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Abstract

The application of formal methods to the development of interactive safety-critical sys-
tems usually involves a multidisciplinary team with different roles and expertise (e.g.
formal engineers, user interface designers and domain experts). For instance, it is im-
portant for the formal engineer to get feedback from the domain expert and the user
interface engineer to further develop the formal specification. On the other hand, the
domain expert needs to check whether his expectations of the application domain are
met in the formal specification and the user interface engineer needs to prevent conflicts
between the system’s functionality and the user interface design. In general, these tasks
deal with the question “Are we building the right system?” and are typically performed
with of validation techniques.

Animation is a popular validation technique for state-based formal methods such as
classical-B and Event-B. The purpose of animation is to inspect the desired behavior of
a formal specification by executing it. It can also be used to walk-through and analy-
ze scenarios within a multidisciplinary team. However, a formal specification typically
becomes complex and large which can make the analysis of a specific aspect of the sys-
tem using animation difficult and error prone even for formal engineers. Furthermore,
while formal engineers have the necessary expertise (e.g. the mathematical notation of-
ten used in formal methods) for performing animation techniques, other roles such as
user interface engineers or domain experts may not be well versed in formal methods.
Consequently, animation techniques may become inaccessible to non-formal method ex-
perts.

In this thesis, we present a novel graphical environment called BMotionWeb that provides
features for the lightweight validation of interactive safety-critical systems by creating
interactive formal prototypes. An interactive formal prototype complements the use of
animation with interactive data visualization, a technique to support human understan-
ding by viewing and interacting with pictures or diagrams rather than by examining
a substantial amount of data (e.g. numerical or textural data). As the famous saying
states, “one picture is worth ten thousand words”. We present a reference implemen-
tation for BMotionWeb based on the ProB animation engine which enables the rapid
creation of interactive formal prototypes for the state-based formal methods classical-B
and Event-B and present an extension for the event-based formal method CSPM. In
order to demonstrate the use of BMotionWeb, we present various case studies, inclu-
ding interactive systems, industrial case studies, and case studies for teaching formal
methods.





Zusammenfassung

Der Einsatz von formalen Methoden für die Entwicklung von interaktiven sicherheits-
kritischen Systemen involviert typischerweise verschiedene Rollen und Fachkenntnisse,
wie zum Beispiel Formale-Methoden-Ingenieure, Benutzeroberflächen-Entwickler und
Domänen-Experten. So ist zum einen der Formale-Methoden-Ingenieur auf Feedback
vom Domänen-Experten und dem Benutzeroberflächen-Entwickler angewiesen, ander-
seits ist es die Aufgabe vom Domänen-Experten zu prüfen, ob die formale Spezifikation
die Erwartungen bezüglich der Domäne erfüllt. Weiterhin muss der Benutzeroberflächen-
Entwickler verhindern, dass es keine Fehlanpassungen zwischen der Systemfunktionalität
und dem Design der Benutzeroberfläche gibt. Im Allgemeinen beschäftigen sich diese
Aufgaben mit der Frage “Bauen wir das richtige System?” und werden normalerweise
mit Hilfe von Techniken zur Validierung ausgeführt.

Eine der bekannten Techniken für die Validierung von zustandsbasierten formalen Me-
thoden wie classical-B und Event-B ist Animation. Der Zweck von Animation ist es
eine formale Spezifikation auszuführen, um so die Inspektion vom Systemverhalten zu
ermöglichen. Jedoch werden formale Spezifikationen typischerweise komplex und um-
fangreich, so dass der Einsatz von Animation für die Analyse von sicherheitskritischen
Systemen schwer und fehleranfällig werden kann - sogar für Formale-Methoden-Ingenieure.
Zudem haben Domänen-Experten oder Benutzeroberflächen-Entwickler meist unzurei-
chende Kenntnisse im Einsatz von formalen Methoden (zum Beispiel über die mathe-
matische Notation, welche bei formalen Methoden oft eingesetzt wird), was dazu führen
kann, dass Animation nicht verwendet werden kann.

In dieser Arbeit präsentieren wir BMotionWeb, ein neues grafisches Tool, das ermöglicht
interaktive formale Prototypen für die leichtgewichtige Validierung von interaktiven si-
cherheitskritischen Systemen zu erstellen. Ein interaktiver formaler Prototyp kombi-
niert Animation mit interaktiver Datenvisualisierung, einer Technik, die benutzt wird,
um Menschen bei der Analyse von Daten (z.B. numerische or textuelle Daten) zu un-
terstützen. Dabei folgt interaktive Datenvisualisierung ganz dem Motto “Ein Bild sagt
mehr als tausend Worte” und repräsentiert die Daten als Bilder oder Diagramme, welche
dann als Grundlage für die Analyse dienen. Wir präsentieren eine Referenzimplemen-
tierung von BMotionWeb basierend auf dem ProB Animator, welche das Erstellen von
interaktiven formalen Prototypen für die zustandsbasierten formalen Methoden classical-
B und Event-B und der eventbasierten formalen Methode CSPM ermöglicht. Um den
Nutzen von BMotionWeb zu demonstrieren, präsentieren wir verschiedene Fallbeispie-
le einschließlich interaktive Systeme, industrielle Fallbeispiele und Fallbeispiele für das
Unterrichten von formalen Methoden.
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1
Introduction and Motivation

1.1. Research Context

When entering an aircraft, a train, or a car, hardly anyone thinks about that she or he is
entering a so called safety-critical system. A safety-critical system is a system in which
a failure could lead to noticeable economic damage, significant property damage or even
human loss. They are part of our daily life: according to the German “Statistischem
Bundesamt”1 181 million people traveled by plane, and 2613 million people traveled by
train in Germany in 2013. Nowadays, safety-critical systems become more and more
dependent on computers which are responsible for their correct operation. For instance,
cars are equipped with an increasing number of electronics and software, e.g. cruise
control systems, lane departure warning systems, and even auto-pilot systems.

Classical approaches for the development of (safety-critical) systems involve humans
activities. For instance, software engineers write source code, user interface designers
develop the interface between the operating end user and the software, and domain
experts share their domain knowledge with other persons involved in the project. Un-
fortunately, humans can make mistakes, and mistakes can lead to software failures. An
example of a famous software failure is the fail start of the first test flight of the Ariane
5 rocket on 4 June 1996: 37 seconds after launch the rocket self-destructed because of
a malfunction in the software [Dow97]. The result was a great economic loss and prop-
erty damage. Another example is the collision between a Boeing and a Tupolev aircraft
with 71 victims over the Bodensee in southern Germany on 1 July 2002 [Flu04]. Dif-
ferent factors led to this tragic accident including human errors and misunderstanding.
The decisive factor, however, was a conflicting order from the TCAS (Traffic Alert and
Collision Avoidance System) and from the air traffic control. According to the german

1https://www.destatis.de.
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1. Introduction and Motivation

accident report [Flu04], the integration of the TCAS was insufficiently formalized: the
different aviation regulations were not standardized and were incomplete and partially
contradictory.

As a consequence of such incidents and with an increasing number of safety-critical
systems which accompany us in our daily life, there is a great demand for engineering
methods that help to ensure reliability and robustness of the system and that uncover
failures before rolling the system out. One approach to overcome this challenge is to
apply formal methods.

Formal methods in a nutshell. Formal methods allow the specification and analysis
of (safety-critical) systems based on mathematical techniques with the main goal of
ensuring reliability and robustness in the system.

A wide range of formal methods for different applications exist [Alm+11; BN98; CW96].
For instance, formal methods tailored to hardware systems, software systems, distributed
systems or real-time systems and can also be used for the analysis of user interfaces.
Current research also deals with the application of formal methods to cyber-physical
systems [BG11; Adv; DES]. In this thesis, we are mainly concerend with the state-
based formal methods classical-B [Sch01; Abr96] and its successor Event-B [Abr10].
While classical-B aims at specifying and analyzing software systems, Event-B is typically
used in the field of reactive systems.

When applying formal methods, a formal specification of the system is developed. A
formal specification contains an (abstract) model of the system that provides a rigorous
description of the system. Based on the formal specification, verification and valida-
tion techniques can be used to verify the (safety-critical) properties of the system and
to validate the desired behaviour of the system. The overall goal of verification is to
check if the specification fulfils the requirements and to ensure the correctness of the
system. In other words: verification helps to answer the question “Are we building the
system right?”. Common formal verification techniques are formal proof and model-
checking [CGP99]. Although verification can help to guarantee the correctness of the
system, you may end up with a system that is correct but that doesn’t behave as ex-
pected. Especially non-functional requirements are hard to express and to verify in a
formal way. Here is where validation comes into play. Validation deals with the ques-
tion “Are we building the right system?”. Animation [Bic+97] is a popular validation
technique in the field of state-based formal methods such as classical-B and Event-B.
The basic idea of animation is to analyze a formal specification by executing it. It ex-
plores the reachable states of the specification by evaluating transitions and exposes the
information encoded in the states (e.g. concrete values of state variables) to the formal
engineer. Thus, the formal engineer can inspect the desired behavior and analyze specific
states in the system at any stage of the development process. This can also promote the
collaborative work with other roles and levels of expertise usually involved in developing
safety-critical systems (e.g. user interface designers, domain experts and end users).

2



1.2. Research Problem and Question

As an example, using animation a formal engineer can walk through scenarios with a
domain expert and check whether the domain expert’s expectations of the application
domain are met in the formal specification. This work is concerned with such animation
techniques.

1.2. Research Problem and Question

A formal specification typically becomes complex and large in the process of developing a
real-life, industrial system. The amount of details, such as the number of state variables
and transitions of the formal specification, may increase during the implementation of
the system. This can make the analysis of a specific aspect or state using animation
techniques difficult and error prone, even for formal engineers. Another challenge that
can arise while applying animation techniques is that they require a certain level of
knowledge about the mathematical notation to understand the meaning of a specific
state. While formal engineers provide the necessary expertise in formal methods, other
roles such as domain experts may only have partial or even no knowledge of formal
methods. As a consequence, animation techniques may become inaccessible to non-
formal method experts and inadequate for collaborative work.

Data visualization [TG83; Mun14], on the other hand, is known as a tool to communicate
some data (e.g. numerical or textual data) by creating visual representations of the
data. As the well known proverb “one picture is worth ten thousand words”2 says, the
objective of data visualization is to support human understanding of the data by viewing
some pictures or diagrams rather than by examining a substantial amount of the data.
For this, data visualization can take advantage of the pre-attentive processing skills of
humans [War12]: it is easier for a human to identify specific aspects, characteristics, or
properties of the data when they are different in size, orientation, or color. An effective
visual representation also depends not only on the data to be visualized but also on the
target audience that is going to use the visualization. For instance, plot diagrams or bar
charts can provide a global overview and may help statistical analysts make comparisons
of some numerical data. An alternative (visual) view of the data being analyzed can also
be of particular use if the original data set is not readable by analysts, e.g. because of a
foreign presentation of the data or the language used in the data. Consider the example
from [Ans73] shown in Fig. 1.1. The figure visualizes the data from the Anscombe’s
Quartett [Ans73], a famous example for demonstrating the power of data visualization.
The left side illustrates the data as a series of four small datasets each with eleven (x,y)
points and with almost identical statistical properties (mean, variance and correlation,
and linear regression lines). The right side of Fig. 1.1 shows the visual representation
of the four datasets as scatter plot diagrams. These alternative (visual) views are good
examples to demonstrate how they can support the analysis and interpretation of some
data: although the datasets have almost identical statistical properties, we can clearly

2The proper origin of the proverb is unknown.
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1. Introduction and Motivation

see that the structures of the four datasets are quite different although this is not obvious
when just looking at the table. For instance, we can better understand the determination
of the regression lines (e.g. due to outliers).

Figure 1.1.: Anscombe’s Quartet [Ans73] raw data (left side) and visual representation
as scatter plot diagrams taken from [Mun14] (right side)

Another important aspect for effective data visualization is interactivity. An interactive
system is a computer system that is concerned with the interaction between humans and
the computer. Dix et al. (2003) define the purpose of an interactive system as follows:
“Traditionally, the purpose of an interactive system is to aid a user in accomplishing
goals from some application domain” [Dix+03]. Examples for interactive systems are
command line interfaces, operating systems (e.g. Windows and OS X) and graphical
user interfaces (GUI). Interactivity is the defining feature of an interactive system and is
also closely related to data visualization, where users can interact with the visualization,
e.g. changing parameters and seeing the effect [Dix+03].

Based on these principles we define the following research question for this thesis:

“How can animation benefit from interactive data visualization to support the val-
idation process of formal specifications and to make animation techniques more ac-
cessible to non-formal method experts?”

1.3. Thesis Goal and Contribution

To answer the question posed in Section 1.2, this thesis aims at achieving the following
goals: (1) identify appropriate interactive visual representations for animated formal
specifications and (2) develop an approach (method and tool) for linking the identified
interactive visual representations to animated formal specifications.

In respect to these goals, the contributions of this thesis are outlined below:
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1.4. Thesis Organization

State-of-the-art of animation-based visualization approaches. This contribution aims at
assessing the state-of-the-art of visualization approaches in the field of formal methods.
The result of the research is grouped into different classes of formal methods: state-
based formal methods, process algebras and other formal methods for specifying real
time systems and distributed systems, as well as variants of the λ−calculus . We present
the advantages and limitations of the visualization approaches and analyze them with
respect to the research problem stated in Section 1.2.

Interactive formal prototypes of state-based formal specifications. The key contribution
of this thesis is an approach for the rapid creation of interactive formal prototypes. An
interactive formal prototype combines animation with an interactive domain specific
visualization3 to support the validation of safety-critical systems. We present an appro-
priate method and implementation for supporting state-based formal methods.

Interactive formal prototypes of CSPM formal specifications. The second contribution of
this thesis extends the approach for creating interactive formal prototypes for state-based
formal specifications to event-based formal specifications. In this context, we present a
method, implementation and case-studies based on CSPM, a formal language mainly
used for specifying concurrent and distributed systems.

Combining interactive formal prototypes with other visualization techniques. Based on
the assessment of the state-of-the-art research, this thesis is also concerned with iden-
tifying existing visualization techniques that could be combined with interactive formal
prototypes. Two visualization techniques and their link to interactive formal prototypes
are presented: projection diagrams and trace diagrams.

Application of interactive formal prototypes for validating safety-critical systems. This
contribution consists of various example applications of interactive formal prototypes for
supporting the validation process of safety-critical systems. We present case studies for
the lightweight validation of interactive systems, for validating industrial applications,
and for teaching formal methods.

1.4. Thesis Organization

This thesis is organized as follows: the current chapter (Chapter 1) aims at presenting the
reader with the research context, the motivation and the thesis goals and contributions.
The organization of the rest of this thesis is based on its contributions.

Chapter 2 discusses the state-of-the-art in visualization techniques in the field of formal
methods.

Chapter 3 presents the first part of the key contribution of this thesis: a method for cre-
ating interactive formal prototypes of state-based formal specifications. In this context,
we describe the concept of an interactive formal prototype in more detail.

3We give a more detailed definition of the term domain specific visualization in Section 3.2.2.
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Chapter 4 presents the tool that implements the method presented in Chapter 3 called
BMotionWeb. It describes the goals for BMotionWeb, gives an overview of the design
and architecture of the tool, and describes its features.

Chapter 5 deals with other visualization techniques that could be linked with interactive
formal prototypes to support the validation process of formal specifications. Two visu-
alization techniques and their links are presented in this chapter: projection diagrams
and trace diagrams.

Chapter 6 presents an extension of BMotionWeb to support the creation of interac-
tive formal prototypes for the CSPM specification language. It describes the challenges
and explains the difference to the state-based visualization approach presented in Chap-
ter 3.

Chapter 7 describes various example applications of BMotionWeb, including industrial
case studies, interactive systems, and the use of BMotionWeb for teaching formal meth-
ods.

Finally, Chapter 8 draws the conclusions and discusses future work.

1.5. Thesis Publications

Parts of this thesis have been published in the following peer-reviewed articles, conference
proceedings and journals.

Visualising Event-B Models with B-Motion Studio [LBL09]

This paper presents the beginnings of the approach presented in this thesis: BMotion-
Studio as a tool for creating domain specific visualizations of Event-B specifications. The
tool comes as a plug-in for the Rodin platform. Moreover, a case study of a Event-B sim-
ple lift system is demonstrated in the paper. My contribution consists of the described
approach, the entire implementation work, and the creation of the case study.

An Approach for Creating Domain Specific Visualisations of CSP Models
[LDL14]

While the work presented in [LBL09] focuses on creating domain specific visualizations
for the state-based formal method Event-B, this paper aims at presenting an approach
towards creating domain specific visualizations for event-based formal methods. The
paper describes a method, an implementation, and two case studies based on the CSPM
language. My contribution was the method, the implementation, and the case studies
in which the method was developed with Ivaylo Dobrikov.
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Mastering the Visualization of Larger State Spaces with Projection Diagrams
[LL15]

This paper presents an approach for creating so called projection diagrams with the
goal to considerably reduce the size of large state spaces. Moreover, an extension of
the approach is demonstrated to combine a projection diagram with a domain specific
visualization. An appropriate algorithm and implementation is presented and the appli-
cation of the approach is demonstrated based on several case studies. My contribution
consists of: (1) developing the algorithm for creating a projection diagram further (the
first design of the basic algorithm was developed by Michael Leuschel); (2) formalizing
the algorithm and (3) combining the projection diagram with a domain specific visual-
ization.

BMotionWeb: A Tool for Rapid Creation of Formal Prototypes [LL16]

BMotionWeb is the successor of BMotionStudio presented in [LBL09]. The paper de-
scribes the architecture and features of the tool and demonstrates its use for validating
interactive systems. Two case studies are presented: the graphical user interface of
a simple phonebook application and a cruise control system device. My contribution
consists of the entire development of BMotionWeb and the elaboration of the two case
studies.

Validation of the ABZ landing gear system using ProB [Han+14; Lad+15]

As part of the ABZ’14 conference, a case study of a landing gear system was proposed.
This paper presents the formalization of the case study in Event-B, its validation using
the ProB toolkit, and the development of a domain specific visualization. The paper has
been extended in the journal version [Lad+15]. The journal version extends the Event-
B specification of the landing gear system considerably and describes in more detail
an extended version of the domain specific visualization. My contribution consists of
developing the domain specific visualization.

Validating the Requirements and Design of a Hemodialysis Machine Using
iUML-B, BMotion Studio, and Co-Simulation [Hoa+16]

The hemodialysis machine was the second case study proposed by the ABZ’16 conference.
This paper presents the development of an Event-B specification using the iUML-B
tool, the validation of the requirements, and the design of the hemodialysis machine.
Moreover, a domain specific visualization has been created. Finally, it demonstrates the
use of Co-Simulation techniques to validate the dynamic behaviour of the hemodialysis
machine. My contribution consists of developing the domain specific visualization.
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2
State-of-the-Art: Visualizing Formal

Specifications

Visualization is a common approach to support the analysis and development of formal
specifications. It is often used to create a graphical representation of some (abstract)
data or piece of information within a formal specification. This chapter aims at assessing
the state-of-the-art of visualization approaches with respect to the research problem
stated in Section 1.2 and according to a set of criteria identified in Section 2.1. Since
this thesis is concerned with animation techniques, we mainly focus on state-of-the-art
visualization approaches which are based on animation.

The result of the state-of-the-art assessment is grouped into different classes of formal
methods. The first section (Section 2.2) deals with state-based formal methods. Sec-
tion 2.3 takes a closer look at process algebras. Finally, Section 2.4 considers other
related formal methods that also provide visualization approaches. In each section, we
first give a brief introduction of the characteristics of the respective formal method class
and introduce a running example that is used to support the assessment where possible.1

Subsequently, we discuss and compare the visualization approaches.

2.1. Set of Criteria

We introduce a set of criteria (in respect to the research problem stated in Section 1.2)
to give a precise analysis of the studied visualization approaches:

• Visual representation: A main goal of this thesis is to identify appropriate visual
representations for animated formal specifications. Thus, we take special account
of the visual representations that are used and their motivations for the studied
approaches.

• Interactivity: In Chapter 1, we have already stated that interactivity is an impor-
tant aspect of data visualization. As a consequence, we also take special account

1Some of the considered tools and visualization techniques are obsolete and unavailable. As a conse-
quence, the running example is only used for the assessment of tools and visualization techniques
which are available for use.
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of the interactive features of the studied approaches.

• Additionally required user knowledge: Non-formal method experts typically are not
versed in formal methods (e.g. they have only little or even no knowledge about
the mathematical notation of a formal method). In the course of studying the
visualization approaches, we analyze the knowledge a user must have in order to
use and understand a visualization. This also covers input needed from the user
to produce a visualization (e.g. mathematical formulas).

• Additionally required developer knowledge: Most visualizations are generated au-
tomatically based on the given data. However, custom visualizations, where the
mapping between the data and the visual representation are created manually, typ-
ically require some additional engineering skills (e.g. programming skills). Thus,
we also consider the skills needed to develop a visualization.

2.2. State-Based Formal Methods

This section deals with visualization approaches for state-based formal methods. In
state-based formal methods the system behaviour is typically described by states and
transitions. A state is a particular configuration of variables, whereas transitions link
two states and describe how the system evolves. Some states are marked as initial and
the set of states and transitions reachable from the initial state is also called the state
space of the specification. A prominent example for a state-based formal method is
the B-method. There are two specification languages associated with the B-method:
classical-B [Sch01; Abr96] and its successor Event-B [Abr10]. While classical-B aims at
specifying and analysing software systems, Event-B is typically applied in the field of
reactive systems.2 Other state-based formal methods that are considered in this sec-
tion are Z [SA92], TLA+ [Lam02], ASM [BS12] and VDM [Jon86]. Most visualization
approaches for state-based formal methods have the common goal of visualizing the infor-
mation that constitutes the states of the system, e.g. values of variables and transitions.
This covers graphical visualization approaches (see Section 2.2.2), graph visualization
approaches like state space visualization (see Section 2.2.3), graphical user interface
frontends of animation tools (see Section 2.2.4), and other visualization approaches (see
Section 2.2.5).

2.2.1. Running Example: Simple Lift System

In this section, we use the example of a simple lift system to support the assessment of
the different visualizations techniques. The lift system allows the movement of a single
lift cabin between a finite number of floors and the opening and closing of the lift cabin

2Since this thesis is mainly concerned with the B-method, we will give an extended description of the
B-method later in Section 4.2.1.
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Table 2.1.: Overview of graphical visualization approaches for state-based formal
methods

Approach / Tool Supported
Formalisms

Visualization
Technology

Interactivity Required Knowledge (De-
veloper)

Brama classical-B,
Event-B

Flash yes Flash, ActionScript

AnimB Event-B Flash / Web unknown Flash, ActionScript / HTML,
JavaScript

ProB (Flash) classical-B Flash no Flash, Java

BMotionStudio Event-B Java
(Draw2D)

yes -

Overture VDM Java yes Java

JeB Event-B Web no HTML5, JavaScript

WebASM ASM Web unknown HTML, JavaScript

ProB (Tcl/Tk) classical-B, Z Tcl/Tk no -

Lively Wal-Through
(ViennaTalk)

VDM-SL SmallTalk yes LiveTalk

door. The user can request the lift on a specific floor by pressing a request button that
is installed on each floor.

Since this section deals with several state-based formal methods, we have created a
formal specification of the simple lift system for each formalism that is considered in
this section. This covers formal specifications written in classical-B, Event-B and VDM-
SL. The formal specifications can be found in Appendix A.1.

2.2.2. Graphical Visualization

Graphical visualization is a common visualization approach in the field of state-based
formal methods. The basic idea of creating a graphical visualization for state-based
formal methods is to map each state in a formal specification to a proper graphical
representation. However, the implementation and the usability vary greatly from one
approach to another. This has implications for the required knowledge, time and re-
sources for creating the graphical visualization. In this context, we take special account
of the techniques provided by the studied approaches to map a state and its graphical
representation (we define this as gluing code).

Table 2.1 gives a quick overview of the studied approaches and their supported for-
malisms, the visualization technologies that are used, and supported tools. Moreover,
the table shows the assessment according to the set of criteria defined in Section 2.1.
The following subsections are categorized based on the visualization technologies used
by the studied approaches. In summary, we discuss approaches based on Flash, Java
GUI-toolkits, web-technologies, and other technologies like Tcl/Tk and SmallTalk. In
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each subsection, we first give a brief introduction of the considered approach and illus-
trate it with a graphical visualization of the simple lift system (see Section 2.2.1) created
with the respective approach, followed by an analysis.

Flash-based approaches

The tools Brama [Ser06], ProB [BL07] and AnimB [Mét] provide support for creating
graphical visualizations using Flash3 as the underlying graphical engine. Brama was
designed by ClearSy and comes as a plug-in for the Rodin platform [Abr+10]. It is pri-
marily an animator with support for the B-method (classical-B and Event-B), however
it also provides a Flash extension for creating graphical visualizations. In Brama the
developer creates the graphical representation of the formal specification using widgets
which are provided by Flash (e.g. labels and images), and the gluing code is realized
with the built-in scripting language ActionScript. Brama was used successfully for sev-
eral industrial strength applications like the DOF1 system [Engc; Engb] and COPP
system [Enga] for opening and closing the platform doors on line 1 and line 13 of the
Paris subway.

Another tool with support for Flash-based graphical visualizations is AnimB [Mét].
Like Brama, AnimB is primarily an animator that comes as a plug-in for the Rodin
platform.

The ProB tool also proposed a Flash-based approach for creating graphical visualiza-
tions [BL07] of classical-B specifications which comes as a plug-in for the Eclipse version
of ProB [Ben06b].4 The basic idea of the approach is similar to Brama: the developer
creates the graphical representation using the build-it widgets in Flash and writes code
for the gluing code. However, instead of writing ActionScript, it requires the user to
write Java.

Although, the use of Flash provides a powerful tool for creating rich interactive graphi-
cal visualizations, it involves some disadvantages for the developer: since a Flash based
tool is a self-contained tool, the developer of a visualization requires skills for using it.
Furthermore, the developer requires additional programming skills for writing the gluing
code, e.g. ActionScript for Brama and AnimB, and Java for [BL07]. Thus, creating a
graphical visualization using the presented Flash-based approaches may become time
consuming and error prone. For instance, with Brama the developer needs approxi-
mately one week to perfect the visualization of a formal specification created over two
months [Ser06]. The authors of the approach presented in [BL07] state that it took
them two days to setup the actual graphical representation based on Flash and less than
one hour to write the gluing code (when the developer is already familiar with the Java
programming language) for the visualization presented in [BL07]. Moreover, with the
rise of HTML5, Flash has become extinct [QSu; Vau01; Pau15].

3http://www.adobe.com/devnet/flash.html.
4The tool is no longer maintained and available.
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Java-based approaches

Most of the animation tools listed in Table 2.1 are implemented in Java or at least
contain a part of the tool that is written in Java. These include ProB, BMotionStudio,
Brama and Overture. Some of them also support creating graphical visualizations using
Java based GUI-toolkits.

In [NLL12], the authors present an extension for the Overture tool [Spe04a; Spe04b]
to combine VDM [Jon86] specifications with executable code. The authors argue that
the extension is on the one hand useful to combine VDM specifications with external
subsystems which may not be worthwhile to be formalized (e.g. external libraries) and
can also be used as a technique to create graphical visualizations for VDM specifications.
A graphical visualization is created using Java. Thus, the developer can make use of Java
GUI-toolkits like AWT, Swing, or SWT to create the graphical representation of a state.
For creating the gluing code, the approach provides two Java interfaces which need to
be implemented by the developer: the Remote Control interface allows the developer to
control the VDM animator (e.g. executing an operation) and the External Java Library
interface is responsible for updating the state of the graphical representation.

Figure 2.1 demonstrates the visualization of the VDM-SL simple lift system running
within the Overture tool. The visualization is made of different widgets (e.g. images
and buttons) provided by the Java Swing toolkit [ELW98]. The gluing code is also
written in Java and utilizes the Model-View-Controller (MVC) pattern. In order to
provide interactive features in the visualization, the buttons (located on the right side)
and the images that represent the floor request buttons (located on the left side) are
wired with VDM operations.

Although the approach provides a generic tool for creating rich interactive graphical
visualizations of VDM specifications, it comes at the price of usability since it requires
significant knowledge in Java to create the graphical representation and the gluing code.
Even creating visualizations for rather simple specifications may become a time consum-
ing and error prone task. It took us approximately one full working day to create the
visualization shown in Fig. 2.1. In particular, a lot of time has been invested to create
the skeleton of the Java application which is based on the MVC design pattern. Indeed,
the approach would benefit from a feature for automatically generating the skeleton of
the Java application that is needed to create a visualization.

Another disadvantage is that in the worst case, a modification of the original specifi-
cation is needed. For example, the VDL-SL simple lift system specification contains
special expressions to call the External Java Library interface to update the state of
the visualization as illustrated in Fig. 2.2. The move down operation contains a special
expression (see line 4) that is responsible for updating the position of the lift cabin in
the visualization.

The second Java based tool is called BMotionStudio [LBL09] and supports the creation
of graphical visualizations of Event-B specifications. BMotionStudio is integrated into
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Figure 2.1.: Graphical visualization of the VDM-SL simple lift system created with the
approach proposed in [NLL12]

1 move_down: () ==> ()

2 move_down() ==

3 (position := position - 1;

4 gui_Graphics‘updateLiftPosition(position))

5 pre position > groundf and move = <down>;

Figure 2.2.: move down operation of the VDM-SL simple lift system specification

the Rodin platform [Abr+10] and uses the ProB [LB08] animator to execute an Event-
B specification. The main motivation of BMotionStudio is to free the developer from
writing programming code that creates the graphical representation and that establishes
gluing code. Instead, the developer can use the built-in visual editor for this purpose.
The visual editor provides several predefined graphical elements, e.g. shapes, labels,
images and buttons, as well as well-known features from modern graphical editors, like
drag-and-drop, copy/paste or undo/redo. In order to create a link between a graphical
element and the state, the developer needs to set-up observers. An observer binds a list
of formulas (e.g. predicates and expressions) to a graphical element and allows the tool
to compute a visualization for any given state of the animated formal specification by
changing the properties of the graphical element (e.g. the color or position) according to
the evaluation of the formulas in the respective state. Moreover, the visualizations that
are produced are interactive. For instance, the developer can wire an Event-B event to a
graphical element which is executed when the user clicks on the graphical element.
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Figure 2.3 shows the graphical visualization of the Event-B simple lift system created
with BMotionStudio. The visualization consists of different graphical elements like im-
ages, buttons and containers representing the different parts of the simple lift system
and sets up observers in order to create the gluing code. The visualization contains
thirteen observers which each describe very simple formulas. For instance, the observer
belonging to the graphical element that represents the door will evaluate the predicates
door = open and door = closed, and depending of their values (TRUE or FALSE ) the
representation of the graphical element will be updated to display a different image (see
Fig. 2.3). In addition, some of the graphical elements wire Event-B events. As an ex-
ample, the graphical element that represents the request button on the first floor (the
upper floor) wires the Event-B event send request with the predicate f = 1.

Figure 2.3.: Creating the graphical visualization of the Event-B simple lift system with
BMotionStudio

While BMotionStudio provides a convenient and fast approach to create simple interac-
tive graphical visualizations for Event-B specifications, it is it difficult to use and apply
it when creating complex visualizations. In particular, the visual editor is limited in
terms of design flexibility and is inefficient when creating dynamic visualizations with
numerous or repeated elements. For instance, creating a railroad track layout with a
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number of tracks, signals and switches or a communication network with several nodes
can be very cumbersome. Another limitation of BMotionStudio is the limited reuse of
existing graphical elements (e.g. provided by other Java based GUI-toolkits). Although
the tool provides an extension mechanism to contribute new graphical element types, it
is hard and cumbersome to use it, especially because the user needs Java programming
skills and knowledge about the plug-in mechanism in Eclipse.

Web-based approaches

The use of web-technologies for developing formal method tools has become increasingly
popular with the rise of HTML5 [W3C14] and an increasing number of tool developers
bring more and more formal specification languages into the web.

The first web-based tool we are considering is called JeB [Yan13]. JeB is a framework
for Event-B that is capable of producing a standalone web-based animation engine for
an existing Event-B specification. The tool translates a given Event-B specification to
JavaScript and generates a JavaScript-based animation engine and an HTML-based user-
interface for animating the Event-B specification within a browser. The user-interface of
the generated animation also provides an HTML5 canvas for creating a graphical visual-
ization of the the Event-B specification based on HTML5 and JavaScript. In particular,
two JavaScript functions needs to be implemented for this purpose: jeb.animator.init
which initializes the visualization and jeb.animator.draw which draws the visualization
according to the current state of the animation [Yan13].

The result of creating a graphical visualization for the Event-B simple lift system using
JeB is demonstrated in Fig. 2.4. The corresponding HTML5 / JavaScript code can be
found in Appendix A.1.2. The upper half of the figure shows the graphical visualization
and the lower half of the figure shows the generated user-interface of the animation. It
contains a list of variables with corresponding state values, a list of invariants, multiple
buttons (one button for each event of the specification), and a list of events that have
been executed so far. The user can interact with the animation, e.g. by clicking on an
event button. This causes a state change in the animation, and the user interface and
the visualization will be updated according to the new state.

Since the visualization is part of the generated standalone animation, it is possible to
deploy it on a web-server. This makes the visualization (and animation) accessible from
other devices such as tablets and mobile phones and allows sharing the visualization
with other stakeholders (e.g. during an online project meeting). However, JeB also
makes high demands on the developer of a visualization as JeB requires significant
knowledge in HTML5 and JavaScript. Moreover, the approach lacks interactive features
(e.g. executing an Event-B event via the visualization).

The third tool in this category, called WebASM [ZGS14] has its origin in the ASM
(Abstract State Machine) [BS12] community. WebASM is a web-based tool that brings
CoreASM [FGG07], an animation engine for executing ASM specifications into the web.
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Figure 2.4.: Graphical visualization of the Event-B simple lift system created with JeB
and running in a web-browser

The tool provides a Java applet that embeds the CoreASM engine and a JavaScript API
for communicating with the engine (e.g. for loading an ASM specification and accessing
the state information of an ASM specification). Making the executed ASM specification
available via JavaScript enables the development of web-based graphical visualizations
of ASM specifications. Similar to JeB, WebASM also requires the knowledge of web-
technologies like HTML and JavaScript in order to create the graphical representation
and the gluing code.
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Other approaches

In Section 2.2.2, we have analyzed the ProB approach for creating Flash-based graphical
visualizations [BL07]. In addition to Flash, ProB also supports the use of Tcl/Tk [Leu+08]
for creating graphical visualizations of classical-B specifications. Tcl is a scripting lan-
guage that includes the Tk toolkit for creating graphical user interfaces. A major differ-
ence between both approaches lies in the creation of the gluing code since the Tcl/Tk
based approach does not require additional skills for creating the graphical elements
and for writing the gluing code. Instead, it requires an animation function written in
classical-B to link a state and its graphical representation. As an example, Fig. 2.5
demonstrates the graphical visualization of the classical-B simple lift system using the
animation function shown in Fig. 2.6. The visualization is built-on a two-dimensional
grid where each cell in the grid can contain a bitmap image. The user can define the
animation function and the images for the visualization in the DEFINITIONS block of
the classical-B specification. An image definition has the form ANIMATION IMGx ==

"filename", where x is a number and filename the path to a bitmap image file. The
animation function defines which image should be displayed in which cell. For this, the
animation function must be of type INTEGER * INTEGER +-> INTEGER, i.e. a mapping
from rows and columns to image numbers.

Figure 2.5.: Graphical visualization of the classical-B simple lift system in ProB Tcl/Tk

An interesting aspect of the ProB Tcl/Tk based approach is certainly that the developer

18



2.2. State-Based Formal Methods

1 DEFINITIONS

2 Rconv == (topf-r+groundf);

3 ANIMATION_FUNCTION == ({ r,c,i | r : groundf..topf &

4 ((c=0 & i=0) or (c=1 & i=3)) } <+

5 ({ r,c,i | r : groundf..topf & Rconv : request &

6 c=1 & i=4 } \/

7 { r,c,i | r : groundf..topf & Rconv=floor & c=0 &

8 ((door = open & i=1) or (door = closed & i=2)) } ) );

9 ANIMATION_IMG0 == "LiftEmpty.gif";

10 ANIMATION_IMG1 == "LiftOpen.gif";

11 ANIMATION_IMG2 == "LiftClosed.gif";

12 ANIMATION_IMG3 == "CallButtonOff.gif";

13 ANIMATION_IMG4 == "CallButtonOn.gif"

Figure 2.6.: Animation function for visualizing the classical-B simple lift system in ProB
Tcl/Tk

of a graphical visualization only needs one notation, namely classical-B. No additional
programming skills are needed in order to create the gluing code. However, the visu-
alizations that are produced are rather simple and restricted, e.g. the approach lacks
interactive components like buttons that can execute classical-B operations and prede-
fined elements like shapes. Instead, the developer needs to create bitmap images (e.g.
JPEG or GIF image files) using external tools which can be a time consuming task. Also,
writing the required animation function can still be a considerable challenge (depending
on the formal engineer’s knowledge of classical-B).

The authors in [Oda+15] present a graphical visualization approach called “Lively Walk-
Through”. Lively Walk-Though combines VDM animation with a UI sketch and widgets
to provide lightweight validation features for VDM-SL specifications. The approach is
implemented in Smalltalk [GR83] and integrated into ViennaTalk, a Smalltalk library to
work with VDM-SL specifications.5 It comes with an integrated environment including
a visual editor for creating UI widgets like fields, images, and buttons. For creating
the gluing code, the approach introduces its own language called “LiveTalk”. LiveTalk
allows the user to wire interactive actions (e.g. executing an operation or evaluating
an expression) to UI widgets. As an example, Fig. 2.7 shows the LiveTalk script for
wiring the send request(1) operation to the UI widget that represents the request button
located on the upper floor of the simple lift system where SendRequest1 is the id of the
UI widget. All LiveTalk scripts for the VDM-SL simple lift system visualization can be
found in Appendix A.1.3.

5https://github.com/tomooda/ViennaTalk-doc.
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1 SendRequest1‘clicked

2 send_request(1)

Figure 2.7.: Livetalk snippet for wiring an operation execution with an UI widget.

Table 2.2.: Overview of graph visualization approaches for state-based formal methods

Approach / Tool Supported
Formalisms

Visualization
Technology

Interactivity

State Space (ProB) classical-B,
Event-B

Tcl/Tk no

D3 yes

Signature Merge (ProB) classical-B,
Event-B

Tcl/Tk no

D3 yes

DFA-abstraction (ProB) classical-B,
Event-B

Tcl/Tk no

Under Approximation (GénéSyst) classical-B,
Event-B

unknown unknown

Formula Visualization (ProB) classical-B,
Event-B

Tcl/Tk no

D3 yes

2.2.3. Graph Visualization

Graph visualization is a popular technique that combines data visualization and geomet-
ric graph theory [HMM00]. A graph visualization is typically constructed with nodes
and edges, where the nodes are represented by shapes (e.g. rectangles, boxes or circles)
and the edges by line segments or curves. They can be used to visualize different con-
cepts such as algorithms or processes. In this section, we discuss graph visualization
approaches for state-based formal methods. Table 2.2 gives a quick overview of the
studied approaches.

State Space Visualization

For state-based formal methods, a state space can be constructed and validated automat-
ically via model checking [CGP99]. In this process, the validity of temporal properties
will be checked, but the state space itself is “invisible” to the user. However, often it is
important for the developer or a stakeholder to inspect the state space (or parts of it)
manually. This can be achieved interactively with animation or by visualizing the state
space of a specification. The latter can be especially useful to get an overview of the
system and to identify structural similarities, symmetries, and unanticipated properties
within the system [Pre08].

The ProB tool provides support for visualizing the state space for B specifications
(classical-B and Event-B), where the state space is constructed automatically by the
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built-in model-checker or interactively with animation. Two variants of the state space
visualization approach exists. The fist variant is a built-in feature of the ProB Tcl/Tk
version [LB08] and makes use of Graphviz6 for producing the visualization. The second
variant makes use of D3 [BOH11] and is described in [Cla13]. In both visualization
approaches, the states are represented by shapes like ellipses, rectangles or triangles,
where each node shows the value of the system variables for that state. Transitions are
represented by directed arrows, where each transition is labeled with the name of the
classical-B operation or Event-B event which triggered the transition. The difference
between the approaches is that the D3-based variant produces interactive visualizations
with features like zooming and panning within the visualization.

Figure 2.8.: ProB state space visualization of the classical-B simple lift system (full state
space)

The number of states and transitions typically becomes very large (“state space explo-
sion” problem [Val98; Pel08]), especially in industrial projects, and human inspection
of the state space visualization may thus become a difficult task. For instance, the full
state space visualization of the simple lift system covers 86 states and 242 transitions
and is shown in Fig. 2.8 (the reader is not expected to be able to read the visualization,
just to get a general impression of the problem). Although the visualization is produced
for a relatively simple specification, it is still hard for humans to grasp. In the next
section we study state space abstraction approaches that are capable of reducing the
complexity of state space visualizations.

6http://www.graphviz.org/.

21



2. State-of-the-Art: Visualizing Formal Specifications

Abstraction Techniques

The authors in [LT05] present two state space abstraction approaches: the signature
merge approach and the DFA-abstraction algorithm. Both approaches have been imple-
mented in the ProB tool. The basic idea of the signature merge approach is to merge
all states with the same enabled events to a common signature. The approach can be
tuned by deselecting events from the signature. Although the signature merge visual-
ization that is produced may not be equivalent to the original state space (as far as
the sequences of the events are concerned), the approach can result in reducing the size
of the state space while still preserving beneficial information. Figure 2.9 shows the
signature merge visualization of the classical-B simple lift system. In contrast to the
full state space visualization (see Fig. 2.8), the reduction is considerable (the signature
merge graph includes only 8 nodes and 14 edges) and the visualization can be analyzed
by a human. For instance, one can see that after executing the switch move up or
switch move down operation, the switch move stop operation is always enabled in the
next state (this is indicated by the solid edges). This is also true for the door open
operation: after executing the operation, the door close operation is always enabled in
the next state.

The basic idea of the DFA-abstraction algorithm, which is the other algorithm avail-
able in ProB is to abstract away from operation arguments and to apply the classical
minimization algorithm for Deterministic Finite Automatons (DFA) [ASU86; Hop79].
In contrast to the signature merge approach, the DFA-abstraction algorithm produces
a visualization in which the transitions are equivalent to those in the original state
space.

In [IL06; IS15], the authors present an abstraction technique based on animation for
creating behavioural views (visualized as state transition diagrams) from classical-B
and Event-B specifications. The animation based technique, also referred as an under-
approximation approach is similar to the previously mentioned signature merge and
DFA-abstraction algorithm, where the actual abstraction is applied to an exhaustively
explored state space generated using animation or model-checking tools such as ProB [LB08].
In order to generate the abstracted state transition diagram of the state space the tool
takes a disjoint set of user-defined predicates as input, where each predicate corresponds
to an abstract state in the abstract view (if the predicates are adequately chosen). Then,
the tool checks each predicate in each concrete state using AtelierB [Cle09]. If a predi-
cate is discharged in a concrete state, it is merged with the corresponding abstract state.
Thus, each concrete state of the original state space corresponds to an abstract state in
the abstract state transition diagram. Moreover, the strict mapping of concrete states
to abstract states allows the translation of the transitions of the original state space into
the transitions of the abstract state space.
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Figure 2.9.: ProB signature merge visualization of the classical-B simple lift system

Formula Visualization

The mathematical notation used in formal methods is often seen as a barrier which
prevents users from applying formal methods. Visualization approaches may help to
reduce these barriers. In this section, we consider visualization approaches which are
capable of visualizing mathematical formulas of state-based formal methods.

The ProB tool supports the visualization of formulas (e.g. expressions and predi-
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cates). Two implementations exist: the first one is integrated into the ProB Tcl/Tk
version [LB08], and the second one makes use of D3 [BOH11] and is described in [Cla13].
To demonstrate the ProB formula visualization approach, consider Fig. 2.10. The fig-
ure gives two examples of predicate visualizations produced with ProB Tcl/Tk. The
left side of the figure shows the visualization of the invariant move ∈ {up, down} ⇒
door = closed , and the right side shows the visualization of the precondition of the
switch move up operation of the classical-B simple lift system. The visualizations are
represented as tree graphs (a special graph type), where the original formula is decom-
posed into sub-formulas. Formula visualizations can be produced at different stages on
the animation. The fill color of the nodes indicates whether the (sub)-formula is true (the
node is green) or false (the node is red) in the respective state. For instance, the visual-
izations in Fig. 2.10 have been produced at state floor = 0,move = up, door = closed .
All nodes in the invariant visualization are colored green indicating that the invariant
is satisfied in the respective state. On the other hand, one can see at a glance which
sub-formula of the precondition visualization of the switch move up operation is false
(indicated by the red filled nodes) and thus disables the operation in the respective
state.

Figure 2.10.: Invariant (left) and guard (right) visualizations in ProB

The D3-based formula visualization approach of ProB is similar to the Tcl/Tk-based
approach, as both approaches rely on the same data coming from the ProB animator.
However, in contrast to the Tcl/Tk-based approach, the D3-based approached produces
interactive visualizations: the user can expand or collapse subformulas by selecting the
parent formula within the visualization. Furthermore, it is possible to zoom in and out
of the visualization [Cla13]. This is particularly useful if the user is interested in specific
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parts of the formula or if the visualization becomes too large.

Advantages and Limitations of Graph Visualization Approaches

The graph visualization approaches that have been presented provide several advantages.
A major benefit is that they are mainly generated automatically. There is no need to
manually create the mapping between the visualization and the formal specification as
required by the graphical visualization approaches presented in Section 2.2.2. Moreover,
they may be useful to get a global view of the system and to identify structural sim-
ilarities, symmetries, and unanticipated properties within the system. They can also
be used to support human analysis of the specification by highlighting relevant aspects
and behaviors of the system as demonstrated by the formula visualization feature and
the different abstraction techniques. The abstraction techniques can also considerably
reduce the complexity of large state spaces and thus enable the creation of suitable and
readable visualizations.

However, the presented graph visualization approaches also have some disadvantages.
They still may be to difficult for non-formal method experts since they need a certain
level of knowledge about the mathematical notation to understand the meaning of a
specific node and edge in the visualization (e.g. a node in the state space visualization
that represents a state of the system). Furthermore, the abstraction techniques presented
in [IL06; IS15] require the user to provide predicates as input. Obviously this is not
trivial, especially if the user is not versed in formal methods.

2.2.4. GUI Frontends of Animation Tools

Some animation tools also provide graphical user interfaces (GUI) frontends such as
ProB [LB08; Ben06a; Die09] and JeB [Yan13]. These GUIs typically display information
about the current state of the animation (e.g. variable values) and allow the user to
interact with the animation (e.g. by executing events). Figure 2.4 and Fig. 2.5 show the
animator GUI frontends of JeB and ProB Tcl/Tk respectively. Although such GUIs may
support the user in the analysis of formal specifications, they also have some barriers
which prevent non-formal method experts from using them. One reason for this is
that the GUIs of the animation tools are typically generic, i.e. they provide a default
presentation regardless of the characteristics of the animated formal specification (e.g. its
application domain). They also assume that the user is familiar with the animated formal
specification (e.g. the user knows the meaning and function of events and variable names)
and the mathematical notation of the respective formal method (e.g. to understand the
meaning of a specific state). Finally, most animation tool GUIs do not scale well. A
formal specification typically become very large in the process of developing a system.
The amount of details (e.g. the number of variables) of the specification increases with
the introduction of new refinement levels. This can make the examination of a specific
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state difficult as users are often only interested in specific parts of the specification (e.g.
certain variables).

In addition to the existing GUIs, there are also approaches for creating custom GUIs for
animation tools. Gaffe [Dal04] and its successor Gaffe27 are such tools. They support
the creation of custom GUIs for the ZLive8 animation tool based on the AWT GUI
toolkit (Gaffee) and on the Swing GUI toolkit (Gaffe2).

2.2.5. Other Visualization Approaches

In [Cla13], the author presents a visualization approach called value over time that
is capable of visualizing the state values of a given formula for a particular trace in
an animation. The approach is based on the ProB animator and provides support
for B specifications (classical-B and Event-B). Figure 2.11 illustrates the approach by
visualizing the value of the floor variable while animating the classical-B simple lift
system specification. The x-axis shows the animation steps performed so far and the
y-axis shows the value of the floor variable in the respective animation step.

Figure 2.11.: ProB value over time visualization approach visualizing the floor variable
of the classical-B simple lift system

7http://czt.sourceforge.net/gaffe2.
8http://czt.sourceforge.net/zlive.
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Table 2.3.: Overview of visualization approaches for process algebras

Tool Supported
Formalisms

Process Visu-
alization

Counter-
Example
Visualization

Other Visualization
Approaches

Interactivity

ProB CSPM yes yes State Space no

FDR3 CSPM yes yes Process Communica-
tion

yes

PAT CSP# yes yes LTL Formula Visual-
ization

unknown

TAPAs
CCSP
(= CCS + CSP)

yes no Process Communica-
tion

unknown

2.3. Process Algebras

The second class of formal methods we are considering are called process algebras. Pro-
cess algebras are mainly used for specifying and analyzing concurrent communicating
systems. This includes notations such as CSP [Hoa83] with its two major dialects:
CSPM [SA11] and CSP# [Sun+09a] and CCSP [Cal+08] (influenced by CCS [Mil89]
with some operators from CSP).

Table 2.3 gives a quick overview of the tools and visualization approaches studied in this
section. Two visualization approaches are common in the field of process algebras as can
be seen in the table: process visualization (studied in Section 2.3.2) and the visualization
of counter-examples (studied in Section 2.3.3). Finally, in Section 2.3.4 we study other
visualization approaches for process algebras.

2.3.1. Running Example: The Dining Philosophers Problem

In this section, we use the CSPM specification of the dining philosophers problem spec-
ification from [Ros10] to support the assessment of the CSP related visualization ap-
proaches. The dining philosophers problem was originally invented by E. W. Dijkstra
and is a commonly used example in concurrent systems to illustrate the complexity of
synchronization issues. The problem statement is described in [Ros10]:

“Five philosophers share a dining table at which they have allotted seats. In
order to eat, a philosopher must pick up the forks on either side of him or
her (i.e., both of them) but, there are only five forks. A philosopher who
cannot pick up one or other fork has to wait.”
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2.3.2. Process Visualization

In process algebras the system is described by processes. A process is an independent
component that can communicate with other processes via message-passing. A common
visualization approach in the field of process algebras is their visualization. This is
also reflected in Table 2.3: all considered tools provide support for process visualization.
Figure 2.12 illustrates the visualization of the PHIL(1) process of the dining philosophers
problem produced with the FDR3 tool [Gib+14]. As can be seen in the figure, a process
is represented as a graph where each state of a process is represented by a circular
node and the transitions are represented as edges labeled with the corresponding event
name.

Figure 2.12.: Process visualization in FDR3 for PHIL(1) process of dining philosophers
problem specification

Similar to the state space visualization approach for state-based formal methods (see
Section 2.2.3), the process visualization approach is only suitable for small processes with
a small number of states and transitions. Once a process consists of too many states and
transitions, human inspection of the visualization may become a difficult task.
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2.3.3. Visualizing Counter-Examples

The tools listed in Table 2.3 provide support for various assertion checks, including
deadlock freedom, divergence, determinism, and custom LTL formulas [Pnu77]. If an
assertion check fails, the tool typically generates a sequence of events (trace) that leads
to the state in which assertion failed. This particular trace is also referred to as a
counter-example. The ProB [LF08], FDR3 [Gib+14] and PAT [Sun+09b] tools are able
to visualize counter-examples. Similar to the process visualization feature of the tools,
the counter-example visualization is also displayed as a graph. For instance, Fig. 2.13
shows an excerpt of the counter-example visualization for deadlock freeness in the dining
philosophers specification checked by ProB. The transitions and states of the counter-
example are marked in red and are shown in the context of the the full state space of
the specification.

Figure 2.13.: Counter-Example visualization in ProB for deadlock freeness in dinning
philosophers problem specification (excerpt)
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Table 2.4.: Overview of visualization approaches for other formal methods

Approach / Tool Supported Formalisms Visualization Approaches Interactivity

Uppaal Timed Automata Graphical Notation unknown

Petri net Petri net Graphical Notation unknown

PVSio-web PVS Prototype-Builder, State Space yes

2.3.4. Other Visualization Approaches

The FDR3 [Gib+14] and TAPAs [Cal+08] tools also provide an approach to visualize
the communicating processes of a specification. For instance, consider the two process
communication visualizations for the dining philosophers problem specification shown
in Fig. 2.14. The graphical representation in both tools is different: While FDR3 uses
a tree layout (see left side of Fig. 2.14), TAPAs represents the communicating processes
with a box containing the particular processes (see right side of Fig. 2.14).

Figure 2.14.: Process communication visualization in FDR3 (left side) and TAPAs (right
side) for the dining philosophers problem

2.4. Other Formal Methods

This section deals with tools and visualization approaches for other formal methods
apart from state-based formal methods and process algebras which we have studied
in our state-of-the-art research. As shown in Table 2.4, this includes formal methods
for real time systems (Uppaal [LPY97]), distributed systems (Petri Net [Pet81]), and
variants of the λ−calculus (PVS [ORS92]).

The tools Uppaal and the tools that support Petri nets are innately linked with graphical
notations. Uppaal is a tool that includes a modelling and simulation environment for
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the specification and analysis of real-time systems based on timed automata [AD94]. A
Petri net is a graphical notation for the specification and analysis of distributed systems.
In particular, a Petri net is a graph which is made up of places, transitions and tokens.
Figure 2.15 shows an example Petri net specification created with [DKS09]. There are
many other tools that provide support for Petri nets.9

Figure 2.15.: Petri net graphical notation created with [DKS09]

Graphical notations may aid humans in understanding the specification. However, they
still need a certain level of knowledge about the underlying mathematical notation. For
instance, in Uppaal the user needs knowledge about the theory of timed automata.

PVSio-web [Ola+13; Mas+15b] is a web environment including the animation engine
PVSio [Mun05] and a visual editor for creating interactive prototypes for the PVS for-
malism [ORS92]. The visual editor allows users to choose an image that represents the
layout of the system user interface and to set up button and display areas. A button
area is an interactive component which is wired to a specific function of the PVS specifi-
cation and a display area can show a state value of the animated PVS specification. The
concept and motivation is similar to that of the graphical visualization approaches for
state based formal methods concerned in Section 2.2.2: the animation engine executes
the specification and provides the necessary information to be visualized (e.g. the state
values for the display areas). The prototype can be used for discussing the specification
with non-formal method experts (e.g. domain experts) and to walk though scenarios
by interacting with the prototype. Figure 2.16 shows the graphical editor of PVSio-web
for the example prototype of the data entry system of an infusion pump user interface
taken from [Ola+13]. PVSio-web was successfully used for supporting the validation of
the user interfaces for various medical devices [Mas+15a; Mas+14; Ola+13].

9http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html.
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Figure 2.16.: The visual editor of PVSio-web taken from [Ola+13]

2.5. Summary and Final Assessment

In this chapter we have covered animation-based visualization approaches for formal
methods with respect to the research problem stated in Section 1.2 and based on a set
of criteria introduced in Section 2.1. The chapter discusses different classes of formal
methods: state-based formal methods, process algebras and other formal methods such
as for the specification of real time systems and distributed systems, as well as variants
of the λ−calculus .

For state-based formal methods, we have studied several graphical visualization ap-
proaches (see Section 2.2.2). Graphical visualization in general is a promising approach
for involving non-formal method experts, such as domain experts, in order to validate
formal specifications. This is because they make it possible to create visualizations that
are inspired by the application domain of the formal specification. However, they differ
in their implementation and usability. We have identified two classes of graphical visu-
alization approaches for creating the graphical representation and for mapping a state
to its graphical representation (gluing code):

• The first class considers approaches that require additional knowledge for creating
the graphical representation and the gluing code (e.g. using techniques like HTML5
or programming languages like Java, JavaScript, or ActionScript); however, these
enable the developer to create rich interactive visualizations. For instance, in
the Overture built-in approach for VDM [NLL12] the developer can make use of
different Java GUI toolkits and techniques like the MVC pattern in order to create
a graphical visualization.

• The second class considers approaches that use the mathematical notation of the
respective formal method to create the gluing code. For instance, the ProB Tcl/Tk-
based approach requires an animation function written in classical-B and in BMo-
tionStudio the user set up observers by writing Event-B expressions and predicates.
The graphical representation is realized using simple images (ProB Tcl/Tk) or by
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means of a visual editor with predefined graphical elements like shapes, labels and
images (BMotionStudio). Although these approaches provide a convenient and
fast approach for creating simple graphical visualizations, they make it difficult
to use and apply them when creating complex visualizations with many repeated
elements.

The graphical visualization approaches make use of different techniques for developing
a visualization. We particularly highlight the approaches based on web-technologies,
since the final visualization can be deployed on a web-server. This makes the visual-
ization accessible from other devices such as mobile phones and tablets. Furthermore,
the visualization can be shared with other stakeholders (e.g. during an online project
meeting).

Some of the considered animation tools provide generic GUI frontends that display in-
formation (typically in text form) about the current state of the animation (e.g. variable
values and invariants). These frontends may become inaccessible to non-formal method
experts since they require knowledge of the mathematical notation of the respective
formal method to understand the meaning of a state. We believe that a customiza-
tion of the GUI frontends according to the application domain may reduce the barriers
preventing non-formal method experts from using such GUI frontends.

For process algebras, we have identified two common visualizations approaches which
may support the user in analyzing CSP specifications: the visualization of processes and
counter-examples. To our surprise, there are no graphical visualization approaches for
process algebras.

Some of the visualization approaches, such as the different graph visualization ap-
proaches for state-based formal methods (see Section 2.2.3) and the process algebra re-
lated visualization approaches (see Section 2.3) have the advantage that they are mainly
generated automatically with the respective approach. We believe that combining them
with graphical visualization approaches could reduce the barriers preventing non-formal
method experts from using such visualizations.

Finally, interactivity is one of the most important criteria to increase the usability of
visualization approaches that we have identified. Unfortunately, only a few graphical
visualization approaches provide interactive features.
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3
BMotionWeb: Concept

3.1. Introduction

The main goal of this thesis is to develop an approach (concept and tool) to complement
the use of animation with interactive data visualization and thereby support the vali-
dation of formal specifications. To reach this goal, this thesis presents a novel graphical
environment called BMotionWeb. BMotionWeb builds on the ideas of BMotionStu-
dio (described in Section 2.2.2) to provide support for the rapid creation of interactive
formal prototypes. Note that BMotionWeb is the successor and not a replacement for
BMotionStudio. In the course of developing BMotionWeb, we take account of the re-
sults obtained from the state-of-the-art research study in Chapter 2. In this chapter
we describe the concept of BMotionWeb for state-based formal methods1 and define the
goals for developing the tool (Section 3.3).

3.2. Interactive Formal Prototyping

The concept of prototyping is central for this thesis. Prototyping is a common approach
for supporting the software validation process. Its purpose is to create a prototype,
i.e. a first (incomplete) version of a software to gain feedback (e.g. from end-users
or customers) in the early development phase. A classical approach for developing a
software prototype is to use general-purpose programming languages like Java or C.
Traditional prototypes are often equipped with graphical user interfaces or represented
as extensive 2D and 3D visualizations or even as physical models. However, a factor
that must not be underestimated in prototyping is the creation and maintenance of a
prototype during the development process. The expenditure of time and overhead can
vary depending on the size of the project [Som06].

Using an animation tool for executing a formal specification is often compared with
prototyping. Although far more abstract than a Java or C prototype, the executable
specification allows users to explore the behavior of the system early in the develop-
ment process and may thus provide the same useful feedback as traditional prototypes.

1In Chapter 6, we will also adapt BMotionWeb to event-based formal methods.
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However, no additional programming code needs to be created and maintained. In this
thesis, we extend the concept of animation to the use of data visualization and interac-
tive techniques to provide sophisticated prototyping features as known from traditional
prototypes. The result is an interactive formal prototype that binds the intended func-
tionality of the system to an interactive visualization. An interactive formal prototype
consists of the following components: the animated formal specification, a visualization,
interactive handlers, and the mapping between the animated formal specification and
the visualization (gluing code). In the following sections we describe each component in
more detail.

3.2.1. Animated Formal Specification

The animated formal specification (also known as the executed formal specification) is
the basic part of an interactive formal prototype. It explores the reachable states of
the specification by evaluating transitions and exposes the information encoded in the
states (e.g. the concrete values of state variables) to the user. In order to animate a
formal specification and depending on the used animation engine, the user must either
provide initial values to the animator at startup or the values are actually provided by
the given animation engine (e.g. values of the constants of a classical-B or Event-B
specification). Once, a formal specification is animated, the user can analyze the formal
specification by walking through possible functional behavioral scenarios based on the
provided initial values. Different animation tools exists for classical-B and Event-B, such
as ProB [HLP13; LB08], Brama [Ser06], AnimB [Mét] and JeB [Yan13].

3.2.2. Visualization

As stated in Section 1.3, the main goal of this thesis is to support the use of animation
techniques and to make animation techniques more accessible to non-formal method
experts by means of interactive data visualization. Hence, visualization is also an impor-
tant component for an interactive formal prototype. The basic idea is to provide a visual
representation for the animation of a formal specification. To do this, we first need to
identify the data in the animated formal specification which is to be visualized. Regard-
ing state-based formal methods, this can be the data encoded in the states of a formal
specification, such as the state values of variables, results of expression evaluations or
transition data. As a next step, we need to find an adequate visual representation based
on the identified data. Here we also need to take the users into account who should
benefit from the visual representation. These can be users such as formal engineers,
end-users, and since a formal specification is typically associated with a domain (e.g.
railway, automotive or aerospace), also domain experts. A visual representation that
may benefit these users and that is used in this thesis is a domain specific visualiza-
tion.
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Domain Specific Visualization

In order to give a precise definition of what we mean by “domain specific visualization”,
we will start by defining each word in the term. When we talk about a domain in the field
of software engineering, we mean applications that share a common set of terminology
and requirements. For instance, a cruise-control and a lane-departure warning system
have their origin in the automotive domain. Another example for an application do-
main is the railway domain with applications like interlocking systems and autonomous
systems such as the COPP system [Enga].

Based on the definition of a domain and in matters of data visualization, we can now
define the term “domain specific visualization”. A domain specific visualization is the
visual representation of a specific domain. When considering a domain specific visual-
ization of an interlocking system, we could create a visual representation of the switches,
signals and trains using appropriate pictures.

Finally, if we are talking about domain specific visualizations with respect to animated
formal specifications, we mean that the data to be visualized is coming from the (ani-
mated) formal specification. Considering the previously mentioned example of an inter-
locking system, the data to be visualized could be the state value of a switch (e.g. left
or right), a signal (e.g. stop or go), or the position of a train. The graphical visualiza-
tion approach for state-based formal methods presented in the state-of-the-art research
(Section 2.2.2) also use domain specific visualizations as visual representations.

Graphical Elements

A visualization of an interactive formal prototype is composed of several graphical ele-
ments. Figure 3.1 illustrates the concept of a graphical element. A graphical element
could be a shape, an image, or a label. Each graphical element has attributes that de-
fine its appearance and layout. This includes common attributes like the coordinates of
the graphical element defining its position in the visualization or individual attributes
like the fill color of a shape. In our example of the domain specific visualization of the
interlocking system, we can use graphical elements to emulate the different aspects of
the interlocking domain. For instance, we could use a green circle to denote that a train
can pass and a red circle to denote that the train must stop.

3.2.3. Observers

The gluing code for an interactive formal prototype defines the mapping between the
animated formal specification and its visual representation. A naive approach for cre-
ating the gluing code is certainly to map each individual state of an animated formal
specification to an appropriate visualization. However, a formal specification typically
contains a lot of different states so that simply mapping each state to a visualization is
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Figure 3.1.: A visualization in BMotionWeb is composed of graphical elements

an almost impossible task. To overcome this challenge, we introduce a new approach for
creating the gluing code based on decomposition into observers.

Algorithm 1: Compute the representation of a graphical element for a given state

1 function computeStateBased(state s , graphicalElement elem)
2 foreach o ∈ collectObservers(elem) do
3 o.update(o.query(s))
4 end foreach
5 return elem
6 end function

Figure 3.2 shows the architecture of the observer-based gluing code approach, and
Fig. 3.3 illustrates the approach during an animation. The basic idea for an observer is to
observe specific data within the animated formal specification (e.g. a specific variable or
an expression) and to determine the appearance of a linked graphical element according
to the observed data for a given state (e.g. the value of a variable or the evaluation of an
expression). For this, an observer can be registered in the gluing code of the interactive
formal prototype and is notified whenever a state change has occurred. Once an observer
is notified, it can query the current state of the animated formal specification and update
the linked graphical element by changing its attributes according to the observed data
in the current state.

Formally, one can describe the approach using Algorithm 1. The algorithm computes
the representation of a graphical element elem for a specific state s . For each observer
o of the observers which are linked to the graphical element elem (line 2), we query
the data needed to update the representation of elem in state s (line 3). Finally, the
updated graphical element ele is returned.

The observer architecture is inspired by the Model-View-Controller pattern (MVC) and
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Figure 3.2.: Architecture of the observer-based gluing code approach

the observer pattern described in [Gam95]. This has several advantages:

• The animated formal specification and the visualization are independent compo-
nents of the interactive formal prototype. This makes the architecture generic so
that different animation engines and visualization techniques can be used.

• The animation engine does not need to know about the observers and what state
data is required for them. On the other hand, observers are free to determine what
they want to query of the state without relying on the animation engine to send
the correct information. State data that is not required is not sent to the observers
(see the pull model of the observer pattern in [Gam95]).

• By having multiple observers observing different aspects of the state, we can de-
compose the gluing code into smaller parts rather than having a large single gluing
code (e.g. see the gluing code for the Overture VDM-SL and the JeB Event-B
graphical visualization presented in Section 2.2.2).

• The visualization and the gluing code can be created and maintained indepen-
dently. For instance, a domain expert can create the visualization without having
knowledge of the actual formalism, and the formal engineer can define the ob-
servers.
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Figure 3.3.: Observer-based gluing code

• The visualization and the gluing code can be reused for creating interactive formal
prototypes of other formal specifications.

• The architecture is scalable and facilitates the incremental development of the
interactive formal prototype: when new elements are added to the formal specifi-
cation (e.g. variables), the interactive formal prototype can be extended by adding
new graphical elements and observers.

The observer architecture also implies some requirements:

1. The formal specification must be executable by an animation engine.

2. The animation engine must provide an interface for listening to state changes and
appropriate methods for querying the observed state data.

3. The visualization technique used must provide visualizations which are composed
of individual graphical elements (e.g. shapes and images) with attributes that
define their style and layout (e.g. color or position).
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3.2.4. Interactive Handlers

In the state-of-the-art study (see Chapter 2), we found that the interaction between a
human and the computer is an important aspect of data visualization. So far, however,
we have only defined the gluing code of an interactive formal prototype that maps a
state to its visual representation, where the visual representation is adapted whenever
a state change occurred in the formal specification. In state-based formal methods, a
state change is triggered by the execution of a transition. Most animation tools provide
GUIs for executing transitions. As an example, see the ProB based approaches and
the JeB approach described in Section 2.2.2. However, these GUIs are typically generic
and assume that the user is familiar with the animated formal specification (e.g. the
user knows the meaning and function of a transition). To overcome this challenge, we
present an approach for wiring actions to graphical elements, for instance by executing
transitions based on point and click interactions [Dix+03] with the graphical elements.
This makes the visualization interactive and gives a transition a visual meaning.

Figure 3.4.: Architecture of interactive handlers

Figure 3.4 shows the architecture for wiring an interactive action to a graphical element.
We extend the gluing code to include the concept of interactive handlers in addition
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to observers (see Section 3.2.3). When an interactive handler is registered, the setup
function of the interactive handler is called with a reference to the animated formal
specification. As an example, the setup function may register a click handler on the
graphical element that executes a transition when the user clicks on the element.2

Similar to the observer architecture introduced in Section 3.2.3, the interactive handler
architecture provides several advantages: since an interactive handler is registered in the
gluing code, it becomes an independent component of the interactive formal prototype.
The reference to the animation engine is realized indirectly via the setup function of the
interactive handler (see Fig. 3.4). The architecture is also scalable: when new transitions
are added to the formal specification, the interactive formal prototype can be extended
by adding new interactive handlers which execute the new transitions.

3.3. Goals for BMotionWeb

Based on the concept of interactive formal prototyping, we have defined the following
goals for implementing BMotionWeb:

(1) Develop a tool that supports the creation and execution of interactive formal pro-
totypes.

(2) The tool should provide a graphical environment that enables the user to rapidly
create the visualization and the gluing code (observers and interactive handlers).

(3) When dealing with complex interactive formal prototypes (e.g. with numerous or
repeated graphical elements), the tool should provide a scripting language.

(4) The tool should be generic: existing animation engines must be adaptable.

2The provided interactive features (e.g. click handler) depends on the used visualization technique.
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4.1. Introduction

In this chapter, we present the implementation of BMotionWeb and discuss our design
decisions and implementation choices. To illustrate this, we have integrated the ProB
animator [LB08] with BMotionWeb. The reason for choosing ProB was that it provides
already an elaborated API [STU] for executing the state-based formal methods classical-
B and Event-B. To exemplify the functionality of the implementation, we use the Event-B
specification of the simple lift system introduced in Section 2.2.1.

This chapter is organized as follows: first, we give some background information which
is relevant for the implementation of BMotionWeb in Section 4.2. Section 4.3 gives
an overview of the architecture of BMotionWeb and discusses our design decisions and
implementation choices. In the subsequent sections (Section 4.4 to Section 4.10), we
describe the different components of the architecture in more detail. In Section 4.8 we
present our implementation of the observers and interactive handlers concept introduced
in Chapter 3. Section 4.9 demonstrates how the developer of an interactive formal
prototype can programatically control the integrated animation engine and Section 4.10
presents the visual editor of BMotionWeb. Finally, in Section 4.11, we describe the
versions of BMotionWeb which are currently available.

4.2. Background

This section gives background information about ProB (Section 4.2.2) and the supported
state-based formal methods classical-B and Event-B (Section 4.2.1).

4.2.1. The B-Method

The B-Method [Sch01], originally developed by Jean-Raymond Abrial, is a formal ap-
proach to the specification and development of reliable safety-critical systems. There are
two specification languages associated with the B-method: classical-B [Sch01; Abr96]
and its successor Event-B [Abr10]. While classical-B aims at specifying and analyzing
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software systems, Event-B is typically applied in the field of reactive systems. They are
based on the Abstract Machine Notation (AMN). AMN consists of three levels: (1) the
initial specification of the system, where a first abstract specification of the system is
developed; (2) the stepwise refinement of the abstract specification, where the abstract
data is refined by more concrete data; and (3) the implementation, where the last re-
finement step is translated manually or via code generation into a suitable programming
language (i.e. C or ADA).

A notation based on set theory and first order logic is used to express the components
which make up a specification:

• Variables, constants and sets : Variables maintain state information, constants are
abstract constant values, such as an interval or a natural number, and sets are
collections of entities (either enumerated or deferred).

• Invariants and properties : These define the types of variables and constants respec-
tively. Moreover, the invariants define conditions about the reachable states of the
specification. Every state must satisfy these conditions otherwise the specification
is not considered consistent.

• Initialization: Defines the possible initial states of the specification. An initial
value must be assigned to each variable.

• Operations : Define the behavior of the system (i.e. they determine the transitions
in the specification). An operation is characterized by its name, input parameters,
output parameters (in classical-B), a condition under which the operation can be
executed, and the effect of the operation (e.g. which state variables are changed
by the execution of the operation).

The specification language uses three syntactic categories:

• Expressions : Expressions are formulas combining constants, variables, operators
and functions which are evaluated in a specific state of the specification. Examples
for expressions are the simple arithmetic addition 2 + 1 or the intersection A ∩B .

• Predicates : Predicates are formulas which evaluate to true or false for a given
state in a formal specification. For example, the predicate 3 = 5 is false and the
construct 2 ∈ {1, 2} is true.

• Substitutions : Substitutions define the replacement of a term by another term.
For example in the assignment x := 7, x is replaced by the integer 7. Moreover,
expressions can be used in substitutions (e.g. x := 3 + 4).

4.2.2. The ProB Animator

ProB [LB08] is a validation toolset with support for the state-based formal methods
classical-B [LB08], Event-B [HLP13] and Z [PL07], and other formal methods like TLA+
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[HL12] and CSPM [LF08]. The main features of ProB aremodel checking and animation.
The tool provides various model checking capabilities [PL10; LB03; Leu+01; Ben15] to
uncover errors, counter examples, and deadlocks in a formal specification. On the other
hand, the animator allows the user to check the presence of desired functionality and to
inspect the dynamic behavior of a formal specification by executing it. Thus, the user can
inspect a specific state of the formal specification in more detail, e.g. the user can obtain
the particular values of the state variables, constants and the outgoing events (Event-
B) or operations (classical-B) for the respective state. This thesis uses the animation
capabilities of ProB as a reference animation engine to implement BMotionWeb.

The core of ProB is written in SICStus Prolog.1 Several tools and graphical frontends
built on top of the ProB core are available. For instance, it exists an Eclipse based
graphical frontend integrated into the Rodin platform (see Fig. 4.1). This frontend
contain various views for supporting the user while animating a specification:

• State View: The state view shows the values of variables and constants for the
current and previous state of the animated specification. In addition, custom
formulas (e.g. expressions or predicates) can be registered which are evaluated in
each state.

• Events View: The transition view shows a list of all transitions including param-
eters that are declared in the specification. It differentiates between transitions
which are applied in the current state (enabled transitions) and those which are
not (disabled transitions). The user can click on an enabled transition causing a
state change in the animated formal specification.

• History View: The history view shows a list of executed transitions and enables
the user to jump back to a previous state.

The ProB 2.0 project [STU] is another tool based on the ProB core. It provides an API
for the programmatic control of the ProB animation capabilities written in Groovy, a
dynamically typed JVM language [Koe+07]. This includes functions to execute transi-
tions and to evaluate formulas (e.g. expressions or predicates) in a specific state of the
animation.

4.3. Architecture of BMotionWeb

The use of web-technologies for developing software has become increasingly popular
with the rise of HTML5 [W3C14] and JavaScript frameworks like Google’s AngularJS2

and Facebook’s React.3 Moreover, web-technologies like SVG [W3C11] and data visual-
ization tools like D3 [BOH11] enables the developer to create sophisticated and modern

1https://sicstus.sics.se.
2https://angularjs.org.
3https://facebook.github.io/react.
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Figure 4.1.: ProB integrated into the Rodin platform

visualizations. This was also confirmed by the state-of-the-art study (see Chapter 2): an
increasing number of tools that support formal methods are based on web-technologies.
This fact and the large number of libraries available for creating visualizations motivated
us to use web-technologies for the development of BMotionWeb.

Web-technologies like JavaScript, HTML5 and SVG are usually supported by runtime
environments on the client side (e.g. web-browsers). To be more flexible and to realize
the goal of supporting the adoption of BMotionWeb within existing animation tools, we
have decided to make also use of a language that can be used on the server side. Here we
decided to use the Java language, which is an object oriented language running on the
Java virtual machine (JVM). The main reasons for using Java are that it is capable of
running compiled code across different platforms and it enables the integration with other
languages that are also running on the JVM. For example, the ProB tool introduced in
Section 4.2.2 provides a Groovy API for working with different formalisms (e.g. classical-
B, Event-B, Z and CSPM). Java provides seamless integration with Groovy applications,
since Groovy is a language that also runs on the JVM.

Figure 4.2 gives an overview of the architecture of BMotionWeb. The architecture is
divided into a client front-end and a server back-end, where web-sockets [FM11] are used
to realize the communication between client and server. The client front-end consists of
a visual editor and a simulation engine. The visual editor allows the user to create and
edit a visualization template, whereas the simulation engine is responsible for executing

46



4.4. Visualization Template

Figure 4.2.: Architecture of BMotionWeb

visualization templates. On the other hand, the server back-end provides an animation
engine interface capable of integrating external animation engines with BMotionWeb.
In other words: the visualization of an interactive formal prototype is developed and
executed on the client side and the animated formal specification of an interactive formal
prototype “lives” on the server side. In the following sections we describe the components
of the client and server in more detail.

4.4. Visualization Template

At the heart of an interactive formal prototype, one finds a visualization template. It
is the part of the interactive formal prototype that is developed by the user. It de-
scribes the visualization and the gluing code (observers and interactive handlers) for
the interactive formal prototype. An important design decision was to make the full
web-technology stack available to the developer for creating a visualization template.
The benefit of this design decision is that the visualization template becomes flexible
since external resources, such as SVG images and third party JavaScript libraries, can
be reused. Indeed, this can save time for developing an interactive formal prototype and
may provide a large selection of reusable SVG images and JavaScript libraries. This
design decision can also help the developer to create complex interactive formal proto-
types, e.g. with numerous or repeated graphical elements. In general, a visualization
template consists of several files which are described in the following subsections.
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Table 4.1.: Available options for BMotionWeb manifest file

Name Type Required Description

id string yes Unique id of the interactive formal prototype.

name string no The name of the interactive formal prototype.

template string yes The relative path to the HTML template file (e.g. “tem-
plate.html”).

groovy string yes The relative path to the groovy script file (e.g.
“script.groovy”).

model string yes The relative path to the formal specification file that should
be animated (e.g. “model/mymodel.mch”).

modelOptions map no A key/value map defining the options for loading the model
- The available options are dependent on the animator and
formalism.

autoOpen array no The user can specify the ProB views which should be
opened automatically when running the interactive formal
prototype - The following views are available for ProB an-
imations (Event-B, classical-B and CSPM): CurrentTrace,
Events, StateInspector and ModelCheckingUI.

views list no List of additional views - A view object has the following
options:

id string yes Unique id of the view.

name string no The name of the view.

template string yes The relative path to the HTML template file of the view
(e.g. “view1.html”).

width numeric no The width of the view.

height numeric no The height of the view.

4.4.1. Manifest File

A visualization template is identified by a manifest file. The manifest file is the root file
of every interactive formal prototype. It contains the configuration for the interactive
formal prototype in JSON (JavaScript Object Notation) format.4 Table 4.1 gives an
overview of the available options. The table shows the option’s name, its type, a short
description, and denotes if the option is required or optional. Listing 4.1 exemplifies the
use of a manifest file based on the interactive formal prototype of the Event-B simple
lift system.

4http://www.json.org.
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1 {

2 "id": "lift",

3 "name": "Simple lift system",

4 "template": "lift.html",

5 "groovy": "script.groovy",

6 "model": "model/m2.bcm",

7 "autoOpen": [

8 "CurrentTrace",

9 "Events"

10 ]

11 }

Listing 4.1: Example manifest file for the simple lift system (JSON)

4.4.2. Visualization Files

The HTML template file that is linked in the manifest (see line 4 in Listing 4.1) is the
starting point for developing the actual visualization for the interactive formal prototype.
The snippet in Listing 4.2 shows an example HTML template file for the simple lift
system.

1 <html>

2 <head>

3 <title>Simple lift system visualization</title>

4 </head>

5 <body>

6 <script src="bms.api.js"></script>

7 <script src="lift.js"></script>

8 <div bms-svg="lift.svg"></div>

9 </body>

10 </html>

Listing 4.2: HTML template file for simple lift system (HTML)

In general, a visualization in BMotionWeb makes use of SVG. For this, BMotionWeb
provides a special attribute called bms-svg that takes a relative path to an SVG image
file as its value (see line 8). The attribute renders the entered SVG image file within the
visualization and registers it in the visualization template. A registered SVG image file
can be edited by means of the built-in visual editor in BMotionWeb which is described
in Section 4.10. Since the SVG image file is an external file it can also be edited with any
other SVG editor. As an example, consider Fig. 4.3. The left side of the figure shows
the SVG image file for the simple lift system and the right side demonstrates the SVG
file rendered in the interactive formal prototype. In addition to SVG, BMotionWeb also
makes the full web-technology stack available to the user in order to create a visualization
(i.e. the user can apply other web-techniques with HTML5, CSS and JavaScript).
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In line 6 we reference the JavaScript file bms.api.js. This provides the BMotionWeb
JavaScript API with functions, e.g. to register observers and interactive handlers. The
developer can make use of this API by referencing an additional JavaScript file which
contains custom JavaScript code (see lift.js in line 7). The BMotionWeb JavaScript API
is described in Section 4.8.

4.4.3. Groovy Script File

The developer can optionally define a Groovy5 script file (see line 5 in Listing 4.1) to
link custom Groovy or Java code to the interactive formal prototype that is evaluated
on the server side. Within the Groovy script file the developer can also make use of the
BMotionWeb Groovy API with functions, e.g. to control the integrated animation engine
or to register external methods that can be triggered from the client side (JavaScript).
As an example, using the Groovy API the developer may query an external database or
make some complex computations based on the information coming from the animated
formal specification (e.g. state information). The Groovy API is described in Section 4.9
in more detail.

4.5. Working with Graphical Elements

The web-technologies used for developing a visualization provide us with several pre-
defined graphical elements and techniques for creating and styling them. For instance,
HTML provides elements like tables, buttons and lists, and SVG provides elements like
shapes and images. These elements are also referred to DOM elements.6 With CSS
we have a comprehensive technique to define the style and layout for HTML and SVG
elements. BMotionWeb uses these techniques as the basis for implementing the graph-
ical element concept introduced in Section 3.2.2 and for linking them to observers and
interactive handlers.

In order to identify and to manipulate a graphical element within a visualization, BMo-
tionWeb uses jQuery.7 jQuery is a JavaScript library for selecting and manipulating
DOM elements in an HTML document. It extends the CSS selector syntax8 to provide
selectors based on the id, name, classes, types, attributes and many more properties of a
DOM element. As an example, consider the JavaScript snippet in Listing 4.3. It shows
two examples for selecting and manipulating graphical elements based on the SVG image
shown in Fig. 4.3. With jQuery we can select the graphical element that represents the
lift door by its id as demonstrated in line 1 (the prefix “#” is used to match a graphical
element by its id). Once an element is selected, jQuery provides us with a reference

5http://groovy-lang.org.
6http://www.w3schools.com/js/js htmldom.asp.
7https://jquery.com.
8https://www.w3.org/TR/css3-selectors.
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to the selected element and allows us to manipulate it, e.g. by changing its attributes.
For instance, in line 2 we set the fill attribute of the door to the color gray. We can
also select and manipulate multiple graphical elements as demonstrated in lines 4 and 5,
where we select all ellipse graphical elements which have a data-floor attribute (line 4)
and color them all green (line 5). For a comprehensive list of jQuery selectors we refer
the reader to the jQuery selectors API documentation.9

1 var door = $("#door");

2 door.attr("fill", "gray");

3

4 var allRequestButtons = $("ellipse[data-floor]");

5 allRequestButtons.attr("fill", "green");

Listing 4.3: Example for selecting and manipulating elements using jQuery (JS)

1 <svg width="220" height="340"

2 xmlns="http://www.w3.org/2000/svg">

3 <g id="lift_system">

4 <g id="lift">

5 <rect fill="white" stroke="black"

6 height="330" width="100" y="5" x="50"/>

7 <rect id="door" fill="gray" stroke="black"

8 height="80" width="70" y="245" x="65" />

9 <text fill="black" y="58" x="165">Floor 1</text>

10 <text fill="black" y="182" x="165">Floor 0</text>

11 <text fill="black" y="290" x="165">Floor

-1</text>

12 </g>

13 <g id="request_buttons">

14 <ellipse id="bt_1" data-floor="1"

15 ry="11" rx="11" cy="54" cx="22" fill="gray"/>

16 <ellipse id="bt_0" data-floor="0"

17 ry="11" rx="11" cy="177" cx="22" fill="gray"/>

18 <ellipse id="bt_-1" data-floor="-1"

19 ry="11" rx="11" cy="285" cx="22" fill="gray"/>

20 </g>

21 </g>

22 </svg>

Floor 1

Floor 0

Floor -1

Figure 4.3.: SVG image of simple lift system: source (left) and rendered (right)

9http://api.jquery.com/category/selectors.
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4.6. Animation Engine Interface

The animation engine interface manages the communication between the client front-end
and the integrated animation engine via web-sockets. It exposes functions for controlling
the animation engine and for interacting with the animated formal specification to the
client front-end. Each integrated animation engine must implement some default func-
tions, such as functions to execute a formal specification, to execute a transition, or to
evaluate a formula. In this thesis, we have implemented the animation engine interface
for supporting the ProB animation engine (see Section 4.2.2). Moreover, we have started
to implement the interface for supporting CoreASM [FGG07], an animation engine for
executing ASM specifications.

4.7. Simulation Engine

The simulation engine allows users to interact with the interactive formal prototype and
to explore its behavior. For this purpose, it renders a visualization template and manages
the communication between the client and server. In particular, it sends requests from
a registered observer (e.g. which evaluates an expression) to the animation engine via
the animation engine interface on the server side and forwards the results from the
animation engine back to the observer. It also triggers state changes in the animated
formal specification based on the registered interactive handlers.

4.8. Observers and Interactive Handlers

In this section we present our implementation of the observer and interactive handler
concept introduced in Section 3.2.3 and Section 3.2.4 respectively. BMotionWeb im-
plements various observers and interactive handlers with different functions. They are
implemented in JavaScript and follow the uniform schema shown in Listing 4.4, where
bms is a global variable pointing to the BMotionWeb JavaScript API, observe a function
to register an observer (see line 1) and handler a function to register an interactive han-
dler (see line 2). The functions have two arguments: the first argument defines the type
of the observer or interactive handler, and the second argument defines a list of options
that are passed to the respective function. The options are defined as a key/value map,
where key is the option’s name, and value is the option’s value. The options may be of
different types (e.g. string, integer, boolean, or a function). In order to link graphical
elements to observers and interactive handlers, each observer and interactive handler
can define the selector option. The selector option determines the graphical elements
to which the observer or interactive handler will be attached using the jQuery selector
syntax (see Section 4.5).
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Table 4.2.: Available options for formula observer

Name Type Required Description

selector string no The selector matches a set of graphical elements which
should be linked to the observer.

formulas list yes A list of formulas (e.g. expressions, predicates or single
variables) which should be evaluated in each state. For
instance, [′x ′,′ card(x )′] observes the variable x and the ex-
pression card(x ) (the cardinality of the variable x ).

translate boolean no In general the result of the formulas will be strings. This
option should be set to true to translate B-structures to
JavaScript objects.

trigger function yes The trigger function will be called after every state change
with its origin reference set to the graphical element that
the observer is linked to and with the values of the formulas
at the new state. The values parameter is an array contain-
ing the values of the formulas, e.g. use values[0] to obtain
the result of the first formula. If no selector is defined, the
trigger function is called only with the values parameter.

1 bms.observe(<type>, <options>);

2 bms.handler(<type>, <options>);

Listing 4.4: Implementation schema for observers and interactive handlers (JS)

In the following subsections we present the various observer and interactive handler
types. In each section, we first give a brief description of the characteristics of the
respective observer or interactive handler and list their available options in a table. The
table defines the option’s name, its type, a short description and denotes if the option
is required or optional. To illustrate the behavior of an observer or interactive handler,
we apply it to the simple lift system presented in Fig. 4.3.

4.8.1. Formula Observer

The formula observer watches a list of formulas (e.g. expressions, predicates or single
variables) and triggers a function whenever a state change occurred in the animated
formal specification. The values of the formulas and the origin (the reference to the
graphical element that the observer is attached to) are passed to the trigger function.
Within the trigger function, the user can manipulate the origin (e.g. change its at-
tributes) based on the values of the formulas in the respective state. Table 4.2 gives an
overview of the available options for the formula observer.
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1 bms.observe("formula", {

2 selector: "#door",

3 formulas: ["floor"],

4 translate: true,

5 trigger: function (origin, values) {

6 switch (values[0]) {

7 case 1: origin.attr("y", "20"); break

8 case 0: origin.attr("y", "140"); break

9 case -1: origin.attr("y", "250"); break

10 }

11 }

12 });

Listing 4.5: Example formula observer (JS)

Listing 4.5 shows how the formula observer is used in the simple lift system. In line 1
we register a new formula observer to the graphical element that matches the selector
“#door”, i.e. the graphical element that represents the door of the simple lift system
(line 2). Line 3 states that the observer should observe the variable floor during the
animation. In line 4 we set the translate option to true. By default the results of
evaluating the formulas are strings. Setting the translation option to true translates
the string results into JavaScript objects. Table 4.3 gives an overview of the mapping
between B (classical-B and Event-B) constructs represented as strings and JavaScript
objects. For instance, the value “TRUE” is translated into the JavaScript object true
which can be then used in the JavaScript context (e.g. in a conditional statement). In
lines 5 to 11 we define a trigger function that is called whenever a state change has
occurred. The reference to the matched graphical element (origin) and the state values
of the observed formulas (values) are passed as arguments to the trigger function. The
trigger function in Listing 4.5 defines the position of the lift cabin (see lines 6 to 10).
For this, it maps the y coordinate attribute of the origin to the desired value based on
the state value of the floor variable (values[0]).

4.8.2. Predicate Observer

The predicate observer observes a predicate and triggers a function depending on the
evaluation of the predicate in the respective state (true or false). The reference to the
graphical element to which the observer is attached is passed to the particular function.
Table 4.4 gives an overview of the available options for the predicate observer.

As an example, Listing 4.6 shows a predicate observer for the simple lift system. The
purpose of the observer is to set the fill attribute of the door to the color white (denoting
that the door is opened) or to gray (denoting that the door is closed) based on to the
evaluation of the predicate in the respective state (true or false). To do this, we register
a new predicate observer (line 1) for the graphical element that matches the selector
“#door” (line 2). In line 3 we define the predicate door = open that should be observed
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Table 4.3.: Overview of translating B constructs to JavaScript objects

Example

B Construct JavaScript B as String JavaScript

BOOL Boolean “TRUE” true

Naturals Number “2” 2

Integers Number “-2” -2

Sets Array “{2, 3}” [2, 3]

Sets of Sets Array “{{2}, {2, 3}, {2, 3, 4}}” [[2], [2, 3], [2, 3, 4]]

Relations Array “{(2, 3), (3, 4)}” [[2, 3], [3, 4]]

Nested Relations Array “{({(2, 3)}, 3)}” [[[[0, 0]], 0]]

Functions Array “{(2, 3), (3, 4)}” [[2, 3], [3, 4]]

Table 4.4.: Available options for predicate observer

Name Type Required Description

selector string no The selector matches a set of graphical elements which
should be linked to the observer.

predicate string yes A predicate which should be evaluated in each state.

true function yes The true function will be called whenever the predicate
evaluates to true in the respective state with its origin ref-
erence set to the graphical element that the observer is
linked to. If no selector is defined, the true function is
called without parameters.

false function yes The false function will be called whenever the predicate
evaluates to true in the respective state with its origin ref-
erence set to the graphical element that the observer is
linked to. If no selector is defined, the false function is
called without parameters.
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during the animation. Lines 4 to 6 define the function that is called whenever the
predicate is true in the respective state. When this is not the case the false function is
called (see lines 7 to 9).

1 bms.observe("predicate", {

2 selector: "#door",

3 predicate: "door = open",

4 true: function(origin) {

5 origin.attr("fill", "white");

6 },

7 false: function(origin) {

8 origin.attr("fill", "gray");

9 }

10 });

Listing 4.6: Example predicate observer (JS)

4.8.3. Set Observer

The state-based formal methods classical-B and Event-B are based on set theory. Thus,
the different aspects of the system are often expressed as sets. As an example, consider
a formal specification of an interlocking system, where the occupied block segments of a
track are expressed as a set. It would be useful to identify graphical elements based on
the elements of this set and to color all of them red at once (denoting that the blocks
are occupied). To do this, we present an observer called set observer that is capable of
selecting graphical elements based on a user-defined set expression. Table 4.5 shows the
available options for the set observer.

To illustrate the use of the set observer consider Listing 4.7. The purpose of the observer
is to set the fill of all pressed request buttons to green. To do this, we define the set
selector based on the variable request which defines the set of floor numbers where the
request button has been pressed (line 3). Since the ids of the graphical elements that
represent the request buttons have the form “bt nr”, where nr is the respective floor
number (−1, 0 or 1), we override the prefix using the convert function (lines 4 to 6). The
returned prefix is composed of the string “#bt ” and the floor number (e.g. “#bt 0”).
Finally, in lines 7 to 10 we define the actions triggered on the graphical elements that
matches the composed set selector: we color the graphical elements in green (denoting
the buttons that are pressed).
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Table 4.5.: Available options for set observer

Name Type Required Description

selector string no The selector matches a set of graphical elements which
should be linked to the observer.

set string yes The result of the defined set expression is used to establish
a set selector which in turn is used to find child graphical
elements of the graphical element that matches the selector
of the observer. The elements of the set are joined with the
prefix “#” (e.g. “#ele1,#ele2,#ele3,...”).

convert function no The convert function is called for each element of the de-
fined set. It returns an element selector of the form “#id”,
where id is the identifier of the element. The user can also
override the method.

actions list yes A list of actions that determine the appearance and the
behaviour of the set graphical elements.

attr string yes The attribute of the elements that should be modified.

value string yes The new value of the attribute.

1 bms.observe("set", {

2 selector: "#request_buttons",

3 set: "request",

4 convert: function(element) {

5 return "#bt_" + element;

6 },

7 actions: [{

8 attr: "fill",

9 value: "green"

10 }]

11 });

Listing 4.7: Example set observer (JS)

4.8.4. Refinement Observer

Refinement is an important concept in the state-based formal methods classical-B and
Event-B. It can be used to structure the development of a formal specification and to
gradually introduce complexity and details (e.g. new variables or events). In order
to support refinement in interactive formal prototypes, we introduce an appropriate
observer with the available options shown in Table 4.6.

Listing 4.8 shows the use of the refinement observer based on the Event-B simple lift
system. The purpose of the observer is to show the request buttons of the visualization
(see Fig. 4.3) only if the corresponding refinement (the machinem2 where the buttons are
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Table 4.6.: Available options for refinement observer

Name Type Required Description

selector string no The selector matches a set of graphical elements which
should be linked to the observer.

refinement string yes The refinement that should be observed. The option ac-
cepts the name of a classical-B or Event-B machine.

enable function yes The enable function is called whenever the defined refine-
ment is part of the animation with its origin reference set
to the graphical element that the observer is linked to. If
no selector is defined, the enable function is called without
parameters.

disable function yes The disable function is called whenever the defined refine-
ment is not part of the animation with its origin reference
set to the graphical element that the observer is linked to. If
no selector is defined, the disable function is called without
parameters.

introduced) is part of the animation, otherwise the request buttons should be hidden. To
do this, we register a new refinement observer to the group of request button graphical
elements (“#request buttons”). In line 3 we define the refinement (the name of the
machine) that introduces the request buttons: m2. Lines 4 to 6 define the enable function
that sets the opacity attribute of the graphical element to the value 1 (showing the
request buttons) whenever the defined refinement is part of the animation. Otherwise,
the disable function (lines 7 to 9) is called which sets the opacity attribute of the graphical
element to the value 0 (hiding the request buttons).

1 bms.observe("refinement", {

2 selector: "#request_buttons",

3 refinement: "m2",

4 enable: function (origin) {

5 origin.attr("opacity", "1")

6 },

7 disable: function (origin) {

8 origin.attr("opacity", "0")

9 }

10 });

Listing 4.8: Example refinement observer (JS)

4.8.5. Illustration of Observers

Figure 4.4 illustrates the effect of the example formula (Listing 4.5), predicate (List-
ing 4.6) and set (Listing 4.7) observers on the simple lift system (Fig. 4.3). Some
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Figure 4.4.: Effect of formula, predicate and set observers on simple lift system

example states and their variable configurations are shown at the bottom of the figure.
The effect of applying the observers is shown at the top of the figure. As can be seen
in the figure, the effect of the formula observer is to change the y coordinate based on
the current state value of the variable floor (denoting the movement of the door be-
tween floors). The effect of the predicate observer is to set the fill color of the lift door
according to the evaluation of the predicate door = open. For instance, in state #2
the predicate is true. Hence, the door is white denoting the door is opened. Finally,
the set observer colors all pressed request buttons to green based on the set variable
request .

4.8.6. Execute Event Handler

The execute event handler wires a list of classical-B operations or Event-B events to
graphical elements. Table 4.7 shows the available options for the execute event han-
dler.

Listing 4.9 shows how the execute event handler is used. In line 1, we register a new
execute event handler for the graphical element that represents the request button for
floor 0 (line 2). In lines 3 to 8, we define the event with the event’s name (line 5) and
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Table 4.7.: Available options for execute event handler

Name Type Required Description

selector string yes The selector matches a set of graphical elements which
should be linked to the interactive handler.

events list yes A list of events which should be wired with the graphical
element.

name string yes The name of the event.

predicate string no The predicate for the event.

label function no The label function returns a custom label as a string to be
shown in the tooltip. The user can also return an HTML
element. The function provides two arguments: the origin
reference set to the graphical element to which the handler
is linked and the event data.

callback function no The callback function will be called after the event has been
executed. If the event returns a value (e.g. when executing
a classical-B operation with return value), the return value
is passed to the callback function.

predicate10 (line 6) which should be wired to the graphical element. Finally, in lines 9
to 11 we define a custom label based on the data of the event object which contains the
name (event.name) and the predicate (event.predicate) of the defined event.

1 bms.handler("executeEvent", {

2 selector: "#bt_0",

3 events: [

4 {

5 name: "send_request",

6 predicate: "f=0"

7 }

8 ],

9 label: function(origin, event) {

10 return "Push button " + event.predicate;

11 }

12 });

Listing 4.9: Example execute event handler (JS)

Figure 4.5 illustrates the effect of the execute event handler. A tooltip that lists all
available events (disabled and enabled) will be shown when hovering over the graphical
element or when clicking on the graphical element and if all events are disabled or more
than one event is enabled. If only one event is enabled, it is executed directly when
clicking on the graphical element. As an example, in the figure the user hovers over the

10The predicate defines the values of the parameters for the event.
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request button on floor 0.

Figure 4.5.: Effect of execute event handler on simple lift system

4.8.7. Context-Sensitive Options

Each option for an observer or interactive handler (except of the selector option and
the options that take a function as its value) can also define a function that returns its
value. The origin (the reference to the graphical element that the observer or interactive
handler is attached to) is passed to the value function as the first parameter. Defining a
value function enables the user to determine the value of an option in the context of the
linked graphical element. As an example, consider the execute event handler presented
in Listing 4.9. The handler wires the send request event with the predicate f = 0 to the
graphical element that represents the lift request button on the floor 0 (#bt 0 ). Instead
of creating similar execute event handlers for the other request buttons, we could also
define a selector that selects all request buttons and a value function that returns the
predicate in context of the matched graphical elements. Listing 4.10 shows an alternative
execute event handler linked to all ellipse graphical elements that provide a data-floor
attribute (ellipse[data-floor]). The data-floor attribute defines the floor number (-1, 0 or
1) of the respective request button. In line 6 to 8 we define a function that returns the
predicate of the event send request in context of the matched graphical elements, i.e. the
function returns the predicate based on the data-floor attribute of the linked graphical
element. For instance, the predicate function returns f = 1 for the graphical element
where the data-floor attribute is set to 1. Based on context-sensitive options, we can
create generic observers and interactive handlers: if we add more request floor buttons,
the execute event handler in Listing 4.10 would be also valid for the new buttons.
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1 bms.executeEvent({

2 selector: "ellipse[data-floor]",

3 events: [

4 {

5 name: "send_request",

6 predicate: function (origin) {

7 return "f=" + origin.attr("data-floor")

8 }

9 }

10 ],

11 label: function(origin, event) {

12 return "Push button " + event.predicate;

13 }

14 });

Listing 4.10: Context sensitive execute event handler (JS)

4.8.8. Other API Features

The BMotionWeb JavaScript API also provides some other features listed below:

Evaluate formulas manually. The JavaScript API provides the bms.eval function that
takes a list of options defining the formulas to be evaluated and a trigger function that
is called with the values of the formulas. The function is similar to the formula observer,
except that the bms.eval function is executed once (in the current state) rather than
after every state change.

Execute transitions manually. With the bms.executeEvent API function, the devel-
oper can execute a transition manually. The function takes a list of options, where the
name and predicate options define the name and the predicate of the event to be ex-
ecuted respectively. Similar to the execute event handler the developer can optionally
define a callback function that is called after the event has been executed. If the event
returns a value (e.g. for a classical-B operation with a return value) the return value is
passed to the callback function.

Initialization listener. The bms.init function takes a function as its parameter that
is called whenever the animated formal specification is initialized. Thus, the developer
could create the visualization according to static data coming from the formal specifica-
tion (e.g. constants or external data from a database).
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4.9. External Method Calls

BMotionWeb provides a Groovy API that can be accessed via the global variable bms
within a Groovy script file. The Groovy API provides different functions to programat-
ically control the integrated animation engine and to interact with the animated formal
specification, e.g. to access the state space or trace of the animated formal specification.
The developer can also register external methods that are evaluated on the server side.
The registered methods accept arguments from the client and may also return data to
the client. Listing 4.11 demonstrates the bms.registerMethod Groovy API function.11

The method takes two arguments: the first argument defines the name under which
the method should be registered, and the second argument is a closure that defines the
actual method. For instance, in line 1 we register a method called random with a pa-
rameter n and the method body defined in lines 2 to 11. The purpose for this method is
to randomly execute n events in the animated formal specification, where n is a number
passed to the method. If a number below or equal zero has been passed to the method
the method returns an error message. Otherwise the method randomly executes the
event and returns a success message.

Since BMotionWeb integrates with the ProB animation engine, some of the ProB func-
tionality is exposed to the user via the BMotionWeb Groovy API. ProB is tightly in-
tegrated with the Groovy scripting language. Everything from the constraint solver to
the user interface is exposed via the scripting language.12 For instance, in lines 5 and 7
in Listing 4.11 we access the current trace (bms.getTrace()) and execute a random event
(trace.anyEvent()) of the animated formal specification respectively. These methods
then call the appropriate methods within the ProB Java API.

1 bms.registerMethod("random", { n ->

2 if(n <= 0) {

3 return "Only numbers greater than 0 are allowed.";

4 } else {

5 def trace = bms.getTrace();

6 1.upto(n, {

7 trace = trace.anyEvent();

8 });

9 bms.getAnimationSelector().traceChange(trace);

10 return n + " events have been executed.";

11 }

12 });

Listing 4.11: Register method on the server side (Groovy)

To use a registered method on the client side, the method can be wired to graphical
elements (e.g. with an observer or interactive handler) or the developer can call the
method manually (see lines 11 to 18 in Listing 4.12). Lines 2 to 9 in Listing 4.12

11A detailed list of the BMotionWeb Groovy API functions is given in Appendix C.
12A documentation of the ProB Java API is available at [STU].
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Table 4.8.: Available options for method observer and execute method handler

Name Type Required Description

selector string no (observer)
yes (handler)

The selector matches a set of graphical elements which
should be linked to the observer or handler.

name string yes The name of the registered server side method.

args list no The args that should be passed to the registered server side
method.

callback function no The callback function is called whenever the server side
method returns a value with its origin reference set to the
graphical element that the observer or handler is linked to
and the return value of the method.

demonstrate the execute method handler that executes a registered server side method
when the user clicks on the linked graphical element. In line 2 we register the handler
on the graphical element that matches the selector #button (line 3). In line 4 and 5 we
define the name and args (the arguments that should be passed to the method) of the
method to be called. In lines 6 to 8 we define a callback function that is called whenever
the method on the server side returns a value. The origin (the reference to the graphical
element) and the returned data is passed to the callback function. In a similar fashion,
an observer can be defined for observing a registered server side method (i.e. the method
is called after every state change). Table 4.8 gives an overview of the available options
for the method observer and execute method handler.

1 // Register execute method handler

2 bms.handler("method", {

3 selector: "#button",

4 name: "random",

5 args: [10],

6 callback: function(origin, data) {

7 alert(data);

8 }

9 });

10

11 // Call method on server side manually

12 bms.callMethod({

13 name: "random",

14 args: [10],

15 callback: function(msg) {

16 alert(msg);

17 }

18 });

Listing 4.12: Use registered method on client side (JS)

A student at the university of Düsseldorf used the Groovy API in his master thesis
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[Hoe16] for implementing an interactive formal prototype of a classical-B chess engine.
The purpose of the Groovy script is to compute productive moves in a running chess
game. Another example application using the Groovy API is shown in Chapter 7, where
we use the Groovy API to replay a user defined trace to demonstrate a specific behaviour
of the developed system.

4.10. Visual Editor

An important component of BMotionWeb is the built-in visual editor. The overall
goal of the editor is to facilitate the rapid creation of visualization templates. The
editor has been implemented and adapted based on method draw, a web based SVG
editor.13 Figure 4.6 shows the editor while editing the visualization template of the
simple lift system interactive formal prototype. The editor consists of a palette for
creating graphical elements, like shapes, labels, and images and a view for managing the
properties of graphical elements. Graphical elements can be added to a canvas which
provides like drag and drop, undo/redo, copy/paste and zooming.

The visual editor also supports the creation of observers and interactive handlers. Two
additional views (one for creating observers and a second for creating interactive han-
dlers) are available for this purpose. As an example, Fig. 4.7 shows the observers view.
The view lists all observers with their corresponding options for the current edited visu-
alization template. The user can edit the options of an observer directly in the observers
view. If an option has a JavaScript function as its value, a JavaScript editor is shown
when editing the option. For instance, the left side of Fig. 4.7 shows the JavaScript edi-
tor for the trigger function of the formula observer that is wired to the graphical element
#door. The user only needs to provide the body of the function. The arguments (origin
and values) are passed directly to the function body while running the interactive formal
prototype.

4.11. BMotionWeb Application Versions

The following subsections describe the available application versions of BMotionWeb
and their characteristics.

4.11.1. Desktop Application

The client and server of BMotionWeb can be run in a standalone desktop applica-
tion using electron, a framework for building cross-platform desktop applications using

13https://github.com/duopixel/Method-Draw.
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Palette with graphical
elements and tools

Toolbar

Canvas with
graphical elements

Properties, observers and
interactive handlers view

Figure 4.6.: Built-in visual editor of BMotionWeb

JavaScript.14 There is no need to start the server as a separate process since it is started
automatically in the background and stopped when closing the application. Figure 4.8
shows a screenshot of the desktop application running two variants of the simple lift
system interactive formal prototype. Once the application is started, the user can open
a visualization template by clicking on the box in the middle of the lower left window
shown in Fig. 4.8 and select the BMotionWeb manifest file (see Section 4.4.1) of the
visualization template or just drag and drop the manifest file into the box. The user can
also open a visualization template via the top menu: File 〉 Open Visualization. Open-
ing the manifest file will start the interactive formal prototype in a separate window.
This includes animating the linked formal specification and rendering the visualization
template.

14http://electron.atom.io.
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Figure 4.7.: Observers view in visual editor of BMotionWeb

A major benefit of the desktop application is that is supports running multiple instances
of the same or of different interactive formal prototypes simultaneously. This enables the
user to compare different states within an interactive formal prototype or two variants
of interactive formal prototypes for the same formal specification at the same time as
demonstrated in Fig. 4.8. Furthermore, the desktop application provides features for
creating and editing visualization templates. To do this, it integrates the visual editor
described in Section 4.10.

4.11.2. Rodin Integration

Rodin [Abr+10] is an openly available and extendable platform based on Eclipse RCP
for developing Event-B specifications. There are a several external plug-ins for Rodin
available, such as tools for proving, animation, model checking and visualization.15 Since
a plug-in for the ProB animator already exists, we also have created a Rodin plug-in for
BMotionWeb. This enables the user to start an interactive formal prototype of an Event-
B specification within the Rodin platform. Figure 4.9 demonstrates the BMotionWeb
Rodin integration while running the interactive formal prototype of the simple lift Event-
B specification.

To integrate a visualization template with an existing Event-B project, the user only
needs to place the visualization files into a subfolder of the Event-B project. The Rodin
integration displays and marks the subfolders which contain a BMotionWeb manifest
file (bmotion.json) in the Event-B explorer as demonstrated in the lower left corner
of Fig. 4.9. Once the corresponding Event-B specification is animated using the ProB

15A comprehensive list of plug-ins for the Rodin platform is available at http://wiki.event-
b.org/index.php/Rodin Plug-ins.
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Figure 4.8.: BMotionWeb desktop application running two variants of the simple lift
system interactive formal prototype

animation plug-in, the user can open the visualization template by double-clicking on
the BMotionWeb icon shown in the Event-B explorer. The visualization template that
opens is automatically linked to the current running animation.

4.11.3. Online Interactive Formal Prototypes

The BMotionWeb server can also be used to deploy interactive formal prototypes online.
This can be in particularly useful for accessing an interactive formal prototype from
other devices, such as tablets and mobile phones, and for sharing an interactive formal
prototype with other stakeholders (e.g. during an online project meeting). For example,
a domain expert could demonstrate a specific scenario in the system by interacting with
the interactive formal prototype. All updates made on the interactive formal prototype
are automatically shown to other stakeholders who have opened the same interactive
formal prototype.
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Figure 4.9.: BMotionWeb Rodin Platform Integration
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5
Combining BMotionWeb with other

Visualization Techniques

5.1. Projection Diagrams

In the state-of-the-art study (see Chapter 2) we already have identified the potential of
state space visualization approaches. However, the study also reveals limitations and dis-
advantages of these approaches with respect to the research problem stated in Chapter 1.
The state space explosion problem in particular can make the creation and inspection of
a state space visualization difficult or even impossible. To overcome this challenge, we
present an approach to considerably reduce the complexity of a state space visualization
by creating projection diagrams.1 The main objective of the approach is to support hu-
man analysis of the system by highlighting relevant aspects of the formal specification
(e.g. certain variables or a particular behavior) while hiding information that is not rele-
vant from the diagram. The approach has been implemented into the ProB toolset with
support for Event-B, Classical-B, TLA+ and Z specifications. However, it is generic, so
it can also be integrated into another tool that is capable of producing a state space for
a formal specification.

The second part of this section extends the approach by combining a projection diagram
with an interactive formal prototype. The resulting projection diagram consists of the
basic projection diagram enhanced with graphical elements that come from the combined
interactive formal prototype. A major benefit of this approach is the fact that the
diagram can be generated from the interactive formal prototype directly without the user
having to know the variables of the formal specification or having to type expressions in a
formal language. In this section, we explain the approach and provide an implementation
that comes as an extension of BMotionWeb.

5.1.1. Basic Projection Diagram Algorithm

We explain our approach based on the Event-B simple lift system specification shown
in Appendix A.1.2. The starting point of our approach is to explore the state space of

1This chapter presents a joint work with Michael Leuschel and is described in [LL15].
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a formal model. This can be achieved via model-checking [CGP99] or interactively with
animation [HLP13]. Note that for our approach it is not mandatory to exhaustively
explore the full state space of the formal specification. The algorithm can also be
applied on partial explored state spaces and provides feedback about which states have
not yet been fully explored (see Section 5.1.1). The state space can be viewed as a
non-deterministic labeled transition system (LTS):

Definition 1 (LTS) An LTS is a 4-tuple (Q ,Σ, q0, δ) where Q is the set of states, Σ
the alphabet for labelling the transitions, q0 the initial state and δ ⊆ Q × Σ × Q is the
transition relation. By q

e−→ q ′ we denote that qeq ′ ∈ δ.

Figure 5.1 shows an excerpt of an example LTS for the simple lift system (the full
LTS covers 86 states and 242 transitions). Each node in the graph represents a state
within the specification, where each state is defined by a particular configuration of the
variables in the specification. We use the notation [v1 = r1, ..., vn = rn ] to denote the
configuration of a state, where v1 = r1, ..., vn = rn are the variables (vx ) and their values
(rx ) in the respective state. For instance, the initial state q0 (the node with the incoming
transition labeled with INITIALISATION ) has the configuration [request = {},move =
idle, door = closed ,floor = 0].

Figure 5.1.: LTS of the simple lift system (excerpt)

The edges in the graph represent the possible transitions δ of the LTS. In Event-B, a
transition is the execution of an event, which is specified as a generalised substitution al-
lowing deterministic and non-deterministic assignments to be specified. Each transition
is labeled with the corresponding event name, where

Σ = {move up,move down, door open, door close, send request ,
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switch move up, switch move down, switch move stop}
defines the names of the possible events. For instance, the event switch move up can
modify the value of the variable move from idle to up, which is denoted by the transi-
tion

[request = {},move = idle, door = closed ,floor = 0]

switch move up−→
[request = {},move = up, door = closed ,floor = 0]

shown in Figure 5.1.

The next step in the construction of a projection diagram for an LTS consists of defining
a projection function. All states with the same value for the projection function are
merged into an equivalence class. A transition leads from one equivalence class C to
another C ′ if there is a transition from one state q ∈ C to a state q ′ ∈ C ′. Formally,
one can define the projection of an LTS as follows:

Definition 2 (Projection) Let L = (Q ,Σ, q0, δ) be an LTS and p a projection function
with domain Q. The projection of the LTS using p, denoted by Lp, is defined to be the
LTS (Qp ,Σ, p(q0), δ

p), with Qp = {p(q) | q ∈ Q} and δp = {p(q) e−→ p(q ′) | q
e−→

q ′ ∈ δ)}.

Figure 5.2.: Projection of the LTS onto the variable door for the simple lift system

Each element in Qp represents an equivalence class, where each equivalence class merges
the states of Q (the states of the original LTS) that have the same value for the projection
function p. To illustrate the idea of a projection, consider Fig. 5.2. The diagram shows
the projection of the LTS of Fig. 5.1 onto the variable door using the projection function
p([request = rv ,move = rx , door = ry ,floor = rz ]) = ry . Since the door variable can
have the two values closed and open, we have two equivalence classes: one that merges all
states with door = closed and one that merges all states with door = open. Obviously,
the projection of an LTS may not be equivalent to the original LTS, since the sequences
of the events are not necessarily possible in the original LTS. However, all sequences of
the original LTS are possible in any projection of it.2

2I.e., the original LTS is a trace refinement of the projection LTS.
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Figure 5.3.: Definite edge Figure 5.4.: Semi-deterministic edge

Categorizing Edges and Equivalence Classes

To provide a more refined projection, we categorize the equivalence classes and edges.
We distinguish between definite and non-definite and between deterministic and non-
deterministic edges. In addition, we distinguish between three types of equivalence
classes: the equivalence classes that contain only a single state, the equivalence classes
that merges at least two states, and the equivalence classes that have not yet been fully
explored (e.g., if the state space has not been explored exhaustively).

In the following subsections, we explain the different types of edges and equivalence
classes and illustrate them with an example. To do this, let L = (Q ,Σ, q0, δ) be an LTS
and Lp = (Qp ,Σ, p(q0), δ

p ,E ) its projection. Given an edge x
e−→ y ∈ δp , we denote x as

the source and y as the target equivalence class. Moreover, we call an edge x
e−→ y ∈ δp

enabled for a particular state q , with q ∈ x if ∃ q ′ · (q ′ ∈ y ∧ q
e−→ q ′ ∈ δ).

Definite Edges. An edge is definite, if and only if it is enabled in all states of the
source equivalence class. Thus, the set of all definite edges of Lp can be defined as
follows:

Definite = {x e−→ y | x
e−→ y ∈ δp ∧ ∀ q · (q ∈ x ⇒∃ q ′ · (q ′ ∈ y ∧ q

e−→ q ′ ∈ δ))}.

Figure 5.3 illustrates the idea of a definite edge: there is a definite edge between the
equivalence classes Class1 and Class2 whenever e is enabled in all states from the
source equivalence class (Class1 ). An edge is non-definite if it is not definite. In order
to distinguish the different edge types in the projection diagram, definite edges are drawn
as solid lines while non-definite edges are drawn as dashed lines. An example can be
seen in Fig. 5.2. The door close edge is possible in all states with door = open and is
the only definite edge in the diagram. The other edge door open is semi-deterministic
as described in the next section.
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Semi and Non-Deterministic Edges. An edge e is called semi-deterministic if the
corresponding event always leads to the same target equivalence class (Class2 ) from
the source equivalence class (Class1 ). However, it does not have to be enabled in all
states from the source equivalence class (Class1 ). This is illustrated in in Fig. 5.4. The
dashed edge in Fig. 5.2 is also semi-deterministic since for some states merged into the
source equivalence class the door open event is not enabled (e.g. for states in which the
lift cabin is moving). Thus, the set of all semi-deterministic edges of Lp is defined as
follows:

SemiDet = {x e−→ y | x
e−→ y ∈ δp ∧ ¬(∃ z · (z �= y ∧ x

e−→ z ∈ δp))}.
Furthermore, we denote an edge as non-deterministic if it is not semi-deterministic.
Thus, the set of all non-deterministic edges of Lp is composed of all edges (δp) apart
from the semi-deterministic edges (SemiDet):

NonDet = δp \ SemiDet.

Figure 5.5.: Non-deterministic edge

Figure 5.5 illustrates a non-deterministic edge. Given the three equivalence classes
Class1, Class2 and Class3, the edge e is non-deterministic if e is enabled and it leads
to at least two distinct target equivalence classes (e.g. Class2 and Class3 ).

An example can be seen in Fig. 5.6. The figure demonstrates the projection onto the
variable request for the simple lift system. For instance, the outgoing edges labeled with
send request for the equivalence class [request = {}] are non-deterministic as they lead
to the three distinct target equivalence classes [request = {0}], [request = {−1}] and
[request = {1}]. Indeed this is to be expected: in the initial state (the state where no
requests have been made yet) we can request the lift on all three floors and thereby enter
a distinct state in the system.
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Figure 5.6.: Projection on the LTS onto the variable request in the simple lift system

Deterministic and Non-Deterministic Definite Edges. The set of all edges of Lp that
are deterministic and definite is defined as:

DetDef = SemiDet ∩ Definite.

As an example, the edge e shown in Fig. 5.3 is definite and deterministic. This is because
e is enabled in all states in the source equivalence class (Class1 ) and leads to the same
target equivalence class (Class2 ).

Moreover, edges that are non-deterministic and definite are defined as follows:

NonDetDef = NonDet ∩ Definite.

For instance, the edge shown in Fig. 5.5 is definite and non-deterministic since it is
enabled for all states in the source equivalence class (Class1 ) and leads to two distinct
target equivalence classes (Class2 and Class3 ). Another example is shown in Fig. 5.6:
the outgoing edges labeled with send request (apart from the outgoing edges of the
equivalence classes [request = {0, 1}], [request = {−1, 0}] and [request = {−1, 1}]) are
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definite and non-deterministic.

Single State and Partial Equivalence Classes. An equivalence class is single, if the
equivalence class contains only one state. Thus, the set of all single equivalence classes
can be defined as follows:

Single = {x | x ∈ Qp ∧ card({q | q ∈ Q ∧ p(q) = x}) = 1}.
For instance, the equivalence class Class3 in Fig. 5.5 is single since it contains only one
state.

Furthermore, we highlight any equivalence classes that have not yet been fully explored,
which can happen when not all states in the class have been reached by the model checker
or animator. This means that additional outgoing edges and new equivalence classes
could appear after further exploration of the state space. In order to distinguish the
different types of equivalence classes in the projection diagram, single state equivalence
classes are drawn with a dashed border, partial equivalence classes are drawn with a
dotted border, and equivalence classes that are fully explored and contain at least two
states are drawn with a solid border. In this thesis, however, we always suppose that
the full state space has been explored and as such no equivalence classes with dotted
borders appear in the projection diagrams.

5.1.2. Custom Expressions

In this section we present some further example applications of the projection diagram.
From now on we will use projection functions of the form p(q) = eval(E , q), where
q ∈ Q , E is an expression over the variables and constants of the formal specification,
and eval is the function that evaluates the expression E in state q . The projection
function is thus defined by a “custom” expression E . With this scheme, we can project
the LTS for a specification onto a single variable v (E = v) or on a set of variables
v1, . . . , vk (E = (v1 �→ . . . �→ vk )). We can also project onto particular properties of a
variable v , e.g., its cardinality (E = card(v)) or its range (E = ran(v)).

Simple Lift System. Figure 5.7 illustrates how one can combine various variables into
a single expression. The figure shows a projection of the LTS of the simple lift system
onto the two variables move and door (E = move �→ door). The projection shows that
our invariant about the controller of the simple lift system that the door must always
be closed when the lift cabin is moving (move ∈ {up, down} → door = closed)): in the
only equivalence class where the door is open, the controller for moving the door is set
to idle ([move �→ door = idle �→ open]). In all other equivalence classes the door is
closed . Moreover, the door cannot be opened in a state where the controller is set to
moving up or down since no door open transition is enabled in the respective equivalence
classes ([move �→ door = down �→ closed ]) and ([move �→ door = up �→ closed ]). The
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projection also confirms that the controller must first stop (switch move stop) the lift
cabin before the door can be opened. Since the switch move stop transitions are definite
edges they can be executed in all states merged in the respective source equivalence
class which denotes that the lift cabin can always be stopped when the lift cabin is
moving.

Figure 5.7.: Projection on LTS of the simple lift system onto the two variables move and
door (move �→ door)

Scheduler. Figure 5.8 shows a projection of the LTS for the “standard” scheduler
benchmark example from [LPU02] (also used in [LT05]), which schedules processes
and keeps disjoint sets of waiting, ready and active processes. In the projection we
abstract away from the process identities by computing the cardinality of these sets.
Furthermore, we add these sets together to project onto the total number of processes
(E = card(ready) + card(waiting) + card(active)). One can clearly see that only two
events change the total number of processes: new and del. Moreover, new is always
enabled when less than three processes exist, while del is only possible when more than
one process exists, and is not always possible. This confirms what we intuitively assume,
since active processes cannot be deleted right away. Figure 5.8 shows how one can focus
on very specific aspects of a formal specification using the projection diagrams. We be-
lieve that one should generate a variety of projection diagrams for any particular formal
specification — a different one for very specific aspects — and that they can or should
be incorporated into the documentation accompanying the formal specification.
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Figure 5.8.: Projection of the LTS of a classical-B process scheduler onto custom expres-
sion card(ready) + card(waiting) + card(active)

5.1.3. Combining with Interactive Formal Prototypes

In this section we present an extension of the approach that combines a projection
diagram with an interactive formal prototype. The basic idea of the extension is to
create a projection based on user-selected graphical elements. Based on the approach for
computing a basic projection diagram described in Section 5.1.1, we can use Algorithm 2
to build a projection diagram combined with graphical elements for a given LTS and a
set of user-selected graphical elements.

In line 2 we define an empty set of nodes that define the mapping from equivalence classes
to a set of graphical elements which should represent the equivalence class. In lines 4 to
8, we determine the observers of the selected graphical elements and derive the formulas
fi that are required to draw the state of the selected graphical elements. Based on the
formulas, we construct the projection expression E = f1 �→ ... �→ fn (line 9) and compute
the basic projection diagram (line 11) using the projection function p(s) = eval(E , s)
(line 10) as described in Section 5.1.1. For each equivalence class in the projection
diagram, we compute the representation of the selected graphical elements according to
the value of the projection function of the respective equivalence class p(s) (lines 12 to
19). Note that if computed separately, all states in this equivalence class will yield the
same representation for the selected graphical elements. In line 17 we assign the adapted
graphical elements to the corresponding equivalence classes. If all equivalence classes in
the projection Lp are processed, the algorithm builds the diagram based on the collected
nodes (the states and the computed representations of the graphical elements) and the
transitions of the projection δp (line 20).

The algorithm has been implemented into BMotionWeb with support for the state-
based formal methods Event-B and classical-B. For generating the diagram, we use
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Algorithm 2: Create projection diagram combined with graphical elements

1 function createProjectionDiagram((Q ,Σ, q0, δ) L , graphicalElements elems)
2 nodes := ∅

3 formulas := ∅

4 foreach elem ∈ elems do
5 foreach o ∈ collectObservers(elem) do
6 formulas := formulas ∪ collectFormulas(o)
7 end foreach

8 end foreach
9 E := fi �→ . . . �→ fn , where fi ∈ formulas

10 p(s) := eval(E , s)
11 Lp := computeProjection(L, p(s))
12 foreach q ∈ Qp do
13 foreach elem ∈ elems do
14 foreach o ∈ collectObservers(elem) do
15 o.update(q)
16 end foreach
17 nodes(q) := nodes(q) ∪ {elem}
18 end foreach

19 end foreach
20 buildDiagram(nodes , δp)
21 end function

Cytoscape.js3, a JavaScript library for the analysis and visualization of graphs. One
main advantage of Cytoscape.js is that the diagram is interactive so that the user can
rearrange the nodes and edges as desired.

To illustrate this idea, consider the interactive formal prototype of the simple lift sys-
tem (see Appendix B.2). Based on the interactive formal prototype we can create the
projection diagram as demonstrated in Fig. 5.9 (left side). The figure shows the same
projection as in Fig. 5.2. However, it was created based on the graphical element that
represents the lift cabin door (#door) using the projection function p(s) = eval(E , s),
where E = door is automatically derived from the formula observer shown on the right
side of the figure. Each rectangle in the diagram represents an equivalence class (all
states with the same value for the expression E ) and is labeled with the associated ex-
pression value. A directed edge between two equivalence classes represents a transition
which is labeled with the associated event name and is styled (solid or dashed) according
to the approach presented in Section 5.1. The green nodes are not part of the specifica-
tion’s state space. They are artificially introduced and represent the system before it is
initialized. To compute the representation of the graphical element for an equivalence
class, we apply the formula observer using the value of the projection function of the

3http://js.cytoscape.org.
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respective class. The computed representation of the graphical element is then assigned
to the equivalence class. For instance, the diagram shows the two possible states for the
cabin door (open and closed) and its graphical representation.

1 bms.observe("formula", {

2 selector: "#door",

3 formulas: ["door"],

4 trigger: function(origin, val) {

5 if(val[0]==="open") {

6 origin.attr("fill", "white");

7 } else if(val[0]==="closed") {

8 origin.attr("fill", "gray");

9 }

10 }

11 });

Figure 5.9.: Projection on door graphical element (left) and door observer (right)

Although developing a visualization requires extra effort, the benefits of combining it
with a projection diagram can be considerable. As an example, consider the projection
on the graphical element that represents the simple lift system with the three floors and
the cabin door (#lift) shown in Fig. 5.10. The projection diagram was generated based
on the projection function p(s) = eval(E , s) where E = door �→ floor is automatically
derived from the formula observers observing the door variable and the floor variable re-
spectively. One can see at a glance (without knowing about the underlying specification
or the formalism used) that the cabin is able to stop and to open the door at all three
floors. The diagram also confirms that the cabin door must always be closed (indicated
by a gray door) before the lift can move (move down or move up). This is indicated
by the solid edges labeled with the event door close. More example applications of the
projection diagram feature are demonstrated in Chapter 7.

5.1.4. Evaluation

Table 5.1 shows some evaluation statistics obtained after applying the basic projection
approach introduced in Section 5.1.1 (runtime BP) and the combined projection diagram
described in Section 5.1.3 (runtime CP) to the case studies presented in this thesis.
Moreover it shows the number of nodes and edges in the full state space and in the
produced projection diagram (third and fourth column respectively). The statistics
were obtained after the corresponding state space had been fully explored with ProB.
We use the projection function p(q) = eval(E , q), where q ∈ Q and E is the projection
expression (second column of Table 5.1). The measured time includes the actual runtime
for both algorithms (implemented in ProB and BMotionWeb) without the time needed
to exhaustively explore the full state space (i.e. the model checking time) and without
the time needed for generating and producing the layout for the actual diagram. The
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Figure 5.10.: Projection on the cabin of the simple lift system (#lift)

model checking and layouting time is not included because it depends on the model
checker and layouting tool respectively. Moreover, the state space needs to be explored
only once in order to generate multiple projection diagrams.

In general, the runtime of the CP takes longer than the BP. This is because the CP
uses the BP to compute the actual data and needs some additional time to generate
the graphical representation of the equivalence classes. Table 5.1 also confirms that
the runtime of both algorithms (CP and BP) increases with the number of nodes and
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Table 5.1.: Evaluation of projection diagram approach

Nodes / Edges Runtime

Formal Spec. Expression Full BP BP CP

Scheduler
card(ready)
+card(waiting)
+card(active)

36/121 5/7 0.01 s -

Landing Gear
4th Ref (old)

door(front) �→ gear(front) 6,283/31,299 10/25 1.07 s -

Landing Gear
4th Ref (early)

handle �→ gear(front) 6,283/31,299 7/13 0.34 s -

Landing Gear
4th Ref

doors(front) �→ gears(front) 2,529/16,097 8/17 0.08 s -

Landing Gear
5th Ref

ran(gears) �→ handle

25,217/149,041

15/34 0.83 s -
doors(front) 4/7 0.69 s 1.69 s
handle 3/3 0.59 s 1.01 s
valve close door �→ close EV 5/6 0.60 s 2.10 s
handle �→ gears(front) 7/17 0.71 s 3.25 s

Landing Gear
6th Ref

analog switch �→ general EV 131,329/884,369 5/9 3.39 s -

Simple Lift

door

186/838

3/3 0.01 s 0.40 s
floor �→ door 8/12 0.01 s 0.82 s
move �→ door 5/7 0.01 s 0.83 s
request 9/25 0.01 s -

(BP=basic projection, CP=combined projection with graphical elements)
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transitions of the full state space.

5.2. Trace Diagrams

The state-of-the-art study (see Chapter 2) showed that trace visualization techniques,
i.e. visualization techniques that are based on a particular sequence of events, like for
visualizing a particular trace/process or counter-example (see Section 2.2.3, Section 2.3.2
and Section 2.3.3) can be useful to support the validation of state-based and event-based
formal specifications. In this section, we demonstrate the combination of such trace
visualization techniques with state-based interactive formal prototypes.4 To do this, we
start with a definition of a trace:

Definition 3 (Trace) Let L = (Q ,Σ, q0, δ) be an LTS. A trace φ of an LTS is a se-
quence of states and events starting with the initial state q0 and ending with a state of

Q, φ = q0e1q1e2 . . . enqn such that qi
ei+1−→ qi+1 for all 0 ≤ i < n, where n ≥ 0.

ProB has different techniques for generating a trace for classical-B and Event-B formal
specifications including animation, model-checking (e.g. checking invariant violations
or deadlocks) or assertion checks based on LTL formulas [PL10]. We use the trace
information provided by ProB as a base to generate the trace diagram. Given a particular
trace and a set of user selected graphical elements, we can compute the representation
of the graphical elements using Algorithm 3.

Algorithm 3: Create state based trace diagram combined with graphical elements

1 function createSBTraceDiagram(tr 〈q0e1 . . . enqn〉, graphicalElements elems)
2 nodes := ∅

3 edges := ∅

4 for i=0 to n do
5 edges := edges ∪ {qiei+1qi+1}
6 foreach ele ∈ elems do
7 nodes(qi) := nodes(qi) ∪ computeStateBased(qi , ele)
8 end foreach

9 end for
10 buildDiagram(nodes , edges)
11 end function

In line 2 and 3 we define an empty set of nodes and edges that define the mapping
from states in a trace to a set of graphical elements which should represent the state
and the transitions between the states respectively. The algorithm iterates through
each state qi of tr sequentially with i ∈ {0..n} and computes the representation for each
graphical element ele of the set of user selected graphical elements elems . For state-based

4In Chapter 6, we will also adapt the approach for event-based formal methods.
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formal methods we assign the computed representation of the graphical element using
the algorithm computeStateBased (see Algorithm 1 in Section 3.2) with the currently
processed state qi and the graphical element ele (line 7). If all the states in trace tr are
processed, the algorithm builds the diagram with the collected nodes (the states and the
computed representations of the graphical elements) and the edges (line 10).

The algorithm has been implemented into BMotionWeb with support for the state-based
formal methods Event-B and classical-B. As with the projection diagram approach (see
Section 5.1.3), we also use Cytoscape.js for generating the diagram.

Figure 5.11 shows an example trace diagram for the trace

〈setup contants , initialise machine, send request(1), switch move up(),

move up(), switch move stop(), door open(), door close(), send request(−1)〉

in the simple lift Event-B specification. Each rectangle represents a state including
the corresponding representation of the selected graphical elements. A directed edge
between two states represents the event and is labeled with the event’s name.
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Figure 5.11.: Trace diagram for the simple lift system
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6
Extending BMotionWeb for CSPM

6.1. Introduction

Inspired by the successful creation of interactive formal prototypes for state-based for-
mal specifications, we developed an approach for creating interactive formal prototypes
for CSP (Communicating Sequential Processes).1 CSP is a notation mainly used for
describing concurrent and distributed systems. There are two major CSP dialects:
CSPM [SA11] and CSP# [Sun+09a]. The most popular tools that support model check-
ing for CSPM specifications are FDR [Gib+14] and ProB [LF08]. Support for animating
processes of CSPM specifications is provided by ProB and ProBE [For]. The more re-
cent CSP# [Sun+09a] is supported by the PAT system [Sun+09b]. In this chapter we
present an approach (method and implementation) for creating interactive formal proto-
types of CSPM specifications. We describe the method and present an implementation
that extends BMotionWeb.

The difference between the approach presented in this chapter and the state-based ap-
proach (see Chapter 3) is imposed by the specifics of the CSPM formal language. The
basic idea of the state-based approach is to visualize the information that is encoded in
the states of a state-based formal specification (e.g. the values of variables), where each
state of the formal specification is mapped to a particular visualization. In contrast to
this, in CSPM the states of the specified system are left uninterpreted and the behavior is
defined in terms of sequences of events (traces). Thus, the concept of the state-based ap-
proach is not longer applicable for event-based formalisms such as CSPM. The intention
of our approach is to visualize the traces of the underlying CSPM specification.

In order to demonstrate our approach, we have created interactive formal prototypes for
various CSPM specifications that we have found in the literature. In this chapter, we fo-
cus on the presentation of the interactive formal prototype of the bully algorithm [Ros10]
and of a level crossing gate [RHB97]. We also discuss how our approach can be of use
in the process of analyzing and validating CSPM specifications.

This chapter is organized as follows: In a first step, we describe the general approach
for creating the gluing code of a CSP interactive formal prototype (Section 6.2). In

1This chapter presents a joint work with Ivaylo Dobrikov and Michael Leuschel and is described
in [LDL14].
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Section 6.3, we present the implementation of the approach. In Section 6.4, we demon-
strate the application of the approach based on two case studies: the bully algorithm
(Section 6.4.1) and the level crossing gate (Section 6.4.2). Finally, Section 6.5 extends
the trace diagram approach presented in Section 5.2 to CSPM.

6.2. General Approach

The mathematical semantics of CSP are mainly based on traces. A trace is a sequence of
events performed by a process that can communicate and interact with other processes
within the CSP specification (see also Definition 3 in Section 5.2). The basic idea
of our approach is to compute the representation of graphical elements based on the
information encoded in the given sequence of events (trace). However, a process may
perform many different traces and thus creating a graphical representation manually
for each possible trace is an almost impossible task. To overcome this challenge, we
present a method based on observers. Formally, one can describe the method by means
of Algorithm 4.

Algorithm 4: Compute the representation of a graphical element for a given trace

1 function computeEventBased(tr 〈q0e1 . . . enqn〉, graphicalElement elem)
2 obs := collectObservers(elem)
3 for i=1 to n do
4 foreach o ∈ obs do
5 if member(ei , o.expression) then
6 o.update()
7 end if

8 end foreach

9 end for
10 return elem
11 end function

For creating the representation of a graphical element elem and a particular trace tr =
〈q0e1 . . . enqn〉, we sequentially go through each event ei of tr with i ∈ {1..n} and execute
all observers obs of elem for ei . Note that by “creating a representation of a graphical
element for a particular trace” we mean the representation of the state reached after the
sequential execution of the events of a trace.

Each observer o has a user-defined CSP expression o.expression that constitutes a set of
observed events. For instance, the CSP expression {e.x | x ← {0..3}} will constitute
the set of observed events {e.0, e.1, e.2, e.3}. The graphical element elem is only updated
when the currently processed event ei of the given trace tr is a member of the respective
set of observed events defined by o.expression. More precisely, elem is updated (line
6) whenever the expression member(ei , o.expression) evaluates to true (line 5). Finally,
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Table 6.1.: Available options for CSP event observer

Name Type Required Description

selector string yes The selector matches a set of graphical elements
which should be linked to the interactive handler.

observers list yes A list of observers.

expression string yes A user-defined CSP expression that constitutes a set
of observed events.

actions list yes A list of actions that determine the appearance and
the behaviour of the graphical elements.

selector string yes The selector that matches a set of element which
should be modified (the elements are selected orig-
inated from the “main” selector option of the ob-
server).

attribute string yes The attribute of the elements that should be modi-
fied.

value string yes The new value of the attribute.

the adapted graphical element elem (after processing all events of tr) is returned (line
10).

6.3. CSP Event Observer

We have implemented the method presented in Section 6.2 as an extension for BMo-
tionWeb. In order to obtain trace information (e.g. event names and arguments) of a
process and to evaluate expressions for a given CSPM specification, we use the ProB
animator which is capable of executing CSPM specifications [LF08].

The extension contributes a new observer called CSP event observer. Table 6.1 shows the
available options for the CSP event observer. The observer is attached to a set of graph-
ical elements that matches a selector (similar to the presented state-based observers).
Moreover, it defines a list of observers, where each observer entry has a user-defined
CSP expression and a list of actions. The user-defined expression constitutes the set
of observed events according to the method presented in Section 6.2. An action defines
the selector that matches the elements which should be modified. Note that the ob-
server tries to match the elements originating from the graphical element that match
the “main” selector option of the observer. An action also defines an attribute (e.g. “fill”
for coloring the interior of a graphical element like a circle shape) and a corresponding
value that will be set as the new value of the attribute when the action is triggered. As
stated in Section 6.2, the actions are triggered when the currently processed event is in
the set of observed events. Note that the ordering of the observer entries is important
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since they are triggered sequentially. Thus, the actions of an observer entry may override
the actions of a previous observer entry.

The user can also refer to the information given by the arguments of the currently
processed event within the action fields (selector, attribute and value). This is achieved
with the pattern “{{aN}}” where aN refers to the N-th argument of the event. For
instance, if the event has two arguments, then the first and the second one can be
obtained with “{{a1}}” and “{{a2}}”, respectively. To illustrate the use of the pattern,
consider an event evt .x with x ← 0..4. One may want to use the information given by the
first argument x of evt within the selector option in order to select graphical elements
that have an ID of the form “elemx”. To do this, we can define the selector option
as “#elem{{a1}}”. The construct “{{a1}}” will be replaced by the value of the first
argument of the currently processed event. For instance, if the currently processed event
is evt .2, the value of the selector option “#elem{{a1}}” will become “#elem2”.

1 bms.observe("cspEvent", {

2 selector: "#parent",

3 observers: [

4 {

5 expression: "{ evt.x | x <- 1..n & x mod 2 = 0 }",

6 actions: [

7 { selector : "#txt", attribute : "text", value : "{{a1}}" }

8 ]

9 }

10 ]

11 });

Listing 6.13: Example CSP event observer (JS)

Figure 6.1 illustrates the use of the CSP event observer shown in Listing 6.13 for the
trace tr = 〈evt .1, evt .2, . . . , evt .5〉 and the visualization shown in the lower side of the
figure. The visualization consists of an SVG graphic with a text field element that has
the ID “txt”. The CSP event observer defines an expression that constitutes the set
of observed events evt = {evt .2, evt .4, evt .6, ..} and one action act1 that changes the
value of the text attribute of the graphical element with the ID “txt” (the text field) to
“{{a1}}”. According to our approach (see Section 6.2), the observer is executed for each
event of the trace. This means that whenever the currently processed event is in the
set of observed events evt , the observer will trigger the defined action act1. Considering
trace tr , the execution of the event evt .2 causes the observer to set the value of the text
field element to “2” and the execution of evt .4 causes the observer to set the value of
the text field element to “4” as demonstrated in Fig. 6.1. Here, the value “{{a1}}” is
replaced with the first argument of the respective event. The final visualization after
completing the last event of the trace (evt .5) is shown in the last box marked with a
solid border.
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Figure 6.1.: Illustration of the CSP event observer for a given trace

6.4. Case Studies

In order to test our approach, we have successfully created various interactive formal pro-
totypes for CSPM specifications that we have found in the literature. In this section we
present the interactive formal prototype of the bully algorithm specification from [Ros10]
and of the level crossing gate specification from [RHB97]. The specifications have not
been modified for the interactive formal prototype we have created. Both interactive
formal prototypes were created using the built-in visual editor of BMotionWeb (see Sec-
tion 4.10). However, for presentation purposes the observers of the interactive formal
prototypes are described in the JavaScript notation in this section.
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Figure 6.2.: Interactive formal prototype of the Bully Algorithm

6.4.1. The Bully Algorithm

The algorithm represents a method of distributed computing for electing a node to
be the coordinator amongst a group of nodes. Each node has a unique ID and the
algorithm intends to select the node with the highest ID to be the coordinator. It is
assumed that the nodes may fail and revive from time to time and the communication
between the nodes is reliable. Three types of messages are defined within the design
of the algorithm: election (announcing an election), answer (responding to an election
message), and coordinator (announcing the identity of the coordinator).

The specification from [Ros10] defines six additional types of events needed for the
formalisation of the algorithm in CSP: the fail and revive events (for modeling the
failing and reviving of a node), the test and ok events (for simulating a test-response
communication), the leader events (for indicating the coordinator of a living node), and
the tock event (for modelling timeouts and time).

Visualizing the Bully Algorithm. In general, we want to visualize the process of elect-
ing a coordinator in the network. More precisely, we aim to visualize the Network process
of the CSP specification. As the bully algorithm specification in [Ros10] is presented
for a network with four nodes, we have created a visualization for four nodes (the nodes
are enumerated from 0 to 3). Figure 6.2 demonstrates the visualization of a particular
trace.

There are two major aspects of the specification that we want to visualize: the nodes
and the communication between the nodes. Each node is visualized by means of a circle
which contains the respective ID of the node. The communication between the nodes is
illustrated with directed arrows.

For each graphical element in the visualization, we assign a unique ID referring to the
elements in the CSP specification. Thus, the node with ID x in the CSP specification
is presented by the circle with ID “n-x” in the visualization. Additionally, a message
transfer from the node with ID x to the node with ID y is represented by the line with ID

92



6.4. Case Studies

“l-x-y” and the arrowhead with ID “p-y” (i.e. the arrow connecting “n-x” and “n-y”).
In this section, both symbols x and y stand for an integer ranging from 0 to 3.

We can classify all types of events in the specification into the following groups:

• status: Events that can change the status of a particular node x : fail .x , revive.x
and coordinator .x .y .

• message: Events illustrating a message transfer from node x to node y : test .x .y ,
ok .x .y , election.x .y , answer .x .y , and coordinator .x .y .

• hidden: Events that are not considered in the visualization: tock and leader .x .y .

Thus, we can infer that there are two general types of observers to define: the status
and the message observers. Note that the coordinator event (coordinator .x .y) has been
included in the first two groups above. This is because in the specification each of
the coordinator events intends to identify the coordinator (x ) and at the same time
represents a message transfer (to node y).

The status of a node usually changes when one of the status events has been executed.
Each node, apart from the node with the lowest ID2, can have the following status:
failed, alive or coordinator. A unique fill color has been selected for distinguishing
each possible status of a node (see legend in Fig. 6.2).

CSP Event Observer of Bully Algorithm. We will now demonstrate the creation of
the CSP event observer for the bully algorithm. To do this, we will explain the different
observer entries of the observer (expression and actions). The CSP event observer is
attached to the root element of the visualization that matches the selector #bully. The
action elements are selected based on the action selectors.

In order to associate a status event from the CSPM specification with a node in the
visualization, we use the selector “#n-{{a1}}” in the definition of the respective observer
entry. The construct “{{a1}}” is used for obtaining the value of the first argument of
the respective status event. For example, the observer entry for changing a status of a
node to failed can be defined as follows:

1 {

2 expression: "{fail.x | x <- {0..N-1}}",

3 actions: [ { selector: "#n-{{a1}}", attribute: "fill", value: "lightgray"} ]

4 }

The observer entry will color the respective node lightgray whenever a fail event has
been processed. For instance, the node with ID “n-3” will be colored lightgray when
the event fail .3 has been processed. In a similar fashion, we have defined the observer
entries for the other node status changes.

2The node with ID 0 can never be a coordinator as there is no node with a lower ID.
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For creating the message observer entries we need to consider both arguments of the
message events. The types of the messages are distinguished by different stroke patterns
(see legend in Fig. 6.2). Thus, each message observer entry has two actions except for
the coordinator observer entry which has three: one action causes the directed arrow
(consisting of the line and arrowhead) to appear and one action changes the stroke
pattern of the arrow. For instance, the observer entry for visualizing the election message
can be defined as follows:

1 {

2 expression: "{election.x.y | x <- {0..N-1}, y <- {0..N-1}}",

3 actions: [ { selector: "#l-{{a1}}-{{a2}}, #p-{{a2}}",

4 attribute: "class", value: "visible" },

5 { selector: "#l-{{a1}}-{{a2}}",

6 attribute: "stroke", value: "blue" } ]

7 }

To provide a good visualization an additional observer entry has been added to hide all
arrows after performing an arbitrary event (expect for the leader events and the tock
event3). This observer entry is applied on the currently processed event before all other
defined entries, i.e. it is the first entry in the observer list.

The initial state of the specification and the visualization is the state in the network
where all nodes are alive and the coordinator is the node with the ID 3 (the node with
the greatest ID). No message exchanges are performed.

6.4.2. Level Crossing Gate

The first case study introduced in [RHB97] specifies a level crossing gate of a single
railway track along which trains move only in one direction. The track is divided into
segments such that each of the segments is at least as long as any train. There are five
track segments considered for the level crossing gate where one of the track segments
represents the outside world.

The track segments are numbered. The input sensor is placed in segment 1 and the
crossing and output sensors are in segment 4. The outside world segment is identified
with 0. A train enters segment (i + 1) before it leaves segment i . Entering and leaving
of a segment are specified by the events enter and leave, respectively. The entering of
train t into segment j is described by enter .j .t . Accordingly, the leaving of train t from
segment j is described with the event leave.j .t .

The sensors send control signals to the gate. The gate goes down after a train enters
segment 1, and the gate goes up after the train leaves segment 3 and no train is moving
along the segments 1 or 2. The control signals sent by the input and output sensors

3Since the leader events and the tock event are not considered in the visualization, they do not change
its state.
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Figure 6.3.: Interactive formal prototype of the the level crossing gate

are specified by the events sensor .in and sensor .out , respectively. The communication
between the controller and the gate processes is specified by the channel gate which
defines four different events. The events gate.go down and gate.go up represent the
commands from the controller to the gate for moving the barriers down or up. The
events gate.down and gate.up denote the confirmations from the gate sensors that the
barriers are down or up, respectively.

In addition, timing constraints are set for the trains moving on the tracks. The speed of
each train is determined by how many units of time a train can spend per track segment.
This additional property is required since the goal of the system is to guarantee via timing
that the gate is up and down at appropriate moments. In the CSPM specification the
speed of a train per track segment has been set to three time units. A unit of time is
denoted by the tock event in the level crossing gate specification.

Visualizing the Level Crossing Gate. In our interactive formal prototype (see Fig. 6.3)
we assume that the trains are moving from left to right. Track segments 1 to 4 are
illustrated by rectangles separated by vertical, dotted lines. Segment 0, which represents
the outside world, can be seen as the space to the left of track segment 1 and the space
to the right of segment 4. A train leaves the outside world after entering track segment
1, and a train enters the outside world after leaving track segment 4. The length of each
of the track segments 1 to 4 in the visualization is considered to be 100 pixels.

Since the specification from [RHB97] handles two trains, we only visualize these two
trains (Train1 and Train2). The trains are represented by two boxes colored gray and
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slate gray, respectively. The movement of a train along the track is simulated by shifting
the respective box from left to right. In order to simulate a movement between the track
segments, we shift the respective box 50 pixels from the left to right. In doing so, the
entrance into a new segment is represented such that the box is half on the new segment
and half on the previous. On the other hand, when the train leaves a track segment,
the box is moved fully onto the recently entered segment. In Fig. 6.3, the gray box
representing Train1 is half on segment 4 and half on segment 3 after executing the event
enter .4.Train1, whereas Train2 (the slate gray box) has moved fully onto segment 1
after performing the events enter .1.Train2 and leave.0.Train2 consecutively. Each box
representing a train is also 100 pixels in length.

For visualizing the movement of the trains, we defined two observer entries that listen to
the events enter .j .t and leave.j .t . Both observer entries contain an action that changes
the transform attribute [W3C11] of the matched graphical element. For instance, the
leave observer entry is defined such that by executing an event leave.j .t the graphical
element with the ID “train-t” (t refers to the second argument of the leave events) will be
moved 50 pixels to right by setting the transform attribute to the value translate(50, 0).
Thus, the observer entry for leaving a track is defined as follows:

1 {

2 expression: "{leave.j.t | j <- {0..3}, t <- {Train1,Train2}}",

3 actions: [ { selector: "#train-{{a2}}", attribute: "transform",

4 value: "translate(50,0)" } ]

5 }

Note that the leave observer entry does not fire its actions when an event leave.4.t is
executed since in our visualization the respective box “train-t” needs to be moved to
the left site of track segment 1 when the event enter .0.t is executed. We decided to
define the observer entries in this way because after entering the outside world (track
segment 0) and leaving the last track segment 4, the same train can enter the crossing
gate segments once again.

For the overall visualization we have defined five different observer entries. The other
three observer entries are responsible for simulating the up and down movement of the
barriers in the visualization after proceeding of the events gate.up and gate.down, re-
spectively. To do this, we created two graphical elements that illustrate the two possible
states of the appropriate barrier: barrier is up and barrier is down. This means that we
have four graphical elements illustrating the different positions of the barriers. When,
for example, the event gate.down is processed, the go−down observer entry executes two
actions. The first is to hide all barrier elements, and the second action is to display the
graphical elements representing that the barriers are down. The hiding and displaying
of the barriers is realized by setting the “opacity” attribute of the graphical elements to
0 and 100, respectively. The go − down observer entry is defined as follows:

96



6.5. Combined Trace Diagram for CSPM

1 {

2 expression: "{gate.down}",

3 actions: [

4 { selector: "g[id^=gate]", attribute: "opacity", value: "0" }

5 { selector: "g[id^=gate-go_down]", attribute: "opacity", value: "100" }

6 ]

7 }

We defined the go − up observer entry in the same way. The initial state of the specifi-
cation and its visualization is the state in which both trains are in the “outside world”
track segment and both barriers are up.

6.5. Combined Trace Diagram for CSPM

Since the information to be visualized in stated-based formal methods and event-based
formal methods like CSPM differs, we need to distinguish between them. Algorithm 5
shows the adapted algorithm for creating a trace diagram for event-based formal meth-
ods. The algorithm is very similar to Algorithm 3 presented in Section 5.2. The only
difference is the computation of the representation of the graphical elements for a state:
for event-based formal methods we assign the computed representation of a graphical
element using the algorithm computeEventBased (see Algorithm 4) passing a segment
of the trace tr that starts at q0e1 and ends at the currently processed state ei+1qi+1 and
the graphical element ele (line 7).

Algorithm 5: Create event based trace diagram combined with graphical elements

1 function createEBTraceDiagram(tr 〈q0e1 . . . enqn〉, graphicalElements elems)
2 nodes := ∅

3 edges := ∅

4 for i=0 to n do
5 edges := edges ∪ {qiei+1qi+1}
6 foreach ele ∈ elems do
7 nodes(qi) := nodes(qi) ∪ computeEventBased(〈q0e1 . . . ei+1qi+1〉, ele)
8 end foreach

9 end for
10 buildDiagram(nodes , edges)
11 end function

Using validation tools for performing various consistency checks of formal specifica-
tions automatically is a powerful technique for verifying the correctness of the analyzed
specification. The failure of a consistency check is mostly reported by producing of a
counter-example (very often presented as a trace leading to an error state). However,
trying to understand the failure behavior of the model by simply examining the trace
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can sometimes be difficult as the error trace may, for example, be the result of the in-
teraction of various components in the specified system. Thus, using a visualization in
order to facilitate the effort of understanding the error trace can be very useful.

We will now show how the trace diagram feature may, for example, contribute to the
better understanding of an erroneous behavior in the CSPM specifications.

For example, the trace of the Network process of the bully algorithm specification

〈fail .2, fail .3, test .1.3, tock , election.1.3, election.1.2, revive.2, revive.3,
coordinator .3.2, fail .3, test .0.3, tock , coordinator .1.0, leader .2.3〉

represents a sequence of events leading to a state in the network in which the elected
leader is not the living node with the greatest ID. In general, the false behaviour that
is explicitly discussed in [Ros10] illustrates a problem that occurs with a certain combi-
nation of node failures and mixed up elections.

When examining the above error trace, it is hard for the user to reproduce and to see
the actual problem. In contrast, Fig. 6.4 shows the trace diagram of the error trace.
The user can see at a glance the erroneous behaviour that is shown in the last state of
the trace diagram (after performing leader .2.3).
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Figure 6.4.: Trace diagram for an erroneous behaviour in the bully algorithm
specification
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7
Applications of BMotionWeb

7.1. Introduction

In this chapter we demonstrate various applications of BMotionWeb. Section 7.2 de-
scribes the use of BMotionWeb for the lightweight validation of interactive safety critical
systems based on a case study of a phonebook software user interface and a cruise con-
trol system device. In Section 7.3 we present two industrial case studies: a landing gear
system and a hemodialysis machine.1 Beside these two industrial case studies, we also
give some brief success stories of applying BMotionWeb in the railway and smart energy
domain (see Section 7.4 for more information). Finally, we describe the application of
BMotionWeb for teaching formal methods in Section 7.5. Since BMotionWeb is the
successor of BMotionStudio, we also cover success stories of applying BMotionStudio, as
well as consider the use of BMotionStudio for teaching formal methods. Appendix B.1
gives a comprehensive list of existing case studies for BMotionWeb and BMotionStu-
dio.

7.2. BMotionWeb for Interactive Systems

Nowadays, safety-critical systems, such as medical devices, airplane cockpits, or railway-
and nuclear plant control systems, typically include interactive user interfaces (UI). Thus,
the development of safety-critical systems is also required to properly account for user’s
cognition and to ensure the usability of the system. This task is typically performed
by UI engineers. However, UI engineers are rarely trained in formal methods. On the
other hand, formal engineers typically have no experience in common UI engineering
techniques. Consequently barriers can arise when working in a multidisciplinary team
which can compromise the success of the project.

In this section, we demonstrate the use of BMotionWeb to support the validation of
interactive systems, i.e. a system where a human interacts with the system, for instance,
via a graphical user interface or device. We demonstrate two interactive systems: the

1The case studies are available in the GitHub BMotionWeb case study repository (see Appendix B.1).
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UI of a simple phonebook software (Section 7.2.1) and the device for a cruise control
system (Section 7.2.2).

7.2.1. Phonebook Software User Interface

The first interactive system considered in this section is a phonebook software UI spec-
ified in classical-B. The phonebook allows users to manage persons and telephone num-
bers and provides the following functionalities: adding and deleting persons with an asso-
ciated number, searching for numbers, and activating or deactivating persons. Moreover,
the user can lock the phonebook which means that the user can not add new entries or
delete existing entries. The aim of this case study is to exemplify the creation of software
UI mockups as well as to demonstrate how the gluing code between a software UI mockup
and an animated formal specification can be established with BMotionWeb.

Figure 7.1.: UI mockup of the phonebook software in visual editor of BMotionWeb

Mockup software user interfaces. Figure 7.1 shows a snapshot of the visual editor in
BMotionWeb while creating the mockup of the phonebook software UI. As can be seen
in the figure, the UI is composed of different graphical elements like shapes and labels,
as well as of interactive graphical elements like input fields, buttons and a checkbox. For
instance, the UI provides two input fields for entering the name and the phone number
of the person to be added to the database. This input (e.g. the name and phone number
entered) can be used for defining interactive handlers. As an example, the “Add contact”
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button (“#btAdd”) shown in Fig. 7.2 is linked to the execute event handler defined in
Listing 7.14. The handler executes the add operation in the classical-B specification of
the phonebook software shown in Listing 7.15. In lines 4 to 9 we define a JavaScript
function that returns a predicate determining the parameters of the add operation. The
returned predicate (lines 7 to 8) is composed of the values of the name and number
input fields (line 5 and 6). The result can be seen in Fig. 7.2 where the user hovers over
the “Add contact” button in the interactive formal prototype of the phonebook software
(see upper left side). Based on this principle we can execute operations or events in
a formal specification based on user inputs and thus allow non-formal method experts
such as UI engineers to work with the formal specification via a custom UI.

1 bms.executeEvent({

2 selector: "#btAdd",

3 name: "add",

4 predicate: function(ui) {

5 var name = ui.find("#name");

6 var nr = ui.find("#nr");

7 return "name=" + name.val() +

8 "& nr=" + nr.val();

9 }});

Listing 7.14: “Add contact” button
event handler (JS)

1 add(name, nr) =

2 PRE

3 name : STRING &

4 name /: dom(db) &

5 nr : NATURAL &

6 lock = FALSE

7 THEN

8 db := db \/ {name |-> nr}

9 END;

Listing 7.15: Phonebook add Operation
(classical-B)

We can also make use of observers to determine the appearance of the UI based on state
variables. Consider the formula observer in Listing 7.16 which observes the lock variable
stating the database is locked (the user can not add new entries or remove existing
entries, i.e. lock = true) or unlocked (all UI functions are made available to the user,
i.e. lock = false). The goal of the observer is to deactivate the input fields based on
the lock checkbox graphical element (see upper right side of Fig. 7.2). To do this, the
observer is registered for the name and number input fields (#name and #nr) and for
the “Add contact” button (#btAdd). In lines 5 to 7 of Listing 7.16 we define a trigger
function which sets the disabled property of the graphical elements to the value of the
lock state variable (values [0]) causing a deactivation of the input fields and the button
whenever the lock variable is set to true (the input fields and the button are unusable
and unclickable). Otherwise, the input fields and the button are activated (lock is set
to false). Note that we have set the translate property of the formula observer to true
(see line 4). This enables us to use the state value of the lock variable directly in the
context of the prop function (see line 6).
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Figure 7.2.: Interactive formal prototype of phonebook software user interface

1 bms.observe("formula", {

2 selector: "#name, #nr, #btAdd",

3 formulas: ["lock"],

4 translate: true,

5 trigger: function(origin, values) {

6 origin.prop("disabled", values[0]);

7 }

8 });

Listing 7.16: Formula observer for lock variable (JS)

Visualize dynamic data-structures. In formal specification languages like classical-B,
the software is often specified with data-structures like sets and relations. These data-
structures typically contain a dynamic number of elements. For instance, the database
of the phonebook is specified as a relation between persons and numbers, where the
number of database entries increases or decreases whenever the user adds or removes a
person. In this section, we demonstrate the use of the JavaScript MVC (Model View
Controller) framework AngularJS [GS13]2 to connect HTML elements like tables and
lists with dynamic data-structures like sets or relations.

2We choose AngularJS because BMotionWeb is also based on AngularJS. However, we could also use
other JavaScript MVC libraries as well.
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AngularJS provides controllers and directives. A controller defines the data and behavior
of HTML templates and a directive can attach a specified behavior to an existing HTML
element. Consider the controller phonebookController in Listing 7.18. In lines 4 to 10
we register a new formula observer which observers the two state variables db and active
in the phonebook application. The values of the variables are assigned to the scope of
the controller and updated whenever a state change occurred in the animated formal
specification (line 8 and 9). A scope can be made available to an HTML template using
the ngController directive as demonstrated in line 1 in Listing 7.17. Once the scope has
been attached to the template, the values of the two variables db and active can be used
within the template. In line 7 we assign an ngRepeat directive which creates a table row
(lines 7 to 13) in each element in the db relation. Each row gets its own scope, where
the current element (el) of the db relation is set to the row’s scope. Thus, we can access
the name ({{el[0]}}), the number ({{el[1]}}) and the status (activated or deactivated)
of each element ({{isActive(el[0]}})) and show them in the respective columns of the
row (lines 8 to 12). The isActive function is defined in lines 12 to 14 and takes a person
as its parameter. It returns true whenever the person is in the active set. Otherwise, it
returns false.

We can also define custom directives as demonstrated in lines 17 to 30 of Listing 7.18,
where we define a new directive called executeEvent. The purpose of the directive is to
attach an execute event handler to an HTML element in context of the defined name
and predicate attributes of the HTML element (line 24 and 25 respectively). We have
assigned this directive to each “Active” column of the HTML table as demonstrated
in line 10 of Listing 7.17. For each row, the directive creates a new execute event
handler with toggle as the operation’s name and name=”{{el[0]}}” as the operation’s
predicate.

The lower left side of Fig. 7.2 shows the HTML table during the simulation of the
interactive formal prototype. Based on the db variable, the rows of the table and the
execute event handlers for the “Active” columns are created dynamically. As can be
seen in the figure, the table contains four rows representing the four entries of the db
variable. If we add a new entry or remove an existing entry from the db variable, the
table will adapt and reflect the new state dynamically.
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1 <table ng-controller="phonebookController">

2 <tr>

3 <th>Name</th>

4 <th>Number</th>

5 <th>Active</th>

6 </tr>

7 <tr ng-repeat="el in db">

8 <td>{{el[0]}}</td>

9 <td>{{el[1]}}</td>

10 <td execute-event name="toggle" predicate=’name="{{el[0]}}"’>

11 {{isActive(el[0])}}

12 </td>

13 </tr>

14 </table>

Listing 7.17: Template for database table (HTML)

1 angular.module("phonebook", [])

2 .controller("phonebookController", function() {

3

4 bms.observe("formula", {

5 formulas: ["db", "active"],

6 translate: true,

7 trigger: function(values) {

8 $scope.db = values[0];

9 $scope.act = values[1];

10 }});

11

12 $scope.isActive = function(n) {

13 return $scope.act.indexOf(n) > -1;

14 }

15

16 })

17 .directive("executeEvent", function() {

18 return {

19 replace: false,

20 link: function($scope, $element, attr) {

21

22 bms.handler("executeEvent", {

23 element: $element,

24 name: attr["name"],

25 predicate: attr["predicate"]

26 });

27

28 }

29 }

30 });

Listing 7.18: Controller for database table (JS)
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7.2.2. Cruise Control Device

A common way to develop mockups is to create graphical sketches using the classical
paper-and-pencil approach. In this section we demonstrate the application of BMotion-
Web for reusing such graphical sketches for the creation of interactive formal prototypes.
For this purpose, we use an Event-B specification of a cruise control system (CCS) and
a graphical sketch of a car cockpit with a CCS device (see Fig. 7.3) as a case-study. A
CCS is an automotive system implemented in software which automatically controls the
speed of a car. The CCS device provides buttons to switch the CCS system on/off, to
set the current speed of the car as the target speed of the CCS system, and to increase
and decrease the target speed. In addition, a speedometer provides information about
the state of the CCS system and about the target speed which depends on the current
car speed.

Figure 7.3.: Interactive formal prototype of cruise control device

Using the visual editor in BMotionWeb, UI engineers can select a picture (e.g. a graphical
sketch or a photograph) of a device or a UI as a starting point for creating an interactive
formal prototype. Once a picture is selected it can be extended with additional graphical
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elements. BMotionWeb makes it possible to add an interactive area graphical element
which can be placed over the picture. An interactive area allows UI engineers to bind
an execute event handler to a specific area in the picture. As an example, in Fig. 7.3
the user hovers over the “+” button (#btSpeedUp) on the graphical sketch of the CCS
device. The interactive area overlays the button and setups an execute event handler
(see Listing 7.19) that wires the event USER Adapt Speed shown in Listing 7.20 with the
predicates s=1 and s=2. Similar graphical elements wired with corresponding execute
event handlers have been created for the other functions in the CCS device.

1 bms.executeEvent({

2 selector: "#btSpeedUp",

3 events: [{ name: "USER_Adapt_Speed",

4 predicate: "s=1" },

5 { name: "USER_Adapt_Speed",

6 predicate: "s=5" }],

7 label: function(evt) {

8 return "Increase speed " +

9 evt.predicate;

10 }

11 });

Listing 7.19: Execute event handler
“increase target speed” (JS)

1 event USER_Adapt_Speed

2 any

3 s

4 where

5 @g1 s : -maxspeed .. maxspeed

6 @g2 ccs_status = cruise

7 @g3 ccs_target + s <= maxspeed

8 @g4 ccs_target + s >= 0

9 then

10 @a1 ccs_target := ccs_target + s

11 end

Listing 7.20: CCS “increase target speed”
event (Event-B)

7.3. Industrial Application

In this section we demonstrate the application of BMotionWeb to the development of
interactive formal prototypes for two industrial case studies: a landing gear system from
the aviation domain (Section 7.3.1) and a hemodialysis machine from the medical do-
main (Section 7.3.2). For each case study, we give a brief overview and description
of the case study and the formal specification (both case studies have been specified
in Event-B) and present the development of the interactive formal prototype includ-
ing the visualization and the gluing code (observers and event handlers). Finally, in
Section 7.3.3, we demonstrate the application of the interactive formal prototypes to
support the validation of the corresponding formal specifications. The purpose of both
case studies is to describe in detail how to develop an interactive formal prototype and
to show how BMotionWeb supports the validation of industrial case studies.

We have created the interactive formal prototypes based on the last refinement levels of
the formal specifications. However, we claim that the development of an interactive for-
mal prototype should happen in parallel to the development of the formal specification.
Our approach for creating an interactive formal prototype is as follows: for each aspect
of the system which is represented by a state variable in the Event-B specification, we
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Table 7.1.: Overview of refinement levels of the Event-B landing gear system

Refinement Description

R0 Gear The top-level abstraction with one single abstract gear.

R1 GearDoor Introduction of an abstract door.

R2 GearDoorHandle Introduction of the pilot handle.

R3 GearsDoorsHandle Triplication of gear and door (data refinement).

R4 ...Valves Introduction of hydraulic elements such as the valves.

R5 ...Controller Connecting electric orders in the digital part to the valves in the hy-
draulic part.

R6 ...Switch Introduction of an analog switch to prevent the hydraulic part from
behaving abnormally.

R7 ...Lights Introduction of cockpit lights.

R8 ...Sensors Introduction of input sensors into the digital part.

have created a graphical representation and the gluing code incrementally. In order to
verify that a graphical element represents all possible states of the system properly, we
have generated a projection diagram for each graphical element illustrating all possible
states of the element in the system.

7.3.1. Landing Gear System

The first industrial case study is a landing gear system.3 The case study has its origin
in the aviation domain and was originally specified as a challenge for the ABZ’14 con-
ference [BW14]. The landing gear system is composed of three parts: a digital part,
including the control software, a pilot user interface, and a mechanical part which con-
tains the doors and gears. The system is in charge of controlling the retraction and
extension sequence of the gears with respect to the doors and the pilot handle. The
latter serves as the input to the system. The extension and retraction sequence can be
interrupted by a counter-order of the handle at any time. The full specification and a
detailed description of the case study is available at [BW14].

The landing gear system has been specified in Event-B. Table 7.1 gives an overview of the
refinement levels of the Event-B specification with a short description of the key aspects
of the system. A detailed description of the formal specification and its validation is
available at [Lad+15] and [Han+14].

In this section we demonstrate the development of an interactive formal prototype of the
landing gear system. The interactive formal prototype consists of two domain specific

3This section presents a joint work with Dominik Hansen, Harald Wiegard, Jens Bendisposto, and
Michael Leuschel and is described in [Lad+15; Han+14].
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visualizations: a visualization of the architecture of the digital and hydraulic part and
an additional view that visualizes the physical environment (the doors and gears). Both
visualizations are inspired by pictures from the original case study specification [BW14].
Figure 7.4 shows the interactive formal prototype in action. The visualizations are com-
posed from simple SVG graphical elements like images, shapes and lines. For instance,
the electric orders to the valves and the input sensors are represented as lines, and the
signals are represented as circle shapes (see upper left side of the figure). On the other
hand, the visualization of the physical environment contains an image for each gear and
door representing the current state of the gear and door respectively (see upper right
side of the figure).

Figure 7.4.: Interactive formal prototype of the landing gear system

In the following subsections we give a detailed presentation of developing the two do-
main specific visualizations and the gluing code. Later in Section 7.3.3, we will also
demonstrate how we have used the interactive formal prototype for validating the for-
mal specification of the landing gear system.

110



7.3. Industrial Application

Visualizing the Digital and Hydraulic Architecture

In this section we demonstrate the domain specific visualization and the gluing code for
the architecture of the digital and hydraulic part of the landing gear system.

Door and gear cylinders. In the architecture visualization, the gears and doors (the
abstract gear and door and the triplicated gears and doors) are represented as cylinders
as illustrated in the projection diagram shown in Fig. 7.5 (right side). The projection
shows the different states of the front door cylinder (closed , door moving and open). As
can be seen in the projection the movement of the piston in the cylinder corresponds
to the state of the front door (doors(front)). In order to move the piston each cylinder
is bound to a formula observer that observes the respective gear or door state variable.
As an example, the left side of Fig. 7.5 shows the formula observer for the front door
cylinder.

1 bms.observe("formula", {

2 selector: "#front_door_cylinder",

3 formulas: ["doors(front)"],

4 trigger: function (el, val) {

5 var move;

6 switch (val[0]) {

7 case "closed":

8 move = "translate(0,0)";

9 break;

10 case "door_moving":

11 move = "translate(45,0)";

12 break;

13 case "open":

14 move = "translate(90,0)";

15 break;

16 }

17 el.find("#front_door_cylinder_piston")

18 .attr("transform", move);

19 }});

Figure 7.5.: Front door cylinder formula observer (left) and projection (right)

In line 1 and 2 we register a new formula observer for the graphical element that matches
the selector #front door cylinder. The observer observes the formula doors(front) (line
3) and moves the piston of the front door cylinder (#front door cylinder piston) based
on the state value of the formula. To do this, the transform attribute of the piston is
changed (lines 17 and 18) and the value of the attribute is determined by a simple switch
case statement (lines 5 to 16). For instance, the piston is moved 45 pixels to right by
setting the transform attribute to the value translate(45, 0 ) whenever the state value of
the formula doors(front) is door moving . We have defined the observers for the other
door and gear cylinders in a similar fashion.
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At the moment, the abstract gear and door and their refinement (the triplication of
the abstract gear and door) introduced in refinement level R3GearsDoorsHandle are all
displayed in the visualization. However, depending on the refinement level that is being
animated, either only the abstract door and gear or the triplicated gears and doors should
be displayed. In order to show this data refinement in the interactive formal prototype,
we use the refinement observer. The basic idea of the observer is to hide the abstract gear
and door and display the triplicated gears and doors whenever the R3GearsDoorsHandle
is part of the animated formal specification. Otherwise, the observer should display
the abstract gear and door and hide the triplicated gears and doors. To do this, we
have grouped the graphical elements: there is SVG group #gear door abstract that
groups the abstract gear and door and the SVG group #gear door refined that groups
the triplicated gears and doors. Listing 7.22 demonstrates the refinement observer for
#gear door refined. In line 3 we define the refinement which introduces the data re-
finement, namely R3GearsDoorsHandle. The observer triggers the enable function (see
lines 4 to 6) whenever the animated machine (or one of the corresponding abstracted
machines) is the defined refinement in the refinement option (line 3). In particular, the
enable function sets the visibility of the group to the value visible (displaying the group).
Otherwise, the observer triggers the disable function (see lines 7 to 9) that sets the vis-
ibility of the group to the value hidden (hiding the group). The refinement observer for
the abstract gear and door is shown in Listing 7.21.

1 bms.observe("refinement", {

2 selector: "#gear_door_abstract",

3 refinement: "R3GearsDoorsHandle",

4 enable: function(el) {

5 el.css("visibility", "hidden");

6 },

7 disable: function(origin) {

8 el.css("visibility", "visible");

9 }

10 });

Listing 7.21: Abstract gear and door
refinement observer (JS)

1 bms.observe("refinement", {

2 selector: "#gear_door_refined",

3 refinement: "R3GearsDoorsHandle",

4 enable: function(el) {

5 el.css("visibility", "visible");

6 },

7 disable: function(origin) {

8 el.css("visibility", "hidden");

9 }

10 });

Listing 7.22: Triplicated gear and door
refinement observer (JS)

Pilot handle. The pilot handle is represented by an image element and two differ-
ent image files: one for the up state (handle up.png) and one for the down state
(handle down.png). The left side of Figure 7.6 shows the formula observer for the pilot
handle that switches the path for the image of the image element (#handle) to match
with the current state of the handle variable (lines 4 to 7). The right side of Fig. 7.6
shows the projection onto the pilot handle illustrating the two possible states of the
handle in the system (up and down).
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1 bms.observe("formula", {

2 selector: "#handle",

3 formulas: ["handle"],

4 trigger: function (el, val) {

5 el.attr("xlink:href",

6 "img/handle_" + val[0] + ".png");

7 }

8 });

Figure 7.6.: Pilot handle formula observer (left) and projection (right)

Electric orders and valves. The electric orders from the digital part to the electro
valves in the hydraulic part are represented as lines in the visualization. In order to rep-
resent the current state of the electric orders, we setup an observer for each electric order
that changes the color of the lines according to the current state of the order (green when
active and red when not active). For example, Listing 7.23 demonstrates the observer
for the electric order to stimulate the close door electro valve (#eo close doors).

1 bms.observe("formula", {

2 selector: "#eo_close_doors",

3 formulas: ["close_EV"],

4 translate: true,

5 trigger: function (el, val) {

6 el.find(".order").attr("stroke",

7 val[0] ? "green" : "red");

8 }});

Listing 7.23: Close door electric order
formula observer (JS)

1 bms.observe("formula", {

2 selector: "#ev_close_doors",

3 formulas: ["valve_close_door"],

4 trigger: function(el, val) {

5 el.find(".valve").attr("fill",

6 val[0] === "valve_open" ?

7 "blue" : "gray");

8 }});

Listing 7.24: Close door valve formula
observer (JS)

The observer observes the variable close EV (determining the state of the close door
electric order). In line 4 we set the translate flag of the formula observer to true deter-
mining that the value of the variable close EV should be translated into a JavaScript
object. For instance, whenever the value of the variable close EV is “TRUE”, the value
is translated into the JavaScript object true. The translated value is used in a condi-
tional statement as demonstrated in lines 6 to 7, where the color is defined according
to the state of the variable. In particular, we set the color of the child graphical ele-
ments which have the class order (the line elements that represent the electric orders)
to “green” whenever the value of the variable is true or otherwise to “red”. Listing 7.24
shows the formula observer for the electro valve for closing the door. The observer sets
the fill attribute of the graphical element that represents the valve (#ev close doors)
to blue whenever the current state of the observed variable valve close door is set to
valve open. Otherwise it sets the fill color to gray. In a similar fashion we have defined
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Figure 7.7.: Projection onto the close door electric order and valve (#eo close doors,
#ev close doors)

the observers for the other electric orders and valves.

Figure 7.7 shows the projection onto the electric order and valve graphical elements for
closing the door (using the selector “#eo close doors, #ev close doors”). The diagram
confirms that the observers represent the electric orders and valves in the overall system
properly.

Analog switch and general electro valve. In refinement R6 ...Switch the analog
switch and the general electro valve are introduced. Figure 7.8 shows the graphical
representation of the analog switch and the electric order to the general electro valve
as well as their possibles states in the system. The formula observer for the analog
switch is shown in Listing 7.25. The observer observes the two variables analog switch
and general EV . The second variable is needed to determine the state of the electric
orders related to the analog switch (see lines 10 and 11). The rest of the observer is
responsible for determining the state of the analog switch. To do this, two graphical
elements have been created: one that represents the opened analog switch, and a second
that represents the closed analog switch (see Fig. 7.8). Depending on the value of the
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analog switch variable, the observer hides or shows the correct graphical element (lines
6 to 9).

The formula observers for the general valve and the electro order have been created by
adapting the formula observers shown in Listing 7.23 and Listing 7.24. We only need
to change the selector (selecting the graphical element that represents the general valve
and the electro order) and the observed variable (general valve and general EV ).

Figure 7.8.: Projection onto the analog switch of landing gear system (#analog switch)

1 bms.observe("formula", {

2 selector: "#analog_switch",

3 formulas: ["analog_switch", "general_EV"],

4 translate: true,

5 trigger: function(el, val) {

6 el.find("#analog_switch_open")

7 .css("visibility", val[0] == "switch_open" ? "visible" : "hidden");

8 el.find("#analog_switch_closed")

9 .css("visibility", val[0] == "switch_closed" ? "visible" : "hidden");

10 var color = val[1] ? "green" : "red";

11 el.find(".order").attr({"fill": color, "stroke": color});

12 }});

Listing 7.25: Analog switch formula observer (JS)
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Cockpit lights and controller sensors. Beside the orders to the hydraulic part, the
controller produces three further output signals to the cockpit: (1) a green light sig-
nalizing that all gears are locked down, (2) an orange light signalizing that the gears
are maneuvering and (3) a red light signalizing an anomaly in the system. We have
created a circle shape element for each signal (see upper left side of Fig. 7.4) and added
an observer that changes the color of the signal based on the current state (depending
of the signal is switched on or off). The graphical representation of the input sensors
for the digital part have been visualized in the same way as the electric orders, e.g. as
line elements with observers that switch the color of the lines (depending on the current
state of the sensor).

Interactive visualization. Up to this point, the visualization can only be driven by
performing a state change using ProB (e.g. by clicking on an enabled event in the events
view). We have used the execute event handler feature in BMotionWeb to enhance
our visualization with interactive features. As an example, Fig. 7.9 shows the execute
event handler that wires the events toggle handle down and toggle handle up with the
graphical element that represents the pilot handle (see left side of the figure). The right
side of the figure shows the execute event handler in the interactive formal prototype
when the user hovers over the graphical element. A tooltip will be shown with the
events and their status in the current state (enabled or disabled). We have created
similar execute event handlers for the other graphical elements.

1 bms.executeEvent({

2 selector: "#ev_handle",

3 events: [

4 { name: "toggle_handle_down" },

5 { name: "toggle_handle_up" }

6 ]

7 });

Figure 7.9.: Execute event handler for pilot handle

Visualizing the Physical Environment

The domain specific visualization of the physical environment is composed of eight image
elements representing the abstract gear and door and the triplicated gears and doors
(front, right and left). Each image element binds a formula observer that observes the
state variable of the gear or door. For instance, the left side of Fig. 7.10 shows the
formula observer for the image element that represents the physical door (#front door).
The observer switches the file path of the image element based on the current state of the
doors(front) formula (lines 4 to 8). The result is illustrated in the projection diagram
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shown on the right side of Fig. 7.10. The diagram shows the three possible states of the
front door (closed , door moving and open) in the system. In order to represent the data
refinement of the doors and gears, we have adapted the refinement observers shown in
Listing 7.21 and Listing 7.22.

1 bms.observe("formula", {

2 selector: "#front_door",

3 formulas: ["doors(front)"],

4 trigger: function(el, val) {

5 el.find("image")

6 .attr("xlink:href",

7 "img/door_"+val[0]+".png");

8 }

9 });

Figure 7.10.: Formula observer (left) and projection diagram (right) for physical front
door

Visualizing Superposition Refinements

We already have demonstrated how a data refinement can be visualized in an interactive
formal prototype while visualizing the doors and gears. In addition to data refinement,
Event-B provides refinement called superposition refinement. A superposition refinement
introduces more complexity and details into the formal specification rather than refining
some abstract data structures. In order to represent a superposition refinement in the
interactive formal prototype, we have subdivided the visualization into SVG groups,
where each group reflects a refinement level in the specification. A group only contains
the graphical elements that corresponds to a specific refinement and is identified by
the class refinementGroup. A group is only displayed if the refinement is part of the
animated formal specification. This is achieved by means of the refinement observer
shown in Listing 7.26.
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1 bms.observe("refinement", {

2 selector: ".refinementGroup",

3 refinement: function(origin) {

4 return origin.attr("data-custom");

5 },

6 enable: function(origin) {

7 origin.css("visibility", "visible");

8 },

9 disable: function(origin) {

10 origin.css("visibility", "hidden");

11 }

12 });

Listing 7.26: Generic superposition refinement observer for landing gear system (JS)

In lines 1 and 2 we register a new refinement observer on the graphical element that
matches the selector “.refinementGroup” (all SVG elements that have the class refine-
mentGroup). In lines 3 to 5 we define the name of the refinement based on the data-
custom attribute of the respective SVG group. The data-custom attribute defines the
name of the refinement to which the SVG group belongs to. For instance, the SVG group
representing the refinement level that introduces the analog switch and the general valve
sets the data-custom attribute to R6GearsDoorsHandleValvesControllerSwitch. The ob-
server triggers the enable function (see lines 6 to 8) and sets the visibility of the SVG
group to the value visible (displaying the SVG group) whenever the specified refinement
is part of the refinement hierarchy being animated. Otherwise, the observer triggers the
disable function (see lines 9 to 11) and sets the visibility of the group element to the
value hidden (hiding the SVG group).

The refinement observer is generic: whenever the formal specification is refined (e.g. with
superposition refinement), we only need to group the graphical elements that belong to
the new refinement level and set the class to refinementGroup and the data-custom
attribute to the new refinement level (the machine name) of the group.

7.3.2. Hemodialysis Machine

The second industrial case study considered in this thesis is a hemodialysis machine
(HD machine) that has its origin in the medical domain.4 Similar to the landing gear
case study, the HD machine was originally given as a challenge for the ABZ’16 con-
ference [Mas15]. The task of the HD machine is to remove excess fluid, minerals, and
waste from the blood of a patient with kidney failure. A detailed description of the case
study is available at [Mas15]. The case study has been specificed in Event-B using the
iUML-B tool [Sno14] which provides a diagram based modeling notation for Event-B in-
spired by classical UML state machines and class diagrams. Table 7.2 gives an overview

4This section presents a joint work with Thai Son Hoang, Colin Snook, and Michael Butler and is
described in [Hoa+16].
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Table 7.2.: Overview of refinement levels of the Event-B hemodialysis machine

Ref. Description

m0 The main system state (control system top-level) with three main phases: PREP,
INIT, END (together with the STANDBY State).

m1 The sub-processes within each main phases for the top-level control system.

m2 The low-level control system for automatic testing of control functions.

m3 The actual physical result of testing the HD machine’s control functions.

m4 Message passing communication between the low-level control system and the HD
machine for testing control functions.

m5 Introduction of set of signals.

m6 Signal for indication of control function testing result.

m7 Connection of concentrate to the HD machine.

m8 Setting rinsing parameters.

m9 Connecting patient sequence.

m910 Connecting patient (physically).

m911 Introduction of pressure monitors and system normal/abnormal states.

m912 Introduction of various abnormal blood-side pressures.

m913 Introduction of blood pump, actual blood flow and abnormal situations when moni-
toring the blood flow.

m914 Introduction of arterial bolus.

m915 Introduction of heparin bolus.

of the refinement levels of the Event-B specification. A more detailed description of the
specification is available at [Hoa+16].

In the following section, we present the development of an interactive formal prototype
for the HD machine based on the last refinement level m915 of the corresponding Event-
B specification. The interactive formal prototype has been developed in collaboration
with the university medical centre of Düsseldorf which also treats patients with kidney
failures using HDmachines. They provided us with domain knowledge about HD systems
and gave us instruction documents for their HD machines.

Visualizing the User Interface

The interactive formal prototype of the HD machine contains a user interface (UI)
that provides communication between the operating user and the HD machine. The
UI consists of two panels as shown in Fig. 7.11: a panel for visualizing all relevant
information about the therapy, such as the dialysis parameters and the alarm conditions
(see lower right side of figure) and a panel for entering the different rinsing parameters
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while preparing the therapy (see upper left side of figure). The user can switch between
the two panels by pressing the corresponding buttons at the bottom of the UI.

Figure 7.11.: Domain specific visualization of the HD machine’s UI

Therapy panel. In the therapy panel, each dialysis parameter is represented using
simple graphical elements to display its description, unit and current value, and binds
a formula observer that observes the respective state variable for the parameter. In
addition, for pressure parameters (arterial entry pressure and venous flow pressure), the
width and thresholds of the limits window are shown with the current value being rep-
resented by a horizontal dashed line. As an example, Listing 7.27 shows the formula
observer for visualizing the arterial entry pressure (AP). The observer is linked to the
graphical element that represents the AP pressure (#AP display) and observes the for-
mulas pressure(AP) (the current AP pressure state value), limit high(AP) (the upper
arterial limit) and limit low(AP) (the lower arterial limit). Based on the values of the
formulas we set the position of the horizontal dashed line to represent the current AP
pressure within the limits window as demonstrated in lines 5 to 11. Moreover, the cur-
rent AP pressure value and the limits are visualized as numerical values (see lines 12 to
14).
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1 bms.observe("formula", {

2 selector: "#AP_display",

3 formulas: ["pressure(AP)", "limit_high(AP)", "limit_low(AP)"],

4 trigger: function(origin, values) {

5 var range = values[1] - values[2];

6 if (range > 0) {

7 var unity = 50 / range;

8 var offset = values[2] < 0 ? (values[2] * unity) * -1 : 0;

9 var value = (unity * values[0]) + offset;

10 origin.find("#AP_line").attr("transform", "translate(0,-" + value + ")");

11 }

12 origin.find("#AP_value").text(values[0]);

13 origin.find("#AP_limit_high").text(values[1]);

14 origin.find("#AP_limit_low").text(values[2]);

15 }

16 });

Listing 7.27: Formula observer for arterial entry pressure display of the HD machine’s
UI (JS)

The UI also contains graphical elements and observers for the automated self test signal
lamp (see lower left side of the panels in Fig. 7.11) and for the alarm signal and the HD
machine on/off button (see upper left side of the panels in Fig. 7.11). The observer for the
automated self test signal lamp is responsible for indicating whether the automated self
test has been successfully completed (shown in green) or not (shown in red) based on the
observed formula signal status(CF TESTING SIGNAL). The alarm signal flashes red
whenever the top-level control system raises an alarm (e.g. due to abnormal behaviour).
On the other hand, the HD machine on/off button wires the events User PressesOn and
User PressesOff using an execute event handler.

Set rinsing parameters panel. In the therapy preparation phase (CS TopLevel =
PREPARATION ), the user is requested to enter the rinsing parameters. To do this, the
UI contains a second panel shown in the upper left side of Fig. 7.11. The panel provides
several input fields and buttons which wire execute event handlers for setting the value of
the respective parameter. For instance, Listing 7.28 shows the execute event handler for
the set ultra filtration (UF) volume button (#bt setUFVolume). The handler wires the
User SetUFRinsingVolumeParameter event and determines the event’s predicate based
on the value entered into the UF volume input field (#input UFVolume). Figure 7.11
shows the UI where the user hovers the UF volume button. We have created similar
handlers for the other input fields.
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1 bms.handler("executeEvent", {

2 selector: "#bt_setUFVolume",

3 events: [{

4 name: "User_SetUFRinsingVolumeParameter",

5 predicate: function(origin, container) {

6 var val = container.find("#input_UFVolume").val();

7 return "p=" + val;

8 }

9 }]

10 });

Listing 7.28: Execute event handler for the UF volume button (JS)

Visualizing the Environment

The second view of the interactive formal prototype contains a domain specific visu-
alization of the environment for the HD machine (see Fig. 7.12). We have reused an
existing SVG image of a schematic illustration of a hemodialysis circuit5 rather than
creating a completely new SVG image. The purpose of the visualization is to show how
the different parts of the system are connected together. For instance, the visualization
shows the connection from the patient to the HD machine, the connected concentrate,
and contains graphical elements that represent the dialysis pressure parameters (arterial,
venous, and blood entry pressure) and their connection to the environment.

Similar to the interactive formal prototype of the landing gear system (Section 7.3.1),
the visualization of the HD machine environment is subdivided into SVG groups, where
each group represents a different refinement level. In order to display and hide the
graphical elements with respect to the refinement levels, we have adapted the generic
superposition refinement observer introduced in Section 7.3.1 (see Listing 7.26).

7.3.3. Validation of the Case Studies

In this section, we demonstrate the application of the interactive formal prototypes
to support the validation of the landing gear system and the HD machine Event-B
specifications. In a first step, we describe the general application of the interactive formal
prototypes. Then we describe some specific applications for validating the landing gear
system and the HD machine.

5The SVG image has been taken from the English Wikipedia article about Hemodialysis (see https:
//en.wikipedia.org/wiki/Hemodialysis).
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Figure 7.12.: Domain specific visualization of the HD machine environment

General Application

In general, the interactive formal prototypes helped us to reach a common understanding
about the formal specifications, to analyze a specific state of the system, and to identify
faulty behavior and errors during development. This is particularly valuable when the
formal specification becomes complex and large in later refinement levels. The amount
of details (e.g. the number of variables) of the formal specification increases with the
introduction of new refinement levels. This can make the examination of a specific state
difficult when only using an animation tool. For instance, Fig. 7.13 demonstrates two
different representations of the same state in the landing gear system. The left side shows
the variable configuration of the state in the state view of the ProB animator, while the
right side shows the same state in the interactive formal prototype. It can be very hard
for the user to get an overview of the current state while examining only the textual
representation. A graphical representation of the state may help to avoid this problem.
For instance, based on the graphical representation we can see at a glance (without
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knowledge about the variables in the underlying formal specification) that the electric
order to the open door valve is stimulated and the front door cylinder is moving.

Figure 7.13.: Textual (left) versus graphical representation (right) of a state

The interactive formal prototypes also helped us to discover problems with the specifi-
cations during their development, especially liveness problems or deadlocks, where the
system cannot make any progress. We will also demonstrate the use of projection dia-
grams to discover incorrect behavior in the specification of the landing gear system.

The strict separation between the visualization part and the gluing code (observers and
event handlers) makes the visualization reusable for other Event-B or even classical-
B specifications of the landing gear system. Indeed, to adapt the visualizations for a
different formal specification one simply has to change or adapt the gluing code without
modifying the visualization. This has been done for the Event-B specification of the
landing gear system by Su and Abrial described in [SA14]. The proecess is described
in [Lad+15] and it was shown that it is feasible to adapt an existing visualization for
a different formal specification within a reasonable time (the authors claim that it took
them about four hours to adapt the visualization).
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Landing Gear System

We have used the external method call feature of BMotionWeb (see Section 4.9) to check
whether the two basic scenarios: the extension sequence and the retraction sequence
are realized accurately in our formal specification. Consider the Groovy script file in
Appendix D.1. In lines 1 to 40 we define a sequence of events (including the name and
the predicate of the event) for simulating the extension and the retractions sequence. In
lines 42 to 70, we register a new external method called replay. The basic idea for the
method is first to bring the animated formal specification back to the root state and then
execute the events of the user defined trace gradually. In order to execute the method, a
button has been added to the visualization of the hydraulic part that is wired with the
execute method handler shown in Listing 7.29. Once the button is pressed the registered
replay method on the server side is called and the user can observe the extension and
retraction sequence within the interactive formal prototype.

1 bms.handler("method", {

2 selector: "#replayButton",

3 name: "replay"

4 });

Listing 7.29: Replay extension and retraction sequence method handler (JS)

The handle and gears of the landing gear system are closely related since the extension
and retraction of the gears can always be interrupted by a counter order from the han-
dle. A projection on both aspects of the specification (the gears and the pilot handle)
helped us to inspect their behaviour in the process of specifying the landing gear system.
Consider the projection diagram shown in Fig. 7.14. The diagram was produced with
BMotionWeb and demonstrates the projection of the fourth refinement level of an earlier
version of the landing gear system specification on the graphical elements that represent
the pilot handle (#ev handle) and the front gear (#front gear) of the physical environ-
ment. The projection function p(s) = eval(E , s), with E = gears(front) �→ handle is
automatically derived from the observers of the graphical elements.

The diagram confirms that in every state the handle can be toggled (the correspond-
ing transitions are definite) and that the only event which can modify the handle is
env toggle handle. We can also see that the gear do not jump directly from retracted
to extended or vice versa. The transitions for changing the gear state are not definite:
this is to be expected, as the doors have to put into the correct position first. This
again confirms our intuition about the specified system. However, two transitions were
initially surprising: it seems like the gear can start retracting on its own when the gear
is extended and the handle is down. Similarly, it seems like the gear can start extending
on its own when the gear is retracted and the handle is up. This is the case when the
handle was reversed right after the doors had opened and the retract gear valve had
been stimulated.
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Figure 7.14.: Projection of the fourth refinement level on handle and front gear

Another example application of the projection diagram feature is demonstrated in Fig. 7.15.
The diagram illustrates the possible values of the gear and door in the state space of
an earlier, faulty version of the fourth refinement of the landing gear system. One can
clearly see that something is amiss. For instance, both the door and the gear can be
moving at the same time. Figure 7.16 contains a similar projection for the final corrected
version of the specification. Here we can clearly see that the retraction/extension and
opening/closing sequences happen in the right order.

Hemodialysis Machine

In the case of the HD machine, requirements related to the AP and VP pressures such
as R-5–R-8 are modeled by whether or not the iUML-B transitions (ultimately events)
are enabled. Such requirements are cumbersome to formulate as a proof obligations in
Event-B but can be readily demonstrated via an interactive formal prototype. In order
to validate whether the requirements have been adequately taken into account, we have
created an additional view for the HD machine interactive formal prototype for entering
controller test values for the treatment parameters (AP and VP pressures and their
limits). By means of the view the user can test different combinations of the treatment

126



7.3. Industrial Application

Figure 7.15.: Projection of an erroneous version of the fourth refinement level

parameters while running the interactive formal prototype and observe the effect on the
system. As an example, we have simulated different values for the AP and VP to check
whether the corresponding alarm signals are executed if the software detects that the AP
or VP exceed their upper limit or fall below their lower limit (R-5–R-8). Figure 7.17
demonstrates the view, where the user enters test values for the AP pressure and its
limits.
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Figure 7.16.: Projection on corrected version of the fourth refinement level

Figure 7.17.: Simulation view of HD machine

We have also recorded the trace produced the simulation of the AP and VP test con-
troller values to have the opportunity to reproduce the simulation in a later stage of the
development. In order to reproduce the trace, we have used the recorded trace together
with the replay trace approach introduced in Section 7.3.3. This can be particularly
useful to revalidate the simulation together with a domain expert or to provide evidence
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that the simulation realizes the requirements adequately. As an example, consider the
trace defined in Appendix D.2. The trace defines the recorded events to simulate R-5
“During initiation, if the software detects that the pressure at the VP transducer exceeds
the upper limit, then the software shall stop the BP and execute an alarm signal”. Once,
the trace has been started, the user can observe the scenario within the interactive formal
prototype and go back in the history to analyze a specific state in more detail.

7.4. Success Stories from other Industrial
Applications

In this section we give some brief success stories of applying BMotionStudio and BMo-
tionWeb to other industrial case studies. Section 7.4.1 reports how BMotionWeb was
used for two case studies provided by the Advance FP7 EU project and Section 7.4.2
presents how BMotionStudio was used in the railway domain according to employees at
the Thales company.

7.4.1. BMotionWeb in the Advance FP7 EU Project

Advance is an FP7 EU project [Adv] with the overall objective to develop a unified
tool-based framework for automated formal verification and simulation-based validation
of cyber-physical systems. The Advance project provided two industrial case studies: a
smart grid from the smart energy domain and an interlocking system from the railway
domain. The case studies are described in [BR13] (smart grid) and [Mej13] (interlocking
system).

Smart Grid

A smart grid is an electrical grid with a two-way communication between the consumer
and supplier. The main objective of a smart grid is to control the production and
distribution of electricity efficiently. The purpose of the case study in the Advance
project was to verify the security and reliability of the communication infrastructure of
the smart grid system using formal methods. To do this, an Event-B specification of the
smart grid was developed and used together with tools like Rodin for the verification and
ProB for the validation of the specification. Moreover, a domain specific visualization
was developed using the BMotionStudio tool. During the project, the visualization was
then migrated to an interactive formal prototype created with BMotionWeb. The reason
for the migration was that BMotionWeb provides a lot more flexibility and scope in terms
of how domain specific visualizations are created and executed (e.g. the reuse of existing
SVG images and JavaScript libraries, and scripting support). Section 6.3 of the final
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case study report [BK14] describes the original visualization, as well as the migration to
an interactive formal prototype.

Figure 7.18.: Screenshot of the interactive formal prototype including a visualization of
the Advance smart grid low voltage network taken from [BK14]

The smart grid interactive formal prototype contains two views: a view visualizing the
communication network and a view including a visualization of the low voltage network
as demonstrated in Fig. 7.18. The communication network illustrates the physical topol-
ogy of the smart grid, whereas the purpose of the low voltage network visualization is
to validate how the algorithm was reacting to changes in the voltage network.

The developers of the smart grid interactive formal prototype report in [BK14] that “a
major success of the Advance programme has been the BMotion tool”. Furthermore, they
confirm that our thesis goal to complement the benefits of animation using visualization
techniques was successful: “Visualization was found to be essential in comprehending
the results of the simulation, and understanding why any unexpected or non-optimal be-
haviour occurred”. The developers have also used the interactive formal prototype to
“communicate the technical details of the models to domain engineers, without the re-
quirement for them to understand the underlying mathematical formalisms”. The smart
grid case study and especially the success story reported in [BK14] confirm the success
of our thesis goal and the power of visualization techniques to support the validation
process of formal specifications.
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Interlocking System

An interlocking system manages signal and switch states on a railway track with the
goal of preventing conflicting movements of trains. In the Advance project, a classical-B
specification of an interlocking dynamic controller (IXL-DC) was developed with the
overall objective of demonstrating the feasibility of formal method techniques in the
railway domain [MKS14].

Figure 7.19.: Screenshot of the Advance interlocking system interactive formal prototype
taken from [Jen14]

To support the validation of the specification, the authors of the case study created
an interactive formal prototype for the case study as demonstrated in Fig. 7.19. In
an intermediate report of the case study [MK13], the authors report that “Graphical
animation helped us to clarify and develop the behaviour of the IXL-DC”. Moreover, they
report in [MKS14] that “automatic animation (including visualization) was extremely
useful to develop the model. It disclosed defects that cannot be disclosed by proof because
they reflect incorrect comprehension of the functions of the IXL and of its dynamics”.
This again confirms the success of our thesis goal and the benefits of applying animation
together with visualization.

7.4.2. BMotionStudio in the Railway Domain

The authors in [RFT16] (who are employees of the Thales company) present the use of
BMotionStudio to support validation in the railway domain. The Event-B specification
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and the domain specific visualization can be accessed and downloaded from Github.6

Although developing a domain specific visualization with BMotionStudio required ex-
tra effort, the benefits of the visualization were considerable. For example, the authors
report in [RFT16] that “it is essential to support the domain experts so that they can
perform their tasks effectively. In this process, domain specific modeling, model visual-
ization and animation are of major assistance”. However, the visualization was created
for only one railway station with a specific track layout and topology. In future, the
authors plan to migrate the visualization to BMotionWeb in order to visualize different
track layouts and topologies.

7.5. Teaching Formal Methods

The BMotionWeb and BMotionStudio tools are also used for teaching formal methods
and for public engagement. We have created several visualizations of case studies from
formal methods teaching books (e.g. the interlocking system and the location access
controller from [Abr10]), as well as various visualizations of puzzles and logic games
(see Appendix B.1). These visualizations are used in our master degree courses at
the University of Düsseldorf to support the teaching of formal method techniques. As
an example, we use visualization to provide a concrete example of an abstract formal
specification. Visualization can also help students understand the meaning and behavior
of a formal specification. We also allow our students in our formal methods course to
develop their own visualizations. The feedback we get from the students is very positive.
Creating visualizations can help students learn formal methods.

Another example of an application of BMotionStudio was created by Dana Dghaym,
Asieh Salehi, and Colin Snook. For the annual “Science Day” in Southampton they
used Rodin and Event-B to demonstrate aspects of science related to their research,
e.g. by demonstrating aspects about how mathematics can help to analyze problems.
The particular idea of the event was to solve a simple safety related problem based on
parking two cars in two parking spaces crossing protected by a signal. The problem
was specified in Event-B. Since, many visitors are children, the demonstration had to be
designed and adapted by them. To overcome this challenge, they used BMotionStudio
to provide a cartoon style visualization and a simple Venn diagram visualization of the
Event-B specification rather than showing some complex mathematical formulas.

Dana Dghaym, Asieh Salehi and Colin Snook report that “the exercise was very popular
throughout the day and at times children queued to try their selections. In all, two
hundred children performed the exercise. Several teachers commented on how useful they
thought the exercise was for the children.”. More information about the case study and
the experiences gained by applying it is available at the website of the Rodin Workshop
2016.7

6https://github.com/klar42/railground.
7http://wiki.event-b.org/index.php/Rodin_Workshop_2016.
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Future Work, Conclusion and

Discussion

8.1. Future Work

Before we draw the final conclusions in Section 8.2, we will discuss some ideas that should
be addressed in the future. We first discuss future work which concerns the improvement
of BMotionWeb and the creation of interactive formal prototypes. Then we present
further ideas for the projection diagram approach and for combining interactive formal
prototypes with other visualization approaches.

Improve the use and creation of interactive formal prototypes. In general we plan to
improve the use and creation of interactive formal prototypes. This especially concerns
the further development of the built-in visual editor (see Section 4.10). Some further
ideas for improvements are:

• Display information about observers and interactive handlers within interactive
formal prototypes.

• Add the execute event handler directive used in the interactive system case studies
(see Section 7.2) as a default feature in BMotionWeb and develop further directives
(e.g. for easily binding relations or sets to HTML tables).

• Add the replay trace feature used in the industrial case studies (see Section 7.3)
as a default feature in BMotionWeb.

Address a wider range of safety-critical systems. BMotionWeb supports the state-
based formal methods Event-B and classical-B and the event-based formal method
CSPM. This supports the creation of interactive formal prototypes for software and
reactive systems (classical-B and Event-B) and for concurrent systems (CSPM). In the
future, we plan to integrate other animation tools with BMotionWeb to address a wider
range of safety-critical systems. First experiments towards supporting the CoreASM
animator [FGG07] have already been made.

133



8. Future Work, Conclusion and Discussion

Lightweight validation of interactive systems. In Chapter 7 we have shown the use
of BMotionWeb for supporting the validation of interactive systems. We also plan to
develop more features for the lightweight validation of interactive systems, such as A/B
testing to compare two variants of a system user interface or device.

Link to requirements. The development of a formal specification is typically based
on a set of requirements. In order to trace back to the affected requirements whenever
incorrect behavior or a problem has been detected in the formal specification it is use-
ful to maintain a traceability between the requirements and the elements in a formal
specification (e.g. invariants, guards or variables). Traceability may also help to identify
the affected elements in the formal specification whenever the original requirements doc-
ument changes. [HJL13] presents an approach for tracing requirements within formal
specifications. We plan to extend this approach to also trace the requirements within
interactive formal prototypes (via the formal specification) and to display the require-
ments in the context of the domain specific visualization. For instance, it might be
interesting to understand why a button which is wired to an Event-B event is disabled
in a specific state (e.g. because a guard is false).

Combine interactive formal prototypes with other visualization approaches. For
future work, we plan to combine interactive formal prototypes with other visualization
approaches. As an example, we plan to combine LTL counterexample visualizations
[Tol11] with interactive formal prototypes. We also plan to enhance the presented trace
diagram visualizations with interactive features. Particularly when visualizing coun-
terexamples as trace diagrams, we plan to add more interactive features inspired by the
FDR3 tool [Gib+14].

Improve projection diagram approach. A good layout for the nodes and the edges
of a projection diagram is crucial for its readability and accessibility [HMM00]. A next
step would be also to adapt the underlying layout algorithm of the projection diagrams
so that the nodes (the equivalence classes) are ordered based on the defined projection
function. This was already done manually in the diagram shown in Fig. 5.10. We ordered
the nodes so that the lower side of the diagram contains the equivalence classes where
the cabin door is closed, and the upper side of the figure contains the equivalence classes
where the cabin door is open.

We also plan to enhance the projection diagram with interactive features. For instance,
it would be desirable to “jump” into an equivalence class and to inspect the individual
states which have been merged into it. This could be in particular useful when taking
a closer look at equivalence classes that have unexpected outgoing edges, e.g. if the
user expected a definite edge, but the equivalence class has a non-definite edge instead.
One could jump into the affected class and inspect the states in which an event is not
enabled.
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Finally, we plan to symbolically construct a projection diagram statically using the
built-in constraint solver in ProB [Leu+14] rather than first having to (exhaustively)
explore the full state space using the model-checking feature in ProB. This is related to
proof-based approaches in [BPS05] and [BL11].

8.2. Conclusion and Discussion

Animation, data visualization, and interactivity are established techniques that can
support a user in accomplishing specific objectives. One the one hand, animation is often
used in the field of formal methods with the objective of supporting the user in validating
formal specifications. On the other hand, data visualization is a well know technique
that supports human understanding by providing pictures or diagrams rather than by a
substantial amount of numerical or textual data. Moreover, interactivity supports data
visualization since users can interact with the visualization, e.g. by changing parameters
and seeing the effect. At the beginning of this thesis we defined the following research
question:

“How can animation benefit from interactive data visualization to support the val-
idation process of formal specifications and to make animation techniques more ac-
cessible to non-formal method experts?”

In order to answer this question, the starting point of this thesis was to examine the
state-of-the-art research for existing visualization techniques in the field of formal meth-
ods. Based on the result of the state-of-the-art research and the problems and limitations
that were identified, we presented a new graphical environment called BMotionWebfor
the rapid creation of interactive formal prototypes. An interactive formal prototype
combines animation with interactive domain specific visualization. We described the
concept of BMotionWeb and gave a detailed description of its implementation and fea-
tures for the state-based formal methods classical-B and Event-B and the process based
formal method CSPM. To illustrate the tool, we integrated it with the ProB animator.
However, BMotionWeb can also be integrated with other animation engines. BMotion-
Web uses web-technologies for developing its frontend and the visualization template
of an interactive formal prototype. This design decision has several advantages. Cre-
ating an interactive formal prototype is flexible since external resources, such as SVG
images and third party JavaScript libraries, can be reused. The JavaScript language
enables the developer to create complex and generic interactive formal prototypes (e.g.
with numerous or repeated graphical elements). Finally, an interactive formal prototype
can be deployed online and thus be accessed from other devices, such as tablets and
mobile phones, and be shared with other stakeholders (e.g. during an online project
meeting).

We also presented a visualization approach based on the state space of a formal spec-
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ification called projection diagrams with the main goal of considerably reducing the
complexity of state space visualizations and supporting human analysis of the system
by highlighting relevant aspects of a formal specification. Although the produced pro-
jection diagrams may not be equivalent to the original state space (as far as the sequence
of the events are concerned), the projection may reduce the size of the state space while
still preserving beneficial information. In particular, the categorization of the edges and
equivalence classes proved to be very useful to support the inspection of the diagram
and to understand useful properties within the respective formal specification.

The approach is also flexible since the user may adjust the underlying projection function.
The possibility of defining an individual projection function enables the user to query
the full state space and to obtain only the information that the user is interested in
(comparable with defining queries for a database). Moreover, we believe that inspecting
multiple small projection diagrams (with a manageable number of nodes and transitions)
representing different aspects of the specification can be more helpful than inspecting
one big state space visualization. One reason for this is that the user can concentrate on
a specific aspect of the specification (e.g. on certain variables) or on checking a specific
behavior while hiding non-relevant information from the diagram. We also believe that
a projection diagram may help to verify properties of the specification which are hard
to express as invariants.

In addition, we showed how projection diagrams and other state space visualization
approaches such as trace diagrams can be combined with interactive formal prototypes.
The direct linking of observers to graphical elements and the strict separation between
query (query the needed state data from the animation) and update (update the graphical
element according to some state data) functions is beneficial for this purpose: we only
need to determine the observers of the graphical elements to be combined and feed
the animation data coming from other tools or approaches (e.g. the state data of a
node in a trace diagram or the projection function value of an equivalence class in
the projection diagram) into the update function of the observers. We believe that
combining a projection or trace diagram with an interactive formal prototype affords
further advantages. For example, the graphical representation of a specific aspect or
behavior of the specification can be helpful for discussing the specification with non-
formal method experts and for the further development of the specification. A non-
formal method expert can even use the trace and projection diagram features without any
knowledge about the notation used in formal methods since the diagrams are produced
based on graphical elements.

Finally, we demonstrated the application of BMotionWeb based on various case studies,
including interactive systems, industrial case studies and case studies for teaching formal
methods. A crucial additional question had come up while we have been working on
BMotionWeb and the different case studies: “How can we guarantee that an interactive
formal prototype reflects the formal specification correctly?”.

In general, an interactive formal prototype is developed by a human, and humans can
make mistakes. For instance, a developer can create a wrong or misleading visual rep-

136



8.2. Conclusion and Discussion

resentation or hide an issue in a formal specification in the interactive formal prototype
(e.g. faulty behavior). The latter would be a critical mistake since the interactive for-
mal prototype would lead us to believe that the formal specification works as expected
although it contains errors in reality. Moreover, a formal specification typically evolves
in the development process. Changes made in the formal specification may also affect
the interactive formal prototype and it may need to be adapted.

It is hard to guarantee that the developed interactive formal prototype contains no mis-
leading or wrong information and reflects the formal specification correctly. However,
what we can do is to support the development of interactive formal prototypes and min-
imize the mistakes made by humans. As an example, in the course of working on the
industrial applications (see Section 7.3), the projection diagram feature proved to be
helpful for this purpose. In particular, we have used the projection diagram feature to
check if a particular graphical element represents all states of the system properly and
to eliminate undesirable behavior in the interactive formal prototype. We also believe
that the maintenance of a traceability between the interactive formal prototype and the
mathematical elements of a formal specification (e.g. variables or constants) may be
helpful when adapting to changes made in the formal specification. Such a traceability
could also be generated automatically based on the information coming from observers.
For instance, formula observers provide information about which variables, expressions,
or predicates are wired to graphical elements. This information could be used to trace
graphical elements back to the formal specification. We are also able to determine
implicit traces discovered via model element relationships [Jas+10]. This includes ref-
erences to other model elements (e.g. invariants or guards), refinement relationships, or
proof obligations.

In summary, we can conclude that we have achieved the thesis goal. The different exam-
ple applications and the success stories for applying BMotionStudio and BMotionWeb in
industry and for teaching formal methods answered our research question and confirmed
the benefits of using interactive data visualization in combination with animation. After
all, “one picture is worth ten thousand words”.
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A.1. Simple Lift System

A.1.1. classical-B

1 MACHINE Lift

2

3 DEFINITIONS

4 SET_PREF_SHOW_EVENTB_ANY_VALUES==TRUE;

5 ANIMATION_FUNCTION == ({ r,c,i | r : groundf..topf &

6 ((c=0 & i=0) or (c=1 & i=3)) } <+

7 ({ r,c,i | r : groundf..topf & Rconv : request &

8 c=1 & i=4 } \/

9 { r,c,i | r : groundf..topf & Rconv=floor & c=0 &

10 ((door = open & i=1) or (door = closed & i=2)) } ) );

11 ANIMATION_IMG0 == "LiftEmpty.gif";

12 ANIMATION_IMG1 == "LiftOpen.gif";

13 ANIMATION_IMG2 == "LiftClosed.gif";

14 ANIMATION_IMG3 == "CallButtonOff.gif";

15 ANIMATION_IMG4 == "CallButtonOn.gif"

16

17 SETS

18 Move = {up, down, idle}; Door = {open, closed}

19

20 CONSTANTS groundf, topf

21

22 PROPERTIES

23 topf : INTEGER & groundf : INTEGER &

24 groundf = -1 & topf = 1 & groundf < topf

25

26 VARIABLES

27 floor, move, door, request

28

29 INVARIANT

30 floor : groundf..topf & door : Door & move : Move &

31 (move : {up,down} => door = closed) & request : POW(groundf .. topf)

32

33 INITIALISATION floor := 0 || move := idle || door := closed || request := {}

34
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35 OPERATIONS

36

37 move_up =

38 PRE floor < topf & move = up

39 THEN floor := floor + 1

40 END;

41

42 move_down =

43 PRE floor > groundf & move = down

44 THEN floor := floor - 1

45 END;

46

47 switch_move_up =

48 PRE move = idle & door = closed & floor < topf & floor /: request

49 THEN move := up

50 END;

51

52 switch_move_down =

53 PRE move = idle & door = closed & floor > groundf & floor /: request

54 THEN move := down

55 END;

56

57 switch_move_stop =

58 PRE move = up or move = down

59 THEN move := idle

60 END;

61

62 door_open =

63 PRE move = idle & door = closed & floor : request

64 THEN door := open

65 END;

66

67 door_close =

68 PRE move = idle & door = open

69 THEN door := closed || request := request \ {floor}

70 END;

71

72 send_request =

73 ANY f

74 WHERE f : groundf .. topf & f /: request

75 THEN request := request \/ {f}

76 END

77

78 END

A.1.2. Event-B

Specification
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1 context c0

2

3 sets Door

4

5 constants groundf topf open closed

6

7 axioms

8 @axm1 groundf : INT

9 @axm2 topf : INT

10 @axm3 groundf = -1

11 @axm4 topf = 1

12 @axm5 groundf < topf

13 @axm6 partition(Door, {open}, {closed})

14 end

1 context c1 extends c0

2

3 sets Move

4

5 constants up down idle

6

7 axioms

8 @axm1 partition(Move, {up}, {down}, {idle})

9 end

1 machine m0 sees c0

2

3 variables floor door

4

5 invariants

6 @inv1 floor : groundf..topf

7 @inv2 door : Door

8

9 events

10 event INITIALISATION

11 then

12 @act1 floor := 0

13 @act2 door := closed

14 end

15

16 event move_up

17 where

18 @grd1 floor < topf

19 then

20 @act1 floor := floor + 1

21 end

22

23 event move_down

24 where

25 @grd1 floor > groundf
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26 then

27 @act1 floor := floor - 1

28 end

29

30 event door_open

31 where

32 @grd1 door = closed

33 then

34 @act1 door := open

35 end

36

37 event door_close

38 where

39 @grd1 door = open

40 then

41 @act1 door := closed

42 end

43 end

1 machine m1 refines m0 sees c1

2

3 variables floor door move

4

5 invariants

6 @inv1 move : Move

7 @inv2 move : {up,down} => door = closed

8

9 events

10 event INITIALISATION extends INITIALISATION

11 then

12 @act3 move := idle

13 end

14

15 event move_up extends move_up

16 where

17 @grd2 move = up

18 end

19

20 event move_down extends move_down

21 where

22 @grd2 move = down

23 end

24

25 event door_open extends door_open

26 where

27 @grd2 move = idle

28 end

29

30 event door_close extends door_close

31 where

32 @grd2 move = idle

33 end
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34

35 event switch_move_up

36 where

37 @grd1 move = idle

38 @grd2 door = closed

39 @grd3 floor < topf

40 then

41 @act1 move := up

42 end

43

44 event switch_move_down

45 where

46 @grd1 move = idle

47 @grd2 door = closed

48 @grd3 floor > groundf

49 then

50 @act1 move := down

51 end

52

53 event switch_move_stop

54 then

55 @act1 move := idle

56 end

57 end

1 machine m2 refines m1 sees c1

2

3 variables floor door move request

4

5 invariants

6 @inv1 request : POW(groundf..topf)

7

8 events

9 event INITIALISATION extends INITIALISATION

10 then

11 @act4 request := {}

12 end

13

14 event move_up extends move_up

15 end

16

17 event move_down extends move_down

18 end

19

20 event door_open extends door_open

21 where

22 @grd3 floor : request

23 end

24

25 event door_close extends door_close

26 then

27 @act2 request := request \ {floor}
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28 end

29

30 event switch_move_up extends switch_move_up

31 where

32 @grd4 floor /: request

33 end

34

35 event switch_move_down extends switch_move_down

36 where

37 @grd4 floor /: request

38 end

39

40 event switch_move_stop extends switch_move_stop

41 end

42

43 event send_request

44 any f

45 where

46 @grd1 f : groundf..topf

47 @grd2 f /: request

48 then

49 @act1 request := request \/ {f}

50 end

51 end

JeB Graphical Visualization (HTML5 / JavaScript)

1 jeb.animator.init = function() {

2

3 $anim.canvas.width = 500;

4 $anim.canvas.height = 650;

5 $anim.canvas.style.display = ’’;

6

7 background.src = ’images/background.jpg’;

8

9 background.onload = function() {

10

11 doorOpen.src = ’images/door_open.jpg’;

12 doorClosed.src = ’images/door_active.jpg’;

13 requestButtonNotPressed.src = ’images/call_button.gif’;

14 requestButtonPressed.src = ’images/call_button_pressed.gif’;

15

16 $anim.drawImage(background, 0, 0);

17

18 // Draw initial state of door

19 doorClosed.onload = function() {

20 $anim.drawImage(doorClosed, 192, 228);

21 };

22

23 // Draw initial state of request buttons
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24 requestButtonNotPressed.onload = function() {

25 $anim.drawImage(requestButtonNotPressed, 128, 95); // 1

26 $anim.drawImage(requestButtonNotPressed, 128, 314); // E

27 $anim.drawImage(requestButtonNotPressed, 128, 527); // U1

28 };

29

30 };

31

32 };

33

34 jeb.animator.draw = function() {

35

36 var floor = $var.floor.value;

37 var door = $var.door.value;

38 var request = $var.request.value;

39

40 // Clear canvas

41 $anim.clearRect(0, 0, $anim.canvas.width, $anim.canvas.height);

42

43 // Redraw background

44 $anim.drawImage(background, 0, 0);

45

46 // Determine whether the door is

47 // closed or open in the current state

48 var newDoor;

49 if (door === ’open’) {

50 newDoor = doorOpen;

51 } else {

52 newDoor = doorClosed;

53 }

54

55 // Draw lift cabin state (position and door)

56 if (floor.equal(BigInteger(1))) {

57 $anim.drawImage(newDoor, 192, 12);

58 } else if (floor.equal(BigInteger(0))) {

59 $anim.drawImage(newDoor, 192, 228);

60 } else if (floor.equal(BigInteger(-1))) {

61 $anim.drawImage(newDoor, 192, 444);

62 }

63

64 $anim.drawImage(requestButtonNotPressed, 128, 95); // 1

65 $anim.drawImage(requestButtonNotPressed, 128, 314); // E

66 $anim.drawImage(requestButtonNotPressed, 128, 527); // U1

67

68 // Draw request button states

69 for (i = 0; i < request.length; i++) {

70 if (request[i].equal(BigInteger(1))) {

71 $anim.drawImage(requestButtonPressed, 128, 95); // 1

72 } else if (request[i].equal(BigInteger(0))) {

73 $anim.drawImage(requestButtonPressed, 128, 314); // E

74 } else if (request[i].equal(BigInteger(-1))) {

75 $anim.drawImage(requestButtonPressed, 128, 527); // U1
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76 }

77 }

78

79 }

A.1.3. VDM-SL

1 module Lift

2

3 imports from gui_Graphics all

4

5 exports all

6

7 definitions

8

9 values

10 topf : int = 1;

11 groundf : int = -1;

12

13 types

14 Door = <open> | <closed>;

15 Move = <up> | <down> | <idle>;

16 floors = int

17 inv floors == floors >= groundf and floors <= topf

18

19 state lift of

20 position : floors

21 door : Door

22 move : Move

23 request : set of floors

24 inv mk_lift(position,door,move,request) ==

25 move in set {<up>,<down>} => door = <closed> and

26 position in set {groundf, ..., topf}

27 init

28 s == s = mk_lift(0,<closed>,<idle>,{})

29 end

30

31 operations

32

33 initialize: () ==> ()

34 initialize() ==

35 gui_Graphics‘initialize();

36

37 move_up: () ==> ()

38 move_up() ==

39 (position := position + 1;

40 gui_Graphics‘updateLiftPosition(position))

41 pre position < topf and move = <up>;

42
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43 move_down: () ==> ()

44 move_down() ==

45 (position := position - 1;

46 gui_Graphics‘updateLiftPosition(position))

47 pre position > groundf and move = <down>;

48

49 switch_move_up() ==

50 move := <up>

51 pre move = <idle> and door = <closed> and position < topf and position not in

set request

52 post move = <up>;

53

54 switch_move_down() ==

55 move := <down>

56 pre move = <idle> and door = <closed> and position > groundf and position not

in set request

57 post move = <down>;

58

59 switch_move_stop() ==

60 move := <idle>

61 pre move = <up> or move = <down>

62 post move = <idle>;

63

64 door_open() ==

65 (door := <open>;

66 request := request \ {position};

67 gui_Graphics‘updateDoorState(door = <open>);

68 gui_Graphics‘removeRequestButton(position))

69 pre move = <idle> and door = <closed> and position in set request

70 post door = <open>;

71

72 door_close() ==

73 (door := <closed>;

74 gui_Graphics‘updateDoorState(door = <open>))

75 pre move = <idle> and door = <open>

76 post door = <closed>;

77

78 send_request: int ==> ()

79 send_request(f) ==

80 (request := request union {f};

81 gui_Graphics‘addRequestButton(f))

82 pre f not in set request;

83

84 end Lift

1 module gui_Graphics

2

3 imports from Lift all

4

5 exports all

6

7 definitions
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8

9 operations

10

11 initialize: () ==> ()

12 initialize() == is not yet specified;

13

14 updateLiftPosition: int ==> ()

15 updateLiftPosition(newLiftPosition) == is not yet specified;

16

17 updateDoorState: bool ==> ()

18 updateDoorState(newDoorState) == is not yet specified;

19

20 addRequestButton: int ==> ()

21 addRequestButton(requestButton) == is not yet specified;

22

23 removeRequestButton: int ==> ()

24 removeRequestButton(requestButton) == is not yet specified;

25

26 end gui_Graphics
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B
Case Studies, Examples and

Applications

B.1. Overview of Examples and Applications

The following two tables give an overview of the case studies and applications imple-
mented with BMotionWeb (Appendix B.1.1) and BMotionStudio (Appendix B.1.2). The
tables show the name and a short description of the case study, the formalism used for
the corresponding animated formal specification, and if it is available in the examples
GitHub repository.
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B.1.1. BMotionWeb Case Studies

Name Formalism GitHub* Note

Landing Gear System Event-B � Challenge from ABZ’14 and described in
[Han+14; Lad+15] and in this thesis (see Sec-
tion 7.3.1).

Hemodialysis Machine Event-B � Challenge from ABZ’16 and described in
[Hoa+16] and in this thesis (see Section 7.3.2).

Advance Smart Grid Event-B � Developed during the Advance FP7 Project and
described in [BK14].

Advance Interlocking
System

Event-B � Developed during the Advance FP7 Project and
described in [MKS14].

Crossing Bridge Event-B � -

Cruise Control Device Event-B � Described in [LL16] and this thesis (see Sec-
tion 7.2.2).

Simple Lift System Event-B � Described in this thesis (see Appendix A.1).

Pacman Event-B � Developed by the student Christoph Heinzen at
the University of Düsseldorf.

Lightbot Event-B � Used as a graduation project and for teaching in a
formal methods course at the university of Düssel-
dorf.

Route Reservation Event-B � Dominik Hansen used BMotionWeb as part of
his research for creating a graphical simulation of
train movement and route reservation on a rail-
way topology.

Phonebook Application classical-B � Described in [LL16] and this thesis (see Sec-
tion 7.2.1).

Frog Puzzle classical-B � -

Chess Engine classical-B � Developed by the student Philip Hoefges at the
University of Düsseldorf. Described in [Hoe16].

Five Philosophers
Problem

CSPM � -

Bully Algorithm CSPM �
Described in [LDL14].

Level Crossing Gate CSPM �

*The GitHub Case Study repository is available at

https://github.com/ladenberger/bmotion-prob-examples.

150



B.1. Overview of Examples and Applications

B.1.2. BMotionStudio Case Studies

Name GitHub* Note

Location Access Con-
troller

� Case Study from [Abr10]. Developed by Ivaylo Dobrikov for a
course at the University of Düsseldorf.

Interlocking � Case Study from [Abr10]. Described in [Lad10] and used for
teaching formal methods at the University of Düsseldorf.

Interlocking � Case Study from the book [Abr10]. Used for teaching formal
methods at the University of Düsseldorf.

Mechanical Press � Case Study from the book [Abr10]. Described in [Lad10].

Config Chooser � -

Farmer Puzzle � -

Hanoi � -

Simple Lift System � Described in [LBL09] and [Lad09].

Poker � Developed by the student Ivan Merlin at the University of
Düsseldorf.

Postal Puzzle � -

8 Puzzle Game � Described in [Lad09].

Rush Hour � -

Russian Postal � -

S21 � Visualization of the German Stuttgart 21 project. Developed
by Harald Wiegard at the University of Düsseldorf.

SET � -

Waterboiler � -

LACE � The authors in [Tik+13] and [Bou13] use BMotionStudio to
visualize a LACE specification, a DSL developed and used
within ASML (http://www.asml.com) for controlling lithog-
raphy machines.

Run-Time Manage-
ment

� The authors in [FSB14] use BMotionStudio as a part of a pro-
cess for development of a run-time management system.

Public Engagement � Developed by Dana Dghaym, Asieh Salehi, and Colin Snook for
the annual “Science Day” in Southampton for public engage-
ment. More information available at http://wiki.event-b.
org/index.php/Rodin_Workshop_2016.

Railground � Developed by Klaus Reichl and Thomas Fischer for demon-
strating the use of Rodin in the field of railway system engineer-
ing. Available at https://github.com/klar42/railground

and described in [RFT16].

*The GitHub Case Study repository is available at

https://github.com/ladenberger/bmotion-prob-examples.
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B.2. Simple Lift System Interactive Formal
Prototype

This section presents the interactive formal prototype of a simple lift system. The lift
system allows movement of a single lift cabin between a finite number of floors and the
opening and closing of the lift cabin door. The user can request the lift on a specific
floor by pressing a request button that is installed on each floor. Appendix B.2 presents
the visualization template of the simple lift system. The Event-B specification of the
simple lift system is shown in Appendix A.1.2.

Visualization Template

1 {

2 "id": "lift",

3 "name": "Simple lift system",

4 "template": "lift.html",

5 "model": "model/m2.bcm",

6 "autoOpen": [

7 "CurrentTrace",

8 "Events"

9 ]

10 }

Listing B.30: Simple lift system manifest (bmotion.json)

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Simple lift system</title>

5 </head>

6 <body>

7 <script src="bms.api.js"></script>

8 <script src="lift.js"></script>

9 <div bms-svg="lift.svg"></div>

10 </body>

11 </html>

Listing B.31: Simple lift system HTML template (lift.html)

1 <svg width="220" height="340"

2 xmlns="http://www.w3.org/2000/svg">

3 <g id="lift_system">

4 <g id="lift">

5 <rect fill="white" stroke="black"

6 height="330" width="100" y="5" x="50"/>

7 <rect id="door" fill="gray" stroke="black"

8 height="80" width="70" y="245" x="65" />
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9 <text fill="black" y="58" x="165">Floor 1</text>

10 <text fill="black" y="182" x="165">Floor 0</text>

11 <text fill="black" y="290" x="165">Floor -1</text>

12 </g>

13 <g id="request_buttons">

14 <ellipse id="bt_1" data-floor="1"

15 ry="11" rx="11" cy="54" cx="22" fill="gray"/>

16 <ellipse id="bt_0" data-floor="0"

17 ry="11" rx="11" cy="177" cx="22" fill="gray"/>

18 <ellipse id="bt_-1" data-floor="-1"

19 ry="11" rx="11" cy="285" cx="22" fill="gray"/>

20 </g>

21 </g>

22 </svg>

Listing B.32: Simple lift system SVG visualization (lift.svg)

1 bms.observe("formula", {

2 selector: "#lift",

3 formulas: ["floor"],

4 translate: true,

5 trigger: function(origin, values) {

6 var door = origin.find("#door");

7 switch (values[0]) {

8 case 1:

9 door.attr("y", "20");

10 break

11 case 0:

12 door.attr("y", "140");

13 break

14 case -1:

15 door.attr("y", "250");

16 break

17 }

18

19 }

20 });

21

22 bms.observe("formula", {

23 selector: "#door",

24 formulas: ["door"],

25 trigger: function(origin, values) {

26 if (values[0] === ’open’) {

27 origin.attr("fill", "white");

28 } else if (values[0] === ’closed’) {

29 origin.attr("fill", "gray");

30 }

31 }

32 });

33

34 bms.observe("set", {

35 selector: "#request_buttons",
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36 set: "request",

37 convert: function(element) {

38 return "#bt_" + element;

39 },

40 actions: [

41 { attr: "fill", value: "green" }

42 ]

43 });

44

45 bms.handler("executeEvent", {

46 selector: "#door",

47 events: [

48 { name: "door_open" },

49 { name: "door_close" }

50 ]

51 });

52

53 bms.handler("executeEvent", {

54 selector: "ellipse[data-floor]",

55 events: [{

56 name: "send_request",

57 predicate: function(origin) {

58 return "f=" + origin.attr("data-floor")

59 }

60 }],

61 label: function(origin, event) {

62 return "Push button " + event.predicate;

63 }

64 });

Listing B.33: Simple lift system observers and event handlers (lift.js)
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1 package de.bmotion.core;

2

3 import java.util.Map;

4

5 import groovy.lang.Closure;

6

7 public interface IBMotionApi {

8 /**

9 *

10 * Logs the given message on the client side. An arbitrary object can be

11 * passed as a message with the assumption that the object is serializable.

12 *

13 * @param message

14 * An arbitrary serializable message object

15 */

16 public void log(Object message);

17

18 /**

19 *

20 * Executes an event for the given name.

21 *

22 * @param name

23 * The name of the event that should be executed

24 * @return The return value of the event (e.g. classical-B operations may

25 * have return values)

26 * @throws BMotionException

27 */

28 public Object executeEvent(String name) throws BMotionException;

29

30 /**

31 *

32 * Executes an event for the given name and options.

33 *

34 * @param name

35 * The name of the event that should be executed

36 * @param options

37 * The options for the event (e.g. an additional predicate)

38 * @return The return value of the event (e.g. classical-B operations may

39 * have return values)

40 * @throws BMotionException
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41 */

42 public Object executeEvent(String name, Map<String, String> options) throws

BMotionException;

43

44 /**

45 *

46 * Evaluates the given formula in the current state and returns the value.

47 *

48 * @param formula

49 * The formula that should be evaluated in the current state

50 * @return The result of the formula

51 * @throws BMotionException

52 */

53 public Object eval(String formula) throws BMotionException;

54

55 /**

56 *

57 * Evaluates the given formula with options in the current state and returns

58 * the value.

59 *

60 * @param formula

61 * The formula that should be evaluated in the current state

62 * @param options

63 * The options for the evaluation (e.g. translate flag)

64 * @return The result of the formula

65 * @throws BMotionException

66 */

67 public Object eval(String formula, Map<String, Object> options) throws

BMotionException;

68

69 /**

70 *

71 * Registers a method on the server side.

72 *

73 * @param name

74 * The name of the method.

75 * @param func

76 * The functional body of the method as a {@link Closure}

77 */

78 public void registerMethod(String name, Closure<?> func);

79

80 /**

81 *

82 * Calls a registered method on the server side.

83 *

84 * @param name

85 * The name of the method.

86 * @param args

87 * The arguments for the method

88 * @return The return value of the method

89 * @throws BMotionException

90 */
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91 public Object callMethod(String name, Object... args) throws BMotionException;

92

93 /**

94 *

95 * Returns a list of registered server side methods.

96 *

97 * @return A list of registered server side methods

98 */

99 public Map<String, Closure<?>> getMethods();

100

101 /**

102 *

103 * Returns session related data.

104 *

105 * @return Session related data

106 */

107 public Map<String, Object> getSessionData();

108

109 /**

110 *

111 * Returns tool related data.

112 *

113 * @return Tool related data

114 */

115 public Map<String, Object> getToolData();

116

117 }

Listing C.34: BMotionWeb Groovy Scripting API

1 package de.bmotion.prob;

2

3 import de.bmotion.core.IBMotionApi;

4 import de.prob.model.representation.AbstractModel;

5 import de.prob.statespace.AnimationSelector;

6 import de.prob.statespace.Trace;

7

8 public interface IProBVisualizationApi extends IBMotionApi {

9

10 /**

11 *

12 * Returns the ProB representation of the loaded formal specification.

13 *

14 * @return The formal specification as {@link AbstractModel}

15 */

16 public AbstractModel getModel();

17

18 /**

19 *

20 * Returns the current {@link Trace} of the animation.

21 *

22 * @return The current {@link Trace} of the animation
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23 */

24 public Trace getTrace();

25

26 /**

27 *

28 * Returns the {@link AnimationSelector} which is the entry point to the

29 * ProB GUI.

30 *

31 * @return The {@link AnimationSelector} which is the entry point to the

32 * ProB GUI

33 */

34 public AnimationSelector getAnimationSelector();

35

36 }

Listing C.35: BMotionWeb for ProB specific Groovy Scripting API
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D.1. Groovy Script File for for Landing Gear System

1 def replayTrace = [

2 [name: "begin_flying"],

3 [name: "toggle_handle_up"],

4 [name: "con_stimulate_general_valve"],

5 [name: "env_close_analogical_switch"],

6 [name: "evn_open_general_valve"],

7 [name: "con_stimulate_open_door_valve"],

8 [name: "open_valve_door_open"],

9 [name: "env_start_open_door", pred: "gr=front"],

10 [name: "env_open_door_skip", pred: "gr=front"],

11 [name: "env_start_open_door", pred: "gr=right"],

12 [name: "env_open_door_skip", pred: "gr=right"],

13 [name: "env_start_open_door", pred: "gr=left"],

14 [name: "env_open_door_last", pred: "gr=left"],

15 [name: "con_stimulate_retract_gear_valve"],

16 [name: "open_valve_retract_gear"],

17 [name: "env_start_retracting_first", pred: "gr=front"],

18 [name: "env_retract_gear_skip", pred: "gr=front"],

19 [name: "env_start_retracting_first", pred: "gr=right"],

20 [name: "env_retract_gear_skip", pred: "gr=right"],

21 [name: "env_start_retracting_first", pred: "gr=left"],

22 [name: "env_retract_gear_last", pred: "gr=left"],

23 [name: "con_stop_stimulate_retract_gear_valve"],

24 [name: "close_valve_retract_gear"],

25 [name: "con_stop_stimulate_open_door_valve"],

26 [name: "close_valve_door_open"],

27 [name: "con_stimulate_close_door_valve"],

28 [name: "open_valve_door_close"],

29 [name: "env_start_close_door", pred: "gr=front"],

30 [name: "env_close_door_skip", pred: "gr=front"],

31 [name: "env_start_close_door", pred: "gr=right"],

32 [name: "env_close_door_skip", pred: "gr=right"],

33 [name: "env_start_close_door", pred: "gr=left"],

34 [name: "env_close_door", pred: "gr=left"],

35 [name: "con_stop_stimulate_close_door_valve"],

36 [name: "close_valve_door_close"],

37 [name: "con_stop_stimulate_general_valve"],
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38 [name: "evn_close_general_valve"],

39 [name: "env_open_analogical_switch"]

40 ]

41

42 bms.registerMethod("replay", {

43

44 def animationSelector = bms.getAnimationSelector()

45 def currentTrace = bms.getTrace()

46 def trace = currentTrace

47

48 // Go back to root state

49 while(trace.canGoBack()) {

50 trace = trace.back()

51 }

52 animationSelector.traceChange(trace)

53 trace = trace.anyEvent() // setup constants

54 trace = trace.anyEvent() // initialize machine

55 animationSelector.traceChange(trace)

56

57 sleep 1000

58

59 // Replay extension and retraction sequence

60 Thread.start {

61

62 replayTrace.each {

63 trace = trace.execute(it.name, it.pred ?: "TRUE=TRUE");

64 animationSelector.traceChange(trace)

65 sleep 1000

66 }

67

68 }

69

70 });

Listing D.36: Groovy script file for landing gear system (script.groovy)

D.2. Groovy Script File for the HD Machine

1 def replayTrace = [

2 [name: "User_PressesOn"],

3 [name: "CS_LowLevel_StartsTestingCF"],

4 [name: "HDMachine_CFTests"],

5 [name: "CS_LowLevel_CFTestsOK"],

6 [name: "CS_TopLevel_CFTestingSignal2Green", pred: "sgn=CF_TESTING_SIGNAL"],

7 [name: "CS_TopLevel_StartsConnectingConcentrate"],

8 [name: "User_ConnectsConcentrate"],

9 [name: "HDSystem_StartsSettingRP"],

10 [name: "HDSystem_StartsPreparingTS"],

11 [name: "HDSystem_StartsPreparingHP"],

160



D.2. Groovy Script File for the HD Machine

12 [name: "HDSystem_StartsSettingTP"],

13 [name: "HDSystem_StartsRinsingDialyzer"],

14 [name: "HDSystem_StartsConnectingArterially"],

15 [name: "Patient_ConnectsArterially"],

16 [name: "HDSystem_PatientConnecting_StartsBFInitiating"],

17 [name: "HDSystem_StartsConnectingVenously"],

18 [name: "Patient_ConnectsVenously"],

19 [name: "HDSystem_PatientConnecting_RestartsBP"],

20 [name: "CS_LowLevel_PM_ActivatesLimitWindow", pred: "pm=VP & ll=-100 & lh=500"],

21 [name: "CS_LowLevel_BP_On_PatientConnecting_BP_Restarting"],

22 [name: "PM_SetsPressure", pred: "pm=VP & prs=550"],

23 [name: "CS_LowLevel_PM_PatientConnecting_VP_High"],

24 [name: "CS_LowLevel_PM_PatientConnecting_VP_High_Abnormal"],

25 [name: "CS_TopLevel_RaisesAlarm"]

26 ]

27

28 bms.registerMethod("replay", {

29

30 def animationSelector = bms.getAnimationSelector()

31 def currentTrace = bms.getTrace()

32 def trace = currentTrace

33

34 // Go back to root state

35 while(trace.canGoBack()) {

36 trace = trace.back()

37 }

38 animationSelector.traceChange(trace)

39 trace = trace.anyEvent() // setup constants

40 trace = trace.anyEvent() // initialize machine

41 animationSelector.traceChange(trace)

42

43 sleep 1000

44

45 // Replay extension and retraction sequence

46 Thread.start {

47

48 replayTrace.each {

49 trace = trace.execute(it.name, it.pred ?: "TRUE=TRUE");

50 animationSelector.traceChange(trace)

51 sleep 1000

52 }

53

54 }

55

56 });

Listing D.37: Replay trace to validate requirement R5 of the HD machine (script.groovy)
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D.3. Structure of Source Code Repository

Name Repository* Description

BMotionWeb Common Server bmotion General BMotionWeb server module.
Includes the animation engine interface
for integrating other animation engines.

BMotionWeb ProB bmotion-prob ProB specific implementation of anima-
tion engine interface of BMotionWeb.

BMotionWeb Front-end bmotion-frontend General front-end for BMotionWeb. In-
cludes build scripts for desktop applica-
tion and online version of BMotionWeb.

BMotionWeb ProB standalone bmotion-prob-standalone Build scripts for BMotionWeb for ProB
online standalone server.

BMotionWeb ProB examples bmotion-prob-examples Examples repository for BMotionWeb
for ProB.

*URL of the repository: https://github.com/ladenberger/[repository name].
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Havelund. Vol. 8413. Lecture Notes in Computer Science. 2014, pp. 187–201.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and its implemen-
tation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[GS13] Brad Green and Shyam Seshadri. AngularJS. ”O’Reilly Media, Inc.”, 2013.

[Han+14] Dominik Hansen, Lukas Ladenberger, HaraldWiegard, Jens Bendisposto, and Michael
Leuschel. “Validation of the ABZ Landing Gear System using ProB”. In: ABZ 2014:
The Landing Gear Case Study. 2014.

165



Bibliography

[HJL13] Stefan Hallerstede, Michael Jastram, and Lukas Ladenberger. “A Method and Tool
for Tracing Requirements into Specifications”. Science of Computer Programming.
2013.

[HL12] Dominik Hansen and Michael Leuschel. “Translating TLA+ to B for Validation
with ProB”. In: Proceedings iFM’2012. LNCS 7321. Springer, 2012, pp. 24–38.

[HLP13] Stefan Hallerstede, Michael Leuschel, and Daniel Plagge. “Validation of Formal
Models by Refinement Animation”. In: Science of Computer Programming 78.3
(2013), pp. 272–292. issn: 0167-6423.

[HMM00] I. Herman, G. Melancon, and M. S. Marshall. “Graph visualization and navigation
in information visualization: A survey”. In: IEEE Transactions on Visualization
and Computer Graphics 6.1 (Jan. 2000), pp. 24–43. issn: 1077-2626.

[Hoa+16] Thai Son Hoang, Colin Snook, Lukas Ladenberger, and Michael Butler. “Validating
the Requirements and Design of a Hemodialysis Machine Using iUML-B, BMotion
Studio, and Co-Simulation”. In: Abstract State Machines, Alloy, B, TLA, VDM,
and Z: 5th International Conference, ABZ 2016, Linz, Austria, May 23-27, 2016,
Proceedings. Ed. by Michael Butler, Klaus-Dieter Schewe, Atif Mashkoor, and Mik-
los Biro. Cham: Springer International Publishing, 2016, pp. 360–375. isbn: 978-3-
319-33600-8.

[Hoa83] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM 26.1
(1983), pp. 100–106. issn: 0001-0782.

[Hoe16] Philip Hoeges. “A formal-based chess engine for ProB”. Master Thesis. Heinrich-
Heine-University of Düsseldorf, Nov. 2016.

[Hop79] John E Hopcroft. Introduction to automata theory, languages, and computation.
Pearson Education India, 1979.

[IL06] Akram Idani and Yves Ledru. “Dynamic graphical {UML} views from formal B
specifications”. In: Information and Software Technology 48.3 (2006), pp. 154–169.
issn: 0950-5849.

[IS15] Akram Idani and Nicolas Stouls. “When a Formal Model Rhymes with a Graphical
Notation”. English. In: Software Engineering and Formal Methods. Ed. by Carlos
Canal and Akram Idani. Vol. 8938. Lecture Notes in Computer Science. Springer
International Publishing, 2015, pp. 54–68. isbn: 978-3-319-15200-4.

[Jas+10] Michael Jastram, Stefan Hallerstede, Michael Leuschel, and Aryldo G Russo Jr. “An
Approach of Requirements Tracing in Formal Refinement”. In: VSTTE. Vol. 6217.
Lecture Notes in Computer Science. Springer, 2010, pp. 97–111. isbn: 978-3-642-
15056-2.

[Jen14] et al. Jens Bendisposto. ADVANCE Deliverables: D.4.4 Method and tools for sim-
ulation and testing III. 2014.

[Jon86] Cliff B Jones. Systematic software development using VDM. Vol. 2. Prentice-Hall
Englewood Cliffs, NJ, 1986.

[Koe+07] Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet.
Groovy in action. Vol. 1. Manning, 2007.

166



Bibliography

[Lad+15] Lukas Ladenberger, Dominik Hansen, HaraldWiegard, Jens Bendisposto, and Michael
Leuschel. “Validation of the ABZ landing gear system using ProB”. English. In:
International Journal on Software Tools for Technology Transfer (2015), pp. 1–17.
issn: 1433-2779.

[Lad09] Lukas Ladenberger. “A Visual Editor for B-Animations”. Bachelor Thesis. Heinrich-
Heine-University of Düsseldorf, Jan. 2009.

[Lad10] Lukas Ladenberger. “Industrial Applications of BMotionStudio”. Master Thesis.
Heinrich-Heine-University of Düsseldorf, Sept. 2010.

[Lam02] Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[LB03] Michael Leuschel and Michael Butler. “ProB: A Model Checker for B”. In: FME.
Ed. by Araki Keijiro, Stefania Gnesi, and Mandrio Dino. Vol. 2805. Lecture Notes
in Computer Science. Springer-Verlag, 2003, pp. 855–874. isbn: 3-540-40828-2.

[LB08] Michael Leuschel and Michael Butler. “ProB: An Automated Analysis Toolset for
the B Method”. In: STTT 10.2 (2008), pp. 185–203.

[LBL09] Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel. “Visualising Event-B
Models with B-Motion Studio”. In: Formal Methods for Industrial Critical Systems:
14th International Workshop, FMICS 2009, Eindhoven, The Netherlands, Novem-
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[Pel08] Radek Pelánek. “Fighting state space explosion: Review and evaluation”. In: For-
mal Methods for Industrial Critical Systems. Springer, 2008, pp. 37–52.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1981. isbn: 0136619835.

[PL07] Daniel Plagge and Michael Leuschel. “Validating Z Specifications using the ProB
Animator and Model Checker”. In: Integrated Formal Methods. Ed. by J. Davies
and J. Gibbons. Vol. 4591. Lecture Notes in Computer Science. Springer-Verlag,
2007, pp. 480–500.

[PL10] Daniel Plagge and Michael Leuschel. “Seven at one stroke: LTL model checking for
High-level Specifications in B, Z, CSP, and more”. In: Software Tools for Technology
Transfer (STTT) 12.1 (Feb. 2010), pp. 9–21. issn: 1433-2779.

[Pnu77] Amir Pnueli. “The temporal logic of programs”. In: Foundations of Computer Sci-
ence, 1977., 18th Annual Symposium on. IEEE. 1977, pp. 46–57.

[Pre08] A.J. Pretorius. Visualization of State Transition Graphs. 2008.

[QSu] W3Techs.com. Q-Success. Usage of Flash for websites. http://w3techs.com/
technologies/history_overview/client_side_language/all. Accessed: 2015-
12-01.

169



Bibliography

[RFT16] Klaus Reichl, Tomas Fischer, and Peter Tummeltshammer. “Using Formal Methods
for Verification and Validation in Railway”. In: Tests and Proofs: 10th International
Conference, TAP 2016, Held as Part of STAF 2016, Vienna, Austria, July 5-
7, 2016, Proceedings. Ed. by K. Bernhard Aichernig and A. Carlo Furia. Cham:
Springer International Publishing, 2016, pp. 3–13. isbn: 978-3-319-41135-4.

[RHB97] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of Con-
currency. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1997. isbn: 0136744095.

[Ros10] A.W. Roscoe. Understanding Concurrent Systems. 1st. New York, NY, USA: Springer-
Verlag New York, Inc., 2010. isbn: 9781848822573.

[SA11] Bryan Scattergood and Philip Armstrong. CSP-M: A Reference Manual. Jan. 2011.

[SA14] Wen Su and Jean-Raymond Abrial. “Aircraft Landing Gear System: Approaches
with Event-B to the Modeling of an Industrial System”. In: ABZ 2014: The Landing
Gear Case Study. Springer, 2014, pp. 19–35.

[SA92] J Michael Spivey and JR Abrial. The Z notation. Prentice Hall Hemel Hempstead,
1992.

[Sch01] Steve Schneider. The B-method: An introduction. Palgrave Oxford, 2001.

[Ser06] Thierry Servat. “Brama: A new graphic animation tool for B models”. In: B 2007:
Formal Specification and Development in B. Springer, 2006, pp. 274–276.

[Sno14] C. Snook. “iUML-B Statemachines”. In: Proceedings of the Rodin Workshop 2014.
http://eprints.soton.ac.uk/365301/. Toulouse, France, 2014.

[Som06] Ian Sommerville. Software Engineering: (Update) (8th Edition) (International Com-
puter Science). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2006. isbn: 0321313798.

[Spe04a] P. van der Spek. The Overture Project: Towards an open source toolset. Tech. rep.
Delft University of Technology, Jan. 2004, p. 122.

[Spe04b] P. van der Spek. “The Overture Project: Designing an Open Source Tool Set”.
MA thesis. Delft University of Technology, Aug. 2004, p. 239.

[STU] STUPS. ProB Java API. http://www.stups.hhu.de/ProB/ProB_Java_API.
Accessed: 2016-08-04.

[Sun+09a] Jun Sun, Yang Liu, Jin Song Dong, and Chunqing Chen. “Integrating Specification
and Programs for System Modeling and Verification”. In: Proceedings TASE ’09.
Ed. by Wei-Ngan Chin and Shengchao Qin. IEEE Computer Society, 2009, pp. 127–
135.

[Sun+09b] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. “PAT: Towards Flexible Verifi-
cation under Fairness”. In: Computer Aided Verification. Vol. 5643. Lecture Notes
in Computer Science. Springer, 2009, pp. 709–714.

[TG83] Edward R Tufte and PR Graves-Morris. The visual display of quantitative infor-
mation. Vol. 2. 9. Graphics press Cheshire, CT, 1983.

170



Bibliography

[Tik+13] Ulyana Tikhonova, Maarten Manders, Mark van den Brand, Suzana Andova, and
Tom Verhoeff. “Applying Model Transformation and Event-B for Specifying an
Industrial DSL.” In: MoDeVVa@ MoDELS. 2013, pp. 41–50.

[Tol11] Andriy Tolstoy. “Visualisierung von LTL-Gegenbeispielen”. Master Thesis. Heinrich-
Heine-University of Düsseldorf, Dec. 2011.

[Val98] Antti Valmari. “The state explosion problem”. In: Lectures on Petri nets I: Basic
models. Springer, 1998, pp. 429–528.

[Vau01] Steven J. Vaughan-Nichols. Flash is dead. Long live HTML5. http://www.zdnet.
com/article/flash-is-dead-long-live-html5. Accessed: 2015-12-01. Nov.
2001.

[W3C11] W3C SVG Working Group. Scalable Vector Graphics (SVG) 1.1 (Second Edition).
http://www.w3.org/TR/SVG11/. Aug. 2011.

[W3C14] W3C SVG Working Group. HTML5, A vocabulary and associated APIs for HTML
and XHTML. http://www.w3.org/TR/html5/. Oct. 2014.

[War12] Colin Ware. Information visualization: perception for design. Elsevier, 2012.

[Yan13] Faqing Yang. “A Simulation Framework for the Validation of Event-B Specifica-
tions”. PhD thesis. Université de Lorraine, 2013.
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