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Summary

Metagenomics is the functional or sequence-based analysis of microbial DNA isolated
directly from a microbial community of interest. As the cultivation conditions for most
(~99%) microorganisms are unknown or too complex to reproduce in the laboratory,
random shotgun and amplicon-sequencing based metagenome studies have led to
substantial advances in our understanding of the structure and functions of microbial
communities within the last decade. The key question of metagenome researchers is:
“Who is there, what are they doing and who is doing what?” For instance, the human gut
microbiome is a vast collection of symbiotic microorganisms. The gut microbiome
performs many important biochemical functions for the host, where disorders of the
microbiome are associated with many diverse diseases, e.g. the inflammatory bowel
disease. Bioinformatics analyses are now able to describe the gut microbiome at a
detailed genetic and functional level. The understanding of microbiome activity is
essential to the development of personalized strategies in healthcare and to reveal new
targets for drug development. Therefore, understanding microbial communities will
improve our well-being and human health. Moreover, advances in sequencing
technologies have been enormous in the last decade, while the throughput increased
drastically, sequencing costs dropped. This enabled researchers to use next generation
sequencing data as a common approach to study microorganisms originating from
various environments, e.g. the human gut. Metagenome assembly and its subsequent
taxonomic binning are two essential challenging tasks that are typically performed as a
part of a metagenome sample analysis. We have developed Snowball, which is a strain
aware gene assembler for metagenomes. To the best of our knowledge, this is the first
gene assembler for metagenomic data that can distinguish gene variants of individual
strains without using closely related reference genomes of the studied species. This is a
very important property as metagenomes originating from novel environments
oftentimes contain new unknown species for which there are no closely related
reference genomes available. Moreover, for many purposes, including functional
analysis of metagenomic data, it is sufficient to assemble only the coding sequences of
the strains, as usually more than 85% of prokaryotic genomes are coding sequences. We
have employed Snowball to assemble simulated reads generated from the recently
published Rhizobia strains, which demonstrates the capability of our method to
assemble gene sequences of closely related novel strains. We have also developed
PhyloPythiaS+ that is an automated composition based taxonomic binning method. This

method is a successor to the PhyloPythiaS software. We have fully automated this



method by adding a new marker-gene based framework that automatically determines
the most relevant taxa to be modeled and suitable training sequences directly from the
input metagenome sample. To the best of our knowledge, this is the first method that
combines taxonomic profiling and subsequent taxonomic composition based binning of
the whole input metagenome sample. Moreover, we have developed a new k-mer
counting algorithm that accelerated the whole method and showed state-of-the-art
performance for the simultaneous enumeration of 4-6-mers, which is commonly used
for composition based binning. We have also extensively evaluated the whole automated
taxonomic binning pipeline by comparing it to the other methods and devised several
new evaluation measures. The results showed that our method performed especially
well for samples originating from novel environments in comparison to the other
methods. These results were also confirmed in the CAMI challenge, in which
PhyloPythiaS+ demonstrated its high recall and ability to correctly assign taxa that have
longer taxonomic distances to the known reference genomes or draft genomes.
PhyloPythiaS+ has also already been employed in several research studies. We believe
that our methods will be valuable for researchers studying species evolution, strain or
gene diversity, genes under selection, virulent genes, metagenome samples originating
from novel environments, for draft genome reconstruction and for the subsequent

functional analysis of the studied metagenome microbial communities.



Zusammenfassung

Metagenomik ist die funktionale oder Sequenz-basierte Analyse mikrobieller DNA, die
direkt aus Umweltproben von Interesse isoliert wird. Fiir die meisten Mikroorganismen
(~99%) sind die Bedingungen fiir eine erfolgreiche Anreicherung in Kultur unbekannt
oder zu komplex um sie im Labor zu reproduzieren. Daher sind Metagenomstudien auf
der Basis von Shotgun- und Amplikon-Sequenzierung fiir unser Verstdndnis der
Struktur und Funktionen der mikrobiellen Gemeinschaften entscheidend. Die
Schliisselfragen der Metagenom-Forscher lauten dabei: “Wer ist da, was macht die
Gemeinschaft und wer macht was?“ Das menschliche Darmmikrobiom ist beispielsweise
eine riesige Sammlung von symbiotischen Mikroorganismen. Es iibernimmt viele
wichtige biochemische Funktionen fiir den Wirt, sodass Stérungen des Mikrobioms mit
vielen verschiedenen Krankheiten assoziiert werden, z.B. mit Reizdarm.
Bioinformatische Analysen sind heute in der Lage, das Darmmikrobiom auf einer
detaillierten genetischen und funktionalen Ebene zu beschreiben. Sie bilden die
Grundlage fiir personalisierte Strategien im Gesundheitswesen und es werden neue
Ansatzstellen fiir die Arzneimittelentwicklung aufdecken. Dariiber hinaus waren die
Fortschritte in den Sequenzierungstechnologien im letzten Jahrzehnt enorm. Wahrend
der Datendurchsatz erheblich anstieg, sanken die Sequenzierungskosten. Dies
ermoglicht es Forschern, die Next-Generation Sequenzdaten als Standardverfahren
einzusetzen; also auch um Mikroorganismen zu untersuchen, die aus verschiedenen
Umgebungen wie dem menschlichen Darm stammen. Die Assemblierung des
Metagenoms und die anschlieféende taxonomische Zuordnung rekonstruierter DNA-
Sequenzen sind dabei zwei wesentliche und anspruchsvolle Teilaufgaben einer
Metagenom-Probenanalyse.

Hierflir haben wir Snowball entwickelt. Snowball ist nach unserem besten Wissen der
erste Gen-Assembler flir Metagenom-Daten, der Genvarianten einzelner Stiamme
unterscheiden kann, ohne eng verwandte Referenz-Genome der untersuchten Spezies zu
verwenden. Das ist eine sehr wichtige Eigenschaft, weil Metagenome aus neuartigen
Umgebungen oft neue unbekannte Spezies enthalten, fiir die es keine eng verwandten
Referenz-Genome gibt. Gleichzeitig geniigt es fiir viele Zwecke, einschliefdlich der
Funktionsanalyse von Metagenom-Daten, nur die kodierenden Sequenzabschnitte der
Genome zu assemblieren, weil in der Regel mehr als 85% der prokaryotischen Genome
fiir Proteine kodieren. Snowball konzentriert sich auf diese Abschnitte.

Wir haben Snowball eingesetzt, um simulierte DNA-Abschnitte zu assemblieren, die aus

kiirzlich veroffentlichten Rhizobia-Stammen generiert wurden. Dies zeigte die Fahigkeit



unserer Methode, die Gensequenzen von eng verwandten neuartigen Stimmen bei der
Assemblierung aufzulésen. Um die rekonstruierten Metagenom-Sequenzen auch
taxonomisch zuordnen zu kénnen, haben wir zudem PhyloPythiaS+ entwickelt. Diese
Methode ist ein Nachfolger der Kompositions-basierten PhyloPythiaS Software. Wir
haben diese Methode komplett automatisiert, indem wir ein neues Marker-Gen-
basiertes Framework hinzugefiigt haben, das automatisch die relevantesten Taxa
modelliert und entsprechende Trainingssequenzen direkt aus der Metagenom-Probe
bestimmt. Nach unserem besten Wissen ist dies die erste Methode, die das
taxonomische Profiling und die anschliefSende taxonomische Kompositions-basierte
Zuordnung der gesamten Metagenom-Probe kombiniert. Dariiber hinaus haben wir
einen neuen Zahlalgorithmus fiir Nukleotidsequenzen der Linge k entwickelt, der die
gesamte Methode beschleunigt. Der Zahlalgorithmus zeigt eine State-of-the-Art Leistung
fiir die gleichzeitige Aufzdhlung von Nukleotidsequenzen der Liange 4-6, die
liblicherweise fiir die taxonomische Kompositions-basierte Zuordnung der Metagenom-
Proben verwendet werden. Wir haben die gesamte automatisierte Pipeline umfassend
mit den Wettbewerbern verglichen und dafiir mehrere neue Evaluierungskriterien
entwickelt. Die Ergebnisse zeigen, dass unsere Methode im Vergleich zu den anderen
Methoden besonders gut fiir die Metagenom-Proben aus neuartigen Umgebungen
geeignet ist. Die hohe Sensitivitdt von PhyloPythiaS+ und seine Fahigkeit zur korrekten
Zuordnung von Taxa, die grofiere taxonomische Abstinde zu den bekannten Referenz-
Genomen haben, wurde auch in der CAMI Challenge bestatigt. PhyloPythiaS+ wurde
dariiber hinaus bereits in mehreren Forschungsprojekten eingesetzt.

Wir glauben, dass unsere Methoden fiir Forscher in folgenden Bereiche wertvoll sind:
Evolution von Arten, Diversitit von Bakterienstammen, Genvielfalt, Gene, die unter
Selektion stehen, virulente Gene, Metagenom-Proben aus neuartigen Umgebungen,
entwurfsweise Genom-Rekonstruktion und die anschlieffende Funktionsanalyse der

untersuchten mikrobiellen Gemeinschaften.
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1 Introduction

In this chapter, we will first introduce the field of metagenomics and sequencing.
Sequencing platforms enable us to read DNA sequences consisting of letters 4, C, G, and
T, given a real metagenome sample containing a mixture of microorganisms. Then, we
will introduce two core bioinformatics concepts: sequence assembly and taxonomic
binning. Assembly methods are employed to assemble longer continuous sequences
(contigs) from short DNA sequences (reads) that are output by the sequencing
platforms. Taxonomic binning methods are then used to assign taxonomic identifiers to
the assembled or unassembled DNA sequences. This can be used for the characterization
of the composition and functional potential of a particular metagenome sample. We will
also describe basic concepts of the methods for sequence analysis that were used as sub-
routines in this work. We will conclude with the outline of this dissertation. Note that
some formulations in this chapter originate from my publications (Gregor, Droge, et al.,

2016; Gregor, Schonhuth, et al,, 2016).

1.1 Metagenomics

Metagenomics (Handelsman et al., 1998) is the functional or sequence-based analysis of
microbial DNA isolated directly from a microbial community of interest (Kunin et al,
2008; Riesenfeld et al, 2004). As the cultivation conditions for most (~99%)
microorganisms are either unknown or too complex to reproduce in the laboratory
(Hugenholtz, 2002), random shotgun and amplicon-sequencing based metagenome
studies have led to substantial advances in our understanding of the structure and
functions of microbial communities within the last decade (Pope, Smith, et al, 2011;
Kalyuzhnaya et al, 2008; Turnbaugh et al., 2010; Hess et al., 2011; Schloissnig et al,
2013; Blaser et al.,, 2013; Zarowiecki, 2012).

Metagenomes that have been studied originate from various environments, e.g.:
* Lake Washington (Kalyuzhnaya et al.,, 2008).
*  Wastewater (Martin et al., 2006).
* Acid mine drainage (Tyson et al, 2004).
* Hot spring (Ward et al., 1998).
e Agricultural soil (Tringe et al.,, 2005).
* Leafs and roots of Arabidopsis (Bai et al., 2015).
¢ Termite hindgut and gut (Warnecke et al., 2007; Ikeda-Ohtsubo et al., 2016).
¢ Tammar wallaby gut (Pope, Smith, et al,, 2011).

13



¢ Svalbard Reindeer rumen (Pope, Mackenzie, et al., 2011).
¢ Human gut (Turnbaugh et al., 2010; Giloteaux et al., 2016).
¢ Human blood (Gyarmati et al,, 2016).

¢ Subway (MetaSUB International Consortium, 2016).

The central question of many metagenome researchers (Marx, 2016) is: “Who is there,

what are they doing and who is doing what?”

Understanding microbial communities will improve our well-being and human health. It
has also a potential to revolutionize chemical industry or even facilitate long human
space missions. For instance, as described in (Kuczynski et al., 2011), the human gut
microbiome is a vast collection of symbiotic microorganisms. The gut microbiome
performs numerous important biochemical functions for the host, where disorders of
the microbiome are associated with many diverse diseases, e.g. Crohn's disease,
ulcerative colitis or inflammatory bowel disease (W. Wang et al., 2015). Bioinformatics
analyses based on next generation technologies are now able to describe the gut
microbiome at a detailed genetic and functional level. The understanding of microbiome
activity is essential to the development of personalized strategies in healthcare and to
reveal new targets for drug development. Many studies have found out that the
variability in the microbiota both within a human subject and between different subjects
is immense. Moreover, only a small fraction of the total taxa found within a single body
site appears to be present across all time points. Therefore, several projects have been
established to investigate this variety, e.g. the Human Microbiome Project (Aagaard et
al, 2013) or MetaHIT (Arumugam et al., 2011). It is noteworthy that it is estimated that
a human body contains ~10x more microorganisms than human cells, making up about
1-3% of the body’s mass, while it is estimated that it encodes ~100x more unique genes
than the human genome (Qin et al, 2010). Although, other studies estimate that the
number of microorganisms in the human body is of the same order as the number of the

human cells (Sender et al,, 2016).

Another interesting example is the study of the human microbiome during long-
duration space missions (Voorhies and Lorenzi, 2016). It is known that a balanced
microbiome is essential for human health. However, a long stay on a spaceship reduces
the microbiome diversity, as the air on a spaceship is heavily filtered and the astronaut’s
food contains a minimum amount of microbes. Moreover, the galactic cosmic radiation

may have a negative impact on the crew microbiome, since most microbes are not
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resistant to radiation. Another open question is how to enable the recovery of the
astronaut’s microbiome after an antibiotic treatment. The use of probiotics, fresh fruits
and vegetables may help to solve those problems, although it brings a large set of new
challenges that are yet to be solved. Finding strategies how to keep the crew
microbiome healthy and how to rebalance a damaged microbiome is essential for

survival and will also improve the human health on the Earth.

Although, many bioinformatics tools have been developed for the metagenome data
analysis, there are still many challenges to be addressed. As described in (Sczyrba et al,
2017), one of the main challenges is to enable detailed strain-level analysis of the
metagenome samples, which would improve our understanding of the microbial
communities. It would enable us to study microevolution and how organisms react to
the changes in the environment. In the next sections, we will describe all the main
challenges of metagenome assembly and taxonomic binning. Given the increasing
amount of available metagenomic data and the need for fine-grained strain-level
analysis, new bioinformatics methods and approaches are needed for the data analysis

and interpretation.

1.2 Sequencing

After a metagenome sample, containing a mixture of living microorganisms, is taken
from an environment of interest, the DNA from the sample is isolated for the sequencing.
The result of the sequencing step is a large dataset containing a mixture of short DNA
sequences, called reads, where it is not known what read comes from what member
species’ genome of a metagenome. The sequencing step requires substantial expertise
and is typically performed in a specialized sequencing lab. Depending on the sequencing
lab, employed methodology and sequencing platform, the quality of the resulting data
varies. Errors and biases introduced by a particular sequencing platform in the
sequencing step need to be considered and corrected in the subsequent steps
(Laehnemann et al, 2016). Typical sequencing errors are substitutions, insertions and
deletions. Many sequencing technologies have been developed, e.g.:

* Jllumina

* Sanger

* 454 pyrosequencing (Roche)

¢ SOLiD (Thermo Fischer)
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* on Torrent (Thermo Fischer)

* GeneReader (Qiagen)

* Complete Genomics (Beijing Genomics Institute)
* Pacific Biosciences

* Oxford Nanopore Technologies

As described in (Goodwin et al., 2016), sequencing platforms differ in throughput, cost,
read length, error profile and read structure. Although, there are many sequencing
platforms available, the Illumina sequencing platform is used in most of the
metagenome studies. [llumina itself offers many types of sequencing machines. It
produces paired-end or single-end reads of length 25-300 bp, where paired-end reads
of length 2100 bp are currently most popular. The output reads have typically very low
substitution error of 0.1-1% and the cost varies between $7 and $1,000 per Gb. For
instance, the Illumina ultra-high-throughput HiSeq X platform is capable of sequencing
~1,800 human genomes to 30x coverage per year, where the whole genome sequencing

of the human genome currently cost less than $1,000.

Sequencing has became more affordable, it has been revolutionized and democratized in
the last ten years due to the decreasing sequencing costs and increasing throughput of
the sequencing platforms (Metzker, 2010; Goodwin et al, 2016). Moreover, the
revolution is likely to continue and the sequencing will become even more frequent in
research studies and in clinical settings as a clinical tool in hospitals. As a consequence,
bioinformatics analysis tools have to co-evolve, i.e. new scalable bioinformatics tools
need to be developed to analyze the ever-growing amounts of sequencing data of all

kinds.

1.3 Assembly

Oftentimes, sequenced reads do not carry enough information to be directly used in the
subsequent analysis, as they are too short and erroneous. Therefore, short reads are

typically assembled into longer continuous error-corrected sequences called contigs.

A contig is a set of reads that are related to one another by overlap of their sequences
(Staden, 1980). The assembly problem defined according to the maximum parsimony
approach is to find the shortest common superstring of the individual reads to which all

the reads map with a sufficiently low error (Peltola et al, 1984). However, the
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disadvantage of this definition is over-compression, i.e. many variants of a sequence are

compressed into one consensus sequence. Therefore, the assembly problem was re-

defined according to the maximum likelihood approach (Myers, 1995). l.e., given the

reads and a maximum error rate e with which a read can be mapped to a reconstructed

consensus sequence. Find a reconstruction, such that the reads are mapped to a

consensus sequence with at most e error rate and the starting points of the reads have

the same distribution as the true underlying distribution.

There are several common problems that need to be typically addressed by the

assembly algorithms:

It is very difficult to distinguish between genuine strain variation and
sequencing errors for similar but distinct strains within a metagenome sample
(Laehnemann et al, 2016). For instance, to distinguish single nucleotide
polymorphisms (SNPs) from substitution errors introduced by a sequencing
platform is a very difficult task. It has been shown in the CAMI challenge
(Sczyrba et al., 2017) that the current metagenome assemblers are not capable
of reconstructing strain-level variants. Moreover, low-abundant strains are
oftentimes considered to be sequencing errors and thus removed from the
resulting assembly (Nagarajan and Pop, 2013; Zerbino and Birney, 2008).
Repetitive sequences within a genome that are longer than a read length are
usually assembled only into one consensus sequence or may lead to
misassemblies. Although, resolving repetitive sequences has theoretical limits
for short reads (Kingsford et al,, 2010), the use of the paired-end reads, the use
of several libraries with different insert sizes and the use of a combination of
two sequencing platforms were shown to overcome these limits in some cases
(Treangen and Salzberg, 2011).

In the case that not enough data was sequenced, the resulting assembly not only
contains gaps, but it can also result in incorrect assembly. For instance, it can
contain chimeras, i.e. artificial consensus sequences consisting of reads
originating from different genomes.

Uneven coverage and potentially also GC bias are further challenges for the
assembly methods.

Assembly is a very computationally demanding task; therefore heuristic
approaches are needed to find an approximate solution that is good enough.
Nevertheless, efficient use of the main memory and parallelization are required

due to the increasing amounts of the sequencing data (D. Li et al., 2015).
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Even though many assembly methods have been developed so far, the current assembly
tools still have issues to tackle all of the above-mentioned problems sufficiently well.

Therefore, new assembly approaches still need to be developed.

1.4 Taxonomic binning

To answer the question: “Who is there and what are they doing?” - many taxonomic
assignment methods have been developed to enable characterizing environmental
microbial communities. The input of a taxonomic assignment method is either a set of
raw reads output by a sequencing platform or longer assembled contigs of a
metagenome sample. Given such input dataset, the goal of the taxonomic assignment
methods is to assign a taxonomic identifier to each input sequence. A taxonomic
identifier corresponds to a node in a tree-like hierarchical structure, called taxonomy.
Here, we will refer to the NCBI taxonomy (Federhen, 2011) that is the most used
taxonomy in the field of metagenomics, to our knowledge. Note that there are also other
taxonomy databases, e.g. RDP (J. R. Cole et al., 2007), Greengenes (DeSantis et al., 2006)
or Silva (Quast et al, 2013). In the NCBI taxonomy (Fig 1.1), a sequence is assigned a
taxonomic identifier at a particular taxonomic rank, where the main NCBI taxonomy
ranks, as seen from the taxonomy “root”, are: superkingdom, phylum, class, order,
family, genus and species. Here, an assignment of a sequence to the root of the taxonomy
is equivalent to a sequence not being assigned. Ideally, a sequence would be assigned to
a taxonomic identifier as low in the taxonomy as possible (i.e. to genus or species), but
not lower. For instance, if a sequence originates from a species that is a known species,
the sequence should be assigned at the species rank. However, if a sequence originates
from a species that is a novel species, but originates from a known genus, it should be
assigned at the genus rank. Here, a species is considered to be a known species, if there
is sufficient reference data available for this species that enables confident assignment
of sequences to this species. Analogously, a genus is considered to be a known genus, if
there is sufficient reference data available that enable confident assignment of the
sequences to this genus. Therefore, if there is no reference data for a novel species in the
reference sequence database available, the corresponding sequence should be assigned
at a higher taxonomic rank, at which sufficient reference data is available, i.e. genus or
higher. This means that a sequence cannot be assigned to taxa, for which there is no
reference data available. Note that here the “sufficient reference data available”

oftentimes depends on the taxonomic assignment method that is being used. For
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instance, PhyloPythiaS needs only 100 kb of reference data for a species (Patil, Haider, et
al,2011).

Superkingdom (S, = Bacteria)

Phylum (P, = Proteobacteria)

Class (C, = Gammaproteobacteria)

Order (O, = Enterobacterales)

Family (F, = Enterobacteriaceae)

Genus (G, = Escherichia)

Species (SP, = Escherichia coli)

strain level (ST, = Escherichia coli 1A)

Figure 1.1. An example of the taxonomy representing the lineage of strain: E. coli 1A.

The result of a taxonomic assignment method can be interpreted as a taxonomic
binning, where the resulting ‘bins’ of sequence fragments that were assigned the same
taxonomic identifier represent draft genomes or pan-genomes of the different microbial
community members. The subsequent analysis of these bins then allows characterizing

the functional and metabolic potential for individual taxa.

Challenges for the taxonomic assignment methods:

* Correctly identify taxa that are part of the sampled microbial community.

* Correctly assign sequences originating from novel environments, i.e.
metagenome samples containing novel taxa (e.g. species), for which there are no
reference sequences (i.e. genomes or draft genomes) available.

* Correctly assign the taxonomic rank at which a sequence is assigned a taxonomic

identifier, i.e. correctly assign a sequence to low-ranking taxa, but not lower.
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* With increasing amounts of the sequencing data, high throughput taxonomic
binning methods are required.

* Remove noise (e.g. sequencing errors) and contamination (e.g. human DNA).

As there is a plethora of taxonomic binning methods currently available, the CAMI
challenge! was established to help researchers to decide what tool is best suited for a
particular application (Sczyrba et al, 2017). Individual tools have been evaluated using
several datasets and ranked according to several metrics. Based on the results, a
researcher can thus decide which tool s/he would use for a particular application. Even
though many taxonomic binning tools have been developed, it is still considered to be a
challenging task, in particular, to correctly assign metagenome sequences originating
from novel environments and to correctly assign metagenome sequences to low-ranking

taxa. Therefore, new taxonomic binning methods are still needed.

1.5 Methods for sequence analysis

In this section, we will introduce basic concepts of the methods for sequence analysis
that we have used in our work as sub-routines. First, we will describe overlap and de
Bruijn graphs that are used for sequence assembly. Then, we will describe how hidden
Markov models can be used to find homologous sequences. We will conclude this section
with two methods that can be used for the metagenome sequence classification:

Bayesian classifier and support vector machines.

1.5.1 Overlap and de Bruijn graphs

The current assemblers are based on the overlap or de Bruijn graphs. The former class
of assemblers is based on the overlap-layout-consensus approach, where each read
represents a node and there is an edge connecting a pair of nodes for each pair of nodes
that has sufficient overlap. By resolving the graph layout problem for a particular
overlap graph, paths through the graph that correspond to the output contigs are found.
Assemblers using this approach are, e.g. TIGR (Sutton et al., 1995), Celera (Myers et al.,
2000), ARACHNE (Batzoglou et al., 2002), SGA (Simpson and Durbin, 2012), SAT (Zhang
et al, 2014) and SAVAGE (Baaijens et al.,, 2017). As the overlap graphs can become very

large and difficult to traverse for the current sequencing projects that make use of short

1 http://www.cami-challenge.org
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[llumina reads, assemblers based on the de Bruijn graphs are oftentimes used instead of
the overlap graphs. The first assembler that employed the de Bruijn graphs was the
EULER assembler (Pevzner et al., 2001). A nice description of a very popular tool using
this approach is, e.g. Velvet (Zerbino and Birney, 2008). As described in (Pevzner et al,
2001), this approach may look counterintuitive, as small pieces of a big puzzle are
broken into even smaller pieces of fixed size k. To construct a de Bruijn graph from a set
of reads for a given k, from each read of length n, n — k + 1 overlapping sub-sequences
of length k, with an overlap length k — 1 (between each neighboring sub-sequences) are
generated. Unique sub-sequences of length k, generated from the reads, correspond to
the nodes of the corresponding de Bruijn graph. There is a directed edge connecting each
node v; to each node v, if the last k — 1 nucleotides of node v, are the same as the first
k — 1 nucleotides of node v,. For a large dataset, consisting of short reads and
containing many duplicate reads, the advantage of the de Bruijn graph is that its size
corresponds to the number of unique sub-sequences - words of length k (i.e. k-mers),
generated from the input reads. Even though such a graph is usually still bigger than the
corresponding overlap graph in the main memory, the de Bruijn graph is oftentimes

much manageable and faster to traverse.

Methods based on the overlap-layout-consensus approach consist of three main steps. In
the first “overlap step”, distances among all reads are computed, based on which the
overlap graph is built. In the second “layout step”, sub-graphs of the overlap graph
representing longer continuous sequences (i.e. contigs) are identified. In the third
“consensus” step, reads of the respective sub-graphs are put together to form consensus
sequences of the contigs. As described in (Sutton et al, 1995), the first “overlap step” can
be done, e.g. using the Smith-Waterman algorithm (Smith and Waterman, 1981). This
algorithm can be applied to find a pair of segments within a pair of long sequences (i.e.
one segment within each of the long sequences), such that there is no other pair of
segments within the long sequences with greater sequence similarity. The algorithm
thus finds an optimal local alignment of the two long sequences, which can be used to
derive a similarity score, i.e. the distance between the two long sequences. As described
in (Pevzner et al, 2001), the second “layout step” - the layout problem is equivalent to
finding a Hamiltonian path in the overlap graph (Matousek and Nesetril, 2009), i.e.
finding a path visiting every node of the graph exactly once. Unfortunately, the
Hamiltonian path problem is a NP-complete problem; therefore there is no available

polynomial algorithm that would solve it.
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In the methods based on the de Bruijn graphs, k-mers are generated from the input
reads, which are subsequently used to build the de Bruijn graphs. Note that there is no
need to compute read overlaps, which makes the construction of the de Bruijn graphs
faster in comparison to the construction of the corresponding overlap graphs. After a de
Bruijn graph is build, the assembly problem reduces to finding an Eulerian path in the
graph that is consistent with all the read paths, where a read path for a read is a path in
the graph corresponding to a particular read (Pevzner et al,, 2001). An Eulerian path is a
path visiting every edge of the graph exactly once (Matousek and Nesetril, 2009), where

there is a linear algorithm for this problem.

The main challenges for the assemblers using either the overlap or the de Bruijn graphs

are to eliminate errors and resolve repeats.

Sequencing errors in the overlap graphs are usually eliminated by inspecting the
multiple sequence alignments of the overlapping reads, this strategy is used, e.g. in
(Batzoglou et al., 2002). In the de Bruijn graphs, sequencing errors create artifacts in the
graphs that need to be removed. For instance, as described in (Zerbino and Birney,
2008; Zerbino et al, 2009): “tips”, “bubbles” and erroneous connections need to be
removed. A “tip” is a chain of nodes that is connected to the graph only on one end.
“Tips” shorter than 2 * k are removed, as it is likely that they represent two nearby
sequencing errors. Two similar paths in the graph that both start in one node and both
end in another node represent a “bubble”. A “bubble” is created as a result of either a
sequencing error or genuine polymorphism, e.g. a SNP. Similar paths can be found by a
Dijkstra-like breadth-first search algorithm (Dijkstra, 1959; Zerbino and Birney, 2008).
After the paths are found, the corresponding sequences are extracted and aligned. In the
case that the sequences are similar enough, they are merged into a consensus sequence.
As the last error correction step, paths with coverage lower than a certain threshold are

removed, as they are likely to represent erroneous connections in the graph.

A repeat is either a sequence that is present multiple times in a genome or a set of very
similar sequences that are present in a genome. While a repeat is represented as a set of
nodes in the overlap graphs, it is represented by an edge in the de Bruijn graphs. Due to
the representation, it is easier to resolve repeats using the paired-end information when
using de Bruijn graphs in general. In the overlap graphs, repeats can be resolved based
on the partial read overlaps and paired-end information, although this can be a

challenging task (Pevzner et al., 2001; Zerbino and Birney, 2008). Note, that repeats that
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are longer than a fragment size are oftentimes more difficult to be resolved than shorter

repeats.

Both overlap and de Bruijn graphs are employed in the current assemblers. While the
overlap graphs tend to have better error correction for datasets containing longer reads,
the use of the de Bruijn graphs is advantageous for assembling large datasets containing

short reads and to resolve repeats.

1.5.2 Hidden Markov models

Hidden Markov models (HMMs) can be used to represent gene domains and to find
remote homologs of the gene domains (Finn et al, 2016; Eddy, 2011). We have used
HMMs to group reads into gene domains in the Snowball gene assembler (Gregor,
Schonhuth, et al., 2016). In the PhyloPythiaS+ taxonomic binning method, we have used
HMMs to find marker genes within the input sequences (Gregor, Droge, et al., 2016).
Given a multiple sequence alignment of homologous amino acid sequences of a
particular gene domain, an HMM representing the gene domain can be built. Such an
HMM can subsequently be used to detect remote homologs, i.e. given a query sequence
and the HMM, the probability that the query sequence belongs to the gene domain can

be computed.

The first order HMM is defined as a tuple (S, W, t, e), where S is a set of states, W is a set
of words, t is a transition probability and e is an emission probability (Duda et al., 2000).
The probability that the current state is s; € S given that the previous state was s;_; € S
is t(s; | s;—1). The probability that word w; € W is emitted at states; € S'is e(wj | si).
The probability of a sequence of words (e.g. amino acids) (wy,...,w,,) and the

corresponding sequence of states (sy, ..., S;,) given an HMM is:

m+1

P(Start, s;, Wy, S3, W, ..., Sy, Wi, Stop) = 1—[ e(w; | s;) *t(s; | si—1)
i=1
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The probability that the query sequence (wy, ..., w,) belongs to a particular gene domain

can be computed using the forward algorithm as:
Foreachs e S:
f1(s) = e(wy] s) = t(s | Start)

Foreachie{(2,..,n—1)and foreachs e S:

fils) = e(wi 1) ) t(s 15+ fia ()

s'es

Foreachs e S:

Fa(5) = €(Stop | $) + e 1) % D £(s15) % faa(s")

s'es

The final probability is:

P(query sequence {wy, ..., wp) | HMM of a particular gene domain) = z fn(s)

SeS

The forward algorithm thus computes the final probability as the sum of probabilities of
all possible paths through the HMM state diagram that could generate the query

sequence (Wy, ..., Wy,).
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Figure 1.2. An example of a typical state diagram of an HMM representing a gene domain.

As described in (Johnson, 2006), an HMM for a gene domain can be represented as a
state diagram (Fig. 1.2), where states are represented by nodes and directed edges
represent transitions between the nodes. The rectangle match states (M;, M,, M3)
correspond to the conserved columns of the corresponding multiple sequence
alignment. The emit probabilities at the match states correspond to the normalized
counts of amino acids in the respective conserved columns of the multiple sequence
alignment. The diamond shape insert states (I, I,) represent insertions of amino acids
between the match states. The round delete states (D,, D,, D3) represent silent states
that do not emit any amino acid. The P (i.e. prefix) and S (i.e. suffix) states represent the
prefix and suffix amino acid sequences of the gene domain within a query sequence. The
C (i.e. copy) state allows multiple copies of the gene domain within a query sequence.
The dotted lines allow a partial match of a query sequence to the gene domain. States B

and E represent the beginning and the end of the gene domain, respectively.

1.5.3 Bayesian classifier

A naive Bayesian classifier can be used for confident taxonomic classification of the
bacterial 16S rRNA partial gene sequences (Q. Wang et al, 2007; Rosen et al., 2011). We
have employed the naive Bayesian classifier to taxonomically classify marker gene
sequences found by HMMs within the input sequences of PhyloPythiaS+ (Gregor, Droge,

et al, 2016). These sequences carrying marker genes were subsequently used as
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training data for the composition based taxonomic binning using structured support
vector machines (SVMs). Let C = {c;,...,c,} be a set of n e N distinct classification
classes, e.g. different genera {Escherichia, Salmonella, Haemophilus, ... }. Let P(c;) for
i € {1,...,n} be prior probabilities of the individual classes, e.g. P(Escherichia) is the
prior probability that a randomly drown sequence from a metagenome sample has
genus Escherichia. Let f be a function that assigns a d-dimensional feature vector
v € R?to every query sequence s that can be drawn from a metagenome sample, i.e.
v =f(s). Let P(v| ;) fori € {1,...,n} be the class conditional probability (likelihood),
i.e. the probability that feature vector v was produced by function f for a sequence
originating from genus c;. As described in (Duda et al, 2000), the Bayes formula is

defined as:

P(w|c)*P(c)

P(cilv) = P(v)

Where the evidence factor is:

n

P@) = Y Pv|g)+P(g)

j=1

Given a query sequence s drawn from a metagenome sample and the corresponding
v = f(s), the posterior probability P(c; | v) is computed for each class, where i €

{1, ...,n}. The sequence s is then assigned to the class (genus) c; for which the posterior
probability is the highest, i.e. P(cj | v) = max;eq1,. 3 {P(c; | v)}. Note that the evidence
factor P(v) is not necessary for the decision-making and is used only to guarantee that

the posterior probabilities sum up to one.

As described in (Q. Wang et al, 2007), for the classification of the bacterial 16S rRNA
partial gene sequences, a feature space consisting of all 8-mers showed the best
performance. An 8-mer is a word of length eight that is a sub-sequence of the query
sequence s. As there are (d = 48 = 65,536) distinct 8-mers, a query sequence s can be
represented by a feature vector v € {0,1}4, where v, = 1 if the 8-mer with index e is
present in the query sequence s, else v, = 0, fore € [1,...,d]. Given a set of training
sequences for each genus c;, the probabilities P(w, | ¢;) can be estimated, for eachi €
{1,...,n}and eache € [1,...,d]. Where, P(w, | ¢;) is the probability that an 8-mer with

index e is contained within a sequence originating from genus c;. Let S, be the set of all
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8-mers  contained in the query sequence s , ie. v= f(s) and
Sy, = {w, |Ve € [1,..,d]s.t.v, = 1}. The probability that the query sequence s
originating from genus c¢; contains a set of 8-mers S, can be estimated as P(S, | ¢;) =
[Tw,es, P(We | ¢;). The class conditional probability from the Bayes formula is thus
P(w|c;) = P(S,|c;).In the case that the prior probabilities are equal, i.e. all genera are
equally likely, the classification depends only on the class conditional probabilities
P(v | c;). Therefore, a sequence s is assigned to class (genera) c;, for which the class
conditional probability P(v | ¢j) is the highest. Note, that such a classifier is called
“naive” since we assume that the 8-mers represent independent features, although this
condition is violated, as overlapping 8-mers are actually dependent features. Also note
that the sequence classification at taxonomy ranks different from the genus rank is

analogous.

1.5.4 Support vector machines

Support vector machines (SVMs) (Vapnik, 1995; Duda et al, 2000) have been
successfully employed to taxonomically classify DNA sequences of metagenome samples
(McHardy et al., 2007; Patil, Haider, et al., 2011). We have also employed SVMs for the
composition based taxonomic classification of metagenome sequences in PhyloPythiaS+
(Gregor, Droge, et al, 2016). Let X = R? be the input space of d-dimensional feature
vectors representing DNA sequences of variable lengths. For instance, as described in
(Patil, Haider, et al., 2011), a feature vector for a DNA sequence corresponds to the
frequencies of 4-6-mers that are further normalized by the sequence length and scaled,
such that the individual features are from the normal distribution with zero mean and
standard deviation one, ie. x; € N'(0,1) for j € [1,..,d] and (d = 4* +4° +4° =
5,376). Such a feature vector representation was chosen since the composition of
genomic sequences carries a phylogenetic signal (McHardy et al., 2007; Patil, Haider, et
al, 2011). LetY = Z" be the r-dimensional output space representing sequence labels,
i.e. taxonomic assignments of the DNA sequences. Given a set of N € N labeled training
samples S = {(x;,y;) EX xY|i€[1,..,N]}, the goal of a support vector machine
framework is to learn the underlying function F: X = Y in the training phase. The
challenge is to learn the function F, such that it has a good generalization property, i.e. it
correctly assigns labels from Y to all the input data from X that were previously not seen

in the training phase.
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Let us consider a simple classifier that is based on linear SVMs, described in (Duda et al,
2000). Let X = R? be the d-dimensional input space as described in the previous
paragraph. Let Y = {—1,1} be the one-dimensional output space representing two
genera: (—1) ~ Escherichia and (1) ~ Salmonella. Let S be the set of training samples
S={(x;,y)) eXxY|i€[l,..,N]} The goal of linear SVMs is to find a hyperplane,
defined by the weight vector w € R%*1, which separates samples with label (—1) from
samples with label (1) by maximizing the margin, i.e. the distance between the
hyperplane and the closest point to the hyperplane. The classification function, i.e. the

estimate of F, is defined as:

f(x) =sign Z (wj * xj) + wy
je[1,..d]

In the formula, the sign function assigns (1) for positive input values and (—1) for

negative inputs values, else zero. The weight vector w can be found by:

1
— s _ 1112
w=arg min (2 * [[w']| )

Such that:

Yix Z (wj* x;;) + wo | =1,Vi € [1,..,N]
je[1,..d]

Here, we are searching for the simplest solution - the weight vector w, such that all the

training samples are classified correctly with the margin of at least one.

As the training samples are oftentimes not separable by a hyperplane, a certain error is
allowed in the training phase. This is done by the introduction of the slack variables
& € RY and the trade-off parameter C € R*. In this “relaxed” settings, the weight vector

w can be found by:

1 c
— ; _ 12 — . . 1
W—argw,ERgg%geRN 5 * [|w']||? + N * E & 1,6 =0vi € [1,...,N]
i€ [1,..,N]
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Such that:

Yix Z (W * xi5) + wo | 21— &, Vi € [1,...,N]
je[1,..d]

In this formulation, the slack variable &; represents a maximum error allowed per a
training sample. The trade-off parameter C represents how many errors we allow in the
training phase. Note that the detailed description of how the weight vector w can be
found is described in (Vapnik, 1995; Duda et al, 2000). After the weight vector w is
found based on the training samples from S, the classification function f can be used to
classify unlabeled DNA sequences, originating from either Escherichia or Salmonella, to

either Escherichia or Salmonella.

In the taxonomic classification method PhyloPythiaS (Patil, Haider, et al, 2011),
structured SVMs were used. Let X = R< be the d-dimensional input space as described
in the first paragraph of this section. LetY = {0, 1}" be the r-dimensional output space
representing taxonomic assignments of the DNA sequences. Here, the output space is
structured and represents a part, i.e. a sub-tree of the taxonomy tree, where each node
of the sub-tree is assigned a unique index q € [1, ...,r]. Alabel y € Y represents a path in
the taxonomy sub-tree from the root to one of its leafs, such that if the node of the
taxonomy sub-tree with index g € [1, ..., 7] is on the path then y, is set to one, else zero.
Let A(y,y) be the loss function defining the discrepancy between two outputsy,y €Y,
which is defined as the length of the shortest path connecting two leaf nodes of the two
paths y and y. Let ¥(x,y) € R™ be the joint feature map that encodes correlations

between different inputs and outputs. The classification function is defined as:
— T
f(0) = argmax(w¥(x, 7))

A DNA sequence corresponding to feature vector x is thus assigned to label y for which
the scalar product w"W(x,y) is the highest. The weight vector w e R™ can be found

using the maximum margin structured support vector machine framework by:

1 C
w = arg S w2+ £ Z & ),6 >0vie[1,.,N]

min
w/eR™ & € RN )
i€ [1,..N]
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Such that:

$i

T ) — Ly T Ay o)
wi(¥@y) = Y@9) 21— 1o

,Vie([l,..,N]VyeY

For further details on the method, see to the supplemental material of (Patil, Haider, et

al, 2011).

1.6 Outline

This dissertation is a cumulative dissertation that consists of two main publications that
[ published as the first author in peer-reviewed international journals during my PhD
studies. The goal of this dissertation was to enrich the field of bioinformatics and
metagenomics by developing new methods that will help researchers to analyze and
interpret their data. The articles are ordered in a logical order. As assembly is oftentimes
performed before taxonomic binning, we first describe our gene assembler and then our
taxonomic binning method. Chapter 1 puts our work into a larger scientific context. We
introduce the field of metagenomics and describe methods for sequence analysis that we
employed as sub-routines in our work. In Chapter 2, I list all publications that I co-
authored during my PhD, where all the main listed publications have already been
published in peer-reviewed international journals. The main publications of this
dissertation are in Chapters 3 and 4, where both articles are identical to the published
versions except for section numbering and formatting. Chapters 5 and 6 contain the
synopsis and a list of all references used in this work, respectively. The original versions

of the published articles can be found in Chapter 7.

Snowball: strain aware gene assembly of metagenomes

We have developed a strain aware gene assembler for metagenomes, described in
Chapter 3. To the best of our knowledge, this is the first gene assembler for
metagenomic data that can distinguish gene variants of individual strains without using
closely related reference genomes of the studied species. This is a very important
property as metagenomes originating from novel environments oftentimes contain new
unknown species for which there are no closely related reference genomes available.
Moreover, for many purposes, including functional analysis of metagenomic data, it is

sufficient to assemble only the coding sequences of the strains, as usually more than
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85% of prokaryotic genomes are coding sequences (S. Cole and Saint-Girons, 1999). We
believe that this method will be useful for researchers studying gene variation among

strains, genes under selection, virulent genes and species evolution.

PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking

taxonomic bins from metagenomes

We have developed an automated composition based taxonomic binning method,
described in Chapter 4. This method is a successor to the PhyloPythiaS (Patil, Haider, et
al, 2011) software. We have fully automated this method by adding a new marker-gene
based framework that automatically determines the most relevant taxa to be modeled
and suitable training sequences directly from the input metagenome sample. To the best
of our knowledge, this is the first method that combines taxonomic profiling and
subsequent taxonomic composition based binning of the whole input metagenome
sample. Moreover, we developed a new k-mer counting algorithm that accelerated the
whole method and showed state-of-the-art performance for the simultaneous
enumeration of 4-6-mers, which is commonly used for composition based binning. We
also extensively evaluated the whole automated taxonomic binning pipeline by
comparing it to the other methods and devised several new evaluation measures. The
results showed that our method performed especially well for samples originating from
novel environments in comparison to the other methods. These results were also
confirmed in the CAMI challenge (Sczyrba et al, 2017), in which PhyloPythiaS+
demonstrated its high recall and ability to correctly assign taxa that have longer
taxonomic distances to the known reference genomes or draft genomes. This is very
important for researchers studying metagenome samples originating from novel
environments, for draft genome reconstruction and for the subsequent functional

analysis of the studied metagenome microbial communities.
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Abstract

Motivation: Gene assembly is an important step in functional analysis of shotgun
metagenomic data. Nonetheless, strain aware assembly remains a challenging task, as
current assembly tools often fail to distinguish among strain variants or require closely

related reference genomes of the studied species to be available.

Results: We have developed Snowball, a novel strain aware gene assembler for shotgun
metagenomic data that does not require closely related reference genomes to be
available. It uses profile hidden Markov models (HMMs) of gene domains of interest to
guide the assembly. Our assembler performs gene assembly of individual gene domains
based on read overlaps and error correction using read quality scores at the same time,

which results in very low per-base error rates.

Availability and Implementation: The software runs on a user-defined number of
processor cores in parallel, runs on a standard laptop and is available under the GPL 3.0

license for installation under Linux or OS X at https://github.com /hzi-bifo/snowball.
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3.1 Introduction

Metagenomics is the functional or sequence-based analysis of microbial DNA isolated
directly from a microbial community of interest (Kunin et al, 2008; Riesenfeld et al.,
2004). This enables the analysis of microorganisms that cannot be cultivated in a
laboratory. After the DNA is isolated, it is sequenced using a high-throughput
sequencing platform, which results in a large dataset of short sequenced genome
fragments, called reads. For a read, it is unknown from which strain it originates. Given
such sequenced shotgun metagenomic data, i.e. a dataset of short reads that originate
from several genome sequences of distinct strains, gene assembly aims to reconstruct

coding sequences of the individual strains contained in the dataset (Fig. 3.1).
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Figure 3.1. An example of the gene assembly problem.

In this example, the sequenced microbial community consists only of three distinct strains. Non-coding
regions of the strain sequences are black, whereas coding regions are red, green and blue for genes 1, 2 and
3. Genes 1-3 are present in all three strains, although the location and gene sequences differ for distinct
strains. The sequencing step results in a collection of short reads. Note that after the sequencing step, the
origin of reads denoted by colours and positions within the respective strains in the figure is not known in
the subsequent gene assembly step. Given a dataset containing all the short reads, the ultimate goal of the

gene assembly is to determine the individual strain specific sequences of the genes.

Gene assembly is an important step in the analysis of shotgun metagenomic data. For
many purposes, including functional analysis of metagenomic data, it is sufficient, and
therefore convenient to assemble only the coding sequences of the strains. It has also
been shown that genes assemble well (Kingsford et al, 2010) even when only short

reads are available. Moreover, metagenomic data consist mainly of prokaryotic species.
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As usually more than 85% of prokaryotic genomes are coding sequences (S. Cole and
Saint-Girons, 1999); gene assembly enables to recover large parts of the respective

genomes.

Importantly, strain awareness is an essential goal in assembling metagenomes, since it
enables us to study gene variation among strains of a species from the sequenced
microbial community, which is where much phenotypic diversity also arises. However,
the assembly of closely related strains remains a challenging task. Strain aware
assembly, which is assembly that is sensitive to closely related haplotypic sequences has
remained an open challenge in many genomics applications. In particular, low-
abundance strains can interfere with sequencing errors in common error correction
routines. To date, most assembly tools still aim to assemble consensus sequence, if

closely related haplotypes are present (Marschall et al., 2016).

There are few tools that enable strain variant reconstruction. They often rely on the
availability of closely related reference genomes of the studied species (Ahn et al, 2015;
Topfer et al., 2014; Zagordi et al., 2011), where reads are first mapped onto a reference
genome, using a read mapping tool, e.g. BWA (H. Li and Durbin, 2009), strain variants
are then identified through a reference guided strain aware assembly. As metagenome
samples originating from novel environments typically consist of novel species without

reference genomes available, there is a need for new reference-free approaches.

Tools that are often used for de novo metagenome assemblies are Ray Meta (Boisvert et
al, 2012), MEGAHIT (D. Li et al., 2015), IDBA-UD (Peng et al., 2012), MetaVelvet (Namiki
et al, 2012) or SOAPdenovo2 (Luo et al., 2012). All these tools are k-mer based, i.e. they
transform reads into overlapping k-mers from which de Bruijn graphs are built, where
paths in the graph correspond to the assembled contigs. This general approach,
however, often fails to distinguish among strain variants. There has been recent debate
on k-mer based approaches using de Bruijn graphs in strain aware assembly. In
particular, k-mer based approaches can become misled, when low-abundance strains
are involved, since the frequencies of the low-abundance strains are on the order of
magnitude of the sequencing error rates. This leads to unpleasant interference in k-mer
based error-correction steps, as low-abundance strains are often removed along with
sequencing errors. For strain aware assembly, it is helpful to process reads at their full
length, because this increases the power to distinguish low-frequent, co-occurring true

mutations from sequencing errors. In this line, there has been recent evidence that
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shorter genomes can be assembled through overlap graph based approaches, which
make use of full-length reads, using short reads (Simpson and Durbin, 2012). It was also
shown that one can perform strain aware assembly through iterative construction of
overlap graphs (Topfer et al., 2014). For gene assembly from metagenomic data, the SAT
assembler (Zhang et al., 2014) can be employed. First, it assigns reads to gene domains
of interest based on profile hidden Markov models (HMMs) (Eddy, 2011; Finn et al,
2014) of the respective gene domains. Then, for each gene domain, separately, it builds
overlap graphs based on the read overlaps, where the paths in the graphs correspond to
the assembled contigs. However, the SAT assembler does not implement a sophisticated
error-correction strategy, which is considered crucial for strain aware assembly. For the
reconstruction of 16S genes, which are often used for phylotyping, REAGO (Yuan et al,,
2015) can be employed. Since it has been built for 16S genes, the use of REAGO in more

generic settings remains unclear.

The current sequencing technologies still produce relatively short erroneous reads,
making it difficult to distinguish sequencing errors from genuine strain variation
(Laehnemann et al, 2016). Therefore, reference-free strain reconstruction of the full-
length sequences of individual strains is currently considered to be a tough
computational challenge, as there may be no immediate sufficient information in the
sequenced data if mutations are separated by too large stretches of sequence that agree
for several strains. Therefore, new approaches are needed that push the limits imposed

by the data.

Here, we present Snowball, a novel method for strain aware gene assembly from
metagenomes that addresses the above-mentioned points. It does not require closely
related reference genomes to be available. It uses profile HMMs of gene domains of
interest as an input to guide the assembly. The HMM profile-based homology search is
known to be capable of finding remote homology, including large number of
substitutions, insertions and deletions, whereas simple read mapping onto a reference
genome can find only very closely related homologs (Zhang et al, 2014). Since our
method does not make use of reference genomes, we allow for strain aware gene
assembly also of novel species, where reference genomes are not yet available. We have
developed a novel algorithm that performs gene assembly based on read overlaps. This
allows correcting errors by making use of the error profiles that underlie the
overlapping reads. The consequences are twofold: First, we obtain contigs affected by

only very low per-base error rates. Second, since, this way, we determine which reads
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stem from identical segments based on a statistically sound model, we can reliably
distinguish between sequencing errors and strain-specific variants, even of very low-
abundance strains. We consider these two features to represent the main improvements
over the currently available assemblers. To the best of our knowledge, Snowball is the
first tool that allows distinguishing among individual gene strain variants in
metagenomes for a large set of gene domains without using reference genomes of

related species.

In our experiments, we focused on distinguishing closely related strains from one
species. Since two different species are substantially more divergent in terms of
sequence than two different strains from the same species, good results on strains from
one species also imply good or even better performance on datasets that contain several
species - distinguishing species is the much easier task. We assessed the performance of
Snowball using 21 simulated datasets, each containing 3-9 closely related Escherichia
coli strains and on one simulated dataset containing ten recently published strains of a
novel Rhizobia species (Bai et al, 2015). The results for the latter demonstrate the
capability of the Snowball assembler to assemble genes of novel strains. The results for
all datasets confirm that the strength of Snowball is its very low per-base error, due to
the incorporated error-correction. Moreover, it produced substantially longer contigs
and recovered a larger part of the simulated reference data in comparison to the SAT
assembler. Snowball is implemented in Python, runs on a user-defined number of
processor cores in parallel, runs on a standard laptop, is freely available under the GPL

3.0 license and can be installed under Linux or OS X.

3.2 Methods

The input of Snowball are two FASTQ files containing I[llumina self-overlapping paired-
end reads, the corresponding insert size used for the library preparation and profile
HMMs of gene domains of interest. The paired-end reads may originate from multiple
closely related strains or from more evolutionary divergent taxa. We have thoroughly
tested Snowball using simulated Illumina HiSeq 2500 paired-end reads generated by the
ART read simulator (Huang et al., 2012) with 150 bp read length and 225 bp mean insert
size. In this setting, the average length of the self-overlaps of the read ends is 75 bp and
the length of a consensus read that originates by joining of the self-overlapping read

ends is 225 bp on average (Fig. 3.2, Section 3.3.4).
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Strain DNA sequence ﬁ

Mean insert size . ™M225bp

Read-end 1 "’ 15C?bp >

Read-end 2 € 150bp -

Average read self-overlap length ~75bp

Consensus read ‘ =
~225bp

Figure 3.2. An example of a self-overlapping paired-end read.

[llumina HiSeq 2500 paired-end read consists of two 150 bp read ends, one on the positive strand (+) and
one on the negative strand (-). In our example, the mean insert size (225 bp) is smaller than two times the
read end length (2 X 150 bp), therefore the paired-end reads are self-overlapping with 75 bp overlap length

on average. Such a self-overlapping read can be joined into a consensus read of 225 bp length on average.

The output is a FASTA or a FASTQ file containing annotated assembled contigs. For each
contig, the annotation contains the name of a respective gene domain to which a contig
belongs, coordinates of the coding sub-sequence within a contig sequence, coverage and
quality score for each contig position. The coverage and quality score information can be

used for subsequent quality filtering yielding less or shorter contigs of higher quality.

Our method consists of the following steps:
+ [Consensus read reconstruction]
Self-overlapping paired-end reads are joined into longer consensus reads
(Section 3.2.1).
+ [Assignment of consensus reads to gene domains]

Profile HMMs of selected gene domains are employed to assign consensus reads to
the respective gene domains, where one consensus read is assigned to at most one

gene domain (Section 3.2.2).
+ [Assembly of consensus reads into contigs]

For each gene domain, in parallel, consensus reads are assembled into contigs (Sections
3.2.3-3.2.5). In the assembly step, consensus reads are iteratively joined into longer
and error-corrected super-reads based on the consensus read overlaps. The super-reads
are then output as annotated contigs, where a super-read represents a sequence that

originates by joining of at least two consensus reads into a longer sequence.
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3.2.1 Joining self-overlapping paired-end reads

Self-overlapping paired-end reads are joined into longer error-corrected consensus
sequences. The use of a library containing self-overlapping paired-end reads is a
powerful strategy for an initial error-correction (Schirmer et al., 2015), which has been
employed in e.g. ALLPATHS (Butler et al, 2008). Given the mean insert size, we
determine the self-overlap that results in the minimum Hamming distance between the
overlapping ends of a paired-end read. A base with a higher quality score is chosen at a
position within the overlap that contains mismatching bases for the respective position

of the resulting consensus read sequence (Fig. 3.3).

: mismatching overlap position

Qs1 9

read-end 1 ACTCCTAT

read-end 2 CGATAGCT

Qs 2 5
Cp————————

consensusread ACTCCTATAGCT

>

Figure 3.3. Joining of self-overlapping reads example.

The figure depicts a simplified example of a consensus read reconstruction. At the mismatching overlap
position, read-end 1 has T with quality score (QS) 9, while read-end 2 has G with quality score 5. The
resulting consensus read will have T at the respective position, since T is supported by a higher quality

score than G. The computation of the quality scores for the consensus read is explained in the Section 3.2.3.

As the substitution error rate of the Illumina reads increases towards the ends of the
paired-end reads (Minoche et al, 2011), this step results in longer consensus reads with
overall lower substitution error, where the overlapping regions are almost error-free. It
is also an efficient read quality filtering step, as the paired-end reads that cannot be
joined, due to high substitution error rate, an insertion or a deletion within the
overlapping region, are filtered out. For instance, by joining of the 150 bp paired-end
[llumina HiSeq 2500 self-overlapping reads with 225 bp mean insert size results in
consensus reads of length 225 bp on average. While the default error profile of the ART
read simulator (Huang et al, 2012) yields 150 bp paired-end reads with ~2.37%
substitution error, the joined consensus reads had only ~1.08% substitution error in
our experiments. These longer, error-corrected consensus reads with low substitution
error rate are convenient building blocks to start with in the subsequent steps of our

method.
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3.2.2 Assigning reads to gene domains

Consensus reads are annotated using profile HMMs of gene domains of interest and
assigned to respective gene domains (Fig. 3.4). By default, we use the Pfam-A (Finn et al,,
2014) (version 27) profile HMMs of 14,831 gene domains and AMPHORA 2 (Wu and
Scott, 2012) profile HMMs of 31 bacterial ubiquitous single-copy genes that are often
used for phylotyping. A profile HMM of a gene domain is a probabilistic model
representing a multiple sequence alignment of representative gene sequences belonging
to a particular gene domain. The model can be used to annotate a query sequence (e.g. a
consensus read). The annotation mainly consists of a score, start/stop positions within a
query sequence and HMM start/stop coordinates. The score roughly corresponds to a
probability that a query sequence belongs to the particular gene domain, i.e. if the score
is high for a query sequence then it is very probable that it belongs to the respective
gene domain. The start/stop positions within a query sequence define a sub-sequence of
a query sequence that was identified to belong to the gene domain. The HMM start/stop
coordinates correspond to the estimated coordinates of the query sub-sequence within

the multiple sequence alignment of the respective profile HMM.

Each consensus read is translated into six protein sequences using all six reading frames
(i.e. also considering the reverse complementary sequences). The hmmsearch command
of the HMMER 3 (Eddy, 2011) software is used to annotate the protein sequences. For
each consensus read, only the reading frame with the highest score is considered. A
consensus read is assigned to at most one gene domain to which it was queried with the
highest score. Consensus reads with low scores (i.e. lower than default value: 40) are
filtered out and not considered in the subsequent steps. If a protein sequence
corresponding to a reverse complementary consensus read sequence was annotated, the
corresponding reverse complementary DNA sequence of a respective consensus read is
considered in the next steps. The coding DNA sub-sequence of a consensus read
sequence is denoted as a (partial) coding region. The start and end HMM coordinates

within a respective profile HMM are stored as part of the consensus read annotation.

As a result of this step, consensus reads are annotated and assigned to ‘bins’
representing individual gene domains, where one consensus read is assigned to at most
one gene domain. Gene domains are building blocks of individual genes. Therefore, a

‘bin’ does not only contain consensus reads belonging to gene variants of individual
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strains. [t can also contain different genes of one strain, several copies of one gene of one

strain or even ‘broken’ gene copies.
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Figure 3.4. Assignment of consensus reads to gene domains.
Consensus reads are assigned to individual gene domains using profile HMMs. Consensus reads that cannot
be assigned to any of the gene domains with sufficient confidence remain unassigned. A consensus read is

assigned to at most one gene domain.

3.2.3 Consensus sequence representation

We represent consensus sequences, i.e. consensus reads and super-reads using
probability matrices. A super-read is a longer error-corrected sequence that originates
by joining overlapping consensus reads (or consensus reads with super-reads) in the

Snowball algorithm (Section 3.2.5).

For construction of such super-reads, we make use of the error profiles that come along
with Illumina paired-end reads. These reads are stored in FASTQ files together with the
corresponding quality scores (Fig. 3.5a). A quality score for a read position represents a
probability that a base was sequenced correctly, i.e. it represents a probability that a
particular base is present at a respective position in the FASTQ file (Fig. 3.5b). The
complement probability represents a probability that a different base is at the
respective position. The probability that different base X is present at a particular
position corresponds to one third of the complement probability in our model, which
reflects that apart from the correct nucleotide, there are 3 different choices for X. Note
that these probabilities are only estimates, as provided by the Illumina sequencing

platform.
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LR @NZ_JH702415.1-17936/2
TRl ATGCCGAAACTGCGTGCCACATCAACGATCTCCGTCGGC

SO CCC=GGGGG1G6G6GIIIIIG6GIIIIII=1]]GI8II]]]

P(error at position i) = 10 -{ord(as)-33)/10

P(correct position i) = 1 - P(error at position i)

P(error at i) = 10 -lord(*=)-33)/10= 10 -(61-33)/10= 09,0016
P(correct position i) = 0.9984

P{(C) = P(correct position i) = 0.9984

Pi(A) = PI(T) = P(G) = P(error at i) / 3 = 0.00053

Figure 3.5. FASTQ file data representation.

(Panel a) depicts an example of a read end representation in a FASTQ file. The entry consists of the read end
name, the DNA sequence of the respective end of a paired-end read and the quality score for each position of
the DNA sequence, which are ASCII coded. (Panel b) explains the meaning of the quality scores. From quality
score gs; at position i, we compute the probability that position i was correctly sequenced, where the ord
function assigns an ASCII number to an input ASCII character. Before translating the resulting number
ord(gs;) into the corresponding probability, one has to subtract 33, by convention. The probability that
base C is at position i is equal to the probability that position i was sequenced correctly. In our model, the
probability of A, T or G being at position i is equal to the probability that position i was sequenced

incorrectly divided by three.

In our model, a probability matrix represents a consensus sequence, where each
sequence position is represented by a probability distribution over DNA bases
{A,C,T,G}. An example of a probability matrix corresponding to a consensus sequence
of two overlapping sequences is depicted in (Fig. 3.6). At a particular position within a
consensus sequence, we compute the expected probability of a base as the average
probability of the respective base probabilities of the individual reads covering the
position. The individual base probabilities are derived from the quality scores (Fig. 3.5).
Let R be the set of all read ends that were joined into consensus sequence ¢ and cover
position p, within c. The probability of a base X € {4, C, T, G} being at position p, within

the consensus sequence ¢ is:

1
PPc (X) = m Z Prpr(X)

TER
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where p, for a read r € R is the position within r that corresponds to position p, within
the consensus sequence c. The base with the highest probability in the probability
matrix at a particular position is the base of the consensus DNA sequence at the

respective position.

Jj* index within R,

P
O(Rn / m,-1
SR GAGCGCGTATTTGAGAACGGT

R,: read-end 2 TATTTGAGAACGGTGC
. \ n-1 my-1

k" index within R, N\ overlap

O

R, R, N R, R,
P(A) [POA) |.. |.. [[PJA)+PXA)I/IR] [.. |.. [P,mY(A)
P(C) |POC) |... |.. |[PJ(C)+P,XC)1/|R] v | [ P(0)
P(T) [POT) |.. [.. [[PJM+PXT)I/IRI .. [.. |P™(T)
PG) [POG) |.. |.. [[PiG)+PXG)]/IR] |.. |.. |P,™1(G)
IRl |1 1 |2 2 2 |1 |1

Figure 3.6. Probability matrix example.

In this example of a probability matrix construction, two overlapping read ends are joined into a consensus
sequence and represented as a probability matrix. The subscripts of individual probabilities correspond to
either read end R, or R,. The superscripts of individual probabilities correspond to the positions within
respective read end sequences. The probability arguments are DNA bases {4,C,T,G}. The |R| values
correspond to the coverage, i.e. the number of read ends covering a particular position within the consensus

sequence.

3.2.4 Overlap probabilities and error correction

The computation of overlap probabilities of two overlapping sequences is an essential
part of the Snowball algorithm. Given two overlapping sequences S;and S,, represented
by probability matrices (Fig. 3.6), where n is the length of the overlapping region, the

overlap probability at position i € [0, ...,n — 1] is computed as:
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éverlap: Z Pli(X)* Pzi(X)
X €{A,C,T,G}

where, P}(X) is the probability that sequence S; has base X at overlap position i;
probability Pi(X) is defined analogously for sequence S,. The overall overlap probability
of S; and S, is the product of individual position overlap probabilities normalized by

overlap length n (Topfer et al.,, 2014):

P =" !
overlap — overlap
i €[0,..,n—1]

As a score that represents the ‘expected length’ of an overlap, taking into account the
individual overlap position probabilities, we compute the expected number of correct
positions within the overlap as:

i

Length Expected = Z overlap
i €[0,..,n—1]

A single overlap score that enables us to rank different sequence overlaps is computed

as a product of the overall overlap probability and the expected overlap length:
Score Overlap = Pyyeriap * Length Expected

The overlap score penalizes both overlaps with low overlap probability and short overlaps,
since long overlaps with high overlap probability are required. The minimum required
expected length of an overlap represents the support for the overlap probability, as the overlap
probability is based only on the bases within the overlap, therefore the number of the bases
outside of the overlap should remain as small as possible, since we cannot make any

statement about the bases outside of the overlap.

In the Snowball algorithm, consensus reads are iteratively joined into longer super-
reads based on the overlap probabilities, expected overlap lengths and the overlap
scores (Section 3.2.5). By default, two sequences S; and S, can be joined into a
consensus sequence if the overall overlap probability is at least 0.8 and the expected
length of the overlap is at least 0.5 *min(length(Sl), length(SZ)). The high overall

overlap probability ensures that the overlap consists of mostly matching positions, that

47



there are no mismatching positions with high quality scores and that mismatches are
allowed only at positions with low quality scores. For datasets with overall high quality
scores, the minimum overlap probability parameter can be increased to 0.9 or 0.95. In
the Snowball algorithm, when a consensus sequence could be joined with multiple
consensus sequences with sufficient overlap probability and expected overlap length, it

is joined with the sequence with which it has the highest overlap score.

3.2.5 The Snowball algorithm

For each gene domain, the Snowball algorithm iteratively joins consensus reads into
longer error-corrected super-reads. The input of the algorithm consists of annotated
consensus reads of a particular gene domain represented via probability matrices
(Sections 3.2.1-3.2.3). The resulting super-reads are output as annotated contigs. Note
that the method can be highly parallelized, since the Snowball algorithm runs for each

gene domain separately.

Consensus reads are first sorted in an increasing order according to the HMM start
coordinates, that denote an estimated start position of a consensus read within the
multiple sequence alignment of the profile HMM. This layout suggests which pairs of
consensus reads are likely to have an overlap (Fig. 3.7), where consensus reads that are
next to each other are likely to have longer overlaps than other pairs of consensus reads.
As a starting point of the algorithm, we choose a consensus read with the largest sum of
overlap lengths with other consensus reads and put it into the working set. The reason
for this choice is that such a consensus read is within the highest coverage of the
alignment corresponding to the respective profile HMM, where highly covered regions
are likely to be covered by reads originating from similar but distinct genomes.
Therefore, the chosen consensus read is very likely to overlap with consensus reads
originating from distinct gene variants, which will help to resolve these gene variants

early in the algorithm.
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Multiple sequence alignment corresponding to a profile HMM

e e s e e T

| w— ) Neighborhood of the Working set
Working set — [ w——R

Consensus reads

Figure 3.7. Initial layout of consensus reads.
Consensus reads sorted according to the HMM start coordinates. In the neighbourhood of the consensus
read, that is in the working set, there are two closest consensus reads, one on the left (L) and one on the

right (R).

The main idea of the algorithm is that it iteratively tries to extend consensus sequences
from the working set into longer consensus sequences by joining them with consensus
reads that are in their neighbourhood, considering the consensus read layout (Fig. 3.7).
In one iteration, first a consensus read from the neighbourhood (i.e. L or R) is joined
with one of the consensus sequences from the working set. Second, two consensus reads
(i.e. L and R) that are in the neighbourhood of the working set are added to the working
set or both consensus reads from the neighbourhood of the working set (i.e. L and R) are
joined into a consensus sequence and added to the working set. A consensus read and a
consensus sequence (or two consensus reads) are joined only if they have a sufficient
overlap as defined in the Section 3.2.4. If there is more than one overlap of a consensus
read from the neighbourhood (i.e. L or R) and a consensus sequence from the working
set, given that also the overlap between L and R, is sufficient, the pair that has the
highest overlap score is chosen. If there is no sufficient overlap between a consensus
sequence from the working set and a consensus read L or R in the neighbourhood and
the overlap between L and R is also not sufficient, both consensus reads are added to the
working set as they are likely to originate from distinct gene variants than the gene

variants already represented in the working set.
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Pseudo code of the algorithm:

(1)
(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

Input: a list of consensus reads of a particular gene domain.
Sort the input list according to the HMM start coordinates in the increasing order.

Find a consensus read representing the starting point - as told above, a consensus
read with the largest sum of overlap lengths with other consensus reads - and add

it into the working set.

The neighbourhood of the working set consist of at most two consensus reads, one
that is the closest on the left (L) and one that is the closest on the right (R) of the

working set.

For each consensus sequence S from the working set and for each pair (L, S) and (S,

R), and for (L, R), compute:
a. overlap probability
b. expected overlap length
c. overlap score

If there is a sufficient overlap between at least one pair (L, S), (S, R) or (L, R), the
pair with the highest overlap score is chosen, as defined in the Section 3.2.4. Let
(L, S) be the pair with the highest overlap. Remove S from the working set. Join (L,
S) into a consensus sequence (i.e. a super-read), as defined in the Section 3.2.3 and
add it into the working set. Redefine L, as the first consensus read on the left of L. If
(S, R) is the pair with the highest score, proceed analogously. If (L, R) is the pair
with the highest score, join (L, R) into a consensus sequence (i.e. a super-read) and

add it into the working set. Redefine L and R analogously.

If there is no sufficient overlap found in step (6), add L and R into the working set

and redefine L and R in the same way as in (6).

If the neighbourhood is not empty, i.e. L or R was redefined at step (6) or (7), go to
step (5). If L or R cannot be redefined, it is not considered in the next steps of the

algorithm.

Output super-reads as annotated contigs.

In the algorithm, a consensus sequence is represented via a probability matrix as

described in the Section 3.2.3. Mismatching bases within a sufficient overlap most likely

represent a substitution error, where one of the bases has a relatively low quality score,

thus,

the base with a higher quality score corrects such a substitution error.
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Substitutions representing genuine strain variation are represented by overlap
positions with different bases with relatively high quality scores. Therefore, such
overlaps of consensus reads representing different strains almost never pass the
minimum required overlap probability threshold. Consensus reads containing insertion
or deletion errors have very low overlap probabilities with other consensus reads or
super-reads and are therefore unlikely to be joined into longer consensus sequences.
Thus, super-read positions with coverage of at least two are mostly error-corrected in

terms of insertion and deletion sequencing errors.

3.3 Results

We evaluated Snowball using 21 simulated datasets, each containing 3-9 closely related
E. coli strains and one simulated dataset containing ten novel recently published
Rhizobia strains (Bai et al, 2015) (Section 3.3.4). We recall that good performance on
different strains implies good performance on different species, which is why we put the
emphasis on distinguishing between closely related strains in our experiments. Thereby,
our aim was to answer the following questions: Were the contigs assembled correctly?
How long are the resulting contigs? Did the assembly recover the reference strain
sequences from which the input paired-end reads were generated? As a reference
method, we used the SAT assembler (Zhang et al., 2014), because this is to the best of
our knowledge the only currently available gene assembler of gene domains of interest
for metagenomic data that does not require closely related reference genomes to be
available. In our experiments, we observed that Srowball was faster than SAT. The runtime of
Snowball was limited by the runtime of the HMMER 3 software, i.e. our method spent most of
the runtime in this step (Section 3.2.2).

3.3.1 Per-base error

We computed the per-base error for all assembled contigs of all simulated datasets (Fig.
3.8). For each contig, we determined the reference strain sequence and coordinates of a
particular contig sequence within a respective reference sequence from which it
originates. The per-base error is defined as the percentage of bases that differ between a
contig sequence and the respective sub-sequence of the reference sequence, i.e. it
corresponds to the Hamming distance between the two sequences, normalized by the
length of the overlap. Note, that closely related strains share large sequence regions;

therefore, a contig can be well mapped onto several reference sequences of distinct
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strains. In this case, a reference sequence, onto which a contig maps with the lowest
Hamming distance, is considered to be the reference strain sequence from which it
originates. If a contig maps onto several sequences of different strains, with exactly the
same error, we consider it to originate from all these strains. The coverage of a contig
position is equal to the number of read ends covering a respective position. In the
Snowball algorithm, we keep track of all consensus reads that a contig consists of. For
the SAT assembler, we have used BWA (H. Li and Durbin, 2009) to map consensus reads
onto the contigs. We computed the per-base error for each coverage [3,...,30]
separately. Low-coverage positions typically have a higher per-base error, as there is not
enough information available to correct sequencing errors. This is most pronounced at
positions with coverage one, where the per-base error corresponds to the substitution
error of a respective sequencing platform (~2.37% for our simulated datasets). At
positions with higher coverage, the error-correction mechanism built into the Snowball
algorithm yields very low (~0.02%) per-base error (Fig. 3.8). For the SAT assembler,
contig positions with high coverage correspond to consensus sequences containing
reads of several strains, which yields a relatively high per-base error (Fig. 3.8). This
shows that the error-correction incorporated in the Snowball algorithm is indispensable

for the assembly of closely related strains.
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Figure 3.8. Cumulative per-base error.
Cumulative per-base error for the Snowball and SAT assemblers. We computed the per-base error in a
cumulative way, i.e. for X € [3,...,30] (on the horizontal x-axes), Y (on the vertical y-axes) is equal to the

per-base error at contig positions with coverage greater or equal to X.
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3.3.2 Relative contig length

We computed the average number of assembled contigs and the average cumulative
length of all contigs (in Kb) per strain (Fig. 3.9). As the assembled contigs should cover
the full length of the respective gene sequences sufficiently well, we aligned each contig
to the respective profile HMM and computed the fraction of the model (i.e. the
corresponding multiple sequence alignment) it covers. For each contig, this gave us an
estimate of its relative length with respect to the particular profile HMM. We used this
information to compute the results, e.g. using only longer contigs covering at least 50%
(60%, 70%, etc.) of respective profile HMMs. This analysis showed that Snowball

produced substantially more, longer contigs than the SAT assembler.
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Figure 3.9. Contigs per strain.

Cumulative average contig length per strain, considering only contigs covering X% of respective profile
HMMs (panel a). Average number of contigs per strain, considering only contigs covering > X% of
respective profile HMMs (panel b). Here, the variable X corresponds to the values on the (horizontal) x-axes

of the graphs.

3.3.3 Reference coverage

We computed which parts of the reference strain sequences, from which the input reads
were generated, were recovered by the assembled contigs, per strain on average (Fig.
3.10). As explained in the Section 3.3.1, assembled contigs may map onto one or more

reference strain sequences with the same minimum Hamming distance. We considered a
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contig to cover all the reference strain sequences, onto which it can be mapped with
exactly the same minimum per-base error. Positions of reference sequences that are
covered by at least one contig are denoted as covered positions. For each strain, we
computed the number and percentage of the covered positions. Moreover, as explained
in the Section 3.3.2, we computed these measures for contigs covering = X% of
respective profile HMMs (where the variable X corresponds to the values on the x-axes
of the graphs). The overall relatively low coverage of the reference sequences can be
explained by low sequencing coverage of some of the reference strain sequences
(Supplementary Table S1-S8). Also, as we only assemble coding sequences of the
reference strain sequences, for which we have used profile HMMs as the input, regions
of the reference strain sequences that are not covered by the profile HMMs remain
unassembled. Nevertheless, this analysis showed that Snowball recovered substantially

more reference strain sequences than the SAT assembler.

Reference coverage (%) Reference coverage (Kb)
o
8
2
2
3
o
3
I
&
o
N )
< § |
S s S
3 s i
g 7 g g
S 3 o2
@ @
8 2
5 8
a——
g « g 8 |
© g 2
3}
ko)
4
o o
2 s | -
—— Snowball E.Coli 0 —— Snowball E.Coli
Snowball Rhizobia Snowball Rhizobia
—— SATE.Coli —— SATE.Coli
SAT Rhizobia SAT Rhizobia
o 4 o
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Considering contigs covering = X% of respective HMM model Considering contigs covering 2 X% of respective HMM model
a b

Figure 3.10. Coverage of the reference strain sequences.
Percentage of the recovered reference strains, per strain on average, considering only contigs covering
> X% of respective profile HMMs (panel a). Corresponding absolute values (Kb) are depicted in (panel b).

The variable X corresponds to the values on the x-axes.

3.3.4 Simulated datasets details

We have based our evaluation on 22 simulated datasets (Table 3.1, Supplementary
Table S1-S8). The strain abundances correspond to randomly drawn numbers from the

log-normal distribution (mean = 1, standard deviation = 2), where the numbers were
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limited to interval [1,...,50], to avoid both data explosion and extremely low strain
abundances. The ART (Huang et al., 2012) read simulator (version 2.3.6) was employed
to generate Illumina HiSeq 2500 paired-end reads (read length = 150 bp, mean insert
size = 225, standard deviation = 23), where the strain coverage used for the read
simulation also corresponds to the strain abundance. The abundance of a particular
strain thus informs us with which coverage the strain genome within a simulated
dataset was sequenced. We used the default ART Illumina HiSeq 2500 empirical error
profile, which yields reads with ~2.37% substitution error. For each dataset, we provide
per-dataset results (Table 3.1, Sections 3.3.1-3.3.3) that show that Snowball performed

substantially better than the SAT assembler for all simulated datasets.

Table 3.1. Overview of simulated datasets.

Per-base error (%) at Contig length (Kb) 75% Reference coverage 75%
Dataset  Strains per dataset  position coverage = 5@ HMM model® HMM model (%)

Snowball SAT Snowball SAT Snowball SAT
1 0.019 1.613 913 229 41.3 7.5
2 3 0.035 1.823 1080 628 44.4 15.1
3 0.006 1.603 865 186 43.0 6.7
4 0.036 1.666 740 306 43.1 10.7
5 4 0.011 1.813 691 253 42.6 9.7
6 0.007 1.648 700 303 455 11.2
7 0.012 1.809 614 408 44.9 13.5
8 5 0.012 1.791 622 393 44.8 13.5
9 0.022 2.064 665 411 40.9 12.6
10 0.022 1.853 518 378 42.1 11.8
11 6 0.045 1.822 557 308 39.0 10.7
12 0.033 2.009 571 407 40.2 12.4
13 0.028 1.861 447 316 42.6 11.7
14 7 0.041 1.866 496 293 38.9 10.9
15 0.018 2.034 488 367 41.7 12.0
16 0.017 2.152 408 443 44.6 12.7
17 8 0.030 1.869 428 294 38.3 10.5
18 0.038 2.227 453 440 39.3 11.6
19 0.019 1.884 349 265 40.9 9.7
20 9 0.014 2.035 360 314 40.4 10.7
21 0.044 2.270 424 430 422 13.8
22 10 0.013 1.909 905 279 27.0 5.7

(@Per-base error (%) at contig positions with coverage > 5 (Fig. 3.8).
(b)Cumulative contig length (Kb) at X = 75 of (Fig. 3.9a).
(9Percentage of recovered data at X = 75 of (Fig. 3.10a).
Datasets 1-21 consist of E. coli strains (Supplementary Table S1-S7).

Dataset 22 consists of Rhizobia strains (Supplementary Table S8).

55



3.4 Conclusions

We describe Snowball, a novel strain aware gene assembler for reconstruction of gene
domains of interest from shotgun metagenomic data of microbial communities. Snowball
performs gene assembly of individual gene domains based on read overlaps and error-
correction using read quality scores at the same time, which result in very low per-base
error rates. Our method uses profile HMMs to guide the assembly. Nonetheless, it does
not require closely related reference genomes of the studied species to be available. We
have assessed the performance of Snowball using 21 simulated datasets, each containing
3-9 closely related E. coli strains and one simulated dataset containing ten recently
published Rhizobia strains (Bai et al., 2015), which demonstrates the capability of the
Snowball assembler to assemble novel strains. We have compared our Snowball
assembler to the SAT assembler, which, to our knowledge, establishes the current state
of the art in gene assembly. The results showed that Snowball had substantially lower
per-base error, assembled more, longer contigs and recovered more data from the input
paired-end reads. We have shown that the incorporation of the error-correction
mechanism is indispensable for the assemblies of closely related strains. To our
knowledge, Snowball is the first strain aware gene assembler that does not require
closely related reference genomes of the studied species to be available. The assembly of
closely related strains is still a challenging task for most of the current assemblers,
including the SAT assembler. We believe that our tool will be valuable for studying
species evolution (e.g. genes under selection) and strain or gene diversity (e.g. virulence
genes). Snowball is implemented in Python, runs on a user-defined number of processor
cores in parallel, runs on a standard laptop and can be easily installed under Linux or OS

X.

3.5 Supplementary material

The supplementary material is available in Chapter 7 and at Bioinformatics online:

http://bioinformatics.oxfordjournals.org/content/32/17/i649.full
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Abstract

Background. Metagenomics is an approach for characterizing environmental microbial
communities in situ, it allows their functional and taxonomic characterization and to
recover sequences from uncultured taxa. This is often achieved by a combination of
sequence assembly and binning, where sequences are grouped into ‘bins’ representing
taxa of the underlying microbial community. Assignment to low-ranking taxonomic bins
is an important challenge for binning methods as is scalability to Gb-sized datasets
generated with deep sequencing techniques. One of the best available methods for
species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS
package, where a human expert decides on the taxa to incorporate in the model and
identifies ‘training’ sequences based on marker genes directly from the sample. Due to
the manual effort involved, this approach does not scale to multiple metagenome
samples and requires substantial expertise, which researchers who are new to the area

do not have.

Results. We have developed PhyloPythiaS+, a successor to our PhyloPythia(S) software.
The new (+) component performs the work previously done by the human expert.
PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the
simultaneous counting of 4-6-mers used for taxonomic binning 100-fold and reduced
the overall execution time of the software by a factor of three. Our software allows to
analyze Gb-sized metagenomes with inexpensive hardware, and to recover species or
genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+ was
compared to MEGAN, taxator-tk, Kraken and the generic PhyloPythiaS model. The results
showed that PhyloPythiaS+ performs especially well for samples originating from novel

environments in comparison to the other methods.

Availability. PhyloPythiaS+ in a virtual machine is available for installation under

Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.
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4.1 Introduction

Metagenomics is the functional or sequence-based analysis of microbial DNA isolated
directly from a microbial community of interest (Riesenfeld et al., 2004; Kunin et al,
2008). As the cultivation conditions for most microorganisms are unknown or too
complex to reproduce in the laboratory (Hugenholtz, 2002), random shotgun and
amplicon-sequencing based metagenome studies have led to substantial advances in our
understanding of the structure and functions of microbial communities within the last
decade (Kalyuzhnaya et al.,, 2008; Turnbaugh et al.,, 2010; Hess et al., 2011; Pope, Smith,
et al, 2011; Zarowiecki, 2012; Schloissnig et al, 2013; Blaser et al, 2013). The
taxonomic classification or ‘binning’ of metagenome samples is often performed after
sequence assembly (Peng et al., 2011; Laserson et al., 2011; Boisvert et al., 2012; Namiki
et al, 2012; Pell et al, 2012). This is a computationally demanding task, which for
metagenome samples results in a mixture of sequence fragments of varying lengths,
originating from the different microbial community members. A taxonomic binning
defines ‘bins’ of sequence fragments that were assigned the same taxonomic identifier,
representing draft genomes or pan-genomes of the different microbial community
members. Taxonomic binning methods use sequence homology, sequence composition
and similarities of contigs in read coverage or gene counts, see (Droge and McHardy,
2012) for a recent review. The subsequent analysis of these bins allows characterizing
the functional and metabolic potential for individual taxa. For instance, in a
collaboration with Mark Morrison’s group, a functional and metabolic analysis of a draft
genome recovered by taxonomic binning from the gut of the Australian Tammar
Wallaby metagenome led to the isolation and subsequent characterization of a new and
previously uncultivated bacterium (Pope, Smith, et al, 2011). Different from binning
methods, taxonomic profiling tools (Wu and Eisen, 2008; Stark et al, 2009; Liu et al,
2011; Meinicke et al, 2011; Wu and Scott, 2012; Segata et al, 2012; Sunagawa et al,
2013; Silva et al, 2013) return a taxonomic profile for a metagenome sample to

represent the taxonomic composition of the underlying sampled community.

Composition-based binning methods assign metagenome sequences based on their k-
mer signature, which is derived from the counts of short oligomers (k-mers) for a
sequence (Karlin and Burge, 1995; Deschavanne et al., 1999). Our previously developed
PhyloPythia(S) (PPS) (McHardy et al, 2007; Patil, Haider, et al, 2011) software uses this
information in combination with a structured output support vector machine

framework for taxonomic classification. Composition-based signatures are global
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genomic properties, which can be estimated from any sufficiently sized sequence sample
for a taxon; e.g., for PP(S), 100 kb of reference sequences for a taxon are sufficient for
accurate assignment, also for low ranking taxa. Thus, no complete genome sequences of
related organisms are required for assignment, which is often a limiting factor for the
homology-based methods. Composition-based methods are very fast, with classification
runtimes increasing linearly with the size of the sequence sample, whereas the runtime
of alignment-based methods is proportional to the product of the reference collection
size and the sequence sample size. As the current sequencing technologies produce Gb-
sized metagenome samples (Metzker, 2010; Loman et al, 2012), scalability and
computational efficiency are becoming increasingly important for computational
metagenomic methods. Therefore, we have developed a fully automated taxonomic
binning software, that can rapidly process large metagenome samples. PhyloPythiaS+
(PPS+) is the successor to our previously described PPS software and improves on it in
several important ways. We provide an automated marker-gene based framework for
design and creation of sample-derived structured output support vector machine
models, which allows the generation of accurate sample-derived models without user
intervention or expert knowledge. PPS+ is the first tool that combines taxonomic
profiling and subsequent taxonomic composition based binning of the whole
metagenome sample, which is particularly valuable for the draft genome reconstruction
of taxa from deep-branching phyla. By implementation of a faster k-mer counting
algorithm, we substantially increased its throughput to 0.5 Gb/h. PPS+ is distributed in a
virtual machine which facilitates installation under all common operating systems and

runs on inexpensive hardware available to most users.

4.2 Methods

The classification of a shotgun metagenome sequence sample with PPS+ proceeds in two
phases (Fig. 4.1): In the first phase, the newly developed (+) component identifies
sample-derived training sequences and the taxa to be modeled by searching for copies
of 34 ubiquitous taxonomic marker genes in the metagenome sample. The marker gene
analysis results in taxonomic assignments for a small fraction of the sample. Based on
the taxa abundance profile derived from these assignments and the sequences available
in the reference sequence collections, our method determines which taxa will be

modeled and which are the sample-derived data that will be used for training PPS.
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The second phase is the composition-based taxonomic assignment of the entire
metagenome sample using PPS models trained using the data generated in the first
phase. PPS models can be reused to classify further metagenome samples, e.g.,

additional samples from the same community.

Metagenome Sample

|
A 4

Marker Gene Analysis | = === =| Marker Gene Collection

\_ J
Expert [7

Define Clades and Sample Derived
Data

Reference Genome and
Draft Genome Collection

Taxonomic Labels

Figure 4.1. Illustration of the PhyloPythiaS+ workflow.

The recommended use of PPS is that a human expert specifies the taxa to incorporate in a composition-
based taxonomic metagenome classifier and identifies the relevant ‘training’ sequences based on marker
genes directly from the sample. The inclusion of contigs originating directly from members of the microbial
community, as ‘training’ sequences, is very important for achieving good classification accuracy, as many
members of microbial communities are underrepresented in public sequence collections. In PPS+, the step
of deciding which taxa to include in the model and defining suitable ‘training’ sequences was automated in
the + component, based on marker genes, genome and draft genome sequence collections. The data
generated by the + component are then used to build the PPS models, that are subsequently used to

generate the taxonomic binning of the entire metagenome sequence sample.

4.2.1 PhyloPythiaS

Assignment with PPS proceeds in two steps: In the training step, an ensemble of
structured output Support Vector Machines (SVMs) (Joachims et al, 2009) for the
specified part of the NCBI taxonomy, defined by the taxa being modeled, are trained

using the sample-derived training sequences and additional data for these taxa from a
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customized reference collection of sequenced genomes and draft genomes
(Supplemental Text S1, Section 3.3). The list of modeled taxa and sample-derived data
are generated with the + component of PPS+. The list of taxa restricts the taxonomic
output space that is modeled, i.e., a sequence from a metagenome sample will be
assigned to a leaf node taxon or a corresponding higher-ranking taxon of the learned

taxonomy.

In the prediction step, the PPS model ensemble identifies the taxon which best matches
a query sequence in terms of its k-mer profile and assigns to it the respective taxonomic
identifier. By default, sequences of 1 kb or more are classified (PPS+ configuration

parameter: minSeqlLen).

4.2.2 The + component of PhyloPythiaS+

The input for the + component of PhyloPythiaS+ is the metagenome sample. This step
returns a list of clades and sample-derived data for the subsequent PPS training. The +

component performs the following steps:

(1) Marker gene identification: DNA sequences from the sample are translated in all
six reading frames (i.e., also considering reverse complement sequences) to
protein sequences. In both the translated and untranslated sequences, regions
with similarity to the DNA or protein Hidden Markov model (HMM) profiles of
34 taxonomically informative marker genes (Wu and Eisen, 2008; Stark et al,
2009; Liu et al, 2011; Wu and Scott, 2012; Segata et al, 2012; Sunagawa et al,,
2013) are identified (Supplemental Text S1, Sections 3.3 and 6.1). The
corresponding DNA marker gene sequences from these regions are used for
further analysis.

(2) Taxonomic marker gene assignment: The marker gene sequences are assigned a
taxonomic identifier using the composition-based Naive Bayes classifier (Schloss
etal, 2009) (Supplemental Text S1, Section 6.2).

(3) Taxonomic sequence assignment: If a sequence contains multiple marker genes,
multiple taxonomic identifiers are identified in Step 2. Then the highest
bootstrap confidence score (hcs) returned by the Naive Bayes classifier (NBC)
for one of the markers on the fragment is identified. We use all marker gene
assignments with confidence scores larger than hes * (1 -

candidatePlTopPercentThreshold). The default setting for the configuration
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parameter candidatePITopPercentThreshold is 0.1. From the set of taxonomic
identifiers, the lowest taxon t is identified for which all other assignments are
either to the same taxon t or defined at higher-ranking parental taxa of t. Taxon t
is consequently used for the overall fragment assignment. The confidence score
for the fragment is set to the smallest confidence score for the set of retained
marker gene assignments.

(4) (Optional: Taxonomic scaffold assignment): Scaffolding information (i.e., the
mapping of contigs to scaffolds) can be used to obtain more training data for the
relevant taxa. Assembled contigs can be grouped into scaffolds based on the
paired-end information after the assembly. As all contigs of a particular scaffold
originate from the same strain, all contigs of the respective scaffold should have
the same taxonomic label. Here, we make use of this scaffolding information,
such that unassigned contigs of a particular scaffold can be assigned based on
the assigned contigs of the respective scaffold. In the first step, the taxonomic
identifiers of all assigned contigs for a scaffold are corrected as follows: Let us
consider that n taxonomically assigned contigs of a scaffold are placed along a
common path from the root r down to a low-ranking clade Ic in the reference
taxonomy. The unassigned contigs of a scaffold are not among these n contigs. To
obtain a consistent assignment for all the contigs of a scaffold and to correct for
‘outlier’ contig assignments to low ranking taxa, contigs are reassigned
according to the following: All n assigned contigs of the respective scaffold are
reassigned to the lowest taxon ¢, which lies on the path from r to Ic, where c is
chosen such that at least (agThreshold * n) of the contigs are assigned on the
path from c to Ic. In the second step, unassigned contigs are assigned to the same
taxon ¢, if a sufficient number of contigs have already been assigned. Let us
denote the sum of all contig lengths for a scaffold as I and the sum of all assigned
contig lengths of the respective scaffold as al. If al/l > assignedPartThreshold,
then the unassigned contigs of a scaffold are also assigned to clade c (see the
configuration  parameters:  placeContigsFromTheSameScaffold =  True,
agThreshold = 0.3, assignedPartThreshold = 0.5).

(5) Assignment path truncation: Contigs assigned to a lower-ranking taxon than the
specified lowest rank are reassigned to the parental taxon of this lowest rank
(configuration parameter: rankldCut).

(6) Taxa selection for model specification: Any taxon for which at least 100 kb of
sample-derived data have been identified can be modeled. Furthermore, species

can be modeled if at least 300 kb of reference sequences are available in the
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reference sequence database, and higher-ranking taxa can be modeled if data for
at least three distinct species with this requirement (>300 kb per species) are
available. Contigs assigned to taxa for which there are fewer data are
subsequently assigned to higher taxonomic ranks for which sufficient data are
available to allow their use as sample-derived training data (configuration
parameters: minGenomesWgs = 3 or 1, minBpPerSpecies = 300,000,
minBpToModel = 100,000).

(7) Abundant taxa selection: To reduce the number of taxa to the most relevant ones,
the least abundant taxon is removed iteratively. This is defined as the taxon to
which the minimum number of bp is assigned. Sequences assigned to this taxon
are reassigned to the closest defined taxon at a parental rank. The algorithm
ends when the number of leaf taxa is less than or equal to the maximum number
of taxa to be modeled (configuration parameter: maxLeafClades = 50; this can be

set realistically up to 800).

Balancing training data: The part of the taxonomy that will be modeled with PPS is
defined by the taxa identified in the previous step. It has leaf nodes at different ranks
above the specified rank cut-off, and internal nodes. Only leaf node taxa and sample-
derived training data assigned to leaf node taxa in the preceding steps are specified as
input for PPS training. To balance the training data across clades, a maximum of 400 kb
of sample-derived training data are selected for each leaf node taxon (configuration
parameter: maxSSDfileSize). For this selection, contigs are used in order of decreasing
confidence values and then in order of decreasing length. The balancing of training data
can be switched off by setting the configuration parameter (maxSSDfileSize) to a large

number.

4.2.3 Simultaneous counting of multiple short k-mers

We provide PPS+ with a new custom k-mer counting algorithm that is based on the
Rabin Karp string matching algorithm (Karp and Rabin, 1987). The algorithm is highly
optimized to count occurrences of short DNA sequences. It is very fast, as it is memory
efficient, because it does not need any large helper data structure similar to suffix trees.
It explores the locality of reference, uses very fast bit shift operations and is efficiently
implemented in C. Its complexity is O(n), where n is the length of the DNA sequence that
is being considered. It enumerates k-mers up to hundred times faster than when using

suffix trees that were employed in PPS. This made PPS+ overall up to 3x faster than PPS.
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Because the algorithm allows to simultaneously enumerate k-mers of consecutive
lengths in one run, it is at least 2-7x faster than the state-of-the-art software Jellyfish
(Marcais and Kingsford, 2011) and 11x faster than KAnalyze (Audano and Vannberg,
2014) in the scenario used in PPS+, i.e.,, when calculating k-mers of length 4, 5, and 6 for
every sequence (Table S1, Supplemental Text S1, Section 2). We also found that the
state-of-the-art k-mer counting methods KMC 2 (Deorowicz et al.,, 2015) and Turtle (Roy
et al, 2014) are not applicable to our problem setting, as KMC 2 can count only k-mers >

10 and Turtle is prohibitively slow for sequences = 16 kb.

4.2.3.1 Algorithm description

Let us assume that we are given an array a, which represents a DNA sequence of length
n where all letters are encoded as numbers 0, 1, 2, 3 (where A ~0, T ~1, G ~2, C ~3) and
let ay, ..., a,_1 denote the respective entries. We would like to count the occurrences of
all k-mers of length k and store the counts in an array c of length 4%, which is initialized
by zeros. Each k-mer maps to a unique index in the array c. The index of the first k-mer

in our sequence is calculated according to:

indexg = ap * 4% +a; *4%2 4 ... +a,  *4! +a, , *4°

The index of the (i + 1)th k-mer of the sequence is computed from the ith index as:

index;,; = (index; - a; * 4%1) * 4 + a;, * 4°

When an index is identified, the corresponding k-mer count at this index position in
array c is incremented by one. For instance, the DNA sequence ATGCATG is encoded in
array a as [0,1,2,3,0,1,2]. For k = 2, we would add two counts for the k-mer AT in
array c at the index position0*4 + 1 =1, two counts for TG at the index position
1+ 4+ 2 = 6, one count for GC at the index position 2 * 4 + 3 = 11 and one count for CA
at index position 3 * 4 + 0 = 12. The multiplication operation X * 4™ can be computed
using the bit shift operation X « (2 *m), which is usually much faster than

multiplication.
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4.2.3.2 Counting k-mers of different lengths at once

If index; is the index of the ith k-mer of length k, the index of the ith (k — j)-mer (of
length k — j) can be simultaneously computed using the bit shift operation as index; >
(2 xj) (forj € [1, ...,k-1]) and the corresponding counter at the computed index of a
respective counter array of length 4¥~/ is incremented. The end of a DNA sequence can

be handled by adding several non-DNA characters to its end.

4.3 Results

We evaluated PPS+ by comparing it to homology-based methods (MEGAN4, taxator-tk)
(Huson et al, 2011; Droge et al., 2014), the fast taxonomic binning program Kraken
(Wood and Salzberg, 2014), the composition-based method PhyloPythia trained under
expert guidance (a recommended but time-consuming procedure) and to a generic PPS
model using default settings (Supplemental Text S1, Sections 3.5-3.8). For a
performance comparison of PPS to methods with prohibitive runtimes for large
datasets, such as PhymmBL (Brady and Salzberg, 2011) and CARMAS3 (Gerlach and Stoye,
2011), and the web-based tool NBC (Rosen et al., 2011) see (Patil, Haider, et al., 2011;
Patil, Roune, et al.,, 2011; Droge et al, 2014), as PPS has already been compared to these
methods with favorable outcomes. For a comparison with ‘taxonomy-free’ binning
software CLARK (Ounit et al.,, 2015) see (Supplemental Text S1, Section 7). We did not
compare PPS+ to profiling tools such as (Liu et al, 2011), as PPS+ is a binning method
that assigns a taxonomic label to each input sequence. As benchmark datasets, we
created two simulated datasets, one with a uniform (137 Mb) and one with a log-normal
(66 Mb) distribution of 47 community members (Supplemental Text S1, Section 3.1,
Datasets S1 and S2). We also used two real datasets, a metagenome sample from the
guts of two obese human twins (255 Mb) (Turnbaugh et al, 2010) and a cow rumen
metagenome sample (319 Mb) from (Hess et al, 2011) (Supplemental Text S1, Section
3.2, Datasets S3-56) for evaluation.

4.3.1 Benchmarks with simulated datasets

We constructed the simulated datasets by assembling simulated reads with an empirical
error profile. The details on how the simulated reads were generated and assembled can

be found in (Supplemental Text S1, Section 3.1). For the evaluation, precision and recall
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were calculated (Supplemental Text S1, Section 3.9). Furthermore, these measures were
also calculated with a ‘correction’, to account for the case where the sequences of one
taxon were consistently assigned to a different taxon, as for draft genome
reconstruction, it is more important that the sequences are assigned consistently than
that the taxonomic identifier is correct. To assess the performance of the different
methods in assigning the simulated sequence fragments without related reference
genomes being available, ‘new strain’, ‘new species’ and ‘new genus’ scenarios were
simulated by removing all sequence data from the taxa of the simulated test dataset at
each rank from the reference data. Furthermore, for PPS+, we distinguished whether the
reference data were excluded (masked) from the reference sequence (RS) collection or
also from the marker gene (MG) collection, since the MG collection included sequences
for 15 times more distinct species than the RS collection. There were therefore two

different situations to consider (Table 4.1).

Table 4.1. Test scenarios.

Test scenario Rank masked from RS Rank masked from MG
1. None None

2. Strain None

3. Species None

4. Genus None

S. Strain Strain

6. Species Strain

7. Genus Strain

8. Species Species

9. Genus Genus

Test scenarios where data was removed (masked) up to the specified rank for the corresponding taxa
represented in the simulated metagenome datasets from the reference collections. RS denotes the reference
collection of complete or draft genomes; MG indicates the reference collection of marker genes

(Supplemental Text S1, Section 3.3).

PPS+ showed a substantially improved precision and recall over the PPS generic model,
which demonstrated the impact of the improved selection of training data and modeled
taxa (Figs. 4.2A and 4.2C, S1A-S1D and S3A-S3D). PPS+ almost always had higher
precision and recall than MEGAN4 and Kraken, except when almost all test data were
included in the reference sequences (Figs. 4.2A and 4.2C, S1A-S1C, S1E, S3A-S3C, S3E,
S14A and S14C). This was even more pronounced when comparing bin quality using the

corrected measures (Figs. 4.2B and 4.2D, S2A-S2C, S2E, S4A-S4C, S4E, S14B and S14D).
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When comparing PPS+ to taxator-tk, PPS+ had substantially improved recall, particularly
for lower ranks (Figs. 4.2A and 4.2C, S1A-S1C, S1F, S3A-S3C and S3F); while taxator-tk
outperformed all other methods in terms of precision (Figs. 4.2A and 4.2C, S1A-S1F and
S3A-S3F). Both methods were similarly precise when analyzing bin recovery,
independent of assigning the taxonomic identifiers to the corrected measures (Figs. 4.2B
and 4.2D, S2A-S2(C, S2F, S4A-S4C and S4F). As a strong point of PPS+, we also observed
that it more rarely predicted wrong taxa that were not a part of the sample than the
other methods (Fig. S5). For example, for the genus rank in Scenarios 3 and 8, PPS+
assigned sequences to only 2-5 false positive taxa, while taxator-tk identified 20,
MEGAN4 37 and PPS 59 false ones. If PPS+ identified wrong taxa, these were usually very

closely related to the true taxa.
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Figure 4.2. Performance comparisons with simulated datasets.

(A) and (C) show the fraction of correct, incorrect and unassigned bp for simulated datasets with uniform
and log-normally distributed species abundance for PhyloPythiaS+, the generic PhyloPythiaS model,
MEGAN4, Kraken and taxator-tk for assignments at the species, genus and family ranks. Results were
averaged over all test ‘scenarios’ (Table 4.1), where sequences of the same strain, species or genus from the
simulated metagenomes were removed from the genome, draft genome and marker gene reference
sequence collections (Figs. S1, S3, S14A and S14C). (B) and (D) show the portion of consistently (correct),
inconsistently (incorrect) and unbinned (unassigned) bp without consideration of the taxonomic identifiers
(Figs. S2, S4, S14B and S14D, Supplemental Text S1, Section 3.9.2). The exact values and the corresponding

precision, recall and fi-score are contained in (Table S2-S5) for (A-D), respectively.
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4.3.2 Benchmarks with real datasets

4.3.2.1 Comparison of scaffold and contig assignments

For each taxonomic rank, the percentage and the total number of kb (% agreement and
kb agreement) that were assigned the same taxonomic identifier were calculated for the
real datasets, based on the assignments of scaffold and contig sequences (Supplemental
Text S1, Section 3.10.1). For the chunked cow rumen dataset (Supplemental Text S1,
Section 3.2.2), taxator-tk had the highest assignment consistency (Table 4.2); however,
it assigned much fewer data than the other methods at lower taxonomic ranks. A
detailed comparison is given in heat maps (Figs. S6-513). PPS+ performed substantially
better by both measures than the generic PPS model in almost all cases. PPS+ was also
more consistent than MEGAN4 for all lower ranks and assigned many more sequences
than MEGAN4 overall. For instance, at the genus rank, the scores were 84.3 and 56 ‘%
agreement’, as well as 33,724 and 13,726 ‘kb agreement’ for PPS+ and MEGAN4,
respectively. The overall low numbers for Kraken suggests that it is rather not applicable
to samples containing novel taxa. Also, the low number of consistently assigned bp by
MEGAN4 and taxator-tk to lower taxonomic ranks reflects the availability of few related
reference genome sequences for the cow rumen metagenome sample, which is not an

issue for a composition-based method PPS+.

For the human gut microbiome, extensive sequencing of isolate cultures has resulted in
a large collection of several hundred reference genome sequences. Accordingly, for the
human gut dataset, taxator-tk, MEGAN4 and Kraken assigned many more sequences than
they did for the cow rumen dataset (Tables 4.2 and 4.3). For Kraken and MEGAN4, this
was most pronounced for the genus and species ranks, even though this was also caused
by counting scaffolds containing only one contig being consistent to itself. The most
consistent method was again taxator-tk, but it also assigned fewer sequences than the
other methods. PPS+ performed better than the generic PPS model in all cases in terms
of both measures (Table 4.3). PPS+ and MEGAN4 showed comparable consistency, with
PPS+ being more consistent for the class, order and species ranks, and MEGAN4 being
more consistent for the superkingdom, family and genus ranks. However, PPS+
consistently assigned (kb agreement) more sequences than MEGAN4, except for the
genus and species ranks. Thus, in the case of larger collections of related isolate genome
sequences being available, composition- and homology-based methods perform

similarly well.
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The taxonomic scaffold-contig consistency of the assignments was additionally
evaluated (Tables S6 and S7) using a set of measures (Supplemental Text S1, Section
3.10.2) that provide more detailed insights into assignment consistency (Supplemental

Text S1, Section 5.1) and support the conclusions in this section.
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Table 4.2. Comparison of contig and scaffold assignments of the chunked cow rumen dataset.

Method Rank % agreement kb agreement
PPS+ Phylum 73.9 153,774
PPS Phylum 67.8 75,538
MEGAN4 Phylum 74.2 43,380
taxator-tk Phylum 98.2 59,702
Kraken Phylum 67.0 33,558
PPS+ Class 86.0 99,596
PPS Class 58.5 43,931
MEGAN4 Class 68.5 33,780
taxator-tk Class 91.7 23,190
Kraken Class 58.5 27,536
PPS+ Order 88.4 98,616
PPS Order 63.8 41,349
MEGAN4 Order 68.9 32,650
taxator-tk Order 98.0 22,368
Kraken Order 57.0 26,410
PPS+ Family 80.0 46,343
PPS Family 55.8 19,158
MEGAN4 Family 55.0 15,790
taxator-tk Family 98.9 7,276
Kraken Family 45.2 18,370
PPS+ Genus 84.3 33,724
PPS Genus 63.2 12,938
MEGAN4 Genus 56.0 13,726
taxator-tk Genus 99.1 6,042
Kraken Genus 43.7 16,912
PPS+ Species 91.6 9,821
PPS Species N/A N/A
MEGAN4 Species 54.6 8,502
taxator-tk Species 100.0 292
Kraken Species 38.1 14,186

Contigs of the cow rumen dataset of at least 10 kb were divided into chunks of 2 kb for evaluation of
assignment consistency (Supplemental Text S1, Section 3.2.2). The contigs and scaffolds of the chunked cow
rumen dataset were assigned using PPS+, the generic PPS model, MEGAN4, taxator-tk and Kraken. For each
method, up to two taxonomic identifiers were assigned to each contig at each rank, i.e., one identifier came
from the contig assignment and the second identifier came from the corresponding scaffold assignment.
Contigs with less than two taxonomic assignments at each rank were not considered in this comparison. The
measure ‘% agreement’ was the percentage of contigs with the same two taxonomic identifiers at a
particular rank, whereas ‘kb agreement’ was the total number of kb of contigs with the same taxonomic
identifiers (Supplemental Text S1, Section 3.10.1). Bold numbers correspond to the best values, whereas

italic numbers indicate the worst values.
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Table 4.3. Comparison of contig and scaffold assignments of the human gut metagenome dataset.

Method Rank % agreement kb agreement
PPS+ Phylum 99.0 140,283
PPS Phylum 97.0 124,884
MEGAN4 Phylum 99.0 127,658
taxator-tk Phylum 100.0 104,475
Kraken Phylum 97.6 123,428
PPS+ Class 99.5 134,707
PPS Class 96.9 118,068
MEGAN4 Class 98.5 122,131
taxator-tk Class 100.0 84,228
Kraken Class 96.3 121,071
PPS+ Order 99.5 134,127
PPS Order 97.3 117,185
MEGAN4 Order 98.6 121,811
taxator-tk Order 100.0 83,337
Kraken Order 96.3 121,003
PPS+ Family 94.0 110,664
PPS Family 92.6 97,066
MEGAN4 Family 96.2 98,582
taxator-tk Family 99.8 43,751
Kraken Family 89.4 109,151
PPS+ Genus 95.3 82,992
PPS Genus 91.9 58,883
MEGAN4 Genus 96.1 86,495
taxator-tk Genus 99.9 34,667
Kraken Genus 88.3 97,097
PPS+ Species 94.7 43,329
PPS Species N/A N/A
MEGAN4 Species 93.5 64,554
taxator-tk Species 99.7 10,314
Kraken Species 81.3 94,591

Contig and scaffold sequences of the human gut metagenome dataset were assigned using PPS+, the generic
PPS model, MEGAN4, taxator-tk and Kraken. The measures ‘% agreement’ and ‘kb agreement’ were used to
compare individual methods (Supplemental Text S1, Section 3.10.1). Bold numbers correspond to the best

values, whereas italic numbers indicate the worst values.

4.3.2.2 Comparison to an expert binning based on marker genes

A taxonomic binning generated by PhyloPythia (PP) with expert guidance for sample-
derived model construction (Turnbaugh et al, 2010) was compared to the PPS+
assignments. Scaffolds that were unassigned by either method were not considered. The

PP expert binning and the PPS+ binning agreed well, down to the order rank (Table 4.4).
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For the family and genus ranks, the overlap of both methods dropped to 69.5-74.1%,
which may partly be due to changes in the NCBI taxonomy since the generation of the
expert binning in 2009. Both PPS+ and PP assignments were highly consistent with the
MG assignments made by the + component of PPS+ alone, though only a small number of
scaffolds with marker genes could be compared (7-23% for different ranks). While PPS+
had a larger overlap (‘% agreement’) with the MG assignments at the genus rank, PP had
a larger overlap (‘% agreement’) with the MG assignments at the family rank. Moreover,
we compared the number of taxonomic assignments for individual methods (Fig. 4.3):
PPS+ assigned sequences to low-ranking taxa down to the species level, in agreement
with the MG assignments, while PP often assigned the respective sequences only to the
parental taxa. This demonstrates that PPS+ can generate a high quality taxonomic

binning in a fully automated manner.

Table 4.4. Comparison to an expert binning based on marker genes.

Comparison Rank % agreement kb agreement
PP vs PPS+ Superkingdom 99.6 160,617
MG vs PP Superkingdom 99.7 38,314
MG vs PPS+ Superkingdom 99.5 38,220
PP vs PPS+ Phylum 95.4 149,213
MG vs PP Phylum 96.9 17,771
MG vs PPS+ Phylum 98.7 18,065
PP vs PPS+ Class 97.0 145,887
MG vs PP Class 98.1 17,599
MG vs PPS+ Class 100.0 17,869
PP vs PPS+ Order 98.0 145,373
MG vs PP Order 98.3 17,494
MG vs PPS+ Order 100.0 17,764
PP vs PPS+ Family 69.5 95,779
MG vs PP Family 90.7 13,047
MG vs PPS+ Family 83.7 12,013
PP vs PPS+ Genus 74.1 78,686
MG vs PP Genus 91.6 12,235
MG vs PPS+ Genus 94.9 11,479

Comparison of the taxonomic assignments of PPS+ versus PhyloPythia (PP), with expert guidance for
sample-derived model construction (Turnbaugh et al, 2010) for the human gut scaffolds (161,343 kb)
based on marker genes (MG), using the + component of PPS+. The measure ‘% agreement’ represents the
percentage of bp assigned by both methods to the same taxonomic identifiers at a given rank, whereas ‘kb
agreement’ is the corresponding number of kb assigned by both methods to the same taxonomic identifier.
Scaffolds assigned by only one method are not considered in this comparison. Bold numbers correspond to

the best values, whereas italic numbers indicate the worst values.
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Figure 4.3. Comparison to expert binning based on marker genes.

The amount of assigned bp by PhyloPythia (PP), PhyloPythiaS+ (PPS+) and taxonomically informative
marker genes directly (MG) to each taxon are indicated by the pie chart sizes on a log-scale for the human
gut metagenome sample (Turnbaugh et al, 2010; Patil, Haider, et al, 2011). PhyloPythiaS+ automatically
determined the taxa to model from the sample. For the expert-trained PhyloPythia, the taxa to model were
specified by an expert, and were included in the model if they were covered by sufficient reference sequence
data retrieved separately from the sample and from sequenced human gut isolates. PhyloPythiaS+ assigned
sequences to low-ranking taxa down to the species level, in agreement with the marker gene assignments,
while PhyloPythia often assigned these sequences to the parental taxa. For the MG assignments, a negligible
amount - only two contigs (3.6 kb) of two scaffolds (231 kb) - were used as sample-derived training data

for PPS+; as mainly sample contigs (2.5 Mb) that were not part of scaffolds were used as sample-derived
data to train PPS.
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4.3.3 Throughput comparison

The throughput of the individual methods for contig assignments of the human gut
sample was calculated (Supplemental Text S1, Sections 3.3, 3.4 and 5.3). The throughput
of Kraken substantially varied between 38.4 Mb/h and 4.2 Gb/h in our experiments,
depending on whether its large (~200 GB) reference database was already loaded in the
main memory or not, therefore Kraken is the fastest method in high performance
environments. When only the prediction step of PPS+ was considered, PPS+ assigned up
to 0.5 Gb/h and was more than 7 times faster than the homology-based methods (Fig.
4.4). This is relevant when PPS models are reused for the classification of another
sample. Moreover, unlike the homology-based tools and Kraken, PPS+ can be run on a
standard laptop, as it requires much less main memory (see Supplemental Text S1,

Section 3.4 for the hardware configurations used).
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Figure 4.4. Empirical comparison of execution times.

The throughput was measured in Mb and the number of sequences classified within 1 h with one execution
thread, using all assembled contigs of the human gut metagenome dataset on a server computer with an
AMD Opteron 6386 SE 2.8 GHz processor and 512 GB of RAM. Default settings were used for all methods
(Supplemental Text S1, Sections 3.5-3.7). Both MEGAN4 and taxator-tk were run using BLAST. For MEGAN4,
only the runtime of BLAST was considered, as the runtime of the subsequent algorithm was negligible. For
PhyloPythiaS and PhyloPythiaS+, the throughput was calculated for the prediction step and both steps
(training and prediction). The former is relevant when using previously generated models for the
classification of multiple samples. The execution time shown for PhyloPythiaS is approximately three times
better than that for the original release, as we incorporated the new k-mer counting algorithm.
PhyloPythiaS+ was the only method that could also be executed on a standard laptop (NB) with an Intel i5
M520 2.4 GHz processor, 4 GB of RAM and 150 GB disk space.
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4.4 Conclusions

We describe a taxonomic assignment program that produces accurate assignments with
a precision of 80% or more also for low-ranking taxa from metagenome samples. PPS+ is
a fully automated successor of the PhyloPythiaS software. It automatically determines
the most relevant taxa to be modeled and suitable training sequences directly from the
input sample, which are then used to generate a sample-specific structured output SVM
taxonomic classifier for the taxonomic binning of a sample. This enables its use for
researchers without experience in the field or time to search for suitable training
sequences for the manual construction of well-matching taxonomic classifier to a

particular metagenome sequence sample.

PPS+ is best suited for the analysis of large NGS metagenome samples with assembled
contigs (> 1 kb) carrying marker genes or datasets including the high quality longer
PacBio (Chin et al, 2013) consensus reads. Contrary to some recent methods for the
taxonomic profiling or binning of multiple similar samples (Sunagawa et al.,, 2013), PPS+
can be also applied to individual samples. PPS+ requires only 100 kb of sample-derived
data to model a bin, while homology-based methods require large related reference
genome or draft genome sequence collections for substantial assignments to low-
ranking taxa. Our experiments on both real and simulated metagenome samples showed
that PPS+ automatically reconstructed many low-ranking bins from metagenome
samples, such as for genera and species, representing draft genomes or pan-genomes of

different community members.

The novel implementation of the k-mer counting algorithm accelerated k-mer counting
100-fold in comparison to the original PPS software and made PPS+ overall up to three
times faster. The method performed favorably in comparison to all state-of-the-art k-
mer counting software for the simultaneous enumeration of 4-6-mers, commonly used

for composition-based binning.

PPS models can be reused when classifying multiple samples from the same or similar
environments. When comparing assignment with PPS+ to MEGAN4 and taxator-tk, PPS+
showed a competitive processing time, allowing to process up to 0.5 Gb of sequences per
hour with a given PPS model on a single core with much lower main memory
requirements, while MEGAN4 processed 0.065 Gb and taxator-tk 0.03 Gb (Fig. 4.4). The

fastest method in the comparison was Kraken with up to 4.2 Gb/h; however, we have
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found that Kraken should be used only for well-studied environments, for which many
closely related (draft) genomes have been sequenced, as an alternative to alignment-
based methods, as its use for samples originating from novel environments is very

limited (Fig. 4.2).

In terms of assignment quality, we found that PPS+ often outperformed MEGAN4 and
Kraken in terms of precision, recall and consistency. Taxator-tk performed best in terms
of precision and consistency, but assigned substantially fewer sequences to low
taxonomic ranks. PPS+ also excelled in determining the taxa that were part of the
simulated metagenome community. We found that the fully automated PPS+ binning can
be as good as an expert-guided binning with the original PhyloPythia implementation.
PPS+ also showed a substantially improved assignment performance compared to the

generic PPS model.

To conclude, the newly introduced self-training (+) component and the faster k-mer
counting algorithm implemented in PPS+ allow users to generate high quality taxonomic
binnings of metagenome samples in a high-throughput fashion, without requiring
expensive hardware, manual intervention and expert knowledge. It should be helpful to
a wide range of users. An initial version of the software has been already employed for
the taxonomic binning of a metagenome sample from reindeer guts by (Pope,
Mackenzie, et al, 2011) and it is currently used in several other projects: for instance, a
PPS+ binning of shotgun metagenome samples indicated the likely metabolite flow and
participating microbial phylotypes for a biogas-producing microbial community tolerant

of high ammonia levels (Supplemental Text S2).

PPS+ is distributed with a large reference sequence collection (containing Bacterial and
Archaeal data) in a virtual machine, which makes it easy to install. This allows
metagenome sample analysis on a standard laptop under Windows, Unix or OS X

systems.

4.5 Supplementary material

The supplementary material is available in Chapter 7 and at Peer/ online:

https://doi.org/10.7717 /peerj.1603
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5 Synopsis

The main objective of my PhD project was to develop methods for the haplotype-specific
gene assembly from shotgun metagenomes and for the taxonomic classification of
metagenome sequences to low-ranking taxonomic bins. We have developed Snowball
(Gregor, Schonhuth, et al., 2016), which is to the best of our knowledge the first gene
assembler that is able to distinguish among gene sequences of individual strains of a
species, given self-overlapping paired-end reads of a sequenced metagenome sample.
We have employed Snowball to assemble simulated reads generated from the recently
published Rhizobia strains (Bai et al, 2015), which demonstrates the capability of our
method to assemble gene sequences of closely related novel strains. We have developed
PhyloPythiaS+ (Gregor, Droge, et al,, 2016), which is to the best of our knowledge the
first method that performs profiling based on marker genes and consequent
composition-based taxonomic binning, given assembled contigs (> 1 kb) or high quality
longer PacBio (Chin et al, 2013) consensus reads generated from a metagenome sample.
We have extensively evaluated our method with real and simulated datasets and
compared it to the closest competitors. Our experiments showed that PhyloPythiaS+
outperformed the competing tools in the scenarios, where the input metagenome
sample contained novel taxa (e.g. species). PhyloPythiaS+ also correctly assigned more
sequences to the low-ranking taxonomic bins than the other tools in the comparison.
Moreover, PhyloPythiaS+ performed well in the CAMI challenge (Sczyrba et al., 2017),
especially in terms of recall; and has already been successfully employed in several
studies (Pope, Mackenzie, et al, 2011; Daims et al, 2015; Ikeda-Ohtsubo et al., 2016;
Frank, Pan, et al, 2016; Frank, Arntzen, et al, 2016; Otten et al., 2016; Driscoll et al,
2017; Zhu et al., 2017). We believe that our methods will be valuable for researchers
studying species evolution, strain or gene diversity, genes under selection, virulent
genes, metagenome samples originating from novel environments, for draft genome
reconstruction and for the subsequent functional analysis of the studied metagenome

microbial communities.
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Abstract

Motivation: Gene assembly is an important step in functional analysis of shotgun metagenomic
data. Nonetheless, strain aware assembly remains a challenging task, as current assembly tools
often fail to distinguish among strain variants or require closely related reference genomes of the
studied species to be available.

Results: We have developed Snowball, a novel strain aware gene assembler for shotgun metage-
nomic data that does not require closely related reference genomes to be available. It uses profile
hidden Markov models (HMMs) of gene domains of interest to guide the assembly. Our assembler
performs gene assembly of individual gene domains based on read overlaps and error correction
using read quality scores at the same time, which results in very low per-base error rates.
Availability and Implementation: The software runs on a user-defined number of processor cores
in parallel, runs on a standard laptop and is available under the GPL 3.0 license for installation
under Linux or OS X at https://github.com/hzi-bifo/snowball.
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Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics is the functional or sequence-based analysis of micro-
bial DNA isolated directly from a microbial community of interest
(Kunin et al., 2008; Riesenfeld et al., 2004). This enables the ana-
lysis of microorganisms that cannot be cultivated in a laboratory.
After the DNA is isolated, it is sequenced using a high-throughput
sequencing platform, which results in a large dataset of short
sequenced genome fragments, called reads. For a read, it is unknown
from which strain it originates. Given such sequenced shotgun meta-
genomic data, i.e. a dataset of short reads that originate from several
genome sequences of distinct strains, gene assembly aims to recon-
struct coding sequences of the individual strains contained in the
dataset (Fig. 1).

Gene assembly is an important step in the analysis of shotgun
metagenomic data. For many purposes, including functional analysis
of metagenomic data, it is sufficient, and therefore convenient to as-
semble only the coding sequences of the strains. It has also been
shown that genes assemble well (Kingsford et al., 2010) even when
only short reads are available. Moreover, metagenomic data consist
mainly of prokaryotic species. As usually more than 85% of pro-
karyotic genomes are coding sequences (Cole and Saint-Girons,

1999); gene assembly enables to recover large parts of the respective
genomes.

Importantly, strain awareness is an essential goal in assembling
metagenomes, since it enables us to study gene variation among
strains of a species from the sequenced microbial community, which
is where much phenotypic diversity also arises. However, the assem-
bly of closely related strains remains a challenging task. Strain aware
assembly, which is assembly that is sensitive to closely related haplo-
typic sequences has remained an open challenge in many genomics
applications. In particular, low-abundance strains can interfere with
sequencing errors in common error correction routines. To date,
most assembly tools still aim to assemble consensus sequence, if
closely related haplotypes are present (Marschall ez al., 2016).

There are few tools that enable strain variant reconstruction.
They often rely on the availability of closely related reference gen-
omes of the studied species (Ahn et al., 2015; Topfer et al., 2014;
Zagordi et al., 2011), where reads are first mapped onto a reference
genome, using a read mapping tool, e.g. BWA (Li and Durbin,
2009), strain variants are then identified through a reference guided
strain aware assembly. As metagenome samples originating from

©The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com i649
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Fig. 1. An example of the gene assembly problem. In this example, the
sequenced microbial community consists only of three distinct strains. Non-
coding regions of the strain sequences are black, whereas coding regions are
red, green and blue for genes 1, 2 and 3. Genes 1-3 are present in all three
strains, although the location and gene sequences differ for distinct strains.
The sequencing step results in a collection of short reads. Note that after the
sequencing step, the origin of reads denoted by colours and positions within
the respective strains in the figure is not known in the subsequent gene as-
sembly step. Given a dataset containing all the short reads, the ultimate goal
of the gene assembly is to determine the individual strain specific sequences
of the genes

novel environments typically consist of novel species without refer-
ence genomes available, there is a need for new reference-free
approaches.

Tools that are often used for de novo metagenome assemblies
are Ray Meta (Boisvert et al., 2012), MEGAHIT (Li et al., 2015),
IDBA-UD (Peng et al., 2012), MetaVelvet (Namiki et al., 2012) or
SOAPdenovo2 (Luo et al., 2012). All these tools are k-mer based,
i.e. they transform reads into overlapping k-mers from which De
Bruijn graphs are built, where paths in the graph correspond to the
assembled contigs. This general approach, however, often fails to
distinguish among strain variants. There has been recent debate on
k-mer based approaches using De Bruijn graphs in strain aware as-
sembly. In particular, k-mer based approaches can become misled,
when low-abundance strains are involved, since the frequencies of
the low-abundance strains are on the order of magnitude of the
sequencing error rates. This leads to unpleasant interference in k-
mer based error-correction steps, as low-abundance strains are often
removed along with sequencing errors. For strain aware assembly, it
is helpful to process reads at their full length, because this increases
the power to distinguish low-frequent, co-occurring true mutations
from sequencing errors. In this line, there has been recent evidence
that shorter genomes can be assembled through overlap graph based
approaches, which make use of full-length reads, using short reads
(Simpson and Durbin, 2012). It was also shown that one can per-
form strain aware assembly through iterative construction of over-
lap graphs (Topfer et al., 2014). For gene assembly from
metagenomic data, the SAT assembler (Zhang et al., 2014) can be
employed. First, it assigns reads to gene domains of interest based
on profile hidden Markov models (HMMs) (Eddy, 2011; Finn et al.,
2014) of the respective gene domains. Then, for each gene domain,
separately, it builds overlap graphs based on the read overlaps,
where the paths in the graphs correspond to the assembled contigs.
However, the SAT assembler does not implement a sophisticated
error-correction strategy, which is considered crucial for strain
aware assembly. For the reconstruction of 16S genes, which are
often used for phylotyping, REAGO (Yuan et al., 2015) can be em-
ployed. Since it has been built for 16S genes, the use of REAGO in
more generic settings remains unclear.

The current sequencing technologies still produce relatively short
erroneous reads, making it difficult to distinguish sequencing errors

from genuine strain variation (Laehnemann et al., 2015). Therefore,
reference-free strain reconstruction of the full-length sequences of
individual strains is currently considered to be a tough computa-
tional challenge, as there may be no immediate sufficient informa-
tion in the sequenced data if mutations are separated by too large
stretches of sequence that agree for several strains. Therefore, new
approaches are needed that push the limits imposed by the data.

Here, we present Snowball, a novel method for strain aware
gene assembly from metagenomes that addresses the above-
mentioned points. It does not require closely related reference gen-
omes to be available. It uses profile HMM:s of gene domains of inter-
est as an input to guide the assembly. The HMM profile-based
homology search is known to be capable of finding remote hom-
ology, including large number of substitutions, insertions and dele-
tions, whereas simple read mapping onto a reference genome can
find only very closely related homologs (Zhang et al., 2014). Since
our method does not make use of reference genomes, we allow for
strain aware gene assembly also of novel species, where reference
genomes are not yet available. We have developed a novel algorithm
that performs gene assembly based on read overlaps. This allows
correcting errors by making use of the error profiles that underlie
the overlapping reads. The consequences are twofold: First, we ob-
tain contigs affected by only very low per-base error rates. Second,
since, this way, we determine which reads stem from identical seg-
ments based on a statistically sound model, we can reliably distin-
guish between sequencing errors and strain-specific variants, even of
very low-abundance strains. We consider these two features to rep-
resent the main improvements over the currently available assem-
blers. To the best of our knowledge, Snowball is the first tool that
allows distinguishing among individual gene strain variants in meta-
genomes for a large set of gene domains without using reference gen-
omes of related species.

In our experiments, we focused on distinguishing closely related
strains from one species. Since two different species are substantially
more divergent in terms of sequence than two different strains from
the same species, good results on strains from one species also imply
good or even better performance on datasets that contain several
species—distinguishing species is the much easier task. We assessed
the performance of Snowball using 21 simulated datasets, each con-
taining 3-9 closely related Escherichia coli strains and on one simu-
lated dataset containing ten recently published strains of a novel
Rbizobia species (Bai et al., 2015). The results for the latter demon-
strate the capability of the Snowball assembler to assemble genes of
novel strains. The results for all datasets confirm that the strength of
Snowball is its very low per-base error, due to the incorporated
error-correction. Moreover, it produced substantially longer contigs
and recovered a larger part of the simulated reference data in com-
parison to the SAT assembler. Snowball is implemented in Python,
runs on a user-defined number of processor cores in parallel, runs
on a standard laptop, is freely available under the GPL 3.0 license
and can be installed under Linux or OS X.

2 Methods

The input of Snowball are two FASTQ files containing Illumina self-
overlapping paired-end reads, the corresponding insert size used for
the library preparation and profile HMMs of gene domains of inter-
est. The paired-end reads may originate from multiple closely related
strains or from more evolutionary divergent taxa. We have thor-
oughly tested Snowball using simulated Illumina HiSeq 2500
paired-end reads generated by the ART read simulator (Huang
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R — read-end 1 ACTCCTAT
Read-end 2 P N read-end 2 CGATAGCT
Average read self-overlap length i ~75bp Qs 2 < SI e :
SRR consensusread ACTCCITATAGCT

~225bp

Fig. 2. An example of a self-overlapping paired-end read. lllumina HiSeq 2500
paired-end read consists of two 150bp read ends, one on the positive strand
(4+) and one on the negative strand (—). In our example, the mean insert size
(225 bp) is smaller than two times the read end length (2 x 150 bp), therefore
the paired-end reads are self-overlapping with 75 bp overlap length on aver-
age. Such a self-overlapping read can be joined into a consensus read of
225 bp length on average

et al., 2012) with 150 bp read length and 225 bp mean insert size. In
this setting, the average length of the self-overlaps of the read ends is
75 bp and the length of a consensus read that originates by joining
of the self-overlapping read ends is 225 bp on average (Fig. 2,
Section 3.4). The output is a FASTA or a FASTQ file containing
annotated assembled contigs. For each contig, the annotation con-
tains the name of a respective gene domain to which a contig be-
longs, coordinates of the coding sub-sequence within a contig
sequence, coverage and quality score for each contig position. The
coverage and quality score information can be used for subsequent
quality filtering yielding less or shorter contigs of higher quality.
Our method consists of the following steps:

* [Consensus read reconstruction|
Self-overlapping paired-end reads are joined into longer consen-
sus reads (Section 2.1).

* [Assignment of consensus reads to gene domains]
Profile HMMs of selected gene domains are employed to assign
consensus reads to the respective gene domains, where one con-
sensus read is assigned to at most one gene domain (Section 2.2).

* [Assembly of consensus reads into contigs]
For each gene domain, in parallel, consensus reads are assembled
into contigs (Sections 2.3-2.5). In the assembly step, consensus
reads are iteratively joined into longer and error-corrected super-
reads based on the consensus read overlaps. The super-reads are
then output as annotated contigs, where a super-read represents
a sequence that originates by joining of at least two consensus
reads into a longer sequence.

2.1 Joining self-overlapping paired-end reads

Self-overlapping paired-end reads are joined into longer error-
corrected consensus sequences. The use of a library containing self-
overlapping paired-end reads is a powerful strategy for an initial
error-correction (Schirmer et al., 2015), which has been employed in
e.g. ALLPATHS (Butler et al., 2008). Given the mean insert size, we
determine the self-overlap that results in the minimum hamming dis-
tance between the overlapping ends of a paired-end read. A base
with a higher quality score is chosen at a position within the overlap
that contains mismatching bases for the respective position of the re-
sulting consensus read sequence (Fig. 3). As the substitution error
rate of the Illumina reads increases towards the ends of the paired-
end reads (Minoche et al., 2011), this step results in longer consen-
sus reads with overall lower substitution error, where the overlap-
ping regions are almost error-free. It is also an efficient read quality

>

Fig. 3. Joining of self-overlapping reads example. The figure depicts a simpli-
fied example of a consensus read reconstruction. At the mismatching overlap
position, read-end 1 has T with quality score (QS) 9, while read-end 2 has G
with quality score 5. The resulting consensus read will have T at the respect-
ive position, since T is supported by a higher quality score than G. The com-
putation of the quality scores for the consensus read is explained in the
Section 2.3

filtering step, as the paired-end reads that cannot be joined, due to
high substitution error rate, an insertion or a deletion within the
overlapping region, are filtered out. For instance, by joining of the
150 bp paired-end Illumina HiSeq 2500 self-overlapping reads with
225 bp mean insert size results in consensus reads of length 225 bp
on average. While the default error profile of the ART read simula-
tor (Huang et al., 2012) yields 150 bp paired-end reads with
~2.37% substitution error, the joined consensus reads had only
~1.08% substitution error in our experiments. These longer, error-
corrected consensus reads with low substitution error rate are con-
venient building blocks to start with in the subsequent steps of our
method.

2.2 Assigning reads to gene domains

Consensus reads are annotated using profile HMMs of gene do-
mains of interest and assigned to respective gene domains (Fig. 4).
By default, we use the Pfam-A (Finn et al., 2014) (version 27) profile
HMMs of 14 831 gene domains and AMPHORA 2 (Wu and Scott,
2012) profile HMMs of 31 bacterial ubiquitous single-copy genes
that are often used for phylotyping. A profile HMM of a gene do-
main is a probabilistic model representing a multiple sequence align-
ment of representative gene sequences belonging to a particular gene
domain. The model can be used to annotate a query sequence (e.g. a
consensus read). The annotation mainly consists of a score, start/
stop positions within a query sequence and HMM start/stop coord-
inates. The score roughly corresponds to a probability that a query
sequence belongs to the particular gene domain, i.e. if the score is
high for a query sequence then it is very probable that it belongs to
the respective gene domain. The start/stop positions within a query
sequence define a sub-sequence of a query sequence that was identi-
fied to belong to the gene domain. The HMM start/stop coordinates
correspond to the estimated coordinates of the query sub-sequence

Gene Domain
L . 1 2 3 - N
- - e e —

= | — | == == =
e, | e = ——

—— —_— R | el

= — —_—e. | T

= Ly

Fig. 4. Assignment of consensus reads to gene domains. Consensus reads
are assigned to individual gene domains using profile HMMs. Consensus
reads that cannot be assigned to any of the gene domains with sufficient con-
fidence remain unassigned. A consensus read is assigned to at most one
gene domain

910 ‘T Joquaidog uo 3son3 Aq /310’ S[ewInofpIoyxo” sonewIojurorq//:djy woij papeoumo


http://bioinformatics.oxfordjournals.org/

i652

I.Gregor et al.

within the multiple sequence alignment of the respective profile
HMM.

Each consensus read is translated into six protein sequences using
all six reading frames (i.e. also considering the reverse complementary
sequences). The hmmsearch command of the HMMER 3 (Eddy, 2011)
software is used to annotate the protein sequences. For each consensus
read, only the reading frame with the highest score is considered. A
consensus read is assigned to at most one gene domain to which it was
queried with the highest score. Consensus reads with low scores (i.e.
lower than default value: 40) are filtered out and not considered in the
subsequent steps. If a protein sequence corresponding to a reverse com-
plementary consensus read sequence was annotated, the corresponding
reverse complementary DNA sequence of a respective consensus read
is considered in the next steps. The coding DNA sub-sequence of a con-
sensus read sequence is denoted as a (partial) coding region. The start
and end HMM coordinates within a respective profile HMM are
stored as part of the consensus read annotation.

As a result of this step, consensus reads are annotated and as-
signed to ‘bins’ representing individual gene domains, where one
consensus read is assigned to at most one gene domain. Gene do-
mains are building blocks of individual genes. Therefore, a ‘bin’
does not only contain consensus reads belonging to gene variants of
individual strains. It can also contain different genes of one strain,
several copies of one gene of one strain or even ‘broken’ gene copies.

2.3 Consensus sequence representation

We represent consensus sequences, i.e. consensus reads and super-
reads using probability matrices. A super-read is a longer error-
corrected sequence that originates by joining overlapping consensus
reads (or consensus reads with super-reads) in the Snowball algo-
rithm (Section 2.5).

For construction of such super-reads, we make use of the error
profiles that come along with Illumina paired-end reads. These reads
are stored in FASTQ files together with the corresponding quality
scores (Fig. 5a). A quality score for a read position represents a

(@)
IR @NZ_JH702415.1-17936/2
L e ATGCCGAAACTGCGTGCCACATCAACGATCTCCGTCGGC

+
L O CCC=GGG6G16G6G6II]]IG666IIIIII=]]]GI8]I]]

(b)
Plerror at position i) = 10 -lerdtas - 33) /10
P(correct position i) = 1- P(error at position i)

Plerror at i) = 10 -erd’=}-331/10= 10 {61-23)/10= 0,0016
P(correct position i) = 0.9984

P{C) = P(correct position i} = 0.9984

Pi(A) = P!(T) = PI(G) = P(error at i) / 3 = 0.00053

Fig. 5. FASTQ file data representation. (Panel a) depicts an example of a read
end representation in a FASTQ file. The entry consists of the read end name,
the DNA sequence of the respective end of a paired-end read and the quality
score for each position of the DNA sequence, which are ASCII coded. (Panel
b) explains the meaning of the quality scores. From quality score gs; at pos-
ition i, we compute the probability that position i was correctly sequenced,
where the ord function assigns an ASCIl number to an input ASCII character.
Before translating the resulting number ord(gs;) into the corresponding prob-
ability, one has to subtract 33, by convention. The probability that base Cis at
position i is equal to the probability that position i was sequenced correctly.
In our model, the probability of A, T or G being at position i is equal to the
probability that position i was sequenced incorrectly divided by three

probability that a base was sequenced correctly, i.e. it represents a
probability that a particular base is present at a respective position
in the FASTQ file (Fig. 5b). The complement probability represents
a probability that a different base is at the respective position. The
probability that different base X is present at a particular position
corresponds to one third of the complement probability in our
model, which reflects that apart from the correct nucleotide, there
are 3 different choices for X. Note that these probabilities are only
estimates, as provided by the Illumina sequencing platform.

In our model, a probability matrix represents a consensus se-
quence, where each sequence position is represented by a probability
distribution over DNA bases {A, C, T, G}. An example of a probabil-
ity matrix corresponding to a consensus sequence of two overlap-
ping sequences is depicted in (Fig. 6). At a particular position within
a consensus sequence, we compute the expected probability of a
base as the average probability of the respective base probabilities of
the individual reads covering the position. The individual base prob-
abilities are derived from the quality scores (Fig. 5). Let R be the set
of all read ends that were joined into consensus sequence ¢ and cover
position p, within ¢. The probability of a base Xe{A, C, T, G} being
at position p. within the consensus sequence c is:

PeX) = STPR(X)
R r

“rER

where p, for a read 7€R is the position within 7 that corresponds to
position p. within the consensus sequence c. The base with the
highest probability in the probability matrix at a particular pos-
ition is the base of the consensus DNA sequence at the respective
position.

2.4 Overlap probabilities and error correction
The computation of overlap probabilities of two overlapping se-
quences is an essential part of the Snowball algorithm. Given two
overlapping sequences S; and S, represented by probability matrices
(Fig. 6), where 7 is the length of the overlapping region, the overlap
probability at positioni € [0, ..., 7 — 1] is computed as:

" index within R,

R;: read-end 1
R,: read-end 2

k™ index within R, \ounrlap

Ry R,NR, R,
P(A) | P,%(A) [PHA)+PMA)T/IRL o | | Pa™YA)
P(C) | P,%C) [PHC) +PMO) /IRl |.. |.. |P™2(C)
P(T) |P.AT) [P(T) +P,5T) 1/ IR] v | | P™T)
P(G) | P,Y(G) [PHG)+PHG)]/IR] | | |Py™1(G)
IRl |1 1| 2 2 |1 |a

Fig. 6. Probability matrix example. In this example of a probability matrix con-
struction, two overlapping read ends are joined into a consensus sequence
and represented as a probability matrix. The subscripts of individual probabil-
ities correspond to either read end R; or R, The superscripts of individual
probabilities correspond to the positions within respective read end se-
quences. The probability arguments are DNA bases {A, C, T, G}. The |R| val-
ues correspond to the coverage, i.e. the number of read ends covering a
particular position within the consensus sequence
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P (X)* Py(X)

i)verlap =
X €{A,C T, G}
where, P/ (X) is the probability that sequence S; has base X at over-
lap position i; probability P (X) is defined analogously for sequence
S5. The overall overlap probability of §; and S, is the product of in-
dividual position overlap probabilities normalized by overlap length
n (Topfer et al., 2014):

— i
POVUI“P = H Poverlap

i €0, n—1]

As a score that represents the ‘expected length’ of an overlap,
taking into account the individual overlap position probabilities, we
compute the expected number of correct positions within the over-
lap as:

Length Expected = Z

i €0, . n—1]

i
overlap

A single overlap score that enables us to rank different sequence
overlaps is computed as a product of the overall overlap probability
and the expected overlap length:

Score Overlap = Poyerlap * Length Expected.

The overlap score penalizes both overlaps with low overlap
probability and short overlaps, since long overlaps with high overlap
probability are required. The minimum required expected length of
an overlap represents the support for the overlap probability, as the
overlap probability is based only on the bases within the overlap,
therefore the number of the bases outside of the overlap should re-
main as small as possible, since we cannot make any statement
about the bases outside of the overlap.

In the Snowball algorithm, consensus reads are iteratively joined
into longer super-reads based on the overlap probabilities, expected
overlap lengths and the overlap scores (Section 2.5). By default, two
sequences S; and S can be joined into a consensus sequence if the
overall overlap probability is at least 0.8 and the expected length of
the overlap is at least 0.5 * min[length(S;), length(S;)]. The high
overall overlap probability ensures that the overlap consists of
mostly matching positions, that there are no mismatching positions
with high quality scores and that mismatches are allowed only at
positions with low quality scores. For datasets with overall high
quality scores, the minimum overlap probability parameter can be
increased to 0.9 or 0.95. In the Snowball algorithm, when a consen-
sus sequence could be joined with multiple consensus sequences
with sufficient overlap probability and expected overlap length, it is
joined with the sequence with which it has the highest overlap score.

2.5 The Snowball algorithm

For each gene domain, the Snowball algorithm iteratively joins con-
sensus reads into longer error-corrected super-reads. The input of
the algorithm consists of annotated consensus reads of a particular
gene domain represented via probability matrices (Sections 2.1-2.3).
The resulting super-reads are output as annotated contigs. Note that
the method can be highly parallelized, since the Snowball algorithm
runs for each gene domain separately.

Consensus reads are first sorted in an increasing order according
to the HMM start coordinates, that denote an estimated start pos-
ition of a consensus read within the multiple sequence alignment of
the profile HMM. This layout suggests which pairs of consensus
reads are likely to have an overlap (Fig. 7), where consensus reads
that are next to each other are likely to have longer overlaps than
other pairs of consensus reads.

Multiple seq e ali 1t corresponding to a profile HMM

>

) "= Neighborhood of the Working set
Working set = —h

Consensus reads

Fig. 7. Initial layout of consensus reads. Consensus reads sorted according to
the HMM start coordinates. In the neighbourhood of the consensus read, that
is in the working set, there are two closest consensus reads, one on the left
(L) and one on the right (R)

As a starting point of the algorithm, we choose a consensus read
with the largest sum of overlap lengths with other consensus reads and
put it into the working set. The reason for this choice is that such a con-
sensus read is within the highest coverage of the alignment correspond-
ing to the respective profile HMM, where highly covered regions are
likely to be covered by reads originating from similar but distinct gen-
omes. Therefore, the chosen consensus read is very likely to overlap
with consensus reads originating from distinct gene variants, which
will help to resolve these gene variants early in the algorithm.

The main idea of the algorithm is that it iteratively tries to extend
consensus sequences from the working set into longer consensus se-
quences by joining them with consensus reads that are in their neigh-
bourhood, considering the consensus read layout (Fig. 7). In one
iteration, first a consensus read from the neighbourhood (i.e. L or R)
is joined with one of the consensus sequences from the working set.
Second, two consensus reads (i.e. L and R) that are in the neighbour-
hood of the working set are added to the working set or both consen-
sus reads from the neighbourhood of the working set (i.e. L and R)
are joined into a consensus sequence and added to the working set. A
consensus read and a consensus sequence (or two consensus reads)
are joined only if they have a sufficient overlap as defined in the
Section 2.4. If there is more than one overlap of a consensus read
from the neighbourhood (i.e. L or R) and a consensus sequence from
the working set, given that also the overlap between L and R, is suffi-
cient, the pair that has the highest overlap score is chosen. If there is
no sufficient overlap between a consensus sequence from the working
set and a consensus read L or R in the neighbourhood and the overlap
between L and R is also not sufficient, both consensus reads are added
to the working set as they are likely to originate from distinct gene
variants than the gene variants already represented in the working set.

Pseudo code of the algorithm:

1. Input: a list of consensus reads of a particular gene domain.

Sort the input list according to the HMM start coordinates in
the increasing order.

3. Find a consensus read representing the starting point—as told
above, a consensus read with the largest sum of overlap lengths
with other consensus reads—and add it into the working set.

4. The neighbourhood of the working set consists of at most two
consensus reads, one that is the closest on the left (L) and one
that is the closest on the right (R) of the working set.

5. For each consensus sequence S from the working set and for
each pair (L, S) and (S, R), and for (L, R), compute:
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a. overlap probability
b. expected overlap length
c. overlap score

6. If there is a sufficient overlap between at least one pair (L, S),
(S, R) or (L, R), the pair with the highest overlap score is
chosen, as defined in the Section 2.4. Let (L, S) be the pair with
the highest overlap. Remove S from the working set. Join (L, S)
into a consensus sequence (i.e. a super-read), as defined in the
Section 2.3 and add it into the working set. Redefine L, as the
first consensus read on the left of L. If (S, R) is the pair with the
highest score, proceed analogously. If (L, R) is the pair with
the highest score, join (L, R) into a consensus sequence (i.e. a
super-read) and add it into the working set. Redefine L and R
analogously.

7. 1If there is no sufficient overlap found in step (6), add L and R
into the working set and redefine L and R in the same way as in
(6).

8. If the neighbourhood is not empty, i.e. L or R was redefined at
step (6) or (7), go to step (5). If L or R cannot be redefined, it is
not considered in the next steps of the algorithm.

9. Output super-reads as annotated contigs.

In the algorithm, a consensus sequence is represented via a prob-
ability matrix as described in the Section 2.3. Mismatching bases
within a sufficient overlap most likely represent a substitution error,
where one of the bases has a relatively low quality score, thus, the
base with a higher quality score corrects such a substitution error.
Substitutions representing genuine strain variation are represented
by overlap positions with different bases with relatively high quality
scores. Therefore, such overlaps of consensus reads representing dif-
ferent strains almost never pass the minimum required overlap prob-
ability threshold. Consensus reads containing insertion or deletion
errors have very low overlap probabilities with other consensus
reads or super-reads and are therefore unlikely to be joined into lon-
ger consensus sequences. Thus, super-read positions with coverage
of at least two are mostly error-corrected in terms of insertion and
deletion sequencing errors.

3 Results

We evaluated Snowball using 21 simulated datasets, each containing
3-9 closely related E. coli strains and one simulated dataset contain-
ing ten novel recently published Rhizobia strains (Bai et al., 2015)
(Section 3.4). We recall that good performance on different strains
implies good performance on different species, which is why we put
the emphasis on distinguishing between closely related strains in our
experiments. Thereby, our aim was to answer the following ques-
tions: Were the contigs assembled correctly? How long are the re-
sulting contigs? Did the assembly recover the reference strain
sequences from which the input paired-end reads were generated?
As a reference method, we used the SAT assembler (Zhang et al.,
2014), because this is to the best of our knowledge the only cur-
rently available gene assembler of gene domains of interest for meta-
genomic data that does not require closely related reference
genomes to be available.

In our experiments, we observed that Snowball was faster than
SAT. The runtime of Snowball was limited by the runtime of the
HMMER 3 software, i.e. our method spent most of the runtime in
this step (Section 2.2).

3.1 Per-base error
We computed the per-base error for all assembled contigs of all
simulated datasets (Fig. 8). For each contig, we determined the
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Fig. 8. Cumulative per-base error. Cumulative per-base error for the Snowball
and SAT assemblers. We computed the per-base error in a cumulative way,
i.e. for X € [3,...,30] (on the horizontal x-axes), Y (on the vertical y-axes) is
equal to the per-base error at contig positions with coverage greater or equal
to X

reference strain sequence and coordinates of a particular contig se-
quence within a respective reference sequence from which it origin-
ates. The per-base error is defined as the percentage of bases that
differ between a contig sequence and the respective sub-sequence of
the reference sequence, i.e. it corresponds to the Hamming distance
between the two sequences, normalized by the length of the overlap.
Note, that closely related strains share large sequence regions; there-
fore, a contig can be well mapped onto several reference sequences
of distinct strains. In this case, a reference sequence, onto which a
contig maps with the lowest hamming distance, is considered to be
the reference strain sequence from which it originates. If a contig
maps onto several sequences of different strains, with exactly the
same error, we consider it to originate from all these strains. The
coverage of a contig position is equal to the number of read ends
covering a respective position. In the Snowball algorithm, we keep
track of all consensus reads that a contig consists of. For the SAT as-
sembler, we have used BWA (Li and Durbin, 2009) to map consen-
sus reads onto the contigs. We computed the per-base error for each
coverage [3,...,30] separately. Low-coverage positions typically
have a higher per-base error, as there is not enough information
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available to correct sequencing errors. This is most pronounced at
positions with coverage one, where the per-base error corresponds
to the substitution error of a respective sequencing platform
(~2.37% for our simulated datasets). At positions with higher
coverage, the error-correction mechanism built into the Snowball al-
gorithm yields very low (~0.02%) per-base error (Fig. 8). For the
SAT assembler, contig positions with high coverage correspond to
consensus sequences containing reads of several strains, which yields
a relatively high per-base error (Fig. 8). This shows that the error-
correction incorporated in the Snowball algorithm is indispensable
for the assembly of closely related strains.

3.2 Relative contig length

We computed the average number of assembled contigs and the
average cumulative length of all contigs (in Kb) per strain (Fig. 9).
As the assembled contigs should cover the full length of the respect-
ive gene sequences sufficiently well, we aligned each contig to the re-
spective profile HMM and computed the fraction of the model (i.e.
the corresponding multiple sequence alignment) it covers. For each
contig, this gave us an estimate of its relative length with respect to
the particular profile HMM. We used this information to compute

(a) Contigs per strain (Kb)
-
8 Snowball Rhizobia
=—— Snowball E_Coli
— SATE.Col
g SAT Rhizobia
s B
2
£
3
:
2
-4
g 2.
E
2 4
]
&'
T T T T T
50 80 70 80 80 100
Considering contigs covering 2 X% of respective HMM model
(b) Contigs per strain
g4 Snowball Rhizotia
a — Snowball E.Coli
— SATEColi
§ A SAT Rhizobia
a2
% J
£
[
& 8
E L1
&
-
5 %
=
g
[=]
g

T T T T T T
50 B0 TO0 BO 20 100

Considering contigs covering 2 X% of respective HMM model

Fig. 9. Contigs per strain. Cumulative average contig length per strain, con-
sidering only contigs covering X% of respective profile HMMs (panel a).
Average number of contigs per strain, considering only contigs covering
>X% of respective profile HVIMs (panel b). Here, the variable X corresponds
to the values on the (horizontal) x-axes of the graphs

the results, e.g. using only longer contigs covering at least 50%
(60%, 70%, etc.) of respective profile HMM:s. This analysis showed
that Snowball produced substantially more, longer contigs than the
SAT assembler.

3.3 Reference coverage

We computed which parts of the reference strain sequences, from
which the input reads were generated, were recovered by the
assembled contigs, per strain on average (Fig. 10). As explained in
the Section 3.1, assembled contigs may map onto one or more refer-
ence strain sequences with the same minimum hamming distance.
We considered a contig to cover all the reference strain sequences,
onto which it can be mapped with exactly the same minimum per-
base error. Positions of reference sequences that are covered by at
least one contig are denoted as covered positions. For each strain,
we computed the number and percentage of the covered positions.
Moreover, as explained in the Section 3.2, we computed these meas-
ures for contigs covering >X% of respective profile HMMs (where
the variable X corresponds to the values on the x-axes of the
graphs). The overall relatively low coverage of the reference se-
quences can be explained by low sequencing coverage of some of the
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Fig. 10. Coverage of the reference strain sequences. Percentage of the re-
covered reference strains, per strain on average, considering only contigs
covering >X% of respective profile HMMs (panel a). Corresponding absolute
values (Kb) are depicted in (panel b). The variable X corresponds to the values
on the x-axes
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reference strain sequences (Supplementary Tables S1-S8). Also, as
we only assemble coding sequences of the reference strain sequences,
for which we have used profile HMMs as the input, regions of the
reference strain sequences that are not covered by the profile HMMs
remain unassembled. Nevertheless, this analysis showed that
Snowball recovered substantially more reference strain sequences
than the SAT assembler.

3.4 Simulated datasets details

We have based our evaluation on 22 simulated datasets (Table 1,
Supplementary Tables S1-S8). The strain abundances correspond
to randomly drawn numbers from the log-normal distribution
(mean = 1, standard deviation =2), where the numbers were limited
to interval [1,...,50], to avoid both data explosion and extremely
low strain abundances. The ART (Huang et al., 2012) read simula-
tor (version 2.3.6) was employed to generate Illumina HiSeq 2500
paired-end reads (read length=150 bp, mean insert size =225,
standard deviation=23), where the strain coverage used for the
read simulation also corresponds to the strain abundance. The abun-
dance of a particular strain thus informs us with which coverage the
strain genome within a simulated dataset was sequenced. We used
the default ART Illumina HiSeq 2500 empirical error profile, which
yields reads with ~2.37% substitution error. For each dataset, we
provide per-dataset results (Table 1, Sections 3.1-3.3) that show
that Snowball performed substantially better than the SAT assem-
bler for all simulated datasets.

Table 1. Overview of simulated datasets

4 Conclusions

We describe Snowball, a novel strain aware gene assembler for re-
construction of gene domains of interest from shotgun metagenomic
data of microbial communities. Snowball performs gene assembly of
individual gene domains based on read overlaps and error-
correction using read quality scores at the same time, which result in
very low per-base error rates. Our method uses profile HMMs to
guide the assembly. Nonetheless, it does not require closely related
reference genomes of the studied species to be available. We have as-
sessed the performance of Snowball using 21 simulated datasets,
each containing 3-9 closely related E. coli strains and one simulated
dataset containing ten recently published Rhizobia strains (Bai et al.,
2015), which demonstrates the capability of the Srzowball assembler
to assemble novel strains. We have compared our Snowball assem-
bler to the SAT assembler, which, to our knowledge, establishes the
current state of the art in gene assembly. The results showed that
Snowball had substantially lower per-base error, assembled more,
longer contigs and recovered more data from the input paired-end
reads. We have shown that the incorporation of the error-correction
mechanism is indispensable for the assemblies of closely related
strains. To our knowledge, Snowball is the first strain aware gene
assembler that does not require closely related reference genomes of
the studied species to be available. The assembly of closely related
strains is still a challenging task for most of the current assemblers,
including the SAT assembler. We believe that our tool will be valu-
able for studying species evolution (e.g. genes under selection) and
strain or gene diversity (e.g. virulence genes). Snowball is imple-
mented in Python, runs on a user-defined number of processor cores

Per-base error (%) at

Contig length (Kb) 75% Ref. cov. 75% HMM

position coverage >5% HMM model® model (%)°
Dataset Strains per dataset
Snowball SAT Snowball SAT Snowball SAT

1 3 0.019 1.613 913 229 41.3 7.5
2 0.035 1.823 1080 628 44.4 15.1
3 0.006 1.603 865 186 43.0 6.7
4 4 0.036 1.666 740 306 43.1 10.7
5 0.011 1.813 691 253 42.6 9.7
6 0.007 1.648 700 303 45.5 11.2
7 N 0.012 1.809 614 408 44.9 13.5
8 0.012 1.791 622 393 44.8 13.5
9 0.022 2.064 665 411 40.9 12.6
10 6 0.022 1.853 518 378 42.1 11.8
11 0.045 1.822 557 308 39.0 10.7
12 0.033 2.009 571 407 40.2 12.4
13 7 0.028 1.861 447 316 42.6 11.7
14 0.041 1.866 496 293 38.9 10.9
15 0.018 2.034 488 367 41.7 12.0
16 8 0.017 2.152 408 443 44.6 12.7
17 0.030 1.869 428 294 38.3 10.5
18 0.038 2.227 453 440 39.3 11.6
19 9 0.019 1.884 349 265 40.9 9.7
20 0.014 2.035 360 314 40.4 10.7
21 0.044 2.270 424 430 42.2 13.8
22 10 0.013 1.909 905 279 27.0 5.7

“Per-base error (%) at contig positions with coverage >5 (Fig. 8).
"Cumulative contig length (Kb) at X =75 of (Fig. 9a).

“Percentage of recovered data at X =75 of (Fig. 10a). Datasets 1-21 consist of E. coli strains (Supplementary Table S1-S7). Dataset 22 consists of Rhizobia

strains (Supplementary Table S8).
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in parallel, runs on a standard laptop and can be easily installed
under Linux or OS X.
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Supporting Tables S1-S8

Reads (@Dataset Strains (b)Strain (IRef. Strain
Dataset

(Mbp) (Accessions) coverage (Mbp)
NZ_AKLX00000000 15.6 5.489
1 159 NZ_ANLR00000000 10.8 5.192
NZ_AKLB00000000 3.5 5.384
NZ_AEZS00000000 19.7 5.450
2 323 NZ_AIGZ00000000 151 5.125
NZ_AIGV00000000 26.6 5.216
NZ_AIHQO00000000 9.6 5.201
3 138 NZ_AIHO00000000 55 5.246
NZ_AITHS00000000 11.3 5.230

Supporting Table 1. Parameters of three simulated datasets, each containing 3 E. coli strains.
(column a) Accession numbers of individual strains of simulated datasets. (column b) Strain
coverage of respective strains in the datasets. (column c) Size of individual reference strains in

Mbp.

Reads (@Dataset Strains (b)Strain
Dataset Ref. Strain (Mbp)
(Mbp) (Accessions) coverage
NZ_AKLR00000000 16.4 5.479
NZ_AMTI00000000 8.6 5.426
4 223
NZ_ANMAO00000000 5.7 5.127
NZ_AMTZ00000000 10.9 5.410
NZ_AIEZ00000000 11.5 5.154
5 192 NZ_AIFB00000000 13.8 5.298
NZ_AFJB00000000 3.5 5.134




NZ_AIEW00000000 8.0 5.198

NZ_AIHQO00000000 12.9 5.201

NZ_AIHR00000000 34 5.210
6 216

NZ_AIHP00000000 6.2 5.265

NZ_AITHS00000000 18.9 5.230

Supporting Table 2. Parameters of three simulated datasets, each containing 4 E. coli strains.

Reads (@Dataset Strains (®)Strain
Dataset Ref. Strain (Mbp)
(Mbp) (Accessions) coverage
NZ_AMURO00000000 4.9 5.376
NZ_AMTU00000000 20.1 5.298
7 351 NZ_AMT]00000000 19.6 5.434
NZ_AKMA00000000 3.3 5.552
NZ_AKMKO00000000 17.7 5.417
NZ_ANLX00000000 23.6 5.373
NZ_AOEI00000000 3.7 5.164
8 336 NZ_ANLU00000000 8.0 5.341
NZ_ABHS00000000 11.6 5.933
NZ_AOEG00000000 15.7 5.177
NZ_AIFW00000000 2.3 5.324
NZ_AFAH00000000 16.7 5.012
9 343 NZ_AIFZ00000000 14.1 5.077
NZ_AHAX00000000 10.8 4.956
NZ_AMTG00000000 26.0 4.725

Supporting Table 3. Parameters of three simulated datasets, each containing 5 E. coli strains.

Reads (@Dataset Strains (b)Strain
Dataset Ref. Strain (Mbp)
(Mbp) (Accessions) coverage
NZ_AMTY00000000 37.3 5.477
NZ_ABHP00000000 2.1 5.656
10 380 NZ_AMVF00000000 15.4 5.411
NZ_AMTMO00000000 3.5 5.131
NZ_ABHQ00000000 7.4 5.706




NZ_AKLV00000000 4.3 5.447
NZ_AEZS00000000 1.3 5.450
NZ_AEZT00000000 5.0 5.279
NZ_AIGW00000000 14.7 5.231
11 323
NZ_AIGX00000000 24.7 5.551
NZ_AAJX00000000 4.9 5.427
NZ_AIGY00000000 9.3 5.305
NZ_AIFW00000000 12.4 5.324
NZ_AIFZ00000000 2.4 5.077
NZ_AFAD00000000 25.1 4.744
12 409
NZ_AIFY00000000 13.4 4.982
NZ_AFAH00000000 3.7 5.012
NZ_AHAWO00000000 25.1 5.107

Supporting Table 4. Parameters of three simulated datasets, each containing 6 E. coli strains.

Reads (@Dataset Strains (®)Strain
Dataset Ref. Strain (Mbp)
(Mbp) (Accessions) coverage

NZ_AMTP00000000 3.2 5.741
NZ_ANMBO00000000 7.8 5.344
NZ_AKMF00000000 4.3 5.319

13 368 NZ_ANLV00000000 1.8 5.346
NZ_AMTMO00000000 16.0 5.131
NZ_AMUWO00000000 7.3 5.375
NZ_AKLR00000000 28.8 5.479
NZ_AIGW00000000 14.5 5.231
NZ_AIGY00000000 5.3 5.305
NZ_AAJV00000000 16.1 5.528

14 356 NC_013353 8.8 5.449
NZ_AFAA00000000 1.3 5.871
NZ_AIHB00000000 16.2 5.489
NZ_AKNIO0000000 3.5 5.242

NC_012759 9.7 4.578

NZ_AIFW00000000 10.2 5.324

15 437 NZ_AMTG00000000 39.9 4.725
NZ_AFAD00000000 16.0 4.744
NZ_AMTHO00000000 2.2 4.729




NZ_AIFV00000000 2.7 5.390
NZ_AHAWO00000000 9.7 5.107

Supporting Table 5. Parameters of three simulated datasets, each containing 7 E. coli strains.

Reads (@Dataset Strains (b)Strain
Dataset Ref. Strain (Mbp)
(Mbp) (Accessions) coverage

NZ_AOER00000000 16.3 5.268
NZ_AKKX00000000 3.0 5.528
NZ_AMTE00000000 5.7 5.322
NC_013008 4.5 5.528

16 618
NZ_AKML00000000 5.8 5.409
NZ_AIFF00000000 47.4 5.503
NZ_AKKZ00000000 2.7 5.544
NZ_AMTF00000000 29.3 5.345
NZ_AIGN00000000 6.0 5.486
NZ_AFAI0O0000000 16.6 5.560
NZ_AIGM00000000 2.0 5.195
NZ_AMVC00000000 6.8 5.609

17 393
NZ_AIGI0O0000000 1.5 5.460
NZ_AEZV00000000 4.5 5.409
NZ_AIGK00000000 28.0 5.408
NZ_AIGL00000000 6.9 5.362
NZ_AIFX00000000 45.2 5.118
NC_012759 37.3 4.578
NZ_AFAB00000000 9.9 5.639
NZ_AIFY00000000 4.1 4.982

18 576
NZ_AFAD00000000 3.3 4.744
NZ_AHAX00000000 1.8 4956
NZ_AFAH00000000 7.4 5.012
NZ_AIFZ00000000 7.1 5.077

Supporting Table 6. Parameters of three simulated datasets, each containing 8 E. coli strains.

Reads (@Dataset Strains (®)Strain
Dataset Ref. Strain (Mbp)
(Mbp) (Accessions) coverage




NZ_AMVA00000000 16.3 5.328
NZ_AMTZ00000000 1.4 5.410
NZ_AKMD00000000 5.2 5.336
NZ_ANLX00000000 31 5.373

19 396 NZ_AKKY00000000 3.5 5.438
NZ_AKMLO00000000 36.8 5.409
NZ_AKLQ00000000 4.3 5.525
NZ_AKM]00000000 2.2 5.403
NZ_AKMF00000000 1.5 5.319
NZ_AMTY00000000 1.2 5.477
NZ_AMTV00000000 1.3 5.430
NZ_AMURO00000000 14.2 5.376
NZ_ABHMO00000000 3.9 5.618

20 495 NZ_ABHP00000000 40.8 5.656
NZ_AMTNO00000000 6.9 5.400
NZ_AOENO00000000 1.8 5.202
NZ_AKLS00000000 14.6 5.396
NZ_AMTJ]00000000 5.4 5.434
NZ_AIFW00000000 15.5 5.324
NZ_AFAD00000000 27.3 4.744
NZ_AIFX00000000 14.1 5.118
NZ_AIFZ00000000 21.1 5.077

21 675 NZ_AHAWO00000000 25.6 5.107
NZ_AMTHO00000000 4.3 4.729

NC_012759 2.0 4.578

NZ_AHAX00000000 10.6 4.956
NZ_AIFV00000000 13.3 5.390

Supporting Table 7. Parameters of three simulated datasets, each containing 9 E. coli strains.

Reads (@Dataset Strains (b)Strain Ref. Strain
Dataset

(Mbp) (Accessions) coverage (Mbp)
GCA_001424085.1 15.3 6.585
GCA_001424505.1 51 6.561
22 832 GCA_001425605.1 1.9 6.368
GCA_001424965.1 26.2 6.584
GCA_001424985.1 3.0 5.351




GCA_001426665.1 8.7 6.311
GCA_001428925.1 16.5 5.351
GCA_001426565.1 7.4 5.266
GCA_001426685.1 17.5 6.043
GCA_001429075.1 33.3 6.319

Supporting Table 8. Parameters of a simulated dataset containing 10 Rhizobia strains.
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ABSTRACT

Background. Metagenomics is an approach for characterizing environmental microbial
communities in situ, it allows their functional and taxonomic characterization and to
recover sequences from uncultured taxa. This is often achieved by a combination of
sequence assembly and binning, where sequences are grouped into ‘bins’ representing
taxa of the underlying microbial community. Assignment to low-ranking taxonomic
bins is an important challenge for binning methods as is scalability to Gb-sized datasets
generated with deep sequencing techniques. One of the best available methods for
species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS
package, where a human expert decides on the taxa to incorporate in the model and
identifies ‘training’ sequences based on marker genes directly from the sample. Due
to the manual effort involved, this approach does not scale to multiple metagenome
samples and requires substantial expertise, which researchers who are new to the area
do not have.

Results. We have developed PhyloPythiaS+, a successor to our PhyloPythia(S) software.
The new (+) component performs the work previously done by the human expert.
PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the
simultaneous counting of 4—6-mers used for taxonomic binning 100-fold and reduced
the overall execution time of the software by a factor of three. Our software allows
to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species
or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+
was compared to MEGAN, taxator-tk, Kraken and the generic PhyloPythiaS model. The
results showed that PhyloPythiaS+ performs especially well for samples originating from
novel environments in comparison to the other methods.

Availability. PhyloPythiaS+ in a virtual machine is available for installation under
Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.

Subjects Bioinformatics, Computational Biology, Genomics, Taxonomy
Keywords Metagenomics, Taxonomic classification, Machine learning, Bioinformatics
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INTRODUCTION

Metagenomics is the functional or sequence-based analysis of microbial DNA isolated
directly from a microbial community of interest (Riesenfeld, Schloss & Handelsman, 2004;
Kunin et al., 2008). As the cultivation conditions for most microorganisms are unknown
or too complex to reproduce in the laboratory (Hugenholtz, 2002), random shotgun
and amplicon-sequencing based metagenome studies have led to substantial advances

in our understanding of the structure and functions of microbial communities within
the last decade (Kalyuzhnaya et al., 2008; Turnbaugh et al., 2010; Hess et al., 2011; Pope

et al., 2011b; Zarowiecki, 20125 Schloissnig et al., 2013; Blaser et al., 2013). The taxonomic
classification or ‘binning’ of metagenome samples is often performed after sequence
assembly (Peng et al., 2011; Laserson, Jojic & Koller, 2011; Boisvert et al., 2012; Namiki et al.,
20125 Pell et al., 2012). This is a computationally demanding task, which for metagenome
samples results in a mixture of sequence fragments of varying lengths, originating from the
different microbial community members. A taxonomic binning defines ‘bins’ of sequence
fragments that were assigned the same taxonomic identifier, representing draft genomes or
pan-genomes of the different microbial community members. Taxonomic binning methods
use sequence homology, sequence composition and similarities of contigs in read coverage
or gene counts, see Drige ¢ McHardy (2012) for a recent review. The subsequent analysis of
these bins allows characterizing the functional and metabolic potential for individual taxa.
For instance, in a collaboration with Mark Morrison’s group, a functional and metabolic
analysis of a draft genome recovered by taxonomic binning from the gut of the Australian
Tammar Wallaby metagenome led to the isolation and subsequent characterization of a
new and previously uncultivated bacterium (Pope et al., 2011b). Different from binning
methods, taxonomic profiling tools (Wu ¢ Eisen, 2008; Stark et al., 2009; Liu et al., 2011;
Meinicke, Asshauer & Lingner, 2011; Wu & Scott, 2012; Segata et al., 2012; Sunagawa et al.,
20135 Silva et al., 2013) return a taxonomic profile for a metagenome sample to represent
the taxonomic composition of the underlying sampled community.

Composition-based binning methods assign metagenome sequences based on their k-
mer signature, which is derived from the counts of short oligomers (k-mers) for a sequence
(Karlin & Burge, 1995; Deschavanne ef al., 1999). Our previously developed PhyloPythia(S)
(PPS) (McHardy et al., 2007; Patil, Roune & McHardy, 2011) software uses this information
in combination with a structured output support vector machine framework for taxonomic
classification. Composition-based signatures are global genomic properties, which can
be estimated from any sufficiently sized sequence sample for a taxon; e.g., for PP(S),
100 kb of reference sequences for a taxon are sufficient for accurate assignment, also
for low ranking taxa. Thus, no complete genome sequences of related organisms are
required for assignment, which is often a limiting factor for the homology-based methods.
Composition-based methods are very fast, with classification runtimes increasing linearly
with the size of the sequence sample, whereas the runtime of alignment-based methods
is proportional to the product of the reference collection size and the sequence sample
size. As the current sequencing technologies produce Gb-sized metagenome samples
(Metzker, 20105 Loman et al., 2012), scalability and computational efficiency are becoming
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Figure 1 Illustration of the PhyloPythiaS+ workflow. The recommended use of PPS is that a human
expert specifies the taxa to incorporate in a composition-based taxonomic metagenome classifier and
identifies the relevant ‘training’ sequences based on marker genes directly from the sample. The inclusion
of contigs originating directly from members of the microbial community, as ‘training’ sequences, is very
important for achieving good classification accuracy, as many members of microbial communities are
underrepresented in public sequence collections. In PPS+, the step of deciding which taxa to include in
the model and defining suitable ‘training’ sequences was automated in the + component, based on marker
genes, genome and draft genome sequence collections. The data generated by the + component are then
used to build the PPS models, that are subsequently used to generate the taxonomic binning of the entire
metagenome sequence sample.

increasingly important for computational metagenomic methods. Therefore, we have
developed a fully automated taxonomic binning software, that can rapidly process large
metagenome samples. PhyloPythiaS+ (PPS+) is the successor to our previously described
PPS software and improves on it in several important ways. We provide an automated
marker-gene based framework for design and creation of sample-derived structured output
support vector machine models, which allows the generation of accurate sample-derived
models without user intervention or expert knowledge. PPS+ is the first tool that combines
taxonomic profiling and subsequent taxonomic composition based binning of the whole
metagenome sample, which is particularly valuable for the draft genome reconstruction of
taxa from deep-branching phyla. By implementation of a faster k-mer counting algorithm,
we substantially increased its throughput to 0.5 Gb/h. PPS+ is distributed in a virtual
machine which facilitates installation under all common operating systems and runs on

inexpensive hardware available to most users.
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METHODS

The classification of a shotgun metagenome sequence sample with PPS+ proceeds in
two phases (Fig. 1): In the first phase, the newly developed (+) component identifies
sample-derived training sequences and the taxa to be modeled by searching for copies
of 34 ubiquitous taxonomic marker genes in the metagenome sample. The marker gene
analysis results in taxonomic assignments for a small fraction of the sample. Based on the
taxa abundance profile derived from these assignments and the sequences available in the
reference sequence collections, our method determines which taxa will be modeled and
which are the sample-derived data that will be used for training PPS.

The second phase is the composition-based taxonomic assignment of the entire
metagenome sample using PPS models trained using the data generated in the first
phase. PPS models can be reused to classify further metagenome samples, e.g., additional
samples from the same community.

PhyloPythiaS
Assignment with PPS proceeds in two steps: In the training step, an ensemble of structured
output Support Vector Machines (SVMs) (Joachims, Finley & Yu, 2009) for the specified
part of the NCBI taxonomy, defined by the taxa being modeled, are trained using the
sample-derived training sequences and additional data for these taxa from a customized
reference collection of sequenced genomes and draft genomes (Suplemental Information 1,
Section 3.3). The list of modeled taxa and sample-derived data are generated with the
+ component of PPS+. The list of taxa restricts the taxonomic output space that is
modeled, i.e., a sequence from a metagenome sample will be assigned to a leaf node taxon
or a corresponding higher-ranking taxon of the learned taxonomy.

In the prediction step, the PPS model ensemble identifies the taxon which best matches
a query sequence in terms of its k-mer profile and assigns to it the respective taxonomic
identifier. By default, sequences of 1 kb or more are classified (PPS+ configuration
parameter: minSeqLen).

The + component of PhyloPythiaS+

The input for the + component of PhyloPythiaS+ is the metagenome sample. This step

returns a list of clades and sample-derived data for the subsequent PPS training. The

+ component performs the following steps:

(1) Marker gene identification: DNA sequences from the sample are translated in all six
reading frames (i.e., also considering reverse complement sequences) to protein
sequences. In both the translated and untranslated sequences, regions with similarity to
the DNA or protein Hidden Markov model (HMM) profiles of 34 taxonomically
informative marker genes (Wu & Eisen, 2008; Stark et al., 2009; Liu et al., 2011;

Wu & Scott, 2012; Segata et al., 2012; Sunagawa et al., 2013) are identified (Supple-
mental Information 1, Section 3.3 and 6.1). The corresponding DNA marker gene
sequences from these regions are used for further analysis.
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(2)

(3)

(4)

Taxonomic marker gene assignment: The marker gene sequences are assigned a
taxonomic identifier using the composition-based Naive Bayes classifier (Schloss et
al., 2009) (Supplemental Information 1, Section 6.2).

Taxonomic sequence assignment: If a sequence contains multiple marker genes, multiple
taxonomic identifiers are identified in Step 2. Then the highest bootstrap confidence
score (hcs) returned by the Naive Bayes classifier (NBC) for one of the markers

on the fragment is identified. We use all marker gene assignments with confidence
scores larger than hcs * (1 — candidatePlTopPercentThreshold). The default setting for
the configuration parameter candidatePITopPercentThreshold is 0.1. From the set of
taxonomic identifiers, the lowest taxon ¢ is identified for which all other assignments
are either to the same taxon t or defined at higher-ranking parental taxa of ¢. Taxon
t is consequently used for the overall fragment assignment. The confidence score for
the fragment is set to the smallest confidence score for the set of retained marker gene
assignments.

(Optional: Taxonomic scaffold assignment): Scaffolding information (i.e., the mapping
of contigs to scaffolds) can be used to obtain more training data for the relevant taxa.
Assembled contigs can be grouped into scaffolds based on the paired-end information
after the assembly. As all contigs of a particular scaffold originate from the same strain,
all contigs of the respective scaffold should have the same taxonomic label. Here, we
make use of this scaffolding information, such that unassigned contigs of a particular
scaffold can be assigned based on the assigned contigs of the respective scaffold. In the
first step, the taxonomic identifiers of all assigned contigs for a scaffold are corrected as
follows: Let us consider that n taxonomically assigned contigs of a scaffold are placed
along a common path from the root r down to a low-ranking clade Ic in the reference
taxonomy. The unassigned contigs of a scaffold are not among these #n contigs. To
obtain a consistent assignment for all the contigs of a scaffold and to correct for
‘outlier’ contig assignments to low ranking taxa, contigs are reassigned according to
the following: All # assigned contigs of the respective scaffold are reassigned to the
lowest taxon ¢, which lies on the path from r to Ic, where ¢ is chosen such that at least
(agThreshold * n) of the contigs are assigned on the path from ¢ to Ic. In the second step,
unassigned contigs are assigned to the same taxon ¢, if a sufficient number of contigs
have already been assigned. Let us denote the sum of all contig lengths for a scaffold
as | and the sum of all assigned contig lengths of the respective scaffold as al. If al/l >
assignedPartThreshold, then the unassigned contigs of a scaffold are also assigned to
clade ¢ (see the configuration parameters: placeContigsFromTheSameScaffold = True,
agThreshold = 0.3, assignedPartThreshold = 0.5).

(5) Assignment path truncation: Contigs assigned to a lower-ranking taxon than the

specified lowest rank are reassigned to the parental taxon of this lowest rank
(configuration parameter: rankIdCut).

(6) Taxa selection for model specification: Any taxon for which at least 100 kb of sample-

derived data have been identified can be modeled. Furthermore, species can be modeled
if at least 300 kb of reference sequences are available in the reference sequence database,
and higher-ranking taxa can be modeled if data for at least three distinct species with

Gregor et al. (2016), PeerJ, DOI 10.7717/peerj.1603 5/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.1603/supp-1
http://dx.doi.org/10.7717/peerj.1603

Peer

this requirement (>300 kb per species) are available. Contigs assigned to taxa for
which there are fewer data are subsequently assigned to higher taxonomic ranks for
which sufficient data are available to allow their use as sample-derived training data
(configuration parameters: minGenomesWgs = 3 or 1, minBpPerSpecies = 300,000,
minBpToModel = 100,000).

(7) Abundant taxa selection: To reduce the number of taxa to the most relevant ones, the
least abundant taxon is removed iteratively. This is defined as the taxon to which the
minimum number of bp is assigned. Sequences assigned to this taxon are reassigned
to the closest defined taxon at a parental rank. The algorithm ends when the number
of leaf taxa is less than or equal to the maximum number of taxa to be modeled
(configuration parameter: maxLeafClades = 50; this can be set realistically up to 800).

Balancing training data: The part of the taxonomy that will be modeled with PPS is defined

by the taxa identified in the previous step. It has leaf nodes at different ranks above the

specified rank cut-off, and internal nodes. Only leaf node taxa and sample-derived training
data assigned to leaf node taxa in the preceding steps are specified as input for PPS training.

To balance the training data across clades, a maximum of 400 kb of sample-derived training

data are selected for each leaf node taxon (configuration parameter: maxSSDfileSize). For

this selection, contigs are used in order of decreasing confidence values and then in order
of decreasing length. The balancing of training data can be switched off by setting the
configuration parameter (maxSSDfileSize) to a large number.

Simultaneous counting of multiple short k-mers

We provide PPS+ with a new custom k-mer counting algorithm that is based on the Rabin
Karp string matching algorithm (Karp ¢ Rabin, 1987). The algorithm is highly optimized
to count occurrences of short DNA sequences. It is very fast, as it is memory efficient,
because it does not need any large helper data structure similar to suffix trees. It explores
the locality of reference, uses very fast bit shift operations and is efficiently implemented
in C. Its complexity is O(n), where # is the length of the DNA sequence that is being
considered. It enumerates k-mers up to hundred times faster than when using suffix trees
that were employed in PPS. This made PPS+ overall up to 3x faster than PPS. Because the
algorithm allows to simultaneously enumerate k-mers of consecutive lengths in one run,
it is at least 2—-7x faster than the state-of-the-art software Jellyfish (Marcais & Kingsford,
2011) and 11x faster than KAnalyze (Audano ¢ Vannberg, 2014) in the scenario used in
PPS+, i.e., when calculating k-mers of length 4, 5, and 6 for every sequence (Table S1,
Supplemental Information 1, Section 2). We also found that the state-of-the-art k-mer
counting methods KMC 2 (Deorowicz et al., 2015) and Turtle (Roy, Bhattacharya & Schliep,
2014) are not applicable to our problem setting, as KMC 2 can count only k-mers > 10
and Turtle is prohibitively slow for sequences > 16 kb.

Algorithm description

Let us assume that we are given an array a, which represents a DNA sequence of length n
where all letters are encoded as numbers 0, 1, 2, 3 (where A ~0, T ~1, G ~2, C~3) and
let ag, ...,a,—1 denote the respective entries. We would like to count the occurrences of all
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k-mers of length k and store the counts in an array ¢ of length 4%, which is initialized by
zeros. Each k-mer maps to a unique index in the array c. The index of the first k-mer in
our sequence is calculated according to:

indexy = ag s 4K1 +a; w424 +ag_p k4 fap_q x40
The index of the (i+ 1)th k-mer of the sequence is computed from the (7)th index as:
index;y; = (index; —a; * gk=1y aipi %40,

When an index is identified, the corresponding k-mer count at this index position in array
¢ is incremented by one. For instance, the DNA sequence ATGCATG is encoded in array a
as [0, 1, 2, 3, 0, 1, 2]. For k =2, we would add two counts for the k-mer AT in array ¢ at
the index position 04+ 1 = 1, two counts for TG at the index position 14+ 2 =6, one
count for GC at the index position 2x4+ 3 =11 and one count for CA at index position
3%4+0=12. The multiplication operation X*4™ can be computed using the bit shift
operation X <« 2 xm, which is usually much faster than multiplication.

Counting k-mers of different lengths at once

If index; is the index of the ith k-mer of length k, the index of the ith (k —j)-mer (of length
k —j) can be simultaneously computed using the bit shift operation as index; > (2x7)
(for j € [1..k —1]) and the corresponding counter at the computed index of a respective
counter array of length 457 is incremented. The end of a DNA sequence can be handled
by adding several non-DNA characters to its end.

RESULTS

We evaluated PPS+ by comparing it to homology-based methods (MEGAN4, taxator-tk)
(Huson et al., 2011; Drige, Gregor ¢ McHardy, 2014), the fast taxonomic binning program
Kraken (Wood & Salzberg, 2014), the composition-based method PhyloPythia trained
under expert guidance (a recommended but time-consuming procedure) and to a generic
PPS model using default settings (Supplemental Information 1, Section 3.5-3.8). For a
performance comparison of PPS to methods with prohibitive runtimes for large datasets,
such as PhymmBL (Brady ¢» Salzberg, 2011) and CARMA3 (Gerlach & Stoye, 2011), and
the web-based tool NBC (Rosen, Reichenberger ¢ Rosenfeld, 2011) see Patil et al. (2011);
Patil, Roune & McHardy (2011); Drige, Gregor ¢» McHardy (2014), as PPS has already been
compared to these methods with favorable outcomes. For a comparison with ‘taxonomy-
free’ binning software CLARK (Ounit et al., 2015) see (Supplemental Information 1,
Section 7). We did not compare PPS+ to profiling tools such as (Liu et al., 2011), as PPS+ is
a binning method that assigns a taxonomic label to each input sequence. As benchmark
datasets, we created two simulated datasets, one with a uniform (137 Mb) and one with a
log-normal (66 Mb) distribution of 47 community members (Supplemental Information 1,
Section 3.1, Datasets S1 and 52). We also used two real datasets, a metagenome sample from
the guts of two obese human twins (255 Mb) (Turnbaugh et al., 2010) and a cow rumen
metagenome sample (319 Mb) from Hess et al. (2011) (Supplemental Information 1,
Section 3.2, Datasets S3—S6) for evaluation.
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Table 1 Test scenarios. Test scenarios where data was removed (masked) up to the specified rank for the
corresponding taxa represented in the simulated metagenome datasets from the reference collections. RS
denotes the reference collection of complete or draft genomes; MG indicates the reference collection of
marker genes (Supplemental Information 1, Section 3.3).

Test scenario Rank masked from RS Rank masked from MG
1. None None

2. Strain None

3. Species None

4. Genus None

5. Strain Strain

6. Species Strain

7. Genus Strain

8. Species Species

9. Genus Genus

Benchmarks with simulated datasets

We constructed the simulated datasets by assembling simulated reads with an empirical
error profile. The details on how the simulated reads were generated and assembled can
be found in (Supplemental Information 1, Section 3.1). For the evaluation, precision
and recall were calculated (Supplemental Information 1, Section 3.9). Furthermore, these
measures were also calculated with a ‘correction,” to account for the case where the
sequences of one taxon were consistently assigned to a different taxon, as for draft genome
reconstruction, it is more important that the sequences are assigned consistently than that
the taxonomic identifier is correct. To assess the performance of the different methods
in assigning the simulated sequence fragments without related reference genomes being
available, ‘new strain,” ‘new species’ and ‘new genus’ scenarios were simulated by removing
all sequence data from the taxa of the simulated test dataset at each rank from the reference
data. Furthermore, for PPS+, we distinguished whether the reference data were excluded
(masked) from the reference sequence (RS) collection or also from the marker gene (MG)
collection, since the MG collection included sequences for 15 times more distinct species
than the RS collection. There were therefore two different situations to consider (Table 1).

PPS+ showed a substantially improved precision and recall over the PPS generic model,
which demonstrated the impact of the improved selection of training data and modeled
taxa (Figs. 2A and 2C, SIA-S1D and S3A-53D). PPS+ almost always had higher precision
and recall than MEGAN4 and Kraken, except when almost all test data were included
in the reference sequences (Figs. 2A and 2C, STA-S1C, S1E, S3A-S3C, S3E, S14A). This
was even more pronounced when comparing bin quality using the corrected measures
(Figs. 2B and 2D, S2A— S2C, S2E, S4A— S4C, S4E, S14A and S14D). When comparing
PPS+ to taxator-tk, PPS+ had substantially improved recall, particularly for lower ranks
(Figs. 2A and 2C, SIA-S1C, S1F, S3A-S3C, S3F); while taxator-tk outperformed all other
methods in terms of precision (Figs. 2A and 2C, SIA-S1F and S3A-S3F). Both methods

were similarly precise when analyzing bin recovery, independent of assigning the taxonomic
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Figure 2 Performance comparisons with simulated datasets. (A) and (C) show the fraction of
correct, incorrect and unassigned bp for simulated datasets with uniform and log-normally distributed
species abundance for PhyloPythiaS+, the generic PhyloPythiaS model, MEGAN4, Kraken and taxator-tk
for assignments at the species, genus and family ranks. Results were averaged over all test ‘scenarios’
(Table 1), where sequences of the same strain, species or genus from the simulated metagenomes were
removed from the genome, draft genome and marker gene reference sequence collections (Figs. S1, S3,
S14A and S14C). (B) and (D) show the portion of consistently (correct), inconsistently (incorrect) and
unbinned (unassigned) bp without consideration of the taxonomic identifiers (Figs. S2, 54, S14B and
S14D, Supplemental Information 1, Section 3.9.2). The exact values and the corresponding precision,
recall and f;-score are contained in (Tables S2-S5) for (A-D), respectively.

identifiers to the corrected measures (Figs. 2B and 2D, S2A— S2C, S2F, S4A— S4C and S4F).
As a strong point of PPS+ , we also observed that it more rarely predicted wrong taxa that
were not a part of the sample than the other methods (Fig. S5). For example, for the genus
rank in Scenarios 3 and 8, PPS+ assigned sequences to only 2-5 false positive taxa, while
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taxator-tk identified 20, MEGAN4 37 and PPS 59 false ones. If PPS+ identified wrong taxa,
these were usually very closely related to the true taxa.

Benchmarks with real datasets
Comparison of scaffold and contig assignments

For each taxonomic rank, the percentage and the total number of kb (% agreement and
kb agreement) that were assigned the same taxonomic identifier were calculated for the
real datasets, based on the assignments of scaffold and contig sequences (Supplemental
Information 1, Section 3.10.1). For the chunked cow rumen dataset (Supplemental
Information 1, Section 3.2.2), taxator-tk had the highest assignment consistency (Table 2);
however, it assigned much fewer data than the other methods at lower taxonomic ranks.
A detailed comparison is given in heat maps (Figs. 56-513). PPS+ performed substantially
better by both measures than the generic PPS model in almost all cases. PPS+ was also
more consistent than MEGAN4 for all lower ranks and assigned many more sequences
than MEGAN4 overall. For instance, at the genus rank, the scores were 84.3 and 56

‘% agreement’, as well as 33,724 and 13,726 ‘kb agreement’ for PPS+ and MEGAN4,
respectively. The overall low numbers for Kraken suggests that it is rather not applicable
to samples containing novel taxa. Also, the low number of consistently assigned bp by
MEGAN4 and taxator-tk to lower taxonomic ranks reflects the availability of few related
reference genome sequences for the cow rumen metagenome sample, which is not an issue
for a composition-based method PPS+.

For the human gut microbiome, extensive sequencing of isolate cultures has resulted
in a large collection of several hundred reference genome sequences. Accordingly, for the
human gut dataset, taxator-tk, MEGAN4 and Kraken assigned many more sequences than
they did for the cow rumen dataset (Tables 2 and 3). For Kraken and MEGAN4, this was
most pronounced for the genus and species ranks, even though this was also caused by
counting scaffolds containing only one contig being consistent to itself. The most consistent
method was again taxator-tk, but it also assigned fewer sequences than the other methods.
PPS+ performed better than the generic PPS model in all cases in terms of both measures
(Table 3). PPS+ and MEGAN4 showed comparable consistency, with PPS+ being more
consistent for the class, order and species ranks, and MEGAN4 being more consistent
for the superkingdom, family and genus ranks. However, PPS+ consistently assigned
(kb agreement) more sequences than MEGAN4, except for the genus and species ranks.
Thus, in the case of larger collections of related isolate genome sequences being available,
composition- and homology-based methods perform similarly well.

The taxonomic scaffold-contig consistency of the assignments was additionally
evaluated (Table S6 and Table S7) using a set of measures (Supplemental Information 1,
Section 3.10.2) that provide more detailed insights into assignment consistency
(Supplemental Information 1, Section 5.1) and support the conclusions in this section.

Comparison to an expert binning based on marker genes

A taxonomic binning generated by PhyloPythia (PP) with expert guidance for
sample-derived model construction (Turnbaugh et al., 2010) was compared to the
PPS+ assignments. Scaffolds that were unassigned by either method were not considered.
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Table 2 Comparison of contig and scaffold assignments of the chunked cow rumen dataset. Contigs

of the cow rumen dataset of at least 10 kb were divided into chunks of 2 kb for evaluation of assignment
consistency (Supplemental Information 1, Section 3.2.2). The contigs and scaffolds of the chunked cow
rumen dataset were assigned using PPS+ , the generic PPS model, MEGAN4, taxator-tk and Kraken. For
each method, up to two taxonomic identifiers were assigned to each contig at each rank; i.e., one identifier
came from the contig assignment and the second identifier came from the corresponding scaffold assign-
ment. Contigs with less than two taxonomic assignments at each rank were not considered in this com-
parison. The measure ‘% agreement’ was the percentage of contigs with the same two taxonomic identi-
fiers at a particular rank, whereas ‘kb agreement’ was the total number of kb of contigs with the same taxo-
nomic identifiers (Supplemental Information 1, Section 3.10.1). Bold numbers correspond to the best val-

ues, whereas italic numbers indicate the worst values.

Method Rank % agreement kb agreement
PPS+ Phylum 73.9 153,774
PPS Phylum 67.8 75,538
MEGAN4 Phylum 74.2 43,380
taxator-tk Phylum 98.2 59,702
Kraken Phylum 67.0 33,558
PPS+ Class 86.0 99,596
PPS Class 58.5 43,931
MEGAN4 Class 68.5 33,780
taxator-tk Class 97.7 23,190
Kraken Class 58.5 27,536
PPS+ Order 88.4 98,616
PPS Order 63.8 41,349
MEGAN4 Order 68.9 32,650
taxator-tk Order 98.0 22,368
Kraken Order 57.0 26,410
PPS+ Family 80.0 46,343
PPS Family 55.8 19,158
MEGAN4 Family 55.0 15,790
taxator-tk Family 98.9 7,276
Kraken Family 45.2 18,370
PPS+ Genus 84.3 33,724
PPS Genus 63.2 12,938
MEGAN4 Genus 56.0 13,726
taxator-tk Genus 99.1 6,042
Kraken Genus 43.7 16,912
PPS+ Species 91.6 9,821
PPS Species N/A N/A
MEGAN4 Species 54.6 8,502
taxator-tk Species 100.0 292
Kraken Species 38.1 14,186
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Table 3 Comparison of contig and scaffold assignments of the human gut metagenome dataset. Contig
and scaffold sequences of the human gut metagenome dataset were assigned using PPS+, the generic PPS
model, MEGAN4, taxator-tk and Kraken. The measures ‘% agreement’ and ‘kb agreement’ were used to
compare individual methods (Supplemental Information 1, Section 3.10.1). Bold numbers correspond to
the best values, whereas italic numbers indicate the worst values.

Method Rank % agreement kb agreement
PPS+ Phylum 99.0 140,283
PPS Phylum 97.0 124,884
MEGAN4 Phylum 99.0 127,658
taxator-tk Phylum 100.0 104,475
Kraken Phylum 97.6 123,428
PPS+ Class 99.5 134,707
PPS Class 96.9 118,068
MEGAN4 Class 98.5 122,131
taxator-tk Class 100.0 84,228
Kraken Class 96.3 121,071
PPS+ Order 99.5 134,127
PPS Order 97.3 117,185
MEGAN4 Order 98.6 121,811
taxator-tk Order 100.0 83,337
Kraken Order 96.3 121,003
PPS+ Family 94.0 110,664
PPS Family 92.6 97,066
MEGAN4 Family 96.2 98,582
taxator-tk Family 99.8 43,751
Kraken Family 89.4 109,151
PPS+ Genus 95.3 82,992
PPS Genus 91.9 58,883
MEGAN4 Genus 96.1 86,495
taxator-tk Genus 99.9 34,667
Kraken Genus 88.3 97,097
PPS+ Species 94.7 43,329
PPS Species N/A N/A
MEGAN4 Species 93.5 64,554
taxator-tk Species 99.7 10,314
Kraken Species 81.3 94,591

The PP expert binning and the PPS+ binning agreed well, down to the order rank (Table 4).
For the family and genus ranks, the overlap of both methods dropped to 69.5-74.1%, which
may partly be due to changes in the NCBI taxonomy since the generation of the expert
binning in 2009. Both PPS+ and PP assignments were highly consistent with the MG
assignments made by the + component of PPS+ alone, though only a small number

of scaffolds with marker genes could be compared (7-23% for different ranks). While
PPS+ had a larger overlap (‘% agreement’) with the MG assignments at the genus rank,
PP had a larger overlap (‘% agreement’) with the MG assignments at the family rank.
Moreover, we compared the number of taxonomic assignments for individual methods
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Table 4 Comparison to an expert binning based on marker genes. Comparison of the taxonomic as-
signments of PPS+ versus PhyloPythia (PP), with expert guidance for sample-derived model construction
(Turnbaugh et al., 2010) for the human gut scaffolds (161, 343 kb) based on marker genes (MG), using
the + component of PPS+. The measure ‘% agreement’ represents the percentage of bp assigned by both
methods to the same taxonomic identifiers at a given rank, whereas kb agreement’ is the corresponding
number of kb assigned by both methods to the same taxonomic identifier. Scaffolds assigned by only one
method are not considered in this comparison. Bold numbers correspond to the best values, whereas italic
numbers indicate the worst values.

Comparison Rank % agreement kb agreement
PP vs PPS+ Superkingdom 99.6 160,617
MG vs PP Superkingdom 99.7 38,314
MG vs PPS+ Superkingdom 99.5 38,220
PP vs PPS+ Phylum 95.4 149,213
MG vs PP Phylum 96.9 17,771
MG vs PPS+ Phylum 98.7 18,065
PP ys PPS+ Class 97.0 145,887
MG vs PP Class 98.1 17,599
MG vs PPS+ Class 100.0 17,869
PP vs PPS+ Order 98.0 145,373
MG vs PP Order 98.3 17,494
MG vs PPS+ Order 100.0 17,764
PP vs PPS+ Family 69.5 95,779
MG vs PP Family 90.7 13,047
MG vs PPS+ Family 83.7 12,013
PP vs PPS+ Genus 74.1 78,686
MG vs PP Genus 91.6 12,235
MG vs PPS+ Genus 94.9 11,479

(Fig. 3): PPS+ assigned sequences to low-ranking taxa down to the species level, in
agreement with the MG assignments, while PP often assigned the respective sequences only
to the parental taxa. This demonstrates that PPS+ can generate a high quality taxonomic
binning in a fully automated manner.

Throughput comparison

The throughput of the individual methods for contig assignments of the human gut sample
was calculated (Supplemental Information 1, Section 3.3, 3.4 and 5.3). The throughput of
Kraken substantially varied between 38.4 Mb/h and 4.2 Gb/h in our experiments, depending
on whether its large (~200 GB) reference database was already loaded in the main memory
or not, therefore Kraken is the fastest method in high performance environments. When
only the prediction step of PPS+ was considered, PPS+ assigned up to 0.5 Gb/h and was
more than 7 times faster than the homology-based methods (Fig. 4). This is relevant
when PPS models are reused for the classification of another sample. Moreover, unlike the
homology-based tools and Kraken, PPS+ can be run on a standard laptop, as it requires
much less main memory (see Supplemental Information 1, Section 3.4 for the hardware
configurations used).
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Figure 3 Comparison to expert binning based on marker genes. The amount of assigned bp by
PhyloPythia (PP), PhyloPythiaS+ (PPS+) and taxonomically informative marker genes directly (MG)

to each taxon are indicated by the pie chart sizes on a log-scale for the human gut metagenome sample
(Turnbaugh et al., 20105 Patil, Roune ¢ McHardy, 2011). PhyloPythiaS+ automatically determined the

taxa to model from the sample. For the expert-trained PhyloPythia, the taxa to model were specified by an
expert, and were included in the model if they were covered by sufficient reference sequence data retrieved
separately from the sample and from sequenced human gut isolates. PhyloPythiaS+ assigned sequences

to low-ranking taxa down to the species level, in agreement with the marker gene assignments, while
PhyloPythia often assigned these sequences to the parental taxa. For the MG assignments, a negligible
amount—only two contigs (3.6 kb) of two scaffolds (231 kb)—were used as sample-derived training data

for PPS+; as mainly sample contigs (2.5 Mb) that were not part of scaffolds were used as sample-derived
data to train PPS.

CONCLUSIONS

We describe a taxonomic assignment program that produces accurate assignments with a
precision of 80% or more also for low-ranking taxa from metagenome samples. PPS+ is
a fully automated successor of the PhyloPythiaS software. It automatically determines
the most relevant taxa to be modeled and suitable training sequences directly from
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Figure 4 Empirical comparison of execution times. The throughput was measured in Mb and the num-
ber of sequences classified within 1 h with one execution thread, using all assembled contigs of the human
gut metagenome dataset on a server computer with an AMD Opteron 6386 SE 2.8 GHz processor and 512
GB of RAM. Default settings were used for all methods (Supplemental Information 1, Section 3.5-3.7).
Both MEGAN4 and taxator-tk were run using BLAST. For MEGAN4, only the runtime of BLAST was con-
sidered, as the runtime of the subsequent algorithm was negligible. For PhyloPythiaS and PhyloPythiaS+,
the throughput was calculated for the prediction step and both steps (training and prediction). The former
is relevant when using previously generated models for the classification of multiple samples. The execu-
tion time shown for PhyloPythia$ is approximately three times better than that for the original release, as
we incorporated the new k-mer counting algorithm. PhyloPythiaS+ was the only method that could also
be executed on a standard laptop (NB) with an Intel i5 M520 2.4 GHz processor, 4 GB of RAM and 150
GB disk space.

the input sample, which are then used to generate a sample-specific structured output
SVM taxonomic classifier for the taxonomic binning of a sample. This enables its use
for researchers without experience in the field or time to search for suitable training
sequences for the manual construction of well-matching taxonomic classifier to a particular
metagenome sequence sample.

PPS+ is best suited for the analysis of large NGS metagenome samples with assembled
contigs (> 1kb) carrying marker genes or datasets including the high quality longer
PacBio (Chin et al., 2013) consensus reads. Contrary to some recent methods for the
taxonomic profiling or binning of multiple similar samples (Sunagawa et al., 2013),
PPS+ can be also applied to individual samples. PPS+ requires only 100 kb of sample-
derived data to model a bin, while homology-based methods require large related reference
genome or draft genome sequence collections for substantial assignments to low-ranking
taxa. Our experiments on both real and simulated metagenome samples showed that
PPS+ automatically reconstructed many low-ranking bins from metagenome samples,
such as for genera and species, representing draft genomes or pan-genomes of different
community members.

The novel implementation of the k-mer counting algorithm accelerated k-mer counting
100-fold in comparison to the original PPS software and made PPS+ overall up to three
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times faster. The method performed favorably in comparison to all state-of-the-art k-mer
counting software for the simultaneous enumeration of 4—6-mers, commonly used for
composition-based binning.

PPS models can be reused when classifying multiple samples from the same or similar
environments. When comparing assignment with PPS+ to MEGAN4 and taxator-tk,
PPS+ showed a competitive processing time, allowing to process up to 0.5 Gb of sequences
per hour with a given PPS model on a single core with much lower main memory
requirements, while MEGAN4 processed 0.065 Gb and taxator-tk 0.03 Gb (Fig. 4). The
fastest method in the comparison was Kraken with up to 4.2 Gb/h; however, we have
found that Kraken should be used only for well-studied environments, for which many
closely related (draft) genomes have been sequenced, as an alternative to alignment-based
methods, as its use for samples originating from novel environments is very limited
(Fig. 2).

In terms of assignment quality, we found that PPS+ often outperformed MEGAN4
and Kraken in terms of precision, recall and consistency. Taxator-tk performed best
in terms of precision and consistency, but assigned substantially fewer sequences to
low taxonomic ranks. PPS+ also excelled in determining the taxa that were part of the
simulated metagenome community. We found that the fully automated PPS+ binning can
be as good as an expert-guided binning with the original PhyloPythia implementation.
PPS+ also showed a substantially improved assignment performance compared to the
generic PPS model.

To conclude, the newly introduced self-training (4+) component and the faster k-mer
counting algorithm implemented in PPS+ allow users to generate high quality taxonomic
binnings of metagenome samples in a high-throughput fashion, without requiring
expensive hardware, manual intervention and expert knowledge. It should be helpful
to a wide range of users. An initial version of the software has been already employed for
the taxonomic binning of a metagenome sample from reindeer guts by Pope et al. (2011a)
and it is currently used in several other projects: for instance, a PPS+ binning of shotgun
metagenome samples indicated the likely metabolite flow and participating microbial
phylotypes for a biogas-producing microbial community tolerant of high ammonia levels
(Supplemental Information 2).

PPS+ is distributed with a large reference sequence collection (containing Bacterial and
Archaeal data) in a virtual machine, which makes it easy to install. This allows metagenome
sample analysis on a standard laptop under Windows, Unix or OS X systems.
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Minor Corrections: Under the section "Algorithm description”, the second equation
should read “indexi.1 = (index i — a; * 4k1) * 4 + aj. * 49”, instead of “index;.1 = (index; -

ai * 4k1) * ap * 407,

The reference “Patil KR, Roune L, McHardy AC. 2011. The PhyloPythiaS web server for
taxonomic assignment of metagenome sequences. PLoS ONE 7:e38581” should be “Patil
KR, Haider P, Pope PB, Turnbaugh PJ], Morrison M, Scheffer T, McHardy AC. 2011.
Taxonomic metagenome sequence assignment with structured output models. Nature
Methods, 8, 191-192.” The citation is used in the second paragraph of the Introduction
section, and in the Figure 3 legend, and should be cited in the manuscript as “Patil,

Haider & McHardy 2011”, instead of “Patil, Roune & McHardy, 2011".

In the section “Benchmarks with simulated datasets”, there are some incorrect figure
references: “PPS+ almost always had higher precision and recall than MEGAN4 and
Kraken, except when almost all test data were included in the reference sequences (Figs.
2A and 2C, S1A-S1C, S1E, S3A-S3(C, S3E, S14A). This was even more pronounced when
comparing bin quality using the corrected measures (Figs. 2B and 2D, S2A-S2C, S2E,
S4A-S4C, S4E, S14A and S14D)” should be “PPS+ almost always had higher precision
and recall than MEGAN4 and Kraken, except when almost all test data were included in
the reference sequences (Figs. 2A and 2C, S1A-S1C, S1E, S3A-S3C, S3E, S14A and S14C).
This was even more pronounced when comparing bin quality using the corrected

measures (Figs. 2B and 2D, S2A-S2C, S2E, S4A-S4C, S4E, S14B and S14D).”
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Supplemental Text S1

PhyloPythiaS+: A Self-Training Method for the Rapid Reconstruction of

Low-Ranking Taxonomic Bins from Metagenomes
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1 Extended abstract

Metagenomics is an approach for characterizing environmental microbial communities in situ,
it allows their functional and taxonomic characterization and to recover sequences from
uncultured taxa. A major aim is to reconstruct (partial) genomes for individual community
members from metagenomes. For communities of up to medium diversity (e.g. excluding
environments such as soil), this is often achieved by a combination of sequence assembly and
binning, where sequences are grouped into ‘bins’ representing taxa of the underlying
microbial community from which they originate. If sequences can only be binned to higher-
ranking taxa than strain or species, these bins offer less detailed insights into the underlying
microbial community. Therefore, assignment to low-ranking taxonomic bins is an important
challenge for binning methods as is scalability to Gb-sized datasets generated with deep
sequencing techniques. Due to the importance of a match of the training data to the test
dataset in machine learning for achieving high classification accuracy, one of the best
available methods for the recovery of species bins from an individual metagenome sample
(Patil et al., 2011; Pope et al., 2011) is the expert-trained PhyloPythiaS package, where a
human expert identifies the ‘training’ sequences directly from the sample using marker genes
and contig coverage information and based on data availability decides on the taxa to
incorporate into the composition-based taxonomic model. The sequences of a metagenome
sample are consequently assigned to these or higher ranking taxa by PhyloPythiaS. Because
of the manual effort involved, this approach does not scale to multiple metagenome samples
and requires substantial expertise, which researchers who are new to the area may not have.
Other methods for draft genome reconstruction use multiple related metagenome samples as
input (Albertsen et al., 2013; Imelfort et al., 2014) or are not distributed as a software package
(Iverson et al., 2012).

With these challenges in mind, we have developed PhyloPythiaS+, a successor to our
previously described method PhyloPythia(S) (McHardy et al., 2007; Patil et al., 2011). The
newly developed + component performs the work of the human expert. It screens the
metagenome sample for sequences carrying copies of one of 34 taxonomically informative
marker genes (Wu & Scott, 2012) (Section 3.3). Identified marker genes are taxonomically
classified using an extensive reference gene collection. The + component then decides which

taxa to incorporate into the composition-based taxonomic model based on the amount of
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available sequence data identified from the metagenome sample, genome and draft genome

reference sequence collections (Figure 1).

We evaluated PhyloPythiaS+ on metagenome datasets of assembled simulated reads with
[llumina GAII error profiles generated from a log-normal or uniform abundance distribution
over 47 strains, and two real metagenome datasets from human gut and cow rumen samples
(Tables 2-3, S6-S7, Sections 3). PhyloPythiaS+ had substantially higher overall precision
and recall than the generic PhyloPythiaS model, because of the better match of the
composition-based taxonomic model to the sequenced microbial community (Figs 2 and S1—
S4, Section 3.9). It performed similarly well to an expert-trained PhyloPythia model without
requiring manual effort (Figure 3, Table 4). Comparisons to sequence-similarity-based
methods such as the popular MEtaGenome ANalyser (MEGAN, version 4) (Huson et al.,
2011) and our own faxator-tk (Droge, Gregor & McHardy, 2014) software showed a
substantial increase in correct assignments to low taxonomic ranks for PhyloPythiaS+, while
maintaining acceptably low error rates (Figs 2 and S1-S5). The largest improvement in
comparison to the other methods was observed for taxa from deep-branching lineages, such as
from genera or families without sequenced genomes but with marker gene data for the strain
or species available (Fig. S1-S4, Table 1: Test Scenarios 2—4). This is currently the case for

39,201 species represented in our 16S reference gene collection.

PhyloPythiaS+ includes a new k-mer counting algorithm based on the Rabin Karp string
matching algorithm. The algorithm accelerated k-mer counting 100-fold and reduced the
overall execution time of the software by a factor of three in comparison to the original
PhyloPythiaS release (Figure 4). We found that 500 and 360 Mb/hour could be assigned by
PhyloPythiaS+ on a single CPU core of a standard compute server and a laptop, respectively.
Our software thus allows to analyze Gb-sized metagenomes with inexpensive hardware, and
to recover species or genera-level bins with low error rates in a fully automated fashion.
PhyloPythiaS+ 1is distributed in a virtual machine and is easy to install for all common

operating systems.
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2 The evaluation of the k-mer counting algorithms

The main advantage of our method is that we do not use additional helper data
structures such as suffix trees, since we work directly with arrays that represent DNA
sequences. The only larger data structure that is necessary is a one-dimensional array
that contains the counts of individual k-mers. The algorithm also processes one
sequence at a time and thus there is no need to store all the sequences in the main
memory, which makes the algorithm memory-efficient (e.g. less than one MB of the main
memory in the scenario used in PPS+). To compute the next index from a previous index,
we need to perform only two bit shift operations, one addition, one subtraction and one
read operation (of a;,x). This ensures complexity O(n), where n is the length of the DNA

sequence that is being considered.

Our k-mer counting algorithm was compared to Jellyfish (version 1.1.1), Jellyfish (version
2.2) (Marcais & Kingsford, 2011) and KAnalyze (version 0.9.7) (Audano & Vannberg,
2014) (Table S1). All programs were run for k-mers $k € [4, ..., 9].

Jellyfish (version 1.1.1) was run with default parameters as:

jellyfish count -m $k -c 3 -s 10000000 -t 1 --both-strands -o OUTPUT.txt INPUT.fasta

Jellyfish (version 2.2.) was run with the following parameters, as this yielded better
runtimes as the default parameters:

jellyfish count -m $k -c 16 -s 1000000 --both-strands -o OUTPUT.txt INPUT.fasta

KAnalyze (version 0.9.7) was run as:

count -k $k -d 1 -f fasta -r -o OUTPUT.txt INPUT.fasta

Our k-mer counting algorithm was run as:
fasta2kmers -i INPUT.fasta -f OUTPUT.txt -j $k -k $k
However, for the simultaneous counting of k-mers 4, 5, and 6, the program was run as:

fastaZkmers -i INPUT.fasta -f OUTPUT.txt -j 4 -k 6
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3 Benchmark settings

3.1 Simulated datasets details and generation

Our simulated mock community comprised 47 strains from 45 different species (37 different
genera) defined at all major taxonomic ranks, i.e. at superkingdom, phylum, class, order,
family, genus and species rank. Two simulated datasets were generated with different

abundance profiles, one with a uniform distribution and one with a log-normal distribution

(1=1, 6=2).

A custom read simulator was used which utilizes position- and nucleotide-specific
substitution patterns derived from experimental datasets. This allowed us to generate reads
with more realistic error profiles than we would with read simulators such as p/RS (Hu et al.,
2012), ART (Huang et al., 2012) or MetaSim (Richter et al., 2007). Furthermore, we could
thus specify and test different species abundance distributions for the microbial community
and generate very large datasets due to the parallelization of the simulation program. We did
not use the simulated datasets from Mavromatis ef al. (Mavromatis et al., 2007), as these are

substantially smaller than the current metagenome datasets.

Both simulated datasets were generated based on Illumina GAII error profiles where the
standard library preparation method was used. The insert size distribution was also based on
the experimental dataset. For each dataset, 15 million paired-end reads of 90 bp were
generated with an average insert size of 291 bp. The first 10 bp of the 100 bp reads in the
experimental dataset were trimmed because of fluctuations in the nucleotide distributions at
the starting positions, which indicated partial remains of the barcode sequence. The read
simulator produces output in FASTA format, which was converted into a pseudo-FASTQ
format for the downstream analysis with uniformly high quality scores. The reads were then
assembled with Metassembler (Debruijn, 2014) using Velvet (Zerbino & Birney, 2008), run
with different k-mer sizes ranging between 19 and 75, and were subsequently merged with
Minimus2 (Treangen et al., 2011). This assembly procedure resulted in a larger assembled
dataset than assembly with SO4Pdenovo2 (Luo et al., 2012), Metavelvet (Namiki et al., 2012)
or Newbler (Roche, 2014). Contig sequences longer than 1000 bp were considered further.
The contigs were subsequently mapped with BLAST (Camacho et al., 2009) onto the reference

genomes to recover their taxonomic identifiers.
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Properties of the simulated datasets:

Distribution Contigs Mb
Uniform 14,393 137
Log-normal 13,284 66

List of strains used to generate simulated datasets:

Strain name

Accession number

Acidobacterium capsulatum ATCC 51196
Akkermansia muciniphila ATCC BAA-835
Archaeoglobus fulgidus DSM 4304
Bacteroides thetaiotaomicron VPI-5482
Bacteroides vulgatus ATCC 8482
Bordetella bronchiseptica RB50
Caldicellulosiruptor bescii DSM 6725
Caldicellulosiruptor saccharolyticus DSM 8903
Chlorobium limicola DSM 245
Chlorobium phaeobacteroides DSM 266
Chlorobium phaeovibrioides DSM 265
Chlorobium tepidum TLS

Chloroflexus aurantiacus J-10-f1

Clostridium thermocellum ATCC 27405

Deinococcus radiodurans R1

Dickeya dadantii 3937

Dictyoglomus turgidum DSM 6724
Enterococcus faecalis V583
Fusobacterium nucleatum subsp. nucleatum ATCC 25586
Gemmatimonas aurantiaca T-27
Herpetosiphon aurantiacus DSM 785
Hydrogenobaculum sp. YO4AAS1
Ignicoccus hospitalis KIN4/I
Methanocaldococcus jannaschii DSM 2661
Methanococcus maripaludis C5
Methanococcus maripaludis S2
Nitrosomonas europaea ATCC 19718
Pelodictyon phaeoclathratiforme BU-1
Persephonella marina EX-H1

CP001472.1
CP001071.1
AE000782.1
AE015928.1
CP000139.1
BX470250.1
CP001393.1
CP000679.1
CP001097.1
CP000492.1
CP000607.1
AE006470.1
CP000909.1
CP000568.1
AE001825.1
AE000513.1
CP002038.1
CP001251.1
AE016830.1
AE009951.2
AP009153.1
CP000875.1
CP001130.1
CP000816.1
L77117.1

CP000609.1
BX950229.1
AL954747.1
CP001110.1
CP001230.1
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Porphyromonas gingivalis ATCC 33277
Pyrobaculum aerophilum str. IM2
Pyrobaculum calidifontis JICM 11548
Rhodopirellula baltica SH 1

Ruegeria pomeroyi DSS-3

Salinispora arenicola CNS-205
Salinispora tropica CNB-440
Shewanella baltica OS185

Shewanella baltica 0S223

Sulfolobus tokodaii str. 7
Sulfurihydrogenibium sp. YO3AOP1
Thermoanaerobacter pseudethanolicus ATCC 33223
Thermotoga neapolitana DSM 4359
Thermotoga petrophila RKU-1
Thermotoga sp. RQ2

Thermus thermophilus HBS

Treponema denticola ATCC 35405

Zymomonas mobilis subsp. mobilis ZM4

AP009380.1
AE009441.1
CP000561.1
BX119912.1
CP000031.1
CP000850.1
CP000667.1
CP000753.1
CP001252.1
BA000023.2
CP001080.1
CP000924.1
CP000916.1
CP000702.1
CP000969.1
AP008226.1
AE017226.1
AE008692.2

3.2 Real datasets

For the evaluation using real metagenome samples from actual microbial communities, we

used two metagenome samples from the guts of obese human twins (Turnbaugh et al., 2010)

and the dataset of a lignocellulose-degrading community from within a cow rumen (Hess et

al., 2011).

3.2.1 Human gut dataset

The contigs from both samples, TS28 and TS29, were pooled. In the same way, scaffolds
from TS28 and TS29 were pooled. All scaffolds were longer than 1000 bp. The dataset was

generated with a 454 GS FLX Titanium sequencer.

Properties of the real human gut dataset:

FASTA file Sequences Mb
Contigs 153,564 255.2
Contigs = 1000 bp 63,399 187.1
Scaffolds 18,172 164.4
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3.2.2 Cow rumen dataset

The same dataset as in Droge et al. (Droge, Gregor & McHardy, 2014) was used. As the
scaffolds of the assembled contigs were of lower quality than the contigs, scaffolds were split
into contigs at all gaps consisting of at least 200 “N” characters. We subsequently split the
resulting contigs of at least 10 kb into ‘chunks’ of 2000 bp, resulting in at least five chunks
for each contig. The dataset was generated with Illumina GAIIx and Illumina HiSeq 2000

sequencers.

Properties of the real chunked cow rumen dataset:

FASTA file Sequences Mb
Contigs 159,263 318.5
Scaffolds 12,192 369.4

3.3 Reference data

The NCBI taxonomy (Federhen, 2011), downloaded on 11/22/2012, was used as the reference
taxonomy. The following reference databases from the NCBI were pooled to generate our
reference sequence (RS) collection: NCBI genomes (downloaded on 11/22/2012), NCBI draft
bacterial genomes (downloaded on 11/22/2012), the NCBI human microbiome project
(downloaded on 10/16/2012) and NCBI RefSeq (Sayers et al., 2008) microbial version 56.
Subsequently, duplicate sequences were removed to make the RS collection non-redundant.
This RS collection contained sequences for 841 different genera, 2543 different species and

4516 different strains. The total size of the RS collection was 16 Gb.

In the marker gene (MQG) analysis, the following MG sequence collections and HMM profiles
were used: For the 16S and 23S MG analysis, bacterial and archaeal reference sequences from
the SILVA database (Pruesse et al., 2007) were retrieved (version 111, released on
7/27/2012). The corresponding taxonomic identifiers were mapped onto the NCBI taxonomy.
The resulting collection contained 126,742 sequences for 39,201 different species (199 Mb in
total).
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For the 5S MG analysis, MG sequences were retrieved from NCBI on 2/8/2013 via Maglott et
al. (Maglott et al., 2004); the collection contained 12,424 sequences for 1278 species (5.8 Mb

in total).

In addition, reference sequences for the following 31 bacterial marker gene families were
retrieved from NCBI on 2/8/2013 via Maglott et al. (Maglott et al., 2004): dnaG, infC, pgk,
rpoB, tsf, frr, nusA, pyrG, romA, smpB, rpsC, rpsl, rpsK, rpsS, rpsB, rpsE, rpsJ, rpsM, rplA,
rplB, rplC, rplD, rplE, rplF, rplK, rplL, rpIM, rpIN, rplP, rplS and rplT. This MG collection
contained 63,530 sequences for 1380 different species (52 Mb in total).

HMM profiles for the 16S, 23S, and 5S marker genes were retrieved from Huang et al.
(Huang, Gilna & Li, 2009) HMM profiles trained on the protein families for the 31 bacterial
MG were retrieved from Wu & Scott. (Wu & Scott, 2012)

3.4 Test environments

The benchmarks were run on different hardware configurations. When measuring runtime,

Hardware Configurations 1 or 2 were used if not stated otherwise.

1. Server: AMD Opteron Processor 6386 SE, 2.8 GHz; 512 GB RAM; local SSD
storage; Debian GNU/Linux 7.1.

2. Laptop: Intel i5 M520 2.4 GHz; 4 GB RAM; 7200 rpm laptop storage; Windows 7
64-bit, Ubuntu 12.04 64-bit; Oracle VirtualBox 4.2.12: 2 GB RAM, 8 GB swap, 140
GB HDD, Ubuntu 12.04 64-bit.

3. Server: Intel Xeon CPU X5660, 2.8 GHz; 73 GB RAM; network storage; Debian
GNU/Linux 6.0.7.

4. Server: AMD Opteron Processor 6174, 2.2 GHz; 100 GB RAM; local storage; Debian
GNU/Linux 6.0.7.

5. Laptop: Intel 15 2557M 1.7 GHz; 4GB RAM, SSD storage, OS X 10.7.

3.5 MEGAN4 configuration

NCBI BLAST (version 2.2.27+) was used to generate alignments (Section 3.4, HW
Configuration 1), using 15 threads; the tabbed output format (7) was used. MEGAN4 (4.70.4)
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(Huson et al., 2011) was used for taxonomic assignment on a laptop (Section 3.4, HW
Configuration 2) using the following settings: minsupport=>5, minscore=2, toppercent=20),
mincomplexity=0.44. The runtime of MEGAN4 was just a few seconds, as the LCA algorithm
it uses is simple and fast. Construction of the BLAST database from the reference sequence
collection required 6 h 55 m, with the size of the database being 4 GB. To simulate the new
strain, species and genus scenarios (Table 1: Test Scenarios 5, 8 and 9), the corresponding
alignments of sequences present in both the test and reference data were removed from the

BLAST output.

Runtimes of BLAST for the different metagenome datasets:

Dataset Runtime
Simulated uniform 52mlls
Simulated log-normal 19m 18 s
Chunked cow rumen (contigs) 43m29s
Chunked cow rumen (scaffolds) 42m56s
Human gut (contigs) 44mO05s
Human gut (scaffolds) 25m37s

3.6 Taxator-tk configuration

LAST (version 287) (Frith, Hamada & Horton, 2010) was used to produce alignments using
one thread, output format 1 (maf). Constructing the LAST database for the reference sequence
database required 81 h 29 min. The size of the resulting database was 91 Gb (Section 3.4, HW
Configurations 1 and 4).

Taxator-tk (Droge, Gregor & McHardy, 2014) was then employed to process metagenome
sequence fragments using 15 threads and to produce taxonomic assignments using one thread
for the input sequences (Section 3.4, HW Configuration 4). For the simulated datasets, the
corresponding alignments of sequences present in both the test and reference data were
removed to simulate the new strain, species and genus scenarios (Table 1: Test Scenarios 5, 8

and 9).

Commands
LAST command:

lastal -f 1 lastDb query.fna | lastmaf2alignments.py | sort | gzip > alighments.gz
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BLAST command.:

blastn -db blastDb -query query.fna -num_threads 15 -outfmt '6 gseqid gstart gend glen sseqid sstart

send bitscore evalue nident length' -out alignments.blast

Produce fragments:

cat alignments.blast | alignments-filter -b 50 | taxator -a rpa -q query.fna -f ref.fna -g ref_all.tax -p 15

| sort > fragments.gff3

Produce assignments:

cat fragments.gff3 | binner > assignments.tax

Runtimes of LAST for the different metagenome datasets:

Dataset Runtime (HC 1) Runtime (HC 4)
Simulated uniform 9h56m27s 12h10m 57 s
Simulated log-normal 5h02mo03s 6h16m02s
Chunked cow rumen (contigs) 12h23m29s 15h39m24s
Chunked cow rumen (scaffolds) I5h15m20s 1I9h15m12s
Human gut (contigs) 10h29m12s 13h48m57s
Human gut (scaffolds) 7h41mO05s 1I0h16m20s
Runtimes of taxator-tk for different metagenome datasets:

Dataset Process fragments Bin
Simulated uniform 36 h54mO02s 17.4s
Simulated uniform (new strain) 8h53m20s 18.2s
Simulated uniform (new species) 4h44m27s 18.1s
Simulated uniform (new genus) 54m39s 17.5s
Simulated log-normal 25h25m49s 16.8 s
Simulated log-normal (new strain) 3h09m1l16s 179s
Simulated log-normal (new species) 2h06m29s 17.4s
Simulated log-normal (new genus) 36 m34s 169 s
Chunked cow rumen (contigs) 3h03mO07s 249 s
Chunked cow rumen (scaffolds) 46 m 59 s 19.2s
Human gut (contigs) 6h38m56s 22.5s
Human gut (scaffolds) 2h47m50s 18.6s
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3.7 PPS+ and PPS generic model configurations

PPS+ benchmarks were run using one thread (Section 3.4, HW Configuration 3). The PPS+
configuration file contained in the VM distribution specifies the default values of the

parameters used (configuration file name: config ppsp_vm refNCBI20121122 example.cfg).

PPS was run using one thread (Section 3.4, HW Configuration 3). PPS was trained to include
the 200 most abundant genera in the reference sequences (Section 3.3). The PPS models were

built down to the genus rank, as this is the default setting of PPS.

3.8 Kraken configuration

Kraken (version 0.10.5) and its dependency Jellyfish (1.1.11) were installed on a high-
performance server (Section 3.4, HW Configuration 1). Four Kraken databases were built
using our custom reference data collection (Section 3.3). For the real datasets (Section 3.2)
and the simulated datasets (Sections 3.1) — for the first scenario (Table 1: Test Scenarios 1),
kraken db all database was built from all the reference sequence data (Section 3.3). To
simulate the new strain, new species and new genus scenarios (Table 1: Test Scenarios 5, 8
and 9), we generated corresponding Kraken databases kraken db new strain,
kraken db new species and kraken db new genus. For instance, kraken db new strain
database does not contain the strains from which the simulated datasets were generated. When
we use the kraken db new strain database, we simulate the scenario in which all strains of a
metagenome sample are unknown, i.e. (Table 1: Test Scenarios 5). This approach ensures that
all the methods in comparison use the same reference data for the classification in respective
test scenarios (Table 1). For instance, to create the Kraken kraken db all database, we

performed the following steps:

1. Create directory for kraken all containing all the reference sequences that are used to
build a custom reference database. Note that the sequence names in the FASTA files
have to be in the format specified in the Kraken documentation.

2. Create empty directory kraken db all for the generated database.

3. Inside directory kraken db all, create directory taxonomy and place there the
following NCBI taxonomy files: gi taxid nucl.dmp, names.dmp, nodes.dmp.

4. Switch to directory for kraken all and run the following command to add all the

reference sequences to the Kraken database kraken db_all:
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for file in *.fna; do kraken-build --add-to-library Sfile --db kraken _db_all --threads 40;
done

5. Set the PATH variable to contain also the installation bin directory of Jellyfish.

6. Build the Kraken kraken db_all database:
kraken-build --build --db kraken_db_all --threads 40

7. Perform taxonomic assignment of contigs contained in FASTA file contigs.fna and
store the results in contigs lab.csv:

kraken --preload --db kraken_db_all --threads 40 contigs.fna > contigs_lab.csv

3.9 Assignment quality measures

3.9.1 Micro-averaged precision and recall

To assess the quality of the taxonomic assignments for the simulated datasets, we evaluated
the micro-averaged precision (sometimes also known as the micro-averaged specificity) and
the micro-averaged recall (sometimes also known as the micro-averaged sensitivity) of
taxonomic assignments for the different methods, as detailed below. Both measures were
calculated based on the number of assigned bp for each taxonomic rank, instead of per
assigned fragment, as the correct assignment of larger sequence fragments is more beneficial

for the retrieval of “draft genome” bins than for short fragments.

The micro-averaged precision was defined as:

l

N
! S5 TP
p = i ’
Nb 1p! 4 pp!
2y TP; + FP;
and micro-averaged recall was defined as:
Nk
l Zi=r1 Thy
L U
3
¥, TP+ FN|

where / denotes the taxonomic rank evaluated, such as species, genus, family, order, class,
phylum or superkingdom; (TP + FN;) is the number of bp from taxon i; (TP/ + FP}) is the
number of bp assigned to taxon i and 7P/ is the number of bp correctly assigned to taxon i.
The precision is micro-averaged over all bins Npl to which a sequence fragment was assigned

and the recall is micro-averaged over all N, taxa present in the simulated dataset at rank /.
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The micro-averaged precision is the fraction of correctly assigned bp from all predictions for
a particular taxonomic rank and represents a measure of confidence for the predictions of a
method. The micro-averaged recall is the fraction of correct assignments of the test sample for
a particular taxonomic rank. To avoid an uninformative increase of the micro-averaged recall
by having unassigned sequences, which belong to no taxon at a given rank, our test datasets
were generated from sequenced isolates with taxa defined at all major taxonomic ranks. Note
that for simplification, we denoted the micro-averaged precision as ‘precision’ and the micro-

averaged recall as ‘recall’ in this document.

3.9.2 Taxonomic assignment correction for assessment of bin quality

Often, a species within a metagenome sample is not directly represented among the reference
sequences; however, this respective species is closely related to a species for which there is
enough data in the RS or MG collections. In this case, the species from the sample may be
consistently assigned to the closely related species. This error does not impact draft genome
reconstruction in terms of reconstructing a bin as a set of sequences originating from the same
sample population, but the assigned identifier itself is incorrect. To quantify the binning
performance independently from taxonomic label assignment, we applied a correction
procedure and re-computed the corrected precision and recall values: If most of the sequences
(i.e. at least (correctLabelThreshold * 100)% bp) from one taxon were consistently assigned
to a false identifier, their identifiers were changed to the correct one, and precision and recall
were re-computed. The default setting for the configuration parameter correctLabelThreshold

was 0.9. The precision and recall were always calculated with and without this correction.

3.10 Scaffold-contig consistency definitions

3.10.1 Comparison of scaffold and contig assignments

To assess the consistency of scaffold and contig assignments for a metagenome sample, we
define the following measures at all major taxonomic ranks (i.e. superkingdom, phylum,
class, order, family, genus and species). The idea of these measures is that each contig is
assigned up to two taxonomic identifiers: one from the contig assignment and the other from
the scaffold assignment. These two taxonomic labels are then compared. If we considered

contigs with two identical taxonomic labels to be correctly assigned and contigs with two
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distinct taxonomic labels to be as incorrectly assigned, then “% agreement” resembles a
measure of precision (i.e. correctly assigned bp + correctly and incorrectly assigned bp), while

“kb agreement” indicates recall (i.e. the total number of correctly assigned bp).

Let us assume that a metagenome sample consists of m scaffolds s, ..., S;,—; and n contigs
Co, -+» Cn—1, Where scaffold s consists of n; contigs i gy, -+, C(n, - 1)- Let function / denotes
the taxonomic identifier of a contig or a scaffold at the taxonomic rank being considered, i.e.
I(c;) is a label of the i™ contig and I(s;,) is the label of the k™ scaffold. The lengths of contig
¢; and scaffold s, are denoted by len(c;) and len(sy), respectively. Now, we can define the

consistency measures ‘kb agreement’ (Def. 0a) and ‘% agreement’ (Def. Ob) as:

0a) ‘kb agreement’:
Akp = szolzj €{k(0),...k(ng—1)}, U(sk) and I(c;) defined, U(sK)=1(c;) len(c;);

0b) ‘% agreement’:

Akb
T7Zo len(c))’

Aoy =
In other words, in ‘kb agreement’ (Def. Oa), the index k goes over all scaffolds, the index j
goes over all contigs within a corresponding scaffold. If both labels of scaffold & and contig j
are defined and assigned to the same taxa, then the length of contig j is added to the overall

sum of lengths of consistently assigned contigs.

3.10.2 Taxonomic scaffold-contig assignment consistency

To provide more detailed insights into the evaluation of the binning results of real
metagenome datasets, we introduced new detailed measures of the scaffold-contig

consistency (described below).

We assume that all contigs cy,...,c,.; of a particular scaffold originated from the same
organism and thus should be assigned the same taxonomic identifier. Let us denote an
identifier of contig ¢; as /. Each path p; from the root of the taxonomy to identifier /;
represents a hypothesis about the identifier of the whole scaffold. We base our definition on
the assumption that the most representative identifier of a scaffold corresponds to the path to

which the identifiers of all taxonomically assigned contigs that do not lie on the path have the
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shortest collective weighted distance. Note that we do not have to consider the path p; from
the root to /; as a potential taxonomic identifier if there is a path p; from the root to the
taxonomic identifier /; of another contig ¢; for which /; lies on p; and i =, as the shortest
collective weighted distance of all contigs of a scaffold to path p; is always lower than the

collective weighted distance to path p;. Let us denote the length of contig ¢; as |c;| (counted in
|<il

bp). Let us define the weight of contig ¢; as w; = ST
j=0 1¢j

Let tax_dist(l;, p;) be the taxonomic

distance (i.e. the number of edges in the reference taxonomy) between identifier /; and the

closest identifier /; that lies on path p; (i.e. this is simply the distance between identifier /; and
path p;). The weighted distance from path p; to all other identifiers /; is defined as: dist(p j) =
Yo w; + tax_dist(l;, p;). Let pi be the path with the minimum weighted distance (dist)
from all other identifiers. All contigs ¢; that lie on path p; are considered to be consistently
assigned within the scaffold; all contigs ¢; that do not lie on the path are considered to be

inconsistent. The consistency of the scaffold is then defined as:

1) Proportion of consistently assigned contigs:

l{ci | Lionp}l |
l{ci | i=0..n—1}|

2) Proportion of consistent contigs in bp:

2fi|1;onpyy I€il

-1
Z?:o ¢l ’

3) Average distance to the path:

Z?=_01 tax_dist(l;, pk)

)

n

4) Average weighted distance to the path:
dist(py),

5) Average distance to the scaffold identifier:

Yo tax_dist(l;, k)

>

n

6) Average weighted distance to the scaffold identifier:

wy = tax_dist(l;, I).
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The first definition is the coarsest measure and the last is the finest for taxonomic assignment

consistency.

We can also group the scaffolds using /; and compute the measures for individual taxa.
However, these groups do not correspond to the assigned bins, as a scaffold’s taxonomic
identifier does not always correspond to the taxonomic identifier of the lowest assigned contig

of that scaffold.

The consistency of the entire sample can also be defined as the (weighted) average of these
measures. Let sy, ..., s,.; be all scaffolds in the sample, where if a contig is not assigned to a
scaffold, an artificial scaffold that contains this one contig is created. We can also consider
only scaffolds that contain only a certain number of contigs or those that are at least x bp long,

for example.

Thus if we compute these measures for two different binning methods, we can assess the
consistency of the respective taxonomic assignments at six different levels. However, be
aware that it is recommended to also look at the number of bp assigned at different taxonomic
ranks by each method, since the consistency of a method that assigns everything to the root of

the taxonomy seems to be perfect according to these scaffold-contig consistency definitions.

4 Detailed results for the simulated datasets

This section provides a detailed description of the results of the benchmarks with simulated
datasets in nine different test scenarios (Table 1). PPS+, PPS generic model, MEGAN4 and
taxator-tk were compared to each other in terms of precision and recall (Section 3.9). The
nine different scenarios evaluate assignment performances for different evolutionary distances
between the sample sequences and the available reference sequences. For instance, in (Table
1: Test Scenario 6), all sequences from the species included in the simulated communities
were excluded from the reference sequence collection and all sequences of the same strains

were excluded from the marker gene sequence collection.
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4.1 Uniform dataset

For PPS+, a drop in both precision and recall was only observed for low-level taxonomic
assignments when removing reference data from the same strain, species or genera from the
reference sequence (RS) collection and also from the MG collection (Table 1: Test Scenarios
2, 3 and 4 versus Test Scenarios 5, 8 and 9), which demonstrated that for microbial
community members that have been profiled by 16S sequencing but which have no sequenced
genomes available, PPS+ can perform highly accurate low-level taxonomic assignments,

unlike from all other tested methods (Figs S1a and S1c—S1f).

In more detail, PPS+ showed substantially higher precision and recall than the PPS generic
model for all test scenarios (Fig. S1la—S1d, Table 1: Test Scenarios 1-9). PPS+ also showed
substantially higher precision and recall than MEGAN4 for the assignment of sequences from
new strains, species and genera (Figs Sla and Sle, Table 1: Test Scenarios 2—4), when these
were represented in the reference collection as marker genes. An exception was the unrealistic
case, when all of the simulated metagenome data were available in the reference sequence

collection (Table 1: Test Scenario 1).

Simulating the situation where the microbial community members have not been observed in
profiling before, we removed these strains from the MG collection and the reference
sequences (RS) for the strains, species or genera of the simulated metagenome datasets (Table
1: Test Scenarios 5, 6 and 7). We removed more data from the reference sequence (RS)
collection than from the MG collection to simulate the situation where a closer relative can be
found among the marker genes and a more distant one among the sequenced genomes, as
many taxa have been profiled but have not had their genomes sequenced. PPS+ assignment
quality (both precision and recall) dropped in comparison to the situation where strains have
been profiled (Fig. Sla,b). However, it was still better than MEGAN4 (Figure Sle) for all
ranks, except for the lowest-level assignment (species), when the strains were removed from
the RS collection only (Table 1: Test Scenario 5). As the removal of strain-level data in many
cases also removed all data for the respective species from the RS collection, both methods

made false assignments to related species in these scenarios.

When we removed even more reference data from the MG collection to simulate the binning

of microbial community members for which no members of the same species or genera have
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been profiled or sequenced before (Figure Slc, Table 1: Test Scenarios 8 and 9), the precision
for ranks above remained high (Table 1: Test Scenario 8, genus rank: 88.5%; Test Scenario 9,
family rank: 73.2%), while the recall dropped moderately. However, PPS+’s assignments
were still substantially better than those of MEGAN4 for these ranks (Figure Sle, Test
Scenario 8, genus rank: 81.6%; Test Scenario 9, family rank: 58.9%). For lower ranks for
which all reference data were removed, both methods had low precision and recall due to

false positive assignments.

Taxator-tk showed a lower recall than PPS+ across all tested scenarios (Figs Sla—Slc and
S1f), but showed outstanding precision for the order rank and above (close to 100%), and
never dropped below 89% at lower ranks. Thus this method could also be used for taxonomic

profiling to determine the presence of particular taxa reliably in a given sample.

4.2 Log-normal dataset

Even though the log-normal dataset was more challenging for all the tools, this benchmark

yielded similar conclusions as the benchmark with the uniform dataset.

PPS+ performed substantially better than the generic PPS model in terms of the precision and

recall in all test scenarios (Fig. S3a—S3d, Table 1: Test Scenarios 1-9).

At low taxonomic ranks (i.e. family, genus and species), PPS+ outperformed MEGAN4 in
terms of precision and recall in almost all test scenarios (Figs S3a—S3c¢ and S3e, Table 1: Test
Scenarios 2-9), except at the family rank in the ‘new strain’ scenario, where MEGAN4 had
slightly better precision (96.7%) than PPS+ (94.8%) (Figs S3b, S3c and S3e, Table 1: Test
Scenario 5). In the unrealistic case, where all reference data remained in the reference (RS
and MQG) collections, MEGAN4 had better precision and recall (Figs S3a—S3c and S3e, Table

1: Test Scenario 1).

Overall, PPS+ showed substantially better recall than taxator-tk, whereas taxator-tk showed
mostly better precision (Figs S3a—S3c and S3f, Table 1: Test Scenarios 1-9). Moreover, in the
case where microbial community members have been profiled by 16S but have no sequenced
genomes, PPS+ showed a very high precision at low taxonomic ranks (i.e. family, genus and

species) 99.5-89.6% (Figs S3a and S3f, Table 1: Test Scenarios 2—4). In several cases, PPS+
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showed better precision than taxator-tk; for example, at the family rank, the precision was
98.1% for PPS+ vs 91.9% for taxator-tk (Figs S3a and S3f, Table 1: Test Scenario 4) and at
the genus rank, it was (scenario 2) 96.1%, (scenario 3) 96.3% for PPS+ vs (scenario 2) 91%,

(scenario 3) 86.9% for taxator-tk (Figs S3a and S3f, Table 1: Test Scenarios 2, 3).

4.3 Benchmarks with corrections

In the test scenarios when the reference data were excluded from the MG database (Table 1:
Test Scenarios 5-9), the precision of PPS+ for low taxonomic ranks (i.e. genus and species)
was lower than the precision of taxator-tk because of the way PPS+ chooses the taxa that are
modeled. If the sequences from the same strains as those of the simulated metagenome
samples were removed from the MG reference database at the strain, species or genus ranks,
the marker gene analysis assigned sequences of the metagenome sample that would otherwise
have a very good match to the respective MG database sequences to corresponding closely

related taxa.

In the subsequent PPS training phase, the sample-derived data were used to train closely
related clades; moreover, reference sequences from closely related clades were used as
training data as well. However, for the draft genome reconstruction, it is necessary to infer
consistent bins from a metagenome sample. The actual identifiers of the bins are of lower
importance. Therefore, we recomputed the precision and recall measures with a correction to
account for the phenomenon described above (Section 3.9, Figs S2a—S2f and S4a—S4f, Table

1: Test Scenarios 1-9).

The corrected precision of PPS+ was substantially better than it was without the correction
for all scenarios. The difference for the other methods is not that pronounced, since they
choose clades to which metagenome sequences are assigned in a different way. When
comparing PPS+ to MEGAN4 using these corrections, PPS+ showed higher precision and
recall. When comparing PPS+ to taxator-tk, PPS+ had higher recall; however, neither

method was consistently more precise.
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5 Detailed results for the real datasets

5.1 Taxonomic scaffold-contig assignment consistency

To assess the quality of taxonomic assignments for these samples, we evaluated the
consistency of taxonomic assignments for contigs originating from the same scaffold using a
set of measures (Section 3.10.2). These measures assessed the degree to which the taxonomic
identifiers of scaffolds and their constituent contigs were consistent relative to each other.
This method looked beyond identical identifiers (Section 3.10.1) by taking the relative

distances between two taxa in the reference taxonomy into account (Table S6 and S7).

The basic idea of these measures is that a scaffold is assigned to a taxonomic identifier of one
of its constituent contigs, such that the collective distance of all contig assignments for the
respective scaffold to path p in the taxonomy defined by the scaffold identifier is the shortest.
The consistency of individual contig assignments is then assessed relative to path p: If a
contig lies on p, it is considered to be assigned consistently; if it does not lie on p, it is
assigned inconsistently. These measures were computed for the assignments of the chunked

cow rumen and the human gut datasets.

Overall, PPS+ performed better in terms of the consistent assignment of sequences to low
taxonomic ranks for the chunked cow rumen dataset and the human gut dataset than the
generic PPS model and MEGAN4 (Table S6 and S7, Def. 6). For both datasets, taxator-tk
showed the highest consistency according to almost all measures; however, it assigned fewer

data to lower taxonomic ranks (family, genus and species) than the other methods.

For the chunked cow rumen dataset, the generic PPS model assigned more contigs
consistently than PPS+ (Table S6, Def. 2); however this came at the cost of many contigs
being assigned to higher taxonomic ranks by PPS (Table S6, Defs Oa, 6). MEGAN4 showed a
higher overall consistency than PPS+ (Table S6, Def. 2) but this was mostly due to many
contigs being assigned at higher taxonomic ranks (Table S6, Def. 6). For lower taxonomic
ranks or when also taking sequence length into account (instead of the number of assigned

sequences), MEGAN4 was less consistent than PPS+ (Table S6, Defs Ob, 3—6).
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For the human gut dataset, PPS+ performed better than the generic PPS model according to
all measures (Table S7, Def. 0—6). PPS+ was again more consistent than MEGAN4 when
taking sequence lengths into account (Table S7, Defs 2, 4, 6). These measures are more
informative for taxonomic binning than the sequence-count based measures (Table S7, Defs
1, 3, 5), as obtaining large bins is desirable. These results also imply that MEGAN4 assigned
substantially more (predominantly short) sequences to lower taxonomic ranks than PPS+

(Table S7, Def. 0a).

5.2 Evaluation summary

Our evaluation showed that PPS+ performed substantially better than the generic PPS model
(Tables 2-3, S6-S7). Moreover, the results of PPS+ were comparable to a sample-derived
model generated according to expert specifications (Table 4). Taxator-tk had the highest
consistency of all the methods; however, it assigned substantially fewer sequences to low
taxonomic ranks than the other methods (Tables 2—3, S6-S7). Our benchmark experiments
also confirmed that if the metagenome sequences were closely related to the reference
sequences, such as for the human gut dataset, the homology-based methods assigned more
sequences correctly to low taxonomic ranks than they did across larger taxonomic distances,
as was the case for the cow rumen dataset (Tables 2—3, S6-S7). PPS+ was not that sensitive
to this distance. For PPS+, only few taxonomically informative marker genes have to be
identified from the sample, for which a substantially larger marker gene reference collection
exists than that for genome and draft genome sequences, in terms of the number of species
represented in the reference collection. PPS+ often made more consistent assignments than
MEGAN4 and often assigned the most sequences of all the tested methods to lower taxonomic

ranks (Tables 2—-3, S6-S7).

5.3 Throughput comparison

The throughput of the individual methods for contig assignments of the human gut sample
was calculated as either Mb or the number of sequences assigned per hour with one thread
using the same reference sequences (Sections 3.3 and 3.4). PPS and PPS+ directly use
sequences in FASTA format as references, while for MEGAN4 and taxator-tk BLAST or LAST

databases were initially constructed. Database construction took 6 h 55 m and 81 h 29 min on
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our servers, respectively for BLAST and LAST, and was not considered in runtime
comparisons. As most time in PPS+ is spent with model construction, assignment can be
further accelerated when reusing models to classify multiple metagenome samples. In this
setting, where we consider only the prediction phase of PPS+, PPS+ was more than 7 times
faster (up to 0.5 Gb/h) than the homology-based methods (Figure 4). As only a relatively
small reference sequence database of 16 Gb was used, runtimes of BLAST and LAST searches
in the homology-based tools would proportionally increase when using larger reference
collections.

Unlike the homology-based tools, for which similarity searches require the use of more
hardware with more CPUs and main memory, PPS+ can run on a standard laptop computer.
PPS+ on a laptop with an Intel 15 M520 2.4 GHz processor and 4 GB of RAM was ~1.5+4
times slower than it was on the server with an AMD Opteron 6386 SE 2.8 GHz processor and
512 GB of RAM, mainly due to insufficient RAM on the laptop installed, which caused

extensive use of the swap space.

6 External tools

6.1 HMMER 3
The search command (hmmsearch) of the HMMER 3 (Eddy, 2011) package with e-value cut-
off set to 0.01 is used.

6.2 MOTHUR

The MOTHUR (Schloss et al., 2009) Naive Bayes classifier with the following default
parameters is used. The number of bootstrap replicas is set to 300. The corresponding
confidence score cut-off is set to 80. For the 16S analysis (i.e. 3 (5S, 16S, 23S) out of 34
marker genes), a small part of the code from (Huang, Gilna & Li, 2009) was used.

7 Evaluation of the CLARK software

CLARK (Ounit et al., 2015) is a straightforward, fast, taxonomy-free, k-mer based binning

tool for metagenome reads and contigs. It is a taxonomy-free tool, since a user has to first
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decide, on which taxonomic rank s/he would like to assign sequences of a metagenome
sample, and then a taxonomic identifier is assigned to all input sequences at a particular
taxonomic rank. However, this is different from taxonomic binning tools such as PPS+,
taxator-tk (Droge, Gregor & McHardy, 2014), MEGAN (Huson et al., 2011), or Kraken
(Wood & Salzberg, 2014), since a taxonomic binning tool first has to automatically decide on
a taxonomic rank on which a sequence will be assigned and then it assigns a taxonomic
identifier to the sequence at a particular rank. In CLARK, the first step has to be done
manually, which makes the tool unsuitable for the analysis of metagenome samples
originating from novel environments. For instance, if a metagenome sample contained
species, that were all novel species and a user decided to assign all the sequences of the
sample at the species rank, then all the assignments would have been incorrect. Therefore, it is
an indispensable feature of a taxonomic metagenome binning tool to also automatically and
correctly determine a taxonomic rank of an assignment. This makes the application of CLARK
limited only to the environments that has been well studied, for which there have been many
reference (draft) genomes sequenced, and that does not contain novel taxa. For such, well
studied, environments, CLARK offers a substantial speed-up in comparison to, e.g. BLAST
(Camacho et al., 2009). Nevertheless, it is unsuitable for the analysis of metagenome samples

originating from novel environments.

We have evaluated CLARK in the ‘“new strain”, “new species”, and “new genus” scenarios
with a simulated dataset with uniform distribution (Section 3.1). For the “new strain”
scenario, we have excluded all the strains of the simulated dataset from the reference
sequence collection and built the CLARK reference database at the species rank. In this “new
strain” scenario, the precision of CLARK at the species rank was 36.8% and recall 24.7%. The
corrected measures were 57.3% and 37.6%, respectively (Section 3.9).

For the “new species” scenario, we have excluded all the species of the simulated dataset
from the reference sequence collection and built the CLARK reference database at the genus
rank. In this “new species” scenario, the precision at the genus rank was 83.2% and recall
57.9%. The corrected measures were 85.1% and 59.6%, respectively.

For the “new genus” scenario, we have built the CLARK reference database at the family
rank. In this “new genus” scenario, the precision at the family rank was 57.3% and recall
33.3%. The corrected measures were 57.6% and 33.8%, respectively.

Note that these precision and recall values cannot be directly compared to the results of other

taxonomic binning methods, as we have manually determined, on which taxonomic rank the
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assignments were made by building the CLARK reference database at a particular rank.
However, if the CLARK was extended from taxonomy-free binning software to a taxonomy
binning software, its performance would be similar to Kraken, as both methods are based on

the occurrences of long A-mers (k=31).
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PhyloPythiaS+: A Self-Training Method for the Rapid
Reconstruction of Low-Ranking Taxonomic Bins from Metagenomes

Personal communication from Dr. P. B. Pope.
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2008 To Whom It May Concern:

A PPS+ binning of shotgun metagenome samples indicated the likely metabolite flow and participating
microbial phylotypes for a biogas-producing microbial community tolerant of high ammonia levels

Methane is the energy-rich component of biogas and is formed as the end product during anaerobic
degradation of organic material in bioreactors by a consortium of mainly uncultured microorganisms. One of
the key problems in biogas reactors are high ammonia levels, which are associated with unstable process
performance and increased risk of process failure. Therefore, characterizing the microbiome structure and
function within a stable biogas reactor operating at high ammonia levels (run on slaughterhouse and
industrial lignocellulosic waste: SwRI-ha) was of considerable interest to us. From two replicate reactor
samples we generated approximately 48 Gb of shotgun sequence using paired-end Illumina HiSeq
sequencing and assembled these with SOAPdenovo. PPS+ was then applied for taxon-bin recovery,
which reconstructed and taxonomically assigned eight draft gemomes bins (Table 1), including
uncultured phylotypes of species representing syntrophic acetate-oxidizing bacteria, methanogens (non-
acetoclastic) and different fermentative bacteria (carbohydrate and amino-acid). These bins thus likely
represent organisms known to produce acetate from the reactor substrate, organisms known to convert the
acetate to carbon dioxide and hydrogen gas, as well as for organisms producing methane from carbon
dioxide and hydrogen gas as opposed to acetoclastic methanogens. A functional analysis of these bins
revealed some of the essential genes for each of these pathways, in support of their putative roles. Thus, the
taxonomic bins reconstructed with PPS+ from the shotgun metagenome samples allowed us to determine the
likely metabolite flow from the substrates to the end product for a unique biogas-producing microbial
community tolerant of high ammonia levels (Frank and Pope, personal communication).
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TABLE 1

2005 Genome ID  Base Pairs Contigs Taxonld  Scientific Name
pTaa-1 1358596 377 499229 Tepidanaerobacter acetatoxydans
pBah-1 910935 143 86665 Bacillus halodurans
pMcb-1 534996 177 83986 Methanoculleus bourgensis
pSmw-1 487779 158 863 Syntrophomonas wolfei
pMsb-1 292500 131 2208 Methanosarcina barkeri
pMml-1 292331 96 1080712 Methanomassiliicoccus luminyensis
pMcm-1 99651 53 2198 Methanoculleus marisnigri
pAbc-1 90549 53 81468 Aminobacterium colombiense
NORWEGIAN UNIVERSITY OF LIFE SCIENCES www.umb.no TEL +47 64 96 50 00

P.o.sox 5003, NO-1432 AAs, NORwWAY postmottak@umb.no Fax +47 64 96 50 01



Supplemental Datasets S1-S6

PhyloPythiaS+: A Self-Training Method for the Rapid
Reconstruction of Low-Ranking Taxonomic Bins from Metagenomes

This document describes how to configure the software to reproduce the results.

Download datasets
The datasets for the benchmarks can be downloaded from:
https://github.com/algbioi/datasets

Supplemental Dataset S1: Simulated dataset with uniform distribution.
Supplemental Dataset S2: Simulated dataset with log-normal distribution.
Supplemental Dataset S3: Contigs of the real chunked cow rumen dataset.
Supplemental Dataset S4: Scaffolds of the real chunked cow rumen dataset.
Supplemental Dataset S5: Contigs of the real human gut dataset.
Supplemental Dataset S6: Scaffolds of the real human gut dataset.

Each file is a 7z archive and can be extracted, e.g. using command: 7za x archive.7z
Each extracted directory contains a readme.txt file describing all the files contained
in the directory.

Software installation
Follow the installation instructions and go through the tutorial. Both can be found
here: https://github.com/algbioi/ppsp/wiki

Real datasets
Follow the tutorial:
* Create the pipeline directory in directory: /apps/pps/tests
* Use configuration file:
/apps/pps/tools/config_ppsp_vm_refNCBI20121122 example.cfg
as a template (i.e. copy this file and modify it appropriately).
* Make sure, you set the following parameters in the configuration file:
pipelineDir



inputFastaFile
inputFastaScaffoldsFile
scaffoldsToContigsMapFile

* Run the pipeline using command:

|ppsp -c CONFIGURATION FILE -n -g -0 sl6é mg -t -p ¢ s v —-r -s

* Analyze the results as described in the tutorial.

Simulated datasets
Follow the tutorial:
* Create the pipeline directory in directory: /apps/pps/tests
* Use configuration file:
/apps/pps/tools/config_ppsp_vm_refNCBI20121122 example.cfg
as a template (i.e. copy this file and modify it appropriately).
* Make sure, you set the following parameters in the configuration file:
pipelineDir
inputFastaFile
referencePlacementFileOut
excludeRefSegRank (e.g. excludeRefSeqRank=species)
excludeRefMgRank (e.g. excludeRefSegRank=strain)
* Run the pipeline using command:

|ppsp -c CONFIGURATION FILE -n -g -0 sl6 mg -t -p ¢ -r -s

* Analyze the results as described in the tutorial



Supplemental Figures S1 — S14

PhyloPythiaS+: A Self-Training Method for the Rapid Reconstruction of Low-
Ranking Taxonomic Bins from Metagenomes
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Figure S1. Benchmark results for the simulated dataset with uniform distribution.

Precision (P) and recall (R) (Supplemental Text S1, Section 3.9.1) at different taxonomic ranks
were calculated for (panels a—c) PPS+, (panel d) the generic PPS model, (panel ¢) MEGAN4 and
(panel f) taxator-tk in all test scenarios (Table 1: Test Scenarios 1-9). In parentheses, (mg) and (rs)
denote whether the sequences at a given taxonomic rank were masked from the marker gene or
from the reference sequence collections, respectively (Supplemental Text S1, Sections 3.1 and 3.3).

If not stated, sequences were masked from both reference collections.
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Figure S2. Benchmark results for the simulated dataset with uniform distribution using ‘correction’.

Precision (P) and recall (R) were calculated with a ‘correction’ (Supplemental Text S1, Section 3.9)
at different taxonomic ranks for (panels a—c) PPS+, (panel d) the generic PPS model, (panel e)
MEGAN4 and (panel f) taxator-tk in all test scenarios (Table 1: Test Scenarios 1-9, Supplemental
Text S1, Section 3.1).
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Figure S3. Benchmark results for the simulated dataset with the log-normal distribution.

Precision (P) and recall (R) (Section 3.9.1) at different taxonomic ranks were calculated for (panels
a—) PPS+, (panel d) the generic PPS model, (panel €) MEGAN4 and (panel f) taxator-tk in all test

scenarios (Table 1: Test Scenarios 1-9, Supplemental Text S1, Section 3.1).
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Figure S4. Benchmark results for the simulated dataset with the log-normal distribution using

‘correction’.

Precision (P) and recall (R) were calculated with a ‘correction’ (Supplemental Text S1, Section 3.9)
at different taxonomic ranks for (panels a—c) PPS+, (panel d) the generic PPS model, (panel e)
MEGAN4 and (panel f) taxator-tk in all test scenarios (Table 1: Test Scenarios 1-9, Supplemental
Text S1, Section 3.1).
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Figure SS5. Base pairs assigned to individual taxa for a simulated metagenome of a microbial

community with log-normally distributed species abundance.

The number of taxonomic assignments to each taxon in bp is indicated on a log-scale by the pie
chart sizes for PPS+, the generic PPS model, taxator-tk, MEGAN4 and the underlying standard of
truth (TRUE). There were 47 strains present in the simulated metagenome sample. Assignments to
taxa not shown in black in the chart are to false taxa that are not present in the simulated
metagenome. Panel (a) shows the scenario where sequences from the same species as those of the
simulated dataset were excluded from the reference sequences but not the marker gene databases
(Table 1: Test Scenario 3). Panel (b) shows the scenario where sequences from the same species as
those of the simulated dataset were excluded from the reference sequence and marker gene

databases (Table 1: Test Scenario 8).
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Figure S6. Comparison of scaffold and contig assignments using PPS+ for the chunked cow rumen

dataset.

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text
S1, Sections 3.2.2 and 3.10.1). The rows correspond to scaffolds and the columns correspond to
contig assignments. (panel a) Phylum; (panel b) class; (panel c¢) order; (panel d) family; (panel e)

genus; (panel f) species.
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Figure S7. Comparison of scaffold and contig assignments using the generic PPS model for the

chunked cow rumen dataset.

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text
S1, Sections 3.2.2 and 3.10.1). The rows correspond to scaffolds and the columns correspond to
contig assignments. (panel a) Phylum; (panel b) class; (panel c¢) order; (panel d) family; (panel e)

genus.
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Figure S8. Comparison of scaffold and contig assignments using MEGAN4 for the chunked cow

rumen dataset.

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text
S1, Section 3.2.2 and 3.10.1). The rows correspond to scaffolds and the columns correspond to
contig assignments. (panel a) Phylum; (panel b) class; (panel c¢) order; (panel d) family; (panel e)

genus; (panel f) species.
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Figure S9. Comparison of scaffold and contig assignments using faxator-tk for the chunked cow

rumen dataset.

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text
S1, Section 3.2.2 and 3.10.1). The rows correspond to scaffolds and the columns correspond to
contig assignments. (panel a) Phylum; (panel b) class; (panel c¢) order; (panel d) family; (panel e)

genus; (panel f) species.
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Figure S10. Comparison of scaffold and contig assignments using PPS+ for the human gut dataset.

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text
S1, Sections 3.2.1 and 3.10.1). The rows correspond to scaffolds and the columns correspond to
contig assignments. (panel a) Phylum; (panel b) class; (panel c¢) order; (panel d) family; (panel e)

genus; (panel f) species.
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Figure S11. Comparison of scaffold and contig assignments using the generic PPS model for the

human gut dataset.

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text
S1, Sections 3.2.1 and 3.10.1). The rows correspond to scaffolds and the columns correspond to
contig assignments. (panel a) Phylum; (panel b) class; (panel c¢) order; (panel d) family; (panel e)

genus.
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Figure S12. Comparison of scaffold and contig assignments using MEGAN4 for the human gut

dataset.

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text
S1, Sections 3.2.1 and 3.10.1). The rows correspond to scaffolds and the columns correspond to
contig assignments. (panel a) Phylum; (panel b) class; (panel c¢) order; (panel d) family; (panel e)

genus; (panel f) species.
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Figure S13. Comparison of scaffold and contig assignments using faxator-tk for the human gut

dataset.

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text
S1, Sections 3.2.1 and 3.10.1). The rows correspond to scaffolds and the columns correspond to
contig assignments. (panel a) Phylum; (panel b) class; (panel c¢) order; (panel d) family; (panel e)

genus; (panel f) species.
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Figure S14. Benchmark results for the simulated datasets with the Kraken software.

Precision (P) and recall (R) (Supplemental Text S1, Section 3.9) at different taxonomic ranks were
calculated for the Kraken software in four test scenarios (Table 1: Test Scenarios 1, 5, 8, 9,
Supplemental Text S1, Section 3.1) using the simulated datasets with the uniform (panel a and b) and

log-norm (panel c and d) distribution.



Supplemental Tables S1 — S7

PhyloPythiaS+: A Self-Training Method for the Rapid Reconstruction of Low-
Ranking Taxonomic Bins from Metagenomes

Table S1. Runtime comparison of the k-mer counting algorithms Jellyfish, KAnalyze, and the new

k-mer counting algorithm implemented in PPS+.

k-mer lengths PPS+ Jellyfish 1.1.1 Jellyfish 2.2 KAnalyze 0.9.7
4 7.5s 6.2s 21.7 s 29.5s

5 7.5s 6.2s 22.0s 34.7 s

6 7.5s 6.2s 219s 39.1s

4,5,6 9.0s 18.6 s Im5s Im43s

7 7.6s 6.2s 22.4s 439 s

8 80s 62s 23.0s 489s

9 84s 6.3s 24.6 s 54.4s

7,8,9 11.1s 18.7 s ImIlO0s 2m27s

The relevant combination of k-mers that is typically counted for taxonomic binning is marked in
bold. The benchmark was run in one thread on a server with an Intel Xeon (CPU X5660, 2.8 GHz)
processor, nevertheless we observed that Jellyfish 1.1.1 took approximately 30% more CPU
resources than specified. Parallel runs of the methods can be done by splitting the input FASTA file,
running multiple instances of a tool for each file separately in parallel and merging of the result
files, thus the runtimes scale approximately linearly with the number of CPUs used. As a

benchmark dataset, concatenated contigs from (Turnbaugh et al., 2010) (255 Mb) were used.



Table S2. Exact values corresponding to (Fig. 2A).

Method Rank Fi-score (%)  Precision (%)  Recall = Correct (%) Incorrect (%)  Unassigned (%)
taxator-tk  Family 66.6 98.2 50.4 0.9 48.7
PPS Family 60.4 72.6 51.7 19.5 28.8
MEGAN Family 78.8 88.9 70.7 8.8 20.4
Kraken Family 74.7 79.6 70.4 18.0 11.5
PPS+ Family 88.4 96.4 81.6 3.0 15.4
taxator-tk  Genus 46.1 93.2 30.6 2.2 67.2
PPS Genus 458 68.2 34.5 16.1 494
MEGAN Genus 63.1 75.7 54.1 17.4 28.5
Kraken Genus 59.3 63.4 55.7 32.1 12.2
PPS+ Genus 77.4 91.8 66.9 6.0 27.1
taxator-tk  Species 16.7 87.8 9.2 1.3 89.6
PPS Species N/A N/A N/A N/A 100.0
MEGAN Species 342 49.6 26.1 26.5 474
Kraken Species 32.8 35.7 30.3 54.6 15.2
PPS+ Species 51.5 71.4 40.3 16.1 43.6
Table S3. Exact values corresponding to (Fig. 2B).

Method Rank Fi-score (%)  Precision (%)  Recall = Correct (%) Incorrect (%)  Unassigned (%)
taxator-tk  Family 67.4 99.4 51.0 0.3 48.7
PPS Family 70.0 84.2 59.9 11.3 28.8
MEGAN Family 79.3 89.5 71.2 8.3 20.4
Kraken Family 75.8 80.7 71.4 17.1 11.5
PPS+ Family 90.1 98.3 83.2 1.5 15.4
taxator-tk  Genus 48.8 98.9 324 0.4 67.2
PPS Genus 55.5 82.7 41.8 8.8 494
MEGAN Genus 68.0 81.5 58.3 13.2 28.5
Kraken Genus 60.7 64.9 57.0 30.8 12.2
PPS+ Genus 83.2 98.6 71.9 1.0 27.1
taxator-tk  Species 18.5 98.2 10.2 0.2 89.6
PPS Species N/A N/A N/A N/A 100.0
MEGAN Species 50.0 72.5 38.1 14.4 474
Kraken Species 38.7 42.2 35.8 49.1 15.2
PPS+ Species 68.9 95.5 53.9 2.5 43.6




Table S4. Exact values corresponding to (Fig. 2C).

Method Rank Fi-score (%)  Precision (%)  Recall = Correct (%) Incorrect (%)  Unassigned (%)
taxator-tk  Family 64.2 98.5 47.6 0.7 51.7
PPS Family 49.2 63.5 40.1 23.0 36.9
MEGAN Family 76.3 90.7 65.8 6.8 27.4
Kraken Family 71.8 78.1 66.4 18.6 15.0
PPS+ Family 85.0 95.7 76.5 3.4 20.0
taxator-tk  Genus 43.7 92.3 28.6 2.4 69.0
PPS Genus 35.2 56.0 25.7 20.2 54.1
MEGAN Genus 61.9 78.6 51.1 13.9 35.0
Kraken Genus 56.0 61.1 51.7 33.0 15.3
PPS+ Genus 72.9 90.1 61.2 6.7 32.1
taxator-tk  Species 17.8 94.1 9.8 0.6 89.6
PPS Species N/A N/A N/A N/A 100.0
MEGAN Species 34.6 52.3 25.9 23.6 50.5
Kraken Species 31.6 354 28.6 52.4 19.0
PPS+ Species 48.9 73.1 36.7 13.5 49.8
Table SS. Exact values corresponding to (Fig. 2D).

Method Rank Fi-score (%)  Precision (%)  Recall = Correct (%) Incorrect (%)  Unassigned (%)
taxator-tk  Family 64.8 99.4 48.1 0.3 51.7
PPS Family 66.1 85.4 53.9 9.2 36.9
MEGAN Family 77.3 92.0 66.7 5.8 27.4
Kraken Family 72.5 78.9 67.1 17.9 15.0
PPS+ Family 87.5 98.5 78.7 1.2 20.0
taxator-tk  Genus 47.0 99.3 30.8 0.2 69.0
PPS Genus 51.2 81.4 37.3 8.5 54.1
MEGAN Genus 68.5 86.9 56.5 8.5 35.0
Kraken Genus 56.8 61.9 52.4 323 15.3
PPS+ Genus 78.7 97.3 66.1 1.9 32.1
taxator-tk  Species 18.5 97.3 10.2 0.3 89.6
PPS Species N/A N/A N/A N/A 100.0
MEGAN Species 52.0 78.6 38.8 10.6 50.5
Kraken Species 393 43.9 35.6 45.5 19.0
PPS+ Species 62.2 93.1 46.7 3.5 49.8




Table S6. Scaffold-contig consistency of the chunked cow rumen dataset.

Measure PPS+ PPS MEGAN4 Kraken taxator-tk Def.
Scaffolds considered 12,192 12,192 9456 7859 11,447
Consistent contigs 128,685 137,747 116,726 104,633 151,585

/ / / / / /1
total contigs 159,263 159,263 135,362 119,939 153,185
Consistent count % 80.80 86.49 86.23 87.24 98.96 1
Consistent kbp 257,370 275,494 233,452 209,266 303,170

/ / / / / /2
total kbp 318,526 318,526 270,724 239,878 306,370
Consistent bp % 80.80 86.49 86.23 87.24 98.96 2
Avg. distance to path 0.38 0.30 0.50 0.60 0.02 3
Avg. weighted distance to path 0.38 0.30 0.50 0.60 0.02 4
Avg. distance to scaffold label 3.16 343 5.89 7.23 2.65 5
Avg. weighted distance to scaffold label 3.16 343 5.89 7.23 2.65 6
Family: contigs (kb assigned) 71,660 43,118 55,904 45,752 13,626
Family: consistency ‘% agreement’ 80.0 55.8 55.0 45.2 98.9 0b
Genus: contigs (kb assigned) 53,705 28,077 53,008 44,600 10,596
Genus: consistency ‘% agreement’ 84.3 63.2 56.0 43.7 99.1 0b
Species: contigs (kb assigned) 26,121 N/A 41,204 42,626 1426
Species: consistency ‘% agreement’ 91.6 N/A 54.6 38.1 100.0 0b

Contigs of the cow rumen dataset of at least 10 kb were divided into chunks of 2 kb for evaluation
of assignment consistency (Supplemental Text S1, Section 3.2.2). Scaffold-contig consistency of
the assignments made by PPS+, the generic PPS model, MEGAN4, Kraken and taxator-tk for the
chunked cow rumen dataset, computed via different definitions (Supplemental Text S1, Section
3.10.2). The table also contains the number of kb of contigs assigned at low taxonomic ranks
(family, genus and species) and the corresponding consistency (% agreement) (Supplemental Text

S1, Section 3.10.1). Bold numbers correspond to the best values, whereas italic numbers indicate

the worst values.




Table S7. Scaffold-contig consistency of the human gut metagenome dataset.

Measure PPS+ PPS MEGAN4 Kraken taxator-tk Def.
Scaffolds considered 47,983 47983 83,973 75,926 99,202
Consistent contigs 64,197 63,954 99,647 88,214 117,576

/ / / / / /
total contigs 66,480 66,480 101,613 92,900 117,630 1
Consistent count % 96.57 96.20 98.07 94.96 99.95 1
Consistent kbp 181,207 179,798 191,429 166,075 217,517

/ / / / / /
total kbp 189,517 189,517 200,478 190,001 217,720 2
Consistent bp % 95.62 94.87 95.49 87.41 9991 2
Avg. distance to path 0.06 0.07 0.05 0.14 0 3
Avg. weighted distance to path 0.07 0.10 0.12 0.35 0 4
Avg. distance to scaffold label 0.63 0.72 0.38 0.61 029 5
Avg. weighted distance to scaffold label 0.53 0.58 0.73 1.15 0.62 6
Family: contigs (kb assigned) 146,046 118,679 161,452 173,238 74,793
Family: consistency ‘% agreement’ 94.0 92.6 96.2 53.4 99.8 0b
Genus: contigs (kb assigned) 110,762 71,934 149,448 159,556 61,242
Genus: consistency ‘% agreement’ 95.3 91.9 96.1 88.3 99.9 0b
Species: contigs (kb assigned) 61,969 N/A 114,716 162,726 20,687
Species: consistency ‘% agreement’ 94.7 N/A 93.5 81.3 99.7 0b

Scaffold-contig consistency of the assignments made by PPS+, the generic PPS model, MEGAN4,
Kraken and taxator-tk of the human gut dataset (Supplemental Text S1, Section 3.2.1) computed
using different definitions (Supplemental Text S1, Section 3.10). Bold numbers correspond to the

best values, whereas italic numbers indicate the worst values.





