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Abstract

The idea of verifying the correctness of software has been brought up in the early
days of computing, for example by Alan Turing in 1949 or Robert W. Floyd in
1967. James C. King extended upon the idea of manual verification by suggesting
and working towards an implementation of a ”verifying compiler“. King’s idea
has later been stated as a ”Grand Challenge for Computing Research“ by Tony
Hoare in 2005.

Idealism however is not the only reason for software verification. According
to a study performed in 2002 by the U.S. National Institute of Standards &
Technology, the U.S. economy suffers a loss of close to $60 billion per year due
to software errors. Furthermore, errors have directly led to deaths or serious
injuries, as well as failure or loss of equipment.

Within typical software engineering approaches, testing and static analysis tools
are used to limit the possibility of software errors. Several holistic approaches
to software development have been designed in order to keep bug counts low
throughout the whole development cycle.

This thesis focuses on a more rigorous approach to the development of software:
the usage of formal methods. In particular, it is concerned with improving the
ProB model checker by augmenting its original explicit state model checker
with a symbolic counterpart. In this way we broaden the scope of problems to
which ProB can be applied.

As symbolic model checking makes heavy use of constraint solving, one aspect
of this thesis is to implement methods to increase the performance of ProB’s
constraint solving kernel. This will be achieved by two means. First, by improving
the constraint solver itself, mainly by lifting it from finite to infinite-state
problems. Second, we developed an integration of ProB with the SMT solvers
CVC4 and Z3, combining them into a single procedure.

Following, this thesis will present different symbolic model checking algorithms
and evaluate them regarding their applicability to B and Event-B. Some sui-
table algorithms, namely Bounded Model Checking, k-Induction and IC3 were
implemented inside ProB.

Both the improved constraint solver alone and the symbolic model checking
algorithms will be evaluated on different examples ranging from solving B
predicates, proving, disproving and SMT solving to model checking of academic
and industrial specifications.





Zusammenfassung

Die Idee die Korrektheit von Software zu beweisen kam bereits zu Beginn des
Computerzeitalters auf. Sie findet sich beispielsweise 1949 bei Alan Turing oder
1967 bei Robert W. Floyd. James C. King erweiterte die Idee durch seinen
Vorschlag statt manueller Verifikation einen so genannten ”verifying compiler“,
also eine automatische Software, zur Verifikation zu verwenden. Seine Idee der
automatischen Verifikation wurde 2005 von Tony Hoare in seine Liste der ”Grand
Challenges for Computing Research“ aufgenommen.

Idealismus ist aber nicht der einzige Grund für die Verifikation von Software. Laut
einer Studie die 2002 vom U.S. National Institute of Standards & Technology
durchgeführt wurde erleidet allein die Wirtschaft der USA einen Verlust von fast
60 Milliarden Dollar pro Jahr auf Grund von Softwarefehlern. Softwarefehler
haben bereits zu Todesfällen oder Verletzungen geführt, zu Versagen oder Verlust
von Equipment beigetragen oder diese direkt verursacht.

Häufig werden Tests oder statische Analysen verwendet um Fehler zu entdecken
oder ihr Auftreten unwahrscheinlich zu machen. Ausserdem werden Entwicklungs-
modelle verwendet, die die Anzahl von Softwarefehlern gering halten sollen.

In dieser Arbeit geht es um einen strikteren Ansatz zur Entwicklung von korrekter
Software: Formale Methoden. Insbesondere beschäftigt sich diese Arbeit mit
der Verbesserung des Model-Checkers ProB. Ein Ziel ist es, den bestehenden
Model-Checking-Algorithmus durch einen symbolischen Algorithmus zu ergänzen.
So kann ProB auf eine größere Klasse von Problemen angewendet werden.

Da die Effizienz von symbolischen Model-Checking-Algorithmen direkt von der
Effizienz des verwendeten Solvers abhängt ist die Verbesserung des Kernels von
ProB ein weiterer wichtiger Aspekt dieser Arbeit. Hier wurden zwei wesentliche
Dinge umgesetzt. Zum einen wurde ProB’s interner Constraint Solver erweitert,
so dass er mit Problemen auf unbegrenzten Mengen umgehen kann. Weiterhin
wurde eine Integration zwischen ProB und SMT Solvern entwickelt.

Anschließend werden verschiedene symbolische Model-Checking-Algorithmen
vorgestellt und dann auf ihre Anwendbarkeit auf B und Event-B hin untersucht.
Mehrere geeignete Algorithmen, wie Bounded Model Checking, k-Induction und
IC3 wurden in ProB implementiert.

Sowohl der Kernel als auch der symbolische Model-Checker werden auf verschie-
dene Arten evaluiert. Dazu gehört das Auswerten von Prädikaten, das Finden
von Gegenbeispielen und das Beweisen von Theoremen. Darüber hinaus wird
ProB auf SMT Probleme angewendet. Zuletzt wird die Performance der Model-
Checking-Algorithmen auf Basis verschiedener akademischer und industrieller
Beispiele ausgewertet.
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Part I

Introduction





1
Motivation and Goals

The idea of verifying the correctness of software has been brought up in the
early days of computing, for example by Alan Turing in 1949 [180, 150] or
Robert W. Floyd in 1967 [79]. James C. King extended upon the idea of manual
verification by suggesting and working towards an implementation of a “verifying
compiler” [109].

One can dream of routinely using a verifying compiler as an everyday
tool. In the context of this idea our work has been extremely modest
and must be considered as a small first step. We only hope that,
indeed, this has been a first step of a progression which will allow
this dream to come to fruition. (James C. King [109, p. 3])

King’s idea has later been stated as a “Grand Challenge for Computing Research”
by Tony Hoare [100] in 2005.

A verifying compiler uses mathematical and logical reasoning to check
the correctness of the programs that it compiles. The criterion of
correctness is specified by types, assertions, and other redundant
annotations associated with the code of the program. The compiler
will work in combination with other program development and testing
tools, to achieve any desired degree of confidence in the structural
soundness of the system and the total correctness of its more critical
components. The capabilities and performance of the verifier will
be demonstrated by application to a broad selection of legacy code,
chiefly from open sources. (T. Hoare [100, p. 65])

Idealism however is not the only reason for software verification. According to
a study [156] performed in 2002 by the U.S. National Institute of Standards
& Technology the U.S. economy suffers a loss of close to $60 billion per year
due to software errors. Infamous ones include the loss of the first Ariane 5
carrier rocket [67] and the crash of the Mars Climate Orbiter [173]. Beyond loss
of equipment or money, software errors have directly led to deaths or serious
injuries, as happened with the Therac-25 radiation therapy machine [130].

For general purpose software, reliability is primarily ensured using various
testing techniques. For the development of safety critical software, e. g., software
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1 Motivation and Goals

used for medical devices or transportation, one often goes beyond testing and
employs formal development techniques. Generally speaking, a formal method for
software development takes a thorough and holistic approach towards software
correctness.

Instead of testing the software at hand, a formal method relies on specification,
mathematical and logical reasoning as well as thorough theoretical analysis.
Ultimately, formal methods work towards producing a correctness proof that
assures that a piece of software behaves according to its specification.

A technique that is heavily used when employing formal methods is model check-
ing, i. e., the systematic exploration of the state space of some software product.
This can be performed by various tools, one of them being ProB, the animator
and model checker for the B method developed by the software engineering and
programming languages department at the University of Düsseldorf.

ProB can already be used to analyze the state spaces of large software systems
thanks to techniques like partial order reduction or symmetry breaking. Fur-
thermore, ProB includes a constraint solver for the B and Event-B languages.
The solver is used as a backend for the model checker. Additionally, it has
successfully been used for different tasks outside of model checking. Examples
include data validation and timetabling. We will give more detail on the features
and implementation details of ProB in Section 2.3.

All this machinery is based on models having a finite state space. If necessary,
this is enforced by limiting the size of sets or the domain of constants and
variables.

In this thesis, ProB should be enabled to successfully model check infinite
state spaces. This involves solving constraints involving variables featuring
infinite domains, i. e., they have an infinite amount of possible values. This
can obviously not be achieved by extending the existing explicit state model
checker, as enumerating an infinite amount of states is impossible. Hence, a
new symbolic model checker has to be implemented inside ProB based on the
existing constraint solving facilities.

Summarizing, the goals of this thesis are as follows:

• Strengthen ProB’s constraint solver to enable it to solve infinite domain
constraint satisfaction problems. This is crucial in order to use it as one of
the solving engines for a symbolic model checker.

• Assess the performance of the extended constraint solver. Based on bench-
mark data, find ways to improve. Additionally, integrate other solvers or
provers if necessary and possible.

• Evaluate and decide on symbolic model checking algorithms that are suited
for B and Event-B.
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• Implement the selected algorithms in ProB using ProB’s strengthened
constraint solver. Evaluate whether additional solvers are needed.

• Improve performance by integrating abstraction techniques where needed.

• Perform an empirical evaluation of said algorithms comparing it to ProB’s
explicit state model checking algorithm.

In the upcoming chapter we will give an overview of formal methods in general
and the B method in particular. We will describe model checking in greater
detail in Section 2.2. In particular, we will focus on the capabilities of ProB in
Section 2.3. Later on we will briefly introduce two further techniques used in
this thesis, namely constraint programming in Section 2.4 and SMT solving in
Section 2.5.

Each of the following chapters is devoted to one of the goals mentioned above.
First, in Chapter 3, several extensions made to the ProB kernel are introduced.
Among those are extensions regarding handling of infinite domains, rendering
ProB’s constraint solver usable as the backend of a symbolic model checking
algorithm. The chapter mainly deals with techniques used to strengthen ProB
itself. Thus, the techniques presented are beneficial for applications other than
symbolic model checking as well.

The following chapters show two applications of the extended constraint solver
in greater detail. Chapter 4 highlights how ProB can now be used as a prover
owing to the techniques introduced before. The chapter mostly serves as an
empirical evaluation of the constraint solver as well, allowing us to decide on
further research directions.

A second empirical evaluation of the extended constraint solver is given in
Chapter 5. It introduces a translation from SMT-LIB to B, allowing us to
evaluate the performance of ProB on problems taken from SMT-LIB’s collection
of benchmarks. These are fundamentally different from the benchmarks in the
former chapter. In consequence, Chapter 5 accounts for an additional analysis
of ProB’s performance as solver and prover.

As the constraints occurring in symbolic model checking techniques are quite
involved, ProB’s constraint solver alone turned out to be insufficient. Hence,
we developed an integration between ProB and the SMT solver Z3. Chapter 6
outlines how the integrated solver works and evaluates it on several proof
obligations.

Afterwards, Chapter 7 will discuss different symbolic model checking algorithms.
It will highlight the advantages and disadvantages of the algorithms and justify
the decision to focus on bounded model checking, k-Induction and the IC3
algorithm.
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1 Motivation and Goals

Following, Chapters 8 and 9 explain how infinite-state model checking of B and
Event-B models can be done using said algorithms. The chapters heavily rely on
the results obtained in the previous ones, incorporating all the improved solving
techniques into a symbolic model checking engine for B and Event-B. Again, an
empirical evaluation on different models has been performed.

We study the applicability of our results to other formalisms such as TLA+ or Z in
Chapter 10. Overall conclusions and future work will be given in Chapter 11.
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An investment in knowledge pays the best interest.
Benjamin Franklin

2
Background

This chapter will give the necessary background information and introduce the key
technologies used in this thesis. First, Section 2.1 will introduce formal methods
for software development in general. Two methods, namely B and its successor
Event-B will be introduced in Section 2.1.1 and Section 2.1.2. Section 2.2 is
dedicated to model checking and how it can be used to verify software and
systems. One model checker, ProB will be introduced in Section 2.3.

As the algorithms developed in this thesis heavily rely on constraint solving
using Prolog and its CLP(FD) systems, Section 2.4 will outline how constraint
logic programming works. An alternative approach to constraint satisfaction,
namely SMT solving, is the topic of Section 2.5.

2.1 Formal Methods

Generally speaking, formal methods are mathematical approaches towards soft-
ware and systems development. While there is a multitude of different formal
methods, they are all based on a common idea: thorough theoretical analysis
throughout requirements engineering, specification, development and verification
should lead to better software. Depending on the method and tools used, tech-
niques could involve static analysis or simulation and model checking. Other
methods focus on mathematical proof, either interactive or fully automatic.

Some formal methods only try to avoid specific errors or analyze certain parts
of a system. Others try to integrate the whole development process, leading
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2 Background

to software that is correct by construction. One such method is the B Method
introduced in Section 2.1.1. It is presented alongside its successor Event-B, with
differences being discussed in Section 2.1.2.

2.1.1 The B Method

The B method [1] is a state-based formal method for the development of soft-
ware following the correct-by-construction approach. It mainly consists of two
components:

• The B language, used to write specifications, and

• The B method, the formal development approach using the B language.

Central to the B language is the abstract machine, holding the specification itself.
It consists of the following components:

1. A number of sets which are treated as user-defined types. B features
two kinds of sets: Deferred sets are sets which are not given upfront by
enumerating their elements. If the elements are given, the set is called an
enumerated set.

2. A number of constants together with a predicate called properties that
constrains possible values, i. e., the constants are fixed to some values
rendering the properties true. Afterwards, they do not change anymore.

3. A number of variables that represent the state of a software or system.
Their initial values are given using the initialisation.

4. An invariant that specifies which states are considered safe. Usually, it
assigns a type to each variable and gives accepted ranges for variable values.

5. Operations that define the behavior of a system. They can feature guarded
execution, stating under which conditions an operation can be executed.
Upon execution, an operation can change the system variables in several
ways. These include assignments, if-then-else constructs and several other
so-called generalized substitutions. See [1] for details.

The constants and variables together with their values form the state a system
is in. Operations are used to define possible transitions between these states.

B has a rich type system as shown in Fig. 2.11. Expressions can consist of
arithmetic, set theory, sequences, trees and arbitrarily nested types. In addition
to the given types for booleans, strings and integers, users can provide further
types by defining disjoint enumerated or deferred sets. On top of the type system,

1Taken from my article [114].
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2.1 Formal Methods

any type

Bool Integer User
Set

multiple types / 
error

Powerset 
of XString Pair of X 

and Y

P( any type)

P(Bool) P(Z) P(Set) P(P(X))P(String) P(XxY)

Figure 2.1: Classical B Type System

B features several higher-order constructs such as set comprehensions. Predicates
like preconditions are first-order logic formulas over these expressions.

An abstract machine may include other machines in several ways, the main
difference being the visibility of constants, variables and operations from the
included in the including machine.

To handle complexity, the B method relies on refinement of abstract machines.
Broadly speaking, development starts with an abstract machine that does not
include many details. During refinement, details are gradually introduced in
subsequent machines. For each refinement step the user has to prove that the
more concrete machine is indeed a correct refinement of the abstract machine,
i. e., properties proven correct on the abstract level hold on the concrete level.

Ultimately, refinement leads to an implementation machine that can automat-
ically be translated into a programming language like C or ADA. For this to
be possible, it has to include all the necessary details and it has to avoid data
structures and constructs that are too high-level, such as sets. Refining and
refined machine are connected by a gluing invariant that defines the relationship
between state variables on different refinement levels.

Consistency and correctness of B machines is ensured by several proof obligations.
Most of them make use of the weakest precondition calculus:

Definition 2.1.1 (Weakest Precondition). For P a predicate and S an abstract
machine statement [S ]P denotes the weakest precondition a state has to fulfill,
such that the execution of S on that state is guaranteed to lead to a successor for
which P holds. Note that the weakest precondition also has to ensure termination
in presence of loops.

Instead of an abstract machine statement S , we can use the belonging transition
predicate T .

Using this definition, we can give a proof obligation stating that statement S
guarded by a precondition P may not lead to a violation of the invariant I when
executed from a valid state:

I ∧ P ⇒ [S ]I .

9
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There are several other proof obligations that can occur at various stages of
development, e. g., for proving well-definedness or the correctness of refinements.
See [1] for details.

2.1.2 Event-B and Rodin

Event-B [2] is a successor of B, tailored towards system level design rather
than software level development. In other words, Event-B is designed to model
full systems, including hardware, software and environment. An integrated
development environment for Event-B is provided on top of Eclipse by the Rodin
project [3].

The key differences between classical B and Event-B are:

• Sequences and trees have been removed leading to a much simpler type
system. Both can still be expressed using the remaining data structures
together with additional axioms.

• With a recent addition, it has been made possible to extend both Event-B
and Rodin by user-defined theories [135]. There is no real support for
user-defined extensions to classical B.

• Instead of operations, Event-B relies on events. These are considerably
simpler than operations as they omit the involved classical B substitutions
like case statements or if-then-else constructs. An Event-B event only
consists of guards and (simple) actions.

• The static part of a model has been split from the machine into a so-called
context. A machine can include contexts, while a context can extend other
contexts.

• Machines cannot be included anymore. An Event-B machine can only
refine another machine.

• Unlike preconditions, the guards of an event can be strengthened during
refinement. This allows removing behavior that was present in a more
abstract machine. In consequence, deadlocks might be introduced.

Most of these changes contribute to the fact that Event-B has considerable
simpler proof obligations. Overall this leads to proofs that are easier to produce
and to comprehend.

10



2.2 Model Checking

2.2 Model Checking

Together with mathematical proof, model checking [53, 13] is one of the key
techniques used in formal software development. Usually, the model checking
problem is defined on transition systems.

Definition 2.2.1 (Transition System). Following the definition of [13], a transi-
tion system TS is a tuple (S ,Act,→, I ,AP,L) where

1. S is the set of states.

2. Act is the set of actions.

3. → ⊆ S × Act × S is the transition relation. It connects states to their
successors by “executing” an action. Instead of the tuple (s1, a, s2) ∈→
one writes s1

a→ s2.

4. I ⊆ S is the set of initial states.

5. AP is a set of atomic propositions.

6. L : S → P(AP) is the labeling function. It relates each state s to the set
of atomic propositions evaluating to true over s.

Note that models written in B or Event-B represent such transition systems.
I is given by the initialization, → is defined by the operations or events. The
set of all states consists of all possible combinations of values of constants and
variables. The propositions that should be verified are given for instance in the
invariant.

Not every state in a transition system has to be connected to one of the initial
states by a sequence of actions. In fact, certain states can exist without any
actions related to them. Therefore, we have to distinguish between reachable
and unreachable states. Again, the upcoming definitions follow those of [13].

Definition 2.2.2 (Reachability). Given a transition system (S ,Act,→, I ,AP,L),
a state s ∈ S is called reachable from sstart , if and only if there are states s0, . . . sn
and actions a1, . . . an, such that there exists an execution sequence

s0
a1→ s1

a2→ . . .
an→ sn

where s0 = sstart , sn = s and ∀n−1
i=0 si

ai+1→ si+1 ∈→.

Now, we can define model checking itself:

Definition 2.2.3 (Model Checking). The model checking problem is to verify
whether a specification M , given as transition system, is a model for a formula
φ. If φ is an invariant, this means to verify whether it holds in every state of M
that can be reached by the initialization.

11
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In this thesis, model checking always refers to checking of invariants as defined
above. There are of course other kinds of formulas, such as liveness properties
given in LTL or CTL [75], each with appropriate model checking algorithms.

For certain model checking techniques, we need to limit the number of states
that exist in a transition system.

Definition 2.2.4 (Finite Transition System). A transition system is called finite
if S , Act and AP are finite. Otherwise, the transition system is called infinite.

In general, B and Event-B models are represented by infinite transition sys-
tems. In the following two sections, two different approaches to model checking
techniques and algorithms will be introduced.

2.2.1 Explicit State Model Checking

The idea behind explicit state model checking is to solve the model checking
problem by enumerating all reachable states of a system. To do so, an explicit
state model checker keeps track of two sets of states:

• The set of visited states. These states have already been verified without
detecting an invariant violation.

• A queue of states that have been reached but not yet verified.

An explicit state model checking algorithm for atomic propositions is outlined in
Algorithm 2.1. To lift it to other properties, the check in line 6 would need to
be replaced appropriately. The algorithm closely resembles the one described
in [128] and used in ProB. It proceeds as follows: After the setup, the queue
contains all the initial stats while the set of visited states is empty.

As long as there is a state in the queue, model checking has not yet finished.
The state is selected from the queue and gets examined. First, the algorithm
checks if the current state violates the invariant. If this is the case, an error has
been found and can be reported to the user. If not, the algorithm computes all
successor states. Those that have not been visited yet are added to the queue.
The state itself is added to the set of visited states. Once all states have been
traversed, the system is reported as safe.

Explicit state model checking techniques have a major drawback. They suffer
from the so called “state space explosion” problem. For large systems with many
transitions there is a combinatorial blow up that leads to exponentially growing
state spaces. The larger a system becomes, the harder it is to completely traverse
all states. For systems with an infinite number of states exhaustive traversal
becomes impossible. There are several ways to reduce the number of states
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Algorithm 2.1: Explicit State Model Checking
Data: Actions Act, Transition →, Initial States I ,

Labeling L : S → P(AP), Property P ∈ AP
Result: true iff P holds

1 procedure boolean explicit mc(Act,→, I ,L,P)
2 queue := I
3 visited := ∅
4 while queue 6= ∅ do
5 current := select state from(queue)
6 if P /∈ L(current) then
7 return false
8 end if
9 visited := visited ∪ {current}

10 foreach action ∈ Act do
11 queue := (queue ∪ {x | (current, action, x) ∈→}) \ visited
12 end foreach
13 end while
14 return true

that have to be considered. Those implemented by ProB will be discussed in
Section 2.3.

In the following thesis, we will focus on symbolic model checking as a means to
overcome the state space explosion problem.

2.2.2 Symbolic Model Checking

The general idea introduced with symbolic model checking [39] is to avoid the
explicit enumeration of the states of a model. Instead, the state space is stored
symbolically by using predicates to describe sets of states.

For example, the three states x = 1, x = 2 and x = 3 could be combined to
the single state predicate 1 ≤ x ≤ 3. Operations on these states can then be
performed by modifying the predicate. Performing a simple increment operation
would result in the three states x = 2, x = 3, x = 4, or 2 ≤ x ≤ 4 if the state
space is kept symbolically.

In addition, transitions can be computed symbolically as well by building predi-
cates that logically connect the sets of states before and after execution.

The key idea behind symbolic model checking is to work on equivalence classes
of states instead of on the concrete state space. States are combined into classes
based on properties such as the status of the invariant in the states or the distance
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to the initialization. This reduces the impact of the state space explosion problem
on the performance of the model checking algorithm.

Obviously any symbolic algorithm has to keep a balance between abstraction
and precision. Instead of 1 ≤ x ≤ 3 which is equivalent to x = 1 ∨ x = 2 ∨ x = 3
one could have chosen to abstract away detail by using an approximation like
x ≤ 3.

The easy integration of abstraction and concretization techniques allows for an
extension of symbolic model checking techniques to models featuring infinite
state spaces.

Chapter 7 will give an overview of different symbolic model checking algorithms
for safety properties. In particular, the IC3 algorithm will be explained in-
depth in Section 7.3.5, as it is currently the most promising algorithm regarding
infinite-state model checking of B and Event-B specifications.

2.3 ProB

ProB [128, 127] is an animator and model checker for the B method introduced
in Section 2.1.1. It is developed by the software engineering and programming
languages department of the Heinrich-Heine-University in Düsseldorf. The kernel
is written in SICStus Prolog, extensions and other supporting software has been
written in C, Java and other languages.

ProB has several key features:

• Animation, i. e., stepwise execution of a B model. This is especially
useful during the development of a formal model, as it allows to quickly
check for expected behavior.

• Verification, i. e., ProB can be used to detect counterexamples to
correctness, refinement relations and other proof obligations. In certain
cases, ProB can even be used to prove correctness as we will show in
Chapter 4.

• Model Checking using an explicit state algorithm as introduced in
Section 2.2.1. The model checking algorithm used in ProB is more
refined than the one given in Algorithm 2.1, as it features both depth- and
breadth-first search as well as heuristics for search direction [21].

• Visualization, i. e., ProB can generate several graphical representations
of a model, the state space or certain predicates. With BMotionStudio,
interactive visualizations for B and Event-B models can be created us-
ing ProB [119]. This simplifies understanding a model and provides a
comprehensible entryway to the model for non experts.
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An important difference between ProB and other animators for the B method
is that ProB tries to provide automatic animation as far as possible. To do
so, ProB tries to infer feasible values for constants and variables as well as
parameters that allow the execution of operations and events. This relieves
the user from providing feasible values himself. Furthermore, it avoids possible
values being overlooked.

As already stated, ProB’s model checking kernel relies on an explicit state
model checking algorithm. It features several techniques to reduce the size of
the state space and to handle large and complicated models.

Among these are:

• Partial order reduction [85, 157, 181], a technique based on the observation
that for certain transitions the order of execution does not matter. If this
is the case, the state space can be reduced by only analyzing one order of
execution. ProB implements partial order reduction as outlined in [66].

• Some models feature a state space that is highly symmetrical, e. g., several
branches of the state space could be merged as they only differ in the selec-
tion of a constant. This symmetry can sometimes be detected and broken.
Different techniques exist and have been evaluated and implemented for B
and Event-B inside ProB [172].

• Lastly, [21] uses parallelization and distributed computing to be able to
handle large state spaces.

In addition to classical model checking ProB can perform several so-called
“constraint-based checks” [91]. To some extent, these are comparable to symbolic
model checking. For instance, the constraint-based invariant check tries to find
two states connected by an operation, such that the invariant holds in the first
but not in the second state. If this were the case, the model could not be proven
correct. There is however a key difference to model checking: We do not know if
the first state is reachable from the initialization.

There are several versions of ProB available:

• A command line interface that can be included in scripts and is used as a
backend for other versions of ProB.

• A graphical user interface written in Tcl/Tk. This has long been the main
interface of ProB. Figure 2.2 shows a screenshot.

• An embedded version of ProB for use inside the Rodin platform.

• Recently, a new frontend for ProB has been in development under the
name ProB 2. It focuses on scriptability and provides a user interface
based on JavaFX.
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The B language aside, ProB supports the Event-B language introduced in
Section 2.1.2, CSP and CSP ‖ B [159], Z [158] and TLA+ [93].

Of course there are also other model checkers for the B and Event-B languages:
Eboc [141], pyB [185] and JeB [186] also rely on explicit state model checking.

All developments presented in this thesis are done within ProB. In particular,
ProB’s constraint solver will be used as a backend for the symbolic model
checking algorithms.

Figure 2.2: ProB Tcl/Tk Interface

2.3.1 Constraint Solving Kernel

The ProB kernel can be viewed as a constraint-solver for the basic datatypes of B
and the various operators on it. It heavily relies on the SICStus Prolog CLP(FD)
system [42] which follows the general implementation scheme of [104], which
we will discuss in Section 2.4. It supports booleans, integers, user-defined base
types, pairs, records and inductively: sets, relations, functions and sequences.
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2.4 Constraint Logic Programming

Constraint programming is a paradigm that is different from the well-known
imperative programming. The key difference is that in constraint programming,
the relationship between different program variables is expressed as constraints,
i. e., one could state that one variable has to be strictly larger than another for
the solution to be regarded as correct.

In contrast to imperative programming, the developer does not implement the
different steps a program should perform to compute the solution. Instead, one
relies on a constraint programming library to find a solution to the given problem
specification.

Usually, these libraries introduce constraints into a given host language that is
used for other parts of the program. In particular, constraint logic program-
ming refers to embedding constraint programming into a logical programming
language.

This thesis will employ constraint programming techniques as offered by the
CLP(FD) library of SICStus Prolog. On a high level, the library works as
follows:

• It builds up a graph structure called the constraint graph. The graph
includes a node for every variable. Edges are given by the constraints, e. g.,
x < y results in an edge connecting x and y.

• It attaches a domain to each variable. For instance, this could be an
interval [a, b]. Ideally, the domain includes exactly those values that could
still contribute to a valid solution.

• The domain is gradually refined. In a first step, node consistency is ensured.
This involves all constraints that refer to a sole variable. A constraint like
x < 5 updates the upper bound of a variable to be less than five as well.
Note that values are removed from domains only after they cannot be part
of a solution anymore. Hence, a domain is never expanded. With each
constraint involved, it can only get smaller.

• Next, the algorithm tries to achieve arc consistency. That is, for each
edge we ensure that each element in a domain has a matching element in
the opposite domain. If there is no matching element, i. e., the element
cannot contribute to a solution anymore, the element is removed from the
domain. One algorithm to achieve arc consistency is the AC-3 algorithm
by Mackworth [136].

• If during these steps a domain is emptied completely, the constraint satis-
faction problem has no solution.
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There are of course higher levels of consistency one could think about. For
instance, a constraint like “a, b and c are all different” involves more than two
variables and is thus out of the scope of arc consistency. Several algorithms to
solve such constraints exist [8].

A general overview of the internals of a constraint logic programming system
is given in [104]. In particular, those of SICStus Prolog [42] as well as of SWI
Prolog [178] follow the general ideas. Additionally, [98] explains consistency
techniques and gives two applications that show the expressiveness of constraint
programming languages. A more recent look into different techniques to achieve
consistency and an introduction to different search algorithms can be found
in [123].

Pure constraint propagation using the consistency algorithms is incomplete, i. e.,
for certain inputs it will report neither satisfiability nor unsatisfiability. Take for
example a constraint programming system using intervals as domains. When
called on the query

x ∈ [1, 10] ∧ y ∈ [1, 10] ∧ X = 2 ∗ Y

a simple CLP(FD) system as outlined above can only shrink the domains of x
and y to

x ∈ [2, 10] ∧ y ∈ [1, 5] ∧ X = 2 ∗ Y .

However, the domain of x could be smaller as only even numbers are solutions
to the equation. Due to the interval reasoning, the propagation techniques
explained above are too weak to discard the odd numbers.

In other cases the incompleteness may hide the unsatisfiability of a predicate,
e. g., in

x ∈ [0, 1] ∧ y ∈ [0, 1] ∧ z ∈ [0, 1] ∧ x 6= y ∧ y 6= z ∧ x 6= z (2.1)

the domains are not shrunken at all, as each combination of two variables is arc
consistent.

In order to query the domains for an actual solution, CLP(FD) systems feature
labeling: One of the variables is selected and assigned a value taken from its
domain. Different options are available to control both the selection of the
variable and the selection of the next value to assign to it.

This change propagates to the other variables using the consistency techniques
explained above. If one of the domains is now empty, the system backtracks and
assigns a different value to the variable. Otherwise, the next variable is selected
and processed in the same manner.

Again, let us take a look at the constraint given in Eq. (2.1). Upon labeling, the
variable x is set to 0. Achieving arc consistency for x 6= y shrinks the domain of
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y to [1, 1]. This change triggers y 6= z to update the domain of z to [0, 0]. Arc
consistency cannot be achieved for x 6= z . The system backtracks and assigns x
to 1. Again, no solution can be found.

Exhaustive labeling makes CLP(FD)-style constraint solving complete. Obvi-
ously, labeling can only be done exhaustively if all domains are finite. In order to
overcome this limitation, we had to implement different extensions to CLP(FD)
to lift ProB’s constraint solver to infinite domains. We will discuss them in
Chapter 3.

2.5 SMT-Solving

Satisfiability Modulo Theories [19], or SMT for short, is concerned with checking
the satisfiability of first-order logic formulas with respect to some background
theory T . A background theory can for example fix the interpretation of
predicates. For several applications, one is interested in the satisfiability of a
predicate like

x < 3 ∧ y > x ∧ ¬ (x + y > 7)

using the usual interpretations of <, > and +.

Using a solvers for general first-order logic, this can be achieved by explicitly
encoding the semantics of <, > and + as axioms inside the formula. Using solvers
tailored towards the theories in question can often provide better performance
and is less cumbersome.

Currently, there are two major approaches towards SMT solving [19]:

• An eager translation of the input predicate into a propositional formula.
The semantics of any background theory used are encoded as well. Both
are submitted to a SAT solver. This approach makes all theory specific
propagation steps available to the solver at once. This might lead to faster
propagation and thus expedite solving a formula. However, a translation
to propositional logic usually involves a blowup in formula size.

• The lazy approach where theory specific solvers are applied to certain parts
of the predicate while the overall structure is solved by any SAT solver.
This makes communication between different theory solvers and the SAT
solver a necessity and causes overhead. The main advantage is that the
theory solver can apply specialized algorithms using background knowledge
from the given theory.

Chapter 6 will describe the integration of the SMT solvers CVC4 [16] and Z3 [60]
in ProB. As both CVC4 and Z3 rely on the lazy approach, we will look at its
basics below. For details regarding the eager approach, see [19].
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Algorithm 2.2: DPLL(T )
Data: T -formula ϕ, T -assignment µ
Result: true iff ϕ is satisfiable

1 procedure boolean DPLL(T ) (ϕ, µ)
2 if T -preprocess(ϕ, µ) returns conflict then
3 return false
4 end if
5 ϕp := T B(ϕ)
6 µp := T B(µ)
7 while true do
8 T -decide next branch(ϕp, µp)
9 while true do

10 status := T -deduce(ϕp, µp)
11 if status == Sat then
12 µ := BT (µp)
13 return true
14 else if status == Conflict then
15 level := T -analyze conflict(ϕp, µp)
16 if level == 0 then
17 return false
18 end if
19 T -backtrack(level, ϕp, µp)
20 else
21 break
22 end if
23 end while
24 end while

One of the standard algorithms for SMT solving is the DPLL(T ) algorithm,
named after the DPLL algorithm used for SAT solving. The algorithm according
to [19] is given in Algorithm 2.2. It starts with a formula ϕ that contains
predicates in some theory T . The algorithm allows to submit a (partial) assign-
ment to the variables in ϕ. In the general case, the initial assignment is empty.
Practically all SMT solvers start the search for a solution with a preprocessing
step, called T -preprocess in Algorithm 2.2. This involves simplification steps
and other rewriting rules. The preprocessing step may modify both the theory
and the boolean level.

If no conflict is detected during simplification, the propositional formulas ϕp and
µp are updated according to the current state of the solver. This involves (at
least partially) translating theory knowledge to the boolean level, as indicated
by T B.
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Afterwards, the algorithm enters a loop:

• It decides on the next literal to branch on. This represents the SAT
solver selecting a literal to set to true or false. In DPLL(T ) however, the
proposition variable selection might take theory knowledge into account.

• In the inner loop, the resulting propagation steps are performed:

– T -deduce performs boolean propagation steps on ϕp and τ p. If this
leads to a conflict, we analyze which theory literals are represented
by the boolean conflict. In particular, T -analyze conflict is called to
determine where the conflict occurred and how far the solver has to
backtrack. The algorithms backtracks accordingly or returns false if
the conflict occurred on the top-level.

– Otherwise, if T -deduce produces a satisfying assignment on the
boolean side, the assignment is transferred to the theory solver. This
is indicated by the call to BT . If the assignment is a model in the
theory as well, the algorithm returns sat. If the assignment leads to a
conflict in the theory solver, T -deduce reports the conflict and the
algorithm has to backtrack again.

– If all deduction and propagation steps have been performed and
neither a solution nor a conflict have been inferred, T -deduce is
unable to produce a result. The solver has to select a new literal in
the next iteration.

Now, let us have a look at an example: let us try to use the DPLL(T ) algorithm
to check if there is a solution to the predicate ϕ = x > y ∧ y > x. We do not
submit an initial assignment, hence µ is empty. To focus on the algorithm itself,
we assume the conflict is not detected by a preprocessing step.

We now have to find a boolean representation of our predicate. Do to so, we
represent the truth value of x > y by the boolean variable b1, and the truth
value of y > x by b2. The resulting boolean predicate is b1 ∧ b2. The algorithm
decides to branch on b1. Obviously, for the whole predicate to be true, b1 has to
be set to true. Furthermore, we can infer that b2 has to be set to true as well.

b1 = >∧b2 = > is a satisfying assignment for the propositional formula. However,
on the theory level there is a conflict, as both x > y and y > x cannot be true at
the same time. T -decide returns the conflict and the algorithm has to backtrack
to the top-level. It can thus report unsatisfiability for the given predicate.

The example features only one theory, namely inequality of integers. Quite often
useful constraints feature a combination of different theories, such as integers,
functions, arrays and so on. One of the most widely employed methods to
combine theories is the Nelson-Oppen combination [153]. A survey on other
methods for combining decision procedures can be found in [139].
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As can be seen, the techniques behind SMT solvers are fundamentally different
from the techniques employed by CLP(FD) solvers as introduced in Section 2.4.
Both Chapter 4 and Chapter 6 will discuss how ProB employs the different
approaches for proof and disproof. Performance will be evaluated using several
benchmarks. Chapter 6 describes the integration of Z3 into ProB and later
argues towards an integrated solver using both.

There are, however, other SMT solvers that could have been used as well. Notable
representatives are Boolector [154], CVC4 [16], MathSAT [50], veriT [33] and
Yices [70]. Out of these, veriT and Yices have already been used to discharge
Event-B proof obligations [71, 72].
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Part II

Improving ProB’s Constraint Solver





It’s gonna be the future soon
And I won’t always be this way
When the things that make me weak and strange
Get engineered away

Jonathan Coulton, “The Future Soon”

3
Constraint Logic Programming

over Infinite Domains

In this chapter we will introduce several extensions implemented on top of
SICStus Prolog’s CLP(FD) system, intended to lift it to infinite domain con-
straint satisfaction problems as they often occur in symbolic model checking
algorithms.

The chapter is based on our paper “Constraint Logic Programming over Infinite
Domains with an Application to Proof” [115]. For information regarding authors
and their individual contributions see Appendix C.

3.1 Introduction and Motivation

Various techniques can be used to solve constraints expressed in specification
languages like B, Z, TLA, Alloy, or VDM. Two popular techniques, namely SMT
solving and constraint logic programming have been introduced in Sections 2.4
and 2.5. Another popular technique is SAT solving, made popular for use with
specifications by Alloy [103].

So far, these techniques were often limited to first-order constraints and unable
to deal with unbounded data values. Let us examine the simple constraint
x = 10∗10 over the integer variable x . To solve this constraint using SAT solving
the integer x has to be represented by propositions, i. e., as a bit-vector. For
this, it is important to know how many bits are needed, both for x itself and
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for intermediate values that can occur while computing x. If one chooses too
few bits, then the SAT solver may fail to find a solution where one exists, or
report a solution where none exists (in case overflows are not detected).1 Also,
the encoding of values as bit vectors reaches its limits for more involved types
like relations over large domains or higher-order values.

Take for example a relation r ⊆ P(D) × P(D) which takes a set of elements
over a domain D and another set of elements over D. If D is of size 10, we
need 220 = 1.048.576 bits to represent a possible value of r . If D is of size 20,
we need 240 = 1, 099, 511, 627, 776 bits, i. e., already 128 Gigabyte to store one
variable.

The contributions of this chapter are as follows:

• An extension of classical constraint logic programming techniques to infinite
domains will be presented throughout Section 3.3.

• In particular, how ProB checks the exhaustiveness of occurring enumera-
tions is decribed in Section 3.3.1.

• An algorithm for random enumeration of large domains is outlined in
Section 3.3.2.

• Additional reasoning rules accompanying CLP(FD) are given in Sec-
tion 3.3.3.

3.2 Constraint Solving

The key challenges when solving constraints in high-level languages such as B
are universal and existential quantifications as well as set comprehensions and
lambdas. Each can be arbitrarily nested and is not limited to finite values.

So far, we have tried different approaches to constraint solving as extensions
to the CLP(FD)-based kernel of our model checker ProB in order to enable it
to handle infinite domain problems as they typically occur in symbolic model
checking algorithms: In prior work, a translation to SAT via Kodkod [160] has
been developed. In addition, in Chapter 6, we will describe how to integrate
SMT solvers such as Z3 [60].

The different techniques each have their own strengths and weaknesses: While
there are highly efficient algorithms for SAT solving, encoding of higher-order
constraints is often not feasible. Usually, the domain of integers has to be limited
in order to allow bitlevel encoding of arithmetics.

1Alloy recently has added overflow detection; but in case no model was found we do not know
whether an overflow may have prevented finding a solution.
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This is even more problematic if higher-order logic or set theory come into play.
Due to a combinatorial blowup, resulting SAT constraints contain too many
variables and become unsolvable.

SMT solvers on the other hand rely on decision procedures for different underlying
logics. Following the DPLL(T ) algorithm, these solvers enumerate predicate
values and try to infer logical consequences. Hence, it is easy to extract a proof
from an unsatisfiable query while it is difficult to extract a model out of a
satisfiable one.

In contrast, CLP(FD) systems use constraint propagation and are more focused
on valuations rather than predicates. In fact, they show the opposite behavior:
a satisfiable query always returns a model. At the same time it is difficult to
extract proof of unsatisfiability.

3.3 Technique

In the following sections we describe how we extended CLP(FD) to enable
handling of infinite domains and quantifiers. In Section 3.3.1, we will explain
how we track enumeration of CLP(FD) variables. Afterwards, we introduce a
way to randomize the enumeration of large intervals in Section 3.3.2.

For simplicity, we will discuss our techniques on a small interpreter supporting
only integer variables with arbitrary and possibly infinite domains together with
arithmetic expression on them, negation and nested existential and universal
quantification.

The interpreter represents a simplified version of the enumeration detection em-
ployed in ProB. Instead of a single single scope, ProB uses nested enumeration
scopes for a more fine-grained detection of enumeration and its consequences.
Furthermore, ProB relies on different exceptions to communicate non-exhaustive
enumerations between scopes and provides fallback behavior.

3.3.1 Detection and Categorization of Enumeration

It is common for constraint satisfaction problems that domain propagation alone
is not enough to infer values for participating variables. This might be due
to an underspecified problem or limitations in constraint solvers, e. g., global
constraints that are too expensive to check. Usually, constraint solvers rely on
enumeration of possible values if all other methods fail.
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However, there are some key difficulties:

1. Enumerating all values is only possible for reasonably sized domains. Even
for finite but large domains, exhaustive enumeration can be impossible
due to computational limitations. Obviously, the same holds for infinite
domains.

2. Depending on the scope of negations, quantifiers and other (nested) con-
structs finding a solution for a variable might imply both satisfiability and
unsatisfiability of a (sub-)constraint.

3. Hence, if a solution is found it is not immediately clear if enumeration can
be stopped.

We intend to overcome these limitations by tracking the scope of enumerations,
i. e., tracking in which contexts enumeration occurs. We distinguish the following
types of enumerations, based on the effect on the overall solver result:

• Enumeration does not occur. The result is not influenced, e. g., when no
valuation is found the formula is unsatisfiable.

• Enumeration is exhaustive. In this case, all possible values for a variable
were considered. If no valuation is found, the formula in question is
unsatisfiable.

• Enumeration occurs and is not exhaustive. In this case, we cannot directly
infer if the formula is satisfiable or not and have to examine the context
(aka scope) in which the enumeration occurred.

Figure 3.1 shows the nesting of enumeration scopes for two simple predicates.
The outer variable x is quantified existentially in both cases. In the first one, we
can enumerate all possible values exhaustively. In the second case non-exhaustive
search is the only possibility, as the domain of x is infinite. Since we only need
to find one solution anyway, partial enumeration is not a problem. The inner
variable y can be enumerated exhaustively. In the first example, we have to
do so in order to validate the universal quantification. In the second example,
exhaustive enumeration is possible but not necessary.

For further examples, take a look at the following constraints:

• x*x = 10000 is true, a solution (x = -100) can be directly computed.
Domain enumeration is only needed to pick one of the two possible values.

• Using backtracking, we can find all solutions. As above, domain enu-
meration is only needed to pick both values of x in {x|x*x=10000} =
{-100,100}.

• In contrast, enumeration is necessary to find a solution to x>10000 & x
mod 1234 = 1 as propagation of mod does not render the domain of x
finite. However, the solution found is sound, enumeration did not influence
the result.
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∃ x. x ∈ [−10, 10] ∧ ∀ y.y ∈ [−15, 5]⇒ y ≤ x

existential scope

x could be enumerated exhaustively but is not

∀ y. y ∈ [−15, 5]⇒ y ≤ x
universal scope
y is enumerated exhaustively

y ≤ x
CLP(FD) constraint

∃ x.¬(∀ y.y ∈ [−15, 5]⇒ y ≤ x)

existential scope

non-exhaustively search for x

¬(∀ y. y ∈ [−15, 5]⇒ y ≤ x)

existential scope (due to negation)
y can be enumerated exhaustively but is not

y ≤ x
CLP(FD) constraint

Figure 3.1: Nested Enumeration Scopes

• As a consequence, we cannot compute all solutions. Our approach is unable
to solve {x|x>10000 & x mod 1234 = 1}.

• For certain unsatisfiable constraints, such as x*x = 10001, CLP(FD) de-
tects unsatisfiability by domain propagation. No enumeration occurs, the
predicate is guaranteed to be false.

• In contrast, no solution is found for x>10000 & x mod 1234 = 1 & x*x
= 10*x. Common propagation rules such as the ones used in SWI Prolog’s
CLP(FD) [179, 9] are too weak to conclude x = 0∨x = 10 from x∗x = 10∗x
as long as there is no upper bound attached to x. In consequence, we
cannot detect unsatisfiability as we have to (partially) enumerate the
infinite domain of x. Since no solution has been found, we cannot ignore
the fact that enumeration occurred. Indeed, since the domain of x was
only enumerated partially, we cannot conclude that the predicate is false.
Indeed, it might still be true.

Setting up Constraints

In the example interpreter, constraints are set up using two Prolog predicates,
solve for positive and solve not for negative constraints. CLP(FD) constraints
are immediately set up. Part of the interpreter is shown in Listing 3.1, the
complete source code can be found in Listing B.1.

To control enumeration, we pass around two “waitflags”, i. e., Prolog variables
used to trigger the execution of coroutines by grounding them. The first one
is used to control setup of constraints and enumeration of variables that are
existentially quantified, i. e., they are introduced by ∃ or ¬∀. The other one
does the same for universal quantification.

Listing 3.2 shows the implementation in our simple solver. Once a waitflag
is grounded, the code in Listings 3.3 and 3.4 is called. It sets up the inner
constraints of the quantifier using fresh waitflags that will later be grounded as
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Listing 3.1: Core of Interpreter
s o l v e c o n s t r a i n t ( Con s t r a i n t , TopLeve lVars ) :−

r e t r a c t a l l ( enum warning ) ,
s o l v e ( Con s t r a i n t , ExistsWF , AllWF ) ,
g r ou n d v a r s ( TopLeve lVars , ExistsWF , AllWF ) .

g r ou n d v a r s ( TopLeve lVars , ExistsWF , AllWF ) :−
m a p l i s t ( e n u m e r a t e e x i s t s a u x , TopLeve lVars ) ,
g r o u n d w a i t f l a g s ( ExistsWF , AllWF ) .

s o l v e (A & B,EWF,AWF) :−
s o l v e (A,EWF,AWF) , s o l v e (B,EWF,AWF) .

s o l v e (A or B,EWF,AWF) :−
s o l v e (A,EWF,AWF) ; s o l v e (B,EWF,AWF) .

. . .
s o l v e ( not (A) ,EWF,AWF) :− s o l v e n o t (A,EWF,AWF) .
s o l v e (V i n D, , ) :− V i n D.
s o l v e (A = B, , ) :−

compute expr s (A,B, AE , BE) ,
AE #= BE .

. . .
s o l v e ( f o r a l l (X, LHS => RHS) , EWF,AWF) :−

when ( ground (AWF) , e n u m e r a t e f o r a l l (X, LHS ,RHS ) ) .
s o l v e ( e x i s t s (X,RHS) ,EWF, AWF) :−

when ( ground (EWF) , e n u m e r a t e e x i s t s (X,RHS ) ) .

s o l v e n o t (A & B,EWF,AWF) :−
s o l v e n o t (A,EWF,AWF) ; s o l v e n o t (B,EWF,AWF) .

s o l v e n o t (A or B,EWF,AWF) :−
s o l v e n o t (A,EWF,AWF) , s o l v e n o t (B,EWF,AWF) .

. . .

well. This accounts for a hierarchy of scopes, where each may need to find a
single solution or inspect all possible solutions for a variable. Again, see Fig. 3.1
for an example.

Enumeration

Enumeration occurs in two steps. First, we ground the waitflag triggering
enumeration of existentially quantified variables. This leads to the coroutines
set up in Listing 3.2 being resumed. The key difference between enumerating an
existentially quantified variable (Listing 3.3) and a universally quantified one
(Listing 3.4) lies within the solver’s reaction to infinite domains.
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Listing 3.2: Setup of Quantifiers
s o l v e ( f o r a l l (X, LHS => RHS) , EWF,AWF) :−

when ( ground (AWF) , e n u m e r a t e f o r a l l (X, LHS ,RHS ) ) .
s o l v e ( e x i s t s (X,RHS) ,EWF, AWF) :−

when ( ground (EWF) , e n u m e r a t e e x i s t s (X,RHS ) ) .

Listing 3.3: Enumerate Existentially Quantified Variable
e n u m e r a t e e x i s t s ( Var ,RHS) :−

% setup i n n e r c o n s t r a i n t s
s o l v e (RHS,NewEWF,NewAWF) , ! ,
g r o u n d w a i t f l a g s (NewEWF,NewAWF) ,
e n u m e r a t e e x i s t s a u x ( Var ) .

e n u m e r a t e e x i s t s a u x ( Var ) :−
f d s i z e ( Var , sup ) , ! ,

% non−e x h a u s t i v e l y enumerate i n f i n i t e domain
% need to f i n d j u s t one e l ement !
a s s e r t ( enum warning ) ,
f d i n f ( Var , Min ) , f d s u p ( Var , Max) ,
e n u m e r a t e i n f i n i t e ( Var , 0 , Min , Max ) .

e n u m e r a t e e x i s t s a u x ( Var ) :−
indomain ( Var ) .

Existentially quantified ones are enumerated as shown in Listing 3.3:

1. The inner constraint of the quantifier is set up as usual,

2. Inner variables are enumerated,

3. We begin enumerating the quantified variable:

• If the domain is infinite, we store that enumeration cannot be exhaus-
tive. Afterwards, we start enumerating.

• Otherwise, we use regular CLP(FD) labeling.

In the second step, we cannot enumerate all possible values of the variable in
question. We thus have to decide on a value selection strategy. Our simple
example interpreter enumerates as follows: Starting from zero we alternate
between the positive and negative value of an increasing counter, skipping values
not in the corresponding domains. As soon as both upper and lower bounds are
passed, the domain has been enumerated exhaustively.

This simple enumeration pattern is not sophisticated enough for complicated
constraints. To improve, one could rely on techniques like the level diagonalization
suggested in [46].
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In ProB, we combine the simple enumerator with other (non-exclusive) strategies
like case splits. Another alternative is to use random enumeration as we will
show in Section 3.3.2. After all existentially quantified variables have been
enumerated, we ground the waitflag that triggers universal quantifiers.

We enumerate as outlined in Listing 3.4:

1. The inner constraint of the quantifier is set up as usual,

2. We begin enumerating the variable:

• If the domain is infinite, we throw an enumeration exception. We
would need to fully enumerate an infinite domain in order to solve the
constraint. This futile attempt is discarded. However, the occurrence
of infinite domains is usually influenced by the order of variables. By
enumerating variables with small finite domains first, we might shrink
other domains.

• Otherwise, we try all values in its domain to check the universal
quantification.

With this extension, our CLP(FD)-based solver is able to handle both existential
and universal quantification. In several cases, for instance in y = 2 ∧ ∀ x .(x ∈
[0, 10]⇒ x > y) the solver can recognize exhaustiveness of labeling. As a result,
satisfiability and unsatisfiability can be deduced and reported to the user.

In case of infinite or large domains the solver can tell if a result is still valid,
despite the fact that a domain has not been enumerated completely. To increase
coverage of large domains in the face of timeouts, the following section will
introduce random enumeration.

3.3.2 Randomized Enumeration of Large Intervals

Another limitation of most CLP(FD) systems lies in how the next value of a
variable is selected upon labeling. Within SICStus, one can select between the
following strategies [41] together with the options up, to use ascending order,
and down, to use descending order:

• step, i. e., a binary choice between X = B and X 6= B, where B is the
lower or upper bound of X.

• enum, i. e., multiple choice for X corresponding to the values in its domain.

• bisect, i. e., binary choice between X ≤ M and X > M , where M =
bmin(X)+max(X)

2
c.

• median, i. e., binary choice between X = M and X 6= M , where M is the
median of the domain.
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Listing 3.4: Enumerate Universally Quantified Variable
e n u m e r a t e f o r a l l ( Var , LHS ,RHS) :−

LHS = ( i n Min . . Max) ,
% se tup o f i n n e r c o n s t r a i n t s : c o n t a i n s a c h o i c e p o i n t
% to a l l o w f o r d i f f e r e n t s o l u t i o n s to i n n e r v a r i a b l e s
s o l v e (LHS & RHS,NewEWF,NewAWF) , ! ,
g r o u n d w a i t f l a g s (NewEWF,NewAWF) ,
e n u m e r a t e f o r a l l a u x ( Min , Max , Var ) .

% e x h a u s t i v e l y enumerate i n f i n i t e domain ? −> e x c e p t i o n
e n u m e r a t e f o r a l l a u x ( , sup , ) :− throw ( e n u m i n f i n i t e ) .
e n u m e r a t e f o r a l l a u x ( i n f , , ) :− throw ( e n u m i n f i n i t e ) .
% domain i s f i n i t e , t r y a l l e l ement s
e n u m e r a t e f o r a l l a u x ( Current , Max , Var ) :−

Cur r en t =< Max , ! ,
t r y f o r a l l v a l u e ( Current , Var ) , % does not b ind Var
Cur r en t2 i s Cu r r en t + 1 ,
e n u m e r a t e f o r a l l a u x ( Current2 , Max , Var ) .

e n u m e r a t e f o r a l l a u x ( , , ) .

• middle, i. e., binary choice between X = M and X 6= M , where M =
bmin(X)+max(X)

2
c.

Summarizing, CLP(FD) variables can be set to domain values in various ways
using domain splitting or simple enumeration. One property is common to all
strategies. The domains are traversed deterministically. In case the domains are
small enough, i. e., they can be enumerated exhaustively, there is no need for a
different strategy.

However, for large domains this might not be sufficient. Instead of traversing
the domain linearly, it could be beneficial to use a random permutation:

• For large domains, values of different sizes will be tried out before a timeout
occurs.

• It is less likely to get stuck in some part of the search space where there is
no solution. If we fear search is stuck, we could restart as described in [86].
This is common in SAT and SMT solvers.

• For applications like test case generation it is desirable to compute test
inputs that fulfill some coverage criterion, e. g., that certain intervals or
sets of parameters or values have been used. With linear enumeration and
backtracking, generated test cases might only differ in the variable set last.

Note that we want to compute a random permutation of the domain. To
avoid duplicates we do not want to randomly draw elements from the domain.
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Algorithm 3.1: Fisher-Yates / Knuth shuffle
Data: List a
Result: Random permutation of a

1 for i ∈ [0, length(a)− 1] do
2 chose j randomly such that 0 ≤ j ≤ i
3 if j 6= i then
4 perm[i] := perm[j]
5 end if
6 perm[j] := a[i]
7 end for
8 return perm

Furthermore, we have to keep track of the exhaustiveness of our enumeration in
order to detect unsatisfiability.

A classic algorithm to compute random permutations for given intervals is the
Fisher-Yates shuffle [78] or Knuth shuffle [111]. Its pseudo code can be found in
Algorithm 3.1. The algorithm has a weakness: the list to be shuffled has to be
in memory completely. This is not feasible for intervals too large to be stored.
We hence need an algorithm allowing us to compute a random permutation on
the fly.

One such algorithm can be constructed using cryptographic techniques as outlined
in [134]. The key idea is to construct an encryption function encrypting the
elements to be permuted onto themselves. In order to allow for later decryption,
an encryption function has to be unambiguous, i. e., given a fixed key there
has to be a one-to-one mapping between plaintext and ciphertext. This will
ensure that we do in fact compute a permutation, i. e., we do not add or
remove elements. Before we can present our implementation, we introduce a few
definitions regarding ciphers. The definitions are following [145].

Definition 3.3.1 (Block Cipher). An n-bit block cipher is a function E : [0, 1]n×
K → [0, 1]n, such that for each key K ∈ K, E(P,K ) is an invertible mapping
from [0, 1]n to [0, 1]n, written EK (P). EK (P) is called the encryption function for
K . The inverse mapping is the decryption function, denoted DK (C ). C = EK (P)
denotes that ciphertext C results from encrypting plaintext P under K .

Definition 3.3.2 (Random Cipher). A (true) random cipher is an n-bit block
cipher implementing all 2n! bijections on 2n elements. Each of the 2n! keys
specifies one such permutation. Obviously, the key space for a true random
cipher is too large to be used in practice.

Definition 3.3.3 (Iterated Block Cipher). An iterated block cipher is a block
cipher involving the repeated application of an internal function called a round
function. In each iteration, the current input is split and encrypted by applying
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Algorithm 3.2: Random Permutation: Setup
Data: Interval I to draw from
Result: Bitmasks BL to extract L, BR to extract R, number of bits n

1 length = max(I )−min(I ) + 1
2 n = ln(length)
3 if n is odd then
4 n = n + 1
5 end if
6 BR = 2

n
2
−1

7 BL = 2n − 1− BR

can thus only create ciphers for certain intervals, i. e., we can construct a cipher
[0, 15]→ [0, 15] but not [0, 5]→ [0, 5]. However, the cipher [0, 15]→ [0, 15] can
be used to permute [0, 5] by iterating to the next index if a number ≤ 6 is drawn.
Intervals that do not start with 0 are shifted. The shift is later re-added to the
drawn number.

The implementation of random permutations is outlined in Algorithm 3.2 and
Algorithm 3.3. We can use a simplified version of the construction in [27] because
we do not rely on strong cryptographic properties.

On the interval [1, 6] it proceeds as follows:

1. Compute the interval length l = 6− 1 + 1.

2. Find the number of bits needed to store l. In this case l = 6 means we
need at least 3 bits.

3. Round up to the next even number to allow symmetric split into L and R.
We can split an interval of 4 bits. Hence, we need to take into account all
inputs from [0, 15].

4. Compute the bit masks BL = 1100 and BR = 0011 used to extract the
first 2 and the last 2 bits.

5. Set the current index to 0 and select a random key to choose a permutation.

6. To draw the next element of the random permutation:

a) Use a Feistel cipher to encrypt the current index using the key.

b) Increment the index.

c) Repeat if the cipher value is larger than 5, else return (5 + 1) to stay
within range.
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Algorithm 3.3: Random Permutation: Next Element
Data: Interval I , current index c, maximum index maxIdx , left/right

mask BL,BR, number of bits n
Result: Next random element rnd and next index to draw next

1 do
2 left = c & BL >> bn

2
c

3 left = c & BR
4 left, right = feistel rounds(left, right)
5 rnd = (left << bn

2
c)|right

6 c = c + 1

7 while rnd > max(I )−min(I ) ∧ c < max
8 if c > maxIdx then
9 return failure, permutation enumerated exhaustively

10 else
11 return rnd, next = c + 1
12 end if

For the rounding function one can use a hash function such as Prolog’s term hash.
We use a given random seed as the encryption key. Given that we do not rely on
any cryptographic properties, we reuse the main key for all subkeys to facilitate
the implementation.

3.3.3 High-Level Reasoning using CHR

So far ProB was mostly used for animation, model checking and data valida-
tion [126]. Hence, it used to be tailored towards finding solutions to satisfiable
formulas, which is where constraint programming has its strengths.

Therefore, choosing CLP(FD) as a basis for ProB has been a reasonable
decision:

• It can deal with large and only partially known data.

• Even though B is a higher-order language including sets, relations and
functions, everything could be expressed by or in conjunction with CLP(FD)
variables and constraints.

• Support of reification made it considerably easier to propagate information
between the different solvers, i. e., from integer constraints to set constraints
and vice versa.

• As predicates might include arithmetic and higher-order functions, satisfia-
bility of B formulas is in general undecidable. Yet, ProB is able to solve
a useful class of subproblems.
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New applications like symbolic model checking however made shortcomings of
CLP(FD) obvious: Even for simple constraints like x < y ∧ y < x contradictions
often can only be detected if variables have finite domains. Again, this is due to
propagation relying on finite upper and lower bounds [179, 9].

To improve, we implemented a set of rules working on top of the CLP(FD)
variables. Our initial idea was to perform some kind of high-level propagation,
where new CLP(FD) constraints are discovered from the existing constraints.
That is, we would implement propagation rules like the transitivity of < stating
that x < y ∧ y < z ⇒ x < z . These rules are implemented in CHR [81, 82], a
committed choice language that can be embedded in Prolog.

CHR supports three different kinds of rules to modify a constraint store holding
the current state of constraints:

• Simplification rules of the form h1, . . . , hn | g1, . . . , gm ⇐⇒ b1, . . . , bo.
Here, h1, . . . , hn are the so called “head”, i. e., constraints that have to
be found in the constraint store for the rule to act upon. g1, . . . , gm are
called “guards”. These are predicates that have to hold for the rule to be
allowed to fire. If the rule can be executed, the heads are rewritten into
the “bodies” b1, . . . , bo, i. e., h1, . . . , hn are removed from the constraint
store while b1, . . . , bo are added.

• Propagation rules of the form h1, . . . , hn | g1, . . . , gm =⇒ b1, . . . , bo. Here,
the bodies are added to the constraint store without removing the heads.

• Simpagation rules like h1, . . . , hl \hl+1, . . . , hn | g1, . . . , gm ⇐⇒ b1, . . . , bo
combine the former. The constraints h1, . . . , hl are kept in the constraint
store while hl+1, . . . , hn are removed.

We augmented the constraint solver with CHR rules handling integer arithmetic,
focusing on detection of contradictions involving linear inequalities. The rules
are comparable to those introduced in the finite domain solver of [82, Ch. 8].
However, we do not handle domains inside CHR, but rather integrate with
CLP(FD). Regarding the implementation of infinite domain solvers in CHR
see [82, Ch. 9].

Listing 3.5 includes an extract of the CHR rules encoding properties of < and ≤.
The complete source code is given in Listing B.3 As can be seen, we introduced
rules for (anti-)reflexivity, antisymmetry, idempotence and transitivity. For
instance, transitivity of ≤ is given by the CHR rule leq(X,Y), leq(Y,Z) ==>
leq(X,Z), stating that from X ≤ Y ∧ Y ≤ Z we can infer X ≤ Z . Newly
inferred constraints are submitted to the underlying CLP(FD) system.

In addition to inferring new constraints, CHR rules can be used to infer unsatisfi-
ability. As an example, the rule encoding the antireflexivity of < states that if we
have X < X , fail has to be executed. Due to CHR being a committed-choice
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Listing 3.5: CHR Rules for Integer Inequalities
r e f l e x i v i t y @ l e q (X,X) <=> t r u e .
ant i symmetry @ l e q (X,Y) , l e q (Y,X) <=> X = Y.
idempotence @ l e q (X,Y) \ l e q (X,Y) <=> t r u e .
t r a n s i t i v i t y @ l e q (X,Y) , l e q (Y, Z) ==> l e q (X, Z ) .

a n t i r e f l e x i v i t y @ l t (X,X) <=> f a i l .
idempotence @ l t (X,Y) \ l t (X,Y) <=> t r u e .
t r a n s i t i v i t y @ l t (X,Y) , l e q (Y, Z) ==> l t (X, Z ) .
t r a n s i t i v i t y @ l e q (X,Y) , l t (Y, Z) ==> l t (X, Z ) .
t r a n s i t i v i t y @ l t (X,Y) , l t (Y, Z) ==> l t (X, Z ) .

Table 3.1: Small Benchmarks with / without CHR (in s)
predicate without CHR with CHR
x > 3 1.31 1.27
x > y ∧ y > x timeout 0.92
x = 3 ∧ x > y ∧ y = 4 0.96 0.95
x = 3 ∧ x > y 1.24 1.04
x = 3 ∧ x < y 0.93 1.0
w > x ∧ x > y ∧ y > z ∧ w = 1 ∧ z = 1 0.94 1.07
w > x ∧ x > y ∧ y > z ∧ z > w timeout 0.93
x + 2 > y + 1 ∧ y > x timeout timeout
x > y ∧ y > x + 1 timeout 0.98

language, the whole CHR run is discarded. The Prolog rule that added the of-
fending constraint by calling lt(X,X) fails. In consequence, further propagation
is stopped and the failure has to be handled by the solver.

Of course a fully fledged solver needs to include several other CHR rules dealing
with common cases of integer constraints. As can be seen in the examples
in Table 3.1, the example set of CHR rules is far from being complete: it
is able to handle simple cases like x > y ∧ y > x and transitive cases like
w > x ∧ x > y ∧ y > z ∧ z > w. However, so far it is unable to do simple
arithmetic as in x + 2 > y + 1∧ y > x . In ProB we have added both arithmetic
as well as further high-level rules, e. g., for set membership and (strict) subsets.

3.4 Applications

Besides symbolic model checking, we have several applications for an infinite
domain constraint solver within ProB. We already mentioned animation, model
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checking and constraint-based validation in the introduction. In this section, we
will give a preview of other applications.

As mentioned above, one of our key motivations is to move ProB from being
guaranteed sound for finite domains to infinite domains. This is particularly
important if ProB is to be used as a prover.

In [132, 113], we embedded ProB into Rodin [3], an IDE for Event-B, in order
to generate counterexamples for proof obligations. Given a sequent with goal
G(x1, . . . , xk) and hypotheses Hi(x1, . . . , xk) we build the predicate

∃ x1, . . . , xk : H1(x1, . . . , xk) ∧ . . . ∧ Hn(x1, . . . , xk) ∧ ¬G(x1, . . . , xk)

and feed it to our constraint solver. If the predicate does hold, ProB returns a
valuation for x1, . . . , xk , representing a counterexample to the sequent.

In general, checking the satisfiability of propositional formulas is NP complete.
Beyond that, typical Event-B proof obligations consist of first-order logic formulas,
for which the problem becomes undecidable. Previously [128, 127, 132], we
overcame this limitation by limiting domains to be finite. However, this prevents
drawing any conclusions from the absence of a counterexample.

The techniques presented in this work have been used to extend the disprover
to a fully fledged prover. By observing the state of enumerations as explained
in Section 3.3.1, ProB is able to tell if the search for a counterexample was
exhaustive. If this is the case, we can report a proof to the user.

We performed several benchmarks comparing our prover to ML and PP [56],
two specialized provers for B and Event-B. Additionally, we compared the
performance of SMT solvers on the proof obligations. Details will be given in
Chapter 4.

The techniques presented can also be used to solve SMT problems, such as the
ones collected by the SMT-LIB project. In particular, we used all benchmarks
that involve (non-)linear integer arithmetic and quantification but no other
constructs like arrays or bit vectors. The translation from SMT-LIB to B will
be discussed in Chapter 5. An empirical evaluation will be performed as well.
To summarize, ProB augmented with enumeration tracking cannot compete
with Z3 [60]. Yet, a considerable number of both satisfiable and unsatisfiable
benchmarks can be solved using our technique.

3.5 Related Work

SMT solvers [19] such as Z3 [60] are able to handle infinite domains and quantifiers.
As outlined in the introduction, a major difference lies within the handling of

42



3.6 Conclusion and Future Work

data. While SMT solvers are more focused on predicates, CLP(FD) systems are
more oriented towards possible valuations of variables. As a result, SMT solvers
can handle infinite domains more efficiently and detect unsatisfiability in more
cases. However, model generation (in particular in the presence of quantifiers) is
often easier using CLP(FD).

In Chapter 6, we will investigate a different approach to add high-level rea-
soning to a CLP(FD)-based solver. Instead of implementing rules in CHR, we
connect the SMT solver Z3 to SICStus Prolog. We transfer each predicate
asserted in CLP(FD) to Z3 and queried both solvers for a solution. Furthermore,
intermediate assignments and domains can be communicated back and forth.

While the approach is more powerful when it comes to reasoning, using CHR
rules has the advantage of an immediate integration into Prolog. Hence, there is
no communication overhead and no translation between different representations
is needed.

3.6 Conclusion and Future Work

Summarizing, we have presented an approach to lift a CLP(FD)-based solver to
infinite domains. Our approach tracks enumerations occurring during search and
interprets how they affect the overall result. Two extensions, high-level reasoning
and random enumeration were used to increase applicability.

Techniques have been added to the animator and model checker ProB. In
addition, they allowed us to use ProB as a prover and SMT solver. Both
applications will be used to assert the performance of our extended solver and
to verify if further additions are needed in order for ProB to be suitable as the
backend of a symbolic model checker.
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You can’t prove any hypothesis, you can only improve
or disprove it.

Christopher Monckton

4
Application: The ProB Disprover

In this chapter we will use proof obligations taken from B and Event-B models
to benchmark the improvements introduced in the last chapter. The models
include examples from both academia as well as industry and should allow us to
assert ProB’s performance as solver and prover.

The chapter is based on our paper “From Failure to Proof: The ProB Disprover
for B and Event-B” [113]. For information regarding authors and their individual
contributions see Appendix C.

4.1 Introduction and Motivation

As stated in Sections 2.1.1 and 2.1.2 both B [1] and its successor Event-B [2]
are used for the formal development of software and systems that are correct by
construction. This usually involves formal proofs of different properties of the
specification.

Many provers, such as “ml” and “pp” of Atelier B [55], are able to discharge
certain proof obligations automatically. In former work [132] Ligot, et al. de-
scribed a disprover based on using ProB’s constraint solver to automatically
find counterexamples for given proof obligations and thus saving the user from
spending time in a futile interactive proof attempt. Say that we have to prove
that the goal G is a logical consequence of the hypotheses H1, . . . ,Hn. The ProB
disprover then tries to find a solution for the formula H1∧ . . .∧Hn∧¬G. If it can
find a solution, the proof cannot succeed and the solution is a counterexample.
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In [132] Ligot, et al. already made the observation that in some cases, namely
if we encounter neither infinite sets nor deferred sets whose cardinality is un-
bounded, the absence of a counterexample is actually a proof. The authors thus
suggested as future work to implement an analysis that checks if the absence of
a counterexample is a valid proof.

This can be achieved using the techniques presented in Chapter 3: ProB can
now keep track of infinite enumeration, in particular the scope in which an
infinite enumeration has occurred and whether a solution has been found or
not. This enables the disprover to detect if the search for a counterexample was
exhaustive, i. e., we can now use ProB as a prover. Note that we go beyond
the suggested future work of [132]: we allow variables with an infinite domain
to occur, as long as they do not have to be enumerated exhaustively. We have
also improved the core algorithm of [132] in various ways, by allowing to focus
on selected hypotheses and by providing a way to detect inconsistencies in the
hypotheses or potential bugs in the disprover.

This chapter will describe how ProB can be used as a prover in more detail in
Section 4.2. Inconsistency detection will be presented in Section 4.2.3. A thorough
empirical evaluation, comparing our constraint-based proof with existing provers
for B and Event-B is presented in Section 4.3 The study shows that the constraint-
based proof fares surprisingly well for a variety of case studies.

4.2 Constraint-Based Proof Technique

In the following section we describe how ProB can be used as a prover inside
Rodin [3] and Atelier B [55]. First, in Section 4.2.1, we provide a few examples
showing how the techniques introduced in Section 3.3 influence ProB’s con-
straint solver when it is applied to typical proof obligations. Further technical
details regarding ProB’s kernel can be found in [128, 127] or [126]. Following,
Section 4.2.2 will outline how ProB was embedded into Rodin’s proof architec-
ture. Afterwards, in Section 4.2.3 we will show how ProB can be used to detect
inconsistencies in the model.

4.2.1 ProB’s Constraint Solving Kernel

Using the techniques introduced in Section 3.3, ProB’s constraint solver tracks
where and why enumeration occurs. It is able to distinguish between safe and
unsafe enumerations, i. e., if all possible values of a variable have to be tried out
or if a single solution is sufficient. Exhaustive enumeration can then be detected
individually for each variable and later be transferred to the whole constraint if
possible.
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Let us look at a few examples showing how ProB can be used for proof:

• i ∈ {1, 2, 1024, 2048} ∧ i > 2
?

=⇒ i mod 2 = 1
Here, we have the two hypotheses i ∈ {1, 2, 1024, 2048} and i > 2 and we
want to prove that i mod 2 = 1 is a logical consequence. Hence, we would
construct the formula i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 = 1) and
try to find solutions for i. For this formula, ProB finds two solutions
(i = 1024 and i = 2048) and no infinite enumeration has occurred, as
ProB has narrowed down the interval of i to 3..2048 before enumeration
has started. As such, we can conclude that G ≡ i mod2 = 1 is not a logical
consequence of the hypotheses H1 ≡ i ∈ {1, 2, 1024, 2048} and H2 ≡ i > 2.
The same solutions could be found by a simple CLP(FD) query.

• i ∈ {1, 2, 1024, 2048} ∧ i > 2
?

=⇒ i mod 2 = 0
For the opposite of the goal, i. e, i mod 2 6= 0, we construct the formula
i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 = 0). In this case ProB finds
no solution and no infinite enumeration has occurred. As such, we have
proven that i mod 2 = 0 follows logically from i ∈ {1, 2, 1024, 2048}∧ i > 2.
A simple CLP(FD) query also confirms that there is no solution.

• i > 20
?

=⇒ i mod 2 = 1
If we want to prove that (i mod 2 = 1) is a logical consequence of i > 20,
we construct the formula i > 20 ∧ ¬(i mod 2 = 1). ProB finds a solution
(i = 22), but infinite enumeration has occurred in the sense that the
possible values of i lie in the interval 22..∞. However, in this context this
is not an issue, as a solution has been found. As such, we can conclude
that i mod 2 = 1 is not a logical consequence of i > 20. This time there is
no CLP(FD) query that returns a solution. As there is no finite domain
attached to i, labeling cannot be performed. Thanks to enumeration
tracking, ProB is able to (partially) enumerate the infinite domain of i in
order to find a solution.

• i > 20
?

=⇒ (i mod 2 = 0 ∨ i mod 1001 6= 800)
Finally, if we want to prove that (i mod 2 = 0 ∨ i mod 1001 6= 800) is a
logical consequence of i > 20, we get the formula i > 20 ∧ ¬(i mod 2 =
0∨ i mod 1001 6= 800). Here ProB finds no solution, but an “enumeration
warning” is produced. Indeed, the constraint solver has narrowed down
the possible solutions for i to the interval 801..∞, but with the default
search settings no solution has been found. Here, we cannot conclude that
i mod 2 = 0 ∨ i mod 1001 6= 800 is a logical consequence of i > 20. Indeed,
i = 1801 is a counterexample, which ProB can find if we enlarge the
default search space, e. g., by adding i < 10000 as additional constraint.
Again, CLP(FD) is unable to solve the query due to the infinite domain of
i.
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Figure 4.1 outlines how the disprover proceeds in more detail:

1. We first try to solve the predicate H1 ∧ . . . ∧ Hm ∧ ¬G, i. e., the negated
goal together with all available hypotheses. If we find a solution, we
report the proof obligation as unprovable by inserting the counterexample
into the Rodin proof tree as shown in Fig. 4.2. If no counterexample is
found and search was exhaustive, the initial sequent is proven, because no
counterexample exists.

2. If the constraint solver is unable to prove or disprove the predicate in
step 1, we reduce the number of hypotheses to the user-selected hypotheses
and again look for a counterexample. The three possible outcomes are:

• No counterexample was found using the reduced set of hypotheses.
This is still a valid proof, as removing hypotheses can only introduce
further counterexamples but not remove them.

• If we find a solution, we report a possible counterexample, but leave
the proof obligation status as unknown. However, we do not interfere
with the ongoing proof effort, as the proof obligation might still be
provable using all hypotheses.

• Otherwise we return without a result (status is unknown).

4.2.3 Inconsistency Detection

After the algorithms outlined in Section 4.2.2 return a proof, a second phase can
be triggered as outlined in Fig. 4.3: We try to find a proof for the negation of the
goal. This time, we send H1 ∧ . . . ∧ Hm ∧G to the constraint solver. The result
allows us to decide whether the goal predicate G played a role in the original
proof.

If the negated goal can be proven as well, we detected a contradiction in the
hypotheses. Contradicting hypotheses might occur due to an error in the model,
in particular if they are detected at the root of the proof tree. Deeper within a
proof, contradicting hypotheses can occur “naturally”,e. g., by case distinctions
or proof-by-contradiction. Hence, the user should be notified if they occur in a
successful proof.

If contradicting hypotheses or disproven obligations have been found, ProB can
afterwards compute the unsat core in order to provide smaller counterexamples
and ease understanding of shortcomings in the underlying model.

In our of our benchmark models, this unsat core helped us to identify and
fix several bugs caused by various contradictions in the theorems at lower
refinement levels. It also highlighted an issue in the first development of the
ABZ landing gear from [175]. The ProB disprover was flagging, e. g., the proof
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Our evaluation leads us to the following conclusions:

• In many cases ProB can discharge proof obligations that cannot be
discharged by other provers. Each additional obligation that is discharged
actually saves time and money.

• None of the provers can be replaced by the others.

• The performance of a prover is influenced by the surrounding tactic,
including other provers. While the influence of a tactic on ProB is only
marginal, it is quite strong for other provers.

4.3.1 Experimental Setup

For our experiments, we have used Rodin 3.2, version 2.1.0 of the Atelier B
provers plugin and version 1.3.0 of the SMT plugin. Within the SMT plugin,
we used the bundled versions 2.4.1 of CVC3, 1.4 of CVC4, Z3 version 4.4.1 and
the bundled development version of veriT. We have used a timeout of 5 seconds
for each SMT solver, run in succession. ProB was used in version 1.6.2-beta1,
connected through the disprover plugin version 3.0.9.

Again, a timeout of 5 second was used for each constraint solving attempt with a
maximum of two attempts per proof obligation (see Fig. 4.1). Both the CLP(FD)
and the CHR-based solvers of ProB were activated. We used a global timeout
of 25 seconds for a whole tactic.

All benchmarks were run on a MacBook Pro featuring a 2.6 GHz Intel Core i7
CPU and 8 GB 1600 MHz DDR3 memory. We did not run proof attempts in
parallel to avoid issues due to hyper-threading or scheduling. We developed an
evaluation plugin1 for the Rodin platform that applies the user- or pre-defined
proof tactics to selected proof obligations.

We used the following combined tactics as they represent closely what can be
utilized by end-users:

• The automatic tactic that comes with Rodin. It applies a number of
rewriting rules and decision procedures to the proof tree. For instance, it
checks if the goal is included in the set of hypotheses and thus discharged.
The automatic tactic is applied until a fixpoint is reached or the process
times out. This is the “Default Auto Tactic” of Rodin where the calls to
PP and ML have been removed. Figure 4.4a shows the tactic definition.

• In a second step, we used this tactic in its original state, i. e., with the PP
and ML provers from Atelier B enabled.

1See https://github.com/wysiib/ProverEvaluationPlugin for sources and instructions.
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• The SMT plugin [63, 64] applies two different SMT solvers (veriT [33] and
CVC3 [20]) to the original goal. We used the default SMT tactic as shown
in Fig. 4.4b. Note that it calls PP and ML as well.

• Finally, we added ProB to the tactic as well. It is applied to the goal
before the other provers. The corresponding tactic definition is shown in
Fig. 4.4c.

In addition, we benchmarked the provers alone, i. e., without tactics. This gives
us a better picture of the individual power of each prover.

• PP and ML from Atelier B together,

• SMT plugin on its own, using all bundled solvers, and

• ProB alone.

We used the following models for our benchmarks:

• Answers to the ABZ-2014 landing gear case study [31]. Beside our own
version [92], we also used the three models by Su and Abrial [175], a model
by André, Attiogbé and Lanoix [7], as well as a model by Mammar and
Laleau [138].

• A model of the Stuttgart 21 Railway station interlocking by Wiegard,
derived from chapter 17 of [2] with added timing and performance modeling.

• A model of a controller area network (CAN) bus developed by Colley. A
CAN Bus is used in vehicles for direct communication between components
without a central processor.

• A formal development of a graph coloring algorithm by Andriamiarina and
Méry. The graphs to be colored are finite, but unbounded and not fixed in
the model.

• A model of a pacemaker by Méry and Singh [146].

The models were selected so as to cover a variety of use cases. The landing
gear model [92] contains mainly enumerated sets; hence we suspected ProB to
perform well. We included several other versions of the case study to investigate
how modeling style influenced prover performance. On the other end of the
spectrum, the graph coloring model uses only deferred sets. Hence, we expected
ProB not to perform well, as finite enumeration is not possible. The other models
were expected to lie in between those extremes as far as ProB’s performance is
concerned. We do not claim that our selection is representative. Indeed, we could
have selected more models using (mostly) deferred sets; but this would have
just confirmed that ProB’s prover is not useful for proof obligations involving
deferred sets.
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4.3.2 ProB Solver Settings

Several of ProB’s preferences influence its performance as a prover. Below, we
discuss which settings we used.

Detection of well-definedness problems: We disabled ProB’s built-in detec-
tion of well-definedness errors like function application outside of the domain or
division by zero. This speeds up the search for a counterexample. In Event-B,
proof obligations are assumed to be well-defined. Well-definedness is verified
by an independent obligation where necessary. In case a proof obligation is
not well-defined, a corresponding well-definedness proof obligation generated by
Rodin will thus be unprovable.

Extended ruleset for contradiction detection: Furthermore, we enabled the
set of CHR rules discussed in Section 3.3.3. As stated, they should mitigate
certain shortcomings of the CLP(FD) system by adding rules to detect unsatisfi-
ability and inferring further constraints. However, they often extend the time
the solver takes to complete and may thus increase the amount of occurring
timeouts.

Aggressive treatment of choice points: We used ProB’s so called SMT
mode, in which it enumerates more aggressively. In addition to the variables
enumerated by CLP(FD)-style labeling, this makes ProB increase the limits for
enumeration of quantifiers or set comprehensions. For instance, ProB starts
partially enumerating domain and range of functions as soon as a function
application has to be executed by the interpreter. With the SMT mode disabled,
ProB would sometimes avoid early partial enumeration and later try to find
the whole range or domain in a single search step.

Allow enumeration of infinite types: In order to find counterexamples even
if infinite sets occur in the sequent, ProB can try to enumerate unbounded
variables. Obviously, this cannot lead to a successful proof anymore. Hence,
ProB allows to disable the counterexample search if the user is only interested
in proofs. This would speed up the search, but for the benchmarks below, we
allowed enumeration in all cases.

4.3.3 Results

The benchmark results for the tactics can be found in Tables 4.1 and 4.2 and
Figs. 4.5, 4.7 and 4.8, while the results for the provers alone are in Table 4.3 and
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(a) Default Rodin Tactic (b) SMT Tactic (c) ProB Tactic

Figure 4.4: Tactic Definitions

Table 4.1: Benchmark Results: Discharged Proof Obligations
Model # POs Tactic alone +ML/PP +ML/PP+SMT +ML/PP+SMT+ProB
Landing Gear System 1, Su, et al. 2328 2025 2198 (+173) 2313 (+115) 2313 (0)
Landing Gear System 2, Su, et al. 1188 817 918 (+101) 1182 (+264) 1182 (0)
Landing Gear System 3, Su, et al. 341 150 184 (+34) 276 (+92) 270 (-6)
CAN Bus, Colley 534 324 402 (+78) 404 (+2) 397 (-7)
Graph Coloring, Andriamiarina, et al. 269 95 133 (+38) 171 (+38) 166 (-5)
Landing Gear System, Hansen, et al. 74 58 60 (+2) 62 (+2) 68 (+6)
Landing Gear System, Mammar, et al. 433 220 308 (+88) 409 (+101) 398 (-11)
Landing Gear System, Andre, et al. 619 298 325 (+27) 447 (+122) 448 (+1)
Pacemaker, Neeraj Kumar Singh 370 258 354 (+96) 364 (+10) 369 (+5)
Stuttgart 21 interlocking, Wiegard 202 30 29 (-1) 82 (+53) 99 (+17)

part (b) of Fig. 4.5. Figure 4.7 summarizes the results of the different landing
gear models. Individual results are visualized in Appendix A.1, with Fig. A.1
showing the results of the tactics and Fig. A.2 the results of provers alone.

Table 4.1 shows the total number of proof obligations discharged, as well as the
number of proof obligations discharged using ML/PP together with SMT and in
the last column the number of obligations discharged by using these two proof
tactics together with the ProB disprover. Each Venn diagram shows how many
proof obligations are discharged by which prover.

Table 4.2 shows the runtimes of the different provers for all proof obligations and
for discharged proof obligations individually. As can be seen, average runtimes
are much higher if we take all proof obligations into account. This is due to
timeouts occurring if provers are too weak to discharge an obligation in the given
time. Some provers, such as the SMT solver based ones are able to detect that
they will not be able to proof an obligation and report it to the user. However,
this is not always the case.
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Table 4.2: Benchmark Results: Average Runtimes (in Seconds / PO)
Model Tactic alone +ML/PP +ML/PP+SMT +ML/PP+SMT+ProB

All Proof Obligations
Landing Gear System 1, Su, et al. 0.18 0.27 0.27 0.47
Landing Gear System 2, Su, et al. 0.06 0.37 0.44 0.57
Landing Gear System 3, Su, et al. 4.55 4.97 5.78 5.5
CAN Bus, Colley 5.67 5.8 6.12 6.59
Graph Coloring, Andriamiarina, et al. 7.99 8.71 10.6 11.13
Landing Gear System, Hansen, et al. 3.04 3.78 4.07 2.21
Landing Gear System, Mammar, et al. 1.16 1.56 1.81 2.31
Landing Gear System, Andre, et al. 6.28 6.72 8.27 7.03
Pacemaker, Neeraj Kumar Singh 0 0.08 0.06 0.33
Stuttgart 21 interlocking, Wiegard 13.93 14.61 15.47 13.84

Successfully Discharged Proof Obligations
Landing Gear System 1, Su, et al. 0.02 0.05 0.11 0.31
Landing Gear System 2, Su, et al. 0.02 0.06 0.32 0.45
Landing Gear System 3, Su, et al. 0.01 0.11 1.25 0.37
CAN Bus, Colley 0 0.05 0.1 0.24
Graph Coloring, Andriamiarina, et al. 0 0.14 2.35 2.53
Landing Gear System, Hansen, et al. 0 0.02 0.02 0.2
Landing Gear System, Mammar, et al. 0.01 0.1 0.45 0.31
Landing Gear System, Andre, et al. 0.02 0.05 1.83 0.16
Pacemaker, Neeraj Kumar Singh 0 0.06 0.03 0.26
Stuttgart 21 interlocking, Wiegard 0.08 0.11 1.51 2.23

Except for the graph coloring algorithm, ProB performs surprisingly well.
The graph coloring algorithm uses unbounded sets, meaning that some proof
obligations cannot be proven using constraint solving and enumeration.

As can be seen in Table 4.1, adding ProB improves the results of automatic
proving for some models. The reason for the improvement is that these models
only use enumerated sets, booleans and integers as base types. In these cases
ProB can produce elaborate case distinctions, combined with constraint solving
to narrow down the search space. This type of proof is not supported by the
classical provers ML and PP. Generally, the proof obligations that pose problems
to ProB are certain well-definedness proof obligations. For instance, function
application requires to prove that the parameter is in the domain of the function.
Usually this leads to expensive enumeration of the possible parameter values.

For other models, using ProB slows down the prove process. As shown in
Table 4.2 ProB’s runtime is above average for some proof obligations, while it
considerably speeds up other proof attempts. We suspect that this is due to the
multiple constraint solver calls ProB performs on different sets of hypotheses as
shown in Fig. 4.1. Also, ProB is looking for proofs and counterexamples. This
often means that ProB will continue the computation, even after it has realized
that no proof is possible (in the hope of finding a counterexample).

It is also interesting to note that, on their own, the ML and PP provers do
not fare quite so well as in Table 4.1: they require preprocessing and tactic
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Tactic Alone 69%

+ML/PP 10%

+ML/PP+SMT 13%

+ML/PP+SMT+ProB 0%

Not Proven 8%

(a) ProB Run Last

Tactic Alone 69%

+ProB 21%

+ProB+ML/PP 1%

+ProB+ML/PP+SMT 1%

Not Proven 8%

(b) ProB Run First

Figure 4.6: Influence of Execution Order on Benchmark Results

feasibility and finiteness proof obligations, on the other hand, ProB fares less
well. The finiteness proof obligations often involve enumerating different set
cardinalities, an operation only weakly supported by the ProB kernel.

Note that for the Stuttgart 21 model and the Andre et al. model, ProB found
several unprovable proof obligations, i. e., errors in the model as can be seen in
Table 4.3. e. g., for Stuttgart 21 ProB found a counterexample for two proof
obligations, while it found five counterexamples in the landing gear model. This
is useful feedback to the developer of the model, and the initial purpose of the
ProB disprover.

The diagram in Fig. 4.5 shows the gain of using ProB in addition to the other
decision procedures. Compared to the SMT Tactic, adding ProB leads to an
additional 53 (38 + 1 + 0 + 14) proof obligations being discharged. This is much
less than what we reported in our former work [113], where ProB accounted for
304 (238+1+11+54) additionally discharged proof obligations. The reduction
is mostly due to the recent improvements of the SMT plugin caused by adding
CVC4 and Z3 to the bundled solvers.

However, due to the time consumption by ProB, 53 (47+1+5) proof obligations
cannot be discharged anymore. With a higher time-out, these could again be
proven.

The second diagram in Fig. 4.5 shows how the individual provers alone contribute:
Each of them has a set of proof obligations that cannot be solved by any of the
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Table 4.5: Results of Running Provers with Lasso
Model # POs ML/PP SMT ProB

prove disprove
Landing Gear System 1, Su, et al. 2328 421 2327 2291 0
Landing Gear System 2, Su, et al. 1188 261 1188 1170 0
Landing Gear System 3, Su, et al. 341 53 331 287 0
CAN Bus, Colley 534 487 504 255 2
Graph Coloring, Andriamiarina, et al. 269 66 194 0 0
Landing Gear System, Hansen, et al. 74 70 63 74 0
Landing Gear System, Mammar, et al. 433 242 432 409 0
Landing Gear System, Andre, et al. 619 119 553 567 5
Pacemaker, Neeraj Kumar Singh 370 356 328 367 0
Stuttgart 21 interlocking, Wiegard 202 9 116 184 2

4.4 Related Work

Counterexample generation for proof efforts formulated in Isabelle/HOL [155]
has been implement inside Nitpick [29]. Nitpick is based on Kodkod [177], which
is also available as a backend for ProB.

Of course, other general purpose solvers can be used to find counterexamples as
well. One could rely on SAT solvers such as Glucose [12] or SMT solvers such as
Z3 [60]. However, using them to generate counterexamples for B would involve
encoding B predicates into a SAT or SMT formula. Furthermore, valuations
found by SAT or SMT solvers would have to be translated back into B. For SAT,
this can be simplified using Kodkod as done in [160]. For SMT, we will do so in
Chapter 6.

4.5 Conclusion and Future Work

One motivation for the experiments conducted in this chapter was the empirical
evaluation of our constraint solver, more precisely its capability to serve as the
backend of a symbolic model checker. In particular, we were interested in both
its ability to detect inconsistencies (a successful proof with the disprover requires
finding a contradiction without enumerating unbounded variables; see Fig. 4.1)
and its ability to handle infinite domains.

Symbolic model checking aside, finding inconsistencies is important for many
other features of ProB, e. g., detecting disabled events during animation.
Furthermore, it is useful for constraint-based validation, such as deadlock check-
ing [91], where it avoids the constraint solver exploring infeasible alternatives.
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performs well in the realm of set theoretic constructs and relational expressions,
some of which cannot be easily represented in the SMT syntax. SMT on the
other hand performs well on arithmetic expressions, where the auto tactics often
fail. ProB finally covers predicates over enumerated sets, explicit data and
explicit computations, and has a good support for integer arithmetic over finite
domains.

However, for models making heavy use of deferred sets, such as the graph
coloring algorithm model, the ProB disprover can currently mainly play its role
as disprover. More precisely, for any proof obligation which involves deferred sets
and where no precise value of the cardinality of the deferred set is known, the
disprover can only return either a counterexample or the result “unknown”.

This is a serious limitation, because several symbolic model checking algorithms
rely on the detection of unsatisfiability, as we will show in Chapter 7. In the
future, we plan to improve the treatment of deferred sets in ProB, mostly by
allowing the constraint solver to determine the cardinalities of sets while solving
instead of having the solver working on predefined sets. This should also enable
the disprover to act as a prover for more proof obligations involving deferred
sets.

In summary, we present the following insights on when to use the ProB disprover
(+) and when not to (-):

+ Used solely as a disprover, ProB can prevent futile interactive proof
attempts. This is always worthwhile.

+ The inconsistency detection is useful for finding subtle modeling errors.

+ On models such as the ABZ landing gear models (Fig. 4.7), which rely
heavily on enumerated sets, booleans and/or bounded integers as base
types, ProB performs well.

+ The Stuttgart 21 model shows that explicit data, e. g., track layouts or
time tables, can often be used effectively by ProB. Often, this results in a
proof by an elaborate case distinction.

+ ProB performs reasonably well on unbounded intervals, when interval
reasoning can be applied. This occurs for example in the lower refinement
levels of the ABZ case study models or the pacemaker model.

- As soon as the proof goal references deferred sets (e. g., in the graph
coloring model), no proof can be done by construction of the disprover (see
Fig. 4.1).

- When unbounded datastructures are used, ProB cannot exhaustively
enumerate cases and is much less powerful. This happens for example
in the CAN bus model that represents a buffer as an unbounded partial
function from N to Z.
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4.5 Conclusion and Future Work

In particular, judging by the two drawbacks identified, we can already answer
one of the questions posed in the motivation: ProB’s constraint solver alone
appears to be too weak to be used as the backend of a symbolic model checking
algorithm. To overcome the discovered limitations, we suggest an integration of
ProB and SMT solvers in Chapter 6.

Symbolic model checking aside, we think that the ProB Disprover is a valuable
extension to the existing set of provers, because it can increase the number
of proof obligations that are automatically discharged, thus saving time and
money. Overall, the outcome of the empirical evaluation was a positive surprise,
as ProB’s main domain of application is finding concrete counterexamples, not
discharging proof obligations.
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I have heard there are troubles of more than one kind.
Some come from ahead and some come from behind.
But I’ve bought a big bat. I’m all ready you see.
Now my troubles are going to have troubles with me!
Dr. Seuss, “I Had Trouble in Getting to Solla Sollew”

5
Application: SMT Solving

In this chapter we will use constraints taken from the SMT-LIB collection of
SMT problems to benchmark the improvements to ProB’s constraint solving
kernel. As in the previous chapter, test cases in the SMT-LIB have been collected
from both academia and industry.

5.1 Introduction and Motivation

The SMT-LIB language and its logics [18] and the B language have several
similarities. Both are based on predicate logic, they support the same types
of arithmetic operators and quantifiers. Furthermore, both are strongly typed
languages. However, there are considerable differences as well. For instance,
B supports several data types not available in SMT-LIB, like (finite) sets and
lists. For SMT-LIB, these only exist as a proposal [183]. However, some solvers
already provide partial support, e. g., CVC4 [16] supports finite sets based on the
method presented in [40]. SMT-LIB and certain SMT solvers on the other hand
are able to cope with real and floating-point arithmetic, while B only supports
integer arithmetic.

With our translation we bridge the gap between B and the SMT-LIB language,
embedding the translatable parts of SMT-LIB in the B language. This allows
reasoning over both SMT-LIB constraints and SMT solving algorithms, using
the B method and its tool chain, e. g., one can specify any algorithm working on
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5 Application: SMT Solving

SMT-LIB constraints using the B language and prove it correct using Atelier
B.

Additionally, as the semantics specified for SMT-LIB are preserved during the
translation, one can analyze properties of given SMT-LIB constraints in B. This
could be used to perform a meta-level analysis of SMT-LIB.

Furthermore, we want to make the constraint solving and model finding capabil-
ities of ProB available in the form of a standalone constraint solver that takes
the SMT-LIB language as input.

Not only does this enable others to use ProB without having to learn B, it
also gives us access to the benchmarks and test cases available in the SMT-LIB
collection. Since ProB can be used as a prover using the techniques we described
in Chapters 3 and 4, asserting its correctness on as many test cases as possible
has become vital.

The contributions of this chapter are as follows:

• A translation scheme from the SMT-LIB format to B for logics involving
quantification, arrays, free sort and function symbols over integers,

• A discussion about possible translations of bit vectors to B,

• An in-depth empirical evaluation comparing ProB’s extended constraint
solver to Z3 and CVC4 on several benchmarks taken from the SMT-
LIB, notably for the NIA (non-linear integer arithmetic with quantifiers)
category, which ProB has won in the 2016 SMT-LIB competition.

5.2 Introductory Examples

First, let us look at two simple examples illustrating the general translation
scheme: In Listing 5.1 we encode the assertion p ∧ ¬p, which is obviously
unsatisfiable. With the first line, we state that the solver should use the logic
of quantifier free uninterpreted functions. This is a fact that we do not need
to translate to B, because B does not distinguish between different logics. The
second line introduces a constant symbol p that is of type boolean. As an SMT
constant can have just one value, we translate it to a B constant with the same
name.

The type can then be specified using the PROPERTIES section of a B machine
that holds predicates that have to be true for the constants to be valid. In this
case, we assert that p ∈ BOOL, where BOOL is the set consisting of true and
false.
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5.3 Translating SMT-LIB to B

Listing 5.1: Boolean Example in SMT-LIB
( se t− l o g i c QF UF)
( d e c l a r e−fun p ( ) Bool )
( a s s e r t ( and p ( not p ) ) )
( check−s a t )

Listing 5.2: Boolean Example in B
MACHINE BooleanExample
CONSTANTS p
PROPERTIES

p :BOOL & p=TRUE & not ( p=TRUE)
END

The assertion p ∧ ¬p cannot be written in B as trivially as one might expect,
because B does not support the use of booleans as predicates. Hence, the
assertion has to be translated as p ∧ ¬p ⇔ p = > ∧ ¬p = >.

The complete B machine can be found in Listing 5.2. Once loaded, ProB detects
the unsatisfiability and reports that the properties are inconsistent.

The same basic idea can be used for integer arithmetic as shown in Listings 5.3
and 5.4. Here, we solve the indeterminate equation system 6x + 12y + 3z =
30 ∧ 3x + 6y + 3z = 12. This time, ProB is able to find a valuation for the
constants and satisfiability can be reported.

Note that INTEGER is the B type for the integers. As with SMT-LIB, the B
set of integers represents the mathematical integers. The B method tools in
general, and ProB’s solver in particular, can handle arbitrarily large integers.
The CLP(FD) library employed by ProB may generate overflows, which the
ProB solver catches. Once an overflow occurs, ProB tries to provide alternative
treatment, i. e., explicit computations instead of constraint based propagation.
In case this is not possible, ProB reports “unknown”.

In contrast to SMT-LIB, the arithmetic operators of B do not support an
arbitrary number of operands. Hence, (+ x y z) has to be translated into x +
y + z.

5.3 Translating SMT-LIB to B

Because the B language provides more involved operators than the SMT-LIB
language, translating SMT-LIB into B is mostly straightforward. New SMT-
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Listing 5.3: Integer Example in SMT-LIB
( se t− l o g i c QF LIA )
( d e c l a r e−fun x ( ) I n t )
( d e c l a r e−fun y ( ) I n t )
( d e c l a r e−fun z ( ) I n t )
( a s s e r t (= (+ (∗ 6 x ) (∗ 12 y ) (∗ 3 z ) ) 30) )
( a s s e r t (= (+ (∗ 3 x ) (∗ 6 y ) (∗ 3 z ) ) 12) )
( check−s a t )

Listing 5.4: Integer Example in B
MACHINE In t ege rExamp l e
CONSTANTS x , y , z
PROPERTIES

x : INTEGER & y : INTEGER & z : INTEGER &
6∗x + 12∗ y + 3∗ z = 30 &
3∗x + 6∗y + 3∗ z = 12

END

LIB non-parametric sorts declared by the user are mapped to B deferred sets.
Deferred sets introduce a new base type and are declared in the SETS section of
a B machine. They may contain an arbitrary (and possibly infinite) non-zero
number of elements.

If a new sort is parametric, further sets are generated on demand for each
concrete combination of parameters used in the SMT-LIB input. For instance,
the SMT-LIB command (declare-sort NewSort 0) results in a B deferred set
named NewSort.

A parametric sort declared for instance by (declare-sort Pair 2) is not
directly included in the B machine. As B does not support dynamic typing,
we have to wait until the sort is instantiated and the type is fully known. An
instantiation of Pair, such as (Pair Int Bool), is introduced as a set containing
pairs taken from Z× {true, false}. For any higher number of arguments, nested
pairs are used.

New function symbols are translated into B constants declared in the B CONSTANTS
section. The SMT types are thereby mapped to B types, e. g., the Int sort
is mapped to B’s INTEGER set. For functions declared using declare-fun, we
create constants that are defined as total functions, which are typed in B as
relations between the parameter types and the result type.

Formally, SMT-LIB sorts are translated into B expressions using the mapping
b type defined below. The translation of arrays and bit vectors will be further
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5.3 Translating SMT-LIB to B

discussed in Sections 5.3.3 and 5.3.4

Definition 5.3.1. The translation function b type maps the default SMT-LIB
sorts to B types, and is defined recursively as

b type(Int) = INTEGER
b type(Bool) = BOOL

b type((Array F T )) = b type(F)→ b type(T )

b type(( BitVec L)) = [0,L − 1]→{0, 1}

where X → Y is the set of all total functions from X to Y .

Certain SMT-LIB operators have a direct equivalence in B. The arithmetic
operators +, -, * can be translated directly. Furthermore, like SMT-LIB, the B
language and tools support universal and existential quantification natively.

There is no absolute value function in B. However it can be translated as |x| =
max({−x , x}). Integer division and modulo in SMT-LIB are defined following
the Euclidean definition by Boute [32], while B uses a floored division [110].1
Thus in B −8/3 = −2 while in SMT-LIB it is −3.

Furthermore, in B, x mod y is only defined if x is non-negative and y is positive.
In contrast, the Euclidean definition mentioned above permits both cases. In
Section 5.3.5, we express SMT-LIB’s division and modulo by rewriting it to B’s
floored division.

Another difference is that in SMT-LIB all functions are total, meaning that 2/0
is an integer value, it is just unknown to us which one. So, in SMT-LIB x/0 = 2
is a satisfiable formula, while in B it is ill defined. Currently, our B translation
of x/0 = 2 is not well-defined in B [4], and ProB will raise an error. In other
words, ProB will report unknown.2

Aside from the translations above, certain constructs available in the SMT-
LIB format are not available in B and require more involved translations. We
identified five of them and will explain them in the following sections:

• In B, booleans are values and cannot be used as predicates. We already
showed how to overcome this limitation in the introductory examples.
Listing 5.2 shows how to turn booleans into predicates simply by comparing
them to TRUE.

• There is no if-then-else for expressions or predicates in B. The B if-then-else
may only be used in substitutions (aka statements). Thus, the if-then-else
from SMT-LIB has to be rewritten. How this is done is explained in
Section 5.3.1.

1More precisely, the definition of division in B [1] is n/m = min({x | x ∈ Z∧n < m∗succ(x)}).
2We may improve our translation to remedy this, but our assumption is that most SMT-LIB

examples are well-defined according to B.
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• Analogously, B features a let substitution but no let predicate. We rewrite
let as shown in Section 5.3.2.

• B has no dedicated data type adhering to the properties SMT-LIB arrays
have to fulfill. However, these can be represented by relations together
with a special set of additional assertions. See Section 5.3.3 for details.

• Lastly, B has no integrated support for bit vectors. Again these can be
simulated. However, it is less obvious how to encode them. Several possible
encodings will be discussed in Section 5.3.4.

Another limitation is that there are no real or floating-point numbers in B [1].
There has been experimental support for floats and reals in Atelier-B since
Atelier B 4.1 [55]. However, proof support is far from being useful and there is
currently no support for reals or floats in ProB. Hence, we currently do not
take them into account in our translation.

5.3.1 If-Then-Else

As mentioned above, the if-then-else construct in B can only be used in substitu-
tions, not in predicates or expressions. However, the core theory of the SMT-LIB
language supports the ite function that returns its second or third argument
depending on the truth value of the first one. To mimic the behavior of ite we
can reuse a translation that has originally been developed for a translation from
TLA+ to B [93].

In order to translate (ite P E1 E2) we first have to look at the type of E1

and E2. If both are predicates, the if-then-else can be expressed in terms of
implications, i. e., (ite P E1 E2) is translated into

(P ⇒ E1) ∧ (¬P ⇒ E2).

Implication is available in B, so the predicate above can be used as a replacement
for ite in case the arguments are all predicates.

When the ite construct is used as an expression rather than a predicate, the
translation is more complex. We use the translation suggested by [93]: For
both branches of the if we create a lambda function that maps 1 to E1 or E2

respectively. Afterwards, the union of the two lambda relations is computed:

(λ t · (t = 1 | E1)) ∪ (λ t · (t = 1 | E2)).

This relation has two elements both mapping 1 to a result. In order to mimic the
behavior of if-then-else, we now have to assure that one of the lambda relations
is empty depending on the value of P:

(λ t · (t = 1 ∧ P | E1)) ∪ (λ t · (t = 1 ∧ ¬P | E2)).
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Now, either P or ¬P is false, making the respective lambda expression to be
the empty set (and avoiding the evaluation of the corresponding expression Ei).
The other lambda expression maps 1 to the result of (ite P E1 E2). Hence,
we just have to apply the relation to 1 to extract the result:

(ite P E1 E2) ==

(λ t · (t = 1 ∧ P | E1)) ∪ (λ t · (t = 1 ∧ ¬P | E2))(1).

Observe that B strictly distinguishes between boolean values and predicates.
However, there are operators to convert between the two. We considered other
encodings of if-then-else, such as using a constant function. However, they often
did not harmonize with the inner workings of B and its tools. The encoding
presented above exhibits the best performance so far.

Take for example the SMT-LIB formula, where we suppose x to be a natural
number:

(ite (not (= x 0)) (div 10 x) (div 10 (− x 1)))

Our translation is

(λ t · (t = 1 ∧ x 6= 0 | 10/x)) ∪ (λ t · (t = 1 ∧ ¬(x 6= 0) | 10/(x − 1)))(1)

One may think we could translate this into a simpler B expression:

{TRUE 7→ 10/x ,FALSE 7→ 10/(x − 1)}(bool(x 6= 0))

However, it has the problem that in order to determine the value of the expression,
one needs to compute the value of the subexpression {TRUE 7→ 10/x ,FALSE 7→
10/(x − 1)}. Thus, when x=0, we still need to evaluate 10/x , generating a well-
definedness error in B. Similarly, when x=1 we still need to evaluate 10/(x − 1),
again causing a well-definedness error.

5.3.2 Let

As with if-then-else, B only features a let substitution. Inside of an expression or
predicate no let construct is available in B. SMT-LIB on the other hand includes
a let construct for both expressions and predicates.

According to the SMT-LIB standard [18] one can rewrite a let of the form

(let ((x1 t1) . . . (xn tn)) t)

by replacing all free occurrences of xi in t with ti for all i = 1, . . . , n. This step
may have to include renaming in order to avoid scoping errors due to capturing
by quantifiers.
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Regarding performance, simple inlining of the ti may lead to duplicated computa-
tion during solving. To some extent this could be countered by ProB’s common
subexpression detection. However, this would be equal to re-introducing the let
internally. In order to avoid duplicating computation we suggest a translation
comparable to the one of the if-then-else.

First, let us consider the case of a let where t is a predicate. In this case we can
rewrite

(let ((x1 t1) . . . (xn tn)) t)

to

∃ x1, . . . , xn · t ∧
n∧

i=1

xi = ti

which can be written in B without further translation.

Replacing a let where t is an expression cannot be done as easily. As in
Section 5.3.1 we create a function that is called on a fixed value. We translate

(let ((x1 t1) . . . (xn tn)) t)

to

{k, v | k = 1 ∧ ∃ x1, . . . , xn · v = t ∧
n∧

i=1

xi = ti}(1).

The set comprehension contains only one element: The pair (1, v) where v is
equal to t, the expression copied from inside the let binder. We call this function
on 1 to extract v.

As an example, consider (let ((x1 1) (x2 2)) (+ x1 x2)). We translate this to {k, v |
k = 1 ∧ ∃ x1, x2 · v = x1 + x2 ∧ x1 = 1 ∧ x2 = 2}(1). The existential quantification
can be removed by inlining the definition of the quantified variables, simplifying
the comprehension to {k, v | k = 1 ∧ v = 1 + 2}(1), which represents the partial
function 1 7→ 1 + 2. The function is applied to 1 in order to extract the desired
result, i. e., {k, v | k = 1 ∧ v = 1 + 2}(1) = {(1 7→ 3)}(1) = 3.

5.3.3 Arrays

Another SMT-LIB construct that does not have an obvious counterpart in B are
array sorts together with the functions to store or select elements. In B, there
is no native data type for arrays or maps. The closest equivalent is a partial
function that maps keys to values.

An array a in SMT-LIB (using the ArraysEx theory from Chapter 3.7 of [18])
with key sort s1 and value sort s2, satisfies the following axioms for the two
operations select and store:
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1. ∀(i, e).(i ∈ s1 ∧ e ∈ s2 ⇒ select(store(a, i, e), i) = e)

2. ∀(i, j, e).(i ∈ s1 ∧ j ∈ s1 ∧ e ∈ s2 ∧ i 6= j ⇒ select(store(a, i, e), j) =
select(a, j))

3. ∀ b.(b ∈ Array(s1, s2) ∧ (∀ i.(i ∈ s1 ∧ select(a, i) = select(b, i))⇒ a = b))

First, in order to solve constraints involving arrays in ProB we need a translation
for the array sorts themselves, i. e., for the types of constants representing arrays.
A typical declaration of a new function symbol named arr that represents an array
with integer keys and integer values can be done in SMT-LIB by (declare-fun
arr () (Array Int Int)).

We again base our translation on the notion of relations and functions. We set
up a new B variable with the name arr , typed as a total function from and to
the set of all integers: arr ∈ INTEGER→ INTEGER. A total function in B
fulfills the same properties as the SMT-LIB logics require the arrays to fulfill.

With the translation of array sorts in place, we can implement translations for
the array operations store and select: The select operation takes an array A
and a key K and returns a value V .

Definition 5.3.2. Given that the array is encoded as a total function as described
above, we can mimic the behavior of select by the function application of B:

(select A K ) == A(K ).

Storing an element inside of an array is done by the SMT-LIB function store,
which takes an input array A, a key K and the value to store V . It returns the
updated array. In order to translate store to B, we need several B operators for
relations:

Definition 5.3.3. For a set S and a relation r , the domain subtraction �− in B
is defined as

S �− r = {x 7→ y | x 7→ y ∈ r ∧ x /∈ S}.
For relations r1, r2, the override �− in B is defined as

r1 �− r2 = r2 ∪ (dom(r2) �− r1).

Definition 5.3.4. Using the functional operators given above, store can be
expressed by a functional override that replaces any existing pair K 7→ O by a
newly created pair K 7→ V :

(store A K V ) == A �− {K 7→ V }.

In summary, the simple array property stated in Listing 5.5 (taken from the SMT-
LIB set of benchmarks) is translated into the B machine shown in Listing 5.6.
ProB is able to find a valuation for the variables k, v1, v2 and a.
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Listing 5.5: Array Example in SMT-LIB
( se t− l o g i c QF AX)
( d e c l a r e−s o r t Keys 0)
( d e c l a r e−s o r t Va lues 0)
( d e c l a r e−fun k ( ) Keys )
( d e c l a r e−fun v1 ( ) Va lues )
( d e c l a r e−fun v2 ( ) Va lues )
( d e c l a r e−fun a ( ) ( Ar ray Keys Va lues ) )
( a s s e r t (= v1 v2 ) )
( a s s e r t (= ( s t o r e a k v1 ) ( s t o r e a k v2 ) ) )
( check−s a t )

Listing 5.6: Array Example in B
MACHINE ArraysExample
SETS

Keys ; Va lues
CONSTANTS k , v1 , v2 , a
PROPERTIES

k : Keys & v1 : Va lue s & v2 : Va lues &
a : Keys −−> Va lues &
v1 = v2 &
a <+ {( k , v1 )} = a <+ {( k , v2 )}

END

5.3.4 Bit Vectors

In order to translate SMT-LIB’s bit vector logic to B, we first need to decide on
a suitable representation of bit vectors in B. This turns out to be much more
complex than it was for arrays. This is mostly due to the amount of different
operations that the SMT-LIB language permits for bit vectors.

We evaluated several representations which we will discuss in this section:

Approach 1. Represent bit vectors as B sequences, i. e., as total functions
mapping an integer interval [1, n] to {0, 1}.

Approach 2. Work on the word-level and represent a bit vector by the integer
value it encodes. That way we might be able to exploit some higher order
operations available for integers in B.

Approach 3. Use a combination of the above combined with functions to convert
between bit vector sequences and natural numbers to always use the
representation in which an assertion is easier to express. Essentially this
would mean to implement nat2bv and bv2nat as defined by the theory
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FixedSizeBitVectors3. A B implementation of both is possible as we
will show below.

Approach 1 is equivalent to the well-known bit blasting done by most state-of-the-
art SMT solvers: The bit vector operations are broken down into propositional
formulas, possibly after adding some rewriting or high-level reasoning [80].
Afterwards, a SAT solver is used to solve the result.

From former experiments we already know that ProB is not competitive on
simple SAT instances, as it is tailored towards high-level constraints as occurring
in B and Event-B. Thus, no special effort was put into solving low-level boolean
formulas. Furthermore, we would probably lose the advantages of using a high-
level language like B. Approach 1 (on its own) was thus quickly discarded.

Approach 2 has already been used for example for test case generation [77]. One
of the problems of this approach is that various bit-level operations cannot easily
be expressed at the word-level. Some of them involve encoding into multiple
constraints or the usage of several case splits. Furthermore, a comparison
between SAT solvers, SMT solvers and constraint logic programming for hardware
verification shows that the approach is by far the slowest [176].

We decided to follow approach 3 and solve bit vectors using both word level
arithmetic and propositional logic. Implementing conversion functions between
bit vectors as sequences and integers in B would allow us to combine both ap-
proaches, as done in the definition of the semantics of the FixedSizeBitVectors
theory.

bv2nat, which converts a bit vector to an integer is defined as follows.

Definition 5.3.5. bv2nat ∈ bit vectors → Z, with

bv2nat(b) = b(m − 1) ∗ 2m−1 + b(m − 2) ∗ 2m−2 + · · ·+ b(0).

This can be expressed in B by using the general sum operator:

bv2nat(b) = Σk,v{v ∗ 2k−1 | (k 7→ v) ∈ b}.

The opposite direction, translating natural numbers into bit vectors, is handled
by nat2bv:

Definition 5.3.6. nat2bv ∈ Z→ bit vectors, returns a bit vector b such that

b(m − 1) ∗ 2m−1 + b(m − 2) ∗ 2m−2 + · · ·+ b(0) = n rem 2m,

where m is the width of the bit vector. The resulting sequence in B can be
computed by the means of a set comprehension:

nat2bv(n,m) = λ k.(k ∈ [1,m] | n
2k−1 mod 2).

3See http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
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Now that we can convert back and forth between the two bit vector represen-
tations, we can pick either one as the internal representation in ProB. The B
representation as a (total) function mapping indices to {0, 1} allows ProB to
reason about single bits and to propagate values for bit vectors only partially
known so far. We thus use it as the default representation and convert to natural
numbers only if necessary.

Currently, bv2nat is used to implement arithmetic operations and unsigned
comparison operators as well as bvneg, the 2’s complement unary minus. For
the signed comparison operators, an extended version of bv2nat that takes the
sign bit into account is used.

Some operators, especially the bit shifts, can be implemented in both ways.
Applied on the sequence representation, they shift the indices by an offset and
add or remove new elements accordingly. The same result could be achieved by
converting to a natural number, multiplying with an appropriate power of 2 and
converting back.

We do not know a priori which encoding will provide better propagation as it
highly depends on intertwined constraints. Hence, we decided to set up both
word- and bit-level encoding of a constraint at the same time wherever possible.
Once one of them leads ProB to a solution, the other is solved immediately via
the bv2nat bridge.

Below, we will show how our translation works, using different examples. First,
an SMT-LIB declaration of a constant symbol bv as a bit vector of length
32 is given by (declare-fun bv () ( BitVec 32)). In B, we constrain the
variable to hold a total function mapping [0, 31] to {0, 1}: bv ∈ 0..31→{0, 1}.

We give two examples for our translation that outline bit-level as well as word-
level reasoning. Bit-level operations are shown in Listings 5.7 and 5.8, where
we show how to prove De Morgan’s law for bit vectors of length 4. The proof is
performed by showing the absence of a counterexample. The SMT-LIB file in
Listing 5.7 is translated into the B machine given in Listing 5.8.

The three bitwise operators bvor , bvand and bvnot are included in the machine
using B definitions. Each computes a new set comprehension representing the
result as another total function, using our representation introduced above. Due
to the lack of an if-then-else construct in B predicates, we use two implications
to define the result.

Listings 5.9 and 5.10 show an example of word-level arithmetic. We introduce
two constants x and y and assign a fixed value to each. Afterwards, we assert
that z is equal to the sum. In this example, we use B’s integer arithmetic by
translating back and forth between bit- and word-level using bv2nat and nat2bv
as introduced above.
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Listing 5.7: Bitwise Operators Example in SMT-LIB
( se t− l o g i c QF BV)
( d e c l a r e−fun x ( ) ( BitVec 4 ) )
( d e c l a r e−fun y ( ) ( BitVec 4 ) )
( a s s e r t ( not (= ( bvand ( bvnot x ) ( bvnot y ) )

( bvnot ( bvor x y ) ) ) ) )
( check−s a t )

Listing 5.8: Bitwise Operators Example in B
MACHINE BVExampleDeMorgan
DEFINITIONS

bvor ( b1 , b2 , Len ) == {k , v | k : 0 . . Len & v : 0 . . 1
& ( b1 ( k)=1 or b2 ( k)=1 => v=1)
& ( b1 ( k)=0 & b2 ( k)=0 => v =0)} ;

bvand ( b1 , b2 , Len ) == {k , v | k : 0 . . Len & v : 0 . . 1
& ( b1 ( k)=1 & b2 ( k)=1 => v=1)
& ( b1 ( k)=0 or b2 ( k)=0 => v =0)} ;

bvnot (b , Len ) == {k , v | k : 0 . . Len & v : 0 . . 1
& ( b ( k)=1 => v=0) & ( b ( k)=0 => v=1)}

CONSTANTS x , y
PROPERTIES

x :0..3−−>{0 ,1} & y :0..3−−>{0 ,1} &
bvnot ( bvor ( x , y , 3 ) , 3 ) /= bvand ( bvnot ( x , 3 ) , bvnot ( y , 3 ) , 3 )

END

As can be seen, our translation directly follows the given semantics of bit vectors
in SMT-LIB. This approach will certainly not be competitive when it comes to
performance. However, because it stays quite high-level, it allows using the B
method tools to reason about SMT-LIB constructs and algorithms using them.

Given these expectations, we did not evaluate the performance of ProB and
other B method provers on the full set of bit vector benchmarks found in the
SMT-LIB. Running a selection of benchmarks supports our expectations as can
be seen in Section 5.4.

5.3.5 Formal Definition of Translation

The translation is implemented as an AST walker carrying around a type
environment. We will define how AST nodes are translated by gradually defining
a translation function τ , mapping SMT-LIB to B. Just as above, we will use
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Listing 5.9: Word-Level Operators Example in SMT-LIB
( se t− l o g i c QF BV)
( d e c l a r e−fun x ( ) ( BitVec 4 ) )
( d e c l a r e−fun y ( ) ( BitVec 4 ) )
( d e c l a r e−fun z ( ) ( BitVec 4 ) )
( a s s e r t (= x #b0011 ) )
( a s s e r t (= y #b0001 ) )
( a s s e r t (= z ( bvadd x y ) ) )
( check−s a t )
( get−model )

Listing 5.10: Word-Level Operators Example in B
MACHINE BVExampleAdd
DEFINITIONS

bv2nat ( b ) ==
SIGMA( k , v ) . ( ( k , v ) : b | v ∗ 2∗∗k ) ;

nat2bv (n , width ) ==
{k , v | k : 0 . . width−1 & v=(n / 2∗∗k ) mod 2}

CONSTANTS x , y , z
PROPERTIES

x :0..3−−>{0 ,1} & y :0..3−−>{0 ,1} &
z :0..3−−>{0 ,1} &
x = { ( 0 , 1 ) , ( 1 , 1 ) , ( 2 , 0 ) , ( 3 , 0 )} &
y = { ( 0 , 1 ) , ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 )} &
z = nat2bv ( bv2nat ( x ) + bv2nat ( y ) , 4 )

END

mathematical notation instead of B’s ASCII syntax. However, the mathematical
representation can be expressed in B without further translation.

Sorts are mapped to B types as shown in Definition 5.3.1. Existential and
universal quantifiers are directly available in B. Let and if-then-else are translated
as stated above. The theory of arrays only features the two operators we already
defined a translation for in Definitions 5.3.2 and 5.3.4 and will thus not be
considered further.

In the following, we will only discuss the unary and binary cases of SMT-LIB
operators. Higher arities are realized according to the SMT-LIB standard [18]:

• For an operator f defined to be left-associative, we treat (f t1 . . . tn) with
n > 2 as (f (f t1 . . . tn−1) tn).

• For an operator f defined to be right-associative, we treat (f t1 . . . tn) with
n > 2 as (f t1 (f t2 . . . tn)).
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• For an operator f defined to be chainable, we treat (f t1 . . . tn) with n > 2
as (and (f t1 t2) (f t2 t3) . . . (f tn−1 tn)).

• For an operator f defined to be applied pairwise, we treat (f t1 . . . tn)
with n > 2 as (and (f t1 t2) . . . (f t1 tn) (f t2 . . . tn)) and process (f t2 . . . tn)
recursively.

For the SMT-LIB Core theory, we translate as follows:

τ(true) = > τ(false) = ⊥
τ((=> x1 x2)) = (τ(x1)⇒ τ(x2)) τ((and x1 x2)) = (τ(x1) ∧ τ(x2))
τ((or x1 x2)) = (τ(x1) ∨ τ(x2)) τ((= x1 x2)) = (τ(x1) = τ(x2))

τ((distinct x1 x2)) = (τ(x1) 6= τ(x2))
τ((xor x1 x2)) = ((¬τ(x1) ∧ τ(x2)) ∨ (τ(x1) ∧ ¬τ(x2)))

For the SMT-LIB Ints theory, we translate as follows:

τ(NUMERAL) = NUMERAL τ(−x) = −τ(x)
τ((− x1 x2)) = (τ(x1)− τ(x2)) τ((+ x1 x2)) = (τ(x1) + τ(x2))
τ((∗ x1 x2)) = (τ(x1) ∗ τ(x2)) τ((abs x)) = (max({−τ(x), τ(x)}))

τ((<= x1 x2)) = (τ(x1) ≤ τ(x2)) τ((< x1 x2)) = (τ(x1) < τ(x2))
τ((>= x1 x2)) = (τ(x1) ≥ τ(x2)) τ((> x1 x2)) = (τ(x1) > τ(x2))

Division and modulo are rewritten as discussed above, i. e., we express the
Euclidean definitions in terms of B’s floored division.

τ((div x1 x2)) = τ(fdiv (− x1 (ite (< x10) (ite (< x2 0) (− 0 1 x2) (− x2 1)) 0)) x2)
τ((fdiv x1 x2)) = (τ(x1) / τ(x2))
τ((mod x1 x2)) = τ((− x1 (∗ x2 (div x1 x2))))

The theory of Fixed Size Bit Vectors is translated as follows: Bit vector literals
can be trivially translated into their B correspondent. For the operands we
follow the theory definition and have that given s is of sort ( BitVec n) and t is
of sort ( BitVec m):

τ((concat s t)) =
{(x, v) | x ∈ [0,n + m) ∧ (x < m ⇒ v = τ(t)(x)) ∧ (x ≥ m ⇒ v = τ(s)(x −m))}

Furthermore, for s of sort ( BitVec l) with 0 ≤ j ≤ i ≤ l

τ((( extract i j) s)) = {(x, v) | x ∈ [0, τ(i)− τ(j) + 1) ∧ v = τ(s)(τ(j) + x)}
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Table 5.1: Benchmarks: Results
solver configuration sat unsat unknown timeout memory out
ProB vanilla 8871 2928 22566 9272 22
ProB random 8871 2928 22565 9273 22
ProB cse 8871 2895 22443 9428 22
ProB chr 8872 2899 22273 9603 12
Z3 default 16519 20018 1224 5897 1
CVC4 default 8117 20037 9393 6112 0

For s and t of sort ( BitVec m) and 0 < m and bv2nat and nat2bv as defined
in Section 5.3.4 we translate

τ((bvnot s)) = {(x, v) | x ∈ [0,m) ∧ (τ(s)(x) = 0⇒ v = 1) ∧ (τ(s)(x) = 1⇒ v = 0)}
τ((bvand s t)) = {(x, v) | x ∈ [0,m) ∧ (τ(s)(x) = 0⇒ v = 0) ∧ (τ(s)(x) = 1⇒ v = τ(t)(x))}
τ((bvor s t)) = {(x, v) | x ∈ [0,m) ∧ (τ(s)(x) = 1⇒ v = 1) ∧ (τ(s)(x) = 1⇒ v = τ(t)(x))}
τ((bvneg s)) = (nat2bv(m, 2m − bv2nat(τ(s))))

τ((bvadd s t)) = (nat2bv(m, bv2nat(τ(s)) + bv2nat(τ(t))))
τ((bvmul s t)) = (nat2bv(m, bv2nat(τ(s)) ∗ bv2nat(τ(t))))
τ((bvshl s t)) = (nat2bv(m, bv2nat(τ(s)) ∗ 2bv2nat(τ(t))))

τ((bvlshr s t)) = (nat2bv(m, bv2nat(τ(s))/2bv2nat(τ(t))))

τ((bvult s t)) = (bv2nat(τ(s)) < bv2nat(τ(t)))

In the definition of the theory, the two operations bvudiv and bvurem are
guarded by bv2nat(t) 6= 0, preventing a division by zero. Thus, the same well-
definedness aspects we already discussed for the integer division come into play
here as well. In contrast to the integer theory, truncated division is used for the
bit vectors.

τ((bvudiv s t)) = nat2bv(m, bv2nat(τ(s))/bv2nat(τ(t)))
τ((bvurem s t)) = nat2bv(m, bv2nat(τ(s)) mod bv2nat(τ(t)))

5.4 Empirical Evaluation

To assert the usefulness of our translation and the performance of ProB’s
improved constraint solver, we performed different empirical evaluations. We
translated benchmarks taken from the SMT-LIB collection to B and used ProB
as an SMT solver.

80



5.4 Empirical Evaluation

We compared ProB to Z3 [60] and CVC4 [16] on benchmark files taken from
the 2014–06–03 snapshot of the SMT-LIB benchmark repository. We used
development snapshot versions of all three solvers. We limited the benchmarks
to non-incremental ones taken from the following logics:

• (QF )ALIA, (QF )AUFLIA,

• (QF )BV, QF AUFBV, (QF )UFBV

• QF AX,

• QF IDL,

• (QF )LIA, (QF )NIA,

• (QF )UF, (QF )UFIDL, (QF )UFLIA, (QF )UFNIA.

Logics starting with QF are quantifier-free. The different and possibly combined
abbreviations for logics are LIA for linear integer arithmetic, NIA for non-linear
integer arithmetic, A or AX for arrays and UF for uninterpreted functions. IDL
represents integer difference logic, i. e., a logic where only expressions of the
form r = o1 − o2 are supported.

In addition to comparing the different provers, we also compared several options
of ProB’s constraint solver. In particular, we compared the vanilla ProB with
every of the following options disabled to:

• A version using random instead of linear enumeration of CLP(FD) domains,

• A version using common sub-expression elimination, and

• A version featuring an extended rule set of CHR [81] rules used to infer
certain facts CLP(FD) is unable to infer on its own.

All benchmarks were run on the StarExec cluster [174]. The machines used
feature an Intel Xeon E5–2609 Quad-Core CPU running at 2.4 GHz and 256 GB
of RAM. Red Hat Enterprise Linux Workstation 6.3 was used as the operation
system.

Regarding time and memory limits, we used the same values as the latest iteration
of the SMT Competition [17]. The timeout was set to 1500 seconds (25 minutes)
walltime and CPU time for all solvers. Solvers were enforced to use 100 GB of
memory or less. Otherwise, the process was terminated.

Table 5.1 lists the total number of benchmarks detected satisfiable or unsatisfiable
by the different solvers. As was to be expected, ProB is outperformed by Z3
and CVC4. This is especially caused by the high number of benchmarks ProB
has to report “unknown” on. In most cases, this is due to infinite sets that would
need to be enumerated exhaustively in order to solve the constraint or to prove it
unsatisfiable. In certain cases, ProB is able to detect that any further attempt
is futile and gives up reporting “unknown”.
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Table 5.2: Benchmarks: Average Runtimes (in s)
solver configuration # successful tests � runtime sat � runtime unsat

Successful Tests per Solver
ProB vanilla 11799 7.66 14.93
ProB random 11799 7.69 14.99
ProB cse 11766 7.68 14.54
ProB chr 11771 8.97 13.91
Z3 default 36537 8.25 8.03
CVC4 default 28154 25.55 19.92

Common Successful Tests
ProB vanilla 3999 19.71 3.89
ProB random 3999 19.71 3.9
ProB cse 3999 19.66 3.92
ProB chr 3999 42.11 11.18
Z3 default 3999 0.19 0.1
CVC4 default 3999 2.49 0.66

Furthermore, the table clearly shows that ProB performs especially well on
satisfiable benchmarks. Again, this is due to the CLP(FD) based solving kernel.
Using constraint programming, it is by far easier to find a valuation of variables
than to detect unsatisfiability. Especially for infinite domains, the latter might
even be impossible.

Figure 5.1a shows the number of test cases solved by each of the solvers individ-
ually as well as the number of test cases multiple solvers were able to solve. In
addition to the comparison on all tests, we present the results on benchmarks
involving integer arithmetic, tests involving uninterpreted functions and tests
involving bit vectors. Keep in mind that certain benchmarks fit into multiple
categories, e. g., a benchmark from the QF UFBV logic uses both uninterpreted
functions and bit vectors. Figure 5.2 compares the results of ProB, CVC4 and
Z3 on the different logics mentioned above. In both cases, we only consider the
“vanilla” configuration of ProB, in order not to compare CVC4 and Z3 with a
portfolio of ProB-based solvers. As can be seen, CVC4 and Z3 each contribute
some test cases they alone were able to solve. Furthermore, there is a large class
of test cases that can be solved by CVC4 and Z3 at the same time.

Interestingly, the diagram shows that only ProB is able to solve certain bench-
marks under the conditions explained above. We suspect that this is due to
the different technologies used by ProB and Z3 / CVC4. As can be seen in
Fig. 5.1b and Table 5.3, the benchmarks solved by ProB (vanilla) stem from the
logics involving linear and non-linear integer arithmetic. Figures 5.1c and 5.1d
show that ProB (vanilla) cannot compete with the other solvers on benchmarks
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involving uninterpreted functions or bit vectors. Consequently, most benchmarks
that could only be solved by CVC4 or Z3 involve uninterpreted functions, arrays
or bit vectors. The other configurations of ProB paint a similar picture.

The benchmarks that are only solved by ProB can easily be classified:

1. All of them are satisfiable,

2. They rely on integer arithmetic, with most of them involving non-linear
constraints,

3. Variables are highly intertwined,

4. Z3 and CVC4 run out of time. Memory does not seem to be an issue.

In addition to the result, we measured the runtimes of the different solvers.
Table 5.2 shows how long the solvers took to produce different results. On
average, ProB is much faster for satisfiable benchmarks than for unsatisfiable
ones. This is to be expected from a tool that has mainly been used to find
models of formulas. In contrast, CVC4 and Z3 runtimes do not differ much
between satisfiable and unsatisfiable benchmarks.

For better comparability, the table also shows the average runtimes on the
benchmarks all solvers can solve. ProB is one to two orders of magnitude slower
than the dedicated SMT solvers. However, ProB’s runtime includes the time
spent in the translation phase.

Summarizing, we suspect that, especially for detection of satisfiability, a CLP(FD)
based approach can be a useful addition to DPLL(T ) based algorithms if used
in a solver portfolio. Since we introduced a certain overhead by the translation,
a direct implementation should add to the gain.

In addition to the benchmarks above, we evaluated how the different options
the ProB kernel can be tweaked with influence its performance on SMT-LIB
benchmarks. Fig. 5.3 shows the results.

Of the four options mentioned above, only the “CHR” option has significant
influence on the number of solved test cases. However, this influence is neither
positive nor negative. On the one hand, the CHR rules help to identify unsatisfi-
able predicates. As can be seen, there are a significant number of test cases that
can only be solved with the option enabled. On the other hand, evaluating more
propagation rules takes up more time. There is a set of benchmarks that used
to be solvable within the timeout, but is not solvable with the extended rule set.
Mostly, these are satisfiable.

Differing from our expectations, the random enumeration option has close to
no influence on the results. In theory, enumerating integer intervals randomly
results in a better distribution of checked possible solutions. Hence, a solution
might be hit before a timeout occurs or before the linear enumeration was able
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Figure 5.2: Solved Benchmarks per Logic in %

The most interesting bugs identified are:

• It took us several attempts to find a suitable translation of modulo and
division, as the rounding behavior of B and SMT-LIB is different. First,
we tried to add a correcting +1 or −1 to the result if necessary. As B
has no if-then-else for expressions, this proved quite error prone. However,
existing differences in the semantics were immediately discovered by the
QF LIA and QF NIA benchmarks. We got rid of the bugs by using the
axiomatization given above.

• Some rare edge cases of ProB’s detection of exhaustive enumeration were
not covered by our tests so far. In consequence, ProB was able to assume
exhaustive enumeration and hence unsatisfiability even though not all
combinations of variables have been tried out. The huge amount of test
cases available in the SMT-LIB collection helped to thoroughly exercise
ProB’s kernel.

• Cross checking using both ProB and the SMT solvers CVC4 and Z3 to
discharge Event-B proof obligations helped us discover a bug in ProB’s
kernel: In presence of certain combinations of constraints, a logical variable
was not bound even though it should have been. The bug could be traced
back to a bug in underlying CLP(FD) system of SICStus Prolog [42].4

Furthermore, several performance bottlenecks have been brought to our attention
and have been resolved. In summary, making ProB available as a general purpose
SMT solver has helped us to improve ProB itself.

4More precisely to the element/3 constraint used for function applications.
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Table 5.3: Benchmarks: Logics
solver configuration sat unsat unknown timeout memory out

Integer Arithmetic
ProB vanilla 8543 2696 14607 6984 0
ProB random 8543 2696 14607 6984 0
ProB cse 8543 2670 14633 6984 0
ProB chr 8479 2647 14320 7384 0
Z3 default 12234 13918 1219 5459 0
CVC4 default 4027 13999 9322 5482 0

Uninterpreted Functions
ProB vanilla 85 2457 20637 1815 2
ProB random 85 2457 20637 1815 2
ProB cse 85 2431 20515 1963 2
ProB chr 84 2443 20650 1817 2
Z3 default 3651 15684 811 4850 0
CVC4 default 3616 15994 39 5347 0

Bit Vectors
ProB vanilla 11 3 369 45 22
ProB random 11 3 368 46 22
ProB cse 11 3 368 46 22
ProB chr 11 3 369 55 12
Z3 default 143 237 1 68 1
CVC4 default 55 144 67 184 0

5.5 Related Work

Of course there are several other solvers available that support the SMT-LIB
language. The most prominent ones being Boolector [36], CVC4 [16], veriT [33],
Yices [70] and Z3 [60].

There have been different approaches of solving bit vector constraints by transla-
tion into other languages. There is for instance a translation from quantifier-free
bit vector formulas to effectively propositional logic (EPR), allowing to apply
EPR solvers [112].

As in this chapter, solving bit vector logics by using a mixture of word level
arithmetic and propositional logic has already been suggested in [188]. In order
to stay closer to pure constraint logic programming, Bardin et al. [15] suggest a
specialized CLP domain tailored towards bit-level reasoning. While this seems
to be a promising approach, we did not intend to change the internals of ProB’s
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theoretic axioms supposed to convey background knowledge about Event-B to
the SMT solvers. As a result, encoded formulas only approximate the Event-B
semantics.

An approach comparable to that of [177] and Chapter 4 has been followed in
the Isabelle community as well. In [29] the authors translate Isabelle/HOL
to first-order relational logic. Afterwards Kodkod is used, translating to SAT
and solving using a SAT solver. Sledgehammer, a tool used to discharge proof
obligations in interactive proofs done using Isabelle, is connected to SMT solvers
in [28]. The authors report a considerable increase in automatically discharged
proof obligations.

A higher level approach towards embedding B and Event-B into SMT-LIB will be
evaluated in Chapter 6. Instead of relying on a first-order encoding, we directly
employ Z3’s own set theory solver. Thus, we only have to supply axiomatic
definitions of operators unavailable in SMT-LIB, like for example the cardinality
of a set.

The empirical comparison performed in Chapter 6 will show that both approaches
have their merits and none of them is strictly superior. In particular, Z3 was
good at detecting inconsistent predicates but not good at finding solutions (aka
models). This finding is also confirmed in one of our projects [167], where we
experimented with various encodings and solvers for university timetabling.

5.6 Conclusion and Future Work

In the future, we would like to further investigate ProB’s performance in com-
parison to state-of-the-art SMT solvers. We hope to gain a deeper understanding
on kinds of SMT constraints and how they relate to the performance of CLP(FD)
and DPLL(T ).

In order to perform a more in-depth comparison, we would like to extend our
translation and ProB’s constraint solving kernel to support incremental solving.
This would enable us to use larger industrial case studies for our evaluation.

We would also like to further evaluate the effectiveness of our translation, consid-
ering different representations of SMT-LIB expressions in B. While we have done
so for smaller collections of benchmarks, we would like to compare encodings
more thoroughly throughout the whole SMT-LIB collection.

In particular, we suspect that the translation of bit vector operators as set
comprehensions is not optimal and one of the reasons for ProB’s lack of
performance. There are different courses of action we can take in this regard. On
the one hand, we can try to improve ProB’s propagation and solving capabilities
on set comprehensions. This would certainly benefit other use cases as well
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and fit with the high-level approach of B. On the other hand, a more low-level
translation using quantification over the elements of a bit vector might provide
better propagation of intermediate values.

Another aspect that could be considered in a later evaluation is the time we
allow the solvers to run. It would be interesting to see whether the timeout
influences the solvers differently.

Despite the rather low number of test cases successfully solved by ProB, we
still believe a translation from SMT-LIB to B is beneficial:

• It allows for cross-checking of results using a different approach to solving.

• It enables using the large library of SMT-LIB examples to validate and
improve B tools.

• Using Atelier B or Rodin it provides interactive proof assisted by different
solvers. As far as we know, there is currently no other way to interactively
tackle SMT-LIB constraints.

• ProB already provides reasoning over sets and strings, features just starting
to find their way into SMT-LIB.

Summarizing, we have presented a translation from SMT-LIB to B that allows
all tools available for the B method to be employed on SMT-LIB files. Among
Atelier B and ProB which we have already discussed, there are other model
checkers such as pyB [185] and eboc [141], both using different approaches to
constraint solving. A new platform for automatic proof is developed in the
BWare [65] project.

We used our translation to extend the constraint solving kernel of ProB to SMT-
LIB constraints, making it available in a more general context. However, our
evaluation showed that it is competitive only for certain types of benchmarks.

As expected, the CLP(FD) based approach performs well for satisfiable bench-
marks. Furthermore, it generates a model for every formula it detects satisfiable.
Unsatisfiable formulas are the main weakness of our approach.

In future work, we want to evaluate how a combination of ProB with the Atelier
B provers performs as a solver portfolio. However, as classical rule based provers,
the Atelier B provers are not designed to report models for satisfiable formulas.
An efficient integration with ProB into a combined solver is thus more complex
than just running the tools in parallel. For the combined solver to be of use, we
have to enable ProB to identify predicates that it should submit to the provers
and make it react to the two possible outcomes “proof” and “unknown”.

The empirical evaluation showed that the enumeration strategies employed by
ProB are not fully suitable for solving SMT-LIB. In future work, we want to
enrich our constraint solver by further enumeration strategies. This will not only
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aid the SMT solver but will strengthen the B and Event-B model checkers as
well.

Along with tuning the enumeration strategy we would like to deepen our under-
standing of the effectiveness of the additional propagation rules and how they
interact with the CLP(FD) core. The evaluation shows that the added rule sets
make certain benchmarks solvable while they decrease the performance on others.
As of now, we have no proper way of deciding which rules to enable upfront.

Performance aside, using ProB to solve benchmarks taken from the SMT-LIB
collection helped us discover different errors and inconsistencies in ProB itself.
In particular, SMT-LIB benchmarks tend to exercise different parts of ProB’s
kernel than classical B machines due to the diverse usage of constraints.

Furthermore, we laid the groundwork for an analysis or proof of SMT solving
algorithms using the B method by embedding SMT-LIB in B or Event-B. We
were able to mimic the semantics of SMT-LIB in B, including constructs like
if-then-else and bit vectors. Aside from ProB, the translation allows further B
method tools like Atelier B to examine SMT-LIB data structures, expressions
and algorithms. We have performed a case study showing how to prove SMT
propagation laws using the B method. Hence, our translation could help reasoning
about solvers and solving procedures in a structured way.

Last, we hope that our work is able to narrow the gap between the SMT solving,
the constraint logic programming and the formal methods communities and eases
mutual understanding of algorithms and design principles.

90



Coming together is a beginning;
keeping together is progress;
working together is success.

Henry Ford

6
Integrating SMT Solvers and

CLP(FD) in ProB

In this chapter we will show how the SMT solvers Z3 and CVC4 can be integrated
with ProB’s CLP(FD) solver into a single solving procedure. We will again use
proof obligations to assert if the integration is able to overcome the limitations
discovered in Chapters 4 and 5.

The chapter is an extended version of our paper “SMT Solvers for Validation
of B and Event-B models” [117]. For information regarding authors and their
individual contributions see Appendix C. Extensions include using CVC4 in
addition to Z3, including benchmarks comparing the two SMT solvers. Addi-
tionally, translation rules are discussed in greater detail. In particular, several
edge cases omitted in [117] are taken into account.

6.1 Introduction and Motivation

Originally, the ProB kernel has been tailored towards satisfiable formulas, acting
primarily as a model finder [128, 127]. This fact has been made obvious in the
two empirical evaluations in Chapters 4 and 5 as well. As our benchmarks have
shown, ProB still fares better if given constraints are satisfiable. However, when
targeting symbolic model checking, the detection of unsatisfiability is of equal
importance. Yet, the additions made to CLP(FD) in Chapter 3 have proven to
be too weak.
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As stated in Section 2.3.1, ProB’s approach to constraint solving is based on
constraint logic programming. Thus, the solving kernel works fundamentally
different from the DPLL(T ) [84] approach employed by modern SMT solvers
like CVC4 [16] or Z3 [60]. In Chapter 4 we already compared both approaches
and outlined that neither is able to outperform the other: there is a considerable
number of proof obligations that can only be solved by one of them. Hence, our
idea is to combine their particular strengths into a single solving procedure.

First, in Section 6.1.1 we will show some examples for strengths and weaknesses
and argue towards our integrated approach. How we translate B and Event-B
constraints into SMT-LIB problems is explained in Section 6.2. ProB and the
SMT solvers CVC4 and Z3 are combined as outlined in Section 6.3. In particular,
we focus on communication of inferred predicates. We discuss limitations of
our approach in Section 6.4, and substantiate our discussion with empirical
evaluation in Section 6.5. We conclude with related work in Section 6.6 and
future work and conclusions in Section 6.7.

6.1.1 Small Experiments

To outline some of the weaknesses of the CLP(FD) based solving kernel, have
a look at the following predicate: X > 3 ∧ X < 7 ∧ X < Y ∧ Y < X . Classic
CLP(FD) style domain propagation first sets up the domains 4 . . 6 for X and
−∞ . .∞ for Y . In a second step, all values that cannot be part of a solution
are removed from the domains. Both domains end up being empty. Hence, the
predicate is detected as unsatisfiable.

As soon as we drop one of the constraints on X , CLP(FD) is unable to do so and
has to resort to enumeration. For example, the predicate X < Y ∧Y < X cannot
be proven unsatisfiable by ProB’s CLP(FD) kernel alone, as both domains for
X and Y are infinite (−∞ . .∞). Similarly, X < 7 ∧ X < Y ∧ Y < X leads to
an infinite sequence of narrowed down domains, never reaching inconsistency.
SMT solvers on the other hand easily detect the unsatisfiability.

The CLP(FD) based solver in ProB however can handle certain higher-order
constructs like set comprehensions better than the SMT solvers: look for example
at the predicate (2 7→ 4) ∈ {y | ∃(x).(y = (x 7→ x + 2))}. It states that the
pair (2 7→ 4) is a member of the set of all pairs y that are of the form (x , x + 2).
ProB reports satifiability and returns an empty valuation as there are now free
variables.

Of course the performance shown by the SMT solvers highly depends on the
translation. Choosing a low-level translation, the predicate can be broken down
to 4 = 2 + 2 and solved by CVC4 as well as Z3. If we stay on the high-level of set
logics, the set comprehension has to be described using universal quantification.
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If translated this way, Z3 runs into a timeout; CVC4 does not fully support
quantifiers in combination with set theory as of yet [14].

Additionally, the CLP(FD) based solver performs better for model finding
tasks that involve non-linear integer constraints. As an example, take the
verbal arithmetic puzzle to find (non-equal) digits K , I , S ,P,A,O,N such that
KISS ∗ KISS = PASSION . In B this can be written as (1000 ∗ K + 100 ∗ I +
10 ∗ S + S) ∗ (1000 ∗ K + 100 ∗ I + 10 ∗ S + S) = 1000000 ∗ P + 100000 ∗ A +
10000 ∗ S + 1000 ∗ S + 100 ∗ I + 10 ∗O + N .

As each letter should represent a single digit, constraints like 0 ≤ K ≤ 9 are
added for all the variables. Finally, we add pairwise disequalities for all variables.
The resulting predicate is solved by ProB in milliseconds, while both CVC4
and Z3 answer unknown.

Obviously, both approaches could benefit from each other. In the following
sections we suggest a possible integration between the CLP(FD) and SMT
approaches, trying to gain the advantages of both.

6.2 High-Level Translation of B to Z3

The following section will explain both our translation from B to SMT-LIB and
how we integrated the SMT solvers CVC4 and Z3 into ProB in order to solve
constraints given in B or Event-B. First, in Section 6.2.1 we outline a normal
form for B that avoids certain constructs that are hard to translate.

Primarily, this is achieved by replacing several expressions by equivalent ones
using different operators. Following, in Section 6.2.2 we translate constraints
given in normalized B into the (set-)logics of CVC4 and Z3. Lastly, Section 6.3
explains how ProB’s kernel and the SMT solver are integrated in order to
combine both solvers.

6.2.1 Normalizing B / Event-B

B and Event-B feature many constructs not directly available in the SMT solvers’
input language SMT-LIB. In preparation of the translation from B to SMT in
Section 6.2.2, we use rewrite rules to transform a B predicate into a normal form
that is easier to translate. All these transformation rules are meant to be applied
repeatedly until a fixpoint is reached.

In a first step, we replace certain negated operators available in B by the
negation of the regular operator. For instance, we replace x /∈ y by ¬(x ∈ y). In
addition, we have to rewrite set operations involving strict subsets to subsets
and (dis-)equalities. See Table 6.1 for the operators and their translations.
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Table 6.1: Normalization of Operators
B Normalized B
E 6= S ¬(E = S)

E 6∈ S ¬(E ∈ S)
E 6⊂ S ¬(E ⊂ S)
E 6⊆ S ¬(E ⊆ S)
E ⊂ S ¬(E = S) ∧ (E ⊆ S)

Currently, the set logics of SMT solvers have no direct support for intervals
or the bounded B integer sets NAT, NAT1, INT. The same holds true for the
unbounded sets NATURAL and INTEGER. We thus rewrite constraints featuring
membership in one of these to a conjunction of inequalities, e. g.,

x ∈ 1..5⇔ 1 ≤ x ∧ x ≤ 5.

In case of NATURAL we just set up a lower bound. Membership in INTEGER is
merely typing and does not pose any restrictions on the variable. The constraint
can thus be removed after type checking.

Membership in unions, intersections or set differences of these are handled by
decomposing into multiple conjuncts or disjuncts respectively, e. g.,

x ∈ −2..5 ∩ NAT⇔ (−2 ≤ x ∧ x ≤ 5) ∧ (0 ≤ x ∧ x ≤ MAXINT).

If one of these sets has to be set up explicitly, e. g., in nat = NATURAL, we have
to rely on set comprehensions. That is we define NATURAL as {x | x ≥ 0} and
INTEGER as {x | x ≥ 0 ∨ x < 0}.

Z3’s API allows to define the full set of a given type. Thus, with Z3 we can
avoid translating INTEGER into a set comprehension. For CVC4 we have to rely
on quantifiers which are not supported in conjunction with logics featuring sets.
Furthermore, CVC4 only supports finite sets as of yet [40].

As an example for these limitations, take the simple constraint naturals =
N ∧ negative < 0 ∧ negative ∈ naturals. It is encoded in SMT-LIB in Listing 6.1.
As stated, it cannot be solved by CVC4, but it can be solved by Z3. As the
benchmarks in Section 6.5 will show, this limits CVC4’s performance when used
as a backend for ProB.

ProB represents relations and functions as sets of tuples. Usually, the set is
computed exhaustively. For certain relations or functions, e. g., infinite ones,
ProB tries to keep the set symbolic. Furthermore, B allows set theoretic
operators to be applied to functions as well. For these two reasons, we cannot
simply express B functions as uninterpreted functions in SMT-LIB.
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Listing 6.1: SMT-LIB Encoding of Constraint using NATURAL
( d e c l a r e−fun n a t u r a l s ( ) ( Set I n t ) )
( d e c l a r e−fun n e g a t i v e ( ) I n t )

( a s s e r t ( f o r a l l ( ( x I n t ) ) (=> (>= x 0)
( member x n a t u r a l s ) ) ) )

( a s s e r t ( f o r a l l ( ( x I n t ) ) (=> (< x 0)
( not ( member x n a t u r a l s ) ) ) ) )

( a s s e r t (< n e g a t i v e 0 ) )
( a s s e r t ( member n e g a t i v e n a t u r a l s ) )

Instead, we represent functions in SMT-LIB the same way we do in ProB. This
makes it necessary to rewrite some B expressions on functions. For instance, we
rewrite the function application using a temporary variable:

f = {(1 7→ 4), (2 7→ 2)} ∧ x = f (1)

becomes
f = {(1 7→ 4), (2 7→ 2)} ∧ (1 7→ x) ∈ f .

During normalization, we have to keep in mind that well-definedness conditions
of a predicate might change. In the given examples, if we request the function
value of f at 3, the predicate is not well-defined:

f = {(1 7→ 4), (2 7→ 2)} ∧ x = f (3)

We have applied the function f outside of its domain. In contrast,

f = {(1 7→ 4), (2 7→ 2)} ∧ (3 7→ x) ∈ f .

is well-defined and evaluates to false. In several cases, we add well-defined
conditions later on. We show an example, division, in Section 6.2.2. Note that
Rodin creates a separate proof obligation for well-definedness. Hence, one can
assume well-definedness to be handled by those proof obligations.

Several other operators like domain (restriction) or range (restriction) can be
rewritten to set comprehensions. For example, the following equality holds for
the range of a function f :

ran(f ) = {y | ∃ x .(x 7→ y) ∈ f }.

More definitions of B and Event-B operators in terms of set comprehension can
be found in the “reference” books on B [1, 2, 168].

B features record datatypes comparable to those supported by CVC4 and Z3.
However, when using the SMT solvers, record types have to be introduced and
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typed before constraints can be applied to the fields. In normalized B, the
declaration of a constrained record is hence split in the declaration of a general
record conjoined with a predicate constraining the fields. A record membership
expression like

r ∈ struct(f ∈ 11..20, g ∈ 12..30)

becomes

r ∈ struct(f ∈ Z, g ∈ Z)︸ ︷︷ ︸
record type

∧ r ′f ≥ 11 ∧ 20 ≥ r ′f ∧ r ′g ≥ 12 ∧ 30 ≥ r ′g︸ ︷︷ ︸
restrictions on fields

,

where the ′ operator is used to fetch the value of a record’s field.

Some functions included in B, like the two arithmetic functions min and max,
are not directly available in SMT-LIB. Directly referring to the cardinality of a
set is only possible in CVC4 at the price of dropping support for infinite sets.

We hence add temporary variables and supply certain axioms as we did to
encode function application. For instance, the expression min(S) is replaced by
a variable t and the following additional constraints are added:

• ∀m.m ∈ S ⇒ t ≤ m, i. e., the temporary variable is less or equal to all
members of the set.

• ∃m.m ∈ S ∧ t = m, i. e., t is equal to one of the members of S .

We encode max using the same pattern. For the cardinality, we add a constraint
stating that c is the cardinality of S if there exists a bijection between the
interval 1..c and S . For the empty set, this holds for any c ≤ 0. Hence, we add
c ≥ 0, resulting in card(∅) = 0.

The choice of axioms supplied to the SMT solvers in order to define the B
functions influences the performance. We could provide more properties of max,
e. g.,

max(S1) > max(S2)⇒ ∀ c.c ∈ S2 ∧ ∃ s.s ∈ S1 ∧ s > c.

Additional axioms might aid in detecting unsatisfiable predicates. However,
they might also decrease performance as they have to be considered during
reasoning.

The rules above transform a B predicate into an equivalent B predicate. However,
we could go even further, depending on how we employ the SMT solvers: For
animation and (explicit state) model checking, we have to use an equivalent
formula, as we rely on the models.

In contrast, for certain symbolic model checking algorithms or proof attempts,
we could use rewriting rules that transform a B predicate into an equisatisfiable
predicate. The added freedom could be used to tailor the formula towards the
solvers’ strengths. We will address this in future work.
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While nearly all complicated B constructs can be rewritten to set comprehensions,
not all resulting predicates can be solved by CVC4 or Z3. So far, we have not
found an efficient translation of the following operators:

• The general union, general intersection, general sum and general product.
For instance, the general union of U ∈ P(P(S)) could be rewritten as
union(U ) = {x | x ∈ S ∧ (∃ s.s ∈ U ∧ x ∈ s)}. However, the existential
quantification inside the set comprehension leads to highly involved con-
straints later on. This often results in timeouts, especially when trying to
find models for satisfiable formulas.

• The construction of (non-empty) powersets. Again we could translate
P(X) = {s | s ⊆ X}.

• The iteration and closure operators of classical B.

6.2.2 Translation Rules

We feed the normalized constraints generated in the previous section into the C
/ C++ APIs of CVC4 and Z3. In particular, we use logics including support for
sets. Z3 realizes those using the techniques described in [61], for CVC4 see [14].
The set theories differ in the availability of constraints such as cardinality and
in the support of infinite sets.

Any logic including integer arithmetic, sets and quantifiers already covers most
of the expressions occurring in our normalized constraints. Thus, we can pass
most of the constraints unmodified. There are however some exceptions:

• Some common operators have different semantics in B and SMT-LIB.

• SMT-LIB does not support set comprehensions natively. We will translate
those by using a universal quantification constraining all members of a set
variable.

• User-given sets have to be mapped to SMT-LIB sorts. As use-given sets
are disjoint in B and Event-B, we can translate each set to an individual
sort.

For an approach that is based on translation to be both sound and complete we
have to ensure that semantical differences are taken into account. In particular, B
features a distinct concept of well-definedness, i. e., operators may only be applied
under certain conditions. This contrasts with SMT-LIB treating operators as
total functions that always return a result. Additionally, the results of applying
certain operators differ as well.

Integer division is a prominent example: B uses a division that rounds towards
zero. In contrast, SMT-LIB semantics define a division rounding towards −∞.
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Furthermore, B does not allow division by zero while for SMT solvers division
is a total function, e. g., for the predicate x = 1/0 the SMT solvers return the
solution x = 0. In order to overcome these differences, we set up x = a/b using
SMT-LIB’s if-then-else as

x = ite(a > 0, a/b, ite(b > 0, (a/b) + 1, (a/b)− 1)) ∧ b 6= 0.

Note that we have to insert the additional well-definedness constraint b 6= 0
appropriatelly, such as to avoid issues due to negation. The predicate x 6= a/b
features the same well-definedness condition as x = a/b does. In consequence,
x 6= a/b has to be translated as

¬(x = ite(a > 0, a/b, ite(b > 0, (a/b) + 1, (a/b)− 1))) ∧ b 6= 0

rather than

¬(x = ite(a > 0, a/b, ite(b > 0, (a/b) + 1, (a/b)− 1)) ∧ b 6= 0).

Now, let us have a look at the translation of set comprehensions. A B expression
like

¬(r ∈ {x | x mod 2 = 1})

is submitted to the SMT solvers using a temporary variable and axiomatizing
the set comprehension. The resulting constraint is

¬(∃ tmp.(r ∈ tmp ∧ ∀ v.v ∈ tmp ⇔ v mod 2 = 1)).

So far we do not provide any additional hints like instantiation triggers [151, 68].
By doing so, we could provide rules for when and how to instantiate quantified
variables.

In addition to given types likes INTEGER, the B method features user-defined
types represented as deferred or enumerated sets. We translate those to custom
SMT-LIB sorts. For enumerated sets we additionally introduce the identifiers
and enforce their disequality using an additional constraint.

There is one crucial difference between sorts and B’s deferred sets however. The
newly created sorts representing deferred sets are infinitely large. The deferred
set itself can be instantiated to different sets containing an arbitrary, possibly
infinite, amount of elements.

To bridge the gap, we introduce an intermediate identifier used to refer to the
full deferred set. The intermediate identifier is typed as a set containing elements
of the corresponding sort.

For an example of the translation of given sets, have a look at Listings 6.2
and 6.3. In the B machine in Listing 6.2, we introduce a deferred set D and an
enumerated set E. As outlined above, D is represented in Listing 6.3 by the newly
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Listing 6.2: B Machine with Given Sets
MACHINE G ivenSe t s
SETS D; E = {e1 , e2}
END

Listing 6.3: SMT-LIB Encoding of Given Sets
( d e c l a r e−s o r t D 0)
( d e c l a r e−fun D ( ) ( Set D) )

( d e c l a r e−s o r t E 0)
( d e c l a r e−fun E ( ) ( Set E ) )
( d e c l a r e−fun e1 ( ) E)
( d e c l a r e−fun e2 ( ) E)

( a s s e r t (= E ( i n s e r t e1 ( s i n g l e t o n e2 ) ) ) )
( a s s e r t ( d i s t i n c t e1 e2 ) )

declared sort D when it comes to typing variables. The set itself can be accessed
using the nullary function called D as well.

For the enumerated set E = {e1,e2}, we introduce three nullary functions,
one for each element and one for the set itself. Note that we do not limit the
cardinality of the sort E that way and thus have to account for it later. Otherwise,
a constraint like other 6= e1 ∧ other 6= e2, where other is of type E , is satisfiable
by creating a third element.

Sadly, only Z3 natively supports sorts with given cardinality. Hence, if the
cardinality of a user-given type can be computed statically by ProB, we can
submit said cardinality to Z3. CVC4 does not support constraining the cardinality
of user-defined sorts. We thus use an encoding comparable to that of the
cardinality constraint.
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6.3 Integration of Solvers

We investigated different modes of using SMT solvers together with the ProB
kernel:

• Use it alone without relying on ProB. This approach was quickly aban-
doned due to the (currently) untranslatable predicates outlined in Sec-
tions 6.2.1 and 6.2.2. Additionally, some translations have to resort to
quantification that hinders proof efforts and model finding.

• Use CVC4 or Z3 solely for falsification of B predicates. If we only rely on
the SMT solvers for the detection of unsatisfiability, we can safely skip
untranslatable parts of the predicate without risking unsound results (as
those parts will be checked by ProB’s solver). However, many predicates
cannot be disproven once important parts are missing.

• We could employ a cooperative approach where parts of a predicate are
given to one or both of the SMT solvers, while other parts are handled
by the ProB kernel. In this case, we would translate partial assignments
back and forth between the solvers to communicate intermediate results.

• Lastly, we could use a fully integrated approach where the whole predicate
is given to the ProB kernel and as much as is translatable is given to
the SMT solvers. In addition to partial assignments we could transport
information about inferred or learned clauses or unsatisfiable cores back
and forth.

The first approach was quickly discarded, because the SMT solvers alone are
often too weak to solve interesting predicates. This is mostly due to cumbersome
translations of higher-order B expressions such as set cardinality. The same
holds true for the second approach. Even though the SMT solvers are able to
falsify several predicates that ProB cannot falsify (see Section 6.1.1), much
is left to be desired. Hence, we investigated the integrated approaches more
thoroughly.

The third approach is comparable to the one taken in [160], translating B to
SAT. The key problem to this approach is to decide which predicates to translate
and submit and which ones to keep in ProB. In [160] the authors used a greedy
approach: every predicate that can be translate will be translated.

In contrast, we integrated the different solvers further and set up constraints in
both simultaneously. We delay the call to the SMT solvers until after the deter-
ministic propagation phase of ProB and also submit the information inferred
so far. Additionally, we use the unsat core found by one of the SMT solvers to
control backtracking on the Prolog side and to lift ProB from backtracking to
backjumping. Details on both techniques are given below.
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Algorithm 6.1: Integrated Constraint Solver
Data: Predicate P, (partial) State S
Result: backjump iff P is unsat, model iff P is sat; might time out

1 procedure boolean solve(P, S)
2 set up clpfd variables(S)
3 set up smt variables(S)
4 while exists conjunct C in P that has not been set up do
5 D = to clpfd solver(C ) // domains D from clpfd

propagation
6 smt result = to smt solver(C ,D) // transfer C and

domains
7 if smt result = unsat then
8 backjump using unsat core
9 end if

10 end while
11 while exists unbound variable V in S do
12 clpfd labeling(V ) // binds V to value
13 smt result = to smt solver(V ) // V now bound: transfer

new value
14 if smt result = unsat then
15 backjump using unsat core
16 end if
17 end while
18 return S with all variables labeled

Transferring CLP(FD) Domains to the SMT Solvers

As can be seen in Algorithm 6.1, communication with the SMT solver starts
after the deterministic propagation phase. During this phase, ProB tries to
deterministically infer knowledge about the values of the variables in a predicate
using the consistency algorithms discussed in Section 2.4. For instance, from
X > 3 ∧ Y > X ProB infers Y > 5. The underlying propagation rules are not
limited to arithmetic but support further B constructs like set theory. Before a
predicate is submitted to the SMT solvers, all the statically inferred information
is added to it.

Controlled Backjumping Using the Unsat Core

In case unsatisfiability is detected by CVC4 or Z3, we can use the SMT solvers’
unsat core computation in order to perform backjumping inside ProB’s kernel.
The unsat core contains a subset of the conjuncts C taken from P as outlined in
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Algorithm 6.1. Note that this subset does not necessarily contain the conjunct
submitted last.

Inside ProB’s kernel we can now backjump until at least one of the conjuncts
inside the unsat core has been removed from both the SMT solver and the
CLP(FD) solver. After the backjump, ProB can choose a different path inside
case distinctions or decide on different heuristics. Thus, the backjump has cut
off parts of the search space ProB would have explored otherwise.

In addition to what is shown in Algorithm 6.1, we could analyze the SMT solvers’
knowledge about the causes of a conflict. In particular, we could transfer parts
of the conflict clauses or the unsat core back to ProB to avoid problematic
instantiations of variables. Used this way, CVC4 and Z3 would provide clause
learning capabilities to ProB, a feature typical CLP(FD) implementations do
not provide.

However, the approach would need an improved way of translating the SMT
representation of a constraint back to the B representation. While we have laid
the foundations of such a translation in Chapter 5, our approach is not yet potent
enough, as translating a predicate from B to SMT-LIB and back again often
leads to a blowup of the predicate’s complexity. This is even more limiting if
we consider that predicates might pass the bridge between ProB and the SMT
solvers multiple times before a final solution is found.

6.4 Limitations

One key limitation of our approach is related to the type system of B. There is
no strict differentiation between functions, sets and sequences. For instance, one
can apply the set union operator to two functions leading to a result that might
not be a function.

For the same to be allowed in the SMT-LIB translation, we had to use a common
representation: we express relations and functions as sets of pairs connecting
input and output values; sequences are encoded as sets of pairs consisting of the
sequence index and the value.

Using this common base representation, all B and Event-B operators can be
encoded. However, we cannot use more sophisticated SMT-LIB representations
anymore. In particular, sequences could have been mapped to SMT-LIB arrays,
resulting in improved performance due to the usage of specialized decision
procedures.

Another limitation is the missing support for set cardinality in Z3’s set logic.
Although it was part of the initial proposal for the SMT-LIB finite set theory [183]
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Table 6.2: Benchmark Results of Z3-based Provers
Model # POs SMT/Z3 HL/Z3 ProB ProB/Z3

prove disprove prove disprove prove disprove
Landing Gear System 1, Su, et al. 2328 2318 2206 0 2310 0 2319 0
Landing Gear System 2, Su, et al. 1188 1169 987 0 1176 0 1184 0
Landing Gear System 3, Su, et al. 341 317 137 0 289 0 287 0
CAN Bus, Colley 534 501 403 0 282 2 433 2
Graph Coloring, Andriamiarina, et al. 269 152 66 0 1 0 68 0
Landing Gear System, Hansen, et al. 74 63 57 0 74 0 74 0
Landing Gear System, Mammar, et al. 433 430 242 0 412 0 364 0
Landing Gear System, André, et al. 619 494 84 0 554 5 554 5
Pacemaker, Neeraj Kumar Singh 370 296 369 0 365 0 370 0
Stuttgart 21 interlocking, Wiegard 202 106 32 0 184 2 129 2

Table 6.3: Benchmark Results of CVC4-based Provers
Model # POs SMT/CVC4 HL/CVC4 ProB ProB/CVC4

prove disprove prove disprove prove disprove
Landing Gear System 1, Su, et al. 2328 2318 2206 0 2310 0 2319 0
Landing Gear System 2, Su, et al. 1188 1169 987 0 1176 0 1184 0
Landing Gear System 3, Su, et al. 341 317 137 0 289 0 287 0
CAN Bus, Colley 534 501 403 0 282 2 433 2
Graph Coloring, Andriamiarina, et al. 269 152 66 0 1 0 68 0
Landing Gear System, Hansen, et al. 74 63 57 0 74 0 74 0
Landing Gear System, Mammar, et al. 433 430 242 0 412 0 364 0
Landing Gear System, André, et al. 619 494 84 0 554 5 554 5
Pacemaker, Neeraj Kumar Singh 370 296 369 0 365 0 370 0
Stuttgart 21 interlocking, Wiegard 202 106 32 0 184 2 129 2

6.5.1 Experimental Setup

For the benchmarks, we have used Rodin 3.2 and version 1.3.0 of the SMT
plugin. For better comparability, we did not use the bundled SMT solvers this
time. Instead, we relied on Z3 version 4.4.1 as used in the ProB integration
as well and CVC4 1.4, again as used inside ProB. ProB was used in version
1.6.1-beta1, connected through the disprover plugin version 3.0.9.

We used a global timeout of 5 seconds for a single solving attempt. As discussed
in Chapter 4, all solvers based on ProB’s disprover might use multiple solving
attempts as shown in Fig. 4.1.

All benchmarks were run on a MacBook Pro featuring a 2.6 GHz i7 CPU and 8
GB of RAM. We did not parallelize the benchmarks in order to avoid issues due
to hyper-threading or scheduling. Benchmarks were run using the evaluation
plugin for Rodin which we already employed in Section 4.3.

Benchmarked models, hardware, versions and timeout settings are identical to
those used in Section 4.3. In consequence, the empirical results of Chapter 4 can
be compared to the ones below.
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We benchmarked the following configurations:

• SMT/Z3, the SMT solvers plugin for Rodin as presented in [71, 72], using
Z3 as the backend prover,

• SMT/CVC4, the SMT solvers plugin using CVC4 as the backend prover,

• HL/Z3, our high-level translation from Event-B to SMT featuring Z3’s
set theory, alone without ProB’s solver,

• HL/CVC4, the same configuration but using CVC4 instead of Z3,

• ProB, a plain version of ProB’s constraint solving kernel,

• ProB/Z3, ProB’s constraint solving kernel integrated with Z3, and

• ProB/CVC4, ProB integrated with CVC4.

For better comparability, we used the same set of benchmarks already employed
in Chapter 4:

• Answers to the ABZ-2014 landing gear case study [31]. Beside our own
version [92], we also used the three models by Su and Abrial [175], a model
by André, Attiogbé and Lanoix [7], as well as a model by Mammar and
Laleau [138].

• A model of the Stuttgart 21 Railway station interlocking by Wiegard,
derived from chapter 17 of [2] with added timing and performance modeling.

• A model of a controller area network (CAN) bus developed by Colley.

• A formal development of a graph coloring algorithm by Andriamiarina and
Méry. The graphs to be colored are finite, but unbounded and not fixed in
the model.

• A model of a pacemaker by Méry and Singh [146].

6.5.2 Results

The data is presented as follows:

• Figure 6.1 shows two Venn diagrams comparing the number of discharged
proof obligations by each of the configurations mentioned above. The
diagram in Fig. 6.1a compares Z3 to ProB and the SMT solvers plugin,
while Fig. 6.1b does so for CVC4.

• For comparability with Chapter 4, Figs. 6.2a and 6.2b show two Venn
diagrams based only on the landing gear models. As in Chapter 4, the
results of individual landing gears are given in Appendix A.2.
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• Table 6.2 shows how the individual Z3-based configurations perform on the
different models. In particular it distinguishes between proof and disprove.

• Table 6.3 does the same for the CVC4-backed provers.

• Table 6.4 shows how the individual configurations based on Z3 perform on
different kinds of proof obligations.

• Table 6.5 does the same for the CVC4-backed provers.

Regarding the different performance of the high-level vs. the low-level SMT
translation we have mixed results. Judging by the total numbers, in contrast to
the benchmarks in Chapter 4, the low-level approach based on Z3 is superior: as
can be seen in Fig. 6.1a, it is able to discharge 5846 proof obligations, while the
high-level approach only discharges 4583.

Figure 6.1b shows that the difference between the high-level and the low-level
translation is considerably larger when it comes to CVC4. The low-level approach
based on CVC4 also outperforms the high-level approach by a margin. It
discharges 5309 proof obligations, while the high-level one can only handle
3516.

This underlines the suspicion we set up in Section 4.3 that the introduction
of CVC4 and Z3 directly into the SMT solver plugin leads to a performance
increase. However, there is a considerable amount of proof obligations that can
be discharged with the low-level approaches but not with the high-level ones and
vice-versa.

Since the original SMT plugin does not support disproving POs, we cannot say
anything about the performance. The high-level approaches based on CVC4 and
Z3 are unable to disprove a single of the defective obligations. ProB’s kernel
remains superior when it comes to finding valuations for B predicates: The
integrated solver and ProB alone identify all 9 known defective obligations.

Comparing ProB solo and together with Z3 paints a similar picture. The inte-
grated solution is superior but the margin is small. Again, 130 proof obligations
cannot be discharged anymore once the SMT integration is enabled. Virtually
all of these result in a timeout afterwards. Since a global timeout is used and Z3
takes up too much time, ProB misses the solution. We could indeed use a local
timeout for the integrated SMT solver. So far, we have not yet found a sensible
heuristic to decide when to give time to Z3 vs. giving it to the ProB kernel.

Regarding disproving, integrating Z3 into ProB led to the discovery of a new
counterexample not yet discovered in our former work [117]. Despite our usage
of the CAN Bus model in Chapter 4 the error went unnoticed till now. The
counterexample is now found by ProB alone as well as can be seen in Table 6.2.
Yet again, the counterexamples not identified by the integrated approach in [117]
are now discovered by the integrated solver as well.
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Table 6.4: Performance on Different Kinds of Proof Obligations (Z3)
Kind of PO # POs SMT/Z3 HL/Z3 ProB ProB/Z3
Feasibility of non-det. action 59 57 (96.6 %) 54 (91.5 %) 57 (96.6 %) 57 (96.6 %)
Guard strengthening 300 294 (98.0 %) 196 (65.3 %) 266 (88.7 %) 274 (91.3 %)
Invariant preservation 4950 4638 (93.7 %) 4108 (83.0 %) 4547 (91.9 %) 4710 (95.2 %)
Natural number for a numeric variant 6 6 (100.0 %) 6 (100.0 %) 4 (66.7 %) 6 (100.0 %)
Action simulation 154 138 (89.6 %) 108 (70.1 %) 134 (87.0 %) 148 (96.1 %)
Theorem 98 59 (60.2 %) 39 (39.8 %) 80 (81.6 %) 64 (65.3 %)
Decreasing of variant 6 6 (100.0 %) 6 (100.0 %) 6 (100.0 %) 6 (100.0 %)
Well-definedness 780 644 (82.6 %) 66 (8.5 %) 548 (70.3 %) 514 (65.9 %)
Feasibility of a witness 1 1 (100.0 %) 0 (0.0 %) 1 (100.0 %) 1 (100.0 %)
Well-definedness of a witness 4 3 (75.0 %) 0 (0.0 %) 4 (100.0 %) 2 (50.0 %)

6358 5846 (91.9 %) 4583 (72.1 %) 5647 (88.8 %) 5782 (90.9 %)

Table 6.5: Performance on Different Kinds of Proof Obligations (CVC4)
Kind of PO # POs SMT/CVC4 HL/CVC4 ProB ProB/CVC4
Feasibility of non-det. action 59 18 (30.5 %) 39 (66.1 %) 57 (96.6 %) 57 (96.6 %)
Guard strengthening 300 275 (91.7 %) 127 (42.3 %) 266 (88.7 %) 244 (81.3 %)
Invariant preservation 4950 4451 (89.9 %) 3167 (64.0 %) 4547 (91.9 %) 4439 (89.7 %)
Natural number for a numeric variant 6 6 (100.0 %) 5 (83.3 %) 4 (66.7 %) 0 (0.0 %)
Action simulation 154 99 (64.3 %) 65 (42.2 %) 134 (87.0 %) 122 (79.2 %)
Theorem 98 40 (40.8 %) 32 (32.7 %) 80 (81.6 %) 44 (44.9 %)
Decreasing of variant 6 6 (100.0 %) 6 (100.0 %) 6 (100.0 %) 6 (100.0 %)
Well-definedness 780 414 (53.1 %) 75 (9.6 %) 548 (70.3 %) 321 (41.2 %)
Feasibility of a witness 1 0 (0.0 %) 0 (0.0 %) 1 (100.0 %) 0 (0.0 %)
Well-definedness of a witness 4 0 (0.0 %) 0 (0.0 %) 4 (100.0 %) 0 (0.0 %)

6358 5309 (83.5 %) 3516 (55.3 %) 5647 (88.8 %) 5233 (82.3 %)

Table 6.2 outlines for which models we see better or worse performance for the
Z3-based high-level SMT translation. In particular the landing gear systems and
the Stuttgart 21 interlocking models show a decline in successfully discharged
POs when compared with the low-level SMT translation. These models feature
a considerable amount of concrete data that can easily be translated using the
low-level approach. We assume that some of these POs can be discharged on
the boolean level, without any higher-order reasoning. Table 6.2 also shows that
these are the models where ProB alone works well.

As can be seen in Table 6.3 the situation remains largely the same if CVC4 is
used instead of Z3. However, the overall performance of CVC4 is not comparable
to that of Z3.

The high-level SMT approach, both with and without ProB integration, per-
forms better for more abstract models like the CAN Bus, the graph coloring
algorithm and the pacemaker model. This stresses our assumption that integrat-
ing the high-level SMT translation into ProB is worthwhile as they represent
orthogonal technologies that could benefit from one another. However, scheduling
the different solvers under a global timeout remains complicated.
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6.5.3 Comparison of CVC4 and Z3

Figure 6.3 compares ProB alone to the integrated solvers based on CVC4 and
Z3. As can be seen, integrating Z3 into ProB increases the performance: the
integrated solver is able to discharge 5782 proof obligations. Given that ProB
already discharged 88.8% of proof obligations, the additional gain of 2.1% is
significant.

In particular, the improved detection of unsatisfiability will be helpful if ProB
is used as the backend of any symbolic model checking algorithm. The Z3
integration can serve as a replacement as well as an addition to the additional
CHR rules given in Section 3.3.3. Using both at the same time is possible and
supported in ProB.

Integrating CVC4 into ProB is not nearly as successful: The number of dis-
charged obligations drops from 5647 to 5233, or 82.3%. As can be seen in
Fig. 6.1b, ProB/CVC is able to discharge 76 proof obligations not discharged
by ProB alone. In contrast to the Z3 integration this does not outweigh those
lost due to the increased number of timeouts: ProB alone discharges 490 proof
obligations not discharged by the CVC4-based integrated solver.

There is a key difference in behavior between the Z3 integration and the CVC4
integration, revealed when comparing Fig. 6.1a to Fig. 6.1b. ProB/Z3 is able
to discharge all the proof obligations solved by HL/Z3. Apparently, integrating
ProB and Z3 brings the additional proving power of the high-level translation
into the ProB kernel. At the same time, it does not impact the performance of
ProB’s kernel too much, dragging only 130 proof obligations into a timeout.

The situation is different for CVC4: The integrated solver ProB/CVC4 is unable
to successfully handle all obligations discharged by the high-level translation
to CVC4 alone. A considerable amount of proof obligations is not discharged
anymore, once ProB is added. At the same time, ProB’s kernel alone is
impacted by adding CVC4, leaving the aforementioned 490 proof obligations
behind. At the moment, we suspect that poor scheduling is to blame for the
difference between the two SMT solvers. Another possible explanation could be
a difference in the unsat core computations of CVC4 and Z3: if CVC4’s cores
are bigger than those of Z3, there is less backjumping in Algorithm 6.1.

6.6 Related Work

As mentioned above, in [71, 72] the authors present an integration of SMT solvers
into Rodin [3], an IDE for Event-B development. In this scenario, the SMT
solvers are used as provers in order to discharge Event-B proof obligations. The
authors investigate two different ways of translating Event-B to SMT-LIB.
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6.7 Conclusion and Future Work

One motivation for the integration of SMT solvers into ProB was to overcome
the weaknesses we spotted previously in Chapters 3 and 4: ProB should be
enabled to handle infinite domains and detection of unsatisfiability should be
improved.

With the suggested high-level translation of B to SMT-LIB both goals could be
achieved. The integrated solution is able to discharge several proof obligations
not discharged by ProB alone.

In certain cases, using our combined approach seems advantageous over a low-
level translation to predicate logic. Indeed, our high-level translation relying on
both Z3 and ProB discharges 4782 proof obligations in total, out of which 148
cannot be discharged by the previous SMT translation [71, 72].

Our evaluation also showed that there is not only a gain in the number of proof
obligations: the low-level translation discharges 157 proof obligations that are
not discharged by the integrated solver. Yet, it is not easy to decide a priori when
to employ a high-level and when to employ a low-level approach. A practical
solution is to use both in a solver portfolio.

For the future, we have different directions in mind. First, we would like to
investigate whether using an equisatisfiable translation instead of an equivalent
one is of use. In particular for approaches like proving or disproving as discussed
in Chapter 4 we expect improved performance.

We also want to tighten the integration of the SMT solvers and ProB. Currently
we are transporting partial assignments and we use the unsat core to control
backjumping on the Prolog side. In future, we want to investigate whether we
can access and use clauses learned on the SMT side in order to set up further
constraints on the Prolog side. For instance, we want to investigate whether we
can use interpolants or conflict clauses in case of unsatisfiable predicates.

Regarding our translation to SMT-LIB, the benchmarks show that in particular
the usage of quantifiers can be improved. One option to do so is to further inves-
tigate how to set instantiation triggers for comprehensions typically occurring in
our scenarios. In [125] the authors already outlined a general approach that can
serve as a starting point.

Another option is to try to reduce the amount of quantifiers we use. This could
be achieved by providing a custom theory to the SMT solvers, e. g., including
inference rules for min and max, avoiding some of the quantifiers introduced in
Section 6.2.2. Changing the set of axioms we supply to the SMT solvers in order
to define min and max is certainly another direction that should be evaluated.
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Another technique we want to implement should help us to overcome some
limitations discussed in Section 6.4. As mentioned, the B type system allows
to use set operators on sequences. Hence, we had to represent sequences as
sets of pairs, instead of relying on a native sequence type. A static check could
investigate how operators are applied in a B machine. It could determine if
sequences are only used with sequence operators. In this case, we could employ
a more efficient translation to SMT-LIB, e. g., encode them as arrays or try
the preliminary support for sequences recently introduced to CVC4 [131] and
Z3 [189].

Regarding benchmarks and applications, we would like to move from solving
predicates to explicit state model checking and constrained based validation
techniques. A first step towards more thorough benchmarks is the usage of our
integrated solver as the backend of several symbolic model checking algorithms.

It remains yet to be seen, how SMT solvers will evolve regarding high-level
theories. The current version of the SMT-LIB standard only features a “possible
declaration for a theory of sets and relations” [18]. How and if different possi-
bilities are realized will certainly influence the impact SMT solvers have in the
formal methods community.

Summarizing, we provided new ways to tackle the complexity of constraints in
B and Event-B. We provided a new high-level translation of B to CVC4’s and
Z3’s input language, which can be used on its own or integrated into ProB’s
solver.

This high-level SMT based solver appears to be an orthogonal addition to the
other solvers, solving many constraints that could not be solved by the previous
low-level translation and is better suited at finding models. Our evaluation also
confirms that the integration of the ProB solver with SMT solvers is worthwhile,
discharging 5782 proof obligations in case of Z3. It is only outperformed by
the low-level translation, which cannot fully be used to generate models. The
combined solver should be able to handle constraints brought up by symbolic
model checking algorithms, both regarding detection of unsatisfiablity and model
finding.
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Part III

Symbolic Model Checking





Quick decisions are unsafe decisions.
Sophocles

7
Selecting Symbolic Model

Checking Algorithms

The following chapter will discuss several symbolic model checking algorithms.
After the introduction in Section 7.1, we start with symbolic model checking
using BDDs in Section 7.2. Following, the chapter will mainly focus on SAT and
SMT based model checking techniques. In Sections 7.3.2 to 7.3.4 bounded model
checking, interpolation-based model checking and k-Induction will be introduced.
Section 7.3.5 will then introduce the IC3 algorithm. We will conclude with an
evaluation of the algorithms in question, justifying the decision to implement
BMC, k-Induction and IC3 in ProB.

This chapter is based on our paper “Proof Assisted Symbolic Model Checking for
B and Event-B” [116]. For information regarding authors and their individual
contributions see Appendix C.

7.1 Introduction and Motivation

Two variants of model checking are currently in use: explicit state model checking
and symbolic model checking. In explicit state model checking, every reachable
state is traversed, the invariant is verified and discovered successor states are
queued to be analyzed themselves.

Symbolic model checking on the other hand tries to represent the state space
and possible paths through it by predicates representing multiple states or paths
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at once. Instead of stepwise exploration of the state space graph, the model
checking problem is encoded as a formula and given to a constraint solver.

So far, existing model checkers for B and Event-B like ProB [128, 127],
Eboc [141], pyB [185] or TLC [187] (via [94]) rely on explicit state model
checking. ProB features some symbolic techniques for error detection [91] and
test-case generation [165], but not full-blown symbolic model checking.

This is mostly due to the high-level nature of B and Event-B. Both the use
of higher-order constructs and the underlying non-determinism accounts for
complicated constraints during symbolic model checking. Some complexity can
be coped with by relying on SMT solvers [71, 72] or SAT solvers [160]. However,
this is not always the case, as translation to SMT or SAT can be complicated
and might add overhead. Additionally, some predicates cannot efficiently be
solved by SAT or SMT solvers as well. Often, the remaining constraints are still
too complicated for symbolic model checking to be feasible.

7.2 State Space Representation using BDDs

In the following section, we will present binary decision diagrams [124] and
explain how they can be used to reduce the impact of the state space explosion
problem. Binary decision diagrams, or BDDs for short, have been introduced in
1959 as a concise representation of binary switching circuits and are defined as
follows.

Definition 7.2.1 (Binary Decision Diagram). A binary decision diagram is an
acyclic and directed graph G = (V ,E), such that

• Each leaf node is either labeled > or ⊥.

• Each inner node N belongs to a boolean variable XN .

• Each inner node N has two child nodes called lowN and highN . The edge
to lowN represents assigning XN = ⊥ while the edge to highN represents
XN = >.

As an example, take the formula f = (¬x ∧ ¬y) ∨ (y ∧ z) ∨ (¬x ∧ z). Figure 7.1
shows the decision tree and the corresponding BDD for f . The edges to low
nodes are dashed while the edges to high nodes are solid.

BDDs have later been extended to shared reduced ordered binary decision
diagrams by Bryant [37, 38]. The changes include several optimization steps.
Together they ensure that BDDs are a canonical representation of boolean
formulas (modulo variable ordering).
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Figure 7.1: Decision Tree and BDD for f
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Figure 7.2: Reduced Ordered BDD for f

Definition 7.2.2 (Ordered Binary Decision Diagram). A binary decision dia-
gram is called ordered if the variables XN appear in the same order on all paths
from the root to the leafs.

Definition 7.2.3 (Reduced Binary Decision Diagram). A binary decision di-
agram is called reduced if all isomorphic subgraphs have been merged and all
nodes whose children are isomorphic have been eliminated.

The variable ordering can indeed considerably influence the size of a resulting
BDD. However, finding the optimal variable ordering is an NP-hard prob-
lem [30].

In Fig. 7.2 the reduced ordered BDD for the example above is shown. As can
be seen, removing isomorphic nodes often leads to a substantial reduction of
BDDs.
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The value of a boolean function represented by a BDD can be computed recur-
sively using Boole’s expansion theorem:

Definition 7.2.4. For a BDD G = (V ,E) and a node v ∈ V , the value of the
boolean function fv represented by v is

• The label of v iff v is a leaf node.

• If v is an inner node belonging to boolean variable Xv, the value of fv is
given by fv(x) = Xv ∧ fhighv (x) ∨ ¬Xv ∧ flowv (x).

Operations like conjunction or disjunction that can be performed on boolean
formulas can often be performed on the reduced and ordered form of a BDD
without having to reorder or rereduce the result. This allows them to be used as
the representation of states during model checking [39], avoiding the state space
explosion to some extent.

Unfortunately, using BDDs is often not enough to handle the state spaces of
large models, especially when considering software rather than hardware model
checking. While the influence of the number of states is reduced, the asymptotic
complexity of explicit state model checking remains [39]. In consequence, memory
and performance issues ultimately limit the applicability of BDD-style symbolic
model checking.

BDD-style symbolic model checking as outlined in [39] has been implemented for
B and Event-B by integrating ProB with LTSmin [23]. While originally targeted
at deadlock checking, the integration has been extended towards invariant
checking and verification of LTL formulas in [118].

Using BDD-style symbolic model checking is a different line of work and not
considered further in this thesis.

7.3 Fully Symbolic Algorithms

7.3.1 Notation and Running Example

We will use the running example in Listing 7.1 to illustrate various concepts. The
techniques used in this chapter have been implemented both for classical B and
Event-B. Both languages will be used in our empirical evaluation in Section 8.3.
For the sake of brevity we will only talk about Event-B events in the following
sections instead of distinguishing events and operations.

First, let us introduce the notation we will be using. By x we will denote a
vector of state variables. x ′ denotes the state variables in the successor state. A
predicate p over the state variables x is denoted by p(x). The same predicate

118



7.3 Fully Symbolic Algorithms

Listing 7.1: A simple, erroneous B machine
MACHINE Counter
CONSTANTS m
PROPERTIES m : {127 ,255}
VARIABLES c
INVARIANT c>=0 & c<=m
INITIALISATION c :=0
OPERATIONS

incby ( i ) = PRE i : 1 . . 6 4 THEN c := c+i END
END

over the successor state is written as p(x ′). By Events we denote the set of
events of an Event-B machine. By Inv we denote its invariant.

Definition 7.3.1. For an event evt ∈ Events let BAevt(x , x ′) denote the before-
after-predicate connecting state variables in x to their successors in x ′. In order
to fully represents a system’s behavior using the before-after-predicate, we do
not only consider actions but also guards and parameters where applicable.

For the example in Listing 7.1, we have BAincby(c, c′) = ∃ i. (i ∈ 1..64 ∧ c′ =
c + i).

Definition 7.3.2. By T we refer to a monolithic transition predicate, i. e., the
disjunction of all before-after-predicates: T (x , x ′) =

∨
e∈EventsBAe(x , x ′). By I

we denote the after predicate of the initialization, including the properties about
the constants.

For Listing 7.1 we have I(c) = m ∈ {127, 255} ∧ c = 0.

7.3.2 Bounded Model Checking

Bounded Model Checking, or BMC for short, has been suggested by Armin
Biere, et al. in 1999 [25]. One of the main goals is to avoid the blowup and
resulting slowdown of BDD-based model checking algorithms. This is achieved
by replacing the BDDs by a SAT solver.

The basic idea is as follows: For an initial state relation I, a transition relation
T , a property p and a bound k starting with k = 0, a sequence of propositional
formulas is generated. Each of the formulas is satisfiable if and only if there
exists a counterexample to the property with length ≤ k.
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This can be expressed as:

BMC (p, k) = I(s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

¬p(si). (7.1)

In [25], the authors identify the following key advantages of bounded model
checking:

• Due to the depth first search performed by the underlying SAT solver,
counterexamples are usually detected quite fast.

• The algorithm always finds the shortest path to a counterexample by
incrementally increasing the bound k.

• The approach avoids the shortcomings of BDD based model checking, such
as the memory blowup.

In its pure form, bounded model checking is obviously incomplete: The un-
satisfiability of BMC (p, k) for any k does not imply anything regarding states
reachable in more then k steps. For bounded model checking to be complete,
one has to find an upper bound for k.

Definition 7.3.3 (Completeness Threshold). For M a finite model and P a safety
property there exists a minimal k such that the absence of a counterexample
within k or fewer steps implies that M � P. This k is called the completeness
threshold.

If the completeness threshold is known, bounded model checking becomes com-
plete: Starting with 0, a bounded model checking step is performed for each
value of k smaller than the threshold. If no counterexample is detected, the
model is proven correct.

Definition 7.3.4 (Diameter). The diameter of a model M is the length of the
longest of all shortest execution sequences connecting any two states.

Lemma 7.3.1. For safety properties the completeness threshold is less than or
equal to the diameter.

Even though we can compute the completeness threshold for certain properties,
doing so usually involves computing the full state space of a given model. This
would involve using an explicit state model checker as introduced in Section 2.2.1.
Afterwards, using BMC does not offer any benefit. However, there are techniques
to compute an over-approximation of the completeness threshold [54].

While initially designed for hardware verification, bounded model checking can
be extended to software in a straight forward fashion. Two possible techniques
are used:
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1. Datatypes can be translated into propositional formulas using for example
a bit-width encoding for integers. Using this technique, richer programs
tend to consume a lot of boolean variables. Hence, possible scalability
issues might arise.

2. The approach can easily be lifted from propositional satisfiability to richer
logics by replacing the SAT solver with an SMT solver. No changes to the
algorithm are necessary.

Using only the encoding in Eq. (7.1) lifting bounded model checking to infinite
state spaces is impossible, since no bound k exists in this case. Of course,
even for infinite models, bounded model checking is still useful to search for
counterexamples with a finite length.

Furthermore, there are extensions to BMC that enable infinite-state model
checking. For instance in [62] the authors show how theorem proving can be used
to apply bounded model checking to models featuring infinite domains. We will
follow a similar approach in Chapter 8, where we use static proof information
to improve the performance of symbolic model checking algorithms for B and
Event-B.

An alternative approach is proposed in [169], where the authors suggest using
more expressive logics in order to lift BMC to infinite state spaces. Bounded
model checking can be lifted to software using SMT solvers as suggested in [11].
Another model checking technique comparable to BMC is based on interpolants
and will be introduced below.

7.3.3 Interpolation

Interpolation can be used to lift BMC to an unbounded model checking algorithm
as outlined in [142].

Definition 7.3.5. I is called an interpolant for an unsatisfiable formula φ, if

1. φ = A ∧ B,

2. A⇒ I,

3. I ∧ B is unsatisfiable,

4. I only refers to the common variables of A and B.

The last requirement rules out using A itself as an interpolant. In general, there
can be multiple interpolants for φ. If used in model checking algorithms, this can
influence performance of approximations, depending on the choice of interpolants
used.
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Interpolants can be extracted from the refutations produced by SAT solvers
using a linear procedure [162]. Producing interpolants for the theories used in
SMT solvers is more involved but still possible for several theories [144]. These
methods are based on the construction of interpolants from proofs. A more direct
approach has been suggested in [163], relying on constraint logic programming
for interpolant construction.

Following [142], interpolants can be used in the constraints of bounded model
checking as follows. The conjuncts of the BMC constraints given in Eq. (7.1)
are split into two partitions. Initially, the first partition (A) includes the initial
state predicate and the first instance of the transition predicate. The remaining
transitions together with the negated property form the second partition (B):

BMC (p, k) = I (s0) ∧ ¬p(s0) ∧ T (s0, s1)︸ ︷︷ ︸
A

∧
k−1∧
i=1

T (si , si+1) ∧
k∨

i=1

¬p(si)︸ ︷︷ ︸
B

If there is no counterexample, the formula is unsatisfiable. From the underlying
solver, we can then extract I, an interpolant for BMC (p, k). The common
variables in this case are the variables in state s1. Since I is implied by A, I is an
over-approximation of the states reachable in a single step. Furthermore, since
I ∧ B are unsatisfiable no state satisfying I can reach a counterexample in k
steps. I can be seen as an under-approximation of the states that are backwards
reachable from a counterexample state in k steps.

The process can now be repeated each time the bound k is increased. Due to
the approximation, spurious counterexamples can occur. However, increasing k
will ultimately either lead to a real counterexample once k is large enough or it
will prove the counterexample to be spurious. The absence of a counterexample
is detected using a fix-point loop. By gradually refining both the over- and
under-approximations, one finds an inductive invariant as soon as a fix-point is
reached.

Interpolation based model checking can be combined with an abstraction tech-
nique like predicate abstraction to make it more suitable for software model
checking [105].

7.3.4 k-Induction

k-Induction [171] is a model checking technique for finite state systems. It
follows the idea of a mathematical proof by induction, i. e., it tries to establish
a base case and proof an inductive step. The algorithm thus tries to prove
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that if a property p holds at the current step it holds after performing another
transition.

For the method to be complete, one has to avoid getting stuck in loops. Hence,
the constraints are strengthened to avoid a state occurring twice on given a
path.1

The base condition is encoded as shown in Eq. (7.2); it is basically a BMC step
and tries to find a counterexample of length k starting from the initialization.
Like in Section 7.3.2 we assume that we gradually increase the value of k starting
from 0, as shown in Algorithm 7.1.

The inductive step, including the uniqueness of states, can be expressed as done
in Eq. (7.3), where Axm are the axioms on the constants of the model (e. g.,
m ∈ {127, 255} in our running example).

Base(p, k) = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧ ¬p(sk) (7.2)

Step(p, k) = Axm ∧
∧

0≤i<j≤k

si 6= sj ∧
k∧

i=0

T (si , si+1) ∧
k∧

i=0

p(si) ∧ ¬p(sk+1) (7.3)

The model checking algorithm now starts with k = 0. As long as the base
constraint is not satisfiable, no counterexample of length k exists. If the step
constraint is not satisfiable as well, no further steps can be performed and the
state space has been traversed exhaustively. If it is not, k is increased. During
the search, Eq. (7.2) should never be satisfiable. Otherwise, a counterexample to
the property has been found. Summarizing, a k-Induction based model checking
algorithm performs as outlined in Algorithm 7.1.

For k = 0, Step(Inv, k) corresponds to trying to find counterexamples to the
B invariant preservation proof obligations. In a similar fashion, Base(Inv, 0)
corresponds to finding initial states which violate the invariant. Hence, if
Base(p, 0) and Step(p, 0) are unsatisfiable, we have found an inductive proof of
the property p.

However, the difference with B’s approach to proving invariants does appear
when Step(p, 0) is satisfiable, i. e., when there exists a state which satisfies p
and a successor state violates p. The k-Induction method tries to construct
a real counterexample, starting from a valid initial state, not from any state
satisfying p. Hence, the value of k is now increased and we try to find a real
counterexample of length k + 1 using the BMC constraint given in Eq. (7.2).

1We could have added these constraints si 6= sj also in Section 7.3.2.

123



7 Selecting Symbolic Model Checking Algorithms

Algorithm 7.1: k-Induction
Data: Property p
Result: true iff p holds

1 procedure boolean k-Induction(p)
2 k := 0
3 while true do
4 if Base(p, k) satisfiable then
5 return false
6 end if
7 if Step(p, k) unsatisfiable then
8 return true
9 end if

10 k := k + 1

11 end while

For infinite state systems, there might always be another step that can be
performed. In consequence, proof by induction can fail. Hence, Eq. (7.3) is
not guaranteed to be unsatisfiable eventually. As a result, for certain models,
k-Induction can only be used to disprove but not to prove a property.

Compared to BMC as introduced in Section 7.3.2, k-Induction has the advantage
of including an explicit termination condition. No prior knowledge or computation
is needed to determine whether model checking was exhaustive.

Suppose for example we take for p the predicate c ≥ −2∧ c 6= −1 for Listing 7.1.
In this case BMC will never terminate, as for every value of k no counterexample
can be found. k-Induction, however, can already stop with k = 1, as Step(Inv, 1)
is unsatisfiable. This is an interesting result, given that the state space of the
model is infinite. The constraints are shown in Fig. 7.3 and are unsatisfiable
except for Step(Inv, 0), which has the solution m = 127, c0 = −2, c1 = −1.

In more detail, the constraints from Fig. 7.3 are:

Base(Inv, 0) = m ∈ {127, 255} ∧ c0 = 0 ∧ ¬(c0 ≥ −2 ∧ c0 6= −1)

Step(Inv, 0) = m ∈ {127, 255} ∧ c0 ≥ −2 ∧ c0 6= −1

∧∃ i. (i ∈ 1..64 ∧ c1 = c0 + i) ∧ c1 6= c0
∧¬(c1 ≥ −2 ∧ c1 6= −1)
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describing the initial states and T a predicate describing the transition relation
and P the property in question, these frames satisfy the following invariants:

I ⇔ F0

∀ 0 ≤ i < k.Fi ⇒ Fi+1

∀ 0 ≤ i < k.Fi ⇒ P
∀ 0 ≤ i < k.Fi ∧ T ⇒ F ′i+1

Counterexamples reachable in one or two steps are handled as a special case,
as shown in line 2 of Algorithm 7.2. Afterwards, for each level k IC3 tries
to find a property violation reachable in a single step, i. e., a solution to
Fk(s) ∧ T (s, s′) ∧ ¬p(s′).

If no solution exists, k is incremented and a new frame holding p is added.
Additionally, the algorithm checks whether it can push forward clauses from
lower to higher frames. This is done by checking whether they are implied
to hold after the execution of a transition, i. e., for a clause c the predicate
c(s) ∧ T (s, s′)⇒ c(s′) holds.

Otherwise, IC3 tries to show that the faulty state is in fact not reachable from
the initialization. This is done by incrementally strengthening frames until Fk
becomes strong enough to prevent the property violation from occurring. To do
so, IC3 keeps a queue of remaining counterexamples, starting with (cs, k − 1),
where cs is a predicate describing the counterexample state found for frame
number k.

For each tuple (cs, k), IC3 tries to prove cs unreachable by verifying the relative
inductiveness of cs to Fk . This is achieved by the query Fk(s)∧¬cs(s)∧T (s, s′)⇒
¬cs(s′). If cs is indeed inductive, it can be added to the frames Fi , 1 ≤ i ≤ k+1.

If it is not, the query is satisfiable and returns a valuation representing a successor
state to the one defined by cs. In case the successor found is an initial state and
k = 0, IC3 has found a counterexample trace and the system under consideration
is indeed faulty. Otherwise, IC3 tries to prove the predecessor unreachable, by
creating a new tuple and adding it to the queue.

The added clause will have to be propagated through the frames in order to
reestablish the properties stated above. Of course, it is desirable to generalize
added clauses before propagation in order to exclude a number of counterexamples
from occurring. This is done by computing a subclause of cs with the desired
properties. A number of generalization procedures has been suggested:

• In Bradley’s original implementation [34], a stepwise cone of influence [25]
is used to compute the desired clause.
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• An improvement to the generalization procedure is described in [97], where
the authors consider counterexamples to generalization based on multiple
states in contrast to the counterexamples to induction described above.

• Using ternary simulation has been suggested in [73].

• Using SAT conflict analysis, counterexample states can be reduced to
partial assignments as well [45]. Here, the cause of a conflict in a specially
crafted query consists of only the variable assignments needed.

We use the last approach, as it integrates nicely with the existing solving
procedures: given a counterexample state predicate cs(s), its successor state
predicate ct(s′), and Tz the exact transition that connects s to s′, we know
that cs(s) ∧ Tz(s, s′) ∧ ¬ct(s′) is unsatisfiable. Note that Tz removes existing
non-determinism from T in order to reproduce the same exact transition. From
the unsatisfiable query, one can extract an unsatisfiable core, typically including
only a subclause of cs.

After generalization and strengthening the frames, a new counterexample might
be found and IC3 will start to iterate between finding counterexamples and
strengthening frames. If strengthening the frames eventually fails, a counterex-
ample to the property is found.

IC3 can also prove a model correct. If no counterexample can be found any-
more, the frames have been strengthened enough to form an inductive invariant.
Furthermore, due to the properties established, the invariant found implies the
property in question. It is thus proven to hold on every reachable state of the
model. Indeed, an inductive invariant has been found.

A partial outline of IC3 is shown in procedure strengthen in Algorithm 7.3. The
Counterexample exception is thrown by inductivelyGeneralize if generalization
fails and the counterexample cannot be proven spurious.

In the following chapters, we will only go into details of IC3 wherever it has to
be adapted in order to work with B and Event-B. For a complete overview, see
Bradley’s original paper [34] or the one by Een, et al. in [73]. Algorithms 7.2
and 7.3 follow the implementation of [34].

Let us see how our running example is solved by IC3: First, the algorithm
checks if the initial state of the model can already violate the property. This
is done using the same query as in BMC, BMC (Inv, 0), as given in Eq. (7.1).
Afterwards, one-step reachability is checked using the query BMC (Inv, 1). Both
queries are unsatisfiable.

IC3 now sets up the first two frames, F0 and F1, where F0 holds the initial state
of the machine and F1 holds the property in question. The domain in which
the machine’s constants have to reside is added to the frames as well. A third
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Algorithm 7.2: IC3: Main Loop
Data: Property p
Result: true iff p holds

1 procedure boolean ic3(p)
2 if sat(I(s) ∧ ¬p(s)) ∨ sat(I(s) ∧ T (s, s′) ∧ ¬p(s′)) then
3 return false
4 end if
5 F0 := I, clauses(F0) := ∅
6 F1 := p, clauses(F1) := ∅
7 k := 1
8 while true do
9 if not strengthen(k, p,F) then

10 return false
11 end if
12 propagate clauses(k)
13 if ∃ i. (i ∈ [1, k] ∧ clauses(Fi) = clauses(Fi+1)) then
14 return true
15 end if
16 k := k + 1

17 end while

frame F2 to use it as a target for propagation. Again, it holds both the possible
constants and the property in question. In summary, we have

F0 = m ∈ {127, 255} ∧ c = 0

F1 = m ∈ {127, 255} ∧ c ≥ 0 ∧ c ≤ m
F2 = m ∈ {127, 255} ∧ c ≥ 0 ∧ c ≤ m.

The algorithm now enters the strengthen step with k = 1. Here, it tries to
reestablish the frame invariants given above. This is done by finding counterex-
amples to the inductiveness of c0 ≥ 0 ∧ c0 ≤ m and reacting to them. The while
loop in Algorithm 7.3 effectively iterates over all the counterexamples of length
k + 1 = 2. For k = 1 the query in the while loop is

F1(s) ∧ T (s, s′) ∧ ¬p(s′)
⇔m ∈ {127, 255} ∧ c ≥ 0 ∧ c ≤ m
∧ ∃ i. (i ∈ 1..64 ∧ c′ = c + i) ∧ ¬(c′ ≥ 0 ∧ c′ ≤ m)

There are a number of possible solutions, each representing a counterexample to
the inductivity of c ≥ 0 ∧ c ≤ m. Let’s say m = 127 ∧ c = 127 ∧ c′ = 128 (with
i = 1) is the first to be found by ProB. Following Algorithm 7.3 we extract the
predecessor s(c) which is c = 127.
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Algorithm 7.3: IC3: Strengthen
1 procedure boolean strengthen(k, p,F)
2 try
3 while sat(Fk(s) ∧ T (s, s′) ∧ ¬p(s′)) do
4 pre := the predecessor extracted from the witness
5 n := inductivelyGeneralize(pre, k − 2, k)
6 pushGeneralization((n + 1, pre), k)

7 end while
8 return true
9 catch Counterexample

10 return false

Afterwards, the call to inductivelyGeneralize is supposed to compute a
subclause of ¬c = 127 that is inductive relative to some Fi with i < k. Inductivity
is checked using a query of the form Fi ∧ ¬pre(c) ∧ T (c, c′)⇒ ¬pre(c′).

In fact, c = 127 is inductive relative to F0, as

m ∈ {127, 255} ∧ c = 0︸ ︷︷ ︸
F0

∧¬ c = 127︸ ︷︷ ︸
pre(c)

∧∃ i. (i ∈ 1..64 ∧ c′ = c + i)︸ ︷︷ ︸
T(c,c′)

∧ c′ = 127︸ ︷︷ ︸
pre(c′)

is unsatisfiable. In consequence, the algorithm is allowed to add ¬c = 127 to F1,
effectively detecting that the counterexample is spurious.

In the next iteration, another counterexample is found and the process again
strengthens the frames. Eventually, no further counterexample can be found and
the model has been proven correct.

As you can see, IC3 has to consider a possibly infinite amount of counterexamples.
Thus, it is often necessary to incorporate abstraction techniques into IC3 to
enable it to handle infinite state spaces efficiently. Several abstraction techniques
have been suggested and implemented on top of IC3. We will discuss some of
them in Chapter 9.

Aside from safety properties, the IC3 algorithm has already been extended to
liveness properties. With FAIR [35] there exists a variant of IC3 for ω-regular
properties like those expressed in LTL. Furthermore, CTL properties can be
model checked by a variant called IICTL [96]. In addition, IC3 has been extended
to timed systems in [107] as well as to bit vector problems in [184].
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Table 7.1: Comparison of Symbolic Model Checking Algorithms
Explicit State BMC k-Induction interpolation IC3

falsification 3 3 3 3 3

verification 3 (3) 3 3 3

infinite-state 7 (3) 3 3 3

suitable for B 3 3 3 (7) 3

7.4 Evaluation and Decision

The key properties of the algorithms introduced above are summarized in Ta-
ble 7.1. As you can see, two of the algorithms have drawbacks:

• Bounded model checking is limited when it comes to verification instead of
falsification. Computing an upper bound to achieve a termination condition
is complicated and often infeasible.

• Interpolation could in theory be used to model check B specifications.
However, we are limited by ProB’s kernel. So far, no efficient interpolation
procedures have been implemented for the CLP(FD) package of SICStus
Prolog.

As bounded model checking is still useful for the falsification of models, we will
include it in the algorithms to be implemented. In addition, k-Induction as well
as IC3 and its extension seem likely candidates. Especially IC3’s focus on single
step queries should be helpful. We hope that it will prevent constraints from
accumulating until they cannot be solved by ProB anymore.

Chapter 8, reports on our experience using these algorithms to model checking
B and Event-B specifications. At the same time, it will explain how the results
of proving efforts can be used to increase performance.

The complicated constraints used in the symbolic model checking algorithms and
the lack of interpolations procedures in ProB were the major motivations for
the integration of Z3 into ProB. As we have shown in Chapter 6, integrating Z3
improves the constraint solving capabilities of ProB. However, Z3 is often too
weak to solve B constraints on its own, without support by ProB. This again
limits the availability of efficiently computed interpolants. We thus decided not
to implement interpolation based model checking.

For a more in-depth comparison of different symbolic model checking algorithms
see [6].
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Man cannot produce a single work without the as-
sistance of the slow, assiduous, corrosive worm of
thought.

Eugenio Montale

8
Proof Assisted Symbolic Model

Checking

This chapter is based on our paper “Proof Assisted Symbolic Model Checking for
B and Event-B” [116]. For information regarding authors and their individual
contributions see Appendix C.

8.1 Introduction and Motivation

Initial prototypical implementations of the symbolic model checking algorithms
selected upon in the previous chapter did not perform as expected. To improve,
we studied various ways to use proof information to optimize them. The proof
information is used to strengthen constraints and reduce the counterexample
search space. For Event-B, the information stems from discharged proof obliga-
tions exported from Rodin [3]. For classical B, no automatic proof information
is available at the moment within ProB.1

However, we can recompute the proof information upon loading a B model.
Essentially, for a B operation with before-after-predicate BA we search for a
solution to

invariant(x) ∧ BA(x , x ′) ∧ ¬conjunct of invariant(x ′).
1In theory, one could export proof information from Atelier B.
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If ProB reports a contradiction, we know that the operation cannot lead to
a violation of the particular conjunct. In addition to the techniques used in
Chapter 4, we used a bridge to the Atelier B provers ml and pp to discharge
these proof obligations.

We already introduced the model checking algorithms BMC, k-Induction and
IC3 in Chapter 7. In Sections 8.2.1 to 8.2.3, we will show how to include proof
information into the occurring constraints.

Including proof information will result in simpler constraints to be tackled by
ProB. Furthermore, in certain cases, proof information helps to reduce the search
space in question, enabling ProB to exhaustively model check infinite-state
systems.

Following, in Section 8.3, we will empirically compare symbolic model checking
to explicit state model checking and model checking with and without proof
assistance. Related work is given in Section 8.4, discussion and conclusions will
be presented in Section 8.5.

8.2 Integrating Proof Assistance

When using the B method to develop a software or system, one often alternates
between different phases. Among those are writing and adapting the specification,
manual and automated proof efforts as well as model checking.

These steps usually influence one another: an error detected by model checking is
resolved by changing the specification. This again leads to new proof obligations
being generated and discharged if possible. Yet, the different steps are only
loosely coupled when it comes to tool support. Model checkers often do not
incorporate proof information; the provers have no knowledge about model
checking results.

In [24] the authors have shown how to augment explicit state model checking with
proof information. In the following, we similarly incorporate proof information
into the symbolic model checking algorithms introduced in Chapter 7. To do so,
we need a few definitions regarding proof information and how we use it.

Definition 8.2.1. For a predicate p =
∧

i∈I pi and event evt let provenevt,p
denote a set of conjuncts pi that are proven to hold after the execution of evt on
a p-state, i. e., we have provenevt,p =

∧
i∈J pi for some J ⊆ I such that

∀ x , x ′. p(x) ∧BAevt(x , x ′)⇒ provenevt,p(x ′).

Let unprovenevt,p =
∧

i∈I\J pi denote the complement of provenevt,p, i. e., all
the conjuncts of p that are not in provenevt,p. We also define provenevt =
provenevt,Inv and unprovenevt = unprovenevt,Inv.
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For the example in Listing 7.1, provenincby(c) = c ≥ 0; the invariant c ≥ 0 is
preserved by incby. This implies unprovenincby(c) = c ≤ m.

In our current implementation, we have that provenevt,p =
∧

j∈J pj with J ⊆ I .
This however is not a strict limitation. One could add other predicates discovered
to be implied to provenevt,p to further strengthen the predicates given below.

Lemma 8.2.1. A valid solution for Definition 8.2.1 is always provenevt,p = true,
meaning that nothing is proven for the event evt. At the other extreme, if all
conjuncts of p are proven to hold after the execution of evt then provenevt,p = p
and unprovenevt,p = true.

In the following sections, we show how proof information can be embedded in
the queries of bounded model checking (Section 8.2.1), k-Induction based model
checking (Section 8.2.2) and IC3 (Section 8.2.3). An empirical evaluation of the
algorithms and the influence of using proof information will be performed in
Section 8.3.

8.2.1 BMC — Bounded Model Checking

BMC has been introduced in Section 7.3.2. In order to include proof information
we have to rewrite the predicate

BMC (p, k) = I(s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

¬p(si).

First, if we increase k step-by-step as done in ProB’s implementation of BMC,
it is sufficient to check only the last state for a violation of p:

BMC (p, k) = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧ ¬p(sk)

For the example machine in Listing 7.1, we have:

BMC (Inv, 0) = m ∈ {127, 255} ∧ c0 = 0 ∧ ¬(c0 ≥ 0 ∧ c0 ≤ m) (8.1)
BMC (Inv, 1) = m ∈ {127, 255} ∧ c0 = 0 ∧ ∃ i. (i ∈ 1..64 ∧ c1 = c0 + i)

∧¬(c1 ≥ 0 ∧ c1 ≤ m) (8.2)
BMC (Inv, 2) = m ∈ {127, 255} ∧ c0 = 0 ∧ ∃ i. (i ∈ 1..64 ∧ c1 = c0 + i)

∧∃ i. (i ∈ 1..64 ∧ c2 = c1 + i) ∧ ¬(c2 ≥ 0 ∧ c2 ≤ m) (8.3)
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ProB’s constraint solver finds no solution for Eqs. (8.1) and (8.2), but does
so for Eq. (8.3): m = 127, c0 = 0, c1 = 64, c2 = 128. One can see that the
constraint solver has instantiated the parameter of the event in such a way as to
violate the invariant. ProB’s classical model checker on the other hand “blindly”
enumerates all 64 possible successor states. Using breadth-first search, the
counterexample is found after having generated 325 states and 12420 transitions;
taking ∼ 1.5s whereas BMC finds the counterexample with k = 2, i. e., after
three calls to the constraint solver and ∼ 1s.

A depth-first search may generate a long counterexample of up to 127 steps,
depending in which order the successors are processed. ProB in this case
actually processes the successors with the larger i values first; leading to a
counterexample of length 4 after generating 324 states and 323 transitions. The
state space is shown in Fig. 8.1, the corresponding counterexample is shown in
Fig. 8.2.

The larger the branching-factor, the better BMC becomes as compared to explicit
state model checking. When the number of possible parameter values becomes
unbounded, e. g., supposing the incby event had no upper bound on i, BMC is
often the only practical solution.

ProB gives the user the opportunity to set an upper-bound on the number
of successor states per event for the explicit model checker. In consequence,
exhaustive model checking is then not possible but counterexamples can still be
found.

Next, we extend the transition relation to either assert a property after every
step or assert its negation:

Definition 8.2.2. For a predicate p we define Tp and T¬p by

Tp(x , x ′) =
∨

evt∈Events

(BAevt(x , x ′) ∧ p(x ′))

T¬p (x , x ′) =
∨

evt∈Events

(BAevt(x , x ′) ∧ provenevt,p(x ′) ∧ ¬unprovenevt,p(x ′))

For k ≥ 1, the proven conjuncts of p can be used to strengthen the constraint:

BMC (p, k) = I(s0) ∧ p(s0) ∧
k−2∧
i=0

Tp(si , si+1) ∧ T¬p (sk−1, sk) (8.4)
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Figure 8.1: State Space of Explicit State Model Checking

root m = 127SETUP_CONSTANTS(127) c = 0INITIALISATION(0) c = 64incby(64) c = 128incby(64)

Figure 8.2: Counterexample Found by BMC

For the example machine in Listing 7.1, we have that for k = 0 the constraint
remains unchanged, but for k = 1 and k = 2 we obtain:

BMC (Inv, 0) = m ∈ {127, 255} ∧ c0 = 0 ∧ ¬(c0 ≤ m)

BMC (Inv, 1) = m ∈ {127, 255} ∧ c0 = 0

∧∃ i. (i ∈ 1..64 ∧ c1 = c0 + i) ∧ c1 ≥ 0 ∧ ¬(c1 ≤ m)

BMC (Inv, 2) = m ∈ {127, 255} ∧ c0 = 0

∧∃ i. (i ∈ 1..64 ∧ c1 = c0 + i) ∧ c1 ≥ 0 ∧ c1 ≤ m
∧∃ i. (i ∈ 1..64 ∧ c2 = c1 + i) ∧ c2 ≥ 0 ∧ ¬(c2 ≤ m)

Remember that unprovenevt,p(sk) evaluates to true if all conjuncts of p have been
proven to hold after the execution of evt. Hence, for completely proven events
¬unprovenevt,p(sk) is false and the corresponding disjunct in T¬p is obviously
unsatisfiable. However, we cannot remove such completely proven events from
the first k − 1 steps as they might contribute to the path to a violation of p,
using another final event. The usage of proof information thus only simplifies
occurring constraints but does not lead to a reduced state space.
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Another BMC approach is to use the test-case generation algorithm from [165],
using ¬p as target predicate. In contrast to the BMC technique above, the tran-
sition predicate is not monolithic, and the algorithm builds up a tree of feasible
paths. We have extended the algorithm from [165] to also use ¬unprovenevt,p
instead of ¬p, where evt is the last event of any given path.

The algorithm optionally uses a static enabling analysis to filter out infeasible
paths before calling the solver. Another difference to classical BMC is that the
test-case generation algorithm is able to detect the exhaustiveness of test paths
under certain conditions. In consequence, it can be used to verify the correctness
of models as well. In the remainder of this chapter we refer to this algorithm as
BMC∗.

8.2.2 k-Induction

k-Induction as introduced in Section 7.3.4 is a mixture of BMC and proof
by induction. The Base constraint is equal to the one in BMC: Base(p, k)
= BMC (p, k). Hence, we can include proof information in the same fashion
and simply reuse the optimized constraint Eq. (8.4) from Section 8.2.1. For the
inductive step, we can again use T¬p for the last step, to only look for violations of
unproven parts of p. Following Algorithm 7.1, we also know that all intermediate
states must satisfy the property p; this we can encode using Tp, leading to the
definition

Step(p, k) = Axm ∧ p(s0) ∧
∧

0≤i<j≤k

si 6= sj ∧
k−1∧
i=0

Tp(si , si+1) ∧ T¬p (sk , sk+1).

As in BMC, we cannot remove before-after-predicates from the first steps. Con-
straints are simplified but the search space is not reduced.

So far, we have always immediately added the constraint
∧

0≤i<j≤k si 6= sj ,
ensuring that no loops occur for the induction step. It can also be added on
demand, once a loop occurs in the counterexample to the inductiveness, as has
been suggested in [74] by Eén and Sörensson. With the reduced constraint

tStep(p, k) = Axm ∧ p(s0) ∧
k−1∧
i=0

Tp(si , si+1) ∧ T¬p (sk , sk+1),

Algorithm 8.1 shows how one could only prevent loops if needed, i. e., at positions
in the program’s trace where they did indeed occur. This should prevent the
inequalities from piling up in the underlying solver, enabling it to handle more
involved constraints. Following [74], we call this approach temporal induction, or
t-Induction for short.
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8.2 Integrating Proof Assistance

Algorithm 8.1: t-Induction
Data: Property p
Result: true iff P holds

1 procedure boolean t-Induction(p)
2 k := 0
3 loops := true
4 while true do
5 if Base(p, k) satisfiable then
6 return false
7 end if
8 while true do
9 if tStep(p, k) ∧ loops unsatisfiable then

10 return true
11 end if
12 if tStep(p, k) ∧ loops satisfiable with si = sj in model then
13 loops := loops ∧ si 6= sj
14 else
15 break
16 end if
17 end while
18 k := k + 1

19 end while

8.2.3 IC3

The first change to incorporate proof support takes place in the main loop of
IC3. When implemented as suggested by Bradley in [34], IC3 features a special
case for 0-step and 1-step reachability of a property violation as explained above.
This is shown in line 2 of Algorithm 7.2. The query on line 2 can be changed in
the same way we did for BMC and k-Induction. After splitting the transition
relation and adding proof information we obtain:

sat(I (s) ∧ ¬p(s)) ∨ sat(I (s) ∧ T¬p (s, s′))

The key point where adding proof assistance improves the performance however
is inside the strengthen procedure of IC3. The original version is given in
Algorithm 7.3. Inside, the algorithm tries to find a state included in Fk that
has a successor violating the property. With the usual transformation, Fk(s) ∧
T (s, s′) ∧ ¬p(s′) is turned into Fk(s) ∧ T¬p (s, s′).

At this point, we can get an additional gain out of using proof information
by not relying on the full monolithic transition predicate. The while loop in
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Algorithm 7.3 iterates over all counterexamples to inductivity of a given length.

Using an additional loop over all the events of a model, we can reduce Fk(s) ∧
T¬p (s, s′), which is defined as

Fk(s) ∧
∨

evt∈Events

(BAevt(s, s′) ∧ provenevt,p(s′) ∧ ¬unprovenevt,p(s′))

by skipping any event evt, if it is proven not to lead to an invariant violation,
i. e., if unprovenevt,p = true. The reduced constraint is

Fk(s) ∧
∨

evt∈Events
unprovenevt,p 6=true

(BAevt(s, s′) ∧ provenevt,p(s′) ∧ ¬unprovenevt,p(s′)).

The reduced set of events can be computed once upon loading a model. Omitting
events leads to a reduced counterexample search space and thus improves the
performance of the model checker. In particular cases, the state space might
even be rendered finite owing to the reduction.

IC3’s two sub routines inductivelyGeneralize and pushGeneralization afterwards
try to prove detected counterexamples spurious by strengthening the frames,
adding inductive clauses as needed.

In addition to simplifying counterexample search, we can provide these sub
routines with the event that lead to the violating state. This enables simplifying
the respective predicates considerably, as we can again only consider the relevant
part of the monolithic transition relation.

In IC3, adding proof information has more benefits than just simplifying the
occurring constraints. Due to the one-step nature of queries, constraint solving
can be skipped altogether if unprovenevt,p = true.

As no paths are built up explicitly, fully proven events have to be considered only
during strengthening. They can safely be omitted during the counterexample
search. Thus, including proof information leads to a reduction of the search
space.

8.3 Empirical Results

In the following we will empirically assert the performance of the model checking
algorithms introduced above. To do so, we will compare to ProB’s explicit
state model checker. Furthermore, we want to compare different solvers for B
predicates as backends for the algorithms.

First, in Section 8.3.1 we will introduce our selection of benchmarks and describe
how they were executed. Following, we will compare the symbolic algorithms to
ProB in Section 8.3.2 and the different solvers in Section 8.3.3.
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Table 8.1: Runtimes in Seconds (Models with Invariant Violations)
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
LargeBranching - - 1.79 - 1.61 1.59 - - - - 1.62 1.91
Search - - - - - - - - - - - -
SearchEvents - - 2.32 2.34 1.86 2.15 - - - - 1.71 1.74
TravelAgency 1.89 1.85 - - 14.32 21.39 - - - - - -
ABZ16 m910 i1 1.67 1.67 - - - - - - - - - -
ABZ16 m910 i2 3.6 2.97 - - - - - - - - - -
CountersWrong 2.16 2.15 2.29 2.31 2.14 2.2 2.32 2.31 2.3 2.33 2.33 2.34

Table 8.2: Speedup in Percent (Models with Invariant Violations)
Model MC BMC BMC∗ k-Induction t-Induction IC3
LargeBranching ∞ 1.24% -17.9%
SearchEvents -0.86% -15.59% -1.75%
TravelAgency 2.12% -49.37%
ABZ16 m910 i1 0.0%
ABZ16 m910 i2 17.5%
CountersWrong 0.46% -0.87% -2.8% 0.43% -1.3% -0.43%

8.3.1 Experimental Setup

The augmented algorithms have been implemented and are available in ProB.
For the empirical evaluation we want to focus on two questions:

• Does the use of proof information considerably improve the performance
of symbolic model checking algorithms for B and Event-B?

• Can symbolic model checking algorithms compete with explicit state model
checking (MC) as done by ProB?

We apply both the algorithms introduced in Chapter 7 and Section 8.2 as well
as ProB’s explicit state model checker (MC) to a selection of models, including
artificial and real benchmarks using ProB version 1.6.1-beta3.

We use the explicit state model checker with and without proof support as
outlined in [24]. For the symbolic model checking algorithms we relied on
ProB’s internal constraint solver working in a portfolio together with the Z3
backend presented in Chapter 6 and the Kodkod backend presented in [160]. For
BMC, we used an iteration limit of 25.

Again, we rely upon the models already introduced in Chapter 4. We dropped
some of them as they could not be checked exhaustively by any of the mentioned
algorithms. However, we added several crafted models highlighting different
aspects of the algorithm’s characteristics.
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Table 8.3: Runtimes in Seconds (Models without Invariant Violations)
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
ABZ16 m0 1.5 1.4 - - 1.56 1.5 2.05 2.06 1.63 1.62 1.53 1.44
ABZ16 m1 1.5 1.64 - - 2.0 1.76 2.01 1.77 1.64 1.63 1.76 1.59
ABZ16 m2 1.67 1.62 - - 1.94 1.91 1.71 1.47 1.58 1.62 1.59 1.59
ABZ16 m3 1.5 1.6 - - 1.63 1.6 1.46 1.43 1.46 1.42 1.57 1.53
ABZ16 m4 1.46 1.39 - - 1.5 1.64 1.53 1.46 1.55 1.45 1.62 1.58
ABZ16 m5 1.88 1.8 - - 1.59 2.34 - - - - - -
ABZ16 m6 1.61 1.56 - - 1.82 2.45 - - - - - -
ABZ16 m7 1.71 1.64 - - 1.6 2.12 - - - - - -
ABZ16 m8 - - - - 46.27 17.46 - - - - - -
ABZ16 m9 - - - - 40.47 15.34 - - - - - -
ABZ16 m910 - - - - - 45.8 - - - - - -
Coloring 1.61 1.73 2.33 2.18 1.73 1.85 2.19 2.2 2.21 2.2 2.23 2.19
Coloring 40 - - - - - - 2.12 2.0 2.13 1.94 2.62 2.66
Counters - - - - - - 1.3 1.23 1.25 1.23 1.28 1.31
f m0 1.26 1.25 - - 1.24 1.26 31.66 - 31.75 - 1.31 1.28
f m1 1.24 1.24 - - 1.21 1.22 - - - - 1.39 1.41
PM M0 AAI 1.21 1.23 - - 1.24 1.18 - - - - 1.47 16.56
PM M0 AAT 1.2 1.25 - - 1.16 1.2 - - - - 16.51 1.33
PM M0 AOO 1.24 1.2 - - 1.26 1.25 - - - - 16.37 16.44
PM M0 VOO 1.29 1.2 - - 1.23 1.24 - - - - 16.84 16.69
PM M0 VVI 1.35 1.43 - - 1.28 1.26 - - - - 1.43 16.48
PM M0 VVT 1.26 1.3 - - 1.33 1.32 - - - - 1.5 16.67
PM M1 AOOR 1.31 1.37 - - 1.31 1.34 - - - - 2.7 16.59
PM M1 VOOR 1.24 1.27 - - 1.23 1.52 - - - - 2.89 17.58
PM M2 AAI 1.3 1.3 - - 1.25 1.31 - - - - 16.81 32.46
PM M2 AAT 1.8 1.45 - - 1.45 1.76 - - - - 32.17 32.03
PM M2 VVI 1.45 1.42 - - 1.46 1.6 - - - - 16.77 31.96
PM M2 VVT 1.31 1.33 - - 1.42 1.25 - - - - 16.63 31.68
PM M3 AAI 1.29 1.32 - - 1.24 1.37 - - - - 18.18 31.96
PM M3 AAT 1.34 1.35 - - 1.34 1.33 - - - - 33.47 32.8
PM M3 VVI 1.35 1.36 - - 1.32 1.63 - - - - 18.39 32.02
PM M3 VVT 1.4 1.35 - - 1.31 1.33 - - - - 18.04 31.71
PM M4 AAIR 1.32 1.35 - - 1.31 1.31 - - - - 15.37 31.7
PM M4 AATR 1.34 1.35 - - 1.19 1.19 - - - - 14.2 31.57
PM M4 VVIR 1.32 1.18 - - 1.48 1.29 - - - - 15.19 31.85
PM M4 VVTR 1.3 1.33 - - 1.29 1.3 - - - - 15.73 31.72
R0 GearDoor 1.3 1.28 - - - - 1.44 1.3 1.43 1.31 1.37 1.37
R1 Valve 1.4 1.39 - - - - 7.11 1.34 7.15 1.33 1.46 1.4
R2 Outputs 2.3 2.23 - - 1.4 1.95 1.46 1.49 1.5 1.47 1.55 1.52
R3 Sensors 3.72 3.4 - - 1.43 2.47 18.01 1.39 17.96 1.39 1.7 1.46
R4 Handle 30.95 26.71 - - - - - - - - - -
R5 Switch 59.85 55.9 - - - - 17.52 16.24 17.41 15.92 11.27 1.71
R6 Lights - - - - - - 17.59 17.55 17.42 17.57 4.9 1.81
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Table 8.4: Speedup in Percent (Models without Invariant Violations)
Model MC BMC BMC∗ k-Induction t-Induction IC3
ABZ16 m0 6.67% 3.85% -0.49% 0.61% 5.88%
ABZ16 m1 -9.33% 12.0% 11.94% 0.61% 9.66%
ABZ16 m2 2.99% 1.55% 14.04% -2.53% 0.0%
ABZ16 m3 -6.67% 1.84% 2.05% 2.74% 2.55%
ABZ16 m4 4.79% -9.33% 4.58% 6.45% 2.47%
ABZ16 m5 4.26% -47.17%
ABZ16 m6 3.11% -34.62%
ABZ16 m7 4.09% -32.5%
ABZ16 m8 62.26%
ABZ16 m9 62.1%
ABZ16 m910 ∞
Coloring -7.45% 6.44% -6.94% -0.46% 0.45% 1.79%
Coloring 40 5.66% 8.92% -1.53%
Counters 5.38% 1.6% -2.34%
f m0 0.79% -1.61% ∞ ∞ 2.29%
f m1 0.0% -0.83% -1.44%
PM M0 AAI -1.65% 4.84% -1026.53%
PM M0 AAT -4.17% -3.45% 91.94%
PM M0 AOO 3.23% 0.79% -0.43%
PM M0 VOO 6.98% -0.81% 0.89%
PM M0 VVI -5.93% 1.56% -1052.45%
PM M0 VVT -3.17% 0.75% -1011.33%
PM M1 AOOR -4.58% -2.29% -514.44%
PM M1 VOOR -2.42% -23.58% -508.3%
PM M2 AAI 0.0% -4.8% -93.1%
PM M2 AAT 19.44% -21.38% 0.44%
PM M2 VVI 2.07% -9.59% -90.58%
PM M2 VVT -1.53% 11.97% -90.5%
PM M3 AAI -2.33% -10.48% -75.8%
PM M3 AAT -0.75% 0.75% 2.0%
PM M3 VVI -0.74% -23.48% -74.12%
PM M3 VVT 3.57% -1.53% -75.78%
PM M4 AAIR -2.27% 0.0% -106.25%
PM M4 AATR -0.75% 0.0% -122.32%
PM M4 VVIR 10.61% 12.84% -109.68%
PM M4 VVTR -2.31% -0.78% -101.65%
R0 GearDoor 1.54% 9.72% 8.39% 0.0%
R1 Valve 0.71% 81.15% 81.4% 4.11%
R2 Outputs 3.04% -39.29% -2.05% 2.0% 1.94%
R3 Sensors 8.6% -72.73% 92.28% 92.26% 14.12%
R4 Handle 13.7%
R5 Switch 6.6% 7.31% 8.56% 84.83%
R6 Lights 0.23% -0.86% 63.06%
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The following small and mostly crafted models were used:

• LargeBranching, a crafted benchmark featuring a counterexample reachable
in two steps. However, the initialization has numerous outgoing edges.
Discovering the counterexample thus heavily relies on picking the right
transitions to follow. The model is included to show that the symbolic
algorithms are not influenced by this fact.

• Search, a classical B model of a binary search algorithm. SearchEvents
models the same algorithm, but is written in Event-B style with simpler
events, i. e., it features operations without involved substitutions. While
this leads to simpler constraints, it increases the number of conjuncts due
to the increased number of events.

• TravelAgency, a classical B model of a travel agency system storing and
managing car and room rentals. The model includes an invariant violation.

• Coloring, a model of a graph coloring algorithm by Andriamiarina and
Méry. The algorithm is specified for all graphs, no concrete graph is given
in the model. In contrast, Coloring40 models the algorithm working on a
concrete graph of 40 nodes.

• f m0 and f m1, two hybrid models taken from [5].

• Counters and CountersWrong, two artificial benchmarks featuring two
independent counters, one of them bounded and one counting up infinitely.
Both models feature an infinite state space. CountersWrong has a finite
counterexample.

Additionally, we used the following larger models and case studies:

• R0 Gear Door, R1 Valve, R2 Outputs, R3 Sensors, R4 Handle,
R5 Switch and R6 Lights are our model [92] for the ABZ 2014 landing
gear case study [31].

• The models starting with ABZ2016 are part of [99], the submission to the
ABZ 2016 case study [140] by Hoang, et al.

• The models starting with PM are taken from the model of a pacemaker by
Méry and Singh [146].

All benchmarks were run on a MacBook Pro featuring a 2.6 GHz i7 CPU and 8
GB of RAM. We did not run anything in parallel in order to avoid issues due
to hyper-threading or scheduling. For each benchmark, a number of results can
occur:

• Verified, i. e., the model could be model checked exhaustively without an
invariant violation being detected.
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• Counterexample found, i. e., a state violating the invariant was found in
the model and a trace to it has been computed.

• Incomplete, i. e., no invariant violation has been found but model checking
was not exhaustive. This could be due to timeouts or due to ProB being
unable to solve occurring constraints. Currently, we do not try to recover.
In case of BMC or k-Induction one could for instance try to increase k
anyway.

8.3.2 Results

The results are given in Tables 8.1 and 8.3 showing the runtimes on successful
benchmarks, i. e., benchmarks where the result is either Verified or Counterexam-
ple found. Table 8.1 features models without invariant violations, while Table 8.3
features models with violations. Tables 8.2 and 8.4 show the speedup achieved
by using proof information.

The state space of the Search model is too large to be traversed by ProB’s
explicit state model checker. Unfortunately, the involved substitutions result in
complex constraints that cannot be checked by the symbolic algorithms. The
effect is increased by the unwinding of the transition system, as complicated
constraints start to occur multiple times.

The SearchEvents model features simpler substitutions and is thus more suited
for symbolic analysis. With and without proof information, the two variants
of bounded model checking and IC3 are able to find the counterexample. Both
k-Induction and t-Induction are unable to do so. LargeBranching paints a similar
picture.

The TravelAgency model on the other hand has a relatively small state space
and can easily be verified using MC. However, it features involved constructs
like sequences resulting in complicated constraints. BMC∗ is the only symbolic
technique to find the counterexample, albeit taking much longer than MC.

The Coloring model can be checked by all algorithms. Note that even though
the model is parametric in the size of the deferred sets NODES and COLORS ,
only one configuration is checked. Depending on one of ProB’s preferences, the
sets are fixed to a pre-defined size. For our benchmarks, we used ProB’s default
configuration, defining the cardinality of otherwise unspecified deferred sets to
be 2.

The more low-level version Coloring40 is operating on concrete data. A static
graph to be colored is given in the model. We assumed the coloring algorithm
on given data would be easier to prove correct than the general case. However,
only IC3 and the induction based algorithms are able to do so.
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There are two reasons for our observation. First, it is caused by the considerably
larger graph, consisting of 40 rather than 2 nodes. Once we increase the default
set size used by ProB, the model gradually becomes harder to model check.
Second, even though the graph is given in the model, the two included axioms
axm8 and axm9 contain generic properties over all graphs of the given size. For
40 nodes, both are infeasible to check. In consequence, the fact that a concrete
graph is given does not impact performance as much as expected.

Abrial’s hybrid models can be verified by MC, BMC∗ and IC3. Here, constraints
become considerably more involved with each unwinding of the transition relation
done in BMC and k-Induction. IC3 is again able to verify the model due to its
local search for counterexamples.

The infinite counters show one of the key limitations of explicit state model
checking. Once a state space is infinite, exhaustive analysis is obviously impossi-
ble. For the correct model, BMC reaches its iteration limit without detecting an
error. Both k-Induction and IC3 are able to analyze the models.

The landing gear model shows that the benefit of using proof information
increases with the complexity of the model. As can be seen in Tables 8.1 and 8.4
computation times often go down once proof information is used. For the first
refinement steps, IC3 is slightly quicker than explicit state model checking
with ProB. However, looking at the later refinement levels shows that the
performance of the symbolic model checking algorithms declines. In fact, only
IC3 is able to handle the last refinement level R6 Lights. The explicit state
model checker runs into the one-minute timeout on the same model, while IC3
is able to check it in a matter of seconds. ProB’s explicit state model checker
terminates successfully after ∼ 32 minutes and 1511227 states.

The first five refinement levels of the dialysis machine model are quite simple and
can be handled by all algorithms. As they do not include invariant violations,
BMC does not find errors. The later refinement levels feature more involved
constructs leading to constraints which are more complicated. While this does
not hinder the explicit state model checker of ProB, it puts too much stress on
the constraint solver. Refinement levels five to eight cannot be validated by any
of the symbolic algorithms selected in Chapter 7.

The pacemaker model cannot be checked by the explicit state model checker at
all if only ProB’s constraint solver is used. However, they can be model checked
relying on the Kodkod backend. IC3 and BMC∗ are able to do so as well, again
based on one of the additional backends.

These models show another interesting behavior: For several of them, the inclu-
sion of proof information slows down IC3. We assume that the proof obligations
include complicated constraints that are not needed for model checking to succeed,
yet they increase the workload on the constraint solvers significantly.
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Another example is the Counters model which takes a little longer to be model
checked by IC3. We suppose that this might be due to the simplicity of the
model: No involved constraints occur and any benefit is consumed by the costs
of evaluation of the proof information.

In addition, the Search model shows a slowdown. We suspect that this is mostly
due to the involved substitutions limiting the prover’s capabilities. We did not
measure a performance decline for BMC and k-Induction.

Again, a constraint that is hard to solve for one solver might be easy for another.
We will discuss the influence different solving backends have on the results in
the following section.

Summarizing, we can answer the two questions stated at the beginning:

• The inclusion of proof information into the symbolic model checking algo-
rithms can improve the performance. Regarding speedup, we can report
from∼ 0.5% (CountersWrong using k-Induction) up to∼ 92% (R3 Sensors
with k-Induction). Furthermore, some models can only be checked if proof
information is used.

• For some models, albeit small, symbolic techniques can compete with
explicit state model checking. Symbolic model checkers allow to verify
infinite state spaces which are beyond the scope of ProB’s classical model
checker.

• Among the symbolic techniques, BMC∗ was the best for erroneous models,
while IC3 was best for correct models.

• However, existing solvers for B and Event-B are still too weak to handle
the constraints occurring in larger or more involved models. This currently
hinders symbolic model checking efforts. Our current way to overcome
this limitation is to rely on different solving backends, each with its own
strengths and weaknesses. We tried the same benchmarks relying only
on Kodkod as described in [160] and only on ProB combined with Z3 as
described in Chapter 6. The results are given in the next section.

8.3.3 Influence of Solvers on Results

In the former section we evaluated the performance of symbolic model checking
algorithms in general and the effect of including proof information into them.
However, we also wanted to assert the effect the different backends and solvers
have on the efficiency of the symbolic algorithms.
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Table 8.5: Models Checkable Using Plain ProB
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
ABZ16 m0 1.57 1.51 - - 1.65 1.59 1.63 1.52 1.84 1.46 1.6 1.6
ABZ16 m1 1.89 1.71 - - 2.32 2.31 1.5 1.49 1.61 1.87 1.83 1.74
ABZ16 m2 2.0 2.1 - - 2.25 2.27 1.73 1.72 1.72 1.8 1.67 2.02
ABZ16 m3 1.69 1.64 - - - 7.07 1.68 1.7 1.49 1.48 1.9 1.66
ABZ16 m4 1.56 1.48 - - 2.1 2.29 1.5 1.44 1.5 1.54 1.76 1.75
ABZ16 m5 2.28 1.92 - - - - - - - - - -
ABZ16 m6 1.6 1.59 - - - - - - - - - -
ABZ16 m7 1.7 1.64 - - - - - - - - - -
Coloring 1.55 1.5 - - - - - - - - - -
Counters - - - - - - 1.49 1.43 1.45 1.34 1.37 1.37
f m0 1.32 1.36 - - 1.35 1.3 - - - - 1.73 1.64
f m1 1.6 1.54 - - 1.59 1.76 - - - - 2.01 2.37
PM M0 AAI - - - - - - - - - - 1.7 -
PM M0 AAT - - - - - - - - - - - 4.63
PM M0 AOO - - - - - - - - - - - 47.84
PM M0 VOO - - - - - - - - - - - 33.68
PM M0 VVI - - - - - - - - - - 1.36 -
PM M0 VVT - - - - - - - - - - 1.51 -
R0 GearDoor 1.4 1.4 - - - - 1.47 1.37 1.5 1.55 1.78 1.39
R1 Valve 1.46 1.43 - - - - 7.12 1.37 7.02 1.37 1.47 1.48
R2 Outputs 2.31 2.3 - - - - 1.38 1.37 1.35 1.38 1.45 1.45
R3 Sensors 3.46 3.3 - - - - 59.94 1.41 - 1.44 1.78 1.5
R4 Handle 30.99 26.09 - - - - - - - - - -
R5 Switch 57.91 58.07 - - - - - 15.93 - 16.17 11.21 1.69
R6 Lights - - - - - - - - - - 4.65 1.83

Of course a different backend also influences the performance of the explicit state
model checker. Kodkod enables it to exhaustively check the pacemaker model
as well. The regular BMC, and the two induction based algorithms however do
not benefit from using Kodkod at all and remain unable to verify the models.
For a table containing the results of all models obtained when applying the
Kodkod based solver see Appendix A.3.2. A complete list of results obtained
using ProB’s internal solver is given in Appendix A.3.1.

Using Z3, Table 8.7 shows a performance increase for the Coloring40 model.
The model can now be checked using the induction based symbolic algorithms
and IC3, while still being beyond the scope of MC and the two BMC variants.
For the later refinement levels of the ABZ’16 case study we see that they can
be checked by both MC and BMC∗ when the Z3 backend is used. Neither the
induction based algorithms nor IC3 can benefit. As for Kodkod, we give the
exhaustive list of results in Appendix A.3.3.

However, Z3 does not perform as well if used as a backend to ProB’s explicit
state model checker. As you can see in Fig. 8.3b, adding Z3 to ProB for explicit
state model checking reduces the overall performance. Here, the Z3 backend is
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Table 8.6: Models Additionally Checkable Using ProB & Kodkod
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
Coloring 2.83 2.74 - - 2.68 2.68 - - - - - -
PM M0 AAI 4.08 4.1 - - 4.21 4.43 - - - - 1.45 2.62
PM M0 AAT 1.25 1.3 - - 1.64 1.46 - - - - 1.58 2.78
PM M0 AOO 1.31 1.36 - - 1.26 1.29 - - - - 1.43 1.37
PM M0 VOO 1.22 1.21 - - 1.22 1.19 - - - - 1.53 1.57
PM M0 VVI 1.36 1.36 - - 1.34 1.33 - - - - 1.47 2.63
PM M0 VVT 1.28 1.25 - - 1.25 1.25 - - - - 1.49 2.72
PM M1 AOOR 1.26 1.29 - - 1.25 1.27 - - - - 1.53 1.51
PM M1 VOOR 1.31 1.29 - - 1.26 1.26 - - - - 1.45 1.55
PM M2 AAI 1.3 1.29 - - 1.2 1.29 - - - - 1.45 1.44
PM M2 AAT 1.24 1.21 - - 1.21 1.2 - - - - 1.54 1.55
PM M2 VVI 1.27 1.24 - - 1.21 1.29 - - - - 1.48 1.53
PM M2 VVT 1.25 1.25 - - 1.23 1.27 - - - - 1.56 1.66
PM M3 AAI 1.58 1.32 - - 1.34 1.55 - - - - 2.21 2.19
PM M3 AAT 1.28 1.26 - - 1.22 1.23 - - - - 2.19 2.16
PM M3 VVI 1.31 1.32 - - 1.27 1.28 - - - - 2.15 2.1
PM M3 VVT 1.28 1.45 - - 1.4 1.24 - - - - 2.24 2.16
PM M4 AAIR 1.37 1.34 - - 1.33 1.33 - - - - 2.28 2.18
PM M4 AATR 1.29 1.32 - - 1.35 1.26 - - - - 2.3 2.24
PM M4 VVIR 1.36 1.31 - - 1.32 1.34 - - - - 2.34 2.25
PM M4 VVTR 1.36 1.37 - - 1.31 1.34 - - - - 2.57 2.4
R5 Switch 56.14 52.35 - - - - 2.25 2.26 2.25 2.23 3.59 3.4

outperformed by both plain ProB and by the Kodkod-based backend. Adding
Z3 to ProB does not enable ProB to model check any additional model.

As we have argued in Chapter 6, Z3 mostly outperforms the CLP(FD)-based
solver when it comes to detection of unsatisfiability. This is often the case with
the symbolic algorithms, where the absence of a counterexample has to be proven.
In contrast, the explicit state model checker tries to enumerate the successor
states: it has to find all valuations in case the transition predicate is satisfiable.
Thus, selecting an appropriate backend for ProB highly depends on the framing
model checking algorithm. This also needs to be kept in mind when using ProB
for data validation or timetabling purposes.

8.4 Related Work

In [24] the authors presented a similar integration of proof information into
explicit state model checking algorithms. As is the case with our implementation,
the authors report a speedup by not checking invariants known to be true. In
contrast to our approach, the use of proof information never slowed down the
model checking process.
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Table 8.7: Models Additionally Checkable Using ProB & Z3
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
ABZ16 m5 - 4.47 - - 1.55 2.28 - - - - - -
ABZ16 m6 - 9.81 - - 1.61 2.22 - - - - - -
ABZ16 m7 - 9.56 - - 1.59 2.18 - - - - - -
ABZ16 m8 - - - - 32.81 13.93 - - - - - -
ABZ16 m9 - - - - 34.11 13.92 - - - - - -
ABZ16 m910 - - - - 37.43 18.13 - - - - - -
Coloring 2.55 2.46 - - - - 3.75 3.28 2.97 2.7 2.38 2.43
Coloring 40 - - - - - - 1.64 1.55 1.66 1.59 28.81 16.89
f m0 2.38 2.16 - - 2.2 2.44 3.24 - 3.58 - 2.82 2.79
PM M0 AAI - - - - - - - - - - 7.18 9.73
PM M0 AOO - - - - 48.96 20.64 - - - - - 2.97
PM M0 VOO - - - - 46.72 20.21 - - - - - 2.75
PM M0 VVI - - - - - - - - - - 1.94 3.07
PM M0 VVT - - - - - - - - - - 1.84 2.96
PM M1 AOOR - - - - - - - - - - 2.88 3.66
PM M1 VOOR - - - - - - - - - - 3.41 3.7
PM M2 AAI - - - - - - - - - - - 9.1
PM M2 AAT - - - - - - - - - - - 9.15
PM M2 VVI - - - - - - - - - - - 9.77
PM M2 VVT - - - - - - - - - - - 9.25
PM M3 AAI - - - - - - - - - - - 9.67
PM M3 AAT - - - - - - - - - - - 9.65
PM M3 VVI - - - - - - - - - - - 9.56
PM M3 VVT - - - - - - - - - - - 10.91
PM M4 AAIR - - - - - - - - - - 7.25 9.73
PM M4 AATR - - - - - - - - - - 8.46 10.49
PM M4 VVIR - - - - - - - - - - 10.33 11.28
PM M4 VVTR - - - - - - - - - - 6.58 9.99
R4 Handle - - - - - - - - - - - 42.71

Compared with [24], we have added a way to construct proof information within
ProB itself, using a bridge to the Atelier B provers and using ProB’s proving
capabilities as presented in Chapter 4. Of course this takes time and does not
always pay off.

In [24], as with BMC and k-Induction, the search space itself is never reduced.
Search space reduction through using proof techniques is considered in [170]
and [152]. For model checking CTL and LTL properties, proof information
can be used as well. In [161], the model checker SMV is coupled with theorem
proving techniques. In a similar fashion, [10] combines the Alloy Analyzer with
the Athena theorem prover.

Last, instead of using theorem provers to support model checking, one can use
model checkers for theorem proving. As described in Chapter 4 and in [132, 113],
we have done so using ProB.
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8.5 Conclusion and Future Work

Our evaluation shows that using symbolic model checking techniques for B and
Event-B models is beneficial: Several counterexamples could only be detected
by the symbolic algorithms. Furthermore, some models could be model checked
exhaustively. As already outlined in [91], symbolic techniques prove to be a
valuable addition to explicit techniques. The techniques are actually also directly
applicable to TLA+, via ProB’s translation from TLA+ to B [93].

The key weakness of employing symbolic model checking techniques lies within
the expressiveness of B and Event-B. Even though constraint solvers and SMT
solvers have increased their efficiency by a huge margin, the constraints occurring
during symbolic model checking of high-level languages like B are still too involved.
Among other abstraction techniques, integrating static (proof) information into
the constraints is one way to help. It brings down computation times and
sometimes enables successful validation.

We have also been working on strengthening the underlying constraint solver, by
integrating SMT solvers such as Z3. As you can see in Section 8.3.3, this leads to
a significant performance increase. Still, more improvements need to be achieved
until full symbolic verification of B and Event-B models becomes viable.

Regarding the different model checking algorithms, especially IC3 seems promis-
ing. In contrast to the other two algorithms, its focus on one step reachability
keeps occurring constraints simpler. This makes it more suited for symbolic
model checking of high-level languages like B and Event-B. Additionally, the
integration of proof information can lead to a reduced search space.

As IC3 has originally been developed for hardware model checking, it is not
trivial to lift it to the software world. To do so, we will further investigate IC3
for B together with the abstraction technique CTIGAR in Section 9.3. As our
preliminary benchmarks show, CTIGAR seems to be suited for model checking
high-level languages such as B and Event-B.

Another direction of future work could be to generate missing proof obligations
from the model checking run. Analyzing predicates that lead to a timeout, one
could find problematic properties and try to prove them externally or in an
independent run. Once the constraint solver gets stuck we could ask an external
solver, such as the Atelier B provers or the SMT solvers for Rodin, to proof or
disproof further invariants. Afterwards, one could extend the set of properties
under consideration.

In summary, we have implemented four symbolic model checking algorithms for
B and Event-B and have shown how to integrate proof information to improve
the algorithms’ performance. Our evaluation shows that bounded model checking
can effectively find counterexamples in models with large branching factors and
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that IC3 is capable of automatically proving models with infinite state spaces
correct. Further research is, however, needed to scale up the symbolic techniques
to models with more involved events.
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To infinity. . . and beyond!
Buzz Lightyear, “Toy Story”

9
Abstraction Techniques

9.1 Introduction and Motivation

In Chapters 7 and 8 we have argued that symbolic model checking algorithms
can indeed be applied to B and Event-B models. However, the complexity of B
constrains the performance of the model checking algorithms. By necessity, we
had to incorporate assistance by theorem provers to allow them to cope.

In this chapter, we will evaluate different abstraction techniques [52] that can be
employed on top of the symbolic model checking techniques. Our main goal is to
lift them to the infinite case. Additionally, abstracting away some complexity of
B might enable the algorithms to handle more involved models as we suspected
in Section 8.5.

As we have discussed in Section 8.3, IC3 is the most promising algorithm for B
and Event-B. Hence, we will only briefly introduce abstraction techniques for
BMC and k-Induction in Section 9.2, while looking at IC3 in greater detail in
Section 9.3.

9.2 BMC and k-Induction

CEGAR [51] is an abstraction strategy that is conservative, i. e., the abstract
model used preserves the functionality of the concrete one, possibly adding addi-
tional behavior. The added behavior might introduce spurious counterexamples.
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In consequence, if a counterexample occurs, CEGAR systems have to refine the
abstraction in order to prove the spuriousness. If refining is impossible, the
counterexample detected is in fact not spurious; the system under consideration
has been proven faulty.

As the whole process is driven forward by finding counterexamples and reacting
to them, it has been named Counter-Example Guided Abstraction Refinement, or
CEGAR for short. CEGAR can be used with various abstraction and refinement
strategies. A CEGAR-like approach can be integrated into BMC and k-Induction
as shown in [90].

3-valued abstraction, another abstraction strategy for BMC and k-Induction
has been suggested by Orna Grumberg. Her approach in [89] is based on using
3-valued logic. Any predicate or property checked on the abstract model can
either be true, false or unknown. Additionally, the approach ensures that if a
property is true or false on the abstract model, it holds the same value on the
concrete model. In consequence, the approach allows to successfully model check
properties, even though the model has only partially been evaluated. Unknown
results can be used to abstract away details: If the property in question can still
be inferred to be true or false, model checking is successful. Otherwise, if the
property is unknown, abstraction is too coarse.

Both CEGAR and 3-valued abstraction could be applied to model check B and
Event-B as well. With the techniques introduced in Chapter 3 ProB already
reports true or false for predicates. An unknown status could for instance be set
in case of timeouts.

For B and Event-B, abstraction could be achieved by using predicate abstrac-
tion [87]. Furthermore, B already features involved mechanisms for refinement of
models as we have elucidated in Section 2.1.1. The remaining problem is how to
construct refined predicates. In case of using predicate abstraction, this is often
done by computing Craig interpolants [59]. For first-order logic, interpolants
always exist and can be computed efficiently for various common theories such as
linear integer arithmetic [88]. However, computing interpolants for B predicates
is not as easy, as we have already stated in Section 7.4.

9.3 IC3

So far, different abstraction techniques for integration with IC3 have been
suggested:

• Cimatti et al. [48] initially discussed replacing the underlying SAT solver
by an SMT solver. In addition, they suggest an algorithm called Tree-IC3
that uses the knowledge about the control flow graph of a program to
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improve the monolithic transition predicate. Instead of relying on IC3’s
linear search, the authors extend IC3 to search through an unwinding of
the control flow graph called ART, the abstract reachability tree.

In consequence, IC3 computes interpolants for various points in the ART,
effectively resulting in an algorithm performing lazy abstraction with
interpolants as outlined in [143].

• In Section 8.3.2 we already hinted at CTIGAR, an abstraction technique on
top of IC3 that seems to be particularly suited for B and Event-B. CTIGAR,
introduced in [26] by Birgmeier et al., avoids unrolling transitions in case
of counterexamples. Instead, local refinement queries are used to improve
upon the current abstraction.

This approach seems to be particularly suited for B and Event-B as its
focus on local instead of global queries avoids constructing and solving
involved constraints over paths of states.

• In [49], the authors combine IC3 with predicate abstraction to a CEGAR
like approach. In contrast to CTIGAR, the approach computes abtraction
refinements using counterexample traces rather than local queries. This
leads to more complicated constraints, especially for high-level languages
such as B and Event-B.

• A combination of IC3 with interpolation has been suggested in [182]. The
authors introduce an algorithm called “Avy” that combines local inductive
generalization in the spirit of IC3 with (partial) unrolling of the transition
relation to search for counterexamples.

We currently assume that, out of the suggested ones, CTIGAR is best suited for
high-level languages such as B. This is mostly due to the fact that it does not
rely on the unwinding of the transition relation.

As can be seen in the empirical evaluation in Section 8.3.2, unwinding does often
lead to highly involved constraints. Combined with the high-level constructs of
languages like B our constraint solvers cannot cope.

Instead of unwinding, CTIGAR follows IC3’s idea to focus on one step queries.
The key to lifting IC3 to CTIGAR is to introduce an abstract domain consisting
of a set of predicate over the state variables.

The original paper [26] suggests using first-order predicates obtained using a
Karr analysis [106], which infers linear congruence relations between integer
variables and constants of the system under evaluation.
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In case of B, we can mine the B machine for predicates, collecting them from the
invariant, properties, assertions or guards. For our prototypical implementation,
we combine three sets of predicates in our abstract domain:

• The conjuncts of the invariant, including gluing invariants and invariants
at lower refinement levels where applicable,

• The conjuncts of a predicate describing the initial states,

• Pairwise inequalities of the form x < y for all integer variables and constants
in the model,

• Pairwise inequalities of the form x 6= y for other variables.

The concrete counterexamples to inductiveness obtained in IC3’s query Fi ∧
pre(s) ∧ T (s, s′) → pre(s′) in the inductivelyGeneralize procedure is lifted
to an abstract counterexample to induction by evaluating the predicates in the
abstract domain over the state variables in s and their valuations given by pre(s).
Of course, pre might only partially assign the state variables. In consequence, one
would have to find all possible solutions to compute the most precise abstraction.
Both approaches were compared in [26]. Apparently the overhead of computing
the most precise abstraction is often unjustified. In consequence, we include
only the predicates evaluating to true instead of computing the most precise
abstraction.

In the presence of concrete and abstract counterexamples, CTIGAR has to react
to more situations when handling the queue of counterexamples. According
to [26], two queries can now fail:

• The query used to lift a counterexample is assumed to be false. While this
is true for the concrete case, in presence of abstraction the query can be
satisfiable. This is called a Lifting Abstraction Failure by [26].

• Abstraction might cause the presence of spurious transitions. If this is the
case, properties which are indeed inductive relative to a certain frame are
not discovered as such. Birgmeier, et al. call this a Consecution Abstraction
Failure [26].

Both have to be treated by refining the abstract domain. In the original paper [26],
Craig interpolants are used to derive predicates to add to the domain. As we
have discussed in Chapter 7, depending on the chosen backend, interpolants are
not available for B. ProB’s own kernel and the Kodkod integration [160] are
currently unable to compute them. While the SMT solver integration presented
in Chapter 6 is able to do so, it does not support all of B and Event-B. We
will discuss possible replacements of interpolants in CTIGAR in the following
section.
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9.3.1 Replacing Interpolants

Below, we will show how interpolants are used in CTIGAR to refine the predicate
domain. As stated above, one possible error caused by abstraction is the Lifting
Abstraction Failure. It occurs upon checking whether a counterexample state
predicate cs is inductive, i. e., when evaluating if cs(s) ∧ Tz(s, s′)⇒ ct(s′) holds.
Due to abstraction it might be that the query holds, while the one using the
abstract counterexample state predicate ĉs fails: ĉs(s) ∧ Tz(s, s′)⇒ ct(s′) does
not hold.

To refine the abstraction domain, [26] suggest to compute an interpolant R, such
that cs(s)⇒ R ∧ R⇒ (Tz(s, s′)⇒ ct(s′)) and add it to the abstraction domain.
This resolves the abstraction failure, since the query ĉs(s)∧R∧Tz(s, s′)⇒ ct(s′)
holds.

In case an interpolant can be computed efficiently using ProB’s SMT solver back-
end, it is added to the abstraction domain. However, if more involved constructs
are used in the model under consideration, this might become impossible.

To overcome this limitation, we can use the weakest precondition calculus briefly
introduced in Section 2.1.1. We compute [Tz ]c(s′), the weakest precondition
ensuring c(s′) holds after executing the transition encoded by Tz .

In contrast to the interpolant, [Tz ]c(s′) is not guaranteed to be implied by c(s).
We can use ProB’s proving capabilities sketched in Chapter 4 to try to prove
c(s)⇒ [Tz ]c(s′). If the proof can be performed, we have found a replacement
for the interpolant R. Otherwise, we currently have to add the full concrete
counterexample to the abstract domain. In the worst case, this continuously
reduces the degree of abstraction, degrading CTIGAR to plain IC3.

Consecution Abstraction Failures are handled in the same way. However, the
queries in question contain IC3’s frames Fi , providing a set of hypotheses which
can be used by the provers in order to show that the weakest precondition is
indeed fulfilled.

9.3.2 Empirical Evaluation

To assert that CTIGAR is suitable for B and Event-B, we implemented the
algorithm as outline in Section 9.3. Due to the lack of efficient computation
of interpolants, we replaced them by weakest preconditions as described in
Section 9.3.1. As benchmarks we relied on the same models already used in
the previous chapter. The timings are given in Tables 9.2a and 9.4a, speedup
by using proof information is given in Tables 9.2b and 9.4b. The performance
with respect to the different backends we used in the previous chapter is again
presented using the Venn diagrams in Fig. 9.1.
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Table 9.1: CTIGAR on Models with Invariant Violations
(a) Runtimes in Seconds

Model CTIGAR
use proof info no yes
LargeBranching 1.76 1.76
SearchEvents 1.76 1.72
CountersWrong 1.52 1.58

(b) Speedup in Percent

Model Speedup
LargeBranching 0.0%
SearchEvents 2.27%
CountersWrong -3.95%

rather than using given values. This leads a larger number of constraints to
causing timeouts.

9.4 Related Work

Of course integrating abstraction techniques into model checkers is not only
relevant in case of the symbolic model checking algorithms considered in this
thesis. In fact, different techniques have been suggested for explicit state model
checking or BDD-based model checking as well:

• For the temporal logics LTL and CTL, a combination of model checking
and abstract interpretation [58] has been suggested in [52].

• Instead of using abstraction on the model under evaluation, [129] uses
partial evaluation to generate a model checker specialized on a certain
model. As a result, the specialized checker is not only faster; it might
also optimize away certain aspects of the model. In consequence, if the
combination of model and model checker permits, the reduction can allow
for infinite-state models to be checked by an explicit state model checker.

9.5 Conclusion and Future Work

In this chapter we have shown that CTIGAR is a suitable way to integrate
abstraction into a symbolic model checking algorithm for B and Event-B. However,
performance does not live up to our expectations. As in the previous chapters,
the available backends for solving and proving are often too weak.

In the future, we want to evaluate the effect the different options of CTIGAR
have on its performance when applied to B and Event-B. In particular, this
includes lazy rather than immediate treatment of counterexamples. We hope
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that a more fine-grained selection of which counterexamples to treat immediately
can help reduce stress put on the solvers.

Furthermore, benchmarks suggest that our replacement of interpolants by weakest
preconditions is not optimal. Another future research direction could be to extend
the work done in Chapter 6 in regard to interpolant computation. Of course this
can only provide us with interpolants for the subset of B that can be handled
by common SMT solvers efficiently. However, handling some counterexamples
using interpolants and others using weakest preconditions can already account
for a performance increase. We hope to find a way to combine both even for a
single counterexample, for instance by computing interpolants only for parts of
a predicate.
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Table 9.3: CTIGAR on Models without Invariant Violations
(a) Runtimes in Seconds

Model CTIGAR
use proof info no yes
ABZ16 m0 1.41 1.4
ABZ16 m1 1.55 1.6
ABZ16 m2 1.73 1.58
ABZ16 m3 1.91 1.83
ABZ16 m4 1.67 2.0
Coloring 2.95 3.04
Coloring 40 3.77 3.86
Counters 1.82 1.69
f m0 1.84 1.86
f m1 2.07 2.03
PM M0 AAI 1.96 17.35
PM M0 AAT 16.57 1.51
PM M0 AOO 16.69 16.84
PM M0 VOO 16.86 17.1
PM M0 VVI 1.63 16.83
PM M0 VVT 1.41 16.65
PM M1 AOOR 3.13 16.56
PM M1 VOOR 3.08 16.96
PM M2 AAI 16.66 31.93
PM M2 AAT 32.89 32.79
PM M2 VVI 17.23 32.94
PM M2 VVT 17.02 31.59
PM M3 AAI 18.32 32.02
PM M3 AAT 33.48 31.86
PM M3 VVI 18.55 32.23
PM M3 VVT 19.3 32.49
PM M4 AAIR 19.8 32.77
PM M4 AATR 20.02 33.22
PM M4 VVIR 19.14 31.97
PM M4 VVTR 15.68 31.88
R0 GearDoor 1.43 1.37
R1 Valve 1.44 1.44
R2 Outputs 1.37 1.39
R3 Sensors 1.77 1.5
R5 Switch 12.27 1.68
R6 Lights 4.8 1.94

(b) Speedup in Percent

Model Speedup
ABZ16 m0 0.71%
ABZ16 m1 -3.23%
ABZ16 m2 8.67%
ABZ16 m3 4.19%
ABZ16 m4 -19.76%
Coloring -3.05%
Coloring 40 -2.39%
Counters 7.14%
f m0 -1.09%
f m1 1.93%
PM M0 AAI -785.2%
PM M0 AAT 90.89%
PM M0 AOO -0.9%
PM M0 VOO -1.42%
PM M0 VVI -932.52%
PM M0 VVT -1080.85%
PM M1 AOOR -429.07%
PM M1 VOOR -450.65%
PM M2 AAI -91.66%
PM M2 AAT 0.3%
PM M2 VVI -91.18%
PM M2 VVT -85.61%
PM M3 AAI -74.78%
PM M3 AAT 4.84%
PM M3 VVI -73.75%
PM M3 VVT -68.34%
PM M4 AAIR -65.51%
PM M4 AATR -65.93%
PM M4 VVIR -67.03%
PM M4 VVTR -103.32%
R0 GearDoor 4.2%
R1 Valve 0.0%
R2 Outputs -1.46%
R3 Sensors 15.25%
R5 Switch 86.31%
R6 Lights 59.58%
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The trick to forgetting the big picture is to look at
everything close-up.

Chuck Palahniuk, “Lullaby”

10
Applicability to other Formalisms

Even though Chapters 7 to 9 were focused on B and Event-B, the techniques
presented in it can easily be applied to other state-based formal languages.
However, the commonly used specification languages show different characteristics
and limitations when it comes to applying symbolic model checking techniques.
In the following section we will briefly describe how symbolic model checking can
be done for other specification languages, discussing impacts of both languages
and supporting tools.

10.1 TLA+

The techniques developed in this thesis can also be applied on TLA+ models.
For example, Listing 10.1 contains a TLA+ version of the running example of the
Chapter 8 with the non-inductive invariant c ≥ −2∧c 6= −1. The accompanying
configuration file (not shown here) declares Invariant1 and Invariant2 as
invariants.

One way to apply our symbolic model checking techniques to TLA+ models
is to translate them to B models using an automated translator bundled with
ProB [93]. Afterwards, we can use the same constraint solver we did above
and benefit from the techniques introduced in Chapters 3 and 6. This way, the
model can be proven correct using the k-Induction or IC3 algorithm.

The translation approach however is somewhat limited: it only supports TLA+

models that can be typed translatable, e. g., there is no support for sets whose

163



10 Applicability to other Formalisms

Listing 10.1: Simple Example in TLA+

−−−− MODULE Counte r64 ok −−−−
EXTENDS I n t e g e r s
VARIABLES m, c
I n v a r i a n t 1 == c >= −2
I n v a r i a n t 2 == c # −1
I n i t ==

/\ m \ i n {127 , 255}
/\ c = 0

in cby ( i ) == c ’ = c + i /\ UNCHANGED <<m>>

Next == \/ \E i \ i n (1 . . 64) : i n cby ( i )
====

members are of different types. Additionally, ProB’s constraint solving kernel
does not handle all TLA+ expressions efficiently.

TLA+ has a proof system [43] that can be used to perform invariant preservation
proofs as we did in Section 8.2. Different backend provers are available. Among
others, there exists an integration between TLA+ and Isabelle [44] and a bridge
to SMT solvers like Z3 [149]. Judging from our experience in Section 8.3.3 we
agree with [147, 149] regarding the expected performance of SMT solvers.

In contrast to B, state changes of a TLA+ model are defined using a single
next-state relation. There is no split into different operations or events. Thus,
in order to fully apply our techniques directly to TLA+ models, the user has
to decompose the next-state predicate. The same approach is commonly used
when working with the TLA+ proof system [57].

10.2 VDM

Listing 10.2 shows a simplified version of the running example written in VDM-
SL. To allow for execution / debugging in Overture [120], we remove the non-
deterministic initialization of m. Instead, we initialize it to 255 by default.

All algorithms introduced in 8.2 can be applied directly to model check specifica-
tions written in VDM-SL, the state-based VDM specification language. Explicitly
given pre- and post-conditions allow us to set up proof obligations similar to the
ones we used for B and Event-B.

Indeed, there appears to be only one drawback: to our knowledge there is
currently no integrated constraint solver for VDM expressions. However, two
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10.3 Z

Listing 10.2: Simple Example in VDM-SL
module Counter
e x p o r t s a l l
d e f i n i t i o n s

s t a t e S ta t e o f
m : nat
c : nat

i n v mk State (m, c ) ==
c >= 0 and c <= m

i n i t s == s = mk State (255 ,0 )
end

o p e r a t i o n s
i n cby ( i : nat )

e x t wr c : nat
p re i i n s e t { 1 , . . . , 6 4 }
pos t c = c˜ + i

end Counter

different lines of work are followed in order to provide one. In [121] the authors
implement a translation from VDM to Alloy and eventually to SAT. In contrast,
in [122] the authors suggest an integration of Overture and ProB.

10.3 Z

A possible encoding of the simple running example in Z could look as follows.
First, we introduce the constant m using an axiomatic definition:

m : N

m : {127, 255}

Valid states are described using the Z schema called “State”, the initial value of
the counter is given in the schema called “Init”.
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10 Applicability to other Formalisms

The incby event of the Event-B model is then given by a schema that modifies
the state as done in the B version:

State
c : N

c ≥ 0 ∧ c ≤ m

Init
State′

c′ = 0

incby
∆ State
i? : 1 . . 64

c′ = c + i?

ProB is able to load Z files [158]. Again, the approach is based on a systematic
translation of Z specifications to an extended version of B. In order to support
more Z specifications, Z specific constructs like freetypes have been added to
ProB’s interpreter. As these features are integrated natively, ProB can be used
as prover for Z specifications in the same way as we did for B. Other provers for
Z are the commercial ICL Proofpower [108] and Z/EVES [164]. As for VDM, a
translation of a subset of Z to Alloy has been suggested [137].

In contrast to TLA+ there is no single next-state relation. Proof obligations
could be computed separately for the different schemas.

Slightly adapting the algorithms is still necessary due to a central difference
between B and Z in the handling of invariants. When working with Z, one
commonly puts the invariants into the enabling condition of a schema. In the
example above, this is done by adding ∆ State to incby. In consequence, a
schema cannot be executed if the invariant would be violated in the successor
state.

In order to apply our symbolic model checking algorithms, one could think about
two approaches, both of which can be integrated with proof information as
well:

• Follow [158], in which the authors suggested including a specific schema
called “Invariant”. Comparable to the State schema above, it would be
used to report the predicates to be verified to ProB.

• Check for deadlocks instead of invariant violations. In this case, the
predicate to check would be the disjunct of all enabling conditions of a
specification.
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Part IV

Conclusion





11
Overall Conclusion and Future

Work

In Chapter 1 several goals were stated for this thesis:

1. Strengthen ProB’s constraint solver to enable it to solve infinite domain
constraint satisfaction problems. This is crucial in order to use it as one of
the solving engines for a symbolic model checker.

2. Assess the performance of the extended constraint solver. Based on bench-
mark data, find ways to improve. Additionally, integrate other solvers or
provers if necessary and possible.

3. Evaluate and decide on symbolic model checking algorithms that are suited
for B and Event-B.

4. Implement the selected algorithms in ProB using ProB’s strengthened
constraint solver.

5. Improve performance by integrating abstraction techniques where needed.

6. Perform an empirical evaluation of said algorithms comparing it to ProB’s
explicit state model checking algorithm.

Goal 1 was achieved by two different lines of work. ProB’s internal constraint
solver was lifted from the finite to the infinite case using new techniques for
enumeration and analysis such as tracking of enumeration and randomized
enumeration as introduced in Chapter 3. High-level reasoning over infinite
domains was implemented in different ways. For a first approach we implemented
the CHR rules given in Chapter 3.

As discussed in Chapter 3, extending our CLP(FD) based solver by high-level
reasoning rules written in CHR could in theory have been a solution. However,
implementing a somewhat complete high-level reasoner was quickly realized to
be a cumbersome task. In addition to the overall complexity, integration between
Prolog and CHR was not always optimal. Especially tool support was lacking
when it came to debugging.
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11 Overall Conclusion and Future Work

Yet, the evaluation performed in Chapter 4 exceeded our expectations. Judging
by the numbers alone, ProB performed comparably to other well-established
provers. A more detailed look at the results revealed that ProB is in fact an
orthogonal addition: For certain kinds of proof obligations ProB is superior to
both the Atelier B provers as well as the SMT solvers for Rodin.

We also learned that ProB was performing poorly for other kinds of proof
obligations. In particular, those involving variables with large or even infinite
domains were hard to solve for ProB. Thus, we came back to the idea of
improving high-level reasoning.

After trying to use CHR, the focus shifted to integrating an SMT solver into
ProB as suggested in goal 2. In Chapter 6 we discussed the theoretical aspects of
a translation from B and Event-B to SMT-LIB. Here, especially well-definedness
issues proved difficult to solve. We implemented an integration between ProB
and Z3 and thoroughly benchmarked it on the benchmarks already used in
Chapter 4. The results are promising and show that an integrated approach can
be superior to both Z3 and ProB alone.

There is, however, still an issue remaining. The integrated approach was able to
discharge proof obligations not dischargeable by the other approaches. Yet, a
significant amount could not be discharged anymore. The problem lies within
fine-tuning the interaction between ProB and Z3 to avoid that one steals
computation time the other is then missing. In the future, we want to implement
heuristics to decide when to send a constraint to Z3 and when not to. More
involved heuristics could decide on the amount of time allocated to Z3 before
ProB takes over again and vice versa.

As an alternative to heuristics, machine learning techniques could in theory be
used to classify input predicates and assign them to ProB or Z3 based on some
characteristics. An approach to do so has been suggested for instance in [133].

During this thesis, ProB’s improved constraint solving capabilities have found
several applications aside from symbolic model checking. Most prominently,
ProB is used for data validation tasks [95] which greatly benefit from the
improvements introduced in Chapter 3. The challenge here is to efficiently
handle large relations and sets, e. g., representing track topologies, and at
the same time effectively solving constraints and dealing with certain infinite
functions which are used to manipulate data. Notable applications come from the
railway industry [76] or university timetabling [167]. While the Z3 integration
has not been used for data validation, we hope to do so in the future.

Another line of work that has seen performance gains thanks to improving ProB’s
kernel is the automatic debugging technique introduced in [166]. Here, ProB’s
solving capabilities are used to synthesize patches for B machines exhibiting
errors like invariant violations. Both the improved constraint solver and the
Z3 integration have considerably improved the performance of the debugging
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assistant. In particular, the ability to detect the absence of counterexamples has
been put to use in order to improve user information.

Before writing Chapter 8, the evaluation of different symbolic model checking
algorithms given in Chapter 7 was performed. Based on this evaluation we
decided upon three algorithms implemented in Chapter 8: bounded model
checking, k-Induction and IC3. Furthermore, we incorporated the results of
prior proof attempts into the algorithms, effectively reducing the search space by
providing static information regarding invariant preservation properties. This
lead to performance improvements. Summarizing, this accounts for goals 3, 4
and 6.

The empirical evaluation however has made different shortcomings of our ap-
proach obvious:

• The expressiveness of B and Event-B accounts for involved constraints
that are hard to handle by the solvers.

• Integrating static information concerning invariant preservation properties
is one way of increasing applicability of the symbolic model checking
algorithms.

• Especially IC3 seems promising, as its one-step nature avoids constraints
from pilling up.

In the future, we need to investigate two different directions. One is to deepen the
integration of model checking and proof by generating missing proof obligations
from the model checking runs. As suggested, by analyzing predicates that lead to
a timeout one could find problematic properties and try to prove them externally
or in an independent run.

The second direction is to further examine abstraction techniques like the
one in [48], a combination with predicate abstraction as outlined in [49] or
CTIGAR [26]. As of now, goal 5 remains open. Our implementation and
evaluation did not make clear which abstraction technique is the most promising
to be used for B and Event-B. Further case studies will have to be executed to
decide between the algorithms.
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A Additional Data & Visualizations

A.3 Symbolic Model Checking

A.3.1 Model Checking Results using plain ProB

Table A.1: Models (without Invariant Violations) Checked Using Plain ProB
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
ABZ16 m0 1.57 1.51 - - 1.65 1.59 1.63 1.52 1.84 1.46 1.6 1.6
ABZ16 m1 1.89 1.71 - - 2.32 2.31 1.5 1.49 1.61 1.87 1.83 1.74
ABZ16 m2 2.0 2.1 - - 2.25 2.27 1.73 1.72 1.72 1.8 1.67 2.02
ABZ16 m3 1.69 1.64 - - - 7.07 1.68 1.7 1.49 1.48 1.9 1.66
ABZ16 m4 1.56 1.48 - - 2.1 2.29 1.5 1.44 1.5 1.54 1.76 1.75
ABZ16 m5 2.28 1.92 - - - - - - - - - -
ABZ16 m6 1.6 1.59 - - - - - - - - - -
ABZ16 m7 1.7 1.64 - - - - - - - - - -
ABZ16 m8 - - - - - - - - - - - -
ABZ16 m9 - - - - - - - - - - - -
ABZ16 m910 - - - - - - - - - - - -
Coloring 1.55 1.5 - - - - - - - - - -
Coloring 40 - - - - - - - - - - - -
Counters - - - - - - 1.49 1.43 1.45 1.34 1.37 1.37
f m0 1.32 1.36 - - 1.35 1.3 - - - - 1.73 1.64
f m1 1.6 1.54 - - 1.59 1.76 - - - - 2.01 2.37
PM M0 AAI - - - - - - - - - - 1.7 -
PM M0 AAT - - - - - - - - - - - 4.63
PM M0 AOO - - - - - - - - - - - 47.84
PM M0 VOO - - - - - - - - - - - 33.68
PM M0 VVI - - - - - - - - - - 1.36 -
PM M0 VVT - - - - - - - - - - 1.51 -
PM M1 AOOR - - - - - - - - - - - -
PM M1 VOOR - - - - - - - - - - - -
PM M2 AAI - - - - - - - - - - - -
PM M2 AAT - - - - - - - - - - - -
PM M2 VVI - - - - - - - - - - - -
PM M2 VVT - - - - - - - - - - - -
PM M3 AAI - - - - - - - - - - - -
PM M3 AAT - - - - - - - - - - - -
PM M3 VVI - - - - - - - - - - - -
PM M3 VVT - - - - - - - - - - - -
PM M4 AAIR - - - - - - - - - - - -
PM M4 AATR - - - - - - - - - - - -
PM M4 VVIR - - - - - - - - - - - -
PM M4 VVTR - - - - - - - - - - - -
R0 GearDoor 1.4 1.4 - - - - 1.47 1.37 1.5 1.55 1.78 1.39
R1 Valve 1.46 1.43 - - - - 7.12 1.37 7.02 1.37 1.47 1.48
R2 Outputs 2.31 2.3 - - - - 1.38 1.37 1.35 1.38 1.45 1.45
R3 Sensors 3.46 3.3 - - - - 59.94 1.41 - 1.44 1.78 1.5
R4 Handle 30.99 26.09 - - - - - - - - - -
R5 Switch 57.91 58.07 - - - - - 15.93 - 16.17 11.21 1.69
R6 Lights - - - - - - - - - - 4.65 1.83
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A.3 Symbolic Model Checking

Table A.2: Models (with Invariant Violations) Checked Using Plain ProB
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
LargeBranching - - 1.83 - 1.64 1.67 - - - - 1.62 1.56
Search - - - - - - - - - - - -
SearchEvents - - 1.82 1.8 1.74 1.73 - - - - 1.73 1.72
TravelAgency 2.07 1.83 - - 13.47 21.26 - - - - - -
ABZ16 m910 i1 1.61 1.55 - - - - - - - - - -
ABZ16 m910 i2 1.63 1.6 - - - - - - - - - -
CountersWrong 1.14 1.16 1.23 1.26 1.15 1.16 1.28 1.22 1.22 1.2 1.26 1.34
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A Additional Data & Visualizations

A.3.2 Model Checking Results using Kodkod

Table A.3: Models (without Invariant Violations) Checked Using ProB & Kodkod
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
ABZ16 m0 1.6 1.51 - - 1.66 1.57 2.21 2.31 2.48 2.42 2.43 1.93
ABZ16 m1 1.71 1.61 - - 1.7 1.66 2.93 2.46 2.38 2.39 2.92 2.83
ABZ16 m2 1.55 1.74 - - 2.03 1.94 2.58 2.4 2.38 2.49 3.06 3.03
ABZ16 m3 1.58 1.64 - - - 6.94 2.09 2.06 2.07 2.04 2.74 2.65
ABZ16 m4 1.43 1.36 - - 1.83 1.8 2.32 2.13 2.21 2.14 2.98 2.8
ABZ16 m5 1.93 1.79 - - - - - - - - - -
ABZ16 m6 1.64 1.93 - - - - - - - - - -
ABZ16 m7 1.74 1.68 - - - - - - - - - -
ABZ16 m8 - - - - - - - - - - - -
ABZ16 m9 - - - - - - - - - - - -
ABZ16 m910 - - - - - - - - - - - -
Coloring 2.83 2.74 - - 2.68 2.68 - - - - - -
Coloring 40 - - - - - - - - - - - -
Counters - - - - - - 4.97 4.99 4.94 4.9 5.01 5.07
f m0 4.14 4.07 - - 4.02 4.02 - - - - 4.79 4.86
f m1 4.67 4.93 - - 4.94 5.36 - - - - 5.55 5.53
PM M0 AAI 4.08 4.1 - - 4.21 4.43 - - - - 1.45 2.62
PM M0 AAT 1.25 1.3 - - 1.64 1.46 - - - - 1.58 2.78
PM M0 AOO 1.31 1.36 - - 1.26 1.29 - - - - 1.43 1.37
PM M0 VOO 1.22 1.21 - - 1.22 1.19 - - - - 1.53 1.57
PM M0 VVI 1.36 1.36 - - 1.34 1.33 - - - - 1.47 2.63
PM M0 VVT 1.28 1.25 - - 1.25 1.25 - - - - 1.49 2.72
PM M1 AOOR 1.26 1.29 - - 1.25 1.27 - - - - 1.53 1.51
PM M1 VOOR 1.31 1.29 - - 1.26 1.26 - - - - 1.45 1.55
PM M2 AAI 1.3 1.29 - - 1.2 1.29 - - - - 1.45 1.44
PM M2 AAT 1.24 1.21 - - 1.21 1.2 - - - - 1.54 1.55
PM M2 VVI 1.27 1.24 - - 1.21 1.29 - - - - 1.48 1.53
PM M2 VVT 1.25 1.25 - - 1.23 1.27 - - - - 1.56 1.66
PM M3 AAI 1.58 1.32 - - 1.34 1.55 - - - - 2.21 2.19
PM M3 AAT 1.28 1.26 - - 1.22 1.23 - - - - 2.19 2.16
PM M3 VVI 1.31 1.32 - - 1.27 1.28 - - - - 2.15 2.1
PM M3 VVT 1.28 1.45 - - 1.4 1.24 - - - - 2.24 2.16
PM M4 AAIR 1.37 1.34 - - 1.33 1.33 - - - - 2.28 2.18
PM M4 AATR 1.29 1.32 - - 1.35 1.26 - - - - 2.3 2.24
PM M4 VVIR 1.36 1.31 - - 1.32 1.34 - - - - 2.34 2.25
PM M4 VVTR 1.36 1.37 - - 1.31 1.34 - - - - 2.57 2.4
R0 GearDoor 1.27 1.53 - - - - 2.05 2.2 2.08 2.02 2.47 2.29
R1 Valve 1.41 1.58 - - - - 2.12 2.05 2.16 2.23 2.48 2.38
R2 Outputs 2.51 2.39 - - - - 2.13 2.26 2.39 2.34 2.55 2.65
R3 Sensors 3.83 3.26 - - - - 2.22 2.22 2.26 2.18 2.88 2.7
R4 Handle 31.48 25.71 - - - - - - - - - -
R5 Switch 56.14 52.35 - - - - 2.25 2.26 2.25 2.23 3.59 3.4
R6 Lights - - - - - - 2.53 2.43 2.34 2.36 4.46 4.04
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A.3 Symbolic Model Checking

Table A.4: Models (with Invariant Violations) Checked Using ProB & Kodkod
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
LargeBranching - - 1.76 - 1.58 1.6 - - - - 1.6 1.62
Search - - - - - - - - - - - -
SearchEvents - - - - - - - - - - - -
TravelAgency 2.48 2.29 - - 17.01 21.73 - - - - - -
ABZ16 m910 i1 - - - - - - - - - - - -
ABZ16 m910 i2 - - - - - - - - - - - -
CountersWrong 1.65 1.59 2.32 2.24 1.64 1.59 2.26 2.42 3.05 2.65 2.86 2.88
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A.3.3 Model Checking Results using Z3

Table A.5: Models (without Invariant Violations) Checked Using ProB & Z3
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
ABZ16 m0 1.58 1.51 - - 1.64 1.67 1.69 1.64 1.8 1.59 1.64 1.85
ABZ16 m1 - 1.91 - - 2.54 1.91 1.69 1.53 2.25 1.59 1.96 2.43
ABZ16 m2 - 2.03 - - 2.03 2.18 2.37 1.66 2.4 1.79 3.88 2.15
ABZ16 m3 - 1.8 - - 1.61 1.83 1.89 1.82 2.04 2.07 4.6 1.99
ABZ16 m4 - 1.7 - - 1.83 1.87 2.11 1.7 1.96 1.65 4.84 2.34
ABZ16 m5 - 4.47 - - 1.55 2.28 - - - - - -
ABZ16 m6 - 9.81 - - 1.61 2.22 - - - - - -
ABZ16 m7 - 9.56 - - 1.59 2.18 - - - - - -
ABZ16 m8 - - - - 32.81 13.93 - - - - - -
ABZ16 m9 - - - - 34.11 13.92 - - - - - -
ABZ16 m910 - - - - 37.43 18.13 - - - - - -
Coloring 2.55 2.46 - - - - 3.75 3.28 2.97 2.7 2.38 2.43
Coloring 40 - - - - - - 1.64 1.55 1.66 1.59 28.81 16.89
Counters - - - - - - 2.22 2.24 2.18 2.2 2.19 2.27
f m0 2.38 2.16 - - 2.2 2.44 3.24 - 3.58 - 2.82 2.79
f m1 2.74 2.67 - - 2.61 2.64 - - - - 4.51 4.51
PM M0 AAI - - - - - - - - - - 7.18 9.73
PM M0 AAT - - - - - - - - - - - 1.77
PM M0 AOO - - - - 48.96 20.64 - - - - - 2.97
PM M0 VOO - - - - 46.72 20.21 - - - - - 2.75
PM M0 VVI - - - - - - - - - - 1.94 3.07
PM M0 VVT - - - - - - - - - - 1.84 2.96
PM M1 AOOR - - - - - - - - - - 2.88 3.66
PM M1 VOOR - - - - - - - - - - 3.41 3.7
PM M2 AAI - - - - - - - - - - - 9.1
PM M2 AAT - - - - - - - - - - - 9.15
PM M2 VVI - - - - - - - - - - - 9.77
PM M2 VVT - - - - - - - - - - - 9.25
PM M3 AAI - - - - - - - - - - - 9.67
PM M3 AAT - - - - - - - - - - - 9.65
PM M3 VVI - - - - - - - - - - - 9.56
PM M3 VVT - - - - - - - - - - - 10.91
PM M4 AAIR - - - - - - - - - - 7.25 9.73
PM M4 AATR - - - - - - - - - - 8.46 10.49
PM M4 VVIR - - - - - - - - - - 10.33 11.28
PM M4 VVTR - - - - - - - - - - 6.58 9.99
R0 GearDoor 1.79 1.95 - - - - 3.32 1.96 2.8 1.9 3.52 2.17
R1 Valve 4.13 4.23 - - - - 7.37 1.57 7.42 1.57 8.84 2.48
R2 Outputs - 54.53 - - 1.41 1.57 1.48 1.34 1.48 1.5 1.52 1.55
R3 Sensors - - - - 1.45 2.69 - 2.18 - 2.2 36.61 1.74
R4 Handle - - - - - - - - - - - 42.71
R5 Switch - - - - - - - 15.88 - 15.66 - 2.32
R6 Lights - - - - - - - - - - 24.23 2.31
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A.3 Symbolic Model Checking

Table A.6: Models (with Invariant Violations) Checked Using ProB & Z3
Model MC BMC BMC∗ k-Induction t-Induction IC3
use proof info no yes no yes no yes no yes no yes no yes
LargeBranching - - - - 1.65 1.66 - - - - 1.83 1.87
Search - - - - - - - - - - - -
SearchEvents - - 3.67 4.24 - - - - - - 2.43 2.4
TravelAgency 1.96 2.02 - - - - - - - - - -
ABZ16 m910 i1 2.43 11.53 - - - - - - - - - -
ABZ16 m910 i2 2.52 26.4 - - - - - - - - - -
CountersWrong 1.26 1.25 1.48 1.49 1.32 1.35 1.64 1.58 1.63 1.59 1.72 1.74
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B
Source Code Listings

B.1 Infinite Domain Constraint Solver

Listing B.1: Interpreter
:− module ( i n f i n i t e d o m a i n s o l v e r , [ s o l v e c o n s t r a i n t /2 ,

enum warning / 0 ] ) .

:− use module ( h i g h l e v e l r e a s o n e r ) .

:− use module ( l i b r a r y ( c l p f d ) ) .
:− use module ( l i b r a r y ( l i s t s ) ) .

:− op (870 , xfy , ’= > ’ ) .
:− op (820 , xfy , ’ <= > ’).
:− op (860 , xfy , ’ & ’ ) .
:− op (850 , xfy , ’ or ’ ) .

:− dynamic enum warning /0 .

s o l v e c o n s t r a i n t ( Constra int , TopLevelVars ) :−
r e t r a c t a l l ( enum warning ) ,
s o l v e ( Constra int , ExistsWF , AllWF) ,
ground vars ( TopLevelVars , ExistsWF , AllWF ) .

ground vars ( TopLevelVars , ExistsWF , AllWF) :−
%alarm (15 , throw ( t ime out ) , Id , [ remove ( t rue ) ] ) ,
mapl i s t ( enumerate ex i s t s aux , TopLevelVars ) ,
g r ound wa i t f l ag s ( ExistsWF , AllWF ) .

s o l v e (A & B,EWF,AWF) :− s o l v e (A,EWF,AWF) , s o l v e (B,EWF,AWF) .
s o l v e (A or B,EWF,AWF) :− s o l v e (A,EWF,AWF) ; s o l v e (B,EWF,AWF) .
s o l v e (A <=> B,EWF,AWF) :−

s o l v e (A,EWF,AWF) , s o l v e (B,EWF,AWF) ;
s o l v e n o t (A,EWF,AWF) , s o l v e n o t (B,EWF,AWF) .

s o l v e (A => B,EWF,AWF) :− s o l v e n o t (A,EWF,AWF) ; s o l v e (B,EWF,AWF) .
s o l v e ( not (A) ,EWF,AWF) :− s o l v e n o t (A,EWF,AWF) .
s o l v e (V in D, , ) :− V in D.
s o l v e (A = B, , ) :−

compute exprs (A,B,AE,BE) ,
AE #= BE.
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s o l v e (A >= B, , ) :−
compute exprs (A,B,AE,BE) ,
l e q (B,A) ,
AE #>= BE.

s o l v e (A > B, , ) :−
compute exprs (A,B,AE,BE) ,
l t (B,A) ,
AE #> BE.

s o l v e (A =< B, , ) :−
compute exprs (A,B,AE,BE) ,
l e q (A,B) ,
AE #=< BE.

s o l v e (A < B, , ) :−
compute exprs (A,B,AE,BE) ,
l t (AE,BE) ,
AE #< BE.

s o l v e ( f o r a l l (X,LHS => RHS) , EWF,AWF) :−
when( ground (AWF) , e n u m e r a t e f o r a l l (X,LHS,RHS) ) .

s o l v e ( e x i s t s (X,RHS) ,EWF, AWF) :−
when( ground (EWF) , enumera t e ex i s t s (X,RHS) ) .

compute exprs (A,B,AE,BE) :− compute expr (A,AE) , compute expr (B,BE) .
compute expr (X,X) :− var (X) , ! .
compute expr (X,X) :− number (X) , ! .
compute expr (A + B,E) :− ! ,

compute expr (A,AE) ,
compute expr (B,BE) ,
E #= AE + BE.

compute expr (A − B,E) :− ! ,
compute expr (A,AE) ,
compute expr (B,BE) ,
E #= AE − BE.

compute expr (A ∗ B,E) :− ! ,
compute expr (A,AE) ,
compute expr (B,BE) ,
E #= AE ∗ BE.

compute expr (A / B,E) :− ! ,
compute expr (A,AE) ,
compute expr (B,BE) ,
E #= AE / BE.

compute expr (A mod B,E) :− ! ,
compute expr (A,AE) ,
compute expr (B,BE) ,
E #= mod(AE,BE) .

e n u m e r a t e f o r a l l (Var ,LHS,RHS) :−
LHS = ( in Min . . Max) ,
% setup o f inner c o n s t r a i n t s : conta in s a cho i c epo in t
% to a l low f o r d i f f e r e n t s o l u t i o n s to inner v a r i a b l e s
s o l v e (LHS & RHS,NewEWF,NewAWF) , ! ,
g r ound wa i t f l ag s (NewEWF,NewAWF) ,
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enumera t e f o ra l l aux (Min ,Max, Var ) .
% exhaus t i v e l y enumerate i n f i n i t e domain? −> except ion
enumera t e f o ra l l aux ( , sup , ) :− throw ( e n u m i n f i n i t e ) .
enumera t e f o ra l l aux ( in f , , ) :− throw ( e n u m i n f i n i t e ) .
% domain i s f i n i t e , t ry a l l e lements
enumera t e f o ra l l aux ( Current ,Max, Var ) :−

Current =< Max, ! ,
t r y f o r a l l v a l u e ( Current , Var ) , % does not bind Var
Current2 i s Current + 1 ,
enumera t e f o ra l l aux ( Current2 ,Max, Var ) .

enumera t e f o ra l l aux ( , , ) .

t r y f o r a l l v a l u e ( Current , Var ) :−
\+ \+ ( Current = Var ) .

enumera te ex i s t s (Var ,RHS) :−
% setup inner c o n s t r a i n t s
s o l v e (RHS,NewEWF,NewAWF) , ! ,
g r ound wa i t f l ag s (NewEWF,NewAWF) ,
enumerate ex i s t s aux ( Var ) .

enumerate ex i s t s aux ( Var ) :−
f d s i z e (Var , sup ) , ! ,

% non−exhaus t i v e l y enumerate i n f i n i t e domain
% need to f i n d j u s t one element !
a s s e r t ( enum warning ) ,
f d i n f (Var , Min ) , fd sup (Var ,Max) ,
e n u m e r a t e i n f i n i t e (Var , 0 , Min ,Max ) .

enumerate ex i s t s aux ( Var ) :−
indomain ( Var ) .

e n u m e r a t e i n f i n i t e (Var , Cur , Min ,Max) :−
s u p i n f s a f e l t (Cur ,Max) ,
Var = Cur .

e n u m e r a t e i n f i n i t e (Var , Cur , Min , Max) :−
s u p i n f s a f e l t (Min,−Cur ) ,
Var i s −Cur .

e n u m e r a t e i n f i n i t e (Var , Cur , Min ,Max) :−
Cur2 i s Cur + 1 ,
e n u m e r a t e i n f i n i t e (Var , Cur2 , Min ,Max ) .

s u p i n f s a f e l t ( , sup ) :− ! .
s u p i n f s a f e l t ( in f , ) :− ! .
s u f i n f s a f e l t (X,Y) :− X < Y.

s o l v e n o t (A & B,EWF,AWF) :−
s o l v e n o t (A,EWF,AWF) ; s o l v e n o t (B,EWF,AWF) .

s o l v e n o t (A or B,EWF,AWF) :−
s o l v e n o t (A,EWF,AWF) , s o l v e n o t (B,EWF,AWF) .

s o l v e n o t (A <=> B,EWF,AWF) :−
s o l v e (A,EWF,AWF) , s o l v e n o t (B,EWF,AWF) ;
s o l v e n o t (A,EWF,AWF) , s o l v e (B,EWF,AWF) .

s o l v e n o t (A => B,EWF,AWF) :−
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s o l v e (A,EWF,AWF) , s o l v e n o t (B,EWF,AWF) .
s o l v e n o t (A in I n f . . Sup ,EWF,AWF) :−

s o l v e (A < I n f or A > Sup ,EWF,AWF) .
s o l v e n o t ( not (A) ,EWF,AWF) :− s o l v e (A,EWF,AWF) .
s o l v e n o t (A = B, , ) :−

compute exprs (A,B,AE,BE) ,
AE #\= BE.

s o l v e n o t (A >= B,EWF,AWF) :− s o l v e (A < B,EWF,AWF) .
s o l v e n o t (A > B,EWF,AWF) :− s o l v e (A =< B,EWF,AWF) .
s o l v e n o t (A =< B,EWF,AWF) :− s o l v e (A > B,EWF,AWF) .
s o l v e n o t (A < B,EWF,AWF) :− s o l v e (A >= B,EWF,AWF) .
s o l v e n o t ( f o r a l l (X,LHS => RHS) ,EWF,AWF) :−

s o l v e ( e x i s t s (X,LHS & not (RHS) ) ,EWF,AWF) .
s o l v e n o t ( e x i s t s (X,RHS) ,EWF, AWF) :−

when( ground (EWF) ,\+( enumera t e ex i s t s (X,RHS) ) ) .

g round wa i t f l ag s (E,A) :−
E = ground , A = ground .

Listing B.2: Random Enumeration
:− module ( random permutations , [ get num bit s /3 , get masks /3 ,

random permutation element / 1 0 ] ) .

get num bit s ( Length , NextPower , NumBits ) :−
NumBitsP4 i s c e i l ( log10 ( Length ) / log10 ( 4 ) ) ,
NextPower i s 4∗∗NumBitsP4 ,
NumBits i s ( f l o o r ( log10 ( NextPower ) / log10 ( 2 ) ) + 1) // 2 .

get masks ( HalfNumBits , LeftMask , RightMask ) :−
RightMask i s (1 << HalfNumBits ) − 1 ,
LeftMask i s RightMask << HalfNumBits .

random permutation element ( Index , MaxIndex , From , To , Seed , NumBits ,
LeftMask , RightMask ,
RandomElement , NextIndex ) :−

draw index ( Index , MaxIndex , Seed , NumBits , LeftMask , RightMask , From ,
To , DrawnElement , NextIndex ) ,

% working on a 4ˆx long i n t e r v a l .
% thus , we might p ick a number that i s too l a r g e
% i f t h i s happens , we j u s t p ick a new one
% to avoid context sw i t ch ing overhead ,
% t h i s i s now done i n s i d e the C code
RandomElement i s DrawnElement + From .

draw index ( Idx , MaxIdx , Seed , HalfNumBits , LeftMask , RightMask ,
From , To , Rnd , NextIdx ) :−

draw index loop ( Idx , MaxIdx , Seed , HalfNumBits , LeftMask , RightMask ,
From , To , IdxOut , Rnd) ,

( IdxOut > MaxIdx −> f a i l ; NextIdx = IdxOut ) .

draw index loop ( Idx , MaxIdx , Seed , HalfNumBits , LeftMask , RightMask ,
From , To , IdxOut , RndOut) :−
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Lef t2 i s ( Idx /\ LeftMask ) >> HalfNumBits ,
Right2 i s Idx /\ RightMask ,
f e i s t e l r o u n d s ( Left2 , Right2 , Seed , RightMask , Left3 , Right3 ) ,
Rnd i s ( Le f t3 << HalfNumBits ) \/ Right3 ,
Idx2 i s Idx + 1 ,
(Rnd > To − From , Idx2 =< MaxIdx
−> draw index loop ( Idx2 , MaxIdx , Seed , HalfNumBits , LeftMask ,

RightMask , From , To , IdxOut , RndOut)
; IdxOut = Idx2 , RndOut = Rnd ) .

f e i s t e l r o u n d s ( Left , Right , Seed , RightMask , LeftOut , RightOut ) :−
LeftOut = Right ,
term hash ( Right , Hash ) ,
RightOut i s Le f t xor Hash /\ RightMask .

Listing B.3: CHR Rules
:− module ( h i g h l e v e l r e a s o n e r , [ l t /2 , l e q / 2 ] ) .

:− use module ( l i b r a r y ( chr ) ) .

:− c h r c o n s t r a i n t l eq /2 , l t /2 .
:− c h r c o n s t r a i n t eq /3 .

r e f l e x i v i t y @ l eq (X,X) <=> t rue .
antisymmetry @ l eq (X,Y) , l e q (Y,X) <=> X = Y.
idempotence @ l eq (X,Y) \ l e q (X,Y) <=> t rue .
t r a n s i t i v i t y @ l eq (X,Y) , l e q (Y, Z) ==> l e q (X, Z ) .

a n t i r e f l e x i v i t y @ l t (X,X) <=> f a i l .
idempotence @ l t (X,Y) \ l t (X,Y) <=> t rue .
t r a n s i t i v i t y @ l t (X,Y) , l eq (Y, Z) ==> l t (X, Z ) .
t r a n s i t i v i t y @ l eq (X,Y) , l t (Y, Z) ==> l t (X, Z ) .
t r a n s i t i v i t y @ l t (X,Y) , l t (Y, Z) ==> l t (X, Z ) .
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C
Own Publications Used in this

Thesis

C.1 Outline

This thesis is based on several publications written during my PhD studies. The
main matter makes use of four articles already published in different venues.
In the sections below, the authors and abstracts of the articles are given and
general publication information is presented. The individual contributions of
each author are listed. As far as known, impact factors and conference rankings
are included in the information.

Furthermore, the significance of each article is discussed. In particular, this
includes the contribution of each article towards the overall goal of providing a
symbolic model checker for B and Event-B. Last, articles are put into relation
to each other.

The golden thread is as follows: The first article “Constraint Logic Programming
over Infinite Domains with an Application to Proof” lays the ground for any
symbolic analysis as it deals with improvements to ProB’s constraint solving
capabilities.

The following articles, “From Failure to Proof: The ProB Disprover for B and
Event-B” evaluates ProB’s constraint solver empirically.

As a result of the evaluation, in order to overcome weaknesses discovered, an
integration between ProB and Z3 has been developed in “SMT Solvers for
Validation of B and Event-B models”.

Last, “Proof Assisted Symbolic Model Checking for B and Event-B” uses the
foundations provided by the other articles to back the implementation of different
symbolic model checking algorithms.
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C.2 Constraint Logic Programming over Infinite
Domains with an Application to Proof

3.2.1 Abstract

We present a CLP(FD)-based constraint solver able to deal with unbounded
domains. It is based on constraint propagation, resorting to enumeration if all
other methods fail. An important aspect is detecting when enumeration was
complete and if this has an impact on the soundness of the result. We present
a technique which guarantees soundness in the following way: if the constraint
solver finds a solution it is guaranteed to be correct; if the constraint solver
fails to find a solution it can either return the result “definitely false” in case
it knows enumeration was exhaustive, or “unknown” in case it was aborted.
The technique can deal with nested universal and existential quantifiers. It can
easily be extended to set comprehensions and other operators introducing new
quantified variables. We show applications in data validation and proof.

3.2.2 Significance

The article describes our first attempts at lifting ProB’s constraint solving
kernel from finite to infinite domains. As already stated, this is a precondition
for it to be useful as the backend of symbolic model checking algorithms. Besides,
the techniques presented in this article also improve ProB’s performance when
used for data validation tasks.

Regarding user feedback, improved tracking of the enumeration status of different
variables can be used for more precise error messages which can aid in resolving
performance bottlenecks.

3.2.3 Relation to Other Articles

From Failure to Proof: The ProB Disprover for B and Event-B: The
paper evaluates the performance of ProB when used as a prover. Tracking
enumerations is crucial to do so: the absence of a counterexample, i. e., a proof,
can only be detected if the status of variable enumerations is known. Thus,
“From Failure to Proof: The ProB Disprover for B and Event-B” could be seen
as an in-depth evaluation of the techniques presented in this article.

SMT Solvers for Validation of B and Event-B models: “Constraint Logic
Programming over Infinite Domains with an Application to Proof” and “SMT
Solvers for Validation of B and Event-B models” describe two orthogonal ap-
proaches to reach the same goal. In both papers, we try to add high-level
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reasoning to ProB’s kernel, improving propagation and detection of unsatisfia-
bility. Instead of improving ProB’s kernel, the article describes how ProB and
Microsoft’s SMT solver Z3 can be integrated into a single solving procedure.

Proof Assisted Symbolic Model Checking for B and Event-B: As de-
scribed in the introduction, symbolic model checking algorithms for high-level
languages such as B and Event-B put a lot of stress on the underlying constraint
solvers and provers. Therefore, improvements like the one described in this
article render ProB more suited to be used for the algorithms adapted and
developed in “Proof Assisted Symbolic Model Checking for B and Event-B”.

3.2.4 Publication Information

The article “Constraint Logic Programming over Infinite Domains with an Ap-
plication to Proof” [115] was originally published in the “Electronic Proceedings
in Theoretical Computer Science” series, to which no impact factor is assigned
yet.

The article was presented at the “Workshop on (Constraint) Logic Programming”
in Leipzig, Germany on September 12–13, 2016. The workshop itself was part
of the “Leipzig Week of Declarative Programming”. Before acceptance, all
submissions to the workshop went through a full peer review process. No CORE
Conference Ranking is available for the WLP workshop.

The authors of this article are Sebastian Krings and Michael Leuschel.

S. Krings’ contributions are:

• Enumeration tracking algorithm

• Randomized enumeration

• Main body of the article

• Implementation work inside ProB

M. Leuschel’s contributions are:

• Introduction

• Section on related work

• Section on data validation

• General implementation work and benchmarks
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C.3 From Failure to Proof: The ProB Disprover
for B and Event-B

3.3.1 Abstract

The ProB disprover uses constraint solving to find counterexamples for B proof
obligations. As the ProB kernel is now capable of determining whether a search
was exhaustive, one can also use the disprover as a prover. In this paper, we
explain how ProB has been embedded as a prover into Rodin and Atelier B.
Furthermore, we compare ProB with the standard automatic provers and SMT
solvers used in Rodin. We demonstrate that constraint solving in general and
ProB in particular are able to deal with classes of proof obligations that are not
easily discharged by other provers and solvers. As benchmarks, we use medium-
sized specifications such as landing gear systems, a CAN bus specification and a
railway system. We also present a new method to check proof obligations for
inconsistencies, which has helped uncover various issues in existing (sometimes
fully proven) models.

3.3.2 Significance

The article describes key extensions to ProB’s constraint solving kernel. The
main goal was to show that ProB can now be used not only to find counterexam-
ples but detect the absence of them. This has been made possible by observing
the enumeration status of different variables as explained in “Constraint Logic
Programming over Infinite Domains with an Application to Proof”.

The empirical evaluation focuses on proof obligations. However, the extension
also enabled ProB’s kernel to be used as the backend of symbolic model checking
algorithms. This is due to the fact that the constraints occurring in symbolic
model checking often resemble those existing in proof attempts, as we will show
below.

3.3.3 Relation to Other Articles

Constraint Logic Programming over Infinite Domains with an Appli-
cation to Proof : Using ProB as a prover has been made possible by the
enumeration tracking technique described in “Constraint Logic Programming
over Infinite Domains with an Application to Proof”. Without the improvements
done, ProB could only have been used as a disprover, i. e., to find counterex-
amples. Aside from obvious cases, the absence of a counterexample could not
have been detected.
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SMT Solvers for Validation of B and Event-B models: As was mentioned
in Section 2.5, SMT solvers have different characteristics than solvers based on
constraint logic programming. In “From Failure to Proof: The ProB Disprover
for B and Event-B” we learned that certain constraints cannot be solved easily by
ProB due to its lack of high-level reasoning. In “Constraint Logic Programming
over Infinite Domains with an Application to Proof” we tried to overcome this
limitation by introducing CHR rules. However, this proved to be and error-prone
task. Instead, in “SMT Solvers for Validation of B and Event-B models”, we
integrate ProB with Z3 in order to overcome the weaknesses we spotted.

Proof Assisted Symbolic Model Checking for B and Event-B: This
article implements different symbolic model checking algorithms for B and Event-
B. To do so it makes use of ProB’s extended constraint solver and prover in two
ways. Most prominently, constraints occurring in the algorithms are solved using
ProB’s kernel and the tools it integrates with. Additionally, ProB’s prover is
used to compute static information later added to constraints in order to ease
solving.

3.3.4 Publication Information

The article “From Failure to Proof: The ProB Disprover for B and Event-
B” [113] was originally published in the “Lecture Notes in Computer Science”
series by Springer, Berlin, Germany. No impact factor is assigned to the series.

The article was presented at the “Software Engineering and Formal Methods”
conference in York, UK on September 7–11, 2015. It was given a “Best Paper
Award”. Before acceptance, all submissions to the conference went through a full
peer review process. The conference is rated “B — good conference, and well
regarded in a discipline area” according to the CORE Conference Ranking.

The authors of this article are Sebastian Krings, Jens Bendisposto and Michael
Leuschel.

S. Krings’ contributions are:

• Empirical evaluation including results and conclusion

• Discussion of differences between ProB disprover and SMT solvers

• Rodin integration of the disprover

• Implementation work needed to lift ProB from disprover to prover

J. Bendisposto’s and M. Leuschel’s contributions are:

• Co-developers of initial disprover (without support for proof)

• Detection of inconsistencies in hypothesis
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• Section on constraint solving kernel

• Atelier B integration together with ClearSy and Alstom

• Implementation work needed to lift ProB from disprover to prover

• Helpful discussion during research and implementation

C.4 SMT Solvers for Validation of B and Event-B
models

3.4.1 Abstract

We present an integration of the constraint solving kernel of the ProB model
checker with the SMT solver Z3. We apply the combined solver to B and
Event-B predicates, featuring higher-order datatypes and constructs like set
comprehensions. To do so we rely on the finite set logic of Z3 and provide a new
translation from B to Z3, better suited for constraint solving. Predicates can
then be solved by the two solvers working hand in hand: constraints are set up in
both solvers simultaneously and (intermediate) results are transferred. We thus
combine a constraint logic programming based solver with a DPLL(T ) based
solver into a single procedure. The improved constraint solver finds application
in many validation tasks, from animation of implicit specifications, to test case
generation, bounded and symbolic model checking on to disproving of proof
obligations. We conclude with an empirical evaluation of our approach focusing
on two dimensions: comparing low and high-level encodings of B as well as
comparing pure ProB to ProB combined with Z3.

3.4.2 Significance

The integration of Z3 into ProB is strengthening the constraint solving kernel.
As we have seen in different empirical evaluations, ProB’s kernel and Z3 are
orthogonal extensions to each other. They are able to solve different kinds of
constraints. In symbolic model checking, we often have to deal with constraints
that are not particularly suited for solving using constraint logic programming.
Thanks to Z3 these cannot be solved by the integrated solver, enabling symbolic
model checking of a wider range of models.
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3.4.3 Relation to Other Articles

Constraint Logic Programming over Infinite Domains with an Appli-
cation to Proof : As stated above, techniques like enumeration tracking are
needed to use ProB as a prover. This holds true when using ProB as an SMT
solver as well.

From Failure to Proof: The ProB Disprover for B and Event-B: The
article made several weaknesses of ProB obvious. Furthermore, the comparison
to the existing SMT integration for Rodin showed that in using SMT solvers can
be a better approach to constraint solving than constraint logic programming.
The SMT translation however had its own choice of restrictions we outlined.
In “SMT Solvers for Validation of B and Event-B models” we thus learned
our lessons and suggested an integrated approach combining both in order to
overcome the limitations spotted before.

Proof Assisted Symbolic Model Checking for B and Event-B: The
article shows that although ProB has been strengthened it is often still too
weak to handle full-blown symbolic model checking. Integrating SMT solvers is
a further mean towards a more capable constraint solver. Thus, it can enable
symbolic model checking of models that ProB could not handle without.

3.4.4 Publication Information

The article “SMT Solvers for Validation of B and Event-B models” [117] was
originally published in the “Lecture Notes in Computer Science” series by
Springer, Berlin, Germany. No impact factor is assigned to the series.

The article was presented at the “Integrated Formal Methods” conference in
Reykjav́ık, Island on June 1–5, 2016. Before acceptance, all submissions to the
conference went through a full peer review process. The conference is rated “B —
good conference, and well regarded in a discipline area” according to the CORE
Conference Ranking.

The authors of this article are Sebastian Krings and Michael Leuschel.

S. Krings’ contributions are:

• Implementation of integration between ProB and Z3

• Small experiments in paper and empirical evaluation

• Theoretical aspects of translation

M. Leuschel’s contributions are:

• Additions to related and future work
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• Updates to discussion

• Description of ProB’s kernel

• Discussion of different implementation and translation techniques

C.5 Proof Assisted Symbolic Model Checking for
B and Event-B

3.5.1 Abstract

We have implemented various symbolic model checking algorithms, like BMC,
k-Induction and IC3 for B and Event-B. The high-level nature of B and Event-B
accounts for complicated constraints arising in these symbolic analysis techniques.
In this paper we suggest using static information stemming from proof obligations
to simplify occurring constraints. We show how to include proof information in
the aforementioned algorithms. Using different benchmarks we compare explicit
state to symbolic model checking as well as techniques with and without proof
assistance. In particular for models with large branching factor, e. g., due to
complicated data values being manipulated, the symbolic techniques fare much
better than explicit state model checking. The inclusion of proof information
results in further clear performance improvements.

3.5.2 Significance

In the article, we implement the symbolic model checking algorithms selected
in Section 7.4 for B and Event-B. An empirical evaluation is performed on a
selection of models. Additionally, it introduces proof assistance, a technique that
uses static information stemming from successful proof attempts to strengthen
constraints and make them easier to handle.

3.5.3 Relation to Other Articles

Constraint Logic Programming over Infinite Domains with an Appli-
cation to Proof : All symbolic algorithms introduced in the paper make heavy
use of ProB’s improved constraint solver. Without the additional improvements,
several benchmarks could not be run successfully.

From Failure to Proof: The ProB Disprover for B and Event-B: The
proof capabilities can be used to recompute static information where missing
and to perform further proofs if needed. Thus, a tighter integration between
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model checking on the one side and prove as well as constraint solving on the
other side seems desirable.

SMT Solvers for Validation of B and Event-B models: We hope that
the integration of SMT solvers into ProB’s kernel will allow for more models
to be checked symbolically. During implementation and evaluation for “Proof
Assisted Symbolic Model Checking for B and Event-B” we saw that the relies
upon the negation of properties under consideration often leads to highly involved
constraints. We hope that integrating Z3 enables us to handle these better than
relying ProB alone.

3.5.4 Publication Information

The article “Proof Assisted Symbolic Model Checking for B and Event-B” [116]
was originally published in the “Lecture Notes in Computer Science” series by
Springer, Berlin, Germany. No impact factor is assigned to the series.

An extended version has been submitted to the Elsevier journal “Science of
Computer Programming”.

The article was presented at the “ASM, Alloy, B, TLA, VDM, Z (ABZ)” confer-
ence in Linz, Austria on May 23–27, 2016. Before acceptance, all submissions to
the conference went through a full peer review process. No CORE Conference
Ranking is available for the ABZ conference.

The authors of this article are Sebastian Krings and Michael Leuschel.

S. Krings’ contributions are:

• Implementation and description of algorithms

• Discussion and conclusion

• Empirical evaluation

M. Leuschel’s contributions are:

• Improvements to running example and in-depth comparison to ProB

• Discussion related to non-inductive invariants
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[82] T. Frühwirth. Constraint Handling Rules. Cambridge University Press,
2009.
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