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1 Abbreviations

ADP adenosine diphosphate

ATP adenosine triphosphate

COBRA constraint-based reconstruction and analysis

CRAN the Comprehensive R Archive Network

EFM elementary flux mode

EGC energy generating cycle

FBA flux balance analysis

GAM growth-associated maintenance

GEM genome-scale model

GENRE genome-scale network reconstruction

GPR gene to protein (enzyme) to reaction interaction

GSM genome-scale (metabolic) model

HGT horizontal gene transfer

MCMC Markov chain Monte Carlo

MMB minimal metabolic behaviour

MTF minimum total flux

NGAM non-growth-associated maintenance

SBML systems biology markup language

1



2 PREFACE

2 Preface

According to the “Promotionsordnung der Mathematisch-Naturwissen-
schaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vom
06.12.2013” § 6 (4) this document is written as a cumulative thesis.
Four manuscripts are presented along with an accompanying text in-
troducing the reader to the broader topic, explaining the manuscripts’
findings in connection with current literature and their relation to each
other. Additionally, for each manuscript the author’s contributions are
listed and an outlook discussing future research opportunities is given.

Manuscript 1 presents a novel software-package for constraint-based
modelling written in GNU R. This new software is significantly faster
than its competitors and integrates seamlessly in the environment of GNU
R. This work was published as:
Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J., & Lercher, M. J.
(2013). sybil - Efficient constraint-based modelling in R. BMC systems
biology, 7(1), 125.

Having this novel tool at hand it was possible to perform larger
in silico evolutionary experiments and investigate the evolution of complex
innovations in microbial metabolism. A hypothesis about the influence of
changing environments was proposed in Manuscript 2 and was published
as:
Szappanos, B., Fritzemeier, J., Csörgő, B., Lázár, V., Lu, X., Fekete, G.,
Bálint, B., Herczeg, R., Nagy, I., Notebaart, R. A., Lercher, M. J., Pál, C.,
& Papp, B. (2016). Adaptive evolution of complex innovations through
stepwise metabolic niche expansion. Nature Communications, 7(11607).

During the PhD project, a severe problem in published metabolic
network reconstructions was discovered: some models are able to produce
energy without any input of nutrients. This problem was already handled
in Manuscript 2, but a systematic investigation and a general solution
to the problem was not yet developed. Manuscript 3 presents a novel
method to detect and remove these energy-generating cycles:
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Fritzemeier, C. J., Hartleb, D., Szappanos, B., Papp, B., & Lercher, M. J.
(2017). Erroneous energy-generating cycles in published genome scale
metabolic networks: Identification and removal. PLOS Computational
Biology, 13(4), e1005494.

Concurrently with the work on Manuscript 3, a follow up on Manu-
script 2 was prepared that compares the adaptive evolution of multiple
unicellular species by creating a pan-genome-scale metabolic network
from 71 individual organism-specific genome-scale metabolic models. Ma-
nuscript 4 is submitted with the following bibliography:
Fritzemeier, C. J., Lieder, F., Szappanos, B., Jarre, F., Papp, B., Pal, C.,
& Lercher, M. J. (2017). Differences in the adaptability of generalist and
specialist bacteria: the influence of metabolic network size and structure.
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3 SUMMARY

3 Summary

Evolutionary biology is frequently challenged to explain how complex
adaptations, e.g., the mammalian eye, can arise from the purely stochastic
process of evolution. These complex adaptations, which require alterations
in multiple genes or even sets of completely new genes, could only arise
slowly if evolution was not guided by adaptations. Cellular metabolism is
without doubt a complex trait. Even the smallest unicellular organisms
are able to synthesize all necessary cell components from simple nutrients.

Manuscript 1 introduces the novel software package sybil for constraint-
based modelling with genome-scale metabolic models. Unlike most alter-
native software packages, sybil is very fast, flexible, and completely free
to use. Additional packages can easily extend sybil and thereby add new
algorithms to solve constraint-based problems.

Manuscript 2 proposes the hypothesis of stepwise metabolic niche
expansion: adaptations to changing nutritional environments accelerate
the evolution of complex metabolic pathways by utilizing exaptations.
Unlike previous work (Barve & Wagner, 2013), the new hypothesis can
explain complex adaptations without neutral mutations. In a flux balance
framework, a metabolic model of E. coli was allowed to adapt to new
environments by acquiring minimal reaction sets from a universe of
reactions, a process simulating lateral gene transfer (LGT). The hypothesis
is based on the result that some of these beneficial reaction sets were
found to be subsets of other beneficial reaction sets that are necessary for
adaptation to other environments and thus can serve as exaptations. A
phylogenetic ancestor reconstruction analysis confirmed that the genes of
beneficial reaction sets that serve as exaptations are frequently acquired
earlier than genes depending on the exaptation. Finally, an evolutionary
laboratory experiment with E. coli brought another piece of evidence for
this hypothesis.

Manuscript 3 deals with the problem of erroneous energy-generating
cycles in metabolic network reconstructions. Metabolic networks can con-
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tain reaction cycles able to produce an infinite amount of energy without
any nutrition uptake. Although such cycles are clearly thermodynami-
cally infeasible, they occur in over 85% of published metabolic networks
that were not extensively manually curated, such as models included
in the Model SEED (Henry et al., 2010) or MetaNetX (Ganter et al.,
2013) databases. Manuscript 3 is the first work that names the problem,
and presents a method to systematically identify and remove erroneous
energy generating cycles from metabolic networks. The identification can
efficiently be done with a modified flux balance analysis, but removal of
energy generating cycles can easily disrupt the cell’s energy metabolism
and thereby the biomass production. Thus a modified version of the
GlobalFit (Hartleb et al., 2016) algorithm was used, which calculates
minimal network changes that remove the erroneous energy-generating
cycles while simultaneously preserving the biomass production.

The work presented in Manuscript 4 uses pan-genome-scale metabolic
modelling to investigate the adaptability of 71 unicellular organisms to
new nutrient sources. The analysis revealed a strong correlation between
genome size and the number of reactions necessary for these adaptations.
While the organism with the most metabolic genes, Shigella flexneri,
is able to adapt to new environments with on average three additional
reactions, the organism analysed with the smallest, reduced genome, the
endosymbiont Buchnera aphidicola, needs at least 27 additional reactions.
These results confirm the findings of an abstract toolbox model (Maslov
et al., 2009); the metabolic capabilities of an organism scale approximately
quadratically with the number of metabolic genes. As proposed earlier
(Barve & Wagner, 2013), adaptations to one environment often go along
with “inadvertent” adaptations to other non-selected environments. By
quantifying this trait, it was found that organisms with large metabolic
networks profit more from adaptations than those with small networks,
although the latter acquire more reactions. A reason for this surprising
finding might be fewer branching points in the metabolic networks of
specialists. All results are consistent with the dichotomy of generalists
and specialists based on the number of initially growth promoting en-
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4 Zusammenfassung

Die Evolutionsforschung wird oft dadurch gefordert, dass sie erklären
muss wie komplexe evolutionäre Anpassungen, wie z.B. das Auge eines
Säugetiers, allein durch die zufälligen Prozesse der Evolution entstehen
können. Diese komplexen Anpassungen benötigen oft Veränderungen in
mehreren Genen oder komplett neue Gene und könnten nur langsam
entstehen, wenn die Evolution nicht durch Anpassungen geleitet würde.
Der Metabolismus einer Zelle ist ohne Zweifel eine komplexe Anpassung.
Schon kleinste Einzeller sind in der Lage alle nötigen Zellbestandteile aus
einfachsten Nährstoffen selbst zu synthetisieren.

Manuskript 1 stellt das neues Software Paket sybil für beschränkungs-
basierte Modellierung mit metabolischen Modellen in Genomgröße vor.
Im Gegensatz zu den meisten alternativen Software Paketen ist sybil sehr
schnell, flexibel und komplett kostenlos nutzbar. Sybil kann einfach mit
zusätzlichen Paketen erweitert werden und damit neue Algorithmen für
beschränkungsbasierte Probleme integrieren.

Manuskript 2 stellt die neue Hypothese der schrittweisen Expansion
über metabolische Nischen auf: Anpassungen an wechselnde Nährstoff-
umgebungen beschleunigen die Evolution von komplexen metabolischen
Reaktionspfaden durch Exaptationen. Im Gegensatz zu einer vorherigen
Arbeit (Barve & Wagner, 2013), kann die neue Hypothese die komplexen
Anpassungen ohne neutrale Mutationen erklären. Mit Hilfe der Fluss-
bilanzanalyse wurde die Anpassung eines metabolischen Modells von E.
coli durch lateralen Gentransfer (LGT) an neue Nährstoffumgebungen
simuliert. Dabei wurde dem Netzwerk je Anpassung nur die minimal
nötige Anzahl an Reaktionen aus einem Reaktionsuniversum hinzuge-
fügt. Die Hypothese basiert darauf, dass Mengen nützlicher Reaktionen
Teilmengen von Reaktionsmengen sind, die Anpassungen für eine andere
Umgebung sind und damit als Exaptationen dienen können. Mit einer
Analyse des phylogenetischen Stammbaums konnte bestätigt werden, dass
Gene der Reaktionmengen, die als Exaptation dienen, häufig vorher ins
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4 ZUSAMMENFASSUNG

Genom aufgenommen werden als Gene, die auf die Exaptation aufbauen.
Schließlich brachte ein evolutionäres Laborexperiment mit E. coli einen
weiteren Beweis für die Hypothese.

In Manuskript 3 geht es um das Problem von irrtümlich Energie
produzierenden Zyklen in metabolischen Netzwerk Rekonstruktionen.
Metabolische Netzwerke können Reaktionszyklen enthalten, die Energie
in unendlicher Menge produzieren können ohne dabei Nährstoffe aufzu-
nehmen. Obwohl solche Zyklen offensichtlich thermodynamische Gesetze
missachten, sind sie in über 85% der publizierten metabolischen Netzwerke
zu finden, die nicht von Hand kuriert wurden. Solche Modelle sind in der
Model SEED (Henry et al., 2010) oder MetaNetX (Ganter et al., 2013)
Datenbank zu finden. Manuskript 3 ist die erste Veröffentlichung, die das
Problem benennt und eine systematische Methode zur Identifikation und
Beseitigung von falschen Energie produzierenden Zyklen in metabolischen
Netzwerken präsentiert. Die Identifikation kann sehr effizient mit einer
Flussbilanzanalyse gemacht werden, aber die Beseitigung der Energie
produzierenden Zyklen kann sehr leicht den Energiestoffwechsel der Zelle
zerstören und damit auch die Biomasse Produktion. Deshalb wurde eine
modifizierte Version des GlobalFit (Hartleb et al., 2016) Algorithmus
benutzt, der minimale Änderungen am Netzwerk berechnet um die irr-
tümlich Energie produzierenden Zyklen zu entfernen aber gleichzeitig die
Biomasse Produktion erhält.

Die Arbeit in Manuskript 4 nutzt ein metabolisches Modell in Pan-
genomgröße und untersucht die Anpassungsfähigkeit von 71 einzelligen
Organismen an neue Nährstoffquellen. Dabei wurde eine starke Korrelation
zwischen Genomgröße und der Anzahl für die Anpassung nötigen Reaktio-
nen festgestellt. Während der Organismus mit den meisten metabolischen
Genen, Shigella flexneri, sich an neue Umgebungen mit durchschnitt-
lich drei zusätzlichen Reaktionen anpassen kann, braucht der von den
untersuchten Organismen mit dem kleinsten Genom, der Endosymbiont
Buchnera aphidicola, mindestens 27 zusätzliche Reaktionen. Diese Ergeb-
nisse bestätigen die Forschungsergebnisse des abstrakten Werkzeugkisten
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LITERATUR

Modells (toolbox model) (Maslov et al., 2009); die metabolischen Fähig-
keiten eines Organismus skalieren ungefähr quadratisch mit der Anzahl
seiner metabolischen Gene. Wie zuvor berichtet (Barve & Wagner, 2013),
bringen Anpassungen an eine Umgebung oft „unbeabsichtigte“ Anpassun-
gen an andere nicht selektierte Umgebungen mit sich. Die Quantifikation
dieser Eigenschaft zeigte, dass Organismen mit großen metabolischen Netz-
werken mehr von Anpassungen profitieren als Organismen mit kleinen
Netzwerken, obwohl letztere mehr Reaktionen für Anpassungen benötigen.
Ein Grund für dieses überraschende Ergebnis könnte die geringere Anzahl
an Verzweigungen in metabolischen Netzwerken von Spezialisten sein.
Alle Ergebnisse sind konsistent mit der Aufteilung in Generalisten und
Spezialisten auf Basis der Anzahl von initial Wachstum begünstigenden
Umgebungen. Deshalb könnten die Ergebnisse die Hürde erklären, die
Spezialisten überwinden müssen um ihre aktuelle ökologische Nische zu
verlassen.
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5 Introduction

Nothing in Biology Makes Sense Except in the Light of Evolution.

Theodosius Dobzhansky, 1973

All life on earth evolved through adaptive evolution. Before Darwin
(1859) wrote down his evolutionary theory, Paley (1802) brought up the
watchmaker analogy: he argued that if you would find a mechanic watch
on a meadow, the most likely explanation was, that there had to be a
watchmaker who built that said watch. Naturally, the watchmaker is only
a analogy for a god and the watch is meant to be a complex system like
a living being. This concept is called “intelligent design” and is taught
in more and more science classes around the world as replacement for
evolutionary studies (Berkman et al., 2008; Watts et al., 2016). But, if not
by a god, how was it even possible that complex traits have evolved without
a designer, if genetic modifications, i.e., mutation or recombination, are
purely stochastic processes? Richard Dawkins shows in his book “The
Blind Watchmaker” (1986) how something complex can be arise from
random variation and selection. He utilized the infinite monkey theorem:
a monkey is sitting in front of a typewriter and presses the keys randomly.
After an infinite amount of time, we can be sure that the monkey has
typed a certain sentence, e.g., Dawkins uses the sentence “Methink it
is like a weasel.” from William Shakespeare’s “Hamlet”. However, this
argument is criticized because of the immense time requirement. The
process takes so long, because the monkey always starts to write the
sentence from the beginning. But if we fix the letters that the monkey
already typed correctly and let him only retype the wrong ones, the
time to finish the sentence is strongly diminished (Dawkins, 1986). So to
get something meaningful from a random input, an evaluation of fitness,
i.e., correctness of the letters, and a rule for selection, i.e., “keep the
correct letters”, is needed. Additionally, the modularity of a trait, i.e.,
the positions of the letters are independent, is important for the evolution
of complex adaptations (Wagner & Altenberg, 1996).
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5 INTRODUCTION

The research field of metabolic network evolution deals with the adap-
tive evolution of complex systems, because metabolism is a complex trait.
The metabolic network represents the entire metabolism of unicellular
lifeforms and is sufficient for synthesizing basic building blocks of the cell
used for reproduction. Microorganisms are central to the biotechnology
industry, because of their metabolic capabilities. This is not a new inno-
vation: fermentation of sugar has been used since thousands of years to
produce alcoholic beverages. Other examples are the use of yeast in bread
and the use of lactic acid bacteria to produce yoghurt. Recent examples
are the production of ethanol as fuel and the decomposition of various
waste materials. Much effort is put into optimizing microbial metabolism
for industrial purposes (Adrio & Demain, 2014). To do so efficiently, the
metabolism of the microbes has to be fully understood. These complex
systems were shaped over millions of years of evolutionary fine-tuning.
This long time of adaptation made them efficient in performing their
tasks compared to purely chemical processes (Li et al., 2014). But the
metabolism is not designed, and a coherent concept describing metabolic
systems is missing. But in the light of evolution, we can try to understand
how organisms have evolved and why they are as they are. This allows
us to propose hypotheses about how those networks were shaped, and
a growing understanding regarding the interplay of their functions may
emerge.

5.1 Metabolic Modelling

Conducting experiments in the laboratory is undoubtedly an expensive
and time consuming task. Thus, over the last two decades much effort was
put into the development of computational methods that simulate wet lab
experiments. In combination with the rising performance of computers and
supercomputers (Waldrop, 2016), the complexity of simulated biological
processes could be increased. Even though these in silico methods cannot
and are not intended to replace experiments completely, they complement
and reduce the amount of wet lab experiments necessary. Additionally,

12



5.1 Metabolic Modelling

simulations allow to conduct evolutionary experiments that are impossible
to be done with living organisms on a reasonable time scale.

Techniques for metabolic modelling can be classified into two types:
mechanistic models (also called kinetic models) and constraint-based
models.

Kinetic models are created by combining biochemical reactions whose
reaction kinetics are sufficiently understood to describe them quantita-
tively. All reactions in the model have to have known enzyme kinetics,
reaction stoichiometry, and mass and electron balances. The authors of
a kinetic model must carefully check every detail of a reaction before
putting the reaction into the network. The resulting networks only have
a small number of reactions and often only represent single pathways or
parts of the cell’s metabolism, because the necessary kinetic parameters
are difficult to measure. Additionally, simulations with genome-scale
kinetic models are computational challenging (Wiechert & Noack, 2011),
because they involve solving many differential equations.

The other type of metabolic modelling is constraint-based modelling.
In this approach, the space of all possible reaction rates for each reaction
is constrained by the stoichiometry, predefined minimal and maximal
reaction rates, and the steady-state condition that the concentrations of
metabolic intermediates are constant. Then, one solution is selected from
this solution space by maximizing a given objective function (Orth et al.,
2010). This approach is based on linear programming and thus it is very
fast to compute, i.e., it requires only split seconds for a genome-scale
model (Gelius-Dietrich et al., 2013).

In silico evolutionary experiments demand a high number of simula-
tions, ideally performed on genome-scale metabolic networks. In contrast
to kinetic modelling, constraint-based modelling can cope with both of
those demands in acceptable computation times. Thus, this thesis fo-
cuses on constraint-based modelling with genome-scale metabolic network
reconstructions.

13



5 INTRODUCTION

5.1.1 Metabolic Networks

A metabolic network is the reconstruction of the metabolism of a specific
organism (or sets of organisms). By applying modelling techniques, it can
be used to simulate metabolic functions of the organism. The often added
attribute “genome-scale” indicates that the metabolic network includes
all enzymes found in an organism’s genome.

The term metabolic network is generously used and is often taken
as synonym for other more exact technical terms. Three of the most
important and frequently used terms are: GENRE, GEM, and GSM.
A genome-scale network reconstruction (GENRE) is the collection of
different kinds of information linked to an organism and a specific genome
(Price et al., 2004; Feist et al., 2009; Thiele & Palsson, 2010); this
will be explained in detail in Section 5.1.2. The genome-scale model
(GEM) is a mathematical model derived from the GENRE by applying
constraint-based modelling methods, e.g., flux balance analysis (FBA),
which is described in Section 5.1.3. In connection with the model name
the abbreviation of “genome-scale (metabolic) model” (GSM) was used
earlier to stress the genome-scale size of a model, e.g., in the name
“iJR904 GSM/GPR” (Reed et al., 2003); in this example GPR indicates
that the model also contains “gene to protein (enzyme) to reaction
interactions” (see Section 5.1.2). Currently GSM is mostly used as stand-
alone abbreviation (Ganter et al., 2013), because most of the newly
published models are of genome-scale size anyway.

The first genome-scale metabolic reconstruction was published for
Haemophilus influenzae (Schilling & Palsson, 2000), which also was the
first free living organism for which the genome was completely sequenced
(Fleischmann et al., 1995). From there on, many scientific groups pub-
lished whole-genome metabolic network reconstructions for various organ-
isms. Many publications in this field come from the group of Bernhard Ø.
Palsson. His group also published the first model (iJE660) for Escherichia
coli K-12 strain MG1655 (Edwards & Palsson, 2000) and also the three
most popular metabolic models of E. coli: iJR904 (Reed et al., 2003),
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5.1 Metabolic Modelling

iAF1230 (Feist et al., 2007), and iJO1366 (Orth et al., 2011). Each of
these models is basically a refinement of the preceding model; in each
step more metabolic genes were added and thus the models can predict
in vitro growth increasingly better.

Most metabolic models are not named after the represented organism,
but follow a special naming convention suggested by Reed et al. (2003).
The first letter of the name is always an i as abbreviation for “in silico”.
This is followed by the initials of the first author and then by the number
of genes contained in the reconstruction. If a model is derived from
another model, it should be named by the original model, followed by
an additional letter (e.g., iAF1230b). This convention allows to easily
distinguish between different models for the same species.

5.1.2 Formal Definition of a Metabolic Network

A metabolic network is the a set of multiple reactions, where reactions
are connected with each other on basis of shared metabolites. Products
of one reaction are the educts of another reaction. By the concatenation
of multiple reactions, reaction pathways are formed. A metabolite can
also be used by more than two reactions, which causes a branching of a
reaction pathway.

The connections between reactions are described in the stoichiometric
matrix S. If the metabolic network consists of n metabolites and m

reactions, this matrix S is in Rn×m. The matrix’ entries Si,j are defined
to be the stoichiometric coefficient of the i-th metabolite in the j-th
reaction. For a metabolite not participating in a reaction, the entry
Si,j equals zero. A negative entry Si,j indicates that the i-th metabolite
is consumed in the j-th reaction. Analogously, positive values indicate
the production of a metabolite. This matrix can be read either row-
wise, indicating which reaction uses the i-th metabolite, or column-wise,
indicating which metabolites participate in the j-th reaction. While in
nature the same metabolite can occur in different cellular compartments,
in a metabolic network identical chemical compounds that occur in distinct

15



5 INTRODUCTION

cell compartments are treated as different metabolites. The stoichiometric
matrix S is the core information of a metabolic model and this information
is sufficient for basic analyses, e.g., the connectivities of reactions and
metabolites.

The direction of biochemical reactions is always reversible. However,
because of cellular metabolite concentrations and the enzyme kinetics,
a predominant direction can often be determined, making the reaction
effectively irreversible in practice. To include the directionality, upper
and lower bounds are defined for each reaction. We will refer to these as
two vectors ~l and ~u, for lower and upper bounds, respectively. The j-th
reaction flux vj , i.e., reaction direction and rate, is therewith restricted by
lj ≤ vj ≤ uj. A metabolic network with reaction directions is sufficient
to perform an FBA and even more advanced analyses, e.g., calculating
minimal metabolic behaviours (MMBs) (Larhlimi & Bockmayr, 2005) or
elementary flux modes (EFMs) (Schuster et al., 1996; Zanghellini et al.,
2013).

The reactions in metabolic networks can be categorized into three
types: internal reactions, exchange reactions, and biomass reactions. The
internal reactions are mass and charge balanced and interconvert metabo-
lites. Those reactions model enzymatically catalysed reactions, transport
processes across membranes, or spontaneous reactions of metabolites.
Exchange reactions can eliminate a metabolite from the network or –
depending on its direction – can create the metabolite from the void. A
reversible exchange reaction that exchanges metabolite Mi is defined as:

Mi −−⇀↽−− ∅

This is necessary as input (source) and output (sink) for the model and
can be interpreted as the metabolites diffusing to and from the cell in
the growth medium. Hence, environmental conditions can be changed by
setting the lower and upper bounds for exchange reactions appropriately.
Exchange reactions are of course not mass or charge balanced. Finally,
biomass reactions are a combination of the first two types and are ba-
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sically a set of reactions that are coupled together, describing the total
metabolic demand caused by cellular growth. This reaction set contains
an energy-dissipation reaction and reactions acting as sinks for biomass
precursors. The energy-dissipation reaction in the biomass reaction wastes
energy by typically splitting adenosine triphosphate (ATP) into adenosine
diphosphate (ADP) (Feist et al., 2007); this growth-associated mainte-
nance (GAM) reaction models the amount of energy necessary for growth.
Common biomass precursors are amino acids for protein biosynthesis,
nucleotides for DNA replication and transcription, and lipids to assemble
membranes. The exact composition of the biomass and therefore the
biomass precursors is organism dependent and can vary, e.g., by additional
cell wall components.

Gene knockouts can be used to optimize microbial strains for higher
product yield in the biotechnology industry (Burgard et al., 2003). In order
to simulate such gene knockouts information about the connection between
genes and reactions is required (i.e., which gene encodes which protein
and which proteins are needed for a certain enzyme). This so called “gene
to protein to reaction” interaction (GPR) is defined in terms of boolean
expressions. Identifiers of the genes represent the genomic presence or
absence of a gene. These identifiers are connected by AND or OR operators
for protein complexes or isoenzymes, respectively. The evaluation of this
boolean expression for the j-th reaction with the presence and absence of
the genes indicates whether the necessary enzyme for this reaction can
be synthesized and thus if the reaction can be active. Otherwise the flux
through reaction vj is constrained to zero.

All the above information is typically accompanied by sum formulae
of the metabolites or cross references of metabolites, reactions, and genes.
This is not a necessity for constraint-based modelling, but it simplifies
the assignment of data from other source to integrate the model into a
larger scope. The collection of the described data, i.e., the stoichiometric
matrix, upper and lower bounds, and reaction and metabolite details, in
genome-scale is called a GENRE. The use of a GENRE with constraint-
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based modelling is described in in the next section and the creation of a
GENRE is described in Section 5.1.4.

5.1.3 Constraint-Based Modelling

The field of constraint-based modelling comprises a set of over 100 methods
that have evolved over time and can even be classified in a phylogeny
(Lewis et al., 2012). This set of methods was given the name constraint-
based reconstruction and analysis methods (COBRA methods). Central
for these methods is the stoichiometric matrix. This can represent just
a single reaction pathway, the full metabolism of a single cell, or the
joint metabolism across multiple cells. Most studies utilizing COBRA
methods simulate the metabolic phenotypes of single cellular organisms;
however, applications to multicellular organisms have also been explored
(Martins Conde et al., 2016). FBA is the most prominent constraint-based
modelling technique.

Papoutsakis (1984) built the foundation for FBA. He developed a sto-
ichiometric equation for butyric acid fermentation and could successfully
verify the calculated data with experimental data from the literature.
Later Watson (1984) was the first to use such a stoichiometric equation
in connection with linear programming. The program was developed for
educational purpose and was written for an Apple II computer with only
48 kB (Watson, 1984). The objective function in this first approach was
to minimize free-energy dissipation. Fell and Small (1986) investigated
the synthesis of triglyceride from glucose in rat adipose tissue with flux
balance analysis. This was the first study applying flux balance analysis,
though the explicit term was not defined yet.

Flux balance analysis (FBA) is the simplest of the commonly used
constraint-based modelling methods, and a multitude of more advanced
methods follow the same principles as FBA. Due to the importance of
FBA for the manuscripts in this thesis a short introduction to FBA is
given here, although FBA is described in textbooks and in numerous
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publications (e.g., Edwards et al. (2002), Price et al. (2004), Feist et al.
(2007), Orth et al. (2010)).

The aim of FBA is to find a flux vector ~v, such that each single
reaction flux vi satisfies the constraints of the metabolic network: Given
a metabolic network as defined in Section 5.1.2 with it’s stoichiometric
matrix S, we can formulate the change of metabolite concentrations ~c

over time depending on the flux vector ~v.

S~v =
d~c

dt

The time scales for enzymatic reactions and diffusion are magnitudes
faster than cell growth, regulation, and process dynamics. Thus, we
can simplify the calculation by assuming steady-state conditions, i.e.,
no (internal) metabolite concentration changes. Practically speaking, all
metabolites are instantly consumed as they are produced, and there is
neither accumulation nor depletion of metabolites. Additionally, every
single atom type entering the model through exchange reactions has
to leave the network at the same rate. By combining the steady-state
condition and the formula above, we get:

S~v =
d~c

dt
= 0 ⇐⇒ S~v = 0

This equation describes the solution space of ~v. The solution space
contains all possible flux vectors that follow steady-state condition and
the stoichiometry of the metabolic network. Genome-scale metabolic
networks typically consist of more reactions (m) than metabolites (n),
so m > n. When solving S~v = 0, we have more unknown variables
(~v = [v1, . . . , vm]) than there are equations in this system of equations. In
this under-determined system of equations, ~v is not exactly determined,
rather multiple solutions fulfil the criteria. Although we cannot calculate
a single solution for ~v, we can try to narrow down the solution space
by adding the constraints on reaction directionality, i.e., upper (vi ≤ ui)
and lower flux bounds (vi ≥ li). But even with these constraints, we still
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typically have a multidimensional solution space that can be described as
a steady-state flux cone (David et al., 2011; Larhlimi et al., 2012), which
contains, although within certain bounds, still infinitely many solutions.
We can now define an objective function Z = ~z>~v, with ~z ∈ Rn, to find
in this cone the solution with maximal Z. Typically, ~z is a vector of
zeros having a one at position j, meaning the objective is to optimize
the flux through the j-th reaction. The optimality criterion chosen for
microbes is usually to maximize the model’s biomass reaction flux, but
other objectives are possible, e.g., fixing the biomass reaction flux to a
certain rate and minimizing glucose uptake. However, after optimization
the solution for ~v might still not be unique. There might exist infinite
equivalent solutions of ~v with the same value for Z. Thus, if a unique
solution is needed, basic FBA is not sufficient. Alternatives like minimum
total flux (MTF) (Holzhütter, 2004) or geometric FBA (Yuan et al., 2016)
can extend FBA to calculate unique solutions for ~v.

The first approaches of using FBA consisted of writing self-made
scripts producing input files for the linear optimization software. At this
time, there were no complete software solutions that support the handling
of metabolic networks and the easy usage of constraint-based methods.
This changed with the publication of the COBRA Toolbox by Becker et al.
(2007). This Matlab toolbox supports easy input of metabolic networks
from SBML-Files and enables the user to conduct an FBA with just a few
lines of code. A later major update of this toolbox (Schellenberger, Que,
et al., 2011) added more functionality, namely additional methods related
to FBA like network gap filling, 13C analysis, omics-guided analysis and
visualization (Schellenberger, Que, et al., 2011).

Although various alternative software solutions for constraint-based
modelling exist, most of them are pretty slow and thus not suitable for
large-scale analyses. The computation time for analyses with single models
is still acceptable, but for evolutionary experiments the complexity rises
vastly. Additionally, the COBRA Toolbox is based on the commercial
software Matlab, making it expensive to use.
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The publication of Manuscript 1 brought a new alternative to the
existing set of available software packages in the field of constraint-based
modelling. The new package sybil for the statistical programming lan-
guage and software environment GNU R (R Development Core Team,
2014) is open source, just as R itself, and thus completely free to use.
Additionally, Manuscript 1 reported that sybil out-competes most alter-
native software packages in terms of computation speed. Sybil provides
high-level functions that make it easy to perform simple analyses even
for inexperienced users. But it is possible for developers to easily imple-
ment new constraint-based algorithms that seamlessly integrate, because
sybil has an object-oriented architecture. These new algorithms can then
be used in the top level functions without knowledge of the underlying
implementation. While implementing extensions, the developer can still
profit from sybil’s unified solver interface and the new algorithm is com-
patible with all solvers that are supported by sybil. Another advantage
of the object-oriented architecture is, that experienced users can adapt
their program to their needs and gain even higher speed-ups. The re-
lated package sybilSBML can easily read metabolic networks published as
SBML files and generates from this instances of a class designed to store
metabolic networks. The information stored in this class is accessible in
a simple manner for other packages, e.g., the package RSeed described in
Manuscript 1.

5.1.4 The Reconstruction Process of Genome-Scale Metabolic
Network Models

Most of the exact details of the reconstruction methodology were kept
undisclosed by the groups creating the first GENREs. Although there was
the necessity for a general standard of how to reconstruct GENREs, it
took several years before the articles Feist et al. (2009) and, in even more
detail, Thiele and Palsson (2010) set the standard for the reconstruction
of metabolic networks. All earlier approaches of network reconstructions
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were done without this protocol, but follow the same or similar steps
(Suthers et al., 2009; AbuOun et al., 2009).

The nearly one hundred steps of the reconstruction protocol (Thiele
& Palsson, 2010) can be summarized like this: first the genome of the or-
ganism of interest has to be annotated. Thereby are genes with metabolic
functions identified and associations with similar genes in other organisms
are established. Afterwards, for each metabolic gene the connection to
the right enzyme and the right reaction has to be made. This initial
set of reactions is considered a draft reconstruction. In the first place,
these steps can be run automatically. Now an excessive task of manual
curation starts: the reconstruction refinement phase. Each reaction has
to be reviewed to ensure correct metabolite formulae and reaction sto-
ichiometry. Importantly, the reaction direction has to be determined.
Additional reactions are defined that have no evidence in the genome and
are not catalysed by an enzyme, e.g., transport processes via diffusion,
exchange reactions, and spontaneous reactions. Finally, the biomass reac-
tion, non-growth-associated maintenance (NGAM), i.e., energy consumed
by the organism for living, and growth media composition are defined.
Now an evaluation phase follows that tests whether predictions of the
model correlate with the known physiology of the organism.

One suggested step is called gap filling. The draft reconstruction
process does not necessarily create fully connected reaction pathways.
This can be due to failed annotations or missing information. An earlier
published algorithm is able to detect and close these gaps by adding a
minimal number of reactions from a given database to the reconstruction
(Satish Kumar et al., 2007). Of course this can falsely add new metabolic
functions to the network by closing gaps that actually exist in the organ-
ism’s metabolic network. The algorithm GlobalFit solves this problem
by contrasting growth and non-growth data sets and finding minimal
changes in the network to match those (Hartleb et al., 2016). The steps
of the reconstruction refinement phase are repeated until the predictions
cannot be further improved. In the end the finished model has to be
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saved in a file format that supports easy exchange between programs.
The systems biology markup language (SBML) (Hucka et al., 2003) is
established as a standard file format for constraint-based modelling.

The process of creating a GENRE for a new organism involves a lot of
manual work and often lasts over a year (Thiele & Palsson, 2010). This
changed with the presentation of the first high-throughput pipeline for the
generation of genome-scale metabolic models (Henry et al., 2010; Devoid
et al., 2013; Overbeek et al., 2014). The Model SEED pipeline basically
automates the steps from the established protocol (Thiele & Palsson,
2010). This pipeline runs purely as a web service with a close connection
to the RAST service (Overbeek et al., 2014). First, the RAST service is
used to annotate the genome, i.e., to assign function to the genes of the
genome on the basis of sequence homology. With the annotated genome
as input, the Model SEED service reconstructs the metabolic network.
Just recently a software was published that offers a similar pipeline, but
is executable on a local machine (Cuevas et al., 2016).

As the extensive manual work in the reconstruction process has to be
automated, the pipelines rely on a reaction database that was curated
beforehand (Henry et al., 2010; King et al., 2016). The resulting recon-
structions have to be considered draft reconstructions and still require
human revision (Henry et al., 2010). An intermediate solution has been
chosen by Monk et al. (2013). They chose to combine automated steps
with manual curation and created 55 strain-specific E. coli GENREs.
These semi-automated reconstructions are considered to have the same
quality as purely manually reconstructed metabolic networks.

Assigning thermodynamically feasible reaction directions is a crucial
step in the reconstruction process, because standard FBA cannot de-
termine those during calculation. Wrongly assigned reaction directions
are a likely reason for energy generating cycles (EGCs), which create an
unlimited energy supply without any nutrient uptake. These EGCs are
clearly thermodynamically impossible, but were occasionally discovered
in published GENREs by various authors, e.g., Orth et al. (2011), Arnold
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et al. (2015). Although enhanced varieties of FBA include thermody-
namic constraints (Henry et al., 2007; Schellenberger, Lewis, & Palsson,
2011), these methods are still unable to exclude EGCs from the solu-
tion space. Although cycles capable of generating unlimited energy can
severely compromise the prediction power of a GSM, previous literature
neither provided a consistent name nor a systematic method to find and
remove those cycles. Manuscript 3 deals with this problem. Addition-
ally, it reports a systematic investigation of three big databases with
metabolic reconstructions. The analysis reveals that EGCs frequently
occur in GENREs, but they can easily be corrected in most cases. Es-
pecially GENREs created from the automated reconstruction pipeline
Model SEED showed a high amount of EGCs. By removing one of the
reactions involved, EGCs can easily be inactivated. However, if this is
not done with great care, it can easily disrupt the energy metabolism;
thus, the GlobalFit algorithm was used to perform network changes.
This was done by slightly adapting the algorithm and then contrasting
one case enforcing biomass production with a second case forbidding
artificial energy production, i.e., the presence of EGCs. Thus, growth of
the corrected model is assured while simultaneously removing the EGC.

5.2 Evolution of Complex Innovations

Biological systems are very complex; no genome-scale system is currently
fully understood. However, science can explain the function, composition,
or purpose of many complexes, sequences, or interactions among them.
The circadian clock, for example, is a well studied system where mathe-
matical models precisely predict the oscillating behaviour and the minimal
number of enzymes needed (Scheper et al., 1999). However, most of these
systems would be constructed differently and often much simpler if an
engineer had designed them. Artificial proteins can be built with the same
function as the wild type protein, but with a reduced number of distinct
amino acid types (Kamtekar et al., 1993; Davidson et al., 1995; Walter
et al., 2005). Why has nature evolved into using more different kinds of
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amino acids than necessary? And why don’t organisms use even more
amino acids? The answer to the second question was given by Saint-Leger
et al. (2016): With a rising number of used amino acid types, the tRNAs
have to differ sufficiently from each other to avoid false charging of the
tRNAs. For the twenty proteinogenic amino acids, the tRNAs seem to
differ enough (Saint-Leger et al., 2016). Metabolic networks were also
not built by a designer, but have evolved over millions of years. We also
have to ask why metabolic networks are shaped like they are today and
how it was possible from purely stochastic processes to evolve complex
metabolic innovations.

Adaptation is explained by Freeman and Herron (2001) as follows: “A
trait, or integrated suite of traits that increases fitness of its possessor
is called an adaptation and is said to be adaptive”. In connection with
metabolic networks in microbes, an adaptation can be the ability to utilize
a novel carbon source to synthesize the essential cell compounds.

Today, several competing hypothesis exist about the driving force of
metabolic network evolution (Schmidt et al., 2003; Caetano-Anollés et al.,
2009). Although evolutionary theories can never be fully proven, simula-
tions and data analyses give evidence about their certainty. Horizontal
gene transfer (HGT) has not only an important role in the metabolic
adaptability of prokaryotes (Pál et al., 2005), but also has a major in-
fluence on the structure of bacterial genomes (Koonin & Wolf, 2008).
Thus, the majority of studies in the field of metabolic network evolution
consider whole gene gains and losses (and respective reaction gains and
losses) instead of point mutations.

The neutral theory of molecular evolution proposes that the majority
of substitutions arise as neutral mutations, i.e., the mutation does not
provide a fitness benefit for the organism and is not driven by selection
(Kimura, 1983). Evidence for neutral evolution can be observed in nature.
For example, Schultes and Bartel (2000) found a specific RNA sequence
that is able to form two ribozymes with completely distinct function.
Additionally, they found minor variants of this sequence that can assemble
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into only one ribozyme, and these variants can be interconverted by purely
neutral mutations as regards their common function. The neutral theory
has been controversial for a long time, but it was finally not able to explain
key aspects of protein evolution (Kreitman, 1996). Neutral mutations do
occur in nature but were found not to be the driving force in evolution
(Kreitman, 1996). Wagner (2008) suggests a reconciliation theory with
neutral mutations as origins of adaptive innovations. That is, neutral
mutations prepare the basis for an adaptation and only have a beneficial
effect in combination with another consecutive mutation. This can be
equally applied to whole genes: a novel gene without beneficial effect can
have a beneficial effect in conjunction with a later gene acquisition.

5.2.1 Exaptation promotes Complex Innovations

An adaptation to one condition can also serve as an inadvertent prepara-
tion for a later adaptation to another condition. This process is called
exaptation. The textbook example for exaptations is the evolution of
feathers for flying. At first, feathers only had the purpose of thermal
insulation. Later, the feathers were exapted for flying. The term preadap-
tation is often used synonymously to exaptation, but preadaptation can
suggest an intention in evolution and this should be avoided (Gould &
Vrba, 1982). Exaptations can frequently be found as prerequisites for
complex innovations (Bock, 1959; Hayden et al., 2011). The question is
now if those exaptations typically arose by purely adaptive steps during
evolution like the feathers, or if they evolved as non-adaptive traits.

Exaptation can also be found in metabolic networks: As adaptations to
a new nutrient, e.g., a new carbon source, new reactions have to evolve or
have to be acquired from other organisms. These new reaction pathways
might now be utilized for the adaptation to a second new nutrient. Thus,
the adaptation to the first nutrient provides an exaptation for the second
nutrient.

Barve and Wagner (2013) argue that exaptations can arise non-
adaptively as a side product of adaptive evolution. The experimental basis
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for this theory is given by laboratory evolution with RNA enzymes that
were performed by the same group (Hayden et al., 2011). Additionally
many computational studies support that theory (Barve & Wagner, 2013;
Hosseini et al., 2015; Hosseini & Wagner, 2016; Hosseini et al., 2016).
Barve and Wagner (2013) explain the importance of non-adaptive muta-
tions as exaptation for evolutionary innovations. For this, the authors
use a Markov chain Monte Carlo (MCMC) algorithm to generate random
samples of metabolic networks. The evolving networks are demanded
to remain viable on a certain carbon source. Starting from an E. coli
network, in each step of the MCMC simulation, one reaction is added
from a database and another reaction is removed from the network. Thus
the generated random networks remain constant in size, but sample the
space of available reactions from the database. Importantly, the random
walk may add reactions (or, in a stepwise fashion whole pathways) to the
metabolic network that are disconnected from the rest of the network
and thus do not have a beneficial effect. After the random walk, the
resulting random network is tested for growth on other carbon sources.
The number of new usable carbon sources is interpreted as a measurement
of exaptation. Their main finding is that although the networks are
adapted to a certain carbon source, they are typically also viable on
multiple other carbon sources, emphasizing the importance of exaptation.
Other work from mostly the same authors (Hosseini et al., 2015; Hosseini
& Wagner, 2016; Hosseini et al., 2016) follow the same strategy and
come to similar conclusions. It is important to note, however, that the
simulation procedure is biologically unrealistic: bacteria tend to loose
genes that don’t contribute to fitness (Mira et al., 2001) and generally do
not contain large numbers of randomly sampled surplus genes. Another
strong argument against non-adaptive origins of exaptations is that this
process is expected to be too slow: the neutral mutations are unlikely to
be fixed in populations. Furthermore, no direct empirical support exists
for this theory in bacteria.

Manuscript 2 provides evidence that supports the hypothesis that
the adaptation to changing environments accelerates the development
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of metabolic innovations in bacteria. The proposed hypothesis demands
every gene acquisition to be adaptive, i.e., to have a direct fitness ben-
efit; neutral gene acquisitions are not allowed. Although neutral gene
acquisitions frequently happen, they are unlikely to be fixed in the popu-
lation. Evidence for this hypothesis is provided by three complementary
analyses. First, a computational study with a genome-scale metabolic
network shows the importance of exaptation and changing environments
for complex metabolic innovations in E. coli. The analysis revealed that
purely adaptive mutations serve as exaptations for a following adapta-
tion. Second, a comparative genomic analysis of 943 bacterial genomes
was performed that supports the hypothesis and the findings from the
first analysis. To investigate the history of gene gains and co-gains, the
ancestral states of orthologous enyzmes were reconstructed along the phy-
logenetic tree. Patterns of enzyme gains that correspond to the hypothesis
were significantly over-represented in this tree. Third, a wet laboratory
experiment shows how an E. coli mutator strain develops an exaptation for
growing on ethylene glycol (EG) while adapting to propylene glycol (PG).
The wild type E. coli can grow on neither of them (EG-, PG-). With the
high mutation rate of the mutator strain, adaptation to propylene glycol
(PG+) is possible, but still growth on ethylene glycol remains impossible
(EG-). Subsequently, the PG+ cells can adapt to ethylene glycol (EG+).
Further investigation discovered the necessity of two over expressed genes
for growth on ethylene glycol (EG+), while only one of those genes is
necessary for growth on propylene glycol (PG+). Thus, adaptation to
PG provides an exaptation for growth on EG, providing direct evidence
for the stepwise metabolic niche expansion hypothesis.

5.2.2 Ability for Metabolic Adaptation is Genome-Size Depen-
dent

Prokaryotes can obtain genes via HGT and expand their metabolic net-
work in order to utilize additional nutrients. The key analysis in Manu-
script 2 dealt with the adaptability of E. coli to new environments. To
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simulate this, a set of minimal nutritional environments was created. For
each environment that did not support growth of E. coli, was the number
of additional reactions calculated that are necessary to make the model
viable in this environment. Astonishingly, in the vast majority (74%)
of environments, only one to three additional reactions were necessary
for adaptation. Although E. coli is known to be a generalist, i.e., able
to grow in many different environments, the mechanisms behind this
remained unclear. Is this ease of adaptation specific to E. coli, or is it
a general feature of bacterial metabolism? Manuscript 4 explores this
central question of metabolic adaptability across different species and
examines which factors influence adaptability.

Only very limited literature exists on this topic. One theoretical
approach addressing this issue is the toolbox model from Maslov et al.
(2009), which can be described as follows. Every metabolic gene or enzyme
of an organism is a tool in a toolbox. Multiple tools can be combined into
a metabolic pathway. If a new metabolic gene evolves in the organism or
is acquired via HGT, the toolbox is enlarged. The crucial point is that a
large toolbox compared to a small one gains more functionality by adding
one tool, because the novel tool can be combined with more already
existing tools. Maslov et al. (2009) use simulations of abstract networks
to explain with this model the quadratic scaling between transcription
factors and gene count (Van Nimwegen, 2003).

Wolf and Koonin (2013) propose a biphasic model of genome evolution
based on genome sequence analysis. Their phylogenetic analyses revealed
that short phases of rising genome complexity alternate with long phases
of genome reduction. Hence, specialists arise from genome reductions.
Nevertheless, the reasons for this biphasic evolution and hurdles detaining
specialists to evolve into generalists remain unclear.

Manuscript 4 shows how the metabolic adaptabilities of 71 unicellular
organisms differ significantly depending on their metabolic gene content.
Organisms with a high number of metabolic genes tend to adapt more
easily to new nutrients than small organisms with reduced genomes.
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These findings, which were obtained in a flux balance analysis framework,
correspond to the earlier proposed abstract toolbox model (Maslov et
al., 2009). Additionally, is in this paper shown, that organisms can be
partitioned into groups of generalists and specialists based on the number
of viable environments. Metabolic models categorized as generalists
tend to develop multiple collateral additional metabolic capabilities by
adapting to one new environment, while the specialist’s adaptations can
mainly serve only the specific purpose favoured by natural selection. The
metabolic network structure reflects this partitioning as well. Specialists
tend to have more linear metabolic pathways, i.e., they have less branching
points than generalists.
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6 Manuscripts

This section includes four manuscripts with C.J.F. being first author,
shared first author, or co-author. A copy of each manuscript is followed
by a paragraph indicating the contributions to that manuscript. This
is followed by a section giving some outlook on the development in this
field.

6.1 Manuscript 1: Sybil – Efficient Constraint-Ba-
sed Modelling in R

This manuscript is published as:
Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J., & Lercher, M. J.
(2013). sybil - Efficient constraint-based modelling in R. BMC systems
biology, 7(1), 125
Digital Object Identifier (DOI): 10.1186/1752-0509-7-125
URL: https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-
7-125

6.1.1 Contributions

C.J.F. developed the sybil add-on package RSeed. C.J.F tested and
applied sybil and made suggestions for improvements and additions.
Currently, C.J.F. is maintaining the package on the Comprehensive R
Archive Network (CRAN).

6.1.2 Outlook

Currently, sybil is used in many labs as software for constraint-based
modelling. Additional packages were developed by other authors: e.g.,
Desouki et al. (2015) implemented a method to remove futile cycles from
the flux distribution, and Hartleb et al. (2016) built the GlobalFit
(Section 5.1.4) algorithm within the sybil package. Further packages
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extending sybil are sybilccFBA1, sybilEFBA2, and sybilDynFBA3. Ad-
ditionally, the package BacArena4 is in development. It can be used to
simulate bacterial growth of different organisms and their interaction in
time and space and uses sybil as its engine to perform the constraint-
based calculations. All further presented manuscripts in this thesis are
based on the package sybil. Also a manuscript about the integration of
kinetic reaction parameters and non-metabolic processes into sybil is in
preparation.

6.1.3 References

Desouki, A. A., Jarre, F., Gelius-Dietrich, G., & Lercher, M. J. (2015).
CycleFreeFlux: efficient removal of thermodynamically infeasible
loops from flux distributions. Bioinformatics (Oxford, England),
31(13), 2159–65.

Hartleb, D., Jarre, F., & Lercher, M. J. (2016). Improved Metabolic
Models for E. coli and Mycoplasma genitalium from GlobalFit, an
Algorithm That Simultaneously Matches Growth and Non-Growth
Data Sets. PLoS Computational Biology, 12(8), e1005036.

Szappanos, B., Fritzemeier, J., Csörgő, B., Lázár, V., Lu, X., Fekete,
G., Bálint, B., Herczeg, R., Nagy, I., Notebaart, R. A., Lercher,
M. J., Pál, C., & Papp, B. (2016). Adaptive evolution of complex
innovations through stepwise metabolic niche expansion. Nature
Communications, 7(11607).

1https://CRAN.R-project.org/package=sybilccFBA
2https://CRAN.R-project.org/package=sybilEFBA
3https://CRAN.R-project.org/package=sybilDynFBA
4https://github.com/euba/BacArena
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6.2 Manuscript 2: Adaptive Evolution of Complex Innovations
Through Stepwise Metabolic Niche Expansion

6.2 Manuscript 2: Adaptive Evolution of Complex
Innovations Through Stepwise Metabolic Niche
Expansion

This manuscript is published as:
Szappanos, B., Fritzemeier, J., Csörgő, B., Lázár, V., Lu, X., Fekete, G.,
Bálint, B., Herczeg, R., Nagy, I., Notebaart, R. A., Lercher, M. J., Pál, C.,
& Papp, B. (2016). Adaptive evolution of complex innovations through
stepwise metabolic niche expansion. Nature Communications, 7(11607)
Digital Object Identifier (DOI): 10.1038/ncomms11607
URL: https://www.nature.com/articles/ncomms11607

6.2.1 Contributions

C.J.F. merged the E.coli metabolic model with the universal reaction set
and conducted the analysis of growth promoting reactions sets in new
environments. Growth media were defined by B.Z. and C.J.F. A draft
manuscript was prepared by C.J.F. for the parts regarding his work. The
manuscript was finalized jointly by all authors including C.J.F.

6.2.2 Outlook

Manuscript 2 presents a new evolutionary model that explains how chang-
ing environments accelerate the evolution of complex innovations. This
was done by showing the ability of an E. coli strain to adapt to new
environments. Surprisingly, in most cases E. coli needed three or less
additional reactions to become viable in new environments that did not
support growth beforehand. This raised the question if adaptability within
and across species, possibly depending on genome size. This question is
answered by Manuscript 4.

The work of Manuscript 2 only considers adaptations from exactly one
starting point to another new environment. Unclear is yet how adaptations
happen from this point on and how different evolutionary trajectories
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converge at one point. Thus, an interesting investigation would be to
use a specific organism model as starting point and let this model adapt
to one environment after another by adding and removing reactions.
Repeating such a run with, first, a varying order of environments and,
second, alternative parameters (e.g., speed of changing environments,
time for removal of unused reactions), would yield distinct genotypes. By
choosing appropriate parameters to realistic evolutionary trajectories can
be simulated and validated. Although the methodology is already founded
in Manuscript 2, this analysis might be challenging to conduct because
it is expected to be computational expensive. A theory contradicting
the findings in Manuscript 2 is the “White-Knight Hypothesis” (Wagner,
2016). The conceptual model posits that non-adaptive traits are important
for the evolution of versatile organisms in nutritional-sparse environments.
Although Wagner (2016) suggests wet lab experiments for validation of
his conceptual model, simulations on the basis of Manuscript 2 might be
a reasonable alternative.

6.2.3 References

Fritzemeier, C. J., Hartleb, D., Szappanos, B., Papp, B., & Lercher, M. J.
(2017). Erroneous energy-generating cycles in published genome
scale metabolic networks: Identification and removal. PLOS Com-
putational Biology, 13(4), e1005494.

Wagner, A. (2016). The White-Knight Hypothesis, or Does the Envi-
ronment Limit Innovations? Trends in Ecology & Evolution, 20(2),
1–10.

6.3 Manuscript 3: Erroneous Energy-Generating
Cycles in Published Genome-Scale Metabolic
Networks: Identification and Removal

This manuscript is published as:
Fritzemeier, C. J., Hartleb, D., Szappanos, B., Papp, B., & Lercher, M. J.
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6.3 Manuscript 3: Erroneous Energy-Generating Cycles in Published
Genome-Scale Metabolic Networks: Identification and Removal

(2017). Erroneous energy-generating cycles in published genome scale
metabolic networks: Identification and removal. PLOS Computational
Biology, 13(4), e1005494
Digital Object Identifier (DOI): 10.1371/journal.pcbi.1005494
URL: http://dx.plos.org/10.1371/journal.pcbi.1005494

6.3.1 Contributions

C.J.F. discovered the problem of energy generating cycles in published
metabolic networks and performed all data collection. C.J.F. developed
the method to detect EGCs. Together with D.H., C.J.F. designed the
method to remove energy-generating cycles from metabolic network re-
constructions. C.J.F. implemented and ran all computations, drafted the
manuscript, and created the figures. The manuscript was finalized by
C.J.F., D.H., and M.J.L.

6.3.2 Outlook

In Manuscript 3 the authors point out a severe flaw in current protocols
(Thiele & Palsson, 2010) and pipelines (Henry et al., 2010) for manual
and automatic metabolic network reconstructions. The presented method
for the detection of energy-generating cycles should become part of those
pipelines and protocols to further improve the quality of metabolic models.
As already pointed out in the paper, “the seed”, the database where the
most EGCs were detected, is filled with models from the ModelSEED-
pipeline (Henry et al., 2010). An integration of the newly presented
method into this pipeline could eliminate EGCs on the spot. Additionally,
Manuscript 3 raises the question whether FBA is the right method to
handle simulations of metabolism in different environments correctly.
It should be considered to publish, along with a GENRE, environment
specific reaction directions that exclude EGCs.
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6.3.3 References

Henry, C. S., DeJongh, M., Best, A. A., Frybarger, P. M., Linsay, B., &
Stevens, R. L. (2010). High-throughput generation, optimization and
analysis of genome-scale metabolic models. Nature biotechnology,
28(9), 977–82.

Thiele, I. & Palsson, B. Ø. (2010). A protocol for generating a high-quality
genome-scale metabolic reconstruction. Nature protocols, 5(1), 93–
121.

6.4 Manuscript 4: Differences in the Adaptability
of Generalist and Specialist Bacteria: the Influ-
ence of Metabolic Network Size and Structure
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Abstract 
Bacteria show an astounding ability to adapt to new environments through horizontal gene transfer. 
Anecdotal evidence suggests that some bacteria are more adaptable than others; e.g., strains of intesti-
nal E. coli frequently spin off pathogenic strains adapted to other human tissues, while gastric Helico-
bacter pylori do not. However, it is unclear what determines the ability of individual strains or species 
to adapt to new environments. Here, we use pan-genome-scale modeling to explore the ability of 71 
different unicellular organisms to adapt to each of 5000+ diverse nutritional environments. In agree-
ment with previous simulations of abstract metabolic networks, we find that the number of viable 
environments scales approximately quadratically with the number of metabolic genes. While the 
smallest metabolic systems analyzed – those of the endosymbionts Buchnera aphidicola and Helico-
bacter pylori – require on average over 50 additional metabolic reactions to adapt to new environ-
ments, different strains of the generalist E. coli require on average less than 5 new reactions. When 
adapting to a new environment, organisms may “accidentally” acquire the ability to also grow in addi-
tional, non-selected environments. This effect of collateral adaptation is much stronger for generalist 
than for specialist organisms. Conversely, specialists are more likely than generalists to re-use (or 
exapt) previously acquired reactions for later adaptations, likely because of their more linear network 
structure. Thus, the ease with which microbes adapt to nutritional environments depends not only on 
how metabolically versatile they already are, but also on their metabolic network structure. 

6.4 Manuscript 4: Differences in the Adaptability of Generalist &
Specialist Bacteria: the Influence of Metabolic Network Size & Structure
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Introduction 
Unicellular organisms show an astounding ability to adapt to new environments (1). Different phylo-
genetic lineages differ widely in the frequency with which they give rise to new strains or even new 
species, but it is currently unclear what determines these differences. Speciation may occur through 
reproductive isolation, i.e., through strongly reduced genomic recombination. Conversely, speciation 
(or the generation of distinct strains) may be adaptive, with the new lineage specializing to a different 
life style or environment. Among bacteria, such specialization is typically accompanied by the the 
loss of now superfluous genes from the genome and/or the acquisition of additional genes via horizon-
tal gene transfer (HGT, also called lateral gene transfer) (2, 3). Examples in point are the loss of a 
majority of metabolic genes in the endosymbitic Buchnera species (4) and the acquisition of addition-
al metabolic pathways by pathogenic E. coli strains to survive in the human urinary tract (5). As a 
consequence of these evolutionary dynamics, bacterial pan-genomes can be partitioned into core 
genes (found in almost all strains), shell genes (found in several strains), and cloud genes (which are 
strain-specific) (2).  

Bacterial strains often differ widely in their metabolic capabilities; e.g., a study comparing strains of 
E. coli found individual strains be able to grow in between 437 and 624 of the tested environments 
(6). Based on such differences, lineages can be categorized as metabolic generalists or specialists. A 
prolonged reduction in environmental complexity – as that experienced by a generalist bacterium 
becoming a permanent endosymbiont – causes a corresponding reduction in metabolic complexity, 
which can be predicted quantitatively from genome-scale metabolic modeling (4). That bacterial evo-
lution appears to organize itself into short bursts of innovation followed by long phases of genome 
reduction (7) indicates that the inverse process – a specialist evolving into a generalist – is compara-
tively rare.  

In previous work (8), we utilized metabolic simulations to show that the standard lab strain E. coli K-
12 can adapt to most previously unviable nutritional environments by acquiring at most three addi-
tional enzymes and/or transporters via HGT. In many cases, different new environments required the 
acquisition of overlapping gene sets; we found that complex metabolic innovations can evolve via the 
successive acquisition of single biochemical reactions that each confers a benefit to utilize specific 
nutrients. This demonstrates an important role of exaptations in metabolic evolution, where stepwise 
metabolic niche expansion can accelerate adaptation substantially (8). These findings also demon-
strated that complex innovations can evolve without the need to resort to neutral explorations of phe-
notype space, as had been suggested earlier (9). Such non-adaptive evolution is not only expected to 
be extremely slow; there is also no direct empirical support for this scenario in bacteria (8).Moreover, 
support for the hypothesis is based on simulations that are biologically highly unrealistic, as E. coli is 
evolved in silico over prolonged periods of time in a single minimal environment without a reduction 
in genome size: unneeded reactions that are lost from the genome are always replaced by new, fre-
quently also unselected reactions via HGT (9). Thus, it appears that bacterial evolution can only be 
understood from a consideration of adaptive processes (8). 

Is the ease of metabolic adaptation and the potential for exaptations observed previously (8) unique to 
E. coli, is it typical of metabolic generalists, or is it representative of bacterial adaptation in general? 
What determines a lineage’s frequency with which it generates metabolic innovations, i.e., the ability 
to grow in a previously unviable environment? Abstract mathematical models of metabolic network 
expansion suggest that metabolic network size plays a crucial role for the answers to these questions. 
Based on an analysis of branching pathways, Maslov et al. showed that the number of distinct carbon 
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sources that can be converted to a central biomass component grows roughly quadratically with net-
work size (10), an observation in agreement with the quadratic scaling between the numbers of tran-
scription factors and enzymes (11, 12). Maslov et al. illustrate this behavior through the analogy of 
metabolic tools in a genomic toolbox. Many tools (enzymes or transporters) can be used in different 
contexts (environments); thus, an organism with a well-filled toolbox typically requires a much small-
er number of additional tools to perform a given task than a competitor with an emptier toolbox (10). 
Accordingly, we expect that metabolic generalists, which possess larger and more versatile metabolic 
systems, are better “pre-adapted” to new, previously unselected environments – either because they 
are already viable without the necessity to acquire any additional reactions, or because they require a 
smaller number of additional genes compared to competing specialists. However, a study examining 
how metabolic network size and structure affect the adaptability of real metabolic systems is lacking. 

Below, we use careful metabolic simulations on a pan-genome-scale to show that the ease with which 
microbes adapt to new environments varies widely between species, with metabolic specialists typi-
cally requiring an order of magnitude more gene acquisitions than generalists adapting to the same 
environment. The increased adaptability of generalists is emphasized by their much higher potential 
for collateral adaptations, i.e., the ability to grow in additional, non-selected environments due to eco-
logically unrelated previous adaptations. Specialist species, on the other hand, have largely lost their 
adaptive potential. If they do adapt, however, they show a stronger tendency of exaptation, i.e., they 
are more likely to re-use previously acquired enzymes and transporters for later adaptations, likely 
because of their more linear metabolic network structures.  

Results and Discussion 

Construction of a pan-genome scale metabolic supermodel from organism-specific models 

To allow coherent simulations of metabolic network expansion through HGT, we first created a pan-
genome-scale metabolic supermodel that contained all examined organism-specific metabolic net-
works as submodels. The supermodel built from 76 organismal metabolic models contains 7768 
unique reactions, 4040 unique metabolites and is parted into thirteen compartments. Fig. 1 shows the 
sizes of the organism submodels included. In Fig. 2a is the size of compartments shown by metabolite 
number. Most metabolites are assigned to the compartments extracellular (e), periplasm (p), and cyto-
sol (c). The high number of compartments originates from the three eukaryotic organisms and a 
cyanobacterium in this model: Chlamydomonas (iRC1080), Saccharomyces cerevisiae (iMM904, 
iND750) and Synechocystis sp. PCC 6803 (iJN678). For the well-studied Escherichia coli str. K-12 
substr. MG1655 are five models integrated. Additionally 55 models are from one earlier work and 
consist of Escherichia coli and Shigella strains (6). Further details about the used organisms and their 
GSM properties can be taken from Supplementary Table S1. 

Analogous to the partitioning of pan-genomes (2), the reactions in the supermodel can be broken 
down into ubiquitous “core” reactions, a “shell” of reactions present in many organisms, and a 
“cloud” of organism-specific reactions only present in one submodel (Fig. 2). 70 out of 97 reactions 
(72%) of the E. coli core network (e_coli_core) are found in more than 60 of the submodels, constitut-
ing a substantial fraction of the metabolic core (Fig. 2). 
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Figure 1. Number of metabolic reactions of the organisms used to build the pan-genome-scale supermodel. The 

figure shows only one representative strain per species, except for E. coli, which is represented by a second 

model (iAF1260). Supplementary Figure S1 shows all models. 

 
Figure 2. The reactions of the metabolic supermodel can be roughly partitioned according to their occurrence 

frequencies into ubiquitous “core”, intermediate “shell”, and organism-specific “cloud” reactions (2). The histo-

gram shows reaction counts over all models (blue, log-scale), ignoring reaction directionality. The leftmost 

reactions each occur in only a single model, while the rightmost reactions are ubiquitous. The frequency of 

reactions contained in the model of E. coli core metabolism across all examined models are shown as a green 

overlay. Some E. coli core reactions occur in less than 13 of the submodels; this is an artifact of the missing 

compartmentalization of the core model.  

6 MANUSCRIPTS

48



Distinguishing metabolic generalists and specialists based on metabolic simulations 

We used flux balance analysis (FBA) (13) to estimate the ability of each submodel to grow in a wide 
set of nutritional environments. To make results comparable, we used the same “general” biomass 
reaction for all organism-specific submodels, i.e., each metabolic system was required to produce the 
same metabolic precursors for cellular growth. We examined two sets of nutritional environments: 
one set that largely contains typical wet lab growth media (14), including those assayed in the Biolog 
phenotyping system, and another set of random combinations of carbon, nitrogen, sulfur, phosphorus 
plus trace elements. 

As most models cannot grow in any of the random minimal environments, we checked whether all 
models can grow in a medium that supplies all possible nutrients. Only three models are not viable in 
this maximally rich condition: the E. coli core metabolism (e_coli_core), the hyperthermophilic bacte-
rium Thermotoga maritima (iLJ478), and the endosymbiotic bacterium Buchnera aphidicola 
(iSM199). This is because the general biomass objective function contains more amino acids than the 
original biomass functions of these models. 

The minimal random environments provide limited insights into the growth of the submodels in the 
real world, as these environments are too restricted for most modeled organisms (Fig. 3). Fig. 3 also 
shows the fraction of viable wet lab environments for each submodel, ranging from 0% to about 36%. 
The corresponding distribution (Supplementary Fig. S4) is bimodal, naturally dividing these organ-
isms into generalists and specialists, with the dividing line defined here at growth in 18% of assayed 
media. Note that the models unable to grow in any wet lab environment are those unable to grow in 
the full medium.  

 

 
Figure 3. The fraction of viable environments differs widely across submodels, both for random minimal envi-

ronments (green bars to the left) and for common wet lab environments (blue and red bars to the right). The 

vertical line indicates the mean fraction of viable wet lab environments; we use it as the threshold for partition-

ing metabolic systems into generalists (blue) and specialists (red). Models are ordered by top to bottom by de-

creasing genome size. 
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Network size predicts adaptability 

Every organism is well adapted to a certain set of environments and we now measure the effort need-
ed for an organism to adapt to a new environment in which it was not viable beforehand. This is done 
by finding the minimal number of reactions that have to be added to an organism-specific submodel in 
a given environment; below, we refer to this number as “added reactions”. The distribution of added 
reactions varies widely between organisms (Fig. 4a; for a figure including all E. coli strains see Fig. 
Supplementary Fig. S6).  

 
Figure 4. The number of additional reactions required for adaptation decreases with increasing ge-
nome size. The colors of circles and points distinguish specialists (red) and generalists (blue). The 55 
E. coli strains are plotted as triangles. Organisms with a known auxotrophies are shown as open cir-
cles. Shaded points are organisms represented by multiple metabolic models. a) Distributions of add-
ed reactions as violin plots. The width of each “violin” indicates the local density of the distribution, 
normalized for each model. Supplementary Figure S3 is equivalent, but contains all models of species 
represented multiple times. b) Correlation of the average number of added reactions (log scale) and 
the gene count for each model. Calculation of Spearman correlation and curve fitting were performed 
including only iJO1366 as a representative of the 55 E. coli strains. A close-up from plot (b) focusing 
on the 55 E. coli strains is shown as Supplementary figure S5. 
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The two smallest and most specialized metabolic networks require the largest number of added reac-
tions to adapt to new environments. The endosymbiont Buchnera aphidicola needs at least 27 reac-
tions and on average 52.69 reactions to reach new environments. Similarly, the pathogen Helicobacter 
pylori, which exclusively lives in human stomachs, needs at least 22 and on average 60.52 reactions. 
Both organisms are highly specialized to a single, relatively stable environment. Accordingly their 
metabolisms show very little flexibility, reflected in very small genomes (B. aphidicola: 199 metabol-
ic genes out of a total of 517 genes (15); H. pylori: 341 metabolic genes out of 1590 total genes (16)). 
At the other end of the spectrum is E. coli (Fig. 4a): the standard lab strain K12 (iJO1366) requires on 
average 3.51 and at most 18 reactions to adapt to any of the tested environments.  

Although it is likely that many properties influence the ability of a metabolic system to adapt to new 
nutritional environments, network size alone explains 65% of the variance across all assayed models 
(Fig. 4b; Spearman’s ρ=-0.81, P=9.092e-05). 

The dataset contains E. coli models of various sizes (1059 to 1439 metabolic genes). These mostly 
differ only marginally in their adaptability: the average number of added reactions for generalist E. 
coli (including 9 strains with auxotrophies) lies between 3.31 and 4.05, while the average number of 
added reactions for specialist E. coli ranges from  2.98 to 6.04. The outlier requiring the largest num-
ber of additional reactions is E. coli str. K-12 substr. DH10B (iECDH10B_1368; Supplementary Fig. 
S5), which is auxotrophic for leucine due to the loss of a complete operon (6). For completeness, we 
also performed calculations for the incomplete E. coli core metabolic model (e_coli_core). As ex-
pected, this model requires much larger numbers of reactions (over 100) to achieve the same adapta-
tions as the genome-scale E. coli model (iAF1260). 

Numbers of added reactions agree with the observed scaling of transcription factor number and 
toolbox model predictions 

Maslov et al. used an abstract branching process to estimate the dependence of the number of meta-
bolic pathways on network size for a single type of nutrient (10). They predicted a quadratic scaling 
between the number of utilizable nutrients, 𝑁𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠 (i.e., the number of independent pathways or, 
by inference, of transcription factors) and the number of genes, 𝑁𝐺𝑒𝑛𝑒𝑠: 

𝑁𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠 = 𝑐 𝑁𝐺𝑒𝑛𝑒𝑠2    

with a constant c; this finding agreed with previous observations of a quadratic scaling between tran-
scription factor and metabolic gene numbers (11, 12). The number of added reactions per additional 
nutrient can be interpreted as the derivative of the inverted relationship, expressed as a function of 
𝑁𝐺𝑒𝑛𝑒𝑠:  

 

𝑁𝐺𝑒𝑛𝑒𝑠 =  �
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By choosing an appropriate value for the constant 𝑐, this equation can predict the number of addition-
al genes as a function of the number of metabolic genes; this curve is shown in Fig. 4b for the best 
fitting c=6.86e-05. The mean squared error of the measured data relative to the fitted curve is 
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MSE=0.16 (to avoid biasing the curve towards E. coli, we represented E. coli through a single model, 
iJO1366, when fitting the curve).  

Instead of assuming a quadratic scaling between gene and nutrient numbers, we can explore general 
power law relationships, where the exponent 2 is replaced by an arbitrary number 𝛼. The best fitting α 
is 2.43 (95% CI = [2.03, 2.82]), which reduces the MSE to 0.11 (Fig. 4b). This best fitting α is slightly 
larger than the α=2 expected from abstract models of metabolic expansion (10). One possible reason 
for this disagreement is the artificial, simple network structure of the abstract model (10). In addition, 
our data comes from considering adaptations to new environments (consisting of 4 nutrient types) 
rather than to single new nutrients; thus, the quadratic scaling may slightly underestimate the number 
of additional reactions per new environment for small genomes and overestimate this number for 
larger genomes.  

 

Figure 5. Small, specialist metabolic networks are less branched than large generalist networks. 
Network linearity is defined as the fraction of metabolites that participate in only two reactions, i.e., 
metabolites that are intermediates in unbranched pathways. Most models with more than 40% 
unbranching metabolites are specialists. The colors of circles and points distinguish specialists (red) 
and generalists (blue). The 55 E. coli strains are plotted as triangles. Organisms with a known 
auxotrophies are shown as open circles. Shaded points are organisms represented by multiple meta-
bolic models. Spearman correlation between network linearity and gene count: ρ = -0.68, using only 
iJO1366 as representative for the 55 E. coli. 

Generalists exhibit more collateral adaptations than specialists 

One way to quantify an organisms metabolic adaptability is to ask what fraction of previously unvia-
ble environments can be reached at no additional cost after a given adaptation (9); in such cases, the 
added reactions can be seen as exaptations for the additional, non-selected environments. If this “col-
lateral adaptation index” (see methods) is one, the model is viable in all previously unreachable envi-
ronments, while a value of zero indicates that no other environment is reachable without additional 
reactions. We generally found higher collateral adaptation values for generalists (median 0.13, Sup-
plementary Figure S7) than for specialists (median 0.08). 

Thus, generalists not only require fewer additional reactions than specialists to reach a new environ-
ment, these reactions are also more valuable to them, as they simultaneously provide access to a sub-
stantial number of other, previously unviable environments. Specialists, in contrast, tend to have a 
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smaller genome size, need more additional reactions to adapt, and are less likely to profit from collat-
eral adaptations. 

The smallest specialist genomes are most likely to re-use gained reactions in later adaptations  

Even if the reactions acquired to adapt to environment A do not provide immediate access to envi-
ronment B, they may still provide a subset of the reactions required to adapt later to this second envi-
ronment. We quantify the propensity to profit from adaptations in this way with an “exaptation index” 
(see Methods). One might hypothesize that while specialists show little collateral adaptation, they 
may show a high exaptation index, e.g., if added reactions remove an auxotrophy. As expected, we 
find a higher exaptation index for specialists with small than for specialists with intermediate genome 
sizes (Supplementary Figure S8).  

Specialist metabolic networks are less branched and have lower adaptability 

One function of branching points in metabolic networks is to link alternative pathways to central me-
tabolism. Thus, specialist metabolic networks not only have fewer reactions, but may also have fewer 
branching points, i.e., they may be more linear in their structure. In a linear pathway, primary metabo-
lites participate in two reactions only, with one reaction producing and one consuming the metabolite. 
To represent a branching point, a primary metabolite has to participate in at least three reactions. We 
thus define “network linearity” as the fraction of metabolites participating in exactly two reactions. 
This measurement again reflects the dichotomy of generalists and specialists (Figure 5). Most organ-
isms that have more than 40% of their metabolites in linear pathways are specialists, while those with 
a lower network linearity index are generalists; this bisection largely coincides with a bisection based 
on genome size, dividing specialists from generalists at around 800 genes (Figure 5). As expected, the 
compact but highly branched E. coli core metabolism (e_coli_core) exhibits a lower network linearity 
than any complete E. coli model. Interestingly, Chlamydomonas (iRC1080) shows the lowest network 
linearity of all organisms. It is also noteworthy that some specialist E. coli cannot be distinguished 
from generalist E. coli in terms of network linearity, as their genomes differ in only a small number of 
genes and their general metabolic network structure is identical. 

Conclusions 
Our analysis of potential adaptations of 71 microbes to thousands of different nutritional environ-
ments demonstrate quantitatively that small, specialist genomes are much less adaptable than the large 
genomes of organisms with a well-filled metabolic toolbox that already live a generalist life style; the 
smallest metabolic systems, those of Buchnera aphidicola and Helicobacter pylori, are trapped in 
their endosymbiotic life style, having all but lost their adaptive potential. However, adaptive potential 
is not only a function of genome (or metabolic network) size; it is also strongly correlated to metabol-
ic network structure, with highly branched systems requiring lower numbers of additional genes to 
become viable in a new environment.  

Exaptation – the utilization of metabolic genes acquired in previous adaptations for adaptive purposes 
in a new environment – plays an important role in the adaptation of both generalists and specialists, 
although in different ways. Generalists, but not specialists, show a high degree of collateral adapta-
tion, i.e., previous adaptations often enable growth in environments other than those experienced by 
the organisms ancestors. Conversely, specialists that acquire new metabolic genes in the adaptation to 
one environment are more likely to re-use (exapt) these genes in later adaptations to other environ-
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ments; thus, stepwise metabolic niche expansion will play an even stronger role in the adaptation of 
specialists than previously observed for the generalist E. coli (8).  

Materials and Methods 

Supermodel generation 

At the beginning of this work were 79 GSM available at the BiGG database (17). Four models of the-
se representing mouse and human were excluded. In contrast the model for Buchnera aphidicola str. 
APS (18) was modified and added. So starting point of the supermodel are 76 genome scale metabolic 
models (Supplementary Table S1). All models are tested beforehand whether reactions and metabo-
lites with same ids actually represent the same reaction and renamed if necessary. Reactions were 
compared on basis of coefficients and reversibility, i.e. the lower and upper bound, and metabolites 
were considered different on basis of the chemical formulae, if known. The merging process itself is 
simply done by pooling reactions and metabolites from all organisms and building a new model from 
that. In this generally working supermodel mass balance has to be ensured and energy generating 
cycles (EGC) have to be removed (19). While each individual model passes these quality checks, the 
reactions in the merged supermodel may be combined in a way that violates thermodynamic laws or 
the mass balance. Mass balance is considered first, because the EGC removal cannot be done without 
proper mass balance. 

Correction of mass balance 

Mass balance of a reaction is generally ensured by contrasting all atoms of the educts and all atoms of 
the products. But, due to incomplete data the mass balance for many reactions is not known and re-
moving all reactions with uncertain mass balance will render most of the models non-functional. To 
circumvent this, only mass balance at the exchange reactions was considered. Namely, we ensure the 
FBA steady state condition on basis of atoms: the number of atoms of the same kind (e.g. carbon) 
entering the model has to be even to the number of (e.g. carbon) atoms leaving the model. The only 
reactions that allow exchange of metabolites and therewith atoms are exchange reactions and biomass 
reactions. At the same time these are the only reactions in a network that are allowed to be imbal-
anced. By fixing the exchange of atoms to zero and determining the blocked reactions, i.e. reactions 
that always have a zero flux, potentially imbalanced reactions are identified. This is because the over-
all mass exchange of the model has to be balanced and a single imbalanced reaction would disturb this 
balance. Of course some properly balanced reactions will be blocked as well, but these reactions will 
be blocked anyway, because they share the same elementary modes (20) with the removed imbal-
anced reactions. Exchange reactions and biomass objective function that contain a metabolite of un-
known composition are removed from the model, too. 

Removing erroneous energy-generating cycles 

Another problem occurring when combining multiple GSMs is the formation of erroneous energy 
generating cycles (EGC) (8, 19). These cycles can produce energy, e.g. ATP, in infinite amounts 
without consumption of nutrients (19). Even the combination of two networks that are both free of 
EGCs itself can cause the formation of those. We adapted the method from previous work (8) to re-
move these EGCs from the multi organism model. First, the set of reactions of only one organism is 
considered. If this set is free of EGCs, the reactions of the next organism are added to the set. This is 
repeated for all organism models. 
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The method calculates the smallest set of reactions to form such a cycle. This problem was solved in 
previous work with the ARM MILP algorithm, but here the ARM LP was used (see methods, active 
reaction minimization). One reaction in this cycle is constrained in the used direction, i.e. reversible 
reactions are made irreversible and irreversible reactions are deleted. Then the process starts over until 
no more cycles can be found. The algorithm is run with every submodel as starting point, because it 
can notably affect the metabolism and the order of adding models is crucial. This results in a set of 
EGC free reactions for each organism. The order of adding organisms is determined by the initial 
number of EGCs; models with less EGCs are added first. 

The combination of the blocked reactions from the first step and the reactions that are free of EGCs 
results in a properly curated supermodel. 

Active Reaction Minimization 

Mixed integer linear programs (MILP) are frequently used to extend FBA, e.g. ROOM (21), or 
gapfind and gapfill(22). In many of those problems the objective is to minimize the number of active 
reactions. Thus we call this problem active reaction minimization (ARM). The pan-genomic-scale 
model in this work is much bigger than the usually used genome-scale models. Current methods of 
minimizing the number of active reactions under flux balance constraints cannot be applied due to the 
exponential complexity of those. We use here a method to approximate this calculation with major 
speedup and minor inaccuracy. Recent work describes how to formulate such a linear approximation 
in combination with the Gapfill algorithm (23). 

Here, we describe an approximation to solve this ARM problem efficiently, by relaxing the following 
ARM MILP problem into a sequence of ARM LPk for 𝑘 ∈ {1, … ,𝑛} problems. We use the property of 
the simplex algorithm to find sparse solution vectors. 

ARM MILP: 

min��𝑏𝑖
𝑖∈𝐵

� 

𝑠. 𝑡. : 
𝑆 ∗ 𝑣 = 0 
𝑙𝑖 ≤ 𝑣𝑖 ≤ 𝑢𝑖 ∀𝑖 ∈ 𝑅 

𝑣𝑖 ≠ 0 ⇒  𝑏𝑖 = 1 ∀ 𝑖 ∈ 𝐵 

ARM LPk: 

min��� 𝑣𝑖 ∗
1

max�𝜀𝑖𝑘  , |𝑣𝑖𝑘−1|� 
�

𝑖∈𝐵

� 

𝑠. 𝑡. : 
𝑆 ∗ 𝑣 = 0 
𝑙𝑖 ≤ 𝑣𝑖 ≤ 𝑢𝑖 ∀𝑖 ∈ 𝑅 

 

𝑆 ∈ ℝ|𝑀| × ℝ|𝑅|  stoichiometric matrix 

𝑣 ∈ ℝ|𝑅|  Vector of fluxes 

𝑙 ∈  ℝ|𝑅|  Vector of lower bounds 

𝑢 ∈ ℝ|𝑅|  Vector of upper bounds 
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𝑏 ∈ {0,1}|𝐵|  Vector of binary variables 

𝑅 ∈ {1, … ,𝑚}  Set of 𝑚 reaction indices 

𝐵 ⊆ 𝑅  Set of indices that are objective of the optimization 

𝑣𝑖𝑘  Flux of the 𝑖-th reaction in the 𝑘-th optimization (0 if undefined) 

𝑘  Optimization step counter 

𝑛  Total number of optimization steps 

𝜀𝑖𝑘  𝑖-th upper bound of weight factor in optimization round 𝑘 
 

Table 1. Definition of variables of the ARM LP. 

In this sequence of linear problems, the optimization function of the (𝑘 + 1)-th problem is reweighted 
with the solution of the 𝑘-th problem. The initial values for 𝜀𝑖0 are either set to one or some positive 
random values. After each LP optimization it is recalculated to 𝜀𝑖𝑘+1 ∶= 𝜀𝑖𝑘∗ 1

10�  for the (𝑘 + 1)-th 
optimization.  

In order to show the practical application of our linear approximation of active reaction minimization, 
we show the comparison between the MILP result and the LP approximation. To limit the computa-
tion time to a reasonable span, we allowed the solver for the MILP eight parallel threads per problem 
and a maximum time of two minutes per problem. Thus, some results are suboptimal, but the gap 
value accounts for the maximal possible difference to the optimal value. For the ARM LP calcula-
tions, the linear problem was solved twelve times and the best solution was kept. After every fourth 
optimization, 𝜀 was reinitialized with random values and 𝑣 is set as undefined. 

Supplementary Fig. S9a shows both results in direct comparison for a total of 2830 problems we 
solved with the E. coli model iAF1260 and the standard biomass reaction. The ARM LP performs 
better for some problems with the non-optimal MILP solutions, i.e. with a gap greater zero. This is 
also the case for the exact solutions. We suspect the solver to have some numerical issues and thus to 
give a non-optimal solution in four MILP cases. All results were successfully verified with FBA. The 
differences between the pairwise results are shown in Supplementary Fig. S9b. For over 50% (1587 of 
2830) of the problems the ARM LP found a better or equally good optimal value and 75% of the 
problems were at maximum by two reactions off the MILP ARM solution. The ARM MILP was 
solved with a time limit of two minutes with eight parallel threads. Notably in four cases the LP ARM 
found a better solution than the MILP ARM. As the CPLEX code is proprietary, it is impossible to 
find a reason for this. Without a given time limit the MILP ARM the computation time varies widely 
from seconds to hours, while the LP ARM is solved in split seconds. 

Environmental Distances 

The environmental distance is the number of reactions an organism has to obtain in order to survive in 
an environment that does not support life beforehand. The environment is defined as the set of nutri-
ents available for growth and viability is defined to be a biomass production above the threshold of 
0.01. This calculation is dependent of two major factors: the definition of the environments, i.e. 
growth media and the choice of the biomass objective function for a model.  
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Sets of environments 

Each environment consists of a set of nutrients that can either be present or absent. One set is taken 
from the Seed database (14) and represents wet lab growth media. The second set growth media de-
rived from a minimal growth medium for E. coli model iAF1260 and consist of one carbon, nitrogen, 
sulfur, and phosphorous (CNPS) source accompanied by growth essential trace elements (8). The 
variety of minimal growth media is achieved by exchanging one of the CNPS-nutrients a time. The 
third set of growth media is generated by building all combinations of nutrients from each CNPS-
category. Because there are nearly 77 ∗ 106 possible combinations, we have randomly chosen 5000 of 
them. 

Biomass objective functions 

In each model is at least one biomass reaction defined and for further analysis exactly one of those 
was selected. The biomass reaction of some models may be blocked in the mass balance step. Those 
do not have a valid biomass reaction left. In addition we derived from the iAF1260 biomass reaction a 
general biomass reaction, containing only ribose nucleotides and deoxyribose nucleotides, amino ac-
ids, water, and energy. Last, also a biomass reaction is considered that only dissipates ATP and thus 
indicates if a model is able to produce energy from the nutrients. All combinations of environment 
types and biomass objective functions can be seen in Supplementary Fig. S3. 

Calculation of environmental distance with ARM LP 

The calculation of the environmental distance can be split into two parts. First, for each organism we 
have the organism’s metabolic network. Formally this is a subnetwork of the new proposed super-
model. With normal FBA is the biomass production for the subnetwork and the supermodel calculated 
in each environment. For further analyses are only environments considered that support growth, i.e. 
have a biomass production above a threshold of 0.01, for the supermodel, but do not for the 
submodels. Secondly, with the LP ARM algorithm is the number of reactions calculated that has to be 
added to the subnetwork to make it viable in the considered environment. Both steps were done for 
each organism, environment, and biomass reaction, but results are only shown for the random mini-
mal environments and the general biomass objective function. 

Collateral Adaptation Index 

The collateral adaptation index is the ratio of environments an adapted organism can reach without 
additional adaptation and the total number of environments. This definition was similarly described 
elsewhere (9). Additionally, the collateral adaptation index considers only environments that are dis-
tinct from the source environment, i.e. none of the carbon, nitrogen, sulfur or phosphate source from 
the adapted environment is contained in the tested environments. Hence, calculations of the viability 
for all pairs of environments, for all organism, and biomass reactions are necessary. This results in 2.1 
billion FBA calculations. The collateral adaptation index can be seen as a phenotypic measurement 
for exaptation. 

Exaptation Index 

Contrary, the exaptation index is defined as a genotypic measurement. Given the organism is adapted 
to a new environment 𝑚1, it needs the additional reaction set 𝑟1 to survive there. For a second distinct 
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environment 𝑚2 it needs the set 𝑟2. The fraction of preadapted reactions 𝑓𝑚1,𝑚2is then |𝑟1∩𝑟2|
|𝑟2|

. Then we 

define the exaptation index  

𝑒𝑚𝑗 ∶=𝑚𝑒𝑎𝑛 �𝑓𝑚𝑖,𝑚𝑗�  ∀ 𝑚𝑖 ∈ 𝑀 

with 𝑀 being the environments distinct from 𝑚𝑖. Thus an exaptation index 𝑒𝑚𝑗 of 0.5 means the or-
ganism already acquired on average half of the needed reactions. 

Hardware, Software 

All calculations were computed with the constraint based modelling package “sybil” in GNU R and 
IBM ILOG CPLEX as solver. Calculations were done on a compute cluster with a peak usage of 
about 600 CPUs. The whole process is implemented as a pipeline reducing human interaction to a 
minimum. Frequent control points ensure data integrity and correctness of calculations. 
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Supporting Information

S1 Table. Organism specific models and their properties. The models in this table are sorted in ascending order

by the number of metabolic genes. The column “55 E.coli” indicates, whether models from the publication

Monk et al. (2013).

S1 Figure. Networks sizes (number of reactions) of all models combined in the supermodel. The 55 E. coli

models shown in an extra group and are depicted in lighter shade. The taxonomy ID refers to the NCBI

taxonomy and the PubMed ID refers to the respective publication of the model.

S2 Figure. Additional properties of the supermodel. a) Number of metabolites in the compartments. The

compartment with the most reactions is the cytosol (c) followed by the extracellular (e) and periplasm (p).

The Remaining compartment originate from the eukaryotic models used. b) Barchart of published models

per year. Here are only the 18 models of unique organisms counted, which were created by about two

publications per year.

S3 Figure. Growth for submodels and supermodel in all three environment types (minimal environments,

random minimal environments, and wet lab (seed) environments) and with three types of biomass

objective functions (energy production, general biomass, and organism specific).

S4 Figure. Fractions of viable environments for submodels in wet lab environments (seed). The vertical line

indicates the threshold to split models into specialists (red) and generalists (blue).

S5 Figure. The variation of added reactions within E. coli species is low, although the genome size varies.

Specialists and generalists are distinguished by colors red and blue, respectively. Organism with known

auxotrophy are shown with hollow points.

S6 Figure. Distributions of added reactions per submodel. Models in the groups on the y-axis are sorted by

gene count. Specialists and generalists are distinguished by colors red and blue, respectively. The mean

of each distribution is marked with a vertical line. Bar widths are normalized for each model.

S7 Figure. Distributions of the collateral adaptation index per submodel. Models in the groups on the y-axis are

sorted by gene count. Specialists and generalists are distinguished by colors red and blue, respectively.

The mean of each distribution is marked with a vertical line. Bar widths are normalized for each model.

S8 Figure. Distributions of the exaptation index per submodel. Models in the groups on the y-axis are sorted by

gene count. Specialists and generalists are distinguished by colors red and blue, respectively. The mean

of each distribution is marked with a vertical line. Bar widths are normalized for each model.

S9 Figure. Practical application of ARM LP shows equally good performance as ARM MILP. a) Result (objective

value) comparison of ARM MILP and ARM LP. Dot colour indicates the gap size (smaller is better). In the

left panel, ARM MILP solutions are suboptimal due to the limited computation time. Results shown in the

right panel could be solved exactly within the time limit. The blue lines indicate equal objective values. b)

Distribution of the difference between ARM LP and ARM MILP results.
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Figure S6. Distributions of added reactions per submodel
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Figure S7. Distributions of the collateral adaptation index per submodel
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Figure S8. Distributions of the exaptation index per submodel
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6 MANUSCRIPTS

6.4.1 Contributions

C.J.F. constructed the pipeline that merges the previously collected
metabolic network reconstructions into one pan-genome model. Together
with F.L., C.J.F. developed the accelerated algorithm to solve the active
reaction minimization problem. With this algorithm, C.J.F. performed
the calculations to measure adaptation. C.J.F. analysed the data. The
manuscript was drafted and figures were created by C.J.F. The manuscript
was finalized by C.J.F. and M.J.L.

6.4.2 Outlook

In this study, the pan-genome-scale metabolic model was created to
investigate the adaptability of 71 distinct organisms that vary widely in
genome size and metabolic network structure. But this model opens a
variety of novel possibilities. In future work, this model can be used to
compare other metabolic properties of these organisms, e.g., the ability
to utilize certain nutrients and compare the necessary reactions. Further,
it opens a new way of reconstructing GENREs. The model consists of
a universal set of metabolic reactions. By choosing the right subset of
reactions, the metabolism of arbitrary organisms can be modelled. A
program like GlobalFit (Hartleb et al., 2016) is able to choose such
a subset of reactions from the pan-genome-scale model. All reactions
in the pan-genome-scale model get assigned weights according to their
presence in the organism’s genome. Given information about growth-
promoting and non-growth-promoting environments GlobalFit finds a
set of reactions that on one hand fits best to the organism of interest and
on the other hand directly matches the growth data. The reconstruction
process is then a top-down approach instead of the usual bottom-up
approach.
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