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Abstract

D riven and obstructed motion is often found in the microscopic world, e.g.
for diffusion in biological cells and in disordered media, in the motion

of microorganisms or in glasses. As these systems are found in nature, their dy-
namics is often affected by random potentials or forces. In order to investigate
underlying processes, it is therefore desirable to mimic these systems in a con-
trolled way. In this work, four different kinds of driving and obstruction in one-
and two-dimensional randompotentials are experimentally realised bymeans of
colloidal particles, time-dependent laser light fields and a piezo stage.

To create a quasi-two-dimensional system with particles undergoing Brown-
ian motion while being inside random potentials, speckle-patterned light fields
are exerted on micrometre-sized polystyrene spheres dispersed in aqueous so-
lutions. The same forces present in an optical tweezers setup result in the par-
ticles experiencing a random potential when exposed to the speckle light field.
Two different optical setups are used to create either one-dimensional or two-
dimensional random light fields. Theone-dimensional fields are createdby a spa-
tial lightmodulator, a device capable of time-dependently shaping light in almost
arbitrary patterns. The two-dimensional light fields are static and realised by an
Engineered DiffuserTM that creates a top-hat beam with an inherent speckle pat-
tern.

Firstly, the short-time diffusion of dilute particle dispersions exposed to one-
dimensional random potentials is investigated. Randomly distributed colloids
are quenched by a random potential, resulting in a temporary enhancement of
the diffusion coefficient before particles relax into the potential minima. Brown-
ian dynamics simulations quantitatively agree with the experimental results.

In a second step, periodically varying one-dimensional randompotentials are
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IV | Abstract

exposed to non-interacting colloidal particles. Their diffusion coefficient is en-
hancedor reduceddependingon the lengthof the periodwithwhich the random
potential is changed, resulting in a resonance curve-like behaviour. Theoretical
calculations and Brownian dynamics simulations are found to quantitatively re-
produce the experimental findings.

Subsequently, the dynamics of individual colloidal particles dragged with a
constant velocity through a two-dimensional random potential is the focus. De-
pending on the forces due to the applied drag velocity, distinct regimes differing
in their dynamics canbe identified. Whilemotionperpendicular to thedragonly
shows subdiffusion, diffusion coefficients along the drag direction are enhanced
by up to more than an order of magnitude. Additionally, first-passage time dis-
tributions are found to exhibit kinks.

Ultimately, samples made up of two differently sized colloids are exposed to
two-dimensional random light fields. The bigger particles are highly restricted
due to the interaction with the light field and thus serve as obstacles. The smaller
particles, called tracers, which are almost unaffected by the light, diffuse through
the voids created by the obstacles. The obstacle concentration is varied which
leads to a tracer dynamics similar to that found for diffusion in a Lorentz gas.
When the restriction of the obstacle motion is lifted, the long-time tracer diffu-
sion is diffusive instead of the long-time subdiffusion found when obstacles are
restricted.



Zusammenfassung

G etriebene und behinderte Bewegung findet sich oft in der mikroskopis-
chen Welt, z.B. für Diffusion in biologischen Zellen und ungeordneten

Medien, bei der Bewegung von Mikroorganismen oder in Gläsern. All diese
Systeme kommen natürlich vor und unterliegen daher oft zufälligen Potentialen
oder Kräften. Um zu verstehen wie die Prozesse in diesen zufälligen Umgebun-
gen ablaufen, ist es daherwünschenswert, ein kontrolliertesModellsystemdieser
Systeme zu studieren. In dieser Arbeit werden deshalb vier verschiedene Exper-
imente mit getriebener oder behinderter Bewegung mit Hilfe von kolloidalen
Teilchen, zeitabhängigenLichtfeldernundeinemMikroskoptischmitPiezoantrieb
untersucht.

Mikrometer großePolystyrolkugeln inwässrigenLösungenwerdeneinemLicht-
feld mit zufälligem Fleckenmuster ausgesetzt und erzeugen so ein quasi-zweidi-
mensionales SystemvonTeilchen, die Brown’scheBewegung vollziehenwährend
sie sich in einemZufallspotential befinden. Die gleichenKräfte, die auch in einer
optische Pinzette wirken, sind die Ursache dafür, dass die Teilchen ein Poten-
tial spüren, wenn sie dem Lichtfeld ausgesetzt sind. Zwei verschiedene optische
Aufbauten werden dazu verwendet entweder eindimensionale oder zweidimen-
sionale Zufallspotentiale zu erzeugen. Die eindimensionalen Potentiale werden
mit Hilfe eines Spatial Light Modulators realisiert, ein Gerät, das Licht zeitab-
hängig zu fast beliebigen Mustern formen kann. Die statischen zweidimension-
alen Felder werden mit einem Engineered DiffuserTM erzeugt, der einen zylin-
drischen Strahl mit einem zufälligen Fleckenmuster formt.

Zunächst wird die Kurzzeitdiffusion verdünnter kolloidaler Dispersionen in
eindimensionalen zufälligen Potentialen untersucht. Zufällig verteilte Kolloide
werden schlagartig einem zufälligen Potential ausgesetzt. Dadurch wird ihr Dif-
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VI | Zusammenfassung

fusionskoeffizient zeitweilig erhöht bevordieTeilchen indiePotentialminima re-
laxieren. Die Ergebnisse von Brownian-Dynamics-Simulationen dieses Experi-
ments stimmen gut mit den experimentellen Ergebnissen überein.

In einemzweitenSchrittwerdenverdünntekolloidaleDispersioneneinempe-
riodisch variierenden eindimensionalen Potential ausgesetzt. Der Diffusionko-
effizientderTeilchenwirdabhängigvonderPeriodendauer erhöhtoderverringert
undzeigt somit einResonanzverhalten. TheoretischeBerechnungenundBrownian-
Dynamics-Simulationen stimmen quantitativ mit den Experimenten überein.

AnschließendstehtdieDynamikvoneinzelnenkolloidalenTeilchen imFokus,
die gleichförmigdurcheine zufällige zweidimensionalePotentiallandschaftgezo-
gen werden. Abhängig von der Kraft, die durch die gleichförmige Bewegung auf
die Teilchen wirkt, zeigt die Teilchenbewegung mehrere Regimes. Während die
Teilchendynamik senkrecht zur Zugbewegung subdiffusiv ist, wird der Diffu-
sionskoeffizient entlang der Zugbewegung um bis zu mehr als eine Größenord-
nung erhöht. Zusätzlich zeigen sich Knicke in den Verteilungen der ersten Dur-
gangszeiten.

Abschließend werden Dispersionen aus zwei verschieden großen kolloidalen
Teilchen einem zweidimensionalen Lichtfeld ausgesetzt. Die größeren Teilchen
werdendurchdie InteraktionmitdemLicht stark in ihrerBewegungeingeschränkt
und agieren somit als Hindernisse. Die kleineren Teilchen, auch Tracer genannt,
werden kaum durch das Lichtfeld beeinflusst und diffundieren in den Freiräu-
menzwischendenHindernissen. DieVariationderHinderniskonzentration führt
zueinerTracerdynamik, dieder fürDiffusion ineinemLorentz-Gasähnelt. Wenn
die Einschränkung derHindernisbewegung aufgehobenwird, verändert sich die
Langzeitdynamik der Tracer von subdiffusivem zu diffusivem Verhalten.
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I Introduction

D riving and obstruction are two sides of the same coin as both represent an
alteration of movement. In everyday life, man-made driving is encoun-

tered regularly in any type of motor where it is used to move an object—be it a
car, boat or industrial machines. Obstruction, on the other hand, not only slows
down motion but can also be utilised to control motion, e.g. when barriers are
put up in front of sporting events to guide people to the entrances or breakwaters
that protect coastal areas by dissipating the energy of approaching water waves.
Furthermore, driven and obstructedmotion can be advantageously combined as
in turbineswhere adrivenfluid that is obstructedbyblades cangenerate electrical
power.

In the natural world, these concepts are found similarly. On a macroscopic
level, driven motion is represented by water and air streams spread all over the
earth, while in avalanche areas, obstruction by trees can save humans lives. The
interplay of driven and obstructionmotion can bewitnessedwhen tectonic plate
movements takeplace andpossibly result in earthquakes. Onamicroscopic level,
actin and myosin motors exhibit driven motion and thus help contracting mus-
cles [1]. Microorganisms like bacteria often possess motors that drive them to-
wards or away from certain stimuli [2]. In addition, micrometre-sized particles
perform Brownian motion when they are dispersed in a medium such as water
at non-zero temperature. It is a random motion caused by the bombardment of
the particles by the molecules of the dispersion medium resulting in diffusion.
Obstructed motion is then encountered for the diffusion of molecules in hetero-
geneously crowded environments such as cells [3] or for proteins diffusing inside
cell membranes [4, 5].

These and similar phenomena concerning driven and obstructed motion on
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microscopic length scales are the focus of ongoing research. Several studies on
molecular transport [6], the dynamics inside living cells [7], active particles in
complex environments [8], the effect of obstruction on the diffusivity of self-
propelled particles [9], crystal growth in fluid flow [10], the glass dynamics under
shear [11], the effect of active fluctuations on dynamics of particles, motors and
DNA-hairpins [12], and transport in heterogeneousmedia [13] are just a few ex-
amples for the large interest that driven andobstructedmotion aroused in the last
two years.

In order tomimic complexmicroscopic and even atomic systems found in na-
ture, colloids, i.e. particles in the size range between about 1 nm and 10 µm, are
oftenused as amodel system [14–16]. Amongst other applications, colloidal par-
ticles were used to determine Avogadro’s number [17] or provided insight into
friction on amolecular level [18]. Colloidal particles usually consist of silica [19]
or plastics, e.g. poly(methyl methacrylate) [20] or polystyrene [21] and are thus
easy to handle. Due to their size, their dynamics can be observed in real space by
a wide range of microscopy techniques such as bright field [21], dark field [22]
or confocal microscopes [23]. Colloids can be very versatile with shapes rang-
ing from spheres to ellipsoids and arbitrary hybrids [24, 25]. In addition, inter-
particle potentials can be tuned from the very basic hard-sphere potential to soft
and patchy interactions [14, 26].

Just like themicroscopic components found innature, colloids performBrow-
nianmotionwhendispersed inside amediumatnon-zero temperature. Thisnat-
urally occurring motion can be easily manipulated in an experiment, e.g. driven
or obstructed bymeans of invasive and non-invasive additional potentials. Inva-
sive methods manipulate particles by immediate interactions such as microflu-
idic flows which drag particles through viscous forces [27], chemical reactions
resulting in a directed motion of the colloids [28] or physical obstacles which are
fixed to the sample cell and prevent particles from visiting certain regions [29].
Non-invasive methods, on the other hand, manipulate particles without influ-
encing the system as a whole. Examples include the use of the gravitational field
of the earth to apply a tilting force onparticleswith different buoyantmasses than
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the dispersionmedium [29], magnetic fields to apply forces to paramagnetic col-
loids [30] or electro-magnetic fields, i.e. light, to create potentials dependent on
the difference of the refractive index of the particles to that of their surround-
ings [31]. The disadvantage of invasive methods is usually the lack of flexibility
when it comes to changing measurement parameters. While magnetic or light
fields can be changed over time without much effort and many side effects, the
change of a fluid flow or the exchange of fixed physical obstacles often result in
turbulences and the rebuilding of the whole measured system, respectively.

Unlike in many experiments on colloids in external potentials found in the
literature [18, 29, 32–34], driving and obstructing potentials are usually not pe-
riodic in nature. Even though periodicity often helps understanding basic con-
cepts, e.g. the weather driven by periodic high and low pressure areas, these con-
cepts are often found to be extended by a certain randomness in nature, e.g. the
continents altering the otherwise regular distribution of high and low pressure
areas around the globe. Similarly, in the microscopic world, randomness plays
a crucial role in everyday phenomena. Many examples for motion in random
environments can be found in biological matter: a DNA strand resembles a one-
dimensional randompotential for a protein diffusing on it and thereby facilitates
recognition of the right base pair [35], the compartments which diffuse inside
a cell move in crowded environments [5] and are thus subject to random forces
exerted by neighbouring compartments, or a protein folds according to multidi-
mensional random potential energy landscape where the potential minimum in
the random landscape corresponds to the native state of the protein [36]. Ran-
dom potentials are also found in models describing glasses, where the glass dy-
namics corresponds to a random walk inside a multidimensional random po-
tential landscape [37]. Furthermore, heterogeneous materials such as rocks ex-
hibit randompaths, also called fractals in that context, where fluids can flow [38]
which is important to the evolution of the earth’s crust [39].

To account for the aspects discussed so far, i.e. driven and obstructed motion,
colloidal particles as a model system and non-invasive external potentials, the
work described in this thesis focusses on the driven and obstructed dynamics of
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colloidal particles in one- and two-dimensional random potential energy land-
scapes. The landscapes were created by the usage of electro-magnetic waves, i.e.
light. The forces exerted on the colloidal particles were the same that are present
in optical tweezers [31]. They originated from a difference in refractive indices
of the particles and the surrounding medium and could be externally controlled
through the light intensity. The colloids had a different density than the medium
theywere dispersed in and thus formed a two-dimensional layer. In addition, the
colloidal particle samples were dilute in most experiments discussed in this the-
sis and hence particle-particle interactions were not important for the most part.
In order to evoke driven motion, time-dependent one-dimensional random po-
tentials and a piezo stage moving the entire sample cell were used. Obstructed
motion was caused by adding a second particle species that was restricted in its
motion and thus these particle acted as obstacles.

This thesis is split into several chapters in order to successively increase the
complexity of the discussed topics. InChapter II, the thesis startswith addressing
the basic physical phenomenanecessary to understand the ensuing chapters. The
terms soft matter and colloids are defined, before interactions of colloidal parti-
cles and their Brownian motion is discussed. Subsequently, optical forces, a piv-
otal element to most experiments presented in this thesis, are characterised. The
expansion of optical tweezers to multidimensional light fields by devices such as
a spatial light modulator or an Engineered DiffuserTM is explained in detail while
a short excursion to piezoelectricity concludes the chapter.

After the physical phenomena crucial for the later presented experiments have
been introduced, Chapter III concentrates on the experimental application of
these phenomena. In the work described in this thesis, two different setups were
used—one for creating one-dimensional random potentials and another one for
random potentials in two dimensions. Both of these setups are explained and
the light fields they produce are characterised. The dynamics of colloidal parti-
cles was captured by video microscopy in real space. Therefore, common pitfalls
concerning this method are addressed and solutions are provided. As the quan-
tification of driven and obstructed dynamics of colloidal particles is the focus,
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statistical quantities used throughout this thesis such as variance and excess kur-
tosis are elaborated on and their characteristics are exemplarily discussed.

Once all the necessary theory and tools have been introduced, Chapter IV
deals with the short-time diffusion of single particles in a one-dimensional ran-
dom energy landscape. The colloids were randomly distributed before they were
quenched by the sudden exertion of the random potential. The reaction to this
quench manifested in driven particle motion and is primarily studied by means
of the diffusion coefficient. The experimental results are compared to a theory
and simulations developed by Hartmut Löwen and Michael Schmiedeberg.

The same one-dimensional random potential is focussed on in Chapter V but
instead of quenching the single particles once and analysing their reaction, the
colloidswere quenchedperiodically andwere thus continuously drivenwhile the
length of the period was subject to change. The experimental results are again
compared to simulations conducted byMichael Schmiedeberg and to the results
obtained in Chapter IV. Furthermore, several quantities in addition to the dif-
fusion coefficient are studied to gain insight into the mechanisms related to the
dynamics of the periodically driven colloids.

In Chapter VI, driven dynamics of single particles in two-dimensional ran-
dom potentials are in focus. With the aid of a microscope stage actuated by a
piezo, colloids are uniformly dragged with varying forces through random po-
tentials of two different strengths. Themotions along the dragging force and per-
pendicular to it are analysed separately. Several quantities such as the mean, the
variance, the skewness and the excess kurtosis of the particle displacements are
studied to be able to discern various regimes in the particle dynamics. In ad-
dition, first-passage times are computed to further understand the mechanisms
leading to these regimes.

Chapter VII concerns obstructedmotion of single particles in randompoten-
tials. Instead of using only one particle species like in all the previous chapters,
colloidswith twodifferent sizeswereused simultaneously and exerted to the two-
dimensional random potential also used in Chapter VI. Larger colloids reacted
more strongly to the external potential andwere thusmore restricted in theirmo-
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tion. They acted as obstacles with the smaller particles, also called tracers, dif-
fusing around them. Depending on the concentration of the larger particles, a
labyrinth-like system similar to a fractal evolved. The dynamics of such a system
is studied for different obstacle concentrations. Furthermore, the restriction of
the obstacle motion can be tuned by means of the external potential. The effect
of the degree of obstacle restriction on the dynamics of the tracers is analysed for
two different obstacle concentrations.

This thesis closes with Chapter VIII, where a short summary of all the pre-
sented results is found.



II Physical Phenomena

T heoretical concepts are the basis of every experiment. To understand and
interpret an experiment, it is crucial tohave anoverviewof thephenomena

involved. Therefore, this chapter is dedicated to a brief look into physical phe-
nomena, which ar indispensable for this thesis, namely colloidal particles and
their dynamics and interactions, which influence the aforementioned: optical
forces and piezoelectricity.

1 Soft Matter and Colloids

As all experiments described in this thesis were conducted with colloidal par-
ticles (also called colloids), it is helpful to get to understand the soft matter world
towhich they belong. Softmatter physics belongs to thewider field of condensed
matter physics and is defined by the size range of the objects involved, which lies
between 1 nm and 10 µm (Fig. II.1). This size range is often referred to as meso-
scopic [40],meaning objects’ sizes lie between that ofmicroscopic objects (atoms
and molecules) and macroscopic objects (visible to the human eye).1 The lower
boundary is big enough for atomic forces, quantum physics, and chemical de-
tails to become unimportant [41, 42]. It also allows the treatment of themedium
in which the mesoscopic objects can be dispersed (e.g. water) as being continu-
ous [41, 42]. The upper boundary is such that the energies with which the soft
matter objects are bound and distorted are comparable with thermal energy. As
a result, Brownian motion, the omnipresent phenomenon in this thesis, can be

1Softmatter physics should not be confused withmesoscopic physics. This field also takes its name
from the term mesoscopic, but its focus is small electric circuits and is highly quantum physics
related—in contrast to soft matter physics.

7
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Figure II.1: Length scales of things encountered on a daily basis in comparison to soft
matter. Images taken from and based on [43–50].
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Soft Matter

Colloids Polymers Surfactants Active
Media

Liquid
Crystals

Figure II.2: Branches of soft matter physics: colloids, small particles immersed in a
medium; polymer chains made from monomers that are responsible for plastics and
rubbers; surfactants, amphiphilic compounds that can lower the surface tension; liquid
crystals, rodlike particles able to influence light; active media, particles and networks that
are self-propelled.
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eral are defined similarly, i.e. the same size range. Therefore, it is not sur-
prising that colloids and soft matter are often used as synonyms. In this
thesis, a distinction between colloids and soft matter in general is made.
Colloids are usually found in colloidal dispersions. As the word suggests
it is different from a normal solution. A colloidal dispersion consists of a
discontinuous, dispersed phase, the colloids, and a continuous phase, the
dispersion medium [53, 54]. This kind of mixture is often found in real
life, e.g. in body fluids and food. Hence there is a whole branch of indus-
try engaged in colloid science [40, 42, 53, 55, 56].

− As seen in Fig. II.2, polymers, which comes from Greek and means many
pieces, are chainlike molecules made up of monomers. The monomers,
i.e. single pieces, can be anything from amino acids in proteins (Fig. II.1)
to single units in rubber, e.g. for tyres. Polymers can consist of tens of
millions of monomers [51]. These monomers are usually bound together
with covalent bonds that are much stronger than their physical counter-
parts and therefore bind themonomers on larger time scales than physical
bonds would.2 Polymers can be found as string-like, star-like or gel net-
works (Fig. II.2) [40, 42]. Due to their versatile shape and composition,
polymers are indispensable in modern life. They are the building blocks
of rubbers, plastics, films, glues, textiles, biomaterials, and life itself [40,
42, 51].

− Theword surfactant is a contraction of ”surface active agent” anddescribes
amphiphileswhichcontainbothhydrophilic (water-loving) andhydropho-
bic (water-hating)materials [40]. Theyareusuallymadeupof ahydrophilic
head group and a hydrophobic tail and thus preferentially adsorb at inter-
faces and surfaces. Depending on the external influences they face, they
can formdiverse structures, suchasmicelles, bilayers, or vesicles (Fig. II.2).
These structures are caused by their individual parts seeking to avoid a
specific aspect of an environment. For example, when surfactants are dis-

2That is one of the reasons why it takes so long for plastic bags to degrade.
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solved in water they form micelles in order to shield their hydrophobic
parts andminimise anyenergeticallyunfavourable contactwithwater. This
behaviour is advantageously used in our everyday life, e.g. when we wash
ourselves. Soap is made up of surfactants: when we wash ourselves with
water only, the usually hydrophobic dirt will not be solubilised. By adding
soap, the dirt will be enclosed by the surfactants and can easily be rinsed
offbywaterdue to thenowhydrophilic outer shell of the encapsulateddirt.

− The term liquid crystal would usually be an oxymoron, as matter can ei-
ther be liquid or crystalline but not both at the same time. Liquid crystals
however, exhibit both states. Typically, they consist of rod-likeorplate-like
molecules that are liquidbut arranged in a crystallinemanner. Someof the
phases formedby liquid crystals are shown inFig. II.2 in a decreasingly or-
dered fashion. They can either form a crystal, a smectic liquid crystal (not
shown), a nematic liquid crystal, or an isotropic liquid. Themost common
is the nematic phase. With the aid of an electric field, the optical proper-
ties of this phase can be changed easily. Therefore, they are widely used in
display devices, such as monitors or digital watches [42, 51].

− Active media is a relatively new field in soft matter physics [57–59]. It in-
cludes phenomena such as active Brownian motion, in which a particle
takes up energy from its environment and converts it into directed mo-
tion [60]. For example, Janus particles—colloids that are covered on one
side with e.g. gold—can be exposed to laser light that makes them move
in a specific direction. Furthermore, active gels play an important role in
biology. When a cell divides, its cytoskeletal filaments, an active gel con-
sisting of actin and myosin motors, convert energy into motion [61]. In
Fig. II.2, typical microswimmers can be seen underneath the Janus par-
ticles and the active gels. They also belong to active media as they can,
similar to Janus particles, carry out directed motion due to chemotaxis—
motion affected by chemicals in the microswimmers’ environment. All
these phenomena fuel expectations in drug delivery science as theymight
help convey medication to the right place inside the human body on a
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nanoscale level [62].

1.1 Colloidal Particles

As the work described in this thesis focusses on colloids in particular, this sec-
tion is designed to give further insight into their properties. In the previous sec-
tion, it was mentioned that colloidal dispersions consist of two phases: the dis-
persed phase, more precisely the colloidal particles, and the dispersion medium,
which is a continuous phase. The term continuous phase usually refers to a phase
that can be thought of as having no boundaries and whose constituent compo-
nents are in general much smaller than those of the dispersedmedium. To better
illustrate thismatter, Fig. II.3 and the enclosed table show several everyday exam-
ples. One very common example is milk, whereby the dispersion medium is wa-
ter and the dispersed phase consists of liquid oil droplets in the above-mentioned
size range. These droplets form a boundary layerwith the surroundingwater and
are therefore discontinuous. It is also due to these droplets that milk appears to
be white. The scattering of light by oil droplets gives milk its characteristic look.
Milk is an example of a liquid phase dispersed in a liquid phase. Consequently,
the dynamics of this system can be rather complicated. This thesis focusses on
a simpler realisation of a colloidal dispersion, namely plastic particles dispersed
inwater. Thus the following considerations and explanations concentrate on this
kind of solid-liquid dispersion.

One thing all colloidal dispersions have in common is their size range (see
Fig. II.1). This leads to a large surface area-to-volume ratio of the dispersed phase
in thedispersionmedium. This ratio leads to far-reaching implications for thebe-
haviour of those systems. Due to the high surface area, surface chemistry plays
a very important role [40, 54, 55, 63, 64]. As a result, changing the concentra-
tion of the colloidal particles can lead to changes of the surface tension of the
dispersion [65]. Besides the concentration of the dispersed phase, other defin-
ing parameters are the interactions of particles among themselves and between
particles and medium. The former range from very basic concepts like the hard-
sphere potential to rather complicated ones like externally tunable sizes and at-
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tractions [66, 67]. The latter is thewell-knownBrownianmotion, a randomwalk
carried out by colloidal particles due to their collisions withmolecules of the dis-
persionmedium. Asboth are of interest for this thesis, the following sections deal
with them in more detail.

1.2 Inter-Particle Interactions

The inter-particle interactions, i.e. the way a particle reacts to the presence of
an additional particle, largely determine how stable a colloidal dispersion is. If
the potential of the dispersed particles were purely attractive, all particles would
aggregate in one point in space and form a particle block in a time span defined
by themagnitude of the potential. If the potential were purely repulsive, however,
the particles wouldmove apart endlessly.3 In neither scenario can the dispersion
ever reach equilibrium. Therefore, a balance of attractive and repulsive forces is
needed to reach an equilibrium state, i.e. to stabilise the colloidal dispersion.

First, a closer look is taken at attractive forces. Two colloidal particles with
the same radius, R, dispersed in a medium such as water are considered. These
two particles will attract each other due to the van der Waals forces. This attrac-
tion originates from the dipole-dipole interaction of the atoms in each particle.
As there aremany dipoles in each particle, the r−6-dependence, which is charac-
teristic for the van der Waals potentialUvdW between two atoms separated by a
distance r, becomes4

UvdW = −
AHR

12(r − 2R)
. (II.1)

TheHamaker constant,AH, defines the strength of the interaction depending on
the particles’ and dispersion medium’s material. Usually, AH is in the range of
several kBT , where kB is the Boltzmann constant and T the absolute tempera-
ture. The distance r is defined as the distance between the particle centres. This
inherent attractive force between particles has to be compensated by a repulsive

3If the colloidal dispersion were inside a finite container, purely repulsive forces would be sufficient
to reach equilibrium.

4This equation is only obtained when using Derjaguin’s approximation assuming the separation of
the particles’ surfaces to be smaller than the particles’ radii [51].
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Dispersed
Phase

Disper-
sion
Medium

Name Example

Liquid Gas Liquid aerosol Fog, liquid sprays

Solid Gas Solid aerosol Smoke

Gas Liquid Foam Foams and froths

Liquid Liquid Emulsion Milk, mayonnaise

Solid Liquid Sol, colloidal

dispersion, paste

(high solid

content)

Silver iodide in

phographic film,

paints, toothpaste

Gas Solid Solid foam Polyurethane foam,

expended polystyrene

Liquid Solid Solid emulsion Tarmac, ice cream

Solid Solid Solid suspension Opal, pearl,

pigmented plastic

Figure II.3: Examples of colloidal dispersions: the upper figure shows examples of three
of the most common day-to-day life colloids, namely smoke, paint and milk (from left to
right). The lower table gives an overview on the possible kinds of colloidal dispersions
and their day-to-day life counterparts. Images taken from [68–70] and table from [40].

force for a colloidal dispersion to be stable. Generally there are two well-known
strategies to accomplish this task [51], namely via electrostatic or entropic inter-
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a) b)

Figure II.4: The two widely known ways of stabilising a colloidal dispersion: a) Charge-
stabilisation through surface charges on particles that can be tuned by the amount of
counterions in the dispersion medium. In the shown example colloidal particles (blue)
are charged negatively. The counterions (red) are therefore positively charged. b) Steric
stabilisation through grafted polymers on colloidal particles’ surfaces. When polymers
(orange) put on colloids (blue) overlap, their mobility is restricted. That causes the parti-
cles to repel each other.
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part [40]:
UDLVO = UR + UA , (II.2)

whereUR is the repulsive andUA the attractive part. The latter is represented by
the van der Waals potential. To define the repulsive part, two spherical colloidal
particles with radius R are assumed to be in an electrolyte of bulk concentration
c0. These conditions together with further approximations5 and Eq. II.1 lead to

UDLVO = 64πRkBTc0Γ2
0

κ2 exp{−κ(r − 2R)} −
AHR

12(r − 2R)
(II.3)

where
Γ2
0 =

exp{ζeΦ0/(2kBT)} − 1
exp{ζeΦ0/(2kBT)} + 1

= tanh ( ζeΦ0
2kBT

) . (II.4)

The Debye length, κ−1, describes the distance over which the surface potential
of a particle, Φ0, drops to 1/e of its original value, where e = exp{1}, and is
thus a good measure for the range of the repulsive electrostatic potential. The
more counterions present in the surrounding medium, the smaller the Debye
length and the shorter the range over which the electrostatic repulsion is felt by
another particle. To calculateκ and also Γ0, the valency of the counterion species,
ζ , as well as the elementary charge, e, are needed. A typical potential shape re-
flecting Eq. II.3 and therefore a good description for charge-stabilised particles
in an electrolyte is shown in Fig. II.5 a). For very close distances, r ≳ 2R, the
DLVOpotential (green line) becomes infinitely high as the particles cannot over-
lap. When the distance becomes larger, the potential drops below zero as the at-
tractive van der Waals forces (purple line) are felt more strongly than the elec-
trostatic repulsion (red line). For larger distances, the repulsive force dominates.
The repulsive electrostatic potential strongly depends on the amount of counte-
rions in the surrounding electrolyte. Similarly, the attractive van der Waals po-
tential can be modified by choosing specific materials for particles and medium.
Thus the shape of the DLVO potential can be changed according to the experi-
menter’s needs. If proper conditions are chosen, charge-stabilised colloidal par-

5The mentioned approximations can be found in Ref. [40].
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Hard SpheresDLVODiameter Diameter

a) b)

Figure II.5: Two possible interaction potentials of a colloidal dispersion: a) The attractive
van der Waals potential inversely proportional to (purple line) and a repulsive electro-
static force (red line) add up to the DLVO potential (green line). b) Particles do not feel
each other until their surfaces touch and they cannot overlap (green line). This potential
is referred to as the hard-sphere potential.

1.3 Brownian Motion With and Without Drift
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If the absolute temperatureT is not equal to zero, watermolecules canbe thought
of as aheatbath andwill conduct thermalmotion. This thermalmotionwill cause
the molecules to move randomly. The higher the temperature is the more ther-
mal energy the molecules have and therefore the faster the molecules move. As
the molecules move, they bump into the colloidal particle transferring their en-
ergy andcausing it tomove in a randomfashion itself as seenon the left-hand side
of Fig. II.6. The resulting randomwalk of the particle is termedBrownianmotion
as the botanist Robert Brownwas oneof the first to describe it in 1828 [73]. How-
ever, Albert Einstein in 1905 [74] and Paul Langevin in 1908 [75] were the first
to construct theories describing it. Throughout this section, this motion will be
mainly described in only one dimension, which is referred to as the x-direction.
The formulae and explanations stated below can be generalised to all three di-
mensions. In general, every colloidal object with a mass, m, exposed to a heat
bath will undergo Brownian motion. According to the equipartition theorem,
an object’s mean kinetic energy in one dimension reads [76]

1
2
m⟨v2

B,x⟩ = 1
2
kBT ⇔ √⟨v2

B,x⟩ = √
kBT
m

. (II.5)

The object’s root mean square velocity, √⟨v2
B⟩, is inversely proportional to its

mass. Therefore, Brownian motion is not observable for macroscopic objects.

To describe Brownian motion in a more quantitative way, an ensemble of col-
loidal particles rather than a single particle is considered in the following [41, 74,
76]. The basis of the description is Anton Fick’s diffusion equations. Fick’s first
law of diffusion relates a gradient in a space- and time-dependent distribution of
particles, ρN(x, t), also referred to as particle concentration or density, to a par-
ticle flux, Jx(x, t), using the diffusion coefficient,D, via

Jx(x, t) = −D
𝜕 ρN(x, t)

𝜕x
, (II.6)

where t denotes time. From Eq. II.6, it can be seen that the higher the particle
concentration gradient is, the bigger the flux in the opposite direction.
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In this regard, the diffusion coefficientD is a factor describing the relation be-
tween concentration gradient and flux. To quantify this relation, one can think
of the non-interacting particle distribution in water inside a sealed container—
this time being exposed to gravity in the z-direction. In thermal equilibrium, the
particle density, ρN ,g(z), dependent on the height z can be written as

ρN ,g(z) = ρN ,0 exp{−
Fgz
kBT

} (II.7)

with ρN ,0 being the concentration at the bottom of the container and Fg being
the gravitational force. Inside the container, there are twofluxes that balance each
other as the container is in an equilibriumstate. Firstly, there is a flux, Jg, due toFg

acting on the particles. The gravitational force leads to a velocity of the particles
via vg = Fg/ξ, where ξ is the coefficient of friction depending on the particle
shape and size. Therefore, the resulting flux reads

Jg(z) = ρN ,g(z)vg = ρN ,g(z)
Fg

ξ
. (II.8)

As alreadymentioned, Jg(z) is counterbalanced by a second flux. This flux is due
to diffusion and was introduced in Eq. II.6. In equilibrium, both fluxes yield

Jg(z) = Jz(z) ⇔ ρN ,g(z)
Fg

ξ
= −D

𝜕ρN ,g(z)
𝜕z

= D
Fg

kBT
ρN ,g(z) . (II.9)

Here Eq. II.7was used togetherwith the fact that thermal equilibriumcancels out
the time dependence in Eq. II.6. The balance of both fluxes in Eq. II.9 then leads
to the Stokes-Einstein relation and thereby to the quantification of the diffusion
coefficient,

D = kBT
ξ

ξ=ξb
⟹ Db = kBT

6πηRh
, (II.10)

where a friction coefficient determined by Stokes ξb = 6πηRh for a spherical par-
ticle with the hydrodynamic radius, Rh,6 in the bulk of a medium with viscosity

6For a hard sphere, Rh = R.
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Trajectory

H2O molecules

Colloid

Figure II.6: Brownian motion shown in one dimension . Due to collisions with water
molecules, the colloidal particle performs a random walk. A one-dimensional time-
dependent schematic trajectory with time length is shown on the left-hand side (black
line). The resulting histogram of displacements is shown on the right in orange and
typically resembles a Gaussian function. For pure Brownian motion, the mean displace-
ment vanishes and therefore the mean square displacement, here defined as the
second moment about zero equals the variance of displacements .

ρ ρ
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distribution and can be solved by a Gaussian function:

ρN(x, t) = 1

√4πDt
exp{−

x2

4Dt
} . (II.12)

Instead of considering a particle distribution, ρN(x, t), one can also think of the
distribution of displacements of a single Brownian particle. The corresponding
probability density function (PDF), P(Δx, Δt),9 can be derived with the same
argument and will be similar to Eq. II.12. On the left-hand side of Fig. II.6, The
trajectory of a single particle for a time interval,Δt, is depicted. In an experiment,
the measured quantities are not necessarily absolute but rather time intervals Δt
and spatial displacements Δx, which additionally are not continuous as they are
assumed to be here. Still, a measured probability density function can be often
described by a continuous function, which can be written, similarly to Eq. II.12,
as

PB(Δx, Δt) = 1

√4πDΔt
exp{−

Δx2

4DΔt
} , (II.13)

where the index B denotes Brownian motion. Eq. II.13 describes the self-part of
the van-Hove function, i.e. the continuous probability distribution function cal-
culated fromdiscrete valuesmeasured in an experiment, whichwill be explained
in more detail in Sec. III.4.1 [78, 79]. Figure II.6 indicates whatP(Δx, Δt) looks
like for a typical trajectory given on its left-hand side: For a random walk with
no preferred direction the first moment, ⟨Δx⟩, its mean, vanishes. Angle brack-
ets refer to an average of the PDF over time or ensembles. The second moment,

9The term probability density function is used to describe a continuous probability distribution
function, since the term probability distribution function is quite general. In some sources a
discrete PDF is called probability mass function whereas a continuous PDF is called probabil-
ity density function [77]. In this thesis, naturally all described measurements produce discrete
data as there are no continuous data in an actual experiment and its postprocessing. However,
continuous probability distribution functions can be calculated from discrete measurement val-
ues by binning data and assigning a probability density to them. Continuous functions like the
Gaussian function can then often well describe discrete data obtained in the work described in
this thesis. Therefore, all the probability distribution functions used in this thesis are continuous
ones and canalsobe calledprobability density functions. Theyare referred to asPDForP mostly.
It is never used for cumulative probabilities. These are called cumulative distribution functions
here.
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⟨Δx2⟩(Δt), of a Gaussian determines how broad it is and can be determined to
be

⟨Δx2⟩(Δt) = 2DΔt . (II.14)

It increases linearly in time and thus indicates, together with Eq. II.13, a broad-
ening of the distribution due to Brownian motion. As displacements along dif-
ferent dimensions are independent for Brownian motion, the second moment,
⟨Δr2⟩(Δt), in d dimensions reads [42]

⟨Δr2⟩(Δt) = 2dDΔt , (II.15)

where r represents a d-dimensional vector. The second moment of PDFs of the
particle displacements is often called the mean square displacement (MSD).The
MSD is the first non-vanishing moment for pure Brownian motion and thus is
often calculated to quantify the particle dynamics. As can be seen in Fig. II.6 the
vanishing first moment is tantamount to the second moment being equal to the
variance of the PDF, σ2

Δx(Δt), since

σ2
Δx(Δt) = ⟨Δx2⟩ − ⟨Δx⟩2 (II.16)

and thus
σ2
Δx(Δt) = 2DΔt or σ2

Δr(Δt) = 2dDΔt . (II.17)

If there is a preferred direction for the randomwalk of the particle, things look
slightly different. The higher probability to take a step in the preferred direction
leads to the particle drifting that way sooner or later. To get a better idea of the
issue, a particle undergoing Brownian motion in one dimension is considered
once more. This time a constant drag force, FD, is added. The constant force is
proportional to a drag velocity, vD, and can be expressed as

FD = ξ vD (II.18)

with ξ being the friction coefficient of the surrounding medium, in this case wa-
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ter. Due to the constant force, Fick’s first law (Eq. II.6) changes to10

JD(Δx, Δt) = −D
𝜕 PD(Δx, Δt)

𝜕Δx
+ vDPD(Δx, Δt)

= −D
𝜕 PD(Δx, Δt)

𝜕Δx
+ FD

ξ
PD(Δx, Δt) ,

(II.19)

where the indexDstands fordrift. Togetherwith thecontinuity equation, Eq. II.19
can be written as11

𝜕 PD(Δx, Δt)
𝜕Δt

= D
𝜕

𝜕Δx
[ 𝜕

𝜕Δx
−

FD
kBT

]PD(Δx, Δt) . (II.20)

The solution of this differential equation is slightly different to Eq. II.13:

PD(Δx, Δt) = 1

√4πDΔt
exp{−

(Δx − vDΔt)2

4DΔt
} . (II.21)

ThebehaviourofPD(Δx, Δt) fordifferent time intervalsΔt canbe seen inFig. II.7.
As canbe seen there, thePDFofBrownianparticles beingdraggedbya forceFD is
not centred about zero as was the case with Eq. II.13, but about its non-vanishing
first moment ⟨Δx⟩(Δt) = vDΔt. On the left-hand side, ⟨Δx⟩(Δt1) = 0 and
thus PD(Δx, Δt1) is very similar to the distribution shown in Fig. II.6. On the
right-hand side, the same function is found for a longer time interval. Instead of
a Gaussian broadening with time at Δx = 0, the PDF broadens while its mean
additionally increases with vDΔt. Thus the second moment ⟨Δx2⟩D(Δt2) is not
equal to the variance σΔx(Δt2) but is larger by v2

DΔt2. The variance itself still fol-
lows Eq. II.17, whereas ⟨Δx2⟩(Δt)does not. More details on the secondmoment
and variance are given in Sec. III.4.3.

10As noted before, instead of a particle density ρN (x, t) one can use the PDF for a single particle,
P(Δx, Δt), which is done here.

11It is assumed that the diffusion coefficient is position-independent, i.e. D(x) = D.
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Drift Direction / Time

Figure II.7:Histograms of displacements Δx for time Δt1 and at a later time Δt2 for particles
being exposed to Brownian motion and a drag velocity, vD, are shown. At Δt = Δt1, the
first moment ⟨Δx⟩ vanishes. Thus the second moment and the variance are equal. That
changes when the first moment changes over time with vDΔt due to the drift. Then there
can be a significant difference between ⟨Δx2⟩ and σ2

Δx .

1.4 Models of Anomalous Diffusion

Now that the theory of Brownianmotion has been introduced, severalmodels
of anomalous diffusion will be described, i.e. when the particle dynamics does
not follow Eq. II.17 but [5, 80–82]

σ2
Δx(Δt) = 2DΔtαD or σ2

Δr(Δt) = 2bDΔtαD . (II.22)

The anomalous diffusion exponent,αD(Δt), quantifies how strongly the dynam-
ics deviates from Brownian motion. When αD = 1, Eq. II.17 is recovered. Thus,
αD ≠ 1 indicates anomalous diffusion of particles. For αD < 1, the variance
grows slower than expected for Brownian motion. Particle behaviour is called
subdiffusive. When αD > 1, particles spread faster than expected. They are said
to be superdiffusive.

Oneof themost commonmodels is the continuous timerandomwalk (CTRW),
which was introduced by Montroll and Weiss in 1965 [83] and is often used to



1. Soft Matter and Colloids | 25

describe diffusion in biological samples [82, 84, 85]. Brownian motion can be
described by a particle undergoing steps at a constant rate with a constant length
in a random direction [86, 87]. A CTRW is similar to Brownian motion but the
time at which a particle moves, the waiting time, ΔtW, and the step length, ΔxS,
are random [82, 88]. Both, ΔtW and ΔxS, are drawn from PDFs, Ψ(ΔtW) and
P(ΔxS) respectively, so that every new pair is independent of the pair chosen
for the previous step [88]. When themeanwaiting time, ⟨ΔtW⟩, and secondmo-
ment of the step length, ⟨Δx2

S⟩, are finite, Brownianmotion is found forΔt → ∞.
When Ψ(ΔtW) ∝ Δt−1−αD

W and 0 < αD < 1, the mean waiting time tends to in-
finity. As a result, particle motion becomes subdiffusive and Eq. II.22 is found
for long times [5, 86, 88]. Additionally, due to the long time tail in Ψ(ΔtW), the
system evolves in time and is said to be ageing [82, 86, 88]. A superdiffusive case
of the CTRW is the Lévy flight. Instead of ⟨ΔtW⟩, the second moment of ΔxS is
infinite [88]. This happens whenP(ΔxS) ∝ Δx−1−b

S and 0 < b < 2. As a result,
a series of small displacements is interrupted by large ones leading to a diverging
MSD [88]. For situations where the concept of Lévy flights—the instantaneous
particlemovement independent of the step length—is consideredunphysical, the
Lévy walk model can be used instead [89]. It couples ΔtW and ΔxS and leads to
finite MSDs [88].

A different, yet not less commonly used [85, 90]model, is fractional Brownian
motion (FBM) introduced by Mandelbrot and van Ness in 1968 [91]. It can be
defined by the covariance

⟨Δx(Δt1)Δx(Δt2)⟩ ∝ ΔtαD
1 + ΔtαD

2 − |Δt1 − Δt2|αD , (II.23)

which reduces to Eq. II.22 for Δt1 = Δt2. For αD < 1, displacements are nega-
tively correlatedcorresponding tochaoticbehaviourwith trajectoriesbeingcurlier
than for Brownian motion [92, 93]. When αD > 1, displacements are posi-
tively correlated. Particle trajectories have a higher persistence and are smoother
than for Brownian motion. Both scenarios yield anomalous diffusion following
Eq. II.22 for long times. Fractional Brownian motion can be thought of as a de-
scriptionofoneparticle inamany-particle system[94] and thus isusedas amodel
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for diffusion in viscoelastic environments [82, 85], single-file diffusion [85, 95]12

and conformations of polymer chains [93]. In practice, it is often compared to
CTRW [85, 97], where an essential difference between the two models is ageing
of the system, which is asymptotically found for CTRW but only transiently for
FBM [88, 94, 98].

A third widely used model related to anomalous diffusion is obstructed mo-
tion or diffusion in a fractal [5, 82, 88, 99]. In models like CTRW and FBM, mo-
tion is implicitly assumed to take place in a homogeneousmedium, sincewaiting
times inCTRWand correlations of displacements are not bound to certain posi-
tions in space [5]. In contrast to this, obstructed motion explicitly describes the
particle dynamics in a spatially heterogeneousmedium,wheremotion is affected
by, e.g., obstacles or labyrinthine environments [5, 82]. Obstacle concentration
plays a crucial role in whether and when subdiffusive motion is found. For low
obstacle concentrations, particles show only transient subdiffusivity, whereas for
high concentrations, particle motion is restricted to a finite region resulting in a
constant σ2

Δr forΔt → ∞. In between these two extreme cases, subdiffusivemo-
tion following Eq. II.22 is found for long times. The value of αD is then defined
by the dimensionality of the system and characteristics of the usedmodel [5]. An
experimental realisation of obstructed motion is presented in Sec. VII and the
concept of fractals and diffusion are discussed in more detail.

Besides these three models, there are several other models found in the liter-
ature, such as scaled Brownian motion, where the diffusion coefficient is depen-
dent on time [82, 88]. ForD(Δt) ∝ ΔtαD−1 and 0 < αD < 2, particle displace-
ments can be described by Eq. II.22. Thus sub- and superdiffusion can be found
for scaled Brownian motion [88]. When D is independent of time but depends
on position r, particle motion is referred to as a heterogeneous diffusion pro-
cess [88]. Particles accumulate in low diffusivity regions and show similar char-
acteristics as in a CTRW [88]. However, heterogeneous diffusion processes are
different from CTRW as they do not exhibit the renewal process after each step
that is integral to the latter, but exhibit a static distribution of diffusivity values.
12Single-file diffusion is, e.g., found for hard sphere-like particles diffusing in a narrow channel [96].

It results in σ2
Δx ∝ Δt1/2 for Δt → ∞.



2. Optical Forces and Landscapes | 27

Depending on the space dependency assumed forD(r), either sub- or superdif-
fusivemotion canbe found [88, 100, 101]. Additionally, anomalousdiffusion can
depend on the spatial direction in which they are probed.

2 Optical Forces and Landscapes

Interactions between light13 shaped to a specific pattern and matter, namely
a transfer of momentum from the former to the latter constitute an integral part
of the work described in this thesis. They are responsible for the anomalous col-
loidal dynamics described later. Therefore, the following sections deal with these
interactions, where they stem from, and the shaping of light to non-trivial pat-
terns.

In everyday life, a change ofmomentum caused by light is rarely encountered.
It is well known that sunlight canheat up a car over a longer period of time or that
it can be converted to electrical energywith the help of a solar panel. Light setting
a car into motion has not yet been observed, even though it can contain a high
amount of energy. The reason is that the momentum flux of light is connected to
its energy flux by the speed of light, c [31, 102]:

dp
dt

=
n dE

dt
c

⇔ F = nP
c

, (II.24)

where p is the momentum, E the wave energy, P the power, F the resulting force
and n the refractive index of the medium in which the light travels. So even if
an electromagnetic wave hits an object and all the power is converted to force,
the resulting force is about eight orders of magnitude lower than the power of
the wave. For practical reasons, an efficiency factor, Q, is introduced. The force
then reads F = QnP/c and can be measured in units of nP/c. The factor Q is
a dimensionless quantity describing the ratio of power converted to force and is
usually around 0.1–0.2 [103]. From eq. II.24, it is known that high powers and

13As in all the experiments described in this thesis, the used electromagneticwaves havewavelengths
in the visible range, light and electromagnetic waves are used as synonyms here.
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a high sensitivity to momentum changes are needed in order to observe optical
forces. Arthur Ashkin noticed that these conditions were met with the help of a
then newly invented laser and a highly focussing microscope objective together
with colloidal particles immersed in water [102, 104]. In 1970, he was the first to
describe manipulating the motion of a particle with light [104]. Later, in 1986,
Ashkin et al. [105] were able to trap a colloidal particle inside a laser beam in all
three spatial directions—the optical tweezers were born. Steven Chu, one of the
coauthors of Ref. [105], went on to refine the technique Ashkin first applied and
was able to not only trap colloidal particles like Ashkin but to cool atoms [106,
107]. Subsequently Chu, together with Claude Cohen-Tannoudji and William
D. Phillips, received the Nobel Prize in 1997 for their developments of methods
to cool and trap atoms with laser light [108]. In this thesis, trapping of colloidal
particles rather than atoms is central. Therefore, the matter with which the light
interacts will always be assumed to be a colloidal particle in the following chap-
ters.

2.1 Theory of Optical Forces: Optical Tweezers

To understand the theory of optical forces, it is useful to consider the simplest
situation, namely optical tweezers. They are made up of one strongly focussed
laser beam that is brought into contact with an object in the colloidal size range
(cf. Fig. II.8 a)). Optical tweezers are able to exert forces on this small object and
thus hold it at a specific position. When changing the focal position of the beam,
the object is dragged with the beam—just like one would grab the object with
tweezers. Here, the object is assumed to be a spherical colloidal particle with ra-
dius R and refractive index nP immersed in a medium with refractive index nM.

As stated in Sec. II.2, Ashkin was the first to manipulate particle movement
with the help of laser light [104]. He did so by shining a laser beam on particles.
The particles were forced to move in the propagation direction of the beam until
they reached the end of the sample cell andwere pressed against its walls. Theop-
tical force responsible for the particles moving in direction of the beam is called
radiation pressure or scattering force FS and can intuitively be explained by the
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Radial Potential

Gradient Force

Scattering Force

Laser Light

Propagation

Colloidal Particle

Approximation

b)a)

Figure II.8: Classical optical tweezers and their approximation by a harmonic oscillator
potential. a) When applying a tightly focussed beam on a colloidal particle, scattering and
gradient forces act on the particle trapping it inside the focus. b) For small displacements
from its equilibrium position, the particle can be treated as if it was inside a harmonic
oscillator with a radial potential and [109]. Image inspired by [110].
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Collimation Collimation

CollimationCollimation

Ray Path with Particle

Ray Path without Particle

a)

b)

Figure II.9: The gradient force, G, explained with the change of photon momentum
, where represents the wave vector. The ray paths with the particle being present

are represented by solid green lines whereas the paths that would be valid without an
interaction with a particle is drawn in dotted green lines. When hitting the particle, the
total momentum of the beam is changed as its degree of collimation is changed indicated
by the grey bars. If the particle causes the beam to be less collimated, the particle will be
pushed towards the direction of propagation (top left and bottom right). The opposite
happens if the beam is more collimated after it has hit the particles (Fig. II.9, top right and
bottom left). Thus particles with a refractive index P M are pushed towards the focal
spot of a beam, whereas particles with P M are pushed away from it. Figure idea
taken from [102].
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site direction. In both cases, the particle is dragged towards the focal spot of the
beam.

Figure II.9 b) shows a particle acting as a diverging lens. There the originally
focussed beam is defocused by the particle causing it to bemore collimated after-
wards (Fig. II.9 b), left). Hence,FG points conversely to thepropagationdirection
of the beam. The opposite is the case when the same particle is situated behind
a focal spot. Then the gradient force points in the propagation direction of the
beam. Thus, when nP < nM, particles are pushed away from the focal spot.14

The same argument holds for the lateral directions: particles with nP > nM are
drawn towards the focal spot of a beam and particles with nP < nM are pushed
away from it. Thus the gradient force is decisive for trapping a particle inside an
optical beam. The interplay of FS and FG then leads to the actual potential a par-
ticle feels inside the focal spot of optical tweezers and defines its ability to trap
a particle. To constantly trap a particle, FG has to be larger than FS. Otherwise
the particle is not trapped but only pushed in the propagation direction of the
beam. To quantify the effective forces, one usually draws on the efficiency factor
Q [111–113] and approximates the radial trappingpotential originating from the
scatteringandgradient forceswith thatof a commonspringora two-dimensional
harmonic oscillatorUr(x, y) (Fig. II.8 b)) [103, 109, 114].15 From that potential,
one can then draw the radial spring constant kr , also called the trap stiffness, and
the related force Fr = −krΔr [102, 113, 115]. As this is an approximation, it only
holds for small displacementsΔr from the equilibriumposition of the trap [109].
Nevertheless, it is widely used to characterise the ability of the optical tweezers
to trap a particle [109, 113, 116]. When used in biological environments, kr is
typically around 5 × 10-5 N/m [31]. Taking into consideration that a typical bio-
logical samplemoves in themicrometre-to-nanometre-range, forcesusually vary
around the order of piconewtons and are therefore large enough to strongly re-
strict the movement of a particle. They counteract the Brownian motion and

14In this thesis nP is always larger than nM. Still, all the explanations and equations established in
this section are valid for both cases.

15Only the radial potential is considered here since particles are only trapped in radial directions and
therefore the axial potential is not relevant to the rest of this thesis.
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Figure II.10: Descriptive drawing of Ashkin’s assumptions when calculating the optical
forces in the ray optics regime. Figure redrawn from [118].

cause the particle tomove as if it were in a harmonic potential (Fig. II.8 b)) [103].

Tocalculate thegradient andscattering forces exactly, there are twoapproaches
that concur with two limiting cases [102]. The first approach is the calculation
of the momentum flux towards a particle using the so-called ray optics regime,
where the particle radius, R, is much larger than the wavelength of the incident
light, λ. The second approach is to calculate the force per unit volume with the
so-called Rayleigh scattering regime whereR ≪ λ holds.

Roosen and Ashkin were the first to calculate the forces for the first case, the
ray optics regime [117, 118]. Ashkin assumed a dielectric spherical particle being
hit by a light beam of power P (Fig. II.10). The particle was assumed to have an
transmission coefficient,CT, and a reflection coefficient,CR. Angles θ and θr are
the angles of incidence and its counterpart on the inside of the particle, respec-
tively. Summing up all the reflected and refracted rays hitting the outside and
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inside of the surface of the particle leads to the following equations [118]:

FS =
nMP
c

{1 + CRcos(2θ) −
C2

T[cos(2θ − 2θr) + CRcos(2θ)]
1 + C2

R + 2CRcos(2θr)
}

FG =nMP
c

{CRsin(2θ) −
C2

T[sin(2θ − 2θr) + CRsin(2θ)]
1 + C2

R + 2CRcos(2θr)
} .

(II.25)

In the literature, there are several results for the ray optics regime. Nieminen et al.
used the sameapproach andderived themultidimensionalmomentumdelivered
to the particle, Δp [102]:

Δp = ∫

t2

t1
∫AP

TM dA dt + εμ∫VP

S(t1) dV − εμ∫VP

S(t2) dV (II.26)

whereby t1 and t2 are times during which the electromagnetic field of the beam
changes, TM is the Maxwell stress tensor, S is the Poynting vector, ε is the per-
mittivity and μ the permeability of the particle,AP is the surface area andVP the
volume of the particle.

The second approach relies on calculating the force per unit volume. The light
waves hitting the particle are assumed to be time-harmonic. Additionally, the
Rayleigh approximation is used, so that the particle is assumed to be so small that
the electric field of the incident light is constant inside thewhole particle volume.
Therefore, one can treat the whole particle as one dipole with an electric dipole
moment,mE , and start with the Lorentz force on a dipole [102, 119, 120]:

FL(r, t) = [mE(r, t) ⋅ ∇]E(r, t) + dmE(r, t)
dt

× B(r, t) , (II.27)

where r is a spatial vector, andE andB are the space- and time-dependent electric
and magnetic field in which the dipole is situated. Together with the relation of
the dipole moment to the electric fieldmE = αpE, where αp is the polarisability
of theparticle, and the vector identity (E ∇)E = ∇(E2)/2−E×(∇×E), Eq. II.27
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reads [102, 119, 120]:

FL(r, t) = αp ⋅ [∇ (1
2
E(r, t)2) + d

dt
(E(r, t) × B(r, t)) ] , (II.28)

since ∇ × E = 0. The polarisability of a sphere can be computed as [120, 121]:

αp = 4πε0n2
M (Ξ2 − 1

Ξ2 + 2
)R3 , (II.29)

with the vacuum permittivity ε0 and Ξ = nP/nM. To calculate the force on the
particle fornotonly a specificpoint in time t, but for all times, Eq. II.28 is averaged
over time for its first and second term on the right-hand side separately.

Considering the first term on the right-hand side of Eq. II.28, integration of
the time-harmonic electric field over an oscillation period τE yields:

⟨E(r, t)2⟩τE = 1
2

|E(r)|2 , (II.30)

where ⟨ ⋅ ⟩τE denotes the average over a period τE . Inserting the intensity of a
beam, I(r) = |E(r)2|, the left part of Eq. II.28 can be identified as the previously
introduced gradient force [102, 120]:

FG(r) = 2πnM
c

(Ξ2 − 1
Ξ2 + 2

) R3 ∇I(r) . (II.31)

It is proportional to the volume of a particle, i.e. R3, and to the gradient of the
intensity of the incident light—hence the name gradient force.

Consequently, the second part on the right-hand side of Eq. II.28 represents
the scattering force that is dependent on the Poynting vector, S = E × B/μ0,
with the vacuumpermeability, μ0. After averaging over time, the scattering force
reads [120, 122]:

FS(r) =
ϕpr⟨S(r, t)⟩t

c/nM
= (nM

c
)ϕpr I(r) ̂ez . (II.32)
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Here, ̂ez represents the unit vector in the propagation direction of the beam and
ϕpr the cross section of the particle on which radiation pressure acts [120]. As
the particle is assumed to be very small compared to the wavelength of incident
light, it scatters isotropically and thereforeϕpr corresponds to the scattering cross
section ϕS [120, 122]:

ϕpr = ϕS =
8
3
π(kR)4R2 (Ξ2 − 1

Ξ2 + 2
)

2

, (II.33)

where k = 2πnM/λ. Inserting Eq. II.33 into Eq. II.32 then yields [105]:

FS(r) =
128π5nM

3λ4c
(Ξ2 − 1

Ξ2 + 2
)

2

R6 I(r) ̂ez . (II.34)

When comparing the gradient force, Eq. II.31, to the scattering force, Eq. II.34,
there are three prominent aspects. Firstly, the gradient force is proportional to
the gradient of the beam intensity, whereas the scattering force is proportional
to the intensity itself. Secondly, the direction in which the gradient force acts
is again defined by the electric field gradient. The scattering force is, however,
always directed towards the propagation direction of the beam. And lastly, the
gradient force scales with the volume of a particle, whereas the scattering force
scales with the square of it. Thatmeans amaterial that cannot be trapped at a cer-
tain particle size might be trapped when the particle becomes smaller [102]. A
common example for such amechanism is that of gold nanoparticles which can-
not be trapped in three dimensions for radii R ≈ λ [123], but are trapped when
the particles become smaller [124, 125]. As these particles also undergo Brow-
nian motion, not only the combination of FG and FS but also their ratio to the
randombombardment of the surroundingmedium is important for successfully
trapping them [102].

Both limits—the ray optics regime for R ≫ λ and the Rayleigh regime for
R ≪ λ—yield analytical results that give insight into the behaviour of forces in-
side an optical trap. Many experiments in soft matter are however conducted
with particles in the micrometre range and lasers around the visible range [21,
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Figure II.11: Comparison of results obtained by Nieminen et al. with the ray optics and
Rayleigh approximation for optical forces depending on the particle radius R. a) The
Rayleigh approximation only delivers sensible results for particles with R ≪ λ. b) The ray
optics approximation shows useful values for kr for the whole particle size range (left).
Figures redrawn from [102].

104, 126]. There, R ≈ λ holds and neither limit is applicable. For this situation,
there is no single approximation, so that the generalised Lorenz-Mie theory has
to be applied [127–130]. Nieminen et al. [102] did so and compared their precise
results for the trap stiffness, kr , and the scattering force,FS ∝ Qz

16, to both afore-
mentioned limits. In Fig. II.11 a), the Rayleigh approximation is compared to the
exact result for several particle sizes normalised by the wavelength. They found
16As the propagation direction of the beam is assumed to be the z-direction in Ref. [102] and the

only varying parameter is the efficiency parameterQ (see Sec. II.2),Qz is considered here instead
of the scattering force, FS.
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that the Rayleigh approximation only delivers reliable results for kr andQz when
the particle radius,R, is smaller than 0.1 λ. This corroborates the assumption that
R has to be much smaller than λ for the equations to hold. In Fig. II.11 b), the
same comparison is shown between the ray optics approximation and the exact
result. The results of the ray optics approximation agree with the precise results
for the whole particle size range. They do not show any oscillations, but that can
be anadvantage inpractice, since theseoscillations stem frominterference inper-
fectly spherical particles, which are not available in a real experiment [102]. To
sumup, the ray optics rather than the Rayleigh approximation is a goodmethod,
both qualitatively and quantitatively, to explain optical forces and therefore can
be used when they play a role in this thesis.

2.2 Optical Landscapes

Now that the forces acting on a dielectric colloidal particle due to its interac-
tion with light have been introduced these forces can be expanded to one-, two-,
or three-dimensional force fields. In Fig. II.12, examples of optical landscapes
in each spatial dimension and their corresponding potentials are shown. Op-
tical tweezers can be thought of as a zero-dimensional optical or force field as
the resulting harmonic oscillator potential does virtually not show an extension
in any spatial direction. To create a one-dimensional optical landscape, a ring
can be shaped from a conventional beam coming from e.g. a laser. Compared
to straight lines, a ring has the advantage of having periodic boundary condi-
tions. A light ring or lines can be created by, for example, using holographic [21,
131], scanning optical tweezers [132, 133], or multiple optical traps [134]. The
component perpendicular to these potentials usually behaves like optical tweez-
ers limiting the particle in its perpendicular movement. The parallel component
depends on the method with which it was created. Scanning optical tweezers of-
ten result in channel-like potentials with no spatial dependency [132]. Multiple
or holographic optical traps can however create periodic [21, 134] or random
fields [131]. The latter is shown in Fig. II.12 and will be discussed more precisely
in a later section, since it is integral to the work described in this thesis. In the
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Figure II.12: Multi-dimensional optical fields (green) and their corresponding potentials
(orange) caused by the interaction of light and matter. Optical tweezers can be approx-
imated by the potential of a harmonic oscillator (cf. Fig. II.8) and can be thought of as
a zero-dimensional potential as it does not extend in any direction. A ring, created by
holographic optical tweezers, corresponds to a one-dimensional potential with periodic
boundary conditions. The potential’s shape largely depends on the method creating the
optical ring. Two- or three-dimensional light fields can be created by interference of light
or speckle fields due to scattering. These fields result in a two- or three-dimensional
potential landscape for the colloidal particle.
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sameway as in the one-dimensional case, themethod defineswhether the result-
ing field is periodic (interference or diffusers) or random (spatial light modula-
tors, optical fibres, diffusers, and scattering). The interaction of the above men-
tioned fields with a colloidal particle then leads to a specific potential to which a
colloid is exposed (Fig. II.12, right column).

In order to find the intensity a particle feels, IP(x, y, z), and thereby the result-
ing potential,U(x, y, z), a convolution of the optical field with a particle weight
function,WP(x, y, z), can be conducted [138]. In two dimensions, it reads:

U(x, y) =̂ IP(x, y) =I(x, y) ∗ WP(x, y)

=∫

∞

−∞
I(x, y)WP(x − Δx, y − Δy) dΔx dΔy

discrete=
∞

∑
k=−∞

∞
∑
l=−∞

I(x, y)WP(x − k, y − l) .

(II.35)

The convolution mimics the interaction of the particle with an intensity I(x, y).
Therefore,WP(x, y) represents the volume interactingwith light. For a spherical
particle, it can be calculated as [138]:

WP(x, y) =
⎧{
⎨{⎩

1
R √R2 − x2 − y2 for √x2 + y2 ≤ R

0 for √x2 + y2 > R .
(II.36)

Theresultingpotential,U(x, y), can thenbe treated as if a pointlikeparticle inter-
actedwith it. In Fig. II.13 a three-dimensional visualisationof a two-dimensional
WP(x, y) for a spherical particle and its applicationaccording toEq. II.35 is shown.
WhenU(x, y) is calculated, the intensity, I(x, y), is mostly smeared out by con-
volutionwithWP(x, y). However, as amulti-dimensionalpotential emerges from
the total light intensity incident on a finite sized colloidal particle, the optical
forces present can mutually compensate or amplify. The interaction of a parti-
cle volume WP(x, y) with a light field I(x, y) can therefore not only lead to a
potentialU(x, y) that corresponds to a smeared out I(x, y) but also to an altered
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Figure II.13: To mimic the interaction between light and colloids, the optical landscape
with intensity incident on a colloidal particle (left) can be convolved with a weight
function P for a spherical particle (middle). As a result the potential a
spherical particle would feel due to the interaction with is acquired.

2.3 Spatial Light Modulators
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In theworkdescribed in this thesis, anSLMwasused tocreateone-dimension-
al potentials. Therefore, it is important to consider such lightmodulating devices
and the holograms that are needed to make use of it in greater detail. In general,
there are two ways an SLM can receive an input signal: an electrically addressed
SLMand an optically addressed SLM [140–142]. While an electrically addressed
SLM converts an electrical signal coming for example from a computer to spatial
modulation, an optically addressed SLM uses a so-called write beam to change
the configuration of the SLM so that it modulates a second beam, the read beam,
interacting with the SLM. In addition to the input, the method with which the
SLM manipulates the light can also differ [140–142]:

− One of the most commonly used methods that is also used in the work
described in this thesis is the manipulation with a liquid crystal. The de-
vice can either be reflective or transmissive and is addressed electrically or
optically. Dependingon the input signal, the liquid crystals turn andmod-
ulate the phase or amplitude of light. The same technique is used in liquid
crystal displays that are widely used for TVs and computer monitors.

− An array of many small mirrors is called a digital mirror device (DMD)
and can be used to manipulate light by reflecting it in different directions.
Each mirror can be addressed individually and can be turned ±12° be-
tween an off- and an on-state to reflect only the parts of the beam that are
wanted [143].

− Bymakinguseof theacousto-optic effect, acousto-opticdeflectors (AODs)
candeflect light in one direction. By applying soundwaves to a crystal, e.g.
TeO2, the refractive index of thematerial is changed so that a beam travel-
ling through it is deflected. Todeflect light in two spatial directions or even
create acousto-optic lenses, two or more AODs can be combined [144].

− The Pockels or Kerr effect can be used by applying an electric field to spe-
cific crystals. These crystals change their refractive index linearly (Pockels)
or with the square (Kerr) of the applied electric field. The device making
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use of these phenomena is called an electro-optic modulator (EOM) and
can either be used to modulate the phase or the amplitude of a beam.

− In the same manner in which an EOM depends on the applied electric
field, a magneto-optic modulator (MOM) depends on the applied mag-
netic field. It makes use of the Faraday effect where the polarisation of an
electromagnetic wave can be turned depending on the magnetic field ap-
plied.

2.3.1 Functionality of a Liquid Crystal SLM

As mentioned in Sec. II.2.3, the SLM used in the work described in this thesis
manipulates light with the use of liquid crystals (LC). Technically, the term liquid
crystal is an oxymoron. Matter can usually be either liquid or crystalline but not
both at the same time. In 1888 an Austrian botanist, Friedrich Reinitzer, studied
liquid cholesteryl benzoate (Fig. II.14) in a mesophase, which later turned out to
bebirefringent. Heheated it up andnoticed that it first turned cloudy andviscous
before becoming isotropic and clear. Hence, it was liquid but showed features of
a crystal—thus liquid crystals were discovered [145].

LCs macroscopically behave like a fluid, but their microscopic structure has
features of a crystal [146]. Hence, they display anisotropy inmanyphysical quan-
tities, suchas refractive index, viscosity, andelectrical conductivity. Thisbehaviour
stems from the fact that LCs are made up of elongated molecules that have large
dipole moments. The preferential direction in which the semi-major axes of the
molecules point is called the director, n. By applying an external electric field,
n can be changed due to the large dipole moments involved. To characterise
the deviation of the LC from n, an order parameter S = 1

2⟨3cos2(θ) − 1⟩ is
introduced, where θ is the angle between a molecule and the director n, as de-
picted in Fig. II.14, and ⟨…⟩ denotes the spatial and temporal average over all
molecules [146]. In this regard, an order parameter S = 1 denotes all molecules
being parallel, whereasS = 0 is found in an isotropic LCwith no order. As stated
above, LCs often show anisotropy in the refractive index and are therefore bire-
fringent and can influence an electromagnetic wave, e.g. visible light.
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Smectic Nematic Chiral

Cholesteryl Benzoate

Figure II.14: The first liquid crystalline substance ever observed, cholesteryl benzoate, and
three common phases found in liquid crystals: smectic, nematic, and chiral. The smectic
phase shows the highest order parameter and is very similar to a crystal. The nematic
phase has high long-range directional order, but no positional order of the centres of mass
of the molecules. In the chiral phase a liquid crystal can be split up into layers where the
director of each layer is rotated by a certain angle compared to the neighbouring layers.
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Figure II.15: Schematic of a twisted-nematic cell. In a) no voltage is applied to the cell.
Therefore, the polarisation is rotated by 90° and an optional polariser in the end would
pass all of the light. In b) an electric field is applied so that the LC molecules align with
it. As a result the phase of the incident light beam is not affected and thus the light is
blocked by the optional polariser. Image taken from [147].

to SLMs [148]. Twisted-nematic LCs (TNLC) originated in 1971 [149] and are
slightly different to thenematic phase shown inFig. II.14. Insteadof allmolecules
being aligned in one direction, themolecules and director in a TNLC cell are—as
the name suggests—twisted by around 90° between two glass plates, as depicted
in Fig. II.15 a).17 As a result, the polarisation of light entering the cell is turned
by 90° in the same manner in which the molecules themselves are turned. In
addition to the two glass plates forming the twisted-nematic cell, two transpar-
ent electrodes surround the LC. An electric field can be applied with these. The
stronger the electric field, the more the molecules are tilted in its direction. Due
to this tilt, the phase of the entering light is not affected as much as it is without
any electric field. When allmolecules are alignedwith the electric field, the phase
is not changed at all as shown in Fig. II.15 b). Thus the resulting phase shift can
be controlled by the voltage applied to the electrodes. Figure II.15 additionally

17These cells are also called Schadt-Helfrich cells.



2. Optical Forces and Landscapes | 45

Incident light

Reflected light TNLC
Glass plate Electrodes

Transparent electrode
Reflective surface

PC + DVI

4711,081500

Controller

Figure II.16: Schematic of a twisted-nematic liquid crystal spatial light modulator (TNLC
SLM). Image adapted from [150].
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volved (cf. Fig. II.15), the layout in Fig. II.16 can only modulate the phase. To
address the electrodes, a controller together with a DVI connection and a PC is
used. A so-called hologram—often a bitmap—is sent to the SLM, in which each
pixel corresponds to an individually addressed electrode in the SLM. The grey
level of each pixel then represents the amount of phase shift. When in use, inci-
dent light enters the structure and is modulated by the LC, reflected by the back-
plane and again goes through the LC before it exits the SLM. Depending on the
input given via a DVI connection, every single pixel in the SLM can modulate
incident light individually. When there is no input given, incoming light is not
affected by the TNLC—the SLM acts like a mirror.

2.3.2 Using a Liquid Crystal SLM

In the previous section, holograms were introduced as the input for an SLM
in order to modulate the phase of an incident light beam. As only a phase mod-
ulating SLM is used for the work outlined in this thesis, this type will be focussed
on. When manipulating the phase to create a certain light pattern, a setup sim-
ilar to the one shown in Fig. II.17 is usually used. A narrow beam, e.g. coming
from a laser, is first sent through a beam expander to be able to use as much area
of the SLM as possible. The expanded beam subsequently hits the SLM, is mod-
ulated and reflected. This modulation takes place in the Fourier plane. Next, the
modulated beam goes through a positive lens and is thus Fourier transformed to
the image plane, where it forms the so-called target—a pattern such as the rings
seen in Fig. II.17. Accordingly, manipulating light with a LC SLM is a diffraction
method and exhibits all the advantages and drawbacks that go with it. On the
one hand, an LC SLM can basically create any one-, two- or three-dimensional
pattern that canbe thought of. On the other hand, these patterns suffer fromphe-
nomena known for any kind of diffraction, such as multiple diffraction orders.

The hologram, also called a kinoform, has to contain the phase information
needed to form the target pattern in the image plane. Positive lenses generally
act as Fourier transformers [151]. Therefore, the link between phase informa-
tion in the plane of the SLM and the targeted pattern is a Fourier transform. In



2. Optical Forces and Landscapes | 47

Beam Expander

SLM

Fourier Plane

Image Plane

Fourier Transform
Positive Lens

Laser Beam

Figure II.17: Schematic of an experimental setup of an SLM and the corresponding optical
planes. A laser beam is expanded and then modulated in the Fourier plane by an SLM.
After that, a lens transforms the beam to the image plane and hence creates the intended
light pattern, e.g. rings.
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Figure II.18: Schematic of the Gerchberg-Saxton algorithm. A random phase serves as a
starting point (top left). This phase and the source amplitude are used as an input and
then transformed to the image plane to create a preliminary target image (top right). The
preliminary image is compared to the actual target image (bottom right) and transformed
back to the SLM plane to extract a phase. When the preliminary target image is reasonably
close to the actual target image, the algorithm is stopped and the final phase extracted.
The final phase image is called the kinoform. Image adapted from [153, 154].
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Fourier Transform

Figure II.19: Example of an actual kinoform and the corresponding light pattern in the
image plane. A light beam is modulated by an SLM that was fed the kinoform shown
on the left-hand side. Fourier transforming that light beam in optics with a positive lens
leads to the pattern on the right-hand side. It shows four rings as the first-order diffraction
maximum and the zeroth order in the middle.

2.4 Engineered Diffusers
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shapes are the same [156]. This also means that the area of a diffuser hit by in-
coming light is not relevant as long as the beam is big enough to cover a suffi-
cient amount of scattering centres. Therefore, random diffusers are mostly not
susceptible to small defects in the scattering centres or varying incoming light
intensities. Common examples for random diffusers are surface diffusers, such
as ground glass, volume diffusers, such as milk glass, or holographic diffusers
that aremade fromhomogenising diffusers andfilms similar to holograms [156–
159]. In contrast to random diffusers, deterministic diffusers can be reproduced
identically as often as wanted. Their production involves algorithms that deter-
mine the spatial position of each phase element. A spatially varying photoresist
layer on a glass substrate is responsible for changing the phase of the light as it
propagates through [160]. As a result, the position of an incident light beam
as well as the intactness of each scattering centre is of larger concern than it is
with randomdiffusers. Diffractive diffusers (DD) are a common example for de-
terministic diffusers, which can be computer-generated with the use of Fourier
transforms [159, 160]. In principle, DDs can produce arbitrarily shaped light
beams and are therefore superior to random diffusers introduced above. Similar
to an SLM described in Sec. II.2.3.2 and shown in Fig. II.19, DDs not only create
the calculated light pattern, which corresponds to the first diffractive order, but
also a zeroth andhigher orders. These orders are oftenunwanted and can corrupt
the pattern or light field created by a DD.

A third kind of diffuser combining random and deterministic attributes are
Engineered DiffusersTM (ED) by RCP Photonics Inc. [162]. Instead of having
diffractive or scattering centres, an ED consists of an array of microlenses and
thus shows refractive behaviour (Fig. II.20). The refractive nature of an ED en-
sures that there are no such things as zero or higher order patterns as there are
withDDs. Compared toDDs, having relief depths of around the order of awave-
lengthof light, EDs showamuchbigger reliefdepth (Fig. II.20, bottomright)—since
diffraction relies on feature size, whereas refraction concentrates on slope an-
gles [156]. This higher relief depth puts higher demand on the manufacturing
process [163]. Microlenses can be made of polymer on a glass substrate, as de-
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Substrate (Glass)
Base Layer

~ 20 - 200 μm

Diffuser Surface (Polymer)

Lens Matrix

Interstices between Lenses
Figure II.20: Schematic of an Engineered DiffuserTM. It consists of a substrate, in this
thesis glass, a base layer of polymer that is between 20 and 200 μm thick and the diffuser
surface that is made of polymer as well and corresponds to a matrix of small lenses. On
the right-hand side an actual picture taken with a scanning electron microscope shows the
appearance of this matrix. Below that there is an scanning electron microscope picture
of the interstitial areas of adjacent lenses illustrating the sag existent in lens matrices.
Left-hand side adapted from [161], right-hand side taken from [156].

B



52 | Chapter II. Physical Phenomena

transform [151, 164]:

BED(u,w) = exp{ikz}
iλz

∑
j

∫Cj
∫ exp{ik[n(λ) − 1]qj(x, y)

−i
2π
λz

(xu + yw)} dxdy ,

(II.37)

where u and w are transformed coordinates, k = 2π/λ, the wave vector, and n
is the index of refraction of the incident beam of wavelength λ. The coordinates
x and y represent points on the ED and i is the imaginary unit. The integration
over thewhole ED is split up into a sumof integrals over small cells,Cj , with each
cell representing a microlens [164]. The local surface shape of each lens, qj , can
be individual, so that in general qi ≠ qj for i ≠ j [164].19

A predetermined microlens array represents a deterministic diffusor. To ho-
mogenise the intensity inside the created light pattern, the microlenses are ran-
domised according to probability density functions that work together with the
beam shaping requirements [155, 156, 164]. In practice, one feature of the mi-
crolenses is often randomised by a uniformdistribution as it is the easiest to han-
dle [164]. As several features of the lenses are usually coupled, e.g. sag and radius
of curvature, the probability density function for the second feature is a result
of the randomisation of that of the first. This can be seen in Fig. II.21 where in
a) the radius of curvature of the lenses is randomised by a uniform distribution.
The resulting distribution for the sag is on the other hand skewed to the right. In
Fig. II.21 b) the opposite is the case: when the sag is randomised by a uniform
distribution, the distribution of the curvature is skewed. The result of both ran-
domisations is depicted in Fig. II.21 c). There, the uniform randomisation of the
curvature leads to stronger tails in the intensity pattern. This is due to the skewed
distribution of the sag leading to larger angles of refraction [164]. Depending on
the requirements for the intensity pattern, an appropriate randomisation distri-
bution can then be found by adjusting the distributions accordingly [155, 156,

19Of course, there are additional constrains to the calculation of an ED which can be read about in
the patent specification of Morris et al. [164].
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Figure II.21: Example of randomising microlenses from the patent specification of Morris
et al. [164]. a) The distributions for the case where the radius of curvature of the lenses was
randomised by a uniform distribution. The sag distribution is the result of the coupling
between sag and curvature. b) The sag is randomised by a uniform distribution. Again,
the other distribution results from coupling between sag and curvature. c) The intensities
of an ED for the two different ways of randomising are shown. Image redrawn from [164].

164].
There are several ways of implementing an ED into the beam path when used

inside an optical setup [165]. They all require a collimated source, e.g. a laser.
When a non-collimated light source is used, the light pattern can be smeared out.
Additionally, the microlenses of the ED should point towards the incident light
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Figure II.22: Schematic of the functionality of an Engineered DiffuserTM. a) A collimated
light source, e.g. a laser beam, hits a diffuser and is refracted at its lens matrix. The
refraction results in a slightly diverging beam that forms a predetermined diffuse shape.
Introducing an additional positive lens to the beam path results in the same shape, how-
ever, this time a sharp illumination is delivered. b) An actual intensity profile of the Engi-
neered diffuser used in the work described in this thesis. a) adapted from [165], b) redrawn
from [161].
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simplest configuration but is often impractical, as a bigger collimated source not
only yields higher uniformity but also stronger blur. When introducing a lens in
front of or behind the ED, the pattern is focussed at the focal plane of the lens and
appears sharp, independent of the size of the source (Fig. II.22, red path). Thus,
a uniform and simultaneously sharp pattern can be created [165]. High collima-
tion often involves high coherency—like in a laser. When used with a coherent
light source, EDs often show an artefact: As each microlens can be treated as a
point source, a pattern formed by an ED is also an interference pattern of sev-
eral coherent light sources. Consequently, coherent light leads to—sometimes
unwanted—speckles in the formed light pattern [161]. Insteadof achieving a flat-
top pattern, the use of an ED together with a laser yields an intensity pattern sim-
ilar to that depicted in Fig. II.22 b). The speckle formation depends on the area
and the position hit by the light source. The bigger the area the source hits, the
smaller the speckles are [138]. Moreover, every ensemble of microlenses has a
specific random speckle pattern. Thus, changing the position of a light source
on a diffuser results in a statistically equivalent yet different random speckle pat-
tern [138].

3 Piezoelectricity

In some parts of the work described in this thesis, a drift is imposed on col-
loidalparticles to study theirdynamicswhensubjected toexternalpotentials such
asoptical fields,while beingdragged through them. There are variouswaysof im-
posing drifts on colloidal particles, be it gravity [29, 166], shear [167, 168], tilted
optical potentials [33, 169], flowof a dispersionmedium [27, 136, 170], ormove-
ment of the sample itself [134, 171]. The latter can be realised easily by means of
translation stages driven by piezoelectric elements.

Thewordpiezo isGreekandmeans to squeeze. Apiezoelectric element changes
dimensions when subjected to an electric field. This is called the converse piezo-
electric effect.20 In general, this behaviour is not special as all materials show

20Thenormal piezoelectric effect can be observedwhen a piezoelectric element is subjected to an ex-
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Figure II.23: Schematic of a layered piezo structure used in an actuator. To be able to
obtain larger deformations, alternating polarised piezoelectric layers with electrodes in
between are layered. Colours are for clarification. Adapted from [173, 174].
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crystal is used, but rather layers of several crystals to amplify the effect, as depicted
in Fig. II.23 b) [172, 173]. Adjacent layers show an alternating polarisation with
electrodes sandwiching them. Thus, deformation of a single piezoelectric crystal
can bemultiplied by the amount of alternating crystals [173]. Implemented in an
actual microscope stage, a piezoelectric material is then controlled by feedback
circuits and sensors that ensure precise movement [173, 175].





III Materials and Methods

A fter introducing themost relevantphysical phenomenaencountered in this
thesis in the previous chapter, this chapter deals with the preparation, ex-

ecution, and analysis of the experiments.

1 Colloidal Suspensions and Samples

All measurements were conducted with a system of spherical colloidal parti-
cles inside a sample cell made from glass. In most cases, the colloids have a di-
ameter of 2R = 2.8 µm and are made from polystyrene with sulfate functional
groups on their surfaces to make them negatively charged (Sulfate Latex 8 % w/v,
diameter 2.8 µm, polydispersity 3.2 %, Molecular Probes Inc.) leading to charge-
stabilisation (cf. Sec. II.1.2). Depending on the used experimental setup (see
Sec. III.2), either purified water (Purelab Flex, ELGA LabWater, electrical resis-
tivity 18.2⋅104Ωm) or deionised heavy water (Deuterium oxide 99.9 %, Deutero
GmbH) served as a dispersionmedium. The heavy water was deionised with ion
exchange resin (Amberlite®, Carl Roth GmbH + Co. KG), so that aggregation of
particles and sticking of particles to cell walls were reduced to aminimum. Inter-
particle interactions are considered to be hard-sphere like throughout this thesis
(cf. Sec. II.1.2). At a standard lab temperature T = 293.15 ± 1 K=̂20 ± 1°C, the
polystyrene particles have a refractive index, nP = 1.59, whereas both dispersion
media exhibitnM = 1.33. FromSec. II.2.1, it is knownthat colloidswithnP > nM

are attracted by high light intensities. Consequently, all systems studied exhibit
this behaviour. The density of the colloids at T = 293.15 K, ρP = 1.055 g/cm³,
lies between thatofwater,ρH = 0.999g/cm³, andheavywater,ρD = 1.107g/cm³.

59
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Hence, whether particles swim or sediment when subjected to gravity inside a
sample cell depends on the dispersion medium. To quantify this behaviour, the
gravitational length as derived from Eq. II.7 can be calculated:

lg =
kBT

4
3πR3 Δρ ag

(III.1)

whereΔρ is the difference in density between the dispersed phase and dispersion
medium and ag is the gravitational acceleration on the averaged surface radius
of the earth. The gravitational length represents the distance from the bottom
or to top of the sample cell to the point in space where the particle concentra-
tion, ρN , drops to its 1/e-part. For H2O and D2O, the gravitational lengths are
lg,H = 0.64 µm and lg,D = –0.69 µm, respectively. Hence, for both configurations,
particles only have a small tendency to diffuse in the third dimension once they
are equilibrated at the bottomor top of the sample cell and are assumed to behave
like a (quasi-) two-dimensional layer.

Besides lg, the diffusion coefficient of the particles, D, and the friction coeffi-
cient, ξ, are of interest in a colloidal system. As the viscosities of both fluids are
slightly different, ηH = 1.00 × 10−3 Pa s for water and ηD = 1.25 × 10−3 Pa s for
heavy water at 20°C [176], their diffusive behaviour also differs. With the aid of
Eq. II.10, the bulk diffusion coefficient,Db, of a colloidal particle diffusing inwa-
ter can be determined to beDb,H = 0.15 µm²/s andDb,D = 0.12 µm²/s in heavy
water. The polystyrene particles used here sediment or cream and consequently
diffuse close to the wall of a sample cell, which alters the particle diffusion. O.
Hilding Faxén obtained a correction term for a sphere diffusing parallel to a flat
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wall to make up for this discrepancy [177, 178]:1
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(III.2)

Themodifieddiffusion coefficient,DF, depends on thedistance between the cen-
tre of the particle and the wall, h, and is always smaller or equal to the bulk diffu-
sion coefficientDb. Often, only the first order approximation is used [178]:

DF = [1 −
9
16

(R
h

) +O(R
h

)
3
]Db . (III.3)

Togetherwith Eq. II.10, Faxén’s term can also be interpreted as an increase of fric-
tion:

ξF = ξb
1 − 9

16 (R
h ) +O (R

h )3 . (III.4)

The bulk coefficients of friction for both fluids, given R = Rh, are calculated to
ξb,H = 2.6 × 10−8 kg/s and ξb,D = 3.3 × 10−8 kg/s. The corrected friction coef-
ficients that are felt by particles close to a wall can either be computed provided
h is known or determined by measuring the diffusion coefficient of freely diffus-
ing particles near a wall,D0 (cf. Eq.II.10 and II.15). All the relevant properties of
the colloidal systems used in this thesis, including the friction coefficients deter-
mined from the diffusion coefficient, can be found in Tab. III.1. The coefficients
D0 and ξ0 are a factor of ≲ 2 smaller and larger than their calculated counter-
parts, respectively. Together with Eq. III.3, this leads to heights, h, of 2.4 µm and
1.6 µm for H2O and D2O, respectively. Hence, the distance h in the experiments
is less than double the radiusR, i.e. the particles are close to the sample cell walls.

Inorder toobserve thecolloidal systemswithmicroscopes, awell-definedsam-

1There is also a correction term for particles diffusing perpendicular to a flat wall. As this thesis
only deals with one- and two-dimensional diffusion parallel to a cell wall, this term will not be
considered.
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Property Sym-
bol

Value in H2O Value in D2O

Coefficient of

friction, bulk,

calculated

ξb 2.6 × 10-8 kg/s 3.3 × 10-8 kg/s

Coefficient of

friction, measured

ξ0 4.0 × 10-8 kg/s 6.6 × 10-8 kg/s

Density difference Δρ 0.056 g/cm³ – 0.052 g/cm³

Diffusion

coefficient, bulk,

calculated

Db 0.15 µm²/s 0.12 µm²/s

Diffusion

coefficient,

measured

D0 0.10 µm²/s 0.06 µm²/s

Gravitational

length

lg 0.64 µm – 0.69 µm

Particle radius R 1.4 µm 1.4 µm

Refractive index of

the particles

nP 1.59 1.59

Refractive index of

the medium

nM 1.33 1.33

Viscosity η 1.00 × 10−3 Pa s 1.25 × 10−3 Pa s

Table III.1: Properties of colloidal particles dispersed in H2O and D2O at T = 293.15°C.
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ple cell is needed. A protocol how to reproducibly construct them is given in
Fig. III.1. First, a microscope slide, two coverslips used as spacers and one cover-
slip used as a cover (all VWR International GmbH) are sonicated in a 2 % Hell-
manex II solution (Hellma GmbH & Co. KG) at around 60°C for ten minutes,
rinsedwith purifiedwater (Purelab Flex, ELGALabWater), sonicated in purified
water at around 20°C for ten minutes, rinsed again with purified water and then
dried in air. As depicted in Fig. III.1 a), a microscope slide is used as a base when
constructing the sample cell, on top of which two spacers, either with a thickness
of 85–130 µm (No. 0) or 160–190 µm (No. 1.5), are glued with UV-curing op-
tical adhesive (Norland Optical Adhesive 61 (NOA 61), Norland Products Inc.)
by allowing it to cure for twominutes inside aUV curing chamber (ELC-500UV
Curing Chamber, Electro-Lite Corp.). Only a very small amount of glue should
beusedwhenmerging coverlips andmicroscope slide as toomuchgluewill cause
the cell to be askew and increase its height. Subsequently, a third coverslip with
thicknessNo. 1.5 is glued on topof the two spacerswithNOA61 to cover the pre-
viously created recess on themicroscope slide andobtain a capillary (Fig. III.1 b)).
The thickness of the third coverslip should not be changed as it interacts withmi-
croscope objectives that require certain thicknesses—mostly No. 1.5. The glued
capillary is cured thoroughly for ten minutes inside the oven and left for several
days to let the glue bind to the glass completely [179]. After that, a sample disper-
sion is produced by diluting the colloidal stock solution provided by the manu-
facturer to a certain area fraction φA, defined as

φA = NFOV πR2

AFOV
(III.5)

with NFOV being the amount of particles in the field of view and AFOV the area
of the field of view. With φA < 10 %, particle-particle interactions should be re-
duced to aminimumwhile still having enough particles in the field of view of the
microscope to obtain good statistics [180, 181]. The produced dispersion is then
filled into the capillary with a pipette. Capillary forces ensure the dispersion is
sucked into the sample cell and no bubbles are formed (Fig. III.1 c)). The sample
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cell is finally sealed with NOA 61 to prevent evaporation and flow when used af-
terwards. When sealing the sample with glue, it is advisable to use an excess of
glue to cover the open ends (Fig. III.1 d)). That way small inaccuracies in pro-
ducing the capillary that might have entailed some leaks are compensated and
additionally the glue bulge, once cured, acts as a bumper for the cover slip and
makes sure it is not easily scratched. The glue is finally cured for 3 × 3 minutes to
make sure the sample does not get too hot inside the curing chamber.

2 Experimental Setups

Twosetups areused to create light fields similar to thosedescribed inSec. II.2.2
containing a microscope to observe colloidal samples. They differ in their main
optical components and in the direction in which the created light field hits the
particles. The first setup exploits a spatial light modulator, detailed in Sec. II.2.3,
to shape light into a one-dimensional pattern. The second setup uses an Engi-
neered DiffuserTM, described in Sec. II.2.4, creating two-dimensional light fields.

2.1 Spatial Light Modulator Setup

From Sec. II.2.3 it is known that a spatial light modulator (SLM) can theoreti-
cally create arbitrary light patterns. In the work described in this thesis, it is used
to create one-dimensional light fields. The optical setup, used components, and
the optical pathway, as well as a photo of the actual setup are shown in Figs. III.2
and III.3, respectively. It was built by Richard Hanes [182] and then modified
slightly [131].

2.1.1 Beam Path of the SLM Setup

Like many optical setups, the starting point of that depicted in Fig. III.2 is a
laser (Ventus 532-1500, Laser Quantum Ltd.). This diode-pumped solid-state
laser emits lightwithawavelengthλ=532nmandamaximumpowerof1500mW.
The emitted light hits two waveplates (WP), the first of which is a λ/2-plate and
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Figure III.1: Preparation of a typical sample used in this work. a) Two coverslips, either of
height No. 0 or No. 1.5, are glued on a microscope slide using UV-curing optical adhesive.
b) To create a complete capillary, a coverslip of thickness No. 1.5 is glued on top of the
two other cover slips. c) Afterwards the capillary is filled with a sample solution using a
pipette. d) To seal the filled capillary UV-glue is again used. Brand logo taken from [179].
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Figure III.2: Setup using a spatial light modulator to create one-dimensional light fields.
The components inside the orange rectangle are inside a microscope or its beam path. A
beam emitted by a laser is widened (BE) and directed onto an SLM. The resulting phase
pattern is transformed into a light field in real space by a lens (L1) and can be moved inside
the sample through two galvanometer-mounted mirrors (GMM). The beam is coupled
into a microscope and hits the sample from the bottom, in the opposite direction of
gravitation. A camera (CAM) is flanged to the microscope to record micrographs of the
sample. The other abbreviations are given in the main text.
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the properties of light fields created with it. The beam hits the SLM (LCR-2500,
HOLOEYE Photonics AG) with an angle of incidence of θ = 22.5°. This angle
enables the SLM to give the full 2π phase shift [182], which has to be taken into
account when calculating the kinoforms described in Sec. II.2.3.2. After the spa-
tial light modulation has taken place at the SLM, the beam is directed through
an analyser (A) that, together with the waveplates WP1 and WP2, optimise the
efficiency of the first order diffraction of the SLM [183, 184].

The remainder of the setup is exclusively for directing and focussing the beam
in the sample plane and controlling its position. Lens L1, positioned after the
analyser, transforms modulated light to real space. Close to mirror M2, there
is a plane conjugate to the sample plane showing an image of the light field felt
by the particles inside the sample when a screen is put in the beam path. To-
gether with lens L2, lens L1 acts as a telescope decreasing the beam diameter to
8 mm. This smaller beam then enters a galvanometer-mounted mirror structure
(GMM, Quantum Scan 30, Nutfield Technology, Inc.) made up of two mirrors,
each of them being able to rotate around a spatial axis, also depicted at the top of
Fig. III.3. The GMMs enable two-dimensional in-plane translation of the light
field inside the sample cell and are controlled by LabView (National Instruments
Corp.) [182]. The beam is then sent through a second telescope (L3 and L4) to
decrease the beam diameter to 6.4 mm to overfill the back aperture of the mi-
croscope objective and is fed into the back port of the microscope as can be seen
from the side view in Fig. III.3. Inside themicroscope (Eclipse TE2000-U,Nikon
Corp.), a dichroic mirror (DM1, z532dcrb, Chroma Technology Corp.) directs
the beam to a microscope objective (CFI Plan APO VC Oil 60×, Nikon Corp.)
that focusses the beam inside a sample that lies on the microscope stage so that
colloidal particles feel it in real space.

The light enters the sample from the bottom, so that the gravitational acceler-
ation is in the opposite direction to that of the propagation of light and therefore
the scattering force. In this setup, samples with D2O as dispersion medium were
used (cf. Sec. III.1). As a result, buoyancy and scattering force point in the same
direction. The objective not only focusses the laser but also acts as an imaging
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Figure III.3: Photograph of the spatial light modulator setup (schematic shown in Fig. III.2).
The drawn green line shows the beam path. Lenses L2 and L3, and all the components
housed inside the microscope are not marked. Certain parts of the setup are magnified
in the top part of the figure. Abbreviations are given in the main text.

lens for the microscope. Focal spots of the laser light and imaging are chosen to
be the same. As can be seen in Figs. III.2 and III.3, the customary bright-fieldmi-



2. Experimental Setups | 69

croscope used here has a CMOS-camera (CAM, PL-B742F, PixeLINK) attached
to it on to which the imaged sample is focussed with the implemented tube-lens
(TL).The camera, togetherwith theGMMs, is controlled by an external LabView
software and captures sequences of images in the JPEG format with a pixel pitch
of 0.111 µm/px that can be analysed further [182]. This procedure is called video
microscopy and is detailed in Sec. III.3. When the beam is focussed by the ob-
jective, there is always light reflected by the surface of the sample cell that mixes
with the imaging light and causes the camera to be overexposed (cf. Fig. III.2).
To prevent damage to the camera and ensure a high image quality but at the same
timebe able toobserve laser light scatteredbyparticles2, a seconddichroicmirror
(DM2, NT69-901, Edmund Optics GmbH) is introduced. Since both dichroic
mirrors, DM1 andDM2, filter green light, the images taken by the camera have a
prominent red cast. Additionally, stray lightmanifests itself as greenhalos around
particles. In measurement situations, the laser is turned on at least one hour be-
fore a measurement to warm up the laser and setup components.

2.1.2 Creating a Light Pattern: Concentric Rings

The SLM setup is designed to create one-dimensional light fields. From Sec.
II.2.3.2, it is known that an LC SLM is used as a diffractive device to create arbi-
trary light patterns. To calculate kinoforms that can be displayed on an SLM to
obtain those patterns, the Gerchberg-Saxton algorithm can be used. In practice
however, creating a light pattern usually involves additional steps, which largely
depend on the optical setup used. This section deals with the practical aspects of
creating a light field using the example of a concentric ring pattern, which will be
used later in this thesis.

In Fig. III.4, a step-by-step creation of four concentric rings is shown. First the
desired pattern, Ads

T , has to be drawn as a 768 × 768 px2 8-bit-bitmap. Bitmaps
areutilised throughout theprocess as they are lossless. Theused size andbit depth
aredefinedby the attributes of the employedSLM.Thedesiredpattern in this case
is shown in the bottom left corner of Fig. III.4 and consists of four completely

2This will be important in Secs. IV and V.
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Distortion Shift Calculation Transformation

Figure III.4: Illustration of how to create a light field made up of concentric rings with a
grey level of 255. The desired pattern, Ads

T , is created first. To compensate for the angle
of incidence, , and create a light pattern that is centred about the zeroth order, Ads

T is
distorted to get As

T and then shifted. The resulting pattern, AT, can be transformed with
the Gerchberg-Saxon algorithm to obtain AK, which, in turn, creates Areal when put on
the SLM.

A
A

A
A
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Figure III.5: Schematic of the light field creation inside a sample. The red rectangle cor-
responds to the field of view. The four single first orders of diffraction are numbered
consecutively and surround the zeroth order. To create a pattern that is centred about
the zeroth order, the desired pattern has to be shifted beforehand resulting in AT (left).
The pattern As

T is not shifted and therefore results in four ring-like light fields that are ar-
ranged around the zeroth order (right). When the field of view is aligned with the zeroth
order, none of the concentric rings is captured entirely.

in Sec. II.2.3.2 and Fig. II.18. Eventually, the SLM setup transformsAK to an ac-
tual light field inside the sample planeAreal as shown in Fig. II.19.

The shift introduced to create AT is necessary in order to centre Areal about
the zeroth order of diffraction of the SLM. Figure III.5 shows thatAreal is actually
made up of four first orders (numbered from 1 to 4) that are evenly distributed
aroundacentral laser spot that represents the zerothorder. Inpractice, the central
spot is put in the centre of the field of view (FOV) to use it as a distinctive point
when analysing the experiment. The FOV is represented by a red rectangle in
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50 μm

a) b)

Figure III.6: Concentric rings created by the SLM setup. a) Micrograph of the intensity
pattern b) Intensity given in a) convolved with P of a particle with μm
to obtain P .

A
A

2.1.3 Characterisation of Light Fields Created by the SLM Setup
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tographed in the sample plane are shown. They are not completely uniform but
show an inherent pattern, i.e., even though AT only contains rings consisting
of grey level 255 everywhere, the light field created in the sample plane shows
random fluctuations in intensity—also called speckles [138, 186]. These fluctua-
tions stem from the fact that any SLM has a finite amount of pixels, which them-
selves have a finite size [135]: the Gerchberg-Saxton algorithm does not correct
for these practical constraints. Consequently, the resulting intensity distribution,
Areal, represents the target AT as intended, but inside this pattern it tends to
have speckles. Every different random phase, Φ(0), results in a different random
speckle pattern (cf. Fig. II.18). The average size of these speckles depends on the
area of the SLM responsible for creatingAreal: the larger a beam hitting an SLM
and thus the more pixels participating, the smaller the average speckle size. In
the work described in this thesis, the size of the beam hitting the SLM was not
changed.

From Sec. II.2.2, it is known that a potentialU(x, y) felt by a particle in a light
field can be mimicked by convolving the intensity I(x, y) with a particle weight
function WP(x, y). This is shown in Fig. III.6 b) for the particle size discussed
in this thesis, R = 1.4 µm, and I(x, y) shown in Fig. III.6 a). The former shows
characteristic smearing out of the light field mentioned in Sec. II.2.2. In the ra-
dial direction, the rings show a narrow intensity peak. As the refractive index of
the particles is higher than that of the dispersion medium, this leads to a narrow
potential minimum similar to the one shown for optical tweezers in Sec. II.2.2.
Consequently, a particle is trapped in the radial direction and experiences a po-
tential Ur(r) = krr2 [182]. To get a better idea of what intensity I(s) and felt
intensity IP(s)—and thus the potential U(s)—look like in the azimuthal direc-
tion, parts of I(s) and IP(s) are shown in Fig. III.7 a). Intensities along s = rRθ of
theouter ring inFig. III.6 are given ingrey levels and shownasblue lines,where rR
represents the radius of the ring and θ the azimuthal angle. Distributions on the
right-hand side, shown as blue columns, were obtained by taking into account
the whole ring, not just the parts shown here, and fitted with aGaussian function
represented by the orange lines. It is apparent that IP(s) shows a coarser struc-
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Figure III.7: Intensity and potential in the azimuthal direction of a ring shown in Fig. III.6.
a) Intensity I(s) given in grey levels obtained from the outer ring in Fig. III.6 a) shows
a relatively short correlation length. The resulting distribution (blue bars) is fitted by a
Gaussian function (orange line). Intensity IP(s) obtained from the outer ring in Fig. III.6 b),
given in grey levels, shows a larger correlation length than I(s). The distribution is fitted
by a Gaussian function. b) Potential U(s) redrawn from [131]. It was obtained through
Boltzmann statistics by measuring particle residence probabilities inside a light field similar
to that in Fig. III.6.
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ture comparedwith I(s), which is equivalent to a larger correlation length, lU . In
Ref. [131], the correlation length was defined as the distance at which the spatial
autocorrelation of the azimuthal intensity or potential drops to its 1/e-part. The
light field used in the work described in this thesis was examined and lU ≈ 0.2R
for I(s) and lU ≈ R for IP(s) were found. These values are in good agreement
with the observations made in Fig. III.7 a), where R = 1.4 µm corresponds to
13 px.

Furthermore, the intensitydistributionsof I(s),P(I), differs fromthatof IP(s),
P(IP). While I(s) shows a skewed distribution with a tail at higher intensities,
P(IP) fits well to a Gaussian function. The skewness in P(I) is common for
speckle intensities andcanbedescribedbyagammadistribution [135, 186]. Once
I(x, y) is convolvedwithWP(x, x), the resultingP(IP) shows aGaussian shape.
In Ref. [131], the actual potential arising from the interaction of I(s) given in
Fig. III.7 a) with a particle with R = 1.4 µm was obtained through Boltzmann
statistics by measuring particle residence probabilities. The result is redrawn in
Fig. III.7 b). It shows a negative potentialU(s) as particles used in the work de-
scribed in this thesis are attracted by high laser intensities (cf. Sec. III.1). When
compared to IP(s),U(s) shows the same correlation length, lU = R. Addition-
ally,P(U) given on the right-hand side of Fig. III.7 b) showsGaussian behaviour
similar to P(IP). Both comparisons confirm the statement made in Eq. II.35,
namely that IP(x, y) resembles U(x, y). The standard deviation, σU , of poten-
tial,U(s), can be thought of as the roughness of the potential. When increasing
the output power of the laser, PL, the roughness of potentialU(s) and the depth
of potential Ur(r) increase as well. It was found that both, σU and kr , exhibit a
linear dependence on PL [182].

In summary, the SLM setup creates light fields resulting in attractive one-di-
mensional random potential landscapes with lU = R, whose distributions can
be described by a Gaussian function with a standard deviation, σU , that can be
adjusted by laser power PL.
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2.2 Diffuser Setup

In contrast to the setup described in Sec. III.2.1, the diffuser setup is used to
create two-dimensional light fields. In particular, it is used to realize a flat two-
dimensional speckle field (cf. Fig. II.12). The crucial component to achieve this,
is an EngineeredDiffuserTM (ED) introduced in Sec. II.2.4. The setupwas built by
Jörg Bewerunge [138]. Its components and optical pathway, as well as a photo of
the actual setup can be seen in Figs. III.8 and III.9, respectively.

2.2.1 Beam Path of the Diffuser Setup

Similar to the SLM setup, the diffuser setup contains a diode-pumped solid-
state laser emitting light with a wavelength λ = 532 nm (Opus 532, Laser Quan-
tum Ltd.). Compared to the other laser, it is more powerful with a maximum
power of 2600 mW. First, two mirrors (M1, M2, all mirrors from Thorlabs, Inc.)
direct the laser light towards a beam expander with a variable magnification (1×
–8×) and divergence correction (BE, S6EXZ5076/121, Sill Optics GmbH & Co.
KG)as shown inFig. III.8. In the experiments conducted in theworkdescribed in
this thesis, the BE is set to 6×. Exiting the BE, laser light passes an aperture (AP1)
and hits an Engineered Diffuser (ED, Engineered DiffuserTM EDC-1-07108-A
1R, RPC Photonics, Inc.). This diffuser shapes a top hat beam from the Gaus-
sian beam coming from the laser. As mentioned in Sec. II.2.4 and [161], a co-
herent light source, just like the laser used here, leads to speckles in the pattern
created by an ED. The size of these speckles—or the uniformity of the created
pattern—is controlled by the area of light hitting an ED. In this setup, speckles
inside the flat light field are desired. Together with the variable magnification
of the BE, these speckles can be additionally tuned. Bigger beam areas lead to
smaller speckle sizes or higher uniformity. Throughout the work described in
this thesis, the size was not tuned but kept constant. Besides tunability of size, the
speckles can also be rotated. A rotation mount (RM, PR50CC, Newport Corp.)
housing the ED can conduct rotations with the axis parallel to the beam path
and as a consequence rotate speckles inside the sample plane. The ED used for
this work has a divergence angle of 1° and to compensate, a telescope made up
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Figure III.8: Setup using an Engineered DiffuserTM (ED) to create two-dimensional light
fields. The components inside the orange rectangle are inside a microscope or its beam
path. A beam emitted by a laser is widened (BE) and directed onto an ED situated inside
a rotation mount (RM). The resulting top hat pattern is focussed (L1, L2, Condenser),
coupled into a microscope with a dichroic mirror (DM1) and hits the sample from the top,
in the same direction as gravity. The sample cell is housed in a piezo stage to be able to
be moved laterally. A camera (CAM) is flanged to the microscope recording micrographs
of the sample. Abbreviations are given in the main text.
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ond aperture (AP2) and is coupled into the illumination path of the microscope
(Eclipse Ti-U, Nikon Corp.) with a dichroic mirror (DM1, NT69-901, Edmund
Optics GmbH). From there, it is directed through the aperture stop (AS), onto
the condenser (TI-C-LWD, Nikon Corp.) and coincides with the microscopes
illumination path. The condenser is positioned in a way that the laser beam is
focussed inside the sample plane. Therefore, Köhler illumination is not neces-
sarily achieved, but computer-assisted identification of colloidal particles is still
possible (cf. Sec.III.3).

In contrast to the SLMsetup, laser light enters the sample cell from the top and
is thus parallel to gravitational forces. H2O is the dispersion medium leading to
gravitationandscattering forces againacting in the samedirection. Anadditional
piezo stage (PS, Nano-BioS300,MadCity Labs Inc.) was introduced to be able to
move the sample cell in a controlled, well-defined manner perpendicular to the
direction of propagation of the beam. It is actuated externally by a PCwith a Lab-
View program and features a housing for sample cells (cf. Sec. III.1, Fig. III.9).
After the laser beam and light of the illumination path of the microscope pass
through the sample, it is collected by the microscope objective (CFI S Plan Fluor
ELWD 20×, Nikon Corp.). Laser light is filtered out by a second dichroic mir-
ror (DM2, NT69-901, Edmund Optics GmbH) and a notch filter (NF, z532nf,
Chroma Technology Corp.) underneath the objective for similar reasons given
in Sec. III.2.1.1, namely to prevent damage of the camera and ensure high im-
age quality.3 Light that has not been filtered out is used for imaging the sam-
ple and hits amonochromeCMOS-camera (CAM,MakoU-130B, AlliedVision
TechnologiesGmbH).This camera is controlledbyanexternalLabViewprogram
similar to that used in the SLM setup and effectively records videos by saving se-
quences of images in the JPEG format resulting in a pixel pitch of 0.241 µm/px.
Additionally, the LabViewprogram controls the piezo stage and relates images to
the corresponding stage positions. As with the SLM setup, the laser is turned on
at least one hour prior to a measurement to warm up the laser and setup compo-
nents.

3Unlike in the SLM setup, all stray light is filtered out in the diffuser setup.
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Figure III.9: Photograph of the diffuser setup, the schematic of which was shown in
Fig. III.8. The green line shows the beam path. Not all components housed inside the
microscope are marked due to space constraints. To get a better view of certain parts of
the setup, they are magnified in the top part of the figure. Abbreviations are given in the
main text.

2.2.2 Characterisation of Light Fields Created by the Diffuser Setup

As in Sec. III.2.1.3, the properties of a light field createdby anEDare addressed
here. A thorough investigation of these properties can be found in Refs. [138,
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Figure III.10: Intensities and distributions of the light field created by the diffuser setup. a)
Entire intensity pattern created with the aid of the ED. The FOV is denoted by the
blue square and the grey horizontal lines on the right-hand side, respectively. The profile
along the red solid line reveals its overall flatness in the central part. b) The intensity in
the FOV and its distribution (blue columns) fitted by an exponential decay (solid orange
line). c) The intensity from b) convolved with P to obtain P . The resulting
distribution (blue columns) can be approximated by a gamma distribution (solid orange
line).
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187], which serve as a base for the analysis.4 In Fig. III.10 a), a greyscale image of
the flat top field created by the diffuser setup can be found. The one-dimensional
smoothed intensity, I(x), resolved in grey levels, is plotted for the path along the
red line in the image. It shows that the light field exhibits an intensity which is
mostly constant in the central region. This central region,markedby vertical grey
lines in the plot on the right-hand side, is the FOV and observed when conduct-
ing measurements. It has a size of 1024 × 1024 px, or 247 × 247 µm2, and is
shown in more detail in Fig. III.10 b). On short length scales, the light field ex-
hibits a speckle pattern stemming from the random features in an engineereddif-
fuser (cf. Sec. II.2.4). The normalised probability density function (PDF) of the
intensity on the right-hand side of Fig. III.10 b), shown in blue columns, reveals
that the speckle pattern is similar but not equal to that created by the SLM setup.
In the diffuser setup, the pattern is close to a fully developed speckle, where ran-
dom amplitudes and phases of light creating it are uniformly distributed [186].
The intensity distribution then follows:

PFD(I) = 1
⟨I⟩

exp { I
⟨I⟩

} , (III.6)

where ⟨I⟩ denotes the mean intensity of the speckle field [138, 186]. This ex-
ponential decay corresponds to a straight line with slope −1 in the normalised
PDF given here and is denoted by the solid orange line. The correlation length—
defined as in Sec. III.2.1.3—is about 0.8R and thus higher than in the SLM setup.
The intensity that a point-like particle would feel, IP(x, y), is again calculated by
convolving I(x, y) with the weight function, WP(x, y) for particles with R =
1.4 µm and can be seen in Fig. III.10 c). The intensity shows the characteristic
smeared out features with an enlarged correlation length, lU = 1.3R. The cor-
responding PDF is shown in blue columns on the right-hand side. The convo-
lution of I(x, y) withWP(x, y) corresponds to a weighted sum of random vari-
ables [188], distributed as shown in Fig. III.10 c). To what extent these random
variables are correlateddependson the correlation lengthof I(x, y) togetherwith

4The situation described with ’BE 6×’ corresponds to the situation described in this thesis.
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WP(x, y). A sumof completely independent exponentially distributed variables
has a PDF that follows a gamma distribution [77, 189]:

PΓ(IP) = 1
Γ(M)

( M
⟨IP⟩

)
M
IM−1
P exp {−

M
⟨IP⟩

IP} , (III.7)

where M is the shape parameter. It corresponds to the number of independent
speckles withinWP(x, y) [188] and lies between 1 and 25 for the diffuser setup
[138]. M depends on the area of laser light hitting the ED—thereby determin-
ing the size, or correlation length, of speckles—and the size of WP(x, y). The
smaller the correlation length and the larger WP(x, y), the more speckles are
summed over when convolving I(x, y) and WP(x, y), which leads to a higher
M. In Fig. III.10 c), P(IP)⟨IP⟩ is approximated by a gamma distribution with
M = 2.2 denoted by the solid orange line.

Similarly to Sec. III.2.1.3, the actual potential felt by colloidal particlesU(x, y)
could be determined through Boltzmann statistics by measuring particle resi-
dence probabilities. In one-dimensional potentials, this approach is unproblem-
atic: there are only two possible directions for a particle to move and thus in the
long run a particle will explore even the highest potential maxima. In two-di-
mensional potentials, the possibilities to circumvent the highest maxima are nu-
merous. The probability of single particles exploring the whole two-dimensional
potential in realistic sample observation times, tO , is much lower than in one
dimension. Thus, in the work described in this thesis, no measured potential
U(x, y) could be obtained by Boltzmann statistics. However, from Sec. III.2.1.3,
it is known thatU(x, y) can be approximated by IP(x, y). Therefore, the IP(x, y)
presented in Fig. III.10 c) is used as a substitute for U(x, y). From Sec. III.2.1.3
and Ref. [182], it can be inferred that the roughness, or standard deviation, of the
two-dimensional potential created by the diffuser setup, σU , can be controlled in
the same manner with which it was controlled in the SLM setup, namely by the
output power of the laser PL. Here again, there is a linear behaviour between PL

and σU [190].

The diffuser setup consequently produces a two-dimensional random poten-
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Figure III.11: Examples of photos taken by both setups. a) In the SLM setup the contrast
is optimised by Köhler illumination. Central spots of particles appear bright while the
background shows a red cast, due to the filters used (cf. Sec. III.2.1.1. b) The colloidal
particles appear as dark grey rings on a light grey background in the diffuser setup. The
contrast in this picture is not optimal as Köhler illumination is not achieved (cf. Sec. III.2.2).
c) When the photo in a) is convolved with a boxcar and a Gaussian function, the particle
centres appear as bright spots on a dark background.

3 Video Microscopy
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Figure III.12: Schematic of finding and tracking colloidal particles in photos taken dur-
ing an experiment. Photos 0, 1, and 2 are taken at consecutive points in time . Three
particles are found in each photo. After tracking three different—orange, green, and
blue—trajectories are built from particle coordinates.
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(Fig. III.12, right). Thereby, each point of a trajectory corresponds to a point in
time. Once each particle in the FOV has been identified and a trajectory cre-
ated, the complete output of the experiment has been gathered. The trajectories
can then be used to calculate quantities such as themean square displacement to
quantify the particle dynamics (cf. Sec. III.4.3).

3.1 Computer-Based Analysis in Video Microscopy

In the work described in this thesis, finding, tracking, and the subsequent cal-
culations were done with the aid of the programming language IDL (IDL, Harris
Corp.). The routines to find and track particles were described by John Crocker
and David G. Grier [191] and are provided on their webpage [192]. Similar rou-
tines, all basedon [191], canbe found forMATLAB[193]orPython [194] amongst
others. There is an extensive tutorial on how to use these routines in detail in
Ref. [192]. Thus only an overview of the used routines is given here.

To find particles, a photo similar to that shown in Fig. III.11 b) is convolved
with a two-dimensional boxcar and a Gaussian function to reduce long-wave-
lengthandrandomnoise, respectively. Theresulting image isdepicted inFig. III.11c).
It has a dark background with bright spots. Subsequently, coordinates of cen-
troid, brightness corresponding to the summarised grey value, radius of gyration,
and eccentricity are calculated for each bright spot. With these size and shape pa-
rameters, bright spots with non-appropriate characteristics can be sorted out, so
that only actual particles are recognised as such. The coordinates of the centroids
of the bright spots then serve as particle coordinates throughout the rest of the
analysis. When all particles are found, their coordinates are linked together for
every photo. Each photo corresponds to a point in time or—equivalently—to a
time step. The length of the minimum time step a video microscopy measure-
ment can resolve is calculated to Δtmin = 1/FPS. To link particle coordinates,
the same particle has to be found in two consecutive photos and recognised as
such. In order to do so, a probability estimate is conducted. From Sec. II.1.3 it is
known that the probability for a Brownian particle to move a two-dimensional
displacement, Δr, is given according to Eq. II.13. Therefore, the probability for
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x-Coordinate y-Coordinate Brightness Radius of Gyration Eccentricity Time Step Particle ID

Figure III.13: Snippet of a table obtained by using a tracking routine in IDL. The red line
marks a change in particle ID.

P

P
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marked by the horizontal red line in Fig. III.13. The length of a trajectory, ΔtL,i ,
is individual for each particle i and can be calculated by subtracting the first time
step of a trajectory tfirst,i from the last one tlast,i , where time steps are given as in-
teger numbers in the next to last column in Fig. III.13. For each measurement,
a table similar to that shown in Fig. III.13 is obtained. It is used to calculate the
statistical quantities introduced in Sec. III.4.

3.2 Challenges and Optimisation of Video Microscopy

In practice, the only information gained from video microscopy are the im-
ages taken by a camera flanged to a microscope. Particle trajectories formed by
computer software and the ensuing calculation of dynamical quantities belong
to the analysis of a measurement and cannot make up for mistakes made when
conducting experiments [195]. Problems range from imageswith low contrast to
particles that move too fast. Therefore, great care should be taken when captur-
ing photos of a sample. In the following, an overviewof problems arising in video
microscopy is given. It is certainly not complete, yet coversmost of the challenges
encountered in the course of the work described in this thesis.

3.2.1 Difficulties with Particle Finding

Findingparticleswith the routinesdescribed inSec. III.3.1 canbe straightforward—
provided the quality of the taken images is sufficient. In this context, sufficient
means as good as the experimental circumstances allow. In practice—such as in
the setups used in thework described in this thesis—there are usually constraints
that lower the highest possible image quality, e.g. the lack of Köhler illumina-
tion in the diffuser setup. Thus, it is important that the following problems are
avoided, if possible.

Oneof themost importantpropertiesof an image fromwhichaparticle should
be located is its contrast, C. There are several ways of defining C. Here, we will
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focus on the Michelson CM [196] and RMS contrast CRMS
5. They read:

CM = Imax − Imin
Imax + Imin

and CRMS =
√√√

⎷

1
NxNy

Nx

∑
i=1

Ny

∑
j=1

(Iij − ⟨I⟩)
2
, (III.9)

where Imax and Imin refer to the maximum and minimum grey levels of an anal-
ysed image, respectively, Nx and Ny the amount of pixels in x- and y-direction,
respectively, Iij a grey level specified by the summation indices for each pixel in
the x- and y-direction and ⟨I⟩ the mean grey level of the entire image. Both def-
initions are a measure for the range of grey levels used by an image. The broader
a histogram of the grey levels of an image, the higher are CM and CRMS. In video
microscopy, contrast can be gained by several methods depending on the setup
used. When a confocal microscope is used, contrast can be defined by the fluo-
rescenceof theparticles and canbe changedby adjusting the gain andoffset of the
photon collector device [195]. In a bright-fieldmicroscope, contrast is generated
by differences in refractive indices and in absorption. The difference between
particle and surrounding medium has to be as high as possible to generate the
highest contrast. It can then be adjusted by focus and brightness of the lamp. The
former is depicted in Fig. III.14. Three images of colloidal particles with different
focal planes are shown with each having their own histogram. The two peaks in
the histograms represent the grey values of background and particles. When us-
ing video microscopy, the focal spot with the highest contrast, i.e. highest value
for CM and CRMS, should be chosen. In practice, this corresponds to the broadest
histogram and at the same time the largest distance between the peaks. This is
shown in the lower row of Fig. III.14, recognisable by the image, histogram and
given values for contrasts. Besides the focal spot, the brightness of the micro-
scope lamp is important. It should be adjusted so that histograms do not saturate
at either end of the greyscale. That way, the dynamic range of a setup is optimally
used. As a side effect, the highest contrast corresponds to particles appearing as

5Thedefinition forCRMS is rather reminiscent of the rootmean squaredeviation, also knownas root
mean square error or standard deviation. Still, the contrast is referred to as RMS, as the common
definition for an RMS value would not make sense in this context.
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Figure III.14: The same sample observed in different focal planes. From top to bottom
the focal plane is changed resulting in images with higher contrast. The histograms on the
right-hand side quantify this impression as higher contrast leads to broader histograms
and higher values for CM and CRMS.
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dark rings with a bright centre. As described in Sec. III.3.1, this is exactly the ap-
pearance particles should have in order to be found properly. Therefore, in video
microscopy, optimum contrast is equivalent to optimum appearance of particles
and vice versa.

Sometimes even a high contrast image does not lead to particles looking like
dark rings with bright centres, especially when the colloids are very small com-
pared to the FOV and camera resolution. In these cases, particles appear as dark
blobs. The finding routines described in Sec. III.3.1 no longer work as there are
no bright dots to analyse. The easiest remedy is increasing the magnification of
the microscope. A different objective can be introduced to a setup quickly and
often leads to more easily findable particles. If objectives cannot be exchanged
for some reason, the acquired images can also be inverted in colour space. Light
backgrounds will then be dark and dark blob-like particles light, looking simi-
lar to the image shown in Fig. III.11 c). Inversion of images however can cause
additional problems when particles are close to each other. Then light blobs can
touchor overlap and twoparticleswill not be recognised as such, but appear to be
one elongated colloid. Thus adjusting themagnification is always preferredwhen
issues with particle size occur.

Anotherdifficultywhenusingvideomicroscopycanbe the imagebackground.
Ideally, it is plain and does not show any structure or colour gradients. In reality
though, backgrounds can be non-ideal as depicted in the centre of Fig. III.15.
In this case, the notch filter inside the diffuser setup is not strong enough. As
a result, not only particles (blue circles), but also the light field is imaged and
shows features similar to particles. Consequently, particle finding is more dif-
ficult and leads to falsely found particles shown as red circles. On the left-hand
side of Fig. III.15, the same sample is illuminated more strongly. This leads to
poorer contrast, but, due to camera saturation, the background is uniform pro-
viding better results in finding particles, although the sameparameterswere used
as in the central image. On the right-hand side, a stronger filter is used inside the
setup. It filters out all the laser light and creates a grey uniformbackgroundwhile
providing high contrast. As a result, all particles are found correctly. This config-
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30 μm
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Figure III.15: The same sample with different backgrounds. In the middle, a light field
creates a background leading to falsely found particles (red circles). When illuminating
the sample more intensively or introducing a stronger filter, the background becomes
uniform and particles can be found correctly.
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100 μm 25 μm

Falsely Found

Figure III.16: Highly concentrated sample observed with diffuser setup. Higher concen-
trations can lead to voids looking similar to actual particles. As a result, voids are falsely
identified as particles. Red circles in a 4 magnified detail on the right-hand side illustrate
this difficulty.
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sub-integer precision as they should. To check for that error, a histogram of the
first decimal number of all the particle coordinates is made. If that histogram
shows a uniform distribution, no quantisation exists. If it is peaked at zero and
one, coordinates are quantised and finding routines have to be rerun with dif-
ferent input parameters.

In addition to the difficulties encountered with photos themselves, the acqui-
sition process can influence the data analysis. Images are usually supposed to be
saved with a constant rate. In practice, this is not always the case, since particu-
larly high FPS can push hardware to its limits resulting in—sometimes random—
delays in the acquisition. Successive frames may then have varying time gaps be-
tween them. If these are treated as being evenly spaced, this can lead to corrupted
results in further analysis. When the particle dynamics—especially on small time
scales—deviates from expectation, a varying image acquisition rate can be the
cause. In such a case, a smaller amount of FPS or a proper camera-computer-
tandem usually improves the situation.

3.3 Difficulties with Particle Tracking

Difficulties in particle tracking are not as evident as in particle finding but can
be just as challenging. Compared tofinding, trackingdoes not dependon the im-
agequality itself but on acquisition rates that have tomatch theparticle dynamics.

The tracking routine described in Sec. III.3.1 links coordinates by minimis-
ing the distance between all available coordinates in successive frames. Closest
coordinates in two consecutive frames are thus assumed to represent the same
particles. Hence, the displacement of each particle within 1/FPS, Δri(Δtmin),
should be equal to or smaller than half of the distance of this particle to its near-
est neighbour,Δrij . WhenΔri(Δtmin) ≤ Δrij/2, the particle found atΔt +Δtmin

which is closest to the position of a particle atΔt is always the same particle as de-
picted inFig. III.17 a). There, real displacements of particles 1 and2,Δr1,r(Δtmin)
and Δr2,r(Δtmin), correspond to displacements calculated by the track routine
Δr1,t(Δtmin) andΔr2,t(Δtmin), respectively. IDs stay the same as the blue particle
is number 1 before and after a time step elapses. What happenswhen particles go
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1 1 2 2 221 1

Small Displacements Large Displacementsa) b)

Figure III.17: Particle IDs depending on displacements . Both sides show the situation
for displacements within aminimum time step min. On the left-hand side r are smaller
than half the distance of a particle to its nearest neighbour, . No ID swapping occurs.
On the right-hand side, real particle displacements r are larger than half the distance.
Thus ID 1 and 2 are swapped and displacements calculated by the track routine t are
different from the real ones.
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Δri(Δtmin) > Δrij/2 will likely be assigned wrong IDs by the tracking routine
at some point during a measurement. Consequently, these particles will be arti-
ficially slowed down in the long run. As Δri(Δtmin) is a statistical quantity, i.e.
not the same for every time step, particles will not be slowed down immediately.
There is always a chance that no ID swapping occurs even though on average
Δri(Δtmin) > Δrij/2, but this chance gets smaller with longer measurements,
i.e. a larger number of sampled time steps. Thus Eq. III.10 should not be taken as
a strict rule but as a guideline: to avoid difficulties in tracking and possible hid-
den bias in the final data,Δri(Δtmin) ≤ Δrij/2 should be satisfied if possible. For
colloids in strong flow fields, this condition often cannot be satisfied. In order to
still be able to track particles, additional routines subtracting flow from coordi-
nates can be introduced [170]. With suchmethods, tracking is still possible, even
though displacements are larger than half of the nearest neighbour distance.

Another challenge connected toΔri(Δtmin) is finding the right input parame-
ters for tracking—in particularΔrmax. In Sec. III.3.1 it wasmentioned that not all
possible displacements are calculated for two consecutive frames. To save com-
putational time this calculation is limited to particle pairs that are closer than
Δrmax. The process of finding the right Δrmax is described in Ref. [192]. At first,
a maximum distance is guessed and the tracking routine is conducted. If the
histogram of Δri(Δtmin)6 for the whole measurement decays to zero before it
reaches Δrmax, a value big enough was chosen. If the value was to small, the his-
togram still has a relatively high finite value at its tails. In order to save compu-
tational time, Δrmax should be as small as possible and definitely smaller than
Δrij/2 as stated in the previous paragraph.

In addition to Δrmax, the tracking routine can be fed with a minimum trajec-
tory length and a memory feature. From Sec. III.3.2.1 it is known that falsely
found particles can be the source of short tracks. In order to neglect these when
analysing the data further, a minimum trajectory length can be used to get rid of
very short trajectories. The memory feature can account for particles that were
lost and reappear in the course of an experiment. This can easily happen at the

6This histogram should resemble a Gaussian function when non-interacting Brownian particles
were measured.
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edges of the FOV and when particles go out of focus for a short period of time.
In these cases, use of thememory feature can lead to longer trajectories andmore
information in further data analysis. However, using this feature can cause prob-
lems since it is not known what happened to the particle when it went out of fo-
cus or the FOV. By using the memory option, particles lost for some time are as-
sumed to behave similar to those found in the FOV, which is not necessarily a
given. Therefore, in the work described in this thesis, the memory feature was
not used.
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4 Quanitifying Colloidal Dynamics

After measurements have been conducted and particles found and tracked,
all information related to these measurements is readily available. Interpreting
individual particle trajectories alone is often not very informative since they rep-
resent isolated samples. Instead, (histograms of) displacements and their mo-
ments, such as mean, variance, skewness and kurtosis are calculated to gain in-
sight into the particle dynamics. They can quantify, e.g., speed (variance) or ten-
dency (mean, skewness) of particle motion or clarify whether observed colloids
are Brownian or not (kurtosis).

To get a better understanding of the introduced quantities, the concept of an
underlying physical process defining particle trajectories and thus their displace-
ments and moments that is used throughout [77] is discussed in this section.
Probability density functions and other quantities of the process are referred to
with a hat: P̂ . They represent the model that leads to displacements observed
in a measurement. They are fixed and characteristic for a specific experiment.
In practice, they are not known exactly because an infinite number of samples
would have to be analysed to obtain them [77]. Quantities used in earlier sec-
tions, such as mean and variance, were introduced from a theoretical point of
view. In that case there is no distinction between process and measured quanti-
ties. Since a realmeasurement only comprises a finite FOVandnumber of trajec-
tories and can falsify results depending on themeasurement procedure used, the
best an experimentalist can do is to calculate expected values of aforementioned
quantities using an estimate of P̂ and obtain as many (independent) samples
as possible. Thus the difference between expected value and actual (unknown)
value of eachquantity canbe reduced to aminimum. Additionally,momentswill
be estimated to save computational time. Hencemost of the quantities described
in this section will be estimators.



98 | Chapter III. Materials and Methods

4.1 The van Hove Function

The fundamental quantity underlying all other quantities describing the col-
loidal dynamics in this thesis is the probability density function P̂(Δr, Δt) of
particle displacements for a specific time difference t− t0 =Δt between the abso-
lute time t and a starting time t0 introduced in Sec. II.1.3.7 For non-interacting
Brownian particles it is a Gaussian with its variance proportional to time t. In
an experiment, P̂(Δr, Δt) is not known but defined by the process made up of
particle behaviour and measurement as explained above. Therefore, P̂ has to be
estimated. To this end, the van Hove functionG(Δr, Δt) is utilised. It was intro-
duced by Léon vanHove in 1954 [197] and for a systemmade up ofNP particles,
it reads [197–199]:

G(Δr, Δt) = 1
NP ⟨

NP

∑
i=1

NP

∑
j=1

δ[Δr − (rj(t0 + Δt) − ri(t0))]⟩
, (III.11)

whereδ[⋅] represents theDiracdelta function. Theaverage indicatedby the angle
brackets refers to an ensemble average over initial conditions that is equivalent to
a time average over different starting times t0 for very long observation times, tO ,
or often similar trajectory lengths, ΔtL, when the observed sample is ergodic [88,
190, 198, 200, 201]. In this context the microscopic particle density, nρ(r, t),
reads [198]

nρ(r, t) =
NP

∑
i=1

δ[r − ri(t)] , (III.12)

where the Dirac delta function represents the local density of a single particle.
Densitynρ(r, t) shouldnotbeconfusedwith theρN(r, t) introduced inSec. II.1.3,
sincenρ(r, t) represents amicroscopicquantity,whereasρN(r, t) ismacroscopic,
coarse-grained. Under certain conditions, both densities can however behave
similarly (see below). Together with Eq. III.12 and by integration over volume,
G(Δr, Δt) can be rearranged to a density correlation function in time [197, 198,

7It was introduced asP , a theoretical quantity, for which P̂ = P holds.
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202]:

G(r′, Δr, Δt) = 1
NP ⟨∫

NP

∑
i=1

NP

∑
j=1

δ[r′ + Δr − rj(Δt + t0)]

× δ[r′ − ri(t0))] dr′
⟩

= 1
NP ⟨∫ nρ(r′ + Δr, t0 + Δt) nρ(r′, t0) dr′

⟩

= 1
NP

⟨nρ(r′ + Δr, t0 + Δt) nρ(r′, t0)⟩ .

(III.13)

The vanHove function consequently shows howwell correlated a density is with
itself dependingon the timepassed,Δt, and thedistance,Δr. Thestarting time, t0,
and space coordinate, r′, can be chosen to be zero [203]. The van Hove function
is not only of great importance in real space, as shown in Eqs. III.11 and III.13,
but also in Fourier space. When Fourier transformed in space G(Δr, Δt) corre-
sponds to the intermediate scattering function [198, 204]:

f (k, Δt) = ∫ G(Δr, Δt) exp{−ikΔr} dΔr = ⟨exp{−ikΔr}⟩ , (III.14)

which also happens to be the so-called characteristic function ofΔr [5, 205]. This
function can be deduced from correlated intensities measured in a scattering ex-
periment [206]. Fourier transforming the intermediate scattering function in
time leads to the dynamic structure factor [198, 204]:

S(k,ω) = ∫ f (k, Δt) exp{−iωΔt} dΔt (III.15)

whichcontains informationon the spatial arrangementof scatteringparticles and
its time evolution [206]. In the form of f (k, Δt), the vanHove function is conse-
quently an integral part of scattering measurements.
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Due to the two sums in Eq. III.11, G(Δr, Δt) can be split in two parts:

G(Δr, Δt) = Gs(Δr, Δt) + Gd(Δr, Δt) , (III.16)

the self part of the van Hove function:

Gs(Δr, Δt) = 1
NP ⟨

NP

∑
i=1

δ[Δr − (ri(t0 + Δt) − ri(t0))]⟩
(III.17)

and its distinct part:

Gd(Δr, Δt) = 1
NP ⟨

NP

∑
i =1

NP

∑
j =1
j≠i

δ[Δr − (rj(t0+Δt) − ri(t0))]⟩
. (III.18)

Generally speaking, G(Δr, Δt) dΔr is the probability that any particle j is found
displaced at a region dΔr around Δr at time t0 + Δt given that any particle iwas
at a region dΔr around the origin at time t0 [198, 204].8 The self partGs(Δr, Δt)
consequently represents the probability of the same particle being at the origin
at t0 and then displaced by Δr at t0 + Δt, whereas the distinct part shows how
likely it is for a particle j being at Δr at time t0 + Δt given that a different particle
i was at the origin at t0. When Δt = 0, none of the particles are displaced com-
pared to their original position and hence Gs(Δr, 0) = δ[Δr]. The distinct part
is then represented by the pair distribution function g(Δr), namelyGd(Δr, 0) =
(NP/V) g(Δr) with the volume, V , in whichNP particles are found. When the
system is isotropic, g(Δr) = g(Δr), where g(Δr) is called radial distribution
function and g(Δr)dΔr is the probability to find a different particle at radius Δr
given that another particle is situated at the origin.

A part of G(Δr, Δt) is used to estimate P̂(Δr, Δt) in order to calculate sev-
eral quantities describing the particle dynamics. This part can be identified as the
self part. It was stated that ρN(r, t) ≠ nρ(r, t) and therefore Gs(Δr, Δt) should
notnecessarilybehave likePB(Δr, Δt) forBrownianmotion,whereρN(r, t)was

8The origin mentioned here is defined by r′ and can be chosen to be zero.
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used. This is, however, only true for very short times. For long times compared
to the velocity and positional correlation time—or thermal fluctuations at long
wavelengths and low frequencies— a displacement Δr conducted in time Δt is
made up of many smaller displacements conducted in smaller time steps. Ac-
cording to the central limit theoremthe sumsof these small displacements should
obey a Gaussian distribution [77, 204]. Thus the self part of the van Hove func-
tion obeys Fick’s second law of diffusion [79, 198, 204]

𝜕 Gs(Δr, Δt)
𝜕Δt

= D∇2Gs(Δr, Δt) (III.19)

with the samesolution forpureBrownianmotion in twodimensionsas forP(Δr, Δt) [198,
199, 204]:

Gs,B(Δr, Δt) = 1

√8πDΔt
exp{−

Δr2

8DΔt
} = PB(Δr, Δt) . (III.20)

In order to calculate Gs(Δr, Δt) in a video microscopy experiment, particle
displacements are calculated for each particle, i, for all discrete starting times,
t0, and all repeat measurements, j, and normalised by the total number of sam-
ples, NS. Thus Gs(Δr, Δt) contains the ensemble of all discrete displacements
conducted within Δt. It represents a measured probability density function that
behaves like a Gaussian function for Brownian particles. Hence the equal sign
on the left-hand side in Eq. III.20 signifies ”behaves like” for a Gs(Δr, Δt) drawn
from empirical data.

The formula to calculate Gs(Δr, Δt) in a video microscopy experiment then
reads

Gs(Δr, Δt) = 1
NS

⎛⎜
⎝

NM

∑
j=1

NP,j

∑
i=1

NΔt,i

∑
t0

δ[Δr − (rji(t0 + Δt) − rji(t0))]⎞⎟
⎠

, (III.21)
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where

NS(Δt) =
NM

∑
j=1

NP,j(Δt)

∑
i=1

NΔt,i(ΔtL,i, Δt, Δtmin) . (III.22)

In this case,NΔt,i = (ΔtL,i − Δt + Δtmin)/Δtmin is an integer amount of a vari-
able time step, Δt, that fits into a trajectory length ΔtL,i taking into account the
minimum time step Δtmin of the video microscopy setup. The trajectory length
ΔtL,i introduced inSec. III.3.1 dependsoneachparticle i and is definedbyΔtL,i =
tlast,i − tfirst,i , where tfirst,i and tlast,i are the first and last time steps of a trajectory i
in absolute time, t, respectively. NM is the amount ofmeasurements conducted—
equivalent to ensembleswithdifferent initial conditions—andNP,j(Δt) thenum-
ber of particles for each measurement j depending on Δt, as particles can en-
ter and leave the FOV. Whether each summation and which summation is con-
ducted at all when using Eq III.21, largely depends on the experiment and has
to be considered before analysis (see Sec. III.4.6). A typical result for a self part
of a van Hove function of Brownian and non-Brownian particles in video mi-
croscopy canbe seen as blue columns inFig. III.18. Theupper part showsGs(Δx)
for Brownian particles being subject to a constant drag velocity of vD = 0.9 µm/s
in x-direction for Δt = 10 s. A Gaussian PDF, depicted in orange, fits well to
Gs(Δx). It has a mean (light grey long-dashed line) of ⟨Δx⟩ = vDΔt = 9 µm
in accordance with Sec. II.1.3. In the lower part, a static potential was added
to the experiment resulting in particles being non-Brownian. The correspond-
ing probability density function cannot be fitted by a Gaussian PDF. In further
analysis, quantities like variance, skewness and kurtosis can be calculated from
Gs(Δx, Δt)—orequivalently estimated fromtheensembleof all thedisplacements—
rendering it the cornerstone of quantification of the colloidal dynamics.

4.2 Mean—Drift—Transport

The mean particle displacement within a specific amount of time Δt has al-
ready been mentioned. It is equivalent to the first moment about zero and reads
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Figure III.18: Self Part of the van Hove function for Brownian and non-Brownian particles
subject to a drift vD = 0.9 µm/s for Δt = 10 s. In the upper part Gs(Δx) for Brownian
particles is fitted well by a Gaussian function (orange line). In the lower part an external
potential was added in the experiment. As a result particles are non-Brownian and the
Gaussian function does not fit anymore. Mean (light grey long-dashed line), median (dark
grey dashed line), and mode (black short-dashed line) are marked in both probability
density functions.
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in one dimension:

⟨̂Δx⟩(Δt) = ∫

∞

−∞
Δx P̂(Δx, Δt) dΔx . (III.23)

In an actual experiment, P̂(Δx, Δt) is estimated by Gs(Δx, Δt) and not known.
Obtaining Gs(Δx, Δt) for each Δx and Δt can be time consuming. As explained
in the introductionof Sec. III.4, estimated quantities are used for that reason. The
estimator of the mean reads

⟨Δx⟩(Δt) = 1
NS

NS

∑
i=1

Δxi(Δt) , (III.24)

where i is summed over all displacements calculated according to Eq. III.21. This
formula is usedwhen any given ⟨Δx⟩(Δt) is calculatedwith the aid of IDL.There
is a difference between the mean, which is caused by physical processes in a sys-
tem, ⟨̂Δx⟩(Δt), and the mean that is measured, ⟨Δx⟩(Δt). The former is desired
by every experimentalist, but the latter is that which is obtained. The goal is to
obtain a ⟨Δx⟩(Δt) that is as close to ⟨̂Δx⟩(Δt) as possible.

For pureBrownianmotion,Gs(Δx, Δt) followsEq. II.13 and thus ⟨Δx⟩(Δt) =
0. A vanishing mean implies that there is no preferred direction in particle dis-
placements. Consequently, a finite ⟨Δx⟩(Δt) indicates that there is a preferred
direction, also called drift. In some experiments, drift is not wanted, e.g., when it
arises from an unstable microscope stage or light source, and therefore is delib-
erately excluded from data in postprocessing [170, 207–209]. From Sec. II.1.3 it
is known that, for Brownian motion with a constant drag velocity vD, the parti-
cle dynamics and therefore Gs(Δx, Δt) follows Eq. II.21 and ⟨Δx⟩(Δt) = vDΔt.
When all particles are subject to the same constant vD, the mean can be sub-
tracted from displacements Δx to obtain the particle dynamics without drift. In
the upper part of Fig. III.18, ⟨Δx⟩(Δt) = 9 µm could be subtracted from all dis-
placements. The result would be a Gs(Δx, Δt) centred about zero revealing pure
Brownian motion. When vD is time- or particle-dependent, this simplification
cannot be done as easily. Depending on the types of samplesNS is made up of—
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different particles i, different starting times t0, or both—subtraction of ⟨Δx⟩(Δt)
from displacements would not account for changes in time and particle, because
⟨Δx⟩(Δt) would not apply for all particles similarly. Due to a space-dependent
external potential, the PDF in the lower part of Fig. III.18, for example, shows
⟨Δx⟩(Δt) = 6.8 µm although all particles were subject to the same constant
positive drag velocity as in the upper part. Subtracting that value from all dis-
placements alike would result in particles represented by the left peak showing
highly negative displacements though being subject to a positive vD. Physically
this would notmake sense even if particles were subject to an additional external
potential and therefore should not be done in this case. Instead of using diffusing
particles to correct for drift, several sources use fixed markers inside their sam-
ples to measure their mean displacement and correct for it [208, 210]. That way,
drift ismeasured independently fromparticlemotionandconsequently provides
better results when subtracted.

Besides being an indicator for biased motion and means to correct for it in
postprocessing, ⟨Δx⟩(Δt) can also be interpreted as transport, flux, or velocity
when divided by time t [211–214]. When colloidal particles are subject to exter-
nal forces their reaction can be quantified by finding their mean displacement—
for example when colloidal diffusion is rectified by a ratchet potential [211]. De-
pending on the alternating frequency of a ratchet, particles tend to move along
a ratchet with different speeds. Mean displacements are the means of choice to
quantify that behaviour.

In this regard, it can sometimes be more telling when the median or mode are
used instead of the mean. The median (dark grey dashed line in Fig. III.18), also
called the 50th percentile, splits a distribution into two parts, such that each part
represents 50 % of the whole area under the distribution curve. The mode (black
short-dashed line in Fig. III.18) is an input value at which a distribution takes its
maximum. For symmetric distributions, all three quantities are equal as can be
seen in the top part of Fig. III.18. When a PDF is asymmetric like in the lower
part of the figure, themedian andmode are less affected by long tails as themean.
Therefore, they are sometimes more representative for a majority of particles in



106 | Chapter III. Materials and Methods

an experiment.

4.3 Variance—Mean Square Displacement—Diffusion

The most frequently used quantity related to colloidal dynamics is probably
the second moment. The second moment about zero is referred to as the mean
square displacement (MSD) and was already introduced in Sec. II.1.3. In one
dimension it reads:

⟨̂Δx2⟩(Δt) = ∫

∞

−∞
Δx2 P̂(Δx, Δt) dΔx (III.25)

following the definition of the first moment about zero in Eq. III.23. Second or
higher moments can also be defined about the mean—unlike the first moment.
The second moment about the mean is called variance and is generally defined
as:

σ2
Δx(Δt) =∫

∞

−∞
(Δx − ⟨Δx⟩)2 P(Δx, Δt) dΔx

= ⟨(Δx − ⟨Δx⟩)2⟩

= ⟨(Δx2 − 2Δx⟨Δx⟩ + ⟨Δx⟩2)⟩

= ⟨Δx2⟩ − 2⟨Δx⟩2 + ⟨Δx⟩2

= ⟨Δx2⟩ − ⟨Δx⟩2 ⇔

⟨Δx2⟩(Δt) = σ2
Δx + ⟨Δx⟩2

(III.26)

just as shown in Sec. II.1.3.9 The Δt dependence was not given explicitly on the
right-hand side for convenience.10 Equation III.26 is valid as long as the first and

9Thehats on the quantities referring to them as process quantities and notmeasured ones are omit-
ted here as the relationship is generally valid.

10The following equations also depend onΔt on both sides. However, for clarity reasons, stating that
explicitly is often limited to the left-hand side.
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second moments are computed using the same average. It can be seen that the
broadness of a distribution about the origin defined by the square root of the
second moment, √⟨Δx2⟩(Δt), is related to the broadness about the mean de-
fined by the square root of the variance, called standard deviation σΔx(Δt), via a
Pythagorean addition with the mean ⟨Δx⟩(Δt) (cf. Fig. II.7).

The estimator of the variance used when P̂(Δx, Δt) is not known is given by:

σ2
Δx(Δt) =

1
NS

NS

∑
i=1

(Δxi − ⟨Δx⟩)2 . (III.27)

This is the plug-in estimator of variance and is slightly biased [77]. Due to the fact
that ⟨Δx⟩(Δt) also represents an estimator calculated with the same data with
which the estimator of the variance is computed, the deviations from this mean
tend to be too small. Therefore, the plug-in estimator of variance is biased to low
values [77]. To account for that there is the standard, unbiased estimator:

σ2
Δx(Δt) =

1
NS − 1

NS

∑
i=1

(Δxi − ⟨Δx⟩)2 . (III.28)

For largeNS both estimators give similar values. As the unbiased estimator also
gives reliable results for smallNS, it was used throughout the work described in
this thesis. When applied in computers, Eq. III.28 can cause problems due to
roundoff errors [215]. Therefore, when the variance was estimated in the work
described in this thesis, the corrected two-pass algorithmwas used [215–217]. It
is called two-pass because all samples have to be analysed twice, first ⟨Δx⟩(Δt)
has to be calculated, then σ2

Δx(Δt) is obtained. The corrected version of that al-
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gorithm reads [216]:

σ2
Δx(Δt) =

1
NS − 1

{
NS

∑
i=1

(Δxi − ⟨Δx⟩)2

−
1
NS

[
NS

∑
i=1

(Δxi − ⟨Δx⟩)]
2⎫}
⎬}⎭

.

(III.29)

The first part of the right-hand side represents Eq. III.28. The following term cal-
culates the mean deviation of single displacements from the mean. It would be
zero if computer calculationswere perfect. In practice it serves as a correction for
roundoff errors of the first term [215, 216].

The reason the variance is chosen over the pure second moment when dis-
cussing the particle dynamics in this thesis can be given with the aid of Fig. II.7
and III.19. When there is no drift in particle displacements, i.e. ⟨Δx⟩(Δt) = 0
for all time steps Δt, then there is no difference between ⟨Δx2⟩(Δt) and σ2

Δx(Δt)
as can be seen on the left-hand side of Fig. II.7. So whenever no drift is expected
in an experiment, any of those quantities can be chosen. However in this thesis,
there are experiments where drift is expected. In these experiments, ⟨Δx⟩(Δt)
changes over the course of time Δt (cf. Fig. II.7). Since the MSD is a moment
about zero, the length √⟨Δx2⟩(Δt) is affected by the mean and width of a dis-
tribution alike and neither represents drift nor diffusion but lies in between. The
larger of the latter defines ⟨Δx2⟩(Δt) as depicted in Fig. III.19. There, variance,
MSD, and squared mean are given for the experiment represented by the lower
part of Fig. III.18: Particles are dragged through an external potential by a drag
velocity,vD(Δt). MSD(orangecircles) andsquaredmean (green triangles)mostly
fall on top of each other, showing that theMSD is dominated by drift in thatmea-
surement. The diffusive part of the particle dynamics, represented by the width
of the distribution shown in the lower part of Fig. III.18 cannot be analysed by
⟨Δx2⟩(Δt) in this case, as drift disguises diffusion. When considering the vari-
ance, standarddeviationσΔx(Δt) canbe thoughtof as representinghalf thewidth
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Figure III.19: Time-dependent variance, σ2
Δx(Δt), MSD, ⟨Δx2⟩(Δt), and squared mean,

⟨Δx⟩2(Δt) of the experiment introduced in Fig. III.18: Particles being dragged with vD
through an external potential.

of a distribution, as shown in Fig. II.7.11 Thevariance depicted by blue squares in
Fig. III.19 shows values an order ofmagnitude lower than ⟨Δx2⟩(Δt) and reveals
a trend that was not apparent in the MSD. Thus ⟨Δx⟩(Δt) and σ2

Δx(Δt) can be
looked at separately to be able to interpret drift and diffusion individually.

The reason the variance—or second moment when ⟨Δx⟩(Δt) = 0—serves as
the main parameter when it comes to diffusion is the fact that it is the first non-
vanishing moment for pure Brownian motion. Its interpretation is nevertheless
not very intuitive. Chebyshev’s inequality is theonlyuniversalwayof interpreting
it:

Pr { Δx ∈ [⟨Δx⟩ − j σΔx , ⟨Δx⟩ + j σΔx] } > 1 −
1
j2

, (III.30)

11Of course, the actual interpretation of σΔx(Δt) is different from being half of the width of a distri-
bution. As in this thesis there are distributions similar to Gaussian functions for the most part,
this statement however mostly gives a good indication.
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where Pr{ ⋅ } stands for ”the probability of ”. It states that at least 100(1 − 1/j2) %
of data will be within ±j σ of the mean and is true for any distribution [77]. For
a Gaussian function j = 1, 2, and 3 represent 68 %, 95 %, and 99.7 %, respec-
tively. From Sec. II.1.3 it is known that σ2

Δx(Δt) follows Eq. II.17 for Brownian
motion with and without constant drift. The correct interpretation of this equa-
tion is that 68 % of particle displacements lie within ⟨Δx⟩(Δt) ± √2DΔt for
one-dimensional Brownian motion. There are non-vanishing quantities that are
much easier to interpret, such as themean absolute deviation (MAD),which rep-
resents the average distance data are away from the mean and is defined as

M̂AD(Δx)(Δt) = ∫

∞

−∞
|Δx − ⟨̂Δx⟩| P̂(Δx, Δt) dΔx . (III.31)

Themajoradvantageofusingvariance insteadof amore interpretableMADis the
fact that it is anaturalparameterof theGaussiandistribution functionPGauss—the
most important distribution in this thesis and arguably themost famous in statis-
tics [77]:

PGauss(Δx, ⟨Δx⟩, σΔx) =
1

√2πσ2
Δx

exp{−
(Δx − ⟨Δx⟩)2

2 σ2
Δx

} . (III.32)

Thus the variance (or secondmoment) and several associated quantities are used
in this thesis and in most other sources dealing with the colloidal dynamics.

One of these associated quantities is the diffusion coefficient D(Δt). From
Eq. II.17 it is known that for pure Brownian motion

σ2
Δx(Δt) = 2DΔt or σ2

Δr(Δt) = 2dDΔt , (II.17)

where D is constant for all Δt. In a measurement, however, the diffusion coef-
ficient might depend on Δt, i.e. D = D(Δt). To calculate it, the first derivative of
Eq. II.17 is taken:

D(Δt) = 1
2

𝜕 σ2
Δx(Δt)
𝜕Δt

or D(Δt) = 1
2b

𝜕 σ2
Δr(Δt)
𝜕Δt

. (III.33)
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Fordiscretedata—theonlykindofdata available in this thesis—taking thederiva-
tive translates to a finite difference quotient taken symmetrically:

D(Δt) = 1
2
σ2
Δr(Δt + Δtmin) − σ2

Δr(Δt − Δtmin)
2 Δtmin

. (III.34)

When σ2
Δr(Δt) tends to be noisy, e.g. when only few samples NS are available,

Eq. III.34 amplifies the noise possibly leading to unusable data [218, 219]. To
circumvent that problem, there are two options adopted in this thesis. One op-
tion is the application of a smoothing filter to σ2

Δr(Δt) prior to taking the finite
difference quotient. In this thesis, the ”locally weighted scatterplot smoothing”
(Lowess) implemented in Origin (OriginLab Corp.) is used [220]. It is said to be
useful to detect trends in otherwise noisy data and is thus well-suited. Another
option is the calculation of the diffusion coefficient via:

D(Δt) = 1
2
σ2
Δx(Δt)
Δt

or D(Δt) = 1
2d

σ2
Δr(Δt)
Δt

, (III.35)

even when it is not constant for all Δt. Equation III.35 yields smoother results,
especially for largeΔt, when σ2

Δr(Δt) often tends to become noisy. Thus the quo-
tient in Eq. III.35 is sometimes preferred over Eq. III.33, even though, strictly
speaking, it does not properly represent the diffusion coefficient. Figure III.20
showsD(Δt)derived for three different situations in one dimension: pure Brow-
nian motion DB(Δt), Brownian motion in an external potential DB-P(Δt), and
Brownianmotion in an external potential with additional driftDB-P-D(Δt). Dis-
tributions of the first and last situation for Δt = 10 s are depicted in Fig. III.18.
From displacements for all Δt, variances have been calculated. From these vari-
ances,D(Δt) is derivedaccording toEq. III.35. ForpureBrownianmotion,σ2

Δx(Δt)
is a straight linewith slopeDB(Δt). HenceDB(Δt) is a constant, depicted by blue
squares in Fig. III.20. The external potential in the experiment slows down diffu-
sion. As a result, the self part of the van Hove function gets broader more slowly
than ∝ Δt andDB-P(Δt) (orange circles) drops from a value aroundDB(Δt) to a
lower one. When drift is added, Gs(Δx, Δt) broadens faster than ∝ Δt. The re-
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Figure III.20: Time-dependent diffusion coefficients for three different situations: pure
Brownianmotion,DB(Δt), Brownianmotion in an external potential, DB-P(Δt), and Brown-
ianmotion in an external potential with additional drift,DB-P-D(Δt). DB(Δt) andDB-P-D(Δt)
are obtained from distributions shown in Fig. III.18. There, the self part of the van Hove
function was shown for Δt = 10 s marked as the grey dashed line here.

sulting variance is shown as blue squares in Fig. III.19. Taking the first derivative
of this variance yields an increasingDB-P-D(Δt) (green triangles) as can be seen
in Fig. III.20. Particles showing faster Brownian motion—usually the ones with
a lower radius (cf. Eq. II.10)—exhibit a higher diffusion coefficient. ThusD(Δt)
represents the rate of diffusion when Brownian particles are examined. When
the function that Gs(Δx, Δt) follows is not known,D(Δt) should be interpreted
as the rate with which Gs(Δx, Δt) broadens—assuming that the broadening is
proportional to Δt—rather than a rate of diffusion. A change ofD(Δt) over the
course of an experiment then indicates a deviation from this proportionality.

To properly quantify a deviation of σ2
Δr(Δt) from the Δt proportionality valid

for Brownian motion, an additional parameter, the anomalous diffusion expo-
nent, αD, introduced in Sec. II.1.4 is used. It allows σ2

Δr(Δt) to not be strictly
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proportional to Δt,12

σ2
Δx(Δt) = 2DΔtαD or σ2

Δr(Δt) = 2dDΔtαD , (II.22)

andcanbederivedby taking thefirst logarithmicderivativeofσ2
Δr(Δt) (orσ2

Δx(Δt))
in time:

αD(Δt) =
𝜕 log (σ2

Δr(Δt))
𝜕log(Δt)

, (III.36)

where log( ⋅ ) denotes the logarithm to base 10.13 Like the diffusion coefficient,
D(Δt), αD(Δt) is obtained by conducting a derivative. As a result it also tends
to become noisy. Again, the Lowess filter in Origin Ref. [220] can be used prior
to applying Eq. III.36. However, there is no second option similar to Eq. III.35,
since that could lead to a zero or negative values in the denominator, yielding
unphysical results. Fig. III.21 shows αD(Δt) for the same three situations for
which D(Δt) is depicted in Fig. III.20: pure Brownian motion, αD,B(Δt) (blue
squares), Brownian motion in an external potential, αD,B-P(Δt) (orange circles),
andBrownianmotion in an external potentialwith additional drift,αD,B-P-D(Δt)
(green triangles). For pure Brownian motion, αD(Δt) = 1. Equation II.22 then
becomesEq. II.17andD(Δt) is constant as canbe seenbycomparingblue squares
in Figs. III.20 and III.21. When D(Δt) changes, so does αD(Δt). Orange cir-
cles in both figures show that a decrease in D(Δt) correlates with a decrease in
αD(Δt). The same is true for an increase of D(Δt) and αD(Δt) as can be seen
by the green triangles in both figures. When a diffusion coefficient changes, the
particle dynamics deviates from pure Brownian motion as already mentioned in
the previous paragraph. An anomalous diffusion exponent then quantifies its
deviation. It shows with which exponent in time Gs(Δr, Δt) gets broader. An
αD(Δt) ≠ 1 thus signifies anomalousdiffusionof particles, wherebyαD(Δt) < 1
is denoted by subdiffusion and αD(Δt) > 1 by superdiffusion (cf. Sec. II.1.4).
This classification should be treated with caution though, as it already implies

12Theequal sign in Eq. II.22 is only valid when the units ofD(Δt) are adapted to the proportionality
between σ2

Δr(Δt) and Δt.
13Any base can be used to apply Eq. III.36.
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Figure III.21: Time-dependent anomalous diffusion exponents for the same three situa-
tions shown in Fig. III.20: pure Brownian motion, αD,B(Δt), Brownian motion in an external
potential, αD,B-P(Δt), and Brownian motion in an external potential with additional drift,
αD,B-P-D(Δt). αD,B(Δt) and αD,B-P-D(Δt) are obtained from distributions shown in Fig. III.18.
There, the self part of the van Hove function was shown for Δt = 10 s marked as the grey
dashed line here.

knowledge about the underlying process, namely that particles diffuse differently
fromBrownianmotion. Theremightbeotherprocesses involvedcausingGs(Δr, Δt)
to become broader or stay narrower than particle diffusion itself. This possibility
should be investigated prior to calling any dynamics sub- or superdiffusive when
colloids exhibit an anomalous diffusion exponent different from one.

Independent of the diffusive behaviour present—be it subdiffusive or super-
diffusive—a characteristic quantity can be defined for almost every system: the
Brownian time, tB. It reads:

tB = R2

2dD0
(III.37)
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and is the time a particle takes to diffuse its own radius.14 In practice, tB ismostly
defined throughBrownianmotion,whereD(Δt) is constant and calledD0 [221–
225]. It serves as a benchmark to define short-time, where t ≪ tB andD(Δt) =
Ds, and long-time behaviour of a system, where t ≫ tB and D(Δt) = Dl [224,
226], and iswidelyused toquantifydeviationsof theparticledynamics fromstan-
dard Brownian motion [221, 222]. In measurements, where particles never dif-
fuse completely freely,Ds can be used to define tB, yielding

tB = R2

2dDs . (III.38)

When plotting data, normalisation with tB leads to dimensionless quantities, e.g.

D
D0

(Δt
tB

) =
𝜕 σ2

Δr/R2

𝜕Δt/tB
. (III.39)

Using dimensionless quantities facilitates comparison between experiments and
helps finding an agreement of experiment and simulation [221, 227].

4.4 Skewness—Bias

In contrast to thefirst and secondmoments, the thirdmoment about themean
and related skewness are not often used in colloidal dynamics. To calculate the
skewness γ1(Δt), the thirdmoment about themean (cf. Eq. III.26) is normalised
by the cubic square root of varianceσ2(Δt). Forone-dimensional displacements,
it reads:

γ̂1(Δt) =
1

σ̂3
Δx

∫

∞

−∞
(Δx − ⟨̂Δx⟩)3 P̂(Δx, Δt) dΔx . (III.40)

14This statement is not completely correct, as we compare variance σ2
Δr(Δt) with a squared particle

radius. As mentioned in this section, the variance is a statistical quantity and can only be inter-
preted with Chebyshev’s inequality. Thus, tB represents the time a particle takes to cover more
than its radius with a probability of 32 %. For the sake of simplicity and as a rule of thumb this
statement is used here.
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Figure III.22: Time-dependent skewness shown for the two experimental Gs(Δx) which
were shown in Fig.III.18. There, the self part of the van Hove function was shown for
Δt = 10 s, marked here as the grey dashed line. The skewness for Brownian motion with
drift, γ1,B-D(Δt), is depicted by blue squares. For Brownian motion in an external field with
additional drift, the skewness, γ1,B-P-D(Δt), is shown as orange circles.

Thisdefinition is equivalent to the third standardisedmoment, the thirdmoment
of the standardised variable (Δx− ⟨̂Δx⟩)/σ̂Δx [228].15 Thenotation of skewness
is verydiverse. Besidesγ1 usedhere [228–230], it is also calledγ4 [231], SK [205],
or √β1 [232], all referring to the same quantity.The estimator of γ1(Δt) used in
this thesis reads:

γ1(Δt) =
1
NS

∑NS
i=1 (Δxi − ⟨Δx⟩)3

√σ2
Δx

3 , (III.41)

whereσ2
Δx(Δt) is first calculatedviaEq. III.29. Thereareways to improveEq. III.41

in terms of biasing [229]. Since there is a great variety leading to different results

15The standardised variable is also called z-score [77].
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for lowNS, the uncorrected estimator given in Eq. III.41 is used in this thesis.

As the name skewness already reveals, γ1(Δt) is a measure for the asymmetry
of a distribution. For a perfectly symmetric distribution, like a Gaussian, there
are asmany values smaller than themean as there are bigger. As a result the third
central moment cancels out and so does γ1(Δt). The denominator of Eq. III.41
always stays positive since σ2(Δt) > 0 for any given distribution. It serves as a
normalising factor, so that γ1(Δt) indicates the shape of a distribution but not its
size or position [77]. When there aremore values in a distribution larger than the
mean than there are smaller values, then the numerator of Eq. III.41 and there-
fore γ1(Δt) becomes positive. The opposite is true when there is a majority of
values smaller than ⟨Δx⟩(Δt). As deviations from ⟨Δx⟩(Δt) are weighted to the
power of 3, extreme values contribute abundantly to the final result. Thus long
tails tend to be overrepresented when γ1(Δt) is calculated andmostly determine
its sign [77]. Figure III.22 shows γ1(Δt) for the two examples given in Fig. III.18.
Both Gs(Δx) shown there represent only one point in time, namely Δt = 10 s,
represented by the grey dashed line in Fig. III.22. For Brownian motion with
drift, the skewness γ1, B-D(Δt) (blue squares) vanishes for all Δt as Gs(Δx) is al-
ways symmetric about the mean, independent of how strong the drift, i.e. how
big themean is. The orange circles represent the skewness for Brownian particles
in an external fieldwith additional drift, γ1,B-P-D(Δt)—the same example used in
Figs. III.20 and III.21 and shown in the lower part of Fig. III.18. It shows a strong
tendency to become negative over the course of time, Δt. This is due to Gs(Δx)
developing a strong tail left of itsmean as time progresses. With the aid of γ1(Δt)
this development can be quantified.

4.5 Kurtosis—Non-Gaussian Parameter

Tocomplete the list of commonmomentsonPDFs, the fourthmoment⟨Δx4⟩(Δt)
and its standardised versionβ2(Δt) are introduced in accordancewithEqs. III.25
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and III.40 [205, 230]. For one-dimensional displacements, they read:

⟨̂Δx4⟩(Δt) = ∫

∞

−∞
Δx4 P̂(Δx, Δt) dΔx (III.42)

and

β̂2(Δt) =
1

σ̂4
Δx

∫

∞

−∞
(Δx − ⟨̂Δx⟩)4 P̂(Δx, Δt) dΔx . (III.43)

The second quantity represents the fourth moment about the mean divided by
the squared variance. It is referred to as the kurtosis, where kurtos is the Greek
word for curved. For a Gaussian function, one obtains β2(Δt) = 3. For that
reason a second, closely related quantity can be defined:

γ̂2(Δt) = β̂2(Δt) − 3 , (III.44)

where γ̂2(Δt) is called excess kurtosis or simply excess [205, 230]. The excess
then quantifies how strongly a distribution deviates from a Gaussian function.
The estimator of γ̂2(Δt) in one dimension reads

γ2(Δt) =
1
NS

∑NS
i=1 (Δxi − ⟨Δx⟩)4

√σ2
Δx

4 − 3 , (III.45)

where σ2
Δx(Δt) is calculated via Eq. III.29. Here again, just like with γ1(Δt), the

plug-in estimator is used instead of a corrected version [229].

Because deviations from ⟨Δx⟩(Δt) and σ(Δt) are taken to the power of 4,
β2(Δt) is always positive. The lower bound of γ2(Δt) is defined by the inequal-
ity [233, 234]

β2(Δt) ≥ γ2
1(Δt) + 1 . (III.46)

Consequently, the minimal excess kurtosis is found to be −2 and obtained for
the Bernoulli distribution with a probability of 0.5. An upper bound for γ2(Δt)
is not found [77].

Dependingon theirγ2(Δt)value, distributions canbecategorisedasmesokur-
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tic, leptokurtic or platykurtic: they are called mesokurtic for γ2(Δt) = 0, whilst
when γ2(Δt) > 0, the distribution has a higher β2(Δt) than a Gaussian function
andcanbe called leptokurtic–theGreekword for slender—referring to adistribu-
tion lesser flat-topped. A distribution with γ2(Δt) < 0 can be called platykurtic,
meaning it is more flat-topped than a Gaussian curve [235]. There are however
several possible misconceptions when it comes to interpreting γ2(Δt).
Firstly, the termsmeso-, lepto-, andplatykurtic canbemisleading, since they sug-
gest that the peakedness of a distribution is the only defining feature for β2(Δt)
and γ2(Δt). However, deviations are weighted to the power of 4 in kurtosis and
excess kurtosis. Displacements that are far away from the mean, so-called out-
liers, can thus strongly affect β2(Δt) and γ2(Δt).16 On the other hand, γ2(Δt) is
alsodefinedby the variance in its denominator,which isnot affectedbyoutliers as
much as the fourth moment about the mean in the enumerator of γ2(Δt). There
is great debate on how to interpret γ2(Δt) [236–238]. Whereas Westfall [236]
claims that γ2(Δt) ismostly determined by the tails of a distribution, Crack [238]
disagrees. However, both agree on γ2(Δt) not being a measure for the shape of
the peak of a distribution. Balanda et al. [237] argue diplomatically, claiming that
it is a movement of probability from the shoulders into its centre and tails. This
argumentation is also followed here. A large positive γ2(Δt) then represents a
distribution that is more outlier-prone and more strongly peaked than a Gaus-
sian function.
Secondly, the scale of γ2(Δt) about zero is not balanced. As noted above, the
lower bound is well-defined and lies at −2, whereas there is no upper bound.
Consequently, great care should be taken when comparing negative and positive
γ2(Δt) values according to theirmagnitudes as the negative scale ismuch shorter
than the positive one.

In colloidal physics it is common practice [5, 80, 88, 181, 239] to neither use
β2(Δt) nor γ2(Δt) but a similar quantity, called the non-Gaussian parameter

16A similar effect was found for γ1(Δt) in Sec. III.4.4.
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α2(Δt) [240], which is based on moments about zero and can be defined as

α2(Δt) =
d

d + 2
⟨Δr4⟩(Δt)
⟨Δr2⟩2(Δt)

− 1 , (III.47)

where d represents the dimension. It can be deduced from a series expansion of
the self intermediate scattering function, fs(k, Δt), being the characteristic func-
tion of the displacement Δr for an isotropic system (cf. Eq. III.14) [5, 181, 241]:

ln(fs(k, Δt)) = −
k2

2d
⟨Δr2⟩(Δt) + k4⟨Δr2⟩2(Δt)

8d2

× ( d
d + 2

⟨Δr4⟩(Δt)
⟨Δr2⟩2(Δt)

− 1) +O(k6) for k → 0 ,

(III.48)

where ln(⋅)denotes the natural logarithm. For isotropic Brownianmotionwith-
out drift, the fourth moment about zero is calculated to obey ⟨Δr4⟩(Δt) = (d +
2)⟨Δr2⟩2(Δt)/d and thus thenon-Gaussianparameter (NGP)vanisheswith fs =
exp{−k2⟨Δr2⟩(Δt)/2d} in that case [5]. WheneverGs(Δr, Δt) does not follow
aGaussian function about zero as itwould forBrownianmotion, or ifGs(Δr, Δt)
follows a Gaussian function about zero, but not all spatial directions exhibit the
same variance, a finite α2(Δt) is found. Thereby it behaves similarly to the excess
kurtosis γ2(Δt): it has no upper but a lower bound, α2(Δt) ≥ −2/(d + 2) [5],
and is larger than 0 for distributions heavier tailed than a Gaussian and smaller
than 0 for the opposite. The estimator of the NGP reads

α2(Δt) =
NS ∑NS

i=1 Δx4
i

3 (∑NS
i=1 Δx2

i )
2 − 1 (III.49)

in one dimension and

α2(Δt) =
NS ∑NS

i=1 (Δx2
i + Δy2

i )2

2 (∑NS
i=1 Δx2

i )
2 − 1 (III.50)
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in two dimensions. Considering all the restrictions that have to be fulfilled in
order for α2(Δt) to be equal to zero stated above and the fact that deviations are
weighted to the power of 4, it is apparent that NGPs are very sensitive to even
small deviations from Brownian motion. Thus great care should be taken when
utilising this quantity.

As all themoments inα2(Δt) are taken about zero, unexpecteddrifts in amea-
surement can lead toα2(Δt) ≠ 0 and canbe falsely interpreted as non-Brownian
behaviour. The same problem is encountered when anisotropic motion is exam-
ined in two or three dimensions. Variances depending on spatial directions lead
to a nonzero α2(Δt), again possibly falsely interpreted as being non-Brownian
motion. There are quantities, such as the multivariate kurtosis [242], that ac-
count for all those pitfalls and deviations from ideal isotropic Brownian motion.
They signal Gaussian behaviour for any number of spatial coordinates no matter
where the mean of each coordinate is situated or how broad the distribution is,
as long as it is Gaussian. Depending on the experiment and its demands either
γ2(Δt)orα2(Δt) canbepreferable. When there isnodrift in the experiment then
α2(Δt) = γ2(Δt)/3 in one dimension. For all other cases one quantity might
be superior to the other. When Brownian motion and isotropy should be tested
at the same time and no drift is apparent or expected, α2(Δt) should be cho-
sen. When there is anisotropy and/or drift in particlemotion and themain focus
question is whether all spatial directions follow a Gaussian function or not, then
γ2(Δt)mightbe thebetter choice. In theworkdescribed in this thesis,mostof the
experiments were analysed in one dimension, but some contained drift. There-
fore, γ2(Δt) was chosen. To be able to better compare it with one-dimensional
NGPs in the literature it is divided by 3 in order to be of the samemagnitude and
called normalised excess kurtosis:

γα(Δt) = γ2(Δt)
3

, (III.51)

where γα(Δt) = α2(Δt) for pure Brownian motion in one dimension. Fig-
ure III.23 showsα2(Δt) andγα(Δt) for comparison. ForBrownianmotion, both
curves fall on top of each other and lie around zero, depicted as the black solid
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Figure III.23: Time-dependent normalised excess kurtosis, γα(Δt), and non-Gaussian pa-
rameter, α2(Δt), shown for Brownian motion and Brownian motion with additional drift.
The self part of the van Hove function was shown for the latter in the top of Fig. III.18.
There, Gs(Δx)was shown for Δt = 10 s, marked as the grey dashed line here. For Brownian
motion, γα,B(Δt) is depicted as blue squares and α2,B(Δt) as orange circles. For Brownian
motion with additional drift, γα,B-D(Δt) is shown as green triangles and α2, B-D(Δt) as red
inverted triangles.

and red dashed line. The green dot-dashed and blue double dot-dashed lines
show both quantities for Brownian motion with additional drift also shown in
the top part of Fig. III.18 for Δt = 10 s, which is marked by the grey dotted line
again. In that case, α2(Δt) decreases steadily in time, whereas γα(Δt) stays at
zero. Thus, when an additional drift is foreseen, using γα(Δt) makes more sense
as it accounts for the drift andonly indicates deviations fromexpected behaviour.

4.6 Averaging in Various Ways

All the quantities introduced in this chapter are based on the sampled popu-
lation withNS(Δt) samples given by Eq. III.22. It is this population that defines
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what each estimator is calculated to be and what inferences are drawn. Thus the
way sampling is done is crucial and can bias a result. In Sec. III.4.1,NS(Δt) was
said to be made up ofNM ensembles of different initial conditions,NP,j particles
in each ensemble j, andNΔt,i samples in time for each particle i:

NS(Δt) =
NM

∑
j=1

NP,j

∑
i=1

NΔt,i(ΔtL,i, Δt, Δtmin) . (III.22)

The corresponding Gs(Δr, Δt) was also defined in Sec. III.4.1 and reads

Gs(Δr, Δt) = 1
NS

⎛⎜
⎝

NM

∑
j=1

NP,j

∑
i=1

NΔt,i

∑
t0

δ[Δr − (rji(t0 + Δt) − rji(t0))]⎞⎟
⎠

. (III.21)

In practice, all three portions—NM,NP,j , andNΔt,i—are optional as each defines
a specific way of conducting the average when calculating quantities introduced
in this chapter.

The most obvious average is the one taken over several ensembles made up of
NP(t) particles. In this regard, only particles that are present at a defined starting
point t0, where t is set to be 0, are taken into account. The amount of samples
then reduces to

NS,E(t) =
NM

∑
j=1

NP(t | 0)

∑
i=1

1 , (III.52)

whereNP(t | 0) denotes the amount of particles present at time t given theywere
present at t = 0. The resulting Gs,E(Δr, t) is defined as

Gs,E(Δr, t) = 1
NS,E

⎛⎜
⎝

NM

∑
j=1

NP(t|0)

∑
i=1

δ[Δr − (rji(t) − rji(0))]⎞⎟
⎠

. (III.53)

In Eqs. III.52 and III.53, it is apparent that averaging over starting times t0 was
omitted, but only one point in time is defined as being t = 0 with the abso-
lute time t starting from there. The ensemble average (EA) is visualised for an
averaged quantity at time t1 in Fig. III.24. It shows a schematic for five particle
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Figure III.24: Schematic for ensemble averaging of particle trajectories marked as .
First, trajectories that are not present at a defined are omitted. Then the rest are
truncated after a time and averaged to obtain an averaged quantity for that time.
Thereby represents an absolute time.
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ent on the right-hand side of Fig.III.24. As a result, Gs,E(Δr, Δt) and all related
so called ensemble-averaged quantities—marked with an index E—depend on t
instead of relative time (also called lag time), Δt. This difference can be crucial
depending on the system analysed [88, 190] and will be discussed in more de-
tail later in this section. However, the amount of samples is drastically reduced
in Eq. III.52, giving rise to more noisy results when calculating the estimators.
In Fig. III.26 a) an ensemble-averaged variance σ2

Δr,E(t) is plotted and noise is
clearly visible. In order to reduce noise,NS,E(t) is often increased by conducting
as many measurementsNM as possible.

The counterpart to ensemble averaging is the average over time or starting
times t0. Instead of defining one specific t0, all points in time during a measure-
ment, except for the last one, can serve as it. The amount of samples then reads:

NS,T(t) = NΔt(ΔtL, Δt, Δtmin) . (III.54)

And the self part of the van Hove function becomes:

Gs,T(Δr, Δt) = 1
NΔt

(
NΔt

∑
t0

δ[Δr − (r(t0 + Δt) − r(t0))]) . (III.55)

Compared to Eq. III.21, only the average over different starting times t0 is left.
That also means Eq. III.55 is used with one particle trajectory only. To better
illustrate the time average (TA)—marked with an index T—it is depicted for an
averaged quantity at lag time Δt1 in Fig. III.25. Similar to Fig. III.24 time evolu-
tion is visualised with a colour gradient and the particle trajectory is called PT1.
When averaging in time each trajectory is chopped intomany equally spaced in-
tervals of a specific size Δt1. Each of them has an individual starting point t0 but
might overlap, resulting in intervals that are not statistically independent. Sub-
sequently, all displacements obtained from the starting and end point of each
interval are averaged. The resulting averaged quantities for Δt1 represent a mix
of displacements measured at different absolute times t, indicated by a brown
colour in Fig. III.25. Thus the absolute time scale is lost and Δt1 represents a
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Figure III.25: Schematic for time averaging of a single particle trajectory marked as .
First, the trajectory is chopped into pieces according to a specific time interval ,
with each having an individual . Then these pieces are shifted to and averaged.
The result is a mix of same-sized intervals measured at different absolute times. Thus lag
time represents a relative time.
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Figure III.26: Examples for ensemble-averaged and time- and ensemble-averaged vari-
ances of particle displacements. In a) variances are shown for a system evolving in time.
As a consequence, σ2

Δr,E(t) differs from σ2
Δr,TE(Δt). In b) the same system studied at a later

time is shown. Then σ2
Δr,E(t) and σ2

Δr,TE(Δt) fall on top of each other.

ment of the parentheses in Eq. III.21, all displacements—for trajectory, particle,
and measurement—are in practice averaged simultaneously.

Eachmeasurement situation requires a specificwayof averagingdisplacements.
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In the work described in this thesis, all of the abovementioned average processes
were used, where EA and TEA data were used most. A comparison of the two
can be found in Fig. III.26. It shows σ2

Δr,E(t) and σ2
Δr,TE(Δt) for the same sys-

tem at two different points in time.The biggest differences between TE and TEA
are the size of sample populations and the time scale. The former can be easily
seen in both graphs of Fig. III.26: while σ2

Δr,E(t) (black solid line) happens to be
noisy, σ2

Δr,TE(Δt) (red dashed line) is found to be very smooth in both situations.
The difference in time scale can be recognised when comparing trends of both
curves in both graphs. In Fig. III.26 a), EA andTEAdo not show the same result.
While σ2

Δr,E(t) shows the actual time evolution of the systemas it depends on ab-
solute times t, σ2

Δr,TE(Δt) shows a mix of the system in earlier and later times t.
The difference in both curves shows the time average is not equal to the ensem-
ble average which could be reasoned to show non-ergodicity of the system. As
mentioned in Sec. III.4.1, ergodic systems behave according to

lim
ΔtL→∞

⟨Δr2⟩T(Δt) = ⟨Δr2⟩E(t) . (III.56)

In actual experiments however, observation times, tO , or often synonymously
trajectory lengths, ΔtL, cannot be infinitely long. Similarly, in practice, there is
no infinitely large ensemble over which trajectories can be averaged. The ergod-
icity of a system could only be determined for a limited time span and ensem-
ble size, which is, strictly speaking, not in accordance with the definition of er-
godicity. Therefore, in this thesis, a system showing deviating results for EA and
TEA at one point in time and coinciding results at a later point (or the other way
around) is called evolving. The time in which it evolves is then about the order
of the trajectory lengths, ΔtL. Figure III.26 b) shows the same system shown in
Fig. III.26 a) for a later point in time. At that moment both curves fall on top
of each other, showing exactly the same trend. That means it does not matter,
whether absolute or relative times are studied. When both averaging procedures
lead to the same behaviour before deviating in a), it can be inferred that the ob-
served system evolved in time. For a system of particles diffusing in a static po-
tential landscape similar to the ones studied here, this evolution can be thought
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of as relaxation. There are sources where ergodicity parameters are introduced as
a means of quantifying how far a system is from being ergodic at a specific point
in time using σ2

Δr,E(t), σ2
Δr,T(Δt), and σ2

Δr,TE(Δt) [88, 190, 201].
From these observations, it is clear that TEA should be used cautiously. When

TEA gives results similar to EA, then TEA is always preferred as its results suffer
from a lot less noise. However, when evolving systems are studied, EA should be
given preference overTEA, since time averaging blurs the time scale. Sometimes,
constraints of themeasured systemprevent ensemble averaging frombeingused.
That usually happens when only very few or even single particles can or are to be
studied [88, 131, 135, 190, 201, 243]. In these situations, TA or TEA are the only
possibilities left. When TA or TEA have to be used in evolving systems, compa-
rable results can only be obtained when measurement conditions are kept con-
stant. Systems should be measured in the same time window in their evolution.
Changing the size ofΔtL or the stage of evolution atwhich they aremeasured can
change the results to a large degree whenTAor TEA is used [190]. An additional
problem occurring when single trajectories are analysed arises due to the depen-
dence of samples when using TA. Especially when Δt gets close to ΔtL, averaged
samples are highly statistically correlated as the calculated displacements come
from trajectory intervals that overlap to a large extent. As a consequence, esti-
mators introduced in this chapter highly underestimate actual results, yielding
unusable data for large Δt. Thus when analysing single particle trajectories, ΔtL
often has to be one or more orders of magnitude higher than the largest Δt for
which trajectories are analysed.

4.7 Validation of Distribution Describing Quantities

Now that all the quantities used to analyse the particle dynamics have been
introduced, their validity is tested on the basis of two examples. Both originate
from a situation recurring in this thesis: Brownian particles subject to a drag ve-
locity and an external potential at the same time. As a result,Gs(Δx, Δt) deviates
from the case of pure Brownianmotion, where it resembles a Gaussian function.
In Fig. III.27 a), the values of ⟨Δx⟩, σ2

Δx , γ1, and γα are telling. The mean gives a
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Figure III.27: Two examples of Gs(Δx) for Brownian particles being exposed to two differ-
ent external potentials and drifts for Δt = 10 s.17Mean, variance, skewness, and normalised
excess kurtosis are either marked in the graph or given numerically. In a), Gs(Δx) is well
described by given quantities. In b), quantities like ⟨Δx⟩ and σ2

Δx can lead to false conclu-
sions.

good indicationofwhereGs(Δx) is situated andσΔx
of howbroad it is. The skew-

17Both measurements can be found in Sec. VI.



4. Quanitifying Colloidal Dynamics | 131

ness γ1 is calculated to be 0.2. The small positive value indicates a slightly more
pronounced tail on the right-hand side ofGs(Δx) which can be found exactly in
thatmanner. Thenormalised excess kurtosis γα is slightly negative and thus indi-
cates small tails or flat-toppedness of a distribution. While the tails ofGs(Δx) are
pretty similar to a Gaussian distribution, depicted as orange lines in Fig. III.27,
it is definitely more flat-topped than a Gaussian. The value calculated for γα re-
sembles just that. Consequently, for the situation resulting in Fig. III.27 a), parti-
cle dynamics can be mirrored very well by using given quantities. However, this
is not always the case. For the particle dynamics resulting in Fig. III.27 b), these
quantities can lead to wrong conclusions. It is the same example that was used
throughout this chapter and given in Fig. III.18. Itsmean is notwhere it would be
expected from looking atGs(Δx). Due to its bimodality and long tail, themedian
would be preferable to ⟨Δx⟩. Additionally, variance σ2

Δx indicates a much higher
spread in Gs(Δx) than actually observed in the data, which can be an indication
for bimodality, but only if it is expected. Compared to these quantities, γ1 is rela-
tively telling. It is calculated to be negative and therefore suggests a strong tail left
of ⟨Δx⟩, resembling the shape ofGs(Δx) in Fig. III.27 b). The slightly positive γα
on the other hand is rather small considering the aforementioned tail. This is due
to bimodality leading to a large σ2

Δx in the denominator of γα .
To summarise, thequantities introduced in this chapter—mean⟨Δx⟩(Δt), vari-

anceσ2
Δx(Δt), skewnessγ1(Δt), andnormalisedexcesskurtosisγα(Δt)—aremostly

reliable when it comes to illustrating the time-dependency of Gs(r, Δt) of col-
loidal particles and thus their dynamics. However, each of these quantities on
their own are poor indicators of the distributional shape ofGs(r, Δt) [237]. Con-
sequently,whenstrongdeviations fromBrownianbehaviour—suchasmultimodal
distributions, frequentoutliers, or long tails—cannotbegenerally ruledout,Gs(r, Δt)
itself should also be considered before interpreting results.

4.8 The First-Passage Time Distribution

The counterpart to the self-part of the van Hove function,Gs(Δr, Δt), in time
is the first-passage time distribution,F(Δt, Δr). WhileGs(Δr, Δt) describes the
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probability of a particle moving a distance Δr in a specific time Δt, F(Δt, Δr)
estimates a probability distribution function for the time a particle needs to over-
come a specific distance, F̂(Δt, Δr). As only one-dimensional first-passage time
distributions are discussed in this thesis, considerations are onlymade for onedi-
mension, x, in the following. Generally, F̂(Δt, Δx) can be defined as the particle
flux, Jx(Δx′, Δt), at a certain position, Δx, (cf. Eq II.6):

F̂(Δt, Δx) = Jx(Δx′, Δt) = −D
𝜕P̂(Δx′, Δt)

𝜕x |
Δx′=Δx

, (III.57)

where P̂(Δx′, Δt) is a particle displacement probability density function. There
are several ways of defining boundary conditions for the first-passage time calcu-
lation, such as semi-infinite or finite systems and different absorbing or reflect-
ing boundaries [87]. Here, we assume a semi-infinite system with an absorbing
boundary atΔx′ = Δx > 0, so that−∞ < Δx′ ≤ Δx. WhenaBrownianparticle
is placed at Δx′ = 0 inside this system at Δt = 0, the corresponding P̂(Δx′, Δt)
can be determined with the aid of the image method [87]:

P̂(Δx′, Δt) = 1

√4πDΔt
[−exp{−

(Δx′ − 2Δx)2

4DΔt
}

+exp{−
Δx′2

4DΔt
}] .

(III.58)

Togetherwith Eq. III.57 this leads to the first-passage time distribution for Brow-
nian particles in one dimension,

F̂B(Δt, Δx) = Δx
√4πDΔt3

exp{−
Δx2

4DΔt
} . (III.59)

This type of function can also be called a Lévy distribution [244] and is shown as
the blue line in Fig. III.28. For large times, F̂B(Δt, Δx) ∝ Δt−3/2. This type of
long-time behaviourmeans that themean first-passage time for a Brownian par-
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Figure III.28: First-passage time distributions for Brownian motion and Brownian motion
with drift. Blue and orange lines represent Eqs. III.59 and III.60, respectively. Correspond-
ing symbols mark experimental results obtained according to Eq. III.61 for the two cases.

ticle in a semi-infinite system is infinite [87]. Theprobability of aparticle reaching
the absorbing boundary is however equal to one [87].

In a similar fashion, F̂(Δt, Δx) for a particle undergoing Brownian motion
drifting with velocity, vD, can be determined as [87]:

F̂D(Δt, Δx) = Δx
√4πDΔt3

exp{−
(Δx − vDΔt)2

4DΔt
} . (III.60)

It is also referred to as the inverseGaussian (orWald) distribution function [245]
and can be seen in Fig. III.28 as an orange line. It decays exponentially for large
times and has a finite mean, namely ⟨Δt⟩(Δx) = Δx/vD.

In order to calculateF(Δt, Δx) in a videomicroscopy experiment, the follow-
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ing equations can be used:

F(Δt, Δx) = 1
Nt

⎛⎜
⎝

NM

∑
j=1

NP,j

∑
i=1

NΔx,i

∑
x0

δ[Δt − (tji(x0 + Δx) − tji(x0))]⎞⎟
⎠

, (III.61)

where

Nt(Δx) =
NM

∑
j=1

NP,j(Δx)

∑
i=1

NΔx,i(ΔxL,i, Δx, Δxmin) . (III.62)

These equations are analogous to Eqs. III.21 and III.22, except for being in the
time instead of the spatial domain. Consequently, NΔx,i(ΔxL,i, Δx, Δxmin) rep-
resents an integer amount of spatial steps, Δx, that fits into the spatial length of
a trajectory, ΔxL,i , while keeping into account a minimum step length, Δxmin,
which is defined by the resolution of the used setup. However, in practice, mea-
sured quantities are only quantised in time—through the periodic capture of an
image—not in space. Thus Eq. III.61 is adapted for practical usage, so that each
time a particle covers a distance Δx or more, time Δt is counted. This is done for
all particle positions inside a trajectory, x0, all particles in ameasurement,NP and
all measurements, NM. Blue and orange symbols in Fig. III.28 showF(Δt, Δx)
obtained experimentally by using Eq. III.61 for particles undergoing Brownian
motion and Brownian motion with an additional drift, respectively. Both agree
well with their corresponding F̂(Δt, Δx), which are defined by Eqs. III.59 and
III.60, except for largeΔt. For long times, finite size effects lead to an exponential
decay ofF(Δt, Δx) [87, 246].



IV Colloids Quenched by a

One-Dimensional Random

Potential

D iffusion in one-dimensional random potentials has been central to several
theoretical [247, 248] as well as experimental and simulation studies [131,

227, 249]. Most of them concern the intermediate and long-time reaction of
colloidal particles to such potentials. In contrast, the following chapter focusses
on the short-time behaviour in a non-equilibrium situation. Particles are ran-
domly distributed before they are quenched by a random potential. The process
of quenching, i.e. the immediate impact of the potential on the particles, is ex-
amined. Using the SLM setup, a light field consisting of rings with an inherent
random pattern (cf. Sec. III.2.1.2) is exerted on dilute samples as described in
Sec. III.1.

One-dimensional randompotentials similar to that usedhere are encountered
inmodelsofproteindiffusiononDNAstrands [35, 250]or conducting solids [251,
252]. Theunderlyingprocesses are not always fully understood, especially in bio-
logical environments. Thus, a closer look at the short-time dynamics should give
further insight.

135
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1 Colloidal Dynamics in a Static

One-Dimensional Random Potential

Before analysing the short-time non-equilibrium dynamics of colloidal par-
ticles in a one-dimensional random potential, the general response of colloids
to such a potential is of interest. Here, previous results [131, 221] are discussed.
Thesewereobtainedusing the SLMsetup (Sec. III.2.1). Colloidal dynamics along
the azimuthal direction of the ring was obtained for particles with R = 1.4 µm
dispersed in D2O similar to the system described in Sec. III.1. Heavy water was
chosenas thedispersionmediumsince theSLMsetupwasused (cf. Sec. III.2.1.1),
whiledispersionswerehighlydilute toobtain singleparticledynamics. Figure IV.1
shows time-dependent variances,σ2

Δs,TE(Δt), and corresponding anomalousdif-
fusion exponents, αD(Δt), diffusion coefficients,D(Δt), and non-Gaussian pa-
rameters, α2(Δt) for varying potential standard deviations, σU . In this context,
s is the one-dimensional azimuthal coordinate, i.e. the perimeter. Results are re-
plotted from [221], where symbols correspond to experiments [131] and lines to
simulations [249]. Variances are normalised by the particle radius R = 1.4 µm,
diffusion coefficients by the bulk diffusion coefficient,Db, and times by a hydro-
dynamic drag-corrected Brownian time, t∗B [131]. By using Boltzmann statis-
tics togetherwith particle residence times, the standard deviation of the potential
could be determined (cf. Sec. III.2.1.3), where larger σU correspond to larger lo-
cal forces imposed on the colloidal particles.

Particle motion inside a one-dimensional random potential is affected on dif-
ferent time scales. This is schematically depicted in Fig. IV.2. Independent of σU ,
the dynamics in Fig. IV.1 shows behaviour close to normal diffusion for small
times, Δt ≪ t∗B , withD(Δt) ≈ Db and α2(Δt) ≈ 0 indicating a Gaussian shape
ofGs,TE(Δs, Δt). Anomalous diffusion exponents at small times showαD(Δt) ≈
1. Brownian behaviour for short times stems from particles diffusing inside lo-
cal minima of the potential landscape, also called traps here. This is schemati-
cally indicated by dark grey arrows in Fig. IV.2. Inside these traps, colloids can
diffuse freely at short times. As these minima are of finite size, this behaviour
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Figure IV.1: Variances of the one-dimensional azimuthal displacements, Δs, normalised by
the particle radius, R, diffusion coefficients normalised by the bulk diffusion coefficient,
Db, anomalous diffusion coefficients and non-Gaussian parameters dependent on lag
time, Δt, normalised by a hydrodynamic drag-corrected Brownian time, t∗B , for varying
potential standard deviations, σU . Symbols correspond to experiments [131] while lines
are for simulations [249]. Replotted results published in Ref. [221].

changes when a particle reaches the flanks of a minimum, restricting their diffu-
sion (brown arrow in Fig. IV.2). As a result, motion starts to become transiently
subdiffusive forΔt ≈ t∗B . In Fig. IV.1, largeσU -dependent deviations fromBrow-
nianmotion in αD(Δt) andD(Δt) become apparent. The former drops down to
αD(Δt) ≈ 0.4 while the latter is reduced by almost two orders of magnitude for
the largest σU . The larger σU is, the stronger the dynamics deviates from Brown-
ianmotion, since, on average, flanks (or barriers) betweenminimabecome larger
for increasing σU . Flanks correspond to local forces, where Flm is the local max-
imum force a particle has to overcome to reach another local minimum. These
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Potential Landscape

Colloidal Particle

Time

Figure IV.2: Schematic of a particle diffusing in a one-dimensional random potential
landscape. Particles show different behaviour depending on the time scale. Differently
coloured arrows mark characteristic displacements for each time regime. Qualitative be-
haviour of relevant quantities (cf. Fig. IV.1) together with the corresponding time scales
are given at the bottom.

G
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cally determined by Zwanzig [247]:

D(t → ∞) = Db exp {−
σ2
U

k2
BT2 } . (IV.1)

Asparticlesbecomediffusive,σ2
Δs,TE(Δt) is increased relative to the tails inGs,TE(Δs, Δt)

and thus diminishes α2(Δt), which tends to zero for long times. Themechanism
is depictedby the red arrows inFig. IV.2. The timeparticles take to reach the long-
time diffusion was found to increase exponentially with σ2

U [227], since particles
have to surmount barriers instead of circumventing them inorder to becomedif-
fusive. This circumstance changeswhen it comes to diffusion in twodimensional
random potential landscapes, where particle have more degrees of freedom and
reach long-time diffusion earlier (cf. Sec. VI.1).

Particlesdiffusing inaone-dimensional randompotential cannotbedescribed
by models like the continuous time random walk or fractional Brownian mo-
tion, even though dynamics quantities such as the variance of the particle dis-
placements qualitatively look the same as the ones presented in Fig. IV.1. Nei-
ther waiting times in CTRW nor correlations in FBM are space dependent. The
one-dimensional randompotential describedhere, on the other hand, is spatially
heterogeneous. It does not feature any obstacles and thus cannot be explained
by obstructed motion either. It is conceivable however, that the dynamics in a
one-dimensional random potential could be explained by heterogeneous diffu-
sion processes, whereD = D(s). Minima and maxima of the random potential
would then correspond to low and high diffusivity regions respectively, with par-
ticles accumulating in low diffusivity regions [88], i.e. potential minima.

2 Theory and Simulations

This chapter contains experimental results which are compared to theory and
simulationsperformedbyMichael SchmiedebergandHartmutLöwen[253], hence
this section summarises the theoretical results and states the simulation param-
eters.
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When a one-dimensional colloidal system is quenched by a random poten-
tial, U(s), particles are exposed to an external force, FE(s(t)), where s(t), is the
time-dependent particle position. Additionally, they are subject to the randomly
fluctuating force due to Brownian motion, FB(t), with the moments:

⟨FB(t)⟩T = 0 and (IV.2)

⟨FB(t1)FB(t2)⟩T = 2kBTξ0 δ[t1 − t2] = 2D0ξ2
0 δ[t1 − t2] , (IV.3)

where ⟨ ⋅ ⟩T denotes an average over thermal noise. Equations IV.2 and IV.3 il-
lustrate that there is no net force acting on particles due to Brownianmotion and
there are no correlations between forces at two different times. The equation of
motion in one dimension then reads:

ξ0
𝜕s
𝜕t

= FE(s(t)) + FB(t) . (IV.4)

The acceleration termwas omitted as particles are considered to be overdamped,
i.e. viscous forces outweigh inertia [254]. For small displacements, FE(s(t)) can
be Taylor-expanded about s(t) = s(0) in Eq. IV.4. This yields:

ξ0
𝜕s
𝜕t

= FB(t) + FE(s(0)) + F′
E(s(0))(s(t) − s(0))

+ 1
2
F′′

E (s(0))(s(t) − s(0))2

+ 1
6
F′′′

E (s(0))(s(t) − s(0))3

+ 1
24

F′′′′
E (s(0))(s(t) − s(0))4 + … ,

(IV.5)

where an apostrophe stands for a spatial derivative. When Eq. IV.5 is truncated
after the second force term, i.e. all termswith F′′(s(0)) and higher are neglected,
the equation ofmotion for the analytically solvable Brownian oscillator is found.
The additional force terms can be treated by using linear pertubation theorywith
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respect to the Brownian oscillator. A small pertubation displacement is added
to the particle position found for the Brownian oscillator. This approach yields a
short-time expansion of the disorder-averagedmean square displacement [253]:

⟨s(t) − s(0)⟩T,U = ⟨Δs2⟩T,U

= 2D0t +
1
ξ2
0

⟨F2
E(s(0))⟩U t2

+ (4D0
3ξ0

⟨F2
E(s(0))⟩U

+ 7D0
3ξ0

⟨FE(s(0))F′′
E (s(0))⟩U) t3 +O(t4) ,

(IV.6)

where ⟨ ⋅ ⟩U denotes the average over the disorder of the potential U(s). The
random potential can be said to have a typical energy, EU , and the forces caused
by it a correlation length, lF , which yields1

⟨F2
E⟩U =

E2
U
l2F

, ⟨F′2
E ⟩U =

E2
U
l4F

and ⟨FEF′′
E ⟩U = −⟨F′2

E ⟩U , (IV.7)

with the correlation length of the forces caused by the potential:

l2F = ⟨F2
E⟩U

⟨F′2
E ⟩U

. (IV.8)

A characteristic time can then be defined by means of lF and reads

tF = l2F/2D0 . (IV.9)

The typical energy, EU , is defined by the second moment of FE and lF , but is
closely related to the standard deviation of the external potential, σU , introduced
in Sec. III.2.1.3. Hence, a normalised diffusion coefficient similar to Eq. III.35,

1The last part of Eq. IV.7 is valid for physically sensible potentials and follows from integration by
parts [253].
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D(t) = ⟨Δs2⟩T,U/t, can be derived:

D(t)
D0

= 1 + EU
4kBT

t
tF

−
EU

8kBT
t2

t2F
+O(t3) . (IV.10)

AsEq. IV.10approximates thediffusioncoefficientof a singleparticlequenched
by a randompotential energy landscape in onedimensionup to the secondorder
in time only, it is solely applicable for short times, t ≪ tF . In addition, Brown-
ian dynamics simulations [255] were conducted byMichael Schmiedeberg [253]
and are compared to the measurements in Sec. IV.4. All simulation results were
obtained by averaging over 100,000 non-interacting particles, whichwere placed
randomly before each run. The random potentials used for the simulations are
Gaussian-distributed and based on those used in Monte Carlo simulations per-
formed by Hanes et al. [249] (lines in Fig. IV.1). To be able to compare present
simulations with previous studies [249] a factor between σU , the standard devi-
ation of an external potential, and EU , the typical energy of a potential, arises:
σU = 4.405EU .

3 One-Dimensional Random Potentials for

Quenching

To realise an external one-dimensional random potential energy landscape, a
lightfieldwitha four-ringpattern—asdescribed inSecs. III.2.1.2 and III.2.1.3—was
created by means of the Gerchberg-Saxton algorithm and the SLM setup. Rings
were chosen to obtain periodic boundary conditions in the azimuthal direction
while constraining particle motion in radial direction (cf. Sec. III.2.1.3). As can
be seen in Fig. IV.3 a), the desired pattern,Ads

T , consisted of four rings, R0, R1, R2
and R3, centred about the zeroth order with radii,RT,0 = 256 px,RT,1 = 192 px,
RT,2 = 128pxandRT,3 = 64px,with awidthof3pxandan8-bit grey level of 255
onabackgroundwithgrey level 0. This translated toRr,0 ≈ 51µm,Rr,1 ≈ 38µm,
Rr,2 ≈ 26 µm andRr,3 ≈ 13 µm in the sample plane (Fig. IV.3 b)). As the diffrac-
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Figure IV.3: a) Desired pattern,Ads
T , used to create the light field shown in b). Radii of the

four rings, T, are given in the text. b) Micrograph of a four-ring pattern light field used
in this chapter. Radii of the four rings, r, are given in the text. c) Micrograph of a typical
sample, where the outermost ring, R0, with radius, r μm, is drawn as a dashed
white line. Additionally, axes relevant for the analysis of particle motion are marked as
white arrows.
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for Quench

Start

for 30 s

30 Hz

for 0.5 s

30 Hz

for 0.5 s

for 120 s

Figure IV.4: Sequence of light fields imposed on the colloidal system. It starts with the
four-ring pattern cycled at 30 different realisations per second for 30 seconds. Then, a
marker light field with a two-ring pattern is cycled at 30 Hz for 0.5 s. It indicates the start
of a static four-ring pattern period, which is used for quenching the colloidal system. After
120 s, the end of the quench is indicated by the marker again. To conclude, the cycled
four-ring pattern allows particles to rearrange before they are quenched again.
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place. As the marker consisted of only two rings, the used laser power was dis-
tributed into a smaller area, resulting in a higher intensity in the FOV. This fact
was useful for experiment analysis later on. To quench the colloidal system, one
of the 49 realisations of a four-ring pattern was used. Each sequence iteration
used a different realisation. It was imposed on the particles for 120 s before a
second marker signalled the end of quenching. A cycled four-ring pattern con-
cluded the sequence. It was used to let particles rearrange inside the ring before
they were quenched again.

4 Measuring the Dynamics

As the SLMsetupwas used, sampleswere prepared according to Sec. III.1with
D2O as the dispersion medium. Particles with R = 1.4 µm were used, which
formed a quasi-two-dimensional layer at the upper wall of the sample cell. Al-
though highly dilute, the particles tended to accumulate inside the light field dur-
ing ameasurement. Therefore, an IDL routinewas used to exclude particles from
analysis whose surfaces approached any distance less than R at any point during
ameasurement. A line fraction,φl ≈ 0.1, was obtained and colloidswere treated
as single particles.

Colloidal samples were quenched at different laser powers, 620 mW ≤ PL ≤
1.46 W with the sequence shown in Sec. IV.3. Each measurement was about one
hour long, resulting in about 24 quenches at 120 s. During that time, the field
of view was not changed and particle motion was recorded with 10 FPS, equiva-
lent to Δtmin = 0.1 s. For each PL, five to seven measurements were conducted,
summing up to more than 1000 particle trajectories for each laser power.

FromSec. III.2.1.1, it is known that in addition to particlemotion, stray light is
visible as greenhalos aroundparticleswhen theSLMsetup isused (cf. Fig. IV.3 c)).
Thus, captured colour images couldbe analysed separately via their red andgreen
channels. While the red channel contained all information about colloidal par-
ticles and their movement, the green channel only contained stray light. Since
marker light fields had a higher intensity about the centre of the field, the bright-
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ness of the green channel of each image could be analysed with IDL programs
to find the points in time where a quenching period started and ended. Subse-
quently, only red channels of images captured during the quenching period were
analysed further. The time was reset for each quenching period, resulting in tra-
jectory lengths ΔtL ≤ 120 s. In order to analyse the dynamics in the azimuthal
direction along R0, particle positions were transformed from Cartesian to polar
coordinates with the radial component, r, only being allowed to vary ±1.1 µm
about Rr,0. Together with r, the azimuthal coordinate, θ, was transformed to the
perimeter, s = r θ, as canbe seen inFig. IV.3 c). Trajectories of all quenchingperi-
ods and measurements for each PL were combined and analysed regarding their
dynamics in s with only ensemble averages being used. The use of ensemble av-
erages is necessary as the observed system is evolving in time during the quench.
In that case, time averages would wash out the dynamics (cf. Sec. III.4).

5 Dynamics of Colloids Quenched by a

One-Dimensional Random Potential

The diffusion coefficient, D(t), is the main quantity used to visualise the re-
action of colloidal particles to a quench by a random potential in one dimen-
sion. Figure IV.6 showsD(t) and the variance, σ2

Δs,E(t), for various values of PL

as symbols as well as corresponding simulation results as lines. To comparemea-
surements and simulations, measured time scales and diffusion coefficients are
normalised by the characteristic time, tF = l2F/2D0, andD0, respectively, where
D0 is the diffusion coefficient for free particles close to the wall of the sample cell
(cf. Sec. III.1). In the course of this process, tF , the correlation length of forces
due to the potential, lF , and σU are used as fitting parameters. The former two
are found to be tF = 0.42 s and lF = 0.23 µm, where lF is used to normalise
σ2
Δs,E(t) in Fig. IV.6 b). From tF and lF , D0 = 0.06 µm2/s is calculated, which

agrees with the values obtained for short-time diffusion inside a smoothed ring
pattern (cf. Fig. IV.4). With these values, goodagreementbetweenmeasurements
and simulations is observed. In order to verify this agreement, Fig. IV.5 showsPL
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of all measurements and the corresponding fitted σU of the simulations. Symbol
shapes and colours are consistent with those used in Fig. IV.6. They resemble a
linear dependence, as can be drawn from the linear fit through the origin indi-
cated by the grey line. This is expected for the used laser power and the result-
ing potential roughness (cf. Sec. III.2.1.3) and thus validates the fit. To ascertain
whether the value of lF is also reasonable, it is determined by analysing micro-
graphs of the used light field of the outer ring, I(s). It is convolved with the par-
ticle weight function,WP, to obtain IP(s) similar to Fig. III.6 b). As IP(s) should
resemble the potential, U(s), the first and second symmetric spatial derivatives
are calculatedwithMATLAB (TheMathWorks, Inc.) to obtain, IF(s) and I′

F(s) in
units of grey levels, respectively, which correspond to force FE and their deriva-
tives,F′

E. Values obtained for IF(s) and I′
F(s) are binned in histograms, which are

then fitted by a Gaussian to obtain their variances. The ratio of these variances
then yields lF (cf. Eq. IV.8)2. In Fig. IV.5 b) the result for this procedure using dif-
ferent bin sizes for histograms is shown. In total, an average over tenmicrographs
of different realisations of the four-ring pattern is used. The bin size utilised to
create the histograms does not play an important role. In general, Fig. IV.5 b)
shows that even this very crude method—using pictures of light fields and treat-
ing them as if they were actual potentials—results in values for lF similar to those
found by fitting the results. Therefore, both graphs presented in Fig. IV.5 corrob-
orate the validity of the fit used in Fig. IV.6.

A closer look at Fig. IV.6 a) reveals the overall dynamics of the quenched par-
ticles is similar for all used potential roughnesses: the diffusion coefficient first
rises quickly indicating superdiffusive behaviour and reaches amaximum,Dmax,
at t = tDmax

≈ 10 tF . It then decreases slowly showing subdiffusivity and does
not reachD0 within times t ≤ 50 tF shown here. Eventually,D(t) drops below
D0 for very long times similar to Fig. IV.1, which is not shown in Fig. IV.6 a) but
can be inferred from the levelling of σ2

Δs,E(t) for long times in Fig. IV.6 b). The
characteristic dynamic behaviour stems from randomly placed particles being

2In Eq. IV.8, second moments are used instead of variances. As the mean grey value of IP(s) can be
defined as the zero point of the corresponding virtual potential, variances and second moments
can be used interchangeably.
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Figure IV.5: Verification of the fit shown in Fig. IV.6. a) Symbols show laser Powers, PL,
of measured diffusion coefficients and standard deviation of potentials, σU , belonging to
their simulated counterparts for each fit. Symbol colours and shapes are the same as
in Fig. IV.6. The grey line corresponds to a linear fit through the origin. b) Correlation
lengths of the potential’s forces, lF , depending on the bin size used to determine them.
Results are obtained through analysis of micrographs taken of the light field creating the
potential. The dashed line corresponds to lF = 0.23 µm as determined by the fit in Fig. IV.6.

suddenly exposed to an external random potential. As initial particle positions
and features of the potential are not correlated, some particles are situated at po-
tential maxima. Hence, they are forced to move towards minima by the quench.
This potential-driven motion is faster than diffusion and thus manifests itself in
an increased D(t) and σ2

Δs,E(t) rising faster than t (dashed line in Fig. IV.6 b)).
Diffusivity reaches itsmaximum,Dmax, whenmost particles in thequenched col-
loidal system are put in motion and have not yet reached a local minimum. As
time proceeds, the amount of particles that have reached a minimum constantly
rises. As a result,D(t) begins to decline and, equivalently, σ2

Δs,E(t) starts to level
off. The more time elapses, the more particles reach a (local) minimum and get
trapped in it. A crossover from a quenched system showing enhanced diffusion
to the systemdescribed in Sec. IV.1, wheremotion is hindered by the external po-
tential, takes place. The reason for different short-time behaviours in the results
shownhere and those described in Sec. IV.1 lies in the differentways of averaging
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Figure IV.6: Diffusion coefficients, D(t), and variances, σ2
Δs,E(t), of measured (symbols)

and simulated (lines) colloidal particles quenched by one-dimensional random potentials
with different roughnesses, σU . Measured quantities were normalised in order to allow
for a comparison with the simulations.



150 | Chapter IV. Colloids Quenched by a One-Dimensional Random Potential

1 10
4

8

12

16

20

0 2 4 6 8
1.0

1.5

2.0

2.5

[ ] [ ]

a) b)

Figure IV.7: Simulation results (symbols) for the maximum diffusion coefficient, Dmax, in a)
and the time at which it occurs, tDmax , in b) depending on the roughness of the potential,
σU , with which particles are quenched. Orange lines correspond to linear fits. Note that
in b) a logarithmic time axis is used.

(cf. Sec. III.4.6).
The maximum value of the diffusion coefficient,Dmax, and the time at which

Dmax is reached, tDmax
, strongly depend on the σU imposed on the colloidal sys-

tem. In Fig. IV.7, simulated Dmax(σU ) and tDmax
(σU ) are given. A linear be-

haviour between Dmax(σU ) and σU is found (symbols in Fig. IV.7 a)) and veri-
fied by a linear fit (orange line). However, a non-linear relation is expected for
low σU , where the linear fit does not agree with the data, since Dmax = D0 for
σU = 0 kBT . A larger σU necessarily results in larger forces acting on particles.
These increased forces cause colloids to move faster, resulting in a higher Dmax.
In a similar fashion asDmax(σU ) increases, tDmax

(σU ) decreases for growing σU .
However, there is a logarithmic relationship between the two as a linear fit of the
logarithmically plotted tDmax

(σU ) (symbols) shows inFig. IV.7 b). LargerσU thus
do not only lead to larger Dmax but also result in an earlier occurrence thereof,
while the correlation length of the potential is by design not affected by a change
in σU .

To gain insight into the kind of super- and subdiffusivity indicated by D(t)
in Fig. IV.6, the anomalous diffusion exponent, αD(t), and normalised excess
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Figure IV.8: Measured time-dependent anomalous diffusion exponents, αD, in a) and
normalised excess kurtoses, γα, in b) for varying laser powers, PL.

kurtosis, γα(t), are shown in Figs. IV.8 a) and b) for measurements with varying
PL.3 Two trends can be recognised in Fig. IV.8 a): a larger potential roughness
results in more pronounced superdiffusive behaviour for short times and more
pronounced subdiffusivity for longer times. The latter was already discussed in
Sec. IV.1. The former is a result of the increased forces acting on the particles—
similar to theexplanationgiven forD(t). However, superdiffusivevaluesofαD(t)
range from 1.05 to 1.25 and show thus a rather small deviation from Brownian
behaviour compared to those found inSecs. IV.1 andVI.4. Thenormalised excess
kurtosis on the other hand displays remarkable behaviour. It drops below zero at
times 10 tF ≲ t ≲ 30 tF before obtaining positive values and showing the same
increasing trend at longer times (not shown here) that can be found in Fig. IV.1.4

Thisdrop inγα(t) shows that shoulders in thecorrespondingvan-Hove function,
Gs,E(Δs, t), are pronounced compared to aGaussian function. Togetherwith the
increase in D(t) and the superdiffusive αD(t), this indicates particle displace-
ments, Δs, are enhanced by the initial potential quench, especially for interme-
diate ranges where the shoulders of Gs,E(Δs, t) lie. For longer times, the quench

3The corresponding σU can be found in the legend of Fig. IV.6.
4As γα(t) is normalised, it can be compared to α2(t). Time scales are however different as tF ≠ t∗B

and time- and ensemble-averaged data are utilised in Fig. IV.1.
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results in trapped particles and αD(t) drops while γα(t) rises since long tails in
Gs,E(Δs, t) develop as explained in Sec. IV.1. The crossover from a superdiffusive
system caused by the external random potential quench to a subdiffusive system
due to the same potential for later times thus also manifests itself in αD(t) and
γα(t). The higher σU , the more pronounced it it is.

6 Discussion

Upon closer inspection, it can be recognised that the distinct short-time be-
haviour of particles quenched by a random potential landscape, is not seen for
the data presented in Fig. IV.1. The measurement conditions are generally the
same for the study in Sec. IV.1 and the one presented here and thus should lead to
similar results. However, observation times, tO , and data analysis are fundamen-
tally different. While Hanes et al. [131] focussed on long measurements and ac-
cordingly the long-time dynamics, tO was here chosen to be much shorter. This
allows formore repetitions of the experiment and thus using ensemble-averaged
quantities instead of the time- and ensemble-averaged ones that were used in
Ref. [131]. The difference in data analysis is the main reason for the behaviour
shown in Fig. IV.6 not being present in Fig. IV.1: the time average in Ref. [131]
covers up any reaction of the particles to the initial quench by the random po-
tential (cf. Sec. III.4.6). An additional conclusion that can be drawn from the
comparison of Fig. IV.6 and [131] is that the particle reaction to the quench is a
onetime event. As ensemble-averaged and time- and ensemble-averaged quan-
tities do not agree, the system evolves. After the initial quench, resulting in su-
perdiffusion for short times, the system evolves so that the short time behaviour
becomes diffusive as can be drawn from the time averaged quantities in Fig. IV.1.

Superdiffusive short-timemotion togetherwith intermediate subdiffusionand
long-time diffusion are seen in the same form for simulated random, periodic
and quasicrystalline potentials [227, 257]. Both studies show similar behaviour
in σ2

Δs,E(t) and αD(t) to that found here. Furthermore, negative values for γα(t)
at short times are also found in a simulation study related to the results discussed
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in Sec. IV.1 [249] confirming that a broadening of the shoulders of Gs,E(Δs, t)
takes place when particles are quenched by a random potential.

Superdiffusive motion with a subsequent decrease of the diffusion coefficient
is not only seen for a quench of colloidal particles by a random potential but also
for awide range of other applications: Bodrova et al. [258] investigatedBrownian
motion in a granular gas in a homogeneous cooling state, whichwas not only su-
perdiffusive but superballistic before it became subdiffusive. Start-up shear of
concentrated colloidal hard spheres also results in superdiffusive behaviour as
Koumakis et al. reported [259]. After a subdiffusive regime, particles show su-
perdiffusion and eventually normal diffusion. A very similar time dependence
of the dynamics to the one found here is presented by Spiechowicz et al.[260] for
Brownian particles moving in a periodic potential: first the dynamics is super-
diffusive, then subdiffusive and in the end diffusive. These regimes are exhibited
even though particles are driven. A similar observation is made in Sec. VI for
particles dragged through a random two-dimensional potential. Furthermore,
Najafi et al. [261] showed that quenching carriers in semiconductors with a laser
pulse leads to superdiffusionbefore thediffusioncoefficientdecreases andreaches
its room temperature value.

Besides the superdiffusive short-timebehaviour followedby subdiffusion, there
is an additional interesting feature seen in Fig. IV.6 b), namely that all curves
seem to have a common point of intersection found when the diffusion coef-
ficient of the system, D(t) is on the verge of dropping below D0 at t ≈ 55 tF ,
where σ2

Δs,E(55 tF) ≈ 60 l2F . Similar behaviour is found for simulations on par-
ticles in a comparable one-dimensional random potential focussing on longer
times [227] as well as in periodic and quasicrystalline potential landscapes [257].
However, none of the cited sources come up with an explanation for this distinct
feature. As it is not only seen in simulations but also in the measurements pre-
sented here, it is unlikely to be a computational artefact. Thepoint of intersection
coincides with particle diffusion dropping belowD0. It seems to be a character-
istic time and length, at which particles settle inside potential minima after they
have undergone the initial quench. Just like the point of intersection, the cor-
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relation length of the potential, lU ≈ R (cf. Sec. III.2.1.3), is independent of
the roughness, σU . Additionally, it corresponds to the average distance of two
minima insideU(s). Comparing the point of intersectionwith lU andBrownian
time, tB = R2/2D0 ≈ l2U/2D0, which also happens to be about the characteristic
time inwhich aparticle covers l2U , reveals that the intersection lies at≈ 1.5 tB and
≈ 1.6 l2U . It is thus close to the characteristic time and length scale of the exter-
nal random potential and might be related to it. Volpe et al. [136] used a similar
approach to explain the dynamics in an external potential by introducing a char-
acteristic relaxation time, tV. However, tV ∝ 1/⟨FE⟩, where ⟨FE⟩ is the mean of
the force exerted on the particles by the external potential. Therefore, tV is also
inversely proportional to the roughness of the external potential, which does not
agree with the idea of treating tB as a relaxation time. However, tDmax

is inversely
proportional to σU , albeit logarithmically, and might be regarded as a relaxation
time inside the random potential.

As stated in the introduction of this chapter, a protein diffusing along a DNA
strand can also bemodelled by a colloidal particle diffusing in a one-dimensional
random energy landscape [35, 250]. It is proposed that a protein changes be-
tween a search mode, where the potential caused by the different base pairs are
rather narrow and small, and a recognition mode, where the protein is exposed
to a larger and broader random potential. A change from search to recognition
mode should thus be equivalent to a sudden increase of σU . This should result in
a temporarily increased diffusion coefficient as found here and may decrease the
time the protein needs to find its binding site during the next recognition step.



V Colloids in a Periodically Varying

One-Dimensional Random

Potential

T hemotion of colloids in time-dependent potentials has been studied inten-
sively in recent years. Examples include the discovery ofmechanisms such

as stochastic resonance [262], relevant to climate change, or resonance activa-
tion [263], found in biological environments, the theoretical treatment of diffu-
sion inside switching periodic potentials [264] or the experimental realisation of
feedback-controlled ratchets [265]. In this chapter, an additional aspect, namely
particle diffusion inside a random potential varying between uncorrelated re-
alisations, is discussed. Theory and experiments are based on Sec. IV but in-
stead of quenching colloidal particles only once like in the previous chapter, the
one-dimensional random potential was periodically varied. Dilute samples (cf.
Sec. III.1)were exerted todifferent variationperiods,which lead toperiod-dependent
behaviour exhibiting enhanced diffusion.

Besides the wide range of colloidal studies, several applications of motion in
time-dependent potentials in other scientific fields can be found. Dynamical
polymer films can control the motion of nanospheres [266], cancer growth is
affected by the frequency of the periodic treatment [267] and random forces of
molecular motors in cells enhance intracellular movement [243]. Additionally,
Josephson tunnel junctions can be described by a washboard potential, where
temperature fluctuations lead to higher escape rates [268]. However, most of the
referenced literature focusses on periodic potentials. Here, the effect of varying
random potentials on particle diffusion will be analysed.

155
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1 Theory and Simulations

Similar to the approach in Sec. IV, theory and simulations concerning a vary-
ing randompotentialweredevelopedbyHartmutLöwenandMichael Schmiede-
berg [253] and are compared to measurements in this chapter. The following is
based on Sec. IV.2 and continues the argumentation given there.

Particles are again quenched by a random potential, U(s), like the one de-
scribed in Sec. III.2.1.3. After a period, τ, particles are abruptly exposed to a dif-
ferent realisation of the random potential while the characteristics of U(s) are
kept the same. If different realisations ofU(s) are changed in a Markovian way,
the ensemble-averaged variance of particle displacements reads:1

σ2
Δs,E(t) = { σ2

Δs,E(t) for 0 ≤ t ≤ τ

⌊ t
τ ⌋ σ2

Δs,E(τ) + σ2
Δs,E (t − ⌊ t

τ ⌋) for t > τ .
(V.1)

For times smaller than τ, particle dynamics are expected to follow the behaviour
found for short times as described in Sec. IV. A periodic change of the random
potential leads to a recurring quench and thus to a recurrence of the short-time
behaviour. This is illustrated by brackets, ⌊ ⋅ ⌋, which stand for the floor func-
tion rounding a real number to its next smallest integer value. So, for t = 2.4 τ,
a variance of σ2

Δs,E(2.4 τ) = 2 σ2
Δs,E(τ) + σ2

Δs,E(0.4 τ) is expected. Figure V.1 a)
schematicallydepicts thisbehaviourof avariance curve, showingperiodicgrowth
of σ2

Δs,E(t).
Accordingly, the diffusion coefficient,D(t) = σ2

Δs,E(t)/2t, can be deduced as:

D(t) = { D(t) for 0 ≤ t ≤ τ
1
2t ⌊ t

τ ⌋ σ2
Δs,E(τ) + 1

2t σ
2
Δs,E (t − ⌊ t

τ ⌋) for t > τ .
(V.2)

In Fig. V.1 b), D(t) is schematically shown for two periods. It starts at D0 and
behaves similar to the short-time diffusion for an initial quench (Sec. IV). Its be-
haviour alters when the external potential is changed for the first time at t = τ.

1A Markov chain is a stochastic process, where future states are independent of past states [269].
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a) b)

Figure V.1: Schematic illustration of Eqs. V.1 and V.2 in a) and b) drawn as solid lines,
respectively. Times at which the external potential is changed, iτ, and long-time diffusion
coefficient, Dl, are marked as dashed lines.

Insteadof periodic growth as seen forσ2
Δs,E(t), the diffusion coefficient showsos-

cillatory traits as time proceeds. This behaviour results in a long-time diffusion
coefficientDl = σ2

Δs,E(τ)/2τ.
Similar to the simulations presented in Sec. IV, Brownian dynamics simula-

tionswere conductedusing aGaussian-distributed potential [253]. Thepotential
roughnesswaskept constantwithσU = 4.05kBT (cf. Fig. IV.6),while realisations
of U(s) were changed in a Markovian way for different periods, τ. Results for
each τ were averaged over 100,000 non-interacting particles, which were placed
randomly before the start of each simulation run.

2 Measuring the Dynamics

As in Sec. IV, the SLM setup was used to impose a one-dimensional random
energy landscape onto colloids. Thus, samples were prepared with D2O as the
dispersionmediumandparticleswithR = 1.4µmformingquasi-two-dimensional
layers at theupperwall of the sample cell (cf. Sec. III.1). Therandomone-dimensional
potentialwas againcreatedbyusing the four-ringpatterndiscussed inSecs. III.2.1.2,
III.2.1.3 and IV.3while only taking into account particles thatwere situated in the
outermost ring, R0. The laser power,PL, was kept at 1010mW, corresponding to
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σU = 4.05 kBT (cf. Sec. IV). With the aid of an IDL routine, particles whose sur-
faces come closer to each other thanRwere excluded from analysis, leading to an
average line fraction φl = 0.08. Hence, colloids are treated as single particles.

To realise a time-varying one-dimensional randompotential, a sequence sim-
ilar to the one presented in Fig. IV.4 was used. It started with the same two-ring
pattern as a marker for 30 seconds. Then, the four-ring pattern was varied with
a defined period, 0.2 s ≤ τ ≤ 100 s, for tO = 900 s. During this time, the light
field was switched to a different independent realisation after τ by an IDL rou-
tine, which sent a signal to the SLM. The Gerchberg-Saxton algorithm was used
to calculate 100 independent realisations with each having a different random
phase, Φ(0), as input (cf. Fig. II.18). After the varying potential had been applied
for 900 seconds, a secondmarker indicated the end of ameasurement for 30 sec-
onds. During the whole sequence, particle motion was recorded with 10 FPS,
equivalent to Δtmin = 0.1 s. After a sequence, the FOV was moved to a different
spot inside the sample cell to start a newmeasurement. At least 25measurements
were conducted for each τ. This summedup to aminimumof 1500particles over
which quantities were averaged.

With the aid of the markers used in the sequence, only particle motion ob-
served during the time the varying four-ring pattern light field was imposed on
the particles, tO , was analysed. Subsequently, particle trajectories were cut ac-
cording to the starting point of a period as is schematically depicted in Fig. V.2. If
a trajectory started at the beginning of τ it would not be modified at all. If a tra-
jectory started somewhere in the middle of a period, however, it was truncated
so that its starting point coincided with the beginning of the next period, i.e. the
next realisation of the light field. Then this trajectory was shifted to the very start
of the measurement. That way, all trajectories began at the start of a measure-
ment without affecting their time line with respect to the varying external poten-
tial. This could be done since all potential realisations were independent and the
sample was recurringly quenched (cf. Sec. V.1). Subsequently, all preprocessed
trajectories were analysed to obtain ensemble-averaged dynamics quantities us-
ing perimeter s introduced in Fig. IV.3.



3. Dynamics of Colloids in Periodically Varying One-Dimensional Potentials | 159

Truncate Shift

Trajectories

Figure V.2: Schematic illustration of the handling of trajectories. They are truncated so
that they start at the beginning of a period, . Then they are shifted to make all trajectories
start at .

3 Dynamics of Colloids in Periodically Varying
One-Dimensional Potentials
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theory. As results were only scaled, not fitted, this corroborates the reliability of
the used system and setup as well as the values obtained for tF andD0.

In Fig. V.3, diffusion coefficients are plotted in two different ways to show dif-
ferent aspects of particle dynamics in a varying one-dimensional potential. First,
Figs. V.3 a) and b) show that diffusion for intermediate and long times can be en-
hanced for certain values of τ. As a benchmark, the diffusion coefficientD(t) =
Dτ=∞(t) for a system quenched once, i.e. τ → ∞, with the same σU is plotted
with a grey line and symbols. For τ ≠ ∞,D(t) follows the behaviour ofDτ=∞(t)
for short times. When the realisation of the potential is changed at t = τ, D(t)
starts oscillating. These oscillations result in an increased long-time diffusion co-
efficient,Dl(τ), compared toDτ=∞(t ≫ tF). When τ is decreased, oscillations
ofD(t) become less pronounced butD(t) itself increases. This trend reaches its
peak at τ = τ0 = 12 tF , where τ0 is referred to as the optimal period. FigureV.3 b)
shows that the behaviour is partly reversed for τ < τ0: a further decrease of τ
results in shallower oscillations. The diffusion coefficient, however, does not rise
further but successively decreases andoscillates aroundD(t) ≈ D0 for the small-
est τ.

In Fig. V.3 c), results shown in Figs. V.3 a) and b) are normalised by τ instead
of tF . It indicates that D(t) shows a rather constant behaviour for its values at
the points in time where the external potential is changed, i.e. at t = 1 … 5 τ.
Thus,D5(τ) is introduced as a surrogate for the inaccessibleDl(τ) here. It is the
averaged diffusion coefficient of the first five periods:

D5(τ) = 1
5

5
∑
i=1

D(iτ) . (V.3)

Figure V.4 showsD5(τ) for measurements and simulations. The error bars rep-
resent the standard deviation for averaging the first fiveD(iτ) values. Bothmea-
surements andsimulationsagreewell andshowaresonancecurve-likebehaviour.
This can be explained by the interplay of particle diffusion and periodic change
ofU(s): for large τ, the diffusion coefficientD5(τ) is relatively low. At the begin-
ning of eachmeasurement, particles are randomly distributed and dynamics fol-
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Figure V.3: Time-dependent diffusion coefficients, D(t), of measurements (symbols), sim-
ulations (lines) and theory (connected black symbols) for colloidal particles in a one-
dimensional random potential varied with period τ, normalised by D0. In a) and b), time
is normalised by tF . Results are spread over two graphs for clarity. The same results are
shown in c) with time normalised by τ.
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Figure V.4: Period-dependent diffusion coefficients at the first five changes of the external
potential, D5(τ), and time-dependent diffusion coefficient of a once-quenched system,
Dτ=∞(t). Results of D5(τ) are shown for measurements and simulations, whereas only
the measured Dτ=∞(t) is shown. Symbol shapes and colours correspond to those used
in Fig. V.3.

lowDτ=∞(t) as colloids relax into potentialminima after the quench. At t = τ, a
new realisation ofU(s) is introduced. In relation to this new realisation, particles
are again randomly distributed and quenched since the minima of the previous
realisation are not correlated with those of the new realisation. Therefore, D(t)
temporarily increasesbeforedropping to thevalue it hadalready reachedat t = τ.
As τ is large, particles relax into minima, i.e. their diffusion becomes hindered
after they have been sped up by the quench. When τ is decreases, the time dur-
ing whicht particles can react to the external potential also decreases. Diffusion
inside potential minima is reduced in time, thus, D(t) and equivalently D5(τ)
exhibit larger values. This development displays a climax at the optimal period,
τ0. At τ = τ0, diffusion is hindered the least at the potential minima: particles
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react to the external potential resulting in enhanced diffusion like they do when
τ > τ0. Once their fastest diffusion is reached, however, a new realisationofU(s)
is introduced, quenching the particles again. No relaxation process at the poten-
tial minima occurs for the majority of particles as they do not reach it before the
next realisation is introduced. This leads to a maximum inD5(τ) with diffusion
more than 1.5 times faster than D0. The optimal enhancement of diffusion, i.e.
when τ = τ0, should be related to the time particles need to cover the correlation
length of the potential, lU . A larger lU should lead to smaller forces exerted on
the particles and thus a larger τ0.3 For τ < τ0, the time particles are allowed to re-
act toU is smaller than the optimal time τ0. Potential minima can only be partly
exploited by particles to speed up their diffusion. Thus, the smaller τ becomes,
the less pronounced the effect of the quench on the particles. For the smallest
τ = 0.47 tF , the potential changes so fast that particles do not react to it at all. As
a consequence, normal diffusion withD(t) = D0 is found.

Summing up the behaviour of D(t), it can be seen in Fig. V.3 that diffusion
coefficients first followDτ=∞(t) before they develop horizontal branches at t =
τ, which then define Dl(τ). This observation is in accordance with Eq. V.2 and
leads to the conclusion thatDl(τ) should behave likeDτ=∞(t). Indeed, Fig. V.4
shows that both quantities—D5(τ), in place of Dl(τ), plotted as a blue line and
Dτ=∞(t) plotted in red—show the same behaviour except for very small τ. Thus,
measurements and simulations fully confirm the theory presented in Sec. V.1.

The second aspect, besides the long-time behaviour of D(t), is its oscillatory
behaviour. A closer look at Fig. V.3 c) indicates differently shaped diffusion coef-
ficient curves for τ > τ0 and for τ < τ0. While oscillations inD(t) are concave
for large τ, exhibiting their localminima atmultiples of τ, small values of τ result
in convex oscillations with theirminimawithin each period. These two cases are
schematically illustrated in Fig. V.5 a). To quantise this qualitative observation,

3It is assumed that the light intensity is kept constant in that context.
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the first derivative of the normalised diffusion coefficient at t = τ, 𝜕D,τ , is used:

𝜕D,τ =
𝜕 D(t)

D0

𝜕 t
tF

|
|
||t=τ

. (V.4)

In practice, D(t)/D0 is linearly fitted in the interval τ ≤ t ≤ 1.1τ for each τ.
The slope is taken as 𝜕D,τ (Fig. V.5 a)) and the results can be seen in Fig. V.5 b).
For τ ≪ τ0, the derivative is zero. Oscillations are shallow as can be seen in
Fig. V.3. When τ approaches τ0, 𝜕D,τ becomes negative, thus indicating a convex
shape of oscillations. Derivatives are still negative at τ = τ0 but show a rising
trend and eventually become positive at τ ≈ 2.5τ0. For any period larger than
2.5τ0, 𝜕D,τ > 0 and thus concave oscillations are found. The reason for con-
vex and concave shapes ofD(t) lies in the situation in which particles find them-
selves just before the external potential is changed. It is schematically shown in
Fig. V.3 c): for τ < τ0, particle diffusion is in the course of being sped up by the
quench whenU(s) is changed (short red arrows). After the change, particles are
randomly distributed inside the new realisation of the potential. On average, this
leads to more particles being slowed down by the change of the potential than
sped up: particles are in the course of being driven by the potential before this
process is interrupted by the change of the potential realisation. This results in a
decrease of the diffusion coefficient andD(t)drops at everymultiple of τ leading
to a convex shape. The opposite is true for τ > τ0 as particles have time to react
to the change inU(s). The diffusion coefficient is temporarily enhanced (red ar-
rows) until particles relax in a potential minimum andD(t) drops (grey arrows).
When the realisation ofU(s) changes, most particles are trapped inside a mini-
mum. Thus the new realisation leads to an increase of the diffusion coefficient.
Based on the shape ofD(t) it can therefore be inferred whether the applied τ is
larger or smaller than τ0.

To conclude, the energetic input caused by the varying external potential is
considered. Figure V.6 a) shows the average energy gained by the particles due
to the change of U(s), ⟨ΔU⟩c(τ), and the corresponding power, ⟨ΔU⟩c/τ(τ).
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Figure V.5: Illustrations and calculations regarding the shape of for a varying period,
. a) Schematic illustration of different curve shapes of for and .
Additionally, the definition of the slope at , , is outlined. b) Period-dependent
calculated from simulated diffusion curves. c) Schematic illustration of various diffusive
behaviours of particles inside the varying external potential for and .
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They are calculated from simulations by comparing the energy of all particles be-
fore and after the potential change. To normalise, the typical energy of the ex-
ternal potential introduced in Sec. IV.2, EU = σU/4.405 = 0.92 kBT , is used.
The power is then defined by the normalised energy put into the system per nor-
malised period, τ/tF . Both quantities show monotonic behaviour. The energy
input caused by a change ofU(s) first rises ∝ τ (blue line) then starts to level off
when τ approaches τ0. For large periods, ⟨ΔU⟩c(τ) still rises but with a strongly
decreased rate. Accordingly, the power is constant for small τ. Since the energy
starts to level at around τ ≈ τ0, thepower starts todecrease. At largeτ, the almost
constant behaviour of energy causes a decrease in ⟨ΔU⟩c/τ(τ) that seems to ap-
proach an asymptotic slope ∝ τ−1. The reason for the behaviour of ⟨ΔU⟩c(τ)
and the ensuing shape of ⟨ΔU⟩c/τ(τ) again stems from the interplay of chang-
ing realisations ofU(s) and particle diffusion therein, as schematically shown in
Fig. V.5 c): for τ < τ0, the energy linearly rises with τ. Particles diffuse towards
thepotentialminimaduringτ. Themore time they are allowed todiffuse towards
minima, themore energy they gain whenU(s) is changed. This relation changes
at τ ≈ τ0. Most particles are on the verge of reaching potentialminimawithin τ0.
Thus, a larger τ does not necessarily result in a larger gain in energy. SinceU(s)
is a random potential, the transition from ⟨ΔU⟩c(τ) ∝ τ to ⟨ΔU⟩c(τ) ≈ const.
does not occur exactly at τ0 but extends over several orders ofmagnitude. As the
observedpower is deduced from ⟨ΔU⟩c(τ), its behaviour canbe explainedusing
the same logic.

From Figs. V.3 and V.6 a), it could be inferred that a change of the realisation
ofU(s) is most efficient whenD5(τ) is at its maximum and ⟨ΔU⟩c(τ) starts to
level, i.e. when τ = τ0. In order to check this, the efficiency parameterHc(τ) is
introduced and calculated for the simulations:

Hc(τ) = gained diffusion power
applied power due to change ofU(s)

= (D5(τ) − D0)ξ0/tF
⟨ΔU⟩c/τ(τ)

. (V.5)

In Fig. V.6 b), Hc(τ) obtained from simulations is plotted. For very small τ, the
efficiency is nearly zero indicating that there is no difference between Brownian
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Figure V.6: a) Period-dependent average energy gained by the particles with every
change of the external potential, ⟨ΔU⟩c(τ), and the corresponding power, ⟨ΔU⟩c/τ(τ).
b) Period-dependent efficiency parameter, Hc(τ), defined by Eq. V.5. Quantities are nor-
malised by the typical energy of U(s), EU and the characteristic time, tF .

motion and diffusion inside the varying potential. Large values of τ result in a
negative Hc due to D5(τ) lying below D0. Moreover, it shows that the highest
efficiency is obtained for τ ≈ τ0. However, the maximum ofHc(τ) lies slightly
above τ0. This might stem from the extended transition region in ⟨ΔU⟩c/τ(τ)
caused by the randomness ofU(s). Some particles might be trapped at the end
of each period when τ ≳ τ0, resulting in a diffusion coefficient sightly smaller
thanD5(τ0). However, a value of τ slightly larger than τ0 amounts to a relatively
strong decrease in ⟨ΔU⟩c/τ(τ) and thus results in the highest efficiency. Thus,
the fastest diffusion is found for τ = τ0 but it is slightly more efficient when a
larger amount of particles have reached a local minimum inside the potential.

4 Discussion

Particle motion with an enhanced diffusion coefficient as found here is also
found inbiaseddiffusion inanexternalpotential [212, 270, 271] (see alsoSec.VI),
where the bias compared to the potential strength typically defines the enhance-
mentofdiffusion. Another example is ratchetpotentials (Brownianmotors) [272–
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Fluctuations Between
Two Barrier Heights
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a) b)

Figure V.7: Schematic illustration of stochastic resonance and resonant activation. a) A
noisy system that fluctuates in over time, , is exposed to a small sinusoidal stimulus. At
stochastic resonance, the system switches states according to the stimulus. b) A triangular
barrier, , fluctuates in time between two heights. a) Redrawn from [280]. b) Based
on [263].
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tical traps [277]: by additionally exposing the particle to a periodic force with a
certain frequency, particle jumps from one trap to the other can be synchronised
with the periodic force. The situation presented in this chapter, namely the peri-
odic variation of a random potential, however, is different from stochastic reso-
nance. As a random potential is used, there is no well-defined synchronisation
process between τ and the motion of particles. The optimal period, τ0, is not a
reliable indicator in this context, as fastest diffusion is not necessarily correlated
with stochastic resonance [277].

Resonant activation, on the other hand, describes a thermally driven particle
surmounting a randomly fluctuating barrier [283, 284]. The situation of a trian-
gularbarrier changingbetween twoheights is schematicallydepicted inFig.V.7b).
Depending on the mean fluctuation frequency of the barrier in comparison to
the fluctuations of the thermally driven particle, times to surmount the barrier
can reach a minimum leading to a maximum in diffusion, i.e. resonant activa-
tion. This was first reported by Doering and Gadoua in 1992 [263]. This type
of resonance phenomenon can be found in, e.g., myoglobin, which dynamically
opens and closes gates for ligands [285]. When compared to the periodically
varying random potentials discussed in this chapter, resonant activation shows
similarities. In both situations, barriers change dynamically leading to a maxi-
mum in diffusion coefficients. However, the barriers used here switch between
random states with a fixed rate, whereas in the generic case of resonant activa-
tion, the barriers switch randomly between two fixed states with a mean rate.
Additionally, in resonant activation, barriers typically hinder diffusion and are
surmounted by thermally driven particles. In the present experiment, barriers
cannot only hinder particle diffusion but also enhance their motion, resulting in
a maximum diffusion coefficient larger than D0. If resonant activation is also
extended to negative barriers, enhanced diffusion seems possible. Still, the ther-
mal drive with which particles surmount a barrier is integral to resonant acti-
vation. In the present experiment on the other hand, Brownian motion would
not be integral in reaching a resonance-like curve such as that shown in Fig. V.4.
This can be inferred from two observations made in Secs. V.3 and IV.5. First,
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from Sec. V.3, it is known that D5(τ) (or Dl(τ)) behaves similarly to Dτ=∞(t).
Second, in Sec. IV.5, the σU -dependence of Dτ=∞(t) is presented. It gets more
peaked and the maximum rises linearly (cf. Figs. IV.6 a) and IV.7 a)) as σU is in-
creased. Therefore, the less relevant diffusion becomes compared to σU , the less
broad and higher peaked is the resonance-like curve found for D5(τ). Brown-
ian motion does play a role in the experiment, however, it is not integral like it is
for resonant activation. In conclusion, neither stochastic resonance, nor resonant
activation fully resemble the situation presented here, even though resonance ac-
tivation seems to be related to it.

Besides the twomentioned resonance phenomena, several studies of diffusion
in dynamic potentials have been conducted and show resonance-like behaviour
of the diffusion coefficient. Dubkov and Spagnolo [264, 286] theoretically con-
sidered one-dimensional periodic potentials alternating with their inverse. They
found enhanced diffusion at certain frequencies for all considered potentials that
have a finite first derivative—a rectangular potential only lead to a reduced diffu-
sion coefficient. Larger potentials lead to a stronger enhancement of diffusion,
even for very large barriers where Brownian motion does not play a role. This
finding is in agreement with the behaviour shown in Fig. IV.6 and thus corrob-
orates the reasoning that the presented experiment cannot be fully explained by
resonant activation.

Inanexperimental studyofdiffusion throughachannelof varyingwidth [287],
Bleil et al. also saw a resonant behaviour of themeasured diffusion. They claimed
it tobe related to resonant activationalbeit not identical and thus laidout anargu-
ment similar to the one presented here. Even though diffusion coefficients larger
thanD0, like those shown here for τ0, were not found, they suspected enhanced
diffusion under the right conditions.

Instead of periodic potentials, Douglass et al. [139] measured and simulated
particle diffusion in a randomly varying three-dimensional speckle field. Unlike
here, they found superdiffusion. As the potential is similar to the one described
in this thesis, either the additional dimensions or the method of changing the
potential, namely a random variation that was caused by particle diffusion itself,
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might be the reason for the differences in diffusive behaviour between the studies
of Douglass et al. and that presented here.

An experimental study using a varying potential very closely resembling the
one described in this thesis was conducted by Bianchi et al. [288]. They also used
a one-dimensional random potential created by light through an SLM. When
varying it, they found resonance-like behaviour with enhanced diffusion. How-
ever, unlike here, the different potential realisations they used were correlated.
The timewith which the autocorrelation of the potential decayedwas used as the
variationparameter—corresponding to τ usedhere. Therefore, this study yielded
results similar to the ones found here even though different preconditions were
used.

To conclude, the resonance-like behaviour with enhanced diffusion at τ =
τ0 found for diffusing particles in a varying one-dimensional random potential
shows signs of several physical phenomena. It is an interplay of D0, lU , τ and
the absence of correlation between consecutive potential realisations, which is
related to resonant activation. In the literature it was shown that enhanced diffu-
sion is reached for correlated potentials [139]. The results presented here prove,
however, that correlation is not necessary to obtain Dl > D0. They show that
diffusion can also be enhanced by periodically changing uncorrelated random
potentials.





VI Colloids Dragged Through a

Static Two-Dimensional

Random Potential

T hedynamics of colloidal particles exposed to two-dimensional randompo-
tentials has recently been investigated [135, 136, 190, 289]. It was found

that inside such a potential, particle motion is diffusive for times Δt ≪ tB, fol-
lowed by a transient subdiffusive behaviour for Δt ≈ tB and Brownian motion
for Δt ≫ tB. In [135, 190], the setups introduced in Secs. III.2.1 and III.2.2 were
used to create two-dimensional random potential landscapes by means of light.
In the experiments described in this chapter, dilute colloidal suspensions were
dragged inonedimensionwhile being exposed to the two-dimensional light field
created by the diffuser setup. In general, particles dragged through a medium or
potential find wide applications in microrheology [290–292], sorting [293, 294]
or friction [18, 295]. While many of these studies focus on periodic potentials,
particlesdragged through randompotential energy landscapes are the focushere.
The dragging force results in biased Brownian motion through these potentials.
A similar system has been studied by simulations [212] and is compared to the
experiments described here.

173
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Figure VI.1: Dynamics of colloids in a two-dimensional random potential: variances of
the two-dimensional displacements, Δr, normalised by the particle radius, R, diffusion
coefficients normalised by the short-time diffusion coefficient with a light field present,
Ds, anomalous diffusion coefficients and non-Gaussian parameters dependent on lag
time, Δt, normalised by Brownian time, tB, for varying potential standard deviations, σU .
Replotted results published in Ref. [135].

1 Colloidal Dynamics in a Static

Two-Dimensional Random Potential

In this chapter, experiments in which particles were dragged through a static
randompotential are described. It is hence crucial to understand the generic case
of Brownian motion without an additional dragging force in such a potential,
as discussed in Refs. [135, 190, 221]. The points made in this section are based
on these studies. Both the SLM and diffuser setup can be used to generate two-
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Figure VI.2: Schematic of a particle diffusing on different time scales in a two-dimensional
random potential landscape. Each time scale corresponds to characteristic displacements
marked by differently coloured arrows. At the bottom, time scales with qualitative be-
haviour of relevant quantities shown in Fig. VI.1 are given.
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very similar to that in one dimension described in Sec. IV.1. It is depicted in
Fig. VI.2 in the same fashion as in Fig. IV.2. Diffusion is affected on different
time scales and can again be divided into three regimes: t ≪ ΔtB, Δt ≈ tB
and Δt ≫ tB. All curves in Fig. VI.1 show behaviour close to normal diffusion
for Δt ≪ tB. When σU > 0, σ2

Δr,TE(Δt) is shifted to lower values compared
to the case where σU = 0. The short-time diffusion coefficient, Ds, is roughly
half compared to when no light field is imposed on the particles. This is due to
the scattering force that presses particles closer to the bottom of the sample cell,
resulting in a smaller short-time diffusion coefficient (cf. Eq.III.3).

Besides this difference, all relevant parameters, αD(Δt), D(Δt) and α2(Δt),
behave qualitatively in two dimensions as they do in one as can be seen by com-
parison of Figs. IV.1 and VI.1 [221]. Mechanisms leading to this behaviour are
also similar. Particles first diffuse normally inside traps for short timesmarked by
thedarkgrey arrow inFig.VI.2. When they reach theflanksof a two-dimensional
potential at Δt ≈ tB, D(Δt) starts to decrease (brown arrow). For long times,
motion again becomes diffusive withD(Δt) < Ds, as indicated by the red arrow.
However, quantitatively there are somedifferences. For similar σU , motion is less
affected by a two-dimensional random potential than it is in one dimension. Pa-
rameters show smaller extreme values. Additionally, Brownian motion for long
times is reached earlier in two dimensions [221]. This is due to the additional de-
gree of freedom particles have in a two-dimensional random potential. In one
dimension, potential barriers necessarily have to be surmounted. In two dimen-
sions, particles can either surmount or circumvent barriers. Therefore, Eq.IV.1,
which predicts the long-time diffusion in a one-dimensional random potential,
becomes non-applicable. Instead

D(t → ∞) = Db exp {−
σ2
U

2 k2
BT2 } . (VI.1)

holds [296]. Compared to Eq. IV.1, its exponent is halved accounting for the
faster long-time diffusion in two dimensions.

Since thedynamics in two-dimensional randompotentials are similar to those
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in one dimension, the models applicable for explaining this dynamics are also
the same: Theoretical models implicitly referring to homogeneous media like
CTRW and FBM are again not suitable as the two-dimensional random poten-
tial is heterogeneous in space (cf. Sec. II.1.4). Explaining the dynamics with het-
erogeneous diffusion processes, however, where the potential, U(x, y), can be
mapped ondiffusivities,D(x, y), is conceivable for a static two-dimensional ran-
dom potential—similar to the situation in one dimension.

Theresults forparticlediffusion ina two-dimensional randompotential shown
in Fig.VI.1were obtained using the light field created by the SLMsetup. To check
whether the diffuser setup used in this chapter yields the same results, similar
measurements were conducted for PL = 917mW and 2600mW. The anoma-
lous diffusion exponentswere plotted inFig.VI.3 togetherwith the results shown
in Fig. VI.1. Both setups yield very similar results. Curves measured in the dif-
fuser setup follow exactly the same trend as those obtained from the SLM setup,
with PL = 917mW lying between σU = 1.4 and 1.8 kBT and PL = 2600mW
being in agreement with σU = 2.8 kBT . Differences are only seen for t > 10 tB,
where both curves measured with the diffuser setup deviate slightly from those
measured with the SLM setup. These deviations originate from the use of dif-
ferent observation times, which can lead to deviations when time and ensemble
averages are calculated (cf. Sec. III.4.6). Concluding, both setups yield compa-
rable results for particle motion in two-dimensional random potentials. Conse-
quently, the results presented in this chapter represent an expansion of the exper-
iment introduced in Ref. [135].

2 Application of Constant Drag Forces to

Colloidal Suspensions

From the previous section, the dynamics of colloidal particles in static two-
dimensional random potentials are known. This section explains how this dy-
namics can be changed by applying a one-dimensional constant drag force to
particles diffusing inside the random potential. In order to do so, the piezo stage
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Figure VI.3: Replotted results for the time- and ensemble-averaged αD published in
Ref. [135] in comparison with results obtained from measurements conducted with the
diffuser setup. The curves measured in this thesis fit well with those from [135].

of the diffuser setup introduced in Sec. III.2.2 was utilised. It can move indepen-
dently in both directions perpendicular to the propagation direction of the laser
light and thus in both directions of the two-dimensional layer in which particles
diffuse. In each dimension, it can cover a distance of 300 µmand has a resolution
of 0.6 nm [175]. By moving the sample cell with a drag velocity, vD, a drag force,
FD, is imposedon theparticles due to the frictionbetween sample cell, dispersion
medium and colloids:

FD = ξ vD = kBT
D

vD . (VI.2)

In the bulk, ξ = ξb, whereas close to the wall of the sample cell, where the two-
dimensionalparticle layer is actually situated, ξ = ξ0, whichyieldsFD = kBT vD/D0

(cf. Sec. III.1).
Throughout theworkoutlined in this thesis, only one-dimensional drag forces
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Figure VI.4: Characterisation of the drag force exerted on colloidal suspensions by move-
ment of a piezo stage. a) A schematic of the stage movement in the -direction depen-
dent on time, , is shown. b) The movement of the stage introduced in a) results in a one-
dimensional time-dependent particle movement. c) Ensemble-averaged mean displace-
ments in the -direction, E , for different drag speeds, D, to determine E D
of particles. d) Ensemble-averaged mean displacements in the -direction, E , for
different values of D. e) Speeds in the -direction, E D , determined from c). The
grey line corresponds to a linear fit through the origin.
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were conducted. A triangular function with varying amplitude but constant fre-
quencyof0.0015Hzwas fed to the stagewith theaidofLabViewsoftware (Fig.VI.4 a)).
This resulted in different constant values of vD while keeping the periods of the
oscillations constant at666.7 s for allmeasurements. Each triangular period con-
sisted of two parts: the motion from minimum to maximum called forward as it
moves particles in the positive x-direction and the motion from maximum to
minimum called backward (Fig. VI.4 a), b)). By cutting all particle trajectories
at each extreme value, forward and backward motion could be analysed inde-
pendently. Backward motion was inverted when trajectories were analysed and
combined with the forward motion to improve statistics. This method rendered
all dragging forces as being in the positive x-direction.

Due to the density of the dispersion medium, ρM, there might have been in-
ertial contributions to the force acting on particles, whereas viscous forces coun-
tered these contributions. The ratio of both is the Reynolds number [254, 297]

Re = ρM v2
D/R

η vD/R2 = ρM vD R
η

, (VI.3)

where the numerator represents inertia and the denominator viscous forces. For
typical values of ρM ≈ 1000 kg/m³, vD ≈ 1 µm/s, R = 1.4 µm and η = 1mPa s,
the Reynolds number is calculated to be Re = 1.4 × 10−6. For these conditions,
inertial forces are hence much smaller than viscous forces and can be neglected.
Particles move with the dispersion medium by which they are surrounded and
theirmotion is thusoverdamped [254, 298, 299]. As canbededuced fromFig.VI.4 a),
the velocity of the sample cell is theoretically infinite at the turning points. In
practice, it can still be relatively high and could lead to inertial contributions as
Re increases with vD. For this reason, 15 seconds before and after each extreme
value of the triangularmovementwere excluded fromanalysis resulting inΔtL ≤
303.3 s. Fig. VI.4 c)–e) show ensemble-averaged results for different values of
vD exerted on colloidal particles with R = 1.4 µm dispersed in H2O. Samples
were prepared according to Sec. III.1, where φA < 0.01. Each vD was measured
three timeswhile eachmeasurement consisted of three oscillation periods result-
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ing in an average of 18 forward and backwardmotions. From themean displace-
ments, ⟨Δx⟩E(t), shown inFig.VI.4 c), ⟨vx⟩E(vD)wasdeterminedbyfitting lines
through theoriginandextracting the slopes. As ⟨Δx⟩E(t) shows linearbehaviour
for allvD over thewhole time range, inertia effects canbe ruledout. FigureVI.4 e)
shows the relation between drag velocity applied by the piezo stage and velocity
of particles in the x-direction. The grey line has a slope of one and zero intercept,
showing ⟨vx⟩E(vD) = vD. Additionally, ⟨Δy⟩E(t) is plotted inFig.VI.4d) reveal-
ing that there is no biasedmotion in the y-direction. Concluding, particles inside
the sample cell follow the movement of the piezo stage, where ⟨vx⟩E(vD) = vD

and ⟨vy⟩E(vD) ≈ 0. Their dynamics does not show inertia effects for the veloc-
ities applied when the turning points are excluded from analysis and can thus be
considered overdamped.

3 Measuring the Dynamics

Sampleswere prepared according to Sec. III.1. They consisted of colloidal par-
ticleswithR = 1.4 µmdispersed in purifiedwaterwhich sedimented and formed
a two-dimensional layer ofφA ≤ 0.02. Sampleswere thus dilute and colloids can
be considered as single particles. As described in Sec. VI.2, constant drag veloc-
ities were created by a triangular function input to a piezo stage in the diffuser
setup with different amplitudes but a constant frequency of 0.0015Hz, resulting
in 0.05 µm/s ≤ vD ≤ 0.9 µm/s. Particle motion was recorded for about 2 h
with 10 FPS, i.e. Δtmin = 0.1 s. As already stated in Sec. VI.2, trajectories were
cut after each forward and backwardmotion to obtain better statistics and a time
windowof30 secondsabout the turningpointswas excluded fromanalysis, yield-
ing ΔtL ≤ 303.3 s. During the 30 seconds about the turning points of the stage
movement that were excluded from analysis, the rotation mount that houses the
Engineered Diffuser (ED, cf. Fig. III.2) was additionally rotated at a maximum
speed of 20°/s. This resulted in the random light field and thus the potential ro-
tating at the same speed. Colloidal particles couldnot react to thequicklymoving
potential as viscous forces prevented them from doing so. As a consequence, the
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potential got smeared out and particles diffused as if they were free with only the
scattering force acting on them (cf. Sec. V). This allowed for the particles to re-
arrange before each forward and backward motion and left the ED at a different
position every time. In this way, each forward and backwardmotion can be con-
sidered statistically independent. Each trajectory then started after the rotation
had been stopped and was cut just before the rotation started. Timing of these
steps was done frame-wise by LabView software.

Each measurement was performed at least three times, resulting in at least 66
independent forward and backward motions, where each time around 80 par-
ticles were present in the FOV, i.e. up to about 5000 particles in total. This al-
lows for the use of ensemble averages instead of time and ensemble averages (cf.
Sec. III.4.6). Three measurements series were conducted: two with vD varying
from 0 to 0.9 µm/s and constant laser power PL = 917mW and 2600mW, and
one with PL varying from 0 to 2600mW and constant vD = 0.9 µm/s. Since op-
tical forceswere present in almost all themeasurements discussed in this chapter,
Ds is used to normalise quantities instead ofD0. To determine tB = R2/2dDs for
allmeasurements, σ2

E(t) at the smallest time, t = 0.1 s, was analysed in the x- and
y-directions forPL = 917mWand 2600mWasboth powerswere found to yield
similar results. After averagingσ2

E(0.1 s) for bothdirections and laserpowers and
dividing the result by 0.1 s, the one-dimensional short-time diffusion coefficient
and the Brownian time were determined to Ds = 0.09 µm²/s and tB = 10.9 s,
respectively. Short-time diffusion with particles subject to an optical field was
found to be slower than D0 as it is reduced by optical forces pressing particles
against the bottom of the sample cell and reducing h to 2.0 µm. Consequently,
no particles left the FOV through the third dimension during themeasurements.
Going further,Ds is used to calculate dragging forces via

FD = kBT
Ds vD = R

Ds vD
kBT
R

= 15.6
s

µm
vD

kBT
R

(VI.4)

and lies between 0.8 and 14.0 kBT/R.
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4 Dynamics of Colloids Dragged Through a

Two-Dimensional Random Potential

Inorder tocomparemeasurementsofparticlesdragged througha two-dimensional
randompotential to those shown in Sec. VI.1 [135] and simulation results [212],
quantities describing the van-Hove functions of particle displacements, such as
variance and kurtosis, are used. We focus on ensemble-averaged quantities here.
Results are split into constant-PL andconstant-vD series anddiscussed separately
for the direction parallel, x, and perpendicular, y, to the drag force. Later, results
are analysed in terms of first-passage time distributions in order to shed further
light on underlying mechanisms.

4.1 Constant Potential Roughness with Varying Drag

Forces

At first, motion parallel to vD, the x-direction, is considered. In Fig. VI.5, the
one-dimensional variance, σ2

Δx,E(t), the anomalous diffusion exponent, αD,x(t)
and thediffusioncoefficient,Dx(t), are shownforvaryingFD, wherePL = 917mW =
P1 (left) andPL = 2600mW = P2 (right). BothαD,x(t) andDx(t) are calculated
using a smoothing filter (cf. Sec. III.4.3). The ensemble-averaged mean speed—
also referred to as transport—⟨vx⟩E(t), skewness, γ1,x(t), and normalised excess
kurtosis, γα,x(t) for both powers are given in Fig. VI.6. The former is derived via
⟨vx⟩E(t) = 𝜕⟨Δx⟩E(t)/𝜕t by taking a finite difference quotient (cf. Eq. III.34).
Additionally, the self part of the van-Hove function, Gs,E(Δx, t), is plotted to-
gether with actual displacements in the x- and y-directions, also called displace-
ment clouds, for P1 in Fig. VI.7 and for P2 in Fig. VI.8.1

When FD = 0.0 kBT/R, particles qualitatively show the same behaviour dis-
cussed in Sec. VI.1 for the dynamics inside a static two-dimensional randompo-
tential. Brownian motion is found for t < tB indicated by αD,x(t), Dx(t) and
γα,x(t) in Figs. VI.5 and VI.6 and can be seen by the Gaussian fits shown with

1As Figs. VI.5, VI.6, VI.7 and VI.8 are equally the focus of the following, discussions of dynamic
quantities are not always given together with the figure in which they can be found going further.



184 | Chapter VI. Colloids Dragged Through a Static Two-Dimensional Random Potential

0.01 0.1 1 10

0.1

1

10

100

0.01 0.1 1 10

0.0
0.8
1.6
3.9

Drag Force

4.7
9.4
14.0

0.0

0.5

1.0

1.5

2.0

10 -2

10 -1

10 0

10 1

10 2

10 3
917 mW 2600 mW

Figure VI.5: First part of ensemble-averaged results for particle dynamics in the direction
parallel to vD (x-direction) for two constant PL and varying FD. The left-hand side shows
results for PL = P1 = 917mW, the right-hand side for PL = P2 = 2600mW.

dashed black lines in Figs. VI.7 and VI.8. As expected from Fig. VI.1 and [135],
particles show subdiffusive behaviour at times t > tB, as particles reach the flanks
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of the local minimum in which they are trapped. Higher power yields more pro-
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nounced subdiffusion as particles are less likely to escape their traps.2 This is not
only reflected in amore developedplateau ofσ2

Δx,E(t), but also in amore strongly
reduced αD,x(t) and Dx(t). Additionally, γα,x(t) increases, since Gs,E(Δx, t) is
not Gaussian but develops pronounced tails, which can be seen in Figs. VI.7 a)
and VI.8 a), where the Gaussian fits fail for t > tB. These tails develop because
most particles are trapped in a local minimum with a few escaping their traps.
Displacement clouds are symmetric in the x- and y-directions but show high
concentrations around the origin. Besides the apparent subdiffusivity for van-
ishing drag forces at t > tB, αD,x(t) and Dx(t) also show a positive bump at
t ≈ 0.5 tB. This bump is present in all curves but most pronounced for P2. It
stems from the particles finding the first local minimum in the external poten-
tial. The attraction of the traps is reflected in a temporarily faster diffusion for
most of the particles alike, similar to the dynamicsmore thoroughly discussed in
Secs. IV and V.

For very strong drag forces compared to the mean local maximum force ex-
erted by the external potential, ⟨Flm⟩, namely FD = 14.0 kBT/R and P1, Brow-
nian motion is found throughout the whole measurement. When particles are
dragged by vD, the resulting force FD is added to the forces acting on the parti-
cles due to the potential landscape. If FD is larger than all the forces originating
from the potential landscape, particles will diffuse as if theywere free. As a result,
αD,x(t) = 1, Dx/Ds(t) = 1 and γα,x(t) = 0 indicating Brownian behaviour
for all times when FD = 14.0 kBT/R and P1 in Figs. VI.5 and VI.6. Trans-
port is not affected by the external potential landscape with ⟨vx⟩E/vD(t) = 1
for the whole measurement as potential barriers are smoothed due to the drag-
ging force. Thus, Gs,E(Δx, t) can be fitted by a Gaussian with non-zero mean at
all times as can be seen by the dashed black lines in Fig. VI.7 d). The mean then
follows ⟨Δx⟩E(t) = vD t proving that particles conduct Brownian motion with
a constant drift and the external potential does not affect them. Hence, the cor-
responding particle displacement clouds are symmetric in both directions and

2The curves for FD = 0.0 kBT/R are based on the same data as the curves shown for both powers
in Fig. VI.1. They only differ in the averages taken: here, the ensemble average is used, whereas in
Fig. VI.1, the time and ensemble average is shown.
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spread out due to Brownian motion only.

In between the case of no drag, where particles are clearly affected by the ex-
ternal potential landscape, and very strongdrag, whereFD outweighs forces from
the external potential, particle motion along vD passes through three additional
regimes, as found for both powers. When FD is small compared to forces acting
on the particles due to the potential landscape, only a few colloids are dragged
with vD, whilemost of the particles are trapped inside the randompotential. This
is the case for FD ≤ 1.6 kBT/R at P1 and FD ≤ 4.7 kBT/R at P2—about three
times the force compared to P1. At these values for FD, subdiffusive behaviour
is mitigated with αD,x(t) and Dx(t) not being decreased as strongly as they are
for FD = 0.0 kBT/R. Restricted motion due to the external potential is some-
what compensated by dragging forces. Yet particle transport decreases to around
1/3 vD for P1 and 1/30 vD for P2. Compensation of trapping forces by FD can
lead to the specific case where αD,x(t) andDx(t)—the most frequently used in-
dicators for anomalous diffusion—indicate Brownian motion for t > tB, even
thoughparticlesdonotbehaveaccordingly as canbe seen for, e.g.,FD = 4.7 kBT/R
at P2 in Fig. VI.5. The positive values of γ1,x(t) and γα,x(t) in Fig. VI.6 as well as
the displacement clouds and Gs,E(Δx, t) reveal the misleading nature of αD,x(t)
and Dx(t) in these situations. The van-Hove function shows a strong bias to-
wards positive Δx values with most particles being trapped in potential minima.
Colloids that are dragged along x are also not trapped in y, leading to a displace-
ment cloud similar to one created by an atomiser.

When FD is about as strong as the average local maximum force applied by
the external potential, ⟨Flm⟩, particles are spread along FD in an even fashion.
It is conceivable, that some particles are trapped in the deep minima of the ran-
dom potential, some diffuse as if they were free and some alternate between be-
ing trapped and escaping, which would result in an enhanced spread of the van
Hove function. This behaviourmight be seen forFD = 9.4 kBT/R andP2, where
αD,x(t) ≈ 1.5 and Dx(t) ≈ 10Ds for long times indicating strong superdiffu-
sive motion. On the other hand, transport is still highly restricted to 0.2 vD. In
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that context, the most telling quantity is γα,x(t). It shows highly negative values3

for t > tB and reveals the even spread of particles along x that can also be seen
in Fig. VI.8 c). This type of particle motion also emphasises the points made in
Secs. III.4.3 and III.4.7, namely that αD > 1 is not necessarily caused by super-
diffusive motion and should not be treated as such before having a look at Gs,E.
Here, particles do not diffuse faster than normal but are spread artificially due to
the external potential which partially traps them. Consequently,αD(t) andD(t)
should here be interpreted as an indicator for the spread of particles rather than
their diffusion.

For drag forces stronger than ⟨Flm⟩, most particles follow vD with a few be-
ing trapped. This is the case here for 1.6 kBT/R < FD < 14.0 kBT/R at P1

and FD = 14.0 kBT/R at P2. The simplest way to see the transition from small
FD, where most particles are trapped, to large FD, where most particles diffuse
as if they were free, is by looking at γ1,x(t). When γ1,x(t) > 0, forces due to
the potential are mostly larger than FD. When γ1,x(t) < 0, the opposite is true.
Similar to the case where FD is comparable to ⟨Flm⟩, αD,x(t) and Dx(t) indi-
cate superdiffusivity at long times. A drag force, FD = 14.0 kBT/R, at P2 yields
αD,x(t) = 2 over an order of magnitude in t showing not only superdiffusive
but ballistic motion. From the last paragraph, it is known that this is due to the
enhanced spread ofGs,E(Δx, t) caused by trapped particles, where the seemingly
ballistic case of αD = 2 represents the fastest rate with which Gs,E(Δx, t) can
spread in this system. Larger potential roughnesses can thereby lead to wider
spreads, i.e. stronger enhancements of αD,x(t) and Dx(t). Due to the relatively
large FD, transport is only decreased to about 0.6 vD for P1 and to 0.3 vD for P2.
The displacement clouds as well as Gs,E(Δx, t) show a left-sided tail (Fig. VI.7 b)
and Fig. VI.8 d)). The overall shape of the clouds thus resembles a comet instead
of the atomised-like shape seenwith smallFD. Asmost of the particlesmovewith
vD, a tail in Gs,E(Δx, t) due to the trapped particles develops. This (temporarily)
results in positive values of γα,x(t), for example for FD = 4.7 kBT/R at P1 and
FD = 14.0 kBT/R atP2, which aremore pronounced than for the case of smaller

3From Sec. III.4.5 it is known that γα has a short negative scale.
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drag forces.

A very distinctive case can be found for FD = 9.4 kBT/R at P1. At this com-
bination, FD is so much stronger than ⟨Flm⟩ that almost all particles diffuse as
if they were free. Only a tiny number of colloids are trapped (cf. Fig. VI.7 c)).
This leads to αD,x(t) and Dx(t) behaving inconsistently. Neither shows a clear
trend. Additionally, γα,x(t) increases dramatically, showing values 20 times as
large as the second largest, while transport is almost not affected at all. This odd
behaviour is less a distinct feature of the system than of the quantities used to de-
scribe it and will be talked about more when these measurements are compared
to simulations.

Summarising, the motion in the x-direction passes through several different
regimes depending on how strong FD is compared to the forces caused by the
external random potential. The comparison of two different laser powers shows
that the characteristic regimes are in general found for every potential roughness
but are more pronounced for larger σU . This suggests Brownian motion plays
a key role, also at high FD. It increases the probability of particles overcoming
a local potential maximum depending on PL or equivalently σU . Thus, Brown-
ian motion mitigates the combined effect of FD and U(x, y) all the more when
smaller σU are used. Additionally, it leads to larger transport for similar condi-
tions when σU is smaller, e.g. FD = 1.6 kBT/R at P1 and FD = 4.7 kBT/R at
P2.

Motion perpendicular to vD, in the y-direction, does not show regimes as dis-
tinct as those in thex-direction, but a rather systematic reaction to drag forces. In
Fig. VI.9, αD,y(t), Dy(t) and γα,y(t) are presented. As expected, particles show
the exact same behaviour in y as in x for all quantities when FD = 0.0 kBT/R.
The subdiffusivemotion is againmorepronounced forP2. WhenFD is increased,
subdiffusion is successivelymitigated—as seen in thex-direction for smallFD—as
indicated by αD,y(t) and Dy(t). However, no indication for superdiffusion is
found. A force in the x-direction thus smooths the particle-potential interac-
tion in the y-direction, yet does not lead to superdiffusion as it can in x. When
a single particle is dragged out of a local minimum, its motion is less affected
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in both directions, reflecting a coupling between x and y. This can be seen in
Figs. VI.7 and VI.8: the displacement clouds are narrow (in y) for small Δx and
wider for larger displacements. A peculiar case in this respect is that for inter-
mediate forces, FD = 4.7 kBT/R and 9.4 kBT/R at P2, where the combination
of external potential and constant drag force lead to a slightly more pronounced
γα,y(t) than for other values of FD. Only few particles diffuse as if they were free
and spread in the y-direction, while the majority are trapped (Fig. VI.8 b)). This
leads to relatively large tails forGs,E(Δy, t) and thus the slight increase in γα,y(t).

Forvery largeFD compared to theappliedexternalpotential, e.g. FD = 14.0kBT/R
at P1, subdiffusion completely vanishes and particles diffuse as if they were free
in both directions. Figure VI.10 shows Gs,E for different times t in x and y for
this situation, where points correspond to the x-, and lines to the y-direction. In
the x-direction, displacements were shifted by ⟨Δx⟩E(t) to centre them about
the origin. Both Gs,E fall on top of each other. Particles conduct the same dis-
placements parallel and perpendicular to vD. They show Brownian motion with
the same diffusion coefficient in x and y. Thus, when drag forces are very large,
particles move independently of the external random potential landscape that
otherwise couples motion in both spatial directions.

The positive bump present in αD,y(t) andDy(t) for all measurements at t ≈
0.5 tB is also found for the x-direction (cf. Fig. VI.5). It originates from the same
phenomenon, which also causes γα,y(t) to shortly extend to negative values4 and
is extensively discussed in Sec. IV. At the start of eachmeasurement, particles are
randomly distributed. After roughly 0.5 tB, most particles are attracted by a local
minimum, causing them tomove faster for a short period of time. This attraction
manifests itself through a temporary increase in αD(t) andD(t) and a decrease
in γα(t) for both directions as Gs,E(Δx, t) and Gs,E(Δy, t) are stretched slightly.
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Figure VI.10: Drift-corrected van-Hove functions, Gs,E, in x- and y-direction for PL = P1
and FD = 14.0 kBT/R, i.e. the case of FD being very large compared to forces exerted by
the external potential, at different normalised times t/tB. Symbols and lines indicate the
x- and y-direction, respectively.

4.2 Constant Drag Force with Varying Potential

Roughnesses

To verify the observationsmade for constant potential roughness and varying
drag forces, the laser power was varied while the drag velocity was kept constant.
The results are presented in this section. Results for ⟨vx⟩E(t) and γ1,x(t) as well
asαD(t),D(t) and γα(t) for both directions can be seen in Fig. VI.11. Due to the
large vD used here, particles tend to leave the FOVat the end of each forward and
backwardmotion of the piezo stage. Therefore, quantities for t ≳ 10tB should be
interpreted with caution.

For all PL, γ1,x(t) ≤ 0 indicating a left-sided tail of Gs,E(Δx, t). This im-

4The negative hump in γα,y(t) can also be seen for the x-direction. Due to the wide range of values
covered by γα,x(t), it was not mentioned there.
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plies that all the measurements shown in Fig. VI.11 fall into the regime where
FD is larger than ⟨Flm⟩. In the previous section, this regime was found for FD ≥
3.9 kBT/R atP1 and FD = 14.0 kBT/R atP2. The same qualitative results found
there are thus expected to be recovered in Fig. VI.11.

ForPL ≤ 663mW,neither themotion in thex-directionnor in they-direction
show any peculiarities. Transport, ⟨vx⟩E(t), as well as γ1,x(t) are not affected by
the external potential. Additionally, αD(t), D(t) and γα(t) indicate normal be-
haviour for all times in bothdirections. Thus, for thesePL,FD ismuch larger than
all the forces exerted on particles by the external potential and consequently, col-
loids diffuse as if they were free. For PL = P1 = 917mW, only ⟨vx⟩E(t) shows
a slight deviation from its value for normal diffusion, vD. The other studied pa-
rameters are unaffected. This shows that the case where FD = 14.0 kBT/R and
PL = P1 presented in Sec. VI.4.1 is on the edge of FD being large enough to over-
come every barrier in the external potential.

For PL > 917mW, particle motion is affected in a successively stronger man-
ner. For values of PL slightly larger than P1, the same behaviour as in Fig. VI.7 c)
is observed: only very few particles are trapped leading to slightly diminished
transport together with a highly negative γ1,x(t) and highly positive γα,x(t). The
largerPL becomes, themore the transport is reduced as particles tend to bemore
affected by the external potential. For the largest power PL = P2, αD,x(t) and
Dx(t) show the strongest deviation from Brownian motion as already discussed
in Sec. VI.4.1. The displacement cloud then shows the comet-like shape pre-
sented in Fig. VI.8 d).

In the y-direction, particles generally do not deviate strongly from Brownian
behaviour. Similar to the x-direction, the effect of the external potential becomes
visible for PL ≥ P1, even though only light non-Brownian behaviour can be ob-
served: an increase of PL leads to a more pronounced bump in αD,y(t) at t ≈ tB.
It reflects the first time particles occupy a local minimum after being distributed
randomly at the beginning of eachmeasurement asmentioned before. LargerPL

correspond to larger forces directing particles towards potential minima. There-
fore, the bump in αD,y(t) grows when PL is increased.
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Summarising, the system is changed from a Brownianmotion regime for very
low PL (Fig. VI.7 d)) via a regime where very few particles are affected by the ex-
ternal potential (similar to Fig. VI.7 c)) to a regime where large amounts of par-
ticles are (temporarily) trapped by the potential landscape leading to comet-like
displacement clouds for the highestPL (Fig. VI.8 d)). This reflects the samequali-
tative behaviour discussed in the previous section. A reason for the lack of quan-
titative agreement between the case of a varying drag force with constant opti-
cal forces (Sec. VI.4.1) and varying optical forces with a constant drag force pre-
sented in this sectionmightbe thepresenceofBrownianmotion. The interplayof
drag force, optical forces and Brownian motion has the effect that not only is the
ratio of drag force to optical forces relevant but also their magnitude compared
to the forces originating from Brownian motion. The larger FD and PL become,
the less relevant is Brownian motion for the particle dynamics. Measurements
for FD = 4.7 kBT/R at P1 and for FD = 14.0 kBT/R at P2 have a similar ratio of
drag force to optical forces. Consequently, measured quantities show similar re-
sults for both cases. However, particles exerted to the larger potential roughness,
PL = P2, show stronger effects in αD,x(t), Dx(t) and the displacement clouds.
Thismight be due to Brownianmotion being less likely to smear out the external
potential for larger PL.

4.3 First-Passage Time Distribution

Normalised first-passage time distributions in the x- and y-directions with
Δx = 2R for nearly all measurements presented in this chapter are shown in
Fig. VI.12, where symbols correspond to experimental data. For Δt > 10 tB,
most of them show the characteristic exponential decay caused by the finite size
of thefieldof viewduring the experiment (cf. Sec. III.4.8) and should thus only be
interpreted forΔt ≲ 10 tB. The length,Δx = 2R, was chosen to lie slightly above
the correlation length of the external potential, lU = 1.3R (cf. Sec. III.2.2.2). In
Fig. VI.12 a) and c), measured first-passage time distributions in the x-direction,
Fx(Δt), with P1 and P2 for varying FD are shown, respectively. Coloured lines
refer to Eq. III.60 with Δx, Ds and vD being fixed inputs, which corresponds to
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Figure VI.12: Normalised first-passage time distributions in the x- and y-directions with
Δx = 2 R for varying PL and FD. Symbols correspond to measured F while lines show
Eq. III.60 with fixed inputs if not stated otherwise. a) First-passage time distributions in
the x-direction for PL = P1 and varying FD. b) First-passage time distributions in the
y-direction for PL = P1 and varying FD. The black line corresponds to Eq. III.59. c) First-
passage time distributions in the x-direction for PL = P2 and varying FD. d) First-passage
time distribution in x-direction for PL = P2 and FD = 4.7 kBT/R with a fit of Eq. III.59. e)
First-passage time distribution in x-direction for FD = 14.0 kBT/R and varying PL with a
fit of Eq. III.60 and two different slopes indicated.
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the theoretical prediction for particles undergoing Brownianmotionwith a drag
velocity. For short times, Fx(Δt) agrees well with theory. Short Δt correspond
to relatively fast diffusion, for which particles that are not strongly trapped are re-
sponsible. Thus an agreement between theory and experiment is intuitively ex-
pected for small Δt. This changes for larger Δt as Fx(Δt) shows a slower decay
than theory predicts. Particles are partly trapped by the external potential lead-
ing to an increase inFx(Δt) for larger Δt. When PL is kept constant, this slower
decay becomes more obvious for higher FD, whereFx(Δt) partly shows a kink.
The increased deviation between experiment and theory for large Δt as well as
the kink indicate that there are various particle species—some diffusing as if they
were free, some trapped inside the external potential. With larger FD, the dis-
crepancy in motion of free and trapped particles increases leading to stronger
deviations from theory and a more pronounced kink inFx(Δt).

In Fig. VI.12 b), Fy(Δt) for P1 is shown. For other PL, Fy(Δt) looks similar
(not shown here). The black line corresponds to Eq. III.59, the theoretical pre-
diction for particles undergoing Brownian motion without a drag velocity, with
Δx = 2 R as an input, since there is no drag force expected in y. In general, de-
viations between experiment and theory are rather small. For Δt < tB, Fy(Δt)
agrees well with the theory for the same reasons given for the x-direction. For
large Δt, Fy(Δt) shows a slightly more slowly decaying tail for low FD, reflect-
ing particles being trapped inside the external potential landscape. This implies
that tails decay slower than ∝ Δt−3/2. When FD becomes larger, more particles
reach Δx in shorter times and the tails of Fy(Δt) decay successively faster. For
large drag forces, e.g. FD = 14.0 kBT/R for P1, the external potential landscape
is washed out. Consequently, almost all particles diffuse as if they were free and
Fy(Δt ≲ 10 tB) agrees well with the theory for Brownian motion.

In Fig. VI.12 e), Fx(Δt) is shown for constant FD = 14.0 kBT/R. The black
line corresponds to Eq. III.60 with Δx = 2 R, Ds and vD as fixed inputs. The
dashed line indicates a decay ∝ Δt−3/2, which is predicted for Brownian mo-
tion for large Δt and the dotted line a decay ∝ Δt−2. The latter represents the
threshold of finitemeanfirst-passage times, ⟨ΔtΔx⟩, for a power-lawdecay: when
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Fx(Δt)decays faster than∝ Δt−2, ⟨ΔtΔx⟩ is finite, otherwise it is not. In a previ-
ous paragraph, it was argued that a kink inFx(Δt) develops for large discrepan-
cies in the motion of trapped and free particles. This can be seen in Fig. VI.12 e),
too. For small PL, the drag force dominates and Fx(Δt) does not deviate from
theory. When PL = P1, a relatively strong kink with a tail decaying faster than
∝ Δt−2 is formed (see also the blue triangles in Fig. VI.12 a)). For PL > P1,
and thus larger ⟨Flm⟩, more particles are trapped on longer time scales. The kink
inFx(Δt) becomes less pronounced but stronger tails form, which decay slower
than∝ Δt−2 resulting in infinitemeanfirst-passage times. For the largestPL, tails
decay ∝ Δt−3/2 similar to theoretical predictions for Brownian motion. Thus,
particle dynamics change from having a mean first-passage time which is finite
for low PL to an infinite ⟨ΔtΔx⟩ for high laser powers.

For the peculiar case of PL = P2 and FD = 4.7 kBT/R, i.e. where Brownian
behaviour is indicated by αD,x(t) and Dx(t) (cf. Fig. VI.5), Fx(Δt) deviates by
several ordersofmagnitude fromthe theoretical curve forBrownianmotionwith
drift. Since other quantities also indicate Brownian motion for this case, a curve
based on the theory of first-passage times without drift, Eq. III.59, is included in
Fig.VI.12d)withwhichFx(Δt) largely agrees—especially for largeΔt. However,
from γ1,x(t) and γα,x(t) it is known that Gs,E(Δx, t) is skewed for this case. The
first-passage time distribution, as defined here, only focusses on displacements
in the positive x-direction. SinceFx(Δt) follows the theoretical curve of Brow-
nianmotion, the dynamic behaviour of particles with displacementsΔx ≥ 2R in
the direction of FD is seemingly similar to that of Brownian motion. This is also
visible in Fig. VI.8 b), whereGs,E(Δx ≥ 2R, t) can be fitted by the positive half of
aGaussian function. Thus for this particular combination ofPL andFD, particles
act as if they were undergoing Brownian motion without drift.

5 Discussion

Simonet al. [212] investigated the systemrealisedhere experimentally through
simulations. They integrated the underlying Langevin equations and averaged
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over 400 overdamped particles and 20 realisations of the external potential. The
two-dimensional external random potential was assumed to be normally dis-
tributed. Hence, it is different from the gamma-distributed potential created by
thediffuser setupusedhere. Simonet al. claimhowever that the correlation length,
lU , is one of the most important features when it comes to comparing potentials.
Their Gaussian potential has a correlation length of about 1 in their normalised
length scale, similar to lU for the normalised radial dimension r/R of the poten-
tial usedhere, which is determined tobe 1.3 (cf. Sec. III.2.2.2). Furthermore, they
found that qualitatively the same transport and diffusion regimes are exhibited
for all the differently distributed potentials they analysed—Gaussian, exponen-
tial and power law. Thus, their findings should be comparable with the results
obtained in this chapter.

Indeed, the same regimes found here are found in Ref. [212]. For very low
forces compared to ⟨Flm⟩, almost all particles are trapped leading to a displace-
ment cloud looking like aerosol comingout of an atomiser aswell as subtransport
and subdiffusion in both spatial directions. For very large forces, transport and
diffusion are not anomalous. However, Simon et al. see a different diffusion coef-
ficient for thex- andy-directions,which they attribute to the symmetry-breaking
nature of FD, which is said to smooth potential barriers along its direction. The
results presented here do not show this difference in diffusion, as can be seen in
Fig.VI.10. WhenFD is larger than the forces exerted on the particles by the exter-
nal potential, only forces due to Brownian motion should be acting on particles.
From [212] it is not clear how the complete smoothing of the external potential
barriers by a drag force in one direction leads to Brownian motion parallel to FD

and Brownian motion with a different diffusion coefficient in the perpendicular
direction. Having the same D in both directions for very large FD, like the re-
sults shown here, seems more intuitive. The external potential landscape is com-
pletely flattened by FD in both directions, yielding the same situation found for
draggedparticleswithout an external randompotential. Further investigationon
very large FD compared to ⟨Flm⟩, especially for P2, might give more insight into
this discrepancy between simulations and experiment.
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Besides the two extreme regimes, two additional cases are shown in Ref. [212]
that are also found here. For drag forces stronger than most of the forces ex-
erted by the external potential, i.e. 1.6 kBT/R < FD < 9.4 kBT/R at P1 and
FD = 14.0 kBT/R at P2, a large amount of particles are dragged from local po-
tential minima to minima while a minority stay trapped. Simon et al. describe
this situation as subtransport with superdiffusion and present qualitatively the
same comet-like displacement cloud as shown in Figs. VI.7 b) and VI.8 d). As
stated before, these measurements show superdiffusive features in αD,x(t) and
Dx(t). However, this is rather due to the enhanced spread of trapped and free
particles caused by FD than the colloids themselves diffusing faster. Thus, calling
this regime superdiffusive should be done cautiously.

Simon et al. also found a regime that is hard to describe by common quanti-
ties, such asD. This is also found here for P1 and FD = 9.4 kBT/R, whereDx(t)
fluctuates and extreme values of γ1,x(t) and γα,x(t) are found. This is caused by
only a few particles being trapped while the vast majority are dragged with vD

and can be seen in the displacement clouds in Fig. VI.7 c). Even though the pe-
culiar case where FD ≈ ⟨Flm⟩, yieldingDx(t)/Ds ≈ 1 and αD,x(t) ≈ 1, is not
considered by Simon et al., it is likely that it can be obtained through their simu-
lations as all other regimes found in the experiments are also found in Ref. [212].
In general, there is a very good qualitative agreement between the simulations
done in Ref. [212] and the results shown here. Further investigation might lead
to quantitative agreement as well andmight help ruling out the contradictions in
both studies.

Additionally to the simulations conducted by Simon et al., the results can be
compared to a phenomenon called giant diffusion. It was first described analyt-
ically by Reimann et al. [270] and describes the anomalous behaviour of Brow-
nian particles being subject to a tilted periodic potential. When the force due to
the tilt—corresponding to FD used here—together with the thermal energy of a
particle aremuch smaller than themaximum force of the periodic potential, par-
ticles are trapped in theminima on virtually all time scales [169]. For very strong
tilts, colloids are not affected by the external periodic potential. When the tilt ex-
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Figure VI.13: Normalised diffusion coefficients at t = 10 tB, D10tB/D
s, in x- and y-direction

for all measurements presented in this chapter. The x-direction is represented by solid
lines while the y-direction is shown as dashed lines.

erts a so-called critical force on the particles, however, some are able to overcome
the barriers due to Brownianmotion and some are not. The result is an enhanced
spread in theparticle displacement distribution—also referred to asGs—and thus
an increased diffusion coefficient. This increase inD is called giant diffusion and
was studied extensively theoretically [279, 300, 301] and experimentally [33, 169,
302, 303]. The larger the thermal energy, kBT , the more blurred is the transition
and the less extreme is the enhancementof thenormalisedD [270]. Inorder tovi-
sualise this behaviour, long-time diffusion coefficients,Dl, are plotted against the
tilt subject to the periodic potential in the literature. This leads to curves resem-
bling a resonance peak, whereDl/D0 tends to 0 for small tilts and to 1 for large
tilts. To compare the behaviour of colloids driven across a periodic potential to
that for particles driven across the two-dimensional random potential, diffusion
coefficients at t = 10 tB,D10tB , are plotted for varying FD andPL in Figs. VI.13 a)
and b), respectively. In general, it cannot be assumed thatD10tB has reached the
long-time limit. Still, Fig. VI.13 gives a good overview on the qualitative depen-
dence of the diffusion coefficient on FD and PL.
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In the y-direction, shown as dashed lines,D10tB(FD) rises for largerFD until it
approachesDs for the largest drag forces as expected (Fig. VI.13 a)). A larger PL

leads to a steeper slope for D10tB(FD) in this respect: particles show slower dif-
fusion at low drag forces whenPL is high. For large drag forces, however, particle
diffusion will eventually show D10tB = Ds. This results in a steeper increase of
D10tB for larger PL.

Diffusion in the x-direction, marked with solid lines, strongly resembles the
resonance curves found for giant diffusion. For PL = 917mW,D10tB(FD) starts
belowDs, rises to amaximumand thendrops toDs. The same trendwith ahigher
maximum can be attributed to the curve for PL = 2600mW. Even though not
enough data is available to fully prove that assumption, a shift of the resonance
curve to higher FD is expected when PL increases, since larger drag forces are
needed to get particles out of the traps. This trend is also found in Fig. VI.13 b).
For increasing PL and constant FD, a larger value ofD10tB(PL) is found. In giant
diffusion with a periodic potential, Brownian motion acts as a random ingredi-
ent that enables particles to overcome the barriers for drag forces smaller than
the force due to the potential. Without Brownian motion, there would only be a
running or trapped state. When a randompotential is present like it is here, there
are two random ingredients—Brownian motion and the random forces by the
external potential. Thus the randompotential landscape should give rise to a less
well-defined critical force compared to the periodic potential. As there is not just
onebut several randomlydistributedbarrier heights, a broader transition around
the resonance ofD10tB(FD) can be expected as well. A quantitative comparison
between both potential types cannot be done at this point, but is certainly of high
interest to understand the difference between colloids dragged through periodic
and random potentials at comparable barrier heights.

Besides the two examples thoroughly discussed here, there are several other
studies on colloids driven through potentials, such as in Ref. [304], where gi-
ant diffusion was found for a triangular potential, in Ref. [305], where the two-
dimensionalpotential is composedof arraysof symmetricobstacles, inRef. [273],
where an enhancement of diffusion perpendicular to the driving forcewas found



5. Discussion | 205

or in Refs. [134, 171], where one-dimensional periodic potentials with maxima
much larger than the thermal energy are used. Furthermore, there are theoretical
studies with particles changing states frommobile to immobile, which resembles
the situation presented here in rather abstract and slightly different fashion [306].
In addition to the overdamped case considered here, there are studies [214, 301,
307] on underdamped particles dragged through potentials finding stronger en-
hancement in diffusion in periodic potentials and amore rapid change in regime
for random potentials. All of the aforementioned studies show qualitative sim-
ilarities to the results shown here, e.g. an enhancement of the diffusion coeffi-
cient, which is explained here by the interplay of dragged and trapped particles
that leads to an artificial spread in Gs. A quantitative comparison is not possible
however, as the situations described in the cited references partly differ substan-
tially from the experiments presented here.





VII Binary Colloidal Suspensions in

Two-Dimensional Static Light

Fields

I n the experiments described thus far in this thesis, systems consisting of only
particle type were described. In this chapter, the contrast to binary mixtures

is made, i.e. two distinctly different particle sizes. The smaller of the two—also
called tracers—corresponds to theparticles introduced inSec. III.1 andhavebeen
used throughout this work. They are about a third the size of the larger species,
which are referred to as obstacles. While the small colloids are always dilute, the
concentration of the big ones is varied. The binary mixture of large and small
particles was exposed to the light field characterised in Sec. III.10 and its dynam-
ics are studied. The two particle species behave differently under the influence
of the light field. While the smaller particles almost diffuse freely, the dynam-
ics of the larger ones can be tuned from highly restricted to only being affected
by neighbouring particles. This gives rise to a system with obstructed motion
similar to a Lorentz gas. The idea of obstructed motion—small tracer diffusion
affected by larger obstacles—is relevant for describing ion conductors [308], pro-
tein transport in membranes [4, 5, 309] and motion in crowded environments,
such as cells [82, 310], even though biological processes are thought of as being
generally more complex [6]. Results presented here were in part obtained in the
course of two bachelor’s theses, namely ”Binäre kolloidale Dispersionen in zwei-
dimensionalen optischen Feldern” by René Hermann and ”Binäre Mischungen
von Kolloiden in rauen Laser-Potentialen” by Sebastian Horstmann.

207
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a) b) Voids in a Lorentz GasLorentz Gas
Figure VII.1: Schematic of a two-dimensional Lorentz gas and its voids. a) Finite clusters
are marked in blue. The infinite cluster is orange. The characteristic length is a measure
for the size of finite clusters. b) The infinite void is marked in orange, whereas the finite
voids are blue. Length this time represents the size of finite voids. Adapted from [99].

1 Obstructed Motion: Diffusion in a Lorentz Gas
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a typical length, lξ . It is typical in the sense that the probability of finding a clus-
ter larger than lξ is at least exponentially suppressed [5]. Therefore, lξ can also
be referred to as the size of the largest finite clusters [5, 222]. At a certain crit-
ical density, nO,c, a cluster spanning the whole system is formed. This is called
the percolation transition as the incipient infinite cluster percolates through the
infinite system. In Fig. VII.1 a) finite clusters are marked in blue, whereas the in-
finite cluster is orange. The latter corresponds to a fractal, which means that it is
self-similar and, in two dimensions, occupies an area of

A∞(r) ∝ rdf (VII.1)

within a circle of radius r, where df defines the fractal dimensionwith df < d [5].
The fractal dimension of a two-dimensional Lorentz gas can be determined to be
df = 91/48 [313]. The typical length, also called the characteristic length, lξ , can
only be defined for finite clusters. Around the percolation transition, it diverges
with a power law as

lξ ∝ |n − nO,c|−ν , (VII.2)

where ν is a critical exponent and reads 4/3 in two dimensions [313]. For den-
sities higher than the percolation transition, lξ defines the length-scale, above
which the infinite cluster can be treated as homogeneous [5, 99]. Additionally,
it serves as a measure for the size of finite clusters in the percolating system [99].

In this thesis, the voids arising from the arrangement of obstacles are of inter-
est, as seen in Fig.VII.1 b). The same formalismused for obstacles in the previous
paragraph can also be applied to the voids in a Lorentz gas. The quantities de-
scribing the system do not change—only the way of interpreting them. A higher
nO leads to a lower probability of finding an infinite void—exactly the opposite of
what was stated in the previous paragraph. The characteristic length, lξ , is not in-
terpreted as the size of a finite cluster but as the typical size of finite voidsmarked
blue in Fig. VII.1 b), where the infinite void is shown in orange. The whole sys-
tem can be thought of as being similar to a Swiss cheese: it consists of void space
allowing for free transport interrupted by randomly placed obstacles [5].
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Diffusion in sucha systemis consideredasobstructedmotionand isofhigh in-
terest as amodel for biological samples [4, 309, 314], ion-conducting glasses [315,
316], or nuclear collisions [317]. When (infinitely) small particles, called tracers,
diffuse in a Lorentz gas, their dynamics is altered compared to Brownianmotion
due to the presence of obstacles [222, 314] as illustrated in Fig. VII.2 and briefly
discussed in Sec. II.1.4. Small orange tracers diffuse inside voids created by ama-
trix of blue obstacles. At a critical density of obstacles, nO,c, only one infinite void
cluster remains, giving rise to a localisation transition [222]. For densities larger
thannO,c, only finite voids are present and lead to tracer particles being localised.
Tracers diffusing in percolating void clusters can generally be explained by dif-
fusion in fractals [5, 99]. The MSD at the percolation (or localisation) transition
then follows

⟨Δr2⟩∞V
∝ t

2
dw , (VII.3)

where ⟨ ⋅ ⟩∞V
refers to theMSD being obtained by averaging overmotion inside

the infinite void cluster only. EquationVII.3 is valid for times far beyond themi-
croscopic time scale, where t ≫ R2

O/D0,T with the radius of an obstacle RO and
the free diffusion coefficient of a tracerD0,T. The exponent dw is called the walk
dimension and describes the dimension of a random walk conducted by a parti-
cle when diffusing inside a fractal. For Brownian motion, dw = 2, but for diffu-
sion in fractals, like in a percolating void cluster, dw ≠ 2, indicating anomalous
diffusion, i.e. αD ≠ 1. Inside the incipient infinite void cluster, particle move-
ment is limited by the obstacles and subdiffusion with dw > 2 is expected. For
the Lorentz gas in two dimensions, dw = 2.878 is found [5, 313].

Diffusion in a Lorentz gas at the localisation transition does not only include
diffusion inside an infinite void cluster, but also all finite clusters as schematically
depicted by the lower tracer in Fig. VII.2. When an average over diffusing parti-
cles in all void clusters—differently sized finite clusters and the infinite cluster—is
used, the MSD reads [5]

⟨Δr2⟩ ∝ t
2
dz (VII.4)



1. Obstructed Motion: Diffusion in a Lorentz Gas | 211

Figure VII.2: Schematic illustration of small tracers (orange) diffusing inside a Lorentz gas
formed by overlapping obstacles (blue).1

with the dynamic exponent, dz :

dz =
dw

1 − (d − df)/2
> dw . (VII.5)

Fora two-dimensionalLorentzgas,dz = 3.036 is found [222, 313]. EquationVII.4
is valid for R2

O/D0,T ≪ t ≪ t∞, where t∞ refers to the long-time limit.

To summarise, for very low densities, nO ≪ nO,c, Brownian motion with
αD = 1 is expected as particle motion is hardly affected by obstacles. When
nO < nO,c, particles diffuse within infinite void clusters, which can be treated
as homogeneous for length scales larger than lξ . As a result, the dynamics is
transiently subdiffusive inside the percolating cluster and becomes diffusive for
MSDs larger than l2ξ at long times, t∞ [5, 222]. At the critical density nO = nO,c,
only one infinite void cluster is present, resulting in αD = 2/dz ≈ 0.66. When
nO > nO,c, particles only diffuse in finite void clusters, within which they are
caged. Thus, the MSD levels off at a value around the characteristic cluster size,
lξ , so that αD = 0 for long times, t∞ [5, 222].
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2 Creation of Restricted Obstacles

To create a system exhibiting obstructed motion, the diffusion of small tracer
particles has to be affected by the presence of large obstacle particles. In the case
of a Lorentz gas, obstacles are fixed and can overlap, while tracers diffuse through
the resulting voids. In colloidal physics, a Lorentz gas can be realised by using a
suspension of two particle species with different sizes, where the larger particles
are fixed [318]. However, overlapof obstacles is usually not possible anddiffusing
tracers are not infinitely small in an experiment making it differ from the ideal
Lorentz model introduced in Sec. VII.1.

To experimentally realise a system similar to a Lorentz gas and additionally
be able to tune obstacle particle motion from being highly restricted to diffu-
sive, the diffuser setup described in Sec. III.2.2 is used. From Eqs. II.31 and II.34
and Fig. II.11 it is known that optical forces depend on the particle radius R as
does the potential arising from the interaction between colloids and a light field.
To quantify this behaviour, dilute samples of differently-sized polystyrene par-
ticles (R = 0.8, 1.05, 1.4, 2.05, 2.5, 2.9 µm: Sulfate Latex, Molecular Probes
Inc.; R = 1.56 µm: Micro Particles Based on Polystyrene, Fluka Analytical; R =
4.16 µm: Non-Functionalized Polymer Microspheres, Bangs Laboratories Inc.)
dispersed in purified water (Purelab Flex, ELGA LabWater, electrical resistivity
18.2⋅104Ωm)with area fractionsφA < 0.04 areproduced according to Sec. III.1.
The laser was used at the maximum output, PL = 2.6 W. Particles were observed
at 7.5 FPS for 59600 frames corresponding to an observation time tO ≈ 2.21 h
(Camera: Pike F-032B, Allied Vision Technologies GmbH)2. The FOV analysed
with the routines mentioned in Sec. III.3 was 460 × 460 px, which is equal to
171 µm × 171 µm.

Thetime-andensemble-averagedvariance,σ2
Δr,TE(Δt), of the two-dimensional

particle displacements, Δr, for different radii, R, can be seen in Fig. VII.3. For
Brownian motion, σ2

Δr,TE(Δt) ∝ Δt, as indicated by the black dashed line. In-
dependent ofR, all particles show a diffusive regime for small times Δt < 1 s fol-
lowed by a transient subdiffusive regime for 1 s < Δt < 100 s, where σ2

Δr,TE(Δt)
2This is the only time a camera differing from the one introduced in Sec. III.2.2 was used
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Figure VII.3: Time- and ensemble-averaged variance of two-dimensional displacements,
Δr, for particles of different radii R exposed to the light field created by the diffuser setup
at PL = 2.6 W. The black dashed line corresponds to σ2

Δr,TE(Δt) ∝ Δt resembling Brownian
motion.

increases slower than ∝Δt. For long times, Δt > 100 s, the dynamics becomes
diffusive again with a diffusion coefficient lower than that for short times. This
behaviour is thoroughly explained for a single particle size in Sec. VI.1. It was
studiedexperimentally for the same two-dimensional randompotential usedhere
and a similar one in Refs. [190] and [135], respectively. Here, the effect of parti-
cle size is the focus. Colloids of all sizes are exposed to the same light intensity
and accordingly show the same general behaviour. Yet the effect of the external
light field on particle dynamics becomes stronger with increasing R and plateau
regions in σ2

Δr,TE(Δt) become more pronounced at intermediate times. For the
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Figure VII.4:Obstacle-obstacle radial distribution functions for two different obstacle area
fractions: a) φA,O = 0.25 with φA,T = 0.08. b) φA,O = 0.71 with φA,T = 0.04. Measured g(Δr)
are plotted as blue squares while calculated g(Δr) using the Ornstein-Zernicke equation
and a hard-sphere potential [319] are plotted as orange lines. The corrected obstacle
radius, R∗

O, is used to normalise Δr.

smallest particle size, thedeviation fromBrownianmotion is relatively smallwith
a minimal anomalous diffusion exponent, αD,min = 0.54, while for the largest
particle size, R = 4.16 µm, αD,min = 0.23, indicating stronger subdiffusion for
larger R. Thus, at equal light field intensities, larger particles are more restricted
in their motion than smaller ones.

As a result, there should be a laser power PL, where particles with a large R
are restricted in their motion, while smaller particles can diffuse virtually freely,
i.e. large particles act as obstacles and the smaller ones as tracers. It is not ex-
perimentally possible to work with infinitely small tracers in a colloidal system.
Therefore, finitely-sized tracerswithRT = 1.4µmareused. They are chosen tobe
big enough so that they can be found and tracked properly in a videomicroscopy
experiment (cf. Sec. III.3.2.1) while having a large enough number in the FOV
to obtain good statistics. The size of the obstacles is chosen to be RO = 4.16 µm.
They are about three times larger than the tracers, but at the same time, still small
enough to create a systemcomposedof several differently sized clusters and voids
inside the FOV.
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Obstacle-obstacle interactionsare investigated in termsof theobstacle-obstacle
radial distribution function, g(Δr), calculated using a routine made available by
Eric Weeks [192]. In Fig. VII.4, it can be seen as blue symbols for φA,O = 0.25
and φA,T = 0.08 as well as φA,O = 0.71 and φA,T = 0.04 without any external
potential acting on the system. The first peak of the non-normalised g(Δr) for
the highly concentrated sample (not shown here), φA,O = 0.71, is situated at 7.9
µm corresponding to a corrected obstacle radius of R∗

O = 3.95 µm. Neither the
calculation, which was performed using more than 50 million coordinates that
were determined with subpixel accuracy [191], nor the bin size of g(Δr), which
was chosen tobe0.2µm, canaccount for suchadeviation. Additional heterodyne
near field scattering [320] and heterodyne near field velocimetry [321] measure-
ments resulted in particle radii of 4.01 µm and 4.05 µm, respectively. They cor-
roborate the notion that the actual size of the obstacle particles is ≲ 5 % lower
than that given by the manufacturer. The tracer-tracer radial distribution func-
tion (not shown here), on the other hand, indicates the same size given by the
manufacturer, i.e. RT = 2.8 µm.

Orange lines in Fig. VII.4 correspond to numerical solutions of the Ornstein-
Zernickeequation [198] for amonodispersebinary systemmadeupofhard spheres [319].
TheOrnstein-Zernicke equation relates the total correlation function of two par-
ticles h(Δr) = g(Δr) − 1 to direct and indirect interactions of the particle en-
semble and is solved using the modified Verlet approximation [322]. To fit the
measurements, a 10%smaller area fractionhas tobeassumed,whichalso corrob-
orates the assumption of the obstacles being slightly smaller thanRO = 4.16 µm.
The measured and calculated g(Δr) agree well for both area fractions. Hence, it
canbeconcluded thatparticles inside thebinarymixturebehave likehard spheres [319]
and cannot overlap as theywould in the idealised Lorentz gas. Even though trac-
ers are small, although not infinitely small as in the Lorentz gas, and obstacles
cannot overlap, the system made up of tracers with RT = 1.4 µm and obstacles
with RO = 4.16 µm is close to the conditions of the ideal model.
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2.1 Finding an Appropriate Laser Power

To find the value of PL which results in freely diffusing tracers and highly re-
stricted obstacles, amixture of polystyrene particles with sizesRT = 1.4 µm (Sul-
fate Latex 8 % w/v, 2R = 2.8 µm, polydispersity 3.2 %, Molecular Probes Inc.)
and RO = 4.16 µm (Non-Functionalized Polymer Microspheres, P(S/2% DVB),
10 % solids, 2R = 8.311 µm, polydispersity 5-10 %, Bangs Laboratories Inc.) dis-
persed in purified water was prepared according to Sec. III.1. Area fractions of
the tracerswereφA,T < 0.08 so that the systemwas always in adilute regime. Ob-
stacles had an intermediate concentration with φA,O = 0.27 ± 0.013, since φA,O
is varied in an experiment discussed later and should represent a generic value.
The laser power was varied from 0 to 2.6 W. The FOV was 1024 × 1024 px, cor-
responding to 247µm × 247 µm. Themeasurements were analysed for tO = 3 h,
corresponding to 108000 images. All tracks shorter than one minute were not
taken into account to eliminate very short tracks and thus possibly falsely found
particles (cf. Sec. III.3.3).

The time- and ensemble-averaged variance, σ2
Δr,TE(Δt) and the correspond-

ing anomalous diffusion exponent, αD(Δt) for tracers and obstacles for different
PL are shown in Fig. VII.5. When PL is increased, particle motion tends to be
more subdiffusive at times 1 s < Δt < 1000 s for both tracers and obstacles.
This behaviour is known from Sec. VI.1 and [135, 190] and stems fromPL corre-
sponding to the potential roughness, σU , where a larger roughness corresponds
to deeper potentialminima inwhichparticles canbe trapped. These deepermin-
ima lead to stronger subdiffusion. From Sec. VII.2, it is also known that differ-
ently sized particles feel differently strong potentials at equalPL. For no field and
PL = 34.4 mW, this feature is not seen as the potential does not exist or is too
weak. Both particle species show slight subdiffusion for σΔr ≳ 10 µm2 due to
the non-dilute particle concentration [323]. For PL ≥ 446 mW, the different re-
sponse to the applied light field becomes apparent. The minimum of αD(Δt) is
smaller for the obstacles than for the tracers. To obtain a system with diffusive
tracers and restricted obstacles giving rise to obstructed motion, a value of PL

3The interval given for φA,O represents the standard deviation.
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Figure VII.5: Time- and ensemble-averaged variance of two-dimensional displacements,
Δr, and corresponding anomalous diffusion exponents for particles of radii RT = 1.4 µm,
called tracers, and RO = 4.16 µm, called obstacles, with the area fractions φA,T < 0.08 and
φA,O = 0.27 ± 0.01. They are exposed to the light field created by the diffuser setup at
varying laser powers PL. The black dashed lines correspond to the theoretical result for
Brownian motion.

has to bepicked,whereαD(Δt) ≈ 1 for the tracers throughout themeasurement,
whileαD(Δt) for the obstacles is as small as possible. Themeasurement thatmost
closelymeets these requirements is the green line with upward pointing triangu-
lar symbols in Fig.VII.5. ForPL = 446mW, tracers are hardly affected by the im-
posed lightfield,while themotionofobstacles ishighly restricted. This restriction
can be weakened without altering tracer motion by lowering PL. When the laser
power is decreased, obstacles are less affected by the external potential created



218 | Chapter VII. Binary Colloidal Suspensions in Two-Dimensional Static Light Fields

by the light field (cf. VI.1). This results in a two-dimensional system with trac-
ers and obstacles, whose obstacle motion can be tuned from highly restricted for
PL = 446 mW—similar to a Lorentz gas—to free diffusion for PL = 0 mW—like
in binary mixtures [224, 323].

3 Measuring the Dynamics

A system exhibiting obstructed motion can be realised by using tracers with
RT = 1.4 µm and obstacles withRO = 4.16 µm exposed to the two-dimensional
light field coming from the diffuser setup (cf. Fig. VII.5). The dynamics of this
system was studied for varying obstacle area fractions 0.00 ≤ φA,O ≤ 0.88 and
laser powers 0 mW ≤ PL ≤ 446 mW. Samples were prepared as described
in Sec. VII.2.1. Particles were observed for tO = 3 h with 10 FPS adding up to
108000 images. Thearea fractionof tracerswasφA,T ≤ 0.05, so that tracer-tracer
interactions were negligible and colloids effectively act as single particles. Using
a FOV of 247 µm × 247 µm, φA,T translates to tracer particle numbers of less
than 695. All trajectories shorter than 60 seconds were omitted, which is nec-
essary to rule out trajectories made up of falsely found particles due to particle
concentration (cf. Sec. III.3.2.1). The rather small number of tracers reduces fur-
ther as particles enter and leave the FOV resulting in many particle trajectories,
ΔtL, being less than 108000 steps. This leads to noise in the calculated dynamical
quantities, especially for large times, when ensemble averages are used. To reduce
noise, the time and ensemble average can be used instead, which is advised to be
used in non-evolving systems only (cf. Sec. III.4.6).

To make sure the measured systems were not evolving in time, a generic sam-
ple with an intermediate concentration, φA,O = 0.26, and φA,T = 0.08 was ob-
served for a total of five hours. These five hours were split up into three mea-
surement intervals of tO = 3 h, where the first interval starts with the particles
being exposed to the laser field, the second measurement starts one hour later
and the third one twohours later. A comparison between the ensemble-averaged
variance of two-dimensional displacements, σ2

Δr,E(t), and the time and ensem-
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Figure VII.6: Ensemble- as well as time- and ensemble-averaged variances for a generic
sample with φA,O = 0.26 and φA,T = 0.08. a) The measurement starts with particles being
exposed to the external potential and lasts three hours. Differently averaged quantities
do not show the same result. b) The system is exposed to the external potential and could
evolve for one hour prior to being observed for three hours. As a result, σ2

Δr,E and σ2
Δr,TE

fall on top of each other.

ble average, σ2
Δr,TE(Δt), for the first and second measurement interval is shown

in Figs. VII.6 a) and b), respectively. For tracers, σ2
Δr,E,T(t) shows a small differ-

ence to σ2
Δr,E,TE(Δt), in the first measurement interval (Fig. VII.6 a)). Thus, their

dynamics slightly evolves in the first three hours after being exposed to the light
field. In Fig. VII.6 b), no such difference is observed. The same, but more ap-
parent, is true for obstacles. In Fig. VII.6 a), σ2

Δr,E,O(t) differs from σ2
Δr,TE,O(Δt)

indicating an evolution of the obstacle dynamics. When the system has been ex-
posed to the external potential for one hour and then measured for three hours,
this difference is gone. The same measurement was also conducted for concen-
trations reaching up toφA,O = 0.88, leading to the same result (not shown here):
the system evolves during the first hour after the first exposure to the light field.
After that, ensemble and time and ensemble average give the same result show-
ing the system has reached a steady state. Therefore, in the following, particles
are recorded for four hours with 10 FPS. Only the last three hours are analysed
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100 μm

Figure VII.7: Typical micrograph of the measurements discussed in this chapter, where
O .

4 Dynamics Depending on Obstacle
Concentration: The Lorentz Gas
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Figure VII.8: Measured obstacle dynamics for different obstacle area fractions, O.
a) Time- and ensemble-averaged variance normalised by the radius of a tracer T. b) Dif-
fusion coefficient normalised by the short-time tracer diffusion coefficient at O ,
s
T,0. c) Anomalous diffusion exponent. d) Time-averaged variance for single obstacle

trajectories with O .

4.1 Obstacle Motion Inside the Potential Landscape

O
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all φA,O, a distinctive yet similar trend is seen in σ2
Δr,TE,O(Δt). It is the same be-

haviourasdiscussed inSecs.VI.1 andVII.2. BelowΔt ≈ 0.1 tB,T andσΔr,TE,O(Δt) ≈
0.01 RT, obstacle motion corresponds to Brownian motion showing αD,O ≈ 1
and diffusion coefficients DO ≈ 0.1 Ds

T,0, where, of course, Ds
T,0 is larger than

that of the obstacles. Around the correlation length of the external potential,
lU ≈ RT, the variance σ2

Δr,TE,O(Δt) begins to indicate a deviation from Brow-
nian motion. Above this threshold, obstacles reach the flanks of the minima in
which they are trapped and are thus strongly influenced by the external poten-
tial. Their motion becomes strongly subdiffusive, showing anomalous diffusion
exponents around 0.4 and diffusion coefficients that drop below 0.01 Ds

T,0. For
Δt > 50 tB,T, σ2

Δr,TE,O(Δt) show more diffusive behaviour with a rising value
of αD,O(Δt) and almost constant DO(Δt). This stems from obstacles diffusing
fromone potential minimum to the next with a constant long-time diffusion co-
efficient,Dl

O, two orders ofmagnitude belowDs
T,0 (cf. Sec. VI.1). Thus, obstacles

are highly restricted in their diffusivemotion, which is consistent with the results
shown in Fig. VII.5.

Figure VII.8 d) additionally shows σ2
Δr,T,O(Δt) with φA,O = 0.20 for 100 ran-

domly chosen particles that were in the FOV for the whole measurement. At
this area fraction, obstacles are so numerous that single particle variances give in-
sightful results, while being so dilute that inter-particle interactions do not play
a prominent role. The distinctive drop of all variances for Δt ≳ 1000 tB,T stems
from the statistical correlationof samples forΔt approachingΔtL (cf. Sec. III.4.6).
Most of the time-averaged single trajectory variances of the obstacles level off at
σ2
Δr,T,O(Δt) ≤ 10 µm2 ≈̂ 5R2

T indicating that obstacles are trapped inside a lo-
cal minimum of the external potential for the whole observation time. Only a
minority of particles show σ2

Δr,T,O(Δt) not levelling off corresponding to an only
partly restricted motion.

Besides the influence of the external potential, inter-particle interactions can
play an important role. The higher the concentration of the obstacles, the more
restricted their motion since the area they can cover becomes smaller. This intu-
itive correlation has already been described for two-dimensional diffusion with-
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out any external potential landscape [180, 323]. It is also valid for thepresent case,
where PL ≠ 0 mW, as can be seen from σ2

Δr,TE,O(Δt) andDO(Δt). Both quan-
tities are successively shifted to lower values whenφA,O is increased. The highest
concentrated sample exhibits a long-timediffusion coefficientwhich is one order
of magnitude lower than that for the lowest area fraction.

4.2 Tracer Motion Depending on Obstacle Concentration

From Secs. VII.2.1 and VII.4.1, it is known that obstacles are highly affected
by the external random potential landscape imposed on the sample. This leads
to diffusion coefficients two orders of magnitude lower than Ds

T,0, while tracers
are barely affected. Depending on the obstacle concentration, as described by
the area fraction, φA,O, obstacle particles can form clusters with a characteristic
length, lξ , similar to the situations described in Sec. VII.1. Tracers (φA,T ≤ 0.05)
diffuse through the voids created by the highly restricted, almost static obstacles.
InFigs.VII.9 a)–d), thevariance,σ2

Δr,TE,T(Δt), diffusioncoefficient,DT(Δt), anoma-
lousdiffusionexponent,αD,T(Δt)andaveragednormalisedexcesskurtosis,γα,xy(Δt) =
(γα,x(Δt) + γα,y(Δt))/2, of tracer motion are shown for different obstacle area
fractions. Results for times Δt > 300 tB,T should be interpreted with caution
as they are very noisy. Therefore, only results for Δt ≲ 300 tB,T are taken into
consideration.

By comparing Figs. VII.8 a) and b) to Figs. VII.9 a) and b), it can be seen that
the tracers are in general more mobile than the obstacles. Their diffusion coeffi-
cients only obtain similar values for high φA,O. This corroborates the picture of
voids formed by almost static obstacles through which free tracers diffuse. For
φA,O = 0.0, no indication of anomalous behaviour is found in σ2

Δr,TE,T(Δt),
whereasDT(Δt), αD,T(Δt) and γα,xy(Δt) show slight deviations fromBrownian
motion at Δt ≈ tB,T, reminiscent of colloidal particles in an external potential
landscape (Sec. VI.1). It exhibits a very mild form however, where αD,T > 0.95
and γα,xy < 0.2, and should thus not be critical in the following discussion. In
general, tracer motion is slowed down for all observed obstacle area fractions
0.09 ≤ φA,O ≤ 0.88. From Sec. VII.1, three different regimes are expected
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Figure VII.9: Tracer dynamics for different obstacle area fractions φA,O. a) Time- and
ensemble-averaged variance normalised by the radius of a tracer, RT. b) Diffusion co-
efficient normalised by the short-time tracer diffusion coefficient at φA,O = 0, DsT,0. c)
Anomalous diffusion exponent. d) Normalised excess kurtosis averaged over x- and y-
direction.

for a Lorentz gas, where, for low obstacle concentrations, tracers should exhibit
diffusivemotion at long times, and highφA,O should result in an upper threshold
for the variance, σ2

Δr,TE,T(Δt). Between these extreme cases, a transition regime
following Eq. VII.4 should be found.

For low to intermediate obstacle area fractions, 0.09 ≤ φA,O ≤ 0.58, the re-
sults inFig.VII.9 showdiffusive short-timemotion,whereDs

T = DT(Δt ≪ tB,T)
successively decreases with increasing obstacle concentration. For φA,O < 0.37,
transient subdiffusive behaviour can be seen for 0.1 tB,T < Δt < 300 tB,T. Dur-
ing this time span, DT(Δt) continuously drops from a constant short-time dif-
fusion coefficient slightly below Ds

T,0 to a constant value < Ds
T for long times.
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The anomalous diffusion exponent exhibits αD,T(Δt) ≳ 0.90, then rises back to
1.0 and γα,xy(Δt) ≈ 0.2 before it drops to 0.0, indicating Gaussian behaviour
for long times. These trends can be explained by limited obstruction due to the
larger particles, which formclusterswith a characteristic length, lξ (cf. Sec.VII.1):
at intermediate times, tracers feel the presence of (clustered) obstacles and thus
exhibit subdiffusive motion as they cannot diffuse freely. At longer times and
therefore larger length scales, the finiteness of clusters, or the infiniteness of voids
through which tracers diffuse, takes effect. Tracer motion is not affected by ob-
stacles on length scales larger than lξ—most obstacle clusters are smaller—and
becomes Brownian again.

When 0.37 ≤ φA,O ≤ 0.58, a return to Gaussian behaviour for long times is
no longervisible. InFig.VII.9 a), deviations fromBrownianmotion inσ2

Δr,TE,T(Δt)
become apparent. At long times,DT(Δt) does not become completely constant.
It decreases slightly, but continuously with time. The anomalous diffusion ex-
ponent increases for long times but does not return to 1.0. The minimum of
αD,T(Δt) shifts to larger Δt and decreases for an increasing obstacle concentra-
tion. Additionally, γα,xy(Δt) displaysmaxima of values ≲ 0.4 and does not drop
to 0.0 for long times. Tracers at 0.37 ≤ φA,O ≤ 0.58 generally show the same be-
haviour as observed forφA,O < 0.37: diffusivemotion at short times,Δt ≪ tB,T,
is followed by aφA,O-dependent, pronounced subdiffusivemotion at intermedi-
ate times, 0.1 tB,T < Δt < 300 tB,T. For long times, Δt ⋙ tB,T, tracer motion
tends to become Brownian again. The absence of Brownian behaviour for long
times when 0.37 ≤ φA,O ≤ 0.58 compared to when φA,O < 0.37 can be ex-
plained by the increased size of obstacle clusters for φA,O ≥ 0.37. When lξ is so
large that tracers donot cover this distance duringΔtL, Brownian behaviour can-
not be seen for long times. Yet for0.37 ≤ φA,O ≤ 0.58, a tendency towardsdiffu-
sive tracer motion is found. These observations then allow for lξ to be estimated
from σ2

Δr,TE,T(Δt). For example, when φA,O = 0.25, it lies around √70 RT.

For very high obstacle area fractions,φA,O > 0.71, σ2
Δr,TE,T(Δt) does not only

deviate from normal diffusion but tends to level off. Accordingly, DT(Δt) de-
creases with time and αD,T(Δt) does not exhibit a minimum but also decreases.
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Throughout thewholemeasurement, tracermotion isnon-Gaussianwithγα,xy(Δt)
exceeding values of 0.5 and not going back to 0.0. This behaviour stems from
the high concentration of obstacles leading to voids caging the tracers to a finite
area. This finiteness leads to an upper threshold of ∼ l2ξ for the area that tracers
can cover (cf. Sec. VII.1). Consequently, σ2

Δr,TE,T(Δt) should level off at about
l2ξ and DT(Δt) as well as αD,T(Δt) should decrease until both reach zero. For
φA,O = 0.88, σ2

Δr,TE,T(Δt) tends to level off and only reaches a quarter of an ob-
stacle diameter during the available ΔtL but does not become constant. This in-
dicates that a longer observation time would be needed to experimentally prove
the theoretical predictions stated in Sec. VII.1.5

Between low and high obstacle area fractions, a transition regime is observed
in Fig. VII.9. It is most pronounced in αD,T(Δt), which tends to return to 1.0 for
φA,O ≤ 0.58 and steadily decreases for φA,O > 0.71. For 0.67 ≲ φA,O ≲ 0.71
however, αD,T(Δt) levels off at around 2/3.036—the value expected for diffusion
at the critical density in a two-dimensional Lorentz gas (cf. Sec.VII.1) [222, 313].
A similar trend can be seen inDT(Δt), which scales as Δt2/3.036−1, while it lev-
els for low φA,O and increasingly drops faster as time proceeds for high obsta-
cle area fractions. In γα,xy(Δt), no particular trend can be seen for concentra-
tions in the transition regime. Maximum values lie around 0.6–0.8 and do not
drop to 0.0 for long times, thus blending in well with data seen for lower and
higher φA,O. The peculiar behaviour of tracer motion in the transition regime
can be explained by means of the Lorentz gas and percolation. When φA,O is in-
creased, the system changes from featuring several infinite voids to only having
finite voids. At a specific concentration during that transition, only one infinite,
percolating void is present. This void, together with all other finite voids, results
in σ2

Δr,TE,T(Δt) ∝ Δt2/3.036. According to Fig. VII.9, this specific area fraction
is reached when 0.67 ≤ φA,O ≤ 0.71 and can thus be identified as the critical
density of the system causing the localisation transition, φA,O,c (cf. Sec. VII.1).

5As the largest ΔtL lasted three hours, an increase of two orders of magnitude would result in one
measurement lasting several weeks and is thus not feasible.
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4.3 Discussion

The previous section revealed the system used here, made up of highly re-
stricted obstacles with smaller tracers diffusing inside the resulting voids, closely
resembles the caseofdiffusion insidean idealisedLorentzgasdescribed inRefs. [5,
222]. Tracer motion for long times changes from being diffusive for a low obsta-
cle concentration to constant subdiffusion for the localisation transition before it
tends to be localised for very highφA,O. The present results show the same expo-
nent, 2/dz = 2/3.036, for diffusion at the critical obstacle area fraction, φA,O,c,
as proposed in Refs. [5, 222]. From Fig. VII.9, φA,O,c ≈ 0.68 can be inferred.6

Bauer et al. [222] observe a critical density of n∗
O,c = 0.359, which translates to

φ∗
A,O,c = n∗

O,c π = 1.129. This value stems from the idealised Lorentz model,
where obstacles can overlap. This is different from the present case where φA
values larger than 1.0 are not feasible. The value of φA can be adjusted by mod-
els that mimic the present situation more closely (see below). Simulations on
non-Gaussian parameters of tracer motion in a three-dimensional Lorentz gas
showed increasingly non-Gaussian behaviour for higher obstacle concentrations
similar to that found here [324]. A further investigation of the dynamic charac-
teristics of the studied system by relating the long-time diffusion coefficient to a
so-called separation parameter, like in Refs. [222, 325], did not yield reliable re-
sults. A reason for this might be problems in determining the long-timeDT as it
was not feasible to conductmeasurements long enough for the system to adopt a
certain constant diffusion coefficient at the end of each measurement.7

The system investigated here differs from the idealised Lorentz gas as obsta-
cles are highly restricted in their motion but not fixed, obstacles cannot overlap,
tracers are not infinitely small and the observed area is finite. The latter is found
to change the critical obstacle area fraction to slightly higher values following

6There are several curves in Fig. VII.9 c) whose plateau values are close to 2/3.036. The red curve
reflecting φA,O,c = 0.68 fits best.

7To reliably cover the eight to ten orders of magnitude in time Schnyder et al. [325] and Bauer et
al. [222] used to determine long-time diffusion coefficients, onemeasurement would have to last
three to five orders of magnitude longer than those presented here. That would amount to about
103 h =̂weeks.



228 | Chapter VII. Binary Colloidal Suspensions in Two-Dimensional Static Light Fields

Infinitely Small Tracer Cherry-Pit Obstacle Tracer Particle Obstacle Particle

a) b)

Figure VII.10: The cherry-pit model and its application to the present situation.
a) Schematic of the cherry-pit model with obstacles made up of a non-overlapping core
(blue) and a shell (orange) that cannot be penetrated by the small tracers (orange) which
diffuse inside the voids. b) Due to gravity, the interaction distance is not equal to T O
but T O. Coloured backgrounds indicate core and shell of an equivalent cherry-pit
obstacle. a) adapted from [325, 326].
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obstacle sizes. It is also called the interaction distance and is equal to RT + RO

for a purely two-dimensional system [325]. The sample used in this work is not
purely two-dimensional but ratherquasi-two-dimensional. Due togravity, tracer
and obstacle particles sediment and are situated close to the bottomof the sample
cell. As they have a different size, their distance projected on two dimensions is
smaller than RT + RO, as indicated by a dashed line in Fig. VII.10 b), and can be
determined to be 2√RTRO. The orange and blue backgrounds are the resulting
shell and core, respectively. For the cherry-pit model, the critical area fraction,
φA,C,c, depends on the obstacle area fraction as well as the tracer and obstacle
size. Schnyder et al. [325] determined critical densities depending on the obsta-
cle area fraction. For the value determined from Fig. VII.9, φA,O,c = 0.68, they
find a critical cherry-pit area fraction, φ∗

A,C,c ≈ 0.25 π = 0.79. To compare this
value to φA,O,c,

φA,C,c =
NFOV,O π 4RTRO

AFOV
(VII.6)

has tobedetermined,whereNFOV,O is thenumberof obstacles in thefieldof view.
From φA,O,c, the number of obstacle is found to be ≈ 760, which then yields
φA,C,c ≈ 0.91, close to theφ∗

A,C,c ≈ 0.79 found inRef. [325]. When thecorrected
obstacle radiusR∗

O is used (cf. Sec. VII.2),φA,C,c is calculated to be 0.87. Consid-
ering the observed area used in the work described in this thesis is much smaller
than the box used in Ref. [325], which slightly increases critical area fractions,
the value for φA,O,c obtained here agrees well with the literature. Similar to the
ideal Lorentz gas, the cherry-pit model causes subdiffusion over several orders
of magnitude in time at the critical concentration. Schnyder et al. [325] found
an anomalous diffusion coefficient slightly below 2/dz . As dz is believed to be a
universal exponent for transport in two-dimensional percolating clusters [331],
they argue that they overestimated the critical area fraction causing them to get
lower values. This underestimation of dz is not found here, corroborating that it
is a universal exponent.

Another difference between an ideal Lorentz gas and the present system is the
obstacle motion. In a Lorentz, gas obstacles are fixed, whereas here obstacle mo-
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tion is highly restricted but still takes place. Berry et al. [328] investigated ob-
structed motion for this very case, where so-called Ornstein-Uhlenbeck obsta-
cleswere simulated. Theseobstacles arenotfixedbut conductBrowninanmotion
with a feedback relaxation restricting the area they cover to a small region. Thus,
this model is very close to the obstacles used in the work described in this thesis,
which are also confined to certain regions due to the interaction with the exter-
nal potential landscape, as can be seen by the levelling variances in Fig. VII.8 d).
Berry et al. found that subdiffusion similar to a Lorentz gas does not extend over
the whole simulation time, which lasted five orders of magnitude, for Ornstein-
Uhlenbeck obstacles diffusing less than an order of magnitude slower than the
tracers, i.e. Ds

O,0/Ds
T,0 > 0.1. For slower obstacles, subdiffusion with DT ∝

Δt2/3.036−1 is found. As the obstacles used here have a diffusion coefficient two
orders of magnitude lower than that of the tracers, the present results agree well
with these observations. Whether the obstacles used in this work create an ideal
Lorentz gas or are rather of the Ornstein-Uhlenbeck type that eventually result
in diffusive tracer motion as suggested by [328], cannot be resolved completely.
Considering the big difference in diffusion coefficients between obstacles and
tracers together with the findings in Ref. [328], observation times would have to
be much larger than five orders of magnitude to clarify this question.

Besides Ornstein-Uhlenbeck obstacles, the cherry-pit model and finite mea-
surement areas, several other extensions of obstructed motion in a Lorentz gas,
such as soft obstacle-tracer interactions, which lead to a rounding of the locali-
sation transition [325], have been studied. Zeitz et al. simulated active tracers in
a two-dimensional Lorentz gas that reached similar subdiffusive regimes faster
than passive ones [332]. Furthermore, tracers driven through a Lorentz gas are
found to have diffusion coefficients enhanced by several orders of magnitude,
similar to the case of giant diffusion [270] and particles driven through a ran-
dompotential energy landscape (cf. Sec. VI). Instead of changing interactions or
tracermovement, the Lorentz gas itself can bemodified by increasing themobil-
ity of the otherwise fixed obstacles [20, 328, 333]. How this changes the diffusion
of tracers is discussed in the following section.
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5 Dynamics Depending on Obstacle Mobility

In the previous section, a Lorentz gas-like system was introduced by restrict-
ing themotionofobstacleparticles via an external randompotential energy land-
scape created by lightwhile smaller tracer particles diffused through the resulting
voids. In this section, the restrictionofobstaclemotioncausedby theexternalpo-
tential is (partly) removed by changing the potential roughness. From Sec. VI.1,
the laserpower is known tochangeσU , where largerPL lead toahigher roughness
and a stronger effect on particlemotion. Lowering the laser power thus results in
less restricted obstacle motion. How this alteration affects tracer diffusion forms
the focus of this section.

Figures VII.11 a) and b) show the variance σ2
Δr,TE,O(Δt) and diffusion coeffi-

cient DO(Δt) (inset) of obstacle motion for three different PL and two obstacle
area fractions, φA,O = 0.68 and 0.74, respectively. They can be regarded as the
equivalent to Figs. VII.8 a) and b), with PL being the varying parameter instead
of φA,O. Obstacle area fractions are chosen so that they represent φA,O,c = 0.68
and a value slightly above it. Curves in red and pink are also shown in Fig. VII.8
using the same colours. In accordance with Secs. VI.1 and VII.4.1, σ2

Δr,TE,O(Δt)
and DO(Δt) follow the same trend for all three laser powers. After a diffusive
regime for Δt < tB,T, obstacle dynamics are subdiffusive until Δt > 100 tB,T.
For larger times, obstacles are diffusive againwith a reduced diffusion coefficient.
The reduction inDO(Δt) strongly dependson the appliedPL: for the laser power,
PL = 446 mW, used in the previous Section VII.4, diffusion is slower by about
an order ofmagnitude thanwith no external potential applied. A thirdmeasure-
ment with a slightly reduced PL for both φA,O results in aDO for long times that
lies between the values for PL = 446 mW and PL = 0 mW. The reason for this
PL-dependent diffusive behaviour of the obstacle particleswas given in Sec. VI.1.

An additional aspect to consider beyond the previously discussed measure-
ments is the effect concentration has on dynamics, even when PL = 0 (cf. Sec.
VII.4.1). From Fig. VII.8 d), it can be seen that not all particles are affected in
the same manner by the external potential at PL = 446 mW: most of them are
trapped while some diffuse more freely. To visualise how this changes when PL
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Figure VII.11: Obstacle and tracer dynamics for different PL and two φA,O. a) and b)
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and d) Normalised diffusion coefficients of tracer motion for φA,O = 0.68 and φA,O = 0.74
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is decreased, the time-averaged variances, σ2
Δr,T,O(Δt), of 100 randomly chosen

single obstacle particle trajectories from all obstacle particles present throughout
a whole measurement are plotted in Fig. VII.12. It represents the same measure-
ments shown in Fig. VII.11 b), where φA,O = 0.74. Additionally, the probabil-
ity density function of the logarithmically normalised time-averaged variance,
P(log(σ2

Δr,T,O)), is shown for four times, Δt ≈ 0.1, 1, 10 and 100 tB,T. These
times are marked by the dashed lines on the left-hand side. Figure VII.12 in-
dicates a strong reduction in the number of trapped obstacles as PL is succes-
sively decreased. At PL = 446 mW, a large number of particles are trapped,
showing σ2

Δr,TO < R2
T for Δt ≈ 100 tB,T. This changes at PL = 250 mW and

0mW,where the restrictionof obstacle diffusion is largelyweakened. Constantly
trappedparticleswith levellingvariancesbelowR2

T areno longer seen. In contrast
to PL = 446 mW, the applied external potential energy landscape at lower pow-
ers does not feature strong enough traps to keep obstacle motion to a fraction of
the tracer radius. At PL = 0 mW, obstacle particles are not trapped. They are
only affected by neighbouring obstacles since φA,O ≠ 0. Thus there is a strik-
ing difference in obstacle dynamics for the three different laser powers as they go
from being highly restricted for PL = 446 mW to a behaviour which only mildly
deviates from Brownian motion.

How this difference manifests itself in the tracer motion can be seen in Figs.
VII.11 c)–f). They show the normalised tracer diffusion coefficient,DT(Δt), and
anomalousdiffusionexponent,αD,T(Δt), for the sameφA,O andPL forwhich the
obstacle dynamics is shown in Figs. VII.11 a) and b). The curves in red and pink
for PL = 446 mW are plotted in the same colours in Fig. VII.9 b) and c). The red
curves in Fig. VII.11 c) and e) represent φA,O = φA,O,c = 0.68 at PL = 446 mW
and thus exhibit the localisation transition-characteristic slope in DT(Δt) and
plateau in αD,T(Δt) (shown as dashed lines). When the laser power is lowered
for φA,O = 0.68, DT(Δt) successively decays in a slower fashion. It even forms
a plateau for Δt > 100 tB,T when no external potential is present. The same be-
haviour is reflected inαD,T(Δt), where a rising trend canbe seen forΔt ≳ 50 tB,T
when PL = 230 mW and a return to 1 when no potential is imposed on the ob-
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with φA,O = 0.74 > φA,O,c. Still, tracer dynamics show the same reaction to
a decreasing PL that is found for the critical area fraction: instead of showing a
localised diffusion indicated by DT(Δt) decreasing stronger than ∝Δt2/3.036−1

as it is found for PL = 446 mW, a plateau becomes apparent for long times.
Accordingly, αD,T(Δt) starts to rise for Δt ≳ 50 tB,T similar to the case where
PL is decreased for φA,O = φA,O,c. Thus, independently of φA,O, the Lorentz
gas-like system found for PL = 446 mW is successively altered when laser pow-
ers are lowered. The formerly localised diffusion gives way to a transient sub-
diffusive behaviour. This stems from the obstacles no longer being trapped or
highly restrictedwhenPL < 446mW(cf. Fig. VII.12). Instead of obstacles form-
ing a percolating void cluster at φA,O = φA,O,c, they diffuse up to an order of
magnitude faster than they would at PL = 446 mW. Consequently, void struc-
tures change more rapidly. Obstacles do not form a static, impermeable wall,
but rather a diffusing layer that constantly changes its shape while it opens and
closes holes through which tracers can diffuse. This does not resemble the sit-
uation of a Lorentz gas at the critical obstacle area fraction, but rather that of a
freely diffusing binary mixture of small and big particles, which shows transient
subdiffusion and Brownian motion for long times similar to what can be seen
here [323]. The same argument works for φA,O = 0.74. There, no percolating
void cluster but rather voids localising tracers are formed by the obstacles when
PL = 446 mW. For a lower laser power, these localising voids undergo steady
structural change causing tracers to be delocalised. This leads toDT(Δt) exhibit-
ing a plateau and αD,T(Δt) returning to 1 for long times and implies long-time
Brownian behaviour. The single-particle analysis of tracer motion, similar to the
one for obstacle particles presented in Fig. VII.12, does not reveal any distinctive
features other than the subdiffusive motion discussed in this paragraph and is
therefore not shown here.

5.1 Discussion

In the previous section, it was found that, for long times, a transition from a
Lorentz gas-like subdiffusive behaviour to normal diffusion occurs when obsta-
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cles aremobilised. Sucha transitionhasbeendescribed in the literature [314, 328,
333–335], albeit using slightly different approaches and systems.

Saxton [314, 333, 334] used point obstacles on lattices with point tracers con-
ducting a random walk to non-occupied lattice points. For a system made up
of immobile obstacles only, results agree with the diffusion in a percolating void
presented in Sec. VII.1. He changed the ratio of immobile to mobile obstacles
and also the rate with which mobile obstacles jump, i.e. the diffusion coefficient.
Both lead to qualitatively the same result: the more mobile obstacles are present
and the larger the diffusion coefficient of the obstacles, the sooner tracers tend
to be diffusive and the faster their diffusion becomes. This agrees well with the
findings discussed in this thesis, where a lowerPL leads to less-pronounced tran-
sient subdiffusion (cf. Fig. VII.11). Saxton emphasised the importance of obsta-
cle motion-dependent time scales for the tracer dynamics [333], also in the con-
text ofmeasuring theobstructedmotion inbiological samples, where, depending
on the technique, subdiffusion of tracers might be observed or not [314]. Ap-
plied to the results presented here, this raises the question of whether or not the
continuous subdiffusive behaviour for PL = 446 mW is found to be diffusive
at larger Δt. Longer observation times would, however, result in measurements
taking days to weeks, which might not be feasible due to possible instabilities of
the experimental setup.

Tremmel et al. [335] also found that mobile obstacles lead to a disappearance
of the continuous subdiffusive tracer motion. Additionally, they extended Sax-
ton’s approach for different obstacle sizes and shapes. Bigger obstacleswere found
to yield an increased critical density. Thus spheres have to be concentrated higher
than points to reach the localisation transition. Irregular shaped proteins as ob-
stacleson theotherhandweremoreefficient than spheres, resulting inadecreased
critical area fraction.

Another simulation study by Berry et al. [328] was based on finite spherical
tracers and obstacles, which could overlap. Although they used finite sized par-
ticles, they were said to be in the picometre range. Therefore, time scales can-
not be compared to the results discussed here. For the case of immobile ob-
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struction, they found results agreeing with [222], which is also close to the result
found in Secs. VII.4.2 and discussed in Sec. VII.4.3. Furthermore, they extended
their model to mobile Brownian, Ornstein-Uhlenbeck and polydisperse obsta-
cles. Brownian obstacles were found to have the strongest effect on the localisa-
tion transition. Even for diffusion coefficients four orders of magnitude lower
than that of the tracers, a change from the characteristic tracer subdiffusion, i.e.
localisation, to a transient subdiffusive behaviour is found. Ornstein-Uhlenbeck
particles are more effective obstacles. They also conduct Brownian motion but
feature a feedback relaxation which restricts them to an area around their aver-
age position. When these obstacles are present, the Lorentz gas-like subdiffusive
behaviour for tracers is found for obstacle diffusion coefficientsmore than an or-
der of magnitude below the short-time tracer diffusion. This observation agrees
well with the results shown in Fig. VII.11. As PL is decreased, obstacle particles
become more Brownian. This in turn leads to the diffusive tracer motion at long
times, similar to [328]. Polydispersity of obstacles on the other hand is not found
to have a strong influence in the simulations of Berry et al.. Thus, the particle size
distributiondoesnot seem toplay an important role as long as the amountof void
area stays the same.

Finally, obstructedmotionwithmobile obstacles is of great interest for biomo-
lecules. Saxton [333] explained themotion of a lipid in amembrane withmobile
obstacles hindering it. Tremmel et al. [335] used the idea to describe the diffu-
sion of molecules hindered by proteins in a chloroplast membrane. Protein lat-
eral movements in lipid bilayers are said to be diffusive for long times due tomo-
bile obstacles [336]. Similarly, the unique subdiffusive behaviour of molecular
motion on cells [337, 338] could be explained by mobile, not immobile obsta-
cles [328].





VIII Conclusions

I n this thesis, a set of examples of driven and obstructed dynamics of colloidal
particles inone- and two-dimensional randompotentialshavebeendiscussed.

In Chapter IV, particles quenched by a one-dimensional random potential were
in focus. Itwas found that thequench led to a temporarily enhanceddiffusion co-
efficient while the particles relaxed into the potential minima and subsequently
showed subdiffusion. The obtained experimental results agree well with simula-
tions. The characteristics of the transient superdiffusion depends on the rough-
ness of the external potential,σU , where themaximumof thediffusioncoefficient
showed a linear increase and the time atwhich themaximumwas reached a loga-
rithmic decrease with increasing σU . Furthermore, the normalised excess kurto-
sis transiently showednegative values indicating a broadening of the shoulders in
the van-Hove function. Similar observations were made for simulated random,
periodic and quasicrystalline potentials.

Building on those findings, particles were periodically quenched by similar
one-dimensionalpotentials inChapterV.Dependingon the frequencywithwhich
the realisations of the external potential were changed, the long-time diffusion
coefficient of the colloids was reduced, enhanced or unaffected resembling a res-
onance curve-like behaviour. For very large periods, a behaviour similar to that
discussed in Chapter IV was found. Intermediate periods led to a strong en-
hancementwithparticlesbeingconstantlydrivenby thechangeofpotentialswith
the optimum period, τ0, showing the strongest enhancement. For small periods,
the realisation of the random potential was changed too fast for the colloids to
react. Thus, they showed Brownian motion. The shape of the oscillations of the
time-dependent diffusion coefficient revealed whether the potential they were
exposed to varied with a period above or below the optimum. Convex oscilla-
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tions indicated periods lower than τ0 while concave oscillations were caused by
periods larger than the optimum. Again, the experimental results showed good
agreement with simulations. The dynamics in this system showed similarities to
resonance phenomena like stochastic resonance and resonant activation, where
the latter showed the closest relations to the characteristics found here.

After a couple of one-dimensional problems had been discussed, Chapter VI
concerned the exertion of a two-dimensional random potential on driven col-
loidal particles. Both the force with which the particles were dragged and the
roughness of the random potential were changed. The particle dynamics was
separately analysed for the direction parallel to the drag force (x-direction) and
that perpendicular to it (y-direction). Independent of the absolute values of drag
force and potential roughness, five different regimes could be found for the mo-
tion in x-direction. When no drag force was present, the particles showed the
same dynamics that was discussed in the literature for diffusion in one- and two-
dimensional randompotentials. For small forces, only a fewparticlesweredragged
outof the localpotentialminimaand thus thevan-Hove functionexhibitedasym-
metry with a leading tail. Intermediate drag forces led on average to a compen-
sation of this very force and forces due to the random potential. The van-Hove
function was stretched resulting in a strong enhancement of the diffusion coef-
ficient and a negative normalised excess kurtosis. When drag forces were large,
most particles were dragged out of the local potential minima and the van-Hove
function showed asymmetry with a trailing tail. For even larger forces, the ex-
ternal potential was weaker than the drag force resulting in Brownian motion
with amean displacement reflecting the drag velocity. The drag force-dependent
enhancement of the diffusion coefficientwas compared to the case of giant diffu-
sionwhich exhibits similar results. In the y-direction, the subdiffusive behaviour
found without a drag force was successively mitigated when drag forces became
larger. For the largest drag force, the dynamics in x- and y-direction became sim-
ilar. Additionally, the first-passage times were discussed showing strong devia-
tions from theory with the long-time tail decaying successively slower for larger
potential roughnesses.
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The last experiment in this thesis is discussed in Chapter VII and is based on
the same setup used in Chapter VI. This time, a sample made up of two particle
species with different sizes is placed inside the two-dimensional random poten-
tial. Thebigger particles, also referred to as obstacles, reactedmore strongly to the
external potential than the smaller ones, called tracers, and were thus restricted
in their motion while the tracers almost diffused as if they were free. Depending
on the concentration of the obstacles, they formed random labyrinth-like struc-
tures with voids in which the tracers could diffuse. For small obstacle concen-
trations, the long-time tracer dynamics was diffusive while for large concentra-
tions, it became subdiffusive. In between these two extremes there was a critical
concentration that resembled a localisation transition of the network formed by
the obstacles. Thus the findings were similar to the dynamics of tracers diffusing
inside a Lorentz gas. Furthermore, the obstacle motion could be tuned by the
roughness of the external potential. By lowering σU , the obstacles became more
mobile. This resulted in amitigation of the localisation transition and in the trac-
ers showing long-time diffusion instead of subdiffusion.
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