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Abstract

The Kapitza-Dirac effect is the stimulated version of Compton scattering of free electrons
from a standing electromagnetic wave. It can also be understood as the diffraction of
the electron matter wave from the light lattice given by the ponderomotive potential of
the standing wave. Despite the original idea dating back to the early days of quantum
mechanics, a direct experimental proof has been accomplished only recently.

In this thesis, we investigate two generalization schemes of the Kapitza-Dirac effect,
both of which deploy bichromatic laser fields to influence the dynamics of the scattering.
We show that the combination of two standing light waves with commensurate frequen-
cies leads to distinct quantum interference. The relative phase between the nodes of
the two color components plays an important role as a control parameter. On the other
hand, we demonstrate that electrons can be scattered resonantly from non-standing,
counterpropagating and differently colored laser waves as well. The interaction now
comprises the exchange of three photons, and the aforementioned phase becomes imma-
terial. Instead, the polarization states of the photons gain key importance. We develop
various methods to describe the electron scattering from such field configurations and
characterize the influence of different laser polarizations on the electron spin. We present
diverse configurations therein which allows coherent control of the spin.

By a special sequence of three different Kapitza-Dirac scattering events, we develop
the theoretical basis for a spin-polarizing electron beam splitter. It effectively acts
as a Stern-Gerlach magnet for free electrons and so provides a possible answer to the
longstanding question of the realizability of such a device.
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Zusammenfassung

Der Kapitza-Dirac-Effekt ist die stimulierte Version der Compton-Streuung von freien
Elektronen an einer stehenden elektromagnetischen Welle. Gleichzeitig lässt er sich
als Streuung einer Elektronenwelle an dem Lichtgitter verstehen, welches durch das
pondermotorische Potential der stehenden Welle gegeben ist. Obwohl die initiale Idee
der Namensgeber zur frühen Geschichte der Quantenmechanik gehört, ist ein direkter
experimenteller Nachweis erst vor wenigen Jahren gelungen.

In der vorliegenden theoretischen Arbeit untersuchen wir zwei Verallgemeinerungen
des Kapitza-Dirac-Effekts, die zweifarbige Laserfelder verwenden um die Dynamik der
Streuung zu beeinflussen. Wir zeigen, dass die Kombination von zwei stehenden Wellen
mit kommensurablen Frequenzen zu deutlichen Quanteninterferenzen führt. Die relative
Phase zwischen den Knotenpunkten der zwei Farbkomponenten wird dabei zu einem
wichtigen Kontrollparameter. Andererseits demonstrieren wir, dass Elektronen auch
an nichtstehenden, gegenläufigen und verschiedenfarbigen Laserwellen resonant gestreut
werden können. Die Wechselwirkung beinhaltet hier den Austausch von drei Photonen
und die oben genannte Phase tritt in den Hintergrund. Dafür erhalten die Polarisa-
tionszustände der Photonen eine Schlüsselrolle. Wir entwickeln verschiedene Methoden,
die Streuung der Elektronen in diesen Feldern zu beschreiben, und charakterisieren den
Einfluss verschiedener Laserpolarisationen auf den Spin der Elektronen. Wir erabeiten
darunter verschiedene Konfigurationen, die es erlauben den Spin kohärent zu kontrol-
lieren.

Durch eine spezielle Abfolge von drei verschiedenen Kapitza-Dirac-Streuvorgängen
konstruieren wir theoretisch einen spinpolarisierenden Elektronenstrahlteiler. Dieser
repräsentiert in seiner Wirkweise einen Stern-Gerlach-Magneten für freie Elektronen und
liefert so eine mögliche Antwort auf die seit langem diskutierte Frage der Realisierbarkeit
eines solchen.
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Chapter 1

Introduction

The Kapitza-Dirac effect as originally proposed in 1933 [KD33] is the diffraction of a
free electron from a grating given by the periodic ponderomotive potential of a standing
light wave. Invented in the early days of quantum mechanics by Dirac and Kapitza as
a consequence of the wave-particle duality for both light and matter, it resembles the
well known diffraction of light from a material lattice, with the roles of light and matter
interchanged.

While, beautifully underlining the wave nature of the quantum electron in this wave
picture, the effect can simultaneously be seen in a particle picture. A free electron aborbs
one photon of one of the counterpropagating light rays, forming the standing wave. In
order to fulfill its own vacuum dispersion relation, it must subsequently emit a photon
again. Due to the Bose-Einstein statistic of the photons, it may be favorable to emit
this photon resonantly back into one of the light rays. In combination, the electron
gains two photon momenta and returns to its original kinetic energy. In this picture,
the Kapitza-Dirac effect can be viewed as stimulated Thomson or Compton scattering.

In their original paper, the authors concluded, that the experimental realization
of this resonant process deemed to be unfeasible with mercury lamps, the brightest
continuous light sources available at that time. Consequently, the idea was revived for
theoretical investigation after the invention of the laser in the nineteen-sixties [Fed67]
and generalized to strong fields including multi-photon interactions.

A first experimental realization of this kind of scattering, however, has been reported
for atomic beams instead of electrons [ASM94; Fre+99]. Observations in both the so-
called diffraction [Mar+88; EZE14] and the Bragg regime [GRP86] have been made.
There, the probability of the constitutive interaction with a single photon can be greatly
enhanced by the photon energy being close to an inner atomic resonance. Such a benefit,
that increases the number of scattered particles, cannot be expected in the case of a free
electron.

As for electrons, the first Kapitza-Dirac scattering has been realized in above thresh-
old ionization of argon or krypton, in a standing wave of high intensity ∼ 1014 W

cm2

[BSB88]. The narrow distribution of the emitted electons centered around the polariza-
tion direction helped to distiguish the scattering orders in the laser propagation direction.
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1. INTRODUCTION

It took again several years until a convincing experimental realization of the Kapitza-
Dirac effect in the originally proposed geometry with free electrons was presented by
Freimund, Aflatooni and Batelaan [FAB01]. In 2001, they reported the observation of
clear diffraction peaks of an electron beam with 380 eV kinetic energy after travelling
through a standing wave. The latter was formed by two beams of a 10 ns Nd:YAG
laser pulse with 0.2 J energy focused to a spot size of 125 µm, corresponding to a laser
intensity of 5× 1010 W

cm2 .

Meanwhile, the Kapitza-Dirac effect gained also a lot of theoretical attention. The
influence of adiabatic switching of the interaction on the final scattering probabilities
has been debated in [Fed74]. A relativistic version based on the Klein-Gordon equation
for spin-zero particles was developped [HA75; FM80]. The description was adapted to
an electron wave packet instead of a plane wave in [EF00].

Besides, the question has been raised whether the Kapitza-Dirac effect can be sensi-
tive to the electron spin. Then this fundamental quantum phenomenon would involve yet
another genuine quantum feature. First considerations came to the conclusion, though,
that the electron spin is immaterial for Kapitza-Dirac scattering [FB03; Ros04]. How-
ever recently, a spin-sensitive relativistic treatment in linear polarization based on the
full Dirac equation [Ahr+12; Ahr+13], and in elliptical polarization based on the Foldy-
Wouthuysen transformation of the latter [EB15] has been presented. Both setups show
distinct involvement of the spin in the diffraction.

In this thesis, we generalize the Kapitza-Dirac effect in two ways using two-color
waves with a small integer frequency ratio. In part I the standing wave is augmented
to a bichromatic standing wave. The lattice, the electron is diffracted from, is now
given a regular but not necessarily symmetric substructure. The influence thereof is
examined in both the diffraction and the Bragg regime. In the latter, interference effects
of two quantum pathways, comparable to the double-slit experiment, are exposed. In
these standing waves, the ponderomotive potential is predominant in a way, that all
visible features can be attributed to interference between the effects due to the individual
standing waves.
In part II we switch from the standing waves to two counterpropagating waves of different
frequencies. There, no ponderomotive potential emenates. We show that, though not
obvious, there are still periodic effective potential structures for the electron when the
frequency ratio is 1:2 (compare also [Smi+04]). That way, by forcing resonant three-
photon scattering, the electron spin gains a crucial role in the interaction. We investigate
the influence of several different laser polarization states on the scattering probability,
and classify some electron beam splitting techniques based on these principles by their
spin dependence and spin-flipping properties.∗ In this framework we also try to formulate
a theoretical answer to the longstanding question of whether a Stern-Gerlach experiment
for free electrons can be realized. Being first raised by Bohr and Pauli, who concluded

∗ We call an interaction spin-sensitive if it happens due to the existence of the electron spin. A
spin-insensitive effect, on the other hand, could in principle also happen with spin-zero particles. To
differentiate further, when the scattering depends on the individual spin state, we call it spin-dependent,
when the spin has changed after being scattered, we call it spin-flipping.
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1. INTRODUCTION

that no such experiment based on classical trajectories in static magnetic fields can
succeed [MM65; BGS97; RG98b; RG98a; MBB11], the question was transferred to the
framework of Kapitza-Dirac scattering from circular polarized light by [FB03].

To put our studies into a larger context, we briefly mention other quantum effects
occuring in two-color laser fields. Commensurate two-color effects, showing similar in-
terference pattern (as in part I) include laser-assisted electron scattering in atomic po-
tentials [VE93; KJE95; MEP97], photoionization [SK92; Yin+92; Sch+94; VTM95;
PBW95], coherent control of chemical reactions and molecular dynamics [SB00], Thom-
son [Spe+11] or Compton scattering [NF00] and high harmonics generation from atoms
[TWC95; Ban+97; Mor+99; MBK00; Kim+05; Mau+06].

As for QED effects, the influence of bichromaticity was also theoretically investigated
in several pair creation schemes like the Breit-Wheeler process [NF00; JM13], where a
strong laser and a gamma photon create matter only from light, or the Bethe-Heitler
process [KK12; AM13], where particles are created by a strong laser in the vicinity of a
nuclear Coulomb field.

Pair production in purely time-dependent oscillating electric fields with two frequen-
cies was considered in [AVM14]. This is a model for multi-photon pair-production in
bichromatic standing waves, if the laser wave length is large compared to the Compton
wave length. The process is then assumend to be localized in the wave crests. In this
interpretation it is a rather similar laser configuration to what we employ in part I,
though not commensurate in the frequencies. But with respect to the electron, we can
state, that the former is emitting particle pairs in a continuum of states, whereas the
latter scatters an electron resonantly from a defined momentum into a discrete set of
momentum states.

Besides, spin effects in monochromatic fields were studied in laser-induced photoion-
ization [FB04; Kla+14], high-harmonic generation [WK01] Compton [KK13; IKS04] and
Mott [STM98] scattering and electron-positron pair creation [IKS05; WBK15].

Publications

The studies presented in this thesis have also led to the following publications. The
contextual overlap with some of the following chapters will be indicated there.

M. M. Dellweg and C. Müller. “Kapitza-Dirac scattering of electrons from a bichro-
matic standing laser wave”. In: Phys. Rev. A 91.6 (June 2015), p. 062102

M. M. Dellweg and C. Müller. “Influence of laser pulse shape and spectral composi-
tion on strong-field Kapitza-Dirac scattering”. In: J. Phys.: Conf. Ser. 594 (Mar.
2015), p. 012015

M. M. Dellweg, H. M. Awwad, and C. Müller. “Spin dynamics in Kapitza-Dirac scat-
tering of electrons from bichromatic laser fields”. In: Phys. Rev. A 94.2 (Aug. 2016),
p. 022122
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M. M. Dellweg and C. Müller. “Spin-Polarizing Interferometric Beam Splitter for Free
Electrons”. In: Phys. Rev. Lett. 118.7 (Feb. 2017), p. 070403

M. M. Dellweg and C. Müller. “Controlling electron spin dynamics in bichromatic
Kapitza-Dirac scattering by the laser field polarization”. In: Phys. Rev. A 95 (Apr.
2017), p. 042124
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Chapter 2

Theoretical Framework

The non-relativistic quantum nature of the electron (excluding its spin degree of freedom)
in electromagnetic fields is described by Schrödinger’s equation

iℏ∂tψ(t, r⃗) =
1

2m

(

−iℏ∇⃗+
e

c
A⃗(t, r⃗)

)2
ψ(t, r⃗)− eϕ(t, r⃗)ψ(t, r⃗) . (2.1)

Here, ψ is the complex scalar wave function of the electron, A⃗ and ϕ are the vector and
scalar potential of the external electromagnetic field. m is the electron’s mass, −e its
charge, ℏ is the quantum unit of action and c the speed of light.

A standing wave along the z-axis with wave number k, frequency ω = ck and am-
plitude a0, as considered in this part of the thesis, can be described in radiation gauge
(ϕ ≡ 0, ∇⃗ · A⃗ ≡ 0) as

A⃗(t, z) =
a0
2
ϵ⃗ (cos(ωt− kz) + cos(ωt+ kz))

= a0ϵ⃗ cos(ωt) cos(kz) .
(2.2)

The polarization vector ϵ⃗ needs to fulfill ϵ⃗ 2 = 1 and ϵ⃗ · e⃗z = 0.

Basically, the Schrödinger equation could be solved with this vector potential, from
first principle to investigate the Kapitza-Dirac effect. However, a more intuitive picture
can be built up, by following an alternative approach that relies on a time-independent
scalar potential. It was shown [Bat07], that the electron motion is dominantly influenced
by the ponderomotive potential

V (z) =

⟨

e2A⃗2

2mc2

⟩

t

=
e2a20
4mc2

cos2(kz) = V0 cos
2(kz)

=
V0
2

(1 + cos(2kz)) =
V0
2

+
V0
4

(

e2ikz + e−2ikz
)

(2.3)

with amplitude V0 =
e2a20
4mc2

. The condition, that this approximation based on temporal
averaging the Hamiltonian is valid, is that the laser frequency is substantially larger

7



2. THEORETICAL FRAMEWORK

than the ponderomotive amplitude (i.e. ℏω ≫ V0)[Fed81]. The constant term V0
2 (re-

sulting in a spatially constant complex phase of the wave function) can be removed by
a gauge transformation on the electron wave function. It will further be omitted. These
approximations result in an effectively time-independent system, where the transverse
momentum becomes immaterial. The Schrödinger equation (2.1) consequentially reduces
to being time-independent and one-dimensional.

The main goal in this part of the thesis is to investigate the modifications of the
Kapitza-Dirac effect caused by adding a second standing wave with commensurate fre-
quency, i.e. using a bichromatic standing wave. The extension of (2.2) to the case of two
standing waves with frequency ratio 1:2 is a vector potential of the form

A⃗(t, z) = a0

[

αϵ⃗1 cos(ωt) cos(kz) +

√
1− α2

2
ϵ⃗2 cos

(

2ωt+
η

2

)

cos

(

2kz +
δ

2

)

]

. (2.4)

There, four new degrees of freedom were introduced. First, η is a relative phase in the
temporal oscillation of the two waves, and second δ the corresponding spatial phase
shift. Third, a relative amplitude parameter α ∈ [0, 1] was inserted in a way to keep
the overall laser intensity fixed, i.e. independent of α. The last one is hidden in the
fact, that the second harmonic standing wave does not need to be polarized in the same
direction as the fundamental mode. The two new polarization vectors ϵ⃗1 and ϵ⃗2 were
hence introduced. The aforementioned ponderomotive potential now reads

V (z) =
V0
2

(

α2 cos(2kz) +
1− α2

4
cos(4kz + δ)

)

=
α2V0
4

(

e2ikz + e−2ikz
)

+

(

1− α2
)

V0

16

(

e4ikz+iδ + e−4ikz−iδ
)

.

(2.5)

The generalization of this potential to other commensurate frequency ratios or more
involved harmonics is straight forward. Of the above mentioned degrees of freedom only
α2 and δ remain. One can see, that the potential represented in momentum space has the
form of a comb with four Dirac peaks lying at wave numbers ±4k,±2k. Therefore only
momenta lying an integer multiple of 2ℏk apart from the discrete incident momentum are
accessible to the wave function at any later time. The interpretation of this observation
is, that the electron does not obey momentum conservation on its own. Rather, the
total momentum including the to be absorbed and the later emitted photon momenta
is conserved, in agreement with the particle picture. With the offset pz of the incident
momentum from such an integer multiple of 2ℏk, we make the Fourier mode ansatz

ψ(t, z) =
∑

n∈Z
an(t)e

i(2nk+pz/ℏ)z . (2.6)

By plugging (2.6) into the Schrödinger equation with the time-independent bichromatic
potential (2.5), we arrive at

iℏȧn(t) = Enan(t) + f(t)
α2V0
4

(an−1(t) + an+1(t))

+ f(t)

(

1− α2
)

V0

16

(

eiδan−2(t) + e−iδan+2(t)
)

∀n ∈ Z

(2.7)

8



2. THEORETICAL FRAMEWORK

where the kinetic energy of the momentum eigenstate with index n is given by En =
ℏ
2k2

2m (2n+ q)2 with the abbreviation q = pz
ℏk for the relative momentum offset. Addi-

tionally we have introduced an envelop or switching function f(t) at this stage. Its
purpose is to model that the electron’s interaction with the laser field does not start or
end instantaneously, but is ramped up and down over several laser cycles. This reduces
nonphysical behaviour and phase dependence on the exact switching time to practically
zero. For most of the analytical derivations, however we will assume this function to be
identically unity and impose its influence by other means. Whenever used in numerical
simulations, we use a flat-top function with sin2-slopes, such that

∫

f(t)dt = T is the
effective interaction time.

In the following we will investigate Eq. (2.7) both analytically as well as numerically
in different parameter regimes. Note that the original single color Kapitza-Dirac effect
is included in this formulation, and can be recovered by setting α2 = 1 (or 0 for the
second harmonic).

9
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Chapter 3

Diffraction Regime

The motivational analogy of the Kapitza-Dirac effect with the diffraction of light from
a grating becomes particularly clear in the so-called diffraction or Ramam-Nath regime.
It is characterized by the fact that the mean kinetic energy of the electron is negligibly
small compared to the ponderomotive interaction potential V0 ≫ ℏ

2k2

m [Fed81]. In this
situation, the accessible momentum modes are much closer, than the absolute value of
the transient momentum given to the electron by the field (ℏk ≪ ea0

c ). While still only
momenta lying a multiple of two photon momenta apart are allowed by the overall mo-
mentum conservation in the interaction, the energy conservation does no longer impose
a limit on which of these modes may be occupied. By this simple consideration, after
some interaction time, the electron probability gets diluted into equidistant states in a
big portion of momentum space. An illustration is provided in the upper two panels of
Fig. 3.1. The resulting broad but discrete distribution of final electron momenta man-
ifests in a fan like structure of the electron beam in position space [Fed81]. Diffractive
Kapitza-Dirac scattering from monochromatic waves has been successfully observed for
the first time in 2001 [FAB01]. In this chapter we want to study the effects of a second
harmonic standing wave on the process. We shall demonstrate distinct qualitative mod-
ifications, that can arise depending on the relative intensities and relative spatial phase
of the two frequency modes. Up to a few additions, the results presented in this chapter
have been originally published in [DM15a].

3.1 First Approximation

A good approximation in the diffractive regime is to neglect the kinetic term altogether.
To ease the calculation, we first define a new time scale∗ with τ := V0t

2ℏ and adjust the
expansion coefficients to bn(τ) := inan(t). The Schrödinger equation (2.7) can then be

∗Keep in mind, that the typical time 2ℏ
V0

for the here described Kapitza-Dirac effects implies, that the
swiftness of their dynamic depends proportionally on the ponderomotive potential strength.

11



3. DIFFRACTION REGIME 3.1. FIRST APPROXIMATION

recast to

∂τ bn(τ) = −iϵ
(

n+
q

2

)2
bn(τ) +

α2

2
(bn−1(τ)− bn+1(τ))

+
1− α2

8

(

ieiδbn−2(τ) + ie−iδbn+2(τ)
)

.

(3.1)

Here, ϵ = 4ℏ2k2

mV0
≪ 1 was introduced, to treat the kinetic energy as a small parameter.

Without loss of generality we can choose the initial condition as bn(0) = δn,0, corre-
sponding to an electron with longitudinal momentum pz = ℏkq. It is a well established
result [Bat07], that in the monochromatic case (α2 = 1) Eq. (3.1) is solved to zeroth
order in ϵ by ordinary Bessel functions of the first kind. In the bichromatic case a simi-
lar analytically exact solution can be found. We present this by switching to generating
functions, a method that could be generalized to other commensurate frequency ratios
and more frequencies in an obvious way. To this end, we define the generating function
for the expansion coefficients†

B(τ, ζ) :=
∑

n∈Z
bn(τ)ζ

n (3.2)

and the differential operator that corresponds to the unperturbed (ϵ = 0) version of
(3.1)

D :=
∂

∂τ
− α2

2

(

ζ − ζ−1
)

− 1− α2

8

(

ieiδζ2 + ie−iδζ−2
)

(3.3)

With the help of another differential operator

N := ζ
∂

∂ζ
(3.4)

we arrive at

DB(τ, ζ) = −iϵ
(q

2
+N

)2
B(τ, ζ) (3.5)

while the boundary condition reads B(0, ζ) = 1. The zeroth order solution to (3.5) which
satisfies DB0(τ, ζ) = 0, can be readily derived as

B0(τ, ζ) = exp

[

α2τ

2

(

ζ − ζ−1
)

]

exp

[

(

1− α2
)

τ

8

(

ieiδζ2 + ie−iδζ−2
)

]

= J
(

α2τ, ζ
)

J

(

1− α2

4
τ, ieiδζ2

)

.

(3.6)

In the second step we used J(ρ, ζ) = exp
(ρ
2(ζ − ζ−1)

)

=
∑

n∈Z Jn(ρ)ζ
n, the generating

function for ordinary Bessel functions of the first kind. From there we can extract the

† Note that the generating function (which is formally a Laurent series) is closely related to the wave
function by ψ(t, z) = (iζ)q/2B(τ, ζ), when τ = V0t

2ℏ
and ζ = −ie2ikz. In this context, N is related to the

momentum operator.
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3.2. CORRECTIONS TO FIRST APPROXIMATION 3. DIFFRACTION REGIME

expansion coefficients to zeroth order

b0n(τ) =
∑

ℓ∈Z
Jn−2ℓ

(

α2τ
)

iℓeiℓδJℓ

(

1− α2

4
τ

)

= J (2)
n

(

α2τ,
1− α2

4
τ ; ieiδ

)

(3.7)

that turn out to be generalized Bessel functions‡ (see Eq. (1.15) in [Dat+91]).
At this point we can already note two observations. For α2 = 1 or 0 the solution

reduces expectedly to the well known single-color version, whose probabilities |bn|2 are
symmetric under the exchange n ↔ −n. On the other hand for 0 < α2 < 1, we
arrive at scattering probabilities, which depend on δ and can in general be asymmetric.
This is illustrated in Fig. 3.1. In panels (a) and (b) a typical behaviour of ordinary
Bessel functions of the first kind can be observed. Symmetrically in momentum space,
a wall of excitation moves outwards, while the states already swiped over oscillate. Due
to the second harmonic standing wave, every second momentum state is completely
omitted in panel (b). Panel (c) shows that combining both waves without relative
phase, preserves the symmetry, but a larger portion of momentum space is covered by
the outwards moving excitation. Also the momentum states in the central part appear
more chaotically distributed. Finally in panel (d) when introducing an asymmetric
potential (having δ = π

2 ), the momentum distribution looses its symmetry as well, and
additionally moves a bit sideways.

It has been proposed, that this asymmetry can be exploited to scatter the electron in
a specific direction similar to a blazed grating [VC15], and that this might be enhanced
by combining even more harmonics.

3.2 Corrections to First Approximation

Despite being the unperturbed solution, B0 can be seen as the Green’s function of the
linear operator D, since

Dθ(τ)B0(τ, ζ) = θ′(τ)B0(τ, ζ) = δ(τ)B0(0, ζ) = δ(τ) . (3.8)

By Green’s theorem this leads to the Dyson relation for the full differential equation
(3.5)

B(τ, ζ) = B0(τ, ζ)− iϵ

∫ τ

0
d σB0(τ − σ, ζ)

(q

2
+N

)2
B(σ, ζ) . (3.9)

Here, the Heaviside step function θ(τ) and the Dirac delta δ(τ) = θ′(τ) have been used.§

In turn, this allows us to expand the full solution into the corresponding Dyson series,
sorted by powers of ϵ:

B(τ, ζ) = B0(τ, ζ) + ϵB1(τ, ζ) + ϵ2B2(τ, ζ) . . . (3.10)

‡J
(k)
n (u, v; s) :=

∑
ℓ∈Z

Jn−kℓ(u)s
ℓJℓ(v) are an even more generalised version of the Bessel functions

as presented in appendix B of [Rei80]. The latter can be recovered by setting the argument after the
semicolon to unity.

§Both θ and δ are not functions in the traditional sense, but rather tempered distributions. The
prime is therefore understood as the distributional derivative.
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Figure 3.1: Scattering probabilities for Kapitza-Dirac scattering in the diffraction
regime. After an interaction time of 0.8 × 10−12 s (left red bars) and 1.1 × 10−12 s
(blue right bars) the occupation probabilities in momentum space are shown. A single
color standing wave with frequency ℏω1 = 2 eV and intensity I1 = 5× 1011 W

cm2 was em-

ployed in panel (a). The doubled frequency ℏω2 = 4 eV with intensity I2 = 1.5×1012 W
cm2

results in panel (b). In panels (c) and (d) the probabilities for the interaction with the
combined laser fields of relative phase δ = 0 and π

2 respectively are displayed. One can
clearly see the asymmetry in the momentum distribution introduced by the asymmetric
potential via interference.
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Their calculation is based on the following identities (where [, ] indicates a commutator):

B0(ρ+ σ, ζ) = B0(ρ, ζ)B0(σ, ζ) (3.11a)

M := [D,N ] =
α2

2

(

ζ + ζ−1
)

+
1− α2

4

(

ieiδζ2 − ie−iδζ−2
)

(3.11b)

NB0(σ, ζ) = σ [D,N ]B0(σ, ζ) = σMB0(σ, ζ) (3.11c)

For the first order correction we obtain

B1(τ, ζ) = −i
∫ τ

0
d σB0(τ − σ, ζ)

(q

2
+N

)2
B0(σ, ζ)

= −i
∫ τ

0
d σB0(τ − σ, ζ)

(q

2
+N

)(q

2
+ σM

)

B0(σ, ζ)

= −i
∫ τ

0
d σB0(τ − σ, ζ)

(

(q

2
+ σM

)2
+ σ [N ,M]

)

B0(σ, ζ)

= −i
∫ τ

0
d σ

(

q2

4
+ σqM+ σ2M2 + σ [N ,M]

)

B0(τ, ζ)

= −i
(

τ

4
q2 +

τ2

2
qM+

τ3

3
M2 +

τ2

2
[N ,M]

)

B0(τ, ζ)

= −i
(

τ

4
q2 +

τ

2
qN +

τ2

3
N 2 +

τ2

6
[N ,M]

)

B0(τ, ζ)

(3.12)

which, for the individual coefficients bn, reads

bn(τ) =
(

1− iϵ
τ

4
q2 − iϵ

τ

2
nq − iϵ

τ

3
n2
)

b0n(τ)

− iϵ
α2τ2

12

(

b0n−1(τ)− b0n+1(τ)
)

+ ϵ

(

1− α2
)

τ2

12

(

eiδb0n−2(τ) + e−iδb0n+2(τ)
)

+ o(ϵ) .

(3.13)

With the Taylor series of the generalizes Bessel functions

b00(τ) =1−
(

α2 +

(

1− α2
)2

16

)

(τ

2

)2
+ o

(

τ2
)

(3.14a)

b0±1(τ) =± α2 τ

2
∓ ie±iδα

2
(

1− α2
)

4

(τ

2

)2
+ o

(

τ2
)

(3.14b)

b0±2(τ) =ie
±iδ 1− α2

4

τ

2
+

1

2

(τ

2

)2
+ o

(

τ2
)

(3.14c)

we can now estimate the relative error in the intensity of the zeroth diffraction peak

|b0(τ)|2
|b00(τ)|2

− 1 = ϵτ4
1

4
α4 1− α2

4
cos δ + o

(

ϵτ4
)

. (3.15)
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We emphasize, that to this order the error is only non-vanishing for the bichromatic case
where α2 ̸∈ {0, 1} and δ ̸= π

2 . For the second order in ϵ, by a very similar but much
longer calculation, we arrive at

B2(τ, ζ) = −i
∫ τ

0
d σB0(τ − σ, ζ)

(q

2
+N

)2
B1(σ, ζ)

= −
(

τ2

32
q4 +

τ2

8
q3N +

5τ2

24
q2N 2 +

τ3

12
q2[N ,M]

+
τ2

6
qN 3 +

τ3

6
q[N ,M]N +

τ3

6
q[N , [N ,M]]

+
τ2

18
N 4 +

τ3

10
[N ,M]N 2 +

7τ3

36
[N , [N ,M]]N

+
τ3

9
[N , [N , [N ,M]]] +

τ4

40
[N ,M]2

)

B0(τ, ζ)

(3.16)

giving the second order correction

b2n(τ) =−
[

τ2

32
q4 +

τ2

8
nq3 +

5τ2

24
n2q2 +

τ2

6
n3q +

τ2

18
n4 − τ4

80

(

1− 2α2 + 2α4
)

]

b0n(τ)

−
[

τ3

24
q2 +

τ3

12
nq +

τ3

20
n2 +

τ3

120

]

α2
(

b0n−1(τ)− b0n+1(τ)
)

+
τ3

360
nα2

(

b0n−1(τ) + b0n+1(τ)
)

+
τ4

80
α2
(

1− α2
)

(

ieiδb0n−1(τ)− ie−iδb0n+1(τ)
)

−
[

τ3

24
q2 +

τ3

12
nq +

τ3

20
n2 +

τ3

30

]

(

1− α2
)

(

ieiδb0n−2(τ) + ie−iδb0n+2(τ)
)

+
τ3

180

(

1− α2
)

(

ieiδb0n−2(τ)− ie−iδb0n+2(τ)
)

− τ4

160
α4
(

b0n−2(τ) + b0n+2(τ)
)

− τ4

80
α2
(

1− α2
)

(

ieiδb0n−3(τ)− ie−iδb0n+3(τ)
)

+
τ4

160

(

1− α2
)2
(

e2iδb0n−4(τ) + e−2iδb0n+4(τ)
)

(3.17)
for the coefficients bn(τ).

3.3 Numerical Treatment

To see how good an approximation (3.12) and (3.16) are, we show a comparison of the
Bessel-solution (3.7), the first and the second approximation with a numerically obtained
solution from (2.7) in Fig. 3.2. Looking closely at Fig. 3.2 we can see, that the validity
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Figure 3.2: Probability |a0|2 of the incident electron mode in diffractive two-color
Kapitza-Dirac scattering. The combined laser Intensity is I = 4.363× 1010 W

cm2 , and its
fundamental frequency is ℏω = 2 eV corresponding to ϵ = 1

100 . The mixing parameters
are α2 = 1

2 and δ = 0. The full numeric solution is shown in solid blue. The zeroth, first
and second order approximations are plotted in dashed red, dotted black and dash dotted
green respectively. The region magnified in the inset is marked in the main window.

of the three approximations cease in the predicted order, but that they are altogether
longer valid than estimated.

To investigate this further, we performed simulations of the bichromatic Kapitza-
Dirac effect in the transitional parameter region between the diffraction and the Bragg
regime. For that purpose, we solved the Schrödinger equation with the ponderomotive
potential (2.5) by Fourier split-step methods. In Fig. 3.3 four different simulations
show the influence of ϵ and δ on the temporal evolution of a Gaussian wave packet
in a bichromatic wave.¶ The simulation in the upper left two panels shows a wave
packet, that is focused symmetrically into the valleys of the symmetrically chosen, strong
(ϵ = 1

100) potential. In momentum space, higher momentum modes are excited one after
another. After reaching the highest degree of focusing, the spots start to broaden again,
basically starting the whole process from the beginning. In the upper right panels, the
more shallow potential (ϵ = 1

10) induces less sharp focusing, and less momentum modes
are excited. Apart from that, the simulation shows qualitatively the same behaviour.
In the two simulations below, that differ from their upper counterpart only by the
asymmetrically chosen potential (δ = π

2 ), an asymmetry is introduced in the focusing as
well as the momentum distribution. While the distributions in the symmetric potentials

¶ By using the universality of the reduced Planck constant ℏ, time can be measured electively in
seconds or inverse electron volts. The equivalence 1 s =̂ 1.519× 1015 eV−1 applies.
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defocus to almost their original state, the asymmetry stops this from happening. Note,
that the time scale in the right panels is much slower, because the promptitude of the
dynamic is determined by the strength of the ponderomotive potential.

One can see, that the deviation from the Bessel-solution (3.7) becomes important,
as soon as the excitation reaches an out-most momentum mode ±nmax. The latter has
kinetic energy Enmax comparable to the amplitude of the ponderomotive potential V0.
With the definition of ϵ, we can see that nmax ∝ 1√

ϵ
in agreement with the results of

Fig. 3.3.
From this we can conclude, that, even in the monochromatic case, no set of param-

eters is adequately described by the Bessel-solution for all times, because by nature of
the Bessel functions momentum mode nmax will be excited after t ≈ nmax

V0
. At the same

time higher momentum modes will never be excited. That way, the fan like structure
emerging in position space after leaving the interaction region, is always finite.

By going from the diffraction regime with small ϵ to the other extreme, i.e. making
the kinetic energy dominant, we can limit the accessible momentum modes further. As
soon as only two modes participate in the interaction, this is called the Bragg regime
which will be the topic of the following chapter.
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Figure 3.3: Wave packet with initial width 2 eV−1 in Kapitza-Dirac scattering both
in one-dimensional position and momentum space. In the two upper left panels, the
simulation parameters are chosen as in Fig. 3.2, especially ϵ = 1

100 and δ = 0. In the
second row, the ponderomotive potential is made asymmetric by δ = π

2 , leaving all
other parameters intact. Finally, in the right column, the potential amplitude is lowered
to meet ϵ = 1

10 . One can see, that the symmetry of the ponderomotive potential is
somehow translated to the symmetry of the probability distribution in both position
and momentum space. It is also visible, that after starting in a way compatible to the
Bessel functions, there is a maximum momentum state whose number scales with ϵ−

1
2 .
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Chapter 4

Bragg Regime

The Bragg regime of Kapitza-Dirac scattering is, as shortly indicated in the last chapter,
characterized by the fact, that the kinetic energy (i.e. the difference in kinetic energy of
neighbouring momentum modes) is large compared to the amplitude of the ponderomo-
tive potential [Bat07] (or in Part II its generalized version). The single-color version of
this Bragg scattering has been experimentally achieved in [FB02]. They used a frequency
doubled Nd:YAG laser that produced 6 ns pulses which were focused only perpendicular
to the electron beam by cylindrical optics. That way an intensity of 3 × 108 W

cm2 over
the height of 200 µm was achieved.

The combined electron-photon momentum balance is now accompanied by stricter
energy conservation, allowing only two momentum states to be accessible. In the non-
relativistic regime for monochromatic standing laser waves, these states are always an
even number of photon momenta apart, and have longitudinal momenta on equal sides
of the electron dispersion relation. That is, an incident electron with longitudinal mo-
mentum −ℓℏk is scattered into the mirrored state with longitudinal momentum +ℓℏk by
interacting with 2ℓ photons. An effective resonant two-state quantum dynamic develops,
which exhibits typical Rabi flopping. This is also known as Pendellösung, owed to the
similarity with a slow swinging pendulum [Bat07]. For possible combinations with three
photons of the same frequency, at least one involved momentum needs to be relativistic
(see also Part II and [Ahr+13]).

In the following, we focus on bichromatic standing waves with a frequency ratio of
1:2, together with the lowest order transition, that can be accomplished by both waves
individually: The incident electron with longitudinal momentum −2ℏk (mode n = −1)
is scattered into mode n = 1 by either absorbing and emitting two lower frequency
photons, or absorbing and emitting one of the higher frequency as pictured in Fig. 4.1.
In principle, various other transitions are possible as well, for example, the electron may
absorb one high-frequency photon and emit two low-frequency ones or vice versa. Such
processes involving an odd number of photons, however, comprise at least one interaction
with a single photon, which are not part of the ponderomotive model. Besides, their
scattering probability includes an additional scaling factor of ∼ px

mc or ∼ ℏω
mc2

, suppressing
their contribution significantly in the non-relativistic regime. Such 3-photon interactions
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p

E

p

E

Figure 4.1: Sketch of the two predominant, concurrent processes of Kapitza-Dirac
scattering from a bichromatic wave in the non-relativistic dispersion relation of the
electron. Every wiggly arrow reflects the combined change in the electrons momentum
and energy. An upwards tilted arrow describes an increase in energy and therefore the
absorption of one photon. Accordingly, the downwards arrows describe emission. The
arrows in the lighter color indicate, that the absorption and emission can happen in any
given order. Only if the whole transition starts and ends precisely on the dispersion
relation, it is realized in the Bragg regime.

will be discussed in Part II, in a different setup where they contribute isolated to the
leading order. Also quantum pathways like absorbing two high-frequency photons with
the same direction and emitting them with opposite directions back into the standing
wave are imaginable. They are suppressed by being processes of higher order in the
vector potential. All in all, the fact, that two dominant processes compete, enriches the
quantum dynamics in a way, that two-pathway interference becomes possible. In this
chapter, we want to investigate the influence of the mixing parameters on the latter.

4.1 Numerical Experiments

Numerical simulations by solving (2.7) with Runge-Kutta methods in this Bragg regime
have been performed. Fig. 4.2 presents the typical behaviour of a single interaction.
Shown are the occupation probabilities of the electron in the incident (blue solid line),
as well as the resonantly scattered, momentum state (red dashed line). While switching
on the field, some probability is transferred into intermediate states, which are in total
plotted by the black dotted line. As long as the interaction with the field is active, an
oscillation between the corresponding states takes place. Switching the fields off, returns
all probability back to the two kinematically allowed states, not necessarily completely
to one of them.

To characterize the oscillation described above as a Rabi oscillation, we look at only
the final states after interactions of different durations took place. Having the otherwise
same parameters as in Fig. 4.2, Fig. 4.3 shows the resulting occupation probabilities for
various interaction durations. A clear Rabi oscillation, where the initial probability of
being in a state with momentum −2ℏk is transferred completely to the state with +2ℏk,
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Figure 4.2: Kapitza-Dirac scattering in the Bragg regime. An incident electron with
longitudinal momentum pz = −2ℏk is scattered by a bichromatic wave with frequency
ℏω = 4 eV, total intensity I = 1.117 × 1010 W

cm2 , mixing parameter α2 = 1
2 and mixing

phase δ = 0. The incident electron mode (n = −1) is plotted with the solid blue line
and the mirrored mode (n = 1) in dashed red. The dotted black line combines the
probability of all remaining modes (1 − |a−1|2 − |a1|2). The switching function f , and
with it the potential strength, is presented in the bar at the bottom.

and then back and forth again, can be seen. The duration ∆T of one full cycle defines
the Rabi frequency via ΩR := 2π

∆T . The total interaction time is chosen as T =
∫

f(t)d t
because the transition dynamics is not completely stopped while switching on and off.
That way the probabilities plotted at T = 10−9 s in Fig. 4.3 are exactly the final values
of Fig. 4.2 at t = 1.2× 10−9 s.

4.2 Interference Effects

The natural question to ask at this point is, how does this result change for different
combinations of the two standing waves. Since we can expect clear Rabi oscillations
in these idealized numerical conditions (see Fig. 4.3), the Rabi frequency ΩR remains
as a single parameter to adequately describe the output. In Figs. 4.4-4.6 this Rabi
frequency is shown for fixed total laser intensity, but depending on the specific mixing
characterized by α2 and δ. In Fig. 4.4 we see, that for δ = 0 (symmetric potential) the
Rabi frequency ΩR passes smoothly through a shallow minimum on its way from the
monochromatic setup with α2 = 0 over the combined waves to the other monochromatic
standing wave at α2 = 1. On the other hand for the relative phase δ = π with the most
asymmetric potential, ΩR starts at the same value, drops down to zero for a certain
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Figure 4.3: Occupation probabilities of the momentum states fulfilling a Bragg condition
after interactions of different durations T . The parameters are chosen as in Fig. 4.2.
Every plotted data point corresponds to a full interaction including switching on and off
the laser field. Due to energy conservation and the resonant character of the process, a
clear Rabi oscillation emerges.

α2 and then rises again to meet at α2 = 1. Fig. 4.5 shows, that the dependence on
the relative phase δ is qualitatively different for different mixing ratios α2. Especially
the solid blue line for α2 = 0.4 indicates significant destructive interference. The global
dependence of ΩR on both mixing parameters is shown in Fig. 4.6. As in Chap. 3, for
α2 ∈ {0, 1}, which correspond to the monochromatic corner cases, ΩR does not depend on
the phase parameter δ. On the other hand, for the bichromatic setups in between, there
is a strong dependence on this phase parameter showing constructive and destructive
interference. That way, the two elementary processes sketched in Fig. 4.1 are considered
to be competing quantum pathways for the transition from momentum −2ℏk to 2ℏk. In
combination, they show distinct interference.

4.3 Dimensionally Reduced Model

To shed some more light on the interference pattern in Fig. 4.6, we analyze (2.7) in a
dimensionally reduced model (see also [DM15a; EB15]). By restricting the ansatz (2.6)
to the modes with n = 0,±1, with their coefficients combined in a tuple, we can rewrite
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Figure 4.4: Rabi frequency ΩR of Kapitza-Dirac scattering from bichromatic waves
in the Bragg regime. ΩR is plotted as a function of the mixing parameter α2 for fixed
δ = 0 (solid blue) and compared with its analytical prediction from (4.7) (dotted black).
In the same way, the numerical results for δ = π (dashed red) are compared with the
prediction (dash dotted green). The summed laser intensity is 1.117× 1010 W

cm2 and its
fundamental frequency ℏω = 4 eV. The electron is incident with momentum 2ℏk along
the laser propagation direction.

(2.7) in the form

iℏ
∂

∂t
a =Ma ; M =

⎛

⎝

A B D
B 0 B
D∗ B A

⎞

⎠ ; a =

⎛

⎝

a−1

a0
a1

⎞

⎠ (4.1)

where A = 2ℏ2k2

m denotes the kinetic energy of the incident and scattered electron.

B = V0
α2

4 and D = V0
1−α2

16 e−iδ are the interaction strengths to the neighboring mo-
mentum modes due to the fundamental and the harmonic laser modes respectively. The
intermediate state n = 0 needs to be carried along, because the scattering by the low
frequency standing wave is a two-step process. The characteristic polynomial ofM reads

χM (λ) = λ3 − 2Aλ2 +
(

A2 − 2B2 − |D|2
)

λ+ 2B2 (A−ℜD) . (4.2)

The roots λj of (4.2) are the eigenenergies of the eigenstates vj with j ∈ {−1, 0, 1}.
They are given by

λj =
2

3
A+

√

4

9
A2 +

8

3
B2 +

4

3
|D|2 cos

(

Φ+
2

3
jπ

)

(4.3)
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Figure 4.5: Rabi frequency ΩR plotted as a function of the mixing phase δ for fixed
α2 = 0.4 (solid blue / dotted black) and for α2 = 0.8 (dashed red / dash dotted green).
All other parameters coincide with the choice in Fig. 4.4.

with

Φ =
1

3
arccos

[

(

− 1

27
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3
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3
A|D|2 +B2ℜD
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]
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⎨

⎪

⎩
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ℏ
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[
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24V
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2
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⎫

⎪

⎬

⎪

⎭

(4.4)

and visualized in Fig. 4.7.
In the limit V0 → 0, they converge to λ−1,0 → A = E1 and λ1 → 0 = E0. The

corresponding eigenstates in this limit are

v−1 =

⎛

⎝

1
0
eiδ

⎞

⎠ v0 =

⎛

⎝

1
0

−eiδ

⎞

⎠ v1 =

⎛

⎝

0
1
0

⎞

⎠ (4.5)

where v−1 and v0 span the degenerate eigenspace containing the initial momentum state
as the linear combination

a =

⎛

⎝

1
0
0

⎞

⎠ =
1

2
(v−1 + v0) . (4.6)
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Figure 4.6: Rabi frequency on the full α2, δ – landscape. The parameters are chosen as
in Figures 4.4 and 4.5. Their results are embedded by the solid blue lines.

By virtue of the smooth switching on and off of the laser field, the final state also
returns to that subspace, thereby obeying energy conservation. The Rabi cycle results
as a beat oscillation between those two eigenstates. Its Rabi frequency, as plotted in
Figures 4.4, 4.5 and 4.6, is the difference of the corresponding eigenvalues consequentially:

ΩR =
1

ℏ
(λ0 − λ−1)

=
1

ℏ

√

16ℏ4k4

9m2
+

1

6
V 2
0 α

4 +
1

192
V 2
0 (1− α2)2

[

cosΦ− cos

(

Φ− 2π

3

)]

.

(4.7)

Fig. 4.4 and 4.5, additionally to showing numerical results, compare them to this an-
alytical result. While slightly different in detail, the predicted general behaviour is
reproduced nicely. Specifically in (4.7), the frequency ΩR vanishes completely when
δ = π and the mixing parameter fulfills

α2 =
4
√

1 + 32ℏ2k2

mV0
+ 16 ℏ4k4

m2V 2
0
− 16ℏ

2k2

mV0
− 1

15
. (4.8)

We conclude, that the quantum interference can fully suppress the interaction in our
dimensionally reduced model. Although our numerical results show slight deviations,
they are qualitatively consistent with this conclusion.

Numerical investigations of this bichromatic setup with frequency ratio of 1:3 have
shown comparable, though less pronounced results (see [DM15b]). In principle, Kapitza-
Dirac scattering from a bichromatic standing wave could also proceed in a mixed regime,
where the parameters of the first mode lie in the diffraction regime, whereas those of
the second mode are Bragg-like (or vice versa). However, as a comparison of Fig. 3.3
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Figure 4.7: Roots λj of the characteristic polynomial χM (λ) depending on the amplitude
V0 of the ponderomotive potential. The fundamental laser frequency is ℏω = 4eV and
the mixing is α2 = 1

2 and δ = π
2 . The solid blue line shows λ−1, the dashed red line λ0

and the dotted black one λ1.

with Fig. 4.2 reveals, diffraction and Bragg regime of the Kapitza-Dirac effect are largely
different with respect to the relevant timescales, with diffractive Kapitza-Dirac scattering
being much faster, in general. Therefore, this mixed regime is irrelevant in practice.
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Chapter 5

Preliminaries

Not only electrons, the smallest elementary charged particles within the standard model,
carry angular momentum in form of spin, but also photons, the elementary particles of
light, exhibit spin. It has therefore been proposed [FB03], that the controlled interaction
of photons and electrons within the Kapitza-Dirac setup could be used to control the
electron spin. We remember, that the interaction of a free electron with only one pho-
ton is kinematically forbidden ([p+ ℏk]2 ̸= m2c2). By further noting, that the electron
has spin 1

2 while photons have spin 1, it seems unlikely to find dominant spin effects
in a two-photon process. However spin-involving Kapitza-Dirac scattering in an ellip-
tically polarized standing wave has been predicted [EB15]. Still these spin flips are in
competition with the much stronger normal monochromatic Kapitza-Dirac effect, which
does not involve spin. With this in mind it seems natural to think about three-photon
processes. An appropriate selection rule might only allow ∆S = ±1,±3 for the three
photons, which means, that the electron could only interact with an included spin-flip
(∆S = ±1). This consideration is pictured in Fig. 5.1.

∆S

0

1

−1

2

0

−2

0

1

−1

2

0

−2

3

1

−1

−3

Figure 5.1: Illustration of the possible spin transitions in two- and three-photon inter-
actions. The dashed transitions are inaccessible to interactions with the spin of a single
electron.
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A three-photon process cannot be induced by the A⃗2-term alone, which the Kapitza-
Dirac effect in part I relied upon. An interaction term linear in the external field is
required in addition. Within the framework of non-relativistic quantum mechanics,
there are p⃗ · A⃗ and σ⃗ · B⃗. An interaction via the latter could lead to ∆S = ±1, as
argued above. However, when constraints from energy and momentum conservation are
taken into account, it turns out, that to force a 3-photon interaction in a standing wave
configuration, relativistic parameters (for at least one involved electron momentum) are
required [Ahr+12; Ahr+13]. Even for optical to UV photons, the electron momenta
would need to be centered around mc√

8
.

A Lorentz-boost of this setup can render the electron’s incident and scattered momen-
tum symmetric, while Doppler shifting the frequencies of the counterpropagating waves

to a ratio of 1:2 (a boost with β =
√
2−1√
2+1

≈ 0.17 would be necessary). That way the

process can be mapped to all non-relativistic parameters in a bichromatic non-standing
wave configuration (see also Fig. 5.2).

p

E

p

E E′

mc√
8

Figure 5.2: Sketches of the 3-photon Kapitza-Dirac diffraction in the electron dispersion
relation. On the left side, the relativistic 3-photon interaction in a standing γ-ray wave
is shown. On the right side, one can see the Lorentz-boosted version, where the electron
momenta are non-relativistic and symmetric, but the lasers have a frequency ratio of 1:2.
The energy axis in this frame of reference coincides with the dashed one labeled E′ in
the left picture. Besides, the boost parameter is independent of the laser wave lengths.

In the original proposal [FB03] usage of circularly polarized light was preferred over
linearly polarized one, because it has a defined spin angular momentum. But the problem
remains, that the p⃗ · A⃗-term in the interaction Hamiltonian can hardly be suppressed
here. Therefore, and also for easier analytical treatment, the investigations began with
linearly polarized light [Smi+04].

We want to follow that path and start with a closer look at a spin-sensitive 3-photon
Kapitza-Dirac effect with two beams of linear polarization in Chap. 6. To this end,
we derive an analytical expression for the involved Rabi frequency by means of time
dependent perturbation theory, being the näıve and conceptually easiest approach. We
then rediscover that Rabi frequency in the effective ponderomotive potential of this setup.
Within this framework, we arrive at a system of differential equations that describes the
actual Rabi cycle.
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With this spin-flipping interaction in the toolbox, we demonstrate theoretically the
construction of a spin polarizing beam splitter for free electrons in Chap. 7. The latter is
a multi-step polarizer based on an interferometric setup. Its mirrors and semi-reflective
mirrors are mimicked by successive Kapitza-Dirac deflections, one of them being spin-
flipping.

We follow up by considerations of the asymmetric Kapitza-Dirac effect in arbitrary
laser polarizations in Chap. 8. In particular, the setups with purely circular polarization
and combined from one linear and one circular polarized wave will be investigated. As
higher order corrections to the Pauli equation are necessary there (for discussion see
[EB15]), we base our analytical model, as well as the numerical simulations, on the full
Dirac equation.

In this context we would like to mention, that considerations of this spin-sensitive
two-color Kapitza-Dirac effect in circularly polarized light have been made in [McG+15]
based on the Pauli-equation. Because they neglected in this setup important terms, their
conclusions disagree with some of our findings. Their numerical simulations, that have
been made with linearly polarized light only, are however compliant with our results.
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Chapter 6

Linear Polarization

In this chapter, we take a closer look on the simplest asymmetric setup of two linearly
polarized counterpropagating laser waves with frequency ratio 1:2. At the same time, we
choose the electron momentum to be perpendicular to the polarization direction of both
laser waves. In this manner, any effect arising from p⃗ ·A⃗, for example the spin-insensitive
three-photon Kapitza-Dirac scattering predicted in [Smi+04], can be suppressed, and the
derivations become easier.

To this end, we employ two different analytical methods, that are easy enough to be
applied in this special setup, to calculate the Rabi frequency for this process. A third
one, based on relativistic Dirac-Volkov states, will be deferred to Chap. 8 in a more
general framework, including arbitrary polarization and the p⃗ · A⃗-interaction. That way
we emphasize the mutual validity of these methods and motivate the use of the third
one to obtain the Rabi frequency in setups with arbitrary polarizations.

The question of experimental realizability will be briefly discussed in Chap. 7 in re-
lation to the parameters chosen there. However, as we shall already see in the present
chapter, the analytical model of this 3-photon process is valid for a wide range of pa-
rameters.

6.1 Time-Dependent Perturbation Theory

The conceptually easiest way to understand the induced transition of the electron from
the incident to the scattered momentum state is by time-dependent perturbation theory.
This calculation has been carried out in [DAM16]; see also [Aww16] for a basically
equivalent treatment.

Since we want to capture the influence of the electron spin in the non-relativistic
limit, we start our derivation with Pauli’s equation

iℏ
∂

∂t
ψ =

1

2m

[

σ⃗ ·
(

−iℏ∇⃗+
e

c
A⃗
)]2

ψ (6.1)

that emerges as the lowest order in the Foldy-Wouthuysen expansion to the Dirac equa-
tion [FW50]. It should be noted, that using the Pauli equation is sufficient in this setup,
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6. LINEAR POLARIZATION 6.1. PERTURBATION THEORY

because the next higher order corrections of this expansion (∼ E⃗ × A⃗) are only sub-
stantial in circularly polarized light. Compare also [EB15; DAM16]. By exploiting the
algebraic identity σjσk = δjk + iεjklσl of the Pauli matrices, (6.1) reduces to a more
common representation

iℏ
∂

∂t
ψ =

[

1

2m

(

−iℏ∇⃗+
e

c
A⃗
)2

+ µB σ⃗ · B⃗
]

ψ (6.2)

that equals the Schrödinger equation (2.1) with an additional spin-sensitive interaction
term. Here µB = ℏe

2mc is the absolute value of the electron’s magnetic moment, also
known as Bohr magneton. The specific setup of two counterpropagating waves with
frequency ratio 1:2 is encoded by the vector potential

A⃗(z, t) = f(t)
[

A⃗1(z, t) + A⃗2(z, t)
]

(6.3)

consisting of a right-travelling part of frequency ω

A⃗1(z, t) = a1e⃗x cos(ωt− kz) (6.4)

and a left-moving part of frequency 2ω

A⃗2(z, t) = a2e⃗x cos(2ωt+ 2kz) . (6.5)

with amplitudes a1 and a2 respectively.
∗ Since the vector potential is taken in Coulomb-

gauge, ∇⃗ · A⃗ = 0 and A⃗ · p⃗ = 0, we can split the potential into a spin-independent
V (t) = e2

2mc2
A⃗2 and a spin-sensitive part W (t) = µBσ⃗ · B⃗. As in Chap. 2 we make a

Fourier mode ansatz†

ψ(t, z) =
∑

n∈Z
cn(t)e

inkz+ i
ℏ
pzz =

∑

n∈Z
cn(t) |n⟩ . (6.6)

As we want to handle resonant scattering, we set pz = 0 in favor of encoding the
incident electron momentum with a suitable integer n. At the same time we have px = 0
by assumption, and by a suitable gauge transformation may further assume py = 0.
It should be noted, that in contrast to (2.6) this ansatz contains momentum modes |n⟩
which are equidistantly spaced by a single photon momentum. This reflects the nature of
the interaction terms needed to be taken into account. The time dependent coefficients

are Pauli spinors, encoding the spin degree of freedom by virtue of cn =

(

c↑n
c↓n

)

. Using

this ansatz, the Pauli equation (6.2) transforms into the coupled system of differential
equations

iℏċn(t) = E′
ncn(t) + Vn(t) +Wn(t) (6.7)

∗It turns out that it is not beneficial here to encode the amplitudes with the mixing parameter α,
that controlled the interference in part I, because the two waves render the interaction possible only in
combination, obstructing interference.

† The ket-states |n⟩ = einkz+ i

ℏ
pzz form a Hilbert basis in the Hilbert space of 2π

k
-periodic functions

equipped with the inner product ⟨ϕ|ψ⟩ = k
2π

∫ 2π

k

0
dz ϕ∗(z)ψ(z).
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6.1. PERTURBATION THEORY 6. LINEAR POLARIZATION

which govern the temporal evolution of the coefficients cn. The kinetic energy of state |n⟩
is E′

n = ℏ
2k2

2m n2. The potential energy terms can be categorized by the spin-independent
part

Vn(t) =
e2

8mc2
f(t)2

[

a22e
4iωtcn−4(t) + 2a1a2e

iωtcn−3(t)

+ a21e
−2iωtcn−2(t) + 2a1a2e

3iωtcn−1(t)

+ 2
(

a21 + a22
)

cn(t)

+ 2a1a2e
−3iωtcn+1(t) + a21e

2iωtcn+2(t)

+ 2a1a2e
−iωtcn+3(t) + a22e

−4iωtcn+4(t)

]

(6.8a)

and the spin-sensitive part

Wn(t) =
iℏeω

4mc2
σyf(t)

[

2a2e
2iωtcn−2(t) + a1e

−iωtcn−1(t)

− a1e
iωtcn+1(t)− 2a2e

−2iωtcn+2(t)

]

. (6.8b)

As before, the switching function f(t) is set to one for this derivation.

To construct the Dyson-expansion of the amplitude for the transition from momen-
tum mode |−2⟩ to |2⟩, we need the free propagator

U0(t− t′) =
∑

n∈Z
e−

i
ℏ
E′

n(t−t′) |n⟩ ⟨n| (6.9)

as well as the terms of (6.8) that allow for a combined momentum transfer of 4ℏk without
a change in energy. In other words, we need the summands which may be combined to
a time independent product proportional to e4ikz =

∑

n∈Z |n⟩ ⟨n− 4|.‡ In this setup,
those are

V1(t) =
e2

8mc2
a21e

−2iωt
∑

n∈Z
|n⟩ ⟨n− 2| , (6.10a)

V2(t) =
e2

4mc2
a1a2e

iωt
∑

n∈Z
|n⟩ ⟨n− 3| , (6.10b)

W1(t) =
iℏeω

4mc2
a1σye

−iωt
∑

n∈Z
|n⟩ ⟨n− 1| , (6.10c)

W2(t) =
iℏeω

2mc2
a2σye

2iωt
∑

n∈Z
|n⟩ ⟨n− 2| . (6.10d)

‡ To be more precise, the correspondence between the state-vector operator and its position space
representation is

∑
n∈Z

⟨z|n⟩ ⟨n|z′⟩ = e4ikzδ(z − z′).
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Emphasizing, that neither the zeroth nor the first order contribute to the desired transi-
tion, we calculate the Dyson expansion of the transition amplitude in second and third
order as

⟨2|U(T ) |−2⟩ ≈ − 1

ℏ2

∫ T

0
dt1

∫ t1

0
dt2 ⟨2|U0(T − t1)[V (t1) +W (t1)]

× U0(t1 − t2)[V (t2) +W (t2)]U0(t2) |−2⟩

+
i

ℏ3

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ⟨2|U0(T − t1)[V (t1) +W (t1)]

× U0(t1 − t2)[V (t2) +W (t2)]U0(t2 − t3)[V (t3) +W (t3)]U0(t3) |−2⟩

≈ − ie3ω

16ℏm2c4
a21a2σy (I+ + I− + J+ + J−)

+
e3ω3

32m3c6
a21a2σy (K1 +K2 +K3) .

(6.11)
In the last and in the next step, terms that do not grow, but only oscillate in the interac-
tion time T are being neglected (see also App. A for the connection to the switching time).
Besides, we have introduced abbreviations for the integrals with the time-dependent
parts of the relevant processes. For example

I± =

∫ T

0
dt1

∫ t1

0
dt2e

− i
ℏ
E′

2T e−
i
ℏ
(−E′

2±2ℏω)t1e−
i
ℏ
(E′

2∓2ℏω)t2

≈ iℏTe−
i
ℏ
E′

2T

E′
2 ∓ 2ℏω

(6.12)

for first emitting one 2ω-photon at t2 via W2 and then absorbing two ω-photons at t1
via V1 (I+) or vice versa (I−). Accordingly,

J± =

∫ T

0
dt1

∫ t1

0
dt2e

− i
ℏ
E′

2T e−
i
ℏ
(−E′

2+E′
1±ℏω)t1e−

i
ℏ
(E′

2−E′
1∓ℏω)t2

≈ iℏTe−
i
ℏ
E′

2T

E′
2 − E′

1 ∓ ℏω
(6.13)

describes the combined emission of one 2ω-photon with the absorption of one ω-photon
at t2 via V2 and the consecutive absorption of another ω-photon at t1 via W1 (J+) or
vice versa (J−). The sequential interaction with all three photons (twice via W1, once
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W2) at times t3, t2, t1 in three different orders results in the terms

K1 =

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

e−
i
ℏ
E′

2T e−
i
ℏ
(−E′

2−2ℏω)t1e−
i
ℏ
(E′

1+ℏω)t2e−
i
ℏ
(E′

2−E′
1+ℏω)t1

≈ −ℏ
2Te−

i
ℏ
E′

2T

(E′
2 − E′

1 + ℏω) (E′
2 + 2ℏω)

, (6.14a)

K2 ≈
−ℏ

2Te−
i
ℏ
E′

2T

(E′
2 − E′

1 + ℏω) (E′
2 − E′

1 − ℏω)
, (6.14b)

K3 ≈
−ℏ

2Te−
i
ℏ
E′

2T

(E′
2 − 2ℏω) (E′

2 − E′
1 − ℏω)

. (6.14c)

With these approximations in place, the transition amplitude is

⟨2|U(T ) |−2⟩

≈ e3ω

16m2c4
a21a2σyTe

− i
ℏ
E′

2T

[

mc2

ℏ2ω2 −m2c4
+

3mc2

9
4ℏ

2ω2 −m2c4

]

− ℏ
2e3ω3

32m3c6
a21a2σyTe

− i
ℏ
E′

2T
5m2c4

2
(

9
4ℏ

2ω2 −m2c4
)

(ℏ2ω2 −m2c4)

=
e3ω

4m3c6
a21a2σyTe

− i
ℏ
E′

2T
m2c4

9
4ℏ

2ω2 −m2c4

≈ − e3ω

4m3c6
a21a2σyTe

− i
ℏ
E′

2T (6.15)

where we can deduce the Rabi frequency

Ω′
R =

e3ω

2m3c6
a21a2 (6.16)

for this resonant process which involves a spin flip via σy. This result is obtained with
the premise that the population probability for the scattered momentum state, as in
Chap. 4, follows a Rabi oscillation. This adopts the form

|c↓2(T )|2 = sin2
(

1

2
Ω′
RT

)

(6.17)

when starting with an electron of momentum −2ℏk and spin up, as described by the
initial condition c↑−2(0) = 1 (and vanishing amplitude for all other states).

6.2 Magnus Expansion and Effective Potentials

In [Smi+04], the authors raised the question, whether 3-photon Kapitza-Dirac diffraction
in bichromatic counterpropagating laser waves can take place without a grating. Their
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considerations involved the p⃗ · a⃗-term instead of σ⃗ · B⃗, but they concluded, that by
averaging the classical trajectories over one laser period, a magnetic grating could be
identified. In this section we ask a similar question for the σ⃗ · B⃗-Term. Our approach
however is purely quantum mechanical and follows the ideas in [EB15]. By means
of averaging the leading terms in a Magnus-expansion [Mag54] of the time-dependent
Hamilton operator, we identify generalized versions of the ponderomotive potential used
throughout Part I.

The complete solution to a Schrödinger equation with time-dependent Hamilton
operator H(t) can be given as the unitary time evolution operator U (t, t0). It is an
ordered exponential defined by

∂

∂t
U (t, t0) = − i

ℏ
H(t)U (t, t0) and U (t0, t0) = 1 (6.18)

and often colloquially written in the form

U (t, t0) = T exp

(

− i

ℏ

∫ t

t0

H(t′)d t′
)

(6.19)

with the time-ordering operator T . A word of caution with the right-hand side of this
formula needs to be spelled out, because the time ordering is to be done on the integrands
inside the exponential power series, as can be seen in its expansion

U(t, t0) = 1− i

ℏ

∫ t

t0

d t1H(t1)−
1

2ℏ2

∫ t

t0

d t1

∫ t

t0

d t2T [H(t1)H(t2)]

+
i

6ℏ3

∫ t

t0

d t1

∫ t

t0

d t2

∫ t

t0

d t3T [H(t1)H(t2)H(t3)] + . . . .

(6.20)

Besides, the factors H(t) in the products are always ordered by descending time from
left to right. Because U(T, 0), given fixed start t0 = 0 and end times t = T , is a specific
unitary operator, one could ask which time-independent Hamilton operator would have
led to the same result without the complication of time ordering. This is more rigorously
formulated by finding M(T ) so that§

exp

(

− i

ℏ
M(T )

)

= U(T, 0) = T exp

(

− i

ℏ

∫ T

0
H(t′)d t′

)

. (6.21)

By taking the logarithm of the recursive expansion of (6.20), an expansion series for
M(T ) emerges, which is called Magnus expansion. Sorted by powers of H one obtains

§This definition is made unique by the requirements that M(0) = 1 and that it is continuous.
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M(T ) =
∑

n≥1Mn(T ), where the first three orders are given by

M1(T ) =

∫ T

0
d t1H(t1) , (6.22a)

M2(T ) =− i

2ℏ

∫ T

0
d t1

∫ t1

0
d t2 [H(t1), H(t2)] , (6.22b)

M3(T ) =− 1

6ℏ2

∫ T

0
d t1

∫ t1

0
d t2

∫ t2

0
d t3

([H(t1), [H(t2), H(t3)]] + [[H(t1), H(t2)]H(t3)]) . (6.22c)

In a way, the time ordering of (6.20) has been translated into the commutators here. A
convenient property of these summands is, that they are all Hermitian, given that H had
this property in the first place. We like to emphasize, that the ponderomotive potential
in the traditional meaning (as used in chapter 2) together with the kinetic term can be
recovered from the first order expression, by virtue of

lim
T→∞

M1(T )

T
= ⟨H(t)⟩t (6.23)

whenever these limits and averages exist. In this specific case, it does not change the
result, if we first average M1(T ) over the start and end time by one laser period, denoted
by M̃1(T ). This corresponds in effect to smoothly switching on and off the interaction.

When applicable to higher orders of M(T ) we interpret the result of this method as
a generalized ponderomotive potential. In the following, it will be employed especially
to identify these generalized ponderomotive potentials for linearly polarized bichromatic
counterpropagating laser waves. Now by using the Pauli Hamiltonian with the vector
potential (6.3), we find, after averaging over one laser period of the initial and final time,

lim
T→∞

M̃1(T )

T
= − ℏ

2

2m

∂2

∂z2
+
e2
(

a21 + a22
)

4mc2
, (6.24a)

lim
T→∞

M̃2(T )

T
= 0 , (6.24b)

lim
T→∞

M̃3(T )

T
= −ℏe3a21a2ω

2m3c6
σy sin(4kz) +

e4
(

a41 + a42
)

64m3c6
+

41e4a21a
2
2

72m3c6
+
e2
(

a21 + 4a22
)

ω2

16m3c6
.

(6.24c)

As the constant terms can be removed by a gauge transformation, we can identify a time
independent effective Hamiltonian (compare the Hamiltonian with the ponderomotive
potential in the standing wave case)

Heff =
ℏ
2

2m

∂2

∂z2
− ℏe3a21a2ω

2m3c6
σy sin(4kz) . (6.25)
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Employing the assumption, that only the coefficients c±2 can become substantial, the
latter leads to

iℏċ2(t) = E′
2c2(t) +

iℏ

2
Ω′
Rσyc−2(t) , (6.26a)

iℏċ−2(t) = E′
2c−2(t)−

iℏ

2
Ω′
Rσyc2(t) . (6.26b)

This pair of coupled differential equations describes a resonant coupling between the two
momentum states, resulting in well-understood Rabi cycles (compare (6.17)) [see also
SZ97, Chap. 5.2.1].

6.3 Numerical Results

To underpin the results of the previous sections, we performed numerical simulations of
the electron scattering with the Pauli equation in momentum space. The simulations
have been carried out with a Runge-Kutta algorithm¶ of (6.7) for the spinor coefficients
cn. The final scattering probability depending on the interaction time T for the fields
described by (6.3) can be seen in Fig. 6.1. In the upper panel, the incident spin-up
electron is partly scattered into the reflected spin-down state. After reaching a satura-
tion, the probability is transferred back to the original state, starting the process over
from the beginning. Especially, the probabilities of the spin-down state with the original
momentum and the spin-up state with the reflected momentum are confined very close
to zero. The lower panel shows, that this process is indeed symmetric under exchanging
the spin states. In total, it is spin-independent and spin-flipping, leaving the electron in
a state, where its spin and momentum are entangled.

Even though we originally expected nice Rabi cycles, we see cycles with reduced
amplitude C and an increased oscillation frequency Ω > Ω′

R, hinting, that the process is
not exactly resonant during the interaction. We account this to a field-induced detuning
of the momentum states within the strong laser field. More details shall be presented in
Sec. 6.4.

Although we stated earlier, that in this linearly polarized setup the Pauli equation is
sufficiently accurate to predict the Rabi frequency, it might be that the results calculated
with Dirac’s equation differ sightly. For example, we have calculated the simulation in
Fig. 6.1 again with Dirac’s equation. The results, shown in Fig. 6.2, are qualitatively the
same, but the oscillation amplitude is a bit larger and, at the same time, the oscillation
frequency is slightly diminished. In the framework of the field induced detuning from
the next section, both results at least agree on the Rabi frequency calculated before.
They do however quantitatively abberate in the amount of detuning.

¶ Specifically, we used a Runge-Kutta scheme with Dormand-Prince coefficients [DP80] of order 5
with automatic step size control in forth order.
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Figure 6.1: Dynamics of the Kapitza-Dirac effect with the Pauli-equation in bichro-
matic, linearly polarized, counterpropagating laser waves. The laser parameters are
ℏω1 = 2 × 103 eV, ω2 = 2ω1, ea1 = 5.656 × 104eV and ea2 = 2 × 104eV, giving a
combined intensity of 6.543×1022 W

cm2 . The switching on and off takes place over 5 laser
cycles each. The initial electron momentum is −2ℏk1 along the laser propagation direc-
tion and has no component parallel to the polarization direction. In the upper panel the
electron is injected with spin up (↑), and in the lower panel with spin down (↓). Plotted
are the occupation probabilities after an interaction of time T of the four momentum
states fulfilling the Bragg condition in both panels. The interaction is independent of
the initial electron spin, but it is always spin-flipping at the same time. The expected
Rabi oscillation is not fully developed (here to an amplitude of approximately 0.510).

6.4 Field-Induced Detuning

In the last section it was shown, that the Rabi cycles of the three-photon Kapitza-Dirac
effect are not always fully developed. Still the scattering probability has a nice oscillating
behaviour, that can be mimicked by

|c↓2(T )|2 = C sin2
(

1

2
ΩT

)

(6.27)

replacing (6.17). The Rabi-amplitude C and the measured oscillation frequency Ω have
been introduced as new parameters.

A parameter scan where the amplitude C is measured depending on the laser fre-
quency ω in the range 10 eV to 3× 103 eV and a21a2 (ranging from ea1,2 = 2× 103 eV to
4 × 104 eV) shows, that for small laser amplitudes the value of C is at least very close
to 1 and decreases with higher a21a2 but independent of k. Then a dyke-like structure
emerges, where the amplitude reaches one again and then drops rapidly down to zero.
The summit of this dyke can approximately be described by e3a21a2 ≈ ℏ

2ω2106 eV. To
illustrate this result, a sketch of this dyke is given in Fig. 6.3.

While having a reduced amplitude C, the actual oscillation frequency Ω is increased
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Figure 6.2: The same simulation as in Fig. 6.1, but instead calculated with the Dirac
equation. One can see the qualitatively same behaviour, only the oscillation amplitude
(here 0.542) and frequency differ slightly. The Dirac-spinors in the initial condition as
well as for the projection of the final states are chosen as in (8.15) with s = 0, 1 for spin
up or down respectively.

compared to the predicted Rabi frequency Ω′
R by

Ω =
1√
C
Ω′
R . (6.28)

That way, the transition probability |c↓2(T )|2 = C
4 Ω

2T 2 + o(Ω3T 3) = 1
4Ω

′
R
2T 2 + o(Ω3T 3)

for small interaction times (T ≪ 1
Ω) still coincides, because the factor C drops out in

the first relevant order of the expansion.
This behaviour indicates a detuning of the quantum two state system at hand, as

can be seen in a very simple model of this interaction [compare SZ97, Chap. 5.2.1].
Assuming we only need to account for the states |−2 ↑⟩ and |2 ↓⟩, we take them as the
orthonormal basis in the reduced Hilbert space. By reintroducing the small momentum
offset pz of the incident (and thereby every involved) momentum state (see Eq. (6.6)),
we get an artificial relative detuning in the kinetic energy of the two states by 4ℏk

m pz.
Together with the yet undetermined detuning ∆, we can describe the reduced system
with a Hamilton operator

H =
1

2

(

δ Ω′
R

Ω′
R −δ

)

where δ = ∆− 4ℏk

m
pz . (6.29)

The time evolution operator of this Hamiltonian is

U(T ) = exp

(

− i

ℏ
HT

)

= cos

(

Ω

2
T

)

− 2i

ℏΩ
sin

(

Ω

2
T

)

H

=

(

cos
(

Ω
2 T
)

− iδ
ℏΩ sin

(

Ω
2 T
)

− iΩ′
R

Ω sin
(

Ω
2 T
)

− iΩ′
R

Ω sin
(

Ω
2 T
)

cos
(

Ω
2 T
)

+ iδ
ℏΩ sin

(

Ω
2 T
)

)

(6.30)
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Figure 6.3: Sketch of the C dependence on ω and a21a2. Various parameter regimes
are indicated. The position of the dyke summit (dashed lines) is roughly described by
e3a21a2 ≈ ℏ

2ω2106 eV (order of magnitude).

and its characteristic frequency manifests as

Ω =

√

Ω′
R
2 +

δ2

ℏ2
=

√

Ω′
R
2 +

(

∆

ℏ
− 4kpz

m

)2

. (6.31)

With the off-diagonal terms of (6.30) we can predict the scattering probability

|⟨2 ↓|U(T ) |−2 ↑⟩|2 = Ω′
R
2

Ω2
sin2

(

Ω

2
T

)

(6.32)

and derive the dependence of the effective Rabi amplitude on the detuning parameters
to be

C =
Ω′
R
2

Ω2
=

1

1 +
(

∆/ℏ−4kpz/m
Ω′

R

)2 . (6.33)

By scanning over the parameter pz we can now determine the field induced detuning ∆
numerically. This is exemplified in Fig. 6.4. A Lorentz-shaped resonance peak that is
shifted by ∆, together with an equally shifted hyperbola for the oscillating frequency can
be seen. A very similar description of the detuning effects in the relativistic 3-photon
scattering from a standing wave can be found in [Ahr+13].

While having no real model for this detuning, it can be attributed to the phenomenon,
that the presence of the laser field changes the electron momentum to a so-called dressed
momentum (see also Sec.8.1). In Part I, this dressing effect happens symmetrically on
both involved momentum states, due to the symmetric setup. Therefore the relative
detuning in this case was immaterial. In the case of two counterpropagating waves of
different frequencies, however, this symmetry is broken, and the originally equal energies
of the momentum states may be detuned differently.
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Figure 6.4: Resonance peak for spin-flipping 3-photon Kapitza-Dirac scattering. The
laser frequency is ℏω = 1 keV and the amplitudes are ea1 = ea2 = 2.422 × 104 eV.
The numerical data (blue crosses) is fitted with (6.33) (solid blue line) over Ω′

R and ∆.
Simultaneously the numerical frequency (red pluses) is compared to (6.31) (dashed red
line) with the same fit parameters. For convenience, the fit parameters are marked on
the respective axis.
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Chapter 7

Spin-Polarizing Beam Splitter

In this chapter we discuss the possibility to create a Stern-Gerlach device for free elec-
trons. In their famous experiment [GS22], Stern and Gerlach have shown that a beam of
silver atoms can be spatially separated by an inhomogeneous magnetic field depending
on the total spin of the individual atom. However, for charged particles, the relatively
small force introduced by the divergence of the magnetic field in their spin magnetic
moment, is always significantly less important than the Lorentz force. Thus, in com-
bination with Heisenberg’s uncertainty principle, Bohr and Pauli concluded [MM65;
BGS97; RG98b; RG98a; MBB11], it was impossible to separate electrons by their spin
with considerations based on classical trajectories. This statement has since become part
of textbooks paradigmatically denying the possibility to create a Stern-Gerlach device
for free electrons.

In recent years, other attempts to tackle this assertion theoretically have been under-
way. For example a Wien filter for electron vortex beams has been proposed in [Kar+12],
that couples spin angular momentum to orbital angular momentum. Other suggestions
involve solid state nanostructures to create spin-polarized Talbot carpets [TPW12] or
microscopic current loops [MBB11]. A Mach-Zehnder interferometer, where magnetic
coils implement different phase shifts depending on the spin states in the two interferom-
eter arms is envisaged in [MBB11]. Finally, a splitting of electrons propagating on axis
by their spin state in circularly polarized standing waves has been proposed in [Ahr16].
There, a slight difference in the oscillation frequency for the two spin orientations along
the beam axis can be exploited. By tailoring the interaction time, the electrons can be
extracted polarized. Despite these efforts, the Bohr-Pauli conjecture still represents an
open problem, as a clear analogy for the Stern-Gerlach effect with free electrons has not
been realized yet.

The electron in the 3-photon Kapitza-Dirac process described in Chap. 6 is scattered
in a quantum coherent way. We can now exploit this fact to construct a spin-polarizing
beam splitter for free electrons based solely on Kapitza-Dirac like interactions in an
interferometric setup. This proposal was first published in [DM17b]. The schematic
construction of this beam splitter as shown in Fig. 7.1 consists of three stages. The first
involves a spin-flipping bichromatic Kapitza-Dirac scattering. The interaction here is
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7. SPIN-POLARIZING BEAM SPLITTER 7.1. ANALYTICAL CONSIDERATIONS

ideally tuned to a quarter of a Rabi cycle, in order to split the beam in two halves of
opposing z-polarization. The second and third stage on the other hand are composed by
half and then another quarter of a Rabi cycle of the monochromatic spin-independent
and non-flipping interaction described in Chap. 4. For simplicity we chose the second
harmonic of the laser for the later stages, so that they are two-photon processes. That
way, the second stage reflects both emerging beams back on themselves, and the third
stage acts as the final beam splitting mirror in the interferometer recombining their
halves coherently into the two outgoing beams. The fact, that the two resulting beams
are linear superpositions, allows their spin state to be predetermined, as we shall see.

We point out that a spin-insensitive interferometer based on Kapitza-Dirac diffrac-
tion has been proposed in [Mar13] for electrons. For ions, a similar setup has been
implemented for gravitational studies in the GAIN project [Sch+15].

x

y

z |+⟩

|−⟩

Figure 7.1: Schematic setup of the spin-polarizing beam splitter. The electron beam
while travelling from left to right experiences three stages of Kapitza-Dirac scattering.
It is first split in two portions by the bichromatic setup with frequencies ω (red) and 2ω
(blue). Afterwards both partial beams are reflected into a diamond shape and coher-
ently superposed by scattering from standing laser waves with frequency 2ω (blue). The
outgoing beam leaves this interferometer on the right side separated by its spin compo-
nent measured along the laser magnetic field direction. In analogy to the Stern-Gerlach
experiment, we obtain a clear spatial separation of the beams.

7.1 Analytical Considerations

As all three stages are working in the Bragg regime on the same momentum states, we
can restrict our analysis to the four-dimensional subspace spanned by the two momentum
states |∓2⟩ in both spin states. We will use the notation of a vector with two Pauli-
spinors. Shifted down by the kinetic energy E′

2, to enter the interaction picture, the
effective Hamiltonian (6.25) for the bichromatic interaction takes the form

Hb =
ℏΩ′

R

2

(

0 −iσy
iσy 0

)

(7.1)
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This leads to the time evolution operator

UI =

⎛

⎝

cos
(

Ω′
RTb

2

)

1 − sin
(

Ω′
RTb

2

)

σy

sin
(

Ω′
RTb

2

)

σy cos
(

Ω′
RTb

2

)

1

⎞

⎠ =
1√
2

(

1 −σy
σy 1

)

(7.2)

for the first stage, when substituting the interaction time Tb = π
2Ω′

R
for a quarter of a

Rabi cycle.
The monochromatic standing wave of the second harmonic is described by setting

α2 = 0 in (2.4). The parameter δ now helps to position the nodes of this standing wave
relative to the effective ponderomotive potential of the first stage.∗ In the same way as
before, the effective Hamiltonian to this standing wave is reduced to

Hm =
ℏΩR

2

(

0 e−iδ1

eiδ1 0

)

(7.3)

with its corresponding Rabi frequency ΩR (compare (4.1)). The time evolution operators
for the second and third stage with the appropriate timings are

UII =

(

0 −ie−iδ1

−ieiδ1 0

)

(7.4)

and

UIII =
1√
2

(

1 −ie−iδ1

−ieiδ1 1

)

(7.5)

respectively. Combining the time evolution operators in the order described earlier†,
results in the total time evolution operator

U = UIIIUIIUI =
1

2

(

−1− ie−iδσy −ie−iδ1+ σy
−ieiδ1− σy −1+ ieiδσy

)

. (7.6)

The spin filtering effect can be achieved for δ = π
2 , where we have

U =
1

2

(

−1− σy −1+ σy
1− σy −1− σy

)

. (7.7)

To ease the discussion, we introduce the spin-basis |±⟩ := 1√
2
(|↑⟩ ± i |↓⟩) of σy-eigenstates.

When starting with an electron ensemble of momentum 2k and arbitrary spin distribu-
tion described by a vector n⃗ = (nx, ny, nz) in the Bloch sphere, applying the beam
splitting procedure to the initial density matrix results in

ρ = U

(

0 0

0 1
2 (1+ n⃗ · σ⃗)

)

U † =
1

4

(

(1− ny) (1− σy)
(

n⊥ − ie⃗y × n⃗
)

· σ⃗
(

n⊥ + ie⃗y × n⃗
)

· σ⃗ (1 + ny) (1+ σy)

)

. (7.8)

∗In [DM17b] the parameter δ is called χ.
†The operators are multiplied in descending order, so that UI acts first on a state. This rule is known

by the mnemonic ’later left’.
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Here the parallel projection of n⃗ onto the x-z-plane along e⃗y has been called n⊥. The
upper left component implies, that the electron is prepared in the spin state |−⟩ if
scattered into momentum mode |−2⟩. On the other hand, if not scattered (see the
lower right component), the spin state is purely |+⟩. Their probabilities coincide with
the probabilities of having been in the same spin state beforehand. To exemplify this
statement, we like to take a closer look at some corner cases of y-polarized spin. For an
unpolarized electron beam (n⃗ = 0) the density matrix ρ reduces to

ρunpol =
1

4

(

1− σy 0

0 1+ σy

)

. (7.9)

This corresponds to an equally distributed probability over the two states |2,+⟩ and
|−2,−⟩. It can be interpreted, that the uncertainty of the incident spin is translated
into momentum uncertainty. At the same time, the knowledge of the incident momentum
is transferred to the knowledge of a specific spin state in every final momentum state.
Further, if starting with a pure, y-polarized electron state (n⃗ = ±e⃗y), the resulting
density matrices read

ρ+ =
1

2

(

0 0

0 1+ σy

)

, ρ− =
1

2

(

1− σy 0

0 0

)

. (7.10)

Here, the electron remains in its initial spin state, and it is scattered into the mirrored
momentum state if and only if previously it was in state |2,−⟩.

Combining these results, we can state, that the action of the device described above
is spin-dependent and non-flipping, when quantising the spin along the magnetic field
direction. With these properties, we are confident to call this setup a spin-polarizing
beam splitter for free electrons, or a Stern-Gerlach device.

7.2 Numerical Simulation

To present some resilient arguments, we performed real-space numerical simulations of
the beam splitter. To this end, Pauli’s equation was solved by Fourier split step methods
in z − t-coordinates. A Gaussian wave packet with central momentum pz = 400 eV

c and
width 39.4 nm has been subject to the laser fields described as the three stages before.
The laser parameters are ℏω = 200 eV for the fundamental mode, and ea1 = ea2 =
2.35× 104 eV in the first stage. The chosen interaction time is Tb = 106 fs. The second
and third stage have frequency 400 eV

ℏ
, and amplitude 200 V. They can, alternatively,

be represented by the vector potential (2.4) when using the parameters ℏω = 200 eV,
ea0 = 4 × 102 eV, α2 = 0 and δ = π

2 . Their interaction durations are 212 fs and 106 fs
respectively. Switching on and off the fields takes 5 fs every time.

As can be seen in the projection on the σz-eigenstates in Fig. 7.2, the electron is partly
scattered by the first stage, while the spin of the scattered part is opposite to the incident
one. At the second stage both outwards moving beams are almost completely reflected,
and then, at the third stage, after closing the diamond shape, they are crossed over and
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Figure 7.2: Simulation of the beam splitter with a wave packet of central momentum
pz = 400 eV

c and width 39.4 nm. The fundamental laser frequency is ℏω = 200 eV.
In the first stage, the bichromatic lasers with ea1 = ea2 = 2.35 × 104 eV are switched
on for 106 fs. The second and third stage have ea0 = 200 eV for 212 fs or 106 fs,
respectively. Plotted is the spatial probability density projected on σz-eigenstates |↑⟩
and |↓⟩. Additionally, the interaction time of the three stages is marked in the bottom
part.

thereby brought to interference. The actual beam splitting impact on the electron can
be seen, when looking at the same simulation in the projection on σy-eigenstates |±⟩ in
Fig. 7.3. The originally z-polarized state now appears distributed to equal parts on both
spin states. So do the reflected parts after the first stage, and since the second stage is
indifferent with respect to spin, nothing changes until the third stage. After the latter,
the two beams are brought to interference, and the tight coupling between momentum
and spin, as predicted, is revealed. The coupling is, however, less tight, than expected,
but can be substantially improved, as shown in the next section.

7.3 Discussion

At this point, the experimental realizability of this beam splitter shall be discussed
representatively for all the processes described within this part. We focus our attention
on the bichromatic first stage, since it is deemed to be the most challenging. Also due
to the lower intensity needed, the second and third stage might be realized by coupling
out a small portion of the second harmonic laser beam. The intensity of the XUV beams
used in our numerical simulation is I1 = 7.56× 1019 W

cm2 for the fundamental mode and
I2 = 4I1 for the second harmonic. This corresponds to small values of the relativistic
parameter ξ1,2 =

ea1,2
mc2

≈ 0.05. Note, that it is not necessarily only the beam intensity
whose requirements are demanding, but also the total beam energy. The Rabi frequency
Ω′
R = 1

2ξ
2
1ξ2ω ≈ 10 meV

ℏ
(1.5 × 1013 Hz) requires the interaction duration Tb ≈ 0.1 ps

which is a lower bound on the laser pulse duration ∆τ ≳ Tb. On the other hand it poses
a constraint on the focal width ∆y ≳ vTb ≈ 0.3 µm. An electron velocity v = 0.01 c was
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Figure 7.3: The same simulation as in Fig. 7.2. This time the wave function is projected
on σy eigenstates |±⟩. One can see, that the two spin states are heavily weighted in the
two momentum modes. A polarization degree of κ ≈ −0.33 is reached.

assumed resulting from a kinetic energy of 30 eV. Assuming, a spherical beam waist for
the laser (∆x = ∆y), a total pulse energy of 50 mJ seems to be a plausible requirement.
This lies rather close to the performance of modern X-Ray free electron laser facilities
such as the LCLS (Stanford/ California). XUV pulses with up to 1018 W

cm2 over about
0.1 ps and pulse energies of a few mJ are available there [LCLS]. Advanced techniques
for focusing X-Ray beams to sub µm spot sizes, based on adiabatically focusing refractive
lenses or wave guides, as proposed in [Cor+04; SL05; Jar+05] may also be very helpful.

To realize a proper beam splitter, some parameters need to be carefully adjusted. For
example the transverse momentum needs to fulfill the Bragg condition pz = 2ℏk. Judging
from the width of the Lorentz-shaped resonance curve (6.33), the relative uncertainty

should satisfy ∆pz
pz

≲
mΩ′

R
4ℏk =

mcξ21ξ2
8ℏk . For the parameters chosen in the simulations above,

this translates to ∆pz
pz

≲ 0.04, which is fulfilled with ease by the wave packet’s relative

momentum width ∆pz
pz

= 0.003.

The scattering probability Pscatt = sin2
(

Ω′
R
2 T

)

of the first stage, whose ideal value

is 1
2 , depends on the actual interaction time T = mL

py
as a function of the transverse

momentum py and the spatial transverse beam width L. For the uncertainty in this
probability one finds

∆Pscatt

Pscatt
=
π

2

∆T

T
=
π

2

(

∆py
py

+
∆L

L

)

. (7.11)

Also, the momentum component px along the laser polarization direction can vary from
being exactly zero. This can lead to spin-insensitive (and therefore non-flipping) scat-
tering events in the first stage due to the interaction term p⃗ · A⃗. As will be shown in
Chap. 8, the relative scattering probability of this undesired side effect is

Ωno−flip

Ω′
R

= 5∆px
2ℏk .

We conclude, that ∆px ≪ ℏk must be fulfilled, in order to keep the influence from this
momentum component negligible.
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Finally, the field induced detuning in the first step has two mechanisms that impose
a negative impact on the performance of the beam splitter. First, the reduced oscillation
amplitude leads to an uneven splitting of the beam in the first stage. This results in
improper polarization because the destructive interference in the last step for either
spin states cannot be complete. It might be enhanced by choosing parameters with an
oscillation amplitude of at least one half and a correspondingly adjusted interaction time
in stage one. Second, the different in-field energy levels of the two momentum states
conducts them to build up a relative phase. The latter can however be counteracted by

adjusting δ. The final polarization degree κ =
ρ|+⟩−ρ|−⟩

ρ|+⟩+ρ|−⟩
measured over the portion of

the resulting beam with positive momentum, as a function of δ can be seen in Fig. 7.4.
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Figure 7.4: δ-dependency of the final polarization degree κ in the positive-momentum
part of the split wave packet. The blue crosses represent numerically obtained values,
while the dashed red line is a fit of C0 sin(δ +∆) over C0 and ∆.
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Figure 7.5: Simulation of the spin-polarizing beam splitter with δ = − π
10 and otherwise

the same parameters as in Fig. 7.3. The separation of the spin states is dramatically
improved (κ ≈ 0.78).

It supports our previous statement, and tells us, that the best polarization can be
achieved with the special choice δ = − π

10 . A corresponding simulation has been carried
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7. SPIN-POLARIZING BEAM SPLITTER 7.3. DISCUSSION

out and is presented in Fig. 7.5. Indeed, the polarization degree is largely augmented to
κ ≈ 0.78.

Additionally, Fig. 7.4 suggests, that we can invert the polarization. The result of
choosing δ = 9π

10 can be seen in Fig. 7.6. There, the clear visible effect of exchanging the
output channels is in aggreement with the measured value κ ≈ −0.78.
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Figure 7.6: Simulation of the spin-polarizing beam splitter with δ = 9π
10 and otherwise

the same parameters as in Fig. 7.3. The correlation of spin and momentum is inverted
compared to Fig. 7.5 (κ ≈ −0.78).

As a final remark, we conclude, that a Stern-Gerlach magnet for free electrons has
been realized. Especially, electrons, that are already spin-polarized along the y-axis, are
deflected accordingly without spin-flip in this device. The analogy, however, is only to
be understood regarding the outcome, two spatially separated spin-polarized beams.
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Chapter 8

Other Polarizations

In this chapter, we generalize the setup investigated in Chap. 6 in two ways. We keep
the general scheme of two counterpropagating laser waves with a frequency ratio of 1:2,
and scatter an electron with longitudinal momentum of −2ℏk. But on the one hand,
we introduce the transverse electron momentum into the considerations. This allows us
to account for the influence of the interaction term ∝ p⃗ · A⃗. On the other hand, we
generalize the polarization of both laser beams to arbitrary directions and circular or
elliptical modes. By attributing a definite spin of +1 (or −1 for the opposite rotation)
to the helicity of circularly polarized photons, we can refine the picture of adding spin
angular momentum in the non-relativistic limit delineated in Chap. 5.

Despite keeping the involved frequencies and momenta non-relativistic, it has been
pointed out in [EB15], that the interaction with elliptically polarized light cannot be
appropriately described within the Pauli equation. To include the spin density cropping
up there, either the full Dirac equation itself, or more orders of the Foldy-Wouthuysen
transformation [FW50] thereof must be employed. Both the time-dependent perturba-
tion theory of Sec. 6.1 as well as the generalized ponderomotive potential approach of
Sec. 6.2 should in principle lead to useful results here. But, being third-order approxima-
tions, they both promise to require too much complexity even for computer algebra. A
third approach, involving techniques known as strong-field approximation, can however
be gainfully utilized. By treating the fundamental laser mode within Volkov states for
the incident, as well as the scattered electron, the 3-photon process can be represented
within a dressed S-matrix approach, thereby limiting its complexity to the first order in
a2 (see Eq. (8.12) below).

A simpler version of this calculation for linearly polarized light can be found in
App. B of [DAM16], and the full calculation with its conclusions also in [DM17a].
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8. OTHER POLARIZATIONS 8.1. DIRAC-VOLKOV S-MATRIX APPROACH

8.1 Dirac-Volkov S-Matrix Approach

The evolution of the quantum wave function of a possibly relativistic electron in the
presence of a given external electromagnetic 4-potential∗ A = (ϕ, A⃗) is described by the
Dirac equation

(

iℏ/∂ +
e

c
/A(x)−m

)

ψ(x) = 0 . (8.1)

In this formulation the pairwise anti-commuting, trace-free Dirac-gamma matrices

γ0 =

(

1 0

0 −1

)

γ⃗ =

(

0 σ⃗
−σ⃗ 0

)

(8.2)

have been introduced, and the inner product with their 4-vector is denoted by the
Feynman slash notation /A = γ ·A.

For a special class of 4-potentials, there exists a family of closed solutions to the
Dirac equation (8.1) called Volkov states [BLP96]:

ψp,s(x) =

√

mc

V p0

(

1− e/k /A1(k · x)
2ck · p

)

up,se
− i

ℏ
p·x+ i

ℏ
Λp . (8.3)

The condition on the 4-potential is, that it involves only wave 4-vectors of a common
direction (∝ k =

(

ω
c ,

ω
c e⃗z
)

without loss of generality).† This potential enters (8.3) in the
form A1(k ·x) = A1(x) taken in radiation gauge (here k ·A1 = 0). The existence of these
solutions is closely related to the kinematically forbidden absorption of any number of
photons from that wave without the possibility to deposit the excess 4-momentum, e.g.
on a nearby nucleus or into a Compton-photon. Here p = (p0 =

√

m2c2 + p⃗ 2, p⃗) is the
canonical 4-momentum of the electron in the limit A⃗→ 0. The index s ∈ {0, 1} denotes
one of two possible spin states and up,s is the corresponding Dirac-spinor to a plane
wave. The additional term in the exponent is

Λp =
1

ck · p

∫ k·x [

ep · A1(Φ) +
e2

2c
A2

1(Φ)

]

dΦ (8.4)

and resembles in classical, non-quantum terms the extra action, imbued on the point-like
electron equivalent by the presence of the field, compared to the usual free motion action
p · x.

In case of a single plane wave

A1(x) = ℜ
(

ϵ1a1e
−ik·x

)

(8.5)

with a complex polarization 4-vector ϵ1 = (0, ϵ⃗) satisfying ϵ∗1 · ϵ1 = −1 and ϵ1 · k = 0, the
extra phase factor given by the Volkov action can be further simplified. Let us consider

∗In this chapter we use 4-vectors in Minkowski space. Their inner product is denoted by A · B and
the metric is chosen with the signature (+−−−).

†This also precludes any additional electro- or magnetostatic potential, like a Coulomb field of a
nucleus or a static field from a plate capacitor or a coil.
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8.1. DIRAC-VOLKOV S-MATRIX APPROACH 8. OTHER POLARIZATIONS

the two corner cases of a linearly and a circularly polarized plane wave respectively.
The electron canonical momentum shall remain fixed in the x-z-plane. Without loss of
generality, we can choose ϵ1 · p to be real, but note, that ϵ21 = −ρeiδ might still be a
complex number with absolute value ρ ranging from one for linear polarization to zero
for circular polarization. Then,

e
i
ℏ
Λp = exp

[

i
ea1p · ϵ1
ℏck · p sin(k · x) + i

e2a21
8ℏc2k · pℜ

(

iϵ21e
−2ik·x

)

− i
e2a21

4ℏc2k · pk · x
]

= exp
[

−iαp sin(k · x)− iρβpℜ
(

ieiδe−2ik·x
)

− 2iβpk · x
]

=
∑

n∈Z
J (2)
n (αp, ρβp; e

iδ)e−ink·x−2iβpk·x

(8.6)

where the generalized Bessel functions J
(2)
n (u, v; s) =

∑

ℓ Jn−2ℓ(u)s
ℓJℓ(v) and the abbre-

viations

αp = −ea1
ℏc

p · ϵ1
k · p , βp =

e2a21
8ℏc2

1

k · p (8.7)

have been used. First, for the linear polarization (ρ = 1, δ = 0), we obtain

e
i
ℏ
Λp =

∑

n∈Z
J (2)
n (αp, βp; 1)e

−ink·x−2iβpk·x . (8.8)

At this point the Volkov state can be interpreted as a linear combination of plane waves.
Especially, assuming for a moment p · ϵ1 = 0 and henceforth αp = 0 they read

ψp,s(x) =

√

mc

V p0

(

1− e/k /A1(k · x)
2ck · p

)

up,se
−i( p

ℏ
+2βpk)·x

∑

ℓ∈Z
Jℓ(βp)e

−2iℓk·x

=

√

mc

V p0

∑

ℓ∈Z

(

Jℓ(βp)e
−2iℓk·x − ea1/k/ϵ1

4ck · p (Jℓ(βp) + Jℓ+1(βp)) e
−i(2ℓ+1)k·x

)

up,se
− i

ℏ
q·x .

(8.9)

Each term in the sum represents now the projection of the complete Volkov state (8.3) on
a plane wave with virtually absorbed photons. Note, that the components with an even
photon number exhibit the same spin state s as the original electron. On the other hand,
for an odd photon number, there is the factor /k/ϵ1 involved. This forces, at least in the
low-energy limit, a flip of the spin when measured along the optical axis. Additionally,
the common canonical momentum of the electron is changed to q = p + 2ℏβpk, the
dressed version.

In case of circular polarization we can chose the explicit polarization 4-vector ϵ1 =
1√
2
(0, 1, i, 0), leading to ρ = 0 and δ being immaterial. The extra phase factor is now

e
i
ℏ
Λp =

∑

n∈Z
Jn(αp)e

−ink·x−2iβpk·x . (8.10)
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8. OTHER POLARIZATIONS 8.1. DIRAC-VOLKOV S-MATRIX APPROACH

Therefore we arrive at the following decomposition of virtually absorbed photons

ψp,s(x) =

√

mc

V p0

(

1− e/k /A1(k · x)
2ck · p

)

up,se
−i( p

ℏ
+2βpk)·x

∑

n∈Z
Jn(αp)e

−ink·x

=

√

mc

V p0

∑

n∈Z

(

Jn(αp)−
ea1/k/ϵ1
4ck · p Jn−1(αp)−

ea1/k/̄ϵ1
4ck · p Jn+1(αp)

)

e−ink·xup,se
− i

ℏ
q·x

(8.11)

for arbitrary values of αp. Here, we can see that, in the low energy limit, the electron
can only ever absorb or emit a single photon at a time. Furthermore, in that limit, or
for vanishing p⃗ · A⃗ (i.e. αp = 0), only n = 0,±1 contribute, because all other Bessel
functions vanish identically. The electron can therefore only enter intermediate states
with at most one absorbed or emitted photon at a time. Additionally the latter is
necessarily accompanied by the spinor being multiplied by /k/ϵ1 or /k/̄ϵ1 respectively.‡

Those operators not only induce a spin flip, but are also sensitive to the original spin
(Given a spin polarized in z-direction, only one of them has a non-vanishing result.).

It is possible to describe the two-color Kapitza-Dirac effect in a low-energy limit of
this strong-field approximation. Unfortunately, a full high-energy treatment is impossible
in this way, because A2 can only be treated perturbatively. To investigate the transition
probability from the incident electron state to the scattered state, we start at the S-
matrix as used for multi-photon Compton-scattering [IKS04; BDF12; KK13]

S =
ie

ℏc

∫

d4 xψ̄p′,s′ /A2ψp,s . (8.12)

The influence of A1 is encoded in the Volkov-states and therefore we need only one
interaction vertex with A2.

We do not consider the dressing of the momentum by the global factor e−
i
ℏ
q·x at

this point, since we cannot account for the possibly compensating corresponding effect
imposed by A2. The best approach might be, to treat the combined dressing as an
arbitrary field induced detuning in the same way as in Sec. 6.4. We can than infer the
Rabi frequency from the short time scattering behaviour.

A similar consideration as done for the Volkov states individually can be done for
the combined extra phase factor in the S-matrix. In this case,

e
i
ℏ
Λp− i

ℏ
Λp′ =exp

[

−i
(

αp − αp′
)

sin(k · x)− iρ
(

βp − βp′
)

ℜ
(

ieiδe−2ik·x
)]

× exp
[

−2i
(

βp − βp′
)

k · x
]

=
∑

n∈Z
J (2)
n

(

αp − αp′ , ρ
(

βp − βp′
)

; eiδ
)

e−ink·x−2i(βp−βp′)k·x .

(8.13)

‡For a complex 4-vector ϵ, it is unclear how the complex conjugate /ϵ∗ would be defined, as it can
depend on the chosen representation of the γ-matrices. We use /̄ϵ = γ0/ϵ†γ0 = ϵ∗ · γ0γ†γ0 = ϵ∗ · γ as the
well defined version.
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The S-matrix for the transition from p to p′ by absorbing two photons from A1 and
emitting one into A2 is then given by

S ≈ ie

ℏcV

∫

d4 x

× ūp′,s′

(

/A
(+)
2 J̃2e

i
(

p′

ℏ
− p

ℏ
−2k

)

·x − e

2c

[

/A
(−)
1 /k /A

(+)
2

k · p′ +
/A
(+)
2 /k /A

(−)
1

k · p

]

J̃1e
i
(

p′

ℏ
− p

ℏ
−k

)

·x
)

up,s

≈ ie
ℏ
T ūp′,s′

(

1

2
a2J̃2/̄ϵ2 −

ea1a2
8c

J̃1

(

/ϵ1/k/̄ϵ2
k · p′ +

/̄ϵ2/k/ϵ1
k · p

))

up,s .

(8.14)

Here /A
(−)
1 = 1

2a1/ϵ1e
−ik·x is the component that describes absorption of one photon from

A1, and /A
(+)
2 = 1

2a2/̄ϵ2e
ik′·x is the component that describes emission of one photon into

A2, respectively. Also J̃1,2 were introduced for the generalized Bessel functions including
their corresponding arguments. It is worth noting, that this calculation describes a
resonant scattering process, where the initial and final state are discrete and not part of
a continuum. Therefore, the d4x-integration does result in the factor cV T instead of the
usual energy-momentum conserving Dirac delta-functions. The arguments of the latter
vanish in our case automatically due to the fulfilled Bragg condition.

To be specific, we set the initial electron momentum to p = (p0, px, 0,−2ℏk), while
the scattered one reads p′ = (p0, px, 0, 2ℏk) where p

0 =
√

m2c2 + p2x + 4ℏ2k2 ≈ mc. The
Dirac bispinors for these momenta are constructed from the corresponding Pauli spinors
χs by [BD64]

up,s =
/p+mc

√

2mc (p0 +mc)

(

χs

0

)

=
1

√

2mc (p0 +mc)

((

p0 +mc
)

χs

p⃗ · σ⃗χs

)

. (8.15)

Please note that, when reading s, s′ as indices of a new 2-by-2 matrix, the sigma matrices
are reproduced by their matrix elements in

(

χ†
s′ σ⃗χs

)

s′,s
= σ⃗ . (8.16)

With this in mind, we can calculate the parts of (8.14) as

(

ūp′,s′ /̄ϵ2up,s
)

s′,s
= − 1

2mc (p0 +mc)

((

p0 +mc
)

, −p⃗ ′ · σ⃗
)

ϵ⃗ ∗2 · γ⃗
((

p0 +mc
)

p⃗ · σ⃗

)

= − 1

2mc

(

p⃗ ′ · σ⃗ϵ⃗ ∗2 · σ⃗ + ϵ⃗ ∗2 · σ⃗p⃗ · σ⃗
)

= −ϵ⃗ ∗2 · p⃗+ p⃗ ′

2mc
− i

(

ϵ⃗ ∗2 × p⃗− p⃗ ′

2mc

)

· σ⃗

= − px
mc

ϵ⃗ ∗2 · e⃗x + i
2ℏω

mc2
(⃗ϵ ∗2 × e⃗z) · σ⃗ .

(8.17)
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And in a similar way

(

ūp′,s′

(

/ϵ1/k/̄ϵ2
k · p′ +

/̄ϵ2/k/ϵ1
k · p

)

up,s

)

s′,s

≈ 2ϵ⃗1 · ϵ⃗ ∗2
mc

+
4iℏω

m2c3
(⃗ϵ1 × ϵ⃗ ∗2 ) · σ⃗ . (8.18)

From the Taylor series of the generalized Bessel functions, we can estimate

J̃1 = J
(2)
1

(

αp − αp′ , ρ
(

βp − βp′
)

; eiδ
)

≈ αp − αp′

2

≈ −2
ea1
mc2

px
mc

ϵ⃗1 · e⃗x , (8.19)

J̃2 = J
(2)
2

(

αp − αp′ , ρ
(

βp − βp′
)

; eiδ
)

≈
(

αp − αp′
)2

8
+ ϵ⃗ 2

1

βp − βp′

2

≈ e2a21
m2c4

(

2
p2x
m2c2

(⃗ϵ1 · e⃗x)2 −
1

4
ϵ⃗ 2
1

)

. (8.20)

Putting all this together, we see that the leading order in m−1 of the S-matrix for small
transverse momentum is

S ≈ i

2
T
e3a21a2
m3c6

[

1

4ℏ
pxc ϵ⃗

2
1 ϵ⃗

∗
2 · e⃗x +

1

ℏ
pxc ϵ⃗1 · e⃗xϵ⃗1 · ϵ⃗ ∗2 − i

2
ωϵ⃗ 2

1 (⃗ϵ ∗2 × e⃗z) · σ⃗
]

=
i

2
Tξ21ξ2Ω̂ .

(8.21)

As before, the abbreviations ξ1,2 :=
ea1,2
mc2

are the usual dimensionless field amplitudes
used in atom physics. Some of the polarization dependent terms, as well as the whole
polarization dependent part Ω̂ (the square bracket in (8.21)) of the S matrix, are sum-
marized in table 8.1.

First of all, we can see in the first row, that the result from (6.16) for both beams
linearly polarized is nicely reproduced within this formalism. The Rabi frequency Ω′

R =
1
2ξ

2
1ξ2ω, as well as the fact that the interaction involves σy can be seen in its last column.

Additionally we have included the interaction via p⃗ · A⃗ in this derivation. Its relative
scattering probability is

Pno−flip

Pflip
= 5pxc

2ℏω . The consequences of the competition introduced

by this extra interaction channel is analogous to what will be argued in Sec. 8.3. When
discussing the other polarization configurations in the following, we assume, that we can
decode these characteristics in the same way.

8.2 Circular Setup

As mentioned before, the first idea of a spin-dependent Kapitza-Dirac effect in a two-
color setup was with circularly polarized light beams in mind [FB03]. As we can already
read off from Tab. 8.1 in the row labelled “circ. circ.”, the spin-induced part of the Rabi
frequency for this effect vanishes to the order o

(

m−3
)

. This is mainly because ϵ⃗ 21 = 0,

hindering the virtual absorption of two A⃗1-photons via σ⃗ · B⃗.
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A⃗1 A⃗2 ϵ⃗1 ϵ⃗2 ϵ⃗1 · e⃗x ϵ⃗ ∗2 · e⃗x ϵ⃗ 2
1

lin. lin. e⃗x e⃗x 1 1 1
circ. lin. 1√

2
(e⃗x + ie⃗y) e⃗x

1√
2

1 0

circ. circ. 1√
2
(e⃗x + ie⃗y)

1√
2
(e⃗x + ie⃗y)

1√
2

1√
2

0

circ. rcirc. 1√
2
(e⃗x + ie⃗y)

1√
2
(e⃗x − ie⃗y)

1√
2

1√
2

0

lin. circ. e⃗x
1√
2
(e⃗x + ie⃗y) 1 1√

2
1

ell. circ. 1√
26
(e⃗x + 5ie⃗y)

1√
2
(e⃗x + ie⃗y)

1√
26

1√
2

−12
13

A⃗1 A⃗2 ϵ⃗1 · ϵ⃗ ∗2 ϵ⃗ ∗2 × e⃗z Ω̂

lin. lin. 1 −e⃗y 5
4ℏpxc+

i
2ωσy

circ. lin. 1√
2

−e⃗y 1
2ℏpxc

circ. circ. 1 1√
2
(−e⃗y − ie⃗x)

1√
2ℏ
pxc

circ. rcirc. 0 1√
2
(−e⃗y + ie⃗x) 0

lin. circ. 1√
2

1√
2
(−e⃗y − ie⃗x)

5
4
√
2ℏ
pxc− ω

2
√
2
σ−

ell. circ. 3√
13

1√
2
(−e⃗y − ie⃗x)

6
13

√
2
ωσ−

Table 8.1: Special terms in the S-matrix (8.21) and their values on polarization corner
cases. The definition σ± := σx ± iσy was introduced. The polarization of the counter-
propagating laser waves are denoted by the abbreviations “lin.” for linear in x-direction,
“circ.” for circular, “rcirc.” also for circular but counterrotating, and “ell.” for a special
choice of elliptic polarization.

This result was numerically confirmed in the perturbative regime. But our numerical
simulations also show, that in the region just above the dyke (see Chap. 6), some effect
can still be found. The scattering that takes place, does not only flip the spin of the
electron, but it is also highly sensitive to its initial spin state. An example is given
in Fig. 8.1. As before in Fig. 6.2 and in the following simulations based on the Dirac
equation, the spinors used in the initial condition as well as for the projection of the
final state, are taken from (8.15) with s = 0, 1 denoting the spin state as |↑⟩ or |↓⟩,
respectively. The electrons are only scattered, when initially in state |↓⟩. The effective
scattering term must therefore be proportional to σ+. The measured Rabi frequencies
do not follow the proportionality of Eq. (6.16). We therefore believe, that the scattering
is driven highly non-linear, and that, due to immense detuning, the number of involved
photons cannot be discriminated easily as before.

8.3 Hybrid Setup

To improve on the result of the last section, we like to focus on another polarization
setup, in which one of the beams is linearly polarized and the other one circularly.
Tab. 8.1 predicts in the line “circ. lin.”, that the setup where the small frequency is
circularly and the high frequency laser linearly polarized can only scatter the electron
via the spin independent and spin preserving term Ω̂ = 1

2ℏpxc.
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Figure 8.1: Rabi oscillations in nonlinear regime of the Kapitza-Dirac scattering from
circular bichromatic counterpropagating but corotating waves. The laser parameters are
ℏω1 = 2 × 103 eV, ω2 = 2ω1 and ea1 = ea2 = 8 × 104eV. The combined intensity of
I = 4.36 × 1023 W

cm2 is much higher than in Fig. 6.2. The switching on and off takes
place over 5 laser cycles each. The initial electron momentum is −2ℏk1 along the laser
propagation direction and has no component within the polarization plane. The figure
is organized in the same layout as Fig. 6.2 for comparability. An almost fully developed
Rabi oscillation with spin flipping can be seen, if the initial state was spin down. For a
spin-up electron, no scattering takes place at all, rendering the process spin-dependent.

On the other hand (see line “lin. circ.”), by choosing the high frequency laser to be
the circular one, we have Ω̂ = 5

4
√
2ℏ
pxc− ω

2
√
2
σ−. Three possible interactions§ between the

four quantum states, that share the same energy and thereby fulfill the Bragg condition,
emerge from that matrix. They are sketched in Fig. 8.2.

It seems natural to first look at the case, where the p⃗ · A⃗-term is suppressed. But
we note, that this is only possible if the electron momentum is entirely on axis with the
lasers (px = py = 0). In this special case, we are left with the single spin-dependent and
spin-flipping Rabi matrix Ω̂ = − ω

2
√
2
σ−. We expect a clear Rabi oscillation that may

have a reduced oscillation amplitude as is presented in Fig. 8.3.

While this result looks similar to what was achieved in Chap. 7 with linearly polarized
light only, here, the spin of the scattered electron is flipped. This might be suitable for
a source of polarized electrons, and for a spin detector, but it does not resemble the spin
polarizing beam splitter as a Stern-Gerlach device for electrons.

In experiment, it might be impossible or impractical to inject the electron parallel
to the beam axis. In that case, the influence of p⃗ · A⃗ cannot be ignored and all four
energetically allowed states take part in the interaction, which becomes very complicated.
The numerically found behaviour under these circumstances is shown in Fig. 8.4.

Still the simulation supports our interpretation in Fig. 8.2 quite nicely. Looking at

§These interactions are drawn with bilateral arrows, because the effective Hamiltonian describing
them is necessarily Hermitian. This can be seen as a quantum version of actio = reactio.
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|2, ↑⟩ |2, ↓⟩

|−2, ↑⟩ |−2, ↓⟩

p⃗ · A⃗ p⃗ · A⃗σ⃗ · B⃗

Figure 8.2: Sketch of Ω̂ for the linear – circular hybrid setup. The four involved states
are shown, as well as the possible interactions between them. The colors and patterns
of the boxes resemble the line-styles used by the plots in this chapter.
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Figure 8.3: Rabi oscillations in the hybrid polarization setup. The laser and incident
electron parameters are chosen as in Fig. 6.2, only the polarization of A⃗2 was changed
to circular. A clear spin-dependent and spin-flipping Rabi oscillation emerges.

the very beginning of the interactions, we see that, starting from |−2, ↑⟩ (solid blue) in
the upper panel, the electron state can transition directly to |2, ↑⟩ (dotted black) or to
|2, ↓⟩ (dash dotted green). The dashed red line (|−2, ↓⟩) enters the picture only after
a significant amount of probability has been transferred to |2, ↓⟩. Contrasting to that,
the probability starting from |−2, ↓⟩ needs to travel through both other states to reach
|2, ↑⟩. This is exactly reproduced by the order in which the lines acquire significance in
the lower panel of the plot. A very similar competition of interacting terms in Kapitza-
Dirac scattering has been found for single-colored circular standing laser waves [EB15].
There, the spin-sensitive term is accompanied by the much stronger single-color Kapitza-
Dirac effect. In such an experiment, it may be possible to find a combination of field
strength and interaction time, in order to recover the electron in a spin-polarized beam
[Ahr16]. But the interaction time would need to be rather long and the parameters very
precise.
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Figure 8.4: Dynamics of the occupation probabilities in the hybrid polarization setup.
The influence of A⃗ · p⃗ has been introduced by choosing px = ℏk1 in contrast to the
otherwise unchanged parameters from Fig. 8.3. Due to the increased number of involved
quantum states, the Rabi oscillation is no longer recognizable.

For a spin filter, it seems desirable to suppress the term proportional to px without
forcing the electron momentum to be on axis with the lasers. Equation (8.21) supports
this for a very special elliptical polarization, independent of px as well as a1 and a2.
According to the last line of table 8.1, if the polarization of the low energy photons is
elliptical with an eccentricity of 5, the interaction term is proportional to Ω̂ = 6ω

13
√
2
σ−.

There is no spin-independent contribution then. Fig. 8.5 confirms this result, and we
verified numerically, that the interaction in this field configuration is indeed independent
of px, at least for px < 30ℏk with the parameters chosen in Fig. 8.5. We believe, that this
is the most promising of the here proposed experimental setups to achieve short spin-
polarized electron beams. This is owed to the independence of the transverse momentum,
and the fact that, even for imperfect timing, the scattered portion of the beam is fully
polarized.
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Figure 8.5: Rabi oscillations in elliptically tuned hybrid polarization setup. In contrast
to Fig. 8.4 the polarization for A⃗1 was changed to elliptic with eccentricity 5. All other
laser and electron parameters remain unchanged. The spin-dependent and spin-flipping
Rabi process of Fig. 8.3 is qualitatively reproduced.
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Chapter 9

Conclusion

The principle ideas of the Kapitza-Dirac effect are based on the wave-particle duality
that rocketed the development of quantum mechanics in the early days. It is not sur-
prising, that it is a pure quantum effect, relying on the diffraction and interference of
the electron wave after passing through a regular structure constituted by a standing
light wave. In this thesis, we studied two further quantum aspects to the Kapitza-Dirac
effect by developping two respective generalization schemes involving bichromatic light
of commensurate frequencies. That way, two-pathway interference and the involvement
of the electron spin were highlighted for non-relativistic parameters.

In the first part, two standing waves were postulated from which electrons were
diffracted. Since the most pronounced impact is to be expected for small integer fre-
quency ratios, we focussed on the fundamental frequency combined with its second har-
monic, but we anticipate, that further generalization to other combinations of harmonics
is straightforward. In the diffraction regime, where the number of accessible equidistant
momentum states is (in principle) unlimited, we have shown, that the two standing waves
can both enhance and hinder themselves in their coherent scattering effects. We have also
shown, that the property of being symmetric will be transferred from the standing wave
arrangement to the diffraction pattern. On the other hand, in the Bragg regime, where
effectively only two momentum states are admissible by energy-momentum conservation,
we saw quantum two-state dynamics, that is characterized as a Rabi-oscillation for both
individual, as well as for the combined standing waves. Due to the strong ponderomo-
tive potential in a standing wave, we concluded, that the oscillation in the bichromatic
case is basically composed of the constituing monochromatic versions, because they are
predominant compared to the impact of other conceivable photon combinations. Within
this mindset, the lower frequency wave contributes with the four-photon Rabi frequency,
scaling like ∼ ξ41 , to the process, while the second harmonic adds the two-photon Rabi
frequency with scaling ∼ ξ22 . In combination, the resulting Rabi frequency shows distinct
interference from maximal amplification to total extinction. The most strongly marked
interference can be expected, when ξ21 ≈ ξ2.

In the second part, we changed the original monochromatic standing-wave setup by
doubling the frequency of one beam, resulting in bichromatic counterpropagating waves,
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which we examined in the Bragg regime. By ruling out the aforementioned monochro-
matic effects from the ponderomotive potentials that way, three-photon processes can
become dominant. Especially for the combined interaction of an electron with two low
and one high frequency photons, we calculated the transition amplitude. On top of
that, we extended the concept of the ponderomotive potential in a way suitable. We
found, that the electron spin as well as the photon helicity play a crucial role here.
This interaction has also been predicted to exist for other charged particles with spin,
like i.e. protons. Its diffraction probability would be appropriately scaled due to the
different mass-to-charge ratio and g-factor [DAM16]. Additionally the now dominant
interactions can be separated in two categories. The first being, when one of the three
photons contributes through the p⃗ · A⃗-term, throwing its orbital angular momentum in
the ring. In [Smi+04] they are called ’two-color Kapitza-Dirac effects’, and their transi-
tion amplitude scales with ∼ px

mcξ
2
1ξ2. The other category consists of interactions, where

one photon couples to the electron spin. In [McG+15] they are called ’spin Kapitza-
Dirac effects’ having a scaling ∼ ℏω

mc2
ξ21ξ2. The details of all these three-photon processes

depend heavily on the polarization of both counterpropagating waves. This dependence
is nicely condensed in (8.21), and was exemplified for several polarization combinations.
A very special combination of elliptically polarized lower frequency with circularly po-
larized second harmonic, that is spin-dependent and simultaneously robust to transverse
momentum, could be identified therein. It can possibly lead to future sources of briliant
and short spin-polarized electron beams. These processes discussed in part II have an-
other property in common. Due to the asymmetry with respect to the propagation
direction, the electron experiences different dressing effects from both lasers in its two
momentum states satisfying the Bragg condition. A relative shift in the kinetic energies
emerges. This field-induced detuning leads to reduced Rabi amplitudes and accordingly
increased oscillation frequencies. The actual amount of detuning was characterized to
be dependent on the laser frequencies and amplitudes, forming a dyke-like structure.

Combining Bragg scattering processes of the second and the first part of this thesis, a
three-stage spin sensitive interferometer for free electrons was demonstrated. We showed
that, with suitable fine tuning, it acts as a spin-polarizing beam splitter. Since it does
not change the spin of already polarized electron beams, it resembles in effect a Stern-
Gerlach device for electrons. That way, it is not only a proposal for a scheme to create
spin-polarized electrons, but also gives a positive theoretical answer to the longstanding,
yet recently lively discussed question of Bohr and Pauli, whether is was possible at all
to spatially separate charged elementary particles by their spin.

In summary, we have shown that momentum and spin of free electrons can be co-
herently controlled in Kapitza-Dirac scattering by exploiting suitable combinations of
bichromatic laser fields.
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Appendix A

Adiabatic Switching

In this appendix we want to show, that the switching time as implemented by the
function f(t) throughout this thesis distinguishes three different regimes. Similar con-
siderations have been made in [DM15b].

Investigation of the monochromatic (α2 = 1) Kapitza-Dirac effect with the methods
of Sec. 6.1 allows us, to include a detuning pz from the resonant momenta. The electron
is now scattered from momentum −ℏk+ pz to ℏk+ pz by virtue of the vector potential

A⃗(t, z) = a0ϵ⃗ cos(ωt) cos(kz) =
a0
2
ϵ⃗ cos(ωt)

∑

n

(|n⟩ ⟨n− 1|+ |n⟩ ⟨n+ 1|) . (A.1)

For the Dyson-expansion to the first order we obtain

⟨1|Um(T + τ) |−1⟩ = e2a20
8iℏmc2

∫

dt exp

(

− i

ℏ
E′

1(T + τ − t)

)

f(t)2 cos2(ωt) exp

(

− i

ℏ
E′

−1t

)

=
e2a20

8iℏmc2
exp

(

− i

ℏ
E′

1(T + τ)

)∫

dt exp

(

i

ℏ
δt

)

f(t)2 cos2(ωt)

(A.2)
where the detuning amounts to δ := E′

1 − E′
−1 =

2ℏkpz
m in energy.∗

In order to obtain easy-to-interpret results, we introduce a very simple model of the
switching function

f(t)2 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

t
τ if 0 < t ≤ τ

1 if τ < t ≤ T
T+τ−t

τ if T < t ≤ T + τ

0 elsewhere

. (A.3)

It satisfies the relation
∫

dtf(t)2 = T for the effective interaction time used in the
numerical simulations, independently of the adjustable switching time τ . An illustration
of f(t)2 is shown in Fig. A.1. This tool allows us to evaluate the transition amplitude

∗In Sec. 6.4 other states and the existence of the field induced detuning ∆ led to another expression
for δ.
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1

τ T T + τ
t

f(t)2
∫ ∞

−∞
dtf(t)2 = T

Figure A.1: Plot of the switching function used for the analytical considerations in this
appendix. The area under the curve equals the effective interaction time T .

in equation (A.2) analytically with the absolute value

I := |⟨1|Um(T + τ) |−1⟩|

=

⏐

⏐

⏐

⏐

⏐

− ℏ
2ΩR

2δ2τ

(

1− e
i
ℏ
δT
)(

1− e
i
ℏ
δτ
)

+
ℏ
2ΩR

2 (4ℏ2ω2 + δ2)2 τ
×

{

[(

4ℏ2ω2 + δ2
)

cos(2ωt)− 4iℏωδ sin(2ωt)
]

e
i
ℏ
δt
⏐

⏐

⏐

τ

t=0

−
[(

4ℏ2ω2 + δ2
)

cos(2ωt)− 4iℏωδ sin(2ωt)
]

e
i
ℏ
δt
⏐

⏐

⏐

T+τ

t=T

}

⏐

⏐

⏐

⏐

⏐

(A.4)

with the monochromatic Rabi frequency ΩR =
e2a20
8ℏmc2

. The second term describes fast
oscillations, that are suppressed by 1

τ . The first term, however, behaves differently for
the resonant and the detuned case. In the resonant limit δ → 0, the first term reduces
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ω
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I

ωT

ωτ

ω
ΩR
I

Figure A.2: Plot of the general appearance of (A.4) for the resonant case (δ = 0). One
can see bounded oscillating features on the right front edge, and the linearly growing
term, that is independent of the switching time τ . Only points with τ ≤ T are plotted.

to ΩR
2 T in accordance to the resonant Rabi oscillation in the monochromatic case. For
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Figure A.3: The same plot as in Fig. A.2 for the detuned case with δ = 0.1ℏω. In
contrast to there, one can see that the scattering probability is suppressed for adiabatic
switching times (i.e. large τ).

δ ̸= 0, however, it is bounded by 2ℏ2ΩR
δ2τ

. That means, the resonance peak narrows down
for longer switching time. For really adiabatic switching (τ ≳ 1

ΩR
) the scattering can

happen only for momenta fulfilling the Bragg condition exactly [Fed74].
In combination with the field induced detuning, the following picture arises from a

parameter scan: For too short switching time (τ ≲ 6π
ω ) the simulated vector potential

abberates too much from a solution of the Maxwell equations, and the results are non-
physical. For moderate switching times (6πω ≲ τ ≲ 1

ΩR
) we obtain the resonance peak

from (6.33) and Fig. 6.4. Only when approaching the magnitude of the inverse Rabi
frequency, the interaction becomes adiabatic. The resonance peak becomes sharper and
its center moves to the exact Bragg condition (δ = 0). However, the increased oscillation
frequency remains unchanged.

We note that for laser fields with a Gaussian temporal profile, the ’effective switching
time’ is always of the order of the effective interaction time and therefore several Rabi
cycles long (for the interactions of interest here).
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[STM98] C. Szymanowski, R. Täıeb, and A. Maquet. “Laser-Assisted Scattering of
Polarized Electrons at High Field Intensities”. In: Laser Phys. 8.1 (1998),
p. 102.

[TPW12] W. X. Tang, D. M. Paganin, and W. Wan. “Proposal for electron quantum
spin Talbot effect”. In: Phys. Rev. B 85.6 (Feb. 2012), p. 064418.

79



BIBLIOGRAPHY BIBLIOGRAPHY

[TWC95] D. A. Telnov, J. Wang, and S.-I. Chu. “Two-color phase control of high-
order harmonic generation in intense laser fields”. In: Phys. Rev. A 52.5
(Nov. 1995), p. 3988.
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