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A B S T R A C T

In the last few years, the advent of the phenomena of social media and the

ubiquity of the internet access have created an unprecedented deluge of in-

formation and textual data on the world wide web. This data brings in its

wake new opportunities and poses many challenges for machine learning

and Natural Language Processing (NLP) in particular. The sheer size, non-

standard spelling, the poor quality, the informality, and the noise of this data,

presents new challenges to standard NLP tools developed for traditional data.

To make sense out of such data and exploit its value, novel NLP methods,

resources, and efficient algorithms beyond rule-based deductive reasoning

and "traditional" system engineering need to be created. Given the ground

breaking results of Deep Learning (DL) models in solving hard natural lan-

guage processing tasks, I argue in this dissertation that these models are well

suited for processing social Media textual data. A case in point is Dialectal

Arabic (DA) which is emerging as the language of informal communication

on the web, in emails, Social Media platforms, blogs, etc. To systematically

investigate the ability of DL models to process the less controlled and more

speech-like nature of DA in Social Media, I choose to address two concrete,

challenging tasks, namely linguistic Code-Switching (CS) identification and

DA morphological segmentation.

ii



Z U S A M M E N FA S S U N G

In den letzten Jahren ist durch die sozialen Medien und allgegenwärtigen

Zugang zum Internet eine noch nie dagewesene Flut von Information und

Textdaten im Internet entstanden. Diese Daten bringen neue Chancen und

vielfältige Herausforderungen im Bereich des machinellen Lernens, und in-

besondere in der maschinellen Sprachverarbeitung NLP. Die schiere Menge,

nicht den gewohnten Normen entsprechende Rechtschreibung, die schlechte

Qualität und Informalität, und das Rauschen in den Daten stellen die NLP-

Standardwerkzeuge, die auf traditionellen Daten entwickelt worden sind, vor

neue Probleme.

Um solche Daten interpretieren und ihren Wert nutzen zu können, müs-

sen neue NLP-Methoden, Resourcen und effiziente Algorithmen jenseits von

regelbasiertem dekutiven Herangehensweisen und "traditionellen"Methoden

der Systementwicklung geschaffen werden. Im Licht der bahnbrechenden Er-

gebnisse von Modellen des Deep Learning (DL) argumentiere ich in dieser

Dissertation, dass solche Modelle gut zur Verarbeitung von Text aus sozia-

len Medien geeignet sind. Als Beispielfall dient das Dialectal Arabic (DA),

das sich zur Sprache der informellen Kommunikation im Web, in E-Mails,

auf sozialen Medien, und in Blogs entwickelt hat. Um die Möglichkeiten

von DL-Modellen zu zeigen, das weniger kontrollierte und der gesproche-

nen Sprache ähnliche DA in sozialen Medien zu verarbeiten, bearbeite ich

zwei konkrete, herausfordernde Probleme, und zwar die Identifikation von

linguistischem Code-Switching (CS) und die morphologische Segmentierung

von DA.
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1
I N T R O D U C T I O N

1.1 overview and motivation

Arabic is a Semitic1 language. The term Arabic generally refers to a group of

language varieties that are historically, genetically, and linguistically related.

Arabic has multiple varieties. MSA is the formal standard language across

the Arab world. It is used in the written media, news, and education. In

contrast, DA is restricted to informal daily communication. However, this is

changing with the advent of social media and the ubiquity of internet access.

DA is increasingly emerging as the language of informal communication on

the web, in emails, micro-blogs, blogs, forums, Social Media networks, etc.

This new situation has created an unprecedented deluge of textual data on

the world wide web. This data brings in its wake new opportunities, but

also poses many challenges to Machine Learning (ML) and NLP in particular.

The sheer size, non-standard spelling, the poor quality, the informality, and

the noise of this data present additional challenges to standard NLP tools

developed for traditional data (Farzindar and Inkpen, 2015).

For example, applying standard NLP systems and methods tailored for MSA

directly to DA texts yields significant degradation in their performance. In

order to process and extract meaningful patterns from this massive input

DA data, novel NLP methods, resources, and efficient algorithms beyond rule-

1 The Semitic language family includes Akkadian, Amharic, Amorite, Arabic, Aramaic, Ge’ez,
Gurage, Hebrew, Maltese, Moabite, Nabatean, Phonoecian, Punic, Syrica, Tigrinya, Tigre,
and Ugaritic. The five most widely spoken ones are written in bold https://en.wikipedia.
org/wiki/Semitic_languages Web. 20 Oct. 2017.

2



1.1 overview and motivation 3

based deductive reasoning and "traditional" system engineering need to be

created.

My main research goal in this dissertation is to devise learning models

that can automatically process user-generated Social Media textual data in

particular, which contains DA. The main task, therefore, consists in the devel-

opment and evaluation of Neural Network (NN) techniques for the natural

language processing of the noisy and strongly contextualised nature of DA,

and to use these results both to improve our understanding of existing mod-

els and as a basis on which to develop better models.

Over the last decade, Deep Neural Network (DNN) models have repeat-

edly proven to be effective in solving a wide range of NLP related problems

including Machine Translation (MT) (Bahdanau, Cho, and Bengio, 2014), text

classification (Kim, 2014), language models (Kim et al., 2016; Mikolov et al.,

2010), multilingual processing (Gillick et al., 2015), parsing (Chen and Man-

ning, 2014), Multi-task NLP (Collobert et al., 2011), named entity recognition

(Lample et al., 2016), and sentiment analysis (Socher et al., 2013). Much of the

success of these models can be attributed to their excellent capability for ex-

tracting features from raw data without any prior knowledge or assumptions

about the statistical distribution of this data.

In order to systematically investigate the ability of DNN models to process

the less controlled and more speech-like nature of DA in Social Media, we

choose to address two concrete, challenging tasks, namely linguistic CS iden-

tification and DA morphological segmentation.2 Since we regard these two

tasks as sequence labelling problems, they can easily be solved with stan-

dard machine learning methods, such as SVM (Cortes and Vapnik, 1995) or

CRF (Lafferty, McCallum, and Pereira, 2001), to name but a few. Yet, these

2 By segmentation we designate the separation of linear transcriptions of DA words into their
constituent morphological parts. This is important for a variety of applications such as ma-
chine translation, parsing and information retrieval.



1.2 contributions of this dissertation 4

models can hardly succeed on the two tasks without reliance on external

resources or carefully hand-crafted features, which are time-consuming to

construct and are often both over-specified and incomplete. There are sev-

eral reasons that motivate me to pursue the development of DNN models for

processing DA:

• The knowledge learnt from DNN models is still largely untapped in the

context of DA processing.

• Given the pervasive nature of DA, DNNs generalize well on unseen data,

and they are also suitable to deal with outlying, missing, unstructured,

and noisy data.

• DNNs are very flexible and can be paired with other techniques or mod-

els to harness the strengths and advantages of both techniques.

• DNNs are also inherently non-linear. This makes them more practical

and accurate in modelling complex data patterns as opposed to many

traditional methods which are linear. In numerous real world problems

including those in the fields of NLP, DNNs have been shown to outper-

form linear models in classification and data analysis tasks.

• DNNs can assist with specific problems related to learning from large

amounts of unsupervised DA data. They have the ability to learn data

representations3 (features) in a greedy layer-wise fashion (Bengio et al.,

2007).

1.2 contributions of this dissertation

This dissertation makes the following concrete contributions:

3 Note that these representations need not correspond in any interpretable way to linguistically
motivated representations typically used in theoretical linguistics.



1.2 contributions of this dissertation 5

• DA represents the general realm of problems for processing massive

volumes of raw data. In Chapter 1, Chapter 3, and throughout the dis-

sertation I introduce and motivate the use of DNNs as highly efective

techniques for NLP of DA in Social Media.

• In Chapter 4 I contribute two dialectal corpora, the Moroccan Arabic

Darija code-switching corpus and the Twitter multi-dialectal Arabic segmen-

tation corpus4), with token-level annotations. Both corpora have been

collected from internet discussion forums and blogs and from social

media platforms. They will be of use for supporting research in the

linguistics and NLP and will constitute an ideal data source for DA pro-

cessing.

• In Chapter 5 I demonstrate that traditional machine learning and fea-

ture engineering methods are not efficient enough to extract the com-

plex and non-linear patterns generally observed in the Moroccan Arabic

Darija code-switching corpus. Conversely, the application of DNNs greatly

improves CS identification results in DA.

• In Chapter 6 I demonstrate that by using DNNs one can easily build

a unified segmentation model where the training data for different di-

alects is combined and a single model is trained. The DNN model yields

higher accuracies than dialect-specific models, eliminating the need for

dialect identification before segmentation. I also measure the degree of

relatedness between four major Arabic dialects by testing how a seg-

mentation model trained on one dialect performs on the other dialects.

I found that linguistic relatedness is contingent on geographical prox-

imity.

4 This dataset is available here: http://alt.qcri.org/resources/da_resources/releases/
current/seg_data_jun122017.tgz



1.3 dissertation overview 6

1.3 dissertation overview

The natural language processing of DA is the main aim of this dissertation.

Chapter 2 gives a detailed description of the different linguistic aspects of

Arabic and its dialects which are involved in most of the NLP tasks. It also

emphasizes the peculiarities of DA which constitute a challenge for most tra-

ditional NLP techniques. Next, Chapter 3 introduces general neural networks

and describes the key technical machinery used in this dissertation, namely

Recurrent Neural Networks (RNNs). Chapter 4 introduces two datasets, the

Moroccan Arabic Darija code-switching corpus and the Twitter multi-dialectal Ara-

bic segmentation corpus. These two corpora constitute a test bed for DNN. Next,

Chapter 5 presents a system for identifying and classifying code-switched

data for MSA-Moroccan Arabic. The system uses a neural network architec-

ture that relies on word-level and character-level representations. This sys-

tem is language independent in the sense that it does not use any language-

specific knowledge or linguistic resources such as POS taggers, morphologi-

cal analyzers, gazetteers, or word lists to achieve state-of-the-art performance.

Chapter 6 shows that using DNN, one can easily build a unified segmentation

model using limited DA labeled data without relying on lexicons, morpholog-

ical analyzers, or linguistic knowledge. The results obtained are comparable

to that of a state-of-the-art system, or even better.



Part II

B A C K G R O U N D



2
A R A B I C A N D I T S D I A L E C T S

This chapter provides background material and a review of literature on the

characteristics of the Arabic language and its Dialects. The chapter is orga-

nized as follows: In section 2.1 we provide an overview of the different vari-

eties of Arabic. In section 2.2 we briefly describe some linguistic features that

are shared by the Arabic dialects. This is followed in section 2.3 by a descrip-

tion of the motivation for processing Arabic Dialects. Finally, we specifically

focus on the challenges inherent in processing Dialectal Arabic (DA) in sec-

tion 2.4.

2.1 the arabic language varieties

Arabic is one of the oldest living Semitic languages in the world. It is spo-

ken by a population of almost 300 million people1 and is the official language

across the 22 so-called Arab League countries2. The term Arabic loosely refers

to a group of language varieties which, in spite of their substantial mutual

differences, are historically, genetically, and linguistically related. To define

any clear-cut distinction between them on geographical, structural, histori-

cal, social, or even ethnographic grounds is rather confusing for many non-

Arabic speaking researchers who have less exposure to the Arabic language

1 https://www.ethnologue.com/language/ara Web. 29 Apr. 2017
2 The members of the Arab league are Algeria, Bahrain, Comoros, Djibouti, Egypt, Iraq, Jordan,

Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Somalia,
Sudan, Syria, Tunisia, The United Arab Emirates, and Yemen (Habash, 2010)

8
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and culture (Albirini, 2016). In the literature, Arabic varieties are categorized

into three general types:

1. Classical Arabic (CA)

2. Modern Standard Arabic (MSA)

3. Dialectal Arabic (DA)

Classical Arabic is often identified as the language of the Qur’an3 and the

Hadith4. It is accorded an elevated status throughout the Muslim world as

it is essential for understanding the Qur’an, the Hadith, the Islamic literary

tradition, and law. It is not different from what it was 1400 years ago and has

a fixed orthography and grammar.

On the other hand, MSA is an artificial language in that it is no one na-

tive language and is the lingua franca of the Arabic world. It is commonly

used for formal, literary, and educational purposes across the Arabic speak-

ing countries. It exhibits relatively minor variation, mainly in vocabulary,

morphology, and phonological features (Holes, 2004). For a more detailed

account of the different linguistic aspects of MSA, see Habash (2010), Holes

(2004), and Ryding (2005).

Sharply contrasted with both MSA and CA are the dialectal Arabic vari-

eties used in informal communication throughout the Arabic world. These

language varieties not only show considerable variation from one country to

another, but also differ from one region to another within the same county

(Albirini, 2016; Hetzron, 1997). For example, speakers from the Gulf and

Maghreb regions can hardly understand one another’s dialects. Although

Maghrebi and Gulf dialects share a plethora of linguistic features to warrant

their subsumability under the Arabic language, they are not mutually intel-

3 Islam’s Holy Book
4 the way of life prescribed as normative for Muslims on the basis of the teachings and practices

of the prophet Muhammad, Peace be upon him and interpretations of the Qur’an
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ligible in spoken discourse. These variations between the Arabic dialects can

generally be attributed to the multiple morpho-syntactic processes of sim-

plification and mutation, as well as coinage and borrowing of new words

in addition to semantic shifts of standard lexical items. Furthermore, there

is a considerable effect of cross-fertilization between the MSA varieties that

spread throughout the Middle East and North Africa and the indigenous

languages in different countries as well as neighboring languages. With the

passage of time and the juxtaposition of cultures, dialects and variants of

Arabic evolved and diverged. Figure 2.1 shows a simplified schematic map

of the Arabic dialects based on geolinguistic features.

In face of the complex sociolinguistic situation in the Arab world and the

diversity and the fluidity of the geolinguistic distinction between the Arabic

dialects, researchers use different taxonomies to classify them on the basis

of religion, geography, ethnicity, and prestige, to name but a few factors (Al-

birini, 2016). These taxonomies allow scholars to work within a clear frame

of reference which is well adapted to the study and analysis of the dialects

in hand, avoiding the dangers of both over-generalization or over-restriction

to cases that cannot be objectively circumscribed. For a detailed discussion

of these classifications, see Watson (2011).

For the purpose of this thesis, we follow the geolinguistic classification pro-

posed by Habash (2010, p. 2). Arabic dialectal varieties are generally classi-

fied into seven groups:

• Egyptian Arabic (EGY) covers the dialects of the Nile valley: Egypt and

Sudan.

• Levantine Arabic (LEV) includes the dialects of Lebanon, Syria, Jordan,

Palestine, and Israel.
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Figure 2.1: Geolinguistic classification of the Arabic dialects

• Gulf Arabic (GLF) includes the dialects of Kuwait, The United Arab Emi-

rates, Bahrain, and Qatar. Saudi Arabia is typically included although

there is a wide range of sub-dialects within it. Omani Arabic is included

some times.Yemenite Arabic is often considered its own class.

• North African Maghrebi Arabic (MGR) covers the dialects of Morocco,

Algeria, Tunisia and Mauritania. Libyan Arabic is sometimes included.

• Iraqi Arabic (IRQ) has elements of both Levantine and Gulf.

Note that this DA classification is rather broad and further division of the

dialects groups is possible. Often Moroccan, Algerian, Tunisian, and Libyan

are grouped together as Maghrebi Arabic, even though they are not all mu-

tually intelligible.

Socially, the relation between DA and MSA is rather complex. It represents

a prototypical example of diglossia (Ferguson, 1959), a situation whereby

two distinct language varieties co-exist with a clear functional separation

(Wardhaugh and Fuller, 2014). Arabic speakers tend to use DA and MSA for

different purposes as the situation demands in their day-to-day life. While
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MSA, the so-called ’high’ variety (H), is an established standard among edu-

cated Arabic speakers, DA, the ’low’ variety (L), is used in everyday informal

communication. However, the contemporary sociolinguistic situation in the

Arab world challenges the rigid separation between these two codes based

on the formality-informality of the context in which they are used (Sayahi,

2014). For a more detailed discussion of diglossia, see Albirini (2016) and

Bassiouney (2009).

2.2 linguistic characteristics of the arabic dialects

Arabic dialects not only share commonalities with MSA in morphology and

syntax, but they also share commonalities among themselves. It seems that

dialects share common built-in functionalities for generating words, some of

which may have been inherited from CA, where some of these functionalities

are absent or severely diminished in MSA.

2.2.1 Morphology

As in all Semitic languages, the standard linguistic interpretation of word

structure in DA describes words as the combination of two abstract mor-

phemes: a root and patterns (the latter are also referred to as Binyanim).

This was given the first formal generative treatment by McCarthy (1981).

A root is a sequence of three consonants and the pattern is a template of

vowels with slots into which the consonants of the root are inserted. This

process of insertion is called interdigitation (Beesley and Karttunen, 2003), as

shown in Table 2.1. Note that the R refers to the root radical.

The resulting so called "lemmas" then pass through a series of affixations

(which express morpho-syntactic features) and clitic attachments ( conjunc-
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Root k-t-b �� ���
POS V V N N

Pattern R1R2eR3 R1aR2R2eR3 mR1R2eR3 R1R2AR3

Lemma kteb "write" katteb "make write" mkteb "desk" ktAb "book"

Table 2.1: Root and Pattern Interdigitation

tions and prepositions, for example, are mostly joined to adjacent words in

writing) until they finally appear as surface forms. Even at this level, a word

can undergo further form adjustments which involve a number of phonologi-

cal, morphological and, orthographic rules. Morphologically, Arabic dialects

share many features; to list but a few:

• Dialects have eliminated case endings.

• Dialects introduce a progressive particle, e.g. ���	�
��� “b+yqwl” EGY,

���	�
�� “Em+yqwl” LEV, ���	�
�� “k+yqwl” MGR, and ���	�
� �
“d+yqwl” (Iraqi) for “he says”. This does not exist in MSA.

• Some dialects use a post-negation particle, e.g. ����� ���
�� “m+yHb+$”

(does not like) (EGY, LEV and MGR). This does not exist in MSA or GLF.

• Dialects have future particles that are different from MSA, such as � “H”

LEV, �� “h” EGY, and
�� “g” MGR. Like that of the MSA future particle

� “s”, that may have resulted from shortening the particle
���� “swf”

and with the shortened version as a prefix, dialectal future articles may

have arisen in a similar process, where the Levantine future particle “H”

is a shortened version of the word ��� “rAH” (he will) (Jarad, 2014a;

Persson, 2008a).

• Dialects routinely exhibit word merging, particularly when two identi-

cal letters appear consecutively. In MSA, this is mostly restricted to the

case of the preposition � “l” (to) when followed by the determiner ��
“Al” (the), where the “A” in the determiner is silent. This is far more
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common in dialects as in  ! "#$�
 “yEml lk” (he does for you) ⇒  %#$�

“yEmlk”.

• Dialects often change short vowels to long vowels or vice versa. This

phenomenon infrequently appears in poetry, particularly classical Ara-

bic poetry, but is quite common in dialects, as in the change of &! “lh”

(to him) to &�
! “lyh”.

• Most dialects have eliminated dual forms, except in cases such as '

�(�
�

“Eyny” (my two eyes) and �)*
 ��+�, “qr$yn” (two piasters). Consequently,

dual agreement markers on adjectives, relative pronouns, demonstra-

tive adjectives, and verbs have largely disappeared. Likewise, the mas-

culine nominative plural noun and verb suffix �-. “wn” has been largely

replaced with the accusative/genitive forms �)�
 “yn” and �. “wA” re-

spectively.

• Most dialects have a two-way gender distinction (masculine and fem-

inine) as well as a two-way number distinction (singular and plural).

Nouns have gender and adjectives inflect for gender (Watson, 2011).

2.2.2 Syntax

Arabic dialects collectively share many syntactic features with both MSA and

CA that can be summarized as follows:

• For word order, both SVO and VSO are present in the dialects, the SVO

order is however the most prevalent one (Brustad, 2000).

• The time and aspect system is maintained in most dialects.

• In most of the dialects, nominal sentences (equational sentences), are

constructed without copula (Watson, 2011).
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• Some of MSA’s complex syntactic phenomena such as irrational plural5

agreement are maintained in the dialects (Zitouni, 2014, p. 19).

For a detailed account of dialectal Arabic syntax, refer to Brustad (2000).

2.3 processing of dialectal arabic

Work on DA is fairly new when compared to that on MSA. Over the last

decade, only very few efforts have targeted DA processing. Many Arabic di-

alects are still under-resourced language varieties, as the written production

remains relatively very low in comparison to MSA.

Increasingly, however, DA is emerging as the language of informal commu-

nication on the web, in emails, micro-blogs, blogs, forums, chat rooms, and

social media. This new situation has amplified an urgent need for consistent

language resources and Natural language processing tools for DA. While cer-

tain dialects, particularly EGY and LEV, have received their share of attention

by the NLP research community, most of the dialects remain under-resourced.

This scarcity of dialect-specific linguistic resources and the prevalence of MSA

content have motivated many researchers to explore the possibility of adapt-

ing MSA resources and tools to dialects.

morphology For morpholgy, Bakr, Shaalan, and Ziedan (2008) and,

Salloum and Habash (2011) modified the Buckwalter Morphological An-

alyzer (Buckwalter, 2004) to accept DA pefixes and suffixes. Subsequently,

many DA morphological analyzers were introduced that also rely on MSA

resources (Almeman and Lee, 2012; Salloum and Habash, 2012, 2014; Zribi,

Khemakhem, and Belguith, 2013). Most of these approaches are aimed at

converting DA text to some MSA-like form; as such they do not model DA

5 It refers to non human being. The plural of irrational nouns is treated as feminine singular.
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linguistic phenomena.

On the other hand, many researchers are interested in modeling DA. They in-

troduced many dialectal corpora such as the CALLHOME Egyptian Arabic

Transcripts (LDC97T19), which was made available for research already in

1997. Newly developed resources include the corpus developed by Bouamor,

Habash, and Oflazer (2014), which contains 2,000 parallel sentences in multi-

ple dialects and MSA as well as English translations. Although this approach

is more linguistically informed, building resources from scratch is very ex-

pensive in terms of time and effort. Furthermore, these attempts are lacking

in coverage in one dimension or another (Habash, Eskander, and Hawwari,

2012).

language id Language identification is the task of identifying the lan-

guage a given document is written in. The ubiquity of the Internet access

has created an unprecedented deluge of information and textual data on the

world wide web. Given this information, the need for automatic means of

determining the language web documents has become very crucial.

Several projects have concentrated on the identification of DA. For exam-

ple, Elfardy, Al-Badrashiny, and Diab (2013) present a system for the identi-

fication of Egyptian Arabic which selects a tag based on the sequence with

a maximum marginal probability, considering 5-grams. A later version of

the system is named AIDA2 (Al-Badrashiny, Elfardy, and Diab, 2015) and

it is a more complex hybrid system that incorporates different classifiers

and components such as language models, a named entity recognizer, and a

morphological analyzer. The classification strategy is built as a cascade vot-

ing system, whereby a Conditional Random Field (CRF) classifier tags each

word based on the decisions from four other underlying classifiers.Zaidan

and Callison-Burch (2014) introduced a system that discriminates between
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Arabic dialects which can be MSA, Maghrebi, Egyptian, Levantine, Iraqi, or

Gulf.

The majority of the systems dealing with word-level language identification

rely on linguistic resources (such as named entity gazetteers and word lists)

and linguistic information (such as POS tags and morphological analysis),

and they use Machine Learning (ML) methods that have been typically used

with sequence-labeling problems, such as Support Vector Machine (SVM), CRF

and n-gram language models. A few, however, have recently turned to recur-

rent neural networks (RNN) and word embedding with remarkable success

(Samih et al., 2016).

2.4 challenges of processing dialectal arabic

DA shares many challenges with MSA, as DA inherits the same characteristics

of being a Semitic language with a complex templatic derivational morphol-

ogy. As in MSA, most nouns and verbs in Arabic dialects are typically derived

from a determined set of roots by applying templates to the roots to generate

stems. Such templates may carry information that indicates morphological

features of words such as POS tag, gender, and number. Furthermore, stems

may accept prefixes and/or suffixes to form words as in a highly inflected

language. Prefixes include coordinating conjunctions, determiners, particles,

and prepositions, and suffixes include attached pronouns and gender and

number markers. This results in a large number of words (or surface forms)

and in turn a high-level of sparseness and increased number of new words

during processing.

In addition to the shared challenges, DA has its own peculiarities, which can

be summarized as follows:
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• Lack of standard orthography. Many of the words in DA do not follow

a standard orthographic system (Habash, Diab, and Rambow, 2012).

• Many words do not overlap with MSA as a result of language borrowing

from other languages (Ibrahim, 2006), such as &�
 �,/0 kAfiyh “cafe” and

���/�� tAtuw “tattoo”, or coinage, such as the negative particles ��� mi$

“not” and ��1�� balA$ “do not”.

• Codeswitching is also very common in Arabic dialects (Samih et al.,

2016).

• Multiple words are merged by concatenating and dropping letters as

the word ��/2%3� �
��� mbyjlhA$ (he did not go to her), which is a concate-

nation of “mA byjy lhA$”.

• Some affixes are altered in form in comparision with their MSA coun-

terparts, such as the feminine second person pronoun 4 k → '
� ky and

the second person plural pronoun 56�7 tm → ��� tw.

• DA exhibits some morphological patterns that do not exist in MSA, such

as the passive pattern AitofaEal, for instance +89:��� Aitokasar “it broke”.

• In DA, new particles are introduced, such as the progressive ;� b mean-

ing ‘is doing’ and the post negative suffix �� $, which behaves like the

French “ne-pas” negation construct.

• Letter substitution and consonant mutation are also common in DA. For

example, in dialectal Egyptian, the interdental sound of the letter �; v

is often substituted by either �; t or � s as in +*
��� kvyr “much” →
+*
��� ktyr and the glottal stop is reduced to a glide, such as �+<�/=� jA}iz

“possible” → �+�
/=� jAyiz. Such features have been extensively studied in

phonology as lenition, softening of a consonant, or fortition, hardening of

a consonant.
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• Vowel elongation is also present in DA, such as "=� �� rAjil “man” from

"=� � rajul. likewise vowel shortening is also very common, such as />?
�
dayomA “always” from />?
�� dAyomA.

• DA uses masculine plural or singular noun forms instead of dual and

feminine plural by dropping some articles and prepositions in some

syntactic constructs. For example, DA uses only one form of noun and

verb suffixes such as �)�
 yn instead of �-. wn and �. wA instead of �-.
wn respectively.

• In addition, there are the regular discourse features in informal texts,

such as the use of emoticons and character repetition for emphasis, e.g.

'@......���� AdEwwwwwwwliy "pray for me".

2.5 concluding remarks

This chapter has given a brief overview of some important linguistic charac-

teristics of the Arabic language and its dialects. It aims at providing sufficient

detail that would highlight the challenges involved in computational process-

ing of DA.



3
D E E P L E A R N I N G B A C K G R O U N D

DL is now increasingly emerging as a new research area in ML and NLP. With

the advent of social media and big data, the need for efficient learning meth-

ods to process these huge amounts of textual information has drastically

increased. In recent years advances in DL techniques have been shown to

hold great promise as the answer to many challenges in NLP. This chap-

ter aims to provide a brief overview of existing deep learning algorithms

and will attempt to relate them to the context of NLP, in particular dialectal

Arabic processing. The first section discusses the basic idea of the shallow

structures and deep neural networks in brief. In the second section the most

prominent deep learning primitives will be described in some detail in their

simplest form. These primitives or building blocks are at the foundation of

many deep learning methods and understanding their basic form will al-

low the reader to quickly understand more complex models relying on these

building blocks. The last section provides a brief description of related work.

3.1 introduction

Over the last several years, most natural language processing techniques

have extensively relied on linear models, examplified by a number of lin-

ear classifiers such as SVM (Cortes and Vapnik, 1995), CRF (Lafferty, McCal-

lum, and Pereira, 2001), Logistic Regression, Hidden Markov Models (HMM),

and Perceptron (Rosenblatt, 1958), to name but a few. These models have

20
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been effective in solving many supervised classification problems and have

demonstrated great successes in a broad range of NLP tasks, including lan-

guage identification, language modelling, chunking, Part of Speech Tagging,

morphological analysis, and many more. Yet despite many successful appli-

cations, these methods have proved unfit for the more challenging tasks of

artificial intelligence (AI) that require a higher-level of abstraction for a num-

ber of reasons:

• Their simple shallow structures restrict their modeling and representa-

tional power since they cannot take advantage of some valuable infor-

mation for real world problems with rich structure.

• They often fail to learn or discover patterns such as non-linear relations

among input values and features (Bengio, Delalleau, and Roux, 2006;

Bengio et al., 2009).

• They usually rely on hand-crafted features which are task specific, in-

complete, and time-consuming to construct.

• Another challenge in classification is the data non-linearity that char-

acterizes the feature overlap of different classes, making the task of

separating the classes more difficult.

• In these models, feature extraction and classifier training are kept sep-

arated and are not jointly optimized to maximize the overall perfor-

mance of the system.

These limitations are partially responsible for steering away most of machine

learning and natural language processing research from linear models in fa-

vor of non-linear models and much deeper structures such as DNNs with

more representational power.

DL is a branch of machine learning and and it is just a re-branded name to
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refer to DNNs (Collobert et al., 2011; Goldberg and Hirst, 2017), which are

extensions to the traditional shallow Artificial Neural Networks (ANNs). The

latter are loosely based on the concept of mimicking the activities in the

human brain. They consist of many layers of information processing units,

arranged in a hierarchical architecture to perform pattern classification and

automatic feature learning (Deng, 2014).

DNNs have been around for a long time. As universal non-linear function

approximators (Hornik, Stinchcombe, and White, 1989), DNNs theoretically

offer a principled approach to modelling complex multi-dimensional non-

linear problems, but in practice they are difficult to train in an efficient

manner (Bengio et al., 2009; Glorot and Bengio, 2010). Through the 1990s

and 2000s, deep architectures languished because their performance consis-

tently lagged behind the widely used shallow architectures relying on feature

engineering. However this situation has changed with the work of Hinton

and Salakhutdinov (2006). They introduced the so-called Deep Belief Net-

works (DBNs), which are composed of simple learning units, particularly Re-

stricted Boltzmann Machines (RBMs). These latter are pre-trained in a greedy

layer-wise fashion, exploiting an unsupervised learning algorithm to initial-

ize the weights of the DBNs. This makes them less prone to get stuck in local

minima during backpropagation1. Since 2006, DNNs have re-emerged as an

exciting research area, attracting a wide variety of scientists and engineers

and have been successfully applied to a variety of NLP tasks.

1 A supervised learning algorithm that calculates the errors and then back propagates them to
previous layers. These previous layers then adjust their weights and biases accordingly, and
the configuration is thus changed. The entire training process is a means of finding the right
combination of weights and biases for which the multi-layer neural network performs at its
best (Shukla, Tiwari, and Kala, 2010).
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3.2 basics of neural networks

3.2.1 Mathematical Notation

Following the notation of Goldberg (2016), throughout this dissertation, bold

upper case letters are used to represent matrices (X,Y ,Z), and bold lower-

case letters to represent row vectors (b).

3.2.2 The Artificial Neuron

The Artificial Neuron refers to a class of biologically-inspired machine learn-

ing techniques evolved from the idea of mimicking the activity of the human

brain. Figure 3.1 shows an example of a single neuron (Haykin, 1994), a very

simple processing unit.

Figure 3.1: Schematic diagram of the artificial neuron

It consists of a number of inputs, synaptic weights, an activation func-

tion, and an output. Let x = (x1, x2, ..., xn) denote an input vector, and

w = (w1,w2, ...,wn) be the vector of weights assigned to the links from
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input to output nodes; b denotes a bias, the output y is computed by the

following function:

y = f(

n∑

i=1

xiwi + b) (3.1)

where f is a non-linear activation function that can be a simple threshold,

sigmoidal, hyperbolic tangent, or radial basis function. The most commonly

used activation function is the sigmoid function:

σ(x) =
1

1+ e−x
(3.2)

or the hyperbolic tangent function:

tanh(x) =
1− e−2x

1+ e−2x
(3.3)

The sigmoid is a continuous squashing function which takes any real-valued

number and outputs a number in the range between 0 and 1. The tanh pro-

duces a centered output between -1 and 1. The purpose of these activation

functions is to introduce non-linearity to the network and ensure that the

representation in the input space is mapped to a different space in the out-

put. Figures 3.2 and 3.3 present a graphical plot of these two functions.

In the literature for DNNs, various other recent non-linearities have been in-

troduced with desirable application-specific properties, for example ReLu

(Krizhevsky, Sutskever, and Hinton, 2012) and A leaky ReLU(Maas, Hannun,

and Ng, 2013), to name but a few.
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Figure 3.2: Sigmoid function
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Figure 3.3: Hyperbolic tangent function

3.2.3 Multi-Layer Neural Networks

Neurons can be arranged in different layers, with connections feeding for-

ward from one layer to the next to create a Multi-Layer Network (Rumelhart,

Hintont, and Williams, 1986). Figure 3.4 shows the general architecture of

a deep Multi-Layer Neural Network. The first and the last layers are the

input and output layers respectively. On the other hand, hidden layers are

layers that are neither input nor output.Regarded computationally, process-
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ing information in a network with fully connected layers is simply a series

of matrix-vector multiplications and element-wise activation functions. For-

mally, let x denote the input vector, let W1 be the matrix of weights wi,j

connecting input neuron j with hidden neuron i, let b1 to be a vector with

the biases of the neurons in the first hidden layer and σ1 to be an activa-

tion function. Then the output vector h1 from the first hidden layer can be

computed as:

Figure 3.4: Schematic diagram of a Multi-Layer Neural Network

a1 = σ1(W
T
1x+b1) (3.4)
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The output vector a1 is then inputted to the second hidden layer of the

network. In a similar way, the output from layer n is also computed as:

an = σn(W
T
nan−1 +bn) (3.5)

The training of a multi-layer neural network is performed by the Backprop-

agation Algorithm (BPA) (Rumelhart, Hintont, and Williams, 1986), which

is a supervised learning algorithm that calculates the errors and then back-

propagates them to previous layers. These previous layers then adjust their

weights and biases accordingly, and the configuration is thus changed. The

entire training process is a means of finding the right combination of weights

and biases with which the multi-layer neural network performs at its best

(Shukla, Tiwari, and Kala, 2010).

3.3 recurrent neural networks

The Recurrent Neural Network (RNN) belongs to a family of neural networks

suited for modeling sequential data. Figure 3.5 shows a schematic plot of

an RNN. Given an input vector x = (x1, ..., xn), an RNN calculates the output

vector yt of each word xt by iterating the following equations from t = 1 to

n:

ht = f(Wxhxt +Whhht−1
+bh) (3.6)

yt = Whyht +by (3.7)

where ht is the hidden states vector, W denotes weight matrix, b denotes

bias vector, and f is the activation function of the hidden layer.
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Theoretically RNNs can learn long distance dependencies, yet in practice

they fail due the vanishing or exploding gradient (Bengio, Simard, and Fras-

coni, 1994). The most effective solution to this problem so far is the Long

short-term memory (LSTM) architecture (Hochreiter and Schmidhuber, 1997).

An LSTM network introduces the memory cell, a unit of computation that

Figure 3.5: Schematic diagram of a reccurent Neural Network

replaces traditional nodes in the hidden layer of a network. With these mem-

ory cells, the networks are able to overcome difficulties with training en-

countered by earlier recurrent networks. The output of LSTM hidden layer

ht given input xt is computed via the following intermediate calculations:

(Graves, 2013):

it = σ(Wxixt +Whiht−1 +Wcict−1 +bi) (3.8)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 +bf) (3.9)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 +bc) (3.10)

ot = σ(Wxoxt +Whoht−1 +Wcoct +bo) (3.11)

ht = ot tanh(ct) (3.12)
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where σ is the logistic sigmoid function, and i, f, o, and c are respectively

the input gate, forget gate, output gate, and cell activation vectors. More

interpretation about this architecture can be found in (Lipton et al., 2015).

Figure. 3.6 illustrates a single LSTM memory cell (Graves and Schmidhuber,

2005).

Figure 3.6: A Long Short-Term Memory Cell.

One shortcoming of conventional LSTMs is that they are only able to make

use of previous context. In many NLP tasks there is no reason not to ex-

ploit future context as well. BiLSTM networks (Schuster and Paliwal, 1997)

are extensions to the single LSTM networks. They are capable of learning

long-term dependencies and maintain contextual features from the past and

future states. As shown in Figure 3.7, they comprise two separate hidden

layers that feed forward to the same output layer. A BiLSTM calculates the for-

ward hidden sequence
−→
h , the backward hidden sequence

←−
h and the output

sequence y by iterating over the following equations:

−→
ht = σ(W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 +b−→

h
) (3.13)

←−
ht = σ(W

x
←−
h
xt +W←−

h
←−
h

←−
h t−1 +b←−

h
) (3.14)

yt = W−→
h y

−→
ht +W←−

h y

←−
ht +by (3.15)
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Figure 3.7: A bidirectional LSTM.

More interpretations about these formulas are found in Lipton et al. (2015).

3.4 deep neural networks for nlp

In recent years, advances in deep learning have revolutionized the applica-

bility of machine learning in a large number of natural a language problems.

The advantage of deep learning with respect to the rest of machine learn-

ing methods is that practically all aspects of the model are directly learned

from the data. This allows any system to learn complex functions mapping

the input to the output directly from data, without depending completely on

human-crafted features. (Collobert et al., 2011) employed a deep recurrent

convolutional neural networks to jointly solve many NLP tasks from scratch.

Their system did not rely on any task-specific feature engineering or external

resources to achieve competitive results.

Another major component in deep neural networks for language is the use
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of word embedding. Due to their simplicity and efficacy, pre-trained word

embedding have become ubiquitous in NLP systems. Many prior studies have

shown that they capture useful semantic and syntactic information (Mikolov

et al., 2013) and including them in NLP systems has been shown to be enor-

mously helpful for a variety of downstream tasks.

3.5 concluding remarks

This chapter has presented a brief introduction to deep learning. The litera-

ture on DL is vast, mostly coming from the ML community. Until recently, The

NLP community has embraced deep learning and momentum is growing fast.

DNNs provide an analytical alternative to linear models which are often lim-

ited by strict assumptions of normality, linearity, and variable independence.

Since DNNs can capture many kinds of relationships they allow the user to

quickly and relatively easily model phenomena which otherwise may have

been very difficult or impossible to explain otherwise.

In the next chapter we will provide a description of the data we used to train

our neural models.



Part III

R E S O U R C E C R E AT I O N F O R D I A L C TA L A R A B I C



4
D ATA A N D R E S O U R C E C R E AT I O N

This chapter includes work that was published as Samih and Maier (2016a)

and Samih and Maier (2016b). I was primarily responsible for the design and

creation of the corpus described in these two papers. I was also an active

collaborator throughout the creation of the multi-dialectal segmentation cor-

pus presented in the following three papers, Samih et al. (2017a), Samih et al.

(2017b) and, Eldesouki et al. (2017).

4.1 introduction

In recent years, the advent of the era of social media and the ubiquity of the

internet access have created an unprecedented deluge of information and

textual data on the world wide web. This data brings in its wake new oppor-

tunities and poses many challenges for machine learning and Natural Lan-

guage Processing (NLP) in particular. The sheer size, non-standard spelling,

the poor quality, the informality, and the noise of this data, presents new chal-

lenges to standard NLP tools developed for traditional data (Farzindar and

Inkpen, 2015). To make sense out of such data and exploit its value, novel

NLP methods, resources, and efficient algorithms beyond rule-based deduc-

tive reasoning and "traditional" system engineering need to be created.

A case in point is DA. Until recently, DA was regarded as a partially under-

resourced language since the written production remains relatively low in

comparison to MSA. Increasingly, however, DA is emerging as the language

33
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of informal communication on the web, in emails, social media platforms,

micro-blogs, blogs, forums, chat rooms, etc. This new situation amplifies the

need for consistent language resources and NLP systems for Arabic dialects.

While MSA has already received attention in NLP research, most Arabic di-

alects remain particularly under-resourced (Habash, 2010). They are strongly

embedded in a multilingual context that entails frequent code-switching, i.e.,

switching between languages within the same context (Bullock and Toribio,

2009). Building linguistic resources and creating the necessary tools for pro-

cessing DA is a priority, not least because its grammars, and vocabularies are

particularly distant to MSA (Diab et al., 2010a).

In this chapter, we try to bridge this critical gap of resources by creat-

ing two adequate DA datasets with annotations on the token level. These

two datasets will foster DA NLP research as they will provide a test bed for

adaptive learning algorithms, lead to significant robustness in handling very

diverse data sources, and create a framework for genuine multilingual pro-

cessing. In Section 4.2 we present the Moroccan Arabic Darija1 code-switching

corpus. It is collected from Moroccan social media sources, namely blogs and

internet discussion forums, and has a size of 223k tokens. To our knowledge,

it is currently the largest resource of its kind. In Section 4.3 we describe our

effort to compile the Twitter multi-dialectal Arabic segmentation corpus2. In this

corpus each dataset consists of a set of 350 manually segmented tweets.

1 Darija is the Moroccan Dialectal Arabic.
2 This dataset is available here: http://alt.qcri.org/resources/da_resources/releases/
current/seg_data_jun122017.tgz
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4.2 the moroccan code-switching corpus

4.2.1 Data Collection

We acquire our data from internet discussion forums and blogs which are

hosted in Morocco or extensively used by Moroccans3. The crawled output

is stripped from HTML tags and other meta-data. Since sentence splitting is

not a trivial task in Arabic and no such tool is available for Darija, we leave

the downloaded text units ("posts") intact. Then we tokenize the text with a

simple heuristic, delete all diacritic marks as usual in Arabic NLP (Habash,

2010), and transliterate the text using the Buckwalter transliteration system,

as presented in Appendix C. Finally, we store the data token-wise as pairs

(original and transliteration) in a MySQL database. The size of the resulting

corpus is 15 million tokens in total. It covers a wide range of topics including

politics, religion, sport, and economics.

Existing code-switched data sets are often highly skewed towards one lan-

guage (Solorio et al., 2014a), with a high percentage of the sentences not

exhibiting code-switching at all. In our corpus, MSA is more prevalent than

Darija. In order to obtain a resource that concentrates on code-switching, we

aim at minimizing the skewing by extracting only a subset of the data set

that contains more instances of code-switching. The subset is extracted with

the following iterative process. We first compile an initial seed list of 439

commonly used Darija words and phrases collected from the Internet4. Then

we repeat the following steps. Each word and phrase in the seed list is for-

mulated in a MySQL query as a keyword to retrieve more code-switched

examples from the original data set. The retrieved examples are put into the

code-switched data set. Then, the seed list is updated with all words of the

3 http://www.hibapress.com/ and https://www.goud.ma/
4 en.mo3jam.com/dialect/Moroccon
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retrieved text units, and the procedure is repeated until the code-switched

data set has reached a certain size. Note that the extraction procedure does

not guarantee that only code-switched examples are included in the final

data set. However, we do achieve a rate of 73.9% of text units with code-

switching (see below), which contrasts with code-switching ratios of around

20% in data sets in previous literature (Solorio et al., 2014a). Subsection 4.2.2

shows more detailed statistics of the data.

4.2.2 Annotation

We adapt the annotation guidelines for the data used in the shared task on

code-switching detection at EMNLP 2014 (Solorio et al., 2014a) and use all

of their labels:

• lang1 is used for MSA words,

• lang2 for Darija words,

• mixed is used to mark words that mix a Darija stem with MSA morphol-

ogy or vice versa,

• ne is used to mark named entities, including dates,

• other is used to mark other numbers, punctuation, and other non-

language material, and

• ambiguous is used for material which could be interpreted as either

lang1 or lang2.

We additionally introduce a new label lang3, which accounts for the spe-

cial linguistic situation in Morocco. It marks words belonging to a language

which is neither MSA nor Darija, notably either French, English, Spanish, or
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Berber. Note that French words may be written with Arabic script. Berber is

furthermore written with its own script, called Tifinagh5. Since lang3 mate-

rial is scarce, we have decided against the introduction of further language

labels.

Several DA annotation tools have been reported in the literature, such as

COLANN_GUI and COLABA (Benajiba and Diab, 2010; Diab et al., 2010b),

DATOOL (Tratz et al., 2013), DIWAN (Al-Shargi and Rambow, 2015), among

others, and have been successful with different annotation tasks, yet they

were either not available or did not suit our needs exactly. Therefore, we

have built a custom web-based annotation tool. The annotation has been

performed by three Moroccan Darija native speakers, two of them with no

prior linguistic knowledge. They worked independently at different physical

locations; crowd-sourcing services like Amazon Mechanical Turk6 have not

been used. In our annotation tool, a single text unit is shown at a time. The

words can be annotated in random order. When the annotation of a text

unit is done, it is saved by a single click back to the database, whereby the

label is stored for each token together with its Arabic script version and its

Buckwalter transliterated version.

To ensure agreement among the annotators, various training sessions were

provided and regular inter-annotator agreement measures were performed

to check the annotation quality. The final inter-annotator agreement (Cohen’s

κ) was computed on a selection of 50 text units between 0.82 and 0.86.

In total, 3,862 text units with around 223k tokens were annotated. See

Table 4.1 the number of tokens for each label, as well as the respective ratio

among all labels, and average as well as median length of tokens per label.

We found the average number of switches between languages per text unit to

5 The script used to write the Berber languages in North African https://en.wikipedia.org/
wiki/Tifinagh

6 https://www.mturk.com/mturk/welcome
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be 2.6, and the median to be 2. Out of the 3,862 text units, 284 (7.4%) contain

only MSA tokens, and 725 (18,8%) contain only Darija tokens. In other words,

2,853 (73,9%) text units are true code-switched instances. In 1,950 (50.5%) text

units, more than 50% of all language tokens (i.e., not mixed tokens, etc.) are

lang1; the same holds for lang2 in 1,970 (51.0%) text units.

As mentioned above, we have not performed sentence splitting, i.e., our

text units can consist of more than one sentence. Fig. 4.1 shows a histogram

revealing the distribution of lengths of text units. We see that it is positively

skewed; most text units have 50 or fewer tokens. Nevertheless, our data does

contain very long text units with over 300 tokens.
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Figure 4.1: Text unit length histogram

length

labels all % avg. med.

lang1 109,025 48.82 6.13 4
lang2 76,732 34.36 5.22 4
lang3 1,383 0.62 1.88 1
ne 17,087 7.65 1.29 1
mixed 86 0.04 1.00 1
ambiguous 141 0.06 1.26 1
other 18,830 8.43 1.02 1

Table 4.1: Data statistics
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As an example for the annotation, Fig. 4.2 shows a sample forum post

with free translation, and the annotated version of the text. Aside from MSA

words, this text unit contains Darija words and words with mixed morphol-

ogy. Darija words are, e.g., A
B
�� (demonstrative pronoun),

��+ � (meaning

worse). Words with mixed morphology are, e.g., '
(
�9 > �?/ �� and '
C� �/

��, which

both exhibit the Darija future prefix / �� on words which otherwise are MSA.

Last, note that the punctuation in the text unit is labeled as other. For the

purpose of presentation, i.e., in order to not have to mix writing directions,

the annotated tokens are shown only in the Buckwalter transliterated form;

labels are separated from the tokens they annotate by a single forward slash.

�&��:�D7� �-
<
E F


�G� �)� ��+� �):! . F+ �C� �&��:C '
C� �/
�� . �&��:�D7� ��/� '
(

�9> �?/ �� A
B
��

�A�/ �	 �H!� � �,� �H�I/ �� / ��C /� . �1�	���E� �G ��� F

�G� J
 � �1�� ! K%L�I �;/ �$�� '
M! �

�AG�
C�!�

N �&!/�� �	! . ��+C
<
E� O �1�	���E� O F
 ��

���G!� �/���7E�P �$C� +�
 F
 /
�� '
M! �

rAh/lang2 gAtm$y/lang2 hA*/lang2 AlHkwmt/lang2 w/lang2 gAd-
jy/lang2 Hkwmt/lang2 AxrY/lang2 w/lang2 lkn/lang2 krf/lang2
mn/lang2 h*y/lang2 l>n/lang1 AlHkwmt/lang1 AlwHydt/lang1 Al-
ly/lang2 bgAt/lang2 tSlH/lang2 lblAd/lang2 hy/lang2 h*y/lang2
mn*/lang1 AlAstqlAl/lang1 w/lang2 hA/lang2 HnA/lang2
gAn$wfw/lang2 Al$fArt/lang2 Ally/lang2 gAy/lang2 yrjEw/lang2
(/other AlAtHAd/ne Aldstwry/ne ,/other AlAstqlAl/ne ,/other
Al>HrAr/ne w/lang2 lqtAlt/lang2 )/other ./other

This government will go, and another one will come which will be worse. The current
government is the only government since independence which has worked hard to
develop the country; and we will see the thieves coming back (Independence Party,
Constitutional Party, Liberal Party, and murderers).

Figure 4.2: Sample forum post with annotated version and free translation
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4.2.3 Related Work

Research in processing on code-switching and of language varieties and di-

alects has recently attracted increased attention. This is reflected by recent

workshops (Diab et al., 2014; Nakov, Osenova, and Vertan, 2014; Solorio et al.,

2014a; Zampieri et al., 2014). A number of language resources has been cre-

ated, such as the ones described by Tratz et al. (2013), Maharjan et al. (2015a),

Dey and Fung (2014), and the data set from the Shared Task at the First

Workshop on Computational Approaches to Code-Switching at EMNLP 2014

(Solorio et al., 2014a), with a particular focus on inter-operable annotation

guidelines. A popular use for those resources can be found in approaches

to automatic detection of code-switching points in text. This task has mostly

been treated as a sequence labeling problem. Different techniques have been

applied, ranging from Naive Bayes (Solorio and Liu, 2008a) over Conditional

Random Fields (Elfardy, Al-Badrashiny, and Diab, 2014a; King and Abney,

2013), Support Vector Machines (Bar and Dershowitz, 2014), Markov Mod-

els (King et al., 2014) and n-gram based approaches (Bacatan et al., 2014;

Shrestha, 2014) to Recurrent Neural Networks (Chang and Lin, 2014a). POS

tagging of code-switched text has also been investigated (Rodrigues and

Kübler, 2013; Solorio and Liu, 2008b).

Concerning the processing of Arabic in general, there is an ample body

of research. For an overview, see Habash (2010). With regard to the process-

ing of Dialectal Arabic, most of the existing work concentrates on Levantine

and Egyptian Arabic (see, e.g., Elfardy and Diab (2012b) and Elfardy, Al-

Badrashiny, and Diab (2014a)). An exception is Cotterell et al. (2014), who

works on Algerian Arabic. In linguistics, Moroccan Arabic found attention

very early (Harrell, 1962; Harrell and Sobelman, 1966). Work on the computa-

tional processing of Darija, however, remains very scarce. To our knowledge,
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there is only the work of Tratz et al. (2013), who present a data collection and

annotation environment for romanized Darija, and the work of Voss et al.

(2014) who present an approach for finding romanized Darija in code-mixed

tweets.

4.3 the multi-dialectal segmentation corpus

4.3.1 Data Creation

We constructed our dataset by obtaining 350 tweets that were authored for

each of the following four dialects: Egyptian, Levantine, Gulf, and Maghrebi.

For dialectal Egyptian tweets, we obtained the dataset described in (Dar-

wish, Sajjad, and Mubarak, 2014), and we used the same methodology to

construct the dataset for the remaining dialects. Initially, we obtained 175

million Arabic tweets by querying the Twitter API7 using the query "lang:ar”

in March 2014. Then, we identified tweets whose authors identified their lo-

cation in countries where the dialects of interest are spoken (ex. Morocco,

Algeria, and Tunisia for Maghrebi) using a large location gazetteer (Mubarak

and Darwish, 2014). Then we filtered the tweets using a list containing 10

strong dialectal words per dialect, such as the Maghrebi word /#�
� "kymA”

(like/as in) and the Leventine word  �
� "hyk" (like this). Given the filtered

tweets, we randomly selected 2,000 unique tweets for each dialect and asked

a native speaker of each dialect to manually select 350 tweets that were heav-

ily dialectal. Table 4.2 lists the number of tweets that we obtained for each

dialect and the number of words they contain.

Segmentation of DA can be applied on the original raw text or on the

cleaned text after correcting spelling mistakes and applying conventional or-

7 https://developer.twitter.com/en/docs/api-reference-index
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Dialect No of Tweets No of Tokens

Egyptian 350 6,721
Levantine 350 6,648

Gulf 350 6,844
Maghrebi 350 5,495

Table 4.2: Dataset size for the different dialects

Field Annotation

Orig. word  !��	�
�� "byqwlk”

Meaning he is saying to you
In situ Segm. 4+���	�
+;� "b+yqwl+k"

CODA  ! ���	�
�� "byqwl lk"

CODA Segm. 4+� ���	�
+;� "b+yqwl l+k"

Table 4.3: Egyptian annotation example

thography rules, such as CODA8 (Habash, Diab, and Rambow, 2012). In this

work, we decided to segment the original raw text. Though Egyptian CODA

is a reasonably stable standard, Conventional Orthography for Dialectal Ara-

bics (CODAs) for other dialects are either immature or nonexistent. Building

such tools requires the establishment of clear guidelines, is laborious, and

may require large annotated corpora (Eskander et al., 2013), such as the LDC

Egyptian Treebank.

4.3.2 Annotation

To prepare the "ground truth" data for a dialect, we enlisted an annotator

who was either a native speaker for the dialect or well versed in it and had

background in natural language processing. The authors along with another

native speaker of the dialect made multiple review rounds on the work of

8 A Conventional Orthography for Dialectal Arabic
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the annotator to ensure consistency and quality. The annotation guidelines9

were fairly straightforward. Basically, we asked annotators to:

• segment words in a way that would maintain the correct number of

part of speech tags

• favor stems when repeated letters are dropped as Table 4.3

• segment multiple concatenated words with pluses as in the "merged

words" example in Table 4.4.

• attach injected long vowels that trail prepositions or pronouns to the

preposition or pronoun respectively (ex. '
Q�
! "lyky" (to you – feminine)

→ "ly+ky")

• treat dialectal words that originated as multiple fused words as single

tokens (ex. ��1� "ElA$" (why) – originally R'
(
�S F


<
� 'M� "ElY >y $y'")

• not to segment name mentions and hashtags

In what follows, we discuss the advantages and disadvantages of segmenting

raw text versus the CODA’fied text with some statistics obtained for the Egyp-

tian tweets for which we have a CODA’fied version as exemplified in Table 4.3.

The main advantage of segmenting raw text is that it does not need any pre-

processing tool to generate CODA orthography, and the main advantage of

CODA is that is regularizes text making it more uniform and easier to process.

We manually compared the CODA version to the raw version of 2,000 words in

our Egyptian dataset. We found that in 75.4% of the words, segmentation of

original raw words is exactly the same as their CODA compliant equivalents

(ex. �)��. "w+mn" (and from) and /2�%#$ ��, "nEml+hA" (we do it)). Further,

if we normalize some characters, namely A ← �A OF
 ← F O � ←
B
� O �< O

<
�, and

9 Complete list of guidelines is found in at:http://alt.qcri.org/resources/da_resources/
seg-guidelines.pdf
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non-Arabic characters F
 ← O 4 ← T O U O �� ← �� O�� ← �V , and remove

diacritics, the percentage of matching increases to 90.3%. Table 4.4 show-

cases the remaining differences between raw and CODA segmentations and

how often they appear. The differences are divided into two groups. In the

first group (accounting for 6.8% of the cases), the number of word segments

remains the same and both the raw and CODA’fied segments have the same

POS tags.

Diff. % Examples

Same no. of segments and same POS tags

variable
2.4%

�-/ �H%� ⇔ �-/ �H�
spellings "E$An, El$An"

dropped
2.3%

W+�*=
<
/��� ⇔ W+�*= �;�

letters "b+Htrm, b+AHtrm"

merged
1.4%

X� /�
 ⇔ X�� /�

words "yA+Em, yA Em”

Shortened
0.4%

'

�, ⇔ �� O 'M� ⇔ �

particles "E, ElA f, fy"

elongations 0.3% &�
! ⇔ &�
�
Y
�
! "lyyyyh,lyh"

Different no. of segments or POS tags

spelling
2.2%

E�<. ⇔ E. �-� ⇔ / �� �
errors "An, Ana wlA, wAlA"

fused
0.8%

J
 �! �/
�, ⇔ J
 �!/

�,
letters "qAl+y, qAl l+y"

Table 4.4: Original vs CODA Segmentations

In this group, the "variable spelling" class contains dialectal words that may

have different common spellings with one "standard" spelling in CODA. They

are different than their CODA orthography, which is a common case in DA

as there is no standard writing and many writings for the same word are

accepted. This is similar to having "thx" and "gr8" as informal writings for

the English words "thanks" and "great". The "dropped letter" and "shortened
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particle" classes typically involve the omission of letters such as the first per-

son imperfect prefix
<
� ">" when preceded by the present tense marker ;� "b"

or the future tense marker �� "h", and the "A" in negation particle /� "mA"

which is often written as W "m" and attached to the following word, and the

trailing letters in prepositions. "Merged words" and "word elongations" are

common in social media, where users try to keep within limit by dropping

the spaces between letters that do not connect or to stress words respectively.

Though some processing such as splitting of words or removing elongations

is required to overcome the phenomena in this group, in situ segmentation

of raw words would yield identical segments with the same POS tags as their

CODA counterparts. Thus, the segmentation of raw words could be sufficient

for 97% of words.

In the second group (accounting for 3% of the cases), both may have a differ-

ent number of segments or POS tags, which would complicate downstream

processing such as POS tagging. They involve spelling errors and the fusion

of two identical consecutive letters (gemmination). Correcting such errors

may require a spell checker. We opted to segment raw input without cor-

rection in our reference, and we kept stems, such as verbs and nouns, com-

plete at the expense of other morphological segments such as prepositions

as shown in Table 4.3.

In summary, segmenting original words is very close to segmenting CODA-

fied words (at least 95%), and this ratio can be increased to 98% by consider-

ing special predefined cases. It can be applied to raw text directly without the

need of tools or lexicons for each dialect. The numbers reported here are for

EGY dialect, and we plan to study other dialects for different segmentation

conventions.
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4.4 concluding remarks

In this chapter, we present two dialectal corpora with annotation on token

level. Both corpora were collected from internet discussion forums and blogs,

social media platforms. They will be of use for supporting research in lin-

guistics and NLP and will constitute an ideal data source for multilingual

processing, an area which recently has received increased attention. Given

these two new annotated datasets, in the next two chapters we will inves-

tigate two challenging problems: Dialectal Arabic segmentation and code-

switching identification.



Part IV

A P P L I C TA I O N S



5
C O D E - S W I T C H I N G I D E N T I F I C AT I O N

This chapter includes work that was published as Samih and Maier (2016a,b).

I was primarily responsible all the experiments and the design and creation

of the corpus used in this chapter. The other authors contributed to these

papers primarily in an advisory role. In addition, Section 5.5 in this chapter

presents work that is excerpted from Samih et al. (2016), which also forms

the basis for much of this chapter. I was responsible for the design of the

neural models presented in that paper.

5.1 introduction

CS can be defined as the alternation between elements of two or more lan-

guages or language varieties within the same utterance. The speaker’s na-

tive language is sometimes referred to as the ’host language’, and his sec-

ond language, the embedded language, as the ’guest language’ (Yeh et al.,

2013). Code-switching is a wide-spread linguistic phenomenon in modern

informal user-generated data, whether spoken or written. With the advent

of social media such as Facebook posts, Twitter tweets, SMS messages, user

comments on the articles, blogs, etc., this phenomenon is becoming more

pervasive. Code-switching not only occurs across sentences (inter-sentential)

but also within the same sentence (intra-sentential), adding a substantial

complexity dimension to the automatic processing of natural languages (Das

and Gambäck, 2014). This phenomenon is particularly frequent in multilin-

48
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gual societies (Milroy and Muysken, 1995), migrant communities (Papalex-

akis, Nguyen, and Doğruöz, 2014), and in other environments that undergo

social changes through education and globalization (Milroy and Muysken,

1995). There are also some social, pragmatic, and linguistic motivations for

code-switching, such as the the intent to express group solidarity, establish

authority (Chang and Lin, 2014b), lend credibility, or compensate for lexical

gaps.

It is not necessary for code-switching to occur only between two differ-

ent languages like Mandarin-Taiwanese (Yu et al., 2012), Spanish-English

(Solorio and Liu, 2008b) and Turkish-German (Çetinoglu, 2016), but it can

also happen between three languages, e.g. Bengali, English and Hindi (Bar-

man et al., 2014), and in some extreme cases even between six languages:

English, French, German, Italian, Romansh, and Swiss German (Volk and

Clematide, 2014). Moreover, this phenomenon can occur between two differ-

ent dialects of the same language such as between MSA and EGY (Elfardy and

Diab, 2012a), or MSA and Moroccan Arabic (Samih and Maier, 2016a,b).

With the massive increase in code-switched writings in user-generated web

content, it has become imperative to develop tools and methods to handle

and process this type of data. Identification of languages used in the sen-

tence is the first step in doing any kind of text analysis. For example, most

data found in social media produced by bilingual people is a mixture of two

languages. In order to process or translate this data to some other language,

the first step is to detect text chunks and identify which language each chunk

belongs to.

In this chapter, we present two code-switching identification systems for

MSA-Moroccan Arabic. We first present the code-witching dataset used

throughout the work. We then present a baseline system utilizing Condi-

tional Random Field (CRF) and discuss its shortcomings. Later, we present



5.2 code-switching 50

another system based on a Deep Neural Network (DNN) and demonstrate

the improvements achieved in code-switching identification. This latter does

not rely on any human hand-crafted features and is language agnostic. Fol-

lowing recent advances in artificial neural network research, it employs word

embeddings and character-level embeddings to achieve state-of-the-art per-

formance.

5.2 code-switching

5.2.1 A Linguistic Analysis of Code-Switching

Code-switching1 is a common phenomenon in multi-lingual communities.

It is a process whereby speakers switch from one language or dialect to

another within the same context (Bullock and Toribio, 2009). Communities

where commonly more than one language or dialect is spoken can be found

around the world. Examples include India, where speakers switch between

English and Hindi (among other local languages) (Dey and Fung, 2014); the

United States, where migrants from Spanish-speaking countries continue to

use their native language alongside English (Poplack, 1980); Spain, where

people switch between regional languages such as Basque and Spanish

(Barredo, 2003); Paraguay, where Spanish co-exists with Guarani (Estigar-

ribia, 2015); and finally the Arab world, where speakers alternate between

MSA and Dialectal Arabic.

Since the mid 1960s there has been a large body of linguistic studies

on code-switching, the bulk of them concentrating on social and linguistic

factors that constrain its occurrences (Berk-Seligson, 1986). Various models

of constraints have been proposed. Poplack (1980) formulates a model in

1 Note that for the purpose of this dissertation, we do not distinguish between code-switching
and similar concepts such as code-mixing.
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terms of the equivalence constraint of the languages involved at the switch

point. Namely, code-switching tends to occur at points in the sentence where

the surface structure of the respective languages is the same. Myers-Scotton

(1993) focuses on structural constrains in code-switching. She proposes the

matrix language-frame (MLF), which is based on the assumption that one lan-

guage is the matrix language (M) and the other language is the embedded

language (E). While M provides the grammatical and functional elements

as well as the structural frame of the sentence, E can only provide content

elements (Myers-Scotton, 1997). For a further, detailed linguistic overview,

consult Muysken (2000).

In the literature, three types of code-switching are distinguished. In inter-

sentential code-switching languages are switched between sentences. An in-

stance of this type of switching is (1) from Barredo (2003), where the speaker

switches from Basque to Spanish.

(1) egia ez dala erreala? eso es otra cosa!

you say that the truth is not real? that’s a different thing!

Intra-sentential code-switching consists of a language switch within a sentence.

An example is (2) borrowed from Dey and Fung (2014). Here, the speaker

switches from Hindi to English within the same sentence.

(2) Tume nahi pata, she is the daughter of the CEO, yaha do char din ke liye

ayi hai.

Don’t you know, she is the daughter of the CEO, she’s here for a couple

of days.

A third type of code-switching is intra-word switching, where a language

switch occurs in a single word. For instance, the morphology of one lan-
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guage involved can be applied to a stem of the other language. This is ex-

emplified by (3) for Spanish/Quechua (borrowed from Muntendam, 2006).

Quechua is the matrix language of the sentence. The Spanish words farol

with its diminutive and the word dueña are used together with Quechua

suffixes. A corresponding example of switching between Modern Standard

Arabic and Moroccan dialectal Arabic within the same sentence can be found

in the Section. 5.2.2.

(3) Chanta
Then

farol-cito-wan
lantern-dim-instr

llojsi-mu-sqa
come out-dir-past 3 sg

dueña-n-qa
owner-poss-top

’Then her owner appeared with a small lantern’

5.2.2 Code-Switching in Morocco

The linguistic situation in Morocco is complex due to its diverse ethnic and

linguistic make-up and the colonial history. Following Benmamoun (2001),

one can distinguish different languages and dialects that occupy the linguis-

tic space:

Darija is the native language for the majority of the population and is the

language of popular culture.

Berber is the language of the original people of Morocco and is the native

language of about 40% of the Moroccan population.

Modern Standard Arabic is a written language used mainly in formal educa-

tion, media, administration, and religion.

French is not an official language, but is dominant in higher education, in

the media, and some industries.

In recent years, the Moroccan linguistic landscape has changed dramatically

due to social, political, and technological factors. Darija, the colloquial, tradi-
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tionally unwritten variety of Arabic, is increasingly dominating the linguistic

scene. It is written in a variety of ways in print media, advertising, music,

fictional writing, translation, the scripts for dubbed foreign TV series, and

a weekly news magazine (Elinson, 2013). It also increasingly appears on the

web in blogs, emails, and social media platforms and is often code-switched

with other languages and dialects, including MSA, English, and French, Span-

ish and, Berber (Voss et al., 2014). As an example for intra-sentential and

intra-word code-switching in Morocco, consider (4), taken from our own

data.

(4) "0E� . 5�G�
 �+ �� . F
 ./
�= �� �
��D7� . '
Q�


�H!� . �Z�. �+! � F�� /[\
�, J�	�� �
 �)! /H�I+ �,
� /]�
 ���� �	! � . ��>^/��

In France, the only things that remain are pretension, empty pockets, and, to

add more, also eating with knife and fork.

The speaker switches between MSA and Darija, and uses a word where French

is mixed with Arabic morphology. MSA words include, e.g., /H �I+ �, (France),

��>^/�� "0E� (eating with knife); Darija words include �� �
��D7� . '
Q�

�H!� . �Z�. �+! �

5�G�
 �+ �� . F
 ./
�= (pretension, empty pockets, and, to add more); finally, /]�
 ���� �	! � is

the French word for fork (’fourchette’), written in Arabic script. It is prefixed

by the Arabic definite article and suffixed with an Arabic case marker.
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5.3 related work

Code-Switching has attracted considerable attention in theoretical linguistics

and sociolinguistics over several decades. However, there has not been much

recent work on the computational processing of code-switched data. The

first computational treatment of this linguistic phenomenon can be found in

(Joshi, 1982). He introduces a grammar-based system for parsing and gener-

ating code-switched data. More recently, the detection of code-switching has

gained attention, starting with the work of (Solorio and Liu, 2008b), and

culminating in the first shared task at the "First Workshop on Computa-

tional Approaches to Code Switching" (Solorio et al., 2014b) and the ’Sec-

ond Workshop on Computational Approaches to Code Switching’ (Molina

et al., 2016). Moreover, there have been efforts in creating and annotating

code-switching resources (Çetinoglu, 2016; Elfardy and Diab, 2012a; Lignos

and Marcus, 2013; Maharjan et al., 2015b; Samih and Maier, 2016b). Ma-

harjan et al. (2015b) used a user-centric approach to collect code-switched

tweets for Nepali-English and Spanish-English language pairs. They used

two methods, namely a dictionary based approach and CRF and obtained

an accuracy of 86% and 87% for Spanish-English and Nepali-English respec-

tively at word level language identification task. Lignos and Marcus (2013)

collected a large number of monolingual Spanish and English tweets and

used a ratio list method to tag each token with its dominant language. Their

system obtained an accuracy of 96.9% at word-level language identification

task.

The task of detecting code-switching points is generally cast as a sequence-

labeling problem. Its difficulty depends largely on the language pair be-

ing processed. Several projects have treated code-switching between MSA

and Egyptian Arabic. For example, Elfardy, Al-Badrashiny, and Diab (2013)
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present a system for the detection of code-switching between MSA and Egyp-

tian Arabic which selects a tag based on the sequence with a maximum

marginal probability, considering 5-grams. A later version of the system

named AIDA2 (Al-Badrashiny, Elfardy, and Diab, 2015) is a more complex

hybrid system that incorporates different classifiers and components such as

language models, a named entity recognizer, and a morphological analyzer.

The classification strategy is built as a cascade voting system, whereby a CRF

classifier tags each word based on the decisions from four other underlying

classifiers.

The participants of the ’First Workshop on Computational Approaches to

Code Switching’ applied a wide range of machine learning and sequence

learning algorithms with some researchers using additional online resources

like an English dictionary, a Hindi-Nepali wiki, dbpedia, online dumps,

LexNorm, etc. to tackle the problem of language detection in code-switched

tweets on Nepali-English, Spanish-English, Mandarin-English, and MSA Di-

alects (Solorio et al., 2014b). For MSA-Dialects, two CRF-based systems, a

system using language-independent extended Markov models, and a system

using a CRF autoencoder were presented; the latter proved to be the most suc-

cessful. Similarly in the ’Second Workshop on Computational Approaches to

Code Switching’, the participants also applied a wide variety of system archi-

tectures ranging from simple rule based systems all the way to more complex

deep learning implementations (Molina et al., 2016).

The majority of the systems dealing with word-level language identifica-

tion in code-switching rely on linguistic resources (such as named entity

gazetteers and word lists) and linguistic information (such as POS tags and

morphological analysis), and they use ML methods that have been typically

used with sequence-labeling problems, such as SVM, CRF and n-gram lan-

guage models. A few investigators, however, have recently turned to RNNs
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and word embedding with remarkable success. (Chang and Lin, 2014b) used

an RNN architecture and combined it with pre-trained word2vec skip-gram

word embeddings, a log bilinear model that allows words with similar con-

texts to have similar embeddings. The word2vec2 embeddings were trained

on a large Twitter corpus of random samples without filtering by language,

assuming that different languages tend to share different contexts, allowing

embeddings to provide good separations between languages. They showed

that their system outperforms the best SVM-based systems reported in the

EMNLP’14 Code-Switching Workshop. Similarly, Samih et al. (2016) make

use of word embeddings and Long short-term memory (LSTM) with the

added advantage of memory cells that efficiently capture long-distance de-

pendencies. They also combine word-level with character-level representa-

tions to obtain morphology-like information on words.

Vu and Schultz (2014) proposed adapting the recurrent neural network

language model to different code-switching behaviors and even use them

to generate artificial code-switching text data. Adel, Vu, and Schultz (2013)

investigated the application of RNN language models and factored language

models to the task of identifying code-switching in speech and reported a sig-

nificant improvement compared to the traditional n-gram language model.

5.4 dataset

A detailed description of the data set we use is provided in Section 4.2. This

data set contains 3,865 text units. While a large portion of them are short

(cf. Figure 4.1), the average length is still 57.9, and the median 46 words. Of

all text units, 287 (7.4%) contain no code-switching (i.e., no labels lang2 or

lang3 are present).

2 https://code.google.com/archive/p/word2vec/
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all % av.len. med.len. training dev test

text units 3,865 3,089 388 388

tokens 223,284 178,924 21,925 22,435

lang1 109,025 48.82 6.13 4 86,464 10,988 11,573

lang2 76,732 34.36 5.22 4 62,261 7,230 7,241

lang3 1,383 0.62 1.88 1 1,138 90 155

ne 17,087 7.65 1.29 1 13,658 1,775 1,659

mixed 86 0.04 1.00 1 72 8 6

ambiguous 141 0.06 1.26 1 120 8 13

other 18,830 8.43 1.02 1 15,211 1,826 1,793

Table 5.1: Data statistics

In preparation for our experiments, we transformed Arabic scripts to

SafeBuckwalter (Roth et al., 2008), a character-to-character mapping that

replaces Arabic UTF-8 alphabet with Latin characters to reduce size and

streamline processing. In order to reduce data sparsity, we converted all Per-

sian numbers (e.g. _ O`) to Arabic numbers (e.g. 1, 2), Arabic punctuation

(e.g. ‘O’ and ‘a’) to Latin punctuation (e.g. ‘,’ and ‘;’), removed kashida (elon-

gation character) and vowel marks, and separated punctuation marks from

words. We then split the data into three parts for training, development, and

testing. In order to avoid imbalance, we use a round-robin3 split. The train-

ing set receives roughly 80% of the tokens, and the test and development sets

roughly 10% each. Tab. 5.1 shows the properties of the resulting sets.

5.5 code-switching detection approaches

In this section, we present two different systems for code-switching identifi-

cation in social media.These two systems were designed for this dissertation,

and are entirely my own. The first approach uses CRF (Lafferty, McCallum,

3 A round robin is an arrangement of choosing all elements in a group equally in some rational
order, usually from the top to the bottom of a list and then starting again at the top of the list
and so on.
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and Pereira, 2001) to tag each word using a variety of features. This system

yields state-of-the-art results on the Moroccan code-switching corpus, which

is the reference dataset for comparing our proposed CS identification systems

in this dissertation. This system will constitute a challenging baseline for

the our proposed DNNs based model, which performs sequence-to-sequence

mapping to identify CS.

5.5.1 CRF Approch (Baseline)

Code-switching can be treated as a sequence-labeling problem. We use a

CRF (Lafferty, McCallum, and Pereira, 2001) classifier to combine knowledge

from different sources. This has proven to be successful in previous work

(Elfardy, Al-Badrashiny, and Diab, 2014b). For our experiments, we recur to

Wapiti (Lavergne, Cappé, and Yvon, 2010),4 a state-of-the-art high-speed CRF

implementation with flexible configuration options. We run all experiments

with standard settings, namely Limited-memory BFGS (L-BFGS)5 optimiza-

tion with elastic net penalty and no iteration limit. For evaluation we com-

pute the accuracy for all labels, and we compute precision, recall and F1 for

each label separately.

Since performing experiments with all possible feature combinations is not

feasible, we begin with a small feature set and iteratively add more features

to the best combination obtained in the respective previous step. For pre-

sentation, we organize the features in four groups. The first feature group

consists of the focus word and its surrounding words, as well as their pre-

fixes and suffixes. The second group adds structural properties of the words,

4 See https://wapiti.limsi.fr/ for details.
5 It is an optimization algorithm in the family of quasi-Newton methods that approximates the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount of computer
memory. It is a popular algorithm for parameter estimation in machine learning. https:
//en.wikipedia.org/wiki/Limited-memory_BFGS
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such as whether they contain numbers. The third group leverages character

language models, and the fourth group adds lexical knowledge from external

resources, e.g., from MSA word lists. We aim at a high overall performance.

Therefore, we take the feature combination with the highest overall accuracy

as the best one, even though it may actually not the most fortuitous choice

with respect to a certain label. Feature selection is performed on the dev set.

The best combination is evaluated on the test set. For the actual experiments,

we take advantage of the Wapiti template file mechanism.

tokens , prefixes , and suffixes First, as features we use the focus

word itself and the surrounding words, both as unigram and bigram features

(i.e., using either only the current label, or the joint current and previous la-

bels), both alone and in sequence (i.e., we build n-grams of adjacent tokens).

We also employ different window sizes from zero to three words to the left

and to the right. The best result is obtained by considering three tokens on

both sides of the focus words, using as features all tokens as unigrams as well

as all possible pairs of adjacent tokens, and finally also the joint label consist-

ing of the current one and the previous output tag (b in the Wapiti template).

Particularly long combinations where not useful and it did not help to use

more complex bigram features. In the following, we employ prefixes and suf-

fixes of varying length as features, both alone and in sequence as before, in

addition to the best feature combination so far. The intuition behind this is

that particularly for Arabic, they should convey crucial information. The best

result is obtained using as features the prefixes and suffixes of both length

one and two of the focus word. Most likely due to data sparseness, neither

using longer combinations nor a larger window was useful. Using prefixes

of length 3 also did not help, which can be explained with the small average

word length of only 4.0 characters. The inclusion of bigram features (with
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the joint current and previous output label) did not help; furthermore, due

to the high number of extracted features, training the respective models was

also much more costly. We therefore refrained from using complex bigram

features in the further experiments, and only included the feature consisting

of the current and the previous label.

structural token properties In our present work, we add features

which model structural properties of the words to the previously winning

combination. We use four Boolean features.

• number is true if a token contains a number.

• letter is true if a token starts with a letter

• length contains the token length. We use length as a discrete feature,

the reasoning behind it being that tokens are rather short: the average

token length is just 4.03.

• buckwalter is true if a token contains a character which is not part

of the Buckwalter transliteration set (or character which corresponds

to a diacritic, see above) (Buckwalter, 2001). The intuition behind this

feature is particularly to capture words in lang3 and ne.

Experiments are performed with the cross-product of:

1. all 15 combinations of the four features,

2. considering zero to three words around the focus word,

3. and building n-grams of one, two, and three tokens.

The best accuracy is obtained using letter and buckwalter together as

unigrams, considering a window of one word around the focus word.
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language models We now exploit the fact that character n-gram lan-

guage models have proven to be successful for code-switching detection (Al-

Badrashiny, Elfardy, and Diab, 2015), and also more general text categoriza-

tion tasks (Maier and Gómez-Rodríguez, 2014, e.g.). We build a character

language model for each label (i.e., We end up with seven models) from

the training set, treating tokens as sequences. We use the Kneser-Ney Lan-

guage Model (LM) implementation in Berkeley LM (Pauls and Klein, 2011)6,

choosing n = 5. We then obtain an LM score for each model and token. In

order to use the scores as discrete features, we bin7 the scores with bin sizes

10, 100, 500, and 1,000, and use the respective bin index as feature (lmi,

i ∈ {10, 100, 500, 1000}). Furthermore, we use an additional group argsort

of seven features in which the ith feature has the value i if label i has the

ith highest score. Note that since no morphological analyzer is available for

Moroccan Arabic is available, we cannot recur to the more sophisticated ap-

proach of AIDA (Al-Badrashiny, Elfardy, and Diab, 2015), in which character

LMs for prefixes and suffixes are used. In a first step, we perform five experi-

ments. First we add all argsort features to the previously winning combina-

tion (as non-combined features for the focus word); in each of the remaining

four, I add all features of one of the four lmi feature groups. The best overall

result for the LM features can be obtained by including all lm100 features

for the focus word and a window of three words around it. As a result, we

obtain improvements in all labels (except ambiguous) and a particularly large

improvement for lang3. This confirms our intuition from previous work that

the character LMs can compensate for the fact that lang3 is a heterogeneous

label (encompassing words from different languages), even though there is

6 https://code.google.com/p/berkeleylm/
7 Data binning or bucketing is a data pre-processing technique used to reduce the effects of

minor observation errors. The original data values which fall in a given small interval, a
bin, are replaced by a value representative of that interval, often the central value. https:
//en.wikipedia.org/wiki/Data_binning
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not much data to learn from. One might suppose that adding the LM fea-

tures for only lang3 and mixed would be enough; however, this is not the

case: The corresponding experiments turned out slightly worse. Generating

n-gram feature combinations and considering a window around the focus

word, as before, also did not lead to better results.

lexical knowledge In a last step, we add binary features which

model MSA and Darija lexical knowledge.

• The first feature msaList models the affinity of a certain token to MSA. It

is based on a list of 9.1m MSA tokens obtained from the spell-checking

model of (Attia et al., 2015), and is true for all tokens which have a

match in the list.

• Similarly, the second feature darijaList models the affinity to Darija.

We use a manually compiled list of 703 typical Darija terms and set the

feature true for all tokens which have a match in this list.

• A further feature darijaMorph is set to true if the token contains

components which are typical for Darija tokens. We set the feature to

true for all tokens which end with $, or which start with any of ha,

ky, gy, ty, by. Furthermore, it is set true for all mA tokens which are

followed by a token ending with $.

• In order to improve the recognition of named entities, we recur to a

gazetteer, namely ANERgazet (Benajiba and Rosso, 2008), and set the

corresponding feature ner to true for all tokens that match an entry in

the gazetteer. For our purpose, we do not distinguish between different

types of named entities, as available in ANERgazet. In contrast to El-

fardy, Al-Badrashiny, and Diab (2014b), we do not use the training set

from the 2014 EMNLP code-switching workshop shared task (Solorio
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et al., 2014b) due to the fact that we found a high number false positives

in the annotation.

5.5.2 A Deep Neural Network Model

5.5.2.1 System Architecture

In this subsection, we provide a brief description of the different components

of our deep neural code-switching detection model. The architecture of our

system, shown in Figure 5.1, bears resemblance to the models introduced by

Huang, Xu, and Yu (2015), Ma and Hovy (2016), and Collobert et al. (2011)

among others.

Figure 5.1: Code-switching detection architecture.

Our proposed neural network architecture consists of the following three

layers:
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• Input layer: comprises both character and word embeddings.

• Hidden layer: two bidirectional LSTMs map both words and character

representations to hidden sequences.

• Output layer: a Softmax computes the probability distribution over all

labels.

word embeddings Another crucial component of our model is the

use of pre-trained vectors. The basic assumption is that words from different

languages (or language varieties) may appear in different contexts, so that

word embeddings learned from a large multilingual corpus should provide

an accurate separation between the languages or dialects at hand. Following

Collobert et al. (2011), we use pre-trained word embeddings for Moroccan

Arabic to initialize our look-up table. Words with no pre-trained embeddings

are randomly initialized with uniformly sampled embeddings. To use these

embeddings in our model, we simply replace the one hot encoding word

representation with its corresponding 300-dimensional vector. For Moroccan

Arabic, we trained different word embeddings using Word2Vec8 (Mikolov et

al., 2013) from a corpus of total size of 166,206,215 words, consisting of user

comments on the news, and MSA texts of news articles. For more details

about the data statistics, see Table 5.2.

Genre Tokens

Moroccan News comments 20,241,480
MSA news texts 145,965,735

Total 166,206,215

Table 5.2: character embeddings training data statistics

8 https://code.google.com/archive/p/word2vec/
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character embeddings A very important element of the recent suc-

cess of many NLP applications is the use of character-level representations in

deep neural networks. This has shown to be effective for numerous NLP tasks

(Collobert et al., 2011; Santos et al., 2015) as it can capture word morphology

and reduce out-of-vocabulary problems. This approach has also been espe-

cially useful for handling languages with rich morphology and large char-

acter sets (Kim et al., 2016). We find this important for our code-switching

detection model particularly for words that are not written in the Arabic

script; they have different orthographic sequences which are learned during

the training phase.

5.5.2.2 Parameterization and Training

At the input layer a look-up table is randomly initialized mapping each

word in the input to d-dimensional vectors of sequences of characters and

sequences of words. At the hidden layer, the output from both character and

word embeddings is used as the input to two LSTM layers to obtain fixed-

dimensional representations for characters and words. At the output layer

a softmax is applied over the hidden representation of the two LSTMs to ob-

tain the probability distribution over all labels. The model is trained using

Stochatic Gradient Descent (SGD) with momentum, optimizing the cross en-

tropy objective function.

parameter initialization For the word embeddings, we use our

pre-trained Word2Vec 300-dimensional embeddings. We also use randomly

initialised embeddings that are uniformly sampled from range [−
√

3
d ,+

√
3
d ]

where d = 300 is the embedding dimension 9. Character embeddings are also

9 We conducted side experiments without word pre-trained embeddings and the results were
very low
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initialized with uniformly sampled embeddings from range [−
√

3
d ,+

√
3
d ]

proven where d = 50.

regularisation Due to the relatively small size of the training and

the development data sets, overfitting poses a considerable challenge for our

code-switching detection system. To make sure that our model learns signif-

icant representations, we resort to dropout (Hinton et al., 2012) to mitigate

overfitting. The basic idea of dropout consists in randomly omitting a cer-

tain percentage of the neurons in each hidden layer for each presentation of

the samples during training. This encourages each neuron to depend less on

other neurons to detect code-switching patterns. We apply dropout masks

to both embedding layers before inputting to the two BiLSTMs and to their

output vectors as shown in Fig. 5.1. In our experiments we find that dropout

decreases overfitting and improves the overall performance of the system.

We also employ early stopping (Caruana, Lawrence, and Giles, 2000; Graves,

Mohamed, and Hinton, 2013) by monitoring the model’s performance on the

development set.

hyper-parameters tuning We tuned our hyper-parameters on the

development dataset by using random search. Table 5.3 provides a summary

of the hyper-parameters we use in all our experiments. Even though this

list of parameters is not exhaustive, it dramatically influences the network’s

accuracy.

5.6 results and experiments

We experimented with a variety of system architectures ranging from sim-

ple linear graphical models with hand-crafted features (Section 5.5.1) all
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Layer Hyper-Parameters Value

Characters Bi-LSTM
state size 100
initial state 0.0

Words Bi-LSTM
state size 400
initial state 0.0

Dropout dropoutrate 0.5

Characters embeddings embedding dimension 50

Words embedding embedding dimension 300

batch size 15
learning rate 0.01
decay rate 0.05

Table 5.3: Hyper-Parameters Tuning

the way to more complex deep learning models to identify the best sys-

tem. We compare the performance of our proposed model with three base-

line systems – CRF(feat.), a CRF with hand-crafted features; CharBLSTM, the

bi-directional characters LSTM, and WordBLSTM, the bi-directional words

LSTM. We run the WordBLSTM model using the same hyper-parameters

as shown in Table 5.3 and the google’s Word2Vec 300 dimentional words

embedding. Table 5.4 shows the results of the different settings on the test

dataset. The CRF(feat.) obtains better performance than both CharBLSTM

and WordBLSTM. This shows that a CRF with carefully engineered features

can rival neural models. However, combining the character and word repre-

sentations learned by the CharWordBLSTM system with words embeddings

and then applying the Softmax as a sequence classifier gives the highest over-

all accuracy of 92.50 and significantly outperforms the other models on all

the evaluation metrics. This also shows the benefits of adding character rep-

resentations for linguistic sequence labelling tasks. It significantly improves

the F1-score for ne and lang3 tokens. This results are in line with results re-

ported by previous work (Al-Badrashiny and Diab, 2016; Samih et al., 2016).
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Labels CRF(feats) wordBLSTM(emb.) CharBLSTM CharWordBLSTM(emb.)

ambiguous 0.00 0.00 0.00 0.00
lang1 0.92 0.92 0.81 0.93
lang2 0.87 0.88 0.63 0.90
lang3 0.77 0.38 0.58 0.70
mixed 0.00 0.00 0.00 0.00
ne 0.91 0.78 0.79 0.85
other 0.99 0.99 0.99 0.99

Accuracy 91.40 90.25 77.39 92.5

Table 5.4: F1 score results on MSA-Moroccan test dataset. (feats = hand-crafted fea-
tures, emb. = word embeddings).

Unlike the CRF(feat.) our system, CharWordBLSTM, does not rely on any

kind of hand-crafted features or external resources to achieve good perfor-

mance. Table 5.4 shows the final results for the test dataset, the difference

between the CharWordBLSTM system and the CRF(feat.) system is 1.1% in

terms of token level accuracy. It consistently ranks first for code-switching

identification for the test dataset (1% and 3% above the CRF(feat.) system

for lang1 and lang2 respectively). However, it lags behind CRF(feat.), show-

ing weaker performance in identifying ne and lang3 labels. Nonetheless, the

overall results show that our system outperforms other systems with rela-

tively high margin.

5.7 analysis

5.7.1 What is Captured in Char-Word Representations?

In order to investigate what the char-word LSTM model is learning, we feed

the posts from the MSA-Moroccan development dataset to the system and

take the vectors formed by the concatenation of both character and word

representations. We then project them into 2D space by reducing the dimen-
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Figure 5.2: Projection of char-word LSTM representation into 2D using PCA.

sion of the vectors to 2 using Principle Component Analysis (PCA)10. We see

in Figure 5.2, that the trained neural network has learned to cluster the to-

kens according to their label type. Moreover, the position of tokens in 2D

space also revels that ambiguous and mixed tokens are in between lang1 and

lang2 clusters. Figure 5.2 shows generally successful separation of tokens,

with lang1 in blue on the left, lang2 in red on the right, and ne in green on

the top. The other token occupies the space between the clusters for lang1,

lang2 and ne with more inclination toward lang1.

10 A linear dimensionality reduction method which uses Singular Value Decomposition (SVD)
of the data in order to project it to a lower dimensional space.
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5.7.2 CRF Model

Table 5.5 shows the most likely and unlikely transitions learned by the

CRF(feat.) model for the Moroccan-MSA dataset. It is interesting to see that

the transition from lang1 to lang2 and from lang2 to lang1 are much likely

than lang1 to lang1 or lang2 to lang2. This suggests that people in this in-

formal setting switch from one language to another while communicating.

Most likely Score Most unlikely Score

lang1⇒ lang2 1.459 lang1⇒ mixed -0.154
ne⇒ ne 1.264 mixed⇒ lang1 -0.169
lang2⇒ lang1 1.193 amb⇒ other -0.242
lang3⇒ lang2 1.137 ne⇒ mixed -0.213
lang1⇒ lang3 1.099 mixed⇒ other -0.246
other⇒ other 0.827 amb⇒ lang1 -0.272
lang1⇒ ne 0.316 ne⇒ lang2 -0.364
other⇒ lang1 0.222 lang3⇒ ne -0.443
lang2⇒ mixed 0.216 lang1⇒ lang1 -0.840
lang1⇒ other 0.191 lang2⇒ lang2 -0.923

Table 5.5: Most likely and unlikely transitions learned by CRF(feat.) model for the
Moroccan-MSA dataset.

However, people writing in Darija have more tendency to use mixed tokens

than people writing in MSA. We also dumped the top features for the task and

found that the LM features are the top features to identify token as lang3.

Moreover, the token structural features are top features to identify tokens as

other. The features like char bigram, trigram, words, suffix, and prefix are the

top features to distinguish between MSA and Moroccan Arabic tokens.
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5.7.3 Error Analysis

When we conducted an error analysis on the output of the Arabic develop-

ment set for our system, we found the following mistagging types:

• Bad segmentation in the text affects the decision, e.g. ���I�:�� �$�
<
/ ��/ ���
:�

mkynA$Omgtkwn$ ’mkynA$ Omgtkwn$’.

• Abbreviations:
<
� ’A’ "Mr." and W ’m’ "eng." are not consistently treated

across the dataset.

• There are cases of true ambiguity, e.g. b/�� �� ’$bAT’, which can be a noun

"February" or a person’s name "$bAT".

• Clitic attachment can obscure tokens, e.g. /[c� . wbhA "and-bhA".

• Spelling errors can increase data sparsity, e.g. &!/]�
�� ! � AlbyTAlhp "Alb-

TAlp".

Table 5.7.3 provides different examples of gold CS instances predicted by

the CharWordBLSTM(emb.) model which the CRF(feat.) model failed to pre-

dict and vice versa. This shows that while the CRF(feat.) can only address

instances that are manually encoded as features, our proposed neural model

can efficiently cope with the noise and the diversity in the social media data.

Since it is challenging and time-consuming to design features to model all

the occurrences of code-switching, intrinsic flexibility of our neural model al-

lows it to better address variations in the spelling and morphology of words.

The CharWordBLSTM(emb.) is able to identify many named entities with-

out relying on explicit gazetteers. This probably can be attributed to the

model’s character embeddings learned during training and which can ef-

fectively cope with Out-Of-Vocabulary (OOV) words. Interestingly enough,
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CRF(feat.) is good at rarely occurring patterns or named entities that are in-

cluded in the gazetteers (e.g., .�� �+*
!��� , bwlyzArw). For example, the ne token

only occur in the test set, and unless the context gives a strong indication,

the CharWordBLSTM(emb.) cannot detect it, whereas the CRF could, as long

as it is included in the gazetteers.
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Labels CRF(feat.) CharWordBLSTM(emb.)

ambiguous � � � ����
�
� +*
 �� �)�
+ �C

B
E� /�

<
�� � �

...OmA Al|xryn gyr
|rwAs ...

�� $ �H!� G!. �d�
%$�� � �	 
��
� �+: ��

Hsntm tElyq wld Al$Eb
$krA.

lang1 ��� � 
�� &e! � �)� �� %]���
��/�� / ��! /�
�  %>^ � �-./��
� X2%0 �A�/ �	 �H!� 4.�/� J


�	f�
knTlb mn Allh Ez w jl
AEAwn Almlk dyAlnA
bA$ ASfy hAdwk
Al$fArp klhm.

�)��gS� �f/ �= �)�
 ��� / ���� ��
� �� ��� � ���� / ���� ��

$whnA Azyn xASw Asjn
$whnA AmAm AlEAlm.

lang2 .� �-.+8�S/h �Y
! �)�
 ��.�� � �
� 
���� � +�
 ��. i�	 �, �):! F
 /

����
...Awzyn lys TA$rwn Aw
bnAy lkn fqT wzyr w
bAz.

� 
���� �� j �;1<�/$! � ;� � �+C
<
�

� ��� 
��
���
OHzAb AlEA}lAt mA
EmrnA mAnTfrwh!

lang3 
��� ��� � � �&%�� /�, �&3� �
�Y ��! � . � � �
� � � �A./ �	C "Q�� +<� � �+��D7� �/�
�

... w Alntyjp qAblp Al-
bATrwn dyAl AljzA}r
bkl HfAwp...

!"#$ � k �)�
+8l>^ � ���, 'M�
%�&�� 
'& ()� *�+,-� *�./

� 0� 1� ���)�
... ElY qwl AlmSryn:
AsmE klAmk ASdqk
A$wf Amwrk AstEjb.

mixed
�&$��� �&�
�2C� �2��3� ���3,�3 
+ � � �
�)� /�� +8 �m '
(

�9%0 �;/2C�
� �+ �*]!� . �/�
��D7�

... fydyrAlyAt jhwyp
mwsEp jhAt kl$y DrbA
mn AlxyAl w AlTnz.

'M� 43 �

+&5�3 ' �(C ng�S+�*�


� � � . �� <� �+8�l! � �)� &��.+��
...ytr$H HtY ykwfry ElY
trwvh mn AlDrA}

ne /[\
�, �)%$�
! �&f+ �, /�
� F
 G�
��� 
�63�&�� �/�� ����� 'M� ;� + �$�

� �&�
�� /���<
�&�/=�

hdy hyA frSp lyEln fyhA
mgrb ElY bwzbAl bw-
lyzArw jmAEp IrhAbyp.

G��� '
(
�S�/� ��I� + �$��H�Y�

. �A+ �	 �� F
 �/� 7��� 
�63�&��
� G�
 �� . ;� /��E�

mtstgrb$ hAd$y End bw-
lyzbAl EAdy $frp w
AlArhAb w zyd.

Table 5.6: Examples of correctly detected CS instances (in bold) by the CRF(feat.) and
CharWordBLSTM(emb.) models for Moroccan code-switched corpus. the
examples in the CharWordBLSTM(emb.) column are only predicted by the
aforementioned neural model and not predicted by the CRF(feat.) model.
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5.8 concluding remarks

In this chapter we present our system for identifying and classifying code-

switched data for MSA-Moroccan Arabic. The system uses a neural network

architecture that relies on word-level and character-level representations. Our

system is language independent in the sense that we have not used any

language-specific knowledge or linguistic resources such as POS taggers,

morphological analyzers, gazetteers, or word lists to achieve good perfor-

mance.



6
D I A L E C TA L A R A B I C S E G M E N TAT I O N

This chapter also includes work that was published as Eldesouki et al. (2017)

and Samih et al. (2017a,b). I was responsible for the design of the neural

models presented in these three papers. I substantially contributed to the

implementation and testing of these models and in the development of the

segmentation algorithm1. Eldesouki Mohamed was responsible for the imple-

mentation of the SVM models. The other authors contributed to these papers

primarily in an advisory role.

6.1 introduction

Segmenting Arabic words into their constituent morphological parts is im-

portant for a variety of applications such as machine translation, parsing

and information retrieval. Though much work has focused on segmenting

Modern Standard Arabic (MSA), recent work has begun to examine morpho-

logical segmentation in some Arabic dialects.This so-called "Dialectal seg-

mentation" is becoming increasingly important due to the ubiquity of social

media, where users typically write in their own dialects as opposed to MSA.

Dialectal text poses interesting challenges such as lack of spelling standards,

pervasiveness of word merging, letter substitution or deletion, and foreign

word borrowing. Existing work on dialectal segmentation focused on build-

ing resources and tools for each dialect separately (Habash et al., 2013; Pasha

1 https://github.com/qcri/dialectal_arabic_tools

75
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et al., 2014b; Samih et al., 2017a). The rationale for the separation is that dif-

ferent dialects have different affixes, make different lexical choices, and are

influenced by different foreign languages. However, performing reliable di-

alect identification to properly route text to the appropriate segmenter may

be problematic, because conventional dialectal identification can lead to re-

sults that are lower than 90% in accuracy (Darwish, Sajjad, and Mubarak,

2014). Thus, building a segmenter that performs reliably across multiple di-

alects without the need for dialect identification is desirable. In this chapter

we examine the effectiveness of using a segmenter built for one dialect in seg-

menting other dialects. Next, we explore combining training data for differ-

ent dialects in building a joint segmentation model for all dialects. We show

that the joint segmentation model matches or outperforms dialect-specific

segmentation models. For this work, we use training data in four different

dialects, namely Egyptian Arabic (EGY), Levantine Arabic (LEV), Gulf Ara-

bic (GLF), and Maghrebi Arabic (MGR). We utilize two methods for segmen-

tation. The first poses segmentation as a ranking problem, where we use

an Support Vector Machine (SVM) ranker which is described in Appendix B.

The second poses the problem as a sequence-labeling problem, where we

use a Bidirectional Long Short-Term Memory (BiLSTM) Recurrent Neural Net-

work (RNN) that is coupled with Conditional Random Field (CRF), also intro-

duced in Appendix B, sequence labeler.

6.2 related work

Work on dialectal Arabic is fairly recent compared to that on MSA. A number

of research projects were devoted to dialect identification (Biadsy, Hirschberg,

and Habash, 2009; Eldesouki et al., 2016; Zaidan and Callison-Burch, 2014;

Zbib et al., 2012). There are five major dialects including Egyptian, Gulf,
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Iraqi, Levantine and Maghrebi. Only a few resources for these dialects are

available such as the CALLHOME Egyptian Arabic Transcripts (LDC97T19),

which was made available for research as early as 1997. Newly developed

resources include the corpus developed by Bouamor, Habash, and Oflazer

(2014), which contains 2,000 parallel sentences in multiple dialects and MSA

as well as English translations. These sentences were translated by native

speakers into the target dialects from an original dialect, Egyptian.

For segmentation, Mohamed, Mohit, and Oflazer (2012) built a segmenter

based on memory-based learning. The segmenter has been trained on a

small corpus of Egyptian Arabic comprising 320 comments containing 20,022

words from www.masrawy.com that were segmented and annotated by two

native speakers. They reported 91.90% accuracy on the segmentation task.

MADA-ARZ (Habash et al., 2013) is an Egyptian Arabic extension of the

Morphological Analysis and Disambiguation of Arabic (MADA) tool. The au-

thors trained and evaluated their system on both the Penn Arabic Treebank

(PATB) (parts 1-3) and the Egyptian Arabic Treebank (parts 1-5) (Maamouri

et al., 2014) and they achieved 97.5% accuracy. MADAMIRA2 (Pasha et al.,

2014b) is a new version of MADA that includes the functionality for ana-

lyzing dialectal Egyptian. Monroe, Green, and Manning (2014) used a single

dialect-independent model for segmenting Egyptian dialect in addition to

MSA. They argue that their segmenter is better than other segmenters that

use sophisticated linguistic analysis. They evaluated their model on three cor-

pora, namely parts 1-3 of the Penn Arabic Treebank (PATB), the Broadcast

News Arabic Treebank (BN), and parts 1-8 of the BOLT Phase 1 Egyptian

Arabic Treebank (ARZ) reporting an F1 score of 92.1%.

2 MADAMIRA release 20160516 2.1
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6.3 segmentation datasets

We used datasets3 for four dialects, namely EGY, LEV, GLF, and MGR which

are described in Section 4.3. Each dataset consists of a set of 350 manually

segmented tweets. Table 6.1 shows segmented examples from different di-

alects.

Word Gloss Segmentation Dialect

 !��	�
�� “byqwlk” Is telling you  �!��	�
���
“b+yqwl+k”

EGY

'
��
�7
. “wyjy” And he comes J
 ���

�7
� . “w+yj+y” GLF

�+�� “brd” I’ll return �+��� “b+rd” LEV

X2�/ �	 ���� �$� “mgtnfAEhm” It will not bene-
fit them

X2��/ �	 ����� �$��
“m+g+tnfAE+hm”

MGR

Table 6.1: Dialect annotation example

6.4 arabic dialects

6.4.1 Similarities Between Dialects

There are some interesting observations about the similar behavior of differ-

ent Arabic dialects (particularly those in our dataset) when they diverge from

MSA. These observations show that Arabic dialects do not just share com-

monalities with MSA, but they also share commonalities among themselves.

It seems that dialects share some built-in functionalities for generating words,

some of which may have been inherited from classical Arabic, where some

3 Datasets are available at http://alt.qcri.org/resources/da_resources/
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of these functionalities are absent or much less prominent in MSA. Some of

these commonalities include:

• Dialects have eliminated case endings.

• Dialects introduce a progressive particle, e.g. ���	�
��� ’b+yqwl’ (EGY),

���	�
�� ’Em+yqwl’ LEV, ���	�
�� ’k+yqwl’ MGR, and ���	�
� � ’d+yqwl’

IRQ for ’he says’. This does not exist in MSA.

• Some dialects use a post-negative particle, e.g. ����� ���
�� "m+yHb+$"

’does not like’ (EGY, LEV, and MGR). This also does not exist in either

MSA or GLF.

• Dialects have future particles that are different from MSA, such as �
"H" (LEV), �� "h" EGY, and

�� "g" MGR. Similar to the MSA future par-

ticle � "s" that may have resulted from shortening the particle
����

"swf" and then using the shortened version as a prefix, dialectal future

particles may have arisen using a similar process, where the Levantine

future particle "H" is a shortened version of the word ��� "rAH" ’he

will’ (Jarad, 2014b; Persson, 2008b).

• Dialects routinely employ word merging, particularly when two iden-

tical letters appear consecutively. In MSA, this is mostly restricted to

the case of the preposition � "l" (to) when followed by the determiner

�� "Al" (the), where the "A" in the determiner is silent. This is far more

common in dialects as in  ! "#$�
 "yEml lk" (he does for you) ⇒  %#$�

"yEmlk".

• Dialects often lengthen or shorten vowels (vowel elongation and re-

duction). This phenomenon infrequently appears in poetry, particularly

classical Arabic poetry, but is quite common in dialects with the con-

version of &! "lh" (to him) to &�
! "lyh".
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• Dialects have mostly eliminated dual forms except with nouns, e.g. '

�(�
�

“Eyny” (my two eyes) and �)*
 ��+�, “qr$yn” (two piasters). Consequently

dual agreement markers on adjectives, relative pronouns, demonstra-

tive adjectives, and verbs have largely disappeared. Likewise, the mas-

culine nominative plural noun and verb suffix �-. "wn" has been largely

replaced with the accusative/genitive forms �)�
 "yn" and �. "wA", re-

spectively.

Phenomena that appear in multiple dialects, but not necessarily in MSA, pro-

vide an indication that segmented training data for one dialect may be use-

ful in segmenting other dialects. For example, fusion of particle or function

words into subsequent verbs or nouns (as in "swf yEml" ⇒ "syEml") appears

in very limited cases in MSA while it is common in dialects (ex. "rAH yEml"

⇒ "HyEml" or "hyEml"; "mA" "yEml" "$y" ⇒ "myEml$"; etc.). Similarly, fu-

sion of repeated letters or repeated letters with a silent letter in the middle as

in "l+Al+byt" ⇒ "llbyt" is nearly restricted in MSA to the case of the PREP l

followed by the DET Al. This is far more common in dialects as "yEml lk" ⇒
"yEmlk". Yet another phenomenon is the conversion of short vowels to long

vowels, which is virtually absent in MSA, but frequent in classical Arabic and

dialects as in "ly" ⇒ "lyA", as shown in Example (1). So in effect, MSA has

possibly lost some of the productive functionalities of Arabic, and dialects

have continued to make them.

(1) ��3� /��
<
� E '
��/

�� � �G� 4�/ �	� O '

�(%=� ��h �;

<
�� />^ '


�( ���� � ���	��
tqwl Abnty lmA rOt Twl rHlty , sfArk hA tArky lA ObA lyA

My daughter said when she witnessed my long travels, your travel is

leaving me without a father.
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6.4.2 Differences Between Dialects

In this section, we show some differences between dialects that cover surface

lexical and morphological features in light of our datasets. Deep lexical and

morphological analysis can be applied after POS-tagging of these datasets.

Differences can explain why some dialects are more difficult than others,

which dialects are closer to each other, and the possible effect of cross-dialect

training. The differences may also aid future work on dialect identification.

We start by comparing dialects with MSA to show how close a dialect is to

MSA. We randomly selected 300 words from each dialect, and we analyzed

them using the Buckwalter MSA morphological analyzer (BAMA) (Buckwal-

ter, 2004). Table 6.2 lists the percentage of words that were analyzed, analysis

precision, and analysis recall, which is the percentage of actual MSA words

that BAMA was able to analyze. Results show that BAMA was most suc-

cessful, in terms of coverage and precision, in analyzing GLF, while it faired

the worst on MGR, in terms of coverage, and the worst on LEV, in terms of

precision. Some dialectal words are incorrectly recognized as MSA by BAMA,

such as AG� “kdh” (like this), where BAMA analyzed it as “kd+h” (his toil).

It seems that GLF is the closest to MSA and MGR is the furthest away. It also

did not recognize some named-entities, like �& ���% ��+�� "br$lwnp" (Barcelona), so

a manual revision of all analyzed and non-analyzed words was performed.

Table 6.2 also shows the percentage of correctly analyzed words and un-

analyzed words for each dialect. It is noteworthy that LEV has the highest

percentage of analysis errors (24%) where a dialectal word like F
 G�� "bdy" (I

want) is incorrectly recognized as MSA, and MGR comes second with a 22%

analysis-error rate.



6.4 arabic dialects 82

Table 6.3 shows the overlap between unique words and all words for the

different dialect pairs in our datasets. As the table shows, EGY, LEV, and GLF

are closer together and MGR is further away from all of them.

Dialect Percent Analyzed Analysis Precision Analysis Recall

EGY 83 81 94
LEV 83 76 91
GLF 86 88 94
MGR 78 78 95

Table 6.2: Buckwalter analysis

Also, LEV is closer to both EGY and GLF than the last two to each other. We

can roughly say that:

• LEV is closer to both GLF and EGY than they are to each other

• MGR has the least overlap with any other dialect

We also looked at the common words between dialects to see if they had

different segmentations. Aside from two words, namely &�
! “lyh” (to him,

why) and &�
�� “byh” (with it, gentleman), that both appear in EGY and LEV,

all other common words have identical segmentations. This is welcome news

for the lookup scheme that we employ in which we use segmentations that

are seen in training directly during testing.

Dialect pairs Unique Overlap All Overlap

EGY-GLF 16.1% 41.6%
EGY-LEV 18.1% 43.3%

EGY-MGR 14.3% 36.7%
GLF-LEV 17.0% 41.4%

GLF-MGR 15.9% 37.8%
LEV-MGR 16.2% 38.5%

Table 6.3: Common words across dialects
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Figure 6.1: Distribution of segment count per word (percentages are overlaid on the
graph)

Table 6.4 and Figure 6.1 show the distribution of segment counts per word

for words in our datasets. We obtained the MSA segment counts from the

Arabic Penn Treebank (parts 1-3) (Maamouri et al., 2014). The figure shows

that dialectal words tend to have a similar distribution of word segment

counts and they generally have fewer segments than MSA. This may indicate

that dialects may have simpler segmentations than MSA, and cases where

words have 4 or more segments, such as �����!� /2���%�	�� "m+qlt+hA+l+w+$"

(I did not say it to him), are infrequent. It is clear from the table that words

having only one segment are more frequent in DA as opposed to MSA, and

this shows the general trend of simplification that DA follows. GLF has the

maximum number of words with only one segment (i.e. complete words

without internal segmentations), while MGR always has more words with

internal segmentations than other dialects, which indicates an increasing dif-

ficulty in segmenting its words. We found that the absolute majority of words
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have only one shape of segmentation regardless their contexts, and very few

words have more than one segmentation depending on surrounding contexts,

namely words &�
�� O &�
! “lyh, byh” (why, Bey), which can be also segmented as

&��
�� O &��
! “ly+h, by+h” (for him, in him).

Dialect 1seg% 2seg% 3seg% 4+seg%

MSA 44.36 37.60 16.36 1.68
EGY 53.10 34.73 10.05 2.13
LEV 50.47 36.10 11.63 1.80
GLF 51.63 37.00 10.42 0.95
MGR 53.15 35.16 9.98 1.71

Table 6.4: Number of segments for each dialect

Tables 6.5 and 6.6 respectively show the number of prefixes or suffixes, the

top 5 prefixes and suffixes (listed in descending order), and the unique pre-

fixes and suffixes for each dialect in comparison to MSA. As the tables show,

MGR has the greatest number of prefixes, while GLF has the most suffixes.

Dialect No. Top 5 Unique

MSA 8 Al,w,l,b,f >, s
EGY 11 Al,b,w,m,h hA, fA
LEV 11 Al,b,w,l,E Em
GLF 14 Al,w,b,l,mA mw,mb,$
MGR 19 Al,w,l,b,mA kA,t,tA,g

Table 6.5: Prefixes statistics

Further, there are certain prefixes and suffixes that are unique to dialects.

While the prefix “Al” (the) leads the list of prefixes for all dialects, the prefix

;� “b” in LEV and EGY, where it is either a progressive particle or a prepo-

sition, is used more frequently than in MSA, where it is used strictly as a

preposition. Similarly, the suffix �)� “kn” (your) is more frequent in LEV than

any other dialect. The negation suffix �� “$” (not) and feminine suffix marker
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'
� “ky” (your) are used in EGY, LEV, and MGR, but not in GLF or MSA. The

appearance of certain affixes in some dialects and their absence in others

may complicate cross dialect training, and the varying frequencies of affixes

across dialects may complicate joint training.

Dialect No. Top 5 Unique

MSA 23 p,At,A,h,hA hmA
EGY 24 h,p,k,$,hA Y,kwA,nY,kY
LEV 27 p,k,y,h,w -
GLF 30 h,k,y,p,t j
MGR 24 p,w,y,k,hA Aw

Table 6.6: Suffixes statistics

6.5 learning algorithms

We present here two different systems for word segmentation. The first uses

SVM-based ranking (SVMRank)4 to rank different possible segmentations for

a word using a variety of features. The second uses bi-LSTM-CRF, which per-

forms character-based sequence-to-sequence mapping to predict word seg-

mentation.

6.5.1 SVMRank Approach

We used the SVM-based ranking approach proposed by Abdelali et al. (2016),

in which they used SVM based ranking to ascertain the best segmentation for

Modern Standard Arabic (MSA), which they show to be fast and of high accu-

racy. The approach involves generating all possible segmentations of a word

4 https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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and then ranking them. The possible segmentations are generated based on

possible prefixes and suffixes that are observed during training. For exam-

ple, if hypothetically we only had the prefixes . "w" (and) and � "l" (to) and

the suffix �� "h" (his), the possible segmentations of AG�
!. "wlydh" (his new

born) would be {wlydh, w+lydh, w+l+ydh, w+l+yd+h, w+lyd+h, wlyd+h}

with "wlyd+h" being the correct segmentation. SVMRank would attempt to

rank the correct segmentation higher than all others. To train SVMRank, we

use the following features:

• conditional probability that a leading character sequence is a prefix.

• conditional probability that a trailing character sequence is a suffix.

• probability of the prefix given the suffix.

• probability of the suffix given the prefix.

• unigram probability of the stem.

• unigram probability of the stem with first suffix.

• whether a valid stem template can be obtained from the stem, where

we used Farasa (Abdelali et al., 2016) to guess the stem template.

• whether the stem that has no trailing suffixes and appears in a gazetteer

of person and location names (Abdelali et al., 2016).

• whether the stem is a function word, such as 'M� “ElY” (on) and �)�
“mn” (from).

• whether the stem appears in the AraComLex5 Arabic lexicon (Attia

et al., 2011) or in the Buckwalter lexicon (Buckwalter, 2004). This is

sensible considering the large overlap between MSA and DA.

5 http://sourceforge.net/projects/aracomlex/
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• length difference from the average stem length.

The segmentations with their corresponding features are then passed to

the SVM ranker (Joachims, 2006) for training. Our SVMRank uses a linear

kernel and a trade-off parameter between training error and margin of 100.

All segmentations are ranked out of context. Though some words may have

multiple valid segmentations in different contexts, previous work on MSA has

shown that it holds for 99% of the cases (Abdelali et al., 2016). This assump-

tion allows us to improve segmentation results by looking up segmentations

that were observed in the dialectal training sets (DA) or segmentations from

the training sets with a back off to segmentation in a large segmented MSA

corpus, namely parts 1, 2, and 3 of the Arabic Penn Treebank (Maamouri

et al., 2014) (DA+MSA).

6.5.2 Bi-LSTM-CRF Approach

In this subsection we describe our DA segmentation model, shown in Figure

6.2. It is a simple variant of the bi-LSTM-CRF architecture first proposed by

Huang, Xu, and Yu (2015), Lample et al. (2016), and Ma and Hovy (2016)

among othes. The system is composed of three layers:

• Input layer: it contains character embeddings.

• Hidden layer: A BiLSTM encodes variable length input to a fixed-length

vector.

• Output layer: a CRF computes the probability distribution over all la-

bels.

character embeddings Character embeddings, as described in Sub-

section 5.5.2, have recently been proven to be an invaluable resource for many
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NLP tasks. Several character aware models have been proposed to overcome

some drawbacks of word embeddings (unknown words can not be properly

treated) (Collobert et al., 2011; Gillick et al., 2016; Kim et al., 2016; Santos

et al., 2015). In these models morphology is computed form the characters of

words.

Figure 6.2: Architecture of our proposed neural network Arabic segmentation model
applied to an example word. Here the model takes the word qlbh, “his
heart” as its current input and predicts its correct segmentation. The first
layer performs a look up of the characters embedding and stacks them to
build a matrix. This latter is then used as the input to the BiLSTM. On the
last layer, an affine transformation function followed by a CRF computes
the probability distribution over all labels

crf In many sequence-labeling tasks BiLSTMs achieve very competitive

results against traditional models, however when they are used for some spe-

cific sequence classification tasks, such as segmentation and named-entity de-
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tection, where there is a strict dependence between the output labels, they fail

to generalize perfectly. During the training phase of the BiLSTM networks, the

resulting probability distribution of each time step is independent from each

other. To overcome this independence assumption imposed by the BiLSTM

and to exploit this kind of labeling constraints in our Arabic segmentation

system, we model label sequence logic using CRF (Lafferty, McCallum, and

Pereira, 2001)

6.5.2.1 DA segmentation Model

The concept we followed in bi-LSTM-CRF sequence-labeling is that segmen-

tation is a one-to-one mapping at the character level where each character

is annotated as either beginning a segment (B), continues a previous seg-

ment (M), ends a segment (E), or is a segment by itself (S). After the la-

beling is complete we merge the characters and labels. For example, ��!��	�
��
“byqwlwA” (they say) is labeled as “SBMMEBE”, which means that the word

is segmented as b+yqwl+wA. The architecture of our segmentation model,

shown in Figure 6.2, is straightforward. At the input layer a look-up table is

initialized with random uniformly sampled embeddings mapping each char-

acter in the input to a d-dimensional vector. At the hidden layer, the output

from the character embeddings is used as the input to the BiLSTM layer to

obtain fixed-dimensional representations of characters. At the output layer, a

CRF is applied on the top of BiLSTM to jointly decode labels for the whole in-

put characters. Training is performed using Stochatic Gradient Descent (SGD)

descent with momentum 0.9 and batch size 50, optimizing the cross entropy

objective function.

optimization To mitigate overfitting, given the small amount of the

training data, we employ dropout (Hinton et al., 2012), which prevents co-
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adaptation of hidden units by randomly setting to zero a proportion of

the hidden units during training. We also employ early stopping (Caruana,

Lawrence, and Giles, 2000; Graves, Mohamed, and Hinton, 2013) by monitor-

ing the model’s performance on a development set.

hyper-parameters tuning Table 6.7 provides a summary of the

hyper-parameters we use in all our experiments. These hyper-parameters

are tuned on the development dataset.

Layer Hyper-Parameters Value

Characters BiLSTM
state size 150
initial state 0.0

Dropout dropoutrate 0.5

Characters embeddings embedding dimension 50

batch size 50
learning rate 0.01
decay rate 0.05

Table 6.7: Hyper-Parameters Tuning

6.6 experimental setup and results

Using the approaches described earlier, we perform several experiments,

serving two main objectives. First we want to see how closely related the

dialects are and whether we can use one dialect for the augmentation of

training data in another dialect. The second objective is to find out whether

we can build a one-fits-all model that does not need to know which specific

dialect it is dealing with.

In the first set of experiments shown in Table 6.8, we build segmentation

models for each dialect and test them on all the other dialects. We compare

this cross-dialect training and testing to training and testing on the same
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Test Set

Farasa 85.7 82.6 82.9 82.6

Training EGY LEV GLF MGR

SVM LSTM SVM LSTM SVM LSTM SVM LSTM

with no lookup

EGY 91.0 93.8 87.7 87.1 86.5 85.8 81.3 82.5
LEV 85.2 85.5 87.8 91.0 85.5 85.7 83.42 80.0
GLF 85.7 85.0 86.4 86.9 87.7 89.4 82.6 81.6
MGR 85.0 78.6 85.7 78.8 84.5 78.4 84.7 87.1

with DA lookup

EGY 94.5 94.2 89.2 87.6 87.5 86.5 81.5 82.8
LEV 89.7 85.9 92.9 91.8 89.6 86.3 83.5 80.4
GLF 89.7 85.5 89.2 87.5 92.8 90.8 83.0 82.4
MGR 88.6 78.9 86.9 78.8 87.3 79.0 90.5 88.5

with DA+MSA lookup

EGY 94.6 95.0 90.5 89.2 88.8 88.3 83.5 89.2
LEV 90.1 87.5 93.3 93.0 89.7 87.8 84.3 82.4
GLF 90.3 87.3 89.6 88.6 93.1 91.9 84.1 84.8
MGR 88.6 81.2 88.1 80.3 88.1 80.7 91.2 90.1

Table 6.8: Cross dialect results.

dialect, where we use 5-fold cross-validation with 70/10/20 train/dev/test

splits. We also use the Farasa MSA segmenter as a baseline. We conduct the

experiments at three levels: pure system output (without lookup), with DA

lookup, and with DA+MSA lookup. By “lookup” we mean a post-processing

add-on step where we feed segmentation solutions in the test files directly

from the training data when a match is found. This is based on the assump-

tion that segmentation is a context-free problem and therefore the utilization

of observed data can be maximized. Using both algorithms (SVM and bi-

LSTM-CRF) the results show a general trend where EGY segmentation yields

better results from the LEV model than from the GLF’s. The GLF data bene-

fits more from the LEV model than from the EGY one. For the LEV data both

GLF and EGY models are equally good. MGR seems relatively distant in that
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Test Set

Lookup EGY LEV GLF MGR

SVM LSTM SVM LSTM SVM LSTM SVM LSTM

No lookup 91.4 94.1 89.8 92.4 88.8 91.7 83.82 89.1

DA 94.1 94.8 92.8 93.3 91.8 92.6 89.6 90.7

DA+MSA 94.3 95.3 93.0 93.9 92.2 93.1 90.0 91.4
Joint with restricted affixes

DA 94.5 - 92.8 - 91.9 - 89.7 -
DA+MSA 94.8 - 93.0 - 92.4 - 90.3 -

Table 6.9: Joint model results.

it does not contribute to or benefit from other dialects independently. This

shows a trend where dialects favor geographical proximity. In the case with

no lookup, bi-LSTM-CRF fairs better than SVM when training and testing is

done on the same dialect. However, the opposite is true when we train on

one dialect and test on another. This may indicate that the SVM-ranker has

better cross-dialect generalization than the bi-LSTM-CRF sequence labeler.

When lookup is used, SVM yields better results across the board except in

three cases, namely when training and testing on Egyptian with DA+MSA

lookup, when training with Egyptian and testing on MGR, and when train-

ing with GLF and testing on MGR with DA+MSA lookup. Lastly, the best SVM

cross-dialect results with lookup consistently beat the Farasa MSA baseline

often by several percentage points for every dialect. The same is true for bi-

LSTM-CRF when training with relatively related dialects (EGY, LEV, and GLF),

but the performance decreases in the case of training or testing using MGR.

In the second set of experiments, we wanted to see whether we can train

a unified segmenter that would segment all the dialects in our datasets. For

the results shown in Table 6.9, we also used 5-fold cross-validation (with

the same splits generated earlier) where we trained on the combined train-

ing splits from all dialects and tested on all the test splits with no lookup,

DA lookup, and MSA+DA lookup. We refer to these models as “joint” mod-
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els. Using SVM, the accuracy of the combined model drops by 0.3% to 1.3%

compared to exclusively using matching dialectal training data. We also con-

ducted another SVM experiment in which we use the joint model in con-

junction with a dialect identification oracle to restrict possible affixes only to

those that are possible for that dialect (last two row in Table 6.9). The results

show improvements for all dialects, but aside for EGY, the improvements do

not lead to better results than those for single dialect models. Conversely,

the bi-LSTM-CRF joint model with DA+MSA lookup beats every other exper-

imental setup that we tested, leading to the best segmentation results for

all dialects, without doing dialect identification. This may indicate that bi-

LSTM-CRF benefited from cross-dialect data in improving segmentation for

individual dialects.

6.7 conclusion

This chapter presents (to the best of our knowledge) the first computational

comparative study between closely related languages with regard to their

automatic segmentation. Arabic dialects diverged from a single origin, yet

they maintained pan-dialectal common features which allow them to cross-

fertilize. Our results show that a single joint segmentation model, based on

bi-LSTM-CRF, can be developed for a group of dialects and this model yields

results that are comparable to, or even superior to, the performance of sin-

gle dialect-specific models. Our results also show that there is a degree of

closeness between dialects that is contingent with the geographical proxim-

ity. For example, we statistically show that Gulf is closer to Levantine than to

Egyptian, and similarly Levantine is closer to Egyptian than to Gulf. Cross

dialect segmentation experiments also show that Maghrebi is equally distant

from the other three regional dialects. This sheds some light on the degree of
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mutual intelligibility between the speakers of Arabic dialects, assuming that

the level of success in inter-dialectal segmentation can be an indicator of how

well speakers of the respective dialects can understand each other.



7
C O N C L U S I O N A N D F U T U R E W O R K

7.1 summary

This dissertation has presented several major contributions to the applica-

tions of neural network models to the Natural Language Processing (NLP) of

Dialectal Arabic (DA) used in Social Media platforms. Chapter 1 and Chapter

3 motivate the use of DNNs as highly efective techniques for processing DA

in Social Media. Chapter 4 presents two manually annotated corpora:

• The Moroccan Arabic Darija code-switching corpus

• The Twitter multi-dialectal Arabic segmentation corpus

The Moroccan Arabic Darija code-switching corpus is a corpus targeted at train-

ing and evaluating code-switching identification models that is by far the

largest of its kind. It will be of use for supporting research in the linguistics

and NLP and will constitute an ideal data source for DA processing. Simi-

larly, the Twitter multi-dialectal Arabic segmentation corpus is a corpus collected

from Twitter with token-level annotations. It is well suited for the training

and evaluation of low-bias machine learning models like DNNs and will con-

stitute a major benchmark for research in automatic DA morphological seg-

mentation. Chapters 5 and 6 show that existing Deep Neural Network (DNN)

architectures are capable of processing DA despite its pervasive nature. In

two challenging tasks, namely morphological segmentation and CS identifi-
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cation, DNNs have been shown to generalize well on unseen data and to deal

with outlying, missing, unstructured, and noisy data.

7.2 future work

Chapters 5 and 6 have demonstrated that DNN models are effective at process-

ing DA textual data in Social Media. They can assist with specific problems

related to learning from large amounts of unsupervised DA data and they

have the ability to learn data representations (features) in a greedy layer-wise

fashion (Bengio et al., 2007). However there are many difficult questions that

remain about the the nature of these representations and there is more work

to do to better understand them:

• Do these representations correspond in any interpretable way to lin-

guistically motivated representations typically used in theoretical lin-

guistics?

• What are the criteria that make one representation better than another?

Unfortunately, no theory of computational linguistics or formal linguistics

has given any clear insights on these longer-term questions yet. Since produc-

ing substantial human-interpretable results remains elusive, it is imperative

to direct research to building tools for neural network analysis and visuali-

sation. This will definitely enhance our understanding about the structure of

these representations.
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A P P E N D I X



A
S AW T

a.1 introduction

Within a project concerned with the processing of code-switched data of

an under-resourced Arabic dialect, Moroccan Darija, a large code-switched

corpus had to be annotated token-wise with the extended label set from

the EMNLP 2014 Shared Task on Code-Switching (Samih and Maier, 2016a;

Solorio et al., 2014b). The label set contains three labels that mark MSA and

DA tokens, as well as tokens in another language (English, French, Spanish,

Berber). Furthermore, it contains labels for tokens which mix two languages

(e.g., for French words to which Arabic morphology is applied), for ambigu-

ous words, for Named Entities, and for remaining material (such as punctu-

ation).

The annotation software tool had to fulfill the following requirements.

• It should excel at sequence annotation and not do anything else, i.e.,

"featuritis" should be avoided, furthermore it should be as simple as

possible to use for the annotators, allowing for a high annotation speed;

• It should not be bound to a particular label set, since within the project,

not only code-switching annotation, but also the annotation of Part-of-

Speech was envisaged;

• It should allow for post-editing of tokenization during the annotation;

98
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• It should be web-based, due to the annotators being at different physi-

cal locations;

• On client side, it should be platform-independent and run in modern

browsers including browsers on mobile devices, using modern tech-

nologies such as Bootstrap1 which provide a responsive design, with-

out requiring a local installation of software;

• On server side, there should be safe storage; furthermore, the admin-

istration overhead should be kept minimal and there should only be

minimal software requirements for the server side.

Even though several annotation interfaces for similar tasks have been pre-

sented, such as COLANN (Benajiba and Diab, 2010), COLABA (Diab et al.,

2010b)DIWAN (Al-Shargi and Rambow, 2015), they were either not available

or did not match our needs.

We therefore built SAWT. SAWT has been successfully used to create

a code-switched corpus of 223k tokens with three annotators (Samih and

Maier, 2016a). It is currently used for Part-of-Speech annotation of Moroccan

Arabic dialect data. The remainder of this chapter is structured as follows. In

section A.2 we present the different aspects of SWAT, namely, its data storage

model, its server side structure and its client side structure. In section A.3,

we review related work, and in section A.4, we conclude the chapter.

a.2 sawt

SAWT is a web application. Its client side is machine and platform inde-

pendent and runs in any modern browser. On the server side, only a PHP-

1 http://getbootstrap.com
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enabled web server (ideally Apache HTTP server) and a MySQL database

instance are needed.

We now describe our strategy for data storage, as well as the server side

and the client side of SAWT.

a.2.1 Data Storage

Data storage relies on a MySQL database. One table in the database is used

to store the annotator accounts. At present, there is no separate admin role,

all users are annotators and cannot see or modify what the other annotators

are doing.

The annotation of a text with a label set by a given user requires two

MySQL tables. One table contains the actual text which is to be annotated

by the user, and the other table receives the annotation; this table pair is

associated with the user account which is stored in the user table mentioned

above. In the first table, we store one document per row. We use the first

column for a unique ID; the text is put in the second column. It is white-

space tokenized at the moment it is loaded into the annotation interface (see

below). In the second table, we store the annotation. Again, the document ID

is put into the first column. The labels are stored in the remaining columns

(one column per label).

a.2.2 Server Side and Administration

The complete code of SAWT will be distributed on github. The distribution

will contain the complete web application code, as well as two Python scripts

to be used for configuration.
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The first script configures the SAWT installation and the database. It takes

a configuration file as parameter (the distribution will contain a configuration

file template), in which the following parameters must be specified:

• List of tags: A space-separated list of tags to be used in the annotation.

From this list, the PHP code for the model and the view are generated

which handle the final form in the interface. The generated code is then

copied to the correct locations within the complete web application

code.

• Server information: MySQL server IP, port and user account information.

• Predictor: The interface can show suggestions for each token, provided

that a suitable sequence labeling software with a pre-trained model

runs on the web server. If suggestions are desired, then in the config-

uration file, the corresponding path and parameters for the software

must be given. If the parameter is left blank, no suggestions are shown.

• Search box activation: A boolean parameter indicating if a search box

is desired. In the search box, the annotator can look up his previous

annotations for a certain token.

• Utility links: The top border of the user interface consists of a link bar,

the links for which can be freely configured. In our project, e.g., they

are used for linking to the list of Universal POS tags (Petrov, Das, and

McDonald, 2012), to a list of Arabic function words, to an Arabic Mor-

phological Analyzer (MADAMIRA) (Pasha et al., 2014a), and to an Ara-

bic screen keyboard, as can be seen in figures A.2 and A.3.

Once the configuration script has been run, the web application code must

be copied to a suitable place within a web server installation.
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In order to upload a text which is to be annotated by a certain user, the

second script must be used. It takes the following command line parameters.

• Input data: The name of the file containing the data to be annotated. The

text must be pre-tokenized (one space between each token), and there

must be one document per line.

• Server information: MySQL server IP, port, and user account informa-

tion.

• Annotator information: Annotator user name. If the annotator account

does not exist in the respective database table, it is created, and a pass-

word must be specified.

Of course, this script can be used any number of times. At runtime, it

will connect to the database and create two tables for the annotation (as

mentioned above, one for the data itself and one for the annotation). It will

insert the data in the first one, and insert the user account in the user account

table, if necessary.

In general, for security reasons, two different servers should be used for

front-end (web application) and back-end (database), but in principle, noth-

ing stands in the way of installing everything on a single machine or even

locally.

a.2.3 Client Side and Annotator Interface

The client side interface is written with several technologies. As a basis, we

have used a MVC PHP framework, namely CodeIgniter version 3.0.2 Fur-

thermore, in order to achieve a responsive mobile-ready design, we have

employed to the Bootstrap framework, HTML 5, and JQuery.3

2 http://codeigniter.net
3 http://jquery.com
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When accessing the URL where SAWT is located, the annotator is queried

its user name and password. After logging in, the annotation interface is

shown. On top of the page, a link bar makes available several tools which

are useful for the annotation, to be freely configured during installation (see

above). If configured (see above), a search box is shown, in which the anno-

tator can look up his previous annotations of a token. In a top line above the

text, the ID of the document is shown, the number of tokens to be annotated,

and the annotation progress, i.e., the number of tokens which have already

been annotated (in previous documents). Also it is shown if the current docu-

ment itself has already been annotated. Finally, there are buttons to navigate

within the documents (first, previous, next, last).

For the annotation, the interface pulls the first document to be annotated

from the database, applies white-space tokenization, and renders it for pre-

sentation to the user. The material to be annotated is presented with one

document per page and token per line. Each line has four columns, the first

one showing the absolute token ID within the complete corpus, the second

one showing the token to be annotated, the third one showing a prediction of

a possible tag (if configured), and the fourth one showing the possible labels.

There is an edit facility, in which the annotator can correct an erroneous to-

kenization of the document. If an edit is performed, the modified document

is white-space tokenized again and reloaded in the interface.

For label selection, we offer check-boxes. Even though radio buttons would

seem to be the more natural choice, check-boxes allow us to assign several

tags to a single token. This is, e.g., essential for Part-of-Speech annotation in

Arabic: Due to a rich morphology, a single word can incorporate several POS

functions (Habash, 2010) he user has finished the annotation of a document, a

button must be clicked. This button first triggers a validation function which

checks the annotation for completeness. If there are tokens which have not
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Figure A.1: Screenshot of SAWT: Annotation on Android device

been annotated, a colored alert bar is shown. Otherwise, a form is submit-

ted which saves the annotation in the database; then the next document is

loaded and rendered for annotation. We have implemented the policy that

an annotator cannot change the annotation of a document once it is submit-

ted. However, a minimal change in the code could allow a post-editing of the

annotation.

We have tested the interface extensively in Google Chrome (on both PC

and Android) and Mozilla Firefox.

As an example, figure A.2 shows a screenshot of the annotator interface

configured for Part-of-Speech annotation with the Google Universal Part-

of-Speech tag set (Petrov, Das, and McDonald, 2012). Figure A.3 shows a

screenshot of code-switching annotation done in the context of our earlier

work (Samih and Maier, 2016a). Finally, figure A.1 shows a screenshot of

the POS annotation interface used on the Asus Nexus 7 2013 tablet running

Google Chrome on Android 6.
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Figure A.2: Screenshot of SAWT: Annotation with Universal Part Of Speech tags

Figure A.3: Screenshot of SAWT: Annotation with code-switching labels
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a.3 related work

As mentioned above, we are not aware of a software which would have

fulfilled our needs exactly. Previously released annotation software can be

grouped into several categories.

Systems such as GATE Cunningham et al., 2002, CLaRK (Simov et al., 2003)

and MMAX2 (Müller and Strube, 2006) are desktop-based software. They

offer a large range of functions, and are in general oriented towards more

complex annotation tasks, such as syntactic treebank annotation.

In the context of Arabic dialect annotation, several systems have been cre-

ated. COLANN_GUI (Benajiba and Diab, 2010), which unfortunately was not

available to us, is a web application that specialized on dialect annotation.

DIWAN (Al-Shargi and Rambow, 2015) is a desktop application for dialect

annotation which can be used online.

The systems that came closest to our needs were WebANNO (Yimam et

al., 2013) and BRAT Stenetorp et al., 2012. Both are web-based and built with

modern technologies. They allow for a multi-layered annotation, including

a token-wise annotation. However, we decided against them due to fact that

we just needed the token-wise annotation and we wanted the simplest anno-

tator interface possible. For just sequence annotation, our annotator interface

allows for a very high speed, since only one click per token is required.

a.4 conclusion

We have presented SAWT, a web-based tool for sequence annotation. The

main priorities of the tool are ease of use on the client side and a low require-

ments for the server side.
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SAWT is under active development. We are currently simplifying the in-

stallation process on server side and plan to offer an admin role in the front-

end. Furthermore, we want to provide a way of obtaining the annotation in

a standardized format (TEI)4 directly from the database.

4 http://www.tei-c.org/index.xml



B
C O N D I T I O N A L R A N D O M F I E L D S

This chapter describes the basic framework needed for NLP tasks. It briefly

introduces Conditional Random Field (CRF).

b.1 conditional random fields

CRF, a sequence labeling algorithm, predicts labels for a whole sequence

rather than for the parts in isolation as shown in Equation B.1. Here, s1

to sm represent the labels of tokens x1 to xm respectively, where m is the

number of tokens in a given sequence. After we have this probability value

for every possible combination of labels, the actual sequence of labels for this

set of tokens will be the one with the highest probability.

p(s1 . . . sm|x1 . . . xm) (B.1)

p(�s|�x; �w) =
exp(�w.�Φ(�x,�s))

∑
�s ′εSm exp(�w.�Φ(�x,�s ′))

(B.2)

Equation B.2 shows the formula for calculating the probability value from

Equation B.1. Here, S is the set of labels. �w is the weight vector for weighting

the feature vector �Φ. Training and decoding are performed by the Viterbi

algorithm.
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B U C K WA LT E R A R A B I C T R A N S L I T E R AT I O N C H A RT

c.1 consonants

Buckwalter Glyph Buckwalter Glyph

’ R |
B
�

>
<
� & <.

< �< } <F
A � b ;�
p �A t �;
v �; j ��
H � x o
d � * ��
r � z ��
$ �� S p
D �p T b
Z �b E �
g

�� _ _

f
�� q �Z

k 4 l �
m W n �-
n �- h A
w . Y F
y F


Table C.1: Buckwalter Transliteration System
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