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Abstract

Magnetic elastomers and gels are a class of smart materials that are manufactured
by embedding magnetic colloidal particles into a cross-linked polymer matrix. The
composite becomes magneto-responsive, allowing its elastic properties to be non-
invasively and reversibly controlled by applying external magnetic fields. For instance,
the magneto-rheological effect allows to dynamically tune the elastic response of the
material to mechanical forces, enabling applications as dampers or vibration absorbers.
As another example, large-scale shape changes that can be triggered by applying
magnetic fields qualify magnetic elastomers as magneto-mechanical actuators.

The theoretical description of these materials is challenging, because of the different
length scales that have to be addressed. To be able to engineer the magnetic elastomers
for practical purposes, one is typically interested in their bulk properties. However,
the macroscopically observed magneto-elastic effects are largely influenced by the
structure of the composite on the mesoscopic length scale. Therefore, a groundwork
for accurate macroscopic material models has to be laid by concentrating on the
mesoscale first. This cumulative Ph. D. thesis is a contribution to this effort and
concentrates on three main topics.

The first topic of this thesis concerns how the mesoscopic structure influences the
responsiveness of the composite to magnetic fields. One important structural aspect
is the particle distribution within the composite. It can be controlled to some degree
during the chemical cross-linking process that permanently embeds the particles into
the polymer matrix. Applying a magnetic field before and during the synthesis,
when the particles are still relatively mobile, incentivizes the formation of parallel
chain-like particle aggregates. A magnetic elastomer with a uniaxial anisotropy arises
as the cross-linking reaction locks these structures permanently into the emerging
polymer matrix. Another structural aspect is the magneto-elastic coupling between
particles and matrix. If the surrounding polymer chains are covalently connected to
the surfaces of the magnetic particles, the latter can transfer magnetic torques to the
elastic environment. A relatively loose connection on the contrary allows the particles
to rotate freely without deforming the elastic matrix in the long term.

Three different studies are performed on this first topic. Using a minimal dipole-
spring representation for a magnetic elastomer, it is tested for which particle dis-
tributions coarse-grained material descriptions that are restricted to affine sample
deformations are a feasible approach. It is demonstrated that the assumption of
affine deformations is still valid for particle arrangements on slightly distorted regular
lattices, but leads to qualitatively erroneous results for realistic particle distributions.
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Additionally, the tunability of the elastic behavior depends on the type of assumed
structure for affine as well as non-affine deformations. Second, it is investigated how
the dynamical relaxation behavior of a magnetic elastomer depends on the particle dis-
tribution and the magneto-elastic coupling. Here it is also shown that the appearance
of the dominant relaxation modes as well as the corresponding relaxation rates can be
controlled by external magnetic fields. Third, the experimentally observed buckling
behavior of a chain of superparamagnetic particles embedded in a soft gel when a
homogeneous magnetic field is applied perpendicular to the chain axis is modeled.
Within a phenomenological model, it is identified how the chain length, the elastic
modulus of the polymer matrix, and the strength of the applied field influence the
morphology of the buckling behavior.

The second topic of this thesis is the non-linear stress-strain behavior of magnetic
elastomers. It represents the main focus area of this thesis as it concerns the majority
of the research conducted. Here, using particle-resolved numerical simulations, it
is revealed that anisotropic magnetic elastomers featuring chain-like aggregates can
display a superelastic stress-strain behavior under uniaxial tensile load. Superelasticity
is a fascinating phenomenon that is known from shape-memory alloys and some
other smart materials. It appears in the form of a plateau-like regime in the stress-
strain curve, where the sample can be reversibly further elongated, basically without
increasing the load. In magnetic elastomers, as an additional benefit, the superelastic
stress-strain behavior can be reversibly tailored on-demand by applying external
magnetic fields. How the superelastic plateau reacts to these stimuli depends on the
type of magneto-elastic coupling between polymer matrix and magnetic particles.
In any case, a strong enough magnetic field applied perpendicular to the chain-like
aggregates can switch the superelastic stress-strain behavior off. Since the mesoscopic
mechanisms generating this fascinating behavior are also identified, it can properly be
accounted for in future models for the macroscale.

The final topic of this thesis is the description of magnetic elastomers using density
functional theory and other statistical methods. Density functional theory is a
well established statistical mechanical approach for ensembles of indistinguishable
particles. It cannot be applied directly to magnetic elastomers though, because the
embedded magnetic particles can be clearly labeled according to their position within
the polymer matrix. The elastic interactions in the systems depend on these reference
positions and therefore render the particles distinguishable. However, it is shown
that they can reasonably be mapped to effective pairwise interactions that treat the
particles as indistinguishable. In this way, a density functional description for these
materials is enabled. The obtained results are also benchmarked with Monte-Carlo
simulations and good agreement can be found. As a further contribution to this
topic, a detailed statistical characterization of structural data obtained from X-ray
tomography measurements on real experimental samples is performed. In the future,
such experimentally realistic particle distribution functions could provide a valuable
input to statistical theories.
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Zusammenfassung

Magnetische Elastomere und Gele sind eine Klasse von intelligenten Werkstoffen,
die durch die Einbettung magnetischer kolloidaler Teilchen in eine quervernetzte
Polymermatrix hergestellt werden. Der Verbundwerkstoff ist magnetisch beeinflussbar,
so dass seine elastischen Eigenschaften durch Anwendung eines magnetischen Feldes
nicht-invasiv und reversibel kontrolliert werden können. Beispielsweise erlaubt es der
magnetorheologische Effekt, die elastische Reaktion des Materials auf Deformationen
dynamisch zu justieren, was Anwendungen als schaltbare Schwingungsdämpfer und
-absorber ermöglicht. Ein weiteres Beispiel sind starke Formänderungen, die durch das
Anlegen magnetischer Felder ausgelöst werden können und magnetische Elastomere
für den Einsatz als magnetomechanische Aktoren qualifizieren.

Die theoretische Beschreibung dieser Materialien stellt aufgrund der unterschied-
lichen Längenskalen, die berücksichtigt werden müssen, eine Herausforderung dar.
Für die Entwicklung von magnetichen Elastomeren hin zu praktischen Anwendungen
beschäftigt man sich typischerweise mit den Bulk-Materialeigenschaften. Allerdings
werden die makroskopisch zu beobachtenden magnetoelastischen Effekte zum großen
Teil durch die Struktur des Werkstoffs auf der mesoskopischen Längenskala beeinflusst.
Als Grundlage für ein akkurates makroskopisches Materialmodell muss daher zunächst
ein Fokus auf die Mesoskala gelegt werden. Diese kumulative Dissertation ist ein
Beitrag hierzu und befasst sich hauptsächlich mit den folgenden drei Themen.

Als erstes Thema beschäftigt sich diese Arbeit damit, wie die mesoskopische Struktur
die Reaktion des Werkstoffs auf das Anlegen eines magnetischen Feldes beeinflusst.
Ein wichtiger struktureller Aspekt ist die Teilchenverteilung innerhalb des Werkstoffs.
Diese kann zu einem gewissen Grad während des chemischen Quervernetzungsprozes-
ses, der die Teilchen permanent in die Polymermatrix einbettet, kontrolliert werden.
Durch Anlegen eines magnetischen Feldes vor und während der Synthese, wenn die
Teilchen noch in relativ mobil sind, wird die Bildung von parallelen, kettenartigen
Aggregaten aus Teilchen angeregt. Ein magnetisches Elastomer mit uniaxialer Ani-
sotropie entsteht, wenn die quervernetzende Reaktion diese Strukturen permanent
in der entstehenden Polymermatrix fixiert. Ein weiterer struktureller Aspekt ist die
magnetoelastische Kopplung zwischen Teilchen und Matrix. Wenn die Polymerketten
mit den Oberflächen der magnetischen Teilchen kovalent verbunden sind, können
sie magnetische Drehmomente auf die sie umgebende elastische Matrix übertragen.
Im Gegensatz dazu erlaubt eine relativ lose Verbindung den Partikeln auf langen
Zeitskalen eine freie Rotation ohne Verformung der umgebenden Matrix.

Zu diesem ersten Thema werden drei verschiedene Studien durchgeführt. Zuerst wird
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mithilfe einer minimalistischen Dipol-Feder Darstellung eines magnetisches Elastomers
getestet, für welche Teilchenverteilungen vergröberte Materialbeschreibungen, die
auf affine Probendeformationen beschränkt sind, ein sinnvoller Ansatz sind. Es wird
gezeigt, dass die Annahme von affinen Deformationen auch noch für Partikelanord-
nungen auf leicht gestörten regelmäßigen Gittern berechtigt ist, aber zu qualitativ
fehlerhaften Ergebnissen für realistische Teilchenverteilungen führt. Zusätzlich ist die
Anpassbarkeit des elastischen Verhaltens abhängig vom Typ der zugrunde liegenden
Struktur, sowohl für affine als auch für nicht-affine Deformationen. Als zweites wird
untersucht, wie das dynamische Ralaxationsverhalten eines magnetischen Elastomers
von der Teilchenverteilung und der magnetoelastischen Kopplung abhängt. Hierbei
zeigt sich auch, dass sowohl das Auftreten der dominanten Relaxationsmoden als auch
die zugehörige Relaxationsrate durch externe magnetische Felder kontrolliert werden
kann. Als drittes wird das experimentell beobachtete wellenförmige Deformationsver-
halten einer Kette von superparamagnetischen Teilchen, eingebettet in einem weichen
Gel, bei Anlegen eines homogenen magnetischen Feldes senkrecht zur Kettenachse
modelliert. Innerhalb eines phänomenologischen Modells wird identifiziert, wie die
Kettenlänge, der elastische Modul der Polymermatrix und die Stärke des angelegten
Feldes die Morphologie der wellenartigen Deformationen beeinflussen.

Das zweite Thema dieser Dissertation ist das nicht-lineare Zugdehnungsverhalten
von magnetischen Elastomeren. Dabei handelt es sich um das Hauptthema dieser
Arbeit, das den Großteil der durchgeführten Forschung beinhaltet. Hier wird unter
Anwendung teilchenaufgelöster numerischer Simulationen gezeigt, dass anisotrope
magnetische Elastomere, die kettenähnliche Aggregate aufweisen, ein superelastisches
Zugdehnungsverhalten unter uniaxialer Zugbeanspruchung zeigen. Superelastizität
ist ein faszinierendes Phänomen, das von Formgedächtnislegierungen und anderen
intelligenten Werkstoffen bekannt ist. In der Zugdehnungskurve tritt es in Form eines
plateauartiges Regimes auf, in dem die Probe reversibel weiter gestreckt werden kann,
praktisch ohne die Last zu erhöhen. Das Besondere bei magnetischen Elastomeren ist,
dass das superelastische Zugdehnungsverhalten durch Anlegen externer magnetischer
Felder reversibel und maßgerecht angepasst werden kann. Wie das superelastische
Plateau auf diese Stimuli reagiert hängt dabei vom Typ der magnetoelastischen
Kopplung zwischen der Polymermatrix und den magnetischen Teilchen ab. In jedem
Fall kann durch ein ausreichend starkes Feld, das senkrecht zu den kettenartigen
Aggregaten angelegt wird, das superelastische Zugdehnungsverhalten abgeschaltet
werden. Da die mesoskopischen Mechanismen, die dieses faszinierende Verhalten
verursachen, identifiziert werden können, kann es in zukünftigen Modellen für die
Makroskala angemessen berücksichtigt werden.

Beim letzen Thema dieser Arbeit handelt es sich um die Beschreibung von magneti-
schen Elastomeren unter Nutzung der Dichtefunktionaltheorie und anderer statistischer
Methoden. Die Dichtefunktionaltheorie ist ein gut etablierter Ansatz der statistischen
Mechanik für Ensembles von ununterscheidbaren Teilchen. Sie kann jedoch nicht direkt
auf magnetische Elastomere angewendet werden, da die eingebetteten magnetischen
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Teilchen klar anhand ihrer Positionen innerhalb der Polymermatrix gekennzeichnet
werden können. Die elastischen Wechselwirkungen im System hängen von diesen Refe-
renzpositionen ab und machen die Teilchen dadurch unterscheidbar. Es wird jedoch
gezeigt, dass diese Wechselwirkungen sinnvoll auf effektive Paarwechselwirkungen ab-
gebildet werden können, welche die Teilchen als ununterscheidbar behandeln. Auf diese
Weise wird eine Beschreibung mittels Dichtefunktionaltheorie für diese Materialien
ermöglicht. Beim Vergleich der erhaltenen Ergebnisse mit Monte-Carlo Simulationen
kann eine gute Übereinstimmung erzielt werden. Einen zusätzlichen Beitrag zu die-
sem Thema stellt eine detaillierte statistische Charakterisierung von Strukturdaten
dar, die durch röntgentomografische Messungen an realen experimentellen Proben
ermittelt wurden. In zukünftigen statistischen Theorien könnten solche experimentell
realistischen Teilchenverteilungsfunktionen einen wertvollen Beitrag liefern.
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Seite stand. Ebenso möchte ich mich bei Herrn Prof. Dr. Hartmut Löwen für seine
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Weiterhin möchte ich mich bei allen meinen Mitautoren für die fruchtbare Zusam-
menarbeit in vielen Projekten bedanken. Besonders hervorheben möchte ich hierbei
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mir sehr geholfen, meine Herausforderungen zu meistern. Auch die nichtfachlichen,
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Chapter 1.

Introduction

Smart materials possess capabilities to sense environmental changes or stimuli, to
adapt their physical properties in response to external stimuli, and to react back on
the environment [1]. They do so in a reversible way, finding back to their original
state after the stimulus is removed, allowing cyclic operation and reuse [2]. Due to
these inherent properties, they can single-handedly fulfill tasks that would otherwise
require a possibly more complex and bulky multicomponent system.

Nowadays, smart materials are present in many applications. Liquid crystals have
revolutionized the industry of display devices due to their optical switching capabilities
in reaction to electric fields [3]. Smart gels [4–7] can sense changes in temperature or
pH-concentration. Piezoelectric materials [8, 9] are used to transform a mechanical
deformation into an electrical voltage and vice versa. Shape-memory alloys [10–12] are
known for their shape-recovery upon heating, which has established them as thermally
controlled actuators [13]. Their superelastic properties [14] further allow them to
recover even from large deformations. As soft actuators, dielectric elastomers [15–19]
have received much attention as they respond to electric fields with large-scale shape
changes. Finally, magnetic liquids are used in many applications that require damping
or vibration absorption applications [20–22].

This thesis revolves around magnetic elastomers and gels [1,23–26], a relatively new
class of smart materials with equally fascinating properties. As some of the smart or
stimuli-responsive materials mentioned above, it can be classified as soft matter [27],
which comprises systems such as colloidal suspensions, polymers, elastomers, gels,
and even biological cells and tissue [28]. The common ground of these systems is the
mesoscopic size of their building blocks, ranging from a few nanometers to often around
a hundred micrometers. This is much larger than an atom, such that quantum effects
are negligible, but at the same time it is small enough to make thermal fluctuation an
important factor [29,30]. In colloidal suspensions for example, the mesoscopic particles
undergo Brownian motion due to the constant bombardment by the thermally agitated
molecules of the surrounding medium [31,32].

The defining “softness” [28] is an appealing property for smart materials, as it
means a typically strong response to stimuli and environmental changes [27]. But
where does it come from? On the one hand, a system built of mesoscopic blocks has
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necessarily a much lower number of bonds per unit volume than an atomic solid [29].
Consequently, the response of such a system to deformation should be “soft”. On that
account, the elastic modulus of a crystal built of colloidal particles [33] is many orders
of magnitude lower than that of a“hard” atomic solid like iron.

Polymers, on the other hand, have an elastic response that can be connected to
thermal fluctuations, or more precisely to configurational entropy. They are, for
instance, given by large chain-like molecules assembled by chemically linking molecular
repeat units, the so-called monomers, in a process called polymerization [34]. A simple
model for a single polymer considers it as a chain of jointed segments that perform a
random walk [29]. Since there are more configurations corresponding to a compact,
curled-up state than to a stretched-out one, the former state is favored by the chain on
average. Mechanical stretching of a polymer chain away from this favored curled-up
state entails a restoring force. Thus, the elastic response of polymers can be attributed
to entropic interactions, and is therefore “soft”. Since these interactions scale with
temperature, already a single polymer chain has inherent smart capabilities.

When many polymer chains are cross-linked to form a network, a three-dimensional
structure with the characteristics of a solid is obtained. At temperatures and densities
away from the glass or crystallization transition of the polymer, these networks remain
flexible and are called elastomers [28, 35, 36]. The stereotypical example is rubber,
which we all know from practical experience to be both solid and also soft and
reversibly deformable [35, 36]. These soft elastic properties can again be related to
entropic interactions of the constituting polymer chains. Elastomers can be stretched
by hundreds of percent without incurring a plastic deformation [37], as even strong
strains mostly impart only configurational changes of the polymer network.

Polymeric gels are a sub-group of elastomers that are not “dry” like natural rubber,
silicone, or polyurethane. Instead, they can additionally contain large amounts of
solvent, which is trapped in the network due to hydrophilic interactions with the
polymer. They can be obtained by performing the cross-linking or polymerization
process in solution [29]. Alternatively, an already formed polymer network can be
swollen in a good solvent. The temperature and chemical composition of the solvent
has a significant influence on the swelling behavior of the gel and, therefore, controls
its shape and elastic properties. Smart gels [4–7] are extremely versatile materials
that are specifically optimized to exploit these and many additional stimuli.

Magnetic liquids [26, 38–45] are an example of a colloidal suspension with smart
properties. They consist of ferromagnetic colloidal particles suspended in a liquid
medium, stabilized to prevent coagulation [46,47]. In ferrofluids, for instance, single
domain nanoparticles of a size of up to 15 nanometers are employed. A magnetic
field aligns the magnetic moments and leads to an overall magnetization of the
fluid. When the field is switched off, the magnetization quickly dissipates by thermal
fluctuation, either due to rotational Brownian motion of the particles [48,49] or by
Néel relaxation of their internal magnetic moments [48, 50, 51]. Thus, a ferrofluid has
overall superparamagnetic properties.



3

Suspending larger multidomain particles instead results in magneto-rheological fluids.
They display magneto-viscous effects in external magnetic fields, allowing to tune the
viscosity dynamically and reversibly over a wide range [40, 52–58]. The main origin of
these effects is the formation of chain-like particle aggregates in the direction of the
applied field, which lead to a viscous friction against a shearing of the surrounding
fluid [59–63]. Due to their tunable properties, both ferrofluids and magneto-rheological
fluids have found applications in flow control and as tunable dampers [20–22].

Now, we come back to magnetic elastomers. Per definition, they are soft composite
materials [64–66] manufactured by embedding ferromagnetic colloidal particles into
a cross-linked polymer matrix [64, 65,67–71]. Basically, they combine the merits of
magnetic liquids with those of elastomers. Magnetic elastomers are highly deformable
like rubber [72] and at the same time magneto-responsive. Furthermore, due to the
coupling of elastic and magnetic interactions, a wide range of unique effects arises.
Consequently, they offer great potential for technical applications [24,73–75].

Magnetic elastomers appear under many different names in the literature [25].
When the polymer network is swollen with a solvent, the material is rather gel-
like and often referred to as a ferrogel [76]. By using smart gel matrices that are
by themselves already stimuli-responsive [4–7], ferrogels can have an even wider
range of possible interplays to choose from [1]. Another term often used is magneto-
rheological elastomer. It directly refers to the characteristic magneto-rheological effect
that allows to reversibly adjust the elastic constants of the composite by applying
an external magnetic field [1, 72, 77–89], not unlike the magneto-viscous effect in
magnetic liquids. This magnetically tunable stiffness can be utilized, e.g. , to construct
tunable dampers [24, 90–92] and vibration absorbers [73, 75, 78, 93]. Due to their
magneto-responsiveness, these elastomers and gels can also be operated as magnetic
field sensors [94], or conversely translate a mechanical deformation into a magnetic
signal [95, 96].

Another characteristic feature of magnetic elastomers are the large-scale shape
changes that can be accessed by applying magnetic fields [1, 97–102]. Using homoge-
neous magnetic fields, sample elongations in the range of tens of percent are easily
reached [101], while in inhomogeneous magnetic fields, this can be further extended
up to deformation amplitudes in the range of 100% [23]. Other shape-changes like
deflections [103] are possible as well, even almost arbitrary deformation patterns in
some samples [104].

With these capabilities, magnetic elastomers make excellent magneto-mechanical
soft actuators [23, 102,105]. Those devices transfer magnetic energy into mechanical
work on their environment and single-handedly perform tasks for which more complex
devices, such as motors, would be too bulky or unpractical. For example, soft magnetic
actuators provide a closing mechanism for valves [83] or can be used as locomotion
systems [104,106–109] to propel soft robots [110,111] or magnetic microswimmers [112].
Employed as magnetically controlled artificial muscles, they have similar characteristics
as their natural, biochemical counterparts [23,105].
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Finally, one should mention the remarkably non-linear stress-strain behavior of
magnetic elastomers. Magnetic shape-memory effects [2] have been observed in several
experiments on magnetic elastomers [79, 113–116]. While exposed to a magnetic
field, the material deforms seemingly plastically under load. As soon as the field is
switched off, however, the sample can recover its initial state. Recent findings in
theoretical models and simulations [117–119] hint towards the possibility of a plateau-
like “superelastic” regime [14, 120–126] in the tensile stress-strain curve, similar to
the phenomenology observed in shape-memory alloys. In this regime, the material is
very susceptible to deformations, allowing large-scale reversible length changes while
barely altering the load. Moreover, the non-linear stress-strain behavior can be tuned,
tailored, and switched-off by external magnetic fields.

All of these capabilities can be transferred to a biomedical environment as well [127].
A concern in these applications is, of course, that the employed materials must not
be harmful to the organism [74, 127–130]. However, as polymer-based composites,
magnetic elastomers may already possess a high degree of biocompatibility [131–134].
On top of that, the magnetic field as a stimulus is tolerable by living organisms up to
high field strengths [135] and does not rely on environmental properties like thermal
or electrical conductivity [136]. This allows to control the material non-invasively
from outside of the organism.

This non-invasive control makes smart implants based on magnetic elastomers very
promising. For example, the mechanical stimulation of damaged muscle tissue by
an implanted soft magnetic actuator was found to be beneficial to its regeneration.
[129,130]. In tissue engineering, porous ferrogel scaffolds can act as tunable templates
for cell growth [127].

Finally, magnetic particles that are embedded into biological cells and tissue can
be regarded as a magnetic gel, too. This point of view is relevant, e.g. , to model the
processes during hypothermal cancer treatment using magnetic nanoparticles [127,137].
Here, magnetic particles are injected into the organism and subsequently enriched in
the degenerated tissue by external magnetic fields. Once accumulated and embedded
in there, they are heated by alternating magnetic fields to destroy the tumor cells
[138–140]. To make this selective treatment as effective as possible, accurate models
of the heat distribution around the magnetic nanoparticles and for the effect on the
surrounding tissue are required [128,141,142]. It is also important to understand the
mechanical interaction between magnetic particles and cells [143], i.e. their ability to
reach their destination by penetrating cell layers [144]. Related to this topic, microgel
drug carriers with embedded magnetic particles [51,74,135,136,145–148] are an elegant
method for directed transport and release of therapeutic substances. The ultimate
goal of these localized non-invasive therapies are less side effects for the patient than
conventional treatments.

While magnetic elastomers are certainly very promising, in most prospective ap-
plications [23, 24, 75, 110, 111] they are at the current stage still overshadowed by
the more established smart materials mentioned in the beginning. Although there
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has been significant progress in recent years in enhancing the magnitude of the key
magneto-deformational effects, such as stiffness and shape changes in applied magnetic
fields, there is still much room for improvement.

With a profound theoretical understanding of the underlying mechanisms, one
could systematically engineer the materials towards a specific purpose. It is quite
challenging, however, to devise an accurate macroscopic model for such a composite
material because of the different length scales that have to be addressed. Many
aspects of the bulk magneto-deformational behavior actually originate from processes
occurring on the mesoscale. Simplifying macroscopic material models can easily
miss those mesoscopic details and draw conclusions that are in disagreement with
experimental observations [99,149,150].

Aware of this fact, recent modeling attempts increasingly concentrate on those
smaller length scales. One can roughly distinguish between microscopic, mesoscopic,
and macroscopic approaches for both the representation of the polymer matrix and the
influence of the embedded particles. For the elastic matrix in microscopic approaches,
the polymer network is resolved on the level of the individual polymer chains [151–
154]. Mesoscopic viewpoints coarse-grain the polymer matrix while still resolving
deformations on the length scale of the embedded particles. This can either be a
continuum mechanical formulation [149,155–159] for the elastic medium between the
particles or a representation by a network of springs connecting them [114,150,160–163].
Macroscopically, only the large-scale shape changes of the sample are considered
[164–166].

Similarly, the magnetization can be microscopically resolved within each embedded
particle [149,155–157,167] or mesoscopically approximated by multipolar [168, 169] or
dipolar magnetic moments [117,118,150,161–163,170–174] of the particles.

Finally, on the macroscale, only the bulk magnetization is considered, not resolving
the individual particles anymore [164–166,175].

The different scales can be connected via scale-bridging approaches [154,176–179].
First, a profound understanding on one length scale has to be developed. Then, a
coarse-grained model is devised that captures the essential properties on that scale.
Finally, this model can be used as an input to an approach that addresses a larger
scale. Ultimately, a macroscale description is desired that takes all essential aspects
of the smaller scopes into account.

This thesis is an effort to provide the required insight on the effects on the mesoscale,
paving the way for future macroscopic descriptions. As methods, we have used
particle-resolved models, computer simulations, and statistical theories. We have also
collaborated with research groups that are capable of tracking individual particles in
experiments [62,180,181]. These live insights into ongoing mesoscopic processes are
exceptionally valuable for the characterization of magnetic elastomers.

In the further course of this introduction, I will first point out the basic properties
of magnetic elastomers and how the different considered materials can be modeled.
Following that, I will elaborate on some selected aspects qualifying magnetic elastomers
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as smart materials, as well as the challenges in modeling them, while putting a strong
focus on my own research.

1.1. Composition and structure of magnetic
elastomers

In magnetic elastomers, quite different materials are brought together. It is worthwhile
to describe their properties separately before explaining how they couple and interact
in the composite.

1.1.1. Elastomers

The building blocks of an elastomer are polymer chains. An individual polymer chain
responds elastically to deformations, as a simple qualitative model demonstrates [29]:
The polymer is regarded as a freely jointed chain of N straight segments with end-to-
end vectors b1, . . . ,bN . They are of length b and linked together at their ends. The
segments do not interact and their orientations are independent of each other.

If we take a look at a random configuration of the chain, the segments perform an
ideal random walk of N uncorrelated steps of length b. For large N , the statistics of
such a random walk produces a Gaussian probability distribution P (L, N) for the
vector L =

∑N
i=1 bi pointing from the start of the chain to its end,

P (L, N) =

(
3

2πNb2

)3/2

exp

(
− 3L2

2Nb2

)
. (1.1)

It has a zero mean and variance 〈L2〉 = Nb2. We see that the end-to-end separation
|L| is likely to be small. The chain prefers a coiled up state over a stretched-out one.

When we actively stretch the chain, we increase |L| and force the chain to assume
a less likely configuration. In other words, we decrease the configurational entropy

S(L, N) = kB ln
(
P (L, N)

)
= −kB

3L2

2Nb2
+

3

2
kB ln

(
3

2πNb2

)
(1.2)

and end up with a state of larger free energy

F (L, N) = −TS(L, N) =
3kBT

2Nb2
L2 + const , (1.3)

i.e. , the freely jointed chain essentially behaves like a harmonic spring of spring
constant (3kBT )/(Nb2). This surprising result justifies representing a polymer matrix
by a coarse-grained network of springs, which is a common approach in models and
simulations of magnetic elastomers [114,150,160,161,163,174].
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By cross-linking many polymer chains to a three-dimensional network, an elastomer
is obtained. Elastomers behave like usual solids in the sense that they have an
elastic resistance to deformation. In fact, we can calculate this elastic response via
scale-bridging. For this purpose, we switch the point of view from individual polymer
chains to that of a larger, coarse-grained piece of material.

Consider a volume element containing a statistical amount of cross-links and polymer
strands connecting them, expressed by a cross-link density n. First, we assume that the
distribution P (L, N) for the end-to-end vector of each polymer strand of N segments
still holds after the cross-linking. Second, we assume an arbitrary distribution Φ(N)
satisfying

∫∞
0

Φ(N) dN = 1 for the number of segments N of the polymer strands
in the network. Finally, Eq. (1.3) provides us with the deformational energy for a
polymer chain of N segments and end-to-end distance L. In total, we can express the
free energy density of the undeformed reference state of the polymer network as [28]

fr = n

∫ ∞

0

dN

∫
dL

3kBT

2Nb2
L2P (L, N)Φ(N)

=
3nkBT

2b2

∫ ∞

0

dN
Φ(N)

N

∫
dLL2P (L, N)

︸ ︷︷ ︸
=Nb2

=
3nkBT

2
.

(1.4)

Now, we deform the volume element to obtain the energy of the strained polymer
network. We restrict ourselves to an overall affine deformation. This means that each
material point X is related to its deformed state counterpart x = F ·X via a constant
deformation gradient tensor F [182]. In particular, this also applies to the end-to-end
vectors L so that the free energy density in the deformed state is given by [28]

fd(F) = n

∫ ∞

0

dN

∫
dL

3kBT

2Nb2
[F · L]2 P (L, N)Φ(N)

=
3nkBT

2b2
FαβFαγ

∫ ∞

0

dN
Φ(N)

N

∫
dLLβLγ P (L, N)

︸ ︷︷ ︸
=(Nb2/3)δβγ

=
nkBT

2
FαβFαβ .

(1.5)

In total, the free energy density associated with the deformation is given by

f(F) = fd(F)− fr =
nkBT

2

(
Tr(FTF)− 3

)
. (1.6)

Remarkably, the prefactor only depends on the temperature kBT and the cross-link
density n.

This expression defines the stress-strain behavior [182] of the idealized elastomer. We
can, therefore, identify the elastic constants by performing a volume-conserving tensile
deformation. We apply a diagonal deformation gradient tensor with entries Fxx = λ
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and Fyy = Fzz = 1/
√
λ. Inserting it into Eq. (1.6) yields f(λ) = nkBT

2
(λ2 + 2/λ− 3)

and the elastic Young’s modulus

E := lim
λ→1

∂2f(λ)

∂λ2
= 3nkBT . (1.7)

Because of the typical incompressibility of elastomers, we can further identify G =
E/3 = nkBT as the shear modulus of the polymer network [29,182], obtained, e.g. , in
analogy by setting Fxz = λ and all other Fαβ to zero, and finally obtain

f(F) =
G

2

(
Tr(FTF)− 3

)
. (1.8)

This expression is known as the neo-Hookean hyperelastic model for rubber [28,
35,36,183]. Technically, Eq. (1.8) only holds for a strictly incompressible elastomers.
However, variants with a finite compressibility exist [184]. Because of its simplicity,
the neo-Hookean material model is often used to represent the polymer matrix in
magnetic elastomers in a coarse-grained way [117,118,149,155–157,164,166].

1.1.2. Magnetic particles

Elastomers can be equipped with magneto-responsive properties by embedding colloidal
ferromagnetic particles into the polymer matrix. The magnetic properties of these
filler particles depend on the employed magnetic material as well as on their size.

Above a size of around 100 nanometers, ferromagnetic particles consist of multiple
magnetic domains [167, 185, 186]. A domain is a localized region of spontaneous
magnetization where the atomic dipole moments are on average aligned along a
common direction [187]. Normally, different domains are oriented in different directions
so that the overall magnetization vanishes.

However, multidomain particles can receive a net magnetization M in an applied
magnetic field that aligns the domains. When the field strength is tuned up, the
aligned domains grow at the expense of the misaligned ones until finally the saturation
magnetization Ms is reached. Typically, these domain processes are not reversible and
show hysteresis. Defects and impurities as well as crystalline anisotropy can pin the
domain boundaries, keeping the domains partially aligned after the field is removed.
In this way, the material retains a remanent magnetization Mr. The required coercive
field strength to remove this remanent magnetization determines the resistance of the
material to demagnetization [188].

Multidomain particles can be categorized as magnetically hard or magnetically
soft. Magnetically hard particles have a high remanent magnetization and coercivity
and can be turned permanently magnetic. Neodymium-iron-boron (NdFeB) is often
employed as a filler material [85, 104, 189–191] for its high remanent magnetization
of Mr ' 800 kA/m [192]. Elastomers with such magnetically hard fillers [108, 193]
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can essentially represent flexible permanent magnets. Hence, they have a pronounced
magnetic hysteresis themselves [190].

Elastomers with magnetically soft fillers, on the contrary, possess the advantage
that the magnetization of the embedded particles can be quickly tuned on demand
by an applied magnetic field [26]. For this purpose, the ferromagnetic filler material
must feature a narrow hysteresis loop with a low remanence and coercivity, but
high saturation magnetization Ms [170]. Mostly, commercially available carbonyl-iron
powders [78,86,92] with Ms ' 1600 kA/m [171,194,195] are used in this respect. These
powders typically display a large variation in particle sizes and shapes [62,181,196,197].
Rubbery materials filled with carbonyl-iron are often called magneto-rheological
elastomers [26, 72].

The properties of ferromagnetic particles change drastically below a size of about 100
nanometers when they finally become small enough to consist of a single domain [167,
185,186]. Such monodomain particles possess a permanent magnetic moment, typically
oriented along a favored crystalline axis. Temporary rotations out of this favored
axis are possible, but subject to an energetic penalty [198–201]. For a permanent
reorientation of the magnetic moments to the opposite direction of the anisotropy
axis, strong magnetic fields are required. This high resistance to remagnetization is
expressed by calling these particles magnetically blocked.

Yet another size threshold is at around 10–15 nanometers. There, the Néel relaxation
mechanism [48,50] becomes relevant. The strong thermal fluctuations at this size cause
the permanent magnetic moments to constantly rotate and flip away from the favored
axes. These nanoparticles become magnetically unblocked and have superparamagnetic
properties [202,203]. Isolated superparamagnetic particles appear to be unmagnetic
as the time average of the fluctuating magnetization vanishes. A magnetic field can
incentivize a net alignment and, therewith, an effective magnetization that saturates
at high field strength. Therefore, isolated superparamagnetic particles effectively
have a magnetically soft response. However, in an ensemble, the aligning magnetic
fields are momentarily provided by other particles so that collective effects can
arise [204, 205]. In magnetic elastomers, mostly nanoparticulate magnetite with a
saturation magnetization Ms ' 450 kA/m [202] is employed [82,147]. These composites
possess superparamagnetic properties also on the macroscopic scale [202,203].

In models and simulations of magnetic elastomers, the magnetization is represented
in various ways. Numerically sophisticated methods can resolve microscopic magneti-
zation effects within each particle [167]. In this way, the magnetic interactions can be
accurately captured even if the magnetic particles are very close to each other [168].
This is restricted, however, to small numbers of particles.

To treat larger numbers of particles, the magnetic interactions have to be represented
more coarsely. A popular approximation is to assign magnetic dipole moments to the
particles [117,118,150,161–163,170–174]. This becomes accurate when the particle
separation reaches a few particle diameters [168]. However, it is also often used at
smaller particle distances for its simplicity. The interaction energy of such an ensemble
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of dipolar magnetic particles is given by [187]

Um =
µ0

4π

∑

i

∑

j<i

mi ·mj − 3 (mi · rij) (mj · rij) /(rij)2
(rij)3

−
∑

i

mi ·Bext . (1.9)

Here µ0 is the vacuum permeability, rij = rj − ri the vector separating two particles
i, j, and Bext an externally applied magnetic field. The dipole moments mi of the
particles can be assigned in different ways.

• A field-dependent magnetization M(B) of magnetically soft or superpara-
magnetic particles can be treated by setting mi = ViM(B(ri)) at each instant,
where Vi is the volume of the particle and B(ri) is the local magnetic field at its
position.

• In a magnetically hard particle, the magnetic moment mi = MrViûi is rigidly
coupled to an axis ûi within the particle frame of reference. In a magnetic field,
the magnetic moment can, therefore, transfer a magnetic torque τ i = mi ×B
to the particle.

• The collective dynamics of superparamagnetic particles can be simulated by
keeping only the magnitudes |mi| of the permanent magnetic moments fixed
and their orientations unconstrained [206,207].

• The permanent magnetic moments of magnetically blocked monodomain particles
can be treated in the same way if an energetic penalty for the rotation of the
moment away from the easy magnetization axis is introduced [198–201].

In conclusion, the dipolar approximation is quite versatile as all types of filler particles
discussed above can be represented in a simple way in many practical situations.

1.1.3. Coupling between matrix and filler

Let us now discuss how the magnetic particles interact with the polymer matrix into
which they are embedded.

First of all, there is a translational magneto-elastic coupling between the components.
Activating magnetic interactions between the particles leads to their displacement
against the polymer network. The surrounding elastic matrix elastomer deforms and
exerts restoring forces on the particles that attempt to drive them back [159]. In this
way, the particles mediate their magnetic interactions to the surrounding polymer
matrix and, e.g. , shape-changes can be induced [101,208,209]. When the magnetic
interactions are switched off, the matrix drives the particles back to their original
positions [79, 86,114,180].

Recently, a new class of magnetic elastomers has been developed, which also features
a strong rotational magneto-elastic coupling. In these composites, the polymer matrix
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is directly anchored to the particle surfaces [25, 210]. This can be achieved by a
chemical surface-functionalization of the particles, such that they become covalent
cross-linkers of the polymer network themselves [67, 68, 70, 71, 211]. The particles
possess a permanently imprinted orientational memory [154, 160, 161]. A particle
rotation in these materials twists the surrounding polymer matrix and is met with
restoring torques. If particles of blocked permanent magnetic moments are employed,
they can mediate the torques on their magnetic moments to the surrounding matrix
in this way [118,151,152]. Additionally, this covalent embedding is associated with
improved mechanical properties like decreased brittleness and overall higher recoverable
deformations [211].

In more conventional magnetic elastomers, where the polymer matrix is not firmly
attached to the particles, the rotational coupling may be more of a frictional kind.
The matrix deforms elastically under small torques, but may start to slip when the
rotational distortions become too high [191]. When the rotational friction is low, the
particles can reorient quite freely without deforming the surrounding matrix. This can
go so far that some magnetic gels may display pseudo-superparamagnetic properties.
In such gels, the permanent magnetic particles undergo rotational Brownian relaxation
processes similar to those in magnetic liquids [68, 69,202].

A different aspect of the coupling between matrix and filler is that the filler particles
represent rigid inclusions within the polymeric composite material [64–66,212] already
in the absence of any magnetic interactions. The particles are much less deformable
than the polymer matrix. Thus, the composite has an overall stiffer response to
deformations with the particles included than the pure elastomer. [212–215]. As
a rough estimate, the reinforced elastic modulus of an elastomer composite with a
volume fraction φ of rigid inclusions is given by [216]

E ′ = E(1 + 2.5φ+ 14.1φ2) (1.10)

in terms of the modulus E of the pure elastomer.

This filler reinforcement becomes important when trying to optimize magnetic
elastomers for strong relative magneto-elastic effects [82, 217]. A high fraction of filler
particles leads to enhanced magnetic interactions due to the decreased average distance
between particles, see Eq. (1.9). On the other hand, the deformational response to these
magnetic interactions roughly scales inverse with the elastic constants and decreases by
adding more filler. Model predictions suggest that an optimal filler fraction is reached
at around 27% [90,171]. However, a high filling fraction also increases the brittleness
of the material [211,218], which limits the recoverable deformation. Most experiments,
therefore, aim for filler volume fractions of about 10% [26, 80, 85, 87, 189], although
considerably higher values of up to 40% have been explored as well [93,170,209].
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1.1.4. Particle distribution

Finally, magnetic elastomers can be characterized by the distribution of the magnetic
particles in the polymer matrix [181]. As we will see, the particle distribution
can have a large impact on the magneto-deformational response of the composite
[25,99,149,150,156,157,170,172,219,220].

The structure can be influenced during the synthesis of the composite. Two
major types of structures are experimentally accessible: isotropic and uniaxially
anisotropic [1, 77].

Anisotropic samples are manufactured by applying a homogeneous magnetic field
before and during the chemical cross-linking process [221, 222]. In this state, the
magnetic particles are still mobile. Therefore, similarly to the processes observed
in magnetic liquids [53,54,60,61,63], they can form chain-like aggregates aligned in
the direction of the field. When the polymer matrix forms, it arrests the chain-like
aggregates and they persist even after the magnetic field has been turned off. The
chains can have various morphologies, depending on the strength of the applied field as
well as the particle content in the precursor mixture [53,181]. They can be relatively
short [180,196,223,224] or percolate the whole sample [62,181,197,225].

Isotropic samples, on the contrary, are simply manufactured in the absence of a
magnetic field. Consequently, the particles in these samples are more or less randomly
dispersed [181].

1.2. Magneto-elastic effects

In the following, we describe in more detail the experimental observations made for
the magneto-rheological effect and shape changes in external magnetic fields.

1.2.1. The magneto-rheological effect

The magneto-rheological effect, as one of the key features of magnetic elastomers, allows
to actively tune the deformational response of the material on-demand by applying
a magnetic field [1, 26, 77, 84, 170, 219, 226]. It is of high relevance for industrial
applications [73, 75] because it can be exploited to construct actively controlled
dampers [24, 90–92] and vibration absorbers [73, 75, 78, 93]. The term is actually
borrowed from magneto-rheological fluids [40,52–58], which display a similar dynamic
tunability of the viscosity and are a strong competitor for the same applications [20–22].
Magnetic elastomers possess some advantages though. They are self-contained, i.e. ,
do not require a container, and have no issues with particle sedimentation [73].

The origin of the stiffness changes is ultimately the magnetic interaction between
the filler particles [77,84,170,219,226]. They give a contribution to the free energy
cost for sample deformation and, therefore, alter the elastic constants.
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In permanently magnetic elastomers, these interactions are always present, such that
they display a passive magneto-rheological effect [26]. The stiffness of these composites
can be altered by remagnetizing the sample [85]. In contrast, the magnetization of
magnetically soft elastomers can be actively tuned on demand with an applied magnetic
field [1,81,87,227], which is more appealing for applications. By mixing both kinds of
fillers, the passive and active effects can be combined [189,228].

The magneto-rheological effects of highest relative magnitude have been reported
for shear deformations [72,77,78,80,81,84,86–89]. There, a reinforcement, e.g. , an
increase of the shear modulus, has been observed in homogeneous magnetic fields for
both isotropic and anisotropic samples. It has been found that the relative range of
tunable shear stiffness can be extended by softening the polymer matrix [80,87]. In
this way, a field-induced increase of the shear modulus by a factor of more than 10.000
has been reached in Ref. [87]. Of course, the matrix cannot be made arbitrarily soft
as mechanical stability of the composite is still a concern [75].

In tension and compression tests [79,82,227,229,230], the achieved relative changes
of the tensile elastic modulus are admittedly smaller, but still remarkable. Increases
of the tensile modulus in a typical range of 20–100% have been observed in isotropic
samples [227,229,230]. For anisotropic magnetic elastomers, it has been demonstrated
that the reinforcing effect depends on the relative orientation of imposed deformations,
the applied magnetic field, and the axes of the chain-like structures [1]. The largest
effect seems to occur when these three directions coincide [1,231]. In Ref. [232], an
increase of the tensile modulus as high as 280% was reached for such a set-up.

1.2.2. Field-induced shape changes

The shape-changes in an applied magnetic field are another signature effect of magnetic
elastomers. This capability enables the operation as magneto-mechanical soft actuators,
devices that transform magnetic field energy into mechanical work.

Inhomogeneous fields [103, 208] seem to be particularly suited for this purpose
as high actuation strains of the order of 100% can be achieved [23]. The sample
deforms towards the regions of higher magnetic field strength to minimize its magnetic
interaction energy [98]. Turning up the overall magnetic field strength, at first the
sample still finds a balance between the magnetic stretching forces and the elastic
restoring forces, keeping the strain limited. However, a discontinuous elongation may
occur when the magnetic interactions begin to dominate and the sample is suddenly
drawn into the field [1,94,98,208,233]. The sudden elongation is only stopped because
the incompressible sample exposes a smaller cross-section to the inhomogeneous field
at high elongations, which favors the elastic interactions again.

Other shape deformations, like deflections [103,108], are available as well. In this
context, the extremely versatile soft magnetic actuator presented in Ref. [104, 109]
should be highlighted. There, an elastomer bar filled with magnetically hard particles
was magnetized inhomogeneously and therewith “programmed” for future shape-
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changes. A time-dependent control field further allowed to induce virtually arbitrary
deformation patterns of the bar by locally exerting forces and torques on the embedded
permanent magnetic particles. These shape-programmable magnetic elastomer bars
were then used as fins for fish-like robots that propel themselves with swimming
strokes. A number of other locomotion systems have been proposed as well, see
Refs. [106–109,112].

In homogeneous fields, mostly contractions or elongations are observed. Experiments
on samples with an isotropic particle distribution predominantly display an elongation
[97,100,209,234,235]. For anisotropic samples with a homogeneous field applied parallel
to the chain-like aggregates, some experiments have reported a sample elongation [101],
others a contraction [224,234,236]. The authors of Refs. [236] and [224] pointed out
that their chain structures are remarkably ordered. Thus, the contraction could be
explained by simple magneto-dipolar attraction between the neighboring particles
[117, 118, 219, 237]. Elongation in anisotropic samples on the other hand might be
associated with a certain randomness of the chain structure [149, 163]. We further
elaborate on this topic in the next section.

1.3. Structural control of magneto-elastic behavior

In this section we address the question how the mesoscopic structure of magnetic
elastomers influences their response to external magnetic fields in the context of our
three studies on this topic.

1.3.1. Affine models and their limitations

To describe the behavior of a mesoscopic [77,170,177,179] or macroscopic [165,166,
175, 238] piece of material, it is a common approach to assume affine deformations.
This means that an overall deformation of a considered piece of material is uniformly
mapped to all positions of the particles embedded within. There are two great
advantages connected to such a simplifying approach. First, the elastic part of
the deformational energy can be expressed in a simple form, for example using a
rubber elasticity model like the neo-Hookean solid, see Eq. (1.8). Second, an affine
deformation changes the distribution of magnetic particles in the elastomer in a clearly
defined manner, which also sets the contribution of magnetic interactions to the
deformational energy [166,219,220,239]. Affine models are, therefore, powerful tools
for scale-bridging, yet they contain a major simplification.

Using such models, the qualitative impact of the particle distribution inside the
elastomer on the magneto-rheological effect has been investigated [25]. For typical
regular lattices with a magnetic field applied parallel to the imposed axis of deformation,
a decrease of the tensile modulus was predicted for simple-cubic and bcc structures
[176,219,220]. For particles on an fcc lattice, reinforcement was found instead.
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In models addressing the chain-like aggregates in anisotropic magnetic elastomers,
the particle distribution is an important factor as well. Here it was found that
the behavior qualitatively changes when a different chain morphology is assumed.
Using simple affine models as well as well as non-affine finite element simulations, it
was demonstrated in Ref. [149] that an increasing degree of waviness of the chains
can change the behavior when the external magnetic field is applied parallel to
the chain axes. Perfectly straight chains lead to reinforcement under perpendicular
shear [77, 170,219] in qualitative agreement with experiments, but show a decrease of
the tensile modulus under uniaxial load. In contrast, slightly wavy chains produce the
experimentally expected reinforcement effect for both shear and tensile deformation. In
fact, the chains observed in experiments are often at least slightly wavy [223,224,236].
The authors reported good qualitative agreement between model and simulation,
which suggests that affine models perform well in describing anisotropic magnetic
elastomers.

For isotropic particle distributions, it is overall much harder to obtain agreement
between experiments and affine models. It has been pointed out that the effects of
particle clusters have to be taken into account to achieve agreement with experiments
[99,100,163]. These clusters arise naturally in these samples when groups of randomly
dispersed particles are close to each other by chance. If magnetic interactions are
activated by an external field, the close particles attract each other and form clusters,
which then rotate in the direction of the applied field. In this way, these clusters
can contribute to an overall sample elongation in homogeneous fields. However, such
an elongation is not not consistently reproduced in affine models [166,219,220,238].
Of course, the local deformations involved in these clustering processes are clearly
non-affine.

Still, affine models are quite important for the theoretical progress of the field.
Therefore, it is important to understand for which particle distributions they are a
valid approximation.

This was the motivation for Paper I, where we systematically tested the approxi-
mation of affine deformations. In order to test affine as well as non-affine deformations
within the same model, we considered point-dipolar particles connected by a network
of springs. Such a minimal dipole-spring model provides a simple description of the
magnetic and elastic energy of the system, which enables the treatment of relatively
large overall particle numbers. Using this set-up, we numerically tested the magni-
tude and sign of the magneto-rheological effect for various two-dimensional particle
distributions with an in-plane magnetic field.

For simplicity, we assumed the magnetic moments to be of equal magnitude and
aligned along the same direction parallel to a homogeneous magnetizing field. For each
particle distribution, we first let the system relax to a state of minimum energy. Then
we clamped the sample at the ends and extracted the elastic modulus by applying a
small tensile deformation and measuring the change in overall system energy. This
was done either by constraining the dipole-spring network to affine deformations
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or by numerical energy relaxation with all its local degrees of freedom considered.
Afterwards, we compared the elastic moduli measured under affine deformations with
those under non-affine deformations.

We first considered different regular lattices: rectangular, honeycomb, and hexagonal.
To benchmark the accuracy of affine deformations, we randomly rearranged the initially
regular lattices by a certain degree. Thereby, we found that an increasing degree of
randomization of the initial lattice leads to increasing deviations between the elastic
moduli measured under affine and non-affine deformations.

Overall, our results indicated that affine deformations perform relatively well as an
approximation for distorted regular lattice structures, producing the same qualitative
behavior of the magneto-rheological effect as the non-affine deformations. The best
agreement is achieved for the rectangular lattice, the worst for honeycomb, and
hexagonal resides in between.

As other studies before, we observed the qualitative behavior of the magneto-
rheological effect to be greatly affected by the structure of the sample. We found
it particularly important in this context whether the connecting vector between
nearest-neighboring particles is parallel to their magnetic moments, so that they feel a
magneto-dipolar attraction towards each other. In the considered lattices where this
was the case, we obtained a negative contribution of the magnetic interactions to the
overall elastic modulus. For nearest neighbors in a repulsive configuration, we found
reinforcement instead. This means that the qualitative behavior of the material can
often be changed by simply rotating the lattice, for instance a hexagonal one by 60◦.

As a final test to the feasibility of affine deformations, we tested them on an
experimentally realistic, more disordered particle distribution. It was extracted from
an X-ray tomographic image of a uniaxially anisotropic experimental sample [62]. We
made a cross-sectional cut perpendicular to the anisotropy direction to obtain the
two-dimensional positions of the particle chains within the cross-sectional plane. On
each position, we placed one point-dipolar particle. This time, we applied the magnetic
field perpendicular to the plane, such that the dipole-dipole interaction within the
plane was always repulsive. We generated the initial network of springs connecting the
particles via Delaunay triangulation [181,196,240], treating the particles as vertices of
the triangular mesh and setting the springs at its edges. Upon activating the magnetic
field we found a stiffening effect for shear and tensile non-affine deformations. Under
the constraint of affine deformations, however, the behavior was qualitatively different:
we saw a slight decrease of the shear and Young’s moduli. For these experimentally
realistic irregular distributions, it therefore becomes mandatory to resolve non-affine
deformations.

Overall, our work provided more evidence that the structure of the composite has
a big impact on the observed magneto-deformational effects. It could also act as a
guideline to when affine deformations are a justifiable approximation.
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1.3.2. Tunable dynamic relaxation

No matter if we are talking about tunable dampers, vibration absorbers, soft actuators,
or hypothermal cancer treatment, in all these applications the dynamic relaxation
processes within the material play a role [165,241]. In Paper II [161], we therefore
investigated how the structure of the composite controls its dynamic response. Not
only the particle arrangement, but also the magneto-elastic rotational coupling is
an aspect of the structure, as discussed in Sec. 1.1.3. We implemented it as part of
a dipole-spring model as an orientational memory of the magnetic moments of the
particles with respect to the surrounding spring network [160]. In addition to the
contributions to the harmonic spring energy for a change of the bond length between
a pair of particles, we also energetically penalized torsions of the bond as well as
rotations of the magnetic moments away from their memorized orientations relative
to the bond. We controlled the impact of each energetic contribution by a different
prefactor. In this way, we represented different types of couplings of the orientations
of the magnetic moments to the surrounding polymer network.

To describe the dynamics, we formulated the overdamped equations of motions [47]
for the positions and orientations of the magnetic moments of all particles in the
system. We linearized these equations with respect to small deviations from the
energetic ground state and solved the resulting coupled system of equations. This
approach is, to some degree, similar to the calculation of phonon spectra in classical
solids [242]. However, here the governing equations of motion are overdamped [47]
instead of oscillatory, and the arrangement of particles is not necessarily regular. As
a result, we obtained the dominant relaxation modes and corresponding relaxation
rates. Each relaxatory mode prescribes a characteristic pattern of positional and
orientational displacements of all particles in the system.

As an example to demonstrate the influence of different types of orientational
memory, we considered a linear chain of particles with magnetic moments of equal
magnitude and initially identical orientation. Our analysis of the relaxation spectra
revealed that the relative strength of the different rotational couplings has a qualitative
impact on the appearance of the characteristic modes, especially on those representing
mainly rotations of the magnetic moments. We observed that rotations associated
with a strong coupling in the dipole-spring models relax particularly fast. Generally,
in our analysis, the rotational modes had a slower relaxation compared to positional
compressions and dilations along the chain axis though. The fastest relaxing modes
were high-wavenumber displacements involving small groups of particles.

Next, we concentrated on the influence of the spatial distribution of particles in the
absence of orientational memory. We considered quadratic, rectangular, and hexagonal
two-dimensional arrangements of the particles. We kept their magnetic moments fixed
in the same direction perpendicular to the plane. Again, we observed an influence of
the type of structure on the qualitative appearance of the characteristic modes.

Finally, we probed the tunability of the dynamical relaxation behavior by an
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external magnetic field for magnetizable particles. For this purpose, we utilized the
two-dimensional distribution of chain-like aggregates that we had already extracted
from an anisotropic experimental sample for our previous approach in Paper I. As
before, we generated the two-dimensional spring-network via Delaunay triangulation.
To represent a homogeneous magnetizing field of varying field strength, we set all
magnetic moments to an equal but controllable magnitude m and oriented them
perpendicular to the plane. In the resulting relaxation spectra, lower modes with a
slow relaxation are typically related to global shape-changes of the sample, whereas
faster modes show a localized character and involve fewer particles. Interestingly,
the relaxation spectra and, therewith, the overall relaxation rate are tunable. By
increasing m (possibly by increasing the strength of the magnetizing field), the density
of modes here can be shifted significantly towards an overall faster relaxation.

In conclusion, we showed that dynamic properties of magnetic elastomers can be
tuned by several factors: mesoscopic structure, orientational memory, and external
magnetic field. The latter in particular allows to tune the relaxation rate on demand
during application.

1.3.3. Buckling of paramagnetic chains

In Sec. 1.2.2, we discussed what kind of bulk magneto-deformational behavior can
be observed in anisotropic uniaxial magnetic elastomers. In an appropriate set-up,
however, also the mesoscopic shape changes of individual chains can be experimentally
observed and studied. In Paper III, we used a laser-scanning confocal-microscopy
set-up [243], which allowed us to trace individual particles during experiments on
chains of superparamagnetic particles embedded in a soft gel. Upon application of a
homogeneous external magnetic field perpendicular to the chain axes, we observed a
rich variety of deformational responses, see Fig. 1.1. Shorter chains rotated towards
the field, chains of intermediate length bent at their ends, and long chains buckled
into a sinusoidal-like deformation pattern. The longer the chain, the more half-wave
oscillations were typically observed. It was possible to increase the buckling amplitude
by increasing the strength of the applied magnetic field strength or by employing a
softer gel matrix.

We were able to explain this behavior within a phenomenological model for the
overall energy of a certain deformational pattern of the chain. For this purpose, we
assumed the chain to carry dipolar magnetic moments along its contour that are
perfectly aligned with the magnetizing external field. This describes the changes in
magnetic energy of the chain when reorienting in the external magnetic field.

For the elastic energy of the deformation, we found a bending contribution scaling
with the curvature of the chain to be relevant. This was based on two observations.
First, we had experimental evidence of an inherent bending rigidity of the chains,
possibly due to a layer of stiffer polymer in the vicinity of the particles. Second,
we could reveal the dominating deformational modes of the surrounding gel matrix
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during the buckling to be of an oscillatory kind. Furthermore, we also introduced a
displacement contribution to describe the deformational energy cost for displacing
segments of the chain within the elastic gel environment. This term penalized
rotations of the chains within the elastic gel environment, especially discouraging
overall rotations of longer chains in accordance to the experimental observation that
these chains tend to buckle instead. We then made an ansatz for the chain shape
and fitted it to our experimental contours to assess the relative weight for each of the
three energy contributions. With the completed phenomenological model, we were
able to predict the energetically optimal number of half-waves and buckling amplitude
for chains of various lengths with good agreement with the experimental results.

Figure 1.1.: Under the influence of an applied perpendicular magnetic field, superpara-
magnetic chains embedded in a soft gel display intriguing deformational
patterns. Short chains are rotated towards the field, while longer chains
buckle and bend. The longer the chain, the more half-wave oscillations
are typically observed. The amplitude of the buckling can be tuned by the
field strength and the elastic modulus of the gel matrix. Reproduced from
Ref. [180] (Online graphical abstract) – Published by The Royal Society of
Chemistry under a Creative Commons Attribution 3.0 Unported Licence
(CC BY 3.0).

Finally, we simulated the shape change of the paramagnetic particle chain within
two-dimensional particle-resolved molecular dynamics simulations. We represented
the polymer network by a fine hexagonal mesh of finite extensible non-linear elastic
springs [154, 244]. Into this mesh, we embedded rigid spherical particles arranged in a
linear chain, each carrying a dipolar magnetic moment aligned parallel to an external
magnetic field perpendicular to the chain axis. Here, the bending rigidity of the chain
actually proved to be a crucial ingredient. We had to assume the mesh to be stiffer in
the vicinity of the particles to observe the buckling morphology of the chains as in

https://creativecommons.org/licenses/by/3.0/legalcode
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the experiment. Without this contribution, the chain broke up into smaller clusters
oriented in the field direction instead. This again supported our conjecture that a stiff
polymer layer connects the particles and stabilizes the chains in the experiment.

Our modeling and simulation approaches used the mesoscopic information from a
particle-resolving experiment. Hence, it provided valuable theoretical insights about
the magneto-deformational coupling between chains and polymer matrix on this length
scale.

1.4. Non-linear stress-strain behavior

The stress-strain behavior of an elastic material defines its response to deformation
and load [182]. In a deformed sample, restoring forces attempt to drive the sample
back to its initial state. Conversely, the material deforms under an external stress
until the counteracting internal stresses balance the load. In the small-strain regime,
there is typically a linear relation σ = Eε between stress σ and strain ε, for which the
elastic modulus E provides the corresponding proportionality constant.

In Sec. 1.2.1, we have seen that the magneto-rheological effect provides an on-
demand tunability of the linear stress-strain behavior. This capability also extends
to the non-linear stress-strain regime, allowing to tune the deformational behavior
at greater deformations as several experiments have demonstrated [1, 227,231,232].
These insights about the change of the deformational behavior in applied magnetic
fields are quite valuable, e.g. , for the design of magneto-mechanical actuators that
perform work under loaded conditions [23,101,102,104–106]. Still, surprisingly few
theoretical simulation or modeling attempts have explored the non-linear stress-strain
regime so far.

1.4.1. Superelasticity

In Paper IV and Paper V, using particle-resolved numerical simulations, we revealed
that anisotropic magnetic elastomers can feature a pronounced non-linear “superelastic”
stress-strain behavior under uniaxial deformation. This behavior can be reversibly
tailored from outside by applying magnetic fields.

“Superelasticity” expresses the fascinating capability of some smart materials
[14,120–126] to perform large-scale reversible deformations at a basically constant load.
It typically occurs in the form of a plateau-like regime in the stress-strain behavior,
see Fig. 1.2 for an illustration. The term originates from shape-memory alloys, which
display this behavior due to a stress-induced phase transition. Typically, on the
superelastic plateau, a high-symmetry crystal structure changes into an elongated
low-symmetry lattice that can accommodate the applied deformation [14]. Since the
elongated phase is in principle only stable under stress, the material can perform
the reverse transition back to the high-symmetry crystal when the load is removed.
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Because of these transitions, shape-memory alloys can reversibly recover from much
higher strains than conventional metallic materials.

Also in other materials, the superelastic behavior can be associated with some kind of
stress-induced restructuring. In our anisotropic magnetic elastomers, we identified two

Restructuring

Figure 1.2.: Schematic of a typical stress-strain cycle for a superelastic material. After
the stress σ initially increases with the strain ε, a flat plateau is reached.
There, stress-induced restructuring processes within the material allow
further deformations under basically constant load. The newly acquired
structure is only stable under loaded conditions. Upon unloading, the
material can therefore transition back while crossing a reverse plateau,
possibly showing hysteretic behavior.

such deformation-induced restructuring mechanisms. One is a detachment mechanism
of embedded chain-like particle aggregates gradually breaking up into smaller segments,
the other is a flipping mechanism of magnetic moments. Both mechanism respond to
external magnetic fields. Otherwise, a magnetically controlled superelastic stress-strain
behavior is known from ferromagnetic shape-memory alloys [2, 245–248], however,
restricted to impractically low operation temperatures in these materials.

We used the following set-up to perform numerical stress-strain tests on a magnetic
elastomer. To describe the polymer matrix around the embedded magnetic particles,
we treated it as an elastic continuum and tessellated it into a fine mesh of deformable
tetrahedra [249]. We assumed a nearly-incompressible neo-Hookean elastic material
model [184] for the elastic energy of deformation of this mesh. Restricting each
tetrahedron to deform affinely allowed us to obtain simple expressions for the restoring
forces on the tetrahedral nodes. Using this approach, the collective deformation of
the mesh of many connected tetrahedra can still be distinctly non-affine as each
tetrahedron may deform in a different way.

Then, we embedded rigid spherical magnetic particles into the mesh. We approxi-
mated their surfaces as polyhedra with triangular faces to rigidly connect them to the
faces of the surrounding tetrahedra. This creates a no-slip coupling between embedded
particles and the surrounding matrix, see Sec. 1.1.3. Therefore, particle rotations can
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deform the surrounding mesh, while likewise a mesh deformation can induce particle
rotations.

Our numerical samples were supposed to mimic the anisotropic structure of perco-
lating chain-like particle aggregates observed in some experiments [62,181,197,225].
Accordingly, we arranged the particles into parallel straight chains spanning the long
edge of an initially rectangular box of elastic material. Within each chain, the particles
were equally spaced and initially separated by a finite gap filled by elastic material.
We positioned the chains in a random non-overlapping way in the box and created 20
distinct numerical samples in this way.

To represent the magnetic interactions, we finally equipped the particles with
permanent dipolar magnetic moments of equal magnitude. Here we distinguished
between two major types of rotational magneto-elastic coupling, which we will call
covalent and free here. Our covalent systems model samples of particles carrying
permanent magnetic moments that are rigidly fixed to the particle axes, hence, each
dipole moment can transfer a magnetic-field-induced torque to the corresponding
particle. In contrast to that, we also considered free systems, where we allowed the
dipole moments to freely reorient with respect to their carrying particles. Let us first
discuss the covalent system.

We initially magnetized these covalent samples uniaxially by setting all magnetic
moments to the same orientation parallel to the chains. This activates strong attractive
magneto-dipolar forces between neighboring particles in a chain, compressing the
elastic gap material in between and leading to an overall sample contraction. This
state, illustrated in Fig. 1.3 (bottom left), was the starting point for our uniaxial
stress-strain measurements. We clamped the sample at the ends and quasi-statically
stretched it in the direction parallel to the chains, performing an energetic relaxation
after each step [250–252]. Meanwhile, we kept track of the force required to keep the
sample in the prescribed elongated state. After averaging the stress-strain curves of
our 20 different numerical samples, we obtained the markedly non-linear superelastic
behavior shown as the black curve in Fig. 1.3 (right). It displays the characteristic
plateau, along which the sample can be deformed without significantly increasing the
applied load.

We were able to relate this behavior to the following strain-induced detachment
mechanism of the individual chain-like aggregates. After the initial contraction of
the sample, the distance between nearest-neighboring particles in a chain is small so
that their magneto-dipolar attraction along the chain axis is quite strong. At the
same time, the compressed gap material between them stores deformational elastic
energy. In the initial stiff regime of the stress-strain curve in Fig. 1.3 (right), the
chains are first held together by these strong magnetic bonding forces and can resist
an extension. As the imposed strain is further increased, however, the stretching forces
eventually become strong enough to detach a part of a chain from the remainder.
Once the corresponding magnetic energy barrier is overcome, the two parts suddenly
become easily separable as their mutual magnetic attraction is severely weakened
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Figure 1.3.: Left: Illustrations of a covalent sample at different states of elongation.
The magnetic moments of the particles are depicted as bar magnets.
Right: The stress-strain curves obtained by averaging the behavior of
20 of such samples. Solid lines signify the behavior under loading while
the dotted lines depict unloading. The particles are initially arranged
in chain-like aggregates with a finite gap between them and magnetized
along the chain axes. Thus, there is an overall initial contraction of the
sample, compressing the elastic gap material between the particles. The
chains are initially held together by strong magneto-dipolar bonding forces,
but when the sample is stretched, particles can gradually be detached
from the chains. These processes lead to the superelastic plateau in the
stress-strain curve. A magnetic field applied parallel to the field (green
curve) leaves the superelastic plateau untouched but stiffens the material
at larger strains. Under a strong perpendicular magnetic field (orange
curve), there are no magnetic bonding forces along the chains in the first
place and the superelastic behavior is turned off.
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with increased separation. On top of that, the elastic energy initially stored in the
inter-particle gap between the two parts is released.

Momentarily, one such detachment event means a stress release, which appears as a
sudden drop in the stress-strain curve. Further stretching of the sample leads to further
detachment events involving the remaining parts of the chain. In the stress-strain
curve of an individual chain, this results in a spiky plateau, see Paper IV for a
more detailed discussion. A recent study [119] has likewise confirmed the superelastic
stress-strain behavior of individual chain-like aggregates. After averaging over the
multitude of chains within different samples, the discrete drops occurring at various
strains combine to a smooth superelastic plateau-like regime in the stress-strain curve
as shown in Fig. 1.3 (right). When all particles have been detached from all chain
parts, the restructuring is complete, see the illustration in Fig. 1.3 (top left). This
marks the end of the plateau, where the response of the sample to further elongation
becomes stiff again. Upon unloading, the particles simply reattach to their respective
chains, the magnetic bonding forces between nearest neighbors are restored and the
elastic gap material is compressed, once again storing elastic energy. Thus, the initial
state, depicted in Fig. 1.3 (bottom left), can be recovered at the end of the stress-strain
cycle.

Applying external magnetic fields further allows to exert control over the non-linear
stress-strain behavior, see the colored curves in Fig. 1.3 (right). A field applied in the
direction of the imposed uniaxial strain, i.e. , parallel to the chain-like aggregates and
their initial magnetization, has no significant effect on the superelasticity as it does
not interfere with the detachment mechanism. It stiffens the response of the material
in the regime following the superelastic plateau though. Thorough analysis suggested
the following explanation for this effect. When the chains are in the detached state,
the particles tend to rotate away from the chain axes due to shear stresses in the
inhomogeneous sample. This situation is depicted in Fig. 1.3 (top left). A parallel
applied field, however, can stabilize the particle orientations and keep their magnetic
moments aligned parallel to the chain axes. Thus, even at high strains they repel in
the direction perpendicular to the stretching direction and, thereby, work against a
further elongation. A further cause for the stiffening is that the emerging local shear
stresses within the system are kept from relaxing via the favored channel which is the
rotation of particles.

A field applied perpendicular to the imposed strain incentivizes the covalently
embedded particles to rotate away from the initial chain axes. With a strong enough
field, the particles can be rotated far enough to prevent their magneto-dipolar attraction
along the stretching direction. Then, there are no magnetic bonding forces in the
chain-like aggregates in the first place. This deactivates the detachment mechanism
and the superelastic behavior, see the orange curve in Fig. 1.3 (right).

Let us now move to the aforementioned free systems, where the magnetic moments
can freely reorient with respect to their carrying particles. As an experimental real-
ization for this type, we think, for instance, of magnetically unblocked nanoparticles.
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Core-shell particles with a rotatable magnetic core [253, 254] should have a similar
behavior. Finally, we also suppose that particles embedded into a matrix environ-
ment under slip surface conditions with little rotational friction [68,69,197,202] are
adequately modeled by our free systems.

In the free system, the unconstrained magnetic moment of each particle tends to
align as set by the magnetic field, imposed by its nearest neighbors, to assume the
energetically most favorable configuration. Thus, we observed a slightly different
initial state than in the covalent system, see Fig. 1.4 (bottom left). Within each
individual chain, the particles can find their nearest neighbors along the chain axis,
causing their magnetic moments to align parallel to the stretching direction. However,
separate chains can show an opposing alignment of their magnetic moments. Still, the
prerequisites for the detachment mechanism, i.e. , strong magneto-dipolar attractions
between chain segments along the axis of the imposed strain, are met. We evaluated
the uniaxial stress-strain behavior analogously to above. The superelastic plateau
that we observed in the free system in the absence of an external magnetic field, see
the black curve in Fig. 1.4 (right), had a different appearance than the one in the
covalent system though.

We could relate this to the strain-induced flipping mechanism of the unconstrained
magnetic moments. When an increasing imposed strain pulls the chains apart, the
distance between nearest-neighboring particles within the chains increases. At the
same time, the approximate incompressibility of the sample brings separate chain-
like aggregates closer to each other in the direction perpendicular to the stretching
direction. For some particles, the direction in which they can find their nearest
neighbor eventually changes from parallel to the stretching direction to perpendicular
to it. At this point, it becomes energetically favorable for their magnetic moments to
likewise flip from parallel to the chain axes to perpendicular. During such flip events,
a magneto-dipolar attraction between the involved particles in the stretching direction
is turned into an attraction perpendicular to it. The former impedes an overall sample
elongation, while the latter supports it. Thus, flip events are associated with drops
in the stress-strain curve and contribute to the superelastic behavior. Actually, we
found that flip events and detachment events mostly occur simultaneously in the free
system. Note how in the strained state, depicted in Fig. 1.4 (top left), the regions,
where the material is both flipped and detached and those, where no transition has
occurred yet, can be clearly distinguished.

The strain-induced reorientation of the magnetic moments also leads to a pronounced
hysteresis. At high strains, the particles with flipped magnetic moments brought
together from different chains strongly attract each other in the direction perpendicular
to the imposed strain. When unloading the sample, magnetic energy barriers have to
be overcome to detach them from this state so that the loading and unloading curves
differ. In any case, the flipped state is completely unstable without an applied load so
that the initial state is recovered at the end of the stress-strain cycle.

Due to the easy reorientation of magnetic moments, the free system is quite



26 Chapter 1. Introduction

Figure 1.4.: As Fig. 1.3, but for the free system. The magnetic moments prefer a
head-to-tail alignment to each nearest neighbor of the carrying particle.
Therefore, in the initial state (bottom left), the magnetic moments are
mainly aligned with the chain axes. However, different chains can have
opposite alignment. When the sample is stretched, the particles are
gradually detached from the chains and their magnetic moments flip from
parallel to the chain axes to perpendicular (top left). The additional
flipping mechanism in the free system leads to a different appearance of
the superelastic stress-strain behavior (black curve) than in the covalent
system. There is also a much more pronounced hysteresis. With a
magnetic field applied parallel to the stretching direction (green curve), the
reorientation mechanism can be deactivated. With a field perpendicular to
the chains (orange curve), superelasticity can be switched off completely.
Reproduced from Ref. [118] (Online graphical abstract) with permission
from the PCCP Owner Societies.
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susceptible to applied magnetic fields, see the colored curves in Fig. 1.4 (right). An
applied magnetic field parallel to the chain axes creates a state of uniform magnetization
in this direction and deactivates the flipping mechanism. The stress-strain behavior
then resembles the one of the covalent system without an external field. Applied
perpendicular to the chain-like aggregates, the external magnetic field can relatively
easily rotate the magnetic moments away from the chain axes and, thereby, also
deactivate the detachment mechanism. Switching the superelasticity off in this way
requires a much lower field strength than in the covalent system, see the different
scales in Fig. 1.3 and Fig. 1.4.

In conclusion, we demonstrated with our numerical studies in Paper IV and Paper V
that the non-linear stress-strain behavior of magnetic elastomers is not only strongly
tunable by magnetic fields, but also shows exceptional features known from other smart
materials. We performed our numerical simulations with permanent magnetic particles.
However, our results should also hold for magnetically soft particles. In a strong
applied magnetic field that magnetizes them up to saturation, the behavior should be
similar to our free system. This would additionally open up the opportunity to tune
the overall magnitude of magnetization from outside and control the superelasticity
in this way.

To experimentally realize our systems, relatively strong magnetic interaction com-
pared to the elastic interactions are required. This means that the volume magnetiza-
tion M of the particles should be preferably high while the elastic modulus E of the
embedding polymer matrix should be low. For the parameters we assumed in Paper IV
and Paper V and a given M , this implies a polymer matrix fulfilling E . µ0πM

2/225.
Filling in the typical volume magnetizations achievable by the commonly used ferro-
magnetic filler materials mentioned in Sec. 1.1.2, we obtain E . 3.5 kPa for super-
paramagnetic magnetite, E . 11 kPa for magnetically hard neodynium-iron-boron,
and E . 45 kPa for magnetically soft carbonyl-iron, respectively. Many existing
experimental realizations meet these requirements [80,87,114,180].

1.4.2. Shape-memory effects

In fact, experiments on isotropic magnetically soft elastomers have already demon-
strated a different, but perhaps related, exceptional stress-strain characteristic [113–
116]. There magnetically controlled shape-memory effects have been observed. Shape-
memory [11] can provide a material with the fascinating ability to recover from a
plastic deformation when a suitable stimulus is applied, see Fig. 1.5 for an illustration
of a typical stress-strain cycle. The proposed mechanism [116] shows quite some
analogies to the detachment mechanism we have described above in the context of
superelasticity.

When a magnetic field is applied to a sample, the magnetic particles begin to attract
each other and form small clusters and chains oriented in the direction of the magnetic
field [114,163,181]. These clusters remain stable under small imposed loads due to
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their strong magnetic interactions at close distances [160, 168, 173], see the initial
regime in Fig. 1.5. Under an enhanced load, however, the magnetic energy barriers
holding the clusters together can be overcome. Then, they rearrange into larger, more
elongated clusters that are still oriented in the direction of the applied field. This
restructuring process characterizes the plateau in Fig. 1.5.

After the load is removed, the larger, elongated clusters still remain mostly stable.
The strong magnetic bonding forces between the close particles dominate the elastic
restoring forces exerted by the strained polymer matrix [160, 168, 173]. Thus, the
composite retains an overall strain in the direction of the clusters even after the load
is removed. However, deactivating the magnetizing field switches off the magnetic
interactions. In this way, the strain can be recovered as the elastic memory of the
polymer matrix drives the particles back to their initial positions. Finally, reactivation
of the magnetic field restores the initial state of small magnetic particle clusters.

1

2
3

4

Stimulus

Restructurin
g

Figure 1.5.: Typical stress-strain cycle for shape-memory alloys as well as for the
shape-memory effect observed for some isotropic magnetic elastomers.
For small loads, there is an initial elastic regime (1→ 2) of recoverable
deformation. Increasing the load further leads to an internal restructuring
of the material (2 → 3), which remains as a plastic deformation when
the load is removed (3 → 4). A suitable stimulus, however, renders
the acquired structure unstable and allows to recover the initial state
(4→ 1). In shape-memory alloys, this stimulus corresponds to heating and
subsequent cooling. In magnetic elastomers, a deactivation and subsequent
reactivation of the magnetizing field restores the initial structure.

These processes are to some degree similar to the transitions that enable the shape
recovery in several shape-memory alloys [11, 12, 14]. At lower temperatures, these
metallic compounds possess a heterogeneous structure characterized by differently
oriented domains of the low-symmetry elongated lattice phase. Put under stress, the
different elongated crystalline domains align irreversibly and accommodate a plastic
deformation. Heating, however, induces a phase transition to the high-symmetry
parent phase and renders the elongated structure unstable, reversing the plastic strain.
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After subsequent cooling, the low-symmetry phase forms again in differently oriented
domains, which completes the cycle, see again Fig 1.5.

1.5. Statistical description

As discussed in Sec. 1.3.1, the particle distribution within real samples is typically not
regular, which can qualitatively impact the material bulk behavior [99, 114,149,150].
To obtain accurate results, some mesoscopic particle-resolved modeling and simulation
approaches, therefore, included experimentally realistic distributions from real samples
as an input [150, 158, 161, 180] or generated them from a simulation of a magnetic
liquid [163,172,255].

However, in macroscopic material models it is clearly not feasible to resolve individual
particles. Still, there are ways to introduce the mesoscopic interactions into such
models, such as treating them within a mean-field approximation [166,176,179].

There, the influence of the embedded particles on a piece of the bulk material
is obtained by performing a statistical average of their mesoscopic contributions.
The input into these models is given by the distribution functions, that statistically
characterize the particle arrangement, as well as the form of the particle interactions.
The output are bulk material properties, which are key when designing materials for
specific applications.

1.5.1. Characterization of experimental particle distributions

This was in part the motivation for the statistical characterization of experimental
samples which we performed in Paper VII. The samples were typical magneto-
rheological elastomers of polydisperse carbonyl-iron particles (average diameter ∼
45µm) embedded in a silicone elastic matrix. An X-ray tomographic set-up [62,196,225]
allowed imaging of the magnetic particles that were embedded within cylindrical
samples with filler contents of 2–15 wt% (0.27–2.32 vol%).

We analyzed both anisotropic and isotropic samples. The anisotropic samples were
cured within a homogeneous external magnetic field of amplitude B = 270 mT applied
along the cylinder axis. Using an image processing software, we extracted the particle
positions, shapes, and sizes from the X-ray tomograms of the finalized samples. It
was also possible to create tomograms of samples while placed into a homogeneous
magnetic field of strength B = 270 mT, applied parallel to the cylinder axis. This
allowed us to characterize the field-induced changes in the particle distributions as
well.

We presumed that the particle distributions of the isotropic samples in the absence of
an external magnetic field have a radial symmetry. Thus, it was feasible to statistically
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Figure 1.6.: Results for an isotropic sample with a filler content of 15 wt%, subject to an
external magnetic field of magnitude B = 270 mT applied along the axial
direction of the overall cylindrical shape. (a) The cylindrical distribution
function g(r‖, r⊥) shows a pronounced peak at an axial distance r‖ from
the origin, indicating mainly the formation of clusters containing small
particle numbers oriented in that direction. (b) Visualization of individual
particles moving in the sample and forming chains when the magnetic
field is activated. Reproduced from Ref. [181]. c©2017 IOP Publishing
Ltd.

characterize them by the radial distribution function [256,257]

g(r) =
V

4πr2N2

〈∑

i

∑

j 6=i
δ
(
r − |rj − ri|

)
〉
, (1.11)

which is proportional to the probability density of finding any two particles i, j in
the sample at a separation r. Here ri = (xi, yi, zi) and rj = (xj, yj, zj) denote their
respective positions, N is the total number of particles in the sample of volume V ,
δ is the Dirac delta function, and 〈·〉 the ensemble average. The radial distribution
function g(r) is normalized with the probability density of finding two particles at a
separation r in the ideal gas. Therefore, g(r) = 1 for large distances, as the correlation
between two particles eventually gets lost. Without a magnetizing external field,
we expect the particles to be essentially randomly distributed within the isotropic
samples. We were able to confirm this suspicion by comparing the radial distribution
functions of the measured samples with those of ensembles of randomly distributed
polydisperse hard spheres, finding good agreement.

Upon activating the external magnetic field along the cylinder axis, small chain-like
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clusters oriented along the direction of the field formed inside the composite. Hence,
the particle distributions changed from radially symmetric to cylindrically symmetric.
We afterwards had to distinguish the directions r‖ parallel to the cylinder axis (the
z-axis) and r⊥ perpendicular to it and characterized the probability to find two
particles at such distances by a cylindrical distribution function [163]

g(r‖, r⊥) =
V

4πr⊥N2

〈∑

i

∑

j 6=i
δ
(
r‖ − |zj − zi|

)
δ
(
r⊥ −

√
(xj − xi)2 + (yj − yi)2

)〉
.

(1.12)
In analogy to the radial distribution function, it provides the probability to find
two particles at a distance r‖ and r⊥ parallel and perpendicular to the cylinder
axis, respectively, normalized by this probability in the ideal gas. Figure 1.6 shows
this distribution function for an initially isotropic sample (15 wt%) as well as a
visualization of the chain formation upon application of the magnetic field. The
cylindrical distribution function shows a pronounced peak at a distance of around one
particle diameter in the axial direction. This mainly indicates that small groups of
particles cluster and align in that direction to minimize their magnetic interaction
energy. Further analysis revealed that the fraction of clustered particles and the
size of these small chain-like clusters increased with the total particle fraction [54].
With these results, we provided direct evidence for the cluster formation in isotropic
magnetic elastomers under the action of a magnetic field.

The anisotropic samples displayed characteristic percolating chain-like aggregates
aligned with the cylinder axes. We observed that the chain morphologies strongly
varied for different filling fractions of the samples [62, 223]. At low filling fractions,
slender and straight chain-like aggregates formed. The corresponding samples showed
a slow decay of g(r‖, r⊥) in the axial direction r‖ and a fast decay in the perpendicular
direction r⊥. With increasing particle content, the chain-like aggregates grew thicker
and less ordered, with more of a clustered and branched structure. For the distribution
function g(r‖, r⊥), this means a faster decay in the axial direction r‖ and a slower one
in the perpendicular direction r⊥. Since the particles were concentrated in the chains,
there were large voids in-between where practically no particles resided.

The overall number of chain-like aggregates in the anisotropic samples was a non-
monotonous function of the particle content. With increasing filler concentration, the
slender chains first became more numerous, but then combined to a smaller number
of broader, branched chain-like aggregates.

In total, we have developed a combined tool to characterize the particle distributions
in experimental samples, using X-ray tomography and statistical analysis. In this
way, we showed how the formation of chains in magnetic elastomers influences the
appearance of the particle distribution functions. This might serve as an input for
future statistical theories, or as a reference for other experiments.
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1.5.2. Density functional theory

Finally, in Paper VI, we actually pursued a statistical mechanical description [258,
259] of magnetic elastomers. More precisely, we developed a framework to apply density
functional theory (DFT) [260] to these materials and benchmarked our approach
using particle-resolved Monte-Carlo simulations. Usually, density functional theory is
employed to describe phenomena in ensembles of indistinguishable particles [260–262].
In these systems, the particles interact via a pair potential u(r) with an interaction
strength that depends only on the separation r between the two respective particles.
In magnetic elastomers, on the contrary, the particles are typically firmly embedded
into the elastic network. Their mutual elastic interactions are dictated by their
reference positions within the embedding matrix environment, which makes them
distinguishable.

We demonstrated that a statistical mechanical description can still be made feasible
for these systems by mapping them to ensembles of indistinguishable particles. To this
end, we considered a one-dimensional dipole-spring model for a magnetic elastomer
[160], as sketched and described in detail in Fig. 1.7. In short, the particle interaction

Figure 1.7.: Simple one-dimensional dipole-spring model for a magnetic elastomer.
The system is bounded by two outer particles (blue) at a fixed separa-
tion L, while all other particles in between (dark gray) are mobile. All
particles have hard cores of diameter d, carry magnetic dipole moments
m = mx̂ aligned with the system axis x̂, and, finally, are connected to
their immediate neighbors by harmonic springs of spring constant k and
equilibrium length `. Reproduced from Ref. [174]. c©2017 IOP Publishing
Ltd.

energies have three sources: the hard cores of the particles, the magnetic dipolar
moments aligned with the system axis, and, finally, the harmonic springs connecting
each particle with its immediate neighbors. The hard core and magnetic interactions
are expressible as sums over pairwise interactions uh(x) and um(x), respectively, and,
therefore, treat the particles as interchangeable. In contrast, the harmonic springs
specifically connect certain pairs of particles and, as a result, render the particles
distinguishable.

We mapped this system by replacing the spring connectivity between immediate
neighbors with the approximative “pseudo-spring” pair interaction ũe(x), illustrated
in Fig. 1.8. The basic idea is to use a harmonic well to mimic the springs between
pairs of immediate neighbors. In one spatial dimension under hard-core repulsions, it



1.5. Statistical description 33

Figure 1.8.: Pseudo-spring pair interaction as approximation for the real-spring con-
nectivity between immediate neighbors. The spring is mimicked by a
harmonic well of spring constant k = 40 kBT/d

2, centered around a pair
distance x = ` = 1.5d. The well is cut off and shifted to zero at a distance
x = 2d to restrict the interaction to pairs of immediate neighbors. In the
configuration sketched on the left, the pseudo-spring interaction between a
particle (blue) and its immediate neighbor (red) is active since both are at
a distance x < 2d (red). On the right, the distance is too large (x ≥ 2d) so
that the interaction is inactive and the pseudo-spring effectively “breaks”.
Particle pairs that are not immediate neighbors can never interact because
they are always at a distance x ≥ 2d. Reproduced from Ref. [174]. c©2017
IOP Publishing Ltd.

is guaranteed that two particles at a distance x < 2d are immediate neighbors, with d
the hard-core diameter. In a spring model, they would be connected by elastic springs.
Thus, the harmonic interactions can be restricted to nearest neighbors by cutting and
shifting the well to zero potential strength at x ≥ 2d. The difference to the “real”
springs in Fig. 1.7 is that the “pseudo-springs” can break at a separation x ≥ 2d.
Accordingly, we expect good agreement between the real-spring and the pseudo-spring
systems at a sufficiently high density and strong elastic particle–particle interactions
when the breaking of pseudo-springs is unlikely. The comparison with Monte-Carlo
(MC) computer simulations for both systems confirmed our expectation.

The above mapping allowed us to develop a mean-field DFT for the pseudo-spring
system. We numerically minimized the grand canonical free energy functional

Ω[ρ] = F [ρ] +

∫ L

0

ρ(x)
(
Uext(x)− µ

)
dx (1.13)

with respect to the one-body density profile ρ(x). Here Uext(x) is an external potential
and µ the chemical potential of a particle reservoir to which the system is in contact.
As a free energy functional F [ρ] we used the combination

F [ρ] = Fid[ρ] + FP
ex[ρ] + FMF

ex [ρ] . (1.14)
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Here the first term is the ideal gas functional. The second one is the Percus excess
functional [263] which exactly accounts for the hard-core interactions. Finally, the
mean-field contribution

FMF
ex [ρ] =

∫ L

0

∫ L

0

(
ũe(|x− x′|) + um(|x− x′|)

)
g(|x− x′|)ρ(x)ρ(x′) dx′ dx , (1.15)

includes the pairwise pseudo-spring and dipolar magnetic interactions. For the
distribution function, we used the simple approximation that g(x) = 0 for x < d
and g(x) = 1 for x ≥ d. The minimization yielded the equilibrium density profile
and grand canonical free energy. This allowed us to calculate the pressure and the
compression modulus as key thermodynamic quantities of our magnetic elastomer
model.

Thermal fluctuations have a particularly strong impact in one spatial dimension.
They can escalate into long-ranged fluctuations and drive the well-known Landau-
Peierls instability [264–266], which can destroy periodic ordering in lower dimensions.
However, these thermal fluctuations are only incompletely represented in our mean-
field DFT. This resulted in an artificial crystallization in the density profile at low
temperatures [267–270] that could not be observed in our MC simulations. Considering
higher temperatures allowed us to obtain at least qualitative agreement with the
pseudo-spring MC simulations. Substantial agreement with real-spring MC simulations
could not be achieved though, due to the frequent breaking of pseudo-springs under
these conditions.

Within an extended dipole-spring model, we achieved much better agreement
between DFT and MC simulations. This model is sketched and described in Fig. 1.9
and represents a chain of magnetic particles embedded into a three-dimensional elastic
matrix. For each particle, there is a pinning spring representing the restoring force
that the matrix exerts when the particle is displaced against it [158, 159, 271, 272].
Between each pair of particles, there are connecting springs with a spring constant
that decays with the initial distance between the pair. Those springs can be motivated
by considering the matrix-mediated force that two embedded particles feel when they
are symmetrically displaced against each other, see Paper VI for details.

To treat this extended model using DFT, we again replaced the real springs with
pseudo-springs. Instead of the pinning springs, we used a series of harmonic wells as
an external potential Uext(x). To represent the effect of the connecting springs with
decaying spring constants by a pair potential ũe(x), we mapped them to a series of
harmonic wells that reflect the springs of strength decaying with the spring length.

The Landau-Peierls instability can be counteracted by such a stronger coupling
[273] and periodic structures become a physically valid result also in one spatial
dimension [267–270] . Consequently, we achieved good agreement between DFT
and MC simulations, even when using the real spring connectivity for the latter.
Figure 1.10 demonstrates this for the density profiles for vanishing magnetic moment
m. But also for thermodynamic quantities like the pressure and the compression
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Figure 1.9.: Extended dipole-spring model for a chain of magnetic particles embedded
into a three-dimensional elastic matrix. The initial spacing between the
embedded particles is `. Springs of spring constant kmp represent the
embedding into the elastic matrix and pin the particles to their initial
positions. The matrix also mediates elastic particle–particle interactions.
This is represented by harmonic springs with a spring constant that decays
with the initial distance between the particles. The springs connecting
nearest neighbors have an equilibrium length of ` and a spring constant
kpp = 3d

8`
kmp. For next-nearest neighbors at initial separation 2`, the

spring constant is kpp/2. Thereafter, the equilibrium length is 3` and the
spring constant kpp/3, and so forth. As in Fig. 1.7, all particles have hard
cores of diameter d and carry magnetic dipole moments of magnitude m
aligned with the chain axis. Reproduced from Ref. [174]. c©2017 IOP
Publishing Ltd.

Figure 1.10.: Density profiles obtained for the extended dipole-spring model for the
case of zero magnetic moments. The density peaks are sharply peaked
around the pinning positions of the particles. Good agreement between
DFT, pseudo-spring MC simulations, and real-spring MC simulations
can be achieved. Reproduced from Ref. [174]. c©2017 IOP Publishing
Ltd.



36 Chapter 1. Introduction

modulus as a function of the magnetic moment we found good quantitative agreement
between DFT and MC.

In conclusion, we have shown that the mapping of distinguishable bead-spring
models to ensembles of indistinguishable particles and subsequent description by tools
of statistical mechanics works reasonably well. This also opens the possibility for
other statistical mechanical treatments of magnetic elastomers, see the supplemental
material of Paper VI for an approach using liquid integral theory [258].
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One of the central appealing properties of magnetic gels and elastomers is that their elastic moduli
can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal mag-
netic particle distribution on this effect has been outlined and analyzed theoretically. In most cases,
however, affine sample deformations are studied and often regular particle arrangements are consid-
ered. Here we challenge these two major simplifications by a systematic approach using a minimal
dipole-spring model. Starting from different regular lattices, we take into account increasingly ran-
domized structures, until we finally investigate an irregular texture taken from a real experimental
sample. On the one hand, we find that the elastic tunability qualitatively depends on the structural
properties, here in two spatial dimensions. On the other hand, we demonstrate that the assumption
of affine deformations leads to increasingly erroneous results the more realistic the particle distri-
bution becomes. Understanding the consequences of the assumptions made in the modeling process
is important on our way to support an improved design of these fascinating materials. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4896147]

I. INTRODUCTION

In the search of new materials of outstanding novel
properties, one route is to combine the features of differ-
ent compounds into one composite substance.1–5 Ferrogels
and magnetic elastomers provide an excellent example for
this approach. They consist of superparamagnetic or ferro-
magnetic particles of nano- or micrometer size embedded
in a crosslinked polymer matrix.6 In this way, they combine
the properties of ferrofluids and magnetorheological fluids7–16

with those of conventional polymers and rubbers:17 we obtain
elastic solids, the shape and mechanical properties of which
can be changed reversibly from outside by applying external
magnetic fields.6, 18–25

This magneto-mechanical coupling opens the door to a
multitude of applications. Deformations induced by exter-
nal magnetic fields suggest a use of the materials as soft
actuators26 or as sensors to detect magnetic fields and field
gradients.27, 28 The non-invasive tunability of the mechanical
properties by external magnetic fields makes them candidates
for the development of novel damping devices29 and vibration
absorbers19 that adjust to changed environmental conditions.
Finally, local heating due to hysteretic remagnetization losses
in an alternating external magnetic field can be achieved. This
effect can be exploited in hyperthermal cancer treatment.30, 31

In recent years, several theoretical studies were per-
formed to elucidate the role of the spatial magnetic particle
distribution on these phenomena.23, 32–42 It turns out that the
particle arrangement has an even qualitative impact on the
effect that external magnetic fields have on ferrogels. That

a)Electronic mail: menzel@thphy.uni-duesseldorf.de

is, the particle distribution within the samples determines
whether the systems elongate or shrink along an external mag-
netic field, or whether an elastic modulus increases or de-
creases when a magnetic field is applied. As a first step, many
of the theoretical investigations focused on regular lattice
structures of the magnetic particle arrangement.32, 36, 42 Mean-
while, it has been pointed out that a touching or clustering
of the magnetic particles and spatial inhomogeneities in the
particle distributions can have a major influence.23, 35, 39–41, 43

More randomized or “frozen-in” gas-like distributions were
investigated.23, 33–35, 38, 40 Yet, typically in these studies an
affine deformation of the whole sample is assumed, i.e., the
overall macroscopic deformation of the sample is mapped
uniformly to all distances in the system. An exception is given
by microscopic37 and finite-element studies,23, 35, 41 but the
possible implication of the assumption of an affine deforma-
tion for non-aggregated particles remains unclear from these
investigations.

Here, we systematically challenge these issues using the
example of the compressive elastic modulus under varying
external magnetic fields. We start from regular lattice struc-
tures that are more and more randomized. In each case, the
results for affine and non-affine deformations are compared.
Finally, we consider a particle distribution that has been ex-
tracted from the investigation of a real experimental sample.
It turns out that the assumption of affine deformations grow-
ingly leads to erroneous results with increasingly randomized
particle arrangements and is highly problematic for realistic
particle distributions.

In the following, we first introduce our minimal dipole-
spring model used for our investigations. We then consider

0021-9606/2014/141(12)/124904/10/$30.00 © 2014 AIP Publishing LLC141, 124904-1
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different lattice structures: rectangular, hexagonal, and honey-
comb, all of them with increasing randomization. Different
directions of magnetization are taken into account. Finally,
an irregular particle distribution extracted from a real ex-
perimental sample is considered, before we summarize our
conclusions.

II. DIPOLE-SPRING MINIMAL MODEL

For reasons of illustration and computational economics,
we will work with point-like particles confined in a two-
dimensional plane with open boundary conditions. On the one
hand, we will study regular lattices, for which simple analyti-
cal arguments can be given to predict whether the elastic mod-
ulus will increase or decrease with increasing magnetic inter-
action. These lattices will also be investigated after randomly
introducing positional irregularities. Such structures could re-
flect the properties of more realistic systems, for example,
those of thin regularly patterned magnetic block-copolymer
films.44, 45

On the other hand, irregular particle distributions in a
plane to some extent reflect the situation in three dimensional
anisotropic magnetic gels and elastomers.47–52 In fact, our ex-
ample of irregular particle distribution is extracted from a real
anisotropic experimental sample. These anisotropic materi-
als are manufactured under the presence of a strong homo-
geneous external magnetic field. It can lead to the formation
of chain-like particle aggregates that are then “locked-in” dur-
ing the final crosslinking procedure. These chains lie parallel
to each other along the field direction and can span the whole
sample.50 To some extent, the properties in the plane perpen-
dicular to the anisotropy direction may be represented by con-
sidering the two-dimensional cross-sectional layers on which,
in this work, we will focus our attention.

Our system is made of N = Nx × Ny point-like parti-
cles with positions Ri , i = 1. . . N, each carrying an identical
magnetic moment m. That is, we consider an equal magnetic
moment induced for instance by an external magnetic field in
the case of paramagnetic particles, or an equal magnetic mo-
ment of ferromagnetic particles aligned along one common
direction. We assume materials in which the magnetic parti-
cles are confined in pockets of the polymer mesh. They cannot
be displaced with respect to the enclosing polymer matrix,
i.e., out of their pocket locations. Neighboring particles are
coupled by springs of different unstrained length l0

ij accord-
ing to the selected initial particle distribution. All springs have
the same elastic constant k. The polymer matrix, represented
by the springs, is assumed to have a vanishing magnetic sus-
ceptibility. Therefore, it does not directly interact with mag-
netic fields. (The reaction of composite bilayered elastomers
of non-vanishing magnetic susceptibility to external magnetic
fields was investigated recently in a different study46).

The total energy U of the system is the sum of elastic and
magnetic energies43, 53, 54 Uel and Um defined by

Uel = k

2

∑
〈ij〉

(
rij − l0

ij

)2
, (1)

where 〈ij〉 means sum over all the couples connected by
springs, r ij = Rj − Ri , rij = |r ij | and

Um = μ0m
2

4π

∑
i<j

r2
ij − 3(m̂ · r ij )2

r5
ij

, (2)

where i < j means sum over all different couples of parti-
cles, and m̂ = m/m is the unit vector along the direction of
m. In our reduced units, we measure lengths in multiples of l0
and energies in multiples of kl0

2; here we define l0 = 1/
√

ρ,
where ρ is the particle area density. To allow a comparison
between the different lattices we choose the initial density al-
ways the same in each case. Furthermore, our magnetic mo-

ment is measured in multiples of m0 =
√

4πk2l0
5/μ0.

Estimative calculations show that the magnetic moments
obtainable in real systems are 4−5 orders of magnitude
smaller than our reduced unit for the magnetic moment,
so only the behavior for the rescaled |m|/m0 = m/m0 � 1
would need to be considered. Here, we run our calculations
for m as big as possible, until the magnetic forces become
so strong as to cause the lattice to collapse, which typically
occurs beyond realistic values of m. After rescaling, the mag-
netic moment m is the only remaining parameter in our equa-
tions which can be used to tune the system for a given particle
distribution.

III. ELASTIC MODULUS FROM AFFINE
AND NON-AFFINE TRANSFORMATIONS

We are interested in the elastic modulus E for dilative
and compressive deformations of the system, as a function
of varying magnetic moment and lattices of different orien-
tations and particle arrangements. For a fixed geometry and
magnetic moment m, once we have found the equilibrium
state of minimum energy of the system, we calculate E as
the second derivative of total energy with respect to a small
expansion/shrinking of the system, here in x-direction:

E = d2U

dδx
2 � U (−δx) + U (δx) − 2U (0)

δx
2 . (3)

δx is a small imposed variation of the sample length along
x̂. In order to remain in the linear elasticity regime, δx
must imply an elongation of every single spring by a quan-
tity small compared to its unstrained length. In our calcu-
lations, we chose a total length change of the sample of
δx = Lx/100

√
N � l0/100 throughout, where Lx is the equi-

librium length of the sample along x̂. Thus, on average, each
spring is strained along x̂ by less than 1%. To indicate the
direction of the induced strain, we use the letter ε in the fig-
ures below. The magnitude of the strain follows as |ε| = δx/Lx
� 10−4−10−3. Strains of such magnitude were for example
applied experimentally using a piezo-rheometer.47 A natural
unit to measure the elastic modulus E in Eq. (3) is given by
the elastic spring constant k.

There are different ways of deforming the lattices in or-
der to find the equilibrium configuration of the system and
calculate the elastic modulus. We will demonstrate that con-
sidering non-affine instead of affine transformations can lead
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to serious differences in the results, especially for randomized
and realistic particle distributions.

An affine transformation (AT) conserves parallelism be-
tween lines and in each direction modifies all distances by a
certain ratio. In our case of a given strain in x-direction, in
AT we obtain the equilibrium state by minimizing the energy
over the ratio of compression/expansion in y-direction.

In a non-affine transformation (NAT), instead, most of
the particles are free to adjust their positions independently
of each other in 2D. Only the particles on the two opposing
edges of the sample are “clamped” and forced to move in a
prescribed way along x-direction, but they are free to adjust
in y-direction. All clamped particles in the NAT are forced
to be expanded in the x-direction in the same way as in the
corresponding AT to allow better comparison (see Fig. 1 for
an illustration of the two kinds of deformation). To perform
NAT minimization, we have implemented the conjugated gra-
dients algorithm55, 56 using analytical expressions of the gra-
dient and Hessian of the total energy. Numerical thresholds
were set such that the resulting error bars in the figures below
are significantly smaller than the symbol size.

FIG. 1. An initial square lattice undergoing the same total amount of hori-
zontal strain at vanishing magnetic moment and relaxed through NAT (top)
and AT (bottom). Clamped particles are colored in black in the NAT case. The
depicted deformations are much larger than the ones used in the following to
determine the elastic moduli (here the sample was expanded in x-direction by
a factor of 2.5).

As a consequence, NAT minimizes energy over � 2N
degrees of freedom. Since the NAT has many more degrees
of freedom for the minimization than AT, we expect the for-
mer to always find a lower energetic minimum compared
to the latter. Thus, for the elastic modulus, we obtain EAT

≥ ENAT. Figure 1 shows how NAT and AT minimizations yield
different ground states for the same total amount of strain
along x̂.

To compute the elastic modulus, we first find the equilib-
rium state through NAT for prescribed m. Next, using AT, we
impose a small shrinking/expansion and after the described
AT minimization obtain EAT via Eq. (3). Then, starting from
the NAT ground state again, we perform the same procedure
using the NAT minimization and thus determine ENAT.

IV. RESULTS

In the following, we will briefly discuss the behavior of
the elastic modulus in the limit of large systems. Then, on
the one hand, we will demonstrate that introducing a random-
ization in the lattices dramatically affects the performance of
affine calculations. On the other hand, we will investigate how
in each case structure and relative orientation of the nearest
neighbors determine the trend of E(m).

A. Elastic modulus for large systems

We run our simulations for lattices of Nx = Ny. It is
known that the total elastic modulus of two identical springs
in series halves, whereas, if they are in parallel doubles, com-
pared to the elastic modulus of a single spring. In our case of
determining the elastic modulus in x-direction, the total elas-
tic modulus E will be proportional to Ny/Nx. Thus, with our
choice of Nx = Ny, it should not depend on N. We will in-
vestigate the exemplary case of a rectangular or square lattice
for m = 0 to estimate the impact of finite size effects on our
results, since a simple analytical model can be used to predict
the value of E.

Our rectangular lattice is made of vertical and horizontal
springs coupling nearest neighbors and diagonal springs con-
necting next-nearest neighbors. The diagonal springs are nec-
essary to avoid an unphysical soft-mode shear instability of
the bulk rectangular crystal. In the large-N limit, there are on
average one horizontal, one vertical, and two diagonal springs
per particle. The deformation of a corresponding “unit spring
cell” is depicted in Fig. 2. b0 and h0 are, respectively, the
length of the horizontal and vertical spring of the unit cell
in the undeformed state, whereas b and h are the respective

FIG. 2. Minimal rectangular model consisting of one x-oriented, one y-
oriented, and two diagonal springs. b0 and h0 are the base and height of the
rectangular cell in the unstrained state. Under strain, b0 → b and the height
is free to adjust in order to minimize the elastic energy, h0 → h.
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of β resulting from the fit are (bottom to top curve) −0.56, −0.55, and −0.54. ENAT(m 
= 0)/k show the same convergence behavior for any m.

quantities in the deformed state. b is fixed by the imposed
strain, whereas h adjusts to minimize the energy, ∂U/∂h = 0.
This model describes, basically, the deformation of a cell in
the bulk within an AT framework.

If magnetic effects are neglected, we find that the linear
elastic modulus of such a system is

E(m = 0) � d2Uel

db2

∣∣∣∣
b=b0

= k

(
1 + 2r2

0

3 + r2
0

)
. (4)

Here r0 = b0/h0 is the base-height ratio of the unstrained lat-
tice. Furthermore, we have linearized the h(b) deformation
around b = b0.

In the limit of large N, the elastic modulus determined by
NAT should be dominated by bulk behavior. For regular rect-
angular lattices stretched along the outer edges of the lattice
cell, the deformation in the bulk becomes indistinguishable
from an affine deformation. We therefore can use our analyti-
cal calculation to test whether our systems are large enough to
correctly reproduce the elastic modulus of the bulk. For this
regular lattice structure, it should correspond to the modulus
following from Eq. (4). We calculated numerically ENAT(m
= 0) for different rectangular lattices as a function of N and
plot the results in Fig. 3. Indeed, for large N, we find the con-
vergence as expected.

From Fig. 3, we observe that the modulus has mostly con-
verged to its large-N limit at N = 400, therefore most of our
calculations are performed for N = 400 particles. We have
checked numerically that a similar convergence holds for any
investigated choice of m and lattice structure. For any m 
= 0
that we checked, we found a similar convergence behavior as
the one depicted for m = 0 in Fig. 3.

B. Impact of lattice randomization on AT calculations

We have seen how, in the large-N limit, AT analytical
models and NAT numerical calculations converge to the same
result in the case of regular rectangular lattices. In fact, we
expect AT to be a reasonable approximation in this regular
lattice case, since it conserves the initial shape of the lattice.
For symmetry reasons, this behavior may be expected also for
NAT at small degrees of deformation. But how does AT per-
form in more realistic and disordered cases where the initial
particle distribution can be irregular? To answer this question
we will consider the difference EAT − ENAT, the elastic mod-
ulus numerically calculated with AT and NAT, at m = 0, for
different and increasingly randomized lattices.

We have considered a rectangular lattice with diagonal
springs, a hexagonal lattice with horizontal rows of nearest
neighbor springs, one with vertical rows, and a honeycomb
lattice with springs beyond nearest neighbors (as depicted in
Fig. 4).

To obtain the randomized lattices, we start from their reg-
ular counterparts and randomly move each particle within a
square box of edge length η and centered in the regular lattice
site. We call η the randomization parameter used to quantify
the degree of randomization. In our numerical calculations,
we increased η up to η = 0.375l0. This is an appreciable de-
gree of randomization considering that at η = l0 two nearest
neighbors in a square lattice may end up at the same location.
To average over different realizations of the randomized lat-
tices, we have performed 100 numerical runs for every initial
regular lattice and every chosen value of η. In Fig. 4, we plot
the relative difference between EAT and ENAT.

Already for the regular lattices of vanishing randomiza-
tion η = 0, we find a relative deviation of EAT from ENAT in
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the one-digit per-cent regime. This deviation is smallest for
the regular rectangular lattice, where the principal stretching
directions are parallel to the nearest-neighbor bond vectors.
The deviation for η = 0 increases when we consider instead
the hexagonal and honeycomb lattices. Obviously, and this
is our main point here, the relative difference between EAT

and ENAT increases for each lattice that we investigated with
the degree of randomization η. Therefore NAT finds much
lower equilibrium states with increasing randomization, and
AT leads to erroneous results. So far, however, we could not
yet establish a simple rigid criterion that would quantitatively
predict the observed differences between AT and NAT.

C. The case m // x̂

We will now consider a non-vanishing magnetic moment
m // x̂. This is parallel to the direction in which we apply the
strain in order to measure the elastic modulus. As we will see
below, the behavior of the elastic modulus as a function of the
magnetic moment E(m) strongly depends on the orientation of
m and on the lattice structure. The kind of magnetic interac-
tion between nearest neighbors is fundamental for its impact
on the elastic modulus. On the one hand, when the magnetic
coupling between two particles in Um [see Eq. (2)] is solely
repulsive, i.e., m ⊥ r ij , its second derivative is positive and
therefore gives a positive contribution to the elastic modulus.
On the other hand, when m // r ij the interaction is attractive
and the second derivative of Um gives a negative contribution
to the elastic modulus.

When m is parallel to the strain direction x̂, the mag-
netic interaction along x̂ is attractive and, for m large enough,

will cause the lattice to shrink and the elastic modulus to
decrease. For some cases, though, E(m) shows an initial in-
creasing trend. This happens when in the unstrained lattice the
particles are much closer in ŷ than in x̂. Then, for small de-
formations, magnetic repulsion is prevalent and the magnetic
contribution to E is positive, as can be seen for the rectangular
case from Fig. 5.

The total energy of the system is the sum of elastic
and magnetic energies. Since the derivative is a linear op-
erator, the elastic modulus can be decomposed in elastic
and magnetic components: E = Eel + Em. The analytical
calculation for the minimal rectangular system described in
Subsection IV A applied to this configuration and consider-
ing magnetic interaction up to nearest neighbors only predicts
that

Em � d2Um

db2

∣∣∣∣
b=b0

= 12m2

b5
0

(
−2 + 4r7

0

(3 + r2
0 )

2

)
(5)

in the rectangular case.
From Eq. (5), we expect a magnetic contribution to the

total elastic modulus increasing with m for r0 ≥ 1.175 and de-
creasing with m for r0 ≤ 1.175. Qualitatively we observe this
trend for m/m0 � 1 in Fig. 5. However, it seems that the ini-
tial trend for E(m), i.e., close to the unstrained state, switches
from increasing to decreasing around r0 � 1.60, higher than
we expected. Although the minimal analytical model can pre-
dict the existence of a threshold value for r0 it would need
the magnetic contribution of more than only nearest neighbor
particles to be more accurate, since the magnetic interaction
is long ranged (whereas the elastic interaction acts only on
nearest neighbors).
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D. The case m // ŷ

In this orientation of the magnetic moment, the hexago-
nal lattice case is exemplary, because it shows very well the
orientational structural dependence of E(m).

On the one hand, for the hexagonal lattice “horizontally”
oriented (see the bottom inset in Fig. 6) there are no nearest
neighbors in the attractive direction ŷ; there are instead two
along x̂ whose interaction is purely repulsive, therefore the

second derivative of their interaction Um is positive. On the
other hand, for the same lattice rotated by π /2 (see the top
inset in Fig. 6) there are two nearest neighbors in the direction
of m and their interaction is strongly attractive; therefore, the
second derivative of their interaction Um is negative.

The result, as can be seen in Fig. 6, is that in the for-
mer case the elastic modulus is increasing and in the latter is
decreasing.
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FIG. 6. Hexagonal lattice with m // ŷ for a hexagonal lattice with horizontal rows (bottom inset, where two nearest neighbors are oriented along x̂) and for one
with vertical rows (top inset, where two nearest neighbors are oriented along ŷ). We indicate the direction of the applied strain by ε. It is remarkable how the
magnetic interaction between nearest neighbors and the ENAT(m) behavior change when the lattice is rotated by π /2.
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FIG. 7. Elastic modulus E(m/m0)/k calculated with NAT for m // ẑ for the different lattices shown. We indicate the direction of the applied strain by ε. The
magnetic interaction is purely repulsive and strengthens the elastic modulus in this configuration.

E. The case m // ẑ

In this configuration, the magnetic interactions between
our particles are all repulsive and have the form m2/rij

3. The
second derivative of the magnetic interparticle energy is al-
ways positive along the direction connecting the particles.
Therefore, we expect the elastic modulus to be enhanced with
increasing m, and E(m) to be a monotonically increasing func-
tion. As can be seen from Fig. 7, this is true for all the different
lattices we have considered.

We have already seen in Fig. 4 how the randomization
of the lattice seriously affects the difference between AT and
NAT. For the m // ẑ case, we have also considered a real par-
ticle distribution taken from an experimental sample.50 The
real sample was of cylindrical shape with a diameter of about
3 cm. It had the magnetic particles arranged in chain-like ag-
gregates parallel to the cylinder axis and spanning the whole
sample. The positions of the particles were obtained through
X-ray micro-tomography and subsequent image analysis. We
extracted the data from a circular cross-section taken approx-
imately at half height of the cylinder and shown in Fig 8. In
this way we consider by our model the physics of one cross-
sectional plane of the cylindrical sample.

The extracted lattice was used as an input for our dipole-
spring model. We placed a magnetic particle at the center
of each identified spot in the tomographic image, see Fig 8.
Guided by the situation in the real sample, the magnetic mo-
ments of the particles are chosen perpendicular to the plane
(i.e., “along the cylinder axis”). The springs in the resulting
lattice are set using Delaunay triangulation51, 57, 58 with the
particles at the vertices of the triangles and the springs placed
at their edges. Then, we cut a square block from the center
of the sample containing the desired number of particles. The
clamped particles are chosen in such a way that they cover
about 10% of the total area (see left inset in Fig. 9).

FIG. 8. Realistic lattice used to determine the elastic modulus as a function
of the magnetic interactions in the case m // ẑ. The lattice was determined
from an X-ray micro-tomographic image of a real experimental sample50 in
the following way. The sample was of cylindrical shape with a diameter of
approximately 3 cm. We show a cross-sectional cut through the sample at
intermediate height. Inside the sample, the magnetic particles formed chains
parallel to the cylinder axis, i.e., perpendicular to the depicted plane. The
average size of the particles was around 35 μm. Gray areas correspond to
the tomographic spots generated by the magnetic particles in the sample and
were identified by image analysis. In our model, we then used the centers of
these spots, marked by the black boxes, as lattice sites. One magnetic parti-
cle was placed on each lattice site. Then the whole plane was tessellated by
Delaunay triangulation with the particle positions at the vertices of the result-
ing triangles. Elastic springs were set along the edges of the triangles. The
micro-tomography data (see Fig. 5 (H=3 mm) in Ref. 50) are reproduced
with permission from Gunther et al., Smart Mater. Struct. 21, 015005 (2012).
Copyright 2012 by IOP Publishing.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
134.99.64.197 On: Fri, 24 Oct 2014 08:32:24

Paper I. J. Chem. Phys. 141, 124904 (2014) 45



124904-8 Pessot et al. J. Chem. Phys. 141, 124904 (2014)

FIG. 9. Elastic modulus E(m/m0)/k calculated for m // ẑ with NAT and AT techniques for the experimental lattice drawn in the left inset. Black dots represent
clamped particles. Besides considerably overestimating the elastic modulus, EAT(m/m0)/k shows a flat/decreasing behavior, whereas ENAT(m/m0)/k is correctly
increasing. In the right inset, we rescaled E(m/m0) by E(m = 0) to better show the two different trends. The numerical error bars are much smaller than the
symbol size.

Again we numerically investigate two-dimensional de-
formations within the resulting two-dimensional layer. If, in
the future, this is to be compared to the case of a real sample,
the deformations of this sample in the third direction, i.e., the
anisotropy direction, have to be suppressed. For instance, the
sample could be confined at the base and cover surfaces and
compressed along one of the sides. Then it can only extend

along the other side. Thus, within each cross-sectional plane,
an overall two-dimensional deformation occurs, with macro-
scopic deformations suppressed in the anisotropy direction.

As we can see from Fig. 9, in our numerical calculations
for this case, AT leads to a serious overestimation of the elas-
tic modulus compared to the one obtained for NAT. More-
over, as can be seen in the right inset of Fig. 9, the former
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FIG. 10. Zero-field elastic modulus ENAT(m = 0) calculated with NAT for the experimental lattice drawn in the inset picture varying the rotation angle θ . To
illustrate the effective isotropy we plot the elastic modulus rescaled by the average of ENAT(m = 0) over θ . The black square in the inset contains the block of
particles extracted from the experimental data after the rotation and used in our calculation.
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FIG. 11. Shear modulus G(m/m0)/k calculated for m // ẑ with NAT and AT techniques for the experimental lattice drawn in the left inset. Black dots represent
clamped particles. Here again, besides considerably overestimating the elastic modulus, GAT(m/m0)/k shows a flat/decreasing behavior, whereas GNAT(m/m0)/k
is correctly increasing. In the right inset, we rescaled G(m/m0) by G(m = 0) to better show the two different trends. The numerical error bars are much smaller
than the symbol size.

predicts an erroneous flat/decreasing trend for E(m), whereas
the latter shows instead a correct increasing behavior. This re-
sult can be interpreted considering that in AT all the particles
must move in a prescribed way along each direction. When
the particle arrangement is irregular, some couples are very
close and some are very distant. The erroneous trend in AT
is mainly attributed to the very close particle pairs. AT can
force them to still move closer together despite the magnetic
repulsion, whereas NAT allows them to avoid such unphysical
approaches. Therefore, in order to properly minimize the en-
ergy, each particle must be free to adjust position individually
with respect to its local environment. As a consequence, for
such realistic lattices AT provide erroneous results both quan-
titatively and qualitatively, making NAT mandatory in most
practical cases.

Since within the analyzed two-dimensional cross-
sectional layer the particle distribution appears to be rather
isotropic, we expect the elastic modulus to be approximately
the same in any direction in the plane. To demonstrate this
fact, we rotate the configuration in the plane with respect to
the stretching direction by different angles θ between 0 and
π /2. As we can see from Fig. 10, the zero-field elastic mod-
ulus E(m = 0) shows only small deviations for the different
orientations. The origin of such deviations is ascribed to the
square-cutting procedure which, after a rotation by an angle θ ,
produces samples containing different sets of particles, each
with different local inhomogeneities in particle distribution
and spring orientation. For samples large enough to signifi-
cantly average over all these different local inhomogeneities,
the angular dependence of E(m = 0) should further decrease.
We found that for any rotation angle θ , the behavior of E(m) is
similar to the one in Fig. 9 corresponding to θ = 0, supporting
our statement about the erroneous AT result.

F. Shear modulus

For the set-up described in Subsection IV E (see the left
inset of Fig. 9 with m // ẑ), we have also calculated the shear
modulus G(m) as a function of the magnetic moment, for both
AT and NAT. The shear modulus is defined as the second
derivative of the total energy U with respect to a small dis-
placement δy of the clamps in y-direction:

G = d2U

dδy
2 � U (−δy) + U (δy) − 2U (0)

δy
2 . (6)

In this calculation, to allow for the comparison between the
results from AT and NAT, all particles within the clamped re-
gions are forced to move in a prescribed (affine) way.

It turns out that the behavior of the shear modulus is qual-
itatively the same as for the compressive and dilative elastic
modulus (see Fig. 11). Again, an incorrect decreasing behav-
ior for the AT calculation is obtained. In numbers, the relative
difference between the AT and NAT results is larger than for
the compressive and dilative elastic modulus. Here we set δy
as one percent of the dimension of the sample. In Fig. 11, this
choice produces numerical error bars much smaller than the
symbol size.

V. CONCLUSIONS

We have shown how the induction of aligned magnetic
moments can weaken or strengthen the elastic modulus of a
ferrogel or magnetic elastomer according to lattice structure
and nearest-neighbor orientations. The orientation of near-
est neighbors plays a central role. If the vector connecting
two nearest neighbors lies parallel to the magnetic moment,
they attract each other, the second derivative of their magnetic
interaction is negative, and the corresponding contribution to
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the total elastic modulus is negative, too. If, instead, the near-
est neighbors lie on a direction perpendicular to the magnetic
moment, the second derivative of their magnetic interaction
is positive and it tends to increase the total elastic modulus.
This effect can be seen modifying the nearest-neighbor struc-
ture, for instance tuning the shape of a rectangular lattice or
rotating a hexagonal lattice. We have also seen how the perfor-
mance of affine transformations worsens for randomized and
more realistic particle distributions, making non-affine trans-
formation calculations mandatory when working with data
extracted from experiments.

In the present case, we scaled out the typical particle sep-
aration and the elastic constant from the equations to keep the
description general. Both quantities are available when real
samples are considered. The mean particle distance follows
from the average density, while the elastic constant could be
connected to the elastic modulus of the polymer matrix.

The dipole-spring system we have considered is a mini-
mal model. We look forward to improving it in different di-
rections. First, we would like to go beyond linear elastic in-
teractions using nonlinear springs, perhaps deriving a realistic
interaction potential from experiments or more microscopic
simulations. Second, the use of periodic boundary conditions
may improve the efficiency of our calculations and give us
new insight into the system behavior (although we demon-
strated by our study of asymptotic behavior that border ef-
fects are negligible in the present set-up). Furthermore, we
may include a constant volume constraint, since volume con-
servation is not rigidly enforced in the present model. To iso-
late the effects of different lattice structures and the assump-
tion of affine deformations, we here assumed that all magnetic
moments are rigidly anchored along one given direction. In a
subsequent step, this constraint could be weakened by explic-
itly implementing the interaction with an external magnetic
field or an orientational memory. Finally, to build the bridge
to real system modeling, an extension of our calculations to
three dimensions is mandatory in most practical cases.
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Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside
through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted.
The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models:
first, the orientational memory imprinted into one class of the materials during their synthesis; second,
the structural arrangement of the magnetic particles in the materials; and third, the strength of an external
magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and
analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical
properties helps to design materials that optimize the requested behavior.

DOI: 10.1103/PhysRevE.90.042311 PACS number(s): 82.70.Dd, 82.35.Np, 63.50.−x, 75.80.+q

I. INTRODUCTION

Often the internal dissipation in soft matter systems is
sufficiently large so that their dynamics can be considered
as overdamped. For instance the motion of dispersed colloidal
particles is dominated by the friction with the surrounding
liquid [1]. Another example is the dynamics of polymer chains
in melt or solution, described in a first approach by the famous
Rouse and Zimm models [2,3]. Apart from that, in polymeric
systems the dynamic behavior is often dominated by relaxation
processes. The reason is found in the large size of their
building blocks. A long time is necessary for conformational
rearrangements to adjust to changes in their environment [4].
Frequently, the slower processes are the ones that strongly
influence the macroscopic behavior.

Here, we consider the combination of the two materials
mentioned above in the form of ferrogels or magnetic
elastomers [5]. In this case, magnetic colloidal particles are
embedded into a crosslinked polymeric matrix. Qualitatively
different kinds of this “embedding” can be achieved by
different protocols of synthesis. On the one hand, the mag-
netic particles can simply be enclosed in mesh pockets of
the polymer network [5]. This allows a certain degree of
freedom for particle reorientations. On the other hand, via
surface functionalization, the magnetic particles can serve
as crosslinkers and thus become part of the polymer mesh
[6–8]. Then, restoring torques hinder reorientations of the
particles. We use the term “orientational memory” to refer
to this situation [9].

From the internal architecture of these materials it is
obvious that their magnetic and mechanical properties are
strongly coupled to each other. This is what makes them
interesting from both an academic and an application point
of view. For example, the mechanical properties, such as
the mechanical elastic modulus, can be tuned and adjusted
reversibly from outside by applying external magnetic fields
[5]. This may be exploited in constructing novel damping

*menzel@thphy.uni-duesseldorf.de

devices [10] and vibrational absorbers [11]. Several theoretical
studies have shown that the internal spatial particle distribution
plays a qualitative role in this effect [12–15].

Furthermore, applying time-dependent external magnetic
fields can induce deformations, which makes the materials
candidates for use as soft actuators [5,16,17]. Related to this
feature, it has been demonstrated theoretically that the spatial
particle arrangement in the materials has a qualitative impact
on the magnetostrictive behavior [18–20].

Apart from that, quick remagnetizations of the magnetic
particles by an alternating external magnetic field can lead
to local heating. The effect is due to hysteretic losses in
the dynamic magnetization processes. It can be used for
hyperthermal cancer treatment when magnetic particles are
embedded into tumor tissue [21,22]. Ferrogels, which likewise
feature magnetic particles embedded in a gel-like matrix, can
serve as model systems to investigate some of the aspects that
become important during this form of medical treatment.

In all these processes, dynamic modes of the materials
are excited. This happens via the time-dependence of the
applied mechanical deformations and external magnetic fields.
Different modes will dominate depending on the type of
external stimulus. In the described situation there are two major
differences when compared to the classical picture of phonon
modes in conventional solids [23]: we expect the dynamics
of the magnetic particles to be mainly of the relaxatory kind,
and the particle arrangement is not that of a regular crystalline
lattice.

A natural goal is to optimize the materials in view of their
applications. For this purpose, it is important to understand
if and how the dynamic modes are determined by internal
structural properties and by external magnetic fields. So far,
a macroscopic continuum theory for the dynamic response of
magnetic gels has been developed using a hydrodynamic-like
symmetry-based approach [16,24]. However, particle-resolved
studies that connect the dynamic material behavior to structural
properties on the magnetic particle level are missing. Our
investigations in the following are a first step into this direction.

In the next section, we review the simplified dipole-spring
model that we recently introduced to investigate equilibrium
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ground states of simple model systems [9]. We expand
it by formulating the corresponding relaxation dynamics.
Our approach contains memory terms to include a possible
orientational coupling of the magnetic particles to the polymer
network [9]. We then demonstrate and analyze the impact
of three different factors on the dynamic relaxatory modes.
First, the orientational memory can qualitatively impact the
appearance of the materials, which also influences the dynamic
modes. This is demonstrated for the illustrative example of a
short linear magnetic chain in Sec. III. Second, the spatial
distribution of the magnetic particles is important. We depict
this fact using simple symmetric lattice cells in two spatial
dimensions in Sec. IV. Third, the mode structure can be
influenced by an external magnetic field. This is highlighted
for a spatial particle distribution that was extracted from the
cross section of a real experimental sample in Sec. V. The
results are summarized in Sec. VI.

II. DYNAMIC DIPOLE-SPRING MODEL

Our ambition in this paper is to qualitatively demonstrate
that the relaxation dynamics can be influenced by three
different factors: orientational memory, spatial distribution of
the magnetic particles, and external magnetic fields. For this
purpose, we employ a minimal dipole-spring approach that
includes all these ingredients.

We use the recently introduced model energy to describe
the state of a ferrogel [9]:

E = μ0

4π

N∑
i,j=1,i<j

mi · mj − 3(mi · r̂ij )(mj · r̂ij )

r3
ij

+k

2

∑
〈i,j〉

(
rij − r

(0)
ij

)2+D
∑
〈i,j〉

(
m̂i · r̂ij − m̂(0)

i · r̂(0)
ij

)2

+ τ
∑
〈i,j〉

(
[m̂i × rij ] · [m̂j × rij ]

− [ ̂m(0)
i × r(0)

ij

] · [ ̂m(0)
j × r(0)

ij

])2
. (1)

Here, each of the N magnetic particles carries a magnetic
dipolar moment mi and is located at position ri (i = 1, . . . ,N).
The distance vectors are rij = rj − ri . For any vector x
we use the abbreviations x = ‖x‖ and x̂ = x/x. All quan-
tities with the superscript (0) refer to a memorized state
imprinted into the material during its synthesis. We denote
the sum over a limited number of close neighbors by angular
brackets 〈i,j 〉.

The first line of Eq. (1) contains the long-ranged dipolar
interactions. Next, we model the elastic properties of the em-
bedding polymer matrix by effective Hookean springs between
the magnetic particles. k is the spring constant. Both remaining
terms include a simple form of orientational memory of the
dipolar orientations: the term with the coefficient D penalizes
rotations of the dipole moments towards the connecting line
between magnetic particles; τ penalizes relative rotations of
the dipolar moments around these connecting lines, typically
involving torsional deformations of the polymer matrix. See
Ref. [9] for further explanations. In the following we only

consider situations and parameter values for which a collapse
due to the dipolar attractions does not occur; we thus can
neglect steric repulsion between the particles.

All magnetic particles are assumed to be identical. For
ferrofluids [25–28] this simplifying picture could capture the
experimentally observed effects correctly [29,30]. Particularly,
in our case, an identical magnitude of the dipolar moments
is assumed, mi = m (i = 1, . . . ,N). Then, five degrees of
freedom remain for each particle i, given by a five-dimensional
vector yi ≡ (ri ,m̂i). Thus the relaxation dynamics of the
system follows as the 5N -dimensional coupled system of
equations

∂yi

∂t
= − γ · ∂E

∂yi

, i = 1, . . . ,N. (2)

Here, our final simplifying assumption is that the relaxation
rate tensor γ is diagonal and the same for all particles.
Rescaling all lengths by an appropriate distance l0, the
positional relaxation rates can be adjusted to the angular ones,
so that we obtain γ = γ I, with I the unity matrix. In all that
follows, we measure time in units of (γ kl2

0)−1, D and τ in
units of kl2

0 , as well as the magnetic moment m in units of
[kl5

0/μ0]1/2.
We linearize Eqs. (2) with respect to small deviations

δyi from the energetic ground state. The resulting system
of linearized dynamic equations is rather lengthy and listed
in the Appendix. We insert an ansatz δyi = δy0,ie

λt into the
resulting system of linearized dynamic equations. Denoting
by δy the vector composed of all δyi , the resulting system of
equations can be written in the form λδy = M · δy, with M
the force matrix. Therefore, the relaxation rates λ follow as
the eigenvalues of this matrix, whereas its eigenvectors char-
acterize the nature of the corresponding relaxatory dynamic
modes. More precisely, the eigenvectors describe the spatial
displacements and magnetic reorientations δyi = (δri ,δmi) of
all particles i = 1, . . . ,N during the corresponding dynamic
mode. These eigenvalues and eigenvectors are obtained by
standard numerical methods [31]. In our overdamped system,
the relaxation rates together with the relaxatory modes char-
acterize the dynamic behavior.

III. IMPACT OF ORIENTATIONAL MEMORY

To demonstrate that the orientational memory has a qual-
itative impact, it is sufficient to consider a one-dimensional
particle arrangement. For such a straight magnetic chain we
had previously observed three qualitatively different energetic
ground states [9]. They occur for a memorized direction m̂(0)

i

oblique to the chain axis and depend on the strength of the
orientational memory (D,τ ): we obtain a “ferromagnetic” state
with all magnetic moments aligned along the chain (small D);
an “antiferromagnetic” state with obliquely oriented magnetic
moments rotated around the chain by π between neighboring
particles (large D, small τ ); and a “spiral”-like arrangement
with the rotation angle smaller than π (large D, large τ ).

For illustration, we here consider a finite straight chain
of only N = 10 particles. It is characterized by an equal
orientation of all memorized m(0)

i with an angle �(m(0)
i ,r(0)

ij ) =
π/4, the pairs 〈i,j 〉 in Eq. (1) denoting nearest neighbors.
We consider three different strengths of orientational memory
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FIG. 1. (Color online) Dynamic relaxatory behavior for three
different linear elastic chains of N = 10 magnetic particles of
m = 1.68. The chains differ by orientational memory (D,τ ) leading
to qualitatively different energetic ground states: ferromagnetic
“F” (D = 0.1, τ = 0.04), anti-ferromagnetic “AF” (D = 0.6, τ =
0.0004), and spiral-like “Sp” (D = 0.6, τ = 0.04). (a) Dynamic
relaxation spectra, where n labels the modes. (b) Example of a
characteristic eigenmode (n = 8) that appears very differently in
the three cases due to the varying orientational memory. i labels
the particles, δr denotes displacements along the chain axis, δmθ

and δmφ mark the angular deviations of the magnetic moments in
spherical coordinates. (c) Illustration of the three different energetic
ground states (light gray) and the resulting different modes n = 8 as
characterized in (b). In all cases the lengths of the unstrained linking
springs between the particles are r

(0)
ij = 2.

(D,τ ) that lead to the three different ground states mentioned
above; see Fig. 1 for further details.

We determined the corresponding relaxation spectra and
depict them in Fig. 1(a). The more negative the eigenvalue
λ, the quicker the corresponding mode relaxes. We order
the modes by decreasing λ. First the zero-modes of global
translation along and global rotation around the chain axis
are obtained. The subsequent plateau of slowly decreasing
relaxation rates mainly contains dynamic modes dominated by
rotational relaxation; see Ref. [32] for details. At the end of this
plateau, there is an obvious kink in the spectral curves and the
relaxation rates start to significantly decrease. For these modes,
the relaxation becomes significantly quicker. Those are the
modes that are dominated by longitudinal compressive and
dilative displacements along the chain with higher wave
numbers; again see Ref. [32] for details. That is, these modes
can quickly decay by repositioning within small localized
groups of particles, implying that a collective rearrangement
correlated along the whole chain is not necessary, which makes
those processes faster. In the antiferromagnetic case, we find
a specific step within the plateau region. It separates modes

dominated by dipolar rotations first around and second towards
the chain axis. As Figs. 1(b) and 1(c) show, the orientational
memory can lead to qualitative differences in the nature
of corresponding modes. The complete table illustrating all
occurring modes is included in Ref. [32].

In the above considerations, our limitation to a relatively
short chain of N = 10 particles is due to illustrative purposes
only. The differences in the spectra in Fig. 1 and in Ref. [32]
solely result from the varying orientational memory that lead to
the ferromagnetic, anti-ferromagnetic, and spiral-like ground
states. Analogous results follow for significantly longer chains.
Likewise, there are no qualitative differences between chains
of odd and even numbers of magnetic particles for N � 10
and otherwise identical parameter values.

Summarizing, we have demonstrated the influence of the
orientational memory on the dynamics for a one-dimensional
spatial arrangement of the magnetic particles. Real three-
dimensional bulk samples can contain such chain-like aggre-
gates [5,33–36]. If the distances between the chains are large
enough so that the interaction between them can be neglected
[37], the dynamic properties of the single chains will have
a strong impact on the overall behavior. Nevertheless, the
orientational memory should also become important in other
cases of more isotropic particle distributions, a topic that shall
be investigated further in the future. The orientational memory
in our model is encoded by the parameters D and τ . In reality,
it can for example be tuned during synthesis by the way of
embedding the magnetic particles in the polymer matrix. For
instance, rotations of elongated magnetic particles [38] are
hindered when compared to spheres, and magnetic particles
that are actually part of the network due to chemical surface
functionalization [6,7] experience permanent restoring torques
under reorientation [8].

IV. EFFECT OF SPATIAL PARTICLE DISTRIBUTION

Next, we show that the spatial distribution of the magnetic
particles has an obvious impact on the relaxation dynamics.
For this purpose, it is sufficient to concentrate on a two-
dimensional particle arrangement. We consider a system
without orientational memory of the dipoles, i.e., D = 0
and τ = 0 in Eq. (1). Instead, we assume that a sufficiently
strong external magnetic field orients all magnetic dipoles
perpendicular to the two-dimensional layer. Due to the above
rescaling, the only remaining system parameter is the rescaled
magnitude m of the dipole moments. It characterizes the
ratio between magnetic and elastic contributions to the system
energy.

For illustration, we consider small regular arrangements of
different lattice structures and only N = 9 particles. Of course
much larger arrangements can be evaluated but not as easily
be displayed. In our examples, the textures are of initially
quadratic, rectangular, and hexagonal lattice structure.

We display the relaxation spectra for the three different
lattice structures in Fig. 2(a). Since the orientations of the
magnetic moments are fixed by the strong external magnetic
field, all modes are solely determined by relaxations of the
particle positions. In all cases, three zero modes are observed
corresponding to global spatial translations and rotations.
For the higher modes, the different lattice structures lead to
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FIG. 2. (Color online) Dynamic relaxatory behavior of (from
left to right) a small quadratic, rectangular (aspect ratio 2:3), and
hexagonal lattice of N = 9 particles. Magnetic moments are oriented
perpendicular to the plane and of magnitude m = 1. (a) Changes in
the relaxation spectra for the three different particle distributions.
(b) Different appearance of an example mode (n = 5) for the three
lattices (undeformed energetic ground states indicated in light gray).
In all cases the lengths of the unstrained linking springs between the
particles are r

(0)
ij = 2, except for the long edges of the rectangular

lattice, where they are r
(0)
ij = 3.

different magnitudes of corresponding relaxation rates. Also
the nature of the relaxatory modes significantly depends on
the spatial particle distribution. One example is illustrated by
Fig. 2(b). A complete illustration of all relaxatory modes for
each lattice is again included in Ref. [32].

V. INFLUENCE OF AN EXTERNAL MAGNETIC FIELD

Finally, we demonstrate that an external magnetic field can
change the dynamic relaxatory behavior. This is particularly
important from an application point of view because it allows
us to tune the dynamic properties of the materials in a non-
invasive way from outside.

We consider the same setup as above for the regular lattices.
Now, however, there are N = 969 particles and their spatial
distribution does not follow a regular lattice structure. In
particular, to make the connection to real systems, we use
a real experimental sample and extract the particle positions
as an input for our study.

The experimental sample was extensively characterized
in Ref. [36]. It is a two-component silicone elastomer of
cylindrical shape with a diameter of 3 cm and a height of
1.5 cm. Furthermore, it contains 4.6 wt% of magnetically soft
iron particles, the average size of which is around 35 μm.
During the synthesis of the elastomer, a strong homogeneous
external magnetic field of 220 kA/m was applied parallel to
the cylinder axis. This resulted in the formation of linear
chains of the magnetic particles spanning the whole sample
parallel to the cylinder axis. The chains were resolved by
x-ray microtomography [36], the result of which is displayed
in Fig. 3. Cross-sectional images in planes perpendicular to the
cylinder axis are available—see the left column of Fig. 3—and
contain information about the chain positions [36].

To first approximation, due to the linear chain-like aggre-
gates that are all oriented in the same direction, the structure
at intermediate height of the sample is translationally invariant
along the cylinder axis. The exact positions and sizes of

FIG. 3. (Color online) Chain-like structures observed by x-ray
microtomography in the experimental sample referred to in the main
text [36]. On the left-hand side, three cross-sectional images at
different heights H from the base of the sample are depicted. Bright
spots label the positions of magnetic particles. On the right-hand
side, a three-dimensional reconstruction of the chain-like structures
formed by the magnetic particles in the sample is shown. For details
of the data acquisition see Ref. [36]. Taken from Ref. [36], Fig. 5.
C©IOP Publishing. Reproduced by permission of IOP Publishing. All
rights reserved.

individual magnetic particles in the sample could not be
resolved. We consider by our model the situation within one
cross-sectional layer cut out from the sample at intermediate
height H . In our example, we choose the cross-section at height
H = 3 mm in Fig. 3.

Each spot in the cross-sectional tomography data identifies
magnetic chain particles. We extracted by image analysis the
centers of these spots; see Fig. 4(a). Then, in our model,
we place one particle on each center, carrying a magnetic
moment m oriented perpendicular to the plane. Finally, as
shown in Fig. 4(a), the area between the particles is tessellated
by Delaunay triangulation. We insert elastic springs along
the edges of the resulting triangles, which here sets the pairs
described by 〈i,j 〉 in Eq. (1). Magnetic interactions are still
considered between all pairs of magnetic particles in the plane.
In this way, we model the physics of one cross-sectional
layer of the real system. Since the magnetic particles in
the experimental sample are not covalently bound to the
polymer matrix [6,7], and since the magnetic moments are
perpendicular to the plane, the orientational memory terms in
Eq. (1) do not play a role.

For large enough particle sizes, the magnetization of the
particles and thus the magnitude of their magnetic moments
can be tuned by the strength of an external magnetic field. We
consider this external magnetic field perpendicular to the plane,
i.e., along the linear chains formed by the magnetic particles in
the real sample. This has two reasons. First, we know from the
procedure of synthesis that such a magnetic field orients the
magnetic moments perpendicular to the plane and maintains
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FIG. 4. (Color online) Tunability of the dynamic behavior by an external magnetic field oriented perpendicular to the plane and affecting
the magnetic moments. (a) Positions of the magnetic moments are extracted from the x-ray microtomographic cross-sectional image of an
anisotropic real experimental sample [36] displayed for H = 3 mm on the left-hand side of Fig. 3. Only a fraction of the image is shown
for illustration. Gray areas correspond to the microtomographic spots. (b) Tunability of the spectrum by changing the magnetization. (c) The
density of dynamic modes gets shifted in the frequency direction by adjusting the magnetization. Dynamic modes for ω ≈ 1.3 and ω ≈ 2.5
(m = 1) are illustrated in Figs. 5(b) and 5(c), respectively. [The tomography data in panel (a) are taken from Ref. [36], Fig. 5 (H = 3 mm),
C©IOP Publishing. Reproduced by permission of IOP Publishing. All rights reserved.]

the axial symmetry of the sample. Second, in the static case,
the largest degree of tunability of the compressive elastic
modulus was achieved when the magnetic field was oriented
parallel to the anisotropy direction [5]. A similar dependence
may also hold in the dynamic case. To keep the description
general and simple, we do not consider specific magnetization
laws but study the relaxation dynamics directly as a function
of the magnitude of the resulting dipolar magnetic moment m.

As is obvious from Fig. 4(b), the dynamic relaxation
spectra can be tuned by adjusting m. We checked that the
chosen values correspond to external magnetic field strengths
that can be realized experimentally. In our geometry, the
magnetic interactions within the plane are purely repulsive.
Moreover, as can also be seen from Figs. 3 and 4(a), the
sizes of the spots detected by x-ray microtomography in the
cross-sectional layers are not homogeneous. In a variant of our
approach, we varied the strengths of the magnetic moments
proportionally to the area of the detected spots. However, this
did not qualitatively influence our results.

Figure 5 displays several illustrative example modes from
the spectrum for m = 1 in Fig. 4(b). Black dots mark the initial
positions of the magnetic particles, whereas the overlayed
lattice shows the deformed state. The directions and relative
magnitudes of the displacements of the individual particles are
obtained from the eigenvectors calculated as described at the
end of Sec. II.

There are two major differences when compared to the
classical phonon modes in crystalline solids [23]. First, our
dynamics is overdamped [1]. Therefore, we here focus on
the relaxational spectra determined from the corresponding
relaxation rates λn. Second, our lattice is irregular. Neverthe-
less, the situation is typically discussed in terms of the mode
density g(ω) in frequency space following the notation of the
classical phonon picture of nonoverdamped oscillations [23].
The frequencies ωn of these oscillations in the classical phonon
picture would be determined from the same force matrix as the
one that we find from the right-hand side of Eq. (2). However,
on the left-hand side of Eq. (2), the phonon oscillations would
imply a second time derivative. The two quantities that appear

on the left-hand side in these two different cases are related
by ωn ∼ √|λn|. Since it is common to plot the mode density
g(ω) in frequency space, we adhere to this convention.

At not too high frequencies that correspond to long-scale
collective dynamics, the plane-wave picture should still apply.
In fact, in this regime, a behavior of g(ω) in accordance with
the classical Debye picture [23] was obtained for disordered
structures [39]. Likewise, we observe here for our two-
dimensional disordered solid a “Debye plateau” of the function
g(ω)/ω in Fig. 4(c) at not too high frequencies. Example modes
at the low-frequency end of the spectrum indeed are related to
long-scale collective dynamics, as demonstrated in Fig. 5(a).

However, instead of a pure drop of g(ω) at higher fre-
quencies, a typical “boson peak” can develop in disordered
systems [39], the origin of which is still under debate [40]. In
our example of a two-dimensional disordered solid, the curve
for g(ω) in Fig. 4(c), before it drops at the end of the plateau,
shows a small hump. It is not possible to decide on the basis
of our limited statistical data whether this is the signature of
a “boson peak” in our non-glassy system. What does become
obvious from Figs. 5(b) and 5(c) is that the higher-frequency
modes are significantly more localized. This explains their
higher relaxation rates: large-scale collective motion is not
necessary to relax them.

Most significant for our present purposes is the observation
in Fig. 4(c) that the spectral density g(ω) can be shifted in
frequency direction by adjusting m through an external mag-
netic field. This is an important ingredient from the application
point of view. It allows to adjust the relaxation time reversibly
in response to varying environmental conditions. We recall that
the fraction of the magnetic component in our experimental
sample was only 4.6 wt%. Significantly higher contents of
magnetic particles can be realized. It turns out that already after
halving all distances in our sample plane, switching m from
10 to 103 is sufficient to achieve a similar shift in the spectrum
as the one occuring in Fig. 4(c) between m = 1 and m = 104.
This underlines the potential of the magnetic interaction as
an effective control parameter for the dynamic behavior.
In combination with the established phononic properties of
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FIG. 5. (Color online) Illustration of dynamic relaxational modes for the 969-particle planar irregular lattice extracted from the experimental
sample. Colored illustrations of the deformed lattices for each mode are superposed to the black undistorted lattice corresponding to the energetic
ground state. (a) Examples of lower modes show the expected global collective deformations, here of elliptic (λ4), triangular (λ10), quadratic
(λ13), pentagonal (λ15), hexagonal (λ22), and heptagonal (λ24) shape. Selected eigenmodes (b) around the end of the “Debye plateau” (ω ≈ 1.3)
and (c) around the small hump that might be connected to a “boson peak” (ω ≈ 2.5), cf. Fig. 4(c), show a much more localized character. The
initial spring lengths r

(0)
ij were set according to the values extracted from the experimental sample, while the magnetic moment was chosen as

m = 1.
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colloidal systems [41–43], this mechanism could provide a
route to tunable sound absorbers.

VI. CONCLUSIONS

Summarizing, we have demonstrated that the dynamic
behavior of ferrogels and magnetic elastomers can be tailored
and adjusted by at least three factors: first, by the magneto-
elastic coupling and orientational memory; second, by the
particle distribution; and third, during application, by external
magnetic fields. Thus we can forecast how microscopic details,
e.g. the orientational coupling of the magnetic particles to their
polymeric environment, affect aspects of the dynamic material
properties. There are of course several further factors that
determine our model parameters and in this way influence the
relaxation behavior. For example, these could be the content
of magnetic particles, the temperature during application,
the degree of crosslinking, or the degree of swelling of
the materials. The impact of these parameters should be
analyzed both experimentally and theoretically in the future.
On the experimental side, aspects of the dynamic relaxation
properties can be inferred, for instance, from dielectric
relaxation studies [44] or nanorheology [45]. Having all these
tuning parameters at hand, it should be possible to adjust the
dynamic properties to the requested applicational need.

To our knowledge, investigating aspects of the dynamic
material behavior on the level of the magnetic particle
distributions represents a new direction in the field. We hope
that our study can stimulate further, more detailed, and more
quantitative theoretical and simulation work in this context.
Naturally, the extension to three spatial dimensions is an
important next step. Our main goal here was to outline for
simple one- and two-dimensional model cases the different
factors that can influence the dynamics of the systems. To
allow for quantitative predictions on the dynamic behavior of
real samples, three-dimensional analyses will be mandatory
in most situations. On the experimental side, for example the
differences between isotropic and uniaxial ferrogels should
be analyzed concerning dynamic properties. All of these
questions are of high practical relevance in view of the
dynamic applications. For instance, response and relaxation
times determine the range of usability of ferrogels as the
basis of the above-mentioned novel damping devices [10],
vibrational absorbers [11], or soft actuators [5,17].

Our analysis represents a first step towards an optimization
of the dynamic behavior of magnetic gels. Theory and
simulations could assist this process by identifying particle
properties and structural arrangements that lead to the re-
quested characteristics. A further investigation to connect our

approach to directly experimentally measured quantities such
as the dynamical susceptibilities is currently underway [46].
We hope that our study can stimulate further investigations to
support the design of these fascinating materials and optimize
their tunable dynamic properties.
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APPENDIX: DYNAMIC EQUATIONS FOR THE
RELAXATIONAL BEHAVIOR

Here we list the complete expressions for the linearized
equations characterizing the relaxation dynamics and follow-
ing from Eq. (2). In this way, the relaxation dynamics of small
deviations δyi from the energetic ground state is obtained,
where yi ≡ (ri ,m̂i) and i = 1, . . . ,N labels the particles:

∂δyi

∂t
= − γ

N∑
j=1

Lij δyj . (A1)

For simplicity, we only show the formulas for the one-
dimensional chain and for the two-dimensional planar particle
arrangements considered in the main text. In the latter case,
we assume that the orientation of the magnetic dipoles is fixed
perpendicular to the plane. This can, for example, be achieved
by a strong external magnetic field.

1. Linear chain-like particle arrangement

First, for the one-dimensional chain-like aggregates, the
vector yi reduces to a three-dimensional vector yi ≡ (ri,θi,φi).
In our choice of coordinates, ri marks the position of the
ith particle along the chain, whereas the two angles θi and
φi represent the azimuthal and polar angles of the dipolar
orientation of the particle with respect to the chain direction.
The linearized operator in the above Eq. (A1) is separated into
four parts resulting from the four contributions to the energy
E in Eq. (1) of the main text:

Lij = Ldip
ij + Lel

ij + LD
ij + Lτ

ij . (A2)

We start by calculating the contribution from the dipole-
dipole interaction energy. Its diagonal components are given
by

Ldip
ii = 3μ0

4π

∑
k 
=i

|rik|−3r−1
ik m2

[
4r−1

ik {sin θi sin θk cos(φk − φi) − 2 cos θi cos θk}r̂ r̂ + {cos θi sin θk cos(φk − φi)

+ 2 sin θi cos θk}r̂ θ̂i + sin θi sin θk sin(φk − φi)r̂ φ̂i

] + μ0

4π

∑
k 
=i

|rik|−3 m
[
3r−1

ik {cos θi sin θk cos(φk − φi)

+ 2 sin θi cos θk}θ̂i r̂ − {sin θi sin θk cos(φk − φi) − 2 cos θi cos θk}θ̂i θ̂i + 3r−1
ik sin θk sin(φk − φi)φ̂i r̂

− sin θi{sin θi sin φk cos(φk − φi) − 2 cos θi cos θk}φ̂i φ̂i

]
(A3)
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and its off-diagonal components for j 
= i by

Ldip
ij 
=i = 3μ0

4π
|rij |−3r−1

ij m2
[−4r−1

ij {sin θi sin θj cos(φj − φi) − 2 cos θi cos θj }r̂ r̂ + {sin θi cos θj cos(φj − φi)+2 cos θi sin θj }r̂ θ̂j

− sin θi sin θj sin(φj − φi)r̂ φ̂j

] + μ0

4π
|rij |−3m

[−3r−1
ij {cos θi sin θj cos(φj − φi) + 2 sin θi cos θj }θ̂i r̂

+{cos θi cos θj cos(φj − φi) − 2 sin θi sin θj }θ̂i θ̂j − cos θi sin θj sin(φj − φi)θ̂i φ̂j

− 3r−1
ij sin θj sin(φj − φi)φ̂i r̂ + cos θj sin(φj − φi)φ̂i θ̂j + sin θi cos(φj − φi)φ̂i φ̂j

]
. (A4)

Here rij = rj − ri and r̂ denotes the unit vector in the r direction, i.e., along the chain axis. Likewise, θ̂i and φ̂i represent the unit
vectors in the θ and φ directions for the current orientation of the dipolar moment of the ith particle.

After straightforward calculation, the components of the operator containing the elastic part are obtained as

Lel
ij =

⎧⎪⎨
⎪⎩

k
∑

�∈δ�i
r̂ r̂ if i = j,

−kr̂ r̂ if j ∈ δ�i,

0 otherwise,

(A5)

where δ�i denotes the set of the (one or two) nearest neighbors of the ith particle.
In the same way, the first contribution from the orientational memory becomes

LD
ii = −2Dm−1

[{− sin2 θi + (
cos θi − cos θ

(0)
i

)
cos θi

}
θ̂i θ̂i + (

cos θi − cos θ
(0)
i

)
sin θi cos θiφ̂i φ̂i

]
(A6)

and

LD
ij 
=i = 0. (A7)

Finally, the diagonal components of the linearized operator resulting from the second part of the orientational memory are
calculated as

Lτ
ii = 2τ

∑
k∈δ�i

m−1(sin θi)
−1

[− cos θi sin(φk − φi)
{
cos(φk − φi) − cos

(
φ

(0)
k − φ

(0)
i

)}
θ̂i φ̂i − (sin θi)

−1 cos θi sin(φk − φi)

× {
cos(φk − φi) − cos

(
φ

(0)
k − φ

(0)
i

)}
φ̂i θ̂i − {− cos(φk − φi) cos

(
φ

(0)
k − φ

(0)
i

) + cos2(φk − φi) − sin2(φk − φi)
}
φ̂i φ̂i

]
.

(A8)

The corresponding off-diagonal components are given by

Lτ
ij∈δ�i

= 2τm−1(sin θi)
−1

{− cos(φj − φi) cos
(
φ

(0)
j − φ

(0)
i

) + cos2(φj − φi) − sin2(φj − φi)
}
φ̂i φ̂j (A9)

for pairs of nearest neighbors. Otherwise the off-diagonal components are zero,

Lτ
ij /∈�i

= 0, (A10)

with �i = δ�i + {i} in this notation.

2. Planar particle arrangement

Second, in the case of the two-dimensional plane, we assume that all dipole moments are aligned perpendicular to the plane.
Then, since the degrees of freedom for the dipolar orientations drop out, the vector yi reduces to two dimensions, i.e., yi ≡ (xi,yi).
Furthermore, the two terms of orientational memory characterized by the coefficients D and τ , vanish. As a result, the linearized
operator in Eq. (A1) above contains only two contributions resulting from the dipolar and from the elastic part of the energy E

in Eq. (1) of the main text:

Lij = Ldip
ij + Lel

ij . (A11)

The operator characterizing the dipole-dipole interactions is linearized to

Ldip
ii = 3μ0

4π

∑
k∈δ�i

r−7
ik m2

[{
5(xk − xi)

2 − r2
ik

}
x̂x̂ + {

5(yk − yi)
2 − r2

ik

}
ŷŷ + 5(xk − xi)(yk − yi)(x̂ŷ + ŷx̂)

]
(A12)

for the diagonal components and to

Ldip
ij 
=i = −3μ0

4π
r−7
ij m2[{5(xj − xi)

2 − r2
ij

}
x̂x̂ + {

5(yj − yi)
2 − r2

ij

}
ŷŷ + 5(xj − xi)(yj − yi)(x̂ŷ + ŷx̂)

]
(A13)

for the off-diagonal components.
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For the linearized operator resulting from the elastic contribution, the diagonal components read

Lel
ii = −k

∑
�∈δ�i

r−1
i�

[−{
Lr−2

i� (x� − xi)
2 + ri� − L

}
x̂x̂ − Lr−2

i� (x� − xi)(y� − yi)(x̂ŷ + ŷx̂) − {
Lr−2

i� (y� − yi)
2 + ri� − L

}
ŷŷ

]
.

(A14)

Its off-diagonal components are obtained as

Lel
ij∈δ�i

= −kr−1
ij

[{
Lr−2

ij (xj−xi)
2 + rij − L

}
x̂x̂ + Lr−2

ij (xj − xi)(yj − yi)(x̂ŷ + ŷx̂) + {
Lr−2

ij (yj − yi)
2 + rij − L

}
ŷŷ

]
(A15)

for nearest neighbors and otherwise as

Lel
ij /∈�i

= 0, (A16)

where again �i = δ�i + {i}.
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A. M. Menzel, J. Chem. Phys. 141, 124904 (2014).

[16] S. Bohlius, H. R. Brand, and H. Pleiner, Phys. Rev. E 70, 061411
(2004).

[17] K. Zimmermann, V. A. Naletova, I. Zeidis, V. Böhm,
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In the following we include an illustration of the complete set of relaxational modes for a linear
chain of N = 10 particles featuring a “ferromagnetic”, “anti-ferromagnetic”, and “spiral”-like ground
state. After that, an illustration of the complete set of modes for the three small planar example
lattices of N = 9 particles in a square-like, rectangular, and hexagonal arrangement is added.

I. COMPLETE SET OF RELAXATIONAL
MODES FOR THE CHAIN-LIKE AGGREGATES

For illustration, we depict in Figs. 1–3 the complete
set of relaxational modes obtained for the three linear
chain-like aggregates considered in the main text. The
different selected orientational memories lead to three
qualitatively different energetic ground states, namely a
“ferromagnetic”, an “anti-ferromagnetic”, and a “spiral”-
like one. Altogether, we chose these minimal examples
to demonstrate that an orientational memory can have
a qualitative impact on the relaxation dynamics of the
materials, i.e. lead to a markedly different appearance of
the dynamic modes. See for example the mode λ8, which
was picked for illustration in Fig. 1 of the main text.

II. COMPLETE SET OF RELAXATIONAL
MODES FOR THE PLANAR LATTICES

Likewise, for illustration, we show in Fig. 4 the com-
plete sets of modes obtained for the three small planar
lattices introduced in the main text. Our central point
here was to demonstrate that different spatial arrange-
ments can lead to a pronouncedly different nature of the
dynamic modes. Again, to keep the argument simple,
only small particle arrangements were selected, and for
simplicity the magnetic moments were fixed perpendicu-
lar to the plane. As we infer, the nature of the relaxatory
modes strongly varies with the spatial particle distribu-
tion. See for example the mode λ5, which we picked in
this case for illustration in the main text.
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FIG. 1: Complete set of the dynamic relaxational modes for a 10-particle linear chain-like aggregate that shows a “ferromag-
netic” energetic ground state (i.e. in the ground state all dipolar moments are oriented along the chain axis). The modes are
ordered by increasing magnitude of the relaxation rate. Only one zero mode λ1 exists corresponding to uniform translations of

the whole system along the chain axis. Effective parameter values in the numerical calculations were k = µ0 = γ = 1, r
(0)
ij = 2,

D = 0.1, τ = 0.04, and m = 1.68.
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FIG. 2: Complete set of the dynamic relaxational modes for a 10-particle linear chain-like aggregate that shows an “anti-
ferromagnetic” energetic ground state (i.e. in the ground state the dipolar moments feature a finite angle with respect to the
chain axis and are alternately rotated by 180 degrees around the chain axis). The modes are ordered by increasing magnitude
of the relaxation rate. Here, two zero modes λ1 and λ2 exist corresponding to uniform translations and rotations of the
whole system along and around the chain axis, respectively. Effective parameter values in the numerical calculations were

k = µ0 = γ = 1, r
(0)
ij = 2, D = 0.6, τ = 0.0004, and m = 1.68.
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FIG. 3: Complete set of the dynamic relaxational modes for a 10-particle linear chain-like aggregate that shows a “spiral”-like
energetic ground state (i.e. in the ground state the dipolar moments feature a finite angle with respect to the chain axis and all
nearest-neighboring dipoles are rotated by approximately the same finite angle around the chain axis with respect to each other).
The modes are ordered by increasing magnitude of the relaxation rate. Here, two zero modes λ1 and λ2 exist corresponding
to uniform translations and rotations of the whole system along and around the chain axis, respectively. Effective parameter

values in the numerical calculations were k = µ0 = γ = 1, r
(0)
ij = 2, D = 0.6, τ = 0.04, and m = 1.68.
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FIG. 4: Complete sets of the dynamic relaxational modes of the 9-particle planar (a) quadratic lattice, (b) rectangular lattice,
and (c) hexagonal lattice. The illustrations of the deformed lattices for each mode are superposed to the initial lattice (displayed
in gray) corresponding to the energetic ground state. The modes are ordered by increasing magnitude of the relaxation rate.
Since the orientations of the magnetic moments are assumed to be fixed perpendicular to the plane, all modes are solely
determined by relaxations of the particle positions. In each case, there are three zero modes corresponding to global uniform
translations and rotations. Effective parameter values in the numerical calculations were k = µ0 = γ = 1 and m = 1. We set

r
(0)
ij = 2 for the lengths of the unstrained springs in the square and hexagonal case as well as for the shorter springs in the

rectangular case (the longer ones being initialized by r
(0)
ij = 3).
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Buckling of paramagnetic chains in soft gels†

Shilin Huang,a Giorgio Pessot,b Peet Cremer,b Rudolf Weeber,c Christian Holm,c

Johannes Nowak,d Stefan Odenbach,d Andreas M. Menzelb and
Günter K. Auernhammer*a

We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed

to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the

morphology of the paramagnetic chains together with the deformation field of the surrounding gel

network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under

oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting

morphological shapes depend on the length of the chain, the strength of the external magnetic field,

and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to

the surrounding polymer network, a simplified model is developed to describe their buckling behavior.

A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the

surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling

effects.

1 Introduction

Magneto-responsive hybrid gels (MRGs) have been attracting
great attention due to their tunable elasticity, swelling properties
and shape that can be remotely controlled by a magnetic field. They
have potential applications as soft actuators, artificial muscles, as
well as sensors1–3 and can serve as model systems to study the heat
transfer in hyperthermal cancer treatment.4 Compared to other
stimuli-responsive gels, MRGs have the advantage of fast response,
controlled mechanical properties and reversible deformabilities.5–7

A typical MRG consists of a chemically cross-linked polymer
network, swollen in a good solvent, and embedded magnetic
particles.5,8 The size of the magnetic particles can range from
B10 nm to several mm.7

The origin of the magneto-responsive behavior of MRGs is
the magnetic interaction between the magnetic filler particles as
well as their interaction with external magnetic fields.9,10 In a
uniform magnetic field, paramagnetic particles can be polarized

and act as approximate magnetic dipoles. Depending on their
mutual azimuthal configuration, the dipolar interactions can
be either attractive or repulsive. In a liquid carrier, the dipolar
interaction drives the magnetic particles to form chains and
columns11–14 aligning in the direction of the magnetic field.
However, in a polymer gel, the particles cannot change their
position freely. Instead, relative displacements of the particles,
induced e.g. by changes in the magnetic interactions, lead to
opposing deformations of the polymer network. As a result, the
magnetic interactions can induce changes in the modulus of
the gel.7,15 This magneto-elastic effect is well known to be
related to the spatial distribution of the magnetic particles.16–21

For example, the modulus of anisotropic materials that contain
aligned chain-like aggregates of magnetic filler particles15,22–24 can
be significantly enhanced when an external magnetic field is applied
along the chain direction.7 The anisotropic arrangement of particles
also dominates the anisotropic magnetostriction effects.25–27

Different theoretical routes have been pursued to investigate
the magneto-elastic effects of MRGs: macroscopic continuum
mechanics approaches,28,29 mesoscopic modeling,16–19 and
more microscopic approaches30–32 that resolve individual polymer
chains. Theoretical routes to connect and unify these different
levels of description have recently been proposed.33–35 The authors
of ref. 34 show how the interplay between the mesoscopic particle
distribution and the macroscopic shape of the sample affects
the magneto-elastic effect. In addition to these factors, recent
experiments and computer simulations also point out that a direct
coupling between the magnetic particles and attached polymer
chains can play another important role.1,30,31,36–39
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An experimental model system showing a well-defined particle
distribution and a measurable magneto-elastic effect can help to
understand the magneto-elastic behavior of MRGs at different length
scales. Projected into a two-dimensional plane, the distribution
of magnetic particles in thin diluted MRGs can be detected using
optical microscopy or light scattering methods.15,40 By combining
these techniques with magnetic or mechanical devices, it is possible
to observe the particle rearrangement when the MRG sample is
exposed to a magnetic field or mechanical stimuli.15,41 For three-
dimensional (3D) characterization, X-ray micro-tomography has
been used.23 Here we introduce another 3D imaging technique –
laser scanning confocal microscopy (LSCM). Compared to normal
optical microscopy, LSCM is able to observe 3D structures and it
has a better resolution.42 Compared to X-ray micro-tomography,
LSCM is faster in obtaining a 3D image and easier to combine with
other techniques for real-time investigation.43,44

We use LSCM to study the magneto-elastic effects of para-
magnetic chains in soft gels. As a result, we find that the
paramagnetic chains in soft gels (elastic modulus o2 Pa) under
an oblique magnetic field show rich morphologies. Depending
on the length of the chain, modulus of the gel and strength of
an external magnetic field, the chains can rotate, bend, and
buckle. The deformation field in the polymer network around
the deformed paramagnetic chains can also be tracked. The
result confirms that the chains are strongly coupled to the
polymer network. A simplified model is developed to under-
stand the magnetically induced buckling behavior of the para-
magnetic chains in soft gels. In addition to serving as a model
experimental system for studying the magneto-elastic effect of
MRGs, our approach may also provide a new microrheological
technique to probe the mechanical property of a soft gel.45 Further-
more, our results may be interesting to biological scientists who
study how magnetosome chains interact with the surrounding
cytoskeletal network in magnetotactic bacteria.46

2 Materials and methods

The elastic network was obtained by hydrosilation of a difunc-
tional vinyl-terminated polydimethylsiloxane (vinyl-terminated
PDMS, DMS-V25, Gelest Inc.) prepolymer with a SiH-containing
cross-linker (PDMS, HMS-151, Gelest Inc.). Platinum(0)-1,3-
divinyl-1,1,3,3-tetramethyldisiloxane complex (Alfa Aesar) was
used as a catalyst. A low-molecular-weight trimethylsiloxy-
terminated PDMS (770 g mol�1, Alfa Aesar GmbH & Co. KG,
in the following ‘‘PDMS 770’’) served as a solvent that carried
the polymer network and the paramagnetic particles. The
paramagnetic particles were purchased from microParticles
GmbH. They were labeled with fluorophores (visible in LSCM).
The materials consist of porous polystyrene spheres. Within the
pores, nanoparticulate iron oxide was distributed rendering the
particles superparamagnetic. To prevent iron oxide leaching,
the particles had a polymeric sealing that also held the fluoro-
phores. The particles had a diameter of 1.48 � 0.13 mm (ESI,†
Fig. S1a). We measured the magnetization curve (ESI,† Fig. S1b)
of the paramagnetic particles by a vibrating sample magnetometer

(VSM, Lake Shore 7407). We found about 20% deviations in the
magnetic properties of the magnetic particles (e.g., magnetic
moment, see ESI,† Fig. S2). In order to observe the deformation
field in the polymer network, we used fluorescently labeled
silica particles as tracers. They had a diameter of 830 � 50 nm
and the surface was modified with N,N-dimethyl-N-octadel-3-
amino-propyltrimethoxysilylchloride.

After drying under vacuum at room temperature overnight,
the paramagnetic particles were dispersed into PDMS 770. In
some samples, tracer particles (3 wt%) were also dispersed into
PDMS 770 in this step. The prepolymer mixture was prepared with
9.1 wt% vinyl-terminated PDMS and 90.9 wt% SiH-containing
cross-linker. The prepolymer mixture (2.86 wt%) was dissolved in
PDMS 770, which contained the paramagnetic particles. Finally, by
adding PDMS 770, which carried the catalyst, the concentration of
the prepolymer mixture in the sol solution was carefully adjusted in
the range from 2.74 wt% to 2.78 wt%. This concentration range
guaranteed the formation of soft gels with an elastic modulus lower
than 10 Pa (see ESI,† Fig. S3). In the sol solution, the catalyst
concentration was 0.17 wt%, and the concentration of magnetic
particles was 0.09 wt%. The sol solution was agitated at 2500 rpm
with a Reax Control (Heidolph, Schwabach, Germany) for 2 min for
homogenization, followed by ultrasonication (2 min, Transsonic
460/H, Elma) to disperse the magnetic particles. Then the sol
solution was introduced into a thin sample cell (B160 mm thick
and B1 cm wide) by capillary forces. The sample cells consisted of
two No. 1 standard coverslips, separated by B160 mm spacers. After
sealing with two-component glue, the cells that contained the sol
were exposed to a 100.8� 0.5 mT magnetic field. The paramagnetic
particles aligned into chains along the direction of the applied
magnetic field while the prepolymer was crosslinking. A visible
reaction of the prepolymer occurred within 10 min, and the
rheological measurements showed that it took about 40 min to
form a gel. Due to the low concentration of magnetic particles, the
magnetic chains in the gel were well separated (430 mm). The
length of the chains varied from a single particle up to about
170 particles. We stored the samples at ambient temperature
for at least two weeks before testing. The modulus of the gels in
the sample cells was characterized using microrheological
techniques (see ESI,† Fig. S4).47

A home-built LSCM setup was used to observe the chain
structure in the gel.43,44 We were able to analyze a sample of
thickness of about 150 mm. A homogeneous magnetic field was
attained by building Halbach magnetic arrays near the sample
stage of the LSCM.48 A 32-magnet array (Fig. 1a) was used to
change the field direction while keeping the field strength
constant (216.4 � 1.1 mT, see ESI,† Fig. S5). Another 4-magnet
Halbach array (see ESI,† Fig. S6) was used to change the field
strength (up to 100.8 � 0.5 mT). The magnetic field was measured
by a Lake Shore Model 425 Gaussmeter with a transverse probe.

To study the deformation of the PDMS gel around the
magnetic chain, the magnetic field strength was increased from
0 mT to 60.2 � 0.3 mT in 8 steps (B30 min per step). 3D images
of the sample with randomly distributed tracer particles were
recorded in every step. One isolated magnetic chain was chosen
for further analysis. Thus, from the 3D images we extracted a
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time series of 2D images that focused on this magnetic chain.
From these 2D images, the trajectories of the embedded tracer
particles were determined using the particle tracker plug-in
developed on ImageJ software.49 The corresponding displacements
of the tracers were deduced from the trajectories. Naturally, the
tracer particles were stochastically distributed over the sample. We
divided the images into a grid of small rectangles (7.0 � 5.5 mm2,
containing, on average B3.5 tracer particles) and determined the
average displacement in each cell.

3 Results

In the absence of a magnetic field, the paramagnetic chains in
a soft gel kept the aligned morphologies (ESI,† Section S1,
Movie S1). When a magnetic field (216.4 � 1.1 mT) was applied
in the direction parallel to the chains (Fig. 1c, images for 01),
the paramagnetic chains still aligned with the original chain
direction (horizontal). We changed the direction of the magnetic
field step-by-step (51 steps) in the clockwise direction (B1 min
between steps, quasi-static). We also define the orientation of the
magnetic field B as the angle included between the magnetic
field and the initial chain direction (see Fig. 1b). The left images
of Fig. 1c show a short chain with 15 particles in a gel of elastic
modulus G0 of 0.25 � 0.06 Pa. The chain rotated to follow the
magnetic field. However, the rotation angle of the chain was
smaller than the orientation angle of the magnetic field (Fig. 1b).
This difference increased until the orientation of B reached 1351,
where the chain flipped backward and had a negative angle. The
chain again became parallel to the field when the orientation of

B increased to 1801. The morphology of the chain was the same
at orientations of the magnetic field of 01 and 1801 because of
the superparamagnetic nature of the particles. Note that the
chain was not straight at the intermediate angles (e.g., images
for 601, 901 and 1201). Instead it bended.

The images on the right-hand side of Fig. 1c show a longer
chain with 59 particles in the same gel. When the orientation of
B was 301, the chain rotated and bended, with its two ends
tending to point in the direction of the magnetic field. When
the orientation of B was 601, the chain wrinkled and started to
buckle. A sinusoidal-shape buckling morphology was observed
when the magnetic field was perpendicular to the original chain
(orientation of the magnetic field of 901, see ESI,† Section S1,
Movie S2). When the orientation of B increased from 901 to 1201,
the left part of the chain flipped downward in order to follow
the magnetic field. The right part flipped upward when the
orientation of B increased from 1201 to 1501. Finally, when the
field direction was again parallel to the original chain direction
(orientation of the magnetic field of 1801), the chain became
straight. The same rotation/buckling morphologies as in Fig. 1c
could be observed when increasing the orientation of B from
1801 to 3601.

We also directly applied a perpendicular magnetic field to
the paramagnetic chains in the soft gels. The paramagnetic
chains showed different buckling morphologies (Fig. 2a)
depending on the chain length. Fig. 2b gives frequency counts
of the different morphologies in the same sample (G0 = 0.25 �
0.06 Pa) under a magnetic field of 100.8 � 0.5 mT. In total
180 chains were observed. Longer chains tended to buckle with
a higher number of half waves. Moreover, the distributions
overlapped, implying that paramagnetic chains of identical
length could have different morphologies under the perpendicular
magnetic field.

These buckling morphologies are reminiscent of the buckling of
paramagnetic chains in a liquid medium under a perpendicular
magnetic field.50,51 The most stable morphology in the latter system

Fig. 1 (a) Laser scanning confocal microscopy (LSCM) was used to
observe the morphologies of the paramagnetic chains in the soft gels.
The Halbach magnetic array provided a homogeneous magnetic field
(here B = 216.4 � 1.1 mT). This array could be rotated to change the
orientation of the magnetic field. (b) The orientation of the magnetic field
B was successively increased from 01 to 1801 in 36 steps (square points).
A magnetic chain of 15 particles rotated to follow the magnetic field, but
the rotation angle was smaller than the orientation angle of B (dashed line).
(c) Morphologies of magnetic chains in a soft gel changed when the
orientation angle of B increased. The scale bar is 10 mm. The gel in (b) and
(c) had an elastic modulus G0 of 0.25 � 0.06 Pa.

Fig. 2 (a) Different morphologies of paramagnetic chains in a soft gel
(G0 = 0.25� 0.06 Pa) under a perpendicular magnetic field (100.8� 0.5 mT).
The original chain direction was horizontal, and the applied magnetic field
was vertical. The scale bar is 10 mm. (b) Frequency count of different
buckling morphologies in the same sample. M is the number of half waves.
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was a straight chain aligning along the magnetic field direction.
However, in our system this morphology was not observed.
Even the short chains showed a rotation angle smaller than the
orientation of the magnetic field (e.g., Fig. 1b). The major
difference between our experiments and ref. 50 and 51 was
the nature of the surrounding medium. In our system, the
polymer network around the paramagnetic chains impeded the
rotation of the chains into the magnetic field direction (a more
detailed discussion will be given below).

We used ImageJ software (NIH52) to extract the skeletons of
the chains that have 2 half waves (S-shaped). The amplitude of
deflection or deformation of different chains was quantified by
the square root of the mean square displacement, i.e. amplitude =
(h y2i � h yi2)1/2, where y measures the particle displacement along
the field direction. The results are shown in Fig. 3. The amplitude
increased with increasing chain length. At the same chain length,
the amplitude tends to increase with increasing magnetic field
strength (Fig. 3a; an example is also given in Fig. 4a) or with
decreasing gel modulus (Fig. 3b).

The modulus dependence of the amplitude demonstrated
that the polymer network around the paramagnetic chains
impeded the chain deformations. Therefore, the deformation
field within the polymer network plays an important role to
understand the buckling of the chains. We thus added tracer
particles into the gel matrix, and used their trajectories to
record the deformation field around the paramagnetic chains.
As shown in Fig. 4a, a linear paramagnetic chain buckled and
formed an S shape in a perpendicular magnetic field. The
amplitude increased with increasing field strength, while the
contour length of the chain remained constant. The chain extension
decreased along the original chain direction (horizontal direction)
and increased along the perpendicular direction. Simultaneously,
the polymer network around the chain followed the deformation
(Fig. 4b) of the paramagnetic chain, both in the transverse and
longitudinal directions. This confirmed that the paramagnetic chain
is strongly coupled to the polymer network. Within our experimental

resolution, the chain seemed to have a rigid non-slip contact to
the surrounding network.

4 Modeling

We now turn to a qualitative description of the situation in the
framework of a reduced minimal model. Theoretically capturing
in its full breadth the problem of displacing rigid magnetic
inclusions in an elastic matrix is a task of high complexity
and enormous computational effort.53 We do not pursue this
route in the following. Instead, we reduce our characterization
to a phenomenological description in terms of the shape of the
magnetic chain only. This is possible if the dominant modes of
deformation of the surrounding matrix are reflected by the
deformational modes of the magnetic chain.

Below, we assume that the chain is composed of identical
spherical particles. In its undeformed state, the straight chain
is located on the x-axis of our coordinate frame. The contour
line of the deformed chain running through the particle centers
is parameterized as y(x), see Fig. 4c.

4.1 Magnetic energy

First, concerning the magnetic energy along the chain, we
assume dipolar magnetic interactions between the particles. In
the perpendicular geometry (Fig. 4c), the external magnetic field
approximately aligns all dipoles along the y-axis. For simplicity,
we only include nearest-neighbor magnetic interactions. In an

Fig. 3 Influence of chain length, strength of magnetic field and elastic
modulus of the gel matrix on the amplitude of the S-shaped chains,
observed when the magnetic field is applied perpendicularly to the initial
chain orientation. (a) The elastic modulus of the gel was 0.25 � 0.06 Pa,
and the magnetic field strengths were 216.4 � 1.1 mT (black squares),
80.5 � 0.4 mT (red triangles), and 18.7 � 0.1 mT (blue circles), respectively.
(b) The magnetic field strength was 216.4 � 1.1 mT and the elastic moduli
of the gel were 0.015 � 0.005 Pa (black squares), 0.25 � 0.06 Pa (red
triangles), and 0.78 � 0.22 Pa (blue circles), respectively. The solid lines are
guides to the eye.

Fig. 4 (a) Influence of the magnetic field strength on a buckling chain.
From top to bottom, the magnetic field strengths were 0 mT, 10.1� 0.1 mT,
26.4� 0.1 mT, 38.6� 0.2 mT and 60.2� 0.3 mT, respectively. The modulus
of this gel was about 0.01 Pa. (b) Tracer particles were inserted into
the gel matrix of the sample. Tracking these embedded tracer particles,
the deformation field in the gel matrix was determined. The red solid line
represents the skeleton of the magnetic chain shown in (a) for a field
strength of 60.2 � 0.3 mT, and the dashed blue line indicates the original
chain shape. (c) We modeled the paramagnetic chain in the elastic gel as a
continuous object uniformly carrying dipolar magnetic moments. Without
the magnetic field, the straight chain was oriented along the x-axis. Under
a perpendicular magnetic field B (oriented along the y-axis), the magnetic
chain deformed. The surrounding polymer network impeded the chain
deformation.
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infinite straight chain, this would result in an error given by a
factor of z(3) E 1.2, where z is the Riemann zeta function.33,54,55

Within our qualitative approach this represents a tolerable error.
Replacing the magnetic interaction energy between the discrete
magnetic particles by a continuous line integral and shifting
the path of integration from the contour line of the chain to the
x-axis, we obtain the magnetic interaction energy (see ESI,†
Section S3.1)

Emagn ¼W

ðx2
x1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ðxÞ2

p dx; (1)

where x1 and x2 label the end points of the chain. The prefactor
W has the dimension of energy per unit length and is given by
(see ESI,† Section S3.1)

W � 3m0m
2

4pd4
; (2)

where m0 is the vacuum magnetic permeability, m the magnetic
moment of a single particle, and d its diameter.

4.2 Elastic bending energy

Next, we need to include terms that provide a measure for the
magnitude of the elastic deformation energy. To estimate the
importance of different modes of the elastic matrix deformation, we
analyze the experimentally determined displacement field around
the distorted chain shown in Fig. 4b. For this purpose, we model the
continuous matrix by a discretized spring network.19,56 Network
nodes are set at the positions where the displacement field was
tracked experimentally. The nodes are then connected by elastic
springs. After that, we determine the normal modes of deformation
of this network.56 Finally, we can decompose the experimentally
observed deformation field in Fig. 4b into these normal modes.
Occupation numbers fn give the contribution of the nth mode to the
overall deformation.

The four most occupied modes are shown in Fig. 5. We find
a major contribution of ‘‘oscillatory’’ modes, i.e. alternating up
and down displacements along the central horizontal axis.
Such oscillatory displacements of the matrix are connected to
corresponding oscillatory displacements of the chain, see
Fig. 4b. A bending term of the form (see ESI,† Section S3.2)

Ebend ¼ Cb

ðx2
x1

½y00ðxÞ�2

1þ y0ðxÞ2½ �5=2
dx (3)

becomes nonzero when such deformational modes occur and is
therefore taken as a measure for their energetic contribution.
In addition to that, we have experimental evidence that the
chain itself shows a certain amount of bending rigidity (see
ESI,† Fig. S7), possibly due to the adsorption of polymer chains
on the surfaces of the magnetic particles. Similar indication
follows from two-dimensional model simulations, see below.

4.3 Elastic displacement energy

The bending term does not energetically penalize rotations of a
straight chain, see Fig. 2a for M = 0. Yet, such rotations cost
energy. Boundaries of the block of material are fixed, therefore
any displacement of an inclusion induces a distortion of the

surrounding gel matrix. We model this effect by a contribution
(see ESI,† Section S3.3)

Edispl ¼ Cd

ðx2
x1

½yðxÞ�2 1þ y0ðxÞ2
� �3=2

dx: (4)

This term increasingly disfavors the rotations of longer straight
chains, which reflects the experimental observations (see ESI,†
Fig. S9).

Moreover, in Fig. 5c the third dominating mode of the matrix
deformation corresponds to a contraction along the chain direction
and an expansion perpendicular to it. We conjecture that this
should be the dominating mode in the deformational far-field, yet
this hypothesis needs further investigation. It is induced by chain
deflections in y-direction, which imply a matrix contraction in
x-direction (experimentally we observe that the chain length is
conserved under deformations and that the individual magnetic
particles remain in close contact). We simultaneously use Edispl

to represent the energetic contribution of this type of underlying
matrix deformation.

4.4 Energetic evaluation

We now consider the resulting phenomenological model
energy Etot = Emagn + Ebend + Edispl. A standard procedure would
consist of minimizing Etot with respect to the functional form of
y(x). Corresponding calculations and results are listed in the
ESI,† Section S3.4. There are, however, severe limitations to this
route in the present case. In contrast to several previous
approaches in different contexts,57–61 our magnetic chains are
of finite length and show significant displacements at their end
points, see Fig. 2. Detailed knowledge of the boundary condi-
tions of the deflection y(x) and its derivatives at the end points
of the chain would be necessary to determine the chain shape.

Fig. 5 The four most occupied normal modes of the deformation field in
Fig. 4b after projection to an elastic spring network, ordered by decreasing
magnitude of contribution to the overall deformation. The normal modes
(a), (b) and (d) are of an ‘‘oscillatory’’ type, whereas mode (c) represents a
longitudinal contraction. Corresponding relative weights of the modes are
f(a)

2 = 0.095, f(b)
2 = 0.057, f(c)

2 = 0.055, and f(d)
2 = 0.051, where we

normalized the sum of the weights over all modes to unity. For better
visualization, the overall amplitudes are rescaled as against the actual
weights. The matrix region in close vicinity of the chain is indicated by
black arrows.
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Indeed the solutions become very sensitive to additional conditions
(see ESI,† Section S3.4). In our case, the necessary additional
boundary conditions depend on the interaction with the matrix.
They are not accessible in the present reduced framework.

Therefore, we proceed in a different way. We use as an input
for our calculations the experimental observations. The experi-
mentally found chain shapes can to good approximation be
represented by a polynomial form

yðxÞ ¼ S
YM�1
m¼0
ðx�mbÞ for x1 � x � x2; (5)

where M is again the number of half-waves, the prefactor S sets
the strength or amount of chain deformation and deflection, b is
the spacing between the nodes, and the interval [x1, x2] follows
from the experimental result of preserved chain length L,

ðx2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½y0ðxÞ�2

q
dx ¼ L: (6)

We prefer the polynomial form of eqn (5) to, for instance, a
sinusoidal ansatz because it better reproduces the deformations
of our finite-sized chain objects. In particular, the pronounced
displacements of the chain ends, see e.g. Fig. 2a, are well captured
by polynomial forms. Likewise, an experimentally observed tendency
to smaller oscillation amplitudes inside longer chains is covered.
Furthermore, rotations of short straight chains are readily included
in this way.

Next, we insert eqn (5) into the above expressions for the
energy and minimize with respect to S, x1, and x2 for a given M,
with the constraint of constant length L, see eqn (6). The
minimization was performed using Wolfram Mathematica
minimization routines.62 Parameter values of the coefficients
Cb and Cd are found by matching the resulting shapes to the
corresponding experimental profiles (chain deformations for
G0 = 0.25 Pa and magnetic field B = 100.8 mT as in Fig. 2a,
M = 2, are used for this purpose). We obtain Cb E 0.01Wb2 and
Cd E 2W/b2.

To illustrate how the energetic contributions vary under
increasing preset deformation, we plot in Fig. 6 the energies
for increasing S for two fixed combinations of M and L. The
total energy Etot shows a global minimum in both panels, which
we always observed for symmetric chain deformations. As
expected, with increasing S the magnetic energy decreases,
whereas the deformation energies increase.

Next, we determine the minimal total energy as a function of
chain length L for different numbers of half-oscillations M, see
Fig. 7. With increasing chain length L the shapes that minimize
the energy show an increasing number of half-waves M in good
agreement with the experimental data in Fig. 2b.

Moreover, we quantify the amplitude of the chain deflection
or deformation by

Amplitude ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2h i � hyi2

q
; h�i ¼

Ð x2
x1
� dx

x2 � x1
: (7)

Resulting values are plotted in Fig. 8. As mentioned above, we
optimized the model parameters with respect to the experimental

data for a magnetic field intensity of B = 100.8 mT. We
demonstrate in Fig. 8 that moderate variations of the magnetic
field intensity only slightly affect our results: the brighter curves
are obtained when multiplying the magnetic energy scale W by a
factor B1.42, corresponding to an increased magnetic field
intensity of approximately B B 216 mT (see ESI,† Fig. S1b). This
is in agreement with the experimental observations. We include
in Fig. 8 the experimentally determined values for B = 80.5 mT
and B = 216.4 mT. Only a slight trend of increasing deflection
amplitudes is found for this increase of magnetic field intensity.

Fig. 6 Contributions to the total energy as a function of the amount S of
deformation and minimized with respect to x1 and x2 for a chain of
the shape given by eqn (5). Here we show the cases (a) M = 2, L = 3b
and (b) M = 4, L = 4.5b. The total energy Etot has a global minimum as a
function of S, which corresponds to the most stable chain shape. We
always observed the global minimum for symmetric shapes.

Fig. 7 Energies Etot of chain deformations of the shape given by eqn (5),
minimized with respect to S, x1, and x2, as a function of chain length L and
number of half-oscillations M. Each curve describes a shape of M half-waves
with a minimum total length of (M � 1)b. The resulting curves show crossing
points from where the total energy for an increasing L is lowered by bending
one extra time (jumping to a higher M) rather than conserving the same shape.

Paper Soft Matter

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 0
8 

O
ct

ob
er

 2
01

5.
 D

ow
nl

oa
de

d 
on

 2
8/

03
/2

01
7 

15
:0

9:
57

. 
 T

hi
s a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

Li
ce

nc
e.

View Article Online

72 Chapter 2. Peer-reviewed publications



234 | Soft Matter, 2016, 12, 228--237 This journal is©The Royal Society of Chemistry 2016

Together, although the curves for M = 2 in Fig. 8 slightly
overshoot the data points, Fig. 7 and 8 are in good agreement
with the experimental results. The amplitude of deflection and
deformation is not observed to unboundedly increase with chain
length L in the experiments. Likewise, our model predicts that
longer chains prefer to bend one extra time (switching to higher-
M shape) rather than to show too large deflection amplitudes.

5 Coarse-grained molecular dynamics
simulation

We also studied the buckling of the chain using two-dimensional
coarse-grained molecular dynamics simulations by means of the
ESPResSo software.63,64 A simple model was developed that
allowed us to analyze the influence of particular interactions
and material properties on the buckling effect. Here, we focus on
the elasticity of the polymer matrix in the immediate vicinity of
the magnetic particles.

By choosing the coarse-grained scale for our model, we ignore
any chemical details but rather describe the system in terms of
the magnetic particles as well as small pieces of polymer gel. As
the buckling effect appears to be two-dimensional, and as the
ground states for systems of dipolar particles have also been
found to be two-dimensional,55 we use this dimensionality for
our simulations. We study a chain of 100 magnetic particles with
a significant amount of surrounding elastic matrix.

As in the analytical approach, the gel matrix is modeled by a
network of springs. Here, however, we use a regular hexagonal
mesh as a basis. To mimic the non-linear elastic behavior of

polymers, we use a finitely extensible non-linear elastic spring
potential (FENE-potential65) for the springs along the edges of
the mesh. As a simple implementation of the finite compressibility,
we introduce FENE-like angular potentials on the angles at
the mesh points, with a divergence at 01 and 1801 (see ESI,†
Section S4.2). The magnetic particles are modeled as rigid spheres
interacting by a truncated, purely repulsive Lennard-Jones potential,
the so-called Weeks-Chandler-Andersen potential (see ESI,†
Section S4.1).66 Their magnetic moment is assumed to be
determined purely by the external magnetic field and to be
constant throughout the simulation, i.e. we assume that the
external field is significantly stronger than the field created by
the particles. The magnetic moments are taken parallel to the
external field and with a magnitude given by the experimentally
observed magnetization curve. The coupling between the particles
and the mesh is introduced in such a way, that under the volume
occupied by a particle, the mesh does not deform, but rigidly
follows the translational and rotational motion of the particle (see
ESI,† Section S4.3). A local shear strain on the matrix can rotate a
magnetic particle, but not its magnetic moment.

An important point is the elasticity of the polymer matrix in
the immediate vicinity of the magnetic particles and, in particular,
between two magnetic particles. We study two situations here, the
first one including a stiffer region in the immediate vicinity of the
particles, the second one without such a stiffer layer and directly
jumping to the bulk elasticity. The stiffer layer, if imposed, is
created using a spring constant larger by three orders of magnitude
on those springs which originate from mesh sites within the
particle volumes (see ESI,† Section S4.3). The angular potentials
are unchanged.

A comparison between the cases with and without a stiffer
layer of gel around the magnetic particles can be seen in Fig. 9.
The images show a small part of the resulting configuration of
magnetic particles and the surrounding mesh for a field
applied perpendicular to the initial chain direction. Thus the
magnetic moments of the particles are oriented perpendicular
to the undistorted chain direction. This results in an energetically
unfavorable parallel side-by-side configuration for the dipole
moments. The energy can be reduced either by increasing the
distance between the dipoles along the initial chain direction, or
by moving dipoles perpendicularly to the initial chain direction so
that they approach the energetically most favorable head-to-tail
configuration. If the matrix is made stiffer immediately around
the particles, and thus the contour length of the chain cannot
change significantly, the re-positioning towards the head-to-tail
configuration causes the buckling effect observed in the experi-
ments (Fig. 9). When one assumes the matrix immediately around
the magnetic particles to be as soft as in the bulk of the material,
neighboring particles can move apart and the chain breaks up
into individual particles or small columns perpendicular to the
original chain direction. Additionally, a layer of increased stiffness
also introduces a bending rigidity of the chain. In Fig. 10, the full
chain and the surrounding matrix is shown for an external field of
magnitude 216 mT, which from the experimental magnetization
measurements corresponds to a magnetic moment of about
4.5 � 10�14 A m2 (see ESI,† Fig. S1b). Due to the different

Fig. 8 Resulting deflection amplitudes of the chain deformation, calculated
according to eqn (7). Darker curves represent the model parameters optimized
with respect to the experimental shapes for a magnetic field intensity
B = 100.8 mT. Brighter curves were obtained by increasing the magnetic
energy scale W by a factor B1.42, which corresponds to an increased
magnetic field intensity of B B 216 mT (see ESI,† Fig. S1b), comparable with
the triangular experimental data points. Both, model curves and included
experimental data points, demonstrate that moderate variations of the
magnetic field intensities only slightly affect the observed deflection and
deformation amplitudes. The value of b necessary to perform the analysis
was determined from the M = 2 experimental data as b = 12.6 mm. For M Z 2
‘‘kinks’’ appear in the curves, which arise from a change in the type of
solution as illustrated by the insets: for each M Z 2 curve, left of the kink
the chain deformation shows nodes at the end points of the chain, i.e.
y(x1) C y(x2) C 0 (lower left inset); right from the kink, these outer nodes are
shifted to the inside of the chain (upper right inset). As seen from Fig. 7, the
solutions left of the kinks are not energetically preferred.
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dimensionalities, the elastic modulus of the surrounding matrix
could not be directly matched to the experimental system.

Actually, the amplitude of the chain oscillation increases
when the external field is higher and induces larger dipole
moments in the particles. This increases the tendency of the
magnetic moments to approach the head-to-tail configuration,
which in turn leads to a stronger deformation of the matrix. We
note that the relative amplitude of the buckling along the chain
is similar in the simulations (Fig. 9) and experiments (Fig. 2).
The matrix surrounding the chain follows the chain oscillation
with an amplitude that decreases over distance from the chain.
Deviations may be expected from the deformational far-field in
the experimental system due to the different dimensionalities
of the systems.

In the ESI† (Fig. S7) we show an experimental evidence for
the existence of a stiff polymer layer around the magnetic
particles. The sample was prepared at a concentration of
prepolymer mixture well below the percolation threshold, i.e.,
some cross-linking of the polymer took place in the sample but
no macroscopic gel was formed. When this cross-linking was
done under an applied magnetic field, the particle chains stayed
intact even after removal of the magnetic field (Fig. S7a, ESI†).
Hairpin or ‘‘S’’-shape morphologies were observed when these
chains were exposed to a magnetic field (Fig. S7b, ESI†), indicating
that they have a bending rigidity.50,51 Our interpretation of
this behavior is that a stiff gel layer connects the particles and
stabilizes the particle chains, even though no bulk gel is
formed. As the magnetic particles have a good affinity for
PDMS (e.g., the magnetic particles can be easily dispersed into
PDMS), we conjecture that there is an adsorbed layer of polymer
(i.e., PDMS prepolymer or cross-linker) on the surface of the
magnetic particles.67 Therefore, the gel layer on the particles is
denser and thus stiffer than in the bulk. Further study of the

stiff polymer layer and its effect on the buckling behavior is
under way.

Moreover, in Fig. S8 (ESI†) we show that the buckling
behavior of the magnetic chains can still be observed in the gel
when we increase the elastic modulus to 170 Pa (for this purpose,
carbonyl iron particles are used as magnetic filler particles).
Our studies on that stiffer sample provide further evidence that
the interaction between the magnetic particles and the polymer
matrix in their close vicinity can play an important role in the
magneto-elastic response of soft MRGs.

6 Conclusions

We have shown that paramagnetic chains in a soft polymer gel
can buckle in a perpendicular magnetic field. The buckling
morphology depends on the length of the chain, the strength of
the magnetic field and the modulus of the gel. Longer chains
form buckling structures with a higher number of half waves.
Higher strengths of the magnetic field and a lower modulus of
the gel matrix can lead to higher deformation amplitudes. The
deformation field in the surrounding gel matrix confirms that
the embedding polymer network is strongly coupled to the
paramagnetic chain. A minimal magneto-elastic coupling
model is developed to describe the morphological behavior of
the paramagnetic chains in the soft gel under a perpendicular
magnetic field. It shows that the chains deform in order to
decrease the magnetic energy. This is hindered by the simulta-
neous deformation of the gel matrix, which costs elastic energy.
Additionally, we have introduced a coarse-grained molecular
dynamics simulation model, which covers both, the magnetic
particles and the surrounding polymer mesh. In this model, the
buckling of the chains can only be observed when the surface
layer around the particles is assumed to be stiffer than the bulk
of the gel. This prevents the chains from breaking up into
columns oriented perpendicular to the initial chain direction or
into isolated particles. These findings support the picture that
the embedded magnetic chains themselves feature a certain
bending rigidity, possibly due to the existence of a stiff polymer
layer on the particle surfaces.

Since the magneto-elastic effect demonstrated and analyzed
in this paper is pronounced, reversible, and controllable, it may

Fig. 9 Detailed view of the local deformations in the polymer mesh around
the magnetic particles with a layer of increased stiffness (top) and without
one (bottom) in the immediate vicinity of the particle surfaces. The external
magnetic field of strength 216 mT is applied in the vertical direction. When
the boundary layer is assumed to be stiffer than the bulk (top), the buckling
effect, as observed in the experiments, occurs. When the layer around the
particles is soft (bottom), neighboring particles either form tight columns
parallel to the field, or separate in the direction perpendicular to the field.

Fig. 10 Buckling chain of magnetic particles and the surrounding polymer
mesh for an external field of magnitude 216 mT pointing along the vertical
direction. In this image, roughly one quarter of the full simulation area is
shown. The surrounding matrix follows the chain oscillation with an
amplitude that decreases over distance from the chain.
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be useful for designing micro-devices, e.g. micro-valves and
pumps for microfluidic control.68 As the morphologies of the
buckling paramagnetic chains are correlated with the modulus
of the gel matrix, we may use them as mechanical probes for
soft gels (similarly to active microrheology techniques).45 Moreover,
our study may help to understand the physical interactions
between the magnetic chains and the surrounding cytoskeleton
network in magnetotactic bacteria.46 In our future study we will
focus on how the interfacial coupling between the magnetic
particles and the polymer network influences the local magneto-
elastic coupling effect.
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24 T. Borbáth, S. Günther, D. Y. Borin, T. Gundermann and
S. Odenbach, Smart Mater. Struct., 2012, 21, 105018.

25 X. C. Guan, X. F. Dong and J. P. Ou, J. Magn. Magn. Mater.,
2008, 320, 158–163.

26 K. Danas, S. V. Kankanala and N. Triantafyllidis, J. Mech.
Phys. Solids, 2012, 60, 120–138.

27 A. Y. Zubarev, Soft Matter, 2013, 9, 4985–4992.
28 E. Jarkova, H. Pleiner, H. W. Müller and H. R. Brand, Phys.

Rev. E: Stat., Nonlinear, Soft Matter Phys., 2003, 68, 041706.
29 S. Bohlius, H. R. Brand and H. Pleiner, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2004, 70, 061411.
30 R. Weeber, S. Kantorovich and C. Holm, Soft Matter, 2012, 8,

9923–9932.
31 R. Weeber, S. Kantorovich and C. Holm, J. Magn. Magn.

Mater., 2015, 383, 262.
32 A. V. Ryzhkov, P. V. Melenev, C. Holm and Y. L. Raikher,

J. Magn. Magn. Mater., 2015, 383, 277.
33 A. M. Menzel, J. Chem. Phys., 2014, 141, 194907.
34 D. Ivaneyko, V. Toshchevikov, M. Saphiannikova and

G. Heinrich, Soft Matter, 2014, 10, 2213–2225.
35 G. Pessot, R. Weeber, C. Holm, H. Löwen and A. M. Menzel,
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1 Supplementary movies

Movie S1 Typical 3D morphology of paramagnetic chains in a soft gel in the absence
of a magnetic field. The elastic modulus of the gel is 0.78± 0.22 Pa and the scale bar is
300 µm.

Movie S2 Typical 3D morphology of paramagnetic chains in a soft gel under a perpendic-
ular magnetic field (B = 216.4±1.1 mT). The elastic modulus of the gel is 0.78±0.22 Pa
and the scale bar is 300 µm.
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2 Supplementary information for experiments

2.1 Paramagnetic particles

According to the manufacturer (microParticles GmbH), the paramagnetic particles were
fabricated based on porous polystyrene particles. Within the pores of the polystyrene par-
ticles, nanoparticulate iron oxide was distributed, rendering the particles superparamag-
netic. To prevent iron oxide leaching, the paramagnetic particles were covered with thin
polymer layers which also held the fluorophores. The diameter of the paramagnetic parti-
cles from the scanning electron microscopy (SEM) images (see Fig. S1a) is 1.4±0.2 µm.
We also measured the length of linear particle chains in polydimethylsiloxane using laser
scanning confocal microscopy (LSCM). Dividing the length of the chains by the number
of particles in the chains we got a diameter of 1.48±0.13 µm (average for 20 chains). We
used the latter value for calibration and calculation in this paper.

Figure S1 (a) Scanning electron microscopy (SEM) image of the paramagnetic particles. The
scale bar is 5 µm. (b) Magnetization curve of the paramagnetic particles. The magnetic field H
was increased from 0 kA/m to 900 kA/m and then decreased to 0 kA/m, and the magnetization M
showed no hysteresis, as indicated by the red arrows.

The magnetization curve of the paramagnetic particles was measured by a vibrat-
ing sample magnetometer (VSM, Lake Shore 7407). The magnetization of the parti-
cles showed no hysteresis when the external magnetic field was increased and decreased,
demonstrating the superparamagnetic property (Fig. S1b).

2.2 Calibrating the magnetic properties of the paramagnetic parti-
cles

A spherical colloidal particle moving in a viscous fluid with a relative velocity v is subject
to a frictional force (Stokes’ drag)

Fd =−6πηRv, (S1)

where R is the radius of the particle and η is the dynamic viscosity of the fluid.

2
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Figure S2 Histogram of velocity of paramagnetic particles moving in a viscous liquid. The viscos-
ity of the liquid is 0.61±0.02 Pas. The magnetic field strength is 32.7±0.2 mT and the magnetic
gradient is 3.63±0.02×10−5 mT/µm. Using a density of 1.7 g/cm3, the movement of the parti-
cles, the magnetic gradient, and the magnetization curve can be correlated.S1,S2

Under a magnetic field B, the magnetic particles move along the magnetic field gradi-
ent. The magnetic force Fm acting on a paramagnetic particle isS1,S2

Fm = m ·∇B, (S2)

where m is the induced magnetic dipole moment of the paramagnetic particle. In the
steady state, the magnetic force is balanced by Stokes’ drag, thus

6πηRv = m ·∇B. (S3)

From experiments, the left-hand side of Eq. (S3) and ∇B can be measured directly. We
dispersed the paramagnetic particles into a viscous liquid with a viscosity of 0.61±
0.02 Pas. The dispersion was added into a sample cell with a thickness of 160 µm.
Then the sample cell was carefully sealed in order to avoid drift due to large-scale
flow of the liquid. We used a magnetic field of 32.7± 0.2 mT with a gradient of
3.63± 0.02× 10−5 mT/µm to induce flow of the paramagnetic particles. The magnetic
field was measured by a Lake Shore Model 425 Gaussmeter with a transverse probe. The
movement of the particles (far from the walls of the sample cell) was recorded using
LSCM. The magnitude of the magnetic moment m can be calculated via m = 4πR3ρM/3,
where M can be obtained from the magnetization curve (Fig. S1b) and ρ is the density of
the paramagnetic particles. Using ρ = 1.7 g/cm3, we find that Eq. (S3) is satisfied. This
density value is in agreement with the one provided by the manufacturer (1.5–2 g/cm3).

In our study the paramagnetic particles are not ideally monodispersed and the induced
magnetic moment is not ideally identical for every particle. For example, the velocity
of the paramagnetic particles moving in a viscous liquid under a magnetic gradient has a
distribution with∼ 20% deviation (Fig. S2). According to Eq. (S3), the magnetic moment
of the particles should have a similar distribution. For simplification, we do not consider
this distribution in the modeling and simulation.

3

Paper III. Soft Matter 12, 228-237 (2016) 79



2.3 Determining the elastic modulus of the soft gels

Figure S3 (a) Shear elastic modulus (G′) of the gels as a function of angular frequency. The gels
were fabricated with different concentrations (c) of the prepolymer mixture as indicated for the
different sets of data points. (b) The low-frequency G′ of the gels plotted as a function of c. The
solid curve is the best fit of Eq. (S4) to the experimental data.

The rheological experiments were performed in a strain-controlled rheometer (ARES-
LS, Rheometric Scientific Inc., Piscataway, NJ, USA) equipped with a Couette cell at
room temperature. The elastic modulus (G′) shows a plateau at low frequencies for the
soft gels (Fig. S3a), reflecting the formation of a percolating network. The plateau mod-
ulus increases with increasing concentration of the prepolymer mixture (c) following a
power lawS3

G′ = G′0(c− c?)t , (S4)

where G′0 is a prefactor, t is the critical exponent, and c? is the percolation concentration.
From this power law it is evident that the elastic modulus of the soft gels becomes very
sensitive to the concentration of the prepolymer mixture when the concentration of the
prepolymer mixture is close to c?.

As a result, we cannot directly use the elastic modulus obtained from macroscopic
rheological measurements to characterize our soft gels in the sample cells (∼160 µm
thick), because a little change of the concentration of the prepolymer mixture during
preparation of the gels can lead to a significant difference of the elastic modulus. In
experiment, the concentration of the prepolymer mixture in the sample cells is difficult
to control precisely, because the concentration can change slightly if some prepolymer
molecules are adsorbed to the walls of the cell, to the pipette tips, or to the paramagnetic
particles.

In order to solve this problem, we measured the elastic modulus of the soft gels directly
in the sample cells (containing the paramagnetic chains) by passive microrheology (i.e.,
particle tracking). About 15 single particles were used as the mechanical probes, and a
fast camera (Photron, FASTCAM SA1) and a microscope (Leica DMI6000B) were used
to detect the thermal fluctuations of the particles.S4,S5 Fig. S4a shows the mean-square
displacement (MSD) of the particles in the gels as a function of lag time. At long lag times
the MSD levels off, indicating that the particles are confined in a network. The moduli
of the gels can be calculated from the MSD of the particles based on the generalized

4
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Figure S4 Probing the viscoelastic properties of the gels in the sample cells (containing the para-
magnetic chains). (a) Mean-square displacement (MSD) of the particles in the gels as a function
of lag time. The concentrations of the prepolymer mixture for the four samples A–D are 2.78 wt%,
2.77 wt%, 2.76 wt%, and 2.76 wt%, respectively. The slight changes of concentration can lead
to significant differences in the MSD, because the concentration used here is close to the per-
colation threshold (c? = 2.74%, see Fig. S3b).S3 It is the method of passive microrheology that
makes it possible to measure the viscoelastic properties of the soft gels (containing the paramag-
netic chains) directly within the sample cells. (b) Elastic modulus (G′) calculated from the MSD.
(c) Elastic modulus (G′) and loss modulus (G′′) plotted as functions of angular frequency (ω) for
sample C. At low frequencies, the elastic character dominates.

Stokes-Einstein relation (GSER)S4,S6

G∗(ω) =
kBT

πR(iω)Fu{MSD(t)} , (S5)

where G∗(ω) is the complex shear modulus and Fu{MSD(t)} is the unilateral
Fourier transform (F{ f (t)} = ∫ ∞

0 e−iωτ f (τ)dτ). Using the algorithm from Crocker and
Weeks,S4,S5 we calculated the shear moduli (Fig. S4b). Fig. S4c shows that at low fre-
quencies (corresponding to long time scales) the gel is mainly elastic. In the main article
we use the elastic modulus of the gels obtained from passive microrheology to character-
ize the gels.

5
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2.4 Magnetic field of the Halbach magnetic array

We used permanent magnets to provide a homogeneous magnetic field.S7 The NdFeB
permanent magnets were purchased from AR.ON GmbH. According to the manufacturer
they have a remanence of 1.32 T. The magnets were arranged as shown in Fig. 1a. The
magnets had dimensions of 8×8×15 mm3 and 14×14×15 mm3 for the inner and outer
rings, respectively. The magnetic field at the center of this magnetic array was homoge-
neous (Fig. S5). This magnetic array was built around the objective of our home-built
LSCM and it could be rotated by a motor. We put the samples in the middle of this array
and used LSCM to observe the samples under the magnetic field. The typical observation
area was in the central 2 mm2, where the homogeneity of the magnetic field was ∼ 2 000
ppm (Fig. S5b).

Figure S5 Comparison of measured and simulated magnetic flux density in the Halbach magnetic
array. The arrangement of the 32 permanent magnets is shown in Fig. 1a. (a) Magnitude B of the
magnetic flux density along the x-axis. The red solid curve shows simulation results using Comsol
software. The solid black points are experimental data (measured by a Lake Shore Model 425
Gaussmeter with a transverse probe). The data for x around 0 are shown in (b). The homogeneity
in the central 2 mm2 is ∼ 2 000 ppm. (c) Simulated magnetic field in the magnetic array. The
magnetic flux density is shown by color map and the direction of the magnetic field is shown by
red arrows.

The magnetic field of this magnetic array was simulated in Comsol Multiphysics
(http://www.comsol.com). The parameters for the simulation were the same as in the
experiments, such as the positions, the dimensions, and the remanence (1.32 T) of the
magnets. The permanent magnets were modeled using Ampère’s law. The influence of

6

82 Chapter 2. Peer-reviewed publications



the housing (made of Aluminum) of the magnets was not considered. A detailed descrip-
tion of the simulation can be found in the model library of Comsol Multiphysics, “Static
Field Modeling of a Halbach Rotor”.

Figure S6 Magnetic field of the four-magnet Halbach array. (a) By changing the separation be-
tween the 4 magnets, the magnetic flux density at the center of the magnetic array can be changed.
The red circle points are obtained from simulation using Comsol software, and the black square
points are measured by a Lake Shore Model 425 Gaussmeter with a transverse probe. The ho-
mogeneity in the central 2 mm2 is ∼ 4000 ppm. (b) Simulated magnetic field in the four-magnet
array. The magnetic flux density is shown by color map and the direction of the magnetic field is
shown by red arrows.

In some experiments we needed to change the magnetic field strength. This was re-
alized by using a four-magnet Halbach array (Fig. S6, the magnets had dimensions of
14× 14× 15 mm3). By changing the distance between the magnets, the magnetic flux
density in the center of this array could be changed from 0 mT to 101 mT. The homo-
geneity of this array in the central 2 mm2 was ∼ 4000 ppm.

2.5 Bending rigidity of the paramagnetic particle chains

Here we provide experimental evidence that the paramagnetic particle chains already by
themselves (i.e. without the embedding polymer matrix) feature a bending rigidity. For
this purpose, instead of preparing a percolating polymer network (gel), we prepared a
sol. We decreased the concentration of the prepolymer mixture to c?/2 (c? is the crit-
ical concentration at which a percolating network can be formed, see Fig. S3b). The
prepolymer mixture reacted and formed a sol after the catalyst was added. During the
reaction a magnetic field of 100.8 mT was applied, thus the magnetic particles in the sol
aligned into chains. If the particles had not been connected by the polymer, the linear
particle chains would not have survived after the magnetic field was removed because of
thermal agitation. However, we found that the linear particle chains were stable in the
sol even for several days (Fig. S7a). Once more applying a magnetic field (18.7 mT)
most of the permanent paramagnetic chains in the sol aligned along the magnetic field
direction (Fig. S7b). However, some of the chains bent and showed hairpin or “S”-shape
morphologies (marked by the red arrows in Fig. S7b), indicating that the chains had a
bending rigidity.S8

7
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Figure S7 Typical chain morphologies in the sol (a) in the absence of a magnetic field and (b)
under a magnetic field. The magnetic field of 18.7 mT was applied horizontally. Under the mag-
netic field most of the paramagnetic chains aligned along the magnetic field direction. Some of the
chains bent and showed hairpin or “S”-shape morphologies (marked by the red arrows), indicating
that they have a bending rigidity.S8 The scale bars are 50 µm.

We conjecture that some prepolymer molecules in the solution were adsorbed onto
the surfaces of the paramagnetic particles. When the prepolymer cross-linked, a poly-
mer layer on the surfaces of the particles was formed and connected the particles. This
polymer layer contributed to the bending rigidity. Only when the concentration of the pre-
polymer mixture is higher than c?, a gel can be formed in the bulk. Apparently, already
below this concentration, a connecting polymer layer can be formed on the surfaces of the
paramagnetic particles. This suggests that a thin layer of polymer with a higher modulus
compared to the bulk should be considered to understand the buckling behavior of the
paramagnetic chains in the soft gels.

2.6 Buckling of magnetic particles in a “stiff” gel

In the main article, very soft gels (<1.5 Pa) were used as a matrix. If a stiffer gel
was used, the paramagnetic particle chains could not deform the gel significantly under
the magnetic field of 216 mT (maximum field in our set-up). Here we used carbonyl
iron (CI, CC grade, BASF, Germany, d50 value=3.8-5.3 µm) as magnetic particles in
order to increase the magnetic force between the magnetic particles. First, the saturation
of magnetization of CI (∼ 250 Am2/kg) is significantly larger than that of our otherwise
used paramagnetic particles (∼ 20 Am2/kg); second, the density of CI (∼ 8×103 kg/m3)
is higher than that of our paramagnetic particles (∼ 1.7×103 kg/m3); last, the size of CI
is about 3 times larger. According to m = 4πR3ρM/3 (see Section 2.2), the magnetic
moment can be 103 times larger compared to our paramagnetic case in the main article.
As a result, even in a relatively “stiff” gel, the CI magnetic chains can deform the gel
significantly. As shown in Fig. S8, in the gel with an elastic modulus of 170 Pa, the CI
chains can buckle when a magnetic field of 100.8 mT is applied.

However, promoted by the polydispersity of the CI particles, the CI chains are not as
smooth as the chains formed by the monodisperse paramagnetic particles (see Figs. 1 and
2 in the main article for comparison). In addition, we also observed fractures in some CI
chains (Fig. S8c) probably due to the polydispersity of the particles. However, the chains

8
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Figure S8 Magnetic chains formed by carbonyl iron particles in a gel with an elastic modulus of
170 Pa. (a) Without magnetic field, (b, c) under a magnetic field of 100.8 mT along the vertical
direction. The inset in (c) shows an enlarged image of the fracture of the magnetic chain. The
scale bars are 50 µm. These images were obtained using a 10× objective (NA=0.28, M Plan Apo)
which collected the reflection light from the carbonyl iron particles.

do not break up into structures as shown in Fig. 9 of the main article (lower image),
suggesting that there is still a relatively stiff polymer layer around the CI particles.

9
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3 Supplementary information concerning the modeling

3.1 Magnetic interactions within the chain

In the following, we derive Eqs. (1) and (2) of the main article. We start from two neigh-
boring particles on the chain. According to the assumptions made in the main article,
each of them carries a magnetic moment m oriented in y-direction. They interact via the
dipole-dipole magnetic interaction given by

Vdd =
µ0

4π

[
m ·m

r3 − 3(m · r)(m · r)
r5

]
, (S6)

where r is the vector joining the centers of the particles, r = |r|, and µ0 is the vacuum
magnetic permeability. Since the particles on the chain are experimentally observed to
remain in contact, we have r = d, with d the particle diameter. Furthermore, we ignore
the first term in the square brackets because it is constant under the given assumptions.
Indicating by α the angle between r and m, we obtain

Vdd ∼ −
3µ0m2

4πd3 cos2 α. (S7)

Since m is oriented in the y-direction, ψ = π/2−α is the angle between r and the x-
axis. Skipping another constant term resulting from cos2 α = 1− sin2 α , the non-constant
part of the dipole-dipole interaction can thus be rewritten as

Vdd ∼ εm sin2(ψ−π/2), with εm =
3µ0m2

4πd3 . (S8)

For an undeformed infinite straight chain oriented along the x-axis in the above set-up,
the resulting expression for the total dipolar magnetic interaction energy per particle along
the whole chain then reads

V chain
dd ∼ εm

∞

∑
n=1

1
n3 = εmζ (3), (S9)

where ζ is the Riemann Zeta function and ζ (3) ' 1.202. Here, εm sets the scale of the
nearest-neighbor dipolar interaction. In our minimal model the correction described by
the factor ζ (3) ' 1.202 due to higher-order neighbors is negligible. Since the contour
lines of the magnetic chains preserve a smooth shape under the observed deformations,
without any kinks, and as the chains do not fold back onto themselves, we thus confine
ourselves to nearest-neighbor interactions.

For a large number of particles, the quantity εm sets the magnetic interaction energy per
particle. Moreover, the total magnetic interaction energy scales approximately linearly
with the number of particles and chain length.

We now switch to a continuum picture by specifying the line energy density along
the magnetic chain. In our coordinate system, the angle ψ that the connecting vec-
tor r between two neighboring particles forms with the x-axis is locally given by ψ ∼

10
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arctan [y′(x)], where y′(x) = dy/dx. To obtain the resulting magnetic energy of the whole
magnetic chain, we need to integrate the energy line density along the contour line. For
simplicity, we transform this line integral to an integration along the x-axis. If we param-
eterize the contour line by the parameter s, the line element ds along the chain can be
expressed as ds =

√
1+ y′(x)2 dx. Therefore, the magnetic energy becomes

Emagn[y] =W
∫ x2

x1

sin2
{

arctan
[
y′(x)

]
− π

2

}√
1+ y′(x)2 dx

=W
∫ x2

x1

1√
1+ y′(x)2

dx, (S10)

where

W =
εm

d
=

3µ0m2

4πd4 (S11)

is the magnetic energy per unit length and x1,x2 are the x-coordinates of the end points of
the chain.

3.2 Elastic bending energy

Next, we briefly sketch the derivation of the elastic bending energy in Eq. (3) of the main
article. For this purpose, we consider a parameterization R(s) of the contour line of the
magnetic chain, where the positions R mark the points on the contour line and s ∈ [s1,s2]
with s1 and s2 labeling the end points of the chain. On this basis, the elastic bending
energy is defined asS9

Ebend =Cb

∫ s2

s1

∣∣∣∣
d2R(s)

ds2

∣∣∣∣
2

ds. (S12)

Using the parameterization R = (x,y(x)) and ds =
√

1+ y′(x)2 dx, we obtain

dR
ds

=
(

1+ y′(x)2
)− 1

2
(

1
y′(x)

)
(S13)

and
d2R
ds2 = y′′(x)

(
1+ y′(x)2

)−2
(
−y′(x)

1

)
. (S14)

From this last expression, we obtain Eq. (3) in the main article when we again transform
the line element ds to Cartesian coordinates, ds =

√
1+ y′(x)2 dx.

3.3 Elastic displacement energy

Finally, we motivate the expression for the elastic displacement energy in Eq. (4) of the
main article. The part [y(x)]2 corresponds to a lowest order term in the displacement y(x).
We weight each of the two displacement factors y(x) by the amount of chain material
displaced per integration interval dx, given by the length of the chain per integration

11
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Figure S9 Experimentally observed rotation angles of magnetic chains in a gel of shear modulus
G′ = 0.25 Pa under a perpendicular magnetic field of magnitude B = 18.7 mT. To first approxi-
mation, a rigid rotation of straight chains occurs at small enough rotation angles. This is depicted,
for instance, in Fig. 1c of the main article for small angles of the magnetic field.

interval dx, i.e. ds/dx =
√

1+ y′(x)2. This leads to [y(x)]2
[
1+ y′(x)2]. In addition to

that, we have another factor
√

1+ y′(x)2, again from transforming the line element ds
of the integration to Cartesian coordinates, ds =

√
1+ y′(x)2 dx. In total, we obtain the

expression in Eq. (4) of the main article.

We explain in the following why the experimental observations suggest this form as a
lowest order term. In particular, we note that the experimental investigations suggest the
form [y(x)]2 rather than one containing the first derivative [y′(x)]2. For this purpose, we
consider the case of straight chains (M = 0) undergoing small rotations in a perpendicular
magnetic field. This situation can be simply parameterized by y(x) = Sx, where S = tanψ
and ψ as introduced above giving the rotation angle. Furthermore Ebend = 0.

For y(x) = Sx, Emagn scales linearly with the chain length L. The same would apply for

an energetic contribution∼ ∫ x2
x1
[y′(x)]2

[
1+ y′(x)2]3/2 dx. Therefore, the latter expression

inevitably leads to a rotation angle ψ that is independent of the chain length L. However,
this contradicts the experimental results. In Fig. S9 we plot the rotation angle ψ as a
function of chain length L measured in a gel of shear modulus G′ = 0.25 Pa exposed to
a perpendicular magnetic field of magnitude B = 18.7 mT. There is a clear dependency
of the rotation angle on the chain length L. The energetic expression Edispl in Eq. (4)
of the main article for rotations of straight chains y(x) = Sx scales as Edispl ∼ L3 and
thus leads to disproportionally higher energetic penalties for longer chains, reflecting the
experimentally observed smaller rotation angles.

3.4 Discussion of resulting chain shapes

Now that our total model energy Etot is set as the sum of Eqs. (1), (3), and (4) in the
main article, a standard route to determine the shape y(x) of the chain would be to find
the extrema of the functional Etot [y(x)] with respect to the function y(x). For this purpose,

12
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one calculates the functional derivative of Etot [y(x)] with respect to y(x) and equates it
with zero. The procedure is well known from the famous brachistochrone problem.S10

There one wishes to find the shape of a curve linking two end points such that a body
moving between them under gravity passes the distance in the least possible amount of
time.

However, there is a fundamental difference compared to the brachistochrone problem.
While calculating the functional derivative, boundary terms appear that explicitly include
contributions from the end points of the chain or trajectory y(x). Technically, they result
from partial integration. In the brachistochrone problem, one has sufficient information
to handle these boundary terms: by construction of the problem, one knows that the end
points are fixed. Similarly, in other problems of infinitely extended elastic struts of pe-
riodic, periodically modulated, or localized deformations,S11–S14 one can use the period-
icity or localization to argue in favor of an evanescent influence of the boundary terms.
This is very different from our present case, where the deflection encompasses the whole
finite chain and in particular its end points. Unfortunately, acquiring sufficient knowledge
of the associated boundary conditions would imply solving the whole complex three-
dimensional nonlinear elasticity and magnetization problem, which is beyond the present
scope and in fact was the reason to project to our reduced minimal model.

For completeness, however, we perform some additional variational analysis of our
energy functional. We concentrate on possible solutions in the bulk that could be observed
if boundary effects were absent (which is not the case for our experimentally investigated
finitely-sized objects). Then, neglecting the boundary terms, the functional derivatives of
Eqs. (1), (3), and (4) are calculated as follows (the dependencies of y(x) and its derivatives
on x is omitted for brevity on the right-hand sides):

δEmagn

δy(x)
=Wy′′

(
1−2y′2

)(
1+ y′2

)− 5
2
, (S15)

δEbend

δy(x)
=Cb

[
5y′′3

(
6y′2−1

)
−20y′y′′y′′′

(
1+ y′2

)
+2y′′′′

(
1+ y′2

)2
](

1+ y′2
)− 9

2
,

(S16)
and

δEdispl

δy(x)
=Cd

[
2y−2yy′2−4yy′4−3y2y′′−6y2y′2y′′

](
1+ y′2

)− 1
2
. (S17)

Together, we obtain a nonlinear fourth-order differential equation for y(x):

δEtot

δy(x)
=
(

1+ y′2
)− 9

2

[
−
(

1+ y′2
)

y′′
(

W
(
−1+ y′2 +2y′4

)
+20Cby′y′′′

)

−3Cdy2
(

1+ y′2
)4(

1+2y′2
)

y′′+5Cb

(
−1+6y′2

)
y′′3

−2Cdy
(

1+ y′2
)5(
−1+2y′2

)
+2Cb

(
1+ y′2

)2
y′′′′
]
= 0. (S18)

Eq. (S18) can in principle be solved numerically by integrating it outward from the
center of the chain at x = 0. For this purpose, a sufficient amount of “initial conditions”

13

Paper III. Soft Matter 12, 228-237 (2016) 89



Figure S10 Numerical solutions of Eq. (S18) for different imposed input conditions. In all cases
we concentrate on uneven centro-symmetric solutions and thus prescribe y(0) = y′′(0) = 0. As
remaining necessary conditions, we specify the position of the first maximum: (a) y′(0.5) = 0,
y(0.5) = 0.205; (b) y′(0.5) = 0, y(0.5) = 0.2; (c) y′(0.3) = 0, y(0.3) = 0.16; (d) y′(0.5) = 0,
y(0.5) = 0.1.

(four in our case) for y(x) and its derivatives needs to be provided. We concentrate on
uneven centro-symmetric solutions, which directly prescribes two conditions: y(0) = 0
and y′′(0) = 0. As was found before in a different context,S11 the solution is extremely
sensitive to the two remaining imposed conditions. For illustration, we depict four ex-
amples in Fig. S10. There, we provide slightly varying positions of the first maximum
[y′(x) = 0] as the remaining two necessary conditions. Numerical integration shows that
little variations in these conditions lead to qualitatively different oscillatory solutions.S15

Altogether, we may conclude that the solutions resulting from Eq. (S18) sensitively
depend on the input conditions. As noted above, we do not have access to the appropriate
conditions applying at the significantly displaced end points of the embedded chain. The
strategy that we resorted to is therefore to use as an input directly the shapes of the chains
suggested by the experiments. We found good representations of the experimental obser-
vations using the polynomial form suggested by Eq. (5) in the main article. In particular,
with regard to the pronounced displacements of the chain ends, this choice is preferred to,
for instance, a sinusoidal ansatz. Then, instead of solving Eq. (S18) explicitly, we mini-
mize the energy functional Etot [y(x)] with respect to the remaining degrees of freedom of
the chain deformation (M, S, x1 and x2 in the main article). Thus, even if we have used
an ansatz for the chain deformation, this remains a nonlinear approach as we evaluate the
nonlinear contributions to the energy functional Etot [y(x)].

3.5 Oscillatory solutions in the linear regime

In the previous part, we have demonstrated that various complex solutions can result
from the nonlinear nature of Eq. (S18). Here, we restrict ourselves to the situation in
the inside of the magnetic chains for small amounts of deformation, i.e. at the onset of
deformation. For this purpose, a linear stability analysis is performed by considering a
linearized version of Eq. (S18). As a result, we obtain a condition describing the onset of
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a linear deformational instability

Wy′′(x)+2Cb y′′′′(x)+2Cd y(x) = 0. (S19)

This equation has solutions of the kind y(x)∼ exp(±iqx), with wavenumber

q2 =
W ±

√
W 2−16CbCd

4Cb
. (S20)

The condition for the solutions to be purely oscillatory is W 2/16CbCd > 1 and defines
an onset for this kind of deformation. It sets a threshold magnitude for the strength of
the external magnetic field. Thus, for a perfectly oriented chain of identical particles in a
spatially homogeneous elastic matrix, this linear stability analysis predicts a critical mag-
netic field amplitude above which an undulatory instability would arise in the inside of
the chain. Our results are in agreement with the experimental observation of the wrinkles
at onset in Fig. 1c and the final oscillatory shape in the inner part of the longer chains in
Fig. 2a of the main article.
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4 Technical description of the coarse-grained molecular
dynamics simulations

4.1 Magnetic particles

In the molecular dynamics simulations, the centers of the magnetic particles and the nodes
of the polymer mesh are treated as point particles in two-dimensional space. The mag-
netic particles additionally have one rotational degree of freedom, namely around the axis
perpendicular to the model plane. As each magnetic particle is superparamagnetic, its
magnetic moment is not affected by a rotation of the particle. Rather, the magnetic mo-
ment is determined by the magnetic field. Hence, we place the magnetic moment not
on the rotating center of the particle, but rather on a separate virtual site which does not
rotate. It is placed at the same location as the center of the magnetic particle. Virtual
sites are particles, whose position is not determined by integrating an equation of motion,
rather their position is calculated from the position and orientation of other particles. In
this way, they allow us to introduce rigid extended bodies into a molecular dynamics sim-
ulation.S16 Forces acting on any constituent of such a rigid body are transferred back to
its center of mass, and thus included in the equation of motion of the rigid body.

Pairs of magnetic particles interact by the dipole-dipole interaction, Eq. (S6). The
dipole moment of the particles is assumed to be determined entirely by the external
magnetic field, and its magnitude is deduced from the experimental magnetization curve
(Fig. S1b). This assumption is valid as long as the external field is much stronger than
the field created by the other magnetic particles. In other cases, a self-consistent ap-
proach has to be used to determine the local magnetic fields. In addition to the dipole-
dipole interaction, the magnetic particles interact via a truncated and shifted, purely re-
pulsive Lennard-Jones potential mimicking a rigid-sphere interaction. We use the Weeks-
Chandler-Andersen potentialS17 in the form

VWCA

( r
σ

)
=





4ε
[( r

σ
)−12−

( r
σ
)−6

+ 1
4

]
for r ≤ rc,

0 otherwise,
(S21)

where r is the distance between the particle centers, ε = 1000 denotes the energy scale of
the potential, and rc = 21/6σ is the cut-off distance, for which we use the experimental
diameter of 1.48 µm. The parameter σ denotes the root of the non-shifted potential and
is used in the visualizations in Figs. 9 and 10.

4.2 Polymer mesh

The polymer matrix is modeled as a bead-spring network based on a hexagonal lattice.
We use a lattice constant a of one third of the experimentally observed particle diameter,
i.e., a ≈ 0.49 µm. Along the initial chain direction, we use 601 mesh points, along the
perpendicular direction 301. The mesh points on the boundary of the system are fixed, all
other mesh points can move in the x- and y-directions. Adjacent mesh points interact via
a non-linear elastic spring based on the FENE-potential.S18 Here, we use a variant with
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different cut-off values for compression and expansion. It is given by

V (r) = − 1
2 K (r0− rmin)

2 ln
[

1−
(

r−r0
r0−rmin

)2
]

for r < r0,

V (r) = − 1
2 K (rmax− r0)

2 ln
[

1−
(

r−r0
rmax−r0

)2
]

for r > r0.

(S22)

In these expressions, K = 45 controls the scale of the potential, the equilibrium distance
r0 = a is equal to the lattice constant, while the minimum and maximum elongations, at
which the potential diverges, are rmin = 0.1a and rmax = 3a, respectively. The potential,
as well as its second derivative, are continuous at the equilibrium extension r = r0. In
order to prevent any volume element from shrinking to zero, angular potentials are used
on all pairs of neighboring springs attached to the same mesh site, encompassing an an-
gle of 60◦ in the unstrained mesh. The potential has the same functional form as the
distance-based potential in Eq. (S22), but with the values K = 100, r0 = π/3, rmin = 0,
and rmax = π . In the simulations both potentials are tabulated at 100000 equally spaced
intervals between the minimum and maximum extensions. Between those points, linear
interpolation is used.

4.3 Particle-mesh coupling and boundary layer

The mesh spans the entire simulation area, including the area covered by the magnetic
particles. In order to couple the polymer mesh to both, the translational and rotational
motion of a magnetic particle, the seven mesh sites within the area of each magnetic par-
ticle are treated as virtual sites, rigidly following the motion of the magnetic particle. In
other words, the mesh sites within the particle and the center of the magnetic particle
form a rigid body. This additionally prevents a distortion of the gel matrix in the area
occupied by the magnetic particles. Two variants of gel boundary layer around the parti-
cles are studied (Fig. 9 in the main article). In the case of a soft boundary layer, the mesh
springs emerging from the mesh sites rigidly connected to the particle, are modeled as in
Eq. (S22) with the same parameters as for the bulk. In the case of a stiff boundary layer, a
potential is used which is stiffer by three orders of magnitude. The following parameters
are used in this case: K = 45000, rmin =−2a, and rmax = 4a.

4.4 Equation of motion and integration

The simulations are performed in the canonical ensemble at a temperature of 300 K. All
particles except for the virtual sites are propagated according to a Langevin equation. For
any component in a Cartesian coordinate system, it is given by

mpv̇(t) =−γv(t)+F +Fr, (S23)

where mp denotes the mass of the particle, v its velocity, F is the force due to the in-
teraction with other particles, Fr denotes the random thermal noise, and γ is the friction
coefficient. To maintain a temperature T , the thermal noise has to have a mean of zero
and a variance of

〈F2
r 〉= 2kBT γ, (S24)
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where kBT denotes the thermal energy. For the rotational degree of freedom of each
magnetic particle, the same equation of motion is used, but mass, velocity, and forces are
replaced by moment of inertia, angular velocity, and torques, respectively. The friction
coefficient, the thermal energy, and the mass of the mesh sites are all chosen to be unity,
whereas the mass and rotational inertia of the centers of the magnetic particles are both
100. This slows down the relaxation time of the magnetic particles versus that of the
polymer mesh and is helpful in stabilizing the simulation. The Langevin equation is
integrated using a Velocity Verlet integrator. For the simulations with a stiff boundary
layer, the time step is dt = 0.001, for a soft boundary layer it is dt = 0.00004. The
simulations take approximately 100000 time steps to converge.

18
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Tailoring superelasticity of soft magnetic materials
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Embedding magnetic colloidal particles in an elastic polymer matrix leads to smart soft materials

that can reversibly be addressed from outside by external magnetic fields. We discover a

pronounced nonlinear superelastic stress-strain behavior of such materials using numerical simula-

tions. This behavior results from a combination of two stress-induced mechanisms: a detachment

mechanism of embedded particle aggregates and a reorientation mechanism of magnetic moments.

The superelastic regime can be reversibly tuned or even be switched on and off by external

magnetic fields and thus be tailored during operation. Similarities to the superelastic behavior of

shape-memory alloys suggest analogous applications, with the additional benefit of reversible

switchability and a higher biocompatibility of soft materials. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4934698]

The term “superelasticity” expresses the capability of

certain materials to perform huge elastic deformations that

are completely reversible.1,2 Initially, it was introduced in

the context of shape-memory alloys.3–5 These metallic mate-

rials can perform large recoverable deformations due to

stress-induced phase transitions. A transition to a more elon-

gated lattice structure accommodates an externally imposed

extension. Typically, this transition shows up as a pro-

nounced “plateau-like” regime on the corresponding stress-

strain curve. On this plateau, the samples are heterogeneous

with domains of already transitioned material. Then, only

relatively small additional stress induces a huge additional

deformation. Smart material properties are observed:6–9

upon stress release, shape-memory alloys can reversibly

return to their initial state. They self-reliantly adapt their

appearance to changed environmental conditions.

In the present letter, we demonstrate that an analogous

phenomenological behavior can be realized for a very differ-

ent class of materials, exploiting different underlying mecha-

nisms. Moreover, we show that during operation the

behavior can be reversibly tailored from outside by external

magnetic fields. All of these are achieved by employing soft

magnetic gels as working materials: colloidal magnetic par-

ticles embedded in a possibly swollen elastic polymer ma-

trix.10 Similar to magnetic fluids,11–18 magnetic gels allow to

reversibly adjust their material properties by external mag-

netic fields. In this way, switching the elastic properties19–23

offers a route to construct readily tunable dampers24 or

vibration absorbers,25 while the possibility to switch the

shape19,26–28 allows application as soft actuators.29–31

Here, we show that magnetic gels due to the interplay

between magnetic and elastic interactions likewise feature

superelastic behavior: it is enabled by a detachment mecha-

nism of embedded magnetic particle aggregates and by a reor-

ientation mechanism of magnetic moments. Both mechanisms

are stress-induced and respond to external magnetic fields.

Therefore, superelasticity can be switched on and off, and

also its magnitude and position on the stress-strain curve can

be reversibly tailored during operation, as has been realized

for some special metallic components.32,33 The superelastic

behavior in our case covers a significantly larger strain re-

gime. Furthermore, soft gel-like materials generally provide a

larger deformability and higher degree of biocompatibil-

ity34–38 than metallic alloys. This becomes particularly impor-

tant for medical applications.39 There has been a significant

effort to transfer the properties of shape-memory alloys to soft

materials.35,37,38,40 Here, we report on reversibly tailoring

superelastic properties by external magnetic fields.

We concentrate on anisotropic uniaxial magnetic

gels.19,22,41,42 They are manufactured by applying a strong

external magnetic field during preparation, which leads to

the formation of oriented straight chain-like aggregates of

embedded magnetic particles.43–46 After subsequent chemi-

cal cross-linking of the embedding polymer network, the

position of the particles gets permanently locked.47 We

assume that the magnetic moments carried by the particles

are free to reorient. First, for diameters up to 10–15 nm, this

applies within the interior of each magnetic particle.48

Second, this is possible when each particle as a whole is free

to rotate,47 e.g., when the polymer is not completely cross-

linked in the immediate particle vicinity.49 Another example

is yolk-shell particles with a magnetic core that can rotate

within the shell.50,51 If reorientations of the magnetic

moments are blocked, only the first of the two mechanisms

described below is active.

We identify a superelastic stress-strain behavior of uni-

axial magnetic gels by numerically investigating the follow-

ing model system. Identical spherical colloidal particles,

each carrying a permanent magnetic dipole moment, are em-

bedded in a continuous elastic matrix. The elastic deforma-

tion energy of the matrix is described by a standard nearly

incompressible Neo-Hookean model.52,53 We tessellate the

matrix into sufficiently small tetrahedra by Delaunay trian-

gulation.54 Each tetrahedron may deform affinely, increasing

its elastic energy, from which we extract restoring forces on
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b)Electronic mail: menzel@thphy.uni-duesseldorf.de
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its delimiting nodes. The nodes attached to surfaces of rigid

embedded particles transmit forces and torques to these par-

ticles. Energy minimization with respect to all nodes and

particle positions, as well as all particle and dipole orienta-

tions, is performed (see supplementary material for technical

details53).

Within our model, we study small three-dimensional

systems, each containing 96 magnetic particles (Fig. 1(a)).

For initialization, we arrange the particles in straight linear

chain-like aggregates: each chain is one particle in diameter

but several equi-distanced particles in length that are sepa-

rated by finite gaps filled with elastic material.22,49,55–57

Initially, the chains are aligned parallel to each other, but

otherwise placed in a random non-overlapping way.53 In the

presence of the rigid inclusions, the elastic modulus

increases53 by a factor of �7. Finally, the magnetic moments

are switched on, and the system is equilibrated, leading to an

initial matrix deformation (Fig. 1(a)).

We quasistatically stretch our systems along the chain

direction. To impose a certain extension, the mesh nodes at

two opposite system boundaries are displaced into opposite

directions in small steps. After equilibration during each

step, the forces on the boundary nodes are measured. We

check the reversibility of the induced total deformations by

repeated loading and unloading cycles. Forces F are meas-

ured in units of F0 ¼ ER2, magnetic fields B in units of

B0 ¼
ffiffiffiffiffiffiffiffi
l0

4p E
q

, and magnetic dipole moments m in units of

m0 ¼ R3
ffiffiffiffiffiffiffiffi
4p
l0

E
q

. Here, E is the elastic modulus of the matrix,

R the particle radius, and l0 the vacuum permeability. L0

denotes the initial total length in stretching direction, DL is

the (absolute) elongation, and DL=L0 is the elongational

strain. We fix the material parameters by setting the Poisson

ratio of the matrix to � ¼ 0:495 and the magnetic moment to

m ¼ 10 m0.

Figs. 1(b) and 1(c) illustrate the resulting markedly non-

linear stress-strain behavior. First, the force to achieve a cer-

tain elongation steeply increases with the imposed strain.

Then, a pronounced superelastic nonlinearity follows. Since

our measurements are strain-controlled, and due to the finite

size of our systems, we observe a regime of negative slope.

A macroscopic sample in this region would become inhomo-

geneous, leading to a plateau-like superelastic regime4,6 or

likewise show a negative slope under strain control.58 In this

area, a further slight increase in the applied force induces a

huge additional deformation. Remarkably, we can reversibly

shift the non-linearity to smaller strains by a perpendicular

external magnetic field (Fig. 1(b)). High field strengths even

switch off the non-linearity. Furthermore, we can alter the

shape of the plateau-like regime by a field in stretching

direction (Fig. 1(c)). At the end of the plateau, the stress-

strain curve crosses over to a relatively constant intermediate

slope.

We found that a combination of two effects allows for

this adjustable superelastic behavior: a stress-induced

detachment mechanism of the individual chain-like aggre-

gates (Fig. 2) plus a reorientation mechanism of the magnetic

moments (Figs. 3 and 4). To illustrate the first one, Fig. 2(a)

shows the initialized state of an example chain system.

Switching on magnetic interactions, the particles attract each

other and “pre-compress” the elastic gap material (Fig. 2(b)).

Now the particles are located at a small distance from each

other, its inverse cube setting the dipolar interaction scale.

The initial steep increase in the stress-strain curve (Fig. 2(f))

reflects these strong magnetic interactions. Once the mag-

netic barrier is overcome, a small further increase in the

stretching force is sufficient to detach part of the chain from

the remainder (Fig. 2(c)). Such events suddenly elongate the

system and lead to spikes in the stress-strain curve (Fig.

2(f)). They repeatedly occur (Fig. 2(d)) until all particles

have been detached from each other. In total, a spiky plateau

appears (Fig. 2(f)). It smoothens when averaged over differ-

ent chains (Fig. 1). This is an intra-chain effect. Inter-chain

FIG. 1. (a) A snapshot of an equilibrated system of chain-like aggregates

before stretching. The small bar magnets in the embedded particles indicate

dipole moments. (b) Uniaxial stress-strain behavior for stretching in chain

direction, revealing a pronounced superelastic plateau-like nonlinearity, and

adjustability by magnetic fields perpendicular to the chains. (c) Effects of

magnetic fields parallel to the chains. As in all subsequent figures, the solid

lines represent loading and the dotted lines unloading, highlighting

reversibility.
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interactions are minor for experimentally reported particle

fractions.22,60 Thus, the finite size of our model systems will

not affect the significance of the overall material behavior.

Now, the tunability by a perpendicular magnetic field

becomes clear (Figs. 2(e) and 2(f)). Strong perpendicular

fields align all dipoles in the perpendicular direction. There

is no pre-compression (Fig. 2(e)); hence, no magnetic energy

barrier for pulling the particles apart, and thus, no corre-

sponding stress-strain nonlinearity. Smaller magnetic fields

do not significantly alter the dipole orientations in the pre-

compressed state due to the strong magnetic interactions at

short distances. Yet, they affect the threshold for detachment

(Fig. 2(f)); the moments can rotate away from the chain axes

when the particle separation increases.

The second effect contributing to the superelastic nonli-

nearity results from the stretching-induced reorientations of

the magnetic dipole moments. For illustration, we explain it

on a regular cuboid lattice arrangement (Fig. 3). Initially, the

edges of the cuboid unit cells are shorter along the stretching

direction (Fig. 3(a)). Thus, the dipoles align parallel to it.

During elongation (Fig. 3(b)), these distances increase.

Simultaneously, due to the overall volume preservation, the

system contracts from the sides. This decreases the separa-

tion perpendicular to the stretching direction. When the edge

lengths of the distorted unit cells become equal in both direc-

tions, there is no single favored dipole orientation left (Fig.

3(b)). Further stretching makes the dipoles rotate into the

plane perpendicular to elongation (Fig. 3(c)). Thus, during

the overall process, the magnetic dipoles reorient (“flip”).

This flipping effect is sensitive to the spatial particle arrange-

ment. Yet, it likewise appeared in all of our investigated uni-

axial systems. It is obvious from Fig. 3(b) that we can

identify the flipping effect by a vanishing orientational order

of the magnetic moments (see supplementary material for a

quantitative evaluation53). A similar orientational analysis

for the separation vectors between all nearest-neighbor par-

ticles demonstrates that the mechanism is indeed triggered

by the changes in the distances mentioned above.53

The flipping process is reflected by a steep step in the

corresponding stress-strain curve (Fig. 4; see supplementary

material for a simplified energetic model, including larger

system sizes53). Also, this flipping contribution to the supere-

lastic stress-strain behavior can be tuned from outside.

Through a perpendicular magnetic field, flipping can be

shifted to lower strains or be switched off completely, which

largely eliminates the corresponding nonlinearity in the

stress-strain curve (Fig. 4(a)). However, also a parallel field

has a significant influence: it can postpone flipping to larger

deformations and smear out the connected stress-strain nonli-

nearity (Fig. 4(b)). In Fig. 1(c), it is the dip in the stress-

strain curve that is mainly connected to the flipping mecha-

nism and can be switched off by the parallel field. The steep

jumps of Fig. 4 appear more rounded in Figs. 1(b) and 1(c)

because all stress-strain curves in Fig. 1 were obtained by

averaging over twenty characteristic numerical realizations.

For larger system sizes, the curves would appear still more

rounded.

To amplify the effects and to realize our assumed value

of m ¼ 10 m0, strong magnetic moments and soft elastic mat-

rices are preferred. A possible route is to use particles made

of a material of high remanent magnetization, for example,

NdFeB61 (more than 2� 105 A=m). Soft elastic matrices of

E � 103 Pa can be made of silicone23,62,63 or polydimethylsi-

loxane.64 The problem is qualitatively invariant under rescal-

ing all lengths by a characteristic dimension such as the

particle radius R. Thus, the particle size is not a critical factor.

Our calculations were performed for permanent reorientable

magnetic moments. Yet, the reorientation effect could like-

wise be observed using soft magnetic particles that are mag-

netized by an external magnetic field. Then, the reorientation

FIG. 2. Illustration of the detachment mechanism: (a) A cut through an ini-

tialized four-particle single-chain system: the elastic matrix is not yet

deformed. (b) Equilibrated state with the pre-compressed gap material. The

color maps show the local matrix distortion along the longitudinal stretching

direction, here illustrated using the so-called “true strain” exx.59 (c) First and

(d) second detachment events of parts of the chain where magnetic energy

barriers are overcome by longitudinally applied stretching forces. (e) The

equilibrated unloaded state in the presence of a strong perpendicular mag-

netic field. All magnetic moments are realigned; thus, there is no pre-

compression and no magnetic energy barrier. (f) Stress-strain curves for var-

ious perpendicular field strengths. Each spike corresponds to a detachment

event where a magnetic energy barrier is overcome. An increasing perpen-

dicular magnetic field lowers the detachment threshold, until superelasticity

is switched off.

171903-3 Cremer, L€owen, and Menzel Appl. Phys. Lett. 107, 171903 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
134.99.64.197 On: Tue, 27 Oct 2015 14:50:02

Paper IV. Appl. Phys. Lett. 107, 171903 (2015) 101



process must be performed “manually” by switching the

external magnetic field direction.

In conclusion, we have identified a superelastic stress-

strain behavior of soft uniaxial magnetic gels. These materi-

als consist of chain-like aggregates of magnetic colloidal

particles embedded in a soft elastic polymer matrix.

Stretching the systems in chain direction reveals a significant

nonlinearity in the stress-strain curve. In this regime, the sys-

tems can be strongly deformed with hardly any additional

load necessary. Two underlying stress-induced mechanisms

were identified: a detachment mechanism of the embedded

chain-like aggregates and a reorientation mechanism of the

magnetic moments. Both the processes are reversible upon

stress release, in analogy to the superelastic behavior of

shape-memory alloys. As an additional benefit, the supere-

lastic properties in the present case can be reversibly

switched during operation by an external magnetic field.

These nonlinear stress-strain properties open the path-

way to numerous applications. The on-demand tunable

deformability could be used for easily applicable packaging

or gaskets that become rigid when an external magnetic field

is switched off. Under pre-stress, external magnetic fields

can trigger significant deformations, qualifying the materials

for the use as soft actuators. Combined with an increased

biocompatibility, these concepts should be transferable to

medical applications such as quick wound dressings, artifi-

cial muscles, or tunable implants. Finally, combinations of

magnetic gels with other materials can bestow the tunable

superelastic properties on the resulting composite.
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In the following, we provide additional information concerning three aspects of the main text. First, we
list further technical details with regard to our numerical implementation of our model system including
some remarks on the increased material stiffness due to rigid inclusions. Second, we illustrate the additional
characterization mentioned in the main text concerning the reorientation (“flipping”) mechanism in terms
of measuring appropriate degrees of orientational order. Third, we provide a simplified description of the
flipping process in a regular cuboid-lattice system using energetic arguments and the assumption of globally
affine deformations.

I. TECHNICAL DETAILS CONCERNING THE
NUMERICAL IMPLEMENTATION

As mentioned in the main text, we numerically stretch
our system along one direction by imposing displace-
ments of two opposite surfaces. Only displacements along
the stretching direction and only for the two surfaces fac-
ing the stretching direction are prescribed. All other de-
grees of freedom remain intact. As further mentioned,
the displacements are applied in small steps, and after
each step the system is equilibrated. Equilibration here
means minimization of the total energy of our system un-
der the prescribed uniaxial surface displacements. This
total energy consists of elastic and magnetic contribu-
tions.

The elastic contributions originate from the deforma-
tion of the elastic matrix surrounding the embedded mag-
netic particles. As described in the main text, we parti-
tion the elastic matrix into a set of affinely (uniformly,
homogeneously) deformable tetrahedra. The surfaces of
the embedded rigid spherical magnetic particles are ap-
proximated as sets of planar triangles that form faces of
the surrounding matrix tetrahedra. The whole procedure
is performed using gmshS1, a mesh generation tool based
on Delaunay triangulation. The characteristic length pa-
rameter defining the typical lengths of tetrahedra edges
is set to 0.35R, where R is the radius of the embedded
magnetic particles.

For each tetrahedron, we model the elastic deformation
energy Ue using the following nearly-incompressible Neo-
Hookean hyperelastic modelS2:

Ue = V0

[ (µ

2
Tr

{
FtF

}
− 3

)
− µ (detF − 1)

+
λ + µ

2
(detF − 1)

2

]
.

(S1)

This is a well-established elasticity model to describe

a)Electronic mail: pcremer@thphy.uni-duesseldorf.de
b)Electronic mail: menzel@thphy.uni-duesseldorf.de

conventional elastic deformations of polymeric materi-
als. Here µ and λ are the Lamé coefficientsS3 of the
surrounding elastic matrix and are related to the elastic
modulus E and the Poisson ratio ν given in the main
article by µ = E

2(1+ν) and λ = Eν
(1+ν)(1−2ν) . V0 is the vol-

ume of the tetrahedron in the undeformed state, while
F is the so-called deformation gradient tensor. Ft de-
notes its transpose. Since we only allow for affine defor-
mations of each tetrahedron, F can easily be expressed
in terms of the positions of the four nodes (vertices) of
the tetrahedron. For this purpose, we need the posi-
tions x0, x1, x2, x3 of the nodes in the present deformed
configuration, as well as the positions x̃0, x̃1, x̃2, x̃3 in
the original undeformed (reference) configuration. We
define the matrix X := (x1 − x0, x2 − x0, x3 − x0)
to describe the deformed state, as well as the matrix
X̃ := (x̃1 − x̃0, x̃2 − x̃0, x̃3 − x̃0) to describe the unde-
formed (reference) state of the tetrahedron. In our case
of affine deformations, the deformation gradient tensor F
is the tensor that connects these two states by X = FX̃.
Multiplying with X̃−1 from the right yields

F = XX̃−1. (S2)

Thus, we can obtain the deformation gradient tensor F of
each tetrahedron simply from the knowledge of its node
positions in the present deformed (X) and in the original

undeformed (X̃) configuration. Here, the inverse matrix

X̃−1 has to be calculated only once in the beginning of
the whole numerical procedure. A similar strategy to
evaluate the deformation gradient tensor was proposed
in Ref. S4.

Finally, using Eq. (S2), the force on each node i (i =
0, 1, 2, 3) can be calculated via

fi = −∇xiUe(F) = −∂Ue(F)

∂F

∂F

∂xi
. (S3)

If a node is not attached to the surface of an embed-
ded magnetic particle, the force may directly displace the
node. Otherwise, the force on that node (particle surface
node) is transmitted to the embedded particle. The em-
bedded magnetic particles are treated as rigid objects.
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From the combination of all forces transmitted to an em-
bedded particle via its surface nodes, the net force and
torque on the particle are calculated. They lead to rigid
translations and rotations of the particle, respectively.
In turn, these rigid translations and rotations also de-
termine the repositioning of the particle surface nodes.
To accelerate the numerical calculation, the evaluation
of the node forces is performed in parallel for different
sections of the mesh.

To quantify the magnetic interactions in the system,
we assume that all magnetic particles carry a dipolar
magnetic moment of equal magnitude. Thus the total
magnetic energy for N embedded magnetic particles is
given by

Um =
µ0

4π

N∑

i=1

i−1∑

j=1

mi · mj − 3 (mi · r̂ij) (mj · r̂ij)

r3
ij

−
N∑

i=1

mi · B,

(S4)

where µ0 is the vacuum permeability, rij := ri −rj is the
vector pointing from particle j to particle i, rij = |rij |,
r̂ij = rij/rij , mi and mj are the respective magnetic
moments, and B is an externally applied magnetic field.
Since we assume that each dipole moment can freely ro-
tate with respect to the frame of its carrying magnetic
particle, resulting magnetic torques directly reorient the
dipoles. Resulting translational forces are transmitted to
the carrying particles.

Finally, a common route to mimic steric interactions
between hard colloidal particles is to include the pairwise
WCA potentialS5

Uwca =

{
4ε

[(
σ
r

)12 −
(

σ
r

)6
+ 1

4

]
, if r ≤ 21/6σ,

0, if r > 21/6σ.
(S5)

This potential is hard, repulsive, and of finite range. In
our case, it accelerates the numerical calculations by its
stabilizing effect: it introduces a severe energetic penalty
for particles close to touching, allowing for a more ef-
ficient equilibration process. The WCA interaction be-
comes important in the strongly pre-compressed state of
the chain-like aggregates, see e.g. Fig. 2b in the main ar-

ticle. We set ε = m2

32m2
0
ER3 and σ = 2R. In the situation

of Fig. 2b, the attractive magnetic interaction is balanced
to 93% by elastic deformation energy and to only 7% by
WCA interactions.

Summarizing, the variables describing the state of
the system are the positions of the tetrahedral matrix
nodes, the particle positions, the particle orientations,
and the magnetic dipole orientations. Using these vari-
ables, resulting forces and torques can be calculated from
Eqs. (S1)–(S5) that drive the system towards the mini-
mum of the total energy. The energy minimization is per-
formed using a nonlinear conjugate gradient algorithm.
This algorithm minimizes the energy along a certain di-

rection in parameter space before determining a new di-
rection via the Fletcher-Reeves method, see Ref. S6 for an
overview of conjugate gradient methods. The energy op-
timization along a parameter space direction is performed
using Newton-Raphson iteration. The inner product in-
volving the Hessian appearing in this scheme is approx-
imated by finite differencesS7 using the gradient of the
energy (forces and torques).

Next, we provide further background information on
the initialization of our characteristic numerical systems;
see the snapshot in Fig. 1a of the main article for one
example realization. In the initially undeformed state
before initial equilibration, each system has the shape
of a rectangular box of size 22.5R × 10.4R × 10.4R (R is
again the radius of the embedded magnetic particles). As
explained in the main text, we embed initially straight
linear chain-like aggregates into these boxes. The chains
are aligned parallel to each other and parallel to the long
edge of the box, which will become the stretching direc-
tion. As further explained in the main text, each chain
is only one particle in diameter, but consists of several
particles in length. Here, we choose chains of 8 particles
in length. Within one chain, neighboring particles are
equally distanced from each other by a finite gap, here
of thickness R/2. Furthermore, here the systems con-
sist of 12 such parallel chains. Except for being aligned
and non-overlapping, the chains are placed at random
into the box with a minimum distance of R/4 from the
system boundaries. In the resulting configuration, the
chains are randomly shifted with respect to each other
along their axes by a maximum amount of 2.5R. This
is exactly the diameter of a particle plus the thickness
of the gap. Consequently, no particular particle-to-gap
geometry between two chains is statistically preferred.
Finally, the volume containing the elastic matrix is tes-
sellated into a set of affinely deformable tetrahedra as
described above. The total number of tetrahedra in the
mesh is around 250000. Then, the magnetic moments of
the embedded particles are switched on, and the system
is equilibrated. Still, the precise values of the above num-
bers are not important: we confirmed that they do not
qualitatively affect our results.

At the end of this procedure, to perform our stress-
strain measurements, the outer 10% of the system at
both ends pointing towards the stretching direction are
clamped. That is, tetrahedral nodes within the clamped
regions are not free any more concerning displacements
in stretching direction. Instead, their displacements in
stretching direction are prescribed from outside. In this
way, we impose a strain of defined magnitude (strain con-
trol). Forces F on the clamps (identifying the necessary
imposed stress) are plotted in our stress-strain curves.
They are extracted by calculating the forces exerted on
all nodes within the clamped regions.

It is well known that rigid inclusions stiffen the sys-
tem behaviorS8–S10. This is illustrated in Fig. S1, where
the uniaxial stress-strain behavior for our characteristic
system (see Fig 1a of the main article) is compared to
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FIG. S1. Uniaxial stress-strain behavior for the pure elas-
tic matrix without rigid inclusions (pure matrix), for our
characteristic system with nonmagnetic rigid particles in-
cluded (m = 0), and for our magnetized characteristic sys-
tem under a strong perpendicular magnetic field (m = 10 m0,
By = 30 B0). Both systems with rigid inclusions are signifi-
cantly stiffer than the pure matrix. Since here in the magne-
tized system (m = 10 m0) the detachment and reorientation
mechanisms are both deactivated by the strong perpendicular
magnetic field By, the stress-strain behavior is similar to the
one for nonmagnetic particles (m = 0).

the behavior of the pure matrix material. Through the
presence of the rigid inclusions, already with switched-
off magnetization (m = 0) the elastic modulus is in-
creased by a factor of ∼ 7. (The elastic modulus is re-
lated to the initial slope of the stress-strain curve at small
strains ∆L/L0 � 1.) If the magnetization is switched on
(m = 10 m0) and a strong magnetic field By = 30B0

is applied perpendicular to the stretching direction, the
detachment and reorientation mechanisms remain deac-
tivated (see also Figs. 1b,2e,2f,4a of the main article).
Then, the stress-strain behavior of the magnetized char-
acteristic system is similar to the one for m = 0, see
Fig. S1.

II. ORIENTATIONAL DEGREES OF ORDER
CHARACTERIZING THE FLIPPING MECHANISM

As became obvious from Fig. 3 in the main article, the
reorientation (“flipping”) mechanism of the magnetic mo-
ments during stretching is associated with an intermedi-
ate stage of disorder in the orientations of the magnetic
moments (Fig. 3b in the main article). As also men-
tioned, the intermediate stage of disorder can be used
to identify the effect. This is true not only for the reg-
ular cuboid-lattice system (Fig. 3 in the main article),
but also for our uniaxial system containing the chain-
like aggregates (Fig. 1 in the main article). Even more,
the measure of orientational order can serve to demon-
strate that the flipping mechanism is indeed associated
with the distance changes between neighboring magnetic

(a)

(b)

FIG. S2. Degrees of orientational order Sm and Sr for the
magnetic moments and for the separation vectors between
nearest-neighbor particles, respectively, as a function of im-
posed strain: (a) for the regular cuboid-lattice system in Fig. 3
of the main article, and (b) for the uniaxial system contain-
ing the chain-like aggregates in Fig. 1a of the main article.
In both cases, Sm and Sr nearly simultaneously go to zero at
the point where the reorientation occurs. Solid lines represent
loading and dotted lines unloading, respectively.

particles.
To us, the important question is whether the magnetic

moments point along the stretching direction or have ro-
tated to a perpendicular orientation. Thus, for each of
the magnetic dipole moments mi of the N magnetic par-
ticles (i = 1, . . . , N), we first measure m̂i = mi/|mi|; sec-
ond, we determine the projections of m̂i onto the stretch-

ing direction (m̂
‖
i ) and into the plane perpendicular to

the stretching direction (m̂⊥
i ); third, using these projec-

tions, we calculate a nematic order parameter tensorS11

Qm =
1

N

N∑

i=1


2

(
m̂

‖
i

)2 − 1 2m̂
‖
i m̂

⊥
i

2m̂
‖
i m̂

⊥
i 2

(
m̂⊥

i

)2 − 1


 . (S6)

The degree of orientational order Sm for the magnetic
moments follows as the largest eigenvalue of this tensor.
Sm = 1, if all dipoles are simultaneously oriented parallel
to the stretching axis or perpendicular to it, while Sm = 0
in the absence of such global ordering.

Fig. S1a quantifies what is qualitatively observed al-
ready in Fig. 3 of the main text for the regular cuboid-
lattice system: at low strains, the dipoles largely align
along the stretching direction (Sm close to 1); at inter-
mediate strains, the dipoles disorder during reorientation
(dip in Sm); at high strains, the dipoles point into direc-
tions perpendicular to the strain axis (Sm close to 1).

Furthermore, we demonstrate that this reorientation
process is correlated with the strain-induced changes in
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neighboring particle distances. For this purpose, we de-
termine an additional parameter Sr in the same way
as described above for Sm. Now, however, we use as
an input the distance vectors rij separating all pairs of
nearest-neighboring particles (i, j), where rij = ri − rj ,
instead of the magnetic moments mi. We find (Fig. S2a)
Sr = 1 at low strains, i.e. the shortest inter-particle dis-
tances are along the stretching direction; Sr = 0 at inter-
mediate strains, where shortest inter-particle distances
are equally distributed along and perpendicular to the
stretching direction – this triggers the reorientation pro-
cess indicated by the minimum of Sm; Sr = 1 at high
strains, with the shortest inter-particle distances perpen-
dicular to the stretching direction.

Fig. S2b demonstrates the universality of this concept:
also for the uniaxial system containing the chain-like ag-
gregates (Fig. 1 in the main article), we can readily iden-
tify the reorientation mechanism via Sm and Sr, despite
the more irregular particle arrangement. Both Sm and Sr

become zero at intermediate strains. Also the hysteretic
behavior shows up in these quantities.

III. SIMPLIFIED ENERGETIC DESCRIPTION OF THE
FLIPPING MECHANISM

In the following, we present a simplified energetic ap-
proach to the flipping mechanism for the cuboid-lattice
system illustrated in Figs. 3 and 4 of the main article.
The simplified model further supports our underlying pic-
ture of this process. As a central approximation, we as-
sume a globally affine deformation of the system. That
is, the globally imposed strain is homogeneously mapped
to any distance within the system. For a very regular
initial cuboid-lattice structure, this represents a plausi-
ble approximation, which becomes the better the larger
the system sizeS12. As a consequence, the embedded
magnetic particles must be considered as point-like in-
clusions. An immediate benefit of these simplifications
is that significantly larger system sizes are addressable:
the extensive computational time necessary to allow for
inhomogeneous matrix deformations is saved.

We start from a regular cuboid-lattice structure sim-
ilar to Fig. 3a of the main article, yet now considering
up to 50 × 50 × 49 magnetic point particles. All of their
dipole moments are assumed to be initially aligned along
the nearest-neighbor axis (horizontally in Fig. 3a). Due
to the resulting magnetic interactions, the system tends
to initially “pre-compress” along this axis during equili-
bration. To conserve the volume, this is accompanied by
a lateral extension. Already at this stage, we only allow
for affine deformations. Elastic interactions again follow
from Eq. (S1) and magnetic energies via Eq. (S4).

The effective elastic modulus Eeff of the composite of
rigid particles embedded in an elastic matrix is higher
than the elastic modulus E of the embedding matrix it-
self, see Section I. Our simplified model reduces the stiff-
ening rigid particles to point-like dipoles. Therefore, we

must use Eeff > E to represent the overall material re-
sponse correctly. We find Eeff ≈ 1.6E by matching the
pre-compression of our simplified model system to that of
the actual system in Fig. 3 of the main article. However,
forces are still measured in units of F0 = ER2 to compare
with the simulation where this force scale is used.

Next we impose affine stretching deformations ∆L/L0

along the initial nearest-neighbor axis (in analogy to
Fig. 3 of the main article). At a certain strain, the dis-
tances between initial nearest neighbors and dipoles in
perpendicular directions become equal. Thus, the strain
creates new pairs of nearest neighbors along perpendic-
ular directions. At still higher strains, these become the
only remaining pairs of nearest neighbors (same process
as depicted in Fig. 3 of the main article). Therefore, to
minimize the magnetic energy, the dipoles flip towards a
perpendicular axis (vertical axis in Fig. 3c). We plot the
resulting magnetic energies for initial and flipped orien-
tation as a function of strain in Fig. S3a. The flipping
strain is given by the intersection point of the two curves.
It should be noted that in a laterally symmetric cuboid-
lattice system there are two equally preferred perpendic-
ular axes. Flipping towards one of them corresponds to
spontaneous symmetry breaking. Fig. S3a also compares
to the result obtained from the full non-affine numerical
calculation in the main article.

It is illustratively clear what happens in the stress-
strain curve (Fig. S3b) at the flipping strain. While the
dipoles are oriented along the stretching axis, they at-
tract each other along this axis and counteract the strain.
This is reflected by a higher mechanical force to keep the
system at a certain stretch. After the flip, they are in
a repulsive configuration along the stretching axis. This
supports the stretch and shows up as a drop in the stress-
strain curve at the flipping strain. Thus, directly after
the flip, a lower mechanical force is necessary to keep the
system in the stretched state. Fig. S3b further compares
to the stress-strain curve obtained via the full non-affine
numerical simulation (black line in Fig. 4 of the main ar-
ticle). We find good qualitative agreement for the regular
cuboid-lattice system.

Finally, Fig. S3c shows the trend for increasing system
sizes. For comparison, we have to rescale the measured
forces by the number of dipoles in a cross-sectional plane
perpendicular to the stretching direction. Then we ob-
serve that the magnitude of the jump in the stress-strain
curves (Fig. S3c) remains approximately constant. Its
occurrence shifts to slightly higher strains, but this shift
apparently saturates with increasing system sizes.

In summary, the simplified energetic description pro-
vides a reasonable representation of the situation in a reg-
ular cuboid-lattice system and can address larger system
sizes. It should be kept in mind, however, that macro-
scopic samples can react in an inhomogeneous way. That
is, part of the sample may have “flipped” already, while
other parts are still in the state of initial or intermedi-
ate orientations. Then the assumption of affinity breaks
down. The jumps in the stress-strain curves are replaced
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(a) (b)

(c)

FIG. S3. Simplified energetic model for affine elastic deformations of a regular cuboid-lattice system containing point-like
magnetic dipoles (same set-up as for the full non-affine calculation presented in Figs. 3 and 4 of the main article; there, however,

finite-sized rigid magnetic particles were embedded). (a) Strain-dependent magnetic energies U
‖
m(∆L/L0) and U⊥

m(∆L/L0)
for dipole orientations parallel and perpendicular to the stretching axis (horizontal and vertical axes in Fig. 3 of the main
article), respectively, measured in units of U0 = F0R. The flipping strain is identified from the intersection point of the two
curves. Results are shown for a system of 4 × 4 × 3 dipoles for our simplified model and for the simulation in the main article
[U sim

m (∆L/L0)]. (b) Corresponding stress-strain curves. Following the solid lines of magnetic energy in (a), their derivatives
are discontinuous at the intersection (flipping) points. In the stress-strain curves, this leads to the characteristic jumps. (The
simulation curve corresponds to the black curves in Fig. 4 of the main article.) (c) Stress-strain curves for different system
sizes. The cuboid-lattice structures consist of Nx ×Ny ×Nz dipoles, where x again marks the stretching direction. Our systems
are characterized by Ny = Nx and Nz = Nx − 1. Apparently, the jump in the curves remains of comparable magnitude and its
shift to higher strains saturates for increasing system size.

by smoothened, flatter, more plateau-like regimes, as par-
tially obtained in Fig. 1b,1c of the main article by aver-
aging over several different realizations of the system.
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Superelastic stress–strain behavior in ferrogels
with different types of magneto-elastic coupling

Peet Cremer,* Hartmut Löwen and Andreas M. Menzel*

Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called a

ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be

exploited for various applications such as dampers, vibration absorbers, or actuators. Under appropriate

conditions, the stress–strain behavior of a ferrogel can display a fascinating feature: superelasticity, the

capability to reversibly deform by a huge amount while barely altering the applied load. In previous work,

using numerical simulations, we investigated this behavior assuming that the magnetic moments carried

by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we

extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations

towards a magnetically favored configuration. For example, the particles can be chemically cross-linked

into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that

these systems still feature a superelastic regime. As before, the nonlinear stress–strain behavior can be

reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic

moments causes different types of response to external stimuli. For instance, an external magnetic field

applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond

it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found

widespread applications. Our soft polymer systems offer many additional advantages such as a typically

higher deformability and enhanced biocompatibility combined with high tunability.

1 Introduction

Ferrogels,1–3 also known as soft magnetic materials, magnetic
gels, magnetic elastomers, or magnetorheological elastomers,
are manufactured by embedding colloidal magnetic particles
into an elastic matrix that most often consists of a cross-linked
polymer. This leads to an interplay between magnetic and elastic
interactions, allowing material properties to be reversibly adjusted
via external magnetic fields.4–15 Dynamically switching the elastic
properties allows applications as tunable dampers16 or vibration
absorbers.17 Moreover, shape changes5,18–21 are interesting for
the realization of soft actuators.22–27 Also shape-memory effects
have been observed in soft magnetic materials,28–30 opening
the way to even more interesting applications.

Recently we have identified another fascinating feature of
soft magnetic materials in a simulation study,31 namely tunable
superelasticity. This term was originally introduced in the context
of shape-memory alloys.32–34 It addresses their special nonlinear
stress–strain behavior with a plateau-like regime, where a small
additional load leads to a huge additional deformation that is

completely reversible. In shape-memory alloys, the constituents
are positioned on regular lattice sites. The observed behavior
is enabled by a stress-induced transition of the material to a
more elongated lattice structure that can accommodate the
deformation. When the load is released, the shape-memory
alloy performs the opposite lattice transition, which renders the
whole process reversible.

In the case of anisotropic soft magnetic gels,5,8,35–39 the
superelastic behavior is enabled by stress-induced structural
changes. Such samples can be synthesized by applying a strong
external magnetic field during the chemical cross-linking
process that forms the elastic matrix. Before cross-linking, when
the magnetic particles are still mobile, straight chain-like aggre-
gates form along the field direction.40–43 Cross-linking the polymer
locks the particle positions into the elastic matrix even after the
external field is switched off. Experimentally, the tunability of
the linear elastic modulus of such samples has been investi-
gated by applying external magnetic fields.5 It turned out that
the highest tunability was achieved for deformations and
magnetic fields along the axes of the chain-like aggregates.
Our previous numerical study of stretching such a magnetic gel
along the axis of the chain-like aggregates to the nonlinear
regime revealed the following behavior. The strong magnetic
attractions within the chains first work against the elongation.
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However, once the magnetic barriers to detach chained particles
are overcome, the material strongly extends. A part of the stored
stress working against the magnetic interactions is released,
leading to an additional strain without hardly any additional
stress necessary. This behavior results in a strongly nonlinear,
‘‘superelastic’’ plateau in the stress–strain curve, similar to the
phenomenology found for shape-memory alloys. The strain
regime that is covered by this plateau, however, is significantly
larger. In addition, it is possible to tailor the nonlinear stress–
strain behavior during operation by external magnetic fields.
Combined with the typically higher degree of biocompatibility
of soft polymeric materials,44–48 medical applications49–52 might
become possible.

In a previous study,31 we restricted ourselves to the assump-
tion that the magnetic moments of the embedded particles are
free to reorient. First, this is possible when each magnetic
moment can reorient within the particle interior, which typically
can be observed as the so-called Néel mechanism up to particle
diameters of 10–15 nm.53 Second, the type of embedding in the
elastic matrix can allow the whole particle to rotate, at least
quasi-statically, without deforming the matrix, e.g., when in the
vicinity of the particles the cross-linking of the polymer matrix
is inhibited.54 Finally, yolk–shell colloidal particles feature a
magnetic core that can rotate relatively to the nonmagnetic shell
surrounding it.55,56

Herein, we also concentrate on the opposite scenario for
spherical, rigid magnetic particles. That is, the magnetic
moments are not free to reorient with respect to the embedding
matrix. Two ingredients are necessary for this purpose. First, the
matrix must be anchored to the particle surfaces. In reality, this
can be achieved when chemically the particles themselves act as
cross-linkers of the polymer matrix.57–62 Second, the magnetic
moments must not rotate relatively to the particle frames. This is
the case for magnetically anisotropic monodomain particles that
are large enough to block the Néel mechanism. Again we can
observe superelastic stress–strain behavior in such systems and
again the nonlinearity can be tuned by external magnetic fields.
Yet, the response is altered though, due to the different coupling
of the magnetic filler particles to the surrounding matrix. An
external magnetic field parallel to the chain-like aggregates
largely leaves the superelastic behavior intact. In contrast to
that, a sufficiently strong perpendicular field rotates the particles
out of the initial alignment configuration and gradually removes
the nonlinearity from the stress–strain curve. However, due to
the covalent coupling to the elastic matrix counteracting particle
rotation, the necessary field strengths to deactivate superelasticity
are much higher when compared to the case of freely reorientable
magnetic moments.

In Section 2 we begin by introducing our numerical model
and our simulation technique for the measurement of the
stress–strain behavior. Next, in Section 3, we define several
ferrogel systems with different coupling properties between the
particles and the surrounding elastic matrix. Afterwards, in
Section 4, we analyze the resulting stress–strain behavior for
these different systems and the various mechanisms and
effects leading to the emerging superelastic features. We start

with the case of vanishing external magnetic field and then
proceed to fields parallel and perpendicular to the chain-like
aggregates. Finally, in Section 5, we conclude by reviewing
our results and discussing possible experimental realizations
as well as prospective applications.

2 Numerical model and simulation
procedure

The purpose of our simulations is to determine the nonlinear
stress–strain behavior of uniaxial ferrogel systems containing
chain-like aggregates. To achieve this, we require numerical
representations of both the polymer matrix and of the embedded
colloidal magnetic particles.

Let us first discuss our representation of the polymer matrix.
We assume that all molecular details of the cross-linked polymer
can be ignored, so that we can treat the matrix as a continuous and
isotropic elastic medium. We tessellate it into a three-dimensional
mesh of sufficiently small tetrahedra. Spherical magnetic particles
are embedded into this mesh by approximating their surfaces as
sets of planar triangles, which become faces of the tetrahedral
mesh. This tessellation was enabled by the mesh generation tool
gmsh,63 which is based on Delaunay triangulation.64 It allows
to set a characteristic length scale parameter controlling the
typical length of the tetrahedra edges, for which we used 0.35R,
where R is the radius of the particles.

Each tetrahedron of the mesh may deform affinely, which is
associated with an elastic deformation energy Ue given by the
following nearly-incompressible Neo-Hookean hyperelastic
model:65

Ue ¼ V0
m
2
Tr Ft � Ff g � 3

� �
� m detF� 1ð Þ

h

þlþ m
2

detF� 1ð Þ2
�
:

(1)

Here the elastic properties of the isotropic matrix enter via
the Lamé coefficients m and l.66 They can also be expressed
in terms of the elastic modulus E and the Poisson ratio n via

m ¼ E

2ð1þ nÞ and l ¼ En
ð1þ nÞð1� 2nÞ. V0 denotes the volume of

the tetrahedron in the undeformed state. F is the deformation
gradient tensor prescribing the affine transformation that
brings the tetrahedron from its undeformed state to the
deformed state. The deformed state of the tetrahedron is
characterized by the matrix X:= (x1 � x0, x2 � x0, x3 � x0) that
contains the current positions x0, x1, x2, x3 of the four nodes
(vertices), see Fig. 1 for an illustration. Similarly, the matrix
X̃:= (x̃1 � x̃0, x̃2 � x̃0, x̃3 � x̃0) determines the undeformed
(reference) state of the tetrahedron with node positions x̃0, x̃1,
x̃2, x̃3. Since F is the affine transformation that connects the
deformed state to the reference state, we have X = F�X̃. Now the
deformation gradient tensor F can be obtained67 by multiplying
from the right with X̃�1, yielding

F(X) = X�X̃�1. (2)
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The undeformed reference state never changes, hence the inverse
matrix X̃�1 remains constant and has to be calculated only
once. This allows to determine the elastic deformation energy
Ue(F(X)) in any deformed configuration from the positions of
the tetrahedral nodes.

Calculation of the force fi on each node i (i = 0, 1, 2, 3) is then
straightforward,

f i ¼ �rxiUeðFÞ ¼ �
@UeðFÞ
@F

� @F
@xi

: (3)

These forces allow us to determine the displacements of the nodes.
The characterization of the elastic matrix is thus completed. In
a second step, we turn to the embedded rigid particles. Since
they are rigid objects, we have to treat nodes attached to
particle surfaces in a special way. The forces on these nodes
are transmitted to the corresponding particle, which leads to
net forces and torques on the particles. Rotations and transla-
tions of the particles due to these forces and torques are
calculated. They, in turn, determine the displacements of the
surface nodes. We perform a parallel calculation of all node
forces in the system by slicing it into different sections that can
be handled separately.

Next we discuss our representation of the magnetic interactions.
We assume that all N magnetic particles possess permanent
dipolar magnetic moments of equal magnitude m. This leads
us to a total magnetic interaction energy given by

Um ¼
m0
4p

XN
i¼1

Xi�1
j¼1

mi �mj � 3 mi � r̂ij
� �

mj � r̂ij
� �

rij3
�
XN
i¼1

mi � B: (4)

Here m0 is the vacuum permeability, mi and mj are the magnetic
moments of particles i and j, respectively, with |mi| = |mj| = m,
rij:= ri � rj is the separation vector between both particles,
rij = |rij| is its magnitude, r̂ij = rij/rij, and B is an externally
applied magnetic field.

The magnetic dipolar interaction can be strongly attractive
at short distances, when the magnetic moments of interacting
particles are in a head-to-tail configuration. In order to prevent
an unphysical interpenetration of the particles due to such an
attraction, we additionally introduce a steric repulsion between

the particles that counteracts the attraction at short distances.
The WCA potential68

Uwca ¼
4e

s
r

� �12
� s

r

� �6
þ 1

4

� �
; if r � 21=6s;

0; if r4 21=6s;

8><
>: (5)

is hard and finite-ranged and commonly used to represent
steric repulsions. Its strong scaling with the particle distance
compared to the dipolar interactions (r�12 vs. r�3) makes it
the dominating contribution for short distances. By setting

e ¼ m0
4p

m2

32R3
and s = 2R, the dipolar force between two particles,

with their magnetic moments aligned in the most attractive
head-to-tail configuration, is exactly balanced by the repulsive
WCA interaction when they are in contact.

All these ingredients together express the total energy of the
system. It is a function of the node positions of the tetrahedral
mesh, the particle positions, the particle orientations, and the
orientations of the magnetic moments of the particles. We
equilibrate our systems by performing an energy minimization
with respect to these degrees of freedom. As a numerical scheme,
we employ the FIRE algorithm,69 using the forces and torques
resulting from eqn (1)–(5) to drive the system towards its
energetic minimum. FIRE is a molecular dynamics scheme that
introduces artificial velocity modifications to achieve a quick
relaxation. In each step of iteration, the equations of motion are
integrated using a standard Velocity-Verlet algorithm, causing
the system to accelerate towards the direction of steepest descent
in energy. The direction is further emphasized by an additional
steering contribution that tilts the directions of the velocities
and angular velocities more towards the directions of the
currently acting forces and torques, respectively. After the system
energy has been decreasing for a small number of subsequent
iterations, the steering contribution is reduced and the time
step is increased, allowing inertia to carry the system further.
An eventual increase in system energy is stopped by instantly
freezing the system, setting all velocities and angular velocities
equal to zero. Subsequently, the system accelerates again with
the steering contribution restored to its initial value and reduced
time step. The increase and decrease of the time step as well as
the steering contribution are controlled using several para-
meters, for which we use the values suggested in ref. 69.
Numerical stability is ensured by an upper bound Dtmax for the
time step, which may depend on the considered system. We have
found Dtmax = 0.01 to be sufficient for our systems. From our
experience, this rather simple minimization scheme is quite
competitive with more sophisticated schemes like nonlinear
conjugate gradient70 that we employed in our earlier work
in ref. 31. In extreme situations of deformation, unphysical
behavior may result, such as the inversion of individual tetra-
hedra or their penetration into the spherical particles.

The physical input parameters for our simulations are the
elastic modulus E and Poisson ratio n of the matrix, the magnitude
m of the magnetic moments and eventually the external mag-
netic field B. We measure forces F in units of F0 = ER2, magnetic

Fig. 1 The undeformed state X̃ of each tetrahedron is determined by the
reference node positions x̃0, x̃1, x̃2, x̃3 via X̃ = (x̃1 � x̃0, x̃2 � x̃0, x̃3 � x̃0),
while the deformed state X is characterized by the present node positions
x0, x1, x2, x3 in the form X = (x1 � x0, x2 � x0, x3 � x0). Both states are
connected via the deformation gradient tensor F.
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moments in units of m0 ¼ R3

ffiffiffiffiffiffiffiffiffi
4p
m0

E

r
, and magnetic field

strength in units of B0 ¼
ffiffiffiffiffiffiffiffiffi
m0
4p

E

r
. Throughout his work, we fix

the material parameters by choosing n = 0.495 and m = 10m0.
The Poisson ratio is chosen close to 1/2 to model the typical
near-incompressibility of cross-linked polymer matrices
while retaining some remnant compressibility required by
our numerical simulation method. The choice of m sets a
sufficiently high ratio between magnetic and elastic interac-
tions to observe pronounced effects and is experimentally
realistic as explained later in Section 5.

Besides the material properties, the behavior of a sample
depends on its shape27,71 and on the internal distribution of
particles.72–74 Our characteristic numerical probes are small
three-dimensional systems of magnetic particles embedded
into an initially rectangular box of an elastic material. The
dimensions of the box are 22.5R� 10.4R� 10.4R, containing 96
identical spherical particles. These particles are arranged into
12 chain-like aggregates of 8 particles each. All chains are
aligned parallel to the long edge of the box (the x-direction).
Neighboring particles in the same chain are initially separated
by a finite gap of the elastic material of thickness R/2.
The positions of the chains are chosen at random, with the
constraint that they shall not overlap and have a minimum
distance of R/4 to the box boundaries. This results in a
configuration of chains shifted with respect to each other along
their axes by a maximum amount of 2.5R. Since this maximum
shift equals the particle diameter plus the gap thickness,
there is no statistical preference of any special particle-gap
configuration between two chains. Such an initial arrangement
of the chains is supposed to mimic experimental ferrogel
systems featuring chain-like aggregates that span the whole
sample along one direction.37,38 They constitute a natural
choice for studying tunable deformation effects along the
designated direction.5 Our results are based on 20 different
systems created in this manner, each with a unique particle
configuration. About 250 000 tetrahedra result in each case
from the mesh generation.

To measure the uniaxial stress–strain behavior of such
a numerical system, we quasi-statically stretch it along the
chain direction, using the following protocol. We define two
numerical clamps, on the two faces where chains start and end.
In our geometry, these faces are normal to the x-direction. All
particles on the chain ends are subject to the corresponding
numerical clamp. Particles within the clamps may rotate. They
may also translate in the y- and z-directions, however, with the
constraint that the center-of-mass displacement of all particles
in a clamp is zero. This keeps the centers of the clamps fixed in
the yz-plane and prevents an overall rotation of the long axis of
the system. Finally, we prevent global rotations of the whole
system around its long axis at all times. For this purpose, at
each timestep, we determine the global rotational modes from
which the rotation is eliminated. Overall, this definition of the
clamps differs from our approach in ref. 31. There, the clamps
consisted of the complete outer 10% of the system at both ends,

that is, besides the particles also all matrix mesh nodes in these
volumes were included.

After switching on the magnetic moments, we perform an initial
equilibration process. During this period, the clamps are allowed to
relatively translate along the x-axis. However, the relative distance
between the particles in a clamp is kept constant along the
x-direction. Due to this initial equilibration, we can observe an
initial matrix deformation and define the resulting state as
unstretched. This sets the equilibrium distance L0 between the
clamps as the x-separation between the innermost clamped
particles. To apply a uniaxial strain, we increase the distance
between both clamps in small steps, displacing all clamped
particles uniformly. So we can define the uniaxial strain as
exx = DL/L0, where DL is the momentary increase in the distance
between both clamps. After each step, we equilibrate the sample
again under the constraint of keeping the x-positions of the
clamped particles fixed. Subsequently, we can extract the force
F that has to be applied to the clamps to maintain the system in
the prescribed strained state. We continue the stress–strain
measurements up to a maximum strain of DL/L0 = 150%
and then gradually unload the system again. To check the
reversibility of the deformation, we perform several loading
and unloading cycles.

3 Definition of the numerical systems

Within our numerical samples defined above, we distinguish
between two scenarios of how the magnetic moments are coupled
to the surrounding matrix via their carrying particles. Systems
showing the first one, which we term free systems, feature magnetic
moments that can freely rotate relative to the particle frames and
surrounding matrix, see also ref. 31. In this case, a reorientation of a
magnetic moment does not directly induce a deformation of the
matrix surrounding the carrying particle. Computationally, we treat
this system by keeping the orientations of the magnetic moments
and the orientations of the carrying particles as separate degrees of
freedom. During the initial equilibration, within the particles con-
stituting one chain, the magnetic moments tend to align parallel to
the chain axis. The magnetic moments within neighboring chains
have the tendency to align in opposite directions to minimize the
overall magnetic interaction energy. Fig. 2a illustrates this situation
by showing a snapshot of an equilibrated free system before
stretching. A cut along the cross-sectional center plane perpendi-
cular to the chain axes in Fig. 2a stresses the different alignment of
the magnetic moments in different chains.

In the opposite scenario, we assume that the magnetic
moments are fixed to the axes of the carrying particles, while
the particles are covalently embedded into the elastic matrix.
A torque on a magnetic moment is then equivalent to a torque
on the carrying particle, which in turn leads to a deformation
of the surrounding matrix. We mark these systems by the term
cov and represent them computationally by rigidly coupling the
magnetic moment orientations to the particles.

Consequently, the initial orientations of the magnetic moments
have a determining influence on the structure of the cov
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samples and, thus, on their stress–strain behavior. We distin-
guish between two sub-scenarios and term the corresponding
systems cov!! and cov#. In the cov!! systems, we define all
magnetic moments in the sample to initially point in the same
direction parallel to the chains. During the initial equilibration,
the orientations of the magnetic moments barely change as
particle rotations are energetically expensive. The magnetic
moments within all chains are still aligned in the same direc-
tion, see Fig. 2b for a snapshot. This is different in the

cov# systems: here we take the equilibrated state from the
free systems, but then fix the magnetic moments to the particle
axes before stretching the sample. As a result, the magnetic
moments are rigidly anchored to the carrying particles and are
arranged into the chains with alternating alignment, see again
Fig. 2a for a snapshot. The cov# system constitutes a case
in-between the free and cov!! systems. We can, therefore, use it
to test separately the effect of the two main modifications from
the free to the cov!! system: anchoring the magnetic moments
to the particle frames (free to cov#) and having all magnetic
moments point in the same direction (cov# to cov!!).

If we would apply an external magnetic field before the
magnetic moments are anchored, we would destroy the alter-
nating chain morphology that we want to study. Thus, when
studying the influence of an external magnetic field on these
alternating chain systems, we apply it after the magnetic
moments have been anchored. Subsequently, we reequilibrate
the systems under these new conditions before performing the
stress–strain measurement.

4 Results and discussion

In the following, we will present and discuss our results for
the three systems free, cov!!, and cov# as defined above. We
begin with vanishing external magnetic field and then proceed
to the situation of magnetic fields applied parallel and
perpendicular to the stretching direction. For each system and
each magnetic field, we show snapshots as well as the uniaxial
stress–strain curves and discuss the various mechanisms that
lead to our results.

Important insight can be gained by statistically analyzing
the orientations of the magnetic moments in the systems.
We evaluate them by considering the nematic order parameter
Sm, which is defined as the largest eigenvalue of the nematic
order parameter tensor75

Qm ¼
1

N

XN
i¼1

3

2
m̂i � m̂i �

1

2
Î

	 

: (6)

Here m̂i are the magnetic moment orientations of the N particles in
the system, � marks the dyadic product, and Î is the unity matrix.
Sm measures the degree of alignment of the input orientations
without distinguishing between orientation m̂i and its opposing
orientation �m̂i. Perfect alignment leads to Sm = 1, while in the
absence of global orientational order Sm = 0.

In addition to the magnetic order in the systems, also the
structural order contains useful information. It can be quanti-
fied in a very similar way by defining another nematic order
parameter tensor

Qr ¼
1

N

XN
i¼1

3

2
r̂i � r̂i �

1

2
Î

	 

: (7)

In this expression, r̂i is defined as the orientation of the
separation vector for each particle i to its nearest neighbor. Sr

is the largest eigenvalue of the tensor Qr. We find Sr = 1 when
all particles have their nearest neighbor along a common axis.

Fig. 2 Snapshots of characteristic samples containing chain-like aggre-
gates in the equilibrated unstretched state. The two displayed systems are
generated from the same initial placement of the rigid embedded particles.
Yet, the way of subsequent anchoring of the magnetic moments, here
indicated by small bar magnets, is different, leading to the two different
equilibrated states. The matrix was tessellated into a mesh of tetrahedra,
those faces of which that constitute the overall system boundaries are
depicted explicitly. (a) The free system, where the magnetic moments can
rotate freely with respect to the carrying particles. This leads to the opposite
alignment of the magnetic moments in different chains, as indicated in the
top right for the cross-sectional center plane perpendicular to the chain
axes. (b) Snapshot for the cov!! system, where the magnetic moments are
fixed to the particle axes, likewise including a cross-sectional cut. The
snapshot for the cov# system is by definition again the one shown in (a),
because in this system the magnetic moments are fixed to the particle axes
only after the initial equilibration in the free system.
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In the case of linear aggregates, this means that all aggregates
are aligned. Such a global structural order is absent for Sr = 0.

As will be revealed later in more detail, in the free system a
‘‘flipping mechanism’’31 plays an important role. ‘‘Flips’’ refer
to events during which some magnetic moments suddenly
change their direction with respect to the stretching axis
from parallel towards perpendicular. They are induced by the
stress-induced structural change in the system. To appropri-
ately characterize this flipping mechanism, we define special
modified nematic order parameters S̃m and S̃r as described here
for S̃m. First, to get rid of the distinction between different
perpendicular directions, we determine the projections m̂J

i of
the magnetic moment orientations m̂i onto the stretching axis
as well as the projections m̂>

i into the plane perpendicular to
the stretching axis. Then we define a two-dimensional nematic
order parameter tensor as

~Qm ¼
1

N

XN
i¼1

2 m̂
k
i

� �2
� 1 2m̂

k
i m̂
?
i

2m̂
k
i m̂
?
i 2 m̂?i

� �2 � 1

0
B@

1
CA (8)

and obtain S̃m as the largest eigenvalue of this tensor. Similarly,
we can determine the projections r̂Ji and r̂>i of the nearest-
neighbor separation vectors r̂i, define the tensor

~Qr ¼
1

N

XN
i¼1

2 r̂
k
i

� �2
� 1 2r̂

k
i r̂
?
i

2r̂
k
i r̂
?
i 2 r̂?i

� �2 � 1

0
B@

1
CA; (9)

and identify S̃r as its largest eigenvalue.

4.1 Vanishing external magnetic field (B = 0)

We now start by quasistatically stretching the three systems
along the chain axes in the absence of an external magnetic
field. The elongation is stepwise increased to a maximum and
then, in the inverse way, reduced back to zero. The necessary
forces on the clamps are recorded.

Fig. 3 shows the strongly nonlinear stress–strain behaviors
resulting for the three systems. In the beginning, all systems
show an almost identically steep increase of the stress with the
imposed strain. Then, from a strain of about DL/L0 E 10% up to
DL/L0 E 50%, a pronounced superelastic plateau follows. In
this regime, a small increase in the applied load leads to a huge
deformation that is completely reversible. The shape of the
superelastic plateau differs among the systems. In the cov!! and
cov# systems the plateau is almost completely flat. However, in
our strain-controlled measurements we find a regime of negative
slope76 for the free system. Moreover and in contrast to the
other systems, we here observe a considerable hysteresis for the
free system in the strain interval containing the superelastic
plateau. In all cases, subsequent to the plateau, the slope
partially recovers, becomes relatively constant, and does not
differ much among the different systems. Each stress–strain
curve is obtained by averaging the stress–strain curves resulting
from 20 different realizations that vary in the initial arrange-
ment of the chain-like aggregates, see Section 2. The standard
deviations are indicated by the shaded areas around the curves.

For the free system they are significantly larger than for the
other ones.

The main mechanism responsible for the nonlinearities in
all systems is a stress-induced detachment mechanism.31 We
briefly illustrate how it can lead to the change from the steep
slope at the origin of the stress–strain curve to the subsequent
superelastic plateau. Consider again the unstretched states
depicted in Fig. 2. In these states, the chains are contracted
because of the mutual attraction between the magnetic
moments of neighboring particles. Thus, the elastic material
in the gaps between neighboring particles on the same chain is
pre-compressed and the particles are close to each other. In this
situation, the dipolar attraction is strong, since its interaction
energy, see eqn (4), scales with the inverse cube of the distance.
To stretch the system, work has to be performed against this
strong attraction between the particles, which accounts for the
steep initial increase in the stress–strain curve. However, when
a section of a chain is detached a little from the remainder, the
attraction between both parts weakens considerably. Therefore,
once overcoming the magnetic barrier, the displaced chain
section can be detached from the remainder of the chain. Such
a detachment event releases the energy stored in the gap
between the detached particles and allows a sudden elongation
of the system.

Fig. 4a shows a snapshot of a free sample stretched by 35%,
illustrating this process. In the depicted situation, some particles
are detached from the chains with increased particle separation,
while smaller segments are still intact. Each individual detach-
ment event corresponds to a small localized drop in the stress–
strain curve. In a very small and ordered system, this would
lead to a spiky appearance of the stress–strain relationship as

Fig. 3 Uniaxial stress–strain curves for the free, cov!!, and cov#
systems, as well as for a corresponding system containing unmagnetized
particles (unmag) when stretching along the axes of the chain-like aggre-
gates. The magnetized samples show a superelastic plateau between
DL/L0 E 10% and DL/L0 E 50%. In this regime, they can be deformed by
a significant amount by only barely increasing the load. In contrast to
that, the curve for the unmagnetized case lacks this appealing feature. The
solid lines signify loading and dotted lines unloading processes, as in all
subsequent figures. In the free system, our curves show pronounced
hysteresis. Each curve results from averaging the curves obtained from
20 different initial particle distributions and the shaded areas illustrate the
corresponding standard deviations.
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we have demonstrated for a single chain in ref. 31. However,
averaging over the many detachment events that occur in a
larger, inhomogeneous system with many parallel chains yields
a smooth superelastic plateau as in Fig. 3. Upon unloading the
system, the individual particles can simply reattach, reform the
chains, and restore the energy in their separating gaps, so that
the detachment mechanism is reversible.

The second mechanism contributing to the observed super-
elasticity is the flipping mechanism. It only plays a significant
role in the free system. In the unstretched sample, the magnetic
moments align along the chain axes in a head-to-tail configu-
ration to minimize their magnetic interaction energy, see
Fig. 2. This situation changes when the sample is sufficiently
stretched in the direction parallel to the chains. The distances
between particles in the same chain eventually increase, see
Fig. 4a and ref. 31. Meanwhile, volume preservation in our
nearly incompressible systems enforces a contraction in the
perpendicular direction, driving different chains closer to each
other. Eventually, the interparticle distances in the parallel
and perpendicular directions become approximately equal
for subsets of particles. For the involved magnetic moments
this means a sudden change in their preferred orientation
from parallel to the stretching axis towards perpendicular. In
the free system, the moments can easily seize this opportunity
to minimize their magnetic interaction energy by sudden
reorientation. This constitutes a flip event.

Flips are associated with drops in the stress–strain curve
for the following reason. As long as the magnetic moments

participating in a flip event are still aligned parallel to the
stretching axis, their magnetic interaction energy increases
with the strain. However, once the flip has occurred and they
have aligned towards perpendicular, their magnetic interaction
energy decreases with the stretching. Therefore, during a flip
event, the slope of the magnetic interaction energy suddenly
changes for the participating magnetic moments. Since the
stress is the derivative of the energy with respect to the strain,
this causes a drop in the stress–strain curve. Or, discussing the
situation directly in the force picture: as long as the magnetic
moments align along the stretching axis, they counteract
the elongation, which requires a higher stretching force;
once they flip, they repel each other along the stretching
axis, which supports the elongation. In an inhomogeneous
sample, flips are local events and can occur over a wide range
of global strain magnitudes. As a result, the individual drops
are smoothened out in the stress–strain curves resulting from
our characteristic systems.

Consider again the snapshot in Fig. 4a. Compared to the
particles in the still intact chain parts, the detached particles
have a larger interparticle distance along the stretching axis and
their magnetic moments indeed prefer an orientation towards
perpendicular to this axis. When a detachment event occurs, the
corresponding sample section elongates, which can in turn trigger
flip events. Conversely, a reorientation of magnetic moments
towards the perpendicular direction can induce detachment.
So in our characteristic free systems, the detachment and
flipping mechanisms are intertwined. Yet, considering suitable

Fig. 4 (a) Snapshot of a free sample stretched by 35%. The freely rotating magnetic moments in this system can minimize their magnetic interaction by
aligning along the direction of shortest interparticle distance. When the sample is stretched, perpendicular directions become more and more favored,
because the interparticle distance within the chains is increased, while near-incompressibility of the sample forces neighboring chains to approach each
other. In the depicted situation, about half of the particles are detached from the chains, their magnetic moments having performed a flip from a direction
parallel to the stretching axis towards perpendicular. In the (b) cov!! and (c) cov# systems, rotations of the magnetic moments necessitate rotations of
the carrying particles, causing restoring torques by the surrounding matrix. Still, significant particle rotations can be observed in these samples stretched
by 100% with respect to the unstretched states in Fig. 2, caused, however, primarily by inhomogeneous deformations of the surrounding matrix due to
the particle embedding. (d) Snapshot of an unmagnetized (unmag) system starting from the same configuration. The bars indicate the initially horizontal
particle axes to illustrate the particle rotations. They show a similar pattern as the systems in (b) and (c) although magnetic interactions are absent.
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idealized model situations, both mechanisms can be studied in
isolation, see ref. 31. The interplay between both mechanisms
supports the hysteresis observed in our stress–strain curves for
the free system, see Fig. 3. The magnetic attractions pull the
particles together along the orientation of the magnetic
moments, which in turn self-strengthens the magnetic inter-
action. In this way, an energetic barrier is created that needs to
be overcome every time the magnetic moments are pulled apart
and flip, either during initial stretching, or in the flipped state
during unloading.

We can further quantify the flipping mechanism by statis-
tically analyzing the orientations of the magnetic moments.
Let us evaluate the nematic order parameters S̃m and S̃r defined
in eqn (8) and (9) as a function of the imposed strains.
S̃m measures the degree of alignment of the magnetic moments
and S̃r does the same for the separation vectors between
nearest-neighboring particles. The results are plotted in Fig. 5.
S̃m and S̃r (as well as Sm and Sr) are themselves per definition
obtained from averages, see eqn (6)–(9). We here take the sums
in these equations directly over all particles in all 20 different
realizations of each system. In this way, the deviations between
the different realizations are already contained in these order
parameters.

In Fig. 5, for low strains, magnetic moments are aligned
parallel to the stretching axis, because this is the direction
of smallest interparticle distance. Consequently the system is
in a state of high magnetic and structural order, reflected by
the high levels of S̃m and S̃r. Upon increasing the strain, the
interparticle distances in the stretching direction increase,
particles are detached and magnetic moments flip, taking the
system into a mixed state. S̃m and S̃r simultaneously decrease
and reach a minimum at DL/L0 E 35%, where they almost

vanish. This state is depicted in the snapshot in Fig. 4a, where
about half of the particles are detached from the chains
with their magnetic moments flipped towards a perpendicular
direction. From there on, both S̃m and S̃r increase again until
finally all particles are detached and all magnetic moments
have flipped. The strain regime where the order parameters
change significantly coincides with the position of the super-
elastic plateau in the stress–strain curve in Fig. 3. Finally, at
the highest strains, both order parameters again decrease
slightly when the lateral contraction of the system squeezes
the particles together. This causes them to evade each other
when they come too close and makes them shift relatively to each
other along the stretching axis, which disturbs the perpendicular
alignment. Also for the order parameters, we here observe again
the hysteresis discussed already in the context of the stress–
strain curves.

Let us now come back to the cov!! and cov# systems where
the magnetic moments cannot rotate relatively to the particle
frames. Then magnetic reorientations cost a significant
amount of elastic energy, as this requires a corotation of the
elastic matrix directly anchored to the particle surfaces. Fig. 4b
and c, show snapshots of the corresponding samples at a strain
of 100%. There we can nonetheless observe particle rotations.
These particle rotations, however, do not apparently lead to a
configuration that minimizes the magnetic interaction energy.
In fact, the primary reason for these rotations is not the
magnetic interaction between particles, but inhomogeneities
in the stiffness across the system. We recall that the particles in
our systems are rigid inclusions of finite extension. Consequently,
the particles are local sources of increased rigidity within the
soft elastic matrix. Already in an unmagnetized system, such
rigid inclusions lead to an overall stiffer elastic behavior of the
whole system.77–79 In our case, an increase of a factor of B7 in
the elastic modulus was observed.31 Placing the particles into
the randomly shifted chains when designing our systems adds
a certain randomness to the distribution of our localized
rigidities. When stretching the systems, the inhomogeneous
distribution of rigidity can lead to local shear strains that rotate
the embedded rigid particles. Of course, this does not require
the particles to be magnetized and occurs in unmagnetized
systems (m = 0) as well. In Fig. 4d we show a snapshot of an
unmagnetized system stretched by 100% for demonstration.
There we indicate the initially horizontal particle axes by bars
to visualize the particle rotations. The resulting patterns of
particle rotation are qualitatively similar to the ones in the
cov!! and cov# systems.

Again we use statistical analysis to further quantify the
particle rotations. Due to the different mechanism when com-
pared to the flipping process, we are here only interested in the
degree of alignment along the initial anisotropy axis. Therefore,
we use the nematic order parameter Sm defined in eqn (6) for
quantification. The results are plotted in Fig. 6a as a function of
the imposed strain for the free, cov!!, and cov# systems, as well
as for the unmagnetized (unmag) case. Let us first consider the
unmag system, where the initial horizontal particle axes, see
Fig. 4d, are used to calculate Sm. Up to a strain of DL/L0 E 35%,

Fig. 5 Degrees of magnetic order S̃m and structural order S̃r for the free
system, following the definition in eqn (8) and (9). For vanishing strain,
alignment along the initial anisotropy axis is preferred both magnetically
and structurally. When the strain is increased, detachment and flip events
occur and the system enters a mixed state where the parallel direction
becomes less dominant in favor of directions perpendicular to the
stretching axis. The minimum is reached at a strain of DL/L0 E 35%,
corresponding to the situation depicted in Fig. 4a. Subsequently, the
degrees of order increase again until all possible detachments and flips
have occurred. The hysteretic behavior observed for the stress–strain
curves in Fig. 3 shows up as well in the order parameters.
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particle rotations barely seem to occur, as Sm stays close to 1.
Then, there is a crossover to a regime of approximately linear
decay of Sm. The particles rotate more and more away from the
initial axes of alignment as a consequence of the inhomo-
geneous stiffness. The behavior in the cov!! and cov# systems
is very similar, the crossover to the regime of declining order
merely occurs at a higher strain of DL/L0 E 50%, which also
roughly marks the end of the superelastic plateau in Fig. 3. In
these systems, the dipolar magnetic interactions along the
initial, still intact chains counteract particle rotations and
stabilize the alignment up to higher strains. When the detach-
ment of the particles from the chains has been completed at
the end of the superelastic plateau, this stabilizing magnetic
interaction disappears, rendering the particles susceptible to

shear stresses originating from the system inhomogeneity. The
curve for the cov# system is always below the one for cov!!,
because already the initial unstretched state is less ordered, see
again Fig. 2.

The behavior of Sm for the free system is obviously completely
different and should rather be compared with S̃m in Fig. 5. Sm

shows a rapid initial decay up to a minimum and afterwards
recovers to reach a relatively low but constant level. This is despite
the fact that Sm, unlike S̃m, distinguishes between different direc-
tions perpendicular to the stretching axis. Therefore, beyond the
superelastic plateau, one particular axis perpendicular to the
stretching axis must emerge along which the magnetic moments
preferably align. Such a direction forms as nearby flipped magnetic
moments tend to align by magnetic dipolar interaction. In turn,
this favors further contraction along such an emerging axis of
alignment, providing a self-supporting mechanism. Inherent struc-
tural inhomogeneities will affect this mechanism.

The same analysis as for Sm can be conducted for the
nematic order parameter Sr of the separation vectors between
nearest neighbors. It is plotted for all systems in Fig. 6b.
Sr starts at a high value for all systems, because in the
unstretched state the nearest neighbor of each particle is always
along the chain. The more the sample is stretched, the more
the distances along the chains increase, while the distances
between separate chains decrease due to volume preservation.
Thus, it becomes increasingly likely that the nearest neighbor
for a particle is a member of a different chain. In the unmag
system, there is no stabilizing attractive interaction keeping the
chains together. So the minimum, where nearest-neighbor
directions predominantly switch, is reached relatively soon. In
the other systems, however, the magnetic attraction makes the
chains subject to the detachment mechanism. Segments detach
from the chains, while the remainder of the chains remains
intact. As a result, partial structural order is preserved up to
much higher strains. Again, the strain regime where Sr changes
a lot due to the changes in structural order coincides with the
strain interval of the superelastic plateau in the stress–strain
curves in Fig. 3.

Finally, we now also understand the different magnitudes
of the standard deviations for the displayed averaged stress–
strain curves in Fig. 3. Each curve is obtained by averaging
of 20 realizations of the particle arrangement. Differences in the
initial distribution of the chain-like aggregates lead to differences
in the thresholds for flip and detachment events as a major source
for the standard deviations. In the unmag system, neither the
detachment nor the flipping process is activated, consequently
the standard deviation is smallest. Intermediate magnitudes are
observed in the cov!! and cov# systems where the detachment
mechanism prevails and flipping is largely inhibited. In contrast
to that, the flipping mechanism is activated in the free system
and can also trigger detachment events, thus here the largest
standard deviations arise.

4.2 External magnetic field along the stretching axis (B = Bxx̂)

Upon applying an external magnetic field parallel to the chain and
stretching axes (the x-direction) when recording the stress–strain

Fig. 6 (a) Nematic order parameter Sm according to eqn (6) for the
magnetic moment orientations of the free, cov!!, cov# systems, as well
as for an unmagnetized (unmag) system as a function of the imposed strain
DL/L0. In the latter three systems, there is a regime of high Sm at low strains.
At a strain of DL/L0 E 35% in the unmag system and DL/L0 E 50% in the
cov!! and cov# systems, there is a crossover to a regime of declining
order, as inhomogeneous stresses begin to rotate the particles. In the free
system, again a minimum indicates the occurrence of flip events. The
recovery of Sm beyond the minimum shows that there is one globally
preferred perpendicular axis emerging subsequent to flipping. (b) Nematic
order parameter Sr according to eqn (7) for the nearest-neighbor separa-
tion vectors in the same systems. All curves have a minimum at the point
where the preferred directions switch from parallel to the stretching
axis towards perpendicular. In the magnetized systems, this minimum is
postponed to higher strains. In these systems, the detachment barrier and
magnetic interactions along the chains stabilize the chain structure, which
is then preserved up to higher strains.
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behavior changes the situation fundamentally in all three
systems free, cov!!, and cov#. In the free system, turning
on the field after the initial equilibration quickly causes all
magnetic moments to point in the same direction along the
field as opposed to the situation in Fig. 2a. There, the magnetic
moments carried by particles in different chains can show
opposite magnetic alignment. In the free system as well as in
the cov!! system, the field also introduces an additional
energetic penalty for the rotation of magnetic moments
away from the chain axes. The detachment mechanism is not
impeded by this, as it relies on the strong magnetic attraction
between close neighboring particles within the same chain
and the storage of elastic energy within the compressed gap
material. The magnetic moments are not rotated away from the
alignment along the chain axes during this process. In contrast
to that, the flipping mechanism is based on reorientations
away from the direction of the applied magnetic field and is,
therefore, affected by the aligning magnetic field. In the cov#
system featuring anchored magnetic moments of opposite
alignment, the external magnetic field has a particularly
interesting effect. Roughly half of the magnetic moments are

aligned with the field. The remaining moments are misaligned
and the corresponding particles would need to rotate by
about 180 degrees to minimize the interaction energy with
the external magnetic field.

Fig. 7 revisits our results for the free system for various
applied magnetic field strengths. The stress–strain curves in
Fig. 7a illustrate the tunability of the material.† Already a small
external magnetic field of Bx = 1B0 removes the dip at DL/L0 E 50%,
flattens the superelastic plateau, and also reduces the hysteresis
considerably. As noted in ref. 31, the dip was mainly generated
by flipping of magnetic moments. When a stronger field is
applied, the shape of the superelastic plateau becomes almost
identical to the one for the cov!! system in the case of vanishing
external magnetic field, see Fig. 3. The snapshot in Fig. 7b
shows a free system for B = 1B0 at a strain of DL/L0 = 100%. It
reveals that the magnetic moments do not perform complete
flips anymore and instead show oblique orientation angles.

Fig. 7 Results for the free system under the influence of an external magnetic field of varying strength, applied parallel to the stretching axis.
(a) Uniaxial stress–strain behavior.† The external field gradually deactivates the flipping mechanism. As a result the superelastic plateau is flattened, the dip
at DL/L0 E 50% and the hysteresis are removed until the behavior resembles the one for the cov!! system in Fig. 3 for vanishing external magnetic field.
For better visibility, only the maximum standard deviation on each curve is indicated by a bar where it occurs. (b) Snapshot showing a free system subject
to an external field of Bx = 1B0 at a strain of DL/L0 = 100%. Even in this highly strained state, the magnetic moments assume oblique angles instead of
performing full flips towards a perpendicular direction. (c) Degree of magnetic order S̃m and (d) degree of structural positional order S̃r as defined by
eqn (8) and (9), indicating the deactivation of the flipping mechanism with increasing Bx. The minimum in S̃m is gradually removed by the parallel external
magnetic field. Meanwhile, the minimum in S̃r is shifted slightly.

† In ref. 31, the magnetic field strengths in the figures containing stress–strain
curves were not scaled correctly. Instead of 10B0, 20B0, 30B0 it should read 1B0,
2B0, 3B0, respectively.
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In summary, the flipping transition and the connected bumps
in the superelastic plateau together with the hysteresis can be
deactivated by the field.

The plot in Fig. 7c of the nematic order parameter S̃m

quantifying the magnetic order in the system provides further
evidence that the field impedes the flipping mechanism. An
external magnetic field of Bx = 1B0 is sufficiently strong to
smoothen the sharp local minimum in S̃m corresponding to the
transition from a parallel state towards perpendicular magnetic
alignment with respect to the stretching axis. Stronger fields
enforce a parallel alignment, remove the local minimum in S̃m

and thus deactivate the flipping mechanism. Only the detach-
ment mechanism remains active. Meanwhile, the structural
positional order in the sample does not seem to be influenced
significantly by the external magnetic field, as the plots of the
nematic order parameter S̃r for the separation vectors between
nearest neighbors in Fig. 7d suggest. The minimum where the
most likely nearest-neighbor direction switches from parallel
towards perpendicular is shifted slightly. Beyond the minimum,
S̃r decreases with increasing Bx. This results from an arising
competition between two effects. On the one hand, due to overall
volume preservation, the particles are driven together along
the direction perpendicular to the stretching axis as before.
On the other hand, flips are hindered by the external magnetic
field, or even suppressed completely. Therefore, the magnetic
moments cannot support the perpendicular approach anymore
as efficiently, or even counteract it due to the magnetic repul-
sion when the magnetic moments are forced into the direction
of the external magnetic field. This also largely removes the
hysteresis from our curves.

Let us discuss the cov!! system next. The results are sum-
marized in Fig. 8. Fig. 8a shows the corresponding stress–strain
behavior. Up to the end of the superelastic plateau, the curves
for different external magnetic field strengths hardly differ.
This is not surprising, since we have established before that the
flipping mechanism plays no role for these systems and that
the detachment mechanism is not impeded by an external
magnetic field parallel to the chains. However, beyond the
plateau, where we have a regime of relatively constant increase
of the stress with the imposed strain, we can observe a stiffen-
ing of the system when a higher field strength is applied. Only
at very high strain, the slopes for all different field strengths
become similar again. The explanation for this stiffening
influence of the external magnetic field is the suppression of
magnetic moment reorientations and, thus, in this cov!! system,
of particle rotations. We have seen, however, in Fig. 4b that
such particle rotations would arise in the absence of a magnetic
field to minimize the elastic energy. Suppressing them increases
the necessary mechanical energy input into the system.
The snapshot in Fig. 8b shows a sample with an applied field
of Bx = 10B0 at a strain of DL/L0 = 100% for comparison with the
analogous situation in Fig. 4b for Bx = 0.

For a more quantitative analysis of the rotation effects, we
evaluate the nematic order parameter Sm of the orientations of
the magnetic moments as a function of the imposed strain, see
Fig. 8c. We can distinguish between two major regimes. In the

first one, the overall strain is still too low to induce significant
local shear deformations due to the inhomogeneities, thus, the
particles rotate only slightly and Sm remains at a high and
relatively constant level. However, in the second regime, we can
observe an approximately linear decay in Sm as the particles
begin to significantly rotate. In the absence of an external
magnetic field, the crossover between both regimes occurs at
the end of the superelastic plateau. There, the particles are
detached from the chains. This reduces the aligning magnetic
interactions and the particles become susceptible to rotations
due to the elastic inhomogeneities in the system. Interestingly,
increasing the strength of the external magnetic field can post-
pone the crossover far beyond this point by supporting the
magnetic moment orientations along the field direction. This
stiffens the system in two ways. First, the inhomogeneity shear
stresses are prevented from relaxing via the favored channel: the
rotation of particles. Second, the magnetic moments in the system
keep repelling each other perpendicular to the stretching axis,
which occurs against their perpendicular approach. The stronger
the external magnetic field strength, the longer the embedded
particles can resist a rotation, maintaining the stiffening effect.
For all considered magnetic field strengths, the particles even-
tually begin to rotate, as indicated by the crossover in Sm.
Therefore, the slopes of the stress–strain curves become similar
again at the maximum strain.

Finally, we show for completeness in Fig. 8d the nematic
order parameter Sr for the nearest-neighbor separation vectors
as a function of the imposed strain. Here, the curves for
different magnetic field strengths are largely similar.

Now we come to the cov# system and present the results in
Fig. 9. Before the external magnetic field is applied, these
systems are in a state like the one depicted in Fig. 2a. Roughly
half of the magnetic moments are aligned along to the mag-
netic field direction, while the other half is oppositely aligned
and tends to reorient to minimize the magnetic interaction
energy with the external field. This has implications on the
stress–strain behavior, as illustrated in Fig. 9a. For small field
strengths (Bx = 2B0), the behavior barely changes compared to
the case of vanishing external magnetic field. Then for inter-
mediate fields of Bx = 4B0, the steep increase at low strains as
well as the superelastic plateau become less pronounced.
Starting from a field of Bx = 6B0, the superelastic features
vanish altogether. An explanation is given in the following. As
long as the external field strength is low enough (Bx = 2B0), the
energy cost of misalignment is not particularly large for the
magnetic moments in the metastable configuration antiparallel
to the field. However, when increasing the external field, due to
imperfections in the initial antiparallel alignment, at some point
the magnetic particles can be rotated by a significant amount.
Then, the torques due to the external field get amplified, causing
the particles to rotate even further. At this stage, the reorienta-
tions of the misaligned moments together with their carrying
particles begin to distort the sample substantially. Obviously, for
the corresponding chains, the detachment mechanism will seize
to function at this point, but also the chains containing aligned
magnetic moments in the neighborhood will be disturbed.
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This chaotic situation is depicted in the snapshot in Fig. 9b for
an external magnetic field of Bx = 6B0 and a strain of 30%. One
can still identify the particles that have been aligned along the
field direction, but the corresponding chains are distorted. As a
result, the detachment mechanism is disabled and the super-
elastic plateau vanishes.

The plots of the nematic order parameters Sm and Sr in
Fig. 9c and d support this picture. For small magnetic field
strength of Bx = 2B0, Sm is still very similar to the case of
vanishing magnetic field. Further increasing the field strength
up to Bx = 6B0 promotes magnetic disorder in the system,
leading to an overall low level of Sm. From there on, the
level of Sm slightly increases with the magnetic field strength
as the orientations of the aligned magnetic moments are
stabilized by the field. The structural order measured by Sr

does not change too much as long as Bx t 4B0. Starting from
Bx \ 6B0, however, the misaligned magnetic moments are
rotated significantly and distort the system. The increased
magnetic order indicated by a higher level of Sm apparently
cannot prevent the structure from becoming more disturbed,
so that Sr is still lowered further.

In conclusion, the effect of an external magnetic field applied
parallel to the stretching axis varies substantially among the
different systems. In the free system, the main effect is the
deactivation of the flipping mechanism, which makes the stress–
strain behavior almost identical to the one of the cov!! systems
in the absence of an external magnetic field. Within the cov!!
system the superelasticity is barely affected. However, the
external magnetic field stabilizes the particle orientations at
strains beyond the superelastic plateau and thereby stiffens the
stress–strain behavior. Finally, in the cov# system the field
promotes a strongly disturbed structure by rotating particles
carrying magnetic moments misaligned with the field. As a
consequence, the detachment mechanism is disabled and the
superelastic plateau vanishes from the stress–strain curves.

4.3 External magnetic field perpendicular to the stretching
axis (B = Byŷ)

An external magnetic field applied perpendicular (here along
the y-axis) to the stretching axis attempts to rotate the magnetic
moments away from their attractive head-to-tail configuration
within the chains. This influence is strongest in the free system,

Fig. 8 Same as Fig. 7, but for the cov!! system. (a) The stress–strain curves for different external magnetic field strengths are almost identical up to the
end of the superelastic plateau. Beyond this point, higher field strengths increase the stiffness until at very high strains the slopes become similar again. (b)
Snapshot of a system at a strain of DL/L0 = 100% illustrating that a field of Bx = 10B0 can effectively prevent the particle rotations favored by local shears
due to the elastic inhomogeneities. Here, the internal shear stresses of the system cannot relax via particle rotations and the parallel magnetic moments
repel each other in the direction perpendicular to the stretching axis. Both effects stiffen the system against further elongation. (c) Nematic order
parameter Sm for the magnetic moment orientations. The external magnetic field can postpone the crossover to the regime of decreasing orientational
order, allowing for particle rotations and magnetic moment reorientations only at very high strains. (d) Here, the nematic order parameter Sr for the
nearest-neighbor separation vectors is barely sensitive to a change in the external magnetic field strength.
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where the magnetic moments are free to reorient to minimize
their magnetic energy. In the cov!! and cov# systems, how-
ever, rotations of the magnetic moments are counteracted by
restoring torques on the embedded particles due to the other-
wise induced deformation of the surrounding matrix.

Let us again discuss the free system first. We present the
results in the same fashion as before for the parallel field. Fig. 10a
shows the resulting stress–strain behavior.† The perpendicular
field has two effects. First, it influences the superelasticity,
causing the plateau to be confined to a smaller strain interval.
Second, it lowers the initial slope of the stress–strain curve.
At a high enough magnetic field strength, the superelastic
nonlinearities are switched off completely together with the
hysteresis, and the stress–strain curve becomes ordinary.

To understand this behavior, it is first noted that the
perpendicular magnetic field shifts the flipping mechanism
to smaller strains. This is intuitive, as the external magnetic
field energetically supports flips to a direction perpendicular to
the stretching axis. Analysis of the nematic order parameters S̃m

and S̃r in Fig. 10c and d, respectively, confirms this expectation.

The regime of mixed orientations centered around the mini-
mum in S̃m is shifted to lower strains by the field. In this
regime, some of the magnetic moments are still aligned along
the chains, while others have already flipped. Meanwhile, S̃r is
strongly correlated with S̃m. This indicates that the external
magnetic field does not only influence the flipping mechanism,
but also the detachment mechanism. As noted before, flip
events trigger detachment events and vice versa. Reoriented
magnetic moments do not feel a strong attraction along the
stretching axis that could keep the carrying particles attached
to the chains. So the threshold strains for both mechanisms are
lowered at the same time.

This shift of threshold strains can cause the system to enter
a mixed state already without any external strain imposed. The
snapshot in Fig. 10b shows a situation of By = 2B0. Although the
system is unstretched in the depicted case, a significant
amount of particles has already detached from the chains.
Their magnetic moments are aligned along the field direction,
perpendicular to the chain axis. So the fraction of particles
that can still perform detachment or flip events is lowered.

Fig. 9 Same as Fig. 7 but for the cov# system. (a) Uniaxial stress–strain behavior. Applying an external magnetic field parallel to the stretching axis
gradually removes the pronounced nonlinearity. (b) Snapshot of a cov# system under the influence of an external magnetic field of Bx = 6B0 at a strain of
DL/L0 = 30%. The particles carrying the misaligned magnetic moments are strongly rotated towards the external magnetic field and distort their
environment in the process, which also affects the chains containing the particles of aligned magnetic moments. As a result, the detachment mechanism
is mostly deactivated. (c) Nematic order parameter Sm for the magnetic moment orientations. Increasing the strength of the external magnetic field first
lowers the overall Sm due to the rotations of particles carrying misaligned magnetic moments and due to the resulting distortions of the rest of the
system. At high field strengths, Sm increases slightly with Bx, as the orientations of the aligned magnetic moments are stabilized. (d) The structural order in
the system measured by Sr is not influenced strongly as long as Bx t 4B0. Beyond that field strength, however, it significantly decreases because of the
induced rotations of the particles carrying misaligned magnetic moments.
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As a result, the features corresponding to both mechanisms are
less pronounced in the stress–strain curves. Also the initial slope
is lower, because there is less overall magnetic attraction along the
stretching direction counteracting the elongation. Consequently,
the superelastic plateau spans a smaller strain interval.

We now proceed to the results for the cov!! system as shown
in Fig. 11. In the case of vanishing external magnetic field, this
system features global polar magnetic order in the x-direction,
see again Fig. 2b. Applying an external magnetic field perpendi-
cular to the stretching axis leads to a new state of rotated
global polar magnetic order. Fig. 11b shows a snapshot of an
unstretched system subject to a strong external magnetic field
of By = 10B0. The magnetic moments, together with the carrying
particles, are rotated towards a configuration of collective polar
alignment oblique to the external magnetic field. This occurs
against the strong magnetic attractions within each chain and
the necessary elastic deformation of the matrix between the
particles. The rotations of individual particles are energetically

expensive. In fact, the system partially avoids these expensive
rotations by allowing chain segments to rotate as a whole
towards the field. Undulations and buckling of the chains80

then lead to a compromise between the minimization of the
elastic and magnetic parts of the total energy.

Either way, the magnetic dipolar attraction between neigh-
boring particles along the stretching direction is weakened,
which impedes the detachment mechanism. So the influence of
the perpendicular external magnetic field on the stress–strain
behavior is again a gradual removal of the superelastic plateau,
as illustrated in Fig. 11a. A stiffening of the stress–strain
behavior beyond the superelastic plateau, as in the case of a
parallel external magnetic field, however, cannot be observed.
Contrary to the parallel magnetic field, the perpendicular
magnetic field breaks the uniaxial symmetry of the system
and offers a distinctive direction for the particles to rotate
towards. As can be deduced from the nematic order parameter
Sm of the magnetic moments plotted in Fig. 11c, the perpendicular

Fig. 10 Results for the free system under the influence of an external magnetic field of varying strength perpendicular to the stretching axis. (a) The
superelastic stress–strain behavior can readily be tuned.† Increasing the field gradually removes the superelasticity and lowers the slope of the initial
steep increase. A field of By = 3B0 is already strong enough to remove all superelastic nonlinearities. The maximum standard deviation on each curve is
indicated by a bar where it occurs. (b) Snapshot of an unstretched sample with an applied external magnetic field of By = 2B0. A significant portion of the
particles is already detached, their carried magnetic moments already flipped. As a consequence, the detachment and flipping mechanism have less
impact on the stress–strain behavior, and superelastic as well as hysteretic features are reduced. (c) Degree of magnetic order S̃m and (d) degree of
structural order S̃r using the definitions in eqn (8) and (9). Both order parameters are again strongly correlated. Increasing the magnetic field strength
shifts the local minimum marking the regime of mixed orientations to lower strains. That is, the threshold strains for detachment and flip events are
lowered, with many events having occurred already in the unstretched state. This limits the amount of events that can still take place when the sample is
stretched. At By = 3B0, the pronounced minima of S̃m and S̃r have vanished as all magnetic moments are already reoriented in the unstretched state.
Therefore, there are no remaining flip or detachment events already in the unstretched state and, as a consequence, superelasticity is switched off.
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external field aligns the particles very effectively even up to
the highest considered strains. Differences in the rotations of
the particles due to elastic inhomogeneities can, thus, be
prevented. A field of By = 2B0 is already quite successful in this
respect, using stronger fields does not significantly increase
the effect much further. The magnetic moments are no longer
pointing in the same direction along the stretching axis.
Therefore, the mutual repulsion between magnetic moments
perpendicular to the stetching axis is reduced and does not
counteract an elongation of the system any more. Thus, there is
no significant stiffening of the stress–strain behavior when
changing the external magnetic field strength.

We also plot the nematic order parameter Sr of the nearest-
neighbor separation vectors in Fig. 11d. For By = 0, Sr is at a
high level for low strains, where it is most likely that the nearest
neighbor of a particle is located along the stretching axis
within the same chain. Then Sr quickly drops as the chains
are stretched out and subsequently remains at a low level.
When a perpendicular magnetic field is applied, such a drop of
Sr never occurs. It remains likely that the nearest neighbor of a

particle is within the same chain for the whole considered
range of strains. This reflects again the tendency of whole chain
segments to rotate as one unit towards the field, staying
structurally intact and creating the partial structural order
reflected by Sr.

Let us finally discuss the cov# system under the influence
of a perpendicular external magnetic field. Contrary to the case
of a parallel external magnetic field, there are no particles that
are aligned opposite to the external field. All particles can in
principle rotate equally easily into the external magnetic field
direction. However, the initial orientation of the magnetic
moment of a particle determines the sense of rotation towards
the field. Neighboring chains with opposing alignment of
the magnetic moments show opposing sense of rotation. As a
consequence, in contrast to the cov!! system, the rotations of
the complete chain segments towards the magnetic field
are largely blocked. Instead, the particles within the chains
individually rotate towards the external field, as depicted in the
snapshot of an unstretched sample in Fig. 12b. Here, the
external magnetic field of By = 10B0 has rotated the particles

Fig. 11 Same as Fig. 10, but for the cov!! system. (a) The superelasticity in the stress–strain behavior can again be deactivated by a perpendicular
external magnetic field, but only at significantly higher field strengths. (b) Snapshot showing the unstretched state of a system under the influence of a
field of By = 10B0. The system enters a new state of global polar magnetic order, with magnetic moments aligned oblique to the external magnetic field.
Energetically expensive rotations of individual particles are avoided, instead whole chain segments rotate as one unit. (c) Plot of the nematic order
parameter Sm for the magnetic moment orientations demonstrating that already a moderate magnetic field strength can maintain a state of global polar
magnetic order up to the maximum elongation. (d) Nematic order parameter Sr for the nearest-neighbor separation vectors. When the external magnetic
field is weak, Sr is high at low strains and then drops to a low and relatively constant level. A strong field removes this large drop so that a relatively
constant intermediate level of structural order remains at all strains. This indicates again the tendency of whole chain segments to rotate as one unit,
creating a principal axis of structural order oblique to the external magnetic field direction and the initial chain axes.
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by a significant amount, but the chains are still relatively
ordered and aligned along the stretching axis. Depending on
their initial alignment, the magnetic moments together
with their carrying particles rotate either clockwise or counter-
clockwise towards the field. In this way, there are two competing
magnetic polarities in the system, with roughly the same
y-component but oppositely signed x-components. The result-
ing stress–strain behavior is plotted in Fig. 12a and reveals an
influence of the external magnetic field very similar to the cov!!
system. Increasing the magnetic field strength rotates the
particles further and weakens their attraction along the stretching
axis. This gradually disables the detachment mechanism and,
therefore, removes the superelastic plateau from the stress–
strain curve. Again, we cannot observe significant stiffening
of the system at high strains when increasing the external
magnetic field strength, for the same reasons as in the cov!!
system.

The two competing magnetic polarities are reflected by
the nematic order parameter Sm plotted in Fig. 12c. In the
unstretched state, when neighboring particles in a chain are
close to each other, their magnetic interaction intensifies an
alignment of the magnetic moments parallel to the stretching
axis. The magnetic field, however, urges the differently orien-
tated magnetic moments and their carrying particles to rotate
out of their common initial axis of alignment. More precisely,
for magnetic moments of opposite initial orientation, this leads
to opposite senses of rotation, which destroys the overall
nematic alignment. At low field strengths the particles rotate
only slightly in the unstretched state, so that Sm is initially high.
Stronger fields are able to rotate the particles further, see again
Fig. 12b, leading to the formation of a lower value of Sm at zero
strain. With increasing strain, the magnetic interactions between
neighboring particles in a chain are weakened due to their
increased separation. The particles become more susceptible to

Fig. 12 Same as Fig. 10, but for the cov# system. (a) The stress–strain behavior responds to the external magnetic field in a very similar way as for
the cov# system. Increasing the field strength gradually removes the superelastic nonlinearity. (b) Snapshot of an unstretched system with an
applied external magnetic field of By = 10B0. There are two competing polarities for the magnetic moments, sharing a common y-component but with
opposite x-components. (c) Quantification of the magnetic order in the system via the nematic order parameter Sm for the magnetic moment
orientations. When the magnetic field strength and the strain are low, the two opposing polarities that are not aligned along a common axis compete,
and Sm is a decreasing function of the strain. The higher the magnetic field strength and the higher the strain, the more the magnetic moments are
rotated. Eventually, the magnetic field direction is preferred over the stretching axis by both polarities and Sm becomes an increasing function of
the strain. For By \ 8B0 this is already the case in the unstretched state, which is consistent with the observation that the corresponding stress–strain
curves do not show superelasticity anymore. (d) Nematic order parameter Sr for the nearest-neighbor separation vectors, quantifying the structural order.
The minimum in Sr shifts to lower strains when increasing the field strength and the overall value beyond the minimum is increased. This is simply a
consequence of the particle rotations that lead to less magnetic attraction between particles along the stretching axis and to more attraction along the
magnetic field direction.
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rotations by the magnetic field. Thus, a decrease in Sm can be
observed. Sm increases again when the y-direction becomes
predominant for all magnetic moments so that they again align
along a common axis. At even stronger fields of By = 8B0 and
By = 10B0, the y-direction is prevalent at all strains, so that Sm is
monotoneously increasing. This is in agreement with the
observation, that for these magnetic field strengths superelastic
features in the stress–strain curves are absent.

Finally, we show in Fig. 12d the nematic order parameter Sr for
the nearest-neighbor separation vectors. The minimum in each
curve indicates the point where it becomes more likely for particles
to find their nearest neighbors in a direction perpendicular to the
stretching axis than parallel. For low field strengths, this structural
bias along the perpendicular axis is not very distinctive. Increasing
the field strength, however, shifts the minimum to lower strains
and increases the value of Sr at higher strains. This is intuitive,
because for stronger magnetic fields there is simply less attraction
within individual chains along the stretching axis and more
attraction perpendicular to the stretching axis between reoriented
particles belonging to different chains.

In summary, the main effect of the perpendicular external
magnetic field in all systems is the gradual removal of the super-
elastic plateau from the stress–strain curves. This is mainly caused
by the rotation of the magnetic moments in the direction of the
magnetic field. When the magnetic attraction disappears between
neighboring particles along the stretching axis, the detachment
mechanism seizes to function. In the free system, magnetic
moment reorientations can be achieved exceptionally easily (see
the different scales for By in Fig. 10–12), making this system highly
susceptible to the perpendicular external magnetic field. Together
with the detachment mechanism, also the flipping mechanism is
gradually deactivated. In the cov!! system rotations of the mag-
netic moments are harder to achieve and require significantly
stronger magnetic fields. We can observe collective rotations of the
particles such that global polar magnetic ordering is preserved
with all magnetic moments aligned oblique to the external field.
Furthermore, these systems avoid the energetically expensive
rotations of individual particles by allowing whole segments of
the chains to rotate towards the external magnetic field as one
unit. As a result, the chains buckle and undulate as a compromise
between minimizing the magnetic and elastic energetic contribu-
tions. Finally, the cov# system behaves quite similarly concerning
the influence of the external field on the stress–strain behavior.
However, here the particles do rotate individually towards the field,
facilitated by the initially opposite magnetic alignment in different
chains. During the rotation process, the opposing magnetic align-
ments lead to two separate polarization directions of the magnetic
moments. Altogether, in both cov systems, particle rotations
induced by elastic inhomogeneities of the system are effectively
superseded by particle rotations due to the external magnetic field.

5 Conclusions

We have numerically investigated the stress–strain behavior of
uniaxial ferrogel systems. Our anisotropic numerical systems

consist of chain-like aggregates of spherical colloidal magnetic
particles that are embedded in an elastic matrix of a cross-
linked polymer. The particles are rigid and of finite size, while
the matrix is treated by continuum elasticity theory. In experi-
mental situations, chain-like aggregates can be generated by
applying a strong homogeneous external magnetic field during
synthesis. We have considered three different realizations
of such uniaxial ferrogel systems. The free system features
magnetic moments that can freely reorient with respect to the
frames of the carrying particles and the surrounding matrix. In
contrast to that, in the cov!! system the magnetic moments are
fixed with respect to the axes of the carrying particles. In
addition, the particles are covalently embedded into the matrix:
particle rotations require corotations of the directly surrounding
elastic material, leading to matrix deformations and restoring
torques. Initially, all magnetic moments point into the same
direction along the chain axes. The third system is the cov#
system, where the magnetic moments are likewise firmly anchored.
However, initially the magnetic moments on different chains
can point into opposite directions along the chain axes.

When we stretch these systems along the chain axes, a
pronounced nonlinearity in the stress–strain behavior appears.
It has the form of a superelastic plateau, along which the
samples can be strongly deformed while barely increasing the
load. The deformation is reversible and the shape and intensity
of the superelastic plateau can be reversibly tailored by external
magnetic fields. There are two stretching-induced mechanisms
that enable superelasticty. The main mechanism is a detach-
ment mechanism and is active in all systems. It relies on
the strong magnetic dipolar attraction between neighboring
particles within one chain as long as the magnetic moments
align along the chain axis. At certain threshold strains, parts of
the chain can detach, leading to a local elongation of the
system. This leaves the remainder of the chain intact until
the next detachment event is triggered. Besides, a flipping
mechanism corresponding to reorientation events of magnetic
moments is only active in the free system, where the magnetic
moments can easily rotate. A flip event occurs when elongation
of the system causes positional rearrangements such that for a
subset of magnetic moments a new orientation is suddenly
rendered energetically more favorable.

The inhomogeneous distribution of the rigid inclusions in
our samples results in regions of elevated stiffness. At high
strains, this leads to the formation of local shears that rotate
the embedded particles. This is especially apparent in the cov!!
and cov# systems and influences their stress–strain behavior.

Our systems can be reversibly tuned by an external magnetic
field as follows. If the field is applied parallel to the chain axes,
the detachment mechanism is not affected in the free and
cov!! systems, so that the superelastic plateau remains intact.
However, in the cov# system the particles carrying misaligned
magnetic moments are forced to rotate. The corresponding
chains are strongly distorted, which perturbs the neighboring
chains carrying aligned magnetic moments as well. This weakens
the required magnetic attractions along the stretching axis
that are vital for a pronounced detachment mechanism and
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removes the superelasticity from the stress–strain curve of
the cov# system. Moreover, in the free system the flipping
mechanism can be deactivated as well, as the aligning external
magnetic field hinders the reorientation of magnetic moments.
Consequently, the related features are removed from the stress–
strain behavior, leaving only a flat plateau caused by the
detachment mechanism. Finally, in the cov!! system, the
external field parallel to the chains has another interesting
effect. We can observe a stiffening of the system when increas-
ing the field strength at high strains beyond the superelastic
plateau. In this situation, all particles have been detached from
their chains, leaving them particularly susceptible to rotations
due to shears caused by the elastic inhomogeneity of the
system. Since the external magnetic field introduces an ener-
getic penalty for particle rotations, the intrinsic inhomogeneity-
caused shear stresses cannot relax via particle rotations and the
magnetic moments remain parallel to each other. The parallel
magnetic moments repel each other in the direction perpendi-
cular to the stretching axis and, thus, work against the volume-
conserving stretching deformation. In combination both effects
increase the stiffness of the system.

When instead the magnetic field is applied perpendicular to
the stretching axis, the detachment mechanism is weakened in
all three systems due to an induced rotation of the magnetic
moments towards a configuration which is repulsive along the
stretching axis. In this way, the superelastic plateau can be
gradually removed from the stress–strain curve by increasing
the field strength. This works exceptionally well in the free
system, where the magnetic moments are not anchored to
the particle frames and the flipping mechanism is likewise
weakened. In contrast to that, in the cov!! and cov# systems,
even a strong external magnetic field cannot rotate the magnetic
moments completely. While in the cov!! system, the magnetic
moments feature a global polar magnetic alignment oblique to
the external magnetic field, the two opposite initial magnetic
alignment directions in the cov# system lead to two separate
polar alignment directions, each of them oblique to the external
magnetic field.

Our effects rely on the sufficiently strong magnetic interac-
tions in our systems when compared to the elastic interactions.
To achieve this experimentally, the remnant magnetization
of the particle material should be as high as possible. For
example, NdFeB can easily exceed 2 � 105 A m�1.81 At the same
time, the elastic matrix into which the particles are embedded
should be soft. Fabrication of matrices with E t 103 Pa is
possible using silicone10,82,83 or polydimethylsiloxane.80 With
these materials, our assumed value of m = 10m0 can be achieved
and is, therefore, experimentally realistic. Also the highest
considered magnetic field strength of B = 10B0 corresponding
to 100 mT is readily accessible. We stress that the behavior of
our systems does not depend on the length scale of the problem.
In an experiment, this freedom can for instance be exploited to
adjust the particle size to the effect under investigation. For
example, the free system could be realized by relatively small
particles where the Néel mechanism53 is active and the mag-
netic moments can rotate relatively to the particle frame.

Increased particle size would be necessary for the generation
of the cov!! and cov# systems.

The free and cov!! systems can be generated by applying an
external magnetic field during synthesis to form the embedded
chains40–43 from Néel-type particles53 and from monodomain
particles of larger size, respectively, possibly by covalently
anchoring appropriately sized particles into the matrix.58–61 For
small Néel-type particles, typically of sizes up to 10–15 nm,
thermal fluctuations become important. These can suppress
the hysteretic behavior as well as the negative slope associated
with the dip in our stress–strain curves. Overall, these fluctua-
tions will smoothen the bumps along the plateau, leading to a
flatter appearance. Free systems of larger particle size could be
realized e.g. using so-called yolk–shell colloidal particles55,56 that
consist of a magnetic core rotatable within a shell. To realize the
cov# system, electro-magnetorheological fluids84–86 could be
used as a precursor of the anisotropic ferrogel. In such a system,
an external electric field can be applied to induce the chain
formation of the electrically polarizable magnetic particles, while
still allowing for opposite alignments of the magnetic moments
in separate chains. Subsequent cross-linking of the surrounding
polymer with covalent embedding of the particles should lock
the chain structures together with their oppositely directed
magnetic alignments into the emerging matrix. The result would
be an anisotropic ferrogel with the desired cov# morphology.
Possible real example systems that could be analyzed experi-
mentally in view of our effects are discussed in ref. 37, 38, and
80. When measuring the stress–strain behavior, instead of
stretching the sample longitudinally, due to the overall volume
preservation, it can also be compressed from the sides. This
enables the use of experimental compression devices, see e.g.
ref. 87–89. Qualitatively the same effects should be induced.

We have assumed permanent magnetic dipoles carried by
spherical particles in this work. The particles are arranged in
characteristic chain-like structures. Possible quantitative refine-
ments comprise extensions beyond the permanent point-dipole
picture90–92 or to elongated, non-spherical particles.60,61,93,94

However, the main mechanism leading to superelastic behavior
in our systems is the detachment mechanism for which only
strong attraction at short distances between the neighboring
particles along the stretching axis is necessary. This kind of
attraction can likewise be realized for soft magnetic particles
magnetized by an external field. The same mechanism could
also be realized for nonmagnetic attractive interaction forces.
An example is given by electrostatic interactions for particles
sufficiently polarizable by an external electric field.84,85,95 To be
able to directly transfer our results to the electrostatic case,
these samples need to be sufficient electric isolators. Otherwise
electric currents would possibly need to be included into our
description. Moreover, also the flipping mechanism could be
initiated for soft magnetic particles from outside, when the
direction of a magnetizing external field is switched at the
corresponding imposed strain.

Particles used in experimental ferrogel systems are often
polydisperse and of irregular shape.37 While variations in the
particle size and shape should not principally impede our
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mechanisms, strong polydispersity may mask the resulting
effects. This occurs if they are too broadly distributed along
the stress–strain curve and do not occur within a narrow
enough strain interval. Another point is the morphology of
the chain-like aggregates. To observe the basic phenomenology,
they do not necessarily need to span the whole system. In the
most basic opposite situation, embedded pair aggregates would
be sufficient.90 Also the chains do not need to be as perfectly
straight as considered here but could for example be slightly
wiggled. However, when the wiggling becomes too strong,
qualitative variations in the material behavior should arise as
discussed in ref. 8. Finally, here we have considered a meso-
scopic representative volume element. Macroscopic experi-
mental measurements would include many of these volume
elements and average over them. To investigate a system of the
same size as in our simulations in an experiment, either large
particles can be used as our results are scale invariant, or the
stress–strain behavior of a mesoscopic sample volume could be
measured using a piezorheometer.35,42 On the theoretical side,
a connection to continuum descriptions on the macroscopic
scale shall be established in the future.4,36,96

Exploitation of the described reversibly tunable nonlinear
stress–strain behavior of our systems should enable a manifold
of applications. When a pre-stress is applied to the material,
such that it is pre-strained to the superelastic regime,
it becomes extremely deformable.97 This is an interesting
property for easily applicable gaskets, packagings, or valves.24

Moreover, in such a state, the ferrogel can be operated as a
soft actuator,22,23,25–27 as external magnetic fields can trigger
significant deformations. Passive dampers based on superelastic
shape-memory alloys are already established98,99 and utilize
hysteretic losses under recoverable cyclic loading to dissipate
energy. Our results for the free system might stimulate
the construction of analogous soft passive dampers with the
additional benefit of being reversibly tunable from outside.
Finally, the typically increased biocompatibility of polymeric
materials allows for medical applications exploiting the above
features, e.g., in the form of quickly fittable wound dressings,
artificial muscles,100,101 or tunable implants.50,51
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Schmidt, Phys. Chem. Chem. Phys., 2015, 17, 1290–1298.

62 R. Weeber, S. Kantorovich and C. Holm, J. Magn. Magn.
Mater., 2015, 383, 262–266.

63 C. Geuzaine and J.-F. Remacle, Int. J. Numer. Meth. Eng.,
2009, 79, 1309–1331.

64 B. N. Delaunay, Bull. Acad. Sci. USSR, 1934, 793–800.
65 S. Hartmann and P. Neff, Int. J. Solids Struct., 2003, 40,

2767–2791.
66 L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Else-

vier Science, 2012.
67 G. Irving, J. Teran and R. Fedkiw, Graph. Models, 2006, 68,

66–89.
68 J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem.

Phys., 1971, 54, 5237–5247.
69 E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and

P. Gumbsch, Phys. Rev. Lett., 2006, 97, 170201.
70 W. W. Hager and H. Zhang, Pac. J. Optim., 2006, 2, 35–58.
71 G. Diguet, E. Beaugnon and J. Cavaillé, J. Magn. Magn.
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1. Introduction

Classical density functional theory for inhomogeneous fluids 
is nowadays used for many-body systems governed by a pair 
potential (such as hard or soft spheres) and has found wide-
spread applications for phase separation, freezing and inter-
facial phenomena, for reviews see [1–4]. In a corresponding 
one-component system, though classical, the particles are 
indistinguishable in principle according to standard statistical 
mechanics [5], which implies that the interaction between two 
particles is the same for any pair of particles provided they are 
at the same separation. This standard assumption breaks down 
for particles embedded in an elastic polymeric gel, if the parti-
cles are anchored to the surrounding gel matrix and/or cannot 

diffuse or propagate through it. In this case, the particles can 
be labeled according to their position in the matrix with their 
interaction energy persistently depending on the labeling. 
Thus, they are distinguishable. As a basic example, this situa-
tion is encountered for a simple bead-spring model, where the 
springs represent the elasticity and connectivity provided by 
the matrix and the beads represent the particles.

Particle distinguishability leads to a different combinato-
rial prefactor in the classical partition function and therefore 
affects the entropy [6]. However, at high density, a fluid of 
indistinguishable particles typically undergoes a freezing 
transition into a crystal. At low temperature, this crystal can 
be modeled by a harmonic solid [7–9], where the neighboring 
particles are connected by springs. In fact, this effective model 
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Abstract
Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. 
As a consequence, their structural and rheological properties are governed by a competition 
between magnetic particle–particle interactions and mechanical matrix elasticity. Typically, 
the particles are permanently fixed within the matrix, which makes them distinguishable by 
their positions. Over time, particle neighbors do not change due to the fixation by the matrix. 
Here we present a classical density functional approach for such ferrogels. We map the elastic 
matrix-induced interactions between neighboring colloidal particles distinguishable by their 
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a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for 
one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use 
the pseudopotential as an input into classical density functional theory of inhomogeneous 
fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In 
addition, we propose the use of an ‘external pseudopotential’ when one switches from the 
viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded 
in an infinitely extended bulk matrix. Our mapping approach paves the way to describe 
various inhomogeneous situations of ferrogels using classical density functional concepts of 
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of distinguishable particles provides a good approximation 
as the free energy of the system is dominated by the particle 
interactions that overwhelm the combinatorial contribution.

In the present paper, we exploit this idea to introduce a 
density functional approach for ferrogels and related sys-
tems. Such ferrogels consist of magnetic colloidal parti-
cles that are embedded in a polymeric gel matrix [10–14]. 
Examples of similar materials are given by magnetic elasto-
mers, magnetorheological elastomers, or magnetosensitive 
elastomers, where often these terms are used interchange-
ably. Remarkably, the structural properties and rheological 
behavior of these mat erials are governed by a competi-
tion between the magnetic particle–particle interactions 
and the mechanical elasticity of the embedding polymeric 
gel matrix. As a consequence, it is possible to tune their 
properties during application by modifying the magnetic 
interactions via external magnetic fields. Therefore, these 
magnetorheological systems have many prospective and 
promising applications, such as tunable dampers [15] or 
vibration absorbers [16].

The theoretical description of these materials is chal-
lenging. While the specific properties arise on the mesoscopic 
colloidal particle scale, for practical applications one is inter-
ested in the overall macroscopic response. To connect these 
scales in simulations, large numbers of individual particles 
need to be covered. For this purpose, recent work has focused 
on simplified minimal models. Starting on the microscale, at 
most a few individual polymer chains are resolved by coarse-
grained bead-spring models [17–19]. In still more reduced 
mesoscopic dipole-spring models, the elasticity of the matrix 
is directly represented by effective spring-like interactions 
between the particles, combined with long-ranged magnetic 
dipolar interactions between them [20–24]. More explicit 
approaches treat the matrix directly by continuum elasticity 
theory, yet at the price of reduced accessible overall particle 
numbers [25–28]. A kind of compromise between the two 
concepts can be found in [29] and [30]. Previous analytical 
approaches to link the different scales often relied on sub-
stantially simplifying idealizations concerning the positional 
particle configurations [31–33]. Therefore, it is desirable to 
develop statistical means that allow for a more profound con-
nection between the different scales in the future. As a step 
in this direction, we now suggest to employ the framework 
of classical density functional theory for a characterization of 
these complex materials.

Here we mainly follow the dipole-spring concept of distin-
guishable particles often used for the description of ferrogels. 
In order to keep the models simple, we study effective one-
dimensional set-ups. Such a situation is realized, for instance, 
for elongated magnetic particle chains embedded into an elastic 
matrix [34], but also for magnetic filaments [35] made, e.g. of 
magnetic colloidal particles connected by DNA polymer strands 
[36]. We map this system with its particle-distinguishing con-
nectivity onto another one with an effective connectivity and 
indistinguishable particles [37]. Based on the considerations 
above, one expects a good agreement between real and effective 
connectivity at least for strong particle–particle interactions. We 
use Monte-Carlo computer simulations of both situations and 

confirm that the results agree at high packing fractions and/or 
strong particle interactions. This opens the way to employ statis-
tical-mechanical theories like classical density functional theory 
to also describe systems of particles that are, in principle, dis-
tinguishable. For the one-dimensional model, we use the exact 
Percus free-energy functional for hard rods [38] combined with 
a mean-field theory for the elastic and dipolar interactions and 
minimize the resulting grand canonical free energy functional 
with respect to the equilibrium one-body density field.

We study two different models. In the first one, the elastic 
matrix is represented by harmonic springs between nearest-
neighboring particles. Including thermal fluctuations, such 
a simple one-dimensional bead-spring model cannot show a 
phase transition [39, 40]. Thermal fluctuations have a strong 
impact in one spatial dimension and fuel the Landau–Peierls 
instability [7, 41, 42], which impedes periodic ordering. This 
fact is captured by our Monte-Carlo simulations, which take 
all contributions by thermal fluctuations into account exactly. 
Our mean-field density functional theory, however, introduces 
an artificial crystallization at low temperatures. Still, at higher 
temperatures we can obtain qualitative agreement between 
density functional theory and Monte-Carlo simulations for the 
pressure and compressibility of the system. These provide key 
material properties for the practical use of ferrogels.

Later in this paper, we turn to an extended model, including 
an additional external elastic pinning potential for the colloidal 
magnetic particles. Such pinning potentials arise when the par-
ticles are embedded in a three-dimensional elastic bulk matrix 
[34]. Similarly, the displacement of one embedded  particle 
results in a matrix-mediated force on all other particles, so 
that we have additional long-ranged elastic particle–particle 
interactions. In combination with the pinning potential, this 
suppresses the Landau–Peierls instability even though our 
model is effectively one-dimensional. Consequently, our 
density functional theory immediately shows much better 
agreement with Monte-Carlo simulations for both, the model 
with real connectivity and the version mapped towards indis-
tinguishable particles. During the synthesis of ferrogels such 
permanent straight one-dimensional magnetic particle chains 
embedded within three-dimensional ferrogel blocks are 
readily generated by applying external magnetic fields during 
the manufacturing process [34, 43–48].

We remark at this stage that the problem of mapping from 
distinguishable to indistinguishable particles also occurs in 
density functional descriptions of polymeric bead models 
[49, 50]. Typically, in tangential bead models for hard spheres 
[51, 52], one neglects the linking constraints of the chain and 
maps the excess free energy of the system onto an uncon-
strained hard-sphere fluid.

Our analysis paves the way to a future application of 
density functional theory of freezing also to two- and three-
dimensional ferrogel models. There, we anticipate thermal 
fluctuation effects to be of less influence, leading to a better 
agreement with simulations. It will further be useful to char-
acterize other particulate systems embedded in a permanent 
elastic matrix such as electrorheological elastomers [53, 54] 
or possibly even drug carriers and compartments within bio-
logical tissue [55].
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This paper is organized as follows. In section 2, we describe 
our first one-dimensional dipole-spring model and offer a 
method to map the real connectivity to an effective one. Next, 
we describe the various methods used to study our systems in 
section 3. These methods are mainly mean-field density func-
tional theory and canonical Monte-Carlo simulations. The 
supplemental material3 contains an additional treatment using 
the Zerah-Hansen liquid-integral equation. Then we complete 
the discussion of the first dipole-spring model in section  4, 
where we present results from our density functional theory 
and compare them to Monte-Carlo simulations. Subsequently, 
we proceed to our extended model in section 5. Following a 
motivation of this extended model, we again compare results 
from density functional theory and Monte-Carlo simulations, 
showing their improved agreement. Finally, in section 6, we 
revisit our overall approach and discuss prospective uses and 
extensions beyond the one-dimensional models discussed 
here.

2. Dipole-spring model

We consider the following one-dimensional dipole-spring 
model, which is sketched in figure 1. There are two outer par-
ticles at a fixed distance L, forming the system boundary, and 
N mobile particles in between. All particles have a hard core 
of diameter d, which limits the closest approach of two par-
ticle centers to this distance. Additionally, all particles carry 
magnetic dipole moments of magnitude m that all point in 
the same direction aligned with the system axis. Finally, each 
particle is connected to its nearest neighbors by a harmonic 
spring of spring constant k and equilibrium length �.

As we will discuss below, the connectivity introduced by 
the harmonic springs renders the particles distinguishable. 
We label the particles with indices = … +i N0, , 1 according 
to their position xi in ascending order. The indices i  =  0 and 
i  =  N  +  1 are used for the left and right boundary particles, 
respectively. The total potential energy of the system consists 
of three contributions

= + +U U U U ,h m e (1)

i.e. the hard core repulsion Uh, the magnetic dipolar inter-
action Um, and the elastic interaction Ue. We can write the 
former two as sums over the interactions between all particle 
pairs i, j with j  >  i

⎧
⎨
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where µ0 is the vacuum permeability and =| − |x x x:ij j i  is the 
distance between a pair of particles. Since the pair interactions 
u xh( ) and u xm( ) do not depend on any particular labeling of the 
particles, the total interactions Uh and Um are invariant under a 
relabeling of all particles. In contrast to that, the elastic inter-
actions between nearest neighbors

�∑= −
=

+U
k

x
2 i

N

i ie
0

, 1
2( ) (4)

persistently depend on the labeling and therefore render the 
particles distinguishable.

We note that one spatial dimension generally constitutes 
a special case for hard-core particles because there is no 
dynamical pathway for them to switch places. Thus, from 
a dynamical viewpoint they are distinguishable even in the 
absence of a spring-like interaction Ue as they can be persis-
tently labeled according to their position [38, 56]. However, 
we remark that it is likewise possible to state the partition 
function for these systems in terms of indistinguishable parti-
cles, as long as their labeling does not affect the total interac-
tion energy U. The partition function counts the number of 
possibilities to distribute N particles anywhere in the system, 
where each configuration is weighted with −U k Texp B( / ), 
and a prefactor N1 !/  corrects for the interchangeability. From 
there, the partition function corresponding to the viewpoint 
of distinguishable particles can be recovered by introducing 
an ordering among the particles, for which there are N! pos-
sibilities. Consequently, these one-dimensional systems can 
be treated in both ways, as ensembles of distinguishable 
or indistinguishable particles. However, in our model sys-
tems the elastic interaction Ue renders the particles strictly 
distinguishable.

To facilitate a description of our model system with the 
tools of statistical mechanics, we map it onto a system of indis-
tinguishable particles. This can be achieved by replacing the 
elastic interaction (4) with an approximative potential Ue˜  that 
can be decomposed into pairwise interactions u xe˜ ( ). Ideally, 
such an approximative potential should still affect only nearest 
neighbors and provide the same result as equation (4) under 
realistic circumstances. We make the choice

� �
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(5)

Figure 1. Sketch of our one-dimensional dipole-spring model for a 
ferrogel. Two outer particles (blue) form the system boundary and 
are at a fixed distance L. Additionally, there are N mobile particles 
(dark gray) in between. Each particle carries a magnetic dipole 
moment of magnitude m, all of which point into the same direction 
along the system axis. Finally, harmonic springs of spring constant 
k and equilibrium length � connect each particle to its nearest 
neighbors.

3 See supplemental material at (stacks.iop.org/JPhysCM/29/275102/mmedia) 
for a treatment of our dipole-spring model (mapped to indistinguishable 
particles) using the Zerah–Hansen liquid-integral equation in comparison to 
Monte-Carlo simulations. Furthermore, an overview of typical computation 
times for our various numerical methods is provided. Finally, for the density 
functional theory, a discussion of system size effects is included.
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The ‘pseudo-spring’ pair potential u xe˜ ( ) is illustrated in 
figure 2 and consists of a harmonic well of spring constant 
k centered around a distance �< d2 . The harmonic well is 
cut and shifted to zero potential strength at a distance x d2⩾ . 
For two particles at a distance x  <  2d, this potential acts as a 
common harmonic spring. Beyond this distance, the spring 
‘breaks’ leading to zero interaction. The combination with 
the hard-core repulsion u xh( ) in equation  (2) limits the pos-
sible harmonic interaction to pairs of nearest-neighbors. Only 
nearest neighbors can be at a distance x  <  2d. Next-nearest 
neighbors are always at a greater distance and, thus, excluded 
from the interaction.

In the following, we refer to this potential as ‘pseudo-
spring’ interaction as opposed to the ‘real-spring’ permanent 
connectivity between nearest neighbors. Good agreement 
between the real-spring system and its mapped version using 
pseudo-springs can be expected in situations where the 
pseudo-springs do not break. First, this is the case at high 
packing fraction, when the confinement enforces small dis-
tances between nearest neighbors. The packing fraction in our 
finite system is defined as

φ =
−
Nd

L d
, (6)

because L  −  d is the system length enclosed between the two 
hard boundary particles. At φ> − −L d L d2( )/( ), the distance 
between nearest neighbors is smaller than 2d everywhere, such 
that breaking of pseudo-springs becomes impossible. Another 
limit is reached at high potential strength (large value of k) and 
moderate packing fraction of �φ d /� . Under these conditions, 
the harmonic well, as illustrated in figure 2, is deep compared 
to the thermal energy k TB  and the system is sufficiently filled 
such that all particles are effectively trapped in the harmonic 
wells created by their nearest neighbors.

For fixed values of L, N, and d, the physical input param-
eters determining all interactions are the magnetic moment 
m, the spring constant k, and the spring equilibrium length 
�. From now on, we measure all energies in units of k TB  and 

all lengths in units of the particle diameter d. This implies 
to measure the spring constant in units of =k k T d0 B

2/  and 

the magnetic moment in units of = π
µ

m k Td0
4

B
3

0
, while the 

pressure and the compression modulus are given in units of 
= =p K k T d0 0 B / .

3. Methods

We use three different methods to study our dipole-spring 
model. The first and most notable one is our density functional 
theory (DFT) description, for which we use the pseudo-spring 
approximation to make particles indistinguishable. Second, 
we perform canonical Monte-Carlo (MC) simulations for real 
springs as well as for pseudo-springs as a benchmark to test 
our DFT results. Finally, we have also solved the Zerah-Hansen 
liquid-integral equation to show that our pseudo-spring approx-
imation is meaningful beyond the scope of DFT, see the supple-
mental material4 for results and a description of the method.

3.1. Density functional theory

The central statement of classical DFT is that for a fixed temper-
ature T and interparticle pair potential u(x), the Helmholtz free 
energy [ ]F ρ  is a unique functional of the one-body density 
distribution ρ x( ). Likewise, there is a unique grand canonical 
free energy functional ρΩ [ ] describing the system when it is 
exposed to an external potential U xext( ) and a particle reser-
voir at chemical potential μ. This grand canonical free energy 
functional has the form [3]

[ ] [ ] ( )( ( ) )F ∫ρ ρ ρ µΩ = + −x U x xd
L

0
ext (7)

and is minimized by the equilibrium one-body density profile 
ρ xeq( ). The minimum ρΩ eq[ ] corresponds to the thermody-
namic grand canonical free energy in equilibrium.

Unfortunately, the exact free energy functional ρ[ ]F  is 
usually unknown, so that one has to resort to approximations. 
These approximations usually start by splitting the free energy 
functional ρ ρ ρ= +id ex[ ] [ ] [ ]F F F  into the exact free energy 
for the ideal gas

∫ρ ρ ρ= Λ −k T x x xln 1 d
L

id B
0

[ ] ( )( ( ( )) )F (8)

with Λ the thermal de Broglie wavelength, plus an excess 
contribution ρex[ ]F . For some special problems in one spatial 
dimension, the exact excess contribution can be derived [57]. 
One such example is the Percus excess functional [38] for the 
one-dimensional hard-rod fluid,

∫

∫
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Figure 2. Illustration of how the pseudo-spring pair potential ˜ ( )u xe  
combined with the hard-core repulsion ( )u xh  serves to approximate 
the effect of harmonic springs between nearest neighbors. A harmonic 
well of spring constant k (here /=k k T d40 B

2) is centered around a 
distance � = d1.5 . It is cut at a distance x  =  2d and shifted to zero in 
order to confine the interaction to nearest neighbors only. The sketch 
on the left depicts a situation where a particle (blue) interacts with its 
nearest neighbor (red), as both particles are at a distance x  <  2d. In 
the sketch on the right no interaction takes place since the distance 
is ⩾x d2 . In any case, only nearest neighbors can ever interact as we 
always have ⩾x d2  for all other pairs of particles.

4 See footnote 3.
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It takes one-dimensional hard repulsions exactly into account 
and, thus, provides a good starting point for the construction 
of a functional describing our dipole-spring model. Here, we 
combine it with an approximate mean-field excess functional 
accounting for the soft pair interactions consisting of our 
pseudo-spring pair potential u xe˜ ( ) and the magnetic dipolar 
pair interaction u xm( ),

[ ] ( ˜ ( ) ( ))
( ) ( ) ( )

F ∫ ∫ρ

ρ ρ

= | − | + | − |

× | − |

′ ′

′ ′ ′

u x x u x x

g x x x x x xd d ,

L L

ex
MF

0 0
e m

 
(10)

where the distribution function g(x) satisfies the no-overlap 
condition g(x)  =  0 for x  <  d. The mean-field approximation 
assumes that the pair potentials are soft enough to regard the 
particle positions as basically uncorrelated [3]. Here we make 
the simplifying assumption that g(x)  =  1 for all distances 
x  >  d. In total, our free energy functional is given by

ρ ρ ρ ρ= + + .id ex
P

ex
MF[ ] [ ] [ ] [ ]F F F F (11)

The boundary of our finite systems consists of the leftmost 
and rightmost particles, which are fixed but otherwise iden-
tical to the enclosed particles, see figure 1. Their influence on 
the enclosed density profile enters via an external potential

= − +U x u L x u x ,ext( ) ( ) ( ) (12)

where = + +u x u x u x u xh m e( ) ( ) ( ) ˜ ( ). This completes our 
grand canonical free energy functional ρΩ [ ].

Functional derivation of equation  (7) leads to the Euler–
Lagrange equation

[ ]
( )

[ ]
( ) ( )Fδ ρ

δρ
δ ρ
δρ

µ
Ω

= + − =
x x

U x 0,ext (13)

which can be used to determine the equilibrium density pro-
file minimizing ρΩ [ ]. In practice, however, we numerically 
calculate our equilibrium density profile ρ x( ) by performing 
a dynamical relaxation of ρΩ [ ] [58]. This scheme fixes the 
average particle number N⟨ ⟩ instead of the chemical potential 
μ and is described in detail in the appendix.

After the relaxation, we have access to the grand canon-
ical free energy Ω. This enables us to calculate a pressure 

= −∂Ω
∂

p
L N T,⟨ ⟩  and a compression modulus = − ∂

∂
K L p

L N T,⟨ ⟩  

by varying the system length L at fixed average particle 
number N⟨ ⟩ and probing the corresponding change in Ω.

In addition to that, we have also tested other forms of the 
distribution function g(x) [59, 60] as an input into the mean-
field functional in equation  (10). In particular, we tried in 
our DFT calculations the g(x) extracted from corresponding 
bulk Monte-Carlo simulations (see section  3.2). However, 
such a g(x) is characterized by peaks at typical distances 
corre sponding to the minimum of the interaction pair poten-
tial u(x), with which it is multiplied in the mean-field func-
tional. This overestimates the tendency to form patterned 
 structures, leading to larger deviations from the simulations. 
The simple form of g(x) used here seems to partially mitigate 
the  incomplete representation of thermal fluctuations in our 
one-dimensional mean-field approach, see below.

3.2. Monte-Carlo simulation

We perform canonical Monte-Carlo (MC) simulations at fixed 
particle number N, system length L, and temperature T [61]. 
After equilibrating the systems, we sample the pressure p, the 
compression modulus K, and the equilibrium density profile 
ρ x( ). To sample the pressure, we affinely deform the system 
by a factor +∆L L L( )/  and probe the corresponding change 
in Helmholtz free energy F(N,L,T). ∆L is a small change in 
system length. It can be shown that the pressure is related to 
the acceptance ratio of such volume moves by [62]

⎜ ⎟
⎛
⎝
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L
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L
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ln exp .
N

B
B
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(14)

∆U is the change in system energy associated with the volume 
move and ⋅⟨ ⟩ denotes the ensemble average. In order to cap-
ture the pressure contributions of the hard repulsions in our 
systems, the volume moves must be compressive (∆ <L 0). 
Given the pressure, the compression modulus can be calcu-

lated using = − ∂
∂

K L p

L N T,
.

4. Results

In the following, we present results for our one-dimensional 
dipole-spring model. First we concentrate on a non-magnetic 
system to test the feasibility of the mapping onto indistin-
guishable particles. Then we add the magnetic interaction and 
discuss how this affects the density profile and the pressure 
in our systems. Finally, we turn to the thermodynamic com-
pression modulus, which is a key quantity to characterize fer-
rogel systems as it can be controlled by changing the magnetic 
properties.

4.1. Non-magnetic system

First of all, we confirm within our MC-simulations that the 
pseudo-spring pair potential is an appropriate replacement for 
real springs between nearest neighbors. Figure  3 compares 
the equations of state φp( ) for both situations in a system of 
length L  =  51d. The spring parameters k  =  40k0 and � = d1.5  
are the same as in figure 2. Using these parameters, we can 

confirm that at packing fractions �φ =d 2

3
/�  the mapping to 

indistinguishable particles using pseudo-springs works well.
Let us now compare MC and DFT results using the same 

parameters. Figure  4 shows three density profiles ρ x( ) at a 

packing fraction φ = 2

3
, one from the real-spring MC, one 

from the pseudo-spring MC, and one from DFT. While the 
two MC density profiles expectedly agree with each other 
and display a liquid-like behavior near rigid boundaries, the 
DFT density profile is qualitatively different and resembles 
a crystal.

This crystalline appearance displayed by the DFT is 
unphysical. Our system is one-dimensional, all particle 
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interactions are short-ranged and there are no external fields. 
For such systems, the existence of a phase transition can be 
ruled out [39, 40, 63, 64]. This fact is accurately captured by 
our MC-simulations that display a liquid phase even for this 
high value of k  =  40k0, as they explicitly include all effects of 
thermal fluctuations. In one spatial dimension, thermal fluc-
tuations have a particularly strong effect. They can escalate 
into long-ranged fluctuations scaling in amplitude with the 
system size, capable of destroying periodic ordering. This is 
the well-known Landau–Peierls instability [7, 41, 42]. Within 
the DFT, some thermal fluctuations are introduced by the ideal 
gas term (see equation (8)), which pushes the system towards 
disorder. However, the mean-field term (see equation  (10)) 
excludes other contributions by fluctuations. We conclude that 
this term is responsible for the unphysical crystallization. Our 

conjecture is supported by setting k  =  0 and m  =  0, i.e. set-
ting the mean-field term to zero. Then, we recover the hard-
rod fluid also for the DFT and find perfect agreement with 
MC-simulations, see figure 5.

The Landau–Peierls instability is well-known to be 
most prominent in one spatial dimension. In future studies 
in two and three dimensions, we therefore expect a sig-
nificantly weaker effect of the thermal fluctuations, which 
should lead to a better agreement between simulations and 
mean-field DFT. For now, we achieve qualitative agreement 
between DFT and MC by raising the temperature (which 
means decreasing k) until the DFT system enters the liquid 
state.

Figure 3. Comparison of the equations of state from MC-
simulations of the real-spring system with the mapped version 
using pseudo-springs instead. In both systems we have L  =  51d, 

k  =  40k0 and � = d1.5 . At a packing fraction /� �φ =d 2

3
, the 

pseudo-spring system is filled with particles trapped in the 
harmonic wells of their nearest neighbors and, thus, behaves 
essentially identical to the system featuring real springs. For lower 
packing fractions in the real-spring system, the springs between 
nearest neighbors are stretched on average, so that the system would 
contract if the boundaries were not fixed. Thus, the pressure is 
negative for these packing fractions.

Figure 4. Density profiles ( )ρ x  obtained from real-spring and 
pseudo-spring MC as well as from DFT calculations at a packing 

fraction φ = 2

3
 and otherwise with the same parameters as in 

figure 3. For this packing fraction, the two MC-simulations are in 
good agreement and show a liquid-like behavior as expected in 
one spatial dimension. However, the density profile obtained from 
DFT is qualitatively different and displays an artificial crystalline 
behavior.

Figure 5. When setting k  =  0 and m  =  0, we recover the hard-rod 
fluid and observe perfect agreement between MC and DFT. In this 
case, both density profiles ( )ρ x  show liquid-like behavior and the 

equations of state (inset) match the exact result ( )φ = φ
φ−

p p
1 0 

[38]. This demonstrates that the mean-field term in equation (10) 
is responsible for the disagreement between DFT and MC, as it 
disregards some of the contributions by thermal fluctuations.

Figure 6. Density profiles as in figure 4 but using a ten times lower 
spring constant k  =  4k0. Now the depth of the harmonic well of the 
pseudo-spring pair potential is of the order of k TB  such that pseudo-
springs frequently break. As a result, DFT and pseudo-spring MC 
both show liquid-like behavior and are in much better agreement. 
However, this comes at the price of worse agreement between 
the pseudo-spring MC and the real-spring MC. The inset shows 
equations of state ( )φp  for these three systems which confirm these 
observations. There is agreement between DFT and the pseudo-

spring MC at least in the range around φ≈ 2

3
 but the pseudo-spring 

and real-spring MC only agree at very high packing fractions.
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Figure 6 shows a comparison between density profiles as 
well as equations of state for the same systems as in figure 4, 
but with a ten times lower spring constant k  =  4k0. The depth of 
the harmonic well in the pseudo-spring potential is now of the 
order of k TB  so that breaking of pseudo-springs is a common 
event. This renders the density profile in DFT more  liquid-
like, which improves the agreement with the pseudo-spring 
MC substantially. At the same time though, the pseudo-spring 
mapping becomes a bad approximation for the real connec-
tivity. Only at high packing fractions, where the confinement 
prevents pseudo-spring breaking, we can reach agreement 
between the pseudo-spring and real-spring MC again.

4.2. Influence of magnetic interactions

We now activate the magnetic dipolar interactions and discuss 
the resulting changes for our systems. Figure 7 demonstrates that 
increasing m increases the amplitudes of all peaks in the DFT, 
whereas in the pseudo-spring MC only the first peak is affected.

Again, our mean-field DFT seems to overestimate the ten-
dency to form a patterned structure because of its incomplete 
representation of thermal fluctuations. The reason is that, 
effectively, the particles do not fluctuate as much around their 
average positions and do not come as close to each other, 
where the pseudo-spring interaction and the dipolar interac-
tion increase (the latter with inverse cubic distance). As a 
consequence, the DFT underestimates the averaged strength of 
the pair interactions in the system. This becomes apparent in 
the equation of state, where the MC predicts a much stronger 
downwards shift when increasing the magnetic moments (see 
the insets of figure 7).

As a liquid-state approach alternative to DFT, we have 
also solved the Zerah-Hansen liquid-integral equation. 
Corresponding results in comparison to MC-simulations can 
be found in the supplemental material5.

4.3. Thermodynamic compression moduli

Finally, we evaluate the elastic moduli of the DFT and pseudo-
spring MC systems for various magnitudes m of the magnetic 
moment. We present them as a function of packing fraction 
φ in figure 8. The DFT predicts only a very slight downward 
shift of the compression modulus when increasing the magn-
etic moment. In contrast to that, the shift is significantly more 
pronounced in the pseudo-spring MC. Additionally, the overall 
value of the compression modulus at high packing fractions is 
lower in the DFT.

These observations are in line with our earlier results. The 
mean-field DFT overestimates the tendency to form patterned 
structures. It therefore underestimates both, contributions by 
magnetic and elastic pair potentials. If the fluctuations of the 
particle positions were more pronounced, there would be more 
emphasis on configurations with strong elastic and magnetic 
interactions and their influence on the compression modulus 
would be stronger.

5. Embedding into the elastic matrix

So far, we have considered a simple one-dimensional dipole-
spring model. There, the elastic matrix is solely represented 
by springs between nearest-neighbor magnetic particles. Now 
we turn to an extended model, explicitly describing a single 
linear chain of magnetic particles that is embedded in a three-
dimensional elastic matrix.

5.1. Dipole-spring model for a linear embedded chain

We begin by constructing an effective pinning potential Ump 
for the embedded particles within the three-dimensional 
matrix as well as an effective pair interaction upp between two 
embedded particles mediated by the matrix. Subsequently, we 
translate these potentials into a network of springs describing 
the overall elastic interactions.

Figure 7. Density profile ( )ρ x  as well as equation of state ( )φp  obtained from DFT and pseudo-spring MC upon activating the magnetic 
moments. In the DFT, all density peaks increase in amplitude (right insets), while in the MC only the first peak is affected. This is probably 
again due to the underestimation of thermal fluctuations in our mean-field DFT. The more patterned structure puts less emphasis on 
configurations where two particles are close and magnetic attractions are strong. Thus, the DFT predicts a much smaller downward shift for 
the pressure p when increasing the magnetic moments than the MC (left insets).

5 See footnote 3.
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If a single spherical particle of diameter d embedded in an 
infinitely extended homogeneous elastic matrix is displaced 
by a vector ∆R, it distorts the elastic environment. Then the 
restoring force Fmp that the matrix exerts onto the particle is 
given by [65–68]

π ν
ν

∆ = −
−
−

∆
Gd

F R R
12 1

5 6
,mp( ) ( )

 (15)

where ν is the Poisson ratio that equals ν = 1 2/  for incom-
pressible matrices and G is the shear modulus. The force can 
be connected via = −∇UFmp mp to a harmonic potential

∆ = ∆U kR R
1

2
mp mp

2( ) ( ) (16)

with the spring constant π ν ν= − −k Gd: 12 1 5 6mp ( ( ) )/( ).
Now we consider two embedded particles, labeled as ‘1’ 

and ‘2’, respectively. Upon displacing these particles by vec-
tors ∆R1 and ∆R2, they experience the forces F1 and F2. In 
our one-dimensional set-up, we only consider forces and dis-
placements along the particle center-to-center vector r. To first 
order in the particle distance, i.e. to order 1/r with =| |r r  we 
then obtain [65–68]:

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟π

π

=
−

−

⋅
∆
∆

k
k

G r

k

G r
k

F
F

R
R

4

1

4

1
.1

2

mp
mp
2

mp
2

mp

1

2
 (17)

Here, entries on the diagonal represent the restoring pin-
ning forces (15). The off-diagonal contributions result from the 
matrix distortions that are caused by the displacement of one 
particle but affect the other embedded particle. To construct 
an effective pair potential, we here only consider symmetric 
situations where ∆ = −∆R R1 2. Then, the change in distance 
between the two particles is ∆ = ∆ −∆ = ∆r R R R21 2 1. Per 
particle, we can thus rewrite the effective matrix-mediated 
inter-particle interaction as a function of ∆r in the form of an 
effective potential

( ) ( )( )±∆ = ∆u k rr r
1

2
,pp pp

2 (18)

with a distance-dependent spring coefficient

π
ν
ν

= =
−
−

k r
k

G r
k

d

r
:

8

1 3

2

1

5 6
.pp

mp
2

mp( ) (19)

Using the two potentials Ump and upp as an input, we now 
motivate an extended dipole-spring model for a linear, ini-
tially homogeneous chain of N particles embedded into an 
elastic matrix, see figure 9. We label the particles from left to 
right by = …i N1, , , according to their equilibrium positions 

�=x : ii
0  within the chain. The total pinning potential based on 

equation (16) then becomes

Figure 9. Sketch of our extended dipole-spring model for a one-
dimensional chain of magnetic particles of diameter d embedded 
into a three-dimensional elastic matrix. The elastic embedding 
is represented by a harmonic potential with spring constant kmp, 
pinning each particle i (labeled from left to right) to its initial 
position = �x i:i

0 . The elastic particle–particle interaction mediated 
by the matrix is represented by the springs connecting the particles. 
Between nearest neighbors, there are springs of spring constant kpp 
and equilibrium length �. Next-nearest neighbors are connected 
by springs of spring constant /k 2pp  and equilibrium length �2 , 
thereafter the parameters are /k 3pp  and �3 , and so forth. Finally, all 
particles carry a fixed magnetic dipolar moment of magnitude m 
aligned with the system axis.

Figure 8. Compression modulus K as a function of packing fraction φ for various magnetic moments. In the DFT calculations the curves 
are only very slightly shifted downwards when increasing the magnetic moment, a trend that we have already seen in the pressure in 
figure 7. Furthermore, compared to the pseudo-spring MC-simulation, the compression modulus is overall lower, especially at high packing 
fractions. Again, this is due to the mean-field nature of our DFT, which underestimates the contributions of the magnetic and elastic pair 
interactions by not taking thermal fluctuations fully into account. In the MC-simulations, the particles fluctuate more in their positions, 
increasing the influence of these pair interactions on the compression modulus. Thus, increasing the magnetic moment has a greater effect.
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∑= −
=

�U k x i
1

2
.

i

N

imp
1

mp
2( ) (20)

To approximate the matrix-mediated particle–particle 
interactions between two particles i, j we replace the 1/r 
dependence of the spring constant (19) by �| − |j i1/ . Thus, 
we have for the total interaction between all pairs of particles

�∑∑=
| − |

−| − |
= >

U
k

j i
x j i

1

2
,

i

N

j i
ijpp

1

pp 2( ) (21)

where 
�

= ν
ν

−
−

k k: d
pp

3

2

1

5 6 mp. Essentially, this means that each 

particle i is connected to all other particles j with harmonic 
springs of spring constant | − |k j ipp/  and spring equilibrium 
length �| − |j i , see figure 9. From now on, we assume incom-
pressibility of the elastic matrix and set ν = 1 2/ .

Of course, in this extended dipole-spring model the parti-
cles are again distinguishable by their positions. As before, it 
needs to be mapped to the use in our DFT. For this purpose, 
we replace the harmonic springs in the model by ‘pseudo-
springs’, following the ideas outlined in section 2. To include 
the pinning potential Ump, we use an external potential con-
sisting of a series of N harmonic wells

�= −
= …

U x k x imin
1

2i N
ext

1, ,
mp

2{ }( ) ( ) (22)

as depicted in figure 10. To represent the network of springs in 
equation (21) between one particle and all other particles by 
‘pseudo-spring’ interactions, we use

1

1
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( ) ( )

  ( ) [ ]

[ ]

[( ) ( ) ]

[ ]

∑

= − −

+ − −

= ∈
=

∞

− +

�
�

�
�

�

� �

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

u x
k

x x

k

i
x i x

x
x a b

2 4

2 4
,

with
1 for , ,
0 else.

i
i i

a b

e
pp 2

2

0, 3
2

2

pp 2
2

1
2

, 1
2

,

 (23)

This pair potential is illustrated in figure 11 and consists of 
a series of harmonic wells. The spring constants of the wells 

decay with the neighbor number i from the origin just like the 
individual springs connecting a particle to all other particles 
in the dipole-spring model, see figure  9. Furthermore, the 
boundaries of the wells are shifted to zero so that we have a 
vanishing pair potential at infinite distance. Since the depth of 
the wells roughly decays as 1/x, the interaction is long-ranged.

The width of the wells in both, the external and the pair 
potential, is given by �. This width should be larger than d 
and here we choose � = d2 . Thus, both potentials in prin-
ciple allow more than one particles to occupy a single well. 
However, the external potential pinning the particles to their 
equilibrium positions in the matrix is relatively strong. The 
particles should, therefore, remain centered in their respective 
wells on average.

5.2. Results

We now discuss our results for our extended dipole-spring 
model for a magnetic particle chain embedded in a three-
dimensional elastic matrix. To this end, we consider a chain 
of N  =  40 particles, with an equilibrium interparticle distance 

� = d2  and spring constants =k k4pp 0, 
�= =k k k
dmp

8

3 pp
16

3 pp.
To evaluate the contribution of the magnetic chain to the 

pressure and compression modulus as well as to evaluate the 
DFT numerically, we address one part of the elastic matrix of 
length L  =  100d that contains the magnetic chain. This choice 
of L is arbitrary, the only requirement for L is to be larger 
than the total equilibrium length � =N d80  of the chain by a 
reasonable amount.

Figure 12 shows density profiles obtained from DFT, 
pseudo-spring MC, and real-spring MC when setting the 
magn etic moment to m  =  0. In contrast to our former dipole-
spring model, periodic structures appear here in the density 
profiles resulting from all three methods, even though this 
model is still effectively one-dimensional. The reason is, 
first, that the elastic particle–particle interaction decays only 
slowly with the distance and is effectively long-ranged. This 
applies to both, the real-spring and the pseudo-spring ver-
sion. Second, we have a pinning potential suppressing large 
amplitude fluctuations of the particles around their pinning 
positions. Together, both contributions counteract the Landau–
Peierls instability and can facilitate periodic structures also in 
one spatial dimension [39, 40, 63, 64, 69]. In this way, the 
role of thermal fluctuations is substantially reduced, and our 

Figure 10. Illustration of the pseudo-spring external potential in 
equation (22) representing the pinning effect of the embedding 
elastic matrix in our DFT. There are N harmonic wells at a 
spacing � with spring constant �=k k

dmp
8

3 pp (here � = d2 , 
/ν = 1 2, and =k k4pp 0, which translates to �= =

π π
G k

d

k

d

8

9 pp
64

92
0). 

The corresponding harmonic potentials of the individual wells are 
cut where they overlap with the potential of another well. This 
leaves the leftmost and rightmost wells unbounded to the sides and, 
therefore, the whole particle chain remains confined.

Figure 11. Effective elastic pair potential in equation (23) to 
represent the network of springs in equation (21) in our DFT 
calculations. The harmonic wells with width � = d2  have a spring 
constant /k ipp , where i is the index of the well and =k k4pp 0.
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mean-field DFT performs much better when compared to the 
MC-simulations.

Let us now address the pressure and compression modulus. 
As before, they can be determined by probing the energetic 
change of the system upon deformation. However, we keep in 
mind that we have one system (the chain of particles) embedded 
into another system (the surrounding matrix, where here we 
present our results for one part of length L of this infinitely 
extended matrix). When we perform a small affine deforma-
tion ∆L of the part of the matrix containing the chain, we alter 
the properties of the embedded system. In particular, the equi-
librium distance � between the embedded particles changes by 
a factor +∆L L L( )/ . In our approach, this affects the pinning 

positions �=x ii
0  of the particles as well as the spring constant 

�
=k kd

pp
3

8 mp, which is accounted for in the energetic change 
upon deformation. Furthermore, what we can calculate from 
this energetic change are only the contributions ∆p and ∆K of 
the embedded chain to the overall pressure and compression 
modulus of the composite. To obtain the overall pressure or 
compression modulus of the whole composite, the energetic 
change associated with the macroscopic deformation of the 
three-dimensional matrix would need to be included as well, 
which is beyond our particle-based approach.

Figure 13 shows the contribution ∆p to the pressure as well 
as the contribution ∆K to the compression modulus as a func-
tion of the magnetic dipole moment. We can observe a linear 
decrease with m2 in both quantities with good agreement 
between the DFT and MC calculations. The linear behavior is 
expected, because the magnetic interaction energy scales with 

m2 and the particle chain remains relatively homogeneous 
while increasing the magnetic moment.

As a final result, we present the contribution of the embedded 
chain to the stress-strain behavior of the composite material. 
For this purpose, we compress the surrounding matrix by ∆L 
and measure the pressure contribution of the embedded chain 
as a function of this compression. The results are shown in 
figure  14 for values of the squared magnetic moment in the 
range = −m m m0.0 1.02

0
2

0
2. At vanishing magnetic moment, 

the pressure contribution slightly increases when compressing 
the system. This is probably due to entropic effects that favor 
an elongated chain and, thus, work against a compression com-
bined with a slight increase in the spring constant kpp in our 
description. Increasing m2, however, leads to a stronger magn-
etic attraction between the particles. This renders an overall 
compression more favorable. Since decreasing the particle dis-
tance also enhances the magnetic attraction, we have a negative 
pressure contribution that increases in magnitude when com-
pressing the system further.

Again, we can observe good agreement between DFT and 
MC. The best agreement is observed at small compressions and 
low magnetic moments. Remarkably, the pseudo-spring and 
the real-spring MC agree exceptionally well at all considered 
values of ∆L and m2. This demonstrates, that our approach to 
map the spring network to effective interactions between indis-
tinguishable particles is promising also beyond the scope of 
our mean-field DFT. Moreover, in the supplemental material6, 
we also show how the overall number of particles on the chain 

Figure 12. Density profiles for a non-magnetic chain of N  =  40 particles at an equilibrium interparticle distance � = d2  embedded in an 

elastic matrix ( =k k4pp 0, =k kmp
16

3 pp, m  =  0). The density profiles are sharply peaked around the equilibrium positions of the particles. 
There is good agreement between DFT, pseudo-spring MC and real-spring MC.

Figure 13. Pressure contribution ∆p and contribution ∆K to the compression modulus as a function of the squared magnetic dipole 
moment m2. Both quantities show a linear monotonous decrease with m2. The DFT shows a small offset in ∆p of the order of 0.01p0 
compared to the MC, but the slopes are almost identical. For the compression modulus, the deviations are of the order of 0.001K0.

6 See footnote 3.
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influences its contribution to the stress-strain behavior and we 
present corresponding DFT results in analogy to figure 14.

6. Conclusions

In summary, we have proposed a density functional theory to 
address ferrogel model systems, here evaluated in one spatial 
dimension. These systems are in principle non-liquid, because 
the particles are arrested by the elastic matrix surrounding 
them. To enable the investigation with statistical-mechanical 
theories, we map the elastic interactions onto effective pairwise 
interactions and, thus, make the particles indistinguishable.

The one-dimensional nature of the ferrogel model systems 
investigated here poses a challenge, because thermal fluctua-
tions have a special impact in one dimension. Fluctuations 
can become long-ranged and destroy periodic structural order. 
These fluctuations, driving the Landau–Peierls instability, are 
not resolved within our mean-field density functional theory. 
Therefore, within our first dipole-spring model we observe 
deviations from Monte-Carlo simulations where these fluctua-
tions are included.

In a second, more advanced approach, we explicitly model 
a linear particle chain embedded into a three-dimensional 
matrix. Within this model, the Landau–Peierls instability is 
counteracted by a stronger long-ranged coupling between the 
particles and a pinning potential that localizes the particles 
within the elastic matrix. Since the role of the fluctuations is 
therefore reduced, our density functional theory now provides 
results that are in good agreement with Monte-Carlo simu-
lations. Numerous experimental realizations of such systems 
exist [34, 43–48], see particularly the set-up in [34].

For the future, it would be promising to extend the con-
cept proposed here to higher spatial dimensions, that is to 
two-dimensional sheets of ferrogels or full three-dimensional 
samples. In those dimensions, the Landau–Peierls instability 
will be less relevant. We expect that especially for regular 
crystal-like particle arrangements, where the one-body density 
is regularly peaked, density functional theory is reliable and 
provides a useful framework to study the properties of these 
promising materials. It will be interesting to extend the present 
analysis to include the dynamics of the colloidal particles by 
using the concept of dynamical density functional theory [70–
73]. For this purpose, one should smoothen our non-differen-
tiable external potentials because the dynamic theory entails 
their spatial derivatives. Our likewise non-differentiable pair-
wise interactions are already smoothened by the convolution in 
the mean-field functional. The dynamics should be reasonably 
tractable by using schemes similar to those in [74] or a pseudo-
spectral approach such as the one detailed in [75]. For particles 
of different sizes, or different dipole moments, the same ideas 
can be used to map the system onto binary and multicomponent 
systems. Moreover, orientational degrees of freedom, such as 
rotating dipole moments or anisotropic particle shapes, can be 
tackled by density functional theory as well, both in statics [76, 
77] and dynamics [78, 79], and can therefore be treated within 
the same framework as proposed here.

Our results show that density functional theory can be used to 
describe non-liquid systems like ferrogels, still leading to reason-
able results. More generally, we have established that mapping 
bead-spring models to effective potentials is a feasible approach 
to make them accessible to statistical-mechanical theories.

These theories often make use of correlation functions as an 
input [80], which here are related to the particle distribution in 
the ferrogel. Experimental extraction of the particle distribution 
and the corresponding correlation functions is still challenging 
[48]. However, this route could be explored in the future once 
the available experimental techniques for particle detection 
in ferrogel materials are more advanced and particularly can 
address larger system sizes. These correlation functions could 
then help to construct effective pair potentials representing the 
real connectivity in the gel [81], providing a formal route for 
the mapping onto systems of indistinguishable particles.
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Appendix. Numerical relaxation scheme to obtain 
the equilibrium density profile from our DFT

Here, we describe in detail our numerical relaxation scheme 
to obtain the equilibrium density profile ρ x( ) minimizing ρΩ [ ] 
within our DFT. Instead of directly solving equation (13), we 
perform a dynamical relaxation of the Lagrange functional

Figure 14. Pressure contribution ∆p as a function of an overall 
matrix compression ∆L for squared magnetic moments in the 
range of = −m m m0.0 1.02

0
2

0
2 in steps of m0.1 0

2. These results 
constitute the contribution of the embedded chain to the overall 
stress-strain behavior in one part of the composite material. At 
vanishing magnetic moment, the pressure increases with the 
compression. Increasing the magnetic moment, however, leads 
to stronger magnetic attractions so that the pressure contribution 
decreases when the surrounding matrix is compressed. We find 
good agreement between DFT and MC results, especially for low 
compressions and magnetic moments. The deviations for high 
compressions and magnetic moments appear, presumably, for 
the reasons already described in figure 7. Agreement between the 
pseudo-spring and real-spring MC is excellent under all conditions.
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with respect to the logarithmic density profile α ρ=x xln( ) ( ( )) 
[82]. Minimizing with respect to the logarithmic density pro-
file ensures that ρ α=x xexp( ) ( ( )) remains positive during the 

relaxation. The artificial kinetic term ∫ α x x˙ d
L

0

1

2
2( )  drives α x( ) 

and thus ρ x( ) towards the minimum in the grand canonical 
free energy ρΩ [ ]. The Lagrange multiplier λ with the corre-

sponding constraint ∫ ∫α ρ= =N x x x xexp d d
L L

0 0
⟨ ⟩ ( ( )) ( )  

allows us to set the average particle number N⟨ ⟩ instead of 
the chemical potential μ. This is more convenient for evalu-
ating the pressure and the compression modulus defined as 

= −∂Ω
∂

p
L N T,⟨ ⟩  and = − ∂

∂
K L p

L N T,⟨ ⟩ , respectively.

Solving the Euler–Lagrange equation

δ α
δα

δ α
δα

− =
t x x

d

d ˙
0

[ ]
( )

[ ]
( )

L L
 (A.2)

then leads to the equation of motion for α x( )
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The Lagrange multiplier λ is determined by
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(A.4)

In order to perform the numerical relaxation, we discretize 
the system into n equally spaced sampling points such that 
one particle diameter d is represented by 100 points. The den-
sity profile, the potentials, and the radial distribution function 
are all defined on this numerical grid. All integrals appearing 
in the calculation of the ‘acceleration’ α x¨( ) can then be solved 
numerically, making use of fast-Fourier-transforms in the case 
of convolution integrals.

We iterate the equation of motion for α x( ) forward in time 
using the standard Velocity-Verlet scheme, obtaining the 
‘velocity’ α x˙( ) and an update for the density profile ρ x( ) in each 

time step ∆t. To ensure that the constraint ∫ ρ=N x xd
L

0
⟨ ⟩ ( )  

remains fulfilled, we renormalize ρ x( ) after each time step. 
The time step is variable and increases by a factor 1.1 up to a 
maximum ∆ =t 0.01max  when the grand canonical energy has 
decreased for 5 consecutive time steps. The decrease in energy 

is monitored by the ‘power’ ∫ α α=P x x x˙ ¨ d
L

0
( ) ( ) , which is 

supposed to be positive. If P 0⩽  occurs, we set α =x˙ 0( )  
and halve the time step. We consider the density profile ρ x( ) 

sufficiently close to equilibrium when our measure for the 

error ∫ε α= x x: ¨ d
L

0
2( )  becomes smaller than 10−6. At that 

stage, the left hand side of equation  (A.3) as well as λ are 

close to zero, so that we have ≈δ ρ
δρ
Ω x 0( )[ ]  as required by 

equation (13). A brief discussion of typical computation times 
is given in the supplemental material7.
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In the main article, we have mapped our one-dimensional dipole-spring model containing magnetic
particles that are distinguishable by their positions onto a description using pairwise interactions in
terms of effective “pseudo-springs”, such that the particles can be treated as indistinguishable. Using
this mapping, we have then compared results from density functional theory to those of Monte-Carlo
simulations. Here, in a similar fashion, we compare results obtained from solving the Zerah-Hansen
liquid-integral equation in comparison to those of Monte-Carlo simulations for various magnitudes
of the magnetic moments of the particles. These results demonstrate that other liquid-state theories
using our pseudo-spring approximation lead to reasonable predictions as well. Additionally, we
provide typical computation times for our various numerical methods. Finally, we discuss finite-
size effects on our density-functional-theory results in the framework of our advanced dipole-spring
model for a linear embedded chain of magnetic particles in an infinitely extended elastic matrix.

I. ZERAH-HANSEN LIQUID INTEGRAL
EQUATION

Let us first describe the method of using the Zerah-
Hansen (ZH) liquid-integral equation to obtain the equa-
tion of state, before we proceed to the comparison with
Monte-Carlo (MC) simulations. We use a numerical
spectral method [S1–S3] to solve the Ornstein-Zernike
equation [S4]

γ(x) = ρ̄

∞∫

−∞

dx′(γ(x′) + c(x′)
)
c(x − x′) (S1)

for a bulk liquid of mean density ρ̄. The functions
γ(x) = g(x) − 1 − c(x) and c(x) are the indirect and
direct correlation functions, respectively. The latter is
approximated here by the thermodynamically partially
self-consistent Zerah-Hansen (ZH) closure [S5]

c(x) =
e−βur(x)

[
f(x) − 1 + ef(x)(γ(x)−βua(x))

]

f(x)
−γ(x)−1,

(S2)
where β = 1/kBT and the interaction potential u(x) =
uh(x)+um(x)+ũe(x) between indistinguishable particles
is split into the sum u(x) = ur(x) + ua(x) of a repulsive
part

ur(x) =

{
0 for x > xmin ,

u(x) − umin otherwise,
(S3)

∗Electronic address: pcremer@thphy.uni-duesseldorf.de
†Electronic address: mheinen@fisica.ugto.mx

and an attractive part

ua(x) =

{
u(x) for x > xmin ,

umin otherwise.
(S4)

Here, umin = u(xmin) denotes the minimum of u(x). The
mixing function f(x) = 1 − e−αx depends on the non-
negative mixing parameter α which is adjusted to achieve
thermodynamic consistency with respect to the compres-
sion modulus: At the numerically determined value of α,
the fluctuation-route expression [S4, S6]

K = ρ̄kBT


1 − 2 ρ̄

∞∫

0

c(x) dx


 (S5)

gives the same result as the virial-route expression [S4,
S6]

K = ρ̄
∂pv

∂ρ̄

∣∣∣∣
T

, (S6)

in which pv is the virial pressure. The derivative in
Eq. (S6) is numerically approximated by a finite differ-
ence and the virial pressure is calculated by numerical
integration and solution of

pv

ρ̄kBT
= 1 + ρ̄dg(d+) − ρ̄β

∞∫

d

x
du(x)

dx
g(x) dx. (S7)

Here, g(d+) = limx→d g(x > d) is the contact value of
the radial distribution function.

We compare the equations of state obtained from this
method with MC-simulations of a bulk pseudo-spring
system. For the latter we use a periodic box of width
L = 500d and otherwise proceed as for our finite sys-
tems in the main article. Figure S1 shows the equations

148 Chapter 2. Peer-reviewed publications



2

FIG. S1: Equations of state obtained from bulk MC-
simulation and ZH liquid-integral theory for various mag-
nitudes of the magnetic moment and a spring constant of
k = 4 k0. Thermodynamic consistency cannot be found for
many parameter combinations, explaining the lack of ZH data
points. Where it can be found, however, there is good agree-
ment with the MC, especially at high packing fractions. Also
the magnitude of the downward shift when increasing the
magnetic moment seems to be accurately captured.

of state obtained from both methods, ZH and MC, for
various values of the magnetic moment.

Unfortunately, there are many parameter combina-
tions for which the numerical ZH equation solver does
not converge, because thermodynamic consistency with
respect to the compression modulus is not found for any
value of the mixing parameter α. Nevertheless, for those
parameters at which ZH solutions are available they agree
remarkably well with the MC results. Especially at high
packing fractions, the equation of state is accurately pre-
dicted by the ZH equation. Furthermore, the ZH solu-
tion captures correctly the decrease in pressure when the
magnetic moment is increased. In contrast to density
functional theory (DFT), the employed ZH equation is
a theory for homogeneous, isotropic bulk liquids that is
not expected to overestimate the tendency of the system
to form regular structures and, in fact, does not even
include the possibility of symmetry-breaking phase tran-
sitions. This might explain why the agreement between
MC and ZH in Fig. S1 is better than between MC and
DFT in Fig. 7 of the main article. However, the missing
feature of reproducing localized density peaks at pre-set
equilibrium positions, as required for the extended model
in the main article, is an obvious drawback when com-
pared to the DFT approach.

We have also solved the hypernetted chain (HNC) in-
tegral equation [S7] and the Percus-Yevick (PY) integral
equation [S8] (results not shown). Both the HNC and
the PY equations can be readily solved numerically in
the complete parameter range of Fig. S1. However, the
(virial and fluctuation-route) equations of state predicted
by the HNC and PY equation solution exhibit distinc-
tive disagreement with our MC-simulation results. We

conclude that thermodynamic consistency with respect
to the compression modulus — which is satisfied in the
ZH equation solution, and which is lacking in both the
HNC and the PY equations — is a crucial feature. In or-
der to overcome the problem of missing solutions of the
ZH equation in extended physical parameter ranges, it
might be worthwhile to test alternative thermodynam-
ically partially self-consistent closures of the Ornstein-
Zernike equation in future work.

II. COMPUTATION TIMES FOR OUR
VARIOUS NUMERICAL METHODS

We indicate typical computation times for the three
numerical methods we have used. In the MC-simulations,
the pressure is sampled by a virtual-volume-move method
and therefore subject to statistical fluctuations. To ob-
tain an accurate value for the compression modulus, the
derivative of the pressure, a relatively large amount of
statistics has to be gathered. Typical simulations, thus,
take around 30–50 hours.

The calculation times for the DFT can strongly vary.
For our first dipole-spring model defined in Sec. II of the
main article, a calculation finishes in only two minutes.
However, when the density becomes strongly peaked as in
our advanced model for an embedded chain of particles
(Sec. V), small variations in the density lead to huge
energetic changes in the Percus functional [see Eq. (9) in
the main article]. Then, the time step in our numerical
relaxation scheme (see the Appendix) has to adapt itself
to a small value, which increases the computation time
to 2–8 hours. Still, the DFT calculations are significantly
faster than the corresponding MC-simulations.

Finally, the runtime for solutions of the ZH liquid in-
tegral equation amounts to 5–10 minutes.

III. EFFECT OF SYSTEM SIZE FOR THE
LINEAR EMBEDDED CHAIN

In Fig. 14 of the main article, we have shown the pres-
sure contribution ∆p of the chain of particles for vari-
ous matrix compressions ∆L/L and magnitudes of the
squared magnetic moments. Here, we are interested in
how this stress-strain behavior changes when we increase
the number of particles in the chain from N = 40 to
N = 80 and further to N = 160 while accordingly scaling
the considered part of the elastic matrix from L = 100d
to L = 200d to L = 400d, respectively. We perform the
calculations using only DFT and present the results in
Fig. S2 in a way analogous to Fig. 14 of the main arti-
cle. The effect of increasing the system size seems to be
fairly weak. For small compressions, there is a slight shift
of all curves to higher ∆p. For larger compressions and
stronger magnetic interactions, a slight shift to lower ∆p
occurs. These shifts seem to be more pronounced when
doubling the system size from N = 40 to N = 80 than
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FIG. S2: Contribution of the chain of embedded particles to
the overall stress-strain behavior in a part of length L of the
composite material as in Fig. 14 of the main article. Here,
however, DFT results for three different systems of N = 40,
N = 80, and N = 160 particles are compared. We consider
parts of the (in principle infinitely extended) embedding elas-
tic matrix of length L = 100d, L = 200d, and L = 400d,
respectively. Increasing the system size accordingly has only
a small effect, shifting the curves slightly upwards at small
compressions ∆L/L and slightly downwards for larger com-
pressions and stronger magnetic interactions.

for doubling it again from N = 80 to N = 160. In total,
we do not expect the shifts to become significant when
going to even larger system sizes.
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Abstract
The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be
influenced and controlled in many ways, e.g. by applying a magnetic field, by external
mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these
stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer.
Specific knowledge of the interactions between particles or particle clusters is of high relevance
for understanding the macroscopic rheological properties and provides an important input for
theoretical calculations. In order to gain a better insight into the correlation between the
macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray
micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the
particle configurations were carried out. Different MREs with quantities of 2–15 wt%
(0.27–2.3 vol%) of iron powder and different allocations of the particles inside the matrix were
prepared. The X-μCT results were edited by an image processing software regarding the
geometrical properties of the particles with and without the influence of an external magnetic
field. Pair correlation functions for the positions of the particles inside the elastomer were
calculated to statistically characterize the distributions of the particles in the samples.

Supplementary material for this article is available online

Keywords: magnetism, rheology, magnetorheological elastomers, pair correlation, computerto-
mography, digital image processing, statistical analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetorheological elastomers (MRE) are an interesting
class of actively controllable smart materials. They consist of
magnetic particles embedded into an elastic polymer matrix
[1–4]. This combination of materials allows to dynamically
influence many material properties simply by applying an
external magnetic field, opening the way for a wide range of
applications in technology [5–15]. The magnetic particles are
usually made of a ferromagnetic material, e.g., carbonyl-iron
powder [10–15] or neodymium-iron-boron [16] in a size
range of a few nanometers up to several micrometers. To
generate the polymeric matrices, polydimethylsiloxane
(PDMS) or poly(N-isopropylacrylamide) is frequently used.

Applying a magnetic field to such a kind of MRE,
internal magnetodipolar forces can cause changes in static and
dynamic properties [17–24]. Structurally, during synthesis,
these forces can lead to a rearrangement of the particles
towards chain-like aggregates oriented parallel to the direc-
tion of the applied magnetic field [25–28]. Inducing these
forces in the final product, counteracting elastic restoring
forces by the surrounding matrix oppose to the reorganiza-
tion. The magnitudes of the magnetodipolar forces are largely
dependent on the distribution of the particles inside the
matrix, particularly on the distance between neighboring
particles.

During the last years, a noninvasive method for the three-
dimensional investigation of the morphology of materials
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using x-ray micro-computed tomography (X-μCT) was
developed [29–31]. This measuring technique enables a
quantitative analysis of the geometrical properties of single
particles in MRE materials. It is possible to perform X-μCT
investigations under the influence of an external magnetic
field by implementing a magnetic field setup into the CT-
system [31, 32].

The main interest of the current study is to observe and
analyze the particle distribution within different samples. We
have investigated isotropic samples with and without expo-
sure to an external magnetic field during measurement.
Samples with an already imprinted chain structure (aniso-
tropic samples) due to initial polymerization under the influ-
ence of an external magnetic field are addressed as well. The
initially isotropic samples show a formation of small chain-
like aggregates when applying an external magnetic field.
Consequently, there is a structural difference between the
cases with and without an external magnetic field switched on
[32]. For both cases, pair correlation functions (PCF) are
calculated and compared to the situation in the anisotropic
samples, where chain-like aggregates are always present.
These PCF are of interest as an input for statistical theories,
see also their previous use in the characterization of dipolar
liquids [33–40].

The experimental samples were based on magnetically
soft iron particles with a mean diameter of about 45 μm and a
particle content of 2, 5, 10, and 15 wt% which corresponds to
0.27, 0.70, 1.47, and 2.32 vol%, respectively. These particles
were embedded into a PDMS matrix supplied by Wacker
Chemie AG (Germany). Applying the external magnetic field
was achieved by two permanent magnets in the X-μCT sys-
tem that create an external homogeneous magnetic flux den-
sity of approximately B 270 mT= [31].

2. Experimental

2.1. Setup

To carry out the investigations we used an X-μCT system
based on a nano-focus tube with a maximum acceleration
voltage of 160 kV, a movable sample holder with two
cylindrical permanent magnets to adjust the magnetic field,
and a detector with a photodiode array of 2000×2048
(vertical×horizontal) pixels [29–31]. The permanent mag-
nets were mounted in a displaceable fashion and could gen-
erate a homogeneous magnetic field parallel to the direction
of gravity in the range of B 0 270 mT.= - This enables
investigations of cylindrical regions of 4 mm both in height
and in diameter, within a magnetic field with a degree of
homogeneity of 97% in radial and 94% in axial direction [31].
More details on the measuring setup can be found in [31, 32].

During the CT investigations, the temperature was kept
constant at 20 °C. The projection images in the experiments
were generated by rotating the sample with 0.25° angular
increment for a tube current of 170 μA and an acceleration
voltage of 90 kV. The exposure time was varied between 2

and 6.5 s to achieve a suitable image quality. The magnifi-
cation was 15, which resulted in a resolution of 1 pixel=
3.2 μm. CT-reconstruction was carried out using a home-
made software.

2.2. Samples

Our samples were of cylindrical shape of diameter
d 3.5 mm= and height h 3.5 mm.= The polymer host
matrix was prepared from the elastomer kit Elastosil® RT
745 A/B, provided by Wacker Chemie AG Germany. Elas-
tosil is a two-component silicon with a curing agent in one of
the two components. The components were mixed in a mass
ratio of 1:1. After mixing the components, a highly viscous
silicon oil of viscosity 100 Pash = (at 23 °C), produced by
Wacker Chemie AG (Germany), was added as a softener in a
content ratio of 60 wt% related to the two silicon components.
This softener leads to an adjustment of the elastic moduli of
the polymer matrix and to a reduction of the sedimentation
rate due to gravitation. After mixing the components and the
softener, magnetically soft iron powder ASC200, supplied by
Höganäs AB (Sweden), was added. The average particle size
was approximately 45 μm. Further details about the particle
size distribution can be found in [29].

To investigate the statistical particle distribution in
MREs, different samples with particle contents of 2, 5, 10,
and 15 wt% (0.27, 0.70, 1.47, 2.32 vol%, respectively) were
produced. Samples with isotropic particle distributions were
synthesized by pouring the final mixture (with particles
added) into a mold that was then placed into a 95 °C water
bath for 2 h to guarantee the polymerization of the samples.
Samples with anisotropic particle distributions were produced
by exposing the final mixture to a homogeneous magnetic
field of B 270 mT= generated by a laboratory electronic
magnet from the company Bruker Corp. (Germany) during
polymerization. Again, the specified time for the sample
polymerization amounted to 2 h at a temperature of 95 °C.

After preparation of the samples, CT-scans were per-
formed. We anticipated a particle rearrangement upon appli-
cation of an external magnetic field [32]. Therefore, each
sample was investigated in the absence and the presence of an
external magnetic field. In this process, it was found that the
particles within the anisotropic samples already featuring
chain-like aggregates do not show significant rearrangement
when the magnetic field is applied parallel to the chain
structures. Thus, the cases we discuss in the following are
isotropic samples at B 0,= isotropic samples at
B 270 mT,= and anisotropic samples at B 0.= Example
tomograms of the samples with different particle distributions
are shown in figures 1(a) and (b).

3. Evaluation

A quantitative analysis identifying single particles inside the
elastomeric matrices becomes possible by evaluating the
reconstructed tomographic scans with an image processing
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software. For the quantitative analysis, the software
MATLAB 7.10.0 with the image toolbox DIPimage was
used. Due to a lower absorption coefficient of the elastomer
relatively to the particles, the matrix in figure 1 (in dark red/
dark gray) can be distinguished from the particles (in yellow/
light gray). A threshold criterion based on the gray value in
the tomographic data was used to separate the particles from
the matrix. After separation of the components, individual
particles in clusters were identified (segmented) using a
watershed algorithm [41]. To avoid an incorrect separation of
the particles, it was important to adjust the parameters of the
watershed algorithm. To guarantee an accurate particle seg-
mentation, the threshold criterion and the watershed algorithm
were calibrated to the size distribution of the magnetic par-
ticles obtained by a laser diffraction method. Figure 2 illus-
trates a segmented cluster of particles within an anisotropic
sample for a particle content of 5 wt%.

After segmentation of the clustered particles, the particles
were labeled and their size and center coordinates were
determined and organized into a database. The particle dis-
tribution was determined from this database. In a homo-
geneous sample, a useful approach to statistically characterize
the distribution of particles is to consider the PCF [42, 43]

g
V

N
r r r r , 1

i j i
j i2 ååd= - -

¹

( ) ( ( )) ( )

where N is the number of particles, V is the sample volume,
x y zr , ,i i i i= ( ) and x y zr , ,j j j j= ( ) denote the positions of

particles i and j, respectively, d is the Dirac delta function,

and á⋅ñ denotes an ensemble average. The PCF is proportional
to the probability density for finding a pair of particles in the
sample at a separation as given by the vector r. In an ideal gas

Figure 1. Tomograms of cylindrical MRE samples of 5 wt% particle content with (a) isotropic structure in the absence of an external
magnetic field. The anisotropic sample (b) was generated by applying an external magnetic field in axial direction during the polymerization
process. The host matrix is shown in dark red (dark gray) and the particles in yellow (light gray).

Figure 2. Segmented individual particles in one chain of an
anisotropic MRE sample with a particle content of 5 wt% as opposed
to the still non-segmented particles in the other chain structures.
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of particle density N V , where the ensemble-averaged dis-
tribution of particles is uniform, this probability density is
given by N V .2( ) So g r( ) relates the actual nonuniform
distribution to the uniform ideal-gas distribution. For very
short distances smaller than the finite particle size, g r 0=( )
because the rigid particles cannot interpenetrate. At very long
distances, there is no correlation between two particles any-
more so that the probability density to find a particle at a
separation r from another particle becomes uniform as for the
ideal gas and g r 1=( ) .

Our anisotropic samples were produced in an external
magnetic field parallel to the cylinder axis (z directionˆ‐ ).
Moreover, our isotropic samples were probed under the
influence of an equally oriented magnetic field. These sam-
ples possess a cylindrical symmetry and, therefore, the
probability density to find a particle pair at a certain separa-
tion only depends on the particle distances r∣∣ in the axial
direction and r̂ perpendicular to it. That means a PCF of only
two variables given by

g r r
V

r N
r z z

r x x y y

,
4

2

i j i
j i

j i j i
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ååp
d

d
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contains the same information as g r( ) and can be termed
cylindrical distribution function. For the analysis of the iso-
tropic samples in the absence of an external field we can
proceed one step further and consider the radial distribution
function

g r
V

r N
r r r

4
3

i j i
j i2 2 ååp

d= - -
¹

( ) ( ∣ ∣) ( )

with r r: .=∣ ∣ See the supplemental material available online at
stacks.iop.org/SMS/26/045012/mmedia for a detailed dis-
cussion on why equations (2) and (3) are equivalent to
equation (1) when the particle distribution features cylindrical
symmetry or is isotropic, respectively.

In practice, the computation of g r( ) was performed in the
following way. The possible values for the distance r are sorted
into n discrete bins of thickness rD with possible distance
values r k r1 2 ,k = + D( ) where k n0, ... , 1 .Î -{ } A his-
togram of the occurrences of particle distance is computed. The
occupation number of the kth bin is incremented whenever

k r k rr r , 1 .j i- Î D + D∣ ∣ [ ( ) [ This procedure reflects the sum
of distributionsd‐ in equation (3). Since each bin represents a
spherical shell of finite thickness r,D the normalization by r4 2p
is replaced with the normalization by k k r1 .4

3
3 3 3p + - D(( ) )( )

However, our samples are finite, so there is one complication
here. Let bi be the distance of particle i to the sample boundary.
If the interparticle distance r rj i-∣ ∣ would fall into a bin, but
b r r ,i j i< -∣ ∣ the normalization becomes complicated because
the spherical shell corresponding to the bin centered around ri

intersects with the boundary. We have circumvented this pro-
blem by only taking those pairs of particles into account for
which b r r .i j i -∣ ∣ But then a bin only gets the chance to

grow if b k r1 ,i  + D( ) the outer radius of the spherical shell.
Therefore, one division by N in equation (3) has to be replaced
with a division by the number of particles i for which
b k r1 .i  + D( ) To summarize, we have used the following
formula for the calculation of the radial distribution function
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The calculation of the cylindrical distribution function g r r, ^( )∣∣
was performed in an analogous fashion. Here, both distances
r r, ^∣∣ have to be discretized. Bins represent cylindrical shells
with discretized radii and heights and again count the number of
times a separation r rj i-∣ ∣ falls within their shell. Also the same
considerations for the sample boundary apply.

In evaluating the statistics for our experimental systems,
the averages were performed for each individual sample
separately. For this purpose, sufficiently homogeneous
regions were identified as described in the following.

4. Results

4.1. Statistical analysis of MREs with isotropic particle
distribution

First, we had to make sure that the requirement of the
homogeneity of the sample is sufficiently met. The criterion
was based on the homogeneity of the particle number density
within the sample. Imagine around the geometrical center of
our cylindrical sample a smaller cylinder of height H and
radius R. If the particle number density H R,r ( ) within the
enclosed volume is a sufficiently constant function of H and
R, then the sample can be regarded as homogeneous. As an
example, we plot in figure 3 for an isotropic sample with a
particle content of 15 wt% the particle density

H R, 1.5 mmr =( ) within a cylinder of variable height and
fixed radius as well as H R3.0 mm,r =( ) within a cylinder
of fixed height and variable radius. While the former shows
stronger fluctuations, especially for large H before the full
sample height is reached, the latter remains relatively constant
up to the full radius of the sample. The spikes at very low
radii and heights are due to the poor statistics when only a few
particles fit into the cylinder. The significant decrease at high
values of H and R is to some extent due to slight deviations of
the sample from a perfect cylindrical shape, which is also
visible in figure 1. When the test cylinders that are fitted into
the sample for our evaluation reach the overall extent of the
sample, these shape irregularities become important. If voids
are included in the probe volume, the density drops. We
therefore chose a maximum height H 3.0 mmm = and radius
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R 1.5 mmm = and only used the enclosed sample volume in
our calculations.

After determining a sample region that is approximately
homogeneous, we calculated the radial distribution function.
The results are shown in figure 4. For small interparticle
distances we have g r 0,=( ) because even the smallest par-
ticles in the sample show a finite separation distance between
their centers. Starting with r 20 m,m» g r( ) rapidly increases
as more and more configurations become possible where also
particles of larger size do not overlap. Saturation is already
reached at r 70 m.m» This represents a reasonable value,
considering the mean particle diameter of approximately
45 m.m From there on g r( ) remains at a constant level of 1.
Our results suggest that mainly approximate repulsive hard-
sphere-like interactions between the particles determine the
particle arrangement in the sample. If this is the case, almost
the same radial distribution function should be recovered
when the same particles are redistributed in a random and
non-intersecting way. We performed this test by generating
artificial statistical ensembles of hard spheres within the same
overall volume and with the same distribution of volumes of
the individual particles as extracted from the real sample. The
protocol is the following. For each particle in the real sample,
we generate a spherical particle of identical volume. Then we
insert this particle into the available sample volume, one at a
time. During each event of insertion, the corresponding par-
ticle is placed at a random position, avoiding overlap with
previously placed spheres. If there is any overlap with any
previously inserted particle, a new random position is gen-
erated, otherwise we proceed to the next particle, and so on.
When all particles are inserted, the result is an isotropic dis-
tribution of hard spheres that have the same volume

distribution as the particles in the real experimental sample.
100 of these artificial distributions were created and the
resulting radial distribution functions were averaged. The
distribution function obtained from this polydisperse hard-
sphere model is plotted in figure 4 and shows reasonable
qualitative agreement with the real sample. Isotropic samples

Figure 3. Particle number density H R,r ( ) within a cylinder of height H and radius R centered around the geometrical center of an isotropic
sample with a particle content of 15 wt%. (a) When the cylinder radius is kept fixed at R 1.5 mm= and its height is varied, the particle
density H R, 1.5 mmr =( ) shows some fluctuations, indicating that the sample is not perfectly homogeneous in the axial direction,
especially when going beyond H 3.0 mm.= (b) When the height is kept fixed and the radius is varied, the particle number density

H R3.0 mm,r =( ) shows less fluctuations, up to at least R 1.5 mm.= Since the sample shape slightly deviates from that of a perfect
cylinder, here is a significant decrease for both H R3.2 mm,r >( ) and H R, 1.6 mmr >( ) when the test cylinder reaches the overall extent
of the sample and voids are included in the evaluation.

Figure 4. Radial distribution function for the isotropic sample with a
particle content of 15 wt% and vanishing magnetic field. The data
are in agreement with the results from a polydisperse hard-sphere
model where all particles are transformed into spheres, keeping their
volumes as determined experimentally and then randomly distri-
buting them. This suggests that repulsive hard-core-like interactions
dominate the particle arrangement during the preparation process of
the sample.
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with a lower particle content lead to very similar results, albeit
with worse statistics due the lower total number of particles.

The situation changed when an external magnetic field of
B 270 mT= was applied to the sample in axial direction
when measuring the particle distribution. In figure 5(a) we
illustrate the cylindrical distribution function g r r, .^( )∣∣ While
no significant structure of g r r, ^( )∣∣ is observed in the direc-
tion perpendicular to the field, there is a strongly increased
probability for each particle to find another one in close
vicinity in the parallel direction. In particular, there is a peak
at r 0»^ and r 45 m.m»∣∣ The latter distance corresponds to
the mean particle diameter within our samples. Beyond this
peak, however, the correlation rapidly decays and there are no
striking features anymore. These observations are in agree-
ment with the picture of magnetic particles attracting each
other along the external field direction. The attraction seems
to be strong enough to put the particles close to contact in
spite of the counteracting forces generated by a deformed
matrix environment, see figure 5(b). This is in agreement with
the picture of chains of magnetic particles forming in the
sample under the influence of the external magnetic field [21].
However, higher-order correlation peaks are not clearly
identified, possibly due to the relatively low particle content,
due to the elastic interactions preventing particles from
moving too far, and due to the polydispersity of the particles.

Since the PCF does not contain any direct statement on
the number of particles in a chain, a database searching
algorithm was developed to determine this number. For this
purpose, a cylinder with R 25 mm= and H 400 mm= was
defined around each particle. Each particle that was found
inside this cylinder with a center-to-center distance from the
initial particle smaller than the sum of the two particle dia-
meters is defined to belong to the same chain. After the
assignment, the number of particles organized in chains of a

given size were determined and are plotted in figure 6 for the
different particle quantities. We observed that the lengths of
the chains increase with increasing particle content.

4.2. Statistical analysis of MREs with anisotropic particle
distribution

As already shown in figure 1, the anisotropic samples created
by applying an external magnetic field during the poly-
merization process feature chain-like aggregates in the
direction of the originally applied field. These chains span the
entire sample from bottom to top. It has previously been
observed that the structure of chains in anisotropic MREs

Figure 5. (a) Cylindrical distribution function g r r, ^( )∣∣ for the isotropic sample with a particle content of 15 wt% under the influence of an
external magnetic field of B 270 mT.= There is a pronounced peak in the direction parallel to the external field, indicating that the particles
prefer to have their neighbors in a direction along the external field. Since this peak is absent in the absence of an external magnetic field, it
indicates internal rearrangement upon field application. The radial direction g r r0,= ^( )∣∣ is mostly featureless. (b) Tomographic scan to
visualize the chain formation when an external magnetic field is applied to the initially isotropic sample. These data were obtained in the
same way as described in [32].

Figure 6. Numbers of particles organized in chains of given size for
different particle contents. The chains formed in the isotropic
samples when a magnetic field of B 270 mT= was applied. Their
average size increases with increasing particle content.
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typically depends on the particle content [29]. This is also the
case for our anisotropic samples. We illustrate horizontal
cross-sections through our samples with different particle
content in figure 7, where the structural changes with
increasing particle content are evident. At low particle content
of 2 wt%, the chains are thin and orientated in the direction
along the magnetic field initially applied during polymeriza-
tion. With increasing particle content, the structures begin to
thicken and to expand in the direction perpendicular to the
magnetic field (figure 7(d)). Obviously, in the directions
perpendicular to the anisotropy axis, the particles are not
distributed uniformly. Instead, they rather appear to be clus-
tered at certain mutual distances. Such inhomogeneous dis-
tributions are known to be able to significantly affect the
mechanical response [44].

Again we determined the cylindrical distribution func-
tions. Results for particle contents of 2 and 15 wt% are plotted
in figures 8 and 9, respectively. There are obviously huge
differences between the directions parallel and perpendicular
to the anisotropy axis. Along the direction of the chains the
correlation is much stronger and long-ranged, especially for

the samples with low particle content. In both samples, there
is again a peak at r 45 m,m»∣∣ r 0»^ identifying nearest-
neighboring particles in the axial direction. In the direction
perpendicular to the chains, the correlations are lost much
more quickly, especially for the 2 wt% sample. In contrast to
that, the sample with 15 wt% particle content features chains
of larger thickness in the perpendicular directions, so that the
correlations in these directions decay much more slowly. At
long distances in the perpendicular direction, we can first
observe a depleted region where the probability to find other
particles becomes very low and g r r, ^( )∣∣ almost vanishes.
Beyond this depleted region, the values increase again and
indicate the presence of other chains. This manifests itself as a
series of discrete peaks at r 500 m m^ in the sample with
low particle content and as one smeared-out peak in the
sample with high particle content. In figure 10 this is illu-
strated more clearly and also for the other particle contents.
There we plot the cylindrical distribution function
g r r0,= ^( )∣∣ only as a function of the perpendicular distance,
setting the distance in the axial direction to zero.

Figure 7. Tomographic results for the horizontal cross-sections through the center of the anisotropic samples with particle contents of (a)
2 wt%, (b) 5 wt%, (c) 10 wt%, and (d) 15 wt%.

Figure 8. Two different illustrations of the cylindrical distribution function g r r, ^( )∣∣ for an anisotropic sample with a particle content of
2 wt%. The left plot illustrates the behavior for smaller separation distances. There is a pronounced peak at low r ,^ which reflects the
preferred nearest-neighbor positioning along the axial direction. The correlations in this direction are overall very high and decay slowly.
Contrary to that, in the perpendicular direction there are no striking features and the correlation is lost very quickly. The right plot aims to
demonstrate the correlations between separate chains. For long distances r ,^ there is first a depleted region corresponding to the voids
between separate chains. After that, however, there is a series of peaks reflecting the positioning of neighboring chains.
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To further quantify the correlations between the particle
chains, we also performed an analysis using a Delaunay tri-
angulation method [29, 45]. First, for different cross-sectional
planes, see figure 7, the centers of the chains were detected.
Using Delaunay triangulation, each plane was tessellated into
triangles with their vertices located in the chain centers. The
distances between the chains were then determined as the
lengths of the edges of these triangles.

An example for the resulting distributions is shown in
figure 11(a) for a particle content of 15 wt%. Approximately,
the distances between the particle chains follow a Gaussian
distribution. Extracting the average chain separation distance,
we found for our samples that the chain distances first
decrease from the 2 wt% to the 5 wt% case, see figure 11(b).

For the higher particle contents of 10 and 15 wt%, we then
observed both the chain separation distances and the chain
thicknesses to increase. This behavior is connected to the
dependence of the total number of chains on the particle
content. For the particle content of 5 wt%, the chains still
remain thin and aligned, as already shown in figure 7. When
the particle content is further increased, the chains start to
expand in the direction perpendicular to the magnetic field.
This leads to a decreasing number of chains and, therefore, to
an increase in chain distance.

5. Summary

This work demonstrates the possibility to extract and quantify
particle distributions within MRE via X-μCT tomographic
measurements. A statistical analysis of these distributions
leads to insights into the particle interactions within such
materials. X-μCT provides a method to detect individual
particles inside these systems and to track their rearrangement
when an external stimulus is applied. In a measured tomo-
gram, particles are still clustered and not individually visible.
By using methods of digital image evaluation, clustered
particles can be distinguished. This provides the possibility to
analyze their geometrical properties and to generate a data-
base for statistical processing. From the database, PCF char-
acterizing the particle arrangements were calculated. Several
different experimental samples were produced in this work,
all of them consisting of particles of carbonyl-iron powder
embedded into a polymeric matrix made of PDMS. Isotropic
and anisotropic samples were synthesized with particle con-
tents of 2, 5, 10, and 15 wt%. The anisotropic samples were
created by applying a magnetic field during the polymeriza-
tion process, which led to the formation of chains along the
field direction. For the isotropic samples, tomographic studies
with and without an external magnetic field of B 270 mT=
applied during data collection have been carried out. The

Figure 9. Same as figure 8 but for a particle content of 15 wt%. The chains in these systems are typically much thicker and less ordered. Thus,
compared to the particle content of 2 wt% there is less correlation between particles along the chains but more in the directions perpendicular
to the chain axes. For long distances in the perpendicular directions there is again a depleted area where g r r, ^( )∣∣ drops close to zero. Beyond
this depletion zone one smeared-out peak reflects the positioning of neighboring chains.

Figure 10. Cylindrical distribution functions g r r0,= ^( )∣∣ of
anisotropic samples for different particle contents, where only r̂ is
varied and r∣∣ is set to zero. This plot illustrates more clearly the
correlations between separate chains and the depleted region due to
the voids between the chains where it is very unlikely to encounter
another particle.
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analysis of the PCF for these isotropic samples indicated the
absence of structures in the absence of external magnetic
fields. When an external magnetic field is applied, the nearest
particle neighbors are most likely found along the magnetic
field direction as the particles attract each other along this
direction. Apparently, smaller chain-like structures are formed
under the influence of the external field in the isotropic
samples. However, larger anisotropic structures seem to rarely
emerge. The tomographic measurements on the anisotropic
samples were carried out without an external magnetic field
applied during data acquisition, because the field did not
significantly alter the structures. We characterized the
morphology of the chain-like aggregates in these anisotropic
samples by determining corresponding PCF. The chain
morphology strongly depends on the particle content of the
samples. An increasing particle content leads to increased
chain thicknesses perpendicular to the magnetic field. Fur-
thermore, we were able to address correlations in the posi-
tioning of separate chains.

In summary, a tool was described to characterize the
distribution of particles in particle-matrix systems. In the
future, measurements on samples with higher particle con-
tents should be performed. Also the statistics for the calcul-
ation of the PCF can be improved by combining the
tomographic results of more samples. The obtained correla-
tion functions can then be used as an input for statistical
theories. Moreover, measurements on samples with still
higher particle contents and, additionally, measurements on
anisotropic samples exposed to an external magnetic field
perpendicular to the chain axes should be performed.
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Abstract. In the main article, we have introduced a cylindrical distribution function

to characterize particle distributions with an overall cylindrical symmetry. We have

used this function to analyze our anisotropic cylindrical samples that were produced

or probed under the influence of a magnetic field in axial direction. Here, we show

that this approach in the case of cylindrical symmetry contains the same information

as the full pair correlation function. In the case of an overall isotropic distribution,

also the radial distribution function contains an equal amount of information.

The pair correlation function is a standard approach to characterize statistical

particle distributions in fluids [1, 2, 3]. It is defined in the main article for overall

spatially homogeneous distributions as

g(r) =
V

N2

〈∑

i

∑

j 6=i
δ
(
r− (rj − ri)

)〉
. (1)

Here N corresponds to the number of particles, V to the sample volume, ri = (xi, yi, zi)

and rj = (xj, yj, zj) are the positions of particles i, j, respectively, i, j = 1, 2, . . . , N ,

and 〈·〉 denotes the ensemble average. Let ρ(N)(r1, . . . , rN) be the probability density

of finding the N particles in the sample at positions r1, . . . , rN . In a sufficiently large

statistical ensemble, ρ(N)(r1, . . . , rN) does not depend on the ordering of its arguments.

Then the probability density ρ(2)(r1, r2) to find any two particles at positions r1, r2,

irrespective of the positions of the other particles, is given by

ρ(2)(r1, r2) = N(N − 1)
∫
ρ(N)(r1, . . . , rN) dr3 . . . drN . (S1)

With this we can show the following relation between ρ(2)(r1, r2) and the pair correlation

function g(r)

g(r) =
V

N2

∫
ρ(N)(r1, . . . , rN)

∑

i

∑

j 6=i
δ
(
r− (rj − ri)

)
dr1 . . . drN
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=
V

N2

∑

i

∑

j 6=i

∫
ρ(N)(r1, . . . , rN) δ

(
r− (rj − ri)

)
dr1 . . . drN

=
V

N2
N(N − 1)

∫
ρ(N)(r1, r2, r3, . . . , rN) δ

(
r− (r2 − r1)

)
dr1 . . . drN

=
V

N2

∫
ρ(2)(r1, r2) δ

(
r− (r2 − r1)

)
dr1 dr2

=
V

N2

∫
ρ(2)(r1, r1 + r) dr1

=
V 2

N2
ρ(2)(r) , (S2)

where ρ(2)(r) := 1
V

∫
ρ(2)(r′, r′+r) dr′ gives the probability density to find two particles at

a separation r in a homogeneous sample. This shows what has already been mentioned

in the main article: that the pair correlation function g(r) relates the actual nonuniform

distribution ρ(2)(r) for the separations r of particle pairs to the uniform distribution

(N/V )2 in the ideal gas.

In the case of a particle distribution that is not only homogeneous but also isotropic,

ρ(2)(r) = ρ(2)(r) holds, and we define ρi(2)(r) := 4πr2ρ(2)(r). ρi(2)(r) gives the probability

density of finding a pair of particles at a distance r := |r|. Then there is no loss of

information in considering the radial distribution function gi(r), defined in the main

article as

gi(r) =
V

4πr2N2

〈∑

i

∑

j 6=i
δ
(
r − |rj − ri|

)〉
. (3)

We briefly show that this definition is analogous to Eq. (S2) in the isotropic case, in

the sense that it relates the probability density ρi(2)(r) of finding a pair of particles at

a certain distance to the distribution of particle distances in the ideal gas:

gi(r) =
V

4πr2N2

∫
ρ(N)(r1, . . . , rN)

∑

i

∑

j 6=i
δ
(
r − |rj − ri|

)
dr1 . . . drN

=
V

4πr2N2

∫
ρ(2)(r1, r2) δ

(
r − |r2 − r1|

)
dr1 dr2

=
V

4πr2N2

∫
δ
(
r′ − (r2 − r1)

)
ρ(2)(r1, r2) δ

(
r − |r2 − r1|

)
dr1 dr2 dr

′

=
V

4πr2N2

∫
ρ(2)(r1, r1 + r′) δ (r − r′) dr1 dr′

=
V 2

4πr2N2

∫
ρ(2)(r′)︸ ︷︷ ︸

=ρi(2)(r′)/4πr′2

δ (r − r′) dr′

=
V 2

4πr2N2
ρi(2)(r) . (S3)

Together with Eq. (S2), we have gi(r) = g(r), and we may therefore drop the superscript
i. For isotropic distributions, g(r) and g(r) as introduced in the main article therefore

contain the same amount of information.

Finally, for the analysis of our anisotropic distributions with cylindrical symmetry,

we made use of the cylindrical distribution function gc(r‖, r⊥) defined in the main article
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as

gc(r‖, r⊥) =
V

4πr⊥N2

〈∑

i

∑

j 6=i
δ
(
r‖ − |zj − zi|

)
δ
(
r⊥ −

√
(xj − xi)2 + (yj − yi)2

)〉
. (2)

In this situation, due to the cylindrical symmetry, ρ(2)(r) = ρ(2)(r‖, r⊥) holds, and we

define ρc(2)(r‖, r⊥) := 4πr⊥ρ(2)(r‖, r⊥). ρc(2)(r‖, r⊥) is the probability density of finding

a pair of particles with a distance of r‖ in axial direction and a distance r⊥ in the

transversal direction. Therefore, the cylindrical distribution funcion gc(r‖, r⊥) likewise

depends only on these two distances. Again, we briefly verify that Eq. (2) gives a result

in analogy to Eq. (S2) in the case of a particle distribution of cylindrical symmetry:

gc(r‖, r⊥) =
V

4πr⊥N2

∫
ρ(N)(r1, . . . , rN)

∑

i

∑

j 6=i
δ
(
r‖ − |zj − zi|

)

× δ
(
r⊥ −

√
(xj − xi)2 + (yj − yi)2

)
dr1 . . . drN

=
V

4πr⊥N2

∫
ρ(2)(r1, r2) δ

(
r‖ − |z2 − z1|

)

× δ
(
r⊥ −

√
(x2 − x1)2 + (y2 − y1)2

)
dr1 dr2

=
V

4πr⊥N2

∫
δ
(
r′ − (r2 − r1)

)
ρ(2)(r1, r2) δ

(
r‖ − |z2 − z1|

)

× δ
(
r⊥ −

√
(x2 − x1)2 + (y2 − y1)2

)
dr1 dr2 dr

′

=
V

4πr⊥N2

∫
ρ(2)(r1, r1 + r′) δ

(
r‖ − r′‖

)
δ (r⊥ − r′⊥) dr1 dr

′

=
V 2

4πr⊥N2

∫
ρ(2)(r′)︸ ︷︷ ︸

=ρc(2)(r′‖,r
′
⊥)/4πr′⊥

δ
(
r‖ − r′‖

)
δ (r⊥ − r′⊥) dr′

=
V 2

4πr⊥N2
ρc(2)(r‖, r⊥) . (S4)

Thus, for cylindrically symmetric distributions, g(r‖, r⊥) and g(r) as introduced in the

main article contain the same amount of information. Together with Eq. (S2), we have

gc(r‖, r⊥) = g(r), and we may therefore drop the superscript c.

In summary, the pair correlation function in Eq. (1) gives the most general and

applicable form for homogeneous particle distributions. For particle distributions

featuring cylindrical symmetry, the cylindrical distribution function in Eq. (2) contains

the same amount of information. In the case of an isotropic particle distribution,

the radial distribution function in Eq. (3) may be used and it is then equivalent in

information to both, Eqs. (1) and (2).
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Chapter 3.

Concluding remarks

Magnetic elastomers and gels are fascinating smart composites of colloidal magnetic
particles embedded into a cross-linked polymer matrix. Their physical properties can
be reversibly tuned on demand by external magnetic fields. Many studies on magnetic
elastomers have demonstrated that the mesoscopic processes have a strong influence
on the properties that can be observed on the macroscale. It is, therefore, important to
understand the mesoscale behavior also when moving over to a macroscopic description.
Contributing by the present thesis to this effort, we have investigated how the
mesoscopic structure influences the magneto-responsive properties, we have uncovered
a new fascinating superelastic stress-strain behavior, and we have devised a framework
to apply density functional theory to magnetic elastomers.

Important structural aspects are, for example, the particle distribution as well as
the type of magneto-elastic coupling between the magnetic filler particles and the
polymer matrix. To investigate their influence, we have begun by considering minimal
models. In Paper I, using a simple dipole-spring representation for the composite,
we have analyzed how the distribution of magnetic particles controls the tunability
of the elastic modulus by external magnetic fields. In this context, we have also
demonstrated that coarse-grained models for the material, that are restricted to affine
deformations, are prone to mispredict the behavior if the particle configuration is not
regular enough, such as is often the case in typical experimental samples. This work
could provide future modeling approaches with a guideline to when the approximation
of affine deformations is justified.

Understanding how the structure determines the dynamic relaxation behavior of the
materials is important for applications like tunable dampers or vibration absorbers,
as well as to predict the response times of actuators. In Paper II, we have extended
our dipole-spring model to also include a rotational magneto-elastic coupling between
particles. We have then characterized the appearance of the dominant relaxation
modes as well as their corresponding relaxation rates in dependence of the magneto-
elastic coupling, the distribution of the particles, and the strength of an applied
magnetic field. We have found that all three can have a significant influence on the
relaxation behavior.

Also the buckling behavior of paramagnetic chains embedded in a soft gel, that was
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observed experimentally in Paper III, depends on the structure of the chains and
the surrounding matrix. There we have seen that chains of different length display a
different number of half-wave oscillations. The buckling amplitude can be controlled
by the strength of the applied magnetic field as well as the softness of the matrix.
Furthermore, our experimental observations and theoretical models suggest that a
certain bending rigidity of the chains is necessary to explain the observed buckling
behavior. This might be a hint that such a bending rigidity is an important structural
property also in other experimental systems containing chain-like aggregates.

Of course, the importance of the mesoscopic structure does not only pose challenges,
but also offers opportunities to engineer the material on this level. So far, during
synthesis, the structural arrangement of the particles within the composite is mostly
controlled by applying an external magnetic field, e.g. , to create anisotropic samples
with a certain chain morphology. Perhaps, a finer control over the particle distribution
could be achieved by additionally using electric fields together with magnetic particles
that are also electrically polarizable [274–276].

As the main topic of this thesis, we have revealed by numerical simulations in
Paper IV that the non-linear stress-strain behavior of anisotropic magnetic elastomers
can contain a fascinating feature called superelasticity under uniaxial elongation. The
superelastic behavior appears as a plateau-like regime in the stress-strain curve, where
the sample becomes susceptible to large-scale deformations while the applied load is
barely increased. We have identified two deformation-induced restructuring processes
within the material that generate the superelasticity. The most important one is a
detachment mechanism of embedded chain-like particle aggregates gradually breaking
up into smaller segments. Additionally there is a flipping mechanism of magnetic
moments. Both mechanisms respond to applied external magnetic fields allowing to
tune, tailor, and switch off the superelastic behavior on demand. This on-demand
response could be interesting for for applications like actuators, passive dampers, or
easily applicable gaskets or wound dressings.

Again, the behavior can be influenced via the mesoscopic structure. In Paper V,
we have investigated how different types of rotational magneto-elastic coupling affect
the appearance of the superelastic plateau. In the case of magnetic moments that can
freely reorient with respect to the carrying particles, the flipping mechanism is active
and the superelastic plateau is characterized by a pronounced hysteresis. Furthermore,
because of the easy reorientation of the magnetic moments, the material is particularly
tunable by magnetic fields. An applied magnetic field parallel to the axes of the
chain-like aggregates and the imposed strain switches the flipping mechanism off. This
removes the hysteresis, and alters the shape of the superelastic plateau. When a field
is applied perpendicular to the axes of the chains instead, the detachment mechanism
can be deactivated, which completely switches off the superelasticity. Due to the easy
reorientation of magnetic moments, these changes can be induced with relatively low
external field strengths. In contrast, when the magnetic moments are fixed to the
particle axes and, thus, rotationally coupled to the surrounding polymer matrix, it
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becomes harder to reorient them. Then the flipping mechanism is basically inactive
and there is no pronounced hysteresis from the start. Additionally, significantly
stronger perpendicular magnetic fields are required to switch off the superelastic
behavior.

Probably, the structure of the anisotropic numerical samples can be further optimized
towards even stronger superelasticity effects. For the particle distribution in the
anisotropic elastomer, we have so far assumed straight chain-like aggregates that
percolate the sample, with finite gaps of elastic material separating neighboring
particles in a chain. The gaps strongly support the detachment mechanism because
they provide a medium to store elastic pre-stresses within the chains. These pre-stresses
can then be released when the sample is elongated. For a given magnetization of the
particles, there should be an optimum gap thickness that maximizes the pre-stresses.
As a next step, also samples with smaller staggered chain-like aggregates of varying
length should be investigated. Exploring a certain waviness of the chains should not
affect detachment mechanism too much. However, strong deviations from straight
aggregates should lead to a qualitatively different behavior [149]. Finally, in many
experiments the particles are of irregular shapes and sizes, so it should be tested if
this affects the behavior [70,71,277].

As an approximation, in our numerical representation of the anisotropic magnetic
elastomer, we have assumed dipolar magnetic interactions between the particles,
although their mutual distance in our numerical samples can be quite small. Never-
theless, the crucial prerequisite for superelasticity is that there is a strong attraction
at short distances between neighboring particles in the chains, such that there is a
high magnetic energy barrier for their detachment. This is, of course, still fulfilled
when the magnetization of the particles is resolved in more detail [169, 173]. Another
approximation we have made concerns the representation of the elastic matrix as
a mesh of affinely deformable tetrahedra. In our case of a nearly-incompressible
elastomer, each tetrahedron is associated with a corresponding constraint of quasi-
incompressibility. However, the number of tetrahedral nodes in the complete mesh,
and therewith the number of deformational degrees of freedom, is significantly lower
than the number of constraints. Such tetrahedral meshes are known to overestimate
the stiffness of the material for this reason. By using more sophisticated tetrahedral
volume elements, the number of constraints can be adjusted to the number of degrees
of freedom [278–280]. Implementing these schemes into our numerical approach would
allow for a better quantitative agreement with experiments and detailed continuum
mechanical calculations [149,155–159].

Since we have identified the mesoscopic processes that lead to superelastic stress-
strain behavior in anisotropic magnetic elastomers, it should be possible to introduce
them also into a coarse-grained macroscopic description. For this purpose, the ongoing
restructuring due to detachment and flip events could be expressed by corresponding
macroscopic variables. Detachment could be expressed by relative strains between
parts of the chains and the surrounding matrix, which take stress storage and release
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within the chain-like aggregates into account. Reorientation of magnetic moments
could be expressed by relative rotations between the chain axes and the macroscopic,
possibly staggered, magnetization [177].

The phenomenology of superelasticity that we have observed in magnetic elastomers
shows some analogies to the superelastic behavior in shape-memory alloys. In the
latter, the superelastic behavior is fueled by stress-induced phase transitions. This
raises the question whether the flipping and detachment restructuring mechanisms
that enable the superelasticity in magnetic elastomers show the characteristics of
a phase transition as well. In our approach, we have only considered small system
sizes and neglected thermal fluctuations so that it is not possible to draw a definite
conclusion on the basis of existing results. Using minimalistic mesoscopic models that
can access much larger system sizes and include thermal fluctuations could shed some
light on this question.

As the final topic of this thesis, we have pursued a statistical description of magnetic
elastomers. Most importantly in Paper VI, we have devised a framework to apply
density functional theory to magnetic elastomers. Such statistical approaches offer
the possibility to calculate macroscopically relevant material parameters while taking
the mesoscopic particle correlations as well as the particle–particle interactions into
account. Normally, such a description is restricted to ensembles of indistinguishable
particles. This poses a challenge, because in magnetic elastomers the particles can be
distinguished by the positions inside the elastic matrix at which they are permanently
embedded. Here we have successfully mapped the distinguishable particles within
a one-dimensional dipole-spring model to an ensemble of indistinguishable particles
governed by effective pair interactions. In this way, we have opened up density
functional theory as a new method for describing these materials. Moreover, other
statistical mechanical tools that rely on indistinguishable particles, such as liquid
integral theory, become applicable as well.

Future extensions of this work could include more degrees of freedom, such as
rotations of magnetic moments, or different shapes and sizes of the particles [281–284].
Transferring our static approach to dynamical density functional theory [285–290]
should be straightforward as well and open up the description of dynamical relaxation
processes or the behavior under cyclic deformation. Our ideas and concepts might also
act as a guideline to transfer statistical mechanical descriptions like density functional
theory to higher spatial dimensions.

Experimentally realistic particle distributions could be a valuable input for these
theories, as they encode the mesoscopic structural informations. In Paper VII,
we have statistically analyzed the particle distributions in experimental samples for
which the structural data had been provided by X-ray tomography. In particular, we
have determined how the particle correlation functions change when homogeneous
magnetic fields are applied to the samples. When the field is applied to an already
cured isotropic sample, small chain-like clusters oriented in the direction of the field
temporarily form. This is reflected by the pair correlation functions in the form of
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an increased statistical probability that two particles are close to each other in this
direction. In contrast, when the field is applied before and during the synthesis, longer
chain-like aggregates form that remain permanently imprinted in the sample. For
such samples, we have analyzed what kind of chain morphology arises when the filler
content of magnetic colloidal particles in the samples is varied. At the current stage,
the particle detection within experimental samples is still challenging. Hence, the
available statistical data for the calculation of pair correlation functions are limited.
However, once these methods become more advanced, a statistical characterization of
experimental samples might serve as an input to statistical theories.

In conclusion, magnetic elastomers and gels will remain an exciting topic for future
research. In the last years, there has been much progress on enhancing the magneto-
elastic effects that are relevant for applications. A better theoretical understanding and
the discovery of new fascinating effects will open up the pathway to the development
of new and the optimization of existing applications.
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[33] Z. Cheng, J. Zhu, W. B. Russel, and P. M. Chaikin, Phonons in an entropic crystal,
Phys. Rev. Lett. 85, 1460 (2000).



Bibliography 175

[34] G. R. Strobl, The Physics of Polymers (Springer, Berlin, 2007).

[35] L. R. G. Treloar, The Physics of Rubber Elasticity (Oxford University Press, Oxford,
UK, 1975).

[36] J. E. Mark, B. Erman, and M. Roland, The Science and Technology of Rubber (Elsevier,
Oxford, UK, 2013).

[37] P. J. Flory, N. Rabjohn, and M. C. Shaffer, Dependence of tensile strength of vulcanized
rubber on degree of cross-linking, J. Polym. Sci. 4, 435 (1949).

[38] S. Odenbach, Ferrofluids (Springer, Berlin, 2002).

[39] S. Odenbach, Ferrofluids – magnetically controlled suspensions, Colloids Surf. A 217,
171 (2003).

[40] S. Odenbach, Recent progress in magnetic fluid research, J. Phys.: Condens. Matter
16, R1135 (2004).
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[117] P. Cremer, H. Löwen, and A. M. Menzel, Tailoring superelasticity of soft magnetic
materials, Appl. Phys. Lett. 107, 171903 (2015).
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[208] M. Zŕınyi, L. Barsi, D. Szabó, and H.-G. Kilian, Direct observation of abrupt shape
transition in ferrogels induced by nonuniform magnetic field, J. Chem. Phys. 106, 5685
(1997).

[209] G. Diguet, E. Beaugnon, and J. Cavaillé, Shape effect in the magnetostriction of
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[290] H. Löwen, in Variational Methods in Molecular Modeling, edited by J. Wu (Springer
Singapore, 2017).


	Introduction
	Composition and structure of magnetic elastomers
	Elastomers
	Magnetic particles
	Coupling between matrix and filler
	Particle distribution

	Magneto-elastic effects
	The magneto-rheological effect
	Field-induced shape changes

	Structural control of magneto-elastic behavior
	Affine models and their limitations
	Tunable dynamic relaxation
	Buckling of paramagnetic chains

	Non-linear stress-strain behavior
	Superelasticity
	Shape-memory effects

	Statistical description
	Characterization of experimental particle distributions
	Density functional theory


	Peer-reviewed publications
	Structural control of elastic moduli in ferrogels and the importance of non-affine deformations
	Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields
	Buckling of paramagnetic chains in soft gels
	Tailoring superelasticity of soft magnetic materials
	Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling
	A density functional approach to ferrogels
	Statistical analysis of magnetically soft particles in magnetorheological elastomers

	Concluding remarks
	Bibliography

