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Abstract

Motivated by the recent progress in the solution of large scale semidefinite programs, in par-

ticular with the program package SDPNAL [35], this thesis investigates in how far semidefinite

programs can be used in a branch and bound approach for solving the maximum stable set

problem.

Chapter 2 provides an introduction to semidefinite programs.

Chapter 3 briefly describes how SDPNAL solves semidefinite programs. Lemma 7, the proof

of Lemma 8, Remark 2 and Example 2 are the main contributions of this chapter.

The maximum stable set problem and some known facts are presented in Chapter 4. Classical

relaxations for the maximum stable set problem are the Lovász θ-number (4.8) and the Lovász-

Schrijver θ′-number (4.9). We recall some well known alternative relaxations. In Theorem 10,

based on the proof of M. Laurent [20], the proof of equivalency of two such formulations (4.6)

and (4.8) is extended to the doubly nonnegative cone. Theorem 9 presents a new proof for

the relation of (4.6) with another relaxation (4.7). A new relaxation of (4.7) is introduced in

problem (4.18). According to Proposition 3, all semidefinite relaxations in this chapter are

mathematically equivalent. A numerical comparison of them given in Table 4.1 is intended

to illustrate possible rounding errors associated with the approximate solution generated by

SDPNAL. The last discussion of this chapter is concerned with the computation a valid upper

bound on the optimal value of a primal semidefinite program from an approximate solution

under generic nondegeneracy conditions.

The last four chapters present and analyze the branch and bound strategy to solve the maxi-

mum stable set problem. At each level of branching a series of semidefinite relaxations is solved

providing a valid upper bound to the stable set problem. We complement the semidefinite up-

per bound by modifying a randomized approach (due to Goemans and Williamson) to generate

feasible and locally optimal solutions to the stable set problem. We show (Proposition 1) that

the distribution for generating the approximate solution to the maximum stable set problem is

not dependent on the factorization of the optimal solution of the semidefinite relaxation. The

main contributions of these chapters are listed as follows:

1. To avoid inaccurate results caused by rounding errors and truncation errors in the solu-

tion generated by SDPNAL, we propose a practical method applied to an approximate

solution of the Lovász-Schrijver number (4.9). The method provides a reliable upper

bound on the stable set problem.

2. We develop a new approach for estimating the stability number of a given graph (Section

6.1). To apply this method, we assume that an upper bound on the stable set problem is

known. We introduce a random {0, 1}-vector and solve a number of relaxations (4.6) for a

graph defined via the {0, 1}-vector. Three different strategies are presented to construct

a random {0, 1}-vector with the goal of reducing the dimension of the relaxations (4.6)



(Section 6.1.1).

3. Another approach contributed in this thesis is adding additional constraints to the re-

laxation (4.6) to strengthen the upper bound on the stable set problem and to provide a

new branching strategy. We discuss how to determine the data of the new additional con-

straint to provide a deep cut (Section 6.3). We also address how to prove the infeasibility

of the new relaxation in the presence of rounding errors (Section 6.4).

4. We discuss the relation between the algorithm proposed in this dissertation and the one

proposed by Benson and Ye through Corollary 1 and Remark 14. Lemma 12 (not proven

by Benson and Ye) determines the Lovász-number of the Benson-Ye-approach. The last

chapter gives some insight about the practical behavior of a branch and bound approach.



Zusammenfassung

Motiviert durch die neuesten Entwicklungen bei der Lösung von “ large scale ” Semidefiniten

Programmen, insbesondere mit den Programmpaket SDPNAL [35], untersucht diese Doktorar-

beit wie weit Semidefinite Programmierung in einer Branch-and-Bound Methode zur Lösung

des Problems der maximalen stabilen Menge verwendet werden kann.

Kapitel 2 bietet eine Einführung zu den Semidefiniten Programmen an.

Kapitel 3 beschreibt in wenigen Worten wie SDPNAL Semidefinite Programme löst. Lemma 7,

der Nachweis vom Lemma 8, die Bemerkung 2 und das Beispiel 2 sind die wichtigsten Beiträge

von diesem Kapitel. Das Problem der maximalen stabilen Menge und einige bekannte Tat-

sachen werden im Kapitel 4 dargestellt. Die Lovász θ-Zahl (4.8) und die Lovász-Schrijver θ′-
Zahl (4.9) sind die klassischen Relaxierungen für das Problem der maximalen stabilen Menge.

Wir wiederholen einige wohlbekannte alternative Relaxierungen. Im Satz 10, basierend auf

M. Laurent [20], wird der Nachweis der Gleichwertigkeit von zwei Formulierungen (4.6) und

(4.8) auf den doppelt nichtnegativen Kegel erweitert. Satz 9 stellt einen neuen Nachweis zur

Beziehung zwischen (4.6) und einer anderen Relaxierung (4.7) dar. Eine neue Relaxierung

von (4.7) wird im Problem (4.18) eingeführt. Nach Proposition 3 sind alle Semidefiniten Re-

laxierungen in diesem Kapitel mathematisch gleichwertig. Um mögliche Rundungsfehler, die

bei die Näherungslösung von SDPNAL auftreten, zu veranschaulichen, ist ein numerischer

Vergleich zwischen Relaxierungen (4.7), (4.9) und (4.18) in Tabelle 4.1 angegeben. Die letzte

Diskussion in diesem Kapitel wird sich mit der Berechnung einer gültigen oberen Schranke des

Optimalwerts von einem primären Semidefiniten Programm aus einer Näherungslösung unter

generischen Nichtentartungs-Voraussetzungen befassen.

Die letzten vier Kapitel formulieren und analysieren eine Branch-and-Bound Strategie zur

Lösung des Problem der maximalen stabilen Menge. Bei jedem Branching Schritt wird eine

Reihe von Semidefiniten Relaxationen gelöst, die zu einer gültigen oberen Schranke für das

Problem der maximalen stabilen Menge führen. Wir ergänzen die semidefinite obere Schranke

durch Anpassung eines randomisierten Verfahren (von Goemans and Williamson), um lokal

optimale Lösungen vom Problem der maximalen stabilen Menge zu generieren. Wir beweisen

(Proposition 1), dass die Verteilung zur Erzeugung von Näherungs-lösungen für das Problem

der maximalen stabilen Menge nicht von der Faktorisierung der Optimallösung der Semidef-

initen Relaxierung abhängt. Die wichtigen Beiträge von diesen Kapiteln werden wie folgt

aufgelistet:

1. Um ungenaue Ergebnisse aufgrund von Rundungsfehlern bzw. Fehlern beim Abbrechen

des Programms SDPNAL zu beschränken, schlagen wir eine praktische Methode vor,

die auf eine Näherungslösung der Lovász-Schrijver θ′-Zahl (4.9) angewendet wird. Die

Methode erzeugt eine gültige obere Schranke für das Problem der maximalen stabilen

Menge.



2. Wir entwickeln eine neue Methode zur Abschätzung der Größe der maximalen stabilen

Menge von einem gegebenen Graph (Abschnitt 6.1). Um diese Methode anzuwenden,

nehmen wir an, dass eine obere Schranke für die Größe der maximalen stabilen Menge

bekannt ist. Wir führen einen beliebigen {0, 1}-Vektor ein und lösen eine Reihe von Re-

laxierungen (4.6) für einen Graph definiert durch den {0, 1}-Vektor. Drei verschiedene

Methoden werden darstellt, um einen {0, 1}-Vektor zu bilden mit der Absicht die Dimen-

sion der Relaxierung (4.6) zu reduzieren (Abschnitt 6.1.1).

3. Eine andere Methode dieser Doktorarbeit ist das Addieren weiterer Nebenbedingungen

zur Relaxierung (4.6), um die obere Schranke für das Problem der maximalen stabilen

Menge zu stärken und um eine neue Branching Methode zu erhalten. Wir diskutieren

wie die Daten der neuen weiteren Nebenbedingungen zu bestimmen sind, damit sich ein

tiefer Schnitt ergibt (Abschnitt 6.3). Außerdem gehen wir an, wie die Unzulässigkeit der

neuen Relaxierung in Anwesenheit von Rundungsfehlern zu beweisen ist (Abschnitt 6.4).

4. Wir diskutieren den Zusammenhang zwischen dem Verfahren, das in dieser Doktorarbeit

vorgeschlagen wurde und dem Verfahren nach Benson und Ye durch Korollar 1 und

Bemerkung 14. Lemma 12 (das von Benson und Ye nicht beweisen wurde) bestimmt die

Lovász-Zahl der Benson-Ye-Methode. Das letzte Kapitel erlaubt einen Einblick in das

praktische Verhalten einer Branch und Bound Methode
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Prof. Ergon Wanke and Prof. Rüdiger Braun for their direction, dedication and invaluable

advice along this project.

At last but not at least, I wish to thank my family for their pure everlasting love and support

which encouraged me to keep my hope and strengthened me to fulfill this thesis.



Contents

1 Introduction 1

2 Introduction to Semidefinite Programming 3

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Convex Conic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Properties of SDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Applications of Semidefinite Programming in Combinatorial Problems . . . . . 8

2.5.1 SDP for the MAX-CUT Problem . . . . . . . . . . . . . . . . . . . . . . 8

2.5.2 The Goemans-Williamson Algorithm . . . . . . . . . . . . . . . . . . . . 9

3 The Complexity of Solving Semidefinite Programs 12

3.1 Augmented Lagrangian Function . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Semismooth Newton Augmented Lagrangian . . . . . . . . . . . . . . . . . . . 14

3.2.1 Some Facts of Lipschitz Continuous Functions . . . . . . . . . . . . . . 16

4 Maximum Stable Set 20

4.1 Stable Set Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Semidefinite Relaxation of the Maximum Stable Set Problem . . . . . . . . . . 22

4.3 Strengthening of the Semidefinite Relaxation of the Maximum Stable Set Problem 27

4.4 Equivalent Representation of the Lovász-Schrijver Number . . . . . . . . . . . . 27

4.5 Compute the Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Equivalent Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Construction of a Valid Upper Bound for a Primal SDP . . . . . . . . . . . . . 29

5 A Branch and Bound Approach 32

5.1 A Branch and Bound Algorithm for the Maximum Stable Set . . . . . . . . . . 32

6 Branching Strategies for the Maximum Stable Set Problem 38

6.1 New Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Possible Strategies to Choose x̃ . . . . . . . . . . . . . . . . . . . . . . . 39

i



6.2 An Extension of the New Branching . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Alternative Strategy for the Branching Step . . . . . . . . . . . . . . . . . . . . 40

6.4 Check the Nontrivial Infeasibility of the Relaxation (6.3) of the Branching Step 45

7 Comparison, Zero-One vs. Plus-Minus-One Formulation 47

7.1 Benson and Ye Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Numerical Results 53

8.1 Evaluating the Performance of the Algorithm . . . . . . . . . . . . . . . . . . . 53

8.2 Analysis of the Branching Step . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.3 The Probability of Violated Edges in the {0, 1}-Solution Made by Goemans and

Williamson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ii

References 63

Appendix A 61



List of Figures

6.1 Example graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.1 Solution times for Gp, log-log scale . . . . . . . . . . . . . . . . . . . . . . . . . 54

iii



List of Tables

4.1 Comparison between (4.9), (4.7) and (4.18) . . . . . . . . . . . . . . . . . . . . 28

8.1 Solution times for Gp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.2 Dimacs Clique Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.3 v is the solution of (6.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.4 v is the solution of (6.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.5 v is the solution of (6.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.6 v′ is the solution of (6.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.7 Estimate the probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Relative error for random matrices . . . . . . . . . . . . . . . . . . . . . . . . . 62

iv



Chapter 1

Introduction

Semidefinite Programming is a subclass of nonlinear optimization problems that can be applied

for modeling robust optimization problems, problems in control theory, or subproblems arising

from combinatorial optimization problems. Semidefinite programming is an extension of lin-

ear programming to the space of real symmetric matrices where the matrices are constrained

to be positive semidefinite. The set of positive semidefinite matrices forms a convex cone,

so semidefinite programming is a special case of convex conic programming. It contains some

well-known optimization problems such as linear and quadratic programming and second order

cone programming. A number of interior point methods can be applied to solve semidefinite

programs though they can not be solved optimally in polynomial time. Under certain condi-

tion, semidefinite programs can be approximated up to a given precision in polynomial time.

Software packages with polynomial complexity have been developed to solve broad classes of

SDP, e.g. SEDUMI [29], SDPT3 [31] or a newer approach SDPNAL [35] for large scale prob-

lems, for which a polynomial complexity bound is not known yet.

Semidefinite Programs abbreviated to SDPs have received a great degree of attention because

of its many applications to various problems. One of the important applications of SDP is in

combinatorial optimization referring to an optimization problem over a discrete structure. So

far, search algorithms for combinatorial problems are either not guaranteed to find an optimal

solution or not guaranteed to run in polynomial time. Semidefinite programs often provide a

strong relaxation of the hard combinatorial problems and hence become an efficient tool for

approximating these problems more accurately. A number of NP-hard combinatorial optimiza-

tion problems can be relaxed to semidefinite programs. Even finding an approximate solution

to these problems often is difficult.

Motivated by the recent progress in the solution of large scale semidefinite programs, in

particular with the program package SDPNAL, this thesis investigates in how far semidefinite

programs can be used in a branch and bound approach for solving the maximum stable set

problem. The maximum stable set problem is a classical NP-hard optimization problem which

has been studied extensively. The maximum stable set problem has applications in many

1



important practical problems arising, e.g. in scheduling, timetabling, molecular biology, coding

theory and many other areas [6]. Generally, the maximum stable set problem can be used to

solve optimization problems on a given graph where some nodes of the graph conflict each

other and a large subset of the vertices is searched such that the subset contains no conflicting

vertices. However, there is so far no known exact polynomial time algorithm for this problem.

Following is a short summary of previous research studies on the maximum stable set prob-

lem. The Lovász function [21] known as theta number can be considered as one of the famous

examples of applying SDP to combinatorial optimization. It provides an upper bound on the

stability number of a graph and a lower bound on the chromatic number of the complement

graph, known as Lovász sandwich theorem. The theta number as the optimum value of a

semidefinite program can be computed with an arbitrary precision in polynomial time [24].

An extensive number of research articles are related to the Lovász theta number. Rendl and

Dukanovic [7] proposed tightened semidefinite relaxations by adding several types of cutting

planes to get more accurate upper and lower bounds. Their observation over a number of nu-

merical examples, however, concluded that the proposed relaxations do not change the value of

the Lovász function in a significant way. A hierarchy of semidefinite relaxations of the stability

number starting with the theta number was proposed by Monique Lauret [19] and Gvozdenovic

et al [13] finding the stability number in a finite number of steps but at a high computational

cost. Burer et al. [5] proposed a low rank (specially rank one and two) restriction strategy to

the theta number and used continuous optimization techniques to extract large stable sets in

fairly large graphs. Various hierarchies of semidefinite relaxations for the maximum stable set

problem were proposed by Lovász and Schrijver [22], Sherali and Adams [26] and Lasserre [17].

They proved that these hierarchies can obtain an exact solution to an integer program with n

variables taking values in {0, 1} after reaching the nth level of the hierarchy. However, their

approach results in a sequence of SDP problems of exponentially increasing size. A comprehen-

sive survey to compare these algorithms is provided by Laurent [18]. The MAX-CUT problem

is another important combinatorial problem that attracts attention by many researchers over

the years and can be relaxed into SDP. Goemans and Williamson [11] proved a polynomial

time approximation algorithm for the MAX-CUT problem with strong performance. Offering

a performance guarantee makes the algorithm proposed by Goemans and Williamson distinc-

tive. Benson and Ye [3] applied this algorithm to generate an approximation of the solution of

a relaxed problem to find a maximum stable set.
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Chapter 2

Introduction to Semidefinite

Programming

2.1 Preliminaries

Here, we state some standard definitions that are used throughout this paper. The space of

real symmetric matrices is denoted by

Sn = { X | X ∈ R
n×n, X = XT },

the positive semidefinite cone by

Sn
+ = { X | X ∈ Sn, X � 0}

and the cone of nonnegative matrices by

N n = { X | X ∈ Sn, X ≥ 0}
where X � 0 and X ≥ 0 indicate that X is a positive semidefinite matrix and a componentwise

nonnegative matrix, respectively. Sn
+ is a closed convex cone in Sn of dimension n× (n+ 1)/2.

The intersection Sn
+ ∩N n is called doubly nonnegative cone.

Definition 1 The scalar product in SDP denoted by 〈· , · 〉 : Sn × Sn → R is given by

〈C,X〉 := C •X := trace(CTX) :=
∑
i,j

CijXij .

The definition trace(CTX) rather than trace(CX) is used since the generalization of this

scalar product to rectangular matrices A, B of the same dimension is given by trace(ATB).

The Frobenius norm of a Matrix X ∈ R
n×n is defined as ‖X‖F =

√〈X,X〉.
For given matrices Ai ∈ Sn, i = 1, . . . ,m we define a linear map A : Sn → R

m by

A(X) =

⎡
⎢⎢⎣
A1 •X

...

Am •X

⎤
⎥⎥⎦ . (2.1)
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The adjoint operator A∗ : Rm → Sn is given by

A∗(y) =

m∑
i=1

yiA
i, y ∈ R

m, (2.2)

so that for all X, y, it satisfies 〈A∗(y), X〉 = 〈y,A(X)〉 by linearity of the trace.

Definition 2 let K ⊂ Sn be a closed convex cone. The dual cone KD of the cone K is defined

by

KD = { S ∈ Sn | 〈S,X〉 ≥ 0 ∀X ∈ K}.
The cone K is called self-dual if K = KD.

It is well-known that the positive semidefinite cone and the cone of nonnegative matrices

are self-dual, since by Fejer’s theorem for a matrix X ∈ Sn, X � 0 if and only if 〈X,Y 〉 ≥ 0

for all Y � 0. We have the same result for the nonnegative cone. It is easy to show that

(Sn
+ ∩N n)D = Sn

+ +N n. (2.3)

A simple generalization of (2.3) is given in the next lemma.

Lemma 1 Let IE be a subset of {{i, j} | 1 ≤ i, j ≤ n, i 
= j} and K̂ be a closed convex cone

defined by

K̂ = { X | X � 0, Xij ≥ 0 ∀ij /∈ IE},
then the dual cone of K̂ is

K̂D = { S1 + S2 | S1 � 0, (S2)ij ≥ 0 ∀ij /∈ IE, (S2)ij = 0 ∀ij ∈ IE}.

Proof. In order to keep this derivation self-contained we give a short proof. Let

K̄ = { S | S = S1 + S2, S1 � 0, (S2)ij ≥ 0 ∀ij /∈ IE, (S2)ij = 0 ∀ij ∈ IE}.

We show that K̄ = K̂D. Let S ∈ K̄. The inclusion ⊆ follows clearly from

〈X,S〉 ≥ 0 for any matrices X ∈ K̂. (2.4)

Conversely, we will show that

〈S,X〉 ≥ 0 ∀ X ∈ K̂ =⇒ S ∈ K̄.

Assume S /∈ K̄, by the separation theorem there exist Λ ∈ Sn such that

inf
Z∈K̄

〈Λ,Z〉 > 〈Λ, S〉.

Since Sn
+ +N n

+ is a cone, it follows that infZ∈K̄ 〈Λ,Z〉=0. This implies 〈Λ, S〉 < 0 and

〈Λ,Z〉 ≥ 0 ∀ Z ∈ K̄.

By definition of K̄ ⊃ Sn
+, it follows that Λ � 0 by Fejer’s theorem and also Λij ≥ 0 for all

ij /∈ IE. Hence Λ ∈ K̂ which is in contradiction to (2.4). This completes the proof.

4



Theorem 1 (Schur complement) Let a matrix A be of the form

[
a cT

c B

]
where c ∈ R

n,

B ∈ Sn, and a is a real number. Assume that c 
= 0. Then the matrix A is positive semidefinite

if and only if a > 0 and B− 1
acc

T � 0. In case that c = 0, the matrix A is positive semidefinite

if and only if a ≥ 0 and B � 0.

Proof. The case c = 0 is evident. Assume c 
= 0, then a > 0 must hold. The matrix A can be

decomposed as follows[
a cT

c B

]
=

[
1 0

a−1c I

][
a 0

0 B − a−1ccT

][
1 a−1cT

0 I

]

since the matrix P :=

[
1 0

a−1c I

]
is nonsingular, it follows that A � 0 if and only if P−1A(P−1)T �

0.

2.2 Convex Conic Programming

Convex conic programming is an important class of optimization problems concerned with

the optimization of a linear (convex) objective function over the intersection of an affine space

and a convex cone K by the assumption that both K and its dual cone KD have nonempty

interior and are closed. With the definition of Section 2.1, a conic program is defined as

inf
X
{ C •X | A(X) = b, X ∈ K} (2.5)

and its dual is of the form

sup
y
{bT y | C −A∗(y) ∈ KD}. (2.6)

For K := Sn
+, the optimization (2.5) refers to semidefinite programming. It is called linear

program if K := N n and doubly nonnegative program if K = DNN := Sn
+ ∩ N n is the cone

of doubly nonnegative matrices. Notice that a linear program (LP) is a special case of a

semidefinite program (SDP), however unlike the cone of nonnegative matrices N n, the cone

Sn
+ represented by an infinite number of linear inequalities is non-polyhedral and non-smooth.

2.3 Semidefinite Programming

Semidefinite programming is in fact a special case of cone programming. In this section

we repeat some of the properties of the semidefinite programs, the problem (2.5) for K := Sn
+.

The cone Sn
+ represented by an infinite number of linear inequalities is non-polyhedral and

non-smooth.

5



For sake of convenience, we rewrite the standard primal and dual semidefinite program as

follows

p∗ := inf
X
{ C •X | A(X) = b, X ∈ Sn

+}, (2.7)

and

d∗ := sup
y
{bT y | C −A∗(y) ∈ Sn

+}. (2.8)

In convex optimization the positive semidefinite constraint arising in (2.8) is named a linear

matrix inequality (LMI). A major breakthrough in convex optimization lies in the introduction

of interior point methods. These methods were developed in a series of papers and became of

true interest in the context of LMI problems following the work of Yurii Nesterov and Arkadii

Nemirovsky [24].

Before moving on to the next section we give a brief introduction to the doubly nonnegative

program which is obtained if an additional linear conic constraint X ∈ N n (or equivalently X ≥
0) is added to SDP. As will be discussed later, the DNN relaxation provides (theoretically) an

improved approximate solution to the maximum stable set problem. DNN relaxations arise in

copositive programming, the optimization (2.5) where K refers to the copositive cone defined

as follows.

Definition 3 A matrix M ∈ Sn is called completely positive if there are k nonnegative vectors

x1, . . . , xk ∈ R
n
+ such that

M =

k∑
i=1

xix
T
i .

The cone of completely positive matrices is denoted by C∗n. It can be shown that the dual cone

of C∗n called copositive cone Cn is given by

Cn = {M ∈ Sn | xTMx ≥ 0, ∀x ≥ 0}.
Clearly, the definition of C∗n implies that C∗n ⊆ Sn

+ ∩ N n and Sn
+ + N n ⊂ Cn. Copositive

programming is NP-hard in general and is not solvable polynomially unless P = NP . One

way of showing this, is using a theorem by De Klerk [16]. It states that the Lovász-Schrijver

relaxation (a DNN relaxation of the maximum stable set problem described in Chapter 4)

returns an exact solution to the maximum stable set problem if the doubly nonnegative cone

is replaced by the completely positive cone.

2.4 Properties of SDP

Below we point out some known basic facts in the semidefinite programming context and omit

some of the proofs. To see the details one can be referred to [16].

Theorem 2 (weak duality) Let X and y be feasible solutions (satisfying all the linear and

nonlinear constraints) of (2.7) and (2.8) respectively. Then the duality gap 〈C,X〉 − bT y is

nonnegative.
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Proof. There is a well known one line proof. Since X � 0 and C −A∗(y) � 0, it follows from

Fejer’s theorem that

0 ≤ 〈X,C −A∗(y)〉 = 〈X,C〉 − 〈X,A∗(y)〉 = 〈X,C〉 − 〈y,A(X)〉 = 〈C,X〉 − bT y.

Theorem 2 can be generalized to the case of general convex conic programming including

doubly nonnegative problems.

Although semidefinite programming is a generalization of linear programming, there are some

properties of LP which do not extend to SDP. Unlike linear programming, even if there exist

feasible solutions X, y to the primal semidefinite problem (2.7) and and the dual problem (2.8)

and if the duality gap is zero, there is no assurance that either (2.7) or (2.8) has an optimal

solution. In addition, there is possibly a duality gap at an optimal solution of (2.7) or (2.8).

In order to avoid this situation we assume that both primal and dual semidefinite problems

satisfy the Slater condition defined below.

Definition 4 A strictly feasible solution of the (semidefinite) program (2.7) is a feasible

solution X such that X belongs to the interior of the cone Sn
+. The so-called Slater condition

is satisfied if and only if a strictly feasible solution X exists. In this case, the feasible solution

X is called Slater point.

The following theorem provides a guarantee of existence of the primal and dual optimal solution

with zero duality gap.

Theorem 3 (strong duality) If a strictly feasible solution of (2.8) (or (2.7)) exists and d∗ <
∞ (or p∗ > −∞), the optimal solution of (2.7) (or (2.8)) will be attained and p∗ = d∗.

Proof. See [16]

For completeness we state the conic duality theorem.

Theorem 4 (Conic duality theorem) If there exists an interior feasible solution X � 0 of

(2.7) and a feasible solution of (2.8), then p∗ = d∗ and the supremum in (2.8) is attained.

Similarly, if there exist feasible y, S for (2.8), where S � 0, and a feasible solution of (2.7),

then p∗ = d∗ and the infimum in (2.7) is attained.

Note that the scalar product in SDP is the counterpart to the vector inner product in LP.

Therefore, we can generalize Farkas’ lemma to prove the infeasibility of either primal or dual

problems in semidefinite programming. The following lemma based on [16] states:

Lemma 2 (Primal/Dual infeasibility) Let A be a linear map and A∗ be the adjoint operator

defined by (2.1) and (2.2), respectively. Let b be a real m-dimensional vector. If there exists a

vector ȳ ∈ R
m satisfying the inequalities A∗(ȳ) � 0 and bT ȳ > 0, the primal problem (2.7) is

infeasible. Similarly, the dual problem (2.8) is infeasible if there exists a matrix X̄ ∈ Sn
+ such

that A(X̄) = 0 and C • X̄ < 0.
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Lemma 2 also holds when the positive semidefinite cone Sn
+ is replaced with the doubly non-

negative cone Sn
+ ∩N n.

Lemma 3 If there is a vector y ∈ R
m such that −A∗(y) ∈ Sn

+ +N n and bT y > 0, then y is

an improving ray for the dual problem and the primal problem is infeasible.

Proof. Let a dual improving ray y be given. If the primal problem has a feasible solution X,

it follows that

0 < bT y = yTA(X) = 〈A∗(y), X〉 = −〈S1 + S2, X〉 ≤ 0,

which is a contradiction.

2.5 Applications of Semidefinite Programming in Combinato-

rial Problems

A diversity of optimization problems can be reformulated as semidefinite programs. In this

section we mention one of the most important applications of SDP in combinatorial optimiza-

tion.

2.5.1 SDP for the MAX-CUT Problem

One of the applications of semidefinite programs in combinatorial optimization is the Maxi-

mum Cut problem. The Maximum Cut problem abbreviated to MAX-CUT problem is known

as NP-complete and there is no known polynomial time exact algorithm for these kind of prob-

lems. However, it can be relaxed to a semidefinite problem. For graphs with non-negative

edge weights Goemans and Williamson [11] proposed a randomized approximation algorithm

(summarized in Section 2.5.2 below) which provides a solution with average value of at least

0.87 times the maximum cut value.

Let G = (V, IE) be an undirected graph with vertex set V and edge set IE that any edge in

IE is associated with a real nonnegative number wij known as its weight. The MAX-CUT

problem seeks a partition of V into two non-empty disjoint sets V1 and V2 whose union is V

such that for all edges (i, j) ∈ IE with i ∈ V1 and j ∈ V2, the sum of weights wij is maximized:

max
∑
i∈V1
j∈V2

wij . (2.9)

Note that wij = wji for any edge (i, j) ∈ IE with i ∈ V1 and j ∈ V2, else wij = wji = 0. We

assign a binary vector x ∈ {−1,+1}|V | to the vertex set V with the definition

xi =

{
1 i ∈ V1

−1 i ∈ V2.
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Therefore the constraint x2i = 1 for i ∈ V is the quadratic form of the binary variable x ∈
{−1,+1}|V |. By the binary variable x, one can express the MAX-CUT problem (2.9) as:

max
∑
i∈V1
j∈V2

wij = max
x∈{−1,1}|V |

1

2
(
1

2

∑
i,j∈V

wij(1− xixj)).

Therefore, the Max-Cut problem can be stated as the following quadratic optimization problem:

max {1

4

∑
i,j∈V

wij(1− xixj) | x2i = 1, i ∈ V } (2.10)

which is equivalent to

max {1

4

∑
i,j∈V

wij(1−Xij) | rank(X) = 1, Xii = 1, i ∈ V } (2.11)

where X = xxT with x ∈ {−1,+1}|V |. Relaxing the nonlinear rank-1- constraint will lead us

to the semidefinite relaxation problem

max {1

4

∑
i,j∈V

wij(1−Xij) | X � 0, Xii = 1, i ∈ V }. (2.12)

2.5.2 The Goemans-Williamson Algorithm

Goemans and Williamson proposed a randomized method to generate a {−1, 1}-vector. Let X

be a n×n-symmetric positive semidefinite matrix. Then there is a factorization matrix L such

that X = LLT . The randomization method of Goemans and Williamson chooses a random

vector r uniformly distributed on the unit sphere of suitable dimension and then assigns

x̄ = sign(Lr)

and sign(Lr) is the vector whose components are

sign(Lir) =

{
1 if Lir ≥ 0

−1 if Lir < 0

where Li is the ith row of the factor L of X. In this way we obtain random vector x̄ ∈ {−1, 1}n.

Based on the next two lemmas, they illustrated that applying this algorithm to the optimal

solution of the semidefinite relaxation (2.12) generates a cut with an average objective value

of at least 87% of maximum cut.

Lemma 4 Let u and v be unit vectors and r be a uniformly distributed random vector on the

unit sphere. Then the expected value of sign(uT r) sign(vT r) is given by

E(sign(uT r) sign(vT r)) =
2

π
arcsin(uT v).
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Lemma 5 Let Xsdp be an optimal solution of the semidefinite relaxation (2.12) and let x be

a random {−1, 1}-vector generated by the GW-rounding procedure. Then,

E(
1

4

∑
i,j∈V

wij(1− xixj)) ≥ 0, 878× 1

4

∑
i,j∈V

wij(1−Xsdp
ij ).

Proof. This follows from Lemma 4 and the fact that 2
π arcsin(t) ≤ 1+0.878(t−1) for t ∈ [−1, 1].

It is easy to see that the GW-rounding procedure is not dependent on the factorization of X

where X is an optimal solution to (2.12). The following proposition states that the factoriza-

tions of X are unique up to an orthogonal transformation.

Proposition 1 Let X be a positive semidefinite matrix. Then there exist matrices B and B̄

such that X = BBT = B̄B̄T . Furthermore, for any such B, B̄, there exists an orthogonal

matrix Q such that B = B̄Q.

Proof. The existence of factorizations B and B̄ is well-known. In order to prove the second

part, let B = UΣV T and B̄ = Ū Σ̄V̄ T be the singular value decompositions of B and B̄. Let the

diagonal elements σi ≥ 0 and σ̄i ≥ 0 of the diagonal matrices Σ and Σ̄ be sorted in decreasing

order. It follows X = BBT = UΣ2UT and likewise, X = ŪΣ2ŪT . By construction, σ2
i = σ̄2

i

are the eigenvalues of X and the columns ui of U and ūi of Ū are the associated eigenvectors.

For sake of notation simplicity, let λi := σ2
i denote the ith eigenvalue of X.

We recall that for a given eigenvalue of λi, the null space of X−λiI is called the λi-eigenspace

of X. If the dimension of the λi-eigenspace is one, the proof is obvious since the columns

of U and Ū are the same up to plus-minus signs. Let the algebraic multiplicity of λi be k,

k > 1 and λi−1 > λi = λi+1 = · · · = λi+k−1 > λi+k. By the definition of eigenspace and X =

UΣ2UT = ŪΣ2ŪT , assume that {ui, . . . , ui+k−1} and {ūi, . . . , ūi+k−1} are orthonormal bases

for the λi-eigenspace. Since the eigenspace is uniquely defined, we have range(ui, . . . , ui+k−1) =

range(ūi, . . . , ūi+k−1). Therefore according to Lemma 6 below, there exists an orthogonal k×k-

matrix Q̂i with [
ui . . . ui+k−1

]
=

[
ūi . . . ūi+k−1

]
Q̂i.

Since λi = . . . = λi+k−1, the ith block UΣ equals to the ith block of ŪΣQ̂i, i.e.[
λiu

i . . . λi+k−1u
i+k−1

]
=

[
λiū

i . . . λi+k−1ū
i+k−1

]
Q̂i. (2.13)

Let X have l distinct eigenvalues, then (2.13) implies UΣ = ŪΣQ̂ where Q̂ is a l-block diagonal

matrix. This completes the proof.

Let Q be an orthogonal matrix. Evidently, if r is uniformly distributed with ‖r‖2 = 1, the

same is true for Qr. Therefore according to Proposition 1, the GW-procedure uses the same
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distribution for B and B̄ but different random events.

The following lemma is presented in [16] without proof. The proof of this lemma is quite

straightforward, but we give it for completeness.

Lemma 6 Let U and Ū be m× n-orthogonal matrices where m > n, such that C(U) = C(Ū)

where C(·) denotes the column space. Then, there exists an orthogonal matrix Q such that

UQ = Ū .

Proof. Let S = [u1, . . . , un, vn+1, . . . , vm] form a basis for R
m where ui is the ith column of

U . An orthogonal matrix Û :=
[
U Ũ

]
such that Ũ ⊥ C(U) can be constructed by applying

the Gram-Schmidt procedure to the matrix S. Since C(U) = C(Ū), in the same way the

orthogonal matrix V̂ :=
[
Ū Ũ

]
can be formed. Set Q̂ := ÛT V̂ . By the definition of Q̂ we

have

Q̂ =

[
Q̂11 Q̂12

Q̂21 Q̂22

]
=

[
UT Ū UT Ũ

ŨT Ū ŨT Ũ

]
.

The orthogonality of Û and V̂ implies that Q̂12 = Q̂21 = 0 and ŨT Ũ = I. Then, we have

Q̂ =

[
UT Ū 0

0 I

]
.

Since Q̂ is orthogonal, Q̂ turns out to be a block diagonal orthogonal matrix. Therefore, there

exists an orthogonal matrix Q with Q = UT Ū which ends the proof.
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Chapter 3

The Complexity of Solving

Semidefinite Programs

The practical aspect of semidefinite programming is that SDP can be solved in a certain sense

in polynomial time as follows from the results given by Nestrov and Nemirovsky [24]. The

solvability of SDP in polynomial time is under the assumption that the solution set of the

SDP is contained in a ball, the radius of which can be represented by polynomially many

digits. Example 1 below provides a counter example of solvability of SDPs with polynomial

complexity in general. But first we recall the definition of polynomial algorithm.

Algorithms can be classified by the amount of time they need to complete compared to their

input size. Following Grötschel et al. [12] an algorithm is said to run in polynomial time, or

equivalently a problem is solved in polynomial time, if there exist a polynomial p() such that

the time taken by the algorithm to solve the problem is bounded above by p(size(input)).

To calculate the time taken to solve, we normally evaluate the number of steps the procedure

takes to solve the problem, assuming each step takes unit time. In the arithmetic model of

computation all basic operations (addition, multiplication, comparison) take a unit time step

to perform, regardless of the sizes of the operands.

When we are to measure the size of the input, we need to take two factors into account. The

first is the number of objects that must be provided for the input. For instance, for a sorting

program, the size of the input is the number of elements to be sorted. The second is the size

of each input value known as coding length. It also contributes to the amount of the input

data. For this reason, in order to measure the problem size or the input length, one fixes an

encoding scheme. An algorithm is polynomial time if the running time is bounded by p(n)

where n denotes the input length [10].

Example 1 Consider the optimization problem

min { xn | x0 = 2, x2i−1 − xi ≤ 0, i = 1, . . . , n xi ∈ R}.
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This problem can be transformed to a semidefinite program if we replace the inequality con-

straint by the semidefinite constraint[
1 xi−1

xi−1 xi

]
� 0, i = 1, . . . , n. (3.1)

Starting with x0 = 2, it is obvious that the variable xn attains its minimum value at at least

22
n
. It is possible to compute 22

n
with n multiplications. However the space needed to encode

22
n

is 2n digits, thus the space used to represent it is exponential rather than polynomial.

An algorithm of exponential complexity requires an exponentially increasing amount of time

and computer memory for only a constant increase in problem size. Therefore, this kind of

algorithm typically become impractical to carry out.

A number of algorithms based on interior point methods (IPMs) have been proposed to

solve semidefinite programs. IPMs are of interest because they have application to several

classes of convex optimization, such as linear and semidefinite programming as two well known

subclasses of conic optimization. In addition, they have polynomial complexity for computing

an ε-approximation to an optimal solution. Todd and Nemirovsky [23] provide a comprehen-

sive survey on interior point methods. Although IPMs have proven reliable and efficient on

small and medium sized semidefinite programs, the computational and storage needs of these

methods can limit the size of problems that can be solved. The interior point linear system that

arises when solving (2.7) can be reduced to a linear system in m equations and m unknowns.

Unfortunately, even when A is sparse, the m×m systems typically are not so. This limits the

application of IPMs to instances with small m, say m ≤ 5000.

3.1 Augmented Lagrangian Function

The method of augmented Lagrangian function provides a way to deal with constrained op-

timization problems using algorithms for unconstrained problems. Consider the nonlinear

optimization problem

min { f(x) | fi(x) ≤ 0, 1 ≤ i ≤ m } (3.2)

where f , fi : Rn → R belong to the class of C2 (the space of twice continuously differentiable

functions). Let r > 0. The standard augmented Lagrangian function for (3.2) is defined as

follows:

L(x, y, r) := f(x) +
r

2

m∑
i=1

((fi(x) +
yi
r

)+)2 − 1

2r

m∑
i=1

y2i , (3.3)

where the projection map onto the positive orthant is denoted by (.)+. Let x̃ be a minimizer

of L(., y, r) and fi = fi(x̃). Then, the expression ỹi := (fi + yi
r )+ may be considered as an

update of the Lagrange multiplier associated with x̃ and r.

The augmented Lagrangian function is a combination of Lagrangian function with penalty
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terms. The objective function f(x) is penalized with squared penalty terms to keep the solu-

tion near the feasible set. Let x̄ be an optimal solution of (3.2) and ȳ be an associated multiplier.

Thus the complementary slackness ȳif(x̄i) = 0 is satisfied and obviously L(x̄, ȳ, r) = f(x̄).

Algorithm1: given y0 ≥ 0, r > 0

1. xk+1 := argminx L(x, yk, r);

2. Update y:

yk+1
i := (fi(x

k+1) +
yki
r )+ for i = 1 . . . ,m;

3. r = rσk for some factor σk ≥ 1.

Here, yk+1
i denotes the ith component of y at step k + 1. According to the following theorem

for sufficiently large r, the augmented Lagrangian method locally converges to the optimal

solution of (3.2) under the strict complementary condition ȳi − f(x̄i) > 0 and second order

sufficient condition [15]. The existence of a local optimal solution in Step 1 follows from the

local convexity of L with respect to x.

Theorem 5 Let (x̄, ȳ) be a KKT-point of (3.2) satisfying the strict complementary condition

and second order sufficient condition. There is a neighborhood of ȳ with radius δ and of x̄ with

radius ε, denoted by Bδ(ȳ) and Bε(x̄), such that for all y ∈ Bδ(ȳ) there is a x(y) ∈ Bε(x̄) such

that x(y) is a strict local minimum of L(x, y, r) for large enough r. Moreover, L(x(y), y, r) is

concave for all y ∈ Bδ(ȳ) where ȳ is the strict local maximum of L(x(y), y, r).

3.2 Semismooth Newton Augmented Lagrangian

The algorithm of the augmented Lagrangian function can be generalized towards solving SDPs.

The SDPNAL solver introduced by Xin-Yuan Zhao et al. [35], is an up-to-date Matlab software

for semidefinite programming based on the semi-smooth Newton-conjugate gradient (CG) aug-

mented Lagrangian method. They represent the positive semidefinite constraint implicitly by

using a projection operator and a semismooth Newton approach combined with the conjugate

gradient method is proposed to minimize the dual augmented Lagrangian function. Below we

provide a brief description of how SDPNAL works, for details the reader may be referred to

[35]. This algorithm is intended for solving the following SDP problem:

min {bT y | A∗y − C � 0} (3.4)

Here, we follow the notation of [35] where the dual (2.8) is written as a minimization problem.

Apart from sign changes, the duality theory of Section 2.4 also applies to (3.4). The augmented

Lagrangian function for (2.8) is defined as

L(X, y, σ) := bT y +
1

2σ
(‖ΠSn

+
(X − σ(A∗(y)− C))‖2 − ‖X‖2), (3.5)
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where σ > 0 is a penalty parameter and ΠSn
+

(X) denotes the orthogonal projection of X onto

Sn
+. The variable X in (3.5) corresponds to y in (3.3) while y corresponds to x in (3.3).

SDPNAL generates two sequences {yk} and {Xk} converging to the optimal solutions of (3.4)

and its dual problem under the Slater condition for both problems ([35], Theorem 4.1).

Algorithm2:

Let an initial solution X0 ∈ Sn, a penalty parameter σ0 and ρ > 1 be given,

1. yk+1 ← argmin L(Xk, y, σk).

2. Xk+1 ← ΠSn
+

(Xk − σk(A∗(yk+1)− C)).

3. σk+1 = ρσk or σk+1 = σk.

Above, σk can be interpreted as a penalty parameter, and in Step 3 this parameter is either

increased or it is kept of its old value. The first step of Algorithm 2 is to find a solution y

minimizing the unconstrained convex function (3.5). To simplify the notation, set φ(y) :=

L(y,X, σ). The first order condition implies

∇φ(y) = 0, (3.6)

where ∇φ(y) = b−AΠSn
+

(X − σ(A∗(y)−C)). Since ΠSn
+

(.) is Lipschitz continuous, according

to Rademacher’s theorem (Theorem 6 below) the function ∇φ is almost everywhere differen-

tiable. Referring to Theorem 3.4 in [35], there exists a minimal solution y to (3.6).

Since ΠSn
+

(.) is strongly semismooth [30], a Newton-like optimization algorithm called semis-

mooth Newton method can be applied to the nonsmooth equation (3.6). In order to solve

(3.6), the semismooth Newton method can be defined generally as follows: given a vector yk,

compute yk+1 by

yk+1 = yk + αkd
k

where dk = −V −1
k ∇φ(yk), Vk ∈ ∂(∇φ(y)) where ∂(∇φ(y)) denotes the Clarke’s generalized

Jacobian of ∇φ (see Definition 5 below) and the step size is controlled by the choice of αk. For

further details, the reader may be referred to [35].

If the dual problem of miny L(y,X, σ) satisfies the Slater condition, the sequence yk generated

by the proposed semismooth Newton method converges to an optimal solution of the problem

(3.6) [[35], Theorem 3.4].

The second step is to update the Lagrange multiplier Xk+1. Since yk+1 is the global minimizer

of L(Xk, y, σk), then ∇Ly(Xk, yk+1, σk) = 0 leads us to a solution yk+1 that is feasible for the

dual problem of (3.4).

Finally, the updated penalty parameter σk+1 is obtained in the third step.

In what follows, we introduce some concepts related to the SDPNAL method.
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3.2.1 Some Facts of Lipschitz Continuous Functions

The following well-known theorem states the differentiability of a Lipschitz function [8].

Theorem 6 (Rademacher’s theorem) If a function f : Rn → R
m is Lipschitz continuous, then

f is differentiable almost everywhere.

Rademacher’s theorem can be directly extended from vector functions to matrix functions.

Definition 5 and Proposition 2 are quoted from [32].

Definition 5 Let V ⊂ R
n be an open set and the function f : V → R

m be Lipschitz continuous

in some neighborhood of x ∈ V . Let Df denote the set of points at which f admits a derivative

∇f(x) ∈ R
m×n. Clarke’s generalized Jacobian is defined as

∂f(x) = co({G ∈ R
m×n : ∃xk ⊂ Df with xk → x,∇f(xk) → G})

where co denotes convex hull.

Proposition 2 Let f : V → R
m be defined on the open set V ⊂ R

n. Then for x ∈ V , the

function f is semismooth at x if and only if f is Lipschitz continuous near x, directionally

differentiable at x and

sup
G∈∂f(x+s)

‖f(x + s)− f(x)−Gs‖ = o(‖s‖) as s→ 0.

Let φ : Rn → R be a continuously differentiable function. The characteristic equation below is

known for a differentiable function:

φ(x + tΔx) = φ(x) + Dφ(x)[tΔx] + o(t),

where Dφ(x)[ . ] : Rn → R is linear and

Dφ(x)[Δx] ≡ ∇φ(x)TΔx ≡ 〈∇φ(x),Δx〉 ∈ R.

The linearity of Dφ(x)[ . ] identifies ∇φ(x) as the element of the Euclidean space R
n and

therefore the map x→ ∇φ(x) is of the form R
n → R

n. Likewise the same discussion leads us

to the fact that the map x→ ∇2φ(x) is of the form R
n → R

n×n. There are two interpretations

of ∇2φ(x), but first we recall the definition of a bilinear form.

Definition 6 Let E be an Euclidean space. The map Φ : E× E→ R is called bilinear if

Φ(αv1 + βv2, u) = αΦ(v1, u) + βΦ(v2, u)

and

Φ(v, αu1 + βu2) = αΦ(v, u1) + βΦ(v, u2).

Equivalently, Φ(v, u) is linear in each argument v and u.
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To continue the previous discussion, ∇2φ(x) can be described in two ways:

i) ∇2φ(x) : Rn × R
n → R is a bilinear form. If y,z ∈ R

n, then

∇2φ(x)[y, z] = yT∇2φ(x)z

ii) ∇2φ(x) : Rn → R
n is a linear mapping in the characteristic equation

∇φ(x + ty) = ∇φ(x) +∇2φ(x)[ty] + o(t)

for y ∈ R
n.

Lemma 7 If a function f : Rn → R
n is Lipschitz continuous with modulus L ≤ 1 and differ-

entiable at a point x, then

|λ| ≤ 1 (3.7)

where λ is any eigenvalue of Df(x).

This theorem is well-known. For completeness, a short proof is given.

Proof. Since f is Lipschitz, Rademacher’s theorem implies that f is differentiable almost

everywhere. Let x ∈ R
n be a point where Df(x) exist. The characteristic equation

f(x + tΔx) = f(x) + tDf(x)[Δx] + o(t)

is known for the differentiable function f . The derivative Df(x) is represented in coordinates

by the Jacobian matrix. By contradiction we assume that there exist an eigenvalue λ such that

|λ| > 1. Let Δx be the eigenvector corresponding to λ. By definition of Lipschitz function we

have

‖f(x + tΔx)− f(x)

t
‖ ≤ L‖Δx‖.

On the other hand

‖f(x + tΔx)− f(x)

t
‖ = ‖ tDf(x)[Δx] + o(t)

t
‖ = ‖λΔx +

o(t)

t
‖.

Then

lim
t→0

‖λΔx +
o(t)

t
‖ = |λ|‖Δx‖

contradicts the assumption.

The following theorem proposed by J. Moreau (Theorem 3.2.5 in [14]) provides a generalized

form of decomposition of an arbitrary vector into two orthogonal vectors.

Theorem 7 Let K be a closed convex cone and K∗ be the polar cone of K, i.e. K∗ = {z ∈
R
n | 〈z, x〉 ≤ 0 ∀x ∈ K}. For an arbitrary x ∈ R

n, the following statements are equivalent:

i)) x = x1 + x2 with x1 ∈ K and x2 ∈ K∗ such that 〈x1, x2〉 = 0.

ii)) x1 = ΠK(x) and x2 = ΠK∗(x).
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The following well-known theorem says that the pointwise supremum of many convex functions

is convex, see e.g. [15].

Theorem 8 If fi : Rn → R are convex for i ∈ I ( the set I could be infinite). Then

f(x) = sup
i∈I

fi(x)

is convex on its domain Df = ∩i∈IDfi ∩ {x | supi fi(x) <∞}.

The convergence of SDPNAL can be discussed based on the convexity and concavity property

of the augmented Lagrangian function (3.5).

Lemma 8 The augmented Lagrangian function L(X, y, σ) is convex with respect to y and

concave with respect to X.

Remark 1 The convexity of L(X, y, σ) with respect to y is derived in [35] based on the fol-

lowing definition

L(X, y, σ) = max
Z∈Sn

+

{bT y − 〈Z,A∗y − C〉 − 1

2σ
‖Z −X‖2} (3.8)

from [25] and Theorem 8 above. Below, we establish the concavity of L(X, y, σ) with respect to

X. For completeness, we also derive the equality (3.8).

Proof. In order to establish the equality (3.8), let us use the abbreviation M := X−σ(A∗y−C)

and set Φ(X) := maxZ∈Sn
+
{bT y − 〈Z,A∗y − C〉 − 1

2σ‖Z −X‖2}.

Φ(X) = bT y + max
Z∈Sn

+

{−〈Z,A∗y − C〉 − 1

2σ
‖Z −X‖2}

= bT y +
1

2σ
max
Z∈Sn

+

{〈−2σZ,A∗y − C〉+ 2〈Z,X〉 − ‖Z‖2 − ‖X‖2}

= bT y − 1

2σ
‖X‖2 +

1

2σ
max
Z∈Sn

+

{−‖Z‖2 + 2〈M,Z〉 − ‖M‖2 + ‖M‖2})

= bT y − 1

2σ
‖X‖2 +

1

2σ
(‖M‖2 − min

Z∈Sn
+

{‖Z −M‖2})

= bT y − 1

2σ
‖X‖2 +

1

2σ
(‖M‖2 − ‖ΠSn

+
(M)−M‖2).

Decomposition of M := M1 + M2 based on Theorem 7 implies

‖M‖2 − ‖ΠS+
n

(M)−M‖2 = ‖ΠSn
+

(M)‖2.

This proves the equality (3.8). The concavity of L(X, y, σ) with respect to X is shown as

follows: Take the derivative of L defined in (3.5) with respect to X,

∇XL(X, y, σ) =
1

σ
(ΠSn

+
(X − σ(A∗y − C))−X).
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Since ΠSn
+

is Lipschitz and a semismooth function, Lemma 7 implies that the absolute value of

all eigenvalues of ∇XΠSn
+

(X −σ(A∗y−C)) is at most 1 wherever they are defined.. Therefore

the eigenvalues of ∇2
XL(X, y, σ) are nonpositive and ∇2

XL(X, y, σ) � 0 wherever ∇2
XL is

defined.

Remark 2 By definition of L in (3.5) and the reformulation below

1

2σ
‖ΠSn

+
(X − σ(A∗(y)− C))‖2F =

1

2
√
σ
‖ΠSn

+
(C +

1

σ
X −A∗(y))‖2F ,

it follows that the convexity of L with respect to y is equivalent to the convexity of the function

y �−→ ‖ΠSn
+

(−A∗(y) + C̃)‖ for the matrix C̃ = C + 1
σX. The next example shows that the

function φ(x) = ‖ΠK(x)‖ is not convex in general even if K is a convex set.

Example 2 Let K = {x ∈ R
2 | ‖x −

[
0

1

]
‖ ≤ 1} and y :=

[
−m

2

]
and z :=

[
m

2

]
. For

m → +∞, ΠK(y) →
[
−1

1

]
and ΠK(z) →

[
1

1

]
. Assume λ = 1

2 , then 2 = ‖ΠK(y2 + z
2)‖ but

1
2‖ΠK(y)‖+ 1

2‖ΠK(z)‖ → √
2 when m→ +∞.

A similar example can be constructed in case of having a convex cone K to show that the

convexity does not hold for ‖ΠK(x)‖.

Lemma 9 Let K be a closed convex set in R
n . For y ∈ R

n, the map φ : Rn → R defined as

φ(y) := ‖y −ΠK(y)‖ is convex.

Proof. It is easy to show the convexity by the direct definition. Let x̄ := ΠK(x) and ȳ =

ΠK(y).

‖(λx + (1− λ)y)−ΠK(λx + (1− λ)y)‖ ≤ ‖(λx + (1− λ)y)− (λx̄ + (1− λ)ȳ)‖
≤ λ‖x− x̄‖+ (1− λ)‖y − ȳ‖.
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Chapter 4

Maximum Stable Set

Here we describe some terminologies. An undirected graph G is a pair of sets (V, IE) where V

is the vertex set of G and IE ⊂ {{i, j} | i, j ∈ V } is the edge set of G. For an edge {i, j} ∈ IE,

the vertices i and j are called end vertices. The edge with equal end vertices is a loop and the

edges that have the same end vertices are parallel. A simple graph is a graph with no loops

and no parallel edge. The degree of a vertex of a graph is the number of edges connected to the

vertex. The complement of a simple graph G = (V, IE) is the simple graph Ḡ = (V, ĪE), where

the edges in ĪE are exactly the edges not in G. A subgraph of G is a graph G′ = (V ′, E′) where

V ′ ⊆ V and E′ ⊆ {{i, j} | i, j ∈ V ′}. G′ is said to be the subgraph induced by V ′ if E′ ⊆ E

includes exactly those edges {i, j} ∈ E for which i,j ∈ V ′. In this dissertation, all subgraphs

are induced unless otherwise noted. The adjacency matrix of G is denoted by AG of dimension

|V | × |V |. Its (i, j)th entry is 1 if the ith vertex and the jth vertex are adjacent, i.e. if there

is an edge connecting them. A graph G is complete if all its vertices are pairwise adjacent. A

complete graph with n nodes is denoted by Kn. A bipartite graph is a simple graph in which

the node set V can be partitioned into two disjoint sets V1 and V2 such that any node v ∈ V1

(or V2) may be adjacent only to vertices in V2 (or V1).

A clique C is a subset of V such that the graph defined by the pair (C, IE ∩ {{i, j} | i, j ∈ C})
is complete. The clique number ω(G) is the cardinality of a largest clique in G. A stable set

in a graph is a set of vertices S ⊆ V with the property that the vertices of S are pairwise

non adjacent. Independent set is an equivalent word for stable set found in some contexts.

The stability number α(G) is the cardinality of a largest stable set in G. A vertex cover of an

undirected graph G is a subset V ′ of V such that every edge in IE is adjacent to at least one

node v′ ∈ V ′. It is well known that the Maximum Stable Set problem on G is equivalent to the

minimum vertex cover problem on G and to the maximum clique problem on the complement

graph of G, i.e. S is an independent set of G if and only if S is a clique of the complement graph

of G and if and only if V \S is a vertex cover of G, see e.g. [34]. Any results obtained for one of

these problems has its equivalent forms for the other problems. Furthermore, these problems

are NP-complete problems on arbitrary graphs. A common way to cope with NP-hardness of
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a problem is to devise algorithms that give approximate solutions. The chromatic number of

a given graph G is the minimal number of colors needed to color the nodes such that no two

adjacent nodes share the same color. The graph with chromatic number k is k-colorable. The

chromatic number is at least the quotient |V |
α(G) . To prove this, let the vertex v be assigned

color 1. Since any two adjacent vertices do not color the same, all nonadjacent nodes to v form

a stable set that can be colored by color 1. In other words, the nodes of each stable set αi

have the same color. A partiton of V into stable sets α1, . . . , αk implies that G is k-colorable.

On the other hand we have
∑

αi = |V | ≤ kα(G).

The all ones vector is denoted by e, and the all-ones-matrix by J = eeT and the identity by

I. We denote by ei the ith column of the identity matrix I of appropriate dimension. For a

matrix A ∈ Sn, diag(A) denotes a vector in R
n whose entries are the diagonal entries of A.

Definition 7 Let G = (V, IE) be a simple and undirected graph. A locally maximal stable set

of G is a set S ⊂ V with the property that adding any vertex to S will destroy the stable set

property.

A simple greedy heuristic in order to find a locally maximal stable set is given below:

GREEDY

Input: given a graph G = (V, IE) and S = ∅
i) Find the node v of minimum degree in G, S ← S ∪ {v}
ii) Delete v and its neighbors from G

iii) If V = ∅, end; else go to (i).

4.1 Stable Set Polytope

In this section we review some relaxations of the maximum stable set and the facts relating

to it. Let G = (V, IE) be a simple and undirected graph. Let X S ∈ R
|V | be the characteristic

vector (or incidence vector) of a stable set S with the following components:

X S
i =

{
1 i ∈ S

0 else.

The convex hull of the incidence vectors of all stable sets S of G is called stable set polytope

and denoted by

STAB(G) := conv(X S | S ⊆ G stable set). (4.1)

Let us remind that the set of convex combinations of some points is called a convex hull and is

written as conv(x1, . . . , xn). A polyhedron is the intersection of a finite number of half spaces.

If a polyhedron is bounded, we call it polytope. Since the solution of a linear program over a

bounded domain is always attained at a vertex, the following linear program determines the

maximum stable set,

α(G) := max {eTx | x ∈ STAB(G)}. (4.2)
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The stable set problem can be reformulated as an integer linear program by adding the so

called edge-inequality constraints

xi + xj ≤ 1 for all (i, j) ∈ IE (4.3)

where the vector x has a binary domain as follows:

α(G) = max {eTx | xi ∈ {0, 1}, xi + xj ≤ 1 ∀(i, j) ∈ IE}. (4.4)

As with many other problems of combinatorial optimization, using the appropriate formulation

of the maximum stable set problem is of crucial importance in solving the problem. A linear

relaxation of (4.4) can be obtained if the binary constraint is replaced by the continuous

constraint 0 ≤ xi ≤ 1. The nonnegativity constraint and the edge inequality (4.3) construct a

linear relaxation of STAB(G), denoted by FRAC(G), and another relaxation is obtained by

the nonnegativity constraint and the clique inequality

∑
i∈Q

xi ≤ 1 ∀ Q clique in G,

denoted by QSTAB(G). By this construction, we get

STAB(G) ⊆ QSTAB(G) ⊆ FRAC(G).

It is easy to see that a vector x with a positive integer domain (or more precisely, binary

domain) satisfying the edge inequality induces a stable set and vice versa. The relaxation

FRAC(G) provides an exact solution to the maximum stable set problem if and only if G is

a connected bipartite graph [1]. In this case the maximum stable set problem can be solved

in polynomial time. In general, the linear relaxation of (4.4) is weak and not appropriate to

approximate the stable set polytope (4.1). To see this, consider the complete graph Kn. The

vector (12 , . . . ,
1
2)T is the optimal solution of the relaxation (4.4). However, this vector is not

in STAB(G) since it can not be obtained as a convex combination of incidence vectors of the

stable sets of Kn. The only multiple of e contained in STAB(G) is 1
ne. Besides the linear

relaxation of (4.4) for the maximum stable set problem, we can also find other relaxations in

the literature [12]. We point out that all well-known linear relaxations of (4.2) are based on

necessary conditions for the stable set property.

4.2 Semidefinite Relaxation of the Maximum Stable Set Prob-

lem

A well-known equivalent formulation of the stability number α(G) can be characterized by the

following integer nonlinear program which will be used to infer a semidefinite relaxation of the
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stable set problem:

α(G) = max { eTx | x ∈ {0, 1}|V |, xixj = 0 ∀ (i, j) ∈ IE}

= max { eTx | X̂ =

[
X x

xT 1

]
, x = diag(X), AG •X = 0, rank(X̂) = 1}

= max { J •X | X̂ =

[
X x

xT 1

]
, x = diag(X), AG •X = 0, rank(X̂) = 1}1/2 (4.5)

where we introduce a binary variable xi for each node i ∈ V . As defined on page 20, AG

denotes the adjacency matrix of G. The variables are constrained to be in {0, 1} indicating

whether node i is chosen in the stable set or not. In place of the linear constraint in (4.3) we

have bilinear edge constraints which state that for each edge {i, j} it is not allowed to choose

both nodes i and j for the stable set.

In the second equation we embed the binary vector x into a rank-one matrix X̂. Note that the

rank condition along with the constraint that the last entry of X̂ is one implies that X̂ has

the form

X̂ =

[
x

1

][
x

1

]T

for some vector x, and the constraint x = diag(X) = diag(xxT ) implies that the components

of x are from {0, 1}. Thus, X is nonnegative, and AG •X = 0 implies xixj = 0 ∀ (i, j) ∈ IE.

The third equation is evident.

Since the objective functions eTx or J •X of the above formulation are linear, replacing the

feasible set with its convex hull will not change the optimal value of the problems. Convex re-

laxations are one of the most powerful techniques for designing polynomial time approximation

algorithms for NP-hard optimization. A further relaxation of the nonconvex rank constraints

on X̂ yields two semidefinite programs

α(G) ≤ max { eTx | X̂ =

[
X x

xT 1

]
� 0, X̂ ≥ 0, x = diag(X), AG •X = 0} (4.6)

and

α(G)2 ≤ max { J •X | X̂ =

[
X x

xT 1

]
� 0, X̂ ≥ 0, x = diag(X), AG •X = 0} (4.7)

where the x-component of the optimal solutions of both problems approximates the optimal

solution of the max-stable-set problem.

The Lovász number is defined as:

θ(G) = max {
∑
i,j

Xij |
∑
i

Xii = 1, Xij = 0 ∀ij ∈ IE, X � 0}. (4.8)
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Schrijver introduced the strengthening θ′ of the Lovász θ-number by adding the nonnegativity

constraint X ≥ 0 as

θ′(G) = max { J •X | X � 0, X ≥ 0, I •X = 1, AG •X = 0}. (4.9)

which provides an improved upper bound on α(G),

α(G) ≤ θ′(G) ≤ θ(G).

Let x be the characteristic vector of a largest stable set of size k of a given graph. xxT is a

{0, 1}-matrix whose (ij)th entry equals one if i and j are included in the stable set. The matrix

X = 1
xT x

xxT is a feasible solution of (4.9) with objective value k.

An equivalent problem of (4.9) is given by

θ′(G) = max { J •X | X � 0, Xij ≥ 0 ∀ij /∈ IE, Xij = 0 ∀ij ∈ IE, I •X = 1}. (4.10)

Let Ḡ be the complement graph of G. According to the Gerschgorin theorem, every eigenvalue

λ of an arbitrary matrix A ∈ R
n×n lies within at least one of the discs

Di = { z | |z − aii| ≤
n∑

j=1
j �=i

|aij |},

Therefore, it is easy to see that X = 1
nI + 1

2n2AḠ is a Slater point for (4.10).

Remark 3 The standard Slater condition requires the existence of a feasible point X̃ at which

all inequality constraints are strictly satisfied. A weaker form of the Slater condition requires

that all nonlinear (convex) inequality constraints are strictly satisfied. This weaker form of

Slater condition for the primal and dual problem also guarantees the existence of a primal-dual

optimal solution, see e.g. [15].

Therefore, the definition of a Slater point will slightly vary from one problem to another. For

instance although the standard Slater condition is satisfied by (4.10), the Slater condition is

limited to its weaker form in (4.9).

Next we show that the semidefinite relaxation in (4.6) is at least as strong as the relaxation

in (4.7), and the semidefinite relaxation in (4.7) is at least as strong as θ′.

Theorem 9 Let X and x be any feasible solution for (4.7) (or (4.6)). Then

eTx ≤
√
J •X ≤ θ′(G). (4.11)

Proof. If the feasible solution X of (4.7) is zero, then x = 0 and the inequality (4.11) is true.

Evidently, for any nonzero X such that x,X are feasible for (4.7), the matrix X/(I • X) is

feasible for (4.9). Note that I •X = eTx since x = diag(X), therefore

J •X
I •X ≤ θ′(G) ⇒ J •X ≤ θ′(G)(eTx). (4.12)
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On the other hand,

X̂ � 0 ⇔ X − xxT � 0 ⇔ zT (X − xxT )z ≥ 0 ∀z ∈ R
n

Let z = e, then

J •X ≥ (eTx)2 (4.13)

proves the first inequality.

Note that the inequality (4.13) is strict for any interior feasible solution X̂. The second

inequality in (4.11) is an inevitable consequence of (4.12) and (4.13).

The next theorem states that θ′(G) can be expressed as optimum value of the linear objective

function eTx which is maximized over the feasible region of the semidefinite relaxation (4.6).

It will also provide a proof to show that equality in (4.13) will hold for any optimal solution X

and x. This theorem has been shown in [20] in case of omitting the nonnegativity constraint

from both problems (4.9) and (4.6).

Theorem 10 Let M be the set of feasible solutions to the problem (4.6),

M = { X̂ | X̂ =

[
X x

xT 1

]
� 0, X̂ ≥ 0, X̂ij = 0 ∀ij ∈ IE, X̂ii = X̂i,n+1 (i = 1, . . . , n)},

then

θ′(G) = max { Î • X̂ | X̂ ∈M} (4.14)

where Î =

[
I 0

0 0

]
.

Proof. Let ϕ(G) be the optimum value of Î • X̂ over the feasible set M,

ϕ(G) = max { Î • X̂ | X̂ ∈M}. (4.15)

We know that eTx ≤ θ′(G) for all feasible solutions x to the problem (4.6) (by Theorem 9),

Therefore ϕ(G) ≤ θ′(G).

In order to show θ′(G) ≤ ϕ(G), we follow the proof of Monique Laurent [20] modified to include

inequality constraints. Let X be the optimal solution to the Lovász-Schrijver function θ′ in

(4.9). Since X is a positive semidefinite matrix as well as being nonnegative, there exists some

matrix V such that X = V TV . Assume that v1, . . . , vn are the columns of V , then we have

Xij = vTi vj ≥ 0 for all i, j = 1, . . . , n. Accordingly,

θ′(G) = J •X = eTXe = eT (v1, . . . , vn)T (v1, . . . , vn)e

= (
n∑

i=1

vi)
T (

n∑
i=1

vi) = ‖
n∑

i=1

vi‖2 (4.16)
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and

1 = I •X =

n∑
i=1

‖vi‖2.

Set R := {i ∈ {1, . . . , n} | vi 
= 0} and

un+1 :=
1√
θ′(G)

n∑
i=1

vi =
1√
θ′(G)

∑
i∈R

vi,

ui :=
vi
‖vi‖ for i ∈ R.

Let ui, i ∈ {1, . . . , n} \ R be an orthonormal set in the orthogonal complement of the space

spanned by {vi | i ∈ R}. Set

X̂ = DZD

where D denote a diagonal matrix with diagonal entries uTn+1ui, i = 1, . . . , n, n + 1 and Z

denotes a matrix such that Zij = uTi uj for i, j = 1, . . . , n, n + 1. Obviously, X̂ is a positive

semidefinite matrix.

By the definition of ui’s, it follows

uTi uj =

{
1 i, j = 1, . . . , n, n + 1

≥ 0 else.

Then, the feasibility of X̂ with entries X̂ij = (uTn+1ui)(u
T
i uj)(u

T
n+1uj) for i, j = 1, . . . , n, n + 1

to the problem (4.15) is easy to determine. To complete the proof, we will show that θ′(G) ≤∑n
i=1 X̂ii as follows: By the definition of un+1 we have

θ′(G) = (

n∑
i=1

uTn+1vi)
2 = (

∑
i∈R

uTn+1vi)
2

= (
∑
i∈R

uTn+1ui‖vi‖)2

≤ (
∑
i∈R

(uTn+1ui)
2)(

∑
i∈R

‖vi‖2)

=
∑
i∈R

(uTn+1ui)
2 =

n∑
i=1

X̂i,n+1

where the inequality follows from the Cauchy-Schwarz inequality. The first equality follows

from

θ′(G) = (
n∑

i=1

vi)
T (

n∑
i=1

vi)

= (
√
θ′(G)un+1)

T (

n∑
i=1

vi)

=
√
θ′(G)(

n∑
i=1

uTn+1vi).
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Remark 4 We point out that Theorems 9 and 10 are also true if the doubly nonnegative cone

{ X | X � 0, X ≥ 0} is replaced with the semidefinite cone. Theorems 9 and 10 imply that

(4.7) and (4.9) are equivalent.

4.3 Strengthening of the Semidefinite Relaxation of the Max-

imum Stable Set Problem

The variable X̂ in the doubly nonnegative relaxation (4.6) approximates matrices in the convex

hull of rank-one matrices x̂x̂T where x̂ = (xT , 1)T and x ∈ {0, 1}|V |. In particular, the inequality

X̂ ≥ 0 in (4.6) can be motivated by the fact that x̂ ≥ 0 implies the inequality x̂x̂T ≥ 0.

Similarly, the inequalities 0 ≤ (x− e)(x− e)T and 0 ≤ x(e− x)T motivated by e− x ≥ 0 and

x ≥ 0 can be relaxed and lead us to the following constraints

X + J − xeT − exT ≥ 0, xeT −X ≥ 0 (4.17)

that may be added to the formulation of (4.6) or (4.7).

4.4 Equivalent Representation of the Lovász-Schrijver Number

To compare different formulations of the θ′-number we derive another equivalent representation.

The following problem is considered as a relaxation of (4.7)

max { J •X | X̂ � 0, X̂ ≥ 0, I •X = eTx, AG •X = 0}. (4.18)

It is obvious that the relaxed constraint I •X = eTx is satisfied by any solution X and x of

(4.7) (and (4.6)).

Proposition 3 The problem (4.18) is equivalent to (4.7).

Proof. The following diagram shows the relation between the problems (4.7), (4.9) and (4.18),

i.e. A→ B says an optimal solution of (A) can be translated into a feasible solution of (B).

(4.7) (4.18) (4.9) (4.7)
clear (�) (��)

To show (�), let X,x be an optimal solution of (4.18). Then X
eT x

is a feasible solution of

(4.9). For (��), see the proof of Theorem 10. In the second part of the proof it is shown how

to construct a feasible solution to (4.7) from an optimal solution to (4.9).

According to Theorems 9 and 10 and Proposition 3, the problems (4.7), Schrijver θ′-number

(4.9) and (4.18) are mathematically equivalent and generate the bound θ′ for the maximum

stable set problem. The accuracy of the solutions of (4.7), (4.9) and (4.18) given by SDPNAL

and the computation times are tabulated in Table 4.1. For each dimension n, 10 different

random graphs with 60% edge density were constructed.
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n residual running time

(4.9) (4.7) (4.18) (4.9) (4.7) (4.18)

50 2.08e-6 4.44e-6 4.54e-6 15.6 29.1 28.5

100 9.13e-7 7.83e-7 5.78e-7 17.6 46.8 36.8

200 7.43e-7 5.54e-7 6.04e-7 11.2 22.7 22.2

400 8.74e-7 5.15e-7 4.83e-7 80.6 109.4 73.6

Table 4.1: Comparison between (4.9), (4.7) and (4.18)

The numerical results given in Table 4.1 show no significant difference in the norm of the

residuals for the relaxations (4.9), (4.7) and (4.18). However, the computation time of the

θ′-number problem (4.9) is less than the other two problems. It is somewhat surprising that

the problems for n = 50 appear to be more difficult than for n = 200. For n = 50 the average

residual (geometric mean) is higher and also the number of iterations used by SDPNAL is

much higher, even the overall computation time is higher despite of the fact that for n = 200

the numer of variables is more than 10 times higher than for n = 50.

4.5 Compute the Residual

The rounding errors that appear in the process of solving an optimization program by any

specialized software packages cause the numerical solution to differ from the exact solution.

The subject of this section is to assess the accuracy of the approximate solution of the doubly

nonnegative optimization program

max { C •X | X � 0, X ≥ 0, A(X) = b}. (4.19)

given by SDPNAL (or any other packages). In order to solve (4.19) with SDPNAL, we introduce

a new variable X(n) ∈ Sn into (4.19) and form the following equivalent problem

max { C •X | X � 0, X(n) ≥ 0, A(X) = b, X −X(n) = 0} (4.20)

and the dual problem of (4.20) is given as

max { bT y | A∗(y) + Z + S = C, S(n) − Z = 0, S � 0, S(n) ≥ 0}. (4.21)

Problem (4.21) is obtained by straight forward dualization, of course, the variable Z can be

eliminated from (4.21). The optimal solutions of (4.20) and (4.21) satisfy the constraints as

well as the conditions XS = 0 and Xn ◦ Sn = 0 called the complementarity condition. Let

(X,Xn, y, S, Sn) be the approximate solution given by SDPNAL. In order to indicate how

accurate the given solution is, we use the following residual:
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residual :=
(‖A∗(y) + Z + S − C‖2

1 + ‖C‖2 +
‖S(n) − Z‖2

1 + ‖Z‖2 + ‖S(n)‖2
+
‖S −ΠSn

+
(S)‖2

1 + ‖S‖2

+
‖S(n) −ΠNn(S(n))‖2

1 + ‖S(n)‖2
+

‖XS‖2
1 + ‖X‖2‖S‖2 +

‖X(n) ◦ S(n)‖2
1 + ‖X(n)‖2‖S(n)‖2

+
‖X −ΠSn

+(X)‖2
1 + ‖X‖2 +

‖X(n) −ΠNn(X(n))‖2
1 + ‖X(n)‖2

+
‖A(X)− b‖2

1 + ‖b‖2 +
‖X −X(n)‖2

1 + ‖X‖2 + ‖X(n)‖2
) 1

2

where the matrix norms are the Frobenius norm. This residual measures the violation of the

necessary and sufficient optimality conditions.

4.6 Equivalent Transformations

To summarize the results obtained from previous discussions, the relaxations (4.9), (4.7), (4.6)

and (4.18) are equivalent due to Theorems 9, 10 and Proposition 3. Both, the optimal solution

of either the relaxations (4.7) or (4.6), can be transformed via the GW-procedure to a {0, 1}-
solution which is feasible to the maximum stable set problem. Likewise, the relaxations (4.6),

(4.7) and (4.18) without the nonnegativity condition X̂ ≥ 0 are equivalent to the θ-number

(4.8).

4.7 Construction of a Valid Upper Bound for a Primal SDP

As discussed in Section 2.4, there are some properties in SDP that differ from those in LP. The

strict complementary condition is one of these properties. It is well-known that there always

exists a pair of primal and dual optimal solutions in LP satisfying the strict complementary

condition. However, this is not necessarily true in SDP. Strict complementarity condition

is essential in order to analyze the convergence rates of several algorithms for solving SDP

(such as SDPNAL, SEDUMI). The lack of strict complementarity may cause numerical and

theoretical difficulties [33]. It has been shown that primal nondegeneracy, dual nondegeneracy

and strict complementarity hold generically in SDP [2], however for the SDP’s considered in

this thesis, this genericity condition often does not hold.

In what follows we discuss a technique for the computation of a valid upper bound for the

optimal value of a generic primal SDP. The objective of this technique is to deal with the

rounding errors which appear in the optimal solutions of the semidefinite programs. Consider

the general form of SDPs (2.7) and (2.8). We will shortly show that the objective value C • X̄
where X̄ is the (exact) solution of (2.7) can be bounded from above using an approximate
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solution.

Let X̃, ỹ, S̃ denote approximate solutions of (2.7) and (2.8). First, we generate a complementary

solution: Define

Z =
X̃

‖X̃‖F
− S̃

‖S̃‖F
.

Note that if X̃ and S̃ are exact solutions, then Z has the same eigenvectors as X̃ and S̃. The

eigenvalue decomposition of Z implies Z = UDUT . If we apply the orthogonal matrix U to

the X̃ and S̃, the results will be nearly diagonal matrices, denoted by Λ̃ and Σ̃:

Λ̃ = UT X̃U, Σ̃ = UT S̃U.

For an arbitrary square matrix A the Matlab command diag(diag(A)) outputs a diagonal ma-

trix with the same diagonal elements as A. We set Λ = diag(diag(Λ̃)) and Σ = diag(diag(Σ̃))

and construct new solutions X̂ = UΛUT and Ŝ = UΣUT where the diagonal matrices are

projected to satisfy Λ ≥ 0,Σ ≥ 0 and ΛΣ = 0. We now define a new perturbed problem such

that X̂ and Ŝ are the exact solutions:

min {Ĉ •X | A(X) = b̂, X � 0} (4.22)

where Ĉ := A∗(ŷ) + Ŝ ≈ C and b̂ := A(X̂).

We now show for generic cases that a small perturbation ΔC of the objective function C of

(2.7) leads to an approximate solution X̂ near X̄. First we quote the following theorem from

[9] without proof.

Theorem 11 Let a linear map A and its conjugate A∗ be defined by (2.1) and (2.2) with the

assumption that the matrices Ai, i = 1, . . . ,m are linearly independent, a vector b ∈ R
m and a

matrix C ∈ Sn be the data of the primal and dual semidefinite programs (2.7) and (2.8). We

assume that the problems (2.7) and (2.8) satisfy the Slater condition and the optimal solutions

X̄ of (2.7) and ȳ, S̄ of (2.8) are unique and satisfy the strict complementary condition. If the

data of (2.7) and (2.8) is perturbed by a sufficiently small perturbation Δb, ΔC and ΔA, then
up to second order terms, the perturbations ΔX and Δy,ΔS of the solutions X and y,S at X̄

and ȳ,S̄ satisfy the nonsingular linear system:

A(ΔX) = Δb−ΔA(X̄),

A∗(Δy) + ΔS = ΔC −ΔA∗(ȳ),

ΔXS̄ + X̄ΔS = 0. (4.23)

As a direct consequence of Theorem 11 we obtain the following result.

Theorem 12 With the assumptions of Theorem 11, let

X̄ := argmin { C •X | A(X) = b, X � 0}
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and

X̂ := argmin {(C + ΔC) •X | A(X) = b + Δb, X � 0}.
There exist a finite number M > 0 and ε0 > 0 such that for any number ε0 > ε > 0 it follows

‖X̂ − X̄‖ < Mε

if ‖
[

Δb

ΔC

]
‖ ≤ ε.

Consider the optimization (4.22). The Lagrangian function of (4.22) is defined as

L(X, y, S) = 〈Ĉ,X〉+ (A(X)− b̂)T y + 〈X,S〉.

Then, the sensitivity of the optimal value of (4.22) with respect to small changes Δb of b̂ is

approximately

(Db̂L(X, y, S))[Δb] = ŷTΔb ≤ ‖ŷ‖ · ‖Δb‖, (4.24)

Let X̄ be an (exact) solution of (2.7) which is not typically achievable numerically. In order

to find a valid upper bound for the optimal value C • X̄ we use the perturbed solution X̂ as

follows:

〈C, X̄ − X̂〉 = 〈C − Ĉ, X̄ − X̂〉+ 〈Ĉ, X̄ − X̂〉,

Theorem 12 and inequality (4.24) imply that 〈C − Ĉ, X̄ − X̂〉 ≤ Mε2 and 〈Ĉ, X̄ − X̂〉 ≤
‖ŷ‖ · ‖Δb‖, respectively. Therefore, one has

〈C, X̄〉 ≤ 〈C, X̂〉+ δnew

where δnew = Mε2 + ‖ŷ‖‖Δb‖. Unfortunately, it is computationally expensive to generate a

reliable bound for δ.

Remark 5 In order to analyze the sensitivity of semidefinite programming by Theorem 11,

the Slater condition, the uniqueness of the solutions and the strict complementary condition

must be satisfied. If Slater condition does not hold for the primal or dual problem, a tiny

perturbation makes the problem infeasible. The strict complementary condition is necessary to

have an invertible linear system (4.23) as assumed in Theorem 11. If this condition does not

hold, we have r+ s < n where r and s are the number of positive eigenvalues of the primal and

dual solution respectively and therefore (4.23) is not solvable.

31



Chapter 5

A Branch and Bound Approach

Before we analyze the algorithm proposed in this thesis to solve the maximum stable set

problem, we present a brief sketch of the method. The method we use starts with the Schrijver-

θ′ number (4.9) as the root of a branch and bound tree which provides an upper bound of α(G).

The semidefinite relaxation is strengthened by adding some cutting planes in each step. The

cuts are satisfied by any solution of the maximum stable set problem. The aim of the cut is

to get more accurate approximate solutions to the maximum stable set problem. The main

goal is to reduce the depth of the branch and bound tree starting from a basic relaxation by

using semidefinite relaxations. We complement the semidefinite upper bound by applying the

Goemans and Williamson [11] approach to generate approximate solutions to the maximum

stable set. The randomized solutions from the Goemans-Williamson approach are corrected by

a simple heuristic to generate a locally maximal stable set. As the optimal value α(G) is not

known for an arbitrary graph G, the algorithm is terminated when the upper bound coincides

with the lower bound on α(G).

5.1 A Branch and Bound Algorithm for the Maximum Stable

Set

Our proposed algorithm is described in details in this section. In order to solve semidefinite

programs incorporated in the algorithm we apply a Matlab up-to-date software called SDPNAL

[35].

• Algorithm:

The algorithm starts by solving the semidefinite relaxation (4.9). The Lovász-Schrijver

θ′-number (4.9) serves as a valid upper bound of α(G) following from Theorem 9. As

rounding errors which typically appear in the result of any approximation algorithm

may cause inaccuracy in the final results, the bounding relaxation (4.9) may not give

an accurate upper bound. Therefore, we aim at finding a valid upper bound for the

32



relaxation (4.9). Let X be a given approximate solution to (4.9). Since typically X is

neither feasible nor optimal, we consider the dual problem and try to find a valid upper

bound for (4.9).

1. Here we are producing a dual feasible solution close to the optimal solution of (4.9)

through a small perturbation which will be discussed shortly.

We rewrite (4.9) in the following form,

θ′(G) := max { J •X | Eij •X = 0 ∀ij ∈ IE, I •X = 1, X � 0, X ≥ 0}.
(5.1)

Here Eij = eie
T
j + eje

T
i for i 
= j which stands for the symmetric matrix whose ijth

and jith entries equals 1 and all other entries are zero.

The dual problem is

min { y1 | y1I +
∑
ij∈IE

yijEij − Z1 − Z2 = J, Z1 � 0, Z2 ≥ 0 }. (5.2)

Let ỹ and Z̃1 and Z̃2 be approximate optimal dual solutions (given by SDPNAL).

The aim is to find a feasible dual solution nearby the SDPNAL-solution. To this

end, we add small perturbations to the given dual solution to fit all constraints. Set

Ẑ2 := max (Z̃2, 0), (componentwise)

Ẑ1 := −J − Ẑ2 + ỹ1I +
∑
ij∈IE

ỹijEij

Let λmin be the smallest eigenvalue of Ẑ1. Since the symmetric eigenvalue problem

is perfectly well conditioned, the error in the computation of λmin using Matlab is

small. In our implementation we assume that this error is bounded by 100‖Ẑ1‖F · ε.
For details see Appendix A.

If λmin < ‖Ẑ1‖F · 100 · ε where ε is the machine accuracy, a nearby feasible solution

can be constructed by setting

Z̄1 := Ẑ1 + δI,

ȳ1 := ỹ1 + δ and ȳij := ỹij

where δ = −λmin+‖Ẑ1‖F ·100 · ε. The additional term ‖Ẑ1‖F · 100 · ε is intended to

eliminate the possible rounding errors during the computation of the eigenvalues of

the matrix Ẑ1. If λmin ≥ ‖Ẑ1‖F · 100 · ε, set

Z̄1 := Ẑ1, ȳ := ỹ.

A feasible solution of (5.2) is then given by (Z̄1, Ẑ2, ȳ). By the strong duality it

therefore holds that

θ′(G) ≤ ȳ1.
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We point out that unlike the discussion in Section 4.7, finding an upper bound for

(4.9) is possible because of the special structure of A.

Remark 6 A strictly feasible solution can be constructed to the dual problem of the

Lovász-Schrijver number θ′ in (4.9), e.g.

y1 = −2(n + 1), Z1 = 2(n + 1)I − J, Z2 = J.

According to the conic duality theorem, the relaxation (4.9) is solvable. Neverthe-

less SDPNAL is not always successful in solving (4.9). SDPNAL is assumed to be

convergent under Slater condition, therefore applying SDPNAL to the problem (4.9)

which does not have a strictly feasible point may cause a failure in the result. For

this reason we intend looking at the problem below

max { J •X | Xij = 0 ∀ij ∈ IE, I •X = 1, X ∈ K̂} (5.3)

which is equivalent to (4.9) and satisfies the weak form of the Slater condition. The

cone K̂ and its dual K̂D are defined by Lemma 1 in Section 2.1.

In our numerical examples we observed that it may happen that SEDUMI successfully

solves both (4.9) and (5.3), but SDPNAL solves neither of these two problems. This

observation limits the usefulness of SDPNAL for the branch and bound approach

proposed in this thesis.

• The feasible set of problem (4.7) typically contains X,x where X is not a rank-1-matrix.

If β ≤ θ′(G) is a candidate for the optimal value in (4.5), the aim X = xxT and xT e = β

motivates the equation Xe = βx as an additional linear equation in (4.7) leading to a

possibly sharper relaxation

max { J •X | X̂ =

[
X x

xT 1

]
� 0, X̂ ≥ 0, x = diag(X),

AG •X = 0, Xe = βx}. (5.4)

The goal of forming (5.4) is to reduce the gap between α(G) and the solution of its re-

laxation. By adding some constraints to problem (4.7) which are satisfied in the problem

(4.5), we aim at cutting the current optimal solution of (4.7). Lemma 10 below states

that the problem (5.4) where β = θ′(G) does not present an improvement of (4.7).

Lemma 10 Let X∗,x∗ be an optimal solution of (4.7), then X∗e = θ′(G)x∗.

Proof. The Schur complement of the matrix X̂∗ implies X∗− x∗x∗T � 0. On the other

hand, by Theorems 9 and 10 we have eTX∗e = (eTx∗)2. Therefore X∗ − x∗x∗T has the

eigenvalue 0 corresponding to the eigenvector e,

(X∗ − x∗x∗
T

)e = 0 =⇒ X∗e = x∗(x∗
T
e) = θ′x∗.
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The next lemma refers to the case that β = !θ′(G)" is chosen.

Lemma 11 If problem (5.4) has a feasible solution, then the optimal value of (5.4) is

less than or equal to β2.

Proof. Let X,x be a feasible solution of (5.4). For β = θ′(G), the claim of Lemma 11

follows from Lemma 10. Let β < θ′(G), the objective value of (5.4) is

J •X = eTXe = eT (βx) = βeTx ≤ β
√
J •X.

The last inequality follows from J • (X − xxT ) ≥ 0 and J • X ≥ J • (xxT ) = (eTx)2.

Therefore we have J •X ≤ β2 for all feasible solutions of (5.4).

Remark 7 In our algorithm we set β = !θ′(G)". If θ′ is not an integer number, we

will have β < θ′. In the algorithm β is reduced to β − 1 only if we can guarantee that

α(G) < β. If for a given β the obtained upper bound in (5.4) is not at least β2, it

follows that there is no stable set of size β and β can be reduced. However, numerical

observations suggest that the relaxation (5.4) doesn’t provide a stronger upper bound for

α(G) than the Schrijver relaxation (4.9).

Remark 8 We were not able to find any numerical example for which the optimal value

of (5.4) is less than β2.

• To complement the upper bound for α(G) obtained from a semidefinite relaxation we

intend to obtain a valid lower bound on the stability number α(G) by generating a

{0, 1}-vector x and assign a variable to each vertex (say xi for vertex i) as follows

xi =

{
1 i ∈ S

0 else.

where S is a locally maximal stable set and x is called the characteristic vector of S. To

this end we implement the randomized algorithm proposed by Goemans-Williamson [11]

to generate many locally maximal stable sets:

1. Goemans and Williamson have proposed a randomized approach to generate a

{−1, 1}- rank-one-matrix from a positive semidefinite approximation with unit diag-

onal. The technique of Goemans and Williamson has been applied to the max-stable

set problem as well, see e.g. Benson and Ye [3]. Below we outline a strategy that is

equivalent to the approach by Benson and Ye. If there is a solution x and X to the

problem (4.7)( or any other relaxations discussed later to provide an upper bound
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on α(G)), we set X̃ := 4X + J − 2xeT − 2exT . Note that diag(X̃) = e and X̃ � 0

since X � xxT . From the matrix X̃ we generate (by the Goemans-Williamson

approach) random vectors x̃ ∈ {−1, 1}n and transform these via x = 1
2(x̃ + e) to

random {0, 1}-vectors. We use the informal language saying that x contains vertices

i ∈ V if xi = 1 and edges (i, j) if xi = xj = 1 and (AG)ij = 1, i.e. each random

{0, 1}-vector x defines a sub-graph of G.

2. The random vectors x (obtained from (4.7)) are “reduced” by a greedy heuristic to

make them characteristic vectors of stable sets:

– First check whether x or e − x contain less edges. In the latter case replace x

with e− x.

– Second, as long as there is an edge that is contained in x, identify a node in x

that is adjacent to most nodes in x and delete this node.

– Third, for each node v not in x, test whether adding v to x maintains the stable

set property. If yes, add v to x.

– Fourth, for each node v in x compute the set of all nodes ṽ that are not adjacent

to any node in x \ {v}. If two or more such ṽ are not adjacent to each other

then replace v with these nonadjacent ṽ.

3. Store that largest stable set obtained this way. If the cardinality is less than β

further branch-and-bound steps will be necessary.

Remark 9 In the phase of deletion of nodes x which violate the stability of the set obtained

by the GW-procedure above, there may exist more than one nodes with the same degree. The

question arises as to which nodes to be removed first from the set in order to get a maximum

stable set. As seen in the following graph,

1 2

3

45

starting with node 2 or 4 we obtain the maximum stable set, while, this does not happen if

we start with node 3.

Remark 10 The fourth step of case 2 above is intended to possibly enlarge the size of the

current stable set but it might be not useful in practice. Whether the fourth step is successful

or not depends on the stable set x. Consider the example of Remark 9. Let the current stable

set x have size 2.Then, the fourth step returns different results in case one of the sets {2, 4}
and {2, 5} is selected as the stable set x. The application of this step to the latter set results

in a maximum stable set, however this does not happen for the former. In our numerical
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experiments, it rarely ever happened that step 4 was used. In principle, the execution of step 4

is numerically cheap. When using Matlab, step 4 is more expensive since it is typically repeated

many times and therefore more time-consuming in an interpreted language such as Matlab.
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Chapter 6

Branching Strategies for the

Maximum Stable Set Problem

6.1 New Branching

Let G = ({1, . . . , n}, IE) be a given graph and Gi = (Vi, IEi) denote a subgraph of G obtained by

deleting node i from G and all adjacent nodes, i.e. with Vi = {1, . . . , n}\{{i}∪{j | (i, j) ∈ IE}}
and IEi = {(i′, j′) | i′, j′ ∈ Vi, (i

′, j′) ∈ IE}. Assume an upper bound β for the maximum

stable set is known, i.e. α(G) ≤ β. Let x̃ be a {0, 1}-vector with eT x̃ ≥ β. There are three

possibilities:

1. There is a maximum stable set of size β in the graph G̃ where G̃ denotes the subgraph

induced by the set of nodes i with x̃i = 1, as defined on page 20.

2. For each maximum stable set S of G there exists at least one i with x̃i = 0 and i ∈ S. This

gives p = n−eT x̃ (≤ n−β) subcases. We assume (by reordering) that x̃1 = 0, . . . , x̃p = 0

and x̃p+1, . . . , x̃n = 1. For each subproblem i, (1 ≤ i ≤ p), we assume that x̃i is

in a maximum stable set. Delete node i and all nodes adjacent to i from G. This

gives a smaller subgraph Gi. Let Lαi and Uαi denote the lower and upper bound on

α(Gi), respectively obtained from a semidefinite relaxation and the Goemans-Williamson

heuristics. If there is one i, 1 ≤ i ≤ n, such that for the smaller subgraph Gi we obtain

Lαi = Uαi = β − 1, we are done, i.e. �Lαi and Uαi provide a proof for α(G) = β. If

Uαi < β − 1 for all i with x̃i = 0, β must be reduced by one. In this case, if for one i

we have Lαi = Uαi = β − 2, then α(G) = Lαi + 1 = Uαi + 1 = β − 1. Else, for those Gi

where Uαi ≥ β − 1, the same algorithm must be applied, i.e. a new vector x̃ must be

defined for Gi and the algorithm must be repeated.

3. Any maximum stable set of G has cardinality “ ≤ β − 1”.
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In our algorithm, the semidefinite relaxation problem (4.6) (or (4.7)) provides an upper

bound on α(Gi) and a lower bound is provided by the Goemans and Williamson approach.

6.1.1 Possible Strategies to Choose x̃

1. Let G = (V, IE) be an arbitrary graph and S = {i1, . . . , ik} ⊂ V be a locally maximal

stable set of size k. For il ∈ S, l = 1, . . . , k let N(il) be the set neighbors of il. In the

following we intend to construct a clique covering of S. For each il ∈ S, l = 1, . . . , k we

identify a locally maximum clique C(il) in (N(il) \
l−1⋃
j=1

C(ij)) ∪ {il}. By construction it

follows that il ∈ C(il) and C(il) ∩ C(ik) = ∅ for l 
= k and at most one element of each

C(il) can be contained in a stable set. Set

x̃j =

⎧⎨
⎩

1 if j ∈ ⋃
il∈S

C(il)

0 else.

Here, the set {i | x̃i = 1} is not a stable set in general, but if the maximum stable set

has cardinality larger than |S| it must contain some j with x̃j = 0. If one can not find

any stable set of size larger than |S|, the set S is an optimal solution.

2. The strategy mentioned in Step 2 of Section 6.1 to reduce β contains p subproblems (and

p could be large). Let nv(i) denote the number of nodes adjacent to the node i. Each

subproblem i ∈ {1, . . . , p} seeking for an upper bound on α(Gi) has n− nv(i)− 1 binary

variables. We seek a vector x̃ ∈ {0, 1}n with at least β components of value one such

that the dimension of each subproblem i becomes as small as possible. To this end, sort

the neighbor vector nv in decreasing order, called snv. The nodes corresponding to the

last β entries of snv are set to one and the rest zero. For this approach, this choice of

x̃ reduces the dimension of the subproblems in the next branch and bound level to the

smallest possible dimension.

3. There is an alternative to choose the vector x̃. Let x̃ ∈ {0, 1}n be a locally maximum

stable set of the graph G obtained by the GW-rounding algorithm. If eT x̃ < β, among the

nodes i with x̃i = 0 we set those nodes to one which have the least number of neighbors

until we get eT x̃ ≥ β. Here, the approach of the previous paragraph is slightly changed

by including a locally maximum stable set among the nodes i with x̃i = 1.

Remark 11 Step 2 of Section 6.1 can be generalized aiming at reduction of β by two or more.

Let G̃ denote the graph with nodes i with x̃i = 1. If for all subgraphs Gi, Uαi < β − k where

k ≥ 2 , β will be reduced by k if also the maximum stable set of G̃ has size “ ≤ β − k ”.
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6.2 An Extension of the New Branching

In what follows, we make an extension of the case 1 of the Section 6.1. Let a maximum stable

set be contained in the set {i | x̃i = 1} =: Ĩ where |Ĩ| = β. We discussed above how to reduce

β to β − 1. In this section the case will be argued where β can be reduced by 2. We claim

that if all edges in Ĩ are pairwise adjacent, then there is a stable set in Ĩ of size either β − 1

or β − 2. In order to support this claim, all the possibilities where any 2 edges in an arbitrary

graph are adjacent are listed in the following figure.

(a) (b) (c) (d) (e)

Figure 6.1: Example graphs

Here, case (e) refers to the situation where there are more than two nodes adjacent to the

node in the middle. As we can see from the picture, the graphs 1.b, 1.c and 1.e turn into a

stable set by eliminating one node. Only the graph 1.d has a stable set of size one and in order

to form a stable set one needs to remove two nodes from the graph. Therefore, the cardinality

of Ĩ can be reduced by one or two if all edges in Ĩ are as in one of the graphs 1.a-1.e.

6.3 Alternative Strategy for the Branching Step

If there is a gap between the solution provided by the relaxation (4.7) and the solution given

by the GW-rounding algorithm, we will incorporate new constraints to the relaxations in order

to reduce the gap. This issue will be discussed in this section.

The relaxation (4.7) can be strengthened by adding additional constraints which are satis-

fied by the rank-one-matrix solution of the maximum stable set problem. It is obvious that for

any vector v ∈ R
n the constraint Xv = γx with γ = vTx is satisfied by any rank one solution

of the stable set problem. The new relaxation including the constraint Xv = γx is supposed

to provide a better approximation of the stable set problem for some vectors v. For this, the

strategy is to define a vector v in a way that the constraint Xv = γx separates the current

optimal solution X∗, x∗ of (4.7) from the convex hull of the set of feasible solutions of the new

relaxation and provides a possibly deep cut and therefore a stronger relaxation. The method

of choosing v will be explained in more detail below.

It follows two conflicting goals. On the one side, v is to be chosen such that the equation
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Xv = γx is violated for any γ ∈ R, more precisely, such that

min
γ∈R

‖Xv − γx‖
‖v‖

is large. On the other side, v is to be chosen such that there are only few possible values of

γ to be considered. In order to reduce the number of different values of γ that need to be

considered in a branch and bound approach, the vector v maximizing ‖Xv−γx‖
‖v‖ is rounded to

a nearby integer vector. More precisely, after finding an appropriate vector v, called v̂ with

‖v̂‖∞ = 1, round v̂ to the nearest vector v in {−1, 0, 1}n. Let B = X − xxT where X,x is the

solution of (4.7). Test whether ‖Bv‖2 satisfies ,

‖Bv‖2 ≥ η.λmax(B).‖v‖2. (6.1)

with some fixed parameter η ∈ (0, 1), e.g. η = 0.1. If not, modify v.

Let the number of −1 and 1 in v be t̂ and t, respectively. For

γ = −t̂,−t̂ + 1, . . . , t− 1, t, (6.2)

solve the semidefinite relaxation

max { eTx | X̂ =

[
X x

xT 1

]
� 0, X̂ ≥ 0, x = diag(X), AG •X = 0, Xv = γx}. (6.3)

If (6.3) does not have a solution for some value of γ, then this value of γ can be dropped.

If for each value of γ the optimal value of (6.3) is less than β, then β can be reduced to

(β − 1). If (6.3) has a solution, then try to identify a rank-one-solution from it e.g. via the

Goemans-Williamson approach of Section 5.1. If necessary repeat this branching by adding

further vectors ṽ with associated values γ̃.

Remark 12 According to Theorems 9 and 10, the equality J •X = (eTx)2 = (θ′)2 holds for

any optimal solution of the relaxation (4.7). However, this equality is not true in general. It

follows from the conic constraint X̂ � 0 that X − xxT � 0 and therefore J • X ≥ (eTx)2.

Therefore, we use the term eTx as the objective value of (6.3) to achieve a possibly stronger

relaxation.

Remark 13 Let X,x be a solution of (4.7). The matrix B := X−xxT is positive semidefinite.

If it were zero, the max-stable set problem would be solved. Since B is positive semidefinite

but not positive definite, there exist one or more eigenvectors v to the eigenvalue 0. Let v be

an eigenvector corresponding to the eigenvalue zero. Since the (current) optimal solution X,x

of (4.7) satisfy the new constraint Xv = γx with γ = vTx, this choice of v doesn’t make any

improvement in the approximation. Let v be an eigenvector corresponding to the maximum

eigenvalue of B denoted by λmax. Clearly, ‖Xv − γx‖ = λmax‖v‖ 
= 0 where γ = vTx. This

motivates us to use the inequality (6.1) as a criterion to test v after the rounding procedure.
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In what follows, it will be discussed how to generate a vector v such that the current

solution X,x violates the additional constraint Xv = γx for any γ. To this end, we approach

the following problem in three different ways:

max
v∈Rn, ‖v‖2=1

min
t∈R

‖Xv − tx‖22. (6.4)

1) First Version of Generating a Vector v

In order to solve (6.4), let

f(t, v) = ‖Xv − tx‖22,
= vTX2v + t2xTx− 2txTXv.

Since f(t, v) is a convex quadratic function, the first order condition for minimizing with

respect to t namely ∂f(t,v)
∂t = 0 implies that

t =
xTXv

xTx

is the solution of the minimization problem. Replacing the obtained value t in (6.4) and

reformulation of the fraction (xTXv)2

xT x
:= (vTXT x)(xTXv)

xT x
leads to the following equivalent

problem:

max
v∈Rn, ‖v‖2=1

vT (X2 − Xx(Xx)T

xTx
)v. (6.5)

The optimal solution vector v is known as the unit-norm eigenvector corresponding to the

maximum eigenvalue of (X2− Xx(Xx)T

xT x
). This vector v and the two following alternatives

for generating a vector v are compared with each other in Section 8.2.

2) Second Version of Generating a Vector v

The maximization (6.5) can be represented in the following equivalent form:

max
v∈Rn, ‖v‖2=√

n
vT (X2 − Xx(Xx)T

xTx
)v. (6.6)

For convenience of notation let Z = X2 − Xx(Xx)T

xT x
. Clearly, any v ∈ {+1,−1}n is

a feasible solution to (6.6). The GW-rounding procedure is well-known to produce a

{−1,+1}-vector. This motivates us to relax the optimization (6.6) to

max {V • Z | V � 0, diag(V ) = e }. (6.7)

The GW-method with different rounding procedure can be applied to the solution V

of (6.7) in order to generate a vector v ∈ {−1, 0,+1}. Here, the rounding procedure is

modified as follows: Since each component i with vi 
= 0 induces an additional value of γ

that needs to be considered in (6.2), it is aimed to round many components of v to zero.

To this end, let k := max |Lu|i be the maximum component of Lu. Let η ∈ (0, 1) be a

fixed parameter, if |Lu|i > ηk, set vi := sign(Lu)i; else set vi = 0.
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3) Third Alternative Version of Generating a Vector v

Note that problem (6.4) serves as a heuristics to generate a deep cut. The optimal

solution of (6.4) must be perturbed to allow for a suitable branching strategy. Thus,

finding the exact solution of (6.4) is not crucial. If the rounding procedure does not

provide a vector v satisfying (6.1) we consider a simplified version of (6.4) obtained by

adding the constraint xTXv = 0 to (6.5). The motivation for this constraint is that v

is to be chosen such that Xv is not a multiple of x at the optimal solution X,x of (6.3)

(unless X is a rank-one-matrix X = xxT in which case the algorithm stops). To eliminate

the possibility that Xv = tx we require ‖v‖2 = 1 and xTXv = 0. So the modified version

of (6.5) can be restated as follows:

max { vTX2v | xTXv = 0, ‖v‖2 = 1} (6.8)

The eigenvalue decomposition of X yields X = UDUT and then X2 = UD2UT . Thus,

(6.8) is equivalent to

max{vTUD2UT v | xTXUUT v = 0, ‖v‖2 = 1}.

Set

ṽ := UT v, r̃ := UTXx,

therefore the problem (6.8) has been translated into the following problem which has an

appropriate structure to deal with,

max {ṽTD2ṽ | ṽT r̃ = 0, ‖ṽ‖2 = 1}. (6.9)

The next theorem will provide a solution for (6.9).

Theorem 13 Any normalized eigenvector to the largest eigenvalue of D̃ where

D̃ := (I − r̃r̃T

‖r̃‖22
)D2(I − r̃r̃T

‖r̃‖22
),

is an optimal solution of (6.9).

Proof. For the sake of convenience denote

Π := (I − r̃r̃T

‖r̃‖2 ), D̃ := ΠD2Π.

Here, Π is the orthogonal projection onto {r̃⊥}. Let v̂ be a unit eigenvector correspond-

ing to the largest eigenvalue of D̃. Note that r̃ is an eigenvector corresponding to the

eigenvalue zero of the matrix D̃ as D̃r̃ = 0. Inasmuch as the eigenvectors of different

eigenvalues of symmetric matrices are orthogonal, it then follows v̂T r̃ = 0. Therefore

λmax(D̃) = v̂T D̃v̂

= v̂TΠD2Πv̂ = v̂TD2v̂, (6.10)
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On the other hand, the Raleigh-Ritz theorem states that for the symmetric matrix D̃

one has

λmax(D̃) = max
z∈Rn, ‖z‖2=1

zT D̃z

= max
z∈Rn, ‖z‖2=1

zTΠD2Πz

= max
z∈(r̃)⊥, ‖z‖2≤1

zTD2z

= max
z∈(r̃)⊥, ‖z‖2=1

zTD2z, (6.11)

where the last equality follows form the fact that D2 � 0. In order to show the third

equality, assume that ẑ is an optimal solution of

max
z∈Rn, ‖z‖2=1

zTΠD2Πz.

According to Theorem 7, ẑ can be decomposed to ẑ = ẑ1 + ẑ2 such that ẑ1 ∈ {λr̃} and

ẑ2 ∈ {r̃⊥}. As ẑ1 ⊥ ẑ2, then ‖ẑ1‖2 + ‖ẑ2‖2 = 1 and the optimal objective value is

(ẑ1 + ẑ2)
TΠD2Π(ẑ1 + ẑ2) = ẑT2 D

2ẑ2.

where ‖ẑ2‖2 ≤ 1. The equalities (6.10) and (6.11) imply

v̂TD2v̂ ≥ ṽTD2ṽ ∀ṽ s.t. ṽ ⊥ r̃, ‖ṽ‖2 = 1.

which completes the proof.

In order to apply SDPNAL, problem (6.3) is represented as follows:

•
x = diag(X) ⇔ X̂i,i − X̂i,n+1 = 0 ∀i = 1, . . . , n.

For each i ∈ {1, . . . , n} we define a symmetric (n + 1)× (n + 1)-matrix S(i) as

(S(i))i,j =

⎧⎪⎨
⎪⎩

2 i = j

−1 j = n + 1 or i = n + 1

0 else.

(6.12)

Therefore,

x = diag(X) ⇔ S(i) • X̂ = 0 ∀i = 1, . . . , n.

Note that Si is very sparse with only 3 nonzero entries and note that this form of sparsity

is fully exploited by SDPNAL.
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• Add a zero column and a zero row to the right and bottom of the matrix AG. The results

are denoted by

ÂG =

[
AG 0

0 0

]
. (6.13)

Then

AG •X = 0 ⇔ ÂG • X̂ = 0,

• We define a new matrix U whose (n + 1, n + 1)th entry equals 1 and the rest is zero and

add constraint U • X̂ = 1 to fix X̂n+1,n+1 = 1.

• To translate the constraint Xv = γx, we have

Xv = γx⇔ N i • X̂ = 0 ∀i = 1, . . . , n.

where

N (i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 v1 0 · · · 0 0
...

...
...

...

0 · · · 0 vi−1 0 · · · 0 0

v1 · · · vi−1 2vi vi+1 · · · vn −γ
0 · · · 0 vi+1 0 · · · 0 0

...
...

...
...

0 · · · 0 vn 0 · · · 0 0

0 · · · 0 −γ 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.14)

is a symmetric matrix of order n + 1. Here only the ith row and the ith column differ

from the zero matrix.

6.4 Check the Nontrivial Infeasibility of the Relaxation (6.3)

of the Branching Step

We anticipate that problem (6.3) may not be feasible for some possible values of γ ∈ {−t̂, . . . , t}.
In what follows, we address how to prove infeasibility in the presence of rounding errors.

Below we will define a new problem which is specialized in providing a proof of infeasibility

of the problem (6.3). Since the existence of a KKT-solution to a semidefinite optimization

problem in the combinatorial algorithms such as SDPNAL relies on the strict feasibility con-

dition, we intend to define a problem satisfying the strict feasibility condition. To this end, let

X∗, x∗ like

X∗ :=
1

2n
I +

1

4n2
AḠ

x∗ :=
1

2n
e,
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be a strictly feasible solution of problem (4.7). Denote res := X∗v− γx∗ where the vector v is

part of data generated as in cases 1, 2 and 3 of Section 6.3 and not a variable. Consider the

optimization

min {λ | X̂ � 0, X̂ ≥ 0, x = diag(X), AG •X = 0, Xv = γx + λres,

eTx ≥ 1, λ ≥ 0}. (6.15)

It is obvious that the problem has a strictly feasible solution for λ = 1, namely X∗, x∗. Hence,

(6.15) also has a finite optimal value λopt ≥ 0. By the assumption that a maximum stable set

of a graph G has the size of at least one, the constraint eTx ≥ 1 is satisfied by any rank-one

solution to the maximum stable set problem. Since, the linear system of the first line in (6.15)

is homogeneous, in order to avoid the trivial zero solution the constraint eTx ≥ 1 is added.

If the optimal value of the problem (6.15) is strictly positive, the relaxation (6.3) must be

infeasible.

In the numerical examples in Section 8.2, SDPNAL always generated a solution that was

nearly dual feasible up to the typical truncation error. Thus, while problem (6.15) may be of

theoretical interest, it was not used in our examples in Section 8.2.
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Chapter 7

Comparison, Zero-One vs.

Plus-Minus-One Formulation

Let x be a vector in {0, 1}n. The transformation z := 2x−e translates a zero-one programming

problem to a minus-one-plus-one problem through the following transformations:

Z := zzT = (2x− e)(2x− e)T = 4X − 2exT − 2xeT + J (7.1)

or

X := xxT =
1

4
(z + e)(z + e)T =

1

4
(Z + zeT + ezT + J). (7.2)

Therefore, the relaxation (4.6) can be presented in another equivalent form as

max
1

2
eT (z + e)

s.t. diag(Z) = e

AG • (Z + ezT + zeT + J) = 0

Z + ezT + zeT + J ≥ 0

Ẑ =

[
Z z

zT 1

]
� 0

(7.3)

which forms the minus-one-plus-one relaxation of the maximum stable set problem. The Ben-

son and Ye approach [3] introduced in the next section applies a ±1-formulation in order to

find a maximum stable set of a given graph.

7.1 Benson and Ye Approach

In what follows we briefly describe the Benson and Ye approach [3] to address the maximum

stable set problem, shortly MSS. First, in the following lemma we will show that adding an

additional vertex n + 1 does not worsen the semidefinite approximation θ of the MSS.
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Let Gnew be the graph obtained by adding an additional vertex n+ 1 not connected to the

other vertices of a given graph G. Obviously, the vertex n + 1 is contained in any maximum

stable set. For the sake of simplicity, the notation θ refers to θ(G) and θnew to θ(Gnew) where

θ(Gnew) is the Lovász θ-number (4.8) of the graph Gnew.

Lemma 12 With the above notation it holds θnew = θ + 1.

Proof. First, we will show that

1 + θ ≤ θnew. (7.4)

Let X̂ =

[
X x

xT 1

]
be an optimal solution of

max { eTx |
[
X x

xT 1

]
� 0, x = diag(X), Xij = 0 (i, j) ∈ IE} (7.5)

which is equivalent to θ (see Section 4.6). Note that the matrix X̂ is of dimension (n+1)×(n+1).

Clearly, X̂
I•X̂ is a feasible solution of θnew with the objective value

J • (
X̂

I • X̂ ) ≤ θnew.

On the other hand,

J • X̂
I • X̂ =

1 + J •X + 2eTx

1 + I •X =
1 + (I •X)2 + 2(I •X)

1 + I •X

=
(1 + I •X)2

1 + I •X = 1 + I •X = 1 + θ.

In the second equation above, Theorems 9 and 10 are used to conclude that J•X = (eTx)2 = θ2.

This shows (7.4). Second, to show the inequality “θ+ 1 ≥ θnew” we assume that Ŷ =

[
Y y

yT ζ

]

is an optimal solution of θnew defined via (4.8) for Gnew. It is obvious that Y
I•Y is a feasible

solution for θ with objective value J•Y
I•Y ≤ θ.

Note that θnew = J • Y + ζ + 2eT y and 1 = ζ + I • Y = I • Ŷ . Therefore

θnew − ζ − 2eT y = J • Y ≤ θ(I • Y ) = θ(1− ζ). (7.6)

In what follows we will show that

2eT y = ζθ + 1− ζ. (7.7)

Note that substituting 2eT y in (7.6) will end the proof.

To prove (7.7), since

J • Y ≤ θ(1− ζ),
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therefore

1− ζ − J • Y ≥ 1− ζ − θ(1− ζ). (7.8)

On the other hand

1− (ζ + J • Y ) = 1− (θnew − 2eT y) = 1− θnew + 2eT y ≤ −θ + 2eT y. (7.9)

The inequality in (7.9) follows from (7.4). The inequalities (7.8) and (7.9) imply that

−θ + 2eT y ≥ 1− ζ − J • Y ≥ 1− ζ − θ + ζθ.

Therefore,

2eT y ≥ 1− ζ + ζθ. (7.10)

Furthermore, since Ŷ � 0, the Schur complement implies that Y − 1
ζ yy

T � 0. Then, eTY e ≥
1
ζ (eT y)2. Then, we have

(2eT y)2 = 4(eT y)2 ≤ 4ζ(J • Y ) ≤ 4ζθ(1− ζ) ≤ (ζθ + 1− ζ)2. (7.11)

where the second inequality follows from (7.6) and the last from 1− ζ ≥ 0. In conclusion, the

inequalities (7.10) and (7.11) complete the proof.

Benson and Ye reformulate the MSS problem with ±1-variables. Each node of a given graph

is assigned the value 1 or −1. Then a cut problem analogous to the Goemans-Williamson max-

cut problem is defined such that the target of the optimal cut is to divide the nodes into two

sets of nonadjacent and adjacent nodes. In order to detect the nonadjacent nodes, an artificial

node, namely xn+1, with no edge connecting to the other vertices is added to the graph. As

the node xn+1 must be in any maximum stable set, the constraint

|xi + xj + xn+1| = 1, (xi, xj) ∈ IE

guarantees that nodes xi, xj and xn+1 can not be sided together in the optimal cut. Therefore,

the MSS problem can be stated as follows

max
1

2
(

n∑
i=1

x2i + xn+1xi)

s.t. x ∈ {1,−1}n

|xi + xj + xn+1| = 1, (xi, xj) ∈ IE.

(7.12)

The objective function 1
2(
∑n

i=1 xi(xi + xn+1)) is intended for finding a set S ⊂ V of nodes xi

with maximum cardinality in the same set as xn+1. The following optimization problem refers
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to the semidefinite relaxation of problem (7.12)

max

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 . . . 0 1

4

0 1
2 . . . 0 1

4
...

...
. . .

...
...

0 0 . . . 1
2

1
4

1
4

1
4 . . . 1

4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
•X

s.t. diag(X) = e

(ei,j,n+1e
T
i,j,n+1) •X = 1, (i, j) ∈ IE

X � 0,

(7.13)

where the vector ei,j,n+1 has value 1 in the position k where k ∈ {i, j, n + 1}. Note that the

non-convex constraint rank(X) = 1 would make this problem equivalent to (7.12).

The Benson and Ye randomized algorithm for generating stable sets [3] begins in a similar

way to the Goemans-Williamson approach to find a {−1, 1}-solution x̄. The approximate stable

set will be the set of vertices with the same sign as x̄n+1. For arbitrary graphs, the constraint

corresponding to the edges of the graph will be satisfied with probability of more than 91% [4].

In order to find a locally maximum stable set, the algorithm is followed by checking the edge

constraint of (7.12). If |x̄i + x̄j + x̄n+1| 
= 1, for some (i, j) ∈ IE, change the sign of either x̄i

or x̄j . Note that this violation can happen only if both x̄i and x̄j have the same sign as x̄n+1.

Obviously, solutions of (7.3) satisfy the constraints of (7.13). The implementation of the

transformations (7.1) and (7.2) to the solutions of (4.6) and (7.13) leads us to the following

corollary:

Corollary 1 Let M denote the coefficient matrix in the objective function of (7.13) and let

X̄B be an optimal solution of (7.13), then we have θ′(G) ≤M • X̄B = θ(G).

Proof. The inequality follows by establishing the equality. The equality is proved by Lemmas

13 and 14 below and a theorem from [20] stating that the optimal value of (7.14) is equal to

θ(G).

Lemma 13 Let X∗, x∗ be an optimal solution of

max { eTx |
[
X x

xT 1

]
� 0, x = diag(X), Xij = 0 (i, j) ∈ IE} (7.14)

(which is the relaxation of (4.6) and equivalent to (4.8)). Then the matrix

X̄ =

[
X̃ x̃

x̃T 1

]
,
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where

X̃ := 4X∗ + J − 2x∗eT − 2ex∗T ,

x̃ := 2x∗ − e, (7.15)

is feasible to the semidefinite relaxation (7.13) with the objective value eTx∗.

Proof. A brief proof of feasibility of X̄ will be given below: it is easy to see

diag(X̄) = e,

by definition of X̃ in (7.15). For the edge constraints of (7.13), note that for (i, j) ∈ IE the

constraint X̃ij + x̃i + x̃j = −1 is equivalent to X∗
ij = 0. Therefore,

ei,j,n+1e
T
i,j,n+1 • X̄ = 2X̃ij + X̃ii + X̃jj + 2x̃i + 2x̃j + 1

= 2(X̃ij + x̃i + x̃j) + 3 = 1

for (i, j) ∈ IE. Theorem 1 implies positive semidefiniteness of X̄. By the definition of X̃ and

x̃ we have

X̃ − x̃x̃T = 4X∗ + J − 2x∗eT − 2ex∗T − (4x∗x∗T + eeT − 2x∗eT − 2ex∗T )

= 4(X∗ − x∗x∗T ) � 0

The objective value of (7.13) with respect to X̄ is

M • X̄ =
n

2
+

1

2
(eT x̃) = eTx∗.

Lemma 14 Let X̄B =

[
XB xB

xTB 1

]
be an optimal solution of (7.13). The following solution

x :=
xB + e

2
,

X :=
1

4
(XB + J + xBe

T + exTB) (7.16)

constitutes a feasible solution for (7.14) with the objective value

eTx = eT (
xB + e

2
) =

n

2
+

1

2
(eTxB) = M • X̄B.

Proof. Feasibility of the solution X,x defined in (7.16) can be shown in a similar way using

the definition of X and x.
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Remark 14 The transformation (7.15) can be applied to an optimal solution X∗,x∗ of (4.6)

in order to construct a feasible solution

X̄ :=

[
X̃ x̃

x̃T 1

]

to (7.13) with the objective value eTx (= θ′(G)). Let the symmetric positive semidefinite

square root of X̄ have the decomposition X̄1/2 = QR where R is an upper triangular matrix

with nonnegative diagonal elements. Then

X̄ = X̄1/2X̄1/2 = (X̄1/2)T X̄1/2 = (QR)T (QR) = RTR.

Let RT :=

[
L 0

wT q

]
be as above,

X̄ :=

[
X̃ x̃

x̃T 1

]
=

[
L 0

wT q

][
LT w

0 q

]
= L̄L̄T

will result in X̃ = LLT and wTw + q2 = 1. The last inequality shows that ‖
[
w

q

]
‖2 = 1. Note

that this factorization is not unique in general. A random {−1, 1}-vector x̂ can be constructed

by applying the GW-procedure to X̄ as x̂ = sign(L̄r). Theorem [3a] in [4] states that Pr((x̂i +

x̂j + x̂n+1)
2 = 1) > 0.91 for each (i, j) ∈ IE which is equivalent to

Pr(x̂ix̂j “satisfy the stable set property” ) > 0.912. (7.17)

On the other band, the GW-procedure applied to the matrix X̃ which is the leading block of X̄

generates a random {−1, 1}-vector x̃ which forms the first n entries of x̂ as follows,

x̂ = sign(L̄r) = sign(

[
L 0

wT q

][
r1

r0

]
) = sign(

[
Lr1

wT r1 + qr0

]
) =

[
x̃

x̂n+1

]
.

Therefore, according to Theorem [3a] in [4], the random vector x̃ generated by the GW-

procedure in Section 5.1 satisfies (7.17). Numerical observations reported in Section 8.3 suggest

that this property holds even if the factorization of the matrices X̃ and X̄ differ.
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Chapter 8

Numerical Results

To gain some insight about the practical behavior of the branch and bound strategy for solving

the maximum stable set problem presented in this thesis, some experiments are reported next.

In this chapter we report the results of applying the algorithm to some graphs with known

stability number and different density. The algorithm starts by solving the relaxation (4.9) as

the root of the branch and bound tree or the zero level of the algorithm. As discussed in Section

5.1, we find a reliable upper bound on the stability number using the optimal solution of (4.9).

The first level of the algorithm is to solve the relaxation (4.6) and transform its solution into

a {0, 1}-random vector via the GW-procedure and use a simple greedy strategy to make the

{0, 1}-vector feasible to the maximum stable set problem with a largest possible value of the

objective function. This solution provides a lower bound on the stability number. In case there

is a gap between the lower and upper bound, the next branching step includes adding more

constraints to (4.6) to possibly improve the upper bound,e.g. the relaxation (6.3) discussed in

Section 6.3. However, since the branch and bound tree will become deep for some problems

we only consider one example in order to examine how the algorithm behaves in the branching

step discussed in Section 8.2. We point out that these numerical results are generated using

the Newton-CG augmented Lagrangian method, SDPNAL, applied to the SDP relaxation of

the maximum stable set programming problem.

8.1 Evaluating the Performance of the Algorithm

We start with an example of an almost dense graph with many different maximum stable sets.

Consider a complete graph Kp with p vertices. Then Kp is modified as follows: Each vertex

in Kp is replaced by a complete bipartite graph Kp,p with 2p vertices and each edge of Kp is

replaced with (2p)2 edges connecting each vertex of Kp,p at the end of the edge with each vertex

of Kp,p at the other end of the edge. One will end up with a graph denoted by Gp with 2p2

vertices and (2p)2 · p(p−1)
2 +p ·p2 = 2p4−p3 edges where the factor p(p−1)

2 is the number of edges

of the complete graph Kp and the factor p2 is of the complete bipartite graph Kp,p. Clearly, a
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complete bipartite graph Km,n has a maximum stable set of size max{m,n}. Therefore, the

way in which the graph Gp is constructed leads us to a graph with 2p2 maximum stable sets

where each one has size p.

Tables 8.1 and 8.2 list the results of applying the algorithm proposed in this thesis to find

the stability number of the graph Gp for different values of p and to some well known Dimacs

problems ( “ DIMACS-Testset ”, [36]), respectively.

In Table 8.1, level 1 states that the algorithm returns the solution for the maximum stable

set problem after one step. time is the time used by the algorithm to get a solution. density

displays the density of the graph Gp.

p density α(G) level time

50 0.9998 50 1 23889.0

30 0.9994 30 1 3607.6

20 0.9987 20 1 410.6

Table 8.1: Solution times for Gp

Figure 8.1 displays p and the associated running time as a log-log scale. For a reference, the

line time = 5.4 · 10−4 · p4.5 is plotted in Figure 8.1.

2.99 3.4 3.91

6.01

8.19

10.08

ln(p)

ln
(t
im

e)

Figure 8.1: Solution times for Gp, log-log scale

The results reported in Table 8.2 below are related only to the first level of the algorithm

since the branching trees for some problems in Table 8.2 are too large to allow for a full solution.

The first column of Table 8.2 refers to the name of the instances. N gives the number of nodes

and |IE| gives the number of edges of the given graph. time is the CPU time taken to solve

(4.9) and (4.6) in seconds. Lα and Uα give a lower and an upper bound on α(G) in level 1.

density shows the density of the complement graph. level displays the number of the level at

which the proposed algorithm returns an upper and lower bound to be equal. Level “ – ”

means more branching steps are needed to reach a solution.
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DIMACS graphs N |IE| density α(G) level Lα Uα time

c-fat200-1.clq 200 18366 0.9229 12 1 12 12 26.17

c-fat200-2.clq 200 16665 0.8374 24 1 24 24 17.40

c-fat200-5.clq 200 11427 0.5742 58 – 58 60 13.94

c-fat500-1.clq 500 120291 0.9643 14 1 14 14 612.68

c-fat500-2.clq 500 115611 0.9267 26 1 26 26 338.57

c-fat500-5.clq 500 101559 0.8141 64 1 64 64 276.31

c-fat500-10.clq 500 78123 0.6262 126 1 126 126 123.74

brock200-1 200 5066 0.2546 21 – 20 27 32.07

brock200-4 200 6811 0.3423 17 – 16 21 30.06

keller4 171 5100 0.3509 11 – 11 13 31.54

keller5 776 74710 0.2485 27 – 27 30 7165.60

keller6 3361 1026582 0.1818 ≥ 59 – 45 63 40669.53

Table 8.2: Dimacs Clique Benchmarks

Remark 15 The Dimacs problems are formulated as maximum clique problems. As the ap-

proach of this thesis considers maximum stable set problems, the results reported in Table 8.2

refer to the complement graph of the Dimacs graphs.

Remark 16 For the graphs in Table 8.2, the application of the first three steps of the GW-

procedure provides the best solution for the maximum stable set problem except for brock200-1,

brock200-4 and keller6. In order to improve the lower bounds of these three graphs we apply

the fourth step of case 2 on page 36. For these examples, the Step 4 modifies only the solution

of keller6 by one.

Remark 17 SDPNAL is a software designed to solve SDPs of large dimensions, but there

is one drawback to this software. This algorithm is unable to meet the preset primal/dual

infeasibility conditions for some problems, even solvable problems like relaxation (4.9). In this

case SEDUMI or SDPT3 are alternative software packages, however, as sparsity is not fully

exploited by these programs the problem size for these algorithms is limited.

8.2 Analysis of the Branching Step

In this section the practical behavior of different branching steps is illustrated based on the

graph brock200-1. As seen in Table 8.2, there is a gap between lower and upper bound on

α(G) for brock200-1. Thus, a branching step is incorporated into the algorithm in order to get

a more accurate approximate solution to the maximum stable set problem. First, a vector v is

determined via (6.5), (6.7) or (6.8). Then, for each value of γ, the problem (6.3) will be solved

in the branching step. The following Tables 8.3, 8.4 and 8.5 compare the results when we solve
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(6.3) for the graph brock200-1 with the different versions of the vector v generated from the

solutions of (6.5), (6.7) and (6.8).

Table 8.3 reports the optimal value of the relaxation (6.3) obtained with SDPNAL for

different values of γ = −13, . . . , 10 where the vector v is determined by (6.8). The duality

gap for these examples was in the range of 4.18e−5 to 6.31e−7. For all subproblems the dual

infeasibility of the solution generated by SDPNAL was in the range 1.5e−7 to 7.7e−7 which

is about the standard stopping tolerance of SDPNAL. If these solutions are interpreted as

nearly dual feasible, the results of SDPNAL imply that all values of γ can be deleted from the

branch-and-bound tree when trying to reduce the upper bound from 26 to 25, except from the

values γ = 1, 0,−1,−2,−3 for which the upper bound is α(G) ≤ 26. For these values, a further

branching is necessary. However, as the stability number is 21, all the cases γ = −10,−9, . . . , 6

would need further branching if the optimal value is to be found with this branching strategy.

This possibility is discussed further following relaxation (8.1) below.

γ opt.val γ opt.val γ opt.val γ opt.val

-13 18.99 -7 23.67 -1 26.68 5 23.13

-12 20.00 -6 24.38 0 26.61 6 21.89

-11 20.80 -5 25.09 1 26.34 7 20.50

-10 21.60 -4 25.71 2 25.88 8 19.11

-9 22.31 -3 26.20 3 25.18 9 18.00

-8 22.98 -2 26.54 4 24.24 10 0

Table 8.3: v is the solution of (6.8)

The results of solving the relaxation (6.3) where v is the solution of (6.5) and (6.7) are

reported in Tables 8.4 and 8.5. The solvability of (6.3) in both cases is similar to the one

reported in Table 8.3.

γ opt.val γ opt.val γ opt.val

-13 18.99 -7 23.93 -1 26.60

-12 19.99 -6 24.64 0 26.22

-11 20.83 -5 25.41 1 25.43

-10 21.66 -4 26.03 2 24.10

-9 22.43 -3 26.47 3 22.45

-8 23.18 -2 26.68 4 20.33

Table 8.4: v is the solution of (6.5)

Our numerical experiments suggest no significant difference, however, less branching nodes

are needed in the next step when we apply the second version of v generated from the solution

of (6.7) discussed in case 2 of Section 6.3 instead of the other two versions of v.
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γ opt.val γ opt.val γ opt.val

-8 0 -2 25.73 4 23.54

-7 0 -1 26.48 5 21.91

-6 0 0 26.81 6 20.12

-5 19.90 1 26.70 7 18.11

-4 22.71 2 26.07 8 0

-3 24.99 3 24.97 9 0

Table 8.5: v is the solution of (6.7)

As discussed, further branching is needed for brock200-1 in order to reduce the gap between

the upper and lower bound on the stability number. To this end, the data from one of the

Tables 8.3, 8.4 and 8.5 can be used. Consider Table 8.4 for instance. The value γ = −2 for

which the relaxation (6.3) attains its maximum value 26.68 is selected as the starting point.

One of the methods which can be applied for further branching is to add the additional con-

straint Xv′ = γ′x to the relaxation (6.3) where v′, γ′ are chosen the same way as v and γ. The

new relaxation is defined as

max { eTx | X̂ � 0, X̂ ≥ 0, AG •X = 0, x = diag(X), Xv = γx, Xv′ = γ′x}. (8.1)

We point out that v and γ are known variables from the last step.

γ′ opt.val γ′ opt.val γ′ opt.val

-10 17.23 -3 25.01 4 23.76

-9 19.00 -2 25.66 5 22.63

-8 20.31 -1 26.08 6 21.38

-7 21.41 0 26.23 7 20.10

-6 22.42 1 26.06 8 19.00

-5 23.33 2 25.56 9 0

-4 24.20 3 24.75

Table 8.6: v′ is the solution of (6.8)

Table 8.6 reports the optimal value of the relaxation (8.1) for γ = −2 and its associated

vector v. The same process would need to be carried out for γ = −4,−3,−1, 0. In Table 8.6,

the branching would need to be continued in the same way until the lower and upper bound

on α(G) coincide. The following diagram of the example above provides an overview of the

structure of the algorithm, just for the aim to reduce the upper bound for α(G) to 25.

Only two branching steps are considered in the example above. It can be inferred from

these experiments that the branch and bound tree will expand in depth and for each node may

have many children to deal with. Consequently, the running time may be exponential – which
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θ′(G)

γ=-4 γ=-3 γ=-2

γ′=-1 γ′=0 γ′=1

γ=-1 γ=0

is not surprising given that the problem is NP-complete. The times used by SDPNAL on a

standard computer for generating the results of Tables 8.3, 8.4, and 8.5 are 2523.03, 1601.4,

and 1286.7 in seconds respectively.

The other method we can apply for the branching step instead of solving relaxation (8.1)

is the one discussed in Section 6.1. We start the algorithm by setting β = 26 and generating a

vector x̃ ∈ {0, 1}n with eT x̃ ≥ β. Here, x̃ can be constructed in the ways discussed in Section

6.1.1. As seen in Table 8.2, the best maximum stable set found for graph brock200-1 is of size

20. In order to apply the first choice of x̃ we start with a maximum stable set of size 20 as

the set S and find a clique covering of S. There are 98 relaxations to be solved in this case.

Among these 98 relaxations excluding node j with x̃j = 0, the best and the worst solutions

are 24.38 and 21.93. This observation has resulted in improving the upper bound from 27 to

25. On the other hand, the best maximum stable set given by the GW-approach is of size 21.

Therefore, we also improve the lower bound of brock200-1 from 20 to 21 (which happens to be

the optimal value).

There are two other methods of choosing x̃ in Section 6.1.1. For using the methods 2 and 3

we set eT x̃ = β. There are 174 subgraphs and therefore 174 subproblems to be solved in order

to get a possibly improved upper bound Uα on α(G). We observed that the relaxation (4.6)

applied to the subgraphs Gi, i = 1, . . . , 174 provides an upper bound with the maximum value

of 24. Assuming that there are no significant rounding errors this shows that the maximum

stable set of Gi with node i has size at most 25. Therefore, the upper bound on α(G) can be

reduced by 1. We note that the nodes i with x̃i = 1 have already been investigated in Step 1

in Section 6.1. In contrast, as observed from Table 8.6 the relaxation (8.1) does not improve

the upper bound on the stability number of brock200-1.

Of the two methods used for the branching step, the relaxation (8.1) and the one discussed

in Section 6.1, the latter seems to return a solution to the maximum stable set problem in a

lesser number of levels than the former. The downside is that the computation time for solving

174 problems of the form (4.6) is about twice the computation time of solving 20 problems of

the form (8.1). On the other hand, the computation time for solving 98 relaxations of the form

(4.6) is approximately the same as the computation time of 20 problems of the form (8.1).

Remark 18 Note that the relaxation (6.3) is an equivalent mathematical formulation of the

method discussed in Step 2 in Section 6.1 when we set v = ei and γ = 0 in (6.3).
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8.3 The Probability of Violated Edges in the {0, 1}-Solution
Made by Goemans and Williamson

As shown in [11], the probability that a {−1, 1}-solution generated by the rounding procedure

proposed by Goemans and Williamson for the max-cut problem with nonnegative weights

achieves an objective value of at at least 87% of the optimal value. The same is true if the

solution is represented by a 0-1 variable. In the context of the maximum stable set problem

not only the objective value but also the feasibility of a generated {0, 1}-solution will be of

interest. In particular it is interesting to understand the probability that a given edge in IE is

contained in the approximate stable set generated by rounding.

In our examples, the case where there is no violated edge typically is when the set generated by

the GW-approach has rather small cardinality far from the maximum stable set. We assume

that the GW rounding procedure generates a set of size k and let |Ek| denote the number

of violated edges of the set. As we discussed before, our approach towards finding a locally

maximum stable set is similar to the approach proposed by Benson and Ye. Therefore, the

quotient Pk := |Ek|
|IE| should be less than or equal 8.8% in the average by Theorem 3a in [4].

The column n of the table displays the cardinality of the vertex set in a given graph. For each

dimension n, a total of tn = 10 different random graphs with fixed edge density were gener-

ated, and for each random graph, a total of p = 100 different random Goemans-Williamson

vectors were generated. Therefore, for each dimension there are 10×100 random {0, 1}-vectors

generated by the GW-test.

edge density

20% 80%

n min max mean emp min max mean emp

10 981 0.111 0.002 0 410 0.205 0.045 59

50 204 0.197 0.051 0 580 0.241 0.008 28

100 40 0.215 0.069 0 534 0.233 0.009 60

200 44 0.223 0.066 8 198 0.241 0.042 151

500 53 0.229 0.061 15 214 0.245 0.039 212

Table 8.7: Estimate the probability

Column min displays the number of examples at which the GW-approach provides a feasible

solution to the maximum stable set problem. Columns max and mean give the maximum

number of violated edges of the {0, 1}-vectors generated by the Goemans-Williamson rounding

procedure and the average of Pk’s, respectively. There is a possibility that the GW-approach

generates an empty set (equivalently, a set of size n). emp shows the incidences of empty

sets. We are not interested in the number of feasible or empty sets which are irrelevant to our
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discussion, whereas they can be used as performance indicators for the GW-procedure. The

last four entries of the last row of Table 8.7 are to be read as follows: For n=500 and 80% edge

density, 21.2% of the stable sets generated by the Goemans-Williamson approach were empty,

another 21.4% were (rather small) stable sets and in the average, the sets generated contained

about 3.9% edges.
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Appendix A

It can be proved by Weyl’s theorem that the symmetric eigenvalue problem has condition

number 1. In this thesis we assumed that the eigenvalue decomposition is carried out with

relative accuracy≤ 100·ε, where ε is the machine accuracy. This value is obtained by comparing

the eigenvalues of a matrix given by matlab to the actual eigenvalues of that matrix. In what

follows we show how to obtain an estimate for this accuracy: Let us assume that U ∈ Rn×n be

a random orthogonal matrix and D ∈ Rn×n be a random diagonal matrix. By the eigenvalue

decomposition of the matrix we have A = UDUT . We use the matlab command d′ := eig(A)

to get the eigenvalues of the matrix A which are an approximation of the diagonal entries of

D, denoted by d := diag(D). The vector d has the actual eigenvalues of A and d′ is computed

by matlab, therefore the relative error definition gives

relative error =
‖d− d′‖
‖d‖

One can easily prove that ‖d‖ = ‖A‖F . Thus, the difference between the actual value of the

eigenvalues of A and their approximate value is given by

‖d− d′‖ = ( relative error) · ‖A‖F .

The tables below report the minimum and maximum value of relative errors over a number of

repetitions. For each dimension n, a total of 100 different random matrices were constructed.

The table at the left shows the results for random matrices with different eigenvalues. The

tables at the center and at the right are related to the instances of random matrices which

have multiple eigenvalues and near multiple eigenvalues, respectively.

Remark 19 Even if A is computed by a formula that generates symmetric matrices, e.g., A =

BBT ; it may happen due to rounding errors, that numerically, A is not symmetric. Therefore

A will be replaced by 1
2(A + AT ). If A is numerically symmetric, this update will not induce

any change of A. If A is (slightly) unsymmetric, then the updated value will be symmetric

and eig(A) will use the symmetric eigenvalue algorithm which are well-conditioned, while the

algorithms for the unsymmetric eigenvalue problem tend to be very sensitive to rounding errors.
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n rel.error

min max

5 8.9e-17 1.8e-15

10 3.5e-16 2.2e-15

50 1.5e-15 4.4e-15

100 1.9e-15 4.1e-15

500 3.1e-15 5.7e-15

1000 3.9e-15 6.4e-15

n rel.error

min max

50 5.8e-16 1.7e-15

100 8.9e-16 2.1e-15

500 2.3e-15 3.3e-15

n rel.error

min max

50 4.2e-16 1.6e-15

100 9.3e-16 1.9e-15

500 2.2e-15 3.4e-15

Table A.1: Relative error for random matrices

The following lemma shows that the eigenvalue of a symmetric matrix are not sensitive to per-

turbation of the matrix. In linear algebra, the condition number for the linear transformation

φ : D→ R
m for an open set D ⊂ R

n is a number c > 0 such that

‖φ(x̃)− φ(x)‖
‖φ(x)‖ ≤ c

‖x̃− x‖
‖x‖ for all x, x̃ ∈ D,

in conjunction with suitable norm ‖ . ‖.

Lemma 15 The condition number of symmetric eigenvalue problem is less than or equal to

one.

Proof. Let
−→
λ be the vector of eigenvalues of a symmetric matrix A ∈ R

n×n. The generalized

definition of condition number in [28] implies that

‖−→λ (A + E)−−→λ (A)‖2
‖−→λ (A)‖2

≤ c
‖E‖F
‖A‖F ,

where E denotes a perturbation of A and c is the condition number. Note that

‖A‖F = ‖UΛUT ‖F = ‖Λ‖F = ‖−→λ (A)‖2.

On the other hand, from [[27], Corollary 4.13] we have

‖−→λ (A + E)−−→λ (A)‖2 ≤ ‖E‖F .
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