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Summary

We used total internal reflection microscopy (TIRM) to measure the static interaction between 
colloidal probe spheres and a flat glass wall. The technique was applied to two fundamentally 
different systems. (i) The colloidal probe spheres and/or the glass wall were covered with a so 
called S-layer protein, Sgs-EGFP. In this case the protein-protein interaction was investigated. (ii) 
Bare colloidal spheres were suspended in a solution of rod shaped fd-virus next to a bare glass 
wall. Here we were mainly interested in the depletion interaction between the sphere and the wall 
induced by the rods. In the latter case we also analyzed the dynamic information, which is 
inherent to TIRM raw data, to obtain further insight into the mechanism underlying the sphere-
wall interaction.

Protein-protein interactions: Measurements at increasing electrolyte content of the suspending 
buffer showed that the sphere is stable against irreversible sticking to the surface due to van der 
Waals attraction at significantly higher ionic strength, if the sphere and the surface are protein 
coated, as compared to the case of bare surfaces. Qualitative data analysis implies that there is an 
additional repulsive interaction on top of the DLVO potential, which is effective over a range of 
tens of nano-meters. This is at least one order of magnitude larger than the range of so-called 
hydration forces, which are usually considered responsible for protein stability beyond DLVO-
interaction.

Depletion interaction induced by fd-virus: We measured depletion potentials by TIRM over a 
wide range of probe spheres sizes and rod concentrations to explore the limits of the fundamental 
approximations used in the classical Asakura-Oosawa theory (AO), which are the treatment of the 
depletant as an ideal gas and Derjaguin approximation, demanding that the sphere radius is much 
larger than the rod length. The experimental data follow the AO predictions at concentrations and 
size ratios, at which this is expected to fail. At even higher fd-concentrations, we observe 
deviations from the ideal gas behavior, which are much larger and of opposite sign than predicted 
earlier. By analyzing the dynamic information inherent to the raw data, we found evidence that 
this observation is caused by the dynamics of the rod network which is inevitably formed at fd-
concentrations above the overlap density. In a first step, we used the initial slope of the intensity 
correlation functions to determine spatially averaged particle diffusion coefficients, which show a 
dependence on the fd-concentration which is intriguingly similar to the concentration dependence 
of the amplitude of the depletion potential. Therefore, we assume that the large amplitude of the 
apparent attractive potential at high fd-concentrations is not anymore due to depletion forces but 
rather to the particle being mechanically trapped in the network of rods.

To gain further insight into the systems dynamics, we determined spatially resolved dynamic data. 
We found that the particle’s drift velocity due to the external force field can be determined with 
excellent accuracy, while it appears to be generally much more difficult to measure near-wall 
diffusion coefficients by TIRM. This finding might open a new route to use TIRM as tool to 
measure local viscosities at extremely low shear rates by a passive micro-rheology approach.



 
 

Zusammenfassung
In dieser Arbeit beschreibe ich Experimente mit „total internal reflection microscopy“ (TIRM) zur 
Messung der Wechselwirkungspotenziale zwischen einer kolloidalen Sondenkugel und einer 
flachen Glaswand. Es wurden zwei Systeme untersucht: (i) Die Kugel und/oder die Glaswand 
waren mit einer Lage aus dem sogenannten S-Layer Protein Sgs-EGFP beschichtet. In diesem Fall 
wurden nicht-spezifischen Protein-Protein Wechselwirkungen untersucht. (ii) Die Sondenkugel 
wurde in einer Lösung von stäbchenförmigen fd-Viren suspendiert, um die Verarmungs-
(Depletion) -wechselwirkung zu untersuchen, die durch die Stäbchen verursacht wird. In diesem 
Fall habe ich auch die, in den Rohdaten enthaltene Information, zur Dynamik des Systems 
analysiert, um die Mechanismen besser zu verstehen, die der Wechselwirkung zugrunde liegen.
Protein-Protein Wechselwirkung: Es wurden vergleichende Experimente gemacht, in denen 
Systeme mit unbeschichteten Oberflächen solchen gegenüber gestellt wurden, in denen die 
Oberflächen mit Sgs-EGFP bedeckt waren. Messungen bei steigendem Elektrolytgehalt der 
Suspension zeigen, dass das System sehr viel stabiler gegenüber einer irreversiblen Adhäsion 
aufgrund von van der Waals Attraktion ist, wenn die Kugel und die Glaswand mit Proteinen 
beschichtet sind. Eine qualitative Datenanalyse zeigt, dass eine zusätzliche abstoßende 
Wechselwirkung existieren muss, die über die klassischen DLVO-Potenziale hinausgeht. 
Allerdings hat diese Wechselwirkung eine Reichweite von mehreren zehn Nanometern, was 
mindestens eine Größenordnung mehr ist, als die Reichweite sogenanntes Hydration-Kräfte, die 
üblicherweise zur Erklärung der Stabilität von Proteinen bei hohen Salzkonzentrationen 
herangezogen werden. 
Depletion Wechselwirkung durch fd-Viren: Ich habe Depletion-Potenziale über einen weiten 
Bereich von Kugelgrößen und Stäbchenkonzentrationen gemessen, um zu untersuchen, wo die die 
Grenzen der fundamentalen Näherungsannahmen liegen, die in der klassischen Asakura-Oosawa 
(AO)-Theorie der Depletionwechselwirkung gemacht werden. Dies sind die Behandlung der 
Stäbchen als ideales Gas und die Derjaguin-Näherung, die verlangt, dass der Kugelradius sehr viel 
größer als die Stäbchenlänge sein muss. Die experimentellen Daten werden durch die AO-
Voraussagen sehr gut beschrieben, auch in Konzentrationsbereichen und bei Größenverhältnissen, 
wo das eigentlich nicht mehr erwartet werden kann. Bei noch höheren fd-Gehalten beobachte ich 
Abweichungen vom Verhalten des idealen Gases, die allerdings sehr viel größer sind und das 
entgegengesetzte Vorzeichen haben, als theoretisch vorausgesagt. Die Analyse räumlich 
gemittelter Diffusionskoeffizienten, legt nahe, dass diese Abweichungen durch die Dynamik des 
Stäbchennetzwerks bedingt sind, das sich bei hohen Konzentration unweigerlich bildet. Die 
Amplitude der Depletionwechselwirkung und die gemittelten Diffusionskoeffizienten zeigen eine 
sehr ähnliche Abhängigkeit von der Stäbchenkonzentration. Dies legt nahe, dass die überhöhte 
Amplitude des effektiven attraktiven Potentials bei hohen fd-Konzentrationen nicht mehr durch 
Depletionwechselwirkungen zustande kommt, sondern eher durch eine Behinderung der 
Kugelbeweglichkeit durch das Stäbchennetzwerk.
Um weitere Einblicke in die Dynamik der Systeme zu bekommen, habe ich ortsaufgelöste Daten 
bestimmt. Dabei habe ich gefunden, dass die Drift-Geschwindigkeit der Partikel, die durch die 
äußeren Kräfte verursacht wird, sehr genau gemessen werden kann. Dagegen erscheint es sehr 
viel schwieriger ortsaufgelöste Diffusionskoeffizienten mit TIRM zu messen. Diese Beobachtung 
könnte eine neue Methode ermöglichen, TIRM zu nutzen, um mit einem mikrorheologischen 
Ansatz lokale Viskositäten bei extrem kleinen Scherraten zu messen.
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Introduction

In the present work static and dynamic properties of a specific kind of colloidal systems have 

been investigated by means of Total Internal Reflection Microscopy (TIRM).

Historically the only access to information about pair-interaction potentials has been via scattering 

techniques, like light scattering [1-3]. Yet, deriving interaction potentials with such methods 

always requires model assumptions that can be source of misinterpretations. For this reason, there 

has been a growing need for developing more direct methods to measure interactions, like e.g. 

Surface Force Apparatus [4] (SFA), Atomic Force Microscopy [5] (AFM), Optical Tweezers [6-

8] and Total Internal Reflection Microscopy (TIRM). Among these techniques, TIRM has proven 

the most sensitive and less invasive method [9] for the direct measurement of pair-wise 

interactions [10, 11]. Thus, this experimental investigation has chosen TIRM as most suitable set-

up, given our aims. Some examples of what has been already done with TIRM is the measurement 

of Van der Waals interactions [12], of critical Casimir forces [13, 14] and finally of depletion 

interactions [15-18]. The systems we decided to investigate are special kind of colloidal systems 

called Bio-mimetic. The term ‘’Bio-mimetic’’ derives from ancient Greek: (bios), life, and 

(mimesis), imitation,  and it was coined by the American bio-physicist Otto Herbert 

Schmitt during his doctoral research studies in the 50’s, while he was attempting to engineer a 

device that could replicate the biological system of nerve propagation in squids [19]. He realized 

that, through evolution and adaptability, biological systems provide countless of yet unrecognized 

technological solutions to complex human problems [20]. Thus, the aim of Bio-mimetics, which 

grew to be a hall independent scientific area, became to devise systems, either partially composed 

of biological matter or completely synthetic, able to mimic nature’s favourite solutions. Because 

of the richness and complexity within real biological systems, Bio-mimetics relate with many 

different fields. In applied bio-physics, for example, biomimetic systems are devised and used as 

models for real biological systems that may be very difficult to access and study otherwise. 

In this work a binary mixture of micron sized polystyrene beads and wild type fd-viruses [21-26]

was chosen as model system to study depletion interactions induced by long stiff rods, while the 

same polystyrene beads, coated with S-layer proteins  [27-29], have been used to study protein-

protein non-specific interactions. 



 
 

Nowadays it is well known that the physical properties of colloidal suspension are strongly 

affected by the forces acting between its components. Attempts to explain suspensions stability in 

these terms, go back to the beginning of the 20th century. Important and extensively studied 

forces in colloidal systems are magnetic forces, steric forces (due to attached polymers) and the so 

called DLVO interactions. The latter originate from surface charge interactions between colloidal 

particles like Van der Waals attraction and electrostatic repulsion. These interactions govern in 

many cases the stability and phase-behaviour of colloidal suspensions [8] but, in the last decades,

it has been observed that stability is also affect by yet another kind of forces, of entropic nature 

and normally classified as Non-DLVO interactions. The latter can be due, for example, to non-

adsorbing polymers in solution, which, through excluded volume effects, can drive larger colloids 

towards aggregation, as in the case of depletion interactions [30-32], or to the rearrangement of 

water molecules around proteins surfaces forming a steric-like layer that prevents aggregation, as 

in the case of hydration forces [33, 34].

Protein-protein non-specific interactions became a topic of great interest after it was clear that 

describing proteins like spherical patchy particles, thus with inhomogeneous surface charge 

distribution and a pair-wise potential defined solely by the DLVO, was not enough to justify their 

stability at physiological conditions [35]. Nonetheless, the fact that life is instead possible just at 

physiological conditions, implies stability in fact. An experimental investigation by Valle-

Delgado et al., conducted via AFM between bovine serum albumin layers adsorbed on different 

substrates, has shown a very strange behaviour at high salt concentrations and around the 

isoelectric point of the proteins: those interact attractively at low salt concentrations but 

repulsively at high salt concentrations [36]. Thus, in the present investigation, we decided to test 

if proteins belonging to the “slim layer” (s-layer) group would have the same behaviour in a salt 

concentration gradient. This class of proteins is one of the most common outermost cell envelope 

components of many bacteria and archea [37-39], shown to be determinant in the adaptation of 

such microorganisms to the external environment [27]. Moreover S-layer proteins are extensively 

studied for their ability of self-assembly in perfect 2D-lattices (e.g. in Fig. (II)), feature that can be 

used to immobilize other kind of biomolecules, leading to the so called S-layer fusion proteins

[28].



 
 

 
Figure II-Sketch of the p2 symmetry of the s-layer protein monomeric di-blocks.

A relevant example of the latter for our purposes are the fluorescent s-layer fusion proteins used 

already in a very broad range of applications in nano-bio-technology and bio-mimetics [40-46]. In 

this case, the labelling of the S-layer proteins with fluorescent dyes is obtained by genetically 

inserting cysteine groups [47] which will functionalize the proteins surface fluorescent. Moreover,

S-layer fusion proteins can be recrystallized on different kinds of substrates among which various 

kinds of polymers [48]. Thus, we chose this kind of fluorescent S-layer fusion proteins to obtain

the Bio-functional fluorescent particles and substrates used to probe protein-protein non-specific

interactions. We used total internal reflection microscopy (TIRM) to measure interaction 

potentials between  4 m polystyrene beads and a planar wall at constant pH=9 and at increased 

salt concentration, between 2-60 mM, considering all the possible cases: un-coated particle with 

un-coated wall, coated particle with un-coated wall, un-coated particle with coated wall (see 

section (4.1.1)). Fluorescence was used to check the quality of the coating procedure, via 

fluorescent confocal microscopy (see Fig. (3-1)(a)).

We can now introduce the second system, object of the present investigation: binary mixtures of 

spheres and rods. The latter have been widely investigated for their complex and interesting phase 

behaviour [49-51]. One study in particular, carried out using spherical particles and fd-viruses as 

depletants, has shown how diverse and surprising such phase diagram can be and how critically it

depends on the size ratio of the spheres’ radius to the length of the rods and on the relative 

volume fraction of one species with respect to the other [52] . Thus, the determination of stability 

configurations in binary mixtures, strongly on depends depletion interactions. The first 

formulation of a pair-wise depletion interaction potential belongs to the pioneering work of 

Asakura and Oosawa in 1954 [30-32], where depletion is explained as a purely entropic 

effectively attractive force pushing larger colloids together, for the smaller species to increase 

their free available volume, thus reduce the total energy of the system towards the equilibrium. In 

their model Asakoura and Oosawa applied two basic assumptions: the first is that the size of the 

colloidal spheres must be much larger than the depletant itself, called Derjaguin’s approximation 

(I); the second is for the depletants to be treated as an ideal gas, thus low density approximation 

(II).



 
 

There has been a plethora of studies reported in literature about the experimental verification of 

the depletion model within the theoretical limits [53-55] and as well some simulations extending

investigations beyond the limits of Derjaguin and low density approximation [56]. In this respect,

Auvray [57] and Mao et al. [58] theoretically studied the influence of the mutual excluded volume 

of the rods up to second order in density, finding that the resulting forces at increased rod number 

density showed values reduced of about six percent respect to the low density prediction, at rods

concentrations as high as ten times the overlap value. About the effect of the spheres to depletant

size ratio, Yaman et al. [56] and Lang [59], by means of numerical calculations, found out a rather 

pronounced effect linked to the violation of Derjaguin’s approximation. At ratios of rod-length 

over sphere radius / =2, e.g. the predicted values for the potential of the spheres at contact is 

approximately three times smaller than predicted by Derjaguin approximation. Experimentally, 

Yodh et al., using laser tweezers and image analysis techniques [60, 61], studied depletion 

interactions between silica particles mediated by fd-virus, with / >1 and at high concentrations.

These authors though, neglecting their violation of low density approximation, rather assigned the 

deviation of their results from the predictions to the finite flexibility of the fd-virus. The latter 

explanation has been though corrected by a subsequent study from July et al. [62], where, by 

comparing potentials induced by wild type fd-virus to data obtained using a stiff fd-mutant as 

depletant, it was shown that the flexibility of fd-rods does not change their effectiveness

significantly. Given this state of the art, in our contribution we used total internal reflection 

microscopy (TIRM) to probe simultaneously both limits of the Asakoura and Oosawa model 

theory through a more systematic data collection. We measured the interaction potentials between 

probe spheres of different sizes, 1– -like fd-

virus with concentrations varied from zero to 1mg/mL (see Fig. (4-4)). Given a rod length =880 , we measured with size-ratios varied in the range 0.44< / <1.76 and with concentrations 

in the range 0.85 14 , being =0.07 mg/mL the fd-virus overlap concentration, in

order to test both, the low density and Derjaguin approximation (see section (4.1.2)).

The same data sets were also analysed to try and gather dynamical information. To do so at first 

we followed the work published by Prieve and co-workers [63, 64] where they show that the 

slope at very short times of the intensity auto-correlation function for a probe sphere in an 

evanescent field can be used to derive an averaged diffusion coefficient normal to the interface, 

< > (see section (4.2.1)).  The latter is a quantity related to the Einstein’s bulk diffusion 

coefficient, , via a function that describes the hydrodynamic slow-down of the probe due to the 

presence of a near interface, averaged over all the heights spanned by the probe particle. Later on 



 
 

we realized that more detailed information could be gathered via a novel way to calculate mean 

displacement and mean square displacement at given heights (see section (4.2.2)). The relevance 

of this new calculations lies not only in the possibility of calculating normal diffusion coefficients 

(see Fig. (4-14)) and drift velocities (see Fig. (4-15)) at any accessible distance from the interface 

but also extrapolating absolute solvent viscosities (see Fig. (4-16)).

This thesis starts exposing all theories and models needed to explain both static and dynamic 

properties of the systems investigated via total internal reflection microscopy (see DLVO 

Interactions, Non-DLVO Interactions and Total Interaction Energy between a Sphere and a Wall, 

Section 1.1, 1.2 and 1.3 respectively and Dynamics of colloids in suspension, Section 1.4). The 

description of the principles, the set-up are collected in Chapter 2 (see Total Internal Reflection, 

Section 2.1and Sub-sections 2.1.1 and 2.1.2). The description of the experimental procedures 

involving samples and samples preparation are collected in chapter 3, section 3.1. The results 

obtained from both static and dynamic treatment of the TIRM intensity traces over time are 

presented in chapter 4, Results from Statics and Dynamics (see Section 4.1 with sub-sections 

4.1.1 and 4.1.2 and section 4.2 with sub-sections 4.2.1 and 4.2.2) The last chapter is of course 

dedicated to the conclusions drawn from the results of both static and dynamic treatment 

(Conclusions, Chapter 5, Section 5.1 and Section 5.2).
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1 Theory
Introduction

This section will be devoted to the description of the model theories needed to explain pair-wise 

interactions between a particle and a planar wall, above which the particle is undergoing 

Brownian motion. The discussion will be divided into two main sections. Section (1.1) describes 

all the so called DLVO interactions, therefore: Double Layer Forces (0); Interaction Energy 

between Two Planar Walls (1.1.2); Interaction Energy between Molecular Dipoles (1.1.3); Van 

der Waals Interactions between a Sphere and a Wall (1.1.4). Section (1.2) takes care of the so 

called Non-DLVO interactions, therefore: Gravitation and Light Forces (1.2.1), Depletion Forces 

(0), Hydration Forces (1.2.3). The last section of the chapter, Section (1.4), will focus instead on 

Dynamics of a particle in the close vicinity of an interface focusing especially on the calculation 

of Auto-correlation functions (0) and of Mean Displacement and Mean Square Displacement at 

given Starting positions (0), novelty proposed by us.

1.1 DLVO Interactions

Double-layer forces

When a colloidal particle carrying dissociable groups on the surface, is dispersed into a polar 

solvent (e.g. water), it develops a charged surface due to the dissociation of counter-ions from it.

The same phenomenon occurs if the planar side of a glass slide is exposed to water. If the 

colloidal particle and the glass wall are like charged, they repel each other via a screened 

Coulomb potential given by the average distribution of anions and cations around both bodies.

The forces deriving from such screened Coulomb potential interaction are called Double Layer 

Forces. The interaction between two charged interfaces is therefore modified by a distribution in 

space of ions and cations. When the system is in thermal equilibrium, the ions are distributed

according to Boltzmann’s law distribution, thus, the number density of ions shows an exponential 

dependence on the electrostatic potential they are subject to. Here the goal is to derive an 

approximate expression for the interaction potential between a charged wall and a charged sphere. 

For this purpose we start deriving an expression for the screened Coulomb potential emerging 

from an infinitely expanded planar wall, in an electrolyte solution and with homogenous surface 

charge distribution, along the direction.
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Figure 1-1: Sketch of a stabilized colloidal particle suspended in a near to wall configuration with release and 
rearrangement of ions and cat-ions in solution forming the so called double layer.

We start from the one-dimensional form of the Poisson’s equation:

(1.1)
( ) = ( ) .

This relates the second distance derivative of the potential, ( ), to the number densities, ( ),

at distance z, of the ions of species i. Here e is the elementary charge, .is the valency of ion 

species i, is the vacuum permittivity and is the relative dielectric constant of the 

solvent. As stated before, the ion number density is determined by a Boltzmann distribution:  

(1.2) ( ) = ( )
where is the unit thermal energy and is r the number density of ion species i at zero 

potential, i. e. at infinite distance from the wall. Thus, the combination of Eqs. (1.1) and (1.2)

results the Poisson-Boltzmann equation:

(1.3) ( ) = ( ) .

z
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To solve this second order differential equation one should recall that the concentration of the 

ions shows an exponential dependency with respect to the interaction potential, therefore its first 

derivative with respect to z is:

(1.4)
( ) = ( ) ( ).

Further, from Eq. (1.1) we may write:

(1.5)
( ) = ( ).

Considering both equivalences, one can write:

(1.6)
( ) = ( ) ( ) = 2 ( )

Which, with the boundary condition lim ( ) = 0, can be readily integrated to result:

(1.7) ( ( ) ) = 2 ( ) .
Considering now the simple case of a 1:1 univalent electrolyte, this means that only two ion 

species will be found in solution with opposite valency, / = ±1 and same bulk density, ( ) = ( ). In this case Eq. (1.7) reduces to:

(1.8) ( ) + ( ) 2 = 2 ( )
where, substituting to the densities their explicit form leads to:

(1.9) ( )+ ( ) 2 = 2 ( ) ,
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and to the equivalent formulation

(1.10)
( ) ( ) = 2 ( ) .

Further on, the latter, with the definition of the sinh-function, may be rewritten as:

(1.11) ( ) = ± 8 sinh ( )2
Where, as the potential is expected to decrease with distance from the wall, the positive solution

be disregarded as unphysical. To solve the remaining differential equation we simplify the form 

substituting = ( ), thus obtaining:

(1.12) = 2 ( )
And finally Eq. (1.11) can be rewritten as:

(1.13) sinh =
where we defined = as the inverse Debye screening length.

In order to solve Eq. (1.12) both sides are integrated:

(1.14)
1sinh =

here the subscript refers to properties at the glass surface, i.e. = 0. The integral on the right 

side is plane simple and the one on left side is solved by using tabulated results, obtaining:
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(1.15) tanh ( 2)tanh ( 2) =
from which it follows:

(1.16) tanh 2 = tanh 2 .
Recalling now the definition of the inverse tanh-function tanh ( ) = ln and the 

Taylor expansion of the logarithm, only valid for 1, one can write:

(1.17) = ln 1 +1 ln(1 + 2 ) 2 .
The latter is the so called Debye-Hückel approximation for ion gases at high temperatures for 

which, substituting back the definitions of and , yields:

(1.18) ( ) = 4 tanh 4
This is finally the formulation of the electrostatic potential at a distance from an infinite plate in 

a 1:1 electrolyte solution. Eq. (1.18) can be further simplified by applying the Debye-Hückel 

approximation again. In case of small surface potentials 25 , one can write:

(1.19) ( ) .
Here the meaning of the inverse Debye screening length, constant , becomes evident: it is the 

inverse of the distance from the surface, where the electric potential has dropped to of the

value at the surface. Having an explicit formulation for the electrostatic interaction potential, ( ), allows for the evaluation of yet another interesting quantity, the surface charge density, ,

which is defined as: 
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(1.20) = ( )
given the electro-neutrality principle. Now recalling the Poisson equation one can write:

(1.21) = ( ) =  ( ) .
Equation known as the Grahame-relation, which together with Eq. (1.11) and the approximation 

for small surface potentials yields:

(1.22) = 8 sinh 2 .
Or the explicit form for the surface charge density on a planar wall immersed in a 1:1 electrolyte 

solution.

The following step towards the calculation of the pair-wise electrostatic interaction potential 

between a sphere and a wall consists in the determination of the interaction energy between two 

planar walls.

Interaction energy between two planar walls

Starting from the now known expression for the electrostatic potential emerging from a planar 

charged wall, we can now calculate the energy which is required to bring two such identical 

planes together from an infinite distance to a finite separation, D. We assume two parallel plates

charged alike and to be immersed in a 1:1 electrolyte solution, which is treated as an ideal gas. 

Due to the electrostatic potential between the plates, the osmotic pressure due to the ions in the 

gap will be different from the outside, resulting in a net force pushing the two plates apart.
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Figure 1-2 Double layer interactions: from sphere/wall to wall/wall interactions and back.

To calculate this difference in osmotic pressure the Gibbs-Duhem relation is used:

(1.23) = +
where is the number of ions, the internal energy, , the osmotic pressure the volume and 

the entropy related to the ion species i. The system temperature is and the definition of the 

chemical potential of species i is 

(1.24) = ( ) + ( ).
If the temperature and the composition of the system remain unchanged, the total differential of 

the chemical potential, as defined in Eq. (1.23), reduces to = , thus:

(1.25) = ,
while the total differential of Eq. (1.24) is:

(1.26) = ( ) + ( )( ) .
Equating the two formulations results in the elimination of the explicit dependence from and

in the expression of the total differential of the osmotic pressure :
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(1.27) = ( ) ( ) + ( )( ) .
To get the pressure between the two walls at a given separation distance , one needs to integrate:

(1.28) ( ) = ( ) ( ) + ( ),
which yields:

(1.29) ( ) = 2 ( ) + ( ( ) )
thus, recalling Eqs. (1.1) and (1.7) and considering the walls at a fixed separation distance = :

(1.30) ( ) = ( ( = ) )
= 4 sinh ( )2 .

In the latter, we assume simple additivity of the contributions by each ion species to the total 

osmotic pressure. At this point it is important to notice that, because of the symmetry of the 

problem of two identical walls facing each other, the electrostatic potential, ( ), in = 2 is ( 2) = 2 ( 2), where ( 2) is the potential emerging from a single surface at the mid-

plane between two walls. Moreover, the fact that the system is in thermal equilibrium ensures for 

its osmotic pressure to be a constant through all the gap. Thus, the easiest way to calculate the 

osmotic pressure at fixed distance = , is to use the symmetry of the electrostatic potential to 

calculate ( ) as 2 . Thus, for a 1:1 electrolyte one gets:
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(1.31)

( ) = 4 sinh 22= 64  2 .
The energy per unit area, namely , as a function of separation distance due to electrostatic 

interaction, is found by simply integrating the latter over all possible distances [ , ]:
(1.32) ( ) = 64 2 .

The latter can be used to picture the electrostatic potential between a sphere and a wall, by means 

of Derjaguin’s approximation:

(1.33) ( ) = 2 + ,
where the forces between curved surfaces, with curvature radii and , are related to the 

interaction energy per unit area between flat ones, provided the interaction potential between them

is short-ranged and decaying with distance. In our case one of the two bodies is an infinitely 

extended planar wall thus one of the two radii must be taken as infinite. Given e.g. and = , the upper equation will simplify to the following:

(1.34) ( ) 2 .
Thus, a subsequent integration with respect to distance will give us the electrostatic interaction 

energy between and sphere and a planar wall, charged alike and in a monovalent electrolyte 

solution:

(1.35) ( ) = 128 2 =
given that all the terms before the exponent are constants of the system. 
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From molecular dipole interactions to van der Waals interactions 
between colloidal bodies

Another contribution to the interaction energy between colloidal bodies at short distances is due to 

the Van der Waals forces. Such forces are not of a simple nature as they arise from dipolar 

interactions happening at a molecular scale between the components of the macroscopic bodies. 

For the same reason those forces are to be found even between non polar bodies at extremely 

short distances where molecular interactions become predominant. From a point of view of charge 

interaction, molecules can be picture as dipoles thus related mainly to three kind of forces: 

Forces due to the orientation of permanent dipoles;

Forces between induced dipoles;

Forces of dispersion or London forces.

Mathematically, the interaction energies corresponding to the listed terms show all the same 

inverse power law dependence on separation distance, , so those can be linearly summed up

defining the Van der Waals interaction between two atoms or molecules:

(1.36) ( ) = 1 + + = .
Here we us as the symbol for the interaction energy to distinguish interaction at a molecular or 

atomic level from those between colloidal bodies which will be termed in the following. The 

van der Waals interaction between two colloidal bodies of various shapes can be pictured 

generalizing the pair-wise molecular interactions summing those up over the macroscopic 

volumes.



11 
 

Figure 1-3 Sketch of the geometries followed for the calculation of Van der Waals interactions in the two cases: 
molecule/wall and then sphere/wall interactions. To be noticed that for the second case the origin of the z axes has to 

be shifted to the sphere surface

In this way e.g. the total interaction between a planar wall and a spherical object can be 

calculated. As sketched in Fig. (1-3), the first step is to describe the interaction between a single 

molecule and a wall made up of molecules of the same kind:

(1.37) = = 1 .
Given that: = => = , the second term of the latter equation can be re-written as an 

integral over the entire wall:

(1.38) =
where the elementary volumes = 2 pictures cylindrical shells with radius , thickness 

and length . With this substitution one can calculate the interaction energy between a single 

molecule and a planar wall at a given distance , ( ), as follows:

( ) = 2 ( + ) =
(1.39) = 2 4 1( + ) =
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= 2 4 1 = 6 .
Now, to calculate the attractive interaction between a sphere and a wall at a given distance, ( ), one needs to extend the same kind of integration used above, this time considering 

elementary volumes from a spherical slice the closest to the wall. To do that the elementary 

volume must be taken as follows  = = 2 ( ) 2 , thus:

(1.40) ( ) = ( + )2 = 6 2( + )
= 6 = 6 .

Note that here the origin of the z-axis was shifted to the surface of the sphere and it was assumed 

only elementary volumes at to contribute significantly to the overall potential energy.

Further, it is important to mention that here we defined = , the so-called the Hamaker

constant, for two bodies with the same number density of molecules enforcing the pair-wise 

additivity of the energetic contributions thus neglecting any many-body effects. This brutal 

simplification may be justified for very dilute dipole gases but it is certainly not correct in 

condensed matter like colloidal particles and even less if the latter are suspended in a dielectric 

medium, where a damping of the molecular interaction fields occurs. However, it turns out that 

the more rigorous treatment by the Lifshitz continuum theory results the same distance 

dependence of the potential, as derived above, if the Hamaker constant is expressed in terms of 

the dielectric properties of the involved materials:

(1.41)

34 + + +
+ 8 2 ( )( )( ) ( ) ( ) + ( ) .

In the formulation above the first term represents the static contribution where , are the zero-

frequency dielectric constants of two objects and the one of the surrounding medium; the 
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second term is representing the contribution of frequency dependent dispersion forces which are 

approximated by the dominant term which occurs at the main electronic absorption frequency .

The refractive indexes are given by ( ) = ( ), where ( ) is the materials frequency 

dependent dielectric function and is normally the frequency attributed to the dominant 

absorption in the UV region of the electro-magnetic spectrum and is of the order of 10 . The 

same quantity for metals is the so called Langmuir or plasma frequency, above which the metal 

becomes transparent to the radiation, in this case the explicit form would be = , where 

is the electron density and the elementary charge, is the permittivity in the vacuum and 

is the effective mass of a conduction electron. For most materials in vacuum or air the 

Hamaker constant is very small, i.e. = 10 3 , and it can be reduced drastically if the 

materials are dispersed in a dielectric surrounding which matches the optical properties of the 

suspended particles. 

1.2 Non-DLVO interactions

1.2.1 Gravitation and light forces
In colloidal suspensions where particles do not exceed the nano-metric size, gravitational 

contributions are normally disregarded as a contribution to the total pair-wise interaction 

potential. A new scenario comes about with the use of micro-metric colloids and optical tweezers.

In this case the weight of the colloid and the extra push due to the optical pressure of the laser 

tweezers cannot be neglected in the evaluation of the gravitational contribution. For free colloids 

in suspension, gravitation is calculated considering the buoyancy correction (Archimedes 

principle) on the density of the particle from which the solvent density will be subtracted:

(1.42) = =
where is the particle volume, is the acceleration of gravity and the symbol now refers to 

the mass density of particle, subscript , of the suspending solvent, subscript , and effective 

one, subscript . Thus, the gravitational contribution to the particle energy is:

(1.43) ( ) =  
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where h is the height of the particle’s center of mass above a reference point which can be chosen 

arbitrarily. As mentioned before, on top of the gravitational potential related to the bare mass of a 

colloid in suspension, an extra contribution has to be taken into account, coming from the light 

radiation pressure the tweezers laser exerts on it. As sketched in the figure below, when a laser 

beam with Gaussian profile is directed over a colloidal particle freely moving in suspension, the 

object will tend to align its motion along the force gradient and towards the maximum of the 

intensity distribution, so in the focal point. 

Figure 1-4: Sketch of a particle trapped in a light beam with Gaussian profile. The harrows represent the gradient 
forces pushing the colloid towards the focal plane.

The light force ( ) exerted by the electric-field has its maximum when the particle gets 

trapped in the focal plane and it is proportional to the ratio between the power of the 

radiation, namely , and the speed of light, [65-67]:

.
In our case, the effective force pushing the particle towards the interface will be the sum of the 

latter two terms, th one related to the particle buoyancy corrected mass and the one due to the 

light radiation pressure:

(1.44) ( ) = = +
where we introduce the effective weigh force,  , for the convenience of later notation, or the 

sum of the bare weigh force, , and the light force, . is a proportionality constant 
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connected to the Fresnel’s coefficients of reflection/absorption of the particle and its the 

separation distance from the wall. 

More intuitively a laser trap can be pictured as a spring with a stiffness that varies depending on 

the size ratio between the trapped object and the wave length of the trapping laser used. 

Normally, depending on this ratio and on the value of the material refractive index (nm), three 

different regimes can be identified according to the ration of laser wave length and colloidal 

diameter d:

(1) the Rayleigh regime where d<< and the stiffness increases as 

(2) the Mie-Lorentz regime d~ ;

(3) the Ray-optics regime d>> and the stiffness decays as 1 .

As a matter of fact in this investigation, given a =532 nm, and particles diameters =1000, 2000, 

3000 and 4000 nm the last two regimes (2 and 3) have to be taken into consideration. Between 

these two regimes the “ray-optics” (3) is the one expressly chosen for the description of the laser 

force used in the model ( ). As for the Mie-Lorentz regime (2), Maxwell’s equations need to be 

solved explicitly to calculate it and this needs to be done via numerical integration [68, 69]. What 

is already known from the literature is that particles with dimensions comparable to the laser 

wave length feel a much stronger trapping force as compared to smaller or larger particles [70, 

71]. This is very likely the reason why we see deviations of the experimental data obtained with a 

probe sphere of =1 m, from the trends set by the data obtained with larger spheres (see Chapter 

4).

1.2.2 Depletion forces
The first theoretical formulation of depletion interactions was given by Asakura and Oosawa [30-

32] between 1954 and 1959 using as model system a binary mixture of large colloidal spheres, 

interacting between each other as hard spheres, in a dilute suspension of much smaller polymer 

coils, treated as an ideal gas where its constituents have no mutual interaction, in other words as 

phantom spheres. The mixture is taken to be in thermal equilibrium with a thermal bath at given 

temperature, T, therefore both species will undergo Brownian motion with proportional thermal 

velocity, each of them trying to maximize the accessible free volume in order to minimize the 

total energy. While moving so, it may happen for the larger colloids to be found so close to each 

other that no depletant would fit into the gap in between. This will cause the depletant to be 

unevenly distributed around the larger colloids, thus the collisions due to Brownian motion, will 
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result in a non-zero momentum onto the two spheres pushing them together. Another way to 

picture the phenomenon is to define, around the two larger colloids, a shell of empty volume 

called depletion layer, which the centres of mass of the phantoms spheres cannot enter. In this 

picture the accessible free volume of the system increases if the depletion layers around the large 

colloids are partially overlapping. Consequently the entropy of the system increases and its free 

energy decreases leading the system to equilibrium. In their work Asakura and Oosawa 

investigated pair-wise depletion potentials between spherical colloids induced by differently sized 

and shaped macromolecules [31], the main assumptions of their model being:

Low Density Approximation, telling us that if one takes depletants below their overlap 

concentration, so diluted, then those will follow the laws of ideal gases and mutual 

interaction can be disregarded;

Derjaguin Approximation, reminding us that if the interaction potential is short ranged 

then forces acting between curved surfaces can be calculated as the integral of interaction 

potentials between flat walls.

The latter is the most crucial approximation to relate measurements and theory in the case of a 

TIRM set-up, where interaction potentials, between a spherical probe and the wall of the interface 

below it, are calculated. Thus, to reach an explicit formulation for the depletion interaction 

potential between a sphere and a wall we will start from the calculation of the same interaction 

between two walls and then Derjaguin’s approximation shall be used.  

The depletion interaction potential between two walls induced by rod-like depletants, ( ),

can be calculated as the variation of the free Helmholtz energy of the system, , due to the 

approximation of two walls form infinity to a distance D, smaller than the virus length . Thus, 

given a system in thermal equilibrium at fixed temperature T, one can write:= = ,
where: = = 0 => = .
Thus: =
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where = is the osmotic pressure in the system and = ( ) ( )
is the change in free volume accessible to the rods. The latter is defined as the change of 

excluded volume to the rods center of mass given their orientation due to the hard-body 

interaction with the walls. Substituting the above mentioned equivalences in the last 

expression of , one gets:

(1.45) = ( ) = [ ( ) ( )],
Or the rods induced depletion interaction potential between two flat walls. For the explicit 

calculation of the excluded volumes one needs to start defining the geometry of the problem as 

precisely as possible. Considering for example a rod-like particle of total length L, the volume un-

available for the rod’s centre of mass given its orientation, changes if there one or two walls to 

consider.

Figure 1-5 Sketch of the geometry for the calculation of the excluded volume to a rod centre of mass in the case of two 
walls at infinite separation distance (a) and at finite separation distance D (b) together with a sketch about the 

integration limits of the rotational angle, (c). 

The volume excluded for a single rod of length facing a single wall can be calculated as:

(1.46) = 14 1 ( , )
where ( , ) is the hard body potential between the rod and the wall. Consequently the 

integral has a non-zero value solely when the rod is touching the wall, meaning that the 

term 1 ( , ) = 1. In the latter equation the first integral is the one over all the 

possible positions for the rod center of mass, while the second integral is the fraction of 
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the spherical unit volume which is not accessible to it when it is close enough to the 

walls.  Figures (1.5)(a) and (b), picture a rod facing a single wall and confined between two walls 

respectively, projected on a 2D space. In the case of a single rod facing a single wall (Fig(1-5)(a)),

the conditions for a rod touching the wall are for and for 0 , or 

(see Fig.(1-5)(c)), thus:

( ) = 14  +  
If now the two plates come within a distance , like shown in Figure 1-5)(b), the excluded 

volumes from the two plates overlap describing therefore a reduction of the total excluded 

volume. ( ) is calculated in the same way as in the case of infinite distance between the walls, 

but for the upper integration limits. The center of mass coordinate will now vary between 0 and 

but , = for < 2 and , = ( ) for > 2. To simplify the calculations, 

one should notice the symmetry of the problem with respect to the distance between the walls, 

which allows to set the upper integration limit for to 2 and count the contribution twice, thus 

getting:

(1.47)
( ) = 14 2  +  

The integration over yields in both cases 2( ), the integration along yields always 2 ,
while the integration over and gives identically the area of the walls, namely . Thus, it 

follows:

(1.48)

( ) = ( ) 0 2 = 4
( ) = 2 ( ) 0 2 = 22 .
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For a correct calculation of Eq. (1.49) in the case of two walls, one needs to multiply the 

previously calculated ( ) by a factor two, so to account for the other wall as well, while ( ) accounts already for symmetry:

(1.49)

= ( ) ( ) = 2 ( ) ( )= 2 + 2
( ) = = 2 + 2 .

The latter is the depletion interaction pair-wise potential induced by rods between two planar 

walls, non-zero strictly assuming < , but zero otherwise. Once the interaction energy for two 

flat surfaces is given, the sphere/wall case is calculated via direct application of the Derjaguin 

approximation. To do so one needs first to transform ( ) in an energy per unit area, 

(D), thus simply dividing it for :

(1.50) (D) = = 2 + 2 .
At this point, by recalling Derjaguin’s approximation (Eq. (1.37)) and by simple integration of Eq. 

(1.54) in the appropriate range of distances, so those where the potential interaction is non-zero, 

one obtains:

(1.51)

( ) = 2  ( )
= 2 + 2 =
= 3 1
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or the depletion interaction potential induced by rods between a sphere and a flat interface in 

function of separation distance, . The latter can also be rewritten in in function of the bulk 

concentration of depletant recalling the substitution = , where is the Avogadro 

number, is the bulk density of the rods and  their mass, so that:

(1.52)
( ) = 3 1 .

This last formulation is the depletion interaction model potential used in this experimental study 

for the data evaluation.

1.2.3 Hydration forces

Hydration forces are known as an additional contribution to the basic DLVO potential, in 

picturing the stability of proteins systems [34]. Such forces arise from the rearrangement of water 

molecules around the proteins in forming a steric-like layer providing stabilization. The thickness 

of such layer depends directly on the charge of the ions in solution and their polarizability and this 

region, where the solvent modifies its structure and its properties, is called solvation zone. Being 

due to polarization effects, this rearrangement of solvent molecules around the solute is expected 

to propagate but at the same time to vanish exponentially within very small distances in the order 

of few nano-meters (~1 nm to 2 nm). In the case of monovalent ions and sphere/wall interaction 

the interaction potential due to an hydration layer between equally coated surfaces has been 

described phenomenologically by:

(1.53) ( ) = exp ( )
Where is the amplitude of the interaction; the distance between the two surfaces and the 

inverse length of the hydration layer defining as well the range of the interaction. Such forces 

remain though very difficult to predict and describe theoretically because those arise from highly 

specific solute-solvent and modified solvent-solvent interactions working at molecular level for 

which the latter is a crude approximation.
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1.3 Sphere-Wall Total Interaction Energy

At this point all the interactions governing the static properties of a colloid levitated on top of an 

interface and trapped with optical tweezers have been mentioned and explained. So knowing 

which energetic contributions are involved, the total interaction potential in the case of a 

depletant-free suspension can be written as:

(1.54)
( ) = ( ) + ( ) + ( )

where ( ) is the energetic contribution due to electrostatic repulsion, ( ) the one due to 

Van der Waals attraction and ( ) is the gravitational contribution, taken with positive sign in 

case the direction of the gravity force is normal to the wall. Here and in all further experimental 

considerations, the separation distance between the wall and the probe sphere is termed h.

When a second colloidal species, the depletant in this case, is added in suspension, the former 

total energy gains a fourth term, 
( )

, the depletion interaction, as shown by the blue line in 

Fig. (1-6), thus by linear additivity:

(1.55)
( ) = ( ) + ( ) + ( ) + ( )
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Figure 1-6 Plot of all the energetic contributions explained so far: electrostatic repulsion (black), Van der Waals 
attraction (red), gravitational contribution (green), Depletion (blue) and the total interaction potential resulting from 

the sum of the four (light-blue).

In this experimental investigation, for all the suspensions used to study depletion interactions, the 

Van der Waals attractive contributions were strongly damped:  ( ) ~0 so the total interaction 

energy was indeed the sum of three terms: electrostatic repulsion, gravitation and depletion. 

(1.56) ( ) = { } + 3 1 .
In the case of protein-protein non-specific interactions the aim was to prove Hydration was 

competing against the Van der Waals attractive potential neutralizing it, thus the total interaction 

energy was this time the sum of four terms:

(1.57)
( ) = ( ) + ( ) + ( ) + ( )

i.e. electrostatic repulsion, gravitation, Van der Waals attraction and hydration. 

Eqs. (1.56) and (1.57) are the model interaction potentials used in the current investigation to fit 

the experimental data to the theory. 
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The following section will focus instead on other important insights in investigating a colloidal 

system from a dynamical point of view, thus the latest theories and models about the dynamics of 

a colloid in a close vicinity of an interface will be explained.

1.4 Near wall dynamics of colloids in suspension

measured by TIRM

As will be discussed in more detail in chapter 2, total internal reflection microscopy (TIRM) 

allows for a determination of the separation distance, h, of a probe sphere from a glass wall with 

nm-resolution. This by measuring the time trace of the intensity scattered by the particle and 

making use of the fact the latter is described as exponentially decaying with distance due to the 

evanescent nature of the field the particle is immersed in. The measurement principle is based on

the use of an evanescent wave, which has a penetration depth , as the illumination source.

Moreover, if the separation distance can be measured with high enough time resolution, TIRM 

data can also be used for the evaluation of the near-wall dynamics of the investigated system. In 

this respect, Bevan and Prieve have shown how auto-correlation functions of the scattered

intensity from the probe can be used to derive a diffusion coefficient normal to the interface, <>, averaged over the separation distances covered by the illuminated scattering volume.

The latter is a quantity related to the Einstein’s bulk diffusion coefficient, , via a function that 

describes the hydrodynamic slow-down of the colloid due to the presence of a near interface. In 

this chapter we start with a brief overview of the dynamic theory carried out by Frej and Prieve 

[63] at first and then revisited by Bevan and Prieve [64]. Then we will continue with theory of our 

thinking that allows instead the calculation of dynamic quantities not averaged in space, like mean 

displacements and mean-square displacements at given heights. 

1.4.1 Auto-correlation functions 

The time auto-correlation function of the scattered intensity (ITACF) is generally defined as 

(1.58) ( ) = lim 1 ( ) ( + )
where is the total measurement time and .
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Taking into account that because the particle’s separation distance from the wall changes with 

time the scattered intensity fluctuates accordingly and the system is is thermal equilibrium, one

can exploit the ergodicity principle to simplify the integration by substituting the integration 

variable over all different positions of the colloid centre of mass, = + , defined as the 

shortest distance to the wall surface, given an initial position , weighed on the probability of 

occurrence they have. Thus, let ( , | ) be the conditional probability of finding the sphere

at some elevation between and + at time + , given that it was at elevation at time .

Then the product ( ) ( , | ) is the probability of some initial elevation followed by 

some final elevation after a delay time , and integrating over all possible initial and final 

elevations, it gives the autocorrelation function:

(1.59) ( ) = ( ) ( ) ( , | ) ( )
The conditional probability density ( , | ) has to satisfy the following specific conditions:

1. ( , | ) and ( ) will vanish for distances < ;

2. ( , |0) = ( ), meaning that the particle’s position is well known at = 0, from 

which it directly follows: (0) = ( ) ( ) =< >, which is basically the 

weighing factor at a fixed height;

3. ( , | ) = ( ) where ( ) is the Boltzmann probability distribution, from which it 

follows that ( ) = ( ) ( ) =< > ;

4. ( , | ) must be a solution for the Smoluchowski equation: 

(1.60) = ( ) ( )
where we use = 1 and ( , 0| ) for the convenience of notation. In the vicinity of a 

wall, the diffusion coefficient ( ) and the force acting on the particle ( ) = ( ) both 

depend on the particle’s vertical position .

In their later paper Bevan and Prieve showed that the initial slope of the auto-correlation function 

can be calculated without making any assumption on the explicit form of the conditional 

probability density and the role of a particle drift velocity, which will be imposed by the 
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external force. The only constrain needed is the assumption that the particle mobility 

becomes zero for a particle touching the wall, which corresponds to so called stick 

boundary conditions in hydrodynamics. In the following we will outline the derivation of 

an expression for the derivative of the correlation function in the limiting case of 0.

The only time dependent term in Eq. (1.60) is the conditional probability. Therefore the derivative 

can be written as:

(1.61) ( ) = ( ) ( ) ( ) ( )
where, here and in the following, a prime will denote a derivative with respect to the indicated 

variable, i. e. ( ) = ( , , … ) . Now, introducing Eq. (1.60) for results:

(1.62) ( ) ( ) = ( ) ( ) + ( )
where we use ( ) = ( ). The right hand side of Eq. (1.62) can be integrated by parts, thus:

(1.63) ( ) ( ) == ( ) ( )[ ( ) + ( ) ]|( ) ( ) [ ( ) + ( ) ].
As mentioned before, due to the evanescent nature of the illumination, we may assume that the 

scattering intensity is exponentially sensitive to the elevation, say ( ) = with ( ) =I( ). Further the diffusion constant ( ) = 0 when the sphere touches the wall at = 0.

Therefore the boundary terms vanish and the remaining integral can be split in two parts:
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(1.64)

( ) ( )
= ( ) ( ) ( )
+ ( ) ( ) ( )

where the term after the first equality can be integrated by parts again to give:

(1.65) ( ) ( ) ( ) = ( )[ ( ) D( )]
Introducing this result into Eq. (1.64) yields:

(1.66)

( ) ( ) =
= ( ) [D( ) ( ) ( ) + D( )].

Thus now, recalling that ( , |0) = ( ) and making use of the properties of delta-

function, this integral can be easily evaluated as follows:

(1.67) ( ) ( ) = ( )[D( ) ( ) ( ) + D( )].
Thus, the derivative of the correlation function for short delay times, lim ( ) (0), by 

simple substitution of the latter becomes:

(1.68) (0) = ( )[D( ) ( ) ( )+ D( )] ( ).
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Since we do not need to distinguish anymore between and we will drop the subscript further 

on. The part of the integral containing D( ) ( ) can be integrated by parts again, using that ( ) is a Boltzmann distribution and consequently ( ) = ( ) ( ). Therefore we may 

write:

(1.69) ( )D( ) ( ) ( )
= ( )D( ) ( )| ( )D( ) ( )
= [ ( ) ( ) 2 ( ) ( )] ( ).

The boundary part is again vanishing, and introducing the remaining integral back into Eq. (1.68)

gives the final result:

(1.70) (0) = ( )D( ) ( )
for the derivative of the correlation function at very short times. It is important to note that the 

terms containing the derivative of the position dependence of the diffusion coefficient cancelled 

out. Recalling now that (0) = ( ) ( ) we may now define a diffusion coefficient 

normal to the wall, averaged over positions:

(1.71) = ( )D ( ) ( )2( ) ( ) = (0)(0) ,
which can be determined using time resolved intensity measurements in total internal reflection 

microscopy. Here the subscript n indicates that strictly speaking only the particle diffusion normal 

to the wall is probed, since only particle motion in this direction will lead to a change in scattering 

intensity.

Normally, for the comparison of experimental data with theoretical predictions, the well-

established expression by Honig [72] and co-workers is used:
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(1.72)
( ) = ( ) = 6 + 26 + 9 + 2   

Where is the free particles’ diffusion coefficient in bulk environment. Eq. (1.72) is a 

very good approximation for the much more complicated exact expression by Brenner and co-

workers [73, 74]:

(1.73)

( ) = 4sinh ( )3 ( + 1)(2 1)(2 + 3) ×
× 2 sinh[(2 + 1) ] + (2 + 1)sinh (2 )2 ( + 12) [(2 + 1)sinh ( )] 1

where  = ( ) and again = + .

There are however two major drawbacks to this analysis of the dynamic information contained in 

TIRM data. Strictly speaking Eq. (1.71) and the following are only correct for = 0. As Bevan 

and Prieve point out in their paper, it is therefore not clear how short delay times have to be 

chosen, to allow for neglecting the derivative of the position dependent diffusion 

coefficient and the drift velocity. Further, this method will always result dynamic data

spatially averaged over the whole illumination volume. To overcome these shortcomings 

we will derive expressions for the spatially resolved drift velocities and diffusion 

coefficients in the following section, through the calculation of mean displacements and 

mean square displacements at given heights.

1.4.2 Mean Displacement and Mean Square Displacement at given 
heights

Another way to address dynamic properties of a colloidal system in general is through the 

calculation of two dynamical averages called mean displacement (MD) and mean square 

displacement (MSD). As we will see, these are related to the particle drift velocity and the 

diffusion coefficient at a given starting position. In terms of the above introduced conditional 

probability density function, ( , | ), the mean displacement is defined as:
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( , ) < >= ( )
where ( , | ) is used again,  for convenience of notation. In this definition, P is the only 

time dependent quantity. Therefore, the derivative of the time evolution of the mean displacement 

at a given starting position can be formulated using the Smoluchowski equation and evaluated via 

integration by parts. 

                    ( , ) = ( ) ( ) ( ) =
(1.74) = ( ) ( ) = 

= ( ) + ( ) ( ) = < ( ) >.
In the latter we identify the last integral term as the definition of the spatial average of a position 

dependent drift velocity, which we thus define as:

(1.75) ( ) = ( ) + ( ) ( )
where the first term reflects an apparent velocity caused by the fact that the diffusive motion 

towards the wall is slower than away from it, according to Eq. (1.72). The second term is the 

velocity due the external force by which the particle is affected.

The same procedure of partial integration can be used also to obtain the mean-square 

displacement. Therefore defining it as ( , ) =< ( ) > one can write:( , ) = ( ) ( ) ( ) = 
(1.76) = 2 ( ) ( ) ( ) =
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= 2  { ( ) + ( ) ( )} = 2 < ( ) + ( ) ( ) >,
where the first term describes the diffusive contribution while the second term takes into account 

migration. For small times, where both the mean displacement and the mean square displacement 

have very little variations around fixed heights , then one can Taylor expand both the drift 

velocity and the normal diffusion coefficient:

( ) = ( ) + ( ) ( ) + 12 ( ) +
( ) = ( ) + ( ) ( ) + 12 ( ) ( ) +

By introducing these expansions into Eqs. (1.74) and (1.76) respectively and subsequent 

calculation of the integrals, we obtain:

(1.77) ( , ) = ( ) + ( , ) ( ) + 12 ( , ) ( )
+

(1.78)

( , ) = 2 ( ) + 2 ( , ) ( ) + ( ) +
+2 ( , ) 12 ( ) + ( ) .

A formulation for the time dependence of the mean displacement and the mean squared 

displacement can be obtained by applying the following formal scheme( , ) = +( , ) = + ,

calculating the time derivatives and comparing coefficients, eventually leads to:
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(1.79) ( , ) = ( ) + 12 ( ) ( ) + ( ) ( )
and

(1.80)

( , ) = 2 ( ) +
+ ( ) ( ) + ( ) + ( ) ( ) + 2 ( ) .

The limit of both equations for very short times, yields the first order approximation for the mean 

displacement and mean square displacement:

(1.81)

lim ( , ) = ( )
lim ( , ) = 2 ( )

With this we have a recipe for the determination of spatially resolved drift velocities and diffusion 

coefficients at hand, which comprises the following steps:

1. transformation of the scattered intensity vs. time trace into a position vs. time trace by use 

of ( ) = ;

2. selection of a starting position and determination of the moments of the displacement 

distribution after a given time interval according to ( , ) =< ( ) > and ( , ) =< ( ( ) ) >;

3. plot of the MD and MSD versus time and determination of the initial slopes by linear 

regression.



 

32 
 

2 Total Internal Reflection Microscopy
Introduction

Total Internal Reflection Microscopy (TIRM) is a scattering technique based on the principle of 

total internal reflection. It consists in the production of an evanescent wave across an interface, 

devised for the direct evaluation of interaction potentials between a single colloid, diffusing on 

top of an interface, and the interface itself. In this section we describe the basic theory of Total 

Internal Reflection (2.1), the experimental set-up (Experimental Set Up (2.1.1)) and the 

measurement technique (Experimental Methods (2.1.2)) in detail.

2.1 Total Internal Reflection

The path of an electro-magnetic wave travelling between two media with different refractive 

index is defined by Snell’s law, which tells us how an incident beam is refracted at the interface

into a second medium according to the following equation: 

(2.1) ( ) = ( )
where and are the refractive indexes of the two media, is the incident angle, the 

refractive angle. If < , an angle of incidence exists, called the critical angle ( ), for which 

the refracted beam will run exactly along the interface ( = ): 

(2.2) = ( ) = arcsin ( )
For all angles greater than the critical one total internal reflection will occur, which means that the 

interface is no longer refracting the incident beam but reflecting it completely. Yet Maxwell’s 

equations do not allow for an abrupt drop of the electric field to zero on the other side of the 

interface, which is why there an evanescent wave will form instead. Considering an electro-

magnetic field described by a planar wave:

(2.3) ( , ) = exp i ( )
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where is the amplitude of the field,  is the frequency and is the wave vector.

(2.4) = 2 = +
where is the vacuum wave length, is the unit vector normal to the reflecting interface and 

the unit vector along the projection of the incident beam onto the reflecting interface. If we apply 

Snell’s law to evaluate , it follows that:

(2.5) =
and recalling:

(2.6) cos( ) = 1 sin ( ) = 1 sin ( ) = .
With the latter equations we can calculate and then substitute it into the plane wave solution:

(2.7) ( , ) = exp( + sin ( ) )
( , ) = exp( ( ))exp ( ).

Finally, Eq. (2.7) describes and electro-magnetic field exponentially decaying along the 

direction while travelling along the interface in the direction. The sketch in Figure (2-1) below,

helps to understand what happens at the moment of total internal reflection, which is the case of > painted in red, and gives a rough indea of an evanescent wave.
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Figure 2-1 Sketch of the transmission of an electro-magnetic wave across an interface framed along the y-z plane: 

refraction (black), critical angle (blue), total internal reflection and evanescent wave (red).

Experimentally what can be monitored is the intensity of such field, in other words its modulus 

squared:

(2.8) ( , ) = | ( , )| = exp( 2 ) = exp( ).
Recalling the definition of from Eq. (2.6) we obtain a relation between the penetration depth of 

the evanescent wave and the optical properties of the adjacent media:

(2.9) = 4 sin ( ) 1 = 4 ( )
Thus meaning that the penetration depth can be tuned by specific choices of refractive indexes 

and angles of incidence of the light source. 
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2.1.1 Experimental Set-Up

Figure 2-2 Sketch of a typical TIRM set-up with a cartoon showing the magnification of the measuring volume.

The sketch above represents the TIRM set-up used in our experiments with its most important 

details. The entire set-up is homebuilt from standard microscopy components (Olympus) mounted 

on an X-95 rail system (Linos). From the bottom side up: a BK7-glass prism (Edmund Optics) is 

attached to a flow-through cell (Hellma QS137), of 540 μl volume, and optically matched to it via 

refractive index matching oil. The prism is used to refract the incident beam so that it will hit the 

interface with the required angle for total internal reflection to occur. In this way an evanescent 

wave is produced across the interface as shown in the following sketch:

Figure 2-3 Sketch of the refraction due to the prism: geometry for the evaluation of the effective incident angle via 
the incident angle on the prism side  knowing the prism is of an angle = .
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Thus, for total internal reflection to occur, it is crucial to know at which angle the incident beam 

must hit the prism in order to get the appropriate inner incident angle, so:

(2.10) = + sin ( 2 )
where is the real angle at which the incident beam will hit the interface, while is the angle, 

the incident beam describes with respect to the reflecting interface; is the 45° angle of the prism 

and is the refractive index of the material (quartz glass in this case so = 1.55). Proceeding 

along the set-up, as shown in Figure (2-2), on top of the prism there is a flow through cell fitted 

with two small pipes for in- and outlet, one of which can be connected to a syringe equipped with 

a valve via highly chemically resistive tubing (Saint Gobain Tygon 2075 ) for load the samples 

and exchanging solutions. Immediately above the measuring volume an infinity corrected 40x 

Olympus SLCPlanFI objective, with a focal length f=6.5-8.3 mm and numerical aperture 

NA=0.55, is used both ways to couple in a 532 nm tweezers laser (Coherent Verdi V2 solid state 

Nd:Yag laser) and to collect the scattered intensity from the colloidal probe. The illumination 

source for the scattering experiment is a 15 mW HeNe p-polarized laser with = 632.8nm. The 

use of a polarized laser and the choice of a suitable penetration depth are very important 

requirements to minimize the back reflection of light which is scattered by the colloidal particle 

into the direction of the surface. Interference of scattered light with back reflected light could lead 

to standing waves, which can result in a significant deviation of the illumination strength profile 

from the ideal exponential shape. This effect would show as a distortion of the measured 

interaction potential in the form of undulations along the potential profile [75-77]. In order to 

further ensure that the collected scattered intensity be solely the p-polarized one, analysers 

specific for p-polarized light are mounted in front of both detectors (CCD camera and PMT). 

Moreover, on top of the microscope objective, a dichroic mirror is used to reflect the tweezers 

laser light away from the detectors while allowing the scattered red light to pass through, reaching 

PMT and CCD camera simultaneously thanks to a 50/50 beam splitter. Additionally a 633 nm 

band-pass filter is placed in front of the beam splitter to further purify the transmitted signal from 

unwanted transmitted green light. Ultimately, on the very top and far-right side of the set-up are 

the detectors. The CCD camera is a highly sensitive EM-gain camera, which can also be a 

detector but in this experiment is mainly used to visualize and select a suitable colloidal probe. 

The PMT is a Hamamatsu H7421-40 operated in the photon-counting mode. According to the 

number of detected photons, the PMT produces TTL pulses so that intensity is measured in terms 
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of photon count rates. Those pulses are recorded by a digital counter card (National Instruments 

NI-6602) and then processed by homemade acquisition software which allows also for automating 

measurement series. A pin-hole of 1mm is mounted in front of the PMT as spatial filter to reduce 

the probability of collecting scattered intensity collection from other probes in the surroundings of 

the trapped one or simply to increase the signal to noise ratio by decreasing the amount of 

detected background signal. The picture in Figure (2-4) are an example of a bright field image

(Fig. (2-4), left side) of a 3 m in diameter probe sphere trapped by the tweezers laser and a direct 

imaging of its scattering from the evanescent wave (Fig. (2-4)(b), right side).

Figure 2-4 Particles respectively in direct (left) and evanescent field (right) illumination. The first picture is the shadow 
projected by the particle trapped by the tweezers; the second picture is the scattering due to the evanescent wave. Both 

images are visualized by the CCD camera.

2.1.2 Experimental Method

Total Internal Reflection Microscopy (TIRM) is a well-established scattering technique, devised 

by Prieve and co-workers in 1999 [10], for the direct evaluation of the interaction potential 

between interface on top of which is levitated, by monitoring its Brownian motion with an 

evanescent wave. The basic assumption of a TIRM experiment is that the scattered intensity from 

a colloidal object immersed in an exponentially decaying field, will still be described by an 

exponential decay:

(2.11) ( ) ( ) = exp( )
where is the intensity scattered from a particle at zero elevation from the interface, ( ) is the 

scattered intensity at the given separation distance from the interface and ( ) is the intensity 

of the incident exponentially decaying illumination field. From the same formulation and by a 

simple inversion the separation distance can be evaluated as follows:
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(2.12) = 1 ln ( )
from which it stems that the measurement of the intensity of a particle stuck at the interface ( )

is necessary to rescale and reference the measured scattered intensities with respect to the zero 

elevation distance and on an absolute scale. During a regular TIRM experiment the intensity trace 

of a single particle, free to move just along the normal direction to the interface, is recorded over 

time. From the latter a histogram of scattered intensities gets calculated automatically, like shown 

in Figure (2-5)(a) and (b), immediately below.

Figure 2-5 Intensity trace over time (a) and related histogram (b) of intensities of a 3 micron particle in diameter at the 

nominal tweezers laser power of 0.04W.

Usually, for a micrometric bead, a total of 500’000 intensities are recorded with a time lapse of 

2ms. The histogram of intensities for large enough bin number and small enough bin size, can be 

taken as a good approximation of the probability density distribution of intensities the particle is 

scattering, while sampling all the accessible heights. From the latter it follows:

(2.13)
( ( ))( ( )) ( )

where, ( ( )) is the number of counts and ( ) the related scattered intensity at a given .

Further we assume that the probability to observe a scattered intensity is equal to the probability 

of finding the particle at the corresponding separation distance:
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(2.14) ( ) = ( ) ( )
where ( ) is the probability density distribution of heights sampled by the scattering object, ( ) the related probability density of the scattered intensities. Combining Eq. (2.13) with 

Eq. (2.14) we can relate the probability density of heights to the scattered intensity:

(2.15) ( ) = ( ) ( ) = ( ) ( )( )( ) ( ),
which in principle allows for measuring ( ), because all terms on the r. h. s. are known or can be 

measured. This last relation is the most important assumption in order to further calculate 

interaction potentials. Since the system is in thermal equilibrium, the probability density of 

finding a particle at separation h, is related by Boltzmann’s law to the difference in potential 

energy, ( ), of the particle at this position with respect to the position where the particle has 

the maximum probability density p(hm):

(2.16) ( ) = ( ) exp ( ) .
Since Eq. (2.13) holds for all separation distances, including hm, we may combine Eq. (2.14) to 

Eq. (2.16) to obtain a relation between observable quantities and the interaction potential we are 

looking for:

(2.17)
( ) = ( )( ) ln ( ( )) ( )( ) ( )  

where ( ) is the variation of the particle-wall interaction potential between and , the 

height related to the intensity with maximum counts. To display interaction potentials on an 

absolute scale, one needs to place the condition ( ) = 0 so to find the rescaling factor for 

which ( ) ( ).
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The graph below (Fig. (2-6)) is an example of an interaction potential measured on a 3 m in 

diameter bead and at the nominal tweezers laser power of 0.03W.

0 200 400 600 800 1000 1200

0

2

4

6

8

10

 0.00 mg/mL
 Linear Fit

TO
T(

h)
/k

B
T

h(nm)

Equation y = a + b*x
Weight No Weighting
Residual Sum of 
Squares

0.78418

Pearson's r 0.99685
Adj. R-Square 0.99357

Value Standard Error

?$OP:A=1
Intercept 0.30074 0.03272
Slope 0.00858 1.06483E-4

Figure 2-6 Example of an interaction potential of a 3 m in diameter colloidal probe sphere measured at the nominal 
tweezers laser power of 0.03W, in a HCl-Tris water suspension with a Tris concentration of 2mM and at constant 

pH=8.2 fully referenced on both axes using Eq.(2.11) and Eq.(2.17) (symbols) together with the linear fit performed 
over the gravitational branch for calibration (red-line).

As pointed out in Section (1.2.1) ‘Gravitation and Light Forces’, the gravitational contribution is 

a sum of the particles weigh force, , and the radiation pressure, , meaning that the value of its 

slope (red line in Fig. (2-6)) is directly proportional to the specific tweezers laser power and 

particle used for the measurement. Given that the weigh force related to the particle’s mass stays 

constant, a calibration process is instead needed to measure the effective weigh force, related 

to the various tweezers laser powers, thus to the radiation pressure. To do so one simply needs to 

perform a series of measurements at all usable tweezers lasers powers and then plot the slopes 

resulting from linear fitting over each gravitational contribution (Fig. (2-7) red line) in function of 

the nominal tweezers laser power used, as shown in Figure (2-7) below:
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Figure 2-7 Linear fit (red line) over the slopes (symbols) of the gravitational branch of interaction potentials measured 
over a 4 m bead in diameter in a HCl-Tris in water suspension at fixed pH=8.2 and varying the nominal tweezers 

laser power between 0.01W and 0.1W in steps of 0.01W.

The last step of the calculation is to perform another linear fit which intercept and slope are 

needed to extrapolate effective weigh forces at any given tweezers lasers power along the chosen 

interval of powers like follows:( ) = = +
where is the nominal tweezers laser power used during the measurement and ( ) the 

effective weigh force in function of given tweezers laser power extrapolated from the linear fitting 

operation. Moreover an estimate of the effective weigh force, , comes necessary in providing 

an alternative estimate of the equilibrium separation distance, . Given a heavy colloid 

dispersed in a depletant-free medium and diffusing very close to an interface but far enough to 

neglect Van der Waals attraction, the model describing its interaction potential with the surface 

underneath is a sum of two terms:  ( ) = { } +
in the order electrostatic repulsion and gravitational contribution, according to Eqs. (1.35) and 

(1.44). The equation to find the equilibrium distance given by the condition for a local minimum 

in the potential profile:
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( )/ = 0 = { } +
which finally gives:

(2.18) = 1 .
2.1.1.1 Measurement Errors
At this point, a topic that cannot be dismissed is the inevitable uncertainty that comes across 

measurements over real systems or the measurement errors. To reach a fair evaluation of those,

one could start noticing that both, interaction potentials and separation distances, are defined as 

functions of the particle scattered intensities. The error in the determination of an interaction 

potential value at a given elevation and the error on the elevation distance it-self will therefore 

depend on the quality of the acquisitions. The sensitivity of the detector, but also the further data 

manipulation bring a contribution to the total error that can be evaluated. In the data processing, 

each intensity trace over time becomes a histogram of counts of intensities with finite bin width, 

thus limited precision. On top of those one needs to consider the errors coming from un-

controllable sources. An example of the latter can be differences in the scattering properties 

between two nominally identical beads, or in the background noise of two nominally identical 

samples, or the systematic error. It is clear that a thorough mathematical determination of the 

Gaussian propagation of such complex experimental error is extremely cumbersome and finally 

will never account for all the actual causes. A more direct and less disputable way to determine 

the measurements errors is from a statistical treatment of the latter. For example, measuring a 

number of times over the same probe sphere and then evaluating the related interaction potentials 

will show directly how the error on the interaction potential values is depending on elevation 

distance, as shown in Figure (2-8) below.
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Figure 2-8 displays a collection of non-referenced interaction potentials measured over four differently sized probes, 
respectively (a) d=1 m, (b) d=2 m, (c) d=3 m, (d) d=4 m, at the nominal tweezers laser power of 0.05W each in the 
proper dispersing medium. For each probe measurements were repeated ten times (dots of the same colour and without 
error bar in each graph).  From those ten measurements an average interaction potential is calculated point by point 

with related error bars to each point (red dots with error bars in each graph).

For a mathematical determination all is needed is to apply statistics to the evaluated interaction 

potentials in order to determine the average interaction potential and the standard deviation from 

the average interaction potential, point by point. Therefore:

( ) = 1 ( )
( ) = ( ) ( ) ,

where ( ) is the average interaction potential at each sampled elevation distance, ; ( )
is the interaction potential at each sampled elevation distance measured at measure , is the 

total number of measurements and the standard deviation ( ) is finally the error bar for each 
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average interaction potential value at each sampled separation distance. By looking at the trends 

of the ( ) for the four differently sized spheres, one common feature strikes the eye as the error 

related to each height is in general non equally weighed but increases with the elevation distance, 

as shown in the graph below:
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Figure 2-9 trends of the standard deviations related to evaluated average interaction potentials in function of sampled 
heights for 1,2,3 and 4 m in diameter probes.

At a closer look this property comes not unexpected. The heights related to intensities with higher 

counts display a smaller error as compared to higher elevations where statistics are poorer. This 

directly derives from the uneven illumination provided by the evanescent wave scattering source 

where objects closer to the interface scatter a stronger signal then objects further away from it. In 

other words, the more reliable points of a measurement are those related to the maximum of the 

intensities distribution function therefore to the minimum of the interaction potential. To have a 

feeling of the uncertainty related to the systematic error that comes along with the acquisitions, a

number of independent measurements, all at same conditions but substituting the probe sphere 

with a nominally identical one (say another particle form the same batch), have been performed. 

From those by using the same statistical formulas above an average set of elevation distances and 
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related standard deviations have being calculated. The graph below (Fig. (2-10)) shows the three 

independently measured interaction potentials with the error bars along the -axes:
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Figure 2-10 Non-referenced interaction potentials from three nominally identical 3 m in diameter beads all measured 
at nominal tweezers laser power of 0.03W and in the same dispersing medium. The bars across the experimental points 

indicate the calculated standard deviation for each height respect to the average one over the three measurements.

Given the low number of total measurements considered, it can be firmly concluded that the error 

in the determination of the elevations is negligible while the one over the interaction potential 

values at each height grows larger where the probability for the particle to be found is the lowest. 

Keeping this is mind, in the following interaction potentials will be displayed without error bars 

for sake of clarity.
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3 Materials and Methods

3.1Samples and Samples Preparation
Introduction

In this chapter, materials, techniques and protocols used for the samples preparation are described 

in detail. The first paragraph describes the samples prepared to study protein-protein non-specific 

interactions (3.1.1 Protein-Protein Non-specific Interactions Samples Preparation); the second 

paragraph is about the samples preparation related to the study of depletion interactions (3.1.2 

Depletion Interaction Samples Preparation).

Protein-Protein Non-specific Interactions Samples Preparation

To obtain colloidal particles coated with a 2D protein layer, polystyrene beads from 

ThermoSCIENTIFIC of 4 in diameter were chosen as colloids and fluorescent S-layer fusion 

proteins, called SgsE-EGFP S-layer proteins, were used as coating material and were provided by 

the group of Nano-bio-technologies of the BOKU University in Vienna. To obtain the coating 

suspension, 5mg of lyophilized proteins was dispersed in 2mL of 6M Urea with 50mM HCl-TRIS 

solution at 7.5 for a total protein concentration = 2.5mg/mL. Urea is needed to 

denaturize the proteins so to have them as monomeric dispersion. The suspension was then 

directly filtered through 0.45 m PTFE filters into dialysis tubes (from Biomol) with a nominal

cut off molar mass of 16 KDa and then dialyzed two times against 1L of –deionized Water from a 

Millipore-MilliQ water purification system for 30 min each time. The solution obtained this way, 

was then spun down at 10.000 rpm for 5 minutes to make any unwanted residue or dirt sediment,

while keeping the clean proteins in the supernatant. The supernatant protein concentration was 

measured spectroscopically (Nano-Drop 2000c from Thermo-SCIENTIFIC) to dilute the 

suspension up to = 0.4 mg/mL. All steps were performed keeping the solutions in a dark 

environment to minimize the bleaching of the EGFP. To obtain S-layer coated particles, a 

suspension of 4 m polystyrene beads from Thermo-Scientific with a colloid concentration of 13 

mg/mL was used and mixed with the coating suspension in equal parts. The mixture was then 

kept on a shaker at 4°C for 4 hours. To wash away the potential excess of coating material, the 

particles were spun down three times fort two minutes with a Minispin micro-centrifuge Z606235 

from Sigma Aldrich at the maximum speed of 13400 rpm and re-dispersed in fresh MilliQ-water. 
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After testing that the 13400 rpm of the micro-centrifuge were not enough to sediment proteins, the 

maximum speed was safely used to speed up the particles sedimentation process. Finally, as last 

step, the sediment was re-dispersed in the appropriate buffer for the TIRM measurements. The 

same procedure was used to coat the flow-through cells, where potential excess coating material 

was removed by thorough rinsing with MilliQ-water. To check the effectivity of the coating 

procedure on the particles, we exploited the fluorescent nature of the EGFP s-layer proteins. It is 

known that the green fluorescent protein emits green fluorescence when exited with light in the 

blue to ultra-violet range [78, 79] and that after excitation the only luminous signal will come 

from the fluorescent proteins. Thus a coated sample of 4 micron diameter beads was analysed 

with confocal fluorescent microscopy and a picture of it is reported below in Fig. (3-1)(a). In the 

latter, the beads are the only source of light in the sample meaning that the coating procedure was 

successful as well as the rinsing off of the exceeding coating, which would have prevailed on the 

background otherwise. The other two pictures, in alphabetic order, show respectively: a schematic 

representation of the S-layer fusion protein where the grey area marks one unit cell composed of 

two monomeric proteins in a p2 lattice symmetry [28] (Fig. (3-1)(b)) and a TEM picture of the 4 

micron beads in diameter to be coated (Fig. (3-1)(c)).

Measurements were performed in HCl-Tris suspensions at fixed 9 varying the effective 

ionic strength between 2mM and 40mM. The effective salt-buffer concentration was obtained 

using the following formula:

(3.1) [ ]1 + 10 = [ ],
where [ ] is the molar concentration of the non-dissociated buffer, [ ] is the concentration of 

dissociated acid groups resulting at a given and which is the negative logarithm of the 

dissociation constant of the salt in water. 
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Figure 3-1. (a) confocal microscopy image of 4 m polystyrene particles coated with SgsE-EGFP; (b) artistic view of a 
particle coated with an s-layer 2D lattice with P2 symmetry [28] and  (c) TEM image of 4 m polystyrene particles.

Depletion Interaction Samples Preparation
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Figure 3-2. Each dot represents a sample with specific fd-virus concentrations , prepared to investigate depletion 
interactions between four differently sized probe spheres and a wall. The salt concentration of the buffer is colour codes 

as indicated in the legend.

The graph in Figure (3-2) above summarizes the compositions of all the samples prepared for the 

investigation of depletion interactions between a spherical colloidal probe and a planar wall 

induced by rod-like depletants. As spherical probes the same differently sized polystyrene 

particles purchased to perform the protein coating (see section 3.1.1) were used. As rod-like 

depletants we used wild-type fd-virus, considered a model system for anisotropic colloids like 

slender objects [49]. The latter were grown and harvested in-house following procedures carefully 

reported elsewhere in literature [21] and then stored in a HCl-Tris buffer suspension at constant = 7.5. The polystyrene particles were provided in a very concentrated stock solution so, 

before use, those were washed in pure water at least two times, using a regular spin-down and 
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solvent exchange procedure, and then diluted till obtaining a very clear suspension. The fd-viruses 

stock solution was instead diluted into other three stock solutions of 1 in concentration, using 

HCl-Tris buffer suspensions at three different Tris-salt concentrations of 2 5 10 , at 

constant = 8.2 and with 15% volume of Ethanol added to prevent bacterial growth over time.

The Tris-buffer concentrations were chosen after an empirical evaluation of the partial screening 

of the electrostatic repulsion between the probe spheres and the glass surface due to the constant 

partial dissociation of the buffer in solution. The latter had to be such that the probes will reach 

close enough to the interface to scatter enough light from the evanescent wave without being 

caught in the Van der Waal attraction range. Finally Tris-solutions were matched as follows:10 1 5 2 2 3 4 
where the last case reports as well the minimum concentration possible to use for the Tris-buffer 

to actually keep the pH steady. To be fair it takes to point out that the values listed above refer to 

the Tris-buffer concentrations used for the preparation of the solutions but the respective effective 

ionic strength related to the given = 8.2 was calculated, via the already used Eq. (3.1), to be 

exactly half of the total concentration, thus:= {1 2.5 5} .
The three fd-virus stock solutions were then diluted down to the desired concentrations targeted 

during the experiment and well summarized in Figure (3-2) for each probe size. The effective fd-

concentration of each dilution prepared was checked via UV-Vis spectroscopy and found between 

the following listed values:= {0.00 0.06 0.10 0.20 0.30 0.35 0.40 0.50 0.60 0.70 0.851.00 } .
An important reference value for the system fd is the so called overlap concentration, or . The 

latter defines the concentration at which the fd-viruses stop behaving as a gas and start to overlap 

thus to interact with each other. Such value is calculated through its inverse proportion to the 

volume of a sphere having half of an fd-virus length as a radius:
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1 = 6 0.07 .
The overlap concentration represents the upper limit for the low density approximation to be 

fulfilled. It it worth to notice that just the first two concentrations reported for the fd-virus 

dilutions are within this limit, all the rest belongs to the high concentrations limit up to 14 × ,

or 1 , which is the highest concentration considered. To have the measurements performed at 

the best over a single particle in the measuring volume, the preparation of the binary mixtures 

used to investigate depletion interactions was realized directly in situ using the flow-through cell. 

The particles dispersion was flushed-in the flow-through cell then, after a suitable particle was 

trapped at high tweezers laser power, the excess was rinsed out with at least 250 mL of pure 

water. Only at last the pure water was substituted by flushing in 5 mL of the wanted HCl-Tris 

buffer solution at the desired fd-virus concentration to perform the measurements. Given the 

volume of the flow through cell being 540 L, the latter quantity is enough to ensure a full 

exchange of solvent. 
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4 Results from Statics and Dynamics
Introduction

In this chapter the data analysis and the results obtained are explained in detail and organized in 

two m ain paragraphs, respectively Results from Static Data Analysis (4.1) and Results from 

Dynamic Data Analysis (4.2).

4.1 Results from Static Data Analysis

4.1.1 Results from S-layer coated colloids

The study of protein-protein non-specific interactions was inspired by an experimental 

investigation from Valle-Delgado et al. where their aim was to monitor the effects of the 

dispersing medium conditions on the interactions between surfaces coated with bovine serum 

albumin (BSA) [36, 80]. Finally their scope was to address protein stability at physiological pH 

and salt concentrations and eventually above such limits. 

Proteins are well known biological macro-molecules capable of performing a wide variety of 

functions basic to life, from DNA replication [81], response to stimuli [82], and transport of other 

molecules from and to specific locations [83], to catalysing the metabolic reactions [84]. Thus a 

great diversity in structures and interactions is required for such class of molecules to fulfil their 

purpose. Such diversity is granted by the unique sequence of amino acids and residues building up 

the specific protein, which do not account solely for its chemical composition but also for its 

folded structure and therefore its activity [85, 86]. Due to their intrinsically complex chemical 

composition, proteins show anisotropically patterned surface charges and given their typical size 

range they are normally treated as colloids. This is why this class of macro-molecules is also 

described as patchy colloidal system [87]. As with colloids, one may think that also here pair-wise 

interactions can be well described by a DLVO potential. The trends described by the blue curves 

in Figure (4-1) are the total pair-wise DLVO interaction potential, resulting from the sum of 

electrostatic repulsion (Fig. (4-1)-black lines) and Van der Waals attraction (Fig. (4-1)-red lines), 

and calculated with parameters typical for Apoferritin, a very common protein found in almost all 

living organisms that commonly acts to store iron and release it in a controlled manner [88]. The 

two graphs below show total pair-wise interaction potentials calculated taking the protein as a 

patchy colloidal sphere with total number of surface charges = 50 and radius = 6.9 [35]
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in a solution of deionized water, = 10 (Fig. (4-1)(a)),  and at physiological salt 

concentrations, = 152 , both at constant = 7.5 (Fig. (4-1)(b)).

Figure 4-1 Plots representing the pair-wise interaction potential between two proteins calculated with average values 
of the surface number of charges, Z=50, and radius, R=6.9 nm, typical for Apoferritin and considering a Hamaker-
constant of 1kBT. Figure (a) displays in blue the total interaction potential in pure water; figure (b) shows the same 

case but with increased salt concentration matching physiological conditions, i.e. = 152mM.

In the first case, the blue curve in Figure (4-1)(a) describes a system stabilised at short distances 

by an energetic barrier that prevents the components from aggregation. In Figure (4-1)(b) instead, 

where the salt content is dramatically increased, the total interaction potential becomes purely 

attractive, due to the salt screening effect on the surface charges, causing aggregation. Though, 

the fact that life is possible, if not necessarily, happening in such ranges of pH and salt 

concentrations, leads to the obvious conclusion that there must be an additional kind of interaction 

beyond the DLVO potential stabilizing proteins against aggregation. The latter is generally 

attributed to Hydration forces [34]. In their experiment Valle-Delgado et al. studied their protein 

system via Atomic Force Microscopy (AFM) and reached the conclusion that indeed there is an

hydration layer stabilizing the system at distances below 2 nm and at salt concentrations as high 

as 1M and pH~9 [80]. Given the higher resolution in force measurements of TIRM with respect to 

AFM, we attempted a similar investigation but on a different kind of protein, called S-layer 

proteins. The basic motivation was to study whether such stabilizing forces at high salt 

concentration are indeed a common feature of protein systems, especially within the range of the 

Van der Waals interactions. 
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Figure 4-2 Comparison of relative particle-wall interaction potentials measured over coated and un-coated 3 micron bead, at 

various ionic strengths c = 10 ÷ 60 mM and at constant tweezers lasers power of 0.03W and  pH=9. Panel (a) shows 

the interactions measured between a bare particle and a bare wall (BB, symbols) and bare particle and coated wall (BC,

lines) at salt concentrations cTRIS=10, 40mM; panel (b) shows the interactions between a bare particle and coated wall (BC,

lines) and between a coated particle and coated wall (CC, symbols) at salt concentrations cTRIS=40, 60mM; panel (c) shows 

the interaction potentials measured at same the salt concentration, cTIRS=40 mM, for a bare particle over bare wall (red 

symbols) and for coated particle over coated wall (black line plus symbols).

The graphs in Figure (4-2) above, show interaction potentials measured at buffer concentrations = 10, 40, 60 and constant pH = 9. The potentials are represented in the form of =
, meaning that the minimum value of the potential is set to zero ambiguously. It was not 

possible to fit the experimental data with the model function including hydration effects as 

proposed in the theory, therefore the discussion has to be limited to a qualitative comparison of 

the measured interaction potentials.
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The measurements were taken under the following conditions: a bare particle interacting with a 

non-coated wall (Fig. (4-2)(a)-symbols); a bare particle interacting with a coated wall (Fig. (4-

2)(a)-lines) and finally a coated particle interacting with a coated wall (Fig. (4-2)(b)-symbols). 

The potential profile between a bare sphere and the bare wall (BB) shows a distinct increase of 

the slope at separation distances slightly above the equilibrium position, while at larger separation 

distances the slope decreases to the particles weigh force. A qualitatively similar trend is observed 

for the case of a bare particle interacting with a protein coated wall (BC). The deepening of the 

potential well is a clear indication for Van der Waals interactions not being fully over-

compensated by the electrostatic repulsion between particles and walls. When the interface and 

the particle are both coated instead (CC) (Fig. (4-2)(b)-symbols), the profile minima are much 

shallower, indicating an almost complete outweighing of the attractive term in the total interaction 

potential. The observation gets even more supported by a closer look to Figure (4-2)(b), especially 

comparing the trends described by lines and by symbols respectively. The interaction potentials 

drawn as lines are related to the case of a bare particle interacting with a coated wall (BC), the 

symbols instead picture the case of a coated particle interacting with a coated wall (CC). The 

latter show a much shallower attractive minimum.

In all cases shown in Figure (4-2) the salt concentration in the buffer is high enough to effectively

screen electrostatic repulsion. Therefore, the contribution of Van der Waals attraction to the 

potential profiles can be clearly observed in the cases where the bare probe particles interact with 

the bare or the coated wall. However, if the particles and the wall are coated with S-layer protein, 

Van der Waals attraction can be effectively over-compensated. Even at a buffer concentration of 

cTRIS=60 mM there is only a small reminiscence. Here it is important to note that at electrolyte 

concentrations cTRIS>40 mM the bare particles will inevitably sediment to the bare glass surface 

and stick there irreversibly due to Van der Waals attraction. There are two potential explanations 

for this observation. (I) Either the charge density on particles and walls increases drastically by 

the coating by that increasing the amplitude of the electrostatic repulsion, or (II) there is an 

additional contribution to the interaction potential introduced by the coating. 

The first hypothesis can be checked by comparing potentials measured between a bare sphere and 

a bare wall to a potential measured between a bare sphere and a coated wall. If the coating would 

change the charge density significantly, a change of the profile shape should be observed even if 

only one of the interacting partners is changed. To the contrary, it is evident from the profiles 

shown in Figure (4-2)(a), that potentials are virtually indistinguishable independently of whether 

the glass surface is protein coated or not.
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However, this argument is based on the assumption that the coating of the glass surface was 

successful, which we could regrettably not prove experimentally. Therefore another method needs 

to be applied to check hypothesis (I), which is based on model calculations of the potential 

profile. In Figure (4-3) model curves which represent a superposition of electrostatic repulsions, 

Van der Waals attraction and a gravitational contribution are plotted, according to Eq. (1.54) and

in units of . The profiles were calculated, choosing parameters such that shapes were obtained 

which are qualitatively similar to the profiles displayed in Figure (4-2), e.g. sphere radius R=2000 

nm, effective weight force = 40fN, Hamaker constant AH=0.1kBT, Debye screening length = 2 nm and amplitudes of the electrostatic repulsion, , varying from 10 to 10 .

-50 0 50 100 150 200 250 300 350 400
-1

0

1

2

3

4

5

6

 B = 103kBT
 B = 104kBT
 B = 105kBT
 B = 106kBT

to
t(h

)/k
BT

h(nm)

Figure 4-3 Calculated potential profiles between a sphere and a wall. The curves represent a superposition of an 
electrostatic repulsion, a Van der Waals and a gravitational contribution, calculated in the Derjaguin-limit with the 

parameters: sphere radius = 2000 nm, effective weigh force = 40fN, Hamaker-constant = 0.1 , Debye 
screening length = 2 nm and amplitudes, B, of the electrostatic repulsion varying as indicated in the legend.

The calculated curves imply that to cause the experimentally observed change in profile shape one 

would needed an electrostatic amplitude as bigger as thousand times the original one. Further on, 

this increase should depend solely on the protein coating, meaning that the effective charge 

density would have to increase by a factor thirty, given that the repulsive potential is 

approximately proportional to the square of the charge density. Thus, although we do not have 

sound experimental proof to rule out this option definitely, such increase in number of charges 

would be rather impressive. It is therefore likely that we are observing the effect of an additional 

repulsive interaction on top of the DLVO potential. However, this interaction appears to be 

effective over a range of tens of nano-meters, thus it cannot be due to hydration forces as 

suggested earlier, because they have a typical range of about two nano-meters. Regrettably a 
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quantitative analysis was not possible due to difficulties encountered in properly fitting the data. It 

was shown earlier, that describing Van der Waals potentials quantitatively is difficult [12] but, in

our case, a further problem aroused from the unknown interaction term due to the protein coating 

for which the hydration force model was found inconsistent. Finally we observed a generally poor 

reproducibility of the measured profiles, as often happens with biological material and high salt 

concentrations, which is probably due to inhomogeneity of the coating. For these reasons these 

results, though very intriguing, shall be considered preliminary.

4.1.2 Depletion interactions mediated by fd-virus: on the limits of low 
density and Derjaguin Approximation

Depletion interactions are a basic energetic contribution when it comes to the stability of binary or 

even more complex colloidal mixtures. Asakura and Oosawa described the phenomenon in terms 

of a pair-wise potential using a simple entropic picture and imposing two important limitations for 

the validity of the theory: Derjaguin approximation and low density approximation. The first 

approximation is needed as a practical tool to calculate the force between curved surfaces which 

can be described trough the potential between flat walls provided that the range of the interaction 

is short enough, the second approximation simply neglects the mutual interaction between 

depletant particles. Experimentally, much work was dedicated to the measurement of depletion 

induced by polymer coils [15, 16, 54, 55] or anisotropic rod-like depletant [53, 89] to confirm the 

theory. 

The first experimental investigation of depletion interactions induced by fd-virus is from Yodh et 

al. [60] where they investigated depletion interactions between two spheres induced by rod-like 

depletant at high concentrations, as high as 14 × 1 / , being = 0.07 / the 

overlap concentrations for the fd-system. Theoretically, the problem of highly concentrated 

suspensions of rod-like depletants was addressed already many years before. Independently of 

each other, Auvray [57] and Mao et al. [58], devised an approach to describe the influence of the 

mutual excluded volume of rod-like depletant at high concentrations up to 10 times the overlap 

concentration. By means of a third order expansion in density, depletion forces were calculated 

with a formulation where the effective diameter of the rods in function of pH and salt 

concentration is also used. They predicted a 6% decrease of the depletion forces at rod 

concentrations as high as ten times their overlap density. 

The effect of the spheres to depletant size ratio was studied by Yaman et al. [56] in the frame 

work of the lack of phase separation in mixtures of spheres and rods while later on Lang [59], by 
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means of numerical calculations, explored the role of depletant polydispersity on depletion 

interactions at low density. Common finding in both the latter studies has been that at ratios of 

rod-length over sphere radius L/R=2, the predicted value for the depletion interaction contact 

potential calculated using Derjaguin approximation can get as large as three times higher than 

what evaluated from numerical approximations. 

The present experimental investigation [18] is bridging the theoretical and experimental papers 

quoted so far, proposing measurements taken over four differently sized micrometric beads, in 

order to probe the validity of Derjaguin approximation, and fd-concentrations up to 14 times the 

overlap concentration, to purposefully violate the low-density approximation. For each probe 

measurements were taken over almost ten different fd-concentrations and for each concentration 

at eight different tweezers laser powers with the purpose of increasing statistics and prove 

reproducibility.  

The experimental data were analysed using the following procedure which basically consist of 

non-linear least squares fitting of the potential profiles with the expression of Eq. (1.61). This 

model function, in essence contains only two adjustable parameters, i. e. the amplitude of the 

electrostatic repulsion, B, and ( ), which have to be determined to compare the 

potentials on an absolute scale. Further, the experimental potential profiles have a distance 

coordinate with the zero position at the position of the potential minimum. Therefore also the 

absolute separation distance, at which the probe sphere experiences the lowest potential, ,

has to be determined. Finally, we also allowed the concentration of rods, , to float freely in a 

wide range of concentrations, to detect deviations from the low density approximation.

To achieve the highest reliability of the best fitting parameters, we adhered to the following 

protocol. Firstly, we calibrated the effective force, , by simultaneous fitting on a series of data 

sets obtained in the absence in a depletant-free suspension at various powers of the laser tweezers. 

By this procedure, we obtained a linear relation between and the nominal laser power used for 

the measurements, to keep as a fixed parameter further on during the fitting operations on the 

data obtained in the presence of fd-virus. Secondly, we simultaneously fitted the sets of data 

which were obtained for a given virus concentration at different laser powers. In this case 

and B were used as global parameters, e.g. they were forced to be the same for all sets of data, 

while the local parameters and ( ) were allowed to vary between the data sets. In a 

complementary step we performed simultaneous fits of the data sets obtained from samples with 
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different fd-concentrations but at the same laser power. In this case, only was used as a global 

parameter, which was however fixed to the value obtained from the linear GF versus nominal 

power relation. To determine the values of , we used the fact that the potential profiles have 

a local minimum determined by the other parameters via the relation:

(4.1)

1 ( ) = 0 = { } +
+ 1 ,

which was solved numerically during each iteration of the fitting procedure.

The knowledge of and ( ) allows the comparison of potentials measured under 

different conditions on absolute scales of potentials and separation distances. The reference frame 

was set such that by definition the apparent gravitational contribution vanishes at particle wall 

contact, i. e. lim = 0.
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Figure 4-4 Measured interaction potentials (symbols) and theoretical calculations from the fitting parameters (lines) 
for d=1 m (a), d=2 m (b), d=3 m (c) and d=4 m (d) particles in diameter at a nominal laser power of 0.03W and 

at increasing fd-concentrations as indicated in the legend.

The graphs in Figure (4-4) represent measured and calculated interaction potentials between each 

probe sphere and the interface at the nominal laser power of 0.03W. In each of the graphs above

the full symbols are the measured data where the full lines are calculated from using the resulting 

best parameters of the fitting operation performed on the same data set. In this representation, the 

trends are more easily visible, since negative potential values can be due to the depletion 

contribution only. The data depicted with full black symbols and full black lines are those 

measured in a depletant-free solution which is regarded as a reference. The data sets depicted with 

red full symbols define the measurement taken at fd-concentration below the overlap at the 

nominal fd-concentration of 0.06 . The latter was chosen as the only concentration below the 

overlap one, = 0.07 , as to set a reference before the violation of the ideal gas

approximation. 

Analysing the experimental data, we come to a first important conclusion: even for concentrations 

far above the threshold set by the overlap one, the model theory predicts some experimental 
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trends correctly. All the parameters, which determine the shape of the potential profile including 

the depletion contribution, are known except for the amplitude of the electrostatic potential, B.

Therefore it is possible by numerical calculations, using the model function (Eq. (1.56)) and its 

first derivative, Eq. ( 4.1), to identify trends about how the parameters , ( ) and 

depend on the concentration of the depletant. Here is the rod content as determined from the 

fitting procedure as opposed to wich is the fd-concentration determined independently by 

UV-VIS spectroscopy. It is expected that , ( ) decrease linearly with fd-

concentration, while should be equal to the pre-set virus concentration. Fortunately it turns 

out that variations of the unknown parameter, B, over one order of magnitude does not change any 

of these trends significantly. Therefore the electrostatic amplitude was set to the constant value = 20 in all the calculations discussed below, which is a reasonable choice, since a value of 

this order was determined in all the fitting procedures. The following plots represent the trends of 

the equilibrium distances, , as determined by the fitting operations for all data sets and for 

each probe size. The lines with symbols picture the data extracted from the fits on the 

experimental data, whereas the dashed-dotted lines describe the predictions of the same quantities

as calculated from Eq. (1.56) using the best fitting parameters. The calculated lines show the same 

trend and same average slope as the experimental data and at a closer look, especially the data 

points corresponding to = 0.00 / , reveal a trend in tweezers laser power. The 

equilibrium distance gets indeed smaller and smaller as the laser power increases. Moreover, the 

effect seems to be more pronounced with increasing probe size, whereas for the smaller probe 

used the dispersion of the height at zero fd-concentration is much lower and scattered around a 

much lower average distance. This indicates that the particles with 1 m diameter are feeling a 

stronger trapping power as compared to the other probes, confirming what was stated already in 

the theory about the optical traps in the Mie-Lorentz regime (Section (1.2.1)). This dispersion 

effect on the heights due to the optical pressure becomes though negligible in all the cases at non-

zero fd-concentration meaning that the attractive minima induced by depletion were in any case 

predominant with respect to the extra push due to the optical pressure in the same direction. 
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Figure 4-5 trends of the equilibrium positions (hmin) achieved from the fitting operations (lines plus symbols) for all the 
probes: d=1 m (a), d=2 m (b), d=3 m (c), d=4 m (d), in function of increasing fd-concentration. Different colours 
refer to various nominal tweezers laser powers as indicated in the legend. Dashed-dotted lines represent trends which 

were calculated as explained in the text; the red boxes highlight the distribution of the hmin values in fd-free suspensions 
due to the optical pressure.

This last observation is very important in order to validate the findings about depletion 

interactions, proving that the trapping is not influencing qualitatively the results. The graphs 

below instead picture the trends of the evaluated (Fig. (4-6) lines plus symbols) and calculated 

(Fig. (4-6) dashed-dotted lines) potential minimum values in function of the sample fd-

concentrations for each probe size and at each tweezers laser power. The calculated trends display 

a linear decaying dependency in function of fd-concentration for each probe size. The values of 

potential minima obtained from the fitting to the data follow the calculated predictions very well 

at low fd-concentrations and for the lowest tweezers laser power. The trends which are 

experimentally observed with the 1 m sphere show a linear decay along the full range of 

concentrations however, at a different level for each tweezers laser power. This is probably again 

due to the fact that this probe sphere has a size which lies more certainly in the Mie-Lorentz 

regime. For the 2 m spheres the experimental data follow the expected trends qualitatively 

within some experimental scatter throughout the entire concentration range and the influence of 
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the laser tweezers is less pronounced and not systematic. The experimental data from the 3 m

and especially the 4 m spheres quantitatively agree with the predictions at low fd-concentrations, 

and no influence of the tweezers power is detected. However, at larger concentrations, deviations 

from the predictions beyond experimental scatter become evident. This is the case in particular for 

the 4 m sphere at fd-concentration above 0.6 mg/mL.
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Figure 4-6 trends of the total interaction potential minima (lines plus symbols) achieved from the fitting operations to 
the experimental interaction potentials for all the probes: d=1 m (a), d=2 m (b), d=3 m (c), d=4 m (d), and at all 

laser powers used in function of increasing fd-concentration along with the calculated trends (collapsing lines).
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Figure 4-7 trends of the concentrations achieved from the fitting operations of all experimental  interaction potentials 
for all probes, from the upper left corner going clock wise: 1-2-3 and 4 m in diameter at all laser powers used  (lines 

plus symbols) in function of increasing fd-concentration along with the calculated theoretical trends (dash-dotted 
lines).

In Figure (4-7), the depletant concentrations obtained as fitting parameters, FIT, are shown in 

dependence of the real SAMP, which was pre-set and determined independently by UV/VIS 

spectroscopy. Here the dashed-dotted line describes the linear trend with zero intercept and slope 

of one, which was expected if the model described the experiment correctly throughout the entire 

range of concentrations. At higher rod concentrations, the data obtained with the two smallest 

spheres appear to follow the linear trend up to the highest concentration within experimental 

scatter, apart from the tweezers induced anomaly in the case of the 1 m sphere. Differently, in 

t SAMP = 0.5mg/mL. Also in the 

towards higher values, indicating a stronger depletion interaction than expected from the model 

which applies Derjaguin and low density approximation. These observations confirm earlier data 

by July, who found the same effect but did not explore it systematically [62].

The data in Figures (4-6) and (4-7) allow an assessment of the limits of the two basic 

approximations of the theoretical model. In cases where Derjaguin approximation is expected to 
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hold, e.g. for the two largest spheres, the low density limit appears to break down only at rod 

concentrations as high as seven times the overlap value. At higher concentrations, the attractive 

potential is significantly (up to a factor of three in our set of data) deeper than predicted by the 

low density approximation. It is interesting to note that the only theoretical treatments, which take 

into account increased rod number densities [58], predict only a very small effect of the order of 

six percent and most importantly with the opposite sign from that of our experimental results,

towards smaller values of interaction strength. At the moment there is no explanation for the

behaviour we measured. Based on numerical calculations, it is expected that deviations of 

experimental depletion potentials from the Derjaguin description should be of the order of ten 

[59], while the experimental data are expected to be 

here it is observed that in both cases there is no significant deviation of the experimental data 

from the approximate theoretical prediction. It is however possible that this finding occurs due to 

a fortuitous balancing of effects. While a violation of the low density approximation causes a 

deepening of the effective depletion potential, as observed with the large probe spheres, the 

violation of Derjaguin approximation is expected to have the opposite effect. A potential 

explanation for such observations could lie in the dynamics of the system, because there is a 

further implicit assumption hidden the theory of depletion by rods. The assumption that the 

system is always in thermal equilibrium implies that any fluctuations of the depletant density 

relax instantaneously. Therefore, the next step in the current experimental investigation has been

to use the TIRM data to study the dynamics of the single-particle in suspension of stiff thin rods, 

wandering if something was happening there at high fd-concentrations.
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4.2 Results from Dynamic Data Analysis

4.2.1 Dynamics averaged over separation distances 

As discussed in section (1.4.1) Prieve and co-workers [34, 35] showed that the initial slope of the 

time auto correlation function, ( ) (see Eq. (1.61)), of the scattered intensities (ITACF) is 

related to the particle diffusion coefficient normal to the interface, averaged over the illumination 

profile:

= lim (0)(0)
where is the evanescent wave’s penetration depth and (0) is the derivative of the 

correlation function with respect to time that tends to zero (see section (1.4.1)).

Figure 4-8 Left: Example of normalized time auto-correlation functions of scattered intensities calculated from 
intensity traces measured with a 3 m probe sphere at a nominal tweezers laser power of 0.03W and at increasing fd-
concentrations as indicated in the legend. Right: Zoom in to the short time regime. The red lines represent the linear 

fits at < >.

Figure (4-8) above, shows a representative set of examples of ITACFs, calculated with a time 

resolution of 2ms. The right box is a zoom in the short time regime where the averaged diffusion 

coefficients are determined multiplying the resulting slopes of the linear fits to the first five data 

points, with the squared penetration depth of the evanescent wave. This so defined averaged 

normal diffusion coefficient has also a theoretical formulation:

=  ( + ) ( ) ( ) ( ) ( )
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where is the Stokes-Einstein diffusion coefficient in the bulk, ( ) is the Boltzmann-factor ( ) { ( ) } corresponding to the interaction potential ( ), ( ) is the scattered 

intensity which decays exponentially with particle-wall separation distance and ( + ) is the 

inverse of the Brenner near-wall friction coefficient for a sphere moving normal to the wall with 

its centre position located at  = + , as defined by Eq. (1.71). Thus the averaged theoretical 

normal diffusion coefficient has to be calculated by numerical integration, bearing in mind that 

the pair-wise interaction potential is a known quantity determined already case by case from the 

static treatment of the TIRM data and the solvent viscosity for the calculation of is fixed to = 1.5 mPas. The latter is the viscosity of the depletant-free solution at 20° , selected as 

reference viscosity due to the fact that, because of quasi-inevitable shear thinning [90] it is very 

difficult to reliably measure the viscosity of very dilute fd-suspensions. 
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Figure 4-9 Ratio of theoretical and experimental averaged diffusion coefficients vs fd-concentration obtained at 0.03W 
nominal tweezers laser power for various particle sizes as indicated in the legend.

Figure (4-9) shows the ratios for each probe size and in function of fd-concentration. The 

experimental data were obtained at the lowest nominal tweezer laser power usable, namely 0.03 

W. The data obtained from measurements on the 1 m spheres (Fig. (4-9), black line and 

symbols) fall completely off the trend set by the other probe spheres due to the enhanced 

susceptibility of the smallest spheres to the tweezers power (see also Fig. (4-10)(a)). As for the 

rest of the trends (Fig. (4-9), coloured lines and symbols), up to an fd-content of about =0.60 , experimental diffusion coefficients agree with the theoretical prediction within 20%
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interval and with a slight increase of the ratio at increasing fd-concentration. Thus, considering 

the inverse proportionality linking viscosities to diffusion coefficients, the up-turn of the trends 

could be interpreted as the signature of increasing suspension viscosity with increasing depletant 

concentration. 
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Figure 4-10 Ratio of theoretical and experimental averaged diffusion coefficients vs fd-concentration for different 
probe sizes: d=1 m (a), d=2 m (b), d=3 m (c), d=4 m (d) obtained at various nominal tweezers laser power as 

indicated in the legend.

Especially for the 4 m in diameter probe spheres, above 0.60 mg/mL, the experimental diffusion 

coefficients become significantly smaller than the calculated values. This can be interpreted as the 

dynamic fingerprint of the observation from static data where, under these conditions, the 

apparent depletion potential is four times deeper than expected from the AO theoretical 

prediction. For completeness, the full set of data covering all probe sizes and tweezers laser 

powers is displayed in Figure (4-10) above.

The data confirm the basic features observed with a nominal tweezers power of 0.03W and the 

conclusions drawn from those. There are however, two drawbacks to this method of data 

analysing. First, as shown in the right panel of Fig. (4-8), the initial range in which the correlation 
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functions can be approximated by a linear trend is very limited, especially at large fd-

concentrations. Second, it is desirable to have spatially resolved dynamic information instead of a 

single measurement, representing an average over the illumination volume. Therefore we 

analysed the distributions of displacements height by height as will be discussed in the next 

section. 

4.2.2 Dynamics at fixed separation distances

Calculation of distribution functions and their first moments

For the calculation of the displacements distribution functions, the intensity traces have to be 

converted to the one-dimensional particle trajectories in dependence of time, using the 

exponential relation between separation distance and scattered intensity. From these the discrete 

conditional probability distributions, pi(hi,t|h0) can be easily constructed by identifying all 

occurrences of a selected h0-value and counting the frequencies ( ( )) of a given value ( )
after a given time t. These quantities can as well be expressed in terms of the particles centre of 

mass position z, bearing in mind that = + ,

( , | ) = ( ( ))
from which the mean displacement (MD) and the mean squared displacement (MSD) are 

calculated according to: 

( | ) = ( ) ( , | )
and:

( | ) ( ) = ( ) ( , | )
Typical examples for separation distributions are shown in Figure (4-10) obtained from 

measurements on a 4 m probe sphere in depletant-free suspensions with a nominal tweezers 

laser power of 0.03W. The distributions were calculated for the separation distances indicated in 

the labels of the plots y-axes and for various times as indicated in the legends. Independent of the 

starting separation distance h0, we observe that at very short times the distributions are symmetric 
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and can be quantitatively fitted by a Gaussian, as it is shown in the lower right panel of Figure (4-

10). At larger times the distributions turn askew, and their maximum shifts towards the 

equilibrium separation distance, , of about 25 nm, distance at which the position of the 

maximum probability does not shift with time. At time 500 ms the shape of the distribution 

does not change any more with time, the system relaxed in its equilibrium state and its 

distribution function is quantitatively described by the Boltzmann factor of the static interaction

potential. This is also demonstrated in the lower right panel of Figure (4-11), where the full 

magenta coloured trend represents the corresponding Boltzmann term which was calculated 

without any adjustable parameter and for a very long experimental time. 

It takes to point out that there is a discrepancy in the evaluation of the equilibrium separation 

distance respect to the statics, in fact the equilibrium separation distance of a 4 m bead in 

diameter, trapped at the nominal tweezers laser power of 0.03W in a depletant free suspension, in 

form the statics comes out to be = 45 . The discrepancy on the evaluation might depend 

partially on how much the static fit was able of reading the minimum of the interaction potential 

and partially on the fact that no fit was performed over the dynamic distributions either, given that 

the model followed by the askew distributions is unknown so no fitting operation is possible over 

those. 
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Figure 4-11 Distribution functions of separation distances obtained from a 4 m particle in a depletant free suspension 
calculated for h0=10 nm (top left), h0=25 nm (top right), h0=50 nm (bottom left and right) and the times indicated in the 

legends. Symbols are experimental data, vertical lines mark the equilibrium separation distance, the full black line in 
the lower right panel is a Gaussian fit and the magenta line represents the Boltzmann factor of the interaction potential 

obtained from the same raw data.

Some representative examples for the time dependence of MDs and MSDs are shown in Figure 

(4-12) below. At low starting values (h0=10 nm, black curve in the left panel), the MDs are 

always positive and increase continuously with time, due to the repulsive interaction of the 

particle with the wall. Differently, at h0=100 nm (purple curve in the left panel) where the 

effective gravitational contribution dominates the static potential, the mean displacements are 

always negative and decrease monotonically with time. In both cases the MD curves level off 

only at times beyond about two seconds. In cases where , (light blue curve in the left 

panel) the absolute values of the mean displacements are very small, because the particle is almost 

force free at the starting position. 
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Figure 4-12 Mean displacements (left) and mean squared displacements (right) as a function of time of a 4
in a depletant free suspension. Curves were calculated for starting values ranging from 10 to 100 nm in steps of 10 nm.

All MSD curves show an almost linear time dependence at small times and level off to a plateau 

value at large times. The time at which the turnover to the constant value occurs, decreases with 

increasing h0. According to Eqs. (1.77) and (1.78) respectively the initial slope of a MD vs time 

curve is the particles drift velocity at the chosen position, ( ) = ( + ), while the slope of a 

MSD vs time curve is twice the position dependent diffusion coefficient ( ). In the following 

sections these quantities will be treated in detail.

Mean squared displacements and diffusion coefficients

As discussed in section (1.4.2), diffusion coefficients normal to the interface are equal to half the 

initial slopes of the mean squared displacements vs time curves at a given position = . In 

Fig. (4-13) diffusion coefficients of particles in depletant free suspensions are displayed in terms 

of the ratio ( ) = ( ) versus the normalized separation distance / . For the convenience 

of notation, the subscript 0 is dropped here and further on. The error bars assigned to the 

experimental data represent the error resulting from the linear least squares fit to the initial part of 

the MSD vs. time curves. The experimental data are only qualitatively described with the 

expression of Eq. (1.72) by Honig and co-workers [72], if the solvent viscosity of 1.5 mPas (water 

with 15% ethanol) is used to calculate D0 from the particle radius. 
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Figure 4-13 Normalized particle diffusion coefficients as a function of normalized separation distance. Symbols are 
experimental data for different probe particle sizes as indicated in the legend. Particles were suspended in depletant 

free solution. The full line is the theoretical prediction by Brenner and co-workers.

Figure (4-14) below, shows experimental data for differently sized colloidal spheres and varying 

fd-concentration, where again the ratio ( ) is plotted versus the normalized separation distance / for all probe particle sizes and various depletant concentrations. For the two smallest probe 

particles all the experimental data follow the theoretical prediction, within the confidence limits 

set by the data acquired in depletant-free suspension. In the case of the two larger spheres, this 

holds only for low fd-concentrations up to approximately 0.4 0.5 mg/mL. At larger 

depletant concentrations we observe a steep upturn of the diffusion coefficient versus separation 

distance curve, e.g. the data not even qualitatively follow the trend of the theoretical prediction. 

This observation might again be interpreted as a dynamic fingerprint of the finding from static 

data where for the large spheres and high fd-concentrations the apparent depletion potential is 

significantly deeper than expected from the classical theoretical prediction.
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Figure 4-14 Normalized particle diffusion coefficients as a function of normalized separation distance. Symbols are 
experimental data for different fd-concentrations as indicated in the legend. The data for different probe particle sizes 
are collected in the four panels: (a) d=1 m, (b) d=2 m, (c) d=3 m, and (d) d=4 m. In all cases, the full black lines 
represent the theoretical prediction by Brenner and co-workers while in the last two quadrants the samples at low fd-
concentration have been plotted as lines to better appreciate the difference with the trends at higher fd-concentration 
displayed as lines and symbols.

Mean displacements and drift velocities

As discussed in section (1.4.2), the initial slopes of the mean displacements vs time curves at a 

given position = represent the particles’ drift velocity at the chosen position. In Figure 

(4-15), drift velocities of particles in depletant-free suspensions are displayed as a function of 

separation distance. The symbols are experimental data for all probe sphere sizes, which were 

determined by linear least squares fitting of the initial part of the MD versus time curves, while 

the lines represent predictions using Eqs. (1.72) and (1.75). The input parameters for these 

calculations are the force acting on the particle and the solvent viscosity, which determines the 

particles’ bulk diffusion coefficient. The latter was again set to = 1.5 mPas in all cases and the 
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forces were calculated using the parameters determined by the static potential measurements, thus 

there are no adjustable parameters.
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Figure 4-15 Particle drift velocities as a function of separation distance. Symbols are experimental data for different 
particle sizes as indicated in the legend obtained at 0.03 W tweezers laser power. Particles were suspended in depletant 

free solution. The full lines are parameter free model calculations using Eqs. (1.72) and Eq.(1.75).

Differently from the diffusion coefficients obtained from the same systems, shown before in 

Figure (4-13), here we observe a perfect agreement between experimental data and predictions for 

the drift velocities. The only exceptions are the data from the 1 m diameter particles at large 

separation distance, where the force due to the tweezers laser is dominant, which makes the data 

unreliable, as discussed before.

The quantitative agreement between experimental and predicted drift velocities suggests a way of 

measuring local viscosities in the sample solution. For this purpose we determined the drift 

velocities from the MD versus time curves and now used Eqs. (1.72) and (1.75) as model function 

for a non-linear least squares fit with the viscosity as only parameter. The best fitting parameters 

are shown in Figure (4-16). Again the data obtained from the 1 m spheres are deviating 

significantly from the trends set by the other systems, which is again very likely due to the

tweezers effect. The viscosities obtained for the other probe spheres fluctuate around the solvent 

viscosity of 1.5 mPas with some experimental scatter. Actually the average of all fitted viscosity 

values is 1.41 mPas. This finding may seem counterintuitive at first glance, since a significant 

increase of the viscosity with fd concentration should be expected. However, looking at the 
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absolute velocity values, those have maximum values of about 0.5 nm/ms. On the other hand the 

times over which the MD vs time curves are evaluated, are 100 ms at maximum. Consequently we 

are observing drifts which are generally smaller than 50 nm. This is only ten or less percent of the 

radius of the hypothetical spherical volume a freely rotating fd-virus particle would occupy. 

Therefore it appears reasonable that the probe sphere does not feel any significant constraints on 

its mobility caused by the rods. Thus, it is rather only the friction with the solvent determining the 

local viscosity values evaluated with the fits.
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Figure 4-16 Local viscosities as a function of depletant concentration. Symbols are data for different particle sizes as 
indicated in the legend, obtained at 0.03 W tweezers laser power. The data were determined by non-linear least squares 

fitting of the drift velocities vs separation distance curves, using Eq. (1.75) as model function.

It is however intriguing, that the experimental data are much better described by the theoretical 

prediction in the case of the drift velocities than in the case of the diffusion coefficients. This 

finding will be discussed in the final section of this chapter.
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Reliability of Dn(z) and v(z) determination

According to Eqs. (1.77) and (1.78), we rely on an initial linear dependence of the particles’ mean 

displacement and mean squared displacement on time for the determination of v(z) and Dn(z), 

respectively. Therefore, the ratio of the second coefficient in the short time expansions of these 

quantities over the first coefficient is a key parameter determining the reliability of the obtained 

results. For the simplification of notation we define: ( , ) ( ) + ( ) +( , ) 2 ( ) + ( ) +
where A(z) and B(z) are defined by Eq.(1.79) and Eq.(1.80), as the coefficients of the time 

squared terms respectively. With the latter quantities one can further define:

( ) ( )( )
( ) ( )2 ( )

which are coefficients that allow a direct visualization of the predominance of either the 

coefficient of the linear term or of the quadratic term, in function of . Thus, the smaller Adrift and 

Bdiff, the more reliable is the respective linear approximation for the time dependence of the MD 

and the MSD. It is important to note that the drift velocity will be very small or even zero close to 

the equilibrium separation distance hm=zm-R and consequently , the ratio Adrift will diverge at zm.

Thus, the ratios Adrift and Bdiff will only be discussed for separation distances 0.1 .

A collection of representative ratios is displayed in Figure (4-17), below. They were calculated for 

a sphere with radius R=2 m, interacting with the wall by an electrostatic repulsion with 

amplitude B=20kBT and a Debye screening length of 10 nm, an effective weigh force, = 75 fN 

and a depletion potential of with amplitude depending on the fd-concentration, as indicated in the 

figures’ legends. It is immediately evident that in all relevant cases the ratio < 1, while 1 in most cases. Note that both parameter ( ) and ( ) have the dimension 

of a reciprocal time, which should be identified with the time range over which the linear fit is 

applied. This time is of the order of several milliseconds to several tens of milliseconds. However 
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no matter which time range is chosen we will always observe that ( )  ( ) showing 

that the linear fit will always be less reliable in the case of the MSD data as compared to the MD 

data. 

Figure 4-17 ratios between the second and first coefficient of the short time expansions of the time dependence of the 
mean displacement (left) and the mean squared displacement (right).Curves are calculated for a 4 m sphere 

suspended in solutions with varying fd-concentrations as indicated in the legend.

This implies, that it is not appropriate to use a linear approximation for the time dependence of the 

MSD, no matter how short the selected time range is. A qualitative argument for this finding is 

that the second coefficient of the MSD time expansion, B(z), contains the drift velocity, which is 

thus neglected by the linear approximation. However the drift velocity should never be neglected, 

since it will be effective at any time. 
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5 Conclusions

The present experimental investigation was about measurement, via TIRM, of static and dynamic 

properties of two different bio-mimetic systems: 

Colloids and interfaces coated with a 2D protein-layer called S-layer protein, to study 

protein-protein non-specific interaction;

Binary mixtures of polystyrene probe spheres and fd-virus, to study depletion interactions 

beyond the limits of low density and Derjaguin approximation.

TIRM is a scattering technique normally used to measure interaction potentials between colloidal 

probes and the interface underneath, but the same intensity traces can be used also to infer 

dynamics. A novelty we proposed is the calculation of dynamic quantities at given heights (see 

section (1.4.2)), with further determination of absolute values of local viscosities (see section 

(4.2.2)). In the following, the conclusions drawn from the experiments, are organized in two 

sections: Conclusions about Statics (5.1) and Conclusion about Dynamics (5.2). 

5.1 Conclusions about Statics

Preliminary TIRM measurements over protein-protein non-specific interactions between a 

colloidal spherical probe and the interface underneath, were obtained choosing fluorescent-fusion-

S-layer proteins as coating agent (Esge-EGFP). Given that the only forces known so far justifying 

proteins stability at physiological conditions are Hydration forces [34], normally acting at very 

short distances [36], our measurements were performed at increasing ionic strengths, between 2 ÷60 of HCl-Tris buffer, so to get the probe spheres closer and closer to the interface buy 

dumping repulsion, and at constant = 9, so far away from their iso-electric point.

Measurements have been performed with bare particles over bare wall (BB), to create a reference,

and then with coated particles over bare wall (BC) and finally with coated particles over coated 

wall (CC), this time to understand weather the protein coating was causing any change in the

otherwise expected DLVO potential between the probe and the interface. A comparison between 

the interaction potentials, from each aforementioned case, measured at equal salt concentration 

has shown that the interaction potential between ted surfaces (CC) has a much smoother Van der 

Waals attractive minimum at high salt concentrations, e.g. = 40 , than the one of the 
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bare particle over bare wall (BB) (see Fig. (4-2)(c)), and even higher salt concentrations are 

addressable in the latter case without sedimentation (see Fig. (4-2)(b)). At first glance one may 

argue that the stabilizing effect comes from hydration forces, but the measurements show an 

effect that extends from 50 100 , thus an order of magnitude higher than the usual range for 

hydration, which is about 2 . A plausible hypothesis to explain the change in shape for the 

coated surfaces interaction potentials is to consider that the coating could have determined a 

higher surface charge for both objects involved, resulting in a higher repulsive interaction. For 

this reason DLVO interaction potentials at increasing values of electrostatic amplitude, , have 

being calculated to match the reduction of Van der Waals attractive minimum found from the data

(see Fig. (4-3)). The latter calculations have shown that, for such effect to be due solely to the 

increased amount of surface charges, one would need an electrostatic amplitude at least thousand 

times higher than 20 . Unfortunately no proper fitting over the coated surfaces interaction 

potentials minima was possible, neither using hydration, nor a retarded Van der Waals attraction 

to correct the typical DLVO model. Nonetheless measurements have shown that a clear effect is 

present when the protein-coating is on and strong suggestions point towards some possibly new 

non-DLVO contribution as stabilization cause. Though, given the low experimental 

reproducibility we have encountered no strong conclusions could be made and further 

investigations over the matter are recommended.

The TIRM measurements performed to investigate depletion interactions beyond the limits of low 

density and Derjaguin’s approximation, were carried out over a range of concentrations and probe 

sizes yet never reported in literature so systematically. From those it came out that the classical 

AO model holds up to concentrations almost 10 × , so of about 0.6 mg/mL. Above such 

concentration the 4 micron beads in diameter display a much stronger depletion interaction that

what expected by the AO model and a depletion force about 4 times higher. Similar trend seam to 

follow also the 3 micron in diameter beds, case in which though the divergence from the model is 

visible but less striking. All other probes, so the 2 and 1 micron beads in diameter, show no 

deviation from the model calculations through all the range of concentrations measured, most 

probably as a fortuitous cancellation of errors, given that for those two cases Derjaguin’s 

approximation is also not fulfilled. Thus, respect to what already known in literature [59], the 

violation of the Derjaguin’s approximation does not bring about as much of an error as 

numerically calculated; the violation of the low density approximation brings instead to an 

increase of the interaction strength of about 4 times; the 6% reduction predicted in fact by the 
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high concentrations model by Mao, Cates and Lekkerkerker [58] strongly detaches from what 

shown by the experiment.

5.2 Conclusions about Dynamics
 

The analysis of the dynamic information of the TIRM data, reveals a fingerprint of the already 

observed deepening beyond expectations of the interaction potential minimum, for the largest 

spheres and at high fd-concentrations. What one can observe from the trends of the <Dnteo>, 

calculated from the auto-correlation functions of scattered intensity, in function of increasing fd-

concentration, is an upturn of the trends at high fd-concentrations, implying higher values for the 

measured averaged normal diffusion coefficient respect to the theoretically calculated ones (see 

Fig. (4-9)), independently of the selected tweezers laser power (see Fig. (4-10)). One potential 

explanation for the experimental observation might be that the fd-suspensions at increasing 

concentrations are not anymore purely viscous, but an elastic contribution to their rheological 

properties will arise from the formation of an entangled network of rods [90]. Nonetheless one 

needs to keep in mind that auto-correlation functions do not allow the determination of absolute 

normal diffusion coefficients but only of averages respect to all possible particle positions. Thus, 

the latter cannot be used to explicitly evaluate solvent viscosities. 

Thanks to this discomfort we though observed that there is potential to measure local mean 

displacements (MD) and mean square displacements (MSD) at given heights with TIRM. As 

explained in the theory section (1.4.2), once the intensity trace was converted into a trajectory 

over time, a fixed separation distance, namely , was chosen to evaluate MD and MSD at that 

given height. The experimental value of the aforementioned dynamical quantities was obtained by 

simply applying the statistical definitions of mean and mean square displacement, while 

theoretically those were compared to Eqs. (1.77) and (1.78), respectively. From those it is clear 

that drift velocities and normal diffusion coefficients at given heights can be estimated as the 

initial slopes of the MD and MSD, respectively. Moreover, both drift velocity and normal 

diffusion coefficient, have an explicit dependence from . To calculate local viscosities, we 

decided to compare the normal diffusion coefficients to the Brenner/Honig model (Eq. (1.72)) 

directly, and to fit all drift velocities in function of the height using Eq. (1.75) as fitting model. 

The trends of the normal diffusion coefficients in function of the heights showed a clear 

divergence, especially for the largest probe spheres, at high fd-concentrations, detaching
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completely form the Brenner predictions (see Fig. (4-14)). Local viscosities could then be 

evaluated just for concentrations below 0.03 mg/mL finding an average value of = 1.41 mPas,

quite close to the nominal viscosity of the depletant-free solution, = 1.5 mPas at 20°.
To check over the divergence shown by the trends of the diffusion coefficients at high 

concentrations, viscosities were evaluated also from the drift velocities at given heights, extracted 

for each height as the initial slope of the MD over time. In this case no divergence was found 

between theory and experimentally evaluated drift velocities and a viscosity of exactly 1.5 mPas 

was found on average from the fitting operations.      

Finally, we identified the reason why drift velocities can be determined more reliably than 

diffusion coefficients from the initial slope of the time dependence of the MD and MSD 

respectively. In the latter case the ratio of the second coefficient in the short time expansion over 

the first coefficient is always much larger than unity (see Fig. (4-17) right side panel). This means 

that the linear approximation will always cause much greater errors in the determination of the 

diffusion coefficient then for the drift velocity. This is true especially for systems in an external 

force field, where drift velocities are non-zero at any time [91].
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