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Köln, Oktober 2017.



ii

aus dem Institut für Theoretische Physik II, der weichen Materie
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Thomas Voigtmann

2. Prof. Dr. Hartmut Löwen
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iii

Eidesstattliche Versicherung

Ich, Herr Alexander Liluashvili, versichere an Eides statt, dass die vorliegende Dis-
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Abstract

The collective dynamics of the active Brownian hard disks in two
dimensions under very high densities is studied. To do so the Mode
Coupling Theory (MCT) of the glass transition is used.

The system is characterized by the dynamical density-density corre-
lator matrix Φ(t). The starting point of the theoretical calculations
is the Smoluchowski equation determining the time evolution of the
observables uniquely.

Following the steps of Mori and Zwanzig the equation of motion for
the density correlator is derived. The so-called integro differential
equation is closed by the MCT approximation of the memory ker-
nel. The final equations are solved numerically over many orders of
magnitude in time.

By evaluating the results, glassy behavior of the system is analyzed
and the critical parameters (activity vc0, rotational diffusion Dc

r and
the packing fraction φc), which separate the glassy and fluid, phase
are determined.

Integration Through Transients (ITT) formalism is used to determine
non-equilibrium averages (e.g. average swim speed) as a function of
equilibrium averages only. The transient correlators appearing in the
ITT formalism are approximated by MCT methods.

The numerical values are compared with simulation data.
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Zusammenfassung

In dieser Arbeit untersuchen wir die kollektive Dynamik von akti-
ven Brownschen harten Kugeln in zwei Raumdimensionen bei sehr
großen Dichten. Um dies zu erreichen wird die Modenkopplungsthe-
orie (MCT) für den Glasübergang verwendet.

Das System ist durch die dynamische Dichte-Dichte-Korrelator Ma-
trix Φ(t) charakterisiert. Den Ausgangspunkt für die theoretischen
Rechnungen stellt die Smoluchowski Gleichung dar, welche die Zeit-
entwicklung von allen Observablen eindeutig bestimmt.

Durch die Anwendung des Mori-Zwanzig Formalismus leiten wir die
Bewegungsgleichung für den Dichte-Dichte Korrelator her. Die so ge-
nannte Integro Differentialgleichung wird durch die MCT-Nährung
des Memory-Kerns geschlossen und unter Verwendung von numeri-
schen Methoden, über mehrere Größenordnungen in der Zeit gelöst.

Durch das Auswerten der numerischen Ergebnisse untersuchen wir
das glasartige Verhalten des Systems und bestimmen die kritischen
Parameter (Aktivität vc0, Rotationsdiffusion Dc

r und die Packungs-
dichte φc), welche den glasartigen vom flüssigen Zustand trennen.

Wir verwenden die Integration durch die Transienten (ITT) Forma-
lismus um die Nichtgleichgewichts Erwartungswerte (z.B. mittlere
Schwimmgeschwindigkeit) nur als Funktion von Gleichgewichts Er-
wartungswerten zu bestimmen. Die transiente Korrelationsfunktio-
nen, welche im ITT Formalismus auftreten, werden durch die MCT
Methoden genähert.

Zuletzt werden die numerischen Ergebnisse mit Simulationsdaten
verglichen.
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Chapter 1

Introduction

Active or self-propelled particles like microswimmers in dense environments are
important model systems to study various problems in biology or medicine like
wound healing [1] or collective dynamics of bacteria [2,3]. The collective dynamics
of bacteria or cells show slow dynamics, arising from crowding effects at very high
densities and is closely related to glassy systems [4, 5].
E.coli bacteria, spermatozoa or Chlamydomonas represent biological microswim-
mers, with 0.5− 10μm size and achieve swim velocities of 1− 100μm/sec by using
the beating of the flagellum as self-propulsion mechanism. From mathematical
point of view already a single flagellum has a very complex geometry [6] and is too
complicated for a study of the collective dynamics.
Colloidal systems of self-propelled particles are more common model systems to
study effects related to activity. In this work our main focus will be the model of
“Active Brownian Disks ” (ABD) [7,8] in a liquid solvent to simplify the complex
structure of biological microswimmers, but still sustain important aspects of their
complex motion. ABD are orientable colloidal particles in two dimensions, which
undergo translational and rotational Brownian motion, superimposed with motil-
ity (activity force or self-propulsion force). Due to the activity which consumes
energy from the environment to maintain the driving force, the systems of ABD
are intrinsically out of equilibrium violating fluctuation-dissipation theorem rela-
tions and offer insight into non-equilibrium phenomena.
On the other hand ABD suspension can be easily modeled experimentally by us-
ing so called “Janus Particles” [9–11]. Janus particles represent a class of particles
with their surface having two or more physical properties. A Janus particle de-
scribed in [10] is a SiO2 sphere capped by graphite on one hemisphere. These so
called “carbon-coated ” particles are suspended in a water-lutidine mixture and
are self-propelled by diffusiophoresis. As an energy source a laser beam is used.
The laser light gets absorbed by the carbon capped part of the particle which lo-
cally heats up the solvent above the critical temperature and due to the demixing

1



2 CHAPTER 1. INTRODUCTION

a phoretic force is propelling the particles. The self-propulsion strength can be
varied by changing the laser intensity. The dynamics of ABD suspensions can also
be captured by relatively simple computer simulation methods [12–14] (e.g. Monte
Carlo simulations or molecular dynamics simulation).
At high densities ABD suspensions (with size polydispersity) with strong short
range repulsion (hard disks) are known to form a “glassy” system as suggested
by different computer simulation methods [15–17] and also known from passive
colloidal suspensions [18, 19]. The dynamics of the ABD system we consider in
this work is characterized by four parameters: Dt the translational diffusion, Dr

rotational diffusion, v0 the self-propulsion velocity and density ρ.
Systems of active Brownian particles at low densities were studied broadly in recent
years (e.g. [20–22]). For large time scales Drt � 1 such systems can be analyzed by
introducing activity induced effective-diffusion constant (effective-diffusion limit)
Deff = Dt(1+v20/2DrDt), mapping the original problem to a Brownian motion with
an effective-diffusion constant. That kind of mapping requires all length scales to
be larger than the persistence length lp = v0/Dr.
The dynamics of ABD systems at high densities are less well understood. To
analyze the glassy behavior of ABD systems the theories of glass transition for
passive systems have been adapted to activity. One of such theories is the Mode-
Coupling Theory of glass transition (MCT) developed for 3D and 2D passive sys-
tems [23–25]. The MCT theory was extended to high-density ABD system by
Farage and Brader [26] in the effective-diffusion limit assuming all length scales to
be larger than the persistence length lp. In the effective-diffusion limit the activity
enters the theory only through the Péclet number Pe := v20/DrDt and increas-
ing the activity shifts the glass transition point to higher densities which agrees
qualitatively with computer simulation methods [13]. The glass transition point
separates the glassy and fluid phase and mathematically it is a bifurcation point.
The glassy phase (solid like) is characterized by a drastic decrease of particle mo-
bility and by “caging effects” where every particle is enclosed by neighbor particles
over a very long time period.
A model of Active Ornstein-Uhlenbeck Particles (AOUP) represents another model
of active particles introduced and studied in [27]. The velocity vector of the par-
ticles is modeled by the Ornstein- Uhlenbeck process.
In this work we want develop a theory to study high-density ABD systems without
using the effective-diffusion limit, corresponding to have two independent param-
eters v0 and Dr and not only an effective parameter Pe. The goal is to analyze
the glassy behavior of the system and the influence of the activity to the glass
transition point at different persistence lengths. The question how the activity
changes the glass transition is not a trivial question and is not fully understood
yet. One might presume that the glassy dynamics at high densities is stable enough
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to sustain strong non-equilibrium driving forces. Which turned out to be wrong
for systems under steady shear, where the glass transition is destroyed for arbi-
trarily small shear rates [28, 29]. To understand the interplay between the glass
transition and the non-equilibrium driving will be main goal in this work. Recent
experiments provide information about dynamical structure factor, which contains
information about glassy behavior of the system without tracking all the particles.
The theory we develop to investigate such ABD suspensions is an extension of MCT
developed for passive systems (for very detailed introduction into the field of MCT
we refer to the book from Wolfgang Götze [23]). The MCT is a powerful method
which makes it possible to derive an non-perturbatively approximated equation
of motion for the density correlation function at high densities. It is proven that
MCT approximations describe the glassy dynamics especially the “caging effect”
qualitatively correctly [30].
The so-called “Integration Through Transients” (ITT) formalism provides an ele-
gant way to deal with non-equilibrium averages (e.g. non-equilibrium swim speed
or non-equilibrium structure factor). The ITT formalism was applied on dense
suspensions by Cates and Fuchs [28] successfully, linking the transport coefficients
to the transient correlator of microscopic quantities. The transient correlation
functions which are needed by using the ITT formalism can be determined by
Mode Coupling approximation, which is an additional strength of MCT.
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Chapter 2

Mathematical Model

2.1 Motivation

2.1.1 Single Brownian Particle

The starting point for the theoretical calculations is the Langevin equation which is
a force balance equation containing a stochastic term which makes it to a stochastic
differential equation (for deep introduction into the stochastic processes see [31]).
As a motivation we consider a single particle in two dimensions in a solvent get-
ting random kicks from the solvent molecules, so the dynamics of the particle is
described by the following equation which is the simplest form of the Langevin
equation,

m
d2�x(t)

dt2︸ ︷︷ ︸
Inertia

= −γ
d

dt
�x(t)︸ ︷︷ ︸

Friction

+

Random noise︷ ︸︸ ︷√
Γ�ξ(t), (2.1)

where the stochastic term �ξ is a Gaussian white noise with zero mean and zero
correlation for different times.〈

ξi(t)
〉
= 0, i ∈ {x, y},〈

ξi(t)ξj(t′)
〉
= δi,jδ(t− t′).

(2.2)

The friction term γ describes the strength of dissipation and Γ describes the
strength of fluctuations. If the system is close to thermal equilibrium the fric-
tion term is given by the Stokes-Einstein formula [32] γ = kBT/Dt = 3πησ, where
Dt is the translational diffusion, η is the shear viscosity of the solvent and σ is
the particle diameter. If we do not consider the short time dynamics we can drop
the inertia term in the equation (2.1) which leads to the overdamped Langevin

5



6 CHAPTER 2. MATHEMATICAL MODEL

equation.

d�x(t) =

√
Γ

γ
�ξ(t)dt =

√
Γ

γ

Wiener Process︷ ︸︸ ︷
d �W (t) ⇒ �x(t)

�x0=0
=

√
Γ

γ

∫ t

0

d �W (t′). (2.3)

Using the properties of the white noise we can calculate the mean-squared dis-
placement 〈�x(t)2〉, which is a very important quantity by dealing with stochastic
processes, since it is the first nonvanishing moment containing information about
the distance traveled by the particle.

〈�x(t)〉 = 0,〈
�x(t)2

〉
=

1

γ2

∫ t

0

∫ t

0

dt′dt′′
〈
�ξ(t′) · �ξ(t′′)

〉
=

2Γ

γ2
t.

(2.4)

In Einsteins theory of Brownian dynamics [32] the mean-squared displacement is
related to the transport coefficient Dt.

4Dtt =
〈
�x(t)2

〉 !
=

2Γ

γ2
t ⇒

√
Γ

γ
=
√

2Dt. (2.5)

The equation 2.5 is a well known “Fluctuation-Dissipation Theorem” (FDT) [33]
connecting the strength of dissipation due to the friction and the strength of fluc-
tuation due to the random kicks. The FDT is only valid in or close to thermal
equilibrium.
We rewrite the Langevin equation (2.1) in a more common form

d�x(t) =
√

2Dt
�ξ(t)dt, (2.6)

where the assumption was made, that the friction force of the solvent to be much
bigger than the inertia term, which is generally an appropriate assumption for
colloidal particles, but not for granular particles.

2.1.2 Single Active Brownian Particle

We extend now the theory by adding more degrees of freedom. We consider a single
spherical particle described by the position coordinates �x(t) and the orientation
ϕ(t). The particle does not only undergo a Brownian motion it also has a self-
propulsion force in the direction of its orientation. This model is still analytically
solvable but already much more complicated than the previous model. We have to
deal with two random processes (two Wiener Processes �W �x(t) and Wϕ(t)). The
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model can be described by a coupled stochastic differential equation.

d�x(t) =

activity︷ ︸︸ ︷
v0�o(ϕ)dt+

random jumps︷ ︸︸ ︷√
2Dtd �W

�x(t),

dϕ(t) =
√

2DrdW
ϕ(t)︸ ︷︷ ︸

random orientation

.
(2.7)

The position variable �x(t) is coupled to the angle by the “activity term” with
the orientation vector �o(ϕ) = (cos (ϕ) , sin (ϕ))�. It should be noticed that there
are two diffusion constants in this model. Dt is responsible for the strength of
translational motion andDr for the rotations. Now we want to determine the mean
displacement and the mean-squared displacement for the model and investigate
how the activity influences the system. Integrating the equations (2.7) leads to:

ϕ(t)
ϕ0=0
=

√
2Dr

∫ t

0

dWϕ(τ),

�x(t) = v0

∫ t

0

(
cos

(√
2DrW

ϕ(τ)
)

sin
(√

2DrW
ϕ(τ)

)) dτ +
√

2Dt
�W �x(t).

(2.8)

Terms like cos (Wϕ(t)) and sin (Wϕ(t)) need to be evaluated, to do so it can be
used, that the Wiener process has Gaussian density function fW (x) = N [0, t](x) =

1√
2πt

e−x2/(2t) and the corresponding characteristic function ϕW (k) =
〈
eikW

〉
W

=

e−k2t/2.

〈cos (αWϕ(t))〉 = � 〈
eiαW

ϕ(t)
〉
= �

(
ϕW (α)

)
= e−α2t/2,

⇒
〈
cos

(√
2DrW

ϕ(t)
)〉

= e−Drt,

⇒
〈
sin

(√
2DrW

ϕ(t)
)〉

= 0.

(2.9)

Using the zero mean value of the Wiener process, the mean displacement will be
determined.

〈�x(t)〉 = v0
Dr

(
1− e−Drt

)
�ex. (2.10)

One should notice that there is a nonvanishing drift only in x direction because of
the initial choice of the angle ϕ0 = 0, making the initial velocity aligned parallel
to the x-axis. The calculation for the mean-squared displacement is analogous but
lengthy since evaluation of the two-point functions 〈cos (W (t)) cos (W (t′))〉 and
〈sin (W (t)) sin (W (t′))〉 are needed.

〈
�x(t)2

〉
= 4Dtt+

2v20
Dr

t+
2v20
Dr2

(
e−Drt − 1

)
. (2.11)
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The mean-squared displacement behaves differently for different time regimes:

t → 0 :
〈
�x(t)2

〉
= 4Dtt+ v20t

2 +O (
t3
)
,

t → ∞ :
〈
�x(t)2

〉
= 4Dtt+

2v20
Dr

t = 4Defft.
(2.12)

10−9 10−5 101 105

t

10−9

10−5

101

105

1010

1015

〈 �x
2〉 4Defft

v20t
2

4Dtt

Figure 2.1: Mean-squared displacement of an active Brownian hard disk in a
solvent (solid line) and the corresponding different time regimes.

In the Figure 2.1 three different regimes are illustrated. For very short times a
purely diffusive regime with the diffusion constant of Dt can be observed, at in-
termediate times the diffusive regime is superimposed to the ballistic regime, and
for very large times we again have a purely diffusive regime with an effective dif-

fusion constant Deff = Dt +
v20
2Dr

. Already such a simplistic model including only
a single particle and no particle-particle interactions is cumbersome to calculate
analytically. Solving a model with N active particles in a solvent in 2 dimensions
corresponds to solving 3N coupled stochastic differential equations, since a general
particle-particle interaction potential depends on spacial coordinates and orienta-
tions of all particles e.g. U = U({�x1, ϕ1, · · · , �xN , ϕN}). Solving such a system
analytically is hopeless and needs to be treated differently.
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One possible approach to solve the system of coupled stochastic differential equa-
tions is by using computer simulation methods [12–14] (Molecular dynamics sim-
ulation, Monte-Carlo simulation). Those simulation methods take as an input the
interaction forces of the particles, and generate as an output the time dependent
coordinates of all particles. Although those methods are straightforward to under-
stand, they give little theoretical insight about the system and its properties.
Our focus will be on a different method which transforms the set of coupled SDEs
to a Fokker-Planck type of equation for the probability density function and uses
the Mode Coupling Theory (MCT) of glass transition to investigate the behavior
of the system at very high densities. The Mode coupling theory was already ap-
plied to passive systems successfully.
From the theory of stochastic processes [31] we use the expansion formula. For a
general stochastic differential equation,

d �X(t) = �A
(
�X, t

)
dt+B

(
�X, t

)
d �W

�X(t), (2.13)

with the coefficient vector �A and coefficient matrix B the corresponding Fokker-
Planck equation is

∂tP
(
�X, t

)
= −

∑
i

∂Xi

[
AiP

(
�X, t

) ]
+

1

2

∑
ijk

∂Xi
Bik∂Xj

BjkP
(
�X, t

)
. (2.14)

The equation (2.14) is a transformation of a set of coupled SDEs to a deterministic
partial differential equation for the probability density function. The transforma-
tion will be demonstrated for the the Langevin equation (2.7),⎛⎝x

y
ϕ

⎞⎠ = v0

⎛⎝cos (ϕ)
sin (ϕ)

0

⎞⎠
︸ ︷︷ ︸

�A( �X,t)

dt+

⎛⎝√
2Dt 0 0
0

√
2Dt 0

0 0
√
2Dt

⎞⎠
︸ ︷︷ ︸

B( �X,t)

⎛⎝dW x

dW y

dWϕ

⎞⎠ . (2.15)

The corresponding Fokker-Plank equation for the PDF can be determined by ap-
plying equation (2.14).

∂tP = −v0

(
cos (ϕ) ∂x + sin (ϕ) ∂y

)
P +

(
Dt∂

2
x +Dt∂

2
y +Dr∂

2
ϕ

)
P . (2.16)

Solving (2.16) for the probability density P makes it also possible to determine
the mean-squared displacement, which should coincide with (2.11).
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2.2 Active Brownian Hard Disks

2.2.1 Langevin Equation

Now we extend the model of a single active Brownian particle to interacting ac-
tive Brownian hard disks (ABD). The Langevin equation describing this model
contains in addition to (2.7) an interaction term characterized by particle-particle
interaction potential.

d�xi(t) =

interaction︷ ︸︸ ︷
Dtβ �Fidt+

activity︷ ︸︸ ︷
v0�oi(ϕ)dt+

random jumps︷ ︸︸ ︷√
2Dtd �W

�x
i (t),

dϕi(t) =
√

2DrdW
ϕ
i (t)︸ ︷︷ ︸

random orientation

.
(2.17)

The subindex i denotes the i-th particle i ∈ {1, · · · , N} and the interaction force
�Fi is a gradient of an interaction potential �Fi = −�∇U({�x1, ϕ1, · · · , �xN , ϕN}). In

Figure 2.2: Schematic representation of Active Brownian hard disks.

Figure 2.2 the schematic representation of active Brownian disks is illustrated.
The small arrows denote the direction of the orientation of the particles which
is also the direction of the self-propulsion force. The angle ϕi(t) describes the
angle between the x-axis and the orientation vector. In this work we consider the
particle-particle interaction potential U to be a hard sphere interaction.

U ({�xi}) ≡ U (�x1, · · · , �xN) =

⎧⎨⎩∞ if |�xi − �xj|∀i,j
i �=j

< σ

0 if |�xi − �xj|∀i,j
i �=j

≥ σ
, (2.18)

with the particle diameter σ. The interaction potential depends only at the posi-
tion vectors of the particles, and the interactions are completely decoupled from
the orientations.
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2.2.2 Smoluchowski Equation

Using the results from previous section we transform the Langevin equation for
the ABD to the corresponding Fokker-Planck or Smoluchowski equation.

∂tP ({�xi}, {ϕi}, t) = ΩP ({�xi}, {ϕi}, t) ,
Ω =

∑
i

Dt
�∂i ·

(
�∂i − β �Fi

)
− v0�∂i · �oi +Dr∂

2
ϕi
, (2.19)

with the differential operator Ω, which is often called Smoluchowski operator in the
literature. The shorthand notation convention for the gradient vector will be used
frequently �∂i ≡ (∂xi

, ∂yi)
�. The Smoluchowski operator is a sum of the equilibrium

contribution describing passive Brownian hard disks and a non-equilibrium part
being proportional to the activity:

Ω = Ωeq + δΩ,

Ωeq =
∑
i

Dt
�∂i ·

(
�∂i − β �Fi

)
+Dr∂

2
ϕi
,

δΩ = −
∑
i

v0�∂i · �oi.
(2.20)

The activity brings the system out of equilibrium since energy is absorbed from
the environment to produce the driving force. The non-equilibrium part cannot
be assumed to be small in comparison to the equilibrium part which makes a
perturbation expansion not feasible. The Smoluchowski equation (2.19) describes
the time evolution of the probability density P in the N particle configuration
space. We introduce the configuration space Γ({xi}, {ϕi}) which is important for
defining the scalar product 〈·|·〉 and the average 〈·〉. The configuration space is a
function of all position coordinates of the N particles and their orientations with
the configuration space differential

dΓ ≡ d�x1 · · · d�xNdϕ1 · · · dϕN . (2.21)

For two configuration space observables A and B we define the scalar products
and the averages

〈A|B〉 =
∫

dΓPeqA
∗(Γ)B(Γ), 〈A〉 =

∫
dΓPeqA(Γ),

Equilibrium
weighted

〈A|B〉non =

∫
dΓPA∗(Γ)B(Γ), 〈A〉non =

∫
dΓPA(Γ), full weighted

[[A|B]] =

∫
dΓA∗(Γ)B(Γ), [[A]] =

∫
dΓA(Γ), unweighted.

(2.22)
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In this work the angular bracket always denotes the equilibrium average if not
stated differently (e.g. subscript non).
The formal solution of the Smoluchowski equation (2.19) for the probability density
can be written in a simplified form (without using the path integral formalism) if
we take into account that the Smoluchowski operator is time independent.

P (Γ, t) = eΩtP (Γ, t = 0) . (2.23)

We assume the system to be in equilibrium at t = 0 so the initial value of the
probability density can be identified as an equilibrium probability function known
from the thermodynamics.

P (Γ, t = 0)
!
= Peq =

1

Z
e−βU({�xi}),

Z =

∫
dΓe−βU({�xi}) beeing the partition sum.

(2.24)

One should notice following properties of the equilibrium probability density:

�∂iPeq = −β�∂iU({�xi})Peq = β �FiPeq,

ΩeqPeq = 0, ⇒ ΩPeq = δΩPeq.
(2.25)

For a general time dependent observable A we can write the time evolution by
using the adjoint Smoluchowski operator:

〈A〉non (t) =
∫

dΓP(Γ, t)A(Γ) =

∫
dΓeΩtPeqA(Γ) =

∫
dΓPeqe

Ω†tA(Γ) = 〈A(t)〉

A(Γ, t) = eΩ
†tA(Γ, t = 0),

(2.26)

with the adjoint Smoluchowski operator Ω† with respect to the unweighted scalar
product.

[[AΩB]] = [[BΩ†A]]. (2.27)

By applying integration by parts twice and dropping the surface terms the adjoint
Smoluchowski operator for the ABD can be calculated.

Ω† =
∑
i

Dt

(
�∂i + β �Fi

)
· �∂i + v0�oi · �∂i +Dr∂

2
ϕi
. (2.28)

2.2.3 Integration Through Transients

By dealing with non-equilibrium averages e.g. non-equilibrium velocity or non-
equilibrium structure factor, one needs to solve the full Smoluchowski equation
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for the probability distribution function P(Γ, t). The Integration Through Tran-
sients (ITT) provides an elegant method to express non-equilibrium averages by
equilibrium averages over a time integral of correlation functions. For the time
integral all the transients of the correlation function are needed. The correlation
function of the active force which drives the system out of equilibrium can be de-
termined by the projection formalism of Mori and Zwanzig [34, 35] which will be
introduced in great detail in the next chapter. We use the formal solution of the
Smoluchowski equation for P and use eΩt = 1 +

∫ t

0
dt′eΩt′Ω. For a general time

dependent observable A(Γ, t) we derive the ITT formalism.

〈A〉non (t) =
∫

dΓP(Γ, t)A(Γ) =

∫
dΓA(Γ)eΩtPeq(Γ)

=

∫
dΓA(Γ)

(
1 +

∫ t

0

dt′eΩt′Ω

)
Peq(Γ)

2.25
= 〈A〉+

∫
dΓA(Γ)

∫ t

0

dt′eΩt′δΩPeq

2.20
= 〈A〉 − v0β

∑
i

∫
dΓA(Γ)

∫ t

0

dt′eΩt′�oi · �FiPeq

2.27
= 〈A〉 − v0β

∑
i

∫ t

0

dt′
〈
�oi · �Fie

Ω†t′A(Γ)
〉
.

(2.29)

This is the generalized Green Kubo relation, where the non-equilibrium average
of a phase space observable A is expressed by the equilibrium averages only, at
the cost of having to evaluate the time integral of the correlation function. Up to
this point it is not clear at all how to evaluate the correlation function including
the adjoint Smoluchowski operator. The necessary tools to evaluate correlation
functions of this kind nonperturbatively will be derived in the next chapter.

2.3 Dimensional Analysis

We take a close look at the Smoluchowski operator describing the dynamics of all
configuration space observables. It depends on 4 undetermined parameters:

• Translation diffusion Dt ↔ Translational strength of thermal kicks.

• Rotational diffusion Dr ↔ Rotational strength of thermal kicks.

• Self-propulsion velocity v0 ↔ Strength of non-equilibrium driving force.

• Particle diameter σ ↔ Entering the hard disk potential 2.18.
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Now we want to link the abstract parameters to real physical values mentioned
in the introductory part and express all quantities as a function of Dt and σ. We
assume the Brownian disks to be of the size 0.5μm and have a swim velocity of
1− 100μm/sec. In equilibrium the diffusion constant satisfies the Stokes-Einstein
relation

Dt =
kBT

3πησ
∼ 1μm2/sec. (2.30)

In the following table the connection between the physical units and the model
units used in following chapters are illustrated.

Quantity Physical Units Model Units
Dt 1μm2/sec 1 [Dt]
σ 0.5μm 1 [σ]
v0 1− 100μm/sec 0.5− 50 [Dt/σ]
Dr sec−1 1/4 [Dt/σ

2]
t sec 4 [σ2/Dt]

Table 2.1: Link between physical units and the model units for relevant quantities.

One should notice that the rotational diffusion is a free to choose parameter in
our model (and is not calculated by the Stokes-Einstein formula). That fact is
motivated by the existence of microswimmers with long persistence length lp =
v0/Dr modeled by choosing Dr � Dt/σ

2 [36].

2.4 Summary

In this chapter we introduced the main model in this work the active Brownian
hard disks in two dimensions. The model is characterized by being intrinsically out
of equilibrium since the particles not only undergo Brownian motion (rotational
and translational) they are also self-propelled. Constant input of energy is needed
to maintain the active force.
The Smoluchowski equation of motion was derived from the Langevin equation,
by transforming the stochastic differential equation for the coordinates vector to
a deterministic equation of the probability density.
Finally we introduced the Integration Through Transients formalism being an ele-
gant method for evaluating non-equilibrium averages by calculating time integrals
over the whole past of the force correlation function. By calculating the force
correlation function the problem arises by not knowing how to evaluate the time
evolution term eΩ

†t. Performing series expansion does not lead to the desired re-
sult since the term Ω†t is by no means a small quantity. In the next chapter we
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introduce a method which makes it feasible to calculate correlations of this kind by
using the projection formalism of Mori and Zwanzig and using the Mode Coupling
approximation.
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Chapter 3

Main Theory

This chapter will be the key chapter in this work where we will introduce the main
theoretical framework the whole thesis is based on. We extend the Mode Coupling
Theory of the glass transition derived for passive Brownian Particles by Gazuz
and Fuchs [37], to active Brownian particles. The main goal will be to get deeper
theoretical understanding of the glassy dynamics in active systems, especially how
the glass-transition point depends on activity v0 and the rotational diffusion Dr

which is still an open question.
The central quantity by dealing with glassy systems is the dynamical structure
factor (or time dependent density-density correlator) which provides information
about glassy physics without the need to track the trajectories of all particles. The
dynamical structure factor is closely related to the cross-section in the neutron
scattering experiments and is also experimentally an accessible quantity.

3.1 Density-Density-Correlator

3.1.1 Dynamical Structure Factor

We start describing the dynamics of the system by introducing the density function
in real space, which will be a sum of the products of delta peaks at the positions
of the particles and their orientations

ρ (�x, ϕ, t) =
N∑
j=1

δ (�x− �xj(t)) δ (ϕ− ϕj(t)) . (3.1)

It is more convenient to transform the density function into the Fourier space

ρl(�q, t) =

∫ ∞

−∞
d�x

∫ ∞

−∞
dϕei�x·�qeiϕlρ (�x, ϕ.t) =

N∑
j=1

ei�q·�xj(t)eilφj(t). (3.2)

17
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The subindex l the so-called orientational index is the Fourier counterpart of the
angle ϕ and is the key feature of the active system. In three dimensions general
rotations are described by 3 Euler angles and the corresponding density function
in Fourier space contains 3 orientational indices (calculations in 3D are performed
in great detail in [38–40]). The Fourier-transform of the coordinate vector �x is the
well known wave vector �q.
The time evolution of the density function is described by the adjoint Smoluchowski
operator introduced in previous chapter

Ω† =
∑
i

Dt

(
�∂i + β �Fi

)
· �∂i + v0�oi · �∂i +Dr∂

2
ϕi
. (3.3)

The quantity that describes how much of the initial configuration remains un-
changed after the time t, is called the “dynamical structure factor” or “time de-
pendent density-density correlator” (in experiments also called intermediate scat-
tering function [35]), and is closely related to the cross-section in inelastic neutron
scattering experiments.

Sl,l′ (�q, t) =
1

N

〈
ρl (�q, t = 0)∗ ρl′ (�q, t)

〉
=

1

N

〈
ρl (�q)

∗ eΩ
†tρl′ (�q)

〉
. (3.4)

We point out the matrix like structure of the density correlator in the space of
the orientational indices (bold letters mark matrix like functions throughout this
work). In the case of passive Brownian particles where the angular motion is
completely decoupled from the translation motion the density correlator is a scalar
like function. This is one of the major difficulties that arises by switching on the
activity. The Fourier-transform of the density correlator to the frequency domain
is directly proportional to the differential cross-section in an inelastic neutron
scattering experiment [35].

Ŝl,l′(�q, ω) =
1

2π

∫ ∞

−∞
eiωtSl,l′(�q, t)dt

d2σ

dΩdω
∝ Ŝ0,0(�q, ω),

(3.5)

with σ being the cross section and dΩ the solid angle.
The density correlator S is an infinite dimensional matrix where each matrix el-
ement has different physical meaning. The l = 0, l′ = 0 component describes
the spatial structure of the system and is an important quantity by analyzing
the physical properties of the system. Especially effects like “glass transition” ,
“caging” etc. In the Figure 3.1 typical shapes of the density correlator S0,0 for two
different cases are presented. The fluid like phase (left panel) characterized by the
correlator which decays to zero for long times, exhibits three different regimes.
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Figure 3.1: Left: Schematic plot for the normalized density correlator S0,0(t) as a
function of time for one wavenumber q in a fluid like phase.
Right: Schematic plot of the correlator in a solid like (glassy) phase.

• Region (I): At short time scales due to the free local motion of the particles
a decay of the correlator can be observed. The time needed to decay to the
first plateau is called the β-relaxation time.

• Region (II): At intermediate times if the control parameters (packing frac-
tion, driving force) of the system are chosen properly the system shows a
plateau. The slow change of the correlation function in this time range in-
dicates the local caging of the particles. The surrounding neighbor particles
form a cage which hinders the inner particle to move.

• Region (III): The fluid phase is characterized with a third region at long
time scales where the cages can break and the correlator decays to zero. The
time needed to destroy the cage is called the α-relaxation time. The system
where the particles are able to explore the whole phase space over the time
is called an “ergodic” system. A fluid like system is also ergodic.

A glassy system (right panel) is characterized by a finite long time value of the
correlator Fl,l′(�q) = limt→∞ Sl,l′(�q, t) the so-called nonergodicity parameter. Non-
ergodic systems only exhibit two time regions.

• Region (IG): Similarly to the fluid system at short times due to the free local
motion of the particles the correlator decays to the value F0,0.

• Region (IIG): After the β-relaxation time the system forms a glass, where the
particles are in local cages formed by the neighbor particles and the system
never relaxes. In a glassy state the α-relaxation never occurs. The system is
nonergodic and the particles are not able to explore the whole phase space
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even after infinite time. In other words the system never forgets about the
initial configuration.

The Mode Coupling theory predicts a critical point in control parameters sepa-
rating the fluid phase and the glassy phase the so-called glass transition point.
Getting closer to the glass transition makes the α-relaxation time increase until
it diverges at the critical point. From a mathematical point of view the glass
transition point represents a bifurcation with the nonergodicity parameter having
a discontinuous jump as function of control parameters.
The initial configuration of the dynamical density correlator is described by the
static structure factor and is uniquely determined by the particle-particle interac-
tion potential.

3.1.2 Static Structure Factor

In this section we will introduce the equilibrium static structure factor and the
static structure factor matrix describing the structure of the system at initial
time. The symbol for the structure factor matrix is the same as for the density
correlator. To distinguish those the density correlator will always have the explicit
time dependence in parenthesis.

Sl,l′(�q)︸ ︷︷ ︸
static structure
factor matrix

=

density correlator︷ ︸︸ ︷
Sl,l′(�q, t)

∣∣∣
t=0

=
1

N

〈
ρ∗l (�q) ρl′ (�q)

〉
=

1

N

∑
j,k

〈
e−i�q·(�xj−�xk)e−i(lϕj−l′ϕk)

〉
,

S̃ (�q)︸︷︷︸
static structure

factor

≡ S̃q =
1

N

〈
ρ∗(�q)ρ(�q)

〉
=

1

N

∑
j,k

〈
e−i�q·(�xj−�xk)

〉
,

(3.6)

where the isotropy of the equilibrium structure factor in the wave vector �q was
exploited.
We want to express the static structure factor matrix as a function of the static
structure factor. To do so we have to evaluate the equilibrium average of the
angular part of the equation (3.6). We split the phase space differential into
spatial and angular parts

dΓ = d�x1 · · · d�xNdϕ1 · · · dϕN = dXdΦ, (3.7)
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and use the following identities:∑
j,k

=
∑
j,k
j �=k

+
∑
j

δj,k,

∫ 2π

0

e−ilϕdϕ = 2πδl,0.

(3.8)

The expression for the static structure factor matrix can be simplified to a diagonal
matrix in the space spanned by the orientational index.

Sl,l′ (�q) =
1

N

∑
j,k

∫
dΓPeqe

−i�q·(�xj−�xk)e−i(lϕj−l′ϕk)

=
1

N

∑
j,k
j �=k

∫
dXPeqe

−i�q·(�xj−�xk)

∫
dΦe−i(lϕj−l′ϕk)

+
1

N

∑
j

∫
dXPeq

∫
dΦe−iϕj(l−l′) =

(
S̃(�q)− 1

)
δl,0δl′,0 + δl,l′ ,

(3.9)

or in matrix notation,

S (�q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1

S̃q

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

0

-1 1

-1

1

.

(3.10)

We point out that the orientational index formally is in the set of integer numbers
l ∈ Z and will be restricted to a finite range after introducing a cutoff Λl in the
next chapters (l ∈ {−Λl,−Λl + 1, · · · ,−1, 0, 1, · · · ,Λl − 1,Λl}). Due to the hard
sphere potential being independent of the angular orientations of the particles the
system exhibits only a nontrivial structure for the l = 0, l′ = 0 mode. We reduced
the static structure factor matrix to the static structure factor well known from
the literature [35, 41].
The key equation for evaluating the static structure factor is the Ornstein-Zernike
equation which makes a link between the direct correlation function c(r) and the
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radial distribution function g(r) (or the total correlation function h(r) = g(r)− 1)
as an integral equation,

h(r) = c(r) + ρ

∫
d�xc(|�x− �r|)h(|�x|). (3.11)

With the particle density ρ = N/V not to be confused with the packing fraction
φ (in 2D φ = π

4
ρ).

On the other hand in Fourier space the direct correlation function and the structure
factor have an algebraic dependence.

S̃q =
1

1− ρcq
. (3.12)

Although computer simulations make the structure factor an accessible quantity,
for theoretical calculations it is often beneficial to have an analytic expression avail-
able. To solve the Ornstein-Zernike equation 3.11 an additional closure relation
for the direct correlation function is needed. There are different closure relations
which depend on the interaction potential. For hard-core potentials mainly Mean-
spherical approximation [42] and the Percus-Yevic approximation [43] are used.
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Figure 3.2: Equilibrium static structure factor for different packing fractions φ as
a function of wavenumber q calculated by the method introduced in [44].
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They both can be solved analytically in three dimensions and are in accordance
with each other. Unfortunately the Percus-Yevic approximation can only be solved
in closed form in odd dimensions, therefore in two dimensions numerical methods
are needed to obtain the desired structure factor.
An alternative method was developed by Marc Baus and Jean-Louis Colot [44]
to approximate the Percus-Yevic closure in two dimensions analytically. In the
Figure 3.2 the static structure factor for different packing fractions is plotted. In
this work the results for the structure factor calculated by the method by Baus and
Colot will be used, making the quantity easily accessible for all packing fractions
and all wavenumbers without solving the Ornstein-Zernike equation numerically.

3.1.3 Transformation Properties of the Correlator

Before introducing the projection formalism we want to discuss the transforma-
tion properties of the density correlator under the rotations of the wave vector
({q, αq}) → ({q, αq + β}) and check if the following approximations in the next
sections sustain the transformation properties. Unlike for the passive system for
the active system the density correlator does not only depend on the magnitude
of the wave vector, the angle of the wave vector with respect to the particle ori-
entation also becomes important. So rotating the wave vector by an angle of β is
equivalent to changing the orientation of each particle by β.

Sl,l′({q, αq + β}, t) = 1

N

∑
i,j

〈
e−i�q·�xie−il(ϕi+β)eΩ

†tei�q·�xjeil
′(ϕj+β)

〉
=
∑
n,m

ul,n(β)Sn,m({q, αq}, t)u†
m,l′(β),

(3.13)

with the unitary transformation matrix:

ul1,l2 (α) = e−il1αδl1,l2 ,

u (α)u (β) ≡ u (α + β) ∀ α, β,

u (α)u† (α) ≡ Id ∀ α.

(3.14)

In compact matrix notation the transformation property of the density correlator
is given by:

S({q, αq + β}, t) = u(β)S({q, αq}, t)u†(β), Transformation property. (3.15)

3.2 Projection Formalism

In this section we will introduce the projection formalism by Mori and Zwanzig
and derive the equation of motion for the dynamical density function presented in
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the previous section. The main idea of the Mori-Zwanzing (MZ) formalism is to
rewrite the time evolution equation for the density correlator in a mathematically
identical integro-differential equation that is better suited for further approxima-
tions. Deriving the equation of motion relies frequently on transforming from time
domain to Laplace domain.

3.2.1 Laplace-Transform and its Properties

The Laplace-transform (LT) is an integral transform which transforms a function
from real valued time domain to a generally complex valued frequency domain.
Like in case of Fourier-transform it is a useful method to convert ordinary differ-
ential equations in an algebraic ones. We use a more common definition for the
Laplace-transformation of the function f .

f̂(z) =

∫ ∞

0

e−ztf(t)dt. (3.16)

The frequency z is generally a complex valued frequency and if the integral exists
the function f̂ is called the Laplace transform of the function f . In the following
we want to list and prove many of the properties for the Laplace-transformation
successively used in latter chapters.

• The Laplace transform transforms the convolution of two general operators
M and S to the product of the Laplace transform of each.

LT
[
(M ∗ S) (t)

]
=

∫ ∞

0

e−ztdt

∫ t

0

dt′M (t− t′)S (t′)

=

∫ ∞

0

dt′
∫ ∞

t′
dte−ztM (t− t′)S (t′)

=

∫ ∞

0

dt′
∫ ∞

0

dse−z(s+t′)M (s)S (t′)

=

∫ ∞

0

dse−zsM (s)

∫ ∞

0

dt′e−zt′S (t′) = M̂ (z) Ŝ (z) .

(3.17)

• The LT of the derivative in time domain gets transformed to an ordinary
algebraic expression in Laplace domain.

LT
[
∂tS (t)

]
=

∫ ∞

0

dte−zt∂tS (t)
PI
= −S (0) + zŜ (z) (3.18)
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• LT is also very useful to analyze the long time values of an observable.

lim
z→0

zŜ (z) = lim
z→0

LT
[
∂tS (t)

]
+ S(0) =

∫ ∞

0

dt∂tS (t) + S(0) = lim
t→∞

S (t)

(3.19)

• Es an example we present the Laplace transform of important functions
frequently used in this work. For a general operator A and a real valued
time variable t we write:

LT
[
eAt

]
(z) =

∫ t

0

dte−zteAt =
[
zI−A

]−1

, (3.20)

LT

[(
t

t0

)−α
]
(z) = zα−1

Euler gamma
function︷ ︸︸ ︷

Γ(1− α) /t0, α, t0 ∈ R ∧ α < 1. (3.21)

By using the Laplace transform of the exponential function we can prove the
Dyson decomposition formula used to evaluate exponentials of sums of noncom-
muting operators like the Baker-Campbell-Hausdorff formula known from quantum
mechanics.

LT
[
e(A+B)t

]
(z) =

[
zI−A−B

]−1

=
[
zI−A

]−1

+
[
zI−A

]−1

B
[
zI−A−B

]−1

= LT
[
eAt

]
(z) + LT

[
eAt

]
(z)LT

[
Be(A+B)t

]
(z),

(3.22)

e(A+B)t = eAt +

∫ t

0

eAt′Be(A+B)(t−t′)dt′ ≡ eAt +

∫ t

0

e(A+B)t′BeA(t−t′)dt′ . (3.23)

Unlike the Baker-Campbell-Hausdorff expansion formula the Dyson decomposition
is an exact conversion and is better suited for non-equilibrium problems where the
time evolution operator is not nilpotent and the expansion can not be stopped
after finite number of terms.

3.2.2 Mori-Zwanzig Equation of Motion

With the Dyson decomposition identity and the Laplace transform we derived
sufficient tools to proceed further by analyzing the dynamics of the time depen-
dent density correlator. The projection formalism of Mori and Zwanzig is based
on separating “relevant” and “irrelevant” variables by introducing projectors P
and Q. In the case of active Brownian disks density function ρl(�q) is a relevant
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variable and can be used to project to it. Also a product of densities is a relevant
variable and will be used in the next section by performing the Mode Coupling
approximation.
We recall the definition of the time dependent density correlator from the last
chapter (3.4).

Sl,l′ (�q, t) =
1

N

〈
ρl (�q)

∗ eΩ
†tρl′ (�q)

〉
. (3.24)

To split the observable in relevant and irrelevant components we have to intro-
duce a projector P which projects into the density state and the corresponding
projector Q, that is perpendicular to P . In other words the projector P projects
to the relevant components and the projector Q to the irrelevant components of
an observable.

P =
∑
l,l′,�q

∣∣∣ρl (�q)〉Nl,l′
〈
ρl′ (�q)

∗
∣∣∣, Q = I− P . (3.25)

Since P and Q are projectors they fulfill the projector properties. Applying a
projector for the second time to an observable should not change the result, so the
projector is idempotent and the normalization factor Nl,l′ can be determined.

P
!
= PP =

∑
l1,l2,�q
l3,l4,�p

∣∣∣ρl1 (�q)〉Nl1,l2

〈
ρl2 (�q)

∗ ρl3 (�p)
〉

︸ ︷︷ ︸
NSl2,l3

δ�q,�p

Nl3,l4

〈
ρl4 (�p)

∗
∣∣∣,

⇒ P =
1

N

∑
l,l′,�q

∣∣∣ρl (�q)〉S−1
l,l′ (�q)

〈
ρl′ (�q)

∗
∣∣∣. (3.26)

By construction P and Q are perpendicular to each other and both projectors
applied to an observable vanish PQ = QP = 0.
Using the projectors P , Q and the Dyson decomposition allows us to rewrite
the time evolution equation for the density correlator as an integro-differential
equation with a memory kernel containing all the information about the past.



3.2. PROJECTION FORMALISM 27

∂tSl,l′ (�q, t) =
1

N

〈
ρl (�q)

∗ Ω†eΩ
†tρl′ (�q)

〉
=

1

N

〈
ρl (�q)

∗ Ω†

I︷ ︸︸ ︷(
P +Q

)
eΩ

†tρl′ (�q)
〉

=
1

N

〈
ρl (�q)

∗ Ω†QeΩ
†tρl′ (�q)

〉
+

1

N2

∑
l1,l2

〈
ρl (�q)

∗ Ω†ρl1 (�q)
〉

︸ ︷︷ ︸
−Nωl,l1

(�q)

S−1
l1,l2

(�q)
〈
ρl2 (�q)

∗ eΩ
†tρl′ (�q)

〉
3.22
= −

∑
l1,l2

ωl,l1 (�q)S
−1
l1,l2

(�q)Sl2,l′ (�q, t)

+
1

N

∫ t

0

dt′
〈
ρl (q)

∗ Ω†QeΩ
†Q(t−t′)Ω†P eΩ

†t′ρl′ (q)
〉

=−
∑
l1,l2

ωl,l1 (�q)S
−1
l1,l2

(�q)Sl2,l′ (�q, t)

+
∑
l1,l2

∫ t

0

dt′Ml,l1 (�q, t− t′)S−1
l1,l2

(�q)Sl2,l′ (�q, t
′) .

(3.27)

The final equation can also be written in a matrix notation where the partial
derivative and the integral act component wise.

∂tS (�q, t) = −ω (�q)S−1 (�q)S (�q, t) +

∫ t

0

dt′M (�q, t− t′)S−1 (�q)S (�q, t′) , (3.28)

where a frequency matrix ω and the memory kernel matrix M were defined.

ωl1,l2(�q) = − 1

N

〈
ρl1 (�q)

∗ Ω†ρl2 (�q)
〉
,

Ml1,l2(�q, t) =
1

N

〈
ρl1 (�q)

∗ Ω†QeQΩ†QtQΩ†ρl2 (�q)
〉
.

(3.29)

It is remarkable that although the equation (3.28) looks much more complicated
than the definition from last section (3.4), from a mathematical point of view they
are identical.
For deeper understanding of the equation (3.28) especially to analyze its long time
behavior we transform it into the Laplace space. For better readability we omit
the wavenumber dependence.

zS(z)− S = −ωS−1S(z) +M (z)S−1S(z)

⇒ S(z) =
[
zI+ ωS−1 −M (z)S−1

]−1

S.
(3.30)
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For very high densities when the system exhibits glassy behavior the density cor-
relator decays to finite value for very long times. Finite long time value in real
space corresponds to 1/z pole for the correlator in Laplace space as z → 0. To
achieve a 1/z divergence the frequency function ω and the memory kernel M (z)
have to cancel each other as z → 0.

Glassy state: lim
z→0

(
ω −M (z)

)
= 0, (3.31)

this kind of condition is very unstable under further approximations of the memory
kernel that will be done in the next section. In particular the expression ω−M (z)
can become negative which is a further problem. On the other hand approxima-
tions of M are necessary to close the equation (3.28).
To describe the glassy dynamics properly we need to do a second projection of the
equation (3.28), successfully performed for passive Brownian particles by Szamel
and Löwen [24].
The goal is now to find a projector which generates a second type of memory kernel

m, with m−1(z)
!
= 0 as z → 0 in the glassy state. That kind of condition is much

more stable under approximations and easily satisfied by limt→∞ m(t) = const.
One possible projector projecting to relevant variables would be:

P1 = − 1

N

∑
l1,l2,�q

∣∣∣ρl1 (�q)〉ω−1
l1,l2

(�q)
〈
ρl2 (�q)

∗ Ω†
∣∣∣, Q1 = I− P1, (3.32)

with the normalization factor −1/Nω−1
l1,l2

(�q) chosen to fulfill the idempotency cri-
terion. We apply the Dyson decomposition formula at the original memory kernel
from (3.29).

Ml,l′ (�q, t) =
1

N

〈
ρl (�q)

∗ Ω†eQΩ†

I︷ ︸︸ ︷
(P1 +Q1) tQΩ†ρl′ (�q)

〉
3.22
=

1

N

〈
ρl (�q)

∗ Ω†eQΩ†Q1tQΩ†ρl′ (�q)
〉

+
1

N

∫ t

0

dt′
〈
ρl (�q)

∗ Ω†eQΩ†Q1t′QΩ†P1e
QΩ†(t−t′)QΩ†ρl′ (�q)

〉
=ml.l′ (�q, t)−

∑
l1,l2

∫ t

0

dt′ml,l1 (�q, t
′)ω−1

l1,l2
(�q)Ml2,l′ (�q, t− t′) ,

(3.33)

or written as a matrix

M (�q, t) = m (�q, t)−
∫ t

0

dt′m (�q, t′)ω−1(�q)M (�q, t− t′) . (3.34)
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The memory kernel m also called irreducible memory kernel (or friction kernel
in the literature), has almost identical structure as M , the only difference is the
appearance of the irreducible Smoluchowski operator instead of the full Smolu-
chowski operator.

ml1,l2(�q, t) =
1

N

〈
ρl1 (�q)

∗ Ω†QeQΩ†,irrQtQΩ†ρl2 (�q)
〉
,

Ω†,irr︸︷︷︸
Irreducible Smoluchowski

operator

= Ω†Q1 = Ω† +
1

N

∑
l1,l2,�q

Ω†
∣∣∣ρl1 (�q)〉ω−1

l1,l2
(�q)

〈
ρl2 (�q)

∗ Ω†
∣∣∣. (3.35)

In order to rewrite the equation of motion (3.28) in terms of the irreducible memory
kernel, the integral equation (3.34) has to be transformed to the Laplace domain
(the wavenumbers will be omitted).

M (z) = m(z)−m(z)ω−1M (z) ⇒ M (z) =
[
m−1(z) + ω−1

]−1

, (3.36)

inserting above expression in (3.28) leads to:

zS(z)− S = −ωS−1S(z) +
[
m−1(z) + ω−1

]−1

S−1S(z)

⇒ zS(z)− S = −ωS−1S(z)−m(z)ω−1
[
zS(z)− S

]
,

(3.37)

in the time domain corresponding to

∂tS (�q, t) = −ω (�q)S−1 (�q)S (�q, t)−
∫ t

0

dt′m (�q, t− t′)ω−1 (�q) ∂t′S (�q, t′) .

(3.38)
The key equation describing the dynamics of the density correlator as an integro-
differential equation containing the irreducible memory kernel that will be approx-
imated in the next section by applying the Mode Coupling theory was derived.
To check that the second projection into the relevant variables corresponds to
the more stable condition for m we again analyze the long time behavior of the
correlator.

S(z) =
[
Iz + ωS−1 − (

m−1(z) + ω−1
)−1

S−1
]−1

S (3.39)

The correlator will have a 1/z pole as z → 0 if:

lim
z→0

[
ω − (

m−1 + ω−1
)−1

]
!
= 0 ⇒ lim

z→0
m(z) → ∞. (3.40)

Indeed the irreducible memory kernel needs to have a finite long time value to
exhibit glassy behavior of the system. As shown in later chapters using the irre-
ducible memory kernel is sufficient to describe glassy behavior. So the translational
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degrees of freedom will “freeze” but simultaneously the rotations will also freeze,
which is not the desired result by working with hard disks with zero surface fric-
tion. To avoid those problems the memory kernel will need to get splitted in its
translational and rotational parts before making the MCT approximations. The
tensorial structure of the frequency matrix allows us to achieve the splitting of
translational and rotational relaxation the first being nonergodic and latter er-
godic. The splitting will be done in detail in the next section.
The equation of motion (3.28) contains four tensorial quantities.

• Static structure factor matrix S(�q): An accessible quantity derived in last
section.

• Dynamical density correlator S(�q, t): The quantity we want to determine.

• Frequency matrix ω(�q): Time independent quantity can be calculated ana-
lytically by evaluating the equilibrium average over the density function.

• Irreducible memory kernel m(�q, t). Up to now not an accessible quantity
having a very complicated mathematical structure.

To close the equation of motion (3.28) introducing a meaningful approximation
for m ideally as a function of the density correlator is needed.

3.3 Mode Coupling Theory

3.3.1 Approximation of the Memory Kernel

The irreducible memory kernel defined in the last section contains an exponential
of the Smoluchowski operator acting on the density function. It is not clear how
the memory kernel can be approximated by standard techniques like expanding
the exponential function in power series. A nonperturbative approximation of
the memory kernel was introduced by Götze [23] for glassy systems, the so-called
Mode Coupling approximation. The approximation is based on a second projection
into the space spanned by a product of two density functions and a simulations
approximation of the irreducible Smoluchowski operator by the original one. This
kind of approximation is not a controlled approximation and it is very difficult
to estimate the error related to the simplifications. On the other hand the Mode
coupling theory describes many phenomena related to dense systems qualitatively
and quantitatively precisely (like the caging effect).
From now on the multiindex notation popularized by Rolf Schilling [38–40] in his
work about molecular liquids will be used, with the following conventions.

• ρi ≡ ρli (�qi) with i ∈ N.
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• Si,j ≡ Sli,lj(�qi, �qj) = Sli,lj(�qi)δ�qi,�qj with i, j ∈ N.

• Si,j(t) ≡ Sli,lj(�qi, �qj, t) = Sli,lj(�qi, t)δ�qi,�qj with i, j ∈ N.

• ∑
i ≡

∑
li,�qi

with i ∈ N.

The projector projecting to the product state of two density functions can be
defined as,

P2 =
∑
1,2,3,4

∣∣∣ρ1ρ2〉g1,2,3,4

〈
ρ∗3ρ

∗
4

∣∣∣, (3.41)

with the normalization tensor g to be chosen such that P2 will become idempotent.
To achieve that the normalization tensor should satisfy the following condition
written in a symmetrized form.∑

3,4

g1,2,3,4

〈
ρ∗3ρ

∗
4ρ1′ρ2′

〉
=

1

2

[
δ1,1′δ2,2′ + δ1,2′δ2,1′

]
. (3.42)

Using the two state projector the memory kernel can be projected into the product
state, where the exponential function gets “sandwiched” by two projectors.

ml,l′ (�q, t)

First
approximation︷︸︸︷≈ 1

N

〈
ρl (�q)

∗ Ω†QP2e
Ω†,irrtP2QΩ†ρl′ (�q)

〉
=

1

N

∑
1,···4
1′,···4′

〈
ρl(�q)

∗Ω†Qρ1ρ2

〉
g1,2,3,4︸ ︷︷ ︸

:=L
Left Vertex

〈
ρ∗3ρ

∗
4e

Ω†,irrtρ1′ρ2′
〉

︸ ︷︷ ︸
Four point function

g1′,2′,3′,4′
〈
ρ∗3′ρ

∗
4′QΩ†ρl′ (�q)

〉
︸ ︷︷ ︸

:=R
Right Vertex

.

(3.43)

The four point function is approximated by the Kawasaki factorization [45] by
expressing the averages of products as products of averages.〈

ρ∗3ρ
∗
4e

Ω†,irrtρ1′ρ2′
〉
≈
〈
ρ∗3e

Ω†tρ1′
〉〈

ρ∗4e
Ω†tρ2′

〉
+
〈
ρ∗3e

Ω†tρ2′
〉〈

ρ∗4e
Ω†tρ1′

〉
= N2

[
S3,1′ (t)S4,2′ (t) + S3,2′ (t)S4,1′ (t)

]
.

(3.44)

Evaluating the later equation at time zero and making use of the condition (3.42)
allows us to determine the normalization tensor g.

g1,2,3,4 ≈ 1

2N2
S−1

1,3S
−1
2,4 . (3.45)

To calculate the left and right vertex defined in equation (3.43) is very cumbersome
but straightforward and is performed in great detail in the appendix A. After
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evaluating the vertices the memory kernel can be written in its final form depending
only on statical structure factor and the dynamical density correlator. For a more
concise way of writing we change the wave vector to the corresponding tuple �q →
{q, αq} with the magnitude q and the angle with respect to the x-axis αq, and
introduce a shorthand operator ±l1

l2
≡ l1 − l2.

ωl1,l2 (�q) =
(
Drl2

2 +Dtq
2
)
δl1,l2 −

iv0
2
qe±

l2
l1
iαqSl1,l1 (q) δ|l1−l2|,1, (3.46a)

Ll
l1,l2

(
�k, �p, �q

)
= −Dt

(
�q ·

[
�kS−1

l1,l1
(k) + �pS−1

l2,l2
(p)

]
− q2

)
δl,l1+l2

+
iv0
2
Sl,l (q)

(
ke±

l1,l2
l iαkSl−l2,l−l2 (k)S

−1
l1,l1

(k)

+pe±
l1,l2
l iαpSl−l1,l−l1 (p)S

−1
l2,l2

(p)− qe±
l1,l2
l iαq

)
δ|l−l1−l2|,1,

(3.46b)

Rl3,l4
l′

(
�k, �p, �q

)
= −Dt

(
�q ·

[
�kS−1

l3,l3
(k) + �pS−1

l4,l4
(p)

]
− q2

)
δl3+l4,l′ , (3.46c)

ml,l′ (�q, t) ≈ 1

2N

∑
�p

l1···l4

Ll
l1,l2

(�q − �p, �p, �q)Sl1,l3 (�q − �p, t)Sl2,l4 (�p, t)R
l3,l4
l′ (�q − �p, �p, �q) .

(3.46d)

The equations (3.46) include all the quantities needed to close the equation of
motion for the dynamical density correlator, and can be solved uniquely under
the knowledge of the static structure factor. By taking a close look to the above
equations one notices that the rotational diffusion Dr enters the EOM only in the
diagonal components of frequency matrix ω apart from the l = 0, l′ = 0 mode,
therefore the dependence of the translational part of the correlator S0,0(�q, t) to the
rotational diffusion is only possible by back coupling of other components of S(�q, t)
to the translational part. The frequency matrix is a tridiagonal matrix where the
l±1 shift in the orientational indices is a consequence of the orientational vector �o
entering the Smoluchowski operator. Having no l ± 2 terms in the frequency ma-
trix will later encourage to choose the orientational cutoff to be Λl = 1, as higher
modes will barely influence the translational motion we are mainly interested in.
We also point out the covariant and contravariant index notation for the vertices
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that will become important in the next section by investigating the transformation
properties of the memory kernel.
Although the static structure factor is isotropic in q and the wave vector can be
replaced by its magnitude the dynamic density correlator does depend on the wave
vector. The anisotropy is a consequence of the orientational vector �oi making the
direction of the wave vector distinguishable. To be still able of reducing a two
dimensional problem to a single dimension it is necessary to analyze the transfor-
mation properties of the correlator after the MCT approximation, especially how
it changes under the rotation of the wave vector {q, αq} → {q, αq + β}.

3.3.2 Transformation Properties after MCT Approxima-
tion

In the section 3.1.3 the transformation behavior of the density correlator under the
rotation of the wave vector �q was shown. It is important to prove that the MCT
approximations did not destroy the transformation property (3.15) of S(�q, t). The
prove can be done by rotating the wave vector �q in the EOM (3.28) by an angle β
and checking how S changes by the transformation. It is useful first to derive the
transformation rules for the frequency matrix ω and the memory kernel m.(
u (β)ω ({q, α})u† (β)

)
l1,l2

=
∑
l,l′

ei(l2−l1)βδl,l1δl′,l2ωl,l′ ({q, α})

=
(
Drl

2
2 +Dtq

2
)
δl1,l2 −

iv0
2
qe±

l2
l1i(α+β)Sl1,l1 (q) δ|l1−l2|,1

=ωl1,l2 ({q, α + β}) .
(3.47)

The frequency matrix obeys the same transformation rule like the correlator. To
check how the memory kernel transforms we have to take a close look at the
vertices. The left and right vertex are rank three tensors and therefore three
unitary u matrices are needed to rotate all wave vectors.∑

i,j,k

ul,i (β)L
i
j,k ({k, αk}, {p, αp}, {q, αq})u†

j,l1
(β)u†

k,l2
(β)

= ei(l1+l2−l)βLl
l1,l2

({k, αk}, {p, αp}, {q, αq})
= Ll

l1,l2
({k, αk + β}, {p, αp + β}, {q, αq + β}) .

(3.48)

For every contravariant index a u and for every covariant index u† is used (that
was the reason to introduce the super- and subindex notation at first place). The
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right vertex obeys the same transformation rules as the left vertex.

∑
i,j,k

ul3,i (β)ul4,j (β)R
i,j
k ({k, αk}, {p, αp}, {q, αq})u†

l′,k (β)

= ei(l
′−l3−l4)βRl3,l4

l′ ({k, αk}, {p, αp}, {q, αq})
= Rl3,l4

l′ ({k, αk + β}, {p, αp + β}, {q, αq + β}) .

(3.49)

To derive the transformation rule for m we assume the dynamical density corre-
lator that enters the memory kernel to have the desired transformation property
(3.15) and prove it in the next step.

ml,l′ ({q, αq + β}, t) ≈ 1

2N

∑
p

l1···l4

[
Ll

l1,l2
({k, αk + β}, {p, αp + β}, {q, αq + β})

× Sl1,l3 ({k, αk + β}, t)Sl2,l4 ({p.αp + β}, t)
×Rl3,l4

l′ ({k, αk + β}, {p.αp + β}, {q, αq + β})
]

=
1

2N

∑
�p

l1···l4

[∑
i,j,s

ul,i (β)L
i
j,s ({k, αk}, {p, αp}, {q, αq})u†

j,l1
(β)u†

s,l2
(β)

×
∑
n,m

ul1,n (β)Sn,m ({k, αk}, t)u†
m,l3

(β)

×
∑
n′,m′

ul2,n′ (β)Sn′,m′ ({p, αp}, t)u†
m′,l4 (β)

×
∑
i′,j′,s′

ul3,i′ (β)ul4,j′ (β)R
i′,j′
s′ ({k, αk}, {p.αp}, {q, αq})u†

s′,l′ (β)
]

=
1

2N

∑
i,j,s

ul,i (β)L
i
j,s ({k, αk}, {p, αp}, {q, αq})

×
∑
n,m,i′

Sn,m ({k, αk}, t) δj,nδm,i′
∑

n′,m′,j′
Sn′,m′ ({p, αp}, t) δs,n′δm′,j′

×
∑
s′
Ri′,j′

s′ ({k, αk}, {p.αp}, {q, αq})u†
s′,l′ (β)

=
1

2N

∑
i,j,s

i′,j′,s′

ul,i (β)L
i
j,s ({k, αk}, {p, αp}, {q, αq})

×Sj,i′ ({k, αk}, t)Ss,j′ ({p, αp}, t)
×Ri′,j′

s′ ({k, αk}, {p.αp}, {q, αq})u†
s′,l′ (β)
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=
∑
i,s′

ul,i (β)mi,s′ ({q, αq}, t)u†
s′,l′ (β) =

(
u (β)m ({q, αq}, t)u† (β)

)
l,l′
.

(3.50)

The assumption made to prove the transformation relation of the memory kernel
can be validated in the next step.

S ({q, αq + β}, t) = −S (q)u (β)ω−1 ({q, αq})u† (β)u (β) ∂tS ({q, αq}, t)u† (β)

−S (q)u (β)ω−1 ({q, αq})u† (β)
∫ t

0

dt′u (β)m ({q, αq}, t− t′)u† (β)

× u (β)ω−1 ({q, αq})u† (β)u (β) ∂t′S ({q, αq}, t′)u† (β)

= u (β)

[
− S (q)ω−1 ({q, αq})

(
∂tS ({q, αq}, t) +

∫ t

0

dt′m ({q, αq}, t− t′)

× ω−1 ({q, αq}) ∂t′S ({q, αq}, t′)
)]

u† (β)

= u (β)S ({q, αq}, t)u† (β) .
(3.51)

Finally the transformation relations for the density correlator after the MCT ap-
proximations could be proven. Being able of determining the density function of a
wave vector pointing in any direction from a single wave vector, makes it possible
to simplify the EOM 3.38 significantly. Making use of the transformation tensor we
can fix the direction of the wave vector �q of the Density correlator to any specific
direction and express all other wave vectors as a rotation of it.

3.3.3 Defining the Coordinate System

In the previous section a method to transform density correlators of any wave
vector �q into each other, by applying the unitary transformation matrix u was
developed. In this section a coordinate system will be introduced where the di-
rection of the wave vector �q will be chosen to point into positive y direction. All
quantities depending on other orientation of the wave vector get aligned into the
desired direction by using the transformation properties from last section. The
orientation of the wave vector is denoted as a superscript e.g. S

π
2 (q, t) is the den-

sity correlator with the wave vector pointing into positive y direction and having
a magnitude of q. The summation over the wave vector appearing in the memory
kernel can be changed to a double integral well known from thermodynamics.∑

�p

∼= V

(2π)2

∫
d2p ≡ V

(2π)2

∫
dpx

∫
dpy, (3.52)
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with the total volume of the system V . After the change of variables (px, py) →
(p, k) with p = |�p|, k =

∣∣∣�k∣∣∣ and �q = �k + �p,

�q

py

px

�p

�k

αq =
π
2

αp = sin−1
(

py
p

)

αk = π − sin−1
(

ky
k

) py =
q2 + p2 − k2

2q
, px =

√
p2 − p2y

∂ppy =
p

q
, ∂kpy = −k

q

∂ppx =
p− pyp

q

px
, ∂kpx =

pyk

pxq
,

(3.53)

and calculating the Jacobian of the transformation,

J =

(
p− pyp

q

px

pyk

pxq
p
q

−k
q

)
, |det (J )| = pk

qpx
=

2pk√
4q2p2 − (q2 + p2 − k2)2

, (3.54)

the two dimensional sum can be expressed.∑
�p

∼= V

(2π)2

∫
d2p =

4V

(2π)2

∫ ∞

0

dp

∫ q+p

|q−p|
dk

pk√
4q2p2 − (q2 + p2 − k2)2

. (3.55)

The extra factor 2 in the last equality is a consequence of integrating over (0,∞)
instead of (−∞,∞). It should be noticed that the above transformation can
not be performed for zero wavenumber limit and needs to be treated differently.
Also for finite wavenumbers the integrand in the equation (3.55) can diverge and
possibly be an issue evaluating the integrals numerically (to avoid the problems
with the divergent integrand at the boundaries during numerical calculations open
Newton-Cotes formulas are used). The equations (3.46) can be expressed in the
above coordinates.

L
l,π

2
l1,l2

(k, p, q) = −Dt

(
q2 + k2 − p2

2
S−1

l1,l1
(k) +

q2 + p2 − k2

2
S−1

l2,l2
(p)− q2

)
δl,l1+l2

+
iv0
2
Sl,l (q)

[
ke±

l1,l2
l iαkSl−l2,l−l2 (k)S

−1
l1,l1

(k)

+pe±
l1,l2
l iαpSl−l1,l−l1 (p)S

−1
l2,l2

(p)∓l1,l2
l iq

]
δ|l−l1−l2|,1,

(3.56a)

R
l3,l4,

π
2

l′ (k, p, q) = −Dt

(
q2 + k2 − p2

2
S−1

l3,l3
(k) +

q2 + p2 − k2

2
S−1

l4,l4
(p)− q2

)
δl3+l4,l′ ,

(3.56b)
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m
π
2

l,l′ (q, t) ≈
2

n (2π)2

∑
l1···l4

∫ ∞

0

dp

∫ q+p

|q−p|
dk

pkL
l,π

2
l1,l2

(k, p, q)R
l3,l4,

π
2

l′ (k, p, q)√
4q2p2 − (q2 + p2 − k2)2

× e−il1(αk−π
2 )eil3(αk−π

2 )S
π
2
l1,l3

(k, t)

× e−il2(αp−π
2 )eil4(αp−π

2 )S
π
2
l2,l4

(p, t) ,

(3.56c)

ω
π
2
l1,l2

(q) =
(
Drl2

2 +Dtq
2
)
δl1,l2 +

v0q

2
(l2 − l1)Sl1,l1 (q) δ|l1−l2|,1, (3.56d)

∂tS
π
2 (q, t) = −ω

π
2 (q)S−1 (q)S

π
2 (q, t)−

∫ t

0

dt′m
π
2 (q, t− t′)ω

π
2
−1

(q) ∂t′S
π
2 (q, t′) .

(3.56e)
From now on we skip the superscript denoting the orientation of the wave vector
�q. The equation of motion (3.56e) in its final form is a self-consistent (the memory
kernel depends only on the density correlator) itegro differential equation describ-
ing the dynamics of the density correlator uniquely (after the knowledge of the
static structure factor).
The EOM (3.56e) can be solved numerically by the methods developed in the ap-
pendix B over many orders of magnitude in time (that is important by analyzing
the glassy dynamics). The matrix component S0,0(�q, t) is the key quantity in the
theory allowing us to investigate many important phenomena like glass transition
and caging.
For the orientational index the cutoff Λl = 1 will be chosen (l ∈ {−1, 0, 1}). Setting
the cutoff to one is motivated by the structure of the frequency matrix containing
only l±1 shifts, thus higher modes of the correlator enter the equation for S0,0(�q, t)
not directly and only by back-coupling in the memory kernelm. Choosing a higher
orientational cutoff is also very demanding from the numerical point of view (more
details about the complexity in appendix B).

ω(q) =

⎛⎝Dr +Dtq
2 v0q

2
0

−v0q
2
S̃q Dtq

2 v0q
2
S̃q

0 −v0q
2

Dr +Dtq
2

⎞⎠ , S(t) =

⎛⎝S−1,−1 S−1,0 S−1,1

S0,−1 S0,0 S0,1

S1,−1 S1,0 S1,1

⎞⎠ .

(3.57)
To demonstrate that the higher S modes (l± 2) do not couple to S0,0 directly we
consider again the case of a single active Brownian disk in a solvent. For a single
swimmer there is no interaction potential and the memory kernel will vanish (since
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it is a force-force correlator). The static structure factor matrix also simplifies to
unity and the equation (3.56e) can be solved analytically.

∂tS (q, t) = −ω (q)S (q, t) , ⇒ S (q, t) = e−ω(q)t. (3.58)

To calculate the matrix exponential of the frequency matrix it needs to be di-
agonalized first. The frequency matrix ω in the space of restricted orientational
indices (l ∈ {−1.0.1}) can be diagonalized with the transformation matrices U
having the eigenvectors as rows.

ω(q) = Uω̂(q)U−1, ⇒ e−ω(q)t = Ue−ω̂(q)tU−1, (3.59)

where ω̂ is the diagonalized frequency matrix. To calculate matrix exponential of
a diagonal matrix one has to calculate the exponential of each entry.
The density correlator of a single particle can be related to the mean-squared
displacement by taking the q → 0 limit.

S0,0(�q, t) =
〈
e−i�q·(�x(t)−�x(0))

〉 ≡ 〈
e−i�q·�r(t)〉 = e−

1
4
q2〈δr2(t)〉 = 1− 1

4
q2
〈
δr2(t)

〉
+O (

q4
)

⇒ 〈
δr2(t)

〉
= lim

q→0

4

q2

(
1− S0,0(q, t)

)
.

(3.60)

The solution of equation (3.58) for S0,0(q, t) can be expanded in powers of q.

S0,0(q, t) = 1− q2

2D2
r

( (−1 + e−Drt
)
v20 +Dr

(
2DrDt + v20

)
t
)
+O (

q3
)
. (3.61)

The corresponding time dependent mean-squared displacement:〈
δr2(t)

〉
=

2

D2
r

( (−1 + e−Drt
)
v20 +Dr

(
2DrDt + v20

)
t
)
. (3.62)

We recognize the formula for the mean-squared displacement from the last chap-
ter where it got determined by using the Langevin equation for a single Brownian
particle. So for a model where the memory kernel vanishes trivially higher modes
of S(q, t) do not couple to S0,0(t) and thus it is sufficient to consider only the
orientations of l ∈ {−1, 0, 1}.
We turn back to the full EOM (3.56e) and present numerical results for dif-
ferent matrix elements of the density correlator to motivate a further splitting
of the memory kernel in rotational and translational parts. It is convenient to
introduce a normalized density correlator (also referred as density correlator)
Φ(q, t) ≡ S(q, t)S−1(q).
The packing fraction will be chosen such, that the passive system is in a glassy
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state and it gets molten by continuous increase of the activity at a constant ro-
tational diffusion. The top panel of the Figure (3.3) shows the typical shape of a
correlator in two different states. The black and blue lines denote a fluid phase
where the correlator decays to zero after some time. The red and green lines
correspond to a glassy state characterized by a nonvanishing long time value the
so-called nonergodicity parameter. As illustrated in the figure increasing the activ-
ity force softens the system and if it exceeds some critical value it melts the glass.
The critical value for the activity for this parameters is 3 < vcrit0 < 4. The critical
point or the glass transition point is characterized by a discontinuous jump (from
finite value to zero) of the nonergodicity parameter by an infinitesimal change of
the activity force. In other words the glass transition has bifurcation properties.
If we choose the packing fraction to be below the critical packing fraction for the
passive system, the system will exhibit a fluid like behavior for all activity forces
as shown in the bottom part of Figure (3.3). Similarly to the previous system also
for smaller packing fractions the system gets softened by the activity. So below
the critical packing the system remains always ergodic independent of the activity.
The activity only changes the time scale the system needs to relax.
Taking the plot 3.3 into consideration the theory describes the glassy behavior and
the influence of the activity on the system, qualitatively correctly (in agreement
with the simulation studies [13]).
Up to now we only looked at the numerical results for the specific matrix ele-
ment of the density correlator Φ0,0(q, t) that describes the structural properties of
the system and does not say anything about the rotational behavior of the par-
ticles. To analyze the rotational properties of the particles we take a close look
at Φ1,1(q, t) that not only depends on the structure of the system it also contains
information about the angular correlation. As active Brownian hard disks with no
friction on the surface are considered, for long times a completely uncorrelated di-
rections of the particles with the initial orientations is expected. The time needed
for the system to forget about the initial directions of the particles, depends on
the rotational diffusion (inverse proportional).

S1,1(q, t) =
1

N

∑
i,j

〈
e−i�q·(�x(t)−�x(0))e−i(ϕ(t)−ϕ(0))

〉
. (3.63)

For the correlator Φ1,1(q, t) it means that it remains always ergodic as long Dr >
0. In contradiction to the expectations the Figure 3.4 illustrates a nonergodic
behavior for both matrix elements Φ0,0 and Φ1,1 of the correlator above the glass
transition point.
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Figure 3.3: The (0, 0) mode of the dynamical density correlator Φ0,0(q, t) as a
function of time for a single wavenumber q. In the top panel the packing fraction φ
is above the critical packing fraction of the passive system. The rotational diffusion
is fixed. Different colors denote different activity velocities. For the bottom panel
the packing fraction is chosen to be slightly below the packing fraction of the
passive system.
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Figure 3.4: Two different matrix elements of the density correlator, Φ0,0(q, t) and
Φ1,1(q, t) as a function of time for a single wavenumber q. The packing fraction φ is
above the critical packing fraction of the passive system. The rotational diffusion
is fixed. Solid lines correspond to Φ0,0 and dashed lines to Φ1,1. Different colors
denote different activity velocities.
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3.4 Nonergodicity Parameter

Sometimes it is not useful to determine the whole transient dynamics of the cor-
relator to understand the long time behavior of the system. The long time values
of the correlator are called the nonergodicity parameter F (q) = limt→∞ S(q, t)
(like mentioned in the previous section). To determine the long time values of
the correlator it is more convenient to transform the EOM (3.56e) to the Laplace
space, where the integro-differential equation gets converted to an algebraic ma-
trix equation (wavenumbers omitted for better readability) that can be solved
iteratively.

zS(z)− S = −ωS−1S(z)−m(z)ω−1
[
zS(z)− S

]
. (3.64)

For finite long time values the correlator can be expanded in powers of the Laplace
variable z.

S(z) =
F

z
+ F0 +O(z), m(z) =

m[F ]

z
+m0 +O(z). (3.65)

The 1/z poles for z → 0 is responsible for the finite long time value in time
domain. After inserting the expansion formulas into the Laplace transformed
EOM a recursive expression for the nonergodicity parameter F can be found.

F =
[
ωm−1[F ]ωS−1 + I

]−1

S. (3.66)

ω is a fully occupied matrix and if the memory matrix is not identical to the zero
matrix the expression in square brackets will also be a fully occupied matrix, thus
the recursive equation for F can have a trivial solution when the nonergodicity
parameter is a zero matrix (e.g. in fluid state) or all matrix elements of F are
nonvanishing because of the structure of the equation.
The simultaneous freezing of the orientational and translational degrees of freedom
for hard disks is an evidence that the irreducible memory kernel obtained by the
second projection step is sufficient to describe the structural properties (e.g. glass
transition, caging) of the system qualitatively correctly but is not well suited to
understand the rotational properties of the particles and thus the influence of the
rotational diffusion at the system properly. That encourages us to make a further
modification of the memory kernel that will fix the problems of the “naive” theory
(“naive” � without splitting the memory kernel in translational and rotational
parts).
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3.5 Translational and Rotational Splitting of the

Memory Kernel

Following the steps of the Mori-Zwanzig projection formalism we did rewrite the
equations such that the irreducible memory kernel needed to diverge like 1/z for
z → 0 in Laplace domain to exhibit glassy dynamics. But we did not take into
account the tensorial structure of the theory (not all components need to have a
finite long time value). The translational and rotational behavior are completely
different and also need to be treated differently. To make the memory kernel more
robust under the MCT approximations we have to put in more knowledge about
the correlators by introducing the irreducible memory kernel.
The Smoluchowski operator and all related quantities formally can be splitted in
its translational and rotational parts.

Ω† =
∑
i

Dt

(
�∂i + β �Fi

)
· �∂i + v0�oi · �∂i︸ ︷︷ ︸

Ω†
T

+
∑
i

Dr∂
2
φi︸ ︷︷ ︸

Ω†
R

= Ω†
T + Ω†

R, (3.67)

the translational and rotational parts are denoted by a sub- or superscript T and
R respectively.

ωl,l′ (�q) = − 1

N

〈
ρ∗l (�q)

(
Ω†

T + Ω†
R

)
ρl′ (�q)

〉
= ωT

l,l′ (�q) + ωR
l,l′ (�q) . (3.68)

The rotational part of the frequency matrix ωR
l,l′ (�q) = Drl

2δl,l′ is diagonal in
orientational indices and has a trivial entry for l = 0, l′ = 0, therefore it is not
invertible.
To derive an irreducible memory kernel better suited for the ABD system, the
steps from the section 3.2.2 need to be repeated for quantities intrinsically splited
in translational and rotational parts. Using the fact that the final form of the
irreducible memory kernel m is completely independent of the rotational diffusion,
one can conclude that the rotational part of the memory kernel vanishes.

M (�q, t) = MT(�q, t) +MR(�q, t) = MT(�q, t). (3.69)

The translational part of the memory kernel is related to its irreducible memory
kernel by the integral equation derived by using the Dyson decomposition formula.

MT (�q, t) = mT (�q, t)−
∫ t

0

dt′MT (�q, t′)ω−1
T (�q)mT (�q, t− t′) ,

⇔
MT (�q, z) =

[
mT−1

(�q, z) + ω−1
T (�q)

]−1

.

(3.70)
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After making use of the 3.28 and the properties of the Laplace transform a modified
equation of motion for the density correlator will be obtained.

zS (z)− S (q) = −ωS−1S (z) +M (z)S−1S (z)

⇔ S (z) =
[
z +

(
ω − (

m−1
T (z) + ω−1

T

)−1
)
S−1

]−1

S

⇔ zS (z)− S = −ωS−1S (z)−mT (z)ω−1
T

[
zS (z)− S + ωRS−1S (z)

] (3.71)

⇔ ∂tS (t) = −ωS−1S (t)−
∫ t

0

dt′mT (t− t′)ω−1
T

[
∂t′S (t′) + ωRS (t′)

]
(3.72)

The latter equation 3.72 is the final EOM for the density correlator. From mathe-
matical point of view that EOM is identical to the previous equation 3.56e, but it
has a modified structure. The convolution integral contains an extra term in the
square brackets the so-called hopping term ωRS(t). The translational part of the
irreducible memory kernel mT does not need to be calculated, it is identical to m
that was already evaluated in previous sections.
To demonstrate the benefits of the EOM 3.72 over the previous EOM 3.56e we
again analyze the long time behavior of the correlator in Laplace space, where the
expansion formulas for S and mT in powers of the Laplace variable will be used.

S(z) =
F

z
+ F0 + zF1 +O (

z2
)
,

mT(z) =
mT[F ]

z
+mT

0 + zmT
1 +O (

z2
)
.

(3.73)

After inserting 3.73 in 3.71 the following equation can be derived:

F + zF0 + z2F1 − S =− ωS−1

[
F

z
+ F0 + zF1

]
−
[
mT[F ]

z
+mT

0 + zmT
1

]
ω−1

T

[
F + zF0 + z2F1 − S + ωR

[
F

z
+ F0 + zF1

]]
.

(3.74)

We collect terms in different powers of z and take the limit z → 0 to get a recursive
equation for the long time value F .
1

z2

0 =
1

z2
mT[F ]ωRF . (3.75)

1

z

0 = −ωS−1F

z
− m[F ]

z
ω−1

T

[
F − S + ωRF0

]
−mT

0ω
RF

z
. (3.76)
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So there are two equations that have to be satisfied by the nonergodicity parameter.
In the first equation (3.75) the structure of the rotational diffusion plays a key role,
being a not fully occupied matrix. One possible solution of the equation 3.75 is
given by ωRF = 0. The latter is not a unique solution because of the structure of
the memory kernel that itself depends on the nonergodicity parameter.

0 =
∑
k

ωR
i,kFk,j = ωR

i,iFi,j ∀ {i, j} ⇒ Fi,j = 0 ∀ {i, j}i �=0 . (3.77)

If the solution is given by ωRF = 0 than all F0,j can have an finite value with a
simultaneous vanish of all other components. That kind of condition would allow
the system to have frozen translations F0,0 > 0 with relaxing rotations F1,1 = 0.
The finite values of F0,j have to obey the condition (3.76). The disadvantage of
the equation (3.76) compared to the previous recursive equation (3.66) (without
the hopping term) is the extra term F0. To get an expression for F0 it is necessary
to solve the transient dynamics first.

F0 = lim
z→0

∂z

[
zS(z)

]
= lim

z→0
∂z

∫ ∞

0

ze−ztS(t)dt =

∫ ∞

0

S(t)dt. (3.78)

The necessity of having to evaluate the time integral over the whole interval of the
density correlator to close the recursive equation for the nonergodicity parameter
ruins the elegance of the equation (3.76) being not self-consistent.
In the next chapter we will show the numerical results for the density correlator
and the nonergodicity parameter by solving the equations (3.72) and (3.76) re-
spectively. The numerical methods needed to solve integro-differential equations
with a hopping term in the convolution integral are presented in the appendix B.

3.6 Summary

This chapter is the key chapter in this thesis that includes all important quantities
needed for further numerical calculations. The dynamical density correlator matrix
was defined, and the importance of each matrix component emphasized. Calculat-
ing the density correlator is a handy way for analyzing the dynamics of the system
without keeping track of all particle trajectories. To describe the initial structure
of the system the statical structure factor was introduced, being isotropic in wave
vector and numerically easily accessible quantity by using the approximations from
Baus and Colot. To derive the equation of motion for the density correlator in
a form which is better suited for approximations than the initial definition, the
projection formalism of Mori and Zwanzig for ABD systems was used. The main
idea behind the projection formalism was to separate “relevant” and “irrelevant”
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variables, the first being conserved quantities and the later not. After following
the steps of the projection formalism an EOM for the correlator was derived that
is from the mathematical point of view identical to the initial definition. The
EOM represents an integro-differential equation with the memory kernel in the
convolution integral. To make the memory kernel more robust under approxima-
tions second projection step was used. The knowledge from the Mode Coupling
Theory of the glass transition was used to approximate the memory kernel. After
the approximations the memory kernel became an accessible quantity depending
only on the density correlator and the static structure factor as an input. After
analyzing the long time behavior of the correlator, that allowed a simultaneous
freezing of the translational and rotational degrees for hard disks a further split-
ting was encouraged. Finally the equation of motion for the density correlator
was derived, as a self-consistent integro-differential equation solved numerically in
the next chapter. The extra hopping term in the convolution integral allows the
correlator to have frozen translational degrees by a simultaneous relaxation of the
rotations.



Chapter 4

Numerical Results

In the last chapter the equation of motion for the density correlator was derived.
Since it is an integro-differential equation for matrix like functions determining an
analytic solution is hopeless and numerical methods are needed. The tools to solve
that kind of equations numerically are provided in the appendix B. We recall the
EOM the numerical results are based on.

∂tS (t) = −ωS−1S (t)−
∫ t

0

dt′mT (t− t′)ω−1
T

[
∂t′S (t′) + ωRS (t′)

]
. (4.1)

In this chapter we present numerical results for the normalized density correlator
Φ for different set of parameters. Effectively the influence of three different pa-
rameters {φ, v0, Dr} can be studied, the other two parameters {Dt, σ} are used to
define the units (so all quantities are measured in units ofDt and σ or combinations
of those). The packing fraction φ enters the equilibrium static structure factor,
the activity force v0 enters the memory kernel as well as the frequency function,
and the rotational diffusion Dr only influences ωR.

4.1 Dynamical Density Correlator

The dynamical density correlator is a matrix in space of the orientational indices.
Different components provide insight to different physical properties.

4.1.1 Φ0,0

The most important matrix element of the correlator is the l = 0, l′ = 0 element.
Setting the orientational indices to zero removes any angular dependence. So Φ0,0

is perfectly suited for studying structural properties of the system. So the cor-
relator Φ0,0 will be used to investigate the glassy dynamics and the influence of

47
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Figure 4.1: Density correlator Φ0,0 as a function of time for a passive system. The
packing fraction is chosen in the range of 0.7204 < φ < 0.7213.

different parameters at the system. To study the influence of the activity at the
glass transition point, it is useful to have the critical packing fraction φc

passive of
the passive system available. The critical packing fraction denotes the bifurcation
point in the system that separates the glassy state from the fluid state. In the Fig-
ure 4.1 the correlation function Φ of the passive system for many different packing
fractions can be observed. From that figure the location of the critical point can
be estimated 0.7208 < φc

passive < 0.7209. One should notice that the critical pack-
ing fraction depends on the discretization accuracy of the double integral over the
wavenumber space. The details about the numerical settings are presented in the
Appendix B. The current discretization used for all the plots in this chapter is a
good compromise of acceptable performance speed and accurate results. Doubling
the number of discrete q points changes only the last digit of φc

passive but the cal-
culations take 8 times longer. If the packing fraction is chosen below φc

passive the
correlator decays to zero and above it remains finite and reaches the value of the
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Figure 4.2: Density correlator Φ0,0 as a function of time for different activity
velocities v0 at fixed rotational diffusion Dr. The packing fraction is chosen below
the critical passive packing φ < φc

passive.

nonergodicity parameter. The Figures 4.2 and 4.3 illustrate the influence of the
activity at the system for two different packing fractions. In the first figure 4.2
the packing fraction is below φc

passive, so all curves remain ergodic. The increase of
the velocity only forces the correlator do decay faster. The particles with a higher
self-propulsion velocity can break the intermediate cage faster. In the second figure
4.3 the packing fraction is above φc

passive, and thus there exists a critical velocity
needed to destroy the glass. In contradiction to systems under shear a nonzero
activity force is not sufficient to melt the glass. For a given packing fraction and
rotational diffusion there exist a critical velocity vc0(φ,Dr) that separates a glass
from fluid. The precise dependence of the glass transition point at the parameters
will be investigated in the next sections. From the Figure 4.3 the critical velocity
for the given settings can be estimated being in the range 2 < vc0 < 4.
From the physical point of view it is logical that the increase of activity lets the
particles break the neighboring cages faster and the systems becomes softer. The
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Figure 4.3: Density correlator Φ0,0 as a function of time for different activity
velocities v0 at fixed rotational diffusion Dr. The packing fraction is chosen above
critical passive packing φ > φc

passive.

influence of activity on the system was also described qualitatively correctly by
the theory without an additional hopping term in the convolution integral (before
splitting in translational and rotational parts). The hopping term will become
important by studying the influence of the rotational diffusion Dr on the system,
which is not obvious. The rotational diffusion describes the rate of the random
changes of the direction of each particle. Having a zero rotational diffusion corre-
sponds to a system of nonrotating particles. If one considers a nail in a wall which
needs to be pulled out, the surface fraction of the nail can be decreased by rotating
it and the nail can be pulled out more easily than without rotating. So in that
case increasing the rotational capability of the nail softens the system. As a sec-
ond example we consider a crowded place with people, where one wants to escape
the crowd. Maintaining the direction in which one pushes makes it easier to leave
the crowd than first pushing in one direction and than changing the direction and
pushing into another direction. So in that case increasing the rotational capability
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makes the system more stable (it is more difficult to break the cage). In that
two examples the rate of rotations affect the stability of the system differently. In
the following we want to analyze the influence of the rotational diffusion on the
system of active Brownian disks. If we take a close look at the EOM 4.1 we
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Figure 4.4: Correlation function Φ0,0 as a function of time for a fixed activity force
(smaller value) but different rotational diffusion constantDr. Different colors mark
different packing fractions (increasing from left to right). Different line shapes
denote different Dr.

notice that the only term depending on the rotational diffusion is the rotational
part of the frequency matrix ωR (and thus the total frequency matrix). Due to
the shape of ωR the rotational diffusion does not affect l = 0, l′ = 0 part of the
correlator directly, it enters the equation only by back coupling of other matrix
elements of the correlator. The dependence of Φ0,0 on the rotational diffusion for
different densities and activity forces is illustrated in Figures 4.4 and 4.5. In the
first Figure 4.4 the system experiences a smaller activity force v0 than in the sec-
ond Figure 4.5. In both cases the system relaxes later by increasing the rotational
diffusion, but for higher v0 the effect is larger. It is obvious that for vanishing
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Figure 4.5: Correlation function Φ0,0 as a function of time for a fixed activity force
(higher value) but different rotational diffusion constant Dr. Different colors mark
different packing fractions (increasing from left to right).

activity v0 = 0, changing Dr will not affect the correlator, since the translational
and rotational motion will be completely decoupled. It is also interesting to con-
sider the limit of very high rotational diffusion. From a physical point of view one
would expect in the limit of infinite rotational diffusion Dr → ∞ the system to
be described by the passive system again. For very high Dr the self-propulsion
velocity on average, will influence the system only at the timescales of t ∼ 1/Dr

and can be completely neglected for infinite Dr. The approach of the active sys-
tem by very high rotational diffusion to the passive system is illustrated in the
Figure 4.6. The correlator of the active system with Dr = 1000 almost coincides
with the correlator with zero activity. For the system of a single active Brownian
disk there exists an effective parameter Deff that describes the system at long time
scales. so the system does not depend on the activity v0 and the rotational diffu-
sion Dr separately, but on the fraction v20/Dr. That kind of effective parameter
(The Péclet number) was also successfully used to describe the system of a single
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Figure 4.6: Correlation functions Φ0,0 as a function of time for a fixed activity
force (solid lines) but different rotational diffusion Dr. Dashed line corresponds to
the passive system. The packing fraction is below the glass transition point of a
passive system.

anisotropic active Brownian particle in a solvent [22]. It is interesting to ana-
lyze if the ABD system also can be described by a dimensionless quantity v20/Dr

(measured in units of Dt). The dimensionless number v20/DrDt is also called in
the literature the Péclet number (sometimes with a factor of 2). So we want to
analyze the transformation (φ, v0, Dr) → (φ,Pe) that would allow us to reduce the
number of independent parameters. The Figure 4.7 shows the correlation function
by fixed Péclet number Pe = 32 for different activities. It is clear that in this case
the Péclet number is not a sufficient parameter to describe the system, and both
v0 and Dr are needed. For very high activities one can observe an undershoot of
the correlation function for the wavenumber q[1/σ] = 8. To better understand the
meaning of the negative part of the correlator it is convenient not to plot only a
single wavenumber, but the whole range of it. In the Figure 4.8 the correlation
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Figure 4.7: Correlation functionΦ0,0 as a function of time for a fixed Péclet number

Pe =
v20
Dr

. Different colors mark different activity values.

functions for all available wavenumbers by a constant Péclet number are plotted.
The opacity of the lines marks the value of q. The darker lines correspond to
higher q values (the highest wavenumber is q[1/σ] = 50). Above certain activity
correlators stop to be monotonically decreasing and show oscillation patterns for
some wavenumbers. The strength of the undershoot depends on the activity and
on the time interval. The wavenumber is the Fourier-transform of the position
vector in real space and describes the resolution of the length. High wavenumbers
allow to look into small length scales. The length the particle can travel without
changing the direction is characterized by the persistence length (similarly to [22])
L = v0τrot with the rotational time scale τrot = 1/Dr. Using the persistence length
it is useful to define a dimensionless wavenumber q̃ = Lq/2π. The condition q̃ � 1
needs to be fulfilled to be able to resolve the persistence length of the particles.
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Figure 4.8: Density correlator Φ0,0 as a function of time for all wavenumbers for
different activities. The opacity of the line marks the value of q (darker lines
correspond to higher q). The ratio Pe = v20/Dr is kept constant.

The Figure 4.9 illustrates the correlation function Φ0,0 as a function of time nor-
malized by the rotational time scale for different wavenumbers at a constant Péclet
number. From top to bottom the activity gets increased. If the activity is bigger
than a certain value and the wavenumber is big enough to resolve the persistence
length of the particle, the short time diffusion can be ignored and one observes
oscillations for the correlator (middle right panel and the bottom panel in 4.9).
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Dr
. The activity v0 gets increased from top to bottom.

Is the wavenumber too big the short time diffusion becomes important and the
correlator decays monotonously again. The two regimes for the wavenumber can be
seen in the middle right panel of the Figure 4.9. If the wavenumber is big enough
to resolve the persistence length but not too big that the short time diffusion
becomes important, than rotational and translational diffusion can be neglected
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and only the ballistic motion v0t will be observed. For the ballistic motion the
density correlator Φ0,0(q, t) ∝ sinc(v0qt) behaves like a sinc function [22], which
explains the oscillations.
As a final part in this section we want to look at the behavior of the system
at different time scales in a glassy state, where the recursive equations of the
nonergodicity parameter presented in the previous chapter will be used. In the
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Figure 4.10: Density correlator Φ0,0 (solid line) as function of time for different
activities at a small rotational diffusion Dr = 0.001. Dashed lines correspond
to the nonergodicity parameter and dotted lines correspond to the nonergodicity
parameter for vanishing rotations. The packing fraction is chosen above the critical
packing φ = 0.726.

Figure 4.10 the correlation functions Φ0,0 as function of time for two different
activities at a constant Dr are plotted. The dashed lines mark the nonergodicity
parameter obtained from the recursive equation 3.75 and 3.76. The dotted lines
correspond to the nonergodicity parameter without the integral term F0. The
system exhibits three different time regimes.

• Times t � min(1, 1/Dr): Initial decay of the correlator due to the short time
diffusion of the particles. The rotational diffusion at this time scale can be
neglected.

• 1 � t � 1/Dr: Intermediate time scale only possible for small rotational
diffusion constants Dr < 1. Local translational caging of the particles before
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the rotational diffusion becomes relevant.

• 1/Dr � t: The rotational diffusion becomes an important quantity and the
correlator decays exponentially to the final long time value.

If the rotational diffusion is not small enough the system will not exhibit the
intermediate time scale and it directly decays to the final long time value. The
EOM in Laplace domain will provide deeper insight about the time scales of the
correlator.

0 = −ωS−1F

z
− mT[F ]

z
ω−1

T

[
F − S + ωR

[
F

z
+ F0

]]
, (4.2)

where it was considered the Laplace variable to be small enough that z0 and higher
terms can be neglected, but big enough that the termDr/z

2 � 1 is negligible (or in
time domain Drt � 1). By making that assumptions we can simplify the recursive
equation for the nonergodicity parameter.

ωTS
−1F +mT[F ]ω−1

T

[
F − S

]
= 0. (4.3)

The equation is completely independent on Dr and corresponds to the equation
for F at Dr = 0. So if there exists a time 1 � t � 1/Dr then the intermediate
plateau value of the correlator Φ0,0, is given by FDr=0

0,0 , which is illustrated in the
Figure 4.10.

4.1.2 Matrix Elements of the Correlator

Up to now we only considered the l = 0, l′ = 0 component of the density correlation
matrix that is a key quantity by analyzing the structural properties of the system.
In this section the focus will be on other components of the correlator matrix
describing also the rotational behavior of the system. The Figure 4.11 shows
different matrix elements of the density correlator for different parameters. In
the top panel four different matrix elements for different activities and packing
fractions are plotted. The activity dependence is shown on the left plot. The
packing fraction is above the critical packing of the passive system, as one can
see from the lowest v0 curve for Φ0,0 which is nonergodic. Even if the particles
are hindered at translational motion the rotations never freeze thus Φ1,1 always
remains ergodic. The time scale at which the Φ1,1 decays to zero is determined by
the rotational diffusion and the activity, since Φ1,1 contains also translational part
Φ1,1(t) ∝ ∑

j,k

〈
ei�q·(�xj(t)−�xk(0))ei(ϕj(t)−ϕk(0))

〉
. On the top right figure the activity

is kept constant and the packing fraction is varied. The two lines with highest φ
are in the glassy state. The interplay of the rotational diffusion and the activity
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Figure 4.11: Different components of the density correlator matrix Φ as a function
of time. A Different opacity value denotes the value of the varied parameter
(darker lines correspond to higher values). The top figures show the influence of
activity and packing fraction at the density correlator matrix (left figure: change
in v0, right figure: change in φ). The middle panel shows figures for the Φ1,1 for
different Dr at constant activity. Lower panel shows the difference between Φ0,1

and Φ1,0.
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at the relaxation timescale is illustrated in the middle panel. For two different
activities the influence of Dr can be studied. For a higher rotational diffusion the
relaxation is dominated by rotational diffusion and therefore the relaxation time
does not depend on the activity. For small Dr values the relaxation is dominated
by the translational motion and changing the activity shifts the relaxation time
drastically. One way of getting the information only about the rotational relaxation
without the additional structural relaxation is to look at the correlator at vanishing
wavenumber. The bottom panel of the Figure 4.11 shows the comparison of the
off-diagonal elements of the correlator for different v0 in a fluid state (left plot) and
in a glassy state (right plot). In the last chapter a condition for the nonergodicity
parameter was derive.

0 = mT[F ]ωRF . (4.4)

If we assume that the memory kernel is invertible the above equation would cor-
respond to:

0 =
∑
k

ωR
i,kFk,j = ωR

i,iFi,j ∀ {i, j} ⇒ Fi,j = 0 ∀ {i, j}i �=0 . (4.5)

That kind of asymmetry of the correlator is confirmed in the bottom right plot of
4.11 where the system is in a glassy state and Φ1,0 is ergodic and the Φ0,1 remains
nonergodic. The physical interpretation would be that the final orientations are
uncorrelated to the initial structure but the final structure is correlated to the
initial orientations.

4.2 Relaxation Time

In the last section the density correlator Φ0,0 for many different parameters as
a function of time was presented. The correlator Φ0,0 was plotted for a glassy
as well as for the fluid state and the influence of different parameters studied.
An important question that arises is to understand how the glass transition point
depends on the parameters and to determine the phase diagram that separates the
glassy and fluid state. To determine the glass transition point on a direct way is
very cumbersome, due to the form of the recursive equation of the nonergodicity
parameter F that is not self-consistent and also depends on the integral of the
correlator itself. At the bifurcation point it is very tricky to keep the time domain
algorithm stable enough to determine the time integral of the correlator precisely
that is needed in the recursive equation 3.75 (small deviations for F0 will influence
the final result dramatically since the equation for F is solved recursively, and the
number of recursions close to the bifurcation point is very high and the error gets
amplified after each recursion).
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The goal in this section is to show the results for the relaxation time τ for the
correlator Φ0,0, and use the MCT prediction [46, 47] of a power low divergence of
the relaxation time at the critical point to determine critical parameters and thus
the glass transition point. If the system is in a fluid state the correlator decays
after some time to zero. The characteristic time the correlator needs to relax is
called the relaxation time τ . There are different ways to introduce the criterion
that defines the relaxation time. The most common definition is the criterion:
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Figure 4.12: Relaxation times τ as a function of packing fraction for different
rotational diffusion by fixed activity. The activity is increased from left to right
and from top to bottom panel. The symbols mark the numerical values calculated
from the correlator Φ0,0, and the solid line is the MCT fit 4.6. The critical packing
fraction φc values correspond to the divergence point estimated by the MCT fit.

Φ0,0(q, t) < 1/e, ∀t > τ . By using this condition one should be careful that
the value of the intermediate (β-relaxation) plateau is not lower than 1/e, since
than the corresponding relaxation time would be the β-relaxation time instead of
α-relaxation time. The MCT predicts that close to the glass transition point the



62 CHAPTER 4. NUMERICAL RESULTS

relaxation time can be approximated by:

τ(φ, v0, Dr) = A(φ, v0, Dr)
(
φ− φc(v0, Dr)

)−γ(v0,Dr)

, (4.6)

with two parameter dependent constants the amplitude A(φ, v0, Dr) and the ex-
ponent γ(v0, Dr). At the critical packing φc(v0, Dr) the relaxation time becomes
divergent as expected from the glass transition point. The Figure 4.12 illustrates
the relaxation times τ as a function of packing fraction φ close to the transition
point for different rotational diffusions. The influence of the rotational diffusion
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Figure 4.13: Logarithm of the relaxation time τ as a function of v0, Dr and φ.
Different layers in the 3D axis correspond to different packing fraction.

becomes more pronounced at higher activity velocities, but in all cases increasing
Dr slows down the relaxation (increases the relaxation time). The critical values
for the packing fraction φc which marks the divergence point for the relaxation
time, are calculated by using the MCT fit 4.6. The relaxation time τ as a function
of all control parameters (v0, Dr, φ) is plotted in the so-called 4D plot 4.13 where
the color represents the 4th dimension (the parameters are still measured in units
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of Dt and σ but were removed for better readability). Increasing the packing frac-
tion and rotational diffusion slows down the relaxation. Increasing the activity
makes the system relax faster and thus has an opposite effect as φ and Dr.

4.3 Glass Transition

Based on the results from the previous section in this section the focus will be to
determine the critical parameters that separate the glassy state from the fluid. To
calculate the glass transition point the data for the relaxation time has to be fitted
with the MCT prediction 4.6. The left panel of the Figure 4.14 shows the critical
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Figure 4.14: Critical packing fraction φc as a function of activity and rotational
diffusion.

packing fraction φc (equivalent to φc) as a function of the rotational diffusion for
different activity values. The blue symbols correspond to the passive system. It
can be observed that for higher rotational diffusions the system gets closer to the
passive system and as mentioned already it will coincide with the passive system
for Dr → ∞. On the right panel the critical packing fraction as a function of
activity strength for different rotational diffusion is plotted. The lines correspond
to the bifurcation point separating the glassy state from the fluid (the units of the
parameters are omitted). For higher Dr the curves start to show same instabilities
related to the method to determine the critical line. The MCT fit formula 4.6 is
only valid close to the glass transition point and for higher Dr it was difficult to
reach large relaxation times (necessary to be close to transition point) due to the
numerical instabilities of the time domain algorithm. So the MCT fit was used
for relaxation times that were not close enough to the transition point. Increasing
the rotational diffusion further, decreases the stability even more. The Figure
4.15 illustrates the glass transition surface in the space spanned by the control
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Figure 4.15: Glass transition surface in the space spanned by activity v0, rotational
diffusion Dr and the packing fraction φ.

parameters v0, Dr and φ. The glassy state and the fluid state is marked in the
color plot. If the parameters are chosen such, that the point is above the colored
surface than the system is in a glassy state and if the point is below the surface
than it is in a fluid state. According to the Figure 4.15 there are different ways to
melt the glass.

• Increasing the activity v0 can melt the glass. For any given packing fraction
and rotational diffusion there exists a critical activity vc0 that separates the
glassy and fluid state. If the activity is bigger than the critical value v0 > vc0
the glass gets molten.

• Decreasing of the packing fraction φ. Melting the system by decreasing the
packing fraction is also know from passive systems. For any given activity
and rotational diffusion Dr there exists a critical packing fraction φc that
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corresponds to the glass transition point. If the packing fraction is chosen
below the critical packing φ < φc the glass gets molten.

• Decreasing the rotational diffusion Dr. In contradiction to the other two
melting processes there does not always exists a critical Dc

r that separates
the glassy and fluid state. If the packing fraction is higher than the critical
packing of the system of non-rotating particles φ > φc(v0, Dr = 0) than the
system is stable enough and can not be molten by any rotational diffusion.

4.4 Summary

In this chapter the numerical results for the density correlator matrix as a function
of time for different parameters were presented. To do so the final equation of
motion was solved by numerical algorithms (derived in Appendix B) in the time
domain. The numerical results for the density correlator matrix were splitted in
two parts, the (0, 0) mode of the correlator and all other matrix components. The
(0, 0) mode is an important quantity being the only matrix element of the correlator
with no direct angular dependence, and thus perfectly suited for studying the
structural properties of the system. The influence of activity and the rotational
diffusion at the system were studied in detail. The rotational behavior of the
particles and their effect on the translational behavior was analyzed by looking
at other matrix components of the correlator. From the decay times of Φ0,0 for
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Figure 4.16: Simulation results obtained by Ran Ni et al. [13] in three dimensions.
Left plot shows the correlation function Fs(q, t) as a function of time for different
activity forces denoted by fσ/KBT . On the right plot the alpha relaxation time
as a function of packing fraction for different rotational diffusion is presented.
Symbols correspond to the simulation results and the solid lines to the MCT fit.
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different parameters the alpha relaxation times were estimated, and by using the
Mode Coupling prediction of the power law divergence of the relaxation time at
the critical point, the glass transition surface in the space spanned by the control
parameters (v0, Dr, φ) was determined. The Figure 4.16 shows simulation results
performed for the ABD system in 3D by Ran Ni et al. [13]. The correlation function
Fs(q, t) (corresponding to Φ0,0) for different activity strength is illustrated on the
left plot and qualitatively agrees to the numerical results we obtained using the
MCT. The decay time for the correlator decreases by the increase of activity. Also
the curves for the alpha relaxation time obtained by simulation methods (right
plot) agree with our observations and show similar dependence at the rotational
diffusion. The left part of the Figure 4.17 illustrates a 3D fluid-glass diagram in

φ−1 − l
og
10
(D

r
)

v0
Glass

Fluid

c)

Figure 4.17: Left panel: Fluid-glass diagram in the domain
(
v0, 1/φ, log(1/Dr)

)
obtained from the data used in Figure 4.15. Right panel: 3D fluid-glass diagram
for a self-propelled Voronoi liquid obtained by Bi et al. [48]. (Note: From the
context of the paper [48] it is clear that 1/Dr is meant to be log(1/Dr)).

the domain spanned by
(
v0, 1/φ, log(1/Dr)

)
. The data used for the plot is the

same as in Figure 4.15 only the axis are chosen differently. Choosing that kind of
domain is motivated by the work done by Bi et al. [48], where the model of self-
propelled Voronoi liquid is studied. The self-adhesion parameter p0 corresponds
to the inverse density in our model. The results obtained by MCT-theory are
qualitatively in a very good agreement with the results obtained for the model of
self-propelled Voronoi liquid (right plot of the Figure 4.17).



Chapter 5

Single Active Tracer Particle

In the last chapters we introduced in great detail the system of active Brownian
hard disks. The equation of motion for the density correlator was derived and the
memory kernel in the convolution integral was approximated using the Mode cou-
pling theory of the glass transition. The EOM was solved numerically in the time
domain and the influence of different control parameters at the system studied. In
this chapter we want to extend the ABD system with a further degree of freedom.
A single active tracer particle with the same dimensions as the bulk particles will
be added. The main goal of introducing the tracer particle will be to determine
the time dependent mean-squared displacement.

5.1 Theory

The theory required to calculate the tracer density correlator and thus the mean-
squared displacement follows the steps done for the bulk system. First the Mori-
Zwanzig formalism will be used and the memory kernel will be approximated by
using Mode Coupling theory. Due to the extra tracer particle the Smoluchowski
operator describing the time evolution of all observables gets additional terms.
To distinguish quantities related to the bulk and to the tracer, all tracer related
terms will have a super- or subscript “s” . The full adjoint Smoluchowski operator
is the sum of the bulk operator introduced in previous chapters and the adjoint
Smoluchowski operator for the tracer particle.

Ω† = Ω†
0 + Ω†

s, (5.1)

with the components

Ω†
0 =

∑
i

Dt

(
�∂i + β �Fi

)
· �∂i + v0�oi · �∂i +Dr∂

2
ϕi
,

Ω†
s = Ds

t

(
�∂s + β �Fs

)
· �∂s + vs0�os · �∂s +Ds

r∂
2
ϕs
.

(5.2)

67



68 CHAPTER 5. SINGLE ACTIVE TRACER PARTICLE

A priori the tracer particle is not the same particle as the bulk particles, so intro-
ducing it is related to have to deal with three more parameters Ds

t , v
s
0, D

s
r. The

translational diffusion of the tracer particle can be eliminated by measuring Ds
r

and vs0 in units of Ds
t and the particle diameter σ that is identical for all particles.

Having additional parameters for the tracer particle is important since it will allow
us later to consider cases of a single passive tracer particle in an active environ-
ment or a single active tracer particle in a passive environment. The dynamics of
the tracer particle will be described by the tracer density correlator.

ρsl (�q, t) = ei�q·xs(t)eilϕs(t), Ss
l,l′ (�q, t) =

〈
ρs∗l (�q) ρsl′ (�q, t)

〉
, (5.3)

with the single particle tracer density ρsl . The time evolution of the tracer density
function is determined by the full adjoint Smoluchowski operator.

Ss
l,l′ (�q, t) =

〈
ρs∗l (�q) eΩ

†tρsl′ (�q)
〉
, Ss

l,l′ (�q) = δl,l′ . (5.4)

The static structure factor for a single tracer particle does not depend on the
wavenumber and is delta correlated in the orientational indices. The equation of
motion for the tracer density correlator will be derived by using the projection
formalism of Mori and Zwanzig as described in detail for the bulk correlator. The
projector to the slow variables will be introduced.

Ps =
∑
l1,l2,�q

∣∣∣ρsl1 (�q)〉Ss−1

l1,l2
(�q)

〈
ρs∗l2 (�q)

∣∣∣ = ∑
l1,�q

∣∣∣ρsl1 (�q)〉〈ρs∗l1 (�q) ∣∣∣, Qs = I−Ps. (5.5)

The calculation of the EOM for the tracer correlator is completely identical to
the bulk correlator and will be skipped. The final equation of motion after split-
ting into the rotational and translational parts can be written as (with omitted
wavenumbers):

∂tS
s (t) = −ωsSs (t)−

∫ t

0

dt′ms
T (t− t′)ωs−1

T

[
∂t′S

s (t′) + ωs
RS

s(t′)
]
, (5.6)

with the tracer frequency matrix ωs and the memory kernel ms.

ωs
l1,l2

(�q) = −
〈
ρs∗l1 (�q) Ω

†ρsl2 (�q)
〉

ms
T,l1,l2

(t) =
〈
ρs∗l1 Ω

†Qse
Ω†irrtQsΩ

†ρsl2

〉
Ω†irr = Qs

⎛⎝Ω† +
∑
l1,l2,�q

Ω†
∣∣∣ρsl1 (�q)〉ωs−1

l1,l2
(�q)

〈
ρs∗l2 (�q) Ω

†
∣∣∣
⎞⎠

(5.7)
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The MCT approximation of the memory kernel and evaluation of the tracer vertices
is analogous to the procedure done for the bulk system and is presented in detail in
appendix A. Also the transformation properties of the tracer correlator is identical
to the bulk correlator. After introducing the coordinate system the final equation
of motion can be calculated.

ω
s,π

2

l,l′ (q) =
[
Ds

t q
2 +Ds

rl
2
]
δl,l′ +

vs0
2
q(l′ − l)δ|l−l′|,1. (5.8)

Vs,π
2

l,l1,l2
(k, p, q) =

Ds
t

4

[
δl2,0

(
S̃−1
k − 1

)
+ 1

]
S̃tb2

k S̃−1
k

[
Ds

t δl,l1δl2,0
(
q2 + p2 − k2

)2
+ i

(
q2 + p2 − k2

)
k
[
v0e

il2αkδl,l1 − vs0e
i(l1−l)αkδl2,0

]
δ|l1+l2−l|,1

]
(5.9)
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s,π

2

T,l,l′ (q, t) =
1

π2n

∑
l1,l2

∫ ∞

0

dp

∫ q+p

|q−p|
dk

pkVs,π
2

l,l1,l2
(k, p, q)√

4q2p2 − (q2 + p2 − k2)2

× e−il1(αp−π
2 )eil
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2 )S

s,π
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π
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∂tS
s (t) = −ωsSs (t)−

∫ t

0

dt′ms
T (t− t′)ωs−1

T

[
∂t′S

s (t′) + ωs
RS

s(t′)
]

(5.11)

In the final equation of motion the direction of the wave vector and the magni-
tude were omitted, all quantities only depend on the wavenumber q pointing in
positive y direction. The full frequency function ωs is a sum of the rotational and
translational frequency function, with the obvious splitting ωs

R,l,l′ = Ds
rl

2δl,l′ and
ωs

T with the remaining terms of ωs. The density correlator of the tracer particle
is coupled to the bath correlator (blue color in the memory kernel) in the memory
kernel. The vertex function Vs does not only depend on the tracer parameters,
also the activity of the bulk particles enters the equation. The term S̃tb

k = 〈ρs∗k ρk〉
is the tracer bath structure factor which is directly related to the equilibrium static
structure factor of the bulk as described in [25]. The direct correlation function
of the tracer particle can be approximated by the direct correlation function of
the bulk csq ≈ cq, the equality holds if the tracer particle is included in the bulk
particles.

S̃tb
q

ρS̃q

= csq ≈ cq =
1

ρ

(
S̃q − 1

S̃q

)
⇒ S̃tb

q = S̃q − 1. (5.12)
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The mean-squared displacement of the tracer particle is directly related to the
correlator.

Ss
0,0 (�q, t) =

〈
e−iq·r(t)〉 = e−

1
4
q2〈r2(t)〉 ≡ e−

1
4
q2MSD(t) = 1− 1

4
q2MSD (t) +O (

q4
)
.

(5.13)

By evaluating the tracer correlator at zero wavenumber makes it possible to de-
termine the mean-squared displacement.

MSD (t) = lim
q→0

4

q2

(
1− Ss

0,0(q, t)
)
. (5.14)

5.2 Numerical Results

In this section the numerical results for the tracer density correlator and the mean-
squared displacement will be presented. The algorithm for solving the equation of
motion of the tracer correlator is identical to the algorithm of the bulk correlator
and is shown very detailed in appendix B. The tracer memory kernel does not
only depend on the tracer correlator it also depends on the correlator of the bulk,
which needs to be calculated beforehand. Once the bulk correlator results are
saved the tracer EOM can be solved for different sets of parameters. The result
will be plotted for the matrix element Φs

0,0(t). One should notice that in the case

of a tracer particle the normalized density correlator Φs(t) = Ss(t)Ss−1
is identical

to the density correlator Ss(t), since the tracer static structure factor is unity.
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Figure 5.1: Density correlator of the tracer particle Φs
0,0(q, t) as a function of

time. Left panel: Active tracer particle in a passive environment for different
tracer activities. Right panel: Passive tracer particle in an active environment
for different bulk activities. The rotational diffusions and the packing fraction are
kept constant.
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The only reason to use the symbol Φ is to be consistent in notation with previous
chapters. The Figure 5.1 illustrates the single particle tracer correlator Φs

0,0(q, t)
as a function of time for different parameters. On the left panel the tracer is in
a passive environment, so the bulk particles only undergo Brownian motion and
do not have a self-propulsion velocity. The tracer particle itself is active. The
time scale for the tracer and for the bulk particles were chosen to be the same
Dt = Ds

t , which makes it possible to eliminate the free choice of one parameter
and decreases the degrees of freedom by one. All the quantities are measured in
units of Dt and σ and combinations thereof. Although the differences are small
increasing the activity of the tracer particle makes the correlator decay faster as
expected from the previous results of the bulk dynamics. The rotational diffusion
of the tracer particle is chosen to vanish Ds

r = 0 to achieve a larger separation
of the lines by increasing the velocity. Ds

r = 0 corresponds to a tracer particle
that does not rotate. The right panel of the Figure 5.1 shows the single particle
correlator Φs

0,0(q, t) as a function of time for an active environment but a passive
tracer particle. Increasing the bulk activity makes the correlator decay faster but
in comparison to the previous case the influence is much bigger. Also the rotational
diffusion for the bulk particles is chosen to be small. Therefore the tracer particle
can escape the local neighbor cage easier by increasing the activity of the neighbor
particles instead of its own activity.
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Figure 5.2: Mean-squared displacement of the single tracer particle for different
activities. Left panel: active tracer particle in a passive environment, different
colors denote different activities of the tracer particle. Right panel: passive tracer
particle in an active environment, different colors correspond to different bulk
activities. The rotational diffusion and the packing fraction are kept constant.

The Figure 5.2 emphasizes the dominance of the bulk activity over the tracer
activity. The mean-squared displacement of the tracer particle gets increased much
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faster by increasing the bulk activity (right panel) than the tracer activity (left
panel). One should notice that in the Figure 5.2 it was only possible to display the
mean-squared displacement for a certain range of time. To determine the mean-
squared displacement the zero wavenumber limit is needed, but the numerical
algorithm used to solve the EOM does not support vanishing wavenumbers (The
Jacobian of the coordinate transformation is divergent for q → 0 and needs to
be treated differently). To avoid the problem a finite but small wavenumber was
chosen, which limits the time resolution of the mean-squared displacement.

5.3 Summary

In this chapter a single active tracer particle in an active environment was intro-
duced. To derive the equation of motion for the tracer correlator similar steps as
for the bulk dynamics were performed. The results for the tracer density correla-
tor and thus the mean-squared displacement in two different case were presented:
firstly an active tracer particle in a passive environment and secondly a passive
tracer particle in an active environment. Analyzing the numerical data showed
the dominant influence of the bulk activity over the tracer activity. Increasing the
activity of the environment softens the system much faster than increasing the
activity of a single tracer particle. At the end the results for the mean-squared
displacement were presented, that emphasized the superior influence of the bulk
activity.



Chapter 6

ITT Application

Systems of active Brownian disks are intrinsically out of equilibrium Boltzmann-
statistics (Boltzmann distribution) can not be applied. The integration through
transients formalism provides an elegant way to be still able to calculating non-
equilibrium averages. Using the ITT the non-equilibrium average gets linked to a
time integral of an equilibrium correlation function. The ITT formalism was suc-
cessfully applied to link transport coefficients like viscosity and diffusion constant
to equilibrium correlation functions. The general ITT formula was already derived
in the previous chapters (equation 2.29).

〈A〉non = 〈A〉 − v0β
∑
i

∫ ∞

0

dt′
〈
�oi · �Fie

Ω†t′A(Γ)
〉
. (6.1)

For any observable A the non-equilibrium average is linked to its equilibrium av-

erage and the time integral over the equilibrium correlator
〈
�oi · �Fie

Ω†t′A(Γ)
〉
. In

the following β = 1 will be used.

6.1 Non-equilibrium Velocity

In this section the ITT formalism will be applied to determine the non-equilibrium
velocity by approximating the relevant equilibrium correlation function by using
the projection formalism. To determine the non-equilibrium velocity was already
in the center of interest in other groups like A. Sharma and J.M. Brader [49].
The main difference between our work and the work done by other groups will be
the way how the equilibrium correlation function gets approximated. The swim
velocity is defined as the non-equilibrium average of the scalar product between the
velocity vector and the orientation of each particle normalized by the number of
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particles. The velocity is given by the Langevin equation 2.17 of the ABD system.

v̄ =
1

N

〈∑
i

�vi · �oi
〉

=
1

N

∑
i

[
Dt

〈
�Fi · �oi

〉
+ v0 〈�oi · �oi〉+

√
2Dt

〈
�ξ�xi · �oi

〉 ]
. (6.2)

All the averages are considered as a non-equilibrium average. The white noise �ξ�x

has a Gaussian distribution, and thus is completely uncorrelated with the orien-
tation vector of each particle and the last term in the above equation will vanish.
The second term describes the expectation value of the length of the orientation
vector which is by definition normalized

∑
i 〈�oi · �oi〉 = N .

v̄ = v0 +
Dt

N

∑
i

〈
�Fi · �oi︸ ︷︷ ︸

˜Fi

〉
. (6.3)

The non-equilibrium velocity can be written as the equilibrium expectation value
plus the non-equilibrium average of the force projected into the particle orientation
F̃i. The latter will be determined by the ITT formula to get rid of the non-
equilibrium average.

∑
i

〈
F̃i

〉
non

=

=0︷ ︸︸ ︷∑
i

〈
F̃i

〉
eq
−v0

∑
i,j

∫ ∞

0

dt′
〈
F̃ie

Ω†t′F̃j

〉
eq
. (6.4)

One should notice that the in equilibrium the force and the orientation are not
correlated and the first term in the last equation can be dropped.

v̄ = v0

(
1− Dt

N

∫ ∞

0

dt′C(t′)
)
, C(t′) =

∑
i,j

〈
F̃ie

Ω†t′F̃j

〉
eq
. (6.5)

By using the ITT we linked the non-equilibrium velocity to an equilibrium force-
force autocorrelation function C(t). The force-force correlator will be determined
by using the projection formalism. To make the equation 6.5 robust under the
MCT approximation and avoid getting negative values for the swim velocity it is
convenient to rewrite the equation into a different form (motivated in the work
by Gazuz and Fuchs [37]). To achieve the rewriting it is useful to transform the
relevant quantities into the Laplace space and use a definition of the irreducible
Smoluchowski operator.

Ω†,irr = Ω† +
∑
i,j

∣∣∣F̃i

〉Dt

N

〈
F̃j

∣∣∣, (6.6)

C(z) =
∑
i,j

〈
F̃i

(
z − Ω†

)−1

F̃j

〉
eq
, (6.7)



6.1. NON-EQUILIBRIUM VELOCITY 75

(
z − Ω†

)−1

=
(
z − Ω†,irr

)−1

−
∑
i,j

(
z − Ω†

)−1∣∣∣F̃i

〉Dt

N

〈
F̃j

∣∣∣(z − Ω†,irr
)−1

. (6.8)

Using the last operator splitting identity the force-force correlator can be written
in terms of the irreducible counterpart of C(z).

C(z) = C irr(z)−
∑
i,j
k,l

〈
F̃i

(
z − Ω†

)−1

F̃k

〉Dt

N

〈
F̃l

(
z − Ω†,irr

)−1

F̃j

〉

=
C irr(z)

1 + Dt

N
C irr(z)

.

(6.9)

By taking the limit of a vanishing Laplace variable the time integral of the corre-
lator will be determined.∫ ∞

0

C(t)dt =

∫∞
0

C irr(t)dt

1 + Dt

N

∫∞
0

C irr(t)dt
. (6.10)

Introducing the irreducible force-force correlator allows us to rewrite the swim
velocity.

v̄ =
v0

1 + Dt

N

∫∞
0

C irr(t)dt
, C irr(t) =

∑
i,j

〈
F̃ie

Ω†,irrtF̃j

〉
eq
. (6.11)

To guarantee positive values for the average swim velocity it is sufficient that the
time integral of the irreducible force-force correlator remains positive, that is a
big advantage over the reducible form of the average swim velocity. The integral
term

∫∞
0

C(t′)dt′ for large v0 can become very large and produce negative v̄. The
irreducible force-force correlator will be determined by introducing a two state
projector P2 and using the MCT approximation, a similar procedure was applied
by approximating the irreducible memory kernel.

P2 =
∑
1,2,3,4

∣∣∣ρ1ρ2〉g1,2,3,4

〈
ρ∗3ρ

∗
4

∣∣∣, g1,2,3,4 ≈ 1

2N2
S−1

1,3S
−1
2,4 . (6.12)

The four point function will be approximated by the Kawasaki factorization.∑
i,j

〈
F̃ie

Ω†,irrtF̃j

〉
≈
∑
i,j

〈
F̃iP2e

Ω†,irrtP2F̃j

〉
=

(
1

2N2

)2∑
i,j

1,2,3,4

〈
F̃iρ1ρ2

〉
S−1

1,1S
−1
2,2

〈
ρ∗1ρ

∗
2e

Ω†,irrtρ3ρ4

〉
S−1

3,3S
−1
4,4

〈
ρ∗3ρ

∗
4F̃j

〉

=
1

2N2

∑
i,j

1,2,3,4

〈
F̃iρ1ρ2

〉
S−1

1,1S
−1
2,2S1,3(t)S2,4(t)S

−1
3,3S

−1
4,4

〈
ρ∗3ρ

∗
4F̃j

〉
.

(6.13)
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The two vertex functions need to be calculated, where it is sufficient to calculate
only one since the second vertex is obtained by negating the orientational indices.∑

i

〈
F̃iρ1ρ2

〉
=
∑
i

〈
oi · Fiρl1(−�q2)ρl2(�q2)

〉
δ�q1,−�q2

= N
(
1− S̃(q2)

) i�q2
2

·
[
δl1,0

(
1
il2

)
δ|l2|,1 − δl2,0

(
1
il1

)
δ|l1|,1

]
δ�q1,−�q2

≡ NVnon
l1,l2

(�q2)δ�q1,−�q2 .

(6.14)

To simplify the notation it is convenient to define

Ṽnon

l1,l2
(�q1) ≡ Vnon

l1,l2
(�q1)S

−1
l1,l1

(�q1)S
−1
l2,l2

(�q1)

=
i�q1
2

·
(
S̃−1(q1)− 1

)[
δl1,0

(
1
il2

)
δ|l2|,1 − δl2,0

(
1
il1

)
δ|l1|,1

]
.

(6.15)

The final form of the force-force correlator depends only on the density correlator
matrix and can be calculated by using the data for the density correlator obtained
in previous chapters.∑

i,j

〈
F̃ie

Ω†,irrtF̃j

〉
=

1

2

∑
l1,··· ,l4

�p

Ṽnon

l1,l2
(−�p)Sl1,l3(�p, t)Sl2,l4(−�p, t)Ṽnon

−l3,−l4
(�p). (6.16)

The summation over the two dimensional wavevector �p can be changed to a 2D
integral

∑
p
∼= V

(2π)2

∫ 2π

0
dαp

∫∞
0

pdp, and the angular part of the wavevector can
be integrated analytically.

v̄ =
v0

1 + Dt

8πn

∫∞
0

dt′
∫∞
0

dpp3
(
S̃−1(p)− 1

)2

W
π
2 (p, t′)

, (6.17)

with

W
π
2 (p, t) =

(
S

π
2
0,−1(p, t)− S

π
2
0,1(p, t)

)(
S

π
2
−1,0(p, t)− S

π
2
1,0(p, t)

)
+S

π
2
0,0(p, t)

(
S

π
2
−1,−1(p, t)− S

π
2
1,−1(p, t)− S

π
2
−1,1(p, t) + S

π
2
1,1(p, t)

)
.
(6.18)

6.2 Numerical Results

The equation 6.17 and the data for density correlator matrix calculated in the
previous chapters will be used to determine the average swim velocity numerically.
The Figure 6.1 shows the influence of self-propulsion velocity and the rotational
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Figure 6.1: Average swim velocity v̄ normalized by the activity strength v0 as
a function of packing fraction. On the top plots different colors correspond to
different activities and on the bottom plots the activity is kept constant and the
rotational diffusion is varied. For high activities not all packing fractions are
plotted because of the numerical instabilities at high densities.

diffusion at the average swim velocity as a function of the packing fraction. In the
top plots the rotational diffusion is kept constant and the self-propulsion velocity is
varied. The average swim velocity is normalized by the equilibrium self-propulsion
velocity v0. The highest value for the fraction v̄/v0 = 1 is achieved for zero packing
fraction where the particles do not interact with each other. After increasing the
packing fraction the average swim velocity decreases continuously until it drops to
zero at the glass transition point. It turns out (as shown in the top figures) that
the normalized average swim speed v̄/v0 increases by increasing the activity. That
behavior can be understood by looking at the results from previous chapters, where
we showed that systems for higher activities are more fluidized than for smaller.
From the top left plot to the top right plot the rotational diffusion got increased,
where the tendency remains the same also for higher Dr. The influence of the
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rotational diffusion at a constant velocity is shown in the bottom plots. The
dependence of the swim velocity on Dr is much weaker than on the activity and
the effect is getting even small by increasing the activity.

6.2.1 Motility Induced Phase Separation

At the end of this chapter we want to investigate the so-called motility induced
phase separation introduced and described in great detail by Cates et al. in [50].
When the speed of particles decreases very quickly by increasing the packing frac-
tion the suspension can become unstable and lead to a phase separation where a
dense and dilute fluid phase coexist. The criterion for phase separation is given
in [50] as concavity of the free energy f(φ).

f(φ) = φ
(
log(φ)− 1

)
+

∫ φ

0

1

2
log

(
v̄2(φ′)
Dr

+ 2Dt

)
dφ′. (6.19)
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Figure 6.2: Free energy as a function of packing fraction for different velocities.
From top to bottom and left to right panel the rotational diffusion gets increased.
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Figure 6.3: Second derivative of the free energy as a function of packing fraction
for different velocities. From top to bottom and left to right panel the rotational
diffusion gets increased. The black dashed line marks the zero point. The colors
for the activity match the colors of the previous plot.

The condition for the instability is f ′′(φ) < 0. The Figures 6.2,6.3 show the
numerical results for the free energy as a function of packing fraction and the
second derivative with respect to φ respectively. From top to bottom panels the
rotational diffusion gets increased. The curvature of the free energy determines if
the instability condition is fulfilled or not. If f ′′(φ) becomes negative the theory
suggests a phase separation. For very small Dr smaller activities are sufficient to
have a range of packing fractions where the phase separation occurs as shown on the
top plots of the figure 6.3. By increasing the rotational diffusion higher activities
are needed to have a phase separated region. The area of phase separation in the
(φ,v0/Drσ) plane for different rotational diffusion can be observed in the Figure
6.4. The area surrounded by the dashed line corresponds to the region where
the phase separation occurs. The motility induced phase separation for active
Brownian disks was also found by numerical simulation methods as illustrated
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Figure 6.4: Phase separation diagram in the (φ,v0/Drσ) plane for different rota-
tional diffusion. The area enclosed by the dashed line corresponds to the phase
separated fluid.

in [51–53]. The simulation results are shown in the Figure 6.5. The numerical
results are qualitatively in good accordance with the simulation results for small
Dr (note the swapped axis by comparing the numerical results with the simulation
results).

Single phase

Phase separated
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Figure 6.5: Phase separation diagrams obtained by computer simulation methods.
The left plot is from the PRL paper by Gabriel S. Redner et al. [52]. The middle
and right plots were presented by Joakim Stenhammar et al. in Soft matter journal
[53]. Note Pe ∼= v0/Drσ.

The Figure 6.6 shows the comparison of the ITT-MCT results for the phase sepa-
ration and the simulation results for Brownian disks performed by Fily et al [15].
The red area marks the region where the phase separation occurs. For high pack-
ing fractions the glassy state is shown in both plots as a blue area. Qualitatively
the ITT-MCT and the simulation results are in a good agreement. It is remark-
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Figure 6.6: Top: phase separation diagram in the (φ,v0/Drσ) plane for ITT-MCT
method at fixed rotational diffusion constantDr = 0.1. Bottom: Simulation results
by Fily et al. [15] for Brownian disks.
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able that the ITT-MCT formalism, that is based on a purely microscopic theory
is able of making the right predictions about the phase separation which is mainly
a macroscopic phenomenon. One should also mention that the only approxima-
tion made to get the average swim speed using the ITT-MCT formalism was, to
approximate the four point functions in the memory kernel.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this thesis systems of active Brownian hard disks are investigated, by using the
Mode Coupling theory of the glass transition, and the influence of the activity
and the rotational diffusion at the glassy behavior is studied. MCT has already
been applied to passive systems and the separation of glassy and fluid phases by
increased packing fraction observed. The main goal in this work was to deter-
mine the dependence of the glass transition point on the additional parameters v0
and Dr relevant for the active systems. The collective behavior of the particles
is characterized by a dynamical density density correlation matrix, which is the
key quantity throughout this work. The relevant equations of motion for the den-
sity correlator are derived in Chapter 3 and solved numerically. The results are
presented in Chapter 4 for different sets of control parameters. By analyzing the
Φ0,0 mode of the correlator matrix it could be proven that the glass transition can
be caused by the change of activity and in contradiction of systems under shear
a critical activity is needed to achieve the melting of a glass. So if the packing
fraction is high enough and the activity below vc0 > 0 the system is robust enough
to maintain the glassy state even after very long times.
Opposite to the passive systems where the rotational diffusion does not influence
the structural properties of the system, by switching on the activity it is neces-
sary also to take the rotational diffusion into account. By studying the numerical
results, continuous strengthening of the fluid by the increase of rotational diffu-
sion can be observed. By setting Dr to very high values the system can even
be approximated by the passive case. The glass transition point as a function
of different parameters is determined by exploiting the power law divergence of
the α-relaxation time as predicted by the MCT. The numerical values for the α-
relaxation time are in good agreement with the simulation results and show the

83
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same tendency by varying v0 and Dr. By calculating the decay time of the density
correlator, and by using the power law fits the glass transition plane in the space
spanned by the control parameters can be determined. The glass transition plots
show three different ways to melt the glass.

• Decreasing the packing fraction.

• Increasing the activity.

• Reducing the rotational diffusion (only by sufficiently large activity).

Since increasing the activity and the rotational diffusion shows opposite influence
at the system, there is a strong indication of having a dimensionless effective pa-
rameter that is sufficient to characterize the system, the so-called Péclet number

Pe =
v20

DrDt
. Introducing the Péclet number corresponds to the transformation

(φ, v0, Dr) → (φ,Pe), with the degrees of freedom reduced by one. Numerical re-
sults show that the transformation can not be done without the loss of information
and it is necessary to have the knowledge about all three parameters.
To study the influence of the activity at the mean-squared displacement a single
active tracer particle is added to the system in chapter 5. The mean-squared dis-
placement is determined for different tracer and bulk activities, and the superior
influence of the bulk activity is observed.
In the final chapter the application of the ITT formalism using the MCT approx-
imation for the transient correlator is presented. The goal was to determine the
non-equilibrium velocity or average swim speed of the particles at different system
settings. For small packing fractions the average swim speed is close to the single
particle velocity value v0 as the particles do not interact with each other very fre-
quently. The average swim speed decreases continuously by increasing the packing
fraction, and at the glass transition point it vanishes completely, as the particles
are surrounded by neighbor particles and can not leave the cage.
At the end of chapter 6 the results for the free energy of the system are presented.
By determining the curvature of the free energy it is possible to find the instabil-
ity of the system that corresponds to a phase separation into two phases, a dense
and a dilute fluid phase. The increase of the rotational diffusion makes it more
difficult to achieve the phase separation and higher activity strength is needed.
The so-called motility induced phase separation for active Brownian hard disks
was also found by using numerical simulation methods. The ITT-MCT results are
qualitatively in good agreement with the simulations results, which emphasizes the
strength of the ITT-MCT formalism, which is based on purely microscopic theory
and is able of making right predictions about macroscopic quantities.
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7.2 Outlook

By dealing with the mode coupling approximation of the memory kernel for ABD
system it was necessary to perform a second projection of the memory kernel to
the translational and rotational parts to make it robust under the approximations,
and to make sure that the rotations never freeze (the (1, 1) mode of the correlator
always decays).

Figure 7.1: Schematic rep-
resentation of active Brow-
nian hard ellipses.

By expanding the model of active Brownian hard
disks to hard ellipses the second projection would not
be necessary, since for very dense packing the ellipses
can stuck to each other and stop rotating, so rota-
tional freezing would make physical sense. A hard el-
lipse is characterized by two radii a and b. One could
perform the MCT calculation for hard ellipses with-
out projecting to translational and rotational parts
and take the limit a → b, which should coincide with
the hard disk model. By doing so the convolution in-
tegral would not contain the hopping term which pro-
duces numerical instabilities at glass transition point,
and could make the theory more robust close to the glass transition point. Intro-
ducing ellipses instead of hard disks is also related with some complications.

• The statical structure factor matrix does not take a simple diagonal structure
that was exploited during evaluation of the MCT vertices frequently.

• The hard ellipse potential does also depend at the orientational angle, making
the evaluation of the vertices even more cumbersome.

�F
ex

Figure 7.2: ABD system with an
external force.

In chapter 5 we introduced a single active tracer
particle in an active environment. That model
can be extended by applying an external force
�Fex (not necessarily small) to the tracer particle.
The nonlinear response of the system to the ex-
ternal force is studied by active microrheology.
The application of active microrheology to the
passive Brownian disks is presented in great de-
tail by Gazuz and Fuchs in [37]. By pulling the
tracer particle with a constant force, it is possi-
ble to determine the friction coefficient by using
the ITT-MCT formalism similar to the average
swim speed from the chapter 6. By solving the
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EOM of the correlator for ABD systems we used the transformation properties to
simplify the wave vector dependence of the EOM to a wavenumber dependence.

Figure 7.3: ABD system in a porous
media. Black circles correspond to
the static obstacles.

By introducing an external force the direc-
tion of the wave vector becomes important
and the EOM has to be solved for a 2D
wave vector. That is the major difficulty
by introducing an external force, making
the numerical algorithm much slower and
not feasible. One has to rely on approx-
imations e.g. assuming that the external
force is always pointing parallel or perpen-
dicular to all wave vectors.
The mode coupling theory was applied to
porous media by Krakoviack [54–56] for
passive Brownian particles, that model can
be expanded to a system of active Brown-
ian disks with static obstacles. The obsta-
cles are modeled by hard circles with infi-
nite mass (denoted by black circles in Fig-
ure 7.3). Having additional obstacles makes
the evaluation of the MCT vertices more
complicated since additional structure factors will enter the equations.



Appendix A

Detailed Calculations of the MCT
Vertices

A.1 Bulk Vertices

In this part of the appendix we present detailed calculations for the vertices en-
tering the irreducible memory kernel after the MCT approximations. To get an
expression for the vertices it is necessary to evaluate the equilibrium average of
the three point function.

〈
ρ∗1ρ

∗
2QΩ†ρ3

〉
=
〈
ρ∗1ρ

∗
2Ω

†ρ3
〉
− 1

N

∑
1′,2′,�q

〈
ρ∗1ρ

∗
2ρ1′ (�q)

〉
S−1

1′,2′ (�q)
〈
ρ∗2′ (�q) Ω

†ρ3
〉

=
〈
ρ∗1ρ

∗
2Ω

†ρ3
〉
+
∑
1′,2′,�q

〈
ρ∗1ρ

∗
2ρ1′ (�q)

〉
S−1

1′,2′ (�q)ω2′,3 (�q) δ�q,�q3 .
(A.1)

The frequency function ω is a two point function and can be calculated by evalu-
ating the Smoluchowski operator acting on a single density function.

ωl1,l2 (�q) =
(
Drl

2
2 +Dtq

2
)
δl1,l2 −

iv0q

2
ei(l2−l1)αqSl1,l1 (�q) δ|l2−l1|,1. (A.2)

To increase the readability by calculating equilibrium averages of three point func-
tions it is handy to introduce an one particle density function ρ1,j := ei�q1·�xjeil1φj

with
∑

j ρ1,j = ρ1. The Smoluchowski operator for active Brownian disks con-
tains an orientational vector �o, that is parametrized by cos (ϕ) and sin (ϕ). Af-
ter using the orthonormality of eix and e−ix with respect to the scalar product
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〈A|B〉 = 1
2π

∫ π

−π
dϕAB, the following identities can be used:

∫ π

−π

dxe−inxeimx cos (x) = π
(
δn,m+1 + δn,m−1

)
n,m ∈ Z,∫ π

−π

dxe−inxeimx sin (x) = −iπ
(
δn,m+1 − δn,m−1

)
n,m ∈ Z.

(A.3)

Now the equilibrium average of a three point function together with the orienta-
tional vector can be calculated.∫

dΓPeq

∑
i,j,k

ρ∗1,iρ
∗
2,jρ3,k�ok =

∫
dXdΦPeq

∑
i,j,k

ρ∗1,iρ
∗
2,jρ3,k�ok

=

∫
dXdΦPeq
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e−i�q1·�xie−il1ϕie−i�q2·�xje−il2ϕjei�q3·�xkeil3ϕk
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cos (ϕk) , sin (ϕk)

)�
=

∫
dXPeq
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∫
dΦe−i(l1ϕi+l2ϕj−l3ϕk)

(
cos (ϕk) , sin (ϕk)

)�
.

(A.4)

To perform the integration over the angular part different cases have to be consid-
ered.
Case ϕi �= ϕj �= ϕk:∫

dΦe−i(l1ϕi+l2ϕj−l3ϕk)
(
cos (ϕk) , sin (ϕk)

)�
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∫
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2
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,

(A.5)

Case ϕi = ϕj �= ϕk:∫
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cos (ϕk) , sin (ϕk)
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,

(A.6)
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Case ϕi = ϕk �= ϕj:∫
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1

2
(2π)N δl2,0

(
δl3−l1,1 + δl3−l1,−1, iδl3−l1,1 − iδl3−l1,−1

)�
,

(A.7)

Case ϕj = ϕk �= ϕi:∫
dΦe−i(l1ϕi+l2ϕj−l3ϕk)

(
cos (ϕk) , sin (ϕk)

)�
=
1

2
(2π)N δl1,0

(
δl3−l2,1 + δl3−l2,−1, iδl3−l2,1 − iδl3−l2,−1

)�
,

(A.8)

Case ϕi = ϕj = ϕk:∫
dΦe−i(l1ϕi+l2ϕj−l3ϕk)

(
cos (ϕk) , sin (ϕk)

)�
=

∫
dΦ\{dϕk}

∫ π

−π

dϕke
−i(l1+l2−l3)ϕk

(
cos (ϕk) , sin (ϕk)

)�
=
1

2
(2π)N

(
δl1+l2−l3,1 + δl1+l2−l3,−1, iδl1+l2−l3,−1 − iδl1+l2−l3,1

)�
,

(A.9)

the sum can be splitted into sub sums:∑
i,j,k

=
∑
i �=j �=k

+
∑
i=j �=k

+
∑
i=k �=j

+
∑
j=k �=i

+
∑
i=j=k

. (A.10)

After inserting the above expressions into (A.4) the three point function can be
expressed as:∑

k

〈
ρ∗1ρ

∗
2ρ3,k�ok · �q3

〉
≈N

2
�q3 ·

(
δl1+l2−l3,1 + δl1+l2−l3,−1, iδl1+l2−l3,−1 − iδl1+l2−l3,1

)�
δ�q1+�q2,�q3

×
[
S̃ (�q1) S̃ (�q2) S̃ (�q3) δl1,0δl2,0 +

(
1− δl1,0

)(
S̃ (�q3)− 1

)
δl1,−l2

+
(
1− δl1,0

)(
S̃ (�q2)− 1

)
δl2,0 +

(
1− δl2,0

)(
S̃ (�q1)− 1

)
δl1,0

+
(
1− δl1,0δl2,0

)]
,

(A.11)
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where the approximation 〈ρ∗1ρ∗3ρ3〉 ≈ NS1S2S3δ1+2,3 was used. Evaluating the
Smoluchowski operator acting on the density function and making use of equation
(A.1) allows us to write down the final form of the three point function.

1

N

〈
ρ∗1ρ

∗
2QΩ†ρ3

〉
= −Dt�q3 ·

[
�q1S2,2 + �q2S1,1 − �q3S1,1S2,2

]
δ1+2,3. (A.12)

After analogous calculation we also get the second vertex function which takes a
more complicated form because of the Smoluchowski operator acting on a product
of two density functions (for the derivatives the product rule has to be applied,
which generates more terms).

1

N

〈
ρ∗1Ω

†Qρ2ρ3
〉
= −Dt�q1 ·

[
�q2S1−2,3 + �q3S1−3,2

]
−Dr (l2 + l3)

2 S1,1S2,2S3,3δ1,2+3

+
iv0
2
S1,1

(
1

±3,2
1 i

)
·
[
�q2S1−3,1−3S3,3 + �q3S2,2S1−2,1−2

]
δ�q1,�q2+�q3δ|l1−l2−l3|,1

+

[ (
Drl

2
1 +Dtq

2
1

)
δl1,l2+l3 −

iv0
2
�q1

(
1

±3,2
1 i

)
S1,1δ|l2+l3−l1|,1

]
δ�q1,�q2+�q3S2,2S3,3.

(A.13)

We use the definitions of the left L ≡
〈
ρl(�q)

∗Ω†Qρ1ρ2

〉
g1,2,3,4 and the right ver-

tex R ≡ g1′,2′,3′,4′
〈
ρ∗3′ρ

∗
4′QΩ†ρl′(�q)

〉
as introduced in the main theory chapter.

L =− Dt

2N
�q ·

[
�q1S

−1
1,1 + �q2S

−1
2,2 − �q

]≡δl,l1+l2
δ�q,�q1+�q2︷ ︸︸ ︷

δ{l,�q},1+2 δ1,3δ2,4

+
iv0
4N

Sl,l(�q)

(
1

±1,2
l i

)
·
[
�q1Sl−l2,l−l2(�q1)S

−1
1,1 + �q2Sl−l1,l−l1(�q2)S

−1
2,2 − �q

]
× δ|l1+l2−l|,1δ�q,�q1+�q2δ1,3δ2,4

≡ 1

2N
Ll

l1,l2
(�q1, �q2, �q)δ�q,�q1+�q2δ1,3δ2,4.

(A.14)

R =
−Dt

2N
q ·

[
q1′S

−1
1′,1′ + q2′S

−1
2′,2′ − q

]
δ1′,3′δ2′,4′δ3′+4′,{l′,q}

≡ 1

2N
R

l3′ ,l4′
l′ (�q3′ , �q4′ , �q)δ1′,3′δ2′,4′δ�q3′+�q4′ ,�q.

(A.15)

A.2 Tracer Vertices

Now we perform the MCT approximation of the tracer memory kernel, so we
introduce a projector projecting in a space spanned by the product of tracer and
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bulk density functions.

P s
2 =

∑
1,2,1′,2′

∣∣∣ρs1ρ2〉g1,2,1′,2′
〈
ρs∗1′ ρ

∗
2′

∣∣∣, g1,2,1′,2′ =
1

N
Ss−1

1,1′S
−1
2,2′ =

1

N
S−1

2,2′δ1,1′ . (A.16)

The memory kernel gets projected into the product state.

ms
T,l,l′ (�q, t) ≈

〈
ρs∗l (�q) Ω†QsP

s
2 e

Ω†irrtP s
2QsΩ

†ρsl′ (�q)
〉

=
∑

1,2,1′,2′
3,4,3′,4′

〈
ρs∗l (�q) Ω†Qsρ

s
1ρ2

〉
g1,2,1′,2′

〈
ρs∗1′ ρ

∗
2′e

Ω†irrtρs3ρ4

〉

× g3,4,3′,4′
〈
ρs∗3′ ρ

∗
4′QsΩ

†ρsl′ (�q)
〉
.

(A.17)

The four-point function will be approximated by a product of two two point func-
tions similar to the bulk case.〈

ρs∗1′ ρ
∗
2′e

Ω†irrtρs3ρ4

〉
≈
〈
ρs∗1′ e

Ω†tρs3

〉〈
ρ∗2′e

Ω†tρ4

〉
= NSs

1′,3 (t)S2′,4 (t) . (A.18)

It is convenient to define the tracer-bulk static structure factor matrix, which
represents the correlation between the bulk density and the tracer density at equi-
librium.

Stb
l1,l2

(q) ≡
〈
ρs∗l1 (q) ρl2 (q)

〉
=
〈
ρ̃s∗q ρ̃q

〉
δl1,0δl2,0 ≡ S̃sb

q δl1,0δl2,0. (A.19)

In the next steps the three-point functions from the memory kernel will be ap-
proximated.〈

ρs∗3′ ρ
∗
4′QsΩ

†ρsl′ (�q)
〉
=
〈
ρs∗3′ ρ

∗
4′Ω

†ρsl′ (�q)
〉
−
〈
ρs∗3′ ρ

∗
4′PsΩ

†ρsl′ (�q)
〉

=
〈
ρs∗3′ ρ

∗
4′Ω

†ρsl′ (�q)
〉
+
∑
l1

〈
ρs∗3′ ρ

∗
4′ρ

s
l1
(�q)

〉
ωs

l1,l′ (�q)

=
〈
ρs∗3′ ρ

∗
4′Ω

†ρsl′ (�q)
〉
+
∑
l1

Stb
l1−l3′ ,l4′

(�q4′)ω
s
l1,l′ (�q) δ�q−�q3′ ,�q4′

=
〈
ρs∗3′ ρ

∗
4′Ω

†ρsl′ (�q)
〉
+ S̃tb

�q4′
ωs

l3′ ,l′
(�q) δ�q−�q3′ ,�q4′δl4′ ,0.

(A.20)

The full adjoint Smoluchowski operator acts on a single tracer density function.

Ω†ρsl′ (�q) =
[
Ds

t

(
−q2 + i �Fs · �q

)
+ ivs0�os · �q −Ds

rl
′2
]
ρsl′ (�q) . (A.21)
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The first term in the equation A.20 can be evaluated.〈
ρs∗3′ ρ

∗
4′Ω

†ρsl′ (�q)
〉
=−

[
Ds

t q
2 +Ds

rl
′2
]
Stb

l′−l3′ ,l4′
(�q4′) δ�q−�q3′ ,�q4′

+ iDs
t�q ·

〈
ρs∗3′ ρ

∗
4′ρ

s
l′ (�q) �Fs

〉
+ ivs0�q ·

〈
ρs∗3′ ρ

∗
4′ρ

s
l′ (�q)�os

〉
=−

[
Ds

t�q · �q3′ +Ds
rl

′2
]
Stb

l′−l3′ ,l4′
(�q4′) δ�q−�q3′ ,�q4′

+ ivs0�q ·
〈
ρs∗3′ ρ

∗
4′ρ

s
l′ (�q)�os

〉
,

(A.22)

with〈
ρs∗3′ ρ

∗
4′ρ

s
l′ (�q)�os

〉
=

∫
dΓψeqe

i(�q−�q3′ )·xsei(l
′−l3′ )ϕs�osρ

∗
4′

=
1

2

∫
dΓψeqρ̃

s (�q − �q3′) ρ
∗
4′

(
ei(l

′−l3′+1)ϕs + ei(l
′−l3′−1)ϕs

−iei(l
′−l3′+1)ϕs + iei(l

′−l3′−1)ϕs

)
=
1

2

〈
ρ̃s (�q4′) ρ

∗
4′

〉( δl′−l3′ ,1 + δl′−l3′ ,−1

iδl′−l3′ ,1 − iδl′−l3′ ,−1

)
︸ ︷︷ ︸

�δs
l′,l3′

δ�q−�q3′ ,�q4′

=
1

2
S̃tb
�q4′
δl4′ ,0δ�q−�q3′ ,�q4′

�δsl′,l3′ ,

(A.23)

where for simplicity reasons the delta function vector �δ was introduced.〈
ρs∗3′ ρ

∗
4′Ω

†ρsl′ (�q)
〉
= −

[[
Ds

t�q · �q3′ +Ds
rl

′2
]
δl′,l3′ −

ivs0
2
�q · �δsl′,l3′

]
S̃tb
�q4′
δl4′ ,0δ�q−�q3′ ,�q4′ .

(A.24)

Using the results for the full Smoluchowski operator acting on a single tracer
density the frequency function will be determined.

ωs
l3′ ,l′

(�q) = −
〈
ρs∗l3′ (�q) Ω

†ρsl′ (�q)
〉
=
[
Ds

t q
2 +Ds

rl
′2
]
δl3′ ,l′ −

ivs0
2
�q · �δsl′,l3′ . (A.25)

Using the above results the final form of the first full three point function can be
calculated. 〈

ρs∗3′ ρ
∗
4′QsΩ

†ρsl′ (�q)
〉
= Ds

t�q · �q4′S̃tb
�q4′
δl′,l3′δl4′ ,0δ�q−�q3′ ,�q4′ . (A.26)

The second full three-point function contains a Smoluchowski operator acting on
a product of the tracer and bulk density function and thus the product rule has
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to be applied for the derivatives, therefore it contains more terms.〈
ρs∗l (�q) Ω†Qsρ

s
1ρ2

〉
=
〈
ρs∗l (�q) Ω†ρs1ρ2

〉
+
∑
l′

ωs
l,l′ (�q)

〈
ρs∗l′ (�q) ρ

s
1ρ2

〉
=
〈
ρs∗l (�q) Ω†ρs1ρ2

〉
+ ωs

l,l1
(�q) S̃tb

�q2
δl2,0δ�q−�q1,�q2 ,

(A.27)

with

Ω†ρs1ρ2 =
[
− (

Ds
t q

2
1 +Dtq

2
2 +Ds

rl
2
1 +Drl

2
2

)
+ iDs

t
�Fs · �q1 + ivs0�os · �q1

]
ρs1ρ2

+
∑
j

[
iDt

�Fj · �q2 + iv0�oj · �q2
]
ρ2,jρ

s
1,

(A.28)

where ρ2,j = e−i�q2·�xjeil2ϕj is a single particle bulk density.〈
ρs∗l (�q) Ω†ρs1ρ2

〉
=−

[
Ds

t q
2
1 +Dtq

2
2 +Ds

rl
2
1 +Drl

2
2

]〈
ρs∗l (�q) ρs1ρ2

〉
+ iDs

t�q1 ·
〈
�Fsρ

s∗
l (�q) ρs1ρ2

〉
+ ivs0�q1 ·

〈
�osρ

s∗
l (�q) ρs1ρ2

〉
+
∑
j

iDt�q2 ·
〈
�Fjρ

s∗
l (�q) ρs1ρ2,j

〉
+ iv0�q2 ·

〈
�ojρ

s∗
l (�q) ρs1ρ2,j

〉
=−

[
Ds

t�q1 · �q +Ds
rl

2
]
S̃tb
�q2
δl,l1δl2,0δ�q−�q1,�q2

+
i

2

[
vs0�q1

�δsl1,lδl2,0 + v0�q2�δ
s
l2,0

δl,l1

]
S̃tb
�q2
δ�q−�q1,�q2 .

(A.29)

After using the intermediate results the second full three-point can be calculated.〈
ρs∗l,�qΩ

†Qsρ
s
1ρ2

〉
=

[
Ds

t�q · �q2δl,l1δl2,0 +
i�q2
2

·
[
v0�δ

s
l2,0

δl,l1 − vs0
�δsl1,lδl2,0

]]
S̃tb
�q2
δ�q−�q1,�q2 .

(A.30)

In contradiction to the first vertex the second vertex does not only depend on the
tracer parameters, in the latter case also the activity of the bulk particles enters
the equation. Using the results of the two vertices the tracer memory kernel can
be calculated. To shorten the notation it is useful to introduce �k = �q − �p.

ms
T,l,l′ (�q, t) ≈

Ds
t

N

∑
l1,l2,�p

[
Ds

t δl,l1δl2,0

(
�q · �k

)2

+
i�q · �k
2

�k ·
[
v0�δ

s
l2,0

δl,l1 − vs0
�δsl1,lδl2,0

]]
×
[
δl2,0

(
S̃−1
k − 1

)
+ 1

]
S̃tb2

k S̃−1
k Ss

l1,l′ (�p, t)Sl2,0

(
�k, t

)
≡ 1

N

∑
l1,l2,�p

Vs
l,l1,l2

(
�k, �p, �q

)
Ss

l1,l′ (�p, t)Sl2,0

(
�k, t

)
.

(A.31)
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Appendix B

Numerical Methods

In this chapter we develop the numerical algorithms that are used to solve the
equation of motion of the dynamical density correlator in the time domain. One
could assume that solving the equation in Laplace domain (that corresponds to
an algebraic equation) is advantageous over the time domain equation that is an
integro-differential equation for matrix like functions, but having the memory ker-
nel only available in the time domain makes it not feasible to solve the equation
in Laplace domain. To analyze the glassy behavior of the system the EOM has to
be solved for many orders of magnitude in time (t ∼ 107sec). Standard discretiza-
tion methods of the differential equations like Runge-Kutta method or Predictor-
Corrector methods can not be applied because of the time range we are interested
in. To produce accurate results the standard numerical algorithms for PDE’s rely
on a small discretization step size. For a system with a time range of t ∼ 107sec
and a step size of h ∼ 10−2 the number of points needed to be evaluate would go
beyond the capabilities of modern computers, even for these of Supercomputers.
The numerical methods we develop, exploit the structure of the density correlator
and the memory kernel, being smooth and slowly varying in time (the derivative
for very long times vanishes). The algorithm used to avoid evaluating very large
amount of numerical points is called the time decimation method, where the time
interval gets splitted in blocks and in each block the time step size is kept constant.
After changing from one block to the other the step size gets doubled. That way
the problem that was linear in time can be reduced to a logarithmic problem. By
doubling the step size after going from one block to the next allows us to explore
a wide range in time without the problem of having too many numerical points
that need to be saved. The Figure (B.1) illustrates a schematic representation of a
decimation procedure with the initial block having 9 points. We point out that all
the blocks contain the same amount of points, only the step size gets doubled. The
first half of the block points get calculated from the previous block by dropping
every second term. We obtain the second half of the block points by the numerical

95
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algorithm (Backward Euler method) using the first half of the points as an input.
The schematic representation of the algorithm is shown in Figure (B.2). To solve

Block-1
h1

h2
Block-2

h3
Block-3

d
ec
im

at
io
n

d
ec
im

at
io
n

··
·

Figure B.1: Schematic representation of the decimation procedure.

the PDE in each block the Backward Euler method will be used. The Backward
Euler method is the simplest iterative method for solving differential equations.
The equation of motion we desire to solve can be written in the following general
form (wavenumbers omitted).

∂tS (t) = −AS (t)−
∫ t

0

dt′m (t− t′)
[
∂t′S (t′) +BS (t′)

]
. (B.1)

The bold letters denote matrix like functions and operators like differentiation and
integration act component wise.
The initial time step size (Block-0) will be denoted by h0. The discretized time
can be expressed by the initial time and by the time step size. The step size will
be equidistant in each block.

hb = h02
b, ti = t0 + ihb. (B.2)

The goal is to discretize the equation B.1 in time. The partial time derivative will
be evaluated by the backward finite difference method of the second order, taking
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Figure B.2: Schematic representation of the numerical algorithm.

two previous points into account.

∂tSi ≡ ∂tS (ti) =
1

hb

[
3

2
Si − 2Si−1 +

1

2
Si−2

]
. (B.3)

One should notice that the discretization is only valid in a single block with equidis-
tant steps. By dealing with the convolution integral it is useful to define the
so-called moments as a time integral over two neighboring time steps.

dSi =
1

hb

∫ ti

ti−1

S (t) dt, dmi =
1

hb

∫ ti

ti−1

m (t) dt. (B.4)

Using the moments for the correlator and the memory kernel, and the mean value
theorem for integrals the convolution integral can be approximated.∫ t

0

dt′m (t− t′) ∂t′S (t′) =
∫ t̃

0

dt′m (t− t′) ∂t′S (t′) +
∫ t

t̃

dt′m (t− t′) ∂t′S (t′)

PI
= m (t− t′)S (t′)

∣∣∣t′=t̃

t′=0
+

∫ t̃

0

dt′∂tm (t− t′)S (t′) +
∫ t−t̃

0

dt′m (t′) ∂tS (t− t′)

≈ m (ti − t′)S (t′)
∣∣∣t′=t̃i

t′=t0
+

ĩ∑
k=1

∫ tk

tk−1

dt′∂tm (ti − t′)S (t′)

+
i−ĩ∑
k=1

∫ tk

tk−1

dt′m (t′) ∂tS (ti − t′)

≈ m (ti − t′)S (t′)
∣∣∣t′=t̃i

t′=t0
+

ĩ∑
k=1

[
m (ti−k+1)−m (ti−k)

]
dSk

+
i−ĩ∑
k=1

dmk

[
S (ti−k+1)− S (ti−k)

]
,

(B.5)
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and for the second term in the square bracket of B.1.

∫ t

0

dt′m (t− t′)BS (t′) ≈hb

2

ĩ∑
k=1

[
m (ti−k+1) +m (ti−k)

]
BdSk

+
hb

2

i−ĩ∑
k=1

dmkB
[
S (ti−k+1) + S (ti−k)

] (B.6)

The index ĩ will be chosen such it lies in the middle of the interval (0, t). To ensure
that ĩ remains an integer the floor function will be used ĩ = �i/2�.
Choosing the index ĩ that way guarantees a precise evaluation of ∂tm and ∂tS
terms even for very high step sizes h, since for very long times the correlator and
the memory kernel are expected to have an logarithmic change in time.
To get an recursive equation for the density correlator the terms will be separated
in current times i and past times j < i.

S =
3

2hb

I+A+ dm1

(
I+

hb

2
B

)
, M = S0 −

(
I+

hb

2
B

)
dS1 (B.7)

I i =
ĩ∑

k=2

[
mi−k+1

(
I+

hb

2
B

)
−mi−k

(
I− hb

2
B

)]
dSk,

+
i−ĩ∑
k=2

dmk

[(
I+

hb

2
B

)
Si−k+1 −

(
I− hb

2
B

)
Si−k

]
−mi−1

(
I− hb

2
B

)
dS1 − dm1

(
I− hb

2
B

)
Si−1

+mi−ĩSĩ −
2

hb

Si−1 +
1

2hb

Si−2

(B.8)

Using the prefactor matrices S, M and I a discretized EOM which corresponds
to the equation (B.1) can be obtained.

SSi = miM− I i, ⇒ Si = S−1
[
miM− I i

]
. (B.9)

The later equation can not be solved directly for Si as the memory kernel at current
times depends itself on the correlator. The equation will be solved iteratively as
illustrated in the figure B.3. The superscript in the parenthesis corresponds to the
iteration number.
The following recipe describes how the iteration algorithm works.
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Figure B.3: Schematic representation of the numerical scheme for the iteration.
Superscripts denote the iteration number.

• Step 0: Use as a starting value S
(0)
i = Si−1.

• Step I: From the current value of the correlator at the iteration step (n)

calculate the memory kernel m
(n)
i .

• Step II: From the correlator at current time S
(n)
i , the memory kernel m

(n)
i

and the correlators from the past Sj<i calculate the new correlator S
(n+1)
i

according to the rule (B.9).

• Check if the difference between the correlator after the iteration steps (n+1)
and (n) is smaller than the desired precision δ.∣∣∣∣∣∣S(n+1)

i − S
(n)
i

∣∣∣∣∣∣ !
< δ.

As a norm || · || any matrix norm can be used (we used the L1 norm). If the

condition is fulfilled set the correlator at current times to Si = S
(n+1)
i , and

increase the time counter i → i+ 1.

• Step III: If the desired precision is not achieved (we use machine precision
for δ ∼ 10−15) repeat the steps I and II.
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• Repeat the steps I-III until the precision goal is reached or until the counter
for the iterations will exceed some critical value. The critical value is nor-
mally set to 100 but close to the bifurcation point higher values are needed.
At the bifurcation point not even an infinite number of iterations is enough
to reach the precision goal.

The recursive algorithm is used to calculate the density correlator in each block.
After all points in one block, denoted by Blocksize (normally Blocksize=128) are
calculated the decimation procedure has to be applied. In the following the deci-
mation rules for different quantities are shown.

• Double the step size: hb+1 = 2hb.

• Drop every second term of the correlator and the memory kernel.

Si = S2i, mi = m2i ∀i ≤ Blocksize/2.

• The moments can be decimized exactly without dropping any terms (i ≤
Blocksize/2).

dS
(2h)
i =

1

2h

∫ ti

ti−1

S(t)dt =
1

2h

∫ 2hi

2h(i−1)

S(t)dt

=
1

2h

[∫ h(2i−1)

h(2i−2)

S(t)dt+

∫ h2i

h(2i−1)

S(t)dt

]
=

1

2

[
dS

(h)
2i−1 + dS

(h)
2i

]
,

dm
(2h)
i =

1

2

[
dm

(h)
2i−1 + dm

(h)
2i

]
.

The memory kernel contains a double integral in the space of the wavenumbers.
The integrand has a pole at the boundaries due to the Jacobian of the two dimen-
sional transformation and to avoid divergent terms in the sum an open integration
formula is used. To have the desired precision and performance a fifth order open
extended formula is used (derived in [57]).∫ qN

q1

f(q)dq = hq

[
55

24
f2 − 1

6
f3 +

11

8
f4 + · · ·+ 11

8
fN−3 − 1

6
fN−2 +

55

24
fN−1

]
,

(B.10)
with · · · containing terms with unit coefficients only.

NBlocks Blocksize Step size NIteration δ Nq Λq Λl

Values 60-70 128-256 10−12 100|10000 10−15 128|256 50 1|2
Table B.1: Typical values for the numerical parameters chosen in this work.
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The wavenumber is in general in the set of real numbers, but we will introduce
a cutoff Λq = 50 up to which point we integrate. We assume that for larger q
values than the cutoff Λq the correlator is small enough that it will not change
the results dramatically (see the wavenumber dependent correlator in the results
chapter). Nq will be the number of q point we use to discretize the wavenumber.
And the wavenumber step size hq = Λq/Nq. In the Table (B.1) a typical choice
of the numerical parameters are presented. Close to the bifurcation point a much
higher number of iterations NIteration is used.

B.1 Complexity and Memory Usage

In this section the complexity of the time domain algorithm and the usage of
RAM-memory will be estimated. There are different settings that can be adjusted
by numerical calculations. The first three parameters determine the precision of
the time domain discretization. The number of blocks NBlocks, the Blocksize and
the initial time step-size h. The Blocksize is chosen between 128-256 time points,
the number of blocks is in the range of 60-70 and the initial time step is chosen
to be h0 ∼ 10−12. That kind of adjustment allows us to reach times of the order
tmax = h02

NBlocks ∼ 106−109, which is sufficient to study the glassy dynamics. The
Blocksize only determines the resolution of each block and does not contribute to
reach longer end times. Experience showed that choosing the precision between
128-256 time points is sufficient and does not produce discontinuous jumps by
the time decimation procedure (that happens if the Blocksize is chosen to small).
The number of points to be saved is given by: NBlocks ∗ Blocksize/2. The num-
ber of blocks changes the complexity linearly O(NBlocks), so doubling the number
of blocks doubles the computational time. The remaining parameters Nq and Λl

determine the number of wavenumber points and the size of the matrices (in the
space of orientational indices) respectively. Typical values for Nq are between
128-256 points, that is a good compromise between calculation speed and preci-
sion. The double integral in the wavenumber space needs to be evaluated for all
wavenumber components of the memory kernel, thus the complexity will be cubic
in number of q points O(N3

q ). The size of the matrices is determined by the ori-
entational cutoff Λl. The orientational indices run form −Λl to Λl. Typically the
cutoff is chosen to be 1 or 2. The first corresponds to a 3× 3 dimensional and the
latter to a 5× 5 dimensional matrix. The memory kernel contains a sum over four
orientational indices, so one could assume that the final complexity would depend
on (2Λl + 1)4, but it is not that simple to calculate the complexity since some
orientational indices are delta correlated due to the structure of the vertices in the
memory kernel and a clever optimization of the compiler reduces the number of
evaluations significantly. The total complexity related to the orientational cutoff
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can be estimated numerically by O ((2Λl + 1)2.9). So going from Λl = 0 (only
S0,0, valid for passive particle) to a cutoff Λl = 1 (typical choice for our numerical
algorithm) corresponds to a 32.9 ∼ 25 times longer calculation time. By dealing
with 5× 5 (Λl = 2) dimensional matrices the algorithm in comparison to Λl = 0 is
even by a factor of 52.9 ∼ 114 slower. The major part of the numerical results are
calculated by using Λl = 1. The total complexity of the time domain algorithm is
estimated as O (

NBlocks ∗N3
q ∗ (2Λl + 1)2.9

)
.

Now we want to estimate the RAM-memory needed for the numerical algorithm.
The main memory is used to save the values of the left and right vertex functions.
The vertex functions do only depend on static (time independent) quantities and
can be calculated and saved in RAM memory at the starting point of the algo-
rithm. Ll,l1,l2(k, p, q) and Rl′,l3,l4(k, p, q) contain three orientational indices and 3
wavenumbers running from 0 to qmax. The number of points needed to be eval-
uated are Np = (2Λl + 1)3N3

q . Each value is a complex valued double precision
number with 8Byte for each (16Byte for complex). So for a typical choice of the
parameters the following memory usage can be estimated:

• Λl = 1 and Nq = 128, ⇒ MEM = 2GiB

• Λl = 2 and Nq = 256, ⇒ MEM = 68GiB

The memory needed for saving the dynamical values (time dependent correlator)
in comparison to static values is negligible.

B.2 Computer Resources and Calculating Time

Finally we want to address the computer resources we had available and the cal-
culation times for the typical settings. The calculations mainly were done on two
different cluster systems.

• The supercomputer in Jülich “JURECA” : 1872 nodes with two Intel Xeon
E5-2680 v3 Haswell CPUs on each (128 nodes could be used in parallel).
Each node was equipped with 128GiB DDR4 RAM memory.

• Local cluster available in the institute: 16 nodes with two Intel Xeon E5-
2650 v4 Broadwell CPUs on each. Each node equipped with 128GiB RAM
memory.

The numerical algorithm was implemented in C/C++ language, by using OpenMP
programming interface for parallelization on a single node. Matrix manipulations
were done by highly optimized EIGEN library and for evaluating the Bessel func-
tions related to a two dimensional Fourier-transform the BOOST library was used.
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Figure B.4: Speedup of the time domain algorithm as a function of number of
CPU cores on a single node. The algorithm was used for Nq = 128 wavenumber
points.

The code can be parallelized very efficiently up to the number of discrete wavenum-
ber points Nq. The Figure B.4 shows almost linear speedup of the algorithm by
increase of the number of CPU cores on a single node. The speedup is up to 24
cores almost linear. The most time consuming part of the algorithm is to evaluate
the memory kernel for all different wavenumbers. By parallelizing the algorithm
the memory kernel for different wavenumbers (which do not depend on each other)
can be performed in parallel. So for the choice of Nq = 128 up to 128 cores could
be used without significant worsening of the speedup. Using more than 128 cores
is useless since all the additional cores will be idle. The calculation time of the
algorithm does not only depend on the numerical parameters for the precision e.g.
(Nq, Blocksize, Λl) it also depends how close the system is to the glass transition.
If the system is close to glass transition much more iterations are used in each
time step which can drastically slow down the algorithm. In the following we
want to show the calculation time of the algorithm for the following parameters:
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Blocksize = 70, Λl = 1, Nq = 128.

• System far away from the glass transition point with tα ∼ 10−1.
tcalculation ≈ 20min.

• System closer to glass transition point with tα ∼ 102.
tcalculation ≈ 30min.

• System very close to glass transition point tα ∼ 106.
tcalculation ≈ 109min.

• System in the glassy state tα → ∞.
tcalculation ≈ 30min.

Close to the glass transition point the calculation time is almost six times longer
than for a system far away from the glass transition for the same numerical pa-
rameters.
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[53] Julian Bialké, Hartmut Löwen, and Thomas Speck. Microscopic theory for the
phase separation of self-propelled repulsive disks. EPL (Europhysics Letters),
103(3):30008, aug 2013.

[54] V. Krakoviack. Mode-coupling theory for the slow collective dynamics of fluids
adsorbed in disordered porous media. Physical Review E, 75(3), mar 2007.

[55] V. Krakoviack. Liquid-glass transition of a fluid confined in a disordered
porous matrix: A mode-coupling theory. Physical Review Letters, 94(6), feb
2005.

[56] V Krakoviack. Liquid–glass transition of confined fluids: insights from a mode-
coupling theory. Journal of Physics: Condensed Matter, 17(45):S3565–S3570,
oct 2005.

[57] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C: The Art of Scientific Computing, Second
Edition. Cambridge University Press, 1992.


