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Abstract

In this thesis we are interested in the testing problem, whether there are rare and weak
signals (alternative) or no signals (null) within white noise background. To be more
specific, we study the asymptotic behaviour of the log-likelihood ratio test (LLRT) and
Tukey’s higher criticism test (HC) modified by Donoho and Jin [20] when the number of
observations n tends to infinity. First results were shown by Ingster [32], who studied
the asymptotic behaviour of LLRT in great detail under the assumption of normal distri-
butions. In the same context Jin [41] and Donoho and Jin [20] used the term detection
boundary, which divides the plane, that represents the parametrisation of signal strength
and the probability of a signal, into two areas. By doing this they illustrate their results
and the ones of Ingster [32]: Underneath the boundary LLRT yields no better results than
flipping a coin (as n → ∞). Above the boundary LLRT can completely separate the null
and the alternative (as n → ∞). Moreover, Donoho and Jin [20] showed that the latter
is also valid for HC. In contrast to LLRT HC does not depend on the unknown signal
strength and probability of a signal. Thus, it is applicable in practice. Similar results
concerning HC were also shown for other distributions, see [10, 12, 20].
The first chapter serves as an introduction for this thesis. In the second chapter we present
an extension of the model which was studied in the literature. The main difference be-
tween these models is that the signal strength and the probability for a signal can differ
in each observation. Moreover, we do not restrict our model to normal or other specific
distributions. In the following first main part of this thesis we discuss the asymptotic be-
haviour of LLRT. We are especially interested in the limit distribution of the test statistic
on the detection boundary. There are already results in the literature concerning this, see
[10, 12, 20, 32], which we can extend to our general model. In the second main part of this
thesis we show that the detection boundaries of HC and LLRT coincide for some different
assumptions concerning the distributions. Moreover, we discuss the asymptotic behaviour
of HC on the detection boundary for these assumptions. We want to emphasise that the
last issue was an open problem until recently.





Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit dem Testproblem, ob innerhalb von weißem
Rauschen einige wenige Signale (Alternative) oder keine Signale (Nullhypothese) vorliegen.
Hierzu studieren wir das asymptotische Verhalten des Log-Likelihood-Quotienten Tests
(LLQ) und des von Donoho und Jin [20] modifizierten Higher Criticism Tests (HC), wenn
die Anzahl n der Beobachtungen gegen unendlich strebt. Erste Resultate wurden von In-
gster [32] erzielt, der unter Normalverteilungsannahmen das asymptotische Verhalten von
LLQ studierte. In diesem Kontext führten Jin [41] und Donoho und Jin [20] den Begriff
der Erkennungsgrenze ein, welche die Ebene, die die Parametrisierung der Signalstärke
und -wahrscheinlichkeit darstellt, in zwei Bereiche teilt. Auf diese Weise visualisierten sie
ihre Ergebnisse sowie diejenigen von Ingster [32]: Unterhalb dieser Grenze erzielt LLQ
keine besseren Ergebnisse als ein Münzwurf (für n → ∞). Oberhalb dieser Grenze kann
LLQ zwischen Nullhypothese und Alternative (für n → ∞) ohne Fehler unterscheiden.
Weiterhin zeigten Donoho and Jin [20], dass HC Letzteres ebenfalls kann. Im Gegensatz
zu LLQ hängt HC nicht von der Signalwahrscheinlichkeit und -stärke ab und ist somit
in der Praxis anwendbar. Das zuvor erwähnte, asymptotisch optimale Verhalten von HC
wurde auch für andere Verteilungsannahmen nachgewiesen, siehe [10, 12, 20].
Nach einem einleitenden ersten Kapitel stellen wir eine Erweiterung des bisher betra-
chteten Modells im zweiten Kapitel vor, indem wir zulassen, dass die Signalwahrschein-
lichkeit und -stärke für verschiedene Beobachtungen unterschiedlich sein kann. Zu-
dem schränken wir das Modell nicht auf bestimmte Verteilungsannahmen, z.B. Nor-
malverteilung, ein. Im ersten Hauptteil der Arbeit beschäftigen wir uns mit dem asympto-
tischen Verhalten von LLQ. Insbesondere sind wir an dem Konvergenzverhalten der Test-
statistik auf der Erkennungsgrenze interessiert. Hierbei lassen sich die bisherigen Ergeb-
nisse bezüglich Normalverteilungsannahmen, siehe [10, 12, 20, 32], auf unser allgemeineres
Modell erweitern. Im zweiten Hauptteil der Arbeit widmen wir uns HC. Wir zeigen, dass
die Erkennungsgrenzen von HC und LLQ unter noch nicht betrachteten Verteilungsannah-
men übereinstimmen. Zudem präsentieren wir erste Ergebnisse zum Verhalten von HC
auf der Grenze, welches in der Literatur bisher noch nicht studiert wurde.
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1. Introduction

We are confronted with a lot of data nowadays. Thus, there is a lot of work to do for
the statistician. One task, which is the goal of this thesis, is to detect signals within
white noise. At the beginning of genomics, e.g., scientists were hopeful that the so called
common disease-common variant hypothesis was true, see [23]. This hypothesis says that
some known genes are differentially expressed in patients affected by a common disease.
Practice, however, showed us that this assumption is incorrect. In recent research the
assumption, that numerous unknown genes of an affected patient are differentially but only
slightly expressed, is often used, see [16, 24, 33]. Note that the number of the differentially
expressed genes is quite huge but relative to the observed genes it is small. That is why
the model, which is used in this case, is called the rare and weak model because the
number of signals is relatively small (rare signals) and so is the effect size (weak signals).
Consequently, it is very difficult to decide if there are signals or not. This model is also
applied in cosmology and astronomy, see [13, 40], and in local anomaly detection, especially
in disease outbreak detection, see [50, 55]. Donoho and Jin [20] modified Tukey’s higher
criticism, see [59–61], for the purpose of detecting (heterogeneous) normal mixtures, i.e.,
for the testing problem H0,n versus H1,n, where

H0,n : Yn,1, . . . , Yn,n are i.i.d. with distribution P0 := N(0, 1)
(1.1)

H1,n : Yn,1, . . . , Yn,n are i.i.d. with distribution Q := (1 − εn)N(0, 1) + εnN(ϑn, 1)

for some εn > 0, ϑn ∈ R, ϑn �= 0 and n ∈ N. The null H0,n can be interpreted as
white noise. Furthermore, the alternative H1,n can be interpreted as white noise, where a
random number of observations contains an additional signal ϑn. We will later see that
under H1,n each observation is additionally shifted by ϑn with probability εn, see our
Lemma 2.3. In other words, the parameter εn is the probability for a signal and ϑn is
the signal’s strength. At first glance, this testing problem is quite easy because the null
and the alternative have one element each. Consequently, it is well known that the log-
likelihood ratio test, in short LLRT, achieves the best power among all tests, see, e.g., [58].
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1. Introduction

Figure 1.1.: Phase diagram for (sparse heterogeneous) normal mixtures. The solid curve
represents the detection boundary given by (1.3), which splits the plane into
two areas, the detectable and undetectable area.

Ingster [32] as well as Donoho and Jin [20] considered the following parametrisation of εn

and ϑn:

εn := n−β and ϑn :=
√

2r log n for some β ∈
(1

2
, 1
)

, r ∈ (0, 1). (1.2)

Their results can be explained and visualised by using the so called detection boundary
and by plotting it in a phase diagram. This was first done by Donoho and Jin [20]. For the
testing problem (1.1) and the parametrisation (1.2) the detection boundary ρ∗ is given by

ρ∗(β) :=

⎧⎪⎨⎪⎩β − 1
2 if 1

2 < β ≤ 3
4 .(

1 − √
1 − β

)2 if 3
4 < β < 1.

(1.3)

It divides the r-β-plane, see Figure 1.1, into the detectable and the undetectable area. If
r > ρ∗(β) then (r, β) belongs to the detectable area, i.e., LLRT can separate the null and
the alternative completely (asymptotically) and so the sum of type I and type II error
probabilities tends to 0. Conversely, if r < ρ∗(β) then (r, β) belongs to the undetectable
area, i.e., the null and the alternative are asymptotically indistinguishable and so the sum
of type I and type II error probabilities converges to 1 for all tests. Donoho and Jin [20]
discussed also other mixture models, e.g., a Chi-squared model. Cai et al. [10] discussed
heteroscedastic normal mixtures, i.e., the variance under the alternative can differ from
1. Cai and Wu [12] discussed a great class of exponential families. For all these models a
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phase diagram can be drawn and a detection boundary can be calculated. Recently the
case of multivariate Gaussian distributed observations Yn,i was discussed in the literature,
see [47, 62]. Beside all these continuous models, Arias-Castro and Wang [5] discussed a
discrete mixture model, to be more specific a sparse Poisson mixture model. They deter-
mined the detection boundary for this model by drawing a parallel to the normal mixture
model mentioned above. We also want to mention the paper of Jin [41], who discussed
the detection problem for the multiple looks model. In this model the sample is divided
into m groups of the same size, where every group contains exactly one signal under the
alternative, and so the number of signals is not random. At least for normal distributions,
Jin [41] showed that the results for the mixture model (1.1) can be transferred to the
multiple looks model.
In practice LLRT cannot be used because it depends on the unknown parameters ε and
ϑ. But the higher criticism test of Donoho and Jin [20], in short HC, does not depend on
these parameters. The detectable areas of HC and LLRT coincide for the testing problem
(1.1). This is also valid for the other above-mentioned models, see [5, 10, 12, 20].
The testing problem (1.1) can also be interpreted as a multiple hypothesis testing problem
for the global null. In this context Gontscharuk et al. [25], see also [26], discussed the
asymptotic behaviour of HC by using local levels. The well known false discovery rate
(FDR) controlling procedure of Benjamini and Hochberg [6] can also be applied for this
problem. But Donoho and Jin [20] showed that this and other known procedures for multi-
ple testing problems do not achieve the same asymptotic optimality for the heterogeneous
normal mixture model, i.e., the corresponding detectable regions are smaller. Jager and
Wellner [35] studied a new class of goodness-of-fit tests based on Phi-divergences, which
includes HC and which are also independent of the unknown parameters. They showed
that the detectable area of each member of this class coincides with one of HC and LLRT
in the normal heterogeneous mixture model. Moreover, Stepanova and Pavlenko [57] sug-
gested another class of goodness-of-fit tests based on the ideas of Csörgő et al. [14] and
proved that all these tests behave asymptotically as good as HC and so as LLRT in the
heterogeneous normal mixture model. Similarly to the HC test statistic their statistics
are also sup-functionals of the empirical process weighted by a certain class of functions.
For all previous mentioned tests the null distribution need to be known. Arias-Castro and
Wang [4] considered that the null distribution is unknown but symmetric. They suggested
a variant of HC for symmetry. For the sparse generalised Gaussian mixture model they
proved that their test has the same asymptotically optimal behaviour as LLRT and HC.
To sum up, there are other adaptive tests that can compete with HC.
We have assumed that the observations are independent until now. But the correlated

3



1. Introduction

case is also of great interest, e.g., in genetics and genomics, see [16]. Hall and Jin [30]
proved that a modification of HC is even optimal for the correlated case under certain
assumptions for the correlation structure. But there are also unsatisfying results about
HC for strong dependence, see [29]. The model considered in [29, 30] can be seen as the
special case, that n = p, for the following linear regression model:

Y = X β + σZ,

where σ > 0, Z is an n-dimensional multivariate normal distributed noise vector with the
identity as covariance matrix, X ∈ R

n×p is the design matrix and β ∈ R
p is the vector

of regression coefficients. The optimality of tests, among other variants of HC, for the
null β = 0 are discussed in [3, 31], where the non-zero entries of β are supposed to be
sparse under the alternative. Beside the detection of signals, HC can be used to construct
estimates for εn, see [11], and for feature selection, see [17, 18, 63]. For more details about
HC and possible application fields we refer the reader to the survey paper of Donoho and
Jin [19] and the huge number of references therein for more information.

The aim of this thesis is to extend the results mentioned above for HC and LLRT in the
context of signal detection to a more general model, where, e.g., the signal probability
εn,i can differ in each observation. We are especially interested in the asymptotic power
of both tests on the detection boundary. Some results about the asymptotic behaviour of
LLRT on the boundary are already known, e.g., for the heterogeneous and heteroscedastic
normal mixture model, see [10, 20, 32]. But the power of HC on the boundary was an
open question until now.

This introduction is followed by seven chapters, which finally conclude with the answer to
the very same question.

In Chapter 2 we introduce our more general mixture model. The new idea is to allow the
distribution of the observations Yn,i to depend on i, so that the observations do not need
to have the same distribution. We also present some examples for this model from which
we want to emphasise three types:

• heteroscedastic normal mixtures (light-tailed distribution).

• exponential families (including light- and heavy-tailed distributions).

• h-model (structure model for chimeric alternatives).

4



Figure 1.2.: The detectable and the undetectable area of HC are visualised for (sparse
heterogeneous) normal mixtures. The boundary, which splits the plane into
these two areas, belongs to the undetectable area.

For all these examples we determine the detection boundary and the asymptotic behaviour
of HC and LLRT on the detection boundary in the upcoming chapters, respectively.

In Chapters 3 to 5, the first main part of this thesis, we discuss the asymptotic behaviour
of LLRT. The LLRT and its test statistic are introduced in Chapter 3. At the beginning
of Chapter 4 we explain the useful connection between the asymptotic behaviour of LLRT
and weak convergence of binary experiments. By this it is sufficient for our purpose to
determine the accumulation points of certain binary experiments. We distinguish between
trivial and non-trivial accumulation points. There are two trivial cases: H0,n and H1,n

can be completely separated by LLRT (asymptotically) or H0,n and H1,n merge (asymp-
totically). In the non-trivial case LLRT can successfully, but not completely, separate
H0,n and H1,n (asymptotically). The non-trivial accumulation points correspond to the
behaviour of LLRT on the detection boundary. In Sections 4.2, 4.3 and 4.5 we present
necessary and sufficient conditions for trivial and non-trivial accumulation points of these
binary experiments. In Chapter 5 we make use of them for the examples introduced in
Chapter 2. By this we determine, among others, the detection boundary and the asymp-
totic behaviour of LLRT on it for models which are not discussed in the literature until
recently, e.g., the h-model.

In the last three chapters, the second main part, we focus on HC. The structure of this
part is the same as the one of the previous part. In Chapter 6 we introduce the test and

5



1. Introduction

the test statistic. The theoretical results are presented in Chapter 7. In Chapter 8 these
results are applied to our examples introduced in Chapter 2. To determine the detectable
area of HC we extend the ideas in [10, 12, 20] to our general model. By using this extension
we show for all our examples that

the detectable and the undetectable areas of HC and LLRT coincide.

We also discuss the model suggested by Cai and Wu [12]. We prove that under the
assumptions of Theorem 3 in [12] not only LLRT but also HC can completely separate
the null and the alternative. This was an unsolved problem in [12]. Similarly to the first
part we are in particular interested in the following question.

How does HC behave on the detection boundary asymptotically?

As far as we know, this question was unanswered in the literature until recently. We verify
for all our examples that HC cannot successfully separate the null and the alternative, i.e.,
the sum of type I and type II error probabilities converges to 1. In other words,

HC has no power on the detection boundary asymptotically.

Consequently, LLRT yields better results than HC asymptotically, at least on the bound-
ary. The results concerning HC are visualised in Figure 1.2 for the normal mixture model
introduced at the beginning of this chapter, see (1.1) and (1.2).

For a better understanding of this thesis, the appendix contains additional information
about infinitely divisible distributions, binary experiments and distances between proba-
bility measures for the readers, who are not familiar with these topics. Beside that, some
technical results are presented.

6



2. The model

2.1. Introduction

At first we present the general model, which we consider throughout the whole thesis. In
Sections 2.2 to 2.4 we introduce some specific and some quite general examples for this
model, among others the normal mixtures mentioned in Chapter 1. These examples are
referred to in the third chapter of each main part in order to apply our results to them.

Assumption 2.1. (i) Let (εn,i)1≤i≤n∈N be a triangular array of real numbers in [0, 1]
and (Ω, A) be a measurable space. Moreover, let μn,i and Pn,i be two different prob-
ability measures on (Ω, A) for all 1 ≤ i ≤ n ∈ N. Suppose that

εn:n := max
i=1,...,n

{εn,i} → 0 as n → ∞ (2.1)

and μn,i � Pn,i for all 1 ≤ i ≤ n ∈ N. (2.2)

Let fn,i be the Pn,i-density of μn,i, which is, here and subsequently, a short notation
for the Radon-Nikodym density of μn,i with respect of Pn,i. Define for all 1 ≤ i ≤
n ∈ N

Qn,i := (1 − εn,i)Pn,i + εn,iμn,i (2.3)

and for all n ∈ N the product measures

Q(n) :=
n⊗

i=1
Qn,i and P(n) :=

n⊗
i=1

Pn,i.

For all 1 ≤ i ≤ n ∈ N let gn,i be the Pn,i-density of Qn,i, i.e.,

gn,i =
d([1 − εn,i]Pn,i + εn,iμn,i)

dPn,i
= 1 + εn,i (fn,i − 1) . (2.4)

7



2. The model

If (Ω, A) = (R, R) we denote the distribution function of Pn,i by Fn,i and the left-
continuous quantile function of Pn,i by F −1

n,i for all 1 ≤ i ≤ n, i.e.,

F −1
n,i (u) := inf{t ∈ R : Fn,i(t) ≥ u} for all u ∈ (0, 1). (2.5)

(ii) Suppose that (i) holds, where Pn,i and μn,i do not depend on i, i.e.,

Pn,i = Pn,1 and μn,i = μn,1 for all i ∈ {1, . . . , n}.

Set for all n ∈ N

Pn := Pn,1, μn := μn,1, Qn := Qn,1,

fn := fn,1, gn := gn,1, Fn := Fn,1, F −1
n := F −1

n,1 .

(iii) Suppose that (ii) holds, where εn,i does not depend on i as well. Set εn := εn,1 for
all n ∈ N.

Remark 2.2. (i) In the following chapters we introduce some random variables and fur-
ther probability measures. For simplicity of the notation, they should also "live" on
(Ω, A). Hence, we suppose that the measurable space (Ω, A) is rich enough.

(ii) Under Assumption 2.1(i) we have for all δ > 0

max
i=1,...,n

{Pn,i (εn,ifn,i ≥ δ)} = max
i=1,...,n

{∫
1 {εn,ifn,i ≥ δ} dPn,i

}
≤ max

i=1,...,n

{∫
1 {εn,ifn,i ≥ δ} εn,i fn,i

δ
dPn,i

}
= δ−1 max

i=1,...,n

{
εn,i

∫
1 {εn,ifn,i ≥ δ} dμn,i

}
≤ δ−1 εn:n −→ 0 as n → ∞. �

Consequently, the generalisation of the testing problem (1.1) is given by

H0,n : P(n) versus H1,n : Q(n). (2.6)

We already mentioned in Chapter 1 how the null and the alternative can be interpreted.
The null represents some white noise. For the interpretation of the alternative we need
the following elementary lemma.

8



2.1. Introduction

Lemma 2.3. Let X, Y, Z be random variables on the same probability space (Ω, A, P),
where Z ∼ B(1, ε) for some ε ∈ [0, 1] and X, Y take values on some vector space V over
the field R. Denote by P and μ the distribution of X and Y , respectively, i.e., PX = P

and PY = μ. Furthermore, let X and Z be independent as well as Y and Z. Then

(1 − Z)X + ZY ∼ (1 − ε)P + εμ.

Proof. Suppose that X, Y : (Ω, A) → (V, AV ). Then for all A ∈ AV

P ((1 − Z)X + ZY ∈ A) = P (X ∈ A) P (Z = 0) + P (Y ∈ A) P (Z = 1) . �

Remark 2.4. There are no assumptions on the dependence structure of X and Y . Conse-
quently, we obtain immediately:
Let U ∼ U(0,1) and Z ∼ B(1, ε) for some ε ∈ [0, 1] be two random variables on the same
probability space (Ω, A, P). Moreover, let P and μ be probability measures on (R, B).
Denote the distribution functions of P , μ by F , G and the corresponding left-continuous
quantile functions by F −1, G−1, compare to (2.5). Then

(1 − Z)F −1(U) + ZG−1(U) ∼ (1 − ε)P + εμ. �

Thus, the alternative can be interpreted as a two-stage experiment. In the first step, it
is determined if the ith observation contains a signal or not, where the probability for a
signal is equal to εn,i (in our general model). If the ith observation contains a signal then
it is a realisation of the distribution μn,i. Otherwise, it is a realisation of the distribution
Pn,i. Hence, the number of signals is random under the alternative. Note that models
with a fixed number of signals under the alternative are also discussed in the literature,
e.g., the multiple looks model, see [41].

In the introduction we only mentioned the parametrisation in (1.2). But for the same
model Cai et al. [10] also examined the case that ϑn ↘ 0 and

√
nεn → ∞. They described

this case as the dense case and the other case, where ϑn → ∞ and
√

nεn → 0, is described
as the sparse case. The main idea of these cases is to distinguish between relatively strong
but rare signals and very weak but many signals. Note that in the literature the signal
strength is called weak even for the sparse case because μn tends to infinity very slowly.
Other authors used the notation moderately sparse and very sparse case. But we prefer
the one, which was used in [10], and extend it to our more general model by using the
variational distance, defined in Definition and Lemma A.12(i).

9
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Notation 2.5. Suppose that Assumption 2.1(i) holds.

(i) We denote by the sparse case the case in which

lim inf
n→∞ min

1≤i≤n
||Pn,i − μn,i|| > 0 and lim

n→∞

n∑
i=1

ε2
n,i = 0.

(ii) We denote by the dense case the case in which

lim
n→∞ max

1≤i≤n
||Pn,i − μn,i|| = 0 and lim inf

n→∞

n∑
i=1

ε2
n,i > 0. �

2.2. First examples

At the beginning we present the heteroscedastic normal mixture model, which we already
mentioned in Chapter 1.

Example 2.6 (Heteroscedastic normal mixture model). Suppose that Assumption 2.1(iii)
holds, where (Ω, A) = (R, B), Pn = N(0, 1) =: P0 and μn = N(ϑn, τ2) for some τ ∈ (0, ∞),
ϑn ∈ R and all n ∈ N. Then for all x ∈ R

fn(x) =
1
τ

exp
([

1 − 1
τ2

]
x2

2
+

ϑn

τ2 x − ϑ2
n

2τ2

)
. �

Remark 2.7. If τ = 1 we get the heterogeneous normal mixture model discussed in Chap-
ter 1, see (1.1). In this case the variances of Pn and μn are equal. �

In the following we introduce examples corresponding to the three max-stable distribu-
tions, namely Gumbel, Fréchet and Exponential, see, e.g., [27], of which the latter one
represents the Weibull distributions. These are of special interest because there is a con-
nection between extreme value theory and determining the asymptotic behaviour of the
log-likelihood ratio test, see Section 4.4.

Example 2.8 (Gumbel distribution). Suppose that Assumption 2.1(iii) holds, where
(Ω, A) = (R, B) and P0 := P1 = Pn is the standard Gumbel distribution for all n ∈ N. We
denote by Λ the distribution function of P0, i.e., for all x ∈ R

Λ(x) = exp
(−e−x) and

dP0
dλλ

(x) = exp
(−x − e−x) . (2.7)

10
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Moreover, suppose that μn is equal to the convolution of P0 and the dirac measure centred
at ϑn ∈ R, i.e., the measure is uniquely determined by the shift ϑn:

μn (−∞, x] := Λ(x − ϑn) for all x ∈ R.

Then

fn(x) =
dP0
dλλ

(x − ϑn)
( dP0

dλλ
(x)
)−1

= eϑn exp
(
−e−x

[
eϑn − 1

])
. �

Beside the previous two (location) families, the following two examples correspond to scale
families.

Example 2.9 (Fréchet distribution). Suppose that Assumption 2.1(iii) holds, where
(Ω, A) = (R, B) and P0 := P1 = Pn is a Fréchet distribution on (0, ∞) with param-
eter α > 0 for all n ∈ N, i.e., for all x > 0

P0 (0, x] = exp
(

− 1
xα

)
and

dP0
dλλ

(x) = αx−α−1 exp
(

− 1
xα

)
.

Moreover, suppose μn is the distribution, which is uniquely determined by

μn (0, x] := P0

(
0,

x

ϑn

]
for all x > 0 and some ϑn > 0.

Then for all x > 0

fn(x) = ϑα
n exp

(
− 1

xα

(
ϑα

n − 1
) )

. �

Example 2.10 (Exponential distribution). Denote by Exp(λ) the exponential distribution
with parameter λ > 0. Suppose that Assumption 2.1(iii) holds, where (Ω, A) = (R, B),
Pn = Exp(1) =: P0 and μn = Exp(1 + ϑn) for some ϑn > −1 and all n ∈ N. Then for
every x > 0

fn(x) = (ϑn + 1) exp (−ϑnx) . �
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2.3. Exponential families

2.3.1. Introduction

In this section we focus on exponential families (Qϑ)ϑ∈Θ, 0 ∈ Θ ⊂ R, of the shape

dQϑ

dQ0
(x) = C(ϑ) exp (ϑ h(x)) , x ∈ Ω.

Given such a family (Qϑ)ϑ∈Θ, we are interested in the model which arises from Assump-
tion 2.1(ii), where we set Pn := Q0 and μn := Qϑn for all n ∈ N and some sequence
(ϑn)n∈N

in Θ.

Assumption 2.11. Let (Qϑ)ϑ∈Θ, 0 ∈ Θ ⊂ R, be a family of probability measures on
some measurable space (Ω, A) with Qϑ � Q0 for all ϑ ∈ Θ. Furthermore, suppose that
the Q0-density of Qϑ, ϑ ∈ Θ, is given by

dQϑ

dQ0
= C(ϑ) exp (−ϑh) , (2.8)

where h : Ω → R is measurable and C(ϑ) < ∞ for all ϑ ∈ Θ. Let (ϑn)n∈N
be a sequence

in Θ. Suppose that Assumption 2.1(ii) holds with μn = Qϑn and Pn = Q0 for all n ∈ N.
Note that for all n ∈ N

fn =
dQϑn

dQ0
.

Remark 2.12. (i) (Examples) Clearly, the heterogeneous normal mixture model, i.e., the
model given in Example 2.6 with τ = 1, and the models given in Examples 2.8 to 2.10
fulfil Assumption 2.11. Consequently, light-tailed distributions, e.g., the normal and
the exponential distribution, as well as heavy-tailed distributions, e.g., Fréchet dis-
tribution, belong to the class of exponential families introduced in Assumption 2.11.

(ii) It is easy to see that

ω(ϑ) := C(ϑ)−1 =
∫

exp (−ϑh) dQ0 for all ϑ ∈ Θ. (2.9)

The function ω : Θ → R is called the Laplace transform of Q0 with respect to h. In
the following subsections we discuss some useful properties of this transform. For a
deeper discussion of it we refer the reader to [22, 64]. In both references only the
case h(x) = x, x ∈ Ω, is treated and so a Laplace transform in their sense is one
with respect to the identity function in our sense. But there is no loss of generality

12



2.3. Exponential families

in assuming h(x) = x, x ∈ Ω, because by the transformation formula we have for all
ϑ ∈ Θ and every x ∈ Ω

dQh
ϑ

dQh
0

(x) = C(ϑ) exp (−ϑx) .

Hence, the Laplace transform of Q0 with respect to h and the one of Qh
0 with respect

to the identity are equal.

(iii) Suppose, in contrast to (2.8), that the Q0-density of Qϑ, ϑ ∈ Θ, is given by

dQϑ

dQ0
(x) = C̃(ϑ) exp

(
−q(ϑ)h(x)

)
for all x ∈ Ω, �

where q : Θ → q(Θ) =: Θ̃. If q is invertible, e.g., if q is strictly monotone, and 0 ∈ Θ̃
then (2.8) holds for the family (Q̃θ)

θ∈Θ̃ given by Q̃θ := Qq−1(θ) for all θ ∈ Θ̃. In
this case we would analyse the family (Q̃)

θ∈Θ̃ first and transmit the corresponding
results to the original family (Qϑ)ϑ∈Θ afterwards.

As we will see later, the asymptotic behaviour of C(ϑn) and ω(ϑn) plays a crucial role. We
distinguish between ϑn → 0 and ϑn → ∞, which correspond to the distinction between
the dense and the sparse case, see Notation 2.5. For both cases we need some more specific
assumptions, which we introduce in the corresponding subsections.

2.3.2. Sparse case: Abelian and Tauberian theorem

At the beginning of this section we present the definition and some properties of slowly
varying functions. The terms regularly and slowly varying functions as used nowadays
were initiated by Karamata [42]. For a deeper discussion of these functions and possible
applications we refer the reader to Bingham et al. [8]. Important applications are the
Abelian and Tauberian theorems. These theorems deal with the convergence of the Laplace
transform ω, see (2.9). We present such a theorem of Feller [22] and some corollaries of
it, which we apply in Sections 5.2.1 and 8.4.2. Moreover, we present the assumptions for
the sparse case. We want to mention that the heterogeneous normal mixture model does
not fulfil these assumptions. But the exponential distribution mixture model does. We
will explain later, see, e.g., Remark 5.9, that the results concerning the log-likelihood ratio
test and the higher criticism test can be transferred from the exponential distribution to
the Fréchet and the Gumbel distribution. Consequently, by using our assumptions for the
sparse case we can get results for light- and heavy-tailed distributions.

13
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Definition 2.13. A measurable function L : (0, ∞) → (0, ∞) varies slowly at infinity if
and only if for every fixed x > 0

L(xt)
L(t)

→ 1 as t → ∞. (2.10)

Karamata [42] studied slowly varying functions under the assumption that L is continuous.
He proved the following uniform convergence theorem and the following property of L in
Lemma 2.15 under this additional assumption. Korevaar et al. [46] showed these results
for the general case of measurable functions L.

Theorem 2.14 (Uniform convergence theorem, 1.2.1 in [8]). Let L be a slowly
varying function at infinity. Then the convergence in (2.10) holds uniformly in x lying
in a compact subinterval [a, b] of (0, ∞). That means in particular that for any function
ψ : (0, ∞) → (0, ∞) satisfying

lim
t→∞

ψ(t)
t

= x for some x ∈ (0, ∞)

we have

L(ψ(t))
L(t)

→ 1 as t → ∞.

Lemma 2.15 (1.3.6(v) in [8]). Let L be a slowly varying function at infinity. Then

L(t)tδ → ∞ and L(t)t−δ → 0 as t → ∞

for every δ > 0. Hence,

log (L(t))
log(t)

→ 0 and L(t) = to(1) as t → ∞.

Assumption 2.16 (Exponential family, sparse case). Let Assumption 2.11 and the
following three conditions (i)-(iii) be fulfilled.

(i) We have Θ = [0, ∞), (Ω, A) = ([a, ∞), B ([a, ∞))) and Q0({a}) = 0 for some a ∈ R.

(ii) We have ϑn → ∞ as n → ∞ .

(iii) There exists some δ > 0 such that h is strictly increasing and continuous in [a, a+δ],

h(a) = 0 and h(t) ≥ h(a + δ) for all t ≥ a + δ.
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Remark 2.17. (i) We can always assume without loss of generality that h(a) = 0, since
otherwise we work with h̃ given by h̃(t) := h(t) − h(a) for all t ≥ a.

(ii) Under Assumption 2.16 Qh
0 is a measure on [0, ∞), where Qh

0({0}) = 0. Thus, Qh
0

can be treated as a measure on ((0, ∞), B ((0, ∞))) and, consequently, the theorems
in [22] can be applied to it. �

Notation 2.18. Let t∗ ∈ R̄.

(i) We write t ↘ t∗ and t ↗ t∗ if t∗ < t → t∗ and t∗ > t → t∗, respectively.

(ii) We call f, g : R → R asymptotically equivalent as t → t∗ (respectively, t ↘ t∗ and
t ↗ t∗), in symbols f(t) ∼asy g(t), if as t → t∗ (respectively, t ↘ t∗ and t ↗ t∗)

f(t) = g(t) (1 + o(1)) . �

Using the terminology of slowly varying functions we can formulate the Abelian and Taube-
rian theorem of Feller [22].

Theorem 2.19. Let L be a slowly varying function at infinity and p ∈ [0, ∞). Suppose
that Assumption 2.16 holds. Let Γ : (0, ∞) → (0, ∞) be the gamma function, i.e.,

Γ(s) =
∫ ∞

0
xs−1ex dx for all s > 0. (2.11)

(i) The following two statements (2.12) and (2.13) are equivalent:

ω(ϑ) ∼asy ϑ−p L (ϑ) as ϑ → ∞ (2.12)

and Qh
0 [0, t] ∼asy

1
Γ(p + 1)

tp L

(1
t

)
as t ↘ 0. (2.13)

(ii) Suppose that for some c, ν > 0

h(t) ∼asy c(t − a)ν (2.14)

and Q0[a, t] ∼asy (t − a)νpL

( 1
t − a

)
as t ↘ a. (2.15)

Then

ω(ϑ) ∼asy c−p Γ(p + 1)ϑ−p L
(
ϑ

1
ν

)
as ϑ → ∞.
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Remark 2.20. (i) The necessity of (2.12) for (2.13) is called an Abelian theorem. The
sufficiency is called a Tauberian theorem.

(ii) Because Qh
0 and Q0 are measures we have

Qh
0 [0, t] = o(1) and Q0[a, a + t] = o(1) as t ↘ 0.

Hence, if (2.13) or (2.15) holds for p = 0 then L(t) = o(1) as t → ∞. Combining
this and Lemma 2.15 yields

ω(ϑ) → 0 as ϑ → ∞

under (2.13), as well as under (2.14) and (2.15). �

Proof of Theorem 2.19. Due to Remark 2.12(ii) and Remark 2.17(ii) the statement in (i)
is an immediate consequence of Theorems XIII.5.2 and XIII.5.3 in [22]. Suppose that
(2.14) and (2.15) are fulfilled for some c, ν > 0. By (iii) of Assumption 2.16 the mapping
h|[a,a+δ] is invertible. Clearly, its inverse h−1 : [0, h(a + δ)] → [a, a + δ] is continuous and

h−1(u) ∼asy

(
u

c

) 1
ν

+ a as u ↘ 0.

Combining this, Theorem 2.14 and (2.15) yields

Qh
0 [0, t] = Q0

[
a, h−1(t)

]
∼asy (h−1(t) − a)νpL

( 1
h−1(t) − a

)
∼asy

(
t

c

)p

L
(
t− 1

ν

)
as t ↘ 0. Finally, (ii) follows from (i). �

The following lemma is needed in Section 5.2.1.

Lemma 2.21. Let L be a slowly varying function at infinity and p, M ∈ (0, ∞). Suppose
that Assumption 2.16 and (2.13) hold. Let (ψn)n∈N∪{0} be a sequence of functions with
domain [0, ∞) taking values in [−M, M ] such that

ψn(x) = 0 for all x ≥ M, n ∈ N ∪ {0} and λλ(E) = 0,

where E :=
{
x ∈ [0, ∞) : There exists a sequence (xn)n∈N in [0, ∞) such that

lim
n→∞ xn = x but lim

n→∞ ψn(xn) �= ψ0(x)
}
.
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Moreover, assume that ∫
ψ0(x)xp−1 dx �= 0.

Then ∫
ψn (ϑnh(x)) dQ0(x) ∼asy

1
Γ(p)

ϑ−p
n L (ϑn)

∫
ψ0(x)xp−1 dx as n → ∞.

Remark 2.22. Note that E ∈ B([0, ∞)), see, e.g., p. 226 in [7]. �

Proof. By (2.13) we have for all x ∈ (0, M ]

Qh
0
[
0, ϑ−1

n x
]

Qh
0
[
0, ϑ−1

n M
] → xp

Mp
as n → ∞.

For all sufficiently large n ∈ N let νn and ν be the (uniquely determined) probability
measures on ([0, M ], B([0, M ])) that for all x ∈ [0, M ]

νn[0, x] =
Qh

0
[
0, ϑ−1

n x
]

Qh
0
[
0, ϑ−1

n M
] and ν[0, x] =

xp

Mp
.

Obviously,

νn
w−→ ν as n → ∞.

By Theorem 5.5 of Billingsley [7], an extension of the continuous mapping theorem,

νψn
n

w−→ νψ0 as n → ∞.

Consequently, for all continuous functions g : R → R

∫
g dνψn

n =
∫ M

−M
g dνψn

n →
∫ M

−M
g dνψ0 =

∫
g dνψ0 as n → ∞.

Finally, combining this and (2.13) completes the proof:∫
ψn (ϑnh(x)) dQ0(x) = Qh

0
[
0, Mϑ−1

n

] ∫
x dνψn

n (x)

∼asy
Mpϑ−p

n

Γ(p + 1)
L (ϑn)

∫
x dνψ0(x)

=
p

Γ(p + 1)
ϑ−p

n L (ϑn)
∫

ψ0(x)xp−1 dx as n → ∞. �
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2.3.3. Dense Case

In this section we discuss the dense case briefly, i.e., ϑn → 0. Note that the Laplace
transform ω is analytic in a neighbourhood around 0 under certain conditions, see, e.g.,
[22, 64]. Thus, we know the asymptotic behaviour of ω(t) as t → 0. Using Remark 2.12(ii)
we can obviously extend the results in [22, 64] to our more general case that h is not
necessarily equal to the identity function. We first introduce the assumptions for the
dense case and then present the result about the Laplace transform mentioned before. We
want to emphasise that the heterogeneous normal mixture model and the models given in
Examples 2.8 to 2.10 fulfil our assumption for the dense case.

Assumption 2.23 (Exponential family, dense case). Let Assumption 2.11 be ful-
filled and suppose that

(Ω, A) = (R, B), (−ε, ε) ⊂ Θ for some ε > 0 and ϑn → 0 as n → ∞.

Lemma 2.24. Let Assumption 2.23 be fulfilled. The Laplace transform ω : Θ → (0, ∞)
given by (2.9) is analytic in (−ε, ε) with

ω(k)(ϑ) =
∫

(−h(x))k exp (−ϑh(x)) dQ0(x) for all k ∈ N ∪ {0}.

Remark 2.25. We are particularly interested in the case ϑ = 0. For this case we have

(−1)kω(k)(0) = IEQ0

(
hk
)

for all k ∈ N ∪ {0}.

That means in particular that all moments of h are finite under Q0. �

2.4. The h-model

As mentioned in Chapter 1 our testing problem can also be interpreted as a multiple
hypothesis testing problem for the global null. A great amount of multiple testing proce-
dures are based on p-values including the famous one of Benjamini and Hochberg [6], and
so does the higher criticism test, which we discuss elaborately in Part II. In this section
we introduce a model for p-values, which is quite similar to the chimeric alternatives of
Khmaladze [43]. We call this (new) model h-model.
The basic idea of our h-model was analogously used in extreme value theory and can be
explained as follows. If extreme values are of interest, e.g., the flood of the ocean, then
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the information of interest is located in the tails and the specific shape of the distribution
excluding the tails can be neglected. An appropriate model for this is, e.g., the extreme
value tangent model of Janssen and Marohn [38]. In the context of multiple testing prob-
lems the interesting information is near 0. To be more specific, small p-values indicate that
the alternative is true or, in our situation, a signal is present. A possible way to model
p-values containing a signal is to consider the support of the corresponding distribution
being on (0, δ) for small δ > 0. Generalising this idea leads to our h-model, which we
present in the following.

Assumption 2.26 (h-model). Let h : (0, 1) → [0, ∞) be a measurable function with

∫ 1

0
hm dλλ = cm ∈ (0, ∞) for m ∈ {1, 2}, where c1 ≤ 1. (2.16)

Let (εn,i)1≤i≤n∈N, (τn,i)1≤i≤n∈N be triangular arrays of real numbers in [0, 1] such that

τn,i > 0 for all 1 ≤ i ≤ n ∈ N

and max
1≤i≤n

{τn,i + εn,i} → 0 as n → ∞. (2.17)

For 1 ≤ i ≤ n ∈ N define hn,i : (0, 1) → R by

hn,i(u) = −c11[τn,i,1)(u) +
1 − τn,i

τn,i
h

(
u

τn,i

)
1(0,τn,i)(u), u ∈ (0, 1). (2.18)

For 1 ≤ i ≤ n ∈ N set Pn,i := P0 := U(0, 1) and define the probability measure μn,i by its
Pn,i-density

dμn,i

dPn,i
:= fn,i := 1 + hn,i. (2.19)

Remark 2.27. (i) By substitution it is easy to show that

∫ 1

0
hn,i(u) du = 0.

Combining this and c1 ≤ 1 yields that μn,i is indeed a probability measure with
μn,i � Pn,i. Obviously, Assumption 2.1(i) holds under Assumption 2.26.

(ii) If c1 = 1 then the support of μn,i is a subset of or equal to (0, τn,i) and becomes
progressively smaller as n → ∞ . This corresponds to what we suggested in the
introduction of this section. �
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Part I.

Power of the log-likelihood ratio
test
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3. Introduction and motivation

Suppose that Assumption 2.1(i) holds. For all α ∈ [0, 1] and every n ∈ N denote by Φα,n

the set containing all tests of nominal level α for the null H0,n, i.e.,

Φα,n :=
{

ϕ : (Ωn, An) → ([0, 1], B ([0, 1])) : ϕ is measurable and IEP(n)(ϕ) ≤ α
}

.

Let α ∈ [0, 1] and n ∈ N be fixed. By the Neyman-Pearson Lemma it is known, see, e.g.,
Section 2.8 of [58], that

sup
ϕ∈Φα,n

IEQ(n) (ϕ) = IEQ(n)

(
ϕ∗

n,α

)
, (3.1)

where ϕ∗
n,α : (Ωn, An) → ([0, 1], B ([0, 1])) is a log-likelihood ratio test, in short LLRT, of

nominal level α. That means that

IEP(n)(ϕ
∗
n,α) ≤ α

and ϕ∗
n,α =

⎧⎨⎩ 1
0

log
(

dQ(n)
dP(n)

)
>

<
cn,α for some cn,α ∈ [−∞, ∞], (3.2)

where the logarithm is canonically and continuously extended to [0, ∞] and dQ(n)
dP(n)

is defined
as in (A.18). In other words, ϕ∗

n,α is the best test for our testing problem (2.6). Thus, in
this first main part of the thesis we discuss the asymptotic power of LLRT. That is why
we are interested in necessary and sufficient conditions for the case that the test statistic
LLRn of LLRT, given by

LLRn := log
(

dQ(n)
dP(n)

)
, (3.3)

converges in distribution under the null H0,n and under the alternative H1,n, respectively.
At the beginning of Chapter 4 we explain that there is a connection between our purpose
and weak convergence of the binary experiments {P(n), Q(n)}. In Sections 4.2 and 4.3 we
present how accumulation points of LLRn (in the sense of convergence in distribution) can
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be determined under H0,n and under H1,n, respectively. We distinguish between trivial and
non-trivial accumulation points, both terms are explained in detail in Section 4.1. There
are two trivial cases: H0,n and H1,n can be completely separated by LLRT (asymptotically)
or H0,n and H1,n merge (asymptotically). In the non-trivial case LLRT can successfully,
but not completely, separate H0,n and H1,n (asymptotically). In Section 4.4 we explain,
as already mentioned in Section 2.2, that there is a connection between extreme value
theory and our problem. In the last section of this chapter we present some preliminary
results of a current research project, which completes in some sense the theory developed
in Sections 4.2 and 4.3.
In Chapter 5 we apply the results to the examples introduced in Sections 2.2 to 2.4. We
give the proofs for the dense heteroscedastic normal mixture model, which are omitted in
[10]. We also apply our results to the great class of exponential families suggested by Cai
and Wu [12]. Doing this we slightly extend their results, see Section 5.4. Finally, we discuss
the exponential family model and the h-model, which are not discussed in this context in
the literature until recently. Note that all our examples correspond to the univariate case,
i.e., (Ω, A) = (R, B). In Chapter 1 we mentioned briefly that the multivariate case is also
of interest and that there are first results for it, see [47, 62]. We want to emphasise that
almost all results in this part are applicable for general measurable spaces (Ω, A) and in
particular for the multivariate case.
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4. Theoretical results

4.1. Connection to binary experiments

First, we explain that our problem to determine the asymptotic power of LLRT can be
reformulated in terms of weak convergence of binary experiments. In Appendix A.3 we
collect some important definitions and results about binary experiments for readers who
are not familiar with them. Second, we present a tool based on Hellinger distances, see
Definition and Lemma A.12, to distinguish between the non-trivial and trivial cases. Both
terms are introduced more detailed in Remark 4.2. Using this tool we get a first impression
which choices of εn,i, Pn,i and μn,i (may) lead to trivial or non-trivial accumulation points.

Remark 4.1. Suppose Assumption 2.1(i) holds. Let P(0) and Q(0) be two further proba-
bility measures on (Ω, A). Moreover, let {kn : n ∈ N} be a subsequence of N, i.e.,

kn ∈ N and kn < kn+1 for all n ∈ N. (4.1)

Let ϕ∗
n,α : (Ωn, An) → ([0, 1], B ([0, 1])) and ϕ∗

0,α : (Ω, A) → ([0, 1], B ([0, 1])) be a log-
likelihood ratio test for every n ∈ N, α ∈ [0, 1] such that (3.1) is fulfilled for it.

(i) By Theorem 16.10 in [58] {P(kn), Q(kn)} converges weakly to {P(0), Q(0)} as n → ∞
if and only if

lim
n→∞ IEQ(kn)

(
ϕ∗

kn,α

)
= IEQ(0)

(
ϕ∗

0,α

)
for every α ∈ [0, 1].

(ii) Suppose that {P(kn), Q(kn)} converges weakly to {P(0), Q(0)} as n → ∞ . Moreover,
let (αn)n∈N be a sequence of nominal levels such that

IEP(kn)(ϕ
∗
kn,αn

) = αn → α ∈ [0, 1] as n → ∞.

Then by Corollary 15.11 in [58]

lim
n→∞ IEQ(kn)

(
ϕ∗

kn,αn

)
= IEQ(0)

(
ϕ∗

0,α

)
for every α ∈ [0, 1].
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(iii) Note that 1 − ϕ∗
n,α is a log-likelihood ratio test for the testing problem

H̃0,n : Q(n) versus H̃1,n : P(n)

for all n ∈ N. Thus, if {P(kn), Q(kn)} converges weakly to {P(0), Q(0)} as n → ∞ then
combining (i) and (ii) yields

lim
n→∞ IEP(kn)

(
ϕ∗

kn,α

)
= IEP(0)

(
ϕ∗

0,α

)
for every α ∈ [0, 1]. �

Here and subsequently, we mainly distinguish between three cases: two trivial and one
non-trivial case, which are introduced in the following remark.

Remark 4.2. Suppose that the assumptions of Remark 4.1 hold and that {P(kn), Q(kn)}
converges weakly to {P(0), Q(0)} as n → ∞ .

(i) If {P(0), Q(0)} is equivalent to the so called uninformative experiment {ε0, ε0} then
by Remark 4.1 (ii) and by using subsequence arguments the sum of type I and type
II error probabilities of ϕ∗

kn,αn
tends to 1 for every α ∈ [0, 1], i.e.,

lim
n→∞ IEP(kn)

(
ϕ∗

kn,αn

)
+ IEQ(kn)

(
1 − ϕ∗

kn,αn

)
= 1.

Thus, LLRT yields no better results than the test ϕ ≡ α (asymptotically) and so it
is asymptotically useless.

(ii) Let c ∈ R. Moreover, for all n ∈ N let ϕ∗
kn,αn

be a log-likelihood ratio test with
nominal level αn ∈ [0, 1] such that the critical value ckn,αn equals c, see (3.2). Assume
that {P(0), Q(0)} is equivalent to the so called full informative experiment {ε−∞, ε∞},
i.e., they have the same standard form. Then it is known, see Definition A.19 and
Corollary A.20, that

L
(
LLRn

∣∣P(n)
)

w−→ L
(

log
(

dP(0)
dQ(0)

) ∣∣∣∣P(0)

)
= L
(
log
( dε−∞

dε∞

) ∣∣∣ε−∞
)

= ε−∞

and L
(
LLRn

∣∣Q(n)
)

w−→ ε∞ as n → ∞.

Consequently, the sum of type I and type II error probabilities of ϕ∗
kn,αn

tends to 0.
Thus, H0,n and H1,n can be completely separated by using LLRT (asymptotically).

(iii) Suppose that {P(0), Q(0)} is not equivalent to {ε−∞, ε∞} and not equivalent to
{ε0, ε0}. Then P(0) and Q(0) are neither singular to each other nor equal. Hence,
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4.1. Connection to binary experiments

we can conclude from Lemmas A.13 and A.22 that for every sequence (αn)n∈N of
nominal levels

lim sup
n→∞

IEP(kn)

(
ϕ∗

kn,αn

)
+ IEQ(kn)

(
1 − ϕ∗

kn,αn

)
≥ 1 − ||Q(0) − P(0)|| > 0.

Furthermore, by Remark 4.1(i) the sum of type I and type II error probabilities
of ϕ∗

kn,α tends to some C ∈ (0, 1) for some α ∈ [0, 1]. Consequently, LLRT can
successfully but not completely separate H0,n and H1,n (asymptotically). �

A first tool to distinguish between the three cases is based on Hellinger distances. Some
definitions and results of different distances for probability measures, among others of the
Hellinger distance d, are collected in Appendix A.2. Under Assumption 2.1(i) we define

Dn := Dn

(
P(n), Q(n)

)
:=

n∑
i=1

d2 (Pn,i, Qn,i) . (4.2)

Lemma 4.3. Let {kn : n ∈ N} be a subsequence of N and Assumption 2.1(i) be fulfilled.

(i) The binary experiment
{

P(kn), Q(kn)
}

converges weakly to the uninformative experi-
ment {ε0, ε0} if and only if limn→∞ Dkn = 0.

(ii) The binary experiment
{

P(kn), Q(kn)
}

converges weakly to the full informative exper-
iment {ε−∞, ε∞} if and only if limn→∞ Dkn = ∞.

(iii) If
{

P(kn), Q(kn)
}

converges weakly to some binary experiment
{

P̃ , Q̃
}

, which is nei-
ther full informative nor uninformative, then limn→∞ Dkn ∈ (0, ∞).

(iv) All accumulation points of {P(n), Q(n)} are neither full informative nor uninformative
if and only if 0 < lim infn→∞ Dn ≤ lim supn→∞ Dn < ∞.

Remark 4.4. By Lemma A.23 every sequence of binary experiments has at least one ac-
cumulation point. �

Proof. Set hkn,i := d2 (Pkn,i, Qkn,i) for all 1 ≤ i ≤ kn. Then

Dkn =
kn∑
i=1

hkn,i and
kn∏
i=1

(1 − hkn,i) = 1 − d2(P(kn), Q(kn))

for all n ∈ N. Moreover, by Lemma A.14

max
1≤i≤kn

hkn,i ≤ max
1≤i≤kn

||Pkn,i − Qkn,i|| ≤ max
1≤i≤kn

εkn,i ||Pkn,i − μkn,i|| ≤ εkn:kn → 0
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as n → ∞. Combining this, some basic calculations, Definition and Lemma A.12(iii),
Lemma A.21 and Lemma A.28 yields (i)-(iii). Clearly, (iv) follows from (i) and (ii). �

In general, it is difficult to calculate Dn exactly. In most cases, it is only possible to get
lower and upper bounds for Dn. Consequently, it is not a satisfying tool for our purpose,
in particular when we want to determine non-trivial accumulation points. Nevertheless,
we can use it to get a first idea which choices for εn,i, Pn,i, μn,i (may) lead to (non-)trivial
accumulation points of {P(n), Q(n)}.

Remark 4.5. Suppose that Assumption 2.1(i) holds. By Lemma A.14

1
2

n∑
i=1

ε2
n,i||Pn,i − μn,i||2 ≤ Dn ≤

n∑
i=1

εn,i||Pn,i − μn,i|| for all n ∈ N. (4.3)

Let {kn : n ∈ N} be a subsequence of N. Combining (4.3) and Lemma 4.3 yields:

(i) If

lim
n→∞

n∑
i=1

εn,i = 0

then
{

P(n), Q(n)
}

converges weakly to the uninformative experiment. If

lim sup
n→∞

n∑
i=1

εn,i < ∞

then no accumulation point of {P(n), Q(n)} is full informative. Both implications
hold independently of how the measures Pn,i and μn,i are chosen.

(ii) Let us assume that one of the two following conditions, which are equivalent according
to Lemma A.14, holds:

lim inf
n→∞ min

i=1,...,kn

||Pkn,i − μkn,i|| > 0

or lim inf
n→∞ min

i=1,...,n
d(Pkn,i, μkn,i) > 0.

This situation corresponds to the sparse case introduced in Notation 2.5.

(a) If {P(kn), Q(kn)} converges weakly to {ε0, ε0} then

lim
n→∞

kn∑
i=1

ε2
kn,i = 0.
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4.2. Non-trivial accumulation points

(b) If {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞} then

lim
n→∞

kn∑
i=1

εkn,i = ∞.

(c) If

lim
n→∞ kn

− 1
2

kn∑
i=1

εkn,i = ∞

then by Lemma A.30

lim
n→∞

kn∑
i=1

ε2
kn,i = ∞

and, hence, {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞}.

We can conclude among others from the above: if {P(n), Q(n)} has a non-trivial
accumulation point {P, Q} we can conclude from (i), (iic) and Lemma A.30 that

lim sup
n→∞

n∑
i=1

εn,i > 0, lim sup
n→∞

n
n∑

i=1
ε2

n,i > 0,

lim inf
n→∞ n− 1

2

n∑
i=1

εn,i < ∞ and lim inf
n→∞

n∑
i=1

ε2
n,i < ∞. (4.4)

For the simplest case, that εn,i = εn for all 1 ≤ i ≤ n and εn ≤ εn−1 for all sufficiently
large n ∈ N, we can simplify (4.4): there exist some C1, C2 > 0 such that

C1 n ≤ εn ≤ C2 n− 1
2 for sufficiently large n ∈ N. �

4.2. Non-trivial accumulation points

Due to Section 4.1 we want to find necessary and sufficient conditions for the case that
{P(n), Q(n)} or at least {P(kn), Q(kn)} converges weakly to a non-trivial binary experiment.
Note that Lemma 4.3 gives us only a necessary condition for that issue. The convergence to
trivial binary experiments is the topic of the upcoming section. For the purpose mentioned
above we need to examine the asymptotic behaviour of LLRn in the sense of convergence
in distribution under H0,n and under H1,n, respectively. Here, we are only interested in
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the case that the limiting random variables of LLRn, or in general of LLRkn , are real-
valued. If the limiting random variables are real-valued then we show that the random
variables have infinitely divisible distributions. All results and definitions in the context of
infinitely divisible distributions, which are needed here, are collected in Appendix A.1. For
a deeper discussion we refer the reader to the book of Petrov [51], on which Appendix A.1 is
based. Finally, we want to mention that in general the limiting random variables of LLRn

take values in R̄. Preliminary results for this general case are presented and discussed in
Section 4.5.

Here and subsequently, Xn,j : Ωn → Ω denotes the projection to coordinate j for all
1 ≤ j ≤ n ∈ N, i.e.,

Xn,j(ω) = ωj for all ω = (ω1, . . . , ωn) ∈ Ωn. (4.5)

The following Condition (A), in short (A), describes the case on which we are interested.

Condition (A). Suppose Assumption 2.1(i). Let P be a probability measure on (Ω, A).
Furthermore, let {kn : n ∈ N} be a subsequence of N and ξ1, ξ2 be real-valued random
variables on (Ω, A, P) such that

Lkn :=
kn∑
i=1

log (gkn,i (Xkn,i))
D−−−−−−−→

under P(kn)
ξ1 as n → ∞ (A1)

and Lkn :=
kn∑
i=1

log (gkn,i (Xkn,i))
D−−−−−−−→

under Q(kn)
ξ2 as n → ∞. (A2)

Remark 4.6. By Definition A.19 and Corollary A.20 the condition (A2) holds for some
random variable ξ2 : (Ω, A, P) → (R̄, B̄) if and only if (A1) does so for some random
variable ξ1 : (Ω, A, P) → (R̄, B̄). Moreover, if {P(kn), Q(kn)} converges weakly to {P, Q}
then by A.18-A.20 the conditions (A1) and (A2) hold for

ξ1 ∼ L
(

log
(dQ

dP

) ∣∣∣∣ P) =: ν1, ξ2 ∼ L
(

log
(dQ

dP

) ∣∣∣∣Q) =: ν2 and
dν2
dν1

= exp .

Note that in this case ξ1 and ξ2 are not necessarily real-valued. In this section we focus
on the case that ξ1 and ξ2 are real-valued, whereas preliminary results for the general case
are presented in Section 4.5. �

Due to Remark 4.6 it is sufficient to show that (A1) holds for a real-valued ξ1 and to ensure
that ξ2 is also real. For the latter we use the first lemma of Le Cam, see Lemma A.26. But
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4.2. Non-trivial accumulation points

first we show that the condition of infinitely smallness, see Definition A.5, is fulfilled for
the triangular array (Yn,i)1≤i≤n∈N given by Yn,i := log(gn,i(Xn,i)) for all 1 ≤ i ≤ n under
the null and under the alternative.

Lemma 4.7. Under Assumption 2.1(i) we have for every δ > 0

max
1≤i≤n

{
Pn,i

(
|log (gn,i)| ≥ δ

)}
+ max

1≤i≤n

{
Qn,i

(
|log (gn,i)| ≥ δ

)}
→ 0 as n → ∞.

Proof. Note that

gn,i = (1 − εn,i) + εn,ifn,i ≥ (1 − εn:n) = 1 + o(1) as n → ∞. (4.6)

Hence, from Remark 2.2

max
1≤i≤n

{
Pn,i

(
|log (gn,i)| ≥ δ

)}
≤ max

1≤i≤n

{
Pn,i

(
gn,i ≥ exp (δ)

)
+ Pn,i

(
(1 − εn:n) ≤ exp (−δ)

)}
≤ max

1≤i≤n

{
P(n)
(
εn,ifn,i ≥ exp (δ) − 1

)}
+ o(1) = o(1) as n → ∞.

Moreover, note that for every triangular array (Bn,i)i≤n of sets in A we have as n → ∞

max
1≤i≤n

{Qn,i (Bn,i)} ≤ max
1≤i≤n

{Pn,i (Bn,i) + εn:n} = max
1≤i≤n

{Pn,i (Bn,i)} + o(1). �

Thus, we can conclude from Theorem A.6:

Corollary 4.8. Suppose that (A) holds for a subsequence {kn : n ∈ N} of N and real-
valued random variables ξ1 and ξ2. Then the distribution of ξj is infinitely divisible and,
thus, it is uniquely determined by its Lévy characteristic (γj , σ2

j , ηj) for j = 1, 2. Moreover,
the characteristic function of ξj is given by (A.2) for j = 1, 2.

A first quite simple observation is that (−∞, 0) is a null set of η1 and η2 under (A).

Lemma 4.9. Suppose that Assumption 2.1(i) holds. Then for every y < 0

n⋃
i=1

{x ∈ Ω : log (gn,i(x)) ≤ y} = ∅ if n ∈ N is sufficiently large.

If (A) holds and η1, η2 are the corresponding Lévy measures, see Corollary 4.8, then

η1(−∞, 0) = 0 = η2(−∞, 0).
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Proof. From (4.6) we obtain for every fixed y < 0 and all sufficiently large n ∈ N

n⋃
i=1

{x ∈ Ω : log (gn,i(x)) ≤ y} ⊆ {x ∈ Ω : log (1 − εn:n) ≤ y} = ∅. (4.7)

Suppose that (A) is fulfilled. Let η1 and η2 be the corresponding Lévy measures, see
Corollary 4.8. Combining Lemma 4.7 and (A.4) of Theorem A.7 yields

ηj(−∞, y] = 0 for all y < 0 and so ηj(−∞, 0) = 0. �

Janssen et al. [39] discussed binary and more general statistical experiments, which have
infinitely divisible limiting experiments. The following conclusion of Discussion (8.3),
Remark (8.4) and Lemma (8.7)(c) from [39] can be used to determine further properties
of the Lévy characteristics under (A).

Lemma 4.10. Let C2
loc(R) denote the set of all continuous and bounded functions f :

R → R which are twice continuously differentiable in an open subset U � 0 of R. Let the
probability measure ν on (R, B) be infinitely divisible with Lévy characteristic (γ, σ2, η).

(i) The Lévy characteristic of ν is uniquely determined by the generating functional
A : C2

loc(R) → R, which admits

A(f) = γf (1)(0) +
σ2

2
f (2)(0) +

∫
R\{0}

(
f(x) − f(0) − f (1)(0)x

1 + x2

)
dη(x) (4.8)

for all f ∈ C2
loc(R). Moreover, if (4.8) holds for some constants γ̃ ∈ R, σ̃2 ≥ 0 and

some Lévy measure η then (γ, σ2, η) = (γ̃, σ̃2, η̃).

(ii) Assume ∫
exp dν = 1. (4.9)

Then the probability measure ν̃ given by its ν-density

dν̃

dν
= exp

is infinitely divisible with Lévy characteristic (γ̃, σ̃2, η̃), where σ̃2 = σ2. Moreover,
the Lévy measures η and η̃ are mutually continuous with

dη̃

dη
= exp
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4.2. Non-trivial accumulation points

and we have

γ̃ = γ + σ2 +
∫
R\{0}

(ex − 1)
x

1 + x2 dη(x) ∈ R. (4.10)

(iii) The equation in (4.9) holds if and only if∫
(−∞,−1)∪(1,∞)

exp dη < ∞ (4.11)

and γ +
σ2

2
+
∫
R\{0}

(
ex − 1 − x

x2 + 1

)
dη(x) = 0. (4.12)

Remark 4.11. Let f ∈ C2
loc(R) and ε > 0 such that [−ε, ε] ⊂ U . By Taylor’s formula there

exists some κx ∈ [−ε, ε] for every x ∈ [−ε, ε] such that

f(x) − f(0) = f (1)(0)x + f (2)(κx)
x2

2
.

Because f (2) is continuous on [−ε, ε] there exists C > 0 such that for every x ∈ [−ε, ε]∣∣∣∣∣f(x) − f(0) − f (1)(0)x
x2 + 1

∣∣∣∣∣ =
∣∣∣∣∣f (2)(κx)

x2

2
+ f (1)(0)

x + x3 − x

1 + x2

∣∣∣∣∣ ≤ C x2. (4.13)

Since f is bounded, combining (4.13), the basic property (A.1) of Lévy measures and
(4.13) shows that the integral from (4.8) is indeed finite. By similar arguments it can be
shown that the integral from (4.12) is finite if (4.11) holds. Furthermore, if (4.9) holds
and η̃ is the Lévy measure from Lemma 4.10(ii) then

0 ≤
∫
R\{0}

|ex − 1| |x|
1 + x2 dη(x)

≤
∫

[−1,1]\{0}

∣∣∣∣ex − 1
x

∣∣∣∣ x2 dη(x) +
∫

(−∞,−1)
1 dη(x) +

∫
(1,∞)

ex dη(x)

≤ 2
∫

[−1,1]\{0}
x2 dη(x) + η(−∞, −1) + η̃(1, ∞) < ∞.

Hence, the integral from (4.10) is also finite if (4.9) holds. �

Proof. Combining Discussion (8.3) and Remark (8.4) of [39] proves (i). Suppose that (4.9)
holds. By Lemma (8.7)(b) of [39]

0 = A(exp) = γ +
σ2

2
+
∫
R\{0}

(
ex − 1 − x

x2 + 1

)
dη(x), (4.14)

where A can be extended canonically so that it can be evaluated at f = exp, see Remark

33



4. Theoretical results

(8.6) of [39]. Moreover, by (4.14) and Lemma (8.7)(c) of [39] the generating functional Ã

of ν̃ is given for every f ∈ C2
loc(R) by

Ã(f) = A(f · exp)

= γ
[
f (1)(0) + f(0)

]
+

σ2

2

[
f (2)(0) + 2f (1)(0) + f(0)

]
+
∫
R\{0}

⎛⎝f(x)ex − f(0) −
[
f (1)(0) + f(0)

]
x

1 + x2

⎞⎠ dη(x)

= γf (1)(0) +
σ2

2

[
f (2)(0) + 2f (1)(0)

]
+
∫
R\{0}

[
(f(x) − f(0))ex − f (1)(0)x

1 + x2

]
dη(x)

= γ̃f (1)(0) +
σ̃2

2
f (2)(0) +

∫
R\{0}

[
f(x) − f(0) − f (1)(0)x

1 + x2

]
dη̃(x).

Thus, (ii) follows. Respecting (4.14) we conclude (iii) from Lemma (8.7)(b) of [39]. �

Applying, among others, the first lemma of Le Cam, see Lemma A.26, we get the following
corollary.

Corollary 4.12. Suppose (A) and let (γj , σ2
j , ηj) be the Lévy characteristic of ξj for j =

1, 2. Then the following statements (i)-(iii) hold.

(i) (P(kn))n∈N and (Q(kn))n∈N are mutually contiguous, in symbols P(kn) � � Q(kn) (see
Definition A.24).

(ii) The measures η1 and η2 are mutually absolutely continuous. That means in particular
that their continuity points coincide, in symbols C(η1) = C(η2). Furthermore,

dη2
dη1

= exp . (4.15)

(iii) We have

σ2
1 = σ2

2 =: σ2.

Moreover,

γ1 = −σ2

2
+
∫

(0,∞)

(
1 − ex +

x

1 + x2

)
dη1(x)

(4.16)
and γ2 =

σ2

2
+
∫

(0,∞)

(
1 − ex +

x

1 + x2 ex
)

dη1(x).
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4.2. Non-trivial accumulation points

Proof. Let νj be the distribution of ξj for j = 1, 2. Obviously, we have

νj(R) = 1 and so νj ({−∞, ∞}) = 0 for j = 1, 2. (4.17)

Therefore, (i) and ∫
R

exp dν1 = 1 (4.18)

follow from Lemma A.18 and the first lemma of Le Cam, see Lemma A.26. Finally,
combining (4.18), Lemma 4.10(ii) and (iii) yields (ii) and (iii). �

We want to remind the reader that due to Remark 4.6 it is sufficient to verify (A1) for
some real-valued ξ1 and to ensure that ξ2 is also real. By the first lemma of Le Cam the
latter is fulfilled if and only if ∫

R

exp dν1 = 1,

where ξ1 ∼ ν1. Finally, combining this, Remark 4.6, Lemma 4.9 and Lemma 4.10(iii)
yields immediately:

Corollary 4.13. Suppose Assumption 2.1(i). (A) holds for real-valued random variables
ξ1 and ξ2 if and only if (A1) holds for real-valued ξ1 with Lévy characteristic (γ1, σ2, η1)
such that ∫

(1,∞)
exp dη1 < ∞ (4.19)

and γ1 +
σ2

2
+
∫

(0,∞)

(
ex − 1 − x

x2 + 1

)
dη1(x) = 0. (4.20)

Now we are interested in sufficient and necessary conditions for the case that (A1),
(4.19) and (4.20) hold for some real-valued random variable ξ1 with Lévy characteris-
tic (γ1, σ2, η1). By applying Theorem A.7 and simplifying the conditions corresponding to
(a)-(c) we will show that the following Condition (B), in short (B), is a possible option
for this purpose.
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Condition (B). Let Assumption 2.1(i) be fulfilled. Let σ2 ≥ 0, {kn : n ∈ N} be a
subsequence of N and η1, η2 be measures on (R \ {0}, B(R \ {0})) such that

η1(−∞, 0) = 0 = η2(−∞, 0) and η1 � η2 � η1 with dη2
dη1

= exp . (4.21)

Moreover, suppose that the following conditions (B1), (B2) and (B3) hold.

(B1): One of the equations (B1a) and (B1b) holds for all x ∈ C(η1) ∩ (0, ∞):

lim
n→∞ P(kn)

(
max

1≤i≤kn

{
εkn,ifkn,i (Xkn,i)

}
≤ ex − 1

)
= exp

(
−η1 (x, ∞)

)
∈ (0, 1], (B1a)

lim
n→∞

kn∑
i=1

Pkn,i

(
εkn,ifkn,i > ex − 1

)
= η1 (x, ∞) ∈ [0, ∞). (B1b)

(B2): One of the equations (B2a) and (B2b) holds for all x ∈ C(η2) ∩ (0, ∞):

lim
n→∞ Q(kn)

(
max

1≤i≤kn

{
εkn,ifkn,i (Xkn,i)

}
≤ ex − 1

)
= exp

(
−η2 (x, ∞)

)
∈ (0, 1], (B2a)

lim
n→∞

kn∑
i=1

Qkn,i

(
εkn,ifkn,i > ex − 1

)
= η2 (x, ∞) ∈ [0, ∞). (B2b)

(B3): We have

lim
ε↘0

lim sup
lim inf
n→∞

kn∑
i=1

ε2
kn,i IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤ε} − 1
)

= σ2,

where the notation lim sup
lim inf is a short way to say that the equation holds for the limes superior

and limes inferior.

Remark 4.14. We do not assume in (B) that η1 and η2 are Lévy measures. �

Theorem 4.15. (A) holds for a subsequence {kn : n ∈ N} of N, random variables ξ1, ξ2

with Lévy characteristics (γ1, σ2, η1) and (γ2, σ2, η2) if and only if (B) holds for {kn : n ∈
N}, σ2 ≥ 0 and measures η1, η2. Moreover, if (A) holds then (i)-(iii) of Corollary 4.12 is
fulfilled.

The proof of Theorem 4.15 can be found in Section 4.2.2. In the following lemma we show
that the two conditions from (B1) as well as the ones from (B2) are equivalent.
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Lemma 4.16. Suppose Assumption 2.1(i). Let x > 0 be fixed and {kn : n ∈ N} be a
subsequence of N. Then

lim
n→∞

kn∑
i=1

Pkn,i (εkn,ifkn,i > x) = b ∈ [0, ∞] (4.22)

if and only if

lim
n→∞ P(kn)

(
max

1≤i≤kn

{
εkn,ifkn,i (Xkn,i)

} ≤ x

)
= exp (−b) ∈ [0, 1], (4.23)

where we use the convention exp(−∞) = 0. The equivalence of (4.22) and (4.23) also
holds if we replace Pkn,i in (4.22) by Qkn,i and P(kn) in (4.23) by Q(kn).
Hence, the equation in (B1a) holds for a given x ∈ (0, ∞) if and only if (B1b) does so,
and (B2a) holds for a given x ∈ (0, ∞) if and only if (B2b) does so.

Proof. Fix x ∈ (0, ∞). Let hn,i be defined by

hn,i := Pkn,i (εkn,ifkn,i > x) for all n ∈ N and every 1 ≤ i ≤ kn.

Note that for all n ∈ N

kn∑
i=1

hn,i =
kn∑
i=1

Pkn,i (εkn,ifkn,i > x) and

kn∏
i=1

(1 − hn,i) = P(kn)

(
max

1≤i≤kn

{εkn,ifkn,i (Xkn,i)} ≤ x

)
.

By Remark 2.2

max
1≤i≤kn

{hn,i} → 0 as n → ∞.

Hence, the equivalence follows from Lemma A.28. Obviously, the proof is still valid if we
replace Pkn,i by Qkn,i and P(kn) by Q(kn). �

Remark 4.17. By the second binomial formula we have for every A ∈ A

kn∑
i=1

ε2
kn,i IEPkn,i

((
fkn,i − 1

)2
1A

)

=
kn∑
i=1

ε2
kn,i IEPkn,i

(
f2

kn,i1A − 1
)

+ 2
kn∑
i=1

ε2
kn,iμkn,i(Ac) −

kn∑
i=1

ε2
kn,iPkn,i(Ac).
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Thus, if for some ε > 0

lim sup
n→∞

kn∑
i=1

εkn,iμkn,i (εkn,ifkn,i > ε) +
kn∑
i=1

εkn,iPkn,i (εkn,ifkn,i > ε) < ∞ (4.24)

then due to εkn:kn = o(1) as n → ∞ we have

kn∑
i=1

ε2
kn,i IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤ε} − 1
)

=
kn∑
i=1

ε2
kn,i IEPkn,i

((
fkn,i − 1

)2
1{εkn,ifkn,i≤ε}

)
+ o(1) (4.25)

≥ o(1) as n → ∞.

It is easy to see that by Lemma 4.16 that condition (4.24) holds for all ε > 0 from a dense
subset of (0, ∞) if (B2a) does so. By Lemma 4.16 the latter holds if (B2) is fulfilled. �

Because of (4.15) and (4.16) the Lévy characteristics and so the distributions of ξ1, ξ2

only depend on η2 and σ2. Hence, a logical consequence is to ask whether we can spare
(B1). The answer is yes, as we show in the following. Condition (B) can be replaced by
a new condition denoted by (B’).

Condition (B’). Let Assumption 2.1(i) be fulfilled. Let σ2 ≥ 0, {kn : n ∈ N} be a
subsequence of N and η1, η2 be measures on (R \ {0}, B(R \ {0})) such that (4.21), (B3)
and the following condition (B’2) hold.

(B’2): Condition (B2a) or (B2b) or the following (B2c) holds for all x ∈ C(η1):

lim
n→∞

kn∑
i=1

εkn,iμkn,i (εkn,ifkn,i > ex − 1) = (η2 − η1)(x, ∞) ∈ [0, ∞). (B2c)

Remark 4.18. We do not assume in (B’) that η1 and η2 are Lévy measures. �

We show that (B’) is also sufficient and necessary for (A).

Theorem 4.19. Condition (A) holds for a subsequence {kn : n ∈ N} of N, random
variables ξ1, ξ2 with Lévy characteristics (γ1, σ2, η1) and (γ2, σ2, η2) if and only if Condition
(B’) holds for {kn : n ∈ N}, σ2 and measures η1, η2. Moreover, if (A) holds then (i)-(iii)
of Corollary 4.12 hold.

Before we can prove Theorem 4.19 we need the following lemma.
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Lemma 4.20. Suppose that Assumption 2.1(i) holds. Then we have for all y > 0, every
subsequence {kn : n ∈ N} of N and all 1 ≤ j ≤ n ∈ N:

y Pn,j

(
εn,jfn,j >y

)
≤ εn,jμn,j

(
εn,jfn,j >y

)
, (4.26)

lim
n→∞

kn∑
i=1

Qkn,i

(
εkn,ifkn,i >y

)
<∞ ⇔ lim

n→∞

kn∑
i=1

εkn,iμkn,i

(
εkn,ifkn,i >y

)
< ∞, (4.27)

lim
n→∞

kn∑
i=1

Qkn,i

(
εkn,ifkn,i >y

)
= 0 ⇔ lim

n→∞

kn∑
i=1

εkn,iμkn,i

(
εkn,ifkn,i >y

)
= 0, (4.28)

lim
n→∞

kn∑
i=1

Pkn,i

(
εkn,ifkn,i >y

)
=∞ ⇒ lim

n→∞

kn∑
i=1

εkn,iμkn,i

(
εkn,ifkn,i >y

)
=∞. (4.29)

Proof. Note that (4.27)-(4.29) follow immediately from (4.26) and the definition of Qn,i,
see (2.3). Fix y > 0 and 1 ≤ j ≤ n ∈ N. We conclude (4.26) from the following calculation:

y Pn,j

(
εn,jfn,j > y

)
=
∫

{εn,jfn,j>y}
y dPn,j ≤

∫
{εn,jfn,j>y}

εn,jfn,j dPn,j . �

Proof of Theorem 4.19. By Theorem 4.15 it remains to show that (B’) is sufficient for (B).
Suppose that (B’) is fulfilled for the subsequence {kn : n ∈ N}, the constant σ2 and the
measures η1, η2. For this purpose we use a typical subsequence argument. We show that
for every subsequence {kn,1 : n ∈ N} of N there exists a further subsequence {k

(2)
n : n ∈ N}

of {k
(1)
n : n ∈ N} such that (B) holds for {kn,2 : n ∈ N}, σ2 and the measures η1, η2. Then

we can conclude that (B) holds for {kn : n ∈ N}, σ2 and the measures η1, η2.
First, assume (B2c) and (B3) are fulfilled for all x ∈ C(η1)∩(0, ∞). Thus, by Lemma 4.20

(ex − 1)
kn∑
i=1

Pkn,i (εkn,ifkn,i > ex − 1) ≤
kn∑
i=1

εkn,iμkn,i (εkn,ifkn,i > ex − 1) → (η2 − η1)(x, ∞)

as n → ∞ for every x ∈ C(η1) ∩ (0, ∞). Let {k
(1)
n : n ∈ N} be an arbitrary subsequence

of {kn : n ∈ N} and D be a countable dense subset of C(η1) ∩ (0, ∞). By a well known
diagonalisation procedure for subsequences there exists a subsequence {kn,2 : n ∈ N} of
{kn,1 : n ∈ N} and a non-increasing function h : (0, ∞) → (0, ∞) such that

lim
n→∞

kn,2∑
i=1

Pkn,2,i

(
εkn,2,ifkn,2,i > ex − 1

)
= h(x) for all x ∈ D, (4.30)

where 0 ≤ h(x) ≤ (ex − 1)−1 (η2 − η1)(x, ∞) for all x ∈ D. (4.31)

Due to monotonicity it is easy to see that (4.30) and (4.31) hold even for all x ∈ C(h).
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Let η̃1 and η̃2 be measures on (R \ {0}, B(R \ {0})) such that for all x ∈ C(h)

η̃1(x, ∞) = h(x) , η̃2(x, ∞) = h(x) + (η2 − η1)(x, ∞) (4.32)

and η̃1(−∞, 0) =0 = η̃2(−∞, 0). (4.33)

Since C(h) is a dense subset of (0, ∞) we conclude from (4.7), (4.32) and (4.33) that

(η̃2 − η̃1) = (η2 − η1). (4.34)

Note that by (2.1), (4.30), (4.32) and (B2c)

kn,2∑
i=1

Qkn,2,i

(
εkn,2,ifkn,2,i > ex − 1

)

=
kn,2∑
i=1

(1 − εkn,2,i)Pkn,2,i

(
εkn,2,ifkn,2,i > ex − 1

)
+

kn,2∑
i=1

εkn,2,iμkn,2,i

(
εkn,2,ifkn,2,i > ex − 1

)
→ h(x) + (η2 − η1)(x, ∞) = η̃2(x, ∞) as n → ∞

for all x ∈ C(h) ∩ C(η1) and due to monotonicity also for all x ∈ C(η̃2) ∩ (0, ∞). Hence,
we can conclude that (B) holds for the subsequence {kn,2 : n ∈ N}, the constant σ2 and
the measures η̃1, η̃2. By Corollary 4.12 and Theorem 4.15

dη̃2
dη̃1

= exp .

Combining this, (4.21) and (4.34) yields

η1 = η̃1 and η2 = η̃2.

Note that by Lemma 4.16 conditions (B2b) and (B2c) are equivalent. Thus, it remains
to consider the case that (B2b) and (B3) hold. Due to the definition of Qkn,i we have

Qkn,i(A) ≥ εkn,iμkn,i(A) for all A ∈ A.

Finally, using the same diagonalisation procedure as before completes the proof. �

Lemma 4.16 says that (B2a) and (B2b) are equivalent. If (B3) holds then a similar
statement can be made for (B2a), (B2b) and (B2c).

Corollary 4.21. If (B’) holds then (B2a)-(B2c) hold for all x ∈ C(η1) ∩ (0, ∞).

Proof. Suppose (B’). By Theorem 4.19 (A) holds and so does (B) by Theorem 4.15.
This means in particular that (B2) is fulfilled. We conclude from Lemma 4.16 that
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(B2a) and (B2b) are fulfilled for all x ∈ C(η2) ∩ (0, ∞). Note that C(η1) = C(η2)
by Corollary 4.12(ii). Furthermore, we deduce from Lemma 4.16 that (B1b) holds for all
x ∈ C(η1)∩(0, ∞). Combining (B1b) and (B2b) verifies (B2c) for all x ∈ C(η1)∩(0, ∞).�

We are in particular interested in the case that En := {P(kn), Q(kn)} converges weakly
to a Gaussian experiment. That is why we reformulate Theorem 4.19 for this special
case. Recall that the random variables ξ1 and ξ2 are normally distributed if and only if
η1 ≡ η2 ≡ 0. From this and Theorem 4.15 we obtain the following corollary.

Corollary 4.22. If (A) is fulfilled with ξj ∼ N(mj , σ2
j ), j ∈ {1, 2}, then for some σ2 ≥ 0

σ2
1 = σ2

2 = σ2 and mj = (−1)j σ2

2
. (4.35)

In the following we formulate the new conditions belonging to the Gaussian case.

Condition (A normal). Suppose that (A) is fulfilled for ξj ∼ N(mj , σ2
j ), j = 1, 2,

where (4.35) holds for some σ2 ≥ 0.

Remark 4.23. By Corollary 4.22 the distributions of ξ1 and ξ2 are uniquely determined by
one parameter, namely σ2, under (A normal). �

Condition (B normal). Suppose that Assumption 2.1(i) holds. Moreover, assume that
there exist a subsequence {kn : n ∈ N} of N and constants σ2 ≥ 0, y0 > 0 such that the
following two conditions (B2 normal) and (B3 normal) are fulfilled.

(B2 normal): One of the following conditions (B2a normal)-(B2c normal) holds for
every y > 0:

lim
n→∞ Q(kn)

(
max

1≤i≤kn

{εkn,ifkn,i (Xkn,i)} ≤ y
)

= 1, (B2a normal)

lim
n→∞

kn∑
i=1

Qkn,i

(
εkn,ifkn,i > y

)
= 0, (B2b normal)

lim
n→∞

kn∑
i=1

εkn,iμkn,i

(
εkn,ifkn,i > y

)
= 0. (B2c normal)

(B3 normal): We have

σ2 = lim
n→∞

kn∑
i=1

ε2
kn,i IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤y0} − 1
)

.

Remark 4.24. Combining Lemma 4.16 and (4.28) of Lemma 4.20 shows that
(B2a normal)-(B2c normal) are equivalent. �
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Now we can reformulate Theorem 4.19 for the Gaussian case. Note that the conditions of
Theorem 4.19 can be slightly weakened for this case, as we prove in the following.

Corollary 4.25. Let y0 > 0. (A normal) holds for a subsequence {kn : n ∈ N} of N and
a constant σ2 ≥ 0 if and only if (B normal) holds for {kn : n ∈ N}, σ2 and y0.

Remark 4.26. (i) Assume (B2 normal). Because of the above-mentioned equivalence
(B3 normal) is fulfilled for all y0 > 0 if it is fulfilled for one.

(ii) Suppose (A normal). It can be easily shown that

L
(

log
( dN(σ, 1)

dN(0, 1)

) ∣∣∣N(0, 1)
)

= N

(
−σ2

2
, σ2
)

.

Hence, {P(kn), Q(kn)} converges weakly to the Gaussian shift model {N(0, 1), N(σ, 1)}
or equivalently to

{
N(−σ2

2 , σ2), N(σ2

2 , σ2)
}

.

(iii) We use the convention N(a, 0) = εa for a ∈ R. Therefore, if (B2 normal) and (B3
normal) are fulfilled for σ2 = 0 then (A) holds for ξ1 = ξ2 = 0 (P-a.s.). In this case
{P(kn), Q(kn)} converges weakly to the uninformative experiment {ε0, ε0}. Note that
in this case (B normal) can be weakened, see Corollary 4.35. �

Proof. By Theorem 4.19 and Remark 4.24 it is sufficient to show that (B3 normal) and
(B3) are equivalent if (B2c normal) holds for all y > 0. Suppose that (B2c normal)
holds for all y > 0. Then for all ε ∈ (0, y0]

0 ≤
kn∑
i=1

IEPkn,i

(
ε2

kn,if
2
kn,i1{ε<εkn,ifkn,i≤y0}

)

≤ y0

kn∑
i=1

εkn,iμkn,i

(
εkn,ifkn,i > ε

)
= o(1) as n → ∞.

Hence, for all ε ∈ (0, y0]

kn∑
i=1

IEPkn,i

(
ε2

kn,if
2
kn,i1{εkn,ifkn,i≤y0}

)
=

kn∑
i=1

IEPkn,i

(
ε2

kn,if
2
kn,i1{εkn,ifkn,i≤ε}

)
+ o(1)

as n → ∞. Thus, it is easy to see that (B3 normal) and (B3) are equivalent. �
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4.2.1. Some technical lemmas

In this section we discuss important properties of log (gn,i), fn,i and

Wn,i := √
gn,i − 1 for all i = {1, . . . , n}, (4.36)

which we need in Section 4.2.2 to prove Theorem 4.15. By Lemma 4.3, (4.2) and (A.17)

n∑
i=1

IEPn,i

(
W 2

n,i

)
=

n∑
i=1

IEPn,i

((√
gn,i − 1

)2) = 2
n∑

i=1
d2 (Pn,i, Qn,i) = 2Dn (4.37)

for all n ∈ N. Consequently, we see that Wn,i plays an important role for our problem.

Lemma 4.27. Suppose Assumption 2.1(i). Define Wn,i as in (4.36) and set

Ãn,i,ε := {|log (gn,i)| ≤ ε} for all 1 ≤ i ≤ n and ε > 0. (4.38)

Let ε > 0 be fixed. If n is sufficiently large then for all 1 ≤ i ≤ n

Ãn,i,ε =
{

e−ε ≤ gn,i ≤ eε
}

=
{

gn,i ≤ eε
}

=
{

εn,ifn,i ≤ eε − 1 + εn,i

}
, (4.39)

Ãc
n,i,ε =

{
gn,i > eε

}
=
{

εn,ifn,i > eε − 1 + εn,i

}
, (4.40){

εn,ifn,i ≤ eε − 1
}

⊆ Ãn,i,ε ⊆
{

εn,ifn,i ≤ e2ε − 1
}

, (4.41)

− 1 < e− ε
2 − 1 ≤ Wn,i 1

Ãn,i,ε
≤ e

ε
2 − 1, (4.42)

εn,i |fn,i − 1| 1
Ãn,i,ε

e
ε
2 + 1

≤ |Wn,i| 1
Ãn,i,ε

≤
εn,i |fn,i − 1| 1

Ãn,i,ε

e− ε
2 + 1

, (4.43)

W 2
n,i = gn,i − 1 − 2Wn,i. (4.44)

Furthermore, for all i ∈ N

Wn,i =
(
(1 − εn,i) + εn,ifn,i

)1/2 − 1 ≥ (1 − εn:n)1/2 − 1 =: an → 0 as n → ∞, (4.45)

max
1≤j≤n

∣∣∣IEPn,j

(
Wn,j1

Ãn,j,ε

)∣∣∣→ 0 as n → ∞, (4.46)

max
1≤j≤n

∣∣∣IEPn,j

(
W 2

n,j1
Ãn,j,ε

)∣∣∣→ 0 as n → ∞. (4.47)

Proof. By (2.1), the definition (2.4) of gn,i and fn,i ≥ 0 it can easily be seen that (4.39),
(4.40) and (4.41) hold. We leave the details to the reader. (4.42) follows directly from
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(4.39) and the definition (4.36) of Wn,i. By the third binomial formula

|Wn,i| =
|gn,i − 1|√

gn,i + 1
=

εn,i |fn,i − 1|√
gn,i + 1

.

Hence, (4.43) follows immediately from (4.39). Moreover,

W 2
n,i = (√gn,i − 1)2 = gn,i − 2√

gn,i + 1 = gn,i − 1 − 2Wn,i,

which proves (4.44). Clearly, (4.45) holds. By Jensen’s inequality, Lemma 4.7 and (4.45)

0 ← an ≤ max
1≤i≤n

{
IEPn,i

(
Wn,i1Ãn,i,ε

)}
= max

1≤j≤n

{
IEPn,i

(√
gn,i 1

Ãn,i,ε

)
− Pn,i(Ãn,i,ε)

}
≤ max

1≤i≤n

{√
IEPn,i (gn,i) − Pn,i(Ãn,i,ε)

}
= max

1≤i≤n

{
1 − Pn,i(Ãn,i,ε)

}
≤ max

1≤i≤n

{
Pn,i

(
Ãc

n,i,ε

)}
→ 0 as n → ∞.

Thus, (4.46) follows. By Lemma 4.7, (4.44) and (4.46)

max
1≤i≤n

{
IEPn,i

(
W 2

n,i1Ãn,i,ε

)}
= max

1≤i≤n

{
IEPn,i

(
(gn,i − 1) 1

Ãn,i,ε

)
− 2 IEPn,i

(
Wn,i1Ãn,i,ε

)}
= max

1≤i≤n

{
IEPn,i

(
(1 − gn,i) 1

Ãc
n,i,ε

)
− 2 IEPn,i

(
Wn,i1Ãn,i,ε

)}
≤ max

1≤i≤n

{
Pn,i

(
Ãc

n,i,ε

)}
+ 2 max

1≤i≤n

{∣∣∣IEPn,i

(
Wn,i1Ãn,i,ε

)∣∣∣}→ 0

as n → ∞ . Consequently, we obtain (4.47). �

In the following we extend a result of Witting and Nölle [65] for our purpose.

Lemma 4.28. Suppose Assumption 2.1(i). Define Wn,i and Ãn,i,ε as in (4.36) and (4.38)
for every ε > 0 and 1 ≤ i ≤ n ∈ N. Then there exist some real-valued random variable
Zn,i,ε and some constants c1,ε < 0 < c2,ε for all ε > 0 and 1 ≤ i ≤ n ∈ N such that

log (gn,i) 1
Ãn,i,ε

=
(
2Wn,i − W 2

n,i − Zn,i,εW 2
n,i

)
1

Ãn,i,ε
(4.48)

and c1,ε ≤ max
1≤i≤n

{Zn,i,ε} ≤ c2,ε (4.49)

if n ∈ N is sufficiently large. Moreover,

cε := max {−c1,ε, c2,ε} → 0 as ε ↘ 0. (4.50)
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Proof. Let ε > 0 and 1 ≤ i ≤ n ∈ N be fixed for the first part of the proof. Witting and
Nölle already showed, see p. 65 in [65], that

(
2Wn,i − log (gn,i)

)
1

Ãn,i,ε
= W 2

n,i 1
Ãn,i,ε

∫ 1

0

2(1 − z)
(1 + zWn,i)2 dz. (4.51)

Note that their Wn,i differs from ours by a the factor of 2 and that the integral from (4.51)
is well defined because of (4.42) of Lemma 4.27. Define

Zn,i,ε :=
(− log (gn,i) + 2Wn,i − W 2

n,i

W 2
n,i

)
1

Ãn,i,ε∩{Wn,i 
=0} ,

c1,ε :=
∫ 1

0

2(1 − z)(
1 + z

(
e

ε
2 − 1
))2 dz − 1 ,

c2,ε :=
∫ 1

0

2(1 − z)(
1 + z

(
e− ε

2 − 1
))2 dz − 1 .

Then (4.48) holds obviously. Furthermore, (4.49) follows from (4.42) and (4.51). Finally,
we can conclude (4.50) from Lebesgue’s dominated convergence theorem. �

Lemma 4.29. Suppose that (A) or (B) is fulfilled for a subsequence {kn : n ∈ N} of N.
Define Wn,i and Ãn,i,ε as in (4.36) and (4.38) for every ε > 0 and all 1 ≤ i ≤ n ∈ N.
Then there exists some constant C ∈ (0, ∞) such that

lim sup
n→∞

kn∑
i=1

IEPkn,i

(
W 2

kn,i1Ãkn,i,ε

)
≤ C for all sufficiently small ε > 0. (4.52)

Proof. First, assume (A). We deduce from (4.37) that for all ε > 0, n ∈ N

kn∑
i=1

IEPkn,i

(
W 2

kn,i1Ãkn,i,ε

)
≤

kn∑
i=1

IEPkn,i

(
W 2

kn,i

)
= 2 Dkn .

Thus, (4.52) follows from Lemma 4.3(ii).
Now let (B) be fulfilled. Since (B3) holds there exists some ε̃ ∈ C(η2) ∩ (0, ∞) such that

lim sup
n→∞

kn∑
i=1

ε2
kn,i

(
IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤ε}
)

− 1
)

≤ σ2 + 1 =: C (4.53)

for all ε ∈ (0, ε̃), where by Lemma 4.16 we can assume without loss of generality that
(B2a) holds for ε̃ and so does (4.24). Finally, we conclude from (4.53), Remark 4.17,
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(4.41) and (4.43) of Lemma 4.27 that for all ε ∈ (0, 1
2 log(ε̃ + 1))

kn∑
i=1

IEPkn,i

(
W 2

kn,i1Ãkn,i,ε

)
≤

kn∑
i=1

ε2
kn,iIEPkn,i

(
(fkn,i − 1)2 1{εkn,ifkn,i≤e2ε−1}

)

≤
kn∑
i=1

ε2
kn,iIEPkn,i

(
(fkn,i − 1)2 1{εkn,ifkn,i≤ ε̃ }

)

=
kn∑
i=1

ε2
kn,i

(
IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤ ε̃ }
)

− 1
)

+ o(1)

≤ C + o(1) as n → ∞. �

4.2.2. Proof of Theorem 4.15

In this section we give the proof of Theorem 4.15. First, we introduce a new condition
denoted by (C). We show that (A) and (C) are equivalent under certain additional as-
sumptions. After having done this we prove that (C) can be replaced by (B). Finally, we
show that the mentioned additional assumptions are fulfilled under (A) as well as under
(B). Consequently, we deduce that (A) and (B) are equivalent.

Condition (C). Suppose Assumption 2.1(i). Let {kn : n ∈ N} be a subsequence of N,
σ2 ≥ 0 and η1, η2 be measures on (R \ {0}, B(R \ {0})) such that (4.21) and the following
conditions (C1)-(C4) are fulfilled.

(C1): For all x ∈ C(η1) ∩ (0, ∞)

lim
n→∞

kn∑
i=1

Pkn,i

(
log (gkn,i) > x

)
= η1(x, ∞) ∈ [0, ∞). (C1a)

(C2): We have

σ2 = lim
ε↘0

lim sup
lim inf
n→∞

kn∑
i=1

IEPkn,i

(
(log (gkn,i))2 1{|log(gkn,i)|≤ε}

)
.
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(C3): We have

lim
C(η1)�τ↘0

⎛⎝lim sup
lim inf
n→∞

⎛⎝ kn∑
i=1

IEPkn,i

(
log (gkn,i) 1{|log(gkn,i)|≤τ}

)⎞⎠ +
∫

(τ,∞)

x

1 + x2 dη1(x)

⎞⎠
= −σ2

2
+
∫

(0,∞)

(
1 − ex +

x

1 + x2

)
dη1(x).

(C4): For all x ∈ C(η2) ∩ (0, ∞)

lim
n→∞

kn∑
i=1

Qkn,i

(
log (gkn,i) > x

)
= η2(x, ∞) ∈ [0, ∞). (C4a)

Theorem 4.30. Suppose Assumption 2.1(i) and let

lim
n→∞

kn∑
i=1

IEPkn,i

(
log (gkn,i) 1{|log(gkn,i)|<ε}

)2
= 0 (4.54)

for all sufficiently small ε > 0. Then (C) holds for a subsequence {kn : n ∈ N} of N,
a constant σ2 ≥ 0 and measures η1, η2 if and only if (A) holds for {kn : n ∈ N} and
real-valued, infinitely divisible random variables ξ1, ξ2 with Lévy characteristics (γ1, σ2, η1)
and (γ2, σ2, η1), where γ1, γ2 ∈ R are given by (4.16).

Proof. Note that due to Lemma 4.7, Lemma 4.9 and (4.54) we can apply Theorem A.10
for Ykn,i := log (gkn,i (Xkn,i)), 1 ≤ i ≤ kn, under P(kn).
Suppose (C). By Theorem A.10 (A1) holds for a real-valued random variable ξ1 with Lévy
characteristics (γ1, σ2, η1), where γ1 is given by (4.16). Moreover, by (4.21) and (C4) we
have for some τ ∈ C(η2) ∩ (0, 1)∫

(1,∞)
exp dη1 = η2(1, ∞) ≤ η2(τ, ∞) < ∞.

Consequently, (A) follows from Corollary 4.13.
Assume (A). By Lemma 4.9 and Corollary 4.12 the constants γ1, γ2 are given by (4.16)
and, moreover, (4.21) is fulfilled. Applying Theorem A.10 yields (C1)-(C3). Note that
we can replace the relation sign ≥ by > in (A.5) since we consider continuity points x

of a measure η. Hence, applying Theorem A.7 for Ykn,i under Q(kn) while considering
Lemma 4.7 proves (C4). �

In the first step we show that (C1) and (C4) are equivalent to (B1) and (B2), respectively.

47



4. Theoretical results

Lemma 4.31. Suppose Assumption 2.1(i). (C1a) holds for a subsequence {kn : n ∈ N}
of N, a measure η1 on (R \ {0}, B(R \ {0})) and a fixed x ∈ C(η1) ∩ (0, ∞) if and only if
(B1a) does. Moreover, (C4a) holds for a subsequence {kn : n ∈ N} of N, a measure η2

on (R \ {0}, B(R \ {0})) and a fixed x ∈ C(η2) ∩ (0, ∞) if and only if (B2a) does.

Proof. Note that by (4.39) of Lemma 4.27 we have for all x ∈ C(η1) ∩ (0, ∞)

kn∑
i=1

Pkn,i (log (gkn,i) ≤ x) =
kn∑
i=1

Pkn,i (εkn,ifkn,i ≤ ex − 1 + εkn,i) (4.55)

if n ∈ N is sufficiently large. Due to the fact that x is a point of continuity, combining (2.1),
(4.55) and basic calculations yields the equivalence of (B1a) and (C1a). Analogously, the
equivalence of (B2a) and (C4a) follows. �

In the second step we verify the equivalence of (B3) and (C2) under (A) and under (B),
respectively.

Lemma 4.32. Suppose (A) or (B). Then (B3) holds if and only if

lim
ε↘0

lim sup
lim inf
n→∞

kn∑
i=1

IEPkn,i

(
W 2

kn,i1Ãkn,i,ε

)
=

σ2

4
.

Moreover, (B3) holds if and only if (C2) does.

Proof. Note that by Lemma 4.31 (C1) and (C4) hold under (B). If (A) holds then ap-
plying Lemma 4.7 and Theorem A.7 with Ykn,i := log (gkn,i (Xkn,i)) under P(kn) and under
Q(kn) yields (C1) and (C4), respectively. To sum up, (C1) and (C4) are fulfilled. Let
Wkn,i and Zkn,i,ε be defined as in (4.36) and Lemma 4.28 for all 1 ≤ i ≤ n and ε > 0. We
deduce from Lemma 4.28 that for all ε > 0 and every sufficiently large n ∈ N

kn∑
i=1

IEPkn,i

(
log (gkn,i)2 1

Ãkn,i,ε

)

=
kn∑
i=1

IEPkn,i

((
2 Wkn,i − (1 + Zkn,i,ε) W 2

kn,i

)2
1

Ãkn,i,ε

)

= 4
kn∑
i=1

IEPkn,i

(
W 2

kn,i1Ãkn,i,ε

)
(4.56)

+
kn∑
i=1

IEPkn,i

((
−4 (1 + Zkn,i,ε) Wkn,i + (1 + Zkn,i,ε)2 W 2

kn,i

)
W 2

kn,i1Ãkn,i,ε

)
. (4.57)
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Note that by Lemma 4.28 and (4.42) of Lemma 4.27 we have for all sufficiently large n ∈ N:

max
1≤i≤kn

{|Zkn,i,ε|} ≤ cε → 0 and max
1≤i≤kn

{
|Wkn,i| 1

Ãkn,i,ε

}
≤ e

ε
2 − 1 → 0 as ε ↘ 0. (4.58)

Define the sum in (4.57) by Rn,ε. Combining (4.58) and Lemma 4.29 shows that

lim
ε↘0

lim sup
n→∞

|Rn,ε| = 0.

Consequently, the first mentioned equivalence follows. From this equivalence, (4.25) of
Remark 4.17 and (4.43) of Lemma 4.27 we obtain the equivalence of (B3) and (C2). �

In the third and last step we prove that (C3) already holds under (B).

Lemma 4.33. Let (B) be fulfilled for some subsequence {kn : n ∈ N} of N, σ2 ≥ 0 and
η1, η2, where we assume that the latter ones are Lévy measures. Then (C3) holds for
{kn : n ∈ N}, η1 and σ2.

Proof. First, we deduce (C1) and (C4) from Lemma 4.31. Let Ãn,i,ε, Wn,i, Zn,i,ε be
defined as in (4.38), (4.36) and Lemma 4.28 for all 1 ≤ i ≤ n ∈ N and ε > 0. From
Lemma 4.28 and (4.44) of Lemma 4.27 we obtain

kn∑
i=1

IEPkn,i

(
log (gkn,i) 1

Ãkn,i,ε

)

=
kn∑
i=1

IEPkn,i

((
gkn,i − 1 − (2 + Zkn,i,ε)W 2

kn,i

)
1

Ãkn,i,ε

)

=
kn∑
i=1

IEPkn,i

(
(1 − gkn,i) 1

Ãc
kn,i,ε

)
−

kn∑
i=1

IEPkn,i

(
(2 + Zkn,i,ε)W 2

kn,i1Ãkn,i,ε

)

=
kn∑
i=1

Pkn,i (log (gkn,i) > ε) −
kn∑
i=1

Qkn,i (log (gkn,i) > ε) −
kn∑
i=1

IEPkn,i

(
(2 + Zkn,i,ε)W 2

kn,i1Ãkn,i,ε

)

for all sufficiently large n ∈ N and ε > 0. Note that by Lemma 4.28

max
1≤i≤kn

|Zkn,i,ε| ≤ cε → 0 as ε ↘ 0

for all sufficiently large n ∈ N. Combining this, (C2) and Lemma 4.32 yields

lim
ε↘0

lim sup
lim inf
n→∞

kn∑
i=1

IEPkn,i

(
(2 + Zkn,i,ε)W 2

kn,i1Ãkn,i,ε

)
=

σ2

2
.
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Note that by Taylor’s theorem there are constants C1, C2, C3 ∈ (0, ∞) such that∫
(0,∞)

∣∣∣∣1 − ex +
x

1 + x2

∣∣∣∣ dη1(x) ≤
∫

(0,1)

(∣∣∣∣−x +
x

x2 + 1

∣∣∣∣+ C1x2
)

dη1(x) +
∫

[1,∞)
C2ex dη1(x)

≤
∫

(0,1)
C3 x2 dη1(x) + C2 η2[1, ∞) < ∞.

Finally, we conclude from the above, Lebesgue’s dominated limit theorem, (4.43) of
Lemma 4.27, (C1) and (C4) that

lim
C(η1)�ε↘0

⎛⎝lim sup
lim inf
n→∞

kn∑
i=1

IEPkn,i

(
log (gkn,i) 1

Ãkn,i,ε

)
+
∫

(ε,∞)

x

1 + x2 dη1(x)

⎞⎠
= lim

C(η1)�ε↘0

(
(η1 − η2)(ε, ∞) − σ2

2
+
∫

(ε,∞)

x

1 + x2 dη1(x)
)

= −σ2

2
+ lim

C(η1)�ε↘0

∫
(ε,∞)

(
1 − ex +

x

1 + x2

)
dη1(x)

= −σ2

2
+
∫

(0,∞)

(
1 − ex +

x

1 + x2

)
dη1(x). �

To conclude Theorem 4.15 from Lemmas 4.31 to 4.33 and Theorem 4.30 it remains to
show (4.54) for all sufficiently small ε > 0 under (A) as well as under (B).

Lemma 4.34. Let (A) or (B) be fulfilled for a subsequence {kn : n ∈ N} of N as well as
measures η1 and η2. Then (4.54) holds for all sufficiently small ε > 0.

Proof. First, note that as explained at the beginning of the proof of Lemma 4.32 (C1) and
(C4) hold. Let Wn,i and Zn,i,ε be defined as in (4.36) and Lemma 4.28 for all 1 ≤ i ≤ n

and every ε > 0. Since (a + b)2 ≤ 4a2 + 4b2 for all a, b ∈ R we deduce from Lemma 4.28

0 ≤
kn∑
i=1

IEPkn,i

(
log (gkn,i) 1{|log(gkn,i)|<ε}

)2
=

kn∑
i=1

IEPkn,i

((
2Wkn,i − (1 + Zkn,i,ε) W 2

kn,i

)
1{|log(gkn,i)|<ε}

)2
≤ 4

⎡⎣ kn∑
i=1

IEPkn,i

(
2Wkn,i1{|log(gkn,i)|<ε}

)2
+ 2

kn∑
i=1

IEPkn,i

(
W 2

kn,i1{|log(gkn,i)|<ε}
)2⎤⎦

for all sufficiently small ε > 0 and every sufficiently large n ∈ N. It remains to show
that both sums in the last line of the previous inequality converge to 0 as n → ∞ for
all sufficiently small ε > 0. Let yε ∈ C(η1) ∩ (0, ε) for every ε > 0. From Lemma 4.27,
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4.2. Non-trivial accumulation points

Lemma 4.29, (C1), (C4) and (2.1) we deduce that for all sufficiently small ε > 0

kn∑
i=1

IEPkn,i

(
Wkn,i1{|log(gkn,i)|<ε}

)2
=

1
4

kn∑
i=1

IEPkn,i

((
gkn,i − 1 − W 2

kn,i

)
1{|log(gkn,i)|<ε}

)2
≤

kn∑
i=1

IEPkn,i

(
(gkn,i − 1) 1{|log(gkn,i)|<ε}

)2
+

kn∑
i=1

IEPkn,i

(
W 2

kn,i1{|log(gkn,i)|<ε}
)2

≤
kn∑
i=1

ε2
kn,iIEPkn,i

(
(1 − fkn,i) 1{|log(gkn,i)|≥ε}

)2
+

kn∑
i=1

IEPkn,i

(
W 2

kn,i1{|log(gkn,i)|<ε}
)2

≤ 4
kn∑
i=1

ε2
kn,i

[
μkn,i (log (gkn,i) > yε)2 + Pkn,i (log (gkn,i) > yε)2

]

+ max
1≤i≤kn

{
IEPkn,i

(
W 2

kn,i1{log(gkn,i)≤2ε}
)} kn∑

i=1
IEPkn,i

(
W 2

kn,i1{log(gkn,i)≤2ε}
)

≤ 4 εkn:kn

kn∑
i=1

Qkn,i (log (gkn,i) > yε) + 4 εkn:kn

kn∑
i=1

Pkn,i (log (gkn,i) > yε) + o(1)

= o(1) as n → ∞.

Furthermore, we conclude from (4.47) of Lemma 4.27, Lemma 4.28 and Lemma 4.29 that
for all sufficiently large n ∈ N and every sufficiently small ε > 0

kn∑
i=1

IEPkn,i

(
(1 + Zkn,i,ε)W 2

kn,i1{|log(gkn,i)|<ε}
)2

≤ 2 max
1≤i≤kn

{
IEPkn,i

(
W 2

kn,i1{|log(gkn,i)|≤2ε}
)} kn∑

i=1
IEPkn,i

(
W 2

kn,i1{|log(gkn,i)|≤2ε}
)

= o(1) as n → ∞. �
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4.3. Trivial accumulation points

In this section we present sufficient and necessary conditions for the convergence of
{P(kn), Q(kn)} to one of the trivial binary experiments {ε0, ε0} or {ε−∞, ε∞}. We want
to emphasise that the conditions are quite similar to the ones for non-trivial limits. This
reduces the effort in calculations if we are interested in the non-trivial and trivial cases for
a given model. We also present some results under more restrictive conditions and first
results for the exponential families introduced in Section 2.3.1.

As mentioned in Remark 4.26(iii) (A) and (A normal) include the convergence to the
uninformative experiment. Thus, we can verify this convergence by showing that (B) or
(B’) or (B normal) holds for trivial measures η1 ≡ 0 ≡ η2 and σ2 = 0. But we can
weaken these conditions more.

Corollary 4.35. Let y0 > 0. Under Assumption 2.1(i) the following conditions (i)-(iii)
are equivalent for a subsequence {kn : n ∈ N} ⊆ N.

(i) The binary experiment {P(kn), Q(kn)} converges weakly to the uninformative experi-
ment {ε0, ε0} as n → ∞.

(ii) The sum Dkn given by (4.2) converges to 0 as n → ∞.

(iii) One of the conditions (B2a normal)-(B2c normal) is fulfilled for y := y0. Fur-
thermore, (B3 normal) is fulfilled for y0 and σ2 = 0.

Remark 4.36. (i) Because y0 can be chosen arbitrarily, condition (iii) is fulfilled for all
y0 > 0 if it is for one.

(ii) Suppose one of the conditions (B2a normal)-(B2c normal) for some y0 > 0. By
Lemma 4.16, Remark 4.17 and Lemma 4.20 (B3 normal) is fulfilled for y0 and
σ2 = 0 if and only if

kn∑
i=1

ε2
kn,i IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤y0} − 1
)

≤ o(1) as n → ∞.

(iii) To prove the sufficiency of (iii) for (ii), we slightly modify the methods of Cai et
al. [10]. The following proof shows that this implication still holds if we replace
{εkn,ifkn,i ≤ y0} and {εkn,ifkn,i > y0} by arbitrary sets Akn,i ∈ A and Ac

kn,i in (B2
normal) and in (B3 normal), respectively. The advantage of our special sets is
that (iii) is even necessary. �

In the proof of Corollary 4.35 we apply the following lemma.
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Lemma 4.37. Suppose Assumption 2.1(i). Let Dn be given by (4.2) for all n ∈ N. Then
for every triangular array (An,i)i≤n of sets An,i ∈ A and every n ∈ N

Dn ≤
[

n∑
i=1

(
εn,i

2
+ 2ε2

n,i

)
μn,i

(
Ac

n,i

)]
+

n∑
i=1

ε2
n,iIEPn,i

(
f2

n,i1An,i − 1
)

.

The inequality mentioned above holds, e.g., for the sets An,i given by

An,i := {εn,ifn,i ≤ y0} for every 1 ≤ i ≤ n ∈ N and some y0 > 0. (4.59)

Proof. Let n ∈ N be fixed. We have

Dn =
n∑

i=1
1 − IEPn,i(

√
gn,i )

≤
n∑

i=1
1 − IEPn,i

( √
1 − εn,i + εn,ifn,i1An,i

)
. (4.60)

From the third binomial formula we deduce that for all u ≥ 0

(u2 − 1)2 = (u − 1)2(u + 1)2 ≥ 1
2

(u − 1)2.

Substituting x = u2 − 1 yields

x2 ≥ 1
2

(√
1 + x − 1

)2
=

x

2
+ 1 − √

1 + x for all x ≥ −1.

Hence,

1 − √
1 + x ≤ −x

2
+ x2 for all x ≥ −1.

Applying this for x = εn,i(fn,i1An,i − 1) (pointwisely) we conclude from (4.60) that

Dn ≤
n∑

i=1

[
−εn,i

2
IEPn,i

(
fn,i1An,i − 1

)
+ ε2

n,iIEPn,i

((
fn,i1An,i − 1

)2)]

=
n∑

i=1

[
εn,i

2
μn,i

(
Ac

n,i

)
+ ε2

n,iIEPn,i

(
f2

n,i1An,i − 1 − 2fn,i1An,i + 2
)]

. �

Proof of Corollary 4.35. By Lemma 4.3 and Corollary 4.25 it remains to prove that (iii)
is sufficient for (ii). Assume (iii). By Remark 4.24 the conditions (B2a normal)-
(B2c normal) are equivalent. Thus, (B2c normal) holds for y = y0. Finally, (ii) follows
immediately from Lemma 4.37. �
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If for some y > 0 one of the sums in (B1b), (B2b), (B2c) converges to ∞ or one of
the probabilities in (B1a), (B2a) converges to 1 then we obtain ηj(y, ∞) = ∞ for j = 1
or j = 2 heuristically. In this case {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞} by the
following corollary.

Corollary 4.38. Let y0 > 0. Under Assumption 2.1(i) the following conditions (i)-(iii)
are equivalent for a subsequence {kn : n ∈ N} ⊆ N.

(i) The binary experiment {P(kn), Q(kn)} converges weakly to the full informative exper-
iment {ε−∞, ε∞} as n → ∞ .

(ii) The sum Dkn given by (4.2) converges to ∞ as n → ∞ .

(iii) One of the following conditions (D1)-(D4) holds:

lim
n→∞

kn∑
i=1

ε2
kn,i IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤y0} − 1
)

= ∞, (D1)

lim
n→∞

kn∑
i=1

εkn,i μkn,i (εkn,ifkn,i > y0) = ∞, (D2)

lim
n→∞

kn∑
i=1

Qkn,i (εkn,ifkn,i > y0) = ∞, (D3)

lim
n→∞ Q(kn)

(
max

1≤i≤kn

{εkn,ifkn,i (Xkn,i)} ≤ y0

)
= 0. (D4)

Remark 4.39. (i) Because y0 > 0 can be chosen arbitrarily, condition (iii) is fulfilled for
all y0 > 0 if it is for one.

(ii) Suppose that (D3) or (D4) is fulfilled, where Qkn,i is replaced by Pkn,i. Lemma 4.20
yields that (iii) holds and so does (i). �

Proof. By Lemma 4.3 it is sufficient to show that (ii) and (iii) are equivalent.
"(ii) ⇒ (iii)": Conversely, suppose that none of the conditions (D1)-(D4) holds. Combin-
ing Lemma 4.37 and the fact, that (D1) and (D2) do not hold, yields

lim inf
n→∞ Dkn < ∞.

"(iii)⇒ (ii)": First, suppose one of the conditions (D2)-(D4). By Lemma 4.16 and (4.27)
of Lemma 4.20 we obtain (D2) in all three cases. Define An,i as in (4.59). Note that for
all sufficiently large n ∈ N, every i = 1, . . . , kn and all ω ∈ Ac

kn,i

gkn,i(ω) = εkn,ifkn,i(ω) − εkn,i + 1 > y0 − εkn:kn + 1 >
y0
2

+ 1 > 1. (4.61)
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Set

C :=
(√

y0
2

+ 1 + 1
)−1

.

By (4.61) and the third binomial formula

Wkn,i1Ac
kn,i

=
(√

gkn,i − 1
)

1Ac
kn,i

=
gkn,i − 1√
gkn,i + 1

1Ac
kn,i

≤ C (gkn,i − 1) 1Ac
kn,i

(4.62)

for all sufficiently large n ∈ N and every 1 ≤ i ≤ kn. Note that C < 1
2 . From (D2), (4.26)

of Lemma 4.20, (4.37), (4.44) of Lemma 4.27 and (4.62) we obtain

2 Dkn ≥
kn∑
i=1

IEPkn,i

(
W 2

kn,i1Ac
kn,i

)

=
kn∑
i=1

IEPkn,i

(
(gkn,i − 1 − 2Wkn,i) 1Ac

kn,i

)

≥ (1 − 2C)
kn∑
i=1

IEPkn,i

(
(gkn,i − 1) 1Ac

kn,i

)

= (1 − 2C)
kn∑
i=1

IEPkn,i

(
εkn,i (fkn,i − 1) 1Ac

kn,i

)

= (1 − 2C)

⎡⎣ kn∑
i=1

εkn,iμkn,i

(
Ac

kn,i

)
− εkn,iP0

(
Ac

kn,i

)⎤⎦
≥ (1 − 2C)

(
1 − εkn:kn

y0

) kn∑
i=1

εkn,iμkn,i

(
Ac

kn,i

)
→ ∞ as n → ∞.

Now assume (D1). Again, we want to verify (ii). For this purpose it is sufficient to show
that for every subsequence {kn,1 : n ∈ N} of {kn : n ∈ N} there is a further subsequence
{kn,2 : n ∈ N} ⊆ {kn,1 : n ∈ N} such that Dkn,2 tends to ∞ as n → ∞. Let {kn,1 : n ∈ N}
be an arbitrary subsequence of {kn : n ∈ N}. If (D3) holds for {kn,1 : n ∈ N} then we
set kn,2 := kn,1 for all n ∈ N and due to the previous case (ii) holds for {kn,2 : n ∈ N}. If
(D3) does not hold for {kn,1 : n ∈ N} then there exists a subsequence {kn,2 : n ∈ N} of
{kn,1 : n ∈ N} such that

lim
n→∞

kn,2∑
i=1

Qkn,2,i

(
εkn,2,ifkn,2,i > y0

)
∈ [0, ∞).
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By this and Lemma 4.20 the inequality (4.24) holds for {kn,2 : n ∈ N}. Hence, combining
(D1), Remark 4.17, (4.37), (4.41) and Lemma 4.27 there exists some C1 > 0 such that

2 Dkn,2 ≥
kn,2∑
i=1

εkn,2,i

(
W 2

kn,2,i1{εkn,2,ifkn,2,i≤y0}
)

≥ C1

kn,2∑
i=1

ε2
kn,2,i

((
fkn,2,i − 1

)2
1{εkn,2,ifkn,2,i≤y0}

)

= C1

kn,2∑
i=1

ε2
kn,2,i

(
f2

kn,2,i1{εkn,2,ifkn,2,i≤y0} − 1
)

+ o(1) → ∞ as n → ∞. �

The following corollary is an immediate consequence of Corollary 4.25, Corollary 4.35,
Corollary 4.38 and μkn,i � Pkn,i, see (2.2).

Corollary 4.40. Suppose Assumption 2.1(i). Let {kn : n ∈ N} be a subsequence of N.
Assume that for every fixed y > 0

max
1≤i≤kn

{
Pkn,i (εkn,ifkn,i > y)

}
= 0 (4.63)

for all n ≥ n0(y) for some n0(y) ∈ N. Moreover, suppose that

lim
n→∞

kn∑
i=1

ε2
kn,i IEPkn,i

(
f2

kn,i − 1
)

=: σ2 ∈ [0, ∞]. (4.64)

Then we have:

(i) (A normal) holds for σ2 if and only if σ2 ∈ [0, ∞).

(ii) The binary experiment {P(kn), Q(kn)} converges weakly to the full informative exper-
iment {ε−∞, ε∞} if and only if σ2 = ∞.

(iii) The binary experiment {P(kn), Q(kn)} converges weakly to the uninformative experi-
ment {ε0, ε0} if and only if σ2 = 0.

Remark 4.41. (i) If

max
1≤i≤kn

{
εkn,i sup

x∈Ω
fkn,i(x)

}
→ 0 as n → ∞ (4.65)

then (4.63) is fulfilled.
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(ii) Due to Corollary 4.38 the equivalence in (ii) is still valid if (4.63) holds only for some
y0 > 0. Furthermore, the equivalence in (iii) even holds if (4.63) does not hold for
any y > 0, see the following Lemma 4.42. �

Calculations with different distributions, e.g., the Gumbel distribution, showed us that,
in particular for the dense case,

max
1≤i≤kn

{fkn,i(x)} ≤ C < ∞ for every x ∈ Ω and all sufficiently large n ∈ N.

Under these circumstances, (4.63) and (4.65) hold obviously. Therefore, by Corollary 4.40
every accumulation point of {P(n), Q(n)} is either a Gaussian experiment or a trivial ex-
periment. If (4.63) does not hold for all y > 0 then (4.64) can still be a useful condition:

Lemma 4.42. Suppose that Assumption 2.1(i) and (4.64) hold for some σ2 ∈ [0, ∞) and a
subsequence {kn : n ∈ N} of N. Then no accumulation point of {P(kn), Q(kn)} is equivalent
to the full informative experiment {ε−∞, ε∞}.
Additionally, if σ2 = 0 then {P(kn), Q(kn)} converges weakly to {ε0, ε0}.

Proof. Let Dn be defined as in (4.2). By the third binomial formula, the definition of gn,i,
see (2.4), and (4.64) we have

2Dkn =
kn∑
i=1

∫ (√
gkn,i − 1

)2 dPkn,i =
kn∑
i=1

∫ (gkn,i − 1)2

(gkn,i + 1)2 dPkn,i

≤
kn∑
i=1

∫ ε2
kn,i (fkn,i − 1)2

(0 + 1)2 dPkn,i =
kn∑
i=1

ε2
kn,i

[∫
f2

kn,i dPkn,i − 1
]

→ σ2 as n → ∞. (4.66)

By Corollary 4.38 there exists no subsequence {kn,1 : n ∈ N} of kn such that
{P(kn,1), Q(kn,1)} converges weakly to {ε−∞, ε∞}. If σ2 = 0 then combining (4.66) and
Corollary 4.35 yields that {P(kn), Q(kn)} converges weakly to {ε0, ε0}. �

Remark 4.43. There are cases in which (4.64) holds for some σ2 ∈ (0, ∞) and at the same
time {P(kn), Q(kn)} converges weakly to {ε0, ε0}. Moreover, there are cases in which (4.64)
holds for σ2 = ∞ and at the same time {P(kn), Q(kn)} converges weakly to a non-trivial
binary experiment. �

Suppose that Corollary 4.38(i) holds. Heuristically, we would expect that Corollary 4.38(i)
still holds if we only increase the signal probabilities εkn,1, . . . , εkn,kn and keep the measures
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4. Theoretical results

Pn,i and μn,i unchanged for all 1 ≤ i ≤ n ∈ N. We would also expect an analogous result
to Corollary 4.35(i) if we decrease the signal probabilities. Both implications are already
mentioned and verified in [12], see Lemma 8 and Remark 4 in their appendix.

Theorem 4.44. Suppose Assumption 2.1(i). Let (ε̃n,i)1≤i≤n∈N be a further triangular
array of real numbers in [0, 1] such that

max
1≤i≤n

ε̃n,i = o(1) as n → ∞.

Define for all 1 ≤ i ≤ n ∈ N

Q̃n,i := (1 − ε̃n,i)Pn,i + ε̃n,iμn,i and Q̃(n) :=
n⊗

i=1
Q̃n,i.

Let {kn : n ∈ N} be a subsequence of N.

(i) If εkn,i ≤ ε̃kn,i for all 1 ≤ i ≤ kn, n ∈ N, and if {P(kn), Q(kn)} converges weakly to
the full informative experiment {ε−∞, ε∞} then

{
P(kn), Q̃(kn)

}
does so as well.

(ii) If εkn,i ≥ ε̃kn,i for all 1 ≤ i ≤ kn, n ∈ N, and if {P(kn), Q(kn)} converges weakly to
the uninformative experiment {ε0, ε0} then

{
P(kn), Q̃(kn)

}
does so as well.

Proof. It is easy to show that

ε �→ d2
(

P , (1 − ε)P + εQ
)

is non-decreasing in [0, 1] for every pair (P, Q) of probability measures on some measurable
space (Ω, A), see Lemma 8 in [12]. By carefully reading the proof one notes that the
word decreasing should be replaced by non-decreasing in their Lemma 8. Combining this
monotonicity, Corollary 4.35 and Corollary 4.38 completes the proof. �

Simplifications for exponential families

For one-parametric exponential families introduced in Section 2.3.1 we can simplify (4.64)
as follows:

Lemma 4.45. Under Assumption 2.11 the condition (4.64) for σ2 ∈ [0, ∞] holds if and
only if

lim
n→∞

kn∑
i=1

ε2
kn,i

[
C (ϑkn)2

C (2ϑkn)
− 1
]

= σ2. (4.67)
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4.4. Connection to extreme value theory

Proof. The statement follows from (2.8) and basic calculations:∫
f2

kn,i − 1 dPkn,i =
∫

C (ϑkn)2 exp (−2ϑknh) dQ0 − 1

=
C (ϑkn)2

C (2ϑkn)

∫ dQ2ϑkn

dQ0
dQ0 − 1 =

C (ϑkn)2

C (2ϑkn)
− 1. �

Due to the previous lemma we are interested in the asymptotic behaviour of ϑ → C(ϑ).
If C (ϑkn) is known for sufficiently large n then by the following corollary it is possible
to determine ϑkn and εkn,i such that the limit of {P(kn), Q(kn)} is Gaussian or equal to
the uninformative experiment {ε0, ε0}. If the asymptotic behaviour of C (ϑkn) is unknown
then the results of Section 2.3.2 may be used to determine it.

Corollary 4.46. Let Assumption 2.11 and (4.67) be fulfilled for some σ2 ∈ [0, ∞). More-
over, assume that

C (ϑkn) εkn:kn → 0 as n → ∞ (4.68)

and exp [−ϑknh(x)] ≤ M ∈ (0, ∞) for all n ∈ N, x ∈ Ω. (4.69)

Then (A normal) holds for σ2.

Proof. It is easy to see that (4.65) holds if (4.68) and (4.69) are fulfilled. Hence, applying
Corollary 4.40, Remark 4.41(i) and Lemma 4.45 completes the proof. �

4.4. Connection to extreme value theory

In the literature it is known that there is a strong connection between extreme value theory
and convergence to infinitely divisible distributions, see, e.g., Janssen [36] or the Extrema
Criterion 23.4C of Lóeve [49]. In this section we explain the mentioned connection in our
setting and how to use it for verifying (B1a). Consequently, we can use this connection
to find parameters and measures such that (A) is possibly fulfilled. To prove that (A)
actually holds, Theorem 4.19 can be applied.

Let Y1, . . . , Yn be i.i.d. real-valued random variables on some probability space (Ω, A, P)
with non-degenerate cumulative distribution function F . A distribution function H is said
to be non-degenerate if H(s) ∈ (0, 1) for some s ∈ R. The extreme value theory deals with
the asymptotic behaviour of the maximum statistic Yn:n. It is easy to see that this statistic
converges in probability to the endpoint x∗ = inf {x ∈ R : F (x) = 1} of the distribution
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4. Theoretical results

of Y1, where the convention inf ∅ = ∞ is used. Hence, a normalization is needed to get a
non-degenerate limit distribution. In this context the linear normalisation a−1

n (Yn:n − bn)
with an > 0 and bn ∈ R for every n ∈ N is well understood and leads to a rich theory.
For a thorough treatment of this theory we refer the reader to Resnick [53], [54] and Haan
and Ferreira [28]. Note that a−1

n (Yn:n − bn) converges in distribution to a non-degenerate
random variable Z if and only if we have for all

lim
n→∞ P

(
Yn:n − bn

an
≤ t

)
= lim

n→∞ (F (ant + bn))n = G(t) for all t ∈ C(G), (4.70)

where G is the non-degenerate cumulative distribution function of Z.

We have to admit that the connection between our problem and extreme value theory can
only be used for a restricted version of our model, see the following remark for details.

Remark 4.47. Suppose that Assumption 2.1(iii) holds, where Pn = P1 =: P0 and fn is
non-decreasing for all n ∈ N. Furthermore, let Y1, . . . , Yn be i.i.d. real-valued random
variables on (Ω, A, P) with Y1 ∼ P0. Then for all n ∈ N

max
1≤i≤kn

{εkn,ifkn,i (Yi)} = εknfkn (Ykn:kn) =: Rkn . (4.71)

(i) By (4.71) Rkn converges in distribution to some real-valued random variable R on
(Ω, A, P) with

P (R ≤ t) > 0 for every t > 0

if and only if (B1a) holds for all x ∈ C(η1) ∩ (0, ∞), where the measure η1 is given
by

η1(y, ∞) = − log
(

P (R ≤ ey − 1)
)

for all y ∈ C(η1) ∩ (0, ∞).

The case, that Rkn converges in probability to 0, is of specific interest because it
leads to η1 ≡ 0 and so to Gaussian limit experiments of {P(kn), Q(kn)}.

(ii) Assume that

lim
n→∞ P (Rkn ≤ ex − 1) = 0 (4.72)

for some x > 0. Then the probability in (B1a) converges to 0 and so by Lemma 4.16
the sum in (B1b) converges to ∞ for x. Consequently, by Lemma 4.20 the condition
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4.4. Connection to extreme value theory

(D2) of Corollary 4.38 is fulfilled for x. Finally, we conclude from Corollary 4.38
that {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞}.
(4.72) is fulfilled, e.g., if Rkn converges in distribution to a random variable, which
is bounded away from zero (P-a.s.).

(iii) Let (4.70) be fulfilled for some non-degenerate distribution function G, some sequence
(an)n∈N in (0, ∞) and some sequence (bn)n∈N in R. Let Z ∼ G. We can rewrite (4.71)
into

Rkn = ψkn

(
Ykn:kn − bkn

akn

)
(4.73)

with ψkn(x) := εknfkn (aknx + bkn) , x ∈ R.

Suppose that ψkn : R → R converges pointwisely to a continuous function ψ : R → R.
Since fn is non-decreasing and an > 0, the function ψkn is non-decreasing for all n ∈ N

and so is ψ. Thus, ψkn even converges to ψ uniformly on every compact interval.
By Theorem 5.5 of Billingsley [7], an extension of the continuous mapping theorem,
Rkn converges in distribution to R := ψ(Z).

(iv) We get similar results to (i) and (iii) if fn is non-increasing for all n ∈ N. In this
case Ykn:kn in (4.71) and (4.73) is replaced by the minimum statistic Y1:kn . Because

Y1:kn = − max
1≤i≤kn

{−Yi}

the results about the asymptotic behaviour of maximum statistics can be transferred
to the minimum statistic. �

At the end of this section we give an example how the above-mentioned remark can be
applied.

Example 4.48. Consider the Gumbel model introduced in Example 2.8, i.e.,

fn(x) = eϑn exp
(
−e−x

[
eϑn − 1

])
, x, ϑn ∈ R, n ∈ N.

Let {kn : n ∈ N} be a subsequence of N and Y1, . . . , Ykn be i.i.d. P0-distributed for all
n ∈ N. It is known that (4.70) holds for

an := 1, bn := log(n) and G = Λ for all n ∈ N.

61



4. Theoretical results

Clearly, fn is non-decreasing for all n ∈ N and (4.73) holds for ψn : R → R given by

ψn(x) = εneϑn exp
(

e−x 1
n

(
1 − eϑn

))
, x ∈ R, n ∈ N.

By using Remark 4.47(i) and (iii) we want to determine sequences of parameters (ϑkn)n∈N

and (εkn)n∈N
in [0, ∞) and [0, 1], respectively, such that (B1) is fulfilled.

(i) Suppose that

lim
n→∞ εkneϑkn = 0. (4.74)

Because ϑkn ≥ 0 we have

ψkn(x) ≤ εkneϑkn for all x ∈ R.

Combining this, Remark 4.47(i) and (iii) yields (B1) for η1 ≡ 0. Note that (4.74)
is always fulfilled in the dense case, i.e., ϑkn = o(1) as n → ∞. In Section 5.2.1
and Section 5.2.2 we show that under some additional assumptions {P(kn), Q(kn)}
converges weakly to some Gaussian experiment, see Corollaries 5.10(ii) and 5.13(ii)
for details.

(ii) Suppose that

lim
n→∞ εkneϑkn = 1 and lim

n→∞ kn e−ϑkn = 1.

Clearly, it follows that limn→∞ knεkn = 1 and that ψkn converges pointwisely to
function ψ : R → R given by

ψ(x) = exp
(−e−x) for every x ∈ R.

Let Z be standard Gumbel distributed on (Ω, A, P), i.e., the distribution function Λ
of Z is equal to ψ. Thus, by Remark 4.47(iii)

Rkn

d−→ R := ψ(Z) ∼ U(0, 1) as n → ∞.

From this and Remark 4.47(i) we deduce (B1) for η1 given by

η1(x, ∞) = − log (ex − 1) 1(0,log(2))(x), x > 0.
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Hence,

dη1
dλλ

(x) =
ex

ex − 1
1(0,log(2))(x), x ∈ R \ {0}.

In Section 5.2.1 we show that under the above-mentioned assumptions {P(kn), Q(kn)}
converges weakly to some non-trivial and non-Gaussian experiment, see Corol-
lary 5.10(iii) for details. �

4.5. Outlook: further non-trivial accumulation points

During the study we recognised that there are accumulation points of {P, Q} for certain
models which are neither trivial nor fulfilling (A). While proof-reading this thesis we finally
found the answer how to determine these accumulation points. In this section we present
and discuss briefly some first results for this issue which complete the theory of Sections 4.2
and 4.3. Moreover, we give an example in the following chapter, see Remark 5.8(i). We
refer the reader to an upcoming paper, which we plan to write after finishing this thesis,
for a fuller treatment of this issue and for the proofs which are omitted here.

Using the ideas of the proof of Theorem 4.15 and modifying them slightly we can show
the following lemma.

Lemma 4.49. Suppose that Assumption 2.1(i) holds. (A1) holds for some real-valued
random variable ξ1 and some subsequence {kn : n ∈ N} of N if and only if there exist some
measure η on (R \ {0}, B(R \ {0})), some function ψ : (0, ∞) → [0, ∞) and some constant
σ2 ∈ [0, ∞) such that (i)-(iii) hold.

(i) We have

η(−∞, 0) = 0 and η(x, ∞) < ∞ for all x > 0.

(ii) (B1) and (B3) are fulfilled for η1 := η and σ2.

(iii) For all sufficiently small y ∈ C(η) ∩ (0, ∞) we have

lim
n→∞

kn∑
i=1

εkn,iμkn,i

(
εkn,ifkn,i > ey − 1

)
= ψ(y).

Moreover, if both above-mentioned, equivalent conditions hold then we obtain (a)-(c).
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(a) ξ1 is infinitely divisible with Lévy characteristic (γ, σ2, η), where

γ = −σ2

2
+ lim

C(η)�τ↘0

(
−ψ(τ) +

∫
(τ,∞)

x

1 + x2 dη(x)
)

.

(b) (A2) holds for some random variable ξ2 : (Ω, A, P) → (R̄, B̄). Denote by νj the
distribution of ξj for j = 1, 2. Then ν1 � ν2,

dν1
dν2

(x) = exp(−x) for all x ∈ R and ν2 ({−∞}) = 1 −
∫

exp dν1.

If ν2 ({−∞}) = 0 then ξ2 is also real-valued (P-a.s.).

(c) We have P(kn) � Q(kn).

Combining Lemma 4.20, Corollary 4.38, Lemma 4.49 and subsequence arguments we can
verify the following theorem.

Theorem 4.50. Let Assumption 2.1 be fulfilled and {kn : n ∈ N} be a subsequence of N.
Moreover, assume that {P(kn), Q(kn)} converges weakly to {P, Q} as n → ∞. Then either
{P, Q} is a full informative experiment, i.e., its standard form is {ε−∞, ε∞}, or (A1)
holds for some real-valued random variable ξ1.

The theory developed and presented in Sections 4.2 and 4.3 is not rich enough to explain
all cases or, in other words, to determine all possible accumulation points of {P(n), Q(n)},
see Section 5.2.1 for a counter example. By Theorem 4.50 every non-trivial accumulation
point of {P(kn), Q(kn)} fulfils (A1) for some real-valued ξ1. For these accumulation points
Lemma 4.49 explains how to determine the distributions of ξ1 and ξ2, where the latter
one is in general a distribution on (R̄, B̄). The results presented in this section complete
the theory of Sections 4.2 and 4.3 in the sense that we are now able to determine every
accumulation point of {P(n), Q(n)}.
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5. Application to practical detection
models

In this chapter we apply the theoretical results proved in Chapter 4 to some detection mod-
els, among others the ones introduced in Chapter 2. Donoho and Jin [20] suggested to use
the so called phase diagram and detection boundary to illustrate their results concerning
the heterogeneous normal mixture model. In the phase diagram a certain parametrisation
plane (the signal probability εn = εn,i and the signal strength ϑn are parametrised in
some way, see, e.g., (1.2)) is split into two areas by the detection boundary. One of the
areas is the detectable area, in which {P(n), Q(n)} converges weakly to the full informa-
tive experiment or, in other words, in which LLRT can completely separate the null and
the alternative. The other one is the undetectable area, in which {P(n), Q(n)} converges
weakly to the uninformative experiment or, in other words, LLRT cannot successfully
separate the null and the alternative. An example of a phase diagram and a detection
boundary can be found in Chapter 1, see Figure 1.1 and Equation (1.3). Beside deter-
mining the detection boundary we are interested in the question, what happens on the
detection boundary. The answer for this question is already known in the literature for
the heterogeneous and heteroscedastic normal mixtures, see [10, 32, 41]. In Section 5.1
we present the known results concerning the detection boundary and the asymptotic be-
haviour of LLRn on it for these normal mixtures by using our notation. Moreover, we
give the proof for the dense case, which was omitted in [10]. Note that we introduced
the terms sparse case and dense case in Notation 2.5. In Section 5.2 and Section 5.3 we
present results about the exponential families and the h-model introduced in Sections 2.3
and 2.4, respectively. For both we first prove a general result about trivial and non-trivial
accumulation points of {P(n), Q(n)} for the case, that εn,i may depend on i. Using this
result we can determine the detection boundary for the case εn,i = εn and, moreover,
we discuss the asymptotic behaviour of {P(n), Q(n)} on it. One interesting observation is
that the limits on the boundary are non-trivial but not always Gaussian. Note that in
the literature it was already discovered that there are non-trivial and non-Gaussian limit
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experiments of {P(n), Q(n)}, see [10, 32, 41] for the normal mixtures and see also [9] for
a closely related detection problem. The results of Sections 5.1 to 5.3 are illustrated by
phase diagrams, see Figures 5.1 to 5.3. At the end of this chapter we apply our results to
the general class of exponential families suggested by Cai and Wu [12]. By doing this we
slightly extend their results, see Section 5.4.

5.1. Heterogeneous and heteroscedastic normal mixtures

Ingster [32], and Donoho and Jin [20] and Jin [41], determined the detection boundary
and discussed the asymptotic behaviour of LLRn on it for the (sparse) heterogeneous
normal mixture model, i.e., the model discussed in Example 2.6 with τ = 1. Cai et al.
[10] extended the results to the (sparse) heteroscedastic normal mixture model, i.e., to the
case of general τ > 0. We want to emphasise that they presented results not only for the
sparse case but also for the dense case. However, they omitted the proofs for the results
concerning the dense case. Moreover, they only mentioned that there are non-trivial limits
on the boundary in the dense case without giving more details about them. In this section
we present the above-mentioned results and fill the gap for the dense case. We reformulate
the results of Cai et al. [10] in terms of binary experiments. We want to mention that
these results can also be shown by using our techniques, see for example Appendix A.5.
The results are illustrated by the phase diagrams for the dense and the sparse case, see
Figure 5.1.

Theorem 5.1 (Detection boundary for the sparse case, see [10]). Suppose that
the heteroscedastic normal mixture model, see Example 2.6, is given, where

εn := n−β and ϑn :=
√

2r log n for all n ∈ N and some β ∈
(1

2
, 1
)

, r ∈ (0, 1).

Moreover, let the detection boundary be defined by

ρ∗(β, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 − τ2)
(
β − 1

2

)
if 1

2 < β ≤ 1 − τ2

4 , τ ∈ (0,
√

2).(
1 − τ

√
1 − β

)2 if 1 − τ2

4 < β < 1, τ ∈ (0,
√

2).

0 if 1
2 < β ≤ 1 − 1

τ2 , τ ≥ √
2.(

1 − τ
√

1 − β
)2 if 1 − 1

τ2 < β < 1, τ ≥ √
2.

(5.1)

(i) If r < ρ∗(β, τ) then {P(n), Q(n)} converges weakly to {ε0, ε0}.

(ii) If r > ρ∗(β, τ) then {P(n), Q(n)} converges weakly to {ε−∞, ε∞}.
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(iii) Assume that β ∈
(

1
2 , 1 − τ2

4

]
, τ2 < 2 and r = ρ∗(β, τ). Then (A normal) holds for

σ2 :=

⎧⎪⎨⎪⎩
(
τ
√

2 − τ2
)−1

if β < 1 − τ2

4 .

1
2

(
τ
√

2 − τ2
)−1

if β = 1 − τ2

4 .

(iv) Suppose

(β, τ) ∈
(

1 − τ2

4
, 1
)

×
(
0,

√
2
)

∪
(

1 − 1
τ2 , 1
)

×
[√

2, ∞
)

(5.2)

and r = ρ∗(β, τ). Moreover, replace εn = n−β by

εn := n−β (log(n))
1
2

(
1− 1

τ

√
1−β
)

for all n ∈ N. (5.3)

Then (A) holds for real-valued, infinitely divisible random variables ξ1 and ξ2. Fur-
thermore, the Lévy characteristic of ξj is given by (γj , 0, ηj), j ∈ {1, 2}, where the
Lévy measures are given by their λλ-densities

dη1
dλλ

(x) =
1
c1

(ex − 1)c2−3 ex and dη2
dλλ

(x) = ex dη1
dλλ

(x), x > 0,

with c1 := 2
√

πτ c3
(
τ −√1 − β

)
, c2 :=

τ − 2
√

1 − β

τ − √
1 − β

, c3 :=
√

1 − β

τ − √
1 − β

,

and where the constants γ1, γ2 are given by (4.16) with σ2 = 0.

Remark 5.2. (i) If we do not add the logarithmic factor in the definition of εn, see (5.3),
then {P(n), Q(n)} converges weakly to {ε0, ε0} under the assumptions of (iv).

(ii) By carefully reading the proof in [10], see in particular the top of page 658, there must
be an additional factor 1

2 in the exponent of the logarithmic term in their definition
of εn. The definition of εn in (5.3) is the corrected version. �

Proof. The statements of (i)-(iii) were proved by Cai et al. [10], see their Theorems 3 to
5. It remains to prove the statement of (iv). Let ϕξj

, j ∈ {1, 2}, be the characteristic
function of ξj and ψξj

be the function in the exponent, i.e.,

ϕξj
= exp

(
ψξj

)
.

By carefully completing the omitted parts of the proofs of Theorems 5 and 6 in [10] it is
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5. Application to practical detection models

sufficient to show that for all t ∈ R

ψξ1(t) = ψ0
β,τ (t) and ψξ2(t) = ψ0

β,τ (t) + ψ1
β,τ (t), (5.4)

where ψ0
β,τ (t) :=

1
c1

∫ ∞

−∞

[
exp (it log [1 + ey]) − 1 − itey

]
e(c2−2)y dy

and ψ1
β,τ (t) :=

1
c1

∫ ∞

−∞

[
exp (it log [1 + ey]) − 1

]
e(c2−1)y dy.

By using the substitution x = log [1 + ey] and considering (4.16) it follows that for all
t ∈ R

ψ0
β,τ (t) =

1
c1

∫
(0,∞)

(
eixt − 1 − it (ex − 1)

)
(ex − 1)(c2−3) ex dx

=
∫

(0,∞)

(
eixt − 1 − ixt

1 + x2 +
ixt

1 + x2 − it (ex − 1)
) dη1

dλλ
(x) dλλ(x)

= iγ1t +
∫

(0,∞)

(
eixt − 1 − ixt

1 + x2

) dη1
dλλ

(x) dλλ(x)

= ψξ1(t).

Analogously, the second equation in (5.4) can be proved. �

Theorem 5.3 (Detection boundary for the dense case, see [10]). Suppose that
the heteroscedastic normal mixture model, see Example 2.6, is given, where

εn = n−β and ϑn := n−r for all n ∈ N and some β ∈
(

0,
1
2

)
, r ∈
(

0,
1
2

)
.

Moreover, let the detection boundary be defined by

ρ∗
dense(β, τ) : =

⎧⎪⎨⎪⎩∞ if τ �= 1.

1
2 − β if τ = 1.

(5.5)

(i) If r > ρ∗
dense(β, τ) then {P(n), Q(n)} converges weakly to {ε0, ε0}.

(ii) If r < ρ∗
dense(β, τ) then {P(n), Q(n)} converges weakly to {ε−∞, ε∞}.

(iii) If r = ρ∗
dense(β, τ) then (A normal) holds for {kn : n ∈ N} = N and σ2 = 1.

Remark 5.4. The statements of (i) and (ii) are equivalent to the ones in Theorems 2.4 and
2.5 in [10]. Furthermore, Cai et al. [10] mentioned that there are non-trivial accumulation
points of {P(n), Q(n)} in the dense case but they did not present any details about these
points. The statement of (iii) fills this gap. �
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5.1. Heterogeneous and heteroscedastic normal mixtures

Figure 5.1.: Detection boundaries for the sparse (left) and the dense (right) heteroscedas-
tic normal mixture model. Left: The function β �→ ρ∗(β, τ), see (5.1), is
plotted for τ ∈ {0.4, 0.8, 1, 1.2,

√
2, 2, 4}. If r > ρ∗(β, τ) the limit experiment

of {P(n), Q(n)} is {ε−∞, ε∞} (Detectable). If r < ρ∗(β, τ) it is {ε0, ε0}. If
r = ρ∗(β, τ) it is Gaussian on the linear part (solid) and non-Gaussian on
the quadratic part (dashed). Right: β �→ ρ∗

dense(β, τ), see (5.5), is plotted for
τ = 1. If r > ρ∗

dense(β, 1) the limit experiment is {ε0, ε0} (Undetectable). If
r < ρ∗

dense(β, 1) it is {ε−∞, ε∞} (Detectable). If r = ρ∗
dense(β, 1) it is Gaussian.

Proof. (i) follows immediately from Remark 4.1(i) by Theorem 8.8, which we will show
in Part II, because if any test can completely separate the null and the alternative then,
clearly, LLRT can do so. Hence, we only need to discuss the case τ = 1. In Section 5.2.1 we
discuss the dense case for exponential family models including the heterogeneous normal
mixture model, i.e., the case τ = 1. We can deduce (i)-(iii) for τ = 1 immediately from
Corollary 5.13, which we prove there. �
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5. Application to practical detection models

5.2. Exponential families

5.2.1. Sparse case

In this section we discuss the behaviour of LLRn for the model introduced in Assump-
tion 2.16. First, we present and prove a result for the general case that the signal prob-
ability may depend on i. After that we discuss the case εn,i = εn in the context of the
detection boundary. As in the previous section we show that the limits on the detection
boundary are non-trivial. In particular, we obtain Gaussian but also non-Gaussion limits
on the boundary. The results are illustrated by a phase diagram, which can be found in
the next section, see Figure 5.2 on p. 79. At the end of this section we discuss the specific
models introduced in Examples 2.8 to 2.10.

Theorem 5.5. Let p ≥ 0 and L : (0, ∞) → (0, ∞) be a slowly varying function at infinity.
If p = 0 we assume additionally that L(ϑ) converges to 0 as ϑ → ∞. Suppose that
Assumption 2.16 holds and that for some subsequence {kn : n ∈ N} of N

C(ϑ)−1 = ω(ϑ) ∼asy ϑ−p L(ϑ) as ϑ → ∞ (5.6)

and
kn∑
i=1

ε2
kn,i

ϑp
kn

L (ϑkn)
→ M ∈ [0, ∞] as n → ∞. (5.7)

(i) If M = 0 then {P(kn), Q(kn)} converges weakly to {ε0, ε0}.

(ii) If M ∈ (0, ∞) and

εkn:kn

ϑp
kn

L (ϑkn)
→ 0 as n → ∞ (5.8)

then (A normal) is fulfilled for σ2 := M2−p.

(iii) If M = ∞ and (5.8) hold then {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞}.

Remark 5.6. (i) By Lemma 2.15 and the fact, that L(ϑ) converges to 0 as ϑ → ∞ if
p = 0, we have

ϑp
kn

L(ϑkn)
→ ∞ as n → ∞.

Hence, if (5.7) holds for some M ∈ [0, ∞) then

kn∑
i=1

ε2
kn,i → 0 as n → ∞. (5.9)
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5.2. Exponential families

(ii) If

lim
n→∞

kn,1∑
i=1

ε2
kn,1,i > 0

for some subsequence {kn,1 : n ∈ N} of {kn : n ∈ N} then by Remark 4.5(ii)
{P(kn,1), Q(kn,1)} converges weakly to {ε−∞, ε∞}.

(iii) If ω(ϑ) is unknown for large ϑ then Theorem 2.19 can be applied to determine the
asymptotic behaviour of it. If, e.g., (2.14) and (2.15) hold for some slowly varying
function L̃, p ≥ 0 and c, ν > 0 then (5.6) holds for the same p and L given by

L(ϑ) := c−pΓ(p + 1)L̃(ϑ
1
ν ) for all ϑ > 0.

(iv) If M ∈ (0, ∞) then (5.8) is equivalent to

εkn:kn∑kn
i=1 ε2

kn,i

→ 0 as n → ∞.

(v) Let εn,i := εn := n−β+o(1) for some β ∈ (1
2 , 1) and all 1 ≤ i ≤ n ∈ N. Then

εkn:kn∑kn
i=1 ε2

kn,i

= kβ−1+o(1)
n = o(1) as n → ∞.

Hence, we obtain (5.8) from (iv). �

Proof of Theorem 5.5. First, observe that due to Remark 5.6(i) and (ii) we can assume
(5.9) without loss of generality. We deduce from (2.8) of Assumption 2.11, Assump-
tion 2.16(iii), (5.6) and (5.8) that under (ii) and under (iii), respectively,

max
1≤i≤kn

{
εkn,i sup

x≥a
fkn,i(x)

}
≤ εkn:knC(ϑkn) ∼asy εkn:kn

ϑp
kn

L (ϑkn)
= o(1)

as n → ∞ . Consequently, by Corollary 4.40, Remark 4.41(i), Lemma 4.42 and Lemma 4.45
it is sufficient for the whole proof of Theorem 5.5 to show that

kn∑
i=1

ε2
kn,i

C(ϑkn)2

C(2ϑkn)
→ M

2p
as n → ∞.

Finally, observe that by (5.6)

C(ϑkn)2

C(2ϑkn)
∼asy

ϑ2p
kn

2pϑp
kn

L (2ϑkn)
L(ϑkn)2 ∼asy

ϑp
kn

2p L(ϑkn)
as n → ∞. �
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5. Application to practical detection models

Now we consider the more specific case that εn,i does not depend on i.

Corollary 5.7. Let p ≥ 0 and L : (0, ∞) → (0, ∞) be a slowly varying function at infinity.
If p = 0 then we assume additionally that L(ϑ) converges to 0 as ϑ → ∞. Suppose that
Assumption 2.16 and (5.6) hold. For some r > 0 and β > 1

2 let

ϑn ∼asy nr as n → ∞ and εn,i := εn := n−β for all 1 ≤ i ≤ n ∈ N.

Define the detection boundary for β by

β#
Exp(r, p) :=

(rp ∧ 1) + 1
2

. (5.10)

(i) If β > β#
Exp(r, p) then {P(n), Q(n)} converges weakly to {ε0, ε0}.

(ii) If β > 1, β = β#
Exp(r, p) and we replace εn = n−β by

εn = n−β
√

L(nr) for all n ∈ N (5.11)

then (A normal) is fulfilled for σ2 := 2−p.

(iii) Suppose that L is a constant function equal to some constant K > 0. If p > 0, r = 1
p

and β = β#
Exp(1

p , p) then (A) holds for some ξ1 and ξ2. Moreover, the Lévy char-
acteristic of ξj, j ∈ {1, 2}, equals (γj , 0, ηj), where the Lévy measure ηj is uniquely
determined by its λλ-density

dηj

dλλ
(x) =

K

Γ(p)
ejx

ex − 1

(
− log [(ex − 1)K]

)p−1
1(0,log(K−1+1))(x), x ∈ R \ {0},

and γj is given by (4.16) with σ2 = 0.

(iv) Suppose p > 0, r > 1
p and β = β#

Exp(1
p , r). Then (B1) holds for η1 ≡ 0, (B3) is

fulfilled for σ2 = 0 and

lim
n→∞ nεnμn

(
εnfn > y

)
= 1 for all y > 0.

(v) If β < β#
Exp(r, p) then {P(n), Q(n)} converges weakly to {ε−∞, ε∞}.

Remark 5.8. (i) Suppose that the assumptions of (iv) hold. By Lemma A.23 there ex-
ist a subsequence {kn : n ∈ N} ⊆ N and a binary experiment {P, Q} such that
{P(kn), Q(kn)} converges weakly to {P, Q} as n → ∞ . But we can conclude from
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5.2. Exponential families

Theorem 4.19 and Corollary 4.38 that {P, Q} is neither full informative nor uninfor-
mative nor fulfilling Condition (A). In Section 4.5 we briefly discussed this issue in
general. Applying Lemma 4.49 yields (A1) for ξ1 : (Ω, A, P) → (R, B) with Lévy
characteristic (−1, 0, 0), i.e., ξ1 = −1 (P-a.s.). Finally, by Lemma 4.49

{
P(n), Q(n)

}
converges weakly to

{
ε−1 , e−1ε−1 + (1 − e−1)ε∞

}
as n → ∞. A similar result can be proven, e.g., for the sparse heteroscedastic normal
mixture model discussed in Theorem 5.1 if r > 1 and β = 1.

(ii) The above-mentioned result can also be formulated by using the detection boundary
ρ∗

Exp,s for the parameter r given by

ρ∗
Exp,s(β, p) :=

⎧⎪⎨⎪⎩
1
p(2β − 1) if p > 0 and β ∈

(
1
2 , 1
]

.

∞ if p = 0 or β > 1.
(5.12)

�

Proof. First, we prove (i), (ii) and (v) by applying Theorem 5.5. Second, we give the proof
of (iii). Finally, we verify (iv).
Observe that by Remark 4.5(i) {P(n), Q(n)} converges weakly to {ε0, ε0} for all β > 1.
Moreover, if β ≤ 1 and β#

Exp(r, p) < β then by Lemma 2.15

nε2
n

ϑp
n

L(ϑn)
∼asy n1−2β+pr+o(1) = n2β#

Exp(r,p)−2β+o(1) → 0 as n → ∞.

Consequently, applying Theorem 5.5(i) proves (i). Under (ii) we have

nε2
n

ϑp
n

L(ϑn)
→ 1 as n → ∞. (5.13)

From Lemma 2.15 and Remark 5.6(v) we obtain (5.8). Combining this, (5.13), Theo-
rem 5.5(ii) and Remark 5.6(v) yields (ii).
Now suppose β < β#

Exp(r, p). Hence, β < 1. By Lemma 2.15

nε2
n

ϑp
n

L(ϑn)
∼asy n1−2β+pr+o(1) ≥ n2β#

Exp(r,p)−2β+o(1) → ∞ as n → ∞.

Thus, we can conclude (v) from Theorem 5.5(iii) and Remark 5.6(v).
Now, consider p > 0, r = 1

p , β = β#
Exp(r, p) and L ≡ K. Note that β = 1. By Theorem 4.19
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5. Application to practical detection models

it is sufficient for (iii) to show (B3) for σ2 := 0 and

lim
n→∞ nεnμn

(
x ≥ a : εnfn(x) > y

)
= (η2 − η1)

(
log(1 + y), ∞

)
(5.14)

for all y ∈ (0, ∞) \ {K−1}, where by substituting e−z = [ex − 1]K

(η2 − η1)
(
log(1 + y), ∞

)
=

1
Γ(p)

∫
(log(1+y),∞)

K
e2x − ex

(ex − 1)

(
− log [(ex − 1)K]

)p−1
1(0,log( 1

K
+1))(x) dx

=
1

Γ(p)

∫
(log(1+y),log(K−1+1))

(
− log [(ex − 1)K]

)p−1
Kex dx 1(0,K−1)(y)

=
1

Γ(p)

∫ − log(yK)

0
zp−1e−z dz 1(0,K−1)(y).

Define for all y ∈ (0, ∞) \ {K−1} and every n ∈ N

An,y := {x ≥ a : εnfn(x) ≤ y} =
{

x ≥ a : n−1C(ϑn) exp [−ϑnh(x)] ≤ y
}

.

By (5.6)

n−1C(ϑn) ∼asy n−1+rpK−1 = K−1 as n → ∞. (5.15)

Thus, there exists a sequence (αn)n∈N with limn→∞ αn = 0 such that

An,y =
{

x ≥ a : ϑnh(x) ≥ − [1 + αn] log (yK)
}

for all y ∈ (0, ∞) \ {K−1} and every n ∈ N. Clearly, for all fixed y ∈ (0, K−1)

Gn,y := − [1 + αn] log (yK) > 0

if n ∈ N is sufficiently large. Moreover, for all fixed y ∈ (K−1, ∞)

Gn,y := − [1 + αn] log (yK) < 0 and An,y = [a, ∞) (5.16)

if n ∈ N is sufficiently large. Note that from Theorem 2.19(i) we obtain

Qh
0 [0, t] ∼asy tp K

pΓ(p)
as t ↘ 0,

where Γ is defined in (2.11). In other words, (2.13) holds for p and the slowly varying
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5.2. Exponential families

function L̃ ≡ K. In the following we apply Lemma 2.21 with M = −2 log(yK),

ψn(x) := e−2x1[0,Gn,y)(x), x ≥ 0, n ∈ N, and ψ0(x) := e−2x1[0,− log(yK))(x), x ≥ 0,

where y ∈ (0, K−1). Note that in this case the set E from Lemma 2.21 equals {− log(yK)}.
Hence, by Lemma 2.21, (5.6) and (5.15) we have for all y ∈ (0, K−1)

nε2
nIEQ0

(
f2

n1An,y

)
= nε2

nC(ϑn)2
∫

exp
(
−2ϑnh(x)

)
1[Gn,y ,∞) (ϑnh(x)) dQ0(x)

∼asy nK−2
[
ω(2ϑn) −

∫
ψn (ϑnh(x)) dQ0(x)

]
= nK−2

[
2−pn−rpK(1 + o(1)) − n−rpKΓ(p)−1

∫ − log(yK)

0
e−2xxp−1 dx (1 + o(1))

]

∼asy K−1Γ(p)−12−p

[
Γ(p) −

∫ − 1
2 log(yK)

0
exp (−z) zp−1 dz

]

= K−1Γ(p)−12−p
∫ ∞

− 1
2 log(yK)

e−z zp−1 dz as n → ∞. (5.17)

Letting y ↘ 0 and considering nε2
n = o(1) yield (B3) for σ2 = 0. From (5.16) we obtain

(5.14) for all y > K−1. Analogously to (5.17) we have for every y ∈ (0, K−1)

nεnμn

(
Ac

n,y

)
∼asy nK−1

∫
exp (−ϑnh(x)) 1[0,Gn,y) (ϑnh(x)) dQ0(x)

∼asy nK−1 n−rpKΓ(p)−1
∫

exp (−x) 1[0,− log(yK))(x) xp−1 dx

∼asy Γ(p)−1
∫ − log(yK)

0
exp (−x) xp−1 dx as n → ∞.

Now we verify (iv). Note that β = 1. By Lemma 2.15 we have for all y > 0

μn

(
εnfn ≤ y

)
=
∫

fn1{εnfn≤y} dQ0

≤ ε
− 1

2
n y

1
2

∫ √
C(ϑn) exp

(
−1

2
ϑnh

)
dQ0

= ε
− 1

2
n y

1
2

√
C(ϑn) ω

(1
2

ϑn

)
∼asy y

1
2 n

1
2 + 1

2 rp−rp+o(1) = o(1) as n → ∞.

Thus, for every y > 0

nεnμn

(
εnfn > y

)
∼asy nεn = 1 as n → ∞.

75



5. Application to practical detection models

Moreover, for every y > 0

nε2
n

∫
f2

n1{εnfn≤y} dQ0 ≤ y

∫
fn1{εnfn≤y} dQ0 = o(1) as n → ∞.

Note that by Lemma 2.15, Theorem 2.19(i) and (5.6)

Q0[0, t] = tp+o(1) as t ↘ 0

and
1

ϑn
log
(

C(ϑn)
n

)
= n−r+o(1) log

(
nrp−1+o(1)

)
= n−r+o(1) as n → ∞.

Finally, we have for all y > 0

nPn

(
εnfn,i ≥ y

)
= nQ0

( 1
n

C (ϑn) exp [−ϑnh] ≥ y

)
= nQh

0

[
0 , − 1

ϑn
log
(

n

C(ϑn)

)]
= n1−rp+o(1) → 0 as n → ∞. �

In the following we have a look at the specific models introduced in Examples 2.8 to 2.10,
which fulfil Assumption 2.16 obviously. Before we present the result, we want to make the
following remark to show that there is a strong connection between these examples.

Remark 5.9. Let {Pn,0,G, μn,ϑn,G}, {Pn,0,F , μn,ϑn,F } and {Pn,0,E , μn,ϑn,E} be the binary
experiments belonging to Examples 2.8 to 2.10. Let α > 0 be the parameter from Exam-
ple 2.9. Moreover, define T1 : R → (0, ∞) and T2 : (0, ∞) → (0, ∞) by

T1(x) := exp(−x) for all x ∈ R and T2(y) := y−α for all y ∈ (0, ∞).

Using the transformation formula for densities with the transformations T1 and T2 yields

{P T1
n,0,G , μT1

n,log(ϑn+1),G} = {Pn,0,E , μn,ϑn,E} and {P T2
n,0,F , μT2

n,ϑn,F } = {Pn,0,E , μn,ϑα
n−1,E},

By Remark A.17(ii) and (iii) it is sufficient for later discussion to have a look at one of
these models in detail, because the results can be transferred to the other ones. �

Corollary 5.10. Let r > 0 and one of the following models (a)-(c) be given:

(a) (Gumbel) the model introduced in Example 2.8 with ϑn ∼asy r log (n) as n → ∞.

(b) (Fréchet) the model introduced in Example 2.9 with ϑn ∼asy n
r
α as n → ∞.

(c) (Exponential) the model introduced in Example 2.10 with ϑn ∼asy nr as n → ∞.
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5.2. Exponential families

Let εn := n−β for all n ∈ N and some β > 1
2 . Define

β#
GF E(r) :=

(r ∧ 1) + 1
2

.

(i) If β > β#
GF E(r) then {P(n), Q(n)} converges weakly to {ε0, ε0}.

(ii) If β < 1 and β = β#
GF E(r) then (A normal) is fulfilled for σ2 := 1

2 .

(iii) If β = 1 and r = 1 then (A) holds for real-valued random variables ξ1 and ξ2.
Moreover, the Lévy characteristic of ξj, j ∈ {1, 2}, is equal to (γj , 0, ηj), where the
Lévy measure ηj is uniquely determined by its λλ-density

dηj

dλλ
(x) =

ejx

ex − 1
1(0,log(2))(x), x ∈ R \ {0},

and γj is given by (4.16) with σ2 = 0.

(iv) If β < β#
GF E(r) then {P(n), Q(n)} converges weakly to {ε−∞, ε∞}.

Proof. By Remark 5.9 we can assume without loss of generality that the Exponential
model is given. Note that in this case the assumptions of Corollary 5.7 are fulfilled with
L ≡ 1 and p = 1. �

5.2.2. Dense case

Here, we focus on the dense case, i.e., ϑn → 0 as n → ∞. To be more specific, we suppose
Assumption 2.23. The main result of this section is that the asymptotic behaviour of

Bn :=
n∑

i=1
ε2

n,iϑ
2
n , n ∈ N, (5.18)

characterises the asymptotic behaviour of {P(n), Q(n)} uniquely and independently of the
special shape of h. We obtain a dichotomy: every accumulation point of {P(n), Q(n)} is
either equivalent to the full informative experiment or a Gaussian experiment. Note that
the uninformative experiment is also a Gaussian experiment, see Remark 4.26(ii).

The section is structured as follows. At the beginning we present the main results for
the general model, where the signal probability εn,i can depend on i. After that we
determine the detection boundary for the case that εn,i = εn for all 1 ≤ i ≤ n. Note that
the corresponding phase diagram is visualised in Figure 5.2. The remaining part of the
section consists of the proof of the main result including two technical lemmas.
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5. Application to practical detection models

Theorem 5.11. Suppose Assumption 2.23 and VarQ0 (h) ∈ (0, ∞).

(i) We have

Bkn :=
kn∑
i=1

ε2
kn,iϑ

2
kn

→ K ∈ [0, ∞) as n → ∞ (5.19)

for some subsequence {kn : n ∈ N} of N if and only if (A normal) holds for

σ2 := KVarQ0 (h) . (5.20)

Furthermore, (5.19) holds for K = 0 and a subsequence {kn : n ∈ N} of N if and
only if {P(kn), Q(kn)} converges weakly to {ε0, ε0}.

(ii) For some subsequence {kn : n ∈ N} of N we have

Bkn :=
kn∑
i=1

ε2
kn,iϑ

2
kn

→ ∞ as n → ∞ (5.21)

if and only if {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞}.

Remark 5.12. (i) The assumption VarQ0 (h) > 0 is not an actual restriction because
otherwise h ≡ c ∈ R (Q0-a.s.) and thus Q0 = Qϑ for all ϑ ∈ Θ.

(ii) We can conclude as an immediate consequence of Theorem 5.11 that every non-trivial
accumulation point of {P(n), Q(n)} is already Gaussian. This can easily be shown,
e.g., by a proof by contradiction. �

Corollary 5.13. Suppose Assumption 2.23 and VarQ0 (h) > 0. Moreover, let

εn,i := εn ∼asy n−β and ϑn ∼asy Kn−r as n → ∞

for some K, r > 0 and some β ∈ (0, 1
2). Define the detection boundary for r by

ρ∗
Exp,d(β) =

1
2

− β. (5.22)

(i) If r < ρ∗
Exp,d(β) then {P(n), Q(n)} converges weakly to {ε0, ε0}.

(ii) If r = ρ∗
Exp,d(β) then (A normal) is fulfilled for σ2 given by (5.20).

(iii) If r > ρ∗
Exp,d(β) then {P(n), Q(n)} converges weakly to {ε−∞, ε∞}.
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5.2. Exponential families

Figure 5.2.: Detection boundaries for the sparse (left) and the dense (right) exponential
family mixture model. Left: β �→ ρ∗

Exp,s(β, p), see (5.12), is plotted for
p ∈ {0.6, 0.8, 1, 1.5, 3}. If r > ρ∗

Exp,s(β, p) and β < 1 the limit experiment
of {P(n), Q(n)} is {ε−∞, ε∞} (Detectable). If r < ρ∗

Exp,s(β, p) it is {ε0, ε0} (Un-
detectable). If β < 1 and r = ρ∗

Exp,s(β, p) it is Gaussian (solid line). If β = 1,
r = ρ∗

Exp,s(β, p) and L ≡ K ∈ R it is non-Gaussian (solid circle). Right:
β �→ ρ∗

Exp,d(β), see (5.22), is plotted. If r > ρ∗
Exp,d(β) the limit experiment

is {ε0, ε0} (Undetectable). If r < ρ∗
Exp,d(β) it is {ε−∞, ε∞} (Detectable). If

r = ρ∗
Exp,d(β) it is Gaussian.

In regard to Corollary 4.40, Lemmas 4.42 and 4.45 the asymptotic behaviour of

C (ϑkn)2

C (2ϑkn)
− 1 (5.23)

is of great interest to prove the previous results. We want to mention that in general (4.63)
does not hold under Assumption 2.23 and, thus, Corollary 4.40 is not applicable. But we
can fix this issue. In the following lemma we determine the convergence rate of (5.23).

Lemma 5.14. Under the assumptions of Theorem 5.11

C (ϑkn)2

C (2ϑkn)
− 1 ∼asy ϑ2

kn
VarQ0 (h) as n → ∞.

Proof. By Taylor’s formula and Remark 2.25

ω(2t) = ω(0) + (2t − 0) ω(1)(0) +
(2t − 0)2

2
ω(2)(0) + o

(
t2
)

= 1 − 2t IEQ0 (h) + 2t2 IEQ0

(
h2
)

+ o
(
t2
)

as t → 0.
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5. Application to practical detection models

Moreover,

ω(t)2 = ω(0)2 + t 2 ω(0) ω(1)(0) +
t2

2
2
[
ω(1)(0)2 + ω(0) ω(2)(0)

]
+ o
(
t2
)

= 1 − 2t IEQ0 (h) + t2
[
IEQ0 (h)2 + IEQ0

(
h2
)]

+ o
(
t2
)

= ω(2t) − t2 VarQ0 (h) + o
(
t2
)

as t → 0. (5.24)

Note that ω is continuous at 0, see Lemma 2.24. Combining this with (5.24) shows

C (ϑkn)2

C (2ϑkn)
− 1 = ω (ϑkn)−2

[
ω (2ϑkn) − ω (ϑkn)2

]
= ω (ϑkn)−2

[
ϑ2

kn
VarQ0 (h) + o

(
ϑ2

kn

)]
∼asy ϑ2

kn
VarQ0 (h) as n → ∞. �

We also need the following technical lemma in order to prove Theorem 5.11.

Lemma 5.15. Under the assumptions of Theorem 5.11 we have for every λ, y > 0

max
1≤i≤kn

Q2ϑkn
(εkn,i C (ϑkn) exp (−ϑknh) > y) = o

(
ϑλ

kn

)
as n → ∞. (5.25)

Proof. Obviously, it is sufficient to show (5.25) for all λ > 0 of the shape λ = 2m − 1,
m ∈ N. Let y > 0 and m ∈ N be fixed. We deduce from the continuity of the Laplace
transform ω at 0, see Lemma 2.24, and εkn:kn = o(1), see (2.1), that

εkn:kn C (ϑkn) =
εkn:kn

ω (ϑkn)
= o(1) as n → ∞

and εkn:kn C (ϑkn) ≤ e−2 y for all sufficiently large n ∈ N. (5.26)

Clearly, ϑkn ∈ (−ε, ε) for all sufficiently large n ∈ N. By Lemma 2.24 and (5.26)

max
1≤i≤kn

Q2ϑkn
(εkn,i C (ϑkn) exp (−ϑknh) > y)

≤ C (2ϑkn)
∫

{exp(−ϑkn h−2)>1}
exp (−2ϑknh) dQ0

≤ ω (2ϑkn)−1
∫

{ −ϑkn h > 2}

(
−ϑknh

2

)λ+1
exp (−2ϑknh) dQ0

=
ϑ2m

kn

ω (2ϑkn) 22m

∫
{ −ϑkn h > 2}

h2m exp (−2ϑknh) dQ0

≤ ϑ2m
kn

ω(2m) (2ϑkn)
ω (2ϑkn) 22m

∼asy ϑ2m
kn

2−2m ω(2m) (0) = o
(
ϑλ

kn

)
as n → ∞. �
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5.2. Exponential families

Proof of Theorem 5.11. Regarding Corollaries 4.25 and 4.38 we first determine the asymp-
totic behaviour of the quantities from (B2c normal) and (B3 normal) (from (D1) and
(D3), respectively). Let {kn : n ∈ N} be some subsequence of N. From the continuity of
ω at 0, see Lemma 2.24, Lemmas 5.14 and 5.15 we obtain for all y > 0

kn∑
i=1

ε2
kn,i

[∫
{εkn,ifkn,i≤y}

f2
kn,i dQ0 − 1

]

=
kn∑
i=1

ε2
kn,i

[∫
{εkn,ifkn,i≤y}

C (ϑkn)2 exp (−2ϑknh) dQ0 − 1
]

=
kn∑
i=1

ε2
kn,i

[
C (ϑkn)2

C (2ϑkn)
Q2ϑkn

(
εkn,i C (ϑkn) exp (−ϑknh) ≤ y

)
− 1
]

=
kn∑
i=1

ε2
kn,i

[
C (ϑkn)2

C (2ϑkn)
− 1 − ω (2ϑkn)

ω (ϑkn)2 Q2ϑkn

(
εkn,i C (ϑkn) exp (−ϑknh) > y

)]

=
[

C (ϑkn)2

C (2ϑkn)
− 1 + o(ϑ2

kn
)
]

kn∑
i=1

ε2
kn,i ∼asy VarQ0 (h) Bkn as n → ∞. (5.27)

From Lemmas 2.24 and 5.15 we can conclude that for all y > 0

kn∑
i=1

∫
{εkn,ifkn,i>y}

εkn,ifkn,i dQ0 ≤
kn∑
i=1

∫
{εkn,ifkn,i>y}

ε2
kn,if

2
kn,i

y
dQ0

= y−1
kn∑
i=1

ε2
kn,i

C (ϑkn)2

C (2ϑkn)
Q2ϑkn

(
εkn,i C (ϑkn) exp (−ϑknh) > y

)

≤ y−1

⎡⎣ kn∑
i=1

ε2
kn,i

⎤⎦ ω (2ϑkn)
ω (ϑkn)2 max

1≤i≤kn

{
Q2ϑkn

(
εkn,i C (ϑkn) exp (−ϑknh) > y

)}

= y−1

⎡⎣ kn∑
i=1

ε2
kn,i

⎤⎦ o
(
ϑ2

kn

)
= o (Bkn) as n → ∞. (5.28)

The equivalence in (i) follows immediately from Corollary 4.25, (5.27) and (5.28).
Suppose that (5.21) holds for some subsequence {kn : n ∈ N} of N. Then from (5.27)
we obtain (D1) of Corollary 4.38(iii). Hence, by Corollary 4.38 the binary experiment
{P(kn), Q(kn)} converges weakly to {ε−∞, ε∞}.
Now, suppose that {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞} for some subsequence
{kn : n ∈ N} of N. Contrary to (ii) assume (5.19) for a subsequence {kn,1 : n ∈ N} of
{kn : n ∈ N}. By the equivalence in (i) {P(kn,1), Q(kn,1)} converges weakly to {ε0, ε0} or
a non-trivial Gaussian experiment. This contradicts our assumption that {P(kn), Q(kn)}
converges weakly to {ε−∞, ε∞} and so does {P(kn,1), Q(kn,1)}. �
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5. Application to practical detection models

5.3. The h-Model

In this section we focus on the semi-parametric structure model introduced in Section 2.4,
namely the h-model. We determine the detectable and the undetectable areas, which do
not depend on the special shape of the function h. The behaviour of {P(n), Q(n)} on the
detection boundary is comparable with the one in Section 5.2.1 for the sparse exponential
family model. The limit experiment {P, Q} of {P(n), Q(n)} is non-Gaussian at the endpoint
of the detection boundary and Gaussian on the remaining part of the detection boundary.
In the Gaussian case {P, Q} only depends on c2 and not on the special shape of h. But in
the non-Gaussian case {P, Q} does depend on the special shape of h.
We start by presenting the main results for the general case. After that we determine
the detection boundary using this result for the more specific model that neither εn,i nor
τn,i depends on i. The results are illustrated by a phase diagram, see Figure 5.3. The
remaining part of this section consists of a technical lemma and the proofs.

Theorem 5.16. Suppose Assumption 2.26. Let {kn : n ∈ N} be a subsequence of N,
kn∑
i=1

ε2
kn,i

τkn,i
→ K ∈ [0, ∞] and

kn∑
i=1

ε2
kn,i → 0 as n → ∞. (5.29)

(i) If K = 0 then {P(kn), Q(kn)} converges weakly to {ε0, ε0} as n → ∞.

(ii) If K ∈ (0, ∞) and

lim
n→∞ max

1≤i≤kn

εkn,i

τkn,i
= 0 (5.30)

then (A normal) is fulfilled for σ2 := Kc2.

(iii) If K = ∞ and

lim sup
n→∞

max
1≤i≤kn

εkn,i

τkn,i
< ∞

then {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞} as n → ∞.

(iv) Assume for all n ∈ N that

εkn,1
τkn,1

≤ εkn,2
τkn,2

≤ . . . ≤ εkn,kn

τkn,kn

. (5.31)

Let rn ∈ {1, . . . , kn} for all n ∈ N such that

kn∑
i=rn

εkn,i → ∞ and
rn∑

i=1

ε2
kn,i

τkn,i
→ ∞ as n → ∞. (5.32)

Then {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞} as n → ∞.
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5.3. The h-Model

Remark 5.17. (i) There is no restriction of generality in assuming that (5.31) holds since
the standard form of {P(kn), Q(kn)} and its asymptotic behaviour are not affected by
reordering, see Remark A.17(iii).

(ii) If εkn,i = εkn and τkn,i = τkn do not depend on i then choosing rn = 1
2kn yields that

(5.32) is equivalent to

knεkn =
kn∑
i=1

εkn,i → ∞ and kn
ε2

kn

τkn

=
kn∑
i=1

ε2
kn,i

τkn,i
→ ∞ as n → ∞.

Note that by Remark 4.5(i) "
∑kn

i=1 εkn,i → ∞" is a necessary condition for weak
convergence to {ε−∞, ε∞}. �

Corollary 5.18. Suppose that Assumption 2.26 holds, where we assume additionally that

εn,i = εn := n−β and τn,i = τn := n−r

for some β ∈ (1
2 , 1], r ∈ (0, 1] and all 1 ≤ i ≤ n ∈ N. Define the detection boundary by

β#
h (r) :=

r + 1
2

.

(i) If β > β#
h (r) then {P(n), Q(n)} converges weakly to {ε0, ε0}.

(ii) If β < β#
h (r) then {P(n), Q(n)} converges weakly to {ε−∞, ε∞}.

(iii) If β = β#
h (r) and r < 1 then (A normal) is fulfilled for σ2 := c2.

(iv) Define T : (0, ∞) → (0, ∞) by

T (x) := exp(x) − 1 for all x > 0.

If β = β#
h (1) and r = 1 then (A) holds for some random variables ξ1 and ξ2.

Moreover, the Lévy characteristic of ξj, j ∈ {1, 2}, is equal to (γj , 0, ηj), where the
Lévy measure η1 is uniquely determined by η1(−∞, 0) = 0 and∫

(x,∞)
T dη1 =

∫
(x,∞)

T dP T −1◦ h
0 + 1(0,log 2)(x)

∫
{x}

T dP T −1◦ h
0 (5.33)

for all x > 0, η2 is uniquely determined by its η1-density dη2
dη1

= exp and γj is given
by (4.16) with σ2 = 0.
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5. Application to practical detection models

Figure 5.3.: The detection boundary β �→ ρ∗
h(β), see Remark 5.19(ii), is plotted. If r

exceeds ρ∗
h(β) the limit experiment of {P(n), Q(n)} is {ε−∞, ε∞} (Detectable).

If r < ρ∗
h(β) it is {ε0, ε0} (Undetectable). If r = ρ∗(β) and β < 1 it is Gaussian

(solid line). If r = ρ∗
h(β) and β = 1 it is non-Gaussian (solid box).

Remark 5.19. (i) Suppose that the assumptions of Corollary 5.18(iv) hold. Since T > 0
we deduce from (5.33) that

η1|(log(2),∞) =
(
P T −1◦ h

0
)

|(log(2),∞)
.

Moreover, if

P T −1◦ h
0 ({x}) = λλ

(
u ∈ (0, 1) : h(u) = ex − 1

)
= 0

for all x ∈ (0, log 2) then

η1 = P T −1◦ h
0 .

(ii) Clearly, Corollary 5.18 can also be formulated by using the detection boundary ρ∗
h,

which is plotted in Figure 5.3, for the parameter r given by

ρ∗
h(β) := 2β − 1 for all β ∈

(1
2

, 1
]

. �

We prove Theorem 5.16 and Corollary 5.18 by applying Theorem 4.19, Corollary 4.25 and
Corollary 4.38. For this purpose we need to determine the sums from (B2c) and (B3).
In the following lemma we simplify these sums for the h-model.
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5.3. The h-Model

Lemma 5.20. Suppose Assumption 2.26. Define for all ε ∈ (0, ∞) and 1 ≤ i ≤ n ∈ N

An,i,ε := {u ∈ (0, 1) : εn,ifn,i(u) ≤ ε}

Bn,i,ε :=
{

y ∈ (0, 1) :
εn,i(1 − τn,i)

τn,i
h (y) ≤ ε − εn,i

}
,

Ac
n,i,ε := (0, 1) \ An,i,ε and Bc

n,i,ε := (0, 1) \ Bn,i,ε.

If n ∈ N is sufficiently large we have for all ε > 0 and every 1 ≤ i ≤ n

μn,i

(
Ac

n,i,ε

)
= τn,iλλ

(
Bc

n,i,ε

)
+ (1 − τn,i)

∫
Bc

n,i,ε

h(y) dy. (5.34)

If

lim
n→∞

kn∑
i=1

ε2
kn,i = 0 (5.35)

for some subsequence {kn : n ∈ N} of N then for all ε > 0

kn∑
i=1

ε2
kn,i

∫ 1

0

(
f2

kn,i1Akn,i,ε
− 1
)

dλλ =

⎡⎣ kn∑
i=1

ε2
kn,i

τkn,i

∫
Bkn,i,ε

h2 dλλ

⎤⎦+ o(1) as n → ∞. (5.36)

Proof. Fix ε > 0. By (2.17)-(2.19) of Assumption 2.26

Ac
n,i,ε =

{
u ∈ (0, τn,i) : εn,i + εn,i

1 − τn,i

τn,i
h

(
u

τn,i

)
> ε

}
∪ {u ∈ [τn,i, 1) : εn,i (1 − c1) > ε}

=
{

u ∈ (0, τn,i) : εn,i
1 − τn,i

τn,i
h

(
u

τn,i

)
> ε − εn,i

}
,

An,i,ε =
{

u ∈ (0, τn,i) : εn,i
1 − τn,i

τn,i
h

(
u

τn,i

)
≤ ε − εn,i

}
∪ [τn,i, 1) (5.37)

for all 1 ≤ i ≤ n if n is sufficiently large. By this, (2.18), (2.19) and substituting y = τ−1
n,i u

μn,i

(
Ac

n,i,ε

)
= τn,i

∫
Bc

n,i,ε

fn,i(τn,iy) dy

= τn,iλλ
(
Bc

n,i,ε

)
+ (1 − τn,i)

∫
Bc

n,i,ε

h(y) dy (5.38)

for all 1 ≤ i ≤ n if n ∈ N is sufficiently large.
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By (5.37) and substituting y = τ−1
n,i u

∫ 1

0
f2

n,i1An,i,ε dλλ

=
∫ ⎛⎝ (1 − c1)21An,i,ε∩[τn,i,1)(u) +

[
1 +

1 − τn,i

τn,i
h

(
u

τn,i

)]2
1(0,τn,i)∩An,i,ε

(u)

⎞⎠ du

= (1 − c1)2(1 − τn,i) + τn,iλλ (Bn,i,ε) + 2(1 − τn,i)
∫

Bn,i,ε

h(y) dy +
(1 − τn,i)2

τn,i

∫
Bn,i,ε

h(y)2 dy

= c2
1 − c2

1τn,i + 1 − τn,iλλ
(
Bc

n,i,ε

)
− 2(1 − τn,i)

∫
Bc

n,i,ε

h dλλ +
(1 − τn,i)2

τn,i

∫
Bn,i,ε

h2 dλλ

for all 1 ≤ i ≤ n if n ∈ N is sufficiently large. Combining this and (5.35) yields (5.36). �

Proof of Theorem 5.16. First, we prove (i) and (ii). By Corollary 4.25 and Re-
mark 4.26(iii) it is sufficient to show that for every ε > 0 (B2c normal) and (B3 normal)
are fulfilled for y = y0 = ε and σ2 = 0 or σ2 = c2K, respectively. For this purpose we
apply Lemma 5.20. Let ε > 0 be fixed. By (2.16) and (2.17) of Assumption 2.26

kn∑
i=1

εkn,iτkn,iλλ
(
Bc

kn,i,ε

)
≤

kn∑
i=1

εknτkn,iλλ

(
x ∈ (0, 1) :

2εkn,i

ε τkn,i
h (x) > 1

)

≤ 4
ε2

kn∑
i=1

ε3
kn,i

τkn,i

∫ 1

0
h2 dλλ

≤ 4 c2 εkn:kn

ε2

kn∑
i=1

ε2
kn,i

τkn,i
(5.39)

for all sufficiently large n ∈ N. Similarly, for all sufficiently large n ∈ N

kn∑
i=1

εkn,i(1 − τkn,i)
∫

h 1Bc
kn,i,ε

dλλ

≤
kn∑
i=1

εkn,i

∫
h 1{

x∈(0,1):
εkn,i
τkn,i

h(x)> ε
2

} dλλ

≤ 2
ε

⎡⎣ kn∑
i=1

ε2
kn,i

τkn,i

⎤⎦ ∫ h2 1{
x∈(0,1): max

1≤i≤kn

{
εkn,i
τkn,i

}
h(x)> ε

2

} dλλ. (5.40)

Obviously, from (5.34) of Lemma 5.20 we obtain (B2c normal) under (i). Moreover,
applying additionally Lebesgue’s dominated convergence theorem to (5.40) shows that
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(B2c normal) holds under (ii). By Lebesgue’s Theorem we have under (5.30)

kn∑
i=1

ε2
kn,i

τkn,i

∫
Bkn,i,ε

h2 dλλ ≥
⎡⎣ kn∑

i=1

ε2
kn,i

τkn,i

⎤⎦∫ h2 1{
x∈(0,1): max

1≤i≤kn

{
εkn,i
τkn,i

}
h(x)≤ ε

2

} dλλ

∼asy

kn∑
i=1

ε2
kn,i

τkn,i
c2 (5.41)

as n → ∞. Moreover, note that for all n ∈ N

kn∑
i=1

ε2
kn,i

τkn,i

∫
Bkn,i,ε

h2 dλλ ≤
kn∑
i=1

ε2
kn,i

τkn,i
c2. (5.42)

Combining (5.41), (5.42) and (5.36) of Lemma 5.20 completes the proof of (i) and (ii).
Now we verify (iv). Suppose that the assumptions of (iv) hold. We split the proof into
three cases.

First case: Suppose that

εkn,rn

τkn,rn

→ C ∈ [0, ∞) as n → ∞. (5.43)

By (5.31), (5.36) of Lemma 5.20 and (5.43)

kn∑
i=1

ε2
kn,i

∫ 1

0

(
f2

kn,i1Akn,i,ε
− 1
)

dλλ

≥
rn∑

i=1

ε2
kn,i

τkn,i

∫
h21{

y∈(0,1):
εkn,i(1−τkn,i)

τkn,i
h(y)≤ε−εkn,i

} dλλ + o(1)

≥
[

rn∑
i=1

ε2
kn,i

τkn,i

] ∫
h21{y∈(0,1):(C+1)h(y)≤ 1

2 ε} dλλ + o(1) as n → ∞ (5.44)

for all ε > 0. Note that by Lebesgue’s theorem

lim
n→∞

∫
h2 1{y∈(0,1):h(y)≤n} dλλ =

∫
h2 dλλ = c2 > 0.

Hence, for sufficiently large ε > 0∫
h2 1{y∈(0,1):(C+1)h(y)≤ 1

2 ε} dλλ ≥ 1
2

c2 > 0.

We deduce (D1) from (5.32) and (5.44). Applying Corollary 4.38 yields (iv).
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Second case: Suppose that

εkn,rn

τkn,rn

→ ∞ as n → ∞. (5.45)

Set ε := 1
2 . By Lemma 5.20, (5.31), (5.32) and Lebesgue’s theorem

kn∑
i=1

εkn,iμkn,i

(
Ac

kn,i,ε

)
≥
⎡⎣ kn∑

i=rn

εkn,i

⎤⎦ 1
2

∫{
y∈(0,1):

εkn,rn
τkn,rn

h(y)>1
} h(x) dx

∼asy

kn∑
i=rn

εkn,i
c1
2

−→ ∞ as n → ∞.

Hence, (D2) holds. Applying Corollary 4.38 yields the statement of (iv).

Third case: If neither (5.43) nor (5.45) holds then we use a typical subsequence argument.
Let {kn,1 : n ∈ N} be a subsequence of {kn : n ∈ N}. Then there exists a further
subsequence {kn,2 : n ∈ N} of {kn,1 : n ∈ N} such that either (5.43) or (5.45) holds for it.
Thus, by the first and second case {P(kn,2), Q(kn,2)} converges weakly to the full informative
experiment {ε−∞, ε∞}. Because the subsequence {kn,1 : n ∈ N} was chosen arbitrarily we
can conclude that all accumulation points of {P(kn), Q(kn)} are equal to {ε−∞, ε∞}.

By following the argumentation of the first case discussed above (iii) can be proven, where
rn is replaced by kn for all n ∈ N. The details are left to the reader. �

Remark 5.21. Suppose (5.29) for some K ∈ (0, ∞). It can be concluded from (5.34),
(5.36), (5.39)-(5.42) and subsequence arguments that for every subsequence {kn,1 : n ∈ N}
of {kn : n ∈ N} there exists a further subsequence {kn,2 : n ∈ N} of {kn,1 : n ∈ N} such
that (B’) holds for it. From Theorem 4.19 and Corollary 4.12(i) we deduce that (A) holds
for {kn,2 : n ∈ N} and Q(kn,2) � �P(kn,2). Hence, it is easy to see that (A) holds for all
accumulation points of {P(kn), Q(kn)}, and that Q(kn) � �P(kn). The detailed verification of
the above-mentioned argumentation and statements are left to the reader. �

Proof of Corollary 5.18. Note that

n∑
i=1

ε2
n,i

τn,i
= n1−2β+r and

n∑
i=1

εn,i = n1−β for all n ∈ N.

Regarding Remark 5.17(ii) we deduce (i)-(iii) from Theorem 5.16.
Now suppose that the assumptions of (iv) are fulfilled. By Theorem 4.19 it is sufficient to
verify (B3) and (B2c) for σ2 = 0, η1, η2 and all x > 0.
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First, we show that (B2c) is fulfilled. Fix x > 0. By Lemma 5.20 it is sufficient to
determine the two summands from the right side of (5.34) for ε := T (x) = ex−1 multiplied
by nεn. Because Bn,1,ε ⊆ (0, 1) we have

nεnτnλλ
(
Bc

n,1,ε

)
≤ n

1
n2 · 1 = o(1) as n → ∞.

By (5.33), Lebesgue’s theorem and the transformation formula for image measures

nεn(1 − τn)
∫

Bc
n,1,ε

h(y) dy

=
n − 1

n

∫
h 1{y∈(0,1):[1− 1

n ] h(y)>T (x)− 1
n } dP0

=
n − 1

n

∫
h 1{y∈(0,1):h(y)>T (x)+ ex−2

n−1 } dP0

∼asy

∫
h
[
1{y∈(0,1):h(y)>T (x)} + 1(−1,0) (ex − 2) 1{y∈(0,1):h(y)=T (x)}

]
dP0

=
∫

T ◦ T −1 ◦ h
[
1(x,∞)

(
T −1 ◦ h

)
+ 1(0,log 2)(x) 1{x}

(
T −1 ◦ h

)]
dP0

=
∫

(x,∞)
T dη1 =

∫
(x,∞)

( dη2
dη1

− 1
)

dη1 = (η2 − η1)(x, ∞) as n → ∞.

Consequently, (B2c) follows. Moreover, for every ε > 0 and all n ∈ N

0 ≤ n
ε2

n

τn

∫
Bn,1,ε

h2 dλλ =
∫

{y∈(0,1):(1−n−1)h(y)≤ε−n−1}
h2 dλλ

≤
(

ε − 1
n

)2 n2

(n − 1)2 .

Combining this and (5.36) of Lemma 5.20 yields (B3) with σ2 = 0. �

5.4. Extensions of the results of Cai and Wu

Cai and Wu [12] suggested how to determine the detection boundary for each mem-
ber of a general class of distributions including the heterogeneous and heteroscedastic
normal mixtures. For their proofs they used the Hellinger distance, see Definition and
Lemma A.12(iii), and the simplification of it for product measures, see Lemma A.15. In
contrast to [10, 20], Cai and Wu [12] determined thresholds for the parameter β belong-
ing to εn and not for the parameter r of the signal strength μn, see (5.3) for a possible
parametrisation. Obviously, both approaches are equivalent and can be transferred to
each other, see Remark 5.8(ii) and Remark 5.19(ii). Note that Cai and Wu [12] only
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presented results regarding the sparse case. They explained shortly why the dense case is
more difficult in some sense. It is still an open question how or whether the results and
ideas in [12] can be extended to the dense case.
We noticed that the model given in Corollary 5.7 does not fulfil the assumptions in [12].
But the results of Corollary 5.7 are exactly what we could deduce from Theorem 3 in [12]
if the assumptions of this theorem would be fulfilled for the model. In this section we
present a slight extension of Theorem 3 in [12] that can be applied to the model given in
Corollary 5.7. After this general result we present a simplification of it in the context of
detection boundaries. Afterwards we introduce Theorem 3 of [12] to explain the benefits of
our extension. At the end of this section we present an extension of Theorem 1 in [12] for
the case that the null distribution Pn,i is a standard normal distribution for all 1 ≤ i ≤ n.
Theorem 5.1(i) and (ii), the results concerning heteroscedastic normal mixtures, could be
concluded from their Theorem 1, see [12] for details, and so from our extension of it.
The proof of our extension is presented in the following subsection. It is inspired by the
ones in [12]. But instead of the Hellinger distance as criterion for the trivial limit experi-
ments, we use our results from Section 4.3. Doing this we want to show that our criterion
can compete.

First, we present the assumptions for the model.

Assumption 5.22. (i) Suppose that Assumption 2.1(i) hold with continuous measures
Pn,i and μn,i for all 1 ≤ i ≤ n ∈ N. Moreover, let Tn,i : (Ω, A) → ([0, 1], B[0, 1]) and
T −1

n,i : ((0, 1), B(0, 1)) → (Ω, A) be measurable mappings such that

P
Tn,i

n,i = U(0, 1) (5.46)

and Pn,i

(
ω ∈ Ω : Tn,i(ω) ∈ (0, 1), T −1

n,i (Tn,i(ω)) = ω
)

= 1 (5.47)

for all 1 ≤ i ≤ n ∈ N. Moreover, define for all 1 ≤ i ≤ n ∈ N

ln,i := log (fn,i) .

(ii) Suppose that (i) and Assumption 2.1(ii) hold simultaneously. Moreover, suppose
that Tn,i = Tn,1 and T −1

n,i = T −1
n,1 for all 1 ≤ i ≤ n. Set Tn := Tn,1, T −1

n := T −1
n,1 and

ln := ln,1 for all n ∈ N.

(iii) Suppose that (ii) and Assumption 2.1(iii) hold simultaneously.

Now we present our extension of Theorem 3 in [12].
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5.4. Extensions of the results of Cai and Wu

Theorem 5.23. Suppose Assumption 5.22(i). Define

hn,1,i(s) := ln,i

(
T −1

n,i

(
n−s)) , hn,2,i(s) := ln,i

(
T −1

n,i

(
1 − n−s)) (5.48)

and hn,i(s) := max {hn,1,i(s), hn,2,i(s)} (5.49)

for all 1 ≤ i ≤ n ∈ N and s > 0. Let {kn : n ∈ N} be a subsequence of N and β# ∈ R.

(i) Suppose that for all sufficiently large n ∈ N and some δ > 0

kn∑
i=1

ε2
kn,i ≤ k1−2β#−δ

n (5.50)

and max
1≤i≤kn

{
λλ

(
s ≥ log(2)

log(kn)
: β# − 1

2
≤ hkn,i(s)

log(kn)
− s +

s ∧ 1
2

)}
= 0. (5.51)

Let M ∈ (1, ∞). If for all sufficiently large n ∈ N

max
1≤i≤kn

{
λλ

(
s ≥ M : β# − 1 ≤ hkn,i(s)

log(kn)
−
[
1 − log log(kn)

log(kn)

]
s

)}
= 0 (5.52)

or if lim
n→∞ max

1≤i≤n

{
sup
s≥M

∣∣∣∣hn,i(s)
log(n)

− γ(s)
∣∣∣∣
}

= 0 (5.53)

for some measurable γ : [M, ∞) → R then {P(kn), Q(kn)} converges weakly to {ε0, ε0}.

(ii) If for some δ > 0

lim
n→∞

kn∑
i=1

ε2
kn,i = 0,

kn∑
i=1

εkn,i ≥ k1−β#+δ
n for all n ∈ N (5.54)

and lim inf
n→∞ min

1≤i≤kn

λλ

(
s ≥ log(2)

log(kn)
: β# − 1

2
≤ hkn,i(s)

log(kn)
− s +

s ∧ 1
2

)
> 0 (5.55)

then {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞}.

Remark 5.24. (i) Since Pn,i is a continuous measure (5.46) and (5.47) are always fulfilled
for the distribution function Tn,i = Fn,i and the left-continuous quantile function
T −1

n,i = F −1
n,i , see (2.5). Another possible choice is Tn,i = 1 − Fn,i and T −1

n,i (u) =
F −1

n,i (1−u) for all u ∈ (0, 1). In this section the choices Tn,i = Fn,i and Tn,i = 1−Fn,i

lead to the same results because the conditions of Theorem 5.23 are symmetric. But
in Part II, to be more specific in Section 8.3, we get different results for these two
cases.

(ii) Suppose (5.50) for some β# ≥ 1. By Lemma A.30 we have
∑kn

i=1 εkn = o(1) as
n → ∞. Hence, by Remark 4.5 {P(kn), Q(kn)} converges weakly to {ε0, ε0}. �
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5. Application to practical detection models

An immediate consequence of Theorem 5.23 is given in the following for the case that εn,i

does not depend on i. This result should give the reader an idea how our extension can
be applied to determine, e.g., the detection boundary for the parameter of εn.

Corollary 5.25. Suppose that the assumptions of Theorem 5.23 are fulfilled with

εn,i = εn,1 =: εn := n−β for all n ∈ N and for some β ∈
(1

2
, ∞
)

. (5.56)

Moreover, assume that there exists some β# ∈ R such that for every δ > 0

max
1≤i≤n

{
λλ

(
s ≥ log(2)

log(n)
: β# + δ − 1

2
≤ hn,i(s)

log(n)
− s +

s ∧ 1
2

)}
= 0 (5.57)

if n ∈ N is sufficiently large, and that for every δ > 0

lim inf
n→∞ min

1≤i≤n

{
λλ

(
s ≥ log(2)

log(n)
: β# − δ − 1

2
≤ hn,i(s)

log(n)
− s +

s ∧ 1
2

)}
> 0.

Let M > 1. Additionally, suppose that for every δ > 0

max
1≤i≤n

{
λλ

(
s ≥ M : β# + δ − 1 ≤ hn,i(s)

log(n)
−
[
1 − log log(n)

log(n)

]
s

)}
= 0 (5.58)

if n ∈ N is sufficiently large, or that for some measurable function γ : [M, ∞) → R

lim
n→∞ max

1≤i≤n

{
sup
s≥M

∣∣∣∣hn,i(s)
log(n)

− γ(s)
∣∣∣∣
}

= 0.

(i) If β exceeds β# then {P(n), Q(n)} converges weakly to {ε0, ε0}.

(ii) If β is smaller than β# then {P(n), Q(n)} converges weakly to {ε−∞, ε∞}.

In the following we present Theorem 3 of Cai and Wu [12], which follows immediately
from Corollary 5.25. Note that there is a typographically error in their theorem: Fn and
zn must be the distribution function and the quantile function of Qn and not of Gn.

Corollary 5.26. Suppose Assumption 5.22(iii). Let (εn)n∈N be given by (5.56). Define

hn,1(s) := ln
(
T −1

n

(
n−s)) , hn,2(s) := ln

(
T −1

n

(
1 − n−s)) ,

hn(s) := max {hn,1(s), hn,2(s)}
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5.4. Extensions of the results of Cai and Wu

for all s > 0 and for all n ∈ N. Assume that

lim
n→∞ sup

s∈
[ log(2)

log(n) ,∞
)
∣∣∣∣ hn(s)
log(n)

− γ(s)
∣∣∣∣ = 0

for some measurable γ : (0, ∞) → R and define

β# :=
1
2

+ ess sup
s>0

{
γ(s) − s +

s ∧ 1
2

}
.

Suppose β# ∈ R.

(i) If β exceeds β# then {P(n), Q(n)} converges weakly to {ε0, ε0}.

(ii) If β is smaller than β# then {P(n), Q(n)} converges weakly to {ε−∞, ε∞}.

As mentioned in the introduction Theorem 3 of [12] can not be applied to the model
discussed in Corollary 5.7. The main reason is that hn

log(n) does not converge uniformly for
this model. Note that hn(s)

log(n) even converges to −∞ for some s > 0. But the assumptions of
our extension are fulfilled. In the following we give an alternative proof of Corollary 5.7(i)
and (v). By doing this we want to display the benefits of our extension and its opportunities
to be applied. We refer the reader to [12] for more examples.

Alternative proof of Corollary 5.7 (i) and (v). Suppose that the assumptions of Corol-
lary 5.7 are fulfilled. It remains to show that the assumptions of Theorem 5.23 and
the one of Corollary 5.25 hold for

Tn = F0 =: T and T −1
n = F −1

0 =: T −1 for all n ∈ N,

where F0 and F −1
0 are the distribution function and the left continuous quantile function

of Q0, see (2.5). By Lemma 2.15, Assumption 2.16(iii) and the monotonicity of F −1
0 we

can deduce that

hn(s)
log(n)

=
log
(
C(ϑn)

)
log(n)

+
ϑn

log(n)
max
{

−h
(
F −1

0
(
n−s)) , −h

(
F −1

0
(
1 − n−s))}

=
log
(
nrp+o(1)

)
log(n)

− nr

log(n)
(1 + o(1)) h

(
F −1

0
(
n−s))

= rp + o(1) − nr+o(1)h
(
F −1

0
(
n−s)) as n → ∞ (5.59)

for all s > 0, where the o(1)-terms are independent of s.
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5. Application to practical detection models

Consider p > 0. Set β# := β#
Exp(r, p), see (5.10). By Corollary 5.25 it remains to show

that for all κ ∈ (0, rp)

λλ

(
s > 0 : β# + 2κ − 1

2
≤ hn(s)

log(n)
−
(

1 − log log(n)
log(n)

)
s +

s ∧ 1
2

)
= 0 (5.60)

and min
1≤i≤kn

λλ

(
s > 0 : β# − 4κ − 1

2
≤ hn(s)

log(n)
− s +

s ∧ 1
2

)
≥ κ (5.61)

if n ∈ N is sufficiently large. Note that from (5.60) we obtain (5.57) and (5.58). Let
κ ∈ (0, rp) be fixed. By Assumption 2.16(iii) h|[a,a+δ] is strictly increasing and continuous.
Hence, it is invertible and its inverse h−1 : [0, h(a+δ)] → [a, a+δ] is also strictly increasing
and continuous. By this, Theorem 2.19(i) and (5.6)

(F0 ◦ h−1)(t) = Qh
0 [0, t] ∼asy tpL1

(1
t

)
as t ↘ 0 (5.62)

for some slowly varying function L1. Let F : R → R be a distribution function such that

F|(0,ε) = (F0 ◦ h−1)|(0,ε) for some ε > 0.

Denote by F −1 its left continuous quantile function. It is easy to see that

F −1(u) =
(
h ◦ F −1

0

)
(u)

for every sufficiently small u ∈ (0, 1). Combining Lemma 2.15, (5.62) and Theorem 1.5.12
of Bingham et al. [8], see Lemma A.32 for a more detailed verification, yields(

h ◦ F −1
0

)
(u) = F −1(u) ∼asy u

1
p

+o(1) as u ↘ 0. (5.63)

Hence, by (5.59)

sup
s≤rp−κ

{
hn(s)
log(n)

−
(

1 − log log(n)
log(n)

)
s +

s ∧ 1
2

}
≤ 2rp − nr+o(1)h

(
F −1

0

(
n−rp+κ

))
(1 + o(1))

≤ 2rp − n
r+o(1)− rp−κ

p → −∞

as n → ∞. Since h is non-negative, see 2.16(iii), we deduce from (5.59) that

sup
s≥rp−κ

{
hn(s)
log(n)

−
(

1 − log log(n)
log(n)

)
s +

s ∧ 1
2

}
≤ rp(1 + o(1)) −

(
1 − log log(n)

log(n)

)
(rp − κ) +

(rp − κ) ∧ 1
2

≤ β# − 1
2

+
3
2

κ as n → ∞. (5.64)
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Consequently, (5.60) is verified. From (5.59) and (5.63) we see that

sup
s∈(rp+κ,rp+2κ)

{
hn(s)
log(n)

− s +
s ∧ 1

2

}

≥ rp(1 + o(1)) − nr+o(1)h
(
F −1

0
(
n−rp−κ))− rp − 2κ +

(rp + 2κ) ∧ 1
2

≥ o(1) − n
r+o(1)− rp+κ

p + β#
Exp(r, p) − 1

2
− 2κ

≥ β# − 1
2

− 3κ as n → ∞.

Hence, (5.61) holds.

Now consider p = 0 and β > β#
Exp(r, 0) = 1

2 . Since h is non-negative we deduce from
(5.59) analogously to (5.64) that

sup
s>0

{
hn(s)
log(n)

−
(

1 − log log(n)
log(n)

)
s +

s ∧ 1
2

}
≤ o(1) < β − 1

2
− κ as n → ∞

for some κ ∈ (0, β − 1
2). Consequently, applying Theorem 5.23(i) with β# := β − κ shows

that {P(n), Q(n)} converges weakly to {ε0, ε0}. �

Cai and Wu [12] discussed the case Pn,i = N(0, 1) separately. In the following we present
our extension of it.

Theorem 5.27 (Extension of Theorem 1 in [12]). Suppose Assumption 5.22(i). Let

h̃n,i(x):= ln,i

(
x
√

2 log(n)
)

for all x ∈ R and i ∈ {1, . . . , n}. Let {kn : n ∈ N} be a subsequence of N and β# ∈ (1
2 , ∞).

(i) Suppose that for all sufficiently large n ∈ N and some δ > 0

kn∑
i=1

ε2
kn,i ≤ k1−2β#−δ

n and max
1≤i≤kn

λλ

(
x ∈ R : β# − 1

2
≤ h̃kn,i(x)

log(kn)
− x2 +

x2 ∧ 1
2

)
= 0.

Let M ∈ (1, ∞). If for all sufficiently large n ∈ N

max
1≤i≤kn

λλ

(
x ∈ R : |x| ≥ M, β# − 1 ≤ h̃kn,i(x)

log(kn)
−
(

1 − log log(kn)
log(kn)

)
x2
)

= 0

or lim
n→∞ max

1≤i≤n

{
sup

x∈R:|x|≥M

∣∣∣∣∣ h̃n,i(x)
log(n)

− α(x)
∣∣∣∣∣
}

= 0

for some measurable α : R → R then {P(kn), Q(kn)} converges weakly to {ε0, ε0}.
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(ii) If for some δ > 0

lim
n→∞

kn∑
i=1

ε2
kn,i = 0,

kn∑
i=1

εkn,i ≥ k1−β#+δ
n for all n ∈ N (5.65)

and lim inf
n→∞ min

1≤i≤kn

λλ

(
x ∈ R : β# − 1

2
≤ hkn,i(x)

log(kn)
− x2 +

x2 ∧ 1
2

)
> 0

then {P(kn), Q(kn)} converges weakly to {ε−∞, ε∞}.

Remark 5.28. Note that by Lemma A.29 we have for all s > 0 and n ∈ N

− Φ−1(n−s) = Φ−1(1 − n−s) =
√

2s log(n) − Ψ̃n(s), (5.66)

where Ψ̃n(s) is some remainder. If we would ignore Ψ̃ then we could deduce Theorem 5.27
from Theorem 5.23 with Fn,i = Φ and

hn,i(s2) = max
{

ln,i

(
F −1

n,i

(
1 − n−s2))

, ln,i

(
F −1

n,i

(
n−s2))}

≈
{

ln,i

(
s
√

2 log(n)
)

, ln,i

(
−s
√

2 log(n)
)}

= max
{

h̃n,i(s), h̃n,i(−s)
}

.

But due to the remainder Ψ̃ we actually cannot conclude Theorem 5.27 from Theo-
rem 5.23. �

We paid more attention to the extension of Theorem 3 in [12] since in Part II we show a
new result concerning it. Due to this and the similarity of the corresponding proof and
the one of Theorem 5.23 we leave the proof of Theorem 5.27 to the reader and do not
present the simplification of it for the case εn,i = εn.

5.4.1. Proof of Theorem 5.23

As Cai and Wu [12] did we use the random variables Yn,i, U , S and Sn defined in the
following lemma. The statements about the distributions of these random variables, see
Lemma 5.29, are a consequence of (5.46) and basic calculations.

Lemma 5.29. Suppose that the assumptions of Theorem 5.23 hold. Let P be a probability
measure on (Ω, A) and Yn,i, U , S, Sn be real-valued random variables on (Ω, A, P) for all
1 ≤ i ≤ n ∈ N such that

Yn,i ∼ Pn,i, U ∼ U(0, 1), S = − log(U) and Sn = log(n)−1S.
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Then for all 1 ≤ i ≤ n ∈ N

S ∼ Exp(1), Sn ∼ Exp(log(n)),

Yn,i
D= T −1

n,i (U) = T −1
n,i (n−Sn),

and Yn,i
D= T −1

n,i (1 − U) = T −1
n,i (1 − n−Sn).

The proof of the following lemma is almost identical with the one of Lemma 2 in [12].

Lemma 5.30. Suppose the assumptions of Theorem 5.23. Let (5.53) be fulfilled for some
M > 1 and some measurable γ. Then for all κ > 0∫ ∞

M
nγ(u)−u du ≤ 2nκ (5.67)

if n ∈ N is sufficiently large. Moreover,

λλ (u ≥ M : γ(u) − u > 0) = 0. (5.68)

Proof. Let κ > 0 and Yn,i, U , S, Sn be defined as in Lemma 5.29. We deduce (5.67) from
Lemma 5.29, (5.48), (5.49), (5.53) since for all sufficiently large n ∈ N∫ ∞

M
nγ(u)−u du = log(n)−1

∫ ∞

M
nγ(s) dPSn(s)

≤
∫ ∞

M
exp(hn,n(s) + log(n)κ) dPSn(s)

≤ nκ
∫

fn,n

(
T −1

n,n

[
n−Sn

])
dP

+ nκ
∫

fn,n

(
T −1

n,n

[
1 − n−Sn

])
dP

= 2 nκ
∫

fn,n(Yn,n) dP = 2nκ
∫

fn,n dPn,n.

Suppose, contrary to (5.68), that there exist κ1, κ2 > 0 such that

λλ
(
u ≥ M : γ(u) − u > κ1

)
≥ κ2.

Thus, for all sufficiently large n ∈ N∫ ∞

M
nγ(u)−u du ≥ κ2nκ1 .

This contradicts (5.67). Consequently, (5.68) holds. �
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Proof of Theorem 5.23. The statement of (ii) follows immediately from Theorem 8.10(i).
It remains to verify (i). In order to do this we apply Corollary 4.35. Let the random
variables Yn,i, U , S and Sn on (Ω, A, P), as introduced in Lemma 5.29, be given for all
1 ≤ i ≤ n ∈ N. Suppose for the first part of the proof that x > 0, n ∈ N and i ∈ {1, . . . , kn}
are fixed. Because U

D= 1 − U

μkn,i

(
εkn,ifkn,i > x

)
=
∫
{εkn,ifkn,i>x}

exp (lkn,i) dPkn,i

=
∫
{εkn,ifkn,i(Ykn,i)>x}

exp (lkn,i(Ykn,i)) dP

=
∫{

εkn,ifkn,i

(
T −1

kn,i
(U)
)

>x
} exp

(
lkn,i

(
T −1

kn,i(U)
))

dP

=
∫{

U≤ 1
2 , εkn,ifkn,i

(
T −1

kn,i
(U)
)

>x
} exp

(
lkn,i

(
T −1

kn,i(U)
))

dP

+
∫{

U≤ 1
2 , εkn,ifkn,i

(
T −1

kn,i
(1−U)
)

>x
} exp

(
lkn,i

(
T −1

kn,i(1 − U)
))

dP. (5.69)

Note that

U ≤ 1
2

⇔ Skn ≥ log(2)
log(kn)

.

Due to this and (5.69)

μkn,i

(
εkn,ifkn,i > x

)
=

2∑
j=1

∫{
s≥ log(2)

log(kn) : εkn,i exp(hkn,j,i(s))>x
} exp (hkn,j,i(s)) dPSkn (s). (5.70)

By using the same arguments

IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤x}
)

=
2∑

j=1

∫{
s≥ log(2)

log(kn) : εkn,i exp(hkn,j,i(s))≤x
} exp (2 hkn,j,i(s)) dPSkn (s). (5.71)
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5.4. Extensions of the results of Cai and Wu

Let y0 > 0,

In,1 := log(kn)
kn∑
i=1

ε2
kn,i

∫{ log(2)
log(kn) ≤s≤1

} exp
(

log(kn)
(2hkn,i(s)

log(kn)
− s

))
ds

and In,2 := log(kn)
kn∑
i=1

εkn,i

∫
{s≥1}

exp
(

log(kn)
(

hkn,i(s)
log(kn)

− s

))
ds

for all n ∈ N. We conclude from (5.70) and (5.71) that for all n ∈ N

kn∑
i=1

εkn,iμkn,i

(
εkn,ifkn,i > y0

)

≤ 2
kn∑
i=1

εkn,i

∫{
s≥ log(2)

log(kn) : εkn,i exp(hkn,i(s))>y0
} exp (hkn,i(s)) log(kn) exp (− log(kn)s) ds

≤ 2 log(kn)
kn∑
i=1

εkn,i

∫
{s≥1}

exp
(
hkn,i(s) − s log(kn)

)
ds

+
2
y0

log(kn)
kn∑
i=1

ε2
kn,i

∫{ log(2)
log(kn) ≤s≤1

} exp
(
2hkn,i(s) − s log(kn)

)
ds

= 2In,2 +
2
y0

In,1

and
kn∑
i=1

ε2
kn,i IEPkn,i

(
f2

kn,i1{εkn,ifkn,i≤y0} − 1
)

≤
2∑

j=1

kn∑
i=1

ε2
kn,i

∫{ log(2)
log(kn) ≤s≤1

} exp
(
2 hkn,j,i(s)

)
dPSkn (s)

+ y0

2∑
j=1

kn∑
i=1

εkn,i

∫
{s≥1}

exp ( hkn,j,i(s)) dP Skn (s)

≤ 2In,1 + 2 y0In,2.

By Remark 4.36(ii) it remains to show that In,1 and In,2 converge to 0 as n → ∞ . By
(5.50) and (5.51)

In,1 ≤ k
1−2β#− δ

2
n

∫ 1

log(2)
log(kn)

exp
(
log(kn)

(
2β# − 1

))
ds ≤ k

− δ
2

n = o(1)

as n → ∞. Define for all n ∈ N

λn :=
log log(kn)

log(kn)
.
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5. Application to practical detection models

Note that by (5.50) and Lemma A.30

kn∑
i=1

εkn,i ≤
√√√√kn

kn∑
i=1

ε2
kn,i ≤ k

1−β#− δ
2

n for all n ∈ N. (5.72)

First, suppose (5.52). We can conclude from (5.51) and (5.72) that

In,2 ≤ k
1−β#− 1

4 δ
n

∫ M

1
kβ#−1

n ds + k
1−β#− 1

4 δ
n

∫ ∞

M
exp
(
log(kn)

(
β# − 1 − λns

))
ds

≤ k
− 1

4 δ
n M + k

− 1
4 δ

n

∫ ∞

M
exp(−s log log(kn)) ds = o(1) as n → ∞.

Second, suppose (5.53). Let x �→ �x�, x ∈ R, be the floor function, i.e.,

�x� := max{m ∈ Z : m ≤ x} for all x ∈ R.

From Lemma 5.30, (5.51), (5.53) and (5.72) we obtain

In,2 ≤ o(1) + k
1−β#− 1

4 δ
n

∫ ∞

M
exp
(
log(kn)

[
(1 − λn)(β# − 1) + λn(γ(s) − s)

])
ds

≤ o(1) + k
1−β#− 1

4 δ+(1−λn)(β#−1)
n

∫ ∞

M
(log(kn))γ(s)−s ds

≤ o(1) + k
− 1

8 δ
n

∫ ∞

M
�log(kn)�γ(s)−s ds

≤ o(1) + k
− 1

8 δ
n �log(kn)� = o(1) as n → ∞. �
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Part II.

Power of the higher criticism test
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6. Introduction and motivation

In Chapter 1 we already gave an overview of the literature concerning the higher criticism
test, in short HC. We do not repeat the discussion here but rather focus on introducing
the HC statistic.

Definition 6.1 (Definition of HC). Let (pn,i)1≤i≤n∈N
be a triangular array of p-values

on some probability space (Ω, A, P), i.e., pn,i ∈ (0, 1) for all 1 ≤ i ≤ n ∈ N. Denote by

p(n) := (pn,1, . . . , pn,n)

the corresponding vector of p-values for every n ∈ N. Let F̂n,p : (0, 1) → [0, 1] be the
empirical distribution function of the p-values, i.e.,

F̂n,p(t) =
1
n

n∑
i=1

1(0,t] (pn,i) for all t ∈ (0, 1), n ∈ N. (6.1)

For every 1 ≤ i ≤ n ∈ N and all t ∈ (0, 1) we define

Zn,p(t) :=
√

n

(
F̂n,p(t) − t

)
√

t(1 − t)
. (6.2)

Let In be a subinterval of (0, 1) for all n ∈ N. The one-sided HC statistic and the two-sided
HC statistic are given by

HCn,p,1
In

:= sup
t∈In

{Zn,p(t)} and HCn,p,2
In

:= sup
t∈In

{ |Zn,p(t)| } (6.3)

for all n ∈ N, respectively.

Remark 6.2. In order to improve the readability we omit, here and subsequently, the index
of p(n) within the definition of F̂n,p, Zn,p, HCn,p,1

In
and HCn,p,2

In
. �

As already mentioned in Chapter 1 our testing problem is connected to the theory of
multiple testing problems, where numerous testing problems are treated simultaneously.
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6. Introduction and motivation

Multiple tests are often based on p-values and so does HC. A typical assumption of multiple
testing problems is that the p-values pn,1, . . . , pn,n are i.i.d. uniformly distributed on (0, 1).
In this case it is well known that Zn,p(t) converges in distribution to a standard normally
distributed random variable for each fixed t ∈ (0, 1). That is why Tukey [59] suggested to
reject the (global) null if

Zn,p(β) > u1−α or in |Zn,p(β)| > u1− α
2
, respectively,

for some pre-chosen levels α, β ∈ (0, 1), where uδ is the δ-quantile of the standard normal
distribution for every δ ∈ (0, 1), i.e.,

N(0, 1) (−∞, uδ] = δ.

Now it can be seen why HC is sometimes called a second level test. The statistician counts
the number of p-values which are smaller than or equal to some pre-chosen (first) level
β ∈ (0, 1) or, in other words, the statistician counts the number of i ∈ {1, . . . , n} for which

H0,i,n : pn,i ∼ U(0, 1) or in our context H0,i,n : Pn,i

is rejected at level β. Finally, the statistician normalises this number according to (6.2)
and compares the resulting value to the critical value of a one- or two-sided Gauss test, in
practice often denoted as z-test, at pre-specified (second) level α ∈ (0, 1).
This idea of standardisation maybe reminds the reader of the Anderson-Darling test statis-
tic [2], which is an integral-type test, where in the simplest case the integrand is equal
to Z2

n,p. Instead of this integral-type statistic, Donoho and Jin [20] suggested to use a
supremum-type statistic, which reminds us of the Kolmogorov-Smirnov statistic. To be
more specific, they modified Tukey’s idea by taking the supremum of Zn,p(β) or the ab-
solute value of it, respectively, for all β between 0 and some tuning parameter β0 ∈ (0, 1),
i.e., β ∈ (0, β0), where the choice β0 = 1

2 is recommended in [20]. As mentioned in Chap-
ter 1 the detectable area of HC and the one of LLRT coincide for several distributions,
see, e.g., [10, 12, 20]. Donoho and Jin [20] also suggested a modified version, where the
interval (0, β0) is replaced by ( 1

n , β0). By simulations they showed that the performance of
the modified version is better for moderate n. That is why the interval In in Definition 6.1
may depend on n.
The next chapter consists of the theoretical results. Among others, we present sufficient
conditions for the two trivial cases: HC cannot successfully separate H0,n and H1,n and
HC can completely separate them (asymptotically). As far as we know, there are no re-
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sults to be found in the literature concerning the first mentioned case. The proof of the
result of the second case is a generalisation of the ones in [10, 12, 20].
In the final chapter of this part we apply the theoretical results to the models which we
already discussed within the context of determining the accumulation points of LLRn and
in particular the detection boundary. We show that the detectable areas of HC and LLRT
are the same for all our examples. By doing this we solve an unanswered problem concern-
ing the model of Cai and Wu [12]. They showed that the statement of their Theorem 1 (our
extension of it is Theorem 5.27), where only the standard normal distribution is allowed
as the null distribution, can be transferred to HC. But it was not clear if their Theorem
3 (our extension of it is Theorem 5.23) can also be transferred to HC. In Section 8.3 we
display that this is actually possible. The following question was also unanswered.

How does HC behave on the detection boundary asymptotically?

Even for the heterogeneous normal mixture model the answer was unknown. Remember
that the power of LLRT is non-trivial on the detection boundary for the models discussed
in Sections 5.1 to 5.3. In Sections 8.1, 8.2 and 8.4 we show that

HC has no power on the detection boundary asymptotically

for all these models.
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7. Theoretical results

In this section we present the theoretical results concerning HC. Due to the definition of
HC, see Definition 6.1, we need to work with p-values here. First, we explain briefly that
the observations can be transferred to p-values without affecting the result of Part I. After
that we introduce the general assumption for Part II, which is almost equal to Assump-
tion 5.22, where we already dealt with transformations to the interval (0, 1). Moreover,
we present the convergence of the HC statistic under the null, which was first proven by
Jaeschke [34]. Finally, we present conditions for the two trivial cases that the sum of type
I and type II error probabilities of HC tends to 0 or to 1, respectively.

Remark 7.1 (Transformation into p-values). Suppose Assumption 5.22(i).

(i) Instead of {P(n), Q(n)} we can also analyse the transformed version of it

{
P̃(n), Q̃(n)

}
:=
{

n⊗
i=1

P
Tn,i

n,i ,
n⊗

i=1
Q

Tn,i

n,i

}
=
{

n⊗
i=1

U(0, 1) ,
n⊗

i=1
Q

Tn,i

n,i

}
(7.1)

for all n ∈ N. By Remark A.17(ii) and (iii) the results of Chapter 3 are not affected
by this transformation. Moreover, note that by Lemma A.31

f̃n,i :=
dμ

Tn,i

n,i

dP
Tn,i

n,i

=
dμn,i

dPn,i
◦ T −1

n,i = fn,i ◦ T −1
n,i for all 1 ≤ i ≤ n ∈ N.

(ii) In Sections 2.3 and 5.2 we discussed exponential families (Qϑ)ϑ∈Θ. Suppose that
Tn,i = T1,1 =: T for all 1 ≤ i ≤ n ∈ N. We can conclude from Lemma A.31 that
(QT

ϑ )ϑ∈Θ is also an exponential family with

dQT
ϑ

dQT
0

= C(ϑ) exp
(
−ϑ h ◦ T −1

)
=: C(ϑ) exp

(
−ϑ h̃
)
, ϑ ∈ Θ.

To sum up, there is no loss of generality in assuming that Pn,i, μn,i, Qn,i are measures on
((0, 1), B ((0, 1))) and that Pn,i = U(0, 1) for all 1 ≤ i ≤ n ∈ N.
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7. Theoretical results

In Assumption 5.22(i) and so in the second part of this thesis we only consider continuous
measures. But also discrete measures Pn,i, μn,i are of interest for signal detection, see, e.g.,
[5]. Note that the results of Chapter 4 can also be applied to discrete measures. In the
second part of this thesis we need uniformly distributed p-values under the null. That is
why we restrict our model to continuous measures Pn,i. But we want to emphasise that
it is also possible to transform the data to uniformly distributed p-values under the null
in case of discrete measures, see, e.g., Lemma 1.5.4 of Reiss [52]. It is a possible future
project to have a more detailed look at discrete models. �

In the following we present the general assumption for Part II. It is almost equal to
Assumption 5.22, whereas it contains several additional definitions and notations, which
are needed afterwards.

Assumption 7.2. (i) (Parameters) Let α0 ∈ (0, 1) and define for all n ∈ N

an :=
√

2 log log(n) and bn := 2 log log(n) +
1
2

log log log(n) − 1
2

log(π).

(ii) (Shape of the intervals In) Let α0 be given as in (i). Moreover, let ρ, λn ∈ (0, 1) and
ρn,1, ρn,2 ∈ R for every n ∈ N such that for all n ∈ N

λn ≥ − log(α0)
log(n)

and ρn,1, ρn,2, λn = o(1) as n → ∞. (7.2)

Define for all n ∈ N

rn := n−1+λn , sn := n−ρ+ρn,2 , tn := n−ρ+ρn,1 and un := n−λn .

Let (In)n∈N be a sequence of subsets of (0, 1) such that

either (rn, un) ⊆ In ⊆ (0, α0) for all n ∈ N (7.3)

or (rn, un) ∪ (1 − un, 1 − rn) ⊆ In for all n ∈ N. (7.4)

(iii) Let j ∈ {1, 2}, Assumption 5.22(i) be fulfilled and the parameters and intervals of
Assumption 7.2(i) and (ii) be given. Let P be a probability measure on (Ω, A, P) and
U1, . . . , Un be i.i.d. random variables on (Ω, A, P) for all n ∈ N such that

P
Tn,i

n,i = P
T1,1
1,1 = U(0, 1) =: P0 and L(U1|P) = P0 for all n ∈ N.
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For all 1 ≤ i ≤ n ∈ N define the probability measure

Q̃n,i := Q
Tn,i

n,i

and denote by Gn,i its distribution function, i.e.,

Gn,i(u) = Q
Tn,i

n,i (0, u] = u + εkn,i

(
μ

Tkn,i

kn,i (0, u] − u
)

for all u ∈ [0, 1].

Moreover, denote by G−1
n,i its left-continuous quantile function, compare (2.5). Define

Yn,i := G−1
n,i (Ui) (7.5)

for all 1 ≤ i ≤ n ∈ N. Furthermore, set

U(n) := (U1, . . . , Un) and Y(n) := (Yn,1, . . . , Yn,n)

for all n ∈ N. In the following we use F̂n,U , F̂n,Y , HCn,U,j
I , HCn,Y,j

I , Zn,U , Zn,Y

for the quantities defined in (6.1)-(6.3), where p(n) is replaced by U(n) and Y(n),
respectively. Moreover, let P̃(n), Q̃(n), f̃n,i be defined as in Remark 7.1(i) and set
μ̃n,i := μ

Tn,i

n,i .

(iv) Suppose that (iii) and Assumption 2.1(ii) hold simultaneously. Set for all n ∈ N

Gn := Gn,1, G−1
n := G−1

n,1, μ̃n := μ̃n,1, Q̃n := Q̃n,1 and f̃n := f̃n,1.

(v) Suppose that (iv) and Assumption 2.1(iii) hold simultaneously.

Remark 7.3. (i) Despite λn the constants ρ, ρn,1, ρn,2 do not have any effect on the
statistic or the model. Hence, they can be freely chosen as long as ρ ∈ (0, 1) and
ρn,1, ρn,2 = o(1) as n → ∞. Moreover, note that (7.3) and (7.4), respectively, still
holds when we replace λn by λ̃n ≥ λn for all n ∈ N.

(ii) Obviously, Y(n) is Q̃(n)-distributed for all n ∈ N. Hence, HCn,U,j
In

is a version of
the HC statistic under H0,n and HCn,Y,j

In
is one under H1,n, both, of course, for the

transformed experiment (7.1).

(iii) (Higher criticism test) Suppose Assumption 7.2(iii). Let (cn)n∈N be a sequence of
critical values in R. For some fixed n ∈ N let X̃(n) =

(
X̃n,1, . . . , X̃n,n

)
be either P(n)-

distributed or Q(n)- distributed. In practice our task is to decide if the distribution
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7. Theoretical results

of the observation vector X̃(n) corresponds to the null or to the alternative. Set

pn,i := Tn,i

(
X̃n,i

)
for all 1 ≤ i ≤ n.

Clearly, p(n) := (pn,i)1≤i≤n is either P̃(n)- or Q̃(n)-distributed. Then a HC test is
given by

ϕHC
n,In,cn,j

(
X̃(n)
)

:=

⎧⎨⎩ 1
0

HCn,p,j
In

>

≤
cn , n ∈ N.

(iv) The condition (7.3) holds, e.g., for In = ( 1
n , α0), which corresponds to the refinement

of Donoho and Jin [20] mentioned in Chapter 6. �

In the following we present the limit of the HC statistic under the null. The result was
first proved by Jaeschke [34], but he did not use the term HC. Contemporary Eicker [21]
determined the limit of very similar statistics. Proofs of their results can also be found in
[56]. A useful tool within the proofs is the Hungarian construction. For a deeper discussion
of this construction we recommend the textbook of Csörgő and Révész [15], the paper of
Csörgő et al. [14] and, of course, the original work of Komlós et al. [44, 45].

Theorem 7.4. Suppose that Assumption 7.2(iii) is fulfilled. Let Λ be the distribution
function of a standard Gumbel distribution, see (2.7). Then

an HCn,U,j
(0,rn)∪(1−rn,1) − bn

P−→ −∞ as n → ∞, (7.6)

an HCn,U,j
(un,1−un) − bn

P−→ −∞ as n → ∞, (7.7)

an HCn,U,j
(sn,tn)∪(1−tn,1−sn) − bn

P−→ −∞ as n → ∞. (7.8)

Furthermore, if (7.3) holds then for all t ∈ R

P
(

an HCn,U,j
In

− bn ≤ t
)

→ Λ(t)
j
2 as n → ∞. (7.9)

Otherwise, if (7.4) holds then for all t ∈ R

P
(

an HCn,U,j
In

− bn ≤ t
)

→ Λ(t)j as n → ∞. (7.10)

Remark 7.5 (Critical value). Let the assumptions of Remark 7.3(iii) be fulfilled. First,
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observe that

IEP
(
ϕHC

n,In,cn,j

(
U(n)
))

= P
(
anHCn,U,j

In
− bn > ancn − bn

)
for all n ∈ N. (7.11)

Suppose (7.4). By (7.9) and (7.11) ϕHC
n,In,cn,j is an asymptotically exact test of level α ∈

[0, 1], i.e.,

lim
n→∞ IEP

(
ϕHC

n,In,cn,j

(
U(n)
))

= α, (7.12)

if and only if

c̃n := ancn − bn → (Λj)−1(1 − α) = − log
(

−1
j

log (1 − α)
)

as n → ∞, (7.13)

where we extend the logarithm continuously to [0, ∞], see (A.19). The sufficiency of
(7.13) for (7.12) is obvious. The necessity of (7.13) can be concluded from a simple proof
by contradiction. Assume that the limit of (ckn)n∈N exists in R̄ = [−∞, ∞] for some
{kn : n ∈ N} of N but is unequal to the limit in (7.13). Fix α ∈ (0, 1). By setting

cn :=
− log

(
−1

j log (1 − α)
)

+ bn

an
, n ∈ N, (7.14)

we get an asymptotically exact test of level α. Note that

cn ∼asy
√

2 log log(n) as n → ∞.

The statement of this remark is still valid if (7.3) holds and we replace j by j
2 in (7.13)

and (7.14). �

Proof. Note that as mentioned by Jaeschke [34] his Corollaries 2 and 3 also hold for the
statistics Wn, V̂n, Ŵn introduced at the beginning of his Section 2. Consequently, (7.6) and
(7.7) can be concluded from these corollaries. From (1) and (2) of Jaeschke’s Theorem we
obtain (7.8),

P
(

an HCn,U,j
(rn,1−rn) − bn ≤ t

)
→ Λ(t)j

and P
(

an HCn,U,j
(rn,α0) − bn ≤ t

)
→ Λ(t)

j
2 as n → ∞

for all t ∈ R. Combining this and (7.6)-(7.8) yields (7.9) and (7.10). �

Below we present sufficient conditions for the case that HC can completely separate H0,n
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7. Theoretical results

and H1,n. The proof of the corresponding theorem is a generalisation of the proof of
Theorem 1.2 in [20]. Quite similar techniques and ideas were also used in [10] and [12].

Theorem 7.6. Let {kn : n ∈ N} ⊂ N be a subsequence of N. Suppose Assumption 7.2(iii).

(i) Let (vn)n∈N be a sequence in R such that

vn ∈ In ∩
(

ε

n
, α0

)
(7.15)

for all n ∈ N and some ε > 0. If j = 1 then assume additionally that

lim inf
n→∞

∑kn
i=1 εkn,i

(
μ

Tkn,i

kn,i (0, vkn ] − vkn

)
√

kn vkn(1 − vkn) log log(kn)
> 2

√
2. (7.16)

Otherwise, if j = 2 then assume additionally that

lim inf
n→∞

∣∣∣∣∣∣
∑kn

i=1 εkn,i

(
μ

Tkn,i

kn,i (0, vkn ] − vkn

)
√

kn vkn(1 − vkn) log log(kn)

∣∣∣∣∣∣ > 2
√

2. (7.17)

Then

akn HCkn,Y,j
Ikn

− bkn

P−→ ∞ as n → ∞. (7.18)

(ii) Let (vn)n∈N be a sequence in R such that

vn ∈ In ∩
[
α0, 1 − ε

n

)
(7.19)

for all n ∈ N and some ε > 0. If j = 2 and (7.17) is fulfilled then (7.18) holds.

Remark 7.7. (i) (Detectable) For simplicity suppose Assumption 7.2(iii) and (7.18) with
kn = n for all n ∈ N. Then for every fixed c ∈ R

P
(
an HCn,Y,j

In
− bn > c

)
→ 1 as n → ∞.

It is easy to show that there exists a sequence (c′
n)n∈N in R such that c′

n → ∞ and

P
(
akn HCkn,Y,j

Ikn
− bkn > c′

n

)
→ 1 as n → ∞. (7.20)

Define for all n ∈ N the critical value cn by

cn :=
c′

n + bn

an
.
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By (7.20) and Remark 7.5 the type I and type II error probabilities of ϕHC
n :=

ϕHC
n,In,cn,j tend to 0. Consequently, ϕHC

n can completely separate the null and the
alternative. Note that at least ϕHC

kn
does so if (7.18) holds only for some subsequence

{kn : n ∈ N} of N.

(ii) If (7.16) holds then (7.17) does so as well.

(iii) Suppose that

1
log log(kn)

kn∑
i=1

ε2
kn,i → 0 as n → ∞.

By Lemma A.30

sup
v∈(0, 1

2 ]

1√
v(1 − v)kn log log(kn)

kn∑
i=1

εkn,iv = o(1)

and sup
v∈[ 1

2 ,1)

1√
v(1 − v)kn log log(kn)

kn∑
i=1

εkn,i (1 − v) = o(1) as n → ∞.

Thus, (7.17) under (7.15) and under (7.19) can be simplified to

lim inf
n→∞

∑kn
i=1 εkn,i μ

Tkn,i

kn,i (0, vkn ]√
kn vkn(1 − vkn) log log(kn)

> 2
√

2

and lim inf
n→∞

∑kn
i=1 εkn,i μ

Tkn,i

kn,i (1 − vkn , 1)√
kn vkn(1 − vkn) log log(kn)

> 2
√

2, respectively.

Moreover, (7.16) and (7.17) are equivalent under (7.15). �

Proof of Theorem 7.6. Let (vn)n∈N be given as in (i) or as in (ii), respectively. First, note
that

aknHCkn,Y,j
Ikn

− bkn =
√

2 log log (kn)

⎛⎝ HCkn,Y,j
Ikn√

log log(kn)
− √

2 + o(1)

⎞⎠ as n → ∞.

Hence, it is sufficient for (7.18) to show that for some γ > 0

P
⎛⎝ HCkn,Y,j

Ikn√
log log(kn)

≥ √
2 + γ

⎞⎠ → 1 as n → ∞. (7.21)
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By (6.3) it is sufficient for (7.21) to prove

P
(

Zkn,Y (vkn)√
log log (kn)

≤ √
2 + γ

)
→ 0 as n → ∞ if j = 1 (7.22)

and P
(

|Zkn,Y (vkn)|√
log log (kn)

≤ √
2 + γ

)
→ 0 as n → ∞ if j = 2. (7.23)

By applying Chebyshev’s inequality we show that (7.22) and (7.23) are fulfilled under the
assumptions of (i) as well as (ii). For this purpose, we need to calculate the expectation
and the variance of Zkn,Y (vkn) for all n ∈ N:

IEP
(
Zkn,Y (vkn)

)
=
√

kn
k−1

n

∑kn
i=1 Q̃kn,i(0, vkn ] − vkn√

vkn(1 − vkn)

=
∑kn

i=1 εkn,i (μ̃kn,i (0, vkn ] − vkn)√
kn vkn(1 − vkn)

, (7.24)

VarP
(
Zkn,Y (vkn)

)
= kn

k−2
n

∑kn
i=1 Q̃kn,i(0, vkn ]

(
1 − Q̃kn,i(0, vkn ]

)
vkn(1 − vkn)

≤
∑kn

i=1 Q̃kn,i(0, vkn ]
kn vkn(1 − vkn)

=
∑kn

i=1 vkn +
∑kn

i=1 εkn,i (μ̃kn,i (0, vkn ] − vkn)
kn vkn(1 − vkn)

=
1

1 − vkn

+
IEP [Zkn,Y (vkn)]√

kn vkn(1 − vkn)
. (7.25)

By Chebyshev’s inequality we have for every real-valued random variable Z on (Ω, A, P)
with a finite second moment and a non-zero expectation μ ∈ R \ {0} that

P
(

|Z| ≤ |μ|
2

)
= P
(

|Z| − |μ| ≤ −|μ|
2

)
≤ P
(

− |Z − μ| ≤ −|μ|
2

)
= P
(

|Z − μ| ≥ |μ|
2

)
≤ 4

VarP(Z)
μ2 (7.26)

and, moreover, if μ > 0 then

P
(

Z ≤ |μ|
2

)
≤ P
(

Z − μ ≤ −μ

2

)
≤ P

(
|Z − μ| ≥ μ

2

)
≤ 4

VarP(Z)
μ2 . (7.27)

Now suppose that the assumptions of (i) hold and j = 2. Then we can conclude from
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(7.15), (7.17) and (7.24)-(7.26) that for some sufficiently small γ > 0

P
(

|Zkn,Y (vkn)|√
log log (kn)

≤ √
2 + γ

)

≤ P
(

|Zkn,Y (vkn)|√
log log (kn)

≤ 1
2

|IEP (Zkn,Y (vkn))|√
log log (kn)

)

≤
∣∣∣IEP
(
Zkn,Y (vkn)

)∣∣∣−2 4
1 − vkn

+
∣∣∣IEP
(
Zkn,Y (vkn)

)∣∣∣−1 4√
knvkn(1 − vkn)

≤
∣∣∣IEP
(
Zkn,Y (vkn)

)∣∣∣−2 4
1 − α0

+
∣∣∣IEP
(
Zkn,Y (vkn)

)∣∣∣−1 4√
ε(1 − α0)

= o(1)

Hence, (7.23) holds. Replacing (7.26) by (7.27) in the argumentation above we obtain
(7.22) if the assumptions of (i) are fulfilled and j = 1. Finally, (i) is verified.
The proof of (ii) corresponds almost completely to the previous one of (i). We omit the
details. We only want to mention that instead of (7.25) the following inequality should
be used:

VarP
(
Zkn,Y (vkn)

)
≤
∑kn

i=1

(
1 − Q̃kn,i(0, vkn ]

)
kn vkn(1 − vkn)

≤ 1
vkn

−
IEP
(
Zkn,Y (vkn)

)
√

kn vkn(1 − vkn)
. �

Now we present sufficient conditions for the case that HC is (asymptotically) useless to
distinguish between the null and the alternative.

Theorem 7.8. Let {kn : n ∈ N} ⊂ N be a subsequence of N and Assumption 7.2(v) be
fulfilled. Moreover, assume P(kn) � � Q(kn).

(i) Let for all n ∈ N

In,1 := [rkn , skn ] ∪ [tkn , ukn ]

and (7.3) be fulfilled. If

Rn := akn

√
kn εkn sup

τ∈In,1

⎧⎨⎩
∣∣∣μTkn

kn
(0, τ ] − τ

∣∣∣
√

τ

⎫⎬⎭ = o(1) (7.28)

as n → ∞ then for all t ∈ R

P
(

akn HCkn,Y,j
In

− bkn ≤ t
)

→ Λ(t)
j
2 as n → ∞. (7.29)
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(ii) Let for all n ∈ N

In,2 := [1 − ukn , 1 − tkn ] ∪ [1 − skn , 1 − rkn ]

and (7.4) be fulfilled. If in addition to (7.28)

akn

√
kn εkn sup

τ∈In,2

⎧⎨⎩
∣∣∣μTkn

kn
(0, τ ] − τ

∣∣∣
√

1 − τ

⎫⎬⎭ = o(1) (7.30)

as n → ∞ then for all t ∈ R

P
(

an HCkn,Y,j
In

− bn ≤ t
)

→ Λ(t)j as n → ∞. (7.31)

Remark 7.9. (i) Let the assumptions of Remark 7.3(iii) and (7.29) or (7.31), respec-
tively, be fulfilled. To improve the readability we set

ϕHC
n := ϕHC

n,In,cn,j for all n ∈ N.

From the equivalence of (7.12) and (7.13) we can deduce that the following implica-
tion holds for every subsequence {kn,1 : n ∈ N} of {kn : n ∈ N}:

IEP(kn,1)

(
ϕHC

kn,1

)
→ C ∈ [0, 1] as n → ∞

⇒ IEQ(kn,1)

(
ϕHC

kn,1

)
→ C as n → ∞.

Hence, independently of the choice of the critical values (cn)n∈N we obtain

lim
n→∞ IEP(kn)

(
ϕHC

kn

)
+ IEQ(kn)

(
1 − ϕHC

kn

)
= 1.

Thus, HC yields no better results than the test ϕ ≡ α ∈ [0, 1] (asymptotically). In
other words, HC cannot successfully separate H0,n and H1,n (asymptotically).

(ii) Suppose that

akn

√
kn εkn = o(1) as n → ∞.

Then as n → ∞

sup
v∈(0, 1

2 ]

{
akn

√
knεkn

v√
v

}
= o(1) and sup

v∈(0, 1
2 ]

{
akn

√
knεkn

1 − v√
1 − v

}
= o(1).

Hence, (7.28) and (7.30) can be simplified to
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an

√
n εn sup

v∈[rn,sn]∪[tn,un]

{
μTn

n (0, v]√
v

}
= o(1)

and an

√
n εn sup

v∈[rn,sn]∪[tn,un]

{
μTn

n (1 − v, 1)√
v

}
= o(1) as n → ∞, respectively.

(iii) By Corollary 4.12(i) we have P(kn) � �Q(kn) if (A) is fulfilled. Note that by a simple
modification within the proof the statement of Theorem 7.8 even holds without
assuming P(kn) � �Q(kn) if we replace In,1 by In ∩ (0, 1

2) and In,2 by In ∩ [1
2 , 1). �

Proof of Theorem 7.8. Clearly, P̃(kn) � � Q̃(kn) follows from P(kn) � � Q(kn). Hence, we can
deduce from (7.6) and (7.7) that

akn HCkn,Y,j
(0,1)\(In,1∪In,2) − bkn

P−→ −∞ as n → ∞.

That is why it remains to show

P
(

akn HCkn,Y,j
In,1

− bkn ≤ t
)

→ Λ(t)
j
2 (7.32)

and P
(

akn HCkn,Y,j
In,1∪In,2

− bkn ≤ t
)

→ Λ(t)j , respectively, as n → ∞ (7.33)

for all t ∈ R. Since Gkn(τ) ≥ u ⇔ τ ≥ G−1
kn

(u) for all u ∈ (0, 1) and τ ∈ R we obtain

HCkn,Y,1
I = sup

τ∈I

⎧⎨⎩
∑kn

i=1

(
1(0,Gkn (τ)](Ui) − τ

)
√

kn τ(1 − τ)

⎫⎬⎭ (7.34)

and HCkn,Y,2
I = sup

τ∈I

⎧⎨⎩
∣∣∣∣∣∣
∑kn

i=1

(
1(0,Gkn (τ)](Ui) − τ

)
√

kn τ(1 − τ)

∣∣∣∣∣∣
⎫⎬⎭ (7.35)

for all I ⊆ (0, 1) and all n ∈ N. If n ∈ N is sufficiently large then

1 > τ + εkn(1 − τ) ≥ Gkn (τ) ≥ (1 − εkn)τ > 0 for all τ ∈ (0, 1). (7.36)

For all sufficiently large n ∈ N and every τ ∈ (0, 1) we can define

Δkn,1,τ :=
∑kn

i=1

[
1(0,Gkn (τ)](Ui) − Gkn (τ)

]
√

kn Gkn (τ) (1 − Gkn (τ))
, Δkn,2,τ :=

√
Gkn (τ)

τ
,

Δkn,3,τ :=

√
1 − Gkn (τ)

(1 − τ)
and Δkn,4,τ :=

√
kn

Gkn (τ) − τ√
τ(1 − τ)

.
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Clearly, for all n ∈ N and every I ⊆ (0, 1)

∑kn
i=1

(
1(0,Gkn (τ)](Ui) − τ

)
√

kn τ(1 − τ)
= Δkn,1,τ Δkn,2,τ Δkn,3,τ + Δkn,4,τ . (7.37)

Now suppose that (7.28) holds. The proof of (7.29) falls naturally into four steps:

lim
n→∞ sup

τ∈In,1
|Δkn,l,τ − 1| = 0 for l ∈ {2, 3}, (7.38)

lim
n→∞ akn sup

τ∈In,1
|Δkn,4,τ | = 0, (7.39)

lim
n→∞ P

(
akn sup

τ∈In,1
{Δkn,1,τ } − bkn ≤ t

)
= Λ(t)

1
2 for all t ∈ R, (7.40)

and lim
n→∞ P

(
akn sup

τ∈In,1
{|Δkn,1,τ |} − bkn ≤ t

)
= Λ(t) for all t ∈ R. (7.41)

We can conclude from (7.36) that for all n ∈ N and every τ ∈ In,1 ⊆ (0, 1
2)

1 − εkn ≤ 1 − Gkn(τ)
1 − τ

≤ 1 +
εknτ

1 − τ
≤ 1 + εkn .

Thus, (7.38) follows for l = 3. Moreover, we can conclude from (7.28) that

sup
τ∈In,1

∣∣∣∣Gkn (τ) − τ

τ

∣∣∣∣ = sup
τ∈In,1

{
εkn

τ

∣∣∣μTkn
kn

(0, τ ] − τ
∣∣∣} ≤ Rn

akn

√
knrkn

= o(1) (7.42)

as n → ∞. It follows immediately that

sup
τ∈In,1

|Δkn,2,τ − 1| = sup
τ∈In,1

∣∣∣∣∣∣
√

1 +
Gkn (τ) − τ

τ
− 1

∣∣∣∣∣∣ = o(1)

as n → ∞ . Consequently, (7.38) is proved. (7.39) follows from (7.28) since

akn sup
τ∈In,1

|Δkn,4,τ | = sup
τ∈In,1

{
akn

√
knεkn√

τ(1 − τ)

∣∣∣μTkn
kn

(0, τ ] − τ
∣∣∣} ≤ Rn√

1 − ukn

= o(1)

as n → ∞. Set for all n ∈ N

In,4 :=
[
Gkn (rkn) , Gkn (skn)

]
∪
[
Gkn (tkn) , Gkn (ukn)

]
.
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From (7.42) we see that for all sufficiently large n ∈ N[
2rkn ,

1
2

skn

]
∪
[
2tkn ,

1
2

ukn

]
⊂ In,4 ⊂

[1
2

rkn , 2skn

]
∪
[1

2
tkn , 2ukn

]
.

For the proof of (7.40) and (7.41) note that

sup
τ∈In,1

{Δkn,1,τ } = HCkn,U,1
In,4

and sup
τ∈In,1

{|Δkn,1,τ |} = HCkn,U,2
In,4

(7.43)

for all n ∈ N. Applying Theorem 7.4 with the (new) constants

r′
kn

:= 2rkn , s′
kn

:=
1
2

skn , t′
kn

:= 2tkn , u′
kn

:=
1
2

ukn

and r̃kn :=
1
2

rkn , s̃kn := 2skn , t̃kn :=
1
2

tkn , ũkn := 2ukn

and combining this with (7.43) verifies (7.40) and (7.41). Finally, (7.32) is shown and so is
(i). The proof of (7.33) and so the one of (ii) is very similar to the proof of (7.32). Thus,
we omit it and leave the details to the reader. �
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8. Applications to practical detection
models

In Chapter 5 we discussed the behaviour of LLRT for several examples. We determined,
among others, the detection boundary for the case that the signal probability εn,i = εn

does not depend on i. Donoho and Jin [20] showed that the detectable areas of LLRT and
HC coincide for the sparse heterogeneous normal mixture model. Cai et al. [10] confirmed
this result for the sparse and dense heterogeneous normal mixture model. In Sections 8.2
and 8.4 we do so for our h-model and our sparse and dense exponential family model.
Cai and Wu [12] showed that under the assumptions of their Theorem 1 (our extended
version is Theorem 5.27) the detectable areas of HC and LLRT coincide as well, see their
Theorem 4. By having done this they extended the results in [10, 20]. But it was an
unsolved problem if these areas also coincide under the assumptions of their Theorem 3
(our extended version is Theorem 5.23). In Section 8.3 we show that it is valid indeed.
Beside presenting models, for which the detectable areas of HC and LLRT coincide, we
are also interested in answering the following question.

How does HC behave on the detection boundary asymptotically?

As far as we know, there are no results about this issue in the literature until recently.
The accumulation points of {P(n), Q(n)} are non-trivial on the boundary for the models
discussed in Sections 5.1 to 5.3. We show that for all these models

HC cannot successfully separate H0,n and H1,n on the boundary asymptotically.

In other words, the sum of type I and II error probabilities of HC tends to 1 for these
models on the boundary as n → ∞. Consequently, LLRT yields indeed better than HC
(asymptotically), at least on the detection boundary.
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8. Applications to practical detection models

8.1. Heteroscedastic normal mixtures

8.1.1. Sparse case

In this section we analyse the behaviour of HC for the sparse heteroscedastic normal
mixture model given in Example 2.6. In Theorem 5.1 the detection boundary ρ∗ for LLRT
was presented, see also Figure 5.1. Cai et al. [10] already showed that HC can completely
separate the null and the alternative if r exceeds the detection boundary ρ∗(β, τ). With
respect to Theorem 5.1 we are also interested in the behaviour of HC on the detection
boundary. We verify that HC cannot successfully separate the null and the alternative on
the boundary (asymptotically). The results for the sparse heterogeneous normal mixture
model concerning HC are visualised in Figure 1.2.

First, we present the results mentioned above. Before we give the proof of them we present
and prove some technical lemmas.

Theorem 8.1. Suppose that Assumption 7.2(v) and the assumptions of Theorem 5.1 hold
simultaneously, where

Tn = 1 − Φ for all n ∈ N.

(i) If r > ρ∗(β, τ) then (7.18) holds. In this case HC can completely separate H0,n and
H1,n (asymptotically), see Remark 7.7(i).

(ii) Consider r = ρ∗(β, τ). If (5.2) holds then replace εn = n−β by εn defined as in
(5.3). Then (7.29) holds for all t ∈ R if (7.3) is fulfilled, and (7.31) holds for all
t ∈ R if (7.4) is fulfilled. Thus, HC cannot successfully separate H0,n and H1,n

(asymptotically), see Remark 7.9(i).

Remark 8.2. (i) Note that we assume r > 0 in Theorem 5.1 and as well in Theorem 8.1.
Hence, r = ρ∗(β, τ) implies that

either τ <
√

2 or (β, τ) ∈
(

1 − 1
τ2 , 1
)

×
[√

2, ∞
)

.

(ii) We deduce Theorem 8.1 from Theorems 7.6 and 7.8. We need to analyse the measure
μ̃n = N(ϑn, τ2)1−Φ for every n ∈ N. Fix n ∈ N. Let X be a random variable on
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(Ω, A, P) such that X ∼ μn = N(ϑn, τ2). Then for all t ∈ (0, 1)

μ̃n(0, t] = μ1−Φ
n (0, t] = P (1 − Φ(X) ≤ t) = P

(
X ≥ Φ−1(1 − t)

)
= 1 − Φ

(
Φ−1(1 − t) − ϑn

τ

)

= 1 − Φ
(

−Φ−1(t) + ϑn

τ

)
. (8.1)

�

To prove Theorem 8.1(ii) we apply Theorem 7.8. In the corresponding proof at the end of
this section we split the interval In,1 from Theorem 7.8(i) into two subintervals. In each
of the following two lemmas we discuss Rn from Theorem 7.8(i) restricted to one of these
subintervals, respectively.

Lemma 8.3. Suppose that the assumptions of Theorem 8.1 are fulfilled with r = ρ∗(β, τ).
Let ε > 0 be sufficiently small such that

ε ≤ 1
6

(
2β − 1 − ρ∗(β, τ)

)
. (8.2)

Then for all sufficiently large n ∈ N

Rn,1(ε) := ann
1
2 −β sup

v∈(n−r−2ε,un]

{
μn(0, v]√

v

}
≤ n−ε.

Remark 8.4. Since r > 0 it is easy to verify that the term on the right side of (8.2) is
positive. �

Proof of Lemma 8.3. We have

Rn,1(ε) ≤ ann
1
2 −β+ 1

2 r+ε = no(1)− 1
2 [2β−1−ρ∗(β,τ)]+ε ≤ no(1)−3ε+ε as n → ∞. �

Lemma 8.5. Let the assumptions of Theorem 8.1 be fulfilled with

λn ≥ 5 log log(n)
log(n)

for all n ∈ N. (8.3)

Let ε ∈ (0, 1
2 − 1

2r). If τ <
√

2 assume additionally that

r + 2ε < r

( 2
2 − τ2

)2
.
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Then as n → ∞

Rn,2(ε) := sup
v∈[rn,n−r−2ε]

{
μ̃n(0, v]√

v

}
≤ nJ1(τ,β,r) (log(n))J2(τ,β,r)+o(1) , (8.4)

where J1(τ, β, r) :=

⎧⎪⎨⎪⎩
r

2−τ2 if r < (2−τ2)2

4 , τ <
√

2
1
2 −
(√

r−1
τ

)2
otherwise

and J2(τ, β, r) :=

⎧⎪⎨⎪⎩−1
8 if r < (2−τ2)2

4 , τ <
√

2
11

2τ2 [1 − √
r] − 3 otherwise

. (8.5)

Moreover, there exists a sequence (v∗
n)n∈N

with v∗
n ∈ [rn, un] for all n ∈ N such that

μ̃n(0, v∗
n]√

v∗
n

= nJ1(τ,β,r)+o(1) as n → ∞. (8.6)

Remark 8.6. Note that we have

ρ∗(β, τ) <
(2 − τ2)2

4
and τ2 <

√
2 if and only if β < 1 − τ2

4
and τ2 <

√
2.

By a simple calculation we obtain

J1(τ, β, ρ∗(β, τ)) =

⎧⎪⎨⎪⎩
1
2 − 1

τ2 if β ≤ 1 − 1
τ2 , τ ≥ √

2

β − 1
2 otherwise

.

Hence,

J1(τ, β, ρ∗(β, τ)) ≥ β − 1
2

. �

Proof of Lemma 8.5. Throughout this proof, we use the parametrisation v = vn = n−κn .
Observe that

vn = n−κn ∈ [rn, n−r−2ε] if and only if κn ∈ [r + 2ε, 1 − λn]. (8.7)

In all following argumentations we only use Landau terms when the corresponding con-
vergence holds uniformly in κn ∈ [r + 2ε, 1 − λn]. From (8.7) and Lemma A.29 we obtain
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for all vn = n−κn ∈ [rn, n−r−2ε] and some δ > 0

Φ−1 (vn) + ϑn = −
√

2κn log(n) +
log log(n)

2
√

2κn log(n)
(1 + o(1)) +

√
2r log(n)

=
√

2 log(n)
[√

r − √
κn +

log log(n)
4 log(n)√κn

(1 + o(1))
]

(8.8)

≤
√

2 log(n)
[√

r − √
r + 2ε + o(1)

]
≤ −δ

√
log(n) (8.9)

as n → ∞. Combining (8.1), (8.8), (8.9) and (A.23) yields for all vn = n−κn ∈ [rn, n−r−2ε]
and every n ∈ N

v
− 1

2
n μ̃n ((0, vn])

= n
1
2 κn

1√
2π

−τ

Φ−1(vn) + ϑn
exp

⎡⎣−1
2

(
−Φ−1(vn) + ϑn

τ

)2
⎤⎦ (1 + o(1))

=
τ

2
√

π
(√

κn − √
r
) (log(n))− 1

2 n
1
2 κn−τ−2

[√
r−√

κn+ log log(n)
4 log(n)√

κn
(1+o(1))

]2
(1 + o(1))

=
τ

2
√

π
(√

κn − √
r
)nEn,1(κn) (log(n))En,2(κn) ,

where En,1(κn) :=
κn

2
− 1

τ2 [κn − 2
√

rκn + r] = − r

τ2 +
τ2 − 2

2τ2 κn + 2
√

rκn

τ2 , (8.10)

En,2(κn) := −1
2

− 1
τ2 2
(√

r − √
κn
) 1

4√
κn

(
1 + o(1)

)
+o(1)

= −1
2

[
1 +

1
τ2

(√
r

κn
− 1
)]

+ o(1) as n → ∞. (8.11)

If τ2 �= 2 then

2τ2En,1(κn) = −2r +
(
τ2 − 2

) [√
κn +

2
√

r

τ2 − 2

]2
− 4r

τ2 − 2

=
(
τ2 − 2

) [√
κn − 2

√
r

2 − τ2

]2
− 2rτ2

τ2 − 2
. (8.12)

Now we determine the (unique) global maximum point κ∗
n ∈ [r +2ε, 1−λn] of the function

En,1 : [r + 2ε, 1 − λn] → R defined by (8.10), n ∈ N. For this purpose we discuss three
cases.
First, assume that τ <

√
2 and r < 1

4(2 − τ2)2. From (8.12) we see that

κ∗
n =
(

2
√

r

2 − τ2

)2

= r
4

(2 − τ2)2 and En,1(κ∗
n) = 0 − r

τ2 − 2
for all n ∈ N.
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Hence, (8.6) holds for v∗
n = nκ∗

n , n ∈ N. Let δ > 0 be sufficiently small such that

κ∗
n(1 − δ)−2 < 1 and δ <

τ2

2(2 − τ2)
for all n ∈ N.

Note that En,2 : [r +2ε, 1−λn] → R defined by (8.11) is continuous and strictly increasing
for all n ∈ N. Finally, we can conclude (8.4) since for all sufficiently large n ∈ N

sup
v∈[rn,n−r−2ε]

{
μ̃n(0, v]√

v

}
= sup

κn∈[r+2ε,κ∗
n(1−δ)−2]

{
τ nEn,1(κn)

2
√

π
(√

κn − √
r
) (log(n))En,2(κn)

}

≤ τ

2
√

π
(√

r + 2ε − √
r
)n− r

τ2−2 (log(n))En,2(κ∗
n(1−δ)−2) ,

where En,2
(
κ∗

n(1 − δ)−2
)

= −1
2

[
1 +

1
τ2

(
(1 − δ)(2 − τ2)

2
− 1
)]

+ o(1)

= −1
4

+
1
4

δ
2 − τ2

τ2 + o(1) ≤ −1
8

+ o(1)

as n → ∞. The other two cases can be discussed simultaneously. Let either τ <
√

2 and
r ≥ 1

4(2 − τ2)2 or τ ≥ √
2. It is easy to check that from (8.10) and (8.12) we have

κ∗
n = 1 − λn for all n ∈ N

in both cases. Note that 2
√

r ≥ 2 − τ2. Hence,

En,1 (1 − λn) = − r

τ2 +
τ2 − 2

2τ2 (1 − λn) +
2
τ2

√
r (1 − λn)

= − r

τ2 +
τ2 − 2

2τ2 (1 − λn) +
2
√

r

τ2

(
1 − λn

(1
2

+ o(1)
))

=
1
2

− 1
τ2
(
r + 1 − 2

√
r
)

+ λn

(
1
τ2 − 1

2
−

√
r

τ2

)
+ o

( log log(n)
log(n)

)
(8.13)

≤ 1
2

− (
√

r − 1)2

τ2 +
5 log log(n)

log(n)

(
1
τ2 − 1

2
−

√
r

τ2 + o(1)
)

as n → ∞.

From (8.13) we can deduce (8.6) for v∗
n := nκ∗

n , n ∈ N. Since En,2 : [r + 2ε, 1 − λn] → R is
strictly increasing for all n ∈ N we can conclude (8.4) from the following equation:

En,2 (1 − λn) + 5
(

1
τ2 − 1

2
−

√
r

τ2 + o(1)
)

=
11
2τ2
(
1 − √

r
)− 3 + o(1) as n → ∞. �

Proof of Theorem 8.1. We can assume (8.3) without loss of generality, see Remark 7.3(i).
Let (v∗

n)n∈N be the sequence from Lemma 8.5. Then as n → ∞

nεnμ̃n(0, v∗
n]√

n v∗
n(1 − v∗

n) log log(n)
= n

1
2 −β+o(1) (v∗

n)− 1
2 μ̃n(0, v∗

n] = nJ1(τ,β,r)+ 1
2 −β+o(1) (8.14)
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Note that r �→ J1(τ, β, r) is strictly increasing in (0, 1). If r > ρ∗(β, τ) then by Remark 8.6

J1(τ, β, r) > J1(τ, β, ρ∗(β, τ)) ≥ β − 1
2

.

Combining this, (8.14), Theorem 7.6(i) and Remark 7.7(iii) shows (i).

Now suppose that the assumptions of (ii) hold, in particular we have r = ρ∗(β, τ). From
Corollary 4.12(i), Theorem 5.1(iii) and (iv) we see that P(n) �� Q(n). Thus, by Theorem 7.8
and Remark 7.9(ii) it is sufficient to show that

R̃n,1 := an

√
n εn sup

v∈[rn,un]

{
μ̃n(0, v]√

v

}
and R̃n,2 := an

√
n εn sup

v∈[rn,un]

{1 − μ̃n(0, 1 − v]√
v

}

converge to 0 as n → ∞ . Define

E1 :=

⎧⎪⎨⎪⎩
1
2

(
1 − 1

τ

√
1 − β

)
if (5.2) holds

0 otherwise
.

In general we have

εn = n−β(log(n))E1 for all n ∈ N.

Combining Lemma 8.3, Lemma 8.5 and Remark 8.6 yields for some sufficiently small ε > 0

R̃n,1 = ann
1
2 −β (log(n))E1 sup

v∈[rn,n−r−2ε)∪[n−r−2ε,un]

{
μ̃n(0, v]√

v

}
≤ max

{
(log(n))E1 Rn,1(ε) , n

1
2 −β (log(n))E1+o(1) Rn,2(ε)

}
≤ max

{
n−ε+o(1) , n

1
2 −β+J1(τ,β,ρ∗(β,τ))(log(n))J2(τ,β,ρ∗(β,τ))+E1+o(1)

}
= (log(n))J2(τ,β,ρ∗(β,τ))+E1+o(1) as n → ∞. (8.15)

Observe that

J2(τ, β, ρ∗(β, τ)) + E1

=

⎧⎪⎨⎪⎩−1
8 if β < 1 − τ2

4 , τ2 < 2
11

2τ2

[
1 −√ρ∗(β, τ)

]
− 3 + 1

2 − 1
2τ

√
1 − β otherwise

=

⎧⎪⎨⎪⎩−1
8 if β < 1 − τ2

4 , τ2 < 2

5
[

1
τ

√
1 − β − 1

2

]
otherwise

.
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It is easy to check that

J2(τ, β, ρ∗(β, τ)) + E1 < 0.

Combining this and (8.15) yields that R̃n,1 converges to 0 as n → ∞. Furthermore, by
(8.1), the monotonicity and the symmetry of Φ

1 − μ̃n(0, 1 − v] = Φ
(

−Φ−1(1 − v) + ϑn

τ

)
= 1 − Φ

(
−Φ−1(v) + ϑn

τ

)

≤ 1 − Φ
(

−Φ−1(v) + ϑn

τ

)
= μ̃n(0, v]

for every v ∈ (0, 1). Hence,

R̃n,2 = an

√
n εn sup

v∈[rn,un]

{1 − μ̃n(0, 1 − v]√
v

}
≤ R̃n,1 = o(1) as n → ∞. �

Remark 8.7. Theorem 8.1(i) can also be shown by applying Theorem 8.13. �

8.1.2. Dense case

In this section we focus, again, on the model introduced in Example 2.6 but unlike in
the previous section we discuss the dense case, i.e., εn = n−β with β ∈ (0, 1

2). Below,
we prove that Theorem 8.1 holds analogously for the dense case. Similar to the sparse
case, Cai et al. [10] already showed that HC can completely separate the null and the
alternative underneath the detection boundary. We verify additionally that HC cannot
separate the null and the alternative on the detection boundary. We want to emphasise
that the dense exponential family model, which we will discuss in Section 8.4.1, includes
the dense heterogeneous normal mixture model, i.e., the case τ = 1. We use this connection
to Section 8.4.1 for the proof of the following theorem. Moreover, we refer the reader to
Figure 8.2, see p. 142, for a visualisation of the results for the case τ = 1.

Theorem 8.8. Suppose that Assumption 7.2(v) holds for the model given in Example 2.6
with εn := n−β for some β ∈ (0, 1

2), ϑn = n−r for some r ∈ (0, 1
2), τ > 0 and Tn = 1 − Φ

for all n ∈ N. Moreover, let ρ∗
dense be defined as in (5.5).

(i) If τ = 1 and r < ρ∗
dense(β, τ) then (7.18) holds. In this case HC can completely

separate H0,n and H1,n (asymptotically), see Remark 7.7(i).
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8.2. The h-model

(ii) Consider r = ρ∗
dense(β, τ). Then (7.29) holds for all t ∈ R if (7.3) is fulfilled, and

(7.31) holds for all t ∈ R if (7.4) is fulfilled. In this case HC cannot successfully
separate H0,n and H1,n (asymptotically), see Remark 7.9(i).

(iii) If τ > 1 then (7.18) holds. In this case HC can completely separate H0,n and H1,n

(asymptotically), see Remark 7.7(i).

(iv) If τ < 1 and j = 2 then (7.18) holds. In this case HC can completely separate H0,n

and H1,n (asymptotically), see Remark 7.7(i).

Proof. In Section 8.4.1 we discuss the dense case for exponential family models including
the heterogeneous normal mixture model, i.e., the case τ = 1. The results, which we prove
there, can be used to show (i) and (ii), see Example 8.18 for details. It remains to verify
(iii) and (iv). Let τ �= 1. We can assume without loss of generality that un = o(1) as
n → ∞, see Remark 7.3(i). By Remark 8.2(ii) and Lemma A.29 we have for some c > 0

μ̃n(0, un] = 1 − Φ
(

−Φ−1(un) + ϑn

τ

)

∼asy
−τ

Φ−1(un) + ϑn

1√
2π

exp

⎛⎝−1
2

(
Φ−1(un) + ϑn

τ

)2
⎞⎠

∼asy
τ√
2π

(−2 log(un))− 1
2 exp

⎛⎝− 1
2τ2

(
−
√

−2 log(un) +
log(4π) + log log

(
u−1

n

)
+ o(1)

2
√−2 log(un)

)2
⎞⎠

=
τ

2
√

π
(− log(un))− 1

2 exp
(

− 1
2τ2

(
−2 log(un) − log(4π) − log log

(
u−1

n

)
+ o(1)

))
∼asy c (− log(un))− 1

2 + 1
2τ2 u

1
τ2
n = nλn(− 1

τ2 +o(1)) as n → ∞.

From this and β < 1
2 we deduce that

nεn√
n un log log n

(
μ̃n(0, un] − un

)
= n

1
2 −β+o(1)

(
n−λnτ−2+o(λn) − n−λn

)
→
⎧⎪⎨⎪⎩ ∞ if τ > 1

−∞ if τ < 1

as n → ∞. Finally, we can conclude (iii) and (iv) from Theorem 7.6(i). �

8.2. The h-model

In Section 5.3 we discussed the asymptotic behaviour of LLRT for the h-model introduced
in Section 2.4. We determined, among others, the detection boundary for the case that
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8. Applications to practical detection models

Figure 8.1.: The detectable and the undetectable area of HC are visualised for the h-
model. The boundary, which splits the plane into these two areas, belongs to
the undetectable area.

neither τn,i nor εn,i depends on i, see Corollary 5.18 and Figure 5.3. In the following
we prove that the detectable areas of LLRT and HC coincide. Under some additional
assumptions we also show that HC cannot successfully separate the null and the alternative
on the detection boundary (asymptotically). The results are visualised in Figure 8.1.

Theorem 8.9. Suppose that Assumption 7.2(v) and the conditions of Corollary 5.18 hold
simultaneously with Tn := T −1

n := id(0,1) for every n ∈ N.

(i) If β < β#
h (r) then (7.18) holds. In this case HC can completely separate H0,n and

H1,n (asymptotically), see Remark 7.7(i).

(ii) Suppose β = β#
h (r) and

∫ 1

0
h2+κ dλλ < ∞ for some κ > 0. (8.16)

Then (7.29) holds for all t ∈ R if (7.3) is fulfilled, and (7.31) does so if (7.4) holds.
HC cannot successfully separate H0,n and H1,n (asymptotically), see Remark 7.9(i).

Proof. Due to Remark 7.3(i) we can assume without loss of generality that

n−λn log log(n) = o(1) as n → ∞. (8.17)

Substituting u = τny we deduce from (2.18) and (2.19) of Assumption 2.26 that
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μn(0, vn] = vn − c1λλ
(
(0, vn] ∩ [n−r, 1

))
+
(
1 − n−r) ∫

(0,max{1,vn nr})
h dλλ, (8.18)

μn(1 − vn, 1) = vn − c1λλ (1 − vn, 1) + 0 = (1 − c1)vn (8.19)

for all vn ∈ (0, 1
2) and all sufficiently large n ∈ N.

First, we verify (i). Assume β < β#
h (r). Set vn := n−r for all n ∈ N. By (8.18)

√
nεnμn(0, vn]√

vn(1 − vn) log log n
≥ n

1
2 −β+ 1

2 r+o(1)
∫

(0,1)
h dλλ = nβ#

h
(r)−β+o(1) c1

as n → ∞. Consequently, we conclude (i) from Theorem 7.6(i) and Remark 7.7(iii).
Now we verify (ii). Suppose that the corresponding conditions are fulfilled. By (8.19)

an

√
nεn sup

v∈[rn,un]

{
μn(1 − v, 1)√

v

}
= ann

1
2 −β(1 − c1)

1√
un

= o(1)

as n → ∞. Combining this and Remark 7.9(ii) yields (7.30). In the following we show
that (7.28) holds as well. If r = 1 = β then by (8.17)

an

√
nεn sup

v∈[rn,un]

{
v− 1

2 μn(0, v]
}

≤ ann
1
2 −1r

− 1
2

n =
√

2n−λn log log(n) = o(1) as n → ∞.

We can conclude from this and Remark 7.9(ii) that (7.28) is fulfilled if r = 1. It remains
to discuss the case r < 1. As mentioned in Remark 7.3(i) we can freely choose ρ, ρn,1, ρn,2

from Assumption 7.2(i). Suppose that

ρ = r, ann( 1
2 − 1

2+κ )ρn,2 = o(1) and an n− 1
2 ρn,1 = o(1) as n → ∞. (8.20)

By Hölder’s inequality and (8.16) there exists some c0 > 0 such that

∫ x

0
h dλλ ≤

(∫ 1

0
h2+κ dλλ

) 1
2+κ
(∫ x

0
dλλ

)1− 1
2+κ ≤ c0 x1− 1

2+κ for all x ∈ (0, 1]. (8.21)

By (8.20) ρn,2 is negative for all sufficiently large n ∈ N. Hence, sn = n−ρ+ρn,2 < n−r for
all sufficiently large n ∈ N. Combining this, (8.18), (8.20) and (8.21) shows that

an

√
nεn sup

v∈[rn,sn]

{
v− 1

2 |μn(0, v] − v|
}

= an n
1
2 −β(1 − n−r) sup

v∈[rn,sn]

{
v− 1

2

∫
(0,vnr)

h dλλ

}

≤ an n
1
2 −βc0 sup

v∈[rn,sn]
v

1
2 − 1

2+κ nr(1− 1
2+κ )

≤ c0 ann
1
2 −β+( 1

2 − 1
2+κ )(−r+ρn,2)+r(1− 1

2+κ )

≤ c0 ann( 1
2 − 1

2+κ )ρn,2 = o(1) as n → ∞.
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Consequently, we obtain (7.28) since by (8.20)

an

√
nεn sup

v∈[tn,un]

{
v− 1

2 |μn(0, v] − v|
}

≤ ann
1
2 −1 t

− 1
2

n = an n− 1
2 ρn,1 = o(1) as n → ∞.

By Corollaries 4.12(i) and 5.18 P(n) � � Q(n). Hence (ii) follows from Theorem 7.8. �

8.3. Extensions of the results of Cai and Wu

Cai and Wu [12] showed that under the assumptions of their Theorem 1, treating the case
Pn,i = N(0, 1), the detectable areas of HC and LLRT coincide, see their Theorem 4. It was
an unsolved problem if these areas also coincide under the assumptions of their Theorem
3, treating general Pn,i = Pn. In this section we show that it is still valid, even for our
extension. At the end we also present an extension of their Theorem 4.

We begin by presenting the result concerning HC corresponding to our Theorem 5.23.

Theorem 8.10. (i) Let Assumption 7.2(iii), (7.4) and the assumptions of Theo-
rem 5.23(ii) be fulfilled simultaneously. Then (7.18) holds. Hence, HC can completely
separate the null H0,n and the alternative H1,n (asymptotically), see Remark 7.7(i).

(ii) Suppose that Assumption 7.2(iii), (7.3) and the assumptions of Theorem 5.23 hold
simultaneously. If (5.54) holds for some δ > 0 and

lim inf
n→∞ min

1≤i≤kn

λλ

(
s ∈
( log(2)

log(kn)
, 1
)

: β# − 1
2

≤ hkn,1,i(s)
log(kn)

− s +
s ∧ 1

2

)
> 0 (8.22)

then (7.18) holds. Hence, HC can completely separate the null H0,n and the alterna-
tive H1,n (asymptotically), see Remark 7.7(i).

Remark 8.11. (i) Note that there is a difference between assuming Tn,i = Fn,i and as-
suming Tn,i = 1 − Fn,i in Theorem 8.10(ii). That is one of the reason why we use a
general mapping Tn,i instead of Fn,i or 1 − Fn,i, respectively. We already mentioned
this issue in Remark 5.24(i).

(ii) If (7.3) holds then the values, which are near to 1, are excluded. That is why the
assumption (8.22) of (ii) only depends on hkn,1,i and not on hkn,2,i. �
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Proof. We only give the proof of (i). The one of (ii) runs analogously. Let τn ∈ {λkn , 1 −
λkn} for all n ∈ N. By (5.54), a similar calculation as the one in (5.69), Theorem 7.6 and
Remark 7.7(iii) it remains to prove that

1√
kn k−τn

n log log(kn)

kn∑
i=1

εkn,i μ
Tkn,i

kn,i (0, k−τn
n ]

=
1√

log log(kn)
k

1
2 (τn−1)
n

kn∑
i=1

εkn,i

∫ k−τn
n

0
exp
[
lkn,i

(
T −1

kn,i(v)
)]

dv (8.23)

or

1√
kn k−τn

n log log(kn)

kn∑
i=1

εkn,i

(
1 − μ

Tkn,i

kn,i (0, 1 − k−τn
n ]
)

=
1√

log log(kn)
k

1
2 (τn−1)
n

kn∑
i=1

εkn,i μ
1−Tkn,i

kn,i (0, k−τn
n ]

=
1√

log log(kn)
k

1
2 (τn−1)
n

kn∑
i=1

εkn,i

∫ k−τn
n

0
exp
[
lkn,i

(
T −1

kn,i(1 − v)
)]

dv

converges to infinity as n → ∞. Because both terms are positive this holds if and only if
the sum of both converges to infinity as n → ∞. By using the substitution v = k−s

n the
sum of both terms can be lower bounded for sufficiently large n ∈ N in the following way:

Sn :=
k

1
2 (τn−1)
n√

log log(kn)

kn∑
i=1

εkn,i

∫ k−τn
n

0
exp
[
lkn,i

(
T −1

kn,i(v)
)]

+ exp
[
lkn,i

(
T −1

kn,i(1 − v)
)]

dv

=
1√

log log(kn)
k

1
2 (τn−1)
n

kn∑
i=1

εkn,i

∫ ∞

τn

∑
m=1,2

exp
[
hkn,m,i(s)

]
log (kn) k−s

n ds

≥ log (kn)√
log log(kn)

kn∑
i=1

εkn,i

∫ ∞

τn

exp
[
log(kn)

(
hkn,i(s)
log(kn)

− s − 1
2

+
τn

2

)]
ds. (8.24)

By (5.55) there exists some κ > 0 such that for every sufficiently large n ∈ N

min
1≤i≤kn

{
λλ

(
s ∈ (1, ∞) : β# − 1 + s ≤ hkn,i(s)

log(kn)

)}
≥ κ (8.25)

or min
1≤i≤kn

{
λλ

(
s ∈
(

max
{ log(2)

log(kn)
, λkn

}
, 1
)

: β# +
s

2
− 1

2
≤ hkn,i(s)

log(kn)

)}
≥ κ. (8.26)

Let τn = 1 − λkn for all n ∈ N. From (5.54) and (8.24) we deduce that for all sufficiently
large n ∈ N, for which (8.25) holds,
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Sn ≥ log (kn)√
log log(kn)

k1−β#+δ
n κ exp

[
log(kn)

(
β# − 1 − λkn

2

)]
≥ k

δ− λkn
2

n .

Now let τn = λkn for all n ∈ N. Similar to the calculation above we conclude that for all
sufficiently large n ∈ N, for which (8.26) holds,

Sn ≥ κ
log (kn)√
log log(kn)

k
δ+

λkn
2

n .

To sum up,

Sn ≥ k
δ
2
n → ∞ as n → ∞. �

Combining Corollary 5.25 and Theorem 8.10 yields the following corollary.

Corollary 8.12. Suppose that Assumption 7.2(iii), (7.4) and the assumptions of Corol-
lary 5.25 hold simultaneously.

(i) If β exceeds β# then LLRT and HC cannot successfully separate the null H0,n and
the alternative H1,n (asymptotically).

(ii) If β is smaller than β# then LLRT and HC can completely separate the null H0,n

and the alternative H1,n (asymptotically).

Remember that Theorem 2 in [12] corresponds to Corollary 5.26 and is a special case of
Corollary 5.25. Hence, we can now give the answer to the unanswered question mentioned
in the introduction: the detection areas of HC and LLRT do coincide under the assump-
tions of Theorem 3 in [12]. Finally, we present the extension of Theorem 1 in [12]. The
proof is very similar to the one of Theorem 8.10 and, thus, we omit it.

Theorem 8.13 (Extension of Theorem 4 in [12]). (i) Let Assumption 7.2(iii),
(7.4) and the assumptions of Theorem 5.27(ii) be fulfilled simultaneously. Then
(7.18) holds and HC can completely separate H0,n and H1,n (asymptotically).

(ii) Suppose that Assumption 7.2(iii), (7.3), the assumptions of Theorem 5.27 and (5.65)
for some δ > 0 hold simultaneously. Assume additionally that

lim inf
n→∞ min

1≤i≤kn

{
λλ

(
x ∈ (−1, 1) : β# − 1

2
≤ h̃kn,1,i(x)

log(kn)
− x2 +

x2 ∧ 1
2

)}
> 0.

Then (7.18) holds and HC can completely separate H0,n and H1,n (asymptotically).
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8.4. Exponential families

8.4.1. Dense case

In this section we discuss exponential families for the dense case. In Section 5.2.2 we
determined the asymptotic behaviour of LLRT for this case. We verified that it is uniquely
determined by Bkn as defined in (5.18). Below, we show that in the case εkn,i = εkn the
asymptotic behaviour of HC is uniquely determined by Bkn as well under some additional
assumptions. We will show at the end of this section that these additional assumptions
are fulfilled for the heterogeneous normal mixture model, see Section 8.1.2, and for the
exponential distribution mixture model introduced in Example 2.10. Due to Remark 5.9
we can also make use of the results to determine the asymptotic behaviour of HC for the
Gumbel and Fréchet distribution mixture model introduced in Example 2.8 and 2.9. In
all above-mentioned examples the detectable areas of LLRT and HC do coincide. We will
show for these examples that HC cannot successfully separate the null and the alternative
on the detection boundary (asymptotically). The results concerning the simple case εn,i =
εn = n−β, see Corollary 8.16, are visualised in the following section, see Figure 8.2.

Theorem 8.14. Suppose that Assumption 2.23 and Assumption 7.2(iii) hold simultane-
ously, where Tn = T1 =: T and T −1

n = T −1
1 =: T −1 for all n ∈ N.

(i) Assume that

kn∑
i=1

εkn,iϑkn = kκ+o(1)
n for some κ >

1
2

as n → ∞

and ϑ2
kn

k
1
4 λkn
n = o(1) as n → ∞. (8.27)

Moreover, suppose that

lim sup
v↘0

(
ω(1)(0) +

1
v

∫ v

0
h(T −1(y)) dy

)
< 0. (8.28)

Then (7.18) holds. Hence, HC can completely separate H0,n and H1,n (asymptoti-
cally), see Remark 7.7(i).

(ii) Assume that (8.27) is fulfilled and

kn∑
i=1

εkn,iϑkn = −kκ+o(1)
n for some κ >

1
2

as n → ∞.

Moreover, suppose that
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lim inf
v↘0

(
ω(1)(0) +

1
v

∫ v

0
h(T −1(y)) dy

)
> 0.

Then (7.18) holds and HC can completely separate H0,n and H1,n (asymptotically).

(iii) Suppose that j = 2. Additionally, assume that (8.27) is fulfilled and

kn∑
i=1

εkn,i |ϑkn | = kκ+o(1)
n for some κ >

1
2

as n → ∞.

Moreover, suppose that

lim inf
v↘0

∣∣∣∣ω(1)(0) +
1
v

∫ v

0
h(T −1(y)) dy

∣∣∣∣ > 0.

Then (7.18) holds and HC can completely separate H0,n and H1,n (asymptotically).

(iv) Suppose that εn,i = εn,1 =: εn for all i ∈ {1, . . . , n} and that Bkn given by (5.18)
converges to a positive constant as n → ∞ . Then (7.29) holds for all t ∈ R if
(7.3) is fulfilled, and (7.31) holds for all t ∈ R if (7.4) is fulfilled. Thus, HC cannot
successfully separate H0,n and H1,n (asymptotically), see Remark 7.9(i).

Remark 8.15. If( 1
n

, α0

)
⊆ In for all n ∈ N or

( 1
n

, 1 − 1
n

)
⊆ In for all n ∈ N

then we can choose λn = 1
log n for all n ∈ N and so (8.27) is fulfilled. Hence, (8.27) is not

an actual restriction in practice. �

Before we give the proof of Theorem 8.14 we present the following immediate consequence
of Theorem 8.14 in the context of the detection boundary discussed in Corollary 5.13.

Corollary 8.16. Suppose that Assumption 7.2(v) and the assumptions of Corollary 5.13
hold simultaneously, where Tn = T1 =: T and T −1

n = T −1
1 =: T −1 for all n ∈ N. Moreover,

assume (8.28).

(i) Suppose r = ρ∗
Exp,d(β). Then (7.29) holds for all t ∈ R if (7.3) is fulfilled, and (7.31)

holds for all t ∈ R if (7.4) is fulfilled. Thus, HC cannot successfully separate the
null and the alternative (asymptotically), see Remark 7.9(i).

(ii) If r > ρ∗
Exp,d(β) then (7.18) holds. Hence, HC can completely separate H0,n and H1,n

(asymptotically), see Remark 7.7(i).
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Proof of Theorem 8.14. Due to Remark 7.1(ii) there is no loss of generality in assuming
Q0 = U(0,1) and T = id(0,1) : (0, 1) → (0, 1). Regarding Theorem 7.6 and Theorem 7.8 we
first determine

μkn,i(0, τn] − τn =
∫ τn

0
C(ϑkn) exp [−ϑknh(x)] − 1 dx

and μkn,i(0, 1 − τn] − (1 − τn) = τn − μkn,i ((1 − τn, 1]) (8.29)

= −
∫ 1

1−τn

(C(ϑkn) exp [−ϑknh(x)] − 1) dx (8.30)

for certain τn ∈ [0, 1] and all n ∈ N. Note that we introduced ε > 0 in Assumption 2.23.
Define the function χx : (−ε, ε) → R for all x ∈ [0, 1] by

χx(ϑ) := C(ϑ) exp [−ϑh(x)] − 1 for all ϑ ∈ (−ε, ε).

Since ω(ϑ) > 0 for all ϑ ∈ Θ, by Lemma 2.24 the function ϑ �→ C(ϑ) = ω(ϑ)−1 is
indefinitely often differentiable in (−ε, ε) and so is χx for all x ∈ [0, 1]. Note that

χ(1)
x (ϑ) = C(1)(ϑ) exp(−ϑh(x)) − C(ϑ)h(x) exp(−ϑh(x))

=
[
−C(ϑ)2ω(1)(ϑ) − C(ϑ)h(x)

]
exp(−ϑh(x)) (8.31)

and χ(2)
x (ϑ) =

[
C(2)(ϑ) − 2C(1)(ϑ)h(x) + C(ϑ)h2(x)

]
exp(−ϑh(x)) (8.32)

for all ϑ ∈ (−ε, ε) and every x ∈ [0, 1]. By Taylor’s theorem, (8.31) and (8.32) there exists
some function rn : [0, 1] → R for all sufficiently large n ∈ N such that for all x ∈ [0, 1]

|rn(x)| ≤ |ϑkn | ≤ ε

8
(8.33)

and χx(ϑkn) = ϑkn

[
−ω(1)(0) − h(x)

]
+

ϑ2
kn

2
χ(2)

x (rn(x)) . (8.34)

Thus, by (8.29) and (8.30) we have for all τ ∈ (0, 1) and every sufficiently large n ∈ N

μkn(0, τ ] − τ = −ϑknτ ω(1)(0) − ϑkn

∫ τ

0
h(x) dx +

ϑ2
kn

2

∫ τ

0
χ(2)

x (rn(x)) dx (8.35)

and μkn(0, 1 − τ ] − (1 − τ)

= ϑknτ ω(1)(0) + ϑkn

∫ 1

1−τ
h(x) dx − ϑ2

kn

2

∫ 1

1−τ
χ(2)

x (rn(x)) dx. (8.36)

Now we examine the asymptotic behaviour of the second integral from (8.35) and (8.36),
respectively. Since ω and C are indefinitely often differentiable in (−ε, ε) there exists some
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M ≥ 1 such that

∣∣∣ω(k)(ϑ)
∣∣∣+ ∣∣∣C(k)(ϑ)

∣∣∣ ≤ M for all ϑ ∈
[
−ε

2
,

ε

2

]
and k ∈ {0, 1, . . . , 8} . (8.37)

Let

either Bτ := (0, τ) for all τ ∈ (0, 1) or Bτ := (1 − τ, 1) for all τ ∈ (0, 1).

Combining Lemma 2.24, (8.37) and Hölder’s inequality shows for all τ ∈ (0, 1):

∣∣∣∣∫ 1

0
h(x)1Bτ (x) dx

∣∣∣∣ ≤
[∫ 1

0
h(x)4 dx

] 1
4
[∫ 1

0
1Bτ (x) dx

] 3
4

= τ
3
4
∣∣∣ω(4)(0)

∣∣∣ 14 ≤ M τ
3
4 . (8.38)

We can conclude from (8.32), (8.33), (8.37) and Hölder’s inequality that for all τ ∈ (0, 1)
and every sufficiently large n ∈ N

∣∣∣∣∫
Bτ

χ(2)
x (rn(x)) dx

∣∣∣∣ ≤ M
2∑

k=0

∫ 1

0
1Bτ (x) |h(x)|k e−rn(x)h(x) dx

≤ M
2∑

k=0

[∫ 1

0
h4k(x)e−4rn(x)h(x) dx

] 1
4
[∫ 1

0
1Bτ (x) dx

] 3
4

≤ M τ
3
4

2∑
k=0

[∫ 1

0
h4k(x)

(
e−4ϑkn h(x) + e4ϑkn h(x)

)
dx

] 1
4

= Mτ
3
4

2∑
k=0

[∣∣∣ω(4k)(4ϑkn)
∣∣∣+ ∣∣∣ω(4k)(−4ϑkn)

∣∣∣] 1
4 ≤ 6M2τ

3
4 . (8.39)

Let vn := un = n−λn for all n ∈ N. Obviously, (7.15) holds. Furthermore, if (8.27) is
fulfilled then by (8.35) and (8.39)

1√
kn vkn log log (kn)

kn∑
i=1

εkn,i

(
μkn (0, vkn ] − vkn

)

= −
√

vkn

kn log log (kn)

kn∑
i=1

εkn,iϑkn

(
ω(1)(0) +

1
vkn

∫ vkn

0
h(y) dy + O

(
ϑ2

kn
(vkn)− 1

4
))

= −k
− 1

2 +o(1)
n

kn∑
i=1

εkn,iϑkn

(
ω(1)(0) +

1
vkn

∫ vkn

0
h(y) dy + o(1)

)
as n → ∞.

Hence, applying Theorem 7.6(i) proves (i)-(iii).
Now suppose that the assumptions of (iv) hold. By Remark 7.3(i) we can assume without
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loss of generality that

an n− 1
4 λn → 0 as n → ∞. (8.40)

Since M ≥ 1 we deduce from (8.35)-(8.40) that

akn

√
kn εkn sup

τ∈[rkn ,skn ]∪[tkn ,ukn ]

{ |μkn(0, τ ] − τ |√
τ

+
|μkn(0, 1 − τ ] − (1 − τ)|√

τ

}
≤ 2akn

√
kn εkn sup

τ∈[rkn ,skn ]∪[tkn ,ukn ]

{
|ϑkn | √

τM + |ϑkn | Mτ
1
4 + ϑ2

kn
3M2τ

1
4
}

≤ 10 aknM2√kn εkn |ϑkn | u
1
4
kn

= 10 M2
√

Bkn akn kn
− 1

4 λkn → 0 as n → ∞.

Thus, (7.28) and (7.30) of Theorem 7.8 are fulfilled. Note that by Corollary 4.12(i) and
Theorem 5.11(i) we have P(kn) � � Q(kn). Hence, (iv) follows from Theorem 7.8. �

The above-mentioned results can be applied, e.g., to the heterogeneous normal mixture
model discussed in Section 8.1.2, see Example 8.18, and to the exponential distribution
mixture model introduced in Example 2.10, see the following corollary.

Corollary 8.17. Let r > 0. Suppose that Assumption 7.2(v) holds for one of the following
models (a)-(c).

(a) (Gumbel) The model introduced in Example 2.8 with ϑn ∼asy −r log (n) as n → ∞.

(b) (Fréchet) The model introduced in Example 2.9 with ϑn ∼asy n− r
α as n → ∞.

(c) (Exponential) The model introduced in Example 2.10 with ϑn ∼asy n−r as n → ∞.

Additionally, suppose that T and T −1 are the distribution function and the left continuous
quantile function of P0, respectively. Furthermore, let ρ∗

Exp,d(β) := β − 1
2 and εn := n−β

for all n ∈ N and some β ∈ (0, 1
2).

(i) Suppose that r = ρ∗
Exp,d(β). Then (7.29) holds for all t ∈ R if (7.3) is fulfilled, and

(7.31) holds for all t ∈ R if (7.4) is fulfilled. Thus, HC cannot successfully separate
the null and the alternative (asymptotically), see Remark 7.9(i).

(ii) If r > ρ∗
Exp,d(β) then (7.18) holds. Hence, HC can completely separate H0,n and H1,n

(asymptotically), see Remark 7.7(i).
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Proof. We can assume without loss of generality that the model in (c) is given, compare
to Remark 5.9. In this case Qϑ = Exp(1 + ϑ), ϑ ∈ Θ := (−1, ∞). Thus,

h(x) = x, ω(ϑ) =
1

1 + ϑ
and T −1(y) = − log(1 − y)

for all x > 0, ϑ ∈ Θ and y ∈ (0, 1). Let (vn)n∈N be a sequence in (0, 1) with vn → 0 as
n → ∞ . Then

ω(1)(0) +
1
vn

∫ vn

0
− log (1 − y) dy = −1 +

1
vn

(
(1 − vn) log(1 − vn) − (1 − vn) + 1

)
= −1 + (1 − vn)

log(1 − vn)
vn

+ 1

= −1 + o(1) as n → ∞.

Finally, applying Corollary 8.16 completes the proof. �

Example 8.18 (Heterogeneous normal mixtures). Let (vn)n∈N be a sequence in (0, 1) with
vn → 0 as n → ∞ . Let Qϑ := N(ϑ, 1) for all ϑ ∈ Θ := R and T := 1 − Φ. Clearly,

T −1(u) = Φ−1(1 − u), h(x) = −x and ω(ϑ) = exp
(

ϑ2

2

)

for all u ∈ (0, 1), x ∈ R and every ϑ ∈ Θ. Substituting 1 − u = Φ(x) and x2 = 2y we can
conclude from (A.24) of Lemma A.29 that

2ω(1)(0) +
1
vn

∫ vn

0
h
(
T −1 (y)

)
dy = 0 − 1

vn

∫ vn

0
Φ−1(1 − u) du

= − 1
vn

∫ ∞

Φ−1(1−vn)
x

1√
2π

e− x2
2 dx = − 1

vn

√
2π

∫ ∞
1
2 [Φ−1(1−vn)]2

e−y dy

= − 1
vn

√
2π

exp

⎛⎝−1
2

[√
−2 log(vn) − log (4π) + log log(v−1

n ) + o(1)
2
√−2 log(vn)

]2⎞⎠
= − 1

vn

√
2π

exp
(

log(vn) +
1
2

log(4π) +
1
2

log log(v−1
n ) + o(1)

)
→ −∞ as n → ∞.

Consequently, Theorem 8.8(i) and (ii) follow from Corollary 8.16. �
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8.4.2. Sparse case

In contrast to the previous section we only present the results regarding Corollary 5.7 for
the sparse exponential family model, i.e., εn,i = εn for all 1 ≤ i ≤ n ∈ N. These are
visualised in Figure 8.2 for the case p = 0.6. We show that the detection areas of HC and
LLRT coincide under the conditions of Corollary 5.7. Note that by this they coincide in
particular for the exponential, Gumbel and Fréchet distribution mixture models, respec-
tively, i.e. under the assumptions of Corollary 5.10. Moreover, we prove that HC has no
power on the detection boundary asymptotically, i.e., HC cannot successfully separate the
null and the alternative there. We conclude this result from a more general theorem which
can also be applied to the heterogeneous normal mixture model, i.e., the model introduced
in Example 2.6 with τ = 1.

Theorem 8.19. Suppose that Assumption 7.2(v) and the assumptions of Corollary 5.7
hold for Tn := T := F0 and T −1

n := T −1 := F −1
0 , n ∈ N, where F0 and F −1

0 are the
distribution function and the left continuous quantile function, see (2.5), of Q0.

(i) If β < β#
Exp(r, p) then (7.18) holds. In this case HC can completely separate H0,n

and H1,n (asymptotically), see Remark 7.7(i).

(ii) Let β < 1 and β = β#
Exp(r, p). Let εn be given by (5.11). Then (7.29) holds for all

t ∈ R if (7.3) is fulfilled, and (7.31) holds for all t ∈ R if (7.4) is fulfilled. Thus,
HC cannot successfully separate H0,n and H1,n (asymptotically), see Remark 7.9(i).

(iii) Suppose p > 0, r = 1
p , β = β#

Exp(r, p) = 1 and L ≡ K ∈ (0, ∞). Then (7.29) holds for
all t ∈ R if (7.3) is fulfilled, and (7.31) holds for all t ∈ R if (7.4) is fulfilled. Thus,
HC cannot successfully separate H0,n and H1,n (asymptotically), see Remark 7.9(i).

The statement in (i) follows immediately from Corollary 8.12 and the alternative proof
of Corollary 5.7(v) on pp. 93ff. The proofs of Theorem 8.19(ii) and (iii) are given at the
end of this section. There we apply the following more general theorem, which gives us
a sufficient condition for the case that HC cannot successfully separate the null and the
alternative.

Theorem 8.20. Let {kn : n ∈ N} be a subsequence of N. Let (αn)n∈N and (βn)n∈N be
sequences in R such that αn and βn tend to 0 as n → ∞. Let Assumption 7.2(v) be fulfilled
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Figure 8.2.: The detectable and the undetectable area of HC are visualised for the dense
exponential family mixture model (right) as well as for the sparse one in the
case p = 0.6 (left). The boundary, which splits the plane into these two areas,
belongs to the undetectable area in both models.

and ψ : (1, 3) → R be a function with ψ(2) = 1
2 such that one of the following conditions

(i)-(iii) holds, P(kn) � � Q(kn) and

εkn = kn
−β+βkn for all n ∈ N and some β ∈

(1
2

, 1
]

. (8.41)

(i) We have (∫
f q

kn
dPkn

) 1
q ≤ k

ψ(q)(2β−1)+αkn
n (8.42)

for all sufficiently large n ∈ N, every q ∈ (2 − κ, 2 + κ) \ {2} and some κ ∈ (0, 1).
Moreover, ψ is differentiable at q = 2 with ψ(1)(2) ∈ (0, 1

8β−4).
(ii) (8.42) holds for all sufficiently large n ∈ N, every q ∈ (2, 2 + κ) and some κ ∈ (0, 1).

Moreover,

lim sup
q↘2

ψ(q) − 1
2

q − 2
≤ 0. (8.43)

(iii) (8.42) holds for every sufficiently large n ∈ N, all q ∈ (2 − κ, 2) and some κ ∈ (0, 1).
Furthermore,

lim inf
q↗2

ψ(q) − 1
2

q − 2
≥ 1

8β − 4
. (8.44)
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Then (7.29) holds for all t ∈ R if (7.3) is fulfilled, and (7.31) holds for all t ∈ R if (7.4)
is fulfilled. Thus, HC cannot successfully separate the null and the alternative (asymptot-
ically), see Remark 7.9(i).

Remark 8.21. Assume that Assumption 2.11 holds. Let q ∈ (1, 3) such that ϑknq ∈ Θ.
Then

(∫
f q

kn,i dPkn,i

) 1
q

=
(∫

C(ϑkn)q exp (qϑknh(x)) dQ0

) 1
q

=
C(ϑkn)

C(qϑkn)
1
q

.

Thus, the conditions (8.41) and (8.42) remind us of (4.67). �

The exponential family (N(ϑ, 1) : ϑ ∈ R) does not fulfil (iii) of Assumption 2.16. Hence,
Theorem 8.20 is not applicable for this family, whereas the more general Theorem 8.20 is
applicable.

Example 8.22 (Heterogeneous normal mixture model). Let Qϑ := N(ϑ, 1) for all ϑ ∈ Θ.
Let β ∈ (1

2 , 3
4), r := ρ∗(β, 1) = β − 1

2 , ϑn :=
√

2r log(n) and εn := n−β. Then for all ϑ ∈ R,
n ∈ N and q ∈ (1, 3) we have

C(ϑ) = exp
(

−1
2

ϑ2
)

and, hence,
C (ϑkn)

C (qϑkn)
1
q

= n−r(1−q) = n(2β−1) 1
2 (q−1).

Consequently, for the case that τ = 1 and β ∈ (1
2 , 3

4) Theorem 8.1(ii) can also be shown
by applying Theorem 8.20 with ψ defined by ψ(q) := 1

2(q − 1), q ∈ (1, 3). �

Proof of Theorem 8.20. First, we verify (i). To improve the readability we (only) give the
proof for the case {kn : n ∈ N} = N. Suppose that the assumptions of (i) are fulfilled. Let
(qn,1)n∈N be a sequence in (2 − κ, 2) and (qn,2)n∈N be a sequence in (2, 2 + κ) such that

qn,m = 2 + o(1) and
∣∣∣∣∣ αn

2 − qn,m

∣∣∣∣∣+
∣∣∣∣∣ βn

2 − qn,m

∣∣∣∣∣+
∣∣∣∣∣ log log(n)
(2 − qn,m) log(n)

∣∣∣∣∣ = o(1) (8.45)

for m = 1, 2 as n → ∞. As mentioned in Remark 7.3(i) we can arbitrarily choose
ρ, ρn,1, ρn,2 from Assumption 7.2(i). Define

ρ := 4(2β − 1)ψ(1)(2) ∈ (0, 1). (8.46)

For all n ∈ N and m ∈ {1, 2} let

ρn,m :=
−2qn,m log log(n)
(qn,m − 2) log(n)

+ ρ − qn,m(4β − 2)
ψ(qn,m) − ψ(2)

qn,m − 2
−

2qn,m

(
αn + βn + an

log(n)

)
qn,m − 2

.
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Obviously, we can conclude from (8.45) and (8.46) that ρn,1, ρn,2 = o(1) as n → ∞. Let

Bτ,1 := (0, τ ] and Bτ,2 := (1 − τ, 1)

for all τ ∈ (0, 1). From Hölder’s inequality we can deduce that for all sufficiently large
n ∈ N, every τ ∈ (0, 1) and all l, m ∈ {1, 2}:

√
n εn

μTn
n (Bτ,l)√

τ
= τ− 1

2 n
1
2 −β+βn

∫
fn 1T −1

n (Bτ,l) dPn

≤ τ− 1
2 n

1
2 −β+βn

[∫
f qn,m

n dPn

] 1
qn,m
[∫

1Bτ,l
dP Tn

n

]1− 1
qn,m

≤ τ− 1
2 n

1
2 −β+βn+ψ(qn,m)(2β−1)+αn

[
U(0,1) (Bτ,l)

]1− 1
qn,m

= τ
1
2 − 1

qn,m n
1
2 −β+βn+ψ(qn,m)(2β−1)+αn

= τ
qn,m−2
2qn,m n[ψ(qn,m)−ψ(2)](2β−1)+βn+αn .

Combining this and the definition of ρn,m shows for every l ∈ {1, 2}

an

√
n εn sup

τ∈[rn,sn]

{
μTn

n (Bτ,l)√
τ

}
≤ s

qn,2−2
2qn,2

n an n[ψ(qn,2)−ψ(2)](2β−1)+αn+βn

= an n
(−ρ+ρn,2) qn,2−2

2qn,2
+[ψ(qn,2)−ψ(2)](2β−1)+αn+βn

= exp (− log log(n)) → 0 as n → ∞. (8.47)

and analogously

an

√
n εn sup

τ∈[tn,un]

{
μTn

n (Bτ,l)√
τ

}
≤ t

qn,1−2
2qn,1

n an n[ψ(qn,1)−ψ(2)](2β−1)+αn+βn

= exp (− log log(n)) → 0 as n → ∞.

Consequently, (i) follows from Theorem 7.8 and Remark 7.9(ii).
Similar to (8.47) we conclude that for all n ∈ N and every l ∈ {1, 2}

an

√
n εn sup

τ∈[rn,un]

{
μTn

n (Bτ,l)√
τ

}
(8.48)

≤ u

qn,2−2
2qn,2

n an n[ψ(qn,2)−ψ(2)](2β−1)+αn+βn

= exp
(

log(n)
qn,2 − 2

2qn,2

[
−λn + 2qn,2(2β − 1)

ψ(qn,2) − ψ(2)
qn,2 − 2

+
2qn,2

qn,2 − 2

(
αn + βn +

an

log(n)

)])
.
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In case of strict inequality in (8.43) we can immediately deduce that (8.48) tends to 0 as
n → ∞. Otherwise, we can assume without loss of generality due to Remark 7.3(i) that
λn tends to 0 sufficiently slowly as n → ∞. Hence, as in the previous calculations we can
verify that (8.48) also tends to 0 in case of strict inequality in (8.43). Finally, (ii) is shown.
(iii) can be proven analogously. �

Proof of Theorem 8.19(ii) and (iii). Supppose that the assumptions of Theorem 8.19(ii)
or the ones of (iii) hold. Define ψ : (1, 3) → R by ψ(q) := 1 − q−1, q ∈ (1, 3). Note that
ψ(1) (2) = 1

4 . By Lemma 2.15, (5.6) and Remark 8.21 we have for all q ∈ (1, 3)

(∫
f q

n dQ0

) 1
q

= n
rp(1− 1

q
) L(qϑn)

1
q

L(ϑn)
(1 + o(1)) = n(2β−1)ψ(q)+o(1) as n → ∞.

Moreover, from Corollary 4.12(i), Corollary 5.7(ii) and (iii) we obtain P(n) � � Q(n). Ap-
plying Theorem 8.20(i) completes the proof. �
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A.1. Infinitely divisible distributions

In this section we present some useful results about infinitely divisible distributions from
the book of Petrov [51] and modify some of his results for our purpose.

Definition A.1 (Infinitely divisible distributions, see p. 25 in [51]). We call a
probability measure P on (R, B) infinitely divisible if for every n ∈ N there exists some
probability measure Pn on (R, B) such that P is equal to the n-fold convolution of Pn.

Definition A.2 (Lévy measure). A measure η on (R\ {0}, B(R\ {0})) is called a Lévy
measure if ∫

R\{0}
min(x2, 1) dη(x) < ∞. (A.1)

Clearly, a Lévy measure is not necessarily finite but at least it is σ-finite on R \ {0}.

Theorem A.3 (Lévy’s formula, see Theorem II.3.5 in [51]). Let P be a probability
measure on (R, B) and let ϕ be its characteristic function. Then P is infinitely divisible if
and only if there exists γ ∈ R, σ2 ≥ 0 and some Lévy measure η such that

ϕ(t) = exp
[
iγt − σ2t2

2
+
∫
R\{0}

(
eitx − 1 − itx

1 + x2

)
dη(x)

]
. (A.2)

The triple (γ, σ2, η) is called the Lévy characteristic of P and is unique.

Example A.4. Let P = N(a, b) for some (a, b) ∈ R × (0, ∞). Then P is infinitely divisible
with Lévy characteristic (a, b, 0), i.e., the Lévy measure η is the trivial measure, η(A) = 0
for all A ∈ B(R \ {0}). �

In Chapter 4 we examined the asymptotic behaviour of
∑n

i=1 Yn,i for a certain triangular
array (Yn,i)1≤i≤n with row-wise independent, real-valued random variables. In [51] the
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answer for the question, which limiting distribution can occur for such a sum, is given.
Without additional assumptions it is easy to see that any distribution can be the limiting
distribution for a suitable triangular array. Set, e.g., Yn,1 := X for some random variable
X for all n ∈ N and Yn,i := 0 for all 2 ≤ i ≤ n ∈ N. Then the sum

∑n
i=1 Yn,i converges

obviously in distribution to X. Hence, it is reasonable to add more restrictions for the
random variables Yn,i.

Definition A.5 (Infinite smallness, see p. 63 of [51]). Let (Yn,i)1≤i≤n be a triangu-
lar array of row-wise independent, real-valued random variables on some probability space
(Ω, A, P). We say that (Yn,i)1≤i≤n fulfils the condition of infinite smallness if

lim
n→∞ max

1≤i≤n
{ P (|Yn,i| ≥ ε) } = 0 for every ε > 0.

Under this additional condition all accumulation points (in the sense of convergence in
distribution) of

∑n
i=1 Yn,i are infinitely divisible.

Theorem A.6. Let (Yn,i)1≤i≤n be a triangular array of row-wise independent, real-valued
random variables on some probability space (Ω, A, P) such that the condition of infinite
smallness is fulfilled. Let {kn : n ∈ N} be a subsequence of N. If

kn∑
i=1

Ykn,i
D−→ Y as n → ∞ (A.3)

for some real-valued random variable Y on (Ω, A, P) then the distribution of Y is infinitely
divisible. In the following we say that Y is infinite divisible.

In regard to Theorem A.3 and Theorem A.6 it is of interest to determine the Lévy char-
acteristic (γ, σ2, η) of Y . In order to do so we present one of the results in [51]. Since we
prefer Lévy’s formula we rewrite Theorem IV.2.6 in [51] using the relation between this
formula and the one of Khintchine and Lévy. For more details about this relation we refer
the reader to [51], in particular to Section II.2.

Theorem A.7. Suppose that the assumptions of Theorem A.6 are fulfilled. Let σ2 ≥ 0,
γ ∈ R and η be a Lévy measure on (R \ {0}, B(R \ {0})). Moreover, let τ ∈ R such that
−τ, τ ∈ C(η). Then (A.3) holds for some infinitely divisible Y on (Ω, A, P) with Lévy
characteristic (γ, σ2, η) if and only if the following conditions (a)-(c) hold.

148



A.1. Infinitely divisible distributions

(a) For all x ∈ C(η) ∩ (0, ∞) and y ∈ C(η) ∩ (−∞, 0)

kn∑
i=1

P (Ykn,i < y) → η(−∞, y) as n → ∞ (A.4)

and
kn∑
i=1

P (Ykn,i ≥ x) → η[x, ∞) as n → ∞. (A.5)

(b) We have

lim
ε↘0

lim sup
lim inf
n→∞

kn∑
i=1

[∫
Y 2

kn,i1{|Ykn,i|<ε} dP −
(∫

Ykn,i1{|Ykn,i|<ε} dP
)2
]

= σ2.

(c) We have

lim
n→∞

kn∑
i=1

∫
Ykn,i1{|Ykn,i|<τ} dP

= γ +
∫

(−τ,τ)\{0}
x3

1 + x2 dη(x) −
∫
R\[−τ,τ ]

x

1 + x2 dη(x).

Remark A.8. Suppose that (a) and (b) hold. Due to the equivalence above, (c) holds for
some τ > 0 with −τ, τ ∈ C(η) if and only if it does for all τ > 0 with −τ, τ ∈ C(η). �

In Chapter 4 we showed that for our model certain conditions are always fulfilled. In the
following we present a simplification of Theorem A.7 under this additional conditions. In
order to prove this we need the following lemma.

Lemma A.9. Let η, η1, η2, . . . be measures on ((0, ∞), B ((0, ∞))) such that

lim
n→∞ ηn(x, ∞) = η(x, ∞) ∈ R for all x > 0 (A.6)

and lim sup
n→∞

∫
(0,1)

t2 dηn(t) ≤ C for some C ∈ (0, ∞). (A.7)

Then η̃ uniquely determined by (A.8) is a Lévy measure on (R \ {0}, B(R \ {0})):

η̃(−∞, 0) := 0 and η̃(x, ∞) := η(x, ∞) for all x > 0. (A.8)

Proof. By Definition A.2 and (A.6) it is sufficient to show that∫
(0,1)

t2 dη(t) < ∞. (A.9)
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Note that Portmanteau’s Theorem and Helly-Bray’s Theorem about weak convergence of
probability measures can be easily extended to finite measures. From (A.6) we obtain for
every ε ∈ (0, 1)

ηn |(ε,∞)
w−→ η|(ε,∞) and, hence,

∫
(ε,1)

t2 dηn(t) →
∫

(ε,1)
t2 dη(t)

as n → ∞. Combining this, the monotone convergence theorem and (A.7) yields (A.9):∫
(0,1)

t2 dη(t) = lim
ε↘0

∫
(ε,1)

t2 dη(t) = lim
ε↘0

lim
n→∞

∫
(ε,1)

t2 dηn(t) ≤ C. �

Theorem A.10. Let the assumptions of Theorem A.6 be fulfilled such that for all y < 0

kn⋃
i=1

{Ykn,i ≤ y} = ∅ if n ∈ N is sufficiently large. (A.10)

Assume additionally that

lim
ε↘0

lim
n→∞

kn∑
i=1

(∫
Ykn,i1{|Ykn,i|<ε} dP

)2
= 0. (A.11)

Let σ2 ≥ 0 and γ ∈ R. Let η be a measure on (R \ {0}, B(R \ {0})) with η(−∞, 0) = 0.
Then (A.3) holds for some infinitely divisible random variable Y with Lévy characteristic
(γ, σ2, η) if and only if the following conditions (i)-(iii) hold.

(i) For every x ∈ C(η) ∩ (0, ∞)

kn∑
i=1

P (Ykn,i > x) → η(x, ∞) as n → ∞.

(ii) We have

lim
ε↘0

lim sup
lim inf
n→∞

kn∑
i=1

∫
Y 2

kn,i1{|Ykn,i|≤ε} dP = σ2. (A.12)

(iii) We have

lim
C(η)�τ↘0

⎛⎝ lim sup
lim inf
n→∞

⎛⎝ kn∑
i=1

∫
Ykn,i1{|Ykn,i|≤τ} dP

⎞⎠ +
∫

(τ,∞)

x

1 + x2 dη(x)

⎞⎠ = γ.

(A.13)
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Remark A.11. (a) The assumption that η is a Lévy measure is not needed for the state-
ment of Theorem A.10. Applying Lemma A.9 we show in the following proof that η

is a Lévy measure if (A.10) for all y < 0, (A.11), (i) and (ii) of Theorem A.10 are
fulfilled.

(b) It is well known that the continuity points of x �→ η(x, ∞) are dense in (0, ∞). Thus,
the term on the left side of (A.13) is well defined.

Proof of Theorem A.10. First, note that due to (A.10) the condition (A.4) holds for all y <

0. Consequently, (a) of Theorem A.7 and (i) of Theorem A.10 are equivalent conditions,
where we replaced the relation sign ≥ by > and the set [ε, ∞) by (ε, ∞) in (i). Note that
the last mentioned modifications do not affect the result since, obviously, we have under
(a) of Theorem A.7 as well as under (i) of Theorem A.10

lim
n→∞

kn∑
i=1

P (Ykn,i = x) = 0 and η ({x}) = 0 for all x ∈ C(η) ∩ (0, ∞). (A.14)

By (A.11) the conditions (b) of Theorem A.7 and (ii) of Theorem A.10 are also equivalent,
where we replaced < by ≤ in (ii). There is no loss in validity by doing this because the
integrand in (A.12) is non-negative. To conclude Theorem A.10 from Theorem A.7 it
remains to verify the following two statements SI and SII:

SI. If (i) and (ii) of Theorem A.10 are fulfilled then η is a Lévy measure.

SII. Condition (c) of Theorem A.7 and (iii) of Theorem A.10 are equivalent under (a)
and (b) of Theorem A.7.

Proof of SI: Let (i) and (ii) be fulfilled and η1, η2, . . . be measures on ((0, ∞), B ((0, ∞)))
uniquely determined by

ηn(x, ∞) =
kn∑
i=1

P (Ykn,i > x) for all x > 0 and n ∈ N.

(A.6) follows from (i) of Theorem A.10. From (i) and (ii) of Theorem A.10 we obtain
(A.7). Applying Lemma A.9 yields that η is a Lévy measure.

Proof of SII: First, suppose that (a)-(c) of Theorem A.7 hold. As already explained, (i)
and (ii) of Theorem A.10 are fulfilled. By SI the measure η is a Lévy measure and so by
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Definition A.2

0 ≤
∫

(0,τ)

x3

1 + x2 dη(x) ≤ τ

∫
(0,1)

x2 dη(x) → 0 for τ ↘ 0. (A.15)

Combining Remark A.8, (A.14) and (A.15) yields (iii) of Theorem A.7.
Second, suppose that (a) and (b) of Theorem A.7 as well as (iii) of Theorem A.10 hold.
It is sufficient to show: for every subsequence {kn,1 : n ∈ N} of {kn : n ∈ N} there exists
a further subsequence {kn,2 : n ∈ N} of {kn,1 : n ∈ N} such that (c) of Theorem A.7 holds
for {kn,2 : n ∈ N} and γ. Keep in mind that η(−∞, 0) = 0. Let {kn,1 : n ∈ N} be an
arbitrary subsequence of {kn : n ∈ N}. By (iii) and (A.14)

lim sup
n→∞

∣∣∣∣∣∣
⎛⎝ kn∑

i=1

∫
Ykn,i 1{|Ykn,i|<τ∗} dP

⎞⎠ +
∫

(τ∗,∞)

x

1 + x2 dη(x)

∣∣∣∣∣∣ < ∞ (A.16)

for some τ∗ ∈ C(h) ∩ (0, 1). Hence,

lim
n→∞

⎛⎝kn,2∑
i=1

∫
Ykn,2,i 1{∣∣Ykn,2,i

∣∣<τ∗
} dP
⎞⎠ +

∫
(τ∗,∞)

x

1 + x2 dη(x) ∈ R

for some subsequence {kn,2 : n ∈ N} of {kn,1 : n ∈ N}, and so (c) of Theorem A.7 holds for
{kn,2 : n ∈ N}, τ∗ and some constant γ̃ ∈ R. We deduce from the first part of the proof
of SII that (iii) holds for {kn,2 : n ∈ N} and γ̃. Obviously, (a) and (b) of Theorem A.7
as well as (iii) of Theorem A.10 hold for the subsequence {kn,2 : n ∈ N} and γ. Finally,
γ = γ̃. �

A.2. Distances between probability measures

In this section we introduce different distances for probability measures and some prop-
erties of these. All definitions and results can be found in Strasser [58], Chapter 1 §2.
Throughout this section, let P, Q, ν be probability measures on some measurable space
(Ω, A) with P, Q � ν.

Definition and Lemma A.12. (i) We define the variational distance ||P −Q|| between
P and Q by

||P − Q|| := sup {|P (A) − Q(A)| : A ∈ A} =
1
2

∫ ∣∣∣∣ dP

dν
− dQ

dν

∣∣∣∣ dν.

The variational distance is a distance with
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0 ≤ ||P − Q|| ≤ 1, where ||P − Q|| = 1 if and only if P ⊥ Q,

and ||P − Q|| = 0 if and only if P = Q.

(ii) The affinity of P and Q is given by

a(P, Q) :=
∫ √ dP

dν

dQ

dν
dν.

The value a(P, Q) does not depend on the choice of ν.

(iii) The Hellinger distance d(P, Q) between P and Q is given by

d2(P, Q) :=
1
2

∫ ⎛⎝√ dP

dν
−
√

dQ

dν

⎞⎠2

dν = 1 − a(P, Q). (A.17)

The Hellinger distance is a distance with

0 ≤ d(P, Q) ≤ 1, where d(P, Q) = 1 if and only if P ⊥ Q,

and d(P, Q) = 0 if and only if P = Q.

Lemma A.13 (Lemma 2.3 in [58]). We have

||P − Q|| = sup
{

IEP (ϕ) − IEQ(ϕ) : ϕ : (Ω, A) → ([0, 1], B[0, 1]) is measurable
}

.

We can immediately conclude from Lemma 2.15 in [58]:

Lemma A.14. We have

d2(P, Q) ≤ ||P − Q|| ≤ √
2 d(P, Q).

The Hellinger distance and the affinity are very useful if one deals with product measures.
By their definitions it is easy to see that the following lemma holds.

Lemma A.15. Let P1, Q1, . . . , Pn, Qn be probability measures on (Ω, A). Then

a

(
n⊗

i=1
Pi,

n⊗
i=1

Qi

)
=

n∏
i=1

a (Pi, Qi)

and, hence, d2
(

n⊗
i=1

Pi,
n⊗

i=1
Qi

)
= 1 −

n∏
i=1

[
1 − d2 (Pi, Qi)

]
.
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A.3. Binary experiments

In this section we introduce binary experiments and the weak convergence of them. We
present some useful results concerning these experiments and at the end we formulate
the first lemma of Le Cam. To keep this section short we focus on the main results and
avoid to discuss them in detail. For a fuller treatment of binary and general statistical
experiments we can recommend the lecture notes of Janssen [37] and the book of Strasser
[58].

Definition A.16. Let (Ω, A) be a measurable space. Let P and Q be probability measures
on (Ω, A). We call (Ω, A, {P, Q}), in short {P, Q}, a binary experiment. The likelihood-
ratio of Q with respect of P is given by

dQ

dP
=
( dP

d(P + Q)

) ( dQ

d(P + Q)

)−1 1
2

(P + Q)-a.s., (A.18)

where we use the convention x
0 = ∞ and x

∞ = 0 for x ∈ (0, ∞). Let

ν1 := L
(

log
( dQ

dP

) ∣∣∣∣P), ν2 := L
(

log
( dQ

dP

) ∣∣∣∣Q) and ν := ν1 + ν2,

where we extend the logarithm continuously to [0, ∞] by setting

log(0) := −∞ and log(∞) := ∞. (A.19)

We call {ν1, ν2} the standard form of {P, Q}.

Remark A.17. (i) {ν1, ν2} is the standard form of itself.

(ii) By 16.5 in [58] binary experiments with the same standard form are equal informative
in the sense of 15.1 and 15.2 in [58]. Note that the following results and definitions,
A.18 to A.26, only depend on the standard form and not on the special choice of the
binary experiment.

(iii) Let T : (Ω, A) → (Ω̃, Ã) be a measurable mapping. Suppose that there exists a
further measurable mapping T −1 : (Ω̃, Ã) → (Ω, A) such that

T −1 ◦ T = idΩ (P + Q)-almost everywhere.

It follows easily from Lemma A.31 that the standard form of {P T , QT } is also {ν1, ν2}.
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(iv) In [58] and other references the standard form is defined without the logarithm
transform. But in the case of product measures and so for the purpose of our work
the logarithm transform is very useful.

(v) ν1 and ν2 are probability measures on ([−∞, ∞], B ([−∞, ∞])) with

ν1 ({∞}) = P

( dQ

dP
= ∞
)

= 0, ν2 ({−∞}) = Q

( dQ

dP
= 0
)

= 0. �

Lemma A.18. Let {P, Q} be a binary experiment. Then

dν1
dν

=
1

1 + exp
,

dν2
dν

=
exp

1 + exp
and dν2

dν1
= exp .

Proof. See Le Cam [48], p.24f., and (9.21) Example of Janssen et al. [39]. �

We want to remind the reader that a sequence of probability measures (Pn)n∈N

on ([−∞, ∞], B ([−∞, ∞])) converges weakly to a probability measure P on
([−∞, ∞], B ([−∞, ∞])) if for every continuous function f : [−∞, ∞] → R∫

f dPn →
∫

f dP as n → ∞.

Definition A.19. Let {P, Q} and {P(n), Q(n)} be binary experiments for all n ∈ N. We
say that {P(n), Q(n)} converges weakly to {P, Q} (as n → ∞ ) if

ν1,n := L
(

log
(

dQ(n)
dP(n)

) ∣∣∣∣P(n)

)
w−→ L
(

log
( dQ

dP

) ∣∣∣∣P) = ν1 as n → ∞.

Corollary A.20. Let {P, Q} and {P(n), Q(n)} be binary experiments for all n ∈ N.
{P(n), Q(n)} converges weakly to {P, Q} (as n → ∞ ) if and only if

ν2,n := L
(

log
(

dQ(n)
dP(n)

) ∣∣∣Q(n)

)
w−→ L
(

log
( dQ

dP

) ∣∣∣Q) = ν2 as n → ∞.

Proof. By Theorem 16.8 in [58] it follows immediately that {P(n), Q(n)} converges weakly
to {P, Q} if and only if

{
Q(n), P(n)

}
converges weakly to {Q, P}. Furthermore,

log
( dQ

dP

)
= − log

( dP

dQ

)
.

Finally, the desired equivalence follows. �
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Lemma A.21 (17.4 in [58]). Let {P, Q} and {P(n), Q(n)} be binary experiments for ev-
ery n ∈ N. If {P(n), Q(n)} converges weakly to {P, Q} as n → ∞ then

d
(
P(n), Q(n)

)
→ d (P, Q) as n → ∞.

A similar result is valid for the variational distance, see [58].

Lemma A.22. Let {P, Q} and {P(n), Q(n)} be binary experiments for every n ∈ N. If
{P(n), Q(n)} converges weakly to {P, Q} as n → ∞ then

||P(n) − Q(n)|| → ||P − Q|| as n → ∞.

Lemma A.23. Let {P(n), Q(n)} be a binary experiment for all n ∈ N. Then there exist
a subsequence {kn : n ∈ N} ⊆ N and a binary experiment {P, Q} such that {P(kn), Q(kn)}
converges weakly to {P, Q} as n → ∞ .

Proof. See Lemma 60.6 of Strasser [58]. �

Definition A.24 (18.2 in [58]). Let (Ωn, An, {P(n), Q(n)}) be a binary experiment for
all n ∈ N. The sequence (Q(n))n∈N is contiguous to (P(n))n∈N, in symbols Q(n) � P(n), if
for every sequence (An)n∈N with An ∈ An for all n ∈ N

P(n)(An) → 0 implies Q(n)(An) → 0 as n → ∞.

We call (P(n))n∈N and (Q(n))n∈N mutually contiguous, in symbols P(n) ��Q(n), if P(n) �Q(n)

and Q(n) � P(n).

Lemma A.25 (18.4 of [58]). Let (Ω1, A1, {P(1), Q(1)}), (Ω2, A2, {P(2), Q(2)}), . . . be a
sequence of binary experiments such that Q(n) � P(n). Let fn : (Ωn, An) → (R, B) be a
measurable function for all n ∈ N. Then fn → 0 in P(n)-probability implies fn → 0 in
Q(n)-probability (as n → ∞).

Lemma A.26 (First lemma of Le Cam). Suppose that {P(n), Q(n)} converges weakly
to {P, Q} as n → ∞ . Then the following statements (i)-(iv) are equivalent:

(i) Q(n) � P(n). (ii) Q � P.

(iii)
∫
R

exp dν1 = 1. (iv) ν2 ({∞}) = 0.
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Moreover, the following statements (a)-(c) are also equivalent:

(a) P(n) � Q(n). (b) P � Q.

(c)
∫
R

exp(−x) dν2(x) = 1. (d) ν1 ({−∞}) = 0.

Proof. Theorem 18.11 in [58] shows the equivalence of (i) and (ii). The equivalence of (ii)
and (iii) is mentioned in the introduction of §18 in [58] and is easy to verify. Finally, the
equivalence of (iii) and (iv) follows immediately from Lemma A.18. The equivalence of
(a)-(d) follows analogously. �

A.4. Miscellaneous

In this section we present various results. Despite the first two ones, the results are not
connected to each other.

Lemma A.27. (i) For every x < 1

x

x − 1
≤ log(1 − x) ≤ −x.

(ii) For every M ∈ (0, 1) there exist constants CM,1 > 1 > CM,2 > 0 such that

log(1 − x) ≥ −x CM,1 and log(1 − y) ≥ −y CM,2.

for all −M ≤ y ≤ 0 ≤ x ≤ M . Moreover, for j = 1, 2

lim
M↘0

CM,j = 1. (A.20)

Proof. (i) follows from the Mean Value Theorem. Fix M ∈ (0, 1). By (i)

log(1 − y) ≥ −y

1 − y
≥ −y

1 + M
for all y ∈ [−M, 0].

Using a Taylor’s series expansion we obtain

log(1 − x) = −
∞∑

k=1

xk

k
≥ −x

∞∑
k=1

Mk−1

k
= −x

− log(1 − M)
M
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for all x ∈ [0, M ]. Define

CM,1 :=
− log(1 − M)

M
and CM,2 :=

1
M + 1

.

Obviously, (A.20) holds for j = 2. For j = 1 the left side (A.20) equals the derivative of
x �→ − log(1 − x) at 0 and so it is equal to 1. �

The following equivalence is well known for sequences and can be easily extended to
triangular arrays. For the readers, who are not familiar with the extended version, we also
give the proof of it.

Lemma A.28. Let (hn,i)1≤i≤n∈N be a triangular array of real numbers in [0, ∞) such that

max
1≤i≤n

{hn,i} → 0 as n → ∞. (A.21)

Then the following two conditions are equivalent:

(i) lim
n→∞

n∑
i=1

hn,i = b ∈ R ∪ {−∞, ∞} .

(ii) lim
n→∞

n∏
i=1

(1 − hn,i) = exp(−b) ∈ [0, ∞], where exp(−∞) := 0.

Proof. We extend canonically the domain of log to [0, ∞]. Then (ii) is equivalent to

(iii) lim
n→∞

n∑
i=1

log(1 − hn,i) = −b.

By (A.21) and Lemma A.27

−CM,1

n∑
i=1

hn,i ≤
n∑

i=1
log(1 − hn,i) ≤ −

n∑
i=1

hn,i

for all M ∈ (0, 1) if n ∈ N is sufficiently large. By this, (A.20) and basic calculations (i)
and (iii) are equivalent, and so are (i) and (ii). �

Lemma A.29. Denote by ϕ, Φ and Φ−1 the density, the distribution function and the
quantile function of a standard normal distributed random variable. Then

x

1 + x2 ≤ 1 − Φ(x)
ϕ(x)

≤ 1
x

(A.22)
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for all x > 0. Furthermore,

1 − Φ(x) =
ϕ(x)

x

(
1 + O(x−2)

)
as x → ∞. (A.23)

Moreover, for all sufficiently small u > 0

− Φ−1(u) = Φ−1(1 − u) =
√

2 log (u−1) − log(4π) + log log
(
u−1)

2
√

2 log (u−1)
+ Ψ(u), (A.24)

where |Ψ(u)| ≤ 9
− log(u)

. (A.25)

Proof. (A.22) follows from inequality 7.1.13 of Abramowitz and Stegun [1], p. 298, and
basic calculation. Since the proof is quite simple we give it nevertheless. From integration
by parts we obtain for all t > 0

1 − Φ(t) =
∫ ∞

t

1√
2π

1
x

x exp
(
−x2

2

)
dx =

1
t
ϕ(t) −

∫ ∞

t

1
x2 ϕ(x) dx.

Consequently, the upper bound in (A.22) follows immediately. Furthermore,

1 − Φ(t) ≥ 1
t
ϕ(t) − 1

t2 (1 − Φ(t)) and so
t2 + 1

t2 (1 − Φ(t)) ≥ 1
t
ϕ(t),

which proves the lower bound in (A.22). We deduce (A.23) from (A.22).
We can conclude from (A.22) that for every x > 0

1 − Φ(x) ≤ ϕ(x)
x

=
1√
2πx

e− x2
2 (A.26)

and 1 − Φ(x) ≥ ϕ(x)
x−1 + x

=
1√

2π(x−1 + x)
e− x2

2 . (A.27)

By Taylor’s formula there exist rx,1, rx,2 ∈ [− |x| , |x|] for all x ∈ (−1, 1) such that

√
1 + x = 1 +

1
2

x − x2

8
(1 + rx,1)− 3

2 (A.28)

and log (1 + x) = x − x2

2(1 + rx,2)2 . (A.29)

In particular, rx,j → 0 as x → 0 for j ∈ {1, 2}. Note that for y > 0

log
(

y + y−1
)

= log (y) + log
(
1 + y−2

)
. (A.30)
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If |x| is sufficiently small and y > 0 is sufficiently large we have by (A.28)-(A.30) that

1 +
1
2

x − x2 ≤ √
1 + x ≤ 1 +

1
2

x, (A.31)

1
2

log (y) ≤ log (y) − 1
4y4 ≤ log

(
y + y−1

)
≤ log (y) + y−2 ≤ 4

3
log (y) (A.32)

and log
(
1 − y−1

)
≥ −2y−1. (A.33)

Note that Φ−1 is increasing and Φ−1(1−u) → ∞ as u ↘ 0. Hence, by setting u = 1−Φ(x)
for sufficiently large x > 0 we deduce from (A.26) and (A.31) that

Φ−1(1 − u) ≤
√

−2 log
(
u

√
2πΦ−1(1 − u)

)
=
√

−2 log(u)

√
1 +

log(2π) + 2 log Φ−1(1 − u)
2 log(u)

≤
√

−2 log(u)
[
1 +

1
2

log(2π) + 2 log Φ−1(1 − u)
2 log(u)

]

=
√

−2 log(u) − log(2π) + 2 log Φ−1(1 − u)
2
√−2 log(u)

(A.34)

and in particular Φ−1(1 − u) ≤
√

−2 log(u). (A.35)

Note that for all sufficiently large y > 0

[ log(y) ]2 ≤ y. (A.36)

Similar to as in (A.34) we can conclude from (A.27), (A.31), (A.32), (A.35) and (A.36)
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that for all sufficiently small u > 0

Φ−1(1 − u) ≥
√

−2 log(u)

√
1 +

log(2π) + 2 log [Φ−1(1 − u) + Φ−1(1 − u)−1]
2 log(u)

≥
√

−2 log(u)
[
1 +

1
2

log(2π) + 2 log
[
Φ−1(1 − u) + Φ−1(1 − u)−1]

2 log(u)

−
(

3 log
[
Φ−1(1 − u) + Φ−1(1 − u)−1]

2 log(u)

)2
⎤⎦

≥
√

−2 log(u)
[
1 +

log (2π) + 2 log
[
Φ−1(1 − u)

]
+ 2
[
Φ−1(1 − u)

]−2

4 log (u)

−4
(

log
[
Φ−1(1 − u)

]
log(u)

)2
⎤⎦

≥
√

−2 log(u) − log(2π) + 2 log
[
Φ−1(1 − u)

]
2
√−2 log (u)

−
[
Φ−1(1 − u)

]−2√−2 log (u)
− 16 Φ−1(1 − u)

[−2 log (u)]
3
2

≥
√

−2 log(u) − log(4π) + log log
(
u−1)

2
√−2 log (u)

−
[
Φ−1(1 − u)

]−2√−2 log (u)
+

8
log (u)

(A.37)

≥ 1
2

√
−2 log(u). (A.38)

Combining (A.37) and (A.38) shows that for all sufficiently small u > 0

Φ−1(1 − u) ≥
√

−2 log(u) − log(4π) + log log
(
u−1)

2
√−2 log (u)

−
[
Φ−1(1 − u)

]−2√−2 log (u)
+

8
log (u)

≥
√

−2 log(u) − log(4π) + log log
(
u−1)

2
√−2 log (u)

+
9

log (u)
(A.39)

≥
√

−2 log(u)
[
1 − (− log [u])− 1

2
]

. (A.40)

By (A.33), (A.34) and (A.40)

Φ−1(1 − u) ≤
√

−2 log(u) − log(4π) + log log
(
u−1)

2
√−2 log (u)

−
log
[
1 − (− log [u])− 1

2
]

√−2 log (u)

≤
√

−2 log(u) − log(4π) + log log
(
u−1)

2
√−2 log (u)

+
2 (− log (u))− 1

2√−2 log (u)
. (A.41)

Finally, (A.24) and (A.25) follow from (A.39) and (A.41). �

The following lemma is an immediate consequence of Hölder’s inequality. That is why we
omit the proof and only present the result.
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Lemma A.30. Let x1, . . . , xn ∈ R and p ∈ (1, ∞). Then

∣∣∣∣∣
n∑

i=1
xi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|p
) 1

p

n
1− 1

p and, thus, 1
n

(
n∑

i=1
xi

)2

≤
n∑

i=1
x2

i .

The following lemma is well known. Nevertheless, we give a short proof of it.

Lemma A.31. Let (Ωi, Ai) be a measurable space for i = 1, 2. Let ν1, ν2 be σ-finite
measures on (Ω1, A1) such that ν1 � ν2. Let T : (Ω1, A1) → (Ω2, A2) be a measurable
mapping. Suppose that there is a further measurable mapping T −1 : (Ω2, A2) → (Ω1, A1)
such that

T −1 ◦ T = idΩ1 (ν2-a.e.). (A.42)

Then

dνT
1

dνT
2

=
dν1
dν2

◦ T −1 (νT
2 -a.e.). (A.43)

Proof. It is easy to see that νT
1 � νT

2 follows from ν1 � ν2. Let A ∈ A2. From the
transformation theorem for image measures and (A.42) we obtain

νT
1 (A) =

∫
T −1(A)

dν1
dν2

dν2 =
∫

T −1(A)

dν1
dν2

◦ T −1 ◦ T dν2 =
∫

A

dν1
dν2

◦ T −1 dνT
2 .

Hence, (A.43) follows. �

Lemma A.32. Let F : R → R be some distribution function and F −1 : (0, 1) → R be its
left continuous quantile function, compare to (2.5). If

F (t) ∼asy tpL1

(1
t

)
as t ↘ 0

for some slowly varying function L1 : (0, ∞) → (0, ∞) and some constant p > 0 then

F −1(u) ∼asy u
1
p L2

(1
t

)
as u ↘ 0

for some slowly varying function L2 : (0, ∞) → (0, ∞).

Proof. Define f : [1, ∞) → (0, ∞) and f← : [f(1), ∞) → R by

f(x) =
1

F (x−1)
and f←(s) := inf {y ≥ 1 : f(y) > s}
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for all x ≥ 1 and every s ≥ f(1). Note that

f(x) ∼asy xpL1 (x)−1 as x → ∞. (A.44)

Applying Theorems 1.4.1 and 1.5.12 of Bingham et al. [8] we can conclude from (A.44)

f←(s) ∼asy s
1
p L3(s) as s → ∞

for some slowly varying function L3 : (0, ∞) → (0, ∞). Moreover,

f←(s) = inf
{

y ≥ 1 : s−1 > F
(
y−1
)}

= inf
{

y ≥ 1 : F −1
(
s−1
)

> y−1
}

=
1

F −1 (s−1)

for all s ≥ f(1). Combining the last two statements completes the proof. �

A.5. Explanatory calculation for heterogeneous normal
mixtures

In this section we show how easy it is to apply our tool the heterogeneous normal mixture
model by giving the proof of Theorem 5.1(iii) for τ = 1. For this purpose we will apply
Corollary 4.25. Let y > 0 be arbitrary but fixed. First, note that

{x ∈ R : εnfn(x) > y} = (αn,y, ∞) with αn,y :=
(r + β) log(n) + log(y)√

2r log(n)
.

Since β = r + 1
2 we obtain

nεnμn

(
x ∈ R : εnfn(x) > y

)
= n1−β

(
1 − Φ(αn,y − ϑn)

)
= n1−β

(
1 − Φ(γn,y)

)
,

where γn,y =
√

log(n)
2
√

r
+

log(y)√
2r log(n)

.

It is easy to see that γn,y → ∞ as n → ∞. Combining this and Lemma A.29 yield that
for some constant Cy > 0

nεnμn

(
x ∈ R : εnfn(x) > y

)
∼asy n

1
2 −rγ−1

n,yϕ(γn,y) =
Cy

γn,y
n− 1

r
(r− 1

4 )2 → 0 as n → ∞.
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Consequently, (B2 normal) is fulfilled. Moreover, (B3 normal) holds for y0 = 1:

nε2
n

∫
fn1{εnfn≤1} dN(0, 1) = n1−2β

∫ αn,1

−∞
exp(2ϑnt − ϑ2

n) dN(0, 1)(t)

= n1−2βN(2ϑn, 1)(−∞, αn,1] exp(ϑ2
n)

= Φ
(√

log(n)√
2r

[1
2

− 2r

])

→ 1(0, 1
4 )(r) +

1
2

1{ 1
4 }(r) as n → ∞.
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Lists of Abbreviations and Symbols
Abbreviations
(A) Condition (A), see p. 30.
(A normal) Condition (A normal), see p. 41.
(B) Condition (B), see p. 36.
(B’) Condition (B’), see p. 38.
(C) Condition (C), see p. 46.
a.s. Almost surely.
f., ff. Folio, folios following.
HC Higher criticism test.
LLRT Log-likelihood ratio test.
LLRn Test statistic of LLRT, see (3.3).
p., pp. page, pages.
P-density of Q Radon-Nikodym density of Q with respect to P .
i.i.d. Independent and identically distributed.

Symbols

1A Indicator function of A.
Ac Complement of the set A.
|A|, #A Cardinality of the set A.
A◦ Interior of the set A.
a(P, Q) Affinity of P and Q, see A.12
A1 ⊗ A2 The σ-algebra generated by the sets A1 × A2 for all A1 ∈ A1 and A2 ∈ A2.⊗Ai An A1 ⊗ . . . ⊗ An and

⊗n
i=1 A, respectively.

B, B(A), B̄ Borel σ-algebra on R, on A, on R̄, respectively.
B(n, p) Binomial distribution with parameters n ∈ N, p ∈ [0, 1].
C(f), C(η) Set of continuity points of the function f and the function

x �→ η(−∞, x)1(−∞,0)(x) + η(x, ∞)1(0,∞)(x) for a measure η, respectively.
C Complex numbers.
d(P, Q) Hellinger distance between P and Q, see A.12
εx Dirac measure centred on x.
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ess supx∈A f(x) inf {K ∈ R : λλ (x : f(x) > K) = 0}.
Exp(λ) Exponential distribution with parameter λ ∈ (0, ∞).
f(t) ∼asy g(t) The functions f and g are asymptotically equivalent, see Notation 2.18.
f−1 : C → B Inverse function of f : B → C.
f−1(A) Image set of A with respect to the function f : B → C, i.e.,

f−1(A) = {x ∈ B : f(x) ∈ A}.
f (k) kth derivative of f .
Γ The gamma function, see (2.11).
η1 ≡ η2 η1 and η2 are identically.
H0,n, H1,n The general null and the general alternative, see (2.6).
i Imaginary unity, i.e., i2 = −1.
idM Identity function idM : M → M , i.e., idM (x) = x for all x ∈ M .
{kn : n ∈ N} Subsequence of N, see (4.1).
lim sup
lim inf
n→∞

See the explanation at the end of Condition (B) on p. 36.

Λ The distribution function of a standard Gumbel distribution, see (2.7).
N Natural numbers, N = {1, 2, . . .}.
P � Q P is absolutely continuous with respect to Q.
P ⊗ Q The product measure of P and Q.⊗n

i=1 Pi, P n P1 ⊗ . . . ⊗ Pn and
⊗n

i=1 P , respectively.
Pn � Qn The sequence (Pn)n∈N is contiguous to (Qn)n∈N, see Definition A.24.
Pn � �Qn The sequences (Pn)n∈N and (Qn)n∈N are mutually contiguous, see A.24.
P X = L(X|P ) Image measure of X under P .
P ⊥ Q The probability measures P and Q are singular.
Φ The distribution function of a standard normal distribution.
o(.), O(.) Landau symbols.
R̄, [−∞, ∞] R ∪ {−∞, ∞}.
U(a, b) Uniform distribution on the interval (a, b).
VarP Variance with respect to the measure P, i.e., VarP (X) = IEP (X2) − IEP (X)2.
Xn,j Projection to coordinate j, see (4.5).
X

D= Y X and Y have the same distribution.
X ∼ P, F X is distributed according to the measure P and

the distribution function F , respectively.
�x� max{m ∈ Z : m ≤ x}.
x ∧ y min(x, y).
x ↘ y, x ↗ y y < x → y and y > x → y, respectively, see also Notation 2.18.

D−→, P−→ Convergence in distribution and in P-probability, respectively.
w−→ Weak convergence.

||P − Q|| Variational distance between P and Q, see A.12.
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