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Abstract

Diffusion Tensor Imaging (DTI), as conventional extension of Diffusion-Weighted Imaging (DWI),
is based on Magnetic Resonance Imaging (MRI). This technique renders in vivo information about
biological tissue microstructure non-invasively according to the characteristics of water diffusion.
With the novel approach of Diffusion Kurtosis Imaging (DKI), also referred to as non-Gaussian
DWI, a more exact analysis of the diffusion characteristics in terms of probability distribution
and their variation (Gaussian distribution, kurtosis) is possible. DKI can better model the water
molecules movement and provide a better characterisation of tissue microstructure compared
to DTI. The purpose of this thesis is the development and optimisation of image reconstruction
pre-processing tools and the necessary imaging protocols for practical use of DKI in the clinical
routine. Additionally, it aims to explore the additional value of DKI, as a newly introduced medical
imaging technique, in characterising biological tissue microstructures in the healthy human brain
and kidneys.
However, the practical use of DKI in the clinical routine is associated with some challenges:
(a) An increased measurement time due to the higher number of measurements necessary to
estimate the more complex non-Gaussian model that introduce motion artefacts and, (b) errors
that derivate from fitting the low signal-to-noise ratio (SNR) of highly diffusion-weighted (DW)
images. Therefore, the first part of this dissertation focusses on developing a robust motion
correction method to align DW images prior to DKI computation. A basic concept of information
theory called mutual information that better performs than conventional motion correction
techniques based on grey values comparison is used as similarity measure. A jointly anisotropic
linear minimum mean squared error (jaLMMSE) filter and a non-linear anisotropic diffusion
filter (ADF) are implemented and compared, in order to improve the DKI results. Simulations
with synthetic and real DKI brain data from healthy volunteers show that the mean structural
similarity index (MSSIM) and the peak-signal-to-noise ratio (PSNR) are significantly lower with
ADF compared to jaLMMSE. Furthermore, the resulting pre-processing methods for motion
and noise correction are applied for neuroimaging and the variability of the diffusion kurtosis
measures is evaluated in 80 healthy human brains. The resulting DKI metrics are mapped to
the existing well-established anatomical Montreal Neurology Institute (MNI) space to construct
the first age- and gender-dependent MRI whole human brain atlas. In the second part of this
thesis, DKI is applied for the first time to healthy human kidneys using respiratory triggered
acquisitions at 3T showing cortico-medullary differentiation in mean kurtosis images. In addition,
experiments are performed to find optimal acquisition parameters (b-value = 0; 500; 1000 s/mm2

and 20 diffusion directions) for renal DKI.

vii





Kurzfassung

Diffusion Kurtosis-Bildgebung (DKI) dient als Erweiterung der Diffusions-Tensor-Bildgebung
(DTI). Durch die exakte Analyse der Diffusionseigenschaften im Sinne von
Wahrscheinlichkeitsverteilungen und deren Abweichungen (Gaußverteilung, Kurtosis) soll
die Molekülbeweglichkeit mit DKI besser modelliert werden. Hierdurch können neuartige
diagnostische Informationen aus den diffusionsgewichteten (DW) Untersuchungen gewonnen
werden, die zu einer verbesserten Differenzierung von pathologischem Gewebe beitragen
können. Das Ziel dieser Arbeit ist die Entwicklung und Optimierung der erforderlichen
Bildvorverarbeitungstechniken und Bildgebungsprotokolle für die praktische Anwendung
von DKI in der klinischen Routine. Zusätzlich soll das Potenzial von DKI, als neulich entwickelte
Bildgebungstechnik, für die Charakterisierung von biologischer Gewebemikrostruktur im
gesunden menschlichen Gehirn und in Nieren untersucht werden.

Die Ergebnisse dieser Arbeit zeigen neue Erkenntnisse für die Diffusionsgewichtete Bildgebung
(DWI). Der erste Teil konzentriert sich auf die Entwicklung einer Technik zur Bewegungskorrektur
von DW Bildern. Die Grundidee ist es, Mutual Information (MI) - ein grundlegendes Konzept aus
der Informationstheorie - als Ähnlichkeitsmaß zu verwenden. Im Vergleich zur herkömmlichen
Bewegungskorrekturtechniken, in denen die Grauwerte verglichen werden, erfordert MI
keine Angabe über die Geometrie zwischen den beiden Bildern, und eignet sich gut als
Kriterium zur Registrierung von Bildern mit unterschiedlichen Kontrasten wie DW Bilder. Zwei
Rauschreduktionsverfahren werden zur Verbesserung der DKI-Ergebnisse implementiert und
verglichen. Die Anwendung der entwickelten Vorverarbeitungstechniken auf Neuro-Bildgebung
dient zur Untersuchung der Variabilität der Diffusionsergebnisse in 80 gesunden menschlichen
Gehirnen. Die resultierenden DKI Werte abgebildet auf die gut etablierten anatomischen
Montreal Neurologie Institute (MNI) Templates werden zur Erstellung menschlicher DKI-Atlanten
des Gehirns in Abhängigkeit von Alter und Geschlecht benutzt.
Im zweiten Teil werden gesunde menschliche Niere zum ersten Mal mittels des Verfahrens
DKI untersucht. Die Ergebnisse zeigen eine signifikante kortiko-medulläre Differenzierung in
Kurtosis-Metriken. Anschließend wird DKI mit optimalen AuƢnahmeparametern (b = 0; 500;
1000 s/mm2 und 20 Diffusionsrichtungen) in der menschnlichen Niere angewendet.
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Chapter 1
Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that uses the
magnetic properties of spinning hydrogen atoms to produce images. Compared to other imaging
applications, its good spatial resolution and the excellent soft tissue contrast make it the method
of choice for neurological and genitourinary examinations. Perhaps most importantly, because it
does not rely on ionising radiation, MRI is safe for serial examinations, dynamic (time-resolved)
imaging studies and screening in asymptomatic subjects [1]. Moreover, it allows for both
2-dimensional (2D) and 3-dimensional (3D) representations of the inner structure of the living
human body.

In biological tissue, random and constant diffusion of water molecules is influenced by the
interaction with the molecular, cellular and sub-cellular environment. This means that as a
consequence of their diffusion movement, the water molecules probe the biological tissues on a
microscopical scale well below the millimetre scale of conventional MRI images. Therefore, it is
extremely important to notice that differences in microstructures within the tissue or changes in
the micro-architecture of living tissues that appear after injury or pathology can be detected.

Clinical Diffusion-Weighted Magnetic Resonance Imaging (DWI or DW-MRI) focusses on the
movement of water molecules. It measures the diffusion of water in the brain and kidney
tissue that faces a complex and varied microstructure composed of multiple compartments. The
diffusion of molecules that is free depending on the composition of the underlying environment
can be hindered by a cell membrane or even systematically restricted when the molecule collides
with an inner surface or at collision with macro-molecules.
For example in the brain, three types of diffusion processes can be observed. In the cerebrospinal
fluid (CSF), diffusion tends to be free measured with a scalar coefficient of diffusion D that is
almost identical to that of water. In the grey matter, D is isotropic but can be restricted in the
presence of cell barriers. Finally, in the white matter where diffusion is anisotropic - oriented
by the fibre nerves, diffusion is measured by a diffusion ellipsoid ( a 3 × 3 tensor) based on the
Diffusion Tensor Magnetic Resonance Imaging (DTI or DT-MRI) technique.

Despite the great benefits of DWI and DTI, their clinical application still faces a major
challenge based on two assumptions with a limited validity. First, in DWI the simple underlying
mathematical model assuming an overall isotropic diffusion displacement with a Gaussian
distribution does not not hold for all the types of diffusion mentioned above. In fact, when higher

1



1. Introduction

diffusion-weighting factors are used, the diffusion-weighted (DW) signal deviates significantly
from the mono-exponential behaviour that is assumed with the Gaussian distribution in the DWI
and DTI model. Secondly, DTI has a limited sensitivity as it assumes that each voxel contains a
single directional diffusivity maximum. This is observed at very high weighting of the diffusion
that increases the sensitivity of the water molecules signal to any heterogeneous diffusion
distances that might be present in complex micro-architectures [2]. As a result, the DWI model
fails to provide an accurate quantification of the true diffusion process. There are several models
to characterise more complex tissue micro-structural changes in diffusion MRI. They vary from
the easiest and commonly used techniques - that map apparent diffusion coefficient values - to
the more complex methods based on the q-space theory [3, 4, 5].

This thesis builds up on a novel method that extends conventional DWI / DTI using a non-Gaussian
analysis of the DW signal - the kurtosis model [6]. This new method is more effective because
it does not rely on limited assumptions (multi-compartment techniques) such as other methods
initially published [7, 8] and is easily applicable for clinical studies on current MR scanners [9].
DKI improves the DWI signal because it considers both the Gaussian and the non-Gaussian
components of the diffusion process. This is achieved by the so-called kurtosis parameter K, that
measures the deviation of the probability distribution from a Gaussian process. At the time of
writing this thesis, only very few articles have been published on the use of DKI. They demonstrate
the superiority of DKI over DWI in the characterisation of the microscopic structure of the healthy
[9, 10] as well as the pathological [11, 12] biological tissue. In addition, since current studies have
focussed more on the brain micro-architecture, it is relevant to use DKI to explore other human
organs.

DKI requires the use of more than one diffusion-weighting strength and a higher number of
diffusion-weighting directions compared to DTI. This lengthens the scan time and makes the DKI
acquisitions more prone to motion artefacts. In addition, the resulting DW images have a very low
signal-to-noise ratio (SNR) due to the necessary stronger diffusion-weighting. Thus, the first aims
of this dissertation were to study how motion affects DW-derived parameters and to develop
a robust image registration routine prior to DKI signal fitting. State-of-the art noise reduction
techniques were also examined for diffusion-weighted image filtering prior to diffusional kurtosis
estimation. Then DKI was applied to normal human brains to see if additional relevant information
can be extracted from DKI compared to the widely-used DWI and DTI methods regarding age and
gender related changes. Besides the brain applications, DKI was also applied to healthy human
kidneys. First, the feasibility of renal DKI was investigated. Then the acquisition parameters were
optimised in terms of range and number of b-values as well as number of diffusion directions
used for the calculation of robust and reliable kurtosis maps in the kidneys. The methodologies
developed here are designed to facilitate the clinical application of DKI and of course, to achieve
reliable and more stable kurtosis maps in feasible acquisition times.

This thesis is organised in four parts: the state-of-the art, the methodological contribution, the
clinical contribution and a conclusion part.
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1.3. Thesis Outline

The State of the art part (Chapters 2 - 3) describes the anatomy of the human brain and
kidneys in Chapter 2. Chapter 3 introduces the mathematical models and parameters used to
measure water diffusivity for non-invasive imaging of biological tissue microstructure. It also
reviews the challenges with artefacts in DWI and highlights the clinical value of DWI in the
human brain and kidneys. The Methodological contribution part in chapter 4 describes the
theoretical and methodological contributions of the thesis. It analyses how image motion and
noise affect the accuracy and variability of DKI derived parameters. Here the experiments are
carried out on both simulated and real image data of the brain and robust motion and noise
correction procedures for non-Gaussian DW images are established. Details of the architecture
of a whole processing pipeline designed for calculation of the diffusion kurtosis maps are
given. The Clinical contribution part (Chapters 5 - 7) highlights the contributions for specifics
neurological and genitourinary applications. Chapter 5 focusses on the construction of an age-
and gender-related human brain atlas based on DTI and DKI measures of healthy volunteers.
The resulting atlases may serve in the future as reference values for comparison with changes
associated with development, aging and pathologies. Chapter 6 answers the question of which
additional information is revealed by DKI on the cortico-medullary differentiation in healthy
humankidneys. Chapter 7 investigates the influenceof the choiceof number and rangeof b-values
together with the number of diffusion directions on DKI maps in healthy human kidneys. Here the
acquisitionparameters areoptimised for reliable andmore stable renalDKIparameters in clinically
feasible acquisition time. Finally, the Conclusion in chapter 8 summarises the main findings of this
dissertation and proposes future directions.
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Chapter 2
The human brain and kidneys

In this thesis, the analysed and developed methods were applied to the human brain (see
Chapters 4 and 5) and kidneys (see Chapters 6 and 7) to understand their underlying tissue
microstructure. Therefore, the aim of this chapter is to present the basic concepts of cerebral
and renal anatomy necessary for the understanding of this work. In general, this background
chapter is inspired from reviews, articles, books and thesis chapters [13, 14, 15, 16, 17, 18, 19] that
give a good structured overview of the cerebral and renal anatomy.

In the human body, the nervous system is a complex system [13] that controls all the functions
of the organism. It consists of the central nervous system (CNS) with the brain and the
spinal cord which is responsible for receiving, integrating and transmitting information [16] and
the peripheral nervous system (PNS) that contains the spinal and the cranial nerves which is
responsible for transmitting this information from the CNS to the dedicated organs [16].

The human adult brain is well-known to weigh approximately 1.3 - 1.5 kg with a volume of 1100 cm3

in females and 1400 cm3 in males [19].
At the structural level, the major structures of the brain reported in the literature are:

• the cerebrum that represents the biggest part of the brain and is divided into two
hemispheres linked by the corpus callosum [16].

• the cerebellum also referred to as "little brain" positioned under the cerebrum and
composed of grey and white matter (more details about these tissues are given in the next
sections).

• the brainstem that is the connecting structure between the cerebrum, the cerebellum and
the spinal cord [16].

The three main tissue classes present in the brain are: the cerebrospinal fluid (CSF), the
grey matter (GM) and the white matter (WM). This classification is important because each of
these tissues has a different contrast on MRI images. At the cerebrum surface, with its folded
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2. The human brain and kidneys

appearance, the tissue class found there is often referred to as cortex. The cortex contains
millions of nerve cells whose cell bodies colour is responsible for its dark grey-brown appearance,
explaining the name grey matter attributed to it [16]. Under the cortex, long fibres called axons
connects the neurons to each other and constitute the white matter. The white matter is the
main component of the CNS and contains myelinated as well as non-myelinated axons. The name
"white" is associated with the lighter colour of the axons related to the myelin sheath [16]. With
the folded structure of the cortex, many neurons can fit in the skull; a bony structure that protects
the brain against injuries. In the brain, the cerebrospinal fluid (CSF) is a colourless substance that
is present within empty cavities of the brain, around the brain and spinal cord. The CSF circulates
and is constantly being produced and reabsorbed and also helps to protect the brain from injuries
[16].

At the cellular level, two types of cells can be found in the brain: the nerve cells (often called
neurons) and the glia cells.

Although the size and the shapes of the neurons are often different, their structure is almost
the same. A neuron is composed of a cell body, dendrites and an axon [16]. Neurons receive and
transmit information. Axons are often referred to as nerve fibres and many axons together form
a fibre tract. The size of an axon is generally between 0.2µm and 10µm. Axons with a diameter
greater than 10µm are packed in an electric insulin layer called a myelin sheath. Myelinated
axons are faster in information transmission compared to non-myelinated axons [16]. The glia
cells nourish, protect and support the nerve cells and are 10 to 50 times more abundant in the
brain than neurons [16]. The glia cells are the nerve type that is mostly involved in brain tumours.
There are various types of glia cells in the CNS: astroglia or astrocytes, oligodendroglia cells or
oligodendrocytes, ependymal cells also called ependymocytes and microglia cells.

The kidneys are a pair of bean-shaped organs found in the human body. Each kidney has a concave
surface called renal hilum, where the renal vein, nerve and artery enter and exit the kidney, and
a convex surface. The kidneys are located in the posterior part of the abdomen meaning they
are positioned retro-peritoneal [17]. Although each kidney is generally 4 cm thick, 6 cm wide and
about 11 - 14 cm long, a female kidney (115 - 155 g) weighs less than a male kidney (125 - 175 g) [17].
In its primary function, the kidney filters blood in such a way that the whole blood inside our body
goes through the kidneys several times within a day.

The kidney itself is enveloped with tree layers of tissue. The outer layer is called renal fascia of
Gerota and it has a fibrous structure. As middle layer, follows the adipose capsule - perinephric fat
and the inner layer called renal capsule also has a fibrous structure.

In the coronal view of the kidney, one can distinguish between the cortex region and the medulla
region. These two parts of the kidney are linked through a fibrous area: the renal column to the
renal papillae and the renal pyramids. The renal papillae is a stack of nerves that is responsible
to transfer the urine produced by the nephrons of the renal pelvis to the calyces of the kidneys
for evacuation. The renal column is not only a connective structure, but it allows through its
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2.2. Renal anatomy

subdivision in 6 to 8 lobes an interface to penetrate and exit the cortical region. A kidney lobe
consists of of some renal pyramids and the renal column.

At the microscopic level in a kidney, the nephrons are the most important units of function as
they are responsible of the urine production. About 1 million nephrons are present in each kidney
and each nephron is made of a corpuscle and a tubule.

While the nephrons are responsible for urine production, the blood filtering takes place in
the renal corpuscle. In the corpuscle, the capillaries of the glomerulus are surrounded by the
glomerular capsule (also called the Bowman's capsule).
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Chapter 3
Diffusion-Weighted-Imaging (DWI)

This chapter reviews the basics of Magnetic Resonance Imaging (MRI) and Diffusion-Weighted
MRI (DWI), introduces the artefacts associated to the application of diffusion MRI and give details
on the clinical application of DWI in the human brain and kidneys. For a more detailed review, one
may refer to Johansen and Berg [20].

MRI1 is a non-invasive medical imaging technique to visualise the structure of biological tissues in
vivo. It provides excellent soft tissue contrast with high resolution without ionising radiation. In
clinical MRI, the nuclei of hydrogen atoms (1H) is the most frequently imaged nucleus because of
its great abundance in biological tissues [21]. About 60 % of the adult human body weight consists
of water [18]. 1H produces the strongest Magnetic Resonance Imaging signal compared to other
nuclei as 13C, 19F, 31P and 23Na that are also used in MRI.

A typical MRI experiment starts with the exposition of the patient to a strong static magnetic
field B0 in the MR scanner. The spins within the patient's body tend to align in a direction
either parallel or anti-parallel to the B0 field and start to precess at the Lamor frequency that
is proportional to the B0 field and is given by the Lamor equation [20]:

ω = γB0 (3.1)

where ω is the precession frequency in MHz, B0 is the magnetic field in Tesla and γ is the
gyromagnetic ratio in MHz/T - a constant specific to the nuclei that is being examined. In case
of water, the hydrogen nucleus has a gyromagnetic ratio γ

2π of 42,58 MHz/T or γ = 2.68×
108 rad/s/T. With the application of a 90 ◦ radio frequency (RF) pulse using a magnetic coil, the
net magnetisation vector is projected to the transverse plane (see figure 3.1a). The spins that
were initially coherent after the 90 ◦ RF pulse excitation begin to dephase due to magnetic
field inhomogeneities [20] (see figure 3.1b). Considering the spin echo pulse sequence based
on the works of Edwin Hahn in 1952 and Carr and Purcell in 1954, the dephasing due to the
inhomogeneities of the magnetic field are reversible through a 180 ◦ RF pulse (see figure 3.1c,
d) to reproduce the signal . The echo time (TE) is used to denote the time elapsed after the first

1also MR, or MRT Magnetic Resonance Tomography.
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3. Diffusion-Weighted-Imaging (DWI)

Figure 3.1.: Spin echo pulse diagram for Magnetic Resonance Imaging (MRI). Image acquisition with illustrated phase
evolution at different stages. (a) excitation (t = 0); (b) dephasing; (c) refocussing (t = TE/2); (d) rephasing
and (e) echo (t = TE). Figure is adapted from Laun et al., 2011 [22].

RF pulse is produced until generation of the echo (see figure 3.1e).
To get an MRI image, three field gradients are used as shown on figure 3.1: one for slice selection,

Figure 3.2.: Acquired images in the frequency domain are converted to the spatial domain by inverse Fourier Transform
(IFT).

one for frequency coding and one for phase encoding. Thus, an image is acquired in the frequency
domain (or Fourier domain). After inverse Fourier transform (FT), the MRI image is obtained as a
3D matrix which relates each point in space, called voxel, to an intensity (see figure 3.2).
In conventional MRI, the structural image contrast observed can be a function of the tissue
density (proton-weighted image) or the tissue relaxation properties (T1- and T2-weighted images)
depending on the acquisition parameters. Additionally to structural details, unconventional MRI
techniques provide other types of information that are metabolic, functional or micro-structural.
From the various MRI techniques developed in the last twenty years, DWI stands out because
of its remarkable contribution in understanding many neurological and nephrological disorders
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3.2. Diffusion-Weighted-Imaging (DWI)

and abnormalities including stroke, multiple sclerosis, tumours, stenosis [23, 24, 25, 26, 27, 28]. In
DWI, one does not concentrate on the movement of spins as in conventional MRI, but the focus is
laid on the movement of water molecules in biological tissues to weigh the image by the diffusion
process of the hydrogen micro-particles.

Understanding the basic principle behind the DWI technique requires to have an insight into
the details of the diffusion process. In the literature, the term diffusion is used to describe the
random movement of molecules or microscopic particles from areas with high to areas with
low concentrations [20, 29]. This is a natural process that originates from the random thermal
motion, also called Brownian motion and is different from the convection or dispersion that rather
results from bulk motion. The bulk motion has a predetermined direction, while in diffusion the
directions of motion are randomly distributed and incoherent.
First attempts to establish the physical law behind the diffusion process resulted in the expression
of the diffusive flux J also known as Fick's law [30]:

J = −D∇C. (3.2)

Here C is the concentration gradient of the particle and D is the diffusion coefficient. Assuming
that there is no diffusive flux when the temperature and particle concentration remain stable
as at equilibrium, the Fick's law was contradictory to results published in 1828 by the botanist
Robert Brown [31] who had demonstrated that particles move arbitrarily without any apparent
cause. The relationship between the Fickian and the Brownian hypotheses is established with
the introduction of the Einstein equation for diffusion (see Equation (3.3)) [20, 29, 22]. Using a
probabilistic scheme based on a displacement distribution to quantify the number of molecules
that will travel a certain distance within a particular time frame, the mean-squared displacement
of the molecules, characterising its Brownian motion is related to the diffusion coefficient, D,
present in the Fick's law by [32]: 〈

x2
〉
= 2Dt. (3.3)

Here
〈
x2

〉
stands for the mean-squared displacement of particles during a diffusion time, t, and

D is the diffusion coefficient introduced in the Fick's law.
It is well-known that the diffusion coefficient D is specific to the material under examination and
that its value depends on the size of the molecules that diffuse, and the temperature and the
microstructural features of the environment [20]. Taking advantage of the knowledge about
this sensitivity and continuous random walk of water molecules in the human body, measures
of the diffusion coefficient are used today in clinical MRI to probe the physical properties of
biological tissues. In other words, through the diffusion movement, the water molecules probe
the biological tissues at a microscopic scale well below the usual millimetre scale of conventional
MR images.

The spin echo pulse diagram as described above in section 3.1 can be used to produce images
in conventional MRI, but is not adequate to measure the diffusion movement of hydrogen
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3. Diffusion-Weighted-Imaging (DWI)

particles that occurs at microscopic scales. In the currently used pulse field gradient spin echo
sequence (PGSE)basedon the suggestionsof Stejskal andTanner in 1965 [33], twogradientpulses
called diffusion-weighting gradients, produced by the magnetic gradient coils, are introduced
before and after the refocussing pulse as illustrated on figure 3.3. During the diffusion gradient

Figure 3.3.: A schematic representation of the pulse field gradient spin echo (PGSE) sequence of Stejskal and Tanner
[33]. ∆ is the time between the application of the two gradient pulses, δ is the gradient pulse duration and
G is the strength of the gradient applied. Figure is adapted from Laun et al., 2011 [22].

application, a particle at position x encounters a magnetic field B0 + G x(t) at time t, where
G is the magnitude of the gradient pulse. Depending on whether the particle spends a short
time at this position or not, a phase shift can occur. This phase shift is given by φ1 = −qx1 and
φ2 = −qx2 assuming that x1 and x2 are the particle's position respectively after applying the
first and the second gradient pulse with q = γδG, where δ is the duration of the gradient pulse.
The 180 ◦ RF pulse applied in-between the two gradient pulses reverses the phase change that
happened prior to it. In this way, the phase of the particles that were stationary are cancelled
and only the particles that diffused are not completely refocussed. This phase change is given by
φ2 − φ1 = −q(x2 − x1).

During the DWI image acquisition, following steps are necessary in order to obtain the diffusion
coefficients. A minimum of two signal measurements are required: one in the absence of any
gradients, S(0) = S0 and another one that is weighted by diffusion called S(q) acquired along
the 3 orthogonal axes (x, y and z) of the scanner. Next, the effect of the relaxation on the MRI
signal attenuation is cancelled by dividing the DW signal S(q) by the signal S0 in absence of any
gradients.
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3.2. Diffusion-Weighted-Imaging (DWI)

According to the Einstein's equation [20]:

E(q) =
S(q)

S0
=

∫
ρ(x1)

∫
p(x1, x2, t)e

−iq(x2−x1)dx2dx1 (3.4)

with

p(x1|x2, t) =
1√
4πDt

exp(−(x2 − x1)2

4Dt
), (3.5)

where ρ(x1) is the spin density when the first gradient is applied. It stands for the likelihood
of finding a spin at location x1. p(x1, x2, t) is the diffusion propagator whose second moment
is the Einstein equation introduced in section 3.2.1. It is the probability that a particle initially at
position x1 diffuses after time t (the time elapsed between the application of the two gradients)
to a position x2. Details about the derivation of the diffusion propagator and its relationship to
the Einstein's equation can be found in the book of Derek [29].

Referring to the Stejskal-Tanner relation,E(q) can be rewritten in case of a free diffusion, where
the diffusion propagator is Gaussian as [20]:

E(q) = e−q2D(∆−δ/3) (3.6)
S(b)

S0
= e−bD, (3.7)

where the b-value
b = q2(∆− δ/3) = γ2δ2G2(∆− δ/3) (3.8)

indicates how strong the signal is weighted by diffusion [20]. γ is the gyromagnetic ratio, δ is the
duration of the gradient application, ∆ is the time interval between the application of the two
gradient pulses and G is the gradient strength. A higher b-value (strong weighting) leads to a
more attenuated signal.
Since the interpretation of the resultant signal attenuated DW images is not intuitive, the diffusion
coefficients D are often fitted from equation (3.7). D is calculated for each direction of a voxel
and stored in a map as apparent diffusion coefficients (ADC) (see figure 3.4). The ADC values
correspond to the averaged diffusion coefficients for each voxel over the (x, y, and z)-directions
that can be displayed on an ADC map.

ADC = (Dx +Dy +Dz) /3 (3.9)

For the sake of simplicity, ADC is often referred to as D in the literature. This convention is also
used in the following sections.

If diffusion is freewithout restriction, thediffusionpropagator followsaGaussiandistributionas
reported by Le Bihan et al. [7] and the MR signal is given by equation (3.7). Although chemists and
physicists have been probing molecular diffusion using Nuclear Magnetic Resonance (NMR) since
the eighties [7], the first in vivo diffusion imaging studies were published only in the nineties by
Moseley et al. [23]. While they could highlight the numerous useful applications of clinical DWI,
they also noticed the strong contrast difference in ADC images measured along different axes
(x, y, z) [27, 34]. They attributed these differences to the presence of water molecules moving
along axonal fibres. If the diffusion is not always isotropic as in equation (3.7), but can be directed
along fibres, then a scalar measure of the diffusion coefficient is not adequate to fully describe the
diffusion process in biological tissues. The diffusion propagator can no more be assumed to follow
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3. Diffusion-Weighted-Imaging (DWI)

Figure 3.4.: Diffusion-weighted images at b-value = 0 (a) and b-value = 1000 s/mm2 in x- (b), y- (c) and z-direction(d)
together with the resulting ADC map. The DW images show high intensity in regions of slow diffusion (low
ADC values) and low intensity in regions of fast diffusion (high ADC values).

a Gaussian distribution. This problem was already addressed in previous works and a summary of
the solutions proposed are discussed in sections 3.3 and 3.4.

Considering the microstructure of a biological tissue with the presence macromolecules, cells
and oriented structures such as nerve fibres [13, 16], the diffusion trajectory of water molecules
without restriction can happen, but it is rarely the case. Therefore, the shape of the diffusion
distribution that is more spherical when water moves freely becomes more oval pointing to the
direction of the oriented structure. In this case, using a scalar measure as the diffusion coefficient
fails to fully characterise both the isotropic and the anisotropic diffusion. A solution to this
problem is to use a new MRI imaging technique called Diffusion Tensor Imaging (DTI) [35].

In DTI, instead of using a single diffusion coefficient, different diffusion coefficients along different
directions are considered to describe the diffusion (see figure 3.5). To determine the shape and
orientation of the diffusion ellipsoid, a second-order tensor called diffusion tensor denoted by
DT is calculated. Here the sub-index T emphasises the fact that the diffusion is represented by a
tensor. DT is a 3× 3 symmetric matrix (Dij = Dji, with i, j = x, y, z) that describes the 3D shape
of the diffusion [35].

DT =

⎡

⎣
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤

⎦ . (3.10)

In the DT matrix, the diagonal elements Dxx, Dyy, Dzz represent the diffusion coefficient
at the three orthogonal logical axes of the scanner and the off-diagonal elements
Dxy, Dxz, Dyx, Dyz, Dzx, Dzy represent the correlation between diffusion along these three
orthogonal axes. Since DT is a symmetric matrix, it has only 6 independent elements because the
elements above the diagonal are equal to those under the diagonal. For isotropic diffusion, the
ellipsoid in figure 3.5 is a sphere and the diffusion coefficients D are equal in all the directions. In
the anisotropic diffusion case, the direction of highest diffusion is moedelled with an elongated
ellipsoid.
To calculate the eigenvectors (v1, v2, v3) and eigenvalues (λ1,λ2,λ3), DT is diagonalised as
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3.3. Diffusion Tensor Imaging (DTI)

Figure 3.5.: Here the diffusion trajectory, the diffusion ellipsoid and the diffusion tensor are illustrated in cases of
isotropic non restricted (1st column), isotropic restricted (2nd column) and anisotropic restricted diffusion
(3rd column).

described below:

DT =

⎡

⎣
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎤

⎦ diagonalisation→

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ ·
[
v1 v2 v3

]
. (3.11)

The eigenvalues are usually selected so that λ1 points to the direction of highest diffusion and λ2

and λ3 are the radial diffusivities with λ1 > λ2 > λ3. Finally, the DTI model is related to the DWI
model of equation (3.7) as follows [35]:

S (b) = S0e
−

∑
i,j bijDij , (3.12)

where i, j are the directions of diffusion and bij are the elements of the b-matrix. Note that the
b-matrix replaces the b-value.

To determine the 6 independent elements of the diffusion tensor, 7 signal acquisitions of an
image are required: One with b = 0 s/mm2 and a minimum of 6 additional DW images (b ̸=0 s/mm2)
in 6 non-collinear diffusion encoding directions. But today in clinical research, the number of
diffusion directions used is often higher. This issue will be discussed in the next sections. Equation
(3.12) therefore corresponds to a system of 6 equations that can be solved via the least squares
method at each voxel. An example of a DTI human brain acquisition with b = 0 s/mm2 and b =
1000 s/mm2 considering 6 diffusion directions is shown on figure 3.6. Different signal encoding
directions show different diffusion patterns.
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3. Diffusion-Weighted-Imaging (DWI)

Figure 3.6.: Measured non diffusion-weighted image b= 0 s/mm2 with six diffusion-weighted images (b= 1000 s/mm2)
in 6 non-collinear directions (DTI requires a minimum of 6 directions). Due to anisotropic diffusion, the
resulting pattern differs with the considered direction.

Although the diffusion tensor can fully characterise the diffusion pattern in biological tissue taking
the orientation in consideration, it cannot be visualised easily. There exist a number of rotationally
invariant diffusion metrics computed from the DT in the literature [20] as presented below.

• Trace is the averaged diffusion that is expressed as sum of the eigenvalues or the diagonal
elements of DT. It does not contain any information about the orientation of the water
diffusion.

Trace = λ1 + λ2 + λ3 = Dxx +Dyy +Dzz. (3.13)

•Mean diffusivity (MD) characterises the average diffusivity as trace measurement divided by 3.

MD =
λ1 + λ2 + λ3

3
. (3.14)

• Fractional anisotropy (FA) is one of the most used metric in clinical DWI. It indicates how
anisotropic the diffusion is. FA values always range between 0 (for isotropic water
movement, λ1 = λ2 = λ3) and 1 (to indicate that there is a preferred direction of diffusion,
λ1 >> λ2 ≈ λ3). FA can be expressed as:

FA =

√
3

2

√
(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2)√

λ2
1 + λ2

2 + λ2
3

, (3.15)

or

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2)√

λ2
1 + λ2

2 + λ2
3

. (3.16)
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• Axial diffusivity (DAX) is the diffusivity measured along the direction of highest diffusion.

DAX = λ1. (3.17)

• Radial diffusivity (DRAD) is the measure of the mean directional diffusivity perpendicular to the
direction of highest diffusion.

DRAD =
λ2 + λ3

2
. (3.18)

An additional type of image that can be derived from DTI is the so-called coloured fractional
anisotropy (coloured-FA). Suchan imageuses amappingof colours to represent theorientationof
eigenvectors fields. Conventionally, red stands for left to right, green is for anterior to posterior,
and blue is for superior to inferior. An example of a coloured-FA map is shown on figure 3.7 for
the coronal (a), sagittal (b) and axial view (c).

Figure 3.7.: FA-coloured maps: coronal (a), sagittal (b), axial (c). Red stands for left to right, green is for anterior to
posterior, and blue is for superior to inferior. Resulting whole brain DTI visualisation in a tractography
image (d).

This is a technique that is used in DTI to estimate the trajectory of the fibre tracts using tensor
information. Tractography results (see figure 3.7 (d)) can support the visualisation of various
neurological pathologies [36, 37]. There exist different fibre propagation algorithms (for example
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interpolated streamlines, fibre assignment per continuous tracking, 2nd-order Runge Kutta, and
tensorline) for DTI in the literature [38].

Figure 3.8.: Measured diffusion-weighted signal attenuation S(b)/S(0) (green points) at b-values ranging from 0 to
2500 s/mm2.

Although DTI takes the diffusion orientation in consideration and consequently improves the
equation (3.7), the assumption that the DWI signal decay is a mono-exponential process is invalid.
Water molecules can be restricted in their movement and the typical ranges of cell structures that
lie in the µm-size cannot be visualised in DTI that works at resolutions of 2 × 2 × 2 mm3 [39]. In
DTI, water molecules that diffuse over long distances dominate the measurement of diffusion at
shorter distances making the DWI signal insensible at microscopic scales [2]. The displacement
distribution is a non-Gaussian process. At high diffusion-weighting with b-values greater than
1000 s/mm2, higher models of diffusion imaging can be used to provide a better characterisation
of the biological tissue microstructure than DWI and DTI [40, 41]. This is obvious in the DWI signal
attenuation S(b)/S(0) (green points) that are illustrated on figure 3.8. The mono-exponential
decay (blue line) deviation can be observed for b-values beyond 1000 s/mm2.
A number of models to analyse the non-Gaussian behaviour of diffusion resulting from
increasingly complex acquisitions techniques are briefly introduced in the next sections and
classified according to the nature of the model. For a more complete state-of-the art review,
please refer to the thesis of Maxime Descoteaux [14].
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3.4. Mathematical modelling of the DWI signal - Non-Gaussian behaviour of water diffusion

In addition to the diffusion tensor representation introduced in section 3.3, a more complex
modelling of the ADC can be performed under different assumptions. Here we concentrate on
two different models that result from two assumptions: the multi compartment models and the
generalised DTI models.

These models assume that many compartments contribute to the diffusion process. For example
in the bi-exponential model developed by Le Bihan et al. [7], the author assumes that additionally
to the pure molecular diffusion of water, another process that contributes to the DWI signal is the
micro circulation of blood in the capillaries (called perfusion). He models the DWI signal decay as
follows:

S (b) = S0

(
fe(−bDp) + (1− f) e(−bDd)

)
. (3.19)

The subset p is for pseudo diffusion influenced by perfusion and d is the pure diffusion. Here f is
the incoherent flowing blood that increases when the contribution of perfusion to the diffusion
signal is high. f tends to be zero in case of pure diffusion.
Although the method could be used successfully to measure the DWI signal decay in the human
and rat brain [42], as reported by Minati et al. [43], values of f ≈ 2 were found incompatible
with the anatomy where f ≈ 8. The multi-exponential decay of DWI signal was already
demonstrated in an isolated compartment [44]. Other relevant reports on models with more
than two compartments contributing to the diffusion process were published by [3] and [4].

This multi-tensor model simply generalises the DTI model (see section 3.3). It replaces the
Gaussian model with a series ofnGaussian densities. With this model, one assumes that the voxel
contains n different groups of fibres and that the molecules are diffusing only within one group
(without exchange between the groups). As shown in equation (3.12), the anisotropic diffusion
can be generalised to

ln
[
S (b)

S (0)

]
= −

3∑

i1=1

3∑

i2=1

. . .
3∑

in=1

bi1i2...inDi1i2...in , (3.20)

where i, j, . . . , n are the diffusion directions (see [20, chap. 1]). This model is rather unstable
because a higher number of tensors is associated with a large number of parameters to estimate
[20]. Later published works on this model use constraints to reduce its complexity [3, 45].
Additionally, as mentioned by Van et al. [46], the multi-tensor model becomes less accurate in
cases where the number of fibres in the underlying structure in study differ from the number of
tensors assumed in the model.

The parametric models introduced in the previous sections require a high number of diffusion
measurements that is proportional to the number of parameters of the model [20]. For example
for DTI, six independent measurements are necessary. These so-called non-parametric models of
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diffusion on the q-space theory make no assumption about the displacement distribution of the
water molecules. Instead of using the b-value to define the weight of the diffusion, a parameter
q is introduced. Compared to b, q is not a function of time t, but depends on the duration of the
phase-encoding period δ expressed as [47]:

q =
1

2π
γGδ, (3.21)

where G is the gradient pulse. Although this model could gain consideration in previous studies
[48, 5], it is limited by the high acquisition time necessary (standard protocols acquire 500 - 1000
measurements). Such protocols also increase the demands on the hardware since b-values in the
order of 30000 s/mm2 and more are required [20, 2]. This constraint makes the q-space model
difficult to apply in clinical settings.

There exist many other models in the literature that were proposed to address the
non-Gaussianity of the water diffusion process in biological tissue. For example the
stretched-exponential model of Bennett et al. [49] or even the statistical model [8]. These models
are not explained in details here because there are only few reports on their application. This
thesis is therefore restricted to, and concentrates on, a more novel approach called Diffusion
Kurtosis Imaging that can be use in clinical settings.

All the experiments that were carried out during this thesis are based on the Diffusion Kurtosis
Imaging (DKI) technique. DKI does no more assume that the diffusion distribution function
has a Gaussian shape. It estimates the kurtosis that can be seen as a measure to quantify the
non-Gaussianity of the probability distribution in the following relationship [6, 50]:

K =
µ4

µ2
2

− 3, (3.22)

with µ4 and µ2 that are the 2nd and 4th about the mean of the distribution. When the probability
distribution describes a non-Gaussian process, K > 0 and in case of a Gaussian process, K is
equal to 0.

The diffusion and kurtosis parameters can be estimated analogous to equation (3.7) [6]:

S (b) = S0.e(
−bD+ 1

6 b
2D2K), (3.23)

where S(b) is the signal intensity considering b, S0 is the signal without diffusion-weighting, D is
the diffusion coefficient andK is the kurtosis. A nalogous toDT with 6 independent components,
a 4th order 3×3×3×3 fully symmetric kurtosis tensor KT (also often referred to as W in the
literature) with 15 independent components can be derived from equation (3.23). In order to
fully estimateDT and KT, a minimum of 2 different non zero b-values and a minimum of 15 diffusion
directions are necessary [6].
The diffusion coefficient and diffusion kurtosis measured along a specific diffusion direction
n = [nx, ny, nz] are usually referred to as D(n) and K(n). They are related to the DT and KT
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as follows [51]: DT and kurtosis tensor KT are:

D(n) =
3∑

i=1

3∑

j=1

ninjDij , (3.24)

K(n) =
MD2

D(n)2

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

ninjnknlWijkl (3.25)

where Dij are elements of DT, and Wijkl are elements of KT.
Similar to DTI, many eigenvalues and eigenvectors are associated to KT [52] and Cheung et al.

[50]. To illustrate the physical relevance of DKI following metrics can be used.

• Mean kurtosis (MK) that describes the average kurtosis along all diffusion directions when N
uniformly distributed diffusion directions exist:

MK =
1

N

N∑

i=1

Ki. (3.26)

• Axial kurtosis (KAX) and Radial Kurtosis (KRAD) to compute the directional diffusion kurtosis
along the axial and radial directions of the KT. The kurtosis tensorW is first transformed to
the coordinate system defined by the three eigenvectors (v1, v2, v3) of KT as [50]:

Ŵijkl =
N∑

i′=1

N∑

j′=1

N∑

k′=1

N∑

l′=1

ei′iej′jek′kel′lWi′j′k′l′ . (3.27)

Here eij are elements of the 3D rotation matrix P with P = (v1, v2, v3). The diffusion
kurtosis along each of the eigenvectors is related to the eigenvalues λ1,λ2,λ3 of the
diffusion tensor and the mean diffusivity MD by the following mathematical expression

Ki =
MD2

λ2
i

Ŵiiii, i = 1, 2, 3. (3.28)

KRAD =
K2 +K3

2
KAX = K1. (3.29)

• Kurtosis anisotropy (KA) is a measure of anisotropy of diffusion kurtosis can be defined as:

KA =

√
3(K1 −K)2 + (K2 −K)2 + (K3 −K)2

√
2(K2

1 +K2
2 +K2

3 )
, (3.30)

where K = 1
3

∑3
i=1Ki. Note that K ̸= MK because the 3D kurtosis distribution cannot be

represented by a simple ellipsoid.

Some DTI and DKI derived parameters for a human brain acquisition are shown on figure 3.9.
White matter regions with a high number of packed fibres as is the case in the corpus callosum
exhibit similar patterns on the MK as on the FA map. Grey matter regions that appear dark
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Figure 3.9.: Parameter maps in the human brain for DTI and DKI.

on the FA maps are reflected by higher MK values, indicating restricted non directed diffusion.
Only the cerebrospinal fluid (CSF) region has lower values both on the FA as well as on the MK
map. These observations depict the additional information contained in the kurtosis for a more
comprehensive and sensitive description of tissue microstructure [50].

As with any other imaging modality, MRI suffers from motion and noise artefacts. During this
thesis, experiments were carried out and strategies were proposed to reduce the effects of such
errors in DKI results (see chapter 4). Therefore, a review of the origins and effects of motion and
noise in DW images is the subject of the next sections.

Acquiring perfect medical images requires a patient that does not move during the whole
image acquisition procedure. For conventional MRI examinations these are approximately 5 - 20
min. But this immobility is often rarely achieved because natural processes such as swallowing,
respiration, or even blood flow pulsation are rather unavoidable and will cause errors in the
images. If they are not corrected, these so-called motion artefacts could lead to blurred images
with less resolution that can considerably reduce the diagnostic accuracy.

Motion often increases with the length of the scan process (even with very cooperative
patients). This problem is emphasised in DTI and DKI because the image acquisition time is
increased due to the use of many diffusion directions and diffusion-weighting factors as explained
in sections 3.2 and 3.4.3.

During a DWI acquisition, the gradient coils produce large magnetic field gradients that are
constantly and rapidly switched. This introduces eddy current in the scanner electric resulting
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3.6. Applying diffusion MRI for neurological and renal tissue characterisation

into rapidly and slowly decaying magnetic fields that are not desired. In conventional MRI, this is
not a problem, since the gradients are applied for a very short time and for pulse sequences, the
eddy currents produced rather tend to self-cancel [53]. Whereas in diffusion imaging to acquire
the desired b-value, the gradients are applied for variable long period of time so that the eddy
currents do no self-cancel. This leads to the fact that the field gradients used to sample then differ
from the field gradient planned for imaging perhaps, the b-matrices of the samples differ from the
initial one planned [53, 20]. As the diffusion coefficients and diffusion tensors are calculated voxel
wise, using false b-matrices leads to artefacts that shall be corrected.

In addition, if there are large discontinuities in the bulk magnetic susceptibilities, then local
magnetic fields occur. Particularly in echo planar imaging (EPI), these local magnetic field
gradients are responsible of image distortion. They behave like the diffusion gradients and modify
the b-matrix making it spatially variant. A technique that partially solves this problem is when the
ratio of the logarithm of the DW and the non-DW signal (see equation (3.7)) is used to cancel the
effect of the susceptibility-induced gradients.

Noise can be described as the signal that is not issued from the physical process measured and
that corrupts the true signal. Noise in MRI has several origins [20]. It can be a thermal noise
(also called Johnson-Nyquist noise), which is due to random motion of charge carriers in electrical
conductors of the MRI scanner system, as well as in the subject’s body, which is also conductive.
It can also come from the external environment (e.g. outside temperature changes) or signal
amplification. Noise can also originate from quantisation errors due to analog-to-digital signal
conversion. Despite the multiple sources of noise in MRI, reports in the literature claim that
the major sources of noise are the random thermal noise from the patient together with some
additional hardware errors [54]. Therefore, this thesis restrict to focus only on such errors.

The logarithm of the signal attenuation in DWI decreases linearly with the b-value and the
background noise has a Rician distribution [20].

In comparison to the unweighted signal, the noise level can reduce the signal attenuation
leading to underestimation of the diffusion coefficient. For example, when estimating the
diffusion tensor, one is effectively sampling a range of ADCs over different orientations and thus,
in a given voxel, one may find the estimation of ADC corrupted in some directions (typically, the
directions in which the ADC is highest), while not in others. This effect causes underestimation
of the trace and anisotropy. The higher the anisotropy, the greater the underestimation of the
mean diffusivity. Furthermore in low SNR data, it can also cause erroneous differential contrast
between white and grey matter at higher b-values.

Using diffusion MRI to study the structure or rather the microstructure of the human brain and
kidney tissues as also performed in this thesis is motivated by current research interests in the
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field. Many articles in the literature have already highlighted that these organs have properties
that make them suitable to be studied with DWI [27, 55, 56, 57].

In the brain, for example, the microstructure of some tissues such as the grey matter (GM), the
white matter (WM) and the cerebrospinal fluid (CSF) influences the contrast of the corresponding
DW images [58]. In the GM that is mainly composed of neurons and glial cells, researchers have
been able to establish the isotropic nature of the diffusion process reporting values of FA < 0.2.
In the WM, the presence of anisotropic diffusion due to directed structures such as myelinated
axons leads to FA values up to about 0.8. In the CSF where the diffusion process is unrestricted
as in water, FA values almost equal to 0 are observed.
Additionally, diffusion properties in the brain change according to the age. Moseley et al. [23]
could demonstrate that FA increases with age and reaches its maximum value around the age of
60, then begins to decrease due to the demyelination process.
This sensitivity of DWI makes it to one of the powerful methods to assess several pathologies
related to the destruction of tissue microstructure as usually observed in stroke [23] and
brain tumours [25]. The FA, MD values will change in case of reduced extra-cellular space
corresponding to cell swelling, increased cellularity or increased extra-cellular space when cells
shrink, die or in case of membrane disruption. Clinical studies with DTI show its relevance in
assessing pathologies that impact the white matter integrity as Alzheimer [59], the Parkinson
disease [60] or even multiple sclerosis [24].
Although DKI is a relatively new method, some few articles [52, 9] could already highlight its
superiority in characterising tissue microstructure compared to DWI / DTI.

Referring to the description of the renal anatomy in chapter 2, it is clear that the major process
in the kidneys is the movement of water. This is explained by the fact that the main function
of the kidney includes water re-absorption and concentration-dilution. These movements mainly
occur in the tubules and are controlled either by active or passive mechanisms, depending on their
location in the nephrons [61]. Therefore details about the diffusion characteristics of the kidney
can provide useful insights into the mechanisms of various renal diseases, including chronic renal
failure, renal artery stenosis, and even urethral obstruction [62]. In the kidney, the presence of
radial structures such as tubules in the pyramids makes the diffusion process anisotropic. Ries
et al. [61] found average FA of 0.22 ± 0.12 in the cortex and 0.39 ± 0.11 in the medulla clearly
indicating the high anisotropy of the diffusion within such compartments of the kidney . The FA
values of solid tumours were found significantly higher than that of simple cysts, but renal cell
carcinoma showed a wide range of FA values [63]. Various studies in humans report that the
diffusion signal might be influenced by blood flow since the kidney is a highly perfused organ.
It could be demonstrated that the DW signal is affected by the tissue perfusion within the heart
cycle [64]. When low b-values are used for DWI, there is no significant difference between the ADC
values of the cortex and the medulla in healthy kidneys [65]; this result is attributed to the effect
of higher perfusion effects. There is a significant difference among ADC values of the cortex and
medulla in a high b-value approach [65]. With high b-values, the effect of perfusion is cancelled
out, and the ADC value reflects mostly diffusion. This statement makes the application of DKI that
uses higher b-values compared to DTI in kidneys very interesting and promising of new results.
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Chapter 4
Optimisation of the image pre-processing
methods for DKI

For fitting the Diffusion Tensor Imaging (DTI) or other higher order diffusion models as Diffusion
Kurtosis Imaging (DKI), voxels in different successive diffusion-weighted (DW) images should
match to the same anatomical location and additionally the signal level in DWI should not fall
down to the noise level. But as explained in section 3.5, misregistration and noise violate these
preconditions and typically, all the measured images need to be corrected before model fitting.
This chapter reports on software-based correction schemes after data acquisition but prior to
diffusional kurtosis estimation that were developed and analysed during this thesis to eliminate
motion and reduce noise in DW images.

Most approaches that have been proposed in the literature to account for the problem of
misregistration are based on improved diffusion acquisition techniques [66, 67, 68]. For example
the use of bipolar gradient schemes reduces susceptibility to motion as well as to eddy currents
(introduced in section 3.5.1.2) and is widely employed [69]. Another straightforward approach
is to perform most diffusion scans using single-shot Spin Echo Planar Imaging EPI (SSEPI). But
the major obstacle of such methods relies in the fact that they are not always applicable to all
scanner types and are often unable to correct for larger motion in particular ranges. This thesis
concentrates on motion correction techniques after image acquisition: the so-called image-based
registration schemes.

In an image-based registration scheme, a cost-functionQ is used to measure the spatial alignment
of the images [70]. In afirst step, an image called the targetor reference image is selected fromthe
set of DW images acquired. This image is used later as reference to correct the other images in the
DW series. Each image that is corrected according to the reference image is called the source or
moving image. Usually in the literature, the first non-DW image - the b0 image - is used as reference
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image. The b0 image is often used because it contains less distortions and its signal-to-noise ratio
(SNR) is higher compared to the DW images [71]. In a second step, one aligns all other images of
the DW series to the reference imageusing a transformation model and by optimising the so-called
cost-function Q.
Referring to the work of Crum et al. [72], a software-based image registration process can be
structured into three parts.

1. Transformation model:
It defines the geometric transformation T between the coordinates needed to transform
a source image X to match a reference image Y . There are many transformation types:
rigid, affine and non-rigid transformations. Rigid transformations are characterised by
6 parameters: 3 translations and 3 rotations; affine transformations are characterised
by 12 parameters: 6 of rigid plus 3 scaling and 3 shear. In case of more complex
deformations, non-rigid transformations (for example the diffeomorphic transformation
[73]) are required.

2. Similarity measure:
It measures the degree of alignment between two images [74]. For this purpose, a cost
function Q is defined to quantify the similarity between X and Y and search for the
transformation T ∗ which maximises the similarity cost function.

T ∗ = arg minC(Y, T (X)), (4.1)

with C(X,Y ) representing the cost function, and T (X) is the result of the transformation
of X by T .
In the literature, there are two classes of cost functions: the feature-based and the
voxel-based similarity measures [75]. In the first class, features such as surfaces, lines
or points are used and here the distance between these are minimised in the images.
The great advantage of a feature-based cost function is that it can be used for mono-
and multi-modality registration but the initial feature extraction step needed makes it
computationally time consuming [74]. This is the case when features are extracted using
landmark detection or segmentation methods. Another drawback is associated with the
fact that errors in the feature extraction stage cannot be recovered later and will corrupt
the whole registration. To avoid these errors, image intensities can be directly used without
the need for feature extraction. The widely used intensity-based cost functions include
the mean squared intensity difference (MSQ), the cross correlation (CC) and the mutual
information (MI).
In this thesis the mutual information metric is used to compare the two images. This metric
stands out compared to MSQ and CC because it does not compare the grey level of the
images but rather their entropies. This characteristic makes MI well-suited for comparison
of DW images with changing contrast. MI can be calculated using the following equation
[76]:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ). (4.2)

where H(X) = −
∑

x p(x) log p(x) and H(Y ) = −
∑

y p(y) log p(y). p(x) and p(y) are
respectively the probabilities that a voxel within image X , Y has intensity x, y. The joint
entropy H(X,Y ), is defined as: H(X,Y ) = −

∑
x
∑

y p(x, y) log p(x, y) where p(x, y)
denotes the joint probability.
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An image that has many different intensities contains much information and consequently
has a higher entropy than an image with a single intensity that has a low entropy value.
Therefore a low joint entropy (H(X,Y )) along with high MI reveals that two images are
similar. For registration schemes a plausible approach is to maximise MI between two
images. Since MI can be affected by the level of overlap between two images, Studholme
et al. [77] introduced a normalised mutual information (NMI) that can be written as:

NMI(X,Y ) =
H(X) +H(Y )

H(X,Y )
. (4.3)

3. Optimisation process:
In the registration process, the parameters that maximise the similarity measure are
calculated iteratively during the optimisation stage. The optimisation can become very
numerically time consuming depending on whether the registration is rigid or not. For
example, considering a rigid registration with landmark features comparison, a least square
approach can be used to estimate the optimal transformation analytically [76]. But for
non-rigid registration processes, where the intensity values of the image are considered,
this is difficult to apply because the number of parameters and also the degree of freedom
(DOF) is very high. Popular optimisation methods used in previous work are the gradient
descent method [78], the conjugate gradient method [79], the Newton type method [80]
and evolutionary strategy methods [81].

First applications of image-based registration to correct for distortions in echo planar images
registered DW images (source images) using the undistorted T2-weighted image as reference
image [82]. The definition of the similarity measure was based on the CC. Unfortunately,
registration schemes in which Q derives directly from the voxel values, as with CC or MSQ are
inappropriate as measure of similarity for source and reference images with different contrasts
as it is the case in DTI and DKI [83, 84]. These techniques assume that the underlying images
derive from the same imaging modality, are perhaps images with the same contrast. Whereas
DTI images have low SNR and the changing contrast due to different diffusion encoding directions
and weightings will hamper a registration process based on direct grey value comparison [85].

Current approaches to the problem of inter-modality registration have been proposed, using
MI, as a new matching criterion [86, 87]. Similarity metrics based on MI showed more robustness
compared to metrics based on CC and MSQ [88, 70]. MI requires no specification on the geometry
between the two images and is not based on the comparison of the grey values but looks at their
entropy. This flexibility makes MI well suited as a criterion of registration of images with different
contrast as DW images. Despite the successes of this similarity measure for multimodal medical
image registration, its impact on the alignment of diffusion tensor and diffusion kurtosis images
remains unclear. One goal of this thesis was to perform a qualitative and quantitative evaluation
of the improvement of image quality of DTI results by the use of MI based motion correction
techniques.

In this thesis, the registration algorithms evaluated were implemented using C++ ITK-based
libraries and integrated as plug-ins in the Digital Image Solutions (DIS) software STROKETOOL
version 3.1 [89] that is briefly introduced in the next section. The correction algorithms developed
and tested here differ with the choice of the similarity measures considering the 3D rigid body
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transformationmodel togetherwith thegradientdescentoptimiser. Details of the threeMIbased
similarity measures considered are also discussed.

++

STROKETOOL is an interactive software for evaluation, analysis and visualisation of DWI and
Perfusion-Weighted Imaging (PWI) datasets in medical imaging on the Windows® platform. A
plug-in technique enables developers to implement their own macros for image processing within
the STROKETOOL software. This plug-in technique based here on Microsoft® Visual C++ 2003 -
2010 with the Microsoft Foundation Classes (MFC) was used and the registration algorithms were
implemented (see figure 4.1).

Figure 4.1.: Main interface of the plug-in in the STROKETOOL software.

As starting point for the development, the “MacroPlugin” Visual C++ project of the
STROKETOOL based on MFCs was used to load image files as data structures. Then arrays of floats
were created to store the image pixels. The processing with the motion correction algorithms
described in the next section was executed considering Microsoft Visual Studio 2008 Version 9.0.
An excerpt of the software code used is shown on Code 4.1.

Listing 4.1:

/ / imregMattes . cpp : Def ines the ent ry po in t fo r the DLL a p p l i c a t i o n .
. . .
dec l spec ( d l l e x p o r t ) i n t Reg i s te r Image2 to 1 ( shor t * p ixda ta 1 , shor t * p ixdata2 , i n t xdim , i n t ydim ,

i n t zdim ) {
double t ime1 = 0 . 0 ;
double t s t a r t ;

/ / de f i ne image dimension and data type
const uns igned int ImageDimens ion = 3 ;
typedef f l o a t P i xe l Type ;
/ / de f i ne f i x ed and moving image
typedef i t k : : Image < P ixe lType , ImageDimension > FixedImageType ;
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typedef i t k : : Image < P ixe lType , ImageDimension > MovingImageType ;

typedef i t k : : VersorR ig id3DTrans form <double > TransformType ;
typedef i t k : : Ve r sorR ig id3DTrans formOpt im ize r Opt imizerType ;
typedef i t k : : MattesMutual Informat ionImageToImageMetr ic <FixedImageType ,

MovingImageType > Metr icType ;
typedef i t k : : L i nea r I n t e rpo l a t e ImageFunc t i on <MovingImageType , double > I n t e rpo l a to r T ype ;
typedef i t k : : ImageRegistrat ionMethod <FixedImageType , MovingImageType > Reg i s t r a t i onType ;
typedef i t k : : C e n t e r e d T r a n s f o r m I n i t i a l i z e r <TransformType , FixedImageType ,

MovingImageType > T r a n f o r m I n i t i a l i z e r T y p e ;
. . .

The first two algorithms are based on the MI similarity measures as published by Viola and Wells
[87] (Viola-Wells implementation) and Mattes et al. [86] (Mattes implementation), respectively.
The third algorithm is based on a modification of the algorithm presented in Mattes et al. [86]
(Mattes-Smoothed implementation).
͙Ǥ �����Ǧ����� algorithm is implemented with a simplified computation of the MI by normalising
the statistical distribution of the two input images [77]. In a first step, Gaussian density is used
as a smoothing kernel and filtering is performed on the images prior to the registration process.
This step helps increasing the robustness against noise. In a second step, two separate intensity
samples S and R are retrieved from the image: the first sample is used to compute the density,
and the second one to approximate the entropy as a sample mean, [90]. For this method, various
smoothing parameters and number of spatial samples can be chosen that influence the results of
the algorithm. Gaussian density was used as a smoothing kernel, where the standard deviation
σ acts as the smoothing parameter. For the computation, simulations were done using different
number of spatial samplesN . For the brain data used here,N = 50 worked well as starting value
and was updated at each iteration. Considering the reference image Y and the moving image X ,
the NMI is calculated according to equation (4.2). The quality of the density estimates are chosen
according to the standard deviation of the Gaussian kernel. The optimal choice differs depending
on the type of the image. For images that have been normalised to have a mean of zero and
standard deviation of 1.0, the standard deviation that works well is 0.4 [90].
͚Ǥ ������ implementation required no filtering step as well as no pre-normalisation step as

the metric internally rescales when calculating the discrete density functions. Only one spatial
sample set was used for the whole registration process instead of using new samples at each
iteration as with the Viola-Wells method. To compute the entropy, the histogram approach
that is quick and simple to calculate was considered [90]. Here the entropy is approximated
by constructing a histogram of the images and then calculating its discrete entropy that is the
maximum-likelihood (ML) estimate of the discretised frequency distribution. Constructing a
histogram requires in a first step to bin the range of values and count how many values fall into
each interval. During this process, the whole range of values of the image is distributed into small
intervals. In the resulting histogram the height of the rectangle is proportional to the counts and
the width to the size of the bin. After performing some simulations with different number of
bins, the optimal value of 24 bins was used in the registration. Using the sample set, the marginal
and joint probability density function (PDF) are calculated at discrete positions. Entropy values
result from the integral over the bins.

͛Ǥ ������Ǧ�������� implementation was similar to the afore described Mattes method but
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consisted of an additional filtering process with a discrete Gaussian kernel. For the data used, a
variance of 2.0 prior to the registration worked well [90].

To analyse the quality of the developed registration algorithms a study was carried out with real
DWI data and artificial DWI data with simulated motion.

Data of sixteen healthy volunteers (7 males and 9 females, mean age 29.41± 6.89 years, range 22
years – 46 years) without any history of neurological disease were acquired using a clinical 3T MRI
scanner (Magnetom Trio, A TIM system; Siemens Medical Systems, Erlangen, Germany) equipped
with a 12-channel head coil.

For DTI, a single-shot Spin Echo Planar Imaging (SSEPI) sequence was applied in the axial plane.
Volumes of 50 slices without gaps in 20 diffusion directions with b-values 0 s/mm2 and 1000 s/mm2

and 3 signal averages were acquired (see figure 4.2). Further imaging parameters were as follows:
echo time (TE)= 112 ms, repetition time (TR)= 7700 ms, matrix= 128× 128, field of view (FOV)=
256 mm, image resolution = 2.0 × 2.0 × 2.0 mm3. GRAPPA (generalised auto-calibrating partially
parallel acquisition) was applied with an acceleration factor of 2. The total acquisition time was
08:30 min.

Additionally, DTI data of one tumour patient (male, 40 years with a low-grade astrocytoma2)
who had received an MRI scan for clinical reasons using the same protocol for acquisition of DTI
were retrospectively evaluated.

The institutional review board approved the protocols and written informed consent was
obtained from all volunteers before data acquisition.

Figure 4.2.: DW Image acquisition of a brain volume with 50 slices at a diffusion-weighting of 1000 s/mm2 considering
20 diffusion directions and 3 signal averages.

For each subject the 63 DWI volumes acquired were transferred to a workstation running under
a Windows 7 platform (Intel® Core™ 2.66 GHz i5 processor, 8.00 GB RAM) for correction of subject
motion using the described C++ routines (see section 4.1).

In the literature, different processing workflows for DWI motion correction exist. In a study
of Tremblay et al. [91], only b = 0 images were registered and the resulting transformation

2is a malignant tumour of nervous tissues that is composed of astrocytes.
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matrix was applied to the subsequent DW images, assuming constant motion between the
subsequent b = 0 s/mm2 images. Similarly, in a study of Haselgrove and Moore [82] with 5
b-values (0, 160, 360, 640, 1000 s/mm2) the correction factor found by registering the b0 to the
b = 160 s/mm2 image was used to correct the other DW images with the expectation that the
transformation parameters were linearly related to the relative gradient. Since the required use
of a higher number of directions together with multiple b-values lengthens the scan times, the
probability for non-constant motion between images of the same measurements cycle becomes
high. Therefore, two processing pipelines were evaluated (see figure 4.3). First, the first non-DW
b0 volume was picked from the DTI dataset and used as reference volume. Then all the other DW
volumes were registered onto this volume (see figure 4.3 (a)). The second approach was set up
analogue to prior studies [91] as reference. Here, the first b0 volume was spatially mapped to the
second b0 volume then to third b0 volume and the two resulting transformation matrices were
respectively applied on the DW images in the second and third averages (see figure 4.3 (b)).

Tests were performed by Viola-wells, Mattes and by Mattes-Smoothed to find the best
registration results (see section 4.1.2). The accuracy expressed as deviation in correcting induced
motion together with processing times was analysed. Finally, the b-matrices were recalculated
to take into account the effects of the spatial transformation [70].

Figure 4.3.: Block diagram description of the processing pipelines tested. (a) The 1st non-DW image was used as
reference to align all the following volumes of the subject. (b) Only the b0 images are registered and the
resulting transformations are applied to the DWI volumes.

To validate the implementations and determine their accuracy, simulations on datasets with
known deformations were performed (see figure 4.4). Data of a volunteer showing visually
fewer motions were registered with SPM8 [92] software using a least square approach and a
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6 parameter rigid body spatial transformation. Here all the 62 DWI volumes of the volunteer
were registered to the first b0 volume. The resulting data were again visually inspected for
motion and used as our gold-standard dataset for evaluation implemented algorithms (4.1).
Artificial misalignment was then induced by random rotation (from 0.01 ◦ to 0.20 ◦) and random
translation (from 0.01 mm to 10 mm) in the 62 DWI volumes of our gold-standard dataset. These
misalignment ranges are in a realistic magnitude of usual patient movement [82, 91]. This
process was repeated to produce 6 distinct artificial motion-corrupted data sets that were
used for further tests. The resulting datasets were then registered with the Viola-Wells, the
Mattes and Mattes-Smoothed algorithms described in section 4.1.2.2. To assess the performance
of the motion correction algorithms, the offset of the transformation parameters between
the gold-standard data and the misaligned data was compared to the offset between the
gold-standard data and the registered data.

Figure 4.4.: Axial DWI images of a volunteer brain (a), intentionally misadjusted DWI image with known motion (b) and
difference image between misaligned and original image (c).

Furthermore, from the gold-standard and motion-corrected DWI volumes (the datasets
without induced artificial motion), the mean diffusivity (MD) and the fractional anisotropy (FA)
metrics as statistics of DWI and DTI were calculated using the Diffusion Toolkit software [93]
(trackvis.org/dtk, version 0.6). The resulting SNR in FA maps in the corpus callosum representing
a region consisting of homogeneous tissue (see figure 4.9) was calculated according to equation
(4.4).

SNR = µ/σ (4.4)

with µ as mean or expected value and σ as the standard deviation (SD) of the noise. To further
analyse the impact of motion artefacts on DTI imaging, the WM fibre tracts were reconstructed
in the Track Vis software [93]. The Track Vis program provides different fibre tracking algorithms
to reconstruct the nerve fibres. As fibre propagation algorithm, the tensorline method [94] was
employed (angle threshold = 35 ◦) with no FA-based threshold for fibre tracking. As an indicator
of data quality, the minimum, maximum and mean fibre length and volume in the created tracks
was calculated. The track count and voxel count involved were also reported.

For better visualisation, data of a tumour patient were registered with the motion correction
technique that showed best performance in recovering translation and rotation misalignment
to demonstrate how motion induced artefacts can impact on fibre tract changes in brain lesions.
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4.1. Motion correction in DKI images using mutual information

All data are expressed as mean± SD. Parameters were compared using sample t-tests. Statistical
values of p ≤ 0.05 were considered to indicate a statistically significant difference.

From the 16 whole brain DTI datasets acquired for validation of the experiments, data of one
subject who could not complete the acquisition process due to intense motion was discarded.
Therefore, data of 15 volunteers were successfully registered.

Differences were found between the processing pipelines in figures 4.3a and 4.3b. Just
registering the b0 volumes could not outperform the processing configurations with a registration
of all the DW volumes (see figure 4.5). As shown on the figure, considering the pipeline 4.3a,
different motion experienced by the subsequent volumes of a dataset are corrected whereas the
correction process in pipeline 4.3b does not account for all motion errors. Further investigations
were made under consideration of the pipeline on figure 4.3a. Under best configuration of the
algorithms for sixty-two DW volumes when each volume was registered, an average of 06 min :
57 s for Viola-Wells, 02 min : 41 s for Mattes and 02 min : 04 s for Mattes-Smoothed were required
to register the 62 volumes.

Figure 4.5.: Comparison of the two processing pipelines. Motion correction of all different DTI volumes is superior to
correction schemes, where only b0-images are aligned.

The graphs in figures 4.6 and 4.7 summarise the results of the simulation studies. Translation
measures after registration of data with known induced artificial motion in x-, y-, z-direction with
the best configurations of the different algorithms under consideration of the pipeline in 4.3a are
shown for all the volunteers.

Considering translations up to 10 mm and rotations up to 0.20 ◦ respectively the ...
Scatterplots of the artificial induced motion and transformation parameters after registration

are presented in figure 4.8. These analyses showed for translation and rotation measures
respectively that Mattes (R2 > 0.99; R2 > 0.99) followed by Mattes-Smoothed (R2 > 0.96;
R2 > 0.93) over performed Viola-Wells (R2 > 0.83; R2 > 0.28). All translations results before
and after the registration correlated better compared to rotation measures.

The tractography results confirm the findings obtained with the translation and rotation
parameter analysis. Example images from a registered dataset are shown in figure 4.9.
Representative FAmapswithout correctiondemonstrates thatmotion corrupteddatasets exhibit
considerable blurring. FA maps with and without registration allowed a side-to-side comparison
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4. Optimisation of the image pre-processing methods for DKI

Figure 4.6.: Comparisonof translationmeasures in theX ,Y ,Z directions after registrationofdatawith known induced
artificial motion for the six motion-corrupted datasets.

Figure 4.7.: Comparison of rotation measures in the X , Y , Z directions after registration of data with known induced
artificial motion for the six motion-corrupted datasets.

demonstrating the potential of the mutual information registration technique by Mattes and
its strengths in contrast to the Viola-Wells and Mattes-Smoothed methods. Unrealistically high
diffusion anisotropy values at brain boundaries in FA maps without correction as typical indices
of geometrical discrepancies were corrected after registration. SNR in corpus callosum measured
in FA maps was improved by all registration methods from 6.17 in the non-corrected data to 16.82
(p = 0.03) in the data with Mattes mutual information correction (see table 4.2). A SNR of 16.75
(p =0.014) showed that a smoothing process during the registration with Mattes does not render
additional enhancement. Registration with Viola-Wells achieved the lowest result with SNR of
16.29 (p = 0.03).

The morphometric results of white matter tracts from all the subject brains are presented
in table 4.3. Compared to the results from data with correction, the white matter tracts in
the brain are greatly reduced in the motion-corrupted datasets. The mean length (meanL) of
the reconstructed fibres of all the volunteers without correction significantly increased from
60.03 mm to 79.90 mm after registration with Mattes-Smoothed using tensorline as propagation
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4.1. Motion correction in DKI images using mutual information

Table 4.1.: Result of the simulation studies considering translations up to 10 mm and rotations up to 0.20 ◦.

X Y Z X Y Z

������� ��������� ����������� ȏ��Ȑ 0.73 0.64 1.15 0.06 0.34 0.43

������� ��������� ����������� ȏ��Ȑ < 1.34 <1.19 < 2.99 < 0.15 < 0.71 < 1.13

������� ��������� �������� ȏ◦Ȑ 0.13 0.07 0.15 0.01 0.08 0.004

������� ��������� �������� ȏ◦Ȑ < 0.5 < 0.2 < 0.62 < 0.05 < 0.03 < 0.01

Table 4.2.: SNR in corpus callosum in FA parameter maps from all subjects using different motion correction techniques.

Method Uncorrected Viola-Wells Mattes Mattes Smoothed

��� 6.17 16.29 16.82 16.75

algorithm ( see figure 4.10). For the maximal recovered length (maxL) of 442 mm with
Mattes, the corresponding volume (V) was 442.95 cm3. Here the best results were achieved
with Mattes-Smoothed followed by the correction with Mattes mutual information, then with
Viola-Wells. Where longer fibre lengths were recovered, the voxel count was increased and the
tract count diminished.

Table 4.3.: SNR in corpus callosum in FA parameter maps from all subjects using different motion correction techniques.
TC:tract count, VC: voxel count, V: volume, maxL: maximum length, minL: minimum length, meanL: Mean
length.

Meall all Subjects TC VC V [cm3] maxL [mm] minL [mm] meanL [mm]

������ 6204 43958 351.66 260.34 1.49 60.03

�����Ǧ����� 6218 54632 421.12 390.47 1.56 76.86

������ 6131 55369 442.95 442.66 1.53 78.02

������Ǧ�������� 6147 56908 455.26 429.97 1.53 79.90

Visual inspection of the algorithms performance using data of a tumour patient revealed that
without correction it is nearly impossible to notice how the fibres are displaced by the tumour
in the coronal view. In the sagittal view (see figure 4.11), the tumour localisation was already
noticeable without correction but a more precise fibre progression with more volume all around
the tumour was only detected after motion correction.

Considering two processing pipelines, three mutual information based motion correction
methods were implemented and evaluated for alignment of DTI datasets [87, 86, 77]. The
registration was performed in 3D and allowed for rigid body subject motion correction. After
registration, the b-matrices were properly rotated for DTI processing.

For validation, quantitative measures such as translation and rotation after registration of DTI
datasets with artificial induced known motion as well as the visual inspection using data of a
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4. Optimisation of the image pre-processing methods for DKI

Figure 4.8.: Results of the simulation studies. Each graph displays the transformation parameters found by the
registration methods (y-axis) in the six motion-corrupted datasets (true values, x-axis). The individual
graphs show the result of the registration after applying various degrees of x- (circles), y- (plus marks) and
z- (squares) translation (left) and rotation (right). The parameters found by the registration with Mattes
achieved the best agreement with the true values.

tumour patient were used. Additionally in the corpus callosum, the SNR in the FA maps was
studied and the length, volume, track count and voxel count of the reconstructed fibres in the
whole brain before and after correction were analysed. All the results showed that the quality
of the DTI images was significantly improved after alignment. A comparison of the processing
pipelines revealed more accurate registration results when aligning all the DW images compared
to spatially matching of b0 images only. In the literature, different processing workflows for DWI
motion correction exist [82, 29, 91]. In a study of Tremblay et al. [91], only b = 0 images were
registered and the resulting transformation matrix was applied to the subsequent DW images,
assuming constant motion between the subsequent b = 0 s/mm2 images. Similarly, in a study of
Haselgrove and Moore [82] with 5 b-values (0, 160, 360, 640, 1000 s/mm2) the correction factor
found by registering the b0 to the b = 160 s/mm2 image was used to correct the other DW images
with the expectation that the transformation parameters were linearly related to the relative
gradient. Since the required use of a higher number of directions together with multiple b-values
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4.1. Motion correction in DKI images using mutual information

Figure 4.9.: Maps of the fractional anisotropy (FA) without correction (a), after correction with Viola-Wells (b), after
correction with Mattes (c) and after correction with Mattes-Smoothed (d). The MI registration with Mattes
(c) is clearly superior to the correction with its smoothed version (d) and the MI registration method by
Viola-Wells (b).

lengthens the scan times, the probability for non-constant motion between images of the same
measurements cycle becomes high. Therefore as the results suggest, for each DTI volume, it is
necessary to compute a spatial transformation to the reference image.

A recently published study of Yasmin et al. [95] could correct translations up to 3 mm in DTI
images by optimising the k-space acquisition and reconstruction method used. An automated 3D
registration method for multi-contrast MR imaging proposed by van't Klooster et al. [96] could be
used to correct misalignment of about 2.4 mm in three dimensions. In this thesis, the simulated
data with artificial misalignment by random rotation from 0.01 ◦ to 0.20 ◦ and translation from
0.01 mm to 10 mm, mean residual absolute values after registration were < 0.47 mm and 0.05 ◦.
The resulting reconstructed white matter volumes in a range of 351.66 cm3 - 455.26 cm3 are
comparable to results of Tang et al. [97] with volumes in range of 398 cm3 - 394 cm3. From
the DTI processing using the tensorline fibre tracking algorithm, the resulting fibre lengths of
60.03 mm – 79.90 mm were slightly lower than those reported by Tang et al. in range of 105 mm –
122 mm. These small differences might be due to the different fibre tracts assessment techniques
involved in the studies as well as the fact that Tang et al. performed their experiments ex-vivo. In
their study, Tang et al. [97] estimated the fibre tracts in brain using a systematic uniform random
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Figure 4.10.: Comparison of the total volume fibre tracts for all the subjects with different registration methods using
tensorline as propagation algorithm.

sampling technique that assumes that all brain regions under consideration have equal probability
of being sampled. A recent study of Borius et al. [94] evaluating various tractography algorithms
could already highlight the potential of tensorline methods. The necessity of motion correction
prior to DTI computation was demonstrated using the tensorline algorithm on data of a tumour
patient.

For the simulations on artificial data and the SNR measurements in the healthy volunteers,
Viola-Wells and Mattes-Smoothed showed poor results compared to the Mattes method. From
the evaluation based on tractography measures Mattes-Smoothed showed the best performance
followed by Mattes and Viola-Wells.

From the results obtained, if patient motion is present, correcting the data for misalignment
with MI prior to DTI processing seems essential. Here accordingly with the simulated data,
the best results were achieved with Mattes-Smoothed algorithm that lightly outperformed the
Mattes algorithm.

SNR measurements were better with Mattes compared to Mattes-Smoothed algorithm. But
Mattes-Smoothed could outperform the other methods with the highest values of reconstructed
fibre tracts, volume and length. From these evaluation results, the differences of the algorithms
in recovering translational and rotational motion as well as SNR measurements results were more
pronounced than the differences in morphometric measures (see figure 4.8). Therefore, the
use of the mutual information of Mattes as similarity measures when registering DTI images is
recommended.

Patient motion is a common problem in clinical diffusion imaging acquisitions. Here in the
experiments carried on, correcting each and any diffusion-weighted image measured at different
b-values significantly increases the reproducibility. The results show that datasets containing
significant motion can be successfully corrected with MI as a similarity measure.
Although in the present study the tests were performed for the purpose of spatially aligning DTI
images of the human brain, it is expected to be beneficial to register images of other body regions
[98].

The main limitation of this study lies in the fact that EPI sequences applied in the axial plane
in 20 directions with b-values of 0 s/mm2 and 1000 s/mm2 were used. It is well known that such
sequences are prone to artefacts caused by time-varying magnetic fields that are induced into
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4.1. Motion correction in DKI images using mutual information

Figure 4.11.: Tractography results of tumour patient data underplayed with b0 images without and with Mattes motion
correction using the tensorline fibre tracking algorithm. Circled region and arrows show more precise fibre
progression with more volume all around the tumour detected only after motion correction.

the electric conducting MRI hardware by the rapid gradient echoes of the EPI sequence. In
these experiments, "rigid body" was used as the spatial transformation model. A consideration
of affine registration would help to remove distortions caused by eddy current artefacts and
might increase the performance of MI used as similarity measure in motion correction for DTI.
Additionally, a comparison of the correction scheme introduced here to a “gold standard” should
be investigated in future studies. As an early step, the primary focus of this work was led on
the additional value of mutual information correction in DTI by aligning all the DWI volumes.
Moreover, optimisation of motion correction algorithms for modern imaging technologies that
consider patients with movement disorder as Parkinson disease or Non-compliance patient is a
relevant field of research and should be investigated in future studies.

In summary, formulations of MI based motion correction were implemented and tested here.
In previous reports, the registration of DW images was based only on aligning the b0 images of
the acquisitions since they had the same contrast using cross correlations (CC) or mean squared
intensity difference (MSQ) as similarity measures. With the introduction of MI, registering images
with different contrast is possible. Here, the proposed approaches retrospectively correct for
motion prior to DTI computation aligning all the non-DW as well as the DW images using the
MI criterion. As a result, they provide maps of quantities derived from the diffusion tensor
that are more anatomically accurate. The considered data suggests that using Mattes mutual
information as a similarity metric for registering each and any DW image measured at different
b-values increases the accuracy of DTI analysis.
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For an accurate use of DKI in the clinical routine, it is crucial to remove bias introduced by
noise by filtering the individual DW images prior to fitting the tensor model. However, the
Rician nature of the noise in DWI [99] prevents from the use of conventional Gaussian-based
filtering techniques that may blur important image features and edges destructing diagnostically
relevant information. Numerous approaches have been developed to denoise DW images. One
can regularise the tensor fields after the diffusion tensor has been estimated [100, 101] or even
estimate the diffusion tensor to account for the Rician model [102, 103] or also denoise the DWI
volumes before estimating the diffusion tensor.

This thesis concentrates on the last group of techniques and compares 2 classes of filters
to reduce noise in DWI images prior to DKI computation, which includes the application of
anisotropic smoothing kernels such as Perona-Malik filter [104] and the Linear Minimum Mean
Squared Error (LMMSE) filter [99] for conventional MRI and adapted for DWI by Tristán-Vega and
Aja-Fernandez [105]. Due to the effectiveness in reducing noise while preserving edges and local
details, and without introducing undesirable image artefacts, the anisotropic diffusion filter (ADF)
(terminology according to [106, 104]) is one of the most commonly used technique in medical
image denoising.

The non-linear anisotropic diffusion filtering [104], where the term diffusion should not be
confused with the physical diffusion process introduced in chapter 3, and the joint LMMSE
approach [107].

The basic idea behind anisotropic diffusion filtering, is to apply a smoothing filter on an image
while preserving significant details (edges or lines) that are important for the interpretation of
this image. The first approach to realize this concept was proposed by Perona and Malik [104]
using the following partial differential equation (PDE) [108]:

∂I(s, t)
∂t

= div
[
g
(∣∣∇Its

∣∣)∇Its
]
, (4.5)

where, I(s, t) is the image intensity to be corrected, s = (x, y, z) and t are, respectively,
the 3D spatial coordinate vector and the stopping time parameter (number of iterations) of
the algorithm. The operator ∇ is the gradient operator and the function g(·) refers to the
edge-stopping function. From the various possible edge-stopping functions,

g
(∣∣∇Its

∣∣) = exp
{
−1

2

(∣∣∇Its
∣∣ /σ2

)}
(4.6)

was used that prioritises high-contrast edges over low-contrast ones [108]. Hereσ represents the
scale parameter which controls the decreasing rate of the diffusion coefficient as the absolute
value of the image gradient increases. The value of σ is usually manually set in relation to
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4.2. Noise filtering in DKI using weighted least squares

the gradient strength of edges in the images that are to be preserved during the diffusion. In
summary, the main parameters of the ADF that control the behaviour of the smoothing process
are: the scale parameter (σ), the diffusion rate (λ) and the number of iterations (t) of the
algorithm.

The optimal number of iterations is set based on the structural similarity index according to
the work of Ferrari [108]. Here the time step as well as the gradient modulus threshold that
controls the conduction were varied for denoising a volume and the mean structural similarity
index (MSSIM) between the denoised volume at iteration (Iter) and the denoised volume at
Iteration Iter+1 was compared with the previous MSSIM index between the volumes at Iter− 1
and Iter [108]. The iteration was stopped when the actual MSSIM was inferior to the previous
MSSIM [108]. For the data considered here, the time step was optimised and set to 3/44 (see
figure 4.12).

Figure 4.12.: MSSIM index for the ADF correction with different time steps.

This is a vector LMMSE approach, in the sense that the DWI gradient images of a measurement are
filtered together using the Wiener filter over the squared magnitude image M2. The advantage
of working with the square envelope M2 is that its moments are trivially related to the signal A
and the power of noise σ2 [107].

A2 = E
{
M2

}
− 2σ2;

A4 = E
{
M4

}
− 8σ2E

{
M2

}
+ 8σ4.

The filter considers all the DWI gradient images simultaneously and is based on the previous
published LMMSE filter [99], that is able to detect anatomical structure(s) hidden in correlation
information between the separated gradient images. The moments estimates are computed
as sample means, and to avoid the over-blurring due to this methodology a non-local means
(NLM) scheme is used to distinguish between voxels of different fibre bundles, in such a way
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that anatomical structures of the DWI are enhanced.
The implementation of Tristan-Vega et al. [107] considers a stationary Rician model for the
noise pattern (i.e., a constant value of σ), which may not be a realistic assumption since
parallel acquisition and echo-planar imaging are used. Therefore, the algorithm was modified
to generalise the Rician statistics to a non-central Chi model.

For simulation and test purposes, the two algorithms were implemented in MATLAB routines.
Details about the data used are found in section 4.2.3.1 and results of the quantitative evaluation
and visual inspection are shown respectively in sections 4.2.3.2 and 4.2.3.3.

To test the performance of the noise reduction methods investigated in this thesis, a quantitative
evaluation and a visual inspection based on synthetic and real DKI data is performed.

For the quantitative evaluation, synthetic DWI brain datasets of the NITRC project were used
[109]. The NITRC project provides DW datasets generated using a multi-tensor model at different
SNRs and different sets of diffusion gradient directions. The SNRs available are varied from 9,
18 to 36 and one can choose to use the data with 20, 30, 40, 60, 90 or 120 gradient directions.
The SNRs and gradient direction sets are provided in 10 repetitions of the data. This is done for
all the data, b = 1000 s/mm2, as is common for clinical acquisitions. For the experiments of this
section, DWI datasets with SNR = 9 and SNR = 36 were used. The volumes with SNR = 9 were
considered as noisy and the ideal data were the volumes with SNR = 36. 30 diffusion directions
were considered.

Applying the implemented algorithms on real data is necessary to get an impression of the
practical usability of the noise reduction methods. A real brain dataset was acquired from
a young 22-years old volunteer (female) on a clinical 3T MRI scanner (Magnetom Trio A TIM
System; Siemens Medical Systems, Erlangen, Germany) using a 12-channel head coil. DKI data
was acquired using a single-shot Spin Echo Planar Imaging (SSEPI) sequence in the axial plane
using 3 b-values (0, 1000, 2000 s/mm2) and 30 diffusion encoding directions. A volume of 60
slices covering the entire brain without gaps was acquired thus enabling the assessment of a
wide range of anatomical regions in the atlases. Further imaging parameters were: echo time
(TE) = 101 ms, repetition time (TR) = 8100 ms, matrix = 92 × 92, field of view (FOV) = 230 mm,
number of averages = 2, reconstructed image resolution = 2.5 × 2.5 × 2.5 mm3. Generalised
auto-calibrating partially parallel acquisition (GRAPPA) as a parallel imaging method was applied
with an acceleration factor of 2. The mean acquisition time of the DKI sequence was 16:24 min.

A quantitative comparison of the noise reduction algorithms is performed in this section including
the evaluation of the following criteria:
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• Noise reduction

• Structural similarity

• Peak-signal-to-noise ratio

For the methods considered, various smoothing parameters can be chosen that influence the
results of the algorithms. The datasets were corrupted with Rician distributed noise at 25 % as
explained in section 3.5.2.1. To evaluate the amount of noise suppressed, the standard deviation
of the pixel values within two homogeneous regions (see figure 4.13) of the synthetic data of 35×
35 pixels is measured in all the filtered volumes of the DKI acquisition and the average is compared
to the mean noise in the original (noisy) volumes. Here the 30 th slice, that correspond to a middle
slice, was considered for measurements. Accordingly, the noise reduction rate (NRR) in percent
is defined as:

NRR =

(
1− σdenoised

σoriginal

)
· 100% (4.7)

Figure 4.13.: Regions-of-interest (ROIs) selected for evaluation of the noise reduction rate.

In figure 4.14, the noise reduction rates for different approaches are plotted according to the
two (regions-of-interest) ROIs. It can be seen for both ROIs that with the ADF method, more
noise can be reduced. Besides, the amount of noise suppressed does not differ depending on the
region considered for evaluation. No changes are observed in the ROIs depending on the filter
used.

In this work, the MSSIM index is used as a metric to quantitatively assess the overall quality of all
denoised images resulting from the ADF and JaLMMSE noise correction schemes. The structural
similarity (SSIM) index was proposed by Wang et al. [110] to measure fidelity (or similarity)
between two images. The index is based on similarities of local luminance, contrast and structure
betweenan initial uncompressednoise-free imageandadistorted image. Wanget al. [110] proved
that the SSIM index, when using as an image quality assessment metric, performs better than the
mean squared error (MSE). In addition, unlike traditional image quality metrics, the SSIM index is
consistent with human visual perception and its value varies conveniently between -1 and 1. The
index is calculated between two corresponding regions (x and y) as the decomposition of three
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Figure 4.14.: NRR in the two ROIs (see figure 4.13) for the ADF and JaLMMSE approaches.

similarity measures: the similarity of brightness, contrast and structure. These three components
can be combined to compute an overall similarity measure as [110]:

SSIM(x, y) = (
2µxµy + C1

µ2
xµ

2
y + C1

)

︸ ︷︷ ︸
brightness

· (2σxσy + C2

σ2
xσ

2
y + C2

)

︸ ︷︷ ︸
contrast

· ( σx,y + C3

σxσy + C3
)

︸ ︷︷ ︸
structure

(4.8)

where (µx,σx) and (µy,σy) are respectively, the pairs of mean and standard deviation (SD) of
the two local regions, x and y, in the image. The value of σx,y indicates the correlation between
the x and y regions and the constants C1, C2 and C3 =

C2
2 are used to avoid instabilities on each

component of the SSIM index [110].

In this work, the constants C1 and C2 were chosen as C1 = (K1L)2 and C2 = (K2L)2, where
L = max(I)−min(I) is the dynamic range of the image I , and K1 and K2 were both set to 0.05.
The local statistics, (µx,σx), (µx,σx) and σx,y were computed within a local cubic window of 8 ×
8 × 8 pixels [108].

SSIM(X,Y ) =
1

N

N∑

j=1

SSIM(xj , yj). (4.9)

Here, X and Y are the reference and the source images, respectively; xj and yj are the image
contents at the j-th local window; N is the number of voxels in the volume since the local cubic
windowmoves voxel-by-voxel over the entire imagevolume. Thevalue0 andvalue 1 of theMSSIM
index indicate zero correlation between images and high similarity between images respectively.
The MSSIM value of the filtered vs. ideal data using the JaLMMSE was higher compared to the
ADF method. Inconsistently MSSIM value of the filtered vs. noisy data using ADF is superior than
when considering filtered vs. ideal data (see figure 4.15).
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Figure 4.15.: MSSIM index respectively of the filtered vs. ideal volumes and the filtered vs. noisy volumes.

The peak-signal-to-noise ratio (PSNR) can also be used to measure the difference between two
images. It is defined as [110]:

PSNR = 20 ∗ log10(bsignal/rms). (4.10)

Here bsignal is the largest possible value of the signal. The root mean square difference between
two images is rms. The PSNR in decibel units (dB) renders the ratio of the peak (maximum) signal
and the difference between two images.

Figure 4.16.: PSNR respectively of the filtered vs. ideal volumes and the filtered vs. noisy volumes.

Experimental results of figure 4.16 shows that a maximum PSNR value of 50 dB is reached after
filtering with JaLMMSE compared to 42 dB achieved with ADF when comparing the filtered to the
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Figure 4.17.: SSIM index plotted against the PSNR values for all the volumes.

Figure 4.18.: Denoising results of different approaches for a brain slice displayed with the corresponding difference
images.
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ideal data. Comparing the filtered and noisy volumes PSNR with the JaLMMSE method was lower
as expected regarding to the PSNR of the filtered vs. ideal volumes. This comparison revealed
inconsistencies as with the MSSIM regarding the ADF method. These might be due to the fact that
the filter reduces more noise but is blurring the edges therefore totally changing the structure of
the image.

Plotting the MSSIM against the PSNR in figure 4.17 shows the superiority of using the joint
information in DWI channels for filtering compared to an edge preserving filter.

In figure 4.18, an example slice taken from the brain volumes is shown. The original slice
showed noise due to the low SNR. At first glance, the results of the filtering with the JaLMMSE
and the ADF methods look quite natural. In the images denoised, there is no visual difference
detectable leading to the conclusion, that the two filters removed noise uniformly in the DWI
scans preserving edges and structures. To obtain an impression about how well the structures
were preserved by the different filtering schemes, difference images from the denoised and the
original noisy scans were generated. Considering the filtering process in the ADF method, the
structure is present in the difference images, meaning that the edges are not well preserved with
the filtering process on projections; with the structure being destroyed. However, the difference
images resulting from the filtering with the JaLMMSE technique show that more of the noise
structures are removed without affecting the structure and quality of the edges.

Figure 4.19.: Denoising results of the JaLMMSE approach on real brain data displayed with the corresponding
difference images.

Real DWI images of the brain acquired with the protocol described in 4.2.3.1 were filtered prior
to DKI computation. For comparison the DKI results with and without filtering using the JaLMMSE
filter are shown on figure 4.19. The figure shows improvement of the mean kurtosis (MK) map
and fractional anisotropy (FA) map after the filtering process with the JaLMMSE approach.

As a general result, applying noise reduction filters on DWI volumes prior to DKI estimation is
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necessary. Even if the anisotropic filter could show a stronger reduction of noise when analysing
the NRR, it lost each comparison with the JaLMMSE regarding the MSSIM and PSNR measures.
Using the JaLMMSE method to filter synthetic DWI images, structures and edges were better
preserved compared to the use of ADF. With respect to these observations, the JaLMMSE method
was preferred to filter real DWI images prior to DKI computation.

Figure 4.20.: DKI Image Processing.

The block diagram of the resulting image processing pipeline is shown in figure 4.20. A first
conversion step is necessary depending on whether the images are in mosaic format or not,
followed by the conversion in NIfTI. These two steps are optional and can be skipped if not
needed. In this thesis, the use of the Siemens Scanner made this step necessary. In the next
processing step, the image volumes are optionally filtered for Rician noise removal with the
JaLMMSE approach. Then, the filtered volumes are corrected for motion elimination using a MI
based similaritymeasure. For moredetails about thepre-processing techniquesused, please refer
to sections 4.1 and 4.2. After this pre-processing step, the DKI computation is done to produce
the MD, FA, DAX, DRAD, MK, KAX, KAX maps. For the DKI estimation, MATLAB scripts that are
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introduced later in section 4.3.2.2 and the DKE software published by Tabesh et al. [51] are used.
Finally, the pipeline was implemented in-house developed softwares based on Microsoft® Visual
C++ 2003 - 2010 with the Microsoft Foundation Classes (MFC) for the C++ scripts and based on the
MATLAB environment (http://www.mathworks.com) when using the MATLAB scripts presented
in section 4.3.2.

Many least square approaches as the ULLS and the CLLS exist in the literature to fit the
diffusion tensor (DT ) and the kurtosis tensor (KT ) [51]. CLLS stands for constrained linear
least squared and describes the mathematical formulation of the DW signal modelling under
physically and biologically plausible boundary conditions. These constraints result from the
underlying geometry of the relevant biological tissues that restricts directional physically true
kurtosis [6]. Although it is well known that theoretically, the minimum possible kurtosis should be
-2, multi-compartment diffusion models, as for example the bi-exponential model (see 3.4.1.1), and
empirical evidence in brain investigations, suggest a purely Gaussian displacement distribution
with a minimum kurtosis value Kmin = 0 [6]. Even if the acquired signal S (n, b) considering the
direction vector n should happen to be an increasing function of the b-value in some experiments
setting, previous studies affirm that this has never been the case for biological tissues [51]. This
explains the necessity to require that the estimated diffusion signal S be a strictly decreasing
function of the b for all n ∈ N in medical settings. A maximum kurtosis value of Kmax = 3 ensures
that this condition is fulfilled in the range of b-values used for data acquisition.

In this algorithm, to ensure the physical and biological plausibility of the results, Tabesh et al.
[51] introduces two constraints related to the observations mentioned above. The diffusivity
should always be positive to ensure kurtosis values between 0 and 3. From equation (3.23)
introduced in chapter 3, he formulates an estimation problem for the CLLS approach as follows
[51]:

minimise ∥AX - B∥2 such that CX ≤ d, (4.11)

with the objective to determine the elements of the diffusion tensor DT and the kurtosis tensor
KT. Here the right-hand side of equation (3.23) should match its left-hand side, respecting the
constraints formulated above. A is a matrix containing the set of non-zero b-values and gradient
directions used during the acquisition. X is a 21× 1 vector with the unknowns (the 6 independent
elements of DT and the 15 independent elements of KT). B is the vector of signal attenuation
ln( S

S0
) measured in the different directions.

The problem defined by (4.11) can be addressed using two classes of algorithms that are rather
standard: the quadratic programming algorithm (CLLS-QP ) and the heuristic algorithm (CLLS-H).
Here the labels QP and H stand respectively for quadratic programming and heuristic. These
methods are described here as published in a recent work of Tabesh et al. [51]. In this thesis
the DKE software can be used with the CLLS-QP computationally more expensive but also more
accurate method. The CLLS-QP was preferred compared to the CLLS-H as more emphasis was laid
on accuracy regarding to the computation time.

In the CLLS-QP, depending on whether it exists or not, a feasible point is used to initialise the
algorithm. The definition of Tabesh et al. [51] is considered in this work and a feasible point is
defined as one for which the constraints are true. It is calculated with linear programming. In
the implementation of Tabesh et al. [51] considered during this work, in a first step, the feasible
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point is set to be the unconstrained linear least square (ULLS) solution of equation. This point is
also set as final solution of the CLLS problem if it respects the constraints. If not, a feasible point
computed using linear programming, as mentioned above, is used to initialise the computation. In
a second step, the final feasible point is found through iterations. Please note that the constraints
are also updated at each iteration.

DKI maps in chapter 6 were produced using in-house developed MATLAB programs adapted from
the work of Tabesh et al. [51] as presented below. Results of chapters 5 and 7, were produced
with the DKE software introduced in section 4.3.2.2 because of its more user-friendly graphical
user interface (GUI).

Before the introduction of the DKE software with a GUI, the DKI maps from a given DW MRI
dataset were computed in this thesis using modified MATLAB scripts with the fitting method with
CLLS-QP based on [51]. For a standard DW acquisition, the data are organised to follow the folder
structure shown in figure 4.21 and given later as input of the MATLAB function.

Figure 4.21.: Folder structure for study data.

Folders DKI1, DKI2, DKIn and DKI-b0 respectively contain the DICOM image data of the first,
second and nth DKI series3, and additional b = 0 acquisitions, where n is the number of series.
Once processing is complete, the parametric maps in NIfTI format are stored in the folder
DKI-Process.

The MATLAB function dki_process(basedir, options) receives the basic folder of a subject n
(see figure 4.21) with some processing parameters (image format, number of averages, extra b0
images or not, non-zero b-values, number of gradient directions) as input and plots the DKI maps
as output. For processing, the pipeline showed in figure 4.21 is used.

Depending on the data being processed (e.g. brain or kidney data), a background threshold
T is optionally set on the b = 0 image to accelerate the computation. . Only voxels with b = 0
values above T are processed. In this thesis for brain studies, T was set to 70 and for kidneys

3also number of averages, or number of acquisitions
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T = 0 was used. Regarding the constraints formulated in section 4.3.2, the threshold of the final
kurtosis maps are set (Kmin = 0, Kmax = 3). The kurtosis tensor is then calculated using the
dki_method and considering the constraints violations (see code 4.2). Depending on whether
or not the method is being initialised for a feasible point, the ULLS or CLLS are set with the
dki_method.linear_constrained variable (refer for more details to section 4.3.2.1). Following the
kurtosis estimation, the diffusion tensor is estimated using the dti_method. The script also allows
either only a DKI or a DTI computation if necessary. For DTI computation, the set of non-zero
b-values used can be specified with the dti_method.b_value variable with the corresponding
gradient directions through the dti_method.directions variable. A *.dat file can be used to specify
the set of gradient directions under consideration. For the studies presented in this work, this
set varied from 20 to 30 directions for brain and kidney applications. Finally the output files are
specified and the diffusion maps are calculated and stored for plotting.

Listing 4.2:
f unc t i on d k i _ c a l c u l a t i o n ( d i r , opt )
. . .

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Se t t i n g the parameters fo r DKI f i t t i n g
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Unconstra ined (0 ) or cons t r a i ned ( 1 ) a lgo r i thm
d k i _ f i t . l i n e a r _ c o n s t r a i n e d = 1 ;

% Generate maps of c o n s t r a i n t v i o l a t i o n s
d k i _ f i t . l i n e a r _ v i o l a t i o n s = 1 ;

% I n t e n s i t y of each voxe l r ep resen t s the propor t ion
% of c o n s t r a i n t s on d i r e c t i o n a l d i f f u s i v i t i e s and
% kur toses v i o l a t e d by the ULLS s o l u t i o n ( de f au l t : 0)
% For more d e t a i l s see paper of Tabesh et a l . [ 5 7 ]
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Se t t i n g the parameters fo r DTI f i t t i n g
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% F l ag se t to ( 1 ) means DTI and (0 ) no DTI computat ion
d t i _ f i t . d t i _ f l a g = 1 ;

% DTI and DKI computat ion (0 ) or on ly DTI ( 1 )
d t i _ f i t . d t i _ o n l y = 0 ;

% Unweighted (0 ) or weighted ( 1 ) l i n e a r l e a s t−squares
d t i _ f i t . l i n e a r _we i gh t i n g = 1 ;

% Vector of non−zero b−va lues fo r DTI computat ions
d t i _ f i t . b_va lue = 1000 ;

% Ar ray of g r ad i en t d i r e c t i o n s fo r the non−zero
% b−va lues used i n DTI computat ions
d t i _ f i t . d i r e c t i o n s { 1 } = 1 : nd i r ;
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% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% D i f f u s i o n g rad i en t d i r e c t i o n s
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Grad ien t vec to r t ab l e
f n_g r ad i en t s = ' g r ad i en t_vec to r s_T imT r i o30_B ra i n . dat ' ;

% I n d i c e s of g r ad i en t d i r e c t i o n s fo r DKI computat ions
% fo r f i r s t non−zero b−va lue
i d x_g r ad i en t s { 1 } = 1 : nd i r ;
% I n d i c e s of g r ad i en t d i r e c t i o n s fo r DKI computat ions
% fo r second non−zero b−va lue
i d x_g r ad i en t s { 2 } = 1 : nd i r ;

. . .
end

Another possibility to produce DKI maps is to use the DKE software. In this thesis, results
of chapter 5 and chapter 7 are produced with DKE Version 2.5.1. DKE is a program for the
post-processing of diffusional kurtosis imaging (DKI) datasets. It allows the pre-processing of DW
images (convert, co-register, and combine) and estimation of the diffusion parametric maps for
datasets acquired on Siemens scanners and can be seen as a GUI of the Matlab scripts presented
in the previous section.
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Chapter 5
Construction of a whole brain atlas on the
basis of magnetic resonance diffusion
tensor and diffusion kurtosis data: Age
and gender related study

Understanding biological tissue microstructure and its alteration process through human brain
atlases is important for brain research. The normalised data of healthy individuals in an atlas may
help to identify common anatomical structures usable as standard references. Brain atlases also
play an obvious role in the quantitative assessment of typical patterns and variation of measures
in the “average” healthy [111] as well as unhealthy brain. This in turn establishes a solid base for
testing voxel-based as well as region-of-interest (ROI)-based statistical hypotheses. Actually, one
of the most used atlases in the literature is the Tailarach coordinate system [112]. Even though
it was constructed using the histology data of only one single subject, it has been widely used
in previous reports for identification, registration, and report of human cortical locations in a
common coordinate system since its completion with cyto-architectural information of the cortex
present in Brodmann’s map [113]. In addition to the Tailarach coordinate system other relevant
probabilistic maps were introduced by the Montreal Neurological Institute (MNI) [114, 115] and
the international Consortium of Brain Mapping (ICBM) [116]. To create these maps, a large
number of MR images of healthy subjects were linearly registered into a common template.
These maps work well for normalisation-based group analyses [117]. New imaging methods as
Diffusion-Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI) or Diffusion Kurtsosis Imaging
(DKI) techniques introduced in chapter 3 can provide additional diagnostic or (micro-) structural
information. Therefore the need of brain atlases containing these new information is crucial.

Reporting registered DKI data across normal subjects into an atlas can reliably identify common
anatomical structures and provide a standard reference of DKI indices to increase diagnostic
confidence. Previous efforts reporting kurtosis regional values in the healthy brain focussed
on predefined regions as the pre-frontal brain cortex [10]. A more recent study of Lätt et al.
[118] presents kurtosis indices in a thin slab of 27 slices in healthy brains. Thus, the purpose of
this chapter was to develop a human whole brain age-dependent atlas of diffusion tensor and
diffusion kurtosis indices in healthy volunteers and to evaluate their variability mapped to the
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existing well-established anatomical MNI space.

Eighty-five healthy volunteers without neurological complaint, history of past head injury or
any history of neurological or neuro-psychological diseases or previous neurosurgery, diabetes
and other type of disorder that could possibly affect the central nervous system, epilepsy,
hypertension, migraine (44 males and 41 females), whose ages ranged from 21 – 69 years (males,
21 – 67; females, 21 – 69), with mean age of 40.27 ± 15.62 (males, 38.46 ± 15.97; females, 41.26
± 15.53) were enrolled in this study. The review board of the institution validated the study
and all the volunteers signed an information consent before examination. The ANOVA tests on
age distribution of females and males showed no statistical significant difference (p > 0.05). In
addition, a radiologist with more than 5 years’ experience reviewed all the acquired images of all
subjects to identify any relevant structural abnormalities or pathology. Participants were grouped
in 10-year increments in five age groups from 20 years through the age of 69 years: 20YG (mean
age 22.46 ± 1.05; range 21 – 29 years), 30YG (mean age 33.31 ± 2.10; range 31 – 36 years), 40YG
(mean age 45.90 ± 3.41; range 41 – 48 years), 50YG (mean age 54.38 ± 2.79; range 51 – 59 years),
60YG (mean age 64.38± 2.26; range 61 – 69 years). In each age group, the number of participants
was fixed to 13. The 20- and 30-year groups (mean age 26.93 ± 4.83, range 21 – 36) were merged
and used to compute the principal atlas [119]. For the principal atlas additional 20 volunteers were
acquired such that a total of 46 volunteers were considered in this group. Repeated scans of three
participants imaged at different dates were acquired and used for reproducibility measurements.

All the MRI examinations were performed on a clinical 3T MRI scanner (Magnetom Trio A TIM
System; Siemens Medical Systems, Erlangen, Germany) using a 12-channel head coil. DKI data
were acquired using a single-shot Spin Echo Planar Imaging (SSEPI) sequence in the axial plane
using 3 b-values (0, 1000, 2000 s/mm2) and 30 diffusion encoding directions. A volume of 60
slices covering the entire brain without gaps was acquired thus enabling the assessment of a
wide range of anatomical regions in the atlases. Further imaging parameters were as follows:
echo time (TE) = 101 ms, repetition time (TR) = 8100 ms, matrix = 92 × 92 , field of view (FOV)
= 230 mm, number of averages = 2, reconstructed image resolution = 2.5 × 2.5 × 2.5 mm3.
generalised auto-calibrating partially parallel acquisition (GRAPPA) as a parallel imaging method
was used accelerated by a factor of 2. The mean acquisition time of the DKI sequence was
16:24 min. Additionally, a high-resolution 3DT1-weighted magnetisation Prepared Rapid Gradient
Echo (MPRAGE) sequence for anatomical reference was obtained with the following parameters:
TE= 2.98 ms, TR = 2300 ms, FOV= 256 mm, 1 mm slice thickness and matrix= 256× 256. The scan
time for this sequence was 04:08 min.

For further analyses, the DW images were transferred to a workstation running a Windows 7
platform for motion correction. Details about this correction driven by an in-house developed
mutual information based motion correction algorithm [120] were already introduced in section
4.1 The coregistered DKI datasets were then filtered using the JaLMMSE filter (see section 4.2)

The estimated tensors were utilised to determine the diffusion and kurtosis measures for each
subject corresponding to the parameters mean diffusivity (MD), fractional anisotropy (FA), mean
kurtosis (MK), axial kurtosis (KAX) and radial kurtosis (KRAD) as introduced in chapter 3 .
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The b0 (b = 0 s/mm2) images of each subject were normalised to the ICBM-152 T2 brain template
that is based on T2-weighted maps of 50 normal young adult brains [116] in the MNI space. The
entire normalisation process was performed using the Advanced Neuroimaging Tools (ANTs)
software based on symmetric normalisation as a transformation model and mutual information as
similarity measure [73]. ANTs is using a diffeomorphismus based registration resulting in precise
normalisation compared to other common normalisation techniques [73, 121]. The resulting
transformation matrix of the b0 image normalisation for each subject was then applied to the
other parameter maps (MD, FA, MK, KAX, and KRAD). The final dimensions of the b0, MD, MK,
KAX, and KRAD, were 91 × 109 × 91 voxels, and the final voxel size was 2.0 × 2.0 × 2.0 mm3 that
correspond to the resolution of the MNI atlas.

Data from ten randomly selected subjects were used to evaluate the normalisation quality by
assessing the accuracy in matching different brain structures between subjects [122]. For that
purpose, thirty anatomical landmarks (12 in the axial planes, 12 in the sagittal planes and 6 in
the coronal planes) were manually selected on prominent brain structures in the b0 images using
DiffeoMap (www.mristudio.org, Version 1.9) [123] (see figure 5.1). These landmarks were placed
on thenormaliseddatasets of one subject that servedas reference template. The same landmarks
were copied on the normalised datasets of the other subjects and moved to the corresponding
structures. Displacements (i.e., landmark displacement) of the ith landmark defined on the
reference template, and moved to a new location in the subject brain were measured to quantify
normalisation quality. The minimum, maximum, mean and standard deviation (SD) values of
the landmark displacement in the b0 images over all the subjects were estimated. The landmark
coordinates used are listed in the table .1 in section A in the appendices.

Figure 5.1.: Representation of some landmarks in the axial, sagittal and coronal planes. Altogether 30 were considered.

After assessing the accuracy of registration, 23 anatomically relevant structures in the brain (see
figure 5.2 ) were delineated with manual drawn ROIs of 7 to 50 pixels: internal capsule anterior
(ALIC), basal ganglia, caudate, body of corpus callosum (CCb), genu of corpus callosum (CCg),
splenium of corpus callosum (CCs), centrum semiovale (cent. sem.), cerebral peduncle (cereb.
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ped.), cingulate, cingulate temporal (cing. temp.), corona radiata, cortex, external capsule
(ext. caps.), Fornix, frontal white matter (FWM), mesencephalom (mesenc.), palladium, internal
capsule posterior (PLIC), pons, putamen, parietal white matter (PWM), thalamus and temporal
white matter (TWM). Reliably identifiable ROIs with the least possible partial volume effects were
drawn on b0 images in all subjects. ROIs on b0 images were copied onto the corresponding
position of the other maps of each subject. For each ROI, the mean value of the diffusion
parameter was extracted to construct the atlas. For each bilateral structure a single value was
produced by averaging the values of the left and the right ROI. For singular structures, a single
ROI average was used.

Figure 5.2.: Brain regions selected showed on a representative fractional anisotropy (FA) map of a 22-years old
volunteer.

Intra-subject reproducibility and inter-observer variability of FA and MK values were examined
using the free hand ROI technique [57]. Intra-subject reproducibility analysis was based on data
of three volunteers (mean age: 24.83± 3.31, range 22 – 29 years, 1 male, 2 females) imaged on two
different dates. The interval between the first and second MRI acquisitions of each volunteer was
not less than two weeks. In the ROIs, the FA and MK values of the first MRI acquisitions from the 3
volunteerswereassessedandcompared to thevaluesobtained fromthe secondMRI acquisitions.
For the inter-observer variability, two independent observers were instructed to independently
place the ROIs in the first MRI acquisitions of the three volunteers. Resulting values from the first
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and second observers were compared.

High-resolution atlases of MD, FA, MK, KAX, KRAD were created as maps of mean and SD of the
normalised data of each subject for the five age groups and additionally for the 20-, and 30-year
group merged together to form the principal atlas.

Statistical tests were performed using the statistics toolbox in MATLAB (Version: 8.0.0.783
(R2012b)). All data are expressed as mean ± SD. For all tests statistical values of p ≤ 0.05 were
considered to indicate a statistically significant difference. The reproducibility measurements
were compared using a two-sided, paired-samples Student’s t-test and Bland-Altman plots. The
difference versus the mean of the DKI parameters of the repeated measurements is plotted.

With linear regression [124], age as well as gender influences of all diffusion measures was tested
in all the ROIs. The correlation coefficient R was used to describe the correlations between
diffusion measurements. In addition, analysis of variance (ANOVA) among the 20-, 30-, 40-, 50-,
and 60-, year groups was examined.

In 80 of 85 subjects the DKI measurement could be acquired in sufficient image quality. In
five subjects the data were discarded due to subject movement, incidental findings or technical
problems. Therefore, 80 healthy volunteers were included in the DTI and DKI analyses. Figure
5.3 shows a representative transverse slice through the brain of a 22-years old volunteer after
registering it into the MNI space. Both MK and KRAD had high tissue contrast between the
white matter (WM) and the gray matter (GM) similar to FA. However, the contrast was more
pronounced on the FA map compared to MK.

Analysing how accurate the different brain structures between the subjects matched after the
normalisation resulted in the measures shown in figure 5.4 and figure 5.5. The average distance
between the landmarks coordinates of the reference and individual brains was approximately
0.71 mm on b = 0 s/mm2 images. For 73 % of all the landmarks selected in all the subjects, the
distancewas lessor equal to 1 mm, for 86 %of all the landmarks this boundarywas 2 mmor less and
for 100 % of the landmarks 4 mm or less was recorded (see table .2 in section A of the appendices).

Examples of the mean b0 image and mean DKI maps over participants of the principal atlas (20YG
and 30YG) after normalisation are shown in figure 5.6. Most visible structures in the individual
subjects' brain structures (see figure 5.3) before the normalisation process were preserved on the
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Figure 5.3.: Maps of diffusion-weighted (DW) measures of a 22-years old volunteer shown for one axial slice. EPI
non-diffusion-weighted image (b0), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK),
axial kurtosis (KAX), radial kurtosis (KRAD).

normalised maps after averaging. FA and MK values exhibited regional difference among 20-, 30-,
40-, 50-, and 60-YG. (All these tables are provided in section B of the appendices). In the principal
atlas (see table 5.1), MD varied from 0.69 ± 0.04µm2/ms to 0.92 ± 0.15µm2/ms, FA from 0.13 ±
0.04 to 0.80 ± 0.05, MK from 0.71 ± 0.05 to 1.76 ± 0.31, KAX from 0.65 ± 0.05 to 1.17 ± 0.25 and
KRAD from 0.78 ± 0.22 to 2.57 ± 0.31. MK and FA correlated positively with R = 0.85, p < 10−6.
Neither MK nor FA correlated with MD (R = 0.02, p = 0.48 andR = -0.03, p = 0.53, respectively).

WM regions with high a high amount of myelin with homogeneous orientation, such as the
splenium of corpus callosum (CCs), 0.80± 0.05 and internal capsule posterior (PLIC) , 0.61± 0.05
showed relatively high FA values. In contrast, the putamen had relatively lower FA values 0.15±
0.02. This effect was much more pronounced on MK maps with values of 1.76±0.31, 1.17±0.13,
0.96 ± 0.20 for the CC, PLIC and putamen respectively. Exemplary data of a 20YG- and a 60YG-
volunteer are shown on figure 5.7.

Respectively exemplary for the cortex, CCs, FWM, thalamus, putamen and pons, the globally
measured mean 5 FAFirstObs/FirstMeas was 0.21 ± 0.07; 0.76 ± 0.07; 0.42 ± 0.07; 0.26 ± 0.04;
0.12 ± 0.05 and 0.35 ± 0.08, the mean FAFirstObs/SecondMeas 0.24 ± 0.07; 0.78 ± 0.07; 0.40 ±
0.06; 0.28 ± 0.03; 0.14 ± 0.04 and 0.39 ± 0.07, and the mean FASecondObs/FirstMeas 0.3 ± 0.08;
0.79 ± 0.07; 0.40 ± 0.09; 0.25 ± 0.03; 0.11 ± 0.05 and 0.36 ± 0.07. The first and second FA
measurementsof thefirst observer (p =0.74) and themeasurementsof the secondobserver (p =
0.71) were not significantly different. In the principal atlas, the measured mean MKFirstObs/FirstMeas

5Obs: observer; Meas: measurement.
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Figure 5.4.: Mean deviation of the individual landmarks (1 to 30) from the reference brain for all the subjects with
respective SD in mm. For more details, please see table .2 in section A of the appendices.

Figure 5.5.: Mean deviation of the landmarks for the individual subjects (1 - 9) with SD in mm. Subject 0 is reference.
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Table 5.1.: Resulting atlases respectively for the merged Groups.

Merged Groups MD [µm2/ms] FA MK KAX KRAD
���� 0.72 ± 0.04 0.47 ± 0.05 1.02 ± 0.09 0.96 ± 0.09 1.36 ± 0.20

����� 
������ 0.74 ± 0.11 0.32 ± 0.07 1.11 ± 0.17 1.03 ± 0.16 1.26 ± 0.23
������� 0.87 ± 0.14 0.13 ± 0.04 0.77 ± 0.18 0.78 ± 0.18 0.78 ± 0.22

��� 0.92 ± 0.15 0.64 ± 0.06 1.22 ± 0.19 0.90 ± 0.16 2.08 ± 0.38
��� 0.86 ± 0.08 0.74 ± 0.06 1.56 ± 0.25 1.05 ± 0.19 2.47 ± 0.39
��� 0.78 ± 0.11 0.80 ± 0.05 1.76 ± 0.31 1.17 ± 0.25 2.57 ± 0.31

����Ǥ ���Ǥ 0.71 ± 0.02 0.50 ± 0.04 1.14 ± 0.06 1.00 ± 0.06 1.59 ± 0.19
�����Ǥ ���Ǥ 0.75 ± 0.08 0.69 ± 0.04 1.49 ± 0.22 1.07 ± 0.19 2.20 ± 0.37
����Ǥ ����Ǥ 0.73 ± 0.06 0.45 ± 0.07 1.18 ± 0.10 1.05 ± 0.14 1.78 ± 0.37
��������� 0.71 ± 0.08 0.37 ± 0.06 1.05 ± 0.16 1.01 ± 0.13 1.16 ± 0.41

������ ���Ǥ 0.69 ± 0.04 0.57 ± 0.05 1.27 ± 0.07 0.99 ± 0.13 1.77 ± 0.16
������ 0.84 ± 0.13 0.24 ± 0.07 0.86 ± 0.13 0.83 ± 0.11 0.96 ± 0.20

���Ǥ ����Ǥ 0.72 ± 0.05 0.54 ± 0.06 1.02 ± 0.13 0.94 ± 0.11 1.51 ± 0.29
	����� 0.75 ± 0.05 0.25 ± 0.06 0.71 ± 0.05 0.65 ± 0.05 0.80 ± 0.08
	�� 0.73 ± 0.03 0.42 ± 0.04 1.08 ± 0.11 0.95 ± 0.08 1.32 ± 0.19

������Ǥ 0.80 ± 0.10 0.39 ± 0.04 1.23 ± 0.11 1.06 ± 0.10 1.49 ± 0.19
��������� 0.76 ± 0.06 0.22 ± 0.05 0.98 ± 0.19 1.03 ± 0.16 0.91 ± 0.25

���� 0.72 ± 0.05 0.61 ± 0.05 1.17 ± 0.13 0.92 ± 0.12 1.66 ± 0.34
���� 0.76 ± 0.08 0.38 ± 0.04 1.22 ± 0.13 1.08 ± 0.12 1.53 ± 0.23

������� 0.72 ± 0.04 0.15 ± 0.02 0.96 ± 0.20 0.99 ± 0.18 0.93 ± 0.24
��� 0.77 ± 0.07 0.40 ± 0.06 1.07 ± 0.07 0.95 ± 0.06 1.31 ± 0.19

�������� 0.80 ± 0.06 0.29 ± 0.02 1.04 ± 0.14 0.96 ± 0.11 1.16 ± 0.18
��� 0.71 ± 0.05 0.63 ± 0.05 1.24 ± 0.11 0.94 ± 0.12 1.82 ± 0.28
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Figure 5.6.: EPI non-diffusion-weighted image (b0), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis
(MK), axial kurtosis (KAX), radial kurtosis (KRAD) maps shown for one axial slice for all 80 subjects of the
merged group after normalisation.

was 0.80 ± 0.05; 1.68 ± 0.26; 0.99 ± 0.16; 1.02 ± 0.20; 0.84 ± 0.23 and 1.13 ± 0.19, the mean
MKFirstObs/SecondMeas 0.80 ± 0.07; 1.85 ± 0.33; 0.99 ± 0.16; 1.03 ± 0.20; 0.78 ± 0.18 and 1.27 ± 0.22
and the mean MKSecondObs/FirstMeas was 0.81 ± 0.10; 1.69 ± 0.26; 1.00 ± 0.16; 1.02 ± 0.20; 0.83 ±
0.22 and 1.13 ± 0.18. The first and second MK measurements of the first observer (p = 0.97) and
the measurements of the second observer (p = 0.89) were not significantly different (see table
5.2).

The results of the Bland-Altman analysis of the repeated measurements are shown in figure
5.8. This analysis showed a good agreement between the 1st and 2nd measurements of the 1st

observer with -0.02 and 0.00 as mean differences as well as between the 1st measurement of the
1st observer and the measurement of the 2nd observer with mean differences of -0.02 and 0.01 for
FA and MK.

Table 5.2.: The p-values derived from a two-sided, paired-samples Student’s t-test. There was no significant difference
between the first and second FA, MK measurements of the first observer and the measurements of the
second observer.

P -Values MD FA MK KAX KRAD

�����Ǧ������� 0.32 0.74 0.97 0.32 0.33

�����Ǧ�������� 0.32 0.71 0.89 0.32 0.32

Scatterplots for the correlations between age, MD, FA, MK, KAX, and KRAD are presented for
some brain regions in figure 5.9, figure 5.10, figure 5.11, figure 5.12 and figure 5.13.

These analyses showed statistically significant reduction in MK and KRAD (p < 0.05) with
increasing age in the centrum semiovale, CCg, external capsule, FWM and the thalamus. In the

61



5. Construction of a whole brain atlas on the basis of magnetic resonance diffusion tensor and
diffusion kurtosis data: Age and gender related study

Figure 5.7.: Example of the FA and MK metrics in an axial image of a young adult of the 20-year group (left panel) and
an older adult of the 60-year group (right panel). The FA map shows the restrictive micro-environment
of water molecules, partly due to the high myelination, and is therefore higher in regions of more
densely packed fiber bundles that are homogeneous oriented as for example in the corpus callosum. The
demyelination is more pronounced on MK maps.

Pons, MK and KRAD increased with age. For KRAD, age dependence was additionally found with
p < 0.05 in the CCs, ALIC and PLIC. In some areas, MD, KAX, and FA declined with age (see figure
5.9, figure 5.10, figure 5.11, figure 5.12 and figure 5.13). Much the same results were obtained
through ANOVA analyses among groups as described below.

ANOVA among the 20-, 30-, 40-, 50-, and 60-, year groups demonstrated significant differences
for MK in the CCg F (4, 40) = 4.38 , p < 0.01; the FWM F (4, 40) = 3.24 , p = 0.021. For KRAD,
the groups showed statistical significant differences in the CCg F (4, 40) = 2.84, p = 0.036;
the CCs F (4, 40) = 3.65, p < 0.05; the FWM F (4, 40) = 2.28, p = 0.05. Post-hoc testing using
Student-Newman-Keuls showed that the 60-YG had significantly lower MK and KRAD (p < 0.05)
in regard to the other groups.

ANOVA tests revealed no statistically significant difference between different age groups for
ALIC and PLIC on KRAD maps (respectively, p = 0.29 and p = 0.28).

The linear regression analyses with female = 1 and male = 2 were used to test gender effects. FA
and MK of the thalamus was statistically significant lower in females as compared to males (p =
0.01 and p = 0.02, respectively). No other statistically significant gender differences were found
in the other parametric maps in the ROIs.

DKI is more sensitive to brain microstructure than the well-known Diffusion Tensor Imaging (DTI)
(see chapter 3); in particular in tumour micro-environments where DKI can provide valuable
information and increase diagnostic confidence of brain tumours [52, 9]. A DKI human brain atlas
artefacts-free and preserves sufficient adequate information on the micro-structural properties
throughout the whole brain is therefore crucial for accurate voxel- and ROI-based comparisons
across populations. In this work, many weaknesses of earlier published efforts to report
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Figure 5.8.: Bland-Altman analysis of the difference between the repeated measurements of the two observers for
fractional anisotropy (FA) and mean kurtosis (MK).
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Figure 5.9.: Effect of aging on regional MD.

diffusion kurtosis values in the brain were addressed. Here the resulting set of DKI provides
full brain coverage and contains reliable kurtosis metrics using 30 diffusion encoding directions
(overestimated equation system) with 3 b-values (0, 1000 and 2000 s/mm2). Furthermore, to date,
this is the first DKI atlas based on a rather large number of subjects. In addition, the resulting
DKI atlas matches the commonly used ICBM-152 anatomical well-known brain template of the
MNI space, at the same time simplifying the combination of DKI, anatomical and functional brain
investigations.

Previous studies have reported DKI values for selected human cerebral areas. For example,
Falangola et al. [10] analysed non-Gaussian diffusion values of brain tissue microstructure in
the prefrontal brain using 6 b-values and 30 diffusion encoding directions. In a study of Lätt et
al. [118] regional values of DKI were reported for a 5.4-cm-thick slab of 27 slices over the brain
from beneath the cerebral peduncles to the hand area of the primary motor cortex and more
considering 15 directions with b-values 0, 500, 1000, 2500, and 2750 s/mm2. In these previous
studies, the FA and MK of the normal human brain have been reported to have a values that
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Figure 5.10.: Effect of aging on regional FA.

range between 0 and 0.80 and between 0.31 and 1.50 (dimensionless) respectively by Falangola
et al. [10]. In the work of Lätt et al. [118] these values were between 0.14 in the caudate and 0.83
in the splenium of corpus callosum (CCs) for FA and 0.67 in the putamen and 1.32 in the CCs for
MK.

The present work referred to the experiments of Poot et al. [125] where the DKI acquisition
parameters are optimised for brain acquisitions. Their proposed setting with 30 diffusion gradient
directions and b-values of 0, 1000 and 2000 s/mm2 is considered here. This range of b-values for
DKI in the brain was also already confirmed in a recent study of Jensen and Helpern, 2010 [9].
The average FA values of the principal atlas between 0.13 in the caudate and 0.80 in the CCs
were comparable to the results of Lätt et al. [118]. While the MK values reported here ranging
from 0.71 in the fornix to 1.76 were slightly higher compared to those reported by Falangola et
al. [10], the differences were negligible referring to the work of Lätt et al. [118] (see table 5.3).
The differences regarding the reports of Falangola et al. [10] might be explained by the fact that
the data considering full brain coverage underwent pre-processing steps including motion- and
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Figure 5.11.: Effect of aging on regional MK.

noise correction to ensure artefacts elimination in the whole brain prior to DKI computation.
Additionally compared to the present study, Lätt et al. [118] reported DKI measures with 15
diffusion directions. Whereas another study [63], highlighted the fact that a higher number of
directions has greater effects on acquiring suitable DW images justifying here the choice to report
DKI measures using 30 diffusion directions.

In addition to the pre-processing procedures used for artefacts correction in this study, the human
subjects considered were carefully recruited. This selection was based upon the report of Sullivan
and Pfefferbaum [126] showing that age influences diffusion properties of brain tissues. Healthy
subjects aged from 20 to 40 years were included in the principal DKI atlas, because it is well-known
that the diffusion properties are relatively stable in the brain of this specific age group [122]. In a
study of Mori et al. [123] or even a recent study of Lätt et al. [118], the authors averaged data from
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Figure 5.12.: Effect of aging on regional KAX.

subjects with very different ages (18 – 59 years and 20 – 64 years, respectively); assuming that the
dissimilarities in macro- and micro-structural properties of the brain is not significantly different
among these age groups. This might explain the slightly different MK values detected in the work
of Lätt et al. [118] compared to the proposed DKI atlas. As a result of the recruitment strategy,
the principal DKI atlas introduced here reporting diffusion measures in the healthy human brain
at the age of 20 to 40 years together with atlases over different age groups (20YG, 30YG, 40YG,
50YG, 60YG) in the whole brain, is meaningful and more useful.

Another major factor that contributes to the high quality of the DKI atlases introduced in this work
is the spatial normalisation to the ICBM-152 template of the MNI space, as nonlinear registration in
ANTs applied in the work. The benefits of non-linear approaches toward accurate normalisation
of diffusion data are widely accepted [127, 128]. However, in some previously published studies
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Figure 5.13.: Effect of aging on regional KRAD.

on developing templates for DTI, affine registration driven by feature registration was used.
As already pointed out by Jones [129] and Müller et al. [130] this might result in less accurate
inter-subject matching. The major advantage of affine registration lies in its reduced sensitivity
to noise in the image in regard to nonlinear techniques. In this work, the effects of image noise
on nonlinear normalisation were minimised by fitting the DWI data prior to DKI computation. As
a result, the mismatch of selected landmarks was only 0.71 mm on average. The normalisation
step with diffeomorphic transformations and mutual information similarity measure used here
also contributed to the increase the resolution of the diffusion kurtosis maps derived from the
principal atlas. Recent advances in investigating atlas building methods published by Zhang et
al. [131] introduced the DTI-TK as a FA-based non-parametric image normalisation software.
The preference of FA as scalar feature compared to MD, DWI maps as well as b0 images for
normalisation in DTI was already highlighted by Liu et al. [132] using a fluid-based nonlinear
registration. ANTs is using diffeomorphic deformable image registration just as DTI-TK. In
this study a b0-based registration is chosen since it still remains unclear whether FA-based
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Table 5.3.: Mean and standard deviation (SD) of FA in ROIs of the principal atlas and template as well as regional values
published by [118, 123, 122].

ROI Principal atlas FA Lätt et al. 2013-FA Peng et al. 2009-FA Mori et al. 2008-FA

���� 0.47 ± 0.05 0.60 ± 0.04 0.57 ± 0.04 0.44 ± 0.06

������� 0.13 ± 0.04 0.14 ± 0.03 -- --

��� 0.74 ± 0.06 0.80 ± 0.04 1.40 ± 0.20 0.91 ± 0.07

��� 0.80 ±0.05 0.83 ± 0.03 -- --

��������� 0.37 ± 0.06 0.66 ± 0.06 0.84 ± 0.12 0.44 ± 0.08

���Ǥ ����Ǥ 0.54 ± 0.06 0.41 ± 0.03 -- --

	�� 0.42 ± 0.04 0.48 ± 0.04 -- --

���� 0.61 ± 0.05 0.71 ± 0.04 -- --

������� 0.15 ± 0.02 0.15 ± 0.02 -- --

��� 0.40 ± 0.06 0.56 ± 0.05 -- --

��� 0.63 ± 0.05 0.52 ± 0.03 -- --

diffeomorphic nonlinear registration could perform better or not. Therefore comparing the
effect of using alternative atlas building methods on normalisation results under consideration
of diffeomorphic nonlinear registration is an important area of future research.

In the present study the focus was on healthy subjects between the ages of 20 and 70
years. It is known that diffusion measures in the brain change with aging [122]. Therefore,
the effect of age on diffusion kurtosis measures in the whole brain of subjects younger than
20 and older than 70 still has to be investigated. Additionally, no handedness criterion was
considered in the recruitment strategy. In a recent study, Powell et al. [133] noticed differences
in anisotropy measurements comparing left-handed to right-handed. Therefore, further studies
should investigate the effect of left-, right- and mixed-handedness on the diffusion measurements
achieved with kurtosis imaging.

Furthermore, a single-shot EPI sequence was used for DKI data acquisition. In addition to their
low spatial resolution, EPI images are very sensitive to geometric distortions and susceptibility
errors [134]. An approach that might further help to increase the resolution of DW acquisitions
and to reduce the susceptibility and blurring artefacts would be the use of readout-segmented
muti-shot EPI sequences. This method can significantly increase the image quality compared with
DW sequences with single-shot EPI at 3T [135].

The analysis of normalisation accuracy performed in this study refer to normal adult subjects
not including patients with significantly altered neuro-anatomy. Compromised neuro-anatomy
in patients, such as enlarged ventricles, can impact results of a poor registration process [123].
Therefore, a careful inspection of the normalisation process on patient data should be guaranteed
for an adequate interpretation of the diagnostic findings.

In conclusion, a set of human whole brain DTI and DKI atlases were developed for subjects
between 20 and 40 years of age and for subjects in five age groups (20 – 29; 30 – 39; 40 – 49; 50
– 59; and 60 – 69). The DKI atlases match spatially the ICBM-152 template and are characterised
by controlled image quality, full brain coverage, and reliable kurtosis metrics based on a large
number of subjects. With advancing age, significant diffusion related changes were noticed in
some regions of the brain for the FA, MK andKRAD maps. These changes were more pronounced
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in kurtosis measures compared to fractional anisotropy indices. Additionally, ROI measurements
in the thalamus showed a gender-depended decrease in MK values of females compared to males.
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Chapter 6
Cortico-medullary differentiation in
human kidneys with DKI

Important anatomic structures of the kidneys such as tubules that are orientated in a radial
fashion resulting in anisotropic diffusion (see chapter 3), could already be assessed with DTI [136].
However, since conventional DTI has limitations in assessing the non-Gaussian behaviour of water
molecules diffusion [9] ( see section 3.4 for more details), DKI might be more helpful than DTI for
assessing renal diseases affecting the renal microstructure, particularly function and structure of
tubular integrity such as renal tumours and renal artery stenosis.

In this chapter, the feasibility and reproducibility of DKI of the human kidney are investigated.
Here the cortico-medullary differentiation in kurtosis maps was examined in details.

The review board agreed to the protocols and all volunteers signed the informed consent before
the start of the study. Ten young healthy volunteers (6 men, 4 women, mean age 28.50 ± 3.34
years, range 28 - 34 years) without any history of renal disease, previous renal surgery, or any
known systemic disease potentially related to the kidneys were included in this study.

A 3T whole-body clinical MRI scanner (Magnetom Trio, a TIM system; Siemens Medical Systems,
Erlangen, Germany) was used for the examinations with a 6 channel body coil and a 24 channel
spine coil integrated into the scanner table.

For DKI, a single-shot EPI sequence was applied in the coronal plane using respiratory triggering
via a respiratory belt with 3 b-values (0, 300 s/mm2 and 600 s/mm2), 30 diffusion directions and 8
signal averages. Other imaging parameters were: echo time (TE)= 90 ms, repetition time (TR)=
1500 ms, matrix= 192× 192, field of view (FOV)= 400 mm, 10 slices with a slice thickness of 5 mm.
GRAPPA (generalised auto-calibrating partially parallel acquisition) accelerated with a factor of 2
was applied as parallel imaging method. The mean acquisition time of the respiratory triggered
DKI sequence was 32:08 ± 4:37 min (range, 23:56 - 36:30 min).
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Initially, all diffusion-weighted (DW) images were reviewed including a subjective motion analysis
by a radiologist with more than 10 years’ experience in image processing and MR diffusion imaging
to assess whether the MR image quality was good enough for subsequent analysis. For this
purpose, a landmark was set on the first b = 0 s/mm2 non DW image of the kidney of each
volunteer that served as reference and then in the following b = 300, 600 s/mm2 DW images.
The displacement between the reference landmark and the landmarks in the DW images were
measured to quantify motion. The results were averaged over all the subjects to obtain minimal
and maximal values of the diffusion maps.

The DKI tensor was estimated as described in chapter 4 using the MATLAB scripts. The
estimated tensors were utilised to determine the diffusion kurtosis measures for each subject
corresponding to the parameters apparent diffusion coefficient (ADC), fractional anisotropy (FA),
mean kurtosis (MK) according to the methods of Tabesh et al. [51] and Le Bihan et al. [7]
respectively as explained in section 3.4. Although values of radial kurtosis (KRAD) and axial
kurtosis (KAX) could be determined from the acquired data, apart from figure 6.2 where they are
shown once, they are not reported in the present work, but focus is either laid on investigating
the relevance of MK measures for human kidney DKI.

To optimise the DKI sequence by the means of acquisition time versus SNR, parametric images
ofADC, FAandMKwere calculated fromsubsets of themeasuredDWI including 2, 4, 6 and8 signal
averages. ROIs were drawn by hand on the averaged b = 0 s/mm2 images for different signal
averages. The b = 0 s/mm2 image was chosen for the measurements because of the lower SNR
in the DW images [137]. SNR was given by the ratio of the mean signal intensity S within the ROI to
the standard deviation (SD) of the background noise in an homogeneous region SNR = S/SD.

Figure 6.1.: Free hand ROIs on the cortex and medulla of the upper pole, mid-zone and lower pole shown on the FA
image.

Eight separate, manually drawn ROIs of 9 to 13 pixels were placed on the FA map of each subject
because of its proven high cortico-medullary discrimination [136]. The ROIs were drawn over the
cortex and medulla on the upper pole, mid-zone and lower pole of the right kidney in each subject
(figure 6.1). For analysis, the right kidney was selected because it is less prone to cardiac and
respiratory motion artefacts since the liver is placed above it [138]. ROIs on FA maps were copied
onto the corresponding position on the ADC and MK maps. The mean and SD of the FA and MK
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values respectively as averaged values of the 4 ROIs on the cortex and the 4 ROIs on the medulla
were calculated for all the signal averages to quantify the cortico-medullary differentiation.

As an indicator of measurement error or reproducibility, the intra-subject reproducibility and
inter-observer variability of FA and MK values were examined using the free hand ROI technique
[57]. Intra-subject reproducibility analysis was based on data of one volunteer imaged on different
dates. The interval between the MRI measurements was 14 days. The FA and MK values of the 1st

measurement were assessed and compared to the values obtained from the 2nd measurement.
For the inter-observer variability, two radiologists were instructed to independently place the
ROIs on the cortex and medulla of the same volunteer using data of the 1st MRI measurements of
the two observers. A two-sided, paired-samples Student’s t-test was used to compare the results
from the 1st and 2nd measurements of the 1st observer and the results from the 1st measurements
of the two observers.

For qualitative evaluation, a 5-grade human observer study of MK and FA maps was conducted
by the two radiologists taking into account the cortico-medullary discrimination. Data of 6
subjects from all the signal averages (2, 4, 6, and 8) were included in this analysis. For graduation
the following point-scale was used: 1 for not evaluable; 2 for poor (no visible cortex-medulla
difference); 3 for moderate (visible cortex-medulla difference but not clear); 4 for good (plausible
cortex-medulla difference); 5 for excellent (clear cortex-medulla difference).

Statistical tests were performed using the curve fitting and statistics toolbox in MATLAB
(Version: 8.0.0.783 (R2012b)). For all the tests, a p-value < 0.05 indicates a statistically significant
difference.

To assess cortico-medullary differentiation for various signal averaging (2, 4, 6 and 8 averages),
a Student's t-test statistic was used.

A goodness of fit evaluation was performed to test for the mathematical fitting of the
mono-exponential and kurtosis models to the DWI data (see equation 3.23 and equation 3.7). The
R2 value was calculated, which is the square of the correlation between observed and expected
outcome values. R2 is expressed as [139]:

R2 = 1− SSR
SST

(6.1)

where SSR stands for the sum of squares of the distance between the data points and the
best-fit curve. SST is the sum of squares of the distances between the data points and the
mean value of all data points [140]. For the fitting, mean signal intensities of the ROIs placed
over the cortex (see figure 6.1) of DWI images over all the volunteers for the 8 averages were
computed. These averaged values were then placed on a graph as function of the 3 b-values (0,
300 s/mm2 and 600 s/mm2). Repeated-measures analysis of variance (ANOVA) with the Tuckey’s
honestly significant difference (HSD) post-hoc test was used to examine the effect of variable
signal averaging on the cortico-medullary differences of MK.

Intra-subject reproducibility and inter-observer variability was calculated from reproducibility
measurements using a two-sided, paired-samples Student’s t-test and Bland-Altman plots. With
the Bland-Altman plots one can analyse whether two different measurements are similar or not.
The difference versus the mean of the DKI parameters of the repeated measurements is plotted.
This was plotted for the two measurements of the 1st observer and the 1st measurement of the
1st observer and the 2nd observer.
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Table 6.1.: Mean ± standard deviation (SD) of ADC, FA and MK values of the renal cortex and medulla for 2, 4, 6, 8
averages (av.) from data of 10 volunteers.

N◦ of signal ADC×10−3mm2/s FA MK

averages Cortex Medulla Cortex Medulla Cortex Medulla

͚ ��Ǥ 2.91 ± 0.22 2.66 ± 0.22 0.21 ± 0.05 0.38 ± 0.06 0.93 ± 0.09 0.86 ± 0.11

͜ ��Ǥ 3.60 ± 0.28 2.82 ± 0.25 0.18 ± 0.04 0.42 ± 0.05 0.94 ± 0.07 0.78 ± 0.07

͞ ��Ǥ 3.27 ± 0.24 3.61 ± 0.23 0.18 ± 0.03 0.46 ± 0.10 0.91 ± 0.03 0.74 ± 0.07

͠ ��Ǥ 3.39 ± 0.24 3.80 ± 0.28 0.19 ± 0.03 0.43 ± 0.07 0.91 ± 0.04 0.78 ± 0.06

In all subjects a maximal motion of 0.28± 0.02 mm (range, 0.05 - 0.29) was measured from the
landmark displacement. Representative images are shown on figure 6.2.

Figure 6.2.: EPI non diffusion-weighted image (b0), apparent diffusion coefficient (ADC), fractional anisotropy (FA),
mean kurtosis (MK), axial kurtosis (KAX) and radial kurtosis (KRAD) maps are shown for one coronal slice
for one healthy volunteer.

Mean ADC, FA and MK values were obtained with the four different signal averaging sequences.
ADC values ranged from 2.91 × 10−3 mm2/s to 3.60 × 10−3 mm2/s in the cortex and from 2.66
× 10−3 mm2/s to 3.80 × 10−3 mm2/s in the medulla. FA of the cortex ranged from 0.18 to 0.21,
whereas that of the medulla ranged from 0.38 to 0.46. MK of the renal cortex ranged from 0.91
to 0.94 and that of the medulla ranged from 0.74 to 0.86 (table 6.1). MK values of the renal cortex
were significantly higher than in the medulla while FA values in the medulla were significantly
higher than in the cortex (p < 0.001). Mean values for FA and MK are listed on figures 6.3 and 6.4.

Respiratory triggered acquisitions with 4 averages (total acquisition time was 15:47± 2:42 min,
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Figure 6.3.: Differences between the cortex (c) and medulla (m) on FA maps for the 2, 4, 6, 8 averages (av.). The y-axis
reveals the different mean FA values between cortex and medulla over the 10 subjects.

Figure 6.4.: Differences between the cortex (c) and medulla (m) on MK maps for the 2, 4, 6, 8 averages (av.). The y-axis
reveals the different mean MK values between cortex and medulla over the 10 subjects.
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Table 6.2.: Mean ± SD values of FA and MK for each measurement (meas.) in the cortex and the medulla for the two
observers (obs.).

Cortex Medulla

FA MK FA MK

͙�� ���Ǥ͙�� ����Ǥ 0.19 ± 0.03 0.88 ± 0.10 0.52 ± 0.04 0.74 ± 0.05

͙�� ���Ǥ ͚�� ����Ǥ 0.20 ± 0.03 0.93 ± 0.05 0.48 ± 0.07 0.79 ± 0.09

͚�� ���Ǥ 0.18 ± 0.02 0.85 ± 0.11 0.47 ± 0.07 0.71 ± 0.06

���� 0.19 ± 0.03 0.88 ± 0.09 0.49 ± 0.06 0.75 ± 0.14

Table 6.3.: The p-values obtained from a two-sided, paired-samples Student’s t-test. No significant difference was
found comparing the 1st and 2nd FA, MK.

Cortex Medulla

FA MK FA MK

�����Ǧ�������� 0.71 0.13 0.29 0.73

�����Ǧ�������� 0.73 0.07 0.24 0.47

Table 6.4.: Qualitative evaluation of FA and MK maps from data of 6 volunteers. ∗Evaluations were made with a
scoring at 5-grades: 1 for not evaluable; 2 for poor cortex-medulla difference; 3 for moderate cortex-medulla
difference; 4 for good cortex-medulla difference and 5 for excellent cortex-medulla difference. All the
images used in the analysis had a score superior to 1.

FA map MKmap

Evaluation* 2 3 4 5 Mean SD 2 3 4 5 Mean SD

͚ ��Ǥ 1 4 1 3 0.63 3 3 2.5 0.55

͜ ��Ǥ 1 3 2 4.17 0.75 5 1 3.17 0.41

͞ ��Ǥ 4 2 4.33 0.52 4 1 1 3.5 0.84

͠��Ǥ 2 4 4.67 0.52 4 1 1 3.5 0.84
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range: 13:26 - 19:06 min) exhibiting a SNR of 8.31 (p < 0.001) resulted in improved image quality
with better cortico-medullary differentiation in FA and MK maps compared to the sequence with
2 averages (SNR = 6.12). Whereas the use of 6 (SNR = 8.33) or 8 averages (SNR = 8.34) did not
lead to a further improvement as compared to 4 averages. Representative images of one subject
are shown on figure 6.5.

Figure 6.5.: b = 0 images without diffusion-weighting, ADC maps, FA maps and MK maps obtained with different
sequences in the same volunteer with 2, 4, 6 and 8 averages (av.). The arrows point out better
cortico-medullary differentiation in 2 averages compared to the sequences with 4, 6, and 8 averages.

Respectively for the cortex and the medulla, the mean FAfirst/first measured was 0.19 ± 0.03
and 0.52 ± 0.04, the mean FAfirst/second was 0.20 ± 0.03 and 0.48 ± 0.07, and the mean FAsecond
was 0.18± 0.02 and 0.47± 0.07. No significant difference was found comparing the 1st and 2nd FA
measurements of the 1st observer (p= 0.71; p= 0.29) and the measurements of the 2nd observer
(p= 0.73; p= 0.24). The globally measured mean MKfirst/first was 0.88± 0.10 and 0.74± 0.05, the
mean MKfirst/second was 0.93 ± 0.05 and 0.79 ± 0.09, and the mean MKsecond was 0.85 ± 0.11 and
0.71± 0.06. No significant difference was found between the 1st and 2nd FA measurements of the
1st observer (p = 0.13; p = 0.73) and the measurements of the 2nd observer (p = 0.07; p = 0.47).
The FA and MK measurements with the matching p-values are indicated in Tables 6.2 and 6.3.

From the qualitative evaluation of the FA and MK maps with different number of averages (2,
4, 6, and 8), the sequence with 8 averages scored highest, followed by the sequences with 6 and
4 averages; the sequence with 2 averages had the lowest score (table 6.4).

Figure 6.6 illustrates how the mean signal intensity decreases in a homogeneous region in the
kidney of one subject as a function of the b-value. The data points on the plot show that the
decay is nonlinear. The fitting curves from the mono-exponential and the diffusional kurtosis
model are also illustrated. Here, it is clear that the non-Gaussian kurtosis analysis fits the data
point considerably better than does the mono-exponential fitting procedure. The R2 value for
the mono-exponential fit was 0.96 and 0.99 for the kurtosis fit. As seen on the figure, a b-value
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of 600 s/mm2 is already sufficient to observe the deviation of the renal MR diffusion signal from
the mono-exponential behaviour.

Figure 6.6.: Example of a diffusion MR signal attenuation of the renal cortex (S/S(0)) against the b-value, including
the mathematical fitting of the two models [(3.23)] and [(3.7)] to illustrate data modelling. The asterisks
(*) stands for the signal intensities measured within ROIs in the renal cortex (see figure 6.1) averaged over
the 8 signal averages and all the volunteers; “mono-exp” and “kurt” denote the mono-exponential and
the kurtosis model. The graph clearly illustrates the errors associated with the assumption of Gaussian
distribution of water diffusion as in the case of the mono-exponential fit (r = 0.96) versus a non-Gaussian
distribution assumption from DKI (r = 0.99).

Repeated-measures analysis of variance by one-way ANOVA in MK showed that there was a
statistically significant difference considering the cortex-medulla discrimination between groups
with different signal averages (F (1,6) = 25.46, p= 0.0023). To further analyse the differences, a
post-hoc analysis was performed with Tukey HSD using the sequence with 4 averages as control.
Compared to the sequence with 2 averages, the sequence with 4 averages showed significantly
higher cortex-medulla difference (p = 0.02). There were no statistically significant differences
between sequences with 4, 6 and 8 averages.

The results of the Bland-Altman analysis of the repeated measurements are shown on figure
6.7. This analysis showed that there is a good agreement between the 1st and 2nd measurements
of the 1st observer with -0.02 as mean difference as well as between the 1st measurement of the
1st observer and the measurement of the 2nd observer with a mean difference of 0.03. No obvious
deviation was observed in regard to absolute values. All the recordings were placed in the 95 %
limits of agreement.
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Figure 6.7.: Bland-Altman analysis of the difference between the repeated measurements of the two observers.

In this study, respiratory triggered acquisitions are used to demonstrate that DKI of the kidneys is
feasible with good cortico-medullary differentiation. DKI could be performed in all subjects with
reliable imagequality. Merging the results of theMK, FAandADC-values, cortex-medulla contrast,
reproducibility, and quantitative evaluation, the resulting DKI sequence exhibited a SNR of 8.31
when using b = 0, 300, 600 s/mm2. This was reached with the respiration triggered DKI sequence
designed here using 4 signal averages and 30 diffusion-weighting directions which resulted in a
total measurement time of about 15 min.

Few scientific reports have studied the use of non-Gaussian DWI for abdominal organs.
However, none of these studies measured the complete kurtosis tensor. Rosenkrantz applied
non-Gaussian DWI for a better characterisation of diffusion processes in the prostate [141]. As an
additional challenge, a crucial problem for calculation of parameters of higher diffusion models
in abdominal organs [142] is the low SNR.

From previous studies, it is well known that ADC values in the healthy kidney lie between
3.00 and 1.50 × 10−3 mm2/s [57]. Thoeny et al. [65] demonstrated that using low b-values
for DWI leads to no significant difference between ADC in the cortex and ADC in the medulla
in healthy subjects. They explained this observation by the influence of pure diffusion in the
cortical regions being restricted by the presence of anisotropy in the radial structures of the
medulla. Similar to these results, they reported that in the cortex ADC values are significantly
different from those of the medulla when higher b-values are used. The average FA values
in this actual study were comparable to values reported by Ries et al. [61] but slightly lower
than in other volunteer studies [26]. These differences can be explained by the influence of
blood flow on diffusion coefficients [143]. Notohamiprodjo et al. [136] applied DTI in human
kidneys at 3T. In the healthy subjects, consistent with the results here, the medulla with higher
FA values showed higher anisotropy compared to the cortex. They used two b-values (200 and
400 s/mm2) with 12 diffusion encoding directions and the observation was with higher b-values
and an increased number of directions, the measurement of diffusion is more accurate. Another
study [63] reported that if similar acquisition time is maintained, a higher number of directions
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has greater effects on acquiring suitable DW images than increasing the number of averages
and is much more important to get reliable diffusion indices. In addition, the departure of the
diffusion process from the Gaussian model is well-observed with the use of higher b-values (1000,
2000 s/mm2) in brain DKI [6, 9, 51, 144, 145]. This study shows that b-values in the range of about
600 - 800 s/mm2, are sufficient in abdominal DKI to observe the departure of the diffusion signal
from mono-exponential behaviour. This was already demonstrated in the work of Wittsack et
al. [140] when evaluating the DWI signal of the human kidney with b-values up to 750 s/mm2.
Again, Rosenkrantz applied the kurtosis model in the prostate at a maximal diffusion strength
of 800 s/mm2 [141]. Because of the low SNR at high b-values in abdominal DKI and the above
mentioned reasons, the choice of 30 diffusion directions and b-values up to 600 s/mm2 seems
appropriate for renal DKI.

To identify the parameters of the optimal sequence, cortico-medullary differentiation on MK
maps are used. With the radially oriented structure of the medulla in kidneys composed of
tubules, differences in diffusion kurtosis as a directional measure are expected. Previous studies
reported a better characterisation of tissue microstructure with kurtosis measurements in the
brain [6, 51, 11, 145]. Therefore one can expect that DKI parameters might differ between the renal
cortex andmedulla. TheMKof the cortexwas constantly higher than thatof themedulla in all four
sequences. While the present study concentrates on the non-Gaussian analysis of the biological
tissue microstructure using the kurtosis method, various groups did report results based on other
higher diffusion models. As for example in a novel framework combining diffusion kurtosis and
bi-exponential tensor analysis, Grinberg et al. [146] could highlight the non-Gaussian behaviour of
water diffusion in human brain tissues using an extended range of b-factors (up to 7000 s/mm2).
However, this experimental method is not yet clinically feasible due to the long total acquisition
time necessary to get sufficient SNR in particular in kidney imaging. Moreover, the biexponential
behaviour of the diffusion MR signal in kidneys was shown before [145] and should be investigated
in terms of tensorial analysis in future studies.

In a recent study, Lanzman et al. [147] could already highlight the potential of DT imaging
for non-invasive functional assessment of transplanted kidneys. They could show significant
differences in FA values of the medulla between allograft recipients with heavily impaired renal
function and those with moderate or mild impairment in their renal function. Comparing MK
values of normal kidneys with those of patients with various renal diseases may help to evaluate
the clinical significance of renal kurtosis values and the role of the renal DKI. For instance, in renal
cancer DKI may provide additional diagnostic information. Recently, Raab et al. [11] applied DK
imaging in glioma and could differentiate between tumour grades using MK maps. Although
the exact underlying meaning of the kurtosis findings could not yet be explained entirely these
previous findings support the potential of DKI to reveal additional information to pathological
alterations of the renal tissue.

Since DKI has been proven to be more sensitive to tissue microstructure in comparison to ADC
and FA measures, DKI of the kidney might provide useful information for the investigation of the
kidney is situation of tumours, renal transplants, or even for therapy control.

The study has some limitations. First, navigator-triggering was not possible due to technical
limitations so that a respiratory belt had to be used. In clinical routines, the application of the
respiratory belt-type sensor may be suboptimal. Furthermore, respiratory movements of the
kidney mainly occur in the cranio-caudal direction, and therefore do not always match with the
abdominal wall movements. An approach that might further help to reduce motion artefacts
would be the use of navigator-echo type respiratory triggered acquisitions. They could help
monitoring diaphragmatic motion and therefore decrease misregistration [63]. Due to technical
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difficulties on the MR scanner, this acquisition technique could not be integrated in the respiratory
triggered DWI protocol.

Second, the study was conducted on young healthy volunteers who were able to perform
normal regular breathing. The results might differ in older subjects, patients in pain and patients
who are less cooperative, having difficulties following a respiratory triggered acquisition.

Furthermore, the hydration status of the kidney was not controlled in this study. It is known
that renal diffusion properties vary with water load. The influence of water load on the renal
diffusion kurtosis still has to be investigated [136].

However, although the water load was not controlled, measurements of the reproducibility
showed stable results of MK and FA within the error bounds. Further studies including patients
with renal diseases should be conducted.

In summary, DKI of human kidneys is feasible. The use of 4 signal averages seems adequate
in order to obtain good image quality when 3 b-values of 0 s/mm2, 300 s/mm2, 600 s/mm2 and
30 diffusion directions are used. This study clearly indicates differences in kurtosis parameters
corresponding to the medulla and cortex regions.
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Chapter 7
Optimisation of MRI acquisition
parameters for DKI in human kidneys

Previous studies revealed that optimising the set of diffusion imaging parameters can have
a considerable influence on the precision of the estimated Diffusion-Weighted Imaging (DWI)
parameters [148, 51]. For DKI, it is advantageous to acquire multiple b-values in order to achieve
good data modelling to the signal decay [148, 68]. At least 15 encoding directions are required for
DKI, but an increase in diffusion direction might improve the accuracy of the tensor calculation
[149, 150]. In the human brain, actual reports have shown that 20 motion probing gradient (MPG)
directions with 3 b-values (0, 1000, 2000 s/mm2) might be optimal for an adequate accuracy of the
DKI computation [148].
Referring to Yoshikawa et al. [142] who already mentioned the suitability of human kidneys for
the application of DWI due the presence of anisotropy in important anatomic renal structures
such as tubules that are radially orientated, the feasibility of DKI was demonstrated during this
thesis (see chapter 6). While the diffusion parameter sets used have been optimised for DKI
acquisitions in the human brain [125], for renal DKI it is still unclear which number of diffusion
encoding directions and which range of b-values should be chosen for accurate calculation of
diffusion kurtosis parameters.

In this chapter, experiments are carried out to optimise b-values and the number of encoding
directions for DKI of human kidneys. These experiments are divided in two steps:

• In a first step, data sets required for the optimisation are acquired.

• In a second step, processing of the DW volumes is performed on the interesting
combinations of choice and number of b-values and number of encoding directions for the
DKI computation and the results are extracted.

The institutional review board approved the study and written informed consent was obtained
from all volunteers. Eight healthy volunteers (4 men, 4 women; mean age 25.70 ± 3.26 years;
range 22 years - 30 years) with no history of kidney disease, diabetes, vascular disease, previous
renal surgery, or any known systemic disease potentially involving the kidneys participated in the
study. The examination was performed without any preparations as fasting or drinking before.
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All the volunteers were examined on a clinical 3T whole-body MRI scanner (Magnetom Trio
a TIM system; Siemens Medical Systems, Erlangen, Germany) using a 6 channel phased array
body coil and a 24 channel phased array spine coil integrated into the scanner table. For
DKI, a single-shot EPI sequence was applied in the coronal plane using respiratory triggering
via a respiratory belt. For the measurements, 30 diffusion directions and 7 b-values between
0 - 1500 s/mm2 (0, 250, 500, 750, 1000, 1250, 1500 s/mm2) were considered. For comparison
purposes, the same acquisitions process was repeated with a reduced set of 20 diffusion
directions and 7 b-values between 0 - 1500 s/mm2 (0, 250, 500, 750, 1000, 1250, 1500 s/mm2). The
other imaging parameters were as follows: field of view (FOV)=400 mm, echo time (TE)=98 ms,
repetition time (TR) = 1500 ms, matrix = 192 × 192, 10 slices with a slice thickness of 6 mm and a
resolution of 2.1 × 2.1 mm considering 2 averages. GRAPPA (generalised auto-calibrating partially
parallel acquisition) as parallel imaging method accelerated at a factor of 2 was used. Since a
respiratory belt was used the respiratory rate of each individual and the acceptance window’s
length for the belt position at each respiratory cycle influenced the acquisition time. The mean
scan time was 23 min 18 s.

Initially, all the acquired datasets were transferred to a workstation and motion correction was
applied to the diffusion-weighted (DW) data using a diffeomorphism (see section 4.1.1.1) based
registration approach implemented in the software fMRLung 3.0 (Siemens Corporate Research,
Princeton, NJ, USA) [151, 152].

Furthermore, the scalar measures of DKI were calculated using DKE software [51, 144]. The
constrained linear least square (CLLS) formulation of the kurtosis model and the conventional
diffusion model used to fit the signal intensities S on a voxel-by-voxel basis are introduced in
equations (3.23) and (3.7). Details about the processing pipeline used can be found in section
4.3.

For region-of-interest (ROI) analyses on mean diffusion (MD), fractional anisotropic (FA) and
mean kurtosis (MK), one continuous ROI was delineated over the cortex, covering the whole
cortex [56]. Four separate ROIs were positioned in four medullar areas on the parametric maps
(figure 7.1). All ROI placements were performed on the b = 0 images in each subject and
successively copied to the corresponding positions on the MD, FA and MK maps. The b0 image
was chosen for the measurements because of their higher SNR compared to DW images [137]. For
analysis, the right kidney was selected because it is less prone to cardiac and respiratory motion
artefacts since the liver is placed above it [138]. Mean MD, FA and MK values respectively of the
ROI on the cortex and as averaged values of the ROIs on the medulla were computed and used
to evaluate the different measurement protocols (see table 7.1).

Statistical analysis was performed with the statistics toolbox in MATLAB (Version: 8.0.0.783
(R2012b)). For all the tests a p-value < 0.05 indicated statistically significant difference. Using
analysis of variance (ANOVA) with the Tuckey’s honestly significant difference (HSD) post-hoc
test, the effect of b-values and MPG directions schemes on renal MK in medulla and cortex was
examined.
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7.3. Selecting the Diffusion-weighted Gradient and diffusion direction Subsets

Figure 7.1.: ROIs placed on fractional anisotropy map for evaluating ADC, FA and MK values in renal cortex and medulla.
(renal cortex (white), medulla (red)).

Table 7.1.: Overview of the different evaluation schemes.

Sequence N◦ of averages b-values (s/mm2)
N◦ of MPG

directions

�������� ͙ 2 0, 250, 500 30

�������� ͚ 2 0, 500, 750 30

�������� ͛ 2 0, 500, 1000 30

�������� ͜ 2 0, 750, 1250 30

�������� ͝ 2 0, 250, 750, 1250 30

�������� ͞ 2 0, 500, 1000, 1500 30

�������� ͟ 2 0, 500, 1000 20

The DKI datasets were partitioned and grouped to evaluate the influcence of DWI schemes. More
specifically, diverse combinations of three (protocols 1 - 4, 7) and four (protocols 5 and 6) b-values
sets were chosen from the complete dataset with 7 b-values at 30 diffusion directions to study
the influence of the diffusion strength. Seven protocols using different b-values and number of
encoding directions were examined (table 7.1). Protocol 1 used 3 b-values, b = 0, 250, 500 s/mm2,
as proposed by Pentang et al. [98]. For protocol 2 - 4, a combination that used all the three
higher b-values than those in protocol 1 was prepared, in order to compare this protocol with
mean diffusional kurtosis values and their standard deviation (SD) [148]. To study the influence
of the number of diffusion encoding directions, the mean and SD values of the ROIs on MD, FA
and MK maps of the protocols 1 - 6 were compared. The protocol with the best cortico-medullary
differentiation and lowest number of b-values at 30 directions was then compared to the same
b-value scheme at 20 directions (refer to table 7.1). This was the protocol 7. The other imaging
parameters were the same as for the b-values protocols.
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7. Optimisation of MRI acquisition parameters for DKI in human kidneys

To identify the most efficient acquisitions parameters for clinical DKI of the kidneys (10 min of
measurement time), the following experiments were performed.

b

Here the accuracy and variability of the values set in ROIs on the diffusion maps is compared to
assess how the choice of b-values influences the quality of DKI estimation. The resulting values are
compared with previous published reports. The comparison is performed with the datasets based
on 30 diffusion directions. This is the most used number of diffusion directions in the literature
for a DKI acquisition [9, 98] and considering protocols 1 - 4. Regional DW values are computed
from the eight complete DKI datasets of the volunteers. Different b-value subsets considering 30
diffusion directions are then selected from each of the eight complete DKI datasets to recreate
theDT and KT using equations (3.23) and (3.7). The mean and SD for each diffusion parameter are
then calculated. The aim of this experiment is to find out the best combination of b-values DKI
estimation at highest accuracy.

b

The accuracy of diffusion and kurtosis parameter estimates from the choice of the number of
b-values was studied in this experiment. The goal of this experiment was to understand whether
the increased number of b-values is useful for an accurate DKI calculation. Only the optimal b-value
schemes from Experiment#1 were considered along with the 30 diffusion directions for every DKI
dataset. Assessment was again based on comparison of mean and SD of the diffusion maps. Here
the aim is to achieve practical clinical acquisition time of ∼ 10 min with accurate results.

b

The effect of the number of MPG directions on renal DKI measures was determined based on the
optimal imaging schemes from Exp#1 and Exp#2. This was the optimal ∼ 10 min scheme with 30
diffusion directions, b = 0, 500, 1000 s/mm2. Here the number of diffusion directions were varied
from 30 to 20 and the mean and SD values in cortex and medulla were analysed. The goal was to
understand whether the reduced number of MPG directions would impact renal DKI estimation.

Statistical tests were performed using the curve fitting and statistics toolbox in MATLAB
(Version: 8.0.0.783 (R2012b)). For all the tests a p-value < 0.05 indicated statistically significant
difference. Additionally, repeated-measures analysis of variance (ANOVA) with the Tuckey’s
honestly significant difference (HSD) post-hoc test was used to examine the effect of the choice
and number of b-values and diffusion direction on MK values.
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Image acquisition was performed successfully in all subjects. Parametric maps of MD, FA and MK
are shown exemplary for one volunteer on figure 7.2

Table 7.2 shows the mean and SD of MD, FA and MK for each protocol evaluated, as
representative of cortex and medullary regions. No statistically significant difference was found
in MD values of cortex and medulla comparing the four protocols with 3 b-values in cortex (2.13±
0.10 × 10−3 mm2/s – 2.42 ± 0.18 × 10−3 mm2/s) and medulla (2.04 ± 0.10 × 10−3 mm2/s – 2.22
± 0.22 × 10−3 mm2/s).

In contrast, FA of the cortex (0.16 ± 0.05 – 0.18 ± 0.05) was significantly lower than in the
medulla (0.37 ± 0.08 - 0.43 ± 0.07) in all b-values schemes (p < 0.05).

For MK, the two first protocols (protocol 1: b = 0, 250, 500 s/mm2; protocol 2: b = 0, 500,
750 s/mm2) showed higher values in the cortex compared to the medulla using 500 s/mm2 or
750 s/mm2 as highest b-values. Additionally, MK values in protocol 1 were higher as in protocol 2.
SD of MK values was higher in protocols with 500 s/mm2 or 750 s/mm2 as maximum b-values. Only
the b-value sets with highest values of at least 1000 s/mm2 (protocol 3: b = 0, 500, 1000 s/mm2;
protocol 4: b = 0, 750, 1250 s/mm2) resulted in lower cortex values compared to medullary values
in MK as expected from the kidney's anatomy regarding isotropic or anisotropic diffusion. At this
point, the MK values of protocol 3, b = 0, 500, 1000 s/mm2 reflecting the more anisotropic nature
of medulla (0.71± 0.06) compared to cortex (0.66± 0.05) showed clear advantage compared to
protocol 1 and 2. For protocols 3 and 4, the differences between the various choices of b-values
increasing the maximum b-value to 1250 s/mm2 were small.

Table 7.2.: Quantitative assessment of MD (× 10−3 mm2/s), FA and MK considering 30 diffusion encoding directions
at different b-values schemes.

Protocol MD (×10−3mm2/s) FA MK

N◦a Cortex Medulla Cortex Medulla Cortex Medulla

͙ 2.42 ± 0.18 2.22 ± 0.22 0.17 ± 0.05 0.42 ± 0.06 1.02 ± 0.19 0.91 ± 0.04

͚ 2.38 ± 0.17 2.11 ± 0.20 0.17 ± 0.05 0.43 ± 0.07 0.76 ± 0.07 0.70 ± 0.05

͛ 2.41 ± 0.12 2.21 ± 0.22 0.18 ± 0.05 0.41 ± 0.07 0.66 ± 0.05 0.71 ± 0.06

͜ 2.13 ± 0.10 2.04 ± 0.10 0.16 ± 0.05 0.37 ± 0.08 0.61 ± 0.06 0.66 ± 0.06

͝ 2.85 ± 0.30 2.54 ± 0.29 0.22 ± 0.06 0.47 ± 0.09 0.74 ± 0.03 0.82 ± 0.02

͞ 2.22 ± 0.18 2.10 ± 0.12 0.16 ± 0.05 0.43 ± 0.06 0.63 ± 0.03 0.66 ± 0.03

Protocol 1: 0, 250, 500

Protocol 2: 0, 500, 750

Protocol 3: 0, 500, 1000

Protocol 4: 0, 750, 1250

Protocol 5: 0, 250, 750, 1250

Protocol 6: 0, 500, 1000, 1500
a Each protocol number contains the following b-values [s/mm2 ]

Table 7.2 shows mean and SD of MD, FA and MK with various number of b-values (3 b-values:
protocol 3: b = 0, 500, 1000 s/mm2; protocol 4: b = 0, 750, 1250 s/mm2, (4 b-values: protocol 5:
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Figure 7.2.: From left to right, A: mean diffusivity (MD), B: fractional anisotropy (FA), and C: mean kurtosis (MK) maps of
the kidney of a healthy volunteer with 30 diffusion directions: Top row (Protocol 1): 0, 250 , and 500 s/mm2,
2nd row (Protocol 2): 0, 500 , and 750 s/mm2, 3rd row (Protocol 3): 0, 500 , and 1000 s/mm2, 4th row
(Protocol 4): 0, 750, and 1250 s/mm2, 5th row (Protocol 5): 0, 250, 750 and 1250 s/mm2, 6th row (Protocol 6):
0, 500, 1000, and 1500 s/mm2 and with 20 directions 7th row (Protocol 7) considering b-values: 0, 500, and
1000 s/mm2.
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b = 0, 250, 750, 1250 s/mm2; protocol 4: b = 0, 500, 1000, 1500 s/mm2). Increasing the number
of b-values from three to four brought no additional information regarding the cortico-medullay
differentiation in MK values. However, there was a little decrease in the MD values using low
b-values of 250 s/mm2 (see protocol 1 and 5) probably due to perfusion effects. Using very high
b-values of 1500 s/mm2 revealed increase in MD values. Whereas the high SD of MD noticed in
protocol 6 could result from noise accompanying low SNR at high diffusion-weighting. From
experiment#1 and experiment#2, protocol 3 with a combination of 30 diffusion directions and
3 b-values was chosen as the best protocol.

Repeated-measures analysis of variance by one-way ANOVA showed that there was a
statistically significant difference in the MK values in the cortex (F (5, 6) = 963.87, p < 0.05)) and
medulla (F (5, 6) = 439.07, p < 0.05)) depending on the choice of b-values. Post-hoc Tukey HSD
demonstrated significant differences between protocol 1 and the protocols 2, 3, 4 and 6 showed
statistical significant difference in medullary and cortical MK (p < 0.05).

After experiment#3, no statistically significant difference (p > 0.05) was found for MD, FA
when comparing 20 and 30 MPG directions using the b-values 0, 500, 1000 s/mm2 in protocols
3 and 7 (see Tables 7.1 and 7.3) indicating the advantage of reducing the number of directions.
For MK, the cortex values were significantly different from the medulla values with 20 directions
(p = 0.02) and with 30 directions (p = 0.01).

Table 7.3.: Quantitative assessment of MD (× 10−3 mm2/s), FA and MK considering b-values (0, 500 and 1000 s/mm2)
at different number of MPG directions.

N◦ of MPG Scanning MD (×10−3mm2/s) FA MK

direction time Cortex Medulla Cortex Medulla Cortex Medulla

͚͘ 8 min:35 s 2.52 ± 0.18 2.49 ± 0.24 0.22 ± 0.04 0.42 ± 0.09 0.74 ± 0.06 0.79 ± 0.07

͛͘ 9 min:59 s 2.41 ± 0.12 2.21 ± 0.22 0.18 ± 0.05 0.41 ± 0.07 0.66 ± 0.05 0.71 ± 0.06

Protocol 3: 30 MPG directions, b-values (0, 500, 1000),

Protocol 7: 20 MPG directions, b-values (0, 500, 1000)

High b-values in DKI, meaning increasing the weighting by diffusion in DWI, allows the
monitoring of water molecule movement at a microscopic scale and hence make the DW
sequence very sensitive to the tissue microstructure. However, depending on the number of
diffusion-weightings and directions used, the scans can be very long and sometimes are clinically
impractical.

Respiratory triggered acquisitions were used to analyse the influence of acquisition parameters
in terms of b-values and number of diffusion encoding directions on renal DKI parameters with
the focus on clinically feasible acquisition times. The experiments performed in this study
demonstrate that an efficient DKI imaging scheme with only two non-zero b-values (500 and
1000 s/mm2) and 20 diffusion directions can provide accurate DKI values in a clinically feasible
time.

Here the mean MK values were lower in cortex (0.74 ± 0.06) compared to medulla (0.79 ±
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0.07). Quantitative evaluation using 0, 500 and 1000 s/mm2 as b-values and 20 MPG directions
showed comparable mean values for MD (in cortex from 2.52 ± 0.18 × 10−3 mm2/s and medulla
from 2.52 ± 0.24 and FA ( in cortex from 0.22 ± 0.04 and in medulla 0.42 ± 0.09) as previously
published [148, 56, 136, 57, 61].

For depiction of the non mono-exponential decay of the fitting curve, b-values should be usually
higher than those employed in DTI.

Additionally an increase of DW directions that implies longer acquisition times might lead to
more accurate measurement of diffusion [63]. The first study [98] applying DKI in human kidneys
used 30 diffusion directions and a maximum b-value of 600 s/mm2 (b-values: 0, 300, 600 s/mm2);
that is the lower bound from which the departure from the Gaussian model is observed [98].
Here the authors demonstrated feasibility of renal DKI in healthy humans reporting MK values
of 0.94 ± 0.07 in the cortex and 0.78 ± 0.07 in the medulla. Although still not proven, this
study also supports their findings using a comparable protocol with 0, 250 and 500 s/mm2 as
b-values resulting in the case of this study to cortical MK values between 0.76 ± 0.07 and 1.02
± 0.19 and medullary MK values between 0.70± 0.05 and 0.91± 0.04. Although, this finding was
contradictory with the knowledge that the renal medulla is more anisotropic than cortex [136, 57].
Indeed, the choice of the maximum b-value should be based on the diffusivity and kurtosis value
of the studied tissues. In the normal human brain, it is assumed that D ≈ 1 × 10−3 mm2/s and
K ≈ 1, and the recommended DKI protocol for brain uses 2000 s/mm2 as the maximum b-value.
For the healthy human kidneys, D ≈ 2 × 10−3 mm2/s has been reported. Using similar b-values
as in the brain would lead to a very low SNR in renal diffusion values. This justified the choice
of analysing b-values schemes using maximum diffusion-weighting of at least 1000 s/mm2/s as in
protocols 3, 4, 5 and 6.

The reported MK values of 0.74 ± 0.06 in the cortex and 0.79 ± 0.07 in the medulla using the
protocol 7 with b-values: 0, 500 and 1000 mm2/s were higher than findings of a study by Huang
et al. [153] using a comparable protocol reporting lower MK values in the cortex (0.377 ± 0.16)
compared to the medulla (0.561 ± 0.07). These differences might be explained by the influence
of blood flow on diffusion coefficients [143].

The regional analyses indicate that increasing the number of b-values does not reduces the
variability in the calculated DKI measures. However, maximum b-values would directly impact the
estimation of DKI scalar measures. The mean kurtosis parameters estimated with a maximum
b-value of at least 1000 s/mm2 were more accurate compared to the those calculated with a
maximum b-value of 500 s/mm2 or 750 s/mm2. Then again, even if diffusion measures as the
MD more depend on the b-value [129], in DKI they are not influenced by the choice of the
maximum b-value. This supports the results of Veraart et al. [154]. They reported namely that
DTI measures are more exactly estimated with the DKI model [154]. Even though a maximum
b-value of 1500 s/mm2 is preferred compared to 1000 s/mm2, renal diffusion-weighted images at
b-value of 1500 s/mm2 have a very low signal intensity and are more susceptible to noise.

As already stated above, an increased number of MPG directions would lead to more reliable
diffusion maps. Indeed feasibility of renal DKI was demonstrated in previous studies with 30
diffusion directions as proposed by Jensen et al. [9]. In this study, the optimal set of b-values
(0, 500 and 1000 s/mm2) was kept stable and experiments were carried out to evaluate whether
a reduction in number of directions (30 to 20 directions), would impact the clinical utility of DKI
in kidneys. The findings indicate that for DKI of the kidney at 3T with 20 diffusion directions,
medullary values (0.79 ± 0.07) are higher than cortex values (0.74 ± 0.06) thus reflecting the
more anisotropic structure in medulla compared to cortex (p = 0.02). Although increasing the
number of MPG directions to 30 showed a more pronounced cortico-medullary differentiation
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(p = 0.01), focus was either laid on reduced scanning times at 20 directions compared to 30
therefore increasing the practicable feasibility of clinical renal DKI. Future studies could use the
optimal set of b-values presented here to investigate impact of number of MPG directions inferior
to 20 on renal DKI measures with the aim of reducing the acquisition time.

In addition to the limitations of the study described in chapter 6 regarding navigator-triggering
and the hydration status, comparing MK values of normal kidneys with those of patients with
various renal diseases may help to evaluate the clinical significance of renal kurtosis values and
the role of renal DKI. A recent study of Lanzman et al. [147] could already highlight the potential
of DT imaging for non-invasive functional assessment of transplanted kidneys .

This study establishes optimal and efficient DKI imaging parameters (b = 0, 500, 1000 s/mm2

and 20 diffusion directions) that requires only ∼ 8 min to obtain data from the human
kidneys. Lower maximum b-values resulted in underestimation of non-Gaussian behaviour of
water diffusion, and inclusion of low b-values in the analysis has the potential to increase
cortico-medullary differentiation. Because it helps to discriminate slow diffusion from fast
diffusion in the renal tubules and collecting ducts, they respectively result in higher MD values
compared to other diffusion evaluation schemes. In conclusion, the set of b-values and number
of MPG directions influences renal DKI parameters while keeping DTI indices quite stable. The
diagnostic valueofDKI for evaluationof kidneydiseaseswill have tobeassessed in further studies.
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Chapter 8
Summary and Outlook

There were two main goals for this thesis. The first was to develop the necessary image
reconstruction pre-processing tools and imaging protocols for practical use of Diffusion Kurtosis
Imaging (DKI) in the clinical routine, while still preserving as much information as possible. The
second goal of this dissertation was to assess the feasibility of DKI, as a recently developed
imaging technique, in detecting biological tissue microstructure in the healthy human brain and
kidneys.

In the first section of chapter 4 a robust image pre-processing pipeline for motion correction
in diffusion-weighted (DW) images prior to DKI reconstruction was designed, implemented and
tested. The conventional way of motion correction in DW images consist in registering only the
non-DW images (b0 images) of an acquisition to the first b0 image and applying the resulting
transformation parameters on all the other DW images [82, 129]. The similarity measurement
between themoving image and reference image is based on cross-correlation (CC) metrics or mean
squared intensity difference (MSQ). This method although often applied is inappropriate not only
because it just uses the spatial transformation between b0 images in the registration process
neglecting diffusion-weighting, but also because the contrast of the source and reference images
differs significantly in DKI, thus making the use of CC and SSID similarity measures non-efficient
for alignment of images with changing contrast. The present thesis used mutual information (MI)
- a basic concept of information theory - as a similarity measure to improve motion correction of
DWI/DKI images. The use of MI requires no specification about the geometry between the two
images and is not based on the comparison of the grey values but either considers their entropy.
From the methods tested, the Mattes-implementation of the mutual information was used and
all the DW images were registered to the first b0 image prior to DKI computation. The resulting
registration process retrospectively corrects for motion prior to DKI computation and provides
maps of quantities derived from the kurtosis tensor that are more anatomically accurate.

Even with motion corrected DW images, DKI is still highly subject to errors due to noise. The
effect of noise on DKI estimation appears to be mainly due to an increased likelihood of erroneous
fitting of data with low SNR. Kurtosis parameters are more susceptible to noise than diffusion
parameters because it is easier to violate the kurtosis value constraints. Mean kurtosis (MK)
and radial kurtosis KRAD tend to be underestimated, while axial kurtosis (KAX) is overestimated
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8. Summary and Outlook

as SNR is reduced. In the second section of chapter 4 state-of-the art noise reduction schemes
were reviewed, investigated and analysed. For this purpose, synthetic DW data corrupted with
noise were used to compare two different Rician noise reduction algorithms based on standard
well-known quantitative (NRR, MSSIM, PSNR) and qualitative metrics. The results achieved with
the joint LMMSE filter demonstrate the necessity of applying a noise reduction filter on DWI
images prior to DKI computation.

In chapter 7 after proving the feasibility of DKI in human kidneys (see chapter 6), experiments
were performed to investigate the influence of the choice and number of b-values and diffusion
directions on renal DKI. The results were optimised and efficient acquisition parameters (b = 0;
500; 1000 s/mm2 and 20 diffusion directions) for DKI of human kidneys were established.

Recent studies suggest that Diffusion Kurtosis Imaging (DKI) is more sensitive to brain
microstructure than the well-known Diffusion Tensor Imaging (DTI) [6]; in particular in tumour
micro-environments where DKI can increase diagnostic confidence [11]. DKI brain atlases might
further improve understanding of brain microstructure. In chapter 5, the first age- and gender-
dependent MRI whole human brain atlases of healthy subjects on the basis of diffusion kurtosis
and diffusion tensor data at 3T were developed. The variability of the diffusion indices were
evaluated in 80 human brains with the great advantage of being mapped to the existing
well-established anatomical Montreal Neurology Institute (MNI) template. The resulting atlases
with high-resolution, full brain coverage in a large number of subjects showed age correlation in
FA, MK and KRAD. This study revealed that the demyelination process is more pronounced in MK
maps compared to FA maps. These atlases may serve in the future as standard reference values
for comparison with changes associated with development, aging and pathologies in human
brains.

DKI has so far been applied to human and small animal brain studies. Non-Gaussian
Diffusion-Weighted imaging (DWI), not determining the complete kurtosis tensor, was rarely used
in abdominal organs [120]. The anisotropy of renal tissues makes the human kidneys suitable for
the application of DKI. In chapter 6, DKI was applied for the first time in healthy human kidneys
using respiratory triggered acquisitions at 3T. Feasibility and reproducibility was assessed for renal
DKI. MK and Fractional anisotropy (FA) values were different in cortex compared to medulla.

Beyond the contributions of this thesis, there are still several challenges ahead. The DKI imaging
technique is currently being applied in the human brain [6, 9, 145], kidneys [98], prostate [155],
spinal cord [156]. Other body regions such as intervertebral discs (IVDs) were already examined
for DWI feasibility [157], therefore it could be interesting to model the signal in IVDs and other
musculoskeletal body regions with the DKI model. Additionally, Sinkus et al. [158] could use DTI
measurements to distinguish between benign and malignant breast diseases. Feasibility of DKI
for mammography should be investigated as using the new and additional information provided
by DKI could help to improve breast tumour detection.

As an extension of the experiments in chapter 7, the influence of less diffusion directions,
inferior to 20, on renal DKI could be investigated. Here the effect of image noise should also
be considered. Furthermore, optimising kurtosis imaging acquisitions parameters for specific
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8.3. Future Directions

regions of the human body would be of great interest to improve accuracy of resulting parameter
maps.

Moreover comparing MK values of normal kidneys with those of patients with various renal
diseases may help to evaluate the clinical significance of renal kurtosis values and the role of the
renal DKI. For instance in renal cancer, DKI may provide additional diagnostic information.

A single-shot EPI sequence was used for DKI data acquisition in this thesis. Aside from the
relatively low spatial resolution, EPI data are prone to various artefacts, in particular, susceptibility
artefacts and geometric distortions [134]. An approach that might further help to increase the
resolution of DW acquisitions and to reduce the susceptibility and blurring artefacts would be the
use of readout-segmented muti-shot EPI sequences in DKI. This technique provides significant
image quality improvement compared with DW single-shot EPI at 3T [135].

The most significant original contributions of this thesis are the design and implementation of a
motion correction software prior to DKI estimation for brain data, the construction of a healthy
whole human brain atlas based on DTI and DKI maps in vivo, the demonstration that DKI can
be applied in human kidneys and the optimisation of acquisition parameters for renal DKI. The
developed pre-processing tools such as image registration and noise filtering are able to improve
non-Gaussian in vivo DWI / DKI measurements in humans. The results may then serve as a basis
for the practical use of DKI in clinical studies.
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Appendix

Landmarks x-, y-, z-, brain coordinates. (Refer to chapter 5 - Figure 5.1)

Landmarks (x y z)
MNI coordinates

Mean Distance
(mm)

SD of Distance
(mm)

͙ (37 35 45) 0.11 0.33
͚ (53 35 45) 0.25 0.74
͛ (33 67 45) 1.28 1.14
͜ (56 68 45) 0.96 0.58
͝ (45 74 38) 2.77 1.06
͞ (31 66 38) 0.78 1.09
͟ (59 68 38) 0.33 0.71
͠ (45 46 31) 0.22 0.67
͡ (45 65 31) 0.11 0.33
͙͘ (45 64 24) 0.11 0.33
͙͙ (28 46 24) 0 0
͙͚ (61 48 24) 0 0
͙͛ (44 48 28) 1.21 1.61
͙͜ (44 59 43) 0 0
͙͝ (44 82 32) 0 0
͙͞ (44 69 21) 0.69 0.91
͙͟ (44 38 40) 1.27 1.39
͙͠ (44 70 11) 0.69 1.04
͙͡ (44 89 26) 2.31 2.4
͚͘ (44 50 13) 0.36 0.78
͚͙ (44 10 49) 0.22 0.44
͚͚ (44 81 66) 0 0
͚͛ (44 30 70) 0 0
͚͜ (38 13 35) 3.81 3.05
͚͝ (37 55 52 ) 0.87 1.06
͚͞ (53 55 52) 0.99 0.88
͚͟ (45 55 52) 0 0
͚͠ (52 62 46) 1.21 1.15
͚͡ (35 62 46) 0.36 0.78
͛͘ (44 62 39) 0.49 0.78
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Table .2.: Mean and SD of the distance between the landmarks in the reference brain and individual subjects.

Subjects Mean Distance (mm) SD of Distance (mm)

͙ 0.00 0.00

͚ 0.66 1.03

͛ 1.08 1.27

͜ 1.23 1.79

͝ 0.97 1.87

͞ 0.64 1.28

͟ 0.72 1.25

͠ 0.25 0.65

͡ 0.76 1.35

͙͘ 0.10 0.55

Age-dependent atlases developed in chapter 5.

Table .3.: Resulting atlases respectively for the the 20YG

20YG MD [µm2/ms] FA MK KAX KRAD

���� 0.73 ± 0.06 0.48 ± 0.05 1.00 ± 0.07 0.89 ± 0.05 1.33 ± 0.24
����� 
������ 0.77 ± 0.13 0.32 ± 0.08 1.03 ± 0.11 0.89 ± 0.09 1.15 ± 0.16

������� 0.94 ± 0.21 0.13 ± 0.04 0.78 ± 0.14 0.80 ± 0.13 0.80 ± 0.18
��� 0.88 ± 0.15 0.64 ± 0.04 1.25 ± 0.22 0.68 ± 0.08 2.13 ± 0.46
��� 0.87 ± 0.10 0.75 ± 0.06 1.58 ± 0.32 0.64 ± 0.04 2.47 ± 0.49
��� 0.82 ± 0.15 0.78 ± 0.06 1.71 ± 0.36 0.65 ± 0.06 2.49 ± 0.40

����Ǥ ���Ǥ 0.71 ± 0.02 0.51 ± 0.03 1.14 ± 0.07 0.89 ± 0.04 1.62 ± 0.18
�����Ǥ ���Ǥ 0.77 ± 0.13 0.68 ± 0.06 1.41 ± 0.22 0.68 ± 0.05 2.10 ± 0.46
����Ǥ ����Ǥ 0.74 ± 0.09 0.43 ± 0.07 1.17 ± 0.11 0.98 ± 0.11 1.66 ± 0.38
��������� 0.73 ± 0.13 0.39 ± 0.09 1.03 ± 0.18 0.94 ± 0.10 1.26 ± 0.54

������ ���Ǥ 0.70 ± 0.07 0.56 ± 0.05 1.25 ± 0.08 0.74 ± 0.06 1.71 ± 0.20
������ 0.82 ± 0.09 0.24 ± 0.05 0.84 ± 0.13 0.80 ± 0.08 0.91 ± 0.21

���Ǥ ����Ǥ 0.73 ± 0.07 0.53 ± 0.07 1.01 ± 0.12 0.87 ± 0.06 1.47 ± 0.35
	����� 1.15 ± 0.03 0.26 ± 0.06 0.72 ± 0.04 0.60 ± 0.05 0.82 ± 0.07
	�� 0.73 ± 0.03 0.44 ± 0.03 1.13 ± 0.14 0.89 ± 0.07 1.38 ± 0.25

������Ǥ 0.83 ± 0.13 0.39 ± 0.06 1.16 ± 0.16 0.88 ± 0.06 1.38 ± 0.26
��������� 0.78 ± 0.08 0.20 ± 0.05 0.91 ± 0.14 0.99 ± 0.07 0.84 ± 0.19

���� 0.73 ± 0.09 0.60 ± 0.06 1.14 ± 0.15 0.68 ± 0.04 1.59 ± 0.43
���� 0.79 ± 0.13 0.37 ± 0.06 1.15 ± 0.13 0.92 ± 0.07 1.41 ± 0.27

������� 0.73 ± 0.07 0.14 ± 0.06 1.01 ± 0.17 1.04 ± 0.12 0.99 ± 0.20
��� 0.79 ± 0.12 0.40 ± 0.06 1.08 ± 0.08 0.84 ± 0.05 1.36 ± 0.16

�������� 0.82 ± 0.10 0.28 ± 0.03 1.09 ± 0.14 0.94 ± 0.09 1.21 ± 0.18
��� 0.73 ± 0.09 0.62 ± 0.06 1.21 ± 0.13 0.67 ± 0.03 1.79 ± 0.37
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B. Atlases

Table .4.: Resulting atlases respectively for the the 30YG

30YG MD [µm2/ms] FA MK KAX KRAD

���� 0.71 ± 0.02 0.46 ± 0.05 1.04 ± 0.12 1.03 ± 0.13 1.39 ± 0.15
����� 
������ 0.72 ± 0.08 0.32 ± 0.06 1.18 ± 0.23 1.17 ± 0.23 1.37 ± 0.29

������� 0.81 ± 0.08 0.14 ± 0.04 0.75 ± 0.22 0.75 ± 0.22 0.76 ± 0.26
��� 0.96 ± 0.14 0.63 ± 0.03 1.19 ± 0.17 1.12 ± 0.23 2.02 ± 0.29
��� 0.84 ± 0.06 0.73 ± 0.05 1.54 ± 0.18 1.46 ± 0.34 2.46 ± 0.29
��� 0.75 ± 0.06 0.81 ± 0.04 1.81 ± 0.26 1.69 ± 0.44 2.64 ± 0.23

����Ǥ ���Ǥ 0.72 ± 0.01 0.49 ± 0.05 1.13 ± 0.05 1.10 ± 0.08 1.55 ± 0.20
�����Ǥ ���Ǥ 0.72 ± 0.04 0.69 ± 0.03 1.56 ± 0.21 1.45 ± 0.32 2.30 ± 0.27
����Ǥ ����Ǥ 0.73 ± 0.04 0.47 ± 0.06 1.19 ± 0.09 1.13 ± 0.16 1.90 ± 0.36
��������� 0.69 ± 0.02 0.35 ± 0.04 1.07 ± 0.15 1.07 ± 0.15 1.06 ± 0.28

������ ���Ǥ 0.68 ± 0.01 0.58 ± 0.05 1.30 ± 0.06 1.24 ± 0.20 1.82 ± 0.11
������ 0.85 ± 0.16 0.24 ± 0.09 0.88 ± 0.12 0.87 ± 0.14 1.01 ± 0.19

���Ǥ ����Ǥ 0.71 ± 0.02 0.54 ± 0.04 1.02 ± 0.15 1.01 ± 0.16 1.55 ± 0.23
	����� 1.49 ± 0.20 0.24 ± 0.06 0.71 ± 0.05 0.70 ± 0.06 0.78 ± 0.10
	�� 0.73 ± 0.02 0.40 ± 0.04 1.03 ± 0.08 1.02 ± 0.09 1.26 ± 0.12

������Ǥ 0.78 ± 0.07 0.40 ± 0.02 1.30 ± 0.07 1.24 ± 0.15 1.60 ± 0.11
��������� 0.74 ± 0.04 0.23 ± 0.05 1.04 ± 0.25 1.06 ± 0.24 0.99 ± 0.30

���� 0.71 ± 0.01 0.61 ± 0.03 1.21 ± 0.11 1.16 ± 0.19 1.72 ± 0.25
���� 0.74 ± 0.03 0.39 ± 0.03 1.29 ± 0.13 1.24 ± 0.16 1.64 ± 0.18

������� 0.71 ± 0.01 0.15 ± 0.01 0.92 ± 0.24 0.94 ± 0.24 0.88 ± 0.28
��� 0.74 ± 0.03 0.40 ± 0.06 1.07 ± 0.06 1.05 ± 0.08 1.27 ± 0.21

�������� 0.78 ± 0.02 0.29 ± 0.02 1.00 ± 0.13 0.99 ± 0.13 1.11 ± 0.17
��� 0.70 ± 0.02 0.63 ± 0.03 1.27 ± 0.08 1.21 ± 0.20 1.86 ± 0.20

Table .5.: Resulting atlases respectively for the the 40YG

40YG MD [µm2/ms] FA MK KAX KRAD

���� 0.76 ±0.08 0.52 ± 0.17 0.98 ± 0.06 0.87 ± 0.03 1.20 ± 0.17
����� 
������ 0.76 ± 0.16 0.43 ± 0.28 1.14 ± 0.13 1.00 ± 0.15 1.29 ± 0.31

������� 0.98 ± 0.29 0.16 ± 0.15 0.72 ± 0.10 0.73 ± 0.11 0.72 ± 0.10
��� 1.02 ± 0.37 0.78 ± 0.43 1.21 ± 0.33 0.79 ± 0.45 1.89 ± 0.36
��� 0.98 ± 0.32 0.81 ± 0.38 1.39 ± 0.23 0.79 ± 0.38 2.12 ± 0.32
��� 0.96 ± 0.49 0.92 ± 0.50 1.68 ± 0.33 0.81 ± 0.54 2.52 ± 0.28

����Ǥ ���Ǥ 0.79 ± 0.22 0.57 ± 0.29 1.14 ± 0.10 0.96 ± 0.16 1.47 ± 0.08
�����Ǥ ���Ǥ 0.77 ± 0.15 0.74 ± 0.16 1.41 ± 0.24 0.81 ± 0.15 1.86 ± 0.40
����Ǥ ����Ǥ 0.84 ± 0.35 0.59 ± 0.43 1.29 ± 0.20 1.01 ± 0.30 1.78 ± 0.32
��������� 0.74 ± 0.03 0.36 ± 0.16 1.04 ± 0.11 1.00 ± 0.09 1.04 ± 0.17

������ ���Ǥ 0.76 ± 0.24 0.62 ± 0.31 1.31 ± 0.12 0.80 ± 0.23 1.78 ± 0.29
������ 0.86 ± 0.09 0.39 ± 0.24 0.92 ± 0.13 0.85 ± 0.13 1.01 ± 0.24

���Ǥ ����Ǥ 0.74 ± 0.11 0.54 ± 0.21 0.96 ± 0.15 0.88 ± 0.07 1.31 ± 0.31
	����� 1.56 ± 0.37 0.31 ± 0.15 0.68 ± 0.04 0.60 ± 0.07 0.74 ± 0.06
	�� 0.80 ± 0.19 0.49 ± 0.30 1.09 ± 0.15 0.94 ± 0.15 1.23 ± 0.22

������Ǥ 0.86 ± 0.11 0.45 ± 0.23 1.23 ± 0.14 0.89 ± 0.10 1.45 ± 0.25
��������� 0.74 ± 0.04 0.25 ± 0.16 0.84 ± 0.18 0.93 ± 0.14 0.77 ± 0.23

���� 0.77 ± 0.19 0.67 ± 0.24 1.19 ± 0.12 0.77 ± 0.19 1.56 ± 0.29
���� 0.86 ± 0.20 0.45 ± 0.34 1.27 ± 0.19 0.97 ± 0.16 1.53 ± 0.29

������� 0.72 ± 0.02 0.26 ± 0.21 0.84 ± 0.12 0.93 ± 0.11 0.78 ± 0.17
��� 0.80 ± 0.18 0.47 ± 0.31 1.09 ± 0.11 0.95 ± 0.14 1.22 ± 0.14

�������� 0.87 ± 0.11 0.33 ± 0.18 0.98 ± 0.12 0.85 ± 0.11 1.04 ± 0.16
��� 0.76 ± 0.18 0.67 ± 0.24 1.19 ± 0.13 0.73 ± 0.19 1.65 ± 0.32

99



8. Summary and Outlook

Table .6.: Resulting atlases respectively for the the 50YG

50YG MD [µm2/ms] FA MK KAX Krad
���� 0.79 ± 0.17 0.48 ± 0.05 0.93 ± 0.10 0.87 ± 0.05 1.06 ± 0.24

����� 
������ 0.72 ± 0.07 0.35 ± 0.08 1.40 ± 0.32 1.12 ± 0.21 1.61 ± 0.44
������� 1.01 ± 0.23 0.11 ± 0.02 0.72 ± 0.15 0.78 ± 0.13 0.68 ± 0.17

��� 0.85 ± 0.09 0.65 ± 0.07 1.11 ± 0.23 0.65 ± 0.12 1.80 ± 0.33
��� 0.93 ± 0.19 0.71 ± 0.07 1.23 ± 0.16 0.67 ± 0.13 2.00 ± 0.37
��� 0.98 ± 0.64 0.78 ± 0.05 1.53 ± 0.13 0.66 ± 0.04 2.39 ± 0.23

����Ǥ ���Ǥ 0.73 ± 0.03 0.48 ± 0.04 1.11 ± 0.07 0.91 ± 0.03 1.40 ± 0.18
�����Ǥ ���Ǥ 0.73 ± 0.06 0.66 ± 0.03 1.34 ± 0.24 0.78 ± 0.06 1.75 ± 0.35
����Ǥ ����Ǥ 0.76 ± 0.06 0.42 ± 0.10 1.18 ± 0.10 0.89 ± 0.10 1.70 ± 0.35
��������� 0.76 ± 0.13 0.30 ± 0.05 1.02 ± 0.13 1.08 ± 0.09 0.93 ± 0.22

������ ���Ǥ 0.69 ± 0.03 0.55 ± 0.04 1.24 ± 0.11 0.72 ± 0.06 1.73 ± 0.22
������ 0.91 ± 0.26 0.28 ± 0.06 0.96 ± 0.13 0.87 ± 0.12 1.04 ± 0.20

���Ǥ ����Ǥ 0.86 ± 0.40 0.58 ± 0.05 0.96 ± 0.18 0.84 ± 0.05 1.33 ± 0.50
	����� 1.56 ± 0.20 0.24 ± 0.05 0.67 ± 0.09 0.60 ± 0.07 0.69 ± 0.14
	�� 0.77 ± 0.03 0.39 ± 0.04 1.12 ± 0.11 0.94 ± 0.07 1.27 ± 0.18

������Ǥ 0.94 ± 0.46 0.40 ± 0.03 1.22 ± 0.14 0.90 ± 0.05 1.35 ± 0.29
��������� 0.79 ± 0.04 0.20 ± 0.04 0.97 ± 0.21 1.02 ± 0.11 0.92 ± 0.28

���� 0.71 ± 0.03 0.60 ± 0.02 1.06 ± 0.13 0.69 ± 0.05 1.37 ± 0.29
���� 0.79 ± 0.14 0.39 ± 0.04 1.35 ± 0.11 0.97 ± 0.06 1.65 ± 0.16

������� 0.85 ± 0.35 0.17 ± 0.02 0.89 ± 0.13 1.03 ± 0.10 0.81 ± 0.17
��� 0.77 ± 0.05 0.41 ± 0.05 1.05 ± 0.06 0.91 ± 0.09 1.20 ± 0.11

�������� 0.89 ± 0.08 0.27 ± 0.02 0.97 ± 0.10 0.89 ± 0.08 1.03 ± 0.15
��� 0.70 ± 0.02 0.61 ± 0.03 1.11 ± 0.13 0.69 ± 0.04 1.48 ± 0.30

Table .7.: Resulting atlases respectively for the the 60YG

60YG MD [µm2/ms] FA MK KAX Krad
���� 0.74 ± 0.05 0.47 ± 0.03 0.97 ± 0.11 0.88 ± 0.04 1.11 ± 0.26

����� 
������ 0.70 ± 0.04 0.38 ± 0.05 1.30 ± 0.21 1.14 ± 0.12 1.45 ± 0.30
������� 2.25 ± 0.57 0.08 ± 0.03 0.55 ± 0.08 0.52 ± 0.09 0.56 ± 0.07

��� 1.13 ± 0.17 0.61 ± 0.06 1.09 ± 0.12 0.61 ± 0.06 1.70 ± 0.29
��� 0.91 ± 0.10 0.69 ± 0.05 1.37 ± 0.23 0.66 ± 0.07 2.12 ± 0.42
��� 0.79 ± 0.11 0.76 ± 0.08 1.59 ± 0.32 0.69 ± 0.06 2.33 ± 0.36

����Ǥ ���Ǥ 0.74 ± 0.03 0.48 ± 0.05 1.13 ±0.10 0.95 ± 0.04 1.40 ± 0.31
�����Ǥ ���Ǥ 0.74 ± 0.03 0.66 ± 0.03 1.35 ± 0.30 0.77 ± 0.06 1.78 ± 0.41
����Ǥ ����Ǥ 0.79 ± 0.08 0.51 ± 0.08 1.24 ± 0.12 0.87 ± 0.18 1.83 ± 0.29
��������� 0.70 ± 0.02 0.32 ± 0.05 1.04 ± 0.17 1.07 ± 0.06 0.89 ± 0.28

������ ���Ǥ 0.70 ±0.02 0.59 ± 0.07 1.22 ± 0.16 0.72 ± 0.07 1.65 ± 0.37
������ 0.91 ± 0.21 0.25 ± 0.10 1.00 ± 0.15 0.87 ± 0.12 1.12 ± 0.27

���Ǥ ����Ǥ 0.73 ± 0.03 0.56 ± 0.05 0.91 ± 0.22 0.85 ± 0.04 1.16 ± 0.45
	����� 1.84 ± 0.18 0.21 ± 0.05 0.65 ± 0.06 0.55 ± 0.04 0.72 ± 0.09
	�� 0.76 ± 0.03 0.37 ± 0.04 1.13 ± 0.11 0.97 ± 0.08 1.25 ± 0.16

������Ǥ 0.76 ± 0.09 0.43 ± 0.04 1.19 ± 0.14 0.93 ± 0.06 1.29 ± 0.26
��������� 0.78 ± 0.08 0.22 ± 0.05 1.07 ± 0.11 1.07 ± 0.08 1.05 ± 0.19

���� 0.70 ± 0.02 0.62 ± 0.04 1.08 ± 0.13 0.69 ± 0.06 1.36 ± 0.31
���� 0.77 ± 0.07 0.38 ± 0.05 1.33 ± 0.11 1.00 ± 0.04 1.64 ± 0.18

������� 0.74 ± 0.03 0.17 ± 0.03 0.89 ± 0.10 0.97 ± 0.07 0.82 ± 0.14
��� 0.75 ± 0.04 0.42 ± 0.06 1.15 ± 0.14 0.94 ± 0.06 1.29 ± 0.28

�������� 0.92 ± 0.15 0.27 ± 0.03 1.02 ± 0.11 0.88 ± 0.06 1.02 ± 0.11
��� 0.70 ± 0.02 0.64 ± 0.04 1.10 ± 0.14 0.69 ± 0.05 1.10 ± 0.14
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C. Ethics of voting

The institutional review board of the medical faculty at the Heinrich-Heine university in Dusseldorf
approved all the protocols used during this thesis and written informed consent was obtained
from all volunteers. The studies number were 3001, 3017 and 3826.

Table .8.: DTI acquisition protocol used in chapter 4.

������� ��
����� ���� ��� ����� �� �͙͟

������ 50 	�� ����� 100 %

�������� ������ 0 % ����� ��������� 2.0 mm

�������� Isocentre �� 7700 ms

����������� Transversal �� 112 ms

����� �������� ��������� A >>P ������ �� �������� 3

�������� 0.00 Grad ��ơ����� ���� MDDW

����� Ǧ������������ 0 ��ơ�����Ǧ��������� 2

	�� ������� 256 mm bǦ����� ͙ 0 s/mm2

��������� 1502 Hx/Px bǦ����� ͚ 1000 s/mm2

���� �������� 0.75 ms ��ơ����� ���������� 20

Table .9.: DKI acquisition protocol used in chapter 7.

������� ��
����� ���� ��� ����� �� �͙͟

������ 10 �� 98 ms

�������� ������ 0% ������ �� �������� 2

�������� L15.6 A69.4 F47.8 ��ơ����� ���� MDDW

����������� C >T5.3 >S.1.3 ��ơ�����Ǧ��������� 7

����� �������� ��������� R >>L bǦ����� ͙ 0 s/mm2

�������� 0.00 Grad bǦ����� ͚ 250 s/mm2

����� Ǧ������������ 0% bǦ����� ͛ 500 s/mm2

	�� ������� 400 mm bǦ����� ͜ 750 s/mm2

��������� 1532 Hx/Px bǦ����� ͝ 1000 s/mm2

���� �������� 0.74 ms bǦ����� ͞ 1250 s/mm2

	�� ����� 100% bǦ����� ͟ 1500 s/mm2

����� ��������� 6.0 mm ��ơ����� ���������� 30

�� 1500 ms
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8. Summary and Outlook

Table .10.: DKI acquisition protocol used in chapter 7.

������� ��
����� ���� ��� ����� �� �͙͟

������ 10 �� 98 ms

�������� ������ 0% ������ �� �������� 2

�������� L15.6 A69.4 F47.8 ��ơ����� ���� MDDW

����������� C >T5.3 >S.1.3 ��ơ�����Ǧ��������� 7

����� �������� ��������� R >>L bǦ����� ͙ 0 s/mm2

�������� 0.00 Grad bǦ����� ͚ 250 s/mm2

����� Ǧ������������ 0% bǦ����� ͛ 500 s/mm2

	�� ������� 400 mm bǦ����� ͜ 750 s/mm2

��������� 1532 Hx/Px bǦ����� ͝ 1000 s/mm2

���� �������� 0.74 ms bǦ����� ͞ 1250 s/mm2

	�� ����� 100% bǦ����� ͟ 1500 s/mm2

����� ��������� 6.0 mm ��ơ����� ���������� 20

�� 1500 ms

Table .11.: DKI acquisition protocol used in chapter 6.

������� ��
����� ���� ��� ����� �� �͙͟

������ 10 ����� ��������� 5.0 mm

�������� ������ 0% �� 1500 ms

�������� L15.6 A69.4 F47.8 �� 90 ms

����������� C >T5.3 >S.1.3 ������ �� �������� 4

����� �������� ��������� R >>L ��ơ����� ���� MDDW

�������� 0.00 Grad ��ơ�����Ǧ��������� 3

����� Ǧ������������ 0% bǦ����� ͙ 0 s/mm2

	�� ������� 400 mm bǦ����� ͚ 300 s/mm2

��������� 2170 Hx/Px bǦ����� ͛ 600 s/mm2

���� �������� 0.77 ms ��ơ����� ����������

	�� ����� 100%

Table .12.: DKI acquisition protocol used in chapter 6.

������� ��
����� ���� ��� ����� �� �͙͟

������ 10 ����� ��������� 5.0 mm

�������� ������ 0% �� 1500 ms

�������� L15.6 A69.4 F47.8 �� 90 ms

����������� C >T5.3 >S.1.3 ������ �� �������� 8

����� �������� ��������� R >>L ��ơ����� ���� MDDW

�������� 0.00 Grad ��ơ�����Ǧ��������� 3

����� Ǧ������������ 0% bǦ����� ͙ 0 s/mm2

	�� ������� 400 mm bǦ����� ͚ 300 s/mm2

��������� 2170 Hx/Px bǦ����� ͛ 600 s/mm2

���� �������� 0.77 ms ��ơ����� ����������

	�� ����� 100%
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D. MR-Protocols

Table .13.: DKI acquisition protocol used in chapter 5.

������� ��
����� ���� ��� ����� �� �͙͟

������ 60 ����� ��������� 2.5 mm

�������� ������ 0% �� 8100 ms

�������� Isocentre �� 101 ms

����������� Transversal ������ �� �������� 2

����� �������� ��������� A >>P ��ơ����� ���� MDDW

�������� 0.00 Grad ��ơ�����Ǧ��������� 3

����� Ǧ������������ 0% bǦ����� ͙ 0 s/mm2

	�� ������� 230 mm bǦ����� ͚ 1000 s/mm2

��������� 1552 Hx/Px bǦ����� ͛ 2000 s/mm2

���� �������� 0.73 ms ��ơ����� ���������� 30

	�� ����� 100%

103





List of Figures

3.1. Spin echo pulse diagram for Magnetic Resonance Imaging (MRI). Image
acquisition with illustrated phase evolution at different stages. (a) excitation
(t = 0); (b) dephasing; (c) refocussing (t = TE/2); (d) rephasing and (e) echo
(t = TE). Figure is adapted from Laun et al., 2011 [22]. . . . . . . . . . . . . . . . . 10

3.2. Acquired images in the frequency domain are converted to the spatial domain by
inverse Fourier Transform (IFT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3. A schematic representation of the pulse field gradient spin echo (PGSE) sequence
of Stejskal and Tanner [33]. ∆ is the time between the application of the two
gradient pulses, δ is the gradient pulse duration and G is the strength of the
gradient applied. Figure is adapted from Laun et al., 2011 [22]. . . . . . . . . . . . 12

3.4. Diffusion-weighted images at b-value = 0 (a) and b-value = 1000 s/mm2 in x- (b), y-
(c) and z-direction(d) together with the resulting ADC map. The DW images show
high intensity in regions of slow diffusion (low ADC values) and low intensity in
regions of fast diffusion (high ADC values). . . . . . . . . . . . . . . . . . . . . . . 14

3.5. Here the diffusion trajectory, the diffusion ellipsoid and the diffusion tensor are
illustrated in cases of isotropic non restricted (1st column), isotropic restricted (2nd

column) and anisotropic restricted diffusion (3rd column). . . . . . . . . . . . . . 15
3.6. Measured non diffusion-weighted image b= 0 s/mm2 with six diffusion-weighted

images (b= 1000 s/mm2) in 6 non-collinear directions (DTI requires a minimum of
6 directions). Due to anisotropic diffusion, the resulting pattern differs with the
considered direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7. FA-coloured maps: coronal (a), sagittal (b), axial (c). Red stands for left to right,
green is for anterior to posterior, and blue is for superior to inferior. Resulting
whole brain DTI visualisation in a tractography image (d). . . . . . . . . . . . . . . 17

3.8. Measured diffusion-weighted signal attenuation S(b)/S(0) (green points) at
b-values ranging from 0 to 2500 s/mm2. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.9. Parameter maps in the human brain for DTI and DKI. . . . . . . . . . . . . . . . . 22

4.1. Main interface of the plug-in in the STROKETOOL software. . . . . . . . . . . . . 28
4.2. DW Image acquisition of a brain volume with 50 slices at a diffusion-weighting of

1000 s/mm2 considering 20 diffusion directions and 3 signal averages. . . . . . . . 30

105



List of Figures

4.3. Block diagram description of the processing pipelines tested. (a) The 1st non-DW
image was used as reference to align all the following volumes of the subject. (b)
Only the b0 images are registered and the resulting transformations are applied to
the DWI volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4. Axial DWI images of a volunteer brain (a), intentionally misadjusted DWI image
with known motion (b) and difference image between misaligned and original
image (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5. Comparison of the two processing pipelines. Motion correction of all different DTI
volumes is superior to correction schemes, where only b0-images are aligned. . . 33

4.6. Comparison of translation measures in theX , Y ,Z directions after registration of
data with known induced artificial motion for the six motion-corrupted datasets. 34

4.7. Comparison of rotation measures in the X , Y , Z directions after registration of
data with known induced artificial motion for the six motion-corrupted datasets. 34

4.8. Results of the simulation studies. Each graph displays the transformation
parameters found by the registration methods (y-axis) in the six motion-corrupted
datasets (true values, x-axis). The individual graphs show the result of the
registration after applying various degrees of x- (circles), y- (plus marks) and z-
(squares) translation (left) and rotation (right). The parameters found by the
registration with Mattes achieved the best agreement with the true values. . . . 36

4.9. Maps of the fractional anisotropy (FA) without correction (a), after correction
with Viola-Wells (b), after correction with Mattes (c) and after correction with
Mattes-Smoothed (d). The MI registration with Mattes (c) is clearly superior to
the correction with its smoothed version (d) and the MI registration method by
Viola-Wells (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.10. Comparison of the total volume fibre tracts for all the subjects with different
registration methods using tensorline as propagation algorithm. . . . . . . . . . . 38

4.11. Tractography results of tumour patient data underplayed with b0 images without
and with Mattes motion correction using the tensorline fibre tracking algorithm.
Circled region and arrows show more precise fibre progression with more volume
all around the tumour detected only after motion correction. . . . . . . . . . . . 39

4.12. MSSIM index for the ADF correction with different time steps. . . . . . . . . . . . 41
4.13. Regions-of-interest (ROIs) selected for evaluation of the noise reduction rate. . . 43
4.14. NRR in the two ROIs (see figure 4.13) for the ADF and JaLMMSE approaches. . . . 44
4.15. MSSIM index respectively of the filtered vs. ideal volumes and the filtered vs. noisy

volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.16. PSNR respectively of the filtered vs. ideal volumes and the filtered vs. noisy volumes. 45
4.17. SSIM index plotted against the PSNR values for all the volumes. . . . . . . . . . . 46
4.18. Denoising results of different approaches for a brain slice displayed with the

corresponding difference images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.19. Denoising results of the JaLMMSE approach on real brain data displayed with the

corresponding difference images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.20. DKI Image Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.21. Folder structure for study data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1. Representation of some landmarks in the axial, sagittal and coronal planes.
Altogether 30 were considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

106



List of Figures

5.2. Brain regions selected showed on a representative fractional anisotropy (FA) map
of a 22-years old volunteer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3. Maps of diffusion-weighted (DW) measures of a 22-years old volunteer shown
for one axial slice. EPI non-diffusion-weighted image (b0), mean diffusivity (MD),
fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (KAX), radial kurtosis
(KRAD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4. Mean deviation of the individual landmarks (1 to 30) from the reference brain for
all the subjects with respective SD in mm. For more details, please see table .2 in
section A of the appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5. Mean deviation of the landmarks for the individual subjects (1 - 9) with SD in mm.
Subject 0 is reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6. EPI non-diffusion-weighted image (b0), mean diffusivity (MD), fractional
anisotropy (FA), mean kurtosis (MK), axial kurtosis (KAX), radial kurtosis
(KRAD) maps shown for one axial slice for all 80 subjects of the merged group
after normalisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7. Example of the FA and MK metrics in an axial image of a young adult of the
20-year group (left panel) and an older adult of the 60-year group (right panel).
The FA map shows the restrictive micro-environment of water molecules, partly
due to the high myelination, and is therefore higher in regions of more densely
packed fiber bundles that are homogeneous oriented as for example in the corpus
callosum. The demyelination is more pronounced on MK maps. . . . . . . . . . . 62

5.8. Bland-Altman analysis of the difference between the repeated measurements of
the two observers for fractional anisotropy (FA) and mean kurtosis (MK). . . . . . 63

5.9. Effect of aging on regional MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.10. Effect of aging on regional FA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.11. Effect of aging on regional MK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.12. Effect of aging on regional KAX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.13. Effect of aging on regional KRAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1. Free hand ROIs on the cortex and medulla of the upper pole, mid-zone and lower
pole shown on the FA image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2. EPI non diffusion-weighted image (b0), apparent diffusion coefficient (ADC),
fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (KAX) and radial
kurtosis (KRAD) maps are shown for one coronal slice for one healthy volunteer. . 74

6.3. Differences between the cortex (c) and medulla (m) on FA maps for the 2, 4, 6,
8 averages (av.). The y-axis reveals the different mean FA values between cortex
and medulla over the 10 subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4. Differences between the cortex (c) and medulla (m) on MK maps for the 2, 4, 6,
8 averages (av.). The y-axis reveals the different mean MK values between cortex
and medulla over the 10 subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5. b = 0 images without diffusion-weighting, ADC maps, FA maps and MK maps
obtained with different sequences in the same volunteer with 2, 4, 6 and 8
averages (av.). The arrows point out better cortico-medullary differentiation in
2 averages compared to the sequences with 4, 6, and 8 averages. . . . . . . . . . 77

107



List of Figures

6.6. Example of a diffusion MR signal attenuation of the renal cortex (S/S(0))
against the b-value, including the mathematical fitting of the two models [(3.23)]
and [(3.7)] to illustrate data modelling. The asterisks (*) stands for the signal
intensities measured within ROIs in the renal cortex (see figure 6.1) averaged over
the 8 signal averages and all the volunteers; “mono-exp” and “kurt” denote the
mono-exponential and the kurtosis model. The graph clearly illustrates the errors
associated with the assumption of Gaussian distribution of water diffusion as in
the case of the mono-exponential fit (r = 0.96) versus a non-Gaussian distribution
assumption from DKI (r = 0.99). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.7. Bland-Altman analysis of the difference between the repeated measurements of
the two observers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1. ROIs placed on fractional anisotropy map for evaluating ADC, FA and MK values in
renal cortex and medulla. (renal cortex (white), medulla (red)). . . . . . . . . . . 85

7.2. From left to right, A: mean diffusivity (MD), B: fractional anisotropy (FA), and C:
mean kurtosis (MK) maps of the kidney of a healthy volunteer with 30 diffusion
directions: Top row (Protocol 1): 0, 250 , and 500 s/mm2, 2nd row (Protocol
2): 0, 500 , and 750 s/mm2, 3rd row (Protocol 3): 0, 500 , and 1000 s/mm2, 4th

row (Protocol 4): 0, 750, and 1250 s/mm2, 5th row (Protocol 5): 0, 250, 750 and
1250 s/mm2, 6th row (Protocol 6): 0, 500, 1000, and 1500 s/mm2 and with 20
directions 7th row (Protocol 7) considering b-values: 0, 500, and 1000 s/mm2. . . . 88

108



List of Tables

4.1. Result of the simulation studies considering translations up to 10 mm and rotations
up to 0.20 ◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2. SNR in corpus callosum in FA parameter maps from all subjects using different
motion correction techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3. SNR in corpus callosum in FA parameter maps from all subjects using different
motion correction techniques. TC:tract count, VC: voxel count, V: volume, maxL:
maximum length, minL: minimum length, meanL: Mean length. . . . . . . . . . . 35

5.1. Resulting atlases respectively for the merged Groups. . . . . . . . . . . . . . . . . 60
5.2. The p-values derived from a two-sided, paired-samples Student’s t-test. There was

no significant difference between the first and second FA, MK measurements of
the first observer and the measurements of the second observer. . . . . . . . . . 61

5.3. Mean and standard deviation (SD) of FA in ROIs of the principal atlas and template
as well as regional values published by [118, 123, 122]. . . . . . . . . . . . . . . . . 69

6.1. Mean± standard deviation (SD) of ADC, FA and MK values of the renal cortex and
medulla for 2, 4, 6, 8 averages (av.) from data of 10 volunteers. . . . . . . . . . . 74

6.2. Mean ± SD values of FA and MK for each measurement (meas.) in the cortex and
the medulla for the two observers (obs.). . . . . . . . . . . . . . . . . . . . . . . 76

6.3. The p-values obtained from a two-sided, paired-samples Student’s t-test. No
significant difference was found comparing the 1st and 2nd FA, MK. . . . . . . . . 76

6.4. Qualitative evaluation of FA and MK maps from data of 6 volunteers. ∗Evaluations
were made with a scoring at 5-grades: 1 for not evaluable; 2 for poor
cortex-medulla difference; 3 for moderate cortex-medulla difference; 4 for good
cortex-medulla difference and 5 for excellent cortex-medulla difference. All the
images used in the analysis had a score superior to 1. . . . . . . . . . . . . . . . . 76

7.1. Overview of the different evaluation schemes. . . . . . . . . . . . . . . . . . . . . 85
7.2. Quantitative assessment of MD (× 10−3 mm2/s), FA and MK considering 30

diffusion encoding directions at different b-values schemes. . . . . . . . . . . . . 87
7.3. Quantitative assessment of MD (× 10−3 mm2/s), FA and MK considering b-values

(0, 500 and 1000 s/mm2) at different number of MPG directions. . . . . . . . . . . 89

109



List of Tables

.2. Mean and SD of the distance between the landmarks in the reference brain and
individual subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

.3. Resulting atlases respectively for the the 20YG . . . . . . . . . . . . . . . . . . . . 98

.4. Resulting atlases respectively for the the 30YG . . . . . . . . . . . . . . . . . . . . 99

.5. Resulting atlases respectively for the the 40YG . . . . . . . . . . . . . . . . . . . . 99

.6. Resulting atlases respectively for the the 50YG . . . . . . . . . . . . . . . . . . . . 100

.7. Resulting atlases respectively for the the 60YG . . . . . . . . . . . . . . . . . . . . 100

.8. DTI acquisition protocol used in chapter 4. . . . . . . . . . . . . . . . . . . . . . . 101

.9. DKI acquisition protocol used in chapter 7. . . . . . . . . . . . . . . . . . . . . . . 101

.10. DKI acquisition protocol used in chapter 7. . . . . . . . . . . . . . . . . . . . . . . 102

.11. DKI acquisition protocol used in chapter 6. . . . . . . . . . . . . . . . . . . . . . . 102

.12. DKI acquisition protocol used in chapter 6. . . . . . . . . . . . . . . . . . . . . . . 102

.13. DKI acquisition protocol used in chapter 5. . . . . . . . . . . . . . . . . . . . . . . 103

110



List of Abbreviations

1D One dimensional
2D Two dimensional
3D Three dimensional
ADC Apparent diffusion coefficient
ADF Anisotropic diffusion filtering
KAX Axial Kurtosis
BG Basal ganglia
C Cortex
CC Corpus callosum
CC Cross correlation
c-χ Centered distribution
CLLS Constrained linear least squared
CNLS Constrained nonlinear least squared
CNS Central Nervous System
CSF Cerebrospinal fluid
DAX Axial diffusivity
DRAD Radial diffusivity
DBM Deformation-based morphometry
DKI Diffusion Kurtosis Imaging
DTI Diffusion Tensor Imaging
DT-MRI Diffusion Tensor Magnetic Resonance imaging
DWI Diffusion-Weighted Imaging
DW-MRI Diffusion-Weighted Magnetic Resonance imaging
EPI Echo Planar Imaging
FA Fractional anisotropy
FWM Frontal white matter
FOV Field of view
GRAPPA Generalised autocalibrating partially parallel acquisition
GM Gray matter
HF High frequency
ICBM International Consortium for Brain Mapping
JaLMMSE Joint information Linear Minimum Mean Square Error
KAX Axial kurtosis

111



List of Tables

KRAD Radial kurtosis
LM Landmark
MD Mean diffusivity
MI Mutual information
MNI Montreal Neurological Institute
MPG Motion Probing Gradient
MPRAGE magnetisation Prepared Rapid Acquisition Gradient Echo
MK Mean kurtosis
MRI Magnetic Resonance Imaging
MSQ Mean squared intensity difference
nc-χ Non-centered distribution
NMR Nuclear Magnetic Resonance
ODE ordinary differential equation
P Pons
PDE Partial differential equation
PDF Probability density function
PGSE Pulsed field gradient spin echo
PNS Peripheral nervous system
RF Radio frequency
ROI Region-of-interest
SD Standard deviation
SNR Signal-to-noise ratio
SS-DWEPI Single Shot Diffusion-Weighted Echo Planar Imaging
T Tesla
TE Echo time
TR Repetition time
ULLS Unconstrained linear least squared
WM White matter

112



Bibliography

[1] HĆėęĜĎČ, Valentina ; GĎĔěĆēēĊęęĎ, Giulio ; VĆēĊđđĔ, Nicola ; LĔĒćĆėĉĎ, Massimo ; LĆēĉĎēĎ,
Luigi ; SĎĒĎ, Silvana: Biological Effects andSafety inMagneticResonance Imaging: AReview.
6 (2009), Nr. 6, S. 1778--1798

[2] ZčĚĔ, Jiachen: Diffusionkurtosismagnetic resonance imagingand its application to traumatic
brain injury, University of Maryland, dissertation, 2011

[3] TĚĈč, David S. ; RĊĊĘĊ, Timothy G. ; WĎĊČĊđđ, Mette R. ; MĆĐėĎĘ, Nikos ; BĊđđĎěĊĆĚ, John W. ;
WĊĉĊĊē, Van J.: High angular resolution diffusion imaging reveals intravoxel white matter
fiber heterogeneity. In: Magnetic Resonance in Medicine: Official Journal of the Society
of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 48 (2002),
Oktober, Nr. 4, S. 577--582

[4] WĊĉĊĊē, Van J. ; HĆČĒĆēē, Patric ; TĘĊēČ, Wen-Yih I. ; RĊĊĘĊ, Timothy G. ; WĊĎĘĘĐĔċċ,
Robert M.: Mapping complex tissue architecture with diffusion spectrum magnetic
resonance imaging. In: Magnetic Resonance in Medicine: Official Journal of the Society
of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 54 (2005),
Dezember, Nr. 6, S. 1377--1386

[5] KĚĔ, Li-Wei ; CčĊē, Jyh-Horng ; WĊĉĊĊē, Van J. ; TĘĊēČ, Wen-Yih I.: Optimization of diffusion
spectrum imaging and q-ball imaging on clinical MRI system. In: NeuroImage 41 (2008), Mai,
Nr. 1, S. 7--18

[6] JĊēĘĊē, Jens H. ; HĊđĕĊėē, Joseph A. ; RĆĒĆēĎ, Anita ; LĚ, Hanzhang ; KĆĈğĞēĘĐĎ, Kyle:
Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means
of magnetic resonance imaging. In: Magnetic Resonance in Medicine 53 (2005), Nr. 6, S.
1432--1440

[7] LĊ BĎčĆē, D ; BėĊęĔē, E ; LĆđđĊĒĆēĉ, D ; GėĊēĎĊė, P ; CĆćĆēĎĘ, E ; LĆěĆđ-JĊĆēęĊę, M:
MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in
neurologic disorders. In: Radiology 161 (1986), Nr. 2, S. 401--407

[8] YĆćđĔēĘĐĎĞ, Dmitriy A. ; BėĊęęčĔėĘę, G L. ; AĈĐĊėĒĆē, Joseph J H.: Statistical model for
diffusion attenuated MR signal. In: Magnetic resonance in medicine: official journal of the
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 50
(2003), Oktober, Nr. 4, S. 664--669

113



Bibliography

[9] JĊēĘĊē, Jens H. ; HĊđĕĊėē, Joseph A.: MRI quantification of non-Gaussian water diffusion
by kurtosis analysis. In: NMR in Biomedicine 23 (2010), Nr. 7, S. 698--710

[10] FĆđĆēČĔđĆ, Maria F. ; JĊēĘĊē, Jens H. ; BĆćć, James S. ; HĚ, Caixia ; CĆĘęĊđđĆēĔĘ,
Francisco X. ; DĎ MĆėęĎēĔ, Adriana ; FĊėėĎĘ, Steven H. ; HĊđĕĊėē, Joseph A.: Age-Related
Non-Gaussian Diffusion Patterns in the Prefrontal Brain. In: Journal of magnetic resonance
imaging : JMRI 28 (2008), Dezember, Nr. 6, S. 1345--1350

[11] RĆĆć, Peter ; HĆęęĎēČĊē, Elke ; FėĆēğ, Kea ; ZĆēĊđđĆ, Friedhelm E. ; LĆēċĊėĒĆēē, Heinrich:
Cerebral Gliomas: Diffusional Kurtosis Imaging Analysis of Microstructural Differences1. In:
Radiology 254 (2010), Januar, Nr. 3, S. 876--881

[12] CĆĚęĊė, Sofie V. ; VĊėĆĆėę, Jelle ; SĎďćĊėĘ, Jan ; PĊĊęĊėĘ, Ronald R. ; HĎĒĒĊđėĊĎĈč, Uwe ;
KĊĞğĊė, Frederik D. ; GĔĔđ, Stefaan W. V. ; CĆđĊēćĊėČč, Frank V. ; VđĊĊĘĈčĔĚĜĊė, Steven D.
; HĊĈĐĊ, Wim V. ; SĚēĆĊėę, Stefan: Gliomas: Diffusion Kurtosis MR Imaging in Grading. In:
Radiology 263 (2012), Januar, Nr. 2, S. 492--501

[13] GėĆĞ, Henry: Anatomy of the Human Body. Lea & Febiger, 1918

[14] DĊĘĈĔęĊĆĚĝ, Maxime: IRM de Diffusion à Haute Résolution Angulaire: Estimation Locale,
Segmentation et Suivi de Fibres, University of Nice-Sophia Antipolis, dissertation, 2008.

[15] VĆđĊēğĚĊđĆ, C. F. ; PĚČđĎĆ, Michael P. ; ZĚĈĈĆ, Stefano: Focus On: Neurotransmitter
Systems. In: Alcohol Research & Health 34 (2011), Nr. 1, S. 106--120

[16] HĎēĊĘ, Tonya: Anatomy of the brain. Version: 2013.
, Abruf: 30.12.2015

[17] CNX, OpenStax: OpenStax Anatomy and Physiology. Version: 2013.
, Abruf: 31.12.2015

[18] BčĎĘĊ, Dr S. B.: Anatomy Physiology And Health Education. Pragati Books Pvt. Ltd., 2008. --
ISBN 978--81--85790--43--5

[19] PĆęĊĘęĆĘ, Maria ; GĆėęēĊė, Leslie P.: A Textbook of Neuroanatomy. Wiley, 2006

[20] JĔčĆēĘĊē-BĊėČ, Heidi ; BĊčėĊēĘ, Timothy E. J.: Diffusion MRI: From Quantitative
Measurement to In vivo Neuroanatomy. Academic Press, 2013. -- ISBN 978--0--12--405509--4

[21] WĊĎĘčĆĚĕę, Dominik ; KśĈčđĎ, Victor D. ; MĆėĎēĈĊĐ, Borut: Wie funktioniert MRI?: Eine
Einführung in Physik und Funktionsweise der Magnetresonanzbildgebung. Springer Science
& Business Media, 2009

[22] LĆĚē, F.B. ; FėĎęğĘĈčĊ, K.H. ; KĚĉĊė, T.A. ; SęĎĊđęďĊĘ, B.: Einführung in die Grundlagen
und Techniken der Diffusionsbildgebung. 51 (2011), Nr. 3, 170--179.

. -- DOI 10.1007/s00117--010--2057--y. -- ISSN 0033--832X,
1432--2102

[23] MĔĘĊđĊĞ, M. E. ; KĚĈčĆėĈğĞĐ, J. ; MĎēęĔėĔěĎęĈč, J. ; CĔčĊē, Y. ; KĚėčĆēĊĜĎĈğ, J. ; DĊėĚČĎē, N.
; AĘČĆėĎ, H. ; NĔėĒĆē, D.: Diffusion-weighted MR imaging of acute stroke: correlation with
T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. In: AJNR. American
journal of neuroradiology 11 (1990), Mai, Nr. 3, S. 423--429

114



Bibliography

[24] RĔěĆėĎĘ, M. ; GĆĘĘ, A. ; BĆĒĒĊė, R. ; HĎĈĐĒĆē, S. J. ; CĎĈĈĆėĊđđĎ, O. ; MĎđđĊė, D. H. ; FĎđĎĕĕĎ, M.:
Diffusion MRI in multiple sclerosis. In: Neurology 65 (2005), November, Nr. 10, S. 1526--1532

[25] MĆĎĊė, Stephan E. ; SĚē, Yanping ; MĚđĐĊėē, Robert V.: Diffusion Imaging of Brain Tumors.
In: NMR in biomedicine 23 (2010), August, Nr. 7, S. 849--864

[26] MűđđĊė, M. F. ; PėĆĘĆĉ, P. V. ; BĎĒĒđĊė, D. ; KĆĎĘĊė, A. ; EĉĊđĒĆē, R. R.: Functional imaging
of the kidney by means of measurement of the apparent diffusion coefficient. In: Radiology
193 (1994), Januar, Nr. 3, S. 711--715

[27] HĆČĒĆēē, Patric ; JĔēĆĘĘĔē, Lisa ; MĆĊĉĊė, Philippe ; TčĎėĆē, Jean-Philippe ; WĊĊĉĊē,
Van J. ; MĊĚđĎ, Reto: Understanding Diffusion MR Imaging Techniques: From Scalar
Diffusion-weighted Imaging to Diffusion Tensor Imaging and Beyond. In: Radiographics 26
(2006), S. 205--223

[28] MĔėĎ, S ; BĆėĐĊė, B: Diffusion Magnetic Resonance Imaging: Its Principle and Applications.
The Anatomical Record 2. In: Anatomical Record 257 (1999), S. 102--109

[29] DĊėĊĐ, K. J.: DiffusionMRI: Theory, Methods, andApplications - PhD. Oxford University Press,
2010. -- ISBN 978--0--19--970870--3

[30] FĎĈĐ, Adolf E.: On liquid diffusion. In: Poggendorff'sAnnalender Physik undChemie94 (1855),
S. 59--86

[31] BėĔĜē, Robert: A brief account of microscopical observations made in the months of June,
July and August 1827, on the particles contained in the pollen of plants; and on the general
existence of active molecules in organic and inorganic bodies. In: Philosophical Magazine
Series 2 4 (1828), S. 161--173

[32] EĎēĘęĊĎē, Albert: Investigations on the theory of the brownian movement. In: Dover
Publications, Inc. (1956)

[33] SęĊďĘĐĆđ, E. O. ; TĆēēĊė, J. E.: Spin Diffusion Measurements: Spin Echoes in the Presence
of a Time-Dependent Field Gradient. In: The Journal of Chemical Physics 42 (1965), Nr. 1, S.
288

[34] UđĚĽ, A. M. ; BĊĆĚĈčĆĒĕ, N. ; BėĞĆē, R. N. ; ZĎďđ, P. C.: Absolute quantitation of diffusion
constants in human stroke. In: Stroke; a Journal of Cerebral Circulation 28 (1997), März, Nr.
3, S. 483--490

[35] BĆĘĘĊė, P.J. ; MĆęęĎĊđđĔ, J. ; LĊ BĎčĆē, D: MR diffusion tensor spectroscopy and imaging. In:
Biophysical Journal 66 (1994), Januar, Nr. 1, S. 259--267

[36] MĊđčĊĒ, Elias R. ; MĔėĎ, Susumu ; MĚĐĚēĉĆē, Govind ; KėĆĚę, Michael A. ; PĔĒĕĊė,
Martin G. ; ZĎďđ, Peter C. M.: Diffusion Tensor MR Imaging of the Brain and White Matter
Tractography. In: American Journal of Roentgenology 178 (2002), Januar, Nr. 1, S. 3--16

[37] MĔĘĊđĊĞ, Michael: Diffusion tensor imaging and aging - a review. In: NMR in biomedicine 15
(2002), Dezember, Nr. 7-8, S. 553--560

[38] MĔėĎ, Susumu ; ZĎďđ, Peter C. M.: Fiber tracking: principles and strategies - a technical
review. In: NMR in biomedicine 15 (2002), Dezember, Nr. 7-8, S. 468--480

115



Bibliography

[39] MĆĎĊė, Stephan E. ; SčĊēęĔē, Martha E. ; JĔđĊĘğ, Ferenc A.: Diffusion MRI explores new
indications. In: Advanced MR (2001)

[40] DĊ SĆēęĎĘ, Silvia ; GĆćėĎĊđđĎ, Andrea ; PĆđĔĒćĔ, Marco ; MĆėĆěĎČđĎĆ, Bruno ; CĆĕĚĆēĎ, Silvia:
Non-Gaussian diffusion imaging: a brief practical review. In: Magnetic Resonance Imaging
29 (2011), Dezember, Nr. 10, S. 1410--1416

[41] AĘĘĆċ, Y. ; CĔčĊē, Y.: Assignment of the water slow-diffusing component in the central
nervous system using q-space diffusion MRS: implications for fiber tract imaging. In:
Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in
Medicine / Society of Magnetic Resonance in Medicine 43 (2000), Februar, Nr. 2, S. 191--199

[42] CđĆėĐ, Chris A. ; HĊĉĊčĚĘ, Maj ; MĔĘĊđĊĞ, Michael E.: In vivo mapping of the fast and slow
diffusion tensors in human brain. In: Magnetic resonance in medicine: official journal of the
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 47
(2002), Nr. 4, S. 623--628

[43] MĎēĆęĎ, Ludovico ; AĖĚĎēĔ, Domenico ; RĆĒĕĔđĉĎ, Stefano ; PĆĕĆ, Sergio ; GėĎĘĔđĎ, Marina
; BėĚğğĔēĊ, Maria G. ; MĆĈĈĆČēĆēĔ, Elio: Biexponential and diffusional kurtosis imaging,
and generalised diffusion-tensor imaging (GDTI) with rank-4 tensors: a study in a group
of healthy subjects. In: Magnetic Resonance Materials in Physics, Biology and Medicine 20
(2007), Dezember, Nr. 5-6, S. 241--253

[44] MĎđēĊ, Michelle L. ; CĔēėĆĉĎ, Mark S.: Multi-exponential signal decay from diffusion in a
single compartment. In: Journal of magnetic resonance (San Diego, Calif. : 1997) 197 (2009),
März, Nr. 1, S. 87--90

[45] AđĊĝĆēĉĊė, D. C. ; BĆėĐĊė, G. J. ; AėėĎĉČĊ, S. R.: Detection and modeling of non-Gaussian
apparent diffusion coefficient profiles in human brain data. In: Magnetic Resonance in
Medicine 48 (2002), August, Nr. 2, S. 331--340

[46] VĆē, Anh T. ; GėĆēğĎĊėĆ, Cristina ; BĆĒĒĊė, Roland: An Introduction to Model-Independent
Diffusion MRI. In: Topics in magnetic resonance imaging : TMRI 21 (2010), Dezember, Nr. 6,
S. 339--354

[47] BĆĘĘĊė, Peter J.: Relationships between diffusion tensor and q-space MRI†. In: Magnetic
Resonance in Medicine 47 (2002), Februar, Nr. 2, S. 392--397

[48] WĊĉĊĊē, V. J. ; WĆēČ, R. P. ; SĈčĒĆčĒĆēē, J. D. ; BĊēēĊė, T. ; TĘĊēČ, W. Y. I. ; DĆĎ, G. ;
PĆēĉĞĆ, D. N. ; HĆČĒĆēē, P. ; D'AėĈĊĚĎđ, H. ; CėĊĘĕĎČēĞ, A. J.: Diffusion spectrum magnetic
resonance imaging (DSI) tractography of crossing fibers. In: NeuroImage 41 (2008), Juli, Nr.
4, S. 1267--1277

[49] BĊēēĊęę, Kevin M. ; SĈčĒĆĎēĉĆ, Kathleen M. ; BĊēēĊęę, Raoqiong T. ; RĔĜĊ, Daniel B.
; LĚ, Hanbing ; HĞĉĊ, James S.: Characterization of continuously distributed cortical
water diffusion rates with a stretched-exponential model. In: Magnetic resonance in
medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of
Magnetic Resonance in Medicine 50 (2003), Oktober, Nr. 4, S. 727--734

[50] CčĊĚēČ, Matthew M. ; HĚĎ, Edward S. ; CčĆē, Kevin C. ; HĊđĕĊėē, Joseph A. ; QĎ, Liqun ;
WĚ, Ed X.: Does diffusion kurtosis imaging lead to better neural tissue characterization? A
rodent brain maturation study. In: NeuroImage 45 (2009), April, Nr. 2, S. 386--392

116



Bibliography

[51] TĆćĊĘč, Ali ; JĊēĘĊē, Jens H. ; AėĉĊĐĆēĎ, Babak A. ; HĊđĕĊėē, Joseph A.: Estimation of tensors
and tensor-derived measures in diffusional kurtosis imaging. In: Magnetic Resonance in
Medicine 65 (2011), Nr. 3, S. 823--836

[52] HĚĎ, Edward S. ; CčĊĚēČ, Matthew M. ; QĎ, Liqun ; WĚ, Ed X.: Towards better
MR characterization of neural tissues using directional diffusion kurtosis analysis. In:
NeuroImage 42 (2008), August, Nr. 1, S. 122--134

[53] BĆĘĘĊė, Peter J. ; JĔēĊĘ, Derek K.: Diffusion-tensor MRI: theory, experimental design and
data analysis – a technical review. In: NMR in Biomedicine 15 (2002), November, Nr. 7-8, S.
456--467

[54] HĔĆ, Denis ; SAS, IMAIOS (Hrsg.): Signal-to-noise ratio. Version: 2015.

, Abruf: 30.12.2015

[55] BĎčĆē, Denis L.: Apparent Diffusion Coefficient and Beyond: What Diffusion MR Imaging
Can Tell Us about Tissue Structure. 268 (2013), Nr. 2, S. 318--322

[56] CčĚĈĐ, Natalie C. ; SęĊĎĉđĊ, Gunther ; BđĚĒĊ, Iris ; FĎĘĈčĊė, Michael A. ; NĆēğ, Daniel ; BĔĘĘ,
Andreas: Diffusion Tensor Imaging of the Kidneys: Influence of b-Value and Number of
Encoding Directions on Image Quality and Diffusion Tensor Parameters. In: Journal of
Clinical Imaging Science 3 (2013), November

[57] GĚėĘĊĘ, Bengi ; KĎđĎĈĐĊĘĒĊğ, Ozgur ; TĆĘĉĊđĊē, Neslihan ; FĎėĆę, Zeynep ; GĚėĒĊē, Nevzat:
Diffusion tensor imaging of the kidney at 3 tesla: normative values and repeatability of
measurements in healthy volunteers. In: Diagnostic and Interventional Radiology (2010)

[58] LĊ BĎčĆē, D ; MĆēČĎē, Jean-Francois ; PĔĚĕĔē, Cyril ; CđĆėĐ, Chris A. ; PĆĕĕĆęĆ, Sabina ;
MĔđĐĔ, Nicolas ; CčĆćėĎĆę, Hughes: Diffusion Tensor Imaging: Concepts and Applications.
In: journal of magnetic resonance imaging (2001)

[59] BĔğğĆđĎ, M ; FĆđĎēĎ, A ; FėĆēĈĊĘĈčĎ, M ; CĊėĈĎČēĆēĎ, M ; ZĚċċĎ, M ; SĈĔęęĎ, G ; CĔĒĎ, G ; FĎđĎĕĕĎ,
M: White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor
magnetic resonance imaging. In: Journal of Neurology, Neurosurgery, and Psychiatry 72
(2002), Juni, Nr. 6, S. 742--746

[60] KĆėĆČĚđđĊ KĊēĉĎ, A T. ; LĊčĊėĎĈĞ, S ; LĚĈĎĆēĆ, M ; UČĚėćĎđ, K ; TĚĎęĊ, P: Altered diffusion
in the frontal lobe in Parkinson disease. In: AJNR. American journal of neuroradiology 29
(2008), März, Nr. 3, S. 501--505

[61] RĎĊĘ, Mario ; JĔēĊĘ, Richard A. ; BĆĘĘĊĆĚ, Fabrice ; MĔĔēĊē, Chrit T. ; GėĊēĎĊė, Nicolas:
Diffusion tensor MRI of the human kidney. In: Journal of Magnetic Resonance Imaging 14
(2001), Nr. 1, S. 42--49

[62] NĎĐĐĊē, J. J. ; KėĊĘęĎē, G. P.: MRI of the kidney--state of the art. In: European Radiology 17
(2007), November, Nr. 11, S. 2780--2793

[63] KĆęĆĔĐĆ, Masako ; KĎĉĔ, Aki ; YĆĒĆĒĔęĔ, Akira ; NĆĐĆĒĔęĔ, Yuji ; KĔĞĆĒĆ, Takashi ; IĘĔĉĆ,
Hiroyoshi ; MĆĊęĆēĎ, Yoji ; UĒĊĔĐĆ, Shigeaki ; TĆĒĆĎ, Ken ; SĆČĆ, Tsuneo ; MĔėĎĘĆĜĆ,
Nobuko ; MĔėĎ, Susumu ; TĔČĆĘčĎ, Kaori: Diffusion tensor imaging of kidneys with

117



Bibliography

respiratory triggering: Optimization of parameters to demonstrate anisotropic structures
on fraction anisotropy maps. In: Journal of Magnetic Resonance Imaging 29 (2009), Nr. 3, S.
736--744

[64] HĆēĘ-JśėČ, Wittsack ; LĆēğĒĆē, Rotem S. ; QĚĊēęĎē, Michael ; KĚčđĊĒĆēē, Julia ; KđĆĘĊē,
Janina ; PĊēęĆēČ, Gael ; RĎĊČČĊė, Caroline ; AēęĔĈč, Gerald ; BđĔēĉĎē, Dirk: Temporally
Resolved Electrocardiogram-Triggered Diffusion-Weighted Imaging of the Human Kidney.
In: Investigative Radiology 47 (2012), April, Nr. 4, S. 226--230

[65] TčĔĊēĞ, Harriet C. ; KĊĞğĊė, Frederik D. ; OĞĊē, Raymond H. ; PĊĊęĊėĘ, Ronald R.:
Diffusion-weighted MR Imaging of Kidneys in Healthy Volunteers and Patients with
Parenchymal Diseases: Initial Experience1. In: Radiology 235 (2005), Januar, Nr. 3, S. 911--917

[66] SĊęĘĔĒĕĔĕ, Kawin ; GĆČĔĘĐĎ, Borjan A. ; PĔđĎĒĊēĎ, Jonathan R. ; WĎęğĊđ, Thomas ; WĊĉĊĊē,
Van J. ; WĆđĉ, Lawrence L.: Blipped-Controlled Aliasing in Parallel Imaging (blipped-CAIPI)
for simultaneous multi-slice EPI with reduced g-factor penalty. In: Magnetic Resonance in
Medicine 67 (2012), Mai, Nr. 5, S. 1210--1224

[67] PĎĕĊ, J. G.: Motion correction with PROPELLER MRI: application to head motion and
free-breathing cardiac imaging. In: Magnetic Resonance in Medicine: Official Journal of the
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 42
(1999), November, Nr. 5, S. 963--969

[68] PĆĕĆĉĆĐĎĘ, N G. ; MĆėęĎē, K M. ; PĎĈĐĆėĉ, J D. ; HĆđđ, L D. ; CĆėĕĊēęĊė, T A. ; HĚĆēČ, C L.:
Gradient preemphasis calibration in diffusion-weighted echo-planar imaging. In: Magnetic
resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine /
Society of Magnetic Resonance in Medicine 44 (2000), Oktober, Nr. 4, S. 616--624

[69] PėĆĘĆĉ, P V. ; NĆđĈĎĔČđĚ, O: A modified pulse sequence for in vivo diffusion imaging with
reduced motion artifacts. In: Magnetic resonance inmedicine: official journal of the Society of
Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 18 (1991), März,
Nr. 1, S. 116--131

[70] RĔčĉĊ, G K. ; BĆėēĊęę, A S. ; BĆĘĘĊė, P J. ; MĆėĊēĈĔ, S ; PĎĊėĕĆĔđĎ, C: Comprehensive
approach for correction of motion and distortion in diffusion-weighted MRI. In: Magnetic
resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine /
Society of Magnetic Resonance in Medicine 51 (2004), Januar, Nr. 1, S. 103--114

[71] HĔđĉĘĜĔėęč, Samantha J. ; AĐĘĔĞ, Murat ; NĊĜćĔĚđĉ, Rexford D. ; YĊĔĒ, Kristen
; VĆē, Anh T. ; OĔĎ, Melvyn B. ; BĆėēĊĘ, Patrick D. ; BĆĒĒĊė, Roland ; SĐĆėĊ,
Stefan: Diffusion tensor imaging (DTI) with retrospective motion correction for large-scale
pediatric imaging. 36 (2012), Nr. 4, 961--971. .
-- DOI 10.1002/jmri.23710. -- ISSN 1522--2586

[72] CėĚĒ, W. R. ; HĆėęĐĊēĘ, T. ; HĎđđ, D. L. G.: Non-rigid image registration: theory and practice.
In: The British Journal of Radiology 77 Spec No 2 (2004), S. S140--153

[73] AěĆēęĘ, Brian B. ; TĚĘęĎĘĔē, Nicholas J. ; SĔēČ, Gang ; CĔĔĐ, Philip A. ; KđĊĎē, Arno ; GĊĊ,
James C.: A reproducible evaluation of ANTs similarity metric performance in brain image
registration. In: NeuroImage 54 (2011), Februar, Nr. 3, S. 2033--2044

118



Bibliography

[74] HĆďēĆđ, Joseph V. ; HĎđđ, Derek L. G.: Medical Image Registration. CRC Press, 2001. -- ISBN
978--1--4200--4247--4

[75] DĆĎ, Liming ; JĆğĆė, Reza N.: Nonlinear Approaches in Engineering Applications:
Applied Mechanics, Vibration Control, and Numerical Analysis. Springer, 2014. -- ISBN
978--3--319--09462--5

[76] RĚĊĈĐĊėę, D. ; AđďĆćĆė, P.: Nonrigid Registration of Medical Images: Theory, Methods, and
Applications [Applications Corner]. In: IEEE Signal Processing Magazine 27 (2010), Juli, Nr. 4,
S. 113--119

[77] SęĚĉčĔđĒĊ, C. ; HĎđđ, D. L. G. ; HĆĜĐĊĘ, D. J.: An overlap invariant entropy measure of 3D
medical image alignment. In: Pattern Recognition 32 (1999), Januar, Nr. 1, S. 71--86

[78] NĔĈĊĉĆđ, Jorge ; WėĎČčę, Stephen: Numerical Optimization. Springer New York,
2006 (Springer Series in Operations Research and Financial Engineering). -- ISBN
978--0--387--30303--1

[79] DĆĎ, Yu-Hong: A Family of Hybrid Conjugate Gradient Methods for Unconstrained
Optimization. In: Math. Comput. 72 (2003), Juli, Nr. 243, S. 1317--1328

[80] DĊēēĎĘ, Jr. J. ; MĔėĴ, J.: Quasi-Newton Methods, Motivation and Theory. In: SIAM Review
19 (1977), Januar, Nr. 1, S. 46--89

[81] HĆēĘĊē, Nikolaus ; OĘęĊėĒĊĎĊė, Andreas: Completely Derandomized Self-Adaptation in
Evolution Strategies. In: Evol. Comput. 9 (2001), Juni, Nr. 2, S. 159--195

[82] HĆĘĊđČėĔěĊ, J C. ; MĔĔėĊ, J R.: Correction for distortion of echo-planar images used to
calculate the apparent diffusion coefficient. In: Magnetic resonance in medicine: official
journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in
Medicine 36 (1996), Dezember, Nr. 6, S. 960--964

[83] AĘčćĚėēĊė, John ; FėĎĘęĔē, Karl J.: Voxel-Based Morphometry—The Methods. In:
NeuroImage 11 (2000), Juni, Nr. 6, S. 805--821

[84] AĕĎĈĊđđĆ, Anthony ; KĎĕĕĊēčĆē, J. S. ; NĆČĊđ, Joachim H.: Fast Multi-Modality Image
Matching. In: Medical Imaging III: Image Processing, SPIE Vol. 1092 Bd. 1092, 1989, S. 252--263

[85] BĆĘęĎē, Mark E.: Correction of eddy current-induced artefacts in diffusion tensor imaging
using iterative cross-correlation. In: Magnetic Resonance Imaging 17 (1999), September, Nr.
7, S. 1011--1024

[86] MĆęęĊĘ, David ; HĆĞēĔė, David R. ; VĊĘĘĊđđĊ, Hubert ; LĊĜĊđđĞē, Thomas K. ; EĚćĆēĐ,
William: Nonrigid multimodality image registration. In: Medical Imaging 2001: Image
Processing Bd. 4322, 2001, S. 1609

[87] VĎĔđĆ, Paul ; WĊđđĘ, William M. W.: Alignment by Maximization of Mutual Information. In:
International Journal of Computer Vision 24 (1997), September, Nr. 2, S. 137--154

[88] BĆĒĒĊė, R. ; AĚĊė, M.: Correction of eddy-current induced image warping in
diffusion-weighted single-shot EPI using constrained nonrigid mutual information image
registration. In: Proceedings of the 9th Annual Meeting of ISMRM, Glasgow, Scotland, 2001,
2001, S. 508

119



Bibliography

[89] WĎęęĘĆĈĐ, H. J. ; RĎęğđ, A. ; MśĉĉĊė, U.: User friendly analysis of MR investigations of the
cerebral perfusion: Windows(R)-based image processing. In: RöFo: Fortschritte Auf Dem
Gebiete Der Röntgenstrahlen Und Der Nuklearmedizin 174 (2002), Juni, Nr. 6, S. 742--746

[90] IćĆēĊğ, L. ; SĈčėĔĊĉĊė, W. ; NČ, L. ; CĆęĊĘ, J. ; CĔēĘĔėęĎĚĒ the Insight s.: The ITK Software
Guide - Second Edition. 2005

[91] TėĊĒćđĆĞ, Marleine ; TĆĒ, Fred ; GėĆčĆĒ, Simon J.: Retrospective coregistration of
functional magnetic resonance imaging data using external monitoring. In: Magnetic
Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine /
Society of Magnetic Resonance in Medicine 53 (2005), Januar, Nr. 1, S. 141--149

[92] FėĎĘęĔē, K. J. ; HĔđĒĊĘ, A. P. ; WĔėĘđĊĞ, K. J. ; PĔđĎēĊ, J.-P. ; FėĎęč, C. D. ; FėĆĈĐĔĜĎĆĐ,
R. S. J.: Statistical parametric maps in functional imaging: A general linear approach. In:
Human Brain Mapping 2 (1994), Januar, Nr. 4, S. 189--210

[93] WĆēČ, Ruopeng ; VĆē J., Weeden: Diffusion Toolkit: A Software Package for Diffusion
Imaging Data Processing and Tractography. In: ISMRM abstract Proceedings International
Society of Magnetic Resonance in Medicine (2007), S. 3720

[94] BĔėĎĚĘ, Pierre-Yves ; RĔĚĝ, Franck-Emmanuel ; VĆđęĔē, Luc ; SĔđ, Jean-Christophe ;
LĔęęĊėĎĊ, Jean-Albert ; BĊėėĞ, Isabelle: Can DTI fiber tracking of the optic radiations predict
visual deficit after surgery? In: Clinical Neurology and Neurosurgery 122 (2014), Juli, S. 87--91

[95] YĆĘĒĎē, Hasina ; KĆćĆĘĆĜĆ, Hiroyuki ; AĔĐĎ, Shigeki ; AćĊ, Osamu ; MĆĘĚęĆēĎ, Yoshitaka ;
HĆĞĆĘčĎ, Naoto ; OčęĔĒĔ, Kuni: Motion-robust diffusion tensor acquisition at routine 3T
magnetic resonance imaging. In: Japanese journal of radiology 28 (2010), Januar, Nr. 1, S.
27--33

[96] KđĔĔĘęĊė, R. van '. ; SęĆėĎēČ, M. ; KđĊĎē, S. ; KĜĊĊ, R. M. ; KĔĔĎ, M. E. ; RĊĎćĊė, J. H. C. ;
LĊđĎĊěĊđĉę, B. P. F. ; GĊĊĘę, R. J. d.: Automated registration of multispectral MR vessel wall
images of the carotid artery. In: Medical Physics 40 (2013), Dezember, Nr. 12, S. 121904

[97] TĆēČ, Yuchun ; HĔďĆęĐĆĘčĆēĎ, Cornelius ; DĎēĔě, Ivo D. ; SĚē, Bo ; FĆē, Lingzhong ; LĎē,
Xiangtao ; QĎ, Hengtao ; HĚĆ, Xue ; LĎĚ, Shuwei ; TĔČĆ, Arthur W.: The construction
of a Chinese MRI brain atlas: a morphometric comparison study between Chinese and
Caucasian cohorts. In: NeuroImage 51 (2010), Mai, Nr. 1, S. 33--41

[98] PĊēęĆēČ, Gael ; LĆēğĒĆē, Rotem S. ; HĊĚĘĈč, Philpp ; MűđđĊė-LĚęğ, Anja ; BđĔēĉĎē, Dirk ;
AēęĔĈč, Gerald ; WĎęęĘĆĈĐ, Hans-Jörg: Diffusion kurtosis imaging of the human kidney: A
feasibility study. In: Magnetic Resonance Imaging 32 (2014), Nr. 5, S. 413--20

[99] AďĆ-FĊėēĆēĉĊğ, Santiago ; NĎĊęčĆĒĒĊė, Marc ; KĚćĎĈĐĎ, Marek ; SčĊēęĔē, Martha E. ;
WĊĘęĎē, Carl-Fredrik: Restoration of DWI Data Using a Rician LMMSE Estimator. In: IEEE
transactions on medical imaging 27 (2008), Oktober, Nr. 10, S. 1389--1403

[100] CĔĚđĔē, O. ; AđĊĝĆēĉĊė, D. C. ; AėėĎĉČĊ, S.: Diffusion tensor magnetic resonance image
regularization. In: Medical Image Analysis 8 (2004), Nr. 1

[101] CĆĘęĆŕĔ-MĔėĆČĆ, C. A. ; LĊēČđĊę, C. ; DĊėĎĈčĊ, R. ; RĚĎğ-AđğĔđĆ, J.: A Riemannian approach
to anisotropic filtering of tensor fields. In: Signal Processing 87 (2007), Nr. 2

120



Bibliography

[102] CđĆėĐĊ, R.A ; SĈĎċĔ, P. ; RĎğğĔ, G. ; DĊđđ'AĈĖĚĆ, F. ; SĈĔęęĎ, G. ; FĆğĎĔ, F.: Noise Correction
on Rician Distributed Data for Fibre Orientation Estimators. In: IEEE Transactions onMedical
Imaging 27 (2008), September, Nr. 9, S. 1242--1251.

. -- DOI 10.1109/TMI.2008.920615. -- ISSN 0278--0062

[103] FĎđđĆėĉ, Pierre ; PĊēēĊĈ, Xavier ; AėĘĎČēĞ, Vincent ; AĞĆĈčĊ, Nicholas: Clinical DT-MRI
estimation, smoothing, and fiber tracking with log-Euclidean metrics. In: IEEE transactions
on medical imaging 26 (2007), November, Nr. 11, S. 1472--1482.

. -- DOI 10.1109/TMI.2007.899173. -- ISSN 0278--0062

[104] PĊėĔēĆ, P. ; MĆđĎĐ, J.: Scale-space and edge detection using anisotropic diffusion. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 12 (1990), Juli, Nr. 7, S. 629--639

[105] TėĎĘęġē-VĊČĆ, Antonio ; AďĆ-FĊėēġēĉĊğ, Santiago: DWI filtering using joint information for
DTI and HARDI. In: Medical image analysis 14 (2010), April, Nr. 2, S. 205--218

[106] GĊėĎČ, G. ; KĚćđĊė, O. ; KĎĐĎēĎĘ, R. ; JĔđĊĘğ, F.A.: Nonlinear anisotropic filtering of MRI data.
In: IEEE Transactions on Medical Imaging 11 (1992), Juni, Nr. 2, S. 221--232

[107] TėĎĘęĆē-VĊČĆ, A. ; BėĎĔē, V. ; VĊČĆĘ-SĆēĈčĊğ-FĊėėĊėĔ, G. ; AďĆ-FĊėēĆēĉĊğ, S.: Merging
squared-magnitude approaches to DWI denoising: An adaptive Wiener filter tuned to the
anatomical contents of the image. In: 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), 2013, S. 507--510

[108] FĊėėĆėĎ, Ricardo J.: Off-line determination of the optimal number of iterations of the robust
anisotropic diffusion filter applied to denoising of brain MR images. In: Medical & biological
engineering & computing 51 (2013), Februar, Nr. 1-2, S. 71--88

[109] WĎđĐĎēĘ, Bryce ; LĊĊ, Namgyun ; GĆďĆĜĊđđĎ, Niharika ; LĆĜ, Meng ; LĊĕĔėĴ, Natasha:
Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber
Orientations. In: 22 nd Annual Meeting of the International Society for Magnetic Resonance
in Medicine, 2014, S. 2591

[110] WĆēČ, Zhou ; BĔěĎĐ, A.C. ; SčĊĎĐč, H.R. ; SĎĒĔēĈĊđđĎ, E.P.: Image quality assessment: from
error visibility to structural similarity. In: IEEE Transactions on Image Processing 13 (2004),
April, Nr. 4, S. 600--612

[111] JĎĆēČ, Yi ; JĔčēĘĔē, G. A.: Microscopic diffusion tensor atlas of the mouse brain. In:
NeuroImage 56 (2011), Juni, Nr. 3, S. 1235--1243

[112] TĆđĆĎėĆĈč, J ; TĔĚėēĔĚĝ, P: Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional
Proportional System: An Approach to Cerebral Imaging. In: Thieme Medical (1988)

[113] LĆēĈĆĘęĊė, Jack L. ; WĔđĉĔėċċ, Marty G. ; PĆėĘĔēĘ, Lawrence M. ; LĎĔęęĎ, Mario ; FėĊĎęĆĘ,
Catarina S. ; RĆĎēĊĞ, Lacy ; KĔĈčĚēĔě, Peter V. ; NĎĈĐĊėĘĔē, Dan ; MĎĐĎęĊē, Shawn A. ; FĔĝ,
Peter T.: Automated Talairach Atlas labels for functional brain mapping. In: Human Brain
Mapping 10 (2000), Nr. 3, S. 120--131

[114] EěĆēĘ, A. C. ; CĔđđĎēĘ, D. L. ; MĎđēĊė, B.: An MRI-based stereotactic atlas from 250 young
normal subjects. In: Society for Neuroscience (1992), S. 408

121



Bibliography

[115] CĔđđĎēĘ, D. L. ; NĊĊđĎēČ, Peter ; PĊęĊėĘ, Terrence M. ; EěĆēĘ, Alan C.: Automatic
3D Intersubject Registration of MR Volumetric Data... : Journal of Computer Assisted
Tomography. 1994

[116] MĆğğĎĔęęĆ, John C. ; TĔČĆ, Arthur W. ; EěĆēĘ, Alan ; FĔĝ, Peter ; LĆēĈĆĘęĊė, Jack: A
Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development: The
International Consortium for Brain Mapping (ICBM). In: NeuroImage 2 (1995), Juni, Nr. 2,
Part A, S. 89--101

[117] TĔČĆ, Arthur W. ; TčĔĒĕĘĔē, Paul M. ; MĔėĎ, Susumu ; AĒĚēęĘ, Katrin ; ZĎđđĊĘ, Karl:
Towards multimodal atlases of the human brain. In: Nature reviews. Neuroscience 7 (2006),
Dezember, Nr. 12, S. 952--966

[118] LĤęę, Jimmy ; NĎđĘĘĔē, Markus ; WĎėĊĘęĆĒ, Ronnie ; SęħčđćĊėČ, Freddy ; KĆėđĘĘĔē, Nils ;
JĔčĆēĘĘĔē, Mikael ; SĚēĉČėĊē, Pia C. ; WĊĘęĊē, Danielle van: Regional values of diffusional
kurtosis estimates in the healthy brain. In: Journal ofMagnetic Resonance Imaging 37 (2013),
Nr. 3, S. 610--618

[119] HĊđĊēĎĚĘ, Johanna ; SĔĎēēĊ, Lauri ; PĊėĐĎś, Jussi ; SĆđĔēĊē, Oili ; KĆēČĆĘĒĤĐĎ, Aki
; KĆĘęĊ, Markku ; CĆėĆēĔ, Richard A. D. ; AėĔēĊē, Hannu J. ; TĆęđĎĘĚĒĆĐ, Turgut:
Diffusion-weighted MR imaging in normal human brains in various age groups. In: AJNR.
American journal of neuroradiology 23 (2002), Februar, Nr. 2, S. 194--199

[120] PĊēęĆēČ, Gael ; MĆęčĞĘ, Christian ; TĚėĔĜĘĐĎ, Bernd ; AēęĔĈč, Gerald ; WĎęęĘĆĈĐ,
Hans-Jörg: Evaluation of mutual information based motion correction techniques in DTI.
In: European Society of Magnetic Resonance in Medicine and Biology In Proceeding of the
28th scientific meeting (2011)

[121] KđĊĎē, Arno ; AēĉĊėĘĘĔē, Jesper ; AėĉĊĐĆēĎ, Babak A. ; AĘčćĚėēĊė, John ; AěĆēęĘ, Brian
; CčĎĆēČ, Ming-Chang ; CčėĎĘęĊēĘĊē, Gary E. ; CĔđđĎēĘ, D. L. ; GĊĊ, James ; HĊđđĎĊė, Pierre
; SĔēČ, Joo H. ; JĊēĐĎēĘĔē, Mark ; LĊĕĆČĊ, Claude ; RĚĊĈĐĊėę, Daniel ; TčĔĒĕĘĔē, Paul ;
VĊėĈĆĚęĊėĊē, Tom ; WĔĔĉĘ, Roger P. ; MĆēē, J. J. ; PĆėĘĊĞ, Ramin V.: Evaluation of 14
nonlinear deformation algorithms applied to human brain MRI registration. In: NeuroImage
46 (2009), Juli, Nr. 3, S. 786--802

[122] PĊēČ, Huiling ; OėđĎĈčĊēĐĔ, Anton ; DĆĜĊ, Robert J. ; AČĆĒ, Gady ; ZčĆēČ, Shengwei ;
AėċĆēĆĐĎĘ, Konstantinos: Development of a Human Brain Diffusion Tensor Template. In:
NeuroImage 46 (2009), Juli, Nr. 4, S. 967--980

[123] MĔėĎ, Susumu ; OĎĘčĎ, Kenichi ; JĎĆēČ, Hangyi ; JĎĆēČ, Li ; LĎ, Xin ; AĐčęĊė, Kazi ; HĚĆ, Kegang
; FĆėĎĆ, Andreia V. ; MĆčĒĔĔĉ, Asif ; WĔĔĉĘ, Roger ; TĔČĆ, Arthur W. ; PĎĐĊ, G. B. ; NĊęĔ,
Pedro R. ; EěĆēĘ, Alan ; ZčĆēČ, Jiangyang ; HĚĆēČ, Hao ; MĎđđĊė, Michael I. ; ZĎďđ, Peter van
; MĆğğĎĔęęĆ, John: Stereotaxic white matter atlas based on diffusion tensor imaging in an
ICBM template. In: NeuroImage 40 (2008), April, Nr. 2, S. 570--582

[124] WĚ, Yu-Chien ; FĎĊđĉ, Aaron S. ; WčĆđĊē, Paul J. ; AđĊĝĆēĉĊė, Andrew L.: Age and Gender
Related Changes in the Normal Human Brain using Hybrid Diffusion Imaging (HYDI). In:
NeuroImage 54 (2011), Februar, Nr. 3, S. 1840--1853

122



Bibliography

[125] PĔĔę, D. H J. ; DĊĐĐĊė, A.J. den ; AĈčęĊē, E. ; VĊėčĔĞĊ, M. ; SĎďćĊėĘ, J.: Optimal Experimental
Design for Diffusion Kurtosis Imaging. In: IEEE Transactions on Medical Imaging 29 (2010),
Nr. 3, S. 819--829

[126] SĚđđĎěĆē, Edith V. ; PċĊċċĊėćĆĚĒ, Adolf: Diffusion tensor imaging and aging. In:
Neuroscience and biobehavioral reviews 30 (2006), Nr. 6, S. 749--761

[127] AėĉĊĐĆēĎ, Siamak ; SĎēčĆ, Usha: Statistical representation of mean diffusivity and fractional
anisotropy brain maps of normal subjects. In: Journal of magnetic resonance imaging: JMRI
24 (2006), Dezember, Nr. 6, S. 1243--1251

[128] VĆē HĊĈĐĊ, Wim ; SĎďćĊėĘ, Jan ; D'AČĔĘęĎēĔ, Emiliano ; MĆĊĘ, Frederik ; DĊ BĆĈĐĊė, Steve
; VĆēĉĊėěđĎĊę, Evert ; PĆėĎğĊđ, Paul M. ; LĊĊĒĆēĘ, Alexander: On the construction of an
inter-subject diffusion tensor magnetic resonance atlas of the healthy human brain. In:
NeuroImage 43 (2008), Oktober, Nr. 1, S. 69--80

[129] JĔēĊĘ, Derek K.: The effect of gradient sampling schemes on measures derived from
diffusion tensor MRI: a Monte Carlo study. In: Magnetic resonance in medicine: official
journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in
Medicine 51 (2004), April, Nr. 4, S. 807--815

[130] MűđđĊė, H-P ; UēėĆęč, A ; LĚĉĔđĕč, A C. ; KĆĘĘĚćĊĐ, J: Preservation of diffusion tensor
properties during spatial normalization by use of tensor imaging and fibre tracking on a
normal brain database. In: Physics inmedicine andbiology 52 (2007), März, Nr. 6, S. N99--109

[131] ZčĆēČ, Hui ; YĚĘčĐĊěĎĈč, Paul A. ; RĚĊĈĐĊėę, Daniel ; GĊĊ, James C.: A Computational White
Matter Atlas for Aging with Surface-Based Representation of Fasciculi. In: FĎĘĈčĊė, Bernd
(Hrsg.) ; DĆĜĆēę, Benoît M. (Hrsg.) ; LĔėĊēğ, Cristian (Hrsg.): Biomedical ImageRegistration.
Springer Berlin Heidelberg, Januar 2010 (Lecture Notes in Computer Science 6204). -- ISBN
978--3--642--14365--6 978--3--642--14366--3, S. 83--90

[132] LĎĚ, Zhexing ; GĔĔĉđĊęę, Casey ; GĊėĎČ, Guido ; SęĞēĊė, Martin: Evaluation of DTI
Property Maps as Basis of DTI Atlas Building. In: Proceedings - Society of Photo-Optical
Instrumentation Engineers 7623 (2010), März

[133] PĔĜĊđđ, J.L. ; PĆėĐĊĘ, L. ; KĊĒĕ, G.J. ; SđĚĒĎēČ, V. ; BĆėėĎĈĐ, T.R. ; GĆėĈŃĆ-FĎŕĆēĆ, M.: The
effect of sex and handedness on white matter anisotropy: a diffusion tensor magnetic
resonance imaging study. In: Neuroscience 207 (2012), April, S. 227--242

[134] LĆğĆė, Nicole: The Statistical Analysis of Functional MRI Data. Springer, 2008. -- ISBN
978--0--387--78191--4

[135] PĔėęĊė, David A. ; HĊĎĉĊĒĆēē, Robin M.: High resolution diffusion-weighted imaging
using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional
navigator-based reacquisition. In: Magnetic Resonance in Medicine: Official Journal of the
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 62
(2009), August, Nr. 2, S. 468--475

[136] NĔęĔčĆĒĎĕėĔĉďĔ, Mike ; DĎĊęėĎĈč, Olaf ; HĔėČĊė, Wihelm ; HĔėēČ, Annie ; HĊđĈĐ,
Andreas D. ; HĊėėĒĆēē, Karin A. ; RĊĎĘĊė, Maximilian F. ; GđĆĘĊė, Christian: Diffusion Tensor
Imaging (DTI) of the Kidney at 3 Tesla–Feasibility, Protocol Evaluation and Comparison to
1.5 Tesla. In: Investigative Radiology 45 (2010), Mai, Nr. 5, S. 245--254

123



Bibliography

[137] LĆČĆēĆ, M ; RĔěĆėĎĘ, M ; CĊĈĈĆėĊđđĎ, A ; VĊēęĚėĊđđĎ, C ; MĆėĎēĎ, S ; BĆĘĊđđĎ, G: DTI Parameter
Optimisation for Acquisition at 1.5T: SNR Analysis and Clinical Application. In: Computational
Intelligence and Neuroscience 2010 (2010), Januar

[138] KĎĉĔ, Aki ; KĆęĆĔĐĆ, Masako ; YĆĒĆĒĔęĔ, Akira ; NĆĐĆĒĔęĔ, Yuji ; UĒĊĔĐĆ, Shigeaki ;
KĔĞĆĒĆ, Takashi ; MĆĊęĆēĎ, Yoji ; IĘĔĉĆ, Hiroyuki ; TĆĒĆĎ, Ken ; MĔėĎĘĆĜĆ, Nobuko ; SĆČĆ,
Tsuneo ; MĔėĎ, Susumu ; TĔČĆĘčĎ, Kaori: Diffusion tensor MRI of the kidney at 3.0 and
1.5 Tesla. In: Acta radiologica (Stockholm, Sweden: 1987) 51 (2010), November, Nr. 9, S.
1059--1063

[139] TčĊ MĆęčWĔėĐĘ, Inc.: Evaluating Goodness of Fit. Version: 2016.

, Abruf: 05.10.2016

[140] WĎęęĘĆĈĐ, Hans-Jörg ; LĆēğĒĆē, Rotem S. ; MĆęčĞĘ, Christian ; JĆēĘĘĊē, Hendrik ; MśĉĉĊė,
Ulrich ; BđĔēĉĎē, Dirk: Statistical evaluation of diffusion-weighted imaging of the human
kidney. In: Magnetic resonance in medicine: official journal of the Society of Magnetic
Resonance in Medicine / Society of Magnetic Resonance in Medicine 64 (2010), August, Nr.
2, S. 616--622

[141] RĔĘĊēĐėĆēęğ, Andrew B. ; SĎČĒĚēĉ, Eric E. ; JĔčēĘĔē, Glyn ; BĆćć, James S. ; MĚĘĘĎ,
Thais C. ; MĊđĆĒĊĉ, Jonathan ; TĆēĊďĆ, Samir S. ; LĊĊ, Vivian S. ; JĊēĘĊē, Jens H.: Prostate
cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection
and assessment of aggressiveness of peripheral zone cancer. In: Radiology 264 (2012), Juli,
Nr. 1, S. 126--135

[142] YĔĘčĎĐĆĜĆ, Takeshi ; KĆĜĆĒĎęĘĚ, Hideaki ; MĎęĈčĊđđ, Donald G. ; OčēĔ, Yoshiharu ; KĚ,
Yonson ; SĊĔ, Yasushi ; FĚďĎĎ, Masahiko ; SĚČĎĒĚėĆ, Kazuro: ADC measurement of
abdominal organs and lesions using parallel imaging technique. In: AJR. American journal
of roentgenology 187 (2006), Dezember, Nr. 6, S. 1521--1530

[143] HĊĚĘĈč, Philipp ; WĎęęĘĆĈĐ, Hans-Jörg ; KėśĕĎđ, Patric ; BđĔēĉĎē, Dirk ; QĚĊēęĎē, Michael
; KđĆĘĊē, Janina ; PĊēęĆēČ, Gael ; AēęĔĈč, Gerald ; LĆēğĒĆē, Rotem S.: Impact of
blood flow on diffusion coefficients of the human kidney: A time-resolved ECG-triggered
diffusion-tensor imaging (DTI) study at 3T. In: Journal of Magnetic Resonance Imaging 37
(2013), Nr. 1, S. 233--236

[144] TĆćĊĘč, Ali ; JĊēĘĊē, Jens H. ; AėĉĊĐĆēĎ, Babak A. ; HĊđĕĊėē, Joseph A.: Erratum: Estimation
of tensors and tensor-derived measures in diffusional kurtosis imaging. In: Magnetic
Resonance in Medicine 65 (2011), Nr. 5, S. 1507--1507

[145] JĆēĘĊē, J. F. A. ; SęĆĒćĚĐ, H. E. ; KĔĚęĈčĊė, J. A. ; SčĚĐđĆ-DĆěĊ, A.: Non-Gaussian Analysis of
Diffusion-Weighted MR Imaging in Head and Neck Squamous Cell Carcinoma: A Feasibility
Study. In: American Journal of Neuroradiology 31 (2010), Januar, Nr. 4, S. 741--748

[146] GėĎēćĊėČ, Farida ; FĆėėčĊė, Ezequiel ; KĆċċĆēĐĊ, Joachim ; OėĔĘ-PĊĚĘĖĚĊēĘ, Ana-Maria ;
SčĆč, N. J.: Non-Gaussian diffusion in human brain tissue at high b-factors as examined by
a combined diffusion kurtosis and biexponential diffusion tensor analysis. In: NeuroImage
57 (2011), August, Nr. 3, S. 1087--1102

124



Bibliography

[147] LĆēğĒĆē, Rotem S. ; LďĎĒĆēĎ, Alexandra ; PĊēęĆēČ, Gael ; ZČĔĚėĆ, Panagiota ; ZĊēČĎēđĎ,
Hakan ; KėśĕĎđ, Patric ; HĊĚĘĈč, Philipp ; SĈčĊĐ, Julia ; MĎĊĘĊ, Falk R. ; BđĔēĉĎē, Dirk ;
AēęĔĈč, Gerald ; WĎęęĘĆĈĐ, Hans-Jörg: Kidney Transplant: Functional Assessment with
Diffusion-Tensor MR Imaging at 3T. In: Radiology 266 (2013), Januar, Nr. 1, S. 218--225

[148] FĚĐĚēĆČĆ, Issei ; HĔėĎ, Masaaki ; MĆĘĚęĆēĎ, Yoshitaka ; HĆĒĆĘĆĐĎ, Nozomi ; SĆęĔ, Shuji ;
SĚğĚĐĎ, Yuriko ; KĚĒĆČĆĎ, Fumitaka ; KĔĘĚČĊ, Masatsugu ; HĔĘčĎęĔ, Haruyoshi ; KĆĒĆČĆęĆ,
Koji ; SčĎĒĔďĎ, Keigo ; NĆĐĆēĎĘčĎ, Atsushi ; AĔĐĎ, Shigeki ; SĊēĔĔ, Atsushi: Effects of
diffusional kurtosis imaging parameters on diffusion quantification. In: Radiological Physics
and Technology 6 (2013), Juli, Nr. 2, S. 343--348

[149] CĔėėĊĎĆ, Marta M. ; CĆėĕĊēęĊė, Thomas A. ; WĎđđĎĆĒĘ, Guy B.: Looking for the optimal DTI
acquisition scheme given a maximum scan time: are more b-values a waste of time? In:
Magnetic Resonance Imaging 27 (2009), Februar, Nr. 2, S. 163--175

[150] NĎ, H. ; KĆěĈĎĈ, V. ; ZčĚ, T. ; EĐčĔđĒ, S. ; ZčĔēČ, J.: Effects of Number of Diffusion Gradient
Directions on Derived Diffusion Tensor Imaging Indices in Human Brain. In: American Journal
of Neuroradiology 27 (2006), Januar, Nr. 8, S. 1776--1781

[151] CčĊċĉ'čĔęĊđ, C. ; HĊėĒĔĘĎđđĔ, G. ; FĆĚČĊėĆĘ, O.: A variational approach to multi-modal
image matching. In: IEEEWorkshop on Variational and Level SetMethods in Computer Vision,
2001. Proceedings, 2001, S. 21--28

[152] HĊėĒĔĘĎđđĔ, Gerardo ; CčĊċĉ'HĔęĊđ, Christophe ; FĆĚČĊėĆĘ, Olivier: Variational Methods
for Multimodal Image Matching. In: International Journal of Computer Vision 50 (2002),
Dezember, Nr. 3, S. 329--343

[153] HĚĆēČ, Yanqi ; CčĊē, Xin ; ZčĆēČ, Zhongping ; YĆē, Lifen ; PĆē, Dan ; LĎĆēČ, Changhong ;
LĎĚ, Zaiyi: MRI quantification of non-Gaussian water diffusion in normal human kidney: a
diffusional kurtosis imaging study. In: NMR in Biomedicine 28 (2015), Nr. 2, S. 154--161

[154] VĊėĆĆėę, Jelle ; PĔĔę, Dirk H. J. ; VĆē HĊĈĐĊ, Wim ; BđĔĈĐĝ, Ines ; LĎēĉĊē, Annemie Van d. ;
VĊėčĔĞĊ, Marleen ; SĎďćĊėĘ, Jan: More accurate estimation of diffusion tensor parameters
using diffusion kurtosis imaging. In: Magnetic Resonance in Medicine 65 (2011), Nr. 1, S.
138--145

[155] QĚĊēęĎē, Michael ; PĊēęĆēČ, Gael ; SĈčĎĒĒśđđĊė, Lars ; KĔęę, Olga ; MűđđĊė-LĚęğ, Anja
; BđĔēĉĎē, Dirk ; AėĘĔě, Christian ; HĎĊĘęĊė, Andreas ; RĆćĊēĆđę, Robert ; WĎęęĘĆĈĐ,
Hans-Jörg: Feasibility of diffusional kurtosis tensor imaging in prostate MRI for the
assessment of prostate cancer: preliminary results. In: Magnetic Resonance Imaging 32
(2014), September, Nr. 7, S. 880--885

[156] RĆğ, E. ; BĊĘęĊė, M. ; SĎČĒĚēĉ, E. E. ; TĆćĊĘč, A. ; BĆćć, J. S. ; JĆČČĎ, H. ; HĊđĕĊėē, J. ; MĎęēĎĈĐ,
R. J. ; IēČđĊĘĊ, M.: A Better Characterization of Spinal Cord Damage in Multiple Sclerosis:
A Diffusional Kurtosis Imaging Study. In: American Journal of Neuroradiology 34 (2013),
September, Nr. 9, S. 1846--1852

[157] ZčĆēČ, Wei ; MĆ, Xiaohui ; WĆēČ, Yan ; ZčĆĔ, Jian ; ZčĆēČ, Xujing ; GĆĔ, Yu ; LĎ, Shiling:
Assessment of apparent diffusion coefficient in lumbar intervertebral disc degeneration.
In: European Spine Journal: Official Publication of the European Spine Society, the European

125



Bibliography

Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 23
(2014), September, Nr. 9, S. 1830--1836

[158] SĎēĐĚĘ, R. ; LĔėĊēğĊē, J. ; SĈčėĆĉĊė, D. ; LĔėĊēğĊē, M. ; DĆėČĆęğ, M. ; HĔđğ, D.:
High-resolution tensor MR elastography for breast tumour detection. In: Physics inMedicine
and Biology 45 (2000), Juni, Nr. 6, S. 1649

126


