
Numerical Integration in Random
Coefficient Models of Demand

Inauguraldissertation

zur Erlangung des akademischen Grades eines Doktors

der Wirtschaftswissenschaften

(Dr. rer. pol.)

durch die Wirtschaftswissenschaftliche Fakultät

der Heinrich-Heine-Universität Düsseldorf

von: Daniel Brunner, M. Sc.

geboren am 09.06.1989 in Lüdenscheid
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1 Introduction

The causal relation between a product’s purchased quantity and observable characteris-

tics of the product itself or its substitutes lies at the heart of many economic questions.

Demand models relate these two types of variables and allow, for example, to answer

industrial organization related questions, which analyze changes in the environment on

market outcomes to derive policy implications. In a business context, the optimization of

dynamic pricing strategies by predicting consumers’ reactions to price changes gives an-

other interesting and highly relevant application. Due to their fundamental importance,

the evolution of demand models has a long history and is still in progress.

The model of Berry, Levinsohn and Pakes (1995, BLP hereafter) provides the most

recent and powerful framework to estimate the demand of differentiated products with

aggregate data. Their model treats products as a bundle of characteristics and explic-

itly considers individual consumer reactions to changes of these characteristics without

actually observing individual decisions. Moreover, the usual problem of co-movements

between observed and unobserved variables is addressed in a standard instrumental vari-

able approach. Identifying the effect of a product’s price is a well-known example, where

valid instruments allow to rule out the impact of numerous unobservable quality compo-

nents. By combining these properties with an efficient way of calculating a large amount

of parameters, BLP created a tool to make realistic economic predictions. In the presence

of consumer heterogeneity, this results in consumers, who rather switch to another prod-

uct with similar characteristics, if they are confronted with an unfavorable change in the

environment (e.g. a price increase).

The economic use of considering consumers’ heterogeneity comes at the cost of a more

complex and computationally burdensome model. When economists face problems with

heterogeneity or other forms of uncertainty, the approximation of integrals without analytic

solutions often becomes necessary. In the BLP model, a fundamental step of the estimation

algorithm consists of numerous aggregations of individual purchase probabilities for a given

product. The aggregation is realized by the following integral:∫
Pr(“purchase product j”|βi) f(β) dβ .

The preference parameter of all individuals i can be either assumed to follow a certain

parametric distribution (unobserved heterogeneity) or to depend on observed demograph-

ics (observed heterogeneity). This results, for example, in the possibility to model a lower
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1 Introduction

price sensitivity for wealthier consumers and contributes to realistic substitution patterns.

From a technical point of view, consumer aggregation gives an integral without an ana-

lytical solution.

This thesis deals with different challenges related to the numerical integration problem.

More precisely, harmful effects of an inaccurate numerical integration in the integral above

(chapter 2), adaptive approaches to mitigate this inaccuracies (chapter 3) and the problem

of having only limited information about f(β) (chapter 4) are addressed in three different

chapters. Each of them is explained in greater detail in the following.

Chapter 2 entitled “Simulation Error Causes Weak Identification in Random Coefficient

Logit Models Using Aggregate Data” (co-authored with Florian Heiss, André Romahn

and Constantin Weiser) investigates the propagation of integration error in the GMM

objective function. It is shown that inaccurate integration impacts the shape of the GMM

objective severely and produces wrong point estimates. This has immediate consequences

for economic predictions: implied average own price elasticities, for example, based on

different stochastic integration rules range from -44 to -2.3 with the lowest integration

accuracy in BLPs’ car data. With the most accurate integration rule, this range collapses

to -11 to -6.8. Accurate integration does not only contribute to parameter reliability but

fixes many other problems reported in the literature (Knittel and Metaxoglou, 2014).

Reducing the integration error in BLPs’ model is further examined in chapter 3 (“Impli-

cations of Adaptive Integration Rules for the Performance of Random Coefficient Models

of Demand”). Contrary to the strategy of the former chapter, integrals are not accurately

approximated by a large amount of function evaluations but fewer and more cleverly

placed ones. The idea is to evaluate the integral at an initial “standard” set of points

and then, based on information about the function’s shape, perform an adjustment of

the initial set. Adaptive integration rules are of particular use, if unfortunate parameter

combinations cause very small regions on the integrand’s support with a high contribution

to the integral. This is demonstrated with simulated data and Nevo’s cereal data (Nevo,

2000), where the gain of adaptive approaches in integration and parameter precision is

impressive. Especially in the BLP model, adaptive approaches cause significant additional

computational cost. This issue is addressed by proposing a new integration rule combining

the advantages of standard and adaptive rules.

Chapter 4 entitled “Copulas for Demand Estimation Models with Partly Observed Het-

erogeneity” deals with the problem of limited information about f(β) in the presence

of observed heterogeneity. BLP incorporate observed consumer heterogeneity by demo-

graphic variables and the integration problem processes them by integrating over their

joint distribution. The approximation of the integral requires a precise knowledge of this

distribution, which is often not available. This problem frequently arises with official

statistics like census data that have to protect individuals’ privacy. To deal with some

2



forms of incomplete information, copula functions are proposed to model the demograph-

ics’ joint distribution. The power of this approach is illustrated with an application from

the banking literature by estimating the demand for deposits in commercial banks. Ex-

clusive information about marginal distributions of demographics, age and income, on a

fine geographic level is combined with a dependence structure from a broader geographic

level. In this example, copulas enable the researcher to work with incomplete data and

predict bank products with similar deposit rates to be good substitutes.

To summarize, this thesis discusses different challenges that can be encountered when

making use of the great flexibility in BLPs’ demand model and contributes by proposing

possible solutions. In applied work, the numerical accuracy of the integral approximations

constitutes an important trade-off between computational cost and accurate estimates.

The results of chapter 2 indicate that this trade-off should be decided in favor of accuracy,

because the integral approximation is a major source of error and easily eliminates the

estimator’s reliability. Chapter 3 discusses adaptive integration methods to deal with diffi-

cult integrands, where an acceptable error level cannot be obtained by standard methods.

This is of particular use, if estimation results from very accurate standard integration

rules are still impacted by significant integration noise. An accurate approximation is not

possible without knowing the density in the integration problem, which gives the starting

point of chapter 4. It is motivated by a highly practical problem: the joint distribution

for public and official data is often not available on fine geographical levels. In this case,

copula functions allow a combination of information from different sources, which enables

the researcher to proceed with the demand estimation.
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2 Simulation Error Causes Weak

Identification in Random Coefficient Logit

Models Using Aggregate Data

Co-authored with Florian Heiss, André Romahn and Constantin Weiser

2.1 Introduction

The seminal contribution of Berry, Levinsohn and Pakes (1995; henceforth BLP) has

provided economists with an oligopoly model of differentiated product markets that is

capable of producing realistic substitution patterns. The BLP model allows for partially or

fully unobserved preference heterogeneity among economic agents and explicitly deals with

the endogeneity of product attributes, typically price, and makes it possible to investigate

counterfactual market outcomes. Apart from being applied to markets and questions

that lie at the heart of Industrial Organization, the model’s use has spread to the areas

of environmental economics, insurance, voting preferences, and housing markets among

others (see Table 1 in Berry and Haile (2015)). The model is parsimonious - compared

to the standard logit model only a limited number of additional coefficients must be

estimated - and its flexible functional form allows for arbitrary correlations between prices

and markups. Products with similar attributes can be closer substitutes than products

with very different characteristics.1

Consistent identification of the preference parameters depends on the sample moments,

which are the product of relevant and valid instrumental variables (IV’s) and the BLP

model’s structural error term. To obtain estimates of the structural error, the observed

aggregate market shares have to be inverted. In contrast to the standard logit or nested

logit model, where this inversion can be performed analytically (Berry (1994)), in the

BLP model it must be computed numerically. BLP prove that this can be done using

a contraction mapping and a suitable numerical integration technique for any candidate

vector of preference parameters.

Our main finding is that with a crude numerical integration approach the estimate of the

1In the standard logit model prices and markups are negatively related: high-priced products have lower
markups than their low-priced rivals. Moreover, it is highly likely that the best substitute for any other
product is the product with the largest market share.
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2 Simulation Error Causes Weak Identification

structural error term is overwhelmed by simulation error, which propagates in the sample

moments and thereby in the GMM-IV objective function. Using the U.S. automobile data

from BLP, we find that this causes many local minima with widely varying parameter

estimates and model-implied economic predictions. We can therefore reaffirm the findings

of Knittel and Metaxoglou (2014). However, when we use a large number of simulation

draws and thereby reduce the propagation of simulation error in the objective function,

we obtain tightly clustered model estimates and economic predictions.

Broadly, our findings are related to weak identification in nonlinear GMM-IV estimation

as described in Stock, Wright and Yogo (2002). Here, the weak identification is not caused

by weak instruments, however, but by random simulation error in the estimates of the

structural error terms, which introduces many local minima in the estimator’s GMM-IV

objective function. Specifically, our findings are in line with the results from Berry, Linton

and Pakes (2004), who derive the properties of the BLP nested fixed point estimator when

the number of products becomes large. They prove that simulation error in the estimates is

bounded if and only if the number of simulation draws grows proportionally with the square

of the number of products. The impact of simulation error is therefore more pronounced

in samples with many products. In the U.S. automobile data markets have between 72

and 150 products. We find the estimator no longer fails to converge to a local minimum

for any of our random starting guesses if we use at least 5,000 Monte Carlo simulation

draws to compute the aggregate market share inversion. With our least precise numerical

integration approach, which as in Knittel and Metaxoglou (2014) uses 50 Monte Carlo

draws, we obtain convergence to a local minimum in less than 63 percent of the estimations

and a coefficient of variation among the objective values of the identified minima of more

than 30 percent. In contrast, with our most accurate integration approach, which uses

10,000 modified latin hypercube sampling draws (MLHS draws, Hess et al. (2006)) we

obtain convergence to a local minimum for 100 percent of the estimations and a coefficient

of variation of less than 3 percent. This tight clustering of the identified minima also carries

over to the parameter estimates and the model-implied economic predictions. To illustrate,

with 50 Monte Carlo simulation draws the 95 percent confidence interval for the average

own-price elasticity across all observations in the automobile data ranges from roughly

-24 to -3. When 10,000 MLHS draws are used instead, the confidence interval tightens to

the range from roughly -9 to -8. Our results are based on a total of 40,000 BLP model

estimations using the U.S. automobile data. We use two numerical integration techniques,

standard Monte Carlo and MLHS draws. For each of these approaches we consider eight

different numbers of simulation draws that range from 50 to 10,000. For each number of

draws, 50 independently sampled sets are generated and for each of these sets the BLP

model is estimated 50 times using the same specification and random starting guesses as

in Knittel and Metaxoglou (2014).

The importance of simulation error has largely been abstracted from in the existing
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2.1 Introduction

literature. Dubé, Fox and Su (2012) also identify the contraction mapping as the major

source of numerical instabilities, but focus on the convergence threshold of the contraction

that is set by the researcher and explicitly shut down the effect of simulation error.2 A

loose threshold speeds up the estimation, but also introduces approximation error in the

objective function. In qualitative terms, we can confirm their findings, but in our setting

with real world data and therefore simulation error we find the impact of the convergence

threshold to be of second order (see the bottom panel of Table 2.5).3 Reynaert and

Verboven (2014) show that approximately optimal instruments can substantially reduce

weak identification in BLP model estimation that is caused by weak instruments in the

first stage. Again, the impact of simulation error is shut down, because a highly accurate

numerical integration approach is used throughout the simulations and only markets with

at most 20 products are considered. Similarly, in ongoing work Gandhi and Houde (2016)

develop an alternative approach to approximately optimal instruments that avoids the

two-stage estimation procedure. Also here the effect of simulation error is shut down,

because the simulated market data has only 15 products and an accurate quadrature

method is used to integrate the aggregate market shares. Knittel and Metaxoglou (2014),

whose replication files we use to set up our own study, use the same set of 50 Monte

Carlo draws throughout all of their estimations. This allows for substantial simulation

error, but this aspect and the resulting weakly identified preference parameters are not

investigated. Our results show that the numerical instabilities that have been identified

by Knittel and Metaxoglou (2014) are driven by simulation error and these vanish once

the numerical integration of aggregate market shares is computed accurately with many

simulation draws.

The Knittel-Metaxoglou critique has urged researchers to more carefully implement

their estimations and to more transparently report implementation details and estimation

results (see the supplemental appendix of Goldberg and Hellerstein (2013) for an exam-

ple). This development has fostered the credibility of structural estimation using the BLP

demand model. We believe that our results further contribute to substantially simplify-

ing the reliable implementation and communication of BLP model estimations using the

nested fixed point algorithm.

The remainder of the paper is organized as follows. Section 2.2 briefly reviews the

BLP model and its identification using the nested fixed point algorithm. Section 2.3

theoretically shows how simulation error propagates in the GMM-IV sample moment and

objective function using results from Berry, Linton and Pakes (2004). Section 2.4 presents

the setup for our large-scale study of the BLP estimator using the U.S. automobile data.

2See p. 2263 in Appendix A of Dubé, Fox and Su (2012): “. . . Because our focus is not on numerical
integration error, we use the same sample of 1000 draws to compute the market shares in the data-
generation and estimation phases.”

3We consider convergence thresholds of 10−16, 10−9 and 10−4. Only the latter, extremely lax criterion,
yields a noticeably wider spread in the model estimates.
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2 Simulation Error Causes Weak Identification

We trace out the effects of simulation error in our 40,000 BLP model estimations in

Section 2.5. In our Conclusion, we provide some takeaways for empirical practice and

discuss the trade-off between numerical precision and thereby reliability on the one hand

and computational burden on the other.

2.2 The BLP Model

We briefly present the BLP model and its estimation using the nested fixed point algo-

rithm. Let i = 1, . . . , I index the population of consumers. Each consumer faces the

discrete choice among j = 0, . . . , Jt options in t = 1, . . . , T markets. j = 0 is the outside

option of not purchasing any of the Jt available differentiated products. Consumer i’s

indirect utility from purchasing product j in market t is given as follows.

uijt = δjt(ξt, θ1) + µijt(ξt, νit, θ2) + εijt, ui0t ≡ εi0t
δjt = x1,jtβ − αpjt + ξjt

µijt =
K∑
k=1

x
(k)
2j,tνit,kσk

(2.1)

The normalization of the outside option’s utility is necessary, because the level of util-

ity is not separately identified. We follow Nevo (2000) and notationally distinguish the

preference parameters that enter the estimation algorithm linearly, θ1 = (α, β), and the

parameters that enter nonlinearly, θ2 = σ. Note that x1,jt is the row vector of all K1

observed product characteristics in market t and x2,jt is a subset of x1,jt and contains

the K2 observed characteristics with preference heterogeneity in the population. δjt is the

mean utility of product j and it depends on price, pjt, the K1 observable characteristics,

x1,jt, and ξjt, the product characteristic that is unobserved by the econometrician. µijt is

the consumer-specific deviation from mean utility, which is driven by preference hetero-

geneity over the K2 characteristics in the population. This heterogeneity is captured by

νit. For the model’s exposition and to offer a meaningful comparison with the results in

Knittel and Metaxoglou (2014), we assume that the K2 dimensions of νt are independently

distributed. This assumption can be relaxed and preference correlations between the K2

characteristics can be modeled to achieve more flexible substitution patterns.

εijt is a consumer-product specific match value that we assume follows a Type I extreme

value distribution. This assumption gives closed form expressions for the consumer-specific

choice probabilities for product j.

sijt(δt, νt, θ2) =
exp(δjt + µijt(νt, θ2))

1 +
∑

k exp(δkt + µikt(νt, θ2))
(2.2)

The model-implied aggregate market share function integrates over the consumer-specific
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2.2 The BLP Model

choice probabilities, where we let f(νt) denote the population density of consumer hetero-

geneity.

sjt(δt, θ2) =

∫
exp(δjt + µijt(νt, θ2))

1 +
∑

k exp(δkt + µikt(νt, θ2))
f(νt)dνt (2.3)

This integral does not have an analytical solution, but can be solved numerically. We have

to deal with the fact, however, that the population distribution of consumer preferences

is not directly observed by the econometrician.4 We therefore have to assume a joint

distribution of preferences over the K2 characteristics and simulate νt accordingly. In

particular, we use r = 1, . . . , R simulation draws and assume that consumers’ preference

for each of the K2 characteristics is distributed standard normal, so that νrt,k ∼ N(0, 1).

The model-implied aggregate market share is the average taken over the R simulated

consumer-specific choice probabilities.

sjt(δt, θ2) ≈ 1

R

R∑
r=1

srjt =
1

R

R∑
r=1

exp(δjt + µrjt(θ2, ν
R
t ))

1 +
∑

k exp(δkt + µrkt(θ2, νRt ))
(2.4)

2.2.1 Identification

The unobserved characteristic or structural error term, ξ, is a vertical product attribute.

Consumer utility is increasing in ξ, so that consumers always prefer more of it. Contrary

to the econometrician, both firms and consumers observe ξ, which yields a positive corre-

lation between the error term and price. We obtain consistent estimates of the preference

parameters by imposing a standard GMM-IV moment restriction. Let zjt denote a row

vector of L ≥ K2 relevant and valid instrumental variables. The moment restriction is

E [G(θ2)] = E

 1

N

T∑
t=1

Jt∑
j=1

zjtξjt(θ2)

 = 0, (2.5)

where N =
∑

t Jt is the total number of observations in the sample.

Cost shifters that vary at the product level would be ideal candidates for the excluded

instruments. The required data, however, is usually not available. To construct suitable

instruments we make the assumption that the ξ’s are mean independent of the observed

product characteristics.

E (ξt|xt) = 0 (2.6)

If this assumption holds, any function of the observed product characteristics qualifies as

a potentially valid instrument for price. Such functions also give relevant instruments,

because the observed characteristics enter each product’s equilibrium pricing function.

BLP use this insight to derive a set of instruments that can be viewed as a first-order

4Depending on data availability, consumer heterogeneity can be partially directly observed by using
(relevant) consumer demographics. This introduces an additional term that enters utility additively
separably and that interacts the observable product attributes and consumer demographics.
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2 Simulation Error Causes Weak Identification

approximation of a pricing game played between firms: for each product j sold by firm

f the observable characteristics of all products sold by the same firm are summed over

and the observable characteristics of all products sold by rival firms are summed over,

zjt,own =
∑

k 6=j,k∈Fft xkt, zjt,other =
∑

k,k/∈Fft xkt. This gives 2K1 ≥ K2 + 1 excluded

instruments to identify the price coefficient, α, and the standard deviations of the random

coefficients, θ2.

Let θ∗2 denote the true population preference parameters. Given a suitable weighting

matrix, W , we obtain consistent and as Berry, Linton and Pakes (2004) prove asymptoti-

cally normally distributed estimates of θ∗2 by minimizing the GMM-IV objective function,

which is a norm of the sample moment 1
N

∑T
t=1

∑
j zjtξjt.

5

θ̂2 = arg min
θ2
J (θ2) = arg min

θ2
ξ(θ2)′zWz′ξ(θ2) (2.7)

Here, ξ and z are the vertically stacked market-specific structural error terms and instru-

ment matrices, respectively.

2.3 Simulation Error and its Propagation

Our large-scale study of the BLP estimation algorithm uses 20 years of nationally aggre-

gated car sales, which is based on millions of individual purchase decisions. Sampling error

is therefore likely to be negligible in our estimations. To simplify notation in this section,

we therefore abstract from sampling error and assume throughout that market shares are

observed without error. Without loss of generality, we also drop the time subscript here.

For each candidate vector of the nonlinearly entering preference parameters, θ2, the

BLP model rationalizes the observed shares in the data. The model-implied and observed

shares are matched.6

Sj = sj(δ
match, θ2, ν

R) for all j, (2.8)

where S denotes the observed market shares. Berry (1994) proves the existence of a fixed

point that gives the unique solution, δmatch, to this system of equations for any candidate

vector θ2 and set of simulation draws ν. We iterate over the equation

δiter+1
j = δiterj + log(Sj)− log(sj(δ

iter, νR, θ2)) (2.9)

until the distance between successive iterates falls below the chosen convergence threshold,

|δiter+1
j − δiterj | ≤ εinner for all j. If this inequality holds, the current update for the

vector of mean utilities is accepted as δmatch. We obtain the corresponding vector of

structural error terms as the residual of a two-stage least squares regression of δmatch on

5We assume that the weighting matrix is homoscedastic, W = (z′z)−1.
6The magnitude of the relative approximation error, |(Sj − sj)/Sj |, is bounded from above by the inner

convergence threshold, εinner.
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2.3 Simulation Error and its Propagation

the observed product characteristics. This step also delivers the estimates of the linearly

entering parameters.

δmatchj = x1,jβ − αpj + ξmatchj (2.10)

ξmatch is therefore a function of θ2, the observed market shares and product characteristics,

and the set of simulation draws. To reduce notation, we do not explicitly write out the

dependence on the observed shares and product characteristics. Thus, we let ξmatch(θ2, ν)

denote the vector of unobserved characteristics that matches the observed shares with

the model-implied shares. It is important to note that this only gives the true vector

of unobserved product characteristics, ξ∗, if it is evaluated at the population vector of

preference parameters and the population distribution of preferences, ξ∗ = ξmatch(θ∗2, ν
∗).

2.3.1 The Propagation of Simulation Error in the Sample Moment

At each iteration of the contraction mapping, (2.9), the model-implied aggregate market

shares must be computed using (2.4). Simulation error is introduced because of differences

between the consumer population and the simulated sample of consumer preferences using

R simulation draws.7 Following Berry, Linton and Pakes (2004), we define the vector of

simulation error as follows.

eR ≡ s(ξmatch(θ2, ν
∗), θ2, ν

∗)− s(ξmatch(θ2, ν
∗), θ2, ν

R) (2.11)

By construction, simulation error vanishes for any candidate parameter vector θ2 if we

were able to impose the true population distribution of preference heterogeneity, ν∗, when

computing the model-implied aggregate market shares.

Berry, Linton and Pakes (2004), show that ξmatch(θ2, ν
R) can be expanded around the

point (θ∗2, ν
∗).

ξmatch(θ2, ν
R) ≈ ξmatch(θ2, ν

∗)︸ ︷︷ ︸
exact inversion

−
[
∂s(ξ∗, θ∗2, ν

∗)

∂ξ′

]−1

eR︸ ︷︷ ︸
effect of simulation error

(2.12)

Here, [∂s/∂ξ′] is the matrix of market share derivatives with respect to the unobservable

product characteristics with dimension J × J .

The first term on the right-hand side is the estimate of the structural errors that we

would obtain if we could match the population distribution of preference heterogeneity

exactly in the numerical integration of the aggregate shares. We only use a sample of

R simulation draws, however, which causes deviations of the model-implied shares from

their observed sample counterparts at ξ∗. How these deviations affect our computations

7We ignore an additional potential error here. We impose that consumer preference heterogeneity follows
a normal distribution. The true preference distribution could be non-normal, which would lead to
biased parameter estimates.
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2 Simulation Error Causes Weak Identification

of ξmatch depends on how sensitive ξmatch is with respect to changes in the entries of

the model-implied aggregate market share vector, s. This sensitivity is measured by the

inverse of the matrix [∂s/∂ξ′]. The smaller the derivatives, the larger is the distortion of

ξmatch that is caused by simulation error. Thus, the inversion of aggregate market shares

magnifies simulation error in the estimates of the structural error term.

By distorting the estimates of ξ, simulation error propagates in the sample moments

and thereby in the GMM-IV objective function. Plugging (2.12) into the sample moment

gives

G(θ2, ν
R) ≈ 1

N

T∑
t=1

Jt∑
j=1

zjt

(
ξmatch(θ2, ν

∗)−
[
∂s(ξ∗, θ∗2, ν

∗)

∂ξ′

]−1

eR

)
, (2.13)

which stresses that the computed sample moment depends explicitly on the simulation

error that is caused by the specific set of draws νR. There is an analogy to the definition

of weak identification in Stock, Wright and Yogo (2002) for nonlinear GMM estimation.

Given that eR is random and propagates into the GMM-IV objective function, the shape

and location of the objective function, (2.7), are affected. There can be several values

for θ2 6= θ∗2 for which the objective function attains a local minimum. This explains how

many local minima with widely varying parameter estimates and economic implications

are obtained with a crude numerical integration approach.

Berry, Linton, and Pakes (2004) also show that the extent of the magnification depends

on the number of products in the market. In equilibrium as more and more products

enter a market it must be the case that product-level market shares fall. This is because

in the BLP model each product is substitutable with every other product to some extent.

Specifically, it is assumed that all shares move inversely proportional with J (Condition

S/equation (20) in Berry, Linton and Pakes (2004)). The derivatives of the shares with

respect to ξ are proportional to market shares and therefore also decline with J . As

simulation error is scaled by the inverse of [∂s/∂ξ′], the magnification of simulation error

is greater in samples with many products. To bound simulation error as the number of

products becomes large, the number of simulation draws must grow proportionally with

the square of the number of products in the market.

2.4 Estimation Setup

We study how numerical integration accuracy affects the behavior and outcomes of the

BLP nested fixed point estimation algorithm using the original automobile market data

from BLP. This data set covers 20 years of annually aggregated car model-level sales

for the United States starting in 1971.8 We think this choice presents two advantages.

8For a detailed description of the data set, see BLP.
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First, this is a real world data set where the number of products ranges from 72 to 150

and that is based on a large sample of individual consumer purchases. Sampling error,

therefore, is likely to be negligible, while simulation error should play a substantial role

in this setting. Second, the same data set has been used by Knittel and Metaxoglou

(2014; henceforth KM) to carefully document several numerical instabilities in the BLP

estimation algorithm. The study is exemplary in terms of its replicability and transparency

and has motivated researchers to more carefully implement and report the outcomes of

their BLP model estimations (Hellerstein and Goldberg (2013)). We therefore base our

large-scale study of the BLP estimation algorithm on their replication files to demonstrate

that the reported numerical instabilities are solved once the numerical integration of the

model-implied aggregate shares is performed accurately. Specifically, we estimate exactly

the same specification using the same set of instruments and random starting guesses for

θ2.

2.4.1 Model Specification

Consumers’ indirect utility is specified as follows.

uijt = βi0 + hpwtjtβi1 + spacejtβ2 + airconjtβi3 +mpgjtβi4−αipricejt + ξjt + εijt, (2.14)

where hpwt is the horsepower-weight ratio, space is the length times the width of the

car, aircon is a dummy indicating whether the car has air conditioning built in and mpg

measures the car’s miles per gallon. Except for space all observable characteristics, includ-

ing price and the constant term, have a random coefficient. The specification therefore

estimates 5 random coefficients in total. We assume that the random coefficients are dis-

tributed normally and independently. Thus, αi = α + σpνi,p and βi,k = βk + σkνi,k with

νi,k, νi,p ∼ N(0, 1) for k = 1, . . . ,K2 = 5.

2.4.2 Instruments

We use the instruments from the Knittel and Metaxoglou (2014) replication files. These

are the standard characteristics-based or BLP-type instruments. Using all five non-price

product characteristics, including the constant, these instruments sum over the charac-

teristics of all other cars produced by the same firm, and sum over the characteristics

of all cars produced by rival firms. We therefore have 10 instruments for price and the

5 nonlinearly entering parameters. Given that the literature on approximately optimal

instruments shows that these standard characteristics-based instruments can be weak and

thereby yield weak identification of the random coefficients, it is important for us to show

that for specification (2.14) this is not the case. We simply run the first-stage regression

of price on the instruments for two cases. First, we only explain the variation in price

using the excluded (BLP-type) instruments. This regression gives an F-statistic of 43.9.
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2 Simulation Error Causes Weak Identification

Second, we use the full instrumental variable matrix that also contains the observed non-

price characteristics, which given their assumed exogeneity instrument for themselves. Not

surprisingly, this gives a higher F-statistic, namely roughly 248. To assess whether the

observed characteristics drive out the excluded instruments, we compute the F-statistic

for the null that only the coefficients of the excluded instruments are zero. This F-statistic

has a value of 43.7, almost unchanged from the first-stage regression without the observed

characteristics. In both cases, we comfortably pass the rule of thumb that the F-statistic

should be greater than 10. The excluded instruments also comfortably pass the critical

values reported in table 1 of Stock, Wright and Yogo (2002). Gandhi and Houde (2016)

also suggest an ex-ante test of weak identification that estimates the standard logit model,

which the BLP model collapses to for θ2 = 0, with the excluded instruments as additional

regressors. If the estimated coefficients for the instruments are zero, then these instruments

fail to reject the logit model and thereby suggest that there is no preference heterogeneity

among consumers. We test the hypothesis that the coefficients for the excluded instru-

ments are all zero in this setting and can comfortably reject the null at confidence levels

beyond 99 percent. We conclude that our results are driven by simulation error and not

by weak instruments.9

2.4.3 Numerical Integration

The existing literature has made extensive use of Monte Carlo, quasi-Monte Carlo and

quadrature methods (Heiss and Winschel (2008)). For a given computational burden

qMC and quadrature methods are capable of giving better approximations than standard

Monte Carlo methods. Nevo (2001) and Sovinsky Goeree (2008), respectively, use Halton

draws and antithetic sampling to increase simulation efficiency, for example.

We base the numerical integration of the model-implied aggregate shares, (2.4), on two

Monte Carlo simulation methods: the standard Monte Carlo approach and modified latin

hypercube sampling draws (MLHS draws). Hess, Train and Polak (2006) find that in

finite samples MLHS draws perform roughly on par with Halton draws. We also find

that roughly 4 to 5 times as many standard Monte Carlo draws are needed to attain

the same integration accuracy as with a given number of MLHS draws. For our study

MLHS draws offer the advantage that it is straightforward to obtain measures of how the

number of simulation draws affects the spread of estimation outcomes. We can simply

compute the variance of some estimation outcome for a given number of simulation draws.

With standard Halton draws or any quadrature method this is no longer the case, because

for these approaches the simulation draws or nodes are based on deterministic number

sequences. By construction, therefore, for a given number of draws or nodes there is no

variation across different estimations. To obtain a measure of simulation error in the

9This is also evident by the fact that the only model input that varies in our estimations is the specific
set of simulation draws.
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estimation outcomes, we would have to compute error bounds for these methods, which

are model-specific and cumbersome to implement.10

We use 8 different numbers of draws for both simulation approaches that range from

50 to 10,000.11 To exclude the possibility that our findings are due to any specific set of

draws, we generate 50 independently sampled sets of ν for each of the 8 different numbers

of draws.

Therefore, with the 50 starting guesses for θ from KM, each number of draws requires

us to estimate specification (2.14) 2,500 times. With 8 different numbers of simulation

draws and 2 simulation approaches, we estimate the BLP model 40,000 times.

2.4.4 Optimization Algorithms and Inner Convergence Threshold

An important part of the Knittel-Metaxoglou critique is that the choice of optimization

algorithm can have a substantial effect on the estimation outcomes. Similarly, Dubé, Fox

and Su (2012) caution that a loose inner convergence threshold can produce many local

minima with widely varying estimates. We investigate both of these aspects in our setting

and with an accurate numerical integration approach we find the choice of optimization

algorithm to be irrelevant (see the top panel of Table 2.5) and the impact of the inner

convergence threshold to be of second order (see the bottom panel of Table 2.5). We

therefore base all of our 40,000 estimations in the main part of our study on a trust region

optimizer with an analytical gradient12 and on a stringent inner convergence threshold of

10−16.

2.4.5 Benchmark Comparison and Additional Computational Details

We deviate from the implementation of the nested fixed point algorithm in some aspects

from KM. The changes that we implement make the algorithm more robust and enforce a

uniform convergence threshold for the market share inversion throughout. We detail these

changes in the Appendix, where we also define the criteria for a candidate parameter vector

to identify a local minimum. Using the same set of 50 Monte Carlo draws as KM, we can

also demonstrate that our changes do not fundamentally impact the Knittel-Metaxoglou

critique at this level of numerical integration accuracy. Table 2.1 presents the results of

estimating specification (2.14).

We find that 44 of the 50 random starting guesses for θ2 yield a local minimum. Round-

ing the objective function values of these minima to two digits, we obtain 5 minima that

range between 207.72 and 226.94. This is a more narrow range than that reported by

10We have also found that numerical integration on sparse grids works well in the majority of estimations,
but when a poor guess is used for the nonlinearly entering parameters the method produces inadmissible
negative market shares in about 10 percent of the estimations.

11These numbers are 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000.
12Specifically, we use Matlab’s fminunc optimizer algorithm. This corresponds to KM’s DER1-QN1 opti-

mizer.
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Table 2.1: Estimated Random Coefficients Using KM’s 50 Monte Carlo Draws

Min 1 Min 2 Min 3 Min 4 Min 5

price 0.328∗∗ 0.182 0.162 0.107∗∗ 0.134∗∗

constant 7.480∗∗ 2.720∗∗ 5.232∗∗ 2.001 1.598∗∗

hpwt 2.565 1.063 0.165 5.781∗∗ 1.481
aircon 8.800∗∗ 0.484 3.629 0.425 4.231∗∗

mpg 0.098 0.687 0.134 1.767∗∗ 1.163∗∗

J (θ̂2) 207.7 215.1 216.0 224.6 226.9
ηjj -10.53 -7.782 -5.787 -4.606 -5.387

η -1.007 -1.374 -0.946 -0.945 -1.263
Wald-statistic 23.26 87.49 72.69 112.4 93.74

Note: ∗ and ∗∗ indicate statistical significance at the 95 and 99 percent confidence levels, respectively. Only
the estimated random coefficients, θ2, are shown. All inputs to the estimation, including the 50 simulated
draws for consumer preference heterogeneity, νKM , are identical to those used by KM. We compute HAC
standard errors. ηjj is the average own-price elasticity and η is the aggregate demand elasticity averaged
over all 20 markets. The null hypothesis of the Wald test is θ2 = 0.

KM. This indicates that at least some of the lack of robustness in their estimation results

could stem from scaling issues, which we avoid (see the Appendix).13 Overall, however,

the Knittel-Metaxoglou critique is broadly reaffirmed. For each random coefficient the

ratio of its greatest to smallest point estimate across the 50 starting guesses is at least

3 (price) and reaches up to 35 (hpwt). The model-implied average own-price elasticity

and the aggregate demand elasticity vary by factors of roughly 2.3 and 1.4, respectively.

Moreover, the statistical significance of individual random coefficients changes substan-

tially across minima. In fact, for each coefficient it is possible to select a minimum where

that coefficient is either statistically significant or insignificant at the 95 percent confidence

interval. Finally, the Wald statistic we obtain by testing the estimated BLP model against

the simple logit model also ranges widely from 23 to 112.

2.5 40,000 BLP Model Estimations

We present the outcomes of the 40,000 BLP model estimations in two parts. First,

we demonstrate how simulation error propagates in the GMM-IV sample moments and

thereby in the objective function of the estimator. This propagation explains the numerical

instabilities documented by KM. Moreover, simulation error can be reduced substantially

by increasing the number of simulation draws and thereby raising the accuracy of numer-

ical integration.

13KM’s high cutoff of 30 for the Euclidean norm of the gradient is likely to contribute to a wider range of
outcomes, too.

16



2.5 40,000 BLP Model Estimations

Second, we document how the mean and spread of the estimation outcomes and the

corresponding economic predictions change with the number of simulation draws. From

500 draws onwards the spread of the estimation outcomes is falling monotonically in the

number of simulation draws for both integration approaches. The estimated parameters

and economic implications fall into increasingly narrowing intervals. With regards to

the mean of the estimation outcomes, our findings show that simulation error biases the

estimation outcomes in the sample of U.S. automobile market data. Thus, as the number

of simulation draws changes, so do the means of the estimation outcomes.

2.5.1 Weak Identification Caused by Simulation Error

Simulation error propagates in the estimates of the structural error term. Figure 2.1

shows how the number of simulation draws, which is inversely related to the magnitude of

simulation error, affects the estimates of the structural error term. Both panels plot the

empirical distributions of the estimated unobservable characteristic for the products with

the smallest and largest market shares in the sample. These distributions are based on

our least accurate numerical integration approach, namely 50 Monte Carlo draws (blue),

and our most accurate approach, 10,000 MLHS draws (red). For each of these integration

approaches the model is estimated 2,500 times and each estimation that converges to a

local minimum gives us one estimate of the structural error.

The differences between the distributions are remarkable. Using only 50 Monte Carlo

draws, the variances of the estimated structural errors are 0.843 and 0.952 for the products

with the smallest and greatest market shares in the sample, respectively. If we use 10,000

MLHS draws, instead, we obtain corresponding variances of only 0.001 and 0.004. In

terms of 99 percent confidence intervals, with 50 Monte Carlo draws, the estimate of

the unobservable attribute for the products with the smallest and greatest shares are,

respectively, the ranges from -9.5 to -4.8 and -0.6 to 5.8. Using our most accurate numerical

integration approach gives the corresponding confidence intervals of -7.1 to -6.9 and 2.6

to 3.0. Adopting a crude integration approach, therefore, produces simulation error that

easily overwhelms the estimates of the error terms. This holds across the sample. We

obtain qualitatively identical figures for the products with the mean and median market

shares, for example. Thus, simulation error randomly perturbs the estimates of each

product’s unobserved characteristic and thereby affects the shape of the GMM-IV objective

function.

As a second illustration, we therefore trace out how the shape of the GMM-IV objective

function depends on the number of simulation draws. As the starting point for this exercise

we take the parameter estimate from our global minimum candidate, which is based on

numerical integration using 10,000 MLHS draws: θ̃2 = (1.52, 5.84, 3.39, 0.41, 0.10)′. It

is not essential that we pick this specific point. We would obtain qualitatively identical

results at other candidate values of θ2. We hold all σ values constant except for σprice.
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2 Simulation Error Causes Weak Identification

Figure 2.1: Empirical Distribution of ξ̂ for Selected Products

Note: Both panels show the empirical relative frequency plots for the estimated structural error term
across 2,500 estimations of the BLP model for a given number of simulation draws. The 2,500 estimations
are based on 50 independently sampled sets of preference heterogeneity for a given number of draws. For
each of these 50 sets, we estimate the BLP model using 50 random starting guesses. With 50 MC draws
only 1,562 of the 2,500 estimation runs converge to a local minimum. For the 10,000 MLHS draws all
estimations converge. Estimations that fail to converge are not included in the plots.

Figure 2.2 plots the shape of the objective function along the σprice-dimension for several

sets of simulation draws. The red dashed, blue dashed and solid green lines are respectively

based on three independently generated samples of 50, 500 and 5,000 MLHS draws. With

50 draws, the shape of the objective function changes markedly across the three sets. One

of the three sets attains a local minimum at zero, which implies no preference heterogeneity

along the price dimension. This outcome is strongly rejected by our full set of estimations.

A second set produces a shape that yields two minima along the price dimension. The

third set has only one local minimum, but gives a biased estimate of σprice compared

with our global minimum candidate. For 500 MLHS draws we can already see that the

shape of the objective function stabilizes. There is only one local minimum for all sets,

which is not located at zero. There is, however, visible variation in the location of the

minima. For 5,000 MLHS draws the three sets generate objective functions that appear

to be congruent. The shape of the objective is stable, the minimum at zero is ruled out

and the local minima across the three sets are located very close to our global minimum

candidate.

Lastly, we present a variation on this theme. Instead of tracing out the objective in one

dimension for different sets of simulation draws, we fix the nonlinearly entering parameters
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Figure 2.2: Shape of the Objective Function at the Global Minimum Candidate

σ

Note: The objective function is plotted along its σprice dimension for 9 sets of Monte Carlo simulation
draws: 3 sets using 50 draws (red dashed), 3 sets using 500 draws (blue dotted), and 3 sets using 5,000
draws (black solid). To ensure that all objective functions share the same value at σprice = 0, we subtract
the objective value at that point from each of the 9 objective function plots.

at our global minimum candidate, θ̃2, and only vary the set of simulation draws. For each

set, we therefore evaluate the objective function at exactly the same point. Without

simulation error, there would be no variation across the objective function values that

we obtain. To fix notation, let J (ξ(θ̃2), ν
m
i ) denote the objective function value that we

obtain at θ̃2 using the particular set of simulation draws νmi , where we use simulation

approach m = {MC,MLHS} and generate i = 1, . . . , 1000 independent samples. We vary

the number of draws between 50 and 100,000. Table 2.2 presents the results.

The spread in objective function values is striking. With only 50 Monte Carlo draws

we see a range of roughly 2,500 for the objective function values. As we hold everything

else constant, the different random samples of ν are the sole driver of this effect. To

assess how the variation in objective values changes with the number of simulation draws

across the independently drawn samples, we report the coefficient of variation. For only 50

draws we obtain coefficients of roughly .5 and .34 for Monte Carlo and MLHS integration,
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Table 2.2: Objective Function Values Obtained Using Monte Carlo and MLHS Draws

Monte Carlo draws MLHS draws

# draws J σJ σJ /J range of J J σJ σJ /J range of J
50 726.7 360.5 .496 2,471 381.6 130.8 .343 1,002
500 286.9 70.6 .246 455.3 251.9 37.9 .151 235.7
5,000 242.6 22.3 .092 141 238.1 11.1 .047 72.3
100,000 236.9 4.8 .020 30.8 236.8 2.2 .009 14.8

Note: J and σJ denote the mean and standard deviation of the objective function values for each number
of simulation draws.

respectively. Given that these figures are based on evaluating the objective function at

exactly the same point, this variation is indeed substantial. As we raise the number

of simulation draws, however, we can observe a large drop in the coefficients of variation.

For 10,000 draws the Monte Carlo and MLHS integration approaches deliver coefficients of

around .07 and .03. Raising the number of draws further to 100,000 pushes the coefficient

of variation for the MLHS approach below 1 percent, while its counterpart for Monte Carlo

integration is 2 percent. Finally, we can see that the mean of the objective function tends

towards the same value of roughly 237 for both simulation methods.

These results show that simulation error randomly disturbs the point estimates of the

structural error terms. These error terms directly enter the sample moment and thereby

affect the shape of the GMM-IV objective function. Substantial simulation error then

produces many local minima with widely ranging parameter estimates.

2.5.2 Estimation Results

We present three sets of estimation outcomes. First, we trace out how an increasing

number of simulation draws affects the behavior and robustness of the BLP estimator.

Second, we turn to the point estimates of the 5 random coefficients and their statistical

significance. Third, we examine the model-implied economic predictions by computing the

own-price elasticities at the product level and the predicted price, profit, and consumer

welfare effects of a counterfactual merger between Chrysler and GM.

Behavior and Robustness of the Nested Fixed Point Estimator

We characterize the behavior of the estimator by examining the range and number of

the identified minima. Table 2.3 shows that an increase in the number of simulation

draws tightens the range and reduces the number of the identified local minima for both

integration approaches. The pattern can be succinctly summarized using the coefficient

of variation. Increasing the number of draws from 50 to 10,000 reduces the coefficient of
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2.5 40,000 BLP Model Estimations

Table 2.3: Range and Spread of the Identified Minima

Monte Carlo draws MLHS draws

# draws J σJ /J range of J # Minima J σJ /J range of J # Minima

50 198.6 .323 283 126 179.6 .361 254 149
100 195.5 .311 265 129 183.9 .302 286 136
200 199.6 .298 278 128 188.0 .240 222 132
500 209.3 .201 222 123 204.4 .154 157 111
1,000 211.5 .146 166 99 207.5 .123 148 102
2,000 214.7 .135 159 93 221.7 .078 87 65
5,000 225.1 .090 101 80 229.3 .038 53 38
10,000 230.1 .065 82 57 232.1 .029 40 32

Note: MLHS stands for modified latin hypercube sampling. J and σJ denote the mean and standard
deviation of the objective function values for each number of simulation draws. To count the number of
unique minima we take all identified minima from the 2,500 estimations that are run for each number of
draws and round the objective function values to whole numbers.

variation for Monte Carlo integration from roughly 32 percent to 6.5 percent. For MLHS

draws the decrease is more substantial from 36.1 percent to 2.9 percent. Concomitantly,

the number of unique minima is reduced by a factor exceeding 2 and close to 5 for Monte

Carlo and MLHS draws, respectively. The 32 unique minima that are identified using our

most accurate numerical integration approach are obtained across 50 independent samples

of preference draws. Thus, there is less than one minimum per set of draws. Moreover, as

we compute the model aggregate shares more accurately the reduced number of minima

fall into a narrowing range of values.

As a measure of the estimator’s robustness we use the fraction of starting guesses that

yield a local minimum. With 50 simulation draws, we see in Table 2.4 that for both simu-

lation approaches a large fraction of estimations fails to converge to a local minimum. For

Monte Carlo simulation this fraction is roughly 40 percent, while for MLHS draws almost

45 percent of the estimations fail to converge to a local minimum. With 500 simulation

draws this fraction of failed estimation runs drops below 20 percent for both approaches

and from 5,000 Monte Carlo draws and 2,000 MLHS draws almost every estimation run

identifies a local minimum. With 10,000 draws both approaches return a local minimum

for all estimation runs. Thus, with high integration accuracy the particular starting guess

has no effect on whether the estimator converges to a minimum or not.

Additionally, to evaluate the computational complexity of identifying a candidate min-

imum we trace out how the number of simulation draws affects the number of iterations

in the estimator’s inner loop, the nested fixed point, and the number of objective func-

tion evaluations, the outer loop, that are required for convergence. Table 2.4 shows that
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2 Simulation Error Causes Weak Identification

Table 2.4: Behavior of the Nested Fixed Point Estimator

Monte Carlo draws MLHS draws
fraction objective inner fraction objective inner

# draws minima calls iterations minima calls iterations

50 0.625 115.7 40.44 0.545 119.8 43.73
100 0.752 104.4 37.55 0.586 102.6 39.17
200 0.768 89.52 34.56 0.712 97.07 36.73
500 0.821 79.03 33.00 0.842 84.78 33.49
1,000 0.874 73.75 32.52 0.949 76.06 33.30
2,000 0.925 68.62 31.71 0.993 66.14 31.67
5,000 0.999 61.11 30.65 0.999 60.21 30.21
10,000 1.000 58.34 29.84 1.000 56.33 29.72

Note: MLHS stands for modified latin hypercube sampling. All statistics are computed as averages across
all estimations for a given number of draws that converge to a local minimum. The number of objective
calls is the number of GMM-IV objective function evaluations the optimization algorithm requires to
converge to a candidate minimum.

this measure of computational complexity is roughly identical across the two simulation

approaches. In terms of the number of objective function evaluations we see a substan-

tial reduction when raising the number of draws from 50 to 10,000. The latter requires

around 57 iterations, while the former needs more than 115 evaluations to arrive at a local

minimum candidate. We also obtain a sizable reduction in the number of iterations in the

contraction mapping from more than 40 to less than 30.

Finally, we examine how sensitive the estimation outcomes are with respect to the choice

of the optimization algorithm and the choice of the inner convergence threshold for the

aggregate market share inversion. The top panel of Table 2.5 shows how the choice of

optimization algorithm affects the outcomes of the estimation. The results are based on

running the 2,500 estimations each for 50, 5,000 and 10,000 MLHS draws with different

optimization algorithms. We select one representative algorithm from three classes of

optimization approaches. The Nelder-Mead algorithm falls into the category of derivative-

free optimizers, the BFGS optimizer is a quasi-Newton optimizer that is derivative-based

and lastly, simulated annealing belongs to the class of stochastic optimizers. For the

sake of brevity, we focus on the average values of the objective function, σprice and the

estimates that are based on MLHS draws only. We obtain qualitatively identical outcomes

for the remaining coefficients and the outcomes that we obtain using standard Monte Carlo

draws. With 50 draws, we can see differences in the average outcomes and their empirical

95 percent confidence intervals across the optimization approaches. The estimates that

we obtain with simulated annealing stand out in particular. Similar to KM, we have

found that this optimization algorithm does not converge within a reasonable amount of
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2.5 40,000 BLP Model Estimations

Table 2.5: Choice of Optimizer and Convergence Threshold

Optimizer Effect

Nelder-Mead BFGS Simulated Annealing

draws J σprice J σprice J σprice
50 175.1 2.466 170.3 2.662 359.8 0.919

[22.53, 251.7] [1.337, 4.228] [24.34, 251.7] [1.334, 5.912] [234.9, 628.5] [.037, 2.466 ]

5,000 234.4 1.472 233.2 1.484 309.7 1.000
[227.6, 244.4] [1.327, 1.533] [227.6, 242.0] [1.428, 1.531] [259.6, 405.7] [.089, 1.866]

10,000 231.4 1.460 231.6 1.465 319.5 1.03
[225.4, 237.9] [1.423, 1.485] [225.4, 236.9] [1.446, 1.484] [253.2, 481.6] [.243, 1.888]

Convergence Threshold Effect

50 MLHS draws 10,000 MLHS draws
εinner 10−4 10−9 10−16 10−4 10−9 10−16

J 241.4 175.8 170.3 245.8 231.6 231.6
[197.8, 311.2] [43.88, 251.7] [24.3, 251.7] [224.6, 265.5] [225.4, 236.9] [225.4, 236.9]

σprice 1.488 2.453 2.662 1.394 1.466 1.465
[.859, 2.462] [1.335, 4.089] [1.334, 5.911] [1.169, 1.922] [1.446, 1.486] [1.446, 1.484]

Note: σprice is the average of the estimated σprice coefficients. The 2.5th and 97.5th quantiles of the outcome
distributions for the objective function values and σprice are shown in square brackets. To conserve space,
we only report the outcomes from the MLHS simulation approach. The results are based on running the
full 2,500 estimations each for a given number of draws. Thus, the top panel is based on a total of 22,500
estimations and the bottom panel is based on 15,000 estimations. The reported results for the simulated
annealing optimizer are based on 1,000 iterations of the optimizer. As can be seen, the simulated annealing
optimizer did not converge at this point.

time. For the Nelder-Mead and quasi-Newton approaches the differences in estimation

outcomes turn out to be negligible for both 5,000 and 10,000 MLHS draws. Thus, with

a sufficiently accurate numerical integration of the aggregate market share function, the

choice of optimization algorithm becomes irrelevant in our setting.

In the bottom panel of Table 2.5 we present evidence on the role of the inner convergence

threshold, which Dubé, Fox and Su (2012) demonstrate to have a major impact on the

behavior of the BLP estimator. We run the 2,500 estimations each using 50 and 10,000

MLHS draws with three different inner convergence thresholds: 10−4, which is the loose

threshold defined by Dubé, Fox and Su (2012), 10−9 and 10−16. We impose the latter for all

of our 40,000 estimations. With only 50 MLHS draws we indeed find that the convergence

threshold of the nested fixed point has a measurable impact on the estimation outcomes.

The estimates of σprice and the identified minima of the objective differ across the three

different thresholds. With 10,000 MLHS draws, however, only the very lax criterion of

10−4 delivers results that differ markedly. The lax criterion yields a wider range for the

identified minima and σprice. The more stringent criteria of 10−09 and 10−16 are virtually
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2 Simulation Error Causes Weak Identification

Figure 2.3: Range of Random Coefficient Estimates and Their Joint Statistical Significance
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Note: To make changes in and around the medians of the point estimates easier, we do not plot the outliers.
Moreover, to conserve space, we only show the box plots for the qMC estimations. The MC counterparts
are qualitatively identical. The Wald statistic is distributed chi squared with 5 degrees of freedom. The
null hypothesis is that all random coefficients are zero, θ2 = 0.

identical in terms of the estimation outcomes. Thus, a sufficiently high simulation accuracy

also substantially diminishes the impact of the nested fixed point’s convergence threshold.

Estimated Random Coefficients and their Statistical Significance

To assess whether the estimated random coefficients are jointly statistically significant,

we compute the Wald statistic for each local minimum. The null hypothesis is that the

standard logit model is true, so that H0 : θ2 = 0.14 We do not reject the null for one

out of a total of 33,479 identified minima. The evidence in favor of consumer preference

heterogeneity is therefore overwhelming. This is also in line with the evidence above that

our findings are not driven by weak instruments, but by the propagation of simulation

error.

The boxplots in Figure 2.3 clearly show, however, that we obtain a lot of uncertainty in

the random coefficient’s point estimates when low numbers of draws are used to simulate

14The test statistic follows a chi squared distribution with the degrees of freedom being equal to the
number of entries in θ2. At a 95 percent confidence level and with 5 random coefficients, the critical
value for the Wald statistic is roughly 11.07.
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2.5 40,000 BLP Model Estimations

ν. The range for the point estimates tightens drastically, however, as we move to 10,000

draws for both integration approaches. The random coefficient for price, for example, lies

in a range between roughly 1.2 and 1.67 with a mean of 1.47 with 10,000 MLHS draws.

The corresponding range for 50 MLHS draws is roughly 0.2 to 7.6 with a mean of 2.6. The

random coefficient for the constant has a mean of 4.5 across all identified minima and also

lies in a tight range. For air conditioning and miles per gallon the point estimates strongly

tend toward zero. We see a similar trend for the random coefficient that is placed on the

horsepower-weight ratio. Compared to the other four coefficients, however, the range of

the point estimates is still quite large for this random coefficient. We would need an even

higher number of draws to tighten this range further. This finding also illustrates that some

random coefficients can be challenging to estimate. Nevertheless, when we examine the

individual statistical significance of the random coefficients, a clear pattern emerges, which

also applies to the estimated preference heterogeneity for the horsepower-weight ratio. The

t-statistic for σprice indicates that this coefficient is highly statistically significant. In fact,

with 10,000 MLHS draws there are only 8 cases, where the t-statistic drops below 2.15 For

σconstant, we observe a similar pattern. Out of 2,500 estimations only 207 yield a t-statistic

below 1.65 and only 358 estimations produce t-statistics below 2. For each σmpg and σair

there is not a single case out of 2,500 estimated minima where the t-statistic exceeds 2.

For σhpwt, there are only 19 such instances. Thus, with sufficient integration accuracy,

it turns out that only the random coefficients on price and the constant are statistically

significant. The average value of the Wald statistic, however, increases with the number

of simulation draws even though we are left with only two statistically significant random

coefficients. The range of the Wald statistic also tightens considerably.

Model-Implied Economic Outcomes

We assess how sensitive the model-implied economic predictions are to numerical approxi-

mation error by characterizing the distribution of own-price elasticities and the simulated

effects of a merger between GM and Chrysler. Table 2.6 presents statistics on the first

and second moments of the distribution of own-price elasticities. We summarize the first

moment of the distribution by showing the range and mean of the average own-price elas-

ticity. With only 50 draws, we obtain the widest range, which reaches from roughly -44 to

around -2.3. Moving to 10,000 draws reduces this dispersion substantially. The mean of

the average own-price elasticity increases to -8.5 and the range covers only roughly -11 to

-6.8 for Monte Carlo draws and -9.6 to -7 for MLHS draws. The reduction in the standard

deviation of the estimated average own-price elasticity is impressive. For the Monte Carlo

and MLHS integration approaches it respectively falls from 5.3 to 0.65 and from 7.5 to

only 0.32.

15We compute Eicker-Huber-White standard errors.
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2 Simulation Error Causes Weak Identification

Table 2.6: Range of Own-Price Elasticities Using MC and qMC Integration

Monte Carlo draws
ηjj ηjj

# Draws Min. Mean Max. Std. Dev. Std. Dev.

50 -43.8 -10.4 -2.31 5.32 9.97
500 -16.5 -9.13 -4.25 2.25 9.55
5,000 -11.1 -8.53 -6.14 0.84 9.12
10,000 -10.7 -8.49 -6.78 0.65 9.07

MLHS draws
50 -43.7 -13.4 -2.36 7.47 13.0
500 -14.9 -9.47 -5.71 1.64 10.1
5,000 -9.68 -8.54 -7.33 0.41 9.15
10,000 -9.64 -8.49 -6.97 0.32 9.07

Note: MLHS stands for modified latin hypercube sampling. ηjj denotes the average own-price elasticity.
Each measure is computed across all local minima for a given number of draws. To arrive at the standard
deviation of own-price elasticities for each number of draws, we average the standard deviations across all
identified minima

To examine the second moment of the distribution, we compute the standard deviation

of the own-price elasticities for each local minimum and average the results over all minima.

Both integration approaches tend towards the same measure of the distribution’s spread.

The estimated standard deviation is roughly 9 when using 10,000 draws to integrate the

aggregate market share function. For lower numbers of draws the spread is systematically

higher.

Lastly, we perform a simulation of the equilibrium that results from a merger between

GM and Chrysler. We simulate this counterfactual for each of the 20 years in the sample

and average the results using units sold as weights. Figure 2.4 shows the distributions

of the simulated change in consumer welfare following the merger for the two simulation

approaches. The results so far are also echoed here. With only 50 draws the estimation

can deliver outcomes that range from close to no detrimental effect to consumer welfare

to an average annual welfare loss between 4 and 6 billion dollars. With 10,000 draws

the Monte Carlo and MLHS approaches deliver a mean annual consumer welfare loss of

close to 1.5 billion dollars. With 50 draws this estimate drops by roughly 40 percent to

around 900 million dollars. The direction of this change is in line with how an increase in

the number of simulation draws affects the estimates of own-price elasticities. We obtain

consistently lower own-price elasticities for a higher number of simulation draws. Thus,

demand is estimated to be overly elastic with few simulation draws. This immediately

implies that the welfare losses and price changes following a merger in the market are

smaller with a low integration accuracy. We surmise that this effect is driven by having
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2.5 40,000 BLP Model Estimations

Figure 2.4: Change in Consumer Welfare

Note: The panels show the distribution of the average annual change in consumer welfare following a
merger between GM and Chrysler.

sufficiently strong IV’s. These effectively bound the estimates of own-price elasticities away

from one. Simulation error produces a wider spread of the estimates. With a bound on

own-price elasticities at one, this spread is likely to lead to an over-estimation of demand

elasticities, which in turn affects the outcomes of our merger simulation. Table 2.7 shows

how this biases the estimates of post-merger price and profit changes. The relatively

crude approximations to aggregate market shares deliver price and profit effects that are

on average too low and yield substantially wider confidence intervals. In relative terms this

bias is substantial. For both simulation approaches using 10,000 draws gives an average

price effect that is roughly 45 percent greater than what we obtain with only 50 draws.

For the profit effect the bias is between 15 and 24 percent for the qMC and MC approach,

respectively.

Simulation error produces a wider spread of economic outcomes across the different sets

of minima. As with the estimates and statistical significance of the random coefficients this

highlights that for low degrees of integration accuracy the specific set of simulation draws

can have a substantial influence on the economic implications of BLP model estimates.

27



2 Simulation Error Causes Weak Identification

Table 2.7: Counterfactual Price and Profit Changes for the Merging Parties following a
Chrysler-GM Merger

Monte Carlo draws MLHS draws
draws ∆p (percent) ∆π (mln 1983 dollars) ∆p (percent) ∆π (mln 1983 dollars)

50 3.53 418 3.49 454
[1.85, 6.85] [191, 640] [1.56, 6.37] [297, 683]

500 4.78 503 5.03 526
[2.61, 6.93] [301, 660] [3.21, 6.95] [384, 666]

5,000 5.14 521 5.15 524
[3.81, 6.40] [397, 620] [4.22, 5.84] [457, 568]

10,000 5.09 519 5.10 521
[4.17, 6.09] [431, 604] [4.56, 5.71] [479, 568]

Note: The reported figures are based on simulating the GM-Chrysler merger for each of the 20 years in
the sample and averaging the simulated outcomes by units sold. 95 percent confidence intervals are shown
in square brackets.

2.6 Conclusion

The BLP model’s nested fixed point estimator is indeed susceptible to numerical instabili-

ties when the simulation error in the model’s aggregate market share function is large. By

substantially raising the number of simulation draws, however, the estimator’s sensitivity

to the specific combination of starting guess, optimization algorithm and the convergence

threshold of the nested fixed point disappears. Instead, the estimator delivers an increas-

ingly narrowing set of minima of its objective function, which also brings with it tighter

sets of parameter estimates and implied economic predictions. With a larger number of

simulation draws, not identifying the estimator’s global minimum therefore has a more

and more limited impact on the estimation outcomes. The main concern for the reliable

numerical implementation of the BLP model should therefore be to select an appropriate

number of simulation draws that tackles the estimator’s vulnerability to simulation error.

Berry, Linton and Pakes (2004) show that in a single cross-section the BLP model’s

nested fixed point estimator satisfies asymptotic normality if the ratio of the number of

products squared over the number of simulation draws, J2/R, is bounded as the number

of products becomes large. This asymptotic result clearly resonates with our findings and

in this sense the estimator behaves as advertised. In the automobile data the number of

products varies between 72 and 150 products per market with on average roughly 111 cars

per year. For 10,000 draws, which bounds the ratio of J2/R between roughly .5 and 2.3,

the estimator delivers a local minimum of the objective function for every combination of

starting guess and set of simulation draws.
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2.6 Conclusion

The importance of simulation error simplifies the implementation, verification and com-

munication of BLP model estimates relative to the guidance offered by KM and Goldberg

and Hellerstein (2013). We find it unnecessary to re-estimate the model with multiple opti-

mization algorithms once simulation error is taken seriously. This also highlights potential

gains in computational efficiency. The Simplex or Nelder-Mead optimization algorithm is

frequently used, because it is seen as particularly robust. We could not find any measur-

able difference in terms of estimation outcomes between the Nelder-Mead algorithm and

a trust-region method that uses an analytical gradient. The latter approach, however, is

computationally much more efficient. Similarly, the impact of the nested fixed point’s con-

vergence threshold is substantially reduced with an accurate approximation of the model’s

aggregate market share function. A maximum threshold of 10−9 seems to work well for the

automobile data. The loose threshold of 10−4 should simply not be used in any setting.

We caution, however, to push our findings regarding the use of different starting guesses

too far. KM have selected these 50 starting guesses after having evaluated the objective

function for many more values. Thus, these guesses are likely to cover the potential pa-

rameter space well. The higher the dimensionality of the estimation problem, the more

difficult it becomes to provide a good coverage of the parameter space. Therefore, all else

equal, more guesses should be used for BLP models with a larger number of random coef-

ficients. We therefore do not recommend a reduction in the number of starting guesses.16

Moreover, each candidate minimum should be carefully verified. At the estimated param-

eter vector, the Hessian matrix must be positive definite and the norm of the gradient

must be close to zero.

Dubé, Fox and Su (2012) rightly point out that the desire to speed up the estimation

of BLP models confronts the researcher with the temptation to introduce approximation

or simulation error. Our results highlight that giving in to this temptation is likely to

backfire in the sense that it undermines the replicability and reliability of the estimation

results. We realize that our findings can be viewed as raising the computational burden of

BLP model estimations. Note, however, that performing relatively few estimations with

many simulation draws that produce precise and reliable results are useful for answering

economic questions of interest in contrast to many more estimations with substantially

fewer simulation draws that give highly unstable outcomes. The researcher faces a trade-

off here.

How much precision is gained by an increase in the number of simulation draws and

how much does this raise the computational burden of a single model estimation? The

increase in precision follows the well established Monte Carlo asymptotics that can be

easily seen for σJ in Table 2.2. The standard deviation of the objective function values

that is caused by simulation error changes inversely proportional with
√
R. So, raising

the number of simulation draws from 50 to 10,000, a factor of 20, reduces the standard

16Selecting 50 starting guesses from thousands of evaluations, however, is likely unnecessary.
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deviation of the objective function values roughly by a factor of 4.5. As Figure 2.5 in

the Appendix indicates, the computational burden of the contraction mapping increases

roughly one-for-one with the number of simulation draws. Roughly the same holds for the

full estimation. We obtain an elasticity of about one for the runtime of an estimation with

respect to the number of simulation draws. Thus, ceteris paribus, raising the number of

draws by a factor of 20 raises the runtime of an estimation by the same factor. Keep in

mind, however, that our change in the contraction mapping reduces the absolute runtime

roughly by a factor of 2 and that a given number of MLHS draws gives approximately

the same numerical precision as 4 to 5 times as many standard Monte Carlo draws. To

put all of this into perspective, the average runtime of an estimation with 10,000 MLHS

draws is 804 seconds, which is less than 13.5 minutes. The computational time can be

further and easily reduced by realizing that each estimation can be run independently.

Our 40,000 BLP estimations are in fact an “embarrassingly parallel” computational task.

The speedup from parallelization almost moves one-for-one with the number of compute

cores that are used. Moreover, given the extensive list of robustness checks that Knittel

and Metaxoglou (2014) advise researchers to follow, comparing the computational burden

of one estimation with 50 simulation draws and another with 10,000 is lopsided. Accurate

numerical integration comes at the price of a higher computational burden, but rewards

the researcher with reliability and therefore a substantially lessened need for extensive

robustness checks. The researcher’s main concern should therefore be the reliability of the

estimates and not the manageable computational burden of running the estimations.17

Finally, we re-emphasize that consistent identification requires strong and valid IV’s.

Our results show, however, that simulation error can easily overwhelm the estimates of the

structural error terms even when strong IV’s are used. The error propagates in the GMM-

IV objective function and produces many local minima with a wide range of parameter

estimates and corresponding economic implications. The accurate numerical integration of

the BLP model’s aggregate market share function is therefore necessary to attain reliable

identification. A high degree of numerical integration accuracy and relevant and valid IV’s

are therefore complements, not substitutes.

17The Matlab code that we have used will be made available online and we have made available the R
package BLPestimatoR on the CRAN repository that uses makes the same speedup of the contraction
mapping.
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2.A Computational Details

Appendix 2.A Computational Details

In comparison with KM, we make some modifications to the implementation of the nested

fixed point estimator. These modifications affect the way the objective function is evalu-

ated for poor parameter guesses and how the contraction mapping is implemented. KM

follow the original code of Nevo (2000), which assigns very high but computable values

to the objective function and analytical gradient if a specific parameter value results in

numerical overflow. This issue can be easily avoided by rescaling price. We simply divide

price by its standard deviation. With this rescaling we have never had to contend with

overflow problems in our 40,000 BLP model estimations. Moreover, in KM’s “loose” im-

plementation of the estimation algorithm, the convergence tolerance in the nested fixed

point is dynamically adjusted. When successive iterates of (2.9) are close to each other,

the convergence threshold is set to 10−9. If this is not the case, the threshold is set at

10−6. This dynamic adjustment was originally implemented by Nevo (2000) to reduce the

computational burden of the estimation. Given that Dubé, Fox and Su (2012) show that

a loose convergence threshold is an additional source of numerical error and given that

computational power has increased dramatically over the last two decades, we enforce a

uniform convergence threshold of εinner = 10−16 throughout. Lastly, we speed up the

contraction mapping by avoiding a large number of numerical divisions, which are compu-

tationally costly (see the next section for details). The computational burden is roughly

reduced by half with this change. Our reformulation is equivalent to (2.9) exponentiated,

as in Nevo (2000), and therefore produces the same outcomes. We do not introduce an

additional source of approximation error with this modification.

2.A.1 Verifying Candidate Minima

We use two criteria to assess whether the output of the optimization algorithm delivers a

minimum. First, it must be the case that all the eigenvalues of the Hessian at the estimated

coefficient vector, θ̂2, are strictly positive. Second, the gradient must be sufficiently close

to zero. The definition of sufficiently close to zero is arbitrary to some extent. We adopt a

cutoff of 0.1 for the Euclidean norm of the gradient at θ̂2. Our qualitative results are robust

to either tightening or relaxing this cutoff. This cutoff is substantially more stringent than

the cutoff of 30 that is adopted by KM.
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Appendix 2.B Speeding up the Contraction Mapping

The BLP contraction mapping is given by (2.9) and we restate it here for convenience.

δiter+1
j = δiterj + log(Sj)− log(sj(δ

iter, ν, θ2)) (2.15)

In contrast to the main text and without loss of generality, we switch to the product

level. Nevo (2000) notes in his Appendix that taking logs is a computationally costly

operation and that the computational burden of repeatedly solving the fixed point during

the estimation can be reduced by exponentiating the equation.

witer+1
j = witerj

Sj
sj(witer, ν, θ2)

(2.16)

Here, w ≡ exp(δj) is the exponential of the mean utility vector. This reformulation gives

a substantial speedup in computing the contraction mapping. We can improve upon this

further by noting that the contraction mapping can be formulated in terms of consumer-

specific choice probabilities for the outside option. Let vij ≡ exp(µij).

witer+1
j = witerj

Sj

1
I

∑
i

witerj vij

1+
∑
k w

iter
k vik

=
Sj

1
I

∑
i vijsio(w

iter, ν, θ2) (2.17)

The reason why this reformulation presents an even lower computational burden than

the formulation by Nevo (2000) is that it substantially reduces the number of divisions

that have to be performed and divisions are a computationally costly operation. The

main driver for these savings are that instead of computing J ∗ I consumer-specific choice

probabilities, we only compute I consumer-specific choice probabilities for the outside

option. When the sij ’s are computed, one big matrix division is performed. To see this,

write out the matrix that gives all consumer-specific choice probabilities in the market.

[sij(δ, ν, θ2)]i=1,...,I;j=1,...,J =
exp(δ ∗ ι′I + [µj(ν, θ2)])

ιJ ∗ (1 +
∑

k exp(δk ∗ ι′I + [µk(ν, θ2)]))
(2.18)

ιI is a vector of ones with I elements. It has the effect of stacking the vector of mean

utilities horizontally I times. In the numerator ιJ stacks the denominator vertically J

times. This makes the numerator and denominator conformable and the sij ’s for a whole

market can be computed in one matrix operation. We are dividing a J × I matrix by

another J × I matrix, which requires J ∗ I divisions.

The vector of consumer-specific choice probabilities for the outside option on the other

hand is given by [sio(δ, ν, θ2)]i=1,...,I = 1/[(1+
∑

k exp(δk∗ι′I+µk(ν, θ2)))] and only requires I

divisions. Unless there is only one inside product in the market, the computational burden

for our reformulation in terms of the consumer-specific outside good choice probabilities
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Figure 2.5: Computational Burden of Solving the Fixed Point
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Note: The left panel shows the average time to reach the convergence threshold 10−14 in the contraction
mapping over KM’s 50 random starting guesses for the random coefficients. The black line shows the
outcomes for the original BLP contraction mapping, while the solid blue line corresponds to the fixed
point formulation of Nevo (2000) and the dashed red line shows our reformulation. We evaluate 50, 100,
200, 500, 1,000, 2,000, 5,000, 10,000, 50,000 and 100,000 draws using 10 independently generated samples
and average the time until convergence across these 10 sets. The right panel plots the ratio of the time to
convergence for the Nevo and our fixed point formulation.

has a strictly lower computational burden. Figure 2.5 illustrates this. For the BLP car

data, we solve the nested fixed point for each of KM’s 50 starting guesses. We do this for

numbers of draws between 50 and 100,000. The solid blue line plots the time to convergence

required by the Nevo version of the fixed point, while the dashed red line corresponds to

our version of the same fixed point problem. We want to emphasize that both versions need

exactly the same number of iterations to reach the convergence threshold and give exactly

the same δ∗ for all of the starting guesses. Formulating the contraction mapping in terms

of the outside good shares yields a speedup of at least 2. This matches the speedup of

the approximate BLP estimator of Lee and Seo (2015), which uses a linear approximation

of the market share equation to solve the fixed point problem analytically. We attain

roughly the same speedup, but solve the fixed point problem exactly and thereby retain

all the properties of the original BLP estimator without introducing an additional source

of approximation error that propagates in the estimator’s objective function.18

18The precision with which the fixed point is solved is of course limited by the convergence threshold.
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Appendix 2.C Documentation of the R Package BLPestimatoR

Package ‘BLPestimatoR’
May 5, 2017

Type Package

Title Performs a BLP Demand Estimation

Version 0.1.4

Author Daniel Brunner (aut), Constantin Weiser (ctr), Andre Romahn (ctr)

Maintainer Daniel Brunner <daniel.brunner@hhu.de>

Description
Provides the estimation algorithm to perform the demand estimation described in Berry, Levin-
sohn and Pakes (1995) <DOI:10.2307/2171802> . The routine uses analytic gradients and of-
fers a large number of implemented integration methods and optimization routines.

License GPL-3

LazyData TRUE

Depends Rcpp (>= 0.12.7), mvQuad, ucminf, numDeriv, randtoolbox

LinkingTo Rcpp

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-05-05 17:43:33 UTC

R topics documented:

BLPestimatoR-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
estimateBLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
get.BLP.dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Index 9

1
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2 BLPestimatoR-package

BLPestimatoR-package BLP demand estimation for differentiated products

Description

Provides the estimation algorithm to perform the demand estimation described in Berry, Levinsohn
and Pakes (1995) <DOI:10.2307/2171802>. The routine uses analytic gradients and offers a large
number of implemented integration methods and optimization routines.

Details

Package: BLPestimatoR
Type: Package
Version: 0.1.4
Date: 2017-05-05
License: GPL-3

Author(s)

Daniel Brunner (HHU of Duesseldorf / Germany)

Constantin Weiser (HHU of Duesseldorf / Germany)

Andre Romahn (HHU of Duesseldorf / Germany)

Maintainer: Daniel Brunner <daniel.brunner@hhu.de>

References

Steven Berry, James Levinsohn, Ariel Pakes (1995): Automobile Prices in Market Equilibrium
<DOI:10.2307/2171802>

Christopher R. Knittel, Konstantinos Metaxoglou (2014): Estimation of Random-Coefficient De-
mand Models: Two Empiricists Perspective <DOI:10.1162/REST_a_00394>

Examples

# Parameters
i<-1
K<-2
Xlin_example <- c("price", "x1", "x2", "x3", "x4", "x5")
Xexo_example <- c("x1", "x2", "x3", "x4", "x5")
Xrandom_example <- paste0("x",1:K)
instruments_example <- paste0("iv",1:10)

# Data generation
BLP_data <- get.BLP.dataset(nmkt = 25, nbrn = 20,
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estimateBLP 3

Xlin = Xlin_example,
Xexo = Xexo_example,
Xrandom = Xrandom_example,
instruments = instruments_example,
true.parameters = list(Xlin.true.except.price = rep(0.2,5),

Xlin.true.price = -0.2, Xrandom.true = rep(2,K),
instrument.effects = rep(2,10),
instrument.Xexo.effects = rep(1,5)),

price.endogeneity = list( mean.xi = -2,
mean.eita = 0,

cov = cbind( c(1,0.7), c(0.7,1))),
printlevel = 0, seed = 5326 )

# Estimation
BLP_est<- estimateBLP(Xlin = Xlin_example,

Xrandom = Xrandom_example,
Xexo = Xexo_example,
instruments = instruments_example,
shares = "shares",
cdid = "cdid",
productData = BLP_data,
starting.guesses.theta2 = rep(1,K),
solver.control = list(maxeval = 5000),
solver.method = "BFGS_matlab",

starting.guesses.delta = rep(1, length(BLP_data$cdid)),
blp.control = list(inner.tol = 1e-6,

inner.maxit = 5000),
integration.control= list( method="MLHS",

amountNodes= 100,
seed= 3 ),

postEstimation.control= list(standardError = "robust",
extremumCheck = TRUE,
elasticities = "price"),

printLevel = 2)

# Show results
summary(BLP_est)

estimateBLP Performs a BLP demand estimation.

Description

Performs a BLP demand estimation.

Usage

estimateBLP(Xlin, Xexo, Xrandom, instruments, demographics, shares, cdid,
productData, demographicData, starting.guesses.theta2, starting.guesses.delta,
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4 estimateBLP

solver.method = "BFGS", solver.control = list(), blp.control = list(),
integration.control = list(), postEstimation.control = list(),
printLevel = 0)

Arguments

Xlin character vector specifying the set of linear variables (variable names must be
included in productData)

Xexo character vector specifying the set of exogenous variables (subset of Xlin)

Xrandom character vector specifying the set of random coefficients (variable names must
be included in productData)

instruments character vector specifying the set of instrumental variables (variable names
must be included in productData)

demographics optional: character vector specifying the set of demographic variables (must be
included as list entries in demographicData)

shares character vector specifying observed market shares (variable name must be in-
cluded in productData)

cdid character vector specifying the market identifier (variable name must be in-
cluded in productData)

productData dataframe with product characteristics
demographicData

optional: list with demographic data for each market (see details)
starting.guesses.theta2

matrix with starting values for the optimization routine (NA entries indicate the
exclusion from estimation, i.e. the coefficient is assumed to be zero)

starting.guesses.delta

optional: numeric vector with starting guesses for the mean utility

solver.method specifies the solver method in optim or ucminf

solver.control list of additional arguments for the optimization routines:

solver.reltol tolerance for the optimization routine
solver.maxit maximum iterations for the optimization routine
... further arguments passed to optim or ucminf

blp.control list of additional argruments for the BLP algorithm:

inner.tol tolerance for the contraction mapping
inner.maxit maximum iterations for the contraction mapping

integration.control

list of parameters for the BLP integration problem:

method integration method
amountNodes integration accuracy for Monte Carlo based integration
accuracyQuad integration accuracy for integration by quadrature rules
seed seed for the draws of Monte Carlo based integration
nodes set of manually provided integration nodes
weights set of manually provided integration weights
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estimateBLP 5

output if TRUE, integration nodes and individual shares (sij) are available as
output

postEstimation.control

list of parameters specifying post estimation results:

standardError chose robust (default) or nonRobust
extremumCheck if TRUE (default), second derivatives are checked for the exis-

tence of minimum at the point estimate
elasticities character vector specifying the set of variables elasticities are

calculated for

printLevel level of output information ranges from 1 (no GMM results) to 4 (every norm in
the contraction mapping)

Details

The optimization routines are included in the packages optim and ucminf. Only gradient based
methods are supported. The ucminf clones MATLABs’ standard trust region optimization routine,
which turns out to be effective in avoiding overflow problems in the BLP model. Valid arguments
are BFGS , BFGS_matlab, L-BFGS-B or CG.

For solver options, the use of solver.maxit and solver.rel is recommended. For conflicts of
solver.maxit and solver.reltol and arguments of the respective solvers, priority is given to the
latter. Make sure that additionally provided solver control arguments are valid.

For demographics variables, list entries of demographicData must be named according to demographics.
Each list entry contains a dataframe with the draws for different markets and a variable (according
to the cdid argument) that allows to match the draws with the markets.

The logit model is used for elasticity calculation, if the variable of interest is not included in
Xrandom. Columns of the elasticity matrix contain the variables that are changed by 1%, and rows
contain effects on other products in the choice set.

Value

Returns an object of class ’blp’. This object contains, among others, all estimates for preference
parameters and standard errors. Necessary information for further post estimation analysis can be
included as well.

Examples

# Parameters
i<-1
K<-2
Xlin_example <- c("price", "x1", "x2", "x3", "x4", "x5")
Xexo_example <- c("x1", "x2", "x3", "x4", "x5")
Xrandom_example <- paste0("x",1:K)
instruments_example <- paste0("iv",1:10)

# Data generation
BLP_data <- get.BLP.dataset(nmkt = 25, nbrn = 20,

Xlin = Xlin_example,
Xexo = Xexo_example,
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6 get.BLP.dataset

Xrandom = Xrandom_example,
instruments = instruments_example,
true.parameters = list(Xlin.true.except.price = rep(0.2,5),

Xlin.true.price = -0.2, Xrandom.true = rep(2,K),
instrument.effects = rep(2,10),
instrument.Xexo.effects = rep(1,5)),

price.endogeneity = list( mean.xi = -2,
mean.eita = 0,
cov = cbind( c(1,0.7), c(0.7,1))),

printlevel = 0, seed = 5326 )

# Estimation
BLP_est<- estimateBLP(Xlin = Xlin_example,

Xrandom = Xrandom_example,
Xexo = Xexo_example,
instruments = instruments_example,
shares = "shares",
cdid = "cdid",
productData = BLP_data,
starting.guesses.theta2 = rep(1,K),
solver.control = list(maxeval = 5000),
solver.method = "BFGS_matlab",

starting.guesses.delta = rep(1, length(BLP_data$cdid)),
blp.control = list(inner.tol = 1e-6,

inner.maxit = 5000),
integration.control= list( method="MLHS",

amountNodes= 100,
seed= 3 ),

postEstimation.control= list(standardError = "robust",
extremumCheck = TRUE,
elasticities = "price"),

printLevel = 2)

# Show results
summary(BLP_est)

get.BLP.dataset This function creates a simulated BLP dataset.

Description

This function creates a simulated BLP dataset.

Usage

get.BLP.dataset(nmkt, nbrn, Xlin, Xexo, Xrandom, instruments,
true.parameters = list(), price.endogeneity = list(), printlevel = 1,
seed)
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get.BLP.dataset 7

Arguments

nmkt number of markets

nbrn number of products

Xlin character vector specifying the set of linear variables

Xexo character vector specifying the set of exogenous variables (subset of Xlin)

Xrandom character vector specifying the set of random coefficients (subset of Xlin)

instruments character vector specifying the set of instrumental variables

true.parameters

list with parameters of the DGP

Xlin.true.except.price "true" linear coefficients in utility function except
price

Xlin.true.price "true" linear price coefficient in utility function

Xrandom.true "true" set of random coefficients

instrument.effects "true" coefficients of instrumental variables to explain
endogenous price

instrument.Xexo.effects "true" coefficients of exogenous variables to ex-
plain endogenous price

price.endogeneity

list with arguments of the multivariate normal distribution

mean.xi controls for the mean of the error term in the utility function

mean.eita controls for the mean of the error term in the price function

cov controls for the covariance of xi and eita

printlevel 0 (no output) 1 (summary of generated data)

seed seed for the random number generator

Details

The dataset is balanced, so every market has the same amount of products. Only unobserved het-
erogeneity can be considered. Variables that enter the equation as a Random Coefficient or exoge-
nously must be included in the set of linear variables. The parameter.list argument specifies the
"true" effect on the individual utility for each component. Prices are generated endogenous as a
function of exogenous variables and instruments, where the respective effect sizes are specified in
instrument.effects and instrument.Xexo.effects. Error terms xi and eita are drawn from
a multivariate normal distribution, whose parameters can be set in price.endogeneity. Market
shares are generated by MLHS integration rule with 10000 nodes.

Value

Returns a simulated BLP dataset.
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8 get.BLP.dataset

Examples

K<-2 #number of random coefficients
Xlin_example <- c("price", "x1", "x2", "x3", "x4", "x5")
Xexo_example <- c("x1", "x2", "x3", "x4", "x5")
Xrandom_example <- paste0("x",1:K)
instruments_example <- paste0("iv",1:10)
data <- get.BLP.dataset(nmkt = 25,

nbrn = 20,
Xlin = Xlin_example,
Xexo = Xexo_example,
Xrandom = Xrandom_example,
instruments = instruments_example,
true.parameters = list(Xlin.true.except.price = rep(0.2,5),

Xlin.true.price = -0.2,
Xrandom.true = rep(2,K),
instrument.effects = rep(2,10),
instrument.Xexo.effects = rep(1,5)),

price.endogeneity = list( mean.xi = -2,
mean.eita = 0,
cov = cbind( c(1,0.7), c(0.7,1))),

printlevel = 0, seed = 234234 )
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3 Implications of Adaptive Integration Rules

for the Performance of Random

Coefficient Models of Demand

3.1 Introduction

The model of Berry, Levinsohn and Pakes has attracted much attention in demand es-

timation due to the consideration of endogenous prices and consumer heterogeneity in

the presence of aggregated data. Models that explicitly allow for consumer heterogene-

ity often produce more reliable conclusions (Nevo, 2000) and in fact, many important

economic questions have been answered by their model (for an overview, see table 1 in

Knittel and Metaxoglou (2014)). This, however, comes at the cost of approximating non-

analytic integrals to compute implied market shares, which introduces an additional error

that propagates to parameter accuracy and computational cost. The paper contributes by

discussing adaptive integration rules as a remedy for adverse effects of inaccurate market

share approximations.

The approximation of market shares gives an important numerical error that propagates

through the estimation algorithm. It is a fundamental step of the estimation algorithm

and takes place hundreds or thousands of times for different sets of parameters. The

estimation of a typical simulated dataset in section 3.4, for example, includes 400,000

market share approximations. Simulation and real data results show a huge variation in

parameter estimates between different inaccurate integration rules.

Given this leverage, the attempts to reduce the approximation error are well-founded.

An easy and obvious way of dealing with this problem is to use a very large number

of function evaluations1 for the integration problem. Although the approximation error

converges to zero for an infinite amount of draws, in practice, computational and memory

constraints limit the amount of draws to a given level. Therefore, another approach builds

on increasing the efficiency of integration rules, i.e. to get more precise market share

approximations with a “better” integration rule while using the same amount of draws2.

1The arguments of this function are called draws or nodes. The terms draws and nodes are used inter-
changeably in the remainder of this paper.

2As explained later, it is not necessary that a more efficient integration rule can produce more precise
results with the same computational cost.
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The comparison between widely used Monte Carlo and more efficient quasi Monte Carlo

techniques in the simulation study, for example, shows much lower variation in point

estimates for the latter. Efficient quadrature rules, like the sparse grids approach, are

another option that is also considered in this paper. Monte Carlo, quasi Monte Carlo and

sparse grids are labeled as standard approaches in the following.

Adaptive integration rules adjust the set of draws of a standard integration rule to

the integrand to attain a maximum numerical efficiency. This paper uses an importance

sampling technique for both, quasi Monte Carlo and sparse grids, to perform the adjust-

ment. In cases where the relevant part of the integrand is limited to a small subset of the

integration variable, adaptive rules produce much more precise approximations than stan-

dard approaches. In fact, unfortunate parameter combinations can produce integration

problems where standard integration rules, even with the maximum amount of feasible

draws, are incapable of reducing the approximation error to an acceptable level. In nearly

all simulation and real data settings impressive accuracy results for a given market share

integral are attained.

The efficiency gain of adaptive integration rules comes at the price of additional com-

putational cost3. The process of adjusting a standard integration rule gives the first

component of additional cost, which turns out to be insignificant compared to the overall

computation time of the estimator. The second component stems from using different

sets of draws for different market share integrals. The standard approach in the BLP

estimator is to reuse the same draws in a given market, which saves a lot of function eval-

uations. Unfortunately, this is not in line with a tailored integration rule and increases

the computational cost for adaptive integration. More precisely, computation time and

memory usage increase quadratically in the amount of considered products for adaptive

rules compared to a linear increase for the standard approaches. Especially in situations

with many products per market, this is a clear drawback of adaptive integration rules.

To address problems with many markets, adaptive rules are not only applied for each

market share integral (product level), but at an aggregated level as well (market level).

The latter uses the same parsimonious standard BLP approach with an adapted integra-

tion rule for all products in one market. However, much of the possible efficiency gain can

be lost, if integrands are heterogeneous. Simulation results confirm a better performance

than standard integration approaches.

This paper is structured as follows: Section 3.2 introduces the BLP model and section

3.3 gives an overview of the numerical integration approaches that are used to approximate

the market share integrals. Section 3.4 evaluates performance differences of the integration

methods in terms of estimates’ precision and computational cost in a simulation study with

3Computational cost comprises the amount of necessary runtime and RAM space in the following.
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multiple generated BLP datasets and different dimensions of the integration problem4.

Proposed integration rules are illustrated in section 3.5 with the well-known cereal example

of Nevo (2000). Finally, results are summarized.

3.2 The Model

The ability of predicting realistic substitution patterns and the handling of endogenous

variables by a standard instrumental variable approach in a nonlinear choice model helped

the BLP model (Berry, Levinsohn, and Pakes (1995) and Berry (1994)) to become the

workhorse in estimating models of product differentiation. This becomes possible by com-

bining the fortunate properties of a mixed multinomial logit discrete choice model with an

efficient way of calculating a large amount of parameters in a nested fixed point algorithm.

The BLP model has been the subject of intensive research in different aspects. Econo-

metric problems, for example, range from extensions to micro data (Berry, Levinsohn, and

Pakes, 2004) to the optimal choice of instruments (e.g. Reynaert and Verboven, 2014).

This area also comprises asymptotic analyses with a growing amount of products (Berry,

Linton, and Pakes, 2004) or markets (Freyberger, 2015). Both authors highlight the effect

of large stochastic integration errors of the market share integrals on the asymptotic distri-

bution of the estimated parameters. The integration error is also of particular importance

when investigating the numerical properties of the BLP model. Skrainka and Judd (2011)

show that inaccurate integration rules lead to a numerical instability of inner and outer

loop behavior and wrong standard errors. Other important contributions have been made

by Knittel and Metaxoglou (2014) showing that different optimization routines give dif-

ferent answers to the same optimization problem, or Dubé, Fox, and Su (2012) examining

the effect of error tolerances in the model.

3.2.1 Demand Side

Identifying the drivers of market shares starts with a utility maximizing agent. Assuming

that agent i in market t consuming product j experiences a utility of

uijt = U(xjt, ξjt, pjt, τi,θ) ,

the consumer will choose the product with the highest utility out of Jt products5. This

depends on a vector of K product characteristics xjt, which are observed by the econome-

trician and the consumer, product characteristics ξjt, which are exclusively observed by

4In the BLP model, the dimensionality of the integration problem is determined by the amount of random
coefficients.

5The definition of a market t depends on the context of the study and can be very broad ranging from
different points in time to geographical differences.
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the consumer and the price pjt. Moreover, τi denotes all consumer specific variables on

utility. The set θ collects all variables’ effects.

Without loss of generality, this paper imposes a linear functional form without consumer

specific variables and focuses on unobserved heterogeneity:

uijt = αpjt + xjtβi + ξjt + εijt . (3.1)

εijt is assumed to be i.i.d. and follows a Type I Extreme Value distribution. Moreover,

agent i can choose an outside option, where the consumer obtains a utility of ui0t = εi0t

(i.e. all parameters are normalized to zero). The random coefficient βi is a vector of

dimension K with individual specific coefficients and follows a multivariate normal dis-

tribution. Without consumer specific effects, substitution patterns from one to another

product resulting from a change in the environment would only depend on their market

shares. This unfortunate pattern is referred to as the irrelevance of independent alterna-

tives. For notational simplicity, this paper uses individual specific effects for every product

characteristic except price, so the dimension of the integration problem equals K.

The effect βi,k can be split in a constant and individual part, i.e. βi,k = β̄k + σkνi,k for

characteristic k with

βi,k ∼ N(β̄k, σ
2
k) and νi,k ∼ N(0, 1) for k = 1, ...,K .

For the sake of simplicity, the covariances between K random variables are assumed to be

zero, so there is no need to use matrix algebra for the distribution of βi.

By separating a constant and individual part, equation (3.1) can be reformulated as

uijt = αpjt + xjtβ̄ + ξjt︸ ︷︷ ︸
δjt(ξjt,θ1)

+

K∑
k=1

xjt,kσkνi,k + εijt . (3.2)

Typically, θ1 includes linear effects α and β̄, while θ2 denotes all standard deviations

σk. The constant part of utility across consumers for given a market t and an alternative

j is labeled δjt. It is the sum term in (3.2) that allows to correlate the maximum utility

with a utility of a product with similar characteristics. For σk 6= 0, consumers are more

likely to switch to a product j with a similar xj,k, which often results in more realistic

substitution patterns than predicted by a logit model.

According to the logit formula, the probability for consumer i choosing j given δjt and

θ2 is:

sijt(δjt,θ2) =
exp

(
δjt +

∑K
k=1 xjt,kσkνi,k

)
1 +

∑Jt
l=1 exp

(
δlt +

∑K
k=1 xlt,kσkνi,k

) . (3.3)

In a market where all consumers are like consumer i, sijt would be the market share of
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product j. Since consumers are allowed to be different, the aggregate of individual market

shares is calculated as

sjt(δjt,θ2) =

∫
RK

exp
(
δjt +

∑K
k=1 xjt,kσkνi,k

)
1 +

∑Jt
l=1 exp

(
δlt +

∑K
k=1 xlt,kσkνi,k

)φ(ν)dν . (3.4)

This integral has no analytic solution and needs to be approximated by methods dis-

cussed in section 3.3.

3.2.2 Estimation Algorithm

The identifying assumption is that the unobserved term ξjt is mean independent of exoge-

nous product characteristics6, xjt, and cost shifters, cjt:

E(ξjt|zjt) = 0 ,

with zjt = {xjt, cjt} and zjt ∈ Z, where Z defines the set of all instrumental variables.

The set of parameters θ̂2 is obtained by equalizing sample moments to population mo-

ments in an GMM approach as suggested by Hansen (1982). This results in the following

optimization problem:

θ̂2 = argmin ξ(θ2)′ZWZ′ξ(θ2) , (3.5)

with the weighting matrix W.

For a given θ2, the unobservable term ξjt is defined as the following difference:

ξjt(θ2) = δjt − αpjt − xjtβ̄ .

The calculation of ξjt becomes possible by combining a contraction mapping with an IV

approach. As pointed out by Berry (1994), under very general conditions there exists a

unique δjt that equals predicted and observed market shares. BLP propose a contraction

mapping to exclude the estimation of δjt from the minimization problem by equating

sjt(δjt,θ2) and sobs
jt :

δn+1
jt = δnjt + ln

(
sobs
jt

sjt(δjt,θ2)

)
. (3.6)

This is done until the log term falls below a predefined tolerance. A common starting

value is δn=0
jt = 0. Note that θ2 needs to be given in order to calculate sjt(δjt,θ2).

The final value of δjt is regressed on pjt and xjt with Z as instruments, which gives

consistent estimates for α and β̄.

6Note that this notation requires all xjt to be exogenous. If this is not the case for any xjt ∈ xjt, xjt
would be treated as the endogenous price variable in the following.
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3 Implications of Adaptive Integration Rules

Parameters θ2 are varied by an optimization routine, which is called the outer loop.

In each step of this optimization, δjt is obtained by the contraction mapping in an inner

loop. Eventually, the resulting set θ̂2 minimizes equation (3.5).

3.3 Market Share Integration

The market share integral in equation (3.4) gives the following general integration problem:

A =

∫
RK

f(ν)φ(ν)dν . (3.7)

The K-dimensional vector of random variables ν ∈ RK is evaluated by f(ν). f(ν)

represents the consumer specific probability of buying a specific product, so it is bounded

between zero and one.

3.3.1 Standard Approaches

Simulation

Monte Carlo simulation (MC) uses a sample of R K-dimensional vectors ν (according to

the PDF) to evaluate f(ν). The average of these evaluations gives the approximation:

SR =
1

R

R∑
r=1

f(νr) . (3.8)

Taking draws can be illustrated by surveying individual preferences for product charac-

teristics of R different individuals from a population (Train, 2009). According to the law

of large numbers, it holds that SR converges in probability to A by the rate of
√
R and it

is asymptotically normal distributed according to the central limit theorem.

Quasi MC methods (qMC) provide a better coverage of the integral by spreading the

draws more evenly (Bhat, 2001). This results in a higher approximation accuracy for a

given amount of draws and often a better convergence rate than MC. Halton sequences

are based on this mechanism and use a deterministic sequence of numbers. To maintain

the statistical properties of random draws, this paper uses randomized Halton sequences

(Bhat, 2003).

In the BLP model, the variance of MC and qMC based market share approximations

propagates to the variance of the estimated parameters. Both, Freyberger (2015) and

Berry, Linton, and Pakes (2004), show this effect in their asymptotic analysis for a growing

amount of markets and products and conclude that a sufficient amount of draws has to

be used in order to minimize the impact of the integration error.
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3.3 Market Share Integration

Quadrature

Gaussian quadrature rules constitute another approach in numerical integration, where

the integral is approximated by a weighted sum of function evaluations. The evaluation

of f(ν) takes place at different points, also called nodes, in the best possible deterministic

way given a desired accuracy level l. A detailed explanation of quadrature rules is given

in Davis and Rabinowitz (2007).

In the one-dimensional case, the integral A is approximated by

Gl =

Rl∑
r=1

f(νr) wr with νr ∈ Xl and wr ∈Wl . (3.9)

Each accuracy level comes with a different set of Xl and Wl, where both sets consist of

Rl elements. Nodes and weights depend on the PDF, which is specified in the integration

problem.

The accuracy of the integral approximation increases in the number of nodes. This is

based on the Weierstrass theorem stating that any function can be approximated by a

polynomial arbitrarily closely, as long as the function is smooth. With Gaussian quadra-

ture rules, the approximation error is zero, if f(ν) is a polynomial of order p = 2Rl − 1.

Straightforward extensions to multiple dimensions often come with an exponential growth

of nodes in the number of dimensions. A prominent example is the product rule, which

is a straightforward and well-known extension of a univariate quadrature rule: for a K-

dimensional integral, f(ν) needs to be evaluated at all combinations of univariate sets of

nodes. The evaluations are weighted by the product of the underlying univariate weights:

(Gl1 ⊗Gl2 ⊗ · · · ⊗GlK )[f ] =

Rl1∑
r1=1

· · ·
RlK∑
rK=1

f(νr1 , . . . , νrK )

K∏
k=1

wrk . (3.10)

Assuming that in every dimension Rl nodes are used, the number of function evaluations

equals (Rl)
K . In this case, the product rule integrates f(ν) exactly, if the function is a

multivariate polynomial7 with a maximum exponent of 2Rl − 1. The number of 10,000

function evaluations is often regarded as a computationally feasible upper limit in the BLP

context, which is exceeded quickly with the product rule. This limits the application of

integration rules with an exponential growth of nodes and motivates the use of a more

parsimonious approach.

The sparse grids approach (SG) is also based on univariate quadrature rules, but saves

a substantial amount of function evaluations by combining nodes of different accuracy

levels in different dimensions such that while being very fine in one dimension, they are

coarse in the others. Therefore, the amount of function evaluations increases only poly-

nomially as K is rising. This, however, comes at the cost of relying on a more restricted

7A multivariate polynomial is defined as g(x) =
∑T
t=1 at

∏K
k=1 x

jt,k
k .
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3 Implications of Adaptive Integration Rules

class of polynomials to approximate f(ν). A detailed discussion of the approach from an

econometric point of view is provided in Heiss and Winschel (2008). Bungartz and Griebel

(2004) discuss the approach from a mathematical point of view.

The SG rule is based on multiple product rules, each with a different set of accuracy

levels:

Su =
u−1∑

q=u−K
(−1)u−1−q

(
K − 1

u− 1− q

) ∑
l∈NKq

(Gl1 ⊗Gl2 ⊗ ...⊗GlK )[f ] .

Accuracy levels l for a particular product rule, i.e. for a given q, are obtained by the

following combination technique:

NKq =

{
l ∈ NK :

K∑
k=1

ik = K + q

}
.

The SG rule is exact, if f(ν) is a polynomial with a total order8 of 2u − 1. A rising u

goes along with a higher approximation accuracy of Su. For sufficiently smooth functions,

convergence rates and error levels can be much better than MC and qMC.

For practical implementations, nodes and weights can be obtained from software pack-

ages or readily available grids.9 The integral is then simply approximated as:

Su =

Ru∑
r=1

f(νr)wr .

3.3.2 Adaptive Integration

Integration rules that adjust any standard approach based on the function f(ν) to in-

crease the integration efficiency are called “adaptive” in the remainder of this paper. One

common way for MC rules is importance sampling, where replacing the standard normal

density by a well-chosen density assures more accurate results. This section introduces

adaptive integration rules by adjusting the set of draws via a Gaussian importance sampler.

Based on equation (3.7), the following change of variables can be performed, if the new

density has the same support as φ(ν):∫
RK

f(ν)φ(ν)dν =

∫
RK

f(ν)φ(ν)

φ(L−1(ν − a))
φ(L−1(ν − a))dν . (3.11)

∆ collects a vector of means a and a matrix L. For a given set of these parameters, the

change of variables gives a function

8Given the representation of a multivariate polynomial in the former footnote, the total order is defined
as maxt=1,...T

∑K
k=1 jt,k.

9See www.sparse-grids.de (Heiss and Winschel, 2008) or the R package mvQuad (Weiser, 2016).
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3.3 Market Share Integration

∫
RK

h(z,∆)φ(z)dz with z = L−1(ν − a) , (3.12)

which can be approximated by standard approaches.

For an optimal choice of ∆, the transformed function h(z,∆) becomes a smoother

function than f(ν) making it more suitable for polynomial approximation or stochastic

integration. Intuitively stating, the same amount of more cleverly chosen draws induces a

lower approximation error than the regular integration rule.

This paper uses an efficient importance sampling algorithm to obtain ∆. This method

performs well for MC/qMC (Richard and Zhang, 2007) and SG (Heiss, 2010) and is based

on minimizing the estimated variance of the weighted distance between f(ν)φ(ν) and

φ(L−1(ν − a)):

∆̂ = argmin

R∑
r=1

[
ln

(
f(νr)φ(νr)

φ(L−1(νr − a))

)
+ c

]2

f(νr)wr . (3.13)

In a quadrature setting, νr and wr denote nodes and weights of a regular SG rule, for

qMC or MC these are the random draws and weights wr = 1
R . The minimization gives a

weighted least squares problem that can be solved analytically for a and L. Note that the

use of too few initial draws leads to an imprecise estimate of a and L.

3.3.3 Integration in the BLP Model

The properties of the integration problem in the BLP model assure that the approximation

error can be bounded arbitrarily close to zero. In practice, however, integrals are evaluated

at a finite set of draws restricting the error to a given level. For a given amount of draws,

this error is significantly reduced by adaptive integration. This is important, because the

approximation error translates to incorrect point estimates10.

Unfortunate combinations of δjt, σk and xjt,k can induce small intervals of νk with a

large contribution to the choice probability. Moreover, these small intervals can be located

in the tails of the standard normal distribution. At least one outlier in δjt, σk or xjt,k is

a necessary condition for this phenomenon11. Figures 3.1 and 3.2 demonstrate the effects

of the following parameter variations on an exemplary market share integral in a market

with 5 products, while all other model parameters are kept constant:

• Setting A: x1, x2 ∼ U(0, 1), σ1 = σ2 = 1, δj = 0

10Intuitively, this can be explained by examining the contraction mapping in equation (3.6) at sobs,truejt

(i.e. observed shares without any sampling error) and sjt(δ
true
jt ,θtrue

2 ): in this case, there is no need for
further iteration. However, in the presence of approximation error the contraction mapping will lead
away from the true to a defected δjt.

11The effect can be derived analytically by examining the impact of δjt, σk and xjt,k on f(ν) and ∂f(ν)
∂νk

. A

formal analysis is not considered in the following due to two reasons: (i) numerous assumptions about
the relation of the parameters in f(ν) would be necessary and (ii) the results have no immediate use
for the considered adaptive integration approaches.
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3 Implications of Adaptive Integration Rules

• Setting B: x1, x2 from A with outliers, σ1 = σ2 = 5, δj = −15

Sharp declining integrands with a very limited relevant region of ν as in setting B are

problematic for a specific numerical integration rule. That is, for MC and qMC methods

it gets more unlikely to capture those regions with a low amount of draws. Quadrature

rules are also problematic, since polynomials give a poor approximation of these functions.

Note that even if true parameters of the demand model give well-behaving integrands, the

estimation algorithm varies parameters extensively. Comparing the error level of standard

integration rules in the convergence plots of figures 3.1 and 3.2 visualizes the problem.

The accumulated error resulting from every inaccurate market share approximation in

every step of the estimation procedure impacts the shape of the GMM function severely.

Figure 3.3 is based on the data from setting A and shows the GMM function value for

different values of σ1. Graphs are based on a standard randomized Halton rule with a total

of 200, 10,000 and 100,000 draws, respectively. For each amount of draws, five different

sets of generated draws are considered. The upper panel with sets of just 200 draws shows

a huge variation in resulting GMM functions and results in very different point estimates.

Moreover, multiple local minima can be introduced (see, for example, the cyan colored

line) making the problem dependent on the starting guess. These problems diminish with

more precise integration rules. The lowest panel, for example, shows almost no variation

in the GMM function between different sets of draws. As explained in the following,

switching from standard to adaptive integration rules attains the same effect on the GMM

as increasing the amount of draws with a standard integration rule.

Performing efficient importance sampling adjusts the draws to the relevant region of ν

and assures integration with a maximal numerical efficiency. In the right panel of figure 3.2

(a) and (b) for example, it is easily observable that adaptive integration, here demonstrated

by randomized Halton draws and SG nodes, evaluate the integrand at points with a large

contribution to the integral.

Higher integration efficiency reduces the approximation error for a given amount of

draws. The convergence plots in figures 3.1 and 3.2 give the integration accuracy (measured

by the RMSE12) of the exemplary integrand depending on the used precision13. Adaptive

versions of standard integration rules decrease the error level significantly. Low accuracy

levels with the adaptive Halton rule in the convergence plot of setting B show a situation

where too few initial draws result in an imprecise estimation of the adaptivity parameters.

For integration rules evaluating all integrals in a given market at the same set of draws,

parts of the market share approximation can be used for different integrals. This is,

because the term δjt +
∑K

k=1 xjt,kσkνi,k is part of every integral in a given market (either

in the nominator or in the denominator) and each market share approximation uses the

12To capture the uncertainty of MC and randomized Halton sequences, respective errors are based on 50
different sets of draws for each accuracy level.

13The maximum number of available nodes for SG in two dimensions is 921.
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3.3 Market Share Integration

Figure 3.1: Exemplary Integrand in Setting A

(a) Regular and Adaptive Randomized Halton Rule with 1000 Draws
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Figure3.2:ExemplaryIntegrandinSettingB

(a)RegularandAdaptiveRandomizedHaltonRulewith1000Draws
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(b)RegularandAdaptiveSGRule(NestedGauss-HermitewithAccuracyLevel7)

ll
l

ll

l

l

llll
l
lll

ll
lll
l

l
l

l

0.00

0.25

0.50

0.75

100 1000 10000

nodes

R
M
S
E

method

lMC

Halton

SG

adapt_Halton

adapt_SG

(c)RMSEforDifferentAmountsofDrawsandNodes

56



3.3 Market Share Integration

Figure 3.3: Impact of Inaccurate Integration Rules on the GMM Function
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3 Implications of Adaptive Integration Rules

Figure 3.4: Computational Cost with Product- and Market-Wise Integration Rules

same set of νi,k. For the calculation of Jt market shares in market t, this term only needs

to be computed once for every product. With the adaptive approaches, the set of νi,k is

different for each integral, so for every integral the term has to be computed individually

for all products14. The amount of function evaluations and RAM space to store the results

is proportional to
∑T

t=1 J
2
t (compared to

∑T
t=1 Jt for the standard approaches). Figure

3.4 demonstrates this by an example with three products in one market. The upper panel

uses the evaluation point ν for every integral resulting in a total of 3 evaluations. The

lower panel, however, uses an individual point for every market share integral, which gives

a total of 9 function evaluations.

While the quadratic increase of computational cost is an issue in a setting with large Jt,

adaptive integration can be the only way for misbehaving integrands to obtain an accept-

able approximation error with a feasible amount of draws. The change of the convergence

behavior between setting A and B indicates that this is the case for problems where very

small regions of ν contribute a lot to the integral.

To prevent the problem of computational cost for large Jt to some extent while benefiting

of a higher integration efficiency, the performance of an additional approach is examined:

draws are adapted market-wise based on an additive overlapping of all functions f(ν) in

14The same problem would arise, if different draws for each integral are used with standard MC or qMC.
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3.4 Results

a given market. The efficiency gain of the numerical integration approach is preserved, if

the integrands are homogeneous within one market. Details of this approach can be found

in appendix 3.D.

3.4 Results

3.4.1 Data Generating Process

The performance of each discussed integration approach is assessed by evaluating 100

simulated datasets on different levels of integration accuracy. An emphasis is put on the

precision of BLP point estimates and on computational cost.

Each dataset includes 300 observations (T = 20 markets and J = 15 products) and is

estimated for different accuracy/ integration method/ dimension combinations. For the

purpose of precision evaluation, estimates from each combination are compared to the set

of “true” random coefficients that result from an estimation with (almost) no integration

error. All σk in the DGP range between 0 and 4 making sure to include a mix of integration

problems with moderate difficulty and more challenging ones. All settings across datasets

result in a total of 72,500 BLP estimations. Other parameter choices and the design of

the DGP are based on Reynaert and Verboven (2014) and described in appendix 3.A.

All statistics in this section are based on the starting guess of the optimization routine

that produces the lowest GMM objective at the respective point estimates out of five start-

ing guesses. The BFGS solver converged for every estimation. Additional computational

details of the estimation routine are given in appendix 3.B.

3.4.2 Precision

Results are related to random coefficients since they define the optimization problem15.

Precision of each accuracy/ integration method/ dimension combination is measured by

the root mean squared error (RMSE) across datasets :

RMSEk =

√√√√ 100∑
i=1

(σ̂k,i − σtruek,i )2

100
, for k = 1, ...,K . (3.14)

The random coefficient σtruek,i is estimated with a very accurate randomized Halton rule

with 100,000 draws. Reported RMSEs in all tables are averaged across dimensions due to

reasons of clarity and readability. So, for a given dimension n, the reported RMSE equals
1
n

∑n
k=1 RMSEk.

Tables 3.1 and 3.2 show a strong dependency between the number of draws and the

dispersion of the point estimates. Moreover, a higher accuracy level always goes along

15Due to the functional relationship, precision of linear parameters is affected as well.
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Table 3.1: RMSE of σ̂ for Non-Adaptive Measures (Simulated Data)

Dimension 1 MC Halton SG

17 draws 0.92 0.89 0.26
19 draws 0.94 0.80 0.17
31 draws 0.97 0.76 0.09
33 draws 0.98 0.70 0.06

Dimension 2 MC Halton SG

37 draws 1.03 1.00 0.41
45 draws 1.01 0.98 0.41
97 draws 0.90 0.62 0.34
401 draws 0.66 0.38 0.08

Dimension 3 MC Halton SG

93 draws 1.09 0.78 0.63
165 draws 0.84 0.66 0.42
237 draws 0.71 0.52 0.39
919 draws 0.50 0.24 0.13

Dimension 4 MC Halton SG

33 draws 1.12 1.21 1.33
201 draws 0.85 0.83 0.56
761 draws 0.69 0.49 0.23
4489 draws 0.34 0.26 0.16

Dimension 5 MC Halton SG

51 draws 1.34 1.58 1.14
401 draws 0.88 0.68 0.55
2033 draws 0.57 0.30 0.40
3793 draws 0.36 0.24 0.33
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3.4 Results

Table 3.2: RMSE of σ̂ for Adaptive Measures (Simulated Data)

Dimension 1 adaptHalton
(market)

adaptSG
(market)

adaptHalton
(product)

adaptSG
(product)

17 draws 0.59 0.18 0.50 0.05
19 draws 0.49 0.04 0.38 0.01
31 draws 0.39 0.06 0.45 0.02
33 draws 0.33 0.03 0.35 0.01

Dimension 2 adaptHalton
(market)

adaptSG
(market)

adaptHalton
(product)

adaptSG
(product)

37 draws 0.60 0.33 0.30 0.17
45 draws 0.47 0.42 0.34 0.10
97 draws 0.33 0.21 0.16 0.05
401 draws 0.21 0.08 0.10 0.08

Dimension 3 adaptHalton
(market)

adaptSG
(market)

adaptHalton
(product)

adaptSG
(product)

93 draws 0.31 0.26 0.21 0.17
165 draws 0.30 0.27 0.14 0.10
237 draws 0.24 0.17 0.11 0.08
919 draws 0.16 0.04 0.11 0.03

Dimension 4 adaptHalton
(market)

adaptSG
(market)

adaptHalton
(product)

adaptSG
(product)

33 draws 0.70 0.64 0.44 0.37
201 draws 0.25 0.32 0.33 0.16
761 draws 0.19 0.18 0.22 0.12
4489 draws 0.05 0.15 0.07 0.03

Dimension 5 adaptHalton
(market)

adaptSG
(market)

adaptHalton
(product)

adaptSG
(product)

51 draws 0.60 0.59 0.45 0.35
401 draws 0.28 0.35 0.22 0.16
2033 draws 0.25 0.23 0.18 0.11
3793 draws 0.08 0.22 0.06 0.15

61



3 Implications of Adaptive Integration Rules

with a decreasing RMSE. This is not surprising, because a higher amount of draws gives

a lower approximation error in the market share integrals. In general, randomized Halton

sequences perform much better than MC.

In small dimensions SG outperforms MC/ qMC rules. In higher dimensions, however,

the disadvantage of MC/ qMC diminishes, because with these methods errors across dif-

ferent dimensions cancel each other out. Moreover, they have a better coverage in higher

dimensions than regular SG.

The relation between errors from regular integration rules (table 3.1) and adaptive rules

(table 3.2) is in line with section 3.3: if the draws for integrand evaluation are shifted

to the relevant parameter space, integration accuracy and therefore parameter precision

increases. Moreover, with adaptive rules, the weaker performance of non-adaptive quadra-

ture in higher dimensions is compensated to some extent.

Adaption on a product level, i.e. for every single market share integral, gives the most

accurate results in all settings. Errors of market-wise adaption ranges between product

level adaption and no adaption16.

3.4.3 Computational Cost

Computational time in seconds of each accuracy/ integration method/ dimension combi-

nation across datasets is visualized by a categorized box plot in figure 3.5. Note that time

differences do not only capture the direct effect of a change in the method or accuracy

level but also indirect effects like convergence to a different local minimum. Differences in

memory usage are approximately proportional to the computation time differences.

Adaptive methods on the product level show a significant increase of computational cost

reflecting the direct relation between time and integral evaluations. For details about the

source of additional evaluations see section 3.3.3. Adaption on the market level shows no

clear time increase that is needed for the adaption of integration rules.

In combination with tables 3.1 and 3.2, it can be stated that the selection of a method

should not be guided by time advantages, even if time is a critical factor. Instead, only

after a particular level of precision is achieved time consuming integration methods can

be excluded.

3.5 An Application to the Cereal Market

Effects on numerical properties of the BLP estimation procedure are often illustrated by

the well-known training data for the cereal market from Nevo (2000). Following this

16Additional simulations (not included in this paper) show that more difficult integration problems decrease
the probability that relevant parameter spaces of the integration problem are overlapping. In some cases,
this can lead to a poor performance of market-wise adaption making the method somewhat problem
dependent.
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Figure3.5:TotalComputationTimeinSecondsAcrossDatasets
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3 Implications of Adaptive Integration Rules

Table 3.3: RMSE of σ̂ for Non-Adaptive Measures (Cereal Data)

MC Halton SG

33 draws 0.54 0.20 0.02
201 draws 0.22 0.05 0.00
761 draws 0.11 0.02 0.00
4489 draws 0.04 0.01 0.00

Table 3.4: RMSE of σ̂ for Adaptive Measures (Cereal Data)

adaptHalton
(market)

adaptSG
(market)

adaptHalton
(product)

adaptSG
(product)

33 draws 0.04 0.02 0.03 0.01
201 draws 0.02 0.00 0.01 0.00
761 draws 0.02 0.00 0.02 0.00
4489 draws 0.02 0.00 0.02 0.00

approach, Nevo’s study is reestimated with different sets of draws and accuracy levels for

the discussed integration rules.

The original setting of Nevo’s exemplary analysis remains unchanged with one important

exception: effects of demographics are assumed to be zero. This has two convenient

consequences. First, there is no need to make use of the very limited data on demographics

(just 20 data points per market and demographic) and second, this simplifies the problem

to an integral over a normal density.

The cereal dataset is estimated with 50 different sets of draws for MC/qMC rules and

only with one set of (deterministic) nodes for SG. Estimates are compared to the “true” set

of parameters that are obtained from an randomized Halton integration rule with 100,000

draws. Tables 3.3 and 3.4 show the average RMSE of four random coefficients.

The baseline estimation with 100,000 draws gives a minimum of the GMM objective

at 189.9432. Inaccurate integration introduces false local minima, which results in point

estimates being different from the baseline estimation.

RMSEs of the different integration approaches tell the same story as with simulated

data: adaption on the product level performs slightly better than on the market level and

qMC performs better than MC. SG gives impressive results in all settings17.

In the cereal example, computational cost is up to 20 times higher with adaptive ap-

proaches. For the case of 4,489 draws and adaptive Halton sequences, this comprises a

17This might be surprising given the results for higher dimensions in section 3.4. Note, however, that due
to θ̂2 close to zero, the integrand is near the logit model. Polynomials easily approximate these nearly
constant functions.
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3.6 Conclusion

Figure 3.6: Convergence of σ̂price (Cereal Data)
σ σ σ

total memory usage of 1 gigabyte RAM18 and an average computation time of 3.7 hours19

(compared to 40 megabytes and 20 minutes with a standard Halton rule). While still be-

ing feasible, consider another hypothetical example with the most unfortunate product/

market combination: all observations in just one market. This would give an increase of

computational cost up to a factor of 2,000 compared to the non-adaptive case resulting

in about 85 gigabytes of required RAM. This demonstrates that in some cases, precise

standard integration or market-wise adaptive rules might be the only options.

One random coefficient that is of particular importance from an economic point of

view is the random coefficient of price. Figure 3.6 shows a selection of three methods

and again demonstrates the importance of accurate integration. Though the coefficient

is insignificant, the majority of inaccurate standard integration methods estimate a large

range of significant coefficients. This means that without accurate numerical integration,

researchers can find any (significant) result just by making use of the integration noise.

3.6 Conclusion

Inaccurate market share approximations in the BLP model are a major source of error.

The complexity of the integration problem largely depends on parameters of the underlying

choice model. Difficult cases have a very small region on the integrand’s support with a

18This results from considering a matrix filled with 4,489 draws (for 94 markets with 24 products) repre-
sented by floating point numbers with single precision: 94 · 242 · 4489 · 4 byte ≈ 1 gigabyte.

19Although the direct effect of additional function evaluations increases computation time by a factor of
20, the faster convergence induced by more accurate integration reduce the time disadvantage to a
factor of 10 in the present case.
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3 Implications of Adaptive Integration Rules

high contribution to the market share. Since parameters are varied extensively by the

estimation algorithm, these difficult integrands can be encountered quite often during

estimation. In the worst case, this gives unreliable results even with 10,000 or more

function evaluations. This paper applies and evaluates alternative integration approaches

that fit stochastic and deterministic integration rules to the specific integrand.

Adaptive integration rules are more efficient for a given number of function evaluations,

because only the relevant part of the integrand’s support is considered. Their application

is most useful for ill-behaved integrands where adaptive integration gives accurate approx-

imations with a feasible amount of integration draws. Real data and simulation examples

confirm the superior performance of adaptive approaches.

The standard approach in the BLP model is to reuse integrand evaluations, i.e. using

the same set of draws for every product in a given market. This parsimonious approach is

not in line with individually fitted integration rules, which can be infeasible with very large

datasets. Adaption at a market level is therefore considered as well. With this approach,

the optimal set of draws is based on all integrands in a given market and this set is shared

across integral approximations. Market level adaption gives more accurate results than

standard approaches in nearly all settings.

Aiming for precise market share approximation, either with adaptive approaches or

many integration draws, drives computational cost. Attempts to reduce this cost in the

BLP model are well-founded. In practice, datasets can become so large that the estimation

easily becomes infeasible with highly accurate integration rules. As demonstrated by the

results of this paper, one should not be tempted to use low-cost integration rules. Instead,

it is highly recommended to run at least multiple estimations with different sets of draws to

check the result’s robustness. The standard MC approach always gives the most inaccurate

estimates, so qMC or SG rules should be preferred. Whenever possible, highly accurate

adaptive integration rules based on the techniques in this paper are the best option to

produce reliable estimates.

The strong dependence of estimates and integration accuracy translates into fuzzy eco-

nomic interpretations that build on the estimated BLP model. Implications of the model,

for example cross price elasticities or welfare analyses, become prone to error and ma-

nipulation. Accurate integration prevents the researcher from being exposed to this weak

points.
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3.A Data Generating Process

Appendix 3.A Data Generating Process

The use of different simulated datasets requires the formulation of a DGP. This section

gives details about the characteristics and chosen parameters of this process, which is

based on the simulation setting in Reynaert and Verboven (2014).

Data is created as a balanced set, where each market has the same amount of products

J . The total number of observations is therefore the number of markets, T , times J . For

every generated dataset in this paper, there are six variables that enter the model linearly:

price labeled p and five other product characteristics x1 to x5. x1 to x5 are generated by a

uniform distribution between zero and two. An additional set of 10 cost shifters (labeled

cjt,1 to cjt,10) is drawn from the same distribution. All x and c define the set of exogenous

variables Z, because they are independent of the structural error term ξ.

For a dimension K in the integration problem, the first x1, ..., xK product characteris-

tics are modeled as random coefficients. Price is left out as a random coefficient due to

notational simplicity.

Prices correlate with exogenous variables and the structural error term to introduce

artificial endogeneity. Prices are computed as a function of Z and a random variable ω. ξ

and ω are drawn from a multivariate normal distribution with given means (µξ and µω)

and variance/ covariances. This gives the following prices of product j in market t:

pjt =

10∑
i=1

γ1,icjt,i +

5∑
i=1

γ2,ixjt,i + ωjt .

Without loss of generality, this specification implies perfect competition since the error

term does not include any demand dependent component, so prices equal marginal costs.

In this paper, prices and exogenous parameters define the set of variables that enter the

problem linearly. The true mean utility δ can be calculated as:

δtruejt = αpjt +
5∑

k=1

β̄kxjt,k + ξjt .

The resulting market shares are given by the integral with K random coefficients:

sjt(δ
true
jt ,θ) =

∫
RK

exp
(
δtruejt +

∑K
k=1 xjt,kσkνi,k

)
1 +

∑J
l=1 exp

(
δtruelt +

∑K
k=1 xlt,kσkνi,k

)φ(ν)dν . (3.15)

These integrals are approximated by an accurate integration rule (randomized Halton

draws with 100,000 draws). Therefore, the resulting generated observed market shares are

assumed to be without simulation error.

Table 3.5 shows the chosen values for the parameters. Figure 3.7 gives information

about the resulting market shares in a typical BLP dataset based on the DGP.
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3ImplicationsofAdaptiveIntegrationRules

Table3.5:DGPParameters

parameter value

J 15
T 20
µξ -2
µω 0

Cov(ξ,ω)
1 0.7
0.7 1

γ1 2 2 2 2 2 2 2 2 2 2
γ2 1 1 1 1 1
α −0.2
β̄ 0.2 0.2 0.2 0.2 0.2
σk 0.5
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3.B Computational Details

Appendix 3.B Computational Details

This paper uses the statistical software R to perform the simulation study. Parts of the

code are based on the well-known and widely used Nevo (2000) code.

Computations are performed on the HILBERT cluster at the University of Düsseldorf.

Frequently used functions are coded in C++ and are implemented in R with the Rcpp

package. Nodes and weights of the SG approach are provided by the mvQuad R package

(Weiser, 2016). The GMM objective is minimized with a boxed R solver applying the

quasi Newton method BFGS (Broyden, 1970). This method uses analytic gradients and

an approximated Hessian. Moreover, 5 starting values, an inner loop tolerance of 10−9

and an outer loop tolerance of 10−6 is used. Several checks indicate that results are robust

with regard to tighter tolerance levels and starting values.

For standard MC and qMC, the same set of draws in a given market is used to approx-

imate all related market share integrals. However, sets differ across markets.

For the adaptive approaches, the researcher is free to decide when to update the set of

draws. Two extreme cases are either to update them one single time at the beginning or

every time a new integral needs to be calculated in the inner loop. The first possibility

might not be the best choice due to the fact that the integral based on the starting values

of δjt and θ changes a lot in the iterative procedure. So, it is unlikely that the adjusted

set of draws will perform better in computing the final integral. The second possibility

causes a lot of function calls while there might be little change between two iteration steps.

This paper strikes a balance between the two extreme cases: The grid adjustment takes

place for the first five iterations in every contraction mapping to account for the effect

of a changing δ on the integrand. This assures that new draws fit to the function they

are approximating and limits the required function calls to a feasible level. Moreover, the

algorithm performs the adaption only if the change between two outer loop iterations is

significant (|θn − θn+1| > 0.01) or there has been an error in the previous step (including

undefined function evaluations or non-convergence of the contraction mapping).
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3 Implications of Adaptive Integration Rules

Appendix 3.C Problems with SG Integration

Due to their construction, SG rules work with negative weights in the integral approxima-

tion. There are cases, when these weights cause negative market share approximations.

Figure 3.8 demonstrates this with a two dimensional integrand and a nested Gauss Hermite

integration rule with accuracy level 9. Red colored nodes indicate function evaluations

that enter the approximation with a negative weight. In this example, the unfortunate

location of the integrand leads to a negative integral approximation, since other function

evaluations with a positive weight are close to zero.

Negative approximations are not only problematic for an economic interpretation, but

impedes the contraction mapping from converging. It turns out that resetting the value

of δ to the starting value of zero every time a negative share is computed works very well

for the simulation study and the Nevo data. There are only few exceptions where the

contraction mapping iterates up to the predefined maximum number.

Figure 3.8: Negative Integral Approximation with SG

ν

ν
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3.D Adaptive Integral Approximation on the Market Level

Appendix 3.D Adaptive Integral Approximation on the Market

Level

To preserve the parsimonious way of market share approximations in the BLP model

with standard integration rules while benefiting from highly efficient adaptive approaches,

integration rules on the market level are proposed.

Using this integration method, the first step consists of additively overlaying all inte-

grands in a given market t, which gives the following integration problem:∫
RK

(f1(ν) + ...+ fJt(ν)︸ ︷︷ ︸
ftotal(ν)

) φ(ν)dν .

While the approximation of this integral is not of interest in the BLP model, the function

ftotal(ν) can be used to compute optimal evaluation points that consider all integrands

in one market. This market level approach allows to reduce computational cost of the

product level integration rule by sharing the set of optimal draws across Jt integrands.

The market level approach works well, if integrands are located close by. The left panel

of figure 3.9 demonstrates this situation with an example of two market share integrands in

one market. The right panel visualizes the opposite: if the location of integrands differs a

lot, the market level approach will lose much of its efficiency. Both graphs use an adaptive

randomized Halton rule with 300 draws on the market level. Simulation results in section

3.4 indicate that integrands in all markets tend to behave as in the left panel.

Figure 3.9: Market Level Integration with a Low and High Efficiency Loss
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4 Copulas for Aggregated Demand Models

with Partly Observed Heterogeneity

4.1 Introduction

The model of Berry, Levinsohn, and Pakes (1995) has become the workhorse for structural

demand estimation due to a number of favorable attributes. This includes the explicit

consideration of unobserved and observed consumer heterogeneity. Observed heterogeneity

requires the handling of demographic variables and their joint distribution. For situations,

in which only limited information about the joint distribution is available, this paper

proposes copula functions. Copula modeling, being a very popular technique in statistics

itself, allows to combine marginal distributions and a dependence parameter to a joint

distribution in a very flexible fashion. Aggregated demand models give an interesting

and important application for copulas and to the best of my knowledge no attempts

have been made to combine these two topics. The main contribution of this paper lies in

demonstrating the copula modeling for an exemplary demand estimation from the banking

literature.

An important requirement for the approximation of BLPs’ market share equation in

the presence of demographics is the knowledge of their joint distribution, or at least the

availability of extensive micro data across markets. With significant demographic effects,

consumers from markets with a similar demographic structure tend to substitute products

by other products with similar characteristics, which helps to overcome the restrictive

substitution patterns of the logit model. Popular examples for applications of demand

estimation with demographics are given in Nevo (2001) or Berry, Levinsohn, and Pakes

(2004).

In empirical applications, the knowledge of the demographics’ joint distribution or an

reliable empirical counterpart is a standard that is hard to reach, which can impede a

direct demand estimation. The problem often stems from legal restrictions that oblige

providers of publicly available demographic information to protect individuals’ privacy1.

This results in protective measures like averaging data over years, providing only marginal

or discretized demographic information. Obviously, this is of particular relevance for data

on a fine geographic level. However, using a fine geographical market definition to describe

1See, for example, Title 13 U.S. Code (for the US) or §16 BStatG (for Germany).
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4 Copulas for Aggregated Demand Models with Partly Observed Heterogeneity

a homogeneous group of consumers can be required in the BLP model to assure that the

assumption of an identical unobserved mean utility for every consumer in a given market

holds. The widely used American Community Survey (ACS) is an example for a source of

demographic information that is heavily anonymized on finer geographic levels. Especially

the exclusive information about marginal distributions requires the researcher to model

the dependence structure separately before approximating market share integrals.

Copula functions allow to model an unknown joint distribution, if either marginal dis-

tributions are known, but it is not clear how the joint distribution of random variables

can be specified, or a simple concept like the correlation coefficient does not sufficiently

describe the dependence (see, for example, Trivedi and Zimmer (2007)). An important

characteristic of copulas is the possibility of modeling marginal distributions and the de-

pendence structure in different steps. This paper uses micro data from a broad geographic

level2 to estimate the dependence parameter. In a second step, the dependence parameter

is combined with marginal distributions from nested areas on a finer geographic level3 to

construct the joint distribution. This procedure builds on the assumption that the de-

pendence structure is the same for the two different geographic layers. Although the data

situation in this paper seems to be tailored for the two-step procedure, information about

the dependence structure can be extracted from far less information4.

The different steps of copula modeling are demonstrated by estimating the demand

for deposits in commercial banks. As stated by Dick (2008), “Understanding the form of

demand and consumer behavior in banking has several immediate uses. [...] The estimates

of consumer preferences across bank characteristics can be used to analyze the effects of

potential mergers or various other changes in the environment on consumer welfare.” The

model of Dick (2008) is extended in two dimensions: (i) instead of a nested logit model, the

model of BLP is used for demand estimation and (ii) the demographic variables age and

income are incorporated in the model. The analysis gives an illustration of the proposed

copula approach and is not meant to identify a causal relationship between variables.

Moreover, the selection of demographics in (ii) just serves as an example for the copula

modeling and is unlikely to comprise all economically relevant demographics5.

Due to the copula modeling, estimation results become available for a market definition

with limited demographic information and indicate that bank products with similar deposit

rates serve as substitutes. To demonstrate the implications of different data qualities the

estimation is performed on two geographical layers, i.e. different market definitions: the

2This step comprises the use of Public Use Microdata Sample (PUMS) data containing micro data for
every US state. For more details, see section 4.4.

3Data on this stage is taken from ACS on the level of statistical areas, called core based statistical area
(CBSA).

4For all copula classes in this paper, for example, there exists a functional relation between Kendall’s Tau
and the dependence parameter. In this case, the researcher needs only a single reported parameter to
proceed with step two.

5Even though, comparable studies like Ho and Ishii (2011) also rely on the use of age and income.
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4.2 The Model

state level (broad market definition) and the core based statistical area (CBSA) level (fine

market definition). For the broad market definition, PUMS micro data are available, so

the demand estimation is straightforward since draws from the joint distribution can be

generated directly. On the second and more realistic market level, marginal distributions

are fitted by copula functions to generate a joint distribution. For all states, the Clayton

copula provides the best fit predicting a very strong dependence of young ages and low

income (strong left tail dependence). After this step, the BLP estimation routine can be

applied.

This paper is structured as follows: The BLP model is briefly introduced in section 4.2.

Section 4.3 reviews the properties of different copula classes and goodness of fit measures.

In section 4.4, the application of copula functions is demonstrated with an example from

the banking literature. Eventually, results are summarized.

4.2 The Model

For demand estimation, the model of BLP (Berry, Levinsohn, and Pakes (1995) and Berry

(1994)) is used.

Assuming that a utility maximizing agent i in market t consuming product j experiences

a utility of

uijt = xjtβi + ξjt + εijt , (4.1)

the consumer will choose the product with the highest utility out of Jt choices. Product

characteristics observable by the econometrician and the consumer are given by a vector

of K + 1 product characteristics xjt (price and other product characteristics). Other

product characteristics exclusively observed by the consumer are denoted by ξjt and εijt.

ξjt is assumed to be constant across consumers in a market t and εijt follows a Type I

Extreme Value distribution. Consumers can also choose an outside option, where a utility

of ui0t = εi0t is realized, i.e. all parameters are normalized to zero.

Specifying the distribution of βi allows to generate realistic substitution patterns and

avoids the “irrelevance of independent alternatives” effect. Usually, this results in a com-

bination of observed and unobserved heterogeneity for the k’th random coefficient:

βi,k = β̄k +

R∑
r=1

γk,rdi,r + σkνi,k .

νk (for k = 1, ...,K) is assumed to be standard normal6, denoted by the PDF φ(), and

R demographic variables dr (for r = 1, ..., R) follow a multivariate PDF f(). This gives

the following utility specification:

6This representation implicitly assumes zero correlation between βi,k for different k. This assumption
can be relaxed without loss of generality, but increases the complexity of the optimization problem.
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uijt = δjt +
K∑
k=1

xjt,k ·
[
R∑
r=1

γk,rdi,r + σkνi,k

]
+ εijt ,

with δjt =
∑K

k=1 xjt,kβ̄k as the constant part of utility across consumers in market t.

The estimation of δjt, σk and γk,r is subject of the estimation problem. With dimensions

K × 1 and K × R, respectively, σ and γ collect all subscripted effects and define the set

of parameters θ.

Parts of the estimation algorithm are based on equating observed and implied market

shares. For a given set of parameters, the latter is defined as:

sjt(δjt,θ) =

∫
RK+R

exp
(
δjt +

∑K
k=1 xjt,k

[∑R
r=1 γk,rdi,r + σkνi,k

])
1 +

∑Jt
l=1 exp

(
δlt +

∑K
k=1 xlt,k

[∑R
r=1 γk,rdi,r + σkνi,k

])φ(ν)f(d) d(ν)d(d) . (4.2)

This integral has no analytic solution and needs to be approximated by numerical inte-

gration rules (see, for example, Train (2009) or Heiss and Winschel (2008)).

4.2.1 Estimation Algorithm

The main identifying assumption is that the unobserved term ξjt is mean independent of

exogenous product characteristics x∗jt and a set of instruments IVjt:

E(ξjt|x∗jt, IVjt) = 0 . (4.3)

Equalizing sample moments to population moments in a GMM approach gives the fol-

lowing optimization problem:

θ̂ = argmin ξ(θ)′ZWZ′ξ(θ) . (4.4)

Exogenous variables are denoted as Z, with zjt ∈ Z and zjt = {x∗jt, IVjt}, and W is

a weighting matrix. As pointed out by Berry (1994), under very general conditions there

exists a unique set of δ that equals predicted and observed market shares. BLP propose

a contraction mapping to invert equation (4.2) in an inner loop:

δn+1
jt = δnjt + ln

(
Sjt

sjt(δjt,θ)

)
. (4.5)

After reaching a predefined tolerance level at n∗, δn
∗

jt is regressed on xjt with Z as

instruments to obtain a consistent estimate of β̄k for k = 1, ...,K. With these estimates,

the value of ξ(θ) can be calculated. An optimization routine varies θ in an outer loop

and converges to θ̂. Note that the contraction mapping is performed at each outer loop

iteration step. The minimization of the GMM objective gives asymptotically normally

distributed estimates (Berry, Linton, and Pakes, 2004). A convenient implementation of
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the estimation strategy is provided with the R package BLPestimatoR (Brunner, Weiser,

and Romahn, 2017).

4.3 Modeling Demographics’ Joint Distribution

The market share integral approximation in equation (4.2) requires a precise knowledge

of the density f(d). This section introduces copula functions as a tool that allows a flex-

ible modeling of this joint distribution, if only limited information about the dependence

structure is available.

Trivedi and Zimmer (2007) motivate the use of copulas for situations where either

marginal distributions are known, but it is not clear how the joint distribution of random

variables can be specified, or a simple concept like the correlation coefficient does not

sufficiently describe the dependence. From an econometric point of view, the copula

approach has many useful applications with an emphasis on financial econometrics. Asset

pricing and credit risk management make extensive use of copulas to model the joint risk

of different financial assets (see, for example, Cherubini, Luciano, and Vecchiato (2007)).

Actuarial sciences give another area, where copulas are used to model the probability

of joint events, like multiple deaths (see, for example, the work of Clayton (1978)). A

comprehensive literature review is provided in Frees and Valdez (1998).

General Properties of Copulas

The term copula and the fundamental idea goes back to the work of Sklar (1959), Hoeffding

(1940) and Hoeffding (1941) and is based on the relation between the joint distribution of

variables d1 and d2 and their marginal distributions7:

F (d1, d2) = C (F1(d1), F2(d2)) = C(u1, u2) . (4.6)

In this representation, F denotes the joint CDF according to PDF f in equation (4.2). Fi

is the marginal distribution of di, so F1(d1), for example, is defined by limd2→∞ F (d1, d2).

C is unique for continuous variables8. Because di follows the CDF of Fi, it holds that

Fi(di) = ui ∼ unif(0, 1).

The modeling with copulas imposes a parametric function for C, labeled as Cω. Infor-

mation about the dependence structure is collected in ω, which is a scalar value for copula

classes considered in this paper. This gives a parametric version of equation (4.6):

7Only due to notational simplicity, the following properties of copula functions are limited to the bivariate
case.

8For discrete variables, the copula is only “uniquely determined”, meaning that the copula is only defined
for u1 ∈ Range(F1) and u2 ∈ Range(F2). Otherwise, the inverse of F1 and F2 is not defined and so is
the copula function.
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4 Copulas for Aggregated Demand Models with Partly Observed Heterogeneity

F (d1, d2) = Cω(u1, u2) .

Since a copula function represents F in terms of uniform random variables, it shares the

same properties as a multivariate CDF. For continuous variables, C is defined on the unit

square [0, 1]2 and maps variables to [0, 1]. According to Sklar’s theorem, the function is

grounded, i.e. C(u1, 0) = C(0, u2) = 0 and it holds that C(u1, 1) = u1 and C(1, u2) = u2.

Copulas are two increasing meaning that ∂C2

∂u1∂u2
≥ 0, if second derivatives are defined.

Moreover, they are bounded by the Frechet-Hoeffding lower and upper bound functions:

max(u1 + u2 − 1, 0) ≤ C(u1, u2) ≤ min(u1, u2) .

For more detailed information about the theory of copulas, see Joe (1997) or Nelsen

(2007).

Copula Classes

The choice of a functional class for Cω has important consequences for the dependence

structure that can be modeled. A favorable attribute of a copula class is to include as

much as possible functional relations between Frechet-Hoeffding lower and upper bounds

to attain a wide range of possible dependence structures. The properties of four popular

and commonly used copula classes are introduced in the following. The summary is based

on the structure in Trivedi and Zimmer (2007).

The Gaussian copula belongs to the category of elliptical copulas and imposes the fol-

lowing function:

Cω(u1, u2) = Φω(Φ−1(u1),Φ−1(u2)) .

Φ is the CDF of a standard normal distribution and Φω the normal CDF with correlation

parameter ω. ω is bounded between -1 and 1, where each bound represents the Frechet-

Hoeffding lower and upper bound, respectively. Gaussian copulas can model a symmetric

left and right tail dependence. An example of the copula’s PDF with ω = 0.6 and standard

normal margins is given in the upper left of figure 4.1.

Clayton, Frank and Gumbel copulas represent three prominent classes in the category of

Archimedian copulas. These classes are based on a generator function ϕ, with ϕ : [0, 1]→
[0,∞] having continuous derivatives on (0,1), ϕ(1) = 0, ϕ(0) =∞, ϕ′(t) < 0 and ϕ′′(t) > 0

for t ∈ (0, 1). Functions with these properties ensure the existence of an inverse ϕ−1(t),

which is used for the generation of a Archimedian copula:

Cω(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)) .

As shown below, the functional form of ϕ includes the parameter ω. Copula classes

in the Archimedian category choose different functions for ϕ allowing to capture very
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4.3 Modeling Demographics’ Joint Distribution

different dependence structures.

The Clayton copula, for example, is given by:

Cω(u1, u2) = (u−ω1 + u−ω2 − 1)−
1
ω .

ω ranges between 0 (independence) and ∞ (upper Frechet-Hoeffding bound), i.e. only

positive dependence can be modeled. Clayton copulas can only capture a strong left

tail dependence. The upper right panel of figure 4.1 demonstrates this property for the

copula’s PDF with ω = 2 and standard normal margins.

The Frank copula takes the form:

Cω(u1, u2) = −ω−1log(1 +
(e−ωu1 − 1)(e−ωu2 − 1)

e−ω − 1
) .

The Frechet-Hoeffding upper bound is attained for limω→∞(Cω(u1, u2)), the lower bound

for limω→−∞(Cω(u1, u2)) and ω = 0 represents independence. Dependence is strong in the

middle of the distribution and weak in the tails. This property is visualized in the middle

left panel of figure 4.1 for the copula’s PDF with ω = 15 and standard normal margins.

The Gumbel copula imposes the following function:

Cω(u1, u2) = exp(−(−log(u1)− log(u2))
1
ω ) .

The parameter ω is defined between 1 (independence) and ∞ (Frechet-Hoeffding upper

bound), i.e. only positive dependence can be considered. Strong dependence is modeled in

the right tail of the distribution as shown in the middle right panel of figure 4.1 (copula’s

PDF with ω = 3 and standard normal margins).

As explained above, the case of independence is a subset of all four classes. With

independence, all functional relations - either asymptotically or analytically - break down

to:

Cindep(u1, u2) = u1 · u2 .

The copula’s PDF is shown in the lower left panel of figure 4.1.

The following paragraphs describe the estimation of ω and the selection between different

fitted copula classes.

Estimation of the dependence parameter

A Maximum Likelihood (ML) approach is used to estimate parameters and ensures that

standard inferential results can be applied. The procedure depends mainly on how many

assumptions about the marginal distributions can be made. A fully parametric approach

imposes, besides the functional form for the copula, parametric marginal distributions. In
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Figure 4.1: Dependence Structure of Different Copula Classes
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4.3 Modeling Demographics’ Joint Distribution

this case, the estimation consists out of one step, because likelihood contributions can be

derived directly. If marginals are not known, they can be approximated by an empirical

counterpart and ML is applied in a second step. This approach is often labeled as canonical

ML (CML) and discussed in Genest, Ghoudi, and Rivest (1995).

In both situations, a likelihood contribution is defined as:

c(F1(d1), F2(d2)) =
d

dd1 dd2
Cω(F1(d1), F2(d2))

=
∂Cω(F1(d1), F2(d2))

∂F1(d1)∂F2(d2)
· f1(d1) · f2(d2) ,

(4.7)

with

fi(di) =
∂Fi(di)

∂di
.

This gives the definition of a general log-likelihood function:

LN (ω) =
N∑
i=1

ln (f1(d1,i)) + ln (f2(d2,i))

+ ln

(
∂Cω(F1(d1), F2(d2))

∂F1(d1)∂F2(d2)
|d1=d1,i , d2=d2,i

)
.

(4.8)

Since fi(di) does not depend on any parameters to be estimated by ML, it drops out of

the maximization problem. For non-parametric marginals, Fi(di) is not known and needs

to be approximated with an estimate F̂i(di). In the CML approach, this can be done by

the empirical CDF or a kernel density estimate, which is useful, if one is not willing to rely

on parametric assumptions about the marginals. Eventually, an estimate for ω is obtained

by:

ω̂ CML = argmax
ω

N∑
i=1

ln

(
∂Cω(F̂1(d1), F̂2(d2))

∂F̂1(d1)∂F̂2(d2)
|d1=d1,i , d2=d2,i

)
. (4.9)

This procedure ensures consistent and normally distributed estimates for ω, although

the variance formula is more involved than in the standard likelihood approach9.

Empirical copulas are not capable of estimating a dependence parameter, but are often

used as a baseline to compare the fit of copula classes as described in the next paragraph.

The empirical copula is completely non-parametric and estimated as (Deheuvels, 1979):

CN

(
i1
N
,
i2
N

)
=

1

N

N∑
k=1

1

{
rank(d1,k)

N + 1
≤ i1
N

;
rank(d2,k)

N + 1
≤ i2
N

}
.

9In practice, software like the R package copula (Yan, 2007) easily calculates all necessary statistics.
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4 Copulas for Aggregated Demand Models with Partly Observed Heterogeneity

Goodness of fit

Evaluating goodness of fit measures provides guidance in selecting a copula class and

detecting a possible misspecification. Marginal distributions are fitted non-parametrically

in the present paper, so the only misspecification possible is the dependence structure

imposed by the chosen copula class.

There are multiple informal and formal methods to evaluate the goodness of fit. Starting

with the informal criteria, a graphical analysis to detect possible dependence structures

that fit to a particular copula class and the comparison of Bayesian information criteria

based on the likelihoods are a good guidance for choosing from multiple copula classes

(see, for example, Trivedi and Zimmer (2007)).

Another informal method, proposed by Ane and Kharoubi (2003), evaluates the “dis-

tance” between the estimated copula of a given class and the empirical copula by

distance =

N∑
i=1

(CN (u)− Cω̂(u))2 ,

with C(u) = C(F̂1(d1,i), F̂2(d2,i)), such that the class with the smallest distance gives

optimal choice.

Another approach is to formally test, if the chosen copula is appropriate. An unfavorable

property of this approach is that observed data have to meet demanding requirements in

order to support the hypothesis of a correctly specified model. If the data do not fit in all

considered copula classes, all specified models are rejected making it hard to select at least

the best approximation to reality. Moreover, due to the unknown acceptance error not

rejecting the null does only provide weak evidence for a correctly specified model. Given

these drawbacks, formal tests are less common in the applied econometric literature and

disregarded in the paper’s empirical application. For the sake of completeness, however,

the most common test is introduced in the following.

Genest, Remillard, and Beaudoin (2009) review different goodness of fit tests based on

the null that a copula function belongs to the chosen class with an estimate for ω :

H0 : C ∈ Cω̂ .

One common approach is the calculation of a Cramer-von Mises test statistic given by

SN = N

∫
[0,1]2

(CN (u)− Cω̂(u))2 dCN (u) .

If the empirical copula is much different from the theoretical distribution under H0,

large test statistics induce a rejection of the null. Genest and Remillard (2008) prove

the test to be consistent, i.e. the null is rejected with probability one, if C 6∈ Cω̂. The

limiting distribution of SN depends on the copula class and the true parameter ω, so
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bootstrapping is used to obtain the respective p-value. The procedure is described in

appendix A of Genest, Remillard, and Beaudoin (2009).

4.4 Empirical Application

4.4.1 Modeling the Demand of Deposits

Structural models of demand in commercial banking provide a framework for the analysis

of policies. A popular example and subject of research10 is the Riegle-Neal Interstate

Banking and Branching Efficiency Act in 1994, which, among other things, prohibited in-

terstate branching. As a consequence, a massive number of bank mergers and acquisitions

reduced the total amount of commercial banks from 11,000 to 8,000 banks in this time

period. At the same time, the amount of bank branches increased by about 10,000 up

to 65,000 branches across the US11. Implications of the banking industry’s reactions for

consumers can be twofold: On the one hand, positive effects like the increased availability

of banking services or a higher efficiency increases consumers’ welfare. On the other hand,

banks can use the weaker degree of competition to strategically increase prices. Mod-

eling and estimating the demand for bank products allows to validate different theories

empirically.

The depository consumer can choose out of j = 0, ..., Jt banks, so every bank represents

a differentiated product. To be available in the choice set, a bank needs at least one branch

in market t. The definition of a market is varied in the empirical example and explained

in section 4.4.2. The choice of a particular bank affects its observed amount of deposits,

which includes checking, savings and time deposits accounts12.

Consumers’ utility is specified as

uijt = pjtαi + xjtβ + ξjt + εijt . (4.10)

pjt denotes the deposit rate of bank j in market t. Other variables and their effects are

collected in xjt and β, which are listed in table 4.4 (appendix 4.A).

To include the demographic variables age and income, the deposit rate effect is modeled

as a random coefficient:

αi = ᾱ+ γincome di,income + γage di,age .

10See, for example, Dick (2008), Ho and Ishii (2011) or Beck, Levine, and Levkov (2010).
11For more information, see www5.fdic.gov/hsob/HSOBRpt.asp .
12Deposits are only provided as an aggregate across depository services and consumer groups (households

and businesses). While this is a limitation of the data, there is empirical evidence that the majority of
consumers chooses one bank for all depository services (Amel and Starr-McCluer, 2001) and different
consumer groups behave similarly (based on data from the Survey of Consumer Finances and Survey
of Small Business Finances).

83



4 Copulas for Aggregated Demand Models with Partly Observed Heterogeneity

The model is completed by the definition of an outside good, which is computed from

the deposits of thrifts and credit unions. While being straightforward to compute, this ap-

proach cannot account for consumers choosing no depository institution at all. A realistic

but technically more demanding approach would be the consideration of micro moments

in the estimation procedure as in Ho and Ishii (2011), which is left for future versions of

this paper.

Treating just the deposit rate as a random coefficient and excluding unobserved hetero-

geneity is a strong simplification of a more realistic model and serves as an example for

considering multiple demographics with the copula approach.

Service fees and deposit rates are treated as endogenous due to their relation to un-

observed service components. Other product characteristics and the set of instruments

define Z in equation (4.3). Following Dick (2008), instruments comprise cost shifters in-

cluding labor, operating costs, funding and environmental variables. The complete list of

instruments is given in table 4.5 (appendix 4.A).

4.4.2 Geographic Market Definitions

The definition of a market has important economic implications for the demand model.

The assumption that the term for vertical product differentiation ξjt in equation (4.10) is

identical for all consumers in market t directly depends on an appropriate market defini-

tion. As a consequence, markets are defined such that consumers in it are as homogeneous

as possible.

Two market definitions are used to demonstrate the consequences of different data

qualities on the consideration of the demographics’ dependence structure. The broad

market definition uses US states to define a market (state level). One advantage of the

data available on this level is its information about age and income’s joint distribution.

Therefore, the draws for the market share approximation can be generated directly from

the empirical distribution. The left panel of figure 4.2 demonstrates the data quality for

Delaware.

The second market definition uses a CBSA13 as a market (CBSA level). This includes

all Micro- and Metropolitan statistical areas, i.e. regions with a high degree of social

and economic integration and with 10,000 and more individuals. Results in Dick (2008)

are based on a similar market definition. To protect privacy, available data on this level

comprises only the variables’ marginal distributions. This prevents from computing market

shares directly, since f(d) in equation (4.2) is unknown and requires further modeling as

described in section 4.4.4. The right panel of figure 4.2 demonstrates the data quality for

the CBSA Boston-Cambridge-Newton.

13A CBSA is defined geographically and conceptually by the Office of Management and Budget.

84



4.4 Empirical Application

Figure 4.2: Data Quality in Different Market Definitions

Market Definition 1: State Delaware
Market Definition 2: CBSA Boston-
Cambridge-Newton
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4.4.3 Data

Multiple sources of data have to be merged to generate variables for the demand estima-

tion. The summary of deposits (SOD) files provide information about deposits in each

bank branch, credit union and thrift, which is the basic component of market shares.

They also contain longitudes and latitudes allowing the mapping of branches to different

markets. The variable IDSSR indicates to which bank a branch belongs. The latter is

used to match bank characteristics included in the credit report (CR) with their branches.

Basically all banks are legally obliged to file in these CRs every quarter and SOD half-

yearly14. A CR contains balance sheet information like interest rates and fees, but also

lots of other variables that might affect consumers’ decisions. Bank age is taken from the

National Information Center (NIC) and is also matched by IDSSR. Local labor cost on

the state level is provided by the Bureau of Labor Statistics15. The housing price index

on the state level is available at the Federal Housing Finance Agency16.

14Since SOD has to be reported on 6/30, CRs are used only from this date.
15For more information, see https://www.bls.gov/oes/tables.htm .
16For more information, see https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index-

Datasets.aspx#mpo .
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To determine the CBSA of a bank branch, Topologically Integrated Geographic En-

coding and Referencing (TIGER) files are used. This database contains, among other

geographic layers, polygons that define a CBSA and allows to check whether a bank

branch lies in the CBSA or not.

The source of demographic data depends on the market definition. The broad market

definition allows to use PUMS micro data, which includes, besides age and income, much

more demographic information. PUMS data is available for different geographic layers:

regions, divisions, states and PUMA. The latter defines the finest geographic subdivision

of the micro data as regions with at least 100,000 individuals. On the state level, PUMS

provides data on 50 states and Washington D.C.. Demographic data for the 948 (in 2009)

CBSAs in the second market definition is provided by the ACS summary files and is

grouped into sequences that represent a category of variables17. This tabulated data gives

information about how many individuals fall into predefined categories. One advantage

of ACS summary files is their availability on a very fine geographic level (the finest level

are block groups with only 600 to 3,000 individuals). However, even on the CBSA level,

data is only provided as a 5-year average to protect the privacy of individuals and there

are only information about the marginal distributions.

In the case of missing or incomplete values in any of these data sources, bank branches

are deleted from the choice set. This includes branches with zero deposits or missing

longitudes and latitudes, not matched bank branches with the CR data or any missing

CR data. For the year 2009, this adds up to 15% of all SOD data.

Descriptives and further information about resulting variables that are based on the

mentioned data sources are given in tables 4.1, 4.2, 4.4 and 4.5.

4.4.4 Results

Dependence Modeling

Modeling the dependence structure is required for an analysis based on the second market

definition, because marginal distributions of age and income are the only information

available in a CBSA. Their joint distribution is obtained in a two-step procedure: First,

micro data of the state, which comprises the CBSA, is used to estimate the dependence

parameter with the copula approach. Second, this parameter and the corresponding copula

class are used to tie the marginal distributions on the CBSA level together, which results in

a semi-parametric joint distribution. Obviously, this procedure is based on the assumption

that the dependence parameter is identical for each CBSA in a given state.

The estimation of the dependence parameter is performed for every state and for the four

copula classes discussed in section 4.3. Estimates are based on the PUMS data set. Age

information of individuals younger than 15 years is excluded from the estimation, since

17The relevant first three digits of the geographic identifier to extract data on the CBSA level are 311.
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4.4 Empirical Application

Table 4.1: Descriptive Statistics of Demographic Data

variable state level CBSA level
Mean Min Max Std. dev. Median Min Max

age 47.37 15 95 19.55 30 - 34 0 - 4 85+
income 32,769 -14,400 1,471,000 48,091.90 50k - 60k < 10k 200k - 500k

source PUMS ACS
geogr. units 51 948
observations 2,560,888 286,175,684
data quality micro data discretized marginal distributions

Table 4.2: Descriptive Statistics of Product Level Data

variable state level CBSA level
Mean Min Max Std. dev. Median Min Max Std. dev.

share 0.007 0.000 0.654 0.029 0.046 0.000 0.786 0.077
outside share 0.217 0.017 0.562 0.111 0.077 0.000 0.904 0.147
service fees 0.002 0.000 1.355 0.018 0.004 0.000 1.355 0.020
deposit rate 0.000 0.000 0.008 0.001 0.000 0.000 0.008 0.000
employees per branch 43.839 0.000 26,216 671.162 47.418 0.000 26,216 706.246
branch density 0.001 0.000 0.508 0.013 0.002 0.000 0.197 0.005
bank age 4,008 45.429 12,166 2,381 4,347 125.429 12,166 2,527
number of states 2.119 1.000 34.000 4.163 5.280 1.000 34.000 8.143
medium size 0.020 0.000 1.000 0.139 0.085 0.000 1.000 0.279
large size 0.019 0.000 1.000 0.137 0.087 0.000 1.000 0.282
local labor cost 11.596 9.690 14.080 0.784 11.704 9.690 14.080 0.778
housing price index 44,292 29,120 95,354 12,360 45,959 29,120 95,354 13,511
non interest expenses 0.002 -0.005 0.041 0.001 0.002 -0.005 0.037 0.002
other funding cost 0.001 0.000 0.018 0.001 0.001 0.000 0.018 0.001
non performing loans 0.026 0.000 0.458 0.034 0.029 0.000 0.458 0.032
unused credit lines 0.013 0.000 6.338 0.149 0.035 0.000 6.338 0.152
holding company 0.200 0.000 1.000 0.400 0.357 0.000 1.000 0.479
equity over assets 0.111 -0.118 0.985 0.067 0.109 -0.087 0.985 0.063
rural 0.419 0.000 1.000 0.493 0.487 0.000 1.000 0.500

observations 6,045 5,413

87



4 Copulas for Aggregated Demand Models with Partly Observed Heterogeneity

Figure 4.3: Visualization of Empirical and Parametric Dependence Structures

Joint Distribution of Age and Income in
Ranks (Delaware) Dependence Parameters Across States
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Note that plotting the relation between two variables in ranks visualizes the dependence structure while

disregarding marginal distributions.

PUMS data on income is only available for individuals older than 15 years. The marginals

on the CBSA level are based on the ACS with the following adjustments: (i) age categories

from 0 to 14 years are deleted, because the dependence parameter from PUMS includes

no information about this part of the distribution. (ii) A uniform distribution within the

ACS categories, age and income, is assumed, which seems to be realistic due to the fine

category steps. For the 71 cases where a CBSA belongs to multiple states, the dependence

parameter from the state with the CBSA’s largest share of individuals is taken.

The left panel of figure 4.3 shows a strong dependence in the left tail of the distribu-

tion (for the example of Delaware). This typical characteristic is easily modeled by the

Clayton copula, which turns out to be the best fitting copula class in all states and for

both informal selection criteria. The weak negative dependence in the right half of the

scatterplot, however, cannot be modeled by this copula class18. This pattern is observable

in other states as well. The right panel of figure 4.3 shows the heterogeneity of dependence

parameter estimates across states. All estimates are significant on a 1% level.

Eventually, market share integrals in the demand estimation on the CBSA level are based

on draws from the copula function including ω̂ and the CBSA’s marginal distributions.

18This is probably the reason, why formal tests reject the null easily. A more realistic model, going beyond
the scope of this paper, would be a mixture model that mixes two or more copula classes. This would
comprise the Clayton class and another one that can capture a weak negative dependence in the right
tail of the distribution.
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4.4 Empirical Application

Table 4.3: Estimation Results

variable state level CBSA level
LOGIT(i) RC(ii) LOGIT(iii) LOGIT(iv) RC(v)

linear coefficients
service fees −134.2793 −266.0855 −124.8181 −82.0777 −246.8365

(14.8830)∗∗∗ (234.1008) (11.2583)∗∗∗ (23.6587)∗∗∗ (233.5111)
deposit rate 647.8067 −4435.4268 3066.3751 105434.8800 −2321.2971

(371.5792)∗ (25924.6837) (466.0068)∗∗∗ (14972.4516)∗∗∗ (19207.3379)
deposit rate × agej −1941.6366

(294.3509)∗∗∗

deposit rate × incomej −0.2616
(0.0273)∗∗∗

employees per branch 0.0002 −0.0001 0.0001 0.0001 −0.0001
(0.0001)∗∗∗ (0.0001) (0.0001)∗ (0.0001) (0.0001)

branch density 10.7254 13.7574∗∗∗ 18.7258 32.7742 −0.9932
(2.8083)∗∗∗ (2.3777)∗∗∗ (9.3937)∗∗ (9.4786)∗∗ (7.0646)

bank age 0.0000 0.0001 0.0002 0.0001 0.0003
(0.0000)∗ (0.0001) (0.0000)∗∗∗ (0.0000)∗∗∗ (0.0002)∗∗

number of states 0.1944 −0.0545 0.0802 0.0747 −0.0950
(0.0215)∗∗∗ (0.0977) (0.0147)∗∗∗ (0.0144)∗∗∗ (0.0412)∗∗

size medium 0.6646 0.9347 1.0470 0.5583 0.9865
(0.3747)∗ (1.1605) (0.2584)∗∗∗ (0.2472)∗∗ (0.7602)

size large −0.4101 2.6355 0.8043 0.1961 2.7642
(0.5465) (1.9506) (0.3840)∗∗ (0.3797) (1.4896)∗

nonlinear coefficients
γage 0.2772 0.8817

(2.5703) (1.8025)
γincome −0.0060 −0.0023

(0.0010)∗∗∗ (0.0008)∗∗∗

other information
Wald statistic 51.443∗∗∗ 7.88∗∗

observations 6045 6045 5413 5413 5413
markets 51 51 367 367 367
GMM(θ∗) 13726.75 11572.4 11132.79 15495.46 4327.88

Heteroskedastic and autocorrelation robust standard errors are in parentheses. Signifi-
cance levels are denoted by 1%(***), 5%(**) and 10%(*). γincome and γage are related to
the random coefficient of deposit rate. The Wald statistic tests H0 : γincome = γage = 0. To
avoid overflow problems, all variables are scaled in the estimation algorithm. All estimates
are rescaled and can be interpreted with respect to their original unit.
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4 Copulas for Aggregated Demand Models with Partly Observed Heterogeneity

Demand Estimation

Table 4.3 lists the results of all demand estimation settings. Columns (i) and (ii) use

PUMS state level data and (iii) to (v) are based on the ACS data. For both market

definitions, the first setup is a standard logit model without demographics. Setting (ii)

serves as an example for the incorporation of demographic micro data on the state level

in a random coefficient model, but is of limited economic use due to the broad market

definition. The logit model on the CBSA level, (iii), confirms the findings of Dick (2008)19:

service fees are valued negatively by the depositor and interest rates have a positive effect

on indirect utility.

Setting (iv) makes use of the variation in average demographics across markets, which

is interacted with the deposit rate. In markets with wealthier and older consumers (on

average), deposit rates become less important.

The random coefficient model in (v) depends on the subsequent dependence modeling

described in the former section. Results show that individuals have a lower marginal

valuation of the deposit rate as their income increases and age decreases. Surprisingly,

the deposit rate has no significant effect on the average consumer. Demographics’ joint

significance predicts bank products with similar deposit rates to be better substitutes than

in the logit model.

Note that many other effects in the random coefficient models are insignificant. In-

significance of γage is probably caused by a low variation of the age distribution across

geographical units and may be fixed by including additional years. The explanatory power

of many linear variables in the logit model is absorbed by the consumer heterogeneity,

which could be a result of the simplistic nature of the model.

Estimates are obtained by the R package BLPestimatoR (Brunner, Weiser, and Romahn,

2017). The demand estimation is performed with an inner and outer loop stopping criterion

of 1×10−10. Zero vectors serve as an initial starting value for δjt and θ. Market shares are

approximated with 10,000 draws from the available demographic joint distribution. Second

derivatives were checked to verify that each point is a minimum. Heteroskedastic and

autocorrelation robust standard errors are used to compute significance levels20. Settings

in (iii) to (v) are only based on 367 out of 948 CBSAs, because others do not contain any

thrift or credit union branches resulting in zero outside shares.

19See setting (iv) (table 2) in her paper.
20Note that for settings based on the copula approach, standard errors do not take into account the

variance of the dependence parameters. Solving the problem by a bootstrap procedure, however, is
problematic due to computational cost and assumed to be negligible due to the availability of extensive
micro data.
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4.5 Conclusion

4.5 Conclusion

The present paper proposes copula functions to model the joint distribution of demo-

graphic variables for estimating BLPs’ random coefficient model of differentiated products.

This modeling becomes necessary, if, for example, providers of such data protect individu-

als’ privacy by publishing only demographics’ marginal distributions. The approximation

of market share integrals within the model of BLP, however, requires the knowledge of the

demographics’ joint distribution.

Copula functions impose a parametric dependence structure on the joint distribution

and are flexible in considering marginals. Four popular copula classes are introduced to

capture different dependence structures. Once the copulas’ parameters are estimated and

a class is chosen, the demand estimation is straightforward. The only difficulty in the

example above is to get demographic data that allows to extract the dependence structure

and is related to the marginal distributions of interest. This paper takes advantage of the

nested structure of different geographic layers: on a broad layer, micro data is available

to estimate a dependence structure, which then is used on a fine level to combine the

provided marginals. The procedure is illustrated by an application from the empirical

banking literature.

In a real data example, two market definitions are used to estimate the demand for

deposits in commercial banks and to demonstrate the implications of different data quali-

ties. Micro data on the state level can be directly used to generate draws and approximate

market share integrals. On the CBSA level, however, marginal distributions are the only

information that is provided, which requires the researcher to model the dependence struc-

ture separately. Copulas are used to extract the latter from the respective state and tie

marginal distributions on the geographic level of a CBSA together. For all states, the

Clayton copula provides the best fit to the data predicting a strong left tail dependence

between age and income. Using this result in the demand estimation predicts bank prod-

ucts with similar deposit rates to be good substitutes.

Modeling dependence as proposed in this paper allows to use realistic market definitions

and contributes to reliable economic conclusions.
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Appendix 4.A Variable Description

Table 4.4: Demand Estimation Variables

Variable Name Definition Data source

market share (state) deposits of a commercial bank in a
market/ total deposits in a market

DEPSUMBR,
STALPBR (SOD)

market share (CBSA) deposits of a commercial bank in a
market/ total deposits in a market

DEPSUMBR (SOD),
TIGER

service fees service charges on deposit accounts/
total deposits

RIAD 4080,
RCON 2200 (CR)

deposit rate interest expenses on deposits/ total
deposits

RIAD 4508,
RCON 2200 (CR)

employees per branch total number of employees per
bank/ total amount of branches per
bank

RSSDID (SOD),
RIAD 4150 (CR)

branch density number of branches per bank/ state
square miles

RSSDID,
STALPBR (SOD),
Geography data
(Census Bureau)

bank age weeks between today (=2017) or
closing date and opening date

DT OPEN,
DT EXIST TERM (NIC)

number of states number of states in which the bank
has presence

RSSDID,
STALPBR (SOD)

medium size total assets between 100 and 300
million dollar

RCON 2170 (CR)

large size total assets larger than 300 million
dollar

RCON 2170 (CR)

demogr. age (state) distribution of age per state ST, AGEP ( PUMS)
demogr. age (CBSA) marginal distribution of age per

CBSA
Sequence 10 (ACS)

demogr. income (state) distribution of demographic income
per state

ST, AGEP ( PUMS)

demogr. income (CBSA) marginal distribution of demo-
graphic income per CBSA

Sequence 58 (ACS)
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4.A Variable Description

Table 4.5: Instrumental Variables

Variable Name Definition Data source

local labor cost mean hourly wage of bank tellers
per state

H MEAN (OES Survey),
STALPBR (SOD)

housing price index index value per state HPI (FHFA),
STALPBR (SOD)

non interest expenses noninterest expenses related to the
use of premises, equipment, furni-
ture, and fixtures / total assets

RIAD 4217 ,
RCON 2170 (CR),
RSSDID (SOD)

other funding cost other funding costs / total assets RIAD 4180 , 4185, 4200,
RCON 2170 (CR),
RSSDID (SOD)

non performing loans non-performing loans / total assets all RC-N items,
RCON 2170 (CR),
RSSDID (SOD)

unused credit lines unused credit lines / total assets RCFD 3814, 3815, F164,
F165 , 3817, 6550 ,
RCON 2170 (CR),
RSSDID (SOD)

holding company “1” if bank is owned by a holding HCTMULT (SOD)
equity over assets equity / total assets RCON 3210, 2170 (CR),

RSSDID (SOD)
rural “1” if bank operates in rural area METROBR,

MICROBR (SOD)
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