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Deutsche Zusammenfassung 
 

Krebs ist eine komplexe Krankheit, die durch eine maligne Transformation von Zellen 

verschiedensten Ursprungs entsteht. Krebs verursacht etwa 13% aller Todesfälle 

weltweit pro Jahr. Die entscheidenden molekularen Veränderungen, die einen Tumor 

auslösen können, sind zwischen Tumoren aus verschiedenen Geweben sehr 

unterschiedlich. Die molekularen Veränderungen sind unter anderem chromosomale 

Verkürzungen, Punktmutationen, abnormale DNA-Methylierungsmuster, Gen-

Verlust/Duplizierung oder abnormale Expressions-Profile von RNAs oder Proteinen. 

Die betroffenen Gene gehören überwiegend zu den sogenannten Onkogenen und 

Tumorsuppressoren, deren Funktionen alle Ebenen der Genregulation betreffen, von 

transkriptioneller Kontrolle und posttranskriptioneller Regulation bis zu 

translationaler Kontrolle. Die vorliegende Doktorarbeit beschäftigt sich dabei 

ausschließlich mit der Analyse von posttranskriptioneller Genregulation in Tumoren, 

welche überwiegend durch RNA-bindende Protein (RBPs) und nicht-kodierende RNAs 

beeinflusst wird. Allerdings erschwert das komplexe Zusammenspiel dieser 

verschiedenen Regulationsebenen eine genomweite Vorhersage für entscheidende 

genomische Abnormalitäten. Daher ist eine Datenintegration von Datensätzen, die 

verschiedene Ebenen der Genregulation analysieren, von entscheidender Bedeutung 

um tiefere Einblicke in die Tumor-Biologie zu erhalten. 

In den letzten Jahren haben Verbesserungen in Sequenziertechnologien 

weitreichendere Analysen ermöglicht. Die Sequenziertechnologien der sogenannten 

nächsten Generation ermöglichen so heute genomweite Vorhersagen für Mutationen, 

transkriptomweite Charakterisierung von Expressionsprofilen, genomweite 

Identifikation von RNA-Bindestellen eines RBPs und vieles mehr. Diese Doktorarbeit 

beschäftigt sich mit Verbesserungen für die computergestützte Analyse von 

„photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation“ 

(PAR-CLIP) Daten, welche das gebundene „RNA-Netzwerk“ eines RBPs erfassen können. 

Diese Arbeit beinhaltet zudem die Analyse von RNA-Sequenzdaten (RNA-Seq) für 
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kodierende und nicht-kodierende Gene und die Integration von PAR-CLIP und RNA-Seq 

Daten zur Verknüpfung der verschienenen Ebenen der Genregulation. Die Modifikation 

des Sequenzier-Read Aligners BWA (Burrows-Wheeler Aligner) für die hier entwickelte 

PAR-CLIP analyzer suite (PARA-suite) ist speziell für die Datenauswertung von PAR-

CLIP konzipiert. Der modifizierte Algorithmus der PARA-suite bezieht ein empirisch 

ermitteltes Fehlerprofil in das Alignment mit ein, um PAR-CLIP spezifische Nukleotid-

Konversionen im Alignmentprozess besser zu berücksichtigen. Die PARA-suite konnte 

damit die Detektion von RNA-Bindestellen für RBPs aus PAR-CLIP Daten entscheidend 

verbessern. 

Die PARA-suite wurde zur Analyse eines AGO-PAR-CLIP Experimentes im Rahmen des 

International Cancer Genome Consortium Project “Determining Molecular Mechanisms 

in Malignant Lymphoma by Sequencing” (ICGC MMML-Seq) verwendet. Dadurch 

konnten gebundene mRNAs von AGO2, einem Protein des sogenannten „RNA-induced 

silencing complex“ (RISC), identifiziert werden. Das RISC ist entscheidend für miRNA-

induzierte posttranskriptionelle Genregulation. Durch dieses Projekt konnten 

posttranskriptionelle Regulationen durch miRNAs erkannt werden, dessen Ziel-mRNAs 

zuvor bereits in verschiedenen Lymphom-Typen mit der Tumorgenese assoziiert 

wurden. Die weitere RNA-Sequenzierung einer großen Kohorte an Lymphom-Patienten 

ermöglichte die Erkennung differentiell exprimierter miRNAs und mRNAs. Durch die 

Kombination all dieser Informationsebenen konnten negative Expressions-

Korrelationen zwischen den verifizierten miRNA-mRNA Regulationspaaren erkannt 

werden, welche relevant für die Tumorentwicklung sind. 

Diese Arbeit beschäftige sich zudem mit der differenzierenden Analyse von T Zell 

akuter lymphoblastischer Leukämie (T-ALL) in Neugeborenen im Vergleich zu 

jugendlichen Patienten. Basierend auf RNA-Sequenz Daten für kodierende und nicht-

kodierende Gene konnten negative Expressions-Korrelationen zwischen miRNA-mRNA 

Paaren erkannt werden. Diese zeigten ebenso die Bedeutung von epigenetischen 

Regulationen von Onkogenen und Tumorsuppressoren in T-ALL auf. 
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Summary 
 

Cancer is a complex disease that arises from malignant transformations of cells from 

various origins. It is one of the leading causes for deaths and accounts for 

approximately 13% of all deaths per year world-wide. The driving molecular 

dysfunctions leading to tumors are diverse and vary among tumors originating from 

different tissues. These driving dysfunctions include amongst others chromosomal 

shortenings, point mutations, aberrant DNA methylation patterns, gene gains and losses 

or aberrant expression profiles of RNAs and proteins. The affected genes mainly belong 

to the classes of oncogenes and tumor suppressors. Their functions include all levels of 

gene regulation, from transcriptional control and posttranscriptional regulation to 

translational control. This thesis focuses on posttranscriptional gene regulation in 

cancer, which is mainly mediated by RNA-binding proteins (RBPs) and non-coding 

RNAs. However, the complex interplay between these regulators makes it difficult to 

predict the consequences of driving aberrations (i.e. affected oncogenes or tumor 

suppressors). Thus data integration of datasets analyzing different levels of regulation 

is important for gaining deeper insights into tumor biology. 

During recent years, the rapid advances in sequencing technologies and its diverse 

applications enabled a wide range of analyses. Next-generation sequencing is nowadays 

available for the genome-wide identification of mutations, for the transcriptome-wide 

characterization of expression profiles, the genome-wide identification of RNA binding 

sites for RPBs and much more. This thesis deals with the improvement of 

computational methods for photoactivatable ribonucleoside-enhanced crosslinking and 

immunoprecipitation (PAR-CLIP) data analysis, which reveals the bound “RNA 

network” of a given RBP. The second part focuses on the analysis of RNA sequencing 

expression data (RNA-Seq) from coding and non-coding genes and the integration of 

PAR-CLIP and RNA-Seq data, which identified connections between the different 

regulatory levels. A modification of the sequencing read aligner BWA (Burrows-

Wheeler Aligner) specific for PAR-CLIP data, was implemented in the here described 
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PAR-CLIP analyzer suite (PARA-suite). The modified algorithm takes an empirical error 

profile into account to accommodate for PAR-CLIP specific nucleotide conversions. The 

PARA-suite obtained a higher accuracy than other read aligners in the detection of RNA-

binding sites on the basis of simulated PAR-CLIP data. 

The PARA-suite was applied to an AGO-PAR-CLIP dataset obtained within a project of 

the International Cancer Genome Consortium Project “Determining Molecular 

Mechanisms in Malignant Lymphoma by Sequencing” (ICGC MMML-Seq). This analysis 

revealed mRNAs targeted by AGO2, which is a core member of the RNA-induced 

silencing complex (RISC). The RISC is important for miRNA-mediated 

posttranscriptional gene regulation. Thereby, mRNA targets were identified that were 

specifically regulated by miRNAs and were recently associated with lymphomagenesis 

of different lymphoma subtypes. Further RNA-Seq analysis of a large cohort of 

lymphoma patients revealed differentially expressed miRNAs and mRNAs between 

heterogeneous lymphoma subtypes. The RNA-Seq results were combined with the 

miRNA-mRNA interaction pairs from the AGO-PAR-CLIP results. This enabled the 

calculation of negative expression correlations between the differentially expressed 

miRNAs and mRNAs on the basis of the RNA-Seq expression data. This approach 

identified lymphoma relevant miRNA-mRNA correlation pairs.  

This thesis also includes a differential analysis of infant T-cell acute lymphoblastic 

leukemia (T-ALL) in comparison to incidences during childhood. On the basis of RNA-

Seq data for coding and non-coding genes, negative correlations of miRNA-mRNA 

expressions were measured between the two cohorts. This analysis revealed important 

epigenetic regulations of oncogenes and tumor suppressors in T-ALL. 
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List of abbreviations 
 

Molecular biology 

CLIP   Crosslinking and immunoprecipitation 

DNA   Deoxyribonucleic acid 

HITS-CLIP High-throughput sequencing of RNA isolated by crosslinking 

immunoprecipitation 

miRNA  microRNA 

mRNA   Messenger RNA 

ncRNA   Non-coding RNA 

PAR-CLIP Photoactivatable ribonucleoside-enhanced crosslinking and 

immunoprecipitation 

qRT-PCR  Quantitative real-time polymerase chain reaction 

RBP   RNA-binding protein 

RNA   Ribonucleic acid 

RNA-Seq  RNA sequencing 

T–C conversion Thymidine to cytidine conversions 

UV light  Ultra-violet light 

 

Bioinformatics tools 

BWA   Burrows-Wheeler Aligner 

FM index  Ferragina and Manzini index 

PARalyzer  PAR-CLIP data analyzer 

PARA-suite  PAR-CLIP analyzer suite 

PSSM   Positions specific scoring matrix 
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Cancer subtypes 

ALL   Acute lymphoblastic leukemia 

BL   Burkitt’s lymphoma 

DLBCL   Diffuse large B-cell lymphoma 

FL   Follicular lymphoma 

NHL   Non-Hodgkin lymphoma 

T-ALL   T-cell acute lymphoblastic leukemia 

iT-ALL   Infant T-cell acute lymphoblastic leukemia 

 

Genes 

AGO2   Argonaute-2 

BRCA1/BRCA2 Breast cancer 1/2 

HER2   Human epidermal growth factor receptor 2 

MYC   Myelocytomatosis 

RAS family  Retrovirus-associated DNA sequences family   

RB   Retinoblastoma 

 

Miscellaneous 

ICGC MMML-Seq International Cancer Genome Consortium Project “Determining 

Molecular Mechanisms in Malignant Lymphoma by Sequencing” 

UCSC   University of California, Santa Cruz 
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1 Introduction 
 

1.1 Cancer 

 

Cancer is a complex disease that is influenced by many factors, including the 

individual’s genetic background, endogenous and environmental factors. In addition to 

the inherited genomic alterations that are advantageous for tumor formation, further 

mutations are acquired and accumulate during lifetime. On the one hand, these 

mutations are caused by endogenous factors such as reactive oxygen species. On the 

other hand, environmental factors that cause genetic mutations include UV irradiation 

(e.g. sun exposure), radiation (e.g. X-rays), genotoxic agents (e.g. smoking) and many 

more. In conjunction, such accumulated genetic alterations create an instable genome 

that is predisposed to certain diseases including cancer (Friedberg, McDaniel et al. 

2004).  

 

DNA damage, genetic mutations and genome instability 

The term genome stability describes the cell’s ability to perform its normal function 

through a healthy genome. Genetic mutations and DNA damage, however, can disrupt 

the regular functionality in diverse ways, leading to cells that may be defective in 

controlled DNA replication and transcription. The accumulation of several crucial 

genomic alterations is termed genome instability (Hoeijmakers 2001). This particular 

state describes the cell’s inability to react to external growth factors and other signals 

and thus its ability to proliferate uncontrolled. Genomic alterations may be introduced 

in different ways and are approximately divided into two types:  

a) DNA damage describes the structural or physical damage of a particular DNA 

strand, which can be identified and repaired by enzymes. 

b) Genetic mutations, which are encoded on both strands, cannot be recognized 

or repaired by enzymes. 
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DNA damage includes the chemical change of a particular base (e.g. by UV-B light 

causing thymidine dimers) and single- or double-strand breaks. The latter can lead to 

shortened chromosomes, the so-called chromosome abbreviations, or even to genomic 

translocations, which is the joining of two different chromosomes (De Bont and Van 

Larebeke 2004, Jackson and Bartek 2009). Single-strand and double-strand breaks 

resulting in chromosome abbreviations and genomic translocations in general have a 

more profound impact on the cellular integrity and are often linked to certain diseases. 

This is due to the fact that such aberrations affect multiple genes at once. But chemical 

modifications of certain bases might not be at all or be falsely repaired and can thus 

result in genetic mutations on both strands. A genetic mutation is irreversible and is 

passed on to the next generation by cell division subsequently affecting an entire 

population of cells. Genetic mutations include nucleotide exchanges and short 

insertions or deletions (together called indels) of usually a few nucleotides. They can 

also affect genes and may change the encoded protein, either by amino-acid exchanges 

or even by a truncation or elongation due to affected stop codons. Mutations can either 

be classified as somatic (not passed on to offspring) or germline. If a mutation further 

becomes present in an entire subpopulation, it is called a single nucleotide 

polymorphism (SNP). SNPs are curated in publicly available databases (e.g. 1000 

genomes (GenomesProjectConsortium 2015) or HapMap (GenomesProjectConsortium 

2012)).  

 

Due to accumulations of DNA errors, the downstream effects in cells might be even 

more disruptive. By defects of the DNA repair or DNA replication machinery, further 

errors can accumulate much faster. A defective DNA replication might result in 

aneuploidy, which is an aberrant copy-number of an entire chromosome. This has 

drastic effects on the transcription of all genes encoded on the affected chromosomes 

(Rowley 1998, Bergsagel and Kuehl 2001, Greaves and Wiemels 2003). The aberrant 

transcription caused by genome instability in general has a profound impact on tumor 

formation and was recently classified as one of the hallmarks of cancer (Hanahan and 

Weinberg 2011). But DNA errors can also alter the encoded protein function, for 
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instance making proteins unable to bind their specific ligands or rendering them 

constitutively active. The hallmarks of cancer include six important features, as first 

postulated by Hannahan and Weinberg (Figure 1): 

 Sustaining proliferation signals 

 Evading growth suppressor signals 

 Resisting cell death signals 

 Enabling replicative immortality 

 Inducing angiogenesis 

 Activating invasion and metastasis 

 

 

 

Figure 1: Steps from DNA errors to genomic instability to tumor formation, including 

the hallmarks of cancer as proposed by Hannahan and Weinberg (Hanahan and 

Weinberg 2000, Hanahan and Weinberg 2011). 
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In healthy cells, the aforementioned cellular functions contributing to genome stability 

are controlled by a few crucial genes, the so called proto-oncogenes and tumor 

suppressors. If these are affected by DNA errors, leading to aberrant expressions or 

altered protein functions, the cells become predisposed to cancer. 

 

Oncogenes and tumor suppressors 

The two types of genes generally related to cancer, the oncogenes and tumor 

suppressors, are extensively reviewed in (Weinberg 2013). On the one hand, oncogenes 

are genes, which support tumor formation upon „activation“, due to an aberrant high 

expression or mutation. In most (if not all) cases, a single aberrant allele of a proto-

oncogene (the natural precursor of an oncogene) is sufficient for its enhancing impact 

on tumor formation. Upon activation, they contribute to a more instable genome. Most 

proto-oncogenes are related to cellular growth or differentiation, for example 

HRAS/KRAS (Bos 1989) or MYC (Nesbit, Tersak et al. 1999). The proto-oncogene MYC is 

tightly controlled by extracellular signals and is frequently turned on and off, either 

being expressed or repressed in healthy cells. It is an important regulator of cell growth 

and proliferation. However, the aberrant and constitutive high expression of its 

oncogenic form escaping any mitogenic growth signals is associated with tumor 

formation. Thus this oncogene specifically drives uncontrolled cell proliferation and the 

predisposition can be identified by RNA-Seq expression analysis (Weinberg 2013). The 

RAS family members are turned into oncogenes by a single point mutation. 

Interestingly, many investigated cancers (up to 20%) showed the same point mutation 

in KRAS, which led to an amino-acid exchange in the encoded protein (Weinberg 2013).  

 

Tumor suppressors on the other hand are genes that inhibit malignant cell 

development and are usually inactivated in both alleles in tumors. These mutations are 

often considered loss of function mutations or result in a profound reduction of the 

gene’s expression. Tumor suppressors are often classified as cell cycle regulators or 

apoptosis regulators, making them important gatekeepers within cells. In addition, so-

called caretaker genes related to DNA maintenance also have a suppressive role in 
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tumor formation (not discussed here). A prominent example for a tumor suppressor is 

the gene RB, which was first described in the 1980s (Weinberg 1995). The recessive 

phenotype of the oncogenic form requires both alleles to be knocked out to result in the 

formation of a retinoblastoma. Thus, an inherited genetic mutation in RB represents a 

predisposition for retinoblastomas.  

Due to DNA lesions in these two classes of genes, tumor cells often gain an 

advantageous proliferation status and can divide uncontrolled, displacing healthy cells 

in the respective tissue (Hanahan and Weinberg 2000). Many therapeutic drugs target 

oncogenes to repress their activity or tumor suppressors to restore their natural 

function (Dietlein, Thelen et al. 2014). However, both oncogenes and tumor 

suppressors are oftentimes mutated simultaneously in a single tumor entity, making 

targeted therapy more complicated. 

 

Cancer diagnostics and therapy 

The early diagnosis of a tumor is crucial for prognosis and patient outcome. The exact 

diagnosis of the specific subtype has a profound impact on the treatment decision 

(Anderson, Schwab et al. 2014). Thus so called biomarkers that can be assayed at best 

from non-invasively collected biofluids (e.g. blood) are biologically measurable 

indicators defining a particular state of cancer in a patient (Henry and Hayes 2012). 

This includes DNA alterations (e.g. mutations or translocations) and specifically 

expressed non-coding RNAs, proteins or hormones. Prominent examples are certain 

BRCA1 and BRCA2 mutations in breast and ovarian cancers, as well as a BCR-ABL 

translocation that is often found in chronic myeloid leukemia or HER2 overexpressing 

breast cancers. In medicine, biomarkers for tumors are roughly used in the following 

ways according to Henry and Hayes (Henry and Hayes 2012): 

 Predicting risk of developing cancer (i.e. predisposition) 

 Improving diagnostics/prognostics 

 Predicting aggressiveness of the tumor and patient outcome 

 Predicting treatment response 

 Monitoring relapse and treatment response in metastases 
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For example, the aberrant high expression of HER2 in breast cancer is a sign for a very 

aggressive form of the tumor. It is expressed in about 15-30% of all breast cancers and 

patients suffering from HER2 overexpressing breast cancers usually have a very poor 

prognosis and an increased rate of relapse (Slamon, Leyland-Jones et al. 2001). Many 

biomarkers are already used to adjust treatment options for individual patients. In the 

case of HER2 overexpressing breast cancers, specific HER2 antibodies are available to 

treat HER2 overexpressing breast cancers (Slamon, Leyland-Jones et al. 2001).  

 

The most basic treatment options for cancers are surgery, radiotherapy and 

chemotherapy. Oftentimes a combined treatment is applied, e.g. a surgical removal of 

the tumor mass followed by radiotherapy or chemotherapy. This is called an adjuvant 

therapy, in which ensuing treatment helps killing the remainder of the tumor cells. 

Nowadays, more selective treatment options have become available, due to the 

identification of precise biomarkers. These for example include the aforementioned 

anti-HER2 therapy specifically for HER2 overexpressing breast cancers. However, 

distinction between cancer subtypes remains difficult due to a lack of precise 

biomarkers for diagnostics and treatment options. This is especially a problem for 

tumors, which were recently (or still are today) classified only on the basis of their 

morphological appearance, because this does not reveal genetic and epigenetic 

differences that might have an impact on prognostics and treatment (Quackenbush 

2006). Thus the genome-wide identification of mutations and aberrant expression 

patterns of certain genes by next-generation sequencing is important for precise 

biomarker determination. Also, although many cancer biomarkers are known, reagents 

specifically targeting those biomolecular lesions are still not available in many cases 

(Hamburg and Collins 2010). The complex interplay between the genetic lesions makes 

it difficult to identify such reagents or drugs. Clinical trials furthermore suffer from long 

periods until the drugs are approved for clinical use. 
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1.1.1 Non-Hodgkin lymphomas 

 

Lymphomas in general are heterogenic lymphoid neoplasms, and, depending on the 

affected cell type, their molecular and phenotypic appearance differs. Classifications of 

different lymphomas are made on morphologic as well as immunophenotypic features 

(based on the World Health Organization (WHO) classifications). However, due to the 

heterogeneity of this disease, certain diagnostic features are shared between distinct 

lymphoma subgroups, making a classification sometimes difficult. Hence, further 

biomarkers separating lymphoma subgroups are required to improve diagnostics, 

therapeutics and thereby patient outcome. 

Non-Hodgkin lymphomas (NHLs) are a specific subgroup of lymphomas and may affect 

different cell types. B-cell NHLs occur during different stages of B-cell development and 

account for approximately 85% of all NHLs in the USA (WHO 2008). According to the 

WHO classification, NHLs are further classified into Burkitt’s lymphoma (BL), diffuse 

large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and many more. 

Approximately one out of three NHL cases is classified as a DLBCL, which makes it the 

most common subtype. DLBCLs are classified according to their morphological 

appearance, which does not account for the two distinct subtypes, namely germinal 

center B-cell like (GCB) and activated B-cell like (ABC). Newer approaches now 

identified these subtypes to be molecularly heterogenic, because of different cells of 

origin (Alizadeh, Eisen et al. 2000). BL in contrast is a rare NHL subtype accounting for 

1-2% of all lymphomas in the USA in adults. In developed countries, BL is usually not 

caused by an Epstein-Barr viral infection but occurs spontaneously. As mentioned 

before, an aberrant high expression of the tumor suppressor MYC is frequently 

observed among different cancers and was shown to be important in many BLs. Also, 

the miRNAs hsa-let-7a (Metzler, Wilda et al. 2004) and hsa-miR-155 (Sampson, Rong et 

al. 2007) are associated with BL, but transcriptome-wide predictions for important 

miRNAs are still missing. Besides all these facts, differences in aggressiveness and 

responses to treatment call for additional biomarkers molecularly separating NHL 

subtypes (Campo, Swerdlow et al. 2011, Sinha, Nastoupil et al. 2012). Especially, a 
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clinical significance for oncogenic or tumor suppressive microRNAs (miRNAs) in BLs, 

DLBCLs and FLs has not been shown yet. A miRNA expression classifier might represent 

another accurate tool for discriminating the NHL subtypes on an epigenetic level rather 

than on morphology. 

 

1.1.2 T-cell acute lymphoblastic leukemia 

 

Acute lymphoblastic leukemia (ALL) is a malignant disease of the hematopoietic system 

and accounts for approximately one out of three cancers in children, the most frequent 

cancer during childhood. Patient outcome is high for ALL patients older than 1 year 

showing a 5-year event-free survival of about 80% (Pui, Carroll et al. 2011). However, 

ALL in infants (age 0-1 year) is associated with a high rate of treatment failure of 

around 60% (Hilden, Dinndorf et al. 2006). ALL can arise from B- and T-cells, with T-

cell ALL (T-ALL) accounting for only 10-15% of all ALL cases (Goldberg, Silverman et al. 

2003). T-ALL in general is a more aggressive disease compared to B-ALL and classified 

as high risk (Mansur, Delft et al. 2015). Recently, the worse outcome of incidences 

during infancy than in older patients was particularly shown for T-ALL (Mansur, Delft et 

al. 2015). Thus it remains unclear whether infant T-ALL (iT-ALL) is a molecularly 

different disease than T-ALL in older patients. 

 

1.2 Posttranscriptional gene regulation 

 

Gene expression in its widest sense is the flow of genetic information within cells. It is 

regulated on different levels, from transcriptional regulation, posttranscriptional 

regulation to posttranslational regulation. Detailed reviews on the different regulatory 

levels are given in (Nestler and Hyman 2002, Jackson, Hellen et al. 2010, Coulon, Chow 

et al. 2013). Upon transcription of a gene, the transcribed RNA is a target of many 

regulators until it is finally processed to perform its action. This work focuses on 

posttranscriptional gene regulation, which generally includes splicing, transportation, 
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editing, translational control and more. Some of the regulators, which are relevant for 

this thesis, are outlined in more detail below. 

 

1.2.1 RNA-binding proteins 

 

Part of this thesis is a detailed review of RNA-binding proteins (RBPs) and experimental 

as well as bioinformatic methods to elucidate protein-RNA interactions (Kloetgen, 

Münch et al. 2015). RBPs have many functional roles from splicing, transportation, 

modification, degradation to translation of transcribed RNAs (Glisovic, Bachorik et al. 

2008). They provide additional genome diversity by alternative splicing and 

modification (e.g. RNA editing), which increases the number of translated proteins from 

a single gene locus. Binding of RBPs to RNAs is either dependent on the sequence 

composition and/or the secondary structure of the respective RNA or happens 

unselectively (Gupta and Gribskov 2011).  

Because of their wide range of activities, it is not surprising that many RBPs have 

functional roles in diseases including cancer. An example for an oncogenic RBP is FUS, 

which is affected by genomic rearrangements mainly in sarcomas and leukemias 

(Ichikawa, Shimizu et al. 1994, Singer, Socci et al. 2007). In addition, two different 

mutations within its RNA-binding domain, which alter the preferred RNA binding motif, 

were reported to cause amyotrophic lateral sclerosis (Kwiatkowski, Bosco et al. 2009, 

Vance, Rogelj et al. 2009). 

The information about the RNA network in which a particular RBP operates is 

important to understand its cellular functions. To identify the RNA binding network and 

a potential binding sequence pattern of a given RBP, multiple experimental protocols 

were established. These include SELEX, RIP-CHIP (nowadays also termed RIP-Seq), and 

several crosslinking and immunoprecipation (CLIP) protocols. This thesis focuses on 

CLIP methods and their data analysis. A detailed description of a specific CLIP method 

and its pitfalls in data analysis can be found in Sections 1.3 and 1.4.2.  
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1.2.2 microRNAs 

 

Another group of posttranscriptional gene regulators are the so-called microRNAs 

(miRNAs), which belong to the class of non-coding RNAs (ncRNAs), reviewed in 

(Barrett, Fletcher et al. 2012). The transcribed pri-miRNA is a double-stranded RNA of 

length roughly between 500 and 3000bp. In short, the pri-miRNA is processed by 

different RPBs (e.g. DGCR8 and DICER1) in the nucleus and forms a 70-80bp long pre-

miRNA (Denli, Tops et al. 2004). After transport into the cytoplasm by exportin-5, the 

pre-miRNA is further processed and the mature miRNA is excised. The mature miRNA, 

located in the cytoplasm, is a single-stranded RNA usually of a length around 18-23 

bases and acts as a posttranscriptional gene regulator (Lee, Jeon et al. 2002). The 

miRNA-mediated regulation is carried out within the RNA-induced silencing complex 

(RISC), which consists of different members of the AGO protein family (also RBPs) and 

miRNAs. The mature miRNAs are non-specifically bound by AGO and further proteins to 

form a miRNA-containing ribonucleoprotein complex. In mammals, brought together by 

the RISC, miRNA seed regions (i.e. positions 2-8) are complementary binding to mRNAs, 

which are subsequently destabilized. This often results in the degradation of the 

respective mRNA. There is no evidence yet for a translational inhibition of the targeted 

mRNAs as reported for other species than mammals. The preferred binding site of 

miRNAs lies within the 3’ untranslated region (3’ UTR) of the respective mRNAs, but 

targets in coding regions are also reported, albeit less frequently (Holoch and Moazed 

2015). A curated database of annotated miRNAs is miRBase (Kozomara and Griffiths-

Jones 2010), which lists 2,588 mature human miRNAs in its current release (V21). 

Apart from curated databases for mRNA targets of certain miRNAs (e.g. miRTarBase 

(Chou, Chang et al. 2015)), bioinformatic tools were developed for the prediction of 

potential miRNA binding sites in coding genes. This includes the most prominent 

algorithms miRanda (Enright, John et al. 2004) and TargetScan (Garcia, Baek et al. 

2011). The algorithms of these tools are mainly based on identifying sequence 

complementarity between the miRNA seed region and the 3’ UTR of an mRNA.  
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Not only coding genes can act as oncogenes or tumor suppressors, but also non-coding 

RNAs, such as miRNAs, can cause driving changes to genome stability upon genetic 

alterations (Chen 2005, Farazi, Spitzer et al. 2011). The analysis for driving mutations 

should thus not be limited to coding genes, but be extended to ncRNAs by genome-wide 

classifications of cancer-relevant ncRNAs. The dysregulation of miRNAs might be 

another diagnostic tool for the classification of cancer. Based on either their up- or 

downregulation in certain cancers, they are considered oncogenes or tumor 

suppressors, respectively. For example, the hsa-miR-17-92 cluster was reported as 

oncogenic in lymphoproliferative disorders, because of its high upregulation in MYC-

driven B-cell lymphomas (He, Thomson et al. 2005, Xiao, Srinivasan et al. 2008). As for 

coding tumor suppressors and oncogenes, miRNAs were also considered as biomarkers 

and therapeutic targets in specific tumors. Hence, many studies also focused on defining 

miRNA expression classifiers acting as biomarkers for certain cancers (Lu, Getz et al. 

2005). For example, miRNAs enabled the accurate classification of non-small cell lung 

carcinomas in 95% of the tested cases (Bishop, Benjamin et al. 2010). Also, a classifier 

containing 15 miRNAs revealed better prognostic power for squamous cell carcinoma 

with an accuracy of approximately 78% than an expression signature containing 50 

genes (Raponi, Dossey et al. 2009).  

 

1.3 Biological background of RNA sequencing and PAR-CLIP 

 

Experimental background of RNA sequencing 

Recent progress in sequencing technologies enabled high-throughput analyses of a 

cell’s expressed transcriptome (known as RNA-Seq). The resulting sequencing reads are 

each representing parts of an RNA molecule expressed in the biological sample. RNA-

Seq overcomes many disadvantages of previous methods, such as microarray or qRT-

PCR based studies. RNA-Seq includes, besides the large-scale assessments of expression 

levels, the analysis of unknown and unannotated transcripts (Necsulea and Kaessmann 

2014). Many companies provide sequencing machines and protocols that highly differ 

in sample preparation and the sequencing procedure. This thesis is only based on 
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sequencing data obtained from an Illumina HiSeq 2500 machine and its respective 

protocols. Sequencing with the Illumina platform was reviewed in detail in (Metzker 

2010). Further prominent platforms include PacBio, 454 and IonTorrent. 

 

Experimental background of PAR-CLIP 

The identification of the RNA network in which a certain RBP operates is important to 

understand its cellular functions. A promising method for the genome-wide 

identification of RNA binding sites of a given RBP is called photoactivatable 

ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). A detailed 

review on PAR-CLIP and a comparison to similar methods as well as a discussion of a 

common analysis pipelines and its pitfalls is part of this thesis (Kloetgen, Münch et al. 

2015). Experimentally, cells are supplied with 4-thiouridine (4-SU), which replaces the 

natural uridine to a certain extent during transcription (Figure 2). Further photo-

reactive nucleosides are also available, such as 6-thioguanine (6-TG). Next, cells are 

irradiated with UV light at 365nm to crosslink amino acids of the RBP with nucleotides 

of the bound RNAs. The RBP of interest is then immunoprecipitated and digested with 

proteinase K. The remaining RNA is thought to represent the bound RNAs of the 

immunoprecipitated RBP. During reverse transcription of the purified RNAs, which is a 

necessary step for sequencing, all crosslinked 4-SUs result in a conversion to a cytidine 

on sequence level. This conversion is called a “T–C conversion”. Contaminations with 

unbound but highly abundant RNA fragments commonly happen. The reads resulting 

from contaminations do not contain T–C conversions (except for rare sequencing 

errors), so these specific conversions can be used to identify specifically bound RNAs. 
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Figure 2: Experimental steps of PAR-CLIP. This Figure is taken from (Kloetgen, Münch 

et al. 2015) without any modification. 

 

PAR-CLIP analysis used to reveal miRNA-mRNA interactions  

Common miRNA-mRNA correlation analyses are based on curated or computationally 

predicted miRNA-mRNA pairs or its functions, which are oftentimes reported 

independently of the respective cell type or tissue (Eisenberg, Eran et al. 2007, Wang 

and Li 2009, Gutiérrez, Sarasquete et al. 2010). The computational target predictions 

are often only based on sequence complementarity between the miRNA seed region and 

any region in the 3’ UTR of a coding gene, irrespective of further effectors such as 
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secondary RNA structures. This can lead to large numbers of 1,828,274 (in the case of 

miRDB (Wong and Wang 2014)) or 1,264,046 (in the case of TarBase (Vergoulis, 

Vlachos et al. 2012)) for predicted human miRNA-mRNA pairs. Although expression 

correlation scores obtained from sequencing data might identify a real miRNA-mRNA 

interaction on the basis of the potential interactions, many other posttranscriptional 

mechanisms might explain the expression level changes of the respective miRNA and 

mRNA. Therefore, the disadvantage of the common approach is that the databases often 

lack experimental validity as well as information about cell type and tissue. But recent 

applications of PAR-CLIP to the AGO2 protein, the most frequent member of the RISC, 

revealed physical miRNA-mRNA interaction pairs on a genome-wide scale (Hafner, 

Landthaler et al. 2010, Farazi, Ten Hoeve et al. 2014). This approach identified both, the 

potential of miRNA-binding by sequence complementarity to mRNAs, and the physical 

interaction of the respective mRNA with the RISC. Thus this experiment represents a 

genome-wide analysis of experimentally validated miRNA-targeted mRNAs for a certain 

cell type. 

 

1.4 Bioinformatic analysis of sequencing data 

1.4.1 Sample pipeline for RNA-Seq data processing 

 

Commonly, the first step of analyzing sequencing reads is the removal of adapter 

sequences and low quality ends (Figure 3). Adapters are short RNA fragments, which 

were ligated to the bound RNA fragment for sequencing purposes. Low quality ends 

occur on both sides of the reads and often relate to wrongly called bases by the 

sequencer. Different algorithms are available for removing adapters and low quality 

ends, e.g. cutadapt (Martin 2011) or trimmomatic (Bolger, Lohse et al. 2014). Then, the 

remainder of the reads can be either aligned against an existing reference genome 

sequence or newly assembled to reconstruct the expressed genes on the basis of the 

obtained sequencing reads. As this thesis only deals with human data for which a 

reference sequence is available (GRCh38 is the most recent human genome sequence 
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release (Yates, Akanni et al. 2016)), only sequencing read alignment against a genome 

sequence is discussed. Depending on the properties of the reads, different read 

alignment algorithms are available to identify the origin of a particular read within a 

reference genome sequence. A wide range of properties affects the read alignment 

process. Compared to DNA-Seq, RNA-Seq reads might span exon–exon junctions, which 

means that parts of the read are separated by sometimes thousands of bases within the 

reference sequence. Another difference to DNA-Seq is the read coverage, which is not 

uniform across the entire genome. Additionally, the number of sequencing cycles or the 

decision for single-end or paired-end sequencing has a profound impact on the choice 

of the read aligner. Short read aligners, including the Burrows-Wheeler Aligner (BWA) 

(Li and Durbin 2009), Bowtie (Langmead, Trapnell et al. 2009) or Bowtie2 (Langmead 

and Salzberg 2012), were developed to align short reads of approximately 30–70 bases 

in a continuous stretch to the reference sequence. Newer algorithms, such as TopHat2 

(Kim, Pertea et al. 2013), STAR (Dobin, Davis et al. 2013) or Subjunc (Liao, Smyth et al. 

2013), are capable of aligning longer reads to the genome sequence, which may also 

span exon–exon junctions in case of RNA-Seq reads. After the reads are aligned against 

the reference sequence, any downstream analyses can be performed. A common setting 

is to estimate gene expression from an RNA-Seq dataset by counting reads mapping to 

annotated genes. These annotations can be downloaded from resource databases, such 

as UCSC (Rosenbloom, Armstrong et al. 2015) or Ensembl (Cunningham, Amode et al. 

2015). Examples for algorithms for read counting are HTSeq (Anders, Pyl et al. 2014) or 

ngsutils (Breese and Liu 2013). The counts per annotated gene give a rough 

approximation of the gene expression in relation to the sequencing depth of the 

particular sequencing run. For most applications, these counts have to be inter-sample 

normalized based on the sequencing depth, leading for instance to counts per millions 

calculated as 𝐶𝑃𝑀(𝑔𝑒𝑛𝑒𝐴) =  
counts(𝑔𝑒𝑛𝑒𝐴) ∙ 1,000,000

∑ counts(𝑔𝑒𝑛𝑒𝑖)𝑖∈𝐺
, with G being the set of all annotated 

genes and 𝑔𝑒𝑛𝑒𝐴 ∈ 𝐺. The CPM values can then be used for a differential gene 

expression analysis, employed by algorithms such as edgeR (Robinson, McCarthy et al. 

2010) or DESeq (Anders and Huber 2010). These compare CPMs between two (or 



Posttranscriptional gene regulation in cancer 

 
 

 
 

more) groups of samples to identify transcriptomic differences between the cohorts. A 

common setup in cancer research is to compare gene expression between healthy tissue 

and cancer tissue. The differentially expressed genes explain the pathophysiological 

background to a certain extent. They can further act as clinical biomarkers and might be 

considered as molecular targets for cancer therapeutics. 

Another downstream analysis of aligned RNA-Seq data is the detection of indels and 

SNVs encoded in the genome. Therefore, the aligned reads have to be locally realigned 

at indel positions to account for false alignments in the close vicinity of splice sites or 

repetitive genomic regions. Otherwise, these could result in falsely reported indels. 

Indel realignment can be handled e.g. by GATK (DePristo, Banks et al. 2011). Next, 

SNP/indel calling and annotation can also be handled by GATK. The reported variation 

calls can be further examined for effects on protein-coding regions, for which tools also 

already exist (Variant Effect Predictor (McLaren, Pritchard et al. 2010), PolyPhen2 

(Adzhubei, Schmidt et al. 2010) and SIFT (Kumar, Henikoff et al. 2009)). 

 

 

Figure 3: Sample pipeline for RNA-Seq data processing, including two possible 

downstream analyses. Cyan fields are preprocessing steps, yellow fields are differential 

gene expression analysis and red fields are SNP/indel detection. Names in brackets 

show commonly used data-types for each step, where NA depicts not applicable. 
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1.4.2 Bioinformatics analysis of PAR-CLIP data 

 

The first step of analyzing PAR-CLIP sequencing data is to trim low quality ends and 

adapter sequences (Figure 4). As PAR-CLIP reads are generally short, all reads shorter 

than a certain threshold (e.g. 14 bases after trimming) might be excluded, as they 

cannot be uniquely aligned to the genome. Due to more mismatches per sequencing 

read compared to a reference genome sequence caused by the T–C conversions, the 

alignment step is crucial and has to allow for more errors than the alignment of normal 

RNA-Seq reads. Commonly employed read aligners for PAR-CLIP data analysis are BWA 

or Bowtie, each allowing for either one or two mismatches between a single read 

sequence and the reference sequence (Mukherjee, Corcoran et al. 2011, Ascano, 

Mukherjee et al. 2012, Sievers, Schlumpf et al. 2012, Mukherjee, Jacobs et al. 2014). But 

these approaches do not distinguish between different mismatch types and treat the 

PAR-CLIP specific T–C conversions in the same way as sequencing errors. Although they 

can thus deal with the frequent T–C conversions in a knowledgeable way, it will also 

give an advantage for reads with any type of mismatches. For PAR-CLIP data, this may 

result in falsely aligned reads mapping to multiple positions per sequencing read, 

making the decision for the correct alignment position complicated. An extension of 

BWA called BWA PSSM (Kerpedjiev, Frellsen et al. 2014) takes a position-specific 

scoring matrix (PSSM) into account to accommodate for specific types of mismatches 

occurring more frequently than others. The authors of BWA PSSM provide the user with 

a PSSM for PAR-CLIP data, which favors T–C mismatches over all others during 

alignment. However, a drawback of this approach is that the PSSM has to be specified by 

the user. Thus the underlying errors (and its expected rate of occurrence in the dataset) 

must be known prior to read alignment to specify the PSSM. Also, the PSSM is limited to 

nucleotide conversions and does not cover insertions or deletions. The high-throughput 

sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP, 

sometimes referred to as CLIP-Seq) procedure, however, introduces deletions rather 

than single nucleotide conversions (Zhang and Darnell 2011, Sugimoto, König et al. 
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2012). These errors are not covered by BWA PSSM and it thus has a limited range of 

applications.  

After read alignment of PAR-CLIP data, RBP binding sites can be detected with further 

software, which in general apply a clustering algorithm on the basis of the reads’ 

mapping positions. The resulting clusters represent short transcriptomic stretches that 

might be bound by the RBP. Subsequently, a filtering for reliable T–C conversions for 

each identified cluster is applied. As mentioned before, the T–C conversions only occur 

at binding sites that were crosslinked to the particular RBP. This information is used for 

filtering non-specifically purified RNAs from truly bound RNAs. The filtered clusters are 

considered the binding sites of the analyzed RBP. Examples for software capable of 

identifying binding sites are PARalyzer (Corcoran, Georgiev et al. 2011) or BMix 

(Golumbeanu, Mohammadi et al. 2015). BMix uses a maximum likelihood approach to 

distinguish between T–C conversions, which are introduced by the crosslinking, and 

lowly and highly frequent erroneous alterations within the detected clusters. After 

binding site detection, further annotation information can be loaded for the identified 

binding sites, e.g. targeted genes and targeted gene regions (3’ UTR, exon, intron etc.). A 

possible follow-up for RBPs binding a specific RNA sequence motif is the inference of 

the actual binding motif. On the basis of the detected binding sites, the sequence motif 

of the particular RBP can be inferred by searching for statistically significantly enriched 

short sequences of about four to eight bases. Commonly applied algorithms for this step 

are CERMIT (Georgiev, Boyle et al. 2010) or MEME (Bailey and Elkan 1994).  
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Figure 4: Sample pipeline for PAR-CLIP data processing. Cyan fields show 

preprocessing steps and yellow fields show an example for a downstream analysis of 

binding sites. The common data output format is depicted in parenthesis, where NA 

stands for not applicable. 

 

1.4.3 Sequence read alignment and its evaluation 

 

As explained in the previous section, the sequence read alignment against a reference 

genome sequence is an important step in analyzing RNA-Seq data. The general 

algorithm of BWA is outlined in the following, as it was modified for the purpose of this 

thesis for improved PAR-CLIP data analysis. First, a suffix array of all possible suffixes 

within the reference sequence is created and lexicographically sorted. Because of the 

sorting of the suffix array, all exact matches of a certain sequence read within the 

reference sequence will occur in an interval of the suffix array. The following 

description and formulas are taken from (Li and Durbin 2009): Let W be the sequence 

read, X the reference sequence and S the sorted suffix array of X. 𝑋𝑖 is the suffix of X 

starting at position i. Then,  

𝑅(𝑊) =  min {𝑘: 𝑊 is a prefix of 𝑋𝑆(𝑘)} 

and 

�̅�(𝑊) =  max {𝑘: 𝑊 is a prefix of 𝑋𝑆(𝑘)} 



Posttranscriptional gene regulation in cancer 

 
 

 
 

are the first and last occurrences of W in X, respectively, indicated by the suffix array S. 

So the set of positions {𝑆(𝑘): 𝑅(𝑊) ≤ 𝑘 ≤  𝑅(𝑊)} represents all occurrences of W in X. 

The Burrows-Wheeler transform (Burrows and Wheeler 1994) is applied to the suffix 

array to create an index, the so called Ferragina and Manzini (FM) index (Ferragina and 

Manzini 2000). It compresses the suffix array to be linear in space requirements, which 

is important for large genomes (Lam, Sung et al. 2008). For each suffix of the reference 

sequence, the FM index points to its positions in the reference genome. It thus acts as a 

lookup table during the actual read alignment process. Another feature of the FM index 

is that it can also be represented by a suffix trie, a tree like data structure, which is an 

easy representation technique for the lookup process. 

The actual alignment process is individually performed for each sequencing read, but 

has to accommodate for inexact matches between the read and the reference sequence. 

Hence, the alignment of a particular read starts with its last base proceeding to its front, 

a process considered a backward search. For the last base, the algorithm checks all 

possible positions within the reference sequence by querying the FM index/suffix trie. 

Next, only paths within the suffix trie are considered which show the same predecessor 

base as within the read. This process is recursively carried out until the first base of the 

sequencing read is reached. This identifies all possible mapping positions of the 

sequencing read within the reference sequence. Also, mismatches and indels are 

allowed until a predefined maximal threshold of mismatches and indels is reached, 

which increases the number of possible downstream paths within the suffix trie. If no 

further predecessor base can be aligned by checking the suffix trie (considering the 

mismatch threshold to be reached), the read is discarded as not aligned to the genome 

sequence. 

 

An important aspect of software development is the performance evaluation of the 

implemented method. Recent advantages in read alignment algorithms were evaluated 

on simulated read datasets produced with for example ART (Huang, Li et al. 2012) or 

GemSim (McElroy, Luciani et al. 2012). These mimic regular RNA-Seq data, as either 

single-end or paired-end data covering entire transcripts with simulated sequencing 
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errors. Recent software specific for PAR-CLIP analysis was evaluated on reads produced 

with standard RNA-Seq read simulators (Kerpedjiev, Frellsen et al. 2014). However, 

these simulators do not include the PAR-CLIP specific read properties and are thus of 

limited use for the evaluation of PAR-CLIP specific analysis software. 
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3 Concluding remarks 
 

Cancer is a complex disease and aberrations of multiple layers in the genome contribute 

to tumor formation, progression and more. Posttranscriptional gene regulation is 

involved in establishing cell diversity, but as a drawback makes the investigation of 

complex diseases, such as cancer, even more difficult. Although not all regulators for 

posttranscriptional gene regulation are fully understood, recent advantages of 

experimental protocols brought deeper insight into the functionality and importance of 

these regulators. This thesis contains the following contributions for advancing PAR-

CLIP data analysis and applying posttranscriptional gene regulation analysis in certain 

cancer types: 

a. Assessment of systematically induced T–C conversions in PAR-CLIP 

experiments, improvements of the read alignment of PAR-CLIP datasets 

implemented in the PARA-suite and a performance evaluation based on 

specifically simulated PAR-CLIP data and real datasets (Publication I) 

b. Application of the PARA-suite on AGO2 PAR-CLIPs performed in Non-Hodgkin 

lymphomas (NHL) to integrate knowledge on physically validated miRNA-mRNA 

interactions with RNA-Seq and miRNA-Seq data for an NHL patient cohort 

(Publication II) 

c. Analysis of the mutational landscape, transcriptome and miRnome expression in 

infant T-cell acute lymphoblastic leukemia (iT-ALL) compared to childhood T-

ALL (Publication III) 

 

This thesis sheds light on current pitfalls in the analysis of PAR-CLIP data, which is a 

technique to reveal mRNAs that are posttranscriptionally regulated by a certain RBP, 

summarized in a review related to this thesis (Kloetgen, Münch et al. 2015). The here 

presented PARA-suite contributes to the improved analysis of PAR-CLIP data. The 

PARA-suite takes the unique properties of PAR-CLIP data into account, enabling a 

proper simulation of PAR-CLIP data for the evaluation of read aligners and binding site 
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detection algorithms, and offering an accurate read alignment pipeline. Compared to 

previous approaches, the PARA-suite alignment pipeline shows increased accuracy on 

simulated and real PAR-CLIP data by empirical error profile estimation for individual 

datasets. 

PAR-CLIP data has specific properties compared to RNA-Seq data. Thus PAR-CLIP reads 

cannot be simulated by regular RNA-Seq read simulators such as ART or GemSim. The 

PARA-suite contains a read simulator specific for PAR-CLIP data, which mimics the 

properties of PAR-CLIP reads. It simulates reads that cover only short binding sites, and 

introduces T–C conversions at much higher rates at specific T–C sites, rather than 

randomly introducing T–C conversions similar to sequencing errors. The PARA-suite’s 

read simulator is of general use for the scientific community to evaluate all aspects of 

PAR-CLIP data analysis, from read alignment to binding site detection. It returns reads 

in a FASTQ-format for read alignment evaluation and the respective binding sites for 

the evaluation of binding site detection algorithms. 

The alignment method of the PARA-suite, which is based on the implementation of 

BWA, makes use of an error profile calculated from the actual sequencing run to 

accommodate for data type specific errors. It is not limited to single nucleotide 

conversions but can also estimate increased rates of insertions and deletions. Hence, 

the application of the PARA-suite to a HITS-CLIP dataset also revealed additional 

promising binding sites than previous approaches. Sequencing data in general show 

varying rates of sequencing errors and systematic errors, depending on the sample 

preparation or the sequencing protocol (Laehnemann, Borkhardt et al. 2015, Schirmer, 

Ijaz et al. 2015). The PAR-CLIP datasets analyzed for the purposes of this work showed 

that this phenomenon is generally important for PAR-CLIP data, as different RBPs show 

slight variations in the frequencies of T–C conversions per dataset. The read aligner 

BWA PSSM always uses a fixed PSSM for the respective sequencing datatype 

irrespective of varying qualities and error rates. However, the PARA-suite automatically 

adjusts to the sequencing-dependent changes by the inference of an error profile per 

each sequencing dataset. The evaluation of the PARA-suite alignment pipeline showed 

an increased accuracy on simulated PAR-CLIP data compared to commonly employed 
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read aligners. These aligners (including BWA, Bowtie and BWA PSSM) were assessed 

using different parameter settings, allowing for different numbers of mismatches per 

application. However, they were still outperformed by the PARA-suite on the simulated 

datasets. Further assessments of the PARA-suite on real PAR-CLIP data showed its 

potential for highly accurate data analysis. More examples for the advantage of the 

adaptive behavior of the PARA-suite on different data types are applications to 

bisulphite sequencing, which introduces C–T conversions in methylated CpG islands 

(Frommer, McDonald et al. 1992), or low-quality ancient DNA sequencing data (Briggs, 

Stenzel et al. 2007). 

 

The PARA-suite was successfully applied to PAR-CLIP data on AGO2 within a project of 

the ICGC MMML-Seq showing the importance of posttranscriptional gene regulation in 

distinct lymphoma subtypes. The subsequent data integration granted deep insights 

into tumor biology of miRNA-mediated regulations in NHLs: The AGO-PAR-CLIP 

provided experimental evidence for miRNA-mRNA interaction pairs and the RNA-Seq 

provided expression measures for both miRNAs and mRNAs. In addition, the proposed 

miRNA expression classifier, consisting of new biomarkers, is useful for distinguishing 

the heterogenic NHLs for clinical purposes. 

The AGO-PAR-CLIP was applied to endogenously expressed AGO2 in two BL and two 

DLBCL cell lines, to reveal mRNAs under miRNA-mediated regulation in these cell types. 

After identifying the AGO2 binding sites within mRNAs with the full use of the PARA-

suite, these were considered to be regulated by expressed miRNAs in the cells. For the 

identification of miRNA-mRNA pairs currently under regulation in the cells, a similar 

method as recently described was applied (Farazi, Ten Hoeve et al. 2014). The detected 

binding sites of AGO2 were searched for complementary seed sequences of all 

annotated and expressed miRNAs. In contrast to recent approaches, this revealed 

experimentally validated and regulated miRNA-mRNA pairs in BL and DLBCL cell lines. 

The combination of the PAR-CLIP results with RNA-Seq and miRNA-Seq data revealed 

insights into active regulations that would have been missed with any of the datasets 

alone. For further downstream analyses, only those miRNA-mRNA interaction pairs 
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were used which showed a negative correlation in their expression pattern. A 

functional analysis of the interaction pairs found in BL and DLBCL patients identified 

them to be highly associated with lymphomagenesis and tumor formation in general.  

The miRNA-Seq data obtained in the ICGC MMML-Seq project was further used for an 

analysis of potential oncogenic and tumor suppressive miRNAs in BL, DLBCL and FL. A 

differential gene expression analysis for miRNAs between BL and the combined 

DLBCL/FL cases resulted in a classifier consisting of 22 distinct miRNAs clearly 

separating the subtypes. An external validation on microarray data for 150 BL and 

DLBCL cases confirmed the validity of the classifier, which showed an accuracy of 84%.  

 

The last part of this thesis dealt with the differences in the transcriptome and miRnome 

between iT-ALL patients and childhood T-ALL patients. RNA-Seq, miRNA-Seq and 

whole exome sequencing data of a total of three infant T-ALL patients and six childhood 

T-ALL patients were obtained. The gene expression analysis of this data revealed 

epigenetic regulations as potential biomarkers for T-ALL in infancy. The analyses on the 

combined miRNA and mRNA expression patterns showed that the pathophysiology of 

iT-ALL seems to differ compared to childhood T-ALL. This includes expressional 

differences in miRNA-mRNA pairs and pathways important for immune system 

responses. However, whether these differences account for the worse outcome of iT-

ALL patients remains to be clinically validated. 

RNA-Seq and miRNA-Seq data were used to identify significant expressional differences 

between iT-ALL and childhood T-ALL cases. To predict transcriptomic changes 

mediated by miRNAs, information from a total of five public databases for miRNA-

mRNA interactions were downloaded and combined. A miRNA-mRNA interaction pair 

was accepted for downstream analysis, if it was either experimentally validated or 

predicted by at least two databases. This overcomes issues of a single database lacking 

completeness or showing not reliably high numbers of interactions. The analysis 

revealed 62 miRNA-mRNA pairs having a negative correlation in their expression 

pattern between iT-ALL and childhood T-ALL. Many of these negatively correlating 

miRNA-mRNA pairs were already associated with tumorigenesis. For instance, the 
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analysis revealed that hsa-let-7b is negatively correlating with GREB1 and IGF2BP1, 

both associated with different cancers including ALL when upregulated (Stoskus, 

Gineikiene et al. 2011, Mohammed, D’Santos et al. 2013). 

The characterization of the iT-ALL patients also included the analysis of the mutational 

landscape in iT-ALL by whole exome sequencing. It revealed mutations (SNPs and 

indels) to be associated with the rare iT-ALL cases, which are also recurrently mutated 

in T-ALL in general. The most important mutations in NOTCH2, IL7R, KRAS and PTEN 

were validated by Sanger sequencing. 
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Abstract 
 

Background: Next-generation sequencing technologies have profoundly impacted 

biology over recent years. Experimental protocols, such as photoactivatable 

ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP), which 

identifies protein–RNA interactions on a genome-wide scale, commonly employ deep 

sequencing. With PAR-CLIP, the incorporation of photoactivatable nucleosides into 

nascent transcripts leads to high rates of specific nucleotide conversions during reverse 

transcription. So far, the specific properties of PAR-CLIP-derived sequencing reads have 

not been assessed in depth.  

Methods: Here, we compared PAR-CLIP sequencing reads to regular transcriptome 

sequencing reads (RNA-Seq) to identify distinctive properties that are relevant for 

reference-based read alignment of PAR-CLIP datasets. We describe a set of freely 

available tools for this purpose, called the PAR-CLIP analyzer suite (PARA-suite). The 

PARA-suite includes error model inference, PAR-CLIP read simulation based on PAR-

CLIP specific properties, a full read alignment pipeline with a modified Burrows–

Wheeler Aligner algorithm and CLIP read clustering for binding site detection. 

Results: We show that differences in the error profiles of PAR-CLIP reads relative to 

regular transcriptome sequencing reads (RNA-Seq) make a distinct processing 

advantageous. We examine the alignment accuracy of commonly applied read aligners 

on 10 simulated PAR-CLIP datasets using different parameter settings and identified 

the most accurate setup among those read aligners. We demonstrate the performance 

of the PARA-suite in conjunction with different binding site detection algorithms on 

several real PAR-CLIP and HITS-CLIP datasets. Our processing pipeline allowed the 

improvement of both alignment and binding site detection accuracy. 

Availability: The PARA-suite toolkit and the PARA-suite aligner are available at 

https://github.com/akloetgen/PARA-suite and https://github.com/akloetgen/PARA-

suite_aligner, respectively, under the GNU GPLv3 license. 

 

 

https://github.com/akloetgen/PARA-suite
https://github.com/akloetgen/PARA-suite_aligner
https://github.com/akloetgen/PARA-suite_aligner
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Background 
 

RNAs play a crucial role in cell survival and viability. Coding messenger RNAs (mRNAs), 

which are translated into proteins, and many other RNA species, such as small and long 

non-coding RNAs, ribosomal RNAs and transfer RNAs, are essential for the survival and 

proper functioning of the cells (Eddy 2001). Most RNAs maintain their function by 

working together with the so-called RNA-binding proteins (RBPs) (Glisovic, Bachorik et 

al. 2008). RBPs are involved in virtually all steps of the mRNA lifecycle, from 

polyadenylation, translocation and modification to translation (Hieronymus and Silver 

2004). Thus it is not surprising that many RBPs that show aberrant functions or 

changes in expression patterns have been associated with disease progression or even 

with carcinogenesis (Lukong, Chang et al. 2008). For instance, the FET protein family, 

which consists of the three RBPs FUS, EWSR1 and TAF15, is ubiquitously expressed and 

widely conserved in mammals. Genomic rearrangements, leading to mutant forms of 

these RBPs in humans, have been described as key players in sarcomas and leukemia 

(Tan and Manley 2009). More recently, two mutants of FUS causing amyotrophic lateral 

sclerosis have shown different RNA-binding patterns compared to their wild-type 

counterparts, supporting the importance of the function of FUS in mRNA processing 

(Hoell, Larsson et al. 2011). 

 

Experimental protocols have been developed to analyze the functional network in 

which a particular RBP interacts. A promising method for this purpose is the 

photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation 

(PAR-CLIP) technique (Hafner, Landthaler et al. 2010). When coupled with deep 

sequencing, it identifies the bound RNAs for a particular RBP on a genome-wide scale. 

First, the cells are supplied with a specific photoactivatable nucleoside, such as 4-

thiouridine (4-SU), which is incorporated as an alternative to the respective nucleoside 

into nascent mRNA transcripts. Afterwards, the cells are treated with ultraviolet light at 

365 nm to cross-link the amino acids of RBPs to the nucleotides of their bound RNA 

molecules. The incorporation of 4-SU instead of uridine results in nucleotide 
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conversions from uridine to cytidine at all cross-linked sites containing a 4-SU during 

reverse transcription (a necessary step for preparing cDNA libraries for sequencing). 

This specific replacement is called a ‘T–C conversion’. T–C conversions can be used to 

distinguish between non-specifically bound RNA fragments (considered as 

contaminations) and those that are specifically bound and cross-linked to the RBP of 

interest (Ascano, Hafner et al. 2012, Golumbeanu, Mohammadi et al. 2015). We recently 

published a detailed protocol for the PAR-CLIP procedure (Hoell, Hafner et al. 2014). 

Other CLIP protocols for the genome-wide identification of RBP targets are also 

frequently used, such as high-throughput sequencing of RNAs isolated by cross-linking 

and immunoprecipitation (HITS-CLIP, sometimes also called CLIP-seq) or the iCLIP 

protocol (Chi, Zang et al. 2009, König, Zarnack et al. 2010). The procedures, 

experimental designs and bioinformatic analysis of these different CLIP methods differ 

greatly and are still evolving. Recent reviews compare the strengths and weaknesses of 

the three methods in detail (Wang, Xiao et al. 2015, Danan, Manickavel et al. 2016). 

HITS-CLIP, for example, mainly introduces deletions of a single base at the cross-linked 

sites, whereas single nucleotide conversions do not seem to occur at a significant 

frequency (Zhang and Darnell 2011, Sugimoto, König et al. 2012). 

 

Current sequencing platforms allow for the sequencing of mammalian transcriptome 

libraries with high coverage. Nowadays, the most commonly used next-generation 

sequencing (NGS) platforms are 454, Illumina, IonTorrent and PacBio (van Dijk, Auger 

et al. 2014). Depending on the sequencing platform and the sample type, sequencing 

errors vary in type and frequency. The errors that most commonly occur are 

substitution errors and indels of a few bases between the sequencing read and the 

reference sequence (large rearrangements, such as those leading to chimeras, are also 

possible errors but are not discussed here) (Laehnemann, Borkhardt et al. 2015). In an 

RNA-Seq dataset, a single transcript will be covered by sequencing reads in all its 

expressed coding exons (apart from, for example, amplification errors or alternative 

splicing variants). For common sequencing data types, such as RNA-Seq and DNA-Seq, 

designated read aligners have recently been developed. These include short read 
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aligners, such as BWA (Li and Durbin 2009) or Bowtie (Langmead, Trapnell et al. 2009), 

and read aligners such as TopHat (Trapnell, Pachter et al. 2009), STAR (Dobin, Davis et 

al. 2013) or Subjunc (Liao, Smyth et al. 2013), which can also handle longer sequencing 

reads spanning exon–exon junctions. Specific software for the evaluation and analysis 

of the PAR- and HITS-CLIP sequencing data is needed to accommodate their unique 

error profiles (Kloetgen, Münch et al. 2015). For instance, the read aligner BWA PSSM 

(Kerpedjiev, Frellsen et al. 2014) makes use of a pre-defined position-specific scoring 

matrix to process the error-prone PAR-CLIP reads.  

In general, the sequencing error profiles of RNA-Seq datasets, including PAR-CLIP data, 

can vary between different sequencing runs, depending on the sequencing machine, the 

experimental conditions and the biological properties of the sample (Laehnemann, 

Borkhardt et al. 2015, Schirmer, Ijaz et al. 2015). Here, we describe the PAR-CLIP 

analyzer suite (PARA-suite), which includes a PAR-CLIP read simulator, an error 

estimation tool for CLIP datasets and an alignment pipeline based on a novel alignment 

algorithm performing on-the-fly dataset-specific error estimation. The alignment 

pipeline thus automatically adjusts to the quality and error profiles of individual 

sequencing datasets. We compare PAR-CLIP sequencing reads to regular transcriptome 

sequencing reads (RNA-Seq) to identify the distinctive properties that are relevant for 

reference-based read alignment and RBP binding site detection from PAR-CLIP 

datasets. Generation of simulated PAR-CLIP datasets can be performed with the PARA-

suite´s read simulator. The PARA-suite toolkit is available at 

https://github.com/akloetgen/PARA-suite and https://github.com/akloetgen/PARA-

suite_aligner, implemented as an extension of BWA (henceforth referred to as BWA 

PARA). It is licensed under GNU GPLv3, and can be implemented in the programming 

languages Java and C. 

 

 
 
 
 
 
 

https://github.com/akloetgen/PARA-suite
https://github.com/akloetgen/PARA-suite_aligner
https://github.com/akloetgen/PARA-suite_aligner
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Methods 
 

Datasets and read aligners 

We downloaded PAR-CLIP data for the FET family (EWSR1, FUS and TAF15) from the 

DRASearch database (https://trace.ddbj.nig.ac.jp/DRASearch/) with the accession 

number SRA025082 (Hoell, Larsson et al. 2011), the HuR dataset with the accession 

number SRR248532, the MOV10 dataset with the accession number SRR490650 and 

the HITS-CLIP data on the Argonaute2 protein (AGO2) (Chi, Zang et al. 2009) from 

http://ago.rockefeller.edu/. For estimating the error profiles of regular RNA-Seq runs, 

we downloaded two sequencing lanes from an NGS quality assessment study with the 

accession numbers SRR896663 and SRR896664 (SEQC/MAQC-III-Consortium 2014) 

from DRASearch and pooled the data. An overview of the analyzed datasets can be 

found in Table 1. 

 

Table 1: Overview of the analyzed RNA-Seq and CLIP datasets. 

Dataset Published 

(year) 

Sequencing 

method 

Platform  Accession 

number/website 

EWSR1 2011 PAR-CLIP Illumina Genome 

Analyzer II 

SRA025082 

FUS 2011 PAR-CLIP Illumina Genome 

Analyzer II 

SRA025082 

TAF15 2011 PAR-CLIP Illumina Genome 

Analyzer II 

SRA025082 

HuR 2011 PAR-CLIP Illumina Genome 

Analyzer 

SRR248532 

MOV10 2012 PAR-CLIP Illumina Genome 

Analyzer II 

SRR490650 

AGO2 2009 HITS-CLIP Illumina Genome 

Analyzer II 

http://ago.rockefe

ller.edu/ 

 

https://trace.ddbj.nig.ac.jp/DRASearch/
http://ago.rockefeller.edu/
http://ago.rockefeller.edu/
http://ago.rockefeller.edu/
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Human 

reference 

RNA 

2014 RNA-Seq Illumina HiSeq 2000 SRR896663, 

SRR896664 

 

We used the following read aligners and versions, shown in alphabetic order: Bowtie, 

version 0.12.7 (Langmead, Trapnell et al. 2009), Bowtie2, version 2.2.3 (Langmead and 

Salzberg 2012), BWA, version 0.7.8 (Li and Durbin 2009), BWA PSSM, initial release 

version (Kerpedjiev, Frellsen et al. 2014), MOSAIK, version 2.2.3 (Lee, Stromberg et al. 

2014), STAR, version 2.3.0 (Dobin, Davis et al. 2013), Subjunc, version 1.4.2 (Liao, 

Smyth et al. 2013) and TopHat, version 2.0.13 (Trapnell, Pachter et al. 2009). 

 

PAR-CLIP read simulator and hierarchical clustering 

We developed a PAR-CLIP read simulator (Figure 1) that creates short RNA reads which 

mimic important PAR-CLIP specific properties (Section 3.1). First, the following 

probability distributions are obtained from real PAR-CLIP data: (a) a probability matrix 

ε representing the background error profile of sequencing errors, (b) a probability 

vector of T–C conversion frequencies α for ranked T–C conversion sites, (c) a 

probability vector β for the preferred read positions of T–C conversion sites within 

binding sites, (d) a probability vector µ for indel frequencies per read position and (e) a 

probability vector δ for the base-calling quality score distribution per read position. The 

probability matrix ε contains a probability distribution for each DNA base over the DNA 

bases {A, C, G, T}. For this purpose, a PAR-CLIP dataset is aligned against a reference 

genome sequence with an appropriate read aligner. 
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Figure 1: Pipeline of the PAR-CLIP read simulator implemented in the PARA-suite. 

Part A describes the process of generating the error profile and other parameters 

learned from a real PAR-CLIP dataset. Part B starts to generate reads mapping to RBP 

binding sites (clusters) on transcript regions from a given transcript database (e.g. 

Ensembl genes). In Part C, the pre-calculated profiles are used to introduce T–C 

conversions, sequencing errors, indels and base-calling quality scores to the defined 

reads. 

 

Based on these alignments, the sequencing error profile ε is estimated from the 

observed frequencies of all single nucleotide substitutions, except for T–C errors, as 

these include PAR-CLIP specific T–C conversions. Standard T–C sequencing errors are 

approximated by the average over all the other sequencing error frequencies. The 

probability vectors µ and δ are also inferred from these alignments. Next, all aligned 

reads of the real dataset are clustered (stacked) using single-linkage hierarchical 

clustering based on their genomic mapping positions, using a 5-base overlap of the 

genomic mapping positions as the clustering threshold. To identify high confidence 

clusters (sometimes referred to as binding sites) as defined in the literature (Hafner, 

Landthaler et al. 2010), clusters that contain less than 10 reads, less than 25% T–C 
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conversions per cluster, are longer than 75 bases and include only T–C conversion sites 

that are reported as single nucleotide polymorphism loci in the dbSNP database 

(version 142) (Sherry, Ward et al. 2001) are discarded. This implementation of 

hierarchical clustering is part of the PARA-suite and will later be used for binding site 

detection. For the subsequent simulation, the positions and frequencies of highly 

mutated T–C sites within reads are determined to estimate α and β from the high 

confidence clusters (Figure S1A-B).  

 

Next, the PAR-CLIP read simulation starts with the random selection of transcripts from 

a pre-selected database of annotated transcripts. One to at most three clusters (the 

number of clusters is randomly chosen from a uniform distribution) containing several 

reads are created for a selected transcript sequence. The starting positions of the 

clusters are randomly selected from a uniform distribution within the entire range of a 

transcript. The number of reads simulated for a single cluster is drawn from a normal 

distribution with a mean of 16 and a standard deviation of 10. This enables the 

simulation of a wide range of read coverages throughout the clusters. Furthermore, 

small shifts of the start and end site of each read leading to distinctive alignment 

position shifts in the shape of a cluster are randomly introduced at this step (normal 

distribution, standard deviation = 1). A user-defined parameter λ ∈ [0,1] specifies the 

fraction of clusters that are considered to be binding-sites, whereas the remaining 

clusters mimic contaminations of unbound RNAs that occur in all PAR-CLIP 

experiments. We recommend values in the range of 0.5–0.7 (50–70%), as we observed 

this range of aligned sequencing reads stacking into clusters after hierarchical 

clustering and filtering (Table S1; similar values were previously reported by (Ascano, 

Hafner et al. 2012)). If more than one T–C site is simulated for a single cluster, a major 

T–C conversion site is selected according to the site-specific T–C conversion profile β 

and T–C conversion probabilities are drawn from α. Subsequently, background 

sequencing errors are introduced on the basis of the pre-computed probability matrix ε 

and the frequency vector µ for substitutions and indels, respectively. In the last step, 

every base receives a base-calling quality score, as specified by the position-specific 
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quality score distribution δ. All generated reads are stored in the universal FASTQ 

format (Cock, Fields et al. 2010). The PAR-CLIP read simulator is available through the 

PARA-suite. 

 

The PARA-suite: tools for error profile inference, read simulation, multiple database 

mapping and more 

The PARA-suite is a toolkit for processing and aligning short and error-prone 

sequencing reads. It is implemented in Java using HTSjdk, a Java API for high-

throughput sequencing data formats (https://github.com/samtools/htsjdk). The PARA-

suite allows the user to estimate a sequencing run-specific error profile, combine the 

results of multiple reference database alignments, cluster an aligned sequencing read 

dataset (Section 2.2), run the PAR-CLIP read simulator, benchmark an alignment of 

simulated PAR-CLIP sequencing reads and run a full processing pipeline for error-prone 

short read alignments (Figure 2A). The alignment pipeline of the PARA-suite includes 

the calculation of an error profile for a particular sequencing run, applying the 

alignment algorithm described in the following section, and optionally combines the 

results of read mappings against multiple databases (Figure 2B–D). First, a read 

alignment against a reference sequence is performed with a fast short read aligner. By 

default, this is carried out with BWA, as our evaluations have demonstrated this to be a 

fast and accurate aligner (Section 3.3) on PAR-CLIP reads. However, other read aligners 

can also be used to produce the reference-based read alignment. This initial read 

alignment is used to estimate the underlying mismatch and indel probabilities M, I and 

D (as described in the next section) of the sequencing run. Once the error profile has 

been estimated, all sequencing reads can be aligned with BWA PARA (Section 2.4) 

against the reference sequence(s). All aligned reads are reported in a BAM file. 

https://github.com/samtools/htsjdk
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Figure 2: The PARA-suite. (A) The PARA-suite. Dashed boxes represent software 

packages; all other boxes represent executable programs. The Utils package includes 

tools for working with error-prone sequencing data and the postprocessing package 

contains a tool for clustering an aligned PAR-CLIP dataset to identify RBP-bound 

genomic regions. (B) Read alignment by a fast read aligner is necessary to infer the 

error profile for a particular read dataset (we selected BWA). (C) BWA PARA is applied 

to the entire dataset to map error-prone reads, indicated here by the additional 

mapping of the two reads (shown in blue). (D) An optional alignment versus a 

transcriptome reference database can be executed using BWA PARA to identify 

previously unmapped reads. 
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Algorithm of the PARA-suite aligner BWA PARA 

The general BWA algorithm uses a Burrows–Wheeler transform (BWT) (Burrows and 

Wheeler 1994) to create an index for a reference genome sequence and applies a 

backward search to identify possible mapping positions in the genome for every single 

sequencing read. The backward search starts with the last base of a read proceeding to 

its front, searching the partly decompressed suffix trie using the auxiliary Ferragina and 

Manzini index (Ferragina and Manzini 2000) for a matching predecessor base of the 

read´s bases compared so far. Even if a match can be found for a single comparison, 

mismatches are introduced and all possible downstream paths within the suffix trie are 

considered until a pre-defined threshold of maximal mismatches is exceeded in a single 

path (Figure 3, red dotted line). 

 

The principal idea of BWA PARA is the introduction of a probability estimate for each 

comparison of the backward search. This enables mismatches to be weighted according 

to their probabilities that they occur in the analyzed dataset. A sequencing run is 

initially characterized according to its underlying error probabilities. This allows us to 

determine specific error-profiles for experimental techniques, such as the frequent T–C 

conversions in PAR-CLIP data, which are more common than sequencing errors. The 

error profile M is a 4 × 4 probability matrix specifying substitution probabilities values 

∈ [0..1] for each reference base ∈ {A, C, G, T} to the read bases {A, C, G, T} (Figure 4A). 

Indels are introduced during the alignment step separately, using the estimated 

probabilities I ∈ [0,1] for insertions and D ∈ [0,1] for deletions.  

 

For each comparison between a read base at read position i (read[i]) and a reference 

base at position j (ref[j]) in the reference sequence, the algorithm recursively calculates 

a joint probability value p, which is used to examine the chance of incorporating a 

matching base or a suitable error, including indels, at the respective read positions 

(Figure 4D): 
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𝑝𝑖 =   {

𝑝𝑖+1 ∙ 𝐷, 𝑖𝑓 𝑟𝑒𝑓[𝑗] 𝑖𝑠 𝑑𝑒𝑙𝑒𝑡𝑒𝑑

𝑝𝑖+1 ∙ 𝐼, 𝑖𝑓 𝑟𝑒𝑎𝑑[𝑖] 𝑖𝑠 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑

𝑝𝑖+1 ∙ 𝑀(𝑟𝑒𝑎𝑑[𝑖], 𝑟𝑒𝑓[𝑗]), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

with p|read| = 1, starting with i = |read| – 1 and decreasing i at each step, except in the 

case of a deletion (where i is left unchanged), for i ≥ 0. 

Before the alignment of a particular read, a minimal threshold T for the probability p is 

needed to decide whether a read is accepted as aligned or rejected. The calculation for T 

depends on a parameter X for the average number of mismatches. Note that this is not a 

maximal threshold in terms of absolute mismatches, as the number of the more 

frequent errors per aligned read can exceed X. The parameter X can be pre-defined by 

the user or is by default estimated as the expected number of mismatches for different 

read lengths based on the error profile M for a sequencing run. Next, the minimal 

threshold T is computed (Figure 4B&C): 

𝑇 = 𝑎𝑣𝑔(match)|𝑟𝑒𝑎𝑑|−𝑋  ∙ 𝑎𝑣𝑔(mismatch)𝑋 , 

where 𝑎𝑣𝑔(match) =
1

5
[∑ 𝑀𝑖,𝑖𝑖∈{0..3} + (1 − (𝐼 + 𝐷))] and 𝑎𝑣𝑔(mismatch) =

1

14
 [∑ 𝑀𝑖,𝑗𝑖,𝑗∈{0..3};𝑖≠𝑗 + 𝐼 + 𝐷].  

Both avg(match) and avg(mismatch) are normalized by the number of elements (four 

matches plus one for no indel occurring, and 12 mismatches plus 2 for either a insertion 

or a deletion). If p falls below the pre-calculated threshold T during read alignment, the 

path within the suffix trie is assumed not to match the read and is rejected (Figure 3, 

blue dashed line). The algorithm thus penalizes rare types of mismatches according to 

M, whereas frequent errors, such as T–C errors in PAR-CLIP reads, are the most favored 

substitutions in the alignment process (Figure 4B–D). 
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Figure 3: Suffix trie paths for the BWA and PARA-suite. Paths of the algorithms 

through the suffix trie aligning the read sequence GCCATG$ against the reference 

sequence GTTATG$ (where $ means the end of a sequence). The red dotted line 

represents the algorithm of the BWA aligner, allowing for two mismatches; the blue 

dashed line indicates the BWA PARA algorithm. The underlined bases represent 

positions where the respective aligner introduces a mismatch. The example shows that 

BWA PARA needs 14 comparisons but the basic BWA needs 16 comparisons. Indels are 

not shown for simplicity. 
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Figure 4: The BWA PARA alignment approach. (A) The error profile probability 

matrix M and the indel probabilities I and D, which are used as input for the BWA PARA 

algorithm, as well as exemplary results of the intermediate calculations of the BWA 

PARA algorithm. In M, only T–C conversions have a higher probability (6.3%) than 

sequencing errors and indels. (B) The last characters of a particular read and three 

examples of mapping positions within a reference, called ref a–c. (C) The calculation of a 

maximum threshold T for the mapping probability p (see the Equation 2 in the main 

text, and values from (A) in this image). (D) The mapping probability calculation of the 

read when mapped to References a–c. The read fails to map against ref b with two 

sequencing errors, whereas ref a and ref c are suitable mapping positions, where the 

probability p is higher than the threshold T. For implementation, we worked with the 
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open-source read aligner BWA (version 0.7.8) to extend its algorithm for the alignment 

of short and error-prone reads. 

 

Results 
 

Properties of PAR-CLIP reads 

To assess the most important properties of the PAR-CLIP sequencing reads for read 

alignment, we systematically compared PAR-CLIP datasets for the three RBPs EWSR1, 

FUS and TAF15 (the FET protein family) (Hoell, Larsson et al. 2011) to a recently 

published RNA-Seq run on human reference RNA (SEQC/MAQC-III-Consortium 2014). 

The 10 outermost bases of the SEQC/MAQC reads showed error rates with peaks at 1.5 

and 2.2 errors per 100 reads (EPR). In contrast, the middle read length range showed 

an average of about 0.3 EPR (Figure S2A, red line). As the short reads of the FET PAR-

CLIP datasets consisted only of these outermost bases, they exhibited a two- to 

threefold higher average sequencing error rate (about 0.7 EPR or even higher) than the 

SEQC/MAQC reads (Figure S2B, green line). When considering the T–C conversions 

only, we observed 1.319 EPR for EWSR1, 1.477 EPR for FUS and 1.051 EPR for TAF15 

on average. This is an approximately 20- to 30-fold increase in comparison to the 

SEQC/MAQC dataset with 0.051 EPR for T–C conversions on average (Figure S2). 

Moreover, we analyzed data from two further PAR-CLIP studies performed on the RBPs 

HuR (Mukherjee, Corcoran et al. 2011) and MOV10 (Sievers, Schlumpf et al. 2012), 

which showed similar error profiles and EPRs to the FET PAR-CLIPs for T–C 

conversions (Figure S3). 

Further analyses of the PAR-CLIP read datasets for EWSR1, FUS, TAF15, MOV10 and 

HuR showed the PAR-CLIP reads (a) to be shorter than 30 bases, (b) to cover only short 

stretches of an expressed gene rather than the entire expressed RNA (these stretches 

are henceforth called clusters), (c) to exhibit a specific nucleotide conversion pattern 

with a strong enrichment of T–C conversions, where (d) such conversions occur in 

specific ‘conversion sites’ in the clusters. The two properties (a) and (b) are determined 

by treating the cells with RNAse T1 or the lysate during the PAR-CLIP experimental 
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protocol. As only short RNA fragments that are not digested by the endonuclease (these 

are probably protected by the binding pocket of the RBP) are sequenced, the lengths of 

those fragments are usually short. However, the nucleotide composition of those reads 

is strongly affected by the digestion enzyme and can vary among different digestion 

enzymes (Kishore, Jaskiewicz et al. 2011). After quality trimming and adapter trimming 

of the five PAR-CLIP datasets, the average read lengths were 25.67 bases (EWSR1), 

25.60 bases (FUS), 24.21 bases (TAF15), 25.20 bases (HuR) and 23.36 bases (MOV10). 

As the transcript regions outside the bound RNA fragment are digested by the 

endonuclease, these are removed during immunoprecipitation and not sequenced, 

except for additional binding sites on the same transcript further up- or downstream. 

Thus the sequencing reads are stacked into short clusters covering short stretches of 

the gene and representing the RBP-bound regions of the transcripts (Figure S4A).  

The two properties (c) and (d) were determined by incorporating photoactivatable 

nucleosides into the nascent transcripts during transcription. In the case of 4-SU, T–C 

conversions occur in the sequencing reads at all crosslinked sites, where the 4-SU is 

incorporated instead of the native uridine. These conversions can reach high rates in 

specific conversion sites within a cluster (Hafner, Landthaler et al. 2010). In the 

analyzed datasets, we observed an average frequency of about 70% T–C conversions in 

the main T–C conversion site (Figure S1A). This emphasizes that simulated read 

datasets with specific properties are necessary for the evaluation of common short read 

aligners for analyzing PAR-CLIP read data. However, this cannot be created by common 

sequencing read simulators, such as ART (Huang, Li et al. 2012) or GemSIM (McElroy, 

Luciani et al. 2012). These produce simulated reads with a continuous coverage over 

the entire transcript range and the introduced mutations are distributed randomly 

throughout the simulated reads. This is not the case for PAR-CLIP sequencing reads. 

 

PAR-CLIP read simulation for performance evaluation 

We simulated a total of 10 PAR-CLIP read datasets based on information learned from 

three previously published PAR-CLIP datasets of the FET protein family (Hoell, Larsson 

et al. 2011) (Table S2). We imitated Illumina GenomeAnalyzer II sequence data 
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according to the real datasets used. The respective sequencing error and T–C 

conversion profiles were generated on the basis of alignments of all three datasets 

against the human reference genome sequence version 38 (GRCh38) (Lander, Linton et 

al. 2001). The error profile and additionally estimated distributions were similar to the 

ones from PAR-CLIP data on the two RBPs HuR and MOV10, indicating that these 

profiles represented a reasonable approximation for PAR-CLIP data in general. We 

selected human transcript sequences downloaded from Ensembl Genes version 77 

(Cunningham, Amode et al. 2015) as our sequence database to simulate human 

transcript read sequences. We set λ, the parameter for the fraction of sequencing reads 

that stacked into clusters bound by the RBP, to 65%. These true RBP binding sites 

showed high T–C conversion frequencies in different T–C conversion sites. The 

remaining 35% of the simulated sequencing reads were designated to represent non-

specifically bound transcripts without an elevated T–C conversion rate, except for a few 

T–C sequencing errors. These reflected RNA contaminations that can occur during the 

PAR-CLIP experiment. 

To assess the quality of the simulation, we then compared PAR-CLIP-specific properties 

between the 10 simulated datasets and the FET PAR-CLIP data. Within a cluster 

detected in a simulated dataset, shifts in the alignment positions of a few nucleotides at 

the beginning and the end of the simulated cluster could be seen between the reads 

(Figure S4B). According to the position-wise T–C conversion profile used, a T–C 

conversion site with a high conversion rate, as well as a few sites with lower conversion 

rates, were usually present in the detected clusters (e.g. Figure 1B). We compared the 

error profiles between one of the simulated datasets and the real datasets, and 

distinguished between T–C errors and all other errors; the latter represent all 

sequencing errors other than the T–C sequencing errors (Figure S2C). Similar to the real 

data, the distribution of the sequencing errors in the simulated dataset peaked at the 

beginning of the reads and dropped to a mean error rate of 0.6 EPR in the middle read 

length range. Error rates were slightly underestimated in the simulated data compared 

to the real PAR-CLIP data, presumably because of a small percentage of multiple 
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mutations that occurred at individual sites. Apart from this, the simulated datasets 

appeared to be representative of real PAR-CLIP data in the relevant aspects. 

 

Accuracy of common read aligners and the PARA-suite on simulated PAR-CLIP data 

Using the simulated PAR-CLIP datasets, we analyzed the accuracy of state-of-the-art 

read aligners and common binding site detection algorithms, and compared these to the 

PARA-suite alignment pipeline. The aligners BWA and Bowtie have often been used in 

CLIP studies (Lebedeva, Jens et al. 2011, Ascano, Mukherjee et al. 2012, Sievers, 

Schlumpf et al. 2012). BWA PSSM was applied with the PSSM for PAR-CLIP provided by 

its authors because a PSSM estimated from the sequencing dataset revealed worse 

accuracy (data not shown). MOSAIK was executed, reporting only unique mappings, 

allowing for up to three mismatches between the read and the reference sequence, and 

using a Smith–Waterman bandwidth of 5. The read aligners were used to align the 

simulated datasets to the reference sequence GRCh38. We also executed the PARA-suite 

on the Ensembl Genes transcriptome database (version 77) and combined the results 

with the genomic reference sequence alignments. These results are henceforth referred 

to as those of the “PARA-suite pipeline”, whereas the results of the genomic alignment 

step using the PARA-suite only are referred to as those of “BWA PARA”. For BWA PARA, 

the sequencing error and T–C conversion profiles for the simulated datasets were 

obtained on the basis of the BWA alignments, allowing for two mismatches (BWA 

2MMs) for each of the simulated datasets separately (execution commands are outlined 

in the Supplementary Methods). For an overview of the performance, we estimated the 

average of the recall, precision and accuracy for each aligner over the 10 simulated 

datasets (our calculations are described in the Supplementary Methods). Unfortunately, 

BMix does not report negative clusters (contaminations) and thus we were able to 

neither calculate the recall nor the accuracy, but only the precision. 

In terms of overall performance, the PARA-suite performed best, with an accuracy of 

69.74% for BWA PARA and 73.14% for the entire pipeline, showing performance gains 

of 1.57% and 4.97% compared to the second-best aligner (BWA 2MM), respectively 

(Table 2, Table S3). Many prominent PAR-CLIP studies have used Bowtie 1MM or BWA 
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2MM for the read alignment step (Lebedeva, Jens et al. 2011, Mukherjee, Corcoran et al. 

2011, Ascano, Mukherjee et al. 2012, Sievers, Schlumpf et al. 2012, Mukherjee, Jacobs et 

al. 2014). When we compared the PARA-suite pipeline with these two aligners, the 

PARA-suite pipeline showed an increase of 16.95% and 4.97% in the overall accuracy, 

respectively. Notably, 1.56% of the reads aligned by the PARA-suite pipeline on average 

spanned an exon–exon junction. These were not identified by the genomic reference 

mapping step but instead required alignment against the transcriptome reference 

sequences. Additionally, we compared the recall (the fraction of correctly aligned reads 

out of all simulated reads) and the precision (the fraction of correctly aligned reads out 

of all aligned reads) to assess the mapping ability of the read aligners (Table 2, Figure 

S5). Here, the PARA-suite pipeline and BWA PARA were ranked first and third 

regarding recall, and first and second regarding precision, respectively, out of 10 

analyzed alignment scenarios (Table 2). Hence, the PARA-suite pipeline and BWA PARA 

offer notable performance increases over commonly applied alignment setups.  

We then tested the accuracy of the binding site detection algorithms BMix, PARalyzer 

and the hierarchical clustering of the PARA-suite using the read alignments of BWA 

PARA (Table S4). The hierarchical clustering identified the most correct binding sites: 

3.26% more correct sites than BMix and 5.54% more correct binding sites than 

PARalyzer. However, BMix identified fewer false binding sites than the hierarchical 

clustering (20.30% fewer) and PARalyzer (69.85% fewer). Furthermore, we 

investigated whether BWA PARA increased the number of binding sites detected, 

irrespective of the detection algorithm used. In conjunction with BMix, BWA 2MM (the 

second-best aligner) identified 7.17% fewer correct binding sites than BWA PARA. With 

PARalyzer, BWA 2MM identified 2.97% fewer correct binding sites than BWA PARA. 

Finally, the hierarchical clustering identified 7.52% more correct binding sites for BWA 

PARA than for BWA 2MM. Overall, the combination of BMix and BWA PARA provided 

the most accurate results on our simulated data. 
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Table 2: Alignment accuracy on simulated PAR-CLIP data. The most accurate 

alignment results were obtained for different parameter settings for each read aligner 

on 10 simulated PAR-CLIP datasets. The results are averaged per read aligner over all 

10 datasets and are sorted by accuracy. 

Aligner Accuracy 

(in %) 

Variance Recall 

(in %) 

Precision 

(in %) 

Mapped 

overall 

Mapped 

correctly 

Real 

time (s) 

PARA-

suite 

pipeline 

73.14 1.37E-06 84.49 71.85 1,024,79

2 

969,948 396.8 

BWA 

PARA 

69.74 1.38E-06 82.16 68.24 975,672 924,802 153.7 

BWA 

2MMs 

68.17 1.37E-06 82.31 64.98 959,171 904,034 359.2 

Bowtie 

2MMs 

63.38 1.10E-06 77.91 60.93 886,512 840,540 120.6 

BWA 

PSSM 

59.80 1.18E-06 74.04 58.72 818,895 793,007 25.4 

TopHat 59.69 8.35E-07 76.10 55.35 844,902 791,549 282.9 

Bowtie2 56.22 1.11E-06 73.23 51.43 763,893 745,531 13.4 

STAR 50.74 9.10E-07 69.57 43.02 826,871 672,920 248.6 

MOSAIK 44.88 2.18E-04 62.83 37.16 897,679 595,220 12,128.1

8 

Subjunc 35.42 9.03E-07 50.61 26.09 597,400 469,751 64.2 

 

Analysis of FET PAR-CLIP datasets 

To investigate the performance of the PARA-suite on real PAR-CLIP datasets, we applied 

it to the three FET PAR-CLIP datasets (Hoell, Larsson et al. 2011). The sequencing reads 

were preprocessed similarly to the method given in the original publication, and low 

quality ends and adapter sequences were trimmed using Cutadapt (Martin 2011). 
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Afterwards, all remaining reads longer than 18 bases were aligned against GRCh38 with 

Bowtie2, Bowtie 2MM, BWA 2MMs, BWA PSSM and BWA PARA (without the 

transcriptome mapping step to achieve comparable results). Selection of the read 

aligners (i.e. Bowtie2, Bowtie 2MM, BWA 2MM, BWA PSSM and BWA PARA) was based 

on the results of the previous section, as these represent the most accurate read 

aligners on PAR-CLIP data. We measured the fraction of aligned reads for all the 

aligners on the three datasets (Table S5). BWA PARA generated the largest fraction of 

aligned reads over all three datasets in comparison to BWA 2MM and BWA PSSM. Next, 

we stacked (clustered) all the aligned reads using BMix and the hierarchical clustering 

tool of the PARA-suite (Table 3). BWA 2MM identified fewer binding sites than BWA 

PSSM or BWA PARA for read alignments prior to either BMix or hierarchical clustering. 

Using the hierarchical clustering, BWA PARA reported the largest number of binding 

sites for two out of the three datasets. BWA PSSM identified 6.90% more clusters than 

BWA PARA for the FUS dataset whereas BWA PARA identified 3.98% more clusters for 

the EWSR1 dataset and 19.21% more clusters for the TAF15 dataset than BWA PSSM. In 

comparison to the values reported in the original publication, the use of BWA PARA and 

hierarchical clustering increased the number of binding sites by 33.71% for EWSR1 and 

16.77% for FUS, and decreased them by 12.56% for TAF15. After extracting distinct 

genes from all binding sites identified by BWA PARA (10,631 genes in total), 26.90% 

additional genes were found for all three RBPs, in comparison to the original 

publication (7,771 genes in total). As expected for three RBPs from the same family, 

there was a substantial overlap in terms of the identified genes, with 2,702 genes 

targeted by all three RBPs (Figure S6). 
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Table 3: Binding sites detected for the FET protein family. The number of binding 

sites for the FET protein family identified by the aligners BWA 2MM, BWA PSSM, BWA 

PARA, Bowtie 2MM and Bowite2 in combination with BMix and the hierarchical 

clustering of the PARA-suite. Filters were applied according to Section 2.2. 

 EWSR1 FUS TAF15 

BWA 2MM BMix 20,703 14,768 5,086 

BWA 2MM Clustering 22,760 36,861 5,810 

BWA PSSM BMix 24,639 19,628 5,238 

BWA PSSM Clustering 27,550 51,606 6,130 

BWA PARA BMix 25,478 19,006 5,862 

BWA PARA Clustering 28,692 48,042 7,588 

Bowtie 2MM BMix 19,173 13,902 4,582 

Bowtie 2MM Clustering 21,082 35,490 5,254 

Bowtie2 BMix 12,384 8,078 3,558 

Bowtie2 Clustering 13,338 20,398 3,710 

 

Analysis of PAR-CLIP data on HuR 

We next applied the PARA-suite to a PAR-CLIP dataset on HuR, an RBP promoting RNA 

stabilization (Mukherjee, Corcoran et al. 2011). Adapters and low-quality ends within 

the HuR dataset were trimmed using Cutadapt and reads shorter than 14 bases were 

discarded. The binding motif of HuR is well-studied and is AU-rich, with a consensus 

motif described as AUUUA, AUUUUA or AUUUUUA (Nabors, Suswam et al. 2003, 

Lebedeva, Jens et al. 2011), showing potentially more T–C conversions within each 

binding site than other RBPs. As the generated error profile of the dataset was similar 

to those of the FET PAR-CLIP data (Section 3.1), the data quality seemed comparable. 

However, we noted a slight increase in T–C conversions (Figure S3). The AU-rich 

binding motif might explain the higher T–C conversion rate of 1.684 EPR compared to 

the conversion rate of 1.477 EPR e.g. for FUS.  
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We used the same read aligners as described in the previous section (Bowtie2, Bowtie 

2MM, BWA 2MM, BWA PSSM and BWA PARA) to align the pre-processed dataset 

against the human genome reference GRCh38. We applied BMix and the hierarchical 

clustering of the PARA-suite to determine the binding sites of HuR derived by using the 

different read aligners. BWA PSSM, in conjunction with BMix, identified the most RBP 

binding sites within the genome, which was 3.69% more than BWA PARA (Table 4). 

When we compared the binding sites detected by BMix and the PARA-suite hierarchical 

clustering for alignments created by BWA PARA (binding site positions overlapping by 

at least 13 bases), the difference was only marginal, with an overlap of more than 

98.25% for the two methods. A recent study of this dataset reported binding sites using 

Bowtie 2MM for the alignment step and PARalyzer for the binding site detection. We 

found that the use of either BWA PSSM or BWA PARA in conjunction with either BMix 

or hierarchical clustering increased the number of binding sites detected by 2.87–

7.84%. 

 

Table 4: Binding sites detected by BMix and the hierarchical clustering based on read 

alignments performed by BWA 2MM, BWA PSSM, BWA PARA, Bowtie 2MM and Bowtie2 

on the HuR dataset. 

 BMix Hierarchical clustering 

BWA 2MM 136,775 137,697 

BWA PSSM 147,883 148,985 

BWA PARA 141,365 141,867 

Bowtie 2MM 125,592 125,067 

Bowtie2 88,369 87,400 

 

We searched for the exact binding motifs of HuR (ATTTA, ATTTTA and ATTTTTA) 

within the binding sites detected by BMix within 3’ untranslated region (UTR) or 

introns for all the read aligners tested. We found that all aligners performed 

comparably, with motifs present in 42–44% of all binding sites detected. The largest 

fraction was achieved using read alignments with BWA PSSM (44.33%), whereas BWA 
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PARA in combination with BMix found 42.53% of the binding sites that were most likely 

correct. Bowtie 2MM in combination with BMix had the lowest fraction of binding sites 

containing the reported binding motif (42.44%). We also compared the previously 

reported HuR binding sites to the binding sites determined by the full PARA-suite 

pipeline with BMix for clustering and detected 13 out of 15 sites, namely 3’ UTR PTGS2, 

3’UTR CDKN1A, 3’UTR VEGFA, 3’UTR TNF, 3’ UTR SLC7A1, 3’UTR CCND1, 3’UTR MYC, 3’ 

UTR XIAP, 3’UTR CELF1, TTS CSF2, 3’UTR CCNB1, intron NCL and 3’ UTR KRAS. The 

binding information for this comparison was taken from the Ingenuity knowledge base 

(Calvano, Xiao et al. 2005). The original study on the HuR dataset (Mukherjee, Corcoran 

et al. 2011) only reported 12 out of these 15 genes having confirmed binding site. 

 

Discussion 
 

We provided a detailed characterization of the error profiles of PAR-CLIP reads and an 

in-depth performance assessment of short read aligners in combination with binding 

site detection tools. We characterized some of the unique properties of PAR-CLIP 

sequence datasets, including the preferred read positions for T–C conversion sites and 

their frequencies per read position. We observed higher frequencies of sequencing 

errors in PAR-CLIP data than in the human reference RNA-Seq data. A likely reason for 

this behavior could be that PAR-CLIP reads are much shorter than common RNA-Seq 

reads, which reach lengths of 200 bases and show high-quality regions in the middle 

read length range (Laehnemann, Borkhardt et al. 2015, Schirmer, Ijaz et al. 2015). We 

used these observations for the design of a PAR-CLIP read simulator that embeds PAR-

CLIP specific information within the simulation process and the PARA-suite pipeline for 

error-aware read alignment and processing. The read simulator mimics PAR-CLIP 

datasets with error profiles drawn from real PAR-CLIP datasets. 

 

Based on the simulated PAR-CLIP datasets, we determined the parameter settings that 

delivered the best performance for commonly used aligners (Mukherjee, Corcoran et al. 

2011, Ascano, Mukherjee et al. 2012, Sievers, Schlumpf et al. 2012, Mukherjee, Jacobs et 
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al. 2014). Our analysis showed that the read alignment was crucial for detecting RBP 

binding sites in PAR-CLIP datasets. However, the PAR-CLIP specific read properties 

make it nearly impossible to identify splice junctions covered by PAR-CLIP reads with 

RNA-Seq read aligners such as TopHat, STAR or Subjunc, as their algorithms are based 

on unmet assumptions, such as a similar read coverage across all exons or long reads, in 

order to achieve high confidence k-mer spectra. Accordingly, these three aligners were 

outperformed by the other methods (Table S3–4). nterestingly, MOSAIK, an error-

aware aligner based on hash queries that has been shown to be more robust on RNA-

Seq reads than BWT-based aligners (Lee, Stromberg et al. 2014), was also 

outperformed by most of the other tested methods. Although it is robust on longer 

RNA-Seq reads, MOSAIK seemed to struggle with the very short PAR-CLIP reads. The 

PARA-suite alignment pipeline allowed us to increase the fraction of aligned reads in 

comparison to other aligners, including the alignment of reads spanning exon–exon 

junctions, both for PAR-CLIP datasets and data from a HITS-CLIP study (Supplementary 

Results). We observed this improvement irrespective of the binding site detection 

algorithm applied downstream. Importantly, unlike the error-aware short read aligner 

BWA PSSM, our short read alignment algorithm does not need the manual input of an 

error profile, which is instead inferred de novo within individual sequencing runs. The 

aligner thus automatically adapts to varying qualities of individual (PAR-)CLIP 

sequencing runs and is specifically adjusted to each sequence dataset. To our 

knowledge, it is the first tool for simultaneous de novo error model inference and short 

read alignment based on the BWA algorithm. Another difference from the BWA PSSM 

algorithm is that the latter introduces mismatches while considering the base calling 

quality scores and a probabilistic background model for matching bases in addition to 

the input error profile. In contrast, the generic error profile estimation of the PARA-

suite is not limited to any specific input profile. Further applications of our software 

could thus be used to analyze other types of error-prone sequencing data such as 

bisulphite sequencing data, which introduces a high amount of C–T mutations 

(Frommer, McDonald et al. 1992) or data from low-quality ancient DNA samples 

(Briggs, Stenzel et al. 2007). 
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Common read simulators such as ART or GemSim do not allow simulating PAR-CLIP 

reads with their specific error profiles. When comparing our PAR-CLIP read simulator 

with the recently developed CSeq simulator for CLIP data (Kassuhn, Ohler et al. 2016), 

both have different strengths. CSeq takes an exact binding motif and T–C conversion 

profile that is specific for the respective binding motif as input, thus restricting the 

read’s base composition and T–C conversion sites. This allows to mimic PAR-CLIP reads 

for a specific RBP, but not to generalize evaluations on these datasets to all kinds of 

RBPs. In comparison, the PAR-CLIP reads simulated with the PARA-suite are based on 

data that have been inferred from three different PAR-CLIP datasets to simulate 

heterogenic reads, which represent a broader spectrum of RBP binding sites. In 

addition, the read selection is not restricted to sequences containing the actual RBP 

binding motif. Thus CSeq and the PARA-suite’s read simulator have slightly different 

applications: CSeq allows one to simulate reads to optimize parameters for a specific 

dataset and the PARA-suite allows one to simulate reads for general tool evaluation and 

algorithmic improvements. 

 

Our analysis of combinations of read aligners and binding site detection algorithms on 

simulated and real datasets indicated that no single software performed best in terms 

of detecting binding sites on the available PAR-CLIP datasets. This observation was 

recently also made on other datasets (Kassuhn, Ohler et al. 2016). Our analysis of the 

HuR and FUS datasets revealed that U-rich binding sites tended to show higher rates of 

T–C conversions per read and were best aligned by BWA PSSM. RBPs with a more 

heterogeneous nucleotide distribution within the binding site (e.g. EWSR1 and TAF15) 

are better assessed by BWA PARA. This is supported by an analysis of uridylate-rich 

sequences from our simulated data aligned by BWA PSSM and BWA PARA 

(Supplementary Results and Supplementary Table S6). Therefore, a preliminary 

analysis of the error profile using the PARA-suite error profiler could allow one to 

determine the best approach to analyze sequencing data of a novel yet uncharacterized 

RBP. 
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Supplementary Materials & Methods 

 

Supplementary Methods 

For an overview of the performance of different read aligners and binding site detection 

algorithms on 10 simulated PAR-CLIP datasets, we calculated the precision, recall and 

accuracy for each. We considered all reads originating from simulated RBP-binding 

sites (with T–C conversions) as positives and those originating from other areas of the 

reference (simulated contaminations) as negatives. True positive and negative reads 

are those which are aligned correctly, whereas false positive and negative reads are 

those which are wrongly or not aligned (Table 1; Supplementary Table 3). We used 

BMix, PARalyzer and our hierarchical clustering to obtain the read clusters. Filtering of 

the clusters generated with the hierarchical clustering was performed as described in 

Section 2.2. A correctly reported binding site was considered a true positive, a falsely 

reported cluster (simulated contamination without elevated T–C conversions) as a false 

positive, an unreported binding site as a false negative and an unreported cluster 

(without T–C conversions) as a true negative (Supplementary Table 4). Unfortunately, 

BMix does not report false negative clusters (contaminations) and thus we were not 

able to calculate the recall nor the accuracy, but only the precision. 

 

Execution commands 

Quality and adapter trimming: 

cutadapt -e 0.05 -q 28 -m 18 -b $adapter -f fastq -o $output $input 
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Alignment: 

bwa aln -n $n $hg38_reference $trimmed_input > $output.sai ($n in {1, 2, 0.01, 0.02, 

0.04}) 

bwa samse $hg38_reference $output.sai $trimmed_input > $output.sam 

bowtie -S -v 1 --best -m $n --strata $hg38_reference -q $trimmed_input $output.sam ($n 

in {1, 2}) 

bowtie2 -x $hg38_reference -U $trimmed_input -S $output.sam 

parasuite map --refine -q $trimmed_input -r $hg38_reference -t $hg38_transcriptome -o  

$output --parasuite-mm $X ($X in {1, 2, 3, -1}) 

STAR --genomeDir $hg38_reference --readFilesIn $trimmed_input --outFileNamePrefix 

$output 

subjunc -u -n -i $hg38_reference -r $trimmed_input -o $output.sam 

tophat -o $output $hg38_reference $trimmed_input 

MosaikBuild -q $trimmed_input -out $mosaik_input -st illumina -ga hg38 

MosaikAligner -ia $hg38_reference -in $mosaik_input -out $output -mm 3 -annse 

./mosaik-2.2.3/network_files/2.1.78.se.ann -annpe ./mosaik-

2.2.3/network_files/2.1.78.pe.ann    -m unique -bw 5 

 

RBP binding site detection: 

PARalyzer config file: 

BANDWIDTH=3 

CONVERSION=T>C 

MINIMUM_READ_COUNT_PER_CLUSTER=5 

MINIMUM_READ_COUNT_FOR_KDE=3 

MINIMUM_CLUSTER_SIZE=14 

MINIMUM_CONVERSION_LOCATIONS_FOR_CLUSTER=1 

MINIMUM_CONVERSION_COUNT_FOR_CLUSTER=1 

MINIMUM_READ_COUNT_FOR_CLUSTER_INCLUSION=5 

MINIMUM_READ_LENGTH=13 

MAXIMUM_NUMBER_OF_NON_CONVERSION_MISMATCHES=0 
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MINIMUM_READ_COUNT_PER_GROUP=5 

EXTEND_BY_READ 

BMix config file: 

COV_MIN=5 

REFINE_COV=1 

CONFIDENCE_PER=0.95 

SEPARATE_STRANDS=1 

PARA-suite clustering: 

parasuite clust $alignment.bam $hg38_reference $output $dbsnp_142 5 

Annotation: 

annotatePeaks.pl $clusters.peak hg38 -norevopp -strand "+" > $clusters.annotated 

 

Supplementary Results 

Simulation of uridylate-rich and homopolymeric PAR-CLIP reads 

To measure the accuracy of the PARA-suite aligner for special types of data (uridylate-

rich sequences, which are common in PAR-CLIP and homopolymeric sequences), we 

generated subsets of our simulated data that contained either >35% T (uridylate-rich 

sequences) or homopolymeric sequences with stretches of five or more bases of a 

particular nucleotide.  

For the uridylate-rich PAR-CLIP reads, we observed an increase of 1.37% for PARA-

suite alignments and an increase of 2.35% in the accuracy for BWA PSSM alignments 

compared to our basic simulated data (Supplementary Table 5). The accuracy for the 

PARA-suite decreased by 1.53% but the accuracy was unchanged for BWA PSSM when 

the PARA-suite was applied to the homopolymeric PAR-CLIP reads (Supplementary 

Table 5). 

 

Application of the PARA-suite to HITS-CLIP data 

Besides PAR-CLIP, other CLIP protocols are also used widely. Therefore, we chose a 

previously published Argonaute protein HITS-CLIP dataset generated from mouse brain 

samples (Chi, Zang et al. 2009) to assess the PARA-suite on a different type of CLIP data. 
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To allow a comparison to previous results on the same dataset, we excluded all 

sequencing reads that were shorter than 25 bases after quality trimming using 

cutadapt. Next, we determined the error profile for the pooled replicates of the HITS-

CLIP dataset using the respective PARA-suite tool to train its alignment pipeline. Here, 

we could already verify the high rate of deletions in contrast to insertions or single 

nucleotide substitutions compared to the mouse reference genome sequence GRCm38 

(Chinwalla, Cook et al. 2002). Next, we applied the alignment pipeline to the pooled 

sequencing reads to align them against GRCm38 and against the transcript database of 

Ensembl genes Version 77 for the mouse genome assembly, and combined the results. 

Again, the transcriptomic mapping step revealed 79,658 additional aligned reads 

spanning exon–exon junctions out of 15,145,095 aligned reads in total (0.526 %). To 

achieve comparable results for RBP-bound transcribed regions in the mouse genome, 

we used PIPE-CLIP (Chen, Yun et al. 2014), which is a web-based program for cluster 

enrichment analysis of CLIP sequencing data. We compared our results with the 

number of cross-linked regions reported in the PIPE-CLIP publication analyzing the 

same dataset. The filtering criteria were the same as those in the PIPE-CLIP publication 

with an enriched cluster length of ≥25 bases and exclusion of duplicated sequencing 

reads by mapping position. After filtering the entire list of cross-linked regions for those 

that were supported by deletions in the cross-linked sites, we found 1450 significantly 

enriched regions by applying false discovery rate (FDR) ≤0.01 filtering. This number 

was substantially larger than what was found by the initial PIPE-CLIP analysis based on 

read alignments using Novoalign (http://www.novocraft.com) with 1232 cross-linked 

regions that were supported by deletions, an increase of 17.69% identified regions in 

total. 

We also applied FDR ≤0.001 filtering to compare our results with the first in-depth 

analysis of the same data (Zhang and Darnell 2011), which used a cross-linking-induced 

mutation sites (CIMS) analysis. We identified 984 cross-linked regions showing a 

reliable deletion, whereas the CIMS analysis applied to the read alignments performed 

by Novoalign identified only 886 cross-linked regions (Zhang and Darnell 2011). 

 

http://www.novocraft.com/
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Supplementary Tables and Figures 

 

Supplementary Table S1: Statistics of FET PAR-CLIP reads (Hoell, Larsson et al. 2011) 

before and after filtering for confident clusters. 

Dataset Reads in 

clusters 

Reads in confident 

clusters 

% reads passing 

the filter 

EWSR1 1,375,517 700,936 50.96 

FUS 1,249,406 923,904 73.95 

TAF15 1,310,291 761,710 58.13 

 

Supplementary Table S2: Average numbers for 10 simulated PAR-CLIP datasets. 

Simulated reads 1,326,151 

Mean read length 23 

Clusters 85,691 

T–C conversions 624,737 

Sequencing 

errors 

367,325 

Indels 7324 
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Supplementary Table S3: Average performance of short read aligners on 10 simulated PAR-CLIP datasets sorted by accuracy. The runtime for BWA 

PARA was determined without error profile estimation, whereas the runtime for the entire PARA-suite pipeline includes error profile estimation, 

and alignment against genomic and transcriptomic reference sequences and both of these in combination. The results for “PARAsuite pipeline” refer 

to an execution where the parameter X was automatically evaluated (default). The results for “PARAsuite X1”, “X2” and “X3” refer to executions with 

fixed values for X (i.e. X = 1, X = 2 and X = 3; see section “execution commands” for further information). 

Aligner Accuracy 

(in %) 

Variance Recall 

(in %) 

Precision 

(in %) 

Mapped 

overall 

Mapped 

correctly 

CPU time 

(in s) 

Real time 

(in s) 

Memory 

(in GB) 

PARAsuite pipeline 73.14 1.37E-06 84.49 71.85 1,024,792 969,948 2287.3 396.8 6.27 

PARAsuite X3 pipeline 72.61 1.26E-06 84.57 70.76 1,057,149 962,901 1365.9 307.7 6.21 

PARAsuite X2 pipeline 71.63 1.31E-06 83.39 70.35 993,244 949,870 3786.6 539.2 6.33 

PARAsuite 69.74 1.38E-06 82.16 68.24 975,672 924,802 1189.7 153.7 4.42 

PARAsuite X3 68.57 1.46E-06 81.85 66.36 995,213 909,390 356.6 73.0 4.42 

PARAsuite X2 68.26 1.33E-06 81.04 66.79 945,035 905,293 2405.1 265.1 4.42 

BWA 002 68.17 1.38E-06 82.32 64.98 959,235 904,090 3621.9 359.2 4.42 

BWA 004 68.17 1.37E-06 82.31 64.98 959,171 904,034 3981.5 390.7 4.42 

BWA 2MM 68.17 1.37E-06 82.31 64.98 959,171 904,034 795.5 109.5 4.42 

BWA 001 66.73 1.46E-06 80.61 64.26 958,919 884,964 797.2 109.5 4.42 

Bowtie 2MM 63.38 1.10E-06 77.91 60.93 886,512 840,540 713.2 120.6 4.46 

BWA PSSM 59.80 1.18E-06 74.04 58.72 818,895 793,007 232.4 25.4 2.26 

TopHat 59.69 8.35E-07 76.10 55.35 844,902 791,549 592.9 282.9 - 

BWA 1MM 59.29 8.68E-07 77.01 53.26 808,033 786,330 76.8 13.4 3.32 

Bowtie2 56.22 1.11E-06 73.23 51.43 763,893 745,531 93.8 45.8 4.41 

Bowtie 1mm 56.19 1.11E-06 73.20 51.42 763,631 745,227 1016.3 268.0 6.12 

PARAsuite X1 pipeline 53.02 8.44E-07 68.55 51.20 716,838 703,161 54.0 10.8 2.26 

PARAsuite X1 50.85 9.15E-07 66.52 49.08 685,788 674,399 75.0 43.7 4.41 

STAR 50.74 9.10E-07 69.57 43.02 826,871 672,920 133.5 248.6 28.39 

MOSAIK 44.88 2.18E-04 62.83 37.16 897,679 595,220 18,125.54 12,128.18 194.16 

Subjunc 35.42 9.03E-07 50.61 26.09 597,400 469,751 24.3 64.2 6.65 
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Supplementary TableS 4: Binding sites detected by BMix, PARalyzer and the hierarchical 

clustering applied to read alignments of 10 simulated PAR-CLIP datasets. Recall and accuracy 

cannot be calculated for BMix because it does not provide a list of negative (discarded) clusters. 

Aligner True positives True negatives False positives False negatives 
Precision (in 

%) 

BWA 2mm 

BMix 29,631 0 1456 0 95.32 

BWA 2mm 

clustering 30,516 17,587 1795 5229 94.45 

BWA 2mm 

paralyzer 29,255 12,184 5684 1575 83.73 

BWA PSSM 

BMix 28,440 0 1470 0 95.09 

BWA PSSM 

clustering 29,130 15,993 1837 2222 94.07 

BWA PSSM 

paralyzer 28,396 11,172 5663 952 83.37 

Bowtie 1mm 

BMix 26,824 0 969 0 96.51 

Bowtie 1mm 

clustering 27,234 16,230 1137 3605 95.99 

Bowtie 1mm 

paralyzer 27,464 11,252 5223 1299 84.02 

Bowtie 2mm 

BMix 28,061 0 1375 0 95.33 

Bowtie 2mm 

clustering 28,911 16,359 1691 4491 94.47 

Bowtie 2mm 

paralyzer 27,979 11,218 5303 1280 84.07 

Bowtie2 

BMix 26,832 0 969 0 96.52 

Bowtie2 

clustering 27,231 16,239 1138 3611 95.99 

Bowtie2 

paralyzer 29,631 0 1456 0 84.03 

PARA-suite 

BMix 31,918 0 1908 0 94.36 

PARA-suite 

clustering 32,995 17,940 2394 4065 93.23 

PARA-suite 

paralyzer 30,149 12,448 6329 2176 82.65 
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Supplementary Table S5: Alignment fractions of selected short read aligners applied to the 

PAR-CLIP results of the FET protein family. The PARA-suite aligner outperformed BWA 2MMs 

and BWA PSSM for all three datasets. 

Dataset Reads 

after 

trimming 

PARA-

suite 

aligner 

PARA-

suite 

aligner 

fraction 

BWA 

PSSM 

BWA 

PSSM 

fraction 

BWA 

2MMs 

BWA 

2MMs 

fraction 

EWSR1 14,557,174 3,193,140 21.94% 2,350,935 16.15% 2,870,884 19.72% 

FUS 10,981,718 3,571,035 32.70% 3,161,867 28.79% 3,083,820 28.08% 

TAF15 10,611,969 2,457,585 23.16% 1,605,642 15.13% 2,326,287 21.92% 

 

 

Supplementary Table S6: Accuracy of the PARA-suite and BWA PSSM on uridylate-rich and 

homopolymeric simulated PAR-CLIP data. 

Aligner Accuracy 

Uridylate-rich Homopolymers 

PARA-suite 71.11 68.21 

BWA PSSM 62.15 59.80 
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Supplementary Figure S1: (A) T–C conversion frequencies (α) in real PAR-CLIP data 

(summarized over all FET PAR-CLIPs (Hoell, Larsson et al. 2011)) and sorted by T–C 

sites within highly confident clusters. (B) Probabilities (β) for the preferred read 

positions of T–C conversion sites within confident clusters. This graph shows a peak at 

the beginning of the clusters where the majority of T–C conversions occurred. 
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Supplementary Figure S2: Error profiles for (A) human reference RNA-Seq, (B) FUS 

PAR-CLIP and (C) simulated PAR-CLIP data (averaged over 10 simulated datasets) 

showing position-wise errors per reads × 100 (EPR). The RNA-Seq profile in (A) has 

higher sequencing error rates in the outermost bases and a very low average in the 

mid-range of the reads. The two PAR-CLIP error-profiles in (B) and (C) show a high 

increase in T–C errors between the read sequences and the reference sequence. 
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Supplementary Figure S3: Error profiles for (A) HuR (Mukherjee, Corcoran et al. 

2011) and (B) MOV10 (Sievers, Schlumpf et al. 2012). Both error profiles lack a peak in 

the error rate for the first bases but show nearly the same average T–C conversion 

frequencies as the FET PAR-CLIP dataset with 1.684 errors per reads × 100 (EPR) for 

HuR and 1.561 EPR for MOV10 as compared to 1.477 EPR for, say, FUS. 
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Supplementary Figure S4: (A) Schematic view of PAR-CLIP reads aligned against a 

reference sequence. All reads are stacked into three clusters covering only small parts 

of the respective genes. Furthermore, T–C conversion sites with high and low mutation 

frequencies as well as a G–A sequencing errors are shown. (B) Modified representation 

of a cluster of simulated PAR-CLIP sequencing reads, produced by GenomeView version 

2350 (http://genomeview.org/). The cluster shows three T–C conversion sites, one of 

which has a very high amount of T–C conversions, and A–G and G–C sequencing errors. 

 

 

 

 

 

http://genomeview.org/
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Supplementary Figure S5: Average accuracy of short read aligners on 10 simulated 

PAR-CLIP datasets. Bowtie and BWA were run allowing for two mismatches (Bowtie 

2MMs and BWA 2MMs). The PARA-suite, including the transcriptome alignment (called 

the PARA-suite pipeline), outperformed all other aligners in recall and precision. The 

performance values obtained for additional aligners are listed in Supplementary Table 

2. 
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Supplementary Figure S6: Overlaps of genes targeted by the FET family identified by 

the cross-linked regions after cluster filtering. P-values for the Pairwise enrichments 

are as follows using Fisher’s exact test: EWSR1–FUS enrichment = 2.1 (p-value < 0.000); 

FUS–TAF15 enrichment = 2.0 (p-value < 0.000); EWSR1–TAF15 enrichment = 2.4 (p-

value < 0.000). The largest fraction of 2702 distinct genes is covered by all three 

datasets, which correlates with the results of the initial study. 
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Abstract 

 

MicroRNAs are well-established players in posttranscriptional gene regulation. 

However, information on the effects of microRNA deregulation mainly relies on 

bioinformatic prediction of potential targets, whereas proof of the direct physical 

microRNAs/target mRNAs interaction is mostly lacking. Within the International 

Cancer Genome Consortium Project “Determining Molecular Mechanisms in Malignant 

Lymphoma by Sequencing” (ICGC MMML-Seq), we performed miRnome sequencing 

from 16 Burkitt lymphomas, 19 diffuse large B-cell lymphomas, and 21 follicular 

lymphomas. Twenty-two miRNAs separated Burkitt lymphomas from diffuse large B-

cell lymphomas/follicular lymphomas, of which 13 have shown regulation by MYC. 

Moreover, we show expression of three hitherto unreported microRNAs. Additionally, 

we detect recurrent mutations of hsa-miR-142 in diffuse large B-cell lymphomas and 

follicular lymphomas, and editing of the hsa-miR-376 cluster, providing evidence for 

microRNA editing in lymphomagenesis. To interrogate the direct physical interactions 

of microRNAs with mRNAs, we performed Argonaute-2 photoactivatable 

ribonucleoside-enhanced crosslinking and immunoprecipitation experiments. 

MicroRNAs directly targeted 208 mRNAs in the Burkitt lymphomas and 328 mRNAs in 

the non-Burkitt lymphoma models. This integrative analysis discovered several 

regulatory pathways of relevance in lymphomagenesis including Ras, PI3K-Akt and 

MAPK signaling pathways, also recurrently deregulated in lymphomas by mutations. 

Our dataset uncovers in detail the mRNA deregulation through microRNAs as a highly 

relevant mechanism in lymphomagenesis. 

 

Introduction 

 

B-cell lymphomas account for approximately 85% of all lymphomas and form a 

heterogeneous group of lymphoid neoplasms arising at different stages of B-cell 

development (Lenz and Staudt 2010). They are classified according to morphological 

and immunophenotypical features, supplemented by characteristic genomic 
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translocations (WHO 2008). Although these allow the diagnosis of histological B-cell 

lymphoma subtypes, molecular subtypes remain largely indistinguishable (Campo, 

Swerdlow et al. 2011). Presumably due to this molecular heterogeneity, many patients 

do not respond well to common therapy regimens (Sinha, Nastoupil et al. 2012). 

Identifying new therapeutic targets and biomarkers is therefore required to improve 

the accuracy of lymphoma diagnosis and subsequent therapy selection. 

 

One potential class of biomarkers and/or therapeutic targets are a subset of RNA 

molecules named microRNAs (miRNAs). These are small non-coding RNAs (17–25 

nucleotides in length) that bind mostly to target sequences within the 3’ UTR of mRNAs. 

MiRNAs regulate the expression of thousands of mRNAs including those with key roles 

in cell differentiation and cancer pathogenesis (Farazi, Spitzer et al. 2011). MiRNAs 

influence immune cell differentiation and play crucial roles in both early and late B-cell 

differentiation (Di Lisio, Martinez et al. 2012) and lymphomagenesis (Musilova and 

Mraz 2015). Mechanisms of miRNA dysregulation in lymphomas include copy number 

alterations (e.g. the miR-17~92 polycistron (He, Thomson et al. 2005)), chromosomal 

translocation (e.g. hsa-miRNA-125 (Enomoto, Kitaura et al. 2011)) and mutations (e.g. 

hsa-miR-142 (Kwanhian, Lenze et al. 2012)). Several molecular profiling studies have 

tried to assess differential miRNA expression in B-cell lymphomas (recently reviewed in 

(Di Lisio, Martinez et al. 2012, Lim, Trinh et al. 2015, Musilova and Mraz 2015)). Lately, 

a signature of 38 miRNAs containing MYC-regulated and nuclear factor- -

associated miRNAs was published, which differentiated Burkitt lymphoma (BL) from 

diffuse large B-cell lymphoma (DLBCL) (Lenze, Leoncini et al. 2011). 

 

Available data on miRNA expression profiling in B-cell lymphomas is, however, still 

preliminary, as published profiles are either mostly not derived from large sample 

collections, do not compare subtypes or originate from either qRT-PCR-based 

approaches or microarrays. Next generation sequencing (NGS) is able to overcome the 

disadvantages of previous methods such as probe cross-hybridization (Creighton, Reid 

et al. 2009) and the limitations of qRT-PCR, such as restricting the analysis to 



Appendix 

 

93 
 

previously known miRNAs. Furthermore, sequencing-based approaches allow for the 

discovery of novel miRNAs and large-scale identification of mutated miRNAs. 

 

The present study was performed within the framework of the International Cancer 

Genome Consortium Project “Determining Molecular Mechanisms in Malignant 

Lymphoma by Sequencing” (ICGC MMML-Seq). Our aim was to identify NGS-based 

miRNA signatures in three common subtypes of B-cell lymphomas, i.e BL, DLBCL and 

follicular lymphoma (FL) and to correlate these to mRNA expression and genomic 

mutations. Moreover, by performing photoactivatable ribonucleoside-enhanced cross-

linking and immunoprecipitation (PAR-CLIP) experiments (Hafner, Landthaler et al. 

2010) and intersecting the results with the patient-derived m(i)RNA expression 

profiles, we aimed at identifying specific miRNA-mRNA target pairs in BL and DLBCL. 

 

Methods 

 

Patient samples 

The ICGC MMML-Seq project was approved by the IRB of the Medical Faculty of Kiel 

University (A150/10) and by the recruiting centers. Informed consent was obtained 

from all patients (in case of children from their legal guardians). Histopathologic, 

immunophenotypic and genetic characterization of the initial diagnosis (tumor cell 

content ≥ 60%) tumor samples was performed as described recently (Richter, Schlesner 

et al. 2012). 

 

Next generation sequencing 

Nucleic acid extraction was performed as previously detailed (Richter, Schlesner et al. 

2012). Libraries for miRNA sequencing were prepared using TruSeq Small RNA sample 

prep kit (Illumina, San Diego, California, USA) according to the manufacturer’s 

instructions. with 100 ng - 1 µg total RNA as input. Libraries were size-fractionated on 6 

x TBE gels (Life Technologies, Carlsbad, California, USA). DNA concentration and sizes 

were analyzed on a 2100 Bioanalyzer (Agilent, Santa Clara, California, USA). 7 pmol of 
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DNA of each library were loaded onto a flow cell (multiplexing up to four libraries per 

lane), 50 cycle sequencing was performed using the TruSeq SBS Kit v3 on the HiSeq 

2500 (Illumina). 

Whole genome sequencing data of tumors and matched controls and transcriptome 

sequencing data of tumors were generated by the ICGC MMML-Seq project as 

previously described (Richter, Schlesner et al. 2012). All sequencing data have been 

deposited at the European Genome-phenome Archive (EGA, 

http://www.ebi.ac.uk/ega/, accession number EGAS00001001394). 

 

Quantitative real-time (qRT)-PCR 

Undiluted RT reactions (20 ng of RNA per sample) were combined with TaqMan 

Universal Master Mix II (no UNG) (Life Technologies) and amplified (7500HT Real-Time 

PCR System, Life Technologies) with RNU24 and RNU48 as housekeeping genes. 

Experiments were performed in triplicate and analyzed using the 2-ΔΔCT method. 

 

AGO2-PAR-CLIP 

AGO2-PAR-CLIP was carried out as previously described (Hafner, Landthaler et al. 

2010) with modifications (mostly relating to the washing steps during 

immunoprecipitation) owing to the use of monoclonal anti-AGO2 antibody (#4-642, 

EMD Millipore,  Billerica, Massachusetts, USA) (Farazi, Ten Hoeve et al. 2014). In 

brief, following the addition of 4-thiouridine, an immunoprecipitation using a 

monoclonal anti-AGO2 antibody isolated the RNA-protein complexes. After protein 

digestion, sequencing adapters were ligated to the purified RNA fragments. Following 

reverse transcription, PAR-CLIP libraries were sequenced on a HiSeq2500 (Illumina) 

(Spitzer, Hafner et al. 2014). 

 

Bioinformatic methods 

Bioinformatic analyses of the genome and transcriptome data were performed as 

described recently, employing the various pipelines established in the ICGC MMML-Seq 

(Richter, Schlesner et al. 2012) (also Supplementary Methods). 

http://www.ebi.ac.uk/ega/
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MiRNA and PAR-CLIP analysis 

Following adapter removal, reads were mapped onto the human genome (1000 

genomes project, hs37d5100) using segemehl (Hoffmann, Otto et al. 2009). Novel 

miRNA prediction was performed using miRanalyzer 0.3 (Hackenberg, Sturm et al. 

2009) (default parameters), target prediction using miRanda (Enright, John et al. 2004) 

(miRsvr-score < -1.2). 

After filtering and trimming the PAR-CLIP reads, we obtained a total of 62 281 382 

single-end reads, which were aligned with BWA(Li and Durbin 2009) with up to two 

mismatches between a read sequence and the reference sequence (hg19). All reads 

failing this mapping were aligned against the transcriptome database (Ensembl Genes 

75). Aligned reads were piled into clusters by PARA-suite (Kloetgen et al., submitted). 

As PAR-CLIP reads contain thymidine to cytidine (T-C) conversions at the sites of 

crosslinks, all identified clusters were filtered to receive the most confident target 

regions. Excluding clusters containing < 5 reads and < 25% T-C conversions (excluding 

100% T-C conversion sites as these might result from SNVs) resulted in (prior to 

pooling) 1 329 clusters for SU-DHL-4, 1 517 clusters for SU-DHL-6, 1 209 clusters for 

Namalwa and 425 clusters for Raji. Please refer to Supplementary Methods for more 

details (including miRNA-mRNA correlation analyses). 

 

Results 

 

Molecular classification of BL versus DLBCL/FL using a 25 miRNA classifier 

We profiled tumor samples from 56 patients including 16 BL (based on a molecular 

classifier; all patients ≤ 18 years), 19 DLBCL (including 7 GCB DLBCLs, 10 ABC DLBCLs 

and 2 type III DLBCLs) and 21 FL (mainly grade 1/2) (Supplementary Table 1). We 

obtained 1 169 752 727 sequencing reads in total (average of 20 888 442 reads per 

sample, Supplementary Table 2). Following normalization of miRNA reads, we 

performed an unsupervised hierarchical clustering. Unexpectedly (and different to 

what we observed on the transcriptomic level, data not shown), no clear distinction 

between BL, DLBCL and FL was achieved based on miRNA expression profiles 
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(Supplementary Figure 1A). We then ranked the miRNAs by mean expression and, 

discarding those that showed little expression variability, chose the top ten miRNAs for 

validating our NGS data by qRT-PCR. A correlation analysis showed the consistency of 

miRNA expression levels regardless of the employed method of quantification 

(spearman’s rank correlation test, 10/10, high correlation (R>0.7), p-values for the 

correlation between qRT-PCR expression and NGS expression ≤ 0.05 in 7/10 cases; 

please refer to supplementary bioinformatic methods for details on all p-value 

calculations) (Supplementary Figure 1B, Supplementary Table 3). 

To recognize subtler molecular differences that escape unsupervised clustering 

approaches, we performed a differential gene expression analysis between BL versus 

DLBCL, BL versus FL and DLBCL versus FL using edgeR (Supplementary Table 4 & 

supplementary bioinformatic methods). Clustering of the top 25 differentially 

expressed miRNAs between each two lymphoma subtypes (BL/DLBCL, BL/FL, and 

FL/DLBCL) revealed separation according to the subtypes (Figure 1A). Employing this 

approach, BL and FL separated clearly, whereas the discrimination between BL/DLBCL 

and FL/DLBCL was less pronounced, most likely due to the molecular heterogeneity of 

DLBCL (Alizadeh, Eisen et al. 2000, Iqbal, Shen et al. 2015). As there were no dual hit 

patients and no DLBCL cases with MYC breaks as single events in our cohort, we were 

not able to test, whether our classifier was able to single out those cases. 

Interestingly, 7/25 miRNAs differentially expressed between BL/DLBCL (hsa-miRs-

23a/29b/130b/146a/155/196b/222) were also part of a recently published, 27-

miRNA qRT-PCR derived classifier for the differentiation of those both subtypes (Iqbal, 

Shen et al. 2015) (6.9 fold enrichment, one-sided Fisher’s exact test, p-value for the 

overlap of the two classifiers 2.322E-05). In a previous array-based study, we 

established a classifier consisting of 38 miRNAs, which differentiated BL from DLBCL 

(Lenze, Leoncini et al. 2011). From the 25 miRNAs top differentially expressed herein, 

eight overlapped with these 38 miRNAs (hsa-miRs-

23a/29b/146a/155/193a/221/222/339) (5.1 fold, p-value for this overlap 5.900E-05). 

In summary, five miRNAs (hsa-miR-23a/29b/146a/155/222) seem to be robustly able 

to differentiate BL from DLBCL irrespective of the collection of cases and the method 
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used for analysis. We additionally analyzed previously published microarray data 

(Lenze, Leoncini et al. 2011) for 64 BL cases and 86 DLBCL cases to validate the 

predictive power of our classifiers on an independent dataset (see Supplementary 

Methods for further details). We predicted correct class labels for 126/128 cases with a 

majority vote of at least 80% (recall = 98.44%; 57/58 BL cases and 69/70 DLBCL cases; 

overall accuracy = 84.0%) on our 25 miRNA-classifier for BL vs. DLBCL.  

To address the question on how to distinguish BL from the other investigated 

histological subtypes, we merged DLBCL and FL and clustered the top 25 differentially 

expressed miRNAs between BL and DLBCL/FL inferred with edgeR. This resulted - with 

the exception of two BL cases - in a clear separation between BL and DLBCL/FL (Figure 

1B). Of those top 25 differentially expressed miRNAs, 14 were up- and 11 were 

downregulated in BL compared to DLBCL/FL (Table 1). As our analysis takes both “5p” 

and “3p” versions (previously referred to as mature miRNA and star strand) of each 

miRNA into account, our classifier consists of 22 unique miRNAs. Interestingly, for a 

total of 13 of these miRNAs a regulation by MYC was reported in the literature (Chang, 

Yu et al. 2008, Di Lisio, Sanchez-Beato et al. 2012, Zhao, Bai et al. 2012, Xiong, Jiang et al. 

2013, Liu, Mai et al. 2014, Tao and Zhao 2014). 

 

Table 1: 25 miRNA classifier separating BL from DLBCL/FL. MiRNAs for whom 

regulation by MYC has been shown are shaded in gray. cpm indicates counts per 

million; FDR, false discovery rate. 

miRNA p-value FDR cpm BL cpm DLBCL/FL 

hsa-miR-17-3p 1.4 E-14 1.6 E-12 2177.0 279.2 

hsa-miR-18a-3p 4.8 E-12 2.7 E-10 88.9 16.1 

hsa-miR-19a-3p 5.7 E-12 3.0 E-10 1852.6 349.2 

hsa-miR-20a-3p 7.2 E-28 4.1 E-25 28.9 3.9 

hsa-miR-25-5p 1.7 E-21 5.0 E-19 79.2 11.2 

hsa-miR-29c-5p 6.6 E-12 3.1 E-10 12.6 51.0 

hsa-miR-93-3p 4.7 E-10 1.1 E-08 153.4 26.0 
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hsa-miR-106b-3p 7.6 E-11 2.3 E-09 1010.8 381.5 

hsa-miR-106b-5p 3.9 E-11 1.4 E-09 617.7 211.0 

hsa-miR-130b-3p 1.1 E-18 2.1 E-16 701.2 148.6 

hsa-miR-150-3p 9.3 E-12 4.1 E-10 3.5 36.5 

hsa-miR-150-5p 8.4 E-13 6.0 E-11 649.6 7980.4 

hsa-miR-155-5p 3.2 E-10 7.9 E-09 1152.3 10989.1 

hsa-miR-184 1.6 E-10 4.4 E-09 0.9 123.6 

hsa-miR-196b-5p 2.9 E-10 7.6 E-09 4.5 53.7 

hsa-miR-151b 6.1 E-11 1.9 E-09 15.5 146.0 

hsa-miR-211-5p 1.4 E-11 5.9 E-10 0.1 1.7 

hsa-miR-221-3p 9.6 E-15 1.4 E-12 461.7 3018.5 

hsa-miR-296-3p 2.1 E-12 1.3 E-10 6.6 1.7 

hsa-miR-335-3p 1.9 E-11 7.2 E-10 566.5 100.8 

hsa-miR-339-5p 1.9 E-13 1.6 E-11 98.8 20.3 

hsa-miR-664-3p 1.1 E-10 3.1 E-09 14.7 97.9 

hsa-miR-664-5p 4.1 E-10 9.8 E-09 4.2 29.1 

hsa-miR-573 5.3 E-11 1.8 E-09 3.3 0.4 

hsa-miR-4521 1.9 E-13 1.6 E-11 35.6 4.6 

 

 

 

 

 



Appendix 

 

99 
 

 

Figure 1: The miRnome of B-cell lymphomas. A) Clustering according to the top 25 

differentially expressed miRNAs inferred with edgeR between FL (light blue), DLBCL 

(blue), and BL (gray), in pairwise comparisons. B) Clustering according to the top 25 

differentially expressed miRNAs inferred with edgeR between BL and DLBCL/FL. C) 

Hsa-miR-143 expression across all patient samples. D) Visualization of the genomic 

mutations of those miRNAs, which show alterations in their mature sequences. Shown 
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are the mature sequences of the respective miRNAs, the seed sequences are highlighted 

by black boxes. The positions of the mutations are also indicated. E) Predicted folding of 

the three biochemically validated novel miRNAs. 

 

Hsa-miRNA-143 is highly abundant in GC B cell lymphomas 

Contrary to earlier reports (Akao, Nakagawa et al. 2007), hsa-miR-143 showed a very 

high expression across most lymphoma samples (Figure 1C). Expression ranged from 

0.8% to 68.2% (mean 8.9%) of all reads mapping to miRNAs for this miRNA alone with 

no significant differences between subtypes (means 10.8%, 7.4% and 8.9% for 

BL/FL/DLBCL, respectively). The extremely high expression of this miRNA (68.2%) in 

patient 4146289 (BL) was confirmed by qRT-PCR as was the lower expression (0.8%) 

in patient 4142267 (BL) (Supplementary Figure 1B). As hsa-miR-143 forms a 

bicistronic cluster on chromosomal region 5q33.1 with hsa-miR-145, we also 

investigated the latter’s expression. MiRNAs in bicistronic clusters are transcribed 

simultaneously and thus show similar expression patterns. The correlation analysis (p-

value 0.0034 for the correlation between hsa-miR-143 and hsa-miR-145 expression, 

R=0,39) confirmed the validity of the hsa-miR-143 expression with similar expression 

patterns (Supplementary Figure 1C). Whole-genome derived copy number analysis of 

all patient samples revealed no relevant alterations in either the promoter or the 

genomic region of hsa-miR-143/145. The reason for the observed high expression of 

the hsa-miR-143/145 cluster thus remained unclear. 

To identify molecular pathways associated with the high expression of hsa-miR-143, we 

performed a target prediction and investigated, which of the predicted targets were 

downregulated in the respective RNASeq data. This resulted in 186 predicted hsa-miR-

143/mRNA interaction pairs (Supplementary Table 5). Gene Ontology analysis 

employing Gorilla (Eden, Navon et al. 2009) revealed that the GO term “ubiquitin-

protein transferase activity” (GO:0004842) showed the highest enrichment (5.33 fold, 

p-value ˂0.001). The associated target genes are listed in Supplementary Table 6, the 

entire GO output in Supplementary Table 7. 
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Hsa-miR-142 is recurrently mutated in its mature sequence in DLBCL and FL 

Next, we searched for mutated miRNAs, which were detectable on both DNA as well as 

RNA level. Mutations in miRNAs located in the IGH gene locus were excluded. We 

identified 10 mutations (Table 2) in 8 patients (6 mutations in 5 DLBCL patients, 4 

mutations in 3 FL patients) with a total of 4 miRNAs affected (hsa-miR-142/-612/-

3655/-4322). In two miRNAs (hsa-miR-142/-612), the mutations were within the 

mature sequence (Figure 1D). 

Hsa-miR-142 was the most frequently mutated miRNA with six different mutations in 

5/40 DLBCL/FL patients. Two of those were located within the seed sequence. Looking 

at the subgroups, this broke up into 3/19 in DLBCL and 2/21 in FL. A recent publication 

(Kwanhian, Lenze et al. 2012) reported a mutation frequency of hsa-miR-142 in 11/56 

DLBCL cases. Our data therefore confirms the mutation frequency in DLBCL and 

extends this finding to FL. 

 

Table 2: Genomically mutated miRNAs. chr indicates chromosome; gen. pos., genomic 

position (hg19); mature, whether or not the sequenced alteration is located within the 

mature miRNA sequence; ref/alt, reference/alternative; PID, personal identifier. 

miRNA chr gen. pos. mature ref/alt PID Subtype 

hsa-mir-142 chr17 56408624 y C>T 4102009 DLBCL 

hsa-mir-142 chr17 56408616 y A>C 4112447 FL 

hsa-mir-142 chr17 56408630 n C>T 4120193 DLBCL 

hsa-mir-142 chr17 56408620 y A>T 4160468 FL 

hsa-mir-142 chr17 56408621 y A>G 4160468 FL 

hsa-mir-142 chr17 56408612 y A>T 4176133 DLBCL 

hsa-mir-612 chr11 65211962 y G>A 4135099 DLBCL 

hsa-mir-3655 chr5 140027478 n A>G 4177376 FL 

hsa-mir-4322 chr19 10341090 n C>A 4134434 DLBCL 

hsa-mir-4322 chr19 10341109 n C>T 4135099 DLBCL 
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The hsa-miR-376 cluster is recurrently edited in GC B cell lymphoma subtypes 

RNA editing is a process in which (most commonly) adenosine deaminases perform the 

site-specific hydrolytic deamination of adenosine to inosine (Tomaselli, Locatelli et al. 

2014). When an RNA molecule contains an inosine, the sequenced change usually is A-

to-G. We searched for mutations exclusive to the miRNA data (not seen on genomic 

level), which thus represented bona fide miRNA editing events. Starting with all SNVs, 

we restricted our search to those in the seed regions and discarded known SNVs as 

reported in dbSNP_135 including rare variants. The remaining 40 candidates were 

manually evaluated (correct position of SNVs in sequence reads, A-to-G change, 

sequencing quality of errors), narrowing the list to four SNVs (Table 3). These mapped 

to hsa-miR-1260b, hsa-miR-376a1/2, and hsa-miR-376c, with the hsa-miR-376 family 

belonging to the same genomic cluster on 14q32. Editing frequencies (edited reads 

versus all reads) ranged from 35-86% across miRNAs in the lymphoma samples 

showing this phenomenon. The editing “efficiency” (percent alternative base) and the 

expression of ADAR, one of the main enzymes responsible for RNA editing (Tomaselli, 

Locatelli et al. 2014), per case (with observed editing) showed a weak correlation (p-

value 0.044; R=0.30), possibly pointing at the mechanism behind the observed miRNA 

editing. 

 

Table 3: RNA editing events across lymphoma subtypes. Numbers of samples showing 

the editing events at the indicated genomic positions with at least 10 sequenced reads 

at this position are given. Chr indicates chromosome; gen. pos., genomic position 

(hg19); ref/alt, reference/alternative; mean % alternative, mean % of reads differing 

from the reference sequence 

miRNA chr gen. pos. ref/alt 
mean % 

alternative 

# samples with 

editing 

hsa-miR-376a1/2 chr14 101506460 A>G 86.2% 39 

hsa-miR-376c chr14 101506074 A>G 45.2% 19 

hsa-miR-1260b chr11 96074619 A>G 35.3% 11 
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Discovery of three hitherto unreported miRNAs expressed in GC B cell lymphomas 

We employed miRanalyzer to predict hitherto unreported miRNAs (Hackenberg, Sturm 

et al. 2009), then choosing a subset of 20 (Supplementary Table 8) and observed the 

correct processing of three candidates (Table 4) by Northern blotting (Supplementary 

Figure 2A). Secondary structures of these three hitherto unreported miRNAs as 

predicted by RNAfold (Denman 1993) are depicted in Figure 1E. 

Novel-miR-1 was moderately expressed in SU-DHL-4 and weakly expressed in Namalwa 

and Raji. Novel-miR-2 was expressed in Raji and SU-DHL-4, novel-miR-3 in Raji and 

Namalwa (Supplementary Figure 2A). We next assessed publicly available RNASeq data 

of 16 cell lines (details in Supplementary Material) across a variety of tissues/diseases 

for expression of our three novel miRNAs. Novel-miR-2 and novel-miR-3 were broadly 

expressed (16/16 cell lines, 12/16 cell lines, respectively), novel-miR-1 showed a 

restricted expression, and was only detected in the B-lymphoblastoid cell line GM12878 

(data not shown). We then focused on novel-miR-1 (restricted expression) and novel-

miR-2 (broad expression) for further experiments. 

We performed overexpression/knockdown studies in SU-DHL-4 (novel-miR-1) and Raji 

(novel-miR-2) followed by RNASeq (Supplementary Figure 2B). To only identify mRNAs 

whose differential expression was due to direct targeting effects, we searched for 

mRNAs that carried the respective seed sequence, had a significant miRanda score and 

were inversely regulated (FDR for all further calculations < 0.05).  

Downregulation of novel-miR-1 and novel-miR-2 resulted in two (EIF3C, MPEG1) and 3 

(HLA-DRB5, PFKFB4, PPP1R35) upregulated mRNAs, respectively. Upregulation of 

novel-miR-1 led to the downregulation of 55 coding mRNAs (Supplementary Table 9), 

whereas overexpression of novel-miR-2 only resulted in two downregulated mRNAs 

(SLCO2B1, UPP1). Interestingly, there were many genes previously reported in the 

context of lymphomagenesis among those mRNAs, which carried novel-miR-1 seed 

sequences. These genes represent its bona fide direct targets and included CARD11, 

E2F1, MCM2 and MCM7. Novel-miR-1 thus potentially represents a new player in 

lymphomagenesis. Sequences of novel-miR-1/-2/-3 have been submitted to miRBase. 
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Table 4: Novel miRNAs in B-cell lymphomas. chr indicates chromosome; gen. pos., 

genomic position (hg19). 

Northern Blot  probe chr gen. pos. mature miRNA sequence 

Positive (novel-miR-1) NB-5 10 
50035510-

50035603  
GCACACTGACACAGAGAGAGAGA 

Positive (novel-miR-2) NB-19 M 3363-3463 
CCAACGTTGTAGGCCCCTACGGG 

CTACT 

Positive (novel-miR-3) NB-20 12 
52453530-

52453613 
TCACTGCAGGGCCCTAGCAATA 

 

AGO2-PAR-CLIP identifies direct mRNA-miRNA interactions in BL and DLBCL/FL 

To identify those mRNAs, which were physically targeted by miRNAs in Argonaute-

miRNA-mRNA complexes (versus performing bioinformatic predictions to identify 

putative interactions only), we performed PAR-CLIP experiments of endogenous AGO2 

(Hafner, Landthaler et al. 2010) (Figure 2A) in two BL cell lines (Namalwa, Raji) and 

two non-BL cell lines (SU-DHL-4, SU-DHL-6; both t(14;18) positive). Merging the BL and 

the non-BL sequencing reads resulted in 1 587 and 2 532 clusters, respectively 

(individual read numbers see Figure 2B). Combining these miRNA-target sites with the 

transcriptome data also available for each patient (Figure 2C) led to 302 (BL) / 540 

(non-BL) miRNA-mRNA interactions with negative correlations, with several genes 

being targeted by more than one miRNA (Supplementary Table 10). On individual gene 

level the numbers were 208 (BL) and 328 (non-BL). 

Many of the genes showing direct regulation by miRNAs have well-known roles in 

lymphomagenesis (Figure 2D). These genes fell into different functional categories, 

some for which expression was correlated to prognosis (B2M (Hagberg, Killander et al. 

1983) (targeted by hsa-miR-106b), MDM2 (Solenthaler, Matutes et al. 2002) (hsa-miR-

361)), for which differential expression was shown (CCR6 (Durig, Schmucker et al. 

2001) (hsa-miR-296) or were correlated to treatment resistance (e.g. THY1 (Ishiura, 

Kotani et al. 2010) (hsa-miR-149)). For other targeted genes, mutations (ID3 (Richter, 

Schlesner et al. 2012) (hsa-miR-4424), NPAT (Kuppers 2011) (hsa-miR-4518), 
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SMARCA4 (Love, Sun et al. 2012) (hsa-miR-2467), TCF3 (Schmitz, Young et al. 2012) 

(hsa-miR-184)) or translocations (e.g. CDK6 (Chen, Law et al. 2009) (hsa-miR-148b)) 

have been described in several types of lymphomas. 

Significantly enriched and lymphoma-relevant targeted KEGG pathways (Table 5) 

showing a differential expression between BL and non-BL included “miRNAs in cancer” 

(hsa05206, 10 genes, p-value 7.56E-07, enrichment 7.7), “MAPK signaling” (hsa04010, 

11 genes, p-value 1.79E-08, enrichment 9.7), “Ras signaling” (hsa04014, 8 genes, 7.56E-

06, enrichment 8.0), and “PI3K-Akt signaling” (hsa04151, 8 genes, p-value 1.48E-04, 

enrichment 5.2). Total numbers of genomically detected mutations in the four 

mentioned pathways were in that order 122 (297 genes in the pathway), 111 (257 

genes), 83 (228 genes) and 124 (347 genes). As these overlaps were not statistically 

significant (p-values 0.221 to 0.409), this suggests that the respective pathways are 

targeted and deregulated either by virtue of miRNA interference or by mutations. 
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Figure 2: Direct miRNA-mRNA regulation in B-cell lymphomas. A) PAR-CLIP 

principle. Following the addition of 4-thiouridine, an immunoprecipitation with 

subsequent protein digestion is performed. Purified RNA fragments are reverse 

transcribed and cDNA libraries are sequenced on a HiSeq2500 followed by 

bioinformatic analysis (adapted from Hafner et al. (Hafner, Landthaler et al. 2010)). B) 

PAR-CLIP library statistics. The left y-axis shows the number of aligned reads, the right 

y-axis the number of high quality PAR-CLIP clusters. Employed cell lines are indicated. 

C) Flow chart of the integrative miRNA-mRNA regulation analysis (adapted from Farazi 
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et al. (Farazi, Ten Hoeve et al. 2014)). D) List of lymphoma relevant genes for which 

regulation by distinct miRNAs could be elucidated. 

 

Table 5: Targeted KEGG pathways and associated miRNA-mRNA regulation pairs. 

KEGG pathway gene targeting miRNA(s) mutations detected 

hsa05206: microRNAs in cancer APC2 hsa-miR-663b, hsa-miR-3648 - 

hsa05206: microRNAs in cancer CCND1 hsa-miR-27b-5p, hsa-miR-590-5p - 

hsa05206: microRNAs in cancer E2F3 hsa-miR-141-5p - 

hsa05206: microRNAs in cancer MDM2 hsa-miR-361-3p BL4112512 

hsa05206: microRNAs in cancer MMP16 hsa-miR-151a-3p BL4190495 

hsa05206: microRNAs in cancer NOTCH4 hsa-miR-573 FL4178655 

hsa05206: microRNAs in cancer PAK4 hsa-miR-2355-5p - 

hsa05206: microRNAs in cancer PDGFA hsa-miR-181b-3p, hsa-miR-4420 - 

hsa05206: microRNAs in cancer PRKCB hsa-miR-577 DLBCL4131257 

hsa05206: microRNAs in cancer ZFPM2 hsa-miR-127-5p, hsa-miR-181b-3p, hsa-miR-4420 
DLBCL4134434,FL411244

7 

hsa04014: Ras signaling pathway FLT4 hsa-miR-17-3p - 

hsa04014: Ras signaling pathway MRAS hsa-miR-181b-3p, hsa-miR-1304-3p - 

hsa04014: Ras signaling pathway PAK1 hsa-miR-424-5p - 

hsa04014: Ras signaling pathway PAK4 hsa-miR-2355-5p - 

hsa04014: Ras signaling pathway PAK6 hsa-miR-125a-3p DLBCL4135099 

hsa04014: Ras signaling pathway PDGFA hsa-miR-181b-3p, hsa-miR-4420 - 

hsa04014: Ras signaling pathway PLA2G4A hsa-miR-3940-3p - 

hsa04014: Ras signaling pathway PRKCB hsa-miR-577 DLBCL4131257 

hsa04151: PI3K-Akt signaling 

pathway 
CCND1 hsa-miR-27b-5p, hsa-miR-590-5p - 

hsa04151: PI3K-Akt signaling 

pathway 
COL6A6 

hsa-miR-135b-5p, hsa-miR-140-3p, hsa-miR-4424, 

hsa-miR-4999-5p 
- 

hsa04151: PI3K-Akt signaling 

pathway 
FLT4 hsa-miR-17-3p - 

hsa04151: PI3K-Akt signaling 

pathway 
LPAR1 hsa-miR-3194-5p, hsa-miR-3940-3p - 

hsa04151: PI3K-Akt signaling 

pathway 
MDM2 hsa-miR-361-3p BL4112512 

hsa04151: PI3K-Akt signaling 

pathway 
PDGFA hsa-miR-181b-3p, hsa-miR-4420 - 

hsa04151: PI3K-Akt signaling 

pathway 
PPP2R1B hsa-miR-140-3p BL4127766 

hsa04151: PI3K-Akt signaling 

pathway 
PPP2R3A hsa-miR-708-5p - 

hsa04010: MAPK signaling pathway CACNB1 hsa-miR-3622a-5p - 

hsa04010: MAPK signaling pathway ECSIT hsa-miR-34a-5p, hsa-miR-3605-3p - 
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hsa04010: MAPK signaling pathway MRAS hsa-miR-181b-3p, hsa-miR-1304-3p - 

hsa04010: MAPK signaling pathway PAK1 hsa-miR-424-5p - 

hsa04010: MAPK signaling pathway PDGFA hsa-miR-181b-3p, hsa-miR-4420 - 

hsa04010: MAPK signaling pathway PLA2G4A hsa-miR-3940-3p - 

hsa04010: MAPK signaling pathway PPM1A hsa-miR-199a-3p, hsa-miR-199b-3p - 

hsa04010: MAPK signaling pathway PRKCB hsa-miR-577 DLBCL4131257 

hsa04010: MAPK signaling pathway RAPGEF2 hsa-miR-641, hsa-miR-3613-3p, hsa-miR-4517 DLBCL4177376 

hsa04010: MAPK signaling pathway TAB1 hsa-miR-361-3p - 

hsa04010: MAPK signaling pathway TGFBR2 hsa-miR-4487 DLBCL4108101 

 

Discussion 

 

We here report a deep sequencing analysis to identify differences in miRNA expression 

in BL, FL and DLBCL patient samples collected within the ICGC MMML-Seq Consortium. 

Comparing our miRNA classifiers separating the three entities to previous array- and 

qRT-PCR based studies, five miRNAs (hsa-miRs-23a/29b/146a/155/222) were 

recurrently identified to differentiate BL from DLBCL (Lenze, Leoncini et al. 2011, Iqbal, 

Shen et al. 2015) and two miRNAs (hsa-miR-92/150) to robustly separate FL from 

DLBCL (Roehle, Hoefig et al. 2008, Lawrie, Chi et al. 2009). Of note, 13 of those miRNAs 

differentiating BL/DLBCL were previously reported to be regulated by MYC (Chang, Yu 

et al. 2008, Di Lisio, Sanchez-Beato et al. 2012, Zhao, Bai et al. 2012, Xiong, Jiang et al. 

2013, Liu, Mai et al. 2014, Tao and Zhao 2014), emphasizing the role of MYC in the 

pathogenesis of BL. 

The higher discriminative power between BL, DLBCL and FL based on unsupervised 

analysis of the RNA-Seq data likely comes from less variation among the patients, which 

might be partly due to the higher number of analyzed genes when compared to miRNA-

Seq as well as overlapping effects of some miRNAs. Supervised analysis based on 

differentially expressed miRNAs, however, had a similar discriminative power as the 

supervised analysis of differentially expressed mRNAs. 

We identified hsa-miR-143 as highly expressed (compared to all other miRNAs) across 

all three subtypes. This miRNA has hitherto mostly been discussed as a tumor 

suppressor in (mainly) epithelial malignancies (Kent, McCall et al. 2014). However, a 

recent study in colorectal cancer found hsa-miR-143 overexpression correlated to short 
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overall survival (Schou, Rossi et al. 2014). Earlier publications have also reported a 

downregulation (mostly associated with its deletion) of the hsa-miR143/145 cluster in 

some leukemias and lymphomas (Dou, Zheng et al. 2012, Liu, Iqbal et al. 2013). 

Examples of other miRNAs, which have - depending on the tumor type - been described 

as both tumor suppressors and oncogenes include hsa-miR-26a, and the hsa-miR-

141/200a-cluster (Farazi, Spitzer et al. 2011). The high expression of hsa-miR-143 

raises the possibility of a new and more general role for this miRNA in 

lymphomagenesis. 

We describe recurrent mutations in hsa-miR-142 in FL at a frequency of 9.5%. 

Additionally, we confirm recurrent mutations of hsa-miR-142 at a frequency of 12.5% 

in DLBCL compared to 19.6% as previously published (Kwanhian, Lenze et al. 2012). 

Hsa-miR-142 mutations lead to the generation of new target sites as well as abolishing 

originally canonical ones in lymphoma-relevant genes, suggesting that hsa-miR-142 

mutations act as a pathogenic mechanism across lymphoma subtypes. Other - albeit 

non-recurrent - seed sequence mutations affected hsa-miR-612, which was previously 

shown to suppress local invasion and distant colonization of hepatocellular carcinoma 

(Tao, Wan et al. 2013) but has not been linked to lymphoid malignancies yet. 

RNA editing as a posttranscriptional modification is the site-specific alteration of an 

RNA transcript. The most frequently observed form is adenosine to inosine (A-to-I) 

editing, catalyzed by ADAR enzymes. Both the splicing and the translation machinery 

recognize inosines as guanosines. RNA editing occurs in a tissue-specific manner and 

increases the diversity of protein products in the case of mRNA editing. The specific 

deamination of miRNAs affects the stability of their precursors and thus the processing 

efficacy as well as results in the generation of novel mRNA targets sites in addition to 

altering existing ones (Blow, Grocock et al. 2006). Although not yet in lymphoma, the 

hsa-mir-376 family was previously shown to be subject to miRNA editing in different 

cancer types. This resulted in an altered mRNA target profile with both the loss of 

regulation of previous targets as well as the gain of new targets (Mizuguchi, Mishima et 

al. 2011, Choudhury, Tay et al. 2012). Both aspects promoted the respective cancers. 
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We provide here evidence of miRNA editing (hsa-miR-1260b, hsa-miR-376a1/2, and 

hsa-miR-376c) in lymphomas. 

 

Only sequencing data allows the larger scale identification of novel miRNAs. The 

current release (21) of miRBase lists 1 881 human miRNAs. Similar to previous studies 

(Lim, Trinh et al. 2015), we identified hundreds of putative novel miRNA candidates. By 

Northern blot experiments, we provide experimental evidence of the correct processing 

of three novel miRNAs. Novel-miR-1 emerged as the most interesting candidate, only 

being detectable in SU-DHL-4, Namalwa and a B-lymphoblastoid cell line. Our analysis 

showed that it regulates many well-known lymphoma genes including CARD11, E2F1, 

MCM2 and MCM7, thus presenting itself as a potential novel player in 

lymphomagenesis. 

Through our integrative analysis of miRNA and mRNA patient profiles in combination 

with AGO2 PAR-CLIP data, it is for the first time possible to pinpoint individual, 

biochemically defined miRNA/mRNA target interactions in lymphomas as well as 

functional consequences of miRNA dysregulation. We focused our analysis on those 

target pairs (208 in BL, 328 in DLBCL/FL) with consistent expression changes 

(presumably due to aberrant miRNA expression) in the respective patient RNASeq data. 

Just performing a correlation analysis between differentially expressed miRNAs and 

mRNAs in patient samples coupled with a miRanda target prediction would have 

resulted in a much greater number of predicted interaction pairs (2151 predicted pairs, 

data not shown). We described associated regulatory pathways including “Ras 

signaling”, “PI3K-Akt signaling”, and “MAPK signaling”. As there was very little overlap 

between those mRNAs that are targeted by miRNAs and those genes for which genomic 

mutations were detected (in those pathways), we suggest miRNA-mRNA targeting with 

subsequent deregulation as an additional oncogenic mechanism. We also provide 

evidence of miRNA regulation of many genes with already established roles in 

lymphomagenesis including ID3, CDK6, MDM2, SMARCA4, and TCF3. 

Our miRNA expression profiles uncovered subtype-specific differences in miRNA 

expression, evidence of recurrent hsa-miR-142 mutations in FL and DLBCL as well as 
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miRNA editing and revealed distinct miRNA/mRNA target interaction pairs with roles 

in lymphomagenesis. Thus, we confirm and extend the important role that miRNAs play 

in lymphomagenesis. 
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Supplementary Methods 

Genome and transcriptome analysis 

RNA-seq reads (average of 11,320,300 / sample) were aligned with TopHat (Trapnell, 

Pachter et al. 2009) (version 2.0.12). Differential gene expression was measured with 
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edgeR (Robinson, McCarthy et al. 2010) (version 3.8.6) using inter-sample normalized 

counts per millions (CPM) and applying multiple testing corrections using FDR. CPMs 

are normalizing the actual read counts mapping to a respective gene by the entire 

number of sequenced reads per sample times 1,000,000 (Robinson, McCarthy et al. 

2010). Thereby, CPMs are representing a measure of expression counts that are 

comparable across multiple samples. 

Read pairs obtained by whole genome paired-end sequencing were mapped to the 

human reference genome (hg19) using BWA (Li and Durbin 2009) version 0.5.9-r16 

(maximum insert size of 1 kb). SAMtools (Li, Handsaker et al. 2009) was used to 

generate a coordinate-sorted BAM file, and Picard (version 1.48) was used to merge 

BAM files from one sample and remove PCR duplicates. Detection of somatic SNVs from 

tumor and matched control whole genome sequencing data was performed as 

described previously (Jones, Jager et al. 2012). SNVs were functionally annotated using 

Annovar (Wang, Li et al. 2010) and annotated for overlaps with SNPs (dbSNP build 135 

and 1000 Genome project data) using BEDTools (Quinlan and Hall 2010). Allele-specific 

copy-number alterations were detected as described in Richter et al (Richter, Schlesner 

et al. 2012). 

 

MiRNA sequencing data processing and novel miRNA prediction  

Adapter sequences were removed from raw reads using fastx_clipper 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html). A total of 1,169,752,727 clipped 

reads were mapped onto the human genome (1000 genomes project, hs37d5100) using 

segemehl(Hoffmann, Otto et al. 2009), with a minimum accuracy of 90% (average of 

20,888,442 reads per sample, see Supplementary Table 2). Quantification of annotated 

microRNAs from miRBase version 19 was performed using ngsutils (Breese and Liu 

2013), partially counting multimapped reads. Read counts were inter-sample 

normalized leading to CPM values per annotated miRNA. Differential expression was 

achieved by applying edgeR and subsequent calculation of the FDR for multiple testing 

correction.  

http://hannonlab.cshl.edu/fastx_toolkit/index.html
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Novel miRNA prediction was performed using miRanalyzer (Hackenberg, Sturm et al. 

2009) (version 0.3) using default parameters. 

 

MiRNA target prediction  

We used miRanda (Enright, John et al. 2004) (version August 2010) to predict potential 

interaction targets of miRNAs in the transcriptome. For narrowing down the list of 

miRNA-mRNA target correlations, we filtered for a miRsvr-score < -1.2 per correlation 

pair. We selected this score as it results in the 5% most significant miRNA-mRNA 

correlations (Betel, Koppal et al. 2010). 

 

Differential expression analysis on RNA-Seq data – novel miRNA 

overexpression/knockdown 

In all sequencing reads, adapters and low quality ends were trimmed using seqtk 

(https://github.com/lh3/seqtk) and cutadapt (Martin 2011). All reads shorter than 25 

bases after trimming were discarded, leading to 11,320,300 reads on average per 

sample. Next, the preprocessed reads were aligned against the human genome 

sequence (hg19) with TopHat (Trapnell, Pachter et al. 2009), which is capable of 

aligning RNA-Seq data because of the identification of splice junctions spanned by 

individual reads. On average, more than 80% of the preprocessed reads have been 

aligned against the reference sequence and were used for further analysis. To measure 

the transcript abundances representing an estimate of the gene expression levels in the 

samples, HTSeq (Anders, Pyl et al. 2014) (version 0.5.4) was employed using gene 

annotations downloaded from Ensembl Genes 75(Flicek, Amode et al. 2013). 

Differential gene expression was measured with edgeR (Robinson, McCarthy et al. 

2010) using inter-sample normalized counts per millions (CPM) and applying multiple 

testing corrections using FDR.  

 

PAR-CLIP analysis 

The preprocessing of PAR-CLIP reads was similar to that of RNA-Seq reads, however, 

because short reads align multiple times to the genome, we selected a cutoff of 17 bases 

https://github.com/lh3/seqtk
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per sequencing read after quality and adapter trimming using cutadapt. On average, this 

resulted in about 15,570,345 reads per sequencing sample. Next, reads were aligned 

with BWA (Li and Durbin 2009) allowing for up to two mismatches between a single 

read sequence and the reference sequence of hg19. All reads that failed in this mapping 

(mapping quality <10) were aligned against the transcriptome database Ensembl Genes 

75 using BWA allowing for up to two mismatches between both sequences (Kloetgen, 

Münch et al. 2014). Next, the aligned reads were piled up into clusters by the PARA-

suite (Kloetgen, Borkhardt et al., submitted) which applies a hierarchical clustering 

algorithm, where reads overlapping by at least 5 bases in their genomic mapping 

positions are stacked into a single cluster. To identify high confidence RNA-binding 

protein-bound regions, clusters having <5 reads and <25% T-C conversion frequency 

were excluded (for further details on analyzing PAR-CLIP datasets see (Hafner, 

Landthaler et al. 2010)). 

To equalize cluster lengths for subsequent mRNA-miRNA correlation analysis, 

crosslink-centered regions (CCRs) consisting of 20 nucleotides up- and downstream of 

the major T-C conversion site within a cluster (i.e. the T-C conversion site with the 

highest conversion frequency per cluster), were generated to calculate all possible 7-

mers within the CCRs (Farazi, Ten Hoeve et al. 2014) (Figure 2C). The most significantly 

enriched (compared to random sequences of the same dinucleotide compositions) 

corresponded to the reverse complement of the miRNA seed region. The miRNA-mRNA 

correlation was achieved by matching miRNA seed positions 2-8 as well as miRNA seed 

positions 1-7 to the reverse complement of the enriched CCR 7-mers for each cluster. As 

we also had information on the expression levels of miRNAs and mRNAs, we kept only 

miRNA-mRNA pairs, which showed a differential expression between BL versus non-BL 

patient samples (differential expression FDR ≤0.05). All miRNAs meeting this cutoff 

(FDR ≤0.05) showed log2 fold expression changes of at least ± 0.6. 
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Enrichment analysis 

We have performed enrichment analyses by applying a one-sided Fisher’s exact test to 

the number of overlapping genes/miRNAs between two lists, thereby calculating a 

significance value for the respective enrichment between the two lists. On the one hand, 

this was applied to identify enrichments between our reported miRNA classifier and 

recently published miRNA classifiers for the respective lymphoma subtypes. Therefore, 

the total number of tested miRNAs was taken as a basis (667 in [28] and 602 in [10]). 

On the other hand, enriched genes of the negatively correlated miRNAs-mRNAs pairs 

were identified within KEGG pathways. The gene-basis was set to 22,525 genes, which 

were accessible for differential gene expression analysis based on RNA-Seq data after 

filtering lowly expressed genes (logCPM < 1 in all patients of all subgroups). Enrichment 

scores were calculated as follows: Enrichment = #overlap / (#DE genes * #pathway 

genes / #population genes). 

 

Expressional correlation analysis 

We have used the spearman’s rank correlation to test for significant similarity between 

two expression patterns. This was applied to check for similar expressions of miRNAs 

between different platforms, i.e. between NGS derived expression values and qPCR 

derived expression values. We also used the spearman’s rank correlation to check 

whether the expressional pattern of hsa-miR-143 and hsa-miR-145 were similar across 

all patient samples. 

 

Leave-one-out cross-validation 

To test the validity of our reported miRNA-classifiers, we have performed leave-one-out 

cross-validation (LOO-CV) on an independent dataset downloaded from NCBI GEO 

(Accession GSE22420) (Lenze, Leoncini et al. 2011). Because these expression values 

were obtained from microarray experiments, we used LOO-CV to train our classifier on 

microarray expression values rather than on cpm values obtained from our RNA-Seq 

data. Additionally, we had to exclude miRNAs from the classifier which were not 

covered by the microarray (7 miRNAs each for the BL vs. DLBCL classifier and the BL vs. 
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DLBCL/FL classifier). The class prediction for the left-out sample was performed using 

the K-nearest-neighbours algorithm with k=33 (half the size of the smaller BL group 

containing 64 samples). All cases showing less than 80% majority vote during the class 

prediction were excluded as not classified. Recall was calculated as the number of 

remaining predictions per classified cases and overall accuracy was calculated as the 

number of correct assignments after majority vote exclusion per all tested cases. 
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Supplementary Figure 1. Validation of NGS data. A) For unsupervised clustering, 

miRNAs were discarded if less than 16 patients showed a base-line expression of > 0 

log2 cpm after normalization. In total, 573 mature miRNAs were used for unsupervised 

clustering. FL (light blue), DLBCL (dark blue), and BL (grey). B) Validation of NGS 
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miRNA expression by qRT-PCR. Light blue = qRT-PCR expression (normalized to RNU48 

as housekeeping gene), dark blue = qRT-PCR expression (normalized to RNU24 as 

housekeeping gene), red: expression according to NGS analysis. To allow for 

comparison across platforms, the expression levels were set to add up to 100 per 

experiment and are shown as % total expression. Also see Supplementary Table 3 for 

statistical analysis. C) Hsa-miR-145 expression across all patient samples. Color code as 

in A). 
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Supplementary Tables 

Supplementary Table 1: Patient information. 

 

PID Diagnosis Classification 2
Age at first 

diagnosis
Gender MYC_STATUS BCL2_BREAK BCL6_BREAK IGH_status

4112512 BL NA 18 female IG-MYC pos negative negative IGH-MYC pos

4119027 BL NA 12 male IG-MYC pos negative negative IGH-MYC pos

4125240 BL NA 4 male IG-MYC pos negative negative IGH-MYC pos

4127766 BL NA 8 male IG-MYC pos negative negative IGH-MYC pos

4130003 BL NA 6 male IG-MYC pos negative negative IGH neg

4133511 BL NA 5 male IG-MYC pos negative negative IGH-MYC pos

4142267 BL NA 5 male IG-MYC pos negative negative IGH neg

4146289 BL NA 14 male IG-MYC pos negative negative IGH-MYC pos

4177434 BL NA 16 female IG-MYC pos negative negative IGH-MYC pos

4177856 BL NA 10 male IG-MYC pos negative negative IGH-MYC pos

4182393 BL NA 10 male IG-MYC pos negative negative IGH-MYC pos

4189998 BL NA 13 male IG-MYC pos negative negative IGH-MYC pos

4190495 BL NA 15 male IG-MYC pos negative negative IGH neg

4193278 BL NA 17 male IG-MYC pos negative negative IGH neg

4194218 BL NA 4 male IG-MYC pos negative negative IGH-MYC pos

4194891 BL NA 4 male IG-MYC pos negative negative IGH-MYC pos

4101316 DLBCL ABC 74 female MYC neg negative negative IGH neg

4102009 DLBCL ABC 64 male MYC neg negative negative IGH neg

4104893 DLBCL TypeIII 16 male MYC neg negative negative IGH-IRF4 pos

4107137 DLBCL GCB 59 male MYC neg negative positive IGH pos

4108101 DLBCL ABC 66 male MYC neg negative negative IGH neg

4115001 DLBCL GCB 70 female MYC neg positive negative IGH-BCL2 pos

4116738 DLBCL TypeIII 15 male MYC neg negative positive IGH neg

4119279 DLBCL ABC 62 female MYC neg negative negative IGH neg

4120157 DLBCL GCB 46 male MYC neg negative negative IGH pos

4120193 DLBCL ABC 41 female MYC neg negative negative IGH neg

4131257 DLBCL ABC 72 male MYC neg negative positive IGH pos

4134434 DLBCL GCB 84 male MYC neg positive positive IGH pos

4135099 DLBCL ABC 49 male MYC neg negative positive IGH pos

4157186 DLBCL ABC 74 male MYC neg negative negative IGH neg

4163639 DLBCL GCB 75 female MYC neg negative negative IGH neg

4166706 DLBCL GCB 62 male MYC neg negative positive IGH pos

4176133 DLBCL ABC 61 female MYC neg negative positive IGH pos

4184094 DLBCL GCB 57 female MYC neg positive negative IGH-BCL2 pos

4189035 DLBCL ABC 46 male MYC neg negative negative IGH neg

4105105 FL grade 1/2 40 female MYC neg positive negative IGH-BCL2 pos

4112447 FL grade 1/2 46 male MYC neg positive positive IGH-BCL2 pos

4113825 FL grade 1/2 74 female MYC neg negative negative IGH neg

4121361 FL grade 1/2 74 male MYC neg positive negative IGH-BCL2 pos

4134005 FL grade 1/2 67 male MYC neg positive negative IGH-BCL2 pos

4145056 FL grade 1/2 67 female MYC neg positive negative IGH-BCL2 pos

4149246 FL grade 1/2 41 male MYC neg positive positive IGH-BCL2 pos

4158726 FL grade 1/2 48 male MYC neg positive negative IGH-BCL2 pos

4159170 FL grade 1/2 43 male MYC neg positive negative IGH-BCL2 pos

4160468 FL grade 1/2 62 male MYC neg positive negative IGH-BCL2 pos

4170686 FL grade 1/2 56 male MYC neg positive negative IGH-BCL2 pos

4174905 FL grade 1/2 72 male MYC neg positive negative IGH-BCL2 pos

4175837 FL grade 1/2 74 female MYC neg positive positive IGH-BCL2 pos

4177376 FL grade 3A 73 female MYC neg positive negative IGH-BCL2 pos

4177601 FL grade 2/3A 52 female MYC neg positive negative IGH-BCL2 pos

4177810 FL grade 1/2 47 female MYC neg positive negative IGH-BCL2 pos

4177987 FL grade 1/2 71 male MYC neg positive negative IGH-BCL2 pos

4178655 FL grade 1/2 50 male MYC neg positive negative IGH-BCL2 pos

4188900 FL grade 1/2 76 male MYC neg positive negative IGH neg

4189200 FL grade 1/2 51 female MYC neg positive negative IGH-BCL2 pos

4198542 FL grade 1/2/3A 68 female MYC neg negative negative IGH neg
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Supplementary Table 2: miRNA sequencing library statistics.  

 

 

 

 

 

 

 

Diagnosis PID raw reads clipped reads % clipped reads mapped reads % mapped reads reads on primary miRs % reads on primary miRs

BL 4112512 111,835,821     90,656,876       81.06% 83,739,794       92.37% 30,310,990 36.20%

BL 4119027 96,943,814       80,372,849       82.91% 74,224,275       92.35% 27,687,024 37.30%

BL 4125240 64,001,808       56,406,459       88.13% 53,503,949       94.85% 10,026,892 18.74%

BL 4127766 35,157,062       34,510,881       98.16% 33,693,807       97.63% 1,706,671 5.07%

BL 4130003 25,502,310       24,828,949       97.36% 23,122,148       93.13% 12,787,211 55.30%

BL 4133511 71,261,813       64,018,378       89.84% 59,083,671       92.29% 18,112,535 30.66%

BL 4142267 69,108,952       65,274,277       94.45% 56,674,054       86.82% 10,070,922 17.77%

BL 4146289 41,192,177       40,108,479       97.37% 37,541,386       93.60% 34,377,156 91.57%

BL 4177434 62,332,955       53,529,191       85.88% 46,581,276       87.02% 23,865,056 51.23%

BL 4177856 75,642,487       68,181,918       90.14% 61,370,463       90.01% 24,861,850 40.51%

BL 4182393 84,780,972       72,038,555       84.97% 66,059,591       91.70% 21,585,793 32.68%

BL 4189998 102,523,454     91,607,098       89.35% 83,325,274       90.96% 22,585,978 27.11%

BL 4190495 156,613,394     137,235,359     87.63% 130,397,032     95.02% 34,428,505 26.40%

BL 4193278 72,506,909       65,405,761       90.21% 57,367,702       87.71% 18,460,967 32.18%

BL 4194218 76,405,749       73,447,437       96.13% 67,907,053       92.46% 5,543,923 8.16%

BL 4194891 90,762,811       68,540,713       75.52% 63,179,485       92.18% 24,980,361 39.54%

DLBCL 4101316 67,519,903       64,199,209       95.08% 61,007,246       95.03% 28,775,304 47.17%

DLBCL 4102009 42,086,479       39,944,756       94.91% 36,818,259       92.17% 11,789,929 32.02%

DLBCL 4104893 95,311,645       85,124,518       89.31% 76,526,308       89.90% 21,888,192 28.60%

DLBCL 4107137 40,477,513       34,734,623       85.81% 31,436,185       90.50% 19,242,992 61.21%

DLBCL 4108101 57,832,471       55,071,105       95.23% 51,979,749       94.39% 27,543,402 52.99%

DLBCL 4115001 27,198,492       26,148,020       96.14% 25,497,799       97.51% 7,386,128 28.97%

DLBCL 4116738 78,232,596       68,884,140       88.05% 60,645,188       88.04% 31,000,823 51.12%

DLBCL 4119279 39,034,533       34,535,595       88.47% 32,847,597       95.11% 8,154,515 24.83%

DLBCL 4120157 45,688,615       41,860,450       91.62% 38,598,518       92.21% 8,676,661 22.48%

DLBCL 4120193 40,566,871       39,713,411       97.90% 37,901,161       95.44% 5,340,938 14.09%

DLBCL 4131257 31,446,420       30,697,771       97.62% 29,248,137       95.28% 10,648,290 36.41%

DLBCL 4134434 34,646,386       28,750,213       82.98% 25,728,439       89.49% 9,642,469 37.48%

DLBCL 4135099 82,046,323       75,673,959       92.23% 70,326,721       92.93% 42,315,069 60.17%

DLBCL 4157186 20,558,444       18,165,585       88.36% 17,261,128       95.02% 7,126,511 41.29%

DLBCL 4163639 82,468,882       76,639,372       92.93% 71,664,118       93.51% 22,990,794 32.08%

DLBCL 4166706 49,112,501       46,502,593       94.69% 43,144,375       92.78% 26,491,474 61.40%

DLBCL 4176133 27,241,860       26,650,486       97.83% 25,782,166       96.74% 4,973,146 19.29%

DLBCL 4184094 37,960,574       35,916,452       94.62% 33,999,067       94.66% 4,891,289 14.39%

DLBCL 4189035 39,456,122       33,743,677       85.52% 30,162,878       89.39% 18,823,323 62.41%

FL 4105105 66,137,979       64,339,942       97.28% 62,248,882       96.75% 33,016,425 53.04%

FL 4112447 45,773,088       42,548,261       92.95% 40,644,074       95.52% 10,268,194 25.26%

FL 4113825 41,550,848       31,506,429       75.83% 26,934,801       85.49% 15,915,215 59.09%

FL 4121361 73,759,960       67,969,941       92.15% 63,948,878       94.08% 49,654,552 77.65%

FL 4134005 67,942,851       61,098,231       89.93% 58,991,880       96.55% 12,599,478 21.36%

FL 4145056 26,282,929       23,842,066       90.71% 20,609,766       86.44% 9,084,189 44.08%

FL 4149246 20,825,007       15,932,481       76.51% 14,785,326       92.80% 12,274,678 83.02%

FL 4158726 80,798,657       77,575,725       96.01% 72,581,907       93.56% 56,127,947 77.33%

FL 4159170 90,316,042       87,915,910       97.34% 84,580,056       96.21% 48,098,750 56.87%

FL 4160468 66,934,137       64,234,781       95.97% 57,676,380       89.79% 45,480,635 78.85%

FL 4170686 28,225,201       28,047,528       99.37% 27,224,450       97.07% 6,080,646 22.34%

FL 4174905 40,688,848       39,370,043       96.76% 36,779,632       93.42% 17,879,064 48.61%

FL 4175837 145,487,505     142,602,072     98.02% 138,805,355     97.34% 47,162,234 33.98%

FL 4177376 59,033,653       57,041,478       96.63% 54,405,387       95.38% 29,629,182 54.46%

FL 4177601 39,845,682       39,113,638       98.16% 37,491,676       95.85% 5,775,674 15.41%

FL 4177810 23,339,328       22,495,874       96.39% 21,827,428       97.03% 9,958,437 45.62%

FL 4177987 38,144,137       34,176,587       89.60% 31,030,702       90.80% 21,971,916 70.81%

FL 4178655 33,166,391       29,713,962       89.59% 27,842,516       93.70% 21,914,993 78.71%

FL 4188900 87,727,261       78,502,242       89.48% 71,530,316       91.12% 40,556,165 56.70%

FL 4189200 62,264,380       29,431,654       47.27% 26,122,247       88.76% 23,250,761 89.01%

FL 4198542 41,391,420       38,304,878       92.54% 36,352,845       94.90% 13,960,509 38.40%
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Supplementary Table 3: Validation of NGS expression via qRT-PCR of select miRNAs 

 

P-values of the correlation analyses between qRT-PCRs with two housekeeping genes 

(RNU24 and RNu48) versus expression as determined by NGS are indicated. P-values ≤ 

0.05 are highlighted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

miRNA qRT-PCR RNU24 vs. NGS qRT-PCR RNU48 vs. NGS

hsa-mir-10b 0.003 0.017

hsa-mir-21 0.033 0.033

hsa-mir-22 0.017 0.017

hsa-mir-28 0.058 0.058

hsa-mir-92a-1 0.103 0.136

hsa-mir-141 0.083 0.083

hsa-mir-142 0.003 0.033

hsa-mir-143 0.003 0.003

hsa-mir-146a 0.003 0.003

hsa-mir-150 0.003 0.017
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Supplementary Table 4: 25 miRNA classifiers separating B-cell lymphoma subtypes 

 

Separating BL and DLBCL/FL. Table is sorted by FDR. logFC indicates log fold change; 

logCPM, log counts per million, FDR, false discovery rate. 

miRNA logFC logCPM p-value FDR cpm BL cpm DLBCL

hsa-miR-20a-3p -2.50 4.07 1.92E-12 9.71E-10 29.57 5.22

hsa-miR-221-3p 2.89 11.04 8.01E-12 2.02E-09 478.24 3539.57

hsa-miR-146a-5p 4.22 16.55 1.81E-11 3.05E-09 9293.79 172652.84

hsa-miR-141-3p 8.14 12.63 9.70E-11 1.02E-08 42.20 11905.84

hsa-miR-155-5p 3.87 13.27 1.03E-10 1.02E-08 1197.20 17531.21

hsa-miR-25-5p -2.44 5.51 1.21E-10 1.02E-08 79.98 14.70

hsa-miR-196b-5p 3.76 5.16 7.07E-10 4.46E-08 4.64 63.07

hsa-miR-3681-5p 5.32 5.31 6.54E-10 4.46E-08 1.83 73.42

hsa-miR-200c-3p 4.70 7.67 1.33E-09 7.45E-08 14.33 370.91

hsa-miR-24-3p 2.66 8.88 2.58E-09 1.30E-07 123.21 780.97

hsa-miR-196a-5p 4.03 2.91 2.91E-09 1.34E-07 0.81 13.30

hsa-miR-664-3p 2.79 5.99 4.82E-09 2.03E-07 15.34 106.32

hsa-miR-130b-3p -1.69 8.82 7.99E-09 3.04E-07 713.64 220.80

hsa-miR-664-5p 2.94 4.31 8.43E-09 3.04E-07 4.35 33.58

hsa-miR-10b-3p 2.93 2.79 1.18E-08 3.92E-07 1.49 11.62

hsa-miR-29b-2-5p 1.93 2.24 1.24E-08 3.92E-07 1.82 7.14

hsa-miR-23a-5p 2.24 2.76 1.62E-08 4.82E-07 2.24 10.60

hsa-miR-944 3.95 6.01 3.24E-08 9.08E-07 7.40 114.75

hsa-miR-193a-5p 2.09 6.56 3.87E-08 1.03E-06 34.58 147.85

hsa-miR-4677-3p 2.70 4.79 4.96E-08 1.25E-06 7.08 45.92

hsa-miR-339-5p -2.26 5.89 5.64E-08 1.35E-06 101.54 21.14

hsa-miR-589-3p -2.05 3.46 5.86E-08 1.35E-06 18.22 4.31

hsa-miR-98 2.09 11.99 6.24E-08 1.37E-06 1492.12 6346.58

hsa-miR-222-3p 2.12 9.93 7.27E-08 1.51E-06 351.22 1525.88

hsa-miR-374a-5p 2.50 8.15 7.47E-08 1.51E-06 81.97 464.14
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Separating BL and DLBCL. Table is sorted by FDR. logFC indicates log fold change; 

logCPM, log counts per million, FDR, false discovery rate. 

 

miRNA logFC logCPM p-value FDR cpm BL cpm FL

hsa-miR-150-3p 3.75 4.97 4.45E-26 1.04E-23 3.85 52.05

hsa-miR-150-5p 4.12 12.86 6.01E-26 1.04E-23 722.73 12575.15

hsa-miR-20a-3p -3.15 3.94 3.55E-26 1.04E-23 30.87 3.41

hsa-miR-19a-5p -3.13 3.70 2.30E-23 2.97E-21 25.92 2.97

hsa-miR-18a-3p -3.49 5.48 3.79E-22 3.92E-20 92.00 8.13

hsa-miR-335-3p -3.58 8.20 7.95E-22 6.85E-20 614.46 51.34

hsa-miR-378a-3p -2.43 10.47 1.01E-21 7.49E-20 2641.93 489.06

hsa-miR-184 4.86 3.88 8.06E-21 5.21E-19 0.85 25.05

hsa-miR-130b-3p -2.79 8.61 1.25E-19 7.16E-18 760.44 110.29

hsa-miR-18a-5p -3.01 7.05 9.84E-19 4.62E-17 263.04 32.68

hsa-miR-25-5p -3.09 5.38 9.76E-19 4.62E-17 83.37 9.80

hsa-miR-19b-1-5p -2.77 1.39 2.07E-18 8.94E-17 4.84 0.73

hsa-miR-151b 3.67 7.05 4.25E-17 1.69E-15 17.20 220.12

hsa-miR-17-5p -2.32 9.52 1.91E-16 7.04E-15 1348.29 269.90

hsa-miR-92a-1-5p -2.59 4.43 4.09E-16 1.41E-14 40.81 6.82

hsa-miR-221-3p 2.60 10.96 6.85E-16 2.21E-14 516.96 3123.54

hsa-miR-17-3p -3.53 10.08 1.38E-15 4.20E-14 2252.58 194.47

hsa-miR-4517 -3.19 1.51 4.84E-15 1.39E-13 5.68 0.61

hsa-miR-29c-5p 2.32 5.53 1.32E-14 3.60E-13 14.05 70.51

hsa-miR-664-5p 2.55 4.12 1.62E-14 4.19E-13 4.61 26.97

hsa-miR-3622a-5p 3.63 1.02 4.44E-14 1.09E-12 0.27 3.20

hsa-miR-4420 -3.99 2.35 2.22E-13 5.22E-12 10.97 0.66

hsa-miR-377-5p -3.44 1.75 1.75E-12 3.93E-11 6.65 0.58

hsa-miR-29b-3p 2.57 9.29 9.31E-12 2.01E-10 164.06 976.85

hsa-miR-19a-3p -2.73 10.01 1.07E-11 2.20E-10 1987.69 300.17
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Separating BL and FL. Table is sorted by FDR. logFC indicates log fold change; logCPM, 

log counts per million, FDR, false discovery rate. 
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Abstract 

 

For reasons not yet understood, nearly all infants with acute lymphoblastic leukemia 

(ALL) are diagnosed with the B-cell type, with T-ALL in infancy representing the very 

rare exception. Clinical and molecular knowledge about infant T-ALL is still nearly 

completely lacking and it is also still unclear, whether it represents a distinct disease 

compared to childhood T-ALL. 

To address this, we performed exome sequencing of three infant cases, which enabled 

the detection of mutations in NOTCH2, NOTCH3, PTEN and KRAS. When analyzing the 

transcriptomes and miRNomes of the three infant and an additional six childhood T-

ALL samples, we found 760 differentially expressed mRNAs and 58 differentially 

expressed miRNAs between these two cohorts. Correlation analysis for differentially 

expressed miRNA-mRNA target pairs revealed 47 miRNA-mRNA pairs, with numerous 

of them already described to be aberrantly expressed in leukemia and cancer. Pathway 

analysis revealed differentially expressed pathways and upstream regulators related to 

the immune system or cancerogenesis such as the ERK5 pathway, which was activated 

in infant T-ALL. In summary, there are distinct molecular features in infant compared to 

childhood T-ALL on a transcriptomic and epigenetic level, which potentially have an 

impact on the development and course of the disease. 

 

Introduction 

 

Leukemia is an aggressive malignant disease of the hematopoietic system and the most 

frequent pediatric cancer type, with about one in every third cancer patient diagnosed 

with acute lymphoblastic leukemia (ALL). Next generation sequencing brought deeper 

insights into the tumor biology of ALL by identifying novel and recurrent genomic 

mutations affecting genes with roles in cell proliferation, differentiation, apoptosis, and 

drug resistance (Pui, Carroll et al. 2011). ALL can be subdivided into distinct subtypes 

(B- and T-ALL) and risk classes according to genomic aberrations. This enables the 

administration of risk-directed, in some instances even molecular-targeted, therapeutic 
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strategies. Nowadays, approximately 80% of all treated ALL patients in developed 

countries achieve an event-free survival (EFS) of ≥ 5 years (Pui, Carroll et al. 2011). 

However, treatment failure rates in infants (≤ 1 year of age) remain high at 60% 

(Hilden, Dinndorf et al. 2006), mostly because of a higher drug resistance, especially to 

prednisolone and asparaginase (Pieters, den Boer et al. 1998).  

About 10–15% of all childhood ALL patients are diagnosed with T-ALL (Goldberg, 

Silverman et al. 2003), which represents a more aggressive leukemia subtype compared 

to B-ALL with a higher risk of relapse (Uckun, Gaynon et al. 1997, Aifantis, Raetz et al. 

2008) . T-ALL patients are always classified high risk and thus receive a more intensive 

chemotherapy regimen. The development of T-ALL in infancy (iT-ALL) is extremely 

rare. From what is known, children older than one year – similar to B-cell ALL – seem to 

have a better outcome than infants suffering from T-ALL (Goldberg, Silverman et al. 

2003, Mansur, van Delft et al. 2015). At present, it is not clear whether iT-ALL 

represents a distinct disease to childhood T-ALL. 

We thus aimed to analyze the genetic and epigenetic differences between infant and 

childhood T-ALL. We used next generation sequencing to discover molecular 

aberrations on different levels, which promote the development of iT-ALL. We analyzed 

the exomes of three infant patients to uncover distinct mutations. We also compared 

the transcriptomes and miRNomes of these iT-ALL cases with six childhood T-ALL 

cases. Our findings show that infant and childhood T-ALL differ strongly on a genetic 

and epigenetic level. 

 

Methods 

 

Patient samples 

Mononuclear cells of bone marrow or blood samples from patients diagnosed with T-

ALL were obtained at initial diagnosis. The study was approved by the local ethics 

committee (study numbers 3432, 4769, 5036) and written informed consent was 

obtained from the parents. 
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High throughput sequencing 

Total RNA and genomic DNA from cell pellets frozen in PBS were extracted with AllPrep 

DNA/RNA/miRNA Universal Kit (Qiagen, Hilden, #80224). Quality and quantity of RNA 

samples were measured on 2100 Bioanalyzer (Agilent, Amstelveen). Integrity numbers 

ranged from 8.4 to 10. For RNA sequencing, a total of 1 µg total RNA was used for 

library preparation with TruSeq Small RNA Sample Prep Kit (Illumina, San Diego, CA, 

USA, #RS-200-0012/0024). Between 2.7 and 10 µg of total RNA was used for library 

preparation with TruSeq Stranded Total RNA Sample Prep Kit with Ribo-Zero Gold 

(Illumina, San Diego, #RS-122-2301). Size and DNA concentration of prepared cDNA 

libraries were also analyzed on the 2100 Bioanalyzer. 7 pM of template DNA were 

loaded per flow cell, high-throughput sequencing was performed on the Illumina HiSeq 

2500 with 50 cycles (miRNAs) or 100 cycles (mRNAs). 

Quality and quantity of genomic DNA samples were measured on Nanodrop 1000 

(VWR, Darmstadt). 1 µg of DNA from each of the infant patient samples was used for 

whole exome sequencing. Exome capturing of extracted DNA was performed with the 

SureSelectV5+UTR kit (Agilent, Santa Clara) and sequenced on Illumina HiSeq 2500 

with 100 cycles (paired-end). In total, we obtained 466,376,392 sequencing reads, out 

of which 465,870,438 (99.89%) were mapped and paired uniquely to the genome. We 

achieved a coverage of ≥ 30x for about 95% of all captured features. 

 

Sanger sequencing 

Sanger sequencing was performed to validate mutations and chromosomal 

translocation found by exome sequencing and RNA-seq. For validation of the mutations, 

genomic DNA of patient material was amplified with REPLI-g Ultra Fast Mini Kit 

(Qiagen, Hilden #150035). For validation of chromosomal translocations RNA of patient 

material was reverse transcribed into cDNA by SuperScript III Reverse Transcriptase 

(Thermo Fisher, Braunschweig #18080-044). Genomic DNA and cDNA were used for 

amplification of mutated or translocated regions. PCR primers for PCR amplification of 

the mutations were flanking the mutated sites (Supplementary Table 1). PCR was 

performed with Phusion High Fidelity DNA Polymerase (NEB, Ipswich #M0530L) in 
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50µl reactions with HF buffer. Cycling for validation mutations was performed 30 

seconds at 98°, a 30 times repetition of 5 seconds at 98°, 30 seconds at 60°, 12 seconds 

at 72° and a final extension of 10 minutes at 72°. 

Bioinformatic methods 

For a detailed overview of the bioinformatics methods for sequencing data analysis, 

pathway analysis, correlation analysis and exome data analysis, please refer to 

Supplementary Methods. 

 

Results 

 

Oncogenes and tumor suppressors important for leukomogenesis are frequently mutated 

in iT-ALL 

Blast material of three infant patients from 0 to 12 months of age and of six childhood 

patients from one to 16 years with T-ALL was analyzed (Table 1). The median age of the 

infant patients was 9 months. The median age of the childhood patients was 11 years. 

To analyze the mutational spectra of iT-ALL, we performed WES on the three infant 

patients. In total, 4,504 mutations in 1,595 genes were detected in three infant patients, 

1,305 recurrent mutations in 798 genes in at least two patients, and 557 recurrent 

mutations in 426 genes in all three patients. As we did not have germline material 

available, these numbers refer to all detected mutations (SNPs and indels) and not only 

to leukemia-specific alterations. Based on recent studies on genetic mutations in T-ALL, 

we focused on genes recurrently mutated in T-ALL to ascertain, whether these genes 

were mutated also in iT-ALL. We validated a total of 19 of the here reported mutations 

by Sanger sequencing (Table 2). 

We found mutations in NOTCH2 and NOTCH3. One of the three infant patients (#102) 

had a heterozygous NOTCH2 mutation, which was predicted as deleterious as it causes 

an aminoacid change from phenylalanin to valin in the extracellular EGF-like domain in 

the NOTCH2 protein, which is needed for Ca2+-dependent ligand binding (Rao, 

Handford et al. 1995). The same patient exhibited a homozygous 10 bp deletion in 

NOTCH3. All infant patients had a 4 bp deletion in NOTCH3; however, this is located in a 
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repetitive genome region. In the patients 101 and 102, the aforementioned mutation 

was heterozygous and in patient 103 it was homozygous.  

We also found several mutations in PTEN. One patient (103) had a heterozygous 2 bp 

insertion in PTEN leading to an elongated frameshift variant. In patient 102, we found 

two heterozygous mutations in PTEN. The first was a 1 bp deletion leading to a feature 

truncation , the second was a 2 bp deletion. Patient 101 harbored six heterozygous 

PTEN mutations – a 1 bp deletion, a 3 bp deletion, two 1 bp insertions, one 1 bp 

insertion, and one 3 bp insertion. In addition, patients 101 (heterozygous) and 102 

(homozygous) had a 5 bp insertion. All of the infant patients harbored KRAS mutations. 

Patient 103 had two homozygous 1 bp insertions. Both mutations occurred, in a 

heterozygous form, in patient 101. Patient 102 carried one of these insertions 

heterozygously and the other homozygously. Patient 103 (homozygous) and patient 

101 (heterozygous) had also a 2 bp deletion in KRAS. 
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Table 1: Patient information for three infant (101, 102 and 103) and six childhood T-ALL cases (201, 202, 203, 204, 205, 

206) analyzed in this study. m: male, f: female, PB: peripheral blood, BM: bone marrow.  

Patient ID Age at diagnosis sex material outcome BCR/ABL MLL/AF4 TEL/AML1 MLL/ENL 

101 5 months m PB deceased neg neg neg n.d. 
102 9 months f BM/PB deceased neg neg neg n.d. 

103 10 months f PB deceased neg neg neg Neg 

201 15 years m PB remission neg neg neg Neg 

202 14 years m BM remission neg n.d. neg n.d. 

203 5 years m PB remission neg neg neg Neg 

204 16 months w BM remission neg neg neg Neg 

205 12 years m PB remission neg neg neg Neg 

206 10 years w PB remission n.d. n.d. n.d. n.d. 
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Table 2: Validated genetic alterations (SNVs and indels) in iT-ALL samples. 

Coordinates Gene affected 
Type of 
alteration 

Patient Genotype 

1:120478125-120478125 NOTCH2 SNV 102 heterozygous 

19:15285382-15285386 NOTCH3 4 bp deleteion 103 homozygous 

19:15285382-15285386 NOTCH3 4 bp deleteion 101 heterozygous 

19:15285382-15285386 NOTCH3 4 bp deleteion 102 heterozygous 

5:35857308-35857309 IL7R 1 bp insertion 103 homozygous 

5:35857308-35857309 IL7R 1 bp insertion 101 heterozygous 

10:89653620-89653621 PTEN 1 bp deletion 101 heterozygous 

10:89690952-89690957 PTEN 5 bp ins 102 homozygous 

10:89690952-89690957 PTEN 5 bp ins 101 heterozygous 

10:89717674-89717676 PTEN 2 bp ins 103 heterozygous 

10:89725886-89725887 PTEN 1 bp ins 101 heterozygous 

10:89728633-89728634 PTEN 1 bp deletion 102 heterozygous 

10:89731315-89731317 PTEN 2 bp ins 101 heterozygous 

12:25358662-25358664 KRAS 2 bp del 101 heterozygous 

12:25358662-25358664 KRAS 2 bp del 103 homozygous 

4:154626317-154626317 TLR2 SNV 102 heterozygous 

9:120466929-120466930 TLR4 1 bp deletion 103 heterozygous 

9:120466929-120466930 TLR4 1 bp deletion 101 heterozygous 

9:120466929-120466930 TLR4 1 bp deletion 102 heterozygous 

 

We also found several mutations in PTEN. One patient (103) had a heterozygous 2 bp 

insertion in PTEN leading to an elongated frameshift variant. In patient 102, we found 

two heterozygous mutations in PTEN. The first was a 1 bp deletion leading to a feature 

truncation, the second was a 2 bp deletion. Patient 101 harbored six heterozygous 

PTEN mutations – a 1 bp deletion, a 3 bp deletion, two 1 bp insertions, one 1 bp 

insertion and one 3 bp insertion. In addition, patients 101 (heterozygous) and 102 

(homozygous) had a 5 bp insertion. All of the infant patients harbored KRAS mutations. 

Patient 103 had two homozygous 1 bp insertions. Both mutations also occurred 

heterozygous in patient 101. Patient 102 carried one of these insertions heterozygous 

and the other homozygous. Patient 103 (homozygous) and patient 101 (heterozygous) 

had also a 2 bp deletion in KRAS. 
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RNA-Seq enabled discrimination of iT-ALL on gene and pathway level 

To analyze the differences in expressed mRNAs between infant and childhood cases, we 

sequenced the transcriptomes of the six childhood and three infant samples. We 

obtained a total of 135,216,180 sequencing reads mapping to coding genes. We found 

760 differentially expressed genes (│logFC│ ≥ 1, p-value ≤ 0.01). Out of these, 207 were 

downregulated in the infants and 553 were upregulated. Clustering of the significantly 

differentially expressed genes clearly separated childhood from infant samples 

indicating the genetic difference between iT-ALL and childhood T-ALL (Figure 1A). 

 

 

Figure 1: Hierarchical clustering of differentially expressed mRNAs (A) and miRNAs (B) 

between iT-ALL and childhood T-ALL. 

 

To get a better understanding of the biological processes in which the identified 

differentially expressed genes are involved, a pathway analysis with Ingenuity Pathway 

Analysis (IPA) was performed. We found 9 pathways (Supplementary Table 2), which 

were differentially regulated between infant and childhood patients (p-value < 0.05, z-

score ≥ ± 1). Most perturbed pathways were related to immune functions or cancer, 

including differentiation, proliferation, apoptosis or cell survival signaling. Among the 

identified pathways we found the ERK5 (mitogen-activated protein kinase 7) pathway 
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to be activated in iT-ALL (z-score = 1.134; Supplementary Figure 1). The ERK5 pathway 

can be regulated by a variety of stimuli such as growth factors, G-Protein coupled 

receptors or cellular stress factors. The pathway map shows an activation of ERK5 via 

TRKA (Tyrosine Kinase Receptor A) in infant samples, which further promotes the 

activation of transcription factors such as MYC (cellular myelocytomatosis viral 

oncogene homolog), SAP1 (putative AAA family ATPase SAP1) or FRA1 (FOSL1, FOS like 

antigen 1). 

We also performed an Upstream Regulator Analysis with IPA and found the toll-like 

receptors 2 (TLR2) and 4 (TLR4) being inhibited based on the aberrant expression of 

their downstream targets. TLR2 itself was not significantly downregulated across all iT-

ALL samples with a logFC of -0.98 (p-value = 0.29; Supplementary Figure 2A). TLR4 was 

downregulated in iT-ALL samples with a logFC of -2.07 (p-value = 0.03; Supplementary 

Figure 2B). However, patient 102 additionally harbored two heterozygous, deleterious 

TLR2 mutations and all three infant patients harbored a heterozygous 1 bp deletion in 

TLR4 (Table 2). The differentially expressed downstream targets for TLR2 include SELP 

(selectin P), ITGA2B (integrin subunit alpha 2b), IL1B (interleukin 1 beta), CD86 

(cluster of differentiation 86) and IL6 (interleukin 6), which were all significantly 

downregulated in infant samples compared to childhood T-ALL. The downregulated 

targets of TLR4 were CD86, IL1B, IL6, CCR7 (C-C motif chemokine receptor 7) and CCL5 

(C-C motif chemokine ligand 5). 

Furthermore, we checked upregulated genes in iT-ALL cases for approved therapeutics 

and for those that are currently being tested in clinical trials. We found a total of six 

genes to be significantly upregulated in iT-ALL compared to childhood T-ALL; these are 

potentially targetable and are thus interesting targets for individualized therapy 

(Supplementary Table 3), possibly as an add-on to standard therapy regimens. This 

included KIT (logFC = 2.03), a receptor tyrosine-kinase frequently associated with 

different cancers, for which four approved receptor tyrosine-kinase inhibitors are 

available and of potential therapeutic interest: Imatinib (Debiec-Rychter, Sciot et al. 

2006), Dasatinib (Antonescu, Busam et al. 2007), Sorafenib (Bisagni, Rossi et al. 2009), 

and Pazopanib (Sloan and Scheinfeld 2008). 
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miRNA-mRNA correlations reveal further mechanisms specific to iT-ALL 

To analyze differences between infant and childhood T-ALL samples on an epigenetic 

level, we performed miRNA sequencing. We obtained a total of 31,761,705 sequencing 

reads mapping to miRNAs annotated in miRBase V21. We found 58 miRNAs that were 

differentially expressed between infant and childhood T-ALL samples (│logFC│ ≥ 1 and 

P-value ≤ 0.01; Supplementary Table 4). Nine of these miRNAs were downregulated in 

iT-ALL and 49 were upregulated. Hierarchical clustering of the most significant 

differentially expressed genes again showed a clear separation between childhood and 

infant cases (Fig. 1B). This illustrates differences between infant and childhood T-ALL 

not only on the transcriptomic but also on the epigenetic level.  

 

To identify mRNAs whose aberrant expression pattern might be explained by 

differentially expressed miRNAs, we performed a correlation analysis based on five 

public miRNA target databases. This correlation analysis for differentially expressed 

miRNA-mRNA target pairs revealed 47 miRNA-mRNA pairs (Spearman’s Rho ≤ -0.6 and 

P-value ≤ 0.05; Table 3). MiRNA hsa-let-7b was downregulated in the infant samples. 

Hsa-let7b was previously described to be downregulated in infant B-ALL with MLL-

(lysine methyltransferase 2A) rearrangements (MLL-r) (Nishi, Eguchi-Ishimae et al. 

2013, Wu, Eguchi-Ishimae et al. 2015). We could not detect any MLL-r in the infant 

samples, but the low expression of hsa-let7b might promote the expression of its target 

genes. For hsa-let-7b, we found six potential target genes showing a negative 

correlation (Supplementary Fig. 3). This includes an upregulation of IGF2BP1 (insulin 

like growth factor 2 mRNA binding protein 1) and an upregulation of GREB1 (Figs. 2A-B 

). We also found hsa-miR-31 to be downregulated in iT-ALL samples (logFC = -3.86, P-

value = 0.004), which may act as a tumor suppressor. Our findings suggest that hsa-

miR-31 likely targets RPA1 (replication protein A1) (spearman’s Rho: -0.62 and P-value 

= 0.04; Fig. 2C). 
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Figure 2: Negative correlation between hsa-let-7b and IGF2BP1 (A) and GREB1 (B) and 

hsa-miR-31 and RPA1 (C). 
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Table 3: Negatively correlated miRNA-mRNA interaction pairs. Information on 

interactions was taken from publicly available databases (miRanda, miRDB, TarBase, 

TargetScan and miRTarBase). For each such a correlation, a spearman correlation was 

calculated. The list is filtered for spearmans Rho ≤ -0.6 and correlation p-value ≤ 0.05. 

logFC specifies the logarithmic fold-change of expression between infant and childhood 

cases. All p-values for differential expression of mRNAs and miRNAs were statistically 

significant (< 0.01). 

miRNA 
miRNA 

logFC 

targeted 

mRNA 

mRNA 

logFC 

Spearman 

Rho 

Correlation 

p-value 

hsa-miR-5683 4.0 HLF -3.0 -0.73 0.02 

hsa-miR-205-5p -3.7 NFAT5 1.4 -0.75 0.01 

hsa-miR-421 1.9 HOXA9 -5.0 -0.6 0.05 

hsa-miR-3909 2.2 NOG -2.6 -0.62 0.04 

hsa-let-7b-5p -2.9 SCAF4 1.4 -0.68 0.03 

hsa-let-7b-5p -2.9 GREB1 2.6 -0.7 0.02 

hsa-miR-766-3p 3.3 NR3C2 -4.5 -0.78 0.01 

hsa-miR-5683 4.0 CDK14 -2.3 -0.93 0.00 

hsa-miR-183-5p 2.9 CR1 -2.9 -0.63 0.04 

hsa-miR-3909 2.2 CD300E -2.9 -0.6 0.05 

hsa-miR-3143 2.0 ABCD2 -4.0 -0.72 0.02 

hsa-miR-18a-5p 2.4 MEF2C -2.0 -0.63 0.04 

hsa-let-7f-1-3p -2.5 ZFAND3 1.8 -0.78 0.01 

hsa-let-7b-5p -2.9 PDPR 1.4 -0.6 0.05 

hsa-miR-148b-3p 2.5 NR3C2 -4.5 -0.67 0.03 

hsa-let-7b-5p -2.9 COL1A2 2.9 -0.64 0.03 

hsa-miR-421 1.9 MEF2C -2.0 -0.67 0.03 

hsa-let-7f-1-3p -2.5 PRPF8 1.5 -0.6 0.05 

hsa-let-7b-3p -3.6 WNK1 1.5 -0.72 0.02 
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hsa-miR-5683 4.0 ZBTB38 -2.9 -0.62 0.04 

hsa-miR-183-5p 2.9 KDELC2 -2.3 -0.83 0.00 

hsa-let-7b-5p -2.9 PRDM2 1.4 -0.7 0.02 

hsa-miR-5683 4.0 MEF2C -2.0 -0.87 0.00 

hsa-let-7b-5p -2.9 FRAS1 2.4 -0.82 0.01 

hsa-miR-1276 2.5 ADCY9 -2.6 -0.69 0.02 

hsa-miR-3143 2.0 NOG -2.6 -0.67 0.03 

hsa-miR-5581-3p 2.4 MEIS1 -3.5 -0.8 0.01 

hsa-let-7f-1-3p -2.5 NBEA 1.5 -0.73 0.02 

hsa-let-7b-5p -2.9 IGF2BP1 6.9 -0.75 0.01 

hsa-miR-18a-5p 2.4 ERRFI1 -3.3 -0.75 0.01 

hsa-miR-671-5p 1.8 ALDH3A2 -2.1 -0.62 0.04 

hsa-miR-421 1.9 PTGER2 -1.9 -0.72 0.02 

hsa-let-7b-5p -2.9 WNK1 1.5 -0.73 0.02 

hsa-miR-331-3p 2.7 MEIS1 -3.5 -0.87 0.00 

hsa-miR-148b-3p 2.5 PTGER2 -1.9 -0.67 0.03 

hsa-miR-205-5p -3.7 RUNX2 3.6 -0.6 0.05 

hsa-miR-148b-3p 2.5 MYBL1 -3.4 -0.68 0.03 

hsa-let-7b-5p -2.9 COL4A6 4.6 -0.83 0.00 

hsa-miR-5581-3p 2.4 FOS -3.0 -0.85 0.00 

hsa-let-7b-3p -3.6 JUP 2.9 -0.7 0.02 

hsa-miR-31-5p -3.9 RPA1 1.8 -0.62 0.04 

hsa-miR-31-5p -3.9 WNK1 1.5 -0.72 0.02 

hsa-let-7b-3p -3.6 SLC18A2 2.7 -0.63 0.04 

hsa-miR-5581-3p 2.4 MYBL1 -3.4 -0.87 0.00 

hsa-let-7b-3p -3.6 ZFAND3 1.8 -0.75 0.01 

hsa-miR-148b-3p 2.5 RAB34 -3.8 -0.63 0.04 

hsa-miR-421 1.9 NR3C2 -4.5 -0.73 0.02 
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Discussion 

 

By exome sequencing we identified multiple mutations in oncogenes in the iT-ALL 

samples including NOTCH2 and NOTCH3. The latter was mutated in all three infant 

cases. However, we did not detect any NOTCH1 mutation, which are the most frequent 

mutations in childhood T-ALL with a frequency around 60% in all T-ALL patients 

(Weng, Ferrando et al. 2004). We did not detect any FBXW7 (F-box and WD repeat 

domain containing 7) mutation, which is frequently mutated in childhood T-ALL (Park, 

Taki et al. 2009) and was also described to be mutated in some iT-ALL patients 

(Mansur, van Delft et al. 2015). Recent studies reported non-synonymous mutations in 

the C2 domain of PTEN to cause C-terminal truncations of the protein in T-ALL patients 

(Gutierrez, Sanda et al. 2009). Some deletions in PTEN are also associated with 

treatment failure in T-ALL, having an impact on patient outcome. We identified short 

deletions in PTEN in two out of the three infant patients and short insertions in all 

patients. Also, KRAS mutations that were found in the iT-ALL cases are frequently 

associated with treatment response. The KRAS mutations prevent responses to 

cetuximab especially in colorectal cancer (Di Fiore, Blanchard et al. 2007). 

We found distinct mechanisms acting in infant and childhood T-ALL by multiple 

sequencing analyses. Hierarchical clustering of both differentially expressed mRNAs 

and miRNAs separated infant from childhood samples. Our findings hence indicate that 

infant and childhood T-ALL differ strongly on a genetic and epigenetic level. We 

identified multiple differentially affected signaling pathways between infant and 

childhood T-ALL. By upstream regulator analysis we found multiple downstream 

targets of TLR2 and TLR4 to be significantly downregulated in iT-ALL. TLR2 and TLR4 

themselves were not significantly downregulated in all iT-ALL patients, respectively, 

but predicted to be inhibited. However, we found mutations in TLR2/4 which might 

explain the downregulation of their targets without TLR2/4 being differentially 

expressed in all cases. TLR2/4 are pattern-recognition receptors, which are activated 

by binding to conserved molecules on pathogens leading to an activation of signaling 

pathways promoting inflammatory immune responses (Mahla, Reddy et al. 2013). The 
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detected TLR2 SNP has been annotated as a deleterious, missense mutation 

(rs5743708). A loss of TLR2 was described to promote liver cancer development in 

mice (Lin, Yan et al. 2013). The TLR4 deletion lies within an intron (rs5900307). 

TLR2/4 are also downregulated in patients with hepatocarcinoma (Soares, Pimentel-

Nunes et al. 2012). Additionally, TLRs initiate signaling pathways leading to cell 

proliferation and chemoresistance (Chen, Alvero et al. 2008). However,  knowledge on 

the function of TLR2/4 in T-cells or T-cell blasts is sparse, apart from its physiologic low 

expression (Muzio, Bosisio et al. 2000, Hornung, Rothenfusser et al. 2002). 

When searching for potentially druggable targets in the infant cases, we identified the 

receptor tyrosine kinase KIT, for which four approved drugs are available (Imatinib, 

Dasatinib, Sorafenib, and Pazopanib). KIT is activated by its ligand SCF (stem cell 

factor), which is important during the differentiation of hematopoietic cells (Ashman 

1999). However, patients carrying or acquiring certain are resistant to those TKIs 

(tyrosine kinase inhibitors) such as Imatinib (Heinrich, Corless et al. 2003, McLean, 

Gana-Weisz et al. 2005, Roberts, Odell et al. 2007). We could not identify any KIT 

mutations in the infant cases, but a higher expression compared to the childhood cases. 

Thus the drugs targeting KIT are of potential interest as add-on to standard therapy 

regimens. 

Target prediction and correlation analysis between mRNAs and miRNAs showed 47 

differentially expressed and negatively correlated miRNA-mRNA pairs. Most of these 

genes and miRNAs have previously been described to influence cancer development 

and progression. That high expression of hsa-let-7b targets GREB1 has been described 

in breast (Liu, Wang et al. 2012, Mohammed, D'Santos et al. 2013), ovarian 

(Bauerschlag, Ammerpohl et al. 2011), and prostate cancer (Antunes, Leite et al. 2012). 

A high expression of GREB1 was experimentally shown to increase proliferation of 

breast cancer cells (Rae, Johnson et al. 2005, Liu, Wang et al. 2012) and knockdown of 

GREB1 decreased tumor growth in ovarian cancer cells in vitro and in mouse xenografts 

(Laviolette, Hodgkinson et al. 2014). Another target, IGF2BP1, has been shown to be 

overexpressed in ETV6 (ETS variant 6)-RUNX1 (runt related transcription factor) ALL-

subtype (Stoskus, Gineikiene et al. 2011) and aberrantly expressed by fusion with IGH 



Posttranscriptional gene regulation in cancer 

 
 

 
 

(immunoglobulin heavy locus) locus (Gu, Sederberg et al. 2014, Jeffries, Jones et al. 

2014). In adult T-ALL cases, downregulation of hsa-miR-31 has been reported to 

activate NF-kB-signaling and promote apoptosis resistance (Yamagishi, Nakano et al. 

2012). The here regulated target of hsa-miR-31, RPA1, is important for DNA damage 

response during DNA replication (Lin, Shivji et al. 1998). A significant upregulation of 

this gene has also been described in CLL (chronic lymphocytic leukemia) (Poncet, 

Belleville et al. 2008, Hoxha, Fabris et al. 2014). 

In summary, we identified the landscape of genetic alterations in a limited set of iT-ALL 

by WES, transcriptome, and miRNome sequencing. We identified multiple differentially 

expressed signaling pathways between iT-ALL and childhood T-ALL and showed that 

iT-ALL differs substantially from childhood T-ALL on the transcriptomic and epigenetic 

levels. 
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Supplementary Materials & Methods 

 

Supplementary Methods 

Analysis of Transcriptome Data 

mRNA and miRNA datasets were handled in a similar fashion. First, adapter sequences 

and low-quality ends were trimmed off the reads using seqtk 

(https://github.com/lh3/seqtk) and cutadapt (Martin, 2011). Next, all remaining reads 

were aligned against the human reference genome sequence GRCh38 with STAR (Dobin 

et al., 2013) and BWA (Li and Durbin, 2009) for regular RNA-Seq and miRNA-Seq, 

respectively. BWA was applied with -n 0.04 option to accommodate for sequencing 

errors in the miRNA-Seq. To calculate read counts (relative expression values), HTSeq 

(Anders et al., 2014) was applied on both types of datasets using annotations from 

Ensembl Genes V82 (Yates et al., 2016) for mRNAs and annotations from miRBAse V21 

(Kozomara and Griffiths-Jones, 2010) for miRNAs. Lastly, edgeR (Robinson et al., 2010) 

was used to inter-sample normalize expression counts (leading to counts per millions, 

CPM values) and to perform a differential gene expression between the infant and the 

childhood T-ALL cases. 

 

Pathway Analysis 

Pathway analysis was performed using QIAGEN’s Ingenuity® Pathway Analysis (IPA®, 

QIAGEN Redwood City, CA, USA, www.qiagen.com/ingenuity). We also applied an 

Upstream Regulator Analysis with IPA. This takes differentially expressed genes as 

input and queries literature entries for upstream regulators of the respective genes. 

Depending on the regulatory effect of the potential upstream regulator and the actual 

expression of its targets, it is either considered inhibited or activated.  

 

Correlation Analysis 

A correlation analysis based on public databases for miRNA-mRNA targeting to reveal 

miRNA-mRNA pairs expressed in a negative correlation fashion was performed. 

Information of the following five databases for miRNA-mRNA targeting was 

https://github.com/lh3/seqtk
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downloaded: miRanda August 2010 (Kozomara and Griffiths-Jones, 2010), miRDB V5 

(Wong and Wang, 2014), TarBase V7 (Vergoulis et al., 2012), TargetScan V6.2 (Garcia et 

al., 2011) (all computationally predicted), and the experimentally validated miRTarBase 

V4.5 (Chou et al., 2015). A target pair was used for downstream analysis if it was either 

reported as experimentally validated or predicted by at least two computational 

predictions. Next, all pairs not showing a significant differential expression for any 

miRNA or mRNA between infant and childhood cases were discarded. Lastly, for each 

kept miRNA-mRNA pair the Spearman’s correlation was calculated.  

 

Analysis of Exome Data 

BWA version 0.6.1-r104 (Li and Durbin, 2010) was used to align read sequences to the 

human reference genome (GRCh37). Conversion steps were carried out using Samtools 

(Li et al., 2009) followed by removal of duplicated reads by mapping positions (Duraku 

et al., 2013). All reads aligned with at least one insertion/deletion (indels) compared to 

the genome were locally realigned by GATK (DePristo et al., 2011). All following steps 

including SNP calling, annotation, and recalibration were also performed by GATK. For 

recalibration, data from HapMap, OmniArray and dbSNP V135 provided by the Broad 

Institute were used. The resulting variation calls were annotated by the Variant Effect 

Predictor (McLaren et al., 2010) using data from Ensembl V70 and imported into an in-

house MySQL database to facilitate automatic and manual annotation, reconciliation 

and data analysis. Predictions for loss of function were provided by PolyPhen2 

(Adzhubei et al., 2010) and SIFT (Kumar et al., 2009). Sequence variants within protein 

coding genes with less than 15% frequency in the 1000 genomes and hapmap project 

were considered for further analysis. 
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Supplementary Figures 

 

 

Supplementary Figure 1. Differences in the ERK5 pathway for infant T-ALLs 

compared with childhood T-ALLs. The pathway map includes differentially expressed 

genes and miRNAs as well as predictions for activations and inhibitions of genes. 
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Supplementary Figure 2. Expression of TLR2 (A) and TLR4 (B) in the infant (light 

blue) and childhood (orange) cases. 

 

 

Supplementary Figure 3. Regulatory network of hsa-let-7b, negatively correlating 

with the expression of six target genes. 
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Supplementary Tables 

Supplementary Table 1. PCR Primers for Validation of Mutations (indels or SNVs). 

Primer Sequence 

NOTCH2 SNP for CAAGATGCCAAACAACCAGA 

NOTCH2 SNP rev TTTGTTTCCTCATGGCAGTG 

NOTCH3 for GTCAGGGGTCAGAGGAGACA 

NOTCH3 rev AGGTCAGGAGTTCAACAGCA 

IL7R for TGGCTATGCTCAAAATGGTG 

IL7R rev TGAATCCAGTTTGATCTCCTGA 

PTEN1for TCTTTTCAGGCAGGTGTCAA 

PTEN1rev TCTGCAGGAAATCCCATAGC 

PTEN2for ACCGCCAAATTTAATTGCAG 

PTEN2rev GCTTTCTCCCTGTGATTGCT 

PTEN3for TCGTTTTTGACAGTTTGACAGT 

PTEN3rev CACCAATGCCAGAGTAAGCA 

PTEN4for TCCGAAGGGTTTTGCTACAT 

PTEN4rev TCAAGCCCATTCTTTGTTGA 

PTEN5for CCACCCTTTTGACCTTACACA 

PTEN5rev TGCAGTCTGGGCATATCAAA 

PTEN6for GCCTCATCCCAATCAGATGT 

PTEN6rev TGGACTTTTTCAGGACTAGAACG 

PTEN7for CACCTTTAGGATTTTCTGCCTA 

PTEN7rev TGCCAACTTTGGTTTAATGC 

KRAS for GGCACTCAAAGGAAAAATGC 

KRAS rev TGCATTGAGAAACTGAATAGCTG 

TLR2delfor GTAATTCCGGATGGTTGTGC 

TLR2delrev CTTCCTTGGAGAGGCTGATG 

TLR2SNPfor TCCATTGAAAAGAGCCACAA 

TLR2SNPrev TCCTCAAATGACGGTACATCC 

TLR4for TCAGAAACTGCTCGGTCAGA 

TLR4rev GCCCCTGTTAGCACTCAAAA 
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Supplementary Table 2. Ingenuity Pathway Analysis Showing Significantly Altered 

Pathways when Searching for Differentially Expressed Genes. The shown pathways are 

filtered for p-value < 0.05 and are either activated (z-score > 1) or inhibited (z-score < -

1) in infant T-ALLs. 

Ingenuity canonical pathways P-value z-

score 

Role of NFAT in Regulation of the Immune 

Response 
0.0005 -1.000 

Dendritic Cell Maturation 0.0006 -1.387 

ERK5 Signaling 0.0014 1.134 

Type I Diabetes Mellitus Signaling 0.0021 -1.342 

TREM1 Signaling 0.0026 -1.134 

Intrinsic Prothrombin Activation Pathway 0.0062 1.000 

Agrin Interactions at Neuromuscular Junction 0.0331 1.000 

HMGB1 Signaling 0.0380 -1.134 

Gαi Signaling 0.0417 1.134 
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Supplementary Table 3. Clinically Approved Drugs and Drugs Currently Under 

Investigation in Clinical Trials for Significantly Upregulated Genes in iT-ALL Cases. 

Gene  logFC infants  Drugs 

BRD3 1.44 OTX015, CPI-0610, I-BET-762 (GSK525762), TEN-010 

KIT 2.03 Imatinib, Dasatinib, Sorafenib, Axitinib, Pazopanib, 

Cabozantinib, Sunitinib, Ponatinib, Regorafenib, Nilotinib, 

Cediranib (AZD2171), Dovitinib (TKI-258, CHIR-258), 

Motesanib  (AMG 706), Tandutinib (MLN518), Masitinib 

(AB1010), Telatinib, Tivozanib, OSI-930, Amuvatinib  (MP-

470), Midostaurin (PKC412), Quizartinib (AC220), MGCD516, 

Famitinib 

BLK 2.48 Dasatinib, Saracatinib (AZD0530) 

FLT1 2.62 Axitinib, Cabozantinib, Nintedanib (BIBF 1120), Regorafenib, 

Pazopanib, Motesanib (AMG706), MGCD-265, Cediranib 

(AZD2171), Foretinib (GSK1363089), Lenvatinib (E7080), 

Tivozanib (AV-951), Lucitanib (E-3810), Famitinib, Linifanib 

(ABT-869), OSI-930, Cabozantinib 

NTRK1 4.07 Ponatinib, Cabozantinib, Entrectinib (RXDX-101), TSR-011, 

PLX7486, LOXO-101, Dovitinib (TKI-258, CHIR-258), 

MGCD516, Lestaurtinib (CEP-701), DS-6051b, BMS-754807, 

Milciclib (PHA-848125), Danusertib (PHA-739358), 

Lestaurtinib (CEP-701), Cabozantinib 

ERBB4 5.96 Lapatinib, Dacomitinib (PF299804, PF299), AC480 (BMS-

599626) 
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Supplementary Table 4. Differentially Expressed miRNAs Between Infant and 

Childhood T-ALL Cases. 

Symbol logFC P-value 

hsa-let-7b-5p -2.92 0.0028 

hsa-miR-18a-5p 2.38 0.0041 

hsa-miR-31-5p -3.86 0.0036 

hsa-miR-30c-5p 2.50 0.0079 

hsa-miR-183-5p 2.93 0.0004 

hsa-miR-205-5p -3.71 0.0040 

hsa-miR-210-3p 1.62 0.0099 

hsa-miR-185-5p 2.15 0.0008 

hsa-miR-190a-5p 2.02 0.0019 

hsa-miR-200c-3p 1.90 0.0064 

hsa-miR-148b-3p 2.49 0.0001 

hsa-miR-331-3p 2.65 0.0000 

hsa-miR-324-5p 1.96 0.0015 

hsa-miR-196b-5p -5.23 0.0016 

hsa-miR-502-5p 2.26 0.0059 

hsa-miR-652-3p 2.12 0.0014 

hsa-miR-421 1.92 0.0037 

hsa-miR-671-5p 1.78 0.0079 

hsa-miR-766-3p 3.29 0.0001 

hsa-let-7b-3p -3.61 0.0004 

hsa-let-7f-1-3p -2.52 0.0079 

hsa-miR-223-5p 2.35 0.0026 

hsa-miR-125b-2-3p 3.53 0.0004 

hsa-miR-29c-5p 1.95 0.0092 

hsa-miR-874-3p 2.25 0.0015 

hsa-miR-1226-3p 3.13 0.0001 

hsa-miR-1301-3p 1.83 0.0093 

hsa-miR-1180-3p 1.87 0.0033 

hsa-miR-1249-3p 1.90 0.0050 

hsa-miR-1276 2.47 0.0078 

hsa-miR-196b-3p -5.66 0.0033 

hsa-miR-3143 2.04 0.0096 

hsa-miR-3186-3p 3.57 0.0001 
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Supplementary Table 4 cont. 

hsa-miR-3620-3p 2.77 0.0033 

hsa-miR-3661 2.86 0.0014 

hsa-miR-3681-5p 3.36 0.0001 

hsa-miR-3909 2.16 0.0014 

hsa-miR-3922-3p 2.27 0.0024 

hsa-miR-4485-3p -5.60 0.0008 

hsa-miR-4687-5p 2.43 0.0023 

hsa-miR-5010-3p 2.34 0.0092 

hsa-miR-664b-3p 4.32 0.0000 

hsa-miR-5581-3p 2.36 0.0033 

hsa-miR-5683 4.02 0.0000 

hsa-miR-561-5p 2.90 0.0079 

hsa-miR-652-5p 2.18 0.0030 

hsa-miR-1306-5p 2.16 0.0038 

hsa-miR-6503-5p -5.17 0.0033 

hsa-miR-210-5p 2.61 0.0015 

hsa-miR-128-1-5p 2.36 0.0017 

hsa-miR-6802-3p 2.51 0.0061 

hsa-miR-6803-3p 2.68 0.0006 

hsa-miR-6806-3p 2.81 0.0037 

hsa-miR-6855-3p 2.26 0.0071 

hsa-miR-6769b-3p 2.55 0.0019 

hsa-miR-6894-3p 2.57 0.0054 

hsa-miR-7706 2.72 0.0001 

hsa-miR-128-2-5p 4.42 0.0001 
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