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I.  Zusammenfassung 

Als Teil des limbischen Systems ist die Amygdala von großer Bedeutung für die Bildung und 

Aufrechterhaltung interpersoneller Beziehungen. Darüber hinaus dient die Amygdala mit ihrer starken 

Konnektivität zu anderen Hirnregionen als Zentrum der emotionalen Verarbeitung und vermittelt darüber 

hinaus kognitive Funktionen (Pessoa, 2008; LeDoux, 2007). Unser Verständnis von der Amygdala wächst 

kontinuierlich, da sowohl Bildgebungs- als auch Verhaltensstudien zunehmend verwendet werden, um die 

Rolle der Amygdala in klinischen Störungen zu untersuchen, und da die pharmakologische Modulation der 

Amygdala häufiger eingesetzt wird. Die Amygdala hat sich primär als Detektor sozialer und emotionaler 

Salienz herausgestellt. 

Das Ziel dieser Dissertation ist zu untersuchen, wie die Amygdala zum einen in ihren sozio-emotionalen 

und zum anderen in ihrer nicht sozio-emotionalen Funktionen beeinflusst werden kann. Zuerst werden in 

einem Literaturreview die Aktivierungsmuster der Amygdala nach sozialen und nichtsozialen 

chemosensorischen Stimuli untersucht (Patin & Pause, 2015). Anschließend wird eine Reihe von Studien 

vorgestellt, in denen verschiedene sozio-emotionale und nicht sozio-emotionale Funktionen untersucht 

werden, inklusive Studien mit chemischer Modulation (Eckstein et al., 2015a; Onur et al., 2012), die eine 

kurzfristige, externe Modulation darstellen, und Läsionsstudien (Bach et al., 2011; Talmi et al., 2010), die 

eine langfristige, interne Modulation darstellen.  

Die Publikationen zeigen, dass die Amygdala auf sozial und emotional relevante chemosensorische Stimuli 

unterschiedlich reagiert; die linke Amygdala häufiger auf sowohl angenehme, nicht soziale als auch soziale 

Stimuli und die rechte Amygdala häufiger auf unangenehme, nichtsoziale Stimuli (Patin & Pause, 2015).  

Wenn man die Wirkung kurzfristiger chemischer Modulation untersucht, zeigen Probanden 

Verhaltensdefizite und neurale Veränderungen (Eckstein et al., 2015; Onur et al., 2012), was darauf 

hinweist, dass ihre sozio-emotionale Rolle nach einer kurzfristigen, plötzlichen Funktionsblockade nicht 

kompensiert werden kann. Auf der anderen Seite kann jedoch eine langfristige Amygdala-Dysfunktion 

aufgrund kongenitaler, Amygdala-selektiver Läsionen vor allem in einem emotionalen Kontext (Bach et 

al., 2011), aber auch zum größten Teil in einer nicht emotionalen Situation (Talmi et al., 2010) kompensiert 

werden. 

Insgesamt weisen die Ergebnisse darauf hin, dass die Amygdala eine komplexe Region darstellt, die die 

Fähigkeit besitzt, Stimuli nach der sozialen und emotionalen Relevanz zu durchsieben und differenzieren. 

Darüber hinaus scheint die bedeutsame Rolle der Amygdala in sozio-emotionaler Verarbeitung so groß  zu 
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sein, dass eine sofortige Kompensation im Fall einer fehlenden Aktivität unmöglich ist. Auf der anderen 

Seite ist die Amygdala wichtig genug, dass sich langfristige Kompensationsmechanismen schließlich 

bilden.   
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II. Abstract  

The amygdala, as part of the limbic system, provides a foundation for interpersonal relationships and serves 

as an emotional processing center through its rich connectivity to other brain regions, as well as allocates 

resources for certain cognitive functions (Pessoa, 2008; LeDoux, 2007). Our understanding of the amygdala 

is continuously growing, as both imaging and behavioral studies have increasingly been used determine its 

role in clinical disorders, and pharmacological modulation of amygdala function has become more 

common. The amygdala has emerged primarily as a detector of social and emotional salience, and social-

emotional paradigms have dominated recent years of the literature.  

The aim of this dissertation is to explore how the amygdala can be influenced in its social-emotional vs the 

nonsocial functions. To do this, an initial literature review illustrates the patterns of amygdala activation 

following both social and nonsocial chemosensory stimuli (Patin & Pause, 2015). Following this, a series 

of studies is presented examining different social-emotional and nonsocial-emotional functions, including 

both chemical modulation studies (Eckstein et al., 2016; Onur et al., 2012), representing a short-term, 

external modulation, and lesion studies (Bach et al., 2011; Talmi et al., 2010), which represent a long-term, 

internal modulation.  

The publications show that the amygdala responds differently to social and emotionally valenced 

chemosensory stimuli, specifically that the left amygdala responds more frequently to pleasant nonsocial 

and social stimuli and the right more frequently to unpleasant, nonsocial stimuli (Patin & Pause, 2015). 

When the effect of chemical modulation on social paradigms is examined, the amygdala shows behavioral 

deficits and neural changes (Eckstein et al., 2016; Onur et al., 2012), indicating that its social-emotional 

role cannot be compensated for following a short-term, immediate block of function. On the other hand, 

long-term amygdala dysfunction following congenital, amygdala-selective lesions, can be compensated for, 

especially in an emotional context (Bach et al., 2011) but also to a great extent in a non-emotional setting 

(Talmi et al., 2010).  

Overall, the results suggest that the amygdala represents a complex region with the ability to sift through 

and differentiate types of stimuli according to social and emotional relevance, but also that the vital role the 

amygdala plays in social-emotional processing is both large enough to make immediate compensation 

impossible in the event of its absence, but important enough that long-term mechanisms of compensation 

eventually form.  
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III. Theoretical and empirical background 

III. 1. The amygdala 

A focal point in research on social-emotional processing, the amygdala has transitioned from its image of 

a homogenous region in the basal ganglion to a conglomerate of integrated nuclei, fibrously and 

chemoarchitectonically linked to form the amygdaloid complex (Brockhaus, 1938, 1940). Nuclei and 

subnuclei work together in various constellations (LeDoux, 2007) to process emotional stimuli and 

influence other cognitive mechanisms (Pessoa, 2010). The amygdala’s connections, for instance, first to 

the basal forebrain and on to the cortical mantle, and second to the visual cortex, provide the amygdala with 

a basis for modulating cognitive processes such as attention, value representation, and decision-making 

(Pessoa, 2010). Currently, many authors divide the amygdala into three categories: the superficial 

(corticoid) amygdaloid nuclei, the centromedial group, and the laterobasal complex (Heimer et al., 1999; 

Amunts et al., 2005).  

The ability of the various amygdalar subregions to take on different roles in emotional processing is a result 

of the differential distribution of receptors for several neurochemical pathways, including but not limited 

to the dopaminergic, glutamatergic, and serotonergic pathways, as well as for hormonal pathways such as 

glucocorticoid and estrogen hormones, and neuropeptide pathways, for example oxytocin (OT), 

vasopressin, and neuropeptide Y (LeDoux, 2007).  For the most part, the amygdala is activated by salient, 

relevant stimuli, and thus controlled by inhibitory mechanisms following its initial excitatory response 

(LeDoux, 2007).  

A comprehensive quantitative analysis by Young and colleagues shows a remarkably large number of 

connections to many cortical areas (Young et al., 1994). Other authors have suggested that this may be the 

basis of the amygdala’s ability to integrate and modulate various cognitive and emotional processes (Pessoa, 

2008; see also Barbas et al., 1995; Swanson et al., 2003). These processes form a network of emotional 

behavior, including reactions to fear or reward, as well as motivation (LeDoux, 2007). Cognitive functions 

such as perception, attention, memory, declarative learning (Swanson & Petrovich, 1998; LeDoux, 2007; 

Aggleton, 2000), value representation, and decision-making (Pessoa, 2010) are also modulated via the 

amygdala. Furthermore, the amygdala has been implicated in more primal, social emotions relating to 

aggression, and maternal, sexual and ingestive behaviors (LeDoux, 2007).  
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III. 2. Chemosensory stimulation of the amygdala  

As part of the primary olfactory cortex (POC), the amygdala receives direct olfactory and chemosensory 

input. As opposed to all other sensory modalities, chemosensation is not filtered prior to its arrival in the 

amygdala by the thalamus (Gottfried et al., 2006). This could be a main reason for why olfactory and 

gustatory stimuli most strongly invoke an amygdala response compared to other modalities (Costafreda et 

al., 2008) and why neocortical processing of chemosensory stimuli takes precedence over other emotional 

stimuli (Adolph & Pause, 2012). In accordance with the amygdala’s position as part of the POC, abnormal 

chemosensory processing has been found in various pathologies in which the amygdala plays an important 

role, such as major depressive disorder (Pause et al., 2001), schizophrenia (Kohler et al., 2001; Moberg et 

al., 1999), and epilepsy (Kohler et al., 2001). 

Following inhalation of a stimulus, the fila olfactoria (receptor cell axons, cranial nerve I) transmit the 

signal to the olfactory bulb and eventually, following a process of signal magnification (Adam & Mizrahi, 

2010; Firestein, 2001; Su et al., 2009; Zou et al., 2009), on to the olfactory tract and the rest of the POC 

(Cleland & Linster, 2003), including the anterior cortical nucleus of the amygdala, the anterior olfactory 

nucleus, olfactory tuberculum, piriform cortex (PC), periamygdaloid cortex on the medial surface of the 

amygdala, and entorhinal cortex (EC) (Price, 2003; Wright, 1997). From there, signals are transmitted to 

the secondary olfactory cortex, namely the hippocampus from the EC; the orbitofrontal cortex (OFC), 

insular cortex, and thalamus from the PC; and OFC and hypothalamus from the amygdala (Carmichael et 

al., 1994; Cleland & Linster, 2003; Gottfried, 2006; Wilson & Sullivan, 2011). 

Most of the POC is made up of three-layer paleocortex (Rubinstein et al., 1999), representing its role in one 

of the oldest regions of the brain; as the amygdala’s volume increased throughout evolution, so did its role 

in olfactory processing (Barton & Aggleton, 2000; Gottfried, 2006). The route of transmission described 

above contrives the main olfactory system (Keller et al., 2009). Lesser understood is the route taken by 

social chemosensory stimuli, which in recent years has been associated with trace amine-associated 

receptors (TAARs) in the olfactory epithelium (Carnicelli et al., 2010; Horowitz et al., 2014; Liberles, 

2009). In mice, amines released by predators evoke avoidance behavior (Dewan et al., 2013; Liberles, 2015; 

Liberles & Buck, 2006), indicating a crucial role for trace amines and the TAAR system in social judgments.  
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III. 3. The amygdala’s evaluation of social-emotional stimuli 

From almost the beginning of functional magnetic resonance imaging (fMRI) research, the amygdala has 

been one of the most examined regions for social and emotional processing. Emotional stimuli have been 

found to consistently activate the amygdala (Alpers et al. 2009; Schienle et al. 2007; Billot et al. 2017; Patin 

& Pause 2015). More recent findings show that the amygdala also responds to specifically social stimuli, 

as well (Adolphs, 2003; Patin & Pause, 2015). The newest studies have begun examining the intersection 

of these two realms, i.e. the social-emotional function of the amygdala. Initial studies have found that the 

amygdala reacts to neutral faces (Breiter et al., 1996), but also plays a role in low-level processing of the 

emotional aspect of faces, for instance through facial expression (Breiter et al., 1996; Critchley et al., 2000; 

Hariri et al., 2000) or by using faces with an emotional attachment to the participant (Seeck et al., 1993). 

Later findings have expanded the social-emotional spectrum to include functions from fear conditioning 

(LaBar et al., 1998) and emotional learning (Morris et al., 1998), to maternal and sexual behaviors (LeDoux, 

2007).  

In recent literature, the term social cognition has gained increasing popularity when describing the cognitive 

processing of emotions, even if the term itself is relatively difficult to precisely define (Adolphs, 2003). 

Functions described above, such as emotion recognition (Elfenbein & Ambady, 2002) or theory of mind, 

can be included in the concept of social cognition, but it can also be extended to encompass related areas, 

such as emotional empathy, the ability to infer feelings in another, cooperation, trust, social feedback-based 

learning (Patin & Hurlemann, 2015), and the ability to reciprocate social signals (Roepke et al., 2013). 

Findings from single cell studies have shown that the amygdala plays a vital role in emotion judgment 

(Wang et al., 2014), and even that it preferentially reacts to animals over humans (Mormann et al., 2011). 

The higher level functions comprising social cognition are based in a diverse neural network, in which the 

amygdala (Adolphs, 2003; Haxby, 2000; Tudusciuc & Adolphs, 2013) works together with the prefrontal 

cortex (PFC), cingulate gyrus, fusiform gyrus, insula, somatosensory cortex, superior temporal sulcus, and 

supramarginal gyrus (Tudusciuc & Adolphs, 2013). Specific functions, such as static versus dynamic faces, 

are taken over by the fusiform gyrus and fusiform face area as well as the superior temporal sulcus, 

respectively (Adolphs, 2003; Haxby, 2000).  
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III. 4. Urbach-Wiethe Syndrome and its influence on amygdala function 

Danial Tranel, in an interview with S.M., a patient with Urbach-Wiethe disease.: Tell me what fear is. 

S.M.: Well, that's what I'm trying to - to be honest, I truly have no clue. 

-- Excerpt from an interview presented on National Public Radio’s 

Invisibilia (Spiegel & Miller, 2015) 

 

Fig 1: A cranial computer tomography scan of UW patients A.M. and B.G. shows bilateral calcification 

lesions located in the bilateral amygdala (Hurlemann et al., 2010a) 

 

Urbach-Wiethe syndrome, otherwise known as lipoid proteinosis, is a rare autosomal recessive disorder; 

roughly 300 cases have been identified worldwide (Cordoro et al., 2011) since it was first introduced in 

1929 by Erich Urbach and Camillo Wiethe (Urbach & Wiethe, 1929). The illness is characterized by 

cutaneous, mucosal, and visceral deposits of periodic acid-Schiff-positive hyaline (glycoprotein) material 

(Cordoro et al., 2011; Hamada, 2002), and roughly 50-75% of reported cases demonstrate selective bilateral 

amygdala calcification (Appenzeller et al., 2006; Hurlemann et al., 2007). Whether these deposits are a 
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primary or secondary phenomenon is unknown (Cordoro et al., 2011). Because the surrounding regions, 

including the hippocampus, remain intact (Hurlemann et al., 2007), the site of the lesions has made UW an 

advantageous basis for researching the effect of the amygdala on cognitive and emotional processes. 

Whereas in pharmacological studies a single target receptor or neurochemical pathway is chosen, in the 

case of UW, the entire amygdala is affected regardless of receptor, while other neural regions remain 

undamaged. 

Early research described both the physical descriptions of the calcifications as well the neurophysiological 

symptoms (see for example Hofer et al., 1974; Wedrychowicz & Starzycki, 1978; Meenan et al., 1978). 

The literature evolved to show an increased focus on the neuropsychological and social-emotional 

consequences of the disease, specifically the absence of a fully functional fear center. Tranel and Hyman 

first focused on neuropsychological correlates and emphasized the damage to the amygdala over other 

physiological changes (Tranel & Hyman, 1990).  

This opened up an exploration of the amygdala’s social and emotional functions, and authors reported 

impaired emotional memory (Markowitsch et al., 1994), recognition of fearful faces, reduced anxiety in 

social contexts, and an impaired ability to acquire a healthy conditioned fear response (Adolphs et al., 

1994, 1998, 2005). In a study including one of the largest participant groups of UW patients, Siebert and 

colleagues found that 10 UW patients showed impaired emotion recognition in an odor-figure association 

task and an emotional memory task, while they showed no impairments in cognitive tasks (Siebert et al., 

2003), supporting initial findings of emotional recognition deficits (Adolphs et al., 1994). Social cognition 

studies have found that UW patients display a reduced ability to judge social attributes of an unfamiliar 

person (Adolphs et al., 1998) and an increased willingness to approach others (Harrison et al., 2015). 

More recent findings have continued to address the traditional notion of UW patients being without fear 

(Bach et al., 2013; Becker et al., 2012; Feinstein et al., 2013; Klumpers et al., 2015; Mihov et al., 2013; 

Terburg et al., 2012) or an ability to perceive social threat (de Gelder et al., 2014). Other studies have 

branched out to include topics such as experience of emotion (Tranel et al., 2006), altruistic punishment of 

others (Scheele et al., 2012a), and social network size (Becker et al., 2012).  

Over all studies, UW patients show several similarities, but interestingly, there is no one area in which all 

studies have found common ground. Even the realms of fear processing or emotion recognition, which 

belong to some of the most present of amygdala functions, show differences among studies. This could be, 

and in some cases most likely is, due to methodological differences in paradigms. Patients could also be 
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working from cognitive strategies developed over the years to evaluate stimuli. A third explanation, 

however, lies in neural plasticity, which is most likely responsibly for varied levels and areas of 

compensation for varied tasks, different in each UW individual. The amygdala is crucial to coordinating 

different cortical networks during emotional processing (Pessoa & Adolphs, 2010), a process which may 

start very early in life. Because amydala lesions in UW most likely correlate with disease duration 

(Appenzeller et al., 2006), other functional networks could become responsible for maintaining their 

function when the amygdala becomes absent. This variability is unsurprising, given how complex and 

varied human beings are: the concept of degeneracy states that, given a lesion, or degenerate region, 

interpersonal variation and funcitonal specialization within the brain determine which brain regions can or 

will take over which tasks (Price & Friston, 2002). Thus following, paradigms given to lesion patients may 

show deficits or may not (Price & Friston, 2002). 

Included in this dissertation are two studies designed to examine the necessity of a functional amygdala for 

processing emotional stimuli in the first study (Bach et al., 2011) and non-emotional stimuli in the other 

(Talmi et al., 2010). Thirty-four-year-old monozygotic twin women A.M. and B.G., who have both been 

diagnosed with Urbach-Wiethe disease, were included in both studies. The disease was discovered after 

B.G. suffered a single epileptic grand-mal seizure at age 12; A.M. has never suffered an epileptic seizure. 

During neuropsychological screening for the studies, both patients showed average intelligence (LPS-4, 

Horn, 1983) and average performance on most neuropsychological tests during an extensive test battery. 

We included verbal learning and memory (Rey Auditory Verbal Learning Test, Helmstedter et al., 1981), 

executive function (Trail-Making Test, Reitan, 1955; Wisconsin Card Sorting Test, Kongs et al., 2000; 

Strooptest, Baeumler, 1985), and semantic fluency (Aschenbrenner et al., 2000). Both patients 

demonstrated minor impairments in short-term concentration (d2-Test, Brickenkamp, 1995). A.M. was 

impaired in figure learning and memory (Complex Figure Test, Osterrieth, 1944; DCS, Weidlich & 

Lamberti, 2001).  

To date, they are the only known monozygotic twins to present with the disease. Against the backdrop of 

exactly equal genetic makeup and similar nurturing during their early lives as well as their adult lives (both 

twins decided to stay in the same area, marry, and have children) as well as their unwavering willingness 

to contribute to the growing body of UW research, they provide an unparalleled opportunity to create a 

model of neural plasticity and compensation in the face of an absent amygdala.  

 



   

10 

 

III. 5. Pharmacological modulation of the amygdala 

The amygdala’s central role in emotional and social processing has made it a popular region of interest in 

studying how the brain relates to emotional stimuli under varying conditions. Initial studies focused for the 

most part on substance abuse and patients with affective disorders, and have given way to an increased use 

of pharmacological modulation of the amygdala to examine its regulation of and by different neurochemical 

pathways (Patin & Hurlemann, 2010). Three of the most researched substances related to the serotonergic, 

noradrenergic, and oxytocinergic pathways.  

Selective serotonin reuptake inhibitors (SSRIs), which are among the most widely used agents to explore 

amygdala function in healthy individuals, have been found to dampen amygdala response to negative 

emotions or imagery (Arce et al., 2008; Harmer et al., 2006; Outhred et al., 2015; Takahashi et al., 2005), 

as well as to increase amygdala response to positive emotions (Norbury et al., 2009). Recent work on the 

5-HTTLPR polymorphism (serotonin-transporter-linked polymorphic region), which has been associated 

with increased serotonin transporter expression (Heils et al., 1995; Hu et al., 2006), showed that individuals 

with two long alleles showed no increased amygdala response to fear, whereas individuals with short 

variations responded differently to fearful and angry faces than to neutral faces (Fisher et al., 2015). 

Therefore, it appears that study results could be strongly dependent on underlying genetic variations within 

participant groups.  

Noradrenergic substances appear to directly influence amygdala response in an opposite pattern to 

serotonergic influence (Outhred et al., 2013). Findings in single-dose studies showing reduced amygdala 

response following a noradrenaline (NA) block (Hurlemann et al., 2010b) and an increase in amygdala 

response following an increase in NA (Onur et al., 2009), indicating a direct reflection of amygdala activity 

based on noradrenergic input level. In a recent study, a decrease in NA induced a lower amygdala response 

to fearful faces in men, but an increased response in women (Schwabe et al., 2013), illustrating here, too, 

vast differences among participant groups. NMDA receptors additionally appear to play an important role 

in amygdala response, and been found to influence reward-based behavior, especially in the central nucleus 

of the amygdala (Kenny et al., 2009; but see also Onur et al., 2010).   
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III. 6. Aim and hypotheses of this dissertation 

Against the background of the amygdala’s role in emotional processing, as well as recent literature’s focus 

on regulation of both the amygdala itself and by the amygdala of other regions, this dissertation aims to 

examine modulation of the amygdala according to social and social-emotional properties through external 

(chemical) and internal (lesion) influences. The following three hypotheses arose over the course of the five 

publications included in this dissertation:  

1. The amygdala responds differently to social vs. nonsocial chemosensory stimuli. Pleasant, 

nonsocial stimuli preferentially activate the left amygdala, while unpleasant, nonsocial stimuli 

preferentially activate the right amygdala. Social stimuli tend to activate the left amygdala. 

In a literature review, two core roles of the amygdala in stimulus processing are examined: first, its part in 

chemosensory stimulus processing as part of the primary olfactory cortex. Second, as part of the limbic 

system, the amydala processes emotional stimuli. In the review, the intersection of these roles  and how the 

amygdala differentially responds to emotional, social, and other stimuli is examined by categorizing stimuli 

according to type (i.e. valence, intensity, social quality), method of delivery (i.e. sniff vs no sniff, stimulus 

duration, flow rate), paradigm (e.g. attention to stimulus), and other factors (e.g. age, gender, personality). 

Results are organized according to lateralization of activity in response to valence then in response to the 

social quality of the stimulus, and finally according to regions that were simultaneously activated alongside 

the amygdala. Overall, findings show that the left amygdala tended to respond to pleasant, nonsocial stimuli 

as well as social stimuli. The right amygdala tended to respond to unpleasant, nonsocial stimuli. This 

separation could illustrate a rapid, basic evaluation of potentially threatening chemosensory stimuli by the 

right amygdala, and a more laborous, slower, continued evaluation of stimuli in the left amygdala. An 

additional discussion of possible factors confounding amygdala activation is included following the 

discussion of the results.  

2. Short-term, chemical modulation of amygdala activity is evident in a social-emotional context, i.e. 

during social-emotional experimental paradigms. This illustrates that social functions are dependent 

on the amygdala in healthy people, and these cannot be immediately compensated for in the event of 

changed amgydala function.  

In Section III.3., the amygdala’s role in social, emotional, and social-emotional functions is discussed. 

Because the amygdala plays such a strong role in these realms, the question arises, what are the 

consequences of a sudden dampening of amygdala activity during a social paradigm? To explore this 
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question, this dissertation includes two studies in which social-emotional paradigms are combined with a 

chemical or pharmacological challenge to dampen amygdala activity.  

In the first study, designed to explore the effect of nicotine on the amygdala, amygdala response in smokers 

in both saturated and in deprived states was compared with that of nonsmokers (Onur et al., 2012). After 

showing participants pictures of emotional faces, saturated smokers showed similar response patterns when 

faced with threatening stimuli as non-smokers did, while the deprived smokers actually showed lower 

activation in the amygdala to fearful faces. In a second study, we explored oxytocin’s effects on a Pavlovian 

fear conditioning paradigm which used social stimuli. Oxytocin was shown to facilitate fear conditioning, 

but unexpectedly, the paradigm did not significantly activate the amygdala. However, there was amygdala 

activation at an uncorrected level, suggesting that the amygdala was activated during fear learning.  

In both studies, chemical modulation of the amygdala has a strong, apparent effect on paradigm results 

because other neural regions cannot immediately compensate for the changed amygdala activity. 

3. Long term, internal amygdala modulation due to lesions can be used to illustrate compensation for 

missing amygdala function in both emotional and non-emotional paradigms. The level of 

compensation differs based on the cognitive resources needed to carry out the task and emotional 

content of the paradigm.   

Given that the amygdala plays such a strong role in social and emotional processing (see Section III. 3.), 

and that patients with amygdala lesion often present with deficits in precisely these areas (see Section III. 

4.), this dissertation aims to determine in which areas amygdala dysfunction can be overcome and 

furthermore how this normalization of amygdala activity could be related to long-term compensatory 

mechanisms.   

The final two studies concentrate on two Urbach-Wiethe (UW) patients to explore the necessity of a 

functional amygdala in automatic relevance detection and a framing effect in risky decision-making. The 

first study (Bach et al., 2011) of automatic relevance detection for emotional stimuli found no difference 

between healthy controls and the patients, suggesting a possible compensatory mechanism for lesions 

acquired early in life. As Kennedy and Adolphs wrote in a recent review, “The amygdala, by itself, does 

nothing; instead, it is important to begin asking questions about the networks within which the amygdala 

participates – and of these there are many” (Kennedy & Adolphs, 2012).  
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The second study (Talmi et al., 2010) explored the framing effect with the subsequent propensity to gamble. 

UW patients showed a normal framing effect but an increased willingness to gamble compared to controls. 

In both studies, the patients demonstrated the ability to perform at the level of healthy controls. However, 

in the second study, their increased propensity to gamble suggests either that compensatory measures are 

not fully developed, or that even fully developed compensatory mechanisms cannot extend to the 

amygdala’s modulation of other cognitive processes. Taken together, the two studies could further indicate 

that, while other regions can compensate for the amygdala’s role in emotional paradigms, they do not 

compensate fully for its role in non-emotional paradigms.  

 

Overall, the publications included here serve to present a balanced view of the amygdala’s ability to discern 

different qualitative stimulus properties, including social-emotional or emotional content, and the ability of 

compensatory mechanisms to neutralize both sudden and long-term reductions in amygdala activity.  

 

IV. Original studies 

IV. 1.  Amydgala response to nonsocial and social chemosensory stimuli 

Study 1: Patin A, Pause BM (2015) Human amygdala activations during nasal chemoreception. 

Neuropsychologia 78: 171-94. 

 

In a literature review, the effect of different olfactory and chemosensory stimuli on amygdala activation is 

explored. Because of its privileged position as part of the primary olfactory cortex, the amygdala receives 

direct chemosensory input without prior filtering by the thalamus (Gottfried, 2006), allowing for 

preferential treatment over other emotional stimuli (Adolph & Pause, 2012) and for the sidestepping of 

attentional processes found in other areas of sensory modulation (Albrecht & Wiesmann, 2006). Therefore, 

olfaction and chemosensory perception can be viewed as an ideal basis for exploring the most basic, but 

also most robust, functions of the amygdala. Smells can be entirely neutral; emotional, either due to an 

association in one’s memory or due to the smell’s innate characteristics, such as being extremely disgusting; 
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or even social, such as sweat produced by another human. This literature review, therefore, set out to explore 

the patterns of amygdala response given the different aspects of chemosensory and olfactory stimuli.  

 

Methodology 

A search was done on Pubmed including the search terms ‘fMRI’ or ‘PET’ in combination with either 

‘olfactory,’ ‘chemosensory,’ ‘odor,’ ‘odour,’ ‘smell,’ or ‘pheromone,’ and the abstracts were read to 

identify studies that had concentrated on olfactory or chemosensory stimuli given to a population with 

healthy olfactory abilities. The studies which met these criteria were read and included in the review if they 

included results for amygdala activation as a result of an orthonasally presented stimulus alone and not in 

combination with a paradigm, such as a learning or memory task.  

Data were collected regarding directed attention to stimulus (sniffing), stimulus concentration, duration of 

stimulus presentation, perceived intensity and pleasantness, and paradigm. Lateralization of amygdala 

activity was reported as well as other olfactory and non-olfactory regions activated simultaneously. Primary 

and secondary olfactory regions include the amygdala, piriform cortex, entorhinal cortex, OFC, insula, 

anterior (ACC) and posterior cingulate cortex, thalamus, and hippocampus. The borders of the OFC were 

set at x between +3/-3 and +49/-49, y +6 - +61, and z -5 - -32 (Zald & Rauch, 2006).  

Studies used either an olfactometer (fMRI, with the exception of one study) or a glass bottle or cotton ball 

held near the participant’s nose (PET, with the exception of one study) to deliver the stimuli.  

 

Results and Interpretation 

Main findings were that the amygdala responds differently depending on lateralization due to valence and 

on social quality of the sitmuli. Commonly used laboratory stimuli included vanillin, phenylethyl alcohol, 

and butanol, which resulted in bilateral and left amygdala activation. Pleasant stimuli resulted in left and 

bilateral amygdala activation (one study found right amygdala activation in a region of interest (ROI) 

analysis of chocolate odor (Small et al., 2005)). Unpleasant stimuli resulted in right and bilateral amygdala 

activation (a single study showed left response in males, but not in females (Royet et al., 2003)). The right 

amygdala, therefore, was shown to show a greater response to unpleasant chemosensory stimuli. Social 

stimuli showed mainly left amygdala response.  
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This is the first time a review of chemosensory literature has established the similar pattern of amygdala 

response as is found following emotional stimuli, such as faces or images (see for instance meta-analyses 

by Costafreda et al., 2008; Siebert et al., 2003). It is tempting to suggest that the right amygdala 

preferentially responds to unpleasant stimuli; however, this seemingly higher response is more likely a 

question of the temporal resolution of imaging methods. Instead of a constant period of amygdala response 

to a stimulus, several authors suggest that the two hemispheres somewhat independently evaluate novel 

stimuli: the right amygdala shows a rapid response, providing for a quick and superficial evaluation, while 

the left amygdala works to provide a more thorough evaluation, thereby giving off a more sustained signal 

(Costafreda et al., 2008; Glascher & Adolphs, 2003; Phillips et al., 2001; Sergerie et al., 2008; Wright et 

al., 2001). This longer evaluation by the left amygdala could be responsible for the classification of a 

stimulus according to its attractiveness, leading to the differential response of the right and left amygdala 

in imaging research (Glascher & Adolphs, 2003).  

A study examining the effect of a positive vs. negative label on the same stimulus showed greater fMRI 

blood-oxygen-level dependent (BOLD) response to the positive labels (de Araujo et al., 2005), which is 

consistent with findings showing greater response to positive emotional, non-chemosensory, stimuli 

(Sergerie et al., 2008). A further factor in studies showing bilateral amygdala response was familiarity, 

which could be an effect of the previously shown corelation of familiarity with pleasantness (Delplanque 

et al., 2008; Distel et al., 1999; Engen & Ross, 1973; Lawless & Cain, 1975; Royet et al., 1999; Sulmont et 

al., 2002; Zajonc, 1968). This correlation could also add to the interpretation of findings showing right 

amygdala response to unfamiliar, neutral stimuli (Savic & Gulyas, 2000; Savic et al., 2000), in that 

unfamiliar stimuli could be interpreted as more unpleasant than neutral.  

The left amygdala response found by studies using social stimuli could indicate several things. For one, 

social stimuli could require a more sustained evaluation than nonsocial stimuli, reflecting complexities 

within human friend-foe networks. This, however, would suggest that the amygdala does not posess a 

defense mechanism consisting of rapid judgment of social stimuli, which would not benefit survival during 

immediate threat. More likely, social stimuli are processed along a pathway separate to nonsocial stimuli 

with a greater dependency on TAARs. This is in accordance with previous literature illustrating that social 

stimuli are processed by more specialized networks, both within and outside of the amygdala (Adolphs, 

2010; Dunbar, 2010; Goossens et al., 2009; Pause, 2012). These findings suggest that the evolutionary basis 

for amygdala response to social chemosensory stimuli is still present in everyday response.  
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Finally, the literature review presented here showed that the most common regions to be activated 

simultaneously to the amygdala were the OFC, the PC, and the insula, in order of frequency. Previous 

findings show greater connectivity between amygdala nuclei and the OFC in some cases than between 

nuclei within the amygdala (Nigri et al., 2013; Zald & Kim, 1996), illustrating an extremely close knit 

relationship of the amgydala to the OFC, possibly to influence behavior (Schoenbaum et al., 1998). It is 

theefore not surprising that it was the most activated region here. Also not surprising is the PC, which makes 

up a large part of the POC (Carmichael et al., 1994; Gottfried, 2006). Interestingly, the PC responses were 

overwhelmingly bilateral, suggesting that the right versus left hemisphere system of evaluation is specific 

to the amygdala, at least at the first moment of stimulus processing. Finally, the finding that insula activity 

so often correlated with the amygdala is interesting because of the insula’s role in autonomic, interoceptive 

processing (Critchley et al., 2004; Craig, 2002). Chemosensory processing could therefore play a very 

strong role in interoception.   

 

IV. 2.  Short-term amygdala modulation within a social-emotional context 

Study 2: Onur OA, Patin A, Mihov Y, Buecher B, Stoffel-Wagner B, Schlaepfer TE, Walter H, Maier 
W, Hurlemann R (2012) Overnight deprivation from smoking disrupts amygdala responses to fear. 
Hum Brain Mapp 33: 1407-16. 

 

According to the American Heart Association, “nicotine addiction has historically been one of the hardest 

addictions to break.” The strength of this addiction has tragic effects: of those who attempt to quit smoking, 

only 20-40% will be successful (Faller & Lang, 2006). Due to nicotine’s short half-life, smokers turn to 

chain-smoking to ward off the withdrawal effects, which include nervousness, the inability to keep still, 

aggression, and concentration difficulties (Faller & Lang, 2006). The nicotinic acetylcholine receptor 

(nAChR) is located throughout the central and peripheral nervous system, more specifically in the ventral 

tegmental area (VTA), which leads to dopamine (DA) transmission in the nucleus accumbens (NAcc), PFC, 

and amygdala (Benowitz, 2010).  

After only a matter of hours, studies have found an upregulation of binding to the nAChRs (see Govind et 

al., 2009). Isolating possible mechanisms of this upregulation remain difficult because of the large number 

of nicotinic receptor subtypes (Govind et al., 2009).  



   

17 

 

The behavioral effects of nicotine have been linked to the mesocorticolimbic DA system (Govind et al., 

2009). The pathway begins in the VTA and progresses to the NAcc, amygdala, hippocampus, and into the 

prefrontal and frontal cortex (see Nestler & Aghajanian, 1997). Following nicotine exposure, this circuit 

plays a central role in the feeling of reward (Vezina et al., 2007). Rodent studies have shown that repeated 

injections of nicotine increase the drug’s locomotor activating effects (Clarke et al., 1988; Ksir et al., 1985), 

as well as sensitize the amygdala’s ability to increase NAcc DA release (Benwell & Balfour, 1992; Benwell 

et al., 1995; Schoffelmeer et al., 2002; Balflour et al., 1998). This sensitization appears to directly correlate 

with the length of withdrawal (Schoffelmeer et al., 2002; Benwell et al., 1995). Furthermore, rodents show 

increased drug self-administration after sensitization of midbrain DA neuron reactivity (Vezina, 2004; 

Vezina et al., 2002) . During withdrawal, nicotine is not as effective in activating NAcc DA release 

(Rahman, 2004), which could lead to an increase in drug-seeking behavior as an attempt to regain the 

feeling of reward.  

Next to the DA circuit, glutamatergic NMDA receptors are also linked to the rewarding effect of nicotine 

consumption by increasing glutamatergic transmission in reward circuits (Kenny et al., 2009). Furthermore, 

NMDA receptors appear to be responsible for moderating the magnitude and valence (for instance the 

feeling of satisfaction or lack of) of nicotine effects on reward circuits, the effects being especially 

pronounced  in the central nucleus of the amygdala (Kenny et al., 2009).   

The study presented here was designed to examine the differences in amygdala response to emotional faces 

between nonsmokers, abstinent smokers, and satiated smokers.  

 

Methodology 

We tested 56 adults (28 females, 28 males), 28 of whom were chronic smokers ( >15 cigarettes per day; 14 

females, 14 males) and 28 of whom were nonsmokers (14 females, 14 males).  We tested the participants 

prior to the task on verbal learning skills, working memory, and facial emotion recognition skills.  

We compared amygdala response in two contexts: in a between-group analysis, satiated smokers were 

compared to nonsmokers, while in a within-group analysis we compared satiated and abstinent smokers 

(following overnight deprivation). For the second comparison, we completed two fMRI scans at least one 

week apart. Smokers alternately abstained from smoking for 12 hours prior to the scan (overnight 

deprivation) and smoked their last cigarette one hour prior to the scan (satiated state). Participants rated the 
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strength of their cravings as well as completed questionnaires on their current mood immediately prior to 

the scans. We also gave participants the Fagerström-test for nicotine dependence (FTND; Bleich et al., 

2002; Heatherton et al., 1991), to rate the severity of their addiction.  

A facial emotion paradigm, including pictures of fearful, neutral, and happy faces, was used to evoke 

amygdala response, compared to pictures of houses, with a fixation cross between each stimulus.  

 

Results and interpretation 

Smokers in a deprived state showed a lower amygdala response in the right amygdala to fearful faces. This 

response to fear correlated with addiction: the higher the smokers scored on the FTND, the lower their 

amygdala response to fearful faces during deprivation.  

The cravings experienced during the fMRI scans were unprovoked, instead of stimulated by visual, 

auditory, or other cues, and based purely on the severity of feeling of deprivation. Based on probability 

maps (Amunts et al., 2005; Eickhoff et al., 2005), the abnormal amygdala activation found in this study 

could be traced to the basolateral amygdala (BLA). Animal studies showing that the BLA is active during 

fear detection (LeDoux, 2007) are in line with human studies showing that the amygdala is activated when 

presented with fearful faces (LaBar et al., 1998; Whalen et al., 2001). On the other hand, patients who have 

undergone a temporal lobectomy have shown a lower fear-conditioned startle response, showing the 

deficiency of amygdala absence (Funayama et al., 2001). Given these data, we can draw the connection 

between stunted amygdala activity during nicotine cravings and a lowered reaction to fear stimuli. This 

might mean that research showing amygdala hyperactivation and overexpression of fear responses (Quirk 

& Gehlert, 2003) is not valid when it comes to nicotine withdrawal.  

The question arises, what might these findings say about nicotine dependence on a behavioral level? Our 

finding that nicotine withdrawal results in a lowered amygdala reaction to fear might be the reason for 

continued smoking in cancer patients with tracheostoma or in Buerger’s Disease patients, despite 

characteristic peripheral ischemic tissue damage, which is often complicated by fatal ulcerations and 

gangrene (Malecki et al., 2009). Continued smoking despite such grave physical consequences could be a 

consequence of a stunted amygdala response to and in turn an impaired perception of stimuli which would 

otherwise cause fear-motivated avoidance of such threats. 
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The implication of such a lowered fear response might also be one reason that so few individuals who 

attempt to quit are successful (Benowitz, 2010; Faller & Lang, 2006). Previous research has shown that 

unprovoked, abstinence-induced nicotine cravings are a reliable predictor of relapse after an attempt to quit 

smoking (Killen & Fortmann, 1997; Shiffman et al., 1997). This might mean that the stronger the craving, 

the lower the ability or desire for self-preservation. This theory would complicate the effectiveness of public 

health awareness campaigns based on fear appeals, such as warning labels on cigarette packaging. Satiated 

smokers would perceive the threats, but this perception, and in turn desire for self-preservation, would 

diminish as soon as the abstinence-induced cravings set in.  

In this study, the time span of one night of deprivation is apparently too short for the brain to completely 

compensate for the amygdala’s compromised fear reaction. The importance of the amygdala is thus 

illustrated in this study, in that we can see the potentially tragic effects (e.g. lack of self-preservation) when 

it is not present. An interesting question to pursue further would be to determine, the direction of causality 

between amygdala hypofunction and smoking habits.  

 

Study 3: Eckstein M, Scheele D, Patin A, Preckel K, Becker B, Walter A, Domschke K, Grinevich V, 
Maier W, Hurlemann R (2016) Oxytocin facilitates Pavlovian fear learning in males. 
Neuropsychopharmacology 228: 271-303. 

 

Although oxytocin has a relatively long historical tradition of social research, starting with social bonding 

and sexual behaviors (Kendrick et al., 1987; Mahalati et al., 1991; Pedersen & Prange, 1985; Witt et al., 

1990) and branching out into social cognition (Dantzer et al., 1987; Popik & Vetulani, 1991), it has become 

an indispensable tool for social neuroscience in recent years.  

OT is produced mainly in the supraorbital and paraventricular nuclei of the hypothalamus, which transmit 

to the amygdala as well as the neurohypophysis, NAcc, and to other regions in central nervous system 

(Knobloch et al., 2012). Synthetic OT has been available since 1953, when it became the first sequenced 

and synthesized polypeptide hormone available (du Vigneaud et al., 1953, 1954). Although exact data 

regarding OT’s ability to cross the blood-brain barrier are not available, initial findings suggest that 

intravenous OT crosses at a rate of only a fraction of a percent (Kendrick, 1991). On the other hand, 

intranasal administration of OT, which is by far the more common method used in human studies, has been 

shown to increase both plasma and cerebrospinal fluid OT levels (Striepens et al., 2013).  
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Newer studies of social cognition and behavior have shown that OT plays an important role in social group 

living and monogamous pair bonds in humans (Scheele et al., 2012b, 2013). Moreover, results show that 

OT reduces amygdala response to fear-inducing stimuli (Kanat et al., 2015; Sobota et al., 2015) and 

facilitate fear extinction in a Pavlovian fear paradigm (Eckstein et al., 2015). Given OT’s effect on social 

stimulus processing as well as fear extinction, we therefore undertook this study to see what effect OT has 

on fear conditioning.  

 

Methodology 

We tested 97 healthy males (mean age 24.45 ± 4.02 years) in a randomized, placebo-controlled, double-

blind, between-subject design. We used a Pavlovian fear conditioning paradigm which was adapted for use 

in an fMRI experiment (for details, see Becker et al., 2013). Neutral, condition stimuli (CS+) were either 

paired with an aversive, unconditioned stimulus (UCS) or left unpaired (CS-). The UCS consisted of an 

electric shock at 70% contingency. The conditioned stimuli consisted of faces and houses, allowing for the 

isolation of OT effects on a social and a nonsocial CS. Participants waited 30 min following OT (24 IU) or 

placebo administration to start the fMRI task. Stimuli were presented for 4000 ms each separated by 8 – 11 

sec, 30 times total. Finally, skin conductance response (SCR) was measured in each participant.  

 

Results and Interpretation 

FMRI results showed that the CS+ (both social and nonsocial) activated the insula, cingulate cortex, and 

additional prefrontal areas. The contrast CS+ > CS- showed an increased response in the subgenual anterior 

cingulate cortex (sACC) in participants given OT. More specifically, an effect of sociality (faces versus 

houses) was found in the posterior midcingulate cortex (pMCC) in the OT condition as well. These results 

can be interpreted to mean that OT facilitated fear conditioning via potentiation of sACC response to fear-

inducing stimuli overall, and via potentiation of the pMCC to social stimuli.  

On a behavioral level, participants showed faster reaction times to the CS+ when given OT compared to 

placebo. Interestingly, participants given OT showed increased electrodermal response to the CS+ in the 

late phase of conditioning, but decreased electrodermal response to the electric shocks. This is in keeping 

with previous findings that OT reduced neural and psychophysiological response to electric shocks (Rash 

et al., 2014). Furthermore, this indicates that the physiological responses found here are not necessarily 
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coupled to the neural responses in the late phases of conditioning, meaning that OT’s effect on increased 

conditioning is not due merely to an increased perception of pain. 

Previous research has shown both the ACC (Hariri et al., 2003; for a review, see Milad et al., 2007; 

Sehlmeyer et al., 2009) and OT’s modulation of it (Gorka et al., 2015; Scheele et al., 2014a) to play a role 

in fear processing. More unique are our findings of OT modulation of pMCC response to social stimuli. 

This could indicate that social stimuli are processed by an entirely different network than that which 

processes fear stimuli overall. However, the finding could also be a result of an OT-induced, heightened 

sensitivity to social stimuli. A second explanation could be a combination of an increased motivation, based 

in the pMCC, to orient oneself toward an aversive stimulus following OT (Vogt, 2005), as well as increased 

processing of social stimuli (Shahrestani et al., 2013). OT would thereby increase sensitivity to and 

processing of social stimuli during fear conditioning, which would accelerate learning and adaptation in 

social settings.  

Interestingly, we did not find amygdala activation during fear conditioning, which is contradictory to 

previous findings suggesting an important role of the amygdala in fear conditioning. First, the lack of 

response could be indicative of a methodological artefact in our study. Although the region of interest 

analysis and the corrected whole brain analysis did not yield amygdala response, however, we did find a 

main effect of conditioning for both social and nonsocial stimuli at an uncorrected p-level in both the right 

(p = 0.02) and left (p = 0.04) amygdala. This would speak for the lack of amygdala activation reflecting a 

lack of power. Second, conditioning may not be dependent on the amygdala, but this would seem unusual 

considering that it has established itself in the literature as a prime region involved in fear conditioning (see 

for example reviews by (Greco & Liberzon, 2015; Keifer et al., 2015).  

Our lack of amygdala activity could also indicate that OT effects are not amygdala-dependent. Further 

evidence for this can be found in a previous study, in which we found an isolated effect of OT on social, 

but not nonsocial, feedback during a learning task (Hurlemann et al., 2010a). Although this was a behavioral 

study and conclusions based on direct neural activity are difficult, we were able to indirectly show that the 

social condition was amygdala-dependent: on the one hand, we administered healthy males with OT and 

on the other, we tested twin women with selective bilateral amygdala lesions, A.M. and B.G. Social 

feedback was found to increase learning in males, and this effect was even greater following OT 

administration. Both A.M. and B.G., on the other hand, performed worse than healthy controls. The 

juxtaposition of the increase in learning by OT and the decrease in learning in the face of a missing 

amygdala indicate that learning in a social context is OT- and amygdala-dependent. Previous findings have 
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shown significant OT receptor density in the amygdala (Insel & Shapiro, 1992; Veinante & Freund-Mercier, 

1997), specifically the basolateral and central regions (Boccia et al., 2013), and OT has been found to 

enhance memory in a social context (Guastella et al., 2008; Savaskan et al., 2008; Rimmele et al., 2009; 

Ferguson et al., 2001), all of which add support to our behavioral findings.  Therefore, it is presumable that 

we could have found amygdala activation and OT modulation of this activation given a larger group of 

participants. A limitation of this study is that the subthreshold amygdala activity was found in response to 

conditioning, but not to faces versus houses, and that the effect of sociality is less clear than had we been 

able to clearly determine an isolated effect of faces. Despite this, the paradigm does present social stimuli 

during fear conditioning, and the reduction in amygdala activity following OT administration does therefore 

illustrate that the amygdala performed at a lower level during a paradigm with a strong social element.  

 

IV. 3.  Long-term amygdala modulation through bilateral lesions within an emotional and 

nonemotional context 

Study 4: Bach DR, Talmi D, Hurlemann R, Patin A, Dolan RJ (2011) Automatic relevance detection 
in the absence of a functional amygdala. Neuropsychologia 49(5): 1302-5. 

 

Several findings have indicated that the amygdala is a site of low-level judgment of stimuli (Bach et al., 

2008; Critchley et al., 2000; Hariri et al., 2000, 2003) and that it allocates resources based on the relevance, 

e.g. arousal and motivational quality, of a stimulus (Pessoa, 2008; Zald, 2003). The reaction (BOLD 

response in fMRI paradigms) is greater when implicitly evaluating stimuli than when participants are 

required to explicitly react (Bach et al., 2008; Critchley et al., 2000; Hariri et al., 2000, 2003). Because of 

this reaction, the connection has been made of the amygdala as a basic, automatic system of detection 

(Scherer et al., 2001). 

As opposed to the previous two studies examining a sudden chemical disruption of amygdala function, the 

following study examines automatic prioritized emotional processing in UW patients A.M. and B.G., 

described above (see section III.4.). Because the paradigm includes implicit processing of stimuli, which 

have been found to result in a large amygdala response (Bach et al., 2008; Critchley et al., 2000; Hariri et 

al., 2000, 2003), the paradigm is ideal for comparing a missing amygdala function with healthy controls.  
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Previous lesion studies have sought to address the amygdala’s role in automatic prioritized emotional 

processing, specifically in patients S.P. and S.M. These studies, however, have been limited to only certain 

aspects of prioritized processing, and do not provide a comprehensive overview of relevance detection by 

the amygdala. The rationale of this study, therefore, was to determine the amygdala’s role in automatic 

prioritization using an attentional blink paradigm. 

 

Methodology 

We used an attentional blink (AB) paradigm for recall facilitation of emotionally arousing stimuli. In a 

rapid serial visual presentation, two target stimuli and several distractor words are presented. The timing of 

the second target word (T2) determines its recall: if T2 falls shortly after the first target word (T1), its recall 

is impaired, and becomes less impaired with greater temporal lag between the two targets (Raymond et al., 

1992). This could indicate that processing of the stimuli occurs across two stages: an early sensory stage, 

in which all stimuli are processed, and a later processing stage, in which there is competition between the 

T1 with distractor words (Chun & Potter, 1995). Therefore, the early processing of stimuli could result in 

attenuation in the AB, which is apparent when T2 is an emotionally arousing word (Anderson, 2005; De 

Martino et al., 2008b; Keil & Ihssen, 2004). The emotionally arousing target words are given preference 

over distractor words, and resource allocation is facilitated (Keil & Ihssen, 2004). 

We tested UW patients A.M. and B.G. against age- and education-matched female controls as well as male 

university students (age 23.3 ± 4.6 years). The patients were impaired in the d2 Test; the male university 

students showed average scores. These results, however, did not co-vary with performance in the AB 

paradigm (p < .20).  

 

Results and interpretation 

The patients showed the same effect of lag and valence as the healthy controls, indicating that the patients 

showed recall facilitation for aversive items. Amygdala lesions, therefore, do not necessarily mean that 

relevance detection is impaired. This seems to contradict the view that the amygdala is vital to relevance 

detection (Sander et al., 2003), as it shows greater reaction to emotionally relevant stimuli (see Zald, 2003). 

The results indicate that the patients are demonstrating a compensation mechanism, which can only develop 

over the course of many years and in the context of a slow debilitation of the amygdala, as in UW. 
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Interestingly, the findings here reflect similar findings in another UW patient, S.M. (Tsuchiya et al., 2009). 

Previous findings suggest that subcortical, temporal structures could be important in compensation of the 

missing amgydala during low-level appraisal, including the pulivinar (Pessoa & Adolphs, 2010; Morris et 

al., 1998), which connects to several visual processing areas and the superior colliculus, for example 

(Morris et al., 1998). Based on the selectivity of the lesion’s site being representative of UW (Hofer, 1973), 

it is imaginable that similar compensatory mechanisms can develop in different patients, as all other 

structures are spared and remain healthy. It is therefore probable that the patients here have developed the 

ability to compensate for their lack of an amygdala, especially given that the paradigm represents a fairly 

low-level, basic amygdala function that could presumably be more easily compensated for than other 

higher-level functions. (The concept of compensation in the twins is discussed in detail under section V.) 

 

Study 5: Talmi D, Hurlemann R, Patin A, Dolan RJ (2010) Framing effect following bilateral 
amygdala lesion. Neuropsychologia 48(6): 1823-7. 

 

In the final study, the UW twins described above (III.4.) were given a framing effect and risky gambling 

behavior paradigm. The framing effect explains the emotional bias shown by participants when risk-taking, 

i.e. when presented with a potential loss. At the core of the paradigm is the finding that healthy participants 

will more likely gamble than when presented with a potential win (Tversky & Kahneman, 1981).  

In healthy participants, decisions are accompanied by a higher autonomic arousal (skin conductance 

response) in the loss than in the win frame (De Martino et al., 2008a). This emotional component has been 

traced to the amygdala, OFC, and ACC (De Martino et al., 2006; Roiser et al., 2009). Accordingly, 

amygdala lesions in animals show an impaired cost-benefit analysis (Ghods-Sharifi et al., 2009), and 

amgydala lesions in humans correlate with riskier and worse decisions in the Iowa Gambling Task and in 

the Game of Dice task (Bechera et al., 1999; Brand et al., 2006, 2007). Patients with anterior temporal lobe 

(including the amygdala) damage have shown an increased propensity to gamble when deciding between 

gains but a decreased propensity when deciding between losses (Weller et al., 2007). This indicates that the 

amygdala could play a role in separating the negative from the positive frames and in either increasing an 

individual’s willingness to choose a sure gain or decreasing their willingness to take a sure loss.  
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Methodology 

We tested the same two UW patients, A.M. and B.G., against 20 age- and education-matched healthy, 

female controls. Because of the patients’ lower concentration scores, we used a shortened version of a 

previously published paradigm (De Martino et al., 2006). Using just the first of three sessions, however, 

showed no influence on the pattern of results, and no further correlations between intelligence, 

concentration, framing effect, or gambling frequency were found.  

Over two decades ago, Tversky and Kahneman laid the groundwork for the framing theory of decisions, 

arguing that the context in which a decision is framed directly affects the probability that a person will 

choose one option over the other (Tversky & Kahneman, 1981). As part of the original experiment, 

participants chose between a sure gain or a gamble in one decision and a sure loss and gamble in the other. 

The sure amount was framed as either the amount a participant would keep out of the initial sum (‘win 

frame’), or as the amount a participant would lose from the initial sum (‘lose frame’). The gamble was 

therefore presented each time as either an opportunity to win or lose a set amount of money. In the gamble 

option, the magnitude of the win multiplied by the probability of winning (the expected win) was identical 

to the sure amount. In the gamble-weighted trials, the expected win was very clearly higher than the sure 

amount. In the sure-weighted trials, the expected win of gambling was very clearly lower than the sure 

amount. The decision was presented simultaneously on the screen, with the sure amount listed on one side 

and the gamble being shown in pie chart form.  

 

Results and interpretation 

Both the controls and the patients showed an intact framing effect, gambling more often in the lose frame 

than in the win frame. However, the patients gambled overall more often than controls: B.G. more often in 

both frames, A.M. only in the loss frame. In terms of decision latency, controls showed slower reaction 

times when gambling than when taking the sure amount. A.M. showed this same pattern, but was overall 

slower in her reactions. B.G. was overall faster than the controls, but showed the opposite reaction pattern, 

needing more time when taking the sure amount than when gambling.  

These results showing intact framing but a propensity for gambling seem to contrast with previous studies 

showing that the amygdala is directly associated with the framing effect. For one, the amygdala could be 

reacting to the decisions compatible with the frame but not be additionally influencing the decision. This 
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influence could instead come from the ACC and/or OFC, which have previously been shown to both react 

more when participants make decisions incompatible to the frame, or the ACC and the amygdala, which 

interact more in this context (De Martino et al., 2006; Roiser et al., 2009). These decisions would have a 

more negative value than the frame-compatible ones. This negative versus positive evaluation is supported 

by research showing no differences in amygdala reaction to negative or positive facial expressions (Derntl 

et al., 2009; Fitzgerald et al., 2006; Winston et al., 2003), but impaired recognition of negative (fearful) 

faces in patients with bilateral amygdala lesions (Adolphs et al., 1999). This extra-amygdalar support in 

decision-making could be one explanation for the intact framing effect, yet increased gambling frequency, 

in A.M. and B.G. A second explanation is, as in the above studies, that the patients might have developed 

compensation mechanisms. (The concept of compensation in the twins is discussed in detail under section 

V.) 

Our finding that the patients gambled overall more often than the controls is consistent with previous 

research showing increased risk-taking when the amygdala is compromised. Broken down over frames, the 

patients tended to take more risks in the win frame, whereas in the loss frame both patients and controls 

were equal risk takers. This could be because UW patients have an impaired ability to learn from social 

feedback (see for example Hurlemann et al., 2010a). This is supported by previous findings that amygdala 

lesion patients act irrationally when faced with risky decision-making after feedback, for example by 

choosing an option that had previously led to a negative outcome (Brand et al., 2006; see also Hampton et 

al., 2007).  

Similarities between the patients and healthy controls, on the other hand, indicate that, as in findings 

regarding automatic relevance detection (IV.4.), patients also show signs of compensation in this 

experiment (see Section V. for further discussion). Aside from the amygdala, the ACC has been suggested 

to instruct and in turn modify decision-making circuits to make more cognitively efficient strategies 

(Botvinick, 2007). ACC activation is greater when deciding “against” the frame (De Martino et al., 2006); 

therefore, the ACC may play a role in censuring the amygdala and thus in shaping an individual’s 

willingness to choose one option over the other. In participants with a genetic variation in the 5-HT 

transporter-linked polymorphic region, causing them to be less susceptable to the effect of frame, findings 

have shown increased coupling between the ACC and amygdala (Roiser et al., 2009). Furthermore, the 

OFC correlates with deciding against the frame and shows strong coupling with the ACC (Kringelbach & 

Rolls, 2004), indicating that all three of the above areas work together to modulate the motivation towards 

certain decisions. These two regions could therefore be prime candidates in pathways for compensation 

during risky decisions.  
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V. General discussion 

The ability of the amygdala to respond to both social as well as nonsocial stimuli reflects its primary role 

as a detector of relevant stimuli. While there is a bounty of literature describing mechanisms of amygdala 

modulation in an experimental setting, there has not yet been a description of whether this modulation 

depends on a social or emotional context and if yes, why. This dissertation is an attempt to answer these 

questions through three hypotheses: 

1. The amygdala responds differently to social vs. nonsocial chemosensory stimuli. Pleasant, 
nonsocial stimuli preferentially activate the left amygdala, while unpleasant, nonsocial 
stimuli preferentially activate the right amygdala. Social stimuli tend to activate the left 
amygdala. 

2. Short-term, chemical modulation of amygdala activity is evident in a social-emotional 
context, i.e. during social-emotional experimental paradigms. This illustrates that social 
functions are dependent on the amygdala in healthy people, and these cannot be 
immediately compensated for in the event of changed amgydala function. 

3. Long term, internal amygdala modulation due to lesions can be used to illustrate 
compensation for missing amygdala function in both emotional and non-emotional 
paradigms. The level of compensation differs based on the cognitive resources needed to 
carry out the task and emotional content of the paradigm. 

Regarding the first hypothesis, a literature review of chemosensory activation of the amygdala (see III.1.) 

showed that the amygdala tended to lateralize along both social and nonsocial lines, as well as along valence 

within the nonsocial category (Patin & Pause, 2015). Of the nonsocial stimuli, pleasant stimuli activated 

the left amygdala activation, whereas unpleasant stimuli showed a response in right amygdala (Patin & 

Pause, 2015). This lends support to the theory that the right amygdala is more involved in a rapid first 

response to stimuli, and the left in a more sustained response to stimuli (Glascher & Adolphs, 2003). The 

amygdala is, among other things, responsible for sorting stimuli according to relevance and emotional 

salience (Costafreda et al., 2008) and the right and left amygdala could act independently during odor 

detection to accomplish these tasks (Brand et al., 2001). Findings showing that while efferent connections 

are found mostly from the bilateral amygdala, the left amygdala receives most afferent connections (Nigri 

et al., 2013), thus suggesting a more involved, sustained processing by the left amygdala, seem to support 

this hypothesis. The finding that social stimuli, e.g. sweat samples, also activated the left amygdala most 

likely indicates that social stimuli are processed via a secondary, separate chemosensory route, perhaps 

involving TAARs in the olfactory epithelium (Carnicelli et al., 2010; Horowitz et al., 2014; Liberles, 2009). 
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Taken together, the results from this literature review provides a basis of support for a differential 

processing of social and emotional chemosensory stimuli in the amygdala.  

For Hypothesis 2, two studies (Onur et al., 2012; Eckstein et al., 2016) were completed in order to examine 

the effect of sudden, external modulation of the amygdala in a social-emotional context. The first study 

examined smokers, in both a deprived and a satiated state, and non-smokers for amygdala response to 

emotional faces (Onur et al., 2012). We found that satiated smokers showed an amygdala response 

comparable to non-smokers, but that deprived smokers showed blunted amygdala response to fearful faces. 

This constellation of amygdala response suggests a model of nicotine withdrawal and amygdala activity: 

during times of withdrawal, reduced amygdala activation to negative stimuli would have the effect of 

removing emotional hurdles during drug-seeking and cause a smoker in withdrawal to perhaps undertake 

more risks while drug seeking. A reduced emotional evaluation of negative stimuli and increased risk-

taking could be a driving force behind relapses during attempts to quit smoking. The second study studied 

the effect of OT on Pavlovian fear conditioning (Eckstein et al., 2016). Surprisingly, we did not find 

amygdala activation. However, when looking at the data closer, we did find that the amygdala was active 

at an uncorrected level, suggesting that our lack of amygdala activation was a statistical artefact, and that 

the paradigm did evoke amygdala activity. Because we used both social (faces) and nonsocial (houses) 

stimuli, it is feasible that OT modulates the amygdala in a social fear learning context, and not in a nonsocial 

context. Both studies therefore showed that the amygdala showed the effects of a short-term reduction of 

activity in a social context.  

These two findings suggest that the amygdala plays a central, vital role to social-emotional processing. This 

could mean that too great a portion of the amygdala is dedicated to social-emotional processing, so that 

when it is altered, the rest of the amygdala cannot make up for the disruption. It could also mean that the 

amygdala plays too great a role in functionally connecting different neural regions to create a social-

emotional processing network. As the amygdala has been suggested to be a hub of processing (Pessoa, 

2008), and given that neural computation most likely rests on network and transmission between 

functionally connected regions instead of on isolated neural structures (Kennedy & Adolphs, 2012), the 

latter explanation is the more likely of the two. As is presented later in this section, the latter explanation 

also paves the way for the results of the lesion studies included in this review, which suggest functional 

compensation mechanisms in the face of a completely obliterated amygdala (see below).  

In Hypothesis 3, I address the differences in amygdala disruption due to a short- versus long-term change 

of activity. Two studies were used (Bach et al., 2011; Talmi et al., 2010), both of which included the twins 
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A.M. and B.G., who have selective, bilateral amygdala lesions. The UW twins showed similar behavioral 

patterns during the studies presented here to healthy controls, and at times a further UW patient, S.M. Both 

of the studies included here were centered on nonsocial paradigms, so it is not possible to make a direct 

comparison within the framework presented in this dissertation. In addition, the comparison between short-

term social/nonsocial differences and long-term lesion studies is difficult on a conceptual level: while 

chemical modulation provides for a sudden disruption of amygdala activity, the congenital lesions found in 

UW provide ample opportunity for compensatory mechanisms to be built along numerous neural pathways. 

Whereas the twins show no difference to controls in the emotional paradigm (Bach et al., 2011), they do 

show differences, albeit minor ones, in non-emotional cognitive domains (Talmi et al., 2010). The long-

term studies do, however, differ in emotional content, allowing for a tentative differentiation of 

compensation potential according to emotional properties. While there are paradigms which explore 

relatively pure social or emotional stimuli without a crossover between the two (e.g. Schienle et al., 2007; 

Alpers et al., 2009; see Patin & Pause, 2015 for a review), the emotional words used in the attentional blink 

paradigm here included both social and nonsocial words, including for instance “victim” or “burgler” (Bach 

et al., 2011), meaning that there would most likely be some overlap between the findings in our study and 

expected findings had we used an entirely social-emotional word set.   

The twins therefore seem to have compensated to a large degree for their amygdala lesions. Notably, the 

gambling task did reveal gaps in the twins’ performance regarding propensity to gamble (Talmi et al., 2010). 

This could be due to the tasks nature: while low-level appraisal is an extremely basic task requiring few 

resources, the decision to gamble in the face of risk is a more involved process. Therefore, it could be that 

the more basic appraisal function of the amygdala was merely better compensated for compared to the 

higher level decision task. Furthermore, the emotional role of the amygdala could be given priority over 

non-emotional functions in the allocation of resources by other neural regions during compensation, so that 

non-emotional amygdala functions are less well compensated for in long-term dysfunction.  

One point that must be mentioned, however, is that compensation mechanisms have not been consistently 

found in animal lesion models, nor have they been found in all UW patients. Animals given selective 

amygdala lesions at an early stage have shown vast disruptions in emotional reactivity (Thompson, 1981; 

Prather et al., 2001; Bauman et al., 2004a, b; Bliss-Moreau et al., 2011 Amaral et al., 2003; Raper et al., 

2013) and HPA axis functioning (Raper et al., 2013). On the other hand, amygdala lesions given later in 

life have resulted in monkeys showing fewer deficits than their counterparts with early lesions (Amaral et 

al., 2003). UW patients, too, have shown strong amygdala deficits, including symptoms similar to Kluver-

Bucy syndrome (Emsley & Paster, 1985; Kleinert et al., 1987). The twins, A.M. and B.G., have also 
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illustrated that they differ in their levels of compensation, with A.M. showing a higher level of 

compensation in a fear processing experiment than her sister (Becker et al., 2012).  

One explanation is that the time of the lesion seems to play a role, in that if the lesion occurs during a period 

of high developmental vulnerability, behavioral effects could be more likely to develop (Raper et al., 2013). 

The other explanation depends on the concept of degeneracy (discussed above in III.4.). Because there is 

such large variation between subjects and between functional capabilities of unaffected neural regions, there 

will necessarily be variation in behavioral signs of the same type of lesion between patients (Price & Friston, 

2002). This would explain why, even though the twins performed relatively normally compared to healthy 

controls in the tasks and neuropsychological profiles here, and even though they lead relatively average 

family lives, there are still missing parts not compensated for, such as their propensity to gamble in the 

framing task (Talmi et al., 2010). Because the framing effect was intact, the results of the study indicate 

that the twins’ evaluation of the potential win or loss took place in the same framework as the healthy 

controls – they just differed on their decision on what action to take based on this evaluation, specifically 

whether to gamble or not.  

Any compensatory mechanisms employed by the patients, therefore, might not fully developed and are still 

being formed. This could also, however, indicate that compensation involves a pathway separate from the 

network which modulates cognitive processes supported by the amygdala in a healthy person, and therefore 

involves regions that will remain only partly able to compensate. One possible route for compensation could 

involve the pulvinar, superior colliculus, and visual cortex regions, as these share rich connectivity to the 

amygdala and are crucial to emotional processing and relevance detection (Pessoa & Adolphs, 2010; Morris 

et al., 1998). Some authors suggest that the mirror neuron network could also be a site important for neural 

compensation (Becker et al., 2012).   

Interestingly, one of the most consistently found gaps in the twins’, and indeed in other UW patients’ 

profiles (see for instance III.4.), concerns fear or threat processing, which one would expect to be a basic 

need for survival. An abnormally high willingness to step into potentially dangerous situations, for instance 

when faced with threatening persons (Bach et al., 2015; Becker et al., 2012; Harrison et al., 2015; Mihov 

et al., 2013), can be overcome in the real world by developing cognitive avoidance strategies, including 

those given down via parental guidelines. In a safe lab environment, such cognitive strategies would not 

come into play. This could explain why such a seemingly important instinct as fear appears to be less 

compensated than other areas, as it has been consistently found to be lacking in the twins and other UW 

patients.   
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Concluding remarks 

To conclude, this dissertation has set out to provide an empirical basis for amygdala response to social 

versus nonsocial stimuli following immediate and long-term modulation. I have shown that the amygdala 

is highly relevant to processing both social and nonsocial chemosensory stimuli along different neural 

pathways, reflecting two evolutionarily separate but related systems. Second, I have shown that the role of 

the amygdala in social-emotional settings cannot be compensated for in the event of a sudden disruption. 

Finally, long-term amygdala disruption, on the other hand, does provide the opportunity to compensate for 

missing amygdala function in emotional processing, even though amygdala functions are not completely 

normalized.    
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