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Abstract

Formal methods provide rich and expressive specification languages to reason about and
to describe systems at a high abstraction level. These methods are usually supported by
powerful tools to verify the correctness of the specifications by different means such as
proof or model checking. But is it possible to express non-trivial constraint satisfaction
problems in these specification languages and to use such a formal model at runtime for
problem solving and data validation? Are languages and the tools powerful enough to
enable this usage scenario? These are the central questions we explore in this thesis. We
look at these questions with a particular focus on the B Method – a state based formal
method for software development – and the ProB tool – an animator and model checker
for the B Method.
We begin by studying the use of the B language, a part of the B method, not only as a
specifications language but also as a modelling language for a wide range of challenging
constraint based problems. We show on several puzzles and case studies that it is possible
to formalize these problems elegantly using B. We also show that for many problems it is
possible to solve these formalizations using ProB.
We use our results on a larger case study about performing data validation of university
curricula using a formal specification. In this case study we use the B language to model
and validate the feasibility of university curricula from a students’ perspective and show
that ProB can efficiently solve this validation problem. In particular, we show that it is
possible to embed ProB in an application and solve this validation problem at runtime
using our B model.
Afterwards, we will present a general structure of a data validation project in B and
outline common challenges along with various solutions. This discussion is rooted in the
results and experiences gathered on our case study and on a second independent one. We
also discuss possible evolutions of the B language to make it (even) more suitable for
such projects.

In the course of this thesis we discuss several alternative modelling approaches and how
they relate to B and ProB. To conclude, we perform an in-depth evaluation where we
compare our B and ProB based approach to several other tools and languages that can
be used for this kind of validation task. We conclude that our approach of using B not
only as a formal specification language but also as a constraint modelling language can
be applied successfully in this scenario. Nevertheless, there are areas where this approach
could be improved or extended to better suit this kind of application. We also conclude
that ProB produces very good results for the high abstraction level of the language,
that it is in many cases faster than brute force solutions and that it is comparable to
dedicated constraint solving approaches.





Zusammenfassung

Formale Methoden bieten ausdrucksstarke Spezifikationssprachen um Probleme systema-
tisch zu analysieren und diese mit einem hohen Abstraktionsgrad zu beschreiben. Mit einer
Spezifikation werden Eigenschaften eines Systems beschrieben. Um deren Korrektheit
zu überprüfen sind Softwarewerkzeuge zentral. Diese erlauben es durch unterschiedliche
Techniken, wie Beweise oder Model-Checking, solche Spezifikationen zu verifizieren.

Ist es darüber hinaus möglich nicht-triviale Constraint-Satisfaction Probleme in diesen
Spezifikationssprachen auszudrücken und ein solches Model zur Laufzeit zu verwenden
um Probleme zu lösen und Datenvalidierung durchzuführen? Sind die existierenden
Sprachen und Werkzeuge ausdrucksstark und mächtig genug für diesen Einsatzzweck?
Dies sind die zentralen Fragen, die in dieser Arbeit erörtert werden. Sie werden mit einem
besonderem Augenmerk auf die B-Methode – eine zustandsbasierte formale Methode zur
Softwareentwicklung – und dem ProB Werkzeug – ein Animator und Model-Checker für
die B-Methode – untersucht.

Zunächst wird die Verwendung der B-Sprache, ein Teil der B-Methode, nicht nur als
Spezifikationssprache sondern auch als Sprache um Constraints zu beschreiben diskutiert.
Anhand einer Reihe unterschiedlicher Puzzles und Fallstudien wird gezeigt, dass es
möglich ist, diese mit der B-Sprache auf elegante Art und Weise zu formalisieren und
dass es möglich ist, diese Problembeschreibungen mit Hilfe vom ProB auszuwerten.

Diese Ergebnisse bilden die Grundlage einer umfangreichen Fallstudie über die Validierung
von Hochschulstudienplänen mit Hilfe einer formalen B-Spezifikation. Insbesondere
wird gezeigt, dass es möglich ist ProB in eine Anwendung einzubetten um dieses
Validierungsproblem zur Laufzeit zu lösen.

Aufbauend auf den Ergebnissen und Erfahrungen, die bei der zuvor erwähnten Fall-
studie und bei einer zweiten unabhängigen Fallstudie gesammelt wurden, wird eine
allgemeine Struktur für B-basierte Datenvalidierungsprojekte vorgestellt. Außerdem wer-
den Probleme, die bei diesen Projekten auftreten können, sowie mögliche Lösungsansätze
diskutiert.

Im Verlauf dieser Arbeit werden verschiedene alternative Modellierungsansätze diskutiert,
sowie mit B und ProB verglichen. Den Abschluss dieser Arbeit bildet ein systematischer
Vergleich dieses auf B und ProB basierenden Ansatzes zu alternativen Methoden, die für
die untersuchten Validierungsprobleme eingesetzt werden können. Aus diesem Vergleich
lässt sich schließen, dass B nicht nur als formale Spezifikationssprache sondern in diesem
Kontext auch als Costraint-Modellierungssprache eingesetzt werden kann. Eines der
Ergebnisse dieser Arbeit ist, dass ProB sehr gute Ergebnisse bei der untersuchten Art



von Validierungsproblemen, insbesondere unter Berücksichtigung des Abstraktionsgrades
der Sprache, liefert. Ferner ist ProB in vielen Fällen schneller als Brute-Force-Lösungen
und liefert Ergebnisse, die mit dedizierten Constraint-Solving-Ansätzen vergleichbar sind.
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Introduction and Background
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1
Introduction

Is it possible to express non-trivial constraint satisfaction problems in B and to use such
a formal model at runtime for problem solving? Are the language and the tools powerful
enough to enable this usage scenario? These are the central questions we explore in this
thesis.

The B Method [3], a formal method for software development introduced in the last
decade of the twentieth century by J.R. Abrial as a successor to Z [70, 120]. B is a
formal method for specifying safety critical systems, reasoning about those systems and
generating code following the correct by construction approach. The B specification
language, part of this method, is a rich mathematical language based on an abstract
machine notation and built around the concepts of first order logic, higher-order relations
and set theory. These properties allow the users of the language to formalize and express
complex problems in a succinct and elegant manner at a high level of abstraction.

The central matter of this thesis are applications of the B specification language using
ProB [88] beyond formal systems validation. ProB is an automatic animation and
model checking tool for B Method and other, mainly state based formal methods. The
tool is developed and maintained at the chair for programming languages and software
engineering (STUPS) at Heinrich Heine University Düsseldorf.

Due to the characteristics of B, ProB gradually evolved into a constraint solving tool for
the B language, in order to automatically determine values for parameters and quantified
variables in as many cases as possible. Guided by research and industrial usage, ProB’s
constraint solver for the B language has been continually improved in order to support
more complex specifications. This has opened up new uses of B beyond developing safety
critical systems, i.e. as a modelling language for constraint based problems.
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Chapter 1 Introduction

An area where these features have successfully been applied is that of (formal) data
validation [2]. In this area a formal model of a data set is used to validate, possibly very
large, data sets that are used by a system at runtime. The formal data model captures
the requirements on the data needed to ensure correct system behaviour. Data sets
corresponding to different system instances can then be checked using ProB’s constraint
solver or other tools against the properties they must satisfy according to the formal
model of the data. The data validation approach has successfully been used in areas
where a formal model is created in a generic manner to avoid repeated development costs
and configured at runtime, where the verification tools might not be able to handle large
data sets [87] or where the validation of data previously was done manually [2].

In this thesis we want to look in more detail at how well suited parts of the B language
are as a means to model constraint based problems. Linked to this question, we also
want to explore how well suited ProB’s constraint solver, a tool created for a different
usage scenario, is for solving challenging constraint validation problems specified in (a
subset of) B.

Assuming that ProB is able to handle complex constraint based validation problems, we
ultimately want to explore if it is possible to build an application that uses ProB as
part of its runtime. The goal would be to embed ProB and a B model in an application
and interact with it as a tool or library at runtime, without having to generate code from
our model.

All in all, the goals of this thesis are:

(i) Evaluate the use of B not only as a formal modelling language but also as a
constraint modelling language.

(ii) Evaluate if ProB can be used to efficiently find solutions to complex constraint
problems modelled in B.

(iii) Explore if ProB can be used as a runtime for constraint based models and embedded
in applications.

(iv) Analyse how the combination of B and ProB compares to other tools that can be
used to model constraint based problems.
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Before trying to answer the questions above, we introduce in Chapter 2 the different
concepts used in this thesis and provide some background on the context in which
our work has taken place. In Chapter 3 we focus on the B language and explore its
use to model constraint based problems and present a few simple benchmarks showing
ProB’s performance on these types of problems. Having explored the usability of B for
constraint modelling, Chapter 4 concetrates on a larger case study, about the validation
of university timetables. On this case study we evaluate if these claims can be applied to
complex constraints in the context of a larger application. In this chapter we introduce
and formalize a university timetable validation problem. Based on this problem we
try to determine if it is feasible to take the B language from the comparatively simple
constraint modelling problems in Chapter 3 to a larger problem with real world data and
applications. Additionally, we explore if and how it is possible to create an application
where our B model and ProB are not only used as independent validation tools, but
are integral parts of the application, in the sense that our B model is running on top of
ProB within the deployed application.

Chapter 5 revolves around the experience gathered while implementing the aforementioned
case study and an independent data validation project. Based on these projects we try
to outline a common structure for data validation projects. Additionally, we present
different challenges encountered when using B for data validation, discuss different
language constructs of B and argue how they can be applied in modelling data validation
problems. Moreover, we outline areas where we have extended the B language to overcome
some limitations we faced evaluating the models with ProB.

In the course of this thesis we discuss several alternative modelling approaches and
how they relate to B and ProB, before doing a detailed evaluation of some of these
approaches in Chapter 6. In this chapter we aim at comparing our use of B and ProB to
different languages and tools that can also be used to model constraint based problems.
The evaluation is based on a simplified version of the problem discussed in Chapter 4.
We compare different tools and languages with regard to the complexity of modelling the
problem and the performance of the associated tool to find a solution to problem.

Lastly, in Chapter 7 we recapitulate the work discussed in this thesis, presenting overall
conclusions and providing an outlook into future work.
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2
Background

In this chapter we will introduce the several concepts that build the basis for the work
presented in this thesis. First we give a brief introduction to the concept of formal
methods and formal specification languages with a particular focus on the B Method, we
will present the idea of data validation and constraint satisfaction problems in general
and present the ProB tool.

2.1 Formal Methods & Specification Languages

Formal methods are an approach to software and systems engineering that focuses on
the validation and verifiability of software and hardware designs. This approach is used
in particular in the context of safety critical systems, e.g. train control systems. Formal
methods are used in areas where a high degree of confidence in the correct and safe
execution of a hardware or software design is critical and a failure might endanger human
lives or significantly damage the environment [77]. Particularly in the area of software
development for railway systems the use of formal methods is common. This is due to
the fact, that their use is highly recommended in the European standard EN50128 [29]
for systems with a high safety integrity level [47].

Formal methods are also applied in mission, business and security critical contexts,
where a system is essential to an organization [65, Table 2]. These applications of
formal methods can range from their use to design systems that ensure data protection,
avoid unauthorized access or ensure the correctness of business critical algorithms [104]
among many other aspects. These are cases where failure might not have catastrophic
consequences that put people at risk, but might cause financial or other form of damage
to an organization [77].
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Chapter 2 Background

Formal methods are built around formal specification languages, which provide the
means to formalize and structure problem descriptions. These languages are generally
based on mathematical rigorous notations and techniques that are used to “specify,
model, develop and reason about computing systems” [118, p. 24] at a high level of
abstraction. Following the definition provided by the NASA Langley Formal Methods
Research Program, mathematical rigour means that formal methods and specification
languages are based on mathematical logic. This makes the verification of a system
specification a mathematical deduction process using the logic of the chosen formalism.1

With a method that is well-defined and founded on mathematical logic it is possible to
symbolically analyse a specification in order to validate properties covering all possible
states or configurations described by the specification. Analysis can either be performed
by conducting a proof using the rules of the logic or by systematically exploring all
possible configurations (model checking) defined by the specification according to the
rules of the chosen logic.

There is a large variety of languages, methodologies and tools in the domain of formal
methods as well as many ways to apply these in the process of software and system
modelling. Different methods and tools are suited for different use cases, to validate
different aspects of a design or to be applied at different levels of abstraction, etc. Notable
examples of formal methods are TLA+ [83], CSP [66], VDM [20], Alloy [72] and the B
Method [3] (see next section) among many others.

The mathematical rigour is also helpful to reason about a design at a higher abstraction
level to better capture a problem and its details. Available verification tools can be used
to explore the correctness of a design.

The approach of formal methods is used to manage the complexity in validating sys-
tem designs and developing correct software. Formal methods provide languages and
formalisms to support people modelling their systems and ensuring their correctness
through a variety of techniques, such as correctness proofs, model checking etc. Most
formal methods approaches and specification languages are associated with tools either
created in conjunction with the formalism or created specifically to support the respective
validation process. Some examples of tools for different formal methods are the proof
system TLAPS [30] and the model checker TLC [131] for TLA+, the Alloy Analyzer for

1http://shemesh.larc.nasa.gov/fm/fm-what.html - [Online; accessed 31-March-2017]
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2.1 Formal Methods & Specification Languages

Alloy [72, p. 152], Atelier-B [31] and ProB [88] (discussed later in this chapter) for the
B Method or the Spin model checker for the Promela language [15].

2.1.1 The B Method

In this thesis we will focus on aspects of a specific formal method, namely the B Method [3],
and one of our goals is to explore its usability as a constraint modelling language.

The B Method is a formal method for software development introduced in the last decade
of the twentieth century by J.R. Abrial as a successor to Z [70, 120], with the first
scientific conference specifically about B taking place 1996 in Nantes, France [59]. An
extension and simplification of the method, named Event-B [4], was later introduced,
which focuses on system-level design and analysis.

The B Method is, based on Abrial’s high-level characterization of B [3], a “method for
specifying, designing and coding software systems” [3, p. xv] that covers all aspects
of the software life cycle, of which he names specification, design through refinement,
layered architecture and code generation. In the method, each of these named activities
is backed by proofs in order to guarantee its correctness. This type methodology is often
described as a correct-by-construction approach, where an implementation is derived
systematically from a mathematical model of the system.

The specification language is built around models which are formalized using the Abstract
Machine Notation (AMN) [3, p. 227]. This notation serves as a structuring, abstraction
and encapsulation mechanism similar to classes or modules in programming languages.

The state of a machine is always private to it and can only be accessed and manipulated
via operations. It is described using the mathematical concepts built into the language,
such as sets, functions, relations, first order logic, etc. B is a state based method, the
values of the data characterize the machine’s state. In addition to the variables the states
of a machine are characterized by an invariant property. This property is a predicate that
describes the set of valid states the machine can be in by constraining the set of allowed
values for each variable. Operations are used to describe state transitions. Operations
consist of a precondition, describing when the operation can be executed, and of an
atomic action that describes changes to the state variables. The precondition must be
satisfied in the machine’s current state in order for the operation to be executable. The
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action, defined using a concept of generalized substitution, describes how the successor
state is computed from the values of the variables in the current state. Refinement,
an important aspect of the method, is the process of stepwise transforming the model
to executable code. In each refinement step the original abstract model is extended
with concrete data types and operations while maintaining the interface described by
the abstract model. The correctness of each refinement step is backed by a proof, to
guarantee that original and refined machines are correctly associated. Through successive
refinement it is possible to generate code, that, with regard to the abstract specification,
is correct by construction.

A simple example of a B machine, in AMN, is shown in Figure 2.1. The machine is
composed of several sections The CONSTANTS section introduces names for values that do
not change once initialized. The domain of each constant is described in the PROPERTIES

section in form of a predicate that constrains the range of possible values. The VARIABLES

section introduces, as the name indicates, variables that are used in the machine. These
variables are modified by the operations defined in the OPERATIONS section. Changes to
these variables represent state transitions. In our example of a simple counter every time
we increment or reset the counter we transition to a new state.

State transitions in the example are created by executing either the Count or Reset

operations. The latter of the two operations can be executed from any state. Whereas
the Count operation can only be executed from a state where the guard or precondition
of the operation is true. Guards of preconditions are used to restrict possible transitions,
i.e. to only transition into valid states; in this case we only allow the counter to be
incremented while it hasn’t reached its maximum value.

As discussed above, the invariant of a model describes a property that should hold in
every possible state of a machine to ensure the integrity of the system. In our simple
example we require the variable count to be a natural number and to be less than the
value Max in every state the system can reach. Violating this indicates that the system
has reached an undesirable state. Reaching such a state indicates that the requirements
are wrong or there is an error in the modelling.

10
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MACHINE Counter
CONSTANTS Max
PROPERTIES Max = 10
VARIABLES count
INVARIANT count : NATURAL & count < Max
INITIALISATION count := 0
OPERATIONS

Count = PRE count < Max
count := count + 1

END;
Reset = BEGIN

count := 0
END

END

Figure 2.1: B Machine modelling a counter that can be incremented until it reaches its
predefined maximum value. This model contains an error.

In our example we can reach a state, whose configuration violates the invariant, namely
the state where count = Max, which is a contradiction to the invariant that requires the
variable count to always be less than Max. To solve this problem we can either loosen
the invariant or strengthen the precondition to make it impossible to reach this state.

2.1.2 Formal Data Validation

As described so far, formal methods are a powerful method to verify and guarantee the
correctness of a system or software. In particular with tool support it is possible to verify
large projects using automatic and semi-automatic provers.

The formal correctness and correct behaviour of a system do not only depend on its
implementation but also on the provided configuration and the data upon which a system
acts. This is in particular true for systems that are modelled and validated in a generic
manner and later configured with data for a specific instance or scenario, e.g. for a
specific track layout in the case of a railway deployment [8, 87].
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The generic way of modelling has the advantage, that the developed system has to
be verified only once [9]. The behaviour of each instance of the system depends on
the correctness of the data used, hence the correctness of said data is central to the
well-behaved working of the system itself.

Nevertheless, when dealing with large data sets in the models many provers reach their
limits as to what they can process [87, p. 431]. Additionally, for generic models, the
correctness of the configuration data has to be ensured independently.

Generally, data validation can be understood as the process of ensuring that a set of
data used in a safety-critical computer system satisfies rules and constraints expected by
a consumer. Rules can express usefulness, completeness or correctness criteria on given
data or on derived properties. In this sense, formal data validation is ensuring a data set
satisfies a given formal model of the rules and relationships in the data [2, 85].

Originally the validation of data, even in a formal development process, was done
manually [2]. This process could be very expensive, could take a long time and due to its
manual nature is error prone. Lecomte et al. report in “Formally Checking Large Data
Sets in the Railways” [84] that, as part of the development of the software for the metro
line 14 in Paris, the process of manually validating 100000 items against 200 rules took
more than six months.

The idea of formal data validation is to create a formal model of the data and the
rules a data set has to satisfy. Such a specification explicitly captures the properties
the data has to satisfy. This can go from checking simple properties, such as checking
the types of values, to ensuring that certain indirect relations are present or that rules
about aggregated properties of the data are satisfied. A formal model of data can be
validated using either specialized tools or standard tools that can manage larger data
sets. The formalized rules are evaluated on the full data set to ensure the data satisfies
the requirements encoded in the rules, and if not to find counter examples.

For projects already using B for the software specification, the choice of B as the language
to specify the rules the for the data is not far fetched. When using B for data validation,
the data is described mainly using the mathematical language in B. The B Method has
been used several times in industrial applications to perform data validation. ProB has
been successfully used to perform data validation on such specifications [86].
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Some approaches using B or Event-B as a data validation tool have used the language
and tools to explicitly formalize a data model and validate it [86]. Other approaches, such
as OVADO [2] or DTVT [84], are tools created on top of the B language that provide
support for creating formal models of data. Both of these tools generate a formal B
model of the data, evaluate them and provide feedback to the user. DTVT is based on
ProB, whereas OVADO uses a redundant toolchain based on ProB and PredicateB [86]
in order to verify the results provided by either tool. Of course there exist many other
languages and tools that are very well suited for this task and which are used in similar
domains, for instance the Datalog [52] based RailCOMPLETE tool [95].

The approach of tool based formal data validation to automatically validate configuration
rules against specific instances can drastically reduce the validation time. For instance,
as Leuschel et al. report in “Automated property verification for large scale B models
with ProB” [90] in an industrial case study it was possible to reduce the validation time
from about a month for manual inspection to several minutes using ProB.

2.2 Constraint Programming

Constraint Programming (CP) is a declarative programming paradigm based on describing
a problem by means of the relation between its variables.

Following Apt’s definition in “Principles of Constraint Programming” [6, p. 9] we define
constraint and constraint satisfaction problems as follows:

Given a sequence of variables Y := y1, ..., yk where k > 0, with domains D1, ..., Dk such
that each variable yi ranges over the domain Di. Domains frequently range over boolean
or numeric values but can be arbitrary sets of objects. A constraint C on Y is a subset
of the Cartesian product D1 × ... × Dk of the domains. A constraint satisfaction
problem (CSP) is a finite sequence of variables X = x1, ..., xn with corresponding
domains D1, ..., Dn together with a finite set K of constraints each on a subsequence of
X.

A solution to a CSP is a sequence of legal values to all of its variables such that all its
constraints are satisfied. An n-tuple (d1, ..., dn) ∈ D1 × ... × Dn satisfies a constraint
C ∈ K on variables xi1 , ..., xim if (di1 , ..., dim) ∈ C. Such an n-tuple (d1, ..., dn) is a
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solution to a CSP if satisfies every constraint C ∈ K, where K is the CSP’s set of
constraints. If the CSP has a solution it is consistent, else it is inconsistent.

Example Given a CSP over variables (a, b) with domains a ∈ 1..4, b ∈ 1..4 and
constraints a < b and a + b < 5. The constraint a < b represents the set {(1, 2), (1, 3),
(1, 4), (2, 3), (2, 4), (3, 4)} domain value pairs that satisfy the constraint. Whereas the
constraint a + b < 5 represents the set of pairs {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)} of
domain values. A solution to the CSP must be an element of 1..4 × 1..4 an satisfy both
constraints of the CSP. Each of the tuples (1, 2) and (1, 3) represents a solution to the
CSP.

The process of formalizing a problem as a CSP is often referred to as modelling.
The formalization consists of defining a set of decisions variables for the problem and
associating them with constraints that must be satisfied [50]. The constraint programming
process consists of modelling a problem as a CSP and solving it using either domain
specific or general methods. Domain specific methods are algorithms developed for solving
CSP in areas where custom techniques exist. Unification algorithms, custom solvers for
problems based on integers or SAT and SMT solvers are examples of domain specific
solving techniques. General techniques are techniques concerned approaches aimed at
reducing the search space and searching for solutions within this space.

As stated by Apt one of the central goals in the research of constraint programming is to
find and develop efficient techniques for solving CSP in different domains [6].

As there are many different approaches and tools there are also numerous areas where
constraint programming is applied. Applications range from the layout of user interfaces by
expressing geometric relations [10] to scheduling systems [12] and test data generation [56]
among many others.

2.3 ProB - Constraint Solving for the B Method

The central tool for this thesis is the ProB animator and model checker [88]. ProB ini-
tially created for the B Method nowadays supports several state based formal methods,
such as Event-B [17], Z [107, 108], TLA+ [60], and also CSP [91]. ProB’s central
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Figure 2.2: Screenshot of ProB’s user interface

features are the constraint solving and model finding capabilities built into the tool as
well as its automatic animation features. By animation, in this context, we refer to
the visualization and interactive exploration of the state space described by a model in
order to validate properties of the formal model. Interactive exploration is achieved by
evaluating transitions to other states, by means of operations in the case of a B model,
and visualizing the results.

As Leuschel et al. describe in “From Animation to Data Validation: The ProB Constraint
Solver 10 Years On” [87] the original motivation to create ProB in 1999 was the lack
of validation tools among those available for the B Method. At the time the central
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tools for the B Method were BToolkit2 and Atelier B3, both of which provided mainly
automatic and interactive proving environments and code generators.

In contrast to verification, i.e. ensuring the correctness of a model or specification,
validation refers to the inspection of a model with the goal to ensure that it correctly
captures the requirements and behaves as expected. BToolkit had restricted support
for interactive animation that required the user to provide values for parameters and
existentially quantified variables.

ProB’s first goal was to provide automatic animation by computing values for parameters
and existentially quantified variables, thus relieving the user from providing concrete
values for these cases. To achieve this, ProB gradually evolved into a constraint solving
tool for the B language. Since the language itself is undecidable, ProB cannot provide
values for any conceivable B formula, but is able to efficiently solve a still growing subset
of the language making it a viable and useful tool for validating and testing formal
models.

Using the automatic animation features it is also possible to use ProB for model checking,
i.e. systematically exploring the state space described by a model to verify properties and
find states that violate certain conditions. E.g. finding a reachable state that violates
the invariant or represents a dead-lock.

With the constraint solving features for the B language added to ProB, it can be used
to ensure that large data sets satisfy properties described using a B model. This has led
to the use of ProB as a data validation tool even in cases where B is not used for the
system specification [2, 84, 87].

With ProB it is not only possible to check a large data set from a vast domain for its
validity, but ProB can also be used to compute configurations under which a certain
data set is valid with regard to given rules. As described in “Data Validation & Reverse
Engineering”4, the data validation/constraint solving features in ProB could be used in
the process of reverse engineering an old IDE.

2https://github.com/edwardcrichton/BToolkit - [Online; accessed 31-March-2017]
3http://www.atelierb.eu - [Online; accessed 31-March-2017]
4http://www.data-validation.fr/data-validation-reverse-engineering/ - [Online; accessed 31-

March-2017]
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In “Supporting Validation and Verification of State-Based Formal Models” [106] Plagge
provides an overview of ProB’s architecture. At the core are the constraint solving
and animation features which are implemented in SICStus Prolog using its clp(FD)
implementation [27], that provides constraint solving over finite domains. ProB makes
use of and extends clp(FD) in order to support the high-level features of the B language,
such as infinite domains, quantified variables and arbitrarily nested sets, which has been
described by Krings et. al. [80, 81].

Figure 2.2 shows a screenshot of ProB’s Tcl/Tk based user interface, consisting of an
editor and three panes that show the current state of an animation and present controls
to navigate the state space. Besides this user interface ProB can be invoked from the
command line either in an interactive or batch mode. Additionally ProB can be used as
a plugin for the Rodin Platform [17] and lastly a library has been created that exposes
ProB’s features as a Java library [16].
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3
Using B as a Constraint Modelling

Language

This chapter is based on a paper titled “Towards B as a High-Level Constraint Modelling
Language” [93] presented at the ABZ 2014 conference.

In this chapter we argue that B is a useful language to conveniently express a wide range
of constraint satisfaction problems. We also show that some problems can be solved quite
efficiently by the ProB tool. We illustrate these claims on several examples, such as
the jobs puzzle - for which we solve a challenge set out by Shapiro [116]. Here we show
that the B formalization is both very close to the natural language specification and can
still be solved efficiently by ProB. Our approach is particularly interesting when a high
assurance of correctness is required. Indeed, compared to other existing approaches and
tools, validation and double checking of solutions is available for ProB and formal proof
can be applied to establish important properties or provide an unambiguous semantics
to the problem specification.

The structure of this chapter is the following: first we present a case study which highlights
the expressiveness of B as a constraint modelling language. The case study is based on
the jobs puzzle [129] and takes on the challenges identified and discussed by Shapiro [116].
A part of this challenge is to provide a formalization of the puzzle that follows closely
the English text of the puzzle. This aspect makes it particularly interesting, as it allows
us to showcase how, using B, these kinds of problems can be expressed very conveniently
and still be solved efficiently with ProB. The puzzle, the challenge and our solution to
the puzzle are discussed and compared to other solutions in Section 3.1.

In a second step, we establish that ProB as a tool can be used to solve an interesting
class of constraint satisfaction problems efficiently, providing a good balance between the
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ease of expressing a problem on an abstract level using B and the efficiency of solving
these problems. In Section 3.2 we discuss a series of problems that are expressed nicely in
B and can be solved by ProB for a wide range of values, such as the n-Queens problem,
the Peaceable Armies of Queens and the Graph Isomorphism problem. We compare the
results to a selection of different tools to show that ProB gives competitive results, while
still having potential for improvement as discussed in Section 3.4. Finally, in Section 3.3
we present how the constraint solving features of ProB, showcased in this chapter, are
being used in several industrial applications.

Alternative Approaches to Constraint Solving The mathematical language of B is
quite close to that of Z and TLA+. As ProB can deal with those formalisms [107, 60],
the gist of the chapter is also valid for those languages. Similarly, VDM and abstract
state machines are probably also well suited to express constraint satisfaction problems.

Dedicated Constraint Solving Libraries Alternate approaches to our high-level
formal methods approach are dedicated constraint-solving libraries embedded in general
purpose programming languages. Examples are the clp(FD) library of SICStus Prolog [27]
or the IBM Decision Optimization Manager (formerly known as ILOG).1 These libraries
require a much higher modelling effort and a relatively high level of expertise, but can
obviously obtain better performance. Another possible approach is the Zinc modelling
language [97]. It provides a higher level encoding than for example clp(FD), but still
cannot deal with higher-order sets or relations. Also, to our knowledge, neither Zinc nor
any other tool we are aware of can deal with unbounded constraint satisfaction problems.

SMT-based approaches It would be interesting to see how an expert in the Formula
language [73], which maps to the Z3 SMT solver, would encode the problems in this
chapter, and how the solving times compare with those of ProB. Recently, an Event-B
to SMT-LIB converter has become available for the Rodin platform [40]. It is very useful
for proof, but as shown by Plagge and Leuschel [108] is not suitable for constraint solving.
For example, it was not possible to solve various simpler problems, such as the Who
killed Agatha puzzle or a graph colouring problem. As such, we did not attempt to use
this B to SMT converter on the examples in this chapter. We revisit the use of SMT-LIB
and Z3 for constraint based problems in Chapter 6.

1http://www-03.ibm.com/software/products/en/decision-optimization-center - [Online; ac-
cessed 14-March-2017]
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SAT-based approaches The Alloy language [71] was designed from the outset to
be able to effectively translated to SAT problems. This leads to certain expressivity
restrictions, e.g., higher-order relations and sets are not allowed as their SAT encoding
would become too large to be tractable. ProB follows another principle: it accepts the
B language in full with all its consequences, and tries to solve constraints for as many
relevant models as possible. Note that ProB also has a backend [108] which translates B
constraints into SAT. This uses the same Kodkod library [125] that Alloy employs, and
can deal much better with certain relational constraints, but similarly only translates
first order sets and relations (the rest are left for the traditional ProB solver). In this
chapter we discuss and compare several B solutions with Alloy counterparts and also
discuss the ProB Kodkod backend.

Finally, one could think of using model checking rather than constraint solving. In
fact, we have experimented with various solutions for the puzzles using efficient model
checkers such as Spin or TLC. However, for constraint satisfaction problems model
checking amounts to naive, brute force search and is rarely able to solve more complicated
constraints.

3.1 On the Expressiveness of B - The Jobs Puzzle

The first and most detailed example we discuss is the jobs puzzle. This puzzle was
originally published in 1984 by Wos et al. [129] as part of a collection of puzzles for
automatic reasoners. A reference implementation of the puzzle, by one of the authors of
the book, using OTTER [98] can be found online.2

The puzzle consists of eight statements that describe the problem domain and provide
some constraints on the elements of the domain. The problem is about a set of people
and a set of jobs. The question posed by the puzzle is: who holds which job? The text
of the puzzle as presented by Shapiro in “The Jobs Puzzle: A Challenge for Logical
Expressibility and Automated Reasoning” [116] is as follows:

• There are four people: Roberta, Thelma, Steve, and Pete.

• Among them, they hold eight different jobs.
2http://www.mcs.anl.gov/~wos/mathproblems/jobs.txt - [Online; accessed 14-March-2017]
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• Each holds exactly two jobs.

• The jobs are: chef, guard, nurse, clerk, police officer (gender not implied), teacher,
actor, and boxer.

• The job of nurse is held by a male.

• The husband of the chef is the clerk.

• Roberta is not a boxer.

• Pete has no education past the ninth grade.

• Roberta, the chef, and the police officer went golfing together.

What makes this puzzle interesting for automatic reasoners, is that not all the information
required to solve the puzzle is provided explicitly in the text. The puzzle can only be
solved if certain implicit assumptions about the world are taken into account, such as:
the names in the puzzle denote gender or that some of the job names imply the gender
of the person that holds it.

3.1.1 Shapiro’s Challenge

Shapiro [116], following the original authors’ remarks, that formalizing the puzzle was at
times hard and tedious, identified three challenges posed by the puzzle with regard to
automatic reasoners. According to Shapiro [116], the challenges posed by the jobs puzzle
are to:

• formalize it in a non-difficult, non-tedious way.

• formalize it in a way that adheres closely to the English statement of the puzzle.

• have an automated general-purpose commonsense reasoner that can accept that
formalization and solve the puzzle quickly.

Any formalization also needs to encode the implicit knowledge needed for the automatic
reasoners to solve the puzzle while still trying to satisfy the aspects mentioned above.
Addressing this challenge makes this puzzle a good case study for the expressiveness of B
to formalize such a problem.
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3.1.2 A Solution to the Jobs Puzzle Using B

The B encoding of the puzzle uses plain predicate logic, combined with set theory and
arithmetic. We will show how this enables a very concise encoding of the problem, staying
very close to the natural language requirements. Moreover, the puzzle can be quickly
solved using the constraint solving capabilities of ProB. Following the order of the
sentences in the puzzle we will discuss one or more possibilities to formalize them using
B.

To express “There are four people: Roberta, Thelma, Steve, and Pete” we define a set of
people, that holds the list of names:

PEOPLE = {"Roberta", "Thelma", "Steve", "Pete"}

We are using strings here to describe the elements of the set. This bears the advantage, that
the elements of the set are implicitly different.3 Alternatively, we could use enumerated
or deferred sets defined in the SETS section of a B machine.

As stated above, in order to solve the puzzle we need some additional information not
included in the puzzle’s description. The first bit of information is that the names used
in the puzzle imply the gender. In order to express this information we create two sets,
MALE and FEMALE which are subsets of PEOPLE and contain the corresponding names.

FEMALE = {"Roberta", "Thelma"} & MALE = {"Steve", "Pete"}

The next statement of the puzzle is: “Among them, they hold eight different jobs”. This
can be formalized in B using a function that maps from a job to the corresponding person
that holds this job using a total surjection from JOBS to PEOPLE:

HoldsJob : JOBS � PEOPLE

Although redundant, as we will see below, to express “Among them, they hold eight
different jobs” we can add the assertion that the cardinality of HoldsJob is 8. This is
possible, because in B functions and relations can be treated as sets of pairs, where each
pair consists of an element of the domain and the corresponding element from the range
of the relation.

3This encoding allows us to input the puzzle directly into the ProB console.

25



Chapter 3 Using B as a Constraint Modelling Language

card(HoldsJob) = 8

Constraining the jobs each person holds, the puzzle states: “Each holds exactly two jobs”.
To express this we use the inverse relation of HoldsJob, it maps a PERSON to the JOBS

associated to her. The inverse function or relation is expressed in B using the ˜ operator.
For readability we assign the inverse of HoldsJob to a variable called JobsOf. JobsOf is
in this case is a relation, because, as stated above, each person holds two jobs.

JobsOf = HoldsJob~

Because JobsOf is a relation and not a function, in order to read the values, we need
to use B’s relational image operator. This operator maps a subset of the domain to a
subset of the range, instead of a single value. To read the jobs Steve holds, the relational
image of JobsOf is used as shown below:

JobsOf[{"Steve"}]

Using the JobsOf relation we can express the third sentence of the puzzle using a
universally quantified expression over the set PEOPLE. The universal quantification
operator (∀) is expressed in B using the ! symbol followed by the name of the variable
that is quantified. This way of expressing the constraint is close to the original text of
the puzzle, saying that the set of jobs each person holds has a cardinality of two.

!(x).(x : PEOPLE ⇒ card(JobsOf[{x}]) = 2)

The fourth sentence assigns the set of job names to the identifier JOBS. This statement
also constraints the cardinality of HoldsJob to 8.

JOBS = {"chef", "guard", "nurse", "clerk",

"police", "teacher", "actor", "boxer"}

The following statements further constrain the solution. First “The job of nurse is held by
a male”, which we can express using the HoldsJob function and the set MALE by stating
that the element of PEOPLE that HoldsJob(“nurse”) points to is also an element of the
set MALE.

HoldsJob("nurse") : MALE
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Additionally, we add the next bit of implicit information, which is that typically a
distinction is made between actress and actor, and therefore the job name actor implies
that it is held by a male. This information is formalized, similarly as above.

HoldsJob("actor") : MALE

The next sentence: “The husband of the chef is the clerk” contains two relevant bits of
information, based on another implicit assumption, which is that, at the time, marriage
was only possible between one female and one male. With this in mind, we know that the
chef is female and the clerk is male. One possibility is to do the inference step manually
and encode this as:

HoldsJob("chef") : FEMALE & HoldsJob("clerk") : MALE

Alternatively, and in order to stay closer to the text of the puzzle we can add a function
Husband that maps from the set FEMALE to the set MALE as a partial injection. We use
a partial function, because we do not assume that all elements of FEMALE map to an
element of MALE.

Husband : FEMALE 7� MALE

To add the constraint using this function we state that the tuple of the person that holds
the job as chef and the person that holds the job as clerk are an element of this function
when treated as a set of tuples.

(HoldsJob("chef"), HoldsJob("clerk")) : Husband

The next piece of information is that “Roberta is not a boxer”. Using the JobsOf relation
we can express this close to the original sentence, by stating: boxer is not one of Roberta’s
jobs. This can be expressed using the relational image of the JobsOf relation:

"boxer" /: JobsOf[{"Roberta"}]

The next sentence provides the information that “Pete has no education past the ninth
grade”. This again needs some context information to be useful in order to find a
solution for the puzzle [116]. To interpret this sentence we need to know that the jobs of
police officer, teacher and nurse require an education of more than 9 years. Hence the
information we get is that Pete does not hold any of these jobs. Doing this inference step
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we could, as above, state something along the lines of HoldsJob(“police”) 6= “Pete”, etc.
for each of the jobs. The solution used here, tries to avoid doing the manual inference
step. Although we still need to provide the information needed to draw the conclusion
that Pete does not hold any of these three jobs. We create a set of those jobs that need
higher education:

QualifiedJobs = {"police", "teacher", "nurse"}

Using the relational image operator we can now say that Pete is not among the ones that
hold any of these jobs. The relational image can be used to get the set of items in the
range of function or relation for all elements of a subset of the domain.

"Pete" /: HoldsJob[QualifiedJobs]

Finally, the last piece of information is that “Roberta, the chef, and the police officer went
golfing together”, from this we can infer that Roberta, the chef, and the police officer are
all different persons. We write this in B stating that the set of Roberta, the person that
holds the job as chef, and the person that is the police officer has cardinality 3, using a
variable for the set for readability.

Golfers = {"Roberta", HoldsJob("chef"), HoldsJob("police")}

&

card(Golfers) = 3

By building the conjunction of all these statements, ProB searches for a valid assignment
to the variables introduced that satisfies all constraints, generating a valid solution
that answers the question posed by the puzzle “Who holds which job?” in form of the
HoldsJob function. The solution found by ProB is depicted in Fig. 3.1.4

This satisfies, in our eyes, the challenges identified by Shapiro. In the sense that the
formalization, is not difficult, although it uses a formal language. The elements of this
language are familiar to most programmers or mathematicians and it builds upon well
understood and widely known concepts. The brevity of the solution shows that using an
expressive high-level language it is possible to encode the puzzle without having tedious
tasks in order to be able to solve the puzzle at all.

4We used the “Visualize State as Graph” command and then adapted the generated graph using
OmniGraffle.
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Figure 3.1: The solution to the Jobs puzzle, depicted graphically

The encoding of the sentences follows the structure of the English statements very closely.
We avoid the use of quantification wherever possible and use set based expressions that
relate closely to the puzzle. We are able to encode the additional knowledge needed
to solve the puzzle in a straight forward way, that is also close to how this would be
expressed as statements in English. Lastly it is worth to note that the formalization of
“Each holds exactly two jobs” is the one furthest away from the English expression, using
quantifications and set cardinality expressions.

3.1.3 Related Work

In his paper Shapiro discusses several formalizations of the puzzle with regard to the
identified challenges. A further formalization using controlled natural language and
answer set programming (ASP) was presented in “The jobs puzzle: Taking on the
challenge via controlled natural language processing” [114] by Schwitter et al.

The first of the solutions discussed by Shapiro is a solution from the TPTP website,
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encoded as a set of clauses and translated to FOL. The main disadvantages of this
encoding is that it requires 64 clauses to encode the problem and many of them are
needed to define equality among jobs and names. In contrast to this, our B encoding
uses either enumerated sets or strings, where all elements are implicitly assumed to be
different. Thus the user does not have to define the concept of equality for atoms.

The second solution discussed by Shapiro uses SNePS [117], a common sense and natural
language reasoning system designed with the goal to “have a formal logical language
that captured the expressibility of the English language” [116]. The language has a
unique name assumption and set arguments making the encoding simpler and less tedious.
On the other hand the lack of support for modus tolens requires rewriting some of the
statements in order to solve the puzzle.

The last formalization discussed by Shapiro uses Lparse and Smodels [105] which uses
stable model semantics with an extended logic programming syntax. According to Shapiro
several features of Lparse/Smodels are similar to those of SNePS. This formalization also
simplifies the encoding of the puzzle, but according to Schwitter et al. both solutions still
present a “considerable conceptual gap between the formal notations and the English
statements of the puzzle” [114].

Schwitter et al. present a solution to the jobs puzzle using controlled natural language and
a translation to ASP to solve the jobs puzzle in a novel way that stays very close to the
English statements of the puzzle and satisfying the challenges posed by Shapiro. To avoid
the mismatch between natural and controlled natural languages Schwitter et al. describe
the use of a development environment that supports the user to input valid statements
according to the rules of the controlled language. A solution using a mathematical, but
high level language like B avoids this problems by having a formal and, for most, familiar
language used to formalize the problem.

3.2 Solving Constraint Problems with B and ProB

ProB is able to solve our formalization of the jobs puzzle, presented in the previous
Section, in about 10ms, finding the two possible instantiations of the variables that
represent the (same) solution to the puzzle.
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In this section we will present four examples, that can be elegantly expressed with B and
discuss how these can be solved with the constraint solving features of ProB.

3.2.1 Subset Sum

The first example is the subset sum problem 7.8.1 from page 340 of “Optimization Models
For Decision Making: Volume 1”.5

A bank van had several bags of coins, each containing either 16, 17, 23, 24,
39, or 40 coins. While the van was parked on the street, thieves stole some
bags. A total of 100 coins were lost. It is required to find how many bags
were stolen.

Expressing this problem just takes this simple B snippet that ProB can solve it in less
than 5 ms. The goal is to determine how many bags of coins were lost to amount for 100
missing coins. The bags can have different sizes, specified in the set named coins.

coins = {16,17,23,24,39,40} &

stolen : coins → NATURAL &

SIGMA(x).(x : coins | stolen(x) * x) = 100

In order to find the result with B, we create a function that maps from the different
coin-bag sizes to a number; this number represents how many bags of that size were
stolen. The instantiation of the function stolen is constrained by the last expression,
which states that the sum of all coins in the missing bags is 100. This is expressed in B
using the SIGMA operator, which returns the sum of all values calculated in the associated
expression, akin the mathematical Σ operator. An interesting aspect is that we have not
explicitly expressed an upper bound on coins. NATURAL stands for the set of mathematical
natural numbers. ProB determines the upper bound itself during the constraint solving
process. Finally, we can check that there is only one solution by checking:

1 = card({coins, stolen | coins = {16,17,23,24,39,40} &

stolen : coins → NATURAL &

SIGMA(x).(x : coins | stolen(x) * x) = 100})

5http://ioe.engin.umich.edu/people/fac/books/murty/opti_model/ - [Online; accessed 13-
March-2017]
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Table 3.1: Time in ms. to find a first solution to the n-Queens problem.
Board
Size ProB C Prolog Prolog Alloy

n clp(FD) MiniSat Plingeling

8 163 ±10.05 3.25 ±0.48 0 ±0.0 10 ±0.0 181.9 ±14.81 1002.8 ±81.45
10 163 ±9.0 2.02 ±0.17 2 ±4.0 9 ±3.0 511.8 ±15.45 1634.2 ±161.08
20 181 ±10.44 42.13 ±2.65 194 ±4.90 10 ±4.47 11639.7 ±201.94 8158.9 ±2667.66
30 215 ±12.85 14204.94 ±30.52 107300 ±547.56 13 ±4.58 - - 33164.5 ±2414.33
40 246 ±4.90 - - -* - 12 ±4.0 - - - -
50 370 ±25.30 - - - - 19 ±3.0 - - - -
60 463 ±26.10 - - - - 17 ±4.58 - - - -
70 501 ±30.15 - - - - 11 ±3.0 - - - -
80 598 ±30.92 - - - - 15 ±6.71 - - - -
90 858 ±51.34 - - - - 21 ±3.0 - - - -
100 971 ±45.27 - - - - 18 ±4.0 - - - -

* We cancelled this run after 40 minutes without result.
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3.2.2 n-Queens

The well known n-Queens problem6 is a further problem, that can be expressed very
succinctly in B by specifying a constant queens, which has to satisfy the following
axioms:

queens : perm(1..n) &

!(q1, q2).(q1 : 1..n & q2 : 2..n & q2 > q1

⇒ queens(q1) + (q2 - q1) /= queens(q2) &

queens(q1) + (q1 - q2) /= queens(q2))

The total and injective function queens maps the index of each column to the index of
the row where the queen is placed in that column. The formula states that for each pair
of columns, the queens placed on those columns are not on the same diagonal. From the
set of functions from 1 . . . n to 1 . . . n ProB discards those candidates that violate the
condition on the diagonals and instantiates queens to the first solution that satisfies it.

To get a better idea of how ProB performs for this, and hopefully similar problems we
compared, as shown in Table 3.1, the B implementation on ProB 1.6.2-beta1 (revision:
eec70f07) to a C iterative implementation, a version in Prolog using clp(FD) taken
from the “SICStus Prolog user’s manual” [28, p. 487], a version in Prolog taken from
Chapter 14 of “The Art of Prolog” [121, p. 255] both running on SICStus Prolog 4.3.5, a
version written in Alloy (See Appendix B.1) using the MiniSat [46] and Plingeling [18]
SAT-solvers provided with Alloy 4.2_2015-02-22. We ran the examples on an otherwise
idle machine running Linux Mint 18, with 4 GB of RAM and a quad-core Intel Core i5
CPU running at 2.67 GHz for increasing values of n. For each value of n we ran ten
iterations of the example, each in a new process, and report the average runtimes in
Table 3.1 All reported times represent the time needed to find a first valid configuration.
For each tool we stopped collecting data after the first computation that took more than
10 seconds to find a solution.

There are some pathological cases, not shown here, where ProB, but also other tools
perform very badly (such as n = 88) but for most inputs of n < 101 ProB finds a
solution in less than a second. ProB has a noticeable overhead of about 160 milliseconds
when evaluating the n-Queens predicate in a new process for the first time. Likely the

6https://en.wikipedia.org/w/index.php?oldid=765435416 - [Online; accessed 13-March-2017]
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overhead is the time the JIT compiler, added to SICStus Prolog in release 4.3, spends
compiling some parts of ProB’s core when we first evaluate an expression. This overhead
is not present if the JIT is disabled via the SP_JIT environment variable. Also, it only
affects the first execution of a predicate, subsequent executions of the same predicate are
significantly faster.

The results show that constraint based solutions to this problem, with increasing board
sizes, give better results than the brute force versions. Among the constraint based results,
the direct encoding in Prolog using clp(FD) is generally faster than ProB; considering
the higher abstraction level of B these results are to be expected. Taking the size of the
implementations into account (as reported in Table 3.2) gives evidence that using B to
encode such a problem and ProB to solve it is a good trade-off between the size, the
complexity of the implementation and the time required to find a solution.7

Table 3.2: Implementation size in bytes for the different solutions compared
Language Bytes

B (ProB) 141
Alloy 456
Prolog clp(FD) 1252
Prolog 1275
C 3059

3.2.3 Peaceable Armies of Queens

A challenging constraint satisfaction problem, related to the previous, was proposed by
Bosch [24] and taken up by Smith et al. [119]. It consists of setting up opposing armies
of queens of the same size on a n × n chessboard so that no queen attacks a queen of the
opposing colour.

Smith et al. report that the integer linear programming tool CPLEX took 4 hours to
find an optimal solution for n = 8 (which is 9 black and 9 white queens). Optimal
here means placing as many queens as possible, i.e., there is a solution for 9 queens but

7We are aware that the different solutions compared might not represent the best possible solution in
each formalism.
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none for 10 queens. In order to determine the optimal solution for n = 8 the ECLiPSe
and the ILOG solver are reported to take just over 58 minutes and 27 minutes and 40
seconds respectively (Table 1 in “Models and Symmetry Breaking for ’Peaceable Armies
of Queens”’ [119]). After applying the new symmetry reduction techniques proposed
by Smith et al. [119], the solving time was reduced to 10 minutes and 40 seconds for
ECLiPSe and 5 minutes 31 seconds for the ILOG solver.

In a first instance, we have encoded the puzzle as a constraint satisfaction problem, i.e.,
determining whether for a given board size n and a given number of queens q we can
find a correct placement of the queens. We first introduce the following DEFINITION:

ORDERED(c,r) == (!i.(i : 1..(n-1) ⇒ c(i) <= c(i+1)) &

!i.(i : 1..(n-1)

⇒ (c(i) = c(i+1) ⇒ r(i) < r(i+1))))

The encoding of the problem is now relatively straightforward:

blackc : 1..n → 1..dim & whitec : 1..n → 1..dim &

blackr : 1..n → 1..dim & whiter : 1..n → 1..dim &

ORDERED(blackc,blackr) & ORDERED(whitec,whiter) &

!(i,j).(i:1..n & j:1..n ⇒ blackc(i) /= whitec(j)) &

!(i,j).(i:1..n & j:1..n ⇒ blackr(i) /= whiter(j)) &

!(i,j).(i:1..n & j:1..n

⇒ blackr(i) /= whiter(j) + (blackc(i)-whitec(j))) &

!(i,j).(i:1..n & j:1..n

⇒ blackr(i) /= whiter(j) - (blackc(i)-whitec(j))) &

whitec(1) < blackc(1) /* symmetry breaking */

We have also encoded the problem in Alloy (See Appendix B.2). Table 3.3 shows
the results for board sizes of 7 and 8 for ProB and Alloy. We have used Alloy in
version 4.2_2015-02-22 and version 1.6.2-beta1 (revision: eec70f07) of ProB. We ran
the examples on an otherwise idle machine running Linux Mint 18, with 4 GB of RAM
and a quad-core Intel Core i5 CPU running at 2.67 GHz. We ran 10 iterations for each
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Table 3.3: Runtime in milliseconds to solve the Peaceable Queens problem
Board Size Queens SAT ProB Alloy

n q MiniSat Plingeling

7 7 3 1614 ±76.0 11837.2 ±288.3 4672 ±552.4
7 8 7 23098 ±189.6 -* - -* -
8 1 3 165 ±12.7 59.7 ±21.6 139.9 ±4.3
8 2 3 205 ±9.7 102.1 ±26.1 383.5 ±83.9
8 3 3 212 ±21.0 300.8 ±88.6 664.4 ±127.4
8 4 3 214 ±10.8 760.2 ±120.5 865.1 ±19.7
8 5 3 217 ±16.4 1622.6 ±292.7 1496.4 ±266.6
8 6 3 221 ±14.5 2171.8 ±168.9 1396.3 ±240.5
8 7 3 425 ±7.1 6021.6 ±631.0 4134.8 ±434.0
8 8 3 900 ±45.2 7556.0 ±599.5 5375.6 ±428.3
8 9 3 198501 ±1036.7 21041.5 ±881.3 11882.4 ±3131.9
8 10 7 1329552 ±4409.8 -* - -* -

* We cancelled this run after 30 minutes without result.

problem instance shown in the table and report the average runtime.

For small numbers of queens both SAT solvers we used with Alloy perform better than
ProB. For feasible boards with up to 8 queens ProB gives better results than both
SAT solvers, with a runtime of 900 milliseconds for 8 queens on a board of size 8 where
Plingeling’s solving time was 5375.6 milliseconds on average. For the optimal solution of
placing 9 queens on a board of size 8 the results are different. In this case ProB does not
perform as well as it did on the previous instances, here ProB takes 198501 milliseconds
(3 minutes and 18 seconds) to find a solution. In comparison to this, Plingeling, the
faster of the both SAT solvers on this instance, only takes 11882.4 milliseconds to find a
solution. When checking the first unsatisfiable instance for each board size, i.e. placing 8
queens on a board of size 7 and 10 queens on a board of size 8, ProB is able to detect
that these instances are not satisfiable in 23098 milliseconds and 1329552 milliseconds
(22 minutes and 10 seconds) respectively. Alloy’s SAT solvers had not detected the
inconsistencies after 30 minutes when we cancelled each run. ProB can also solve the
puzzle for n = 8, q = 9 and an additional two kings (one of each colour [55]). The solving
time is about one hour.
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This example has shown that even problems considered challenging by the constraint
programming community can be solved, and that they can be expressed with very little
effort. The graphical visualization features of ProB were easy to setup (basically just
defining an animation function in B and declaring a few images; see “Easy Graphical
Animation and Formula Viewing for Teaching B” [92] for details) and were extremely
helpful in debugging the model.

3.2.4 Extended Graph Isomorphism

The Graph Isomorphism Problem8 is the final problem discussed here. To determine if
two graphs are isomorphic we search for a bijection of the vertices which preserves the
neighbourhood relationship.

Using B, graphs can be represented as relations of nodes, where the vertices are represented
by the tuples in the relation, seen as a set. An undirected graph can hence be easily
represented as the union of the directed graph relation with the inverse of the relation,
basically duplicating all vertices.

Using B we can state the problem, as shown in Figure 3.2, using an existential quantifica-
tion over the formula used to define the graph isomorphism problem, following closely the
mathematical problem definition. Existential quantification is expressed in B using the #

operator, which corresponds to the ∃ symbol in mathematical notation. We state that
there is a total bijection that maps the vertex set from one graph to the other such that
two nodes are adjacent in the domain iff they are adjacent in the range of the bijection.
Additionally we only need to encode the entities needed in the quantification in order to
solve this problem for two specific graphs.

The specification in Figure 3.2 can easily be extended with additional constraints. An
industrial application of such an extended graph isomorphism problem was presented
by ClearSy.9 Here, ClearSy used B and ProB to find graph isomorphisms between
high-level control flow graphs and control flow graphs extracted from machine code
gathered through a black box compiler. In addition, the memory mapping used by the

8https://en.wikipedia.org/w/index.php?oldid=760657015 - [Online; accessed 14-March-2017]
9http://www.data-validation.fr/data-validation-reverse-engineering/ - [Online; accessed 30-

March-2017]
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MACHINE CheckGraphIsomorphism
SETS Nodes = {a,b,c,d,e, x,y,z,v,u}
DEFINITIONS

G1 == {a7→b, a7→c, a7→d, b7→c, b7→d, c7→e, d 7→e};
G2 == {x7→v, x7→u, x7→z, y7→v, y7→u, z7→v, z 7→u}

CONSTANTS graph1, graph2, relevant
PROPERTIES

graph1: Nodes <-> Nodes & graph2: Nodes <-> Nodes &
/* generate undirected graphs */
graph1 = G1\/G1~ & graph2 = G2 \/ G2~ &
relevant = dom(graph1) \/ dom(graph2) \/ ran(graph1) \/

ran(graph2) &
#p.(p : relevant �� relevant &

!(x, y).(x : relevant & y : relevant ⇒
(x7→y : graph1 ⇐⇒ p(x)7→p(y) : graph2)))

END

Figure 3.2: B specification to check if two graphs are isomorphic.

compiler had to be inferred by constraint solving. For the main problem on graphs with
192 nodes each, the solution was found by ProB in 10 seconds. The ability to easily
express graph isomorphism and pair it with other domain specific predicates was an
important aspect in this application.

3.3 Industrial Applications

As mentioned in Chapter 2 and in the previous section, the expressivity of B in combination
with the constraint solving capabilities of ProB are being used in several industrial
applications in order to validate inputs for models or to solve problems similar to those
shown in this chapter.

A further application by Siemens is described described by Leuschel et al. in “Automated
property verification for large scale B models with ProB” [90]. Siemens uses the B
Method to develop safety critical software for various driverless train systems. These
systems make use of a generic software component, which is then instantiated for a
particular line by setting a larger number of parameters (i.e., the topology, the style
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of trains with their parameters). In order to establish the correctness of the generic
software, a large number of properties about these parameters and the system in general
are expressed in B.

The data validation problem is then to validate these properties for particular data values.
One difficulty is the size of the parameters; the other is the fact that some properties
are expressed in terms of abstract values and not in terms of concrete parameter values
(which are linked to abstract values via a gluing invariant in the B refinement process).
Initially, the data validation was carried out in Atelier-B using custom proof rules [22].
However, many properties could not be checked in this way (due to excessive runtime
or memory consumption) and had to be checked manually. Leuschel et al [90] describe
that Siemens now uses the ProB constraint solver to this end and has thus dramatically
reduced the time to validate a new parameterisation of their generic software. This
success led to this technique also being applied in Alstom and the development of a
custom tool DTVT with the company ClearSy [84]. The company Systerel is also using B
for data validation for a variety of customers [9]. To this end, Systerel uses a B evaluation
engine which is also at the heart of Brama [115] combined with ProB.

It is interesting to note, that data validation is now also being applied in contexts where
the system itself was not developed using B; the B language is “just” used to clearly
stipulate important safety properties or regulations about data. This shows a shift
from using B to formally prove the correctness of systems or software, to using B as
an expressive specification language for various constraint satisfaction problems. In the
traditional use of B to develop software or systems correct by construction, refinement
and the proving process play a central role. In this novel use of B, those aspects of B are
almost completely absent. There often is no use of refinement but the properties to be
checked or solved become larger and more difficult, making the use of traditional provers
nigh impossible.

The ProB tool is now used by various companies for similar data validation tasks,
sometimes even in contexts where B itself is not used for the system development process.
In those cases, the underlying language of B turns out to be very expressive and efficient
to cleanly encode a large class of data properties.

39



Chapter 3 Using B as a Constraint Modelling Language

3.4 Conclusion and Future Work

We have discussed two aspects in this chapter. In the first part of this chapter we focused
on the B language and its power to express constraint satisfaction problems. Using B, we
have taken on the challenges identified by Shapiro regarding the jobs puzzle. Our primary
goal was to show that while B is a formal specification language, it is also very expressive
and can be used to encode constraint satisfaction problems in a readable and concise
way. Our solution to the jobs puzzle addresses all the challenges posed by this puzzle, we
were able to create an encoding, that using mainly simple B constructs, creates a simple
and straight-forward formalization. We only have to additionally provide an encoding of
the implicit information required to solve the puzzle, which can also be achieved in a
way that is not complex and close to a translation to English. Our encoding follows the
original text closely and ProB is able to solve the puzzle efficiently.

In the second part of this chapter we focused on solving constraint satisfaction problems
written in B using ProB. We outlined on two similar examples that it is possible to
efficiently solve problems encoded on a high abstraction level.

The pairing of ProB and B can be a good trade-off between the efficiency of low level
constraint solvers that make the encoding of problems very hard and high-level systems
that have to pay the price of abstraction by the increased amount of computation needed
to solve problems. Surprisingly, for some problems (see Section 3.2.3) we are competitive
with low-level modern constraint solving techniques. But obviously, many large scale
industrial optimization problems are still out of reach of our approach. Also, compared to
Alloy, the standard ProB solver is weak for certain relational operators such as image or
transitive closure. But we work on further improving the constraint solving capabilities
of ProB and thus reducing the overhead associated with the abstraction level of B,
allowing to use ProB on more problems and domains.

As shown in the Peaceable Queens example, B and ProB are still awkward for solving
optimization problems. The current solution is to setup a problem twice and search for a
solution where one problem is solved and the other one not. This is an area we intend to
do further research in the future.

Finally we discussed the industrial uses cases of B in combination with the constraint
solving features of ProB. All the aspects discussed in this chapter show the advantages
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of using a feature rich and high-level language such as B to encode complex problems and
at the same time making use of a high-level constraint solver to solve them. Compared
to other approaches to constraint solving, ours has the advantage of extensive validation
of the tool along with a double chain [84] to cross-check results, and the ability to apply
proof to (parts of) B models. This makes B and ProB particularly appealing to solving
constraints in safety critical application areas.

41





4
Case Study: Timetable Validation and

Improvement

This chapter is an extended version of the article “Model-Based Problem Solving for
University Timetable Validation and Improvement” [113].

As we have stated in the previous chapter, constraint satisfaction problems can be
expressed very elegantly in state-based formal methods such as B. But can such spec-
ifications be directly used for solving real-life problems? In other words, can a formal
model be more than a design artefact but also be used at runtime for inference and
problem solving? We will try and answer this question in this chapter with regard to the
university timetabling problem.

In this chapter we formalize a variant of the timetabling problem based on an ongoing
project at Heinrich Heine University Düsseldorf (HHU). The goal of the project is to
create a model based application to validate the feasibility of the offered curricula from a
student’s perspective We describe the problem domain, the formalization in B and our
approach to execute the formal model in a production system using ProB.

4.1 Background

Motivation The main question pursued in this chapter is whether one can use this
model-based approach to constraint solving already in a production system, or whether
further research and development is required. In other words, is it possible to completely
express a non-trivial constraint satisfaction problem in B (or some other state-based
formal method), and to use this formal model in a real production system at runtime
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for inference and problem solving? The benefits would be substantial: expressing the
constraints (correctly) would be considerably less difficult and modifying the constraints
could be done declaratively within the formal model, with all the aid provided by formal
methods and their tools. However, to be successful, the constraint solving capabilities
need to scale to the real-life problem, they need to be robust and predictable, and one
needs to be able to link the model with the graphical user interface in particular and the
computing architecture in general.

The — maybe surprising — answer to this important question turns out to be positive.
In this chapter, we show how we have successfully expressed a challenging timetabling
problem at our university in B, and have developed a system which executes this formal
model in real-time using the ProB constraint solver and provides a web-based graphical
interface using a new API. The tools can be used to detect minimal conflict sets efficiently,
providing the user with valuable feedback. Data is automatically imported from external
sources and high-level constraints can be added or modified simply by editing the formal
model.

University Timetabling Problem In cooperation with the faculty of Arts & Humanities
(AH) and the faculty of Business Administration & Economics (BAE) at HHU we are
working on a timetabling application to validate the feasibility of the offered curricula.
For political and organisational reasons the decision was made to not generate completely
new curricula based on the constraints we will describe below. Instead, the central goal
of the project is to validate and improve timetables of all programs to ensure that it
is possible for students to attend all classes required to finish their studies in the legal
standard time, as defined by their chosen curriculum.

For this general feasibility we do not take into account aspects such as group sizes or
room scheduling. Secondary goals of the project are to provide assistance to resolve
conflicts in the timetables by computing conflict sets and feasible alternative time slots.
Validating the provided timetabling data requires detecting scheduling conflicts, which
would require a student, at any point in their studies, to attend two sessions at the same
time. The complexity arises from the number of available combinations that need to be
validated and the number of possible choices for students: some units are available in
more than one semester and students can choose when to attend them. Units might be
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divided in sections or groups, offered on different days and times, where students have to
choose one group and attend all sessions that are part of that group. Programs are often
combinations of subjects and thus many programs share teaching units. This needs to be
considered when searching for alternative time slots and modifying timetables.

Figure 4.1 shows a screenshot of the user interface of our application. The architecture of
the application is divided into four components: we have a browser based user interface
for interacting with the timetables, a server component built using Groovy that embeds
the models using the ProB Java API [16]1 and exposes them to the front end using
a REST (representational state transfer) based HTTP API, a storage interface that
contains the timetable data and finally the model layer, which is built using classical B
and evaluated using the ProB.

4.2 A Domain Theory of Timetables and Curricula
4.2.1 Background
Timetabling is a family of scheduling or resource allocation problems where the goal
is to assign events to a limited number of time slots. Each event might be associated
with arbitrary constraints. Corne et al. [36] categorize simple timetabling constraints as
unary, binary, capacity, event spread and agent constraints. In the context of educational
institutions the timetabling problem is about assigning classes, e.g., lectures and seminars,
to time slots. The fundamental binary constraint is that no person should have to attend
two events relevant for them at the same time; other constraints might regard room
assignment, teacher workload, etc. The timetable construction problem is an NP-complete
problem [35] where the goal is to find a timetable for a set of events that satisfies a
set of given constraints (completely or as many as possible). Timetable validation can
be understood as a similar problem, where the goal is to decide if a given timetable is
feasible with regard to different constraints. From a student’s perspective, a timetable in
a curriculum is feasible if he or she can attend all units as prescribed by the curriculum
in such a way that no constraints are violated and that the degree can be finished within
the legal time frame.

Before describing the B validation process in Section 4.3, we now introduce the underlying
concepts and relationships in a more general manner.

1See https://www3.hhu.de/stups/prob/index.php/ProB_Java_API - [Online; accessed 31-March-2017]
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Figure 4.1: Graphical representation of a semester week highlighting a detected scheduling
conflict. Each numbered box represents an event, the numbers represent the
teaching units and groups the events are associated to. The two highlighted
units (65 and 67) are in conflict because they are assigned to the same
curriculum while their sessions share a time slot on Tuesday at 10:30.

4.2.2 Timetabling Data

The different data types and concepts that compose curricula and timetables are described
below. Figure 4.2 shows these entities and how they are associated in a graphical
representation, together with an exemplary instance to illustrate the meaning of the
different concepts.

• Courses is the set of all different university courses available in the data. Each
course represents a subject, e.g. Computer Science or Biology, it can be either a
major or a minor (in some cases it might also be a standalone course).

• Modules represent groups of classes that focus on related topics. Each course is
composed of one or more modules.

• Levels are structuring elements used to describe rules about how modules are
organized in each course.

• Module combinations are sets of modules that represent valid combinations
for a course according to rules described using levels, which is explained in
Section 4.2.3.
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Course

Level
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Figure 4.2: Entities and relationships in the third version of our curriculum data model
annotated with sample data from Figures 4.3 and 4.9.
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• Abstract units are associated with a module and represent a general topic that
should be attended as part of the module. This indirection between modules
and units, which we have called abstract units, is used to logically group several
different units that are considered equivalent, within a certain module, from the
point of view of the curriculum. Each abstract unit can be either mandatory or
elective and is associated with one or more semesters. These semesters represent
when, according to the curriculum rules, an abstract unit should be attended.

• Units represent actual classes as taught at a university. They are linked to abstract
units and can be interpreted as instances of the abstract units. Each unit is
associated to the semesters in which it is taught. For example a module might
require an abstract unit “Introduction to Formal Methods” which is completed
by either visiting the unit “Introduction to the B-Method” or “Introduction to
Alloy”. The actual units grouped in an abstract unit, might be available in
different semesters, cover different, but related topics or be taught by different
teachers. To satisfy the requirements of an abstract unit, students have to choose
and complete one of the units available in the abstract unit.

• Groups are equivalent variations of a unit, which are offered at different times
and are used for sectioning, where students have to choose one of the groups and
thus allowing for smaller groups and more choices regarding the time slots for a
class. Each group is associated with a unit which itself can have one or more
groups.

• Sessions are the different events that take place during the week. They are
associated with a day and a time slot when they take place and belong to a group,
which is composed of one or more sessions. Additionally sessions can be scheduled
in a weekly or biweekly (in even or odd-numbered weeks) manner.

• The period of the day during which classes are scheduled is divided into blocks of
two hours in duration. These blocks are referred to as time slots. Each session is
assigned to exactly one time slot on a given day of the week. Assigning sessions
to time slots avoids the problem of partial overlaps or varying class starting times.

The set of all data and relationships either globally or for a specific course is what we
will refer to as curriculum.

48



4.2 A Domain Theory of Timetables and Curricula

4.2.3 Module Combinations

We have modelled how modules in each course can be combined building upon an existing
format provided by the university administration. This format describes the structure of
the different curricula as a tree, and is reflected in the “Level” data in Section 4.2.2 and
Figure 4.2. The trees are composed of courses, their modules and rules describing the
module relationships.

• The leaves of the tree are the modules, which are either elective or mandatory.

• Each inner node is a level and is annotated either with the minimum and maximum
number of modules to be chosen for that level or the minimum and maximum
number of credits required at each level. These nodes represent logical groupings
of modules in the curriculum.

• The root of the tree is a course.

The depth of the tree is not fixed beforehand, giving the modeller a lot of flexibility in
representing the course structure.

An example of this tree structure is shown in Figure 4.3. The left part of the figure
shows the raw format used to represent the trees and the right part shows a graphical
representation of the same data.

From Rules to Combinations

The trees described above capture all the modules available in a course and the rules
required to decide which modules can be combined. The rules in the levels of a tree must
either all be cardinality based or credits based.

Based on these rules a module combination can be characterized as follows: Let m

be the set of all modules in a given tree t. A module combination mc is a subset of the
available modules in t, such that mc ⊆ m and mc satisfies the following predicates:

∀l ∈ t • level_mandatory_modules(l) ⊆ mc (4.1)
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Equation (4.1) expresses that for each level l in a tree t the mandatory modules reach-
able from l must be in the set mc of chosen modules. level_mandatory_modules in
Equation (4.1) is a function that maps from each level to the mandatory modules in its
subtree.

For cardinality based rule-trees a module choice mc must additionally satisfy constraint,
shown in Equation (4.2), that for each level l in the tree t the number of modules
selected in the subtree reachable from l satisfies the cardinality constraint for l, where
level_available_modules is the function that associates each module with the set of
modules reachable from it its subtree and level_min and level_max are the functions
that associate a given level with the corresponding minimum and maximum numbers of
required modules.

∀l ∈ t • level_min(l) ≤ | level_available_modules(l) ∩ mc | ≤ level_max(l) (4.2)

In credit-point based rule-trees a module choice mc must satisfy the similar predicate,
shown in Equation (4.3), ensuring that the sum of credit points awarded for the modules
selected in the subtree of l is in the required range according to l. Where lm(l, m) =
level_available_modules(l) ∩ m and level_min_cp and level_max_cp are functions
that associate each level with the minimum and maximum number of credit points to be
collected in the modules selected for a given level.

∀l ∈ t • level_min_cp(l) ≤
∑

m ∈ lm(l,mc)
credit_points(m) ≤ level_max_cp(l) (4.3)

For the root node of a tree all combinations of results valid for its children represent
valid module combinations for that course.

For example, the tree in Figure 4.3 describes how to choose modules for a fictional
“Philosophy” course.

• The topmost “Elective Modules” level stipulates that we need to choose three to
six modules. Some of the inner levels, however, impose additional constraints on
this choice.

• The “Introduction” level stipulates that we must choose one or two modules.
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Course
Philosophy

Level
Elective modules
3 … 6 Modules

Level
Introduction

1 … 2 Modules

Level
The History of Philosophy

2 … 4 Modules

Module
Contemporary Philosophy

elective

Module
Basic Concepts

elective

Module
Logic I

mandatory

Module
Modern Philosophy

elective

Module
Medieval Philosopy

elective

Module
Antiquity
elective

Level
...

...
<course name="Philosophy">
  <level name="Elective modules" min="3" max="6">
    <level name="Introduction" min="1" max="2">
      <module name="Logic I" mandatory="t" pordnr="1"/>
      <module name="Basic Concepts" pordnr="2"/>
    </level>
    <level name="The History of Philosophy" min="2" max="4">
      <module name="Antiquity" pordnr="3"/>
      <module name="Medieval Philosophy" pordnr="4"/>
      <module name="Modern Philosophy" pordnr="5"/>
      <module name="Contemporary Philosophy" pordnr="6"/>
    </level>
  </level>
  ...
</course>
...

Figure 4.3: Modules and module selection rules for an exemplary course “Philosophy”.
Rules and modules are shown in the raw XML data format and as an equivalent
graphical representation, where one of the valid module combination is
highlighted.

• The “Logic I” module, since it is marked as mandatory, must be chosen as part of
the “Introduction” level.

• The “History of Philosophy” level stipulates that we have to take between two and
four modules within that area.

One out of the twenty-two valid choices of modules (shown in Table 4.1) for this tree is
to select the modules “Logic I”, “Contemporary Philosophy” and “Medieval Philosophy”
(highlighted in Figure 4.3). An instance of an invalid choice are the modules “Basic
Concepts”, “Logic I” and “Contemporary Philosophy”. Although this choice satisfies the
requirements for the “Introduction” and “Elective modules” levels, it is invalid because
we have only chosen one module for the level “The History of Philosophy” despite the
fact that it requires at least two.
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Table 4.1: All possible module combinations for the module tree in Figure 4.3.
n Modules

1 Logic I Antiquity Contemporary Ph.
2 Logic I Antiquity Medieval Ph.
3 Logic I Antiquity Modern Ph.
4 Logic I Contemporary Ph. Medieval Ph.
5 Logic I Contemporary Ph. Modern Ph.
6 Logic I Medieval Ph. Modern Ph.
7 Logic I Antiquity Contemporary Ph. Medieval Ph.
8 Logic I Antiquity Contemporary Ph. Modern Ph.
9 Logic I Antiquity Medieval Ph. Modern Ph.
10 Logic I Contemporary Ph. Medieval Ph. Modern Ph.
11 Logic I Antiquity Basic Concepts Contemporary Ph.
12 Logic I Antiquity Basic Concepts Medieval Ph.
13 Logic I Antiquity Basic Concepts Modern Ph.
14 Logic I Basic Concepts Contemporary Ph. Medieval Ph.
15 Logic I Basic Concepts Contemporary Ph. Modern Ph.
16 Logic I Basic Concepts Medieval Ph. Modern Ph.
17 Logic I Antiquity Contemporary Ph. Medieval Ph. Modern Ph.
18 Logic I Antiquity Basic Concepts Contemporary Ph. Medieval Ph.
19 Logic I Antiquity Basic Concepts Contemporary Ph. Modern Ph.
20 Logic I Antiquity Basic Concepts Medieval Ph. Modern Ph.
21 Logic I Basic Concepts Contemporary Ph. Medieval Ph. Modern Ph.
22 Logic I Antiquity Basic Concepts Contemporary Ph. Medieval Ph. Modern Ph.
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4.2.4 Curricula/Timetables

Based on the entities and relationships described above we will now define the concepts
of syllabi, timetables and feasibility of timetables. For this we use the feature diagram
notation known from basic and cardinality based feature models [75, 37], as it is perfectly
suited to capture the constraints and relationships present in our curricula.

Feature Modelling

Feature models are a way of describing a system or a family of systems by means of
their features and variations. These features and their constraints are organized in a
hierarchical structure, providing a language to describe how features are related and
how they can vary in different instances of a system. Feature models were originally
introduced by Kang et al. [75] and are frequently used in the context of software product
lines (SPL).

In the hierarchical structure of feature models, sub-features can be designated as manda-
tory or optional. Additionally there can be or and xor relations used to describe
configurations for groups of sub-features. Feature diagrams are a common graphical
notation for feature models to capture the features and their relationships. There are
two types of feature diagrams, basic and cardinality based [37]. Basic feature diagrams
capture features and their variability, while in cardinality based feature diagrams the
association between features can be extended with a cardinality constraint on the number
of instances a feature should have.

In a feature diagram, features are denoted by the nodes in the diagrams and the different
associations, also shown in the legend of Figure 4.4, are as follows:

• Mandatory sub-features are denoted by a line ending in black circle and these
have to be selected if the parent node is selected in order to represent a valid
configuration.

• Optional features are represented using a white circle.

• Alternative sub-features, corresponding to the logical xor operator are denoted by
a white arc connecting the edges that go from the parent feature to the sub-features.
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Figure 4.4: Feature diagram describing the different selection rules in a curriculum.
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• The or association is analogously denoted by a filled black arc connecting the edges
from the parent feature to the sub-features that are or-associated.

• Cardinality constraints are an annotation on the edges of the form m..n denoting
the minimum and maximum number of allowed instances of a feature.

A product in this context is any valid selection of features that satisfies the constraints
imposed by the feature model.

Feature Model of Feasible Timetables

The rules, visualized as feature diagrams in Figure 4.4, for creating a valid choice of
modules, abstract units, etc. are as follows:

• For each course one of the previously described module combinations is to be
selected, as shown in Section (a). Each of these is a set of modules.

• In a given module combination all modules are mandatory, Section (b) captures
this rule.

• Modules, as described above, are composed of abstract units. In any selected
module, as can be seen in Section (c), all mandatory abstract units have to be
selected. The number of elective abstract units that have to be selected in each
module is is represented by the function elective_abstract_units : Modules → N.

• For each selected abstract unit, as shown in Section (d) of the figure, exactly one
unit that implements it has to be chosen.

• For each selected unit one group must be selected, see Section (e).

• In each group all sessions are mandatory, as shown in Section (f).

The combination of all diagrams in Figure 4.4 yields a feature diagram representing all
possible ways of completing a course for a given data set.

A syllabus, which is the solution we are looking for, is a choice of modules, abstract
units, units, groups and sessions according to the rules of the curriculum, i.e. a product
in the feature model vocabulary.
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Feasible Timetables

Each syllabus, i.e. each product in the feature model described above, represents a
selection of classes that together satisfy the requirements for a course’s curriculum such
that we can build a timetable for it.

The relations between the elements of the syllabus are described by the following
predicates:

• group_choice(u, g) represents that group g was selected for unit u in the syllabus.

• unit_choice(au, u) represents that unit u was selected for abstract unit au in
the syllabus.

Additionally, we have modelled the following relations to describe the associations present
in the curriculum data:

• group_session(g, s) relates group g and session s, i.e. s is a session in group g.

• session(s, d, t, r) represents a session s scheduled on a day d at time t, with rhythm
r. Where r is one of weekly, biweekly_even or biweekly_odd.

• abstract_unit_semester(au, s) relates abstract unit au with semester s, i.e. s is
a semester (of possibly several alternatives) where au should be attended according
to the curriculum rules.

• unit_semester(u, s) is the analogous predicate that relates a unit u with a
semester s (of possibly several) where it is taught.

A timetable is a syllabus extended by the relation semester_choice. This relation
assigns to each selected abstract unit in a syllabus one of the semesters recommended
for it in the curriculum. The timetable has the additional constraint that each selected
unit has to be taught in the semester selected for its corresponding abstract unit.

• semester_choice(au, s) represents that in the syllabus semester s was selected for
abstract unit au.
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To illustrate, let selected_abstract_units be the set of abstract units in the syllabus
then, for any timetable the following must be true:

∀au ∈ selected_abstract_units • ∃s,u • s ∈ 1 . . . 6

∧ abstract_unit_semester(au, s)

∧ semester_choice(au, s)

∧ unit_choice(au, u)

∧ unit_semester(u, s)

Not every possible timetable is actually feasible from a student’s perspective. A feasible
timetable is a timetable as defined above that satisfies the additional constraint, that it
is free of binary conflicts among those events that are assigned to the same semester by
the timetable as described above.

We can define the feasibility in terms of the absence of binary conflicts in the timetable.

Conflicts are based on the sessions in a group chosen for a unit. Sessions have a day
and a time field that together represent the time slot for the session and, a session can
take place weekly or biweekly (either in even or odd numbered weeks) which is represented
by a rhythm field with possible values weekly, biweekly_even and biweekly_odd. From
the conflict property for a pair of sessions we can infer the conflict property for groups,
units and abstract units as follows:

Two sessions are in conflict if the sessions are scheduled on the same time slot and on
an interfering rhythm (e.g., at least one weekly or both on the same biweekly rhythm).

session_conflict(s1, s2) ≡ ∃d,t,r1,r2• session(s1, d, t, r1) ∧ session(s2, d, t, r2)

∧ (r1 = r2 ∨ r1 = weekly ∨ r2 = weekly)

Related sessions form a group; a group is in conflict with another group if there is a
session in each group, such that these are in conflict.
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group_conflict(g1, g2) ≡ ∃s1,s2• group_session(g1, s1)

∧ group_session(g2, s2)

∧ session_conflict(s1, s2)

A pair of units is in conflict if the groups chosen for each in the timetable are in
conflict.

unit_conflict(u1, u2) ≡ ∃g1,g2• group_choice(u1, g1)

∧ group_choice(u2, g2)

∧ group_conflict(g1, g2)

A pair of abstract units is in conflict if they have been assigned to the same semester
in the timetable and the selected units are in conflict.

abstract_unit_conflict(au1, au2) ≡ ∃s,u1,u2• semester_choice(au1, s)

∧ semester_choice(au2, s)

∧ unit_choice(au1, u1)

∧ unit_choice(au2, u2)

∧ unit_conflict(u1, u2)

If all pairs of abstract units for the module combination in the timetable are free of
conflicts, then the timetable is feasible from a student’s perspective. This means that
there is at least one way for students to choose modules and schedule all units for those
modules without binary conflicts. This form of validation leaves out of consideration,
how the students are distributed on the different classes and that there might be certain
classes available, but practically impossible to attend, as they are scheduled at the same
time as a mandatory class. Such a scheduling conflict is acceptable from a feasibility
point of view, as long as there are viable alternatives in the timetable data.
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4.3 Modelling Curricula and Timetables in B

Having introduced the core concepts and abstractions of the domain this section focuses
on the central and non-trivial features of our application, in particular those aspects
we have modelled formally in B. Our goal is to explore the usability of B for complex
constraint modelling and solving applications while creating a case study to drive further
enhancements to the constraint-solving features in ProB, that should benefit all users of
the ProB tool.

There are several aspects to discuss concerning modelling and validating timetables, e.g.,
importing data into a model, deriving information from the data, etc. The structure
of this section, described below, discusses our modelling based on the different steps
involved in the validation process.

1. The first step in the process is to import data from user provided formats to a
representation usable in a B model, which is described in Section 4.3.1.

2. From the imported data we compute several derived values used in the validation
process, as explained in Section 4.3.1.

3. Based on the imported data and derived values we can validate curricula when
requested by a user following the schema outlined in Section 4.3.2.

4. If the validation logic detects a feasibility conflict, in Section 4.3.4 we describe
how we compute a minimal conflict set of the timetable data to help users identify
conflicts.

5. To solve a conflict or to move a sessions without introducing new conflicts we have
modelled how to find alternative time slots, which is discussed in Section 4.3.5.

6. In Section 4.3.6 we discuss how the features discussed before are organized in a B
model.

7. Lastly, in Section 4.3.7 we provide some details on how the models and data have
evolved in the course of the project.
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Figure 4.5: Schematic representation of the data import and transformation process: the
user provided raw data is translated into an intermediate representation that
serves as input for the main application. The main application generates a
B representation of the data which together with the validation machine is
used to check the feasibility of the data.

4.3.1 Data Import & Representation

The data to be validated is collected and provided by the participating faculties. The
data representation and the steps taken to integrate the data into the validation model
have evolved over time (see Section 4.3.7 for details). During the project we have stepwise
refined the representation of the curriculum data and have extended the number of
characteristics covered in our models. In general the structure how our curricula are
organized, is shown in Figure 4.2.

In the current version of our tool we use the flexible, hierarchical representation of courses,
with arbitrary nesting of levels, as described in Section 4.2.3. This allows us to capture
more detailed and complex structures. Furthermore, we are using a single shared data
representation for all participating faculties. The data is provided as XML documents by
the faculties following the shared schema and processed for use in combination with our
validation model.

From the provided files we derive an intermediate representation, currently stored in a
database. In a second step, this is used to generate a B machine containing the curriculum
data, as outlined in Figure 4.5. How the intermediate storage is integrated into the
application is discussed in Section 4.4.
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Figure 4.6: Simple tree structure with labelled edges representing the order of the child
nodes.

Curriculum Rules

Curriculum rules, as described in Section 4.2.3, are represented as trees of an arbitrary
depth. Initially, we mapped these trees of levels and modules to the B pattern of
representing trees as a function of sequences and values [3]. Each sequence represents
a path within the tree and maps to the value of the corresponding node. Based on
the Atelier-B [31] handbook, we have added support for the B tree operators to ProB
(e.g., father and subtree). One drawback of this representation of tree is the overhead
associated with operations that return parts of the original tree, since all path sequences
have to be recomputed with regard to the new root of the returned tree.

Originally, we represented a selection of modules as a bitvector. By traversing the tree
of curriculum rules we would validate the configuration represented by the bitvector
against the level- and module-nodes. Due to the large number of possible module
combinations, the overhead associated with the tree operations, and to avoid recomputing
the combinations each time the B representation of the data is loaded, we later decided
to replace this approach. Instead, now when we import the data we precompute all valid
module combinations and store them in our intermediate representation.

The Atelier-B [31] handbook defines several operators to work with trees. Trees are
created using the bin and const operations for leaves and inner nodes respectively.

As an example, the simple tree shown in Figure 4.6 would be defined as B using the bin

and const tree operators as shown in Figure 4.7.
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>>> const(1, [const(2, [bin(3), bin(4)]), const(5, [bin(6),
bin(7)])])

{([] 7→ 1), ([1] 7→ 2), ([1,1] 7→ 3), ([1,2] 7→ 4),
([2] 7→ 5), ([2,1] 7→ 6), ([2,2] 7→ 7)}

Figure 4.7: Construction of a tree data structure in B.

This constructs a tree where [] denotes the root and [1,2] represents the path from the
root node to the first child and from there to the second child with the value 4.

Module Combination Validation The B implementation of the module combination
computation is not efficient enough to be used in the application. Nevertheless, a B
specification of the curriculum rules is useful to validate the external computation by
comparing the results produced by both implementations and to illustrate how the
combinations are computed.

We describe the trees of levels, that represent the module selection rules, as sets of
sequences using the operators mentioned above. The data for each level (e.g. level title,
minimum and maximum number of modules to be chosen for that level, etc.) is stored as
a record on the corresponding node in the tree. The variables level_1 and level_2 in
Figure 4.8 represent an inner node and a leaf of such a tree.

Each course is associated with the root level of their corresponding tree of levels
(course_levels in Figure 4.8). On the other hand, the leaf nodes are linked to the
modules they contain (level_modules in Figure 4.8).

The procedure to compute the module combinations in B is as follows (the B machine used
to validate module combinations can be found in Appendix C). Each module combination
is represented using a bitvector, which itself is represented using a total function from the
set of collected modules to BOOLEAN. First we collect all trees and all available modules
for a given course. Each bitvector is stepwise constrained with regard to the currently
evaluated tree and modules. All modules that are mandatory for the current course are
mapped to TRUE in the bitvector, since they must be part of any valid combination of
modules. Conversely, all modules that are not associated to the course, are required to
be mapped to FALSE, since the cannot be contained in any valid combination of modules.
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level_1 = const(rec(idx:level1, name:"Elective modules",
from:3, to:6), [level_2,level_3])

&
level_2 = bin(rec(idx:level2, name:"Introduction", from:1, to:2))
. . .
course_levels = { ("Philosophy", level_1), . . .}
. . .
level_modules = { . . .(level2, mod1), (level2, mod2),

(level3, mod3), . . .}

Figure 4.8: B representation of level trees.

Further constraints are derived by evaluating the different level-nodes in the trees. Valid
module combinations are constrained to those that satisfy the rules for each level. This
means that for each level we compute, as shown in Fig. 4.9, the set of reachable modules
in its subtree. For each level we constrain the bitvector in two ways. First, only modules
reachable from the current level are allowed to be selected. Second the number of selected
modules in the current subtree must be within the limits specified in the current level.
This is expressed by computing the set of modules selected in the current subtree, see
Fig. 4.9, and constraining the cardinality of the set to be within the from and to limits
of the current level.

llmm = level_available_modules(level_info’idx)
. . .
/* the number of modules chosen at each level

must be in the limits of from .. to */
card({y| y : mm & y 7→ TRUE : choice(tt) &

y : llmm}) : level_info’from .. level_info’to

Figure 4.9: Validation step to check that the number of selected modules for a level-node
is within the permitted bounds.
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Credit-point based module combinations work generally the same way, only that instead
of considering the number of selected modules we consider the sum of each selected
module’s credit points.

Curriculum Data

The second part of the data captures the content of the courses, corresponding to the
lower half of Figure 4.2. The content of the courses is composed of:

• the different modules available in the curriculum.

• Each module is composed of abstract units. These can be mandatory or elective
and carry the information in which semester they should be attended.

• Each abstract unit is linked to one or more units available in the curriculum.

• Each unit has the information in which semester it is taught and has one or several
groups for students to choose.

• Each group is composed of one or many sessions the students should attend,
sessions have the information on which day and time they take place and in which
rhythm they take place (weekly or biweekly).

Although each unit can be linked to more than one abstract unit, it only counts
towards the completion of one. So, if a unit is linked to two abstract units, students
still have to choose different units for the abstract units.

Figure 4.9 shows the different entities and how they are connected. In an example
“Module 1” contains “Abstract Unit 1” and “Abstract Unit 2”. In order to complete the
latter students can choose if they want to attend “Unit 2” or “Unit 3” in order to satisfy
the requirement. Choosing “Unit 3” would satisfy the requirements for “Abstract Unit 2”
or “Abstract Unit 3” but not both at the same time.
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<modules>
<module name="module 1">

<abstract-unit id="au1" title="abstract unit 1" />
<abstract-unit id="au2" title="abstract unit 2" />

</module>
<module name="module 2">

<abstract-unit id="au2" title="abstract unit 2" />
<abstract-unit id="au3" title="abstract unit 3" />

</module> ... </modules>
<units>

<unit title="unit 1">
<group title="group 1">

<session title="session 1" day="mon" time="10:30" />
<session title="session 2" day="fri" time="10:30" />

</group>
<group title="group 2">

<session title="session 3" day="tue" time="14:30" />
<session title="session 4" day="wed" time="14:30" />

</group>
<abstract-unit id="au1" />

</unit>
<unit title="unit 2">

<group title="group 3">
<session title="session 5" day="mon" time="8:30" />

</group>
<abstract-unit id="au2" />

</unit>
<unit title="unit 3">

<group title="group 4">
<session title="session 6" day="wed" time="16:30" />

</group>
<abstract-unit id="au2" />
<abstract-unit id="au3" />

</unit>
<unit title="unit 4">

<group title="group 5">
<session title="session 7" day="fri" time="14:30" />

</group>
<abstract-unit id="au1" />

</unit> ... </units>

(a) XML representation of modules, abstract units, units, sessions
and groups and their relationships
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Module 1 Module 2

Abstract 
Unit 1

Abstract 
Unit 2

Abstract 
Unit 3

Unit 1 Unit 2 Unit 3 Unit 4

Group 1 Group 2 Group 3 Group 4 Group 5

Session 1
Mon 10:30

Session 2
Fri 10:30

Session 3
Tue 14:30

Session 4
Wed 14:30

Session 5
Mon 8:30

Session 6
Wed 16:30

Session 7
Fri 14:30

(b) Graphical representation of modules, abstract units, units, sessions and groups and their relationships

Figure 4.9: XML and graphical representation of entities and relationships in the cur-
riculum data.
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sessions : POW(SESSIONS * struct(duration: INTEGER, rhythm: RHYTHMS,
dow: DAYS, time: SLOTS)) &

sessions = {(session1 7→ rec(duration: 2, rhythm: weekly,
dow: monday, time: 2)), . . .} &

groups : POW(GROUPS * struct(sessions: POW(SESSIONS))) &
groups = {(group1 7→ rec(sessions: {session1, . . .})), . . .} &

units : POW(UNITS * struct(idx: INTEGER, title: STRING,
semesters: POW(SEMESTERS), groups:

POW(GROUPS))) &
units = {(unit1 7→ rec(idx: 1, title: "Lecture",

semesters: {sem1, sem2}, groups:
{group1})), . . .}

Figure 4.10: Representation of sessions, groups and units as B records.

Data Representation

From the preprocessed data, stored in a database, we generate a B model to be used
by our validation model (Figure 4.5). In this model we represent each of the described
entities (units, courses, etc.) as B records, and generally each database field as a field
in the record. It is often simple to map an entity in the source data to a record in B,
grouping all attributes in one location. Using records it is easy to access each attribute of
an entity using the quote operator for field access, in particular when compared to tuples
(which would have been another B construct to group all attributes of an entity).

Sets of values are mapped to functions in the PROPERTIES section of the generated
machine. Each function maps from a unique identifier, i.e. derived from the database
identifier of the entry, to the corresponding B record. To illustrate, an entry <unit

title="Lecture" ... /> in the original data, assuming it was assigned the id 1, would
be mapped in the units function to (unit1 |-> rec(title: "Lecture", ...)).

Relations are represented using the identifiers of the records. E.g. a unit with one group
and one session might be represented as shown in Figure 4.10. Many to many relations
are represented as sets of tuples. Each tuple contains the identifiers of the referenced
items and might contain additional information associated to the relation. E.g. the
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/* set of all mandatory abstract units */
mandatory_abstract_units = {mm | mm : ABSTRACT_UNITS &

abstract_units(mm)’type = "mandatory"}

Figure 4.11: Computing the set of IDs for all mandatory abstract units according to their
type field.

combinations of module, abstract unit and recommended semesters for the abstract unit
in that module would be represented by several triples of module, abstract unit and
semester.

Besides the source data, the precomputed combinations of modules for each course are
translated into a set containing sets of module identifiers. Each of these sets represents
one valid choice of modules according to the curriculum rules as described above.

Derived Data

When our validation model is loaded by ProB it includes the generated data model.
During the initialization of the model we compute several values that are derived from
the values in the data machine.

Deriving properties from the raw data is useful for several reasons, first it allows us to
compute and store values that are needed frequently in the validation process, avoiding
to recompute them every time. Second we can compute information about relationships
present in the data, that are not explicitly encoded in the data representation. Third we
can compute certain static properties of the data that can be used to decide the feasibility
of courses statically, e.g., if there are no abstract units for a mandatory module it means
that the corresponding course is never feasible. These derived values are computed as
part of the setup of the validation machine, in the PROPERTIES section and stored as
CONSTANTS for later use.

As an example mandatory_abstract_units in Figure 4.11 is a set that contains the
identifiers for all mandatory abstract units, collected from the abstract_units function
which maps each identifier to the corresponding record for each abstract_unit.
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In this part of the modelling process, we actually use B as a functional programming
language. On the positive side, B provides quite a few useful constructs to apply functions.
Take for example the squaring function defined by sqr = %(x).(x : INTEGER | x*x).
Given that definition we can for example:

• map the function of a sequence s of values using relational composition:
([1,2,3] ; sqr) = [1,4,9],

• compute the image of the function for a set of values: sqr[1..3] = 1,4,9,

• compose functions using again relational composition: (sqr ; sqr) (2) = 16.

On the downside, one cannot define polymorphic functions in B. Furthermore, B has
no built-in support for let-constructs and if-then-else at the expression level. Defining
recursive functions is thus cumbersome (see Section 4.3.4 and Figure 4.14). To alleviate
this, ProB now supports the use the let-constructs and if-then-else syntax in expressions
and predicates, which will be discussed in chapter Chapter 5. The lower half of Figure 4.14
shows a function written using the if-then-else substitution syntax now available in
predicates and expressions.

4.3.2 Validation

The goal of our tool is to detect if a given curriculum is feasible. The core criterion to
decide the feasibility of a curriculum is the presence or absence of binary session conflicts
from a student’s perspective. A binary conflict occurs if two events are scheduled at
the same time. In our case there is a binary conflict if two sessions from two selected
units are scheduled for the same day and time. Additionally, there are a few restrictions
on this rule, as mentioned in Section 4.2.2, sessions can be scheduled on a weekly or
biweekly rhythm (a distinction is made between even and odd-numbered weeks) Sessions
scheduled in a non-interfering rhythm can never be in conflict, even though they share
the same time slot.

Our approach to detect if an input is free of binary conflicts is to first, for a given
curriculum, find a valid choice of units, as described in Section 4.2.4. For a choice of
units we then try to decide if it is possible to attend all of them without binary conflicts
by trying to find a group and a semester when to attend each. We have split this process

69



Chapter 4 Case Study: Timetable Validation and Improvement

into two parts. The first is only concerned with finding sets of abstract units and their
units that might represent a feasible combination. The second does not need to take into
account how the course being validated is organized and is only concerned with deciding
if a given set of units (computed in the first step) is free of conflicts.

The first part is concerned with finding a choice of units that satisfies the requirements
of the curriculum. The specific rules on how to choose units might differ for each faculty,
e.g., one might require a choice based on the number of units attended another might
require a specific amount of credit points in each module, etc. The general process is:

• Starting from a course (or courses for a combination of major and minor) we select
one of the precomputed valid choices of modules, each composed of all mandatory
and a subset of elective modules.

• In each module we collect all mandatory abstract units and a subset of the elective
abstract units according to the curriculum’s and module’s rules. E.g., a module
might require students to take one mandatory and two out of five elective abstract
units.

Based on the set of abstract units selected we define a function unitChoice using the
abstract units as its domain and mapping to the set of units. The range of the function is
constrained based on the units associated to each abstract unit and ProB will instantiate
the function at runtime to find a valid instance. The set of all selected units, the range
of unitChoice represents one possible combination of units sufficient to obtain a degree.
Next, we want to detect if this specific choice is not only sufficient but also feasible.

The second part of the validation logic, shown in Figure 4.12, is a predicate concerned
with the decision if a given choice of units is free of conflicts. That is, to find a semester
in which to attend each unit and to choose a group in each such that no two sessions
are at the same time during the same semester. We have modelled this by defining
two total functions, semesterChoice and groupChoice, both chosen by ProB – at
runtime, based on the provided constraints – from the set of functions that map from
the collected abstract units to the available semester and from the units to the available
groups respectively, the definition of groupChoice is shown in Figure 4.13.
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!(au1, u1, au2, u2).(((au1, u1) : unitChoice &
(au2, u2) : unitChoice &
u1 /= u2 & au1 /= au2 &
semesterChoice(au1) = semesterChoice(au2) &
semesterChoice(au1) : units(u1)’semesters &
semesterChoice(au2) : units(u2)’semesters)

⇒ #(group1, group2).(
group1 = unit_group(u1, groupChoice(u1)) &
group2 = unit_group(u2, groupChoice(u2)) &
!(s1, s2).(s1 : group1’sessions & s2 : group2’sessions

⇒ ((s1’rhythm = s2’rhythm /* both in the same rhythm */
or s1’rhythm = weekly /* first weekly */
or s2’rhythm = weekly) /* second weekly */
& s1’dow = s2’dow) /* same day of week */

⇒ s1’time /= s2’time)))

Figure 4.12: Simplified conflict detection logic for a choice of units.

We constrain the ranges of these functions based on the provided data, e.g. in which
semester a specific unit should be attended is used to constrain the possible choices for
a semester. And we enforce the constraint, the selected unit must be available in the
selected semester.

The conflict-property can be expressed in B as a (nested) universally quantified predicate
over the set of pairs of abstract and concrete units. Conflicts are based on the sessions of
the chosen group for a unit. Sessions have a day and a time field that together represent
the time slot for the session. From the conflict property for a pair of sessions we can infer
the conflict property for groups as previously described in Section 4.2.4.

groupChoice : UNITS → min_group .. max_group &
!(u).(u : UNITS

⇒ groupChoice(u) : unit_min_group(u) .. unit_max_group(u))

Figure 4.13: Defining the choice of group constraint using a total function (groupChoice).

One of the challenging aspects for ProB to solve this problem is finding valid instances
of the unitChoice, semesterChoice and groupChoice. The formula in Figure 4.12 is
only true if these functions can be found such that they satisfy the given constraints
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and lead to no binary conflicts among sessions. If the validation fails ProB will try a
different instantiation of these functions until it either finds one that satisfies the provided
constraints or there are no further possible choices.

4.3.3 Assisting the Solving Process

There are certain configurations, where the ProB’s constraint solver is not powerful
enough to detect that there is no solution to a query. In many cases this is due to a
combination of missing data that leads to a validation failure and many possible choices
in the present data, e.g. many module combinations that can be tried. These situations
can lead to ProB trying all possible configurations and failing.

Detecting Statically Infeasible Courses We have extended our validation by computing,
as a derived property of our machine, a set of courses that due to the structure of the
provided data are known to be infeasible. This means, that it is impossible to choose a
combination of modules, abstract units, etc. which is feasible. This is the case because,
although the available events might be free of binary conflicts, the provided data does
not satisfy the constraints about the structure of the data.

Some of these static validations we currently perform are:

• Mandatory abstract units that contain only one unit are impossible to complete if
the unit is the same in both. The two abstract units would require choosing the
same unit in both are thus impossible to select side by side, since this would require
at least a second unit.

• Mandatory abstract units with no assigned units, make a course impossible to
complete. Mandatory abstract units have to be attended, but they cannot be
completed if there are no associated units in the data.

• Abstract units contain recommended semesters in which they should be completed.
If none of the associated units is taught in one of the recommended semesters it is
impossible to find a solution. If an abstract unit a should be attended in the first
two semesters, but the associated unit is only taught in the third semester there is
no way to find a timetable for the course that satisfies a’s semester requirement.
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4.3.4 Computing Conflict Sources

If the validation process does not find any conflicts it will generate an assignment to
the unitChoice, semesterChoice and groupChoice functions. Together these represent
one of possibly many feasible syllabi for the curriculum being validated. If no assignment
can be found, the curriculum contains feasibility conflicts. Thus it is necessary to find
and resolve any scheduling conflicts among the units in the curriculum before generating
a viable timetable.

To identify which units cause a conflict we compute a minimal unsatisfiable core (UC) [96,
124] of the units used in the validation. Note that we do not want to compute the
unsatisfiable core of the constraints, but rather the unsatisfiable core of the data, i.e., a
minimal set of units that cause a conflict.

To compute the unsatisfiable core for a course in our model we have taken a staged
approach. We first compute a minimal set of modules that are in conflict within the
given course. Starting from this set we can compute the set of units in conflict based on
the units associated to the modules in conflicts.

The algorithm to compute the unsatisfiable core of units can be expressed in B as a
recursive function, which in each step removes an element from the input set and then
checks the validation predicate, as shown in Figure 4.14. In the figure, variable units

represents the set of units to be minimized and acc is the accumulator for the result.
In the function we use several DEFINITIONS: ifte is a DEFINITION that provides an if-
then-else construct using lambdas, CHECK_UNITS is another DEFINITION that checks a
set of units for conflicts as described in the previous section and CHOOSE is an external
function (see Figure 4.14) that implements the mathematical choose operator, introduced
to support the translation from TLA+ to B [60]. The recursive B function to compute a
minimal set of units minimizes the set units of units by stepwise removing units, calling
the conflict detection logic and pruning units that have no effect on the outcome of the
validation. The result is one of potentially many sets of units that are in conflict, i.e.
units that cannot be attended as recommended by the curriculum.

Although ProB can evaluate the function in Figure 4.14 and thus compute its result
purely in B we have later replaced it by a so called external function for performance
reasons. External functions are a mechanism available in ProB to expose functions
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unsat_core = λ(units, acc).(units <: UNITS \& acc <: UNITS |
ifte(bool(units = {}), acc,

ifte(bool(CHECK_UNITS((acc \/ units) \ {CHOOSE(units)})),
unsat_core(units \ {CHOOSE(units)}, acc \/ {CHOOSE(units)}),
unsat_core(units \ {CHOOSE(units)}, acc))))

unsat_core = λ(units, acc).(units <: UNITS & acc <: UNITS |
IF units = {} THEN

acc
ELSE

IF CHECK_UNITS((acc \/ units) \ {CHOOSE(units)}) THEN
unsat_core(units \ {CHOOSE(units)}, acc \/ {CHOOSE(units)})

ELSE
unsat_core(units \ {CHOOSE(units)}, acc)

END
END)

Figure 4.14: Simplified version of unsatisfiable core computation in B. The first version
uses a DEFINITION to represent if-then-else, the second versions uses ProB’s
if-then-else support in predicates and expressions.
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written in Prolog (the implementation language of ProB) to B. This external function
UNSAT_CORE accepts a predicate, represented as a lambda and a set of input values. The
recursive search, implemented in Prolog, stepwise removes an element from the set and
evaluates the predicate with the union of the partial result and the remaining set as
input. Depending on the result of evaluating the predicate the removed element is either
added to the result set or discarded. How the UC of a set of units is computed using the
UNSAT_CORE external function is shown in Figure 4.15.

UNSAT_CORE(λ(units).(units <<: UNITS |
bool(CHECK_UNITS(units))), units_with_conflict)

Figure 4.15: Simplified version of computing the unsatisfiable core of a set of units using
an external function.

Having computed an UC of units that lead to a conflict, we additionally compute the set
of sessions associated to those units through their groups that are actually in conflict.
These are then highlighted in red in the user interface as shown in Figure 4.1. Due to
sectioning and multi-session groups, the sessions actually in conflict are often only a
small subset of all the sessions associated to the units in conflict. The UC of the sessions
is computed similarly to the UC of units. We stepwise remove sessions that do not affect
the unsatisfiability of the set of units in the previously computed UC. If a unit is known
to have only one session, the session is never removed from the set, as it must be part of
the UC.

Based on the second version of our model (see Table 4.2 in Section 4.3.7 for details on the
different versions) it takes ProB about 18 seconds to compute one unsatisfiable core of
modules, units and sessions for each of the 17 infeasible courses in the data set provided
by the faculty of Arts & Humanities using the implementation based on the external
UNSAT_CORE function. The same computation using a recursive function written in B
takes around 34 seconds to complete.

4.3.5 Improvement – Finding Alternative Time Slots

In case there are feasibility conflicts in a timetable, or just to satisfy changed requirements
it is often necessary to move a single session to a different time slot. To avoid creating
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new conflicts when moving a session to an arbitrary slot we provide a method to compute
viable alternatives for a given session, which do not introduce new conflicts. These are
computed in the model and if alternative time slots are found these are highlighted in
green in the user interface, as shown in Figure 4.16.

The computation is done by first gathering all relevant programs the session is transitively,
through its unit, associated to. We then compute all slots, that — when moving the
session in question there — satisfy the validation for all relevant curricula at the same
time. This approach has the drawback that we compute solutions that only involve
doing one change to the curriculum to solve a conflict. This is an area where we want to
improve our tool to search for multi-step changes that would solve feasibility conflicts.

Additionally, in certain constellations one change might not be enough to solve the
conflicts in all curricula at the same time. Therefore, we additionally allow the users
to search for alternatives within one specific program when there are no globally valid
alternatives.
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Figure 4.16: Example of alternatives for the session “Basis 3/ A3a: Methodenkurs Logik”. The alternatives in this
example are only valid for the course “German studies/Linguistics”.
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4.3.6 Model Structure

The machine containing the curriculum data is loaded from our main validation machine
through a SEES clause. The data machine contains the curriculum data as its PROPERTIES.
In our validation model we derive additional values from these PROPERTIES, which are
used in the validation predicates. We have represented the validation logic in form of a
B predicate that is evaluated in the current state of both machines. The predicate is
true if the CONSTANTS and state variables represent a valid data set for the curriculum
being validated (see also the discussion in Section 4.5).

The validation predicates themselves are structured by means of B DEFINITIONS, grouping
sub-predicates into DEFINITIONS. Using DEFINITIONS as the main vehicle of abstraction
has some issues which are discussed in Section 5.6.3, but on the other hand there are no
idiomatic ways of representing and reusing complex predicates in B.

The externally available features of the machine, basically the API we provide, are
exposed as machine operations which are executed from our main application using the
animation features of the ProB 2.0 Java API. In the context of each operation we use
the different DEFINITIONS passing the operation’s arguments to the DEFINITION and
using variables assigned evaluating the DEFINITION as result values.

4.3.7 Modelling Stages

In the course of the project, with changing requirements we have stepwise revised our
approach, improved our tools and extended our models. Table 4.2 shows the different
versions of our models and the key features supported in each version. Although each
version of our models builds on the concepts and abstractions introduced in previous
versions they required a fundamental change of the underlying data structures and could
thus not be mapped to B refinements.

In the first iteration of the project, we started with a data set from only one of the
participating faculties, here we solely considered mandatory units. From the raw data we
directly generated a B model that was used as input for the validation.

The second iteration was driven by additional data provided by the second participating
faculty. In this step we introduced the concepts of mandatory and elective modules as well
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Table 4.2: List of key features as supported in each version of our models.
Version 1 Version 2 Version 3

Courses • • •
Mandatory units • • •
Sectioning (groups) • • •
Modules (mandatory and elective) • •
Elective units • •
Abstract units •
Levels with arbitrary nesting •

as elective units. Data was provided in incompatible formats, leading us to create tools
to import both formats into a common B representation instead of directly generating a
B model. Later we introduced an intermediate storage to separate the handling of the
different input formats from the generation of B machines for the data. The number
of entities used in the validation with this version of our models is shown in Table 4.3.
The B machines generated for the data contained 2247 lines for the AH data set and
1724 lines for the BAE data set. In this version there were faculty specific machines that
modelled the curricula and validation rules that are distinct for each faculty consisting of
377 lines for the AH and 734 lines for the BAE data sets. Common aspects and rules
were shared between the models (301 lines in total), e.g. the rules on how to compare
and validate sets of teaching units.

In the third iteration we added the computer science (CS) curricula to our project
(consisting of computer science as a major and all available minors). At this point we
added the concept of abstract units as additional indirection and have moved to a common
representation for the raw data in all faculties. We have abstracted the particularities in
faculty’s curricula, such that we can model all of them in one B model (708 lines of B in
total) that can be used to validate all curricula we have collected. The size of the data
collected in this iteration is outlined in Table 4.4.
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Table 4.3: Number of entities for the faculties of Arts & Humanities (AH) and Business
Administration & Economics (BAE) in the second version of our model.

Data Set Courses Modules Units Sessions

AH 67 1 128 249
BAE 6 84 221 332

Table 4.4: Number of entities for the faculties of Arts & Humanities (AH), Business
Administration & Economics (BAE) and the Computer Science (CS) curricula
in the third version of our model.
Data Set Courses Modules Abstract Units Units Sessions

AH 43 304 606 1390 1811
BAE 26 183 300 277 406
CS 12 98 122 148 385

4.4 From Model to Application

The goal of our project is to create an application that can be used by those responsible
for planning the curricula at the different faculties participating in this project. In this
sense we want to create an interactive application that is simple to use and allows its
users to interact with the previously described features provided by our modelling.

4.4.1 System Architecture

To this end we have created a multi-tiered application; composed of the model as
described in the previous sections, a storage layer composed of the data provided by
faculties, tools to import this data into a database and tools to generate a B model from
such a database. As a browser is currently one of the most widely available platforms, we
have chosen to implement the user interface as a rich internet application. Finally, we
have the core application or server layer, this layer embeds the formal model and ProB,
mainly providing two things: a simple GUI to load a database and start the application
and second a REST API that manages the interaction between the presentation layer
and the data and model layers. All requests from the user interface to the server
are made as HTTP requests sending and receiving JavaScript Object Notation (JSON)
formatted data. The architecture is visualized in Figure 4.17.
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Figure 4.17: Schematic representation of the system architecture, showing the different
components and the interaction between them.
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...
public def checkFeasibility(String... courses) {

...
def op = "check"
def names = courses.collect{’"’ + it + ’"’}.join(", ")
def predicate = "courses = {${names}}"
executeOperation(op, predicate)

}

protected def executeOperation(String op, String predicate) {
if (trace.canExecuteEvent(op, predicate)) {

trace = trace.execute(op, predicate)
def trans = trace.getCurrentTransition()
def return_values =

trans.evaluate(FormulaExpand.expand).getReturnValues()
...
return return_values.collect { Translator.translate(it) }

}
false

}

Figure 4.18: Interface between the application and the formal model to execute an
operation using the ProB Java API.

The database generated from the raw data serves two purposes, first it is used to generate
the input for the validation models and second it is used to populate the user interface
of the application in the client. To bootstrap the application the user needs to select
a database from which we generate the B representation of the curriculum data. The
application launches the GUI in the browser once it has initialized. When accessing
the application the browser loads the static assets to run the application from the core.
When the user interface is initialized, it requests the curriculum data from the core
using the RESTful API. E.g. to load and present the session data the client requests the
data by invoking the /api/sessions endpoint via a GET request. The server responds
with a collection of sessions represented as JSON objects, a simplified session in such a
response is shown in Figure 4.19.

The validation models are exported from the application bundle to the same location as
the generated data machine and loaded with ProB. ProB is embedded in the application
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using the ProB 2.0 Java API, which exposes the available features to applications running
on the JVM. We interact with the model using the animation features of ProB. This
allows us to execute one machine operation at a time and use the computed results in
our application. We have created a simple abstraction that exposes the features of our
model and invokes the corresponding operations on the validation machine, as shown
in Figure 4.18, each operation is executed by calling the execute method on a trace

object. A trace represents a specific order of executed operations and the current state
(variables) of an animation. execute is called with the name of the operation to be
executed and a predicate describing the values for the parameters of the operation, it
evalutes the corresponding machine operation and returns a trace object representing
the new state. In the example the variable courses should be equal to the set of names
passed to checkFeasibility. Calling the execute method on a trace object performs
one animation step, i.e. it computes one state transition, and returns a trace object
representing the newly current state of the animation.

When interacting with the application the user can trigger different actions that invoke
specific HTTP endpoints on the server. Actions might involve the validation of a specific
curriculum, generating a PDF to distribute for validated curricula, detecting conflict
sources, etc. For example if the user triggers the validation of a specific curriculum in
the user interface the presentation layer will issue an HTTP call to a specific endpoint
in the server. The server validates the requests and if the request is valid evaluates
the corresponding operation in the validation machine using the course name provided
as part of the HTTP request as a parameter for the machine operation. The result
computed by ProB for the operation, in this case the result is the set of chosen units,
groups and semesters, is translated from the B representation to a corresponding JSON
representation and sent to the client to update the user interface.

The representation of the sessions in the corresponding time slots and semesters in the
user interface, shown in Figure 4.20, is inspired by the analogue timetable planning boards
that are used in schools. Every single session is represented by a simple box that carries
identifying information, e.g. we are using colours, to distinguish the department and each
box has a symbol, that shows which unit the session belongs to. Boxes can be dragged
to different time slots to update the timetable. Additionally, each box can be greyed out
or highlighted to visualize further information such as conflicts or exclusions.
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{
"sessions" : [

{"id" : 1, "time" : 1, "day" : "tue", "group" : 1, "unit" : 1,
"courses" : [1],

"allSemesters" : [1,3,5], "abstract_units" : [1]}
],
"abstract_units" : [

{"id" : 1, "title" : "Introduction to Formal Methods", "key" :
"P-CS-L-INFO1A"}

],
"courses" : [

{"id" : 1, "longName" : "BSc Computer Science", "key" :
"BK-CS-H-2013", "shortName" : "cs"}

],
"units" : [

{"id" : 1, "title" : "Introduction to the B Method", "key" :
"110000"}

]
}

Figure 4.19: Simplified server response from GET /api/sessions when loading all avail-
able sessions.

Figure 4.20: Screenshot of the timetable for the first semester including all available
sessions.
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4.5 Related Work and Discussion

Time-Tabling Automatic timetabling is a long-standing area of research [57], so more
work than can be covered here has been done on this topic. This area has seen interest
from different research communities, as it presents a challenging problem with real world
applications for a variety of approaches. There is research based on metaheuristics and
genetic algorithms, that aim to improve timetables through mutation [36, 94]. There
is also research on this problem using SAT techniques, such as the work done by Asín
Achá and Nieuwenhuis on timetabling with SAT and MaxSAT [5], SMT solving using
Z3 [41], Answer Set Programming [11], Integer Linear Programming [38, 49, 112] and
based on constraints [43, 103, 111]. In 2002, 2007 [44] and 2011 [109] the International
Timetabling Competition (ITC) took place, which provided a set of benchmarks to drive
and compare research [82]. Many tools, commercial and research focused, have been
created in the area of timetable generation, among them Yeung [130] built a tool based on
Kodkod [125], the relational model finder used by the Alloy Analyzer, to generate course
schedules for students based on global constraints and individual constraints provided
by the students. UniTime2 is a scheduling system for courses and exams based on a
constraint solving system created by Müller [102].

Could other approaches have been used?

Model Checking instead of constraint solving In principle one could also have encoded
our validation problem as a model checking task, i.e., encoding the choice of units as B
operations and asking a model checker whether a successful sequence of choices exist.This,
however, would have been less tractable, as the model checker evaluates each B operation
in isolation, without regard for the overall goal of finding a conflict-free path through the
curriculum. Model checking thus amounts to naive enumeration. A real constraint solver,
on the other hand, may be able to detect very early that a certain partial combination of
choices will never lead to a successful outcome.

This point has also been discussed in [90]. To illustrate this point recall the n-Queens
puzzle from Chapter 3, which is a simple form of time-tabling: placing n queens on an
n × n chessboard so that no queen attacks (aka conflicts) with any other queen.

2See http://www.unitime.org - [Online; accessed 31-March-2017]
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ProB can solve this constraint in about half a second for n = 70 (on an Intel Core
i5 CPU running at 2.67 GHz using ProB 1.6.2-beta1 (revision: eec70f07)), as shown
in Table 3.1. Solving an encoding of the n-Queens puzzle as a model checking task of
this size is infeasible using explicit state model checking. E.g., using TLC [131] it takes
more than half an hour to solve a TLA+ encoding of n-Queens for n = 14; one issue
being the breadth-first strategy of TLC, which basically means that all solutions are
found more or less at the same time. Using Spin 6.4.5 [67] and a depth-first strategy, a
Promela encoding [15, Listing 11.5]3 of the problem can be solved in 0.09 seconds for
n = 14. However, for n = 28 Spin also reaches its limits, taking already about half an
hour to solve a Promela encoding of the n-Queens puzzle. ProB can solve n-Queens in
0.01 seconds for n = 14, 0.05 seconds for n = 28.

Other tools or languages for constraint solving Our formal B model could probably
just as well have been expressed in another state-based formal method; we return to this
issue in the conclusion. The constraint solving capabilities are crucial for our application.
Hence, tools like the model checker TLC [131] or the animators coreASM [48] or AnimB4

cannot be used for (variations of) our present model.

ProB relies on constraint logic programming [74]. Other successful approaches to
constraint solving in the context of formal methods are SAT and SMT solving [45].
Indeed, an alternate constraint solving backend for ProB, which uses the Kodkod library
[125], translating first-order relational logic into SAT problems has been created [108].
Unfortunately, we were unable to use this backend here, due to fundamental performance
issues for relations over large domains.5

Another promising technology is SMT, where one can circumvent the above SAT issue of
dealing with large domains by using theories. A translation of Event-B formulas into
SMT-LIB format is available [40], and has proven very successful for proof. For constraint
solving (aka model finding) the issue is somewhat different [108]. For example, even

3Manually adapted for various values of n. With supertrace/bitstate hashing the solution is not found.
4http://wiki.event-b.org/index.php/AnimB - [Online; accessed 31-March-2017]
5In our experiments, Kodkod was either orders of magnitude slower at various tasks (such as

determining programs with units in common), or was unable to achieve the SAT translation
(CapacityExceededException).
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the simple n-Queens problem for n=4 cannot be solved by current SMT solvers such as
Z3 [39] or CVC4 on the translation of the SMT-Solver integration for Rodin [40].6

In conclusion, while ProB’s constraint solving based on constraint logic programming
has some drawbacks over SAT or SMT based approaches (no learning for example), its
ability to deal well with large relations, integer values and symbolically with infinite or
recursive functions make it well suited for the time-tabling application described in this
chapter. We will compare B and ProB with regard to this problem with alternative
approaches in Chapter 6.

4.6 Future Work and Conclusion

In this chapter we have presented the application of formal methods to a novel domain.
We have successfully modelled university curricula and timetable validation in B in a
way that captures the domain constraints and can be executed using ProB.

Our models scale well within the scope of real-world data we have used in our project,
e.g., we are able to validate the timetables for all the programs (based on the second
version of our models, see Table 4.2) offered by the faculty of Arts & Humanities in
4 seconds and to compute a minimal unsatisfiable core of sessions for each of the 17
infeasible programs in 18 seconds in total. In Chapter 6 we will evaluate the performance
of ProB in more detail.

The use of a high-level language to model this problem allowed us to decouple the model
from the solving strategy and thus permitted us to easily evolve the models during the
process of capturing all the domain information and requirements.

Modelling this problem and creating the application on top of it has served as a driver
for ProB and its related tools. It has been useful to uncover bugs and performance
problems and the ongoing project will contribute to evolve ProB and possibly also the
B language itself.7

6 A fundamental issue seems to be that the current SMT-LIB translation sometimes encodes finite B
relations and B sets as infinite functions. boolean values.

7For example, we have already added if-then-else and let-constructs for expressions.
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We are aware that a high-level model of a constraint problem cannot compete with either
low-level solutions or dedicated solvers specialized for this class of scheduling problems.
We want to improve the capabilities of ProB in this regard and in Chapter 6 we perform
an extensive evaluation and compare our approach to other solutions written directly
in more tractable formal methods, such as Alloy [72], SAT and SMT encodings, as well
as a lower-level Prolog encoding using clp(FD) [27]. We will evaluate the performance
aspects, but also compare the complexity of the models, the complexity of validating
and modifying the models, and the ease of embedding the model in a production system.
Indeed, we believe that developing and adapting a high-level non-algorithmic model is
considerably easier, and that formal method tooling can help in validating the model.
Our goal is to move formal models from design documents to artefacts embedded in
running systems. We are still far away from truly “executable mathematics”, but in this
chapter we have shown that formal model-based problem solving is starting to become
practically feasible.

88



Part III

Evaluation and Outlook

89





5
Evaluation of the Software Solution

5.1 Introduction

This chapter is based on an article titled “Using B and ProB for Data Validation
Projects” [61] coauthored with Dominik Hansen and Michael Leuschel presented at the
ABZ 2016 conference in Linz, Austria. The work on the validation of railway topologies
introduced below was conducted independently by Dominik Hansen.

We have so far argued that constraint satisfaction and data validation problems can
be expressed very elegantly in state-based formal methods such as B. In this chapter
we introduce a second independently developed project about the validation of railway
topologies. Both projects are based on the B language and use ProB as the central
validation tool.

Combining the experiences from the case study presented in the previous chapter and
this second project, we present a general structure of a data validation project in B
and outline common challenges along with various solutions. We also discuss possible
evolutions of the B language to make it (even) more suitable for such projects.

5.2 Background

Data validation1 ensures that software operates on correct, clean data and is typically
done by checking validation rules or constraints. We have previously argued that B is
a very expressive language to encode constraint satisfaction problems, and many data

1http://www.data-validation.fr - [Online; accessed 31-March-2017]
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validation problems can be expressed as such. Other works have demonstrated that B is
useful to express properties about data and to validate them using ProB, particularly in
the railway domain [2, 7, 8, 9, 84, 90].

We have used the B language to express parts of our program’s domain logic and the rules
to validate data, and embedded these B models into running applications by executing
the formal models with ProB without relying on code generation. It would also be
possible to express these kinds of validation problems in other formal languages such
as Alloy [72] and TLA+ [83]. Based on our experiences with these languages and the
corresponding tools, we believe that the combination of B and ProB best meets the
requirements for the data validation task. Our explicit goal is to explore the applicability
and scalability of this combination for projects of industrial strengths.

Based on two projects, the case study from Chapter 4 and the one described below,
we will discuss different aspects of using B within such an application and discuss the
approaches taken as well as the limitations encountered, i.e. where we had to depart
from or extend the language to suit our needs.

Validation of railway topologies is the independent project discussed in this chapter
and part of a collaborative research project with Thales Transportation Systems GmbH
on applying formal methods for the software development process of the Radio Block
Centre (RBC). The RBC is a communication unit of the European Train Control System
(ETCS) exchanging messages with trains and interlockings. One of our challenges in
this context is to validate the so-called engineering rules over concrete track data. The
track data is a representation of the real railway infrastructure and signalling system.
Engineering rules are implementation-related rules which result from the concrete RBC
implementation. This means, that the concrete RBC implementation is guaranteed to
work correctly only if the concrete track data satisfy the engineering rules. For example,
a simplified engineering rule requires that two signals for the same direction should not
be located at the same position. The modelled engineering rules are validated on different
track topologies. The biggest topology contains 1362 track segments, 457 points, 1089
balise groups and 445 signals.
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!signal1, signal2.(
signal1 : Signals & signal2 : Signals & signal1 /= signal2
& Signal_Direction(signal1) = Signal_Direction(signal2)
⇒ not(Signal_TrackSegment(signal1) = Signal_TrackSegment(signal2)

& Signal_Position(signal1) = Signal_Position(signal2)))

Figure 5.1: Modelling of an engineering rule as a validation predicate.

As discussed in Section 2.1.2 the idea of using formal method languages and tools to
perform data validation has been explored in the past, e.g. by Abo and Voisin [2] or
Lecomte et al. [84] among others. Our intention in this chapter is to outline the common
structure and challenging aspects of data validation projects based on what we have
identified in both projects. The domains and requirements of these two projects are
quite different, and all work has been done independently (i.e. by different people). Still,
similar challenges were faced during the modelling process. Both projects rely on ProB
as the tool to evaluate the models.

In the following sections we will name these challenges, discuss different language con-
structs of B and argue how they can be applied in modelling data validation problems.
Moreover, we will outline areas where we have extended the B language to overcome
some limitations we faced evaluating the models with ProB.

5.3 The Big Picture

Before describing the details of the data validation process we will discuss the big picture,
outlining the design and architecture that emerged from both projects mentioned in the
previous section.

The general idea is to create B models that define validation predicates which are
evaluated against the state of the model. The variables and constants are derived from
external data we want to validate. Figure 5.1 shows the formalization of the validation
rule mentioned in the introductory section where two signals should not be located at
same position if they are valid for the same direction.
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B Model
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in Natural 
Language
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Raw Input Data

Generated Data

Application
UI, ReportsResults

Instructions

Transformation to B  
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Figure 5.2: Generalized architecture of ProB based data validation project

The projects discussed in this chapter follow the general architecture shown in Figure 5.2.
By building data validations tools based on the B language we have identified the following
concerns: The first is getting the external data from a given source into a B model
which is discussed in Section 5.4. Choosing a way to represent the data is a further
concern, where it is important to choose a representation and B data types suited for the
validation process while keeping the import process as simple as possible; this is discussed
in Section 5.5. Some validation rules rely on derived data (e.g., signals reachable from
a point) which has to be computed from the imported data. In Section 5.6 we present
different approaches to structure derived data in B. One purpose of the B Method is to
model algorithms and prove their correctness. However, are these models suitable for use
by ProB to calculate results? Section 5.7 describes different approaches to model an
algorithm in B such that it can be efficiently evaluated by ProB. Another concern is how
to control the validation process from an external application. In Section 5.8 we discuss
different ways to interact with the model. Finally, in Section 5.9 we briefly discuss how
to reuse an existing validation model in similar projects.
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5.4 Preparing Data for Use With a B Model

When used for data validation, our tools obviously depend on externally provided
data [2, 87], which has to be converted to B format in order to be validated with ProB.
Raw input data is provided in a variety of formats as used in the different domains such
as Excel, CSV or XML documents.

In both projects we have opted to create tools that read and parse the externally provided
data and generate a text file containing a B model of the data. The data will be accessible
as a series of constants in the model.

Having an external tool keeps any knowledge about the raw data format out of the
B models; but of course it raises a series of concerns. One is having to maintain an
additional tool which has to generate valid B. Also the chosen data representation has to
be kept in sync between the import and the validation tools.

Another concern is that, in a safety critical environment, the import tool itself has to be
validated. The topology validation project takes a direct approach by avoiding putting
too much knowledge into the transformation step, keeping it as simple as possible. In
this approach the transformation process maps the input structure of the data (XML)
to B data structures and copies the values of attributes as uninterpreted strings. To
ensure that all data from the input document is represented in the B model we use a
back-translation (from the B model to XML) and compare the generated XML document
with the source document. The back-translation is done in order to certify the translation
tool and ensure that no data has been left out.

As discussed before, in the case of the curriculum validation tool the data is not only
used for validation purposes but also to populate the application’s user interface, hence
we have chosen a two step approach that does not directly generate a B machine, but
rather imports the data into a database. The information in the database is later used to
generate the actual B representation of the model at runtime. Additionally, the database
is used in the application to persist changes and as the data source for the user interface.
Since the data is used in multiple places we map the values in the raw data to the most
adequate types in the database and later to the corresponding B types.
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Are there any alternatives? There are many alternative approaches that could be
pursued to import data into a B model. E.g. instead of generating a B model with the
data as constants, it would be possible to have B operations which incrementally add
values to variables containing the data. These operations could be executed in various
ways, e.g., using the Java API for ProB. Finally, ProB exposes external functions to B
that make it possible to, e.g., load data from CSV files; these features could be extended
for additional data sources (see Section 5.7.3).

5.5 Data Representation

Hand in hand with the decision on how to import data into a B model goes the choice of
proper B data-structures to represent the data. This representation should ideally follow
the structure of the source data, and additionally lend itself to be used and manipulated
in B. Choosing a good representation for the problem is crucial for the complexity and
readability of the model. In “Understanding the differences between VDM and Z” [62]
Hayes et al. discuss some of these issues on the examples of a simple database in VDM
and Z. In B, one could encode database records as nested pairs. A quaternary relation
over course identifiers, semester, weekday, and starting hour could thus be represented
as:

db = { (((course1 7→ sem2) 7→ monday) 7→ 14),

(((course2 7→ sem1) 7→ friday) 7→ 9) }

In order to access the first and second element of a pair, B provides the prj1 and prj2
operators. However, in B accessing a certain field of a nested pair is very cumbersome,
as we have to unfold the nested pair until we reach the desired field.2

Another alternative is to use records with named fields:

db = { rec(course_id: course1, semester: sem2,

weekday: monday, starting_hour: 14),

rec(course_id: course2, semester: sem1,

weekday: friday, starting_hour: 9) }

2In addition, the types of the arguments have to be provided for prj1 and prj2; e.g., prj2((COURSE ×
SEMEST ER) × W EEKDAY,Z)(v).
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We can easily access a field of a record r by using the quote operator: r’course_id.
Compared to the encoding as nested pairs, records are more readable, especially if there
are a large number of fields. Otherwise, constructing a record is more verbose than
constructing nested pairs. Since this part of the model is automatically generated, the
verbose encoding is not an issue.

A third alternative is to create B functions for each attribute of the data record mapping
a unique identifier to the corresponding attribute value. An identifier of a data record
could be a unique number generated by the translator or a certain attribute of the data
record. In case of our example, we could choose the attribute course_id as the unique
identifier:

course_id__semester = {course1 7→ sem2, course2 7→ sem1}

course_id__weekday = {course1 7→ monday, course2 7→ friday}

course_id__start_hour = {course1 7→ 14, course2 7→ 9}

While this approach works well for simple tables such as in Excel or CSV documents, it
would become inconvenient for nested data structures, e.g. if a value of a field is itself a
set of data records such as a sub-tag of an XML document. In this case, the translation
tool first has to transform the nested data structure to a relational database schema.
Subsequently, the translator has to create a B function for each attribute of each table of
the relational database.

One advantage of the last alternative is the handling of optional fields. Indeed, when no
field value is present for a data record, we just omit the corresponding identifier from the
domain of the accessor function for the corresponding field (i.e., we use partial functions
rather than total functions). For the other two approaches optional fields pose more of a
challenge. Due to the strong and strict typing of B it is not possible to create partial
records or to omit a field of a nested pair. One solution is to introduce a special NULL

value for each B datatype, e.g. the empty string ("") for the STRING type. However, we
have to ensure that the NULL value is not a regular value in the source data. For other
data types it is more intricate, e.g. which number to choose for INTEGER typed values or
how to represent this at all for BOOL typed values.

This directly leads to a further aspect of the translation. How should values in data
records be represented? They could be represented either as uninterpreted strings of data
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copied verbatim from the raw data input in the transformation step. Alternatively the
data values could be represented using the most appropriate B data types, e.g. INTEGER

for numbers, and enumerated sets for values from a set of known values. The first
approach has the advantage of a very simple translation process and that all relevant
knowledge about the data is encoded in the B model. The drawback is now, however,
that the data has to be translated in the B model, which typically requires extensions to
the B language which are available in ProB (e.g. transforming a STRING value to an
INTEGER value).

In both projects, we have chosen the record representation for the data. As already
mentioned in the previous section, the timetabling tool maps the raw data to the
corresponding B data types. In case of the topology validation project, all data values
are represented as uninterpreted strings and the processing of these strings is part of the
B model.

5.6 Means of Abstraction – Structuring and Auxiliary
Constructs

In general, abstractions [1] in programs and also models control complexity, encourage
reuse and make testing easier. Different parts of the B language offer different ways
to abstract and structure models and programs. There are certain concepts that are
applicable at the machine and operation level while others are applicable on the predicate
and expression level.

5.6.1 Machines and Operations

On the machine level sub-problems can be structured as machines for each sub-aspect
which communicate through the execution of operations. The visibility of machines and
their variables and operations can be controlled using different machine composition
mechanisms such as SEES, USES and INSTANCE.
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CONSTANTS
ConflictRelation

PROPERTIES
ConflictRelation =

UNION(r1,r2).(r1 : SignalRecords & r2 : SignalRecords
& r1’elementID /= r2’elementID
& r1’trackSegment = r2’trackSegment
& r1’position = r2’position & r1’direction = r2’direction
| {r1’elementID 7→ r2’elementID})

Figure 5.3: Calculating the conflict relation of two signals placed at the same position.

On the level of a single operation the substitution language provides several expressions
that are useful, either if-then-else for control flow or let constructs to introduce scoped
variables.

5.6.2 Expressions and Predicates

Within the mathematical language of B, constants can be used to globally save precom-
puted values whose computation might be expensive and should not be evaluated more
than once. Figure 5.3 shows the calculation of the conflict relations of two different
signals placed at the same position and valid for the same direction. Note, that the
calculation corresponds to a SQL statement making a self join on a signal table. Moreover,
constants can be used to store certain calculations in the form of lambda functions which
can be used in different parts of the model. However, constants are not applicable for
intermediate results which can not be precomputed globally because they depend on
additional information or parameter values.

Language Extensions for Predicates and Expressions

We have extended the predicate and expression subset of B supported by ProB to
make it easier to write complex validation rules. We have included two constructs from
the substitution part of the language that proved to be useful when creating validation
rules.
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IF-THEN-ELSE It is possible to express a condition in B using a union of lambdas
and function application, in order to mimic and if-then-else construct. Nonetheless
the evaluation is eager and the use of it a bit cumbersome. For this reason we have
made the IF-THEN-ELSE substitution syntax available in expressions and predicates.
Figure 4.14 shows an example of using both methods of expressing conditional execution
for computing an unsatisfiable core.

LET for Predicates and Expressions. In complex expressions or predicates it is often
useful to introduce local variables as a shorthand for certain values or expressions. B
only supports LET in the context of substitutions, nonetheless it might be useful for
predicates and expressions. In plain B there are several ways to achieve this: For example,
an existential quantification (#x.(x=E & P)) can be used within predicates to achieve
a result similar to a LET ProB tries to identify existential quantifications that only
have a single value and treats them specially. Within set-comprehensions an existential
quantification could also be used ({x| #y.(y=E & P)}), but the following pattern using
the domain of a set of pairs is (generally) more efficient in ProB: dom({x,y| y=E &

P}). For expressions which denote a set of values, one can use UNION(y).(y=E| S).

To avoid using these workaround that rely on the detection of patterns in ProB we have
added support for the LET constructs from the substitution syntax to the B language for
expressions and predicates. See Figure 5.4 for an example.

5.6.3 DEFINITIONS

Besides lambdas, one of the available methods of decomposing larger predicates or
expressions into smaller reusable components are DEFINITIONS (comparable to macros).
DEFINITIONS are textual replacement constructs similar to macros, that can accept
parameters which are replaced verbatim in the body of the DEFINITION. They can be
nested arbitrarily as long as the resulting expression or predicate is syntactically correct.
The use of DEFINITIONS carries some issues that have to be kept in mind. Although
they are textual replacements, ProB requires every definition to be syntactically correct
on its own, so certain compositions patterns are not possible.
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DEFINITIONS
EXAMPLE(aa, bb) == LET

va, vb
BE

va = aa
&
vb = bb

IN
<predicate over va and vb>

END;

Figure 5.4: Using a LET inside a definition for scoping.

Care is needed with regard to naming conflicts, quantifications not captured in the
DEFINITION and issues such as unintentionally performing repeated computations. Un-
intentional repeated computations might happen when writing a complex expression
as a parameter to a DEFINITION, where in case of a function or lambda the computed
value is passed to the function as argument in the case of DEFINITIONS, the expression
is inserted verbatim at every location the variable appears, causing the expression to be
repeatedly evaluated at each location. The same care as with repeated computations
is needed in the case of naming conflicts, given that DEFINITIONS do not provide any
means of scoping, using a DEFINITION in the wrong context might lead to unexpected
naming conflicts and type errors (see, e.g., “A Theory of Hygienic Macros” [63]).

Take for example the definition even(x) == (#y.(y:1..x & 2*y=x)). Evaluating the
predicate even(4) yields true. However, if we have a machine variable y whose value
is 4 and evaluate even(y) we obtain false, because the definition call was rewritten to
#y.(y:1..y & 2*y=y).

Regarding unintended repeated computation of arguments, the arguments of a definition
may get replaced multiple times and then also executed multiple times by ProB. Take,
e.g., the definition POW3(x)==x*x*x and the call POW3(f(1)). The latter gets transformed
into f(1)*f(1)*f(1), resulting in repeated computations of f(1). A pattern we have
used to avoid this is to create a variable within each DEFINITION, which is assigned with
the passed argument and used instead of the original parameter to avoid unintentionally
causing repeated computations of the same expression as shown in Figure 5.4.
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For the reasons described above, DEFINITIONS, although they are a useful method to
store and structure expressions and predicates, should be used carefully, in particular for
big expressions with parameters.

A concept that could present a useful extension to B is that of predicates as present
in Alloy [72]. Alloy distinguishes between named expressions and named predicates.
Predicates work as functions, providing proper scoping. Additionally, the parameters are
bound and evaluated in the context the predicate is used avoiding repeated computations
due to text replacement. Both characteristics make it possible to safely, in distinction to
DEFINITIONS, reuse and combine predicates.

5.7 Using B to Express Computations

Not every validation rule can be easily described using B predicates. In those cases it
can be more convenient to describe these concepts using recursive rules or as fixpoints of
iterative algorithms. In this section we show how this can be achieved in a natural B
style, while also ensuring that the resulting algorithms can be executed efficiently.

We will discuss different approaches to model an algorithm for sorting a set of numbers
into an ordered sequence. Note that the B Method does not provide a built-in operator
to sort a set. In the actual applications we used these techniques for more complicated
constructs, such as a search on a rail way topology with various termination conditions.

5.7.1 Machines and Operations

First we will discuss the approach of using machines and operations to express the
required functionality. Using the machine and substitution semantics of B to express
computations has the clear advantage of having all tools and features of the B Method at
our disposal. Figure 5.5 shows a stateless query operation calculating the sorted sequence
for a given input set.

However, ProB is not able to evaluate the operation efficiently, i.e. it does not scale
for large input sets. Indeed, a naive execution of Sort_OP would calculate all possible
permutations of the input set to then reject all but one, which is the sorted sequence.
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out_sortedSequence <-- Sort_OP(p_set) =
PRE p_set : POW(INTEGER) THEN

out_sortedSequence : (
out_sortedSequence : iseq(p_set)
& ran(out_sortedSequence) = p_set
& !i.(i : 1 .. size(out_sortedSequence) - 1

⇒ out_sortedSequence(i) < out_sortedSequence(i + 1)))
END

Figure 5.5: Query operation

ProB’s constraint solving can overcome this exponential complexity to some extent,3 but
for larger sequences we are a far cry from the performance of ordinary sorting algorithms.
Following the refinement principles of the B Method we can implement the abstract
operation by a concrete sorting algorithm. Figure 5.6 shows a selection sort (MinSort)
implementation in B. The operation Sort_OP exposes the algorithm as a single operation
which can be used several times and embedded in different machines.

ProB provides various optimizations for while loops. First, an interesting point is that
the variant is evaluated upon entry and gives ProB an upper-bound on the number of
iterations.4 If a certain threshold is exceeded, ProB will pre-compile the body of a while
loop, by precomputing all parts which do not depend on variables modified in the loop.

In our approach, we are not interested in proving the concrete algorithm to be a correct
refinement of the abstraction. However, we are interested in the correctness of the sort
implementation. Therefore, we use the predicate of the abstract operation as an invariant
respectively an assertion on the output of the concrete operation. Note, that in this
case ProB is able to check that the predicate holds for a concrete value even for a large
input set. Moreover, the termination of the sort algorithm is ensured using a loop variant
which is observed by ProB. For more complex algorithms such as different search

3ProB can compute Sort_OP({3,55,22,44,1,100,20,40,55,88,10,90,200,0,5}) in 0.18 seconds,
despite there being 15!=1,307,674,368,000 permutations.

4In many models, the variant actually corresponds exactly to the number of iterations.
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out_sortedSequence <-- Sort_OP(p_set) =
PRE p_set : POW(INTEGER) THEN

VAR v_set, v_seq
IN

v_set := p_set; v_seq := [];
WHILE v_set /= {}
DO

v_seq := v_seq <- min(v_set);
v_set := v_set \ {min(v_set)}

INVARIANT
v_set : POW(p_set) & v_seq : iseq(p_set)
& !i.(i : 1 .. size(v_seq)-1 ⇒ v_seq(i) < v_seq(i + 1))

VARIANT card(v_set)
END;
ASSERT ran(v_seq) = p_set THEN out_sortedSequence := v_seq END

END
END

Figure 5.6: Implementation of a sorting algorithm.

algorithms on railway topologies we have modelled state machines instead of stateless
query operations. However, the execution of these state machines is controlled by a single
operation of an additional interface machine. A small disadvantage of using operations
is that the output value of the operation can only be assigned to a variable and the
operation can not be used as part of a set comprehension or quantification.

5.7.2 Recursive Functions

Recursive functions, which are supported by ProB [89], are a very effective way to
compactly express certain kinds of algorithms. Figure 5.7 shows the selection sort
algorithm modelled as a recursive function in B. By defining Recursive_Sort as an
abstract constant we indicate that ProB should handle the function symbolically, i.e.
ProB will not try to enumerate all elements of the function. The recursive function
itself is composed of two single functions: one function defining the base case and one
defining the recursive case. Note, that the intersection of the domains of these function
is empty, and hence, the union is still a function.
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ABSTRACT_CONSTANTS Recursive_Sort
PROPERTIES

Recursive_Sort : POW(INTEGER) <-> POW(INTEGER*INTEGER)
&
Recursive_Sort =

λ(in).(in : POW(INTEGER) & in = {} | [])
\/
λ(in).(in : POW(INTEGER) & in /= {}

| min(in) -> Recursive_Sort(
in \ {min(in)}))

Figure 5.7: Recursive sort function

However, there are certain constructs that are harder to write (and to read) using only the
expression language of B, as it has no explicit support for let expressions and if-then-else
by default. Nonetheless it is often easier to express a construct as a recursive function
than it is to decompose the steps in order to express it as a machine. In general, the
performance of a recursive function is slower compared to the operation and while loop
approach.

Rather than using an explicit recursive call as in Figure 5.7, we can also use B’s transitive
closure operator to compute the fixpoint of a relation. For our example, let us define the
relation step = %(s,o).( s/={} | (s {min(s)}, o <- min(s)))} which encodes
one recursive step of selection sort (s is the set to sort, o is the output sequence so far).
For the set in = {4, 5, 2} we can now compute closure1(step)[{(in,[])}] resulting
in {({4, 5} 7→ [2]), ({5} 7→ [2, 4]), (∅ 7→ [2, 4, 5])}. As we can see, the result of sorting a
set in can be obtained by calling closure1(step)[{(in,[])}]({}).

5.7.3 External Functions

B as a formal modelling language does not contain all concepts present in a programming
language. For instance, in B there is no concept of a standard library that could
provide mathematical functions such as sin, cos, etc. Other computations are difficult or
impossible to express using only predicates and expressions, while others might be too
slow to evaluate purely in B.
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ProB offers a mechanism named external functions to add and expose new constructs
to B. In our sorting example this might look as follows:

DEFINITIONS
SORT(X) == [];
EXTERNAL_FUNCTION_SORT == (POW(INTEGER) → seq(INTEGER))

The function SORT is implemented in Prolog within ProB’s core and exposed in B as
a definition. In order to define a syntactically correct DEFINITION we use the empty
sequence as a dummy value ensuring type correctness. The second definition tells
ProB the type of the external function. In general, external functions provide the best
performance to execute specific computations. This is the case, because they remove the
interpretation overhead since they are implemented in Prolog. For this reason they are
opaque to the user and at this point in time it is not possible for users to define custom
external functions.

5.7.4 Further Language Extensions

In the topology validation project we have introduced further language constructs that
provide a uniform schema to write validation rules. Validation predicates are embedded in
special RULE operations. Figure 5.8 shows a simplified schema of a RULES_MACHINE which
contains several RULE operations and will be translated to an ordinary B machine. The
result of a RULE operation can be stored by using the new RULE_SUCCESS or RULE_FAIL(.)

keywords. The argument of the RULE_FAIL(.) keyword is the message reported in case of
a rule violation. For each rule operation an ordinary variable is generated in the translated
B machine containing the result of the rule evaluation (i.e. "FAIL", "NOT_CHECKED" or
"SUCCESS"). By using additional guards we are able to define dependencies between rules
(using the new keyword DEPENDS_ON_RULES) or disable a rule if necessary. The model
itself is non-deterministic in the sense that different rules can be executed at the same
time if their guards are satisfied. Thus, we are not forced to define an explicit execution
order of all rule operations and can use ProB’s animation feature to conveniently execute
a certain operation. To ease the writing of a rule we developed a new FORALL substitution
which can be used to define an error message of a rule by conveniently accessing the
variables of a universal quantification.
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RULES_MACHINE Rules
SEES Features
OPERATIONS
RULE rule1 = . . .;
RULE rule2 = . . .;
RULE rule3 =
SELECT
DEPENDS_ON_RULES(rule1, rule2)
& Enabled(feature1) = TRUE

THEN
FORALL
p1, p2

WHERE
P(p1,p2)

EXPECT
Q(p1,p2)

THEN
RULE_SUCCESS

ELSE
VAR errorMessage
IN
errorMessage := Exp(p1,p2);
RULE_FAIL(errorMessage)

END
END

END
END

MACHINE Rules
SEES Features
VARIABLES rule1, rule2, rule3
INVARIANT
rule1 : {"NOT_CHECKED",

"FAIL", "SUCCESS"}
& rule2 : {"NOT_CHECKED",

"FAIL", "SUCCESS"}
& rule3 : {"NOT_CHECKED",

"FAIL", "SUCCESS"}
INITIALISATION
rule1 := "NOT_CHECKED"
|| rule2 := "NOT_CHECKED"
|| rule3 := "NOT_CHECKED"

OPERATIONS
res,ce <-- rule1 = . . .;
res,ce <-- rule2 = . . .;
res,ce <-- rule3 =
SELECT
rule3 = "NOT_CHECKED"
& rule1 = "SUCCESS"
& rule2 = "SUCCESS"
& Enabled(feature1) = TRUE

THEN
IF
!(p1,p2).(P(p1,p2)

⇒ Q(p1,p2))
THEN
rule3 := "SUCCESS"
|| res := "SUCCESS"
|| ce := ""

ELSE
ANY p1,p2
WHERE
P(p1,p2) & not(Q(p1,p2))

THEN
VAR errorMessage
IN
errorMessage := Exp(p1,p2);
rule3 := "FAIL"
|| res := "FAIL"
|| ce := errorMessage

END
END

END
END

END

Figure 5.8: Translation of a RULES_MACHINE to an ordinary B machine
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5.8 Interaction With the Model

There are several ways the main software can interact with the validation model. Depend-
ing on the kind of application, one could animate or model check the B model, execute
an operation or evaluate expressions or predicates (assertions) on a certain state of the
model.

The ProB Java API (aka. ProB 2.0) provides facilities to use ProB in applications
running on the JVM. Through this API it is possible to access the functionalities
mentioned above and to translate B data types to and from appropriate Java types.

In case of the curriculum validation project, the tool itself is a Java application that
embeds the model and ProB. We expose all features provided by the model as B
operations that represent the public API of the model. These operations are evaluated,
using ProB’s animation facilities. Operations are executed with externally provided
parameters to validate the different curricula. The validation operations return a list of
variables that represent one possible choice of subjects to successfully finish a degree.
Furthermore, we use the result computed for a feasible curricula to generate a PDF
timetable for students with a recommend choice of subjects for their studies.

In the topology validation project the model is used as an independent validation tool
with the goal to generate validation reports about the input data. Each engineering
rule is modelled as one or more RULE operations containing the validation predicates
(see Section 5.7.4). By using more than one RULE operation for an engineering rule the
complexity of a natural language requirement can be decomposed into several simple and
readable validation predicates. In contrast to listing all validation predicates as part of the
ASSERTIONS section using RULE operations has the advantage that a B operation defines
a clean interface to perform the evaluation of the individual rules, to access result values
and counterexamples. In order to generate a complete validation report and to validate
all possible rules, we construct a trace of the model using ProB’s execute command
until all operations are covered. By doing this, we eliminate the overhead which would
be introduced by performing a complete model checking run on the non-deterministic
model (i.e. evaluating an operation several times).
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5.9 Configuration Management

Configuration management, i.e. how to reuse rules and infrastructure for similar or
related projects which differ in very specific aspects, is very important in the context
of data validation. For example, in the case of curricula validation, there are subtle
differences amongst faculties in the overall structure or how the students choose classes.
We have explored two different approaches to tackle this issue.

One approach is that of a Software Product Line (SPL) [32], where the system would
create, from a selection of predicates and evaluation rules a machine that composes them
according to a provided configuration. A further approach would be to search for and find
a data representation and formulation of the validation rules that is general enough to be
applied to more than one particular instance. Such a generic model can contain variation
points to control specific aspects of the validation process that differ from project to
project. For example, the rule in Fig. 5.8 is only tested when two particular features are
selected.

In both projects we have settled for a combination of both approaches, automatically
generating certain parts of our models and additionally configuring the generic parts.

5.10 Conclusion and Future Work

In this chapter we have presented two data validation projects where we have expressed
the validation rules in B. Based on the experiences gathered and the similarities between
the projects, we have discussed different relevant areas and presented our architecture
and design decisions as well as possible alternatives.

We have identified the aspects of data validation that can be easily and elegantly expressed
in B such as deriving intermediate data structures from the raw data, modelling complex
algorithms while ensuring their correctness, and formalizing validation predicates which
are close to natural language counterparts. Otherwise, we presented the points where
we had to diverge from B by either using language extensions supported by ProB or
by moving certain features outside of the B models, e.g. the data import. Moreover, we
described a way to interact with the formal model and to build various applications on
top of ProB.
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In both projects ProB satisfies the respective requirements on performance and execution
time. For the curriculum validation, ProB is able to detect conflicts among courses in
an appropriate time, making interactive use on top of ProB possible. In the topology
validation project there are no strict timing constraints. However, our B and ProB based
approach is able to compete with a pre-existing validation tool written in an imperative
language. In the next chapter we will perform a detailed comparison of this B based
approach to other tools and languages.

The work on both projects has helped to push the development of ProB forward by
highlighting performance bottlenecks that have since been resolved. Moreover, we added
support for language constructs such as tree operators.

Due to the availability of higher-order data types, B can be used almost like a functional
programming language. We have used this in particular to compute derived data. In the
chapter we have also shown various limitations of B, and have presented some ways to
overcome them. In the future, we would like to be able to use parts of B as a proper
functional programming language. In that sense, we are considering adding polymorphic
operators, as present in TLA+, to provide a simpler way to structure predicates and
allow the user to define new recursive operators. Moreover, we are pursuing an approach
to embed parts of the mathematical B language into the Clojure programming language
using native syntax and evaluating it with ProB, an approach comparable to aRby for
Alloy [100].
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Comparative Evaluation

6.1 Introduction

In the previous chapters we have discussed the use of B and ProB as tools not only to
specify and validate software systems but also to formalize and solve complex constraint
based data validation problems. The question remains: how does this high-level approach
compare to other languages and tools that can be used in this domain. Is the formalization
really simpler to understand and easier to modify than a comparable implementation
to the same problem in a different formalism? Does a lower level representation affect
the readability? Is the performance of the engine (either a solver, virtual machine or
runtime) executing a formalization appropriate for the kind of problem and features of the
language used? Appropriate here means that the cost of the added levels of abstraction
is not too high with regard to evaluating a given representation.

Having a formalism that makes it easy to represent complex problems can be very useful.
If the associated tool or runtime is not powerful enough to solve the represented problems
in a reasonable amount of time for the abstraction level, the tool has little practical
advantage. In that case the formalism is merely a vehicle of thought to structure a
problem. On the other hand having a tool that can efficiently compute results for complex
constraint based problems but only through a complex formalization process, that is
tedious and very low-level, might also not always be an advantage, in particular when
the problem at hand gets complex and its representation becomes unmanageable.

This duality can be found in the development of many modern programming languages,
which are usually built around specific paradigms and try to provide the best compromise
of performance and abstraction levels within their scope.
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The goal of this chapter is to discuss, based on a simplified version of the case study
discussed in Chapter 4, aspects of the implementation and performance of this problem
using different formalisms and tools.

6.1.1 Scope

In order to assess the mentioned properties of different systems, we have selected some
key features of the B model described in Chapter 4 that represent the interesting and chal-
lenging aspects of the problem and have implemented these in different formalisms. These
features are the conflict detection and the unsatisfiable core (unsat core) computation.

The goal is to compare the different solutions with regard to two properties. These two
are: first the model’s or implementation’s complexity and second the runtime performance
of the tool associated to each language or formalism.

Conflict detection is the central feature of the B model created in the case study and is
thus the key aspect to compare formalizations. The computation of an unsat core on
the other hand was chosen because it is handled very differently by the selected tools.
B does not have explicit support for it, but support has been added to ProB through
an external function. Alloy provides built-in support for computing an unsat core. In
languages like Prolog or Python it is not part of the language, but can be implemented
using recursion. We want to compare the different approaches to implementing - where
needed - and using the unsat core computation in the different tools.

6.2 Data Model for Evaluation

The comparison discussed in this chapter is based on the second version of our models,
see Table 4.2 for a table highlighting the features in each version. This version presents
a simpler data model, which is described below. It still contains all relevant validation
aspects and steps to make it a meaningful problem for comparison.
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6.2.1 Description of the Data Model

The model is based on the same entities as the third version described in Chapter 4.
Below we will describe the data model used for this evaluation, which should clarify the
differences to the more complex model described before. The different entities present in
this data model, their relationships and the selection rules for the validation are visualized
in Figure 6.1 as a feature model, see Section 4.2.4 for details on feature modelling.

In this model each course can be composed of a major and a minor or it can be a
standalone course. E.g. the course ger_ges represents the combination of “German
Literature Studies” as major and “History” (Geschichte) as minor.

Each course is composed of a set of modules where each module can be either
mandatory or elective within a course, shown in Section (a) of Figure 6.1.

One important difference is that this model does not include the concept of abstract
units, which was introduced for the third version of our models. The inclusion of abstract
units adds a decision variable to our model and increases the branching. Without abstract
units, modules, as can be seen in Section (b) of Figure 6.1, are composed of units,
which themselves can be either mandatory or elective. Units on the other hand, as
shown in Section (c) of Figure 6.1, are divided into groups. Each group is a set of
sessions (Section (d) in Figure 6.1). Each of the groups within a unit is considered
alternative to the others, in the sense that choosing any satisfies the unit’s requirements.
Sessions are the actual events, these are associated with the day and time when they
take place. Additionally, each session has a rhythm that represents how often the
session takes place. The rhythm can be weekly or biweekly (in even or odd numbered
weeks). In this model the day and time information is represented using an atomic value
that contains both pieces of information. This format was being used by one of the
participating faculties and therefore used in the modelling. In Version 3 of the models
we replaced this by separate day and time fields in the representation of sessions. The
atoms representing day and time are composed of a letter, from a to f representing the
time slot, and a number from 1 to 5 representing the day of the week. For example the
atom c2 represents the third time slot on a Tuesday.
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In this model one module can be associated with several courses. Also, a unit might
be associated to more than one pair of module and course. The information in which
semester a unit is available and whether it is mandatory or elective is associated to the
triple of course, module and unit, e.g. A unit might be mandatory in one course and
module but elective in another.

6.2.2 Validation

The goal of the validation process is to decide if there exists:

• a choice of modules (mandatory and elective),

• a choice of units in those modules,

• a choice of semester when to attend each unit,

• and a choice of one group for each unit.

Such that there are no scheduling conflicts among the sessions selected for the groups
of units scheduled for the same semester.

The validation process works in a way similar to the process described for version 3 of
the models. The process starts by selecting a course to be validated. In this version
only one course is selected, since it already represents either a combination of major
and minor or a stand-alone course.

To find a valid solution, the validation process must select all mandatory modules for
the chosen course and a course course specific number of elective modules, which is
shown in Section (a) of Figure 6.1.

Similarly, the validation must selected all mandatory units in each module and a
module specific number of elective units must be chosen from each module as shown in
Section (b) of Figure 6.1.

Each selected unit is assigned to a semester when it should be attended by the validation
process. Possible choices of semesters depend on the course and module assignment.
In each module of a course a unit might be available in different semesters.
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Figure 6.1: Feature diagram describing the validation and selection rules for the second
version of our model.
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Lastly, for each unit, as part of constructing a possible instance, a group is selected,
as shown in Section (c) of Figure 6.1. For units assigned to the same semester, the
validation must ensure, that there are no scheduling conflicts among the sessions of the
groups selected in each unit.

The challenge for any implementation is not only to decide if a given assignment of values
corresponding to the different described choices is correct, but also to find such a choice
of units and groups for a course that is valid.

6.2.3 Data Sets

The evaluation will be performed on two data sets containing curriculum data provided
by the faculty of Arts and Humanities (AH) and the faculty of Business Administration
and Economics (BAE) at Heinrich Heine University Düsseldorf.

Each data set has different characteristics. The AH data set contains 67 different courses
which not use the concept of modules, but contains units with many groups. The data
set provided by the faculty of BAE contains 6 courses with many elective units and
modules.

As an orientation for the reader we have computed a complexity index (CI) for every
course in each data set that represents the number of possible instances - each instance
stands for a unique selection of modules, units, groups and semesters - that each course
has (feasible or infeasible). The worst-case, in a brute-force approach, would require each
of these instances to be checked in order to determine if a course is feasible or not. Hence,
the CI should give an idea about the complexity of each data set. Table 6.1 shows the
different courses grouped by faculty, their feasibility, their CI, their number of mandatory
and elective modules as well as the number of possible combinations of elective modules
(Appendix D.1 contains this information for all courses in both data sets). Because the
AH data set does not use the concept of modules, all course data is grouped in a single
module. For the same reason the AH data set does not have elective modules and elective
module combinations. Figure 6.2 shows, for each faculty, a plot of the courses ordered by
their CI, highlighting how these vary and increase.
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Figure 6.2: Plots of the courses in each faculty ordered by their complexity index. The
complexity index is presented in a logarithmic scale.

A large CI does not necessarily mean finding a feasible instance will be slow, this rather
depends on the used search strategy, but indicates the size of the search space. The CI
can vary depending on the completeness of the provided data sets and the degree of
freedom to choose units and groups for the students.

6.3 Languages and Tools

There are many interesting tools and languages worth considering for the evaluation of
this case study. We have decided to restrict the selection to the following languages and
tools in order to compare them to our B and ProB based approach:

• Prolog

• Prolog using clp(FD)

• SMT-LIB using Z3

• Alloy

• Python

We have selected these languages as they represent different language paradigms, program-
ming concepts and computation models. Prolog [42] and Python [127] are general purpose
programming languages, whereas Alloy [72] and SMT-LIB are modelling languages for
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Table 6.1: Complexity index , feasibility, number of mandatory, elective and combinations
of elective modules for the Business Administration & Economics data set
and for the 25 courses with the largest complexity index values in the Arts &
Humanities data set.

Course Feasible? CI Mandatory
Modules

Elective
Modules

Elective
Module

Combinations

Business Administration & Economics

wichem_master 3 8352 2 10 45
bwl_master 3 180153 5 25 300
vwl_master 3 217203 4 26 325
wichem_bachelor 3 32265043 8 16 560
vwl_bachelor 3 475079582 11 31 4495
bwl_bachelor 3 2067530678 12 31 4495

Arts & Humanities

jap_jud 7 497664 1 0 0
jud_ang 3 1244160 1 0 0
ger_jap 3 1990656 1 0 0
jap_ger 3 1990656 1 0 0
jap_lin 7 1990656 1 0 0
jap_kom 7 4478976 1 0 0
jap_pol 3 4478976 1 0 0
jap_soz 3 4478976 1 0 0
ger_ang 3 4976640 1 0 0
jap_jid 7 7962624 1 0 0
ang_ges 3 100776960 1 0 0
ang_inf 3 201553920 1 0 0
jap_rom 7 382205952 1 0 0
rom_jap 7 382205952 1 0 0
ang_jud 3 403107840 1 0 0
rom_ang 3 955514880 1 0 0
ang_ger 3 1612431360 1 0 0
ang_lin 7 1612431360 1 0 0
ang_kom 3 3627970560 1 0 0
ang_pol 7 3627970560 1 0 0
ang_soz 3 3627970560 1 0 0
ang_jid 3 6449725440 1 0 0
jap_ang 3 38698352640 1 0 0
ang_rom 3 309586821120 1 0 0
ang_jap 3 12538266255360 1 0 0
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constraint solving and model finding tools. Prolog, Alloy and Z3 are declarative languages,
while Python is an object-oriented and imperative language. Additionally, many Prolog
implementations have built-in support for constraint logic programming (CLP) of which
we will look at finite domain solving (clp(FD)). We explored using Constraint Handling
Rules (CHR) [51] to model the problem, but abandoned this approach as it did not
provide significant advantages over clp(FD) at the cost of a rather cumbersome encoding
of the rules. Also, we explored the inclusion of TLA+ [83] in the evaluation, but decided
not to include it for two reasons: first, because the language is very similar to B in many
aspects and second, because the available tools for TLA+ are centred around model
checking and proving characteristics of the model. Thus the tools do not offer any features
that would allow to efficiently solve constraint based problems beyond brute-force [83,
p. 232].

Each of the implementations is composed of two parts. These are a representation of
the data structures trying to use the most adequate concepts in each language and a
formalization of the timetable validation problem as described earlier.

6.4 Evaluation

In this section we will present implementations of the problem described above using the
chosen languages. Each section follows the same structure of a brief introduction of the
language and the tool, followed by a discussion about how we implemented our solver
in each language, i.e. which language specific constructs we used. For each language
we explain how the search is performed, in particular how we enumerate the variables
to find models to check for feasibility. Additionally, we describe how the search for an
unsatisfiable core is implemented in each tool. Lastly we present and analyse benchmark
results for the feasibility check for each tool separately. At the end of this chapter we
present a comparative discussion of the evaluated tools.

All benchmarks presented in this chapter were conducted by running, for each data set
separately, the feasibility check for all courses. We ran each benchmark 10 times and
report the average runtime for each course over the 10 runs. All benchmarks were run
with a timeout of 30 minutes after which we cancelled the corresponding check. All
benchmarks were run on an otherwise idle machine running Linux Mint 18, with 4 GB of
RAM and a quad-core Intel Core i5 CPU running at 2.67 GHz.
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6.4.1 Prolog

Prolog [42] is a declarative programming language, based on first-order logic originally
created in 1972 [33, 78]. Since 1995 the central aspects of the language have been
standardized by the International Organization for Standardization (ISO) [69]. Prolog
programs are created by defining logical facts and inference rules. These are used to
evaluate whether queries posted to the system are satisfiable and, if so, what variable
bindings are needed for the query to be true.

It is interesting to consider Prolog in our evaluation for several reasons; first the constraint
solver for B provided by ProB is implemented in SICStus Prolog. Prolog, as a program-
ming language based on first order logic, makes it easy to express rule based systems
as used in this case to verify the feasibility of a curriculum. Additionally, many Prolog
systems have support for constraint programming which extends Prolog semantics very
naturally. ProB makes use of these features in SICStus Prolog in order to implement
parts of its constraint solving kernel [87].

Facts and rules are defined by means of Horn clauses, i.e. a disjunction where no more
than one literal is not negated. A program is evaluated by posting a query, a logical
expression that is evaluated for its satisfiability with regard to the defined rules and facts.
For each part of a query, a Prolog system will check if it is satisfiable with regard to
the defined facts and rules using a systematic search process, called resolution. In this
process a element of the query will be matched against facts and rules by unification
until a solution or a contradiction is found. Unification is one of the central concepts in
Prolog, which is used to decide if two terms are structurally identical or, if they contain
uninstantiated variables, can be made identical by binding their variables [121].

The default approach to enumeration in Prolog is the use of choice-points and backtracking.
This has the advantage, compared to an imperative iteration approach, that it is not
necessary to manually keep track of the state of the enumeration, since it is part of the
language’s execution model. In the recursive search performed by the Prolog engine, each
time a logical variable is associated with a value a choice point is created. If a search fails
the engine will backtrack to a choice point and bind variables to the next possible value
until either a solution was found or all possibilities are exhausted. Coroutines extend
this enumeration by executing the program normally, until a coroutine is called. When a
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coroutine is called and its condition, usually the instantiation of its variables, is satisfied
execution continues normally. If the coroutine’s condition is not satisfied its execution is
blocked and only resumed when the condition is satisfied [28].

clp(FD) Constraint logic programming over finite domains is an extension to Prolog,
supported by several Prolog implementations [27, 126], for reasoning about integers.
clp(FD) can be used to declaratively encode combinatorial problems over discrete domains
using integers.

clp(FD) usually provides operations to associate variables with a domain, or range
of values as well as operations to put variables in relation to each other and further
constraining their domains. The implementations themselves associate the variables and
operations with efficient algorithms to propagate the information about the constraints
with the goal to reduce the search space for possible solutions. The efficient propagation
of constraints and the associated handling of a variable’s domain are central features
of constraint programming. These characteristics can make it a very efficient approach
for certain families of problems. In many cases the constraints associated to variables
can help drastically reduce the size of the universe in which a solution is searched for.
In this evaluation we will consider the clp(FD) implementation as provided by SICStus
Prolog [26].

Enumeration of Variables

When using clp(FD) variables are associated with a range of values, representing their
domain. Ranges can be reduced by attaching constraints to the variables. Each constraint
can reduce the number of values from the domain that are acceptable for the variable.
Using clp(FD), predicates and operators are used to setup a problem instance, variables
are not automatically bound to a specific value, with the exception when there is exactly
one possible value. Variables are bound to values in a second step, called labeling. In
the labeling process each variable is systematically assigned values from its domain.
Labeling proceeds until either every variable is assigned a value and the problem instance
is satisfied or all combinations of values are exhausted, in which case there is no solution
to the problem. Labeling can follow different predefined strategies to enumerate variables,
depending on the problem, for example first enumerating variables with the smallest
domain or variables with the most constraints associated to them, etc.
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search(X, X) :- X > 99999999.
search(X, Z) :- Y is X + 1, search(Y, Z).

search2(Y) :- Y in 1..9999999999, Y #> 99999999, labeling([ffc],
[Y]).

Figure 6.3: Artificial example of a recursive and a clp(FD) based search.

Consider the following artificial example in Figure 6.3 comparing clp(FD) to a recursive
search. In this example, the search predicate searches recursively for a number greater
than 9999999999. It checks if the current argument is a solution and if not it tries the
next number until it finds a solution and takes about 1500 milliseconds for search(1,

X) on our benchmark machine. The search2 predicate on the other hand uses clp(FD)
operators to define the domain of the solution and to constrain valid solutions to be
greater than 9999999999 taking only about 10 milliseconds on the same machine.

Unsatisfiable Core

Prolog does not provide built-in means to compute the unsatisfiable core of a predicate.
Nevertheless Prolog’s recursive execution model lends itself to implement such a search.
A very simple (and unoptimized) implementation of a search for a minimal unsatisfiable
core could implemented in Prolog as shown in Figure 6.4.

Implementation

We have created two different Prolog based implementations, one that relies on Prolog’s
standard execution model and one that uses clp(FD), coroutines and labeling to constrain
the search space.

Data Representation Both implementations share the same data representation. Each
type of entity is represented using facts, each fact contains a numeric id and all further
attributes, for instance a course is represented using the (simplified) fact course/2,
e.g. course(56, ’jap_jid’) represents course number 56, with the name jap_jid.
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:- use_module(library(lists)).

uc(_, [], Acc, Res) :- sort(Acc, Res), !.
uc(Predicate, Values, Acc, Result):-

member(V, Values),
delete(Values, V, Residue),

append(Residue, Acc, Args),
Call =.. [Predicate, Args],

(call(Call)
->uc(Predicate, Residue, [V|Acc], Result)
; uc(Predicate, Residue, Acc, Result)

).

pred(List) :- sum(List, Result), Result < 10.

sum([], Acc, Acc) :- !.
sum([I|Rest], Acc, Result) :- Tmp is Acc + I, sum(Rest, Tmp, Result).

sum(List, Result) :- sum(List, 0, Result).

:- setof(R, uc(pred, [2,7,3,8,6,1], [], R), Res), print(Res), nl.
[[1,2,7],[1,3,6],[2,3,6],[2,8],[3,7],[3,8],[6,7],[6,8],[7,8]]

Figure 6.4: Prolog implementation of a search for a minimal unsatisfiable core of a list of
values with regard to a given predicate.
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Sessions are represented using the session/4 functor as follows session(id, rhythm,

duration, slot), where each possible time slot is represented using an atom for the
day and time pair, e.g. a1 if the first time slot on a Monday and a2 is the first time slot
on a Tuesday.

Relations are facts that reference the different entities by their identifiers. E.g. cmu(56,

1, 64, ’m’, 2) represents the association of course 56 with module 1 and unit 64, which
is mandatory (’m’) in the second semester.

Brute-Force First we will focus on the brute-force approach to finding a feasible
timetable in Prolog. The search for feasible solution takes advantage of Prolog’s built-in
backtracking. We perform a depth first search for a solution, instantiating each of
the required choices, e.g. modules, units, semesters, etc, to one of the corresponding
possibilities. Once we have constructed a candidate instance we check it for conflicts to
decide if it represents viable curriculum.

Every time a computed instance is not valid we backtrack to the closest point where
we can construct an alternative solution (a choice point) and continue the computation
from there. If the alternatives for a choice point are exhausted (we have tried all possible
instantiations) we backtrack further to the next choice point. If all combinations of
values have been evaluated and we haven’t found a satisfying instance, we know the
course is infeasible. Conversely, if we find a feasible instance we can stop the search and
interpret the current values of the logical variables as the timetable instance. The search
process starts from a given course, selecting one of the possible module combinations,
then selecting the units, mandatory and elective, needed to complete the modules. For a
choice of units, all semester combinations are enumerated and each is checked to see if
there is a choice of groups that is feasible under that specific choice of semesters. The
brute-force approach does not discard combinations that might fail for the same reason
as a combination checked before and relies on trying all possible combinations to detect
a valid combination. Additionally, it does not consider any specific order of the variables
being enumerated. Choices of semesters and groups are represented using AVL trees,
these provide a data structure for key value mappings [28] with logarithmic complexity
on lookup and insert operations. This is the best available choice, since SICStus Prolog
does not support maps or dictionaries. In each AVL tree a unit is mapped to a logical
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variable that is bound to a semester and a group respectively during the search. After
a semester and a group have been chosen for each unit, we check those pairs of units
assigned to the same semester for conflicts. For each pair of units we check if the sessions
in the selected groups are compatible. To check if two groups are compatible we compute
all pairs of sessions and check each for conflicts using the no_conflict/2 predicate as
shown in Figure 6.7. Sessions are provided as a list of pairs and checked one after the
other.

clp(FD) The clp(FD) approach works similarly to the brute-force approach described
above. They differ in how the enumeration and validation of instances is performed. In
the clp(FD) based approach we split these steps into one that step sets up the problem and
collects the domains of the enumeration variables and a second that does the enumeration.
In our solver we combine clp(FD) and coroutines, using in particular the ability to
constrain the domains of the variables representing unit and group choices.

In the first step - for a given course - we collect modules and units and create coroutines
that will block for each pair of collected units. The coroutines will block on variables
used to represent the semester and group choice, see Figure 6.5, and only resume their
execution when these variables are bound. Besides creating the coroutines, we collect
information about domains of the enumeration variables, i.e. the sets of possible semesters
and groups for each unit.

Choices of unit, semester and groups are represented as AVL trees that map each selected
unit to a CLP variable, whose domain is constrained to the available alternatives for that
unit. Figure 6.6 shows this for the map that represents the group selection.

The CLP-variables in the AVL trees are used in the labeling step, which performs the
enumeration. The selected labeling strategy enumerates variables with small domains
and many constraints associated to them first. Using this strategy certain conflicts will
be detected early in the enumeration discarding the selection of units altogether and
backtracking to choose a new set of units. A conflict that will be detected early is for
example two units only available in the same semester each containing exactly one group
where both groups are in conflict. During the labeling process once a variable is bound
the coroutines attached to it are activated and continue their computation. In this way
we create a partial solution that is further evaluated as soon as concrete assignments
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:- block check_semester_group_unit_pair(?, ?, ?, -, ?, ?, ?, ?),
check_semester_group_unit_pair(?, ?, ?, ?, -, ?, ?, ?),
check_semester_group_unit_pair(?, ?, ?, ?, ?, ?, -, ?),
check_semester_group_unit_pair(?, ?, ?, ?, ?, ?, ?, -).

check_semester_group_unit_pair(Unit1, Semester1, Group1,
Unit2, Semester2, Group2) :-

Semester1 == Semester2,
unit_group_sessions(Unit1, Group1, Sessions1),
unit_group_sessions(Unit2, Group2, Sessions2),
pair(Sessions1, Sessions2, Sessions),
no_conflict(Sessions).

check_semester_group_unit_pair(_Unit1, Semester1, _Group1,
_Unit2, Semester2, _Group2) :-

Semester1 \= Semester2.

Figure 6.5: Predicate to check unit compatibility with block annotations to create corou-
tines. Coroutines will wait on variables marked with - in the annotations.

group_choice(Units, GroupChoice) :-
(foreach(U,Units), foreach(UGC,_GroupChoice) do

(
data:unit(U, _, _, UnitGroups),
!,
findall(I, member(group(I, _, _), UnitGroups), Groups),
list_to_fdset(Groups, FDGroups),
GC in_set(FDGroups),
UGC = U-GC

)
),
list_to_avl(_GroupChoice, GroupChoice).

Figure 6.6: Predicate that collects possible groups for all selected units and created
clp(FD) variables with constrained domains in an AVL tree.
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no_conflict([]).

no_conflict([Session1-Session2|Sessions]) :-
data:session(Session1, _, R1, Slot1),
data:session(Session2, _, R2, Slot2),
(Slot1 \= Slot2

-> true
; R1= rhythm(Rhythm1), R2=rhythm(Rhythm2),

Rhythm1 > 0,
Rhythm2 > 0,
Rhythm1 \= Rhythm2

),
no_conflict(Sessions).

Figure 6.7: Checking for a potential conflict between two sessions.

become known. If the validation of a set of variables fails, Prolog will backtrack to
a previous choice point, restoring the coroutines. The labeling process will try a new
instance until a solution is found or all combinations have been checked. Once semester
and group have been chosen for a unit the blocked coroutine can be triggered and can
check the now known values of semester and group to detect if the choices for both units
are compatible using the no_conflict/2 predicate discussed before.

Results

We have based our benchmarks on SICStus Prolog. SICStus Prolog [26]1 is a commercial
Prolog System developed at the Swedish Institute of Computer Science and compatible
with the Prolog ISO standard [69]. Currently available in version 4.3.5, which is also
the version used for our evaluation. There are many alternative Prolog implementations
available, for example SWI Prolog [128], XSB Prolog [122], YAP Prolog2 among many
others. We have chosen SICStus Prolog for two reasons: first, it is one of the fastest
Prolog engines and second, ProB is built on top of it, giving us the possibility to compare
the both of them.

1https://sicstus.sics.se - [Online; accessed 31-March-2017]
2https://www.dcc.fc.up.pt/~vsc/Yap/ - [Online; accessed 31-March-2017]
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Table 6.2 shows results for the brute-force and clp(FD) based solvers. The table shows
results for the BAE data set and for the 25 courses with the largest CI in the AH data
set. All results for both versions are presented in Appendix D.2. Figure 6.9 shows the
results of the clp(FD) and the brute-force solver for the infeasible courses in the AH data
set, while Figure 6.8 shows the results for the feasible courses in this data set. Figure 6.10
shows the results for the clp(FD) and the brute-force solver on the BAE data set. All
diagrams show the runtime of the solver for each course on a logarithmic scale. Courses
are ordered increasingly by their CI.

For the brute-force benchmarks we have excluded results for courses that had not
completed the feasibility check after 30 minutes, and marked them with a timeout in
Table 6.2. These courses, as can be seen, correspond to instances with large CI values
that are both feasible and infeasible but have a very large search space.

128



6.4
Evaluation

Table 6.2: SICStus brute-force and clp(FD) results for the Business Administration & Economics data set and 25
largest complexity index values in the Arts & Humanities data set.

Course Feasible
Brute-Force clp(FD)

CI
Runtime‡ SD Runtime‡ SD

Business Administration & Economics

wichem_master 3 1 ±3.16 2 ±4.22 8352
bwl_master 3 1242 ±55.94 2 ±4.22 180153
vwl_master 3 128 ±4.22 0 ±0.00 217203
wichem_bachelor 3 timeout† - 41 ±3.16 32265043
vwl_bachelor 3 timeout† - 4 ±5.16 475079582
bwl_bachelor 3 timeout† - 1237 ±68.00 2067530678

Arts & Humanities

jap_jud 7 40200 ±324.48 709 ±18.53 497664
jud_ang 3 4362 ±37.06 0 ±0.00 1244160
ger_jap 3 22 ±4.22 495 ±21.21 1990656
jap_ger 3 21 ±3.16 496 ±19.55 1990656
jap_lin 7 212611 ±1553 147 ±6.75 1990656
jap_kom 7 890961 ±6464.23 0 ±0.00 4478976
jap_pol 3 135 ±7.07 195 ±11.79 4478976
jap_soz 3 66151 ±516.08 2 ±4.22 4478976
ger_ang 3 4 ±5.16 2 ±4.22 4976640
jap_jid 7 810075 ±3793.82 0 ±0.00 7962624
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
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Table 6.2: SICStus brute-force and clp(FD) results for Business Administration & Economics data set and 25 largest
complexity index values in the Arts & Humanities data set.

Course Feasible Brute-Force clp(FD) CI
Runtime‡ SD Runtime‡ SD

ang_ges 3 509267 ±5046.97 3 ±4.83 100776960
ang_inf 3 timeout† - 3 ±4.83 201553920
jap_rom 7 timeout† - 0 ±0.00 382205952
rom_jap 7 timeout† - 3 ±4.83 382205952
ang_jud 3 timeout† - 0 ±0.00 403107840
rom_ang 3 13766 ±78.34 6 ±5.16 955514880
ang_ger 3 33113 ±331.70 0 ±0.00 1612431360
ang_lin 7 timeout† - 1 ±3.16 1612431360
ang_kom 3 timeout† - 0 ±0.00 3627970560
ang_pol 7 timeout† - 2 ±4.22 3627970560
ang_soz 3 timeout† - 4 ±5.16 3627970560
ang_jid 3 timeout† - 4 ±5.16 6449725440
jap_ang 3 timeout† - 1225 ±30.64 38698352640
ang_rom 3 timeout† - 10 ±4.71 309586821120
ang_jap 3 timeout† - 104041 ±505.84 12538266255360
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
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Figure 6.8: Prolog clp(FD) and brute-force results for feasible courses in the Arts & Humanities data set ordered by
increasing complexity index.
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Figure 6.9: Prolog clp(FD) and brute-force results for infeasible courses in the Arts &
Humanities data set ordered by increasing complexity index.

Discussion Table 6.3 presents a summary of the results for both Prolog based imple-
mentations. The table shows that the brute-force approach can solve 55 of the instances
in the AH data set and 3 of the 6 in the BAE data set. On the other hand the clp(FD)
based approach finds a solution for all instances in both data sets. For the brute force
solver, without considering the checks that were cancelled after 30 minutes, the median
runtime is 0 milliseconds on the AH data set, taking them into account the median, as
reported in Table 6.3, is 10 milliseconds over all benchmarks runs. On the BAE data set
the median is 130 milliseconds, although we had to exclude 3 of the 6 courses, since they
did not yield a result within 30 minutes. The median raises to about 15 minutes when
considering the timeouts.

Our brute-force approach works rather well for instances with small CI values. Even for
small instances it can be seen that deciding whether an instance is infeasible generally
takes longer than deciding if is feasible. This is the case because the validation has to
explore all possible combinations in order to decide that an instance is infeasible. For
instances with larger CI values the performance degrades quickly. For example, the
slowest result, that did not timeout, was jap_kom with a CI of 4478976. The validation
took, on average over the 10 benchmark runs, about 15 minutes to detect that this
instance is not feasible.

132



6.4 Evaluation

wichem_master

bwl_master

vwl_master

wichem_bachelor

vwl_bachelor

bwl_bachelor10−1

103

107

◦

• • •

Courses

R
un

tim
e

in
m

s.

SICStus clp(FD) SICStus ◦ Timeout • 0 avg. Runtime

Figure 6.10: Prolog clp(FD) and brute-force results for courses in the Business Adminis-
tration & Economics data set ordered by increasing complexity index.

Table 6.3: Summary of results for both Prolog based implementations.†

Arts & Humanities Business Administration & Economics

Brute-Force clp(FD) Brute-Force clp(FD)

R
es

ul
ts # Feasible 42 50 3 6

# Infeasible 13 17 0 0
# Timeouts 12 0 3 0

RT
‡ Average 362922.19 1603.79 900228.50 214.33

Median 10.00 0.00 900700.00 0.00
‡ Runtime in milliseconds.
† We have taken timeouts into account when computing the average and median for each tool. Each

timeout represents a runtime of 30 minutes.
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In contrast, even the rather restricted use of clp(FD), of collecting the domain information
and labeling with a specific strategy has a major impact on the runtime of this problem.
Checking variables with small domains first and checking pairs of units as soon as their
groups and semesters are known has a big advantage compared to completely instantiating
a candidate solution before checking it and having no particular control over the order of
the enumeration. The clp(FD) based approach finds a solution to all instances, with a
maximum runtime of about 1 minute and 45 seconds for the ang_jap course, which is
also the course with the largest CI value.

On instances with large CI values the performance benefit of the clp(FD) based approach
is particularly notorious. Of the 25 results with the largest CI values in the AH data set
the clp(FD) approach is faster on 23 of them, with the two exceptions being ger_jap

and jap_ger. The brute-force approach did not yield a result before the timeout limit in
12 of these 25 cases. The constraint based solution can check 56 of the 76 AH courses
and 4 of the 6 BAE courses in less than 10 milliseconds on average, compared to the 36
and 1 courses for the brute-force solver respectively. The median runtime for the clp(FD)
based solver on both data sets is 0 milliseconds (considering SICStus’ time resolution of
10 milliseconds).

With the regard to the implementation, there is no big difference between both approaches,
certain parts are even shared between both. When using clp(FD) the implementation
is slightly more complicated. Consider for instance the previously discussed Figure 6.6,
where we specifically create an AVL tree of group-choice variables and associated them to
their corresponding domains. Separating the collection, the search and the management
of the variables’ domains, as well as declaring the coroutines that wait on the enumeration
of the variables leads to a more complex implementation, but with greater control over
the search process.

The results collected for both Prolog based implementations show that, with regard to
the runtime, it pays off to have tight control over the decision which parts of the search
tree are explored and how variables are enumerated instead of just trying all possible
combinations.
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A possibility for improving the clp(FD) based approach would be to avoid waiting on all
enumeration variables for a pair of units at the same time. One alternative would be
to create constraints on the semester choice for all pairs of units; if the choice is equal
we would constrain (using reification) the group choice such that it is conflict free, this
approach could also be implemented using CHR [51].

6.4.2 SMT-LIB/Z3

Next we will discuss Z3 [39], which is a theorem prover based on SMT (satisfiability modulo
theory) developed by Microsoft Research. Z3 was built with software verification in mind
and has been used for this purpose in many projects inside and outside of Microsoft.
Some examples are Pex [123], the Boogie verifier [13] among many others. Z3 has also
been applied to other domains, such as the verification of network configurations [21].

Z3 supports several input formats, of which we decided to use the SMT-LIB [14] language
to encode our timetable validation problem. SMT-LIB aims to be a common input
language for SMT solvers and thus portable across tools. SMT-LIB is a LISP-like
language with a prefix notation that is used to describe models by declaring sorts and
data types, and creating assertions about the defined entities.

SMT is an extension of the SAT (boolean satisfiability) problem. The satisfiability
problem is the problem of deciding if there is a truth assignment for the variables in a
given boolean formula such that this formula (usually in conjunctive normal form) is
true. The SAT problem itself is NP-complete [34] but there are efficient solvers that
can handle a wide range of instances of this problem such as MiniSat [46], Lingeling,
Plingeling and Treengeling [18], among others. Thus, suitable for use in different areas
of computer science such as hardware verification [58], model checking [19], planning
problems [76], etc. SMT extends SAT by adding to each boolean variable in the formula
an interpretation in a theory. Theories might be integer arithmetic, bitvectors, arrays, etc.
A truth assignment in the SAT formula then implies the satisfiability of an expression in
one of the used theories. Figure 6.11 shows the same artificial example from Figure 6.3
presenting an SMT-LIB model for finding a value for the constant a that is greater than
99999999.
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(declare-const a Int)
(assert (> a 99999999))
(check-sat)
(get-model)

Output:
sat
(model

(define-fun a () Int
100000000))

Figure 6.11: Example of a simple SMT-LIB model with one constant and one assertion.

(set-option :produce-unsat-cores true)
(declare-const a Int)
(assert (! (> a 0) :named positive))
(assert (! (> a 99999999) :named gt))
(assert (! (< a 10) :named lt))
(check-sat)
(get-unsat-core)

Output:
unsat
(gt lt)

Figure 6.12: Example of an unsatisfiable SMT-LIB model and of the unsat-core compu-
tation.

Unsatisfiable Core

Z3 provides native support for computing the unsat core of an unsatisfiable formula.
To enable support for this, the :produce-unsat-cores option has to be set using
(set-option :produce-unsat-cores true). One important aspect of the unsat-core
computation in Z3, is that Z3 only tracks named assertions when computing the unsat
core for a problem and minimizes these. Figure 6.12 shows a simple example of an
unsatisfiable model based on Figure 6.11. Two of the three assertions lead to a conflict,
since the assertions a < 10 and a > 99999999 cannot be true at the same time.
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(declare-datatypes () (
(Slot a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 c1 c2 ... g4 g5)
(Semester sem1 sem2 sem3 sem4 sem5 sem6)))

Figure 6.13: SMT-LIB declarations of data types used to represent time slots and
semesters.

(declare-datatypes (SID Slot Rhythm) ((SESSION (session (id SID)
(slot Slot) (rhythm Rhythm)))))

(define-sort Session () (SESSION SID Slot Rhythm))
(define-fun s1 () (Session) (session sid1 a2 r0))
...

Figure 6.14: SMT-LIB data type and sort declarations used to represent sessions.

Implementation

To evaluate Z3 we have created a generic template, that combined with our benchmark
data generates an SMT-LIB model for the data set. Our solver implementation does
not use a specific logic, but relies on the Z3 default mode, using uninterpreted functions,
algebraic data types as features of the different theories provided by Z3.

We represent the different sets of values used in the model as SMT-LIB data types.
Figure 6.13 shows examples of the definition of the data types used to represent the
different slots and semesters.

Sessions are represented as constants of a sort Session that represents a structure
containing all relevant attributes of a session, as shown in Figure 6.14.

In our model we represent the different choices needed to characterize a valid timetable
as boolean functions. These functions map the values in the corresponding domain, e.g.
units, to true if the value is part of a feasible timetable and to false otherwise.

In some cases the problem requires the choice of a set of values with a certain cardinality
from a given set, e.g. to choose n out of m elective modules. Z3 does not have native
support for sets. As an alternative we represent this choice as a boolean function, see
Figure 6.15 for an example. Instead of using the built-in boolean sort we use the integers
0 and 1. To express the cardinality constraints for a given instance of the function
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(declare-fun unit-choice ((UID)) Int)
(assert (forall ((u UID)) (or (= (unit-choice u) 0)

(= (unit-choice u) 1))))

; choice of a module implies the choice of mandatory units
(assert (! (implies (= (module-choice mod1) 1)

(= (unit-choice uid35) 1)) :named mod1_uid35-choice))

; expressing the choice of two elective units out of three for
module mod1

(assert (implies (= (module-choice mod1) 1)
(= 2 (+ (unit-choice uid26)

(unit-choice uid28)
(unit-choice uid27)))))

Figure 6.15: SMT-LIB function and assertions used to represent and constrain the unit
choice.

the sum of the values in the range of the function must be equal to the requested set
cardinality. In other words, if we only want to select three elements of a given domain,
we assert that the sum of all function values for that domain is equal to three, hence
only three elements can be mapped to 1 in any valid model.

The validation predicate is defined as an assertion, shown in Figure 6.16, that compares
pairs of sessions in the data. Any two distinct sessions, that have been chosen, denoted
by (= (session-choice x) true) in the current instance and assigned to the same
semester have to satisfy the predicate defined in the function compatible, i.e. be free of
binary conflicts.

One disadvantage of the SMT-LIB encoding is, that it does not allow to clearly separate
data from validation rules. The lack of high-level and higher-order data structures makes
the encoding complex, although it is for the most part rather straight forward. Certain
constructs have to be made explicit, in order to achieve what could otherwise be expressed
by traversing nested data structures and deriving constraints (see Figure 6.15).

This basically requires unrolling data structures in the generated model, that could
otherwise be traversed as part of the validation. This leads to a model where more things

138



6.4 Evaluation

(define-fun same-rhythm ((a Rhythm) (b Rhythm)) (Bool)
(or (= a b) (= a r0) (= b r0)))

(define-fun compatible ((a (Session)) (b (Session))) (Bool)
(=> (same-rhythm (rhythm a) (rhythm b))

(not (= (slot a) (slot b)))))

(assert (! (forall ((x (Session)) (y (Session)))
(=>

(and
(distinct x y)
(session-choice x)
(session-choice y)
(= (semester-choice (session-unit x)) (semester-choice

(session-unit y))))
(compatible x y))) :named session-conflict))

Figure 6.16: SMT-LIB assertion and predicates used to check pairs of sessions for conflicts.

are made explicit, hopefully saving computations for the solver, but at the same time
making the generated model larger and more difficult to follow, debug and change.

Unrolling certain relations leads to an encoding that has explicit dependency rules for
the data. E.g. stating that if a specific unit is chosen, only the n specific groups linked
to it are allowed to be chosen for that unit, and all others are not (see Figure 6.17).

Enumeration Our validation predicate contains quantifiers, and although Z3 is not a
decision procedure for first order logic, Z3 is able to validate many formulas containing
quantifiers.3 Hence we rely on the Model Based Quantifier Instantiation mode (mbqi) [54]
to find models for our formula. This approach, described as a “counter-example based
refinement loop”3 works by creating models and checking them against the provided
formulas until a satisfying model has been found or the search space is exhausted.

Using the mbqi evaluation mode the session-conflict predicate is instantiated with pairs
of previously defined session values that are then checked for compatibility.

3 http://rise4fun.com/z3/tutorialcontent/guide - [Online; accessed 24-January-2017]
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(assert (ite (= (unit-choice uid1) 1)
(xor (group-choice gid1) (group-choice gid2)

(group-choice gid3) (group-choice gid4)
(group-choice gid5) (group-choice gid4))

(not (or
(group-choice gid1) (group-choice gid2)
(group-choice gid3) (group-choice gid4)
(group-choice gid5) (group-choice gid6)))))

Figure 6.17: SMT-LIB of an assertion constraining the group choice for a unit to one of
its groups in case it is selected.

Table 6.4: Summary of results for Z3.†

Arts & Humanities Business Administration & Economics

R
es

ul
ts # Feasible 50 6

# Infeasible 17 0
# Timeouts 0 0

RT
‡ Average 17.126 97.904

Median 20.035 95.995
‡ Runtime in seconds.
† We have taken timeouts into account when computing the average and median for each tool.

Each timeout represents a runtime of 30 minutes.

SMT-LIB provides very limited support to control the enumeration, by attaching patterns
to quantifiers ensuring, that the quantifier is instantiated when there are terms in the
search context that match the pattern.3 In our experiments these annotations did not
improve the runtime of our benchmarks.

Results

For our evaluation we have used version 4.5.0 of Z3. Table 6.5 presents selected results
collected from running Z3 on both data sets, all collected results can be found in
Appendix D.3. A graph presenting the results for the faculty of BAE can be found in
Figure 6.18. The results for the AH data set are presented in two diagrams, Figure 6.19
shows the results for the feasible courses in the data set and Figure 6.20 for the infeasible
ones.
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As can be seen, Z3 is significantly faster in detecting infeasible instances with a runtime
of about one second in all these cases, independent of the CI. On the other hand, it
does not perform very well on feasible instances. The longest runtime for a feasible
instances on the AH data set is on average about 35 seconds for the jap_ang course
which is associated to the third largest CI value of 38698352640. For the feasible courses
in the BAE data set the averages range from 83 to 114 seconds with an average over all
benchmarks of 98 seconds. From the feasible courses in the AH data, none takes less
than 12 seconds to validate, with ges_ger being the course with the shortest average
runtime of 12.15 seconds and a CI value of 16. None of the feasible courses among those
with 25 largest CI values (see Table 6.5) takes less than 19 seconds to validate.

For infeasible courses the validation is significantly faster, e.g. the validation of the course
jap_jud takes 1.14 seconds, which is also the slowest validation time for any infeasible
course in the AH data set.

In Table 6.4 we have summarized the results for this implementation. The table shows
that Z3 is able to find a solution for all instances without any timeouts and summarizes
the average and median runtimes of the Z3 implementation on both data sets.

In general the median of 20 seconds with a top runtime of 35 seconds on the AH data
set as well as a median of 96 seconds and a top runtime of almost 114 seconds on the
BAE data set shows that Z3 does not perform very well on this search problem. On the
other hand, it is to be noted that the behaviour shown by Z3 is very consistent across
the different instances for feasible and in particular infeasible courses.

One possible reason for the performance could be that we tried to stay as high-level
as possible in our formalization using SMT-LIB, in order to keep the model readable.
A lower level encoding, maybe using the bitvector theory as done by Demirović and
Musliu [41] for high-school timetables with the goal of optimizing them, might be an
approach to achieve better results for the simpler validation task. This approach would
require a more advanced translation process from the problem instance to an SMT-LIB
model. Another issue with SMT-LIB, also discussed by Demirović and Musliu [41], is
finding an efficient method to express cardinality based constraints which they solved
using bitvectors and defining a method to ensure at-least and at-most n bits are set. As
described before, we solved this using the sum of the values in the range of a function
that maps to 0 or 1.
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Table 6.5: Z3 results for the Business Administration & Economics data set and 25 largest
complexity index values in the Arts & Humanities data set.

Course Feasible Runtime in s. SD CI

Business Administration & Economics

wichem_master 3 82.735 ±0.616 8352
bwl_master 3 86.898 ±0.655 180153
vwl_master 3 87.151 ±3.321 217203
wichem_bachelor 3 106.389 ±4.293 32265043
vwl_bachelor 3 113.974 ±1.015 475079582
bwl_bachelor 3 110.275 ±0.468 2067530678

Arts & Humanities

jap_jud 7 1.141 ±0.164 497664
jud_ang 3 22.953 ±0.290 1244160
ger_jap 3 25.471 ±0.270 1990656
jap_ger 3 26.449 ±0.837 1990656
jap_lin 7 0.972 ±0.063 1990656
jap_kom 7 0.984 ±0.101 4478976
jap_pol 3 29.284 ±0.111 4478976
jap_soz 3 27.646 ±0.107 4478976
ger_ang 3 19.741 ±0.356 4976640
jap_jid 7 0.952 ±0.004 7962624
ang_ges 3 22.275 ±0.722 100776960
ang_inf 3 28.585 ±0.726 201553920
jap_rom 7 0.982 ±0.115 382205952
rom_jap 7 1.012 ±0.106 382205952
ang_jud 3 25.903 ±0.340 403107840
rom_ang 3 30.541 ±0.121 955514880
ang_ger 3 21.313 ±0.861 1612431360
ang_lin 7 0.947 ±0.007 1612431360
ang_kom 3 26.025 ±0.279 3627970560
ang_pol 7 0.974 ±0.071 3627970560
ang_soz 3 27.888 ±0.124 3627970560
ang_jid 3 27.597 ±0.215 6449725440
jap_ang 3 35.044 ±1.176 38698352640
ang_rom 3 29.614 ±0.074 309586821120
ang_jap 3 32.141 ±0.765 12538266255360
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Figure 6.18: Z3 results for courses in the faculty of Business Administration & Economics
data set ordered by increasing complexity index.

An potential approach to improve the performance of our solver would be to replace the
functions mapping an entity to a boolean with a variant that uses a bitvector to track
the selection state. However, initial experiments using bitvectors instead of a function
mapping to 0 and 1 did not show an improvement for infeasible courses and even showed
worse performance on feasible courses. In our experiment we used a bitvector, where
each bit represents a specific entity, to express the selection state and the total number
of set bits to express the cardinality constraints. E.g. for groups selection: if the 5th bit
in the group-choice bitvector is set, our interpretation is that the group with the ID 5 is
part of the current instance.

Another possible explanation is the use of universal quantification and of the mbqi

evaluation mode that can defeat certain optimizations provided by Z3.

With regard to the implementation, the Z3 encoding is rather straight forward, but the
lack of higher order data structures makes the encoding cumbersome, having to unroll
nested data sets and defining all relationships explicitly. In general encoding problems in
SMT-LIB leads to decomposing the problem into the low-level concepts available in Z3.
In this regard Z3 might be a viable target for a translation or an automatic mapping
from a higher level formalism, but makes the manual encoding of this kind of problems
difficult.
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Figure 6.19: Z3 results for feasible courses in the Arts & Humanities data set ordered by increasing complexity index .
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Figure 6.20: Z3 results for infeasible courses in the Arts & Humanities data set ordered by increasing complexity
index.
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6.4.3 Alloy

The next formalism used to explore the timetable validation problem is Alloy [71], which
we already briefly discussed in Chapter 3.

Alloy is a modelling language geared towards software validation and verification. The
language is based on relational logic, combining relations and first order logic. Alloy
models are created by defining signatures, that represent sets of values and relations
linking them. Constraints are defined as facts and assertions about the signatures.
Figure 6.21 shows an artificial example based on Figure 6.3. This example is composed
of a singleton signature A that contains a value field of type Int. Associated to the
signature is a fact that constraints valid instances to those where value is greater than
99.

one sig A {
value : Int

} {
value > 99

}

Figure 6.21: Example of an Alloy signature with one field and an associated fact con-
straining valid instances.

The Alloy language was designed from the outset to be translatable to SAT problems.
This leads to certain restrictions in expressivity, e.g., higher-order relations and sets are
not allowed as their SAT encoding would become too large to be tractable. Additionally,
the Alloy Analyzer works based on a bounded universe of atoms. The same applies when
handling integers, where it requires an upper bound for the size (in bits) to be used to
represent numbers in the SAT translation.

The language is tightly coupled with the Alloy Analyzer, the tool used to develop and
validate Alloy models. The Alloy Analyzer provides an IDE for Alloy, tools to evaluate
the models and a graphical representation to inspect model instances. The Analyzer
takes advantage of SAT-Solvers, but in difference to Z3, is itself not an SMT Solver.

Problems expressed in the Alloy language are translated to SAT instances which are
evaluated by a standard SAT-solver. The mapping from Alloy to SAT and the search for
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satisfying instances is controlled by Kodkod [125]. Kodkod is a library that provides a
constraint solver for first order logic and relations that is used by Alloy and several other
tools.4

The Alloy Analyzer works based on a bounded universe with a limited number of atoms
in order to conduct exhaustive search of the possible states [99]. This means, if Alloy
Analyzer does not find a model for a set of constraints, it does not prove the general
unsatisfiability of the constraints but might be due to the bounded universe.

Since Alloy is designed as a model finding tool there is no explicit support in the tool,
for execution traces and state transitions as it is in the B Method, nevertheless. It is
possible to express state transitions in Alloy using an ordering on the set of instances for
a given model. Additionally, as Alloy and B are based on first-order relational logic, they
share many concepts and modelling approaches.

As noted in Chapter 3, ProB has a backend [108] which translates B constraints into
SAT using the same Kodkod library that Alloy employs.

Unsatisfiable Core

Like Z3, the Alloy Analyzer provides built-in support for computing the unsatisfiable
core of formulas where no model could be found [124]. The Analyzer considers the full
specification, and not only marked assertions, and highlights formulas that are detected
as part of the unsatisfiable core as shown in Figure 6.22, distinguishing constraints that
are guaranteed to be part of the unsat core and constraints that are potentially, but not
necessarily part of the unsat core. In Figure 6.22 we have extended the example from
Figure 6.21 with two facts. The additional fact value < 10 makes the facts unsatisfiable
and is highlighted as part of the unsatisfiable core detected by the Analyzer.

Implementation

We represent the timetable data as an Alloy module. Each data type is represented by
an abstract signature and each specific instance is represented by a singleton instance of
a signature that extends the corresponding abstract signature. For instance, the different

4http://emina.github.io/kodkod/ - [Online; accessed 28-March-2017]
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Figure 6.22: Unsatisfiable core representation in the Alloy Analyzer.

enum Slot { a1,a2,a3,a4,a5, b1,b2,b3,b4,b5, c1,c2, . . .}

enum Rhythm {weekly, biweekly_even, biweekly_odd}

Figure 6.23: Alloy representation of time slots and rhythms using enum signatures.

time slots are represented using Alloy’s enum construct, shown in Figure 6.23, which
creates a singleton set for each entry that extends the abstract signature Slot.

Sessions are represented as abstract signatures that contain a rhythm and a slot attribute.
Each session in the data set is a singleton signature that extends this abstract signature,
setting the corresponding attributes in a fact associated to each signature, see Figure 6.24
for an example.

Groups are represented similarly to sessions. Modules contain a set of the associated
units, the number of elective units to be chosen in that module and two relations. One
relation describing the type of each unit (mandatory or elective) and one to represent
the semesters associated to each unit in that module. Courses, analogously, contain a set
of modules, a relation describing the types of modules, if they are mandatory or elective
in the course and finally the number of elective modules to be selected for the course.

The validation rules are represented using Alloy facts and evaluated using the check

command. Course selection is done using the checkFeasibility predicate for a given
course name, as shown in Figure 6.25. This predicate constrains valid instances of
Curriculum to those where the course attribute is the given course c.

A solution for a given course is represented as a signature that contains fields for all
properties of a solution, the relevant choices, e.g. of modules, are represented as functions.
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abstract sig Session {
rhythm : one Rhythm,
slot : one Slot

}
one sig session1 extends Session {} {

rhythm=weekly
slot=a2

}
one sig session2 extends Session {} {

rhythm=weekly
slot=a3

}

Figure 6.24: Alloy representation of different sessions.

pred checkFeasibility(c : Course) {
Curriculum.course = c

}

Figure 6.25: Course selection predicate used to set the course to be validated.

The Curriculum signature and one of the associated facts are show in Figure 6.26. The
facts represent the constraints a valid timetable must satisfy, in particular the absence of
binary conflicts. The conflictFreedom fact ensures, that for any pair of units, assigned
to the same semester, there is no binary conflict among the selected groups.

If the Analyzer finds an instance of Curriculum that satisfies all constraints it represents
a viable choice of classes to finish the degree as prescribed by the curriculum rules.

Enumeration Similar to Z3, the Alloy language is intended to declaratively define a
problem and state the constraints that a solution has to satisfy, leaving the search for
a variable assignment to the underlying SAT solver and then mapping the result to
Alloy objects in case there is one. Due to the construction Alloy’s use of external solvers
the language provides no means to control how the underlying solver will search for a
model.
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one sig Curriculum {
course : Course,
modules : set Module,
mandatoryModules : set Module,
electiveModules : set Module,
units : set Unit,
mandatoryUnits : modules → set units,
electiveUnitChoice : modules → set units,
groupChoice : units → one Group,
semesterChoice : units → one Semester

} {
. . .

}
fact conflictFreedom {

some c : Curriculum •
all a, b : c.units • (a 6= b and c.semesterChoice[a] =

c.semesterChoice[b])
implies not unitsInConflict[a, b, c.groupChoice]

}
pred clash(s1, s2 : Session) {

s1.slot = s2.slot and rhythmsInterfere[s1, s2]
}
pred rhythmsInterfere(s1, s2 : Session) {

s1.rhythm = s2.rhythm or s1.rhythm = weekly or s2.rhythm = weekly
}
pred groupsInConflict(g1, g2 : Group) {

all s1 : g1.sessions, s2 : g2.sessions • clash[s1, s2]
}
pred unitsInConflict(u1, u2 : Unit, gc : Unit → lone Group) {

let g1 = gc[u1], g2 = gc[u2] • groupsInConflict[g1, g2]
}

Figure 6.26: Curriculum signature and associated facts used to represent solutions.
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Results

Unfortunately, the Alloy Analyzer is unable to cope with our evaluation data sets.5

Although it remains unclear if it is a problem with the chosen representation, we assume
that the size of the universe defined in the problem. For this large universe the translation
as done by Kodkod yields a SAT representation that is too large. For small artificial
examples used for testing and creating all implementations of the solver, the Analyzer is
able to find models and conflicts. In our evaluation we used version 4.2_2015-02-22 of
the Alloy Analyzer.

Related & Future Work

Alloy and the Alloy Analyzer have been used for data validation before, e.g. to validate
security constraints for Java bytecode [110]. This approach works by translating Java
bytecode on a method basis to Alloy, which combined with a template yields a valid
model on which the JVM security constraints can be verified. Huynh performed a direct
comparison of B/ProB and Alloy on the verification of a system for access control
policies to medical data created at the Sherbrooke Hospital [68]. An approach relying
solely on the constraint solving and model finding features of ProB did not yield any
results, because ProB was not able to solve the constraints efficiently. An alternative
approach combining constraint solving with operations and state variables to guide the
process produced better results. In the evaluation, based on this second approach, ProB
outperforms, by about two orders of magnitude, the Alloy Analyzer on the verification of
randomly generated test instances of the models. As mentioned in Chapter 4, Yeung [130]
explored the use of Kodkod to create a tool that generates a timetable with the classes
needed to complete a given course.

Directly representing the problem as a Kodkod instance, without using Alloy as the
input language permitting the use of features available in Kodkod but not exposed to
Alloy, e.g. partial instances [101] seem to be a worthwhile alternative approach to this
problem. Alternatively, creating instances with a smaller universe, by only adding to the
specification the data relevant for one check and generating one specification for each
course to be checked could yield better results.

5We cancelled a run trying to find a solution for the ger_inf course, which has a CI of 2, after 3 hours
without result.
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A direct encoding as a SAT problem should be faster than either Z3 or Alloy but exhibit
similar problems, for instance coping with choices and subset selection, would be an
interesting way of finding a lower bound for the performance of SAT based tools.

6.4.4 Python

The last language discussed here is Python [127]. Python is an object oriented dynamic
language. Originally introduced in 1991 it is a popular language in areas ranging from
web application development to scientific computing. The language is at the same time
simple, powerful and extensible. We have chosen Python as an instance of an imperative,
eagerly evaluated object oriented language.

One language feature we use in our solver are generators. Generators are functions,
similar to coroutines, that can interrupt their execution at defined points and can be
resumed later. Every time a generator yields control back to the invoking function it can
pass a value to the caller. Generators are also similar and compatible to iterators in the
iterator pattern [53], only that instead of using the state of the object to store the state
of the iteration, generators use the frame of their function and its local variable.

Unsatisfiable Core

Python as a general purpose programming language has no native support for computing
an unsat core of a predicate. Nevertheless it is possible to implement this as a recursive
search, as done for our B model, where we collect all units for an arbitrary module
combination (since all must contain a conflict if we assume the course is infeasible) and
recursively try to minimize one of the possible sets of units for those modules. This has
the advantage that we have control over the process of minimization and can manually
decide which data elements we want to minimize and which we can ignore, but at the
same time it is necessary to add that to the implementation upfront. Figure 6.27 shows,
based on Figure 6.4, a Python implementation of an unsat-core search that returns one
minimal unsatisfiable core from the passed list with regard to a predicate function.
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def uc(predicate, lst, acc = None):
if acc is None:

acc = []
if len(lst) == 0:

return acc
#
item = lst[0]
tail = lst[1:]
if predicate(tail + acc):

acc.append(item)
return uc(predicate, tail, acc)

def pred(lst):
return sum(lst) < 10

>>> uc(pred, [2,7,3,8,1,6])
[8,6]
...

Figure 6.27: Python implementation of a search for a minimal unsatisfiable core of a list
of values with regard to a given predicate.

Implementation

In Python, we make use of objects and collections to represent the different types of
entities in our data model. Each entity type is represented by a corresponding class, as
shown in Figure 6.28 for units, e.g. a class for courses, modules, etc. Properties are
represented as the attributes of the objects. Finally, each entity is an instance of the
corresponding class, e.g. a course is an instance of the class Course.

The validation process in Python, as the others, follows pretty closely the schema described
at the beginning of this chapter. In general the validation in Python is expressed as an
exhaustive search through the tree of choices and combinations. For each configuration
we collect the pairs of units. Each pair that is assigned, under the current configuration,
to the same semester is checked for conflicts among the sessions of the selected groups,
see check_cs in Figure 6.29. The check, whether a pair of sessions is compatible, is
implemented by overloading the & operator in Session.__and__.
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class Unit(Model):
def __init__(self, idx, title, department, groups):

self.idx = idx
self.title = title
self.department = department
self.groups = groups

...

unit1 = Unit(1, "Unit 1", "Computer Science", [...])

Figure 6.28: Python class used to represent units.

Enumeration One aspect that is particularly challenging to represent in an imperative
language is the nested enumeration of the variables used in such a problem. Enumeration
variables are declared and used at different steps in the solver. Each variable needs
to be enumerated to continue the search and instantiate other variables. The simplest
approach to enumeration is to conduct a recursive search through the space of variables
and values. The enumeration procedure picks a not yet enumerated variable, assigns the
first possible value to it, and recursively calls itself. If the call returns without having
found a solution, the enumeration would pick the next possible value for its selected
variable and recursively call itself again, until either a solution is found or the possible
values are exhausted. This effectively uses the recursion to create every possible path in
the tree of variable valuations until it finds a path and a combination of values for the
variables that satisfies the constraints. This approach has the disadvantage, that many
runtime environments, such as the Java virtual machine as well as Python, limit the
depth of the stack and thus the number of recursive calls allowed in the language to avoid
an arbitrary growth of the execution stack. For this reason, we have chosen to implement
the enumeration using generators. One aspect that is covered automatically by using
recursion, but has to be handled manually when using iterators, is that of restarting the
enumeration of different variables to ensure that all combinations are covered.

To address this we have created an enumeration module that is instantiated with a
mapping of variables and their ranges. Each possible combination of values is represented
as a map from variable name to its current value. The enumeration for each variable is
represented as a generator that yields each of the possible values.
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class Session(Model):
...
def __and__(self, other):

if (self.rhythm == 0 or other.rhythm == 0
or self.rhythm == other.rhythm):
return self.slot == other.slot

return False
...

def check_cs(cs, group_choice, semester_choice):
for u1, u2 in cs:

if semester_choice[u1] != semester_choice[u2]:
continue

g1 = u1.groups[group_choice[u1]].sessions
g2 = u2.groups[group_choice[u2]].sessions
pairs = ((a,b) for a in g1 for b in g2)
for (s1, s2) in pairs:

if s1 & s2:
return False

return True

Figure 6.29: Python implementation of the conflict check for two units.

Generators are organized as a linked list, ordered by the size of each variable’s domain.
Each request for a new combination “pulls” the current state out of the chain of iterators
and returns it as a combination. When we request one result all iterators are advanced
such that we can return an assignment for each variable. The next value is produced by
advancing the innermost iterator until it is exhausted. Once it is exhausted the preceding
iterator is advanced and the innermost iterator is replaced by an enumeration of its
cached results. This model is built on the assumption that the iterators do not depend
on external state. Basically, this model moves the recursion and backtracking model to
the heap and manages the recursion by exhausting and restarting iterators along the
chain of iterators.
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Table 6.6: Summary of results for Python based implementations.†

Tool Results Runtime in ms.
# Feasible # Infeasible # Timeouts Average Median

Arts & Humanities

Python 43 13 11 313811.63 1.71
Python 3 42 13 12 361611.18 1.94
PyPy 43 13 11 290756.97 2.00

Business Administration & Economics

Python 5 0 1 317525.38 1244.17
Python 3 3 0 3 901022.75 917463.25
PyPy 5 0 1 300686.84 19.46
† We have taken timeouts into account when computing the average and median for each

tool. Each timeout represents a runtime of 30 minutes.

Results

The evaluation for Python was performed using three different implementations of the
language: the official Python interpreter (CPython) in versions 2.7.12 and 3.5.2 and
PyPy, using version 5.6.0 corresponding to language version 2.7.12.

The Python 2.x family is still maintained and widely used, but new features are only
added to the 3.x versions. There are some syntactic differences between both versions of
the Python language. Our model is written in a manner that is compatible with both
versions, allowing us to compare them without having to modify our implementation.

The main difference among the implementations is the execution model. CPython (in
both versions) is an interpreter that converts Python code to bytecode and interprets
it. PyPy, on the other hand, contains a bytecode interpreter for the language, but
additionally uses just-in-time (JIT) compilation to optimize frequently executed loops
in a program [23]. The solver implementation in Python contains several nested loops,
in addition to the loops used to provide the enumeration of variables, which is a reason
to expect a speed-up from using a just-in-time compiler for frequently executed code
paths.
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As with the Prolog based brute-force approach, for the Python based benchmarks
we excluded instances from the evaluation that had not returned a result after 30
minutes (exclusion based on the Python 2.7.12 reference implementation). On Python
3.5.2 we had to additionally exclude the AH course rom_ang as well as the BAE courses
wichem_bachelor and vwl_bachelor that did not completed the check within the time
frame.

A summary of the results for all three Python runtimes can be found in Table 6.6. The
summary highlights the number of checks that completed or did not finish before the
timeout limit. Table 6.7 shows a selection of the results for the three compared python
runtimes, all collected results are presented in Appendix D.4. Visualizations for the
results for the AH data set are presented in Figure 6.30 and Figure 6.31 organized by
feasible and infeasible courses and in Figure 6.32 for the BAE data set.

The results show that all three versions behave mostly similar on both data sets. They
also show that, as expected for a brute-force solution, detecting infeasible courses, where
the solver needs to explore all possible instances is generally slower than checking feasible
instances where a solution might be found before having explored all possible instances.

PyPy performs worse for smaller instances, which is to be expected, since PyPy’s just-in-
time compiler has a known overhead on start-up until it has detected hot loops, traced
their execution and generated code for frequent paths. PyPy also performs worse for
some larger feasible instances, where either a solution is found quickly and the overhead is
to big or the search takes too many different paths, forcing the JIT to trace and compile
many different paths. On instances with larger CI values PyPy performs, with a few
exceptions, better than both CPython versions.

Python 3 shows the worst performance, with one additional timeout on the AH data set
and two additional ones on the BAE data. Additionally, Python 3 is either on par with
the Python 2 results or, sometimes even significantly, slower.
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Table 6.7: Python results for the Business Administration & Economics data set and 25 largest complexity index
values in the Arts & Humanities data set.

Course Feasible
Python 2 Python 3 PyPy

CI
Runtime‡ SD Runtime‡ SD Runtime‡ SD

Business Administration & Economics

wichem_master 3 0.65 ±0.09 4.60 ±6.71 27.04 ±1.54 8352

bwl_master 3 0.83 ±0.1 2523.54 ±6856.63 10.61 ±0.88 180153

vwl_master 3 0.89 ±0.017 3608.24 ±11006.57 1.30 ±0.11 217203

wichem_bachelor 3 102599.04 ±1435.42 timeout† - 2.66 ±0.22 32265043

vwl_bachelor 3 2550.88 ±65.42 timeout† - 4079.46 ±176.96 475079582

bwl_bachelor timeout† - - - - - - 2067530678

Arts & Humanities

jap_jud 7 39207.51 ±682.05 41327.29 ±7440.51 4881.58 ±245.77 497664

jud_ang 3 1.25 ±0.17 1.32 ±0.05 3343.34 ±64.17 1244160

ger_jap 3 7.81 ±0.73 4.60 ±1.90 298.92 ±24.80 1990656

jap_ger 3 7.94 ±0.65 4.59 ±1.96 348.43 ±21.82 1990656

jap_lin 7 73694.18 ±476.73 79774.47 ±10584.42 10291.55 ±180.66 1990656

jap_kom 7 337939.57 ±5700.33 351540.90 ±35868.44 38805.63 ±578.21 4478976

jap_pol 3 126165.56 ±1667.92 203076.17 ±73462.78 5769.71 ±217.50 4478976

jap_soz 3 30.54 ±1.59 20.11 ±11.36 2.19 ±0.30 4478976

ger_ang 3 1.05 ±0.01 1.58 ±0.27 0.54 ±0.00 4976640

jap_jid 7 237109.51 ±1937.08 278604.28 ±44212.45 34371.42 ±481.77 7962624

‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
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Table 6.7: Python results for Business Administration & Economics data set and 25 largest complexity index values
in the Arts & Humanities data set.

Course Feasible
Python 2 Python 3 PyPy

CI
Runtime‡ SD Runtime‡ SD Runtime‡ SD

ang_ges 3 270981.06 ±4494.46 1498607.53 ±1784865.99 389613.35 ±3139.16 100776960

ang_inf timeout† - - - - - - 201553920

jap_rom timeout† - - - - - - 382205952

rom_jap timeout† - - - - - - 382205952

ang_jud 3 2929.73 ±60.31 9499.34 ±12106.49 998072.90 ±8646.66 403107840

rom_ang 3 72734.07 ±480.07 timeout† - 229.60 ±1.83 955514880

ang_ger 3 18269.50 ±150.57 77729.28 ±100349.57 727.39 ±48.53 1612431360

ang_lin timeout† - - - - - - 1612431360

ang_kom timeout† - - - - - - 3627970560

ang_pol timeout† - - - - - - 3627970560

ang_soz timeout† - - - - - - 3627970560

ang_jid timeout† - - - - - - 6449725440

jap_ang timeout† - - - - - - 38698352640

ang_rom timeout† - - - - - - 309586821120

ang_jap timeout† - - - - - - 12538266255360

‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
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Figure 6.30: Python results for feasible courses in the Arts & Humanities data set ordered by increasing complexity
index.
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Figure 6.31: Python results for infeasible courses in the Arts & Humanities data set ordered by increasing complexity
index.
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Figure 6.32: Python results for Business Administration & Economics data set ordered by increasing complexity index .

160



6.4 Evaluation

Table 6.8: Summary of results as computed by ProB.†

Arts & Humanities Business Administration & Economics

R
es

ul
ts # Feasible 50 6

# Infeasible 17 0
# Timeouts 0 0

RT
‡ Average 52.37 211.43

Median 50.00 185.00
‡ Runtime in milliseconds.
† We have taken timeouts into account when computing the average and median for each tool.

Each timeout represents a runtime of 30 minutes.

6.4.5 ProB/B

We have discussed our B and ProB based solution to this problem in Chapter 4. In
order to compare the results for the different alternative implementations we present the
results for running our benchmarks on the second version of our models (See Table 4.2
for details).

Version 3 For comparison we have included in Appendix D.5 a table showing the current
results for the AH data set as computed using the third version of our tool.

Table 6.8 presents as summary of the results computed using ProB. All results for the
BAE data set and results for the 25 larges CI values in the AH data set are presented in
Table 6.9. All results collected with ProB are shown in Appendix D.5.

The results show that ProB is able to find a solution for every course in the AH data
set in less than 160 milliseconds with a median runtime of 50 milliseconds. For the BAE
data set the longest runtime is of 387.14 milliseconds with a median of 185 milliseconds.
Visualizations for the AH data set be found in Figure 6.34 and Figure 6.35 grouped by
feasible and infeasible courses and in Figure 6.33 for the BAE data set.

For ProB ang_jap, the course with the largest CI value, leads to the longest computation
time of 157 milliseconds to decide the feasibility of the course. The same applies to
the BAE data set, where bwl_bachelor, the instance with the largest CI value, has
an average runtime of 387.14 milliseconds. There is a certain overhead associated with
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Table 6.9: ProB results for the Business Administration & Economics data set and 25
largest complexity index values in the Arts & Humanities data set.

Course Feasible Runtime in ms. SD CI

Business Administration & Economics

wichem_master 3 97.14 ±7.56 8352
bwl_master 3 124.29 ±7.87 180153
vwl_master 3 101.43 ±3.78 217203
wichem_bachelor 3 238.57 ±6.90 32265043
vwl_bachelor 3 320.00 ±5.77 475079582
bwl_bachelor 3 387.14 ±28.12 2067530678

Arts & Humanities

jap_jud 7 105 ±5.27 497664
jud_ang 3 51 ±5.68 1244160
ger_jap 3 64 ±6.99 1990656
jap_ger 3 67 ±8.23 1990656
jap_lin 7 106 ±14.30 1990656
jap_kom 7 46 ±6.99 4478976
jap_pol 3 73 ±4.83 4478976
jap_soz 3 68 ±6.32 4478976
ger_ang 3 46 ±6.99 4976640
jap_jid 7 67 ±8.23 7962624
ang_ges 3 64 ±5.16 100776960
ang_inf 3 99 ±5.68 201553920
jap_rom 7 103 ±6.75 382205952
rom_jap 7 106 ±6.99 382205952
ang_jud 3 62 ±6.32 403107840
rom_ang 3 119 ±9.94 955514880
ang_ger 3 71 ±5.68 1612431360
ang_lin 7 61 ±3.16 1612431360
ang_kom 3 78 ±7.89 3627970560
ang_pol 7 59 ±5.68 3627970560
ang_soz 3 79 ±7.38 3627970560
ang_jid 3 102 ±9.189366 6449725440
jap_ang 3 119 ±7.378648 38698352640
ang_rom 3 148 ±7.888106 309586821120
ang_jap 3 157 ±13.374935 12538266255360
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Figure 6.33: ProB results for courses in the Business Administration & Economics data
set ordered by increasing complexity index.

the execution in ProB, even very simple cases take at least 20 milliseconds on average.
Part of this overhead is, as mentioned in Chapter 3, associated to the JIT compiler
added to SICStus Prolog in release 4.3. Nonetheless, the largest instance on the AH data
set takes only 7.85 times longer, on average, than the smallest, while the CI value is
62691331276801 times larger. On the BAE data set the biggest CI value is 247549 times
larger and the runtime is only four times longer.
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Figure 6.34: ProB results for feasible courses in the Arts & Humanities data set ordered by increasing complexity
index.
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Figure 6.35: ProB results for infeasible courses in the Arts & Humanities data set ordered by increasing complexity
index.
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Table 6.10: Filesize of models (solver and generated data) in bytes for each faculty and
language/tool.

Language/Tool Data Solver Total

Business Administration & Economics

Alloy 190668 2899 193567
B 151829 36532 188361
Prolog 149689 12494 162183
Prolog clp(FD) 149689 7251 156940
Python 264942 17598 409370
SMT-LIB 276720 276720

Arts & Humanities

Alloy 216725 2899 219624
B 143500 36532 180032
Prolog 126893 12494 139387
Prolog clp(FD) 126893 7251 134144
Python 135406 17598 462514
SMT-LIB 601865 601865

6.5 Discussion
In this section we will compare the different tools and implementation with regard to the
areas we highlighted in the discussion of each. We will compare how the enumeration
and model search in the different tools works, how these languages support the conflict
source detection, how quickly they can detect conflicts in our data sets and how well the
languages are suited for these kinds of validation problems.

6.5.1 Enumeration

One of the big differences among the different approaches is how the enumeration of
possible solutions to be tested for feasibility works. Having to nest the enumeration
with the problem description makes the encoding rather cumbersome. This is one aspect
where modelling and declarative programming languages are better suited for encoding
this kind of problem, since they clearly separate the encoding from the search strategy.
Nevertheless, for declarative approaches how a problem is represented still can have an
effect on how the search is performed.
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High-level approaches geared towards validation, model checking and proof such as B,
Alloy and Z3 hide how the tools enumerate values from the user to a higher degree than
low-level tools. Although B has loops as part of its substitution language, which we have
not used here, the mathematical language of B has no concept of explicit enumeration at
the language level, and relies on quantifications to express this.

Removing control over the enumeration from the model has the advantage of clearly
separating the modelling from the search for satisfying instances. At the same time this
can be a disadvantage if the chosen enumeration strategy does not yield the expected
results. This means that in cases where the heuristic behind the enumeration does
not work, the possibilities to try alternate approaches are limited. Nevertheless, the
tool itself has greater control over the enumeration and can choose different strategies
based on the input, that might yield better results than a poorly configured search.
Prolog/clp(FD), for instance, permits the user to choose a strategy how variables are
labelled. To illustrate this on our solver, for the AH course ang_rom the runtime of the
validation is 10 milliseconds when using the ffc enumeration strategy, which enumerates
the most constrained variable first. This runtime increases to 12 seconds when changing
the enumeration strategy to max, enumerating the variable with the largest upper bound
first.

The imperative solution requires explicitly considering how to collect and when to
enumerate values. It is also necessary to create an abstraction to represent enumeration
variables, since there is usually no concept of a free variable that can be passed around.
This can be solved either through backtracking and re-assigning a value or by adding an
indirection. An indirection can be expressed using for instance an object that encapsulates
the value and possibly additional information, e.g. the domain of the variable, or as
in our Python implementation, using a map from variable name to current value. In
Prolog, on the other hand, logical variables are part of the language that can be stored
and passed around without unifying them with a ground value, thus allowing them to be
unified at a later point in the execution.

SMT-LIB, since it does not support higher-order data types leads to an encoding that
mixes the data representation with the validation rules. This basically requires unrolling
parts of the model that could be represented using lookups into nested structures in
other formalisms.
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Table 6.11: Filesize in bytes of templates used to generate data models for each lan-
guage/tool.

Language/Tool Template

Alloy 3814
B 4699
Prolog 2286
Python 2596
SMT-LIB 5786

6.5.2 Unsatisfiable Core

Computing the source of a conflict is also an area that is very different among the tools.
Z3 and Alloy support this natively. Prolog and Python, on the other hand, as general
purpose languages, require the user to implement it for the domain, similarly to what we
have shown in the respective sections (Figure 6.4 and Figure 6.27). The B language itself
has no concept of an unsat core either. ProB has supported minimizing unsatisfiable
PROPERTIES for quite some time and it has lately been extended to provide, as part of the
language, restricted support for computing the unsatisfiable core of a predicate in form
of an external function. The function takes a set to be minimized and a lambda used to
decide if values from the set are part of the unsatisfiable core or not. The way this is
handled in ProB (a similar approach to the one described for Prolog and Python) has the
advantage, that it is possible to control the process more directly, only reducing relevant
data sets instead of all elements in a predicate. A similar result can be achieved with Z3,
since it only considers named assertions when computing an unsatisfiable core, which can
mimic the behaviour describe above, but requires the user to label all relevant assertions.
Alloy works fully automatic and detects all parts of a model that are associated to an
unsat core, allowing the user to trace the conflict through the model.

One useful aspect of computing the unsat core using an external function, is that the
return value of the function is available within the language. This means the value
returned can be stored or used as part of another computation. In contrast to this the
minimization of PROPERTIES, the unsat core in Z3 or in the Alloy Analyzer are only
available as outputs or from within the respective tools or APIs.
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Table 6.12: Summary of benchmark results.†

Tool Results Runtime in ms.
# Feasible # Infeasible # Timeouts Average Median

Arts & Humanities

Prolog 42 13 12 362,922.19 10.00
Prolog clp(FD) 50 17 0 1,603.79 0.00
Z3 50 17 0 17,126.43 20,035.00
Python 43 13 11 313,811.63 1.71
Python 3 42 13 12 361,611.18 1.94
PyPy 43 13 11 290,756.97 2.00
ProB 50 17 0 52.37 50.00

Business Administration & Economics

Prolog 3 0 3 900,228.50 900,700.00
Prolog clp(FD) 6 0 0 214.33 0.00
Z3 6 0 0 97,903.66 95,995.00
Python 5 0 1 317,525.38 1,244.17
Python 3 3 0 3 901,022.75 917,463.25
PyPy 5 0 1 300,686.84 19.46
ProB 6 0 0 211.43 185.00
† We have taken timeouts into account when computing the average and median for each tool. Each

timeout represents a runtime of 30 minutes.

6.5.3 Performance

We have created diagrams for all benchmarked tools comparing them with ProB. All
runtimes have been normalized to ProB. As in previous sections Figure 6.37 shows
the relative runtimes for feasible courses in the AH data set, Figure 6.38 shows the
infeasible ones and Figure 6.36 shows the results for the BAE data set. In cases the
computed average runtime for an implementation is 0 the bar is missing and annotated
with a ◦ symbol in the diagrams. Bars annotated with a • symbol represent timeouts.
Additionally, in Table 6.12 we present an overview of all collected results. For each tool
and data set it shows the number of feasible and infeasible courses that were validated
and the number of computations that timed out. For each tool and data set we also
present the average and median runtimes, both taking timeouts into account.
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The benchmark results show that the brute-force approaches, either in Python or Prolog
work well for small instances and for larger instances that are feasible. At a certain point
they cannot compete with other approaches to this problem when validating instances
with large CI values, in particular infeasible ones. Also the brute-force approaches and
Alloy are the only ones that time out for large CI values.

Of the model/constraint based approaches that are able to solve all instances Z3 yields
the worst results, being slower than clp(FD) and ProB for all instances considered.
Nevertheless, Z3 is very consistent in its behaviour, even when checking instances with
very large CI values. Z3 detects infeasible instances in about one second and decides if
an instance is feasible in up to 35 seconds. This is still not on par with SICStus Prolog
or ProB, but works for all instances we have used in this chapter. One of the problems
we faced with Z3, that is possibly a reason why it is considerably slower than other
approaches, is the difficulty of expressing cardinality constraints, i.e. selecting exactly n

elements from a set. We have expressed this using a function that maps the set’s elements
to 0 or 1 and placing a constraint on the sum of the function values. We require the
sum of the values in the function’s range to be n, hence the values that map to 1 build a
set of exactly n elements. As mentioned before, initial experiments using bitvectors to
represent sets and counting bits to express cardinality constraints did not improve the
runtime for infeasible instances and worsened the results for feasible instances.

Which approach works better, either the clp(FD) based ProB or Z3, strongly depends
on the kind of problem being evaluated. In this case we have translated a problem that
we had successfully validated using ProB to SMT-LIB. When evaluating our SMT-LIB
model with Z3 it was slower than ProB on all evaluated instances. Krings, in his
doctoral thesis [79, Chapter 5], created a translation from SMT-LIB to B. The translation
was created with to goal of gaining access to problems and benchmarks collected in
the SMT-LIB benchmark repository6 and to use them to evaluate ProB’s constraint
solving features. For those tests solved by all considered solvers, ProB was significantly
slower than either Z3 or CVC4 for feasible and infeasible instances. Generally, of those
tests solved by ProB, it was on average slower detecting unsatisfiable instances than
satisfiable ones, but was able to detect inconsistencies on instances that neither of the
other compared tools could solve. Bride et al. [25] compared the use of SMT and

6https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks - [Online; accessed 25-
September-2017]
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CLP based techniques for the verification of workflow nets using Z3 and SICStus Prolog
respectively. In their results the SMT based approach performs better than the CLP
based one except for one type of workflow net.

Alloy unfortunately did not work on our benchmark data but only on test data. We
suspect one of the reasons was the overhead of translating the input data to a SAT
representation. As previously discussed in this chapter, in the case study conducted by
Huynh, a purely constraint based approach to describe access control policies to medical
data in B could not successfully be evaluated using ProB. An alternative approach
combining constraint solving with the animation and model checking features of ProB
outperformed an analogous Alloy model by about two orders of magnitude.

SICStus Prolog using clp(FD), even in the restricted manner we do in this evaluation,
provides the best results in most cases. clp(FD) scales well and is able to solve all
instances, solving, with three exceptions, all instances in less than one second. In
particular the low overhead associated with directly encoding the problem in Prolog
yields results for most instances very quickly, with a median runtime of zero milliseconds
(considering SICStus’ time resolution of 10 milliseconds).

Lastly ProB, which partly relies on clp(FD) internally is able to check all instances in
this evaluation in up to 387 milliseconds for the BAE data set and 157 milliseconds for
the AH data set. ProB has a higher overhead, which is particularly noticeable for small
instances when compared to the brute-force and clp(FD) approaches. The overhead can
be attributed to B’s abstraction level and the preprocessing ProB has to do in order to
evaluate a formula. The additional cost for small instances is contrasted by the capacity
to quickly find results even for very large instances. In a few cases ProB is faster than
Prolog/clp(FD) finding a result, notoriously for the course with the largest CI (ang_jap)
where our Prolog/clp(FD) based solver takes 104 seconds and ProB only takes 157
milliseconds to decide that the course is feasible.

6.5.4 Complexity
The complexity of each implementation strongly depends on the features provided by
each tool and exposed in the corresponding language.

Due to its lack of high-level data structures, formalizing this problem using Z3, makes it
necessary to unroll certain parts of the search when generating the model. This creates
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several assertions, that state explicitly what could be represented using higher-order data
structures in other formalisms. As an example: Figure 6.17 shows how we represented
in SMT-LIB the rule that if unit uid1 is selected, only one of the groups gid1..gid6 is
allowed to be selected and none if the unit is not selected. In the model the assertion
from Figure 6.17 is repeated similarly for each unit in the data set instead of expressing
the same by traversing an analysing a data structure. In the other languages used in this
chapter representing such a configuration constraining the search is part of the model
and contained in the data structures instead of having to be made explicit.

Alloy is rather well structured, but is not always intuitive to use. The use of signatures is
very helpful in creating well-structured and easy to follow specifications. As mentioned
before, the reusable predicates and functions available in the language are very helpful
vehicles of abstraction and reuse.

For the Python encoding it is necessary to make all steps explicit, in particular the
enumeration. This leads to a close coupling with the validation of candidate instances.
The effect it has on the implementation makes the way the validation is done in Python
harder to use and follow than a declarative approach.

Lastly, both Prolog based implementations take advantage of the built-in concepts of
recursion, backtracking and unification to express the problem. Prolog’s execution model,
where it is possible represent the search and enumeration, without having to make it
explicit is a good match for this kind of validation problem. The extension of our solver
with clp(FD) was rather simple, since the concept integrates well with Prolog. Using
coroutines and constraint programming added additional complexity to the model by
creating coroutines and by moving the enumeration of most values to the labeling step.
Still this change allowed us to separate those values that are enumerated as part of the
problem setup (which would be part of the generated model in SMT-LIB) and those that
are enumerated as part of the search for a satisfying model.

Table 6.10 reports the filesize in bytes of each model. For each model we show the size
of the generated code used to represent the data and the size of the model representing
the validation rules. As mentioned before, in the case of the SMT-LIB encoding it
was not possible to separate the logic from the data, hence we report only one number
representing the combined data and logic descriptions. To put these numbers in relation,
the size of the template which contains the logic and only the patterns for the data
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has 6090 bytes. The filesizes of the different templates used to generate the models are
reported in Table 6.11. The size of the generated data models depends on the number of
entities in each data set, which affects in particular the SMT-LIB model where we have
to unroll more aspects of the data set when generating the model.

The largest generated data models correspond to Python and Z3. Python as a language
is more verbose than the declarative languages discussed in this chapter. One aspect that
accounts for most of the size of Python’s data model is code that is generated to setup
the relations between the different entities when the solver is started. This is particularly
noticeable on the BAE data model, that contains more links between courses, modules
and units than the AH data set. In the case of Z3 the size is largely due to the unrolling,
where rules and data have to be combined and added explicitly to the generated model.
One of the reasons the B solver implementation is larger than the others, is the fact
that our B model supports more features than those considered for this evaluation. The
model provides an interface to the main application using B operations and contains
operations for computing conflicts and alternative time slots. A further reason is that
being the basis of the application we have built, more work has gone into the modelling
and into making sure the tool works as expected with ProB.

A further aspect we have not considered in this evaluation, is how to embed the different
tools in an application. In Chapter 4 we explained how we have created an application
around our B model. The application exposes the features of the model as HTTP based
server application that passes request to ProB using a Java API. ProB is embedded
in the application and used to evaluate the validation requests. Python and Prolog
as general purpose programming languages, provide the necessary bindings to create
a server or GUI application that embeds the solver. To create an application around
Z3, the Alloy Analyzer or ProB these need to embedded in the application. The Alloy
Analyzer provides a Java API that can be used to embed it in an application and interact
with the model.7 A further alternative would be to directly interact with the Kodkod
library.8 Z3 provides bindings for several languages, among them Java and Python.9

ProB, as previously discussed, also provides a Java based API [16] that can be used for
embedding.

7http://alloy.mit.edu/alloy/documentation/alloy-api/ - [Online; accessed 17-April-2017]
8http://emina.github.io/kodkod/release/current/doc/ - [Online; accessed 17-April-2017]
9https://github.com/Z3Prover/z3#z3-bindings - [Online; accessed 30-March-2017]
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Figure 6.36: Relative runtimes normalized to ProB on the Business Administration & Economics data set. Courses
displayed in ascending order by complexity index.
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Figure 6.37: Relative runtimes for feasible courses on the Arts & Humanities data set normalized to ProB and
shown on a logarithmic scale.
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6.5.5 Conclusion

In this chapter we have presented a simplified version of our case study from Chapter 4.
Based on it we have discussed implementations in SICStus Prolog, using a brute-force
and a clp(FD) based approach, Python, SMT-LIB/Z3, Alloy and B/ProB. We have
evaluated each tool and language with regard to what was needed to implement our
case study and with regard to their capability and performance to solve the validation
problems on the provided data sets.

In general, the combination of B and ProB compares rather favourably to the tools
we selected for this evaluation, which is reflected in the median runtime for ProB 50
milliseconds on the AH data set and of 185 milliseconds on the BAE data set. With
regard to performance ProB provides good results, considering the high abstraction level
of the B language. These results for ProB attest, compared to clp(FD) and brute-force
approaches, a certain overhead when checking instances with small CI values. On the
other hand the results are very good when checking instances with large CI values. On
these instances ProB is faster than all compared tools besides clp(FD). Still, on a some
instances ProB is even faster than the low-level clp(FD) encoding.

Zhou et al. [132] conducted a comparative study about the use of CP, IP, and SAT solvers
from Prolog through a common interface. They concluded that none of the considered
solvers is generally better than the others and that each approach is better suited for
different kinds of problems. They summarize that constraint programming is well suited
for problems with symmetry and global constraints, integer programming works well
for problems that can be modelled by means of inequalities and SAT approaches work
well for boolean problems. Our results, and those collected by Krings lead to a similar
conclusion. Based on these results, ProB is well suited for problems on finite sets,
integers and global constraints but might not perform well on very low-level problems.

As mentioned before, the fact that the B model is larger than the other encodings is
partly due to its support for more features than the other implementations discussed
here and the fact that more work has gone into the modelling and into making sure the
tool works as expected with ProB and with the application built on top of it. These
results have confirmed that it is possible to use a high-level modelling language to model
and solve a constraint based problem and create an application on top of it that includes
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the discussed model as part of the executed program. The modelling process helped to
improve the ProB constraint solver. The case study helped us to uncover bugs and
performance problems in ProB.

This problem is very well suited to be modelled with the mathematical language of B.
The validation rules can be expressed as B predicates that are evaluated on a machine’s
current state. The initial state of the machine is setup by evaluating the PROPERTIES of
the machine, which are also used to derive information from the input data. At the same
time the full B language contains many aspects, as discussed in the previous chapter,
that do not fit well into the use of B in this scenario. An example of this is the lack
of proper abstraction and composition mechanisms besides DEFINITIONS when relying
on the predicate and expression language. Another example is the lack of LET and
if-then-else in expressions and predicates. Admittedly using B for constraint modelling
was not part of its originally intended use and leads to certain shortcomings in the use of
the language when applied in this area.

The declarative approach has worked best for the problem discussed in this evaluation, in
particular the separation of problem description from the search for solutions simplified
the encoding and makes it easier to maintain and change. Although the loss of control
over the enumeration process can lead to sub-optimal results. Knowing the structure of
the problem would permit to take advantage of the structure during enumeration. While
this would require an even more coupled implementation the declarative approaches have
yielded the best results, in particular for problem instances with large CI values.

From the languages discussed here B and Alloy, despite all their shortcomings, are those
best suited for this kind of validation problems. Both languages are based on relations
and set theory. Alloy’s signatures provide additional concepts, that are mapped to
relations. Alloy might be even slightly better suited, since it is intended explicitly for
model finding. Also the syntactic extensions on top of relations, such as signatures present
a way of modelling concepts and relationships that is ideal for this scenario. Additionally
the concept of named predicates, like named functions is a very powerful abstraction
mechanism for a data validation problem. Unfortunately the Alloy Analyzer was not
able to cope with the data sets used for this evaluation.

Several things would be interesting to explore in this regard: One is to use the Alloy
language as an input for ProB for data validation problems; another would be to extend
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the B language with useful concepts for data validation such as named predicates, or
creating, as with the rule validation language from Section 5.7.4 a superset of B that
is better suited to encoding these problems. A different approach would be explore a
tighter integration of ProB with other solvers, such as Kodkod, SAT or SMT solvers
(experiments in this regard have been started by members of our research group).
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Conclusion and Future Work

In this thesis we explored and discussed the use and usability of B and ProB as constraint
modelling and solving tools. Our discussion has been guided by the following questions
and goals as stated in Chapter 1:

(i) Evaluate the use of B not only as a formal modelling language but also as a
constraint modelling language.

(ii) Evaluate if ProB can be used to efficiently find solutions to complex constraint
problems modelled in B.

(iii) Explore if ProB can be used as a runtime for constraint based models and embedded
in applications.

(iv) Analyse how the combination of B and ProB compares to other tools that can be
used to model constraint based problems.

In Chapter 3 we discussed, that B can not only be used as a language for formal modelling
and verification, but that the language is also very well suited to model constraint based
problems. In particular the expression and predicate subsets of the language make it
possible to succinctly express constraints declaratively at a high abstraction level. As we
showed on the jobs puzzle it is even possible to stay very close to the natural language
specification of a problem when modelling it using B. One expected advantage of the
high abstraction level is that it makes it easier to validate a model with regard to the
requirements and to communicate with domain experts, versed in mathematics but
not necessarily in programming or modelling languages, about the representation of a
problem. In the same chapter we demonstrated on the jobs puzzle and on several other
puzzles that, besides being a vehicle to nicely model problems, these can be efficiently
solved using ProB.
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Based on these results, in Chapter 4 we conducted a larger case study about the
applicability of the B and ProB to application development. We explored this in the
context of university timetable validation. In cooperation with two faculties at our
university we collected the different rules and constraints required to validate timetables.
We formalized the collected rules as a domain theory of university timetables and created
a B model based on them. Based on the model, we were able to create an application that
uses this model at runtime and permits its users to validate and improve the curricula
offered at the university. The application embeds ProB and the model and communicates
with ProB via its Java API.

Based on the experiences gathered while working on this case study and on an independent
project, in Chapter 5 we extract a common structure for data validation projects built
using B on top of ProB. In Chapter 5 we described different approaches taken, as
well as areas where we consider the language to be lacking certain features for this use
and evaluated different alternatives how to improve and extend the language for data
validation projects.

Finally, in Chapter 6 we conducted an empirical evaluation comparing different languages
and tools on a simplified version of our case study. The goal was to assess how B and
ProB compare to approaches that can be used for constraint modelling. We compared our
solution to general purpose programming languages, constraint programming extensions
to these and dedicated modelling languages. The evaluation is based on each tool’s
evaluation model, the complexity of implementing the case study in each language and
on the runtime performance each tool showed when solving our case study. In general
the B based approach occupies a middle ground, where the high-level modelling permits
us to effectively model the timetable validation problem in a declarative manner. A
high-level declarative model is, for this kind of constraint problems, a representation that
is simpler and more maintainable than lower level approaches, either general purpose
programming languages such as Prolog or Python or also than our SMT-LIB model.
Nevertheless, a language such as Alloy targeted explicitly at model finding and structure
description might be slightly more appropriate for this kind of modelling. On the other
hand, regarding to the performance of the tools in our case study, ProB is, with a few
exceptions, slower than a low-level encoding using Prolog and clp(FD). On small instances
ProB shows a certain overhead, where even brute-force approaches are more efficient.
In contrast, on large instances the constraint based approach of ProB shows very good
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results on this particular problem, where it is faster than brute-force approaches and Z3.
But, as could be expected, the low-level approach using Prolog and clp(FD) is faster
than ProB, with a few exceptions.

With all this we try to revisit the initial questions posed: Is it possible to express
non-trivial constraint satisfaction problems in B and is it possible to use such a formal
model at runtime for problem solving? Are language and the tools powerful enough to
enable this usage scenario?

In general we can conclude, that B as a language is well suited to be used, not only as a
formal specification language, but also as a constraint modelling language. In particular
the mathematical subset of the language allows us to capture constraints very elegantly.
As we showed in Chapter 3, it is in some cases even possible to stay close to the natural
language representation of the problem.

B, as a specification language that was not originally designed as a constraint modelling
language, has unsurprisingly several aspects that make its use as a constraint modelling
language cumbersome. The extensions to the B language discussed in Chapter 5 showed
possible approaches to extending and improving the language with regard to data
validation and constraint modelling. Approaches could be creating either:

• Custom input languages for constraint modelling based on the mathematical
notation.

• Domain specific extensions to the language, as done by Hansen and discussed in
Chapter 5, that hide certain part of the complexity while making it easier to model
specific problems.

• Front ends in ProB for existing modelling languages such as SMT-LIB as done by
Krings, or Alloy where the language is closer to B but is specifically created as a
modelling language.

A further approach would be to embed parts of the B language in a host language, in a way
that naturally extends the host language’s semantics. We performed initial experiments
in this area by embedding the expression and predicate subsets of the B language into the
Clojure programming language [64]. We provide a Clojure representation for this subset
of the B language, such that the Clojure S-expressions are mapped to the corresponding
B structures. The evaluation works by sending the mapped S-expressions to ProB for
evaluation and mapping the results are back to clojure structures.
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These are areas where we want to build upon the work presented in this thesis and explore
different approaches to integrate the ProB constraint in different programming and
modelling approaches. This could be achieved either by embedding it into a programming
language, as described above for Clojure, or by offering additional front ends to the ProB
constraint solver. These additional front ends can be either for general purpose modelling
languages that map to B, domain specific languages or domain specific extensions to B.
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A
Publications

The manuscripts of the following publications I have co-authored have been used in this
thesis. All of these publications where created in collaborative work, the contributions
listed below are parts of these articles that are based largely on my work. Nevertheless,
none of this would have been created without the contributions, discussions, proof-reading
and editing by co-authors and colleagues.

A.1 Towards B as a High-Level Constraint Modelling
Language

M. Leuschel and D. Schneider. Towards B as a High-Level Constraint Modelling Language
- Solving The Jobs Puzzle Challenge. In Y. A. Ameur and K.-D. Schewe, editors, Abstract
State Machines, Alloy, B, TLA, VDM, and Z - 4th International Conference, ABZ 2014,
Toulouse, France, June 2-6, 2014. Proceedings, volume 8477 of Lecture Notes in Computer
Science (LNCS), pages 101–116, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Contributions:

• Formalization and description of the of the Jobs Puzzle.

• Discussion of related work to the Jobs Puzzle model.

• Discussion of the subset sum, n-Queens and graph isomorphism problems. The
respective implementations of the discussed solutions were created by Michael
Leuschel and Daniel Plagge.

• Benchmarking of the n-Queens and peaceable army of queens implementations.
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A.2 Model-Based Problem Solving for University Timetable
Validation and Improvement

D. Schneider, M. Leuschel, and T. Witt. Model-Based Problem Solving for University
Timetable Validation and Improvement. In N. Bjørner and F. S. de Boer, editors, FM
2015: Formal Methods - 20th International Symposium, Oslo, Norway, June 24-26, 2015,
Proceedings, volume 9109 of Lecture Notes in Computer Science (LNCS), pages 487–495,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

Chapter 4 is based on an extended version of this article. This extended version has been
submitted to the Journal Formal Aspects of Computing to be considered for inclusion in a
special issue about the 20th International Symposium on Formal Methods (FM 2015).

Contributions:

• Development of a domain theory of timetables and curricula.

• Description of the formal model used for timetable validation. The model was
created in cooperation with Michael Leuschel.

• Discussion of the related work on timetabling.

• Implementation of the application that embeds the formal model to validate
timetables. The implementation of this application was created in joint work with
Tobias Witt, Philip Höfges and Joshua Schmidt.
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A.3 Using B and ProB for Data Validation Projects

D. Hansen, D. Schneider, and M. Leuschel. Using B and ProB for Data Validation
Projects. In M. J. Butler, K. Schewe, A. Mashkoor, and M. Biró, editors, Abstract
State Machines, Alloy, B, TLA, VDM, and Z - 5th International Conference, ABZ 2016,
Linz, Austria, May 23-27, 2016, Proceedings, volume 9675 of Lecture Notes in Computer
Science (LNCS), pages 167–182, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Contributions:

• Parts of the discussion on data import and representation.

• Parts of the discussion on the usage of LET and if-then-else and alternatives. The
integration of these concepts into ProB was done by Dominik Hansen.

• Discussion about the use of DEFINITIONS.

• Discussion of the use of external functions.

The work on the validation of railway topologies discussed in this article was conducted
independently by Dominik Hansen.
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Towards B as a High-Level Constraint

Modelling Language

The Alloy models used in this chapter were implemented by Daniel Plagge.

B.1 Alloy n-Queens Model

abstract sig Queens {
row : one Int,
col : one Int,

} {
row ≥ 0 and row < 8
and col ≥ 0 and col < 8

}

sig BQueens extends Queens {} {}
sig WQueens extends Queens {} {}

pred nothreat(q1,q2 : Queens) {
q1.row 6= q2.row
and q1.col 6= q2.col
and plus[ int[q1.row] , int[q1.col]] 6= plus[ int[q2.col] ,

int[q2.row]]
and plus [int[q1.row] , int[q2.col]] 6= plus[ int[q1.col] ,

int[q2.row]]
}

pred nothreats { all q1 : BQueens, q2 : WQueens • nothreat[q1, q2] }

pred alldiffB { all q1 : BQueens, q2 : BQueens • q1=q2 or q1.row 6=
q2.row or q1.col 6= q2.col }
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pred alldiffW { all q1 : WQueens, q2 : WQueens • q1=q2 or q1.row 6=
q2.row or q1.col 6= q2.col }

pred equalnum {
#(WQueens) = #(BQueens)

}

pred valid {
nothreats and equalnum and alldiffB and alldiffW

}

fact {
#Queens = 20

}

run valid for 20 Queens, 7 int
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B.2 Alloy Peaceable Armies of Queens Model

sig Queens {
row : one Int,
col : one Int

} {
row ≥ 0 and row < #Queens
and col ≥ 0 and col < #Queens

}
pred nothreat(q1,q2 : Queens) {

q1.row 6= q2.row
and q1.col 6= q2.col
and plus[int[q1.row], minus[int[q2.col], int[q1.col]]] 6=

int[q2.row]
and minus[int[q1.row], plus[int[q2.col], int[q1.col]]] 6=

int[q2.row]
}
pred valid { all q1,q2 : Queens •

q1 6= q2 =⇒ nothreat[q1, q2]
}

fact card {#Queens = 8}
run valid for 8 Queens, 5 int
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B Machine to Validate Module

Combinations for Different Courses

MACHINE ModuleCombinations
SEES Levels, data
CONSTANTS

level_available_modules,
level_mandatory_modules,
module_combinations

PROPERTIES
level_available_modules = {idx, mms|#(course, tt, ll).(

(course, tt) : course_levels & ll : dom(tt)
&
idx = tt(ll)’idx
&
mms = level_modules[{x| #(y).(y : ran(subtree(tt, ll)) & x =

y’idx)}])}
& level_mandatory_modules = λ(idx).(idx:

dom(level_available_modules) | {m|
m : level_available_modules(idx)
&
modules(m)’mandatory = TRUE})

& module_combinations = λ(cc).(cc : course_names | dom({rv, foo|
CHOOSE_MODULES(cc, rv, foo)}))

DEFINITIONS
"preferences.def";
"LibraryIO.def";

BV(DD) == (DD → BOOL);

CHOOSE_MODULES(course, return_value, choice) == (
course : course_names
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& courses(course)’credit_points = -1
& LET

mm, trees
BE

mm = course_modules(course)
&
trees = course_levels[{course}]

IN
/* we are looking for a subset of all modules for the given

course */
/* the selection of modules must satisfy the tree-conditions

for all trees in that course */
/* return value is the set of all modules for the given course,

according to the choice function */
return_value <: mm
& return_value = UNION(ttu).(ttu:trees| choice(ttu)~[{TRUE}])
& choice : trees → BV(mm)
& !(tt).(tt : trees ⇒

LET
lam, lmm

BE
lam = level_available_modules(top(tt)’idx)
& lmm = level_mandatory_modules(top(tt)’idx)

IN
/* Mandatory modules have to be chosen */
!(dd).(dd : lmm ⇒ choice(tt)(dd)=TRUE)
& /* Modules outside the available ones are never chosen */
!(dd).(dd : mm \ lam ⇒ choice(tt)(dd)=FALSE)
& /* the number of modules chosen at the root level must be

in the limits of from .. to */
card({dd|dd:lam & dd 7→TRUE:choice(tt)}) : top(tt)’from ..

top(tt)’to
& !(level_info).(level_info : ran(tt) ⇒

LET
llmm, ll_mandatory

BE
llmm = level_available_modules(level_info’idx)
&
ll_mandatory = level_mandatory_modules(level_info’idx)

IN
/* Mandatory modules have to be chosen */
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!(dd).(dd : ll_mandatory ⇒ choice(tt)(dd)=TRUE)
&
/* the number of modules chosen at each level must be in

the limits of from .. to */
card({y| y: mm & y7→TRUE : choice(tt) & y : llmm}) :

level_info’from .. level_info’to
END

)
END

)
END

);
ASSERTIONS

!(x,y).(x : dom(course_module_combinations) & y :
course_module_combinations(x)

⇒ y : module_combinations(x))
END
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Evaluation

D.1 Data Sets

Table D.1: Complexity index , feasibility, number of mandatory, elective and combinations
of elective modules for each course in the Arts & Humanities and Business
Administration & Economics data sets used for evaluation.

Course Feasible? CI Mandatory
Modules

Elective
Modules

Elective
Module

Combinations

Business Administration & Economics

bwl_bachelor 3 2067530678 12 31 4495
bwl_master 3 180153 5 25 300
vwl_bachelor 3 475079582 11 31 4495
vwl_master 3 217203 4 26 325
wichem_bachelor 3 32265043 8 16 560
wichem_master 3 8352 2 10 45

Arts & Humanities

ang_ger 3 1612431360 1 0 0
ang_ges 3 100776960 1 0 0
ang_inf 3 201553920 1 0 0
ang_jap 3 12538266255360 1 0 0
ang_jid 3 6449725440 1 0 0
ang_jud 3 403107840 1 0 0
ang_kom 3 3627970560 1 0 0
ang_lin 7 1612431360 1 0 0
ang_pol 7 3627970560 1 0 0
ang_rom 3 309586821120 1 0 0
ang_soz 3 3627970560 1 0 0
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Table D.1: Complexity index , feasibility, number of mandatory, elective and combinations
of elective modules for each course in the Arts & Humanities and Business
Administration & Economics data sets used for evaluation.

Course Feasible? CI Mandatory
Modules

Elective
Modules

Elective
Module

Combinations

ger_ang 3 4976640 1 0 0
ger_ges 3 16 1 0 0
ger_inf 3 32 1 0 0
ger_jap 3 1990656 1 0 0
ger_jid 3 1024 1 0 0
ger_jud 3 64 1 0 0
ger_kom 3 576 1 0 0
ger_lin 3 256 1 0 0
ger_pol 3 576 1 0 0
ger_rom 3 49152 1 0 0
ger_soz 3 576 1 0 0
ges_ang 3 311040 1 0 0
ges_ger 3 16 1 0 0
ges_inf 3 2 1 0 0
ges_jap 3 124416 1 0 0
ges_jid 3 64 1 0 0
ges_jud 3 4 1 0 0
ges_kom 7 36 1 0 0
ges_lin 7 16 1 0 0
ges_pol 7 36 1 0 0
ges_rom 3 3072 1 0 0
ges_soz 7 36 1 0 0
jap_ang 3 38698352640 1 0 0
jap_ger 3 1990656 1 0 0
jap_ges 3 124416 1 0 0
jap_inf 3 248832 1 0 0
jap_jid 7 7962624 1 0 0
jap_jud 7 497664 1 0 0
jap_kom 7 4478976 1 0 0
jap_lin 7 1990656 1 0 0
jap_pol 3 4478976 1 0 0
jap_rom 7 382205952 1 0 0
jap_soz 3 4478976 1 0 0
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D.1 Data Sets

Table D.1: Complexity index , feasibility, number of mandatory, elective and combinations
of elective modules for each course in the Arts & Humanities and Business
Administration & Economics data sets used for evaluation.

Course Feasible? CI Mandatory
Modules

Elective
Modules

Elective
Module

Combinations

jud_ang 3 1244160 1 0 0
jud_ger 3 64 1 0 0
jud_ges 3 4 1 0 0
jud_inf 3 8 1 0 0
jud_jap 7 497664 1 0 0
jud_jid 3 256 1 0 0
jud_kom 3 144 1 0 0
jud_lin 7 64 1 0 0
jud_pol 3 144 1 0 0
jud_rom 3 12288 1 0 0
jud_soz 3 144 1 0 0
rom_ang 3 955514880 1 0 0
rom_ger 3 49152 1 0 0
rom_ges 3 3072 1 0 0
rom_inf 7 6144 1 0 0
rom_jap 7 382205952 1 0 0
rom_jid 7 196608 1 0 0
rom_jud 3 12288 1 0 0
rom_kom 3 110592 1 0 0
rom_lin 7 49152 1 0 0
rom_pol 3 110592 1 0 0
rom_soz 3 110592 1 0 0
sowi 3 46656 1 0 0
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D.2 Prolog

Table D.2: SICStus brute-force and clp(FD) solver runtimes for the Business Administration & Economics and Arts
& Humanities data sets.

Course Feasible Brute-Force clp(FD) CI
Runtime‡ SD Runtime‡ SD

Business Administration & Economics

bwl_bachelor 3 timeout† - 1237b ±68.00 2067530678
bwl_master 3 1242b ±55.94 2 ±4.22 180153
vwl_bachelor 3 timeout† - 4 ±5.16 475079582
vwl_master 3 128 ±4.22 0a ±0.00 217203
wichem_bachelor 3 timeout† - 41 ±3.16 32265043
wichem_master 3 1a ±3.16 2 ±4.22 8352

Arts & Humanities

ang_ger 3 33113 ±331.70 0a ±0.00 1612431360
ang_ges 3 509267 ±5046.97 3 ±4.83 100776960
ang_inf 3 timeout† - 3 ±4.83 201553920
ang_jap 3 timeout† - 104041b ±505.84 12538266255360
ang_jid 3 timeout† - 4 ±5.16 6449725440
ang_jud 3 timeout† - 0a ±0.00 403107840
ang_kom 3 timeout† - 0a ±0.00 3627970560
ang_lin 7 timeout† - 1 ±3.16 1612431360
ang_pol 7 timeout† - 2 ±4.22 3627970560
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
a Minimum runtime.
b Maximum runtime.
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Table D.2: SICStus brute-force and clp(FD) solver runtimes for the Business Administration & Economics and Arts

& Humanities data sets.

Course Feasible Brute-Force clp(FD) CI
Runtime‡ SD Runtime‡ SD

ang_rom 3 timeout† - 10 ±4.71 309586821120
ang_soz 3 timeout† - 4 ±5.16 3627970560
ger_ang 3 4 ±5.16 2 ±4.22 4976640
ger_ges 3 1 ±3.16 3 ±4.83 16
ger_inf 3 1 ±3.16 1 ±3.16 32
ger_jap 3 22 ±4.22 495 ±21.21 1990656
ger_jid 3 1 ±3.16 2 ±4.22 1024
ger_jud 3 0a ±0.00 1 ±3.16 64
ger_kom 3 0a ±0.00 2 ±4.22 576
ger_lin 3 0a ±0.00 0a ±0.00 256
ger_pol 3 0a ±0.00 0a ±0.00 576
ger_rom 3 2 ±4.22 1 ±3.16 49152
ger_soz 3 0a ±0.00 20 ±0.00 576
ges_ang 3 1296 ±15.78 12 ±4.22 311040
ges_ger 3 0a ±0.00 1 ±3.16 16
ges_inf 3 2 ±4.22 0a ±0.00 2
ges_jap 3 1 ±3.16 2 ±4.22 124416
ges_jid 3 2 ±4.22 0a ±0.00 64
ges_jud 3 1 ±3.16 2 ±4.22 4
ges_kom 7 3 ±4.83 1 ±3.16 36
ges_lin 7 4 ±5.16 0a ±0.00 16
ges_pol 7 4 ±5.16 1 ±3.16 36
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
a Minimum runtime.
b Maximum runtime.
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Table D.2: SICStus brute-force and clp(FD) solver runtimes for the Business Administration & Economics and Arts
& Humanities data sets.

Course Feasible Brute-Force clp(FD) CI
Runtime‡ SD Runtime‡ SD

ges_rom 3 1 ±3.16 4 ±5.16 3072
ges_soz 7 3 ±4.83 0a ±0.00 36
jap_ang 3 timeout† - 1225 ±30.64 38698352640
jap_ger 3 21 ±3.16 496 ±19.55 1990656
jap_ges 3 1 ±3.16 1 ±3.16 124416
jap_inf 3 6468 ±73.00 3 ±4.83 248832
jap_jid 7 810075 ±3793.82 0a ±0.00 7962624
jap_jud 7 40200 ±324.48 709 ±18.53 497664
jap_kom 7 890961b ±6464.23 0a ±0.00 4478976
jap_lin 7 212611 ±1553.00 147 ±6.75 1990656
jap_pol 3 135 ±7.07 195 ±11.79 4478976
jap_rom 3 timeout† - 0a ±0.00 382205952
jap_soz 3 66151 ±516.08 2 ±4.22 4478976
jud_ang 3 4362 ±37.06 0a ±0.00 1244160
jud_ger 3 1 ±3.16 0a ±0.00 64
jud_ges 3 0a ±0.00 0a ±0.00 4
jud_inf 3 0a ±0.00 2 ±4.22 8
jud_jap 7 35693 ±304.34 0a ±0.00 497664
jud_jid 3 9 ±5.68 0a ±0.00 256
jud_kom 3 3 ±4.83 0a ±0.00 144
jud_lin 7 9 ±3.16 2 ±4.22 64
jud_pol 3 0a ±0.00 1 ±3.16 144
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
a Minimum runtime.
b Maximum runtime.
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Table D.2: SICStus brute-force and clp(FD) solver runtimes for the Business Administration & Economics and Arts

& Humanities data sets.

Course Feasible Brute-Force clp(FD) CI
Runtime‡ SD Runtime‡ SD

jud_rom 3 1 ±3.16 3 ±4.83 12288
jud_soz 3 0a ±0.00 2 ±4.22 144
rom_ang 3 13766 ±78.34 6 ±5.16 955514880
rom_ger 3 2 ±4.22 3 ±4.83 49152
rom_ges 3 2 ±4.22 1 ±3.16 3072
rom_inf 7 1871 ±67.73 2 ±4.22 6144
rom_jap 3 timeout† - 3 ±4.83 382205952
rom_jid 7 69347 ±326.43 18 ±4.22 196608
rom_jud 3 2 ±4.22 4 ±5.16 12288
rom_kom 3 2 ±4.22 6 ±5.16 110592
rom_lin 7 20327 ±167.07 3 ±4.83 49152
rom_pol 3 36 ±5.16 0a ±0.00 110592
rom_soz 3 2 ±4.22 2 ±4.22 110592
sowi 3 1 ±3.16 0a ±0.00 46656
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
a Minimum runtime.
b Maximum runtime.
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D.3 SMT-LIB/Z3

Table D.3: Z3 solver runtimes for the Business Administration & Economics and Arts &
Humanities data sets.
Course Feasible Runtime in ms. SD CI

Business Administration & Economics

bwl_bachelor 3 110.275 ±0.468 2067530678
bwl_master 3 86.898 ±0.655 180153
vwl_bachelor 3 113.974b ±1.015 475079582
vwl_master 3 87.151 ±3.321 217203
wichem_bachelor 3 106.389 ±4.293 32265043
wichem_master 3 82.735a ±0.616 8352

Arts & Humanities

ang_ger 3 21.313 ±0.861 1612431360
ang_ges 3 22.275 ±0.722 100776960
ang_inf 3 28.585 ±0.727 201553920
ang_jap 3 32.141 ±0.765 12538266255360
ang_jid 3 27.597 ±0.215 6449725440
ang_jud 3 25.903 ±0.340 403107840
ang_kom 3 26.025 ±0.279 3627970560
ang_lin 7 0.947a ±0.007 1612431360
ang_pol 7 0.974 ±0.071 3627970560
ang_rom 3 29.614 ±0.074 309586821120
ang_soz 3 27.888 ±0.124 3627970560
ger_ang 3 19.741 ±0.356 4976640
ger_ges 3 16.033 ±0.487 16
ger_inf 3 23.891 ±0.273 32
ger_jap 3 25.471 ±0.270 1990656
ger_jid 3 20.092 ±0.251 1024
ger_jud 3 14.668 ±0.073 64
ger_kom 3 13.534 ±0.157 576
ger_lin 3 24.164 ±0.913 256
ger_pol 3 16.541 ±0.177 576
ger_rom 3 20.737 ±0.266 49152
ger_soz 3 15.174 ±0.110 576
ges_ang 3 33.560 ±0.454 311040
a Minimum runtime.
b Maximum runtime.
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Table D.3: Z3 solver runtimes for the Business Administration & Economics and Arts &
Humanities data sets.
Course Feasible Runtime in ms. SD CI

ges_ger 3 12.153 ±0.271 16
ges_inf 3 26.274 ±0.432 2
ges_jap 3 24.434 ±0.315 124416
ges_jid 3 21.764 ±0.765 64
ges_jud 3 12.718 ±0.204 4
ges_kom 7 0.980 ±0.123 36
ges_lin 7 1.001 ±0.076 16
ges_pol 7 1.020 ±0.146 36
ges_rom 3 20.023 ±0.248 3072
ges_soz 7 0.954 ±0.010 36
jap_ang 3 35.044b ±1.176 38698352640
jap_ger 3 26.449 ±0.837 1990656
jap_ges 3 26.833 ±0.242 124416
jap_inf 3 29.584 ±83.82 248832
jap_jid 7 0.952 ±4.22 7962624
jap_jud 7 1.141 ±0.164 497664
jap_kom 7 0.984 ±0.101 4478976
jap_lin 7 0.972 ±0.063 1990656
jap_pol 3 29.284 ±0.111 4478976
jap_rom 7 0.982 ±0.116 382205952
jap_soz 3 27.646 ±0.107 4478976
jud_ang 3 22.953 ±0.289 1244160
jud_ger 3 14.134 ±0.198 64
jud_ges 3 18.815 ±0.280 4
jud_inf 3 26.648 ±0.913 8
jud_jap 7 1.039 ±0.170 497664
jud_jid 3 19.459 ±0.377 256
jud_kom 3 15.716 ±0.597 144
jud_lin 7 1.009 ±0.125 64
jud_pol 3 17.119 ±0.444 144
jud_rom 3 22.418 ±0.251 12288
jud_soz 3 16.452 ±0.445 144
rom_ang 3 30.541 ±0.121 955514880
rom_ger 3 22.233 ±0.301 49152
rom_ges 3 21.251 ±0.316 3072
a Minimum runtime.
b Maximum runtime.
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Table D.3: Z3 solver runtimes for the Business Administration & Economics and Arts &
Humanities data sets.
Course Feasible Runtime in ms. SD CI

rom_inf 7 0.989 ±0.077 6144
rom_jap 7 1.012 ±0.106 382205952
rom_jid 7 0.948 ±0.006 196608
rom_jud 3 22.583 ±0.324 12288
rom_kom 3 25.787 ±0.869 110592
rom_lin 7 0.986 ±0.100 49152
rom_pol 3 22.025 ±0.807 110592
rom_soz 3 20.170 ±0.362 110592
sowi 3 15.124 ±0.419 46656
a Minimum runtime.
b Maximum runtime.
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D.4 Python

Table D.4: Python 2, Python 3 and PyPy solver runtimes for the Business Administration & Economics and Arts &
Humanities data sets.

Course Feasible Python 2 Python 3 PyPy CI
Runtime‡ SD Runtime‡ SD Runtime‡ SD

Business Administration & Economics

bwl_bachelor timeout† - - - - - - 2067530678
bwl_master 3 0.83 ±0.1 2523.54 ±6856.63 10.61 ±0.88 180153
vwl_bachelor 3 2550.88 ±65.42 timeout† - 4079.46b ±176.96 475079582
vwl_master 3 0.89 ±0.017 3608.24b ±11006.57 1.30 a ±0.11 217203
wichem_bachelor 3 102599.04b ±1435.42 timeout† - 2.66 ±0.22 32265043
wichem_master 3 0.65a ±0.09 4.60a ±6.71 27.04 ±1.54 8352

Arts & Humanities

ang_ger 3 18269.50 ±150.57 77729.28 ±100349.57 727.39 ±48.53 1612431360
ang_ges 3 270981.06 ±4494.46 1498607.53b ±1784865.99 389613.35 ±3139.16 100776960
ang_inf timeout† - - - - - - 201553920
ang_jap timeout† - - - - - - 12538266255360
ang_jid timeout† - - - - - - 6449725440
ang_jud 3 2929.73 ±60.31 9499.34 ±12106.49 998072.90b ±8646.66 403107840
ang_kom timeout† - - - - - - 3627970560
ang_lin timeout† - - - - - - 1612431360
ang_pol timeout† - - - - - - 3627970560
ang_rom timeout† - - - - - - 309586821120
ang_soz timeout† - - - - - - 3627970560
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
a Minimum runtime.
b Maximum runtime.
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Table D.4: Python 2, Python 3 and PyPy solver runtimes for the Business Administration & Economics and Arts &
Humanities data sets.

Course Feasible Python 2 Python 3 PyPy CI
Runtime‡ SD Runtime‡ SD Runtime‡ SD

ger_ang 3 1.05 ±0.01 1.58 ±0.27 0.54 ±0.00 4976640
ger_ges 3 0.25 ±0.00 0.27 ±0.01 0.47 ±0.03 16
ger_inf 3 0.64 ±0.01 0.69 ±0.03 0.48 ±0.00 32
ger_jap 3 7.81 ±0.73 4.60 ±1.90 298.92 ±24.80 1990656
ger_jid 3 1.22 ±0.09 2.90 ±3.16 0.64 ±0.13 1024
ger_jud 3 0.27 ±0.01 0.30 ±0.03 0.50 ±0.05 64
ger_kom 3 0.33 ±0.00 0.37 ±0.02 0.43 ±0.00 576
ger_lin 3 0.58 ±0.00 0.68 ±0.07 2.08 ±0.51 256
ger_pol 3 0.35 ±0.06 0.41 ±0.10 0.43 ±0.01 576
ger_rom 3 1.09 ±0.01 1.62 ±0.59 0.67 ±0.01 49152
ger_soz 3 0.34 ±0.01 0.40 ±0.07 0.41 ±0.01 576
ges_ang 3 1178.02 ±23.85 1131.99 ±1822.49 65.82 ±9.97 311040
ges_ger 3 0.25 ±0.00 0.28 ±0.02 0.36 ±0.00 16
ges_inf 3 0.54 ±0.01 0.63 ±0.06 1.14 ±0.18 2
ges_jap 3 1.60 ±0.02 1.58 ±0.34 1.50 ±0.02 124416
ges_jid 3 0.79 ±0.01 0.71 ±0.22 1.21 ±0.04 64
ges_jud 3 0.20a ±0.00 0.23a ±0.01 0.34a ±0.01 4
ges_kom 7 1.48 ±0.14 1.55 ±0.21 0.61 ±0.01 36
ges_lin 7 0.74 ±0.00 0.85 ±0.05 1.28 ±0.26 16
ges_pol 7 1.54 ±0.19 1.53 ±0.11 0.55 ±0.01 36
ges_rom 3 0.96 ±0.02 1.03 ±0.04 0.69 ±0.01 3072
ges_soz 7 1.63 ±0.15 1.59 ±0.14 0.60 ±0.00 36
jap_ang timeout† - - - - - - 38698352640
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
a Minimum runtime.
b Maximum runtime.
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Table D.4: Python 2, Python 3 and PyPy solver runtimes for the Business Administration & Economics and Arts &

Humanities data sets.

Course Feasible Python 2 Python 3 PyPy CI
Runtime‡ SD Runtime‡ SD Runtime‡ SD

jap_ger 3 7.94 ±0.65 4.59 ±1.96 348.43 ±21.82 1990656
jap_ges 3 1.78 ±0.17 1.50 ±0.26 0.65 ±0.13 124416
jap_inf 3 129.05 ±2.35 37.00 ±33.92 6.07 ±0.96 248832
jap_jid 7 237109.51 ±1937.08 278604.28 ±44212.45 34371.42 ±481.77 7962624
jap_jud 7 39207.51 ±682.05 41327.29 ±7440.51 4881.58 ±245.77 497664
jap_kom 7 337939.57b ±5700.33 351540.90 ±35868.44 38805.63 ±578.21 4478976
jap_lin 7 73694.18 ±476.73 79774.47 ±10584.42 10291.55 ±180.66 1990656
jap_pol 3 126165.56 ±1667.92 203076.17 ±73462.78 5769.71 ±217.50 4478976
jap_rom timeout† - - - - - - 382205952
jap_soz 3 30.54 ±1.59 20.11 ±11.36 2.19 ±0.30 4478976
jud_ang 3 1.25 ±0.17 1.32 ±0.05 3343.34 ±64.17 1244160
jud_ger 3 0.43 ±0.06 0.43 ±0.04 0.44 ±0.00 64
jud_ges 3 0.35 ±0.04 0.38 ±0.06 0.43 ±0.12 4
jud_inf 3 1.03 ±0.14 1.02 ±0.11 0.78 ±0.00 8
jud_jap 7 44418.31 ±671.66 39957.74 ±4275.75 4546.57 ±185.92 497664
jud_jid 3 1.01 ±0.01 0.90 ±0.21 0.63 ±0.00 256
jud_kom 3 2.40 ±0.19 3.35 ±0.69 1.09 ±0.16 144
jud_lin 7 2.16 ±0.01 2.40 ±0.45 1.96 ±0.11 64
jud_pol 3 0.47 ±0.00 0.67 ±0.14 0.56 ±0.04 144
jud_rom 3 1.35 ±0.16 1.31 ±0.03 0.72 ±0.01 12288
jud_soz 3 0.52 ±0.06 0.67 ±0.17 0.53 ±0.01 144
rom_ang 3 72734.07 ±480.07 timeout† - 229.60 ±1.83 955514880
rom_ger 3 14.36 ±0.11 1.65 ±0.77 0.74 ±0.01 49152
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
a Minimum runtime.
b Maximum runtime.
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Table D.4: Python 2, Python 3 and PyPy solver runtimes for the Business Administration & Economics and Arts &
Humanities data sets.

Course Feasible Python 2 Python 3 PyPy CI
Runtime‡ SD Runtime‡ SD Runtime‡ SD

rom_ges 3 0.93 ±0.01 1.02 ±0.02 0.72 ±0.10 3072
rom_inf 7 204.01 ±1.56 193.23 ±32.41 35.27 ±0.54 6144
rom_jap timeout† - - - - - - 382205952
rom_jid 7 4857.86 ±84.84 5419.55 ±974.26 882.89 ±13.15 196608
rom_jud 3 0.97 ±0.03 1.12 ±0.10 0.81 ±0.15 12288
rom_kom 3 1.86 ±0.21 2.11 ±0.65 1.82 ±0.15 110592
rom_lin 7 1062.37 ±16.53 1528.30 ±238.41 202.36 ±2.65 49152
rom_pol 3 1.13 ±0.06 2.11 ±0.78 4.88 ±0.04 110592
rom_soz 3 1.31 ±0.17 2.11 ±0.85 0.67 ±0.04 110592
sowi 3 81.90 ±3.82 4.83 ±5.13 5.52 ±0.08 46656
‡ Runtime in milliseconds.
† Each timeout represents a runtime of 30 minutes.
a Minimum runtime.
b Maximum runtime.
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D.5 ProB

Results

Table D.5: ProB solver runtimes for the Business Administration & Economics and Arts
& Humanities data sets.
Course Feasible Runtime in ms. SD CI

Business Administration & Economics

bwl_bachelor 3 387.14b ±28.12 2067530678
bwl_master 3 124.29 ±7.87 180153
vwl_bachelor 3 320.00 ±5.77 475079582
vwl_master 3 101.43 ±3.78 217203
wichem_bachelor 3 238.57 ±6.90 32265043
wichem_master 3 97.14a ±7.56 8352

Arts & Humanities

ang_ger 3 71 ±5.68 1612431360
ang_ges 3 64 ±5.16 100776960
ang_inf 3 99 ±5.68 201553920
ang_jap 3 157b ±13.37 12538266255360
ang_jid 3 102 ±9.19 6449725440
ang_jud 3 62 ±6.32 403107840
ang_kom 3 78 ±7.89 3627970560
ang_lin 7 61 ±3.16 1612431360
ang_pol 7 59 ±5.68 3627970560
ang_rom 3 148 ±7.89 309586821120
ang_soz 3 79 ±7.38 3627970560
ger_ang 3 46 ±6.99 4976640
ger_ges 3 13a ±4.83 16
ger_inf 3 26 ±5.16 32
ger_jap 3 64 ±6.99 1990656
ger_jid 3 20 ±0.00 1024
ger_jud 3 15 ±5.27 64
ger_kom 3 20 ±0.00 576
ger_lin 3 22 ±4.22 256
ger_pol 3 20 ±0.00 576
ger_rom 3 38 ±4.22 49152
a Minimum runtime.
b Maximum runtime.
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Course Feasible Runtime in ms. SD CI

ger_soz 3 20 ±0.00 576
ges_ang 3 48 ±6.32 311040
ges_ger 3 16 ±5.16 16
ges_inf 3 21 ±3.16 2
ges_jap 3 50 ±4.71 124416
ges_jid 3 20 ±4.71 64
ges_jud 3 14 ±5.16 4
ges_kom 7 18 ±4.22 36
ges_lin 7 22 ±4.22 16
ges_pol 7 17 ±4.83 36
ges_rom 3 34 ±5.16 3072
ges_soz 7 20 ±4.71 36
jap_ang 3 119 ±7.38 38698352640
jap_ger 3 67 ±8.23 1990656
jap_ges 3 50 ±4.71 124416
jap_inf 3 96 ±5.16 248832
jap_jid 7 67 ±8.23 7962624
jap_jud 7 105 ±5.27 497664
jap_kom 7 46 ±6.99 4478976
jap_lin 7 106 ±14.30 1990656
jap_pol 3 73 ±4.83 4478976
jap_rom 7 103 ±6.75 382205952
jap_soz 3 68 ±6.32 4478976
jud_ang 3 51 ±5.68 1244160
jud_ger 3 18 ±4.22 64
jud_ges 3 13a ±4.83 4
jud_inf 3 29 ±3.16 8
jud_jap 7 61 ±7.38 497664
jud_jid 3 27 ±4.83 256
jud_kom 3 33 ±4.83 144
jud_lin 7 32 ±6.32 64
jud_pol 3 31 ±3.16 144
jud_rom 3 43 ±4.83 12288
jud_soz 3 31 ±5.68 144
rom_ang 3 119 ±9.94 955514880
rom_ger 3 38 ±4.22 49152
rom_ges 3 32 ±4.22 3072
rom_inf 7 53 ±6.75 6144
a Minimum runtime.
b Maximum runtime.
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Course Feasible Runtime in ms. SD CI

rom_jap 7 106 ±6.99 382205952
rom_jid 7 57 ±4.83 196608
rom_jud 3 36 ±5.16 12288
rom_kom 3 46 ±5.16 110592
rom_lin 7 52 ±6.32 49152
rom_pol 3 51 ±8.76 110592
rom_soz 3 53 ±6.75 110592
sowi 3 33 ±6.75 46656
a Minimum runtime.
b Maximum runtime.
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Model Version 3 – Results

For comparison, we have included a table (D.6) showing the results of using the third
version of our model on the latest data set provided by the faculty of humanities.1 The
presented results are averages from ten runs on our continuous integration server. On
the server we run the latest versions of our models and data on top of the latest version
of ProB. We report the results for checking each course independently and for each
combination of major and minor. Checks were cancelled if they did not produce any
results after 60 seconds.

Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

Courses Checked Individually
BA-IWS-H-2013 3 1089 ±17.91
BA-KUL-H-2013 7 548 ±12.29
BA-LIN-COM-H-2013 3 3417 ±38.02
BA-LIN-GRU-H-2013 3 1147 ±9.48
BA-LIN-PSY-H-2013 3 1510 ±18.25
BA-LIN-SPR-H-2013 3 5702 ±35.52
BA-SMP-H-2013 3 41410 ±190.02
BK-ANT-N-2013 3 652 ±11.35
BK-AUA-H-2013 3 1181 ±11.97
BK-AUA-N-2013 3 1418 ±11.35
BK-GER-H-2013 3 860 ±10.54
BK-GER-KOM-N-2013 3 517 ±8.23
BK-GER-LANG-N-2013 3 524 ±8.43
BK-GER-LIT-N-2013 3 524 ±6.99
BK-GER-MED-N-2013 3 523 ±8.23
BK-GES-H-2013 3 1081 ±9.94
BK-GES-N-2013 3 323 ±4.83
BK-INF-N-2013 3 704 ±5.16
BK-JID-N-2013 3 566 ±15.05
BK-JUED-H-2013 3 835 ±8.49
BK-JUED-N-2013 3 558 ±11.35
BK-KOM-N-2013 3 670 ±8.16
BK-KUN-H-2013 3 584 ±10.74

1Based on tag v3-results (https://github.com/plues/data/tree/v3-results)
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Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

BK-KUN-N-2013 3 270 ±4.71
BK-LIN-GER-N-2013 3 306 ±5.16
BK-LIN-N-2013 3 304 ±5.16
BK-MOD-H-2013 3 994 ±11.73
BK-MOD-N-2013 3 285 ±5.27
BK-MOD-PLU-H-2013 3 530 ±4.71
BK-PHI-H-2013 3 642 ±10.32
BK-PHI-N-2013 3 459 ±8.75
BK-POL-N-2013 3 709 ±8.75
BK-ROM-FRA-H-2013 3 868 ±7.88
BK-ROM-FRA-N-2013 3 787 ±11.59
BK-ROM-ITA-H-2013 3 800 ±11.54
BK-ROM-ITA-N-2013 3 774 ±11.73
BK-ROM-SPA-H-2013 3 785 ±8.49
BK-ROM-SPA-N-2013 3 761 ±11.97
BK-ROMROM-FRA-N-2013 3 669 ±11.97
BK-ROMROM-ITA-N-2013 3 640 ±10.54
BK-ROMROM-SPA-N-2013 3 657 ±9.48
BK-RSH-N-2013 3 488 ±9.18
BK-SOZ-N-2013 3 686 ±11.73

Major/Minor Combinations
BK-AUA-H-2013, BK-ANT-N-2013 3 36121 ±111.10
BK-AUA-H-2013, BK-GER-KOM-N-2013 timeout - -
BK-AUA-H-2013, BK-GER-LANG-N-2013 timeout - -
BK-AUA-H-2013, BK-GER-LIT-N-2013 timeout - -
BK-AUA-H-2013, BK-GER-MED-N-2013 timeout - -
BK-AUA-H-2013, BK-GES-N-2013 3 1781 ±13.70
BK-AUA-H-2013, BK-INF-N-2013 3 2145 ±15.09
BK-AUA-H-2013, BK-JID-N-2013 7 635 ±10.80
BK-AUA-H-2013, BK-JUED-N-2013 3 1746 ±13.49
BK-AUA-H-2013, BK-KOM-N-2013 3 1902 ±18.13
BK-AUA-H-2013, BK-KUN-N-2013 3 9282 ±22.50
BK-AUA-H-2013, BK-LIN-GER-N-2013 3 1655 ±12.69
BK-AUA-H-2013, BK-LIN-N-2013 3 1610 ±14.14
BK-AUA-H-2013, BK-MOD-N-2013 3 1407 ±9.48
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Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

BK-AUA-H-2013, BK-PHI-N-2013 3 2626 ±15.05
BK-AUA-H-2013, BK-POL-N-2013 3 2007 ±14.94
BK-AUA-H-2013, BK-ROM-FRA-N-2013 3 14018 ±60.33
BK-AUA-H-2013, BK-ROM-ITA-N-2013 3 13838 ±59.59
BK-AUA-H-2013, BK-ROM-SPA-N-2013 3 13871 ±52.37
BK-AUA-H-2013, BK-ROMROM-FRA-N-2013 3 1878 ±12.29
BK-AUA-H-2013, BK-ROMROM-ITA-N-2013 3 1849 ±14.49
BK-AUA-H-2013, BK-ROMROM-SPA-N-2013 3 1898 ±17.51
BK-AUA-H-2013, BK-RSH-N-2013 timeout - -
BK-AUA-H-2013, BK-SOZ-N-2013 7 1990 ±12.47
BK-GER-H-2013, BK-ANT-N-2013 3 1698 ±14.75
BK-GER-H-2013, BK-AUA-N-2013 3 3371 ±28.46
BK-GER-H-2013, BK-GER-KOM-N-2013 3 964 ±19.55
BK-GER-H-2013, BK-GER-LANG-N-2013 3 953 ±9.48
BK-GER-H-2013, BK-GER-LIT-N-2013 3 956 ±15.05
BK-GER-H-2013, BK-GER-MED-N-2013 3 951 ±14.49
BK-GER-H-2013, BK-GES-N-2013 3 1175 ±12.69
BK-GER-H-2013, BK-INF-N-2013 3 1715 ±18.40
BK-GER-H-2013, BK-JID-N-2013 3 1308 ±13.16
BK-GER-H-2013, BK-JUED-N-2013 3 1286 ±12.64
BK-GER-H-2013, BK-KOM-N-2013 3 1491 ±15.95
BK-GER-H-2013, BK-KUN-N-2013 3 1074 ±12.64
BK-GER-H-2013, BK-LIN-GER-N-2013 3 1102 ±16.19
BK-GER-H-2013, BK-LIN-N-2013 3 1092 ±9.18
BK-GER-H-2013, BK-MOD-N-2013 3 1058 ±13.98
BK-GER-H-2013, BK-PHI-N-2013 3 1098 ±14.75
BK-GER-H-2013, BK-POL-N-2013 3 1587 ±17.66
BK-GER-H-2013, BK-ROM-FRA-N-2013 3 2950 ±22.60
BK-GER-H-2013, BK-ROM-ITA-N-2013 3 2979 ±21.31
BK-GER-H-2013, BK-ROM-SPA-N-2013 timeout - -
BK-GER-H-2013, BK-ROMROM-FRA-N-2013 3 1509 ±11.00
BK-GER-H-2013, BK-ROMROM-ITA-N-2013 3 1442 ±13.16
BK-GER-H-2013, BK-ROMROM-SPA-N-2013 3 28786 ±90.82
BK-GER-H-2013, BK-RSH-N-2013 3 1715 ±15.09
BK-GER-H-2013, BK-SOZ-N-2013 3 1517 ±16.36
BK-GES-H-2013, BK-ANT-N-2013 3 1893 ±17.02

216



D.5 ProB

Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

BK-GES-H-2013, BK-AUA-N-2013 3 4120 ±30.91
BK-GES-H-2013, BK-GER-KOM-N-2013 3 1627 ±12.51
BK-GES-H-2013, BK-GER-LANG-N-2013 3 1625 ±11.78
BK-GES-H-2013, BK-GER-LIT-N-2013 3 1658 ±14.75
BK-GES-H-2013, BK-GER-MED-N-2013 3 1626 ±15.05
BK-GES-H-2013, BK-INF-N-2013 3 2293 ±22.13
BK-GES-H-2013, BK-JID-N-2013 3 1621 ±16.63
BK-GES-H-2013, BK-JUED-N-2013 3 1629 ±17.28
BK-GES-H-2013, BK-KOM-N-2013 3 2053 ±18.88
BK-GES-H-2013, BK-KUN-N-2013 3 1437 ±14.18
BK-GES-H-2013, BK-LIN-GER-N-2013 3 1367 ±17.66
BK-GES-H-2013, BK-LIN-N-2013 3 1378 ±16.86
BK-GES-H-2013, BK-MOD-N-2013 3 1337 ±14.94
BK-GES-H-2013, BK-PHI-N-2013 3 1405 ±18.40
BK-GES-H-2013, BK-POL-N-2013 7 732 ±7.88
BK-GES-H-2013, BK-ROM-FRA-N-2013 3 2337 ±18.88
BK-GES-H-2013, BK-ROM-ITA-N-2013 7 674 ±12.64
BK-GES-H-2013, BK-ROM-SPA-N-2013 3 2206 ±21.18
BK-GES-H-2013, BK-ROMROM-FRA-N-2013 3 1999 ±22.33
BK-GES-H-2013, BK-ROMROM-ITA-N-2013 7 663 ±8.23
BK-GES-H-2013, BK-ROMROM-SPA-N-2013 3 1931 ±20.24
BK-GES-H-2013, BK-RSH-N-2013 7 2568 ±17.51
BK-GES-H-2013, BK-SOZ-N-2013 7 718 ±7.88
BK-JUED-H-2013, BK-ANT-N-2013 3 1457 ±15.67
BK-JUED-H-2013, BK-AUA-N-2013 3 3212 ±27.80
BK-JUED-H-2013, BK-GER-KOM-N-2013 3 1229 ±11.97
BK-JUED-H-2013, BK-GER-LANG-N-2013 3 1248 ±11.35
BK-JUED-H-2013, BK-GER-LIT-N-2013 3 1276 ±15.77
BK-JUED-H-2013, BK-GER-MED-N-2013 3 1234 ±9.66
BK-JUED-H-2013, BK-GES-N-2013 3 1146 ±11.73
BK-JUED-H-2013, BK-INF-N-2013 timeout - -
BK-JUED-H-2013, BK-JID-N-2013 3 1367 ±14.94
BK-JUED-H-2013, BK-KOM-N-2013 3 1443 ±16.36
BK-JUED-H-2013, BK-KUN-N-2013 3 1052 ±16.19
BK-JUED-H-2013, BK-LIN-GER-N-2013 3 1095 ±14.33
BK-JUED-H-2013, BK-LIN-N-2013 3 1075 ±11.78
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Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

BK-JUED-H-2013, BK-MOD-N-2013 3 1042 ±10.32
BK-JUED-H-2013, BK-PHI-N-2013 3 1092 ±11.35
BK-JUED-H-2013, BK-POL-N-2013 3 1537 ±16.36
BK-JUED-H-2013, BK-ROM-FRA-N-2013 3 3775 ±31.35
BK-JUED-H-2013, BK-ROM-ITA-N-2013 3 3748 ±25.29
BK-JUED-H-2013, BK-ROM-SPA-N-2013 3 2491 ±22.33
BK-JUED-H-2013, BK-ROMROM-FRA-N-2013 3 1434 ±16.46
BK-JUED-H-2013, BK-ROMROM-ITA-N-2013 3 1404 ±14.29
BK-JUED-H-2013, BK-ROMROM-SPA-N-2013 3 1441 ±16.63
BK-JUED-H-2013, BK-RSH-N-2013 timeout - -
BK-JUED-H-2013, BK-SOZ-N-2013 3 1531 ±11.00
BK-KUN-H-2013, BK-ANT-N-2013 timeout - -
BK-KUN-H-2013, BK-AUA-N-2013 timeout - -
BK-KUN-H-2013, BK-GER-KOM-N-2013 3 977 ±11.59
BK-KUN-H-2013, BK-GER-LANG-N-2013 3 906 ±9.66
BK-KUN-H-2013, BK-GER-LIT-N-2013 3 919 ±11.00
BK-KUN-H-2013, BK-GER-MED-N-2013 3 895 ±10.80
BK-KUN-H-2013, BK-GES-N-2013 timeout - -
BK-KUN-H-2013, BK-INF-N-2013 3 1233 ±10.59
BK-KUN-H-2013, BK-JID-N-2013 3 939 ±9.94
BK-KUN-H-2013, BK-JUED-N-2013 3 904 ±14.29
BK-KUN-H-2013, BK-KOM-N-2013 3 1117 ±15.67
BK-KUN-H-2013, BK-LIN-GER-N-2013 3 760 ±14.14
BK-KUN-H-2013, BK-LIN-N-2013 3 759 ±9.94
BK-KUN-H-2013, BK-MOD-N-2013 3 746 ±11.73
BK-KUN-H-2013, BK-PHI-N-2013 3 766 ±9.66
BK-KUN-H-2013, BK-POL-N-2013 3 1111 ±8.75
BK-KUN-H-2013, BK-ROM-FRA-N-2013 3 2682 ±19.88
BK-KUN-H-2013, BK-ROM-ITA-N-2013 3 2634 ±21.18
BK-KUN-H-2013, BK-ROM-SPA-N-2013 3 2638 ±15.49
BK-KUN-H-2013, BK-ROMROM-FRA-N-2013 3 1035 ±12.69
BK-KUN-H-2013, BK-ROMROM-ITA-N-2013 3 1009 ±11.00
BK-KUN-H-2013, BK-ROMROM-SPA-N-2013 3 1046 ±11.73
BK-KUN-H-2013, BK-RSH-N-2013 3 4646 ±24.58
BK-KUN-H-2013, BK-SOZ-N-2013 3 1049 ±11.97
BK-MOD-H-2013, BK-ANT-N-2013 3 1718 ±14.75
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Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

BK-MOD-H-2013, BK-AUA-N-2013 3 3564 ±24.58
BK-MOD-H-2013, BK-GER-KOM-N-2013 3 1453 ±12.51
BK-MOD-H-2013, BK-GER-LANG-N-2013 3 1440 ±14.90
BK-MOD-H-2013, BK-GER-LIT-N-2013 3 1429 ±13.70
BK-MOD-H-2013, BK-GER-MED-N-2013 3 1439 ±14.49
BK-MOD-H-2013, BK-GES-N-2013 3 1309 ±17.28
BK-MOD-H-2013, BK-INF-N-2013 3 1960 ±19.43
BK-MOD-H-2013, BK-JID-N-2013 3 1556 ±12.64
BK-MOD-H-2013, BK-JUED-N-2013 3 1434 ±12.64
BK-MOD-H-2013, BK-KOM-N-2013 3 1766 ±9.66
BK-MOD-H-2013, BK-KUN-N-2013 3 1129 ±11.97
BK-MOD-H-2013, BK-LIN-GER-N-2013 3 1268 ±12.29
BK-MOD-H-2013, BK-LIN-N-2013 3 1244 ±15.05
BK-MOD-H-2013, BK-PHI-N-2013 3 1242 ±14.75
BK-MOD-H-2013, BK-POL-N-2013 3 1904 ±12.64
BK-MOD-H-2013, BK-ROM-FRA-N-2013 3 2008 ±16.19
BK-MOD-H-2013, BK-ROM-ITA-N-2013 3 1983 ±20.02
BK-MOD-H-2013, BK-ROM-SPA-N-2013 3 2325 ±16.49
BK-MOD-H-2013, BK-ROMROM-FRA-N-2013 3 1714 ±18.97
BK-MOD-H-2013, BK-ROMROM-ITA-N-2013 3 1687 ±14.94
BK-MOD-H-2013, BK-ROMROM-SPA-N-2013 3 1677 ±13.37
BK-MOD-H-2013, BK-RSH-N-2013 3 1988 ±16.86
BK-MOD-H-2013, BK-SOZ-N-2013 3 1742 ±16.19
BK-MOD-PLU-H-2013, BK-ANT-N-2013 3 1203 ±11.59
BK-MOD-PLU-H-2013, BK-AUA-N-2013 timeout - -
BK-MOD-PLU-H-2013, BK-GER-KOM-N-2013 3 1190 ±12.47
BK-MOD-PLU-H-2013, BK-GER-LANG-N-2013 3 1076 ±13.49
BK-MOD-PLU-H-2013, BK-GER-LIT-N-2013 3 1080 ±12.47
BK-MOD-PLU-H-2013, BK-GER-MED-N-2013 3 1081 ±12.86
BK-MOD-PLU-H-2013, BK-GES-N-2013 3 854 ±5.16
BK-MOD-PLU-H-2013, BK-INF-N-2013 3 1364 ±12.64
BK-MOD-PLU-H-2013, BK-JID-N-2013 3 1090 ±10.54
BK-MOD-PLU-H-2013, BK-JUED-N-2013 3 1084 ±8.43
BK-MOD-PLU-H-2013, BK-KOM-N-2013 3 1241 ±11.97
BK-MOD-PLU-H-2013, BK-KUN-N-2013 3 653 ±8.23
BK-MOD-PLU-H-2013, BK-LIN-GER-N-2013 3 804 ±8.43
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Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

BK-MOD-PLU-H-2013, BK-LIN-N-2013 3 779 ±11.00
BK-MOD-PLU-H-2013, BK-MOD-N-2013 3 580 ±11.54
BK-MOD-PLU-H-2013, BK-PHI-N-2013 3 894 ±13.49
BK-MOD-PLU-H-2013, BK-POL-N-2013 3 1332 ±13.16
BK-MOD-PLU-H-2013, BK-ROM-FRA-N-2013 timeout - -
BK-MOD-PLU-H-2013, BK-ROM-ITA-N-2013 timeout - -
BK-MOD-PLU-H-2013, BK-ROM-SPA-N-2013 timeout - -
BK-MOD-PLU-H-2013, BK-ROMROM-FRA-N-2013 3 1306 ±11.73
BK-MOD-PLU-H-2013, BK-ROMROM-ITA-N-2013 3 1199 ±11.97
BK-MOD-PLU-H-2013, BK-ROMROM-SPA-N-2013 3 1192 ±12.29
BK-MOD-PLU-H-2013, BK-RSH-N-2013 3 5371 ±30.34
BK-MOD-PLU-H-2013, BK-SOZ-N-2013 3 1237 ±15.67
BK-PHI-H-2013, BK-ANT-N-2013 timeout - -
BK-PHI-H-2013, BK-AUA-N-2013 timeout - -
BK-PHI-H-2013, BK-GER-KOM-N-2013 3 1130 ±11.54
BK-PHI-H-2013, BK-GER-LANG-N-2013 3 1039 ±12.86
BK-PHI-H-2013, BK-GER-LIT-N-2013 3 1042 ±16.86
BK-PHI-H-2013, BK-GER-MED-N-2013 3 1042 ±17.51
BK-PHI-H-2013, BK-GES-N-2013 3 977 ±17.66
BK-PHI-H-2013, BK-INF-N-2013 3 1361 ±12.86
BK-PHI-H-2013, BK-JID-N-2013 3 993 ±12.51
BK-PHI-H-2013, BK-JUED-N-2013 timeout - -
BK-PHI-H-2013, BK-KOM-N-2013 3 1237 ±18.28
BK-PHI-H-2013, BK-KUN-N-2013 3 855 ±13.54
BK-PHI-H-2013, BK-LIN-GER-N-2013 3 865 ±15.81
BK-PHI-H-2013, BK-LIN-N-2013 3 847 ±11.59
BK-PHI-H-2013, BK-MOD-N-2013 3 821 ±12.86
BK-PHI-H-2013, BK-POL-N-2013 3 1239 ±14.49
BK-PHI-H-2013, BK-ROM-FRA-N-2013 timeout - -
BK-PHI-H-2013, BK-ROM-ITA-N-2013 timeout - -
BK-PHI-H-2013, BK-ROM-SPA-N-2013 timeout - -
BK-PHI-H-2013, BK-ROMROM-FRA-N-2013 3 1220 ±24.49
BK-PHI-H-2013, BK-ROMROM-ITA-N-2013 3 1100 ±29.81
BK-PHI-H-2013, BK-ROMROM-SPA-N-2013 3 1140 ±8.16
BK-PHI-H-2013, BK-RSH-N-2013 3 13903 ±320.52
BK-PHI-H-2013, BK-SOZ-N-2013 3 1180 ±16.99
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Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

BK-ROM-FRA-H-2013, BK-ANT-N-2013 3 1531 ±50.43
BK-ROM-FRA-H-2013, BK-AUA-N-2013 3 55069 ±801.72
BK-ROM-FRA-H-2013, BK-GER-KOM-N-2013 3 1342 ±13.98
BK-ROM-FRA-H-2013, BK-GER-LANG-N-2013 3 1335 ±52.54
BK-ROM-FRA-H-2013, BK-GER-LIT-N-2013 3 1334 ±48.57
BK-ROM-FRA-H-2013, BK-GER-MED-N-2013 3 1309 ±14.49
BK-ROM-FRA-H-2013, BK-GES-N-2013 3 1216 ±10.74
BK-ROM-FRA-H-2013, BK-INF-N-2013 3 1637 ±24.06
BK-ROM-FRA-H-2013, BK-JID-N-2013 3 1347 ±44.48
BK-ROM-FRA-H-2013, BK-JUED-N-2013 3 1345 ±20.68
BK-ROM-FRA-H-2013, BK-KOM-N-2013 3 1545 ±20.68
BK-ROM-FRA-H-2013, BK-KUN-N-2013 3 3734 ±111.37
BK-ROM-FRA-H-2013, BK-LIN-GER-N-2013 3 12111 ±248.03
BK-ROM-FRA-H-2013, BK-LIN-N-2013 3 12371 ±274.20
BK-ROM-FRA-H-2013, BK-MOD-N-2013 3 1155 ±35.03
BK-ROM-FRA-H-2013, BK-PHI-N-2013 3 18523 ±507.54
BK-ROM-FRA-H-2013, BK-POL-N-2013 3 1629 ±137.87
BK-ROM-FRA-H-2013, BK-ROM-ITA-N-2013 7 556 ±9.66
BK-ROM-FRA-H-2013, BK-ROM-SPA-N-2013 3 12664 ±278.37
BK-ROM-FRA-H-2013, BK-ROMROM-FRA-N-2013 7 386 ±10.74
BK-ROM-FRA-H-2013, BK-ROMROM-ITA-N-2013 7 562 ±18.13
BK-ROM-FRA-H-2013, BK-ROMROM-SPA-N-2013 3 11562 ±270.38
BK-ROM-FRA-H-2013, BK-RSH-N-2013 timeout - -
BK-ROM-FRA-H-2013, BK-SOZ-N-2013 3 1540 ±15.63
BK-ROM-ITA-H-2013, BK-ANT-N-2013 3 1401 ±14.49
BK-ROM-ITA-H-2013, BK-AUA-N-2013 3 2893 ±18.88
BK-ROM-ITA-H-2013, BK-GER-KOM-N-2013 3 1164 ±17.12
BK-ROM-ITA-H-2013, BK-GER-LANG-N-2013 3 1213 ±94.99
BK-ROM-ITA-H-2013, BK-GER-LIT-N-2013 3 1168 ±15.49
BK-ROM-ITA-H-2013, BK-GER-MED-N-2013 3 1183 ±46.67
BK-ROM-ITA-H-2013, BK-GES-N-2013 timeout - -
BK-ROM-ITA-H-2013, BK-INF-N-2013 3 2067 ±17.66
BK-ROM-ITA-H-2013, BK-JID-N-2013 3 1449 ±13.70
BK-ROM-ITA-H-2013, BK-JUED-N-2013 3 1188 ±16.19
BK-ROM-ITA-H-2013, BK-KOM-N-2013 3 1405 ±14.33
BK-ROM-ITA-H-2013, BK-KUN-N-2013 3 4310 ±40.55
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Table D.6: Results for running the third version of our models with ProB on the current
Arts & Humanitiesdata set.

Course(s) Result Runtime in ms. SD

BK-ROM-ITA-H-2013, BK-LIN-GER-N-2013 3 1011 ±11.97
BK-ROM-ITA-H-2013, BK-LIN-N-2013 3 1003 ±23.11
BK-ROM-ITA-H-2013, BK-MOD-N-2013 3 984 ±14.29
BK-ROM-ITA-H-2013, BK-PHI-N-2013 3 985 ±9.71
BK-ROM-ITA-H-2013, BK-POL-N-2013 7 596 ±5.16
BK-ROM-ITA-H-2013, BK-ROM-FRA-N-2013 7 542 ±10.32
BK-ROM-ITA-H-2013, BK-ROM-SPA-N-2013 3 15663 ±65.15
BK-ROM-ITA-H-2013, BK-ROMROM-FRA-N-2013 7 555 ±12.69
BK-ROM-ITA-H-2013, BK-ROMROM-ITA-N-2013 7 385 ±10.80
BK-ROM-ITA-H-2013, BK-ROMROM-SPA-N-2013 3 14515 ±65.36
BK-ROM-ITA-H-2013, BK-RSH-N-2013 3 26753 ±870.31
BK-ROM-ITA-H-2013, BK-SOZ-N-2013 3 1358 ±9.18
BK-ROM-SPA-H-2013, BK-ANT-N-2013 3 2670 ±17.63
BK-ROM-SPA-H-2013, BK-AUA-N-2013 3 2623 ±16.36
BK-ROM-SPA-H-2013, BK-GER-KOM-N-2013 3 59070 ±194.65
BK-ROM-SPA-H-2013, BK-GER-LANG-N-2013 3 1120 ±26.24
BK-ROM-SPA-H-2013, BK-GER-LIT-N-2013 3 1108 ±11.35
BK-ROM-SPA-H-2013, BK-GER-MED-N-2013 3 1105 ±12.69
BK-ROM-SPA-H-2013, BK-GES-N-2013 3 1038 ±4.21
BK-ROM-SPA-H-2013, BK-INF-N-2013 3 1441 ±8.75
BK-ROM-SPA-H-2013, BK-JID-N-2013 3 1362 ±7.88
BK-ROM-SPA-H-2013, BK-JUED-N-2013 3 1150 ±15.63
BK-ROM-SPA-H-2013, BK-KOM-N-2013 3 1372 ±16.86
BK-ROM-SPA-H-2013, BK-KUN-N-2013 timeout - -
BK-ROM-SPA-H-2013, BK-LIN-GER-N-2013 3 1074 ±12.64
BK-ROM-SPA-H-2013, BK-LIN-N-2013 3 968 ±17.51
BK-ROM-SPA-H-2013, BK-MOD-N-2013 3 960 ±14.90
BK-ROM-SPA-H-2013, BK-PHI-N-2013 3 980 ±14.14
BK-ROM-SPA-H-2013, BK-POL-N-2013 3 1668 ±19.88
BK-ROM-SPA-H-2013, BK-ROM-FRA-N-2013 3 12144 ±127.20
BK-ROM-SPA-H-2013, BK-ROM-ITA-N-2013 3 11952 ±143.43
BK-ROM-SPA-H-2013, BK-ROMROM-FRA-N-2013 3 12011 ±300.97
BK-ROM-SPA-H-2013, BK-ROMROM-ITA-N-2013 3 10782 ±146.72
BK-ROM-SPA-H-2013, BK-ROMROM-SPA-N-2013 7 377 ±11.59
BK-ROM-SPA-H-2013, BK-RSH-N-2013 3 20403 ±549.06
BK-ROM-SPA-H-2013, BK-SOZ-N-2013 3 1344 ±19.55
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