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Summary++
+

Metagenomics! is! the! functional! or! sequenceJbased! analysis! of!microbial! DNA! isolated!

directly! from!a!microbial!community!of! interest.!As!the!cultivation!conditions!for!most!

(~99%)!microorganisms!are!unknown!or! too! complex! to! reproduce! in! the! laboratory,!

random! shotgun! and! ampliconJsequencing! based! metagenome! studies! have! led! to!

substantial! advances! in! our!understanding!of! the! structure! and! functions! of!microbial!

communities!within! the! last! decade.! The! key! question! of!metagenome! researchers! is:!

“Who!is!there,!what!are!they!doing!and!who!is!doing!what?”!For!instance,!the!human!gut!

microbiome! is! a! vast! collection! of! symbiotic! microorganisms.! The! gut! microbiome!

performs!many! important! biochemical! functions! for! the! host,! where! disorders! of! the!

microbiome! are! associated! with! many! diverse! diseases,! e.g.! the! inflammatory! bowel!

disease.! Bioinformatics! analyses! are! now! able! to! describe! the! gut! microbiome! at! a!

detailed! genetic! and! functional! level.! The! understanding! of! microbiome! activity! is!

essential!to!the!development!of!personalized!strategies!in!healthcare!and!to!reveal!new!

targets! for! drug! development.! Therefore,! understanding! microbial! communities! will!

improve! our! wellJbeing! and! human! health.! Moreover,! advances! in! sequencing!

technologies! have! been! enormous! in! the! last! decade,! while! the! throughput! increased!

drastically,!sequencing!costs!dropped.!This!enabled!researchers!to!use!next!generation!

sequencing! data! as! a! common! approach! to! study! microorganisms! originating! from!

various! environments,! e.g.! the! human! gut.! Metagenome! assembly! and! its! subsequent!

taxonomic!binning!are!two!essential!challenging!tasks!that!are!typically!performed!as!a!

part!of!a!metagenome!sample!analysis.!We!have!developed!Snowball,!which! is!a!strain!

aware!gene!assembler!for!metagenomes.!To!the!best!of!our!knowledge,!this! is!the!first!

gene! assembler! for!metagenomic! data! that! can!distinguish! gene! variants! of! individual!

strains!without!using!closely!related!reference!genomes!of!the!studied!species.!This!is!a!

very! important! property! as! metagenomes! originating! from! novel! environments!

oftentimes! contain! new! unknown! species! for! which! there! are! no! closely! related!

reference! genomes! available.! Moreover,! for! many! purposes,! including! functional!

analysis!of!metagenomic!data,! it! is!sufficient! to!assemble!only! the!coding!sequences!of!

the!strains,!as!usually!more!than!85%!of!prokaryotic!genomes!are!coding!sequences.!We!

have! employed! Snowball! to! assemble! simulated! reads! generated! from! the! recently!

published! Rhizobia! strains,! which! demonstrates! the! capability! of! our! method! to!

assemble! gene! sequences! of! closely! related! novel! strains.! We! have! also! developed!

PhyloPythiaS+!that!is!an!automated!composition!based!taxonomic!binning!method.!This!

method! is! a! successor! to! the! PhyloPythiaS! software.! We! have! fully! automated! this!
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method!by!adding!a!new!markerJgene!based!framework!that!automatically!determines!

the!most!relevant!taxa!to!be!modeled!and!suitable!training!sequences!directly!from!the!

input!metagenome!sample.!To! the!best!of!our!knowledge,! this! is! the! first!method! that!

combines!taxonomic!profiling!and!subsequent!taxonomic!composition!based!binning!of!

the! whole! input! metagenome! sample.! Moreover,! we! have! developed! a! new! kJmer!

counting! algorithm! that! accelerated! the! whole! method! and! showed! stateJofJtheJart!

performance! for! the! simultaneous! enumeration!of!4–6Jmers,!which! is! commonly!used!

for!composition!based!binning.!We!have!also!extensively!evaluated!the!whole!automated!

taxonomic!binning!pipeline!by! comparing! it! to! the!other!methods!and!devised! several!

new! evaluation! measures.! The! results! showed! that! our! method! performed! especially!

well! for! samples! originating! from! novel! environments! in! comparison! to! the! other!

methods.! These! results! were! also! confirmed! in! the! CAMI! challenge,! in! which!

PhyloPythiaS+!demonstrated!its!high!recall!and!ability!to!correctly!assign!taxa!that!have!

longer! taxonomic! distances! to! the! known! reference! genomes! or! draft! genomes.!

PhyloPythiaS+! has!also!already!been!employed! in! several! research! studies.!We!believe!

that!our!methods!will!be!valuable! for!researchers!studying!species!evolution,!strain!or!

gene!diversity,!genes!under!selection,!virulent!genes,!metagenome!samples!originating!

from! novel! environments,! for! draft! genome! reconstruction! and! for! the! subsequent!

functional!analysis!of!the!studied!metagenome!microbial!communities.!

+

!

!

!

!

!

!

!

!

!

!

!

!

!

!
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Zusammenfassung!
!

Metagenomik! ist! die! funktionale! oder! SequenzJbasierte!Analyse!mikrobieller!DNA,! die!

direkt!aus!Umweltproben!von!Interesse!isoliert!wird.!Für!die!meisten!Mikroorganismen!

(~99%)!sind!die!Bedingungen! für!eine!erfolgreiche!Anreicherung! in!Kultur!unbekannt!

oder!zu!komplex!um!sie!im!Labor!zu!reproduzieren.!Daher!sind!Metagenomstudien!auf!

der! Basis! von! ShotgunJ! und! AmplikonJSequenzierung! für! unser! Verständnis! der!

Struktur! und! Funktionen! der! mikrobiellen! Gemeinschaften! entscheidend.! Die!

Schlüsselfragen! der! MetagenomJForscher! lauten! dabei:! “Wer! ist! da,! was! macht! die!

Gemeinschaft!und!wer!macht!was?“!Das!menschliche!Darmmikrobiom!ist!beispielsweise!

eine! riesige! Sammlung! von! symbiotischen! Mikroorganismen.! Es! übernimmt! viele!

wichtige!biochemische!Funktionen!für!den!Wirt,!sodass!Störungen!des!Mikrobioms!mit!

vielen!verschiedenen!Krankheiten!assoziiert!werden,!z.B.!mit!Reizdarm.!

Bioinformatische! Analysen! sind! heute! in! der! Lage,! das! Darmmikrobiom! auf! einer!

detaillierten! genetischen! und! funktionalen! Ebene! zu! beschreiben.! Sie! bilden! die!

Grundlage! für! personalisierte! Strategien! im! Gesundheitswesen! und! es! werden! neue!

Ansatzstellen! für! die! Arzneimittelentwicklung! aufdecken.! Darüber! hinaus! waren! die!

Fortschritte! in!den!Sequenzierungstechnologien! im! letzten! Jahrzehnt! enorm.!Während!

der! Datendurchsatz! erheblich! anstieg,! sanken! die! Sequenzierungskosten.! Dies!

ermöglicht! es! Forschern,! die! NextJGeneration! Sequenzdaten! als! Standardverfahren!

einzusetzen;! also! auch! um! Mikroorganismen! zu! untersuchen,! die! aus! verschiedenen!

Umgebungen! wie! dem! menschlichen! Darm! stammen.! Die! Assemblierung! des!

Metagenoms! und! die! anschließende! taxonomische! Zuordnung! rekonstruierter! DNAJ

Sequenzen! sind! dabei! zwei! wesentliche! und! anspruchsvolle! Teilaufgaben! einer!

MetagenomJProbenanalyse.!

Hierfür! haben!wir!Snowball! entwickelt.!Snowball! ist! nach! unserem!besten!Wissen! der!

erste! GenJAssembler! für! MetagenomJDaten,! der! Genvarianten! einzelner! Stämme!

unterscheiden!kann,!ohne!eng!verwandte!ReferenzJGenome!der!untersuchten!Spezies!zu!

verwenden.! Das! ist! eine! sehr! wichtige! Eigenschaft,! weil! Metagenome! aus! neuartigen!

Umgebungen!oft!neue!unbekannte!Spezies! enthalten,! für!die! es!keine!eng!verwandten!

ReferenzJGenome! gibt.! Gleichzeitig! genügt! es! für! viele! Zwecke,! einschließlich! der!

Funktionsanalyse! von! MetagenomJDaten,! nur! die! kodierenden! Sequenzabschnitte! der!

Genome!zu!assemblieren,!weil!in!der!Regel!mehr!als!85%!der!prokaryotischen!Genome!

für!Proteine!kodieren.!Snowball!konzentriert!sich!auf!diese!Abschnitte.!

Wir!haben!Snowball!eingesetzt,!um!simulierte!DNAJAbschnitte!zu!assemblieren,!die!aus!

kürzlich!veröffentlichten!RhizobiaJStämmen!generiert!wurden.!Dies!zeigte!die!Fähigkeit!
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unserer!Methode,!die!Gensequenzen!von!eng!verwandten!neuartigen!Stämmen!bei!der!

Assemblierung! aufzulösen.! Um! die! rekonstruierten! MetagenomJSequenzen! auch!

taxonomisch! zuordnen! zu! können,! haben! wir! zudem! PhyloPythiaS+! entwickelt.! Diese!

Methode! ist! ein! Nachfolger! der! KompositionsJbasierten! PhyloPythiaS! Software.! Wir!

haben! diese! Methode! komplett! automatisiert,! indem! wir! ein! neues! MarkerJGenJ

basiertes! Framework! hinzugefügt! haben,! das! automatisch! die! relevantesten! Taxa!

modelliert! und! entsprechende! Trainingssequenzen! direkt! aus! der! MetagenomJProbe!

bestimmt.! Nach! unserem! besten! Wissen! ist! dies! die! erste! Methode,! die! das!

taxonomische! Profiling! und! die! anschließende! taxonomische! KompositionsJbasierte!

Zuordnung! der! gesamten! MetagenomJProbe! kombiniert.! Darüber! hinaus! haben! wir!

einen! neuen! Zählalgorithmus! für! Nukleotidsequenzen! der! Länge! k! entwickelt,! der! die!

gesamte!Methode!beschleunigt.!Der!Zählalgorithmus!zeigt!eine!StateJofJtheJArt!Leistung!

für! die! gleichzeitige! Aufzählung! von! Nukleotidsequenzen! der! Länge! 4–6,! die!

üblicherweise!für!die!taxonomische!KompositionsJbasierte!Zuordnung!der!MetagenomJ

Proben!verwendet!werden.!Wir!haben!die! gesamte!automatisierte!Pipeline!umfassend!

mit! den! Wettbewerbern! verglichen! und! dafür! mehrere! neue! Evaluierungskriterien!

entwickelt.! Die! Ergebnisse! zeigen,! dass! unsere!Methode! im! Vergleich! zu! den! anderen!

Methoden! besonders! gut! für! die! MetagenomJProben! aus! neuartigen! Umgebungen!

geeignet!ist.!Die!hohe!Sensitivität!von!PhyloPythiaS+!und!seine!Fähigkeit!zur!korrekten!

Zuordnung!von!Taxa,!die!größere!taxonomische!Abstände!zu!den!bekannten!ReferenzJ

Genomen! haben,! wurde! auch! in! der! CAMI! Challenge! bestätigt.! PhyloPythiaS+! wurde!

darüber!hinaus!bereits!in!mehreren!Forschungsprojekten!eingesetzt.!

Wir! glauben,! dass!unsere!Methoden! für! Forscher! in! folgenden!Bereiche!wertvoll! sind:!

Evolution! von! Arten,! Diversität! von! Bakterienstämmen,! Genvielfalt,! Gene,! die! unter!

Selektion! stehen,! virulente! Gene,! MetagenomJProben! aus! neuartigen! Umgebungen,!

entwurfsweise! GenomJRekonstruktion! und! die! anschließende! Funktionsanalyse! der!

untersuchten!mikrobiellen!Gemeinschaften.!

!

+

!

!

!

!

!

!

!

!
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1 Introduction&

In! this! chapter,! we! will! first! introduce! the! field! of! metagenomics! and! sequencing.!

Sequencing!platforms!enable!us!to!read!DNA!sequences!consisting!of!letters!A,6C,6G,6and6

T,! given!a!real!metagenome!sample!containing!a!mixture!of!microorganisms.!Then,!we!

will! introduce! two! core! bioinformatics! concepts:! sequence! assembly! and! taxonomic!

binning.! Assembly! methods! are! employed! to! assemble! longer! continuous! sequences!

(contigs)! from! short! DNA! sequences! (reads)! that! are! output! by! the! sequencing!

platforms.!Taxonomic!binning!methods!are!then!used!to!assign!taxonomic!identifiers!to!

the!assembled!or!unassembled!DNA!sequences.!This!can!be!used!for!the!characterization!

of!the!composition!and!functional!potential!of!a!particular!metagenome!sample.!We!will!

also!describe!basic!concepts!of!the!methods!for!sequence!analysis!that!were!used!as!subJ

routines! in! this!work.!We!will! conclude!with! the!outline!of! this!dissertation.!Note! that!

some!formulations!in!this!chapter!originate!from!my!publications!(Gregor,!Dröge,!et6al.,!

2016;!Gregor,!Schönhuth,!et6al.,!2016).!

1.1 Metagenomics&&
!

Metagenomics!(Handelsman!et6al.,!1998)!is!the!functional!or!sequenceJbased!analysis!of!

microbial! DNA! isolated! directly! from! a!microbial! community! of! interest! (Kunin! et6al.,!

2008;! Riesenfeld! et6 al.,! 2004).! As! the! cultivation! conditions! for! most! (~99%)!

microorganisms! are! either! unknown! or! too! complex! to! reproduce! in! the! laboratory!

(Hugenholtz,! 2002),! random! shotgun! and! ampliconJsequencing! based! metagenome!

studies! have! led! to! substantial! advances! in! our! understanding! of! the! structure! and!

functions! of! microbial! communities! within! the! last! decade! (Pope,! Smith,! et6 al.,! 2011;!

Kalyuzhnaya! et6 al.,! 2008;! Turnbaugh! et6 al.,! 2010;! Hess! et6 al.,! 2011;! Schloissnig! et6 al.,!

2013;!Blaser!et6al.,!2013;!Zarowiecki,!2012).!!

!

Metagenomes!that!have!been!studied!originate!from!various!environments,!e.g.:!!

• Lake!Washington!(Kalyuzhnaya!et6al.,!2008).!

• Wastewater!(Martín!et6al.,!2006).!

• Acid!mine!drainage!(Tyson!et6al.,!2004).!

• Hot!spring!(Ward!et6al.,!1998).!

• Agricultural!soil!(Tringe!et6al.,!2005).!

• Leafs!and!roots!of!Arabidopsis!(Bai!et6al.,!2015).!

• Termite!hindgut!and!gut!(Warnecke!et6al.,!2007;!IkedaJOhtsubo!et6al.,!2016).!

• Tammar!wallaby!gut!(Pope,!Smith,!et6al.,!2011).!
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• Svalbard!Reindeer!rumen!(Pope,!Mackenzie,!et6al.,!2011).!

• Human!gut!(Turnbaugh!et6al.,!2010;!Giloteaux!et6al.,!2016).!

• Human!blood!(Gyarmati!et6al.,!2016).!

• Subway!(MetaSUB!International!Consortium,!2016).!

!

The!central!question!of!many!metagenome!researchers!(Marx,!2016)!is:!“Who!is!there,!

what!are!they!doing!and!who!is!doing!what?”!

!

Understanding!microbial!communities!will!improve!our!wellJbeing!and!human!health.!It!

has! also! a! potential! to! revolutionize! chemical! industry! or! even! facilitate! long! human!

space!missions.! For! instance,! as! described! in! (Kuczynski! et6 al.,! 2011),! the! human! gut!

microbiome! is! a! vast! collection! of! symbiotic! microorganisms.! The! gut! microbiome!

performs! numerous! important! biochemical! functions! for! the! host,!where! disorders! of!

the! microbiome! are! associated! with! many! diverse! diseases,! e.g.! Crohn's! disease,!

ulcerative!colitis!or!inflammatory!bowel!disease!(W.!Wang!et6al.,!2015).!Bioinformatics!

analyses! based! on! next! generation! technologies! are! now! able! to! describe! the! gut!

microbiome!at!a!detailed!genetic!and!functional!level.!The!understanding!of!microbiome!

activity! is!essential! to! the!development!of!personalized!strategies! in!healthcare!and! to!

reveal! new! targets! for! drug! development.! Many! studies! have! found! out! that! the!

variability!in!the!microbiota!both!within!a!human!subject!and!between!different!subjects!

is!immense.!Moreover,!only!a!small!fraction!of!the!total!taxa!found!within!a!single!body!

site!appears!to!be!present!across!all!time!points.!Therefore,!several!projects!have!been!

established! to! investigate! this!variety,! e.g.! the!Human!Microbiome!Project! (Aagaard!et6

al.,!2013)!or!MetaHIT!(Arumugam!et6al.,!2011).!It!is!noteworthy!that!it!is!estimated!that!

a!human!body!contains!~10x!more!microorganisms!than!human!cells,!making!up!about!

1J3%!of!the!body’s!mass,!while!it!is!estimated!that!it!encodes!~100x!more!unique!genes!

than! the! human! genome! (Qin! et6 al.,! 2010).! Although,! other! studies! estimate! that! the!

number!of!microorganisms!in!the!human!body!is!of!the!same!order!as!the!number!of!the!

human!cells!(Sender!et6al.,!2016).!

!

Another! interesting! example! is! the! study! of! the! human! microbiome! during! longJ

duration! space! missions! (Voorhies! and! Lorenzi,! 2016).! It! is! known! that! a! balanced!

microbiome!is!essential!for!human!health.!However,!a!long!stay!on!a!spaceship!reduces!

the!microbiome!diversity,!as!the!air!on!a!spaceship!is!heavily!filtered!and!the!astronaut’s!

food!contains!a!minimum!amount!of!microbes.!Moreover,! the!galactic!cosmic!radiation!

may! have! a! negative! impact! on! the! crew! microbiome,! since! most! microbes! are! not!
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resistant! to! radiation.! Another! open! question! is! how! to! enable! the! recovery! of! the!

astronaut’s!microbiome!after!an!antibiotic!treatment.!The!use!of!probiotics,!fresh!fruits!

and!vegetables!may!help!to!solve!those!problems,!although!it!brings!a! large!set!of!new!

challenges! that! are! yet! to! be! solved.! Finding! strategies! how! to! keep! the! crew!

microbiome! healthy! and! how! to! rebalance! a! damaged! microbiome! is! essential! for!

survival!and!will!also!improve!the!human!health!on!the!Earth.!!

!

Although,! many! bioinformatics! tools! have! been! developed! for! the! metagenome! data!

analysis,!there!are!still!many!challenges!to!be!addressed.!As!described!in!(Sczyrba!et6al.,!

2017),! one! of! the! main! challenges! is! to! enable! detailed! strainJlevel! analysis! of! the!

metagenome! samples,! which! would! improve! our! understanding! of! the! microbial!

communities.! It!would! enable!us! to! study!microevolution!and!how!organisms! react! to!

the! changes! in! the! environment.! In! the! next! sections,! we! will! describe! all! the! main!

challenges! of! metagenome! assembly! and! taxonomic! binning.! Given! the! increasing!

amount! of! available! metagenomic! data! and! the! need! for! fineJgrained! strainJlevel!

analysis,!new!bioinformatics!methods!and!approaches!are!needed!for!the!data!analysis!

and!interpretation.!!

!

1.2 Sequencing&
!

After! a! metagenome! sample,! containing! a! mixture! of! living! microorganisms,! is! taken!

from!an!environment!of!interest,!the!DNA!from!the!sample!is!isolated!for!the!sequencing.!

The!result!of! the!sequencing!step! is!a! large!dataset!containing!a!mixture!of!short!DNA!

sequences,! called! reads,! where! it! is! not! known!what! read! comes! from!what!member!

species’! genome!of! a!metagenome.!The! sequencing! step! requires! substantial! expertise!

and!is!typically!performed!in!a!specialized!sequencing!lab.!Depending!on!the!sequencing!

lab,! employed!methodology! and! sequencing!platform,! the!quality! of! the! resulting!data!

varies.! Errors! and! biases! introduced! by! a! particular! sequencing! platform! in! the!

sequencing! step! need! to! be! considered! and! corrected! in! the! subsequent! steps!

(Laehnemann!et6al.,! 2016).!Typical! sequencing!errors!are! substitutions,! insertions!and!

deletions.!Many!sequencing!technologies!have!been!developed,!e.g.:!

• Illumina!!

• Sanger!

• 454!pyrosequencing!(Roche)!

• SOLiD!(Thermo!Fischer)!
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• Ion!Torrent!(Thermo!Fischer)!

• GeneReader!(Qiagen)!

• Complete!Genomics!(Beijing!Genomics!Institute)!

• Pacific!Biosciences!!

• Oxford!Nanopore!Technologies!

!

As!described!in!(Goodwin!et6al.,!2016),!sequencing!platforms!differ!in!throughput,!cost,!

read! length,! error! profile! and! read! structure.! Although,! there! are! many! sequencing!

platforms! available,! the! Illumina! sequencing! platform! is! used! in! most! of! the!

metagenome! studies.! Illumina! itself! offers! many! types! of! sequencing! machines.! It!

produces!pairedJend!or!singleJend!reads!of! length!25–300!bp,!where!pairedJend!reads!

of!length!≥100!bp!are!currently!most!popular.!The!output!reads!have!typically!very!low!

substitution! error! of! 0.1–1%! and! the! cost! varies! between! $7! and! $1,000! per! Gb.! For!

instance,! the!Illumina!ultraJhighJthroughput!HiSeq!X!platform!is!capable!of!sequencing!

~1,800!human!genomes!to!30×!coverage!per!year,!where!the!whole!genome!sequencing!

of!the!human!genome!currently!cost!less!than!$1,000.!

!

Sequencing!has!became!more!affordable,!it!has!been!revolutionized!and!democratized!in!

the!last!ten!years!due!to!the!decreasing!sequencing!costs!and!increasing!throughput!of!

the! sequencing! platforms! (Metzker,! 2010;! Goodwin! et6 al.,! 2016).! Moreover,! the!

revolution! is! likely!to!continue!and!the!sequencing!will!become!even!more! frequent! in!

research!studies!and!in!clinical!settings!as!a!clinical!tool!in!hospitals.!As!a!consequence,!

bioinformatics! analysis! tools! have! to! coJevolve,! i.e.! new! scalable! bioinformatics! tools!

need! to! be! developed! to! analyze! the! everJgrowing! amounts! of! sequencing! data! of! all!

kinds.!

!

1.3 Assembly&
!

Oftentimes,!sequenced!reads!do!not!carry!enough!information!to!be!directly!used!in!the!

subsequent! analysis,! as! they! are! too! short! and! erroneous.! Therefore,! short! reads! are!

typically!assembled!into!longer!continuous!errorJcorrected!sequences!called!contigs.!!

!

A!contig! is!a!set!of!reads!that!are!related!to!one!another!by!overlap!of!their!sequences!

(Staden,! 1980).! The! assembly! problem! defined! according! to! the!maximum!parsimony!

approach!is!to!find!the!shortest!common!superstring!of!the!individual!reads!to!which!all!

the! reads! map! with! a! sufficiently! low! error! (Peltola! et6 al.,! 1984).! However,! the!
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disadvantage!of!this!definition!is!overJcompression,!i.e.!many!variants!of!a!sequence!are!

compressed! into! one! consensus! sequence.! Therefore,! the! assembly! problem! was! reJ

defined! according! to! the! maximum! likelihood! approach! (Myers,! 1995).! I.e.,! given! the!

reads!and!a!maximum!error!rate!e!with!which!a!read!can!be!mapped!to!a!reconstructed!

consensus! sequence.! Find! a! reconstruction,! such! that! the! reads! are! mapped! to! a!

consensus!sequence!with!at!most!e!error!rate!and!the!starting!points!of!the!reads!have!

the!same!distribution!as!the!true!underlying!distribution.!

!

There! are! several! common! problems! that! need! to! be! typically! addressed! by! the!

assembly!algorithms:!!

• It! is! very! difficult! to! distinguish! between! genuine! strain! variation! and!

sequencing!errors! for!similar!but!distinct! strains!within!a!metagenome!sample!

(Laehnemann! et6 al.,! 2016).! For! instance,! to! distinguish! single! nucleotide!

polymorphisms! (SNPs)! from! substitution! errors! introduced! by! a! sequencing!

platform! is! a! very! difficult! task.! It! has! been! shown! in! the! CAMI! challenge!

(Sczyrba!et6al.,!2017)!that! the!current!metagenome!assemblers!are!not!capable!

of! reconstructing! strainJlevel! variants.! Moreover,! lowJabundant! strains! are!

oftentimes! considered! to! be! sequencing! errors! and! thus! removed! from! the!

resulting!assembly!(Nagarajan!and!Pop,!2013;!Zerbino!and!Birney,!2008).!!

• Repetitive! sequences! within! a! genome! that! are! longer! than! a! read! length! are!

usually! assembled! only! into! one! consensus! sequence! or! may! lead! to!

misassemblies.! Although,! resolving! repetitive! sequences! has! theoretical! limits!

for!short!reads!(Kingsford!et6al.,!2010),!the!use!of!the!pairedJend!reads,!the!use!

of! several! libraries!with! different! insert! sizes! and! the! use! of! a! combination! of!

two!sequencing!platforms!were!shown!to!overcome!these!limits!in!some!cases!!

(Treangen!and!Salzberg,!2011).!

• In!the!case!that!not!enough!data!was!sequenced,!the!resulting!assembly!not!only!

contains! gaps,! but! it! can! also! result! in! incorrect! assembly.! For! instance,! it! can!

contain! chimeras,! i.e.! artificial! consensus! sequences! consisting! of! reads!

originating!from!different!genomes.!

• Uneven! coverage! and! potentially! also! GC! bias! are! further! challenges! for! the!

assembly!methods.!

• Assembly! is! a! very! computationally! demanding! task;! therefore! heuristic!

approaches! are! needed! to! find! an! approximate! solution! that! is! good! enough.!

Nevertheless,!efficient!use!of!the!main!memory!and!parallelization!are!required!

due!to!the!increasing!amounts!of!the!sequencing!data!(D.!Li!et6al.,!2015).!
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!

Even!though!many!assembly!methods!have!been!developed!so!far,!the!current!assembly!

tools! still! have! issues! to! tackle! all! of! the! aboveJmentioned! problems! sufficiently!well.!

Therefore,!new!assembly!approaches!still!need!to!be!developed.!!

!

1.4 Taxonomic&binning&
!

To! answer! the! question:! “Who! is! there! and!what! are! they! doing?”! –!many! taxonomic!

assignment! methods! have! been! developed! to! enable! characterizing! environmental!

microbial!communities.!The! input!of!a! taxonomic!assignment!method! is!either!a!set!of!

raw! reads! output! by! a! sequencing! platform! or! longer! assembled! contigs! of! a!

metagenome! sample.! Given! such! input! dataset,! the! goal! of! the! taxonomic! assignment!

methods! is! to! assign! a! taxonomic! identifier! to! each! input! sequence.! A! taxonomic!

identifier! corresponds! to! a!node! in! a! treeJlike!hierarchical! structure,! called! taxonomy.!

Here,! we! will! refer! to! the! NCBI! taxonomy! (Federhen,! 2011)! that! is! the! most! used!

taxonomy!in!the!field!of!metagenomics,!to!our!knowledge.!Note!that!there!are!also!other!

taxonomy!databases,!e.g.!RDP!(J.!R.!Cole!et6al.,!2007),!Greengenes!(DeSantis!et6al.,!2006)!

or! Silva! (Quast!et6al.,! 2013).! In! the!NCBI! taxonomy! (Fig!1.1),! a! sequence! is! assigned! a!

taxonomic! identifier! at! a! particular! taxonomic! rank,! where! the! main! NCBI! taxonomy!

ranks,! as! seen! from! the! taxonomy! “root”,! are:! superkingdom,! phylum,! class,! order,!

family,!genus!and!species.!Here,!an!assignment!of!a!sequence!to!the!root!of!the!taxonomy!

is!equivalent!to!a!sequence!not!being!assigned.!Ideally,!a!sequence!would!be!assigned!to!

a!taxonomic!identifier!as!low!in!the!taxonomy!as!possible!(i.e.!to!genus!or!species),!but!

not!lower.!For!instance,!if!a!sequence!originates!from!a!species!that!is!a!known!species,!

the!sequence!should!be!assigned!at!the!species!rank.!However,!if!a!sequence!originates!

from!a!species!that! is!a!novel!species,!but!originates! from!a!known!genus,! it!should!be!

assigned!at!the!genus!rank.!Here,!a!species!is!considered!to!be!a!known!species,!if!there!

is!sufficient!reference!data!available! for!this!species!that!enables!confident!assignment!

of!sequences!to!this!species.!Analogously,!a!genus!is!considered!to!be!a!known!genus,!if!

there! is! sufficient! reference! data! available! that! enable! confident! assignment! of! the!

sequences!to!this!genus.!Therefore,!if!there!is!no!reference!data!for!a!novel!species!in!the!

reference!sequence!database!available,!the!corresponding!sequence!should!be!assigned!

at!a!higher!taxonomic!rank,!at!which!sufficient!reference!data!is!available,! i.e.!genus!or!

higher.! This!means! that! a! sequence! cannot! be! assigned! to! taxa,! for!which! there! is! no!

reference! data! available.! Note! that! here! the! “sufficient! reference! data! available”!

oftentimes! depends! on! the! taxonomic! assignment! method! that! is! being! used.! For!
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instance,!PhyloPythiaS!needs!only!100!kb!of!reference!data!for!a!species!(Patil,!Haider,!et6

al.,!2011).!

!

!

!

+

Figure+1.1.!An+example+of+the+taxonomy+representing+the+lineage+of+strain:+E.0coli01A.!

!

The! result! of! a! taxonomic! assignment! method! can! be! interpreted! as! a! taxonomic!

binning,!where!the!resulting! ‘bins’!of!sequence!fragments! that!were!assigned!the!same!

taxonomic!identifier!represent!draft!genomes!or!panJgenomes!of!the!different!microbial!

community!members.!The!subsequent!analysis!of!these!bins!then!allows!characterizing!

the!functional!and!metabolic!potential!for!individual!taxa.!

!

Challenges!for!the!taxonomic!assignment!methods:!

• Correctly!identify!taxa!that!are!part!of!the!sampled!microbial!community.!

• Correctly! assign! sequences! originating! from! novel! environments,! i.e.!

metagenome!samples!containing!novel!taxa!(e.g.!species),!for!which!there!are!no!

reference!sequences!(i.e.!genomes!or!draft!genomes)!available.!

• Correctly!assign!the!taxonomic!rank!at!which!a!sequence!is!assigned!a!taxonomic!

identifier,!i.e.!correctly!assign!a!sequence!to!lowJranking!taxa,!but!not!lower.!
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• With! increasing! amounts! of! the! sequencing! data,! high! throughput! taxonomic!

binning!methods!are!required.!

• Remove!noise!(e.g.!sequencing!errors)!and!contamination!(e.g.!human!DNA).!

!

As! there! is! a! plethora! of! taxonomic! binning! methods! currently! available,! the! CAMI!

challenge1!was! established! to!help! researchers! to!decide!what! tool! is! best! suited! for! a!

particular!application!(Sczyrba!et6al.,!2017).!Individual!tools!have!been!evaluated!using!

several! datasets! and! ranked! according! to! several! metrics.! Based! on! the! results,! a!

researcher!can!thus!decide!which!tool!s/he!would!use!for!a!particular!application.!Even!

though!many!taxonomic!binning!tools!have!been!developed,!it!is!still!considered!to!be!a!

challenging! task,! in! particular,! to! correctly! assign! metagenome! sequences! originating!

from!novel!environments!and!to!correctly!assign!metagenome!sequences!to!lowJranking!

taxa.!Therefore,!new!taxonomic!binning!methods!are!still!needed.!!

!

1.5 Methods&for&sequence&analysis&
!

In! this! section,!we!will! introduce!basic! concepts!of! the!methods! for! sequence!analysis!

that!we!have!used! in!our!work!as! subJroutines.! First,!we!will!describe!overlap!and!de6

Bruijn!graphs!that!are!used!for!sequence!assembly.!Then,!we!will!describe!how!hidden!

Markov!models!can!be!used!to!find!homologous!sequences.!We!will!conclude!this!section!

with! two! methods! that! can! be! used! for! the! metagenome! sequence! classification:!

Bayesian!classifier!and!support!vector!machines.!

!

1.5.1 Overlap&and&de#Bruijn&graphs&
!

The!current!assemblers!are!based!on!the!overlap!or!de6Bruijn!graphs.!The!former!class!

of! assemblers! is! based! on! the! overlapJlayoutJconsensus! approach,! where! each! read!

represents!a!node!and!there!is!an!edge!connecting!a!pair!of!nodes!for!each!pair!of!nodes!

that! has! sufficient! overlap.! By! resolving! the! graph! layout! problem! for! a! particular!

overlap!graph,!paths!through!the!graph!that!correspond!to!the!output!contigs!are!found.!

Assemblers!using!this!approach!are,!e.g.!TIGR!(Sutton!et6al.,!1995),!Celera!(Myers!et6al.,!

2000),!ARACHNE!(Batzoglou!et6al.,!2002),!SGA!(Simpson!and!Durbin,!2012),!SAT!(Zhang!

et6al.,!2014)!and!SAVAGE!(Baaijens!et6al.,!2017).!As!the!overlap!graphs!can!become!very!

large!and!difficult!to!traverse!for!the!current!sequencing!projects!that!make!use!of!short!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!http://www.camiJchallenge.org!
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Illumina!reads,!assemblers!based!on!the!de6Bruijn!graphs!are!oftentimes!used!instead!of!

the! overlap! graphs.! The! first! assembler! that! employed! the! de6 Bruijn! graphs! was! the!

EULER!assembler!(Pevzner!et6al.,!2001).!A!nice!description!of!a!very!popular!tool!using!

this!approach!is,!e.g.!Velvet!(Zerbino!and!Birney,!2008).!As!described!in!(Pevzner!et6al.,!

2001),! this! approach! may! look! counterintuitive,! as! small! pieces! of! a! big! puzzle! are!

broken!into!even!smaller!pieces!of!fixed!size!!.!To!construct!a!de6Bruijn!graph!from!a!set!
of!reads!for!a!given!!,! from!each!read!of!length!!,!! − ! + 1!overlapping!subJsequences!
of!length!!,!with!an!overlap!length!! − 1!(between!each!neighboring!subJsequences)!are!
generated.!Unique!subJsequences!of! length!!,! generated! from!the!reads,!correspond!to!
the!nodes!of!the!corresponding!de6Bruijn!graph.!There!is!a!directed!edge!connecting!each!

node!!!!to!each!node!!!!if!the!last!! − 1!nucleotides!of!node!!!!are!the!same!as!the!first!
! − 1 !nucleotides! of! node!!! .! For! a! large! dataset,! consisting! of! short! reads! and!
containing!many! duplicate! reads,! the! advantage! of! the!de6Bruijn! graph! is! that! its! size!

corresponds! to! the!number!of! unique! subJsequences! –!words!of! length!!!(i.e.!kJmers),!
generated!from!the!input!reads.!Even!though!such!a!graph!is!usually!still!bigger!than!the!

corresponding! overlap! graph! in! the! main! memory,! the6 de6 Bruijn! graph! is! oftentimes!

much!manageable!and!faster!to!traverse.!!

!

Methods!based!on!the!overlapJlayoutJconsensus!approach!consist!of!three!main!steps.!In!

the! first! “overlap! step”,! distances! among! all! reads! are! computed,! based! on!which! the!

overlap! graph! is! built.! In! the! second! “layout! step”,! subJgraphs! of! the! overlap! graph!

representing! longer! continuous! sequences! (i.e.! contigs)! are! identified.! In! the! third!

“consensus”!step,!reads!of!the!respective!subJgraphs!are!put!together!to!form!consensus!

sequences!of!the!contigs.!As!described!in!(Sutton!et6al.,!1995),!the!first!“overlap!step”!can!

be! done,! e.g.! using! the! SmithJWaterman! algorithm! (Smith! and!Waterman,! 1981).! This!

algorithm!can!be!applied!to!find!a!pair!of!segments!within!a!pair!of!long!sequences!(i.e.!

one! segment! within! each! of! the! long! sequences),! such! that! there! is! no! other! pair! of!

segments! within! the! long! sequences! with! greater! sequence! similarity.! The! algorithm!

thus! finds!an!optimal! local!alignment!of! the! two! long!sequences,!which!can!be!used!to!

derive!a!similarity!score,!i.e.!the!distance!between!the!two!long!sequences.!As!described!

in!(Pevzner!et6al.,!2001),!the!second!“layout!step”!–!the!layout!problem!is!equivalent!to!

finding! a! Hamiltonian! path! in! the! overlap! graph! (Matousek! and! Nesetril,! 2009),! i.e.!

finding! a! path! visiting! every! node! of! the! graph! exactly! once.! Unfortunately,! the!

Hamiltonian! path! problem! is! a! NPJcomplete! problem;! therefore! there! is! no! available!

polynomial!algorithm!that!would!solve!it.!!!

!
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In! the! methods! based! on! the! de6 Bruijn! graphs,! kJmers! are! generated! from! the! input!

reads,!which!are!subsequently!used!to!build!the!de6Bruijn!graphs.!Note!that!there!is!no!

need! to! compute! read!overlaps,!which!makes! the! construction!of! the!de6Bruijn! graphs!

faster!in!comparison!to!the!construction!of!the!corresponding!overlap!graphs.!After!a!de6

Bruijn!graph! is!build,! the!assembly!problem!reduces! to! finding!an!Eulerian!path! in! the!

graph!that!is!consistent!with!all!the!read!paths,!where!a!read!path!for!a!read!is!a!path!in!

the!graph!corresponding!to!a!particular!read!(Pevzner!et6al.,!2001).!An!Eulerian!path!is!a!

path!visiting!every!edge!of!the!graph!exactly!once!(Matousek!and!Nesetril,!2009),!where!

there!is!a!linear!algorithm!for!this!problem.!!

!

The!main!challenges!for!the!assemblers!using!either!the!overlap!or!the!de6Bruijn!graphs!

are!to!eliminate!errors!and!resolve!repeats.!

!

Sequencing! errors! in! the! overlap! graphs! are! usually! eliminated! by! inspecting! the!

multiple! sequence! alignments! of! the! overlapping! reads,! this! strategy! is! used,! e.g.! in!

(Batzoglou!et6al.,!2002).!In!the!de6Bruijn!graphs,!sequencing!errors!create!artifacts!in!the!

graphs! that! need! to! be! removed.! For! instance,! as! described! in! (Zerbino! and! Birney,!

2008;! Zerbino! et6 al.,! 2009):! “tips”,! “bubbles”! and! erroneous! connections! need! to! be!

removed.! A! “tip”! is! a! chain! of! nodes! that! is! connected! to! the! graph! only! on! one! end.!

“Tips”! shorter! than!2 ∗ !!are! removed,! as! it! is! likely! that! they! represent! two! nearby!
sequencing!errors.!Two!similar!paths!in!the!graph!that!both!start!in!one!node!and!both!

end! in!another!node!represent!a! “bubble”.!A! “bubble”! is! created!as!a! result!of!either!a!

sequencing!error!or!genuine!polymorphism,!e.g.!a!SNP.!Similar!paths!can!be!found!by!a!

DijkstraJlike!breadthJfirst!search!algorithm!(Dijkstra,!1959;!Zerbino!and!Birney,!2008).!

After!the!paths!are!found,!the!corresponding!sequences!are!extracted!and!aligned.!In!the!

case!that!the!sequences!are!similar!enough,!they!are!merged!into!a!consensus!sequence.!

As!the!last!error!correction!step,!paths!with!coverage!lower!than!a!certain!threshold!are!

removed,!as!they!are!likely!to!represent!erroneous!connections!in!the!graph.!

!

A!repeat!is!either!a!sequence!that!is!present!multiple!times!in!a!genome!or!a!set!of!very!

similar!sequences!that!are!present!in!a!genome.!While!a!repeat!is!represented!as!a!set!of!

nodes!in!the!overlap!graphs,!it!is!represented!by!an!edge!in!the!de6Bruijn!graphs.!Due!to!

the!representation,!it!is!easier!to!resolve!repeats!using!the!pairedJend!information!when!

using!de6Bruijn!graphs!in!general.!In!the!overlap!graphs,!repeats!can!be!resolved!based!

on! the! partial! read! overlaps! and! pairedJend! information,! although! this! can! be! a!

challenging!task!(Pevzner!et6al.,!2001;!Zerbino!and!Birney,!2008).!Note,!that!repeats!that!
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are!longer!than!a!fragment!size!are!oftentimes!more!difficult!to!be!resolved!than!shorter!

repeats.!

!

Both!overlap! and!de6Bruijn! graphs! are! employed! in! the! current! assemblers.!While! the!

overlap!graphs!tend!to!have!better!error!correction!for!datasets!containing!longer!reads,!

the!use!of!the!de6Bruijn!graphs!is!advantageous!for!assembling!large!datasets!containing!

short!reads!and!to!resolve!repeats.!

!

1.5.2 Hidden&Markov&models&
!

Hidden! Markov! models! (HMMs)! can! be! used! to! represent! gene! domains! and! to! find!

remote! homologs! of! the! gene! domains! (Finn! et6al.,! 2016;! Eddy,! 2011).!We! have! used!

HMMs! to! group! reads! into! gene! domains! in! the! Snowball! gene! assembler! (Gregor,!

Schönhuth,!et6al.,!2016).!In!the!PhyloPythiaS+!taxonomic!binning!method,!we!have!used!

HMMs! to! find!marker! genes!within! the! input! sequences! (Gregor,! Dröge,! et6 al.,! 2016).!

Given! a! multiple! sequence! alignment! of! homologous! amino! acid! sequences! of! a!

particular! gene! domain,! an!HMM! representing! the! gene! domain! can! be! built.! Such! an!

HMM!can!subsequently!be!used!to!detect!remote!homologs,!i.e.!given!a!query!sequence!

and!the!HMM,!the!probability!that!the!query!sequence!belongs!to!the!gene!domain!can!

be!computed.!

!

The!first!order!HMM!is!defined!as!a!tuple! !,!, !, ! ,!where!!!is!a!set!of!states,!!!is!a!set!

of!words,!t!is!a!transition!probability!and!e!is!an!emission!probability!(Duda!et6al.,!2000).!

The!probability!that!the!current!state!is!!! ∈ !!given!that!the!previous!state!was!!!!! ∈ !!
is!! !! ! !!!!! .! The! probability! that! word!!! ∈ !!is! emitted! at! state!!! ∈ !!is!! !! ! !!! .!
The! probability! of! a! sequence! of! words! (e.g.! amino! acids)! !!,… ,!! !and! the!

corresponding!sequence!of!states! !!,… , !! !given!an!HMM!is:!

!

! !"#$", !!,!!, !!,!!, . . . , !! ,!! , !"#$ = ! ! !! ! !!! ∗ ! !! ! !!!!!
!!!

!!!
!

!

!

!

!
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The!probability!that!the!query!sequence! !!,… ,!! !belongs!to!a!particular!gene!domain!
can!be!computed!using!the!forward!algorithm!as:!

!

For!each!!!!!!:!!
!

!! ! = ! !! !! ∗ ! !! !!"#$" !
!

For!each!!!!! 2,… , ! − 1 !and!for!each!!!!!!:!
!

!! ! = ! !! ! !! ∗ ! ! !! !!! ∗ !!!! !!
!!!"

!

!

For!each!!!!!!:!!
!

!! ! = ! !"#$! !! ∗ !! !!! !! ∗ ! !! !!!
!!!"

∗ !!!!! !! !

!

The!final!probability!is:!

!

! !"#$%!!"#$"%&"! !!,… ,!! ! !!""!!"!!!!"#$%&'("#!!"#"!!"#$%& = ! !! !
!"#

!

!

The!forward!algorithm!thus!computes!the!final!probability!as!the!sum!of!probabilities!of!

all! possible! paths! through! the! HMM! state! diagram! that! could! generate! the! query!

sequence! !!,… ,!! .!!!
!

!

!
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!

+

Figure+1.2.!An+example+of+a+typical+state+diagram+of+an+HMM+representing+a+gene+domain.!

!

As! described! in! (Johnson,! 2006),! an!HMM! for! a! gene! domain! can! be! represented! as! a!

state! diagram! (Fig.! 1.2),! where! states! are! represented! by! nodes! and! directed! edges!

represent! transitions! between! the! nodes.! The! rectangle! match! states! !!,!!,!! !

correspond! to! the! conserved! columns! of! the! corresponding! multiple! sequence!

alignment.! The! emit! probabilities! at! the! match! states! correspond! to! the! normalized!

counts! of! amino! acids! in! the! respective! conserved! columns! of! the! multiple! sequence!

alignment.!The!diamond!shape! insert! states! !!, !! !represent! insertions!of! amino!acids!
between! the! match! states.! The! round! delete! states! !!,!!,!! !represent! silent! states!
that!do!not!emit!any!amino!acid.!The!P!(i.e.!prefix)!and!S!(i.e.!suffix)!states!represent!the!

prefix!and!suffix!amino!acid!sequences!of!the!gene!domain!within!a!query!sequence.!The!

C! (i.e.! copy)! state!allows!multiple! copies!of! the!gene!domain!within!a!query! sequence.!

The!dotted!lines!allow!a!partial!match!of!a!query!sequence!to!the!gene!domain.!States!B!

and!E!represent!the!beginning!and!the!end!of!the!gene!domain,!respectively.!!

!

1.5.3 Bayesian&classifier&
!

A! naïve! Bayesian! classifier! can! be! used! for! confident! taxonomic! classification! of! the!

bacterial!16S!rRNA!partial!gene!sequences!(Q.!Wang!et6al.,!2007;!Rosen!et6al.,!2011).!We!

have! employed! the! naïve! Bayesian! classifier! to! taxonomically! classify! marker! gene!

sequences!found!by!HMMs!within!the!input!sequences!of!PhyloPythiaS+!(Gregor,!Dröge,!

et6 al.,! 2016).! These! sequences! carrying! marker! genes! were! subsequently! used! as!
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training! data! for! the! composition! based! taxonomic! binning! using! structured! support!

vector! machines! (SVMs).! Let!! = ! !!,… , !! !be! a! set! of!!!!!ℕ !distinct! classification!
classes,! e.g.! different! genera! !"#ℎ!"#$ℎ!", !"#$%&'##",!"#$%&ℎ!"#$,… .!Let!! !! !for!
! ∈ 1,… , ! !be! prior! probabilities! of! the! individual! classes,! e.g.!! !"#ℎ!"#$ℎ!" !is! the!

prior! probability! that! a! randomly! drown! sequence! from! a! metagenome! sample! has!

genus! Escherichia.! Let!! !be! a! function! that! assigns! a! dJdimensional! feature! vector!
!! ∈ !ℝ! !to! every!query! sequence!!!that! can!be!drawn! from!a!metagenome! sample,! i.e.!
! = ! ! .! Let!! !! !!! !for!! ∈ 1,… , ! !be! the! class! conditional! probability! (likelihood),!

i.e.! the! probability! that! feature! vector!!!was! produced! by! function!!!for! a! sequence!
originating! from! genus!!! .! As! described! in! (Duda! et6 al.,! 2000),! the! Bayes! formula! is!
defined!as:!

!

! !! ! !! = !! !! !!! ∗ ! !!
! ! !

!

Where!the!evidence!factor!is:!

!

! ! = ! ! !! !!! ∗ ! !!
!

!!!
!

!

Given! a! query! sequence!!!drawn! from! a! metagenome! sample! and! the! corresponding!
! = ! ! ,! the! posterior! probability!! !! ! !! !is! computed! for! each! class,! where! ! ∈
1,… , ! .!The!sequence!s!is!then!assigned!to!the!class!(genus)!!! !for!which!the!posterior!
probability! is! the!highest,! i.e.!! !! ! !! = !max!∈ !,…,! ! !! ! !! .!Note! that! the!evidence!

factor!! ! !is!not!necessary!for!the!decisionJmaking!and!is!used!only!to!guarantee!that!

the!posterior!probabilities!sum!up!to!one.!

!

As!described! in! (Q.!Wang!et6al.,! 2007),! for! the! classification!of! the!bacterial! 16S! rRNA!

partial! gene! sequences,! a! feature! space! consisting! of! all! 8Jmers! showed! the! best!

performance.! An! 8Jmer! is! a! word! of! length! eight! that! is! a! subJsequence! of! the! query!

sequence!!.! As! there! are! ! = 4! = 65,536 !distinct!8Jmers,! a! query! sequence!!!can!be!
represented! by! a! feature! vector!!! ∈ ! 0, 1 ! ,! where!!! = 1!if! the!8Jmer!with! index!!!is!
present! in! the! query! sequence!!,! else!!! = 0,! for!!! ∈ ! 1,… ,! .! Given! a! set! of! training!
sequences! for! each! genus!!! ,! the! probabilities!! !! ! !!! !can! be! estimated,! for! each!! ∈
1,… , ! !and!each!!! ∈ ! 1,… ,! .!Where,!! !! ! !!! !is! the!probability!that!an!8Jmer!with!
index!!!is!contained!within!a!sequence!originating!from!genus!!! .!Let!!!!be!the!set!of!all!
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8Jmers! contained! in! the! query! sequence! ! ,! i.e.! ! = !! ! !and!

!! = ! !! ! !∀!! ∈ ! 1,… ,! !!. !. !! = 1 .! The! probability! that! the! query! sequence! !!
originating! from! genus!!! !contains! a! set! of! 8Jmers!!!!can! be! estimated! as!! !!! !!! =
! ! !! ! !!!!!∈!! .! The! class! conditional! probability! from! the! Bayes! formula! is! thus!

! !! !!! = !! !!! !!! .!In!the!case!that!the!prior!probabilities!are!equal,!i.e.!all!genera!are!
equally! likely,! the! classification! depends! only! on! the! class! conditional! probabilities!

! !! !!! .! Therefore,! a! sequence!!!is! assigned! to! class! (genera)!!! ,! for! which! the! class!
conditional! probability!! !! !!! !is! the! highest.! Note,! that! such! a! classifier! is! called!
“naïve”!since!we!assume!that!the!8Jmers!represent!independent!features,!although!this!

condition! is!violated,!as!overlapping!8Jmers!are!actually!dependent! features.!Also!note!

that! the! sequence! classification! at! taxonomy! ranks! different! from! the! genus! rank! is!

analogous.!

!

1.5.4 Support&vector&machines&
!

Support! vector! machines! (SVMs)! (Vapnik,! 1995;! Duda! et6 al.,! 2000)! have! been!

successfully!employed!to!taxonomically!classify!DNA!sequences!of!metagenome!samples!

(McHardy!et6al.,!2007;!Patil,!Haider,!et6al.,!2011).!We!have!also!employed!SVMs!for!the!

composition!based!taxonomic!classification!of!metagenome!sequences!in!PhyloPythiaS+!

(Gregor,! Dröge,! et6 al.,! 2016).! Let!! = !ℝ! !be! the! input! space! of! dJdimensional! feature!
vectors! representing!DNA! sequences! of! variable! lengths.! For! instance,! as! described! in!

(Patil,! Haider,! et6 al.,! 2011),! a! feature! vector! for! a! DNA! sequence! corresponds! to! the!

frequencies!of!4–6Jmers!that!are!further!normalized!by!the!sequence!length!and!scaled,!

such!that!the! individual! features!are!from!the!normal!distribution!with!zero!mean!and!

standard! deviation! one,! i.e.! !! ∈ ! 0, 1 !for! ! ∈ ! 1,… ,! !and! ! = !4! + 4! + 4! =
!5,376 .! Such! a! feature! vector! representation! was! chosen! since! the! composition! of!

genomic!sequences!carries!a!phylogenetic!signal!(McHardy!et6al.,!2007;!Patil,!Haider,!et6

al.,!2011).!Let!! = !ℤ! !be! the!rJdimensional!output!space!representing!sequence! labels,!
i.e.! taxonomic!assignments!of!the!DNA!sequences.!Given!a!set!of!! ∈ ℕ!labeled!training!
samples!! = ! !!,!! ∈ !!×!!! !! ∈ 1,… ,! ,! the! goal! of! a! support! vector! machine!

framework! is! to! learn! the! underlying! function!!:!! → ! !in! the! training! phase.! The!
challenge!is!to!learn!the!function!!,!such!that!it!has!a!good!generalization!property,!i.e.!it!
correctly!assigns!labels!from!!!to!all!the!input!data!from!!!that!were!previously!not!seen!
in!the!training!phase.!

!
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Let!us!consider!a!simple!classifier!that!is!based!on!linear!SVMs,!described!in!(Duda!et6al.,!

2000).! Let!! = !ℝ! !be! the! dJdimensional! input! space! as! described! in! the! previous!
paragraph.! Let!! = ! −1, 1 !be! the! oneJdimensional! output! space! representing! two!

genera:! −1 !~!!"#ℎ!"#$ℎ!"!and! 1 !∼ !!"#$%&'##".!Let!!!be!the!set!of!training!samples!
! = ! !!, !! ∈ !!×!!! !! ∈ 1,… ,! .! The! goal! of! linear! SVMs! is! to! find! a! hyperplane,!

defined!by!the!weight!vector!! ∈ !ℝ!!!,!which!separates!samples!with!label! −1 !from!
samples! with! label! 1 !by! maximizing! the! margin,! i.e.! the! distance! between! the!

hyperplane!and! the!closest!point! to! the!hyperplane.!The!classification! function,! i.e.! the!

estimate!of!!,!is!defined!as:!
!

! ! = !"#$ !! ∗ !!! + !!!
!"! !,…,!

!

!

In! the! formula,! the!!"#$ !function! assigns! 1 !for! positive! input! values! and! −1 !for!

negative!inputs!values,!else!zero.!The!weight!vector!!+can!be!found!by:!!
!

! = arg min
!!∈ℝ!!!

1
2 ∗ !! ! !

!

Such!that:!

!

!! ∗ ! !! ∗ !!!,! + !!!
!"! !,…,!

!≥ 1,∀!! ∈ ! 1,… ,! !!

!

Here,!we!are!searching!for!the!simplest!solution!–!the!weight!vector!!,!such!that!all!the!
training!samples!are!classified!correctly!with!the!margin!of!at!least!one.!!

!

As!the!training!samples!are!oftentimes!not!separable!by!a!hyperplane,!a!certain!error!is!

allowed! in! the! training! phase.! This! is! done! by! the! introduction! of! the! slack! variables!

!! ∈ !ℝ!!and!the!tradeJoff!parameter!! ∈ ℝ!.!In!this!“relaxed”!settings,!the!weight!vector!
!!can!be!found!by:!
!

! = arg min
!!∈ℝ!!!,!!∈!ℝ!

1
2 !∗ ! !

! ! + !!! !∗ ! !!
!∈! !,…,!

, !! !≥ 0!∀!! ∈ ! 1,… ,! !

!
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Such!that:!

!

!! ∗ ! !! ∗ !!!,! + !!!
!"! !,…,!

!≥ 1 − !!! ,∀!! ∈ ! 1,… ,! !!

!

In! this! formulation,! the! slack! variable!!! !represents! a! maximum! error! allowed! per! a!
training!sample.!The!tradeJoff!parameter!!!represents!how!many!errors!we!allow!in!the!
training! phase.! Note! that! the! detailed! description! of! how! the! weight! vector!!!can! be!
found! is! described! in! (Vapnik,! 1995;! Duda! et6 al.,! 2000).! After! the! weight! vector!!!is!
found!based!on!the!training!samples!from!!,!the!classification!function!!!can!be!used!to!
classify!unlabeled!DNA!sequences,!originating!from!either!Escherichia!or!Salmonella,! to!

either!Escherichia!or!Salmonella.!

!

In! the! taxonomic! classification! method! PhyloPythiaS! (Patil,! Haider,! et6 al.,! 2011),!

structured!SVMs!were!used.!Let!! = !ℝ! !be!the!dJdimensional!input!space!as!described!
in!the!first!paragraph!of!this!section.!Let!! = ! {0, 1}! !be!the!rJdimensional!output!space!
representing! taxonomic! assignments! of! the! DNA! sequences.! Here,! the! output! space! is!

structured!and!represents!a!part,!i.e.!a!subJtree!of!the!taxonomy!tree,!where!each!node!

of!the!subJtree!is!assigned!a!unique!index!! ∈ [1,… , !].!A!label!! ∈ !!represents!a!path!in!
the! taxonomy! subJtree! from! the! root! to! one! of! its! leafs,! such! that! if! the! node! of! the!

taxonomy!subJtree!with!index!! ∈ [1,… , !]!is!on!the!path!then!!! !is!set!to!one,!else!zero.!
Let!∆ !,! !be! the! loss! function!defining! the!discrepancy!between!two!outputs!!,! ∈ !,!
which!is!defined!as!the!length!of!the!shortest!path!connecting!two!leaf!nodes!of!the!two!

paths!!!and!!.! Let!Ψ !,! !∈ ℝ! !be! the! joint! feature! map! that! encodes! correlations!
between!different!inputs!and!outputs.!The!classification!function!is!defined!as:!

!

! ! = argmax
!∈!

!!Ψ !,! !

!

A!DNA!sequence!corresponding!to!feature!vector!!!is!thus!assigned!to!label!!!for!which!
the! scalar! product!!!Ψ !,! !is! the! highest.! The! weight! vector!!!!!ℝ!!can! be! found!
using!the!maximum!margin!structured!support!vector!machine!framework!by:!

!

! = arg min
!!∈ℝ!,!!∈!ℝ!

1
2 !∗ ! !

! ! + !!! !∗ ! !!
!∈! !,…,!

, !! !≥ 0!∀!! ∈ ! 1,… ,! !
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!

Such!that:!

!

!! Ψ !!,!! − !Ψ !!,! !≥ 1 − ! !!
∆ !!,!

!! ,∀! ∈ 1,… ,! !∀! ∈ !!!

!

For!further!details!on!the!method,!see!to!the!supplemental!material!of!(Patil,!Haider,!et6

al.,!2011).!

+

1.6 Outline&
!

This!dissertation!is!a!cumulative!dissertation!that!consists!of!two!main!publications!that!

I! published!as! the! first! author! in!peerJreviewed! international! journals!during!my!PhD!

studies.! The! goal! of! this! dissertation! was! to! enrich! the! field! of! bioinformatics! and!

metagenomics! by! developing! new!methods! that! will! help! researchers! to! analyze! and!

interpret!their!data.!The!articles!are!ordered!in!a!logical!order.!As!assembly!is!oftentimes!

performed!before!taxonomic!binning,!we!first!describe!our!gene!assembler!and!then!our!

taxonomic!binning!method.!Chapter!1!puts!our!work!into!a!larger!scientific!context.!We!

introduce!the!field!of!metagenomics!and!describe!methods!for!sequence!analysis!that!we!

employed! as! subJroutines! in! our! work.! In! Chapter! 2,! I! list! all! publications! that! I! coJ

authored! during! my! PhD,! where! all! the! main! listed! publications! have! already! been!

published! in! peerJreviewed! international! journals.! The! main! publications! of! this!

dissertation! are! in! Chapters! 3! and! 4,! where both articles are identical to the published 

versions except for section numbering and formatting. Chapters! 5! and! 6! contain! the!

synopsis!and!a!list!of!all!references!used!in!this!work,!respectively. The original versions 

of the published articles can be found in Chapter 7. 

!

Snowball:+strain+aware+gene+assembly+of+metagenomes+

We! have! developed! a! strain! aware! gene! assembler! for! metagenomes,! described! in!

Chapter! 3.! To! the! best! of! our! knowledge,! this! is! the! first! gene! assembler! for!

metagenomic!data!that!can!distinguish!gene!variants!of!individual!strains!without!using!

closely! related! reference! genomes! of! the! studied! species.! This! is! a! very! important!

property!as!metagenomes!originating!from!novel!environments!oftentimes!contain!new!

unknown! species! for!which! there! are! no! closely! related! reference! genomes! available.!

Moreover,! for!many!purposes,! including! functional! analysis! of!metagenomic!data,! it! is!

sufficient! to! assemble! only! the! coding! sequences! of! the! strains,! as! usually!more! than!
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85%!of!prokaryotic!genomes!are!coding!sequences!(S.!Cole!and!SaintJGirons,!1999).!We!

believe! that! this!method!will! be!useful! for! researchers! studying!gene!variation!among!

strains,!genes!under!selection,!virulent!genes!and!species!evolution.!

!

PhyloPythiaS+:+a+self6training+method+for+the+rapid+reconstruction+of+low6ranking+

taxonomic+bins+from+metagenomes!

!

We! have! developed! an! automated! composition! based! taxonomic! binning! method,!

described!in!Chapter!4.!This!method!is!a!successor!to!the!PhyloPythiaS!(Patil,!Haider,!et6

al.,!2011)!software.!We!have!fully!automated!this!method!by!adding!a!new!markerJgene!

based! framework! that!automatically!determines! the!most! relevant! taxa! to!be!modeled!

and!suitable!training!sequences!directly!from!the!input!metagenome!sample.!To!the!best!

of! our! knowledge,! this! is! the! first! method! that! combines! taxonomic! profiling! and!

subsequent! taxonomic! composition! based! binning! of! the! whole! input! metagenome!

sample.!Moreover,!we!developed!a!new!kJmer!counting!algorithm!that!accelerated! the!

whole! method! and! showed! stateJofJtheJart! performance! for! the! simultaneous!

enumeration!of!4–6Jmers,!which!is!commonly!used!for!composition!based!binning.!We!

also! extensively! evaluated! the! whole! automated! taxonomic! binning! pipeline! by!

comparing! it! to! the!other!methods!and!devised! several!new!evaluation!measures.!The!

results!showed!that!our!method!performed!especially!well!for!samples!originating!from!

novel! environments! in! comparison! to! the! other! methods.! These! results! were! also!

confirmed! in! the! CAMI! challenge! (Sczyrba! et6 al.,! 2017),! in! which! PhyloPythiaS+!

demonstrated! its! high! recall! and! ability! to! correctly! assign! taxa! that! have! longer!

taxonomic! distances! to! the! known! reference! genomes! or! draft! genomes.! This! is! very!

important! for! researchers! studying! metagenome! samples! originating! from! novel!

environments,! for! draft! genome! reconstruction! and! for! the! subsequent! functional!

analysis!of!the!studied!metagenome!microbial!communities.!!

!

!

!

 

!

!!

! !
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Abstract&
!

Motivation:! Gene! assembly! is! an! important! step! in! functional! analysis! of! shotgun!

metagenomic! data.!Nonetheless,! strain! aware! assembly! remains! a! challenging! task,! as!

current!assembly!tools!often!fail!to!distinguish!among!strain!variants!or!require!closely!

related!reference!genomes!of!the!studied!species!to!be!available.!!

+

Results:!We!have!developed!Snowball,!a!novel!strain!aware!gene!assembler!for!shotgun!

metagenomic! data! that! does! not! require! closely! related! reference! genomes! to! be!

available.!It!uses!profile!hidden!Markov!models!(HMMs)!of!gene!domains!of!interest!to!

guide!the!assembly.!Our!assembler!performs!gene!assembly!of!individual!gene!domains!

based!on!read!overlaps!and!error!correction!using!read!quality!scores!at!the!same!time,!

which!results!in!very!low!perJbase!error!rates.!

+

Availability+ and+ Implementation:! The! software! runs! on! a! userJdefined! number! of!

processor!cores!in!parallel,!runs!on!a!standard!laptop!and!is!available!under!the!GPL!3.0!

license!for!installation!under!Linux!or!OS!X!at!https://github.com/hziJbifo/snowball.!

!

!

!
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As! usually!more! than!85%!of! prokaryotic! genomes! are! coding! sequences! (S.! Cole! and!

SaintJGirons,! 1999);! gene! assembly! enables! to! recover! large! parts! of! the! respective!

genomes.!

!

Importantly,!strain!awareness! is!an!essential!goal! in!assembling!metagenomes,!since! it!

enables! us! to! study! gene! variation! among! strains! of! a! species! from! the! sequenced!

microbial!community,!which!is!where!much!phenotypic!diversity!also!arises.!However,!

the! assembly! of! closely! related! strains! remains! a! challenging! task.! Strain! aware!

assembly,!which!is!assembly!that!is!sensitive!to!closely!related!haplotypic!sequences!has!

remained! an! open! challenge! in! many! genomics! applications.! In! particular,! lowJ

abundance! strains! can! interfere! with! sequencing! errors! in! common! error! correction!

routines.! To! date,! most! assembly! tools! still! aim! to! assemble! consensus! sequence,! if!

closely!related!haplotypes!are!present!(Marschall!et6al.,!2016).!!

!

There! are! few! tools! that! enable! strain! variant! reconstruction.! They! often! rely! on! the!

availability!of!closely!related!reference!genomes!of!the!studied!species!(Ahn!et6al.,!2015;!

Töpfer!et6al.,!2014;!Zagordi!et6al.,!2011),!where!reads!are!first!mapped!onto!a!reference!

genome,!using!a!read!mapping! tool,!e.g.!BWA!(H.!Li!and!Durbin,!2009),! strain!variants!

are!then! identified!through!a!reference!guided!strain!aware!assembly.!As!metagenome!

samples!originating!from!novel!environments!typically!consist!of!novel!species!without!

reference!genomes!available,!there!is!a!need!for!new!referenceJfree!approaches.!

!

Tools!that!are!often!used!for!de6novo!metagenome!assemblies!are!Ray6Meta!(Boisvert!et6

al.,!2012),!MEGAHIT!(D.!Li!et6al.,!2015),!IDBARUD!(Peng!et6al.,!2012),!MetaVelvet!(Namiki!

et6al.,!2012)!or!SOAPdenovo2!(Luo!et6al.,!2012).!All!these!tools!are!kJmer!based,!i.e.!they!

transform!reads! into!overlapping!kJmers! from!which!de6Bruijn!graphs!are!built,!where!

paths! in! the! graph! correspond! to! the! assembled! contigs.! This! general! approach,!

however,!often!fails!to!distinguish!among!strain!variants.!There!has!been!recent!debate!

on! kJmer! based! approaches! using! de6 Bruijn! graphs! in! strain! aware! assembly.! In!

particular,! kJmer! based! approaches! can! become!misled,! when! lowJabundance! strains!

are! involved,! since! the! frequencies! of! the! lowJabundance! strains! are! on! the! order! of!

magnitude!of!the!sequencing!error!rates.!This!leads!to!unpleasant!interference!in!kJmer!

based! errorJcorrection! steps,! as! lowJabundance! strains! are! often! removed! along!with!

sequencing!errors.!For!strain!aware!assembly,!it!is!helpful!to!process!reads!at!their!full!

length,!because!this! increases!the!power!to!distinguish!lowJfrequent,!coJoccurring!true!

mutations! from! sequencing! errors.! In! this! line,! there! has! been! recent! evidence! that!
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shorter! genomes! can! be! assembled! through! overlap! graph! based! approaches,! which!

make!use!of!fullJlength!reads,!using!short!reads!(Simpson!and!Durbin,!2012).!It!was!also!

shown! that! one! can! perform! strain! aware! assembly! through! iterative! construction! of!

overlap!graphs!(Töpfer!et6al.,!2014).!For!gene!assembly!from!metagenomic!data,!the!SAT!

assembler!(Zhang!et6al.,!2014)!can!be!employed.!First,!it!assigns!reads!to!gene!domains!

of! interest! based! on! profile! hidden! Markov! models! (HMMs)! (Eddy,! 2011;! Finn! et6 al.,!

2014)!of!the!respective!gene!domains.!Then,!for!each!gene!domain,!separately,!it!builds!

overlap!graphs!based!on!the!read!overlaps,!where!the!paths!in!the!graphs!correspond!to!

the!assembled!contigs.!However,!the!SAT!assembler!does!not!implement!a!sophisticated!

errorJcorrection!strategy,!which!is!considered!crucial!for!strain!aware!assembly.!For!the!

reconstruction!of!16S!genes,!which!are!often!used!for!phylotyping,!REAGO! (Yuan!et6al.,!

2015)!can!be!employed.!Since!it!has!been!built!for!16S!genes,!the!use!of!REAGO!in!more!

generic!settings!remains!unclear.!

!

The! current! sequencing! technologies! still! produce! relatively! short! erroneous! reads,!

making! it! difficult! to! distinguish! sequencing! errors! from! genuine! strain! variation!

(Laehnemann! et6al.,! 2016).! Therefore,! referenceJfree! strain! reconstruction! of! the! fullJ

length! sequences! of! individual! strains! is! currently! considered! to! be! a! tough!

computational! challenge,! as! there! may! be! no! immediate! sufficient! information! in! the!

sequenced!data!if!mutations!are!separated!by!too!large!stretches!of!sequence!that!agree!

for!several!strains.!Therefore,!new!approaches!are!needed!that!push!the!limits!imposed!

by!the!data.!

!

Here,! we! present! Snowball,! a! novel! method! for! strain! aware! gene! assembly! from!

metagenomes! that! addresses! the! aboveJmentioned! points.! It! does! not! require! closely!

related! reference! genomes! to! be! available.! It! uses! profile! HMMs! of! gene! domains! of!

interest!as!an!input!to!guide!the!assembly.!The!HMM!profileJbased!homology!search!is!

known! to! be! capable! of! finding! remote! homology,! including! large! number! of!

substitutions,! insertions!and!deletions,!whereas!simple!read!mapping!onto!a!reference!

genome! can! find! only! very! closely! related! homologs! (Zhang! et6 al.,! 2014).! Since! our!

method! does! not! make! use! of! reference! genomes,! we! allow! for! strain! aware! gene!

assembly!also!of!novel!species,!where!reference!genomes!are!not!yet!available.!We!have!

developed!a!novel!algorithm!that!performs!gene!assembly!based!on!read!overlaps.!This!

allows! correcting! errors! by! making! use! of! the! error! profiles! that! underlie! the!

overlapping! reads.!The! consequences! are! twofold:! First,!we!obtain! contigs! affected!by!

only!very! low!perJbase!error!rates.!Second,!since,! this!way,!we!determine!which!reads!
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stem! from! identical! segments! based! on! a! statistically! sound! model,! we! can! reliably!

distinguish! between! sequencing! errors! and! strainJspecific! variants,! even! of! very! lowJ

abundance!strains.!We!consider!these!two!features!to!represent!the!main!improvements!

over! the!currently!available!assemblers.!To! the!best!of!our!knowledge,!Snowball! is! the!

first! tool! that! allows! distinguishing! among! individual! gene! strain! variants! in!

metagenomes! for! a! large! set! of! gene! domains! without! using! reference! genomes! of!

related!species.!

!

In! our! experiments,! we! focused! on! distinguishing! closely! related! strains! from! one!

species.! Since! two! different! species! are! substantially! more! divergent! in! terms! of!

sequence!than!two!different!strains!from!the!same!species,!good!results!on!strains!from!

one!species!also!imply!good!or!even!better!performance!on!datasets!that!contain!several!

species!–!distinguishing!species!is!the!much!easier!task.!We!assessed!the!performance!of!

Snowball! using! 21! simulated! datasets,! each! containing! 3–9! closely! related!Escherichia6

coli!strains!and!on!one!simulated!dataset!containing!ten!recently!published!strains!of!a!

novel! Rhizobia! species! (Bai! et6 al.,! 2015).! The! results! for! the! latter! demonstrate! the!

capability!of!the!Snowball!assembler!to!assemble!genes!of!novel!strains.!The!results!for!

all!datasets!confirm!that!the!strength!of!Snowball! is! its!very!low!perJbase!error,!due!to!

the! incorporated! errorJcorrection.! Moreover,! it! produced! substantially! longer! contigs!

and! recovered! a! larger!part! of! the! simulated! reference!data! in! comparison! to! the!SAT!

assembler.! Snowball! is! implemented! in! Python,! runs! on! a! userJdefined! number! of!

processor!cores!in!parallel,!runs!on!a!standard!laptop,!is!freely!available!under!the!GPL!

3.0!license!and!can!be!installed!under!Linux!or!OS!X.!

!

3.2 Methods&
!

The!input!of!Snowball!are!two!FASTQ!files!containing!Illumina!selfJoverlapping!pairedJ

end! reads,! the! corresponding! insert! size! used! for! the! library! preparation! and! profile!

HMMs!of! gene!domains!of! interest.!The!pairedJend! reads!may!originate! from!multiple!

closely! related! strains! or! from!more! evolutionary!divergent! taxa.!We!have! thoroughly!

tested!Snowball!using!simulated!Illumina!HiSeq!2500!pairedJend!reads!generated!by!the!

ART!read!simulator!(Huang!et6al.,!2012)!with!150!bp!read!length!and!225!bp!mean!insert!

size.!In!this!setting,!the!average!length!of!the!selfJoverlaps!of!the!read!ends!is!75!bp!and!

the! length! of! a! consensus! read! that! originates! by! joining! of! the! selfJoverlapping! read!

ends!is!225!bp!on!average!(Fig.!3.2,!Section!3.3.4).!!

!
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For each gene domain, in parallel, consensus reads are assembled into contigs (Sections 

3.2.3–3.2.5). In the assembly step, consensus reads are iteratively joined into longer 

and error-corrected super-reads based on the consensus read overlaps. The super-reads 

are then output as annotated contigs, where a super-read represents a sequence that 

originates by joining of at least two consensus reads into a longer sequence. 
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3.2.2 Assigning&reads&to&gene&domains&
!

Consensus! reads! are! annotated! using! profile! HMMs! of! gene! domains! of! interest! and!

assigned!to!respective!gene!domains!(Fig.!3.4).!By!default,!we!use!the!PfamRA!(Finn!et6al.,!

2014)! (version! 27)! profile! HMMs! of! 14,831! gene! domains! and!AMPHORA62! (Wu! and!

Scott,! 2012)! profile!HMMs! of! 31! bacterial! ubiquitous! singleJcopy! genes! that! are! often!

used! for! phylotyping.! A! profile! HMM! of! a! gene! domain! is! a! probabilistic! model!

representing!a!multiple!sequence!alignment!of!representative!gene!sequences!belonging!

to!a!particular!gene!domain.!The!model!can!be!used!to!annotate!a!query!sequence!(e.g.!a!

consensus!read).!The!annotation!mainly!consists!of!a!score,!start/stop!positions!within!a!

query! sequence! and!HMM!start/stop! coordinates.! The! score! roughly! corresponds! to! a!

probability!that!a!query!sequence!belongs!to!the!particular!gene!domain,!i.e.!if!the!score!

is! high! for! a! query! sequence! then! it! is! very! probable! that! it! belongs! to! the! respective!

gene!domain.!The!start/stop!positions!within!a!query!sequence!define!a!subJsequence!of!

a!query!sequence!that!was!identified!to!belong!to!the!gene!domain.!The!HMM!start/stop!

coordinates!correspond!to!the!estimated!coordinates!of!the!query!subJsequence!within!

the!multiple!sequence!alignment!of!the!respective!profile!HMM.!

!

Each!consensus!read!is!translated!into!six!protein!sequences!using!all!six!reading!frames!

(i.e.!also!considering!the!reverse!complementary!sequences).!The!hmmsearch!command!

of! the!HMMER63! (Eddy,!2011)!software! is!used!to!annotate! the!protein!sequences.!For!

each! consensus! read,! only! the! reading! frame! with! the! highest! score! is! considered.! A!

consensus!read!is!assigned!to!at!most!one!gene!domain!to!which!it!was!queried!with!the!

highest! score.! Consensus! reads!with! low! scores! (i.e.! lower! than!default! value:! 40)! are!

filtered! out! and! not! considered! in! the! subsequent! steps.! If! a! protein! sequence!

corresponding!to!a!reverse!complementary!consensus!read!sequence!was!annotated,!the!

corresponding!reverse!complementary!DNA!sequence!of!a!respective!consensus!read!is!

considered! in! the! next! steps.! The! coding! DNA! subJsequence! of! a! consensus! read!

sequence! is! denoted! as! a! (partial)! coding! region.! The! start! and! end!HMM!coordinates!

within!a!respective!profile!HMM!are!stored!as!part!of!the!consensus!read!annotation.!!

!

As! a! result! of! this! step,! consensus! reads! are! annotated! and! assigned! to! ‘bins’!

representing!individual!gene!domains,!where!one!consensus!read!is!assigned!to!at!most!

one! gene! domain.! Gene! domains! are! building! blocks! of! individual! genes.! Therefore,! a!

‘bin’! does! not! only! contain! consensus! reads! belonging! to! gene! variants! of! individual!
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!!"#$%&'! = !!! ! ∗ !!!!(!)
!!∈ !,!,!,! !

!

!

where,!!!! ! !is! the! probability! that! sequence!!! !has! base!! !at! overlap! position6 ! ;6
probability6!!! ! 6is!defined!analogously!for!sequence!!!.!The!overall!overlap!probability!
of!!!!and!!!!is! the! product! of! individual! position! overlap! probabilities! normalized! by!
overlap!length!!!(Töpfer!et6al.,!2014):!
!

!!"#$%&' = ! !!"#$%&'!

!!∈[!,...,!!!]

!
!

!

As! a! score! that! represents! the! ‘expected! length’! of! an!overlap,! taking! into! account! the!

individual! overlap! position! probabilities,!we! compute! the! expected! number! of! correct!

positions!within!the!overlap!as:!

!

!"#$%ℎ!!"#$%&$' = !!"#$%&'!

!!∈[!,…,!!!]
!

!

A!single!overlap!score!that!enables!us!to!rank!different!sequence!overlaps!is!computed!

as!a!product!of!the!overall!overlap!probability!and!the!expected!overlap!length:!

!

!"#$%!!"#$%&' = !!!"#$%&' ∗ !"#$%ℎ!!"#$%&$'!
!

The overlap score penalizes both overlaps with low overlap probability and short overlaps, 

since long overlaps with high overlap probability are required. The minimum required 

expected length of an overlap represents the support for the overlap probability, as the overlap 

probability is based only on the bases within the overlap, therefore the number of the bases 

outside of the overlap should remain as small as possible, since we cannot make any 

statement about the bases outside of the overlap. 

 

In! the! Snowball! algorithm,! consensus! reads! are! iteratively! joined! into! longer! superJ

reads! based! on! the! overlap! probabilities,! expected! overlap! lengths! and! the! overlap!

scores! (Section! 3.2.5).! By! default,! two! sequences!!! !and!!! !can! be! joined! into! a!
consensus! sequence! if! the! overall! overlap! probability! is! at! least!0.8!and! the! expected!
length! of! the! overlap! is! at! least!0.5 ∗!"# !"#$%ℎ !! , !"#$%ℎ !! .! The! high! overall!

overlap!probability!ensures!that!the!overlap!consists!of!mostly!matching!positions,!that!
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there! are! no!mismatching! positions!with! high! quality! scores! and! that!mismatches! are!

allowed!only!at!positions!with!low!quality!scores.!For!datasets!with!overall!high!quality!

scores,! the!minimum!overlap!probability!parameter! can!be! increased! to!0.9!or!0.95.! In!
the! Snowball! algorithm,! when! a! consensus! sequence! could! be! joined! with! multiple!

consensus!sequences!with!sufficient!overlap!probability!and!expected!overlap!length,!it!

is!joined!with!the!sequence!with!which!it!has!the!highest!overlap!score.!

!

3.2.5 The&Snowball&algorithm&
!

For! each! gene! domain,! the! Snowball! algorithm! iteratively! joins! consensus! reads! into!

longer! errorJcorrected! superJreads.! The! input! of! the! algorithm! consists! of! annotated!

consensus! reads! of! a! particular! gene! domain! represented! via! probability! matrices!

(Sections!3.2.1–3.2.3).!The!resulting!superJreads!are!output!as!annotated!contigs.!Note!

that! the!method!can!be!highly!parallelized,! since! the!Snowball! algorithm!runs! for!each!

gene!domain!separately.!!

!

Consensus! reads! are! first! sorted! in! an! increasing! order! according! to! the! HMM! start!

coordinates,! that! denote! an! estimated! start! position! of! a! consensus! read! within! the!

multiple! sequence! alignment! of! the! profile! HMM.! This! layout! suggests!which! pairs! of!

consensus!reads!are!likely!to!have!an!overlap!(Fig.!3.7),!where!consensus!reads!that!are!

next!to!each!other!are!likely!to!have!longer!overlaps!than!other!pairs!of!consensus!reads.!!

As!a!starting!point!of!the!algorithm,!we!choose!a!consensus!read!with!the!largest!sum!of!

overlap!lengths!with!other!consensus!reads!and!put!it! into!the!working6set.!The!reason!

for! this! choice! is! that! such! a! consensus! read! is! within! the! highest! coverage! of! the!

alignment!corresponding! to! the!respective!profile!HMM,!where!highly!covered!regions!

are! likely! to! be! covered! by! reads! originating! from! similar! but! distinct! genomes.!

Therefore,! the! chosen! consensus! read! is! very! likely! to! overlap! with! consensus! reads!

originating! from!distinct! gene! variants,!which!will! help! to! resolve! these! gene! variants!

early!in!the!algorithm.!

!

!

!

!

!

!

!
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Pseudo+code+of+the+algorithm:!

(1) Input:!a!list!of!consensus!reads!of!a!particular!gene!domain.!

(2) Sort!the!input!list!according!to!the!HMM!start!coordinates!in!the!increasing!order.!

(3) Find!a!consensus!read!representing!the!starting!point!–!as!told!above,!a!consensus!

read!with!the!largest!sum!of!overlap!lengths!with!other!consensus!reads!–!and!add!

it!into!the!working6set.!

(4) The!neighbourhood!of!the!working6set!consist!of!at!most!two!consensus!reads,!one!

that!is!the!closest!on!the!left!(L)!and!one!that!is!the!closest!on!the!right!(R)!of!the!

working6set.!

(5) For!each!consensus!sequence!S!from!the!working6set!and!for!each!pair!(L,!S)!and!(S,!

R),!and!for!(L,!R),!compute:!

a. overlap!probability!

b. expected!overlap!length!

c. overlap!score!

(6) If!there!is!a!sufficient!overlap!between!at!least!one!pair!(L,!S),!(S,!R)!or!(L,!R),!the!

pair!with!the!highest!overlap!score! is!chosen,!as!defined! in!the!Section!3.2.4.!Let!

(L,!S)!be!the!pair!with!the!highest!overlap.!Remove!S!from!the!working6set.!Join!(L,!

S)!into!a!consensus!sequence!(i.e.!a!superJread),!as!defined!in!the!Section!3.2.3!and!

add!it!into!the!working6set.!Redefine!L,!as!the!first!consensus!read!on!the!left!of!L.!If!

(S,!R)! is! the!pair!with!the!highest!score,!proceed!analogously.! If! (L,!R)! is! the!pair!

with!the!highest!score,!join!(L,!R)!into!a!consensus!sequence!(i.e.!a!superJread)!and!

add!it!into!the!working6set.!Redefine!L!and!R!analogously.!

(7) If!there!is!no!sufficient!overlap!found!in!step!(6),!add!L!and!R!into!the!working6set!

and!redefine!L!and!R!in!the!same!way!as!in!(6).!

(8) If!the!neighbourhood!is!not!empty,!i.e.!L!or!R!was!redefined!at!step!(6)!or!(7),!go!to!

step!(5).!If!L!or!R!cannot!be!redefined,!it!is!not!considered!in!the!next!steps!of!the!

algorithm.!

(9) Output!superJreads!as!annotated!contigs.!

!

In! the! algorithm,! a! consensus! sequence! is! represented! via! a! probability! matrix! as!

described!in!the!Section!3.2.3.!Mismatching!bases!within!a!sufficient!overlap!most!likely!

represent!a!substitution!error,!where!one!of!the!bases!has!a!relatively!low!quality!score,!

thus,! the! base! with! a! higher! quality! score! corrects! such! a! substitution! error.!
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Substitutions! representing! genuine! strain! variation! are! represented! by! overlap!

positions! with! different! bases! with! relatively! high! quality! scores.! Therefore,! such!

overlaps! of! consensus! reads! representing! different! strains! almost! never! pass! the!

minimum!required!overlap!probability!threshold.!Consensus!reads!containing!insertion!

or! deletion! errors! have! very! low! overlap! probabilities!with! other! consensus! reads! or!

superJreads! and! are! therefore! unlikely! to! be! joined! into! longer! consensus! sequences.!

Thus,!superJread!positions!with!coverage!of!at! least! two!are!mostly!errorJcorrected! in!

terms!of!insertion!and!deletion!sequencing!errors.!

!

3.3 Results&
!

We!evaluated!Snowball!using!21!simulated!datasets,!each!containing!3–9!closely!related!

E.6 coli! strains! and! one! simulated! dataset! containing! ten! novel! recently! published!

Rhizobia! strains! (Bai!et6al.,! 2015)! (Section!3.3.4).!We! recall! that! good!performance!on!

different!strains!implies!good!performance!on!different!species,!which!is!why!we!put!the!

emphasis!on!distinguishing!between!closely!related!strains!in!our!experiments.!Thereby,!

our!aim!was!to!answer!the!following!questions:!Were!the!contigs!assembled!correctly?!

How! long! are! the! resulting! contigs?! Did! the! assembly! recover! the! reference! strain!

sequences! from! which! the! input! pairedJend! reads! were! generated?! As! a! reference!

method,!we!used! the!SAT! assembler! (Zhang!et6al.,!2014),!because! this! is! to! the!best!of!

our!knowledge!the!only!currently!available!gene!assembler!of!gene!domains!of!interest!

for! metagenomic! data! that! does! not! require! closely! related! reference! genomes! to! be!

available.!In our experiments, we observed that Snowball was faster than SAT. The runtime of 

Snowball was limited by the runtime of the HMMER 3 software, i.e. our method spent most of 

the runtime in this step (Section 3.2.2).!

!

3.3.1 PerMbase&error&
!

We!computed!the!perJbase!error!for!all!assembled!contigs!of!all!simulated!datasets!(Fig.!

3.8).!For!each!contig,!we!determined!the!reference!strain!sequence!and!coordinates!of!a!

particular! contig! sequence! within! a! respective! reference! sequence! from! which! it!

originates.!The!perJbase!error!is!defined!as!the!percentage!of!bases!that!differ!between!a!

contig! sequence! and! the! respective! subJsequence! of! the! reference! sequence,! i.e.! it!

corresponds! to! the!Hamming!distance!between! the! two! sequences,! normalized!by! the!

length! of! the! overlap.! Note,! that! closely! related! strains! share! large! sequence! regions;!

therefore,! a! contig! can! be! well! mapped! onto! several! reference! sequences! of! distinct!
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strains.! In! this! case,! a! reference! sequence,! onto!which! a! contig!maps!with! the! lowest!

Hamming! distance,! is! considered! to! be! the! reference! strain! sequence! from! which! it!

originates.!If!a!contig!maps!onto!several!sequences!of!different!strains,!with!exactly!the!

same!error,!we!consider! it! to!originate! from!all! these!strains.!The!coverage!of!a!contig!

position! is! equal! to! the! number! of! read! ends! covering! a! respective! position.! In! the!

Snowball! algorithm,!we!keep! track!of!all! consensus!reads! that!a!contig!consists!of.!For!

the!SAT!assembler,!we!have!used!BWA!(H.!Li!and!Durbin,!2009)!to!map!consensus!reads!

onto! the! contigs.! We! computed! the! perJbase! error! for! each! coverage! 3,… , 30 !
separately.!LowJcoverage!positions!typically!have!a!higher!perJbase!error,!as!there!is!not!

enough!information!available!to!correct!sequencing!errors.!This!is!most!pronounced!at!

positions!with!coverage!one,!where!the!perJbase!error!corresponds!to!the!substitution!

error! of! a! respective! sequencing! platform! (~2.37%! for! our! simulated! datasets).! At!

positions!with!higher!coverage,!the!errorJcorrection!mechanism!built!into!the!Snowball!

algorithm! yields! very! low! (~0.02%)! perJbase! error! (Fig.! 3.8).! For! the! SAT! assembler,!

contig! positions! with! high! coverage! correspond! to! consensus! sequences! containing!

reads! of! several! strains,! which! yields! a! relatively! high! perJbase! error! (Fig.! 3.8).! This!

shows!that!the!errorJcorrection!incorporated!in!the!Snowball!algorithm!is!indispensable!

for!the!assembly!of!closely!related!strains.!

!

!

!

Figure+3.8.!Cumulative+per6base+error.!!

Cumulative! perJbase! error! for! the! Snowball! and! SAT! assemblers.! We! computed! the! perJbase! error! in! a!

cumulative!way,! i.e.! for!! ∈ 3,… , 30 6(on! the! horizontal! xJaxes),!!!(on! the! vertical! yJaxes)! is! equal! to! the!
perJbase!error!at!contig!positions!with!coverage!greater!or!equal!to!!.!
!
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3.3.2 Relative&contig&length&
!

We! computed! the! average! number! of! assembled! contigs! and! the! average! cumulative!

length!of!all!contigs!(in!Kb)!per!strain!(Fig.!3.9).!As!the!assembled!contigs!should!cover!

the!full!length!of!the!respective!gene!sequences!sufficiently!well,!we!aligned!each!contig!

to! the! respective! profile! HMM! and! computed! the! fraction! of! the! model! (i.e.! the!

corresponding!multiple!sequence!alignment)! it!covers.!For!each!contig,! this!gave!us!an!

estimate!of! its!relative!length!with!respect!to!the!particular!profile!HMM.!We!used!this!

information!to!compute!the!results,!e.g.!using!only!longer!contigs!covering!at!least!50%!

(60%,! 70%,! etc.)! of! respective! profile! HMMs.! This! analysis! showed! that! Snowball6

produced!substantially!more,!longer!contigs!than!the!SAT!assembler.!

!

!

!

Figure+3.9.!Contigs+per+strain.!!

Cumulative! average! contig! length! per! strain,! considering! only! contigs! covering!!%!of! respective! profile!
HMMs! (panel! a).! Average! number! of! contigs! per! strain,! considering! only! contigs! covering!≥ !% !of!

respective!profile!HMMs!(panel!b).!Here,!the!variable!!!corresponds!to!the!values!on!the!(horizontal)!xJaxes!
of!the!graphs.!

!

3.3.3 Reference&coverage&
!

We!computed!which!parts!of!the!reference!strain!sequences,!from!which!the!input!reads!

were!generated,!were! recovered!by! the!assembled! contigs,! per! strain!on!average! (Fig.!

3.10).!As!explained! in!the!Section!3.3.1,!assembled!contigs!may!map!onto!one!or!more!

reference!strain!sequences!with!the!same!minimum!Hamming!distance.!We!considered!a!
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contig! to! cover! all! the! reference! strain! sequences,! onto!which! it! can! be!mapped!with!

exactly! the! same! minimum! perJbase! error.! Positions! of! reference! sequences! that! are!

covered! by! at! least! one! contig! are! denoted! as! covered! positions.! For! each! strain,! we!

computed!the!number!and!percentage!of!the!covered!positions.!Moreover,!as!explained!

in! the! Section! 3.3.2,! we! computed! these! measures! for! contigs! covering!≥ !% !of!

respective!profile!HMMs!(where!the!variable!!!corresponds!to!the!values!on!the!xJaxes!
of! the! graphs).! The! overall! relatively! low! coverage! of! the! reference! sequences! can! be!

explained! by! low! sequencing! coverage! of! some! of! the! reference! strain! sequences!

(Supplementary! Table! S1–S8).! Also,! as! we! only! assemble! coding! sequences! of! the!

reference!strain!sequences,!for!which!we!have!used!profile!HMMs!as!the!input,!regions!

of! the! reference! strain! sequences! that! are! not! covered! by! the! profile! HMMs! remain!

unassembled.!Nevertheless,!this!analysis!showed!that!Snowball!recovered!substantially!

more!reference!strain!sequences!than!the!SAT!assembler.!

!

!

!

Figure+3.10.!Coverage+of+the+reference+strain+sequences.!!

Percentage! of! the! recovered! reference! strains,! per! strain! on! average,! considering! only! contigs! covering!

≥ !%!of!respective!profile!HMMs!(panel!a).!Corresponding!absolute!values!(Kb)!are!depicted!in!(panel!b).!
The!variable!!6corresponds!to!the!values!on!the!xJaxes.!
!

3.3.4 Simulated&datasets&details&
!

We! have! based! our! evaluation! on! 22! simulated! datasets! (Table! 3.1,! Supplementary!

Table!S1–S8).!The!strain!abundances!correspond!to!randomly!drawn!numbers!from!the!

logJnormal! distribution! (mean! =! 1,! standard! deviation! =! 2),!where! the! numbers!were!
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limited! to! interval! 1,… , 50 ,! to! avoid! both! data! explosion! and! extremely! low! strain!
abundances.!The!ART!(Huang!et6al.,!2012)!read!simulator!(version!2.3.6)!was!employed!

to!generate! Illumina!HiSeq!2500!pairedJend! reads! (read! length!=!150!bp,!mean! insert!

size! =! 225,! standard! deviation! =! 23),! where! the! strain! coverage! used! for! the! read!

simulation! also! corresponds! to! the! strain! abundance.! The! abundance! of! a! particular!

strain! thus! informs! us! with! which! coverage! the! strain! genome! within! a! simulated!

dataset!was! sequenced.!We!used! the!default!ART! Illumina!HiSeq!2500!empirical! error!

profile,!which!yields!reads!with!~2.37%!substitution!error.!For!each!dataset,!we!provide!

perJdataset!results!(Table!3.1,!Sections!3.3.1–3.3.3)!that!show!that!Snowball!performed!

substantially!better!than!the!SAT!assembler!for!all!simulated!datasets.!

!

Table+3.1.+Overview+of+simulated+datasets.+

 

Dataset Strains per dataset 

Per-base error (%) at 

position coverage ≥ 5(a) 

Contig length (Kb) 75% 

HMM model(b) 

Reference coverage 75% 

HMM model (%)(c) 

Snowball SAT Snowball SAT Snowball SAT 

1 

3 

0.019 1.613 913 229 41.3 7.5 

2 0.035 1.823 1080 628 44.4 15.1 

3 0.006 1.603 865 186 43.0 6.7 

4 

4 

0.036 1.666 740 306 43.1 10.7 

5 0.011 1.813 691 253 42.6 9.7 

6 0.007 1.648 700 303 45.5 11.2 

7 

5 

0.012 1.809 614 408 44.9 13.5 

8 0.012 1.791 622 393 44.8 13.5 

9 0.022 2.064 665 411 40.9 12.6 

10 

6 

0.022 1.853 518 378 42.1 11.8 

11 0.045 1.822 557 308 39.0 10.7 

12 0.033 2.009 571 407 40.2 12.4 

13 

7 

0.028 1.861 447 316 42.6 11.7 

14 0.041 1.866 496 293 38.9 10.9 

15 0.018 2.034 488 367 41.7 12.0 

16 

8 

0.017 2.152 408 443 44.6 12.7 

17 0.030 1.869 428 294 38.3 10.5 

18 0.038 2.227 453 440 39.3 11.6 

19 

9 

0.019 1.884 349 265 40.9 9.7 

20 0.014 2.035 360 314 40.4 10.7 

21 0.044 2.270 424 430 42.2 13.8 

22 10 0.013 1.909 905 279 27.0 5.7 

 
(a)PerJbase!error!(%)!at!contig!positions!with!coverage!≥ 5!(Fig.!3.8).!!
(b)Cumulative!contig!length!(Kb)!at!! = 75!of!(Fig.!3.9a).!!
(c)Percentage!of!recovered!data!at!! = 75!of!(Fig.!3.10a).!!
Datasets!1J21!consist!of!E.6coli!strains!(Supplementary!Table!S1–S7).!!

Dataset!22!consists!of!Rhizobia!strains!(Supplementary!Table!S8).!
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3.4 Conclusions&
!

We!describe!Snowball,! a!novel!strain!aware!gene!assembler! for!reconstruction!of!gene!

domains!of!interest!from!shotgun!metagenomic!data!of!microbial!communities.!Snowball!

performs!gene!assembly!of!individual!gene!domains!based!on!read!overlaps!and!errorJ

correction!using!read!quality!scores!at!the!same!time,!which!result!in!very!low!perJbase!

error!rates.!Our!method!uses!profile!HMMs!to!guide!the!assembly.!Nonetheless,!it!does!

not!require!closely!related!reference!genomes!of!the!studied!species!to!be!available.!We!

have!assessed!the!performance!of!Snowball!using!21!simulated!datasets,!each!containing!

3–9! closely! related! E.6 coli! strains! and! one! simulated! dataset! containing! ten! recently!

published!Rhizobia! strains! (Bai!et6al.,! 2015),!which!demonstrates! the! capability! of! the!

Snowball! assembler! to! assemble! novel! strains.! We! have! compared! our! Snowball!

assembler!to!the!SAT!assembler,!which,!to!our!knowledge,!establishes!the!current!state!

of! the!art! in!gene!assembly.!The!results! showed! that!Snowball!had!substantially! lower!

perJbase!error,!assembled!more,!longer!contigs!and!recovered!more!data!from!the!input!

pairedJend! reads.! We! have! shown! that! the! incorporation! of! the! errorJcorrection!

mechanism! is! indispensable! for! the! assemblies! of! closely! related! strains.! To! our!

knowledge,! Snowball! is! the! first! strain! aware! gene! assembler! that! does! not! require!

closely!related!reference!genomes!of!the!studied!species!to!be!available.!The!assembly!of!

closely! related! strains! is! still! a! challenging! task! for! most! of! the! current! assemblers,!

including! the! SAT! assembler.! We! believe! that! our! tool! will! be! valuable! for! studying!

species!evolution!(e.g.!genes!under!selection)!and!strain!or!gene!diversity!(e.g.!virulence!

genes).!Snowball!is!implemented!in!Python,!runs!on!a!userJdefined!number!of!processor!

cores!in!parallel,!runs!on!a!standard!laptop!and!can!be!easily!installed!under!Linux!or!OS!

X.!

!

3.5 Supplementary&material&
!

The!supplementary!material!is!available!in!Chapter!7!and!at!Bioinformatics!online:!!!

http://bioinformatics.oxfordjournals.org/content/32/17/i649.full!

!

!

! &
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Abstract&
!

Background.!Metagenomics!is!an!approach!for!characterizing!environmental!microbial!

communities! in6 situ,6 it! allows! their! functional! and! taxonomic! characterization! and! to!

recover! sequences! from! uncultured! taxa.! This! is! often! achieved! by! a! combination! of!

sequence!assembly!and!binning,!where!sequences!are!grouped!into! ‘bins’!representing!

taxa!of!the!underlying!microbial!community.!Assignment!to!lowJranking!taxonomic!bins!

is! an! important! challenge! for! binning! methods! as! is! scalability! to! GbJsized! datasets!

generated! with! deep! sequencing! techniques.! One! of! the! best! available! methods! for!

species! bins! recovery! from! deepJbranching! phyla! is! the! expertJtrained! PhyloPythiaS6

package,! where! a! human! expert! decides! on! the! taxa! to! incorporate! in! the!model! and!

identifies! ‘training’!sequences!based!on!marker!genes!directly!from!the!sample.!Due!to!

the! manual! effort! involved,! this! approach! does! not! scale! to! multiple! metagenome!

samples!and!requires!substantial!expertise,!which!researchers!who!are!new!to!the!area!

do!not!have.!

+

Results.+We!have!developed!PhyloPythiaS+,!a!successor!to!our!PhyloPythia(S)6software.!

The! new! (+)! component! performs! the! work! previously! done! by! the! human! expert.6

PhyloPythiaS+6 also6 includes! a! new! kJmer! counting! algorithm,! which! accelerated! the!

simultaneous! counting! of! 4J6Jmers! used! for! taxonomic! binning! 100Jfold! and! reduced!

the!overall! execution! time!of! the!software!by!a! factor!of! three.!Our!software!allows! to!

analyze! GbJsized!metagenomes!with! inexpensive! hardware,! and! to! recover! species! or!

generaJlevel!bins!with! low!error!rates! in!a! fully!automated! fashion.!PhyloPythiaS+!was!

compared!to!MEGAN,!taxatorRtk,!Kraken!and!the!generic!PhyloPythiaS!model.!The!results!

showed!that!PhyloPythiaS+!performs!especially!well!for!samples!originating!from!novel!

environments!in!comparison!to!the!other!methods.!

+

Availability.+ PhyloPythiaS+! in! a! virtual! machine! is! available! for! installation! under!

Windows,!Unix!systems!or!OS!X!on:!https://github.com/algbioi/ppsp/wiki.!

!

!

! +
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4.1 Introduction&
!

Metagenomics! is! the! functional! or! sequenceJbased! analysis! of!microbial! DNA! isolated!

directly! from! a!microbial! community! of! interest! (Riesenfeld! et6 al.,! 2004;! Kunin! et6 al.,!

2008).! As! the! cultivation! conditions! for! most! microorganisms! are! unknown! or! too!

complex! to! reproduce! in! the! laboratory! (Hugenholtz,! 2002),! random! shotgun! and!

ampliconJsequencing!based!metagenome!studies!have!led!to!substantial!advances!in!our!

understanding!of! the!structure!and! functions!of!microbial! communities!within! the! last!

decade!(Kalyuzhnaya!et6al.,!2008;!Turnbaugh!et6al.,!2010;!Hess!et6al.,!2011;!Pope,!Smith,!

et6 al.,! 2011;! Zarowiecki,! 2012;! Schloissnig! et6 al.,! 2013;! Blaser! et6 al.,! 2013).! The!

taxonomic! classification! or! ‘binning’! of!metagenome! samples! is! often! performed! after!

sequence!assembly!(Peng!et6al.,!2011;!Laserson!et6al.,!2011;!Boisvert!et6al.,!2012;!Namiki!

et6 al.,! 2012;! Pell! et6 al.,! 2012).! This! is! a! computationally! demanding! task,! which! for!

metagenome! samples! results! in! a! mixture! of! sequence! fragments! of! varying! lengths,!

originating! from! the! different! microbial! community! members.! A! taxonomic! binning!

defines! ‘bins’!of!sequence!fragments!that!were!assigned!the!same!taxonomic!identifier,!

representing! draft! genomes! or! panJgenomes! of! the! different! microbial! community!

members.!Taxonomic!binning!methods!use!sequence!homology,! sequence!composition!

and! similarities! of! contigs! in! read! coverage! or! gene! counts,! see! (Dröge! and!McHardy,!

2012)!for!a!recent!review.!The!subsequent!analysis!of! these!bins!allows!characterizing!

the! functional! and! metabolic! potential! for! individual! taxa.! For! instance,! in! a!

collaboration!with!Mark!Morrison’s!group,!a!functional!and!metabolic!analysis!of!a!draft!

genome! recovered! by! taxonomic! binning! from! the! gut! of! the! Australian! Tammar!

Wallaby!metagenome!led!to!the!isolation!and!subsequent!characterization!of!a!new!and!

previously! uncultivated! bacterium! (Pope,! Smith,! et6 al.,! 2011).! Different! from! binning!

methods,! taxonomic! profiling! tools! (Wu! and! Eisen,! 2008;! Stark! et6al.,! 2009;! Liu! et6al.,!

2011;!Meinicke! et6al.,! 2011;!Wu! and! Scott,! 2012;! Segata! et6al.,! 2012;! Sunagawa! et6al.,!

2013;! Silva! et6 al.,! 2013)! return! a! taxonomic! profile! for! a! metagenome! sample! to!

represent!the!taxonomic!composition!of!the!underlying!sampled!community.!

!

CompositionJbased! binning!methods! assign!metagenome! sequences! based! on! their! kJ

mer! signature,! which! is! derived! from! the! counts! of! short! oligomers! (kJmers)! for! a!

sequence!(Karlin!and!Burge,!1995;!Deschavanne!et6al.,!1999).!Our!previously!developed!

PhyloPythia(S)!(PPS)!(McHardy!et6al.,!2007;!Patil,!Haider,!et6al.,!2011)!software!uses!this!

information! in! combination! with! a! structured! output! support! vector! machine!

framework! for! taxonomic! classification.! CompositionJbased! signatures! are! global!
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genomic!properties,!which!can!be!estimated!from!any!sufficiently!sized!sequence!sample!

for!a! taxon;!e.g.,! for!PP(S),!100!kb!of! reference!sequences! for!a! taxon!are!sufficient! for!

accurate!assignment,!also!for!low!ranking!taxa.!Thus,!no!complete!genome!sequences!of!

related!organisms!are! required! for!assignment,!which! is!often!a! limiting! factor! for! the!

homologyJbased!methods.!CompositionJbased!methods!are!very!fast,!with!classification!

runtimes!increasing!linearly!with!the!size!of!the!sequence!sample,!whereas!the!runtime!

of! alignmentJbased!methods! is! proportional! to! the!product! of! the! reference! collection!

size!and!the!sequence!sample!size.!As!the!current!sequencing!technologies!produce!GbJ

sized! metagenome! samples! (Metzker,! 2010;! Loman! et6 al.,! 2012),! scalability! and!

computational! efficiency! are! becoming! increasingly! important! for! computational!

metagenomic! methods.! Therefore,! we! have! developed! a! fully! automated! taxonomic!

binning! software,! that! can! rapidly! process! large! metagenome! samples.! PhyloPythiaS+!

(PPS+)!is!the!successor!to!our!previously!described!PPS!software!and!improves!on!it!in!

several! important!ways.!We!provide! an! automated!markerJgene! based! framework! for!

design! and! creation! of! sampleJderived! structured! output! support! vector! machine!

models,!which! allows! the! generation! of! accurate! sampleJderived!models!without! user!

intervention! or! expert! knowledge.! PPS+! is! the! first! tool! that! combines! taxonomic!

profiling! and! subsequent! taxonomic! composition! based! binning! of! the! whole!

metagenome!sample,!which!is!particularly!valuable!for!the!draft!genome!reconstruction!

of! taxa! from! deepJbranching! phyla.! By! implementation! of! a! faster! kJmer! counting!

algorithm,!we!substantially!increased!its!throughput!to!0.5!Gb/h.!PPS+6is!distributed!in!a!

virtual!machine!which! facilitates! installation!under!all!common!operating!systems!and!

runs!on!inexpensive!hardware!available!to!most!users.!

!

4.2 Methods&
!

The!classification!of!a!shotgun!metagenome!sequence!sample!with!PPS+!proceeds!in!two!

phases! (Fig.! 4.1):! In! the! first! phase,! the! newly! developed! (+)! component! identifies!

sampleJderived!training!sequences!and!the!taxa!to!be!modeled!by!searching!for!copies!

of!34!ubiquitous!taxonomic!marker!genes!in!the!metagenome!sample.!The!marker!gene!

analysis! results! in! taxonomic!assignments! for!a! small! fraction!of! the!sample.!Based!on!

the!taxa!abundance!profile!derived!from!these!assignments!and!the!sequences!available!

in! the! reference! sequence! collections,! our! method! determines! which! taxa! will! be!

modeled!and!which!are!the!sampleJderived!data!that!will!be!used!for!training!PPS.!

!
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The! second! phase! is! the! compositionJbased! taxonomic! assignment! of! the! entire!

metagenome! sample! using! PPS6models! trained! using! the! data! generated! in! the! first!

phase.! PPS! models! can! be! reused! to! classify! further! metagenome! samples,! e.g.,!

additional!samples!from!the!same!community.!

!

!

!

Figure+4.1.+Illustration+of+the+PhyloPythiaS++workflow.++

The! recommended! use! of!PPS! is! that! a! human! expert! specifies! the! taxa! to! incorporate! in! a! compositionJ

based! taxonomic!metagenome! classifier! and! identifies! the! relevant! ‘training’! sequences! based! on!marker!

genes!directly!from!the!sample.!The!inclusion!of!contigs!originating!directly!from!members!of!the!microbial!

community,! as! ‘training’! sequences,! is! very! important! for! achieving! good! classification! accuracy,! as!many!

members!of!microbial!communities!are!underrepresented!in!public!sequence!collections.!In!PPS+,!the!step!

of!deciding!which!taxa!to!include!in!the!model!and!defining!suitable!‘training’!sequences!was!automated!in!

the! +! component,! based! on! marker! genes,! genome! and! draft! genome! sequence! collections.! The! data!

generated! by! the! +! component! are! then! used! to! build! the! PPS! models,! that! are! subsequently! used! to!

generate!the!taxonomic!binning!of!the!entire!metagenome!sequence!sample.!

!

4.2.1 PhyloPythiaS#
!

Assignment! with! PPS! proceeds! in! two! steps:! In! the! training! step,! an! ensemble! of!

structured! output! Support! Vector! Machines! (SVMs)! (Joachims! et6 al.,! 2009)! for! the!

specified! part! of! the! NCBI! taxonomy,! defined! by! the! taxa! being!modeled,! are! trained!

using! the!sampleJderived! training!sequences!and!additional!data! for! these! taxa! from!a!
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customized! reference! collection! of! sequenced! genomes! and! draft! genomes!

(Supplemental!Text!S1,!Section!3.3).!The! list!of!modeled! taxa!and!sampleJderived!data!

are! generated!with! the! +! component! of!PPS+.! The! list! of! taxa! restricts! the! taxonomic!

output! space! that! is! modeled,! i.e.,! a! sequence! from! a! metagenome! sample! will! be!

assigned! to! a! leaf! node! taxon! or! a! corresponding! higherJranking! taxon! of! the! learned!

taxonomy.!

!

In!the!prediction!step,!the!PPS!model!ensemble!identifies!the!taxon!which!best!matches!

a!query!sequence!in!terms!of!its!kJmer!profile!and!assigns!to!it!the!respective!taxonomic!

identifier.! By! default,! sequences! of! 1! kb! or! more! are! classified! (PPS+! configuration!

parameter:!minSeqLen).!

!

4.2.2 The&+&component&of&PhyloPythiaS++
!

The! input! for! the!+! component!of!PhyloPythiaS+! is! the!metagenome! sample.!This! step!

returns!a!list!of!clades!and!sampleJderived!data!for!the!subsequent!PPS!training.!The!+!

component!performs!the!following!steps:!

!

(1) Marker6gene6identification:!DNA!sequences!from!the!sample!are!translated!in!all!

six! reading! frames! (i.e.,! also! considering! reverse! complement! sequences)! to!

protein! sequences.! In! both! the! translated! and! untranslated! sequences,! regions!

with!similarity! to! the!DNA!or!protein!Hidden!Markov!model! (HMM)!profiles!of!

34! taxonomically! informative!marker! genes! (Wu! and! Eisen,! 2008;! Stark! et6al.,!

2009;!Liu!et6al.,!2011;!Wu!and!Scott,!2012;!Segata!et6al.,!2012;!Sunagawa!et6al.,!

2013)! are! identified! (Supplemental! Text! S1,! Sections! 3.3! and! 6.1).! The!

corresponding! DNA! marker! gene! sequences! from! these! regions! are! used! for!

further!analysis.!

(2) Taxonomic6marker6gene6assignment:!The!marker!gene!sequences!are!assigned!a!

taxonomic!identifier!using!the!compositionJbased!Naïve!Bayes!classifier!(Schloss!

et6al.,!2009)!(Supplemental!Text!S1,!Section!6.2).!

(3) Taxonomic6sequence6assignment:! If! a! sequence! contains!multiple!marker!genes,!

multiple! taxonomic! identifiers! are! identified! in! Step! 2.! Then! the! highest!

bootstrap! confidence! score! (hcs)! returned! by! the!Naïve! Bayes! classifier! (NBC)!

for! one! of! the!markers! on! the! fragment! is! identified.!We! use! all! marker! gene!

assignments! with! confidence! scores! larger! than! hcs6 *6 (16 –6

candidatePlTopPercentThreshold).! The! default! setting! for! the! configuration!
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parameter! candidatePlTopPercentThreshold6 is! 0.1.! From! the! set! of! taxonomic!

identifiers,! the! lowest! taxon! t! is! identified! for!which! all! other! assignments! are!

either!to!the!same!taxon!t!or!defined!at!higherJranking!parental!taxa!of!t.!Taxon!t!

is!consequently!used!for!the!overall!fragment!assignment.!The!confidence!score!

for! the! fragment! is! set! to! the! smallest! confidence! score! for! the! set! of! retained!

marker!gene!assignments.!

(4) (Optional:6 Taxonomic6 scaffold6 assignment):! Scaffolding! information! (i.e.,! the!

mapping!of!contigs!to!scaffolds)!can!be!used!to!obtain!more!training!data!for!the!

relevant! taxa.! Assembled! contigs! can! be! grouped! into! scaffolds! based! on! the!

pairedJend!information!after!the!assembly.!As!all!contigs!of!a!particular!scaffold!

originate!from!the!same!strain,!all!contigs!of!the!respective!scaffold!should!have!

the! same! taxonomic! label.! Here,! we! make! use! of! this! scaffolding! information,!

such! that! unassigned! contigs! of! a! particular! scaffold! can!be! assigned!based!on!

the! assigned! contigs! of! the! respective! scaffold.! In! the! first! step,! the! taxonomic!

identifiers!of!all!assigned!contigs! for!a!scaffold!are!corrected!as! follows:!Let!us!

consider! that!n! taxonomically! assigned! contigs!of! a! scaffold! are!placed!along!a!

common!path! from! the! root! r! down! to! a! lowJranking! clade! lc! in! the! reference!

taxonomy.!The!unassigned!contigs!of!a!scaffold!are!not!among!these!n!contigs.!To!

obtain!a!consistent!assignment!for!all!the!contigs!of!a!scaffold!and!to!correct!for!

‘outlier’! contig! assignments! to! low! ranking! taxa,! contigs! are! reassigned!

according! to! the! following:!All!n! assigned!contigs!of! the! respective!scaffold!are!

reassigned!to!the!lowest!taxon!c,!which!lies!on!the!path!from!r! to! lc,!where!c! is!

chosen! such! that! at! least6 (agThreshold6 *6 n)! of! the! contigs! are! assigned! on! the!

path!from!c!to!lc.!In!the!second!step,!unassigned!contigs!are!assigned!to!the!same!

taxon! c,! if! a! sufficient! number! of! contigs! have! already! been! assigned.! Let! us!

denote!the!sum!of!all!contig!lengths!for!a!scaffold!as!l!and!the!sum!of!all!assigned!

contig! lengths! of! the! respective! scaffold! as! al.! If! al/l6 ≥6 assignedPartThreshold,!

then! the! unassigned! contigs! of! a! scaffold! are! also! assigned! to! clade! c! (see! the!

configuration! parameters:! placeContigsFromTheSameScaffold6 =6 True,!

agThreshold6=60.3,!assignedPartThreshold6=60.5).!

(5) Assignment6path6truncation:!Contigs!assigned!to!a!lowerJranking!taxon!than!the!

specified! lowest! rank! are! reassigned! to! the! parental! taxon! of! this! lowest! rank!

(configuration!parameter:!rankIdCut).!

(6) Taxa6 selection6 for6model6 specification:! Any! taxon! for! which! at! least! 100! kb! of!

sampleJderived!data!have!been!identified!can!be!modeled.!Furthermore,!species!

can! be!modeled! if! at! least! 300! kb! of! reference! sequences! are! available! in! the!
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reference!sequence!database,!and!higherJranking!taxa!can!be!modeled!if!data!for!

at! least! three!distinct! species!with! this! requirement! (>300!kb!per! species)! are!

available.! Contigs! assigned! to! taxa! for! which! there! are! fewer! data! are!

subsequently! assigned! to!higher! taxonomic! ranks! for!which! sufficient! data! are!

available! to! allow! their! use! as! sampleJderived! training! data! (configuration!

parameters:! minGenomesWgs6 =6 36 or6 1,6 minBpPerSpecies6 =6 300,000,6

minBpToModel6=6100,000).!

(7) Abundant6taxa6selection:!To!reduce!the!number!of!taxa!to!the!most!relevant!ones,!

the! least!abundant! taxon! is!removed! iteratively.!This! is!defined!as! the! taxon!to!

which!the!minimum!number!of!bp!is!assigned.!Sequences!assigned!to!this!taxon!

are! reassigned! to! the! closest! defined! taxon! at! a! parental! rank.! The! algorithm!

ends!when!the!number!of!leaf!taxa!is!less!than!or!equal!to!the!maximum!number!

of!taxa!to!be!modeled!(configuration!parameter:!maxLeafClades6=650;!this!can!be!

set!realistically!up!to!800).!

6

Balancing6 training6 data:! The! part! of! the! taxonomy! that! will! be! modeled! with! PPS! is!

defined!by! the! taxa! identified! in! the!previous! step.! It!has! leaf!nodes!at!different! ranks!

above! the! specified! rank! cutJoff,! and! internal! nodes.! Only! leaf! node! taxa! and! sampleJ

derived!training!data!assigned!to! leaf!node!taxa!in!the!preceding!steps!are!specified!as!

input!for!PPS!training.!To!balance!the!training!data!across!clades,!a!maximum!of!400!kb!

of! sampleJderived! training! data! are! selected! for! each! leaf! node! taxon! (configuration!

parameter:!maxSSDfileSize).! For! this! selection,! contigs! are!used! in!order!of! decreasing!

confidence!values!and!then!in!order!of!decreasing!length.!The!balancing!of!training!data!

can!be! switched!off!by! setting! the! configuration!parameter! (maxSSDfileSize)! to!a! large!

number.!

!

4.2.3 Simultaneous&counting&of&multiple&short&kMmers&
!

We! provide6 PPS+! with! a! new! custom! kJmer! counting! algorithm! that! is! based! on! the!

Rabin!Karp!string!matching!algorithm!(Karp!and!Rabin,!1987).!The!algorithm!is!highly!

optimized!to!count!occurrences!of!short!DNA!sequences.!It!is!very!fast,!as!it!is!memory!

efficient,!because!it!does!not!need!any!large!helper!data!structure!similar!to!suffix!trees.!

It!explores!the!locality!of!reference,!uses!very!fast!bit!shift!operations!and!is!efficiently!

implemented!in!C.!Its!complexity!is!O(n),!where!n!is!the!length!of!the!DNA!sequence!that!

is!being!considered.!It!enumerates!kJmers!up!to!hundred!times!faster!than!when!using!

suffix!trees!that!were!employed!in!PPS.!This!made!PPS+!overall!up!to!3x!faster!than!PPS.!
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Because! the! algorithm! allows! to! simultaneously! enumerate! kJmers! of! consecutive!

lengths! in! one! run,! it! is! at! least! 2–7x! faster! than! the! stateJofJtheJart! software! Jellyfish!

(Marcais! and! Kingsford,! 2011)! and! 11x! faster! than!KAnalyze! (Audano! and! Vannberg,!

2014)!in!the!scenario!used!in!PPS+,!i.e.,!when!calculating!kJmers!of!length!4,!5,!and!6!for!

every! sequence! (Table! S1,! Supplemental! Text! S1,! Section! 2).! We! also! found! that! the!

stateJofJtheJart!kJmer!counting!methods!KMC62!(Deorowicz!et6al.,!2015)!and!Turtle!(Roy!

et6al.,!2014)!are!not!applicable!to!our!problem!setting,!as!KMC62!can!count!only!kJmers!≥!
10!and!Turtle!is!prohibitively!slow!for!sequences!≥!16!kb.!
!

4.2.3.1 Algorithm#description#
!

Let!us!assume!that!we!are!given!an!array!!,!which!represents!a!DNA!sequence!of!length!
!!where!all!letters!are!encoded!as!numbers!0,!1,!2,!3!(where!A!~0,!T!~1,!G!~2,!C!~3)!and!
let!!!,… , !!!!!denote!the!respective!entries.!We!would!like!to!count!the!occurrences!of!
all!kRmers!of!length!!!and!store!the!counts!in!an!array!!!of!length!4! ,!which!is!initialized!
by!zeros.!Each!kJmer!maps!to!a!unique!index!in!the!array!!.!The!index!of!the!first!kJmer!
in!our!sequence!is!calculated!according!to:!

!

! ! index! = a!!*!4!!! + a!!*!4!!! +⋯+ a!!!!*!4! + a!!!!*!4!6
!

The!index!of!the! ! + 1 th!kRmer!of!the!sequence!is!computed!from!the!!th!index!as:!!!!!!!!!!!!!!!!!!!!!
!

! ! index!!! = (index!!!!a!!*!4!!!)!*!4 + a!!!!*!4!6
!

When! an! index! is! identified,! the! corresponding! kJmer! count! at! this! index! position! in!

array!c! is! incremented!by!one.!For!instance,!the!DNA!sequence!ATGCATG! is!encoded!in!

array! a! as! 0, 1, 2, 3, 0, 1, 2 .! For!! = 2,! we! would! add! two! counts! for! the! kRmer! AT! in!
array! c! at! the! index! position!0 ∗ 4 + 1 = 1,! two! counts! for! TG! at! the! index! position!
1 ∗ 4 + 2 = 6,!one!count!for!GC!at!the!index!position!2 ∗ 4 + 3 = 11!and!one!count!for!CA!
at! index! position!3 ∗ 4 + 0 = 12.! The!multiplication! operation!X!*!4!!can! be! computed!
using! the! bit! shift! operation! ! ≪ 2 ∗! , !which! is! usually! much! faster! than!
multiplication.!

!

!

!
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4.2.3.2 Counting#kBmers#of#different#lengths#at#once#
!

If!!"#$%! !is! the! index! of! the!!th! kRmer! of! length!!,! the! index! of! the!!th! (! − !)Rmer! (of!
length!! − !)6can!be!simultaneously!computed!using!the!bit!shift!operation!as!!"#$%! ≫
! 2 ∗ ! !(for!j ∈ [1,… , k!1])! and! the! corresponding! counter! at! the! computed! index! of! a!
respective!counter!array!of!length!4!!! !is!incremented.!The!end!of!a!DNA!sequence!can!
be!handled!by!adding!several!nonJDNA!characters!to!its!end.!

!

4.3 Results&
!

We!evaluated!PPS+!by!comparing! it! to!homologyJbased!methods!(MEGAN4,!taxatorRtk)!

(Huson! et6 al.,! 2011;! Dröge! et6 al.,! 2014),! the! fast! taxonomic! binning! program! Kraken!

(Wood!and! Salzberg,! 2014),! the! compositionJbased!method!PhyloPythia6trained!under!

expert!guidance!(a!recommended!but!timeJconsuming!procedure)!and!to!a!generic!PPS!

model! using! default! settings! (Supplemental! Text! S1,! Sections! 3.5–3.8).! For! a!

performance! comparison! of! PPS! to! methods! with! prohibitive! runtimes! for! large!

datasets,!such!as!PhymmBL!(Brady!and!Salzberg,!2011)!and!CARMA3!(Gerlach!and!Stoye,!

2011),!and!the!webJbased!tool!NBC! (Rosen!et6al.,!2011)!see!(Patil,!Haider,!et6al.,!2011;!

Patil,!Roune,!et6al.,!2011;!Dröge!et6al.,!2014),!as!PPS!has!already!been!compared!to!these!

methods! with! favorable! outcomes.! For! a! comparison! with! ‘taxonomyJfree’! binning!

software!CLARK! (Ounit!et6al.,!2015)!see!(Supplemental!Text!S1,!Section!7).!We!did!not!

compare!PPS+! to!profiling!tools!such!as!(Liu!et6al.,!2011),!as!PPS+! is!a!binning!method!

that! assigns! a! taxonomic! label! to! each! input! sequence.! As! benchmark! datasets,! we!

created!two!simulated!datasets,!one!with!a!uniform!(137!Mb)!and!one!with!a!logJnormal!

(66! Mb)! distribution! of! 47! community! members! (Supplemental! Text! S1,! Section! 3.1,!

Datasets! S1! and! S2).!We! also! used! two! real! datasets,! a!metagenome! sample! from! the!

guts! of! two! obese! human! twins! (255!Mb)! (Turnbaugh! et6al.,! 2010)! and! a! cow! rumen!

metagenome!sample!(319!Mb)!from!(Hess!et6al.,!2011)!(Supplemental!Text!S1,!Section!

3.2,!Datasets!S3–S6)!for!evaluation.!

!

4.3.1 Benchmarks&with&simulated&datasets&
!

We!constructed!the!simulated!datasets!by!assembling!simulated!reads!with!an!empirical!

error!profile.!The!details!on!how!the!simulated!reads!were!generated!and!assembled!can!

be!found!in!(Supplemental!Text!S1,!Section!3.1).!For!the!evaluation,!precision!and!recall!
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were!calculated!(Supplemental!Text!S1,!Section!3.9).!Furthermore,!these!measures!were!

also!calculated!with!a! ‘correction’,! to!account! for! the!case!where! the!sequences!of!one!

taxon! were! consistently! assigned! to! a! different! taxon,! as! for! draft! genome!

reconstruction,! it! is!more! important! that! the!sequences!are!assigned!consistently! than!

that! the! taxonomic! identifier! is! correct.! To! assess! the! performance! of! the! different!

methods! in! assigning! the! simulated! sequence! fragments! without! related! reference!

genomes! being! available,! ‘new! strain’,! ‘new! species’! and! ‘new! genus’! scenarios! were!

simulated!by!removing!all!sequence!data!from!the!taxa!of!the!simulated!test!dataset!at!

each!rank!from!the!reference!data.!Furthermore,!for!PPS+,!we!distinguished!whether!the!

reference!data!were!excluded!(masked)!from!the!reference!sequence!(RS)!collection!or!

also!from!the!marker!gene!(MG)!collection,!since!the!MG!collection!included!sequences!

for! 15! times! more! distinct! species! than! the! RS! collection.! There! were! therefore! two!

different!situations!to!consider!(Table!4.1).!

!

Table+4.1.+Test+scenarios.+

+

Test scenario Rank masked from RS Rank masked from MG 

1. None None 

2. Strain None 

3. Species None 

4. Genus None 

5. Strain Strain 

6. Species Strain 

7. Genus Strain 

8. Species Species 

9. Genus Genus 

+

Test! scenarios! where! data! was! removed! (masked)! up! to! the! specified! rank! for! the! corresponding! taxa!

represented!in!the!simulated!metagenome!datasets!from!the!reference!collections.!RS!denotes!the!reference!

collection! of! complete! or! draft! genomes;! MG! indicates! the! reference! collection! of! marker! genes!

(Supplemental!Text!S1,!Section!3.3).!

!

PPS+!showed!a!substantially!improved!precision!and!recall!over!the!PPS!generic!model,!

which!demonstrated!the!impact!of!the!improved!selection!of!training!data!and!modeled!

taxa! (Figs.! 4.2A! and! 4.2C,! S1A–S1D! and! S3A–S3D).! PPS+! almost! always! had! higher!

precision! and! recall! than!MEGAN4! and!Kraken,! except!when! almost! all! test! data!were!

included! in!the!reference!sequences!(Figs.!4.2A!and!4.2C,!S1A–S1C,!S1E,!S3A–S3C,!S3E,!

S14A!and!S14C).!This!was!even!more!pronounced!when!comparing!bin!quality!using!the!

corrected!measures!(Figs.!4.2B!and!4.2D,!S2A–S2C,!S2E,!S4A–S4C,!S4E,!S14B!and!S14D).!
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When!comparing!PPS+!to!taxatorRtk,!PPS+!had!substantially!improved!recall,!particularly!

for!lower!ranks!(Figs.!4.2A!and!4.2C,!S1A–S1C,!S1F,!S3A–S3C!and!S3F);!while!taxatorRtk!

outperformed!all!other!methods!in!terms!of!precision!(Figs.!4.2A!and!4.2C,!S1A–S1F!and!

S3A–S3F).! Both! methods! were! similarly! precise! when! analyzing! bin! recovery,!

independent!of!assigning!the!taxonomic!identifiers!to!the!corrected!measures!(Figs.!4.2B!

and!4.2D,!S2A–S2C,!S2F,!S4A–S4C!and!S4F).!As!a!strong!point!of!PPS+,6we!also!observed!

that! it!more! rarely! predicted!wrong! taxa! that!were! not! a! part! of! the! sample! than! the!

other!methods! (Fig.! S5).! For! example,! for! the! genus! rank! in! Scenarios! 3! and! 8,! PPS+!

assigned! sequences! to! only! 2–5! false! positive! taxa,! while! taxatorRtk! identified! 20,!

MEGAN4!37!and!PPS659!false!ones.!If!PPS+!identified!wrong!taxa,!these!were!usually!very!

closely!related!to!the!true!taxa.!

! !
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!

!

Figure+4.2.+Performance+comparisons+with+simulated+datasets.++

(A)!and!(C)!show!the!fraction!of!correct,! incorrect!and!unassigned!bp!for!simulated!datasets!with!uniform!

and! logJnormally! distributed! species! abundance! for! PhyloPythiaS+,! the! generic! PhyloPythiaS6 model,!

MEGAN4,6 Kraken! and! taxatorRtk6 for! assignments! at! the! species,! genus! and! family! ranks.! Results! were!

averaged!over!all!test!‘scenarios’!(Table!4.1),!where!sequences!of!the!same!strain,!species!or!genus!from!the!

simulated! metagenomes! were! removed! from! the! genome,! draft! genome! and! marker! gene! reference!

sequence!collections!(Figs.!S1,!S3,!S14A!and!S14C).!(B)!and!(D)!show!the!portion!of!consistently!(correct),!

inconsistently!(incorrect)!and!unbinned!(unassigned)!bp!without!consideration!of!the!taxonomic!identifiers!

(Figs.!S2,!S4,!S14B!and!S14D,!Supplemental!Text!S1,!Section!3.9.2).!The!exact!values!and!the!corresponding!

precision,!recall!and!f1Jscore!are!contained!in!(Table!S2–S5)!for!(A–D),!respectively.!

!

! &
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4.3.2 Benchmarks&with&real&datasets&
!

4.3.2.1 Comparison#of#scaffold#and#contig#assignments#
!

For!each!taxonomic!rank,!the!percentage!and!the!total!number!of!kb!(%!agreement!and!

kb!agreement)!that!were!assigned!the!same!taxonomic!identifier!were!calculated!for!the!

real!datasets,!based!on!the!assignments!of!scaffold!and!contig!sequences!(Supplemental!

Text! S1,! Section! 3.10.1).! For! the! chunked! cow! rumen! dataset! (Supplemental! Text! S1,!

Section!3.2.2),!taxatorRtk!had!the!highest!assignment!consistency!(Table!4.2);!however,!

it! assigned! much! fewer! data! than! the! other! methods! at! lower! taxonomic! ranks.! A!

detailed!comparison!is!given!in!heat!maps!(Figs.!S6–S13).!PPS+!performed!substantially!

better!by!both!measures!than!the!generic!PPS!model!in!almost!all!cases.!PPS+!was!also!

more!consistent! than!MEGAN4! for!all! lower!ranks!and!assigned!many!more!sequences!

than!MEGAN4!overall.!For! instance,!at! the!genus!rank,! the!scores!were!84.3!and!56! ‘%!

agreement’,! as! well! as! 33,724! and! 13,726! ‘kb! agreement’! for! PPS+6 and6 MEGAN4,6

respectively.!The!overall!low!numbers!for!Kraken!suggests!that!it!is!rather!not!applicable!

to!samples!containing!novel! taxa.!Also,! the! low!number!of! consistently!assigned!bp!by!

MEGAN46and!taxatorRtk!to!lower!taxonomic!ranks!reflects!the!availability!of!few!related!

reference!genome! sequences! for! the! cow!rumen!metagenome!sample,!which! is!not! an!

issue!for!a!compositionJbased!method!PPS+.!

!

For!the!human!gut!microbiome,!extensive!sequencing!of!isolate!cultures!has!resulted!in!

a! large!collection!of!several!hundred!reference!genome!sequences.!Accordingly,! for!the!

human!gut!dataset,!taxatorRtk,!MEGAN46and6Kraken!assigned!many!more!sequences!than!

they!did!for!the!cow!rumen!dataset!(Tables!4.2!and!4.3).!For!Kraken!and!MEGAN4,! this!

was!most!pronounced!for!the!genus!and!species!ranks,!even!though!this!was!also!caused!

by! counting! scaffolds! containing! only! one! contig! being! consistent! to! itself.! The! most!

consistent!method!was!again! taxatorRtk,!but! it!also!assigned! fewer!sequences! than! the!

other!methods.!PPS+!performed!better!than!the!generic!PPS!model!in!all!cases!in!terms!

of!both!measures!(Table!4.3).!PPS+!and!MEGAN4!showed!comparable!consistency,!with!

PPS+! being!more!consistent! for! the!class,!order!and!species! ranks,! and!MEGAN4! being!

more! consistent! for! the! superkingdom,! family! and! genus! ranks.! However,! PPS+!

consistently! assigned! (kb! agreement)! more! sequences! than!MEGAN4,! except! for! the!

genus!and!species!ranks.!Thus,!in!the!case!of!larger!collections!of!related!isolate!genome!

sequences! being! available,! compositionJ! and! homologyJbased! methods! perform!

similarly!well.!!
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The! taxonomic! scaffoldJcontig! consistency! of! the! assignments! was! additionally!

evaluated! (Tables! S6! and! S7)! using! a! set! of!measures! (Supplemental! Text! S1,! Section!

3.10.2)!that!provide!more!detailed!insights! into!assignment!consistency!(Supplemental!

Text!S1,!Section!5.1)!and!support!the!conclusions!in!this!section.+ +
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Table+4.2.+Comparison+of+contig+and+scaffold+assignments+of+the+chunked+cow+rumen+dataset.+

+

Method Rank % agreement kb agreement 

PPS+ Phylum 73.9 153,774 

PPS Phylum 67.8 75,538 

MEGAN4 Phylum 74.2 43,380 

taxator-tk Phylum 98.2 59,702 

Kraken Phylum 67.0 33,558 

PPS+ Class 86.0 99,596 

PPS Class 58.5 43,931 

MEGAN4 Class 68.5 33,780 

taxator-tk Class 97.7 23,190 

Kraken Class 58.5 27,536 

PPS+ Order 88.4 98,616 

PPS Order 63.8 41,349 

MEGAN4 Order 68.9 32,650 

taxator-tk Order 98.0 22,368 

Kraken Order 57.0 26,410 

PPS+ Family 80.0 46,343 

PPS Family 55.8 19,158 

MEGAN4 Family 55.0 15,790 

taxator-tk Family 98.9 7,276 

Kraken Family 45.2 18,370 

PPS+ Genus 84.3 33,724 

PPS Genus 63.2 12,938 

MEGAN4 Genus 56.0 13,726 

taxator-tk Genus 99.1 6,042 

Kraken Genus 43.7 16,912 

PPS+ Species 91.6 9,821 

PPS Species N/A N/A 

MEGAN4 Species 54.6 8,502 

taxator-tk Species 100.0 292 

Kraken Species 38.1 14,186 
+

Contigs! of! the! cow! rumen! dataset! of! at! least! 10! kb! were! divided! into! chunks! of! 2! kb! for! evaluation! of!

assignment!consistency!(Supplemental!Text!S1,!Section!3.2.2).!The!contigs!and!scaffolds!of!the!chunked!cow!

rumen!dataset!were!assigned!using!PPS+,!the!generic!PPS!model,!MEGAN4,!taxatorRtk!and!Kraken.!For!each!

method,!up!to!two!taxonomic!identifiers!were!assigned!to!each!contig!at!each!rank,!i.e.,!one!identifier!came!

from! the! contig! assignment! and! the! second! identifier! came! from! the! corresponding! scaffold! assignment.!

Contigs!with!less!than!two!taxonomic!assignments!at!each!rank!were!not!considered!in!this!comparison.!The!

measure! ‘%! agreement’! was! the! percentage! of! contigs! with! the! same! two! taxonomic! identifiers! at! a!

particular! rank,!whereas! ‘kb! agreement’!was! the! total! number! of! kb! of! contigs!with! the! same! taxonomic!

identifiers! (Supplemental! Text! S1,! Section! 3.10.1).! Bold! numbers! correspond! to! the! best! values,!whereas!

italic!numbers!indicate!the!worst!values.!

!

+ +
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Table+4.3.+Comparison+of+contig+and+scaffold+assignments+of+the+human+gut+metagenome+dataset.++

!

Method Rank % agreement kb agreement 

PPS+ Phylum 99.0 140,283 

PPS Phylum 97.0 124,884 

MEGAN4 Phylum 99.0 127,658 

taxator-tk Phylum 100.0 104,475 

Kraken Phylum 97.6 123,428 

PPS+ Class 99.5 134,707 

PPS Class 96.9 118,068 

MEGAN4 Class 98.5 122,131 

taxator-tk Class 100.0 84,228 

Kraken Class 96.3 121,071 

PPS+ Order 99.5 134,127 

PPS Order 97.3 117,185 

MEGAN4 Order 98.6 121,811 

taxator-tk Order 100.0 83,337 

Kraken Order 96.3 121,003 

PPS+ Family 94.0 110,664 

PPS Family 92.6 97,066 

MEGAN4 Family 96.2 98,582 

taxator-tk Family 99.8 43,751 

Kraken Family 89.4 109,151 

PPS+ Genus 95.3 82,992 

PPS Genus 91.9 58,883 

MEGAN4 Genus 96.1 86,495 

taxator-tk Genus 99.9 34,667 

Kraken Genus 88.3 97,097 

PPS+ Species 94.7 43,329 

PPS Species N/A N/A 

MEGAN4 Species 93.5 64,554 

taxator-tk Species 99.7 10,314 

Kraken Species 81.3 94,591 
!

Contig!and!scaffold!sequences!of!the!human!gut!metagenome!dataset!were!assigned!using!PPS+,!the!generic!

PPS!model,!MEGAN4,!taxatorRtk!and!Kraken.!The!measures!‘%!agreement’!and!‘kb!agreement’!were!used!to!

compare!individual!methods!(Supplemental!Text!S1,!Section!3.10.1).!Bold!numbers!correspond!to!the!best!

values,!whereas!italic!numbers!indicate!the!worst!values.!

!

4.3.2.2 Comparison#to#an#expert#binning#based#on#marker#genes####
!

A! taxonomic! binning! generated! by!PhyloPythia! (PP)!with! expert! guidance! for! sampleJ

derived! model! construction! (Turnbaugh! et6 al.,! 2010)! was! compared! to! the! PPS+!

assignments.!Scaffolds!that!were!unassigned!by!either!method!were!not!considered.!The!

PP!expert!binning!and!the!PPS+!binning!agreed!well,!down!to!the!order!rank!(Table!4.4).!
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For! the! family! and! genus! ranks,! the! overlap!of! both!methods!dropped! to!69.5–74.1%,!

which!may!partly!be!due!to!changes! in! the!NCBI! taxonomy!since!the!generation!of! the!

expert!binning!in!2009.!Both!PPS+!and!PP!assignments!were!highly!consistent!with!the!

MG!assignments!made!by!the!+!component!of!PPS+!alone,!though!only!a!small!number!of!

scaffolds!with!marker!genes!could!be!compared!(7–23%!for!different!ranks).!While!PPS+!

had!a!larger!overlap!(‘%!agreement’)!with!the!MG!assignments!at!the!genus!rank,!PP!had!

a!larger!overlap!(‘%!agreement’)!with!the!MG!assignments!at!the!family!rank.!Moreover,!

we!compared! the!number!of! taxonomic!assignments! for! individual!methods! (Fig.!4.3):!

PPS+! assigned! sequences! to! lowJranking! taxa!down! to! the! species! level,! in! agreement!

with!the!MG!assignments,!while!PP!often!assigned!the!respective!sequences!only!to!the!

parental! taxa.! This! demonstrates! that! PPS+! can! generate! a! high! quality! taxonomic!

binning!in!a!fully!automated!manner.!

!

Table+4.4.+ Comparison+to+an+expert+binning+based+on+marker+genes.+

+

Comparison Rank % agreement kb agreement 

PP vs PPS+ Superkingdom 99.6 160,617 

MG vs PP Superkingdom 99.7 38,314 

MG vs PPS+ Superkingdom 99.5 38,220 

PP vs PPS+ Phylum 95.4 149,213 

MG vs PP Phylum 96.9 17,771 

MG vs PPS+ Phylum 98.7 18,065 

PP vs PPS+ Class 97.0 145,887 

MG vs PP Class 98.1 17,599 

MG vs PPS+ Class 100.0 17,869 

PP vs PPS+ Order 98.0 145,373 

MG vs PP Order 98.3 17,494 

MG vs PPS+ Order 100.0 17,764 

PP vs PPS+ Family 69.5 95,779 

MG vs PP Family 90.7 13,047 

MG vs PPS+ Family 83.7 12,013 

PP vs PPS+ Genus 74.1 78,686 

MG vs PP Genus 91.6 12,235 

MG vs PPS+ Genus 94.9 11,479 
+

Comparison! of! the! taxonomic! assignments! of! PPS+! versus! PhyloPythia6 (PP),! with! expert! guidance! for!

sampleJderived! model! construction! (Turnbaugh! et6 al.,! 2010)! for! the! human! gut! scaffolds! (161,343! kb)!

based!on!marker!genes!(MG),!using!the!+!component!of!PPS+.!The!measure! ‘%!agreement’!represents! the!

percentage!of!bp!assigned!by!both!methods!to!the!same!taxonomic!identifiers!at!a!given!rank,!whereas!‘kb!

agreement’!is!the!corresponding!number!of!kb!assigned!by!both!methods!to!the!same!taxonomic!identifier.!

Scaffolds!assigned!by!only!one!method!are!not!considered!in!this!comparison.!Bold!numbers!correspond!to!

the!best!values,!whereas!italic!numbers!indicate!the!worst!values.!
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!

!

+

Figure+4.3.+Comparison+to+expert+binning+based+on+marker+genes.!!

The! amount! of! assigned! bp! by! PhyloPythia! (PP),! PhyloPythiaS+6 (PPS+)6 and! taxonomically! informative!

marker!genes!directly!(MG)!to!each!taxon!are!indicated!by!the!pie!chart!sizes!on!a!logJscale!for!the!human!

gut!metagenome! sample! (Turnbaugh! et6al.,! 2010;! Patil,! Haider,! et6al.,! 2011).!PhyloPythiaS+6automatically!

determined!the!taxa!to!model!from!the!sample.!For!the!expertJtrained!PhyloPythia,!the!taxa!to!model!were!

specified!by!an!expert,!and!were!included!in!the!model!if!they!were!covered!by!sufficient!reference!sequence!

data!retrieved!separately!from!the!sample!and!from!sequenced!human!gut!isolates.!PhyloPythiaS+6assigned!

sequences!to!lowJranking!taxa!down!to!the!species!level,!in!agreement!with!the!marker!gene!assignments,!

while!PhyloPythia6often!assigned!these!sequences!to!the!parental!taxa.!For!the!MG!assignments,!a!negligible!

amount!–!only!two!contigs!(3.6!kb)!of!two!scaffolds!(231!kb)!–!were!used!as!sampleJderived!training!data!

for!PPS+;! as!mainly! sample!contigs! (2.5!Mb)! that!were!not!part!of! scaffolds!were!used!as! sampleJderived!

data!to!train!PPS.!

!
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4.3.3 Throughput&comparison&
!

The! throughput! of! the! individual! methods! for! contig! assignments! of! the! human! gut!

sample!was!calculated!(Supplemental!Text!S1,!Sections!3.3,!3.4!and!5.3).!The!throughput!

of!Kraken! substantially! varied! between! 38.4! Mb/h! and! 4.2! Gb/h! in! our! experiments,!

depending!on!whether!its!large!(~200!GB)!reference!database!was!already!loaded!in!the!

main! memory! or! not,! therefore! Kraken! is! the! fastest! method! in! high! performance!

environments.!When!only!the!prediction!step!of!PPS+!was!considered,!PPS+!assigned!up!

to!0.5!Gb/h!and!was!more! than!7! times! faster! than! the!homologyJbased!methods!(Fig.!

4.4).! This! is! relevant! when! PPS! models! are! reused! for! the! classification! of! another!

sample.!Moreover,!unlike! the!homologyJbased! tools!and!Kraken,!PPS+! can!be! run!on!a!

standard! laptop,! as! it! requires! much! less! main! memory! (see! Supplemental! Text! S1,!

Section!3.4!for!the!hardware!configurations!used).!

!

!

!

Figure+4.4.+Empirical+comparison+of+execution+times.++

The!throughput!was!measured!in!Mb!and!the!number!of!sequences!classified!within!1!h!with!one!execution!

thread,!using! all! assembled! contigs!of! the!human!gut!metagenome!dataset!on!a! server! computer!with! an!

AMD!Opteron!6386!SE!2.8!GHz!processor!and!512!GB!of!RAM.!Default!settings!were!used! for!all!methods!

(Supplemental!Text!S1,!Sections!3.5–3.7).!Both!MEGAN46and!taxatorRtk6were!run!using!BLAST.!For!MEGAN4,6

only!the!runtime!of!BLAST6was!considered,!as!the!runtime!of!the!subsequent!algorithm!was!negligible.!For!

PhyloPythiaS6 and! PhyloPythiaS+,! the! throughput! was! calculated! for! the! prediction! step! and! both! steps!

(training! and! prediction).! The! former! is! relevant! when! using! previously! generated! models! for! the!

classification!of!multiple!samples.!The!execution!time!shown!for!PhyloPythiaS6is!approximately!three!times!

better! than! that! for! the! original! release,! as! we! incorporated! the! new! kJmer! counting! algorithm.6

PhyloPythiaS+6was!the!only!method!that!could!also!be!executed!on!a!standard!laptop!(NB)!with!an!Intel!i5!

M520!2.4!GHz!processor,!4!GB!of!RAM!and!150!GB!disk!space.!
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4.4 Conclusions&
!

We!describe!a!taxonomic!assignment!program!that!produces!accurate!assignments!with!

a!precision!of!80%!or!more!also!for!lowJranking!taxa!from!metagenome!samples.!PPS+!is!

a! fully! automated! successor! of! the!PhyloPythiaS6software.! It! automatically! determines!

the!most!relevant!taxa!to!be!modeled!and!suitable!training!sequences!directly!from!the!

input!sample,!which!are!then!used!to!generate!a!sampleJspecific!structured!output!SVM!

taxonomic! classifier! for! the! taxonomic! binning! of! a! sample.! This! enables! its! use! for!

researchers! without! experience! in! the! field! or! time! to! search! for! suitable! training!

sequences! for! the! manual! construction! of! wellJmatching! taxonomic! classifier! to! a!

particular!metagenome!sequence!sample.!

6

PPS+! is!best!suited! for! the!analysis!of! large!NGS!metagenome!samples!with!assembled!

contigs! (>!1! kb)! carrying!marker! genes! or! datasets! including! the! high! quality! longer!
PacBio! (Chin! et6 al.,! 2013)! consensus! reads.! Contrary! to! some! recent!methods! for! the!

taxonomic!profiling!or!binning!of!multiple!similar!samples!(Sunagawa!et6al.,!2013),!PPS+!

can!be!also!applied!to!individual!samples.!PPS+!requires!only!100!kb!of!sampleJderived!

data! to! model! a! bin,! while! homologyJbased! methods! require! large! related! reference!

genome! or! draft! genome! sequence! collections! for! substantial! assignments! to! lowJ

ranking!taxa.!Our!experiments!on!both!real!and!simulated!metagenome!samples!showed!

that! PPS+! automatically! reconstructed! many! lowJranking! bins! from! metagenome!

samples,!such!as!for!genera!and!species,!representing!draft!genomes!or!panJgenomes!of!

different!community!members.!!

!

The!novel!implementation!of!the!kJmer!counting!algorithm!accelerated!kJmer!counting!

100Jfold!in!comparison!to!the!original!PPS!software!and!made!PPS+!overall!up!to!three!

times! faster.! The!method! performed! favorably! in! comparison! to! all! stateJofJtheJart! kJ

mer!counting!software!for!the!simultaneous!enumeration!of!4J6Jmers,!commonly!used!

for!compositionJbased!binning.!

6

PPS!models!can!be!reused!when!classifying!multiple!samples! from!the!same!or!similar!

environments.!When!comparing!assignment!with!PPS+!to!MEGAN4!and!taxatorRtk,!PPS+!

showed!a!competitive!processing!time,!allowing!to!process!up!to!0.5!Gb!of!sequences!per!

hour! with! a! given! PPS! model! on! a! single! core! with! much! lower! main! memory!

requirements,!while!MEGAN4!processed!0.065!Gb!and!taxatorRtk!0.03!Gb!(Fig.!4.4).!The!

fastest!method! in! the! comparison!was!Kraken!with!up! to!4.2!Gb/h;!however,!we!have!
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found!that!Kraken!should!be!used!only! for!wellJstudied!environments,! for!which!many!

closely! related! (draft)! genomes! have! been! sequenced,! as! an! alternative! to! alignmentJ

based! methods,! as! its! use! for! samples! originating! from! novel! environments! is! very!

limited!(Fig.!4.2).!

!

In! terms! of! assignment! quality,!we! found! that!PPS+! often! outperformed!MEGAN4! and!

Kraken!in!terms!of!precision,!recall!and!consistency.!TaxatorRtk!performed!best!in!terms!

of! precision! and! consistency,! but! assigned! substantially! fewer! sequences! to! low!

taxonomic! ranks.! PPS+! also! excelled! in! determining! the! taxa! that! were! part! of! the!

simulated!metagenome!community.!We!found!that!the!fully!automated!PPS+!binning!can!

be! as! good! as! an! expertJguided!binning!with! the! original!PhyloPythia6 implementation.!

PPS+! also! showed! a! substantially! improved! assignment! performance! compared! to! the!

generic!PPS!model.!

!

To! conclude,! the! newly! introduced! selfJtraining! (+)! component! and! the! faster! kJmer!

counting!algorithm!implemented!in!PPS+!allow!users!to!generate!high!quality!taxonomic!

binnings! of! metagenome! samples! in! a! highJthroughput! fashion,! without! requiring!

expensive!hardware,!manual!intervention!and!expert!knowledge.!It!should!be!helpful!to!

a!wide!range!of!users.!An!initial!version!of!the!software!has!been!already!employed!for!

the! taxonomic! binning! of! a! metagenome! sample! from! reindeer! guts! by! (Pope,!

Mackenzie,!et6al.,!2011)!and!it!is!currently!used!in!several!other!projects:!for!instance,!a!

PPS+!binning!of!shotgun!metagenome!samples!indicated!the!likely!metabolite!flow!and!

participating!microbial!phylotypes!for!a!biogasJproducing!microbial!community!tolerant!

of!high!ammonia!levels!(Supplemental!Text!S2).6

6

PPS+!is!distributed!with!a!large!reference!sequence!collection!(containing!Bacterial!and!

Archaeal! data)! in! a! virtual! machine,! which! makes! it! easy! to! install.! This! allows!

metagenome! sample! analysis! on! a! standard! laptop! under! Windows,! Unix! or! OS! X!

systems.!

!

4.5 Supplementary&material&
!

The!supplementary!material!is!available!in!Chapter!7!and!at!PeerJ!online:!

https://doi.org/10.7717/peerj.1603! &
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5 Synopsis&
!

The!main!objective!of!my!PhD!project!was!to!develop!methods!for!the!haplotypeJspecific!

gene! assembly! from! shotgun! metagenomes! and! for! the! taxonomic! classification! of!

metagenome! sequences! to! lowJranking! taxonomic! bins.!We! have! developed! Snowball!

(Gregor,! Schönhuth,!et6al.,! 2016),!which! is! to! the!best! of! our! knowledge! the! first! gene!

assembler! that! is! able! to! distinguish! among! gene! sequences! of! individual! strains! of! a!

species,! given! selfJoverlapping! pairedJend! reads! of! a! sequenced!metagenome! sample.!

We!have!employed!Snowball! to!assemble!simulated!reads!generated! from!the!recently!

published!Rhizobia! strains! (Bai!et6al.,! 2015),!which!demonstrates! the! capability!of!our!

method!to!assemble!gene!sequences!of!closely!related!novel!strains.!We!have!developed!

PhyloPythiaS+! (Gregor,!Dröge,! et6al.,! 2016),!which! is! to! the! best! of! our! knowledge! the!

first! method! that! performs! profiling! based! on! marker! genes! and! consequent!

compositionJbased!taxonomic!binning,!given!assembled!contigs!(>!1!kb)!or!high!quality!
longer!PacBio!(Chin!et6al.,!2013)!consensus!reads!generated!from!a!metagenome!sample.!

We! have! extensively! evaluated! our! method! with! real! and! simulated! datasets! and!

compared! it! to! the! closest! competitors.! Our! experiments! showed! that! PhyloPythiaS+!

outperformed! the! competing! tools! in! the! scenarios,! where! the! input! metagenome!

sample!contained!novel! taxa! (e.g.! species).!PhyloPythiaS+! also!correctly!assigned!more!

sequences! to! the! lowJranking! taxonomic! bins! than! the! other! tools! in! the! comparison.!

Moreover,!PhyloPythiaS+! performed!well! in! the! CAMI! challenge! (Sczyrba! et6al.,! 2017),!

especially! in! terms! of! recall;! and! has! already! been! successfully! employed! in! several!

studies! (Pope,!Mackenzie,! et6 al.,! 2011;! Daims! et6 al.,! 2015;! IkedaJOhtsubo! et6 al.,! 2016;!

Frank,! Pan,! et6al.,! 2016;! Frank,! Arntzen,! et6al.,! 2016;! Otten! et6al.,! 2016;! Driscoll! et6al.,!

2017;! Zhu!et6al.,! 2017).!We!believe! that! our!methods!will! be! valuable! for! researchers!

studying! species! evolution,! strain! or! gene! diversity,! genes! under! selection,! virulent!

genes,! metagenome! samples! originating! from! novel! environments,! for! draft! genome!

reconstruction! and! for! the! subsequent! functional! analysis! of! the! studied!metagenome!

microbial!communities.!

!

!

!

!

+

+

! &
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Abstract

Motivation: Gene assembly is an important step in functional analysis of shotgun metagenomic
data. Nonetheless, strain aware assembly remains a challenging task, as current assembly tools
often fail to distinguish among strain variants or require closely related reference genomes of the
studied species to be available.
Results: We have developed Snowball, a novel strain aware gene assembler for shotgun metage-
nomic data that does not require closely related reference genomes to be available. It uses profile
hidden Markov models (HMMs) of gene domains of interest to guide the assembly. Our assembler
performs gene assembly of individual gene domains based on read overlaps and error correction
using read quality scores at the same time, which results in very low per-base error rates.
Availability and Implementation: The software runs on a user-defined number of processor cores
in parallel, runs on a standard laptop and is available under the GPL 3.0 license for installation
under Linux or OS X at https://github.com/hzi-bifo/snowball.
Contact: AMC14@helmholtz-hzi.de or a.schoenhuth@cwi.nl
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics is the functional or sequence-based analysis of micro-

bial DNA isolated directly from a microbial community of interest

(Kunin et al., 2008; Riesenfeld et al., 2004). This enables the ana-

lysis of microorganisms that cannot be cultivated in a laboratory.

After the DNA is isolated, it is sequenced using a high-throughput

sequencing platform, which results in a large dataset of short

sequenced genome fragments, called reads. For a read, it is unknown

from which strain it originates. Given such sequenced shotgun meta-

genomic data, i.e. a dataset of short reads that originate from several

genome sequences of distinct strains, gene assembly aims to recon-

struct coding sequences of the individual strains contained in the

dataset (Fig. 1).

Gene assembly is an important step in the analysis of shotgun

metagenomic data. For many purposes, including functional analysis

of metagenomic data, it is sufficient, and therefore convenient to as-

semble only the coding sequences of the strains. It has also been

shown that genes assemble well (Kingsford et al., 2010) even when

only short reads are available. Moreover, metagenomic data consist

mainly of prokaryotic species. As usually more than 85% of pro-

karyotic genomes are coding sequences (Cole and Saint-Girons,

1999); gene assembly enables to recover large parts of the respective

genomes.

Importantly, strain awareness is an essential goal in assembling

metagenomes, since it enables us to study gene variation among

strains of a species from the sequenced microbial community, which

is where much phenotypic diversity also arises. However, the assem-

bly of closely related strains remains a challenging task. Strain aware

assembly, which is assembly that is sensitive to closely related haplo-

typic sequences has remained an open challenge in many genomics

applications. In particular, low-abundance strains can interfere with

sequencing errors in common error correction routines. To date,

most assembly tools still aim to assemble consensus sequence, if

closely related haplotypes are present (Marschall et al., 2016).

There are few tools that enable strain variant reconstruction.

They often rely on the availability of closely related reference gen-

omes of the studied species (Ahn et al., 2015; Töpfer et al., 2014;

Zagordi et al., 2011), where reads are first mapped onto a reference

genome, using a read mapping tool, e.g. BWA (Li and Durbin,

2009), strain variants are then identified through a reference guided

strain aware assembly. As metagenome samples originating from
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novel environments typically consist of novel species without refer-

ence genomes available, there is a need for new reference-free

approaches.

Tools that are often used for de novo metagenome assemblies

are Ray Meta (Boisvert et al., 2012), MEGAHIT (Li et al., 2015),

IDBA-UD (Peng et al., 2012), MetaVelvet (Namiki et al., 2012) or

SOAPdenovo2 (Luo et al., 2012). All these tools are k-mer based,

i.e. they transform reads into overlapping k-mers from which De

Bruijn graphs are built, where paths in the graph correspond to the

assembled contigs. This general approach, however, often fails to

distinguish among strain variants. There has been recent debate on

k-mer based approaches using De Bruijn graphs in strain aware as-

sembly. In particular, k-mer based approaches can become misled,

when low-abundance strains are involved, since the frequencies of

the low-abundance strains are on the order of magnitude of the

sequencing error rates. This leads to unpleasant interference in k-

mer based error-correction steps, as low-abundance strains are often

removed along with sequencing errors. For strain aware assembly, it

is helpful to process reads at their full length, because this increases

the power to distinguish low-frequent, co-occurring true mutations

from sequencing errors. In this line, there has been recent evidence

that shorter genomes can be assembled through overlap graph based

approaches, which make use of full-length reads, using short reads

(Simpson and Durbin, 2012). It was also shown that one can per-

form strain aware assembly through iterative construction of over-

lap graphs (Töpfer et al., 2014). For gene assembly from

metagenomic data, the SAT assembler (Zhang et al., 2014) can be

employed. First, it assigns reads to gene domains of interest based

on profile hidden Markov models (HMMs) (Eddy, 2011; Finn et al.,

2014) of the respective gene domains. Then, for each gene domain,

separately, it builds overlap graphs based on the read overlaps,

where the paths in the graphs correspond to the assembled contigs.

However, the SAT assembler does not implement a sophisticated

error-correction strategy, which is considered crucial for strain

aware assembly. For the reconstruction of 16S genes, which are

often used for phylotyping, REAGO (Yuan et al., 2015) can be em-

ployed. Since it has been built for 16S genes, the use of REAGO in

more generic settings remains unclear.

The current sequencing technologies still produce relatively short

erroneous reads, making it difficult to distinguish sequencing errors

from genuine strain variation (Laehnemann et al., 2015). Therefore,

reference-free strain reconstruction of the full-length sequences of

individual strains is currently considered to be a tough computa-

tional challenge, as there may be no immediate sufficient informa-

tion in the sequenced data if mutations are separated by too large

stretches of sequence that agree for several strains. Therefore, new

approaches are needed that push the limits imposed by the data.

Here, we present Snowball, a novel method for strain aware

gene assembly from metagenomes that addresses the above-

mentioned points. It does not require closely related reference gen-

omes to be available. It uses profile HMMs of gene domains of inter-

est as an input to guide the assembly. The HMM profile-based

homology search is known to be capable of finding remote hom-

ology, including large number of substitutions, insertions and dele-

tions, whereas simple read mapping onto a reference genome can

find only very closely related homologs (Zhang et al., 2014). Since

our method does not make use of reference genomes, we allow for

strain aware gene assembly also of novel species, where reference

genomes are not yet available. We have developed a novel algorithm

that performs gene assembly based on read overlaps. This allows

correcting errors by making use of the error profiles that underlie

the overlapping reads. The consequences are twofold: First, we ob-

tain contigs affected by only very low per-base error rates. Second,

since, this way, we determine which reads stem from identical seg-

ments based on a statistically sound model, we can reliably distin-

guish between sequencing errors and strain-specific variants, even of

very low-abundance strains. We consider these two features to rep-

resent the main improvements over the currently available assem-

blers. To the best of our knowledge, Snowball is the first tool that

allows distinguishing among individual gene strain variants in meta-

genomes for a large set of gene domains without using reference gen-

omes of related species.

In our experiments, we focused on distinguishing closely related

strains from one species. Since two different species are substantially

more divergent in terms of sequence than two different strains from

the same species, good results on strains from one species also imply

good or even better performance on datasets that contain several

species—distinguishing species is the much easier task. We assessed

the performance of Snowball using 21 simulated datasets, each con-

taining 3–9 closely related Escherichia coli strains and on one simu-

lated dataset containing ten recently published strains of a novel

Rhizobia species (Bai et al., 2015). The results for the latter demon-

strate the capability of the Snowball assembler to assemble genes of

novel strains. The results for all datasets confirm that the strength of

Snowball is its very low per-base error, due to the incorporated

error-correction. Moreover, it produced substantially longer contigs

and recovered a larger part of the simulated reference data in com-

parison to the SAT assembler. Snowball is implemented in Python,

runs on a user-defined number of processor cores in parallel, runs

on a standard laptop, is freely available under the GPL 3.0 license

and can be installed under Linux or OS X.

2 Methods

The input of Snowball are two FASTQ files containing Illumina self-

overlapping paired-end reads, the corresponding insert size used for

the library preparation and profile HMMs of gene domains of inter-

est. The paired-end reads may originate from multiple closely related

strains or from more evolutionary divergent taxa. We have thor-

oughly tested Snowball using simulated Illumina HiSeq 2500

paired-end reads generated by the ART read simulator (Huang

Fig. 1. An example of the gene assembly problem. In this example, the

sequenced microbial community consists only of three distinct strains. Non-

coding regions of the strain sequences are black, whereas coding regions are

red, green and blue for genes 1, 2 and 3. Genes 1–3 are present in all three

strains, although the location and gene sequences differ for distinct strains.

The sequencing step results in a collection of short reads. Note that after the

sequencing step, the origin of reads denoted by colours and positions within

the respective strains in the figure is not known in the subsequent gene as-

sembly step. Given a dataset containing all the short reads, the ultimate goal

of the gene assembly is to determine the individual strain specific sequences

of the genes
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et al., 2012) with 150 bp read length and 225 bp mean insert size. In

this setting, the average length of the self-overlaps of the read ends is

75 bp and the length of a consensus read that originates by joining

of the self-overlapping read ends is 225 bp on average (Fig. 2,

Section 3.4). The output is a FASTA or a FASTQ file containing

annotated assembled contigs. For each contig, the annotation con-

tains the name of a respective gene domain to which a contig be-

longs, coordinates of the coding sub-sequence within a contig

sequence, coverage and quality score for each contig position. The

coverage and quality score information can be used for subsequent

quality filtering yielding less or shorter contigs of higher quality.

Our method consists of the following steps:

• [Consensus read reconstruction]

Self-overlapping paired-end reads are joined into longer consen-

sus reads (Section 2.1).
• [Assignment of consensus reads to gene domains]

Profile HMMs of selected gene domains are employed to assign

consensus reads to the respective gene domains, where one con-

sensus read is assigned to at most one gene domain (Section 2.2).
• [Assembly of consensus reads into contigs]

For each gene domain, in parallel, consensus reads are assembled

into contigs (Sections 2.3–2.5). In the assembly step, consensus

reads are iteratively joined into longer and error-corrected super-

reads based on the consensus read overlaps. The super-reads are

then output as annotated contigs, where a super-read represents

a sequence that originates by joining of at least two consensus

reads into a longer sequence.

2.1 Joining self-overlapping paired-end reads
Self-overlapping paired-end reads are joined into longer error-

corrected consensus sequences. The use of a library containing self-

overlapping paired-end reads is a powerful strategy for an initial

error-correction (Schirmer et al., 2015), which has been employed in

e.g. ALLPATHS (Butler et al., 2008). Given the mean insert size, we

determine the self-overlap that results in the minimum hamming dis-

tance between the overlapping ends of a paired-end read. A base

with a higher quality score is chosen at a position within the overlap

that contains mismatching bases for the respective position of the re-

sulting consensus read sequence (Fig. 3). As the substitution error

rate of the Illumina reads increases towards the ends of the paired-

end reads (Minoche et al., 2011), this step results in longer consen-

sus reads with overall lower substitution error, where the overlap-

ping regions are almost error-free. It is also an efficient read quality

filtering step, as the paired-end reads that cannot be joined, due to

high substitution error rate, an insertion or a deletion within the

overlapping region, are filtered out. For instance, by joining of the

150 bp paired-end Illumina HiSeq 2500 self-overlapping reads with

225 bp mean insert size results in consensus reads of length 225 bp

on average. While the default error profile of the ART read simula-

tor (Huang et al., 2012) yields 150 bp paired-end reads with

!2.37% substitution error, the joined consensus reads had only

!1.08% substitution error in our experiments. These longer, error-

corrected consensus reads with low substitution error rate are con-

venient building blocks to start with in the subsequent steps of our

method.

2.2 Assigning reads to gene domains
Consensus reads are annotated using profile HMMs of gene do-

mains of interest and assigned to respective gene domains (Fig. 4).

By default, we use the Pfam-A (Finn et al., 2014) (version 27) profile

HMMs of 14 831 gene domains and AMPHORA 2 (Wu and Scott,

2012) profile HMMs of 31 bacterial ubiquitous single-copy genes

that are often used for phylotyping. A profile HMM of a gene do-

main is a probabilistic model representing a multiple sequence align-

ment of representative gene sequences belonging to a particular gene

domain. The model can be used to annotate a query sequence (e.g. a

consensus read). The annotation mainly consists of a score, start/

stop positions within a query sequence and HMM start/stop coord-

inates. The score roughly corresponds to a probability that a query

sequence belongs to the particular gene domain, i.e. if the score is

high for a query sequence then it is very probable that it belongs to

the respective gene domain. The start/stop positions within a query

sequence define a sub-sequence of a query sequence that was identi-

fied to belong to the gene domain. The HMM start/stop coordinates

correspond to the estimated coordinates of the query sub-sequence

Fig. 2. An example of a self-overlapping paired-end read. Illumina HiSeq 2500

paired-end read consists of two 150bp read ends, one on the positive strand

(þ) and one on the negative strand (#). In our example, the mean insert size

(225bp) is smaller than two times the read end length (2 $ 150bp), therefore

the paired-end reads are self-overlapping with 75bp overlap length on aver-

age. Such a self-overlapping read can be joined into a consensus read of

225bp length on average

Fig. 3. Joining of self-overlapping reads example. The figure depicts a simpli-

fied example of a consensus read reconstruction. At the mismatching overlap

position, read-end 1 has T with quality score (QS) 9, while read-end 2 has G

with quality score 5. The resulting consensus read will have T at the respect-

ive position, since T is supported by a higher quality score than G. The com-

putation of the quality scores for the consensus read is explained in the

Section 2.3

Fig. 4. Assignment of consensus reads to gene domains. Consensus reads

are assigned to individual gene domains using profile HMMs. Consensus

reads that cannot be assigned to any of the gene domains with sufficient con-

fidence remain unassigned. A consensus read is assigned to at most one

gene domain
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within the multiple sequence alignment of the respective profile

HMM.

Each consensus read is translated into six protein sequences using

all six reading frames (i.e. also considering the reverse complementary

sequences). The hmmsearch command of theHMMER 3 (Eddy, 2011)

software is used to annotate the protein sequences. For each consensus

read, only the reading frame with the highest score is considered. A

consensus read is assigned to at most one gene domain to which it was

queried with the highest score. Consensus reads with low scores (i.e.

lower than default value: 40) are filtered out and not considered in the

subsequent steps. If a protein sequence corresponding to a reverse com-

plementary consensus read sequence was annotated, the corresponding

reverse complementary DNA sequence of a respective consensus read

is considered in the next steps. The coding DNA sub-sequence of a con-

sensus read sequence is denoted as a (partial) coding region. The start

and end HMM coordinates within a respective profile HMM are

stored as part of the consensus read annotation.

As a result of this step, consensus reads are annotated and as-

signed to ‘bins’ representing individual gene domains, where one

consensus read is assigned to at most one gene domain. Gene do-

mains are building blocks of individual genes. Therefore, a ‘bin’

does not only contain consensus reads belonging to gene variants of

individual strains. It can also contain different genes of one strain,

several copies of one gene of one strain or even ‘broken’ gene copies.

2.3 Consensus sequence representation
We represent consensus sequences, i.e. consensus reads and super-

reads using probability matrices. A super-read is a longer error-

corrected sequence that originates by joining overlapping consensus

reads (or consensus reads with super-reads) in the Snowball algo-

rithm (Section 2.5).

For construction of such super-reads, we make use of the error

profiles that come along with Illumina paired-end reads. These reads

are stored in FASTQ files together with the corresponding quality

scores (Fig. 5a). A quality score for a read position represents a

probability that a base was sequenced correctly, i.e. it represents a

probability that a particular base is present at a respective position

in the FASTQ file (Fig. 5b). The complement probability represents

a probability that a different base is at the respective position. The

probability that different base X is present at a particular position

corresponds to one third of the complement probability in our

model, which reflects that apart from the correct nucleotide, there

are 3 different choices for X. Note that these probabilities are only

estimates, as provided by the Illumina sequencing platform.

In our model, a probability matrix represents a consensus se-

quence, where each sequence position is represented by a probability

distribution over DNA bases {A, C, T, G}. An example of a probabil-

ity matrix corresponding to a consensus sequence of two overlap-

ping sequences is depicted in (Fig. 6). At a particular position within

a consensus sequence, we compute the expected probability of a

base as the average probability of the respective base probabilities of

the individual reads covering the position. The individual base prob-

abilities are derived from the quality scores (Fig. 5). Let R be the set

of all read ends that were joined into consensus sequence c and cover

position pc within c. The probability of a base X2{A, C, T, G} being

at position pc within the consensus sequence c is:

Ppc Xð Þ ¼ 1

Rj j
X

r2R
Ppr
r ðXÞ

where pr for a read r2R is the position within r that corresponds to

position pc within the consensus sequence c. The base with the

highest probability in the probability matrix at a particular pos-

ition is the base of the consensus DNA sequence at the respective

position.

2.4 Overlap probabilities and error correction
The computation of overlap probabilities of two overlapping se-

quences is an essential part of the Snowball algorithm. Given two

overlapping sequences S1 and S2, represented by probability matrices

(Fig. 6), where n is the length of the overlapping region, the overlap

probability at position i 2 [0, . . ., n $ 1] is computed as:

Fig. 5. FASTQ file data representation. (Panel a) depicts an example of a read

end representation in a FASTQ file. The entry consists of the read end name,

the DNA sequence of the respective end of a paired-end read and the quality

score for each position of the DNA sequence, which are ASCII coded. (Panel

b) explains the meaning of the quality scores. From quality score qsi at pos-

ition i, we compute the probability that position i was correctly sequenced,

where the ord function assigns an ASCII number to an input ASCII character.

Before translating the resulting number ord(qsi) into the corresponding prob-

ability, one has to subtract 33, by convention. The probability that base C is at

position i is equal to the probability that position i was sequenced correctly.

In our model, the probability of A, T or G being at position i is equal to the

probability that position i was sequenced incorrectly divided by three

Fig. 6. Probability matrix example. In this example of a probability matrix con-

struction, two overlapping read ends are joined into a consensus sequence

and represented as a probability matrix. The subscripts of individual probabil-

ities correspond to either read end R1 or R2. The superscripts of individual

probabilities correspond to the positions within respective read end se-

quences. The probability arguments are DNA bases {A, C, T, G}. The jRj val-
ues correspond to the coverage, i.e. the number of read ends covering a

particular position within the consensus sequence
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Pi
overlap ¼

X

X 2 A; C; T; Gf g
Pi
1 Xð Þ$ Pi

2ðXÞ

where, Pi
1 Xð Þ is the probability that sequence S1 has base X at over-

lap position i; probability Pi
2 Xð Þ is defined analogously for sequence

S2. The overall overlap probability of S1 and S2 is the product of in-

dividual position overlap probabilities normalized by overlap length

n (Töpfer et al., 2014):

Poverlap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY

i 2½0; :; n&1'
Pi
overlap

n

s

As a score that represents the ‘expected length’ of an overlap,

taking into account the individual overlap position probabilities, we

compute the expected number of correct positions within the over-

lap as:

Length Expected ¼
X

i 2½0; :; n&1'
Pi
overlap

A single overlap score that enables us to rank different sequence

overlaps is computed as a product of the overall overlap probability

and the expected overlap length:

Score Overlap ¼ Poverlap $Length Expected:

The overlap score penalizes both overlaps with low overlap

probability and short overlaps, since long overlaps with high overlap

probability are required. The minimum required expected length of

an overlap represents the support for the overlap probability, as the

overlap probability is based only on the bases within the overlap,

therefore the number of the bases outside of the overlap should re-

main as small as possible, since we cannot make any statement

about the bases outside of the overlap.

In the Snowball algorithm, consensus reads are iteratively joined

into longer super-reads based on the overlap probabilities, expected

overlap lengths and the overlap scores (Section 2.5). By default, two

sequences S1 and S2 can be joined into a consensus sequence if the

overall overlap probability is at least 0.8 and the expected length of

the overlap is at least 0.5 * min[length(S1), length(S2)]. The high

overall overlap probability ensures that the overlap consists of

mostly matching positions, that there are no mismatching positions

with high quality scores and that mismatches are allowed only at

positions with low quality scores. For datasets with overall high

quality scores, the minimum overlap probability parameter can be

increased to 0.9 or 0.95. In the Snowball algorithm, when a consen-

sus sequence could be joined with multiple consensus sequences

with sufficient overlap probability and expected overlap length, it is

joined with the sequence with which it has the highest overlap score.

2.5 The Snowball algorithm
For each gene domain, the Snowball algorithm iteratively joins con-

sensus reads into longer error-corrected super-reads. The input of

the algorithm consists of annotated consensus reads of a particular

gene domain represented via probability matrices (Sections 2.1–2.3).

The resulting super-reads are output as annotated contigs. Note that

the method can be highly parallelized, since the Snowball algorithm

runs for each gene domain separately.

Consensus reads are first sorted in an increasing order according

to the HMM start coordinates, that denote an estimated start pos-

ition of a consensus read within the multiple sequence alignment of

the profile HMM. This layout suggests which pairs of consensus

reads are likely to have an overlap (Fig. 7), where consensus reads

that are next to each other are likely to have longer overlaps than

other pairs of consensus reads.

As a starting point of the algorithm, we choose a consensus read

with the largest sum of overlap lengths with other consensus reads and

put it into theworking set. The reason for this choice is that such a con-

sensus read is within the highest coverage of the alignment correspond-

ing to the respective profile HMM, where highly covered regions are

likely to be covered by reads originating from similar but distinct gen-

omes. Therefore, the chosen consensus read is very likely to overlap

with consensus reads originating from distinct gene variants, which

will help to resolve these gene variants early in the algorithm.

The main idea of the algorithm is that it iteratively tries to extend

consensus sequences from the working set into longer consensus se-

quences by joining them with consensus reads that are in their neigh-

bourhood, considering the consensus read layout (Fig. 7). In one

iteration, first a consensus read from the neighbourhood (i.e. L or R)

is joined with one of the consensus sequences from the working set.

Second, two consensus reads (i.e. L and R) that are in the neighbour-

hood of the working set are added to the working set or both consen-

sus reads from the neighbourhood of the working set (i.e. L and R)

are joined into a consensus sequence and added to the working set. A

consensus read and a consensus sequence (or two consensus reads)

are joined only if they have a sufficient overlap as defined in the

Section 2.4. If there is more than one overlap of a consensus read

from the neighbourhood (i.e. L or R) and a consensus sequence from

the working set, given that also the overlap between L and R, is suffi-

cient, the pair that has the highest overlap score is chosen. If there is

no sufficient overlap between a consensus sequence from the working

set and a consensus read L or R in the neighbourhood and the overlap

between L and R is also not sufficient, both consensus reads are added

to the working set as they are likely to originate from distinct gene

variants than the gene variants already represented in theworking set.

Pseudo code of the algorithm:

1. Input: a list of consensus reads of a particular gene domain.

2. Sort the input list according to the HMM start coordinates in

the increasing order.

3. Find a consensus read representing the starting point—as told

above, a consensus read with the largest sum of overlap lengths

with other consensus reads—and add it into the working set.

4. The neighbourhood of the working set consists of at most two

consensus reads, one that is the closest on the left (L) and one

that is the closest on the right (R) of the working set.

5. For each consensus sequence S from the working set and for

each pair (L, S) and (S, R), and for (L, R), compute:

Fig. 7. Initial layout of consensus reads. Consensus reads sorted according to

the HMM start coordinates. In the neighbourhood of the consensus read, that

is in the working set, there are two closest consensus reads, one on the left

(L) and one on the right (R)
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a. overlap probability

b. expected overlap length

c. overlap score

6. If there is a sufficient overlap between at least one pair (L, S),

(S, R) or (L, R), the pair with the highest overlap score is

chosen, as defined in the Section 2.4. Let (L, S) be the pair with

the highest overlap. Remove S from the working set. Join (L, S)

into a consensus sequence (i.e. a super-read), as defined in the

Section 2.3 and add it into the working set. Redefine L, as the

first consensus read on the left of L. If (S, R) is the pair with the

highest score, proceed analogously. If (L, R) is the pair with

the highest score, join (L, R) into a consensus sequence (i.e. a

super-read) and add it into the working set. Redefine L and R

analogously.

7. If there is no sufficient overlap found in step (6), add L and R

into the working set and redefine L and R in the same way as in

(6).

8. If the neighbourhood is not empty, i.e. L or R was redefined at

step (6) or (7), go to step (5). If L or R cannot be redefined, it is

not considered in the next steps of the algorithm.

9. Output super-reads as annotated contigs.

In the algorithm, a consensus sequence is represented via a prob-

ability matrix as described in the Section 2.3. Mismatching bases

within a sufficient overlap most likely represent a substitution error,

where one of the bases has a relatively low quality score, thus, the

base with a higher quality score corrects such a substitution error.

Substitutions representing genuine strain variation are represented

by overlap positions with different bases with relatively high quality

scores. Therefore, such overlaps of consensus reads representing dif-

ferent strains almost never pass the minimum required overlap prob-

ability threshold. Consensus reads containing insertion or deletion

errors have very low overlap probabilities with other consensus

reads or super-reads and are therefore unlikely to be joined into lon-

ger consensus sequences. Thus, super-read positions with coverage

of at least two are mostly error-corrected in terms of insertion and

deletion sequencing errors.

3 Results

We evaluated Snowball using 21 simulated datasets, each containing

3–9 closely related E. coli strains and one simulated dataset contain-

ing ten novel recently published Rhizobia strains (Bai et al., 2015)

(Section 3.4). We recall that good performance on different strains

implies good performance on different species, which is why we put

the emphasis on distinguishing between closely related strains in our

experiments. Thereby, our aim was to answer the following ques-

tions: Were the contigs assembled correctly? How long are the re-

sulting contigs? Did the assembly recover the reference strain

sequences from which the input paired-end reads were generated?

As a reference method, we used the SAT assembler (Zhang et al.,

2014), because this is to the best of our knowledge the only cur-

rently available gene assembler of gene domains of interest for meta-

genomic data that does not require closely related reference

genomes to be available.

In our experiments, we observed that Snowball was faster than

SAT. The runtime of Snowball was limited by the runtime of the

HMMER 3 software, i.e. our method spent most of the runtime in

this step (Section 2.2).

3.1 Per-base error
We computed the per-base error for all assembled contigs of all

simulated datasets (Fig. 8). For each contig, we determined the

reference strain sequence and coordinates of a particular contig se-

quence within a respective reference sequence from which it origin-

ates. The per-base error is defined as the percentage of bases that

differ between a contig sequence and the respective sub-sequence of

the reference sequence, i.e. it corresponds to the Hamming distance

between the two sequences, normalized by the length of the overlap.

Note, that closely related strains share large sequence regions; there-

fore, a contig can be well mapped onto several reference sequences

of distinct strains. In this case, a reference sequence, onto which a

contig maps with the lowest hamming distance, is considered to be

the reference strain sequence from which it originates. If a contig

maps onto several sequences of different strains, with exactly the

same error, we consider it to originate from all these strains. The

coverage of a contig position is equal to the number of read ends

covering a respective position. In the Snowball algorithm, we keep

track of all consensus reads that a contig consists of. For the SAT as-

sembler, we have used BWA (Li and Durbin, 2009) to map consen-

sus reads onto the contigs. We computed the per-base error for each

coverage [3,. . .,30] separately. Low-coverage positions typically

have a higher per-base error, as there is not enough information

Fig. 8. Cumulative per-base error. Cumulative per-base error for the Snowball

and SAT assemblers. We computed the per-base error in a cumulative way,

i.e. for X 2 [3,. . .,30] (on the horizontal x-axes), Y (on the vertical y-axes) is

equal to the per-base error at contig positions with coverage greater or equal

to X
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available to correct sequencing errors. This is most pronounced at

positions with coverage one, where the per-base error corresponds

to the substitution error of a respective sequencing platform

(!2.37% for our simulated datasets). At positions with higher

coverage, the error-correction mechanism built into the Snowball al-

gorithm yields very low (!0.02%) per-base error (Fig. 8). For the

SAT assembler, contig positions with high coverage correspond to

consensus sequences containing reads of several strains, which yields

a relatively high per-base error (Fig. 8). This shows that the error-

correction incorporated in the Snowball algorithm is indispensable

for the assembly of closely related strains.

3.2 Relative contig length
We computed the average number of assembled contigs and the

average cumulative length of all contigs (in Kb) per strain (Fig. 9).

As the assembled contigs should cover the full length of the respect-

ive gene sequences sufficiently well, we aligned each contig to the re-

spective profile HMM and computed the fraction of the model (i.e.

the corresponding multiple sequence alignment) it covers. For each

contig, this gave us an estimate of its relative length with respect to

the particular profile HMM. We used this information to compute

the results, e.g. using only longer contigs covering at least 50%

(60%, 70%, etc.) of respective profile HMMs. This analysis showed

that Snowball produced substantially more, longer contigs than the

SAT assembler.

3.3 Reference coverage
We computed which parts of the reference strain sequences, from

which the input reads were generated, were recovered by the

assembled contigs, per strain on average (Fig. 10). As explained in

the Section 3.1, assembled contigs may map onto one or more refer-

ence strain sequences with the same minimum hamming distance.

We considered a contig to cover all the reference strain sequences,

onto which it can be mapped with exactly the same minimum per-

base error. Positions of reference sequences that are covered by at

least one contig are denoted as covered positions. For each strain,

we computed the number and percentage of the covered positions.

Moreover, as explained in the Section 3.2, we computed these meas-

ures for contigs covering "X% of respective profile HMMs (where

the variable X corresponds to the values on the x-axes of the

graphs). The overall relatively low coverage of the reference se-

quences can be explained by low sequencing coverage of some of the

Fig. 9. Contigs per strain. Cumulative average contig length per strain, con-

sidering only contigs covering X% of respective profile HMMs (panel a).

Average number of contigs per strain, considering only contigs covering

"X% of respective profile HMMs (panel b). Here, the variable X corresponds

to the values on the (horizontal) x-axes of the graphs

Fig. 10. Coverage of the reference strain sequences. Percentage of the re-

covered reference strains, per strain on average, considering only contigs

covering "X% of respective profile HMMs (panel a). Corresponding absolute

values (Kb) are depicted in (panel b). The variable X corresponds to the values

on the x-axes
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reference strain sequences (Supplementary Tables S1–S8). Also, as

we only assemble coding sequences of the reference strain sequences,

for which we have used profile HMMs as the input, regions of the

reference strain sequences that are not covered by the profile HMMs

remain unassembled. Nevertheless, this analysis showed that

Snowball recovered substantially more reference strain sequences

than the SAT assembler.

3.4 Simulated datasets details
We have based our evaluation on 22 simulated datasets (Table 1,

Supplementary Tables S1–S8). The strain abundances correspond

to randomly drawn numbers from the log-normal distribution

(mean¼1, standard deviation¼2), where the numbers were limited

to interval [1,. . .,50], to avoid both data explosion and extremely

low strain abundances. The ART (Huang et al., 2012) read simula-

tor (version 2.3.6) was employed to generate Illumina HiSeq 2500

paired-end reads (read length¼150 bp, mean insert size¼225,

standard deviation¼23), where the strain coverage used for the

read simulation also corresponds to the strain abundance. The abun-

dance of a particular strain thus informs us with which coverage the

strain genome within a simulated dataset was sequenced. We used

the default ART Illumina HiSeq 2500 empirical error profile, which

yields reads with "2.37% substitution error. For each dataset, we

provide per-dataset results (Table 1, Sections 3.1–3.3) that show

that Snowball performed substantially better than the SAT assem-

bler for all simulated datasets.

4 Conclusions

We describe Snowball, a novel strain aware gene assembler for re-

construction of gene domains of interest from shotgun metagenomic

data of microbial communities. Snowball performs gene assembly of

individual gene domains based on read overlaps and error-

correction using read quality scores at the same time, which result in

very low per-base error rates. Our method uses profile HMMs to

guide the assembly. Nonetheless, it does not require closely related

reference genomes of the studied species to be available. We have as-

sessed the performance of Snowball using 21 simulated datasets,

each containing 3–9 closely related E. coli strains and one simulated

dataset containing ten recently published Rhizobia strains (Bai et al.,

2015), which demonstrates the capability of the Snowball assembler

to assemble novel strains. We have compared our Snowball assem-

bler to the SAT assembler, which, to our knowledge, establishes the

current state of the art in gene assembly. The results showed that

Snowball had substantially lower per-base error, assembled more,

longer contigs and recovered more data from the input paired-end

reads. We have shown that the incorporation of the error-correction

mechanism is indispensable for the assemblies of closely related

strains. To our knowledge, Snowball is the first strain aware gene

assembler that does not require closely related reference genomes of

the studied species to be available. The assembly of closely related

strains is still a challenging task for most of the current assemblers,

including the SAT assembler. We believe that our tool will be valu-

able for studying species evolution (e.g. genes under selection) and

strain or gene diversity (e.g. virulence genes). Snowball is imple-

mented in Python, runs on a user-defined number of processor cores

Table 1. Overview of simulated datasets

Dataset Strains per dataset

Per-base error (%) at

position coverage #5a
Contig length (Kb) 75%

HMM modelb
Ref. cov. 75% HMM

model (%)c

Snowball SAT Snowball SAT Snowball SAT

1 3 0.019 1.613 913 229 41.3 7.5

2 0.035 1.823 1080 628 44.4 15.1

3 0.006 1.603 865 186 43.0 6.7

4 4 0.036 1.666 740 306 43.1 10.7

5 0.011 1.813 691 253 42.6 9.7

6 0.007 1.648 700 303 45.5 11.2

7 5 0.012 1.809 614 408 44.9 13.5

8 0.012 1.791 622 393 44.8 13.5

9 0.022 2.064 665 411 40.9 12.6

10 6 0.022 1.853 518 378 42.1 11.8

11 0.045 1.822 557 308 39.0 10.7

12 0.033 2.009 571 407 40.2 12.4

13 7 0.028 1.861 447 316 42.6 11.7

14 0.041 1.866 496 293 38.9 10.9

15 0.018 2.034 488 367 41.7 12.0

16 8 0.017 2.152 408 443 44.6 12.7

17 0.030 1.869 428 294 38.3 10.5

18 0.038 2.227 453 440 39.3 11.6

19 9 0.019 1.884 349 265 40.9 9.7

20 0.014 2.035 360 314 40.4 10.7

21 0.044 2.270 424 430 42.2 13.8

22 10 0.013 1.909 905 279 27.0 5.7

aPer-base error (%) at contig positions with coverage #5 (Fig. 8).
bCumulative contig length (Kb) at X¼ 75 of (Fig. 9a).
cPercentage of recovered data at X¼ 75 of (Fig. 10a). Datasets 1–21 consist of E. coli strains (Supplementary Table S1–S7). Dataset 22 consists of Rhizobia

strains (Supplementary Table S8).
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in parallel, runs on a standard laptop and can be easily installed

under Linux or OS X.
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!
Supporting)Tables)S17S8!

!

!

Dataset!
Reads!

(Mbp)!

(a)Dataset!Strains!

(Accessions)!

(b)Strain!

coverage!

(c)Ref.!Strain!

(Mbp)!

1! 159!

NZ_AKLX00000000! 15.6! 5.489!

NZ_ANLR00000000! 10.8! 5.192!

NZ_AKLB00000000! 3.5! 5.384!

2! 323!

NZ_AEZS00000000! 19.7! 5.450!

NZ_AIGZ00000000! 15.1! 5.125!

NZ_AIGV00000000! 26.6! 5.216!

3! 138!

NZ_AIHQ00000000! 9.6! 5.201!

NZ_AIHO00000000! 5.5! 5.246!

NZ_AIHS00000000! 11.3! 5.230!

!

Supporting)Table)1.! !Parameters!of!three!simulated!datasets,!each!containing!3!E.#coli!strains.!

(column! a)! Accession! numbers! of! individual! strains! of! simulated! datasets.! (column! b)! Strain!

coverage!of!respective!strains!in!the!datasets.!(column!c)!Size!of!individual!reference!strains!in!

Mbp.!

!
!

Dataset!
Reads!

(Mbp)!

(a)Dataset!Strains!

(Accessions)!

(b)Strain!

coverage!
Ref.!Strain!(Mbp)!

4! 223!

NZ_AKLR00000000! 16.4! 5.479!

NZ_AMTI00000000! 8.6! 5.426!

NZ_ANMA00000000! 5.7! 5.127!

NZ_AMTZ00000000! 10.9! 5.410!

5! 192!

NZ_AIEZ00000000! 11.5! 5.154!

NZ_AIFB00000000! 13.8! 5.298!

NZ_AFJB00000000! 3.5! 5.134!



! 2!

NZ_AIEW00000000! 8.0! 5.198!

6! 216!

NZ_AIHQ00000000! 12.9! 5.201!

NZ_AIHR00000000! 3.4! 5.210!

NZ_AIHP00000000! 6.2! 5.265!

NZ_AIHS00000000! 18.9! 5.230!

!

Supporting)Table)2.!Parameters!of!three!simulated!datasets,!each!containing!4!E.#coli!strains.!
!

!

Dataset!
Reads!

(Mbp)!

(a)Dataset!Strains!

(Accessions)!

(b)Strain!

coverage!
Ref.!Strain!(Mbp)!

7! 351!

NZ_AMUR00000000! 4.9! 5.376!

NZ_AMTU00000000! 20.1! 5.298!

NZ_AMTJ00000000! 19.6! 5.434!

NZ_AKMA00000000! 3.3! 5.552!

NZ_AKMK00000000! 17.7! 5.417!

8! 336!

NZ_ANLX00000000! 23.6! 5.373!

NZ_AOEI00000000! 3.7! 5.164!

NZ_ANLU00000000! 8.0! 5.341!

NZ_ABHS00000000! 11.6! 5.933!

NZ_AOEG00000000! 15.7! 5.177!

9! 343!

NZ_AIFW00000000! 2.3! 5.324!

NZ_AFAH00000000! 16.7! 5.012!

NZ_AIFZ00000000! 14.1! 5.077!

NZ_AHAX00000000! 10.8! 4.956!

NZ_AMTG00000000! 26.0! 4.725!

!

Supporting)Table)3.!Parameters!of!three!simulated!datasets,!each!containing!5!E.#coli!strains.!

!

!

Dataset!
Reads!

(Mbp)!

(a)Dataset!Strains!

(Accessions)!

(b)Strain!

coverage!
Ref.!Strain!(Mbp)!

10! 380!

NZ_AMTY00000000! 37.3! 5.477!

NZ_ABHP00000000! 2.1! 5.656!

NZ_AMVF00000000! 15.4! 5.411!

NZ_AMTM00000000! 3.5! 5.131!

NZ_ABHQ00000000! 7.4! 5.706!



! 3!

NZ_AKLV00000000! 4.3! 5.447!

11! 323!

NZ_AEZS00000000! 1.3! 5.450!

NZ_AEZT00000000! 5.0! 5.279!

NZ_AIGW00000000! 14.7! 5.231!

NZ_AIGX00000000! 24.7! 5.551!

NZ_AAJX00000000! 4.9! 5.427!

NZ_AIGY00000000! 9.3! 5.305!

12! 409!

NZ_AIFW00000000! 12.4! 5.324!

NZ_AIFZ00000000! 2.4! 5.077!

NZ_AFAD00000000! 25.1! 4.744!

NZ_AIFY00000000! 13.4! 4.982!

NZ_AFAH00000000! 3.7! 5.012!

NZ_AHAW00000000! 25.1! 5.107!

!

Supporting)Table)4.!Parameters!of!three!simulated!datasets,!each!containing!6!E.#coli!strains.!

!

!

Dataset!
Reads!

(Mbp)!

(a)Dataset!Strains!

(Accessions)!

(b)Strain!

coverage!
Ref.!Strain!(Mbp)!

13! 368!

NZ_AMTP00000000! 3.2! 5.741!

NZ_ANMB00000000! 7.8! 5.344!

NZ_AKMF00000000! 4.3! 5.319!

NZ_ANLV00000000! 1.8! 5.346!

NZ_AMTM00000000! 16.0! 5.131!

NZ_AMUW00000000! 7.3! 5.375!

NZ_AKLR00000000! 28.8! 5.479!

14! 356!

NZ_AIGW00000000! 14.5! 5.231!

NZ_AIGY00000000! 5.3! 5.305!

NZ_AAJV00000000! 16.1! 5.528!

NC_013353! 8.8! 5.449!

NZ_AFAA00000000! 1.3! 5.871!

NZ_AIHB00000000! 16.2! 5.489!

NZ_AKNI00000000! 3.5! 5.242!

15! 437!

NC_012759! 9.7! 4.578!

NZ_AIFW00000000! 10.2! 5.324!

NZ_AMTG00000000! 39.9! 4.725!

NZ_AFAD00000000! 16.0! 4.744!

NZ_AMTH00000000! 2.2! 4.729!



! 4!

NZ_AIFV00000000! 2.7! 5.390!
NZ_AHAW00000000! 9.7! 5.107!

!

Supporting)Table)5.!Parameters!of!three!simulated!datasets,!each!containing!7!E.#coli!strains.!
!

!

Dataset!
Reads!
(Mbp)!

(a)Dataset!Strains!
(Accessions)!

(b)Strain!
coverage!

Ref.!Strain!(Mbp)!

16! 618!

NZ_AOER00000000! 16.3! 5.268!
NZ_AKKX00000000! 3.0! 5.528!
NZ_AMTE00000000! 5.7! 5.322!

NC_013008! 4.5! 5.528!
NZ_AKML00000000! 5.8! 5.409!
NZ_AIFF00000000! 47.4! 5.503!
NZ_AKKZ00000000! 2.7! 5.544!
NZ_AMTF00000000! 29.3! 5.345!

17! 393!

NZ_AIGN00000000! 6.0! 5.486!
NZ_AFAI00000000! 16.6! 5.560!
NZ_AIGM00000000! 2.0! 5.195!
NZ_AMVC00000000! 6.8! 5.609!
NZ_AIGI00000000! 1.5! 5.460!
NZ_AEZV00000000! 4.5! 5.409!
NZ_AIGK00000000! 28.0! 5.408!
NZ_AIGL00000000! 6.9! 5.362!

18! 576!

NZ_AIFX00000000! 45.2! 5.118!
NC_012759! 37.3! 4.578!

NZ_AFAB00000000! 9.9! 5.639!
NZ_AIFY00000000! 4.1! 4.982!
NZ_AFAD00000000! 3.3! 4.744!
NZ_AHAX00000000! 1.8! 4.956!
NZ_AFAH00000000! 7.4! 5.012!
NZ_AIFZ00000000! 7.1! 5.077!

!
Supporting)Table)6.!Parameters!of!three!simulated!datasets,!each!containing!8!E.#coli!strains.!
!
!

Dataset!
Reads!
(Mbp)!

(a)Dataset!Strains!
(Accessions)!

(b)Strain!
coverage!

Ref.!Strain!(Mbp)!



! 5!

19! 396!

NZ_AMVA00000000! 16.3! 5.328!

NZ_AMTZ00000000! 1.4! 5.410!

NZ_AKMD00000000! 5.2! 5.336!

NZ_ANLX00000000! 3.1! 5.373!

NZ_AKKY00000000! 3.5! 5.438!

NZ_AKML00000000! 36.8! 5.409!

NZ_AKLQ00000000! 4.3! 5.525!

NZ_AKMJ00000000! 2.2! 5.403!

NZ_AKMF00000000! 1.5! 5.319!

20! 495!

NZ_AMTY00000000! 1.2! 5.477!

NZ_AMTV00000000! 1.3! 5.430!

NZ_AMUR00000000! 14.2! 5.376!

NZ_ABHM00000000! 3.9! 5.618!

NZ_ABHP00000000! 40.8! 5.656!

NZ_AMTN00000000! 6.9! 5.400!

NZ_AOEN00000000! 1.8! 5.202!

NZ_AKLS00000000! 14.6! 5.396!

NZ_AMTJ00000000! 5.4! 5.434!

21! 675!

NZ_AIFW00000000! 15.5! 5.324!

NZ_AFAD00000000! 27.3! 4.744!

NZ_AIFX00000000! 14.1! 5.118!

NZ_AIFZ00000000! 21.1! 5.077!

NZ_AHAW00000000! 25.6! 5.107!

NZ_AMTH00000000! 4.3! 4.729!

NC_012759! 2.0! 4.578!

NZ_AHAX00000000! 10.6! 4.956!

NZ_AIFV00000000! 13.3! 5.390!

!

Supporting)Table)7.!Parameters!of!three!simulated!datasets,!each!containing!9!E.#coli!strains.!

!

!

Dataset!
Reads!

(Mbp)!

(a)Dataset!Strains!

(Accessions)!

(b)Strain!

coverage!

Ref.!Strain!

(Mbp)!

22! 832!

GCA_001424085.1! 15.3! 6.585!

GCA_001424505.1! 5.1! 6.561!

GCA_001425605.1! 1.9! 6.368!

GCA_001424965.1! 26.2! 6.584!

GCA_001424985.1! 3.0! 5.351!



! 6!

GCA_001426665.1! 8.7! 6.311!
GCA_001428925.1! 16.5! 5.351!
GCA_001426565.1! 7.4! 5.266!
GCA_001426685.1! 17.5! 6.043!
GCA_001429075.1! 33.3! 6.319!

!

Supporting)Table)8.!Parameters!of!a!simulated!dataset!containing!10!Rhizobia!strains.!
!
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ABSTRACT
Background.Metagenomics is an approach for characterizing environmentalmicrobial
communities in situ, it allows their functional and taxonomic characterization and to
recover sequences from uncultured taxa. This is often achieved by a combination of
sequence assembly and binning, where sequences are grouped into ‘bins’ representing
taxa of the underlying microbial community. Assignment to low-ranking taxonomic
bins is an important challenge for binning methods as is scalability to Gb-sized datasets
generated with deep sequencing techniques. One of the best available methods for
species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS
package, where a human expert decides on the taxa to incorporate in the model and
identifies ‘training’ sequences based on marker genes directly from the sample. Due
to the manual effort involved, this approach does not scale to multiple metagenome
samples and requires substantial expertise, which researchers who are new to the area
do not have.
Results.We have developed PhyloPythiaS+, a successor to our PhyloPythia(S) software.
The new (+) component performs the work previously done by the human expert.
PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the
simultaneous counting of 4–6-mers used for taxonomic binning 100-fold and reduced
the overall execution time of the software by a factor of three. Our software allows
to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species
or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+
was compared toMEGAN, taxator-tk, Kraken and the generic PhyloPythiaSmodel. The
results showed thatPhyloPythiaS+ performs especially well for samples originating from
novel environments in comparison to the other methods.
Availability. PhyloPythiaS+ in a virtual machine is available for installation under
Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.

Subjects Bioinformatics, Computational Biology, Genomics, Taxonomy
Keywords Metagenomics, Taxonomic classification, Machine learning, Bioinformatics
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INTRODUCTION
Metagenomics is the functional or sequence-based analysis of microbial DNA isolated
directly from a microbial community of interest (Riesenfeld, Schloss & Handelsman, 2004;
Kunin et al., 2008). As the cultivation conditions for most microorganisms are unknown
or too complex to reproduce in the laboratory (Hugenholtz, 2002), random shotgun
and amplicon-sequencing based metagenome studies have led to substantial advances
in our understanding of the structure and functions of microbial communities within
the last decade (Kalyuzhnaya et al., 2008; Turnbaugh et al., 2010; Hess et al., 2011; Pope
et al., 2011b; Zarowiecki, 2012; Schloissnig et al., 2013; Blaser et al., 2013). The taxonomic
classification or ‘binning’ of metagenome samples is often performed after sequence
assembly (Peng et al., 2011; Laserson, Jojic & Koller, 2011; Boisvert et al., 2012;Namiki et al.,
2012; Pell et al., 2012). This is a computationally demanding task, which for metagenome
samples results in a mixture of sequence fragments of varying lengths, originating from the
different microbial community members. A taxonomic binning defines ‘bins’ of sequence
fragments that were assigned the same taxonomic identifier, representing draft genomes or
pan-genomes of the differentmicrobial communitymembers. Taxonomic binningmethods
use sequence homology, sequence composition and similarities of contigs in read coverage
or gene counts, seeDröge & McHardy (2012) for a recent review. The subsequent analysis of
these bins allows characterizing the functional and metabolic potential for individual taxa.
For instance, in a collaboration with Mark Morrison’s group, a functional and metabolic
analysis of a draft genome recovered by taxonomic binning from the gut of the Australian
Tammar Wallaby metagenome led to the isolation and subsequent characterization of a
new and previously uncultivated bacterium (Pope et al., 2011b). Different from binning
methods, taxonomic profiling tools (Wu & Eisen, 2008; Stark et al., 2009; Liu et al., 2011;
Meinicke, Asshauer & Lingner, 2011; Wu & Scott, 2012; Segata et al., 2012; Sunagawa et al.,
2013; Silva et al., 2013) return a taxonomic profile for a metagenome sample to represent
the taxonomic composition of the underlying sampled community.

Composition-based binning methods assign metagenome sequences based on their k-
mer signature, which is derived from the counts of short oligomers (k-mers) for a sequence
(Karlin & Burge, 1995; Deschavanne et al., 1999). Our previously developed PhyloPythia(S)
(PPS) (McHardy et al., 2007; Patil, Roune & McHardy, 2011) software uses this information
in combination with a structured output support vector machine framework for taxonomic
classification. Composition-based signatures are global genomic properties, which can
be estimated from any sufficiently sized sequence sample for a taxon; e.g., for PP(S),
100 kb of reference sequences for a taxon are sufficient for accurate assignment, also
for low ranking taxa. Thus, no complete genome sequences of related organisms are
required for assignment, which is often a limiting factor for the homology-based methods.
Composition-based methods are very fast, with classification runtimes increasing linearly
with the size of the sequence sample, whereas the runtime of alignment-based methods
is proportional to the product of the reference collection size and the sequence sample
size. As the current sequencing technologies produce Gb-sized metagenome samples
(Metzker, 2010; Loman et al., 2012), scalability and computational efficiency are becoming
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Figure 1 Illustration of the PhyloPythiaS+ workflow. The recommended use of PPS is that a human
expert specifies the taxa to incorporate in a composition-based taxonomic metagenome classifier and
identifies the relevant ‘training’ sequences based on marker genes directly from the sample. The inclusion
of contigs originating directly from members of the microbial community, as ‘training’ sequences, is very
important for achieving good classification accuracy, as many members of microbial communities are
underrepresented in public sequence collections. In PPS+, the step of deciding which taxa to include in
the model and defining suitable ‘training’ sequences was automated in the + component, based on marker
genes, genome and draft genome sequence collections. The data generated by the + component are then
used to build the PPSmodels, that are subsequently used to generate the taxonomic binning of the entire
metagenome sequence sample.

increasingly important for computational metagenomic methods. Therefore, we have
developed a fully automated taxonomic binning software, that can rapidly process large
metagenome samples. PhyloPythiaS+ (PPS+) is the successor to our previously described
PPS software and improves on it in several important ways. We provide an automated
marker-gene based framework for design and creation of sample-derived structured output
support vector machine models, which allows the generation of accurate sample-derived
models without user intervention or expert knowledge. PPS+ is the first tool that combines
taxonomic profiling and subsequent taxonomic composition based binning of the whole
metagenome sample, which is particularly valuable for the draft genome reconstruction of
taxa from deep-branching phyla. By implementation of a faster k-mer counting algorithm,
we substantially increased its throughput to 0.5 Gb/h. PPS+ is distributed in a virtual
machine which facilitates installation under all common operating systems and runs on
inexpensive hardware available to most users.
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METHODS
The classification of a shotgun metagenome sequence sample with PPS+ proceeds in
two phases (Fig. 1): In the first phase, the newly developed (+) component identifies
sample-derived training sequences and the taxa to be modeled by searching for copies
of 34 ubiquitous taxonomic marker genes in the metagenome sample. The marker gene
analysis results in taxonomic assignments for a small fraction of the sample. Based on the
taxa abundance profile derived from these assignments and the sequences available in the
reference sequence collections, our method determines which taxa will be modeled and
which are the sample-derived data that will be used for training PPS.

The second phase is the composition-based taxonomic assignment of the entire
metagenome sample using PPS models trained using the data generated in the first
phase. PPS models can be reused to classify further metagenome samples, e.g., additional
samples from the same community.

PhyloPythiaS

Assignment with PPS proceeds in two steps: In the training step, an ensemble of structured
output Support Vector Machines (SVMs) (Joachims, Finley & Yu, 2009) for the specified
part of the NCBI taxonomy, defined by the taxa being modeled, are trained using the
sample-derived training sequences and additional data for these taxa from a customized
reference collection of sequenced genomes and draft genomes (Suplemental Information 1,
Section 3.3). The list of modeled taxa and sample-derived data are generated with the
+ component of PPS+. The list of taxa restricts the taxonomic output space that is
modeled, i.e., a sequence from a metagenome sample will be assigned to a leaf node taxon
or a corresponding higher-ranking taxon of the learned taxonomy.

In the prediction step, the PPSmodel ensemble identifies the taxon which best matches
a query sequence in terms of its k-mer profile and assigns to it the respective taxonomic
identifier. By default, sequences of 1 kb or more are classified (PPS+ configuration
parameter: minSeqLen).

The + component of PhyloPythiaS+
The input for the + component of PhyloPythiaS+ is the metagenome sample. This step
returns a list of clades and sample-derived data for the subsequent PPS training. The
+ component performs the following steps:
(1) Marker gene identification: DNA sequences from the sample are translated in all six

reading frames (i.e., also considering reverse complement sequences) to protein
sequences. In both the translated and untranslated sequences, regions with similarity to
the DNA or protein Hidden Markov model (HMM) profiles of 34 taxonomically
informative marker genes (Wu & Eisen, 2008; Stark et al., 2009; Liu et al., 2011;
Wu & Scott, 2012; Segata et al., 2012; Sunagawa et al., 2013) are identified (Supple-
mental Information 1, Section 3.3 and 6.1). The corresponding DNA marker gene
sequences from these regions are used for further analysis.
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(2) Taxonomic marker gene assignment : The marker gene sequences are assigned a
taxonomic identifier using the composition-based Naïve Bayes classifier (Schloss et
al., 2009) (Supplemental Information 1, Section 6.2).

(3) Taxonomic sequence assignment : If a sequence contains multiple marker genes, multiple
taxonomic identifiers are identified in Step 2. Then the highest bootstrap confidence
score (hcs) returned by the Naïve Bayes classifier (NBC) for one of the markers
on the fragment is identified. We use all marker gene assignments with confidence
scores larger than hcs ⇤ (1 � candidatePlTopPercentThreshold). The default setting for
the configuration parameter candidatePlTopPercentThreshold is 0.1. From the set of
taxonomic identifiers, the lowest taxon t is identified for which all other assignments
are either to the same taxon t or defined at higher-ranking parental taxa of t . Taxon
t is consequently used for the overall fragment assignment. The confidence score for
the fragment is set to the smallest confidence score for the set of retained marker gene
assignments.

(4) (Optional: Taxonomic scaffold assignment): Scaffolding information (i.e., the mapping
of contigs to scaffolds) can be used to obtain more training data for the relevant taxa.
Assembled contigs can be grouped into scaffolds based on the paired-end information
after the assembly. As all contigs of a particular scaffold originate from the same strain,
all contigs of the respective scaffold should have the same taxonomic label. Here, we
make use of this scaffolding information, such that unassigned contigs of a particular
scaffold can be assigned based on the assigned contigs of the respective scaffold. In the
first step, the taxonomic identifiers of all assigned contigs for a scaffold are corrected as
follows: Let us consider that n taxonomically assigned contigs of a scaffold are placed
along a common path from the root r down to a low-ranking clade lc in the reference
taxonomy. The unassigned contigs of a scaffold are not among these n contigs. To
obtain a consistent assignment for all the contigs of a scaffold and to correct for
‘outlier’ contig assignments to low ranking taxa, contigs are reassigned according to
the following: All n assigned contigs of the respective scaffold are reassigned to the
lowest taxon c , which lies on the path from r to lc, where c is chosen such that at least
(agThreshold ⇤ n) of the contigs are assigned on the path from c to lc. In the second step,
unassigned contigs are assigned to the same taxon c , if a sufficient number of contigs
have already been assigned. Let us denote the sum of all contig lengths for a scaffold
as l and the sum of all assigned contig lengths of the respective scaffold as al. If al/l �
assignedPartThreshold, then the unassigned contigs of a scaffold are also assigned to
clade c (see the configuration parameters: placeContigsFromTheSameScaffold = True,
agThreshold = 0.3, assignedPartThreshold = 0.5).

(5) Assignment path truncation: Contigs assigned to a lower-ranking taxon than the
specified lowest rank are reassigned to the parental taxon of this lowest rank
(configuration parameter: rankIdCut ).

(6) Taxa selection for model specification: Any taxon for which at least 100 kb of sample-
derived data have been identified can bemodeled. Furthermore, species can bemodeled
if at least 300 kb of reference sequences are available in the reference sequence database,
and higher-ranking taxa can be modeled if data for at least three distinct species with
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this requirement (>300 kb per species) are available. Contigs assigned to taxa for
which there are fewer data are subsequently assigned to higher taxonomic ranks for
which sufficient data are available to allow their use as sample-derived training data
(configuration parameters: minGenomesWgs = 3 or 1, minBpPerSpecies = 300,000,
minBpToModel = 100,000).

(7) Abundant taxa selection: To reduce the number of taxa to the most relevant ones, the
least abundant taxon is removed iteratively. This is defined as the taxon to which the
minimum number of bp is assigned. Sequences assigned to this taxon are reassigned
to the closest defined taxon at a parental rank. The algorithm ends when the number
of leaf taxa is less than or equal to the maximum number of taxa to be modeled
(configuration parameter:maxLeafClades = 50; this can be set realistically up to 800).

Balancing training data: The part of the taxonomy that will be modeled with PPS is defined
by the taxa identified in the previous step. It has leaf nodes at different ranks above the
specified rank cut-off, and internal nodes. Only leaf node taxa and sample-derived training
data assigned to leaf node taxa in the preceding steps are specified as input for PPS training.
To balance the training data across clades, a maximum of 400 kb of sample-derived training
data are selected for each leaf node taxon (configuration parameter: maxSSDfileSize). For
this selection, contigs are used in order of decreasing confidence values and then in order
of decreasing length. The balancing of training data can be switched off by setting the
configuration parameter (maxSSDfileSize) to a large number.

Simultaneous counting of multiple short k-mers
We provide PPS+ with a new custom k-mer counting algorithm that is based on the Rabin
Karp string matching algorithm (Karp & Rabin, 1987). The algorithm is highly optimized
to count occurrences of short DNA sequences. It is very fast, as it is memory efficient,
because it does not need any large helper data structure similar to suffix trees. It explores
the locality of reference, uses very fast bit shift operations and is efficiently implemented
in C. Its complexity is O(n), where n is the length of the DNA sequence that is being
considered. It enumerates k-mers up to hundred times faster than when using suffix trees
that were employed in PPS. This made PPS+ overall up to 3x faster than PPS. Because the
algorithm allows to simultaneously enumerate k-mers of consecutive lengths in one run,
it is at least 2–7x faster than the state-of-the-art software Jellyfish (Marcais & Kingsford,
2011) and 11x faster than KAnalyze (Audano & Vannberg, 2014) in the scenario used in
PPS+, i.e., when calculating k-mers of length 4, 5, and 6 for every sequence (Table S1,
Supplemental Information 1, Section 2). We also found that the state-of-the-art k-mer
counting methods KMC 2 (Deorowicz et al., 2015) and Turtle (Roy, Bhattacharya & Schliep,
2014) are not applicable to our problem setting, as KMC 2 can count only k-mers � 10
and Turtle is prohibitively slow for sequences � 16 kb.

Algorithm description

Let us assume that we are given an array a, which represents a DNA sequence of length n
where all letters are encoded as numbers 0, 1, 2, 3 (where A ⇠0, T ⇠1, G ⇠2, C⇠3) and
let a0,...,an�1 denote the respective entries. We would like to count the occurrences of all
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k-mers of length k and store the counts in an array c of length 4k , which is initialized by
zeros. Each k-mer maps to a unique index in the array c . The index of the first k-mer in
our sequence is calculated according to:

index0= a0 ⇤4k�1+a1 ⇤4k�2+···+ak�2 ⇤41+ak�1 ⇤40.

The index of the (i+1)th k-mer of the sequence is computed from the (i)th index as:

indexi+1= (indexi�ai ⇤4k�1)⇤ai+k ⇤40.

When an index is identified, the corresponding k-mer count at this index position in array
c is incremented by one. For instance, the DNA sequence ATGCATG is encoded in array a
as [0, 1, 2, 3, 0, 1, 2]. For k = 2, we would add two counts for the k-mer AT in array c at
the index position 0⇤4+1= 1, two counts for TG at the index position 1⇤4+2= 6, one
count for GC at the index position 2⇤4+3= 11 and one count for CA at index position
3⇤4+0= 12. The multiplication operation X⇤4m can be computed using the bit shift
operation X ⌧ 2⇤m, which is usually much faster than multiplication.

Counting k-mers of di�erent lengths at once

If indexi is the index of the ith k-mer of length k, the index of the ith (k� j)-mer (of length
k� j) can be simultaneously computed using the bit shift operation as indexi � (2⇤ j)
(for j 2 [1..k�1]) and the corresponding counter at the computed index of a respective
counter array of length 4(k�j) is incremented. The end of a DNA sequence can be handled
by adding several non-DNA characters to its end.

RESULTS
We evaluated PPS+ by comparing it to homology-based methods (MEGAN4, taxator-tk)
(Huson et al., 2011; Dröge, Gregor & McHardy, 2014), the fast taxonomic binning program
Kraken (Wood & Salzberg, 2014), the composition-based method PhyloPythia trained
under expert guidance (a recommended but time-consuming procedure) and to a generic
PPS model using default settings (Supplemental Information 1, Section 3.5–3.8). For a
performance comparison of PPS to methods with prohibitive runtimes for large datasets,
such as PhymmBL (Brady & Salzberg, 2011) and CARMA3 (Gerlach & Stoye, 2011), and
the web-based tool NBC (Rosen, Reichenberger & Rosenfeld, 2011) see Patil et al. (2011);
Patil, Roune & McHardy (2011); Dröge, Gregor & McHardy (2014), as PPS has already been
compared to these methods with favorable outcomes. For a comparison with ‘taxonomy-
free’ binning software CLARK (Ounit et al., 2015) see (Supplemental Information 1,
Section 7). We did not compare PPS+ to profiling tools such as (Liu et al., 2011), as PPS+ is
a binning method that assigns a taxonomic label to each input sequence. As benchmark
datasets, we created two simulated datasets, one with a uniform (137 Mb) and one with a
log-normal (66Mb) distribution of 47 community members (Supplemental Information 1,
Section 3.1, Datasets S1 and S2).We also used two real datasets, a metagenome sample from
the guts of two obese human twins (255 Mb) (Turnbaugh et al., 2010) and a cow rumen
metagenome sample (319 Mb) from Hess et al. (2011) (Supplemental Information 1,
Section 3.2, Datasets S3–S6) for evaluation.
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Table 1 Test scenarios. Test scenarios where data was removed (masked) up to the specified rank for the
corresponding taxa represented in the simulated metagenome datasets from the reference collections. RS
denotes the reference collection of complete or draft genomes;MG indicates the reference collection of
marker genes (Supplemental Information 1, Section 3.3).

Test scenario Rankmasked from RS Rankmasked fromMG

1. None None
2. Strain None
3. Species None
4. Genus None
5. Strain Strain
6. Species Strain
7. Genus Strain
8. Species Species
9. Genus Genus

Benchmarks with simulated datasets
We constructed the simulated datasets by assembling simulated reads with an empirical
error profile. The details on how the simulated reads were generated and assembled can
be found in (Supplemental Information 1, Section 3.1). For the evaluation, precision
and recall were calculated (Supplemental Information 1, Section 3.9). Furthermore, these
measures were also calculated with a ‘correction,’ to account for the case where the
sequences of one taxon were consistently assigned to a different taxon, as for draft genome
reconstruction, it is more important that the sequences are assigned consistently than that
the taxonomic identifier is correct. To assess the performance of the different methods
in assigning the simulated sequence fragments without related reference genomes being
available, ‘new strain,’ ‘new species’ and ‘new genus’ scenarios were simulated by removing
all sequence data from the taxa of the simulated test dataset at each rank from the reference
data. Furthermore, for PPS+, we distinguished whether the reference data were excluded
(masked) from the reference sequence (RS) collection or also from the marker gene (MG)
collection, since the MG collection included sequences for 15 times more distinct species
than the RS collection. There were therefore two different situations to consider (Table 1).

PPS+ showed a substantially improved precision and recall over the PPS generic model,
which demonstrated the impact of the improved selection of training data and modeled
taxa (Figs. 2A and 2C, S1A–S1D and S3A–S3D). PPS+ almost always had higher precision
and recall than MEGAN4 and Kraken, except when almost all test data were included
in the reference sequences (Figs. 2A and 2C, S1A–S1C, S1E, S3A–S3C, S3E, S14A). This
was even more pronounced when comparing bin quality using the corrected measures
(Figs. 2B and 2D, S2A– S2C, S2E, S4A– S4C, S4E, S14A and S14D). When comparing
PPS+ to taxator-tk, PPS+ had substantially improved recall, particularly for lower ranks
(Figs. 2A and 2C, S1A–S1C, S1F, S3A–S3C, S3F); while taxator-tk outperformed all other
methods in terms of precision (Figs. 2A and 2C, S1A–S1F and S3A–S3F). Both methods
were similarly precise when analyzing bin recovery, independent of assigning the taxonomic

Gregor et al. (2016), PeerJ, DOI 10.7717/peerj.1603 8/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.1603/supp-1
http://dx.doi.org/10.7717/peerj.1603/supp-1
http://dx.doi.org/10.7717/peerj.1603/supp-1
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-16
http://dx.doi.org/10.7717/peerj.1603/supp-4
http://dx.doi.org/10.7717/peerj.1603/supp-4
http://dx.doi.org/10.7717/peerj.1603/supp-4
http://dx.doi.org/10.7717/peerj.1603/supp-6
http://dx.doi.org/10.7717/peerj.1603/supp-6
http://dx.doi.org/10.7717/peerj.1603/supp-6
http://dx.doi.org/10.7717/peerj.1603/supp-16
http://dx.doi.org/10.7717/peerj.1603/supp-16
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-3
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603/supp-5
http://dx.doi.org/10.7717/peerj.1603


Figure 2 Performance comparisons with simulated datasets. (A) and (C) show the fraction of
correct, incorrect and unassigned bp for simulated datasets with uniform and log-normally distributed
species abundance for PhyloPythiaS+, the generic PhyloPythiaSmodel,MEGAN4, Kraken and taxator-tk
for assignments at the species, genus and family ranks. Results were averaged over all test ‘scenarios’
(Table 1), where sequences of the same strain, species or genus from the simulated metagenomes were
removed from the genome, draft genome and marker gene reference sequence collections (Figs. S1, S3,
S14A and S14C). (B) and (D) show the portion of consistently (correct), inconsistently (incorrect) and
unbinned (unassigned) bp without consideration of the taxonomic identifiers (Figs. S2, S4, S14B and
S14D, Supplemental Information 1, Section 3.9.2). The exact values and the corresponding precision,
recall and f1-score are contained in (Tables S2–S5) for (A–D), respectively.

identifiers to the corrected measures (Figs. 2B and 2D, S2A– S2C, S2F, S4A– S4C and S4F).
As a strong point of PPS+ , we also observed that it more rarely predicted wrong taxa that
were not a part of the sample than the other methods (Fig. S5). For example, for the genus
rank in Scenarios 3 and 8, PPS+ assigned sequences to only 2–5 false positive taxa, while
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taxator-tk identified 20,MEGAN4 37 and PPS 59 false ones. If PPS+ identified wrong taxa,
these were usually very closely related to the true taxa.

Benchmarks with real datasets
Comparison of sca�old and contig assignments

For each taxonomic rank, the percentage and the total number of kb (% agreement and
kb agreement) that were assigned the same taxonomic identifier were calculated for the
real datasets, based on the assignments of scaffold and contig sequences (Supplemental
Information 1, Section 3.10.1). For the chunked cow rumen dataset (Supplemental
Information 1, Section 3.2.2), taxator-tk had the highest assignment consistency (Table 2);
however, it assigned much fewer data than the other methods at lower taxonomic ranks.
A detailed comparison is given in heat maps (Figs. S6–S13). PPS+ performed substantially
better by both measures than the generic PPS model in almost all cases. PPS+ was also
more consistent than MEGAN4 for all lower ranks and assigned many more sequences
thanMEGAN4 overall. For instance, at the genus rank, the scores were 84.3 and 56
‘% agreement’, as well as 33,724 and 13,726 ‘kb agreement’ for PPS+ and MEGAN4,
respectively. The overall low numbers for Kraken suggests that it is rather not applicable
to samples containing novel taxa. Also, the low number of consistently assigned bp by
MEGAN4 and taxator-tk to lower taxonomic ranks reflects the availability of few related
reference genome sequences for the cow rumen metagenome sample, which is not an issue
for a composition-based method PPS+.

For the human gut microbiome, extensive sequencing of isolate cultures has resulted
in a large collection of several hundred reference genome sequences. Accordingly, for the
human gut dataset, taxator-tk, MEGAN4 and Kraken assigned many more sequences than
they did for the cow rumen dataset (Tables 2 and 3). For Kraken and MEGAN4, this was
most pronounced for the genus and species ranks, even though this was also caused by
counting scaffolds containing only one contig being consistent to itself. Themost consistent
method was again taxator-tk, but it also assigned fewer sequences than the other methods.
PPS+ performed better than the generic PPS model in all cases in terms of both measures
(Table 3). PPS+ and MEGAN4 showed comparable consistency, with PPS+ being more
consistent for the class, order and species ranks, and MEGAN4 being more consistent
for the superkingdom, family and genus ranks. However, PPS+ consistently assigned
(kb agreement) more sequences than MEGAN4, except for the genus and species ranks.
Thus, in the case of larger collections of related isolate genome sequences being available,
composition- and homology-based methods perform similarly well.

The taxonomic scaffold-contig consistency of the assignments was additionally
evaluated (Table S6 and Table S7) using a set of measures (Supplemental Information 1,
Section 3.10.2) that provide more detailed insights into assignment consistency
(Supplemental Information 1, Section 5.1) and support the conclusions in this section.

Comparison to an expert binning based on marker genes

A taxonomic binning generated by PhyloPythia (PP) with expert guidance for
sample-derived model construction (Turnbaugh et al., 2010) was compared to the
PPS+ assignments. Scaffolds that were unassigned by either method were not considered.
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Table 2 Comparison of contig and scaffold assignments of the chunked cow rumen dataset. Contigs
of the cow rumen dataset of at least 10 kb were divided into chunks of 2 kb for evaluation of assignment
consistency (Supplemental Information 1, Section 3.2.2). The contigs and scaffolds of the chunked cow
rumen dataset were assigned using PPS+ , the generic PPSmodel,MEGAN4, taxator-tk and Kraken. For
each method, up to two taxonomic identifiers were assigned to each contig at each rank, i.e., one identifier
came from the contig assignment and the second identifier came from the corresponding scaffold assign-
ment. Contigs with less than two taxonomic assignments at each rank were not considered in this com-
parison. The measure ‘% agreement’ was the percentage of contigs with the same two taxonomic identi-
fiers at a particular rank, whereas ‘kb agreement’ was the total number of kb of contigs with the same taxo-
nomic identifiers (Supplemental Information 1, Section 3.10.1). Bold numbers correspond to the best val-
ues, whereas italic numbers indicate the worst values.

Method Rank % agreement kb agreement

PPS+ Phylum 73.9 153,774
PPS Phylum 67.8 75,538
MEGAN4 Phylum 74.2 43,380
taxator-tk Phylum 98.2 59,702
Kraken Phylum 67.0 33,558
PPS+ Class 86.0 99,596
PPS Class 58.5 43,931
MEGAN4 Class 68.5 33,780
taxator-tk Class 97.7 23,190
Kraken Class 58.5 27,536
PPS+ Order 88.4 98,616
PPS Order 63.8 41,349
MEGAN4 Order 68.9 32,650
taxator-tk Order 98.0 22,368
Kraken Order 57.0 26,410
PPS+ Family 80.0 46,343
PPS Family 55.8 19,158
MEGAN4 Family 55.0 15,790
taxator-tk Family 98.9 7,276
Kraken Family 45.2 18,370
PPS+ Genus 84.3 33,724
PPS Genus 63.2 12,938
MEGAN4 Genus 56.0 13,726
taxator-tk Genus 99.1 6,042
Kraken Genus 43.7 16,912
PPS+ Species 91.6 9,821
PPS Species N/A N/A
MEGAN4 Species 54.6 8,502
taxator-tk Species 100.0 292
Kraken Species 38.1 14,186
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Table 3 Comparison of contig and scaffold assignments of the human gut metagenome dataset. Contig
and scaffold sequences of the human gut metagenome dataset were assigned using PPS+, the generic PPS
model,MEGAN4, taxator-tk and Kraken. The measures ‘% agreement’ and ‘kb agreement’ were used to
compare individual methods (Supplemental Information 1, Section 3.10.1). Bold numbers correspond to
the best values, whereas italic numbers indicate the worst values.

Method Rank % agreement kb agreement

PPS+ Phylum 99.0 140,283
PPS Phylum 97.0 124,884
MEGAN4 Phylum 99.0 127,658
taxator-tk Phylum 100.0 104,475
Kraken Phylum 97.6 123,428
PPS+ Class 99.5 134,707
PPS Class 96.9 118,068
MEGAN4 Class 98.5 122,131
taxator-tk Class 100.0 84,228
Kraken Class 96.3 121,071
PPS+ Order 99.5 134,127
PPS Order 97.3 117,185
MEGAN4 Order 98.6 121,811
taxator-tk Order 100.0 83,337
Kraken Order 96.3 121,003
PPS+ Family 94.0 110,664
PPS Family 92.6 97,066
MEGAN4 Family 96.2 98,582
taxator-tk Family 99.8 43,751
Kraken Family 89.4 109,151
PPS+ Genus 95.3 82,992
PPS Genus 91.9 58,883
MEGAN4 Genus 96.1 86,495
taxator-tk Genus 99.9 34,667
Kraken Genus 88.3 97,097
PPS+ Species 94.7 43,329
PPS Species N/A N/A
MEGAN4 Species 93.5 64,554
taxator-tk Species 99.7 10,314
Kraken Species 81.3 94,591

The PP expert binning and the PPS+ binning agreed well, down to the order rank (Table 4).
For the family and genus ranks, the overlap of bothmethods dropped to 69.5–74.1%, which
may partly be due to changes in the NCBI taxonomy since the generation of the expert
binning in 2009. Both PPS+ and PP assignments were highly consistent with the MG
assignments made by the + component of PPS+ alone, though only a small number
of scaffolds with marker genes could be compared (7–23% for different ranks). While
PPS+ had a larger overlap (‘% agreement’) with the MG assignments at the genus rank,
PP had a larger overlap (‘% agreement’) with the MG assignments at the family rank.
Moreover, we compared the number of taxonomic assignments for individual methods
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Table 4 Comparison to an expert binning based onmarker genes. Comparison of the taxonomic as-
signments of PPS+ versus PhyloPythia (PP), with expert guidance for sample-derived model construction
(Turnbaugh et al., 2010) for the human gut scaffolds (161, 343 kb) based on marker genes (MG), using
the + component of PPS+. The measure ‘% agreement’ represents the percentage of bp assigned by both
methods to the same taxonomic identifiers at a given rank, whereas ‘kb agreement’ is the corresponding
number of kb assigned by both methods to the same taxonomic identifier. Scaffolds assigned by only one
method are not considered in this comparison. Bold numbers correspond to the best values, whereas italic
numbers indicate the worst values.

Comparison Rank % agreement kb agreement

PP vs PPS+ Superkingdom 99.6 160,617
MG vs PP Superkingdom 99.7 38,314
MG vs PPS+ Superkingdom 99.5 38,220
PP vs PPS+ Phylum 95.4 149,213
MG vs PP Phylum 96.9 17,771
MG vs PPS+ Phylum 98.7 18,065
PP vs PPS+ Class 97.0 145,887
MG vs PP Class 98.1 17,599
MG vs PPS+ Class 100.0 17,869
PP vs PPS+ Order 98.0 145,373
MG vs PP Order 98.3 17,494
MG vs PPS+ Order 100.0 17,764
PP vs PPS+ Family 69.5 95,779
MG vs PP Family 90.7 13,047
MG vs PPS+ Family 83.7 12,013
PP vs PPS+ Genus 74.1 78,686
MG vs PP Genus 91.6 12,235
MG vs PPS+ Genus 94.9 11,479

(Fig. 3): PPS+ assigned sequences to low-ranking taxa down to the species level, in
agreement with theMG assignments, while PP often assigned the respective sequences only
to the parental taxa. This demonstrates that PPS+ can generate a high quality taxonomic
binning in a fully automated manner.

Throughput comparison
The throughput of the individual methods for contig assignments of the human gut sample
was calculated (Supplemental Information 1, Section 3.3, 3.4 and 5.3). The throughput of
Kraken substantially varied between 38.4Mb/h and 4.2 Gb/h in our experiments, depending
on whether its large (⇠200 GB) reference database was already loaded in the main memory
or not, therefore Kraken is the fastest method in high performance environments. When
only the prediction step of PPS+ was considered, PPS+ assigned up to 0.5 Gb/h and was
more than 7 times faster than the homology-based methods (Fig. 4). This is relevant
when PPSmodels are reused for the classification of another sample. Moreover, unlike the
homology-based tools and Kraken, PPS+ can be run on a standard laptop, as it requires
much less main memory (see Supplemental Information 1, Section 3.4 for the hardware
configurations used).
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Figure 3 Comparison to expert binning based onmarker genes. The amount of assigned bp by
PhyloPythia (PP), PhyloPythiaS+ (PPS+) and taxonomically informative marker genes directly (MG)
to each taxon are indicated by the pie chart sizes on a log-scale for the human gut metagenome sample
(Turnbaugh et al., 2010; Patil, Roune & McHardy, 2011). PhyloPythiaS+ automatically determined the
taxa to model from the sample. For the expert-trained PhyloPythia, the taxa to model were specified by an
expert, and were included in the model if they were covered by sufficient reference sequence data retrieved
separately from the sample and from sequenced human gut isolates. PhyloPythiaS+ assigned sequences
to low-ranking taxa down to the species level, in agreement with the marker gene assignments, while
PhyloPythia often assigned these sequences to the parental taxa. For theMG assignments, a negligible
amount—only two contigs (3.6 kb) of two scaffolds (231 kb)—were used as sample-derived training data
for PPS+; as mainly sample contigs (2.5 Mb) that were not part of scaffolds were used as sample-derived
data to train PPS.

CONCLUSIONS
We describe a taxonomic assignment program that produces accurate assignments with a
precision of 80% or more also for low-ranking taxa from metagenome samples. PPS+ is
a fully automated successor of the PhyloPythiaS software. It automatically determines
the most relevant taxa to be modeled and suitable training sequences directly from
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Figure 4 Empirical comparison of execution times. The throughput was measured in Mb and the num-
ber of sequences classified within 1 h with one execution thread, using all assembled contigs of the human
gut metagenome dataset on a server computer with an AMD Opteron 6386 SE 2.8 GHz processor and 512
GB of RAM. Default settings were used for all methods (Supplemental Information 1, Section 3.5–3.7).
BothMEGAN4 and taxator-tk were run using BLAST. ForMEGAN4, only the runtime of BLAST was con-
sidered, as the runtime of the subsequent algorithm was negligible. For PhyloPythiaS and PhyloPythiaS+,
the throughput was calculated for the prediction step and both steps (training and prediction). The former
is relevant when using previously generated models for the classification of multiple samples. The execu-
tion time shown for PhyloPythiaS is approximately three times better than that for the original release, as
we incorporated the new k-mer counting algorithm. PhyloPythiaS+ was the only method that could also
be executed on a standard laptop (NB) with an Intel i5 M520 2.4 GHz processor, 4 GB of RAM and 150
GB disk space.

the input sample, which are then used to generate a sample-specific structured output
SVM taxonomic classifier for the taxonomic binning of a sample. This enables its use
for researchers without experience in the field or time to search for suitable training
sequences for themanual construction of well-matching taxonomic classifier to a particular
metagenome sequence sample.

PPS+ is best suited for the analysis of large NGS metagenome samples with assembled
contigs (> 1kb) carrying marker genes or datasets including the high quality longer
PacBio (Chin et al., 2013) consensus reads. Contrary to some recent methods for the
taxonomic profiling or binning of multiple similar samples (Sunagawa et al., 2013),
PPS+ can be also applied to individual samples. PPS+ requires only 100 kb of sample-
derived data to model a bin, while homology-based methods require large related reference
genome or draft genome sequence collections for substantial assignments to low-ranking
taxa. Our experiments on both real and simulated metagenome samples showed that
PPS+ automatically reconstructed many low-ranking bins from metagenome samples,
such as for genera and species, representing draft genomes or pan-genomes of different
community members.

The novel implementation of the k-mer counting algorithm accelerated k-mer counting
100-fold in comparison to the original PPS software and made PPS+ overall up to three
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times faster. The method performed favorably in comparison to all state-of-the-art k-mer
counting software for the simultaneous enumeration of 4–6-mers, commonly used for
composition-based binning.

PPS models can be reused when classifying multiple samples from the same or similar
environments. When comparing assignment with PPS+ to MEGAN4 and taxator-tk,
PPS+ showed a competitive processing time, allowing to process up to 0.5 Gb of sequences
per hour with a given PPS model on a single core with much lower main memory
requirements, while MEGAN4 processed 0.065 Gb and taxator-tk 0.03 Gb (Fig. 4). The
fastest method in the comparison was Kraken with up to 4.2 Gb/h; however, we have
found that Kraken should be used only for well-studied environments, for which many
closely related (draft) genomes have been sequenced, as an alternative to alignment-based
methods, as its use for samples originating from novel environments is very limited
(Fig. 2).

In terms of assignment quality, we found that PPS+ often outperformed MEGAN4
and Kraken in terms of precision, recall and consistency. Taxator-tk performed best
in terms of precision and consistency, but assigned substantially fewer sequences to
low taxonomic ranks. PPS+ also excelled in determining the taxa that were part of the
simulated metagenome community. We found that the fully automated PPS+ binning can
be as good as an expert-guided binning with the original PhyloPythia implementation.
PPS+ also showed a substantially improved assignment performance compared to the
generic PPS model.

To conclude, the newly introduced self-training (+) component and the faster k-mer
counting algorithm implemented in PPS+ allow users to generate high quality taxonomic
binnings of metagenome samples in a high-throughput fashion, without requiring
expensive hardware, manual intervention and expert knowledge. It should be helpful
to a wide range of users. An initial version of the software has been already employed for
the taxonomic binning of a metagenome sample from reindeer guts by Pope et al. (2011a)
and it is currently used in several other projects: for instance, a PPS+ binning of shotgun
metagenome samples indicated the likely metabolite flow and participating microbial
phylotypes for a biogas-producing microbial community tolerant of high ammonia levels
(Supplemental Information 2).

PPS+ is distributed with a large reference sequence collection (containing Bacterial and
Archaeal data) in a virtual machine, which makes it easy to install. This allows metagenome
sample analysis on a standard laptop under Windows, Unix or OS X systems.
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Minor&Corrections:!Under!the!section!"Algorithm!description”,!the!second!equation!

should!read!“indexi+1!=!(index!i!–!ai!*!4kB1)!*!4!+!ai+k!*!40”,!instead!of!“indexi+1!=!(indexi!–!

ai!*!4kB1)!*!ai+k!*!40”.!

!

The!reference!“Patil!KR,!Roune!L,!McHardy!AC.!2011.!The!PhyloPythiaS!web!server!for!

taxonomic!assignment!of!metagenome!sequences.!PLoS!ONE!7:e38581”!should!be!“Patil!

KR,!Haider!P,!Pope!PB,!Turnbaugh!PJ,!Morrison!M,!Scheffer!T,!McHardy!AC.!2011.!

Taxonomic!metagenome!sequence!assignment!with!structured!output!models.!Nature'

Methods,!8,!191B192.”!The!citation!is!used!in!the!second!paragraph!of!the!Introduction!

section,!and!in!the!Figure!3!legend,!and!should!be!cited!in!the!manuscript!as!“Patil,!

Haider!&!McHardy!2011”,!instead!of!“Patil,!Roune!&!McHardy,!2011”.!

!

In!the!section!“Benchmarks!with!simulated!datasets”,!there!are!some!incorrect!figure!

references:!“PPS+!almost!always!had!higher!precision!and!recall!than!MEGAN4!and!

Kraken,!except!when!almost!all!test!data!were!included!in!the!reference!sequences!(Figs.!

2A!and!2C,!S1A–S1C,!S1E,!S3A–S3C,!S3E,!S14A).!This!was!even!more!pronounced!when!

comparing!bin!quality!using!the!corrected!measures!(Figs.!2B!and!2D,!S2A–S2C,!S2E,!

S4A–S4C,!S4E,!S14A!and!S14D)”!should!be!“PPS+!almost!always!had!higher!precision!

and!recall!than!MEGAN4!and!Kraken,!except!when!almost!all!test!data!were!included!in!

the!reference!sequences!(Figs.!2A!and!2C,!S1A–S1C,!S1E,!S3A–S3C,!S3E,!S14A!and!S14C).!

This!was!even!more!pronounced!when!comparing!bin!quality!using!the!corrected!

measures!(Figs.!2B!and!2D,!S2A–S2C,!S2E,!S4A–S4C,!S4E,!S14B!and!S14D).”!
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1 Extended abstract 
!
Metagenomics is an approach for characterizing environmental microbial communities in situ, 

it allows their functional and taxonomic characterization and to recover sequences from 

uncultured taxa. A major aim is to reconstruct (partial) genomes for individual community 

members from metagenomes. For communities of up to medium diversity (e.g. excluding 

environments such as soil), this is often achieved by a combination of sequence assembly and 

binning, where sequences are grouped into ‘bins’ representing taxa of the underlying 

microbial community from which they originate. If sequences can only be binned to higher-

ranking taxa than strain or species, these bins offer less detailed insights into the underlying 

microbial community. Therefore, assignment to low-ranking taxonomic bins is an important 

challenge for binning methods as is scalability to Gb-sized datasets generated with deep 

sequencing techniques. Due to the importance of a match of the training data to the test 

dataset in machine learning for achieving high classification accuracy, one of the best 

available methods for the recovery of species bins from an individual metagenome sample 

(Patil et al., 2011; Pope et al., 2011) is the expert-trained PhyloPythiaS package, where a 

human expert identifies the ‘training’ sequences directly from the sample using marker genes 

and contig coverage information and based on data availability decides on the taxa to 

incorporate into the composition-based taxonomic model. The sequences of a metagenome 

sample are consequently assigned to these or higher ranking taxa by PhyloPythiaS. Because 

of the manual effort involved, this approach does not scale to multiple metagenome samples 

and requires substantial expertise, which researchers who are new to the area may not have. 

Other methods for draft genome reconstruction use multiple related metagenome samples as 

input (Albertsen et al., 2013; Imelfort et al., 2014) or are not distributed as a software package 

(Iverson et al., 2012). 

!
With these challenges in mind, we have developed PhyloPythiaS+, a successor to our 

previously described method PhyloPythia(S) (McHardy et al., 2007; Patil et al., 2011). The 

newly developed + component performs the work of the human expert. It screens the 

metagenome sample for sequences carrying copies of one of 34 taxonomically informative 

marker genes (Wu & Scott, 2012) (Section 3.3). Identified marker genes are taxonomically 

classified using an extensive reference gene collection. The + component then decides which 

taxa to incorporate into the composition-based taxonomic model based on the amount of 
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available sequence data identified from the metagenome sample, genome and draft genome 

reference sequence collections (Figure 1). 

 

We evaluated PhyloPythiaS+ on metagenome datasets of assembled simulated reads with 

Illumina GAII error profiles generated from a log-normal or uniform abundance distribution 

over 47 strains, and two real metagenome datasets from human gut and cow rumen samples 

(Tables 2–3, S6–S7, Sections 3). PhyloPythiaS+ had substantially higher overall precision 

and recall than the generic PhyloPythiaS model, because of the better match of the 

composition-based taxonomic model to the sequenced microbial community (Figs 2 and S1–

S4, Section 3.9). It performed similarly well to an expert-trained PhyloPythia model without 

requiring manual effort (Figure 3, Table 4). Comparisons to sequence-similarity-based 

methods such as the popular MEtaGenome ANalyser (MEGAN, version 4) (Huson et al., 

2011) and our own taxator-tk (Dröge, Gregor & McHardy, 2014) software showed a 

substantial increase in correct assignments to low taxonomic ranks for PhyloPythiaS+, while 

maintaining acceptably low error rates (Figs 2 and S1–S5). The largest improvement in 

comparison to the other methods was observed for taxa from deep-branching lineages, such as 

from genera or families without sequenced genomes but with marker gene data for the strain 

or species available (Fig. S1–S4, Table 1: Test Scenarios 2–4). This is currently the case for 

39,201 species represented in our 16S reference gene collection.!
!
PhyloPythiaS+ includes a new k-mer counting algorithm based on the Rabin Karp string 

matching algorithm. The algorithm accelerated k-mer counting 100-fold and reduced the 

overall execution time of the software by a factor of three in comparison to the original 

PhyloPythiaS release (Figure 4). We found that 500 and 360 Mb/hour could be assigned by 

PhyloPythiaS+ on a single CPU core of a standard compute server and a laptop, respectively. 

Our software thus allows to analyze Gb-sized metagenomes with inexpensive hardware, and 

to recover species or genera-level bins with low error rates in a fully automated fashion. 

PhyloPythiaS+ is distributed in a virtual machine and is easy to install for all common 

operating systems. 
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2 The evaluation of the k-mer counting algorithms 
!
The! main! advantage! of! our! method! is! that( we! do! not! use! additional! helper! data!

structures!such!as!suffix! trees,! since!we!work!directly!with!arrays! that!represent!DNA!

sequences.!The!only! larger!data!structure! that! is!necessary! is!a!one:dimensional!array!

that! contains! the! counts! of! individual! k"mers.! The! algorithm! also! processes! one!

sequence! at! a! time! and! thus! there! is! no! need! to! store! all! the! sequences! in! the!main!

memory,!which!makes!the!algorithm!memory:efficient!(e.g.!less!than!one!MB!of!the!main!

memory!in!the!scenario!used!in!PPS+).!To!compute!the!next!index!from!a!previous!index,!

we!need!to!perform!only!two!bit!shift!operations,!one!addition,!one!subtraction!and!one!

read!operation!(of&a!!!).!This!ensures!complexity!O(n),!where!n!is!the!length!of!the!DNA!
sequence!that!is!being!considered.!

!

Our!k:mer!counting!algorithm!was!compared!to!Jellyfish!(version!1.1.1),!Jellyfish!(version!

2.2)! (Marcais! &! Kingsford,! 2011)! and!KAnalyze! (version! 0.9.7)! (Audano! &! Vannberg,!

2014)!(Table!S1).!All!programs!were!run!for!k:mers!$! ∈ [4,… , 9].!
!

!Jellyfish!(version!1.1.1)!was!run!with!default!parameters!as:!!!!

jellyfish&count&"m&$k&"c&3&"s&10000000&"t&1&""both"strands&"o&OUTPUT.txt&INPUT.fasta&

!

Jellyfish& (version! 2.2.)! was! run! with! the! following! parameters,! as! this! yielded! better!

runtimes!as!the!default!parameters:!

jellyfish&count&"m&$k&"c&16&"s&1000000&""both"strands&"o&OUTPUT.txt&INPUT.fasta&

!

KAnalyze!(version!0.9.7)!was!run!as:!

count!:k!$k!:d!1!:f!fasta!:r!:o!OUTPUT.txt!INPUT.fasta!

!

Our!k:mer!counting!algorithm!was!run!as:!

fasta2kmers&"i&INPUT.fasta&"f&OUTPUT.txt&"j&$k&"k&$k&

However,!for!the!simultaneous!counting!of!k:mers!4,!5,!and!6,!the!program!was!run!as:!!

fasta2kmers&"i&INPUT.fasta&"f&OUTPUT.txt&"j&4&"k&6&
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3 Benchmark settings 
 

3.1 Simulated datasets details and generation 
!
Our simulated mock community comprised 47 strains from 45 different species (37 different 

genera) defined at all major taxonomic ranks, i.e. at superkingdom, phylum, class, order, 

family, genus and species rank. Two simulated datasets were generated with different 

abundance profiles, one with a uniform distribution and one with a log-normal distribution 

(µ=1, σ=2). 

 

A custom read simulator was used which utilizes position- and nucleotide-specific 

substitution patterns derived from experimental datasets. This allowed us to generate reads 

with more realistic error profiles than we would with read simulators such as pIRS (Hu et al., 

2012), ART (Huang et al., 2012) or MetaSim (Richter et al., 2007). Furthermore, we could 

thus specify and test different species abundance distributions for the microbial community 

and generate very large datasets due to the parallelization of the simulation program. We did 

not use the simulated datasets from Mavromatis et al. (Mavromatis et al., 2007), as these are 

substantially smaller than the current metagenome datasets. 

 

Both simulated datasets were generated based on Illumina GAII error profiles where the 

standard library preparation method was used. The insert size distribution was also based on 

the experimental dataset. For each dataset, 15 million paired-end reads of 90 bp were 

generated with an average insert size of 291 bp. The first 10 bp of the 100 bp reads in the 

experimental dataset were trimmed because of fluctuations in the nucleotide distributions at 

the starting positions, which indicated partial remains of the barcode sequence. The read 

simulator produces output in FASTA format, which was converted into a pseudo-FASTQ 

format for the downstream analysis with uniformly high quality scores. The reads were then 

assembled with Metassembler (Debruijn, 2014) using Velvet (Zerbino & Birney, 2008), run 

with different k-mer sizes ranging between 19 and 75, and were subsequently merged with 

Minimus2 (Treangen et al., 2011). This assembly procedure resulted in a larger assembled 

dataset than assembly with SOAPdenovo2 (Luo et al., 2012), Metavelvet (Namiki et al., 2012) 

or Newbler (Roche, 2014). Contig sequences longer than 1000 bp were considered further. 

The contigs were subsequently mapped with BLAST (Camacho et al., 2009) onto the reference 

genomes to recover their taxonomic identifiers.  
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Properties of the simulated datasets: 

Distribution Contigs Mb 

Uniform 14,393 137 

Log-normal 13,284 66 

 

List of strains used to generate simulated datasets: 

Strain name Accession number 

Acidobacterium capsulatum ATCC 51196  CP001472.1 

Akkermansia muciniphila ATCC BAA-835  CP001071.1 

Archaeoglobus fulgidus DSM 4304  AE000782.1 

Bacteroides thetaiotaomicron VPI-5482  AE015928.1 

Bacteroides vulgatus ATCC 8482  CP000139.1 

Bordetella bronchiseptica RB50  BX470250.1 

Caldicellulosiruptor bescii DSM 6725  CP001393.1 

Caldicellulosiruptor saccharolyticus DSM 8903  CP000679.1 

Chlorobium limicola DSM 245  CP001097.1 

Chlorobium phaeobacteroides DSM 266  CP000492.1 

Chlorobium phaeovibrioides DSM 265  CP000607.1 

Chlorobium tepidum TLS  AE006470.1 

Chloroflexus aurantiacus J-10-fl  CP000909.1 

Clostridium thermocellum ATCC 27405  CP000568.1 

Deinococcus radiodurans R1 

 AE001825.1   

 AE000513.1 

Dickeya dadantii 3937  CP002038.1 

Dictyoglomus turgidum DSM 6724  CP001251.1 

Enterococcus faecalis V583  AE016830.1 

Fusobacterium nucleatum subsp. nucleatum ATCC 25586  AE009951.2 

Gemmatimonas aurantiaca T-27  AP009153.1 

Herpetosiphon aurantiacus DSM 785  CP000875.1 

Hydrogenobaculum sp. Y04AAS1  CP001130.1 

Ignicoccus hospitalis KIN4/I  CP000816.1 

Methanocaldococcus jannaschii DSM 2661  L77117.1 

Methanococcus maripaludis C5  CP000609.1 

Methanococcus maripaludis S2  BX950229.1 

Nitrosomonas europaea ATCC 19718  AL954747.1 

Pelodictyon phaeoclathratiforme BU-1  CP001110.1 

Persephonella marina EX-H1  CP001230.1 
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Porphyromonas gingivalis ATCC 33277  AP009380.1 

Pyrobaculum aerophilum str. IM2  AE009441.1 

Pyrobaculum calidifontis JCM 11548  CP000561.1 

Rhodopirellula baltica SH 1  BX119912.1 

Ruegeria pomeroyi DSS-3  CP000031.1 

Salinispora arenicola CNS-205  CP000850.1 

Salinispora tropica CNB-440  CP000667.1 

Shewanella baltica OS185  CP000753.1 

Shewanella baltica OS223  CP001252.1 

Sulfolobus tokodaii str. 7  BA000023.2 

Sulfurihydrogenibium sp. YO3AOP1  CP001080.1 

Thermoanaerobacter pseudethanolicus ATCC 33223  CP000924.1 

Thermotoga neapolitana DSM 4359  CP000916.1 

Thermotoga petrophila RKU-1  CP000702.1 

Thermotoga sp. RQ2  CP000969.1 

Thermus thermophilus HB8  AP008226.1 

Treponema denticola ATCC 35405  AE017226.1 

Zymomonas mobilis subsp. mobilis ZM4  AE008692.2 

 

3.2 Real datasets 
!
For the evaluation using real metagenome samples from actual microbial communities, we 

used two metagenome samples from the guts of obese human twins (Turnbaugh et al., 2010) 

and the dataset of a lignocellulose-degrading community from within a cow rumen (Hess et 

al., 2011). 

 

3.2.1 Human gut dataset 
!
The contigs from both samples, TS28 and TS29, were pooled. In the same way, scaffolds 

from TS28 and TS29 were pooled. All scaffolds were longer than 1000 bp. The dataset was 

generated with a 454 GS FLX Titanium sequencer. 

 

Properties of the real human gut dataset: 

FASTA file Sequences Mb 

Contigs 153,564 255.2 

Contigs ≥ 1000 bp 63,399 187.1 

Scaffolds 18,172 164.4 
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3.2.2 Cow rumen dataset 
 

The same dataset as in Dröge et al. (Dröge, Gregor & McHardy, 2014) was used. As the 

scaffolds of the assembled contigs were of lower quality than the contigs, scaffolds were split 

into contigs at all gaps consisting of at least 200 “N” characters. We subsequently split the 

resulting contigs of at least 10 kb into ‘chunks’ of 2000 bp, resulting in at least five chunks 

for each contig. The dataset was generated with Illumina GAIIx and Illumina HiSeq 2000 

sequencers. 

 

Properties of the real chunked cow rumen dataset: 

FASTA file Sequences Mb 

Contigs 159,263 318.5 

Scaffolds 12,192 369.4 

 

3.3 Reference data 
!
The NCBI taxonomy (Federhen, 2011), downloaded on 11/22/2012, was used as the reference 

taxonomy. The following reference databases from the NCBI were pooled to generate our 

reference sequence (RS) collection: NCBI genomes (downloaded on 11/22/2012), NCBI draft 

bacterial genomes (downloaded on 11/22/2012), the NCBI human microbiome project 

(downloaded on 10/16/2012) and NCBI RefSeq (Sayers et al., 2008) microbial version 56. 

Subsequently, duplicate sequences were removed to make the RS collection non-redundant. 

This RS collection contained sequences for 841 different genera, 2543 different species and 

4516 different strains. The total size of the RS collection was 16 Gb. 

 

In the marker gene (MG) analysis, the following MG sequence collections and HMM profiles 

were used: For the 16S and 23S MG analysis, bacterial and archaeal reference sequences from 

the SILVA database (Pruesse et al., 2007) were retrieved (version 111, released on 

7/27/2012). The corresponding taxonomic identifiers were mapped onto the NCBI taxonomy. 

The resulting collection contained 126,742 sequences for 39,201 different species (199 Mb in 

total). 
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For the 5S MG analysis, MG sequences were retrieved from NCBI on 2/8/2013 via Maglott et 

al. (Maglott et al., 2004); the collection contained 12,424 sequences for 1278 species (5.8 Mb 

in total).  

 

In addition, reference sequences for the following 31 bacterial marker gene families were 

retrieved from NCBI on 2/8/2013 via Maglott et al. (Maglott et al., 2004): dnaG, infC, pgk, 

rpoB, tsf, frr, nusA, pyrG, rpmA, smpB, rpsC, rpsI, rpsK, rpsS, rpsB, rpsE, rpsJ, rpsM, rplA, 

rplB, rplC, rplD, rplE, rplF, rplK, rplL, rplM, rplN, rplP, rplS and rplT. This MG collection 

contained 63,530 sequences for 1380 different species (52 Mb in total). 

 

HMM profiles for the 16S, 23S, and 5S marker genes were retrieved from Huang et al. 

(Huang, Gilna & Li, 2009) HMM profiles trained on the protein families for the 31 bacterial 

MG were retrieved from Wu & Scott. (Wu & Scott, 2012) 

 

3.4 Test environments 
!
The benchmarks were run on different hardware configurations. When measuring runtime, 

Hardware Configurations 1 or 2 were used if not stated otherwise. 

 

1. Server: AMD Opteron Processor 6386 SE, 2.8 GHz; 512 GB RAM; local SSD 

storage; Debian GNU/Linux 7.1. 

2. Laptop: Intel i5 M520 2.4 GHz; 4 GB RAM; 7200 rpm laptop storage; Windows 7 

64-bit, Ubuntu 12.04 64-bit; Oracle VirtualBox 4.2.12: 2 GB RAM, 8 GB swap, 140 

GB HDD, Ubuntu 12.04 64-bit. 

3. Server: Intel Xeon CPU X5660, 2.8 GHz; 73 GB RAM; network storage; Debian 

GNU/Linux 6.0.7. 

4. Server: AMD Opteron Processor 6174, 2.2 GHz; 100 GB RAM; local storage; Debian 

GNU/Linux 6.0.7. 

5. Laptop: Intel i5 2557M 1.7 GHz; 4GB RAM, SSD storage, OS X 10.7. 

 

3.5 MEGAN4 configuration 
!
NCBI BLAST (version 2.2.27+) was used to generate alignments (Section 3.4, HW 

Configuration 1), using 15 threads; the tabbed output format (7) was used. MEGAN4 (4.70.4) 



Rapid Metagenome Binning to Low Taxonomic Ranks!
!

! 10!

(Huson et al., 2011) was used for taxonomic assignment on a laptop (Section 3.4, HW 

Configuration 2) using the following settings: minsupport=5, minscore=2, toppercent=20, 

mincomplexity=0.44. The runtime of MEGAN4 was just a few seconds, as the LCA algorithm 

it uses is simple and fast. Construction of the BLAST database from the reference sequence 

collection required 6 h 55 m, with the size of the database being 4 GB. To simulate the new 

strain, species and genus scenarios (Table 1: Test Scenarios 5, 8 and 9), the corresponding 

alignments of sequences present in both the test and reference data were removed from the 

BLAST output. 

 
Runtimes of BLAST for the different metagenome datasets: 

Dataset Runtime 

Simulated uniform 52 m 11 s 

Simulated log-normal 19 m 18 s 

Chunked cow rumen (contigs) 43 m 29 s 

Chunked cow rumen (scaffolds) 42 m 56 s 

Human gut (contigs) 44 m 05 s 

Human gut (scaffolds) 25 m 37 s 

 

3.6 Taxator-tk configuration 
!
LAST (version 287) (Frith, Hamada & Horton, 2010) was used to produce alignments using 

one thread, output format 1 (maf). Constructing the LAST database for the reference sequence 

database required 81 h 29 min. The size of the resulting database was 91 Gb (Section 3.4, HW 

Configurations 1 and 4).  

Taxator-tk (Dröge, Gregor & McHardy, 2014) was then employed to process metagenome 

sequence fragments using 15 threads and to produce taxonomic assignments using one thread 

for the input sequences (Section 3.4, HW Configuration 4). For the simulated datasets, the 

corresponding alignments of sequences present in both the test and reference data were 

removed to simulate the new strain, species and genus scenarios (Table 1: Test Scenarios 5, 8 

and 9). 

 

Commands 

LAST command: 

lastal%&f%1%lastDb%query.fna%|%lastmaf2alignments.py%|%sort%|%gzip%>%alignments.gz%
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BLAST command: 

blastn%&db%blastDb%&query%query.fna%&num_threads%15%&outfmt%'6%qseqid%qstart%qend%qlen%sseqid%sstart%

send%bitscore%evalue%nident%length'%&out%alignments.blast%

 

Produce fragments: 

cat%alignments.blast%|%alignments&filter%&b%50%|%taxator%&a%rpa%&q%query.fna%&f%ref.fna%&g%ref_all.tax%&p%15%

|%sort%>%fragments.gff3 

 
Produce assignments: 

cat%fragments.gff3%|%binner%>%assignments.tax%%

 

Runtimes of LAST for the different metagenome datasets: 

Dataset Runtime (HC 1) Runtime (HC 4) 

Simulated uniform 9 h 56 m 27 s 12 h 10 m 57 s 

Simulated log-normal 5 h 02 m 03 s 6 h 16 m 02 s 

Chunked cow rumen (contigs) 12 h 23 m 29 s 15 h 39 m 24 s 

Chunked cow rumen (scaffolds) 15 h 15 m 20 s 19 h 15 m 12 s 

Human gut (contigs) 10 h 29 m 12 s 13 h 48 m 57 s 

Human gut (scaffolds) 7 h 41 m 05 s 10 h 16 m 20 s 

 

Runtimes of taxator-tk for different metagenome datasets: 

Dataset Process fragments Bin 

Simulated uniform 36 h 54 m 02 s 17.4 s 

Simulated uniform (new strain) 8 h 53 m 20 s 18.2 s 

Simulated uniform (new species) 4 h 44 m 27 s 18.1 s 

Simulated uniform (new genus) 54 m 39 s 17.5 s 

Simulated log-normal 25 h 25 m 49 s 16.8 s 

Simulated log-normal (new strain) 3 h 09 m 16 s 17.9 s 

Simulated log-normal (new species) 2 h 06 m 29 s 17.4 s 

Simulated log-normal (new genus) 36 m 34 s 16.9 s 

Chunked cow rumen (contigs) 3 h 03 m 07 s 24.9 s 

Chunked cow rumen (scaffolds) 46 m 59 s 19.2 s 

Human gut (contigs) 6 h 38 m 56 s 22.5 s 

Human gut (scaffolds) 2 h 47 m 50 s 18.6 s 
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3.7 PPS+ and PPS generic model configurations 
!
PPS+ benchmarks were run using one thread (Section 3.4, HW Configuration 3). The PPS+ 

configuration file contained in the VM distribution specifies the default values of the 

parameters used (configuration file name: config_ppsp_vm_refNCBI20121122_example.cfg). 

 

PPS was run using one thread (Section 3.4, HW Configuration 3). PPS was trained to include 

the 200 most abundant genera in the reference sequences (Section 3.3). The PPS models were 

built down to the genus rank, as this is the default setting of PPS. 

3.8 Kraken configuration 

!
Kraken! (version!0.10.5)! and! its! dependency! Jellyfish! (1.1.11)!were! installed! on! a! high:
performance! server! (Section 3.4, HW Configuration 1). Four Kraken databases were built 

using our custom reference data collection (Section 3.3). For the real datasets (Section 3.2) 

and the simulated datasets (Sections 3.1) – for the first scenario (Table 1: Test Scenarios 1), 

kraken_db_all database was built from all the reference sequence data (Section 3.3). To 

simulate the new strain, new species and new genus scenarios (Table 1: Test Scenarios 5, 8 

and 9), we generated corresponding Kraken databases kraken_db_new_strain, 

kraken_db_new_species and kraken_db_new_genus. For instance, kraken_db_new_strain 

database does not contain the strains from which the simulated datasets were generated. When 

we use the kraken_db_new_strain database, we simulate the scenario in which all strains of a 

metagenome sample are unknown, i.e. (Table 1: Test Scenarios 5). This approach ensures that 

all the methods in comparison use the same reference data for the classification in respective 

test scenarios (Table 1). For instance, to create the Kraken kraken_db_all database, we 

performed the following steps: 

 

1. Create directory for_kraken_all containing all the reference sequences that are used to 

build a custom reference database. Note that the sequence names in the FASTA files 

have to be in the format specified in the Kraken documentation. 

2. Create empty directory kraken_db_all for the generated database.  

3. Inside directory kraken_db_all, create directory taxonomy and place there the 

following NCBI taxonomy files: gi_taxid_nucl.dmp,  names.dmp,  nodes.dmp. 

4. Switch to directory for_kraken_all and run the following command to add all the 

reference sequences to the Kraken database kraken_db_all: 
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for$file$in$*.fna;$do$kraken/build$//add/to/library$$file$//db$kraken_db_all$//threads$40;$

done$

5. Set the PATH variable to contain also the installation bin directory of Jellyfish. 

6. Build the Kraken kraken_db_all database: 

kraken&build%&&build%&&db%kraken_db_all%&&threads%40%

7. Perform taxonomic assignment of contigs contained in FASTA file contigs.fna and 

store the results in contigs_lab.csv: 

kraken%&&preload%&&db%kraken_db_all%&&threads%40%contigs.fna%>%contigs_lab.csv%

3.9 Assignment quality measures 
 

3.9.1 Micro-averaged precision and recall 
!
To assess the quality of the taxonomic assignments for the simulated datasets, we evaluated 

the micro-averaged precision (sometimes also known as the micro-averaged specificity) and 

the micro-averaged recall (sometimes also known as the micro-averaged sensitivity) of 

taxonomic assignments for the different methods, as detailed below. Both measures were 

calculated based on the number of assigned bp for each taxonomic rank, instead of per 

assigned fragment, as the correct assignment of larger sequence fragments is more beneficial 

for the retrieval of “draft genome” bins than for short fragments.  

 

The micro-averaged precision was defined as: 

!! = ! !"!!
!!!
!!!

!"!!!!!!"!!
!!!
!!!

; 

 

and micro-averaged recall was defined as: 

 !! = ! !"!!
!!!
!!!

!!"!!!!!"!!
!!!
!!!

, 

 

where l denotes the taxonomic rank evaluated, such as species, genus, family, order, class, 

phylum or superkingdom; (TPi
l + FNi

l) is the number of bp from taxon i; (TPi
l + FPi

l) is the 

number of bp assigned to taxon i and TPi
l is the number of bp correctly assigned to taxon i. 

The precision is micro-averaged over all bins Np
l to which a sequence fragment was assigned 

and the recall is micro-averaged over all Nr
l taxa present in the simulated dataset at rank l. 
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The micro-averaged precision is the fraction of correctly assigned bp from all predictions for 

a particular taxonomic rank and represents a measure of confidence for the predictions of a 

method. The micro-averaged recall is the fraction of correct assignments of the test sample for 

a particular taxonomic rank. To avoid an uninformative increase of the micro-averaged recall 

by having unassigned sequences, which belong to no taxon at a given rank, our test datasets 

were generated from sequenced isolates with taxa defined at all major taxonomic ranks. Note 

that for simplification, we denoted the micro-averaged precision as ‘precision’ and the micro-

averaged recall as ‘recall’ in this document. 

3.9.2 Taxonomic assignment correction for assessment of bin quality 
 

Often, a species within a metagenome sample is not directly represented among the reference 

sequences; however, this respective species is closely related to a species for which there is 

enough data in the RS or MG collections. In this case, the species from the sample may be 

consistently assigned to the closely related species. This error does not impact draft genome 

reconstruction in terms of reconstructing a bin as a set of sequences originating from the same 

sample population, but the assigned identifier itself is incorrect. To quantify the binning 

performance independently from taxonomic label assignment, we applied a correction 

procedure and re-computed the corrected precision and recall values: If most of the sequences 

(i.e. at least (correctLabelThreshold * 100)% bp) from one taxon were consistently assigned 

to a false identifier, their identifiers were changed to the correct one, and precision and recall 

were re-computed. The default setting for the configuration parameter correctLabelThreshold 

was 0.9. The precision and recall were always calculated with and without this correction.  

 

3.10 Scaffold-contig consistency definitions 
!
3.10.1 Comparison of scaffold and contig assignments 
!
To assess the consistency of scaffold and contig assignments for a metagenome sample, we 

define the following measures at all major taxonomic ranks (i.e. superkingdom, phylum, 

class, order, family, genus and species). The idea of these measures is that each contig is 

assigned up to two taxonomic identifiers: one from the contig assignment and the other from 

the scaffold assignment. These two taxonomic labels are then compared. If we considered 

contigs with two identical taxonomic labels to be correctly assigned and contigs with two 
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distinct taxonomic labels to be as incorrectly assigned, then “% agreement” resembles a 

measure of precision (i.e. correctly assigned bp ÷ correctly and incorrectly assigned bp), while 

“kb agreement” indicates recall (i.e. the total number of correctly assigned bp). 

 

Let us assume that a metagenome sample consists of m scaffolds !!,… , !!!! and n contigs 

!!,… , !!!!, where scaffold !! consists of !! contigs !!(!),… , !!(!!!!!!). Let function l denotes 

the taxonomic identifier of a contig or a scaffold at the taxonomic rank being considered, i.e. 

!(!!) is a label of the ith contig and !(!!) is the label of the kth scaffold. The lengths of contig 

!! and scaffold !! are denoted by !"#(!!) and !"#(!!), respectively. Now, we can define the 

consistency measures ‘kb agreement’ (Def. 0a) and ‘% agreement’ (Def. 0b) as: 

 

0a) ‘kb agreement’: 

!!" = ! !"#(!!)!!∈ ! ! ,…,! !!!! ,!!!! !! !!"#!! !! !!"#$%"!,!!!! !! !! !! !!
!!!
!!! ; 

0b) ‘% agreement’: 

!% = ! !!"
!"#(!!)!!!

!!!
. 

 

In other words, in ‘kb agreement’ (Def. 0a), the index k goes over all scaffolds, the index j 

goes over all contigs within a corresponding scaffold. If both labels of scaffold k and contig j 

are defined and assigned to the same taxa, then the length of contig j is added to the overall 

sum of lengths of consistently assigned contigs. 

    

3.10.2 Taxonomic scaffold-contig assignment consistency 
!
To provide more detailed insights into the evaluation of the binning results of real 

metagenome datasets, we introduced new detailed measures of the scaffold-contig 

consistency (described below). 

 

We assume that all contigs c0,…,cn-1 of a particular scaffold originated from the same 

organism and thus should be assigned the same taxonomic identifier. Let us denote an 

identifier of contig ci as li. Each path pi from the root of the taxonomy to identifier li 

represents a hypothesis about the identifier of the whole scaffold. We base our definition on 

the assumption that the most representative identifier of a scaffold corresponds to the path to 

which the identifiers of all taxonomically assigned contigs that do not lie on the path have the 
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shortest collective weighted distance. Note that we do not have to consider the path pi from 

the root to li as a potential taxonomic identifier if there is a path pj from the root to the 

taxonomic identifier lj of another contig cj for which li lies on pj and i ≠ j, as the shortest 

collective weighted distance of all contigs of a scaffold to path pj is always lower than the 

collective weighted distance to path pi. Let us denote the length of contig ci as |ci| (counted in 

bp). Let us define the weight of contig ci as !! = |!!|
|!!|!!!

!!!
. Let tax_dist(li, pj) be the taxonomic 

distance (i.e. the number of edges in the reference taxonomy) between identifier li and the 

closest identifier lk that lies on path pj (i.e. this is simply the distance between identifier lk and 

path pj). The weighted distance from path pj to all other identifiers li is defined as: !"#$ !! =
! !! ∗ !"#_!"#$(!! ,!!)!!!

!!! . Let pk be the path with the minimum weighted distance (dist) 

from all other identifiers. All contigs ci that lie on path pk are considered to be consistently 

assigned within the scaffold; all contigs cj that do not lie on the path are considered to be 

inconsistent. The consistency of the scaffold is then defined as: 

 

1) Proportion of consistently assigned contigs: 
| !!! !!!!!"!!!}|
| !!! !!!!…!!!}|

; 

 

2) Proportion of consistent contigs in bp: 
|!!|!! !!!!!"!!!}

|!!|!!!
!!!

; 

 

3) Average distance to the path: 

!"#_!"#$(!!,!!!!!)!!!
!!!

! ; 

 

4) Average weighted distance to the path: 

!"#$(!!); 
 

5) Average distance to the scaffold identifier: 

!"#_!"#$(!!,!!!!!)!!!
!!!

! ; 

 

6) Average weighted distance to the scaffold identifier: 

!! ∗ !"#_!"#$(!! , !!)!!!
!!! . 
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The first definition is the coarsest measure and the last is the finest for taxonomic assignment 

consistency.  

 

We can also group the scaffolds using lk and compute the measures for individual taxa. 

However, these groups do not correspond to the assigned bins, as a scaffold’s taxonomic 

identifier does not always correspond to the taxonomic identifier of the lowest assigned contig 

of that scaffold. 

 

The consistency of the entire sample can also be defined as the (weighted) average of these 

measures. Let s0, …, sm-1!be!all scaffolds in the sample, where if a contig is not assigned to a 

scaffold, an artificial scaffold that contains this one contig is created. We can also consider 

only scaffolds that contain only a certain number of contigs or those that are at least x bp long, 

for example. 

 

Thus if we compute these measures for two different binning methods, we can assess the 

consistency of the respective taxonomic assignments at six different levels. However, be 

aware that it is recommended to also look at the number of bp assigned at different taxonomic 

ranks by each method, since the consistency of a method that assigns everything to the root of 

the taxonomy seems to be perfect according to these scaffold-contig consistency definitions. 

 

4 Detailed results for the simulated datasets 
!
This section provides a detailed description of the results of the benchmarks with simulated 

datasets in nine different test scenarios (Table 1). PPS+, PPS generic model, MEGAN4 and 

taxator-tk were compared to each other in terms of precision and recall (Section 3.9). The 

nine different scenarios evaluate assignment performances for different evolutionary distances 

between the sample sequences and the available reference sequences. For instance, in (Table 

1: Test Scenario 6), all sequences from the species included in the simulated communities 

were excluded from the reference sequence collection and all sequences of the same strains 

were excluded from the marker gene sequence collection. 
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4.1 Uniform dataset 
!
For PPS+, a drop in both precision and recall was only observed for low-level taxonomic 

assignments when removing reference data from the same strain, species or genera from the 

reference sequence (RS) collection and also from the MG collection (Table 1: Test Scenarios 

2, 3 and 4 versus Test Scenarios 5, 8 and 9), which demonstrated that for microbial 

community members that have been profiled by 16S sequencing but which have no sequenced 

genomes available, PPS+ can perform highly accurate low-level taxonomic assignments, 

unlike from all other tested methods (Figs S1a and S1c–S1f). 

 

In more detail, PPS+ showed substantially higher precision and recall than the PPS generic 

model for all test scenarios (Fig. S1a–S1d, Table 1: Test Scenarios 1–9). PPS+ also showed 

substantially higher precision and recall than MEGAN4 for the assignment of sequences from 

new strains, species and genera (Figs S1a and S1e, Table 1: Test Scenarios 2–4), when these 

were represented in the reference collection as marker genes. An exception was the unrealistic 

case, when all of the simulated metagenome data were available in the reference sequence 

collection (Table 1: Test Scenario 1). 

 

Simulating the situation where the microbial community members have not been observed in 

profiling before, we removed these strains from the MG collection and the reference 

sequences (RS) for the strains, species or genera of the simulated metagenome datasets (Table 

1: Test Scenarios 5, 6 and 7). We removed more data from the reference sequence (RS) 

collection than from the MG collection to simulate the situation where a closer relative can be 

found among the marker genes and a more distant one among the sequenced genomes, as 

many taxa have been profiled but have not had their genomes sequenced. PPS+ assignment 

quality (both precision and recall) dropped in comparison to the situation where strains have 

been profiled (Fig. S1a,b). However, it was still better than MEGAN4 (Figure S1e) for all 

ranks, except for the lowest-level assignment (species), when the strains were removed from 

the RS collection only (Table 1: Test Scenario 5). As the removal of strain-level data in many 

cases also removed all data for the respective species from the RS collection, both methods 

made false assignments to related species in these scenarios.  

 

When we removed even more reference data from the MG collection to simulate the binning 

of microbial community members for which no members of the same species or genera have 
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been profiled or sequenced before (Figure S1c, Table 1: Test Scenarios 8 and 9), the precision 

for ranks above remained high (Table 1: Test Scenario 8, genus rank: 88.5%; Test Scenario 9, 

family rank: 73.2%), while the recall dropped moderately. However, PPS+’s assignments 

were still substantially better than those of MEGAN4 for these ranks (Figure S1e, Test 

Scenario 8, genus rank: 81.6%; Test Scenario 9, family rank: 58.9%). For lower ranks for 

which all reference data were removed, both methods had low precision and recall due to 

false positive assignments. 

 

Taxator-tk showed a lower recall than PPS+ across all tested scenarios (Figs S1a–S1c and 

S1f), but showed outstanding precision for the order rank and above (close to 100%), and 

never dropped below 89% at lower ranks. Thus this method could also be used for taxonomic 

profiling to determine the presence of particular taxa reliably in a given sample. 

 

4.2 Log-normal dataset 
!
Even though the log-normal dataset was more challenging for all the tools, this benchmark 

yielded similar conclusions as the benchmark with the uniform dataset.  

 

PPS+ performed substantially better than the generic PPS model in terms of the precision and 

recall in all test scenarios (Fig. S3a–S3d, Table 1: Test Scenarios 1–9).  

 

At low taxonomic ranks (i.e. family, genus and species), PPS+ outperformed MEGAN4 in 

terms of precision and recall in almost all test scenarios (Figs S3a–S3c and S3e, Table 1: Test 

Scenarios 2–9), except at the family rank in the ‘new strain’ scenario, where MEGAN4 had 

slightly better precision (96.7%) than PPS+ (94.8%) (Figs S3b, S3c and S3e, Table 1: Test 

Scenario 5). In the unrealistic case, where all reference data remained in the reference (RS 

and MG) collections, MEGAN4 had better precision and recall (Figs S3a–S3c and S3e, Table 

1: Test Scenario 1).    

 

Overall, PPS+ showed substantially better recall than taxator-tk, whereas taxator-tk showed 

mostly better precision (Figs S3a–S3c and S3f, Table 1: Test Scenarios 1–9). Moreover, in the 

case where microbial community members have been profiled by 16S but have no sequenced 

genomes, PPS+ showed a very high precision at low taxonomic ranks (i.e. family, genus and 

species) 99.5–89.6% (Figs S3a and S3f, Table 1: Test Scenarios 2–4). In several cases, PPS+ 
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showed better precision than taxator-tk; for example, at the family rank, the precision was 

98.1% for PPS+ vs 91.9% for taxator-tk (Figs S3a and S3f, Table 1: Test Scenario 4) and at 

the genus rank, it was (scenario 2) 96.1%, (scenario 3) 96.3% for PPS+ vs (scenario 2) 91%, 

(scenario 3) 86.9% for taxator-tk (Figs S3a and S3f, Table 1: Test Scenarios 2, 3). 

4.3 Benchmarks with corrections 
!
In the test scenarios when the reference data were excluded from the MG database (Table 1: 

Test Scenarios 5–9), the precision of PPS+ for low taxonomic ranks (i.e. genus and species) 

was lower than the precision of taxator-tk because of the way PPS+ chooses the taxa that are 

modeled. If the sequences from the same strains as those of the simulated metagenome 

samples were removed from the MG reference database at the strain, species or genus ranks, 

the marker gene analysis assigned sequences of the metagenome sample that would otherwise 

have a very good match to the respective MG database sequences to corresponding closely 

related taxa.  

 

In the subsequent PPS training phase, the sample-derived data were used to train closely 

related clades; moreover, reference sequences from closely related clades were used as 

training data as well. However, for the draft genome reconstruction, it is necessary to infer 

consistent bins from a metagenome sample. The actual identifiers of the bins are of lower 

importance. Therefore, we recomputed the precision and recall measures with a correction to 

account for the phenomenon described above (Section 3.9, Figs S2a–S2f and S4a–S4f, Table 

1: Test Scenarios 1–9). 

 

The corrected precision of PPS+ was substantially better than it was without the correction 

for all scenarios. The difference for the other methods is not that pronounced, since they 

choose clades to which metagenome sequences are assigned in a different way. When 

comparing PPS+ to MEGAN4 using these corrections, PPS+ showed higher precision and 

recall. When comparing PPS+ to taxator-tk, PPS+ had higher recall; however, neither 

method was consistently more precise. 

!
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5 Detailed results for the real datasets 

5.1 Taxonomic scaffold-contig assignment consistency  
!
To assess the quality of taxonomic assignments for these samples, we evaluated the 

consistency of taxonomic assignments for contigs originating from the same scaffold using a 

set of measures (Section 3.10.2). These measures assessed the degree to which the taxonomic 

identifiers of scaffolds and their constituent contigs were consistent relative to each other. 

This method looked beyond identical identifiers (Section 3.10.1) by taking the relative 

distances between two taxa in the reference taxonomy into account (Table S6 and S7).  

 

The basic idea of these measures is that a scaffold is assigned to a taxonomic identifier of one 

of its constituent contigs, such that the collective distance of all contig assignments for the 

respective scaffold to path p in the taxonomy defined by the scaffold identifier is the shortest. 

The consistency of individual contig assignments is then assessed relative to path p: If a 

contig lies on p, it is considered to be assigned consistently; if it does not lie on p, it is 

assigned inconsistently. These measures were computed for the assignments of the chunked 

cow rumen and the human gut datasets.  

 

Overall, PPS+ performed better in terms of the consistent assignment of sequences to low 

taxonomic ranks for the chunked cow rumen dataset and the human gut dataset than the 

generic PPS model and MEGAN4 (Table S6 and S7, Def. 6). For both datasets, taxator-tk 

showed the highest consistency according to almost all measures; however, it assigned fewer 

data to lower taxonomic ranks (family, genus and species) than the other methods.  

 

For the chunked cow rumen dataset, the generic PPS model assigned more contigs 

consistently than PPS+ (Table S6, Def. 2); however this came at the cost of many contigs 

being assigned to higher taxonomic ranks by PPS (Table S6, Defs 0a, 6). MEGAN4 showed a 

higher overall consistency than PPS+ (Table S6, Def. 2) but this was mostly due to many 

contigs being assigned at higher taxonomic ranks (Table S6, Def. 6). For lower taxonomic 

ranks or when also taking sequence length into account (instead of the number of assigned 

sequences), MEGAN4 was less consistent than PPS+ (Table S6, Defs 0b, 3–6). 
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For the human gut dataset, PPS+ performed better than the generic PPS model according to 

all measures (Table S7, Def. 0–6). PPS+ was again more consistent than MEGAN4 when 

taking sequence lengths into account (Table S7, Defs 2, 4, 6). These measures are more 

informative for taxonomic binning than the sequence-count based measures (Table S7, Defs 

1, 3, 5), as obtaining large bins is desirable. These results also imply that MEGAN4 assigned 

substantially more (predominantly short) sequences to lower taxonomic ranks than PPS+ 

(Table S7, Def. 0a). 

 

5.2 Evaluation summary 
 

Our evaluation showed that PPS+ performed substantially better than the generic PPS model 

(Tables 2–3, S6–S7). Moreover, the results of PPS+ were comparable to a sample-derived 

model generated according to expert specifications (Table 4). Taxator-tk had the highest 

consistency of all the methods; however, it assigned substantially fewer sequences to low 

taxonomic ranks than the other methods (Tables 2–3, S6–S7). Our benchmark experiments 

also confirmed that if the metagenome sequences were closely related to the reference 

sequences, such as for the human gut dataset, the homology-based methods assigned more 

sequences correctly to low taxonomic ranks than they did across larger taxonomic distances, 

as was the case for the cow rumen dataset (Tables 2–3, S6–S7). PPS+ was not that sensitive 

to this distance. For PPS+, only few taxonomically informative marker genes have to be 

identified from the sample, for which a substantially larger marker gene reference collection 

exists than that for genome and draft genome sequences, in terms of the number of species 

represented in the reference collection. PPS+ often made more consistent assignments than 

MEGAN4 and often assigned the most sequences of all the tested methods to lower taxonomic 

ranks (Tables 2–3, S6–S7). 

 

5.3 Throughput comparison 
 

The throughput of the individual methods for contig assignments of the human gut sample 

was calculated as either Mb or the number of sequences assigned per hour with one thread 

using the same reference sequences (Sections 3.3 and 3.4). PPS and PPS+ directly use 

sequences in FASTA format as references, while for MEGAN4 and taxator-tk BLAST or LAST 

databases were initially constructed. Database construction took 6 h 55 m and 81 h 29 min on 
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our servers, respectively for BLAST and LAST, and was not considered in runtime 

comparisons. As most time in PPS+ is spent with model construction, assignment can be 

further accelerated when reusing models to classify multiple metagenome samples. In this 

setting, where we consider only the prediction phase of PPS+, PPS+ was more than 7 times 

faster (up to 0.5 Gb/h) than the homology-based methods (Figure 4). As only a relatively 

small reference sequence database of 16 Gb was used, runtimes of BLAST and LAST searches 

in the homology-based tools would proportionally increase when using larger reference 

collections. 

Unlike the homology-based tools, for which similarity searches require the use of more 

hardware with more CPUs and main memory, PPS+ can run on a standard laptop computer. 

PPS+ on a laptop with an Intel i5 M520 2.4 GHz processor and 4 GB of RAM was ~1.5–4 

times slower than it was on the server with an AMD Opteron 6386 SE 2.8 GHz processor and 

512 GB of RAM, mainly due to insufficient RAM on the laptop installed, which caused 

extensive use of the swap space.  

!

6 External tools 
!
6.1 HMMER 3 
The search command (hmmsearch) of the HMMER 3 (Eddy, 2011) package with e-value cut-

off set to 0.01 is used. 

 

6.2 MOTHUR 
The MOTHUR (Schloss et al., 2009) Naïve Bayes classifier with the following default 

parameters is used. The number of bootstrap replicas is set to 300. The corresponding 

confidence score cut-off is set to 80. For the 16S analysis (i.e. 3 (5S, 16S, 23S) out of 34 

marker genes), a small part of the code from (Huang, Gilna & Li, 2009) was used. 

 

7 Evaluation of the CLARK software 
!
CLARK (Ounit et al., 2015) is a straightforward, fast, taxonomy-free, k-mer based binning 

tool for metagenome reads and contigs. It is a taxonomy-free tool, since a user has to first 
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decide, on which taxonomic rank s/he would like to assign sequences of a metagenome 

sample, and then a taxonomic identifier is assigned to all input sequences at a particular 

taxonomic rank. However, this is different from taxonomic binning tools such as PPS+, 

taxator-tk (Dröge, Gregor & McHardy, 2014), MEGAN (Huson et al., 2011), or Kraken 

(Wood & Salzberg, 2014), since a taxonomic binning tool first has to automatically decide on 

a taxonomic rank on which a sequence will be assigned and then it assigns a taxonomic 

identifier to the sequence at a particular rank. In CLARK, the first step has to be done 

manually, which makes the tool unsuitable for the analysis of metagenome samples 

originating from novel environments. For instance, if a metagenome sample contained 

species, that were all novel species and a user decided to assign all the sequences of the 

sample at the species rank, then all the assignments would have been incorrect. Therefore, it is 

an indispensable feature of a taxonomic metagenome binning tool to also automatically and 

correctly determine a taxonomic rank of an assignment. This makes the application of CLARK 

limited only to the environments that has been well studied, for which there have been many 

reference (draft) genomes sequenced, and that does not contain novel taxa. For such, well 

studied, environments, CLARK offers a substantial speed-up in comparison to, e.g. BLAST 

(Camacho et al., 2009). Nevertheless, it is unsuitable for the analysis of metagenome samples 

originating from novel environments. 

 

We have evaluated CLARK in the  “new strain”, “new species”, and “new genus” scenarios 

with a simulated dataset with uniform distribution (Section 3.1). For the “new strain” 

scenario, we have excluded all the strains of the simulated dataset from the reference 

sequence collection and built the CLARK reference database at the species rank. In this “new 

strain” scenario, the precision of CLARK at the species rank was 36.8% and recall 24.7%. The 

corrected measures were 57.3% and 37.6%, respectively (Section 3.9).  

For the “new species” scenario, we have excluded all the species of the simulated dataset 

from the reference sequence collection and built the CLARK reference database at the genus 

rank. In this “new species” scenario, the precision at the genus rank was 83.2% and recall 

57.9%. The corrected measures were 85.1% and 59.6%, respectively.  

For the “new genus” scenario, we have built the CLARK reference database at the family 

rank. In this “new genus” scenario, the precision at the family rank was 57.3% and recall 

33.3%. The corrected measures were 57.6% and 33.8%, respectively.  

Note that these precision and recall values cannot be directly compared to the results of other 

taxonomic binning methods, as we have manually determined, on which taxonomic rank the 
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assignments were made by building the CLARK reference database at a particular rank. 

However, if the CLARK was extended from taxonomy-free binning software to a taxonomy 

binning software, its performance would be similar to Kraken, as both methods are based on 

the occurrences of long k-mers (k≈31). 
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October 7, 2014 
 
To Whom It May Concern:  
 
A PPS+ binning of shotgun metagenome samples indicated the likely metabolite flow and participating 
microbial phylotypes for a biogas-producing microbial community tolerant of high ammonia levels 
 
Methane is the energy-rich component of biogas and is formed as the end product during anaerobic 
degradation of organic material in bioreactors by a consortium of mainly uncultured microorganisms. One of 
the key problems in biogas reactors are high ammonia levels, which are associated with unstable process 
performance and increased risk of process failure. Therefore, characterizing the microbiome structure and 
function within a stable biogas reactor operating at high ammonia levels (run on slaughterhouse and 
industrial lignocellulosic waste: SwRI-ha) was of considerable interest to us. From two replicate reactor 
samples we generated approximately 48 Gb of shotgun sequence using paired-end Illumina HiSeq 
sequencing and assembled these with SOAPdenovo. PPS+ was then applied for taxon-bin recovery, 
which reconstructed and taxonomically assigned eight draft genomes bins (Table 1), including 
uncultured phylotypes of species representing syntrophic acetate-oxidizing bacteria, methanogens (non-
acetoclastic) and different fermentative bacteria (carbohydrate and amino-acid). These bins thus likely 
represent organisms known to produce acetate from the reactor substrate, organisms known to convert the 
acetate to carbon dioxide and hydrogen gas, as well as for organisms producing methane from carbon 
dioxide and hydrogen gas as opposed to acetoclastic methanogens. A functional analysis of these bins 
revealed some of the essential genes for each of these pathways, in support of their putative roles. Thus, the 
taxonomic bins reconstructed with PPS+ from the shotgun metagenome samples allowed us to determine the 
likely metabolite flow from the substrates to the end product for a unique biogas-producing microbial 
community tolerant of high ammonia levels (Frank and Pope, personal communication). 
 
Sincerely, 
 
 
  
Phillip B. Pope 
 
Department of Chemistry, Biotechnology and Food Science 
Norwegian University of Life Sciences 
Post Office Box 5003 
1432, Ås 
Norway 
Phone: +47 6496 6232 
Email: phil.pope@nmbu.no 
 

DEPARTMENT OF CHEMISTRY, 
BIOTECHNOLOGY AND FOOD SCIENCE  
 
P.O. BOX 5003 
N-1432 ÅS  
 
TELEPHONE: +47 6494 6232   
E-MAIL: phil.pope@nmbu.no 
E-MAIL: phillip.b.pope@gmail.com 
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TABLE 1 
 
Genome&ID& Base&Pairs& Contigs& TaxonId& Scientific&Name&
pTaa:1& 1358596& 377& 499229& &Tepidanaerobacter&acetatoxydans&
pBah:1& 910935& 143& 86665& &Bacillus&halodurans&
pMcb:1& 534996& 177& 83986& &Methanoculleus&bourgensis&
pSmw:1& 487779& 158& 863& &Syntrophomonas&wolfei&
pMsb:1& 292500& 131& 2208& &Methanosarcina&barkeri&
pMml:1& 292331& 96& 1080712& &Methanomassiliicoccus&luminyensis&
pMcm:1& 99651& 53& 2198& &Methanoculleus&marisnigri&
pAbc:1& 90549& 53& 81468& &Aminobacterium&colombiense&
 
 



Supplemental Datasets S1–S6 
 
 

PhyloPythiaS+: A Self-Training Method for the Rapid 
Reconstruction of Low-Ranking Taxonomic Bins from Metagenomes 
 
 
 
This document describes how to configure the software to reproduce the results. 
 
 
Download datasets 
The datasets for the benchmarks can be downloaded from: 
https://github.com/algbioi/datasets3
3
Supplemental Dataset S1: Simulated dataset with uniform distribution. 

Supplemental Dataset S2: Simulated dataset with log-normal distribution. 

Supplemental Dataset S3: Contigs of the real chunked cow rumen dataset. 

Supplemental Dataset S4: Scaffolds of the real chunked cow rumen dataset. 

Supplemental Dataset S5: Contigs of the real human gut dataset. 

Supplemental Dataset S6: Scaffolds of the real human gut dataset. 

 
Each file is a 7z archive and can be extracted, e.g. using command: 7za3x3archive.7z 
Each extracted directory contains a readme.txt file describing all the files contained 
in the directory. 
 
 
Software installation 
Follow the installation instructions and go through the tutorial. Both can be found 
here: https://github.com/algbioi/ppsp/wiki 
 
 
Real datasets 
Follow the tutorial:  

• Create the pipeline directory in directory: /apps/pps/tests  
• Use configuration file: 

/apps/pps/tools/config_ppsp_vm_refNCBI20121122_example.cfg  
as a template (i.e. copy this file and modify it appropriately). 

• Make sure, you set the following parameters in the configuration file: 
pipelineDir 



inputFastaFile3
inputFastaScaffoldsFile3
scaffoldsToContigsMapFile3

• Run the pipeline using command: 
ppsp -c CONFIGURATION_FILE -n -g -o s16 mg -t -p c s v -r -s 

• Analyze the results as described in the tutorial. 

Simulated datasets 
Follow the tutorial:  

• Create the pipeline directory in directory: /apps/pps/tests  
• Use configuration file: 

/apps/pps/tools/config_ppsp_vm_refNCBI20121122_example.cfg  
as a template (i.e. copy this file and modify it appropriately). 

• Make sure, you set the following parameters in the configuration file: 
pipelineDir 
inputFastaFile3
referencePlacementFileOut3
excludeRefSeqRank3(e.g.3excludeRefSeqRank=species)3
excludeRefMgRank3(e.g.3excludeRefSeqRank=strain)3

• Run the pipeline using command: 
ppsp -c CONFIGURATION_FILE -n -g -o s16 mg -t -p c -r -s 

• Analyze the results as described in the tutorial 



Supplemental Figures S1 – S14 

 

PhyloPythiaS+: A Self-Training Method for the Rapid Reconstruction of Low-
Ranking Taxonomic Bins from Metagenomes 

 



 
 
  



Figure S1. Benchmark results for the simulated dataset with uniform distribution.  

Precision (P) and recall (R) (Supplemental Text S1, Section 3.9.1) at different taxonomic ranks 

were calculated for (panels a–c) PPS+, (panel d) the generic PPS model, (panel e) MEGAN4 and 

(panel f) taxator-tk in all test scenarios (Table 1: Test Scenarios 1–9). In parentheses, (mg) and (rs) 

denote whether the sequences at a given taxonomic rank were masked from the marker gene or 

from the reference sequence collections, respectively (Supplemental Text S1, Sections 3.1 and 3.3). 

If not stated, sequences were masked from both reference collections. 

 



 

 

 



Figure S2. Benchmark results for the simulated dataset with uniform distribution using ‘correction’.  

Precision (P) and recall (R) were calculated with a ‘correction’ (Supplemental Text S1, Section 3.9) 

at different taxonomic ranks for (panels a–c) PPS+, (panel d) the generic PPS model, (panel e) 

MEGAN4 and (panel f) taxator-tk in all test scenarios (Table 1: Test Scenarios 1–9, Supplemental 

Text S1, Section 3.1). 
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Figure S3. Benchmark results for the simulated dataset with the log-normal distribution.  

Precision (P) and recall (R) (Section 3.9.1) at different taxonomic ranks were calculated for (panels 

a–c) PPS+, (panel d) the generic PPS model, (panel e) MEGAN4 and (panel f) taxator-tk in all test 

scenarios (Table 1: Test Scenarios 1–9, Supplemental Text S1, Section 3.1). 
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Figure S4. Benchmark results for the simulated dataset with the log-normal distribution using 

‘correction’.  

Precision (P) and recall (R) were calculated with a ‘correction’ (Supplemental Text S1, Section 3.9) 

at different taxonomic ranks for (panels a–c) PPS+, (panel d) the generic PPS model, (panel e) 

MEGAN4 and (panel f) taxator-tk in all test scenarios (Table 1: Test Scenarios 1–9, Supplemental 

Text S1, Section 3.1).!
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Figure S5. Base pairs assigned to individual taxa for a simulated metagenome of a microbial 

community with log-normally distributed species abundance.  

The number of taxonomic assignments to each taxon in bp is indicated on a log-scale by the pie 

chart sizes for PPS+, the generic PPS model, taxator-tk, MEGAN4 and the underlying standard of 

truth (TRUE). There were 47 strains present in the simulated metagenome sample. Assignments to 

taxa not shown in black in the chart are to false taxa that are not present in the simulated 

metagenome. Panel (a) shows the scenario where sequences from the same species as those of the 

simulated dataset were excluded from the reference sequences but not the marker gene databases 

(Table 1: Test Scenario 3). Panel (b) shows the scenario where sequences from the same species as 

those of the simulated dataset were excluded from the reference sequence and marker gene 

databases (Table 1: Test Scenario 8). 



 



Figure S6. Comparison of scaffold and contig assignments using PPS+ for the chunked cow rumen 

dataset.  

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text 

S1, Sections 3.2.2 and 3.10.1). The rows correspond to scaffolds and the columns correspond to 

contig assignments. (panel a) Phylum; (panel b) class; (panel c) order; (panel d) family; (panel e) 

genus; (panel f) species.!



 



Figure S7. Comparison of scaffold and contig assignments using the generic PPS model for the 

chunked cow rumen dataset.  

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text 

S1, Sections 3.2.2 and 3.10.1). The rows correspond to scaffolds and the columns correspond to 

contig assignments. (panel a) Phylum; (panel b) class; (panel c) order; (panel d) family; (panel e) 

genus. 

 



 
 
 
  



Figure S8. Comparison of scaffold and contig assignments using MEGAN4 for the chunked cow 

rumen dataset.  

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text 

S1, Section 3.2.2 and 3.10.1). The rows correspond to scaffolds and the columns correspond to 

contig assignments. (panel a) Phylum; (panel b) class; (panel c) order; (panel d) family; (panel e) 

genus; (panel f) species. 
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Figure S9. Comparison of scaffold and contig assignments using taxator-tk for the chunked cow 

rumen dataset.  

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text 

S1, Section 3.2.2 and 3.10.1). The rows correspond to scaffolds and the columns correspond to 

contig assignments. (panel a) Phylum; (panel b) class; (panel c) order; (panel d) family; (panel e) 

genus; (panel f) species. 
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Figure S10. Comparison of scaffold and contig assignments using PPS+ for the human gut dataset.  

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text 

S1, Sections 3.2.1 and 3.10.1). The rows correspond to scaffolds and the columns correspond to 

contig assignments. (panel a) Phylum; (panel b) class; (panel c) order; (panel d) family; (panel e) 

genus; (panel f) species. 
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Figure S11. Comparison of scaffold and contig assignments using the generic PPS model for the 

human gut dataset.  

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text 

S1, Sections 3.2.1 and 3.10.1). The rows correspond to scaffolds and the columns correspond to 

contig assignments. (panel a) Phylum; (panel b) class; (panel c) order; (panel d) family; (panel e) 

genus. 
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Figure S12. Comparison of scaffold and contig assignments using MEGAN4 for the human gut 

dataset.  

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text 

S1, Sections 3.2.1 and 3.10.1). The rows correspond to scaffolds and the columns correspond to 

contig assignments. (panel a) Phylum; (panel b) class; (panel c) order; (panel d) family; (panel e) 

genus; (panel f) species. 
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Figure S13. Comparison of scaffold and contig assignments using taxator-tk for the human gut 

dataset.  

The comparisons were performed at different taxonomic ranks using heat maps (Supplemental Text 

S1, Sections 3.2.1 and 3.10.1). The rows correspond to scaffolds and the columns correspond to 

contig assignments. (panel a) Phylum; (panel b) class; (panel c) order; (panel d) family; (panel e) 

genus; (panel f) species. 
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Figure!S14.!Benchmark!results!for!the!simulated!datasets!with!the!Kraken!software.!!

Precision! (P)! and! recall! (R)! (Supplemental! Text! S1,! Section! 3.9)! at! different! taxonomic! ranks!were!
calculated! for! the! Kraken! software! in! four! test! scenarios! (Table! 1:! Test! Scenarios! 1,! 5,! 8,! 9,!
Supplemental!Text!S1,!Section!3.1)!using!the!simulated!datasets!with!the!uniform!(panel!a!and!b)!and!
logFnorm!(panel!c!and!d)!distribution.! 
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Table S1. Runtime comparison of the k-mer counting algorithms Jellyfish, KAnalyze, and the new 

k-mer counting algorithm implemented in PPS+. 

k-mer lengths PPS+ Jellyfish 1.1.1 Jellyfish 2.2 KAnalyze 0.9.7 

4 7.5 s 6.2 s  21.7 s  29.5 s 
5 7.5 s 6.2 s  22.0 s  34.7 s 
6 7.5 s 6.2 s  21.9 s  39.1 s 
4, 5, 6 9.0 s 18.6 s  1m 5 s  1m 43 s 
7 7.6 s 6.2 s  22.4 s  43.9 s 
8 8.0 s 6.2 s  23.0 s  48.9 s 
9 8.4 s 6.3 s  24.6 s  54.4 s 
7, 8, 9 11.1 s 18.7 s  1 m 10 s  2 m 27 s 

 

The relevant combination of k-mers that is typically counted for taxonomic binning is marked in 

bold. The benchmark was run in one thread on a server with an Intel Xeon (CPU X5660, 2.8 GHz) 

processor, nevertheless we observed that Jellyfish 1.1.1 took approximately 30% more CPU 

resources than specified. Parallel runs of the methods can be done by splitting the input FASTA file, 

running multiple instances of a tool for each file separately in parallel and merging of the result 

files, thus the runtimes scale approximately linearly with the number of CPUs used. As a 

benchmark dataset, concatenated contigs from (Turnbaugh et al., 2010) (255 Mb) were used. 

 

 

  



Table S2. Exact values corresponding to (Fig. 2A). 

Method Rank F1-score (%) Precision (%) Recall = Correct (%) Incorrect (%) Unassigned (%) 
taxator-tk Family 66.6 98.2 50.4 0.9 48.7 
PPS Family 60.4 72.6 51.7 19.5 28.8 
MEGAN Family 78.8 88.9 70.7 8.8 20.4 
Kraken Family 74.7 79.6 70.4 18.0 11.5 
PPS+ Family 88.4 96.4 81.6 3.0 15.4 
taxator-tk Genus 46.1 93.2 30.6 2.2 67.2 
PPS Genus 45.8 68.2 34.5 16.1 49.4 
MEGAN Genus 63.1 75.7 54.1 17.4 28.5 
Kraken Genus 59.3 63.4 55.7 32.1 12.2 
PPS+ Genus 77.4 91.8 66.9 6.0 27.1 
taxator-tk Species 16.7 87.8 9.2 1.3 89.6 
PPS Species N/A N/A N/A N/A 100.0 
MEGAN Species 34.2 49.6 26.1 26.5 47.4 
Kraken Species 32.8 35.7 30.3 54.6 15.2 
PPS+ Species 51.5 71.4 40.3 16.1 43.6 
 
 

Table S3. Exact values corresponding to (Fig. 2B). 

Method Rank F1-score (%) Precision (%) Recall = Correct (%) Incorrect (%) Unassigned (%) 
taxator-tk Family 67.4 99.4 51.0 0.3 48.7 
PPS Family 70.0 84.2 59.9 11.3 28.8 
MEGAN Family 79.3 89.5 71.2 8.3 20.4 
Kraken Family 75.8 80.7 71.4 17.1 11.5 
PPS+ Family 90.1 98.3 83.2 1.5 15.4 
taxator-tk Genus 48.8 98.9 32.4 0.4 67.2 
PPS Genus 55.5 82.7 41.8 8.8 49.4 
MEGAN Genus 68.0 81.5 58.3 13.2 28.5 
Kraken Genus 60.7 64.9 57.0 30.8 12.2 
PPS+ Genus 83.2 98.6 71.9 1.0 27.1 
taxator-tk Species 18.5 98.2 10.2 0.2 89.6 
PPS Species N/A N/A N/A N/A 100.0 
MEGAN Species 50.0 72.5 38.1 14.4 47.4 
Kraken Species 38.7 42.2 35.8 49.1 15.2 
PPS+ Species 68.9 95.5 53.9 2.5 43.6 
 
 

  



Table S4. Exact values corresponding to (Fig. 2C). 

Method Rank F1-score (%) Precision (%) Recall = Correct (%) Incorrect (%) Unassigned (%) 
taxator-tk Family 64.2 98.5 47.6 0.7 51.7 
PPS Family 49.2 63.5 40.1 23.0 36.9 
MEGAN Family 76.3 90.7 65.8 6.8 27.4 
Kraken Family 71.8 78.1 66.4 18.6 15.0 
PPS+ Family 85.0 95.7 76.5 3.4 20.0 
taxator-tk Genus 43.7 92.3 28.6 2.4 69.0 
PPS Genus 35.2 56.0 25.7 20.2 54.1 
MEGAN Genus 61.9 78.6 51.1 13.9 35.0 
Kraken Genus 56.0 61.1 51.7 33.0 15.3 
PPS+ Genus 72.9 90.1 61.2 6.7 32.1 
taxator-tk Species 17.8 94.1 9.8 0.6 89.6 
PPS Species N/A N/A N/A N/A 100.0 
MEGAN Species 34.6 52.3 25.9 23.6 50.5 
Kraken Species 31.6 35.4 28.6 52.4 19.0 
PPS+ Species 48.9 73.1 36.7 13.5 49.8 
 
 

Table S5. Exact values corresponding to (Fig. 2D). 

Method Rank F1-score (%) Precision (%) Recall = Correct (%) Incorrect (%) Unassigned (%) 
taxator-tk Family 64.8 99.4 48.1 0.3 51.7 
PPS Family 66.1 85.4 53.9 9.2 36.9 
MEGAN Family 77.3 92.0 66.7 5.8 27.4 
Kraken Family 72.5 78.9 67.1 17.9 15.0 
PPS+ Family 87.5 98.5 78.7 1.2 20.0 
taxator-tk Genus 47.0 99.3 30.8 0.2 69.0 
PPS Genus 51.2 81.4 37.3 8.5 54.1 
MEGAN Genus 68.5 86.9 56.5 8.5 35.0 
Kraken Genus 56.8 61.9 52.4 32.3 15.3 
PPS+ Genus 78.7 97.3 66.1 1.9 32.1 
taxator-tk Species 18.5 97.3 10.2 0.3 89.6 
PPS Species N/A N/A N/A N/A 100.0 
MEGAN Species 52.0 78.6 38.8 10.6 50.5 
Kraken Species 39.3 43.9 35.6 45.5 19.0 
PPS+ Species 62.2 93.1 46.7 3.5 49.8 
 
 

  



Table S6. Scaffold-contig consistency of the chunked cow rumen dataset. 

Measure PPS+ PPS MEGAN4 Kraken taxator-tk Def. 

Scaffolds considered 12,192 12,192 9456 7859 11,447   

Consistent contigs  

/  

total contigs 

128,685  

/  

159,263 

137,747  

/  

159,263 

116,726  

/  

135,362 

104,633 

 / 

119,939 

151,585  

/  

153,185 

1 

Consistent count % 80.80 86.49 86.23 87.24 98.96 1 

Consistent kbp  

/  

total kbp 

257,370  

/  

318,526 

275,494  

/  

318,526 

233,452  

/  

270,724 

209,266 

/ 

239,878 

303,170  

/  

306,370 

2 

Consistent bp % 80.80 86.49 86.23 87.24 98.96 2 

Avg. distance to path 0.38 0.30 0.50 0.60 0.02 3 

Avg. weighted distance to path 0.38 0.30 0.50 0.60 0.02 4 

Avg. distance to scaffold label 3.16 3.43 5.89 7.23 2.65 5 

Avg. weighted distance to scaffold label 3.16 3.43 5.89 7.23 2.65 6 

Family: contigs (kb assigned) 71,660 43,118 55,904 45,752 13,626 
 

Family: consistency ‘% agreement’ 80.0 55.8 55.0 45.2 98.9 0b 

Genus: contigs (kb assigned) 53,705 28,077 53,008 44,600 10,596 
 

Genus: consistency ‘% agreement’ 84.3 63.2 56.0 43.7 99.1 0b 

Species: contigs (kb assigned) 26,121 N/A 41,204 42,626 1426 
 

Species: consistency ‘% agreement’ 91.6 N/A 54.6 38.1 100.0 0b 

 
Contigs of the cow rumen dataset of at least 10 kb were divided into chunks of 2 kb for evaluation 

of assignment consistency (Supplemental Text S1, Section 3.2.2). Scaffold-contig consistency of 

the assignments made by PPS+, the generic PPS model, MEGAN4, Kraken and taxator-tk for the 

chunked cow rumen dataset, computed via different definitions (Supplemental Text S1, Section 

3.10.2). The table also contains the number of kb of contigs assigned at low taxonomic ranks 

(family, genus and species) and the corresponding consistency (% agreement) (Supplemental Text 

S1, Section 3.10.1). Bold numbers correspond to the best values, whereas italic numbers indicate 

the worst values. 

 

  



Table S7. Scaffold-contig consistency of the human gut metagenome dataset. 

Measure PPS+ PPS MEGAN4 Kraken taxator-tk Def. 

Scaffolds considered 47,983 47,983 83,973 75,926 99,202   

Consistent contigs  

/  

total contigs 

64,197  

/  

66,480 

63,954  

/  

66,480 

99,647  

/  

101,613 

88,214 

/ 

92,900 

117,576  

/  

117,630 1 

Consistent count % 96.57 96.20 98.07 94.96 99.95 1 

Consistent kbp  

/  

total kbp 

181,207 

 /  

189,517 

  179,798  

/  

189,517 

191,429  

/  

200,478 

166,075 

/ 

190,001 

217,517  

/  

217,720 

 

2 

Consistent bp % 95.62 94.87 95.49 87.41 99.91 2 

Avg. distance to path 0.06 0.07 0.05 0.14 0 3 

Avg. weighted distance to path 0.07 0.10 0.12 0.35 0 4 

Avg. distance to scaffold label 0.63 0.72 0.38 0.61 0.29 5 

Avg. weighted distance to scaffold label       0.53 0.58 0.73 1.15 0.62 6 

Family: contigs (kb assigned) 146,046 118,679 161,452 173,238 74,793 

 Family: consistency ‘% agreement’ 94.0 92.6 96.2 53.4 99.8 0b 

Genus: contigs (kb assigned) 110,762 71,934 149,448 159,556 61,242 

 Genus: consistency ‘% agreement’ 95.3 91.9 96.1 88.3 99.9 0b 

Species: contigs (kb assigned) 61,969 N/A 114,716 162,726 20,687 

 Species: consistency ‘% agreement’ 94.7 N/A 93.5 81.3 99.7 0b 

 
Scaffold-contig consistency of the assignments made by PPS+, the generic PPS model, MEGAN4, 

Kraken and taxator-tk of the human gut dataset (Supplemental Text S1, Section 3.2.1) computed 

using different definitions (Supplemental Text S1, Section 3.10). Bold numbers correspond to the 

best values, whereas italic numbers indicate the worst values. 




