

*
 …   Approximation of the “true” hypervolume 

resulting from random sampling
Hrel …   Relative hypervolume of the data set 

w.r.t. hrand 
I(x) …   Improvement of after adding x to the 

data set

G  …   Global uncertainty of the Pareto front 
estimation

C(xI, xj) …  Covariogram model
C  …  Covariance matrix
g …  Exploration factor
PDFx(Z) …  Probability density function of the output 

Z(x) 
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3 Results and Discussion 

In biotechnology, there exists a strong demand for algorithms that find optimal solutions 

with minimal experimental effort. In this context, optimality criteria refer to maximization 

or minimization of defined quantities such as protein concentration, biomass 

concentration or enzyme activity. The optimization is usually done iteratively. New 

experiments are designed based on the data set acquired in the previous iterations. In 

order to keep the number of performed experiments at a minimum, experiments can 

partially be replaced by mathematical models, which estimate the input-output 

relationship. There exist two different types of mathematical model, mechanistic and 

empirical models. Mechanistic mathematic models are based on mechanistic 

understanding and an appropriate chosen model results in accurate prediction outside 

of the data set. However, finding an appropriated mechanistic model and to estimate the 

associated model parameters is a not trivial task and, for process optimization, empirical 

models are therefore often preferred. Empirical models are constructed based on the 

experimental data but not on mechanistic knowledge. 

An exception represents the Kriging approach that is mainly an empirical modeling 

approach but also provides the possibility to integrate mechanistic models, see section 

1.3. These mechanistic models, called trend functions in this context, are in particular 

helpful in parameter regions where the sample density is rather low such that a purely 

data driven model would be very inaccurate. The current variants of Kriging however do 

only support models that are linear in their parameters, but many mechanistic models in 

biotechnology are typically nonlinear in their parameter, e.g. the Michaelis-Menten 

model for enzyme kinetics. In publication I (section 2.1), a methodology is introduced 

that allows the integration of nonlinear trend functions. Here, the parameter estimation 

problem is relaxed by Taylor linearization, which is further used for formulating an 

iterative parameter estimation approach. This iterative approach is then converted into 

a root-finding problem making it accessible for numerical solvers that are specifically 

developed for this kind of problems. 

Kriging can not only be applied as surrogate model for “real” experiments but can also 

be used for designing the input values of new experiments with potentially promising 
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output values. For this goal, both the Kriging prediction as well as the estimated model 

uncertainty is used, leading to the concept of Expected Improvement (EI), see section 

1.4. In particular, the state-of-the-art Efficient Global Optimization (EGO) algorithm, 

pusblished by Jones et al. [1], makes use of EI. EGO is an iterative optimization 

algorithm that constructs first a Kriging model based on an initial data set. The Kriging 

model is then used for designing new experiments by maximizing the EI, i.e. a new 

experiment is performed using the input variable values where EI has its maximum. The 

loop is afterwards closed by updating the Kriging model. 

EGO is an effective optimization algorithm but, only one experiment is designed in each 

iteration and the algorithm is furthermore not flexible with respect to changes in the 

ranges of the input variables. However, for handling biotechnological optimization tasks, 

parallel optimization and flexibility are desired. Moreover, caused by the high complexity 

of a biological system, many input variables with potential influence on the output 

variables can be identified although only a minority has actually a significant effect. 

Therefore, in order to reduce the experimental effort, a sensitivity analysis is often 

required at the beginning for focusing on input variables with significant influence during 

the remaining optimization procedure. In section 1.5, I have introduced a framework for 

a Kriging based optimization strategy that tackles all of these mentioned demands. The 

design of multiple experiments is enabled by applying the Markov-Chain Monte-Carlo 

(MCMC) procedure. MCMC is an iterative procedure where in each iteration one sample 

point is generated. For a sufficient number of iterations, the histogram of sample 

locations approximates well the actual probability density distribution. In this specific 

case, the histogram is approximating the EI landscape. That is, the sample distribution 

is spread over the entire input space but concentrated on areas associated with high EI 

values. New experiments are designed by uniformly random drawing from the resulting 

MCMC. If only a sequential optimization is desired, the sample location with the highest 

EI value is chosen. The MCMC based experimental design represents therefore a 

powerful tool for both sequential and parallel experimentation. 

Furthermore, a screening is conducted upstream in the iterative optimization cycle based 

on a “classical” design of experiment study. During the iterative optimization, new 

experiments are either designed based on the EI or by expanding the input space and 

placing new experiments in the added areas of the input parameter space. 
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The developed framework was successfully applied in two experimental studies. The 

first study is presented in publication II (section 2.2), and aimed to maximize the product 

titer of secreted Green Fluorescent Protein (GFP), which is secreted by a recombinant 

Corynebacterium glutamicum strain. The GFP titer was optimized by varying the 

composition of the growth medium. Cultivations were carried out in a microbioreactor 

system integrated with a liquid handling robot allowing parallel experimentation with 

online fluorescence detection as well as automated media preparation. For comparison, 

the established CgXII minimal medium composition, which is described in literature for 

cultivation of C. glutamicum, was used as reference medium. The sensitivity analysis 

was conducted using a fractional factorial design and helped to reduce the number of 

relevant medium components from eleven to three. The concentration of these three 

medium components was subsequently optimized in the described iterative cycle while 

the concentrations of the remaining components were kept constant at their values of 

the reference medium. During the optimization, it was necessary to extend the 

concentration ranges of the optimized components several times. In fact, the maximal 

concentration of one component was successively increased to the 32-fold of the original 

upper limit. This highlights that, caused by the high complexity of a biological system, it 

is often hard to define appropriate input variable ranges a priori. Consequently, there is 

a need for adapting these ranges during the optimization. After seven iterations, 

comprising a total number of 32 experiments, a plateau of the GFP titer was identified 

and the optimization was stopped. Medium compositions that are located at this plateau 

have a GFP titer double as high as for the reference medium. 

The second experimental study is presented in publication III (section 2.3), and 

addresses also a medium optimization but aimed at maximizing lipid production of the 

photoautotrophic microalga Chlorella vulgaris. The reference medium was again 

adapted from literature. The application of a liquid handling robot-assisted micro-photo-

bioreactor allowed to automate the medium preparation as well as the incubation and to 

conduct up to 48 experiments in parallel. Similar to the first experimental study, a 

fractional factorial design was applied for reducing the number of relevant medium 

component from nine to four. Following the sensitivity analysis, new experiments were 

designed by applying a full factorial design and adding manually sample points leading 

to a space filling experimental design. The resulting Kriging model showed a clear 
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optimum. In a second iteration, multiple experiments were designed applying the EI and 

MCMC based methodology, introduced in section 1.5.1. As the prediction of the Kriging 

model was similar to the previous iteration, the optimization was stopped at this point. 

The optimized medium composition leads to a lipid productivity that is three-fold as high 

as for the reference medium. This study demonstrates the importance of simultaneous 

design of multiple experiments combined with parallel experimentation. Parallel 

experimentation is in particular important in case of time-consuming experiments, such 

as the cultivation of Chlorella vulgaris, which needed one week per experimental run. 

Only through parallel experimentation, the number of iterations could be kept to the small 

number of two.  

In both case studies, optimization was performed by maximizing only a single objective. 

In many biotechnological relevant optimization studies, however, there exist multiple 

competing objectives of interests, e.g. yield, purity, or productivity. Due to this conflict, 

no unique optimal solution exists, and multi-objective optimization (MOO) can be used 

for finding the best compromises between the solutions. Conceptually, these 

compromises lie on a curve referred to as Pareto front. A scientific achievement of this 

thesis is the development of a multi-objective equivalent to the EGO algorithm. The 

resulting Multi-Objective Gaussian Optimization (MOGO) algorithm is described in 

publication IV (section 2.4). MOGO integrates the only recently developed 

mathematical concept of Expected HyperVolume Improvement (EHVI) and latest 

algorithms for quantifying uncertainty of the Pareto front estimation. EHVI is applied 

analogously to EI for designing new experiments. While the concept of EHVI was first 

introduced in 2006 by Emmerich et al. [48], only 2015 an efficient algorithm for its analytic 

calculation was published and EHVI became available for practical applications. On the 

other hand, quantifiers of the Pareto front estimation uncertainty can be used as stopping 

criteria for preventing unnecessary iterations. As described in detail in publication IV, 

the prediction uncertainty is calculated by analyzing the results of many generated 

stochastic simulations that follow the Gaussian process modeled by Kriging. This 

calculation procedure was first published in 2015 by Binois [50]. 

In publication IV, the convergence behavior is furthermore studied as well as the 

reproducibility and the parallelization capability in an in silico case study of practical 

relevance. Here, the protein cytochrome C should be isolated from a three-component 
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mixture using ion-exchange chromatography. The simulation was conducted using the 

open-source Chromatography Analysis and Design Toolkit (CADET) [53]. The 

separation process has five input parameters and three competing objectives. The 

convergence behavior was investigated using the hypervolume as quality indicator for 

the approximated Pareto front. It was demonstrated that with high reproducibility more 

than 90% of the maximal possible hypervolume was achieved after 26 iterations, which 

corresponds to 34 experiments. It is worth mentioning at this point that other state-of-

the-art MOO algorithms, such as the Non-dominated Sorting Genetic Algorithm (NSGA-

II) [45], require already 34 experiments after much less iterations. This is caused by the 

fact that the majority of MOO algorithms are based on Genetic Algorithms (GA) that 

require a relatively high amount of data points in each iteration for converging. For 

example, Tan et al. [54] tested different GA based MOOs for an optimization problem 

with three objective, as also be done in publication IV. As result, the most efficient 

algorithm needed around 1000 experiments. The higher efficiency of MOGO is inter alia 

caused by the fact that MOGO keeps record of the data set in previous iterations leading 

to a successive increase in the Kriging model prediction power. MOGO does 

consequently “remember” suboptimal locations and no further experiment is designed 

here.  

The stopping criterion, based on the prediction uncertainty, was used to detect 

convergence and the optimization was stopped after the uncertainty fell below a defined 

threshold. The results demonstrate again that by using parallel experimentation in the 

context of MOGO, the optimization converges faster. While for the sequential 

optimization, 26 iterations were on average needed, for instance nine iterations were on 

average sufficient performing four experiments in parallel. However, with increasing 

number of parallel experiments, the efficiency of the optimization algorithm decreases 

and a higher number of experiments are required in total. The experimentalist needs 

consequently to decide for a trade-off between a fast and an efficient optimization.  

In order to make all introduced methods and algorithms available for the scientific 

community and to facilitate reproduction of the published results, I have developed and 

published the Kriging toolKit (KriKit), Figure 10. KriKit is implemented in MATLAB and 

freely available on github: https://github.com/modsim/KriKit. The software allows inter 

alia the construction of Kriging models based on given data sets using either linear or 
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nonlinear mechanistic models. Moreover, the toolbox allows the visualization of Kriging 

predictions, confidence tubes, and measurement data using 2D, 3D, and contour plots 

as well as animated videos. KriKit can also be used for hypothesis testing, taking into 

account the expected Kriging prediction and the model uncertainty. Further key features 

of KriKit are experimental design based on EI and EHVI for solving optimization tasks. 

 
Figure 10; Logo of the Kriging toolkit 

 

 

  



 104 

4 Conclusions and Outlook 

The here presented PhD thesis provides two Kriging Based Optimization (KBO) 

approaches, for single-objective and multi-objective cases, respectively. Both algorithms 

are based on interactive procedures where new experiments are designed in each 

iteration utilizing the concepts of expected improvement and Markov chain Monte-Carlo. 

The combination of both concepts is novel and allows sequential as well as parallel 

experimentation.  

The single-objective algorithm was successfully applied to two media optimization 

problems with respect for maximizing of protein titer and lipid productivity, respectively. 

Using KBO, the protein titer could be increased by a factor of two and the lipid 

productivity by a factor of three compared to using the initial medium composition. These 

experimental studies also demonstrated the effective use of parallel experimentation in 

the context KBO, which is discussed in detail in this thesis. 

The multi-objective algorithms was applied to a practical relevant in silico optimization 

problem from the field of chromatography, aimed at the simultaneous optimization of 

three competing objectives, namely purity, yield and process time. The utilization of in 

silico experimentation allowed a comprehensive investigation of the convergence 

behavior, the reproducibility, and of the effective use of parallel experimentation. 

However, it is noteworthy that the developed approaches are also applicable to 

optimization tasks from other fields. KBO is suitable whenever the input and output 

variables are continuous. The spectrum of optimization problems fulfilling these 

conditions is quite broad and comprises for example the estimation of model parameter 

values for modeling fitting problems, process design in process engineering, etc. It would 

be therefore interesting to demonstrate this universality by applying the developed 

approach to a variety of different optimization problems. 

However, in some situations, it can be an advantage to adapt parts of the developed 

KBO strategies to the system specification. For example, considering a system with 

different accessibility of the input variables, where some input variables can be varied 

between individual experiments, while others can be varied only between parallel runs. 

For instance, using microtiter plates where several cultivations can be run in parallel on 

one plate and the concentrations of the medium components can be varied between the 
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different wells. However, cultivation conditions such as the temperature can only be 

varied for each plate. A suitable adaptation has consequently to classify the input 

variables to two categories: variable between individual experiments and variable 

between parallel runs. 

As discussed in this thesis, integrating appropriate trend functions into the Kriging 

procedure can potentially increase accuracy of the model prediction and consequently 

also the accuracy of the expected improvement calculation. This can lead to faster 

convergence toward optima. As many trend functions are non-linear in their parameters, 

an approach was developed extending the Kriging methodology by this feature. 

Although the positive effect of utilizing appropriate trend functions was demonstrated for 

the prediction accuracy, the influence on the KBO has not yet been investigated and 

might fall within the scope of future research. 

A further not yet investigated research question is how to handle stochastic variations in 

the input variables, which occur in some experimental scenarios. That is, some input 

variables might be measurable but not controllable and underlie random fluctuations. 

The question arises how to model the error propagation such that the Kriging prediction 

error also comprises the uncertainty regarding the input values and how to deal with it 

during the optimization. In other words, how to design a process that is robust to these 

stochastic variations and fulfils defined quality criteria with a pre-specified probability. 

As overall conclusion, this thesis provides a solution of integrating trend functions that 

are nonlinear in their parameters into the Kriging methodology. Also, the MOGO 

algorithm is introduced that transfers the state of the art KBO algorithm “Efficient Global 

Optimization” to the multi-objective case. Further, in order to make KBO algorithms more 

attractive to biotechnological applications, a framework was introduce providing 

instruction for conducting an initial screening, handling variations in input variables 

ranges, and performing parallel experimentation. Methods and algorithms made 

available to the scientific community by embedding them in the Kriging toolKit (KriKit). 

KriKit is implemented in MATLAB and freely available on github: 

https://github.com/modsim/KriKit. 
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Appendix 

Supplement to “Framework for Kriging-based iterative experimental 
analysis and design: Optimization of secretory protein production in 
Corynebacterium glutamicum” 

 



 

1 Experimental Design for Initial Screening 
 
Supplementary Table 1: Experimental design using coded values. -1 and 1 indicate respectively the minimal/maximal 
concentration. 

Number of Experiment 
Coded volume / concentration of component  

Fe Mn Zn Cu NH4 Ni Co Mo BO Ca Mg 
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
2 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 
3 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 
4 1 1 -1 -1 -1 1 -1 1 1 1 -1 
5 -1 -1 1 -1 -1 1 1 1 -1 -1 1 
6 1 -1 1 -1 -1 1 1 -1 1 -1 -1 
7 -1 1 1 -1 -1 -1 1 1 -1 1 -1 
8 1 1 1 -1 -1 -1 1 -1 1 1 1 
9 -1 -1 -1 1 -1 1 1 1 1 1 1 

10 1 -1 -1 1 -1 1 1 -1 -1 1 -1 
11 -1 1 -1 1 -1 -1 1 1 1 -1 -1 
12 1 1 -1 1 -1 -1 1 -1 -1 -1 1 
13 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 
14 1 -1 1 1 -1 -1 -1 1 -1 1 1 
15 -1 1 1 1 -1 1 -1 -1 1 -1 1 
16 1 1 1 1 -1 1 -1 1 -1 -1 -1 
17 -1 -1 -1 -1 1 -1 1 -1 1 1 1 
18 1 -1 -1 -1 1 -1 1 1 -1 1 -1 
19 -1 1 -1 -1 1 1 1 -1 1 -1 -1 
20 1 1 -1 -1 1 1 1 1 -1 -1 1 
21 -1 -1 1 -1 1 1 -1 1 1 1 -1 
22 1 -1 1 -1 1 1 -1 -1 -1 1 1 
23 -1 1 1 -1 1 -1 -1 1 1 -1 1 
24 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 
25 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 
26 1 -1 -1 1 1 1 -1 -1 1 -1 1 
27 -1 1 -1 1 1 -1 -1 1 -1 1 1 
28 1 1 -1 1 1 -1 -1 -1 1 1 -1 
29 -1 -1 1 1 1 -1 1 -1 -1 -1 1 
30 1 -1 1 1 1 -1 1 1 1 -1 -1 
31 -1 1 1 1 1 1 1 -1 -1 1 -1 
32 1 1 1 1 1 1 1 1 1 1 1 

 
  



Supplementary Table 2: Code for experimental Design in Supplementary Table 1 

Code 
Volume of stock solution in μL 

Fe Mn Zn Cu NH4 Ni Co Mo BO Ca Mg 
-1 10 10 10 10 20 10 0 0 0 10 10 
1 40 40 40 40 80 40 40 40 40 40 40 

 
 Fe Mn Zn Cu NH4 Ni Co Mo BO Ca Mg 

Conc. in stock solution in g/L: 0.4 0.4 0.04 0.01252 400 0.0008 0.0052 0.0026 0.002 0.53 10 
 

Code 
Concentration of component in mmol/L 

Fe Mn Zn Cu NH4 Ni Co Mo BO Ca Mg 
-1 1.4E-02 2.4E-02 1.4E-03 5.0E-04 1.2E+02 3.4E-05 0.0E+00 0.0E+00 0.0E+00 3.6E-02 4.1E-01 
1 5.8E-02 9.5E-02 5.6E-03 2.0E-03 4.8E+02 1.4E-04 8.7E-04 4.3E-04 1.3E-03 1.4E-01 1.6E+00 

 
 

2 Optimized Media  
 
Supplementary Table 3: Comparison of concentration of medium components between standard CgXII medium (“reference”) 
and optimized composition.  Na2MoO4 * 2 H2O and H3BO3 are not included in the standard CgXII composition, but are listed in 
the table as these components were included in screening analyses before and after iterative medium optimization. 
Component Concentration in reference 

medium composition 
Concentration in optimized 
medium composition 

Fold-change from 
reference to optimal 

Glucose  10 g/L 10 g/L 1 X (no change) 
(NH4)2SO4 20 g/L 0 g/L 0 X  
Urea 5 g/L 5 g/L 1 X (no change) 
KH2PO4 1 g/L 1 g/L 1 X (no change) 
K2HPO4 1 g/L 1 g/L 1 X (no change) 
MOPS 42 g/L 42 g/L 1 X (no change) 
FeSO4 * 7 H2O 10 mg/L 10 mg/L 1 X (no change) 
MnSO4 * H2O 10 mg/L 10 mg/L 1 X (no change) 
ZnSO4 * 7 H2O 1 mg/L 1 mg/L 1 X (no change) 
CuSO4 * 5 H2O 0.31 mg/L 0.31 mg/L 1 X (no change) 
NiCl2 * 6 H2O 0.02 mg/L 0.02 mg/L 1 X (no change) 
CaCl2 * 2 H2O 0.01325 g/L 0.424 g/L 32 X 
MgSO4 * 7 H2O 0.25 g/L 1.7 g/L 6.8 X 
CoCl2 * 6 H2O 0.31 mg/L 0.31 mg/L 1 X (no change) 
Na2MoO4 * 2 H2O 0 g/L 0 g/L 1 X (no change) 
H3BO3 0 g/L 0 g/L 1 X (no change) 
Protocatechuic acid (PCA) 30 mg/L 30 mg/L 1 X (no change) 
Biotin 0.2 mg/L 0.2 mg/L 1 X (no change) 
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Supplement to “A framework for accelerated phototrophic bioprocess 
development: integration of parallelized microscale cultivation, 
laboratory automation and Kriging-assisted experimental design” 

 



Additional File 1 
Table 1: Experimental design and results, fractional factorial – Part 1 

#experiment MES [mmol L-1] NaNO3 [g L-1] 
K2HPO4 / 
KH2PO4 [g L-1] NaCl [mmol L-1] MgSO4 [mmol L-1] 

1 5.00E+01 1.50E+00 2.00E+00 1.07E-01 7.61E-01 
2 5.00E+01 1.50E+00 2.00E+00 1.07E-01 7.61E-01 
3 5.00E+01 1.50E+00 2.00E+00 1.07E-01 7.61E-01 
4 5.00E+01 1.50E+00 2.00E+00 1.07E-01 7.61E-01 
5 5.00E+01 1.50E+00 2.00E+00 1.07E-01 7.61E-01 
6 0.00E+00 2.50E-01 2.50E-01 5.00E+00 2.50E+00 
7 0.00E+00 2.50E-01 2.50E+00 0.00E+00 2.50E+00 
8 7.50E+01 2.50E+00 2.50E-01 0.00E+00 2.50E+00 
9 0.00E+00 2.50E+00 2.50E+00 5.00E+00 2.50E+00 

10 0.00E+00 2.50E+00 2.50E-01 5.00E+00 1.00E-01 
11 7.50E+01 2.50E-01 2.50E+00 5.00E+00 1.00E-01 
12 7.50E+01 2.50E-01 2.50E-01 5.00E+00 2.50E+00 
13 7.50E+01 2.50E+00 2.50E+00 0.00E+00 1.00E-01 
14 7.50E+01 2.50E-01 2.50E+00 0.00E+00 2.50E+00 
15 0.00E+00 2.50E-01 2.50E-01 5.00E+00 2.50E+00 
16 0.00E+00 2.50E+00 2.50E-01 5.00E+00 1.00E-01 
17 7.50E+01 2.50E-01 2.50E-01 0.00E+00 1.00E-01 
18 7.50E+01 2.50E+00 2.50E-01 5.00E+00 1.00E-01 
19 7.50E+01 2.50E+00 2.50E+00 5.00E+00 2.50E+00 
20 0.00E+00 2.50E+00 2.50E+00 5.00E+00 2.50E+00 
21 0.00E+00 2.50E-01 2.50E-01 0.00E+00 1.00E-01 
22 7.50E+01 2.50E-01 2.50E+00 0.00E+00 2.50E+00 
23 7.50E+01 2.50E-01 2.50E+00 5.00E+00 1.00E-01 
24 0.00E+00 2.50E+00 2.50E+00 0.00E+00 1.00E-01 
25 0.00E+00 2.50E+00 2.50E-01 0.00E+00 2.50E+00 
26 0.00E+00 2.50E+00 2.50E+00 0.00E+00 1.00E-01 
27 7.50E+01 2.50E+00 2.50E-01 5.00E+00 1.00E-01 
28 0.00E+00 2.50E-01 2.50E+00 0.00E+00 2.50E+00 
29 0.00E+00 2.50E+00 2.50E-01 0.00E+00 2.50E+00 
30 7.50E+01 2.50E+00 2.50E+00 0.00E+00 1.00E-01 
31 7.50E+01 2.50E-01 2.50E-01 5.00E+00 2.50E+00 
32 0.00E+00 2.50E-01 2.50E+00 5.00E+00 1.00E-01 
33 0.00E+00 2.50E-01 2.50E-01 0.00E+00 1.00E-01 
34 7.50E+01 2.50E-01 2.50E-01 0.00E+00 1.00E-01 
35 0.00E+00 2.50E-01 2.50E+00 5.00E+00 1.00E-01 
36 7.50E+01 2.50E+00 2.50E-01 0.00E+00 2.50E+00 
37 7.50E+01 2.50E+00 2.50E+00 5.00E+00 2.50E+00 

 

  



Table 2: Experimental design and results, fractional factorial – Part 2 

#experiment CaCl2 [mmol L-1] trace [x fold] FeSO4 [mmol L-1] 
EDTA [mmol 
L-1] 

Lipid 
Productivity 
[a.u.] 

1 8.50E-01 1.00E+00 4.00E-03 2.97E-01 2.92E+02 
2 8.50E-01 1.00E+00 4.00E-03 2.97E-01 3.17E+02 
3 8.50E-01 1.00E+00 4.00E-03 2.97E-01 2.92E+02 
4 8.50E-01 1.00E+00 4.00E-03 2.97E-01 2.75E+02 
5 8.50E-01 1.00E+00 4.00E-03 2.97E-01 2.56E+02 
6 2.50E+00 2.50E+00 4.00E-03 0.00E+00 2.38E+02 
7 1.00E-01 2.50E+00 4.00E-02 0.00E+00 9.22E+02 
8 2.50E+00 2.50E+00 4.00E-02 0.00E+00 5.65E+02 
9 2.50E+00 1.00E-01 4.00E-02 0.00E+00 1.61E+01 

10 2.50E+00 2.50E+00 4.00E-03 1.00E+00 5.21E+02 
11 2.50E+00 2.50E+00 4.00E-02 0.00E+00 2.95E+02 
12 1.00E-01 1.00E-01 4.00E-02 0.00E+00 3.57E+02 
13 2.50E+00 1.00E-01 4.00E-03 1.00E+00 7.45E+01 
14 2.50E+00 1.00E-01 4.00E-03 0.00E+00 6.07E+02 
15 1.00E-01 2.50E+00 4.00E-02 1.00E+00 5.15E+02 
16 1.00E-01 2.50E+00 4.00E-02 0.00E+00 2.86E-01 
17 1.00E-01 2.50E+00 4.00E-03 0.00E+00 1.10E+02 
18 1.00E-01 1.00E-01 4.00E-02 1.00E+00 1.91E-01 
19 2.50E+00 2.50E+00 4.00E-02 1.00E+00 2.33E+01 
20 1.00E-01 1.00E-01 4.00E-03 1.00E+00 3.66E-01 
21 1.00E-01 1.00E-01 4.00E-03 1.00E+00 3.32E-01 
22 1.00E-01 1.00E-01 4.00E-02 1.00E+00 3.32E+00 
23 1.00E-01 2.50E+00 4.00E-03 1.00E+00 1.81E-01 
24 1.00E-01 2.50E+00 4.00E-02 1.00E+00 5.65E+00 
25 1.00E-01 1.00E-01 4.00E-03 0.00E+00 1.75E+01 
26 2.50E+00 2.50E+00 4.00E-03 0.00E+00 3.71E-01 
27 2.50E+00 1.00E-01 4.00E-03 0.00E+00 3.39E+02 
28 2.50E+00 2.50E+00 4.00E-03 1.00E+00 7.21E+02 
29 2.50E+00 1.00E-01 4.00E-02 1.00E+00 2.69E+01 
30 1.00E-01 1.00E-01 4.00E-02 0.00E+00 1.28E+01 
31 2.50E+00 1.00E-01 4.00E-03 1.00E+00 7.86E+01 
32 2.50E+00 1.00E-01 4.00E-02 1.00E+00 1.64E-01 
33 2.50E+00 1.00E-01 4.00E-02 0.00E+00 3.23E-02 
34 2.50E+00 2.50E+00 4.00E-02 1.00E+00 7.71E+02 
35 1.00E-01 1.00E-01 4.00E-03 0.00E+00 6.71E+02 
36 1.00E-01 2.50E+00 4.00E-03 1.00E+00 6.41E+00 
37 1.00E-01 2.50E+00 4.00E-03 0.00E+00 1.38E+01 

 



Additional File 2 

Table 3: Media Compositions 

component 
concentration 
enBBMref [mmol L-1] 

concentration 
enBBMopt [mmol L-1] 

concentration 
enBBMopt,min [mmol L-1] 

CaCl2 8.50E-01 1.06E+00 1.06E+00 

CoSO4 3.30E-04 8.25E-04 8.25E-04 

CuSO4 1.00E-03 2.50E-03 2.50E-03 

FeSO4 4.00E-03 4.00E-03 4.00E-03 

H3BO3 3.70E-02 9.25E-02 9.25E-02 

K2HPO4 / 
KH2PO4 1.37E+01 1.37E+01 1.72E+00 

KOH 1.11E+00 1.11E+00 0.00E+00 

MES 5.00E+01 5.00E+01 0.00E+00 

MgSO4 7.61E-01 2.50E+00 2.50E+00 

MnCl2 2.00E-03 5.00E-03 5.00E-03 

NaCl 1.07E-01 1.07E-01 0.00E+00 

Na2EDTA 2.97E-01 2.97E-01 0.00E+00 

Na2MoO4 1.00E-03 2.50E-03 2.50E-03 

NaNO3 1.76E+01 7.94E+00 7.94E+00 

penicillin-G 2.81E-01 2.81E-01 2.81E-01 

ZnSO4 6.00E-03 1.50E-02 1.50E-02 



Additional File 3 

 
Figure 1: Coefficients for pair-wise interaction with MgSO4  
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Table 4: Experimental design and results, full factorial – Part 1 

#experiment MES [mmol L-1] NaNO3 [g L-1] K2HPO4 / KH2PO4 [g L-1] NaCl [mmol L-1] MgSO4 [mmol L-1] 
1 50 1.5 2 0.107 0.761 
2 50 1.5 2 0.107 0.761 
3 50 1.5 2 0.107 0.761 
4 50 1.5 2 0.107 0.761 
5 50 2.5 2 0 0.1 
6 50 0.25 2 5 2.5 
7 50 2.5 2 0 2.5 
8 50 2.5 2 0 2.5 
9 50 0.25 2 2.5 1.9 

10 50 2.5 2 5 0.1 
11 50 0.25 2 5 2.5 
12 50 0.25 2 0 2.5 
13 50 0.25 2 5 2.5 
14 50 0.25 2 5 2.5 
15 50 2.5 2 5 2.5 
16 50 0.25 2 5 0.1 
17 50 2.5 2 5 0.1 
18 50 0.25 2 0 2.5 
19 50 2.5 2 0 2.5 
20 50 2.5 2 5 2.5 
21 50 2.5 2 0 0.1 
22 50 0.25 2 0 0.1 
23 50 2.5 2 0 0.1 
24 50 2.5 2 0 0.1 
25 50 0.25 2 0 0.1 
26 50 2.5 2 5 2.5 
27 50 0.8125 2 2.5 1.9 
28 50 0.25 2 0 2.5 
29 50 0.25 2 0 0.1 
30 50 0.8125 2 0 2.5 
31 50 0.25 2 5 0.1 
32 50 0.25 2 0 0.1 
33 50 0.25 2 5 0.1 
34 50 0.25 2 0 2.5 
35 50 2.5 2 5 2.5 
36 50 2.5 2 0 2.5 
37 50 2.5 2 5 0.1 
38 50 0.25 2 5 0.1 
39 50 2.5 2 5 0.1 

 

  



Table 5: Experimental design and results, full factorial – Part 2 

#experiment CaCl2 [mmol L-1] trace [x fold] FeSO4 [mmol L-1] EDTA [mmol L-1] 
Lipid Productivity 
[a.u.] 

1 0.85 1 0.004 0.297 356.5913129 
2 0.85 1 0.004 0.297 373.2704665 
3 0.85 1 0.004 0.297 338.6284309 
4 0.85 1 0.004 0.297 365.9636463 
5 2.5 2.5 0.004 0.297 361.1236215 
6 0.1 0.1 0.004 0.297 8.854160233 
7 2.5 2.5 0.004 0.297 44.65471473 
8 2.5 0.1 0.004 0.297 29.53868928 
9 2.5 2.5 0.004 0.297 831.9867314 

10 2.5 0.1 0.004 0.297 468.9142965 
11 2.5 0.1 0.004 0.297 329.6298815 
12 2.5 0.1 0.004 0.297 316.2274568 
13 2.5 2.5 0.004 0.297 767.1525227 
14 0.1 2.5 0.004 0.297 817.1550468 
15 2.5 2.5 0.004 0.297 25.07835108 
16 0.1 0.1 0.004 0.297 0.329783553 
17 0.1 0.1 0.004 0.297 5.421150708 
18 0.1 2.5 0.004 0.297 816.2714476 
19 0.1 2.5 0.004 0.297 23.62594111 
20 2.5 0.1 0.004 0.297 23.74003025 
21 2.5 0.1 0.004 0.297 711.3313574 
22 0.1 2.5 0.004 0.297 148.3129184 
23 0.1 0.1 0.004 0.297 0.331542145 
24 0.1 2.5 0.004 0.297 636.4821649 
25 0.1 0.1 0.004 0.297 3.663354735 
26 0.1 0.1 0.004 0.297 7.870234186 
27 1.9 1.9 0.004 0.297 1542.929642 
28 2.5 2.5 0.004 0.297 796.7885052 
29 2.5 2.5 0.004 0.297 628.545046 
30 1.9 1.9 0.004 0.297 1621.528419 
31 2.5 0.1 0.004 0.297 295.6224386 
32 2.5 0.1 0.004 0.297 358.8520543 
33 2.5 2.5 0.004 0.297 764.7553045 
34 0.1 0.1 0.004 0.297 11.77646422 
35 0.1 2.5 0.004 0.297 42.12366806 
36 0.1 0.1 0.004 0.297 8.285368399 
37 0.1 2.5 0.004 0.297 364.4682896 
38 0.1 2.5 0.004 0.297 326.6295673 
39 2.5 2.5 0.004 0.297 418.0846118 
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Figure 2: Screening plot for full factorial design 
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Table 6: Experimental design and results, locating optimum – Part 1 

#experiment MES [mmol L-1] NaNO3 [g L-1] 
K2HPO4 / 
KH2PO4 [g L-1] NaCl [mmol L-1] MgSO4 [mmol L-1] 

1 50 1.5 2 0.107 0.761 
2 50 1.5 2 0.107 0.761 
3 50 1.5 2 0.107 0.761 
4 50 1.5 2 0.107 0.761 
5 50 1.5 2 0.107 2.5 
6 50 1.5 2 0.107 0.1 
7 50 0.5625 2 0.107 1.3 
8 50 0.875 2 0.107 1.3 
9 50 1.1875 2 0.107 1.3 

10 50 0.875 2 0.107 2.5 
11 50 0.5625 2 0.107 1.3 
12 50 1.1875 2 0.107 1.3 
13 50 1.5 2 0.107 2.5 
14 50 0.25 2 0.107 2.5 
15 50 1.5 2 0.107 0.1 
16 50 0.25 2 0.107 2.5 
17 50 0.5625 2 0.107 1.3 
18 50 0.875 2 0.107 0.1 
19 50 0.5625 2 0.107 1.3 
20 50 0.25 2 0.107 2.5 
21 50 1.5 2 0.107 2.5 
22 50 1.1875 2 0.107 1.3 
23 50 0.25 2 0.107 0.1 
24 50 0.25 2 0.107 0.1 
25 50 1.5 2 0.107 2.5 
26 50 0.25 2 0.107 0.1 
27 50 1.5 2 0.107 0.1 
28 50 1.1875 2 0.107 1.3 
29 50 1.5 2 0.107 2.5 
30 50 0.25 2 0.107 2.5 
31 50 0.875 2 0.107 0.1 
32 50 0.875 2 0.107 2.5 
33 50 0.5625 2 0.107 1.3 
34 50 1.1875 2 0.107 1.3 
35 50 0.25 2 0.107 0.1 
36 50 0.25 2 0.107 0.1 
37 50 1.5 2 0.107 0.1 
38 50 0.25 2 0.107 2.5 
39 50 1.5 2 0.107 0.1 

 

  



Table 7: Experimental design and results, locating optimum – Part 2 

#experiment CaCl2 [mmol L-1] trace [x fold] FeSO4 [mmol L-1] EDTA [mmol L-1] 

Lipid 
Productivity 
[a.u.] 

1 0.85 1 0.004 0.297 340.9035096 
2 0.85 1 0.004 0.297 333.6144351 
3 0.85 1 0.004 0.297 312.5471286 
4 0.85 1 0.004 0.297 290.1184726 
5 1.3 0.1 0.004 0.297 121.2865784 
6 0.1 1.925 0.004 0.297 123.8941969 
7 1.9 1.0125 0.004 0.297 1433.279089 
8 0.7 1.0125 0.004 0.297 374.5055619 
9 0.7 2.8375 0.004 0.297 436.9745285 

10 0.1 3.75 0.004 0.297 922.6879307 
11 0.7 2.8375 0.004 0.297 1008.90762 
12 1.9 1.0125 0.004 0.297 678.6264889 
13 0.1 3.75 0.004 0.297 413.6182137 
14 0.1 0.1 0.004 0.297 4.871580398 
15 0.1 0.1 0.004 0.297 0.25569757 
16 2.5 1.925 0.004 0.297 708.2690884 
17 1.9 2.8375 0.004 0.297 83.36907215 
18 2.5 0.1 0.004 0.297 410.6805861 
19 1.3 2.8375 0.004 0.297 1395.134038 
20 0.1 3.75 0.004 0.297 759.980445 
21 0.1 0.1 0.004 0.297 4.175337844 
22 1.9 1.925 0.004 0.297 829.3965231 
23 0.1 0.1 0.004 0.297 0.293767254 
24 2.5 3.75 0.004 0.297 127.710933 
25 2.5 0.1 0.004 0.297 306.3594785 
26 1.3 3.75 0.004 0.297 426.2240551 
27 0.1 3.75 0.004 0.297 229.9717074 
28 0.7 1.0125 0.004 0.297 289.6067478 
29 2.5 3.75 0.004 0.297 4.151178205 
30 2.5 3.75 0.004 0.297 243.1858845 
31 1.06 1.56 0.004 0.297 555.6468172 
32 1.06 1.56 0.004 0.297 1248.779151 
33 0.7 1.0125 0.004 0.297 1022.233687 
34 1.9 2.8375 0.004 0.297 575.8948131 
35 0.1 3.75 0.004 0.297 379.4746197 
36 2.5 0.1 0.004 0.297 288.251663 
37 2.5 3.75 0.004 0.297 5.262414031 
38 2.5 0.1 0.004 0.297 338.7270819 
39 2.5 0.1 0.004 0.297 458.8031935 

 

  



Additional File 7 

 
Figure 3: Precipitation of Ca2+ 
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Figure 4: A three-dimensional plot of the Kriging model together with the measured data 

can be obtained. Analog to contour plots in Fig. 3b in original publication 
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Table 8: Experimental design and results, refining the of optimum – Part 1 

#experiment MES [mmol L-1] NaNO3 [g L-1] 
K2HPO4 / 
KH2PO4 [g L-1] NaCl [mmol L-1] MgSO4 [mmol L-1] 

1 50 1.5 2 0.107 0.761 
2 50 1.5 2 0.107 0.761 
3 50 1.5 2 0.107 0.761 
4 50 1.5 2 0.107 0.761 
5 50 0.375 2 0.107 0.7494 
6 50 0.625 2 0.107 0.6245 
7 50 0.75 2 0.107 2.3731 
8 50 0.5 2 0.107 0.4996 
9 50 1.125 2 0.107 2.1233 

10 50 0.375 2 0.107 1.249 
11 50 0.625 2 0.107 2.498 
12 50 1.125 2 0.107 1.249 
13 50 0.375 2 0.107 1.249 
14 50 0.25 2 0.107 1.1241 
15 50 0.5 2 0.107 2.2482 
16 50 1.5 2 0.107 0.8743 
17 50 0.625 2 0.107 0.7494 
18 50 1.375 2 0.107 0.6245 
19 50 1.125 2 0.107 1.8735 
20 50 1.375 2 0.107 0.4996 
21 50 0.375 2 0.107 1.7486 
22 50 0.375 2 0.107 1.1241 
23 50 0.75 2 0.107 0.7494 
24 50 0.375 2 0.107 2.1233 
25 50 0.5 2 0.107 0.2498 
26 50 0.5 2 0.107 1.1241 
27 50 0.75 2 0.107 1.6237 
28 50 0.25 2 0.107 1.4988 
29 50 1.125 2 0.107 2.2482 
30 50 0.625 2 0.107 1.4988 
31 50 0.625 2 0.107 2.498 
32 50 0.875 2 0.107 1.9984 
33 50 1 2 0.107 0.4996 
34 50 0.25 2 0.107 2.498 
35 50 0.5 2 0.107 0.3747 
36 50 0.375 2 0.107 2.1233 
37 50 0.5 2 0.107 0.6245 
38 50 1 2 0.107 0.9992 
39 50 1.125 2 0.107 1.8735 

 

  



Table 9: Experimental design and results, refining the of optimum – Part 2 

number of 
experiment CaCl2 [mmol L-1] trace [x fold] FeSO4 [mmol L-1] EDTA [mmol L-1] 

Lipid 
Productivity 
[a.u.] 

1 0.85 1 0.004 0.297 322.1342808 
2 0.85 1 0.004 0.297 408.70142 
3 0.85 1 0.004 0.297 338.9989834 
4 0.85 1 0.004 0.297 377.4232757 
5 0.2499 3.375 0.004 0.297 1319.709365 
6 2.12415 1.875 0.004 0.297 1281.414526 
7 1.12455 1.625 0.004 0.297 739.1991486 
8 1.87425 3.5 0.004 0.297 792.794156 
9 0.7497 1.875 0.004 0.297 1324.696489 

10 1.62435 1.875 0.004 0.297 968.6335413 
11 1.62435 1.25 0.004 0.297 649.3189801 
12 1.37445 1.625 0.004 0.297 796.9939824 
13 0.9996 1.875 0.004 0.297 881.7006164 
14 1.62435 1.5 0.004 0.297 294.8120007 
15 1.4994 1.625 0.004 0.297 728.5409248 
16 1.9992 0.875 0.004 0.297 509.3817877 
17 1.37445 2 0.004 0.297 651.2138754 
18 1.2495 3.125 0.004 0.297 604.4186875 
19 0.4998 2 0.004 0.297 1140.265032 
20 0.37485 2.375 0.004 0.297 1153.231708 
21 1.4994 2.375 0.004 0.297 699.8037576 
22 1.7493 1.875 0.004 0.297 628.0610996 
23 0.87465 2.375 0.004 0.297 1174.484775 
24 1.37445 1.625 0.004 0.297 1154.945702 
25 1.7493 3.625 0.004 0.297 706.8882145 
26 2.2491 1.25 0.004 0.297 804.281105 
27 0.9996 0.75 0.004 0.297 468.5243295 
28 0.7497 3.375 0.004 0.297 1069.491537 
29 2.12415 3 0.004 0.297 755.2045658 
30 1.12455 1.625 0.004 0.297 696.8222886 
31 1.7493 0.375 0.004 0.297 1335.275897 
32 0.4998 0.875 0.004 0.297 972.5113385 
33 0.9996 3.625 0.004 0.297 694.3640094 
34 1.2495 1.75 0.004 0.297 1218.536374 
35 2.12415 2.875 0.004 0.297 928.0238298 
36 1.12455 1.25 0.004 0.297 809.5954026 
37 0.12495 2.125 0.004 0.297 709.5202223 
38 0.2499 1.75 0.004 0.297 967.9693233 
39 2.12415 1.375 0.004 0.297 814.265332 
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Figure 5: A three-dimensional plot of the Kriging model together with the measured data 

can be obtained. Analog to contour plots in Fig. 4 in original publication 
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Figure 6: Relative composition of the fatty acids from the neutral lipid product fractions for 

enBBMopt,min and enBBMopt. Error bars represent min/max from biological replicates (n=2) 
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Supplement 

1 Model Parameters 

Table 1: Model parameters for the different components 

Parameter Component Value 

Desorption rate  Lysozyme 1000 

 Cytochrome C 1000 

 Ribonuclease A 1000 

Adsorption rate  Lysozyme 35.5 

 Cytochrome C 1.59 

 Ribonuclease A 7.7 

Characteristic Charge   Lysozyme 4.7 

 Cytochrome C 5.29 

 Ribonuclease A 3.7 

Shielding Factors  Lysozyme 11.83 

 Cytochrome C 10.6 

 Ribonuclease A 10 

Film diffusion  Lysozyme 6.9 10-6 

 Cytochrome C 6.9 10-6 

 Ribonuclease A 6.9 10-6 

Diffusion coefficient All components 6.07 10-6 

Film diffusion  All components 6.9 10-6 

 



 

Table 2: Column parameters 

Parameter Value 

Axial Dispersion Coefficient (Column)  5.75 10-8 

Interstitial Velocity  5.75 10-4 

Column length  0.014 

Particle Radius  4.5 10-5 

Column Porosity 0.37 

Particle Porosity  0.75 

Ionic capacity  1200 

Initial bound salt concentration  1200 



2 Pareto Density 

 

Figure 1: Distribution of amount of Pareto optimal points for 260 optimization runs applying the cooling 

down strategy. For further details see section 4.4 (main document).  


