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ABSTRACT

In equilibrium, hard-sphere colloids form a fluid or a crystal, or both phases coexist,
depending on the concentration. However, particle-particle and particle-potential in-
teractions can lead to non-equilibrium states, affecting the spatial arrangement and dy-
namics of the particles. Hence, studies on the phase behaviour and on non-equilibrium
effects are of considerable scientific interest, but also of great industrial relevance. Col-
loidal suspensions are frequently used in foodstuff and consumer products industry.

In this thesis, two kinds of non-equilibrium situations are studied. Non-equilibrium
caused by particle-particle interactions is considered as intrinsic non-equilibrium. The
interactions can induce disorder-disorder transitions, e.g. from a fluid to a gel. The
structure of gels could be reproduced by modelling the particle-particle interactions
as equilibrium interactions. Furthermore, a structural transition from continuous to
directed percolation in colloidal gels was found to be connected to the onset of a slowing-
down of the dynamics, which is characteristic for gel formation.

Non-equilibrium due to external potentials is considered as extrinsic non-equilibrium.
A new set-up for the generation of a modulated light field has been devised. If exposed
to a sinusoidal potential, a binary colloidal mixture undergoes a disorder-order transi-
tion into a modulated liquid. Depending on the total packing fraction in the sample and
the amplitude of the potential, homogenisation or partial demixing of the two particle
species occurred. In addition, a slowing-down of the dynamics has been observed.

Particle-particle and particle-potential interactions can also be combined. Prelim-
inary results, presented in an outlook, indicate that external potentials can order gel
samples.

The main results of this thesis can be summarized as follows:
1. The structure of colloidal gels can be reproduced by modelling particle-particle

interactions by equilibrium interactions.
2. The structural transition from continuous to directed percolation in colloidal gels

is connected to the onset of a slowing-down of the dynamics.
3. An external sinusoidal potential leads to a disorder-order transition in binary

colloidal mixtures.
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ZUSAMMENFASSUNG

Im Gleichgewicht bilden Kolloide, die wie harte Kugeln wechselwirken, je nach Konzen-
tration eine Flüssigkeit, einen Kristall oder eine Koexistenz beider Phasen. Jedoch
können Teilchen-Teilchen- oder Teilchen-Potential-Wechselwirkungen zu Nichtgleich-
gewichtszuständen führen, die die räumliche Anordnung und Dynamik der Teilchen
verändern. Daher sind Untersuchungen des Phasenverhaltens und auch der Nichtgleich-
gewichtszustände von beträchtlichem wissenschaftlichen Interesse, aber auch von großer
industrieller Bedeutung. Kolloide werden häufig in der Lebensmittel- und Konsumgüter-
industrie verwendet.

In dieser Arbeit wurden zwei Arten von Nichtgleichgewicht untersucht. Ein Nicht-
gleichgewicht aufgrund von Wechselwirkungen zwischen den Kolloiden wird als intrin-
sisches Nichtgleichgewicht bezeichnet. Die Wechselwirkungen können Übergänge von
einer ungeordneten Phase in eine andere bewirken, z. B. von einem Fluid zu einem
Gel. Die Struktur von Gelen konnte reproduziert werden, indem die Teilchen-Teilchen-
Wechselwirkungen durch Gleichgewichtswechselwirkungen modelliert wurden. Außer-
dem wurde in Gelen ein struktureller Übergang von kontinuierlicher zu gerichteter
Perkolation beobachtet. Dieser ist mit dem Einsetzen der Verlangsamung der Dynamik,
einem Merkmal der Gelbildung, verbunden.

Ein Nichtgleichgewicht aufgrund externer Potentiale wird als extrinsisches Nicht-
gleichgewicht bezeichnet. Es wurde ein neuer Aufbau zum Erzeugen eines modulierten
Lichtfelds entwickelt. Werden binäre kolloidale Mischungen einem sinusförmigen Po-
tential ausgesetzt, so wird ein Unordnung-Ordnung-Übergang zu einer modulierten
Flüssigkeit beobachtet. Abhängig von der Packungsdichte und der Amplitude des Po-
tentials traten Homogenisierung oder partielles Entmischen der Teilchensorten auf. Zu-
dem wurde eine Verlangsamung der Dynamik beobachtet.

Teilchen-Teilchen- und Teilchen-Potential-Wechselwirkungen können auch kombi-
niert werden. Erste Experimente, vorgestellt in einem Ausblick, deuten darauf hin,
dass äußere Potentiale Gel-Proben ordnen können.

Die wesentlichen Ergebnisse dieser Arbeit können wie folgt in drei Thesen zusam-
mengefasst werden:

1. Die Struktur kolloidaler Gele kann reproduziert werden, indem die Teilchen-
-Teilchen-Wechselwirkungen als Gleichgewichtswechselwirkungen modelliert wer-
den.

2. Der Übergang von kontinuierlicher Perkolation zu gerichteter Perkolation in kol-
loidalen Gelen ist mit dem Einsetzen der Verlangsamung der Dynamik verbunden.

3. Ein externes sinusförmiges Potential führt zu einem Übergang von Unordnung zu
Ordnung in binären kolloidalen Mischungen.
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BACKGROUND1
1.1 Colloidal dispersions

Colloidal dispersions are frequently encountered in nature as well as in industry. We use

them regularly in our daily life in the form of industrial products, like paint, toothpaste,

ice cream, shaving foam and hair spray. Fog, smoke and milk represent examples of

colloidal dispersions occurring in nature. All these materials are two-phase dispersions:

matter in one phase (gas, fluid or solid) is dispersed in matter in another or the same

phase, which leads to a heterogeneous system with a large interfacial area [1]. In this

thesis, spherical solid particles dispersed in a fluid are used as a model system.

To belong to the class of colloids, the dispersed particles have to be of mesoscopic

size, which ranges roughly from 1 nm to 1µm [1–4]. The mesoscopic size regime implies

that the dispersed colloidal particles are much larger than the molecules of the disper-

sion medium, which sets the the lower boundary [3]. Thus, the dispersion medium can

be considered as a continuum, and the internal atomic structure of the particles can

be neglected [4]. In the mesoscopic regime, the dispersed particles are so small that

they move due to thermal energy, i.e. they undergo Brownian motion. If the particle

radius is larger than about 1µm, then gravity might not be negligible. This sets the

upper limit of the mesoscopic size regime [3–5]. Due to their mesoscopic size, colloids

can easily be observed with optical microscopy.

1.2 Structure in colloidal dispersions

The particles in colloidal dispersions can assume different spatial arrangements. At high

concentrations, particles form ordered, crystalline arrangements, whereas at low con-

centrations they are in a disordered, fluid-like state [6]. A measure for the arrangement
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1.3 Dynamics in colloidal dispersions

is the radial distribution function g(r) [7, 8] which for a canonical ensemble reads [9]

g (r) = 1
ρ2

0

⟨
ρ(r′)ρ(r′ + r)

⟩
r′ (1.1)

It represents the ensemble average of the radial density around a particle at distance

r normalized by the average density ρ0 of the system. For impenetrable hard spheres

of diameter σ, g(r<σ) = 0. Moreover, for an ideal gas, g(r>σ) = 1. For a crystal, g(r)

shows distinct peaks reflecting the characteristic distances of its unit cell. In a fluid,

the particles form loose shells around each other, which results in modulations of g(r)

(see Fig. 1.1). Typically, these oscillations are damped over short distances already.

Liquids do not exhibit long-ranged order, i.e., g(r→∞) = 1 [7].

Figure 1.1 Left: Sketch of a colloidal fluid with particles coloured depending on their
distance to the central black particle. Shell-formation is apparent. Right: Sketch of
the radial distribution function g(r) around the central black particle. Same colours
are chosen as in the left sketch. The maxima in g(r) correspond to the particle shells
in left sketch. Reprinted from [8] with kind permission of Eric R. Weeks.

1.3 Dynamics in colloidal dispersions

In 1828, Robert Brown studied pollen in water with a microscope and, for the first

time, described the random motion of colloidal particles [10]. This motion can be

considered as a series of steps with uncorrelated step length and direction, a so-called

random walk. It is caused by collisions of the solvent molecules with the dispersed

particles, which move due to their thermal energy [11]. Nearly hundred years later,

2



Chapter 1 – Background

theoretical descriptions of Brownian motion were presented: Langevin described the

colloidal dynamics due to a random force in 1908 [12]. Einstein and Smoluchowsky

analysed the statistics of the random walk and the sedimentation-diffusion equilibrium

few years before [13, 14]. In 1910, their findings were experimentally verified by Perrin

[15].

To describe the Brownian motion of dilute colloidal suspensions, the displacement

of one colloid, ∆r(t) = r(t + t0) − r(t0), is considered, with the lag time t, the starting

time t0 and the d-dimensional vector r(t + t0) containing the coordinates of one colloid

at time t + t0. As the motion is random, the ensemble average over the displacement

vanishes, i.e. ⟨∆r(t)⟩ = 0. Therefore, the motion is quantified by the second moment,

i.e., the mean-squared displacement (MSD), ⟨∆r2(t)⟩. Langevin showed that the MSD

of a single colloid can be calculated as

⟨∆r2(t)⟩ = 2dD0t, (1.2)

with d giving the number of independent dimensions. D0 is called the self-diffusion

coefficient. For a sphere dispersed in a liquid, it is given by the Stokes-Einstein equation

which reads

D0 = kBT

6πηvR
(1.3)

with the solvent viscosity ηv and the particle radius R. For dilute solutions in equilib-

rium, the colloids are diffusing freely and thus the MSD is proportional to the time t

[5]. For ergodic systems, statistics can be improved by taking a time-average over the

starting time t0 in the calculation of the MSD.

If the particles interact with each other or with an external potential, their motion

is typically hindered and the MSD shows a power-law dependence on the lag time t

with a diffusivity exponent µ(t) [16, 17]:

⟨∆r2(t)⟩ ∝ tµ(t). (1.4)

Interactions typically lead to an exponent µ(t) which depends on the lag time t.

3



1.4 Colloid–colloid interactions

1.4 Colloid–colloid interactions

In this section, different types of colloidal interactions and phase behaviour are de-

scribed. The interaction potential of experimental colloidal samples typically is a com-

bination of different types of particle-particle interactions, e.g., van der Waals interac-

tion, electrostatic and depletion interaction. Those interactions which are important

for the scope of this thesis are explained in the following sections. However, under

certain conditions, real systems effectively behave as colloidal hard spheres, as will be

described below.

Hard-sphere interaction

The simplest kind of interaction between colloidal particles is the hard-sphere interac-

tion. In this case, the colloidal particles interact like impenetrable, uncharged spheres:

they feel an infinitely high potential barrier at contact, i.e. they cannot overlap and

do not interact otherwise [18]. The interaction potential UHS(r), which depends on the

centre-to-centre distance r, reads as [1]:

UHS (r) =

⎧⎪⎨⎪⎩ ∞, r ≤ 2R

0, r > 2R
. (1.5)

The interaction potential is sketched in Figure 1.2a).

0.49 0.55

0.640.58

0.740
2R

r

UHS(r)/kBT ∞
equ.

n.-equ.

Φ

f f+c c

glass

rcp

cp

Figure 1.2 a) Sketch of the hard-sphere potential UHS(r). b) Phase diagram of colloidal
hard spheres: in equilibrium a fluid (f) phase up to colloid volume fraction Φ < 0.494, a
purely crystalline (c) phase for 0.545 < Φ < Φcp = 0.74 and a coexisting (f+c) phase in
between are observed. A non-equilibrium glass phase can occur for 0.58 . Φ < Φrcp =
0.64.
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Chapter 1 – Background

Colloids exclusively interacting via a hard-sphere interaction show different equilib-

rium phases: a fluid, a crystal and a coexistence regime [3, 18, 19]. The equilibrium

phase behaviour is controlled by only one parameter, namely the colloid concentration.

It is independent of the temperature. The concentration can be expressed in terms of

the colloid volume fraction, Φ = Vcolloid/Vsample, which is the volume of all colloids,

Vcolloid, divided by the total volume of the system, Vsample. Up to Φ = 0.494, a fluid

phase and, for Φ ≥ 0.545, a purely crystalline phase is observed which can reach a

maximal volume fraction Φcp = 0.74. At Φcp the colloids are closed packed (cp) in a

crystalline structure [5]. In between, i.e. for 0.494 < Φ < 0.545, a coexistence of fluid

and crystalline phases is found [1, 6, 20]. If the system is brought out of equilibrium,

e.g., by quenching it to a certain volume fraction, a non-equilibrium glass phase is ob-

served for Φ & 0.58 [1, 21]. A colloidal glass is characterised by a random structure, in

which the particles are caged by their neighbours. Thus, Brownian motion is hindered

and the system prevented from reaching equilibrium [22]. The tightest non-crystalline

packing is called random close packing (rcp), for which Φrcp = 0.64 in a monodisperse

system. The value of Φrcp increases with polydispersity [23]. The equilibrium and

non-equilibrium phase diagram for a three-dimensional colloidal hard-sphere system is

sketched in Figure 1.2b).

Van der Waals interaction

Van der Waals interactions between colloids are always present. They are based on

the attraction between the induced dipole moments of the colloids [5]. For identical,

spherical colloids, the van der Waals potential UvdW(r) forms a deep potential minimum

and approximately reads

UvdW (r) = −AH
6

[
2R2

r2 − 4R2 + 2R2

r2 + ln
(

1 − 4R2

r2

)]
(1.6)

with the Hamaker constant AH which depends on the polarisabilities of the colloids and

the dispersion medium [3]. If both materials have the same polarisability, e.g., if their

refractive indices are matched, the van der Waals attraction is negligibly small. As the

gain of potential energy at particle contact is much larger than the thermal energy, the

colloids favour to coagulate and stabilisation is needed to prevent precipitation [3].

5



1.4 Colloid–colloid interactions

There are two widely used stabilisation methods: steric stabilisation and charge

stabilisation. For steric stabilisation, the colloids are covered with polymer hairs and

dispersed in a good solvent for the polymers. If the colloids come so close that the

polymers are constrained, entropy decreases and the particles feel a repulsive force

preventing coagulation [1, 3]. Charge stabilisation relies on electrostatic repulsion and

will be explained in the next section. In the absence of further long-range interactions,

well-stabilised particles can effectively be modelled as hard spheres [1].

Electrostatic interaction

If colloids are charged, e.g., by ionisation, electrostatic interactions are present. The

counterions in the suspension medium form an electric double layer [1, 5]. The ex-

tent of the diffusive layer depends on the balance of the electric and thermal energy

of the counterions [1]. The resulting interaction potential is derived based on the

Poisson-Boltzmann equation and leads to a screened repulsive force between the col-

loids. The interaction potential can approximately be described by a Yukawa potential

(or screened Coulomb potential) UY(r) for r ≥ 2R [3]:

UY (r) = q2
e

εr
e−κr (1.7)

with the effective charge qe of the particle, the dielectric constant ε of the solvent and

the Debye screening parameter κ. The inverse, κ−1, is the Debye screening length, at

which the potential decreased to 1/e of the surface potential [1, 5]. The Debye length

can be tuned by the ion concentration. In an organic system, κ−1 has been varied up

to 12 µm [24]. In some colloidal systems far from equilibrium, long-range electrostatic

interactions play a key role, especially in gel states [25]. In contrast, to achieve hard-

sphere-like behaviour, the electrostatic contribution to the interaction potential has

to be rather short-ranged, i.e. a short Debye screening length is needed. Deviations

from the simple Yukawa model for screened electrostatic interactions might occur for

charged spheres at high Φ [26].

If both electrostatic and van der Waals interactions are present, they are combined in

the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) potential UDLVO(r). Under

the condition that UDLVO(r) has just one minimum and a potential barrier much larger

than kBT , the solution is stable (see Figure 1.3) [1].

6



Chapter 1 – Background

r0

UDLVO(r)

>> kBT

Figure 1.3 Sketch of the DLVO potential UDLVO(r) (dark blue line). Shown are also
sketches of the hard-sphere potential (red line), the van der Waals potential (light blue
line) and the Yukawa potential (green line).

Depletion interaction

The addition of small colloids or non-adsorbing polymers to a colloidal hard sphere

suspension offers a systematic way to tune attractive interactions. Due to the finite

volume of the smaller species, a volume around each large colloid is depleted of the

centres of the smaller species, i.e. the depletants. This depletion layer has an extension

δ of the size of the smaller particles (see Fig. 1.4, left). If the depletion layers of two

large colloids overlap, the osmotic pressure exerted by the depletants on the colloids is

unbalanced. Thus, the large colloids feel an effective attraction, the so-called depletion

interaction [27].

For small depletant concentrations, the depletion potential can be described by the

Asakura-Oosawa-Vrij (AOV) potential UAOV:

UAOV (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞, r ≤ 2R

−PVoverlap (r) , 2R < r ≤ 2R + 2δ

0, r > 2R + 2δ

(1.8)

with the overlap volume of the depletion layers Voverlap (r) = (π/6) (2R + 2δ − r)2

(2R + 2δ + r/2) [27]. If the depletion range is large, i.e. the ratio q = δ/R & 0.15,

multiple overlap of depletion zones is possible and the effective interaction between the

colloids is no longer pairwise additive. Small hard spheres used as depletants give rise

to a slightly different potential, although the general form of the potential follows the

AOV potential and can be tuned as explained below [27]. While Asakura and Oosawa

7



1.4 Colloid–colloid interactions

R

2δ

δ

r

UAOV(r)

2R

2R+2δ

~ δ

~ Φdep

Figure 1.4 Left: Colloidal spheres with polymers as depletants. The dashed lines and
red areas indicate the depletion layers which cannot be accessed by the centres of the
polymers. Their overlap (dark red region) leads to an unbalanced osmotic pressure
and an effective attraction between the colloids. Right: Asakura-Oosawa-Vrij potential
UAOV (r) versus particle distance r. Its range 2δ and its depth depend on the radius of
depletants and the depletant concentration Φdep, respectively.

described the depletants as purely hard spheres [28], Vrij modelled them as penetrable

hard spheres, but to act as hard spheres towards the large spheres [29]. The AOV

potential is sketched in Figure 1.4, right. Its potential range and depth depends on the

depletant size and concentration, respectively. In case of small hard spheres with radius

Rs as depletants, the range is given by 2δ = 2Rs, while it is 2δ = 2Rg for polymers with

radius of gyration Rg at low polymer and colloid concentration. The potential depth

is proportional to the volume fraction of the depletants Φdep = Vdep/Vsample with the

volume of all depletants, Vdep, of size Rs or Rg, respectively, as defined above.

A theory to describe the phase behaviour of systems with depletion interactions

is the free volume theory (FVT). It is based on the osmotic equilibrium between the

sample and a hypothetical depletant reservoir. The system always favours to maximize

entropy, thus maximizing the free volume for the depletants. In FVT, the colloids

and depletants are modelled as hard spheres and penetrable hard spheres, respectively

[27, 30]. The model gives satisfactory results for colloid-polymer mixtures at low q or

low Φp as well as for colloid-colloid mixtures with low q [27]. The phase behaviour of

colloid-polymer mixtures at high q or high Φp can be obtained from the generalized

free volume theory (GFVT) [31]. It incorporates that the depletion thickness δ (and

thus the range of the potential) varies with Φp. At high polymer concentration, the

8



Chapter 1 – Background

polymers overlap, leading to significant polymer-polymer interactions and thus a strong

deviation from ideality.

f

f + c

c

gel attr.
glass

rep.
glass

Φ

Φp

Figure 1.5 Sketch of the generic phase diagram of a colloid-polymer mixture with
q < 0.3. In addition to the equilibrium phases (fluid (f), fluid+crystal (f+c), crystal
(c)), several non-equilibrium phases are observed: gels, attractive and repulsive glasses.

A generic phase diagram of a colloid-polymer mixture with q < 0.3 is sketched

in Figure 1.5. For very low polymer concentrations, the phase behaviour resembles

the hard sphere case with the equilibrium phases of a fluid, a crystal as well as a

fluid-crystalline coexistence. With increasing polymer concentration, the coexistence

region widens up. In this coexistence region, a metastable gas-liquid phase separation is

hidden. This causes a variety of non-equilibrium states [27]. Up to intermediate Φ and

high Φp, gel states are observed [27, 32]. Furthermore, at high colloid concentrations Φ,

two glassy states are found: the repulsive glass at low Φp and the attractive glass at high

Φp [27, 33]. While in a repulsive glass, the particles are caged by their neighbours due

to excluded volume effects, in attractive glasses, they are arrested due to the attractive

depletion interaction [34–36].

One of the characteristics of a gel is a network-like structure spanning the whole

sample volume. It has a high heterogeneity (see Fig. 1.6), which is most pronounced

close to the gelation boundary [37]. The second main feature of gels is dynamical

arrest, i.e. a slowing down of the particle dynamics [37]. To further the understanding of

colloidal gels, it is desirable to explore the connection between the structural properties

and the dynamical arrest.

The underlying mechanisms and pathways to gel formation are still heavily debated.

Arrested phase separation has been suggested as one such mechanism [38, 39]. The hid-

den spinodal line in the fluid-crystal coexistence region can lead to density fluctuations

9



1.5 Colloid–potential interactions

a) b)

Figure 1.6 Typical 2D confocal microscopy image of a colloidal gel with volume fraction
Φ ≈ 0.2 (a) and Φ ≈ 0.4 (b).

and phase separation in the sample, resulting in a dynamical arrest of the denser part.

Other suggestions include a glass-like arrest of the dynamics [40], the formation of

locally favoured structures [41] or the onset of rigidity percolation [42]. In colloidal

systems with additional repulsive interaction, aggregation of clusters into a percolated

network was reported [38].

1.5 Colloid–potential interactions

In this section, the creation of external potentials using optical forces is explained

and the behaviour of colloids in potentials is described. Optical forces can be used

to manipulate colloidal particles. Experiments of a colloidal particle trapped by two

counter-propagating laser beams were first reported in 1970 [43]. Nowadays, optical

tweezers are commonly used in biology, material science and medicine.

Optical generation of external potentials

Optical forces

Laser light exerts a forces on colloids, so-called optical forces [16, 17, 43–47]. We con-

sider a colloid with radius R and refractive index nc (larger than that of the surrounding

solvent ns) which is hit by a laser beam with wavelength λ. For R ≫ λ, simple ray

optics can be used to explain the optical forces, while for R ≪ λ, the particle acts as a

Rayleigh scatterer [16, 17, 44, 45, 47]. Both regimes will be explained in detail.

First, the case R ≫ λ is considered. The laser light that hits a transparent particle

is scattered, reflected and refracted by the particle. Since photons carry a momentum

10
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Figure 1.7 The incident laser light with an intensity gradient is refracted by a colloidal
particle with nc > ns. During refraction, momentum is imparted to the light, which
results in reaction forces on the particle. As a high intensity leads to a higher force,
the resulting forces do not balance and the particle moves towards the region of higher
intensity.

p = h/λ with the Planck constant h and laser wavelength λ, the scattering and reflection

lead to a momentum transfer to the particle and a force in the direction of the light

propagation. This is called radiation pressure or scattering force. A momentum change

is also imparted to the light during refraction. Due to the conservation of momentum,

the transferred momentum results in a reaction force on the colloid [44]. As a higher

light intensity results in a higher reaction force, the forces do not balance in the case of

an intensity gradient [43–45]. Hence, in the present case the particle is pushed towards

the intensity maximum (see Fig. 1.7) due to the gradient force. If the particle instead

has a refractive index nc < ns, the light beams are refracted in the opposite directions

and the gradient force is directed towards the intensity minimum instead. The resulting

force, which the light exerts on the particle, is the sum of the reaction forces due to

scattering, reflection and refraction [16, 17, 43–45, 47].

If the particle radius is much smaller than the wavelength, R ≪ λ, ray optics do

not apply. Due to its polarisability, an oscillating dipole is induced in the colloid by

the electric field. It absorbs and re-emits the incident light, which is the reason for the
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1.5 Colloid–potential interactions

scattering force acting on the particle. The force is given as follows [16, 17, 44, 45, 47]:

Fscat = 128π5R6ns

3λ4c

(
n2 − 1
n2 + 2

)2

I(r). (1.9)

The magnitude of the scattering force depends on the ratio of the refractive indices of

the colloid and the solvent, n = nc/ns and the intensity of the light, I(r). Its direction

is given by the propagation direction of the laser light. If the intensity of the incident

light is spatially inhomogeneous, the particle additionally experiences the gradient force

[17, 47, 48]:

Fgrad = 2πR3ns

c

(
n2 − 1
n2 + 2

)
∇I(r). (1.10)

In this thesis, we use particles with R ≈ λ, where Lorenz-Mie theory has to be used

for exact calculations of the optical forces [17, 45, 49]. This case yields qualitatively

similar but quantitatively different and much more complicated results. It will not be

discussed here.

Sinusoidal potential

The interference of two Gaussian laser beams can be used to create a fringe pattern

[46, 50–52]. (An experimental set-up is described in section 2.2.1.) The intensity profile

across the fringes, I (y), depends on the beam crossing angle θ [46, 50]:

I (y) = 2I0{1 + cos [2ky sin (θ/2)]}e−2y2 cos2(θ/2)/a2 (1.11)

with the intensity of the incident laser beams I0, their wavevector k = 2π/λ and the

beam waist radius a. The term in curly brackets forms the sinusoidal intensity pattern

with a fringe spacing d = λ/ (2 sin (θ/2)), while the Gaussian envelope is caused by

the finite beam size. In a region, in which the influence of the Gaussian envelope is

negligibly small, the intensity pattern converts into a sinusoidal potential of the form

V (y) = Voff{1 + cos (qy)} with potential wave vector qpot = 2π/d for a point-like

particle. For particles with a finite size, the potential varies over the dimension of the

particle size yielding the effective potential

V (y) = Voff

{
1 + 3j1 (qpotR)

qpotR
cos (qpoty)

}
(1.12)
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with the first order spherical Bessel function j1 [46]. Depending on the length scale

ratio qpotR, the potential minima for the colloidal particles are formed by the regions

of highest or lowest intensity, respectively. The potential offset is given by Voff = gPLα

with the set-up dependent parameter g, the laser power of the incident beams PL and

the particle polarisability α = R3n2
s

(
n2 − 1

)
/
(
n2 + 2

)
[53]. The potential amplitude

is thus given by V0 = 3Voffj1 (qpotR) /(qpotR).

Colloids in a sinusoidal potential

Spatial arrangement

Colloidal particles in a sinusoidal potential prefer to stay in the potential minima.

Additionally, due to the radiation pressure, they form a (quasi) two-dimensional layer,

whose spatial arrangement has been studied extensively [46, 50, 51, 54–62]. It strongly

depends on the commensurability ratio, p =
√

3s/(2d), of the fringe spacing d and the

mean interparticle distance s, which is set by the colloid concentration.

If the particles sitting in neighbouring fringes do not interact with each other, a

high degree of order is induced perpendicular to the potential minima, but a disor-

dered arrangement along the fringes. Such a structure is typically referred to as a

modulated liquid [56]. It occurs, e.g., due to very short-ranged interactions, an in-

commensurate fringe spacing or a high potential amplitude. If the fringe spacing is

chosen to be commensurate to the interparticle distance, i.e. p = 1, the formation of

a two-dimensional hexagonal crystal is observed at increasing potential amplitude, if

the particle concentration as well as the strength and the range of the particle-particle

interactions are sufficient [50, 54–56]. This effect is called laser-induced freezing (LIF).

By further increasing the potential amplitude, the particles are more strongly confined

to the potential minima. This can lead to a reduced interaction between the particles on

neighbouring fringes, depending on the interaction range, and to a laser-induced melt-

ing (LIM) of the crystalline structure to a modulated liquid [51, 57–59]. For a larger

commensurability ratio p = 2, theory and Monte-Carlo simulations show an even more

complex phase behaviour for colloids and hard discs, including a locked smectic phase

[61, 62].

Typically, colloidal systems in nature and industry are much more complex, e.g.

because of a higher degree of polydispersity. As a first step to investigate effects of poly-
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1.5 Colloid–potential interactions

dispersity, another particle species is added to the system, which thus forms a binary

mixture. Monolayers of binary colloidal mixtures form different spatial arrangements

depending on three parameters: their size ratio Rs/Rl between small and large colloids,

their stoichiometric ratio ξ = Ns/Nl with the particle numbers Ns and Nl for small and

large particles, respectively, as well as the total packing fraction η = (NsAs + NlAl)/A

with the investigated area A and the cross-sectional areas of small and large particles,

As and Al. Monolayers of binary hard-sphere and hard-disc mixtures have been studied

in experiments [63, 64] and theoretically [65], respectively. Complexity can be increased

by exposing a binary mixture to a sinusoidal potential. The potential modulates the

arrangement of the colloids, which thus can be regarded to be in a non-equilibrium

state caused by the external potential. In addition to the three particle-specific param-

eters, the resulting arrangement now also depends on the potential amplitude and the

fringe spacing d. Monte-Carlo simulations of a binary hard-disc mixture in a sinusoidal

potential reveal novel structural features, like the de-mixing of the particle species and

the so-called fissuring phase, in which the small particles form fissures perpendicular to

the potential minima in a crystal of large and small particles [66–70]. Experimentally,

such a complex system is difficult to control. However, the simulation results indicate

that the effort might pay off with a fascinating variety of tunable spatial arrangements.

Particle Dynamics

The dynamics of monodisperse colloids exposed to a sinusoidal potential already shows

an interesting effect at low particle densities. While the particles can diffuse freely

along the potential minima, their dynamics across the potential barriers is slowed down,

leading to a plateau in the respective MSD at intermediate times [53]. Data for different

particle sizes and fringe spacings can be scaled to dimensionless quantities. Hence, the

depth and length of the plateau largely depend on the potential amplitude. The slowing-

down in the dynamics resembles the MSD of a glass-forming colloidal suspension [53].

If the colloid packing fraction in the suspension is increased, particle-particle in-

teractions become important as shown in Brownian Dynamics simulations [71]. In the

simulations, a concentrated two-dimensional colloidal system was exposed to a com-

mensurate sinusoidal potential with p = 1. While qualitative trends of the particle

MSD across the potential barriers are similar to the dilute case, the dynamics along

the potential minima is strongly influenced by the high particle concentration. With
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increasing potential amplitude, even the MSD along the minima shows the development

of a plateau at intermediate times, up to a critical potential amplitude beyond which

plateau height does not change anymore. Furthermore, in a one-dimensional channel,

single-file diffusion was observed at increasing colloid concentration. It is characterised

by a diffusivity exponent µ(t) ≈ 0.5 for intermediate and long t [72]. In a binary col-

loidal mixture exposed to a sinusoidal light field, the influence of the particle-particle

interactions on the dynamics might be even more complex.
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OVERVIEW2
This thesis focusses on the spatial arrangement of colloidal mixtures in non-equilibrium.

We consider two generic scenarios: non-equilibrium induced by intrinsic and extrinsic

mechanisms. First, colloid-polymer and binary colloidal mixtures with large size asym-

metry are investigated. In these mixtures, the polymers and the smaller colloids act as

depletants. Given certain particle concentrations gels can form. These non-equilibrium

structures arise from interparticle interactions and hence can be regarded as intrinsic

non-equilibrium. In a second step, we study binary colloidal mixtures exposed to a

sinusoidal potential. The particle-potential interactions modulate the spatial arrange-

ment of the particles. Thus, they are considered to be in an extrinsic non-equilibrium

caused by the external potential.

This chapter provides an overview of the studies on colloidal gels and concentrated

binary colloidal mixtures. Each sub-section summarizes one of the publications. Figures

and their captions are taken from the mentioned publication. The chapter concludes

with an outlook about colloidal gels exposed to a sinusoidal potential.

2.1 Colloidal gels – intrinsic non-equilibrium

By comparing the experimental radial distribution functions of colloidal gels at in-

termediate volume fraction with the results of Monte Carlo simulations, an effective

interaction potential consisting of a combination of a short-ranged attraction and a

long-ranged repulsion can be obtained. With this effective interaction potential, other

structural signatures, like the bond angle distribution and the bond number distribu-

tion, can be reproduced, although non-equilibrium effects are not explicitly included

(cf. section 2.1.1). Applying a similar effective potential, experiments and Brown-

ian dynamics simulations of colloidal gels at lower volume fraction were analysed and

directed percolation as a pre-transition towards arrested gel states was observed (cf.

section 2.1.2). Additionally, gel formation was found to be one of the mechanisms lead-
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ing to dynamical arrest in binary colloidal mixtures with large size ratio (cf. section

2.1.3).

2.1.1 Competing interactions

Competing short-ranged attraction and long-ranged repulsion are found in many differ-

ent systems, e.g., protein solutions [1], nanoparticle solutions [2] and colloidal gels [3].

At low volume fractions, the structure of colloidal gels could be successfully modelled

with a combination of an AOV and a Yukawa potential [4]. Yet, at intermediate volume

fraction, effects like crowding and compression of the polymers might complicate mod-

elling. A former study comparing experiments to MCT-PRISM simulations only led to

semi-quantitative agreement [5]. This sub-section summarizes a study (see Publication

1 in section 3.1, [6]) on this interplay of interactions in colloidal gels consisting of a

colloid-polymer mixture with intermediate volume fraction.

The samples consisted of spherical colloids made out of polymethylmethacrylate

(PMMA) of diameter σ ≈ 1.72 µm and polystyrene (PS) polymers in a mixture of

cis-decalin and cycloheptylbromide (CHB). This solvent matched the density and the

refractive index of the colloids. Due to fluorescent labelling, the colloidal particles could

be observed via confocal fluorescence microscopy. As the sterically stabilized PMMA

colloids in CHB become charged, a salt (tetrabutylammonium chloride) was added

to screen the charges. Two sets of samples (1 and 2) were prepared independently

with Φ ≈ 0.4 and slightly different salt concentrations cs, 4.5mM < cs < 4.9mM and

4.8mM < cs < 5.3mM, respectively. In both sets, the polymer concentration was varied

from 0c∗ to 2c∗ with the polymer overlap concentration c∗ = 3Mp/4πR3
gNA, the molar

mass Mp, the radius of gyration of the polymer Rg and the Avogadro constant NA. The

size ratio between polymers and colloids was q ≈ 0.08 in a dilute suspension. Due to

the high volume fraction and polymer concentration in our samples, the effective size

ratio is expected to vary as 0.08 > q∗ > 0.02 according to GFVT. Although the sample

compositions in both sets are similar, the structural arrangement can differ due to the

different preparation history and solvent age. Whereas the solvent age might effect the

effective particle charge and dissolved TBAC concentrations, the preparation history

might induce differences especially in the non-equilibrium structures.

The structural signatures, e.g. the bond angle distribution, gained from experiments

were compared to Monte Carlo (MC) simulations. In the simulations, the interparticle
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attractive and repulsive interactions were modelled with an effective potential. The

effective potential for each sample was gained by fitting the radial distribution function,

g(r), as obtained from simulations, to the experimental g(r). Samples without polymers

were successfully fitted by a combination of a hard-sphere and a repulsive Yukawa

potential. These fits provided approximate values for the effective particle charge Qeff

and Debye screening length κ−1. In samples with a very low polymer concentration,

cp = 0.1c∗, the radial distribution function was dominated by the repulsive part of the

potential. Thus, they could be fitted with the same combination of potentials. The

parameters of the Yukawa potential were kept constant, while a slight change in Φ was

included in the simulations. For the gel samples with 0.8c∗ < cp < 2.0c∗, the effective

potential consists of a combination of an attractive square-well and a repulsive Yukawa

potential.

For these samples, the radial distribution functions g(r) from experiments and sim-

ulations are presented in Figure 2.1. They are characterized by a sharp first and a

broad second peak, which is typical for a heterogeneous gel structure [7, 8]. The shape

of the first minimum at r/σ ≈ 1.1 slightly varies between the two sets shown in a) and

b). The fitting parameters of the Yukwawa potential were adjusted to κσ = 15 and

Qeff = 273 and κσ = 30 and Qeff = 514 for the two sets, respectively. The different

shapes of the first minimum might correlate with the different amount of charges and

screening in the samples.

Figure 2.1 Radial distribution functions for gel samples with cp ≥ 0.8c∗ of two in-
dependent sets of experiments (a) and b)). Symbols denote experimental data, while
lines represent simulation results. Shown are simulation results providing the effective
interaction potential. Curves are vertically shifted for clarity. Figure reproduced and
caption adapted from [6] by permission of The Royal Society of Chemistry.

21



2.1 Colloidal gels – intrinsic non-equilibrium

Based on the experimental data and the effective potentials, respectively, the angu-

lar distribution function, P (ϕ), and the distribution of the numbers of nearest neigh-

bours, P (nb), were calculated. Two particles were identified as nearest neighbours if

r < 1.1σ. Results for P (ϕ) are shown in Figure 2.2 for both sets. A pronounced peak at

60° suggests that the particles primarily form triangular structures. The experimental

curves are well reproduced by the simulations. Figure 2.3 presents the data of P (nb)

for both sets. The experimental curves in each set are similar, while the mean value

⟨nb⟩ is slightly larger in set 2. These general trends are also found in the simulations.

Hence, electrostatics strongly influences the structural arrangement of the gels, which

is supported by the second virial coefficient B2: for set 1, B2 > 0, whereas for set 2, B2

< 0, indicating net repulsions and attractions, respectively.

φ φ

φ φ

Figure 2.2 Bond angle distributions for gel samples with cp ≥ 0.8c∗ of set 1 (a) and 2
(b). Experimental data (symbols) can be reproduced by simulations (lines) employing
the effective interaction potential retrieved from fits to g(r). Curves are vertically
shifted for clarity. Figure and caption adapted from [6] by permission of The Royal
Society of Chemistry.

Figure 2.3 Distribution of the number of nearest-neighbours, P (nb), for samples of (a)
set 1 and (b) set 2 as obtained by experiments (symbols) and MC simulations (solid
lines). Figure and caption reproduced from [6] by permission of The Royal Society of
Chemistry.
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In conclusion, an effective interaction potential consisting of a combination of a

square-well and a Yukawa potential can be used to reproduce structural characteristics

of colloidal gels at intermediate volume fraction. However, due to the non-equilibrium,

the effective potential depends on the sample composition and the preparation history.

It can be determined by fitting the radial distribution functions of the gels.

2.1.2 Directed percolation in colloidal gels

We study the link between structure and dynamics in colloidal gels with lower vol-

ume fraction, exploiting effective interaction potentials. This sub-section summarizes

Publication 2 (see section 3.2 and [9] for further details).

The experimental system is similar to that of the previous section: A colloid-

polymer mixture of spherical PMMA colloids and polystyrene particles in a density-

matched solvent mixture of cis-decalin and CHB. The effective size ratio between poly-

mers and colloids was determined to be q∗ ≈ 0.3 according to GFVT. TBAC was

added to screen the charges. The colloid volume fraction was Φ ≈ 0.2, while the

polymer concentrations and salt concentrations were varied, tuning the strength of the

attraction and the range of the repulsion, respectively. Experimental data obtained

by confocal fluorescent microscopy was compared to Brownian Dynamics simulations

of particles interacting via an attractive AOV plus repulsive Yukawa potential. The

simulation parameters were chosen such that the average numbers of bonds calculated

in the simulations match those of the experiments.

C1 B1 B2 B3

Figure 2.4 Two-dimensional confocal microscopy images of the four different states
encountered: a fluid state (C1), a cluster fluid (B1), a continuous percolated gel (B2)
and a directed percolated network (B3). Figure and caption adapted from [9] with
permission of Springer Nature.

In experiments and simulations, four different structural states were observed: a

fluid (sample C1), a cluster-fluid state (B1), a continuous percolated network (B2) and

a directed percolated network (B3). In Figure 2.4, two-dimensional confocal microscopy
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2.1 Colloidal gels – intrinsic non-equilibrium

images of the four different states are shown. The samples are characterized, e.g., by

the average number of bonds per particle, ⟨nb⟩, and the bond number distribution. The

dependence of ⟨nb⟩ on the strength of the AOV potential, VD,min, and the normalized

inverse Debye length, κσ, is presented in Figure 2.5. The coloured background and the

filled dots indicate results of simulations and experiments, respectively. By increasing

the strength of the AOV potential (path A) or by decreasing the range of the Yukawa

potential (path B), ⟨nb⟩ increases continuously. A very sharp increase is found along

path A at a total potential strength of Vmin ≈ −3.0kBT .
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Figure 2.5 Average number of bonded particles, ⟨nb⟩, as a function of the potential
depth VD,min of the attractive AOV potential and the inverse screening length κ nor-
malized by the inverse mean particle diameter σ−1. The coloured background gives
the values for the simulations, while the filled coloured circles represent the experi-
ments. Paths A and B (white lines) with increasing polymer and salt concentration,
respectively, are discussed in more detail. The lower and upper dark solid lines indicate
the continuous and directed percolation transitions, respectively. Figure and caption
adapted from [9] with permission of Springer Nature.

The bond angle distribution P (ϕ) is examined for samples along paths A and B (see

Figure 2.6). The first peak of P (ϕ) at ϕ ≈ π/3, which indicates triangular arrange-

ments, grows continuously. At Vmin ≈ −3.0kBT , a second peak starts to develop at

ϕ ≈ π/6. For Vmin < −3.0kBT , a pronounced peak at ϕ ≈ π is observed in experiments

and simulations. This suggests a certain degree of directionality in the dense network

filaments with large ⟨nb⟩. Thus, the system transverses from a continuous percolated

network to a directed percolated network, consisting of connected directed clusters. In

the former, pathways along the filaments might involve backward steps. In the latter,

24



Chapter 2 – Overview

the system volume can be spanned by randomly directed pathways along gel filaments

without any backward steps. Such pathways for a continuous and a directed percolated

cluster are sketched in Figure 2.7a and complemented by typical microscopy images.
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Figure 2.6 Bond angle distribution P (ϕ) for the simulation data along path A with
increasing depth Vmin of the total interaction potential. Inset: P (ϕ) along path B with
decreasing Debye length. Circles and lines denote experimental and simulation data,
respectively. The light blue line arises from simulations with parameters gained by an
unconstrained fit. Above the plot, typical particle configurations for the certain bond
angles are sketched. Figure and caption adapted from [9] with permission of Springer
Nature.

For quantification, the probability P (∆x) for a particle to be part of a directed

path of projected length l ≥ ∆x is calculated for simulations along path A (see lines

in Figure 2.7b). For the experiments along path B, P (∆x) (symbols in Figure 2.7 b))

is included, supporting the simulation results. It is shown that, for potential strengths

Vmin . −3.0kBT , the probability P (∆x) does not decay, but forms a plateau. In

contrast, the probability to be part of a continuous percolated path shows a plateau

already at Vmin . −2.2kBT (see inset in Figure 2.7b). The values of Vmin at the

continuous and directed percolation transitions are defined to be the values at which

P (lbox) = 0.2 with the size of the simulation box lbox. The potential depths VP =

−2.3kBT and VP = −3.0kBT for transitions to continuous and directed percolation,

respectively, agree with the findings on the structural arrangement discussed above.

Furthermore, for Vmin = −3.1kBT , the slope of the decay of P (∆x) is close to the

critical exponent for directed percolation (see Figure 2.7) [10].
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Figure 2.7 a) Two-dimensional sketch as well as images from experiments of (DP) a
directed and (P) an undirected percolated cluster of length ∆x. The path along a
directed percolated cluster must not include backward steps in an arbitrarily chosen
direction. b) Probability P (∆x) for a particle to reside in a (main figure) directed and
(inset) continuous cluster with a length larger than the minimum length ∆x. Solid lines
represent simulation data along path A and symbols experimental data along path B.
Colours of the lines are defined in the legend of Figure 2.6. The grey solid line indicates
the DP critical point, where the percolation probability is expected to be proportional
to ∆x−γ with γ = 0.451 [10]. Figure and caption adapted from [9] with permission of
Springer Nature.

The directed percolation transition is connected to a slowing-down of the particle

dynamics, as observed in the self-intermediate scattering functions. A dynamical arrest

might occur deep in the region of directed percolation. Beyond the directed percolation

transition, the system showed ageing effects in simulations, as shown by an increase

of ⟨nb⟩ with waiting time after the initial quench. Furthermore, an effect similar to

synaeresis was observed in directed percolation samples. Synaeresis appears in different

systems, like gelatin [11] and protein gels [12], and indicates the contraction of a gel.

In directed percolation samples, the detachment of the gel network from the bottom

plate was observed in experiments and simulations. This finding and the connection to

the directed percolation transition might be useful for industry, e.g., in food production

and processing, and for measurement techniques, e.g., to explain wall slip in rheological

measurements [9].

2.1.3 Dynamical arrest in binary mixtures

In the previous sub-section, it was shown that a connection between directed perco-

lation and a slowing-down of the dynamics was found in colloid-polymer mixtures at

intermediate Φ. Even in binary colloidal mixtures with a large size asymmetry, gelation
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can be one mechanism for dynamical arrest [13]. This sub-section contains a summary

of Publication 3 (see section 3.3 and [13] for further details).

The colloid-colloid mixtures consist of two differently sized sterically stabilized

PMMA spheres (radii RL ≈ 720 ± 30 nm and RS ≈ 65 ± 10 nm) with a size ratio

q ≈ 0.09. They are dispersed in a density-matched solvent mixture of cis-decalin and

CHB and the added salt (TBAC) yields a a hard-sphere like particle interaction. The

samples are prepared at a total volume fraction Φtotal ≈ 0.60, while the fraction of the

small particles, xs = Φs/Φtotal, is varied. Dynamics and structure of the large colloids

is observed with confocal fluorescence microscopy.
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Figure 2.8 Mean squared displacements of the large spheres, ∆r2/(2RL)2, for samples
with total volume fraction Φ ≈ 0.60, size ratio q = 0.09 and different compositions
xs = 0.0 (•), 0.01 (�), 0.1 (N), 0.3 (H), 0.5 (J), 0.7 (∗), 0.9 (�). Inset: Localization
length L/(2RL) as a function of xs. Reprinted figure and caption with permission from
[13]. Copyright (2015) by the American Physical Society.

The MSD of the large colloids in a series of samples with increasing xs is plotted in

Figure 2.8. The degree of diffusivity for the different xs follows a bimodal behaviour.

For xs < 0.1, an extended plateau is formed in the MSD, while for xs = 0.1 the dynamics

becomes diffusive. At xs = 0.3, again sub-diffusive behaviour occurs in the time window

of the measurements. Further increasing the fraction of small particles, again increases

the degree of diffusivity until dynamical arrest is found at xs = 0.9. This bimodal

behaviour is also reflected in the localization length, L/2RL =
√

∆r2(tmin)/2RL (see

inset of Figure 2.8).
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Figure 2.9 State diagram of samples with different compositions xs and size ratios; δ =
0.09 (present work), δ = 0.106 [14], δ = 0.2 and 0.38 [15–17]. Different arrested states
are identified in the present work: repulsive glass (•), attractive glass (H), asymmetric
glass (J) and gel (�). Open symbols indicate fluid states. In [14] fluids (△), fluid-
crystal coexistence (♦), and amorphous solids (�) were distinguished. Reprinted figure
and caption with permission from [13]. Copyright (2015) by the American Physical
Society.

The analysis of the distributions of displacements as well as the structural arrange-

ment of the large colloids helped to identify the underlying mechanisms which lead to

the dynamical arrest. The pair distribution function g(r), the bond distribution, the

cluster size distribution and the remoteness provide revealing information. The arrested

states can be identified as a repulsive glass (xs = 0.0), an attractive glass (xs = 0.01), a

gel (xs = 0.3) and an asymmetric glass (xs = 0.9). Especially in the attractive glass and

the gel, the depletion interaction created by the small colloids is important. Yet, the

mechanism of gel formation in binary colloidal mixtures is still debated. The results of

this work are summarized in a state diagram and compared to other work at different

size ratios (see Figure 2.9). All results agree and yield a more complete picture of the

arrested states in colloidal binary mixtures at large size asymmetry.

2.2 Colloidal mixtures in a potential – extrinsic non-equilibrium

This section deals with concentrated binary mixtures in a sinusoidal potential, pro-

viding an extrinsic non-equilibrium. In the first sub-section, the experimental set-ups

for the optical generation of the external potentials are described. In particular, an

improved set-up with a Kösters prism was developed (cf. section 2.2.1). Then, the spa-
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tial arrangement of concentrated binary mixtures in a sinusoidal potential is analysed

for different sample compositions and potential amplitudes (cf. section 2.2.2). Finally,

results on the dynamics of concentrated binary mixtures in a sinusoidal potential are

presented (cf. section 2.2.3).

2.2.1 Set-ups to create the external potential

A sinusoidal light field can be realized by an extended laser light field created by two

interfering laser beams. Several designs for such an instrument have been reported (see

[18] for an overview). In this sub-section, two experimental realisations are described.

The first has been available for the major part of experiments, but has several disadvan-

tages. Therefore, another improved set-up was designed and built up. Since it involves

a Kösters prism as beam splitter, it is compact and thus more stable (see Publication

4 [19] and section 3.4 for further details).

The optical instrument used for the experiments in sub-sections 2.2.2 and 2.2.3 is

described in detail in [20]. A laser beam (Coherent Verdi V5, wavelength λ= 532 nm)

was directed onto a 50:50 beamsplitter providing two beams separated by an angle of

90°. Each of these beams was guided by a separate mirror onto a pair of movable

mirrors, such that the two beams became parallel. They were focused by a lens and

coupled into a self-built microscope by a dichroic mirror. They interfered in the sample

plane under a crossing angle θ and formed a fringe pattern, i.e., a sinusoidal light field.

By translating the movable pair of mirrors, the crossing angle θ and hence the fringe

spacing d = λ/ (2 sin (θ/2)) could be changed. The colloidal sample could be observed

by the microscope which included a high numerical aperture microscope objective (Plan

Apo VC 100, Nikon, numerical aperture 1.4) and a CMOS camera. As the two laser

beams were separately guided by individual mirrors between splitting and recombining

and the beam paths were rather long, the set-up was susceptible to changes in the

ambient conditions and a high effort for alignment was needed.

Stability and operability could be improved by a design incorporating a Kösters

prism as beam splitter and a commercial bright field microscope for observation. A

Kösters prism is formed by two identical prisms which are glued together. As there

is a semi-reflective silver coating applied between the prisms, the Kösters prism can

be used as a beamsplitter. In several optical instruments, Kösters prisms are applied,

e.g., in different types of interferometers [21–24] and particle velocimeters [25]. In our
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optical set-up, the Kösters prism leads to a reduction of the optical components which

are necessary to split and recombine the laser beam, which improves stability, while

the fringe spacing of the interference pattern is easily tunable. The optical set-up is

sketched in Figure 2.10. The laser beam of a Verdi V-5 (Coherent, with wavelength

λ = 532 nm and beam diameter 2.25 mm) is guided by 4 mirrors (M1-M4) to a 3× beam

expander (BE). The expanded beam is directed by two further mirrors (M5, M6) to a

Kösters prism (KP), which splits the beam in two parallel beams. A neutral density

filter (ND) is introduced in the brighter beam to compensate for intensity differences.

A lens (L1) recombines the beams with crossing angle θ and a dichroic mirror (D1)

couples the beams in the light path of the microscope (Nikon Ti-E). In the sample

plane, the laser beams interfere creating a sinusoidal light field. To protect the camera,

the main part of the laser light is removed from the optical path behind the objective

(Nikon, ELWD 40×, N.A. 0.60) by a dichroic mirror (D2) and a notch filter (NF).
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BD

Lamp

Tube lens
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M2
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M4 M5
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ϴ

Figure 2.10 Schematic representation of the apparatus. Four mirrors (M1-M4) direct
the beam to a beam expander (BE). Two further mirrors (M5, M6) guide the expanded
beam to the Kösters prism (KP). The KP splits the beam into two parallel beams whose
distance can be adjusted by translating the KP. A lens (L1) focuses the beams and, after
being introduced into the light path of a microscope (grey dashed box) by a dichroic
mirror (D1), combines them in the sample plane under an angle θ thus creating a fringe
pattern. The beams are removed from the light path of the microscope by a dichroic
mirror (D2) and collected by a beam dump (BD). A notch filter (NF) attenuates the
remaining laser light. Reproduced from [19], with the permission of AIP Publishing.

By translating the Kösters prism along the propagation direction of the two parallel

beams, the distance between the two beams and thus θ is varied. This is a simple

and reliable method to tune the fringe spacing. This optical set-up creates a large
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interference pattern that fills the whole field of view of the microscope corresponding

to about 212.1 × 169.3 µm2 for the magnification applied. The pattern is very stable.

In particular, the fringe spacing ⟨d⟩ = (2.666 ± 0.001) µm and the amplitude ⟨I0⟩ =

(89.1±0.9) grey levels were found to have very small standard deviations over a period

of 1.5 h. The high stability is due to the fact that the two laser beams are guided by

the same components and have short path lengths. Thus, they are less sensitive to

instabilities and changes of the ambient conditions. The instrument was successfully

tested for the manipulation of colloidal particles with a sinusoidal potential [19].

2.2.2 Spatial arrangement of the particles

We studied the effect of a sinusoidal potential on the spatial arrangement of dense

binary colloidal mixtures. The external potential induces order in the binary mixtures.

Depending on the potential amplitude and the total area fraction, structural effects

like homogenisation and partial demixing were observed [26]. They are caused by a

competition between particle-particle and particle-potential interactions. This sub-

section summarizes the results of Publication 5 (see section 3.5 and [26] for further

details).

The binary mixtures consist of Polystyrene particles with radii Rs = 1.05 µm and

Rl = 2.5 µm dispersed in deionised water. The resulting size ratio Rs/Rl = 0.42 and

the chosen stoichiometric ratio 1.1 ≤ ξ ≤ 1.4 are close to the values for which a compact

packing in a square lattice is predicted in the absence of an external potential [27]. The

samples are exposed to a sinusoidal potential with an incommensurate fringe spacing

d ≈ 4.1 µm and different potential amplitudes. Due to their different sizes, the two

particle species experience different potential amplitudes (see section 1.5).

We analysed measurements with increasing potential amplitude or total area frac-

tion, keeping the other parameter approximately constant. Figure 2.11 shows snapshots

of series C1, which correspond to the packing fraction η ≈ 0.73 and increasing potential

amplitudes 1.6 kBT ≤ V0,s ≤ 8.0 kBT and 3.5 kBT ≤ V0,l ≤ 18 kBT for the small and

large particles, respectively. As both particle species prefer to occupy the potential

minima, order perpendicular to the minima is induced. Along the potential minima

instead, the samples remain fluid-like. Such a behaviour is typical for modulated liq-

uids [28]. By increasing the potential amplitude, especially the large particles are more

strongly confined to the potential minima, which reduces the available space in the
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minima for the small particles. Thus, more of them are found closer to the potential

maxima. Furthermore, a partial demixing of the particle species can be found in the

snapshots at increasing potential amplitude.

Figure 2.11 Images of samples with increasing amplitude of the external potential,
V0 (left to right), and constant area fraction η ≈ 0.73 (series C1). The minima of
the periodic potential are aligned horizontally. The small and large bright spots are
the centres of the small and large particles, respectively. The images were adjusted in
brightness and contrast for better visibility. Figure and caption taken from [26].

To characterize the spatial arrangement, we compute the pair distribution function

parallel to the minima, ĝ(r), separately for each particle species. ĝ(r) accounts only

for those surrounding particles found in a stripe parallel to the minima and of width

d, which is centred around the particle under consideration. Results of ĝ(r) for series

C1 are shown in Figure 2.12. For the large particles, the first peak representing two

neighbouring large particles, strongly increases with higher V0, while the second peak

only slightly increases, but shifts to smaller distances. Instead, the third peak at

r ≈ 2Rs + 2Rl slightly decreases. A similar trend can be found for the small particles;

the first and second peak at r ≈ 2Rs and r ≈ 3Rs rise, and the second peak is shifted

to smaller r. This implies that particles of the same species prefer to be closer together

and are prone to segregate.

The occupation probability P (y) reveals information on the spatial arrangement

perpendicular to the potential minima. It represents the probability of finding a par-

ticle at a certain distance away from the potential minima and, again, is calculated

for each particle species separately (see Figure 2.13). Both particle species preferen-

tially occupy the potential minima and become slightly more confined with increasing

potential amplitude. Compared to the large particles, the small ones are more likely

found close to the potential maximum, especially around y ≈ 0.3 d. This distance is
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Figure 2.12 Pair distribution function parallel to the minima for (a) large, ĝll(r), and
(b) small particles, ĝss(r). The amplitude of the potential, V0, is varied (as indicated)
while the area fraction is kept constant, η ≈ 0.73 (series C1). Figure and caption taken
from [26].
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Figure 2.13 Occupation probability perpendicular to the minima, P (y). The area
fraction is kept constant at η ≈ 0.73 (series C1) and the amplitude of the potential V0
is varied (as indicated). The data referring to the large and small particles are indicated
by closed and open symbols, respectively. Figure and caption adapted from [26].
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consistent with the one found for doublets of small particles centred around the poten-

tial minima. The closer packing of the large particles and the formation of doublets

of small particles were confirmed by the inspection of the angular bond distribution

relative to the potential minima. Doublets of small particles are favoured due to the

small size of the small particles compared to the fringe spacing.

If V0 is kept constant and η is increased, another effect was observed. For low η, all

particles fit into potential minima and rows of several particles of one species are formed.

If the total area fraction is increased, the increased number of large particles reduces

the space in the potential minima available for the small ones. Thus, the small particles

tend to form doublets and triplets and are located closer to the potential maxima. This

leads to a homogenization of the spatial arrangement. Moreover, we observed regions

of kinetically arrested configurations, which are attributed to the restricted dynamics

across the potential barriers. Furthermore, some of the observed configurations might

be kinetically arrested, which is attributed to restricted dynamics across the potential

barriers.

2.2.3 Dynamics of the particles

In addition to the spatial arrangement, we also studied the dynamics of binary mixtures

in a sinusoidal potential in Publication 6 (see section 3.6 and [29] for details).

A binary colloidal mixture with a number ratio of about 1 of small (Rs = 1.05 µm)

and large (Rl = 2.5 µm) particles and medium total area fraction η ≈ 0.57 was exposed

to periodic potentials with different amplitudes. The potential amplitudes V0,l in the

experiments ranged from 0 kBT to 2 kBT and the fringe spacing was held constant

at d = 5.2 µm. The MSD of the large particles was extracted and compared to the

dynamics of dilute monodisperse suspensions of large particles experiencing similar

potentials. The results are normalized by the corresponding particle radius R and

the Brownian time τB and presented in Figure 2.14. In x-direction, i.e., along the

potential minima, normal diffusion was observed for all configurations (see inset of

Figure 2.14). In y-direction, i.e., across the potential maxima, the shape of the MSD

changes with potential amplitude and area fraction (Figure 2.14). For the particles in

the dilute suspension (open symbols), a sub-diffusive regime at intermediate times is

observed which becomes more pronounced with increasing potential amplitude. The

MSD of the large particles in the binary mixture with η ≈ 0.57, which are exposed to
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τ

Figure 2.14 Particle dynamics, namely MSD across the barriers, i.e. in y direction
(main figure), and along the valleys, i.e. in x direction (inset), of an individual dilute
large particle (Rl = 2.5 µm, open symbols) and concentrated large particles in a binary
mixture (Rl = 2.5 µm, Rs = 1.05 µm, total surface fraction η ≈ 0.57 with an about
equal number of large and small spheres, filled symbols), both in sinusoidally-varying
periodic potentials with wavelength d = 5.2 µm and different amplitudes (as indicated).
Lines represent Brownian Dynamics simulations of individual particles in a periodic
potential with V0,l/kBT = 0.0, 1.5, 2.0, 2.5. Figure and caption adapted from [29] with
kind permission of The European Physical Journal (EPJ).
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a sinusoidal potential with potential amplitude V ′
0,l, is similar to the MSD of the dilute

large particles experiencing a potential amplitude V0,l ≈ V ′
0,l + 0.5 kBT . The curves

are consistent with Brownian Dynamics simulations of a single particle in a sinusoidal

potential.
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Figure 2.15 Normalized mean-squared displacement along the potential minima of
small particles (Rs = 1.05 µm) in a binary mixture with total area fraction η ≈ 0.73
and number ratio 1.1 ≤ ξ ≤ 1.4. The mixture was exposed to sinusoidal potentials
with fringe spacing d ≈ 4.1µm and different potential amplitudes as indicated in the
legend (series C1). The black line indicates the logarithmic slope of 0.5 characteristic
for single line diffusion.

Instead, in a binary mixture with higher area fraction, ξ ≈ 0.73, as the one in series

C1 described in section 2.2.2, a slowing down of the dynamics is observed for both large

and small particles even in the direction along the potential minima. Due to the higher

area fraction and the incommensurable fringe spacing, the particles interact with each

other more strongly. The normalized MSD is plotted in Figure 2.15. For low potential

amplitudes and at intermediate times, the MSD shows a logarithmic slope close to

0.5 as expected for single file diffusion (black line in Figure 2.15). These experiments

represent the first step to a systematic investigation of the interplay of particle-particle

and particle-potential interactions on the dynamics in binary colloidal mixtures.

2.3 Outlook: Colloidal gels in potentials

This thesis focuses on non-equilibrium states: intrinsic non-equilibrium arising from

particle-particle interactions and extrinsic non-equilibrium due to an external potential.

36



Chapter 2 – Overview

While the former leads to a disorder-disorder transition from a fluid to a gel, the

latter induces order in the colloidal system at least along one dimension and thus can

cause a disorder-order transition. Hence, the question emerges whether extrinsic non-

equilibrium can lead to disorder-order transitions in intrinsic non-equilibrium states,

e.g. a crystallisation of a gel by a sinusoidal potential. So far, ordering of gel structures

could be achieved by applying oscillatory shear [8]. Simulations and theory predict

another interesting phase, the so-called zebra-phase, for colloid-polymer mixtures with

rather long-ranged attractions in sinusoidal potentials [30].

First qualitative tests reveal that the structure of a gel can be influenced by an

external potential. One of the gel samples studied in Publication 2 [9] was exposed to

a sinusoidal potential created by the set-up which exploits a Kösters prism (see section

2.2.1, [19]). In the beginning, a heterogeneous structure was observed (see Figure

2.16 left). After the light field was switched on, restructuring starts. Due to effects

of fluorescence and scattering, the intensity of the laser had to be increased slowly in

order to avoid a damage of the camera. The maximum laser power of the test, 800 mW,

was achieved after about 30 minutes. It was observed that the particles in upper layers

are pushed downwards, because of the radiation pressure, and out of the field of view.

These dynamics resemble the the formation of two rollers in the upper and lower part

of the field of view. It took about 6 hours until the bottom layer was clearly visible and

started to rearrange into lines as shown in Figure 2.16, right. After switching off the

external potential, the structure typically was frozen and no significant rearrangement

was observed.

To understand the underlying mechanism in detail, quantitative experiments are

needed. There are several challenges which one has to cope with. One important

parameter is the fringe spacing d which has to be adjusted in a commensurable way.

Furthermore, the strength of the potential has to be chosen such that it is strong enough

to break or rearrange the gel, but so weak that it does not effect the sample chemically

or thermally. This might lead to long run times of measurements. A third challenge

is to find the balance between the degree of density matching for a stable gel and the

degree of refractive index matching which affects the strength of the external potential.

This thesis contributed to the understanding of the samples and tools for such kind of

measurements and provides a basis for further investigations.
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t = 0 h t ≈ 6 h

Figure 2.16 A colloidal gel consisting of PMMA colloids (R ≈ 860 nm) with Φ ≈ 0.2,
polystyrene (Rg ≈ 65 nm and concentration c ≈ 1c∗) and TBAC in a mixture of cis-
decalin and CHB was imaged with a bright-field microscope and exposed to a sinusoidal
potential created with a laser power of up to 800 mW. In the beginning of the experiment
(left), a heterogeneous structure was observed. After approximately 6 hours (right),
the gel in the field of view is mainly reduced to few layers at the bottom which show a
spatial arrangement similar to a fringe pattern.
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Structure of colloidal gels at intermediate
concentrations: the role of competing interactions

Ronja F. Capellmann,a Néstor E. Valadez-Pérez,b Benedikt Simon,a

Stefan U. Egelhaaf,a Marco Laurati*ab and Ramón Castañeda-Priego*b

Colloidal gels formed by colloid–polymer mixtures with an intermediate volume fraction (fc E 0.4) are

investigated by confocal microscopy. In addition, we have performed Monte Carlo simulations based on

a simple effective pair potential that includes a short-range attractive contribution representing depletion

interactions, and a longer-range repulsive contribution describing the electrostatic interactions due to

the presence of residual charges. Despite neglecting non-equilibrium effects, experiments and simula-

tions yield similar gel structures, characterised by, e.g., the pair, angular and bond distribution functions.

We find that the structure hardly depends on the strength of the attraction if the electrostatic contribu-

tion is fixed, but changes significantly if the electrostatic screening is changed. This delicate balance

between attractions and repulsions, which we quantify by the second virial coefficient, also determines the

location of the gelation boundary.

1 Introduction

Competing short-range attractive and long-range repulsive
interactions between macromolecules are encountered in a vast
number of systems in biology, medicine and materials science,
namely protein solutions,1–3 therapeutic monoclonal anti-
bodies,4–7 colloidal gels8,9 and nanoparticle suspensions,10

among others.
Mixtures of spherical colloids and non-adsorbing polymers

dispersed in a solvent are often used as experimental models to
investigate the behaviour of more complex systems with compet-
ing interactions. This is due to the fact that each contribution of
the interaction potential can be tuned through the polymer
concentration and size,11 as well as the particle charge and salt
concentration,12 i.e. the degree of electrostatic screening. The
short-range attractions arise due to entropy effects mediated by
a second component,13,14 i.e. the polymers, whereas long-range
repulsions are caused by residual charges on the particle surface.
In the presence of short-range attractions, fluid phases, fluid-
crystal coexistence and crystalline phases can be observed in
equilibrium,15,16 while gels and glassy structures are found under
non-equilibrium conditions.8,11,16,17 In contrast, by reducing the
degree of screening, additional states are observed, like fluids of
clusters, gels and Wigner glasses.18,19

Gels are amorphous solids in which mechanical stability is
achieved through the self-assembly of a load-bearing network
structure. Since gels are non-equilibrium states, their properties
depend on the preparation history. Different paths to the non-
equilibrium gel states have been discussed. In the limit of purely
attractive interactions, for example, arrested phase separation,20

glass-like arrest,21,22 rigidity percolation23 and the formation
of locally favoured structures24 have been proposed. In the
presence of electrostatic interactions, cluster aggregation into
a percolating network19,25–27 has been suggested, with recent
results indicating the importance of directed rather than con-
tinuous percolation.28

A common feature of the gel state is structural heterogeneity
with a characteristic length scale, which depends on the colloid
volume fraction fc, the parameters controlling the interaction
potential and, due to non-equilibrium conditions, the prepara-
tion procedure. Structures of cluster fluids and colloidal gels
have been reported over a broad range of fc values and potential
parameters, both in the moderately screened19,25–27,29–31 and
strongly screened8,20,22,32–34 cases. For small fc, the structures
observed in confocal microscopy experiments20,28,35,36 were satis-
factorily modelled using either an Asakura–Oosawa (AO)
potential13,14 in the strongly screened case20 or a combination
of the AO and Yukawa potentials in the moderately screened
case.28,35,36 Nevertheless, recent experimental results show that
effects of anisotropic charge screening might lead to deviations
from the behaviour predicted on the basis of this combination
of potentials.37 However, at intermediate and large fc 4 0.2, a
direct comparison between simulations or theory and experiments
has only been reported by Shah and coworkers,38 where no
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satisfactory agreement between PRISM theory calculations and
experimental structure factors could be obtained in the gel state.
Hence, gelation in colloids with competing interactions has been
studied extensively in the last few years,28,35,36 but at intermediate
and large concentrations several aspects can complicate a descrip-
tion of the structural properties of gel states in terms of the
underlying interparticle potential that still are not fully under-
stood. For instance, the possible importance of three-body inter-
actions, the effects of crowding, as well as concentration effects on
the polymer size have to be taken into account. Furthermore, the
influence of the route leading to the final (non-equilibrium) gel
structure might be important and hence, at the same sample
composition, different gel structures might occur. In addition,
typical experimental colloidal systems are polydisperse. Under
these non-equilibrium conditions, only a description based on
an effective interparticle interaction potential is possible and,
furthermore, the potential is hard to accurately determine39

through, for example, reverse Monte Carlo and integral equation
techniques. In particular, these techniques have not been estab-
lished yet for concentrated polydisperse colloidal systems.

In this contribution, we address the relationship between the
effective interparticle interactions and the structure of the gel. As far
as we are aware, here we provide for the first time a quantitative
description of the effective interaction between particles that deter-
mines the local properties of the dispersion under non-equilibrium
conditions. In particular, a combination of a short-range attraction
and longer-range repulsion has been used to describe the effective
interaction potential in intermediate volume fraction colloidal fluids
and gels with fc B 0.40. The parameters of the potential have been
obtained by fitting only the simulated radial distribution function,
g(r), to the measured g(r). Based on the determined potential, we
have calculated further quantities describing the structure, such as
the angular distribution function P(y) and the nearest-neighbour
distribution function P(nb), as well as the state diagram. As men-
tioned above, despite the difficulties in determining an effective
interaction potential under non-equilibrium conditions, the struc-
tures of the colloidal fluids and gels appear to be accurately
described based on the competing short-range attractive and
longer-range repulsive interaction potential. We furthermore
demonstrate that the short-range depletion attraction induced by
the polymers can be reproduced by a short-range square-well
potential, following the extended law of corresponding states.40

Moreover, it is crucial to consider the electrostatic repulsion to
properly reproduce the structure and the morphology of the gel
structure although the investigated experimental systems were
located in the regime between moderate and strong screening.
The delicate balance between the attractive and repulsive contribu-
tions in the effective pair potential has a significant effect on the
location of the gelation boundary.

2 Materials and methods
2.1 Experimental details

We have investigated mixtures of polymethylmethacrylate
(PMMA) hard-sphere like particles fluorescently labelled with

7-nitrobenzo-2-oxa-1,3-diazole-methylmethacrylate (NBD-MMA)
and linear polystyrene (PS, from Polymer Laboratories). The
average diameter of the PMMA particles, s = 1720 nm, and their
polydispersity, which is about 7%, were determined by static and
dynamic light scattering using very dilute samples. The radius of
gyration of the PS (molecular weight Mw = 3 � 106 g mol�1 with
Mw/Mn = 1.17) in the solvent mixture used was estimated to be
rg = 65.4 nm.41 In a dilute solution, this implies a polymer–
colloid size ratio x = 2rg/s = 0.076. The effective polymer–colloid
size ratio x* (Table 1) was calculated according to the Generalised
Free Volume Theory (GFVT),42,43 taking into account the concen-
tration dependence of the radius of gyration and the mesh size of
the polymer in the semidilute regime.

The particles and polymers were dispersed in a solvent
mixture of cis-decalin and cycloheptylbromide, which closely
matched the refractive index and the density of the colloidal
particles. The density difference Dr = rc � rs between the
colloidal particles and the solvent mixture was estimated to be
Dr/rc t 10�3, as no sedimentation was observed after centrifuging
the sample for 24 h with 3500 rpm corresponding to an accelera-
tion of about 1800g with g being the acceleration due to gravity.
From this density difference, the gravitational Peclet number
Pe � vss/(2D), with vs being the sedimentation velocity and D the
free diffusion coefficient, was estimated to be Pe t 7 � 10�3 at
23 1C. In this solvent mixture, colloidal particles acquire a small
charge, which is partially screened by the addition of tetra-
butylammonium chloride (TBAC).12,44 TBAC was added to the
solvent mixture before preparing colloid and polymer stock
solutions. Then, the solvent mixture was put on a flask shaker
for at least 3 days to dissolve the salt.

The colloid stock solution was prepared by diluting a spun-
down sediment, for which we initially assumed a volume
fraction fc = 0.64. Subsequently, the actual volume fraction
of the samples was determined by confocal microscopy using

Table 1 Colloid–polymer samples analysed in this work. fexp
c is the

colloid volume fraction determined from the particle coordinates (via
confocal microscopy) using the average diameter, cs and cp the concen-
trations of salt and polymer, respectively, cfree

p the polymer concentration
in the volume not occupied by the colloids and x* the resulting effective
polymer–colloid size ratio, both estimated by Generalised Free Volume
Theory.42,43 Note that the two sets were prepared independently and
might thus reflect different preparation paths

Sample fexp
c cs [mM] cp [c*] cfree

p [c*] x*

Set A
1 0.39 4.9 0.0 0.0 —
2 0.41 4.5 0.8 1.5 0.04
3 0.39 4.5 1.0 1.8 0.03
4 0.39 4.5 1.0 1.8 0.03
5 0.40 4.5 2.0 3.4 0.02

Set B
6 0.44 4.8 0.0 0.0 —
7 0.40 4.8 0.0 0.0 —
8 0.43 5.3 0.1 0.2 0.08
9 0.38 5.3 0.1 0.2 0.08
10 0.43 5.2 1.5 2.8 0.03
11 0.44 5.3 1.7 3.3 0.02
12 0.42 5.2 1.9 3.4 0.02
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the Voronoi construction to estimate the average volume frac-
tion fc. Polymer stock solutions were prepared by adding the
solvent mixture to a dry polymer and the polymer concentration
cp (mass/volume) of the solution was calculated from the
weighed masses of the solvent and the polymer, and their
corresponding densities. The polymer overlap concentration
cp* has been estimated by cp* = 3Mw/4pNArg

3 with NA being
Avogadro’s number. Colloid–polymer mixtures were prepared
by mixing appropriate amounts of colloid stock with fc = 0.54
and polymer stock solutions. Subsequently, samples were
vigorously mixed using a vortex shaker and then homogenised
in a flask shaker. The compositions of the samples are reported
in Table 1. Note that the two sets A and B are prepared
independently and hence the composition and the age of the
solvent mixtures and in particular the particle charges and
effective dissolved salt (TBAC) concentrations might actually be
different as well as the details of the preparation path.

Microscopy measurements were performed within an hour
after mixing to avoid effects due to ageing. Samples of set A
were observed using a VT-Eye confocal unit (Visitech Interna-
tional) mounted on a Nikon Ti-U inverted microscope with a
Nikon Plan Apo VC 100� (NA = 1.40) oil immersion objective.
Samples of set B were imaged using a Nikon A1R-MP confocal
unit on an inverted Nikon Ti-E microscope with a Nikon Plan
Apo VC 60� (NA = 1.40) oil immersion objective. Between 25 and
30 stacks of 151 slices of 512 � 512 pixels each were recorded
in z-steps of 200 nm corresponding to 54 � 54 � 30 mm3 in
the bulk of the sample. The stacks were acquired in less than
20 s per stack. Typically, the observation volume contained about
14 000 particles. Particle coordinates were obtained from images
using standard routines,45 including an algorithm to refine the
particle coordinates.46 Only particles whose centres were at least
4s from the edges of the observation volume were considered in
order to avoid boundary effects.

2.2 Effective interaction potentials and computer simulations

Attractive depletion interactions induced by non-adsorbing
polymers were modelled using a short-range square-well (SW)
potential.47,48 This is simpler than the well-known Asakura–
Oosawa (AO) potential.13,14 Based on the extended law of
corresponding states proposed by Noro and Frenkel,40 we have
shown that the phase diagrams obtained with the AO and SW
potentials are similar48 and can also be used to describe the
phase behaviour of more complex systems, such as proteins.49,50

The SW potential has the following form47,48

uSWij ðrÞ ¼

1 ro sij

�e sij � r � lsij

0 r4 lsij

8>>><
>>>:

; (1)

where r is the centre–centre distance between colloids of diameters
si and sj, with sij = (si + sj)/2, e is the well depth given in units of
the thermal energy kBT and l characterises the attraction range.
The latter can be related to the effective polymer–colloid size ratio
x* of the experimental system, l E sij/s + x* (Table 1).

The colloidal particles carried a net charge, which was
screened by adding salt.51–53 When the degrees of freedom of
the small counterions are integrated out, the pure Coulombic
interaction between colloids is replaced by a renormalised
interaction potential of the Yukawa form51–53

usCij ðrÞ ¼ Zij
2exp �k r� sij

� �� �
r=sij

; (2)

where k is the inverse of the Debye length51–53 and Zij
2 is

the strength of the repulsion between the particles i and j in
units of kBT

Zij
2 ¼

Qeff
i Qeff

j

1þ ksij=2
� �2

lB
sij
; (3)

with Qeff
i,j being the net charge of species i or j in units of the

electron charge and lB the Bjerrum length.51–53 The definitions
of the pair potentials, eqn (1) and (2), allowed us to include the
size polydispersity.54

The total interaction between pairs of particles is described
by a combination (not the sum) of the contributions in eqn (1)
and (2). For separations larger than lsij, the interaction is
purely repulsive and is given by eqn (2). At short distances,
lower than lsij, we assume that the interaction is dominated by
the attractive depletion interaction, which we model with a SW,
eqn (1). Our choice of this simple effective model potential does
not represent the true potential of the physical systems we are
investigating. However, as will be shown, it is able to reproduce
the experimental structures and allows us to separately study
the contribution of the repulsion and of the attraction.

We have performed Monte Carlo (MC) computer simulations
in the canonical ensemble (NVT) for systems with N = 2916
particles having 7% of polydispersity. The latter was taken into
account by considering five populations of particles whose size
and number fraction follow a discrete Schulz distribution,54,55 see
Fig. 1. The number fraction, xi = Ni/N, is the relative population
of particles with diameter si; Ni and N are the number of
particles of species i and the total number of particles in the
system, respectively. The standard Metropolis algorithm was
used to generate and accept new particle configurations.56,57

We ran MC simulations for 5 � 108 MC steps to reach a steady-
state and additional 5� 108 MC steps to measure the structure. In
both stages, new configurations were accepted with a probability
of 30%. In all simulations, thermal equilibrium was reached
after a few millions of MC steps.

3 Results
3.1 Structure of the fluids without polymers

The spatial arrangement of particles around a central one is
characterised by the radial distribution function, g(r). Fig. 2a shows
the experimental g(r) determined for samples without polymers
(samples 1, 6 and 7, see Table 1). In all cases, it shows the structural
characteristics of a fluid, i.e. a first peak roughly corresponding
to the average particle distance (p/6fc)1/3s E 1.08s, and
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successive peaks that correspond to further shells of neighbours,
until correlation is lost at larger distances where g(r) tends to 1.

The experimental g(r) is compared to MC simulations for
hard-spheres with a polydispersity of about 7%. Simulating
hard-sphere systems at high concentrations is difficult because
non-overlapping initial configurations need to be generated.
In a monodisperse system, one can initiate simulations with
particles in a crystalline array, which melts during the simula-
tion with no overlaps occurring between particles. In a poly-
disperse system, however, some big particles might be difficult
to place in a non-overlapping configuration. To overcome this
technical problem, the hard-sphere potential has been replaced
by the potential uHS

ij (r) = (r/sij)
�10000, where the large exponent

results in a hard-sphere-like interaction. Fig. 2a shows that the
agreement between simulations and experiments is not satis-
factory, especially at short separations, r E s. The average
distance, described by the position of the first peak in g(r), is
about s in the simulations, while it is slightly larger in the
experiments. This indicates that the effective size of the parti-
cles is larger than s. This can result from residual charges.
Therefore, we have also performed MC simulations including a
repulsive Yukawa potential, see eqn (2). The parameters of the
Yukawa potential were estimated using the Poisson–Boltzmann
equation and assuming that all particles have the same
diameter.51 This led to a prefactor Zij

2 = 6.0 and screening
parameter ks = 15 and 30, corresponding to an effective charge
Qeff E 273 and 514, for sets A and B, respectively, see Table 2. This
effective charge is consistent with previous measurements.36 The
screening ks differs by a factor of 2, although the salt concen-
tration cs in both sets is similar. This might be related to the fact
that the dissolution of salt in the solvent mixture is limited and
slow, and therefore different amounts of salt might actually be
dissolved in the two sets, despite the added salt concentrations cs

being comparable. Furthermore, differences in the dissolution
process imply different preparation paths which might affect the
observed gel structure. Nevertheless, the excellent agreement
between experiments and simulations (Fig. 2b) indicates that the
amount of particle charge has an important effect on the structure

of the dispersion due to the long range of the electrostatic
interactions in organic solvents having small relative permittivities.
The electrostatic interaction also affects the subsequent peaks,
which are now well-reproduced. This indicates the need to include
the electrostatic contribution (eqn (2)) together with the hard-
sphere interaction to correctly represent the repulsive interactions
between colloids.

Fig. 1 Number fraction xi of particles with diameter si following a Schulz
distribution (solid line) and discrete distribution with five populations used
in the Monte Carlo simulations (symbols), respectively.

Fig. 2 (a) Radial distribution function g(r) for polymer-free samples 1, 6
and 7 (symbols, Table 1) and MC simulation results for polydisperse hard-
spheres (solid lines). (b) The same as in (a) but with simulation results for
charged polydisperse particles interacting through a Yukawa pair potential
(eqn (2)). (c) Samples 8 and 9 with low polymer concentration (symbols,
Table 1) and simulation results for particles interacting through a SW
(eqn (1)) and Yukawa pair potential (eqn (2)) (solid lines). Curves are
vertically shifted for clarity.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
4 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
by

 H
ei

nr
ic

h 
H

ei
ne

 U
ni

ve
rs

ity
 o

f 
D

ue
ss

el
do

rf
 o

n 
03

/1
1/

20
16

 1
4:

10
:0

2.
 

View Article Online

3.1 Structure of colloidal gels at intermediate concentrations: the role of
competing interactions

46



This journal is©The Royal Society of Chemistry 2016 Soft Matter

We assume that the parameters of the Yukawa potential
remain constant upon addition of the polymer, although at
larger polymer concentrations the high packing of particles in
the gels might modify the charge distribution. However, the very
good agreement obtained between experiments and simulations
shown below supports the validity of this assumption.

3.2 Structure of the fluid at low polymer concentrations

The structure of samples containing a small amount of poly-
mer, cp/cp* = 0.1 (samples 8 and 9, Fig. 2c), was also experi-
mentally determined. Due to the presence of the polymer,
attractive interactions are present and result in a non-zero,
although very small, e. Nevertheless, g(r) is very similar to that
of the purely repulsive systems without the polymer. This
suggests that repulsive interactions dominate at low polymer
concentrations. In fact, g(r) can be well reproduced in simula-
tions using only the repulsive Yukawa potential with the same
parameters as for the case without the polymer (except e = 0;
data not shown).

3.3 Structure of the gel at high polymer concentrations

3.3.1 Radial distribution function g(r). Fig. 3 shows g(r) for
samples with high polymer concentrations cp/cp* Z 0.8. The
presence of significant attractions completely changes the
shape of g(r) compared to the samples without and with only
a small amount of polymer (Fig. 2). The first peak becomes
sharper. The position of the first minimum of g(r), which
appears at r/s E 1.1, can be linked to the effective range of
the attraction, characterised by l � 1; the minimum is less
pronounced for set B than for set A. The broad second peak is a
typical feature of gels and is related to the broad distribution of
distances to particles in the second shell caused by the hetero-
genous structure of the local clusters.29,32 Beyond the second
maximum, i.e. for distances beyond about 2.5s, g(r) quickly
approaches unity, whereas the oscillations extend to much
larger r for the samples without or with less polymer.

In MC simulations, the effective interparticle interactions
were modelled through the attractive SW potential, eqn (1),
and the repulsive Yukawa potential, eqn (2). The values of
the parameters characterising the Yukawa contribution are
taken from the samples without the polymer (ks = 15 and 30,
Qeff E 273 and 514 for sets A and B, respectively, see Table 2).
For the range of the attractions, average values x* r x0 r x are
taken resulting in a constant l = sij/s + x0 for each set (Table 2).
Several simulations have been performed with different values
of the depth of the square well e to find the best fit to the
experimental g(r). Samples with high polymer concentrations
cannot be accurately simulated using an average diameter
s = 1720 nm but, to match the experimental g(r), a slightly
smaller effective diameter sc was considered, which is within
the uncertainties of the experimental value and the chosen size
distribution. The reduction of the effective diameter in the gels
seems to indicate a certain degree of softness of the particles.
We have hence considered a soft-core potential represented by
(r/sc)�9 to model this degree of softness. The stronger reduction
of the diameter in set A than B is associated with less screening
of the electrostatic interaction, possibly indicating a relation-
ship between the two quantities. The fitted values of sc and e
are reported in Table 2. With these values, the MC simulations
agree well with the experimental results over the whole range of
r values. This indicates that the effective potential reproduces

Table 2 Values used in the MC simulations to describe the experimentally
determined g(r) for the samples given in Table 1. Average effective hard-
sphere diameter sc, attraction strength e, attraction range l, effective
charge Qeff and inverse screening length k. * indicates that the interaction
between particles was modelled by a pure repulsive potential, resulting in
B2* values larger than 1

Sample sc/s e l Qeff ks B2*

Set A
1* 1.0 0.0 — 514 30 1.25
2 0.93 0.83 1.03 273 15 0.64
3 0.93 0.83 1.03 273 15 0.64
4 0.93 0.91 1.03 273 15 0.58
5 0.93 1.11 1.03 273 15 0.40

Set B
6* 1.0 0.0 — 514 30 1.25
7* 1.0 0.0 — 514 30 1.25
8* 1.0 0.0 — 514 30 1.25
9* 1.0 0.0 — 514 30 1.25
10 0.97 1.33 1.07 514 30 �0.31
11 0.97 1.33 1.07 514 30 �0.31
12 0.97 1.43 1.07 514 30 �0.44

Fig. 3 Radial distribution function g(r) for samples with high polymer
concentrations (as indicated, Table 1), obtained in experiments (symbols)
and MC simulations (solid lines). Curves are vertically shifted for clarity.
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the experimental structure at short and long interparticle
separations. Table 2 also indicates that the well depth e is a function
of polymer, cp, and, to some extent, colloid, fc, concentration.

3.3.2 Effective colloid–colloid interaction potential u(r).
The interactions in the colloid–polymer mixtures were approxi-
mated by a combination of a SW and Yukawa potential, given
by eqn (1) and (2), respectively, where the hard-sphere infinite
repulsion at contact in the SW potential has been slightly
softened due to technical issues as discussed above. The
parameters of the potentials have been determined by fitting
the corresponding g(r) to the experimental data (Fig. 2, 3 and
Table 2). Note that these are effective interaction potentials.
They depend on the sample compositions but, due to the non-
equilibrium nature of gels, are also affected by the preparation
histories. A different sample preparation procedure might lead
to a different gel structure, here characterised by g(r), and
hence a different effective interaction potential, although the
final sample composition might be identical. The dependence
on the preparation path is, at least partially, responsible for the
different fit parameters of sets A and B, although their
compositions are not very different.

The combination of SW and Yukawa potential is compared
to the potential of mean force, w(r) = �kBT ln g(r) (Fig. 4a).

This potential is an accurate representation of the effective
potential between pairs of colloidal particles, u(r), in a low
concentration system.58 At higher concentrations, w(r) is a
crude approximation of the effective potential u(r) but gives
some insights into its features. The main features of w(r) are
reproduced by the combination of a SW and Yukawa potential.

As an example, Fig. 4b displays the optimum effective poten-
tials that describe the local structures of samples 5 (set A) and
12 (set B), respectively. The potential used for sample 5 shows a
larger barrier and longer-range repulsion compared to sample
12. This illustrates the different amounts of residual charges and
screening in the two sets as well as a possible effect of the
preparation procedure (Table 2).

3.3.3 Angular distribution function P(h). In addition to
g(r), it is interesting to determine the angular distribution
function P(y). This function considers the angle y between
the centre–centre lines of three nearest neighbours. Particles
are considered nearest neighbours if their centre–centre dis-
tance is smaller than the distance to the first minimum of g(r),
which is r = 1.1s. The experimentally obtained P(y) values are
shown in Fig. 5 together with the corresponding simulation
results. The peak at y E 601 indicates that particles tend to
form structures with a triangular geometry. We have shown in
previous work that in the presence of short-range attractions

Fig. 4 (a) Square well uSW(r) (solid line), eqn (1), and Yukawa usC(r) (dashed
line), eqn (2), potentials and potential of mean-force w(r) = �kBT ln g(r)
(dashed-symbol) of sample 5. (b) Effective colloid–colloid interaction
potentials u(r)/kBT in samples 5 (solid line) and 12 (dashed line), see Table 1.

Fig. 5 Angular distribution function P(y) for samples with high polymer
concentrations (as indicated, Table 1) obtained in experiments (symbols)
and MC simulations (solid lines). Curves are vertically shifted for clarity.
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and long-range repulsions, these structures are energetically
favoured over others.59 A second smaller peak is located at
y E 1201, a value that corresponds to a structure where
particles lie on two triangles that share an edge.

3.3.4 Nearest-neighbour distribution function P(nb). To
gain more insight into the local structural features of the gel
and its heterogeneity, we have also determined the nearest-
neighbour distribution P(nb); it represents the probability for a
particle to have nb neighbours being closer than the cutoff
distance r = 1.1s. The average value hnbi quantifies how crowded
the local environment of a particle is. Previously, it was shown23

that in a purely attractive system hnbi = 2.4 at the gel transition.
The nearest-neighbour distributions P(nb) are shown in

Fig. 6a and b. One observes that for samples with a high polymer
concentration, cp/cp* Z 0.8, the shape of the distribution is
essentially identical and hnbiE 5, i.e. larger than the one found
in purely attractive (sticky) particles.23 This indicates local clus-
ters with a highly compact shape. This also implies that the
competing interaction potential plays a twofold role: first, the
short-range attraction induces particle clustering and, second,
the long-range repulsion stabilises the clusters towards network
formation, i.e. limits their size, and avoids nucleation and
subsequent crystallisation.59 In contrast, in the presence of only
a small amount of polymer, as in samples 8 and 9, the structure
is characterised by a small number of neighbours, hnbiE 2 (data
not shown). It is interesting to note that the neighbour distribu-
tions of sets A and B are comparable, despite the structural
differences indicated by g(r) and P(y). The aforementioned
trends can also be seen in snapshots of samples 1 (no polymer)
and 5 (highest polymer concentration), displayed in Fig. 6c, with
the number of neighbours indicated by the colour. Sample 5
contains a percolated network, i.e. a colloidal gel, whereas there
is no network in sample 1. Fig. 6c also illustrates the hetero-
geneity of the particle distribution in the sample.

The structure of a system can also be visualised by the
backbone or network formed by the nearest neighbours. In
Fig. 7, slices with thickness 4s of samples 1, 2 and 5 are
considered and nearest neighbours are connected by a line. In
sample 1, the connectivity is very low, as expected in the absence
of attractions. In samples 2 and 5, particles form triangular
structures that are connected into a sample spanning network,
as previously reported.25 Besides, applying the same criterion
as the one proposed in ref. 28, we found evidence that the
structures of samples 2 and 5 represent directed percolated
networks, as recently proposed for gels with a lower colloid
concentration28 and a smaller hnbi. Samples 9 and 12 show
similar results to samples 1 and 5: sample 9 presents a liquid-
like structure, as indicated in Fig. 3, whereas a backbone
is present in sample 12, which corresponds to a directed
percolated network and presents components that form also
triangular structures (data not shown).

3.4 State diagram

Since gels are out of equilibrium states, their structure also
depends on the kinetic path followed to reach the gel state. It is
therefore interesting to consider how the samples we studied

can be located with respect to the equilibrium and the non-
equilibrium state diagrams available from the literature, and
obtained for the specific parameters of our system. Note,
however, that care has to be taken when state diagrams based
on parameters determined under equilibrium conditions are
compared with state diagrams based on parameters of effective
interaction potentials determined under non-equilibrium con-
ditions, as in the present case.

We start considering the state diagram of colloid–polymer
mixtures with purely attractive interactions.11,16,48 The topology
of the state diagram in the cp/cp* vs. fc plane depends on the
polymer–colloid size ratio x; we only consider x B 0.1 (Fig. 8)
and fc r 0.5, which are the parameters relevant for our study.
Previous studies showed that while at small polymer concentrations

Fig. 6 Distribution of the number of nearest-neighbours, P(nb), for sam-
ples of (a) set 1 and (b) set 2 as obtained by experiments (symbols) and
MC simulations (solid lines). (c) Snapshots of slices of samples 1 (left) and
5 (right) as obtained by simulations. The number of neighbours or the
coordination number is indicated by the colour of the colloids.
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the system is in a fluid state, with increasing polymer concen-
tration a coexistence between fluid and crystals is observed
(the solid line represents the fluid/solid coexistence boundary
for x = 0.0816). Gas–liquid coexistence occurs within the fluid–
solid coexistence region:16 we report in Fig. 8 the binodal line
(double-dotted-dashed line), calculated using the Generalised
Free Volume Theory42,43 for the size ratio of our samples, x = 0.076.
We additionally report the boundaries to non-equilibrium
gel states determined by different experiments and theories.
For small volume fractions (fc o 0.2), we show the gelation
boundary obtained by Lu et al.20 (large-dashed line, x = 0.059): in
this work it is proposed that frustrated gas–liquid phase separa-
tion leads to the gel transition, and hence the gel states are
expected inside the spinodal line. Furthermore, we show predic-
tions of Mode-Coupling Theory from the study of Bergenholtz
and coworkers for the gel boundary21 extending over the whole
fc range (dashed-dotted line, x = 0.08). The theory results are
complemented by experimentally determined gel boundaries
obtained by Shah and coworkers for x = 0.061 and 0.090,38 and
Poon and coworkers for x B 0.06.60 Finally, we also plot the
boundary between fluid and attractive glass determined by Pham
and coworkers for x = 0.09.61 As can be observed, the gel
boundaries predicted by theory and observed in experiments
are all lying close to or above the binodal line. This finding
apparently supports the scenario in which arrested spinodal
decomposition leads to gel formation.20 However, recent studies
indicate that this scenario is correct at low particle concentra-
tions, while the role of rigidity percolation might be important at
higher fc.59,62 Moreover, we can observe that generally the
transition from equilibrium fluid states to non-equilibrium solid

states, either gel or glass, occurs at low polymer concentrations
in systems where the interactions are purely attractive.

In comparison, systems with competing interactions exhibit
a richer and more complex behaviour that also depends on the
range and the strength of the repulsive interaction. If a repulsive
barrier is present, the binodal tends to disappear and a cluster
fluid phase is found instead.3,25,63 In systems of highly charged
colloids, at low concentrations fc o 0.17 also other states are
present, such as Wigner glasses and glassy cluster states,19 while
at moderate concentrations 0.15 o fc o 0.30 gel states are still
being observed. In Fig. 8 we report the experimentally deter-
mined depletion boundaries for colloids with competing inter-
actions from the study of Campbell and coworkers, for x = 0.13,
ksE 1.55 and Z2 = 30,25 from the study of Klix and coworkers for
x = 0.19, ksE 1 and Z2 = 15,19 and from Sedgwick and coworkers
for x = 0.02118 (values for the repulsive interaction could not be
estimated in this case). In these and other studies38,60 a cluster
phase is observed in the same interval 0.03 r cp/cp* r 2.0, but at
lower fc. We observe that the effect of the additional repulsive
interaction is that of shifting the gel boundary to higher fc and
larger cp values when k decreases and hence the range of
electrostatic interactions increases.

The values of ks, x and Z2 of our potential are even larger than
those of the work of Campbell and coworkers.25 We can there-
fore expect that the gel boundary lies at relatively low polymer
concentrations and approaches that of purely attractive systems.

Fig. 7 Network of nearest neighbours as obtained by MC simulations. The
centres of nearest neighbours are connected by lines. Samples (a) 1, (b) 2
and (c) 5 are shown.

Fig. 8 State diagram of a colloid–polymer mixture with a size ratio
x B 0.1 in the polymer concentration, cp/cp*, vs. colloid volume fraction,
fc, plane. Region covered by our samples ( : set 1, : set 2) is highlighted
by a yellow background (Table 1), ‘F’ indicates fluid states and ‘G’ gel states,

and : additional simulation results for cp/cp* = 1.0 and different

fc values where open (full) symbols indicate fluid (gel) states. Binodal line
obtained using the Generalised Free Volume Theory42,43 for x = 0.076
( ). For comparison, datasets from the literature are included: equili-
brium fluid–solid coexistence for x = 0.0816 ( ), experimentally deter-
mined gelation points in purely attractive systems with x = 0.06138 ( ),
x = 0.09038 ( ), x = 0.0660 ( ), and x = 0.05920 ( ) and in systems with
competing interactions with x = 0.02118 ( ), x = 0.1325 ( ), and x = 0.1919

( ), experimentally observed attractive glasses with x = 0.0961 ( ), mode-
coupling predictions for the gelation boundaries for x = 0.0821 ( ).
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This seems to be confirmed by the experimental data (Fig. 8),
where, in the absence of the polymer and at small polymer
concentration, we observe fluid states close to the gelation
boundaries of the purely attractive systems and the data of
ref. 25 if extrapolated to larger fc. At the same time, gel states
are found well below the gelation boundary of ref. 19.

We have also performed simulations at constant cp/cp* = 1.0
and different volume fractions, with the potential parameters
describing sample 3. They indicate that the gelation boundary is
slightly shifted compared to the data in ref. 25 (Fig. 8), and
especially that gel states are not observed at small fc, in contrast
to the purely attractive case. Snapshots of the simulations are
shown in Fig. 9, where only particles participating in clusters
with at least 5 particles are shown. At fc o 0.15 small clusters
are dispersed throughout the volume (these states are indicated
as empty stars in Fig. 8). At fc = 0.20 larger clusters are formed,
probably percolated, which indicates that the system is close to
the gelation boundary, and at higher concentrations, fc Z 0.25,
large clusters dominate, consistent with the state diagram (these
states are indicated as filled stars in Fig. 8).

We can therefore conclude that, even if our effective
potential is strongly screened, the state diagram of our system
does not seem to be fully compatible with that of a purely
attractive system, but rather indicates the effects of competing
attractive and repulsive interactions.

3.5 Second virial coefficient

The effective colloid–colloid interaction potential is charac-
terised by a short-range attraction and a longer-range repulsion.
This interplay determines the arrangement of the particles.
However, due to the large volume fractions 0.38 r fc r 0.44
(Table 1) crowding also plays a significant role. To quantify the
different contributions to the interactions, for all samples with
cp/cp* 4 0.1 (Table 2) we have calculated the reduced second

virial coefficient B2* � B2/BHS
2 ,48,59 where B2 is the second virial

coefficient and BHS
2 the one of hard-spheres. For set A, B2* 4 0,

which indicates a strong effect of the repulsive component, while
for set B, B2* o 0, which means that the attractive contribution
dominates. Thus, the gel structure in our samples is determined
by crowding combined with either dominantly repulsive (set A) or
dominantly attractive (set B) interactions. A theoretical analysis of
the binodal for x = 0.076 nevertheless suggests that all gel samples
studied here are well inside the phase separation region (Fig. 8).
However, none of the samples, particularly the ones in set A
(where repulsion dominates), reach the value B2* = �1.5.64 This
value has been associated with the proximity of phase separation
in systems with attractive pair potentials. This requires that the
attractions are short-ranged, x o 0.15, and hence many-body
effects are excluded,65 which is the case in our samples. Thus,
a more complex mechanism seems to be responsible for the
gel transition at intermediate colloid volume fractions and
especially in the presence of electrostatic repulsion.

4 Discussion and conclusions

The results presented in the previous section can be summarised
to obtain a general picture of the system under investigation: in
the absence of polymers (cp = 0.0), the structure of the samples,
namely homogeneously distributed particles in a colloidal fluid,
can be described by a repulsive Yukawa potential, which is due
to the residual charges (Fig. 2a and b). The addition of a small
amount of polymers (cp/cp* = 0.1) induces the formation of a few
small clusters due to depletion attractions. However, the electro-
static repulsion dominates and the systems remain fluid and
essentially homogeneous (Fig. 2c). Instead, with increasing
amount of polymer (0.8 r cp/cp* r 2.0), the attractions become
more pronounced, as shown by the effective potentials obtained
(Table 2) and clusters are formed which merge into a network gel
structure. The radial distribution functions indicate for all gel
samples a strong and short-range correlation between particles.
However, even if the interaction potential is different, the g(r) of
the gels is relatively similar within each set of samples (Fig. 3, for
sets A and B), but a flatter region around the minimum is
observed for samples of set B. Similarly, the angular distribution
functions also indicate comparable internal cluster structures
within one set, with particles forming triangular and tetrahedral
structures as indicated by peaks at 601 and 1201. The nearest-
neighbour distributions are also similar within one set, but set B
presents higher average numbers of neighbours. These results
suggest that the structure of the gels is not particularly sensitive
to variations in the strength of attractions at fixed screening
(i.e. within a set), where the attraction strength ranges from
0.8kBT to 1.4kBT, i.e. around the thermal energy. In contrast, the
structural differences between the two sets A and B suggest a
stronger influence of the electrostatic interactions, which also
cover a larger range (Fig. 4b). These observations were comple-
mented by calculations of the second virial coefficient for
samples of the two sets (Table 2): we observed that, in addition
to crowding, for set A gel formation is dominated by repulsion

Fig. 9 Snapshots of systems at cp/cp* = 1 for different colloidal volume
fractions fc obtained from simulations with the size of the clusters in
which the particle participates indicated by the colour of the particle.
These systems are indicated by open (non-percolated states) and filled
(percolated states) blue stars in Fig. 8.
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and for set B by attraction. These results indicate that the
variation of the electrostatic contribution, which also induces
variations in the effective attraction at short distances, is crucially
affecting the gel structure.

By comparison with previous work on state diagrams of colloid–
polymer systems, and our own calculations of the binodal line, we
could additionally confirm that even if the repulsive electrostatic
interactions are strongly screened, the structures that we observe
are compatible with the state diagrams expected and observed for
colloid–polymer mixtures with competing interactions.

In conclusion, we were able to describe the non-equilibrium
structures of intermediate volume fraction gels observed in
experiments by using a simple effective pair interaction potential
although non-equilibrium effects are not explicitly considered.
The effective interaction potential thus not only depends on the
sample composition, but also the preparation history. Therefore,
if the preparation path and hence maybe the gel structure
are changed, also the effective interaction potential will change.
Nevertheless, the effective interaction potentials and their para-
meters, which were determined by comparing the radial distri-
bution function g(r) obtained by experiments and simulations,
respectively, were successfully used to predict other structural
features, such as the angular distribution function P(y) and the
nearest-neighbour distribution function P(nb), as well as the state
diagram. The effective interaction potential contains a short-range
attraction modelled through a square-well and longer-range electro-
static repulsion modelled through a Yukawa form. Through the
parameters of the potential we can assess the relative contribution
of the attractive and the repulsive component to the gel structure.
We found that the degree of screening of the electrostatics has
an important influence on the structural organisation since it
significantly affects the balance between repulsive and attractive
interactions. Due to that, we observed different gel structures
which are dominated by either repulsion or attraction.
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Priego, J. Chem. Phys., 2013, 139, 104908.
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Directed percolation identified as equilibrium
pre-transition towards non-equilibrium arrested
gel states
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The macroscopic properties of gels arise from their slow dynamics and load-bearing network

structure, which are exploited by nature and in numerous industrial products. However, a link

between these structural and dynamical properties has remained elusive. Here we present

confocal microscopy experiments and simulations of gel-forming colloid–polymer mixtures.

They reveal that gel formation is preceded by continuous and directed percolation. Both

transitions lead to system-spanning networks, but only directed percolation results in

extremely slow dynamics, ageing and a shrinking of the gel that resembles synaeresis.

Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely

directed percolation, which is quantitatively associated with the mean number of bonded

neighbours. Directed percolation denotes a universality class of transitions. Our study hence

connects gel formation to a well-developed theoretical framework, which now can be

exploited to achieve a detailed understanding of arrested gels.
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A
morphous solids are ubiquitous in natural and engineered
materials: sand piles, window glass, ceramics, plastics,
nanocomposites, gelatin and living cells are just a few

examples of solid materials with an amorphous structure. Glassy
systems are amorphous solids in which the solid-like mechanical
properties are linked to a dramatic slowdown of the microscopic
dynamics when decreasing the temperature or increasing the
particle density1–7. Gels also show arrested dynamics8–17, but
their structure is different. They exhibit a heterogeneous load-
bearing network structure that is formed by cross-linking
(chemical gels) or attraction-induced aggregation (physical
gels)18–31. Dynamical arrest was associated with different
mechanisms, for example, arrested phase separation21, cluster
aggregation21, the occurrence and spatial organization of locally
favoured structures18 and the onset of rigidity percolation32.
Furthermore, a progressive slowdown of the dynamics after
sample preparation, that is, ageing, is observed. However, the
relation between the slowdown and arrest of the dynamics, and
the structural properties of these systems are still under debate8,9.

Model systems of physical gels have been established, for
example, dispersions of spherical colloidal particles, in which
attractive forces are induced by a temperature variation or
depletion effects due to the addition of linear non-adsorbing
polymer chains30,31. Nevertheless, there are only few studies on
the relation between the slowdown of the dynamics and the
microscopic structure.

Here we show that the slowdown of the particle dynamics and
the onset of ageing can be related to the microscopic structure of
colloidal gels, namely a directed percolation (DP) transition. This
is demonstrated in experiments on charged colloid–polymer
mixtures30,33 and in Brownian dynamics simulations of particles
interacting through a combination of coulombic repulsion and
depletion-induced attraction modelled by the Asakura–Oosawa
potential34. The onset of DP is investigated along different paths
in which either the attractive or the repulsive parts of the
interactions are varied. We find that in any case continuous
percolation precedes DP and that both can be associated with
characteristic values of the mean number of bonds per particle.
Furthermore, DP is found to be linked to the onset of ageing
effects.

Results
States of the system. In charged colloid–polymer mixtures, two
particle–particle interactions compete on different length scales:
First, screened electrostatic interactions, which are long ranged
for low salt concentrations and become shorter ranged on
addition of salt; second, depletion interactions, which are short
ranged, typically at most one tenth of the colloidal particle
diameter, and controlled through the radius of gyration of the
polymers. We experimentally investigated charged colloidal
polymethylmethacrylate (PMMA) spheres with volume fraction
FE0.2 and diameter s¼ 1.72 mm in the presence of non-
adsorbing linear polystyrene with radius of gyration rg¼ 65 nm,
where the effective polymer-colloid size ratio xeffE0.03
(Supplementary Table 1).

In experiments and simulations, we consistently observe four
states that differ in the structural arrangements of the colloidal
particles (Fig. 1, left). Which state occurs depends on the salt
concentration csalt, and therefore the screening length k� 1

characterizing the range of the repulsion and the polymer
concentration cp, that is, attraction strength. We consider fixed cp

and vary csalt, which will be referred to as ‘path B’. In the absence
of salt, mainly individual particles but also very few clusters are
distributed homogeneously throughout the sample (sample C1;
note that cp of this sample is higher than the one of the other

samples, Supplementary Table 1). Adding salt, particles aggregate
into isolated small clusters (sample B1). At large salt concentra-
tions, larger clusters are observed which form a network in three
dimensions (sample B2). Furthermore, a heterogeneous network
structure with thick strands consisting of even larger, dense
clusters are formed at the largest salt concentration studied
(sample B3).

These states show different pair correlation functions g(r)
(Fig. 1, right). Without salt (C1), g(r) is dominated by a peak
located at the mean particle distance r� 1/3. Furthermore, a small
peak at particle contact reflects the presence of a small number of
aggregated particles. For small amounts of added salt (B1), the
increase in the contact peak and a corresponding decrease of the
second peak of g(r) is consistent with the presence of doublets,
triplets or small string-like clusters (visible in Fig. 1a). The size of
the clusters is limited by the repulsive contribution to the
potential22,35,36. For sample B2, the large peak at contact
reflects the large fraction of particles forming clusters. Its g(r) is
reminiscent of a percolated gel-like network structure32,37,38.
Finally, the radial distribution function of sample B3 with its very
high first peak at contact reflects the presence of a large number
of bonded particles. Furthermore, its deep first minimum and
pronounced split second peak can arise from triplet structures
and local close packed arrangements. These features of the g(r)
are observed in the experiments as well as in the simulations.
While there is qualitative agreement between experimental and
simulation results, small quantitative differences indicate that the
potential and its parameter values used in the simulations are not
perfectly describing the interactions present in the samples.
(The mapping of the simulation and experimental parameters
is described in Supplementary Note 1.) Nevertheless, both,
experiments and simulations, reveal different states on the path
towards a gel; homogeneously distributed individual particles,
small clusters, networks with thin and thicker strands consisting
of larger, more compact and denser clusters, respectively.

Characterization of the different states by number of bonds.
The different structures are distinguished by the degree of particle
aggregation. This can be linked to the mean number of bonds
per particle, hNi. Individual particle–particle bonds cannot be
determined unambiguously because the first peak in g(r) is
broadened due to polydispersity (about 7%). Hence, two particles
are defined to be bonded if they are closer than the position of the
first minimum in g(r), which is located between 1.10 and 1.22s
(Fig. 1, right).

The mean number of bonds per particle, hNi, is determined
as a function of the interactions, which depend on the salt
concentration csalt, determining the screening length k� 1, and
the polymer concentration cp, controlling the depletion part of
the potential VD,min¼VD(seff) evaluated at the overall potential
minimum Vmin¼V(seff) (Fig. 2). At low polymer, cp, and/or salt,
csalt, concentrations, only very few bonds are found (white to
purple), whereas high cp and/or csalt result in a bonded state (red).
In contrast to previous results23, hNi monotonically grows
without a re-entrant transition. Even for large screening and
strong attraction, hNi hardly exceeds seven and hence the highly
bonded state appears not to be in equilibrium. For a purely
repulsive interaction39,40 or in spring lattice models41 such a
change is expected once the system becomes isostatic, that is,
globally stable with six bonds per particle.

The structures along two paths are analysed in more detail
(Fig. 3). Along path A, the salt concentration csalt and hence the
screening length k� 1 is kept constant while the polymer
concentration cp is increased and hence the value VD,min of the
potential at its minimum is decreased, that is, the attraction
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strength is increased. (Note that path A implies a high salt
concentration, which cannot be achieved in the organic solvent
mixture used in the experiments.) Instead, along path B, the
screening length k� 1 is reduced at constant attraction strength.
On increasing attraction on path A, hNi increases and the
distribution of the number of bonds per particle, p(N), first

broadens, indicating a more heterogeneous structure, but then
narrows again indicating that the probability to find monomers is
reduced to zero, consistent with the observed network structure
(Figs 1a,3a). Along path B, that is, increasing csalt (inset), the
distributions also shift to larger N and broaden, again indicating
the coarsening of the structure. Compared with path A, the p(N)
are sharper, indicating that monomers are suppressed at low
salt concentrations. Under these conditions, repulsions are long
ranged and still substantial at the mean monomer separation. The
system avoids this unfavourable situation by forming clusters.
Although the repulsion between the clustered monomers is
even larger, cluster formation is favoured by the short-ranged
attractions and the larger mean cluster separation that reduces
cluster–cluster repulsion.

We characterize p(N) by its mean hNi, variance hDN2i and
maximum Nmax. With increasing attraction, that is, |VD,min|, they
all sharply increase at VminE� 3.0 kBT, where kBT is the thermal
energy (Fig. 3b). Furthermore, we consider the distribution p jð Þ
of angles between two successive bonds, j. The distribution is
normalized by the solid angle covered by the angle j, that is, such
that 2p

R
p jð Þsinj dj¼1. It reveals a qualitative change that also

occurs at VminE� 3.0 kBT (Fig. 3c). While the peak at j¼p=3,
which is related to locally dense tetrahedral packings, grows
monotonically with |Vmin|, a second peak at j¼ 2p=3 develops
and becomes pronounced for Vminj j43:0 kBT . Furthermore, for
these large potential depths, a peak at j¼p emerges, which
indicates the formation of straight strings of connected particles.
Therefore, based on the mean number of bonds per particle hNi,
the different structures on the path towards a gel can be
distinguished and quantitatively characterized.

Continuous and DP transitions. We will now show that the
particle networks undergo two percolation transitions, a con-
tinuous percolation transition and a DP transition. In both cases,
percolated networks span the whole system. In continuous
percolation, a path along a percolating cluster may contain steps
in all directions, including backward steps (Fig. 4a, P). Instead, in
the case of DP, only paths along an arbitrarily chosen direction
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Figure 1 | On the path towards a gel four different states are found. (a) Two-dimensional slices of the three-dimensional systems in the following states:

(C1) Fluid state with mainly individual particles and only very few small aggregates, (B1) isolated small chain-like clusters of particles, (B2) larger clusters

forming a continuously percolated network in three dimensions and (B3) directed percolated network. The upper row shows confocal microscopy data,

where the polymer concentrations are 3c* (C1) and 2c* (B1–B3) with the overlap concentration c*. The salt concentration increases from left to right

(Supplementary Table 1). The lower row represents the corresponding states as observed in the simulations. (b) Corresponding pair correlation functions

g(r) determined from the three-dimensional data as a function of the particle-particle distance r in units of the particle diameter s, which, for the simulation

data, is taken to be the effective particle diameter, that is, s¼seff. Symbols represent experimental data, solid lines simulation data and (only for B1) the

light blue solid line simulation data with parameters obtained by an unconstrained fit (for details see Supplementary Note 1). Data have been shifted for

clarity. The inset shows the (unshifted) first peaks.
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Figure 2 | The mean number of bonds characterizes the different stages

towards a gel. Mean number of bonds per particle, hNi, as a function of the

minimum of the attractive part of the potential, evaluated at the global

minimum, VD,min in units of the thermal energy kBT, and the inverse

screening length k normalized by the inverse particle diameter s� 1, which,

for the simulation data, is taken to be the mean particle diameter, that is,

s¼s0, in a semi-logarithmic representation. The background colour

represents hNi as obtained by simulations, while the positions and colours

of the circles indicate the compositions and hNi, respectively, of the

experimental samples, which are labelled. The two white lines indicate two

paths, during which either only the polymer concentration (‘path A’) or only

the salt concentration (‘path B’) are changed. The lower and upper dark

solid lines indicate the continuous and directed percolation transitions,

respectively, which are taken to occur when the corresponding p(lbox)¼0.2

(Fig. 4c).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11817 ARTICLE

NATURE COMMUNICATIONS | 7:11817 | DOI: 10.1038/ncomms11817 | www.nature.com/naturecommunications 3

Chapter 3 – Publications

59



are considered whereas possible backward steps in this direction
are not considered (Fig. 4a, DP). In the limit of an infinite system
size, percolating clusters occur in all directions in the sample.
Therefore, on a macroscopic scale no preferred direction exists in
a directed percolated network.

The (cumulative) probabilities p(Dx) that a particle participates
in paths with a projected length of at least Dx and in directed
paths with a length of at least Dx along any arbitrarily chosen
direction are shown in the inset and main part of Fig. 4b,
respectively, where the solid lines represent simulation data along
path A and symbols indicate results from experiments along path
B. For both percolation conditions, the probabilities decay to zero
in the case of weak attractions (small |Vmin|). In contrast, for
strong attractions plateaus develop, indicating large clusters that
span the whole system. The height of the plateaus correspond to
the fractions p(lbox) of particles that are part of clusters with the
maximum possible length, that is, the box size lbox (Fig. 4c). The
system size determines lbox and also affects the simulations.
Nevertheless, within the investigated system sizes only a weak
dependence on system size, quantified by the total number of
particles M, is observed. In particular, the occurrence of the sharp
increases of p(lbox) and their positions are not significantly
affected. These sharp increases indicate the continuous and DP
transitions.

We determine the continuous and DP transitions in
simulations for the complete parameter space of Fig. 2. The
locations are chosen to coincide with the percolation probability
p(lbox)¼ 0.2 for systems with 9,856 particles (Fig. 4c). Using this
condition, along path A, the continuous percolation transition
occurs at VP¼ � 2.3 kBT and the DP transition is found at
VDP¼ � 3.0 kBT. The latter coincides with the significant
changes observed in other parameters; hNi (Fig. 2, dark solid
lines) as well as p(N), hDN2i, Nmax and p jð Þ (Fig. 3).
Furthermore, this indicates that the continuous percolation
transition occurs at hNiE2 and the DP transition at hNiE3
(Fig. 3b). This suggests a connection between the percolation
transitions and hNi. Previous work32,37 on particles with
attractive square-well interactions also observed continuous

percolation for hNiE2. This work moreover suggested that
rigidity percolation is associated with gelation, which was found
to occur at hNiE2.4, that is, just in between our estimates for the
onsets of continuous and DP. The possible link between rigidity
and DP deserves further investigation.

Furthermore, close to the transitions the values of p(lbox) obey
critical power law scaling with VP�Vmin and VDP�Vmin,
respectively (Fig. 4c,d). Note that up to leading order the
probability for a bond between neighbours is proportional to Vmin

and therefore scaling laws for p(lbox) as a function of this
probability also hold for p(lbox) as a function of Vmin. Our data are
consistent with theoretical predictions for the critical exponents
of the power law scalings, that is, bP¼ 0.42 for continuous
percolation42,43 and bDP¼ 0.58 for directed percolation44 (black
lines in Fig. 4c,d; only the intercepts are fitted and the data with
almost constant p(lbox) at large VP�Vmin and VDP�Vmin,
respectively, are not included in the fits). These findings strongly
suggest that, on the path towards a gel, continuous and DP
networks occur with well-defined transitions to other states as
well as between them. Furthermore, this links the formation of
gels to a universality class of transitions, namely DP, and hence a
well-developed theoretical framework.

Onset of slowdown and ageing in directed percolated systems.
The dynamics of the different structures are quantified by the
self-intermediate scattering function F and mean squared
displacement hDr2i (Fig. 5). Diffusive dynamics is observed for
individual particles and small clusters, characteristic for fluids. In
continuous percolated samples, open network structures are
formed (Fig. 1, B2) that are rearranged by local motions requiring
only slightly more time of the order of the Brownian time tB
(Fig. 5). In contrast, a marked slowdown of the dynamics is
observed beyond the directed percolation (DP) transition. DP is
characterized by dense clusters with thick strands (Fig. 1, B3) and
thus rearrangements are expected to involve long-range, global
motions and the breaking of several bonds. Correspondingly, they
require long times. The dynamics of the different states hence are
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consistent with our structural observations. They suggest that the
slowdown associated with gelation sets in at the DP transition
and the dynamics eventually arrests deeper in the gel region.

The simulation data presented so far have been determined
for a fixed waiting time of 300 tB after the initial quench.
The effect of the waiting time is illustrated for the dependence of
the mean number of bonds per particle, hNi, on the potential
depth Vmin (Fig. 6), which has been linked to the continuous
and DP transitions (Fig. 3b). For small attraction strengths,
Vminj j � 3:0 kBT , hNi is independent of the waiting time within

the examined time range. However, for Vminj j43:0 kBT and thus
for DP, hNi is found to increase with waiting time. This indicates
that ageing effects are important in directed percolated systems
and equilibrium is reached only very slowly. In continuous
percolation, in contrast, equilibrium is attained quickly. These
findings also indicate the importance of the above-mentioned
local and global rearrangement processes in continuous and
directed percolated systems, respectively. In addition, it also
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supports the above conclusion that the DP transition is an
equilibrium transition just before the onset of dynamical arrest.

Synaeresis in directed percolated systems. We also investigate
the vicinity of walls (Fig. 7). Initially, the particles fill the
whole volume, also close to the wall. In fluids and continuously
percolated samples this remains like this at least for several weeks
(about 106 tB). In contrast, in directed percolated systems, the
vicinity of the walls becomes depleted of particles in less than a
day (about 3� 104 tB), except for very few clusters which remain
attached to the cover slip in the experiments, likely due to
depletion and van der Waals attractions45. The depletion close to
the walls indicates that directed connections between particles
tend to compact the network. This resembles synaeresis, that is,
the macroscopic expulsion of fluid from a gel due to the
shrinking of the network. This has been observed in a variety of
materials, like gelatin46, polysaccharide gels47,48, protein gels49,
organogels50, microgels51 and also weakly attractive colloidal
gels52. The link between network shrinkage and DP might
provide new aspects for the understanding of synaeresis.

Discussion
We investigate gel formation in a system with competing
attractive and repulsive interactions. Confocal microscopy
experiments on charged colloid–polymer mixtures are combined
with Brownian dynamics simulations of particles interacting via
the Asakura–Oosawa and Coulomb potentials. Depending on the
overall potential minimum Vmin, which can be varied through the
attractive and/or repulsive component of the interactions,
different states are identified; fluids of individual particles or
clusters as well as continuous and directed percolated networks.
The transitions between these states are associated with changes
in structural and dynamical parameters, in particular, the number
of bonds per particle with significant increases in the mean,
variance and most probable value of the distribution of the
number of bonds.

The effect of continuous percolation on the dynamics is small.
However, DP leads to a significant slowdown of the dynamics.
This is attributed to the large number of bonds and concomitant
strong confinement of the particles in the attractive potentials of
their neighbours, which is also reflected in significant ageing
observed in directed percolated systems. It suggests that
equilibration is very slow in directed percolated systems, but
occurs quickly in continuous percolated systems. Hence, our
findings suggest that the slowdown associated with gelation
already sets in at the DP transition. Deeper in the gel region,

the dynamics then becomes arrested without any additional
structural transition occurring.

Our finding that DP precedes the formation of arrested gels,
establishes a relation between structural and dynamic features
of gels. While previous studies linked gelation in adhesive
hard spheres to continuous percolation28,29,31, we argue that in
colloid–polymer mixtures with competing attractive and repulsive
interactions directed rather than continuous percolation indicates
the transition to gel states. Moreover, DP is a universality class of
transitions. Thus gel formation can be linked to critical behaviour
and the corresponding theoretical formalism53, which can be
exploited to obtain a deeper understanding of gel formation.
Moreover, maybe gel collapse under gravity30 is also initiated by
percolation transitions. Our results hence contribute to an
improved understanding of the relation between structural and
dynamic features of gel-forming systems and hint at their
importance for gel collapse and rheological properties.

Furthermore, in directed percolated systems the dense and
directed networks appear to lead to a contraction. This results in a
detachment from the walls and hence a layer that is depleted of
particles appears. This phenomenon resembles synaeresis and
might have important implications for applications and industrial
products but also, for example, gel collapse and rheological
measurements, in particular concerning wall slip45,54–56.

Methods
Experiments. The samples consist of spherical PMMA particles, sterically stabi-
lized with poly(12-hydroxystearic acid) polymers and fluorescently labelled with 7-
nitrobenzo-2-oxa-1, 3-diazole-methyl-methacrylate, as well as linear polystyrene.
The particles have a diameter s¼ 1.72 mm and a polydispersity of 7%, which are
determined by static and dynamic light scattering of a very dilute suspension
(volume fraction F¼ 0.005). They are dispersed in a mixture of cis-decalin and
cycloheptylbromide, which matches the density and almost matches the refractive
index of the particles. We do not observe any indication of anisotropy, sedi-
mentation or creaming of the samples during the observation time (days),
indicating a high degree of density matching between solvent and particles. In some
samples, creaming is observed after several weeks. In this solvent mixture, PMMA
particles acquire a charge33,57.

To prepare the colloid stock solution, the particles are sedimented using a
centrifuge. The sediment is assumed to be random close packed with a volume
fraction FRCP¼ 0.64 and used to prepare a colloid stock solution with FE0.40.
The polystyrene has a molar mass Mw¼ 3� 106 kg mol� 1 resulting in a radius of
gyration rg¼ 65 nm (ref. 58) and polydispersity characterized by
Mw/Mn¼ 1.17. For a dilute mixture, the polymer-colloid size ration 2rg/s¼ 0.076.
Since rg depends on concentration, an effective polymer-colloid size ratio
xeffE0.03 is estimated based on the Generalized Free Volume Theory59–61

(Supplementary Table 1). Different polymer stock solutions are prepared by
dispersing dry polymer in the solvent mixture to yield concentrations
4.3 mg ml� 1rcp¼mprs/msr18.9 mg ml� 1 with mp the mass of the dry polymer,
rs the density and ms the mass of the solvent mixture, respectively. Furthermore,
the overlap concentration is calculated using c�p¼3Mw=4pNAr3

g with NA Avogadro’s
constant. To obtain colloid–polymer mixtures with FE0.2, colloid and polymer
stock solutions are mixed with a volume ratio of 50:50 for samples B1–B3, C1,
C3 and D1, while dry polymer is added to the diluted colloid stock solution
in the case of samples C2, C4 and C5. (The exact composition of each sample is
reported in Supplementary Table 1.) To homogenize the samples, the mixtures
are left on a vortex mixer for some minutes and then on a flask shaker for
at least one day. To vary the screening length k� 1, different amounts of salt
(tetrabutylammoniumchloride, Supplementary Table 1)33 are added and the
mixture gently moved on the flask shaker for three days to help the dissolution of
the salt in the organic solvent mixture, which is slow and only very limited.
Therefore, unfortunately, the exact amount of dissolved salt is unknown. For a
quantitative comparison with the simulations, hence a fitting procedure is applied
(Supplementary Note 1).

Within 3 h after mixing, the samples are transferred to a home-built sample
cell62 and imaged with a confocal unit (Visitech VT-Eye and Nikon A1R-MP for
the structural and dynamic measurements, respectively) that is mounted on an
inverted microscope (Nikon Ti-U and Nikon Ti-E, respectively) equipped with an
oil immersion objective (Nikon Plan Apo VC � 100). In the structural
measurements, for each sample, 25–32 image stacks are recorded, each consisting
of 151 frames (512� 512 pixels) with z steps of 200 nm, corresponding to a volume
of 54� 54� 30 mm3, which contains about 7,000 particles. With a rate of 30 slices
per second and averaging of 3 slices to obtain 1 frame, a sampling time smaller
than 20 s per stack is achieved. For the determination of the dynamics,
two-dimensional slices (512� 512 pixels) corresponding to an area 63.5� 63.5 mm2

DP

(B3)

−4.6 −4.4 −3.5 −2.8 Vmin/kBT

Figure 7 | Particle depletion close to walls in directed percolated

systems. Rendered snapshots of samples in the vicinity of a wall obtained in

(top) simulations with systems along path A and (bottom) an experiment

with sample B3. Beyond the directed percolation transition, that is, for

Vmin/kBTo� 3.0, the vicinity of the walls starts to be depleted of particles.
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are recorded. For each sample, at least two series with 10,000 slices at a rate of 15
slices per second and 4,000 slices at 1 slice per second are taken.

The particle coordinates are extracted using standard methods63 and, where
necessary, are refined62. The mean squared displacement is calculated from the
particle coordinates according to hDr2ðtÞii;t0

¼h½riðt0 þ tÞ� riðt0Þ�2ii;t0
where the

average is taken over particles i and starting times t0. For the intermediate
scattering function Fðk; tÞ¼hexp½i~k �~DriðtÞ�ii;t0

¼ exp ik � DxiþDyiþDzið Þ½ �h ii;t0
the

magnitude of the scattering vector is chosen as k¼ 2pr1/3E2.37 mm� 1. The delay
time is scaled with the Brownian time tB¼s2= 3pD0ð Þ � 3:1 s for our system with
the short-time self-diffusion coefficient D0¼ kBT/g and the friction coefficient of a
particle, g. Note that we correct for possible drift in the set-up by subtracting the
centre-of-mass motion of all particles in the observation volume.

Computer simulations. We simulate a system consisting of M particles with mean
diameter s0 and a polydispersity of about 7%. The polydispersity is realized by
shifting the interaction potentials multiple times corresponding to 17 different
particle diameters si, whose numbers Mi are normally distributed with a standard
deviation of the diameter of 0.07s and M¼

P
i Mi . If not stated otherwise,

M¼ 9,856.
Particles interact with a potential V(rij)¼VC(rij)þVD(rij) that is composed of a

repulsive screened Coulomb part64

VC rij
� �
¼ C0

2
2þ ksij

� �2sij

rij
exp �k rij � sij

� �� �
; ð1Þ

where sij¼ (siþsj)/2, and a short-ranged depletion potential according to the
continuous Asakura–Oosawa potential34,65 plus a steep power law potential

VD rij
� �
¼ � W0

2
2� 3

rij=sij

1þ xeff� � þ rij=sij
� �3

1þ xeff� �3

" #
þVH rij

� �
: ð2Þ

Motivated by the experiments, xeff¼ 0.03 is fixed although in our model this
does not necessarily imply that the position of the potential minimum is fixed. The
hard interaction of particles at contact is approximated by VHðrijÞ¼H0ðrij=sijÞ� 32

(ref. 66). The prefactor W0 defines the energy scale of the attractive part and the
prefactor H0 the energy scale of the hard-sphere-like potential and is kept constant
at H0¼ 0.25 kBT. We cut the potential and the corresponding force at 4s and shift
them to zero at the cut-off distance. In our model, the range of the attractive part in
the potential may vary while other parameters are changed. The interaction
potential exhibits a minimum Vmin¼Vðseff

ij Þ with the effective diameter seff
ij slightly

smaller than sij. The effective packing fraction Feff¼ðp=6VÞ
P

i Miðseff
i Þ

3¼0:2,
with V the volume of the system, is kept constant. For bulk simulations we employ
periodic boundary conditions to the cubic simulation boxes. For simulations with
parallel flat walls, particles are exposed to an external force, which is defined for the
bottom wall as

Fext
i zð Þ ¼ ez

Fwall atan � z�si=2ð Þ
10s

� 	
; zosi=2

0 ; else

(
; ð3Þ

where we fix Fwalls¼ 104kBT. An analogous force is introduced for the top wall.
These forces imply interactions close to hard wall interactions but with a small soft
contribution to be suitable for simulations. In our Brownian dynamics simulations
particle trajectories are governed by their individual Langevin equations67

gi _ri tð Þ ¼ Fi r1; . . . ; rNð Þþ f i tð Þ; ð4Þ

with the friction coefficient gi and hf i tð ÞfT
j t0ð Þi¼2gikBTdijd t� t0ð ÞI3, where fT

j is
the transpose of fj, I3 the three-dimensional unity matrix, gi the friction coefficient
of a particle with diameter si, and d(t� t0) and dij the Dirac delta and the
Kronecker delta, respectively.

As in the experiments, the Brownian time tB¼ s2/(3pD0), with the short-time
self-diffusion coefficient D0¼ kBT/g and the friction coefficient of a particle with
average diameter, g, is used as time scale. The time steps are 10� 4tB or less.
Starting from an initially randomly distributed ensemble, the systems are
equilibrated for 300 tB before statistics are gathered, unless stated otherwise.

Data availability. The data from experiments as well as the data of the simulations
are available from the corresponding author.

References
1. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267,

1924–1935 (1995).
2. Liu, A. J. & Nagel, S. R. Nonlinear dynamics: Jamming is not just cool any

more. Nature 396, 21–22 (1998).
3. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass

transition. Nature 410, 259–267 (2001).
4. McKenna, G. B. Glass dynamics: diverging views on glass transition. Nat. Phys.

4, 673–673 (2008).
5. Hunter, G. L. & Weeks, E. R. The physics of the colloidal glass transition. Rep.

Prog. Phys. 75, 066501 (2012).

6. Hendricks, J., Capellmann, R. F., Schofield, A. B., Egelhaaf, S. U. & Laurati, M.
Different mechanisms for dynamical arrest in largely asymmetric binary
mixtures. Phys. Rev. E 91, 032308 (2015).

7. Mattsson, J. et al. Soft colloids make strong glasses. Nature 462, 83–86 (2009).
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Supplementary Figure 1: Characteristic decay time of the self intermediate scattering
function. Characteristic decay time t? at which the self intermediate scattering function F (k, t)
reaches 0.4, normalized by the Brownian time τB, as a function of the mean number of bonds
per particle 〈N〉 as obtained by (a) simulations and (b) experiments. The times t? have been
determined by fitting a single exponential decay to F (k, t) at short times (Fig. 5).

Sample Φ cp/c
∗
p cfree

p /c∗p ξeff csalt [mM]
B1 0.19 1.46 ± 0.01 1.95 ± 0.01 0.031 ± 0.001 3.5 ± 0.5
B2 0.23 1.54 ± 0.01 2.06 ± 0.01 0.030 ± 0.001 9.4 ± 0.5
B3 0.21 1.55 ± 0.01 2.01 ± 0.01 0.030 ± 0.001 20.1 ± 0.5
C1 0.20 2.25 ± 0.01 2.87 ± 0.01 0.025 ± 0.001 0.0 ± 0.5
C2 0.23 2.24 ± 0.01 2.98 ± 0.01 0.024 ± 0.001 3.2 ± 0.5
C3 0.20 2.25 ± 0.01 2.87 ± 0.01 0.025 ± 0.001 4.0 ± 0.5
C4 0.20 2.24 ± 0.01 2.86 ± 0.01 0.025 ± 0.001 7.8 ± 0.5
C5 0.24 2.24 ± 0.01 3.02 ± 0.01 0.024 ± 0.001 8.4 ± 0.5
D1 0.19 0.76 ± 0.01 0.97 ± 0.01 0.045 ± 0.001 2.8 ± 0.5

Supplementary Table 1: Experimental samples and their compositions. Colloid volume
fraction Φ; bulk polymer concentration normalized by the overlap concentration, cp/c

∗
p; free

polymer concentration, i.e. in the volume not occupied by the colloids1–3, normalized by the
overlap concentration, cfree

p /c∗p; effective polymer-colloid size ratio ξeff; salt concentration csalt.
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Supplementary Notes
Supplementary Note 1:
Mapping of simulation and experimental parameters

Two aspects are impeding a direct calculation of the interaction potential (Eqs. 1, 2) from the
experimental values of the polymer, cp, and salt, csalt, concentrations. The Asakura-Oosawa
potential is not quantitatively accurate at the large polymer concentrations and, furthermore,
although csalt is well-known experimentally, the amount of salt that is effectively dissolved and/or
the conductivity, and hence the ionic strength, cannot be determined accurately enough4. The
low dielectric constant of the organic solvent mixture also precludes an exact measurement of
the zeta potential of the particles5,6. Due to these uncertainties, a fitting procedure has been
applied to determine the best parameter values of the potential (Eqs. 1, 2), which is guided by
the experimentally determined pair correlation functions g(r) (Fig. 1b). This is done following
two procedures. First, all parameters are fitted, which provides very good fits to g(r) (Fig. 1b,
light blue line) but unreasonable values for C0, κ and W0, as explained and discussed in the
last paragraph of this Supplementary Note 1. Hence this procedure is not used to obtain the
diagram in Fig. 2 but the results are reported for comparison (Figs. 1b, 3c inset). Second, the
parameters of the depletion (electrostatic) potential are kept constant along path B (path A) and
the knowledge on the sequence of increasing strength and range of the electrostatic (depletion)
potential is exploited. (Details are explained in the following.) This yields reasonable values for
C0, κ and W0, but compromises the quality of the fits somehow. Nevertheless, this procedure is
applied to obtain Fig. 2.

Calibration of C0. The experiments have been carried out with charged particles. The
charge of the particles is contained in the interaction parameter C0 in the electrostatic part of
the interaction potential (Eq. 1). Using simulations, C0 is fitted. The fit is based on the pair
correlation function g(r) of a sample without added salt (C1, see Supplementary Table 1) and
thus interactions that are dominated by the electrostatic interaction. In the fit, only the parameter
C0 (Eq. 1) is varied and, as suggested by the low salt concentration, κσ = 0.25 is fixed. Best
agreement with the data was obtained for C0 = 200 kBT . Consequently, this value was used for
all samples. With C0 fixed, the attraction strength W0 (Eq. 2) was successively increased.

Fitting based on the mean number of bonds 〈N〉. In order to map the experimental samples
onto the VD,min– κσ plane (Fig. 2), the positions of all samples have been fitted simultaneously
based on their mean number of bonds 〈N〉 and taking into account the following two constraints:
First, their relative distances along the κσ axis is given by their relative rather than their absolute
screening lengths according to Supplementary Table 1. Second, the attraction strengths W0 cor-
responding to the three polymer concentrations cfree

p = [c∗p, 2c
∗
p, 3c

∗
p] are assumed to differ by at

least 4 kBT . Thus, only affine transformations of the sample positions in the VD,min– κσ plane are
considered in a simultaneous fit of all sample positions. The absolute positions were determined
by minimizing the difference between 〈N〉sim and 〈N〉exp as determined in simulations and exper-
iments, respectively, i.e. the minimum Min{∑Bi,Ci,Di

|〈Nj〉sim − 〈Nj〉exp|}, where the individual
〈Nj〉sim are constrained by the allowed affine transformation, as explained above. This fit deter-
mines the relative positions of all samples, such that the overall agreement between the mean
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number of bonds from experiments and simulations are optimized. While this fitting procedure
is appropriate for our purposes, there might be small deviations to the precise absolute positions
of the experimental samples.

Unconstrained fit. In order to further optimize the individual sample positions within the
VD,min– κσ plane, we additionally performed a free fit where the parameters are not constrained
to any path. This fit is based on the minimization of the absolute error vector ∆g(r) = |gsim(r)−
gexp(r)| between the pair correlations in simulations and experiments, respectively, over the in-
terval [σ, 3σ]. Thus, the pair correlation functions, g(r) (Fig. 1b), and the distributions of the
angle between two successive bonds, p(ϕ) (Fig. 3c, inset), agree better, but the fitted positions ,
i.e. VD,min and κ, are not fully consistent with the compositions of the samples.

Supplementary Note 2:
Characteristic decay time t? of the self intermediate scattering function F (k, t) in directed
percolated systems

In directed percolated systems the dynamics of the system slows down significantly, which is
quantified by the self intermediate scattering function F (k, t) (Fig. 5). The characteristic decay
time t? of F (k, t) is defined as the time required to reach F (k, t?) = 0.4. Not all F (k, t) decay
to 0.4 in the time windows of the experiments. Thus, a single exponential decay was fitted to
F (k, t) at short times with F (k, 0) set to the value of the first data point and F (k,∞) set to
0. This leaves only the characteristic decay time t? as free parameter. For consistency, this
fitting procedures was applied to simulation and experimental data sets and both data sets are
represented as a function of the mean number of bonds per particle 〈N〉.

The dependencies of t? on 〈N〉 are presented in Supplementary Fig. 1. In simulations as
well as in experiments, t? increases moderately for small 〈N〉, but increases by several orders
of magnitude for large 〈N〉 that correspond to directed percolation. This trend is consistently
observed in simulations and experiments. Note that the experimental and simulation results
cannot be compared directly, because they are determined along different paths.
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Different mechanisms for dynamical arrest in largely asymmetric binary mixtures
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Using confocal microscopy we investigate binary colloidal mixtures with large size asymmetry, in particular the
formation of dynamically arrested states of the large spheres. The volume fraction of the system is kept constant,
and as the concentration of small spheres is increased we observe a series of transitions of the large spheres to
different arrested states: an attractive glass, a gel, and an asymmetric glass. These states are distinguished by the
degree of dynamical arrest and the amount of structural and dynamical heterogeneity. The transitions between
two different arrested states occur through melting and the formation of a fluid state. While a space-spanning
network of bonded particles is found in both arrested and fluid states, only arrested states are characterized by
the presence of a space-spanning network of dynamically arrested particles.

DOI: 10.1103/PhysRevE.91.032308 PACS number(s): 64.70.pv, 61.43.−j, 63.50.Lm, 83.80.Kn

I. INTRODUCTION

The glass transition in model one-component hard-sphere
colloidal dispersions has been the subject of many studies
[1–7]. The formation of a glass state for volume fractions
φ > 0.58 is due to the dynamical arrest of particles in cages
formed by their neighbors. Only activated processes can
release the constraints that limit the motion of the particles
to the in-cage space and then lead to diffusion [6].

Addition of a second component with a different size affects
the glass transition [8–23]. For moderate size disparities,
δ = Rs/RL � 0.35, mixing particles with different radii Rs

and RL, respectively, results in a shift of the glass transition
to larger total volume fractions φ, similar to the effect of
polydispersity [8–10]. On the other hand if the size disparity
is larger, δ � 0.35, depending on the mixing ratio xs = φs/φ,
with φs the volume fraction of small spheres, different glass
states have been predicted by mode-coupling theory (MCT)
and the self-consistent generalized Langevin equation theory
(SCGLE) [10–12,16].

The different glass states are distinguished by the arrest
mechanism of the large spheres and the mobility of the small
spheres. At small xs, a double glass is expected, in which both
species are arrested through caging of spheres of the same
species, and in addition the large particles might be bonded.
At intermediate xs a single glass occurs, in which only the
large particles are arrested while the small particles are still
mobile; for δ � 0.2 the large particles are expected to always
form an attractive glass, while for smaller δ a repulsive glass
is also predicted. At large xs, an asymmetric or torroncino
glass forms, in which the large particles are localized in a
glass of small spheres. Furthermore, it has been proposed that
equilibrium gel states of the large spheres form at intermediate
xs due to the oscillatory form of the effective potential [16].

The existence of some of these states has been verified
in experiments and simulations. A transition from a double
glass to an asymmetric glass was recently observed in
experiments for δ = 0.2 [18,19], showing similarities with
simulations on soft spheres [14,15] and asymmetric mixtures

*marco.laurati@uni-duesseldorf.de

of star polymers [24,25]. This change in caging mechanism
is responsible for glass softening, facilitated yielding and
acceleration of the dynamics of the large particles under shear
at intermediate xs [18,19]. Dynamically arrested states of the
large spheres in which the smallest component remains mobile
have been observed experimentally at δ ≈ 0.1 [13] and in
simulations [14,15].

Despite these findings, a systematic investigation of dy-
namically arrested states in largely asymmetric hard-sphere
mixtures with δ � 0.2 is still missing. In particular an
experimental characterization of the theoretically predicted
different arrested states of the large spheres as a function of the
composition xs and the total volume fraction φ and a discussion
of the role of depletion interactions and bonding at these large
size disparities are still missing.

Here we investigate, using confocal microscopy and particle
tracking, the occurrence of dynamically arrested states in
binary mixtures of hard-sphere colloids with size ratio δ ≈ 0.09
and fixed total volume fraction φ ≈ 0.60 [26]. We analyze
the average dynamics of the large particles in the mixtures
through the mean squared displacements to reveal dynamically
arrested states, and we determine the presence and spatial
distribution of dynamical heterogeneities. We complement this
dynamical information with information on the arrangement
of the large particles, namely, their pair distribution function,
the distribution of the number of bonds, and the organization of
bonded particles into clusters and eventually into a network, as
well as the degree of structural heterogeneity. Combining the
dynamical and structural information we reveal the existence
of repulsive and attractive glasses at small xs, a gel state at
intermediate xs, and an asymmetric glass of clusters at large
xs. The transition between the glass states involves the melting
of the glasses and the occurrence of fluid states.

II. MATERIALS AND METHODS

A. Samples

The samples are mixtures of polymethylmethacrylate
(PMMA) colloids with radii of the large spheres RL = 720 ±
30 nm (labeled with NBD), as determined by static light
scattering, and radii of the small spheres Rs = 65 ± 10 nm

1539-3755/2015/91(3)/032308(11) 032308-1 ©2015 American Physical Society
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FIG. 1. (Color online) Mean squared displacements of the large
spheres, �r2/(2RL)2, for samples with total volume fraction φ ≈
0.60, size ratio δ = 0.09, and different compositions xs = 0.0 (•),
0.01 ( ), 0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ). Inset: Localization
length L/(2RL) as a function of xs.

(labeled with DiIC18), as determined by dynamic light scat-
tering, corresponding to a size ratio δ = RL/Rs = 0.09. The
polydispersity of the large spheres, σL ≈ 13%, was also
estimated by static light scattering. For the small spheres, the
absence of crystallization in the quiescent and sheared state
suggests σs > 12% [27]. Particles are dispersed in a mixture
of cis-decalin and cyclohexylbromide (CHB), which closely
matches their density and refractive index. In this solvent mix-
ture the particles acquire a charge, which is screened by adding
4 mM tetrabutylammoniumchloride (TBAC) [28]. Under these
conditions the particle interactions are hard-spherelike [26].

A sediment of the large particles with φ = 0.66, as
estimated from comparison with numerical simulations [29],
is diluted to yield a one-component dispersion of large spheres
with φ ≈ 0.60, where, following a recent study [30], the
uncertainty �φ can be as large or above 3%. Nevertheless
the arrested dynamics of this dispersion (Fig. 1) indicate
φ > 0.58. The sample of large spheres with φ ≈ 0.60 is
used as a reference. The volume fraction of a glass sample
containing only small particles is adjusted in order to obtain
comparable linear viscoelastic moduli after normalization of
the viscoelastic moduli with the energy density 3kBT/4πR3,
where kBT is the thermal energy, and the frequency by
the inverse free-diffusion Brownian time τ−1

0 = D0/R
2 =

kBT/6πηR3, where η = 2.2 mPa s is the solvent viscosity.
For our system the φ-dependent short-time Brownian time of
the large spheres was estimated as τB = R2

L/DL(φ) ≈ 56 s,
with DL(φ) = f (φ)DL

0 the φ-dependent long-time diffusion
coefficient. The factor f (φ) was estimated by extrapolating the
data in Fig. 8 of Ref. [3] to φ = 0.60, yielding f ≈ 1/30. The
viscoelatic moduli of the two one-component glass samples
were measured using a stress controlled AR2000ex rheometer
and a cone-plate geometry (see Ref. [18] for additional details).
In this way we obtain samples with comparable rheological
properties and, according to the generalized Stokes-Einstein
relation [31], also dynamics and hence a similar location with

respect to the glass transition. The comparable dynamics but
different polydispersities of the one-component samples imply
slightly different φ.

Samples with constant total volume fraction φ ≈ 0.60 and
different compositions, namely, fractions of small particles
xs = φs/φ, where φs is the volume fraction of small particles,
are prepared by mixing the one-component samples. Despite
the relatively large uncertainty in φ, the important control
parameter of our study, xs, has a small uncertainty, less than
1%. This is achieved by weighting the one-component samples
before mixing. The mixture was successively homogenized in
a vortex mixer for a few minutes and in a roller mixer for at
least 12 hours.

B. Confocal microscopy

Confocal microscopy measurements were performed using
a Nikon A1R-MP confocal scanning unit mounted on a Nikon
Ti-U inverted microscope, with a 60× Nikon Plan Apo oil
immersion objective (NA = 1.40). Each stack consists of 100
frames of 512 × 512 pixels acquired at a rate of 30 fps,
except for xs = 0 and 0.01, for which each stack consists
of 150 frames of 512 × 512 pixels. One stack corresponds
to a volume of approximately 72 × 72 × 30 μm3 (xs = 0.0
and 0.01) or 72 × 72 × 20 μm3 (0.1 � xs � 0.9). Time series
of 500 stacks were acquired for five different volumes for
each sample, except for xs = 0.0 for which 1000 stacks
were acquired. The total measurement time of a time series
is tmeas ≈ 30τB (0.1 � xs � 0.9), 60τB (xs = 0.0), and 44τB

(xs = 0.01), respectively. Coordinates and trajectories of the
large particles were extracted from the time series using
standard particle tracking routines [32].

III. RESULTS AND DISCUSSION

A. Dynamics

1. Mean squared displacement and distribution of displacements

Based on the time series of three-dimensional confocal
microscopy stacks of images, particle trajectories were de-
termined and used to calculate mean squared displacements
(MSDs) �r2(t) of the large spheres in mixtures with different
compositions (Fig. 1):

�r2(t) = 〈
r2
i (t,t0) − r2

i (t0)
〉
i,t0

, (1)

where t is the delay time, t0 a time during the trajectory of a
particle i, and 〈 〉i,t0 indicates the average over all particles i in
the observation volume and all times t0.

The one-component system of large spheres (xs = 0.0)
presents arrested dynamics, as indicated by the plateau of the
MSD extending to long delay times, with particles localized on
a length scale L/2RL =

√
�r2(tmin)/2RL ≈ 0.1, with tmin the

minimum delay time at which the MSD was measured. (Note
that in samples with a less well established plateau at tmin,
the value of the localization length L is only indicative.) The
value L/2RL ≈ 0.1 is characteristic of a colloidal hard-sphere
glass, in which particles are caged by nearest neighbors.
Consistent with this observation, the distributions of particle
displacements in x direction, P (�x), calculated for different
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FIG. 2. (Color online) Distributions of displacements of the large
spheres in x direction, P (�x), over delay times �t/τB = 0.06 ( ),
0.3 ( ), 3.0 ( ), 18.0 ( ) for samples with φ ≈ 0.60, δ = 0.09, and
different compositions xs, as indicated. Lines represent Gaussian fits.

delay times t (Fig. 2) show hardly any evolution of the
dynamics and the presence of small non-Gaussian tails,
characteristic of glassy systems [5,33]. The distributions in
y and z directions show similar results. For xs = 0.01, the
dynamics are still arrested, again indicating a glass state, with
an even smaller localization length, L/2RL ≈ 0.08. A smaller
localization length indicates a tightening of the cage. Since the
volume fraction of large spheres is slightly smaller than for
xs = 0.0, the tightening of the cage is expected to result from
the intercalation of small spheres in between large spheres
and/or the exclusion of small spheres from depletion zones
between large spheres, thus inducing an effective attraction
(bonds) between the large spheres (see below). At long times
the dynamics appear to be slightly faster than for xs = 0.0.
Furthermore, the distribution of displacements P (�x) shows
comparable Gaussian contributions as the sample with xs =
0.0, but more pronounced non-Gaussian tails, which indicate
that the dynamics is significantly more heterogeneous (Fig. 2).

The dynamics of the mixture with xs = 0.1 are not arrested
(Fig. 1). Diffusive behavior is encountered at long times, while
a localization plateau might exist at very short times. Due to
the absence of a clear plateau, only an upper bound can be
estimated for the localization length, L/2RL � 0.1, which,
if it exists, is smaller than that of the one-component glass.
The displacement distributions P (�x) indicate fast dynamics,
but, at short and intermediate times, also the presence of pro-
nounced non-Gaussian tails, which again indicate significant
dynamic heterogeneities. At longer times, when particles begin
to diffuse, the non-Gaussian tails disappear (Fig. 2).

Increasing the amount of small spheres to xs = 0.3 induces
a reentrant behavior. The dynamics considerably slow down
and show a subdiffusive behavior (Fig. 1). The subdiffusive
dynamics suggest the presence of a broad distribution of
particle mobilities, and possibly dynamical heterogeneities.
This is confirmed by P (�x), which shows a relatively narrow,
Gaussian central peak, and very long, almost exponential tails
reflecting large displacements of some particles (Fig. 2). The
concave shape of the tails at long times is qualitatively different
from all other samples. Moreover, the localization length,
L/2RL � 0.055, becomes significantly smaller than that of
samples with xs = 0.0 and 0.01. The small localization length
indicates a pronounced tightening of the cage, which again
might be associated with particle-particle bonding or interca-
lation of small particles in between large particles (see below).

For xs = 0.5 the dynamics become faster and, while still
slightly subdiffusive, approach diffusion at long times. The
localization length, L/2RL ≈ 0.07, is also significantly larger
compared to xs = 0.3. The non-Gaussian tails in P (�x) are
considerably less pronounced and have a different shape than
for xs = 0.3, suggesting less heterogeneous dynamics. Further
increasing the amount of small spheres to xs = 0.7 the dynam-
ics slow down but are still almost diffusive. Furthermore, the
non-Gaussian contributions in P (�x) are much smaller than
for xs = 0.5, indicating a decreasing dynamical heterogeneity.
At the same time, the localization length, L/2RL ≈ 0.056
is smaller than for xs = 0.5 and rather comparable to xs =
0.3. For xs = 0.9 the dynamics are again arrested and the
localization length becomes even smaller, L/2RL ≈ 0.05,
about a factor 2 smaller than in the one-component glass of
large particles (Fig. 1). Also P (�x) is very narrow with hardly
any evolution of the dynamics and very small non-Gaussian
tails (Fig. 2). In summary, both the localization length L and
the degree of diffusivity of the long-time dynamics indicate a
bimodal shape as a function of xs, which reflects the transition
between different arrested states, characterized by melting and
the formation of fluid states.

2. Spatial distribution of mobile particles

Beyond the average dynamics of the large particles,
quantified by �r2(t) and P (�x), we investigated the spatial
distribution of single particle mobilities, in particular whether
they show spatial heterogeneities [34], and whether they are
related to the spatial distribution of the small spheres. The
particles which, in a given sample, perform the 20% largest
displacements over a time interval of about τB/4 are identified
and highlighted in Fig. 3 [35]. Qualitatively similar results are
obtained for longer time intervals; time intervals up to 5τB are
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FIG. 3. (Color online) Rendering of 3 μm thick slices of a central
region of 44 × 33 μm2, in the bulk of samples with φ ≈ 0.60,
δ = 0.09 and different compositions xs (as indicated) as obtained
from coordinates extracted from confocal microscopy images. Left:
Large particles with the 20% largest displacements over a time
interval of about τB/4 are shown in red (light gray). Right: Large
particles with the 20%–30% smallest number of bonds per particle
are shown in green (light gray). The small particles are not
shown.

examined. In the fluid samples the dynamical heterogeneities
reduce once the diffusive regime is reached.

In the one-component glass of large spheres, xs = 0.0,
the particles with a large mobility appear to be grouped in
small clusters, which are randomly distributed in the sample.
For xs = 0.01, the 20% fastest particles are still distributed
throughout the sample, but seem to coincide with regions
with only few large spheres and a clear majority of small
particles (which are not visible and therefore appear as voids
in the images). This correlation becomes particularly evident
in mixtures with xs = 0.1, 0.3, and 0.5. This suggests that
contact with the more mobile small spheres enhances the
dynamics of the large spheres, as already observed in mixtures
with smaller size asymmetry [36,37]. Further increasing xs, the
large particles become more dilute and hence the voids expand.
Concomitantly, the most mobile particles again become more
homogeneously distributed in the sample.

B. Structure

1. Pair distribution function

The particle positions calculated using the confocal mi-
crographs allow us to determine the pair distribution function
g(r) = N (r)/4πρr2 dr , with N (r) the number of particles in a
shell of thickness dr at distance r from a selected particle and
ρ = 3φ/(4πR3

L){1 − xs(1 − 1/δ3)} the average bulk number
density of colloids (Fig. 4). For all xs the g(r) indicate
an amorphous ordering, with the first peak representing the
first shell of nearest neighbors and the following peaks the
successive shells. The increasing dilution of the large spheres
with increasing xs is evident in the snapshots in Fig. 3 and
also in the g(r) for small and large xs; the first peak decreases
and shifts to larger interparticle distances, and the fluctuations
at longer distances become less pronounced. However, at
intermediate xs, additional effects like bonding and structural
heterogeneity, also visible in Fig. 3, lead to nonmonotonic and
nontrivial variations of the heights, areas, and positions of the
peaks and minima as a function of xs (Fig. 5).

8

6
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2

0

g(
r)

43210
r/2RL

FIG. 4. (Color online) Pair distribution function g(r) of large
particles with radius RL in mixtures with φ ≈ 0.60, δ = 0.09 and
different compositions xs = 0.0 (•), 0.01 ( ), 0.1 ( ), 0.3 ( ), 0.5
( ), 0.7 ( ), 0.9 ( ). Data for xs > 0 are shifted vertically for
clarity. Dashed lines indicate particle-particle distances r = 2RL,
r = 2(RL+Rs), r = 2(RL+2Rs), and r = 2(RL+3Rs).
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FIG. 5. (Color online) (a) Value of the pair distribution function
g(r), shown in Fig. 4, at the first peak, gmax (left y axis) and peak
area Amax(right y axis), (b) position of the first peak rmax/2RL (left y

axis) and second peak r2max/2RL (right y axis), dashed lines indicate
particle-particle distances r = 2RL, r = 2(RL+Rs), r = 2(RL+2Rs),
(c) depth of the first minimum �gmin = 1 − g(rmin), and (d) position
of the first minimum rmin/2RL, as a function of xs.

Upon addition of a tiny fraction of small spheres, i.e., from
xs = 0.0 to xs = 0.01, the height gmax and area Amax of the
first peak increase, while its position rmax shifts to slightly
larger values [Figs. 5(a) and 5(b)]. Thus, while the large
spheres are slightly diluted and hence the peak is shifted, their
contacts are more pronounced, suggesting the formation of
particle-particle bonds. Hence the reduction of the localization
length in the MSD of this sample (Fig. 1) seems to be
associated to bond formation rather than to the intercalation of
small particles between the large spheres, which is supported
by the fact that rmax < 2(RL+Rs).

With the addition of a larger fraction of small spheres,
xs = 0.1, the first peak remains at approximately the same
position, but its height gmax and area Amax decrease, and

it becomes broader [Figs. 4, 5(a), and 5(b)], indicating a
smaller number of particles in the first shell of neighbors.
In contrast, the first minimum shifts to smaller distances
and becomes less pronounced [Figs. 4, 5(c), and 5(d)]. A
less pronounced first peak could be related to the increasing
dilution of the large spheres, but, together with its broadening
and the shifted and flatter first minimum, might also indicate a
more heterogeneous structure, possibly associated with cluster
formation. An increase of the structural heterogeneity is also
evidenced by the snapshots shown in Fig. 3 and will be
discussed in more detail below.

For xs = 0.3 the first peak increases in height but decreases
in area with respect to xs = 0.1 while it remains at the same
position [Figs. 4, 5(a), and 5(b)]. This suggests that on average
there are less particles in the first shell, which, however, tend to
be in closer contact. The first minimum shifts to considerably
smaller distances [Figs. 4 and 5(d)]. Its depth is comparable to
that of xs = 0.1 [Figs. 4 and 5(c)], but it is much more extended
with the second maximum becoming less pronounced (Fig. 4).
This indicates a further increase of structural heterogene-
ity, which is also evident in the snapshots of Fig. 3 and
might reflect the dynamical heterogeneities described above
(Sec. III A).

Further increasing xs to 0.5 the height gmax and area Amax

of the first peak decrease significantly and the first peak moves
to larger values of r [Figs. 4, 5(a), and 5(b)]. At the same time
the peak broadens and an extended shoulder is observed in
between the main peak and the first minimum at r/2RL ≈ 1.5,
which is also more pronounced [Figs. 4 and 5(c)]. The
relatively weak second maximum is now located at r/2RL ≈
2.0, i.e., at a distance corresponding to a second spherical
shell of neighbors. The shift of the peaks and minimum to
larger distances, and the decrease of the first peak height gmax

and area Amax, are consistent with the progressive dilution of
the large spheres, their looser structural organization and the
reduction of the number of particle contacts. At the same time,
the reduction of the peak and its broadening with an extended
shoulder between the first peak and first minimum also
indicate the presence of structural heterogeneity, also visible in
Fig. 3.

If the fraction of small spheres is further increased to
xs = 0.7 and 0.9, the first and second peaks again shift to
larger distances, and the first peak height gmax and area Amax

are reduced [Figs. 4, 5(a), and 5(b)]. The first minimum,
while staying at the same location, becomes increasingly
more shallow [Figs. 4, 5(c), and 5(d)]. Furthermore, the
shoulder in between the main peak and first minimum is less
pronounced at xs = 0.7 and disappears at xs = 0.9 (Fig. 4).
This suggests that the structural organization of the large
spheres tends to that of a fluid of isolated large particles
and the large particles appear as homogeneously distributed
impurities in the dense structure of small spheres (Fig. 3).
For xs = 0.9, however, g(r) is significantly different from
that of a one-component dispersion of large spheres with
volume fraction φ(1 − xs) = 0.06. The first peak is observed
at r ≈ 2RL+2Rs, corresponding to a configuration in which
two large particles are separated by a small particle, an
“extended dimer configuration.” The existence of such dimers
is attributed to the depletion interactions at this large size
disparity.
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FIG. 6. (Color online) Left: Rendering of 4 μm thick slices of
area 58 × 42 μm2 in the bulk of samples with φ ≈ 0.60, δ = 0.09 and
different compositions xs (as indicated) as obtained from coordinates
extracted from confocal microscopy images. (Left) Large particles
have different color (gray-scale value) according to their number of
bonds NB (as indicated). (Right) Large particles pertaining to the
same cluster are indicated with the same color (gray-scale value).
The small particles are not shown.

2. Particle bonds and cluster sizes

We analyzed in more detail the formation and rearrange-
ment of network structures by determining the number of
bonds per particle, Nb, as well as its distribution, P (Nb). Two
particles are considered bonded if their centers are closer than
the first minimum of g(r) of the sample with xs = 0.0, i.e.,
if r � 2.85RL. We verified that slightly different definitions

FIG. 7. (Color online) (a) Distribution of the number of bonds
Nb per large particle, P (Nb). Inset: Most likely number of bonds
Nmax

b (•, left axis) and width WN of P (Nb) ( , right) as a function
of composition xs. (b) Cluster size distribution P (Nc), with Nc the
number of particles forming the cluster. Lines are fits of a power-law
dependence f (Nc) = AN−γ

c exp(−Nc/kc). Inset: Fit parameters A,
γ , and kc as a function of xs (c) Remoteness distribution, P (ξ ),
Inset: Average remoteness 〈ξ〉 as a function of xs. The mixtures had
φ ≈ 0.60, δ = 0.09 and different compositions xs = 0.0 (•), 0.01 ( ),
0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ).

of the bond length do not qualitatively affect the results.
The samples are then rendered with the particles colored
according to their number of bonds (Fig. 6, left) [35] and
the corresponding distribution of the number of bonds P (Nb)
is calculated taking into account and averaging all stacks of a
time series [Fig. 7(a)]. For the one-component purely repulsive
hard-sphere glass also particle-particle bonds are identified
due to the definition of the bond length (Fig. 6, left). The
distribution of bonds per particle presents a maximum for
Nmax

b = 4 [Fig. 7(a)]. For xs = 0.01, there is a significant
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increase in Nb (Fig. 6) and, accordingly, the distribution
shifts to larger values of Nb, with the maximum occurring
at Nmax

b = 5, and becomes broader [Fig. 7(a)]. The number of
bonds decreases again for xs = 0.1 (Fig. 6), and the distribution
is almost identical to that of xs = 0.0, suggesting that small
particles start to intercalate between large particles breaking
part of the bonds present for xs = 0.01. Upon a dilution of
the large spheres to xs = 0.3, Nb remains almost unchanged
(Fig. 6) with only a slight shift of the distribution P (Nb) to
smaller values. This can be attributed to the formation of
clusters within which large particles maintain their average
number of bonds due to the increased local concentration
of large particles. This implies that the sample becomes
heterogeneous on a mesoscopic length scale, as also suggested
by the increased width of P (Nb) [Fig. 7(a)]. Upon further
increasing xs, however, Nb considerably decreases (Fig. 6)
and the distribution shifts to progressively smaller values of
Nb and becomes narrower, suggesting a decreasing structural
heterogeneity. Nevertheless, bonds are present in all samples,
including xs = 0.9, where a significant number of dimers is
found, consistent with our other findings. The xs dependence
of Nb closely resembles that of Amax, as expected from the
criterion chosen to define a bond. Furthermore, the width of
the distributions, WN, presents a bimodal shape as a function
of xs, similar to that of the localization length L and the
maximum of g(r). Bonded large particles organize into clusters
of different sizes, i.e., different numbers of large particles
Nc belonging to the same cluster, that eventually connect to
form a network. This is illustrated in Fig. 6, which shows
rendered sample volumes, with particles pertaining to the same
cluster having the same color. It is evident that for xs � 0.7
a percolating network of bonded particles spans the whole
system. This is confirmed by the distribution of cluster sizes,
P (Nc) [Fig. 7(b)]. Most of the particles organize into one
big cluster representing the space spanning network [the data
points at the far right in Fig. 7(b)], while also a few small
clusters, composed of at most 100 particles, are present in these
samples. [Note that P (Nc) is the probability for a cluster, not
for a particle to be located in a cluster, of size Nc.] Whereas
the distributions are very similar for samples with xs = 0.0,
0.1, 0.3, and 0.5, the mixture with xs = 0.01 shows very few
small clusters, suggesting a more homogeneous structure in
comparison to the samples with higher xs. For the sample with
xs = 0.7 a network is still present [Figs. 6 and 7(b)], but P (Nc)
is significantly broader for the smaller clusters, extending to
sizes beyond 50 particles per cluster. This indicates a transition
from a network structure of large particles to isolated clusters
of large particles immersed in a “sea” of small particles. This
transition is completed for xs = 0.9, where no large clusters
are observed.

The function f (Nc) = AN
−γ
c exp(−Nc/kc) fits the exper-

imental distributions P (Nc), where the fit parameters A, γ ,
and kc are not completely uncorrelated and thus their values
have to be treated with care. The fit function is expected
to describe the cluster distribution of irreversible physical
gels [38]. An exponent γ < 3 indicates the presence of a
space spanning network of clusters. Initially (xs � 0.5) the
exponent is approximately constant, γ ≈ 3 ± 0.5, and then
decreases with a minimum at xs = 0.7. These values of γ are

consistent with the presence of a space-spannning network.
The exponential cutoff kc quantifies the limiting cluster size.
It is almost constant except a minimum for xs = 0.01 and a
maximum for xs = 0.7. The intercept A, which is related to
the fraction of particles not pertaining to any cluster, shows a
slight decrease except for a peak at xs = 0.01 and a minimum
for xs = 0.7. The trends of the fit parameters are consistent
with the more homogeneous structure of sample xs = 0.01
and confirm the broad distribution of cluster sizes of sample
xs = 0.7.

3. Remoteness

In order to investigate the degree of structural heterogene-
ity, we determined the distribution of particle remoteness
P (ξ ) [39,40] [Fig. 7(c)]. Particle remoteness ξ measures the
distance of a point from the surface of the closest particle. A
large value of the remoteness ξ is therefore an indication of
large voids or open arrangements and a broad distribution of ξ

of heterogeneous structures. Although our samples are densely
packed with φ = 0.60, we are interested in the arrangement of
the large spheres only and hence consider as “void” any volume
which is not occupied by large spheres. A large fraction of the
voids is thus occupied by small (invisible) particles.

The one-component glass of large spheres shows a P (ξ )
which is peaked at a small value, ξ ≈ 0.2RL and shows only
a very small probability for ξ > RL. This reflects the small
interstitial voids between densely packed large spheres. For
xs = 0.01, the P (ξ ) is shifted to smaller ξ and the probability
of large voids is further suppressed. This is also indicated by the
smaller average remoteness 〈ξ 〉 [Fig. 7(c), inset]. In contrast,
for xs = 0.1, while the main peak remains at about the same
position, the distribution considerably broadens and ξ > RL

becomes more probable, with a second very weak maximum
at ξ ≈ 2.25RL and 〈ξ 〉 is increased. Thus larger unoccupied
regions exist. The probability of larger ξ , including the weak
maximum and 〈ξ 〉, increase further for xs = 0.3 while the main
peak remains at ξ ≈ 0.2RL. This suggests the presence of a
backbone of bonded particles in close contact, i.e., a network
of large particles. For xs = 0.5 and 0.7 the probability of large
ξ/RL > 2 remains almost unchanged, but the main peak shifts
to larger ξ and 〈ξ 〉 slightly increases while the distribution
broadens. For xs = 0.9 the whole distribution is significantly
shifted to large values of ξ . This is an indication that the
gel network starts to melt due to the increasing dilution of
large spheres (increase of 〈ξ 〉) and for xs = 0.9 disappears,
and isolated particles or “extended dimer configurations” are
prevailing. The presence of a few, homogeneously distributed
isolated particles or extended dimers is consistent with a more
homogeneous distribution of remoteness.

C. Comparison of dynamics and structure:
Glass, gel, and fluid states

1. Different arrested states

The information on the dynamics and structure is now
combined to provide a comprehensive characterization of the
different states as a function of the sample composition xs.
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The dynamics indicate that the one-component system of
large spheres, xs = 0.0, and the mixtures with a majority of
one species, i.e., xs = 0.01 and 0.9, as well as an intermediate
composition, xs = 0.3, present very slow, arrested dynamics,
characteristic of glasses and gels. These samples show, how-
ever, significantly different degrees of arrest, subdiffusion and
localization lengths of the large spheres. In the following we
discuss these differences, and later compare the dynamically
arrested states with the fluid states which occur at intermediate
compositions xs = 0.1 as well as xs = 0.5 and 0.7.

Considering the arrested states, the localization length of
the large spheres decreases continuously from xs = 0.0 to
0.01, 0.3, and 0.9. In the fluid states that characterize the
transitions between two arrested states, instead the localization
lengths are larger. Dynamical arrest is particularly pronounced
for xs = 0.0 and 0.9, and less so for xs = 0.3. The extended
plateau in the MSD with a small localization length of sample
xs = 0.01 implies a tight cage and is attributed to the formation
of interparticle bonds, which are characteristic for an attractive
glass state. This is supported by the structural analysis; the
arrangement of the large particles is amorphous although in
a space spanning network with an increased average number
of bonds per particle. Nevertheless, on a mesoscopic scale
the large particles are homogeneously distributed with the
distribution of remoteness indicating the absence of large
voids unoccupied by large particles (but by small particles).
Again, this is typical for an attractive glass rather than a gel.
As proposed recently, caging is possibly still the origin of
dynamical arrest in attractive glasses [41].

For xs = 0.3 the localization length is even smaller, but the
plateau and subdiffusion are less pronounced. The structure
of this sample indicates that the tight localization in the
dynamics is caused by a high probability for particle contacts
due to depletion attraction induced by the small particles. Fur-
thermore, the presence of significant structural heterogeneity
seems responsible for the broad distribution of relaxation times
leading to the subdiffusive MSD. These observations suggest a
gellike state of this mixture, which is supported by the presence
of a large cluster.

The mixture with xs = 0.9 exhibits the smallest localization
length with an extended plateau and the most pronounced
dynamical arrest. There is no network in this sample, but many
small clusters and a few slightly larger clusters. Furthermore,
due to the large dilution, large particles are not caged by
other large particles and the pair correlation function shows
fluidlike particle organization. The dynamical arrest of the
large particles therefore must be caused by the small particles.
This suggests an asymmetric glass state, in which individual
large particles or small clusters of a few large particles are
caged by small particles. Due to the ability of small particles
to tightly pack around large particles, these cages are smaller
than cages formed by large spheres, even by attractive large
spheres. Therefore, we observe four different arrested states:
a repulsive glass (xs = 0.0), an attractive glass (xs = 0.01), a
gel (xs = 0.3), and an asymmetric glass (xs = 0.9).

The transitions between these arrested states (except be-
tween the repulsive and attractive glasses) involve the melting
of the glasses and the formation of fluids. We observe diffusive
dynamics for samples with xs = 0.1, separating the attractive
glass and gel state, as well as xs = 0.5 and 0.7, separating

the gel and the asymmetric glass states. Despite the diffusive
dynamics, these fluids are characterized by particle-particle
bonds and dynamic networks. It is conceivable that, for
xs = 0.1, the volume fraction of large spheres is too small for
a glass state, as it exists for xs = 0.01, and the volume fraction
of small spheres too small for depletion attraction to induce
gelation, like for xs = 0.3. For xs = 0.5 and 0.7 melting can
be associated with the dilution of the gel structure and thus
a breakdown of the system-spanning network on one hand
(from xs = 0.3 to 0.5) and dilution of the glass matrix of small
spheres on the other hand (from xs = 0.9 to 0.7).

The comparison between arrested and fluid states indicates
that the presence of a space-spanning network, defined on the
basis of a structural criterion (particle distances) is not suffi-
cient to distinguish between the two states. We thus combine
structural and dynamical information. For each composition
xs, we identify the particles that, over the whole observation
time tmeas ≈ 45τB, perform displacements which are smaller
than the typical cage size of the one-component glass (xs =
0.0), quantified by its localization length L (Fig. 1). We call
these particles “arrested.” The fraction of arrested particles as
a function of xs (Fig. 8) shows that the glass states (xs = 0.0,
0.01 and 0.9) are characterized by the largest fractions of
arrested particles, while the gel state (xs = 0.3) presents a
lower fraction, which is still larger than that of the neighbor
fluid states. Then clusters of arrested particles are determined
by applying the same criterion used previously to define
bonded particles and are shown in Fig. 9. In the repulsive and
attractive glasses (xs = 0.0 and 0.01, respectively), the arrested
particles form a dense space-spanning network. In contrast,
for xs = 0.1 there is only a small fraction of arrested particles,
which in addition do not form a space-spanning network. For
xs = 0.3, instead, a dense space-spanning network of arrested
particles is again observed. Subsequently, for xs = 0.5, the
arrested particles are organized in smaller clusters which
are not space spanning. Again, a space-spanning but open
network is observed for xs = 0.7. Finally, for xs = 0.9 there are
only isolated arrested particles or individual small clusters of
arrested particles. This suggests that the glass (xs = 0.0, 0.01)
and gel (xs = 0.3) states are characterized by the presence of a
dense space-spanning network of arrested large particles, while

FIG. 8. Fraction of arrested particles Narr/N as a function of
composition xs.
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FIG. 9. (Color online) Rendering of the arrested large particles
in samples with φ ≈ 0.60, δ = 0.09, and different compositions xs

(as indicated) as obtained from trajectories extracted from confocal
microscopy images. Only arrested large particles are shown with
particles pertaining to the same cluster indicated with the same color
(gray-scale value). Particles within two diameters of the surface of
the observation volumes are not shown.

this network is not present in the fluid states (xs = 0.1, 0.5) and
in the asymmetric glass (xs = 0.9). The sample with xs = 0.7
shows an intermediate behavior.

Furthermore, we observed that in samples with a hetero-
geneous network structure, 0.1 � xs � 0.7, the fastest large
particles are located in regions sparse of large particles (Fig. 3,
left), and thus one might expect them to have also a smaller
number of bonds with other large particles than an average
particle. This, however, is true only for very few cases (Fig. 3,
right). Therefore, despite their lower local volume fraction
they typically maintain their number of bonds. This suggests
that the fast particles form anisotropic clusters with other
large particles, which allows them to keep their average
coordination with other large particles while increasing the
number of contacts with small particles. This could increase
their mobility due to the vicinity of the more mobile small
particles. Moreover, the mobility of the particles also depends
on the strength (or rather weakness) of the bonds, which is
experimentally not accessible to us.

2. Dependence on size disparity

We compare these findings with results obtained in previous
work for δ = 0.38 and 0.2 [17–19] as well as previous
experiments for δ = 0.1 [13] and theory predictions [11,12].
They are summarized in a state diagram as a function of
composition xs and size ratio δ (Fig. 10). In binary mixtures
with δ = 0.38 only a repulsive glass state is observed, while in
mixtures with δ = 0.2 two glass states of the large spheres
are observed, namely, for small xs a glass in which the
large spheres are caged by large spheres and for large xs

an asymmetric glass. No evidence for a gel state was found.
Very small values of xs, like xs = 0.01, were not investigated
for δ = 0.2 and therefore the existence of an attractive glass
cannot be excluded. The asymmetric glass state observed for

FIG. 10. (Color online) State diagram of samples with different
composition xs and size ratios; δ = 0.09 (present work), δ =
0.106 [13], δ = 0.2 and 0.38 [17–19]. Different arrested states are
identified in the present work: repulsive glass (•), attractive glass
(�), asymmetric glass ( ), and gel ( ). Open symbols indicate fluid
states. In [13] fluids (�), fluid-crystal coexistence (♦), and amorphous
solids (�) were distinguished.
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δ = 0.2 is different from the one in this work: only individual
large particles but no dimers or other small clusters were
found. Since small particles can pack less effectively around
dimers and small clusters than around single particles, particles
forming dimers and small clusters are possibly less localized.
This is consistent with the fact that for δ = 0.2 the reduction of
the localization length in the asymmetric glass with respect to
the one-component glass, L(xs = 0.9)/L(xs = 0.0) ≈ 0.2 =
δ is considerably larger than in the case δ = 0.09, namely,
L(xs = 0.9)/L(xs = 0.0) ≈ 0.5 > δ.

Previous experiments on binary mixtures of silica particles
with δ ≈ 0.1 [13] revealed an arrested state in which both
components are arrested at large xs (Fig. 10, �), and an
arrested state in which only the large spheres are arrested
at intermediate xs (Fig. 10, �), while fluid-crystal coexistence
was observed at small xs (Fig. 10, ♦) and metastable fluid
states at large intermediate xs (Fig. 10, �). The arrested states
of the large spheres were not further characterized in that
work. Our findings suggest that the glass they observed at large
xs [13] is an asymmetric glass. Moreover, the arrested state at
intermediate xs might correspond to the gel state observed in
the present work. At small xs we find amorphous glass states
or fluids, but no evidence of crystallization, which we attribute
to the considerably larger polydispersity of our system, in
particular of the small spheres.

Size disparities as large as δ = 0.1 were not investigated by
MCT or SCGLE theories [11,12]. Nevertheless, the attractive
glass state observed for xs = 0.01 might be related to the
depletion-driven glass state predicted by MCT in this region
of the phase diagram for δ � 0.2 (minimum value investigated
δ = 0.18). Moreover, an asymmetric glass state at large xs is
predicted by MCT and SCGLE for δ � 0.35. The asymmetric
glass of single particles observed for δ = 0.2 and xs = 0.9,
and predicted by theory, might be observed for δ = 0.09 for
values of xs > 0.9. Asymmetric glass states were also reported
for binary mixtures of size asymmetric star polymers [24,25],
possibly indicating that in general this state is induced by
a dynamical asymmetry irrespective of the details of the
interaction potential.

To our knowledge, gels formed by binary mixtures have
only been reported by Dinsmore and coworkers [42]. Their
gels collapsed under gravity and thus represent transient states.
Furthermore, gel formation in binary mixtures was observed
under confinement with the addition of polymers as deple-
tants [43]. In contrast, the gel state we observe is long lived
and forms without addition of polymers but shows structural
and dynamical analogies with gels formed by colloid-polymer
mixtures at intermediate colloid volume fraction [44–51];
for example a large structural heterogeneity and a broad
distribution of particle dynamics. The mechanism responsible
for gel formation in our binary mixtures is not clear at present.
Different mechanisms have been proposed for colloid-polymer
mixtures, among them arrested phase separation [45,52–54],
glasslike arrest [55] and rigidity percolation [56]. Moreover,
equilibrium gelation in binary mixtures has been predicted as
a result of the specific form of the interaction potential in these

systems [16]. In order to investigate the route leading to gela-
tion and the subsequent aging, time-resolved structural mea-
surements are needed and will be the subject of future work.

IV. CONCLUSIONS

Different arrested states are observed for large spheres
in binary mixtures with size disparity δ = 0.09 and total
volume fraction φ ≈ 0.60. While the one-component system
of large spheres forms a repulsive glass, all arrested states
in the mixtures are characterized by bonding, as a result of the
strong depletion interaction induced by the small spheres at
this size ratio. The arrested states in the mixtures significantly
differ in terms of the arrest mechanism as well as structure and
dynamics. If a small amount of small spheres is added to the
repulsive glass of large spheres, depletion-induced attractions
induce bonding and formation of an attractive glass (xs =
0.01). This state is melted by further addition of small spheres
(xs = 0.1), possibly due to the dilution of the large spheres
and a concomitant melting of the cage. Only if the amount of
small spheres is increased (xs = 0.3) the attraction becomes
strong enough to cause dynamical arrest in the form of
gelation, i.e., the formation of a network of bonded and arrested
particles. This gel state shows a structural organization of the
large spheres analogous to that observed in colloid-polymer
mixtures. Also the gel state is melted by further dilution of
the large spheres. Nevertheless, clusters of particles and a
space spanning network persist (xs = 0.5, 0.7) which are not
arrested but fluid like. At large values of xs an additional arrest
mechanism is observed; isolated small clusters of large spheres
are arrested by the highly concentrated small spheres, which
possibly form a glass (xs = 0.9). While asymmetric glass
states were already observed for a smaller size asymmetry
δ = 0.2 [18,19] and for mixtures of star polymers [24,45],
this asymmetric glass state is special in that depletion-induced
bonding between the dilute large spheres leads to the formation
of clusters, in particular “extended clusters.”

Size asymmetric binary mixtures therefore represent a tun-
able model system to investigate transitions between different
arrested states, which can be obtained by only changing the
composition of the mixture. Thus the properties and behavior
of different arrested states can be investigated in a consistent
way using a single model system.
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Note: Using a Kösters prism to create a fringe pattern

R. F. Capellmann,1 J. Bewerunge,1 F. Platten,1 and S. U. Egelhaaf1

Condensed Matter Physics Laboratory, Heinrich Heine University, D-40225 Düsseldorf

(Dated: 6 April 2017)

The interference of two crossed laser beams results in a standing wave. Such fringe patterns are exploited
in different instruments such as interferometers or laser-Doppler anemometers. We create a fringe pattern in
the sample plane of a microscope using a compact apparatus based on a Kösters prism. The fringe pattern
is shown to be spatially and temporally very stable, covers a large area and its spacing is easily tunable. In
addition, we exploit it to impose a sinusoidal potential on colloidal particles.

Sinusoidal fringe or standing wave patterns are ex-
ploited to, e.g., measure the velocity of particles with
laser-Doppler anemometers,1–4 study thermal diffusion5,6

or manipulate colloids.7–15 They are created by the inter-
ference of two laser beams. This requires to split a laser
beam and recombine the two beams under an angle. Sev-
eral layouts to achieve this have been proposed.2,3 Fringe
patterns have been created using a beam splitter, a spe-
cial double prism or two plane-parallel coated blocks to
split the beam as well as several mirrors to guide the two
beams, with the number of movable optical components
significantly increasing if a variation of the fringe spac-
ing, fringe area or other parameters is desired.1–3 The
challenge is to achieve a high stability while still allow-
ing for some variability of the pattern, which typically
are conflicting; they require a small and large number of
components, respectively.

By using a Kösters prism to split the beam16,17 (and
a lens), we reduce the number of essential components
to two without compromising flexibility.3 Kösters prisms
have been used in, e.g., compact interferometers,18–21

white-light frequency-domain interferometers,22 electro-
chemical interferometers,23 light scattering and particle
velocimetry instruments,3,4,24–26 and for testing of opti-
cal components.27,28 We realize an apparatus based on
a Kösters prism with a simple and compact layout, in
particular short and symmetric beam paths, resulting in
very good stability. It is also versatile since a translation
of the prism changes the fringe spacing easily and reli-
ably. In addition, this apparatus can create a large fringe
pattern in the sample plane of a microscope.

Our apparatus (Fig. 1) includes a laser (Coherent Verdi
V5, wavelength λ = 532 nm, beam diameter 2.25 mm),
four mirrors (M1-M4) to direct the beam through a 3×
beam expander (BE) and two further mirrors (M5, M6)
to guide the beam to the Kösters prism (KP, sides 8 cm,
height 4 cm, Bernhard Halle Nachfl.). The Kösters prism
consists of two identical prisms that are attached to each
other with a semi-reflective silver coating at the prism–
prism interface.16,17 The prism splits the beam into two
parallel beams of about the same intensity, with the coat-
ing absorbing about 10 % of the intensity. The ratio of
the two intensities is adjusted with a neutral density fil-

L1

LASER

BD

Lamp

Tube lens

M3

M2

M1

M4 M5

KP

ϴ

FIG. 1. Schematic representation of the apparatus.
Four mirrors (M1-M4) direct the beam to a beam expander
(BE). Two further mirrors (M5, M6) guide the expanded
beam to the Kösters prism (KP). The KP splits the beam into
two parallel beams whose distance can be adjusted by trans-
lating the KP. A lens (L1) focuses the beams and, after being
introduced into the light path of a microscope (grey dashed
box) by a dicroic mirror (D1), combines them in the sample
plane under an angle Θ thus creating a fringe pattern. The
beams are removed from the light path of the microscope by
a dichroic mirror (D2) and collected by a beam dump (BD).
A notch filter (NF) attenuates the remaining laser light.

ter (ND, optical density OD = 0.15). Both beams are
focused with a plano-convex lens (L1, diameter 75 mm,
focal length 150 mm) on the sample plane of an inverted
microscope (Nikon Ti-E) where they interfere, thus cre-
ating a standing wave pattern (Fig. 2). The beams are
coupled into the light path of the microscope using a
dichroic mirror (D1, Chroma, ZT543rdc, wavelengths
up to ∼ 550 nm are reflected) and removed by another
dichroic mirror (D2, Chroma, Z532rdc, wavelengths be-
tween ∼ 500 nm and 540 nm are reflected) and a notch
filter (NF, Edmund Optics, OD = 4, center wavelength
532 nm, FWHM (26.6± 2.7) nm) to prevent the CMOS
camera (Pixelink, PL-B741F) from damage. Neverthe-
less, the fringe pattern can be observed if D2 and NF
are removed and the camera is replaced by a laser beam
profiler (Coherent LaserCam-HR). To aid the alignment,

Chapter 3 – Publications

85



2

y

x

FIG. 2. Image of the fringe pattern I(x, y). The mean
intensities 〈I(x, y)〉y and 〈I(x, y)〉x are shown below and on
the left, respectively. The black spots are caused by dust on
the camera chip. The red box indicates the slice that was
used to characterize the temporal stability.
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FIG. 3. Temporal stability of the fringe pattern. Time
evolution of the parameters describing the sinusoidal pattern
(Eq. 1). (a) Fringe spacing d, (b) amplitude I0(x) and offset
Ibg(x), and (c) phase φ.

a Helium-Neon-laser beam is used to define the optical
axis. It is fed into the microscope running against the
main laser beam (see Supplementary Material).
The crossing-angle Θ determines the fringe spacing d =

λ/(2 sin (Θ/2)). Moving the prism along the direction of
the two parallel beams changes their distance and hence
Θ, which provides a simple way to vary d. A large range
of fringe spacings d can be obtained with the minimum
d, i.e. largest Θ, defined by the size of the dichroic mirror
D1 and its holder, and the maximum d, i.e. smallest Θ,
given by the beam radius because this determines the
minimum distance of the beam centers to the apex of the
prism. Hence a compromise has to be found between the
maximum achievable d and the size of the pattern, which

also depends on the beam radius.
The intensity distribution I(x, y) is imaged using the

laser beam profiler (Fig. 2) while a water-filled sample
cell29 is in place to ensure that the sample plane is in
focus. The fringe pattern appears homogeneous and fills
the whole field of view, in the present configuration about
212.1×169.3µm2 (1270×1014 pixels). Beams with large
diameters and/or separations use the lens close to its
edge. This causes image distortions and requires to shift
the sample plane out of the nominal focal plane. This has
been confirmed by ray tracing using the program OSLO.
For a quantitative characterization, the image is di-

vided into slices of width ∆x = 1.67µm, i.e. 10 pix-
els (e.g. red box in Fig. 2). For each slice, the in-
tensity is averaged in x direction yielding 〈I(x, y)〉∆x,
which resembles 〈I(x, y)〉x (Fig. 2, left) and, in y direc-
tion, is expected to show a sine squared or, equivalently,
a sine dependence with a fixed background Ibg(x) =
〈〈I(x, y)〉∆x〉y ≈ 〈I(x, y)〉y :

〈I(x, y)〉∆x = I0(x) sin

(
2π

d(x)
y + φ(x)

)
+ Ibg(x). (1)

Fits yield a spacing d(x) with no significant x depen-
dence and mean value 〈d〉 ≈ (2.663± 0.005) µm, as well
as an amplitude I0(x) that closely follows the trend of
〈I(x, y)〉y , but is smaller than 〈I(x, y)〉y due to varia-
tions in the background intensity along y which is posi-
tive by definition. The phase φ(x) changes by ∼ 0.35π,
i.e. 0.45µm, which could be due to distortions or a shift
of the fringes or of their image and is mainly attributed
to the non-ideality of the lens.
The temporal stability is characterized by the

evolution of the mean intensity in one slice,
〈I(106µm, y, t)〉∆x, over 1.5 h (Fig. 2, red box), while
the room temperature is kept at T = (18.0 ± 0.2)◦C. A
fit using Eq. 1 yields the temporal fluctuations of the pa-
rameters (Fig. 3). The spacing d(t) is very stable with a
difference between the maximum and minimum values of
less than 0.003µm and mean 〈d〉 = (2.666± 0.001) µm
whose standard deviation corresponds to a change of
the distance of the two beams leaving the prism of only
∼ 10µm. Furthermore, I0(t) and Ibg(t) are essentially
constant except for very few outliers that are up to 6 gray
levels from the mean values 〈I0〉 = (89.1± 0.9) gray
levels and 〈Ibg〉 = (104.0± 1.17) gray levels, respectively.
The variation of the phase φ(t) is larger, ∼ 0.66π, that
is 0.59µm/h, which is the largest variation of the phase
observed; typically the variation is ∼ 0.25π/h. It might
arise from instabilities in the apparatus, e.g. a drift of
the Kösters prism or dichroic mirror, but also from small
drifts of the microscope, e.g. the objective, which cannot
be distinguished easily. Even this largest observed phase
shift is much smaller than the displacements of the
colloidal particles exposed to the fringe pattern. On the
other hand, the parameters significantly affecting the
particles, d and I0, are very stable. This is achieved
by using the same components (KP, L1, D1) for both
beams and hence both are affected in the same way
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FIG. 4. Potential V (y) imposed on the colloids. It is
shown in units of the thermal energy kBT as a function of posi-
tion y and different laser powers (as indicated) as determined
based on Eq. 2 (symbols). The statistical error of the data
is comparable to the symbol size or smaller. The solid lines
represent sinusoidal fits with fixed wavelength d = 2.664 µm.

by instabilities, which is not the case if beams are, e.g,
guided by individual mirrors.

The fringe pattern is imposed onto a dilute aqueous
suspension of polystyrene spheres with radiusR = 1.4µm
which is imaged with the microscope simultaneously. The
particles have different dielectric properties than water
and hence experience a force. First, the particles are
pushed in beam direction due to radiation pressure.9,30,31

Thus, any asymmetry of the interfering beams causes a
drift of the particles. This can be exploited to refine
the alignment (see Supplementary Material). Moreover,
the fringe pattern translates into a sinusoidal potential
imposed on the colloidal particles.9–11,30,31

We quantitatively characterize the potential. The par-
ticle number density n(x, y, i) is determined for each
frame i of a time series and the average 〈n(x, y, i)〉 calcu-
lated by averaging over all frames i and positions x as well
as collapsing the y dependence onto one fringe. The sus-
pension is dilute enough to neglect particle interactions
and hence 〈n(x, y, i)〉 follows a Boltzmann distribution:

〈n(x, y, i)〉 = C e−V (y)/kBT (2)

with V (y) the potential experienced by the particles

and the constant C such that
∫ d

0
V (y) dy = 0. For

a fixed fringe spacing 〈d〉 ≈ (2.664± 0.007) µm (deter-
mined from the intensity as described above) and dif-
ferent laser powers P , we have determined the potential
V (y) (Fig. 4). A fit is performed based on a sinusoidal
dependence; V (y) = V0 sin (2πy/〈d〉+ ϕ)+Vbg. This de-
scribes the data well indicating that the particles indeed
experience a sinusoidal potential with the same period as
the fringe pattern. The amplitude V0 is found to increase
linearly with P ; namely V0 = (0.63± 0.01)kBT (P/W).
The phase ϕ does not significantly vary between mea-
surements and the offset Vbg ≈ 0.

To summarize, we have realized a compact apparatus
that creates a sinusoidal light pattern, i.e. fringe pattern,

in the sample plane of a microscope through the interfer-
ence of two crossed laser beams. It is based on a Kösters
prism and here used to expose colloidal particles to a
sinusoidal potential. The apparatus offers several advan-
tages: it is very stable, the fringe spacing can easily be
tuned by translating the prism, and the pattern covers
a large area. Due to these characteristics and its simple
layout with only very few optical components, we expect
this apparatus to be useful for several applications.1–9

Supplementary material

See supplementary material for detailed instructions
on the alignment of the apparatus.
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Supplementary Material
Note: Using a K̈osters prism to create a fringe pattern

R. F. Capellmann, J. Bewerunge, F. Platten, and S. U. Egelhaaf

Condensed Matter Physics Laboratory, Heinrich Heine University, D-40225 D̈usseldorf

Supplementary Note 1:
Alignment of the optical apparatus

To aid the alignment of the apparatus, a Helium
Neon laser (JDS uniphase, wavelength 633 nm, out-
put power 15 mW) is used to define the optical axis.
The alignment beam enters the microscope through
a camera port and thus runs against the laser beam
creating the fringe pattern. Using two mirrors the
alignment beam is adjusted such that it enters the
microscope through the center of the camera port
and leaves it through the center of the objective back
aperture. The first is accomplished using the cover
disc for the camera port provided by Nikon, which
has a small spine exactlyat its center which scatters
light, while the cover otherwise is reflective. The
latter is achieved using an alignment disc (Thorlabs)
consisting of frosted glass with a pinholeat the cen-
ter, which is put onto the objective thread of the mi-
croscope. These two measures ensure that the beam
runs along the optical axis of the microscope.

Subsequently, the alignment disc is screwed onto
the top of the empty filter cube, which will later
hold the dichroic mirror D1. This aids the align-
ment of the filter cube with respect to the beam.
Then, the dichroic mirror D1 is inserted and aligned.
For this reason, two irises are mounted on the prism
stage along a line parallel to its translation direc-
tion, and the alignment disc moved from the top
of the filter cube to its side pointing towards the
Kösters prism. The mirror D1 is tilted and the prism
stage moved sidewards until the beam runs through
both pinholes. Furthermore, the mirror is moved
such that the beam hits the mirrorat the center,
which is checked using the alignment disc. Typi-
cally, several iterations are required until the align-

ment beam hits the dichroic mirror D1at the center
and runs through both pinholes and hence parallel
to the translation direction of the prism stage.

In the next step the Kösters prism is put on the
stage. The horizontal rotation of the prism and
hence its orientation relative to the optical axis and
the translation direction of the stage is aligned using
the back reflection of the alignment beam. The fine
adjustment of the vertical tilt of the dichroic mirror
D1 is also performed by aligning the back reflection
of the alignment beam from the Kösters prism. Af-
ter D1 is tilted, the position of D1 might need to be
re-adjusted such that the beam again hits the center
of the alignment disc.

After this procedure, two horizontal slit dia-
phragms are placed between the Kösters prism and
the dichroic mirror D1 to define the height of the
optical axis. Then, the main laser beam is aligned
using the two mirrors M5 and M6 (Fig. 1) to hit
the surface of the Kösters prism perpendicularly to
reduce the loss during transmission. Furthermore,
the beam position and direction with respect to the
Kösters prismis aligned such that the two paral-
lel beams run in the direction of the optical axis
and in the predefined height (also when the stage
is translated). Now the two slit diaphragms are
removed. Before the focusing lens L1 is added,
an iris diaphragm is inserted close to the Kösters
prism, which is aligned with respect to the align-
ment beam. The tilt of the lens is adjusted using
the back reflection of the alignment beam and the
lens position refined such that the alignment beam
runs through the iris diaphragm. The alignment of
the lens typically requires several iterations. Once
the alignment of the lens is completed, the iris di-
aphragm is removed. Very small changes of the tilt

1

3.4 Using a Kösters prism to create a fringe pattern

88



of the dichroic mirror D1 might be necessary to cen-
ter the fringe pattern in the field of view of the mi-
croscope.

To ensure that the two beams hit the sample
plane at exactly the same angle, further alignment
might be needed. This can be done using colloidal
particles. Here we use an aqueous suspension of
polystyrene spheres with radiusR = 1.4 µm. The
suspension is filled into home-made sample cells1,
which are built of three cover glasses attached to a
microscope slide to form a capillary and sealed with
UV glue (Norland Products, NOA 61). When the
sample is put into the sample plane of the micro-
scope, the colloids are exposed to the fringe pattern,
i.e. a sinusoidal light field, and can be observed with
the microscope at the same time. The suspension is
very dilute with a mean surface fraction below 1%.

If the two beams creating the fringe pattern are
symmetrically aligned with respect to the sample
plane and have the same intensity, the resulting radi-
ation pressure pushes the particles towards the cover
slip, but does not induce any drift in the sample
plane. In contrast, a tilt of the beams with respect
to the sample plane results in a drift of the parti-
cles whose magnitude depends on the tilt and the
laser intensity. Therefore, the motion of the parti-
cles is followed and quantitatively analyzed. After
switching on the fringe pattern, the colloidal parti-
cles are equilibrated for 250 s and then imaged with
2 frames per second. The positions of the parti-
cles were extracted and linked to yield trajectories.
From the trajectories, the particles’ displacements
∆x(t) and ∆y(t) in x- and y-direction, respec-
tively, are determined and their ensemble-averages,
〈∆x(t)〉i and 〈∆y(t)〉i, calculated taking the dif-
ferent durations of the individual trajectories into
account (Supplementary Figure 1). For all applied
laser intensities, the average displacements fluctuate
around zero, suggesting that there is no significant
drift of the particles. This indicates a good align-
ment of the apparatus. The increase of the fluctu-
ations with time is caused by the Brownian motion
of the colloids. In contrast, drift would result in a
directed motion and hence a linear increase of the
displacements|∆x| and |∆y|. This can serve as
an aid to (iteratively) improve the alignment, espe-

cially the tilt and position of mirror D1 as well as
the intensities of the two beams.
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Supplementary Figure 1: Displacement of col-
loids exposed to the fringe pattern. Mean dis-
tance traveled by the particles (a) along the potential
minima,〈∆x〉, and (b) across the potential maxima,
〈∆y〉, during timet for different laser powers (as in-
dicated). The black dotted lines indicate the particle
diameter. The fringe spacing〈d〉 ≈ 2.66µm was
similar to the particle diameter2R = 2.8µm. For
clarity, only every 40th data point is plotted.
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Dense colloidal mixtures in a sinusoidal potential

R. F. Capellmann1, A. Khisameeva1, F. Platten1, S. U. Egelhaaf1
1 Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.

(Dated: June 19, 2017)

Concentrated binary colloidal mixtures were exposed to a periodic potential that was realized us-
ing a light field, namely two crossed laser beams creating a fringe pattern. The particle arrangement
was recorded using optical microscopy and characterized in terms of the pair distribution function
along the minima, the occupation probability perpendicular to the minima, the angular bond dis-
tribution and the average potential energy per particle. The competition between particle-particle
and particle-potential interactions determines the arrangement of the particles. An increase in the
potential amplitude induces a local demixing of the two particle species, whereas an increase in the
total packing fraction favors a more homogeneous and partially ordered arrangement.

I. INTRODUCTION

Colloids are widely used as model systems to inves-
tigate questions in statistical physics, such as disorder-
order transitions and phase behavior. In these studies,
colloidal particles typically are considered as ‘big atoms’
[1–3]. They are not only larger but, due to their size, also
slower than atoms or molecules. Thus, they can be inves-
tigated with optical methods, in particular light scatter-
ing and optical microscopy [3–5]. Using microscopy, they
even can be followed on an individual-particle level [6, 7].
In colloidal systems, furthermore, the particle-particle in-
teractions can be tuned in a broad range and hence the
effects of particle interactions on, e.g., the phase behavior
can be studied [2, 3, 8, 9]. In addition to bulk systems,
also quasi-two-dimensional samples can be prepared ei-
ther by confinement or at a surface or interface [9–15].

Moreover, colloids are susceptible to external poten-
tials [16, 17]. This can be utilized in experiments, for ex-
ample to manipulate colloids [18–20]. Colloids exposed
to light are typically drawn towards areas of high inten-
sity and pushed in the propagation direction of the beam.
Focused laser beams are exploited in optical tweezers to
manipulate individual colloids [18–22], whereas extended
light patterns can be used to impose potential landscapes
onto colloidal particles [23–25]. Advanced optical com-
ponents can be used to create a broad range of light
fields and hence a large variety of external potentials
[26–30]. This allows for a systematic investigation of
particle-potential interactions as well as their interplay
with particle-particle interactions.

The susceptibility to external potentials also has im-
portant consequences for the arrangement and dynam-
ics of colloids. Two-dimensional colloidal suspensions of
particles in a periodic (sinusoidal) potential have previ-
ously been studied [24, 31–33]. The periodic potential
can induce a disorder-order transition which is known
as light-induced freezing [34–37]. If the amplitude of the
external potential is increased further, the particle fluctu-
ations become more localized. This reduces the interac-
tions between particles in neighboring minima and hence
destabilizes the crystal and laser-induced melting to a
modulated liquid is observed [34–41]. This relies on the
balance between particle-particle and particle-potential
interactions. In particular, this behavior results from

an intricate interplay between length scales, namely the
wavelength of the external potential, the range of the po-
tential explored by the particles, the range of the particle-
particle interactions, and the mean interparticle distance.

A further length scale can be introduced by using bi-
nary colloidal suspensions. Even without an external po-
tential, binary mixtures show a variety of arrangements
and dynamics that depend on the size and mixing ra-
tios as well as the total concentration [10, 11, 42–53]
and also three-dimensional binary systems have attracted
considerable attention [54–61]. In the presence of a si-
nusoidal potential, computer simulations reveal new ar-
rangements, such as segregated particle species or the
so-called fissuring phase, in which the small particles
form fissures in a crystal of large and small particles [62–
65]. Moreover, in similar situations the particle dynamics
have been studied [66].

In this work, we experimentally investigated the effects
of sinusoidal potentials on concentrated binary mixtures
in quasi-two dimensions. The particle radii were cho-
sen such that both particle species undergo significant
Brownian motion and can easily be tracked using opti-
cal microscopy; Rs = 1.05 µm and Rl = 2.5 µm yielding
Rs/Rl = 0.42. Furthermore, to enhance mixing effects,
the number densities of large and small particles were
chosen to be roughly similar. These ratios in size and
density allow for a compact packing in a square lattice
which occurs at Rs/Rl = 0.414 and equal numbers of
large and small particles [42, 45]. We expect the most
interesting phase behavior to occur if the large particles
in neighboring fringes are coupled, i.e. cannot pass each
other, while the small particles are free to move. This
requires a spacing of the minima d between the two di-
ameters; we have chosen d = 4.1 µm. This spacing is not
commensurate with the square lattice. It hence leads to
an interplay between ideal packing and external poten-
tial. To investigate this competition between particle-
particle and particle-potential interactions, we focussed
on dense samples, i.e. area fractions η > 0.55.

The remainder of the article is structured as follows: In
the next section, section II, we describe the samples and
the observation method, digital video microscopy, as well
as the creation of the sinusoidal potential and the param-
eters used to quantify the particle arrangement, namely
the pair distribution function parallel to the fringes, ĝ(x),
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the occupation probability perpendicular to the fringes,
p(y), the angular bond distribution Nb(θ), and the aver-
age potential energy per particle, EV. In section III, we
analyze the effects of the particle-potential and particle-
particle interactions by varying the amplitude of the po-
tential, V0, and the area fraction, η, keeping the other pa-
rameters approximately constant. The article concludes
with a brief summary of the results in section IV.

II. MATERIALS AND METHODS

II.1. Preparation and observation of the colloidal
suspensions

The samples contained two species of spheres of
polystyrene with sulfonated chain ends (both from In-
vitrogen): small particles with radius Rs = 1.05 µm and
polydispersity 2.5 % as well as large particles with ra-
dius Rl = 2.5 µm and polydispersity 1.2 %. Appropri-
ate amounts of the stock suspensions were mixed and
diluted with deionised water (ELGA purelab flex, elec-
trical resistivity 18.2 MΩcm). The refractive indices of
the particles and water were np = 1.59 and ns = 1.33,
respectively, resulting in a ratio of the refractive in-
dices n = np/ns = 1.20. The samples were filled in
home-built sample cells consisting of three cover-glasses
(No. 1.5, 22 mm× 22 mm, VWR) glued on a microscope
slide (76 mm× 26 mm× 1 mm, VWR) to form a capillary
[7]. Before the cells were assembled, the glassware was
cleaned with a mixture of deionised water and 1% al-
kaline liquid concentrate (Hellmanex II, Hellma Analyt-
ics) in an ultrasound bath and thoroughly rinsed with
deionised water afterwards. Then the samples were filled
in the capillaries, which were sealed with UV glue (NOA
61, Norland). The filled sample cells were stored under
ambient conditions.

The samples were imaged using a home-built upright
microscope based on a high numerical aperture micro-
scope objective (Plan Apo VC 100×, Nikon, numerical
aperture 1.4) and equipped with a CMOS camera (PL-
A741, PixeLink, 1280 × 1024 pixels) [27]. In each mea-
surement, 10,800 images were recorded with 2 fps. The
pixel pitch was 0.143µm/px or 0.133µm/px in two inde-
pendent sets of experiments. The particle positions were
extracted using standard routines [6] where the positions
of the large and small particles were determined in sepa-
rate analysis runs.

II.2. Experimental realization of the sinusoidal
potential

A sinusoidal light field, i.e. a fringe pattern, was cre-
ated by the interference of two laser beams (Verdi V5,
Coherent, wavelength λ = 532 nm) with a crossing angle
δ, as described previously [27]. This pushed the parti-
cles to the lower cover slip, where they formed a two-
dimensional layer, and imposed a sinusoidal potential on

x 

y 

d 

d 

FIG. 1. Schematic representation of a binary colloidal mixture
in a sinusoidal potential with period d. For the calculation of
the pair distribution functions ĝii(r) a particle of species i (red
particle) is considered with all distances to other particles of
the same species i (striped) whose centers are within a strip
that is parallel to the fringes and has width d/2 either side of
the particle under consideration (indicated by the red area).

the particles that had a period d = λ/(2 sin(δ/2)) or wave
vector q = 2π/d [27, 36]:

V (x, y) = gPLα

[
1− 3

j1(qRi)

qRi
cos(qy)

]

× exp

{
−2
[
x2 + y2 cos2 (θ/2)

]

a2

}
, (1)

where the x and y directions are chosen along and across
the fringes, respectively (Fig. 1), and j1 denotes the first
order spherical Bessel function. The sinusoidal poten-
tial was superimposed by a Gaussian envelope, which
depends on the radius of the laser beams, a, and their
crossing angle δ. The region of interest (ROI) was re-
stricted such that the Gaussian envelope did not decrease
by more than 30 %. This decrease is assumed to have a
negligible effect on the particle arrangement. Within the
ROI, thus,

V (y) ≈ V0 (1− cos(qy)) + Vc (2)

which is independent of x. The amplitude of the poten-
tial, V0 = 3gPLα j1(qRi)/(qRi), depends on a set-up de-
pendent parameter g, the laser power PL, the polarizabil-
ity of the particles α = R3

in
2
s (n2 − 1)/(n2 + 2), the wave

vector q, and the particle radius Ri. The constant off-
set reads Vc = V0 {qRi/[3j1(qRi)]− 1}. Thus, large and
small particles experience different potential amplitudes
and offsets. To determine the amplitude of the poten-
tial experienced by the small particles, V0,s, a sequence
of images (with 4 fps for 30 min) of a dilute suspen-
sion of small particles at different laser powers, 0.1 W ≤
PL ≤ 0.5 W, was taken. After correcting for slight
drifts, the distribution of particles across the fringes
was determined, from which the amplitude of the po-
tential experienced by the small particles, V0,s(PL), was
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FIG. 2. Amplitude of the potential experienced by the large
and small particles, V0,l and V0,s, respectively, as function
of the applied laser power PL. The amplitude V0,s was de-
termined experimentally as described in the text, based on
which V0,l was calculated. The lines indicate linear fits.

inferred (Fig. 2), as described previously [28]. A linear
fit yielded V0,s = 15.9 (PL/W) kBT with the thermal en-
ergy kBT . Since g is independent of the particle size [32],
the amplitude for the large particles can be calculated,
V0,l = R2

l j1(qRl)/[R
2
s j1(qRs)]V0,s = 34.8 (PL/W) kBT

(Fig. 2). Thus the potential experienced by the large
particles has about double the amplitude of the poten-
tial experienced by the small particles.

Before each group of measurements, the optical set-
up was readjusted to reduce differences in the intensities
and incident angles of the two interfering beams to avoid
light-induced particle drifts and to produce a fringe spac-
ing d ≈ 4.1 µm. The actual fringe spacings, 4.04 µm ≤
d ≤ 4.16 µm, were determined by imaging the light field.
The light field was imaged before and after each group
of measurements, which did not reveal any changes of d
during the measurements. These images were also used
to determine the area and position of the ROI. Its area
A varied between 30.2 µm × 68.6 µm = 2072 µm2 and
53.3 µm × 73.7 µm = 3928 µm2.

Each colloidal mixture was exposed to the light field
for 90 min. Before recording images, the particles were
allowed to equilibrate in the potential for at least 4 min.

II.3. Data analysis

The composition of the samples is characterized by the
total area fraction η and the number ratio of small to
large particles, ξ. They were determined for each image
based on the numbers of small and large particles in the
ROI, Ns and Nl, respectively, according to

η =
NsπR

2
s +NlπR

2
l

A
(3)

and

ξ =
Ns

Nl
. (4)

Subsequently, each measurement was divided into subsets
with about constant η and ξ. This is necessary because
particles tend to enter an illuminated area and hence the
number of particles slightly increased during the mea-
surements. The η and ξ were considered about constant
if their absolute standard deviations were smaller than
0.016 and 0.059, respectively. These subsets contained
between 1385 and 4001 images and are also considered
(individual) ‘measurements’ in the following.

The structure of the colloidal suspensions along the
minima, i.e. in x direction (Fig. 1), is characterized by
the pair distribution functions parallel to the minima,
ĝss(r) and ĝll(r), that consider the small and large parti-
cles, respectively. For each particle of species i, the dis-
tances to particles of the same species i are considered if
their centers are located within a strip that is parallel to
the minima, centered around the particle under consider-
ation, and has width d (Fig. 1). All particles of species i
in an image and all images of a measurement were taken
into account.

To characterize the structure perpendicular to the
minima, i.e. in y direction, the occupation probabil-
ity, pi(y), was calculated for the small and large par-
ticles separately. First the number of small or large
particles at position y (and any position x), Nf,i(y),
was determined and then all M periods collapsed onto
half a period and normalized by the total number
of small or large particles Ni, respectively; pi(y) =

(1/Ni)
∑M

m=1 [Nf,i((m−1)d+y) +Nf,i(md−y)] with 0 ≤
y < d/2. The probability pi(y) was averaged over three
blocks of 200 images in the beginning, the middle and
the end of each measurement, during which the position
y = 0 was chosen to coincide with the maximum proba-
bility to find a large particle and was found to be constant
for these 200 images.

The local arrangement of particles is quantified by the
angular distribution of center-to-center lines (‘bonds’) of
neighboring particles of the same species, Nb,i(θ), where
the angle θ describes the direction of the bond relative to
the direction of the minima, i.e. the x direction. Thus the
angle covers the range 0◦ ≤ θ < 90◦. The Nb,i(θ) of the
small and large particles were determined separately. A
particle is considered a neighbor if its center is closer than
the distance rm at which the first minimum of ĝii(rm) is
observed, here rm,s = 3.4µm and rm,l = 6.0µm for the
small and large particles, respectively. Since rm,l > d,
large particles in neighboring minima can be neighbors,
whereas this is not possible for small particles. The an-
gular bond distribution was averaged over all particles
of species i and all images of a measurement, where, to
avoid edge effects, only particles at least rm from the
edges were considered whereas their bonded neighbors
can be any particle in the ROI. The average number of
bonds per particle is obtained through

∑
j Nb,i(θj).

The average potential energy per particle, EV, was cal-
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FIG. 3. In the experiments, the total area fraction η and laser
power PL was varied, while the number ratio of small and
large particles ξ was about constant (symbols, as indicated).
The laser power PL controls the amplitude of the potential
imposed on the small and large particles, V0,s and V0,l, re-
spectively. The measurements were arranged in series with
constant PL = 0.1 W, 0.2 W, 0.3 W and 0.5 W and vary-
ing η (series P0.1 to P0.5) and constant η = 0.73 and 0.80
and varying PL (C1, C2). Variations (typically increases) in
η during the experiments are shown as error bars.

culated according to

EV =
∑

j

p(yj) [V (yj)−Vc] (5)

which only takes into account the modulated part of the
potential but not the constant offset Vc. It was separately
determined for small and large particles.

III. RESULTS AND DISCUSSION

In the experiments, we varied the total area fraction η
as well as the laser power PL and hence the amplitude
of the external potential, V0 (Fig. 3). Through the area
fraction η the effect of the particle-particle interactions
is varied while the particle-potential interactions are con-
trolled through V0, where the effect of the potential on
the large particles is about twice as strong as on the small
particles (Fig. 2). The size ratio Rs/Rl = 0.42 was kept
constant and the fringe spacing d ≈ 4.1µm as well as the
number ratio of small and large particles 1.1 ≤ ξ ≤ 1.4
were about constant. In the following we discuss the de-
pendence on the amplitude of the external potential, V0,
for two area fractions η ≈ 0.73 and 0.80 (series C1, C2) as
well as the dependence on the area fraction η for four laser
powers PL = 0.1 W, 0.2 W, 0.3 W, and 0.5 W (series P0.1,
P0.2, P0.3 and P0.5, Fig. 3) corresponding to amplitudes
of the external potential, 1.6 kBT ≤ V0,s ≤ 8.0 kBT and
3.5 kBT ≤ V0,l ≤ 18 kBT , for the small and large parti-

C1-P0.1 C1-P0.2 C1-P0.3 C1-P0.5 

FIG. 4. Images of samples with increasing amplitude of the
external potential, V0 (left to right), and constant area frac-
tion η ≈ 0.73 (series C1). The minima of the periodic po-
tential are aligned horizontally. The small and large bright
spots are the centers of the small and large particles, respec-
tively. The images were adjusted in brightness and contrast
for better visibility.

cles, respectively (Fig. 3).

III.1. Dependence on the amplitude of the
potential, V0

We examined the effect of increasing amplitude V0 for
two different, about constant area fractions η ≈ 0.73 and
0.80 (series C1 and C2, respectively; Fig. 3). For all am-
plitudes V0, the particles tend to occupy the potential
minima (Fig. 4). This implies order perpendicular to the
minima, i.e. in y direction, whereas the particles appear
randomly located along the minima, i.e. in x direction.
This is characteristic for a modulated liquid [64]. With
increasing V0, in particular the large particles are located
closer to the potential minima. Hence they are increas-
ingly confined to a smaller part of the potential result-
ing in a denser packing of the large particles along the
minima. This leads to an increasingly ordered, almost
crystalline arrangement of the large particles although
with many ‘vacancies’ that are occupied by small parti-
cles. The stronger confinement of the large particles to
the minima leaves less space for the small particles in the
minima. As a consequence, with increasing V0 we observe
more small particles further from the minima as well as a
segregation of small and large particles, especially along
the minima.

These qualitative observations are quantified using the
pair distribution functions parallel to the minima, i.e. in
x direction, of the large and small particles, ĝll(r) and
ĝss(r), respectively. First, we consider the arrangement
of the large particles (Fig. 5a). With increasing V0, the
first peak of ĝll(r) at r ≈ 5µm = 2Rl rises from about 4 to
about 12, indicating the increased probability to find two
large particles next to each other. The second peak at
r ≈ 7µm ≈ 2(Rl+Rs), corresponding to two large par-
ticles separated by one small particle, becomes skewed
towards smaller r and increases only slightly while the
third peak at r ≈ 9µm ≈ 2(Rl+2Rs), corresponding to
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FIG. 5. Pair distribution function parallel to the minima for
(a) large, ĝll(r), and (b) small particles, ĝss(r). The amplitude
of the potential, V0, is varied (as indicated) while the area
fraction is kept constant, η ≈ 0.73 (series C1).

two large particles separated by two small particles, even
tends to decrease. This indicates an increasing trend for
the particles to move closer and for the large particles to
stay close to each other along the minima of the potential.
The corresponding behavior of the small particles is indi-
cated by ĝss(r) (Fig. 5b). The first two maxima of ĝss(r)
at r ≈ 2.2µm ≈ 2Rs and r ≈ 4.5µm ≈ 4Rs increase and
also become skewed towards small r with increasing V0.
Thus, the probability to find two or three small parti-
cles next to each other along a minimum increases. In
the direction of the minima, hence, with increasing V0
the particles move closer to particles of the same species
while the two species tend to segregate.

The arrangement of the particles perpendicular to the
minima, i.e. in y direction, is characterized by the oc-
cupation probability p(y) which was determined for the
large and small particles separately (Fig. 6). Both, the
large and small particles are most likely located in the
potential minima, i.e. at y = 0. Upon increasing V0, the
large and small particles are more localized in the po-
tential minima. However, the small particles can also be
found some distance from the minima. The ps(y) indi-
cate that some small particles are even located around
the maximum (y ≈ d/2), essentially independent of V0.
In the denser sample with η ≈ 0.80, at low V0 the ps(y)
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FIG. 6. Occupation probability perpendicular to the minima,
p(y). The area fraction is kept constant at (a) η ≈ 0.73 (series
C1) and (b) η ≈ 0.80 (series C2) and the amplitude of the
potential V0 is varied (as indicated). The data referring to
the large and small particles are indicated by closed and open
symbols, respectively.

indicates a relatively low probability to find particles in
the minima which, however, significantly increases if V0
is increased. Nevertheless, with increasing V0 small par-
ticles are also located especially around y ≈ 0.3d. The
location y ≈ 0.3d corresponds to about Rs and indicates
that pairs of small particles are orientated perpendicu-
lar to the minima. This is attributed to the stronger
confinement of the large particles to the minima, which
decreases the available space in the minima for the small
particles. Thus, the p(y) indicate that the large parti-
cles are almost exclusively located in the minima and
the more so as V0 is increased. As a consequence, the
small particles, although they as well tend to stay in the
minima, are also found further away from the minima.

The angular distribution of center-to-center lines
(‘bonds’) Nb(θ) provides information on the local ar-
rangement of small and large particles beyond the two di-
rections discussed so far (Fig. 7). The Nb,l(θ) of the large
particles show peaks at 0◦, indicating pairs aligned along
the minima, and around 50◦, which involves two par-
ticles located in neighboring minima. All peaks become
slightly more pronounced with increasing V0. For the low
area fraction η ≈ 0.73, furthermore, with increasing V0
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FIG. 7. Angular bond distribution Nb(θ). The area fraction
is kept constant at (a) η ≈ 0.73 (series C1) and (b) η ≈ 0.80
(series C2) and the amplitude of the potential V0 is varied (as
indicated). The data referring to the large and small particles
are indicated by closed and open symbols, respectively.

the second peak shifts from 49◦ to 53◦, indicating a closer
packing. In contrast, for the high area fraction η ≈ 0.80,
the peak essentially remains at θ ≈ 49◦. Also the small
particles are preferentially aligned along the minima as
indicated by peaks of Nb,s(θ) at 0◦. With increasing V0,
a further, small peak at 90◦ develops, indicating an align-
ment perpendicular to the minima and hence consistent
with the arrangement suggested by ps(y). For the higher
area fraction η ≈ 0.80, even at low V0 the Nb,s(θ) shows
more pronounced peaks at 90◦ and additional peaks at
about 30◦, which correspond to a triangular arrange-
ment.

Based on the positions of the particles, characterized
by the occupation probability p(y) (Fig. 6), the average
potential energy per particle, EV, was calculated. For
the low area fraction η ≈ 0.73 and a specific condition,
i.e. laser power PL, the average potential energies EV

are very similar for the large and small particles (Fig. 8).
This is consistent with expectations for low enough parti-
cle concentrations. At the higher area fraction η ≈ 0.80,
accordingly, the constraints imposed by crowding lead
to differences in the average energies of the large and
small particles, which become more pronounced as the
amplitude of the external potential, V0, increases. The
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FIG. 8. Average potential energy EV per large particle (closed
symbols) and per small particle (open symbols), respectively,
for area fractions η ≈ 0.73 (series C1) and 0.80 (series C2, as
indicated) and varying amplitude of the potential, V0.

average potential energy of the small particles is found to
be larger than the one of the large particles, consistent
with the observation that the small particles are more
frequently located further from the minima. This could
be attributed to the fact that the small particles are less
susceptible to the external potential by a factor of about
two which, however, is counterbalanced by the smaller
stretch of a minimum required to place a small parti-
cle, also by about a factor of two. This suggests that
this behavior is rather due to their smaller size which
implies that their spatial requirements are smaller and
thus they can more flexibly be placed achieving a better
packing. Small particles placed in minima, furthermore,
use space inefficiently since they are much smaller than
the distance between minima. Nevertheless, the average
potential energy per particle (irrespective of their size)
does not significantly depend on the area fraction but
increases about linearly with the amplitude of the poten-
tial, V0.

In summary, an increase of the amplitude of the po-
tential, V0, confines the particles more strongly to the
minima, in particular the large particles. This forces the
particles to move closer together. The small particles can
also be found further from the minima, including pairs
oriented perpendicular to the minima and triangular con-
figurations. This is attributed to the limited space and
their smaller susceptibility to the external potential but
in particular to their smaller size. In addition, the large
and small particles show some segregation.
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η = 0.71 η = 0.78 η = 0.80 

FIG. 9. Images of samples with increasing area fraction η
(as indicated) and constant external potential corresponding
to a laser power PL = 0.5 W (series P0.5). The minima of
the periodic potential are aligned horizontally. The small and
large bright spots are the centers of the small and large par-
ticles, respectively. The images were adjusted in brightness
and contrast for better visibility.

III.2. Dependence on the total area fraction η

The effects of the area fraction η on the arrangement of
the particles are investigated in measurement series with
constant amplitudes of the external potential, V0, but in-
creasing area fraction η (series P0.1 to P0.5, Fig. 3). The
particles are observed to mainly occupy the minima and
hence appear ordered perpendicular to the minima, i.e. in
y direction (Fig. 9). They, however, are rather disordered
along the minima, i.e. in x direction. At low packing
fraction, along the minima several particles of the same
species are observed next to each other whereas they are
more mixed at higher area fractions. Thus, the increase
in area fraction η leads to a more homogeneous arrange-
ment which also is increasingly ordered perpendicular to
the minima and hence appears more crystalline. How-
ever, some of the positions of the large particles are taken
by small particles, either by individual small particles as
well as pairs or triplets of small particles. Nevertheless,
in contrast to samples with lower area fractions, the large
and small particles are much more mixed.

This behavior is reflected in the pair distribution func-
tions parallel to the minima of the large and small par-
ticles, ĝll(r) and ĝss(r), respectively. For the large parti-
cles, the first peak at r ≈ 5 µm = 2Rl decreases with in-
creasing η, while the second and the third peaks increase
(Fig. 10a). Thus, it becomes less likely that two large
particles are neighbors but more likely for one or two
small particles to be located in between two large parti-
cles. The ĝss(r) of the small particles is consistent with
the behavior of the large particles (Figure 10b). Both,
the first peak at r ≈ 2.2µm ≈ 2Rs and the second peak
at r ≈ 4.4 µm ≈ 4Rs, decrease corresponding to a lower
probability to find two or three small particles next to
each other. Instead, the third peak at r ≈ 6.8 µm in-
creases. This distance roughly corresponds to four small
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FIG. 10. Pair distribution function parallel to the minima
for (a) large, ĝll(r), and (b) small particles ĝss(r). The area
fraction is varied from η = 0.71 to 0.80 (as indicated) while
the amplitude of the potential, V0, is kept constant (series
P0.5).

particles next to each other, 6Rs = 6.3µm, or a large
particle between two small particles, 2Rs+2Rl = 7.1µm,
where the decreasing first two peaks and the images sug-
gest that a large particle between two small particles is
more likely. Hence ĝll(r) as well as ĝss(r) suggest that,
upon increasing η, the distribution of large and small
particles along the minima becomes more homogeneous.

The occupation probability of the large particles, pl(y),
shows only a weak dependence on the area fraction η for
all investigated amplitudes of the potential V0 (Fig. 11).
In contrast, it indicates a progressive localization in the
minima with increasing V0, as already described above
(Fig. 6). In contrast, the ps(y) suggest a different behav-
ior of the small particles. The small particles are slightly
less localized in and close to the minima (y . 0.1d) but,
correspondingly, occur with a higher probability at and
close to the maxima (y & 0.2d). This becomes more
pronounced as the area fraction η increases; for larger η
the ps(y≈0) decrease and ps(y&0.2d) increase. For the
largest V0 even a peak at y ≈ 0.3d appears. A peak at
y ≈ 0.3d suggests the existence of pairs of small particles
orientated perpendicular to the minima. These features
become more pronounced as V0 increases, as already de-
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FIG. 11. Occupation probability perpendicular to the min-
ima, p(y). The laser power PL and hence the amplitude of
the potential, V0, is kept constant at (a) PL = 0.1 W (series
P0.1), (b) 0.2 W (P0.2), (c) 0.3 W (P0.3), and (d) 0.5 W
(P0.5) and the area fraction η is varied (as indicated). The
data referring to the large and small particles are indicated
by closed and open symbols, respectively.
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FIG. 12. Angular bond distribution Nb(θ). The laser power
PL and hence the amplitude of the potential, V0, is kept con-
stant at (a) PL = 0.1 W (series P0.1), (b) 0.2 W (P0.2), (c)
0.3 W (P0.3), and (d) 0.5 W (P0.5) and the area fraction
η is varied (as indicated). The data referring to the large
and small particles are indicated by closed and open symbols,
respectively.
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scribed in the previous section.

The angular bond distribution of the large particles,
Nb,l(θ), shows two peaks independent of η and also V0; at
0◦, indicating alignment with the minima, and at about
50◦, involving two large particles in neighboring minima
(Fig. 12). These peaks tend to become narrower and
higher with increasing η and, as discussed above, with
increasing V0. Their position does not significantly de-
pend on η but shifts to slightly larger θ with increasing
V0, as also discussed above. For the small particles the
peaks evolve differently. With increasing η, the peak at
0◦ slightly decreases and hence it becomes less likely to
find two (or more) small particles next to each other along
a minimum. Hence the arrangement along the minima
becomes more homogeneous. A further peak at 90◦ de-
velops, which reflects the arrangements of pairs of small
particles orientated perpendicular to the minima. It be-
comes more pronounced as η is increased. With increas-
ing η, moreover, a third peak emerges at about 30◦ in-
dicating the formation of triangular configurations with
one particle in a minimum and the other two besides
the minimum. All these trends are more pronounced for
larger V0, as described above.

The average potential energy per particle, EV, was
found to depend about linearly on the amplitude of the
potential, V0 (Fig. 8). When discussing the dependence
on the area fraction η, this is taken into account by con-
sidering the average potential energy per particle nor-
malized by the amplitude of the potential experienced by
the large particles, EV/V0,l. This normalization was ar-
bitrarily chosen; a normalization by the amplitude of the
potential experienced by the small particles results in ex-
actly the same trends since EV/V0,l = 0.458EV/V0,s. In-
deed, EV/V0,l is found to be virtually independent of the
area fraction η (Fig. 13). The normalized average poten-
tial energy per large particle, EV,l/V0,l, tends to decrease

d 
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FIG. 14. Schematic representation of (a) a unit cell of a square
lattice of large particles with small particles in their interstices
and (b) a unit cell of an oblique lattice of large particles with
small particles in their interstices in the presence of the exter-
nal potential. The unit cell is indicated by the red area and
the bond angle θ is labeled. Sizes are to scale.

and the normalized average potential energy per small
particle, EV,s/V0,l, tends to increase with area fraction η,
but this is a rather weak dependence and not significant
within the fluctuations and uncertainties. These fluctu-
ations might be related to the slightly different number
ratios of small to large particles ξ (Fig. 3) but are mainly
attributed to kinetic effects combined with the large ef-
fect of particles located close to the potential maxima,
where, due to their small number, even small variations
in their number have relatively large effects on EV,s/V0,l.

The size ratio Rs/Rl = 0.42 and number ratio 1.1 ≤
ξ ≤ 1.4 in our experiments are close to the parame-
ters of a compact packing, Rs/Rl = 0.414 and ξ = 1
[42, 45]. Without an external potential, a square lattice
of the large particles with the small particles in the in-
terstices between the large particles is predicted to form
(Fig. 14a). Due to the size ratio ξ > 1, this should co-
exist with a one-component triangular lattice of small
particles [42]. In the presence of the external potential,
the unit cell is expected to be stretched to accommodate
the particle positions to the potential minima (Fig. 14b).
This significantly reduces the maximum area fraction, to
η = 0.793, which still is compatible with the explored
range of area fractions η . 0.80. It also changes the lat-
tice symmetry to oblique and hence increases the angle θ.
Upon increasing the amplitude of the potential V0, indeed
an increase of the angle θ has been observed (Fig. 7a).
At low area fractions η, along the minima the samples
are disordered and the two particle species are partially
segregated, while the large particles avoid each other in
neighboring minima. The samples resemble modulated
liquids [64]. At higher area fractions η, particle-particle
interaction become more important and ordered struc-
tures appear (Fig. 9). The expected oblique symmetry
dominates, although with many defects. Moreover, a co-
existing triangular structure of small particles was not
observed, rather pairs, triplets or small groups of small
particles within the lattice of large particles. These dif-
ference between observed and expected structures might
be due to several reasons. The perturbative argument
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might not be valid at the present strengths of the ex-
ternal potential. Furthermore, the crystal structure was
predicted for a temperature T = 0, while the experi-
ments are performed at finite temperature. This might
affect the thermodynamically favored structure [48, 49].
In another binary system, the large particles were ob-
served to remain essentially ordered whereas the lattice
of small particles became disordered upon increasing the
temperature [48]. In addition, the contribution of the
configurational entropy is ignored in the geometric pack-
ing argument that only considers the free volume entropy.
A significant contribution of the configurational entropy
is expected in a binary system where not only spatial
order but also compositional order must be maintained.
Furthermore, two-dimensional binary systems have been
suggested to possess a rough energy landscape [48, 53]
and observed to form glasses [11, 67, 68]. Thus, the
system might not reach the minimum energy configura-
tion favored by thermodynamics but become trapped in
a metastable state. The particle motion, in addition, is
constrained by the external potential. This renders re-
arrangements, especially across the maxima, less likely,
which is similar to the situation of tethered disks [69].
It hence is likely that some of the observed structures
represent kinetically arrested states and, to some extent,
depend on the sample history. This is consistent with the
observed (modest) fluctuations in EV/V0,l as a function
of η (Fig. 13).

IV. CONCLUSIONS

We studied dense binary colloidal mixtures in a sinu-
soidal potential. The potential induces a high degree of
order perpendicular to the minima and a varying degree

of order along the minima, depending on the amplitude
of the potential V0. An increase of V0 leads to a stronger
confinement of the particles to the minima. Especially
the large particles are tightly confined to the minima
whereas the small particles can also be found further from
the minima, even close to the maxima. Hence the aver-
age potential energy per particle tends to be larger for
the small particles than the large particles. This behavior
of the small particles is attributed to the larger number
of possibilities to place a small particle and the better
match of the period with the size of the large particles.
The different behaviors of the two particle species result
in a local demixing of small and large particles along the
minima. A more homogeneous arrangement of the par-
ticles and also a higher degree of order is observed upon
increasing the total area fraction η. Due to the incom-
mensurability of the period of the sinusoidal potential, d,
with the square lattice, the particles are arranged in an
oblique lattice, in which the small particles occupy the
interstices of the large particles. However, many defects
exist and the small particles do not only occur individu-
ally but also in pairs and triplets. This is attributed to
kinetic effects which are expected to play an important
role in this system.
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and Ramón Castañeda-Priego (University of Guanaju-
ato, León) for stimulating and very helpful discussions.
We acknowledge support by the International Helmholtz
Research School of Biophysics and Soft Matter (BioSoft)
and funding by the Deutsche Forschungsgemeinschaft
(DFG, project EG 269/6-1).

[1] W. C. K. Poon, Science 304, 830 (2004).
[2] W. C. K. Poon, P. Pusey, and H. Lekkerkerker, Physics

World 9, 27 (April 1996).
[3] P. N. Pusey, “Colloidal suspensions,” in Liquids, Freez-

ing and Glass Transition, edited by J. P. Hansen,
D. Levesque, and J. Zinn-Justin (Elsevier Science Pub-
lishers, 1991) pp. 763–942.

[4] B. J. Berne and R. Pecora, Dynamic Light Scattering
(Wiley, 1976).

[5] V. Prasad, D. Semwogerere, and E. R. Weeks, J. Phys.:
Condens. Matter 19, 113102 (2007).

[6] J. C. Crocker and D. G. Grier, J. Coll. Interf. Sci. 179,
298 (1996).

[7] M. C. Jenkins and S. U. Egelhaaf, Adv. Coll. Interf. Sci.
136, 65 (2008).

[8] P. N. Pusey and W. van Megen, Nature 320, 340 (1986).
[9] L. J. Bonales, J. E. F. Rubio, H. Ritacco, C. Vega, R. G.

Rubio, and F. Ortega, Langmuir 27, 3391 (2011).
[10] L. J. Bonales, F. Mart́ınez-Pedrero, M. A. Rubio, R. G.

Rubio, and F. Ortega, Langmuir 28, 16555 (2012).
[11] F. Ebert, P. Keim, and G. Maret, Europ. Phys. J. E 26,

161 (2008).

[12] F. Ebert, P. Dillmann, G. Maret, and P. Keim, Rev. Sci.
Instrum. 80, 083902 (2009).

[13] U. Gasser, C. Eisenmann, G. Maret, and P. Keim, Chem.
Phys. Chem. 11, 963 (2010).

[14] T. O. E. Skinner, S. K. Schnyder, D. G. A. L. Aarts,
J. Horbach, and R. P. A. Dullens, Phys. Rev. Lett. 111,
128301 (2013).

[15] X. Ma, W. Chen, Z. Wang, Y. Peng, Y. Han, and
P. Tong, Phys. Rev. Lett. 110, 078302 (2013).
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Abstract. The dynamics of colloidal particles in potential energy land-
scapes have mainly been investigated theoretically. In contrast, here
we discuss the experimental realization of potential energy landscapes
with the help of laser light fields and the observation of the particle
dynamics by video microscopy. The experimentally observed dynam-
ics in periodic and random potentials are compared to simulation and
theoretical results in terms of, e.g. the mean-squared displacement, the
time-dependent diffusion coefficient or the non-Gaussian parameter.
The dynamics are initially diffusive followed by intermediate subdif-
fusive behaviour which again becomes diffusive at long times. How
pronounced and extended the different regimes are, depends on the
specific conditions, in particular the shape of the potential as well as
its roughness or amplitude but also the particle concentration. Here
we focus on dilute systems, but the dynamics of interacting systems
in external potentials, and thus the interplay between particle-particle
and particle-potential interactions, are also mentioned briefly. Further-
more, the observed dynamics of dilute systems resemble the dynamics
of concentrated systems close to their glass transition, with which it
is compared. The effect of certain potential energy landscapes on the
dynamics of individual particles appears similar to the effect of inter-
particle interactions in the absence of an external potential.

1 Introduction

The motion of colloidal particles in potential energy landscapes is a central process in
statistical physics which is relevant for a variety of scientific and applied fields such
as hard and soft condensed matter, nanotechnology, geophysics and biology [1–3].

a e-mail: Florian.Evers@hhu.de
b e-mail: Stefan.Egelhaaf@hhu.de
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Particle diffusion in periodic and random external fields is encountered in many situ-
ations [4–7], such as atoms, molecules, clusters or particles moving on a surface with a
spatially varying topology or interaction [8], or moving through inhomogeneous bulk
materials, e.g. porous media or gels [9], rocks [2], living cells or biological membranes
[10–15]. It also includes the diffusion of charge carriers in a conductor with impuri-
ties [16,17], particle diffusion on garnet films [18–20] or diffusion in optical lattices
[21,22], superdiffusion in active media [23], and vortex dynamics in superconductors
[24]. Moreover, some processes are modelled by diffusion in the configuration space
of the system, e.g. the glass transition [25–30] and protein folding [31–33].
Thermal energy drives the Brownian motion of colloidal particles [34,35]. In free

diffusion, their mean-squared displacement 〈Δx2(t)〉 increases linearly with time t;
〈Δx2(t)〉 ∝ tμ with μ = 1. Particle-potential (as well as particle-particle) interactions
can modify the dynamics significantly leading to μ �= 1 [14,36–42]. Often the dynamics
slow down; on an intermediate time scale subdiffusion (μ < 1) is observed, while at
long times diffusion is reestablished with a reduced (long-time) diffusion coefficient
D∞. Different theoretical models have been developed to describe particle dynamics
in external potentials, including the random barrier model [43], the random trap
model [38,44], the continuous time random walk [45], diffusion in rough and regular
potentials [7,46–48], the Lorentz gas model [49], and diffusion in quenched-annealed
binary mixtures [50]. Typically, theories focus on the asymptotic long-time limit,
which is often difficult to reach in experiments. In contrast, less is known about the
behaviour at intermediate times, where the transitions between the different regimes
occur. Furthermore, theoretical calculations have mainly been exploited to extract
information from experimental data, while only recently have theoretical predictions
been compared systematically with experiments [18–20,51–58].
Here we thus focus on recent experimental results on the dynamics of colloidal

particles in potential energy landscapes and their comparison to simulations and
theoretical predictions. A prerequisite for systematic experiments is the controlled
creation of external potential energy landscapes. This, for example, is possible due to
the interaction of colloidal particles with light [59–66]. The effect of light on particles
with a refractive index different (typically larger) from the one of the surrounding
liquid is usually described by two forces: a scattering force or “radiation pressure”,
which pushes the particles along the light beam, and a gradient force, which pulls
particles toward regions of high light intensity. A classical application of this effect is
optical tweezers which are used to trap and manipulate individual particles or ensem-
bles of particles by a tightly focused laser beam or several laser beams, respectively
[65–68]. Extended light fields rather than light beams can be used to create potential
energy landscapes. Arbitrary light fields can be generated using a spatial light mod-
ulator [61,68] or an acousto-optic deflector [63,64,69], while crossed laser beams [60],
diffusors [70] and other optical devices can be used to create particular high-quality
light fields (Sect. 2).
Light fields can affect the arrangement and dynamics of colloidal particles within

distinct phases but can also induce phase transitions. For example, upon increasing
the amplitude of a periodic light field applied to a colloidal fluid, a disorder-order
transition is induced in a two-dimensional charged colloidal system, known as light-
induced freezing [41,71–73]. A further increase of the amplitude results in the melting
of the crystal into a modulated liquid; this process is called light-induced melting. Ex-
tended light fields can also be applied to direct heterogeneous crystallization and hence
the structure and unit cell dimensions of the formed bulk crystals or quasi-crystals
[74–78]. Using light fields, the effect of periodic as well as random potentials on the
particle dynamics has been experimentally investigated [52–54] and compared to sim-
ulations and theoretical predictions [7,38–40,46,54–56,79,80]. Most of the theoretical
predictions only concern the asymptotic long-time behaviour. Possible links between
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the long-time behaviour and the intermediate dynamics, as observed in the experi-
ments, are discussed [53,56,81]. Furthermore, the dynamics of individual particles in
sinusoidal potentials show similarities with the dynamics in glasses [54,82]. Inspired
by this idea, in this review the dynamics of individual particles in different external
potentials are compared to the dynamics of concentrated hard spheres [29,83,84]. En-
ergy landscapes are not only considered in the context of glasses, but random energy
landscapes with a Gaussian distribution of energy levels of width ε ≈ O(kBT ), where
kBT is the thermal energy, seem to be relevant for proteins, RNA and transmembrane
helices [85,86]. Moreover, the diffusion (or “permeation”) of rodlike viruses through
smectic layers can be described by the diffusion in a sinusoidal potential of amplitude
ε ≈ kBT [87,88].

2 Colloids in light fields: Creation of potential energy landscapes

The optical force on a colloidal particle has been investigated extensively, in particular
in the context of optical tweezers [62–67,89–95]. We consider a transparent colloidal
particle with a refractive index nc suspended in a medium with a smaller refractive
index nm, that is nc > nm, and begin with the case of a particle much larger than the
wavelength of light. In this case, the simple picture of ray optics applies. If light is
incident on a particle, it will be scattered and reflected. While light arrives from only
one direction, the scattered and reflected light travels in different directions. Hence
the direction of the light and accordingly the momenta of the photons are changed.
Due to conservation of momentum, an equal but opposite momentum change will be
imparted on the particle. The rate of momentum change determines the force on the
particle, which acts in the direction of light propagation and might, e.g. due to the
astigmatism of the objective, also have effects outside the main beam [96]. This is the
so-called scattering force or, considering the photon “bombardment”, the radiation
pressure.
When hitting the particle, the light beam will also be refracted, that is the particle

acts as a (microscopic) lens. This, again, changes the direction of the beam and
hence the momentum of the photons. The resulting force pushes the particle toward
higher light intensities, mainly into the centre of the beam. This is the gradient force,
which acts in lateral direction and gradients typically also exist in axial direction,
e.g. toward a focus. This decomposition of the optical force into two components, the
scattering and gradient forces, is done traditionally although both originate from the
same physics.
If the particle with radius R is much smaller than the wavelength of light, λ, that

is in the so-called Rayleigh regime, the particle’s polarizability is considered. The
electric field of the light induces an oscillating dipole in the dielectric particle, which
re-radiates light. This leads to the scattering force [91–94]

Fscatt =
σnm

c
I0 with σ =

128π5R6

3λ4

(
m2 − 1
m2 + 2

)2
, (1)

where I0 is the incident light intensity, σ the scattering cross section of a spherical
particle, c the speed of light and m = nc/nm.
The incident light intensity is typically inhomogeneous, I0(r), which leads to a

further (component of the) force acting on the particle. An induced dipole in an
inhomogeneous electric field experiences a force in the direction of the field gradient,
the gradient force [93,94]

Fgrad =
2πα

cnm
∇I0(r) with α = n2mR3

(
m2 − 1
m2 + 2

)
, (2)
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where α characterises the polarizability of a sphere. The gradient force pushes particles
with nc > nm towards regions of higher intensity.
In the experiments described in the following, the particles are of comparable

size to the wavelength of light. However, this case is much more difficult to model
[63,64,97,98] and will thus not be described here.
In optical tweezers, tightly focused laser light is used to trap particles. In contrast,

exploiting the gradient force, here, extended spatially modulated light fields are ap-
plied to create potential energy landscapes [60]. The modulations in the potential
are relatively weak such that typically particles are not trapped for long times, but
only remain for some time in certain areas. Since the light field acts on the whole
volume of the particle, its volume has to be convoluted with the light intensity to
obtain the potential felt by the particle. Depending on the size of the particle and
the modulation of the light field, the centre of the particle might thus be attracted
to bright or dark regions [60]. Furthermore, it is difficult to impose potentials with
features smaller than the particle size.
Extended space- and also time-dependent light fields can be created using vari-

ous optical devices, e.g. holographic instruments based on a spatial light modulator
(SLM) [61,67,68] or an acousto-optic deflector (AOD) [69]. Spatial light modulators
use arrays of liquid-crystal pixels. Each pixel imposes a modulation of the phase, am-
plitude or polarization, which can be externally controlled. This allows the creation
of almost any light field, within the limits of the finite size, pixelation and modula-
tion resolution of the SLM. The latter result in a noise component in the light field.
This can be exploited to create random potentials. It can also be avoided by cycling
different realizations of the same light field but with different phases, with a refresh
rate beyond the structural relaxation rate of the sample [52,53,99]. Furthermore, the
dynamic possibilities of a holographic instrument can be improved by combining it
with galvanometer-driven mirrors [68].
A conceptually simple but more specialized set-up is based on a crossed-beam

geometry, which yields a standing wave pattern, i.e. a sinusoidally-varying periodic
light field, within an overlying Gaussian envelope due to the finite size of the beams
[60,72,73,100–102]. Moreover, optical devices, such as diffusors, can be used to gen-
erate special beam shapes like top-hat geometries or randomly-varying light fields
[70].
While the gradient force is exploited to impose extended modulated potentials,

whose amplitude is typically controlled by the laser power, the scattering force or
radiation pressure will also affect the sample. The radiation pressure determines the
distance of the particle from the cover slip, which will thus depend on the laser power.
Due to hydrodynamic interactions, the distance to the cover slip affects the diffusion
of the particle, which typically is reduced compared to free diffusion [103–105]. The
experimental data presented in the following are corrected for this effect.

3 Dynamics of individual colloids in periodic and random potentials

Individual colloidal particles have been exposed to different potential energy land-
scapes (Fig. 1, top): sinusoidally-varying periodic potentials U(y) = ε sin (2πy/λ)
with amplitude ε and wavelength λ (Fig. 1(A)), as well as one- and two-dimensional
random potentials with a Gaussian distribution of potential values with (full) width
2ε (Fig. 1(B),(C)). For the one-dimensional random potential, figure 1B also shows
the histogram of values of the potential, p(U), which follows a Gaussian distribution
p(U) ∝ exp{−(U −〈U〉)2/2ε2}. In the experiments, the periodic potentials were gen-
erated using crossed laser beams [54,60] and the random potentials using a spatial
light modulator [52,53,68] (Sect. 2).
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Fig. 1. (Top) schematic representations of the potential energy landscapes as felt by the
particles and as reconstructed from experimental data (left to right): sinusoidally-varying
periodic potential [54], one- and two-dimensional random potentials [52,53]. For the one-
dimensional random potential, the histogram of values of the potential, p(U), is shown and
compared to a Gaussian distribution (green line). (Bottom) representative particle trajecto-
ries in these potentials. The one-dimensional random potential was arranged in large circles
to obtain “periodic boundary conditions” and to improve the statistics by simultaneously
investigating several circles.

The particle motions were monitored by video microscopy and the particle tra-
jectories recovered by particle tracking algorithms [106,107]. In the absence of a light
field, i.e. without an external potential, colloidal particles undergo free diffusion, thus
exploring large areas. However, in the presence of external potentials, the particle
dynamics are modified (Fig. 1, bottom). The trajectories and hence the excursions
of the particles were limited with the particles remaining for extended periods at
positions that correspond to local minima of the potential. In the periodic potential,
anisotropic trajectories were observed (Fig. 1D). Particle motion along the valleys (x
direction) was unaffected, while their motion across the maxima (y direction) was
hindered by barriers of height 2ε.
In the one-dimensional random potentials, the particles remained for different

periods of time at different positions, reflecting the randomly-varying potential values
along the circular path (Fig. 1E). (The circular paths provided “periodic boundary
conditions” and the simultaneous use of several circles helped to improve statistics.)
Similarly,in the two-dimensional random potentials, the motion of the particles was
limited due to the presence of local potential minima and saddle points (Fig. 1F).
Upon increasing the amplitude of the roughness, ε, the particles were more efficiently
trapped and hence explored an even smaller region.
Based on the particle trajectories, different parameters were computed to charac-

terize the particle dynamics quantitatively in the presence of external potentials. The
mean-squared displacement (MSD) is calculated according to

〈Δx2(t)〉 =
〈
[xi(t0 + t)− xi(t0)]2

〉
t0,i
− 〈 [xi(t0 + t)− xi(t0)] 〉2t0,i ,

where the second term corrects for possible drifts. For both, experiments and simula-
tions, the average is taken over particles i and waiting time t0 to improve statistics.
The average over t0 affects the results [55,56], because initially the particles are ran-
domly distributed while the distribution of occupied energy levels evolves toward a
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Boltzmann distribution. To render the data independent of the specific experimental
conditions, 〈Δx2(t)〉 was normalized by the square of the particle radius R2, and the
time t by the Brownian time tB = R

2/(2dD0) with the short-time diffusion coefficient
D0 and the dimension d.
From the MSD, the normalized time-dependent diffusion coefficient D(t)/D0 is

calculated according to
D(t)

D0
=
∂
(〈
Δx2(t)

〉
/R2
)

∂(t/tB)
, (3)

while the slope of the MSD in double-logarithmic representation

μ(t) =
∂ log

(〈
Δx2(t)

〉
/R2
)

∂ log (t/tB)
(4)

corresponds to the exponent in the relation
〈
Δx2(t)

〉 ∼ tμ(t) and quantifies deviations
from diffusive behaviour: for free diffusion μ = 1, while μ < 1 for subdiffusion and
μ > 1 for superdiffusion. In addition, the non-Gaussian parameter [82]

α2(t) =

〈
Δx4(t)

〉
(1 + 2/d) 〈Δx2(t)〉2 − 1 (5)

characterizes the deviation of the distribution of particle displacements from a
Gaussian distribution and represents the first non-Gaussian correction [108]. In the
two-dimensional case, the analogous equation based on 〈Δr2(t)〉 and 〈Δr4(t)〉 was
calculated and has the corresponding meaning.
The effect of potential shape and amplitude on the particle dynamics was investi-

gated in experiments [52–54], simulations [55,56] and theory [54,80], which all show
consistent results (Fig. 2). Without an external potential (ε = 0), the MSD increases
linearly with time and the diffusion coefficient D(t)/D0 ≈ 1, exponent μ(t) ≈ 1 and
non-Gaussian parameter α2(t) ≈ 0 are all independent of time, as expected for free
diffusion. In contrast, in the presence of a periodic or random potential, the particle
dynamics exhibit three distinct regimes which will be discussed in turn in the follow-
ing. (Note that in the case of the sinusoidal potential, we only discuss the motion
across the barriers, i.e. in y direction.)
At short times, the particle dynamics are diffusive and follow the potential-free

case. This reflects small excursions within local minima and hence shows no significant
dependence on the amplitude ε.
At intermediate times, the MSDs exhibit inflection points or plateaux, which be-

come increasingly pronounced as ε increases. This corresponds to the decrease of the
diffusion coefficients D(t)/D0 from 1 to significantly lower values, the decrease of the
exponent μ(t) and the increase of the non-Gaussian parameter α2(t). The subdiffu-
sive behaviour is caused by the particle being trapped in local minima for extended
periods before it can escape to a neighbouring minimum.
In the case of the periodic potential, the barriers are all of equal height, 2ε,

and thus the residence time distribution is relatively narrow. This is reflected in the
reduced MSDs, the very pronounced and relatively quick decrease in D(t)/D0 and
μ(t) and increase in α2(t). Thus, the minima in μ(t) and maxima in α2(t) occur at
relatively short times, tμ,min and tα,max, respectively (Fig. 3, blue solid symbols). The
minima in μ(t) occur earlier than the maxima in α2(t). This is due to the fact that
the minimum in μ(t) reflects the largest deviation from diffusive behaviour, i.e. when
the probability to be (still) stuck in a minimum is largest and thus diffusion is most
efficiently suppressed, whereas the maximum in α2(t) indicates the largest deviation
from the Gaussian distribution of displacements, i.e. the dynamics are maximally
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Fig. 2. Particle dynamics in (left to right) sinusoidally-varying periodic [54], one-dimensional
random [52] and two-dimensional random potentials [53] as characterized by (top to bottom)
the normalized mean-squared displacements, the normalized time-dependent diffusion coef-
ficient D(t)/D0, the exponent μ(t) in the relation

〈
Δx2(t)

〉 ∝ tµ(t), and the non-Gaussian
parameter α2(t) for different potential amplitudes and degrees of roughness ε (as indicated
in the legends, in units of kBT ). Experimental data are represented by symbols, simulations
by solid lines, theoretical predictions (for the periodic potential) by thick lines. Theoretical
predictions for D∞/D0 are indicated by horizontal lines.

heterogeneous with some minima having been left a long time ago, some only recently,
with others yet to be left. The maximum in α2(t) thus only appears once jumps have
occurred, which happens after the minimum in μ(t), and hence tμ,min < tα,max. This
also implies a weak ε dependence of tμ,min and a significant ε dependence of tα,max
since ε determines the height of the barrier which has to be crossed. Similarly, the
intermediate regime ends once the particle escapes the minima and performs a random
walk between different minima with the diffusion coefficient D(t)/D0, μ(t) and α2(t)
tending toward the plateaux values, 1 and 0, respectively. Again, since all barrier
heights are identical, this occurs within a short period of time. Nevertheless, the time
required to reach the end of the intermediate regime and hence the long-time diffusive
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τ

Fig. 3. Characteristic time scales τ in sinusoidally-varying periodic, one-dimensional and
two-dimensional random potentials (as indicated and explained in the text). Data for the
periodic potential are extracted from theoretical results. For the random potentials, data
are retrieved from simulation data not averaged over waiting times t0 [55,56].

limit, quantified either by μ→ 1, i.e. tμ,∞, or by α2 → 0, i.e. tα,∞, strongly depends
on ε.
In the other case, i.e. in the presence of a random potential, there exists a wide

range of barrier heights and thus residence times. This is reflected in the less pro-
nounced plateaux or rather inflection points in the MSDs, a very slow decrease of
D(t)/D0 with very slow approaches to the long-time plateaux as well as a slow de-
crease and increase of μ(t) and α2(t), respectively, and in particular an extremely
slow return of μ(t) and α2(t) to 1 and 0, respectively. Therefore, the intermediate
subdiffusive regime, as indicated by the range from tμ,min and tα,max to tμ,∞ and
tα,∞, occurs relatively late and in particular extends over a broad range of times
with a strong ε dependence (Fig. 3), where the particular ε dependence of tμ,∞ and
tα,∞ is discussed in [53,81]. For the one-dimensional random potential, subdiffusion
is more pronounced than for the two-dimensional random potential, since in two di-
mensions maxima can be avoided and only saddle points need to be crossed. For the
same reason, in one dimension, the ε dependence appears stronger and the interme-
diate regime extends to longer times. Thus, in the one-dimensional random potential
the intermediate subdiffusive regime covers a longer time period than in the two-
dimensional case, which in turn is longer and shows a stronger ε dependence than in
the periodic potential. Moreover, increasing amplitude ε has similar effects for all po-
tential shapes: First, the subdiffusive behaviour becomes more pronounced. Second,
the intermediate regime extends to longer times, indicated by the slow returns of μ(t)
and α2(t) to 1 and 0, respectively. However, the beginning of the intermediate regime,
characterized by the maxima in μ(t) and minima in α2(t) and the corresponding times
tμ,min and tα,max, remains at about the same time with a weak ε dependence since
no or only a few barrier crossings are involved.1 Extrapolations of the characteristic
times τ to vanishing potential amplitudes results in different values τ(ε→0) for the
different potential shapes. Although unexpected, this might be related to the defin-
itions of the amplitude ε for the periodic and random potentials, respectively, and
to the fact that without an external potential, i.e. ε = 0, μ(t) = 1 and α2(t) = 0

1 Note that the amplitude ε characterises the amplitude of the oscillations in the case of
the periodic potential, while it represents the amplitude of the roughness, namely the width
of the Gaussian distribution of values of the potential, in the case of the random potentials.
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Fig. 4. Normalized long-time diffusion coefficient D∞(ε)/D0 in one- and two-dimensional
random potentials and sinusoidally-varying periodic potentials (left to right). Solid lines
indicate theoretical predictions [7,46,80], symbols simulation results that have not been
averaged over waiting times t0 [54–56].

and thus no minimum in μ(t) and no maximum in α2(t) exist and hence τ(ε = 0) is
not defined.
At very long times, again diffusive behaviour is observed with constant, but much

smaller D∞/D0 and μ(t) returning to 1 and α2(t) to 0. On long time scales, hopping
between minima becomes possible and, once more, the dominant process is a random
walk, now between minima. The return to diffusion is fast in the case of the periodic
potential, since very deep minima are absent, but slow in the two- and especially the
one-dimensional random potential. With increasing amplitude ε, one notices increas-
ingly long times to reach the asymptotic long-time limit (Fig. 3) and a decrease of the
long-time diffusion coefficient D∞(ε) (Fig. 4), which has been calculated for different
potential shapes. For a periodic sinusoidal potential [54,80]

D∞(ε)
D0

= J−20

(
ε

kBT

)
≈ 2π

(
ε

kBT

)
e

(
−2ε
kBT

)
, (6)

where J0 is the Bessel function of the first kind of order 0 and the approximation
holds for ε
 kBT/2 [54]. In the case of one- and two-dimensional random potentials
one finds [7,46,109–111]

D∞(ε)
D0

= e
− 1d
(

ε
kBT

)2
. (7)

In the case of a two-dimensional random potential, D∞(ε) is larger because maxima
can be avoided and only saddle points have to be crossed. Nevertheless, the exponen-
tial dependence on −(ε/kBT )2 remains, which is the ratio of the equilibrium energy
of a Gaussian distribution, −ε2/kBT , and the thermal energy kBT . The first term
describes the equilibrium energy and dominates the dependence of the activation
barriers on temperature, because the typical barrier energies to be overcome when
moving between different regions are essentially independent of the thermal energy, as
suggested by the percolation picture [112]. The theoretical predictions and simulation
as well as experimental data agree except at large ε where deviations are noticeable.
Figure 4 shows the theoretical predictions and simulation results, the latter agreeing
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Fig. 5. Effect of particle-particle and particle-potential interactions on the particle dy-
namics. The dynamics of individual particles in sinusoidally-varying periodic and one- and
two-dimensional random potentials (thin lines with symbols as indicated) [52–54] are com-
pared to (A,C,D) (quasi) two-dimensional concentrated hard discs [83] and (B,E,F) three-
dimensional concentrated hard spheres [29], the latter two in the absence of an external
potential (thick lines as indicated). (A,B) Dimensionless mean squared displacements and
(C–F) exponent μ(t) as function of dimensionless time. To allow for a comparison, both
the mean squared displacement and the time have been normalized by typical length scales
of the corresponding systems, indicated by the parameters 〈Δu+ 2(t+)〉 and t+. Shown are
the theoretical predictions for individual particles in periodic potentials with amplitude
(A,C) ε/kBT = 1, 2, 3, 8 and (B,E) 2, 3, 4, 6 [54], simulation results for individual parti-
cles in one-dimensional random potentials with amplitude ε/kBT = 1.2, 2.3, 3.1 [56] and in
two-dimensional random potentials with amplitude ε/kBT = 1.0, 2.0, 3.0 [53,55], simulation
results for concentrated hard discs with surface fractions σ = 0.68, 0.69, 0.70, 0.715 in the
absence of an external potential [83], experimental data for concentrated hard spheres with
volume fractions Φ = 0.466, 0.519, 0.558, 0.583 in the absence of an external potential [29]
(all top to bottom).

with the experimental data (Fig. 2). The slightly higher data are due to the fact that
even for the longest investigated times the asymptotic long-time limit is not quite
reached for the largest ε (Fig. 2).

The particle dynamics in periodic and random potentials as discussed above, re-
semble the dynamics of concentrated systems, whose subdiffusive behaviour has been
associated with caging by neighbouring particles [113–115]. Thus particle-potential
and particle-particle interactions seem to have similar effects on the particle dynamics.
Their effects lead to characteristic signatures especially in the intermediate regime,
which was described above. We hence can compare the dynamics of individual par-
ticles in external potentials and concentrated interacting particles without external
potential (Fig. 5), namely experimental data from a three-dimensional bulk system
containing hard spheres of different volume fractions [29] and experimental as well
as simulation data from (quasi) two-dimensional systems of hard discs with different
surface fractions [83,84]. The dynamics of the concentrated two-dimensional system
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Fig. 6. Particle dynamics, namely MSD across the barriers, i.e. in y direction (main figure),
and along the valleys, i.e. in x direction (inset), of an individual dilute large particle (R1 =
2.5 μm, open symbols) and concentrated large particles in a binary mixture (R1 = 2.5 μm,
R2 = 1 μm, total surface fraction σ ≈ 0.57 with an about equal number of large and small
spheres, filled symbols), both in sinusoidally-varying periodic potentials with wavelength
λ = 5.2 μm and different amplitudes (as indicated). Lines represent Brownian Dynamics
simulations of individual particles in a periodic potential with ε/kBT = 0.0, 1.5, 2.0, 2.5.

and the individual particles in the periodic potential are strikingly similar (Fig. 5A,
C), while the dynamics in the random potentials appear different (Fig. 5A, D). In con-
trast, the dynamics of the concentrated three-dimensional system seem different from
the individual particles in the periodic potential, for example the intermediate MSD
is broader (Fig. 5B, E), while it resembles the dynamics in the random potentials
(Fig. 5B, F).

4 Dynamics of interacting colloids in periodic and
random potentials

So far the dynamics of individual colloidal particles in periodic and random poten-
tials were considered. It shows striking similarities with the dynamics of concentrated
suspensions without external potentials [29,83,84]. The combined effect of particle-
potential and particle-particle interactions is hence briefly discussed. An increase
of the particle concentration in a one-dimensional channel leads to single file diffu-
sion with 〈Δx2(t)〉 ∼ t0.5 [116], which becomes more complex if a periodic potential
is present along the channel [42]. Also in two-dimensional potentials an interplay
between the particle-potential and particle-particle interactions was observed [41],
which, under the investigated conditions, may be linked to changes in the particle
arrangement, caused by laser-induced freezing and melting [71–73]. More complex
potential-induced disorder-order and disorder-disorder transitions have been theo-
retically investigated in mixtures, namely colloid-polymer mixtures and binary hard
discs [117–119]. The dynamics of binary colloidal mixtures with large size disparity
have been investigated without the presence of an external potential [120,121]. Here,
we focus on the dynamics of concentrated binary hard sphere mixtures in a periodic
potential, with the mixture in the modulated liquid state. The MSDs of individual
particles (similar to those in Sect. 3) and of interacting particles in the presence
of smaller particles in a periodic potential are determined (Fig. 6). No signature of
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single-file diffusion could be observed in the MSDs along the valleys, i.e. in x direction
(Fig. 6, inset). Across the barriers, i.e. in y direction, the MSDs of the interacting
large particles in the binary mixture (in a periodic potential with amplitude ε) re-
semble the MSDs of individual large particles (in a periodic potential with a larger
amplitude ε′). For the present conditions, in particular surface fraction σ ≈ 0.57, we
found ε′ ≈ ε+0.5 kBT . Moreover, the MSDs of the individual and interacting particles
in a periodic potential agree with Brownian Dynamics simulations of an individual
particle in a periodic potential (Fig. 6, lines). Similar observations have been made
for interacting single-component systems in periodic and random potentials [79,122].

5 Conclusion

Optical devices, such as spatial light modulators and acousto-optic deflectors, can be
exploited to create a large variety of modulated light fields. Due to the polarizability
of colloidal particles, this translates into potential energy landscapes of almost any
shape. The large flexibility, together with the possibility to observe and track colloidal
particles by video microscopy, provides an ideal experimental tool to systematically
and quantitatively investigate fundamental questions in statistical physics. Here we
focused on individual Brownian particles, but also briefly mentioned interacting parti-
cles, in periodic and random potentials. The experimental findings were compared to
simulation results and theoretical predictions. While the latter mainly concerns the
long-time asymptotic limit, the experiments and simulations also provide detailed
quantitative information on the intermediate dynamics, which exhibit subdiffusive
behaviour. This was compared to the distinct intermediate dynamics of concentrated
colloidal suspensions, thus relating particle-potential and particle-particle interac-
tions. The interplay between these interactions was also illustrated using concentrated
binary mixtures in external potentials. The dynamics of concentrated interacting par-
ticles in potential energy landscapes deserve further work, which will also be extended
to time-dependent potentials.
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294, 1929 (2001)

3.6 Colloids in light fields: Particle dynamics in random and periodic
energy landscapes

118



Colloidal Dispersions in External Fields 3007

11. M. Weiss, M. Elsner, F. Kartberg, T. Nilsson, Biophys. J. 87, 3518 (2004)
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Jörg Bewerunge,1 Ankush Sengupta,2 Ronja F. Capellmann,1 Florian Platten,1
Surajit Sengupta,3 and Stefan U. Egelhaaf1
1Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
2Department of Chemical Physics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
3TIFR Centre for Interdisciplinary Sciences, Hyderabad 500075, India

(Received 10 May 2016; accepted 1 July 2016; published online 28 July 2016)

Colloidal particles were exposed to a random potential energy landscape that has been created
optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e.,
the disorder strength, were varied. The local probability density of the particles as well as its
main characteristics were determined. For the first time, the disorder-averaged pair density corre-
lation function g(1)(r) and an analogue of the Edwards-Anderson order parameter g(2)(r), which
quantifies the correlation of the mean local density among disorder realisations, were measured
experimentally and shown to be consistent with replica liquid state theory results. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4959129]

I. INTRODUCTION

The potential energy landscape (PEL) of a system depends
on the coordinates and/or other parameters of its constituents.1

The concept of a PEL is successfully used in many fields of
science to determine the properties and behavior of systems
ranging from small, large and polymeric molecules, proteins
and other biomolecules to clusters, glasses, and biological
cells.1 It is also applied to describe the transport over
atomic surfaces,2–4 in materials with defects (e.g., ions in
zeolites5 or charge carriers in conductors with impurities6), in
inhomogeneous media7,8 (e.g., porous gels,9 cell membranes10

or cells11–14), or in the presence of fixed obstacles as
in a Lorentz gas.15 They are also used to determine the
rates of (bio)chemical reactions,1,16 the folding of proteins
and DNA,17–23 as well as the particle dynamics in dense
suspensions close to freezing,24 in glasses4,25–35 or, more
general, in crowded systems.12

We focus on random potential energy landscapes
(rPEL), which have been used in the interpretation of
several experimental observations. For example, rPEL with a
Gaussian distribution of energy values with a width of about
the thermal energy have been used to describe the behavior of
RNA, proteins, and transmembrane helices.19,36,37 Although a
rPEL might only represent a crude approximation for many
experimental situations, it often provides a very useful initial
description of the effect of disorder on the dynamics.5,35,38

The PEL is experimentally realised by exploiting the
interaction of light with colloidal particles,39,40 which was
already applied to realise, e.g., sinusoidal41–45 or random
landscapes.46–51 (See Ref. 49 for a review.) Here we investigate
how a rPEL modifies the spatial arrangement of ensembles
of colloidal particles.1,7,52 Local density variations occur,
which are related to the distribution of energy levels p(U)
and the spatial correlation function CU(r) of the underlying
potential. For various disorder strengths, controlled through

the laser power P, and particle concentrations, i.e., mean
particle number densities ρ0, we track particle positions
and calculate the local density ρ(r, t) at each time t, based
on which different correlation functions are obtained: the
disorder-averaged pair distribution function or pair density
correlation function g(1)(r),53 and, to characterize the quenched
disorder, the density correlation g(2)(r),52,54 similar to the
Edwards-Anderson order parameter,55–57 which is intensively
used in the context of spin glasses and has been proposed
in the context of pinned vortex liquids54 and calculated in
computer simulations.52,58 However, as yet it has never been
measured in an experiment. In this paper, we proceed to do
precisely that. This analysis provides the main characteristics
of the effect of the disorder, i.e., the rPEL, with respect to
particle-potential as well as pair and higher order inter-particle
interactions and can easily be extended to other systems,
such as magnetic bubble arrays in a disordered potential,59–61

particles on patterned surfaces,62 and vortex liquids as well as
glasses in the presence of random pinning.58,63

II. MATERIALS AND METHODS

A. Optical setup

A random intensity distribution, i.e., a speckle pattern,
was created by directing an expanded laser beam (Laser
Quantum, Opus 532, wavelength 532 nm, maximum intensity
Pmax = 2.6 W) onto a microlens array (RPC Photonics,
Engineered Diffuser™ EDC-1-A-1r, diameter 25.4 mm)64,65

and subsequently focussing the modified beam into the
sample plane of an inverted microscope. This results in
a macroscopically uniform beam with a so called top-hat
intensity distribution. However, the wavefronts from the
randomly distributed microlenses interfere in the sample
plane. This leads to microscopic intensity variations, so-called
laser speckles, to which the particles were exposed. The

0021-9606/2016/145(4)/044905/11/$30.00 145, 044905-1 Published by AIP Publishing.
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interaction of the particles with the speckle pattern can be
described by a rPEL. The particle size roughly matches the
speckle size, but is much larger than the laser wavelength.
Moreover, the laser intensity is spread over a large field
of view. Thus, we neither expect nor observe optical
binding effects66,67 or light field-induced dispersion forces.68

The colloidal particles were observed using the inverted
microscope (Nikon, Eclipse Ti-U) with a 20× objective
(Nikon, CFI S Plan Fluor ELWD, numerical aperture 0.45).
A detailed description of the optical setup and a statistical
analysis of both the intensity pattern and the resulting rPEL can
be found in Ref. 51, where the present conditions correspond
to “BE 5×”.

B. Samples

Samples consisted of spherical polystyrene particles with
sulfonated chain ends (Invitrogen, diameter D = 2.8 µm,
polydispersity 3.2%) dispersed in purified water (ELGA
purelab flex, electrical resistivity 18.2 × 104 Ωm). Three glass
cover slips (#1.5) and a microscope slide (all from VWR)
were assembled to form a small capillary.69 After the capillary
was filled with the dispersion, it was sealed with UV-glue
(Norland, NOA61). Due to the density difference between
particles and water, the particles sedimented and formed a
quasi-two-dimensional layer at the bottom of the sample
cell.

C. Data acquisition

Each measurement consisted of K ≈ 27 000 images,
which were recorded at 3.75 frames per second using an
8-bit camera (AVT, Pike F-032B with 640 × 480 pixels and
pixel pitch of 0.372 µm). Particle positions were determined
using standard procedures.70 Because the system evolves
from a quenched random distribution towards its equilibrium

distribution, care was taken that the correlation functions are
not affected by the relaxation process, i.e., do not show a time
dependence.71

Based on the particle positions, we determined the number
of particlesN (xm, yn, t, l) in each region at r = rmn = (xm, yn)
at each time t for a particular realisation of the potential l (out
of L different realisations), and calculated the local particle
density as

ρ(xm, yn, t, l) = N (xm, yn, t, l)
∆x∆y

, (1)

where ∆x = xm − xm−1 and ∆y = ym − ym−1, with ∆x = ∆y
for all m = 1 . . . M , n = 1 . . . N . Hence the quadratic regions
all have the same size of 0.186 µm, which is well above the
uncertainty of the particle positions, about 0.05 µm.70 It is
noteworthy that these regions do not coincide with pixels of
the camera. The distance r between two regions at r and r′
is r = |r − r′|, which depends on the location of both regions
and thus on m, m′, n, and n′. It was divided into bins of
∆r = 0.2∆x, which represents a compromise between good
statistics and high resolution.

III. RESULTS AND DISCUSSION

A. Random potential energy landscape (rPEL)

The colloidal particles were exposed to a rPEL by
exploiting the interaction of light with particles having a
refractive index different from the one of the dispersing liquid.
Their interaction usually is described by two forces:39,40

a scattering force, which pushes the particles along the
beam, and a gradient force, which pulls particles with a
larger refractive index than the one of the solvent towards
regions of high intensity. This effect is typically applied
in optical tweezers which are used to trap or manipulate
colloidal particles.39,40,72,73 Rather than single focused beams,

FIG. 1. (a) Random potential energy landscape (rPEL), i.e., U (r), as calculated by convolving the measured intensity pattern I (r) with the projected volume of
a particle of diameter D = 2.8 µm, (b) its normalized probability density of energy values p(U ), and (c) its normalized spatial correlation function CU(r )/CU(0)
with 1/e-width 0.69D indicated by a cross.
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an extended light field can be used to create a PEL.49 To
predict not only the shape of the PEL but also its amplitude, the
particles’ susceptibility or polarizability needs to be known,
which typically is not the case. Nevertheless, it is possible to
calculate the typical characteristics of the PEL by integrating
the local intensity I(r) over the particle’s projected volume,
thus taking the particle volume traversed by the light beam
into account.74 This results in an estimate of the potential
U(r) imposed on a particle, which then is considered to be
point-like.51

Fig. 1(a) shows one realisation of the rPEL, i.e., U(r),
as a grey scale image which was obtained by convolving
a recorded intensity pattern with the projected volume of a
particle. The rPEL was characterized by the distribution of
energy values p(U), which follows a gamma distribution75

with shape parameter M = 2.6 (Fig. 1(b), for details see
condition BE5× in Table II of Ref. 51). The length scale
of the fluctuations was described by the normalized spatial
covariance function CU(r) = ⟨U(r′)U(r′ + r)⟩r′/⟨U(r′)⟩2

r′ − 1,
whose azimuthal average can be described by a Gaussian
distribution CU(r) = exp(−(r/ξ)2) with ξ = 0.69D (Fig. 1(c)).

B. Particles in the rPEL

In the experiments, the particle concentration, i.e., the
mean particle number density ρ0 or the particle area fraction
φA = π(D/2)2ρ0, as well as the laser power P, and hence the
mean potential value ⟨U⟩ and the disorder strength, were
varied, whereas the shape of the distribution, p(U), and
the spatial correlation function, CU(r), remain unchanged
(Fig. 2). We consider three different ρ0 (C1: ρ0 = 0.007 µm−2,
C2: ρ0 = 0.041 µm−2, C3: ρ0 = 0.072 µm−2, corresponding
to area fractions φA = 0.045, 0.25, and 0.45, respectively)
as well as four different P (L0: 0 mW, L1: 917 mW,
L2: 1640 mW, L3: 2600 mW), and indicate conditions
by CiLj.

FIG. 2. Different laser powers P (L0 to L3), corresponding to different mean
potential values ⟨U⟩ or disorder strengths, and mean particle densities ρ0 (C1
to C3) are investigated. For four conditions sketches showing particles in a
rPEL are shown.

Fig. 3 shows images of colloidal particles (top) and their
trajectories (bottom) for two different mean particle densities
ρ0 (C1, C3) and increasing laser power P and hence disorder
strength (L0, L1, L3), where L0 corresponds to the absence
of a laser field and hence free diffusion. (For images at other
combinations of mean particle density and laser power see
Fig. 11 in Appendix A.) Neither for the low nor for the high
mean particle density an effect of the potential is immediately
visible in the images. However, there is a clear effect of the
rPEL on the trajectories. For the low mean particle density
C1, as the disorder strength is increased, the motion of the
particles is restricted to small areas and a few particles even
stay in one potential minimum for the entire measurement
time. At high mean particle density C3 and low laser power
L1 (Fig. 3(f)) almost the whole field of view is sampled
by the particles. This indicates that the particles are very

FIG. 3. (Top) Micrographs of parts of the samples (178×178 µm2) and (bottom) particle trajectories in a central region (38×38 µm2, indicated in the
micrographs) during a time ∆t = 7200 s after the micrograph has been taken, for different laser powers L0, L1, L3 (left to right) and mean particle densities C1
and C3.
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mobile and exchange positions. In contrast, for high potential
roughness L3 (Fig. 3(j)) some particles appear stuck in
potential minima. This prevents other particles from exploring
their neighbourhood and leads to regions depleted of particle
centres.

The dynamic behaviour has important consequences
on how particles sample a PEL. Since experiments have a
limited measurement time, sampling can be incomplete and
hence local information can only be partially accessible.
The completeness of sampling determines whether time-
averaged quantities might hold reliable local information
and describe all points in a PEL, or whether only spatially
averaged quantities might provide reliable information.
Very low mean particle densities result in only limited
information on some locations of the PEL. Upon increasing
the mean particle density, sampling can become more
complete (e.g., C3L1). However, higher mean particle
densities also enhance particle-particle interactions, which
hence might dominate particle-potential interactions. This
reduces correlations with the underlying potential. Moreover,
a strongly varying potential can also result in an “under-
sampling” of energetically unfavourable areas, i.e., potential
maxima, since they are avoided by the particles. The
unexplored areas might depend on the initial positions of
the particles, due to the quenched disorder of the potential.
An average over different disorder realisations might help,
but excludes the determination of local quantities, which lose
their relevance.

C. Time-averaged particle density

First, we consider the time-averaged (or thermal-
averaged) local particle density

⟨ρ (r, t, l)⟩t = 1
K

K
k=1

ρ(xm, xn, t, l). (2)

Its ensemble and disorder average gives the mean particle
density ρ0 = [⟨ρ (r, t, l)⟩t,r]l, where ⟨. . . ⟩t, ⟨. . . ⟩r, and [. . .]l
denote time, ensemble and disorder averages, respectively.
In the experiments presented here, the large field of view
provides a sufficient disorder average within a single rPEL
realisation. Thus here the total number of disorder realisations

FIG. 4. Time-averaged local particle density ⟨ρ(r, t)⟩t for high laser power
L3 and large mean particle density C3. The logarithmic colour scale indicates
low (ρ0= 1×10−4 µm−2) to high (ρ0= 0.63 µm−2) local densities by dark
blue to red colours.

L = 1 and the sample average imply an ensemble and disorder
average.

Fig. 4 shows the time-averaged local particle density
⟨ρ(r, t)⟩t, for large laser power L3 and high mean particle
density C3 (cf., Figs. 3(i) and 3(j)). (For further examples see
Fig. 12 in Appendix B.) For dilute samples in equilibrium,
⟨ρ (r, t)⟩t is related to U(r) (Fig. 1(a)) by the Boltzmann
distribution. At mean particle densities which result in
reasonable statistics, however, ⟨ρ (r, t)⟩t is affected by both
U(r) and particle-particle interactions.

The local time-averaged particle density ⟨ρ(r, t)⟩t is
characterized by the two-dimensional density autocovariance
function C(r), i.e., the density autocorrelation function of
⟨ρ(r, t)⟩t around the mean ρ0, which is, making use of the
Wiener-Khinchin theorem,76 given by

C(r) = �
⟨ρ (r′, t)⟩t⟨ρ (r′ + r, t)⟩t
�

r′
�
l
− ρ2

0

=
�
F −1 (F {⟨ρ(r, t)⟩t − ρ0} F ∗ {(⟨ρ(r, t)⟩t − ρ0)})�l,

(3)

where F , F −1, and ∗ indicate the Fourier transformation,
inverse Fourier transformation, and complex conjugation,
respectively. Since isotropic samples are considered, an
azimuthal average is carried out:

C(r) = (1/2π)
 2π

0
C(r,Θ)dΘ.

In Fig. 5, the azimuthally averaged density autocovariance
function C(r) is shown for different laser powers. It shows
similar behaviour for all investigated experimental conditions
since varying the laser power only changes the disorder
strength but not the shape or statistics of the rPEL. A
pronounced peak is located at the origin which is well
described by a Gaussian distribution C(r) = σ2 exp(−(r/lc)2)
(inset of Fig. 5). Its amplitude σ2 = C(0) = ⟨⟨ρ(r, t)⟩2

t⟩r − ρ2
0

is the variance of the local particle density and describes
the probability to find a, not necessarily the same, particle

FIG. 5. Azimuthally averaged autocovariance or spatial autocorrelation func-
tion C(r ) of the time-averaged particle density ⟨ρ(r, t)⟩t as a function of
normalized distance r/D for different laser powers P (L1-L3, indicated
by colours) and increasing mean particle density ρ0 (indicated by arrows).
Inset: Same data with Gaussian fits to data corresponding to mean particle
density C3 as black lines with symbols representing different laser powers (as
indicated).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.99.132.154 On: Thu, 06 Oct

2016 16:02:50

A.1 Colloids exposed to random potential energy landscapes: From
particle number density to particle-potential and particle-particle
interactions

130



044905-5 Bewerunge et al. J. Chem. Phys. 145, 044905 (2016)

in a specific region for the entire measurement time. Thus
the amplitude σ2 characterizes the mean depth of the
potential minima as sampled by the particles. It increases
with potential strength about linearly and also increases
with ρ0 (Fig. 6(a)). With increasing ρ0, the particles occupy
increasingly higher potential values thus broadening the range
of occupied values and increasing σ. The correlation length lc
(Fig. 6(b)) characterizes the width of the potential minimum
as sampled by the particles. It decreases with laser power P,
i.e., disorder strength, reflecting the tighter pinning. It also
depends on the mean particle density ρ0. For low ρ0, particle-
potential interactions dominate, whereas with increasing ρ0,
the particles occupy increasingly higher potential values
within the same minimum and hence lc increases. In contrast,
for high ρ0, particle-particle interactions dominate and the
area fraction occupied by particles becomes important. Then
lc is mostly determined by the particle diameter D rather than
the speckle size and hence slightly decreases before reaching a
constant level. The height of this level decreases with potential
strength, since the smaller the particles’ excursions the
smaller lc.

The primary peak of C(r) is followed by a minimum,
which is more pronounced as the laser power increases
(Fig. 5, indicated by arrow). It occurs at a distance comparable
to the correlation length of the potential, 0.69D (Fig. 1),
independent of both P and ρ0. In contrast, the minimum
becomes more pronounced with P and ρ0. It is caused by
particles pinned in potential minima, which exclude particles
from their vicinity (Figs. 3(f) and 3(j)). The higher order
minima (and maxima) are roughly spaced by multiples of
the particle diameter D. These oscillations are caused by

FIG. 6. (a) Standard deviation σ and (b) correlation length lc of the time-
averaged particle density ⟨ρ(r, t)⟩t as a function of mean particle density ρ0
shown for different laser powers P (L1-L3, as indicated).

either particle-potential or, in the case of high ρ0, multiple-
particle interactions and thus reflect spatial arrangements of
neighbouring particles, such as those caused by depletion and
caging.

D. Correlation functions

To characterize the particle-potential and particle-
particle interactions, based on the measured time-averaged
local particle density ⟨ρ(r, t)⟩t we determine the pair
distribution or pair density correlation function g(1)(r), the
off-diagonal density correlation function g(2)(r), and the total
correlation or Ursell function h(r) which all are normalized
by ρ2

0.
The off-diagonal density correlation function g(2)(r) is an

analogue of the Edwards-Anderson order parameter.52,77 It is
defined by

g(2)(r) = 1
ρ2

0

�
⟨ρ (r′, t, l)⟩t⟨ρ (r′ + r, t, l)⟩t
�

r′
�
l

(4)

and hence is the normalized spatial correlation function of the
mean local density among disorder realisations. It quantifies
the probability for a particle to be pinned by the rPEL, i.e., it
quantifies whether a certain location is still occupied by a
particle after an arbitrarily long time period.77 Therefore it
describes a coupling between spatial disorder of pinning
sites and particle positional ordering in time as well as
multiple-particle interactions. Without an external potential,
i.e., vanishing disorder strength, and for low enough mean
particle densities, where particle-particle interactions are not
important, g(2)(r) = 1. Application of an external quenched
disorder, here in the form of the speckle pattern of the external
laser field, disrupts this conservation law locally and thereby
breaks the corresponding symmetry. This phenomenon is
directly observed in the form of the real space inhomogeneities
introduced in the density profile. The off-diagonal density
correlation function g(2)(r) characterizes the order parameter
of this symmetry-broken disordered state. Furthermore, for
a large field of view and hence disorder averaging in one
single realisation of the rPEL, g(2)(r) = C(r)/ρ2

0 + 1. We
consider the azimuthal average g(2)(r). It is calculated from
the experimental data by

g(2)(r) = 1
ρ2

0

1
L

L
l=1

1
M N

MN
m′,n′=1

1
Nr

×

m,n






1
K

K
k=1

ρ(xm′, yn′, t, l)



×



1
K

K
k=1

ρ(xm′+m, yn′+n, t, l)




, (5)

where m and n are chosen such that regions with their
centres in an annulus between radii r − ∆r/2 and r + ∆r/2 are
included with Nr the number of such regions.

Fig. 7(a) shows g(2)(r) for different mean particle
densities ρ0 (C1-C3) and laser powers P (L1-L3, indicated
by arrows). (Further conditions are shown in Fig. 13
in Appendix C.) For large distances r the time-averaged
particle density is uncorrelated and thus g(2)(r → ∞) = 1.
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FIG. 7. (a) Azimuthally averaged off-diagonal density correlation function
g (2)(r ), (b) pair density correlation function g (1)(r ), and (c) total correlation
function h(r ) as a function of the normalized distance r/D for different
laser powers P (L1-L3, indicated by arrows) and mean particle densities ρ0
(C1-C3, as indicated). The data corresponding to C2 and C3 were shifted
along the y-axis by +2 and +4, respectively.

By contrast, correlations between high local densities,
reflecting potential minima, lead to deviations from unity.
For small distances r → 0, a pronounced peak is observed,
consistent with the observations in connection with the
density autocovariance function C(r) (cf., Fig. 5). For
distances larger than the minimal particle-particle distance
r > D, no clear r dependence of the fluctuations is visible
for the lowest ρ0 (C1). This is attributed to the irregular
distribution of the small number of particles in the random
potential, in particular the potential minima, and hence the
limited sampling (see Sec. III B). For medium and high
ρ0 (C2, C3) maxima occur around multiple integers of
D. In the absence of a rPEL no such fluctuations are
present in g(2)(r) (Fig. 13 in Appendix C). This indicates
the interplay of particle-particle and particle-potential
interactions.

The correlation function g(1)(r), which is the disorder-
averaged analogue of the pair distribution function or pair
density correlation function, is defined by52

g(1)(r, l) = 1
ρ2

0

�⟨ρ (r′, t, l) ρ (r′ + r, t, l)⟩t,r′
�
l
− 1

ρ0
δ(r, l), (6)

where δ(r, l) is the Dirac delta function and the time average
for the disordered system has to be taken prior to the disorder
average. Note that the time-average of the product of the
densities is taken in Eq. (6), whereas the product of the time-
averaged densities is considered in Eq. (4). In the canonical
ensemble the last term vanishes. The azimuthal average can
be determined from the experimental data by

g(1)(r) = 1
ρ2

0

1
L

L
l=1

1
M N

MN
m′,n′=1

1
Nr


m,n

1
K

×
K
k=1

ρ(xm′, yn′, t, l)ρ(xm′+m, yn′+n, t, l), (7)

where, again, m and n are chosen to include regions with their
centres in an annulus between radii r − ∆r/2 and r + ∆r/2.
It describes the spatial variance in the time-averaged local
particle density.53

For r < D, g(1)(r) = 0 whereas g(1)(r) = 1 for r ≫ D for
all conditions (Fig. 7(b)), which resembles a hard sphere
system. At intermediate r , oscillations similar to the ones
found for g(2)(r) are observed. For large ρ0 they hardly depend
on the laser power P. At low ρ0 the fluctuations are more
pronounced but appear at random distances. This is attributed
to the limited sampling of the rPEL due to the small number
of particles (see Sec. III B).

The peak at r = D, the contact value g(1)(D), is linked
to the compressibility and thus the equation of state78–80

(Fig. 8). The contact value g(1)(D) increases with ρ0 and P.
The experimentally determined g(1)(D) is very sensitive to
the number of particles and their localization errors as well
as the histogram parameters, i.e., bin positions and size. In
particular at higher densities (ρ0 > 0.06 µm−2), the peak of
g(1)(r) at r ≈ D is very sharp compared to the bin size and the

FIG. 8. Contact value of the pair density correlation function g (1)(D) as a
function of the mean particle density ρ0 for different laser powers P (L0-L3,
as indicated). The dashed line represents the prediction by the Henderson
equation of state.79
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uncertainty of our tracking procedure and therefore g(1)(D)
is expected to be underestimated. A theoretical prediction for
hard spheres,79,80 g(1)(D) = (1 − 7φA/16) /(1 − φA)2 (Fig. 8),
agrees with the experimental data obtained in the absence
of a rPEL (L0, indicated by pink stars) for low densities
(ρ0 . 0.06 µm−2) but differs at higher densities. This is
possibly caused by the above mentioned uncertainties involved
in the determination of g(1)(D).

The total correlation or Ursell function h(r) is given by

h(r) = g(1)(r) − g(2)(r). (8)

The contributions of particle-potential interactions to g(1)(r)
are taken into account by g(2)(r) and hence h(r) mainly
describes the disorder-, ensemble-, and time-averaged density
fluctuations caused by particle-particle and multiple-particle
interactions. Therefore, h(r) appears as a pair distribution
function which hardly contains correlations due to the
potential, in particular for r > D. For a homogeneous,
isotropic fluid in the absence of an external potential, and
hence g(2)(r) = 1, it becomes h(r) = g(1)(r) − 1, resembling
the pair correlation function.

The total correlation function h(r) is shown in Fig. 7(c)
for different mean potential densities ρ0 (C1-C3) and laser
powers P (L0-L3). In the absence of a rPEL (L0), h(r) is
approximately −1 for r < D, shows a peak at r ≈ D, and
is about zero beyond the peak for r ≫ D. In the presence
of a rPEL, the behaviour for r < D differs due to the
strongly increasing g(2)(r). The height of the peak at r ≈ D
increases with increasing mean particle density and its width
decreases with increasing laser power. Remarkably, beyond
this peak h(r) is almost constant and takes a value of about
zero for all investigated mean particle densities and laser
powers. This is due to the balance between g(1)(r) and g(2)(r)
which is illustrated in Fig. 9 by a direct comparison of all
three functions. The above-mentioned concurrence of the
oscillations of g(1)(r) and g(2)(r) results in an almost flat h(r)
beyond the first peak. The remaining maximum of h(r) at
r ≈ 2D is rather attributed to particle-particle and multiple-
particle interactions than particle-potential interactions. (For a
comparison of g(1)(r) and g(2)(r) at all measured combinations
of mean particle density ρ0 and laser power P see Fig. 13 in
Appendix C.)

E. Replica liquid state theory

For a deeper understanding of our results, we compare
the experimentally obtained correlation functions g(1)(r) and
g(2)(r) to predictions of liquid state theory,53 generalised
to include the effects of an external rPEL, i.e., quenched
disorder. While the details of this theory have been
described previously,52,54 they are briefly mentioned for
completeness.

The colloidal particles are assumed to interact with each
other through a hard sphere pair potential V (r) and are exposed
to a random potential U(r) with the distribution of energy
values p(U) being Gaussian and the short ranged spatial
correlations quantified by CU(r) as in the experiments. To
obtain the free energy of this system, the disorder-average of
the logarithm of the partition function, [ln Z]l, is calculated

using the replica trick,55

[ln Z]l = lim
q→0


dUp(U) Zq − 1

q
,

where Zq is the partition function of a set of q non-
interacting realisations of the same system, i.e., “replicas.”
The partition function of N particles replicated q times and
averaged over the disorder distribution p(U) is identical to
the partition function of N × q particles interacting with
the potential Vαβ(r) = V (r)δαβ + CU(r).54 The liquid state
theory for such a system is now constructed assuming
replica symmetry where all liquid state correlation functions,
such as the pair correlation function, share the symmetry
gαβ(r) = gβα(r) = g(1)(r)δαβ + g

(2)(r)(1 − δαβ). In the q → 0
limit, the Ornstein-Zernike relation is53

h(1)(k) = c(1)(k) − (c(1)(k) − c(2)(k))2
(1 − c(1)(k) + c(2)(k))2 ,

h(2)(k) = c(2)(k)
(1 − c(1)(k) + c(2)(k))2 ,

(9)

where h(1)(k) is the Fourier transform of the (diagonal)
pair correlation function h(1)(r) = g(1)(r) − 1 and c(1)(r) the
corresponding direct correlation function. The off-diagonal
correlations, with superscript (2), are defined analogously.
The Ornstein-Zernike relation needs to be complemented
with a closure relation in order to solve for the correlation
functions. We have used two sets of closure relations to try
to reproduce the measured correlation functions. Firstly, the
analogue of the Percus-Yevick (PY) equation modified for the
replicated case,

c(1)(r) = (e−β(V (r )+CU(r )) − 1
) (

1 + y (1)(r)) ,
c(2)(r) = (e−βCU(r ) − 1

) (
1 + y (2)(r)) , (10)

where y (1)(r) = h(1)(r) − c(1)(r) and similarly y (2)(r) are the
indirect correlation functions. These relations are solved using
the method of Gillan.81

FIG. 9. Comparison of the azimuthally averaged pair density correlation
function g (1)(r ), off-diagonal density correlation function g (2)(r ), and total
correlation or Ursell function h(r ) as a function of normalized distance r/D
for high laser power L3 and mean particle density C3.
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The results from the replicated PY liquid state theory
are compared to the experimental results for C3L1, i.e., a
mean particle density ρ0 = 0.56 D−2 (Fig. 10). Fitting
yielded for the strength of the disorder ⟨U2⟩1/2 = 1.8 kBT
with the thermal energy kBT , consistent with experimental
expectations, and for the correlation length ξ = 0.43 D,
which is somewhat lower than the experimental value
ξ = 0.69 D. While the g(2)(r) agree remarkably well, the
PY approximation overestimates correlations in g(1)(r). This
is a well known feature of the PY closure. To correct
for this, we propose and solve a hybrid set of closure
relations where the first equation of the set in Eq. (10) is
replaced with

c(1)(r) = e−β(V (r )+CU(r ))+y(1)(r ) − 1 − y (1)(r) (11)

and the second equation is kept the same. This results in
much better agreement of the g(1)(r) while the g(2)(r) is almost
unchanged. Thus, with the hybrid set of closure relations
quantitative agreement between experimental data and replica
liquid state theory predictions are obtained.

FIG. 10. Comparison of the experimentally determined azimuthally averaged
off-diagonal density correlation function g (2)(r ) and the pair density correla-
tion function g (1)(r ) (inset) with results obtained from liquid state theory, as
a function of normalized distance r/D for low laser power L1 and high mean
particle density C3.

FIG. 11. Micrographs of parts of the samples (178×178 µm2) for increasing laser power (L1-L3) and mean particle density (C1-C3, as indicated).
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For experiments with the same laser power P, also the
strength of the disorder ⟨U2⟩1/2 and the correlation length
ξ remain constant, independent of the mean particle density
ρ0. Ideally, the results from our replica liquid state theory
should follow these expectations. However, at large laser
powers Eqs. (10) and (11) begin to give unphysical results.
Also the fitted values, especially for ξ, depend on ρ0. This
indicates that the validity of the simple closure relations used
in our theory is limited if the disorder is strong. Moreover,
it is important to ensure that the whole landscape is sampled
by the particles, which is particularly difficult for dilute
systems within a reasonable measurement time. This can
only be resolved by further experiments on a larger set of
densities ρ0 and laser powers P and/or by a better liquid state
theory.82

Finally, the time-averaged local particle density in the
presence of the rPEL is given by52,53

⟨ρ(r, t, l)⟩t = ρ0 −
ρ2

0

kBT


dr′h(|r − r′|)U(r′) + · · · (12)

which links the time-averaged local particle density ⟨ρ(r, t, l)⟩t
to the disorder potential U(r). This analytical relationship can
be used to determine U(r) from a measurement of ⟨ρ(r, t, l)⟩t
or to predict ⟨ρ(r, t, l)⟩t from U(r) and h(r).52

IV. CONCLUSIONS

We investigated colloidal particles in a random potential
energy landscape (rPEL) with energy values distributed
according to a gamma distribution. It was imposed by a

laser speckle pattern. The rPEL affects the distribution of
particles which, at higher mean particle densities, is also
modified by particle-particle interactions. Therefore, local
particle density variations occur, which are correlated in
time and space. The time-averaged local particle density
was determined and analysed as a function of mean particle
density ρ0 and laser power P, i.e., disorder strength. The
off-diagonal density correlation function g(2)(r) not only
reflects the potential roughness, but also spatial correlations
in the local density caused by pinned particles. Thus it
reflects particle-potential and particle-particle interactions.
The pair density correlation function g(1)(r) is also influenced
by spatial correlations of the rPEL. As a result, the
total correlation or Ursell function h(r) = g(1)(r) − g(2)(r)
hardly reflects particle-potential interactions, but characterizes
particle-particle and multiple-particle interactions. To our
knowledge, this is the first time these correlation functions
have experimentally been determined in the presence of
disorder. Furthermore, they have successfully been compared
to results from replica liquid state theory. This results
in quantitative agreement, but also points towards deficits
in the existing liquid state theory and calls for further
experiments.
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FIG. 12. Time-averaged local particle density ⟨ρ(r, t)⟩t for increasing laser power (L1-L3) and mean particle density (C1-C3, as indicated). Colour scale
indicates low to high densities by blue to red colours, where different scales are used for the different conditions.
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APPENDIX A: PARTICLE ARRANGEMENTS

Fig. 11 shows micrographs of colloidal particles for three
different mean particle densities ρ0 (C1-C3) and increasing
laser power P, i.e., disorder strength, (L1-L3). Neither for low
nor for high mean particle density and/or laser power an effect
of the potential is immediately visible in the images.

APPENDIX B: TIME-AVERAGED LOCAL
PARTICLE DENSITY

The time-averaged local particle density ⟨ρ (r, t)⟩t for
three different laser powers P, i.e., disorder strengths, (L1-L3)
and mean particle densities ρ0 (C1-C3) is shown in Fig. 12. For
dilute samples trapping of particles in deep potential minima
during the entire measurement time leads to a discretisation of
the density landscape. This becomes stronger with increasing
laser power. At higher mean particle densities, ⟨ρ (r, t)⟩t
is affected by both particle-potential and particle-particle

FIG. 13. (a) Azimuthally averaged pair density correlation function g (1)(r ) and (b) off-diagonal density correlation function g (2)(r ) for increasing laser power
(L0-L3) and mean surface fraction φA or particle density (C1-C3, as indicated by colour gradient from green to red). Data are shifted vertically for clarity.
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interactions, resulting in a smoothed density landscape. This
becomes more apparent with a decrease in the laser power.

APPENDIX C: CORRELATION FUNCTIONS

The azimuthally averaged pair density correlation
function g(1)(r) and off-diagonal density correlation function
g(2)(r) at all measured combinations of mean particle density
ρ0 and laser power P (L0-L3) are shown in Fig. 13. For very
large distances r the time-averaged local particle density is
uncorrelated, and thus g(1)(r → ∞) = 1 and g(2)(r → ∞) = 1
independent of the mean particle density ρ0 and the laser
power P, i.e., disorder strength. By contrast, correlations at
finite distances r between high local density values reflect
pinning sites, i.e., particle cages or potential minima, and can
be identified by deviations from this value. In the absence
of a rPEL (L0), g(1)(r) shows a strong dependence on the
mean particle density whereas g(2)(r) ≈ 1 for all mean particle
densities, except for very few low mean particle densities
ρ0 which is attributed to insufficient statistics. However, in
the presence of a rPEL (L1-L3) and for medium to high
mean particle densities ρ0, for both correlation functions
maxima are observed around integer multiples of D, which
increase with mean particle density ρ0 and laser power P and
indicate the interplay of particle-particle and particle-potential
interactions.
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