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Abstract

Ferrogels and magnetoelastomers are hybrid materials that combine the reversible de-
formability typical of polymeric elastomers with the responsiveness in the presence of
external magnetic fields characteristic of ferrofluids. They are often realized by embed-
ding mesoscopic (nano- to micrometer sized) ferro- or paramagnetic particles into a
crosslinked polymeric network.

The described procedure results in a “magnetomechanically” coupled material with
properties—e.g. strain, viscosity, or elastic moduli—controllable via magnetic interac-
tions. This is a consequence of the particles adjusting their positions and orientations
due to: i) field–particle interactions leading to rotations, ii) forces arising from magnetic
field gradients, or iii) magnetic interactions between the particles.

This dissertation is structured by two different measures. On the one hand, we start
from the coarse-grained microscopic scale and work ourselves via mesoscopic modeling
up to the macroscopic level. On the other hand, beginning with basic reduced minimal
models, we build our path towards increasing complexity describing the properties of
realistic many-particles experimental sample systems.

First, we “coarse-grain” the fast-evolving degrees of freedom of a single polymer chain
connecting two magnetic particles to obtain effective pair interactions between the par-
ticles. This represents a first basis step of our scale-bridging description.

Then, we increase the degree of complexity and study an exemplary problem of several
magnetic particles aligned into a chain-like structure and embedded in a soft elastic
gel. As has been demonstrated experimentally, such chains buckle in the presence of a
transversal magnetic field. We derive a coarse-grained, phenomenological description of
this effect. Via a variational method, we reproduce the buckled chains morphologies.

Finally, arrangements of many particles linked by linear springs to elastic networks
are studied to connect the particle-resolved description to the macroscopic scale. As a
first approximation, elastic and magnetic effects are represented, respectively, by har-
monic springs connecting the particles and dipole moments assigned to each of them.
These approximations for the elastic and magnetic components correspond to the linear
elasticity regime and to low-volume fractions of the embedded particles, respectively.

In the simplified case of 2D lattices, the central role played by nearest neighbors is de-
monstrated. Furthermore, we remark the importance of non-affine particle displacements
especially in disordered or finite-sized distributions. Moving on to 3D arrangements of
dipolar particles, we explicitly connect the normal modes of deformation of the system
to the overall elastic moduli. Particularly, we calculate the frequency-dependent elastic
moduli as a function of the magnetic interactions between the particles.

As a final step, the particle positions and volumes are taken as input from micrometer-
resolved experiments employing X-ray tomography. We set a fine network of springs to
represent the elastic matrix. The magnetic particles are attached to a small fraction
of the network nodes while other nodes serve to smoothen the elastic response of the
discretized network. Here, we investigate the effect of varying magnetization, frequency,
or volume fraction of magnetic particles on the overall strain behavior and elastic moduli.
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In summary, our discretized mesoscopic models serve to study the rearrangement of
magnetic particles in elastic environments as a function of the magnetic interactions
between them. Our simplified dipole–spring models are linked to both the micro- and
macroscale. On the latter level, they serve to analyze the adjustable static and dynamic
elastic moduli of magnetic gels and elastomers tuned by magnetic interactions also for
particle arrangements in real experimental samples.
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Zusammenfassung

Ferrogele und magnetorheologische Elastomere sind Hybridmaterialien, welche die typi-
schen Eigenschaften zweier komplexer Materialklassen miteinander verbinden. Einerseits
sind dies Elastomere, die sich durch ihre häufig sehr ausgeprägte reversible Deformierbar-
keit auszeichnen, andererseits Ferrofluide mit ihrer ausgeprägten Adressierbarkeit durch
externe Magnetfelder. Typischerweise werden derartige magnetische Gele und Elastome-
re durch Einbetten mesoskopischer (nano- bis mikrometergroßer) magnetischer Partikel
in ein chemisch vernetztes Polymernetzwerk hergestellt.

Dieses Verfahren führt zu einem
”
magnetomechanisch“ gekoppelten Material, dessen

Eigenschaften durch äußere Magnetfelder über magnetische Wechselwirkungen reversi-
bel gesteuert werden können. Beispiele für solche einstellbaren Eigenschaften sind die
Dehnung, Viskosität oder Elastizitätsmoduln. Dem liegt zugrunde, dass die Partikel ih-
re Positionen und Orientierungen durch i) Orientierungswechselwirkungen mit einem
äußeren Magnetfeld, ii) Kräfte, die durch Magnetfeldgradienten entstehen, oder iii) ma-
gnetische Wechselwirkungen zwischen den Partikeln ändern.

Die Gliederung dieser Dissertation zur Beschreibung solcher Effekte folgt zwei ver-
schiedenen Schemata. Einerseits gehen wir von einer

”
vergröberten“ mikroskopischen

Skala aus und arbeiten uns über die mesoskopische Modellierung bis zur makroskopi-
schen Ebene vor. Andererseits entwickeln wir die Komplexität der Beschreibung, indem
wir zunächst ein einfaches Zweiteilchensystem untersuchen und schließlich die Eigen-
schaften realistischer experimenteller Vielteilchensysteme beschreiben.

Auf der Mikroebene verfolgen wir dabei zunächst die sich schnell entwickelnden Frei-
heitsgrade einer einzelnen Polymerkette, die zwei magnetische Partikel verbindet. Aus
der resultierenden Statistik leiten wir auf der Mesoskala effektive Paarwechselwirkungen
zwischen den beiden Partikeln her. Dies ist ein erster Schritt zu unserer skalenübergrei-
fenden Beschreibung.

Im nächsten Schritt untersuchen wir auf der Mesoskala kettenartige Strukturen, die
jeweils aus mehreren solcher magnetischer Teilchen zusammengesetzt und in ein weiches
elastisches Gel eingebettet sind. Wie experimentell gezeigt wurde, krümmen sich sol-
che Ketten in Gegenwart eines transversalen Magnetfeldes in eine oszillatorische Form.
Unter Entwicklung einer phänomenologischen Beschreibung und mit Hilfe von Variati-
onsrechnung reproduzieren wir die Morphologien der gebogenen Ketten.

Schließlich werden Anordnungen vieler Teilchen, die durch elastische Federn zu elasti-
schen Netzwerken verbunden sind, untersucht. In erster Näherung verwenden wir harmo-
nische Federn und modellieren die magnetischen Beiträge der Partikel durch Dipolmo-
mente. Dadurch können Deformationen im Rahmen linearer Elastizität in Systemen mit
ausreichendem Abstand zwischen den Partikeln untersucht werden. Die Ergebnisse dieser
mesoskopischen, partikelaufgelösten Vielteilchenbeschreibung dienen zur Charakterisie-
rung von makroskopischen Eigenschaften als Funktion der mesoskopischen Struktur.

Im vereinfachten Fall zweidimensionaler Grundzustandspartikelanordnungen auf re-
gelmäßigen Gitterstrukturen tritt die zentrale Bedeutung der magnetischen Wechsel-
wirkung mit den nächsten Nachbarn für das makroskopische Gesamtverhalten hervor.
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Darüber hinaus weisen wir auf die Bedeutung nicht-affiner Partikelverschiebungen un-
ter aufgeprägter Deformation hin, insbesondere bei ungeordneten oder räumlich stark
begrenzten Verteilungen. Für dreidimensionale Partikelanordnungen verbinden wir ex-
plizit das Spektrum der Deformationsnormalmoden mit den Elastizitätsmoduln, welche
charakteristische aufgeprägte Deformationen des gesamten Systems beschreiben. Ins-
besondere berechnen wir die frequenzabhängigen dynamischen Elastizitätsmoduln als
Funktion der magnetischen Wechselwirkungen zwischen den Teilchen.

Schließlich analysieren wir das Verhalten von Systemen, welche wir aus experimen-
tell durch mikrometeraufgelöste Röntgentomographie ermittelten Partikelpositionen und
-volumina konstruieren. Hierzu ist eine feinere Struktur des elastischen Federnetzwerks
notwendig. Die magnetischen Partikel sind an einen Bruchteil der Knotenpunkte des
Netzwerks gebunden, während zusätzliche Knoten eingefügt werden, um eine homo-
gene Elastizität der umgebenden elastischen Matrix abzubilden. Wir bestimmen die
Auswirkungen variierender Magnetisierung, Frequenz und Volumenanteile magnetischer
Partikel auf die Gesamtdehnung unter Magnetisierung und auf die dynamischen Elasti-
zitätsmoduln.

Zusammengefasst dienen unsere diskretisierten mesoskopischen Modelle dazu, die Be-
deutung der mesoskopischen Partikelanordnung in magnetischen Gelen und Elastomeren
für deren Eigenschaften als Funktion der magnetischen Wechselwirkungen zu unter-
suchen. Dabei verknüpfen unsere vereinfachten Dipolfedermodelle Charakteristika der
Mikro- mit der Mesoskala und weiter die mesoskopischen Eigenschaften mit der Makro-
skala. Im letzteren Fall dienen sie insbesondere dazu, die reversibel anpassbaren Auswir-
kungen der durch äußere Magnetfelder induzierten magnetischen Wechselwirkungen auf
die statischen und dynamischen Elastizitätsmoduln zu analysieren. Dies gilt vor allem
auch für mesoskopische Partikelanordnungen aus realen experimentellen Proben bei der
Charakterisierung tatsächlicher Materialien.
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1 Introduction

1.1 Soft Matter, Polymers, and Magnetoelastomers

Soft matter physics studies systems the building blocks of which are larger than atoms
but smaller than macroscopic objects. In such cases and on those lengthscales usually
quantum effects are small and the classical treatment suffices. However, and differently
from the macroscopic level, other effects play a major role, e.g., thermal fluctuations,
viscous friction, many-body effects, or hydrodynamic interactions. Exemplary cases of
soft matter include colloids [1], liquid crystals, active systems [2], polymers [3], as well as
biological systems like DNA or blood. The typical lengthscale in soft matter is commonly
referred to as mesoscopic, coming from the ancient Greek μέσως, “middle”, because it
is intermediate between the micro- and the macroscopic.

One of the most prominent sub-branches of soft matter is the study of polymeric ma-
terials. Polymers are macromolecules, i.e., very large molecules, composed of a sequence
of repeating subparts named monomers [3]. Polymers exist in nature, biological exam-
ples being nucleic acids and proteins, but artificial ones are very common as well, e.g.,
plastics, rubbers and synthetic fibers like nylon. Perhaps the most interesting feature
of polymers is that their elastic behavior follows from entropic effects, rather than from
strong chemical bonding or ordering as in “hard” condensed matter. Because of their
size, the sections of the polymer are strongly subject to thermal fluctuations. Thus, poly-
mer chains usually assume looped, curled up configurations favored by higher entropy
and seldom evolve into extended shapes.

The chains can be reversibly stretched, lowering their entropy, and later return to a
coiled state of higher entropy. This is reflected by a change in free energy that penalizes
deviations from the curled states. Thus, elastic behavior derives from the entropic forces
that oppose stretching. Nevertheless, since the energetic intensity of entropic effects is
of the order of ∼ kBT , polymeric materials are “soft” compared to “hard” condensed
matters like crystalline materials. Such a difference is revealed by the typical orders of
magnitudes of the elastic moduli: � 109 Pa and � 109 Pa, respectively [4].

Interestingly, the elastic properties of polymers had been long known to the natives
of central and south America, who used the secretions of the rubber tree to fabricate
waterproof boots and shoes [5, 6]. The duration and resilience of natural rubber is,
however, limited and especially at low temperatures becomes hard and brittle [7]. It is,
in fact, a tangle of non-connected polymer chains, possibly swollen with water (a “noodle
soup”, in the words of de Gennes [6]). Charles Goodyear made a breakthrough in 1839 by
heating natural rubber with sulfur. He discovered that rather than melting, the rubber
would become stiffer and tougher. In such a process, the polymer chains chemically link
to each other (“crosslinking”) and the process is usually referred to as “polymerization”,
“curing”, or “vulcanization”. After curing, the polymer chains are linked to each other
at their crossing points, and compose an interconnected 3D network.

The polymer network or matrix then behaves like an elastic solid and resists compres-
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1 Introduction

sions or shape deformations. The elastic modulus, i.e., the stiffness of the material per
unit volume, depends on the amount of crosslinking, quantified by the number of links
per unit volume. Starting from the fluid phase, there is a minimum amount of links
necessary to turn the fluid into a solid of nonvanishing long-time shear modulus. This
corresponds to the amount of curing required to transition the polymer from a fluid to
a solid phase and is usually indicated as “gelation” or “sol-gel” transition. Although
the crosslinking can occur by many ways (e.g. high-temperature curing [8], irradiation
with electrons [9], or the action of chemicals catalysts [10]), the phase transition is char-
acterized by the elastic moduli (i.e., the second derivatives of the free energy density)
switching from zero to a finite value.

On the one hand, “rubbers” and “elastomers” are polymer networks characterized by
relatively large moduli (Young’s modulus E > 104 MPa [10, 11]) and strong memory
of their initial shape. On the other hand, the term “gel” typically indicates that the
polymer network, or “matrix”, is swollen with a solvent, e.g., water (hydrogel) or oil.
To this purpose, a viscous polymer solution can be cured up to the gelation transition
to form a gel, or a ”solid” crosslinked polymer can absorb a sufficient amount of solvent
until it becomes a gel. In either case, the elastic moduli of gels are typically lower,
E ∼ 10−1 − 104 Pa [12].

Since polymeric materials are extremely versatile and adaptive, they represent an ideal
medium into which to embed other substances to obtain composite materials [13]. One
benefit of these composite “smart polymers” [14] is the possibility to combine responses
from different kinds of stimuli. For instance, dielectric elastomer composites [15–17]
integrate the elasticity of rubbers with the response to electrical fields, leading to ef-
fects such as piezoelectricity or electrostriction [18] and applications ranging from soft
actuators [19] to smart power generators [20]. Another example of hybrid materials are
ferrofluids, combining the rheology of viscous fluids with the susceptibility to magnetic
fields [21–27], resulting in many applications from sensors [28] to damping devices [29].

Ferrogels and magnetic elastomers combine the elastic, reversible deformability with
the responsiveness to external magnetic fields [2, 30–33]. Similarly to the tunable vis-
cosity [34, 35] in ferrofluids, magnetic fields affect the properties of the magneto-elastic
composite. Such a feature, known as “magneto-mechanical” coupling [36–38], allows to
control the material deformation [39–43] and stiffness [10,11,44–50], as well as vibration
modes [51] or impedance [52].

This thesis is structured as follows. Section 1.2 reviews the kinds of magnetic particles
typically employed in magnetic elastomers. Then, a short derivation of the dipole–dipole
magnetic interaction is presented. After that, we introduce in section 1.3 the statistical
description of polymer chains and the entropic origin of elasticity. In this context, our
microscopic minimal approach to magnetic elastomers is summarized (Paper I). Then,
as a first step in increasing complexity, in section 1.4 we investigate and model the exem-
plary case of buckling chains of paramagnetic particles in soft magnetic gels (Paper II).
Furthermore, in section 1.5 the main notions of linear elasticity such as strain, stress,
and elastic moduli are presented and then, in section 1.6, extended via basic viscoelastic
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1.2 Magnetic Particles and their Interactions

models to describe the time-dependent response to external stimuli. In section 1.7 we
calculate the elastic moduli of some selected regular spring networks in 2- and 3D as
a reference point for subsequent calculations. Moving on to presenting our investiga-
tion results, section 1.8 combines our investigated dipole–spring networks in two- and
three-dimensions to describe deformations and changes in elastic moduli (Paper III and
Paper IV). Moreover, the integration of experimental, particle-resolved data into meso-
scopic simulations is outlined, together with the resulting magneto-mechanical effects
(Paper V). Finally, chapter 2 includes our published papers before we summarize our
findings and draw the final conclusions in chapter 3.

In the following we use the Latin alphabet i, j, k, l, . . . = 1, 2, 3, . . . to index the differ-
ent particles or components, while the spatial degrees of freedom are labeled by Greek
letters α, β, γ, . . . = x, y, z. Furthermore, we denote vectors lying in 2- or 3D space by
bold font, e.g., r = (rx, ry, rz). The bra-ket notation, instead, indicates a phase-space
vector representing the positions of N three-dimensional points. Its D components are,
e.g., |r〉 = (rx

1 , r
y
1 , r

z
1, r

x
2 , r

y
2 , . . . r

y
N , rz

N) with D = 3N . Finally, we denote tensors either

by a double overline (e.g., Δ) or, when possible, by the \mathcal uppercase font D and
their respective components by Δαβ

ij and Dαβ
ij .

1.2 Magnetic Particles and their Interactions

The crucial ingredient of magnetoelastic materials are the embedded magnetic or mag-
netizable particles. They are the origin of the responsiveness to external magnetic fields.
In this section, we briefly review the properties of magnetic materials with particular
emphasis on the ones typically employed in ferrogels. Finally, a short derivation of the
often used dipole–dipole potential will be presented.

1.2.1 Magnetism and Magnetic Particles

Magnetic materials can be roughly divided into ferromagnetic and paramagnetic. Impor-
tant parameters to distinguish them are the saturation magnetization Ms, the retentive
(or remnant) magnetization Mr, the coercive field Hc, as well as the magnetic suscepti-
bility and permeability χ and μ = μ0(1 + χ), respectively [53].

Macroscopic ferromagnetic materials are composed of multiple grains, each divided
into several magnetized domains. Upon introduction of an external magnetic field
H = |H|, see Fig. 1.1 (a), the magnetization of the domains start to reorient along
it, significantly increasing the overall magnetization of the material with initial perme-
ability μf . When all domains are oriented in the field direction, the magnetization M
reaches the saturation magnitude |M | = Ms, after which it only increases proportionally
to ∼ μ0H. If the external field is switched off, some of the magnetic domains will remain
aligned, resulting into a the retentive magnetization Mr, see Fig.1.1 (b). To compensate
for such residual magnetization, an external field must be applied in the opposite direc-
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(a)

μ0

μp

μf

H

B

(b)

Hc

Mr Ms

H

M

Figure 1.1: Sketch of magnetization curves for different magnetic materials. Panel (a)
shows the qualitative initial B(H) behavior for reference vacuum (μ0), paramagnetic
(μp), and ferromagnetic μf materials. Panel (b) illustrates a qualitative, simplified
hysteresis curve M(H) of a ferromagnetic material. The dashed line represents the
initial behavior depicted in panel (a). After the saturation magnetization Ms is reached,
cyclical increase and decrease of H leads to the hysteresis loop (solid line). Coercive
field and retentive magnetization are indicated in the plot by Hc and Mr, respectively.

tion. The intensity of the field required to cancel the retained magnetization is Hc, the
coercive field. For cyclical increases and decreases of the H-field, the typical hysteresis
curve as in Fig.1.1 (b) is obtained.

Ferromagnetic materials can be further divided into hard and soft ones. The former
are characterized by relatively large magnetization retained Mr compared to the satu-
ration value Ms and large coercive fields Hc as well. The latter, instead, present little
magnetization retained and are easy to re-magnetize, thus drawing hysteresis curves with
smaller areas. Carbonyl iron particles are examples of soft ferromagnetic particles and
are often employed to prepare magnetoelastomers [8,54–56]. Their relative permeability
μ/μ0 ranges from 2.77 to 4.82 [57], the saturation magnetization is Ms ∼ 1360 kA/m, the
remnant magnetization Mr ∼ 104 kA/m, and the coercive field Hs ∼ 27.5 kA/m [58].

In paramagnetic materials the moments of the atoms also align in presence of external
magnetic fields. However, after the external field is switched off, they do not retain any
magnetization. For increasing external fields the magnetization increases linearly, with
proportionality constant μ = μ0(1 + χ), larger than the vacuum magnetic permeability
μ0. Porous particles containing paramagnetic iron oxide [12] can have up to Ms ∼
141 kA/m and virtually no retentive magnetization or coercive field, with subsequent
absence of hysteresis [59].

In magneto-elastic composites, the particles can range from nano- [60] to several mi-
crometers [10] in size and, additionally can vary from regularly spherical [30, 61] to
oval, irregular [8, 10] shapes. A special case is represented by very small ferromagnetic
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1.2 Magnetic Particles and their Interactions

particles, known as superparamagnetic [62]. They typically have diameters of a few
nanometers [63] and consist of a single magnetic domain.

1.2.2 Magnetic Interactions

The magnetic field B generated at position r by a distribution of electric current density
j(r) reads [53]

B(r) = ∂r × A(r) =
μ0

4π

∫
∂r × j(r′)

|r − r′|dr′, (1.1)

where × indicates the cross product and A the vector potential.
In our case of magnetic particles, the current density j is non-vanishing only on their

insides. Furthermore, we are interested in far-field interactions, i.e., for interparticle
distances much larger than the particle size. Thus, we expand in multipoles for |r| � |r′|

1

|r − r′| =
1

r
+

r · r′

r3
+ . . . , (1.2)

obtaining the far-field B generated by a dipolar particle i, with volume Vi, and centered
in the origin of our reference system

Bi(r) =
μ0

4π
∂r × 1

r3

∫
Vi

r · r′ j(r′)dr′ + . . . , (1.3)

where the integral is performed over the volume Vi occupied by the particle. The
monopole contribution vanishes and the lowest order term is the dipolar one:

Bi(r) =
μ0

4π

[
3
(mi · r) r

r5
− mi

r3

]
, (1.4)

where mi =
1

2

∫
Vi

r′ × j(r′)dr′ =

∫
Vi

M(r′)dr′ (1.5)

denotes the magnetic moment of the i-th particle and Bi(r) is the magnetic field gen-
erated by the particle at distance r from its center.

Therefore, the total magnetic field at position r generated by a set of particles with
positions ri and magnetic moments mi (i = 1 . . . N) is

B(r) =
N∑

i=1

Bi(r − ri) =
μ0

4π

N∑
i=1

3
(mi · Δri)Δri

|Δri|5
− mi

|Δri|3
(1.6)

with Δri = (r − ri) and for |Δri| � 3
√

Vi to allow us to confine ourselves to the dipolar
term in the multipole expansion.

Finally, we derive the particle–particle interaction. The potential energy of a perma-
nent magnetic dipole m in a magnetic field Btot reads Um = −m · Btot [53]. We split
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the total magnetic field acting on a particle into contributions from an external field B0

and from the other particles: Btot = B0 + B, see Eq. (1.6). Then, the energy of our
system composed of N dipolar particles reads

Um = −
N∑

i=1

B0(ri) · mi −
N∑

i=1

B(ri) · mi. (1.7)

Taking care of counting the interaction of each pair of dipoles only once and avoiding
self-interactions, we obtain the final expression for the magnetic energy

Um = −
N∑

i=1

B0(ri) · mi +
1

2

N∑
i,j=1
i�=k

vdd(mi, mj, rij), (1.8)

with vdd(mi, mj, rij) =
μ0

4π

[
mi · mj

r3
ij

− 3
(mi · rij)(mj · rij)

r5
ij

]
(1.9)

the dipole–dipole magnetic interaction, rij = rj −ri and rij = |rij|. In the following, we
will often consider the case of dipoles oriented along a common direction of magnetiza-
tion, e.g., by an external field, mi = mi m̂ (i = 1, . . . , N). In this case the dipole–dipole
potential becomes

vdd(mi, mj, rij) =
mimjμ0

4π

[
r2
ij − 3(m̂ · rij)(m̂ · rij)

r5
ij

]
(1.10)

and the force F dd
ij = −∂rij

vdd(mi, mj, rij) acting on particle i due to particle j reads

F dd
ij =

mimjμ0

4π

3

r5
ij

[
rij + 2m̂(m̂ · rij) − 5

rij(m̂ · rij)
2

r2
ij

]
. (1.11)

1.3 Polymers and Elasticity

The simplest model to describe polymers is the ideal or freely jointed chain [2, 3]. It
consists of N three-dimensional, rigid segments ri, i = 1 . . . N , of length b free to rotate
in space and jointed to each the other at their ends, as shown in Fig. 1.2. The end-to-end
vector R is given by

R =
N∑

i=1

ri. (1.12)

Each segment can rotate independently of the others. Because of the central limit
theorem [64], for large N the probability density as a function of R will approach a

6



1.3 Polymers and Elasticity

Gaussian distribution, which is completely determined by its first and second moments.
We obtain

〈R〉 =

〈
N∑

i=1

ri

〉
=

N∑
i=1

〈ri〉 = 0, (1.13)

because each ri freely rotates with equal probability in any direction and thus its average
is 〈ri〉 = 0. The second moment, however, is

〈R2〉 =

〈
N∑

i=1

ri ·
N∑

j=1

rj

〉
=

N∑
i,j=1

〈ri · rj〉 = Nb2 (1.14)

because 〈ri · rj〉 = δijb
2, i.e., two different segments are uncorrelated and each has

constant length b. Since R2 =
∑

α (Rα)2 (α = x, y, z), the second moment of each
independent Cartesian component of R is 〈(Rα)2〉 = Nb2/3.

-

Figure 1.2: Sketch of a
freely jointed chain.

Thus, the probability distribution p(R) for the end-to-end
vector R is

p(R) ∝ exp

[
−
∑

α

(Rα)2

2Nb2/3

]
= exp

[
− 3R2

2Nb2

]
. (1.15)

One can obtain the configuration entropy

S(R) = kB ln [p(R)] (1.16)

= S0 − 3kBR2/2Nb2, (1.17)

where kB is the Boltzmann constant and we absorbed the
normalization prefactors of p(R) into the constant S0. From
Eq. (1.17) one already deduces that the maximum entropy
is achieved for R = 0. Furthermore, we consider the free
energy

F = U − TS = F0 +
3kBTR2

2Nb2
= F0 +

1

2

3NkBTR2

L2
(1.18)

where L = Nb is the chain contour length.
The state R = 0 is the one that minimizes the free energy which, to lowest order, is a

quadratic function of the end-to-end displacement. In other words, upon attempting to
stretch the chain, the polymer responds with an entropic force that brings the system
towards its state of maximum entropy. Such a force is linear and it can be represented
by a harmonic spring of elastic constant 3kBT/Nb2. This is the first step in a coarse-
graining description, since all the microscopic degrees of freedom of the chain are taken
into account by an effective description of the overall end-to-end distance.

In general, however, the state of the polymer can be described by a multi-dimensional
vector X of D degrees of freedom. Again, for the central limit theorem, the distribution
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Figure 1.3: Example of free energy, suitably rescaled, as in Eq. (1.20) plotted as a
function of two rescaled dimensionless variables X1 and X2 with covariance Σ12 =
〈(X1 − X0,1)(X2 − X0,2)〉 < 0. Continuous and dashed lines correspond to X1 = 0
and X2 = 1

2
, respectively. Circles mark the minimum along each line.

must tend to a Gaussian when the number of degrees of freedom becomes very large. Fol-
lowing a similar derivation, given the first moments 〈X〉 = X0 and the positive definite
covariance matrix with components Σmn = 〈(Xm −X0,m)(Xn −X0,n)〉 (m, n = 1, . . . D),
the limiting distribution will be a multivariate Gaussian of corresponding moments [65],
i.e.,

p(X) ∝ exp

⎡⎣−(X − X0) · Σ
−1 · (X − X0)

2

⎤⎦ , (1.19)

with Σ
−1

denoting the inverse matrix of Σ. The free energy corresponding to each overall
configuration X is

F (X) = F0 +
kBT

2
(X − X0) · Σ

−1 · (X − X0) . (1.20)

Fig. 1.3 depicts a simplified D = 2 example of quadratic free energy F (X) = F (X1, X2)
as a function of two dimensionless variables X1, X2 and with negative covariance Σ12.

We see that kBTΣ
−1

can be interpreted as a matrix containing the coefficients of har-
monic effective potentials. More precisely, by expanding any free energy in a Taylor
series around its minimum X0 and comparing it with Eq. (1.20), one can deduce that
∂Xm∂XnF (X = X0) = kBTΣ−1

mn with m, n = 1, . . . , D.

8



1.3 Polymers and Elasticity

The diagonal components of kBTΣ
−1

are interpreted as the coefficients of the harmonic
interaction for each component of X. In the case of X being the end-to-end distance
of the polymer. such a coefficient is the Young modulus of the polymer. Obviously, we
may represent the corresponding behavior by introducing an effective harmonic spring.
Conversely, the off-diagonal components represent mixed contributions which result in a
shift of the constrained minima. For instance, following the example depicted in Fig. 1.3,
for X2 = 0 the resulting free energy along the continuous black line, F (X1, X2 = 0), is
a quadratic function of X1 with minimum on X1 = 0 marked by the circle. However,
for X2 > 0, F (X1, X2 = 1

2
) (black dashed line) is still quadratic in X1 but the minimum

marked by the circle shifts towards negative X1-values. This simplified picture already
accounts for a negative correlation between the two variables, i.e., when the average of
one increases, the average of the other decreases and vice versa.

In summary, we have considered a simple polymer model to explain the origin of elastic
behavior. In the following, we will introduce our approach in Paper I. There, we bind
the ends of the polymer chain to the surface of two mesoscopic, magnetic particles. Our
goal is to derive the polymer-mediated interactions between the mesoscopic particles via
effective pair potentials, thus bridging the scale from the microscopic description of the
polymer chain to the mesoscopic scale.

1.3.1 Coarse-Graining of Microscopic Simulations

Figure 1.4: Sketch of our simplified
model considered in Paper I.

In Paper I we considered two mesoscopic mag-
netic particles linked by a polymeric chain, see
Fig. 1.4. In general, simulations of magnetic
elastic composite materials will include sev-
eral mesoscopic magnetic particles connected
by many polymeric chains [66,67]. Here, how-
ever, we confine ourselves to a model situation
as simple as possible, see Fig. 1.4, to work out
the connection between a coarse-grained mi-
croscopic approach and our mesoscopic effec-
tive model description that is reduced to the
coordinates of the magnetic particles.

A common approach to this problem is the
adiabatic approximation [68]. It assumes that
the fast-evolving degrees of freedom, here those
of the linking polymer chain, relax to their
equilibrium- or steady-state for every configuration of the slow-evolving ones, here those
of the mesoscopic particles. As a consequence, mesoscopic and microscopic degrees of
freedom can be separated to a certain degree. The Hamiltonian of the system splits
and the part connected to the microscopic degrees of freedom can be integrated into an
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“effective” mesoscopic potential [69, 70, Paper I]. In practice, this means that for every
mesoscopic configuration the polymer chain explores the accessible microscopic phase
space. Different mesoscopic configurations of the mesoscopic particles lead to different
amounts of entropy of the polymer chain. This in turn, implies a polymer free energy
that varies with the mesoscopic state and thus acts as an effective potential on the
mesoscopic level.

In our reduced model, we begin with two particles of mesoscopic size connected by a
polymer chain, discretized via N = 60 beads of diameter σ, each representing a small,
coarse-grained part of the polymer. The mesoscopic particles have radius a = 5σ. The
center-to-surface vectors a1 and a2 identify the fixed anchoring points of the polymer
chain on each spherical particle as depicted in Fig. 1.4. All the particles interact via
Weeks-Chandler-Andersen (WCA) [71] core-repulsive potentials and are linked to each
other by harmonic springs. After global translations and rotations are taken into ac-
count, the relative state of the two mesoscopic particles can be identified by the fol-
lowing parameters: center-to-center vector r, angles θ1 = arccos(a1 · r/|a1| |r|) and
θ2 = arccos(a2 · r/|a2| |r|), as well as the angle φ of relative torsion around the r-axis,
see Fig. 1.4..

Brownian Dynamics simulations (i.e., overdamped dynamics with a Langevin ther-
mostat) are employed. We let the simulation run and explore the phase space of the
system. Each microscopic configuration Γ corresponds to a mesoscopic state identified
by the phase-space vector γ = (r, θ1, θ2, φ), with r = |r|. The mesoscopic phase space
is sampled within the following intervals r ∈ [0, 100σ[, θ1, θ2 ∈ [0, π[, and φ ∈ [0, 2π[.
For the purpose of collecting statistics, each interval is subdivided into 100 bins of equal
width. At regular intervals during the time-evolution of the simulation, each sampled
microstate is counted into the corresponding mesoscopic bin. We collect a total of 34
billion sampled configurations. Division by the total number of microstates observed
yields a discrete histogram h(ri, θ1j, θ2k, φl), i, j, k, l = 1, . . . , 100, that represents the
relative occurrence of the mesoscopic configurations contained in each single (i, j, k, l)
bin.

The connection with the continuous probability density pc(γ) of the mesoscopic phase-
space is given by comparing the normalization conditions

∫
pc(γ) sin(θ1) sin(θ2)drdθ1dθ2dφ = 1 =

100∑
i,j,k,l=1

h(ri, θ1j, θ2k, φl), (1.21)

where h(ri, θ1j, θ2k, φl) has been normalized. Then, on discrete grid points at the center
of each bin, the probability distribution is evaluated as

pc(γ)

∣∣∣∣∣
γ=(ri,θ1j ,θ2k,φl)

=
h(ri, θ1j, θ2k, φl)

sin(θ1j) sin(θ2k)
(1.22)
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Ṽr(r)

VFENE(r) fit

0.0 0.2 0.4 0.6 0.8 1.0
θ1/π

3

4

5

6

7

8

V
/k

B
T

θ0 = 0.0 π

D = 0.78 kBT

V 0
D = 3.44 kBT
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Figure 1.5: (LEFT) Effective potential Ṽr(r) and fit to a FENE [73] expression with

model parameters as listed in the figure. To lowest order, Ṽr(r) ∼ Kf (r−r0)
2. (RIGHT)

Effective potential Ṽθ1(θ1) and fit with an expression ∼ V 0
D −D cos(θ1−θ0)

4, with model
parameters as listed in the plot. Reproduced from Ref. 75 with permission. c© IOP
Publishing. All rights reserved.

and its corresponding effective potential reads

Vc(γ) = −kBT ln [pc(γ)] ⇔ pc(γ) = exp

[
−Vc(γ)

kBT

]
, (1.23)

where Vc(γ) can always be shifted by an appropriate, convenient constant so that pc(γ) is
always normalized. Finally, the mesoscopic configuration that minimizes the effective po-
tential and maximizes the probability density was found to be γ0 = (20.20σ, 0.36π, 0.36π, 0).

In obtaining the proper probability density pc(γ) and thus the correct effective poten-
tial Vc(γ) it is crucial to normalize the frequencies obtained from the data by the sines
of the angles θ1 and θ2 as in Eq. (1.22), see also Ref. 70. This leads to the apparent
contradiction that the probability density at θ1 = 0 and θ2 = 0 reaches its maximum
even though this very configuration almost never occurs in simulations. In contrast to
that, division by r2 as one would need in polar coordinates is not necessary here because
our mesoscopic distance r is not a radius vector but simply the distance between the
two centers.

By selective integration, one obtains the marginal probability densities and the corre-
sponding one-variable effective potentials, e.g., for r,

p̃r(r) =

∫
pc(γ)dθ1dθ2dφ ⇒ Ṽr(r) = −kBT ln [p̃r(r)] . (1.24)

The one-variable effective potentials are excellently approximated by potentials proposed
in the literature, such as the FENE pair interaction [72, 73] or those involving periodic
functions for the rotational degrees of freedom [74], see Fig. 1.5. Fits of the effective
potentials with such analytical expressions lead to excellent agreement.
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Figure 1.6: Free energy of the polymer chain for
fixed torsional angle φ = 0, varying deflections
θ1 = θ2 = θ, and as a function of distance r
between the mesoscopic particles. Reproduced
from Ref. 75 with permission. c© IOP Publish-
ing. All rights reserved.

If the mesoscopic variables are un-
correlated, one can separate them and
approximate the full effective poten-
tial Vc(γ) as a sum of independent
one-variable terms as in Eq. (1.24).
However, one has to be careful if cor-
relations between the variables are
not small. We define the correla-
tion ραβ = 〈αβ〉/√〈α2〉〈β2〉 (α, β =
r, θ1, θ2, φ) and find in Paper I that
the most prominent ones are ρr,θ1 �
ρr,θ2 � −0.341. The relative tor-
sion φ, conversely, is more weakly in-
fluenced by the other parameters, as
evinced by the smaller correlations
ρφ,r � 0.083 and ρφ,θ1 � ρφ,θ2 �
−0.083.

In practice, this leads to a nega-
tive correlation similar to the one de-
scribed in section 1.3 and depicted in Fig. 1.3. To demonstrate it, we focus on the
effective potential Vc(γ), for θ1 = θ2 = θ, φ = 0, and as a function of r. We obtain the
effective interaction Vc(r) for the interparticle distance r the minimum of which shifts
to lower values of r with increasing θ, see Fig. 1.6.

This correlation is physically interpreted as a tendency of the polymer chain to wrap
around the mesoscopic particles with changing angles θ1 and θ1. When the angles θ1

and θ2 increase the particle separation r reduces. Vice versa, even by rotating just one
particle, their distance reduces. The stretched chain is 60σ long, whereas the maximal
circumference of the mesoscopic particles is 2πa � 30σ. Thus, the chain is long enough
to, hypothetically allow for large rotations of the spheres without drawing them together.
Nevertheless, as we see from simulations, rotations of θ1 or θ2 typically imply that
particles are pulled closer together.

To take into account such correlations between the variables, one possible solution
is to fit the simulation data to a Gaussian distribution with cross-coupled terms as in
Eq. (1.19). That would be a viable option in case of overall smooth potentials. However,
because of the steep WCA-repulsion between the two mesoscopic particles (see Fig. 1.5),
such an approach would only work in an very small neighborhood of the minimum of
Vc(γ). Therefore, we follow a hybrid approach. We approximate pc(γ) by a product of
fit-obtained, one-variable marginal distributions as in Eq. (1.24) and coupled terms as
in Eq. (1.19)

pc(γ) ∝
∏
α

p̃α(α) × exp [(γ − ξ) · Q · (γ − ξ)] (1.25)
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Figure 1.7: Impact of magnetic interactions on the marginal distribution pr(r) of the two
mesoscopic particles for increasing magnitude m of their magnetic moments. Obviously,
the particles are pulled together by the magnetic interactions. Reproduced from Ref. 75
with permission. c© IOP Publishing. All rights reserved.

with α = r, θ1, θ2, φ, ξ and Q a vector and a symmetric matrix, respectively, containing
best-fit parameters to match the moments of the simulation data.

Finally, we calculate the impact of magnetic moments on the probability distribu-
tions of the system, see Fig. 1.7. The modified probability density is obtained by
multiplying pc(γ) in the absence of magnetic interactions by the Boltzmann factor
exp
[−vdd(γ)/kBT

]
, with vdd as described in Eq. (1.10). Thus, the statistical impact

of the dipole–dipole interaction is additionally taken into account.

Altogether, we have outlined a way that, starting from simple ingredients such as beads
and springs, describes effective entropy-driven pair potentials. Our picture, however, is
far from being complete. First, not only one but usually a large number of chains is
connected to and wrapped around embedded particles in a magnetoelastic material.
Additionally, many magnetic particles should be included in a realistic description of
magnetoelastomers. In the following section we will increase the number of particles in
studying the buckling effect of chains of paramagnetic particles embedded in soft elastic
gels and exposed to perpendicular magnetic fields.

1.4 Buckling of Paramagnetic Chains of Particles

The next step in increasing the complexity in our description of magnetoelastomers is
the study of one-dimensional structures of several magnetic particles embedded in a
soft elastic gel. The formation of chain-like aggregates has been widely experimentally
investigated [8, 10,54–56,76,77].

The case of one-dimensional chains in a polymeric matrix, albeit seemingly relatively
simple, involves many complex details. Above all, the interaction of the particles with
the embedding polymer matrix is complicated and not simple to model. Experiments
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Figure 1.8: (LEFT) (a) Experimental setup and Halbach magnetic array for generating
a homogeneous magnetic field. (b) Deflection angle of a short chain under a rotat-
ing external field (∼ 216 mT). (c) Deformation morphologies of short and long chains
under rotating magnetic field. (RIGHT) Panel (a): buckling examples of chains for
perpendicular magnetic fields. Chains of varying lengths display different buckling mor-
phologies. Panel (b): the chains are sorted according to the number of buckles M (or
“half-waves”). Reproduced from Ref. 12 - Published by The Royal Society of Chemistry
under a Creative Commons Attribution 3.0 Unported Licence.

to study the deformation of such chain-like aggregates were conducted, see Paper II,
using an experimental setup as illustrated in Fig. 1.8. A small amount (0.09 wt%) of
paramagnetic particles (iron oxide) of diameter d ∼ 1.48 μm is dispersed in a polymer
solution. Polymerization by action of a catalyst is performed under the influence of a
moderate (100 mT) magnetic field. As a consequence, chains of various lengths (up to
170 particles) are formed. The chains are diluted, separated by distances larger than
30 μm, and are therefore basically not-interacting with each other.

When a magnetic field of 100 mT is applied perpendicularly to the axes of the longer
chains, they buckle, see Fig. 1.8, panel (c) for 90◦ and Fig. 1.8. It is evident from Fig. 1.8
that longer chains buckle with more oscillations. This is proven by panel (b) on the right-
hand side, where particles are sorted according to number of buckles (“half-waves”) M
and chain length. High values of M can be obtained only for long enough chains. vice
versa, very short chains do not buckle at all (M = 0) and just undergo rotations.

To describe the buckling effect, we follow a phenomenological model. The main in-
gredients are the dipole–dipole magnetic interactions within the chain and the chain-
polymer matrix interactions. Only dipole–dipole interactions between the particles in
the same chain are considered. Modeling the effect of the elastic matrix is significantly
more complicated . Recently, exact solutions of the elastic interaction between magnetic
particles in a soft gel have been derived by solution of the elastostatic equations [78–81].
Here, we follow a simpler phenomenological approach.
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1.4 Buckling of Paramagnetic Chains of Particles

Elastic contributions are modeled as the sum of two effects: one deriving from bending
the chain and one from net displacements against the surrounding matrix. Significant
bending contributions probably arise from absorbed polymers on the surfaces of the
particles making the chain-like aggregate stiffer than the elasticity of the base surround-
ing matrix would suggest. By applying a magnetic field to the particles in the sol
phase [59], we find “U”- or “S”-shaped deformations even in the absence of crosslink-
ing. This demonstrates the existence of a bending rigidity contribution of the chains
themselves. [82].

Penalties of displacement energy originate from the crosslinked polymer matrix which
is immovable in space and hinders translations and rotations of the embedded chain.
The necessity of a displacement term is proven by the M = 0 case depicted in Fig. 1.8,
panel (b) on the left-hand side. There, a straight short chain (virtually no bending
present) rotates under a perpendicular field. Because of the displacement resistance,
however, the chain does not align completely with the field (which would correspond to
the absolute minimum of the magnetic interactions), but ends up in a partially rotated
configuration.

In a coarse-grained approach, we describe the chain of particles as a continuous line
profile y(x). Moreover, the chain length is constrained, i.e., the contour length of y(x)
remains constant ∫ x2

x1

√
1 + y′(x)2dx = L (1.26)

with x1 and x2 the x-coordinates of the two ends of the chain and the x-axis aligned
with the initial chain axis.

By considering interactions between two particles of equal diameter d, separated by
the center-to-center length element (dx, y′(x)dx), and taking into account only nearest-
neighbor contributions, we obtain the following functional for the magnetic energy

Emagn[y] = W

∫ x2

x1

[
1 + y′(x)2

]−1/2
dx, with W =

3μ0m
2

4πd4
(1.27)

setting the magnetic energy per unit length of a segment tilted by arctan[y′(x)]. Fur-
thermore, m denotes the magnetic moment of each particle, it is set identical for all
of them, and μ0 is the vacuum magnetic permeability. The elastic displacement and
bending energies read, respectively,

Edispl[y] = Cd

∫ x2

x1

y(x)2[1 + y′(x)2]
3/2

dx and (1.28)

Ebend[y] = Cb

∫ x2

x1

y′′(x)2

[1 + y′(x)2]5/2
dx. (1.29)

The buckling deformation y(x) was found by minimizing the total energy Etot[y] =
Emagn[y]+Edispl[y]+Edispl[y] with respect to y(x), i.e., by setting its functional derivative
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Figure 1.9: (LEFT) Variational energy as a function of deformation amplitude S. A
chain of length L (here L = 3b) is made to buckle twice (M = 2). The amplitude S is
varied. (RIGHT) For a given M = 0, . . . , 4 the minimized total energy Etot is depicted
as a function of L. Each point represents the minimum of the energy landscape as can
be extracted from the left panel. Reproduced from Ref. 12 - Published by The Royal
Society of Chemistry under a Creative Commons Attribution 3.0 Unported Licence.

to zero
δEtot

δy(x)
[y] = 0, (1.30)

see the supplementary information of Paper II for a complete listing.
While the parameter W was obtained from the calculation, the parameters Cd and Cb

are found phenomenologically. For that purpose, we determine optimized values Cd and
Cb to match the experimentally observed rotations of straight chains (M = 0) and to
match the buckling amplitudes for M ≥ 1. By linearizing Eq. (1.30), we obtain the solu-
tion in the case of small-amplitude deformations, see supplementary material of Paper II.
There, the solution is a plane wave of wavenumber q = W (1±√1 − 16CdCb/W 2)/4Cb.
Thus, for W 2/16CdCb > 1 the wavenumber is real and the solution purely oscillatory,
setting the ratio CdCb/W

2 that marks the onset of buckling deformations.
Subsequently, we proceed with making an ansatz for the y(x) deformation in the form

of a polynomial of order M + 1 with as many zeroes set at regular intervals b along the
x-axis. This is motivated by the experimental observation that the spacing between the
nodes as depicted in Fig. 1.8 seems to be constant amid the various cases. Our ansatz
profile reads y(x) = S

∏M
m=0(x−mb) with b fixing the “half-wave” length and S tuning

the amplitude of the deformation. Thus, we obtain the energy of a chain profile y(x)
for a given set of free parameters M , x1, and x2. The length constraint of in Eq. (1.26)
implicitly defines x2 for a given x1 and thus only two free parameters remain.

Finally, we express the total energy Etot[y] as a function of the variational deforma-
tion amplitude S, with the constraint of constant contour length L and symmetry or
antisymmetry of the buckling profile under inversion x → −x. The result is depicted in
Fig. 1.9 for M = 2 (three nodes, i.e., two bucklings). The total energy shows a single
minimum which arises from the counterbalance of magnetic and elastic interactions.

On the one hand, a configuration in which the chain is completely oriented in the
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y-direction (S → ∞, y′(x) → ±∞) is the absolute minimum of the magnetic energy. In
other words, the magnetic energy favors steep slopes |y′(x)|. This can be realized either
by a straight, rotated chain or by a steep sawtooth-like profile. On the other hand, the
flat y(x) = 0 shape is the global minimum of the elastic energy terms because it features
neither displacement nor bending (y′′(x) = 0). The displacement contribution Edispl

penalizes rotations of straight chains and net displacements, whereas the bending term
Ebend prevents the formation of cusps with diverging second derivative.

The amplitude S that minimizes Etot is obtained for varying L and increasing, integer
M . The result, depicted in the right-hand panel of Fig. 1.9, are the energetic costs for
increasing chain length while keeping the buckling shape (determined by M) constant.
The crossings of the curves belonging to different values of M mark transition points at
which increasing the chain length induces one extra buckle rather than further increasing
the deflection amplitude.

After characterizing these one-dimensional particle assemblies we now move on to
describe more complex distributions. Our goal is to study the impact of the particle
arrangement on the overall system properties. We employ basic dipole–spring models in
2- and 3D to build regular and disordered particle distributions. In the next sections we
introduce the main concepts of elasticity and viscoelasticity that are the subject of our
mesoscopic investigations. Then, we review the analytically calculated elastic properties
of regular spring networks to use them as a benchmark before presenting the main results
of our dipole–spring models in Paper III, Paper IV, and Paper V.

1.5 Static Linear Elasticity

In this section we briefly review the concepts and quantities of linear elasticity [82] that
we apply to characterize the macroscopic properties of our mesoscopic model systems.
Elasticity theory describes the mechanics of reversible deformations of solid bodies, which
are treated as continuous media. Here, we only consider the case of homogeneous,
isotropic materials.

1.5.1 Homogeneous Isotropic Materials

Upon deformation, a point of a three-dimensional elastic solid moves from r to r′ =
(1 + D) ·r, with 1 the identity tensor, D the deformation gradient tensor, and displace-
ments u = r′ − r = D · r. The fundamental dimensionless variable to describe the
deformation of the body is the linearized 3× 3 strain tensor ε, the components of which
are given by

εαβ =
1

2

(
∂uα

∂rβ

+
∂uβ

∂rα

)
=

1

2
(Dαβ + Dβα) . (1.31)

It is symmetrical and defined for every point r, with α, β = x, y, z. Furthermore, the
relative local change in the infinitesimal volume element dr is (dr′− dr)/dr = Tr

(
ε
)

=
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∑
α εαα.

The equilibrium condition for the material is that the total forces or stresses vanish
at every point. The stress tensor σ is related to the internal density of force f via [82]

fα =
∑

β

∂σαβ

∂rβ

. (1.32)

In 3D stresses have the dimension of a pressure, and can be interpreted as σαβ being
the α-component of the force per unit area acting on the surface perpendicular to the
β-direction. Furthermore, σ must be symmetrical to avoid rotations. Therefore, in
presence of an external force and distinguishing between internal stresses σ and external
force density f ext, the equilibrium condition reads ∂/∂r · σ + f ext = 0, or, in the case of
an external force per area p acting on the system,∑

β

σαβ = −pα. (1.33)

The work performed by an internal stress σ and resulting in a small strain δε reads

W =

∫
δw dr =

∫ ∑
α

fα δuαdr = −
∫ ∑

αβ

σαβ δεαβ dr, (1.34)

with δw the local work density (per volume).

Thus, one obtains the variation in internal energy density (per volume) du = Tds −
dw = Tds+

∑
αβ σαβ dεαβ, with T denoting the temperature, s the entropy density, and

the variation in free energy density f = u − Ts,

df = sdT +
∑
αβ

σαβ dεαβ. (1.35)

Furthermore, Eq. (1.35) implies that

σαβ =
∂f

∂εαβ

. (1.36)

The ground state of the material corresponds to vanishing stresses and strains, i.e.,
σαβ = 0 = εαβ, α, β = x, y, z. In the regime of small deformations, the free energy
density can be expanded in powers of the strain tensor. Therefore, Eq. (1.36) implies
that the linear terms of the Taylor series vanish.

Since the free energy density is a scalar and the lowest term of the expansion is
quadratic, we need to form independent scalars of second order using the components
of ε if we wish to construct a corresponding expression. One possible choice [82] is
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1.5 Static Linear Elasticity

to use the squared trace Tr
(
ε
)2

= (
∑

α εαα)2 and the sum of the squared components∑
α (εαα)2. Truncating to second order, we write

f =
λ

2
Tr
(
ε
)2

+ μ
∑
αβ

(εαβ)2, (1.37)

where λ and μ are the Lamé coefficients. Furthermore, we can reformulate the free
energy density as

f =
K

2
Tr
(
ε
)2

+ μ
∑
αβ

[
εαβ − δαβ

3
Tr
(
ε
)]2

, (1.38)

where δαβ denotes the Kronecker delta. The modulus of hydrostatic compression, or
bulk modulus, K = λ + 2μ/3 is involved in energy variations only if ε induces a volume
change (Tr

(
ε
) �= 0). The second term on the right-hand side is the sum of the squared

components of ε−1Tr
(
ε
)
/3. Thus, the shear modulus μ is related to a zero-trace tensor

and leads to energetic changes also under volume-conserving deformations.
The stress tensor then follows via Eq. (1.36) as

σαβ = δαβKTr
(
ε
)

+ 2μ

[
εαβ − δαβ

3
Tr
(
ε
)]

. (1.39)

In the case of linear elasticity, i.e., small deformations, the free energy expansion to
second order in strain leads to σ linear in ε. Thus, in the linear regime Eq. (1.39) can
be inverted, and we obtain

εαβ =
δαβ

9K
Tr
(
σ
)

+
1

2μ

[
σαβ − δαβ

3
Tr
(
σ
)]

. (1.40)

1.5.2 Homogeneous Deformations

Here, we focus on homogeneous deformations. Strain and stress tensors are constant
throughout the material and related to each other via Eqs. (1.39) and (1.40). In the
simplest case of hydrostatic compression/expansion, the stress tensor reads σαβ = pδαβ

and Eq. (1.40) becomes εαβ = pδαβ/3K. The relative change in volume is given by

Tr
(
ε
)

=
p

K
, (1.41)

and K, again, is the modulus that directly controls the amount of volume variation.
A prominent homogeneous deformation is the axial compression/expansion. In this

case, a small external force per area p acts along one direction. We set our reference
system such that the external stress is compressive along the z-axis and orient our
surface with outward normal unit vector n = ẑ. pα = −p0δαz. Thus, on the surface
perpendicular to ẑ the equilibrium condition as in Eq. (1.33) reads

∑
β σαβnβ = σαz =
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−pα and thus σzz = p0. On the side surfaces (n ⊥ ẑ) there is no external force, therefore∑
β σαβnβ = 0 and we obtain σαβ = 0 for αβ �= zz.
The axial deformations are derived from Eq. (1.40), leading to

εxx = εyy = −p0

3

(
3K − 2μ

6Kμ

)
and εzz =

p0

3

(
3K + μ

3Kμ

)
. (1.42)

The ratio p0/εzz, often measured in rheological investigations [83], is the Young modulus

E =
p0

εzz

=
9Kμ

3K + μ
, (1.43)

and quantifies the resistance of the material to an axial deformation in the linear elastic
regime.

In this case, the sample is free to relax in the x and y directions. As a result, when
the z-axis compresses/expands, the x- and y-lengths widen/contract, respectively. The
relaxation hinders volume changes and can be quantified via the Poisson ratio

ν = −εxx

εzz

= −εyy

εzz

=
1

2

3K − 2μ

3K + μ
. (1.44)

Since K and μ are always positive, ν ∈ [−1, 1
2
].

1.5.3 Elasticity and Compliance Tensors: Voigt Notation

In the case of homogeneous but non-isotropic materials, Eq. (1.39) is generalized to

σαβ =
∑
μν

Cαβμνεμν (1.45)

with the elasticity tensor C defined as Cαβμν = ∂σαβ/∂εμν .
Since both the stress and strain tensors have 9 components and are symmetric, only 6

of them are independent. One can represent them in Voigt notation as vectors containing
their independent components

σ = (σxx, σyy, σzz, σyz, σxz, σxy)

ε = (εxx, εyy, εzz, 2εyz, 2εxz, 2εxy)

related by the 6× 6 symmetric matrix C: σ = C · ε. In the homogeneous case treated so
far in sections 1.5.1 and, 1.5.2, it reads

C =

⎛⎜⎜⎜⎜⎜⎜⎝
K + 4μ/3 K − 2μ/3 K − 2μ/3 0 0 0
K − 2μ/3 K + 4μ/3 K − 2μ/3 0 0 0
K − 2μ/3 K − 2μ/3 K + 4μ/3 0 0 0

0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎞⎟⎟⎟⎟⎟⎟⎠ (1.46)
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1.6 Viscoelasticity

with the symmetries C11 = C22 = C33 = K + 4μ/3, C12 = C23 = C13 = K − 2μ/3,
C44 = C55 = C66 = μ, and all other vanishing.

The compliance tensor S is the inverse of the elasticity tensor, i.e., S · C = 1, with 1

the identity matrix. It relates the resulting strain to a prescribed stress ε = S · σ and
reads

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1/E (3K−2μ)
18Kμ

(3K−2μ)
18Kμ

0 0 0
(3K−2μ)

18Kμ
1/E (3K−2μ)

18Kμ
0 0 0

(3K−2μ)
18Kμ

(3K−2μ)
18Kμ

1/E 0 0 0

0 0 0 1/μ 0 0
0 0 0 0 1/μ 0
0 0 0 0 0 1/μ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(1.47)

Its components are also symmetric with S11 = S22 = S33 = 1/E, S12 = S23 = S13 =
(2μ − 3K)/18Kμ, S44 = S55 = S66 = 1/μ, and all others vanishing. It is remarkable
that the diagonal elements of S are the inverse of the Young and shear moduli. This
follows from the fact that, from this perspective, the stress is prescribed and the strain
components relax, thus corresponding to the case described in section 1.5.2.

In the following, in Paper IV, and in Paper V, to describe anisotropic materials, we
use the following notation for the Young and shear moduli resulting from our numerical
calculations:

Exx = 1/S11, Eyy = 1/S22, Ezz = 1/S33,

Gzy = 1/S44, Gzx = 1/S55, Gxy = 1/S66. (1.48)

1.6 Viscoelasticity

The elastic treatment so far has assumed that we are observing deformation under com-
plete relaxation, with stresses and strains equilibrating each other. In general, however,
stress and strain are related via a time-dependent relationship

ε(t) =

∫ t′=∞

t′=−∞
χ(t − t′) dσ(t′) =

∫ ∞

−∞
χ(t − t′) σ̇(t′)dt′ (1.49)

with σ and ε two elements of the stress and strain tensors and χ the linear response
function. Both stress σ(t) and strain ε(t) are time-dependent and χ(t − t′) vanishes for
t′ > t. We can write σ(t) and χ(t) via their Fourier transform as

σ(t) =
1√
2π

∫ ∞

−∞
σ(ω)eiωtdω and χ(t − t′) =

1√
2π

∫ ∞

−∞
χ(ω)eiω(t−t′)dω. (1.50)

Substituting χ(t − t′) from Eq. (1.50) in Eq. (1.49), we obtain

ε(t) =

∫ ∞

−∞
iωχ(ω)σ(ω)eiωtdω, (1.51)
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which implies ε(ω) = iωσ(ω)χ(ω).
We define the dynamic (complex) modulus E(ω) as the ratio between stress and strain

amplitudes in the frequency domain

E(ω) =
σ(ω)

ε(ω)
=

1

iω χ(ω)
. (1.52)

It represents the ratio of stress and strain amplitudes in the case of a single-frequency
oscillating deformation and in the stationary regime. It is composed of storage and loss
moduli E(ω) = E ′(ω) + iE ′′(ω) corresponding, respectively, to the real and imaginary
parts. The former is related to the elastic time-dependent deformation, whereas the
latter provides a dissipative contribution. The phase lag δ(ω) = arctan[E ′′(ω)/E ′(ω)] is
the oscillation delay between driving stress and strain response in the stationary regime.

1.6.1 Hookean and Dashpot Elements

E
a) b)

c) E

Figure 1.10: Basic rheological elements: a)
elastic Hookean element of modulus E, b)
dashpot of viscosity η, and c) Kelvin-Voigt
model.

The basic elements to model viscoelastic-
ity are springs and dashpots [84]. The for-
mer, stylized in panel a) of Fig. 1.10 corre-
spond to elastic elements of Young modu-
lus E. When the relaxation rates are much
quicker than the ones over which the cor-
responding stress σE(t) and strain εE(t)
vary, the Hookean model describes a one-
dimensional, time-dependent stress-strain
relation equivalent to Eq. (1.45)

σE(t) = EεE(t). (1.53)

Over short timescales, instead, the
dashpot model represented in panel b) of
Fig. 1.10 resists a constant deformation by
opposing a stress ση(t) proportional to the strain rate ε̇η(t). Such a resistance is related
to an effective viscosity η of the material and leads to the following stress-strain rela-
tionship:

ση(t) = ηε̇η(t). (1.54)

Here, the dot indicates a time derivative.

1.6.2 Kelvin-Voigt Model

The Hookean and dashpot models describe, respectively, completely elastic or viscous
material responses. More realistic macroscopic models combine these two ingredients
multiple times in series or in parallel to describe viscoelastic systems [84].
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1.7 Elasticity of Spring Lattices

The two simplest combinations of the above described elements are obtained by setting
them either in series or in parallel and are called Maxwell and Kelvin-Voigt models,
respectively. For crosslinked polymeric materials, i.e., elastomers, the former describes
well the short-time behavior, whereas the latter is particularly appropriate for the long-
time behavior. In the following we will describe only the Kelvin-Voigt model because, as
we will show, it reflects the dynamics of the normal modes in our dipole–springs systems.

The Kelvin-Voigt model is composed of an elastic and a dashpot in parallel, see panel
c), Fig. 1.10. Therefore, each element adds to the total stress σ(t) = σE(t) + ση(t). On
the contrary, the strains are equal because both ends of the elements are constrained
together: ε(t) = εE(t) = εη(t). By using the relationships for spring and dashpot as in
Eqs. (1.53) and (1.54), we obtain

σ(t) = EεE(t) + ηε̇η(t) = Eε(t) + ηε̇(t) (1.55)

Taking the Fourier transform on both sides leads us to the expression for the dynamic
Kelvin-Voigt modulus

E(ω) =
σ(ω)

ε(ω)
= E + iωη. (1.56)

It describes a material which is basically a solid over the longer times (low-ω limit) and
of constant viscosity. Furthermore, it predicts a crossing point between storage and loss
parts of the dynamic moduli, which occurs at ωc = E/η. This is a typically accurate
description of elastomers in the low-ω regime [85–87]. Finally, the complex dynamic
modulus E(ω) is typically denoted by real and imaginary parts as E(ω) = E ′ +iE ′′, i.e.,
storage and loss moduli. In the Kelvin-Voigt model, E ′ = E and E ′′ = ηω.

1.7 Elasticity of Spring Lattices

The main property of elastomers is the their elastic, reversible deformability. Since we
study our systems near equilibrium, every displacement or deformation contributes, to
lowest order, quadratically to the elastic energy. Therefore, it is natural to represent our
material via a network of linear springs.

As a first step, we investigate the properties of regular spring networks arranged on
regular lattices. The network nodes correspond to lattice sites and the springs are set
onto neighbor-connecting vectors. The deformational energy and force of a linear spring
connecting two network nodes via the vector r read, respectively,

vel(r) =
Kspr

2

(
r − �0

)2
and − ∂vel

∂rα
(r) = −Kspr

(
r − �0

)rα

r
(1.57)

with r = |r|, Kspr the elastic constant of the spring, �0 its initial length, and α = x, y, z.
Additionally, Kspr/�0 represents the Young modulus of the spring.
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When the springs are set on a network with nodes located at Ri (i = 1 . . . N), the
total elastic energy and forces Fi are given by the contributions of all springs

U el =
1

2

N∑
i,j=1
j �=i

vel(rij) and Fα
i = − ∂vel

∂Rα
i

(Ri) =
N∑

j=1
j �=i

∂vel

∂rα
ij

(rij) (1.58)

with rij = Rj − Ri, rij = |rij|, and as further detailed in appendices B and C of
Paper IV. Finally, we give the expression for the Hessian matrix of the total energy, the
elements of which read

Hαβ
ij =

∂2U el

∂Rα
i ∂Rβ

k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− ∂2vel
ik

∂rα
ik∂rβ

ik

(i �= k),

N∑
j=1
j �=i

∂2vel
ij

∂rα
ij∂rβ

ij

(i = k).

(1.59)

It involves calculation of the second derivatives of the pair harmonic interaction

∂2vel

∂rβ∂rα
= Kspr

[
rαrβ

r2
+ (r − �0)

δαβr2 − rαrβ

r3

]
. (1.60)

In practice, when all the degrees of freedom are arranged into a 3N -dimensional vector
|R〉, the Hessian H is represented by a 3N × 3N matrix.

In the following, we start by static considerations. That is, we consider systems that
are given the time to undergo complete relaxation of the energy U (for a spring network
and in the absence of other interactions, U = U el) given by the condition

∂U el

∂Rα
i

= 0 (i = 1 . . . N, α = x, y, z). (1.61)

Moreover, in our mesoscopic calculation we consider systems undergoing complete re-
laxation and in the absence of thermal fluctuations.

The elasticity tensor is defined, for a system in equilibrium, as [88]:

Cαβμν =
1

V

∂2U el

∂εαβ∂εμν

(1.62)

with V the volume of the system, εαβ the strain tensor, and α, β, μ, ν = x, y, z.
If the network is deformed homogeneously and a primitive lattice cell can be defined

(springs included) in a way that the whole network can be constructed by periodically
repeating it, we may define the energy per lattice-cell as

Uc =
U el

Nc

=
1

2

∑
n∈N0

vel(rn) (1.63)
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K1

K2
K1

K2

a2

a1

b1

b2

Figure 1.11: Rectangular lattice of parameters a1 and a2. Springs of constant K1 and
K2 are set along nearest- and next-nearest neighbors.

where Nc is the total number of cells, vel is the pair potential, and the sum is over the set
N0 identifying lattice sites the connecting springs of which are included in the primitive
cell.

Thus, we introduce the volume of the cell Vc such that V = VcNc and, as described
similarly in appendix E of Paper IV, we obtain the following expression for the elasticity
tensor

Cαβμν =
1

2Vc

∑
n∈N0

rα
n

∂2vel(rn)

∂rβ∂rμ
rν
n. (1.64)

From this point, the Young and shear moduli can be derived in two equivalent ways.
One possibility, as described in appendix E of Paper IV, is to compute Eq. (1.64) with the
additional conditions of complete relaxation for remaining elements of ε. Alternatively,
one can compute the compliance tensor S by inversion of C and then look at the reciprocal
of its diagonal elements, see Eq. (1.47). The two methods are equivalent since both
prescribe a stress applied along one direction and allow relaxation for the remaining
ones.

1.7.1 Square and Rectangular Lattices

The simplest case is represented by two-dimensional square and rectangular lattices.
The elastic moduli have the unit of measure of a stress, which, in turn, is defined as
a force divided by the measure of the boundary on which it is applied. Thus, elastic
moduli and stresses in 2D have the dimension of force over length.

The rectangular spring network is generated by the lattice vectors b1 = (a1, 0) and
b2 = (0, a2). Furthermore, the volume (area) Vc of the unit cell is given by Vc = a1 · a2

and we denote by d2 = a1
2 + a2

2 the square of the cell diagonal. We set vertical
and horizontal springs of elastic constant K1 between nearest neighbors and diagonal
springs of constant K2 between second-nearest neighbors (diagonally across the unit
cell) as depicted in Fig. 1.11. The rectangular lattice has one lattice site per unit cell.
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Furthermore, there are on average one horizontal, one vertical, and two diagonal springs
per cell, see Fig. 1.11. In Voigt notation we write σ = (σxx, σyy, σyz), ε = (εxx, εyy, 2εyz),
and σ = C · ε. The elasticity tensor C for a homogeneous lattice deformation is obtained
from Eq. (1.64) and reads

C =

⎛⎜⎝a1

a2
K1 + 2a1

3

a2d2 K2
2a1a2

d2 K2 0
2a1a2

d2 K2
a2

a1
K1 + 2a2

3

a1d2 K2 0

0 0 2a1a2

d2 K2

⎞⎟⎠ . (1.65)

We immediately notice that neglecting diagonal springs (K2 = 0) leads to C33 = 0, which
implies that the system is basically unstable under shear deformations. This soft-shear
mode follows from the lack of diagonal springs. Nevertheless, such an omission is found
in the literature [89].

The Young and shear moduli result from the reciprocal of the diagonal elements of the
compliance tensor S = C−1, with −1 indicating the inverse matrix. We find the Young
and shear moduli to be, respectively,

Exx =
1

S11

=
a1

a2

K1
K1 + 2K2

K1 + 2a2
2

d2 K2

, (1.66)

Eyy =
1

S22

=
a2

a1

K1
K1 + 2K2

K1 + 2a1
2

d2 K2

, (1.67)

Gxy =
1

S33

= C33 =
2a1a2

d2
K2. (1.68)

A numerical evaluation of the Young moduli of rectangular spring networks was de-
scribed in Paper III. There, the elastic moduli are calculated for different aspect ratios
and system sizes. Moreover, two numerical schemes are implemented: affine and non-
affine deformations. Affine transformations (AT) rescale distances along each direction
by a fixed ratio, see Fig. 1.12 bottom left panel. Thus, in 2D, axial affine deformation
can be described via two independent degrees of freedom: axial strain along the x- and
axial strain along the y-direction. Non-affine transformations (NAT), instead, allow ev-
ery degree of freedom (here, each lattice site) to move independently, see Fig. 1.12 top
left panel and relative inset.

We prescribe the boundaries of the systems in Fig. 1.12, right panel, to undergo a
small, prescribed amount of displacement in the x-direction, while the remaining de-
grees of freedom relax. Then, the elastic moduli follow from Eq. (3) of Paper III, which
corresponds to the second derivative of the energy with respect to the boundary displace-
ment. For comparison with our above considerations, Eqs. (3) and (4) in Paper III need
to be multiplied by an additional geometrical prefactor a1/a2, the base/height aspect
ratio in our case. This makes them scale correctly with the shape of the undeformed unit
cell or of the overall undeformed network. Since NAT allow for more degrees of freedom
and thus more relaxation compared to AT, the Young moduli calculated for the former
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Figure 1.12: Examples of non-affine (NAT, top left panel) and affine transformations
(AT, bottom left panel) for an imposed amount of strain εxx = 1.5 along the x-direction.
The large amount of axial strain is chosen to enhance and demonstrate the non-affinity
of the displacements, see inset. Right-side panel: Non-affine Young modulus ENAT

along the x-direction of finite-sized rectangular spring networks for different aspect ratios
r0 = a1/a2 and with increasing number of lattice sites. Fits with a power law EN/k =
E∞ + αNβ and resulting E∞ fit parameters are shown. Reproduced from Ref. 90 with
permission. c© AIP Publishing. All rights reserved.

(ENAT ) are always lower than the affine ones (EAT ). Therefore, affine transformations
generally result in stiffer moduli, i.e., EAT ≥ ENAT .

In the limit of large systems, and in the case of regular spring networks, the two
methods converge to the same limit, see Tab. 1.1. From the fit of the non-affine Young
moduli with increasing number of lattice sites N , we extrapolate the asymptotic value it
converges to, E∞. Comparison between Eq. (1.66) and the fit-obtained E∞ multiplied by
the appropriate geometrical factor, see Tab. 1.1, indicates excellent agreement between
our numerical methods and the analytical limit, thus confirming the validity of our
numerical results.

E∞, Paper III Exx, Eq. (1.66)
a1/a2 = 5/2 5.888 k 435 k/74 � 5.878 k

Square (a1 = a2) 1.504 k 3 k/2 = 1.5 k
a1/a2 = 1/2 0.579 k 15 k/26 � 0.577 k

Table 1.1: Young moduli along the x-direction for rectangular lattices of different aspect
ratios. Comparison with fit data in Fig. 1.12 must take into account an additional
geometrical multiplicative factor a1/a2, in this table already included.
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1.7.2 Cubic Lattice

The 3D cubic lattice is generated by the basis vectors b1 = (a, 0, 0), b2 = (0, a, 0), and
b3 = (0, 0, a). The cubic lattice has one lattice site per unit cell, the volume of which
is Vc = a3. To each cell belong nine springs: one of initial length a for each basis
vector and two diagonal ones of length a

√
2 for each face of the cubic cell. Similarly to

the rectangular/square 2D lattice case, we set springs of elastic constant K1 along the
nearest neighbors, i.e., the three basis vectors and K2 between second-nearest neighbors
along the face diagonals of the cells.

The elasticity tensor follows from Eq. (1.64). In Voigt notation it reads

C =
1

a

⎛⎜⎜⎜⎜⎜⎜⎝
K1 + 2K2 K2 K2 0 0 0

K2 K1 + 2K2 K2 0 0 0
K2 K2 K1 + 2K2 0 0 0
0 0 0 K2 0 0
0 0 0 0 K2 0
0 0 0 0 0 K2

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.69)

In the three-dimensional case, again, we find that neglecting second-nearest neighbor
springs (K2 = 0) [89], leads to vanishing shear moduli and a system unstable under
shear.

The Young moduli, because of the symmetries of the cubic lattice, are equivalent along
the three Cartesian directions. Likewise, because of the symmetry under π/2-rotations,
the shear moduli in the xy, xz, and yz geometries are equal. This leads to

Exx = Eyy = Ezz =
1

a

(K1 + K2)(K1 + 4K2)

K1 + 3K2

, (1.70)

Gzy = Gzx = Gxy =
K2

a
. (1.71)

In the case described in section VIII of Paper IV, we set the lattice parameter a = l0,
K1 = k/|b1| = k/l0 the nearest-neighbor interaction, and K2 = k/|b1 + b2| = k/l0

√
2

the second-nearest neighbor elastic constant. This leads to E = (9 + 4
√

2)/7 k/l0
2 �

2.094 k/l0
2. The result is in good agreement with the Young modulus E � 2.17 k/l0

2

calculated in Paper IV for a 15 × 15 × 15 cubic lattice, see also Fig. 1.16 below.

1.7.3 Face-Centered-Cubic Lattice

A three-dimensional face-centered-cubic (fcc) lattice is generated by the basis vectors
b1 = (a, a, 0), b2 = (0, a, a), and b3 = (a, 0, a). Springs of constant K1 are set between
nearest neighbors. Each cell contains, on average, four lattice sites, twelve springs, and
has volume 2a3.
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1.7 Elasticity of Spring Lattices

From Eq. (1.64) we write the elasticity tensor in Voigt notation

C =
1

2a

⎛⎜⎜⎜⎜⎜⎜⎝
2K1 K1 K1 0 0 0
K1 2K1 K1 0 0 0
K1 K1 2K1 0 0 0
0 0 0 K1 0 0
0 0 0 0 K1 0
0 0 0 0 0 K1

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.72)

Here, there is no need to introduce additional springs between others than the nearest
neighbors to obtain a stable network.

Because of the fcc lattice symmetries, the three main Young and shear moduli are all
equivalent and result

Exx = Eyy = Ezz =
2

3

K1

a
, (1.73)

Gzy = Gzx = Gxy =
K1

2a
. (1.74)

In section IX of Paper IV, we set K1 = k/|b1| = k/a
√

2 as well as a = 2−1/3l0. This
leads to E = (27/6/3) k/l0

2 � 0.748 k/l0
2. The result is in excellent agreement with

the Young modulus E � 0.75 k/l0
2 calculated in Paper IV for an fcc lattice of 9× 9× 9

cells.

1.7.4 Scaling of the Spring Constants

As a final remark, in Paper V we describe the polymer matrix via a randomized fcc
spring network. Each spring constant scales proportionally to the initial length of the
spring, i.e., Kspr = k�0, compare to Eq. (1.57). The stiffness of a block of elastomer,
here, between two particles, depends on the ratio between cross-section and length. It
is thus proportional to the typical distance between two particles. As a consequence, k
sets the spring constant per unit length of each single spring as well as the natural unit
of measure of the overall elastic moduli. Indeed, our numerical tests confirm that, with
decreasing mesh size of the spring network, this scaling of the elastic constants yields
converging elastic moduli.

This scaling, however, can be likewise deduced from Eqs. (1.69) and (1.72). Our scope
is to build a spring network that mimics the polymer matrix. The embedded particles
are much bigger than the polymeric mesh size and basically experience it as an elastic
continuum. Therefore, the elastic moduli of the overall spring network must not depend
on the mesh size of the network. Thus, in order that the elastic moduli not depend on
a, the elastic constants in Eqs. (1.69) and (1.72) must scale like K1, K2 ∝ a.
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1.8 Ferrogels and Magnetoelastomers

Ferrogels and Magnetoelastomers [2, 30–33, 91] are hybrid materials obtained by em-
bedding magnetic particles in a polymeric elastic matrix. They combine the elastic,
reversible deformability typical of polymeric gels and rubbers [3,92] with the character-
istic responsiveness to magnetic fields of ferrofluids [21,22]. The interest in these mate-
rials is prompted by a unique range of possible applications, e.g., soft actuators [93,94],
tunable vibration absorbers [95, 96], adjustable damping devices [97], magnetic field
sensors [98, 99], electromagnetic screens [100], or acceleration detectors [51,101].

The central feature of magneto-elastic materials is the “magneto-mechanical” cou-
pling [36–38]. Such a coupling emerges, for instance, when a polymer solution, in which
magnetic particles of mesoscopic size are dispersed, is crosslinked. After the curing pro-
cess, the polymers form an interconnected three-dimensional network. The magnetic par-
ticles can be, for instance, chemically bound to the polymer network or simply trapped
in it, because their size is typically much larger than the mesh spacing [36,102,103]. In
this way, when the particles interact with an external magnetic field or with each other,
they are subject to forces and torques, which are then transmitted to the matrix. The
matrix, in turn, acts as a medium transmitting elastic interactions [79–81].

As a consequence, magnetic interactions directly affect strain [40–43, 104] and elastic
moduli [10, 11, 44–50] of the hybrid material. Other properties, e.g., relaxation times
[105], resonance frequency [51], or electrical impedance [52], can as well be tuned by
applying external fields. Additional examples of characteristic behaviors are the buckling
of chains of particles [12], superelasticity [106,107], or reversal of the magnetic stiffening
effect at different oscillating frequencies, see Paper IV and Paper V.

The main features of these materials, however, are the variations in shape and stiff-
ness in response to external magnetic fields. These two aspects have often been observed
and measured in experiments [10, 11, 40–50, 104] and modeled in theory. Macroscopic
theory [38, 98, 108–111] usually treats both the elastomer and the magnetic particles as
a homogeneous continuum. Finite-element methods [39, 112–115] also treat both ele-
ments as continua but can spatially resolve the two components. Mesoscopic models
can resolve the individual magnetic particles and usually coarse-grain the polymer ma-
trix, representing it via a homogeneous continuum [116], networks of springs [Paper III,
Paper IV, Paper V], or meshes of almost-incompressible tetrahedra [106, 107]. Some
models are even more detailed and resolve both magnetic particles and individual poly-
mer chains. The latter are typically modeled by chains of beads, each representing a
small, coarse-grained piece of polymer [67,117], see also Paper I.

In the following, we describe the deformation and stiffening (or softening) effects
in mesoscopic dipole–spring models. The great strength of this approach consists in
allowing to resolve the particle arrangement and estimate its impact on the material
properties. We set all the dipoles aligned along the same direction. This situation
is representative, for instance, of paramagnetic particles in a strong external field or
ferromagnetic particles in a saturating external field. The elastic polymer matrix is here
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1.8 Ferrogels and Magnetoelastomers

(a)

(b) (c)

)

Figure 1.13: (LEFT) Lines of force resulting from the dipole–dipole interaction on one
dipole at position (x, y), see Eq. (1.11), while another dipole is centered in the origin,
and are both aligned in the y-direction. (RIGHT) Initial displacement upon switching
on the magnetic moment m ‖ ŷ (color gradient) in (a) rectangular and (b, c) triangular
with (b) vertical or (c) horizontal rows of dipoles on the dipole–spring lattices.

represented by a network of springs. In Paper III and Paper IV the springs directly
connect the centers of the particles, whereas in Paper V we set extra network nodes
homogeneously in the interparticle spaces.

1.8.1 2D and 3D Field-Induced Deformation

The deformation of magnetoelastomers under external magnetic fields has been observed
since the very early experiments [40, 104, 118]. In the case of a homogeneous external
magnetic field, the phenomenon is called “magnetostriction” [41] or “magnetodipolar
striction” [39]. It can result in elongation [98, 119] or contraction [120, 121] along the
field direction. Two-dimensional dipole–spring models help us understand the dipole–
dipole contribution to magnetostriction in the linear elasticity regime. For simplicity
we will assign identical dipole moments to all particles and set them aligned along the
y-direction to represent a system with a finite net magnetization.

In the simplest, exemplary case of magnetic particles arranged on a rectangular lattice,
see Fig.1.13 (a), the kind of deformation is, for small magnetic moments m, determined
by the nearest-neighbor orientation. When m is set parallel to the nearest neighbor
vector (i.e., parallel to ŷ), the particles attract each other along the m-direction and
repel each other perpendicularly to that, see Fig. 1.13, left-side panel. This leads to
a contraction of the lattice along m and transversal expansion. The perpendicular
extension to m is caused by the elastic response of the spring network to the axial
contraction as well as by the dipole–dipole direct repulsion.
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The behavior of triangular lattices depends strongly on the relative orientation of
lattice and magnetic moments. In the case of a triangular lattice with rows parallel
to m, see Fig. 1.13 (b), the direct attraction in the y-direction dominates and causes
a contraction, with only a lesser impact on transversal deformation. Interestingly, the
triangular lattice with rows perpendicular to m shows more complex behaviors. Albeit
the nearest neighbors along the x-direction repel each other, the overall tendency is to
align with the neighbors along the y-direction. As a result, the lattice shrinks in both
the x- and y-direction. The deformation in the x-direction is, however, larger than along
y and as a result the overall aspect ratio stretches in the m-direction. In this case the
main deformation drive is the tendency of the moments to align along the m-direction.
This differs from the cases (a) and (b) of Fig. 1.13 because there the moments of the
neighbors are already aligned and this leads directly to contraction.

The two-dimensional cases are helpful to understand the three-dimensional deforma-
tions. In 3D we conventionally set m oriented along the z-direction. As expected, the
cubic lattice shrinks in the m-direction for m ‖ b3, see section VIII of Paper IV, and
expands in the perpendicular directions, analogously to a 2D rectangular lattice. Inter-
estingly, the fcc lattice elongates along m, see section IX of Paper IV, and contracts
transversally. This, as in the case of the triangular lattice with horizontal rows, happens
because the configuration of dipoles aligned along m is energetically favored.

Finally, the more realistic case of disordered distributions was studied in both Paper IV
and Paper V with similar approaches. In particular, the distributions studied in Paper V
with resulting deformations showed in Fig. 1.14, are acquired from experimental mea-
surements on samples characterized by homogeneous, isotropic particles distributions.
In both cases we observe, for large enough magnetic interactions, an overall contraction
of the system in all directions, see Fig. 12 of Paper IV. This deformation is promoted
by the formation of hardened [74] chain-like aggregates, see Fig. 1.14, left panel, and
section X A of Paper IV. It results in extensive changes in the system structure. Inter-
estingly, for small strength of magnetic interactions, see Fig. 1.14, right panel, inset (a),
the investigated isotropic sample with high volume fraction shows a trend of elongation
along m.
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Figure 1.14: (LEFT) (a) contraction and chain formation in a homogeneous, isotropic
distribution of magnetic particles in an elastic matrix under increasing magnetization
M = |M |, expressed in reduced units of M0, see Paper V. The particle arrangement
was extracted by X-ray micro-computed tomography from a real experimental sample
of 40 wt% of magnetic particles. The number of chain-like aggregates refers to the scale
on the left ordinate and their average length on the right ordinate. The inset depicts the
average angle between the chains and the magnetization direction. On the panels below
we show the system (b) initially and (c) under full magnetic interactions. (RIGHT)
Magnetostriction of isotropic particle arrangements (see left panel) of volume fraction
of 2.3% (15 wt%) and 5.6% (40 wt%). Inset (a): initial elongation for small strength
of magnetic interactions. Inset (b): exemplary deformation driven by discrete events of
aggregating pairs. Reproduced from Ref. 122.
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1.8.2 Static Elastic Moduli

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

0 0.02 0.04 0.06 0.08 0.1

E
N

A
T
(m

/m
0
)/

E
N

A
T
(m

=
0

)

m/m0

r0=2.50
r0=1.90
r0=1.60
r0=1.30
r0=1.00

Figure 1.15: Normalized Young modu-
lus of rectangular dipole–spring networks
with varying aspect ratios r0 for increas-
ing strength of the magnetic moments m,
rescaled by our reduced unit m0. Repro-
duced from Ref. 90 with permission. c© AIP
Publishing. All rights reserved.

The case of two-dimensional arrangements
of particles can be very helpful to under-
stand the mechanisms behind the varia-
tions in stiffness effect in the presence of
an external magnetic field. Here, we con-
sider the dipolar particles and the spring
network lying onto the x-y plane. The
Young modulus is measured for imposed
deformations along the x-direction (indi-
cated by the axis labeled by ε in Fig. 1.15).
First, if the magnetic moment m, iden-
tical for all particles, is set perpendicu-
lar to the plane, the Young modulus al-
ways increases, see section IV E of Pa-
per III. When m is, instead, set along the
x-direction, the modulus has an increas-
ing trend only for aspect ratios above a
certain threshold (r0 � 1.9), see Fig. 1.15.

This changing behavior is determined
by the orientation of the nearest neigh-
bors. In the case r0 = 2.5 of Fig. 1.15,
the distance between the nearest neighbors perpendicular to m (y-direction) is much
smaller than along the m-direction. Thus, the strongest magnetic interactions for this
geometry are repulsive and here the modulus shows a clear trend of initial increase with
m = |m|. Contrariwise, for lower r0, the neighboring distance in the m-direction be-
comes smaller. In this regime, the modulus is always decreasing with m. This effect
happens in a similar fashion for r0 � 1.9 at higher m-values. There, strong magnetic
attraction has deformed the initial structure and reduced the aspect ratio.

Let us consider the dipole–dipole potential as in Eq. (1.10) for two neighboring dipolar
particles with m1 = m2 = m separated by the vector r. On the one hand, when the
dipoles are parallel and arranged side-by-side, m · r = 0 and the potential reduces to
vdd = +μ0m

2/4πr3. On the other hand, if m ‖ r, the dipole–dipole attraction is stronger
in magnitude by a factor 2 and reads vdd = −2μ0m

2/4πr3.

The crucial point is that the second derivative vdd ′′(r) of the dipole–dipole poten-
tial is positive in the repulsive case and negative in the attractive case. Thus, since
the elastic moduli are essentially related to the second derivatives of the energy, see
Eq. (1.62), prevailing repulsive interactions make the energy landscape around the equi-
librated state more convex with increasing m. Attractive dipole–dipole interactions,
instead, contribute negatively with increasing m to the overall second derivatives of the
total energy, leading to decreasing elastic moduli. This is evidenced in Fig. 1.15 by the
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cases of r0 � 1.9, in which repulsion is dominant, and r0 � 1.9, for which magnetic
attraction is preponderant instead.
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Figure 1.16: (a) Young and (b) shear mod-
uli of a cubic dipole–spring network for in-
creasing dipole moments m of strength m
and oriented in the z-direction. Reproduced
from Ref. 123 with permission. c© AIP Pub-
lishing. All rights reserved.

Summarizing, we have drawn a con-
nection between the second derivatives
of the interactions and the elastic mod-
uli. The simplified, exemplary, two-
dimensional case gives us the right insight
to investigate 3D cases. To understand
stiffening in three dimensions, it is useful
to begin with the cubic lattice, which is
the natural extension of the rectangular
case discussed above.

The magnetic moments, equal for all
particles, are set along the lattice gen-
erating vector b3, see section 1.7.2, i.e.,
along the z-direction. Thus, interactions
along the z-axis are attractive and in the
x- and y-direction repulsive. As a con-
sequence, following the argument above,
we expect the Young modulus in the z-
direction to decrease. Indeed, as shown in
Fig. 1.16 (a), the Young modulus Ezz(m),
see Fig. 1.17, decreases with increasing strength of magnetic interactions. In the
transversal directions, Exx(m) and Eyy(m) have an increasing trend, which we attribute
to the dipole–dipole repulsion along the x- and y-directions.

F

-FEzz

x

z
y

Gzy F

-F

Figure 1.17: Sketch of the
stress-strain geometries deter-
mining the moduli Ezz and
Gzy.

As already observed in section 1.7.2, the agreement
with the Young modulus obtained from the compliance
tensor calculated in Eq. (1.64) is excellent. Further-
more, by including in Eq. (1.64) the second deriva-
tives of the magnetic interactions (see appendix B of
Paper IV) we can calculate the contribution to lowest
order in m to the elastic moduli, see also appendix E
of Paper IV. The result, depicted by the dashed lines
in Fig. 1.16 (a), is in excellent agreement with the nu-
merical results. Notice that the analytical curves are
vertically shifted by ∼ 0.08k/l0

2 for a better compari-
son of the initial quadratic trend.

The shear modulus that we indicate as Gzy corre-
sponds to shear deformations with the shear plane con-
taining ẑ but the macroscopic shear forces applied per-
pendicular to it, see Fig. 1.17. Increasing magnetic in-
teractions tighten the alignment of dipoles in the m-direction. Therefore, shear deforma-
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Figure 1.18: (LEFT) (a) Young and (b) shear moduli for increasing magnetic inter-
actions of our disordered particle arrangements presented in Paper IV. Insets zoom
in onto the respective low-m behaviors. Reproduced from Ref. 123 with permission.
c© AIP Publishing. All rights reserved. (RIGHT) Young 〈Ezz〉 and shear 〈Gzy〉 moduli
for increasing magnetic interactions in our isotropic system containing an experimen-
tally measured particle distribution of volume fraction of 5.6% (40wt%) as presented in
Paper V. Bars for M < 5M0 are smaller than the ones at M = 5M0. Reproduced from
Ref. 122.

tions as the one in Fig. 1.17 tend to de-align the dipoles. This is growingly hindered by
increasing dipole–dipole attraction and thus the shear modulus Gzy in Fig. 1.16 increases
with increasing m.

Moving on to more realistic, disordered distributions in 3D, we find a direct connection
between the formation of chain-like aggregates in a “hardened” state [74] and large
increases in the elastic moduli. The formation of chains-like structures, as showed in
Fig. 1.14 and detailed in sections X A of Paper IV and V A of Paper V, introduces
anisotropy in the system. This is reflected by a change of the material properties, in
particular, the elastic moduli, see Fig. 1.18.

In both our Paper IV and Paper V we find common traits in the behavior of the elastic
moduli. First, the initial behavior with increasing magnetic interactions is basically flat
or even slightly decreasing, see Fig. 1.18. In the regime of M � 5M0 of Figs. 1.14
and 1.18, right panel, the formation of chain-like clusters is under way and this process
appears to soften the material. Nevertheless, such particle arrangements are stable
configurations of the system, as evidenced by the moduli always being positive.

After that, a “hardened” [74] regime emerges. Here, chain-like aggregates of significant
size have formed (m � 0.06m0 and M � 5M0 in, respectively, left and right panels of
Fig. 1.18). The particles in the chains are “locked-in” by the counterbalance of strong
dipole–dipole attraction and strong steric repulsion. In this state, the energy landscape
around the equilibrated state is extremely steep and convex as a result of the “locking”.
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Intuitively, a macroscopic strain can involve deformations of these hardened chains
that now span large portions of the system and include an extensive amount of the
particles. Thus, in agreement with experimental observations [10, 11, 46], we find large
increases in both Young and shear moduli, see Fig. 1.18 (a) and (b), signaling an overall
hardening of the system. Moreover, our numerical calculations in Paper IV reveal a
significantly larger increase of the Young modulus in the magnetic-field direction, com-
pared with the transversal ones. Qualitatively, this has been observed in experiments,
too [11].

1.8.3 Dynamic Elastic Moduli

In Paper IV we have described a method for calculating the frequency-dependent elas-
tic moduli of finite-sized discretized particle–springs systems in the overdamped limit.
This calculation directly connects the dynamic moduli with the “relaxational” (normal)
modes of the network [105].

The static elastic moduli represent the vanishing-frequency limit of the dynamic mod-
uli. They are a property of the ground state of the particle distribution. The normal
modes are the eigenvectors |vn〉 of the Hessian matrix of the total energy, see Eq. (1.59)
supplemented by corresponding steric and magnetic energetic contributions, in our case.
Each of the resulting n modes has a corresponding eigenvalue λn, n = 1 . . . D, with D
the number of degrees of freedom. The static moduli can be expressed as a sum contain-
ing the normal modes and their eigenvalues, via a definition equivalent to Eq. (1.62),
see section V of Paper IV. A key ingredient in this derivation is the construction of a
mesoscopic force field |f〉 that represents an external macroscopic stress of magnitude
σ = F/S resulting from a force F applied on a boundary of surface S. Such a force field
is applied in the preselected direction and results in neither net overall force nor torque
on the system, see section V B of Paper IV. Differentiating twice with respect to the
stress intensity we obtain the static modulus as

E =
L

S

[
1

F 2

D∑
n=1

(fn)2

λn

]−1

, (1.75)

where L is the distance between the boundaries on which the forces are applied and
fn = 〈f |vn〉 is the projection of the mesoscopic force field onto the n-th mode.

The final step to obtain the dynamic moduli is to write down the coupled dynamic
equations of motion of the system. Because of the large dissipation typically happen-
ing on the mesoscopic scale in the polymeric network, the motion is considered to be
overdamped, i.e., the inertial contribution is negligible, see section VI of Paper IV. The
equation of motion can be decomposed over the normal modes. Thus, we obtain D
decoupled differential equations, each describing the dynamics of a single mode. Each
mode behaves as an independent Kelvin-Voigt element as in section 1.6.2, see Eq. (24)
of Paper IV. The response of the system is calculated for a given frequency ω of the
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imposed force field. Finally, as detailed in section VII of Paper IV, the stress-strain ratio
as in Eq. (1.56) yields the elastic moduli

E(ω) =
L

S

[
D∑

n=1

fu
n

2

λn + icω

]−1

, (1.76)

where L is the distance between the boundaries of surface S on which the forces are
applied, fu

n = 〈f |vn〉/F is the coefficient obtained by projecting the normalized meso-
scopic force field representing the external stress onto the n-th mode, and c is a parameter
related to the friction associated with internal deformations in the system.
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Figure 1.19: Storage (a) Young and (b)
shear moduli of typical 3D spring networks
extracted from measurements on real exper-
imental samples in the absence of magnetic
effects. The phase lag δ = arctan(E ′/E ′′) is
plotted on the right axis. Reproduced from
Ref. 122.

A characteristic example of dynamic
moduli of a spring network at vanishing
magnetization is displayed in Fig. 1.19.
Comparison with typical rheological mea-
surements suggest that our Kelvin-Voigt-
based model is particularly appropriate for
long timescales. In our notation that hap-
pens in the regime ω � 10 ω0, with ω0

our reduced units for frequency. Eq. (1.76)
describes a material that is fundamentally
a solid considering its long-time behavior.
Therefore, the storage modulus at low ω
shows a plateau and the loss modulus van-
ishes. Stress and strain are in phase in
the low-ω, quasi-static regime. Here, the
stress propagates through the whole sys-
tem because the bulk has time to relax
completely. Such a high degree of relax-
ation implies that the modulus assumes
the lowest value.

In the high-ω regime the behavior is the
opposite. The external stress oscillates
over a period much shorter than the typ-
ical relaxation time of the bulk. The sys-
tem does not have time to relax and the
whole response comes from the surface,
the localized deformation of which leads
to a high plateau of the storage moduli.
Furthermore, dissipation at this frequency
is much higher and so is the loss modulus.
Thus, stress and strain are out of phase and the phase lag reaches π/2.

In between, the connection is given by a gradual mixing of different modes. At ω = 0
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most of the contributions stem from modes involving global, collective deformations and
low eigenvalues. High-ω modes, instead, typically represent localized deformations and
have high eigenvalues.

Introducing magnetic interactions can have unexpected effects on the dynamic moduli.
In the simple case of a cubic lattice, see section VIII of Paper IV, the Young storage
moduli over the whole frequency-range show increase or decrease with increasing m in
accordance with the static case, see Fig. 1.20, left panel. Interestingly, the shear moduli
can show a nonmonotonous behavior as a function of frequency when the magnetic
interactions are increased. Specifically, the shear storage modulus G′

zy(ω), see Fig. 1.17,
switches from increasing to decreasing with m when comparing the low-ω and the high-
ω regimes. The fcc dipole–spring network (section IX of Paper IV) also features a
nonmonotonous behavior. There, however, the shear modulus G′

zy(ω) switches from
decreasing to increasing instead. Finally, our disordered fcc system (see Fig. 16 of
Paper IV) only shows increase in both Young and shear moduli over all frequencies in
the hardened (m � 0.06m0) regime.

Remarkably, our experimentally obtained particle distribution in Paper V also fea-
tures a reversal of the stiffening effect from the low- to the intermediate-ω regime, see
Fig. 1.20, right panel. As also described in section 1.8.2, the static shear modulus
G′

zy(ω = 0) increases at high magnetization (M = 7M0) as a consequence of the long
chain-like structures. At intermediate (10−1ω0 � ω � 101ω0) frequencies, however, the
shear storage modulus decreases, before increasing again at high-ω. The Young storage
modulus E ′

zz(ω), similarly to the regular lattices, shows persistent (increasing) trend for
increasing magnetic interactions at all frequencies.

Lastly, the increasing magnetization M has a strong impact on the stress-strain phase
lag, see Fig. 1.20, right panel. This always has a decreasing impact in all cases with in-
creasing magnetization M , especially for the Young modulus and at low- to intermediate-
ω. In practical terms, this means that increasing magnetic interactions help keeping
stress and strain in phase, thus effectively reducing the dissipated energy in the loading
cycle.
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Figure 1.20: (LEFT) Dynamic (a) Young and (b) shear moduli for increasing magnetic
moment m of a cubic dipole–spring network and as a function of frequency. Reproduced
from Ref. 123 with permission. c© AIP Publishing. All rights reserved. (RIGHT) (a)
Young 〈Ezz〉 and (b) shear 〈Gzy〉 dynamic moduli for increasing magnetization M in our
experimentally obtained system, see Paper V, with the scale given on the left ordinate.
Corresponding phase lags δ = arctan(E ′/E ′′) are plotted against the scale on the right
ordinate. Reproduced from Ref. 122.
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1. Introduction

Ferrogels and magnetic elastomers are fascinating materials, 
born by the union of polymeric networks and ferrofluids. Their 
amazing properties derive from the unique combination of the 
elastic behavior typical for polymers and rubbers [1] on the 
one hand, and magnetic effects characteristic of ferrofluids and 
magnetorheological fluids [2–10] on the other. One of the most 
interesting results is that their shape and mechanical proper-
ties can be externally controlled by applying a magnetic field 
[11–21]. A form of tunability, distinguished by reversibility 
as well as non-invasiveness and based on a magneto-mechan-
ical coupling is one of the most appealing properties of these 
materials. This makes them excellent candidates for use as 

soft actuators [22], magnetic field detectors [23, 24], as well 
as tunable vibration and shock absorbers [14, 25]. Moreover, 
studying their heat dissipation due to hysteretic remagnetiza-
tion in an alternating external magnetic field might be helpful 
to understand better the processes during possible applications 
in hyperthermal cancer treatment [26, 27].

Typically, these materials consist of cross-linked polymer 
networks in which magnetic particles of nano- or micrometer 
size are dispersed [16]. A central role in the coupling of mag-
netic and mechanical properties is played by the specific inter-
actions between the embedded mesoscopic magnetic particles 
and the flexible polymer chains filling the space between 
them. These couplings are responsible for a modified mac-
roscopic elasticity [12, 28, 29], orientational memory effects 
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[30, 31], and reversibility of the magnetically induced defor-
mations [15].

Many theoretical and computational studies have been per-
formed on the topic, using different approaches to incorporate 
the particle-polymer interaction. Some of them rely on a con-
tinuum-mechanical description of both the polymeric matrix 
and the magnetic component [23, 32, 33]. Others explicitly 
take into account the discrete embedded magnetic particles, 
but treat the polymer matrix as an elastic background con-
tinuum [34, 35]. Usually in these studies, an affine deforma-
tion of the whole sample is assumed. The limitations of such 
an approach for the characterization of real materials have 
recently been pointed out [36]. In order to include irregular 
distributions of particles and non-affine sample deformations, 
other works employ, for instance, finite-element methods  
[19, 37–40].

To optimize economical efficiency, a first step is the use 
of simplified dipole-spring models. In this case, steric repul-
sion and other effects like orientational memory terms can be 
included [30, 36, 41–44]. A step beyond the often used har-
monic spring potentials can be found in [42] where non-linear 
springs of finite extensibility are considered.

From all the studies mentioned above it becomes clear 
that microscopic approaches that explicitly resolve polymer 
chains are rare [45, 46], and what is particularly missing is 
a link between such microscopic approaches and the meso-
scopic models that only resolve the magnetic particles, not the 
single polymer chains. In particular, a microscopic founda-
tion of the phenomenological mesoscopic expressions for the 
model energies should be built up.

The present work is a first step to close this gap. We con-
sider an explicit microscopic description in a first simplified 
approach: a single polymer chain, discretized through mul-
tiple beads, each representing a coarse-grained small part of 
the polymer, connects two mesoscopic particles. The ends of 
the polymer chain are rigidly anchored on the surfaces of the 
two mesoscopic particles, which are spherical, can be magnet-
ized, and are free to rotate and change their distance. From 
molecular dynamics simulations on the microscopic level, 
we collect the statistics of the micro-states corresponding to 
different configurations in the mesoscopic model. Based on 
these statistics we derive effective mesoscopic pair poten-
tials, inspired by previous achievements for other polymeric 
systems [47, 48]. The subsequent step in scale-bridging, con-
necting the mesoscopic picture to the macroscopic descrip-
tion, has been recently addressed [49] for a special class of 
magnetic polymeric materials.

In the following, we first define and describe our model 
in section  2. Then, in section  3, we mention the details of 
the microscopic simulation. In section 4, we further charac-
terize the probability distribution of the mesoscopic variables, 
connecting it to a wrapping effect in section  5. After that, 
in section 6, we determine the values of mesoscopic model 
parameters based on the results of our microscopic simula-
tions. In section  7, we derive an approximated expression 
for the mesoscopic effective pair potential characterizing the 
particle configurations. In this way, we build the bridge from 
the explicit microscopic characterization to the mesoscopic 

particle-resolved models by averaging over the microscopic 
details. Last, in section  8, we consider the effect of adding 
magnetic moments to the particles and, in section 9, the effect 
of increasing magnetic interaction on the thermodynamic 
properties, before we draw our final conclusions in section 10. 
Appendix A addresses the trends in the dependences of the 
mesoscopic model parameters on varying microscopic system 
parameters, while appendix B briefly comments on the sepa-
rability of magnetic interactions in the mesoscopic picture and 
microscopic chain configurations.

2. The system

Our simplified system is composed of two mesoscopic and 
spherical particles, both of radius a, and a polymer chain 
explicitly resolved by N   =   60 beads of diameter σ and inter-
connected by harmonic springs. Here we choose the meso-
scopic particle radius a to be σ5 .

We consider steric repulsion between all described par-
ticles through a WCA potential, which represents a purely 
repulsive interaction. It is given by

⎜ ⎟
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where ′r  is the distance between the particle centers, ε denotes 
the energy scale of the potential, and σ= ′r 2c

1/6  is the cut-off 
distance. For any combination of large and small particles, σ′ 
is chosen as the sum of the radii of the respective particles, 
which is equivalent to the mean of their respective diam-
eters. In our simulations, we set ε = k T10 B , where kB is the 
Boltzmann constant and T is the temperature of the system. 
Neighboring beads within the chain are bound by means of a 
harmonic potential

( ) = ( − )′ ′V r k r r
1

2
,H 0

2 (2)

where we choose the force constant σ=k k T10 /B
2. The equi-

librium distance r0 is set to match the cut-off distance of the 
WCA-potential σ= =r r 2c0

1/6 .
The ends of the chains are bound via the same harmonic 

potential to binding sites placed below the surface of the mes-
oscopic particles, see figure 1. These binding sites are rigidly 
connected to the mesoscopic particles and follow both, their 
translational and rotational motion. Thus, when the magnetic 
particle moves or rotates, the binding site of the polymer chain 
has to follow, and vice versa. The technical details for the vir-
tual sites mechanism can be found in [50]. We identify the 
anchoring points of the polymer chain by the vectors a1 and a2, 
respectively (see figure 1). Furthermore, the distance vector 
between the two mesoscopic particle centers is indicated as r, 
with magnitude r. The angles that the vectors a1 and a2 adopt 
with respect to the connecting vectors r and -r are denoted as 
θ1 and θ2, respectively. θ1 and θ2 are zenithal angles and they 
can span the interval π[ ]0, . Last, ϕ π π∈ [− [,  is the relative 

J. Phys.: Condens. Matter 27 (2015) 325105



G Pessot et al

3

azimuthal angle between the projections of a1 and a2 on a 
plane perpendicular to r. It can be used to parametrize the rel-
ative torsion between the two particles around the r axis. Let 
us for brevity introduce the vector γ θ θ ϕ= ( )r, , ,1 2 . Therefore, 
the γ-space, where our mesoscopic vector γ is defined, is given 
by π π π π[ +∞[ × [ ] × [ ] × [− [0, 0, 0, , .

Through molecular dynamics simulations (thoroughly 
described in the next section) we find the probability den-
sity γ( )pc  of a certain configuration γ of the two mesoscopic 

particles. We normalize γ( )pc  such that ∫ γ γ( ) =p d 1c , with 

γ θ θ θ θ ϕ= ( ) ( ) rd sin sin d d d d1 2 1 2  the γ-space volume element. 
Moreover, we are working in the canonical ensemble.

From statistical mechanics [51], we know that the prob-
ability density γ( )pc  to find the system in a certain configu-
ration γ is γ γβ( ) = [− ( )]p V Zexp /c c c, where β = k T1/ B  and Zc 
is the partition function of the system. Shifting γ( )Vc  by an 
appropriate constant, we can still reproduce γ( )pc  but simulta-
neously normalize Zc   =   1. Then, since ( ) =Zln 0c ,

γ γ( ) = − [ ( )]V k T plnc cB (3)

represents an effective energy of the state γ of our meso-
scopic two-particle system and corresponds to an effective 
pair potential on the mesoscopic level, see also [47]. Through 
the normalization of Zc, we set our reference free energy 

= − ( )F k T Zln cB  equal to zero.

3. Microscopic simulation

To obtain the probability distribution from which the meso-
scopic pair potential is derived, we performed molecular 
dynamics simulations using the ESPResSo software [50, 52]. 
Because entropic effects are important to capture the behavior 
of the polymer, the canonical ensemble is employed. This is 
achieved using a Langevin thermostat, which adds random 
kicks as well as a velocity-dependent friction force to the par-
ticles. For the translational degrees of freedom of each par-
ticle, the equation of motion is then given by

ζ( ) = − ( ) + +v v F Fm t t˙ ,p r (4)

where mp is the mass of a particle, F is the force due to the 
interaction with other particles, Fr denotes the random thermal 
noise, and ζ is the friction coefficient.

To maintain a temperature of T, according to the fluctu-
ation-dissipation theorem, each random force component 
must have zero mean and variance ζk T2 B . Furthermore, 
random forces at different times are uncorrelated. In order 
to track the orientation of the magnetic nanoparticles, rota-
tional degrees of freedom also have to be taken into account. 
This is achieved by means of a Langevin equation of motion 
similar to (4) where, however, mass, velocity, and force are 
replaced by inertial moment, angular velocity, and torque, 
respectively [53].

The time step for the integration using the Velocity-Verlet 
method [54] is =td 0.01. To sample the probability distribu-
tion, we record the state of the simulation γ every ten time 
steps. In order to obtain a smooth probability distribution over 
a wide range of parameters, 34 billion states have been sam-
pled in total, by running many parallel instances of the simula-
tion, summing up to about 104 core hours of CPU time.

Finally, we find the probability distribution by sorting 
the results of our simulations into a histogram with 100 bins 
for each variable (r, θ1, θ2, and ϕ). When a 64-bit unsigned 
integer is used as data type, this leads to a memory footprint 
of 800 Mb. Hence, the complete histogram can be held in 
memory on a current computer. If the resulting numerical 
version of the effective pair potential as defined in (3) is to 
be used in a simulation, a smoothing procedure should be 
employed, especially in parts of the configuration space with 
a very low probability density. One approach here might be 
hierarchical basis sets.

In our simulations, we chose the thermal energy k TB  as 
well as the mass mp, the friction coefficient ζ, and the cor-
responding rotational quantities to be unity. We measure all 
lengths in units of σ and the energies in multiples of k TB .

4. Description of the probability density

We now consider some aspects of the probability density 
resulting from the microscopic simulation described in sec-
tion  3. The entropic role of the microscopic degrees of 
freedom is considered by assigning to every configuration 
γ a certain probability, given by the number of times it was 
encountered in the simulation divided by the total number of 
recorded states. As explained before, γ θ θ ϕ= ( )r, , ,1 2  corre-
sponds to the set of variables that we use to describe the state 
of the system on the mesoscopic level.

In calculating the probability density from the microscopic 
simulations, we must remember the normalizing condition

∫ γ θ θ θ θ ϕ( ) ( ) ( ) =p rsin sin d d d d 1,c 1 2 1 2 (5)

where r is integrated over [ +∞[0, , θ1 and θ2 over π[ ]0, , and ϕ 
over π π[− [, . Therefore, to obtain the probability density, we 
have to properly divide the data acquired from the simulations 
by the factor θ θ( ) ( )sin sin1 2 .

Figure 1. A simplified sketch of the geometry of the microscopic 
system. r is the vector connecting the centers of the mesoscopic 
particles. a1 and a2 identify the anchoring points of the polymer 
chain on the surfaces of the particles. θ1, θ2, and ϕ are the angles 
that represent the remaining relative rotational degrees of freedom 
of the system.
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It is useful to introduce here the average of a quantity 

over pc, defined as ∫ γ γ⋅ = ⋅ ( )p  dc c . We can therefore cal-
culate the average value of γ, γ γ= c, and the covariance 
matrix α α β βΣ = ( − )( − )αβ

c
c, for α β θ θ ϕ= r, , , ,1 2 . We find 

γ σ π π≃ ( )20.20 , 0.36 , 0.36 , 0 . It is more practical to discuss 
the system in terms of correlation than in terms of covariance. 

Correlation is defined as ϱ = Σ Σ Σαβ αβ αα ββ/c c c c  (no summation 

rule in this expression), is dimensionless, and ϱ ∈ [− ]αβ 1, 1c . 
Here, we obtain

for α θ= i (i   =   1, 2) and α ϕ= rd d , d  for α ϕ= r, . Following 
(3), we also introduce the one-variable effective pair potentials

α α( ) = − [ ( )]∼∼
α αV k T plnB (7)

that are associated with the corresponding single-variable 
marginal probability density.

In figure  2 most of the probability density ( )∼p rr  for the 
interparticle distance is contained between σ=r 10  and 

σ=r 50 , with a single maximum at σ=r 17 . Moreover, the 

steep increase in ( )∼p rr  at σ=r 11  is to be attributed to the 
WCA steric repulsion, since at that distance the two particles 
are in contact. From figure  2 we find that the maximum of 

θ( )∼
θp ii

 (with i   =   1, 2) is located at θ = 0i . The highest prob-
ability density for θ = 01,2  is obtained from the microscopic 
simulations by taking into account the γ-space normalization 
following from the use of spherical coordinates in (5), see also 
[47]. Moreover, ϕ( )∼

ϕp  shows a maximum for ϕ = 0, indicating 
that, as expected, the system does not tend to spontaneously 
twist around the connecting axis in the absence of further 
interactions. The presence of a maximum at ϕ = 0 confirms 
that ∼ϕp  is an even function of ϕ invariant under the transforma-
tion ϕ ϕ→ − , as expected from the symmetry of the set-up.

5. Wrapping effect

Before developing an approximate analytical expression for 
the effective pair potential between the mesoscopic particles, 
it is helpful to examine in detail the results of the molecular 
dynamics simulations. In a magnetic gel in which mesoscopic 
magnetic particles act as cross-linkers [31, 55], two driving 
mechanisms for a deformation in an external magnetic field are 
possible. First, in any magnetic gel, the magnetic interactions 
between the mesoscopic particles lead to attractions and repul-
sions between them, which directly implies deformations of 
the intermediate polymer chains. As we would like to examine 
this mechanism separately, the magnetic interaction was not 
included explicitly in the simulations described in section  3. 
Rather, it will be considered later in section 8. Second, due to 
the anchoring of the polymer chains on the surfaces, rotations of 
the mesoscopic particles are transmitted to chain deformations.

It has been shown in model II of [45] that the second mech-
anism on its own can lead to a deformation of such a gel in an 
external magnetic field: if mesoscopic magnetic particles are 
forced to rotate to align with the field, the polymers attached 
to their surfaces have to follow. The resulting wrapping of the 
polymer chains around the particles leads to a shrinking of 

where lines and columns refer to θ θ ϕr, , ,1 2  in this order. The 
diagonal elements are unity by definition, because each vari-
able is perfectly correlated with itself. The errors follow from 
the unavoidable discretization during the statistical sampling 
procedure in the simulations, where the results have to be 
recorded in discretized histograms of finite bin size.

We find a strong anticorrelation between r and θ1,2, 
meaning that when the distance between the mesoscopic par-
ticles changes they tend to rotate. We will address in detail 
the background of this behavior in section 5 in the form of the 
wrapping of the polymer chain around the mesoscopic par-
ticles. For angles θ1 and θ2 different from 0 and π it is clear 
that such a wrapping and corresponding distance changes are 
likewise induced by modifying the relative torsion of angle ϕ. 
These coupling effects are partly reflected by the remaining 
non-vanishing correlations which, however, are weaker than 
the correlations between r and θ1, θ2 by at least a factor 4. The 
correlations between θ1 and θ2 are very weak and, within the 
statistical errors, may in fact even vanish. Within the statis-
tical errors, the magnitudes of the correlations ϱ θr

c
, 1

 and ϱ θr
c
, 2

 as 
well as ϱθ ϕ

c
,1

 and ϱθ ϕ
c

,2
 agree well with each other, respectively, 

which reflects the symmetry of the system. Finally, we per-
formed additional microscopic simulations for different sizes 
of mesoscopic particles and different chain lengths of the con-
necting polymer. As a general trend, we found that the corre-
lations tend to decrease in magnitude for smaller mesoscopic 
particles and for longer polymer chains (see appendix A).

As a further step in the analysis of pc, we can determine the 
marginal probability density α( )∼

αp  for one of the four meso-
scopic parameters α θ θ ϕ= r, , ,1 2  integrating out the other 

three, for instance, ∫ γθ θ θ ϕ( ) = ( ) ( )∼
θp p rsin d d dc1 2 21

. This 
is the total probability density for the variable θ1 to assume 
a certain value, regardless of the others. Calculations for 

( )∼p rr , θ( )∼
θp 22

, and ϕ( )∼
ϕp  are analogously performed by inte-

grating out all respective other variables (see figure  2). Of 
course, α( )∼

αp  is still a normalized probability density since 

∫ ∫ γ γα α( ) = ( ) =∼
αp pd d 1c , where we indicate α θ θ= ( )d sin di i 

ϱ ≃

− ± − ± ±
− ± − ± − ±
− ± − ± − ±

± − ± − ±

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

1 0.341 0.028 0.356 0.029 0.083 0.022

0.341 0.028 1 0.006 0.006 0.083 0.010

0.356 0.029 0.006 0.006 1 0.083 0.011

0.083 0.022 0.083 0.010 0.083 0.011 1

,c

 

(6)
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the gel. Transferring this to our model system, it could imply 
an external magnetic field rotating the particles to a state in 
which the angles θ1 and θ2 are non-zero. The effect of induced 
particle rotations on the interparticle distance is illustrated 
in figure 3, where the effective pair potential Vc(r) is plotted 
for the case of ϕ = 0 and various values of θ θ θ= =1 2 . I.e. 
both particles are rotated by the same angle θ with respect to 
the connecting vector ±r, respectively. It can be seen that the 
more the particles are rotated, the more the minimum of the 
effective pair potential is shifted towards closer interparticle 
distances corresponding to smaller separation distances r.

To get a more detailed picture, we also consider inde-
pendent rotations of the two mesoscopic particles. In figure 4, 
the average distance between the particles is depicted in a 
contour plot as a function of the angles θ1 and θ2. Images are 
shown for torsion angles of ϕ = 0 and ϕ π= . It can be seen 
that quite a decrease in the average distance can already be 
achieved by rotating only one particle. However, very strong 
reduction in interparticle distance can only occur when both 
particles are rotated. The torsion angle ϕ does not alter the 
general trend of reduction of the average distance when the 
particles are rotated. However, the resulting numbers vary to 
a certain degree.

6. One-variable effective pair potentials

We now introduce some mesoscopic analytical expressions to 
model the effective pair potentials α( )∼

αV  introduced in (7). We 
will determine functional forms and parameters that can be 

Figure 2. Marginal probability densities for the single variables. 
The abscissa has been rescaled: r ranges from 0 to 100σ, whereas 
the angles range from 0 to π. θ( )∼

θp 11
 and θ( )∼

θp 22
 are practically 

indistinguishable due to the symmetry of the set-up. Due to the 
symmetry of the system under the transformation ϕ ϕ→ − , here 
we only plot ϕ( )∼

ϕp  from 0 to π. The maxima of the single-variable 
densities are located at σ=r 17  and θ ϕ= = 01,2 , respectively. 
The maxima of θ( )∼

θp 11
 and θ( )∼

θp 22
 at θ = 01,2  are found from the 

microscopic simulations after the γ-space normalization contained 
in (5) has been taken into account.

Figure 3. Plot of the effective mesoscopic pair potential Vc(r) for 
a situation in which both particles are rotated by the same amount 
to the angles θ θ θ= =1 2  at a torsional angle of ϕ = 0. It can be 
seen that the more the particles are rotated out of their equilibrium 
position, the closer they will approach each other because the 
minimum of the effective pair potential shifts to smaller separation 
distances r. The irregularities in the effective pair potential for high 
values of r are attributed to the naturally low sampling of those low-
probability configurations.

Figure 4. Average distance between the two mesoscopic particles 
versus the angles θ1 and θ2 shown as a color and contour map for 
the two cases ϕ = 0 (top) and ϕ π=  (bottom). It can be seen that 
even by rotating only one of the two particles, the average distance 
can be reduced considerably. However, the maximum reduction 
is observed when both particles are rotated. The variation of the 
torsion angle ϕ does not change the main trend but has a moderate 
influence for intermediate rotations.

2

1

2

1
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used to model strain and torsion energies. Here, we use the 
term ‘strain’ to denote variations of r, whereas the term ‘tor-
sion’ is used to describe changes in the angles θ1 and θ2 or ϕ, 
depending on the initial orientation of the spheres and relative 
rotations. The quality of the analytical model expressions will 
be analyzed by fitting to the corresponding results from the 
microscopic simulations.

First, we turn to the energetic contributions arising from 
changes in the interparticle distance r. The corresponding 
effective energy ( )∼

V rr  obtained from the microscopic data is 
plotted in figure 5. It can be seen that there are essentially two 
regimes: up to σ≃r 11  the WCA repulsion between the two 
mesoscopic particles dominates, whereas, for σ>r 11 , ( )∼

V rr  
shows a smooth behavior and a single minimum arising from 
the entropic contribution of the polymer chain. Moreover, at 

σ≳r 55 , ( )∼
V rr  shows an irregular, non-smooth behavior. This is 

attributed to the low sampling rate of this extremely stretched 
configuration, which has a very low probability to occur in the 
microscopic simulations (see figure 2). As a first approxima-
tion, it is natural to reproduce ( )∼

V rr  by a harmonic expansion 
for σ>r 11 ,

( ) = + ( − )V r V
k

r r
2

.h
h

hharm
0

0,
2 (8)

We derive the mesoscopic parameters V k r, ,h h h
0

0,  by fit-
ting ( )V rharm  in a neighborhood of the minimum to the data 

( )∼
V rr  obtained from microscopic simulations. In figure 5 the 
resulting parameters and the two curves are shown.

Moreover, we have compared ( )∼
V rr  with the following 

expression for a finitely extensible non-linear elastic potential 
(FENE) [42, 56],

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) = − − −

V r V
K r r r

r

 

2
ln 1 .

f
FENE F

0 max
2

0

max

2

 (9)

It takes into account that the chain cannot extend beyond 
a maximal length, since ( )V rFENE  diverges when → +r r r0 max. 

We see that ( ) =V r r Kd /d f
2

FENE
2  for r   =   r0 and therefore K f  

represents the elastic constant in a harmonic expansion of this 
non-linear potential. As for the harmonic expression, we fit 

( )V rFENE  to our microscopic data and thus derive the meso-
scopic model parameters K f , r0, rmax, and VF

0 as displayed in 
figure 6. The agreement between the resulting expression for 

( )V rFENE  and ( )∼
V rr  in the regime σ≳r 11  is excellent, especially 

for the branch of the curve right to the minimum. According 
to the fit, the maximum extension of the chain occurs for 

σ= + ≃r r r 750 max . In fact, since the radius of the mesoscopic 
particles is σ5  and each of the 60 beads making up the pol-
ymer chain has diameter σ, at σ=r 70  the polymer chain is 
completely stretched. A further elongation is of course pos-
sible due to the harmonic inter-bead interaction and this justi-
fies the result of ∼75σ for the maximal extension.

Last, we compare the elastic constants kh and K f  obtained 
from the harmonic and FENE approximation, respectively, as 
listed in figures 5 and 6. The resulting values of σk T0.011 /B

2 
and σk T0.015 /B

2 are in good agreement with each other.
To find a mesoscopic model expansion for the effective 

pair potential θ( )∼
θV 11  [ θ( )∼

θV 22  has a very similar behavior], we 
compare it with the phenomenological expression,

θ θ θ( ) = + [ ( ) − ( )]V V D cos cosD D1
0

1 0
2 (10)

introduced in (3) of [30]. As before, we can derive the meso-
scopic parameters VD

0, D, and θ0 by fitting θ( )VD 1  to the micro-
scopic data represented by θ( )∼

θV 11 . The resulting parameters 
and the comparison between the two curves are shown in 
figure  7. Although (10) does not perfectly reproduce the 
one-variable pair potential θ( )∼

θV 11 , it appears as a reasonable 
approximation in the neighborhood of the minimum energy. 
Moreover, the rather flat behavior of θ( )∼

θV 11  for small θ1 is well 
represented by θ( )VD 1 , which is at leading order proportional 
to θ1

4 .
Finally, we want to find a mesoscopic expression to repro-

duce the effective pair potential ϕ( )∼
ϕV  obtained from the 

Figure 5. Effective pair potential ( )∼
V rr  obtained from the 

microscopic simulation data and fit using a simple expression 
( )V rharm  as in (8). The fit was made in the interval σ σ[ ]11 , 27 . In this 

way, the values for the mesoscopic model parameters r k V, ,h h h0,
0 are 

determined.

Figure 6. Effective pair potential ( )∼
V rr  obtained from the 

microscopic simulation data and fit using ( )V rFENE  from (9) leading 
to the parameter values as listed in the plot. The fit was made in the 
interval σ σ[ ]11 , 52 . In this way, the values for the mesoscopic model 
parameters r r K V, , ,f F

0
max

0 are determined.
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microscopic data due to relative torsional rotations between 
the two particles around the connecting vector r. We fit 
the microscopic data ϕ( )∼

ϕV  around the minimum with the 
expression

ϕ τ ϕ ϕ( ) = + [ ( ) − ( )]τ τV V cos cos .0
0 (11)

It leads to the parameters and fit depicted in figure 8 and is 
quadratic at lowest order in ϕ, ϕ τϕ( ) ≃ +τ τV V 0 2. The param-
eter ϕ0 is redundant and can be absorbed into τV 0, but we leave 
it for reasons of comparison to the following (12).

It is interesting to compare ϕ( )∼
ϕV  with the expression taken 

from (4) of [30],

ϕ τ ϕ ϕ( ) = + [ ( ) − ( )]′ ′ ′ ′τ τV V cos cos .0
0

2 (12)

The discrepancy between the two curves shown in figure 9 
is obvious. The reason becomes clear when we expand (12) 
to lowest order in ϕ, ′ϕ τ ϕ( ) ≃ +′ ′τ τV V 0 4. This expression is 
quartic in the torsion angle ϕ, leading to the comparatively 
flat behavior in the region around the minimum. The last two 
comparisons suggest that the analytical form of the meso-
scopic model pair potential as a function of the azimuthal 
angle, which acts as a torsion, can be optimized by using a 
quadratic form as in (11) instead of the quartic one implied by 
(12) at leading order around the minimum.

Finally, we performed additional microscopic simulations 
to estimate how the microscopic system parameters affect the 
mesoscopic model parameters. In particular, the influence of 
the mesoscopic particle radius a and the number of beads N of 
the connecting polymer chain was investigated. As a trend, we 
found that the single-variable potentials tend to become stiffer 
for shorter chains and for bigger mesoscopic particles (see 
appendix A). Moreover, we observe that the fit of the func-
tional forms in expressions (9)–(11) with the simulation data 
further improves for increasing chain length and decreasing 
size of the mesoscopic particles3.

So far, we have discussed mesoscopic analytical expres-
sions to approximate the one-variable effective pair potentials 

α( )∼
αV . In the following section, using a numerical fitting pro-

cedure, we will determine harmonic coupling terms that take 
account of the correlations between the mesoscopic variables. 
In this way, we will further develop and improve our approxi-
mation of the probability density γ( )pc  from the microscopic 
simulations.

7. Building a coupled effective pair potential

Our goal is to describe the effective interaction between the 
two mesoscopic particles, coarse-graining the role of the 
connecting polymer chain. The entropic nature of the poly-
meric interactions provides a direct route to average out the 
microscopic degrees of freedom and thus build an effective 
scale-bridged model. A natural way to proceed would be to 
find an analytical approximation for γ( )pc  and thus derive an 

Figure 7. Effective pair potential θ( )∼
θV 11  calculated from the 

microscopic simulation data and fit using the phenomenological 
mesoscopic expression θ( )VD 1  from (10). Resulting values for the 
mesoscopic model parameters are listed in the plot. The fit was 
made on the interval π[ ]0, .

Figure 8. Effective pair potential ϕ( )∼
ϕV  calculated from the 

microscopic simulation data and fit using ϕ( )τV  from (11). Resulting 
values for the mesoscopic model parameters are listed in the plot. 
The fit was made in the interval π[ ]0, 0.8 .

3 Corresponding data curves from the additional microscopic simulations 
and fitted mesoscopic model curves are summarized in the supplemental 
material (stacks.iop.org/JPhysCM/27/325105/mmedia). 

Figure 9. Effective pair potential ϕ( )∼
ϕV  calculated from the 

microscopic simulation data and fit using ϕ( )′τV  from (12). 
Resulting values for the mesoscopic model parameters are listed in 
the plot. The fit was made in the interval π[ ]0, 0.8 .
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analytical expression for the mesoscopic pair potentials in the 
spirit of (3).

As a first approximation we may describe pc as the simple 
product of the one-variable probability densities, α∏ ( )∼

α αp . 
We obtain

γ β

θ θ ϕ

( ) = {− [ ( ) + ( )

+ ( ) + ( ) + ( )]}

′

τ

p V r a V r

V V V

exp /2

,D D

app WCA FENE

1 2
 

(13)

when we use (7). Analytical approximations for the pair 
potentials α( )∼

αV  were derived in (9)–(11) in section 6 together 
with the fitting parameters listed in figures  6–8. Care must 
be taken for the term ( )∼

V rr , which has to be substituted by 
( ) + ( )V r a V r/2WCA FENE  to take account of the steric repul-

sion between the mesoscopic particles, see (1). (13) correctly 
describes some aspects of the system behavior. For instance, 
the steep variation due to the WCA potential between the 
mesoscopic particles is well represented in this approxima-
tion. However, this description would lead to a distribution 
with vanishing correlations between the mesoscopic vari-
ables. That corresponds to assuming them independent of 
each other, which omits some important physical aspects, see 
the wrapping effect in section 5.

To make a step forward and take account of correlations we 
multiply correction terms to the previous factorized approxi-
mation in (13), obtaining the expression

γ γ γ ξ γ ξΞ( ) ∝ ( ) × [−( − ) ⋅ ⋅ ( − )]′p p exp ,app app (14)

where the elements of ξ, a 4-components vector, and Ξ, a ×4 4 
symmetric matrix, are free parameters chosen to match the orig-
inal data. There are at least two possible numerical approaches 
to find the best ξ and Ξ values. On the one hand, we can simply 
fit the original probability density (e.g. minimize the squared 
difference between pc and papp). On the other hand, we can 
follow a moment-matching approach, looking for a papp that has 
a correlation matrix as close as possible to the original one. We 
performed a mixed strategy by fitting the expression in (14) to 
the simulation data γ( )pc , using as a criterion for best initializa-
tion of the fit an outcome that as closely as possible matches the 
correlations directly calculated from the simulation data γ( )pc . 
This fit was performed by minimizing the squared difference 
between γ( )pc  and γ( )papp , using the Nelder–Mead algorithm 
[57] provided by the SciPy library [58]. In this procedure, nor-
malization of the approximated probability density as in (5) is 
enforced. The best set of parameters ξ and Ξ found is

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
ξ

σ
π
π

≃

23.54

0.321

0.321

0

, (15)

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

σ σπ σπ σπ
σπ π π π
σπ π π π

σπ π π π

Ξ ≃

−

− −

− −

−

4.8 10 / 0.19/ 0.19/ 1.8 10 /

0.19/ 1.21/ 1.54/ 1.25/

0.19/ 1.54/ 1.21/ 1.25/

1.8 10 / 1.25/ 1.25/ 0.32/

,

3 2 3

2 2 2

2 2 2

3 2 2 2

 (16)

resulting in the correlation matrix

ϱ ≃

− −
− −
− −

− −

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

1 0.306 0.306 0.045

0.306 1 0.027 0.071

0.306 0.027 1 0.071

0.045 0.071 0.071 1

.app (17)

It would be unrealistic to try to exactly reproduce all 
properties of γ( )pc  through an analytical approximation. 
Nevertheless, using the resulting expressions from (14)–(16), 
we can take account of the strong anticorrelation ϱ θr 1,2

 between 
r and θ1,2, which is the strongest and most important one in 
the system; compare (6) and (17). For the other elements ϱ ϕr , 
ϱθ ϕ1,2

, and ϱθ θ1 2
 we then obtain stronger deviations. However, 

those correlations are smaller than ϱ θr 1,2
 at least by a factor 4 

and therefore carry a smaller amount of information about the 
overall system behavior.

As a total result and in analogy to (3), we obtain from (14) 
the optimized analytical expression Vapp to model the effective 
interaction between the mesoscopic particles:

∑
γ θ

θ ϕ α ξ β ξ

( ) = ( ) + ( ) + ( )

+ ( ) + ( ) + Ξ ( − )( − )τ
αβ

αβ α β

V V r a V r V

V V k T

/2

.

D

D

app WCA FENE 1

2 B
 

(18)

The corresponding expressions and values for the fitting 
parameters are given by (1), (9)–(11), (15) and (16) as well 
as figures  6–8. Thus, the effective pair potential is divided 
into two parts: one-variable and two-variable potentials. The 
former are the analytical single-variable pair potentials derived 
in section 6, see (1) and (9)–(11), together with the diagonal 
α β=  terms in the double summation of (18). The latter are 
the off-diagonal α β≠  terms and take account, to lowest order, 
of the correlations between different mesoscopic degrees of 
freedom. Correlations between r and θ1,2 are the dominating 
ones, leading to such physical effects as the wrapping effect 
introduced in section 5.

Figure 10. A simplified sketch of the mesoscopic configuration 
in which the magnetic moments are assigned to the particles. The 
depicted orientations a1 and a2, which identify the anchoring points 
of the polymer chain, correspond to the θ θ= = 01 2  and ϕ = 0 
configuration. The distance between the centers of the mesoscopic 
particles here corresponds to σ=r 26 . In this configuration, the 
magnetic moments m1 and m2 are introduced parallel to each other 
and pointing along the connecting vector r.
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8. Impact of magnetic dipole moments

We will now consider how magnetic interactions between 
the mesoscopic particles modify the physics of the system, 
in particular the probability densities and other mesoscopic 
quantities. For this purpose, we assign to each particle a per-
manent magnetic dipole moment mi (i   =   1, 2), in the present 
work not going into the details of how these could be gener-
ated. We introduce these magnetic moments in the state of 
highest probability density. At vanishing magnetic moments, 
this is the state of minimal effective energy of the meso-
scopic system, i.e. following (3), the one that has maximum 

γ( )pc  over all the configurations γ. The maximum occurs for 
θ θ ϕ σ( ) ≃ ( )r , , , 26 , 0.0, 0.0, 0.0M M M M

1 2 , and is displayed in 
figure 10. When the mesoscopic particles are in this configu-
ration, we assign to them the two magnetic moments m1 and 
m2 that are parallel to each other and point along the con-
necting vector r, i.e. in their orientation of minimal magnetic 
energy, as depicted in figure 10. To first order, this configu-
ration should leave the angular orientations unchanged when 
increasing the magnetic interaction, but see also the discus-
sion in section 5. This is just one of the possible orientations 
that the moments could assume. However, such a configura-
tion could be achieved with a certain probability, for instance, 
when the sample is cross-linked in the presence of an external 
magnetic field that aligns the magnetic moments [59–62]. 
The dipole moments m1 and m2 are assumed to have equal 
magnitude = =m m m1 2  and are rigidly fixed with respect 
to each particle frame. We measure the magnetic moments in 

multiples of π μ= ( )m k T a4 2 /0 B
3

0 , where μ0 is the vacuum 
magnetic permeability. Then, for each γ, we can calculate the 
magnetic dipole interaction energy between the two moments

γ μ
π

μ
π

θ θ θ θ ϕ

( ) = ⋅ − ( ⋅ )( ⋅ )

= − ( ) ( ) + ( ) ( ) ( )

m m m r m r
V

r

r

m

r

4

3

4

2 cos cos sin sin cos
.

m

m m m m m

0 1 2
2

1 2
5

0
2

1 2 1 2
3

 (19)

θi
m indicates the angle between mi and r, while ϕm is the 

angle between the projections of m1 and m2 on a plane per-
pendicular to r. These quantities can be expressed in the γ 
variables once the orientations of m1 and m2 with respect to 
the particle frames are set by the protocol we described above.

For non-magnetic polymer chains, the potential acting on 
the mesoscopic level γ( )V  is separable into a sum of mag-
netic and non-magnetic interactions γ γ γ( ) = ( ) + ( )V V Vc m . 
Consequently, magnetic effects do not modify the contribu-
tions of the polymer chain to γ( )Vc , as is further explained in 
appendix B.

This corresponds to a factorization of the probability 
densities γ( )pc  and γ( )pm , where the latter is defined via the 
Boltzmann factor

γ γβ( ) = [− ( )]p Vexpm m (20)

in analogy to (3). Therefore the total probability density 
becomes

γ γ γ( ) =
( )

= ( ) ( )
( )

γ γβ− [ ( )+ ( )]
p

Z m

p p

Z m

e
,

V V
c m

c m

 (21)

where ∫ γ γ γ( ) = ( ) ( )Z m p p dc m  is the partition function 
describing the system for non-vanishing magnetic moments. 
We can calculate averages on the system with magnetic inter-
actions by

∫ ∫
γ γ

γ γ γ
⟨⋅⟩ = ⋅ ( ) =

⋅ ( ) ( )
( )

p
p p

Z m
    d

      d
.

c m (22)

The single-variable marginal probability density α( )αp , 
α θ θ ϕ= r, , ,1 2 , is again defined as γ( )p  integrated over all the γ 
variables except for α. This is the same procedure as described 
in section 4 but substituting γ( )pc  with γ( )p . As can be seen 
from figure 11, pr(r) shows an increase of the probability to 
find the particles close together when m is increased. A peak 
builds up at small r because the magnetic energy tends to 

( → ) → −∞V r 0m . Although the magnetic spheres attract each 
other, a collapse is prevented by the WCA-potential, which 
becomes effective at σ≲r 11  and for →r 0 diverges faster to 
+∞ than the magnetic energy to −∞. For m   =   m0, the presence 
of a double peak in pr(r) could be connected to a hardening 
transition of the kind described in [30]. Due to the mutual 
magnetic attraction between the parallel dipoles we expect the 
average distance ⟨ ⟩r  to decrease with increasing m, and indeed 
it does so, as can be seen from the inset in figure 11.

The changes in the angular distributions for θ1 and θ2 due 
to the magnetic interaction are illustrated in figure 12. For the 
two angles θ1 and θ2 the distributions θ( )θp 11

 and θ( )θp 22
 are 

similar, and the behavior for varying m is approximately the 
same. Therefore, we only display the results for θ( )θp 11

. The 
magnetic moments tend to align in parallel along the con-
necting axis r, corresponding to their absolute energy min-
imum. Since we introduced the magnetic moments in that 
configuration for θ θ= = 01 2 , for any fixed θ1 the minimum of 

Figure 11. Nonvanishing permanent magnetic dipole moments of 
the mesoscopic particles and their impact on the system. We plot 
the marginal probability density pr for the distance r between the 
particles for different values of the reduced magnetic moment m/m0. 
Inset: average particle distance ⟨ ⟩r  as a function of the reduced 
magnetic moment m/m0.
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Vm, and therefore the maximum of pm, is located at θ θ=2 1 and 
vice versa. As a consequence, the θ θ= = 01 2  configuration 
leads to the same magnetic interaction energy as θ θ π= =1 2 . 
Concerning only magnetic interactions, both configurations 
show the same probability pm. Integrating out r, θ2, and ϕ from 

γ( )pm , the shape of the resulting magnetic probability density 
for θ1 is symmetric around θ π= /21  with one peak at θ = 01  
and one at θ π=1 . Therefore, coupling magnetic (pm) and non-
magnetic (pc) contributions, we find that some probability 
shifts to higher values of θ1 due to the magnetic interactions. 
However, we find the standard deviation of θ( )θp 11

 to decrease 
with increasing m (see the inset of figure 12), meaning that the 
particles become less likely to rotate along the θ1 (or likewise 
θ2) direction.

The same calculation for ϕ( )ϕp  shows that the particles also 
become less likely to rotate around the connecting vector r. 
The probability density of ϕ ≃ 0 rises and sharpens, as we can 
see in figure 13, and the standard deviation (see the inset of 

figure 13) decreases, confirming quantitatively the sharpening 
of ϕ( )ϕp .

9. Thermodynamic properties

Finally, we provide the connection to the thermodynamics 
of our canonical system and demonstrate the influence 
of the magnetic interactions. With the partition function 
Z(m) as in (21), we can calculate the overall free energy as 

( ) = − [ ( )]F m k T Z mlnB , the internal energy of the system as

∫ γ γ γ γ
( ) = ⟨ ⟩( ) =

( ) ( ) ( )
( )

U m V m
V p p

Z m

dc m (23)

with γ( )V  defined before (20), and the entropy as S(m)   =    
[U(m)  −  F(m)]/T.

Figure 12. Marginal probability density θp
1
 for the angle θ1 (very 

similar for θ2) for increasing reduced magnetic moment m/m0. Inset: 

standard deviation of θ1, σ θ θ= ⟨( − ⟨ ⟩) ⟩θ 1 1
2

1  (very similar for θ2) 
as a function of m/m0.

0.0
0.707
1.0
1.224

Figure 13. Marginal probability density ϕp  for the angle ϕ 
describing the relative torsion between the particles, for increasing 
reduced magnetic moment m/m0. Inset: standard deviation of ϕ, 

σ ϕ ϕ= ⟨( − ⟨ ⟩) ⟩ϕ 2  as a function of m/m0.

Figure 14. Free energy ( ) = − [ ( )]F m k T Z mlnB  as a function of the 
reduced magnetic moment m/m0. The partition function Z(m) is 
calculated once using γ( )pc  and once using γ( )papp . The result from 
the microscopic simulation is labeled with ‘Fc’ and the one from the 
analytical approximation with ‘Fapp’. Note that for m   =   0 the free 
energies are equal.

Figure 15. Internal energy U (m) as a function of the reduced 
magnetic moment m/m0, calculated according to (23). The curve 
labeled with ‘Uc’ shows the result from the microscopic data using 
(23), whereas in the one labeled with ‘Uapp’ γ( )pc  has been replaced 
by γ( )papp .
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To test the validity of our effective potential scheme using 
the coupling approximation described in section  7, we cal-
culate the thermodynamic quantities using both probability 
densities γ( )pc  and γ( )papp  and compare the results. At van-
ishing magnetic moment, the free energy of the system is 
the same for both probability densities. This is expected, 
because it is a direct consequence of the normalization con-

dition: ∫ ∫γ γ γ γ( = ) = = ( ) = ( ) =Z m Z p p0 d d 1c c app  by con-
struction of γ( )papp . For non-vanishing magnetic moments, 
the partition functions obtained from the two probability 
densities (and thus the corresponding free energies) start to 

deviate from each other because the integral ∫ γ γ γ( ) ( )p p dc m  
is, in general, different from ∫ γ γ γ( ) ( )p p dmapp . With increasing 
magnetic interaction, the difference between γ( )pc  and γ( )papp  
becomes more important and, as shown in figure 14, leads to 
a slightly increasing deviation in the free energies F(m) cal-
culated in both ways: at ≃m m1.224 0 they already differ by 
∼5.6%. Analogously, we can compare the internal energies 
of the system, shown in figure 15: at m   =   0 the error due to 
the probability density approximation is ∼0.12% of the exact 
value, rising up to ∼0.32% at ≃m m1.224 0. A similar devia-
tion follows for the entropy, see figure 16, where, however, the 
error at ≃m m1.224 0 increases to ∼0.26% of the exact value. 
Overall, however, the relative errors remain small, which con-
firms the validity and viability of our coarse-grained effective 
model potential in (18).

To summarize the effect of the magnetic dipoles on the 
system, we may conclude that the particles are driven towards 
each other. In other words, the average distance between 
them decreases (see figure  11) and the distributions for the 
particle separation and for the angular degrees of freedom 
sharpen (see figures  11–13). This reflects a decrease in 
entropy, which becomes possible due to the gain in magnetic 
interaction energy. Indeed, the calculated entropy decreases 
with increasing magnetic interactions (see figure 16), which 
is achieved by the decreasing free energy and internal energy 
(see figures 14 and 15, respectively).

10. Conclusions

Most of the previous studies on ferrogels describe the polymer 
matrix as a continuous material [23, 32, 34, 35] or represent it 
by springs connecting the particles [30, 36, 41–44], but only 
a few resolve explicitly the polymeric chains [45, 46]. In par-
ticular, a link between such microscopic chain-resolved cal-
culations and the expressions for the investigated mesoscopic 
model energies has so far been missing. We have outlined in 
the present work a way to connect detailed microscopic simu-
lations to a coarse-grained mesoscopic model.

This manifests a step into the direction of bridging the 
scales in material modeling. Starting from microscopic sim-
ulations considering explicitly an individual polymer chain 
connecting two mesoscopic particles, we specified effective 
mesoscopic pair potentials by fitting analytical model expres-
sions. In this way, we were able to optimize a coarse-grained 
mesoscopic model description on the basis of the input from 
the explicit microscopic simulation details. Furthermore, we 
have shown that correlations between the mesoscopic degrees 
of freedom must be taken into account to provide a complete 
picture of the physics of the system. Moreover, we have exam-
ined the effect of a magnetic interaction, finding a tightening 
of the system by reducing the average distance between the 
magnetic particles and by reducing the rotational fluctuations 
around the configuration of highest probability density.

Our system consisted of only two mesoscopic particles, 
for which we derived the corresponding effective pair inter-
action potential. However, using this pair potential in a first 
approximation, two- and three-dimensional structures can 
be built up, similarly to elastic network structures generated 
using pairwise harmonic spring interactions between the par-
ticles [36, 43]. Including as a first approach magnetic interac-
tions between neighboring particles only, the different angles 
between the magnetic moment of a particle and the anchoring 
points of the polymer chain to its different neighbors must be 
taken into account. Yet, using the reduced picture of pairwise 
mesoscopic interactions, it should be possible to reproduce 
for example previously observed deformational behavior in 
external magnetic fields for two- and three-dimensional sys-
tems [45, 46].

The scope of our approach is a first attempt of scale-
bridging in modeling ferrogels and magnetic elastomers. 
Naturally, the procedure can be improved in many different 
ways. For example, we would like to study a system with mul-
tiple chains connecting the magnetic particles, with anchoring 
points randomly distributed over the surfaces of the particles. 
Such a development would eliminate artificial symmetries in 
the model and be another step towards the description of real 
systems. Furthermore, to study more realistic systems, inter-
actions between more than two mesoscopic particles would 
need to be considered. Likewise, also the effect of interac-
tions between next-nearest neighbors connected by polymer 
chains could be included. The last two points imply a step 
beyond the reduced picture of considering only effective pair-
wise interactions between the mesoscopic particles. Finally, 
via subsequent procedures of scale-bridging from the meso-
scopic to the macroscopic level [49], a connection between 

Figure 16. Entropy S (m)   =   [U(m)  −  F(m)]/T as a function of the 
reduced magnetic moment m/m0 calculated once using γ( )pc  from 
the microscopic simulation (labeled with ‘Sc’), and once replacing 

γ( )pc  by γ( )papp  (labeled with ‘Sapp’).

J. Phys.: Condens. Matter 27 (2015) 325105
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microscopic details and macroscopic material behavior may 
become attainable for magnetic gels.
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Appendix A. Dependence on microscopic system 

parameters

In sections 6 and 7 we derived an analytical approximation 
for the effective mesoscopic model potential describing our 
system. Here, we test how the mesoscopic model parameters 
depend on the microscopic system parameters. In particular, 
we performed additional microscopic simulations with varied 
radius a of the mesoscopic particles and varied number N of 
beads forming the connecting polymer chain.

In each case, we repeated the analysis of sections 4, 6 and 7 
by fitting the mesoscopic single-variable model potentials (9)–
(11) to the microscopic simulation data. This reveals the trends 

in the dependences of the coefficients in the mesoscopic model 
potentials on the parameters a and N, as depicted in figure A1. 
From the trend of the resulting model parameters K f , D, and 
τ in figures A1(c), (e) and (g) we conclude that the potentials 
tend to become stiffer as the chain becomes shorter or—at least 
for the rotational degrees of freedom—the mesoscopic parti-
cles become larger (see4 for corresponding fitting curves).

Moreover, we have calculated the trend in the correla-
tions between the mesoscopic degrees of freedom for varying 
values of a and N, see figure A2. We find that the magnitude 
of the correlations decreases with increasing N or decreasing 
a. Thus, quite intuitively, the coupling between the γ variables 
tends to decrease with longer chains or smaller mesoscopic 
particle sizes.

Appendix B. Separability of the Hamiltonian and 

consequences for coarse-graining

In section 8 we have included the magnetic interactions ana-
lytically on the mesoscopic level. They had not been included 
in the microscopic simulations. This procedure is possible due 
to a separability of the magnetic and non-magnetic effects, 
which as a consequence implies a factorization of the corre-
sponding probability. Thus the contribution of the polymer 
chain needs to be simulated explicitly. The contribution of any 
interaction acting solely on the mesoscopic particles can be 
exactly taken into account separately afterwards.

This argument relies on the separability of the Hamiltonian 
into a sum of mesoscopic and microscopic parts, as well as on 
the fact that magnetic interactions affect the mesoscopic part 
only. We write down the Hamiltonian of the system as

H Tγ γ γ γΓ( ) = ( ) + ( ) + ( )V V, m
A B A B

meso
,

WCA
, (B.1)

T ∑ ∑γ γΓ Γ Γ Γ+ ( ) + [ ( ) + ( )] + ( )
= < ′

′V V V, ,
n

N
A n n B

n n

N
n n

micro

1
WCA

,
WCA

,
WCA

,

 (B.2)
4 Corresponding data curves from the additional microscopic simulations 
and fitted mesoscopic model curves are summarized in the supplemental 
material (stacks.iop.org/JPhysCM/27/325105/mmedia).

Figure A1. Effect of varying microscopic system parameters on 
the resulting mesoscopic model parameters. In the microscopic 
simulations, we varied the mesoscopic particle radius a and the 
number of beads N forming the connecting polymer chain. Fits 
of the single-variable mesoscopic model potentials (9)–(11) to 
the microscopic simulation data lead to the presented mesoscopic 
parameter values. ((a)–(d),    ⃝ ) Model parameters for the FENE 
potential (9); ((e), (f),     ⃤   ) model parameters for the angular θ1- and 
θ2-potential (10); ((g), (h), ◻) model parameters for the torsional 
ϕ-potential (11). Values for θ0 and ϕ0 vanished in all cases and are 
not shown. The data points for σ =a/5 1 and N/60   =   1 correspond 
to the results presented in figures 6–8.

Figure A2. Elements of the correlation matrix ϱ for different values 
of a and N. The data points for σ =a/5 1 and =N /60 1 correspond 
to the results presented in (6).
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∑γ γΓ Γ Γ+ ( ) + ( ) + ( )
=

−
( + )V V V, , .A N B

n

N
n n

H
,1

H
,

1

1

H
, 1 (B.3)

Similarly to the main text, let us here indicate with γ the 
degrees of freedom (now velocities included) of the meso-
scopic particles and with Γ the ones of the microscopic par-
ticles that build up the chain. For brevity we here label the 
mesoscopic particles by A and B and the microscopic ones 
by the discrete indices = …′n n N, 1, , . Moreover, we denote 
by γ Γ( )( )V ,p q

 
,  the corresponding interaction between particles 

p and q, where the explicit expressions of VWCA, VH, and Vm 
are as described in (1), (2) and (19). T γ( )meso  and T Γ( )micro  
indicate, respectively, the kinetic energies of the mesoscopic 
and microscopic particles. Therefore, H γ Γ( ),  is separable into

H H Hγ γ γΓ Γ( ) = ( ) + ( ), , ,meso micro (B.4)

where H γ( )meso  contains the terms in line (B.1) and H γ( )micro  
is composed of the terms in lines (B.2) and (B.3).

Since we work in the canonical ensemble, the physics of 
the system derives from the partition function

Z H

H H

∫
∫

γ

γ

Γ

Γ

( ) =

=

γ

γ γ

β

β β

Γ

Γ

− ( )

− ( ) − ( )

m e d d

e e d d ,

,

,meso micro

 
(B.5)

with β = k T1/ B . Coarse-graining means to integrate out the 
microscopic degrees of freedom Γ, so we rearrange

Z

Z

Z

H H

H

T

∫ ∫
∫

∫

γ

γ γ

γ γ

Γ( ) =

= ( )

= ( )

γ γ

γ

γ γ γ

β β

β

β β

Γ− ( ) − ( )

− ( )

− ( ) − [ ( )+ ( )]

⎡
⎣⎢

⎤
⎦⎥m e e d d

   e d

e e d .V V

,

micro

microm
A B A B

meso micro

meso

,
meso WCA

,

 

(B.6)

The connection to the probability density γ( )pc  is given by

Z

Z

T

γ γ( ) = ( )
( = )

γ γβ− [ ( )+ ( )]
p

m

e

0
.c

V
micro

A B
meso WCA

,

 (B.7)

Since the magnetic interactions only affect the mesoscopic 
particles, see line (B.1), it is solely contained in H γ( )meso . 
Therefore, the microscopic Hamiltonian H γ Γ( ),micro  for a spe-
cific fixed configuration γ of the mesoscopic particles does 
not explicitly depend on the magnetic moments. The magnetic 
effects do not modify the physics of the polymer chain for a 
given configuration of the mesoscopic particles. The under-
lying physical reason is that the polymer chain does not con-
tain magnetic components.

As we can see, the magnetic interactions only appear on 
the mesoscopic level of the final partition function Z. The 
magnetic interactions are simply included by multiplying on 
the mesoscopic level with the additional probability factor 

γβ[− ( )]Vexp m
A B, . The remaining part of the integrand that con-

tains the information drawn from the MD simulations, is not 
affected.

Explicitly introducing the magnetic moments in the micro-
scopic simulation would therefore not affect the final outcome. 

Thus, it is sufficient to determine the effects of the polymer 
chain through MD simulations and add the magnetic interac-
tions analytically in a subsequent step.
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Fit of the single-variable mesoscopic model potentials for different microscopic system parameters

In the present supplementary material we include the plots of the single-variable effective mesoscopic model
potentials for different system parameters of the microscopic simulations. That is, we vary the radius a of the
mesoscopic particles and the number of beads N forming the connecting polymer chain. We show the curves
obtained from fitting the mesoscopic model potentials (9)–(12) of section VI in the main text to the microscopic
simulation results.
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Figure 1: Solid lines: effective potentials eVr(r) for different combinations of parameters a and N . Dashed lines: fit of
the VFENE(r) potential (9) of the main text; see appendix A for the resulting mesoscopic model parameters.
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Figure 2: Solid lines: effective potentials eVθ(θ) for different combinations of parameters a and N . Dashed lines: fit of
the VD(θ) potential (10) of the main text; see appendix A for the resulting mesoscopic model parameters.
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Figure 3: Solid lines: effective potentials eVφ(φ) for different combinations of parameters a and N . Dashed lines: fit of
the Vτ (φ) potential (11) of the main text; see appendix A for the resulting mesoscopic model parameters.
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Buckling of paramagnetic chains in soft gels†

Shilin Huang,a Giorgio Pessot,b Peet Cremer,b Rudolf Weeber,c Christian Holm,c

Johannes Nowak,d Stefan Odenbach,d Andreas M. Menzelb and
Günter K. Auernhammer*a

We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed

to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the

morphology of the paramagnetic chains together with the deformation field of the surrounding gel

network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under

oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting

morphological shapes depend on the length of the chain, the strength of the external magnetic field,

and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to

the surrounding polymer network, a simplified model is developed to describe their buckling behavior.

A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the

surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling

effects.

1 Introduction

Magneto-responsive hybrid gels (MRGs) have been attracting
great attention due to their tunable elasticity, swelling properties
and shape that can be remotely controlled by a magnetic field. They
have potential applications as soft actuators, artificial muscles, as
well as sensors1–3 and can serve as model systems to study the heat
transfer in hyperthermal cancer treatment.4 Compared to other
stimuli-responsive gels, MRGs have the advantage of fast response,
controlled mechanical properties and reversible deformabilities.5–7

A typical MRG consists of a chemically cross-linked polymer
network, swollen in a good solvent, and embedded magnetic
particles.5,8 The size of the magnetic particles can range from
B10 nm to several mm.7

The origin of the magneto-responsive behavior of MRGs is
the magnetic interaction between the magnetic filler particles as
well as their interaction with external magnetic fields.9,10 In a
uniform magnetic field, paramagnetic particles can be polarized

and act as approximate magnetic dipoles. Depending on their
mutual azimuthal configuration, the dipolar interactions can
be either attractive or repulsive. In a liquid carrier, the dipolar
interaction drives the magnetic particles to form chains and
columns11–14 aligning in the direction of the magnetic field.
However, in a polymer gel, the particles cannot change their
position freely. Instead, relative displacements of the particles,
induced e.g. by changes in the magnetic interactions, lead to
opposing deformations of the polymer network. As a result, the
magnetic interactions can induce changes in the modulus of
the gel.7,15 This magneto-elastic effect is well known to be
related to the spatial distribution of the magnetic particles.16–21

For example, the modulus of anisotropic materials that contain
aligned chain-like aggregates of magnetic filler particles15,22–24 can
be significantly enhanced when an external magnetic field is applied
along the chain direction.7 The anisotropic arrangement of particles
also dominates the anisotropic magnetostriction effects.25–27

Different theoretical routes have been pursued to investigate
the magneto-elastic effects of MRGs: macroscopic continuum
mechanics approaches,28,29 mesoscopic modeling,16–19 and
more microscopic approaches30–32 that resolve individual polymer
chains. Theoretical routes to connect and unify these different
levels of description have recently been proposed.33–35 The authors
of ref. 34 show how the interplay between the mesoscopic particle
distribution and the macroscopic shape of the sample affects
the magneto-elastic effect. In addition to these factors, recent
experiments and computer simulations also point out that a direct
coupling between the magnetic particles and attached polymer
chains can play another important role.1,30,31,36–39
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An experimental model system showing a well-defined particle
distribution and a measurable magneto-elastic effect can help to
understand themagneto-elastic behavior ofMRGs at different length
scales. Projected into a two-dimensional plane, the distribution
of magnetic particles in thin dilutedMRGs can be detected using
optical microscopy or light scattering methods.15,40 By combining
these techniques with magnetic or mechanical devices, it is possible
to observe the particle rearrangement when the MRG sample is
exposed to a magnetic field or mechanical stimuli.15,41 For three-
dimensional (3D) characterization, X-ray micro-tomography has
been used.23 Here we introduce another 3D imaging technique –
laser scanning confocal microscopy (LSCM). Compared to normal
optical microscopy, LSCM is able to observe 3D structures and it
has a better resolution.42 Compared to X-ray micro-tomography,
LSCM is faster in obtaining a 3D image and easier to combine with
other techniques for real-time investigation.43,44

We use LSCM to study the magneto-elastic effects of para-
magnetic chains in soft gels. As a result, we find that the
paramagnetic chains in soft gels (elastic moduluso2 Pa) under
an oblique magnetic field show rich morphologies. Depending
on the length of the chain, modulus of the gel and strength of
an external magnetic field, the chains can rotate, bend, and
buckle. The deformation field in the polymer network around
the deformed paramagnetic chains can also be tracked. The
result confirms that the chains are strongly coupled to the
polymer network. A simplified model is developed to under-
stand the magnetically induced buckling behavior of the para-
magnetic chains in soft gels. In addition to serving as a model
experimental system for studying the magneto-elastic effect of
MRGs, our approach may also provide a new microrheological
technique to probe the mechanical property of a soft gel.45 Further-
more, our results may be interesting to biological scientists who
study how magnetosome chains interact with the surrounding
cytoskeletal network in magnetotactic bacteria.46

2 Materials and methods

The elastic network was obtained by hydrosilation of a difunc-
tional vinyl-terminated polydimethylsiloxane (vinyl-terminated
PDMS, DMS-V25, Gelest Inc.) prepolymer with a SiH-containing
cross-linker (PDMS, HMS-151, Gelest Inc.). Platinum(0)-1,3-
divinyl-1,1,3,3-tetramethyldisiloxane complex (Alfa Aesar) was
used as a catalyst. A low-molecular-weight trimethylsiloxy-
terminated PDMS (770 g mol�1, Alfa Aesar GmbH & Co. KG,
in the following ‘‘PDMS 770’’) served as a solvent that carried
the polymer network and the paramagnetic particles. The
paramagnetic particles were purchased from microParticles
GmbH. They were labeled with fluorophores (visible in LSCM).
The materials consist of porous polystyrene spheres. Within the
pores, nanoparticulate iron oxide was distributed rendering the
particles superparamagnetic. To prevent iron oxide leaching,
the particles had a polymeric sealing that also held the fluoro-
phores. The particles had a diameter of 1.48 � 0.13 mm (ESI,†
Fig. S1a). We measured the magnetization curve (ESI,† Fig. S1b)
of the paramagnetic particles by a vibrating sample magnetometer

(VSM, Lake Shore 7407). We found about 20% deviations in the
magnetic properties of the magnetic particles (e.g., magnetic
moment, see ESI,† Fig. S2). In order to observe the deformation
field in the polymer network, we used fluorescently labeled
silica particles as tracers. They had a diameter of 830 � 50 nm
and the surface was modified with N,N-dimethyl-N-octadel-3-
amino-propyltrimethoxysilylchloride.

After drying under vacuum at room temperature overnight,
the paramagnetic particles were dispersed into PDMS 770. In
some samples, tracer particles (3 wt%) were also dispersed into
PDMS 770 in this step. The prepolymer mixture was prepared with
9.1 wt% vinyl-terminated PDMS and 90.9 wt% SiH-containing
cross-linker. The prepolymer mixture (2.86 wt%) was dissolved in
PDMS 770, which contained the paramagnetic particles. Finally, by
adding PDMS 770, which carried the catalyst, the concentration of
the prepolymermixture in the sol solution was carefully adjusted in
the range from 2.74 wt% to 2.78 wt%. This concentration range
guaranteed the formation of soft gels with an elastic modulus lower
than 10 Pa (see ESI,† Fig. S3). In the sol solution, the catalyst
concentration was 0.17 wt%, and the concentration of magnetic
particles was 0.09 wt%. The sol solution was agitated at 2500 rpm
with a Reax Control (Heidolph, Schwabach, Germany) for 2 min for
homogenization, followed by ultrasonication (2 min, Transsonic
460/H, Elma) to disperse the magnetic particles. Then the sol
solution was introduced into a thin sample cell (B160 mm thick
andB1 cm wide) by capillary forces. The sample cells consisted of
two No. 1 standard coverslips, separated byB160 mm spacers. After
sealing with two-component glue, the cells that contained the sol
were exposed to a 100.8� 0.5mTmagnetic field. The paramagnetic
particles aligned into chains along the direction of the applied
magnetic field while the prepolymer was crosslinking. A visible
reaction of the prepolymer occurred within 10 min, and the
rheological measurements showed that it took about 40 min to
form a gel. Due to the low concentration of magnetic particles, the
magnetic chains in the gel were well separated (430 mm). The
length of the chains varied from a single particle up to about
170 particles. We stored the samples at ambient temperature
for at least two weeks before testing. The modulus of the gels in
the sample cells was characterized using microrheological
techniques (see ESI,† Fig. S4).47

A home-built LSCM setup was used to observe the chain
structure in the gel.43,44 We were able to analyze a sample of
thickness of about 150 mm. A homogeneous magnetic field was
attained by building Halbach magnetic arrays near the sample
stage of the LSCM.48 A 32-magnet array (Fig. 1a) was used to
change the field direction while keeping the field strength
constant (216.4 � 1.1 mT, see ESI,† Fig. S5). Another 4-magnet
Halbach array (see ESI,† Fig. S6) was used to change the field
strength (up to 100.8 � 0.5 mT). The magnetic field was measured
by a Lake Shore Model 425 Gaussmeter with a transverse probe.

To study the deformation of the PDMS gel around the
magnetic chain, the magnetic field strength was increased from
0 mT to 60.2 � 0.3 mT in 8 steps (B30 min per step). 3D images
of the sample with randomly distributed tracer particles were
recorded in every step. One isolated magnetic chain was chosen
for further analysis. Thus, from the 3D images we extracted a
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time series of 2D images that focused on this magnetic chain.
From these 2D images, the trajectories of the embedded tracer
particles were determined using the particle tracker plug-in
developed on ImageJ software.49 The corresponding displacements
of the tracers were deduced from the trajectories. Naturally, the
tracer particles were stochastically distributed over the sample. We
divided the images into a grid of small rectangles (7.0 � 5.5 mm2,
containing, on average B3.5 tracer particles) and determined the
average displacement in each cell.

3 Results

In the absence of a magnetic field, the paramagnetic chains in
a soft gel kept the aligned morphologies (ESI,† Section S1,
Movie S1). When a magnetic field (216.4 � 1.1 mT) was applied
in the direction parallel to the chains (Fig. 1c, images for 01),
the paramagnetic chains still aligned with the original chain
direction (horizontal). We changed the direction of the magnetic
field step-by-step (51 steps) in the clockwise direction (B1 min
between steps, quasi-static). We also define the orientation of the
magnetic field B as the angle included between the magnetic
field and the initial chain direction (see Fig. 1b). The left images
of Fig. 1c show a short chain with 15 particles in a gel of elastic
modulus G0 of 0.25 � 0.06 Pa. The chain rotated to follow the
magnetic field. However, the rotation angle of the chain was
smaller than the orientation angle of the magnetic field (Fig. 1b).
This difference increased until the orientation of B reached 1351,
where the chain flipped backward and had a negative angle. The
chain again became parallel to the field when the orientation of

B increased to 1801. The morphology of the chain was the same
at orientations of the magnetic field of 01 and 1801 because of
the superparamagnetic nature of the particles. Note that the
chain was not straight at the intermediate angles (e.g., images
for 601, 901 and 1201). Instead it bended.

The images on the right-hand side of Fig. 1c show a longer
chain with 59 particles in the same gel. When the orientation of
B was 301, the chain rotated and bended, with its two ends
tending to point in the direction of the magnetic field. When
the orientation of B was 601, the chain wrinkled and started to
buckle. A sinusoidal-shape buckling morphology was observed
when the magnetic field was perpendicular to the original chain
(orientation of the magnetic field of 901, see ESI,† Section S1,
Movie S2). When the orientation of B increased from 901 to 1201,
the left part of the chain flipped downward in order to follow
the magnetic field. The right part flipped upward when the
orientation of B increased from 1201 to 1501. Finally, when the
field direction was again parallel to the original chain direction
(orientation of the magnetic field of 1801), the chain became
straight. The same rotation/buckling morphologies as in Fig. 1c
could be observed when increasing the orientation of B from
1801 to 3601.

We also directly applied a perpendicular magnetic field to
the paramagnetic chains in the soft gels. The paramagnetic
chains showed different buckling morphologies (Fig. 2a)
depending on the chain length. Fig. 2b gives frequency counts
of the different morphologies in the same sample (G0 = 0.25 �
0.06 Pa) under a magnetic field of 100.8 � 0.5 mT. In total
180 chains were observed. Longer chains tended to buckle with
a higher number of half waves. Moreover, the distributions
overlapped, implying that paramagnetic chains of identical
length could have different morphologies under the perpendicular
magnetic field.

These bucklingmorphologies are reminiscent of the buckling of
paramagnetic chains in a liquid medium under a perpendicular
magnetic field.50,51 Themost stablemorphology in the latter system

Fig. 1 (a) Laser scanning confocal microscopy (LSCM) was used to
observe the morphologies of the paramagnetic chains in the soft gels.
The Halbach magnetic array provided a homogeneous magnetic field
(here B = 216.4 � 1.1 mT). This array could be rotated to change the
orientation of the magnetic field. (b) The orientation of the magnetic field
B was successively increased from 01 to 1801 in 36 steps (square points).
A magnetic chain of 15 particles rotated to follow the magnetic field, but
the rotation angle was smaller than the orientation angle of B (dashed line).
(c) Morphologies of magnetic chains in a soft gel changed when the
orientation angle of B increased. The scale bar is 10 mm. The gel in (b) and
(c) had an elastic modulus G0 of 0.25 � 0.06 Pa.

Fig. 2 (a) Different morphologies of paramagnetic chains in a soft gel
(G0 = 0.25� 0.06 Pa) under a perpendicular magnetic field (100.8� 0.5mT).
The original chain direction was horizontal, and the applied magnetic field
was vertical. The scale bar is 10 mm. (b) Frequency count of different
buckling morphologies in the same sample. M is the number of half waves.
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was a straight chain aligning along the magnetic field direction.
However, in our system this morphology was not observed.
Even the short chains showed a rotation angle smaller than the
orientation of the magnetic field (e.g., Fig. 1b). The major
difference between our experiments and ref. 50 and 51 was
the nature of the surrounding medium. In our system, the
polymer network around the paramagnetic chains impeded the
rotation of the chains into the magnetic field direction (a more
detailed discussion will be given below).

We used ImageJ software (NIH52) to extract the skeletons of
the chains that have 2 half waves (S-shaped). The amplitude of
deflection or deformation of different chains was quantified by
the square root of the mean square displacement, i.e. amplitude =
(h y2i � h yi2)1/2, where y measures the particle displacement along
the field direction. The results are shown in Fig. 3. The amplitude
increased with increasing chain length. At the same chain length,
the amplitude tends to increase with increasing magnetic field
strength (Fig. 3a; an example is also given in Fig. 4a) or with
decreasing gel modulus (Fig. 3b).

The modulus dependence of the amplitude demonstrated
that the polymer network around the paramagnetic chains
impeded the chain deformations. Therefore, the deformation
field within the polymer network plays an important role to
understand the buckling of the chains. We thus added tracer
particles into the gel matrix, and used their trajectories to
record the deformation field around the paramagnetic chains.
As shown in Fig. 4a, a linear paramagnetic chain buckled and
formed an S shape in a perpendicular magnetic field. The
amplitude increased with increasing field strength, while the
contour length of the chain remained constant. The chain extension
decreased along the original chain direction (horizontal direction)
and increased along the perpendicular direction. Simultaneously,
the polymer network around the chain followed the deformation
(Fig. 4b) of the paramagnetic chain, both in the transverse and
longitudinal directions. This confirmed that the paramagnetic chain
is strongly coupled to the polymer network.Within our experimental

resolution, the chain seemed to have a rigid non-slip contact to
the surrounding network.

4 Modeling

We now turn to a qualitative description of the situation in the
framework of a reduced minimal model. Theoretically capturing
in its full breadth the problem of displacing rigid magnetic
inclusions in an elastic matrix is a task of high complexity
and enormous computational effort.53 We do not pursue this
route in the following. Instead, we reduce our characterization
to a phenomenological description in terms of the shape of the
magnetic chain only. This is possible if the dominant modes of
deformation of the surrounding matrix are reflected by the
deformational modes of the magnetic chain.

Below, we assume that the chain is composed of identical
spherical particles. In its undeformed state, the straight chain
is located on the x-axis of our coordinate frame. The contour
line of the deformed chain running through the particle centers
is parameterized as y(x), see Fig. 4c.

4.1 Magnetic energy

First, concerning the magnetic energy along the chain, we
assume dipolar magnetic interactions between the particles. In
the perpendicular geometry (Fig. 4c), the external magnetic field
approximately aligns all dipoles along the y-axis. For simplicity,
we only include nearest-neighbor magnetic interactions. In an

Fig. 3 Influence of chain length, strength of magnetic field and elastic
modulus of the gel matrix on the amplitude of the S-shaped chains,
observed when the magnetic field is applied perpendicularly to the initial
chain orientation. (a) The elastic modulus of the gel was 0.25 � 0.06 Pa,
and the magnetic field strengths were 216.4 � 1.1 mT (black squares),
80.5 � 0.4 mT (red triangles), and 18.7 � 0.1 mT (blue circles), respectively.
(b) The magnetic field strength was 216.4 � 1.1 mT and the elastic moduli
of the gel were 0.015 � 0.005 Pa (black squares), 0.25 � 0.06 Pa (red
triangles), and 0.78 � 0.22 Pa (blue circles), respectively. The solid lines are
guides to the eye.

Fig. 4 (a) Influence of the magnetic field strength on a buckling chain.
From top to bottom, the magnetic field strengths were 0 mT, 10.1� 0.1 mT,
26.4� 0.1 mT, 38.6� 0.2 mT and 60.2� 0.3 mT, respectively. The modulus
of this gel was about 0.01 Pa. (b) Tracer particles were inserted into
the gel matrix of the sample. Tracking these embedded tracer particles,
the deformation field in the gel matrix was determined. The red solid line
represents the skeleton of the magnetic chain shown in (a) for a field
strength of 60.2 � 0.3 mT, and the dashed blue line indicates the original
chain shape. (c) We modeled the paramagnetic chain in the elastic gel as a
continuous object uniformly carrying dipolar magnetic moments. Without
the magnetic field, the straight chain was oriented along the x-axis. Under
a perpendicular magnetic field B (oriented along the y-axis), the magnetic
chain deformed. The surrounding polymer network impeded the chain
deformation.
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infinite straight chain, this would result in an error given by a
factor of z(3) E 1.2, where z is the Riemann zeta function.33,54,55

Within our qualitative approach this represents a tolerable error.
Replacing the magnetic interaction energy between the discrete
magnetic particles by a continuous line integral and shifting
the path of integration from the contour line of the chain to the
x-axis, we obtain the magnetic interaction energy (see ESI,†
Section S3.1)

Emagn ¼ W

ðx2
x1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ðxÞ2p dx; (1)

where x1 and x2 label the end points of the chain. The prefactor
W has the dimension of energy per unit length and is given by
(see ESI,† Section S3.1)

W � 3m0m
2

4pd4
; (2)

where m0 is the vacuum magnetic permeability, m the magnetic
moment of a single particle, and d its diameter.

4.2 Elastic bending energy

Next, we need to include terms that provide a measure for the
magnitude of the elastic deformation energy. To estimate the
importance of different modes of the elastic matrix deformation, we
analyze the experimentally determined displacement field around
the distorted chain shown in Fig. 4b. For this purpose, wemodel the
continuous matrix by a discretized spring network.19,56 Network
nodes are set at the positions where the displacement field was
tracked experimentally. The nodes are then connected by elastic
springs. After that, we determine the normal modes of deformation
of this network.56 Finally, we can decompose the experimentally
observed deformation field in Fig. 4b into these normal modes.
Occupation numbersfn give the contribution of the nthmode to the
overall deformation.

The four most occupied modes are shown in Fig. 5. We find
a major contribution of ‘‘oscillatory’’ modes, i.e. alternating up
and down displacements along the central horizontal axis.
Such oscillatory displacements of the matrix are connected to
corresponding oscillatory displacements of the chain, see
Fig. 4b. A bending term of the form (see ESI,† Section S3.2)

Ebend ¼ Cb

ðx2
x1

½y00ðxÞ�2
1þ y0ðxÞ2½ �5=2

dx (3)

becomes nonzero when such deformational modes occur and is
therefore taken as a measure for their energetic contribution.
In addition to that, we have experimental evidence that the
chain itself shows a certain amount of bending rigidity (see
ESI,† Fig. S7), possibly due to the adsorption of polymer chains
on the surfaces of the magnetic particles. Similar indication
follows from two-dimensional model simulations, see below.

4.3 Elastic displacement energy

The bending term does not energetically penalize rotations of a
straight chain, see Fig. 2a for M = 0. Yet, such rotations cost
energy. Boundaries of the block of material are fixed, therefore
any displacement of an inclusion induces a distortion of the

surrounding gel matrix. We model this effect by a contribution
(see ESI,† Section S3.3)

Edispl ¼ Cd

ðx2
x1

½yðxÞ�2 1þ y0ðxÞ2� �3=2
dx: (4)

This term increasingly disfavors the rotations of longer straight
chains, which reflects the experimental observations (see ESI,†
Fig. S9).

Moreover, in Fig. 5c the third dominating mode of the matrix
deformation corresponds to a contraction along the chain direction
and an expansion perpendicular to it. We conjecture that this
should be the dominating mode in the deformational far-field, yet
this hypothesis needs further investigation. It is induced by chain
deflections in y-direction, which imply a matrix contraction in
x-direction (experimentally we observe that the chain length is
conserved under deformations and that the individual magnetic
particles remain in close contact). We simultaneously use Edispl
to represent the energetic contribution of this type of underlying
matrix deformation.

4.4 Energetic evaluation

We now consider the resulting phenomenological model
energy Etot = Emagn + Ebend + Edispl. A standard procedure would
consist of minimizing Etot with respect to the functional form of
y(x). Corresponding calculations and results are listed in the
ESI,† Section S3.4. There are, however, severe limitations to this
route in the present case. In contrast to several previous
approaches in different contexts,57–61 our magnetic chains are
of finite length and show significant displacements at their end
points, see Fig. 2. Detailed knowledge of the boundary condi-
tions of the deflection y(x) and its derivatives at the end points
of the chain would be necessary to determine the chain shape.

Fig. 5 The four most occupied normal modes of the deformation field in
Fig. 4b after projection to an elastic spring network, ordered by decreasing
magnitude of contribution to the overall deformation. The normal modes
(a), (b) and (d) are of an ‘‘oscillatory’’ type, whereas mode (c) represents a
longitudinal contraction. Corresponding relative weights of the modes are
f(a)

2 = 0.095, f(b)
2 = 0.057, f(c)

2 = 0.055, and f(d)
2 = 0.051, where we

normalized the sum of the weights over all modes to unity. For better
visualization, the overall amplitudes are rescaled as against the actual
weights. The matrix region in close vicinity of the chain is indicated by
black arrows.
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Indeed the solutions become very sensitive to additional conditions
(see ESI,† Section S3.4). In our case, the necessary additional
boundary conditions depend on the interaction with the matrix.
They are not accessible in the present reduced framework.

Therefore, we proceed in a different way. We use as an input
for our calculations the experimental observations. The experi-
mentally found chain shapes can to good approximation be
represented by a polynomial form

yðxÞ ¼ S
YM�1

m¼0

ðx�mbÞ for x1 � x � x2; (5)

where M is again the number of half-waves, the prefactor S sets
the strength or amount of chain deformation and deflection, b is
the spacing between the nodes, and the interval [x1, x2] follows
from the experimental result of preserved chain length L,

ðx2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½y0ðxÞ�2

q
dx ¼ L: (6)

We prefer the polynomial form of eqn (5) to, for instance, a
sinusoidal ansatz because it better reproduces the deformations
of our finite-sized chain objects. In particular, the pronounced
displacements of the chain ends, see e.g. Fig. 2a, are well captured
by polynomial forms. Likewise, an experimentally observed tendency
to smaller oscillation amplitudes inside longer chains is covered.
Furthermore, rotations of short straight chains are readily included
in this way.

Next, we insert eqn (5) into the above expressions for the
energy and minimize with respect to S, x1, and x2 for a given M,
with the constraint of constant length L, see eqn (6). The
minimization was performed using Wolfram Mathematica
minimization routines.62 Parameter values of the coefficients
Cb and Cd are found by matching the resulting shapes to the
corresponding experimental profiles (chain deformations for
G0 = 0.25 Pa and magnetic field B = 100.8 mT as in Fig. 2a,
M = 2, are used for this purpose). We obtain Cb E 0.01Wb2 and
Cd E 2W/b2.

To illustrate how the energetic contributions vary under
increasing preset deformation, we plot in Fig. 6 the energies
for increasing S for two fixed combinations of M and L. The
total energy Etot shows a global minimum in both panels, which
we always observed for symmetric chain deformations. As
expected, with increasing S the magnetic energy decreases,
whereas the deformation energies increase.

Next, we determine the minimal total energy as a function of
chain length L for different numbers of half-oscillations M, see
Fig. 7. With increasing chain length L the shapes that minimize
the energy show an increasing number of half-waves M in good
agreement with the experimental data in Fig. 2b.

Moreover, we quantify the amplitude of the chain deflection
or deformation by

Amplitude ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2h i � hyi2

q
; h�i ¼

Ð x2
x1
� dx

x2 � x1
: (7)

Resulting values are plotted in Fig. 8. As mentioned above, we
optimized the model parameters with respect to the experimental

data for a magnetic field intensity of B = 100.8 mT. We
demonstrate in Fig. 8 that moderate variations of the magnetic
field intensity only slightly affect our results: the brighter curves
are obtained when multiplying the magnetic energy scaleW by a
factor B1.42, corresponding to an increased magnetic field
intensity of approximately B B 216 mT (see ESI,† Fig. S1b). This
is in agreement with the experimental observations. We include
in Fig. 8 the experimentally determined values for B = 80.5 mT
and B = 216.4 mT. Only a slight trend of increasing deflection
amplitudes is found for this increase of magnetic field intensity.

Fig. 6 Contributions to the total energy as a function of the amount S of
deformation and minimized with respect to x1 and x2 for a chain of
the shape given by eqn (5). Here we show the cases (a) M = 2, L = 3b
and (b) M = 4, L = 4.5b. The total energy Etot has a global minimum as a
function of S, which corresponds to the most stable chain shape. We
always observed the global minimum for symmetric shapes.

Fig. 7 Energies Etot of chain deformations of the shape given by eqn (5),
minimized with respect to S, x1, and x2, as a function of chain length L and
number of half-oscillations M. Each curve describes a shape of M half-waves
with a minimum total length of (M � 1)b. The resulting curves show crossing
points from where the total energy for an increasing L is lowered by bending
one extra time (jumping to a higherM) rather than conserving the same shape.
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Together, although the curves for M = 2 in Fig. 8 slightly
overshoot the data points, Fig. 7 and 8 are in good agreement
with the experimental results. The amplitude of deflection and
deformation is not observed to unboundedly increase with chain
length L in the experiments. Likewise, our model predicts that
longer chains prefer to bend one extra time (switching to higher-
M shape) rather than to show too large deflection amplitudes.

5 Coarse-grained molecular dynamics
simulation

We also studied the buckling of the chain using two-dimensional
coarse-grained molecular dynamics simulations by means of the
ESPResSo software.63,64 A simple model was developed that
allowed us to analyze the influence of particular interactions
and material properties on the buckling effect. Here, we focus on
the elasticity of the polymer matrix in the immediate vicinity of
the magnetic particles.

By choosing the coarse-grained scale for our model, we ignore
any chemical details but rather describe the system in terms of
the magnetic particles as well as small pieces of polymer gel. As
the buckling effect appears to be two-dimensional, and as the
ground states for systems of dipolar particles have also been
found to be two-dimensional,55 we use this dimensionality for
our simulations. We study a chain of 100 magnetic particles with
a significant amount of surrounding elastic matrix.

As in the analytical approach, the gel matrix is modeled by a
network of springs. Here, however, we use a regular hexagonal
mesh as a basis. To mimic the non-linear elastic behavior of

polymers, we use a finitely extensible non-linear elastic spring
potential (FENE-potential65) for the springs along the edges of
themesh. As a simple implementation of the finite compressibility,
we introduce FENE-like angular potentials on the angles at
the mesh points, with a divergence at 01 and 1801 (see ESI,†
Section S4.2). The magnetic particles are modeled as rigid spheres
interacting by a truncated, purely repulsive Lennard-Jones potential,
the so-called Weeks-Chandler-Andersen potential (see ESI,†
Section S4.1).66 Their magnetic moment is assumed to be
determined purely by the external magnetic field and to be
constant throughout the simulation, i.e. we assume that the
external field is significantly stronger than the field created by
the particles. The magnetic moments are taken parallel to the
external field and with a magnitude given by the experimentally
observed magnetization curve. The coupling between the particles
and the mesh is introduced in such a way, that under the volume
occupied by a particle, the mesh does not deform, but rigidly
follows the translational and rotational motion of the particle (see
ESI,† Section S4.3). A local shear strain on the matrix can rotate a
magnetic particle, but not its magnetic moment.

An important point is the elasticity of the polymer matrix in
the immediate vicinity of the magnetic particles and, in particular,
between two magnetic particles. We study two situations here, the
first one including a stiffer region in the immediate vicinity of the
particles, the second one without such a stiffer layer and directly
jumping to the bulk elasticity. The stiffer layer, if imposed, is
created using a spring constant larger by three orders of magnitude
on those springs which originate from mesh sites within the
particle volumes (see ESI,† Section S4.3). The angular potentials
are unchanged.

A comparison between the cases with and without a stiffer
layer of gel around the magnetic particles can be seen in Fig. 9.
The images show a small part of the resulting configuration of
magnetic particles and the surrounding mesh for a field
applied perpendicular to the initial chain direction. Thus the
magnetic moments of the particles are oriented perpendicular
to the undistorted chain direction. This results in an energetically
unfavorable parallel side-by-side configuration for the dipole
moments. The energy can be reduced either by increasing the
distance between the dipoles along the initial chain direction, or
by moving dipoles perpendicularly to the initial chain direction so
that they approach the energetically most favorable head-to-tail
configuration. If the matrix is made stiffer immediately around
the particles, and thus the contour length of the chain cannot
change significantly, the re-positioning towards the head-to-tail
configuration causes the buckling effect observed in the experi-
ments (Fig. 9). When one assumes the matrix immediately around
the magnetic particles to be as soft as in the bulk of the material,
neighboring particles can move apart and the chain breaks up
into individual particles or small columns perpendicular to the
original chain direction. Additionally, a layer of increased stiffness
also introduces a bending rigidity of the chain. In Fig. 10, the full
chain and the surrounding matrix is shown for an external field of
magnitude 216 mT, which from the experimental magnetization
measurements corresponds to a magnetic moment of about
4.5 � 10�14 A m2 (see ESI,† Fig. S1b). Due to the different

Fig. 8 Resulting deflection amplitudes of the chain deformation, calculated
according to eqn (7). Darker curves represent the model parameters optimized
with respect to the experimental shapes for a magnetic field intensity
B = 100.8 mT. Brighter curves were obtained by increasing the magnetic
energy scale W by a factor B1.42, which corresponds to an increased
magnetic field intensity of B B 216 mT (see ESI,† Fig. S1b), comparable with
the triangular experimental data points. Both, model curves and included
experimental data points, demonstrate that moderate variations of the
magnetic field intensities only slightly affect the observed deflection and
deformation amplitudes. The value of b necessary to perform the analysis
was determined from theM = 2 experimental data as b = 12.6 mm. ForMZ 2
‘‘kinks’’ appear in the curves, which arise from a change in the type of
solution as illustrated by the insets: for each M Z 2 curve, left of the kink
the chain deformation shows nodes at the end points of the chain, i.e.
y(x1)C y(x2)C 0 (lower left inset); right from the kink, these outer nodes are
shifted to the inside of the chain (upper right inset). As seen from Fig. 7, the
solutions left of the kinks are not energetically preferred.
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dimensionalities, the elastic modulus of the surrounding matrix
could not be directly matched to the experimental system.

Actually, the amplitude of the chain oscillation increases
when the external field is higher and induces larger dipole
moments in the particles. This increases the tendency of the
magnetic moments to approach the head-to-tail configuration,
which in turn leads to a stronger deformation of the matrix. We
note that the relative amplitude of the buckling along the chain
is similar in the simulations (Fig. 9) and experiments (Fig. 2).
The matrix surrounding the chain follows the chain oscillation
with an amplitude that decreases over distance from the chain.
Deviations may be expected from the deformational far-field in
the experimental system due to the different dimensionalities
of the systems.

In the ESI† (Fig. S7) we show an experimental evidence for
the existence of a stiff polymer layer around the magnetic
particles. The sample was prepared at a concentration of
prepolymer mixture well below the percolation threshold, i.e.,
some cross-linking of the polymer took place in the sample but
no macroscopic gel was formed. When this cross-linking was
done under an applied magnetic field, the particle chains stayed
intact even after removal of the magnetic field (Fig. S7a, ESI†).
Hairpin or ‘‘S’’-shape morphologies were observed when these
chains were exposed to a magnetic field (Fig. S7b, ESI†), indicating
that they have a bending rigidity.50,51 Our interpretation of
this behavior is that a stiff gel layer connects the particles and
stabilizes the particle chains, even though no bulk gel is
formed. As the magnetic particles have a good affinity for
PDMS (e.g., the magnetic particles can be easily dispersed into
PDMS), we conjecture that there is an adsorbed layer of polymer
(i.e., PDMS prepolymer or cross-linker) on the surface of the
magnetic particles.67 Therefore, the gel layer on the particles is
denser and thus stiffer than in the bulk. Further study of the

stiff polymer layer and its effect on the buckling behavior is
under way.

Moreover, in Fig. S8 (ESI†) we show that the buckling
behavior of the magnetic chains can still be observed in the gel
when we increase the elastic modulus to 170 Pa (for this purpose,
carbonyl iron particles are used as magnetic filler particles).
Our studies on that stiffer sample provide further evidence that
the interaction between the magnetic particles and the polymer
matrix in their close vicinity can play an important role in the
magneto-elastic response of soft MRGs.

6 Conclusions

We have shown that paramagnetic chains in a soft polymer gel
can buckle in a perpendicular magnetic field. The buckling
morphology depends on the length of the chain, the strength of
the magnetic field and the modulus of the gel. Longer chains
form buckling structures with a higher number of half waves.
Higher strengths of the magnetic field and a lower modulus of
the gel matrix can lead to higher deformation amplitudes. The
deformation field in the surrounding gel matrix confirms that
the embedding polymer network is strongly coupled to the
paramagnetic chain. A minimal magneto-elastic coupling
model is developed to describe the morphological behavior of
the paramagnetic chains in the soft gel under a perpendicular
magnetic field. It shows that the chains deform in order to
decrease the magnetic energy. This is hindered by the simulta-
neous deformation of the gel matrix, which costs elastic energy.
Additionally, we have introduced a coarse-grained molecular
dynamics simulation model, which covers both, the magnetic
particles and the surrounding polymer mesh. In this model, the
buckling of the chains can only be observed when the surface
layer around the particles is assumed to be stiffer than the bulk
of the gel. This prevents the chains from breaking up into
columns oriented perpendicular to the initial chain direction or
into isolated particles. These findings support the picture that
the embedded magnetic chains themselves feature a certain
bending rigidity, possibly due to the existence of a stiff polymer
layer on the particle surfaces.

Since the magneto-elastic effect demonstrated and analyzed
in this paper is pronounced, reversible, and controllable, it may

Fig. 9 Detailed view of the local deformations in the polymer mesh around
the magnetic particles with a layer of increased stiffness (top) and without
one (bottom) in the immediate vicinity of the particle surfaces. The external
magnetic field of strength 216 mT is applied in the vertical direction. When
the boundary layer is assumed to be stiffer than the bulk (top), the buckling
effect, as observed in the experiments, occurs. When the layer around the
particles is soft (bottom), neighboring particles either form tight columns
parallel to the field, or separate in the direction perpendicular to the field.

Fig. 10 Buckling chain of magnetic particles and the surrounding polymer
mesh for an external field of magnitude 216 mT pointing along the vertical
direction. In this image, roughly one quarter of the full simulation area is
shown. The surrounding matrix follows the chain oscillation with an
amplitude that decreases over distance from the chain.
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be useful for designing micro-devices, e.g. micro-valves and
pumps for microfluidic control.68 As the morphologies of the
buckling paramagnetic chains are correlated with the modulus
of the gel matrix, we may use them as mechanical probes for
soft gels (similarly to active microrheology techniques).45 Moreover,
our study may help to understand the physical interactions
between the magnetic chains and the surrounding cytoskeleton
network in magnetotactic bacteria.46 In our future study we will
focus on how the interfacial coupling between the magnetic
particles and the polymer network influences the local magneto-
elastic coupling effect.
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1 Supplementary movies

Movie S1 Typical 3D morphology of paramagnetic chains in a soft gel in the absence

of a magnetic field. The elastic modulus of the gel is 0.78± 0.22 Pa and the scale bar is

300 μm.

Movie S2 Typical 3D morphology of paramagnetic chains in a soft gel under a perpendic-

ular magnetic field (B = 216.4±1.1 mT). The elastic modulus of the gel is 0.78±0.22 Pa

and the scale bar is 300 μm.
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2 Supplementary information for experiments

2.1 Paramagnetic particles

According to the manufacturer (microParticles GmbH), the paramagnetic particles were

fabricated based on porous polystyrene particles. Within the pores of the polystyrene par-

ticles, nanoparticulate iron oxide was distributed, rendering the particles superparamag-

netic. To prevent iron oxide leaching, the paramagnetic particles were covered with thin

polymer layers which also held the fluorophores. The diameter of the paramagnetic parti-

cles from the scanning electron microscopy (SEM) images (see Fig. S1a) is 1.4±0.2 μm.

We also measured the length of linear particle chains in polydimethylsiloxane using laser

scanning confocal microscopy (LSCM). Dividing the length of the chains by the number

of particles in the chains we got a diameter of 1.48±0.13 μm (average for 20 chains). We

used the latter value for calibration and calculation in this paper.

Figure S1 (a) Scanning electron microscopy (SEM) image of the paramagnetic particles. The

scale bar is 5 μm. (b) Magnetization curve of the paramagnetic particles. The magnetic field H
was increased from 0 kA/m to 900 kA/m and then decreased to 0 kA/m, and the magnetization M
showed no hysteresis, as indicated by the red arrows.

The magnetization curve of the paramagnetic particles was measured by a vibrat-

ing sample magnetometer (VSM, Lake Shore 7407). The magnetization of the parti-

cles showed no hysteresis when the external magnetic field was increased and decreased,

demonstrating the superparamagnetic property (Fig. S1b).

2.2 Calibrating the magnetic properties of the paramagnetic parti-
cles

A spherical colloidal particle moving in a viscous fluid with a relative velocity v is subject

to a frictional force (Stokes’ drag)

Fd = −6πηRv, (S1)

where R is the radius of the particle and η is the dynamic viscosity of the fluid.
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Figure S2 Histogram of velocity of paramagnetic particles moving in a viscous liquid. The viscos-

ity of the liquid is 0.61±0.02 Pas. The magnetic field strength is 32.7±0.2 mT and the magnetic

gradient is 3.63±0.02×10−5 mT/μm. Using a density of 1.7 g/cm3, the movement of the parti-

cles, the magnetic gradient, and the magnetization curve can be correlated.S1,S2

Under a magnetic field B, the magnetic particles move along the magnetic field gradi-

ent. The magnetic force Fm acting on a paramagnetic particle isS1,S2

Fm = m ·∇B, (S2)

where m is the induced magnetic dipole moment of the paramagnetic particle. In the

steady state, the magnetic force is balanced by Stokes’ drag, thus

6πηRv = m ·∇B. (S3)

From experiments, the left-hand side of Eq. (S3) and ∇B can be measured directly. We

dispersed the paramagnetic particles into a viscous liquid with a viscosity of 0.61 ±
0.02 Pas. The dispersion was added into a sample cell with a thickness of 160 μm.

Then the sample cell was carefully sealed in order to avoid drift due to large-scale

flow of the liquid. We used a magnetic field of 32.7 ± 0.2 mT with a gradient of

3.63± 0.02× 10−5 mT/μm to induce flow of the paramagnetic particles. The magnetic

field was measured by a Lake Shore Model 425 Gaussmeter with a transverse probe. The

movement of the particles (far from the walls of the sample cell) was recorded using

LSCM. The magnitude of the magnetic moment m can be calculated via m = 4πR3ρM/3,

where M can be obtained from the magnetization curve (Fig. S1b) and ρ is the density of

the paramagnetic particles. Using ρ = 1.7 g/cm3, we find that Eq. (S3) is satisfied. This

density value is in agreement with the one provided by the manufacturer (1.5–2 g/cm3).

In our study the paramagnetic particles are not ideally monodispersed and the induced

magnetic moment is not ideally identical for every particle. For example, the velocity

of the paramagnetic particles moving in a viscous liquid under a magnetic gradient has a

distribution with ∼ 20% deviation (Fig. S2). According to Eq. (S3), the magnetic moment

of the particles should have a similar distribution. For simplification, we do not consider

this distribution in the modeling and simulation.
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2.3 Determining the elastic modulus of the soft gels

Figure S3 (a) Shear elastic modulus (G′) of the gels as a function of angular frequency. The gels

were fabricated with different concentrations (c) of the prepolymer mixture as indicated for the

different sets of data points. (b) The low-frequency G′ of the gels plotted as a function of c. The

solid curve is the best fit of Eq. (S4) to the experimental data.

The rheological experiments were performed in a strain-controlled rheometer (ARES-

LS, Rheometric Scientific Inc., Piscataway, NJ, USA) equipped with a Couette cell at

room temperature. The elastic modulus (G′) shows a plateau at low frequencies for the

soft gels (Fig. S3a), reflecting the formation of a percolating network. The plateau mod-

ulus increases with increasing concentration of the prepolymer mixture (c) following a

power lawS3

G′ = G′
0(c− c�)t , (S4)

where G′
0 is a prefactor, t is the critical exponent, and c� is the percolation concentration.

From this power law it is evident that the elastic modulus of the soft gels becomes very

sensitive to the concentration of the prepolymer mixture when the concentration of the

prepolymer mixture is close to c�.

As a result, we cannot directly use the elastic modulus obtained from macroscopic

rheological measurements to characterize our soft gels in the sample cells (∼160 μm

thick), because a little change of the concentration of the prepolymer mixture during

preparation of the gels can lead to a significant difference of the elastic modulus. In

experiment, the concentration of the prepolymer mixture in the sample cells is difficult

to control precisely, because the concentration can change slightly if some prepolymer

molecules are adsorbed to the walls of the cell, to the pipette tips, or to the paramagnetic

particles.

In order to solve this problem, we measured the elastic modulus of the soft gels directly

in the sample cells (containing the paramagnetic chains) by passive microrheology (i.e.,

particle tracking). About 15 single particles were used as the mechanical probes, and a

fast camera (Photron, FASTCAM SA1) and a microscope (Leica DMI6000B) were used

to detect the thermal fluctuations of the particles.S4,S5 Fig. S4a shows the mean-square

displacement (MSD) of the particles in the gels as a function of lag time. At long lag times

the MSD levels off, indicating that the particles are confined in a network. The moduli

of the gels can be calculated from the MSD of the particles based on the generalized
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Figure S4 Probing the viscoelastic properties of the gels in the sample cells (containing the para-

magnetic chains). (a) Mean-square displacement (MSD) of the particles in the gels as a function

of lag time. The concentrations of the prepolymer mixture for the four samples A–D are 2.78 wt%,

2.77 wt%, 2.76 wt%, and 2.76 wt%, respectively. The slight changes of concentration can lead

to significant differences in the MSD, because the concentration used here is close to the per-

colation threshold (c� = 2.74%, see Fig. S3b).S3 It is the method of passive microrheology that

makes it possible to measure the viscoelastic properties of the soft gels (containing the paramag-

netic chains) directly within the sample cells. (b) Elastic modulus (G′) calculated from the MSD.

(c) Elastic modulus (G′) and loss modulus (G′′) plotted as functions of angular frequency (ω) for

sample C. At low frequencies, the elastic character dominates.

Stokes-Einstein relation (GSER)S4,S6

G∗(ω) =
kBT

πR(iω)Fu{MSD(t)} , (S5)

where G∗(ω) is the complex shear modulus and Fu{MSD(t)} is the unilateral

Fourier transform (F{ f (t)} =
∫ ∞

0 e−iωτ f (τ)dτ). Using the algorithm from Crocker and

Weeks,S4,S5 we calculated the shear moduli (Fig. S4b). Fig. S4c shows that at low fre-

quencies (corresponding to long time scales) the gel is mainly elastic. In the main article

we use the elastic modulus of the gels obtained from passive microrheology to character-

ize the gels.
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2.4 Magnetic field of the Halbach magnetic array

We used permanent magnets to provide a homogeneous magnetic field.S7 The NdFeB

permanent magnets were purchased from AR.ON GmbH. According to the manufacturer

they have a remanence of 1.32 T. The magnets were arranged as shown in Fig. 1a. The

magnets had dimensions of 8×8×15 mm3 and 14×14×15 mm3 for the inner and outer

rings, respectively. The magnetic field at the center of this magnetic array was homoge-

neous (Fig. S5). This magnetic array was built around the objective of our home-built

LSCM and it could be rotated by a motor. We put the samples in the middle of this array

and used LSCM to observe the samples under the magnetic field. The typical observation

area was in the central 2 mm2, where the homogeneity of the magnetic field was ∼ 2 000

ppm (Fig. S5b).

Figure S5 Comparison of measured and simulated magnetic flux density in the Halbach magnetic

array. The arrangement of the 32 permanent magnets is shown in Fig. 1a. (a) Magnitude B of the

magnetic flux density along the x-axis. The red solid curve shows simulation results using Comsol

software. The solid black points are experimental data (measured by a Lake Shore Model 425

Gaussmeter with a transverse probe). The data for x around 0 are shown in (b). The homogeneity

in the central 2 mm2 is ∼ 2 000 ppm. (c) Simulated magnetic field in the magnetic array. The

magnetic flux density is shown by color map and the direction of the magnetic field is shown by

red arrows.

The magnetic field of this magnetic array was simulated in Comsol Multiphysics

(http://www.comsol.com). The parameters for the simulation were the same as in the

experiments, such as the positions, the dimensions, and the remanence (1.32 T) of the

magnets. The permanent magnets were modeled using Ampère’s law. The influence of

6



the housing (made of Aluminum) of the magnets was not considered. A detailed descrip-

tion of the simulation can be found in the model library of Comsol Multiphysics, “Static

Field Modeling of a Halbach Rotor”.

Figure S6 Magnetic field of the four-magnet Halbach array. (a) By changing the separation be-

tween the 4 magnets, the magnetic flux density at the center of the magnetic array can be changed.

The red circle points are obtained from simulation using Comsol software, and the black square

points are measured by a Lake Shore Model 425 Gaussmeter with a transverse probe. The ho-

mogeneity in the central 2 mm2 is ∼ 4000 ppm. (b) Simulated magnetic field in the four-magnet

array. The magnetic flux density is shown by color map and the direction of the magnetic field is

shown by red arrows.

In some experiments we needed to change the magnetic field strength. This was re-

alized by using a four-magnet Halbach array (Fig. S6, the magnets had dimensions of

14× 14× 15 mm3). By changing the distance between the magnets, the magnetic flux

density in the center of this array could be changed from 0 mT to 101 mT. The homo-

geneity of this array in the central 2 mm2 was ∼ 4000 ppm.

2.5 Bending rigidity of the paramagnetic particle chains

Here we provide experimental evidence that the paramagnetic particle chains already by

themselves (i.e. without the embedding polymer matrix) feature a bending rigidity. For

this purpose, instead of preparing a percolating polymer network (gel), we prepared a

sol. We decreased the concentration of the prepolymer mixture to c�/2 (c� is the crit-

ical concentration at which a percolating network can be formed, see Fig. S3b). The

prepolymer mixture reacted and formed a sol after the catalyst was added. During the

reaction a magnetic field of 100.8 mT was applied, thus the magnetic particles in the sol

aligned into chains. If the particles had not been connected by the polymer, the linear

particle chains would not have survived after the magnetic field was removed because of

thermal agitation. However, we found that the linear particle chains were stable in the

sol even for several days (Fig. S7a). Once more applying a magnetic field (18.7 mT)

most of the permanent paramagnetic chains in the sol aligned along the magnetic field

direction (Fig. S7b). However, some of the chains bent and showed hairpin or “S”-shape

morphologies (marked by the red arrows in Fig. S7b), indicating that the chains had a

bending rigidity.S8
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Figure S7 Typical chain morphologies in the sol (a) in the absence of a magnetic field and (b)

under a magnetic field. The magnetic field of 18.7 mT was applied horizontally. Under the mag-

netic field most of the paramagnetic chains aligned along the magnetic field direction. Some of the

chains bent and showed hairpin or “S”-shape morphologies (marked by the red arrows), indicating

that they have a bending rigidity.S8 The scale bars are 50 μm.

We conjecture that some prepolymer molecules in the solution were adsorbed onto

the surfaces of the paramagnetic particles. When the prepolymer cross-linked, a poly-

mer layer on the surfaces of the particles was formed and connected the particles. This

polymer layer contributed to the bending rigidity. Only when the concentration of the pre-

polymer mixture is higher than c�, a gel can be formed in the bulk. Apparently, already

below this concentration, a connecting polymer layer can be formed on the surfaces of the

paramagnetic particles. This suggests that a thin layer of polymer with a higher modulus

compared to the bulk should be considered to understand the buckling behavior of the

paramagnetic chains in the soft gels.

2.6 Buckling of magnetic particles in a “stiff” gel

In the main article, very soft gels (<1.5 Pa) were used as a matrix. If a stiffer gel

was used, the paramagnetic particle chains could not deform the gel significantly under

the magnetic field of 216 mT (maximum field in our set-up). Here we used carbonyl

iron (CI, CC grade, BASF, Germany, d50 value=3.8-5.3 μm) as magnetic particles in

order to increase the magnetic force between the magnetic particles. First, the saturation

of magnetization of CI (∼ 250 Am2/kg) is significantly larger than that of our otherwise

used paramagnetic particles (∼ 20 Am2/kg); second, the density of CI (∼ 8×103 kg/m3)

is higher than that of our paramagnetic particles (∼ 1.7×103 kg/m3); last, the size of CI

is about 3 times larger. According to m = 4πR3ρM/3 (see Section 2.2), the magnetic

moment can be 103 times larger compared to our paramagnetic case in the main article.

As a result, even in a relatively “stiff” gel, the CI magnetic chains can deform the gel

significantly. As shown in Fig. S8, in the gel with an elastic modulus of 170 Pa, the CI

chains can buckle when a magnetic field of 100.8 mT is applied.

However, promoted by the polydispersity of the CI particles, the CI chains are not as

smooth as the chains formed by the monodisperse paramagnetic particles (see Figs. 1 and

2 in the main article for comparison). In addition, we also observed fractures in some CI

chains (Fig. S8c) probably due to the polydispersity of the particles. However, the chains

8



Figure S8 Magnetic chains formed by carbonyl iron particles in a gel with an elastic modulus of

170 Pa. (a) Without magnetic field, (b, c) under a magnetic field of 100.8 mT along the vertical

direction. The inset in (c) shows an enlarged image of the fracture of the magnetic chain. The

scale bars are 50 μm. These images were obtained using a 10× objective (NA=0.28, M Plan Apo)

which collected the reflection light from the carbonyl iron particles.

do not break up into structures as shown in Fig. 9 of the main article (lower image),

suggesting that there is still a relatively stiff polymer layer around the CI particles.
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3 Supplementary information concerning the modeling

3.1 Magnetic interactions within the chain

In the following, we derive Eqs. (1) and (2) of the main article. We start from two neigh-

boring particles on the chain. According to the assumptions made in the main article,

each of them carries a magnetic moment m oriented in y-direction. They interact via the

dipole-dipole magnetic interaction given by

Vdd =
μ0

4π

[
m ·m

r3
− 3(m · r)(m · r)

r5

]
, (S6)

where r is the vector joining the centers of the particles, r = |r|, and μ0 is the vacuum

magnetic permeability. Since the particles on the chain are experimentally observed to

remain in contact, we have r = d, with d the particle diameter. Furthermore, we ignore

the first term in the square brackets because it is constant under the given assumptions.

Indicating by α the angle between r and m, we obtain

Vdd ∼ − 3μ0m2

4πd3
cos2 α. (S7)

Since m is oriented in the y-direction, ψ = π/2−α is the angle between r and the x-

axis. Skipping another constant term resulting from cos2 α = 1− sin2 α , the non-constant

part of the dipole-dipole interaction can thus be rewritten as

Vdd ∼ εm sin2(ψ −π/2), with εm =
3μ0m2

4πd3
. (S8)

For an undeformed infinite straight chain oriented along the x-axis in the above set-up,

the resulting expression for the total dipolar magnetic interaction energy per particle along

the whole chain then reads

V chain
dd ∼ εm

∞

∑
n=1

1

n3
= εmζ (3), (S9)

where ζ is the Riemann Zeta function and ζ (3) � 1.202. Here, εm sets the scale of the

nearest-neighbor dipolar interaction. In our minimal model the correction described by

the factor ζ (3) � 1.202 due to higher-order neighbors is negligible. Since the contour

lines of the magnetic chains preserve a smooth shape under the observed deformations,

without any kinks, and as the chains do not fold back onto themselves, we thus confine

ourselves to nearest-neighbor interactions.

For a large number of particles, the quantity εm sets the magnetic interaction energy per

particle. Moreover, the total magnetic interaction energy scales approximately linearly

with the number of particles and chain length.

We now switch to a continuum picture by specifying the line energy density along

the magnetic chain. In our coordinate system, the angle ψ that the connecting vec-

tor r between two neighboring particles forms with the x-axis is locally given by ψ ∼
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arctan [y′(x)], where y′(x) = dy/dx. To obtain the resulting magnetic energy of the whole

magnetic chain, we need to integrate the energy line density along the contour line. For

simplicity, we transform this line integral to an integration along the x-axis. If we param-

eterize the contour line by the parameter s, the line element ds along the chain can be

expressed as ds =
√

1+ y′(x)2 dx. Therefore, the magnetic energy becomes

Emagn[y] = W
∫ x2

x1

sin2
{

arctan
[
y′(x)

]− π
2

}√
1+ y′(x)2 dx

= W
∫ x2

x1

1√
1+ y′(x)2

dx, (S10)

where

W =
εm

d
=

3μ0m2

4πd4
(S11)

is the magnetic energy per unit length and x1,x2 are the x-coordinates of the end points of

the chain.

3.2 Elastic bending energy

Next, we briefly sketch the derivation of the elastic bending energy in Eq. (3) of the main

article. For this purpose, we consider a parameterization R(s) of the contour line of the

magnetic chain, where the positions R mark the points on the contour line and s ∈ [s1,s2]
with s1 and s2 labeling the end points of the chain. On this basis, the elastic bending

energy is defined asS9

Ebend = Cb

∫ s2

s1

∣∣∣∣d2R(s)
ds2

∣∣∣∣2 ds. (S12)

Using the parameterization R = (x,y(x)) and ds =
√

1+ y′(x)2 dx, we obtain

dR
ds

=
(

1+ y′(x)2
)− 1

2

(
1

y′(x)

)
(S13)

and
d2R
ds2

= y′′(x)
(

1+ y′(x)2
)−2
( −y′(x)

1

)
. (S14)

From this last expression, we obtain Eq. (3) in the main article when we again transform

the line element ds to Cartesian coordinates, ds =
√

1+ y′(x)2 dx.

3.3 Elastic displacement energy

Finally, we motivate the expression for the elastic displacement energy in Eq. (4) of the

main article. The part [y(x)]2 corresponds to a lowest order term in the displacement y(x).
We weight each of the two displacement factors y(x) by the amount of chain material

displaced per integration interval dx, given by the length of the chain per integration
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Figure S9 Experimentally observed rotation angles of magnetic chains in a gel of shear modulus

G′ = 0.25 Pa under a perpendicular magnetic field of magnitude B = 18.7 mT. To first approxi-

mation, a rigid rotation of straight chains occurs at small enough rotation angles. This is depicted,

for instance, in Fig. 1c of the main article for small angles of the magnetic field.

interval dx, i.e. ds/dx =
√

1+ y′(x)2. This leads to [y(x)]2
[
1+ y′(x)2

]
. In addition to

that, we have another factor
√

1+ y′(x)2, again from transforming the line element ds
of the integration to Cartesian coordinates, ds =

√
1+ y′(x)2 dx. In total, we obtain the

expression in Eq. (4) of the main article.

We explain in the following why the experimental observations suggest this form as a

lowest order term. In particular, we note that the experimental investigations suggest the

form [y(x)]2 rather than one containing the first derivative [y′(x)]2. For this purpose, we

consider the case of straight chains (M = 0) undergoing small rotations in a perpendicular

magnetic field. This situation can be simply parameterized by y(x) = Sx, where S = tanψ
and ψ as introduced above giving the rotation angle. Furthermore Ebend = 0.

For y(x) = Sx, Emagn scales linearly with the chain length L. The same would apply for

an energetic contribution ∼ ∫ x2
x1

[y′(x)]2
[
1+ y′(x)2

]3/2 dx. Therefore, the latter expression

inevitably leads to a rotation angle ψ that is independent of the chain length L. However,

this contradicts the experimental results. In Fig. S9 we plot the rotation angle ψ as a

function of chain length L measured in a gel of shear modulus G′ = 0.25 Pa exposed to

a perpendicular magnetic field of magnitude B = 18.7 mT. There is a clear dependency

of the rotation angle on the chain length L. The energetic expression Edispl in Eq. (4)

of the main article for rotations of straight chains y(x) = Sx scales as Edispl ∼ L3 and

thus leads to disproportionally higher energetic penalties for longer chains, reflecting the

experimentally observed smaller rotation angles.

3.4 Discussion of resulting chain shapes

Now that our total model energy Etot is set as the sum of Eqs. (1), (3), and (4) in the

main article, a standard route to determine the shape y(x) of the chain would be to find

the extrema of the functional Etot [y(x)] with respect to the function y(x). For this purpose,
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one calculates the functional derivative of Etot [y(x)] with respect to y(x) and equates it

with zero. The procedure is well known from the famous brachistochrone problem.S10

There one wishes to find the shape of a curve linking two end points such that a body

moving between them under gravity passes the distance in the least possible amount of

time.

However, there is a fundamental difference compared to the brachistochrone problem.

While calculating the functional derivative, boundary terms appear that explicitly include

contributions from the end points of the chain or trajectory y(x). Technically, they result

from partial integration. In the brachistochrone problem, one has sufficient information

to handle these boundary terms: by construction of the problem, one knows that the end

points are fixed. Similarly, in other problems of infinitely extended elastic struts of pe-

riodic, periodically modulated, or localized deformations,S11–S14 one can use the period-

icity or localization to argue in favor of an evanescent influence of the boundary terms.

This is very different from our present case, where the deflection encompasses the whole

finite chain and in particular its end points. Unfortunately, acquiring sufficient knowledge

of the associated boundary conditions would imply solving the whole complex three-

dimensional nonlinear elasticity and magnetization problem, which is beyond the present

scope and in fact was the reason to project to our reduced minimal model.

For completeness, however, we perform some additional variational analysis of our

energy functional. We concentrate on possible solutions in the bulk that could be observed

if boundary effects were absent (which is not the case for our experimentally investigated

finitely-sized objects). Then, neglecting the boundary terms, the functional derivatives of

Eqs. (1), (3), and (4) are calculated as follows (the dependencies of y(x) and its derivatives

on x is omitted for brevity on the right-hand sides):

δEmagn

δy(x)
= Wy′′

(
1−2y′2

)(
1+ y′2

)− 5
2
, (S15)

δEbend

δy(x)
= Cb

[
5y′′3

(
6y′2 −1

)
−20y′y′′y′′′

(
1+ y′2

)
+2y′′′′

(
1+ y′2

)2
](

1+ y′2
)− 9

2
,

(S16)

and
δEdispl

δy(x)
= Cd

[
2y−2yy′2 −4yy′4 −3y2y′′ −6y2y′2y′′

](
1+ y′2

)− 1
2
. (S17)

Together, we obtain a nonlinear fourth-order differential equation for y(x):

δEtot

δy(x)
=
(

1+ y′2
)− 9

2

[
−
(

1+ y′2
)

y′′
(

W
(
−1+ y′2 +2y′4

)
+20Cby′y′′′

)
−3Cdy2

(
1+ y′2

)4(
1+2y′2

)
y′′ +5Cb

(
−1+6y′2

)
y′′3

−2Cdy
(

1+ y′2
)5(−1+2y′2

)
+2Cb

(
1+ y′2

)2
y′′′′
]

= 0. (S18)

Eq. (S18) can in principle be solved numerically by integrating it outward from the

center of the chain at x = 0. For this purpose, a sufficient amount of “initial conditions”
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Figure S10 Numerical solutions of Eq. (S18) for different imposed input conditions. In all cases

we concentrate on uneven centro-symmetric solutions and thus prescribe y(0) = y′′(0) = 0. As

remaining necessary conditions, we specify the position of the first maximum: (a) y′(0.5) = 0,

y(0.5) = 0.205; (b) y′(0.5) = 0, y(0.5) = 0.2; (c) y′(0.3) = 0, y(0.3) = 0.16; (d) y′(0.5) = 0,

y(0.5) = 0.1.

(four in our case) for y(x) and its derivatives needs to be provided. We concentrate on

uneven centro-symmetric solutions, which directly prescribes two conditions: y(0) = 0

and y′′(0) = 0. As was found before in a different context,S11 the solution is extremely

sensitive to the two remaining imposed conditions. For illustration, we depict four ex-

amples in Fig. S10. There, we provide slightly varying positions of the first maximum

[y′(x) = 0] as the remaining two necessary conditions. Numerical integration shows that

little variations in these conditions lead to qualitatively different oscillatory solutions.S15

Altogether, we may conclude that the solutions resulting from Eq. (S18) sensitively

depend on the input conditions. As noted above, we do not have access to the appropriate

conditions applying at the significantly displaced end points of the embedded chain. The

strategy that we resorted to is therefore to use as an input directly the shapes of the chains

suggested by the experiments. We found good representations of the experimental obser-

vations using the polynomial form suggested by Eq. (5) in the main article. In particular,

with regard to the pronounced displacements of the chain ends, this choice is preferred to,

for instance, a sinusoidal ansatz. Then, instead of solving Eq. (S18) explicitly, we mini-

mize the energy functional Etot [y(x)] with respect to the remaining degrees of freedom of

the chain deformation (M, S, x1 and x2 in the main article). Thus, even if we have used

an ansatz for the chain deformation, this remains a nonlinear approach as we evaluate the

nonlinear contributions to the energy functional Etot [y(x)].

3.5 Oscillatory solutions in the linear regime

In the previous part, we have demonstrated that various complex solutions can result

from the nonlinear nature of Eq. (S18). Here, we restrict ourselves to the situation in

the inside of the magnetic chains for small amounts of deformation, i.e. at the onset of

deformation. For this purpose, a linear stability analysis is performed by considering a

linearized version of Eq. (S18). As a result, we obtain a condition describing the onset of
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a linear deformational instability

Wy′′(x)+2Cb y′′′′(x)+2Cd y(x) = 0. (S19)

This equation has solutions of the kind y(x) ∼ exp(±iqx), with wavenumber

q2 =
W ±

√
W 2 −16CbCd

4Cb
. (S20)

The condition for the solutions to be purely oscillatory is W 2/16CbCd > 1 and defines

an onset for this kind of deformation. It sets a threshold magnitude for the strength of

the external magnetic field. Thus, for a perfectly oriented chain of identical particles in a

spatially homogeneous elastic matrix, this linear stability analysis predicts a critical mag-

netic field amplitude above which an undulatory instability would arise in the inside of

the chain. Our results are in agreement with the experimental observation of the wrinkles

at onset in Fig. 1c and the final oscillatory shape in the inner part of the longer chains in

Fig. 2a of the main article.
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4 Technical description of the coarse-grained molecular
dynamics simulations

4.1 Magnetic particles

In the molecular dynamics simulations, the centers of the magnetic particles and the nodes

of the polymer mesh are treated as point particles in two-dimensional space. The mag-

netic particles additionally have one rotational degree of freedom, namely around the axis

perpendicular to the model plane. As each magnetic particle is superparamagnetic, its

magnetic moment is not affected by a rotation of the particle. Rather, the magnetic mo-

ment is determined by the magnetic field. Hence, we place the magnetic moment not

on the rotating center of the particle, but rather on a separate virtual site which does not

rotate. It is placed at the same location as the center of the magnetic particle. Virtual

sites are particles, whose position is not determined by integrating an equation of motion,

rather their position is calculated from the position and orientation of other particles. In

this way, they allow us to introduce rigid extended bodies into a molecular dynamics sim-

ulation.S16 Forces acting on any constituent of such a rigid body are transferred back to

its center of mass, and thus included in the equation of motion of the rigid body.

Pairs of magnetic particles interact by the dipole-dipole interaction, Eq. (S6). The

dipole moment of the particles is assumed to be determined entirely by the external

magnetic field, and its magnitude is deduced from the experimental magnetization curve

(Fig. S1b). This assumption is valid as long as the external field is much stronger than

the field created by the other magnetic particles. In other cases, a self-consistent ap-

proach has to be used to determine the local magnetic fields. In addition to the dipole-

dipole interaction, the magnetic particles interact via a truncated and shifted, purely re-

pulsive Lennard-Jones potential mimicking a rigid-sphere interaction. We use the Weeks-

Chandler-Andersen potentialS17 in the form

VWCA

( r
σ

)
=

⎧⎪⎨⎪⎩
4ε
[( r

σ
)−12− ( r

σ
)−6+ 1

4

]
for r ≤ rc,

0 otherwise,

(S21)

where r is the distance between the particle centers, ε = 1000 denotes the energy scale of

the potential, and rc = 21/6σ is the cut-off distance, for which we use the experimental

diameter of 1.48 μm. The parameter σ denotes the root of the non-shifted potential and

is used in the visualizations in Figs. 9 and 10.

4.2 Polymer mesh

The polymer matrix is modeled as a bead-spring network based on a hexagonal lattice.

We use a lattice constant a of one third of the experimentally observed particle diameter,

i.e., a ≈ 0.49 μm. Along the initial chain direction, we use 601 mesh points, along the

perpendicular direction 301. The mesh points on the boundary of the system are fixed, all

other mesh points can move in the x- and y-directions. Adjacent mesh points interact via

a non-linear elastic spring based on the FENE-potential.S18 Here, we use a variant with
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different cut-off values for compression and expansion. It is given by

V (r) = − 1
2 K (r0 − rmin)2 ln

[
1−
(

r−r0
r0−rmin

)2
]

for r < r0,

V (r) = − 1
2 K (rmax − r0)2 ln

[
1−
(

r−r0
rmax−r0

)2
]

for r > r0.

(S22)

In these expressions, K = 45 controls the scale of the potential, the equilibrium distance

r0 = a is equal to the lattice constant, while the minimum and maximum elongations, at

which the potential diverges, are rmin = 0.1a and rmax = 3a, respectively. The potential,

as well as its second derivative, are continuous at the equilibrium extension r = r0. In

order to prevent any volume element from shrinking to zero, angular potentials are used

on all pairs of neighboring springs attached to the same mesh site, encompassing an an-

gle of 60◦ in the unstrained mesh. The potential has the same functional form as the

distance-based potential in Eq. (S22), but with the values K = 100, r0 = π/3, rmin = 0,

and rmax = π . In the simulations both potentials are tabulated at 100000 equally spaced

intervals between the minimum and maximum extensions. Between those points, linear

interpolation is used.

4.3 Particle-mesh coupling and boundary layer

The mesh spans the entire simulation area, including the area covered by the magnetic

particles. In order to couple the polymer mesh to both, the translational and rotational

motion of a magnetic particle, the seven mesh sites within the area of each magnetic par-

ticle are treated as virtual sites, rigidly following the motion of the magnetic particle. In

other words, the mesh sites within the particle and the center of the magnetic particle

form a rigid body. This additionally prevents a distortion of the gel matrix in the area

occupied by the magnetic particles. Two variants of gel boundary layer around the parti-

cles are studied (Fig. 9 in the main article). In the case of a soft boundary layer, the mesh

springs emerging from the mesh sites rigidly connected to the particle, are modeled as in

Eq. (S22) with the same parameters as for the bulk. In the case of a stiff boundary layer, a

potential is used which is stiffer by three orders of magnitude. The following parameters

are used in this case: K = 45000, rmin = −2a, and rmax = 4a.

4.4 Equation of motion and integration

The simulations are performed in the canonical ensemble at a temperature of 300 K. All

particles except for the virtual sites are propagated according to a Langevin equation. For

any component in a Cartesian coordinate system, it is given by

mpv̇(t) = −γv(t)+F +Fr, (S23)

where mp denotes the mass of the particle, v its velocity, F is the force due to the in-

teraction with other particles, Fr denotes the random thermal noise, and γ is the friction

coefficient. To maintain a temperature T , the thermal noise has to have a mean of zero

and a variance of

〈F2
r 〉 = 2kBT γ, (S24)
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where kBT denotes the thermal energy. For the rotational degree of freedom of each

magnetic particle, the same equation of motion is used, but mass, velocity, and forces are

replaced by moment of inertia, angular velocity, and torques, respectively. The friction

coefficient, the thermal energy, and the mass of the mesh sites are all chosen to be unity,

whereas the mass and rotational inertia of the centers of the magnetic particles are both

100. This slows down the relaxation time of the magnetic particles versus that of the

polymer mesh and is helpful in stabilizing the simulation. The Langevin equation is

integrated using a Velocity Verlet integrator. For the simulations with a stiff boundary

layer, the time step is dt = 0.001, for a soft boundary layer it is dt = 0.00004. The

simulations take approximately 100000 time steps to converge.
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One of the central appealing properties of magnetic gels and elastomers is that their elastic moduli
can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal mag-
netic particle distribution on this effect has been outlined and analyzed theoretically. In most cases,
however, affine sample deformations are studied and often regular particle arrangements are consid-
ered. Here we challenge these two major simplifications by a systematic approach using a minimal
dipole-spring model. Starting from different regular lattices, we take into account increasingly ran-
domized structures, until we finally investigate an irregular texture taken from a real experimental
sample. On the one hand, we find that the elastic tunability qualitatively depends on the structural
properties, here in two spatial dimensions. On the other hand, we demonstrate that the assumption
of affine deformations leads to increasingly erroneous results the more realistic the particle distri-
bution becomes. Understanding the consequences of the assumptions made in the modeling process
is important on our way to support an improved design of these fascinating materials. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4896147]

I. INTRODUCTION

In the search of new materials of outstanding novel
properties, one route is to combine the features of differ-
ent compounds into one composite substance.1–5 Ferrogels
and magnetic elastomers provide an excellent example for
this approach. They consist of superparamagnetic or ferro-
magnetic particles of nano- or micrometer size embedded
in a crosslinked polymer matrix.6 In this way, they combine
the properties of ferrofluids and magnetorheological fluids7–16

with those of conventional polymers and rubbers:17 we obtain
elastic solids, the shape and mechanical properties of which
can be changed reversibly from outside by applying external
magnetic fields.6, 18–25

This magneto-mechanical coupling opens the door to a
multitude of applications. Deformations induced by exter-
nal magnetic fields suggest a use of the materials as soft
actuators26 or as sensors to detect magnetic fields and field
gradients.27, 28 The non-invasive tunability of the mechanical
properties by external magnetic fields makes them candidates
for the development of novel damping devices29 and vibration
absorbers19 that adjust to changed environmental conditions.
Finally, local heating due to hysteretic remagnetization losses
in an alternating external magnetic field can be achieved. This
effect can be exploited in hyperthermal cancer treatment.30, 31

In recent years, several theoretical studies were per-
formed to elucidate the role of the spatial magnetic particle
distribution on these phenomena.23, 32–42 It turns out that the
particle arrangement has an even qualitative impact on the
effect that external magnetic fields have on ferrogels. That

a)Electronic mail: menzel@thphy.uni-duesseldorf.de

is, the particle distribution within the samples determines
whether the systems elongate or shrink along an external mag-
netic field, or whether an elastic modulus increases or de-
creases when a magnetic field is applied. As a first step, many
of the theoretical investigations focused on regular lattice
structures of the magnetic particle arrangement.32, 36, 42 Mean-
while, it has been pointed out that a touching or clustering
of the magnetic particles and spatial inhomogeneities in the
particle distributions can have a major influence.23, 35, 39–41, 43

More randomized or “frozen-in” gas-like distributions were
investigated.23, 33–35, 38, 40 Yet, typically in these studies an
affine deformation of the whole sample is assumed, i.e., the
overall macroscopic deformation of the sample is mapped
uniformly to all distances in the system. An exception is given
by microscopic37 and finite-element studies,23, 35, 41 but the
possible implication of the assumption of an affine deforma-
tion for non-aggregated particles remains unclear from these
investigations.

Here, we systematically challenge these issues using the
example of the compressive elastic modulus under varying
external magnetic fields. We start from regular lattice struc-
tures that are more and more randomized. In each case, the
results for affine and non-affine deformations are compared.
Finally, we consider a particle distribution that has been ex-
tracted from the investigation of a real experimental sample.
It turns out that the assumption of affine deformations grow-
ingly leads to erroneous results with increasingly randomized
particle arrangements and is highly problematic for realistic
particle distributions.

In the following, we first introduce our minimal dipole-
spring model used for our investigations. We then consider

0021-9606/2014/141(12)/124904/10/$30.00 © 2014 AIP Publishing LLC141, 124904-1
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different lattice structures: rectangular, hexagonal, and honey-
comb, all of them with increasing randomization. Different
directions of magnetization are taken into account. Finally,
an irregular particle distribution extracted from a real ex-
perimental sample is considered, before we summarize our
conclusions.

II. DIPOLE-SPRING MINIMAL MODEL

For reasons of illustration and computational economics,
we will work with point-like particles confined in a two-
dimensional plane with open boundary conditions. On the one
hand, we will study regular lattices, for which simple analyti-
cal arguments can be given to predict whether the elastic mod-
ulus will increase or decrease with increasing magnetic inter-
action. These lattices will also be investigated after randomly
introducing positional irregularities. Such structures could re-
flect the properties of more realistic systems, for example,
those of thin regularly patterned magnetic block-copolymer
films.44, 45

On the other hand, irregular particle distributions in a
plane to some extent reflect the situation in three dimensional
anisotropic magnetic gels and elastomers.47–52 In fact, our ex-
ample of irregular particle distribution is extracted from a real
anisotropic experimental sample. These anisotropic materi-
als are manufactured under the presence of a strong homo-
geneous external magnetic field. It can lead to the formation
of chain-like particle aggregates that are then “locked-in” dur-
ing the final crosslinking procedure. These chains lie parallel
to each other along the field direction and can span the whole
sample.50 To some extent, the properties in the plane perpen-
dicular to the anisotropy direction may be represented by con-
sidering the two-dimensional cross-sectional layers on which,
in this work, we will focus our attention.

Our system is made of N = Nx × Ny point-like parti-
cles with positions Ri , i = 1. . . N, each carrying an identical
magnetic moment m. That is, we consider an equal magnetic
moment induced for instance by an external magnetic field in
the case of paramagnetic particles, or an equal magnetic mo-
ment of ferromagnetic particles aligned along one common
direction. We assume materials in which the magnetic parti-
cles are confined in pockets of the polymer mesh. They cannot
be displaced with respect to the enclosing polymer matrix,
i.e., out of their pocket locations. Neighboring particles are
coupled by springs of different unstrained length l0

ij accord-
ing to the selected initial particle distribution. All springs have
the same elastic constant k. The polymer matrix, represented
by the springs, is assumed to have a vanishing magnetic sus-
ceptibility. Therefore, it does not directly interact with mag-
netic fields. (The reaction of composite bilayered elastomers
of non-vanishing magnetic susceptibility to external magnetic
fields was investigated recently in a different study46).

The total energy U of the system is the sum of elastic and
magnetic energies43, 53, 54 Uel and Um defined by

Uel = k

2

∑
〈ij〉

(
rij − l0

ij

)2
, (1)

where 〈ij〉 means sum over all the couples connected by
springs, r ij = Rj − Ri , rij = |r ij | and

Um = μ0m
2

4π

∑
i<j

r2
ij − 3(m̂ · r ij )2

r5
ij

, (2)

where i < j means sum over all different couples of parti-
cles, and m̂ = m/m is the unit vector along the direction of
m. In our reduced units, we measure lengths in multiples of l0
and energies in multiples of kl0

2; here we define l0 = 1/
√

ρ,
where ρ is the particle area density. To allow a comparison
between the different lattices we choose the initial density al-
ways the same in each case. Furthermore, our magnetic mo-

ment is measured in multiples of m0 =
√

4πk2l0
5/μ0.

Estimative calculations show that the magnetic moments
obtainable in real systems are 4−5 orders of magnitude
smaller than our reduced unit for the magnetic moment,
so only the behavior for the rescaled |m|/m0 = m/m0 � 1
would need to be considered. Here, we run our calculations
for m as big as possible, until the magnetic forces become
so strong as to cause the lattice to collapse, which typically
occurs beyond realistic values of m. After rescaling, the mag-
netic moment m is the only remaining parameter in our equa-
tions which can be used to tune the system for a given particle
distribution.

III. ELASTIC MODULUS FROM AFFINE
AND NON-AFFINE TRANSFORMATIONS

We are interested in the elastic modulus E for dilative
and compressive deformations of the system, as a function
of varying magnetic moment and lattices of different orien-
tations and particle arrangements. For a fixed geometry and
magnetic moment m, once we have found the equilibrium
state of minimum energy of the system, we calculate E as
the second derivative of total energy with respect to a small
expansion/shrinking of the system, here in x-direction:

E = d2U

dδx
2 � U (−δx) + U (δx) − 2U (0)

δx
2 . (3)

δx is a small imposed variation of the sample length along
x̂. In order to remain in the linear elasticity regime, δx
must imply an elongation of every single spring by a quan-
tity small compared to its unstrained length. In our calcu-
lations, we chose a total length change of the sample of
δx = Lx/100

√
N � l0/100 throughout, where Lx is the equi-

librium length of the sample along x̂. Thus, on average, each
spring is strained along x̂ by less than 1%. To indicate the
direction of the induced strain, we use the letter ε in the fig-
ures below. The magnitude of the strain follows as |ε| = δx/Lx
� 10−4−10−3. Strains of such magnitude were for example
applied experimentally using a piezo-rheometer.47 A natural
unit to measure the elastic modulus E in Eq. (3) is given by
the elastic spring constant k.

There are different ways of deforming the lattices in or-
der to find the equilibrium configuration of the system and
calculate the elastic modulus. We will demonstrate that con-
sidering non-affine instead of affine transformations can lead
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to serious differences in the results, especially for randomized
and realistic particle distributions.

An affine transformation (AT) conserves parallelism be-
tween lines and in each direction modifies all distances by a
certain ratio. In our case of a given strain in x-direction, in
AT we obtain the equilibrium state by minimizing the energy
over the ratio of compression/expansion in y-direction.

In a non-affine transformation (NAT), instead, most of
the particles are free to adjust their positions independently
of each other in 2D. Only the particles on the two opposing
edges of the sample are “clamped” and forced to move in a
prescribed way along x-direction, but they are free to adjust
in y-direction. All clamped particles in the NAT are forced
to be expanded in the x-direction in the same way as in the
corresponding AT to allow better comparison (see Fig. 1 for
an illustration of the two kinds of deformation). To perform
NAT minimization, we have implemented the conjugated gra-
dients algorithm55, 56 using analytical expressions of the gra-
dient and Hessian of the total energy. Numerical thresholds
were set such that the resulting error bars in the figures below
are significantly smaller than the symbol size.

FIG. 1. An initial square lattice undergoing the same total amount of hori-
zontal strain at vanishing magnetic moment and relaxed through NAT (top)
and AT (bottom). Clamped particles are colored in black in the NAT case. The
depicted deformations are much larger than the ones used in the following to
determine the elastic moduli (here the sample was expanded in x-direction by
a factor of 2.5).

As a consequence, NAT minimizes energy over � 2N
degrees of freedom. Since the NAT has many more degrees
of freedom for the minimization than AT, we expect the for-
mer to always find a lower energetic minimum compared
to the latter. Thus, for the elastic modulus, we obtain EAT

≥ ENAT. Figure 1 shows how NAT and AT minimizations yield
different ground states for the same total amount of strain
along x̂.

To compute the elastic modulus, we first find the equilib-
rium state through NAT for prescribed m. Next, using AT, we
impose a small shrinking/expansion and after the described
AT minimization obtain EAT via Eq. (3). Then, starting from
the NAT ground state again, we perform the same procedure
using the NAT minimization and thus determine ENAT.

IV. RESULTS

In the following, we will briefly discuss the behavior of
the elastic modulus in the limit of large systems. Then, on
the one hand, we will demonstrate that introducing a random-
ization in the lattices dramatically affects the performance of
affine calculations. On the other hand, we will investigate how
in each case structure and relative orientation of the nearest
neighbors determine the trend of E(m).

A. Elastic modulus for large systems

We run our simulations for lattices of Nx = Ny. It is
known that the total elastic modulus of two identical springs
in series halves, whereas, if they are in parallel doubles, com-
pared to the elastic modulus of a single spring. In our case of
determining the elastic modulus in x-direction, the total elas-
tic modulus E will be proportional to Ny/Nx. Thus, with our
choice of Nx = Ny, it should not depend on N. We will in-
vestigate the exemplary case of a rectangular or square lattice
for m = 0 to estimate the impact of finite size effects on our
results, since a simple analytical model can be used to predict
the value of E.

Our rectangular lattice is made of vertical and horizontal
springs coupling nearest neighbors and diagonal springs con-
necting next-nearest neighbors. The diagonal springs are nec-
essary to avoid an unphysical soft-mode shear instability of
the bulk rectangular crystal. In the large-N limit, there are on
average one horizontal, one vertical, and two diagonal springs
per particle. The deformation of a corresponding “unit spring
cell” is depicted in Fig. 2. b0 and h0 are, respectively, the
length of the horizontal and vertical spring of the unit cell
in the undeformed state, whereas b and h are the respective

FIG. 2. Minimal rectangular model consisting of one x-oriented, one y-
oriented, and two diagonal springs. b0 and h0 are the base and height of the
rectangular cell in the unstrained state. Under strain, b0 → b and the height
is free to adjust in order to minimize the elastic energy, h0 → h.
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FIG. 3. ENAT(m = 0)/k for different rectangular lattices increasing the number of particles N. Fits with a power law of the form EN/k = E∞ + αNβ show a
convergence towards the finite values indicated in the figure, while the values predicted by Eq. (4) are, (bottom to top curve) 1.154, 1.500, and 2.351. The values
of β resulting from the fit are (bottom to top curve) −0.56, −0.55, and −0.54. ENAT(m 
= 0)/k show the same convergence behavior for any m.

quantities in the deformed state. b is fixed by the imposed
strain, whereas h adjusts to minimize the energy, ∂U/∂h = 0.
This model describes, basically, the deformation of a cell in
the bulk within an AT framework.

If magnetic effects are neglected, we find that the linear
elastic modulus of such a system is

E(m = 0) � d2Uel

db2

∣∣∣∣
b=b0

= k

(
1 + 2r2

0

3 + r2
0

)
. (4)

Here r0 = b0/h0 is the base-height ratio of the unstrained lat-
tice. Furthermore, we have linearized the h(b) deformation
around b = b0.

In the limit of large N, the elastic modulus determined by
NAT should be dominated by bulk behavior. For regular rect-
angular lattices stretched along the outer edges of the lattice
cell, the deformation in the bulk becomes indistinguishable
from an affine deformation. We therefore can use our analyti-
cal calculation to test whether our systems are large enough to
correctly reproduce the elastic modulus of the bulk. For this
regular lattice structure, it should correspond to the modulus
following from Eq. (4). We calculated numerically ENAT(m
= 0) for different rectangular lattices as a function of N and
plot the results in Fig. 3. Indeed, for large N, we find the con-
vergence as expected.

From Fig. 3, we observe that the modulus has mostly con-
verged to its large-N limit at N = 400, therefore most of our
calculations are performed for N = 400 particles. We have
checked numerically that a similar convergence holds for any
investigated choice of m and lattice structure. For any m 
= 0
that we checked, we found a similar convergence behavior as
the one depicted for m = 0 in Fig. 3.

B. Impact of lattice randomization on AT calculations

We have seen how, in the large-N limit, AT analytical
models and NAT numerical calculations converge to the same
result in the case of regular rectangular lattices. In fact, we
expect AT to be a reasonable approximation in this regular
lattice case, since it conserves the initial shape of the lattice.
For symmetry reasons, this behavior may be expected also for
NAT at small degrees of deformation. But how does AT per-
form in more realistic and disordered cases where the initial
particle distribution can be irregular? To answer this question
we will consider the difference EAT − ENAT, the elastic mod-
ulus numerically calculated with AT and NAT, at m = 0, for
different and increasingly randomized lattices.

We have considered a rectangular lattice with diagonal
springs, a hexagonal lattice with horizontal rows of nearest
neighbor springs, one with vertical rows, and a honeycomb
lattice with springs beyond nearest neighbors (as depicted in
Fig. 4).

To obtain the randomized lattices, we start from their reg-
ular counterparts and randomly move each particle within a
square box of edge length η and centered in the regular lattice
site. We call η the randomization parameter used to quantify
the degree of randomization. In our numerical calculations,
we increased η up to η = 0.375l0. This is an appreciable de-
gree of randomization considering that at η = l0 two nearest
neighbors in a square lattice may end up at the same location.
To average over different realizations of the randomized lat-
tices, we have performed 100 numerical runs for every initial
regular lattice and every chosen value of η. In Fig. 4, we plot
the relative difference between EAT and ENAT.

Already for the regular lattices of vanishing randomiza-
tion η = 0, we find a relative deviation of EAT from ENAT in
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the one-digit per-cent regime. This deviation is smallest for
the regular rectangular lattice, where the principal stretching
directions are parallel to the nearest-neighbor bond vectors.
The deviation for η = 0 increases when we consider instead
the hexagonal and honeycomb lattices. Obviously, and this
is our main point here, the relative difference between EAT

and ENAT increases for each lattice that we investigated with
the degree of randomization η. Therefore NAT finds much
lower equilibrium states with increasing randomization, and
AT leads to erroneous results. So far, however, we could not
yet establish a simple rigid criterion that would quantitatively
predict the observed differences between AT and NAT.

C. The case m // x̂

We will now consider a non-vanishing magnetic moment
m // x̂. This is parallel to the direction in which we apply the
strain in order to measure the elastic modulus. As we will see
below, the behavior of the elastic modulus as a function of the
magnetic moment E(m) strongly depends on the orientation of
m and on the lattice structure. The kind of magnetic interac-
tion between nearest neighbors is fundamental for its impact
on the elastic modulus. On the one hand, when the magnetic
coupling between two particles in Um [see Eq. (2)] is solely
repulsive, i.e., m ⊥ r ij , its second derivative is positive and
therefore gives a positive contribution to the elastic modulus.
On the other hand, when m // r ij the interaction is attractive
and the second derivative of Um gives a negative contribution
to the elastic modulus.

When m is parallel to the strain direction x̂, the mag-
netic interaction along x̂ is attractive and, for m large enough,

will cause the lattice to shrink and the elastic modulus to
decrease. For some cases, though, E(m) shows an initial in-
creasing trend. This happens when in the unstrained lattice the
particles are much closer in ŷ than in x̂. Then, for small de-
formations, magnetic repulsion is prevalent and the magnetic
contribution to E is positive, as can be seen for the rectangular
case from Fig. 5.

The total energy of the system is the sum of elastic
and magnetic energies. Since the derivative is a linear op-
erator, the elastic modulus can be decomposed in elastic
and magnetic components: E = Eel + Em. The analytical
calculation for the minimal rectangular system described in
Subsection IV A applied to this configuration and consider-
ing magnetic interaction up to nearest neighbors only predicts
that

Em � d2Um

db2

∣∣∣∣
b=b0

= 12m2

b5
0

(
−2 + 4r7

0

(3 + r2
0 )

2

)
(5)

in the rectangular case.
From Eq. (5), we expect a magnetic contribution to the

total elastic modulus increasing with m for r0 ≥ 1.175 and de-
creasing with m for r0 ≤ 1.175. Qualitatively we observe this
trend for m/m0 � 1 in Fig. 5. However, it seems that the ini-
tial trend for E(m), i.e., close to the unstrained state, switches
from increasing to decreasing around r0 � 1.60, higher than
we expected. Although the minimal analytical model can pre-
dict the existence of a threshold value for r0 it would need
the magnetic contribution of more than only nearest neighbor
particles to be more accurate, since the magnetic interaction
is long ranged (whereas the elastic interaction acts only on
nearest neighbors).
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D. The case m // ŷ

In this orientation of the magnetic moment, the hexago-
nal lattice case is exemplary, because it shows very well the
orientational structural dependence of E(m).

On the one hand, for the hexagonal lattice “horizontally”
oriented (see the bottom inset in Fig. 6) there are no nearest
neighbors in the attractive direction ŷ; there are instead two
along x̂ whose interaction is purely repulsive, therefore the

second derivative of their interaction Um is positive. On the
other hand, for the same lattice rotated by π /2 (see the top
inset in Fig. 6) there are two nearest neighbors in the direction
of m and their interaction is strongly attractive; therefore, the
second derivative of their interaction Um is negative.

The result, as can be seen in Fig. 6, is that in the for-
mer case the elastic modulus is increasing and in the latter is
decreasing.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

E
N

A
T
(m

/m
0)

/k

m/m0

ENAT vertical 
ENAT horizontal

FIG. 6. Hexagonal lattice with m // ŷ for a hexagonal lattice with horizontal rows (bottom inset, where two nearest neighbors are oriented along x̂) and for one
with vertical rows (top inset, where two nearest neighbors are oriented along ŷ). We indicate the direction of the applied strain by ε. It is remarkable how the
magnetic interaction between nearest neighbors and the ENAT(m) behavior change when the lattice is rotated by π /2.
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FIG. 7. Elastic modulus E(m/m0)/k calculated with NAT for m // ẑ for the different lattices shown. We indicate the direction of the applied strain by ε. The
magnetic interaction is purely repulsive and strengthens the elastic modulus in this configuration.

E. The case m // ẑ

In this configuration, the magnetic interactions between
our particles are all repulsive and have the form m2/rij

3. The
second derivative of the magnetic interparticle energy is al-
ways positive along the direction connecting the particles.
Therefore, we expect the elastic modulus to be enhanced with
increasing m, and E(m) to be a monotonically increasing func-
tion. As can be seen from Fig. 7, this is true for all the different
lattices we have considered.

We have already seen in Fig. 4 how the randomization
of the lattice seriously affects the difference between AT and
NAT. For the m // ẑ case, we have also considered a real par-
ticle distribution taken from an experimental sample.50 The
real sample was of cylindrical shape with a diameter of about
3 cm. It had the magnetic particles arranged in chain-like ag-
gregates parallel to the cylinder axis and spanning the whole
sample. The positions of the particles were obtained through
X-ray micro-tomography and subsequent image analysis. We
extracted the data from a circular cross-section taken approx-
imately at half height of the cylinder and shown in Fig 8. In
this way we consider by our model the physics of one cross-
sectional plane of the cylindrical sample.

The extracted lattice was used as an input for our dipole-
spring model. We placed a magnetic particle at the center
of each identified spot in the tomographic image, see Fig 8.
Guided by the situation in the real sample, the magnetic mo-
ments of the particles are chosen perpendicular to the plane
(i.e., “along the cylinder axis”). The springs in the resulting
lattice are set using Delaunay triangulation51, 57, 58 with the
particles at the vertices of the triangles and the springs placed
at their edges. Then, we cut a square block from the center
of the sample containing the desired number of particles. The
clamped particles are chosen in such a way that they cover
about 10% of the total area (see left inset in Fig. 9).

FIG. 8. Realistic lattice used to determine the elastic modulus as a function
of the magnetic interactions in the case m // ẑ. The lattice was determined
from an X-ray micro-tomographic image of a real experimental sample50 in
the following way. The sample was of cylindrical shape with a diameter of
approximately 3 cm. We show a cross-sectional cut through the sample at
intermediate height. Inside the sample, the magnetic particles formed chains
parallel to the cylinder axis, i.e., perpendicular to the depicted plane. The
average size of the particles was around 35 μm. Gray areas correspond to
the tomographic spots generated by the magnetic particles in the sample and
were identified by image analysis. In our model, we then used the centers of
these spots, marked by the black boxes, as lattice sites. One magnetic parti-
cle was placed on each lattice site. Then the whole plane was tessellated by
Delaunay triangulation with the particle positions at the vertices of the result-
ing triangles. Elastic springs were set along the edges of the triangles. The
micro-tomography data (see Fig. 5 (H=3 mm) in Ref. 50) are reproduced
with permission from Gunther et al., Smart Mater. Struct. 21, 015005 (2012).
Copyright 2012 by IOP Publishing.
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FIG. 9. Elastic modulus E(m/m0)/k calculated for m // ẑ with NAT and AT techniques for the experimental lattice drawn in the left inset. Black dots represent
clamped particles. Besides considerably overestimating the elastic modulus, EAT(m/m0)/k shows a flat/decreasing behavior, whereas ENAT(m/m0)/k is correctly
increasing. In the right inset, we rescaled E(m/m0) by E(m = 0) to better show the two different trends. The numerical error bars are much smaller than the
symbol size.

Again we numerically investigate two-dimensional de-
formations within the resulting two-dimensional layer. If, in
the future, this is to be compared to the case of a real sample,
the deformations of this sample in the third direction, i.e., the
anisotropy direction, have to be suppressed. For instance, the
sample could be confined at the base and cover surfaces and
compressed along one of the sides. Then it can only extend

along the other side. Thus, within each cross-sectional plane,
an overall two-dimensional deformation occurs, with macro-
scopic deformations suppressed in the anisotropy direction.

As we can see from Fig. 9, in our numerical calculations
for this case, AT leads to a serious overestimation of the elas-
tic modulus compared to the one obtained for NAT. More-
over, as can be seen in the right inset of Fig. 9, the former
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FIG. 10. Zero-field elastic modulus ENAT(m = 0) calculated with NAT for the experimental lattice drawn in the inset picture varying the rotation angle θ . To
illustrate the effective isotropy we plot the elastic modulus rescaled by the average of ENAT(m = 0) over θ . The black square in the inset contains the block of
particles extracted from the experimental data after the rotation and used in our calculation.
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FIG. 11. Shear modulus G(m/m0)/k calculated for m // ẑ with NAT and AT techniques for the experimental lattice drawn in the left inset. Black dots represent
clamped particles. Here again, besides considerably overestimating the elastic modulus, GAT(m/m0)/k shows a flat/decreasing behavior, whereas GNAT(m/m0)/k
is correctly increasing. In the right inset, we rescaled G(m/m0) by G(m = 0) to better show the two different trends. The numerical error bars are much smaller
than the symbol size.

predicts an erroneous flat/decreasing trend for E(m), whereas
the latter shows instead a correct increasing behavior. This re-
sult can be interpreted considering that in AT all the particles
must move in a prescribed way along each direction. When
the particle arrangement is irregular, some couples are very
close and some are very distant. The erroneous trend in AT
is mainly attributed to the very close particle pairs. AT can
force them to still move closer together despite the magnetic
repulsion, whereas NAT allows them to avoid such unphysical
approaches. Therefore, in order to properly minimize the en-
ergy, each particle must be free to adjust position individually
with respect to its local environment. As a consequence, for
such realistic lattices AT provide erroneous results both quan-
titatively and qualitatively, making NAT mandatory in most
practical cases.

Since within the analyzed two-dimensional cross-
sectional layer the particle distribution appears to be rather
isotropic, we expect the elastic modulus to be approximately
the same in any direction in the plane. To demonstrate this
fact, we rotate the configuration in the plane with respect to
the stretching direction by different angles θ between 0 and
π /2. As we can see from Fig. 10, the zero-field elastic mod-
ulus E(m = 0) shows only small deviations for the different
orientations. The origin of such deviations is ascribed to the
square-cutting procedure which, after a rotation by an angle θ ,
produces samples containing different sets of particles, each
with different local inhomogeneities in particle distribution
and spring orientation. For samples large enough to signifi-
cantly average over all these different local inhomogeneities,
the angular dependence of E(m = 0) should further decrease.
We found that for any rotation angle θ , the behavior of E(m) is
similar to the one in Fig. 9 corresponding to θ = 0, supporting
our statement about the erroneous AT result.

F. Shear modulus

For the set-up described in Subsection IV E (see the left
inset of Fig. 9 with m // ẑ), we have also calculated the shear
modulus G(m) as a function of the magnetic moment, for both
AT and NAT. The shear modulus is defined as the second
derivative of the total energy U with respect to a small dis-
placement δy of the clamps in y-direction:

G = d2U

dδy
2 � U (−δy) + U (δy) − 2U (0)

δy
2 . (6)

In this calculation, to allow for the comparison between the
results from AT and NAT, all particles within the clamped re-
gions are forced to move in a prescribed (affine) way.

It turns out that the behavior of the shear modulus is qual-
itatively the same as for the compressive and dilative elastic
modulus (see Fig. 11). Again, an incorrect decreasing behav-
ior for the AT calculation is obtained. In numbers, the relative
difference between the AT and NAT results is larger than for
the compressive and dilative elastic modulus. Here we set δy
as one percent of the dimension of the sample. In Fig. 11, this
choice produces numerical error bars much smaller than the
symbol size.

V. CONCLUSIONS

We have shown how the induction of aligned magnetic
moments can weaken or strengthen the elastic modulus of a
ferrogel or magnetic elastomer according to lattice structure
and nearest-neighbor orientations. The orientation of near-
est neighbors plays a central role. If the vector connecting
two nearest neighbors lies parallel to the magnetic moment,
they attract each other, the second derivative of their magnetic
interaction is negative, and the corresponding contribution to
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the total elastic modulus is negative, too. If, instead, the near-
est neighbors lie on a direction perpendicular to the magnetic
moment, the second derivative of their magnetic interaction
is positive and it tends to increase the total elastic modulus.
This effect can be seen modifying the nearest-neighbor struc-
ture, for instance tuning the shape of a rectangular lattice or
rotating a hexagonal lattice. We have also seen how the perfor-
mance of affine transformations worsens for randomized and
more realistic particle distributions, making non-affine trans-
formation calculations mandatory when working with data
extracted from experiments.

In the present case, we scaled out the typical particle sep-
aration and the elastic constant from the equations to keep the
description general. Both quantities are available when real
samples are considered. The mean particle distance follows
from the average density, while the elastic constant could be
connected to the elastic modulus of the polymer matrix.

The dipole-spring system we have considered is a mini-
mal model. We look forward to improving it in different di-
rections. First, we would like to go beyond linear elastic in-
teractions using nonlinear springs, perhaps deriving a realistic
interaction potential from experiments or more microscopic
simulations. Second, the use of periodic boundary conditions
may improve the efficiency of our calculations and give us
new insight into the system behavior (although we demon-
strated by our study of asymptotic behavior that border ef-
fects are negligible in the present set-up). Furthermore, we
may include a constant volume constraint, since volume con-
servation is not rigidly enforced in the present model. To iso-
late the effects of different lattice structures and the assump-
tion of affine deformations, we here assumed that all magnetic
moments are rigidly anchored along one given direction. In a
subsequent step, this constraint could be weakened by explic-
itly implementing the interaction with an external magnetic
field or an orientational memory. Finally, to build the bridge
to real system modeling, an extension of our calculations to
three dimensions is mandatory in most practical cases.
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In the perspective of developing smart hybrid materials with customized features, ferrogels and

magnetorheological elastomers allow a synergy of elasticity and magnetism. The interplay between

elastic and magnetic properties gives rise to a unique reversible control of the material behavior by

applying an external magnetic field. Albeit few works have been performed on the time-dependent

properties so far, understanding the dynamic behavior is the key to model many practical situations,

e.g., applications as vibration absorbers. Here we present a way to calculate the frequency-dependent

elastic moduli based on the decomposition of the linear response to an external stress in normal

modes. We use a minimal three-dimensional dipole-spring model to theoretically describe the

magnetic and elastic interactions on the mesoscopic level. Specifically, the magnetic particles carry

permanent magnetic dipole moments and are spatially arranged in a prescribed way, before they

are linked by elastic springs. An external magnetic field aligns the magnetic moments. On the one

hand, we study regular lattice-like particle arrangements to compare with previous results in the

literature. On the other hand, we calculate the dynamic elastic moduli for irregular, more realistic

particle distributions. Our approach measures the tunability of the linear dynamic response as a

function of the particle arrangement, the system orientation with respect to the external magnetic

field, as well as the magnitude of the magnetic interaction between the particles. The strength of

the present approach is that it explicitly connects the relaxational modes of the system with the

rheological properties as well as with the internal rearrangement of the particles in the sample,

providing new insight into the dynamics of these remarkable materials. Published by AIP Publish-
ing. [http://dx.doi.org/10.1063/1.4962365]

I. INTRODUCTION

The class of smart hybrid materials encompassing

ferrogels and magnetorheological elastomers stands out for

its unique capability of combining magnetic properties

with huge elastic deformability.1–4 They typically consist

of a permanently crosslinked polymer matrix in which

magnetic colloidal particles are embedded. The matrix is

responsible for the elastic behavior typical of rubbers, while

the particles magnetically interact with each other and

with external magnetic fields. These materials distinguish

themselves by the fascinating ability of reversible on-demand

tunability of shape and stiffness under the influence of

external magnetic fields,1,2,4–12 similarly to the tunability

of viscosity in ferrofluids.13–23 This makes them ideal

candidates for applications such as soft actuators,24 vibration

absorbers,25,26 magnetic field detectors,27,28 and even as

model systems to study aspects of hyperthermal cancer

treatment.29,30

The core feature of these materials is their magneto-

mechanical coupling,31–33 i.e., the way magnetic effects

such as the response to an external magnetic field couple

a)Electronic address: giorgpess@thphy.uni-duesseldorf.de
b)Electronic address: hlowen@thphy.uni-duesseldorf.de
c)Electronic address: menzel@thphy.uni-duesseldorf.de

to the overall mechanical properties (e.g., strain or elastic

moduli) and vice versa. As was recently shown, such

coupling is responsible for surprising properties such as

superelasticity,34 a characteristic buckling of chains of

particles under a perpendicular external magnetic field,35

qualitative reversal of the strain response,32 volume changes

due to mesoscopic wrapping effects,36 or tunability of the

electrical resistance.37 There are several key factors that can

influence the magneto-mechanical coupling: the magnetic

particle concentration,1,38,39 the stiffness of the gel,40 or

whether the magnetic moments of the particles can freely

reorient or must instead rotate synchronously with the whole

particle.2,41 The particles can be chemically bound to the

polymer network31,42,43 or be confined inside pockets of the

matrix.44,45 Moreover, the magnetic material itself can either

be ferro-43 or (super)paramagnetic.46

Because of the variety of factors and parameters that

can characterize ferrogels and magnetic elastomers, it is no

surprise that they are receiving increasing attention from the

modeling side. In fact, gaining insight into the mechanisms

underlying the magneto-mechanical coupling can be the key

to devise smarter and more efficient materials. Macroscopic

theories rely on a continuum-mechanical description of both

the polymeric matrix and the magnetic component,5,27,32,47–50

whereas mesoscopic approaches can take into account the

granularity and discreteness of the magnetic particles.34,51–53

0021-9606/2016/145(10)/104904/21/$30.00 145, 104904-1 Published by AIP Publishing.
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On this mesoscopic level, simplified dipole-spring models

represent a convenient approach to address effects originating

on the magnetic particle level. More precisely, in such models

the particles carry a dipole magnetic moment and are linked

with each other by a network of elastic springs. Additionally,

steric repulsion and other effects like orientational memory

terms can be included.54–59 Finite-element descriptions are

likewise employed to address mesoscopic particle-based

effects,10,33,60–63 and some works even resolve the individual

polymers on the microscopic scale.41,64 Moreover, in a coarse-

graining perspective, some routes have been outlined to

connect the different length scales listed above.65,66

Often in material science, one aims at determining the

material parameters that characterize the system. Fundamental

quantities to describe the time-dependent mechanical behavior

are the dynamic elastic moduli. They, for instance, contain

the information on the frequency-dependent stress response to

imposed time-periodic deformations. In the case of ferrogels

and magnetic elastomers only few theoretical studies have so

far addressed the dynamic properties in special cases.56,59,67

In the present work we aim at calculating the dynamic

(i.e., frequency-dependent) elastic moduli of ferrogels. We

use a minimal three-dimensional (3D) dipole-spring model

with short-ranged steric repulsion between the magnetic

particles. Moreover, we consider the system around its

equilibrium state of minimum total energy. Overdamped

motion of the particles is assumed, which is in general a

reasonable assumption for colloidal polymeric systems. We

focus on regular and more disordered particle arrangements

of finite size with open boundary conditions (obc). In our

particle-based approach this simply refers to a detached

finite assembly of particles. This system is bounded in all

three directions of space, in contrast to periodic boundary

conditions (pbc). We describe a semi-analytical approach

using a simple, direct connection between the normal modes

of the system and the linear response to an oscillating external

stress.

The paper is structured as follows. First, in Section II we

present our minimal dipole-spring model including steric

repulsion. To find the equilibrium configurations under

magnetic interactions, we use the methods as described in

Section III. Then, in Section IV, we determine the normal

modes and in Section V we connect them to the static linear

elastic response of the system. After that, in Section VI, we

address the dynamic behavior of our system and show how

to decompose it into the normal modes. In Section VII, we

extend the elastic moduli expressions obtained in Section V

to the dynamical case and show the corresponding numerical

results in Sections VIII, IX, and X before drawing our final

conclusions in Section XI. Appendix A lists the specific

expressions used in modeling the steric repulsion, whereas

Appendices B and C list in detail the employed expressions

for gradients and Hessian matrices. Appendix D describes in

detail our procedure of obtaining a torque-free force field.

In Appendix E we analytically estimate the Young moduli

of regular lattices for comparison with our numerical results.

Last, in Appendix F we present further data on the loss

components of the dynamic moduli, supporting our results in

the main text.

II. DIPOLE-SPRING MODEL

For simplicity we here work with a minimal 3D dipole-

spring model. On the one hand, as a first approximation, we

represent the magnetic moments by permanent point dipoles

of constant magnitude. Possible magnetic contributions due

to the finite extension of the magnetic particles are not

considered. This is a valid approach for interparticle distances

larger than the particle size (i.e., at low densities).68 In a

simplified manner, spatial variations in dipole orientations and

magnitudes due to their mutual feedback could be included

in a subsequent step, see Ref. 69. On the other hand, the

interaction between the mesoscopic particles mediated by

the polymeric matrix is, in general, non-linear.66 However,

since we are mainly interested in the linear elastic moduli for

small displacements around the equilibrium positions of the

particles, we confine ourselves to harmonic interactions in the

present study.

Our system is made of N identical spherical magnetic

particles with positions Ri = (Rx
i ,R

y
i ,R

z
i ), i = 1 . . . N . To

model the overdamped dynamics of the system, we consider

viscous drag forces −cṘi during particle displacements, where

the dot indicates the time derivative. Each particle carries an

identical magnetic dipole moment m of magnitude m = |m|.
This situation reflects, for instance, the case of ferromagnetic

or superparamagnetic particles under strong external magnetic

fields. Neighboring particles i and j are coupled by harmonic

springs attached to the particle centers for simplicity. The

unstrained spring length �0i j is set in the initial ground state par-

ticle configuration in the absence of any magnetic interactions,

while the spring constants are given by k/�0i j. Thus, k is related

to the overall elastic modulus of the system and long springs

are weakened when compared to short ones. We assume

the polymeric matrix—here represented by the network of

springs—to have vanishing magnetic susceptibility and there-

fore not to directly interact with magnetic fields. If magnetic

particles come too close to each other, they interact sterically.

The total energy U of the system is the sum of elastic

Uel, steric U s, and magnetic Um energies.54,55,57,58 Elastic

interactions are given by

Uel =
1

2

∑
i� j

ki j
2

(
ri j − �0i j

)2
, (1)

where the sum runs over all particles i and j � i. Moreover,

ki j = k/�0i j if particles i and j are connected by a spring and

vanishes otherwise. Furthermore, ri j = R j − Ri and ri j = |ri j |.
We model the steric interactions using a repulsive

potential inspired by the Weeks-Chandler-Andersen form70

but with different exponents. For instance, possibly absorbed

polymer chains on the surfaces of the particles35 could result

in a softer repulsion. Our steric potential reads

U s =
1

2

∑
i� j

v s(ri j), (2)

where

v s(r) = εs [( r
σs

)−4

−
( r
σs

)−2

−
( rc
σs

)−4

+

( rc
σs

)−2

+ cs
(r − rc)2

2

]
(3)
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for r ≤ rc and zero otherwise. Here, εs sets the strength of the

steric repulsion, σs characterizes the range of steric repulsion,

and rc = σs21/2 is a cutoff distance. The parameter cs is

chosen such that altogether we have v s(rc) = 0, v s′(rc) = 0,

and v s′′(rc) = 0 (see Appendix A).

Finally, the magnetic energy is given by the dipole–dipole

interaction

Um =
μ0m2

4π

1

2

∑
i� j

r2
i j − 3(m̂ · ri j)2

r5
i j

, (4)

where m̂ = m/m and μ0 is the magnetic permeability of

vacuum. In the present work, we use reduced units as follows:

lengths are given in multiples of l0, energies in multiples of

kl0. The length l0 is defined as l0 =
3
√

1/ρ where ρ is the

number density of the particles. Furthermore, we measure

magnetic moments, velocities, and frequencies in multiples of

m0 =

√
4πkl0

4/μ0, k/c, and k/cl0, respectively, with c setting

the viscous friction coefficient of each particle. (There is

a typo in the definition of m0 in Ref. 55: it should read

m0 =

√
4πkl0

5/μ0 instead of m0 =

√
4πk2l0

5/μ0.) For our

purposes, we assume σs = 0.2l0 and εs = kl0.

For reasons that will become clear in Section V, it is

useful to explicitly define and indicate the boundaries of our

system. We here consider samples of cubelike shape with

faces perpendicular to x̂, ŷ, and ẑ, the unit vectors defining

our Cartesian coordinate system. We can define “left” and

“right,” “front” and “rear,” as well as “bottom” and “top”

boundaries, namely the faces oriented by ∓x̂, ∓̂y, and ∓̂z,

respectively. The criteria to identify which particles belong to

the boundaries will be detailed later according to the specific

particle distribution. Subsequently, we indicate by Lx, Ly, and

Lz the extension of the sample in the x-, y-, and z-direction,

respectively. In the case of cubelike shape and uniform density,

Lα (α = x, y, x) will be proportional to N1/3l0. Otherwise, an

additional geometry-dependent prefactor can be included.

Then the scaling of cross-sectional areas (i.e., Sx = LyLz) and

the volume V = LxLyLz follow straightforwardly as N2/3l0
2

and Nl0
3, respectively.

III. EQUILIBRIUM STATE

First, we need to find the equilibrium state of our sys-

tem, i.e., the one that minimizes the total energy U = Uel

+U s +Um with respect to all degrees of freedom. In our case

the degrees of freedom are given by the positions Ri, which

requires

∂Ri
U = 0, ∀ i = 1 . . . N (5)

in equilibrium. From Eqs. (1)–(4) it is straightforward to

calculate the resulting gradients (see Appendix B). The

second derivatives of the energy U form the corresponding

Hessian matrix, see below. Analytical expressions are listed

in Appendices B and C.

We seek the minimum total energy U of a sample

composed of N particles arranged according to a prescribed

distribution, each carrying a prescribed magnetic dipole

moment m. Consequently, the equilibrium state is obtained as

a function of m. To ease the convergence of the minimization

techniques, we gradually increase the magnitude of the

magnetic moments from m = 0 (ground state) to the required

maximum value of m while minimizing the total energy for

each intermediate value of m. Because of the large number

of degrees of freedom, the only practical way to find the

equilibrium state is to perform a numerical minimization of

the energy. In the present work we implemented a conjugated

gradient algorithm with guaranteed descent.71

We wish to study the dynamic response of our systems for

different orientations while holding m fixed in space. However,

once the orientation of the magnetic moments is fixed from

outside, the system as a whole may start to rigidly rotate to

minimize its overall energy. In real samples, such rotations

are for instance suppressed by macroscopic frictional and

gravitational forces. Moreover, in our previous investigation,

this macroscopic rotation was hindered by a “clamping”

protocol of the boundaries.55 Here instead, we develop a new

protocol to keep the system in the desired orientation. This

is achieved by subtracting from the force field acting on

the boundaries those parts corresponding to rigid rotations

(see below and Appendix D). This way, three constraints are

applied in the form of the suppressed rigid rotations and we

otherwise allow a complete internal relaxation of the sample.

IV. NORMAL MODES

Next, we describe a generic normal mode formalism and

explain how it can be employed to characterize the linear

response of our systems to a small external perturbation. We

do not assume regular, periodic particle distributions. Instead,

our formalism can likewise be applied to irregular particle

arrangements, see, e.g., Refs. 72–74.

In the following, we indicate with a bra-ket notation

|X〉, the D-component vector containing all the D degrees

of freedom of the system. In our case, D = 3N as we only

consider translational degrees of freedom, but in principle |X〉
could also include, for instance, particle rotations.

Once we write down the total energy U(|X〉), the

equilibrium state |X〉eq is given by the condition

∂XU (|X〉eq) = 0. (6)

It is more convenient to discuss the problem in terms of

displacement from equilibrium, |u〉 = |X〉 − |X〉eq. Further-

more, it is always possible to shift the energy by a constant

so that U(|X〉eq) = 0. Around its minimum, we can expand

U(|X〉) to lowest order in the displacement |u〉,

U (|u〉) � 1

2
〈u|H |u〉 , withHi j = ∂ui∂u j

U. (7)

Here, H is the Hessian matrix composed of the second

derivatives of U with respect to |u〉 (see Appendices B and

C). If U(|X〉) has continuous second partial derivatives, then

H is symmetric. Moreover, being in a minimum of U(|X〉)
implies thatH is positive-semidefinite. All its eigenvalues are

positive, except for the modes representing rigid translations

and rotations, which cost no energy and have vanishing

eigenvalues.

We obtain the linearized gradient around the minimum

from Eq. (7) as
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∂uU (|u〉) � H |u〉 . (8)

When a small external force |f 〉 is applied, the system reacts

to neutralize it and re-equilibrates

−∂uU(|u〉) + |f 〉 = 0 ⇒ H |u〉 � |f 〉 . (9)

In Eq. (9) we have used Eq. (8), which is justified for small

|f 〉. We diagonalize H and introduce its eigenvalues λn and

eigenvectors, i.e., the normal modes |vn〉 with n = 1 . . . D and

D the number of degrees of freedom, such that

H |vn〉 = λn |vn〉 , and 〈vm|vn〉 = δmn, (10)

where δmn is the Kronecker delta. Since the |vn〉 form a

complete basis, we can expand displacements and forces as

|u〉 =
D∑
n=1

un |vn〉 and |f 〉 =
D∑
n=1

fn |vn〉 . (11)

Here, un = 〈u|vn〉 and fn = 〈f |vn〉. Then, using these

expansions and the orthonormality of the eigenvectors, Eq. (9)

simply reduces to

λnun = fn. (12)

This relation clearly shows that, under the influence of an

external force |f 〉 exciting the nth normal mode, the amplitude

un of the response is linearly related to the intensity fn of the

force. In this perspective, the Hessian eigenvalue λn quantifies

the magnitude of the static linear response of the system

within the nth mode to the external force. λn is therefore

a sort of elastic constant. Thus, the energy of the system

around its minimum can be written, using Eqs. (7) and (11),

and (12), as

U =
1

2

D∑
n=1

λnun
2 =

1

2

D∑
n=1

fn2

λn
. (13)

V. STATIC ELASTIC MODULI FROM NORMAL MODES

In numerical calculations there are two main ways to

obtain elastic moduli in the zero-frequency limit, i.e., in the

static case. On the one hand, one can perform a finite but small

(linear-regime) strain of the whole system, both for pbc36,75,76

and obc.55 The system is equilibrated under the prescribed

amount of strain. In this way, the moduli are measured from

the slope of the resulting stress-strain curve or, equivalently,

from the second derivatives of the free energy. On the other

hand, when employing pbc and working in thermodynamic

equilibrium, one can differentiate the free energy with respect

to a macroscopic strain.75,77,78 As a special case, and in the

low-temperature limit, the elastic moduli of a pbc glassy

system have recently been examined,79 whereas the case of

regular lattices was discussed under the assumption of affinity

in the deformation.51 However, it is important to remark that

affinely mapping the macroscopic strain down to all scales in

the system does not allow for internal relaxation80 and can

even lead to qualitatively incorrect results55 in presence of

non-affinity sources.

In the present work we consider the case of a finite

system in the ground state neglecting thermal fluctuations

of the mesoscopic particles. The semi-analytical approach

that we use to calculate elastic moduli in the linear regime

does not require finite macroscopic displacements nor does it

assume affinity of the deformation. This method relies on the

decomposition of the linear response over the eigenvectors of

the Hessian matrixH . It reduces the calculation to a problem

of linear algebra and gives access to dynamic properties as

well, see Sections VI and VII. Physically, our procedure

involves using stress instead of strain as an independent

variable.

A. Macroscopic stresses and strains

Below we will focus on Young’s modulus E and the

shear modulus G. They can be defined via the stress-strain

relationships

σαα = Eαα εαα, σαβ = Gαβ εαβ, (14)

whereσαβ (α, β = x, y, z) denotes the force per area applied in

the β-direction acting on the boundary with the surface normal

oriented in the α-direction. εαβ indicates the corresponding

strain deformation, i.e., the total displacement of the boundary

in the β direction divided by the distance between the

boundaries in the α-direction. Here, there is no summation

over α and β. In the first formula, α defines the direction of

imposed stretching or compression, along which we evaluate

Eαα. In the second formula, the αβ plane sets the shear plane

within which we evaluate G, with the shear displacement on

the boundaries introduced along the β-direction. Thus, only

the faces of the system perpendicular to the α-direction

need to be explicitly addressed to impose our boundary

stresses, while the rest of the system is free to relax.

This configuration conceptually reproduces an experimental

situation in which the sample would be enclosed between

the plates of a rheometer with the plates perpendicular to the

α-direction.81

Applying during shear only forces oriented tangential to

the surface planes typically induces rotations. In experiments,

these are hindered by the confining plates. Accordingly, we

here suppress such global rotations by subtracting them

from the overall response of the system (see below and

Appendix D). In this way, we maintain the definition of

σαβ as above close to the experimental situation and avoid

symmetrization typically performed in the context of classical

elasticity theory82 (for a related discussion on anisotropic

systems see also Ref. 65).

In the following derivation, we focus on the Young

modulus Eαα and drop the αα subscripts. The calculation

for the shear modulus Gαβ is analogous. Here, stresses

and strains in Eq. (14) are interpreted as macroscopic

quantities characterizing the overall deformation of the

system. We measure them and accordingly define the

elastic moduli of the system solely by the stresses on

and the displacements of the boundaries perpendicular to

α̂, respectively. The stress is calculated from the ratio

between the external force and the surface over which it

is applied. Similarly, the strain is obtained by measuring the

displacement of the boundaries and dividing by their initial

distance.
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The energy of a strain deformation is given by the work

performed by the stress in the whole volume, i.e., using

Eq. (14),

U = V
∫
σ dε = V

Eε2

2
= V
σ2

2E
. (15)

Therefore, the elastic modulus can be derived by differentiat-

ing the previous equation,

E =
1

V
d2U

dε2
= V

[
d2U

dσ2

]−1

. (16)

B. Mesoscopic stress

Our goal is to connect these macroscopic relations to

the mesoscopic level. On the mesoscopic scale, within our

linear response framework, it is impractical to use the strain

as a variable to impose an external perturbation of the system.

Imposing a certain amount of strain by displacing the boundary

particles in a prescribed way does not provide any information

on the displacement of the bulk particles because the internal

relaxation of the system is not known a priori. Actually, the

rearrangement of the bulk particles mainly determines the

reaction of the system and contributes the most to the elastic

response. In contrast to that, it is more convenient to use the

stress as a variable to impose the external perturbation when

we connect the macroscopic to the mesoscopic level. As a

matter of fact, we know that an externally imposed mechanical

stress leads to nonvanishing external forces on the boundary

particles only.

We here describe the macroscopic mechanical stress σ
in terms of sets of discretized forces acting directly on the

mesoscopic particles. We denote the number of particles on

the “left” and “right” boundaries (see Section II) as Nl and

Nr , respectively. If we indicate by S the cross-section over

which a total external force F is applied, then we have

F = σS. The corresponding externally imposed discretized

mesoscopic force field |f 〉 acting directly on the particles can

then be constructed using the following protocol:

(a) |f 〉 is non-vanishing only on the boundaries and has

components oriented in the stress-direction, see Fig. 1(a).

(b) The total force F acting on one boundary must be equal in

magnitude to the total force acting on the other boundary.

First, we assume all individual forces acting on individual

particles on the same boundary to be equal in magnitude.

We indicate by f l and fr those forces acting on a

single individual particle on the left or right boundary,

respectively. Then the condition reads F = Nl f l = Nr fr ,
see Fig. 1(b).

(c) The torque exerted by |f 〉 on the boundaries must vanish

[see Fig. 1(c)]. This can be achieved using the method

described in Appendix D. The condition is applied

separately to each boundary.

(d) Finally, we must rescale all forces acting onto one

boundary by a common factor so that the forces acting in

the stress direction sum up to F = σS [see Fig. 1(d)].

Again, this condition is applied separately to each

boundary.

FIG. 1. Protocol to connect a macroscopic stress (σxx) acting on the system

boundaries to a discretized mesoscopic force field acting on the boundary

particles. For simplicity, the case of an irregular two-dimensional (2D) system

is shown here. Particles on the boundaries are colored in black and springs

are represented by dotted lines. This figure is for illustrative purposes only,

therefore lengths and vectors are scaled in a qualitative way. Our procedure is

as follows: (a) First, individual discrete forces of equal magnitude are intro-

duced on each individual boundary particle, pointing into the stress-direction

(here the x-direction). (b) The forces are rescaled to balance total forces

on the left- and right-hand sides. (c) An appropriate rotatory component is

introduced to make the torques vanish on each boundary (separately). (d) All

forces on each boundary are rescaled by a common factor so that their sum in

the stress-direction is normalized correctly.

These steps serve as a protocol when generating the

discretized boundary force field |f 〉 in numerical calculations.

In the following, we factor out F and write |f 〉 = σS |fu〉,
where |fu〉 is a force field satisfying our requirements

and representing a macroscopic force of unitary magnitude

(F = 1).

C. Calculation of static elastic moduli

We now have all the ingredients available to formulate

the connection between the macroscopic elastic modulus

and our discretized mesoscopic normal modes. Following

the definition of particle-resolved stress σS |fu〉 that we

introduced above, we write the energy in Eq. (13) as an

explicit function of σ,

U =
σ2S2

2

D∑
n=1

f un
2

λn
, with f un = 〈fu |vn〉 . (17)

Combining it with Eq. (16), we obtain

E =
L
S

⎡⎢⎢⎢⎢⎣
D∑
n=1

f un
2

λn

⎤⎥⎥⎥⎥⎦
−1

. (18)

Here, again, S is the surface area of the boundary on

which the stress acts, while L is the distance between the

two boundaries so that LS = V . λn is the nth eigenvalue

of the Hessian matrix, and f un is given by Eq. (17). In

general, S and L will be proportional to N (d−1)/dl0
d−1
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and N1/dl0, respectively, with d the spatial dimensionality

of the system. Therefore, for 3D particle arrangements of

cubelike shape we obtain L/S ∼ 1/
3√Nl0. In other cases a

prefactor must be added, taking into account the shape of

the sample or the unit cell structure in the case of regular

lattices.

In the following numerical calculations we used the

lapack diagonalization routines83 to find eigenvalues and

eigenvectors of H . Special care must be taken to avoid the

zero-energy modes when computing Eq. (18). We here simply

ignore contributions from the lowest 3 and 6 eigenvalues

when dealing with 2D and 3D systems, respectively.

They correspond to rigid translations and rotations of the

system.

Overall, we have described a self-standing procedure to

calculate elastic moduli in obc systems. The system is required

to be in a stable equilibrium state, where the Hessian matrix

of the total energy is positive semi-definite. Since the elastic

moduli are properties of the ground state, they can be directly

obtained via the eigenvalues and eigenvectors calculated in

this configuration, see Eq. (18), for a specified force field,

see Section V B. Therefore, it is not necessary to actually

perform a finite deformation and drive the sample out of

equilibrium as, e.g., in Refs. 36, 55, and 76. In Sec. V D

we compare the results of our described method with those

obtained by explicitly taking a system out of equilibrium via

actual boundary displacement.

D. Comparison with 2D calculations

The calculation we outlined in Section V C has the

advantage of requiring knowledge of only the ground state

to obtain all (linear) elastic moduli. Conversely, as we just

mentioned, the previously taken path to determine the elastic

moduli is to drive the system out of the ground state

by prescribing a small amount of strain, determining its

deformation, and thereby tracking the total energy variations,

see, e.g., Refs. 34, 36, and 55. To test the validity of the

present approach, we compare the method described above

with the numerical results obtained previously for the 2D case

via explicit boundary displacements.55

We briefly sum up the technique applied in our former

work, see Ref. 55. In that case, a 2D dipole-spring model,

similar to the present one but without steric repulsion, is

considered. The left and right boundaries of the system are

set perpendicular to the x-direction and undergo a “clamping”

protocol, i.e., all the particles in the boundary are constrained

to move along x̂ or ŷ in a prescribed way and therefore the

whole system undergoes a determined amount of strain εxx or

εxy. For every prescribed position of the boundaries, the bulk

of the system is free to relax [see Figs. 2(b), 2(d), and 2(f)].

Then, the static Young’s modulus is obtained from the second

derivative of the total energy with respect to a small strain in

the linear elasticity regime.

Contrarily to the present case, in Ref. 55 we considered

springs of identical elastic constant, regardless of the spring

length. To allow a better comparison with our former results

we will—solely in this subsection—assign an equal elastic

constant to all springs, i.e., ki j = k ∀i, j. Moreover, for the

FIG. 2. Non-affine displacement field |u〉 of exemplary square and triangular

lattices composed of 100 particles (springs indicated by dashed lines) for

m = 0 obtained with LR and BD methods [panels (a), (c), (e) and (b), (d),

(f), respectively] for stretching/compression εxx and simple shear εx y de-

formations [panels (a), (b) and (c), (d), (e), (f), respectively]. This simple,

exemplary case shows how the responses obtained from the two methods are

both non-affine and similar, but can yet present small differences (compare

e.g., particles highlighted by red squares), explaining small deviations in

the elastic moduli resulting from the two methods, see Fig. 3. Panels (b),

(d), (f) were obtained by imposing small (linear-elasticity regime) strains of

εxx = 0.03 and εx y = 0.001, respectively.

present 2D setup, the elastic moduli will be measured in

multiples of k. In the following, we will address the previous

calculations of Ref. 55 as “Boundary Displacement” (BD) and

those in the framework of linear response theory of the present

work as “Linear Response” (LR).
We first consider the case of a 2D square spring lattice

with nonmagnetized (m = 0) particles on the vertices. On the

one hand, and in the BD case, we can apply a prescribed, small

amount of strain εxx or εxy and, after full internal energetic

relaxation, observe the resulting displacement field BD |u〉, see

Figs. 2(b), 2(d), and 2(f). On the other hand, and in the present

LR scheme, we start from the small mesoscopic force field

|f 〉 as constructed via the protocol described in Section V B.

The corresponding coefficients fn are obtained from Eq. (11).

Then, using the eigenvalues of the Hessian matrix λn as well

as Eq. (12), we obtain the response of the modes, i.e., the

coefficients un. Finally, using the coefficients un, we obtain

via Eq. (11) the particle-resolved displacement LR |u〉, which
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FIG. 3. Young’s modulus E as a function of m calculated for comparison

with BD and LR techniques. Three cases are presented (top to bottom): rect-

angular lattice of base-height ratio b/h = 2.5, square lattice (b/h = 1), and

triangular lattice [see panels (e) and (f) of Fig. 2] with m oriented in the x-,

z-, and y-direction, respectively. The number of particles in all of the three

examples is N = 400. The triangular lattice case shows a comparatively larger

difference, which, however, does not depend on m. We mostly attribute such

deviations to the structure of the boundary, as detailed in Figs. 2(e) and 2(f).

is the linear response of the system to the small applied force

|f 〉, see Figs. 2(a), 2(c), and 2(e).

The comparison between the resulting displacement fields

is helpful to understand where small deviations between the

elastic moduli obtained via the two different methods may

arise from, see Fig. 3. Overall, the differences remain small,

especially in the case of stretching and compression [see

Figs. 2(a) and 2(b)]. For shear deformations [see Figs. 2(c)

and 2(d)], such discrepancies are visible and reflect small

deviations in the resulting moduli. This effect seems to

be stressed when the positions of boundary particles are

not mirror symmetric with respect to the direction of the

calculated modulus, as in the case of the triangular lattice in

Figs. 2(e) and 2(f) for Young’s modulus in x-direction. In total,

however, we may conclude that our protocol to construct the

force field, see Section V B, works well and reproduces

the mesoscopic displacement fields previously obtained

via BD.
To further test the performance of the present method,

we now consider magnetic particles (m � 0). We compare

some of the elastic moduli obtained in Figs. 5–7 of Ref. 55

as functions of m for a few exemplary cases of regular lattice

structures. As shown in Fig. 3, we find the same behavior for

E(m) depending on lattice structure and neighbor orientation.

Depending on the particle arrangement, small discrepancies

can appear, as explained above. These deviations also seem

to depend on the specific shape of the boundaries and are

more evident for the case of the triangular lattice in Figs. 2(e)

and 2(f). From now on, we will turn back to the more general

3D case.

VI. DYNAMICS

Because of their often highly viscous character on the

mesoscale, soft matter systems in motion typically undergo

large dissipation and their dynamics is studied in the

overdamped regime.36,56,59,84 In the following we describe the

time-evolution of our systems, starting from the overdamped

equation of motion. Then, a way to decouple the full equation

of motion in the normal modes is presented and the general

solution for a single mode is shown.

To keep the derivation general, we here take up the

notation introduced in Section IV with the difference that now

|u〉 (t) and |f 〉 (t) depend on time. The full, coupled equation

of motion for the overdamped dynamics of the system can be

written as

C |u̇〉 (t) +H |u〉 (t) = |f 〉 (t), (19)

where the dot represents time differentiation, the matrix C
contains the (viscous) friction coefficients, and we have used

the linearized version of the gradient H |u〉 as in Eq. (8).

Here, for simplicity and as a first step, we consider the case

of mesoscopically isotropic building blocks under negligible

long-ranged dynamic coupling, i.e., C = cI, with I the D × D
identity matrix and c the viscous friction coefficient for one

isotropic particle.

As a consequence, the matrices C and H commute and

can be simultaneously diagonalized, i.e., they have a com-

mon base of eigenvectors, namely the |vn〉 in Eq. (10).

Then, using the normal modes, Eq. (19) of D variables can

be decoupled into D independent single-variable equations

cu̇n(t) + λnun(t) = fn(t), (20)

with n = 1 . . . D. If the external force |f 〉 (t) is periodic,

i.e., |f 〉 (t) = 

f 0
�

exp (iωt), its projections onto the Hessian

eigenvectors |vn〉 will be equally periodic,

fn(t) = f 0
n exp (iωt) , (21)

with f 0
n =

�
f 0|vn�. Thus, the solution un(t) of Eq. (20) after all

transients have decayed must be periodic as well, i.e.,

un(t) = u0
n exp (iωt) . (22)

Substituting the last equations into Eq. (20), we obtain

u0
n = f 0

n/κn(ω) (23)

with

κn(ω) = λn + icω

= eiδn(ω)λn
√

1 + τn2ω2, (24)

where δn(ω) = arctan (τnω) .
In these expressions we introduced by τn = c/λn the relaxation

time and by 1/κn(ω) the dynamic linear response function of

the nth mode.

As described above, we focus on the overdamped

dynamics and do not include inertial terms in Eq. (19). If

an inertial term had been considered, it would have resulted

in a (λn − m̃ω2)2 term inside the square root of Eq. (24), with

m̃ the mass of one particle. Such a contribution would have

showed up as a resonance frequency ω̃n =
√
λn/m̃ for the n-th

mode. As a consequence, when the frequency of the driving

forceω coincides with ω̃n, large displacements can be induced

by small external perturbations. Such an effect would result

in a significant drop of the elastic moduli at frequencies close
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to the resonances of those modes that contribute most to the

linear response. This behavior, however, is not obvious from

experimental reports,85–88 thus supporting the overdamped

approach. Eq. (24) implies that the displacement un(t), i.e.,

the response, chases the driving force fn(t) with identical

frequency. However, because of viscous friction, it follows

with a phase lag δn(ω), which vanishes in the case of

frictionless motion. Such a phase lag implies an imaginary

component of κn(ω) corresponding to a loss component of the

elastic moduli, see below.

VII. DYNAMIC ELASTIC MODULI

We aim at extending the normal modes treatment that we

carried out for Eq. (9) and transfer it to the dynamic situation

described by Eq. (19). The final goal will be to generalize

Eq. (18) for the macroscopic overall elastic moduli to the case

of periodically oscillating external stresses and thus obtain

the dynamic elastic macroscopic moduli. We here consider

the case of a Young modulus E(ω) = Eαα(ω) for direction

α ∈ {x, y, z}. The discussion of a shear modulus Gαβ(ω) is

entirely analogous, provided that the protocol prescribed in

Section V B is followed.

We now start with a macroscopic, periodic, and single-

frequency stress

σ(t) = σ0eiωt (25)

applied to the sample, with σ0 a real amplitude. The resulting

macroscopic strain ε(t) varies with the same frequency. Thus

we write

ε(t) = ε0(ω)eiωt, (26)

where ε0(ω) is, in general, a complex amplitude. Using

these expressions in the single-frequency case, the frequency-

dependent dynamic modulus E(ω) follows via

σ(t) = E(ω)ε(t) ⇔ E(ω) = σ0

ε0(ω) . (27)

Thus, E(ω) = E ′(ω) + iE ′′(ω) has an imaginary part whenever

σ(t) and ε(t) are not completely in phase and can be divided

into storage (E ′) and loss (E ′′) components.

Now we take up again the formalism of Sections IV

and V. On the mesoscopic level—see Section VI—the time-

dependent response


u0
�

exp (iωt) of the system, after all

transients have decayed, is related to a small driving force

f 0
�

exp (iωt) by



u0
�

eiωt =

D∑
n=1

u0
n |vn〉 eiωt =

D∑
n=1

f 0
n

κn(ω) |vn〉 eiωt, (28)

where, again, D is the number of degrees of freedom,

f 0
n =

�
f 0|vn�, u0

n =
�
u0|vn�, and we used Eq. (11).

The macroscopic dynamic stress is given by σ(t)
= F exp(iωt)/S, with S the boundary surface area and F the

macroscopic force acting on it. Moreover, the macroscopic

strain is Δ/L with Δ the change in separation of the

macroscopic sample boundaries and L the absolute distance

between them. The displacementΔ is measured in the direction

of the applied force inducing it. Therefore, and since |fu〉

represents the mesoscopic direction of a force of magnitude

unity (F = 1, see Section V B), we define Δ = 〈fu |u〉 as a

measure of the resulting displacement. We recall here that


f 0
�

was constructed to apply only on the boundary, so 〈fu |u〉 really

extracts the displacement of the boundaries. Consequently, we

write Eq. (27) on the mesoscopic level as

Feiωt

S
= E(ω)

�
fu |u0

�
eiωt

L
. (29)

Using Eq. (28), as well as f 0
n = F f un and f un = 〈fu |vn〉 (see

Section V B), the dynamic modulus follows as

E(ω) = L
S

⎡⎢⎢⎢⎢⎣
D∑
n=1

f un
2

κn(ω)
⎤⎥⎥⎥⎥⎦
−1

(30)

which does not depend on the macroscopic force intensity

F and in the case ω = 0 recovers Eq. (18). Since κn(ω) is a

complex number, E(ω) is complex as well and we can separate

it into storage and loss components E(ω) = E ′(ω) + iE ′′(ω).
We remark that in the static case we always find E ′′(ω = 0) = 0

by definition [see Eq. (24)].

On the macroscopic level, Eq. (30) is connected to the

Kelvin-Voigt model, which correctly describes the properties

of permanently crosslinked polymers on long times scales,

i.e., small ω. This is clear in a limit case when a single

mode, e.g., n = 1, has a relaxation time, e.g., τ1 = c/λ1,

much longer than the other modes. Then, the long-frequency

dynamics is dominated by this mode which gives, in fact,

the largest contribution to the sum in Eq. (30). Eventually, in

this case one would find E(ω) ∝ κ1(ω) = λ1 + iωc, which is

precisely the form of the dynamic modulus in the Kelvin-Voigt

model.89,90

In the following, we will apply the present approach to

different particle distributions, addressing the dynamic elastic

moduli for varying ω and m. Although we will display the

behavior of the dynamic moduli up to relatively large values of

ω, one should keep in mind our focus on overdamped motion.

At maximum our approach is meaningful up to a frequency

ωmax = λmax/c, where λmax is the largest eigenvalue

ofH .

The limit becomes visible from calculating the spectrum,

i.e., the density of states g(ω).91 It is defined by

g(ω) = 1

D

D∑
n=1

δ

(
ω − λn

c

)
, (31)

with δ the Dirac delta function. To determine it from our

numerical calculations, we replace the Dirac delta function

by a narrow normalized Gaussian. We chose the Gaussians as

narrow as possible to achieve a smooth representation of the

density of states.

We always find g(ω) to drop significantly beyond a

maximum value ωmax. The latter is of the order of a few

k/cl0, see Fig. 4. Consequently, and because of our focus on

the overdamped regime, it is not sensible to take into account

the behavior for ω � 10k/cl0.

First, the exemplary case of a simple cubic lattice will be

studied. After that, we consider an fcc particle arrangement,

before we finally move on to the case of disordered and more

realistic particle arrangements. For simplicity, we will always
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FIG. 4. Density of states g (ω) at vanishing m of a cubic lattice with springs

up to second-nearest neighbors (see Section VIII), an fcc lattice with only

nearest-neighbor springs taken into account (see Section IX), and a disor-

dered distribution (see Section X) made of 4913, 6084, and 6084 particles,

respectively. The density of states is shown from ω = 0 to the highest ωmax

obtained from the Hamiltonian spectrum, which is usually �10 k/cl0. The

standard deviation of the narrow Gaussians used to approximate the Dirac

deltas appearing in Eq. (31) is chosen as 0.005ωmax.

keep the magnetic moment m oriented in the z-direction.

We measure the Young moduli in the perpendicular (Exx

and Ey y) and parallel (Ezz) directions. Likewise, the shear

moduli will be calculated in the three possible orientations

depicted in Fig. 5: (a) shear corresponding to Gxy does not

directly modify distances along the m-direction; (b) while

Gxz is measured the macroscopic shear displacements are

oriented along m; and (c) the shear plane contains m, but

the macroscopic shear displacements are perpendicular to m
when Gz y is determined. Moreover, we here have Gyx = Gxy,

Gxz = Gyz, and Gzx = Gz y.

FIG. 5. Illustration of the three principal shear geometries. m is rigidly

oriented in the z-direction. Shear forces can be applied to different boundaries

and in different directions, giving origin to three main geometries (top to

bottom): (a) for Gx y forces are perpendicular to m, but the driven boundary

planes contain m; (b) for Gxz both shear forces and driven boundary planes

are parallel to the m direction; (c) for Gz y the driven boundary planes and

shear forces are perpendicular to m. We here define stresses directly via the

forces acting on the indicated planes along the desired directions.

VIII. CUBIC LATTICE

As a first prototype, we consider the simple exemplary

case of a 3D cubic lattice with N = 3375 particles. Magnetic

particles on the lattice are linked by springs up to second-

nearest neighbors. Corresponding springs along the diagonals

of the faces of the unit cells are necessary to avoid unphysical

soft-shear modes. The boundaries of the system are simply

identified as the outermost layers of particles in the respective

directions. As explained in Section II, the lattice parameter

and the typical interparticle distance l0 follow from the number

density ρ. In the case of a simple cubic lattice structure, ρ is

given by one particle per unit cell.

Upon introducing a dipole magnetic moment in the

particles, the direct attraction between nearest neighbors

causes the system to shrink in the m-direction and expand

in the perpendicular directions (see Fig. 6). Technically, in our

numerical calculations, we gradually increased the magnetic

moment to the value under consideration, up to a maximum

magnitude of m = 0.1m0. In this regime, and despite the

overall deformation, the lattice maintains a cuboidlike shape.

The magnetic interactions are not as strong as to overcome

the elastic springs and the particles do not come into steric

contact.

A. Static moduli

We start by studying the static moduli E and G (i.e.,

the storage components E ′ and G′ of the dynamic moduli

calculated forω = 0) for increasing magnitude of the magnetic

moment m, see also Ref. 51. Magnetic interactions between

nearest neighbors are attractive in the z-direction and repulsive

in the x- and y-direction. These attractive and repulsive

FIG. 6. Deformation of an initially cubic lattice with springs between up

to second-nearest neighbors and N = 3375 when a magnetic moment of

m= 0.1m0̂z is gradually switched on. For illustrative purposes, only particles

on the front, top, and right faces are depicted. Shrinking is observed along

m, i.e., the z-direction, and dilation in the perpendicular directions. The inset

zooms in onto the deformation of the unit cell at the bottom left corner of the

sample.
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FIG. 7. Static moduli (a) Eαα(m)= E′αα(ω = 0,m) and (b) Gαβ(m)
=G′αβ(ω = 0,m) (α, β = x, y, z) of a cubic lattice with N = 3375 for increas-

ing magnetic moment intensity m (m oriented along the z-direction). (a) The

Young moduli in the directions perpendicular to m are increased by increasing

magnetic moments, whereas in the m-direction the modulus is decreased.

Black dashed lines in panels (a) and (c) represent the trends in Eq. (32)

shifted vertically to compensate for finite-size and boundary effects and to

allow for a better comparison of the m-dependence. (b) The shear modulus

Gxz obtained by shear displacements along the m-direction decreases for

increasing m, whereas Gx y and Gz y reveal an increasing behavior. (c, d) All

elastic moduli as functions of m show quadratic behavior to lowest order, as

required by the necessary m→−m symmetry.

magnetic interactions with correspondingly positive and

negative second derivatives with respect to nearest-neighbor

distances induce decrease and increase, respectively, of the

Young moduli.55 This trend is observed in Fig. 7(a). At

vanishing magnetic moment all Young moduli measured along

the different directions have the same value, as expected by the

cubic lattice symmetry. Then, as m is slowly increased, this

symmetry is broken and Ezz(m) decreases, whereas Exx(m)
and Ey y(m) increase identically, as expected by the unbroken

x ↔ y symmetry. Moreover, all moduli show to lowest order

in m a quadratic behavior, as demanded by the necessary

m→ −m symmetry,59 see Fig. 7(c).

More explicitly, the trends of the static Young moduli

in the simple cubic case can be explained by considering

interactions between neighbors on a regular lattice, see

Appendix E. When we focus on small magnetic interactions,

i.e., m � m0, the dipole–dipole forces are much weaker than

the restoring elastic ones and we can assume they leave the

particle positions unaltered.

Considering contributions up to neighbors as distant as

10l0, we obtain, see Appendix E, the following trends for the

Young moduli:

Exx(m)
k
/
l0

2
=

Ey y(m)
k
/
l0

2
≈ 9 + 4

√
2

7
+ 15.61(m/m0)2,

Ezz(m)
k
/
l0

2
≈ 9 + 4

√
2

7
− 31.21(m/m0)2.

(32)

The trends provided by these expressions are in good

agreement with our numerical results, see Fig. 7(a). They

describe, respectively, increasing or decreasing moduli in the

directions perpendicular or parallel to m. Moreover, Eq. (32)

suggests a stronger dependence of Ezz on m compared to Exx

and Ey y. This agrees with our numerical results, see Figs. 7(a)

and 7(c). Furthermore, it confirms the major role played by

the second derivatives of neighbor interactions in determining

the trends for Eαα(m) of regular distributions, as pointed out

in Ref. 55.

In our numerical calculations we obtain different

behaviors for the different shear moduli as functions of m.

However, at vanishing magnetic moment they all assume the

same value, as expected by lattice symmetry, see Fig. 7(b).

Furthermore, as Young’s moduli, they are all, to lowest order,

quadratic functions of m, as required by symmetry when

m is flipped into −m, see Fig. 7(d). The shear modulus

Gz y(m) shows an increasing behavior for increasing m. It is,

in fact, the only depicted shear deformation that breaks the

spatial mutual alignment of the moments in the z-direction.

This is hindered by increasing m, in agreement with an

increasing modulus Gz y(m). The shear deformation related

to Gxz(m), instead, induces the dipoles to move in parallel

to their alignment direction. Nearest neighbors connected by

l0̂x lie on a maximum of the dipole–dipole interaction, see

Eq. (4). Therefore, increasing m facilitates the displacement

induced byσxz, in agreement with a decreasing shear modulus

Gxz(m), as found in Fig. 7(b). Last, we find an increasing trend

for the Gxy(m) shear modulus, slightly weaker compared to

the other two examined moduli, as depicted in Figs. 7(b)

and 7(d).

B. Dynamic moduli

We now focus on the dynamic properties, which are

the central aim of the present work. As a general trend, we

always find the storage moduli to tend to a finite value

for large ω, see Fig. 8. Yet, as noted before, it is not

reasonable to consider the behavior for frequencies larger

than 10k/cl0. Conversely, the loss moduli as functions of ω
show a linear increase (see Appendix F). This behavior we

attribute to our model focusing on overdamped motion. In

fact, under oscillatory motion, the damping term in Eq. (19),

which is the origin of the loss modulus, increases with

frequency ω. This conforms with a macroscopic Kelvin-

Voigt model89,90 which predicts an imaginary component

of the dynamic moduli linearly increasing with frequency.
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FIG. 8. Dynamic elastic moduli (a) Eαα(ω) and (b) Gαβ(ω) (α, β = x, y, z)

of a cubic lattice with N = 3375 for vanishing magnetic moment (solid

line, ©), and m= 0.1m0̂z (dashed lines, �, �, �). Filled and unfilled markers

correspond to storage (E′αα, G′αβ) and loss (E′′αα, G′′αβ) components, re-

spectively. Insets in panels (a) and (b) zoom into the storage parts (a) E′αα(ω)
and (b) G′αβ(ω) at small ω for better resolution (see also Fig. 7).

Similarly, experimental measurements of the loss moduli in

polymeric materials81,85,87,88 are compatible with a Kelvin-

Voigt model [i.e., constant storage part and linearly increasing

loss part of Eαα(ω) and Gαβ(ω)] in the low-frequency

regime. Furthermore, in the limit ω → 0, we always find

vanishing loss moduli and the storage component to recover

the corresponding static elastic modulus, see Eqs. (18), (24),

and (30).

The storage Young moduli E ′αα(ω) (α = x, y, z) in

Fig. 8(a)—here calculated for m = 0.1m0̂z—show at all

frequencies the trends as described in the static case,

see Fig. 7. The amount of variation with respect to the

m = 0 configuration, however, seems to be larger at larger

frequencies. Furthermore, E ′xx(ω) and E ′y y(ω) show identical

behavior as functions of ω, as required by the symmetry

of this geometry under switching x ↔ y . Likewise, at

low ω, the loss moduli E ′′zz(ω) and E ′′xx, y y(ω) show a

decreasing and increasing trend, respectively, when the

magnetic moment is switched on and increased. Furthermore,

for higher ω, all the loss components linearly increase

with ω with identical coefficients, see also Fig. 17(b) in

Appendix F.

The storage shear moduli G′αβ(ω) at low frequencies

present the same trends of increase and decrease as in the

static case, see Figs. 7(b) and 8(b). We remark that at high

frequencies (beyond 10k/cl0), while G′xy(ω) and G′xz(ω)
show the same and enhanced trend as in the static case,

G′z y(ω) now decreases when m is increased. This graphically

results in a crossing between the curves for G′αβ(ω,m = 0)
and G′z y(ω,m = 0.1m0). The loss shear moduli G′′αβ(ω),
instead, display the same increasing or decreasing trends

as the corresponding static Gαβ(m = 0) both at low and high

frequencies (see also Appendix F).

IX. FACE-CENTERED CUBIC (FCC) LATTICE

We now turn our focus onto the exemplary case of a

face-centered cubic (fcc) lattice. Later in Section X, we

will generate disordered samples by randomizing an initially

fcc particle arrangement. In this setup we introduce springs

connecting nearest neighbors only. This is enough to obtain a

particle distribution stable under both stretching and shearing.

The boundaries of the system are chosen as the outermost

layers of particles in a given direction. The typical interparticle

distance l0 follows from the number density ρ, as explained

in Section II, which for the fcc lattice is 4 particles per unit

cell.

When magnetic moments are introduced we here observe

an elongation of the system in the m-direction and shrinking in

the perpendicular directions, see Fig. 9. The nearest neighbors

on the fcc lattice are located along the x̂ + ŷ, x̂ + ẑ, and ŷ + ẑ
directions, i.e., at an angle of π/4 with respect to the Cartesian

axes. When the system elongates in the z-direction the angles

between the nearest-neighbor directions and m reduce, thus

lowering the magnetic energy Um.

FIG. 9. Deformation of an fcc lattice with springs between nearest neighbors

and N = 3430, when a magnetic moment of m= 0.1m0̂z is switched on.

For illustrative purposes, only the first two particle layers on the front, top,

and right faces are depicted. Elongation is observed in the m-direction and

contraction in the perpendicular ones. Inset zooms in onto the displacements

of the particles at the bottom left corner of the sample.
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A. Static moduli

First, we present the behavior of the static moduli as

functions of increasing magnetic moment, see also Ref. 51.

We always find a monotonic, smooth behavior for increasing

m [see Figs. 10(a) and 10(b)]. In fact, as shown in Figs. 10(c)

and 10(d), the elastic moduli as functions of m are to

lowest order quadratic functions, in accord with the m→ −m
symmetry. Again, and as required by lattice symmetry, at

m = 0 all Young moduli and the shear moduli in the examined

directions coincide, see Figs. 10(a) and 10(b).

Next, we estimate the role played by the relative positions

of neighboring particles for the behavior of the Young moduli.

We consider the case of a regular fcc lattice and take into

account contributions to the Young moduli to lowest order

in m, as explained in Appendix E. Considering terms up to

neighbors as far as 10l0 in Eq. (E3), we obtain

FIG. 10. Static moduli (a) Eαα(m)= E′αα(ω = 0,m) and (b) Gαβ(m)
=G′αβ(ω = 0,m) (α, β = x, y, z) of an fcc lattice with N = 3430 for increas-

ing magnetic moment intensity m. m is oriented along the z-direction. The

Young moduli for stretching perpendicular to m are reduced by increasing

magnetic moments, whereas along the m-direction the modulus is increased.

Black dashed lines in panels (a) and (c) represent the trends in Eq. (33) shifted

vertically to compensate for finite-size and boundary effects and to allow for

a better comparison of the m-dependence. The shear modulus Gx y obtained

by applying shear in the xy plane perpendicular to m increases for increasing

m, whereas Gxz and Gz y reveal a decreasing behavior. (c), (d) All elastic

moduli as functions of m show a quadratic behavior to lowest order, in accord

with the m→−m symmetry and as depicted by the log-log scale plots.

Exx(m)
k
/
l0

2
=

Ey y(m)
k
/
l0

2
≈ 27/6

3
− 13.02(m/m0)2,

Ezz(m)
k
/
l0

2
≈ 27/6

3
+ 28.05(m/m0)2.

(33)

Comparison with the behavior of the Young’s moduli resulting

from our numerical calculations, see Fig. 10(a), leads to a good

qualitative agreement. The modulus in the m-direction Ezz(m)
increases with increasing m, whereas in the perpendicular

directions Exx(m) and Ey y(m) decrease with m. Thus, the

fcc arrangement shows a completely opposite behavior

compared to the simple cubic case, see Section VIII A.

Moreover, Eq. (33) indicates the Ezz(m) modulus to have a

stronger dependence on m compared to Exx(m) and Ey y(m),
as also found in our numerical results and shown in Figs. 10(a)

and 10(c).

Similarly, the shear moduli are influenced by m in

different ways. Here we find the shear modulus Gxy(m)
to increase and Gxz(m) to decrease with increasing m,

analogously to what we observed in the simple cubic case,

see Section VIII A. Contrarily to the simple cubic case, the

shear modulus referring to displacements perpendicular to m,

Gz y(m), shows a decreasing trend when the magnetic moments

increase. Moreover, Gz y(m) displays a weaker dependence on

m compared to the remaining two shear moduli, as depicted

in Fig. 10(d).

B. Dynamic moduli

Finally, we examine the behaviors of the dynamic elastic

moduli for various frequencies ω and magnetic moment

intensities m. The storage dynamic Young moduli E ′αα
(α = x, y, z) at all frequencies follow the same behavior as

described in the static case (see Fig. 10). In the direction

parallel to m, E ′zz increases for increasing m, whereas E ′xx and

E ′y y decrease for the perpendicular directions, see Fig. 11(a)

and its inset for a zoom onto the low-ω behavior. As shown

in Appendix F, the loss components E ′′αα partially exhibit

opposite trends compared to their storage counterparts (see

Fig. 18 for a detailed plot). In fact, at low frequencies, the loss

modulus for the m direction, E ′′zz, decreases with increasing

m, whereas E ′′xx and E ′′y y for the two perpendicular directions

increase. At higher frequencies, however, and as in the cubic

lattice case, all the loss moduli E ′′αα recover the behavior of

their storage counterparts and show an identical dependence

on ω [see Fig. 11(a) and Fig. 18 in Appendix F].

The storage dynamic shear moduli G′αβ (α, β = x, y, z)

are displayed in Fig. 11(b). Here, at low-ω values the changes

in the shear moduli for the different geometries reproduce

the trends shown in Fig. 10, see the inset of Fig. 11(b).

However, when considering the behavior at higher ω, G′xy
turns from increasing to decreasing with m, while G′z y turns

from decreasing to increasing when compared with the shear

modulus at m = 0. Although we already mentioned that only

the behavior forω � 10k/cl0 should be interpreted, these data

suggest the possibility that some dynamic shear moduli could

swap their tendency of increasing or decreasing with m to

decreasing or increasing, respectively. Contrarily, the Young
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FIG. 11. Dynamic elastic moduli (a) Eαα(ω) and (b) Gαβ(ω) (α, β
= x, y, z) of an fcc lattice with N = 3430 for vanishing magnetic moment

(solid line, ©), and m= 0.1m0̂z (dashed lines, �, �, �). Filled and unfilled

markers correspond to storage (E′, G′) and loss (E′′, G′′) components, re-

spectively. Insets in panels (a) and (b) zoom onto the storage parts (a) E′αα(ω)
and (b) G′αβ(ω) at small ω to better resolve the different curves (see also

Fig. 10).

moduli consistently show a monotonic behavior as functions

of both ω and m. Furthermore, at low ω, the loss shear

moduli G′′αβ exhibit an opposite behavior when compared

with their storage complements. For shear deformations in

the plane perpendicular to m, G′′xy decreases with increasing

magnetic moment, whereas the other two moduli G′′xz and

G′′z y are increased by increasing m, see also Appendix F,

Fig. 18.

X. 3D DISORDERED SAMPLES

A. Numerical generation

We start from a regular three-dimensional fcc lattice.

Having a well defined density ρ and neighbor structure, this

lattice allows us to define the average interparticle distance

l0 as described in Section IX. Then we introduce disorder in

the lattice by randomly displacing each particle by 0.5l0 in

a stochastic direction. After that, we set the elastic springs

between nearest neighbors.

In the randomization step, we take care to generate an

initially stable disordered system so that magnetic interactions

FIG. 12. Example deformation of a randomized particle distribution (N

= 1688) of initially cubelike shape (gray particles) when a magnetic moment

of m=mẑ is switched on. Panels (a), (b), (c), and (d) show the equilibrated

particle distribution (black) as the magnetic moment intensity is gradually

increased to m = 0.058m0, m = 0.06m0, m = 0.062m0, and m = 0.064m0,

respectively. Panel (c) represents the onset of chain formation in the m-

direction, see Sections X B and X D.

do not immediately overcome the elastic spring interactions

when the magnetic moments are switched on.54,68 In other

words, the formation of collapsed clusters where the particles

touch each other in a stuck configuration shall be avoided

for low strength of the magnetic interactions. For this

purpose, we impose that in the randomized configuration

for m = 0 no couples of particles are closer than 0.5l0.

Boundary particles are identified as the outermost layers

of the initial fcc lattice in each direction. To help maintain

an overall cubelike shape, we move boundary particles by

half the amount of other particles. An example of the

resulting initial distribution is given by the gray particles in

Fig. 12.

Thus, we generate a disordered system of macroscopic

cubelike shape with N non-overlapping magnetic particles.

In the following we set N = 1688. As described, in the

initial configuration, the springs are set before the magnetic

interactions are switched on. Then, we gradually increase the

magnitude of the magnetic moments and at each step find

the minimum energy configuration, see Section III. When the

equilibrium state for a given m is reached, we obtain the

Young and shear moduli E and G as functions of both m and

ω, using the methods described in Sections V C and VII.

As the magnitude m of the magnetic moments increases,

we can principally distinguish between two regimes. On the

one hand, the behavior for small m is controlled by magnetic

Um and elastic Uel energies, see Fig. 13. The deformation is

relatively small and the elastic moduli are, to lowest order,

quadratic functions of m, as expected by the necessary m→
−m symmetry. On the other hand, when attractive magnetic

interactions become as strong as to overcome linear spring

repulsion, steric interactions come into play (see Fig. 13).

Then, formation of chains is observed, as well as significant

changes in the system size (see Fig. 12). Furthermore, the

close steric contact between particles generates extra stiffness,

which is reflected by a significant change in the elastic

moduli. This behavior reflects a “hardening transition” similar
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FIG. 13. (a) Equilibrium energies of the disordered fcc system shown in

Fig. 12 for increasing magnitude of the magnetic moment m. (b) Two

regimes are identified in a logarithmic plot. Up to m ∼ 0.05m0 the total

energy U mostly comprises elastic U el and magnetic Um contributions. For

m � 0.05m0 instead, the steric interaction energy U s becomes higher than

the elastic energy U el. This signals the subsequent formation of chains. The

pronounced step at 0.06m0 �m � 0.064m0 is connected to chain formation.

to the situation described in Ref. 54 for one-dimensional

systems.

B. Static moduli

First, we focus on the static elastic moduli of the

randomized system for increasing magnetic moment m. To

extract a general trend we realized 80 different systems

following the protocol as described in Section X A. Then

we obtain our results by averaging over the moduli for

all different randomized realizations, also calculating the

standard deviations. The resulting static moduli are depicted

in Fig. 14. To lowest order in m and up to approximately

m = 0.06m0, the Young moduli of the system [see inset of

Fig. 14(a)] show a behavior similar to the fcc case [compare

with Fig. 10(a)]: increasing 〈Ezz〉 for imposed deformations

in the m direction and decreasing 〈Exx〉 and 〈Ey y〉 for the

perpendicular cases. Moreover, in this regime the static Young

moduli 〈Eαα(m)〉 (α = x, y, z) show a quadratic behavior

as functions of m in accord with the m→ −m symmetry,

see Fig. 14(c). Similarly, the static shear moduli 〈Gαβ(m)〉
(α, β = x, y, z) in this regime show quadratic behavior, see

Fig. 14(d), while the trends for 〈Gαβ(m)〉 vary from those of

the regular fcc lattice [compare the inset of Fig. 14(b) with

Fig. 10(b)].

This behavior changes dramatically for m � 0.06m0,

where magnetic interactions are as strong as to cause the

particles to come into steric contact and form chains in the

m-direction. Here we observe a significant increase in all

elastic moduli [see Figs. 14(a) and 14(b)]. Still, Young’s

modulus for imposed deformations in the m-direction, 〈Ezz〉,
shows a much larger increase compared to 〈Exx〉 and 〈Ey y〉,
in agreement with experimental observations on anisotropic

systems,38 see also the case of bi-axial tension.92 〈Exx〉
and 〈Ey y〉 feature an identical behavior within the standard

deviations, as expected by the largely unbroken isotropy of

FIG. 14. Static moduli (a) 〈Eαα(m)〉= 〈E′αα(ω = 0,m)〉 and (b) 〈Gαβ(m)〉
= 〈G′αβ(ω = 0,m)〉 (α, β = x, y, z) of a disordered fcc lattice with N = 1688

for increasing m = |m|, with m oriented in the z-direction. Statistics are col-

lected over 80 differently randomized samples. Data points and bars represent

the resulting averages and standard deviations, respectively. (c), (d) All elastic

moduli as functions of m show a quadratic behavior to lowest order for

small m, in accord with the m→−m symmetry. For illustrative purposes

we have slightly shifted the bars for different data sets horizontally and

reduced the number of points shown in panels (c) and (d) to better distinguish

between the individual bars and data points. Dips in panels (c) and (d) occur

when 〈Eαα(m)〉≈ 〈Eαα(m = 0)〉 or 〈Gαβ(m)〉≈ 〈Gαβ(m = 0)〉. Then, the

logarithm of the absolute deviation from the value for m = 0 diverges to −∞.

The elastic moduli themselves, however, show smooth behavior, as displayed

in panels (a) and (b) and the respective insets.

the systems within the x y-plane. Likewise, the shear moduli

show an increase for all investigated geometries. In a purely

affine deformation of chains perfectly aligned along m, the

z y shear geometry would be the only one displayed that leads

to distortions of the chains. Therefore it is conceivable that

〈Gz y〉 grows larger than 〈Gxy〉 and 〈Gxz〉, although the size

of the standard deviations does not allow to draw a conclusive

result.

Finally, to avoid confusion, we stress that the dips in

Figs. 14(c) and 14(d) simply mean that the elastic moduli

for m � 0 tend to the same values as those for m = 0. Since

in Figs. 14(c) and 14(d) the deviations of the elastic moduli

from their values for m = 0 are plotted on a logarithmic scale,

the dips are not directly related to a mechanical instability

resulting from vanishing elastic moduli. In fact, as shown in
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FIG. 15. Dynamic elastic moduli (a) 〈Eαα(ω)〉 and (b) 〈Gαβ(ω)〉 (α, β
= x, y, z) of randomized fcc lattices with N = 1688 for vanishing magnetic

moment (solid line, ©), and m= 0.056m0̂z (dashed lines, �, �, �). Data points

and standard deviations are obtained by averaging over 80 differently random-

ized samples. Filled and unfilled markers correspond to storage (E′, G′) and

loss (E′′, G′′) components, respectively. Insets zoom into the storage parts

(a) 〈E′αα(ω)〉 and (b) 〈G′αβ(ω)〉 at small ω to better resolve the different

curves. For illustrative purposes we have slightly shifted the bars for different

data sets horizontally to better distinguish the individual bars.

Figs. 14(a) and 14(b), for a given value of m the elastic moduli

always remain positive.

C. Dynamic moduli, m � 0.06m0

We now move our attention to the dynamic properties of

our disordered systems. Again, we have collected statistics

over 80 different realizations of our randomizing process. The

resulting averages and standard deviations are represented as

data points and bars in the figures.

First we examine the dynamic moduli for the magnitude

of the magnetic moments below the onset of significant chain

formation, i.e., m � 0.06m0. There, the storage parts 〈E ′αα(ω)〉
of the dynamic Young moduli for increasing m show the

same trends for the different geometries as the static moduli

[see Fig. 15(a) and compare with the inset of Fig. 14(a)].

Conversely, the loss parts 〈E ′′αα(ω)〉 of the Young moduli

feature a trend of increase with increasing m in all cases [see

Appendix F, Fig. 19(a)].

Similarly to the Young moduli, the storage parts 〈G′αβ(ω)〉
of the dynamic shear moduli approximately follow their

static counterparts at low ω [see the inset of Fig. 15(b) and

compare it to the inset of Fig. 14(b)]. However, with increasing

frequencies ω and upon switching m from m = 0 to m > 0,

〈G′z y(ω)〉 switches from a slight decrease to a significant

increase with respect to the value at m = 0, see Fig. 15(b).

This results in a crossing between the curves corresponding to

〈G′z y(ω,m = 0)〉 and 〈G′z y(ω,m > 0)〉. Instead, the remaining

two shear moduli, 〈G′xy(ω)〉, and 〈G′xz(ω)〉 always show

a decrease. Analogously to 〈E ′′αα(ω)〉, the loss components

〈G′′αβ(ω)〉 are observed to increase at all frequencies when

switching on m, independently of the chosen geometry [see

Appendix F, Fig. 19(b)].

D. Dynamic moduli, m � 0.06m0

In the following, we consider the dynamic moduli of

the system at magnitudes m of the magnetic moment at

the onset of chain formation [see Fig. 12(c)]. Then steric

interactions play a major role in the total interaction energy

FIG. 16. Storage dynamic elastic moduli (a) 〈E′αα(ω)〉 and (b) 〈G′αβ(ω)〉
(α, β = x, y, z) of randomized fcc lattices with N = 1688 for vanishing mag-

netic moment (solid line, ©), and m= 0.064m0̂z (dashed lines, �, �, �). We

plot on a double logarithmic scale the absolute deviation from the respective

average static modulus at m = 0. Data points and standard deviations are ob-

tained from statistics over 80 differently randomized samples. For illustrative

purposes we have slightly shifted the bars for different data sets horizontally

to better distinguish the individual bars. Insets zoom onto the storage parts

(a) 〈E′αα(ω)〉 and (b) 〈G′αβ(ω)〉 at large ω to better resolve the different

curves. Small values of the curves for the m = 0 cases at low ω indicate

smooth convergence to the respective static moduli in Fig. 14.
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U (see Fig. 13). To better illustrate the behavior of the

storage dynamic moduli in this regime it is convenient to

plot the deviation from the respective static value at m = 0,

as shown in Fig. 16 (for brevity, although deviations are

plotted, the curves are still labeled by 〈E ′αα〉 and 〈G′αβ〉).
Thus the diminishing behavior of the curves 〈E ′〉(m = 0) and

〈G′〉(m = 0) for decreasingω represents a smooth convergence

of the moduli to the values for ω = 0, similarly to the

results in Fig. 15. Experimentally, deviations as small as

0.01k/l2
0
− 0.1k/l2

0
should be accessible within rheometer

sensitivities.

The main difference between the small- and large-

m regimes is the qualitative change in 〈E ′αα(ω)〉 and

〈G′αβ(ω)〉 (α, β = x, y, z) for increasing magnetic moment.

For m � 0.06m0, and according to the different geometries,

we observed increase or decrease of the elastic moduli with

increasing m. Conversely, for m � 0.06m0 we observe all

elastic moduli to increase with increasing magnetic interaction

for all frequencies and geometries.

The storage Young’s modulus for deformations in the m-

direction 〈E ′zz(ω)〉 shows the most significant increase when

compared to 〈E ′xx(ω)〉 and 〈E ′y y(ω)〉. This trend continues

at large 6 [see inset of Fig. 16(a)]. In a similar fashion, the

large-ω behavior of the storage modulus 〈G′z y(ω)〉 for shear

deformations of the chains aligned along m [see inset of

Fig. 16(b)] suggests a larger increase than for 〈G′xz(ω)〉 and

〈G′xy(ω)〉. These overall trends of the dynamic moduli are

further enhanced and increased for even larger m.

The loss components of the dynamic moduli, both Young

and shear, show again an increase with increasing m over

all frequencies and geometries. Furthermore, the amount of

increase follows approximately the same trends as for the

corresponding storage components (see Appendix F, Fig. 20).

XI. CONCLUSIONS

We have described and applied a method to determine

the dynamic elastic moduli in discretized mesoscopic model

systems representing magnetic elastic composite materials.

More precisely, we have confined ourselves to particle-based

dipole-spring models54–59 to characterize the behavior of

magnetic gels and elastomers. The magnitudes of Young and

shear moduli were evaluated for different frequencies, particle

distributions, magnitudes and orientations of the magnetic

moments. We find the elastic moduli to lowest order to

increase or decrease with the magnitude of the magnetic

moment according to the particle distribution, the selected

orientation, and the selected frequency.

To summarize our results, we find that increasing

magnetic interactions tends to line up the particles in

the direction of the magnetic dipoles. This, in regular

lattices, can result in different effects according to the

considered structure. In general, however, we find the Young

modulus in the directions of elongation to increase51 and,

vice versa, to decrease in the directions of shrinking. For

randomized particle arrangements we find a “hardened”

regime, where dipole–dipole attractions overcome the elastic

spring interactions and the elastic moduli significantly

increase. Here, the increase of the storage part of the Young

modulus in the direction parallel to the magnetic moments is

significantly larger compared to the perpendicular directions,

in agreement with experiments reported in the literature.38,92

Furthermore, for all distributions (except for the randomized

arrangements at high m) we find the storage part of some of the

investigated shear moduli to change tendency from increase

to decrease with m or vice versa, for increasing frequency

ω. The loss component of the dynamic moduli follows an

overall linear behavior for all cases at low and high ω with

a crossover regime in between. In conclusion, the behavior

of the dynamic elastic moduli with varying m and ω strongly

depends on the spatial arrangement of the magnetic particles.

The angles between the magnetic moments and the directions

to find the nearest neighbors are crucial to determine whether,

for a selected direction, the system shrinks or elongates when

switching on magnetic interactions and whether the elastic

moduli increase or decrease.

Our systems were of cubelike shape and finite size. On

two opposing boundaries, we imposed prescribed force fields

leading to an overall strain response of the whole system. The

other boundaries remained unconstrained. Such a geometry is

characteristic for experimental investigations using plate–plate

rheometers. Assuming particle sizes in the micrometer range,

our systems correspond to samples of several ten micrometers

in thickness. Such experimental samples can be analyzed

using piezorheometric devices.85,93 In fact, for anisotropic

magnetic gels, corresponding piezorheometric measurements

were performed already more than a decade ago.81 It will be

interesting to compare our approach in more detail with such

experimental investigations in the future.

It is important to model and understand the dynamic

response of the materials at different frequencies in the view of

many practical applications, from soft actuators24 to vibration

absorbers.25,26 Our method explicitly connects the relaxational

modes of the system on the mesoscopic level56 with the

macroscopic dynamic response.47,48,50,94 Our approach allows

to capture the internal rearrangements of the system under an

externally applied stress or magnetic field and to link it to the

consequences for the overall system behavior. Furthermore,

our technique can be applied to any particle distribution,

particularly also to those drawn from experimental analysis of

real samples.55,56

Generalizations to systems composed of anisotropic

particles,95 as well as including rotational degrees of

freedom36,54 and possibly induced-dipole effects68,69 could

be added to the present framework in subsequent steps. Apart

from that, the mesoscopically based dynamic investigations

could be extended to more refined approaches, where the

elastic matrix between discretized particles of finite volume

is described in terms of continuum elasticity theory.34 As

indicated above, it will be possible to use experimental

data44,55,56,96 as input for the initial particle positions and

compare calculated dynamic moduli with their measured

counterparts, also as a function of magnetic interaction

strengths. In a combined effort between experiments and

theory, such an approach can serve to devise smarter and

new materials with optimized magnetic field dependence and

adjusted behavior at different frequencies.
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APPENDIX A: STERIC REPULSION PARAMETERS

The relatively soft steric repulsion between two particles

i and j at positions Ri and R j connected by the vector

ri j = R j − Ri is modeled by a generic potential v s(ri j).
Introducing the exponents p and q, the functional form of

this potential is given by

v s(r) = εs
[( r
σs

)−p
−
( r
σs

)−q
−
( rc
σs

)−p
+

( rc
σs

)−q

− cs(r − rc)2
2

]
(A1)

if r = |ri j | < rc and v s(r) = 0 otherwise. The parameter

rc = σs(p/q)1/(p−q) follows from the condition v s(rc)′ = 0,

whereas cs is chosen such that v s(rc)′′ = 0. We find

cs =
p−

2+q
p−q (p − q)q 2+p

p−q

(σs)2 . (A2)

APPENDIX B: DERIVATIVES OF PAIR
INTERACTION POTENTIALS

We consider pair interactions between particles i and

j, at positions Ri and R j, respectively, and connected by

ri j = R j − Ri. When the particles are linked by a harmonic

spring, their harmonic pair interaction potential is

vel
i j =

k
2�0i j

(
ri j − �0i j

)2
, (B1)

compare with Eq. (1). ri j = |ri j | and l0
i j is the unstrained length

of the spring. The gradient components (α = x, y, z) follow as

(we here drop the i j subscripts for simplicity)

∂vel

∂rα
=

k
�0

�
r − �0� rα

r
. (B2)

The derivatives appearing below in Eq. (C4) are then

∂2vel

∂rβ∂rα
=

k
�0

[
rαrβ

r2
+ (r − �0) δ

αβr2 − rαrβ

r3

]
. (B3)

Furthermore, the steric repulsion pair potential v s has been

addressed in detail in Appendix A. The gradient components

(α = x, y, z) of the steric pair potential [see Eq. (A1)] follow

for r < rc as

∂v s

∂rα
=
−εsrα

r

[ p
r

( r
σs

)−p
− q

r

( r
σs

)−q
+ cs (r − rc)

]
(B4)

and vanish for r ≥ rc. The derivatives below contributing to

Eq. (C4) are given by

∂2v s

∂rβ∂rα
= −εs

{(
δαβ

r2
− 2

rαrβ

r4

) [
p
( r
σs

)−p
− q
( r
σs

)−q]
− rαrβ

r4

[
p2
( r
σs

)−p
− q2
( r
σs

)−q]
+ cs

[
rαrβ

r2
+ (r − rc) δ

αβr2 − rαrβ

r3

]}
(B5)

for r < rc and vanish when r ≥ rc.

Finally, the magnetic pair interaction potential vm as in

Eq. (4) reads

vmi j =
m2r2

i j − 3(m · ri j)2
r5
i j

(B6)

in using reduced units. The gradient components (α = x, y, z)

of the previous expression read

∂vm

∂rα
= − 3

r5

[
m2rα + 2mα(m · r) − 5

rα(m · r)2
r2

]
. (B7)

The derivatives appearing below in Eq. (C4) are given by

∂2vm

∂rβ∂rα
= − 3

r5

[
m2δαβ − 5m2rαrβr−2

− 10(m · r)r−2
�
mαrβ + mβrα

�
+ 2mαmβ

− 5(m · r)2 r−2
�
δαβ − 7rαrβr−2

�]
. (B8)

APPENDIX C: HESSIAN MATRIX FOR PAIR
INTERACTION POTENTIALS

Here we repeat in detail the derivation of the Hessian for

a system interacting solely via pair potentials. That is, any

two particles i and j at positions Ri and R j interact through

a pair potential v depending only on the connecting vector

ri j = R j − Ri. Then we can write

U =
1

2

N∑
i, j=1
i� j

v(ri j), (C1)

where N is the total number of particles. Again, Ri is the

position of the i-th particle (i = 1 . . . N), ri j = R j − Ri, and

we denote by Rα
i (α = x, y, z) the α-component of Ri. For

reasons of symmetry, v(ri j) = v(r j i). The sum in Eq. (C1)

together with the prefactor 1
2

then runs over all different pairs

counting each of them only once. We abbreviate vi j = v(ri j).
The gradient components (α = x, y, z) of the energy U follow

as

∂U
∂Rα

k

=
1

2

N∑
i, j=1
i� j

∂vi j

∂Rα
k

=

N∑
j=1
j�k

∂vk j

∂Rα
k

= −
N∑
j=1
j�k

∂vk j

∂rα
k j

, (C2)

setting the force −∂U/∂Rk on the positional degrees of

freedom of the k-th particle.
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Next, we obtain the Hessian of the system as

∂2U

∂Rα
i ∂Rβ

k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2vik

∂Rα
i ∂Rβ

k

(i � k),
N∑
j=1
j�i

∂2vi j

∂Rα
i ∂Rβ

i

(i = k). (C3)

Thus, for pair interactions, the diagonal elements of the

Hessian contain the second derivatives of all pair interactions,

whereas the off-diagonal elements are given by a single term.

Since ri j = R j − Ri, the previous equation can be expressed

in terms of connecting vectors only,

∂2U

∂Rα
i ∂Rβ

k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂
2vik

∂rα
ik
∂rβ

ik

(i � k),
N∑
j=1
j�i

∂2vi j

∂rαi j∂r
β
i j

(i = k). (C4)

APPENDIX D: TORQUE-FREE FORCE FIELDS

Our scope is to describe the system behavior for

preselected specified orientations. However, both during the

search for the corresponding equilibrium state of the system

(see Section III) and the implementation of an external force

(see Section V B), the system may tend to perform a rigid

rotation. We therefore must exclude such rigid rotations. Here

we describe a simple method to redefine the generalized force

field (or likewise the gradient of the total energy) so that the

net overall torque on the system vanishes.

We consider the force field f acting on the particles at

positions Ri with components f i (i = 1, . . . ,N). The net torque

τ is given by

τ =
N∑
i=1

qi × f i, (D1)

where qi = Ri − Rc is the distance of the particle positions Ri

from the center of mass Rc =
1
N

∑
i Ri. To prevent, e.g., a

global rotation of the system around the z-axis, the z-

component of τ, i.e., τz, must vanish. We define a uniform,

counter-clockwise rotational force field around the z-axis

P (q) = cR(−qy,qx,0), with q a vector in the x y-plane and cR
a constant. Next, we determine cR by imposing P to have the

same torque as given by f ,

N∑
i=1

(qi × f i)z = τz =
N∑
i=1

�
qi × P (qi)

�z

= cR
N∑
i=1

[�
qx
i

�2
+
�
qy
i

�2]
. (D2)

We obtain the field P by solving for the constant cR, leading

to

cR =
τz∑N

i=1

[�
qx
i

�2
+
�
qy
i

�2] . (D3)

Therefore we can make f “torque-free” concerning the z-

direction by subtracting P, i.e., f i → f i − P(qi) (i = 1, . . . ,N).

By repeating the procedure for the remaining directions, we

get rid of the rigid rotations induced by f and obtain a

torque-free force field.

APPENDIX E: STATIC YOUNG MODULI
OF REGULAR LATTICES

We here present a simple energy argument to interpret the

behavior of the Young moduli of the regular lattices presented

in Sections VIII and IX. A regular lattice is generated by

the basis vectors a1, a2, and a3. Therefore a lattice point can

be written as ri jk = ia1 + ja2 + ka3, with i, j, k ∈ Z integers.

If the particles interact by the pair potential v , the total

energy per particle in an infinitely extended lattice is given

by

Up =
1

2

∑
n∈N0

v(rn), (E1)

where the sum runs over all lattice points (origin excluded)

labeled by the discrete index n contained in the set

N0 = Z
3 \ {(0,0,0)}.

Since we consider the regular lattice to be the ground state

of the system, a small deformation that transforms rn → r′n
(n ∈ N0) has an energy-per-particle cost that to lowest order

reads

ΔUp =
1

2

∑
n∈N0

1

2
uᵀn · h(rn) · un, (E2)

where un = r′n − rn, ᵀ indicates transposition, and h(rn) is the

Hessian matrix of the interaction v(rn) between the particle

fixed in the origin and the nth neighbor. Its elements are given

by hμν(rn) = ∂2v(rn)/∂rμ
n∂rνn, with μ, ν = x, y, z.

The displacements un = D · rn corresponding to a

uniform strain are given by the constant components of the

displacement tensor D. The energy of the strain deformation

then follows as

ΔUp =
1

2

∑
αβγδ

Cαβγδ
0

DαβDγδ

with Cαβγδ
0

=
1

2

∑
n∈N0

rαn hβγ(rn) rδn,
(E3)

where α, β,γ, δ = x, y, z.

In the following we focus on compressive/dilative strains

and therefore consider diagonal D displacement tensors. For an

applied strain εαα along the α-direction Dαα � 0 is imposed.

The remaining components of D are relaxed to minimize the

lattice energy

∂ΔUp

∂Dμμ
= 0, ∀μ � α. (E4)

This leads to a system of linear equations the solution of

which relates the components Dμμ (μ � α) to the imposed

deformation Dαα. As a result, we obtain Young’s modulus
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FIG. 17. Loss parts ((a)–(c)) E′′αα(ω) and ((d)–(f)) G′′αβ(ω) (α, β = x, y, z)

for the dynamic elastic moduli of a simple cubic lattice with N = 3375 for

vanishing magnetic moment (solid line, ©), and m= 0.1m0̂z (dashed lines,

�, �, �). Because of the overall trend of a linear increase with frequency at

low and high frequencies, we here present the moduli divided by ω. Zoom-ins

onto the low-, intermediate-, and high-ω regions are shown in panels (a) and

(d), (b) and (e), and (c) and (f), respectively.

Eαα [following the notation as in the main text, see Eq. (16)]

given by

Eαα =
1

Vp

d2ΔUp

(dDαα)2 =
1

Vp

�
Cαα

0 − Bα
�

with Bα =
∑
βγ

Cαβ
0

Cγγ
0

Cαβ
0
− Cαγ

0
Cβγ

0

Cββ
0

Cγγ
0
− (Cβγ

0
)2 (εαβγ)2,

(E5)

FIG. 18. Loss parts ((a)–(c)) E′′αα(ω) and ((d)–(f)) G′′αβ(ω) (α, β = x, y, z)

for the dynamic elastic moduli of an fcc lattice with N = 3430 for vanishing

magnetic moment (solid line, ©), and m= 0.1m0̂z (dashed lines, �, �, �).

Since the loss moduli increase linearly with the frequency at low and high

frequencies, we here show them divided by ω. Zoom-ins onto the low-,

intermediate-, and high-ω regions are shown in panels (a) and (d), (b) and

(e), and (c), and (f), respectively.

where Vp = 1/ρ = V/N is the volume per particle, we

abbreviated Cαβ
0
= Cααββ

0
, and εαβγ is the Levi-Civita symbol.

The contributions −Bα to the elastic moduli take into account

relaxation along the remaining perpendicular axes and lower

the moduli.

For small values of the magnetic moment m, we write,

to lowest order in m, h(rn) = h0(rn) + m2hm(rn), where the

elements of the matrix m2hm(rn) are as listed in Eq. (B8).
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FIG. 19. Average loss parts ((a) and (b)) 〈E′′αα(ω)〉 and ((c) and (d))

〈G′′αβ(ω)〉 (α, β = x, y, z) for the dynamic elastic moduli of randomized

fcc lattices with N = 1688 for vanishing magnetic moment (solid line, ©),

and m= 0.056m0̂z (dashed lines, �, �, �). Because of the overall trend of a

linear increase with frequency at low and high frequencies, we here present

the moduli divided by ω. Data points and standard deviations are obtained by

averaging over 80 differently randomized samples. Because of the different

randomizations, the initial slope of the moduli in the ω→ 0 limit can vary

significantly, thus leading to large bars in the small-ω regime and for the

m > 0 cases, which are not shown here. Insets (a) and (b) zoom in onto the

Young and shear loss moduli behavior, respectively, at high frequencies for

better resolving the individual curves.

Thus, we can obtain both the static Young’s modulus at m = 0

and the initial quadratic behavior for small m.

APPENDIX F: ADDITIONAL INFORMATION ON THE
LOSS PART OF THE DYNAMIC ELASTIC MODULI

Here we show in more detail the various behaviors of the

loss part of the dynamic moduli as functions of frequency ω
and magnitude of the magnetic moment m for the different

considered geometries. As we have mentioned before, we

find as a general trend the loss parts to linearly increase with

ω at low and high frequencies. It results from our viscous

friction term [see Eq. (19)] which, in the case of an oscillatory

deformation as in Eq. (22), is proportional to ω. Moreover,

it is consistent with the predicted loss component of the

dynamic moduli in the Kelvin-Voigt model.89,90 Therefore,

and for better illustration, we plot the loss parts after division

by ω. The agreement with linear behavior is confirmed in this

way, i.e., E ′′αα(ω)/ω and G′′αβ(ω)/ω (α, β = x, y, z) converge

FIG. 20. Average loss parts ((a) and (b)) 〈E′′αα(ω)〉 and ((c) and (d))

〈G′′αβ(ω)〉 (α, β = x, y, z) for the dynamic elastic moduli of randomized

fcc lattices with N = 1688 for vanishing magnetic moment (solid line, ©),

and m= 0.064m0̂z (dashed lines, �, �, �). Since the loss moduli increase

linearly with the frequency at low and high frequencies, we here show

them divided by ω. Data points and standard deviations are obtained by

averaging over 80 differently randomized samples. Because of the different

randomizations, the initial slope of the moduli in the ω→ 0 limit can vary

significantly, thus leading to large bars in the small-ω regime and for the

m > 0 cases, which are not shown here. Insets zoom in onto the (a) Young

and (b) shear loss moduli behavior at high frequencies for better resolving the

individual curves.

to a finite value in both the low- and high-ω limit, see

Figs. 17–20.

On the one hand, the regular lattices addressed in

Sections VIII and IX show different trends for the loss parts

as functions of m and ω, as mentioned in the main text

and illustrated in Figs. 17 and 18. On the other hand our

randomized lattices generally show increasing loss parts with

increasing m for all frequencies, although the amount of gain

varies with the selected geometries, see Figs. 19 and 20.
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3 Conclusions

Ferrogels and magnetic elastomers are composite materials that stand out for their ability
of reversibly changing shape and stiffness under the action of an external magnetic field.
One way to obtain such materials is to crosslink a polymeric solution in which magnetic
particles have been dispersed. The magnetic particles are then trapped in or attached
to the polymer network [36, 102, 103]. Under the effect of a magnetic field, they apply
forces and torques onto each other, which are counterbalanced by the embedding elastic
matrix.

The magnetic interactions lead directly to relative displacements of the particles,
which, in turn, cause overall deformations [40–43,104] as well as changes in the stiffness
[10, 11, 44–50] of the material. This effect is often referred to as “magneto-mechanical”
coupling [36–38]. The central, appealing feature of such a coupling is that strain and elas-
tic moduli are reversibly tunable by external magnetic fields in a non-invasive way. In the
present thesis we have outlined a path to model magnetoelastic materials starting from
the microscopic description of polymer chains, moving to particle-resolved mesoscopic
models, and heading towards a final scale-bridging goal to calculate the macroscopic
properties such as strain and elastic moduli.

First, the entropic origin of elasticity is extracted from via molecular dynamics simu-
lations [75], see Paper I. In a first, simplified model, the polymer-mediated interactions
between two magnetic particles are investigated by simulating two particles connected
by a chain of linked beads, each representing a coarse-grained piece of the polymer. By
collecting statistics of the motion of the polymer chain, one can coarse-grain it into an
entropic potential between the two magnetic particles. From this procedure we obtain
an effective interaction as a function of interparticle separation and relative angles of
the particle orientations. Some of these degrees of freedom are strongly correlated with
each other, resulting, for instance, in a characteristic “wrapping effect” [117].

Simulation-derived potentials represent the foundation to build models involving more
than two magnetic particles. As a first step in increasing complexity, we have investi-
gated the exemplary case of one-dimensional chains of paramagnetic particles embedded
in a soft elastic matrix and buckling under a perpendicular external magnetic field [12],
see Paper II. The problem is reduced to two dimensions because the plane containing the
buckling deformation is entirely determined by the initial chain orientation together with
the direction of the external field. We transfer the description of the particle chain to
a continuum representation and describe its deflection in terms of a smooth polynomial
function. The interaction with the surrounding polymer matrix is phenomenologically
modeled by energetic terms opposing bending and displacements. Then, following a
variational approach and in agreement with experimental investigations, we find that
longer chains buckle with more oscillations. This is a straight consequence of the en-
ergetic competition between magnetic and elastic effects. The former favor alignment
along the field direction and the latter tend to restore the initial straight profile of the
chain. The good agreement between the modeled and observed buckling morphologies
evidences the strong coupling between the embedded particles and the matrix.
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3 Conclusions

The next level in increasing complexity consists of two dimensional arrangements
of magnetic particles [90], see Paper III. We adopt a basic dipole–spring model: each
particle carries a magnetic dipole and is connected to its neighbors via harmonic springs,
mimicking the surrounding elastic medium. The principal advantage of this description
is to combine the particle-resolved, explicit description of the distribution of magnetic
inclusions with computational efficiency. Furthermore, the dipoles are set parallel to each
other, a situation representative of paramagnetic particles in a saturating external field or
ferromagnetic ones under a strong aligning field. We look at deformations and changes in
the elastic moduli for regular as well as non-regular particle arrangements and different
orientations of the overall magnetization. As a result, we prove that the positioning
of the nearest neighbors with respect to the direction of the magnetization is critical in
determining whether the system elongates or contracts, stiffens or softens with increasing
magnetic interactions. Moreover, the implications of assuming affine deformations of
the system are investigated. In an indefinitely extended system, affine and non-affine
deformations are equivalent for regular lattices, as demonstrated in section 1.7. However,
in finite or less regular arrangements assuming affine deformations can lead to growing
quantitative and even qualitative errors.

For most possible applications, e.g., tunable vibration absorbers or soft actuators, it
is crucial to investigate the time dependent material properties. The key quantities are
the dynamic elastic moduli. They provide the relation between periodic stresses and
strains for a given oscillation frequency. The time relaxation of magnetic elastomers had
been investigated in Ref. 105, where the normal modes of the system and their spectrum
were described for varying strength of the magnetic interactions. In the last two papers
presented in this thesis the description in terms of normal modes is connected with the
linear response of the system and the dynamic moduli are calculated.

For this purpose, we consider three-dimensional dipole–spring arrangements. The de-
composition into normal modes allows us to calculate the linear response of the system
under axial or shear deformations [123], see Paper IV. By construction of appropriate
mesoscopic force fields we calculate the Young and shear elastic moduli for various par-
ticle distributions and strengths of the magnetic interactions. The comparison with the
analytical moduli calculated for regular lattices confirms the correctness of our normal-
modes approach. After that, we assume an overdamped, linearized type of motion and
extend our method to compute the frequency-dependent moduli in the case of an oscil-
lating external stress. As the frequency of the mechanical stress increases, the response
of the system changes over different combinations of modes. The dynamic moduli vary
as well, reflecting the different responses, and can increase or decrease when switching
on magnetic interactions between the particles, depending on the particle distribution.
In the case of regular distributions and especially at low frequencies, the behavior of the
moduli follow in good agreement the qualitative arguments of Paper III. Quantitative
calculations are presented in Paper IV. In the case of strong magnetic interactions,
the formation of chain-like structures, stabilized by steric repulsion, is followed by large
increases in the elastic moduli, which has also been observed experimentally [10].
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In our final Paper V we use experimental data as input for the positions and vol-
umes of our magnetic particles [122]. The final goal of the scale-bridging description
is to calculate macroscopic properties of real systems depending on their mesoscopic
properties and particle arrangement. We particularly focus on a homogeneous, isotropic
particle distribution of magnetic particles with volume fraction 5.6%. Initially, the sys-
tem elongates to a small degree in the direction of magnetization [98, 119]. However,
for larger amounts of magnetization, the dipole–dipole attraction prevails making the
particles enter into steric contact and form extensive chain-like aggregates parallel to
the magnetic field [8, 10, 124–126]. This aggregation mechanism results in a significant
overall contraction in the field-direction [120, 121]. Furthermore, at low to moderate
magnetization, the elastic moduli can show a slight amount of decrease. However, when
magnetic interactions are as strong as to form chain-like aggregates, the investigated
Young and shear moduli strongly increase, in qualitative agreement with experimental
observations [10,11,46]. Interestingly, the dynamic moduli can present unexpected, non-
monotonous behaviors. For instance, increasing magnetic interactions can strengthen a
storage shear modulus at low-frequencies, whereas at intermediate frequencies it is re-
duced.

In conclusion, improving the existing models of ferrogels and magnetic elastomers
can help us to develop materials with optimized, customized properties. In this the-
sis we have outlined a scale-bridging route. Simulations resolving the polymer chains
set the foundations of pair elastic potentials which, in turn, can later be incorporated
into mesoscopic many-body systems to calculate overall macroscopic properties. With
the aim of optimizing the material response, mesoscopic particle-resolved models are
irreplaceable because they can explicitly take into account the impact of different par-
ticle arrangements. For this purpose, extending in the future the combined effort with
particle-resolved experiments [8,10] will allow us to test different particle arrangements
and shed further light onto the properties of the magnetomechanical coupling. With the
final goal of devising components featuring dynamic properties optimized down to the
microscopic scale, our investigations can provide insight from multiple viewpoints into
the behavior of these fascinating materials.
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[16] E. Allahyarov, H. Löwen, and L. Zhu. A simulation study of the electrostriction
effects in dielectric elastomer composites containing polarizable inclusions with
different spatial distributions. Phys. Chem. Chem. Phys., 17:32479, 2015.
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of bilayered magnetic elastomers. Smart Mater. Struct., 23:115004, 2014.

[39] O. V. Stolbov, Y. L. Raikher, and M. Balasoiu. Modelling of magnetodipolar
striction in soft magnetic elastomers. Soft Matter, 7:8484, 2011.
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gels. Macromol. Symp., 200:93, 2003.

[84] F. Mainardi and G. Spada. Creep, relaxation and viscosity properties for basic
fractional models in rheology. Eur. Phys. J., Spec. Top., 193:133, 2011.

[85] J. J. Zanna, P. Stein, J. D. Marty, M. Mauzac, and P. Martinoty. Influence of
molecular parameters on the elastic and viscoelastic properties of side-chain liquid
crystalline elastomers. Macromolecules, 35:5459, 2002.

[86] D. Collin, G. K. Auernhammer, O. Gavat, P. Martinoty, and H. R. Brand. Frozen-
in magnetic order in uniaxial magnetic gels: preparation and physical properties.
Macromol. Rapid Commun., 24:737, 2003.

[87] M. Roth, M. D’Acunzi, D. Vollmer, and G. K. Auernhammer. Viscoelastic rheology
of colloid-liquid crystal composites. J. Chem. Phys., 132:124702, 2010.

[88] D. R. Squire, A. C. Holt, and W. G. Hoover. Isothermal elastic constants for
argon. Theory and Monte Carlo calculations. Physica, 42:388, 1969.

[89] D. Ivaneyko, V. Toshchevikov, and M. Saphiannikova. Dynamic moduli of
magneto-sensitive elastomers: a coarse-grained network model. Soft Matter,
11:7627, 2015.

[90] G. Pessot, P. Cremer, D. Y. Borin, S. Odenbach, H. Löwen, and A. M Menzel.
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