From genotype to phenotype: inferring relationships between microbial traits and genomic components

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Aaron Weimann

aus Oberhausen

Düsseldorf, 29.08.16

aus dem Institut für Informatik der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Koreferent: Prof. Dr. Alice C. McHardy Prof. Dr. Martin J. Lercher

Tag der mündlichen Prüfung:

24.02.17

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation eigenständig und ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen.

Düsseldorf, den

(Aaron Weimann)

Statement of authorship

I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure.

Summary

Bacteria live in almost any imaginable environment, from the most extreme environments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful – e.g. mediating the roles of bacteria in human diseases. Thus, understanding the functional potential of bacteria holds promises for biotechnology and for addressing important questions in the treatment of bacterial infections. This is especially true, as more and more pathogens develop resistances to available antimicrobial drugs, causing deaths and large economic costs.

Due to advances in high-throughput DNA sequencing, the number of sequenced bacterial genomes is growing rapidly. For many of these, their functional or pathogenic potential is not known. Making use of these data sets requires sophisticated interpretation techniques that leverage existing genome annotations, including methods to systematically deduce bacterial genotype-phenotype associations, which can then be used to determine the phenotypic potential of newly sequenced genomes. In this thesis I describe three such approaches that use machine learning techniques for relating bacterial phenotypes to their genotypes, with applications in infection research and biotechnology.

First, we were interested in learning the genetic determinants of bacterial plant biomass degradation. Enzymes encoded in the genomes of plant biomass degrading bacteria can be used in the biotechnological conversion of plant material into biofuels, which could eventually replace climate-damaging fossil fuels. We used an L1-regularized L2-penalized support vector machine to learn an accurate phenotype classifier based on the profiles of protein families from the genomes of a large and manually curated set of plant biomass degraders. Based on feature selection from the obtained phenotype model, we identified protein families of enzymes known by physiological and biochemical tests to be implicated in the degradation of various components of plant biomass, as well as uncharacterized protein families, which represent targets for biochemical characterization. Second, we developed Traitar, a multi-trait prediction software. The traits available for classification in Traitar cover many aspects of the bacterial metabolism, such as use of various substrates as carbon and energy sources, oxygen requirement, morphology, antibiotic susceptibility, proteolysis and other enzymatic activities. Traitar provides two prediction modes: one based on the profiles of protein families and one also incorporating the evolutionary history of protein families. The phenotype classifiers provided by Traitar were trained and rigorously evaluated on phenotypes and genomes from 572 species of 8 phyla. Traitar only requires features that can be computed directly from the genome sequences and is applicable to the rapidly increasing number of genomes recovered from single cells, isolates, and metagenomes

Last, we learned the determinants of multi-drug resistance of *Pseudmonas aeruginosa* by employing a logistic regression classifier. Here, we used expression and mutational profiles from a large set of clinical isolates. We could accurately predict the resistance to five different antibiotics and identified known resistance markers, as well as uncharacterized proteins that might provide further insights into the resistance acquisition mechanisms.

In summary, the methods presented in this thesis allow to study the phenotypic potential of bacteria based on their genomes. Uncovering the genotype-phenotype associations for biotechnologically important traits may aid in the discovery of novel enzymes that can be employed in industrial processes. Similarly, biomarkers of antibiotic resistance could improve the selection of antibiotics in patient therapy.

Zusammenfassung

Bakterien besiedeln alle vorstellbaren Lebensräume. Solche, in denen sehr extreme Umweltbedingungen vorherrschen (z.B. in heißen Thermalquellen) genauso wie im Verdauungstrakt von Rindern und Menschen. Indem sich Bakterien an solche Lebensräumen angepasst haben, haben sie im Laufe der Evolution ein Arsenal von Enzymen hervorgebracht, das in verschiedensten Stoffwechselwegen zum Einsatz kommt. Manche solcher Enzyme fördern sogar unsere Verdauung oder können zur Optimierung von biotechnologischen Prozessen eingesetzt werden. Andere Enzyme dagegen haben eine schädliche Wirkung, z.B. Virulenzfaktoren von Krankheitserregern. Das Verständnis des funktioniellen Potentials solcher Bakterien ermöglicht es, Fragestellungen in der Biotechnologie und in der Infektionsforschung zu adressieren. Das ist besonders wichtig, da mehr und mehr pathogene Organismen Antibiotikaresistenzen entwickeln, die zu Todesfällen und hohen ökonomische Kosten führen.

Die Fortschritte bei Hochdurchsatz-Sequenziertechnologien haben zu einem rapiden Anstieg der Anzahl der sequenzierten bakteriellen Genome geführt. Für viele diese Genome, ist das funktionelle oder pathogene Potential noch nicht bekannt. Um einen Nutzen aus diesen großen Datenmengen zu ziehen, bedarf es ausgeklügelter Techniken zur Datenauswertung, die die bereits existierenden Genomannotationen gezielt ausnutzen können. Dazu gehören auch Ansätze, die systematisch Genotyp und Phänotyp von Bakterien in Beziehung setzen, die dann auch eingesetzt werden können, um das phänotypische Potential von neu sequenzierten Bakterien zu bestimmmen.

In einem ersten Ansatz haben wir die genetischen Ursprünge des bakteriellen Pflanzen-Biomasseabbaus untersucht. Enzyme, die in den Genomen solcher bakterieller Biomasse-Abbauer codiert sind, können in der biotechnologischen Umsetzung von Pflanzenmaterial in Biotreibstoff eingesetzt werden, der langfristig konventionelle klimaschädliche fossile Treibstoffe ersetzen könnte. Hierzu haben wir ein L1-regularisiertes L2-penalisiertes Stützvektor-Verfahren eingesetzt, um einen akuraten Phänotyp-Klassifikator basierend auf den Proteinfamilien-Profilen der Genome eines großen und kuratierten Datensatzes von Pflanzen-Biomasseabbauern zu entwickeln. Auf Basis dieses Klassifikators konnten wir mittels Methoden zur Merkmalsidentifizierung Enzym-Proteinfamilien finden. Teils solche, die schon durch physiologische und biochemische Tests mit dem Abbau von pflanzlicher Biomasse in Verbindung gebracht wurden, andererseits aber auch uncharakterisierte Proteinfamilien, die aussichtsreiche Kandidaten für die tiefergehende biochemische Charakterisierung darstellen.

Zweitens haben wir Traitar entwickelt, ein Programm, um gleichzeitig viele Phänotypen anhand von einem Genom vorherzusagen. Die Phänotypen, die mit Traitar klassifiziert werden können, decken viele Aspekte des bakteriellen Metabolismus ab, wie zum Beispiel die Nutzung von verschiedensten Substraten als Kohlenstoffund Energiequelle, dem Sauerstoffbedarf, Morphologie, Antibiotikaresistenzen, Proteolyse und weitere Enzymaktivitäten. Traitar bietet zwei verschiedene Vorhersagemodi: Einer basierend auf Profilen von Proteinfamilien und ein weiterer, der auch die evolutionäre Geschichte der Proteinfamilien berücksichtigt. Traitar wurde zuerst trainiert und anschließend gründlich auf Phänotypen und Genomen von 572 Spezies aus 8 Phyla evaluiert. Ferner benötigt Traitar zur Vorhersage nur Merkmale, die direkt aus den Genomsequenzen berechnet werden können, und ist dabei für die rapide ansteigende Anzahl von Genomen einsetzbar, egal, ob diese aus einzelnen Zellen, Isolaten oder Metagenomen stammen.

Zuletzt haben wir die genetischen Faktoren von Antibiotikaresistenzen in *Pseu*domonas aeruginosa mit Hilfe von logistischer Regression untersucht. Hierzu haben wir Expressions- und Mutationsprofile einer großen Anzahl von Isolaten verwendet. Wir konnten die Resistenzen gegen fünf Antibiotika akurat vorhersagen und haben dabei bekannte Resistenzmarker aber auch uncharakterisierte Proteine identifiziert, die weitere Einblicke in die Resistenzmechanismen der unterschiedlichen Antibiotika gewähren könnten.

Zusammenfassend erlauben die hier präsentierten Methoden, das phänotypische Potential von Bakterien basierend auf ihrem Genom zu studieren. Indem die Genotyp-Phänotyp-Assoziationen für biotechnologisch wichtige Phänotypen aufgedeckt werden, könnten in Zukunft neue Enzyme mit Einsatzmöglichkeiten in industriellen Prozessen gefunden werden. Genauso haben die Biomarker, die für die Antibiotikaresistenzen gefunden wurden das Potential, die Therapie und Diagnostik von multiresistenten Keimen wie *P. aeruginosa* zu verbessern.

Danksagungen

Ich möchte mich bei allen bedanken, die mich während der Promotion begleitet haben: Mitdoktoranden, wissenschaftliche Hilfskräfte, meine Eltern, Familie und Freunde. Die Liste derer, die ich gerne erwähnen würde ist zu lang, aber ich möchte gerne einige Menschen stellvertretend nennen. Besonders möchte ich meiner Betreuerin Alice McHardy für ihre Unterstützung während meiner Promotion danken. Ihre Ideen und Erfahrung haben diese Arbeit erst ermöglicht. Kooperation ist der Schlüssel zu erfolgreicher Forschung und deswegen möchte ich mich auch bei unserem Kollaborationspartner Phil Pope für die gute Zusammenarbeit im Schwerpunkt Pflanzenbiomasseabbau und sein fortwährendes Interesse an unseren Methoden bedanken. Ebenso bei Susanne Häußler, die als Kooperationspartnerin im Projekt zu den Antibiotikaresistenzen die letzte Phase meiner Promotion am Helmholtz-Institut für Infektionsforschung sehr geprägt hat. Dann möchte ich auch Angela Rennwanz erwähnen, die mit ihrem Engagement mehr als die gute Seele des Lehrstuhls war. Man mag es als selbstverständlich ansehen, aber ich möchte mich auch ganz herzlich bei meinen Mitdoktoranden für wissenschaftliche Diskussionen und Feedback zu Postern, Vorträgen und Manuskripten bedanken und hierbei besonders David Lähnemann, Johannes Dröge und Sebastian Konietzny hervorheben. Der Zusammenhalt der Arbeitsgruppe war eine wichtige Stütze und hat über so manche Durststrecke hinweg geholfen. Die Bolognese-Abende, Hutbau-Nachmittage und Kaffeepausen am See werden in Erinnerung bleiben.

Contents

Lis	st of I	gures	xv
Lis	st of ⁻	bles	cvii
1	1 Introduction		
	1.1	Bacteria, their traits, and their potential	1
	1.2	Microbial genome sequencing	4
	1.3	Next generation sequencing for unculturable bacteria	5
		1.3.1 Metagenomics	5
		1.3.2 Single-cell genome sequencing	7
	1.4	Protein function prediction	8
		I.4.1 Guilt by association	9
		1.4.2 From proteins to bacterial metabolism	10
	1.5	Supervised learning for genotype-phenotype inference	11
	1.6	Dutline 	13
2	Pers	nal bibliography	17
3	Plar	biomass degradation prediction	19

	3.1	Abstra	act	21
		3.1.1	Background	21
		3.1.2	Results	21
		3.1.3	Conclusions	21
	3.2	Backg	round	22
	3.3	Result	$ts \ldots \ldots$	25
		3.3.1	Distinctive Pfam domains of microbial plant biomass de-	
			graders	25
		3.3.2	Distinctive CAZy families of microbial plant biomass de-	
			graders	29
		3.3.3	Identification of plant biomass degraders from a cow rumen	
			metagenome	32
		3.3.4	Timing experiments	35
	3.4	Discus	ssion	35
	3.5	Conclu	usions	38
		3.5.1	Methods	39
		3.5.2	Phenotype annotation of lignocellulose-degrading and non-	
			degrading microbes	40
		3.5.3	Classification with an ensemble of support vector machine	
			classifiers	41
		3.5.4	Performance evaluation	41
		3.5.5	Feature selection	43
	3.6	Supple	ementary material	43
4	Fror	n geno	mes to phenotypes	45
	4.1	Abstract		
	4.2	Introduction		
	4.3	B Results		
		4.3.1	The Traitar software	50
		4.3.2	Evaluation	53
		4.3.3	Performance per taxon at different ranks of the taxonomy	56
		4.3.4	Phenotyping incomplete genomes	58
		4.3.5	Traitar as a resource for gene target discovery	61

A	Jou	rnal ver	sions of the published articles	119
6	Syn	opsis		87
	5.4	Mater	ials and Methods	. 83
	5.3	Discus	sion	. 82
	5.2	Result	з 	. 79
	5.1	Introd	$uction \ldots \ldots$. 78
5	P. ae	erugino	sa antibiotic resistance prediction	77
	4.6	Supple	ementary material	. 75
		4.5.5	Acknowledgements	. 75
		4.5.4	Majority feature selection	75
		4.5.3	Evaluation metrics	. 74
		4.5.2	Cross-validation	. 73
		4.5.1	The Traitar software	68
	4.5	Metho	ds	. 68
	4.4	Discus	ssion \ldots	65
		4.3.6	Phenotyping biogas reactor population genomes	. 64

List of Figures

1.1	Extreme environments inhabited by microbial communities	2
1.2	Overview of microbial community analysis via metagenome se-	
	quencing	6
1.3	Maximum-margin hyperplanes for classification	12
3.1	Frequencies of the selected Pfam families in the individual genomes	
	and metagenomes.	28
3.2	Frequencies of selected glycoside hydrolase (GH) families and car-	
	bohydrate binding modules (CBMs) in the (meta-) genome se-	
	quences	31
4.1	Traitar application scenario	49
4.2	Work flow of Traitar	53
4.3	Macro-accuracy for each phenotype for the Traitar phypat and	
	phypat+PGL phenotype classifiers	55
4.4	Classification accuracy for each taxon at different ranks of the	
	NCBI taxonomy	57
4.5	Single-cell phenotyping with Traitar	59

xvi LIST OF FIGURES

4.6	Phenotyping simulated draft genomes and single cell genomes $\ . \ .$	60
4.7	Phenotype gain and loss dynamics match protein family dynamics	62
5.1	Venn diagram of cross-resistance to five antibiotics	85
52	Derformen en estimates for elegification of for estilistics	00

List of Tables

3.1	Misclassified species in the SVM analyses	26
3.2	Accuracy of classifying microbes as lignocellulose-degraders or non-	
	degraders	30
3.4	Prediction of the plant biomass degradation capabilities for 15	
	draft genomes	34
4.1	Overview of the 67 traits available in Traitar for phenotyping	51
4.2	Performance overview of Traitar evaluated on different data sets .	54
4.3	The most relevant Pfam families for classification of three impor-	
	tant phenotypes	63
4.4	Phenotype predictions for two novel Clostridiales species \ldots .	66
5.1	Antibiotic resistance frequency across 467 <i>P. aeruginosa</i> isolates .	80

CHAPTER 1

Introduction

1.1 Bacteria, their traits, and their potential

"I took a little white matter, which is as thick as if it were batter. I then most always saw, with great wonder, that in the said matter there were many very little living animalcules, very prettily a-moving."¹. This is how Antoni van Leeuwenhoek – using a technically advanced microscope – probably as the first human being observed bacteria. He made this discovery more than 350 years ago, and 200 years ahead of time before the pioneering work of Louis Pasteur and Robert Koch in microbiology. Today we know that we live in a microbial world. Bacteria are ubiquitous and important for biotechnology and human health. They have evolved traits, such as cold resistance or the ability to utilize inorganic material as energy source, to survive in the most extreme environments, e.g. in the drainage of acid coal mines, hydrothermal vents in the deep sea, or the permafrost around the arctic. (Figure 1.1). In general microbes are described, characterized and distinguished by their traits as in Bergey's Manual of Systematic Bacteri-

 $^{^{1}\}mathrm{Letter}$ written to the Royal Society on September 17 1683 by Antoni Leeuwenhoek

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Extreme environments inhabited by microbial communities. Acid mine drainage (left; public domain) (Hardesty n.d.), hydrothermal vent (top right; public domain) (U.S. National Oceanic and Atmospheric Administration 2004), permafrost soil (bottom right; public domain) (NASA n.d.).

ology (Goodfellow et al. 2012). A trait or phenotype (used interchangeable in this thesis) can vary in complexity. For example, it can refer to the degradation of a specific substrate or the activity of an enzyme inferred in a lab assay, the respiratory mode of an organism, the reaction to Gram staining or antibiotic resistances. Traits, such as antibiotic resistance, are also driving factors for microbial community composition (J. L. Martinez 2008). Antibiotic treatment shapes a microbial community by killing off antibiotic susceptible bacteria, whereas resistant bacteria survive the treatment (Sommer et al. 2011).

Bacteria in human health Bacteria have also adapted to human environments, e.g. in the human gut they account for two kilograms of biomass (Gevers et al. 2012). By fermentation of dietary fibers into short chain fatty acids, they support intestinal digestion (Andoh et al. 2003). The microbiota in obese mice has an elevated functional potential for collecting energy from the nutrition compared to lean mice (Turnbaugh et al. 2006). The human microbiome – the entirety of the microbial genomes of human-associated microbes – has been called our second genome (Grice et al. 2012). Large scale initiatives like the Human Microbiome Project were initiated to study the genomic composition of the complete healthy human microbiota, whereas the MetaHit project focused on the intestinal microbiota (Gevers et al. 2012; Qin et al. 2010).

Changes in the human gut microbiota have also been associated with different disorders, such as diabetes (Everard et al. 2013) and irritable bowel syndrome (IBD) (Kostic et al. 2014). For instance, the decrease of certain bacteria and an overall reduced bacterial diversity has been linked to IBD (Manichanh et al. 2006). Some human-associated bacteria may cause serious health problems for people with a compromised immune system. Anti bacterial drugs – so called antibiotics – are available for treatment of bacterial infections, but the occurrence of multi-drug resistant strains has become a global problem and causes many deaths yearly (Wright 2012).

Bacteria in Biotechnology Microbial community members with varying traits can help in waste water treatment, bioremediation of soils and promotion of plant growth (Narihiro et al. 2007; Olapade et al. 2015; Bai et al. 2015); plant biomass degrading bacteria influence the ability to process the recalcitrant plant material in the cow rumen microbiota (Hess et al. 2011); the dominant bacterial strain in the Tammar wallaby foregut microbiome is associated with lower methane emissions produced by the wallabies compared to ruminants (P. B. Pope, Smith, et al. 2011). Bacterial enzymes already drive the production of over 500 industrial products and there is a high demand for novel enzymes since biotechnological processes are often more sustainable and economic than their chemical counterparts (Adrio et al. 2014). Bacteria in microbial communities with traits related to such biotechnological processes have a large potential to serve as a reservoir of such enzymes. From genomes to traits Inferring genotype-phenotype relationships for bacterial traits may contribute to understanding the functional roles of bacterial community members and provide insights into medically and biotechnologically relevant processes, such as the mechanisms of antibiotic resistances or microbial cellulose degradation. Thus, methods are required to suggests bacterial strains with relevant phenotypes from microbial communities and to identify protein families encoded in their genomes that can be linked to relevant traits or metabolic capabilities.

1.2 Microbial genome sequencing

DNA sequencing has revolutionized biology since the invention of the chain termination method by Sanger in 1975 (Sanger et al. 1975). Since the mid-2000s, high-throughput next generation sequencing (NGS) methods have led to an exponential increase of the sequenced DNA – although at the cost of shorter read lengths. In contrast, recently developed long-read sequencing platforms deliver reads with sizes of several kilobases and can also span repetitive genomic regions, but have high error rates and lower throughput (Goodwin et al. 2016; Laehnemann et al. 2016).

Genotyping methods based on microbial genome sequencing have the potential to replace phenotypic tests with faster and cheaper genotyping methods. For example, in a recent study, Quick *et al.* applied a phylogenetic placement method using MinION long-read real-time sequencing for profiling a *Salmonella* strain from a hospitalized patient. Within 2 h, they found that this strain belonged to the main outbreak in the hospital (Quick et al. 2015). Each year, thousands of microbial genome sequences are deposited in public databases (Land et al. 2015). This large number of available genomes paves the way to systematically associate microbial genotypes with phenotypes.

1.3 Next generation sequencing for unculturable bacteria

In 1985, Staley and Konopka made the observation – later on termed "the Great Plate Count Anomaly" – that the size of microbial populations estimated by dilution plating and microscopy differed significantly from another (Staley et al. 1985). Today, we know that this is because many bacteria do not grow under available culturing conditions. Hugenholtz *et al.* estimated that as little as 1% of bacteria can be cultured. Bacteria are usually isolated by selectively growing them in a culture medium – a prerequisite for most diagnostic tests, for example to determine the cause of an infection (Hugenholtz et al. 1998).

1.3.1 Metagenomics

NGS methods gave rise to a new research direction in microbial community analysis called metagenomics. I will explain this approach in more detail in this section as the first two methods described in this thesis mainly target metagenomic data. Metagenomics avoids the culturing step by directly sequencing DNA from an environmental sample, with the ultimate goal to reconstruct full genomes from the metagenomic sequencing data. A metagenomic experiment requires a series of experimental, as well as bioinformatics analysis steps (Figure 1.2). In contrast to standard genome sequencing, the sequenced DNA fragments are not derived from a clonal culture, but from hundreds or thousands of differentially abundant bacterial strains – creating a complicated puzzle to be solved.

Assembly As a first step, metagenome reads are often merged to reconstruct the original DNA sequences, which is also known as assembly. Metagenomic *de novo* assembly methods usually do not recover complete genomes but rather assemble reads into longer contiguous sequences (contigs), that are used in downstream analyses. Strain variation and non-uniform coverage make it a highly complex problem, which requires substantial computing power (A. Howe et al. 2015). Howe *et al.* proposed a pre-filtering approach for metagenomes from complex communities such as soil, which after assembly gave similar results compared

Figure 1.2: Overview of microbial community analysis via metagenome sequencing: samples from an environment are taken (A); bacterial cells are isolated (B); cells are lysed and DNA is extracted (C); DNA is amplified and sequence library is prepared (D); environmental DNA is sequenced (E) Sequence assembly, genome reconstruction and other bioinformatics downstream analyses (F) (from Wooley and Godzik (Wooley et al. 2010)); Creative Commons Attribution license .

to assembling the unfiltered metagenome, requiring less computing power (A. C. Howe et al. 2014). State-of-the-art assembling methods for short-reads from NGS commonly employ de Bruijn graphs to solve the assembly problem. A de Bruijn graph represents overlaps between oligomers of a given length – also called k-mers, which are derived from the sequence reads (A. Howe et al. 2015). IDBA-UD is a metagenomic assembler that attempts to partition the de Bruijn graph into isolated components for each species and tries to resolve strain variation within these components (Peng et al. 2011). Ray Meta was developed to scale to very large data sets by distributing the computations across many processors with moderate memory usage (Boisvert, Raymond, et al. 2012). Recently, the assembly of synthetic long read data sets of complex soil microbial communities was

shown to significantly improve the metagenomic assembly quality (Bankevich and Pevzner 2016). Synthetic long reads, which are derived from barcoded short reads, represent an alternative to short-read NGS, as well as to the error-prone and low-throughput true long-read sequencing platforms. Since in general, the quality of genome or metagenome assemblies can differ considerable across different method, QUAST and metaQUAST were developed to compare different assemblies of genomes or metagenomes with each other (Gurevich et al. 2013; Mikheenko et al. 2015).

Genome recovery The assembled metagenomic contigs are subjected to recovery of genomes from metagenomes (GFMs), also known as binning (Dröge et al. 2012). Differential read coverage and k-mer usage have proven to be the most successful features for genomic deconvolution and inferring the taxonomic origin of the contigs (Alneberg et al. 2014; Cleary et al. 2015; Gregor et al. 2016; Imelfort et al. 2014; Kang et al. 2015; Nielsen et al. 2014). Methods for genome recovery have been applied to large metagenomic data sets, delivering hundreds of draft genomes with different degrees of completeness and quality (Brown et al. 2015; Hess et al. 2011). Clade-specific marker genes can provide an estimate of the completeness of such genome recoveries (Parks et al. 2015).

For each bioinformatic analysis step of a metagenome, an increasing number of tools are available – many evaluated on different data sets and each with unique strengths and weaknesses. This leaves the user with the difficult task to select the most appropriate choice for the analysis. To address this shortcoming, the Critical Assessment of Metagenome Interpretation (CAMI) challenge was initiated to provide an objective and comprehensive comparison of metagenomic software 2 .

1.3.2 Single-cell genome sequencing

The sequencing of genomes derived from single bacterial cells represents another culture-independent technique to recover genomes – also from less abundant taxa in microbial communities. After isolation of single cells, the ϕ 29 polymerase – a

²http://www.cami-challenge.org/

bacterial phage DNA polymerase that is very sensitive and has low error rates – is employed to amplify the single-copy DNA using multiple displacement amplification (Gawad et al. 2016). Algorithms developed for the assembly of single-cell genomes take the non-uniform coverage of single-cell sequencing data into account, in contrast to assemblers for multi-cell genome assembly (Boisvert, Laviolette, et al. 2010; Bankevich, Nurk, et al. 2012). MeCorS leverages the uniform coverage of metagenomic data for error correction of single-cell sequencing assemblies in regions of low coverage, given a metagenome is available from the same environment as the sequenced single cells (Bremges et al. 2016). Large-scale single-cell sequencing studies have led to several hundreds of recovered single-cell draft genomes (Lasken et al. 2014; Rinke et al. 2013).

1.4 Protein function prediction

The protein-encoding genes derived in sequence data set derived from single-cells and microbial communities represent a large reservoir of functionally uncharacterized proteins – potentially, many with functions relevant for biotechnology and clinical applications. The functional annotation of such proteins is the fundamental step to understand and determine their functional roles and the metabolic capabilities of microbial community members. However, only a small fraction of the proteins in public databases have a functional annotation and much less were experimentally characterized (Jaroszewski et al. 2009). As a first step, targets for functional annotation need to be identified. To this end, specialized software such as Prodigal and FragGeneScan can detect protein-coding sequences in prokaryotic genomic sequences. Whereas Prodigal works on assembled sequences (Hyatt et al. 2010), FragGeneScan has been optimized to find genes in short error-prone reads common in metagenomes (Rho et al. 2010). A popular strategy is to functionally annotate coding sequences encoding proteins of unknown function by searching for characterized proteins that have a similar structure or sequence (homologous proteins) (D. Lee et al. 2007), for instance using the famous Basic Local Alignment Tool (BLAST) (Altschul et al. 1990).

1.4.1 Guilt by association

Homology transfer of function is not without its caveats. Gene duplication is the process by which a region of DNA containing one or several genes gets duplicated. One copy of a gene is often rendered dysfunctional in the course of subsequent evolution or undergoes neo-functionalization, while retaining a similar sequence or structure; the other copy keeps the original functional role (Roth et al. 2007). Orthology refers to a group of proteins, which descended from a single gene of the last common ancestor. An orthologous group of proteins is a better indicator of functional conservation than than sequence homology alone (Sonnhammer et al. 2002). The annotation of proteins with the help of information from the genomic context is known as guilt by association (Aravind 2000). For instance, clusters of Orthologous Genes (COGs) can be constructed using all-against-all sequence comparisons with BLAST across bacterial genomes (Tatusov et al. 2001). Such a cluster must contain at least three proteins that are more similar to each other than to any other protein from the same genomes. eggNOG is the unsupervised extension of COG, which does not require manual curation (Huerta-Cepas et al. 2016).

COGs or other groups of functionally related protein sequences can be represented by a multiple sequence alignment (MSA) that carries information about insertions and deletions at specific positions of the alignment. Profile hidden Markov models (HMM) have been developed to model a MSA (Eddy 1998). A protein can be annotated against a database of pre-built profile HMMs with BLAST-like accuracy and speed. For instance, the protein family database (Pfam) contains more than 15000 profile HMMs derived from protein sequences from all domains of life (Finn, Coggill, et al. 2016), but there are also more specific databases like dbCAN, which contains only families of carbohydrate active enzymes (Yin et al. 2012).

Another example of assigning function based on guilt by association is to detect gene fusion events. Sets of genes that appear separate in one genome frequently appear joined together in a second genome. Evolution suggests that there is a selective pressure for these events to happen, and indeed fused genes are likely to be functionally associated (Enright et al. 1999). Association by co-occurence Protein families that have a similar phylogenetic distribution across genomes from many organisms tend to be involved in a similar biological process (Kensche et al. 2008). Clustering methods that operate on co-occurence patterns can be used to detect functional modules – sets of functionally coupled proteins (Yamada et al. 2006; Konietzny, Dietz, et al. 2011). A functional module can represent a pathway, which is a set of biochemical reaction steps or a protein complex like the flagellum, the bacterial motor complex. Examples of databases of curated functional modules, such as pathways, include the Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaCyc (Caspi et al. 2016; Kanehisa et al. 2015). However, approaches that only take the co-occurence patterns of the proteins into account and ignore the phylogenetic relationships between the organisms may recover false positive functional links between these proteins. Other methods explicitly make use of a phylogenetic tree, which represents the evolutionary history of the analyzed genomes (Barker et al. 2005; Cohen, Ashkenazy, et al. 2013).

Association by phenotype Bacterial genome-wide association studies (GWAS) attempt to link genetic features (like single nucleotide polymorphisms or protein families) across bacterial genomes from strains with a common phenotype of interest (Y. Liu et al. 2006; P. E. Chen et al. 2015; Dutilh et al. 2013). Machine learning methods can be employed to learn a statistical model of a phenotype, by exploiting co-occurrence patterns of phenotype and protein families to find a new group of protein families that are predictive of a trait. (Khaledi et al. 2016; MacDonald et al. 2010; Lingner et al. 2010). Such genotype-phenotype models may also be re-used to identify bacterial strains that encode these phenotypes of interest from newly sequenced metagenomic, single-cell or isolate genomes. But, so far, only few genotype-phenotype models for biotechnologically or medically relevant traits have been established.

1.4.2 From proteins to bacterial metabolism

Metabolic reconstruction aims at reconstructing the bacterial metabolism based on the individual enzymes found in a given genome. These methods model the bacterial cell as a network of pipes through which substrates and products flow. However, these models are time-consuming to construct and require a high quality functional annotation, which is only available for model organisms (Durot et al. 2009). Metabolic reconstruction has also been attempted for metagenomic data but not for single genome recovered from metagenomes. For instance, Abubucker *et al.* developed HUMAnN, to determine the functional potential of microbial community metagenomes, and used it to identify pathways enriched in the human microbiome at specific body sites (Abubucker et al. 2012). Liu and Pop developed MetaPath, which also aims at identifying differentially abundant pathways across metagenomes (B. Liu et al. 2011). Methods that can provide insights into the metabolism of non-model organisms from genome-level information, are needed to complement such metabolic reconstruction approaches.

1.5 Supervised learning for genotype-phenotype inference

A central idea of this thesis was to use supervised machine learning methods to infer links between a target phenotype and genetic features. A feature represents a single measurement, for example the expression level of a specific gene. Supervised learning, also known as classification, derives some rules between input features and a target class, whereas unsupervised methods look for some structure inherent to the input data i.e. clusters. Classification methods can be further divided into linear and non-linear models. Linear methods separate the input samples by a linear decision boundary, but, in contrast to non-linear methods, they cannot take interactions between features into account. However, they provide a direct way to interpret the contributions of the individual features to the classification. This is particularly important in biological settings, where high-throughput assays can probe hundreds of thousands of features at the same. In addition, the analysis of such high-dimensional data sets is challenging, because classifier can easily be overfitted. An overfitted classifier has a good fit with the sample data but a poor fit for unseen samples. Methods, which only select a few input features as relevant for the classification often have superior generalization performance (Hastie et al. 2009).

Figure 1.3: Maximum margin hyperplanes for classification: H_1 does not separate the two point clouds. H_2 does, but H_3 is the separating hyperplane with the largest margin (Creative Commons Attribution-Share Alike 3.0 Unported) (Weinberg 2012).

Support vector machines We heavily relied on support vector machines (SVM) in our studies. SVMs are geometric classifiers. They are trained by finding a hyperplane that separates the phenotype-positive and phenotype-negative class with the largest possible margin. The margin is defined by the distance between the closest point of the positive and the negative class to the hyperplane (Figure 1.3). To accomodate cases where the problem is not linearly separable, the softmargin SVM allows samples of the positive class to lie on the other side of the margin, i.e. it seeks a trade-off between a large margin and placing a small number of samples on the wrong side of the margin (Boser et al. 1992). In particular, we used a L1-regularized L2-loss SVM, which is a linear SVM. L1 regularization allows to shrink the number of non-zero weights given to individual features, enabling sparse models (Fan et al. 2008).

Logistic regression We further made use of the logistic regression classification method in our genotype-phenotype association studies. Logistic regression is also a linear classifier, but, in contrast to SVMs, it is a probabilistic classifier and models the posterior probabilities of the phenotype-positive and phenotypenegative classes as linear functions. In practice logistic regression has similar generalization performance as the SVM and will always find the optimal hyperplane in the linear separable case. Samples classified with a logistic regression classifier will receive an actual probability to belong to the positive or negative class, which provides a degree of certainty about the classification decision (Hastie et al. 2009). In contrast, SVM output would need first to be transformed into a probability distribution over the two classes using, e.g. Platt's scaling (Platt 1999). Again, we used a L1-regularized version of the classifier to obtain sparse models (Fan et al. 2008).

1.6 Outline

This thesis is a cumulative work consisting of a series of scientific articles I coauthored during my PhD project. In Chapter 1, I place the individual contributions of this dissertation into a larger context. Chapter 2 provides my personal bibliography including the articles presented in this thesis as well as further publications I co-authored, with a short description of my individual contributions. Chapter 3 describes a method for finding the genetic determinants of plant biomass degradation, published as a peer-reviewed article at the journal Biotechnology for Biofuels. Chapter 4 presents a method for multi-trait prediction from microbial genomes, published as a pre-print, which is at the time of writing this thesis under review. Both articles are identical to the published versions, but were typeset to allow a uniform appearance. The orginal versions of the articles are also provided in the appendix. Chapter 5 describes an approach to predicting antibiotic resistance of *Pseudmonas aeruginosa* and is currently in preparation for publishing. I conclude with a short synopsis of this dissertation.

The genomic components of plant biomass degradation Microbial plant biomass degradation is a phenotype of considerable biotechnological interest. Bacteria efficiently break down complex plant carbohydrates into simpler sugars by enzymes encoded in their genomes. These enzymes can be employed in biotechnological conversion of plant material into biofuels, which have lower greenhouse emissions than climate-damaging fossil fuels (Rubin 2008). We used a L1-regularized L2-penalized SVM to learn the plant biomass degradation phenotype based on the profiles of protein families of a large and manually curated set of plant biomass degraders (Chapter 3). From the classifier, using feature selection, we could identify Pfam and CAZy families known to be implicated with plant biomass degradation, but also uncharacterized protein families that represent potential new carbohydrate-active enzymes (CAZyme). We also employed our genomic model of lignocellulose degradation for assessing the degradative capabilities encoded in the draft genomes of uncultured bacteria from a cow rumen metagenome (Hess et al. 2011). Our model identified Bacteroidetes-affiliated phylotypes to be involved in plant biomass degradation, which was supported by biochemical analysis of enzymatically active CAZymes (Naas et al. 2014).

In a complementary approach, we identified functional modules associated with plant biomass degradation, using latent Dirichlet allocation (Konietzny, P. B. Pope, et al. 2014). Each of five modules detected in this way contained protein families related to the degradation of different components of plant material such as cellulose, hemicellulose and pectin, but also covered the building blocks of the cellulosome – a multi-enzyme complex produced by many plant biomass degrading microbes. Using these modules, we could identify a considerable number of previously characterized plant biomass degradation associated operons – genomic units, that typically contain proteins with related functions – in genomes of known lignocellulose degraders. Importantly, we also detected many uncharacterized gene clusters that contain both known CAZy families, as well as hypothetical proteins. Several of such clusters have become targets for on-going biochemical characterization studies in the lab of our collaborator Phillipp B. Pope at the Norwegian University of Life Sciences.

Traitar, the microbial trait analyzer Since our approach to determine the genetic determinants of an individual phenotypes proved to be very accurate for the plant biomass degradation phenotype, we decided to devise a fully automated method for multi-trait prediction that only requires as input a microbial genome sequence (Chapter 4). Previous studies have attempted to predict phenotypes from the phyletic patterns of protein families, but only for a limited number of phenotypes (Feldbauer et al. 2015; Kastenmuller et al. 2009; Konietzny, P. B. Pope, et al. 2014; Kastenmuller et al. 2009; Clark et al. 2007; Lingner et al. 2010;

Weimann, Trukhina, et al. 2013). PICA – originally developed by Beiko *et al.* and extended by Feldbauer *et al.* – currently is the only available software for microbial genotype-phenotype inference, but it requires as input microbial genomes with a pre-computed annotation of COGs and only supports the prediction of eleven traits. In comparison, 67 traits are currently available in Traitar (Feldbauer et al. 2015; MacDonald et al. 2010). As before, we used regularized SVMs as phenotype classifiers, but Traitar also includes a new prediction mode that provides classifiers trained by incorporating a statistical model of protein family evolution. Our software was trained and rigorously evaluated on phenotype data from a manually curated database, as well as on a large data set compiled from a microbiological encyclopedia (Goodfellow et al. 2012; Berger 2005). Traitar can reliably predict a total of 67 phenotypes, including 60 entirely novel ones. Additionally, the phenotype classifiers in Traitar represent a large resource of candidate links between protein families and phenotypes, and Traitar also suggests associations between phenotypes and protein families for newly sequenced genomes.

Antibiotic resistance prediction in *Pseudomonas aeruignosa* Multidrug resistance of human pathogens causes many deaths worldwide (Wright 2012). *Pseudomonas aeruginosa* is a particularly dangerous bacterium, due to high levels of virulence and natural antibiotic resistance (Rumbaugh 2014). In our study, we systematically associated genomic features of several hundred clinical isolates of P. aeruginosa with resistance to five commonly administered antibiotics (Chapter 5). Notably, and different from the approaches presented before, the clinical isolates stem from the same bacterial species and not from a diverse set of taxa. We trained logistic regression classifiers on the transcriptional and mutational profiles derived from RNAseq data. Both, mutational and transcriptional profiles allowed to train classifiers with high accuracies. Using these classifiers, we discovered known resistance markers and several uncharacterized proteins, which are currently experimentally characterized in the lab of our collaborator and might provide further insights into the resistance mechanisms. Our approach showed that genotype-phenotype association studies could soon reveal the genetic markers required to establish cheap and rapid antibiotic resistance profiling for treating P. aeruginosa infections.

CHAPTER 2

Personal bibliography

Publications of the thesis

- A. Weimann, K. Mooren, J. Frank, P. B. Pope, A. Bremges, and A. C. McHardy (2016b). "From genomes to phenotypes: Traitar, the microbial trait analyzer". *bioRxiv*, p. 043315. DOI: 10.1101/043315 (published as pre-print at the time of writing, but has since been published in the journal mSystems (Weimann et al. 2016a))
- A. Weimann, Y. Trukhina, P. B. Pope, S. G. Konietzny, and A. C. McHardy (2013). "De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes". *Biotechnology for Biofuels* 6.24. DOI: 10.1186/1754-6834-6-24.

Other publications

S. Hacquard, B. Kracher, K. Hiruma, P. C. Münch, R. Garrido-Oter, M. R. Thon, A. Weimann, U. Damm, J.-F. Dallery, M. Hainaut, B. Henrissat, O. Lespinet, S. Sacristán, E. Ver Loren van Themaat, E. Kemen, A. C.

McHardy, P. Schulze-Lefert, and R. J. O'Connell (2016). "Survival tradeoffs in plant roots during colonization by closely related beneficial and pathogenic fungi". *Nature Communications* 7, p. 11362. DOI: 10.1038/ ncomms11362.

I conducted an ancestral reconstruction of the gene gain and loss events based on the genomes of species in the *Colletotrichum* lineage and ran functional enrichment tests that revealed significantly altered functional categories across the species. I prepared figures and text describing my analyses and read and commented the full length paper.

- D. Bulgarelli, R. Garrido-Oter, P. C. Münch, A. Weiman, J. Dröge, Y. Pan, A. C. McHardy, and P. Schulze-Lefert (2015). "Structure and function of the bacterial root microbiota in wild and domesticated barley". *Cell Host* & Microbe 17.3, pp. 392–403. DOI: 10.1016/j.chom.2015.01.011.
 I was responsible for the functional annotation of the barley metagenome data and provided assistance in the dN/dS ratio analysis. I prepared text describing my analyses and read and commented the full length paper.
- S. G. A. Konietzny, P. B. Pope, A. Weimann, and A. C. McHardy (2014). "Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders". *Biotechnology for Biofuels* 7.124. DOI: 10.1186/s13068-014-0124-8.

I curated a collection of sequenced microbial plant biomass degraders and non-degraders. I implemented a functional annotation pipeline for the uniform annotation of the dataset. I prepared text describing my analyses and read and commented the full length paper.
chapter 3

Predicting the genomic components and capabilities for plant biomass degradation

Status	published
Journal	Biotechnology for Biofuels (Impact factor 6.44)
Citation	A. Weimann, Y. Trukhina, P. B. Pope, S. Konietzny and A. C.
	McHardy (2011). De novo prediction of the genomic compo-
	nents and capabilities for microbial plant biomass degradation
	from (meta-) genomes <i>Biotechnology for Biofuels 2013</i> , 6 : 24.
URL	http://www.biotechnologyforbiofuels.com/content/6/1/24.
Own contribution	38%
	Wrote the manuscript (with YT, ACM, PBP)
	Conceived and designed the experiments (with YT, ACM)
	Implemented and conducted the analyses
	Curated the phenotype labels (with SGAK)
	Inferred Pfam and CAZy annotation of the training genomes
	and cow rumem bins (with SGAK)
	Interpreted the classification results, the Pfam and CAZy fam-
	ilies relevance for the phenotype, etc. (with ACM, YT, PBP)

3.1 Abstract

3.1.1 Background

Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data.

3.1.2 Results

We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes.

3.1.3 Conclusions

Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes.

3.2 Background

Lignocellulosic biomass is the primary component of all plants and one of the most abundant organic compounds on earth. It is a renewable, geographically distributed and a source of sugars, which can subsequently be converted into biofuels with low greenhouse gas emissions, such as ethanol. Chemically, it primarily consists of cellulose, hemicellulose and lignin. Saccharification – the process of degrading lignocellulose into the individual component sugars – is of considerable biotechnological interest. Several mechanical and chemical procedures for saccharification have been established; however, all are relatively expensive, slow and inefficient (Rubin 2008). An alternative approach is realized in nature by various microorganisms, which use enzyme-driven lignocellulose degradation to generate sugars as sources of carbon and energy. The search for novel enzymes allowing an efficient breakdown of plant biomass has therefore attracted considerable interest (Kaylen et al. 2000; J. Lee 1997; Mitchell 1998; Wheals et al. 1999). In particular, the discovery of novel cellulases for saccharification is considered crucial in this context (Himmel et al. 2007). However, the complexity of the underlying biological mechanisms and the lack of robust enzymes that can be economically produced in larger quantities currently still prevent industrial application.

For some lignocellulose-degrading species, carbohydrate-active enzymes (CAZymes) and protein domains implicated in lignocellulose degradation are well known. Many of these have been recognized by physiological and biochemical tests as being relevant for the biochemical process of cellulose degradation itself, such as the enzymes of the glycoside hydrolase (GH) families GH6 and GH9 and the endoglucanase-containing family GH5. Two well-studied paradigms are currently known for microbial cellulose degradation: The 'free-enzyme system' is realized in most aerobic microbes and entails secretion of a set of cellulases to the outside of the cell. In anaerobic microorganisms large multi-enzyme complexes, known as cellulosomes, are assembled on the cell surface and catalyze degradation. In both cases, the complete hydrolysis of cellulose requires endoglucanases (GH5 and GH9), which are believed to target non-crystalline regions, and exo-acting cellobiohydrolases, which attack crystalline structures from either the reducing (GH7 and GH48) or non-reducing (GH6) end of the beta-glucan chain. However, in the genomes of some plant biomass-degrading species, homologs of such enzymes have not been found. Recent genome analyses of the lignocellulose-degrading microorganisms, such as the aerobe *Cytophaga hutchinsonii* (Xie et al. 2007), the anaerobe *Fibrobacter succinogenes* (Brumm, Mead, et al. 2010; Morrison et al. 2009) and the extreme thermophile anaerobe *Dictyoglomus turgidum* (Brumm, Hermanson, et al. 2010) have revealed only GH5 and GH9 endoglucanases. Genes encoding exo-acting cellobiohydrolases (GH6 and GH48) and cellulosome structures (dockerins and cohesins) are absent.

Metagenomics offers the possibility of studying the genetic material of difficultto-culture (i.e. uncultured) species within microbial communities with the capability to degrade plant biomass. Recent metagenome studies of the gut microbiomes of the wood-degrading higher termites (*Nasutitermes*), the Australian Tammar wallaby (*Macropus eugenii*) (P. Pope et al. 2010; Warnecke et al. 2007) and two studies of the cow rumen metagenome (Brulc et al. 2009; Hess et al. 2011) have revealed new insights into the mechanisms of cellulose degradation in uncultured organisms and microbial communities. Microbial communities of different herbivores have been shown to be dominated by lineages affiliated to the Bacteroidetes and Firmicutes, of which different Bacteroidetes lineages exhibited endoglucanse activity (P. Pope et al. 2010; P. B. Pope, Mackenzie, et al. 2012). Notably, exo-acting families and cellulosomal structures have a low representation or are entirely absent from gut metagenomes sequenced to date. Thus, current knowledge about genes and pathways involved in plant biomass degradation in different species, particularly uncultured microbial ones, is still incomplete.

We describe a method for the *de novo* discovery of protein domains and CAZy families associated with microbial plant biomass degradation from genome and metagenome sequences. It uses protein domain and gene family annotations as input and identifies those domains or gene families, which in concert are most distinctive for the lignocellulose degraders. Among the gene and protein domains identified with our method were known key genes of plant biomass degradation. Additionally, it identified several novel protein domains and gene families as being relevant for the process. These might represent novel leads towards elucidating the mechanisms of plant biomass degradation for the currently less well understood microbial species. Our method furthermore can be used to identify plant

biomass-degrading species from the genomes of cultured or uncultured microbes. Application to draft genomes assembled from the metagenome of a switchgrassadherent microbial community in cow rumen predicted genomes from several Bacteroidales lineages which encode active glycoside hydrolases and a relative to a known plant biomass degrader to represent lignocellulose degraders.

In technical terms, our method selects the most informative features from an ensemble of L1-regularized L2-loss linear Support Vector Machine (SVM) classifiers, trained to distinguish genomes of cellulose-degrading species from non-degrading species based on protein family content. Protein domain annotations are available in public databases and new protein sequences can be rapidly annotated with Hidden Markov Models (HMMs) or - somewhat slower - with BLAST searches of one protein versus the NCBI-nr database (Sayers et al. 2012). Co-occurrence of protein families in the biomass-degrading fraction of samples and an absence of these families within the non-degrading fraction allows the classifier to link these proteins to biomass degradation without requiring sequence homology to known proteins involved in lignocellulose degradation. Classification with SVMs has been previously used successfully for phenotype prediction from genetic variations in genomic data. In Beerenwinkel et al. (Beerenwinkel et al. 2003), support vector regression models were used for predicting phenotypic drug resistance from genotypes. SVM classification was used by Yosef et al. (Yosef et al. 2010) for predicting plasma lipid levels in baboons based on single nucleotide polymorphism data. In Someya et al. (Someya et al. 2010), SVMs were used to predict carbohydratebinding proteins from amino acid sequences. The SVM (Boser et al. 1992; Cortes et al. 1995) is a discriminative learning method that infers, in a supervised fashion, the relationship between input features (such as the distribution of conserved gene clusters or single nucleotide polymorphisms across a set of sequence samples) and a target variable, such as a certain phenotype, from labeled training data. The inferred function is subsequently used to predict the value of this target variable for new data points. This type of method makes no *a priori* assumptions about the problem domain. SVMs can be applied to datasets with millions of input features and have good generalization abilities, in that models inferred from small amounts of training data show good predictive accuracy on novel data. The use of models that include an L1-regularization term favors solutions in which

few features are required for accurate prediction. There are several reasons why sparseness is desirable: the high dimensionality of many real datasets results in great challenges for processing. Many features in these datasets are usually noninformative or noisy, and a sparse classifier can lead to a faster prediction. In some applications, like ours, a small set of relevant features is desirable because it allows direct interpretation of the results.

3.3 Results

We trained an ensemble of SVM classifiers to distinguish between plant biomassdegrading and non-degrading microorganisms based on either Pfam domain or CAZY gene family annotations (see Methods section for the training and evaluation of the SVM classification ensemble). We used a manually curated data set of 104 microbial (meta-)genome sequence samples for this purpose, which included 19 genomes and 3 metagenomes of lignocellulose degraders and 82 genomes of nondegraders (Figure 3.1, Figure 3.2, Additional file 1: Table S1). Fungi are known to use several enzymes for plant biomass degradation for which the corresponding genes are not found in prokaryotic genomes and vice versa, while other genes are shared by prokaryotic and eukaryotic degraders. To investigate similarities and differences detectable with our method, we included the genome of lignocellulose degrading fungus *Postia placenta* into our analysis. After training, we identified the most distinctive protein domains and CAZy families of plant biomass degraders from the resulting models. We compared these protein domains and gene families with known plant biomass degradation genes. We furthermore applied our method to identify plant biomass degraders among 15 draft genomes from the metagenome of a microbial community adherent to switch grass in cow rumen.

3.3.1 Distinctive Pfam domains of microbial plant biomass degraders

For the training of a classifier which distinguishes between plant biomassdegrading and non-degrading microorganisms we used Pfam annotations of 101 microbial genomes and two metagenomes. This included metagenomes of mi**Table 3.1:** Shown are species which were misclassified with the $eSVM_{CAZY,B}$ and the $eSVM_{bPFAM}$ classifiers. Contrary to previous beliefs (Ivanova et al. 2011), recent literature indicates in agreement with our predictions that *T. curvata* is a non-degrader. Furthermore, recent evidence supports that *A. mirum* is a lignocellulose degrader, which has not been previously described (Anderson et al. 2012).

	${ m eSVM_{bPFAM}}$	$eSVM_{CAZY_B}$
False negatives	Postia placenta Mad-698-R Xylanimonas cellulosilytica DSM 15894 Thermomonospora curvata DSM 43183	Thermonospora curvata DSM 43183
False positives	Actinosynnema mirum 101 Arthrobacter aurescens TC1 Thermotoga lettingae TMO	Actinosynnema mirum 101

crobial communities from the gut of a wood-degrading higher termite and from the foregut of the Australian Tammar Wallaby as examples for plant biomassdegrading communities. Furthermore, 19 genomes of microbial lignocellulose degraders were included – of the phyla Firmicutes (7 isolate genome sequences), Actinobacteria (5), Proteobacteria (3), Bacteroidetes (1), Fibrobacteres (1), Dictyoglomi (1) and Basidiomycota (1). Eighty-two microbial genomes annotated to not possess the capability to degrade lignocellulose were used as examples of non-lignocellulose-degrading microbial species (Additional file 1: Table S1).

We assessed the value of information about the presence or absence of protein domains for distinguishing lignocellulose degraders from non-degraders. With the respective classifier, $eSVM_{bPFAM}$, each microbial (meta-)genome sequence was represented by a feature vector with the features indicating the presence or absence of Pfam domains (see methods). The nested cross-validation macro-accuracy of $eSVM_{bPFAM}$ in distinguishing plant biomass-degrading from non-degrading microorganisms was 0.91. This corresponds to 94% (97 of 103) of the (meta-)genome sequences being classified correctly. Only three of the 21 cellulose-degrading samples and three of the non-degraders were misclassified (Table 3.1). Among these were four Actinobacteria and one genome affiliated with the Basidiomycota and Theromotogae each.

We identified the Pfam domains with the greatest importance for assignment to the lignocellulose-degrading class by $eSVM_{bPFAM}$ (Figure 3.1; see Methods for the feature selection algorithm). Among these are several protein domains known

to be relevant for plant biomass degradation. One of them is the GH5 family, which is present in all of the plant biomass-degrading samples. Almost all activities determined within this family are relevant to plant biomass degradation. Because of its functional diversity, a subfamily classification of the GH5 family was recently proposed (Aspeborg et al. 2012). The carbohydrate-binding modules CBM_6 and CBM_4_9 were also selected. Both families are Type B carbohydratebinding modules (CBMs), which exhibit a wide range of specificities, recognizing single glycan chains comprising hemicellulose (xylans, mannans, galactans and glucans of mixed linkages) and/or non-crystalline cellulose (Boraston et al. 2004). Type A CBMs (e.g. CBM2 and CBM3), which are more commonly associated with binding to insoluble, highly crystalline cellulose, were not identified as relevant by eSVM_{bPFAM}. Furthermore, numerous enzymes that degrade non-cellulosic plant structural polysaccharides were identified, including those that attack the backbone and side chains of hemicellulosic polysaccharides. Examples include the GH10 xylanases and GH26 mannanases. Additionally, enzymes that generally display specificity for oligosaccharides were selected, including GH39 β -xylosidases and GH3 enzymes.

We subsequently trained a classifier - $eSVM_{fPFAM}$ - with a weighted representation of Pfam domain frequencies for the same data set. The macro-accuracy of $eSVM_{fPFAM}$ was 0.84; lower than that of the $eSVM_{bPFAM}$; with nine misclassified samples (4 Actinobacteria, 2 Bacteroidetes, 1 Basidiomycota, 1 Thermotogae phyla and the Tammar Wallaby metagenome). Again, we determined the most relevant protein domains for identifying a plant biomass-degrading sequence sample from the models by feature selection. Among the most important protein families were, as before, GH5, GH10 and GH88 (PF07221: N-acylglucosamine 2-epimerase) (Figure 3.1).

GH6, GH67 and CE4 acetyl xylan esterases ("accessory enzymes" that contribute towards complete hydrolysis of xylan) were only relevant for prediction with the $eSVM_{fPFAM}$ classifier. Additionally, both models specified protein domains not commonly associated with plant biomass degradation as being relevant for assignment, such as the lipoproteins DUF4352 and PF00877 (NlpC/P60 family) and binding domains PF10509 (galactose-binding signature domain) and PF03793 (PASTA domain) (Figure 3.1).

Figure 3.1: Frequencies of the selected Pfam families in the individual genomes and metagenomes. The data for each entry are rescaled by the total number of Pfam domains annotated to the microbial genome or metagenome. The color scale from grey to black indicates domain families that are present in low to high amounts, respectively. White indicates absent protein domains. The signs "+" and "-" indicate whether a protein domain was chosen in the respective experiment.

3.3.2 Distinctive CAZy families of microbial plant biomass degraders

We searched for distinctive CAZy families of microbial plant biomass degraders with our method. CAZy families include glycoside hydrolases (GH), carbohydrate-binding modules (CBM), glycosyltransferases (GT), polysaccharide lyases (PL) and carbohydrate esterases (CE). The annotations from the CAZy database comprised 64 genomes of non-lignocellulose-degrading species and 16 genomes of lignocellulose-degraders. There were no CAZy annotations available for the remaining genomes. In addition, we included the metagenomes of the gut microbiomes of the Tammar wallaby (TW), the wood-degrading higher termite and of the cow rumen microbiome (Additional file 1: Table S1). We evaluated the value of information about the presence or absence of CAZy domains, or of their relative frequencies for identification of lignocellulose-degrading microbial (meta-)genomes in the following experiments:

- 1. By training of the classifiers $eSVM_{CAZY_A}$ (presence/absence) and $eSVM_{CAZY_A}$ (counts), based on genome annotations with all CAZy families.
- 2. By training of the classifiers $eSVM_{CAZY,B}$ (presence/absence) and $eSVM_{CAZY,b}$ (counts), based on the annotations of the genomes and the TW sample with all CAZy families, except for the GT family members, which were not annotated for the TW sample.
- 3. By training of the classifiers $eSVM_{CAZY_C}$ (presence/absence) and $eSVM_{CAZY_C}$ (counts) with the entire data set based on GH family and CBM annotations, as these were the only ones available for the three metagenomes.

The macro-accuracy of these classifiers ranged from 0.87 to 0.96, similar to the Pfam-domain-based models (Table 3.2). Notably, almost exclusively Actinobacteria were misclassified by the $eSVM_{CAZY}$ classifiers, except for the Firmicute *Caldicellulosiruptor saccharolyticus*. The best classification results were obtained with the presence-absence information for all CAZy families except for the GT

Table 3.2: L1-regularized SVMs were trained with Pfam domain or CAZY family (meta-)genome annotations. Capital letters denote classifiers trained based on the presence or absence of CAZy families and small letters indicate classifiers trained based on the relative abundances of CAZy families in annotations. Abbreviations "A", "a"," B", "b", "C", "c" denote the following: Classifiers "A", "a" were trained with annotations of all CAZy families for 16 microbial genomes; Classifiers "B", "b" were trained with annotations for all CAZy families, except for the GT family members (which were not annotated for the Tammar Wallaby metagenome), for 16 genomes and the TW metagenome of plant biomass degraders; Classifiers "C", "c" were trained with annotations for the GH families and CBMs for the 16 microbial genomes and three metagenomes of plant biomass degraders, as only these were annotated for the metagenomes. All CAZy-based classifiers were trained with available annotations for 64 genomes of non-biomass degraders. The Pfam-based classifiers were trained with 21 (meta-)genomes of biomass-degraders and 82 microbial genomes of non-degraders. For more details on the experimental set-up and the evaluation measures shown see the Methods section on performance evaluation.

	Presence/ab- sence of Pfam do-	Weighted Pfam do- main repre-	Presence/absence CAZy family representation			Weighted CAZy family represen- tation		
	mains	sentation	Α	в	С	a	b	с
nCV macro-accuracy	0.91	0.84	0.90	0.96	0.94	0.91	0.93	0.87
nCV recall	0.86	0.73	0.81	0.94	0.90	0.88	0.88	0.79
nCV true negative rate	0.96	0.96	0.98	0.98	0.98	0.95	0.98	0.95

families of the microbial genomes and the TW sample. In this setting only two species (*Thermomonospora curvata* and *Actinosynnema mirum*) were misclassified. These species remained misclassified with all six classifiers.

Using feature selection, we determined the CAZy families from the six $eSVM_{CAZy}$ classifiers that are most relevant for identifying microbial cellulose-degraders. Many of these GH families and CBMs are present in all (meta-)genomes (Figure 3.2).

This analysis identified further gene families known to be relevant for plant biomass degradation. Among them are cellulase-containing families (GH5, GH6, GH12, GH44, GH74), hemicellulase-containing families (GH10, GH11, GH26, GH55, GH81, GH115), families with known oligosaccharide/side-chain-degrading activities (GH43, GH65, GH67, GH95) and several CBMs (CBM3, -4, -6, -9, -10, -16, -22, -56). Several of these (GH6, GH11, GH44, GH67, GH74, CBM4, CBM6, CBM9) were consistently identified by at least half of the six classifiers as distinctive for plant biomass degraders. These might be considered signature genes of

Figure 3.2: Frequencies of selected glycoside hydrolase (GH) families and carbohydrate binding modules (CBMs) in the (meta-) genome sequences. The data for each entry are rescaled by the total number of GH and CBM domains annotated to the microbial genome or metagenome. The coloring from black to grey indicates domains that are present in high to low amounts, respectively. White indicates absent domain families ("A", "a", "B", "b", "C", "c" as described in Table 3.2).

the plant biomass-degrading microorganisms we analyzed. Additionally, several GT, PL and CE domains were identified as relevant ($eSVM_{CAZY_A}$: PL1, PL11 and CE5, " $eSVM_{CAZY_B}$: CE5; $eSVM_{CAZY_a}$: GT39, PL1 and CE2, $eSVM_{CAZY_b}$: none). These CAZy families, as well as GH115 and CBM56, are not included in Figure 3.2, as they are not annotated for all sequences.

3.3.3 Identification of plant biomass degraders from a cow rumen metagenome

We used our method to predict the plant biomass-degrading capabilities for 15 draft genomes of uncultured microbes reconstructed from the metagenome of a microbial community adherent to switchgrass in cow rumen (Hess et al. 2011) (see Methods for the classification with an ensemble of SVM classifiers). The draft genomes represent genomes with more than 50% of the sequence reconstructed by taxonomic binning of the metagenome sample. The microbial community adherent to switch grass is likely to be enriched with plant biomass degraders, as it was found to differ from the rumen fluid community in its taxonomic composition and degradation of switch grass after incubation in cow rumen had occurred. For identification of plant biomass-degrading microbes, we classified each draft genome individually with the eSVM_{bPFAM} and eSVM_{CAZY_B} models, which had the highest macro-accuracy based on Pfam domain or CAZy family annotations, respectively. The eSVM_{bPFAM} classifier assigned seven of the draft genomes to plant biomass degraders (Table 3.4). One of these, genome APb, was found by 16S rRNA analysis to be related to the fibrolytic species Butyrivibrio fibrisolvens. Four others (AC2a, AGa, AJ and AH) are of the order of Bacteroidales, and include all but one draft genomes affiliated to the Bacteroidales. The 6^{th} and 7^{th} predicted degrader, represented by genome AIa and AWa, belong to the Clostridiales, like genome APb. The eSVM_{CAZY B} classifier also assigned five of these genomes to the plant biomass degraders. Additionally it classified genome AH as plant biomass-degrading, while being ambiguous in the assignment of AFa (Table 3.4). To validate these predictions, we searched the draft genomes for genes encoding 51 enzymatically active glycoside hydrolases characterized from the same rumen dataset (for the results of these experiments see Figure 3 in Hess

et al. (Hess et al. 2011). Genomes AGa, AC2a, AJ and AIa were all linked to different enzymes of varying specificities (Table 3.4). AC2a was linked to cellulose degradation, specifically to a carboxymethyl cellulose (CMC)-degrading GH5 endoglucanase as well as GH9 enzyme capable of degrading insoluble cellulosic substrates such as Avicel(**R**). AIa demonstrated capabilities towards xylan and soluble cellulosic substrates with affiliations to four GH10 xylanases. Both AGaand AJ demonstrated broader substrate versatility and were linked to enzymes with capabilities towards cellulosic substrates CMC and Avicel(**R**) (GH5, GH9 and GH26), hemicellulosic substrates lichenan (β -1,3, β -1,4 β -glucan) and xylan (GH5, GH9 and GH10), as well as the natural feedstocks miscanthus and switchgrass (GH5 and GH9). Importantly, no carbohydrate-active enzymes were affiliated to draft genomes that were predicted to not possess plant biomassdegrading capabilities (Table 3.4). Overall, assignments were largely consistent between the two classifiers and supporting evidence for the capability to degrade plant biomass was found for five of the predicted degraders.

	AC2a	AGa	AIa-2	AJ	APb	AFa	AH	AWa	ADa	AMa	AN	$\mathbf{A}\mathbf{Q}$	AS1	ATa	BOa
eSVM _{CAZY_B} eSVM _{bPFAM} CMC	++ ++ GH5 (TW-33)	++ ++ GH5 (TW-40)	++ ++ GH10 (TW-34)	+ ++ GH5 (TW-39) GH26 (TW-10) GH10 (TW-8)	++ ++	++ -	0 ++	 +							
XYL		GH5 (MH-2) GH10 (TW-25)	GH10 (TW-30) GH10 (TW-31) GH10 (TW-37)	GH10 (TW-8)											
SWG		GH5 (TW-40)													
MIS	GH9 (TW-64)	GH5 (MH-2) GH5 (TW-40) GH5 (MH-2) CH9 (TW 50)		GH5 (TW-39)											
AVI	GH9 (TW-64)	GH5 (TW-50) GH5 (TW-40) GH5 (MH-2) GH9 (TW-50)		GH5 (TW-39)											
LIC		GH5 (TW-40) GH5 (MH-2) GH9 (TW-50)		GH5 (TW-39)											

Table 3.4: Genome reconstructions from the metagenome of a microbial community adherent to switchgrass in the cow rumen were obtained by taxonomic binning of assembled sequences in the original study. Symbols depict the prediction outcome of a voting committee of the 5 eSVM_{CAZY_B} and the eSVM_{bPFAM} classifiers with the best macro-accuracy (see text for the description of the classifiers). ++: genome classified as plant biomass degrader by all classifiers; +: genome classified as plant biomass degrader by 4 out of 5 classifiers; 0: ambiguous prediction; -: genome classified as not plant biomass degrader by 4 out of 5 classifiers; --: genome classified as not plant biomass degrader by all classifiers. For every draft genome, the presence of genes encoding glycoside hydrolases with verified enzymatic activity for different substrates in this study (Hess et al. 2011) is indicated. The genome and substrate names correspond to those of Figure 3 and Table S6 of the study.

Hydrolytic activity detected on:

(CMC) 1% (w/v) carboxymethyl cellulose agar.

(XYL) 1% (w/v) Xylan.

(SWG) 1% (w/v) IL-Switchgrass.

(MIS) 1% (w/v) IL-Miscanthus.

(AVI) 1% (w/v) IL-Avicel.

3.3.4 Timing experiments

Our method uses annotations with Pfam domains or CAZy families as input. Generating these by similarity-searches with profile HMMs rather than with BLAST provides a better scalability for next-generation sequencing data sets. HMM databases such as dbCAN contain a representation of entire protein families rather than of individual gene family members, which largely decreases the number of entries one has to compare against. For example, searching the ORFs of the *Fibrobacter succinogenes* genome (Suen et al. 2011) for similarities to CAZy families with the dbCAN HMM models took 23 seconds on an $Intel(\hat{R})$ Xeon(R) 1.6 GHz CPU. In comparison, searching for similarities to CAZy families by BLASTing the same set of ORFs against all sequences with CAZy family annotation of the NCBI non-redundant protein database (downloaded from ftp://ftp.ncbi.nih.gov/blast/db/FASTA on April 19th 2011) on the same machine required approximately 1 hour and 55 minutes, a difference of two orders of magnitude. Because of their better scalability and also because they are well-established for identifying protein domains or gene families (Haft et al. 2001; Punta et al. 2012; Schultz et al. 2000), we recommend the use of HMM-based similarities and annotations as input to our method.

3.4 Discussion

We investigated the value of information about the presence-or-absence of CAZy families and Pfam protein domains, as well as information about their relative abundances, for the identification of lignocellulose degraders. Classifiers trained with CAZy family or Pfam domain annotations allowed an accurate identification of plant biomass degraders and determined similar domains and CAZy families as being most distinctive. Many of these are recognized by physiological and biochemical tests as being relevant for the biochemical process of cellulose degradation itself, such as GH6, members of the GH5 family and to a lesser extent GH44 and GH74. In contrast to widely accepted paradigms for microbial cellulose degradation, recent genome analysis of cellulolytic bacteria has identified examples (i.e. *Fibrobacter*) where there is an absence of genes encoding

exo-acting cellobiohydrolases (GH6 and GH48) and cellulosome structures (Wilson 2009). In addition, these exo-acting families and cellulosomal structures have had a low representation or are entirely absent from sequenced gut metagenomes. Our method also finds the exo-acting cellobiohydrolases GH7 and GH48 to be less important. GH7 represents fungal enzymes, so its absence makes sense; how-ever, the lower importance assigned to GH48 is interesting. The role of GH48 is believed to be of high importance, although recent research has raised questions. Olson *et al.* (Olson et al. 2010) have found that a complete solubilization of crystalline cellulose can occur in *Clostridium thermocellum* without the expression of GH48, albeit at significantly lower rates. Furthermore, genome analysis of cellulose-degrading microbes *Cellvibrio japonicus* (DeBoy et al. 2008) and *Saccharophagus degradans* (Taylor et al. 2006) have determined the presence of only non-reducing end enzymes (GH6) and an absence of a reducing end cellobiohydrolase (GH48), suggesting that the latter are not essential for all cellulolytic enzyme systems.

While we have focused on cellulose degradation, our method has also identified enzymes that degrade other plant polysaccharides as being relevant, such as hemicellulose (GH10, GH11, GH12, GH26, GH55, GH81, CE4), pectins (PL1, GH88 and GH43), oligosaccharides (GH3, GH30, GH39, GH43, GH65, GH95) and the side-chains attached to noncellulosic polysaccharides (GH67, GH88, GH106). This was expected, since many cellulose-degrading microbes produce a repertoire of different glycoside hydrolases, lyases and esterases (see, for example, (DeBoy et al. 2008; Taylor et al. 2006)) that target the numerous linkages that are present within different plant polysaccharides, which often exist in tight cross-linked forms within the plant cell wall. The results from our method add further weight to this. The observation of numerous CBMs being relevant in the CAZy analysis also agrees with previous findings that many different CBM–GH combinations are possible in bacteria. Moreover, recent reports have demonstrated that the targeting actions of CBMs have strong proximity effects within cell wall structures, i.e. CBMs directed to a cell wall polysaccharide (e.g. cellulose) other than the target substrate of their appended glycoside hydrolase (e.g. xylanase) can promote enzyme action against the target substrate (e.g. xylan) within the cell wall (Hervé et al. 2010). This provides explanations as to why cellulose-directed CBMs are appended to many non-cellulase cell wall hydrolases.

Several Pfam domains of unknown function (DUFs) or protein domains which have not previously been associated with cellulose degradation are predicted as being relevant. These include transferases (PF01704) and several putative lipoproteins (DUF4352), some of which have predicted binding properties (NlpC/P60 family: PF00877, PASTA domain: PF03793). The functions of these domains in relation to cellulose degradation are not known, but possibilities include binding to cellulose, binding to other components of the cellulolytic machinery or interaction with the cell surface.

Another result of our study are the classifiers for identifying microbial lignocellulose-degraders from genomes of cultured and uncultured microbial species reconstructed from metagenomes. Classification of draft genomes reconstructed from switchgrass-adherent microbes from cow rumen with the most accurate classifiers predicted six or seven of these to represent plant biomass-degrading microbes, including a close relative to the fibrolytic species Butyrivibrio fibrisolvens. Crossreferencing of all draft genomes against a catalogue of enzymatically active glycoside hydrolases provided a degree of method validation and was in majority agreement with our predictions. Four genomes (AGa, AC2a, AJ and AIa) predicted positive were linked to cellulolytic and/or hemicellulolytic enzymes, and importantly no genomes that were predicted negative were linked to carbohydrateactive enzymes from that catalogue of enzymatically active enzymes. Also, no connections to carbohydrate-active enzymes from that catalogue were observed for the three genomes (AFa, AH and AWa) where ambiguous predictions were made. As both draft genomes as well as the catalogue of carbohydrate active enzymes in cow rumen are incomplete, in addition to our training data not covering all plant-biomass-degrading taxa, such ambiguous assignments might be better resolvable with more information in the future.

We trained a previous version of our classifier with the genome of *Methanosarcina* barkeri fusaro incorrectly labeled as a plant biomass degrader, according to information provided by IMG. In cross-validation experiments, our method correctly assigned *M. barkeri* to be a non-plant biomass-degrading species. We labeled *Thermonospora curvata* as a plant biomass degrader and *Actinosynnema mirum* as non-degrader according to information from the literature (see Additional file

1: Table S1). Both were misassigned by all classifiers in the cross-validation experiments. However, in a recent work by Anderson et al. (Anderson et al. 2012) it was shown that in cellulose activity assays A. mirum could degrade various cellulose substrates. In the same study, T. curvata did not show cellulolytic activity against any of these substrates, contrary to previous beliefs (Ivanova et al. 2011). The authors found out that the cellulolytic T. curvata strain was in fact a T. fusca strain. Thus, our method could correctly assign both strains despite of the incorrect phenotypic labeling. The genome of *Postia placenta*, the only fungal plant biomass degrader of our data set was misassigned in the Pfam-based SVM analyses. Fungi possess cellulases not found in prokaryotic species (Duan et al. 2010) and might employ a different mechanism for plant biomass degradation (Lynd et al. 2002; Wilson 2009). Indeed, in our data set, *Postia placenta* is annotated with the cellulase-containing GH5 family and xylanase GH10, but the hemicellulase family GH26 does not occur. Furthermore, the (hemi-)cellulose binding CBM domains CBM6 and CBM_4_9, which were identified as being relevant for assignment to lignocellulose degraders with the eSVM_{bPFAM} classifier, are absent. All of the latter ones, GH26, CBM6 and especially CBM4 and CBM9, occur very rarely in eukaryotic genome annotations, according to the CAZy database.

3.5 Conclusions

We have developed a computational technique for the identification of Pfam protein domains and CAZy families that are distinctive for microbial plant biomass degradation from (meta-)genome sequences and for predicting whether a (draft) genome of cultured or uncultured microorganisms encodes a plant biomass-degrading organism. Our method is based on feature selection from an ensemble of linear L1-regularized SVMs. It is sufficiently accurate to detect errors in phenotype assignments of microbial genomes. However, some microbial species remained misclassified in our analysis, which indicates that further distinctive genes and pathways for plant biomass degradation are currently poorly represented in the data and could therefore not be identified.

To identify a lignocellulose degrader from the currently available data, the presence of a few domains, many of which are already known, is sufficient. The identification of several protein domains which have so far not been associated with microbial plant biomass degradation in the Pfam-based SVM analyses as being relevant may warrant further scrutiny. A difficulty in our study was to generate a sufficiently large and correctly annotated dataset to reach reliable conclusions. This means that the results could probably be further improved in the future, as more sequences and information on plant biomass degraders become available. The method will probably also be suitable for identifying relevant gene and protein families of other phenotypes.

The prediction and subsequent validation of three Bacteroidales genomes to represent cellulose-degrading species demonstrates the value of our technique for the identification of plant biomass degraders from draft genomes from complex microbial communities, where there is an increasing production of genome assemblages for uncultured microbes. These to our knowledge represent the first cellulolytic Bacteroidetes-affiliated lineages described from herbivore gut environments. This finding has the potential to influence future cellulolytic activity investigations within rumen microbiomes, which has for the greater part been attributed to the metabolic capabilities of species affiliated to the bacterial phyla Firmicutes and Fibrobacteres.

3.5.1 Methods

Annotation

We annotated all protein coding sequences of microbial genomes and metagenomes with Pfam protein domains (Pfam-A 26.0) and Carbohydrate-Active Enzymes (CAZymes) (Cantarel et al. 2009; Lynd et al. 2002; Punta et al. 2012; Wilson 2009). The CAZy database contains information on families of structurally related catalytic modules and carbohydrate binding modules (CBMs) or (functional) domains of enzymes that degrade, modify or create glycosidic bonds. HMMs for the Pfam domains were downloaded from the Pfam database. Microbial and metagenomic protein sequences were retrieved from IMG 3.4 and IMG/M 3.3 (Markowitz, I. M. Chen, et al. 2012; Markowitz, Ivanova, et al. 2008). HMMER 3 (Finn, Clements, et al. 2011) with gathering thresholds was used to annotate the samples with Pfam domains. Each Pfam family has a manually defined gathering threshold for the bit score that was set in such a way that there were no false-positives detected. For annotation of protein sequences with CAZy families, the available annotations from the database were used. For annotations not available in the database, HMMs for the CAZy families were downloaded from dbCAN (http://csbl.bmb.uga.edu/dbcan) (Yin et al. 2012). To be considered a valid annotation, matches to Pfam and dbCAN protein domain HMMs in the protein sequences were required to be supported by an e-value of at least 1e-02 and a bit score of at least 25. Additionally, we excluded matches to dbCAN HMMs with an alignment longer than 100 bp that did not exceed an e-value of 1e-04. Multiple matches of one and the same protein sequence against a single Pfam or dbCAN HMM exceeding the thresholds were counted as one annotation.

3.5.2 Phenotype annotation of lignocellulose-degrading and non-degrading microbes

We defined genomes and metagenomes as originating from either lignocellulosedegrading or non-lignocellulose-degrading microbial species based on information provided by IMG/M and in the literature. For every microbial genome and metagenome, we downloaded the genome publication and further available articles (Additional file 1: Table S1). We did not consider genomes for which no publications were available. For cellulose-degrading species annotated in IMG, we verified these assignments based on these publications. We used text search to identify the keywords "cellulose", "cellulase", "carbon source", "plant cell wall" or "polysaccharide" in the publications for non-cellulose-degrading species. We subsequently read all articles that contained these keywords in detail to classify the respective organism as either cellulose-degrading or non-degrading. Genomes that could not be unambiguously classified in this manner were excluded from our study.

3.5.3 Classification with an ensemble of support vector machine classifiers

The SVM is a supervised learning method that can be used for data classification (Boser et al. 1992; Cortes et al. 1995). Here, we use an L1-regularized L2-loss SVM, which solves the following optimization problem for a set of instance-label pairs $(\vec{x_i}, y_i), \vec{x_i} \in \mathbf{R^n}, y_i \in \{-1, +1\}, i = 1, ..., l$:

$$\min_{\vec{w}} \|\vec{w}\|_1 + C \sum_{i=1}^l (max(0, 1 - y_i \vec{w}^T \vec{x_i}))^2,$$

where $C \geq 0$ is a penalty parameter. This choice of the classifier and regularization term results in sparse models, where non-zero components of the weight vector \vec{w} are important for discrimination between the classes (Yaun et al. 2010). SVM classification was performed using the LIBLINEAR package (Fan et al. 2008). The components of $\vec{x_i}$ are either binary valued and represent the presence or absence of protein domains, or continuous-valued and represent the frequency of a particular protein domain or gene family relative to the total number of annotations. All features were normalized by dividing by the sum of all vector entries and subsequently scaled, such that the value of each feature was within the range [0,1]. The label +1 was assigned to genomes and metagenomes of plant biomassdegrading microorganisms, the label -1 to all sequences from non-degrading ones. Classification of the draft genomes assembled from the fiber-adherent microbial community from cow rumen was performed with a voting committee of multiple models with different settings for the penalty parameter C that performed comparably well. A majority vote of the 5 most accurate models was used here obtained in a single cross-validation run with different settings of the penalty parameter C.

3.5.4 Performance evaluation

The assignment accuracy of a classifier was determined with a standard nested cross-validation (nCV) setup (Ruschhaupt et al. 2004). In nCV, an outer cross-validation loop is organized according to the leave-one-out principle: In each step,

one data point is left out. In an inner loop, the optimal parameters for the model (here, the penalty parameter C) are sought, in a second cross-validation experiment with the remaining data points. For determination of the best setting for the penalty parameter C, values for $C = 10^x$, $x = -3.0, -2.5, -2.25, \ldots, 0$ were tried. Values of the parameter C larger than 1 were not tested extensively, as we found that they resulted in models with similar accuracies. This is in agreement with the Liblinear tutorial in the appendix of (Fan et al. 2008) which states that once the parameter C exceeds a certain value, the obtained models have a similar accuracy. The SVM with the penalty parameter setting yielding the best assignment accuracy was used to predict the class membership of the left out data point. The class membership predictions for all data points were used to determine the assignment accuracy of the classifier, based on their agreement with the correct assignments. For this purpose, the result of each leave-one-out experiment was classified as either a true positive (TP – correctly predicted lignocellulose degraders), true negative (TN – correctly predicted non-degraders), false positive (FP – non-degraders predicted to be degraders) or a false negative assignment (FN – degraders predicted to be non-degraders). The recall of the positive class and the true negative rate of the classifier were calculated according to the following equations:

$$Recall = \frac{TP}{TP + FN}$$

True negative rate = $\frac{TN}{TN + FP}$

The average of the recall and the true negative rate, the macro-accuracy, was used as the assignment accuracy to assess the overall performance:

$$MACC = \frac{Recall + True \ negative \ rate}{2}$$

Subsequently, we identified the settings for the penalty parameter C with the best macro-accuracy by leave-one-out cross-validation. The parameter settings resulting in the most accurate models were used to each train a separate model on the entire data set. Prediction of the five best models were combined to form a voting committee and used for the classification of novel sequence samples such as

the partial genome reconstructions from the cow rumen metagenome of switchgrass adherent microbes (see Additional file 2: Table S2 for an evaluation and meta-parameter settings of these ensembles of classifiers).

3.5.5 Feature selection

An SVM model can be represented by a sparse weight vector \vec{w} . The positive and negative components of \vec{w} , the 'feature weights', specify the relative importance of the protein domains or CAZy families for discrimination between plant biomass-degrading and non-plant biomass-degrading microorganisms. To determine the most distinctive features for the positive class (that is, the lignocellulose degraders), we selected all features that received a positive weight in weight vectors of the majority of the five most accurate models. This ensemble of models was also used for classification of the cow rumen draft genomes of uncultured microbes (see Classification with a SVM).

3.6 Supplementary material

The supplementary material can be found in the original version of the paper in the appendix and online at https://doi.org/10.1186/1754-6834-6-24.

CHAPTER 4

From genomes to phenotypes: Traitar, the microbial trait analyzer

Status	published as pre-print at the time of writing, but has since been published in the journal mSystems (Weimann et al. 2016a))						
Journal	bioRxiv						
Citation	 Aaron Weimann, Kyra Mooren, Jeremy Frank, Phillip B Pope, Andreas Bremges, Alice C McHardy (2016). From genomes to phenotypes: Traitar, the microbial trait analyzer. <i>bioRxiv</i>, 043315. 						
URL	http://biorxiv.org/content/early/2016/07/26/043315						
Own contribution	75% Wrate the monuscript (with ACM, AD)						
	Wrote the manuscript (with ACM, AB)						
	Conceived and designed the experiments (with ACM)						
	Implemented the Traitar software and web service						
	Mapping of Bergey and GIDEON species and phenotypes with						
	public strains and genomes (with KM)						
	Implemented and conducted the experiments (with JF, AB)						
	Interpreted the classification results, found biomarkers, etc.						
	(with AB, PBP, ACM)						

4.1 Abstract

The number of sequenced genomes is growing exponentially, profoundly shifting the bottleneck from data generation to genome interpretation. Traits are often used to characterize and distinguish bacteria, and are likely a driving factor in microbial community composition, yet little is known about the traits of most microbes. We describe Traitar, the microbial trait analyzer, which is a fully automated software package for deriving phenotypes from the genome sequence. Traitar provides phenotype classifiers to predict 67 traits related to the use of various substrates as carbon and energy sources, oxygen requirement, morphology, antibiotic susceptibility, proteolysis and enzymatic activities. Furthermore, it suggests protein families associated with the presence of particular phenotypes. Our method uses L1-regularized L2-loss support vector machines for phenotype assignments based on phyletic patterns of protein families and their evolutionary histories across a diverse set of microbial species. We demonstrate reliable phenotype assignment for Traitar to bacterial genomes from 572 species of 8 phyla, also based on incomplete single-cell genomes and simulated draft genomes. We also showcase its application in metagenomics by verifying and complementing a manual metabolic reconstruction of two novel Clostridiales species based on draft genomes recovered from commercial biogas reactors. Traitar is available at https://github.com/hzi-bifo/traitar.

4.2 Introduction

Microbes are often characterized and distinguished by their traits, for instance, in *Bergey's Manual of Systematic Bacteriology* (Goodfellow et al. 2012). A trait or phenotype can vary in complexity; for example, it can refer to the degradation of a specific substrate or the activity of an enzyme inferred in a lab assay, the respiratory mode of an organism, the reaction to Gram staining or antibiotic resistances. Traits are also likely driving factor for microbial community composition (Martiny et al. 2015). Microbial community members with varying metabolic capabilities can aid in waste water treatment, bioremediation of soils and promotion of plant growth (Bai et al., 2015; Narihiro and Sekiguchi, 2007; Olapade and Ronk, 2015); in the cow rumen microbiota, bacterial cellulose degraders influence the ability to process plant biomass material (Hess et al.

2011). In the Tammar wallaby foregut microbiome, the dominant bacterial species is implicated in the lower methane emissions produced by wallaby compared to ruminants (P. Pope et al. 2010).

In addition to the exponential growth of available sequenced microbial genome isolates, metagenome and single cell genome sequencing further contributes to the increasing number of available genomes. For the recovery of genomes from metagenomes (GFMs), computational methods based on e.g. differential read coverage and k-mer usage were developed (Alneberg et al. 2014; Cleary et al. 2015; Gregor et al. 2016; Imelfort et al. 2014; Kang et al. 2015; Nielsen et al. 2014). In addition, single-cell genomics provides another culture-independent analysis technique and also allows, although often fragmented, genome recovery for less abundant taxa in microbial communities (Lasken et al. 2014; Rinke et al. 2013). Together, these developments profoundly shift the analytical bottleneck from data generation to interpretation.

The genotype-phenotype relationships for some microbial traits have been well studied. For instance, bacterial motility is attributed to the proteins of the flagellar apparatus (Macnab 2003). We have recently shown that delineating such relationships from microbial genomes and accompanying phenotype information with statistical learning methods enables the accurate prediction of the plant biomass degradation phenotype and the *de novo* discovery of both known and novel protein families that are relevant for the realization of the plant biomass degradation phenotype (Konietzny, P. B. Pope, et al. 2014; Weimann, Trukhina, et al. 2013). However, a fully automated software framework for prediction of a broad range of traits from only the genome sequence is currently missing. Additionally, horizontal gene transfer, a common phenomenon across bacterial genomes, has not been utilized to improve trait prediction so far. Traits with their causative genes may be transferred from one bacterium to the other (Ochman et al. 2000; Pal et al. 2005) (e.g. for antibiotic resistances (J. L. Martinez 2008)) and the vertically transferred part of a bacterial genome might be unrelated to the traits under investigation (Barker et al. 2005; Harvey et al. 1991; Martiny et al. 2015).

Here we present Traitar, the microbial trait analyzer: an easy-to-use, fully automated software framework for the accurate prediction of currently 67 phenotypes directly from the genome sequence (Figure 4.1).

We used phenotype data from the microbiology section of the Global Infectious Disease and Epidemiology Network (GIDEON) – a resource dedicated to the diagnosis, treatment and teaching of infectious diseases and microbiology (Berger 2005) – for training phenotype classification models on the protein family annotation of a large number

Figure 4.1: Traitar can be used to phenotype microbial community members based on genomes recovered from single-cell sequencing or (metagenomic) environmental shotgun sequencing data or of microbial isolates. Traitar provides classification models based on protein family annotation for a wide variety of different phenotypes related to the use of various substrates as source of carbon and energy for growth, oxygen requirement, morphology, antibiotic susceptibility and enzymatic activity.

of sequenced genomes of microbial isolates (predominantly bacterial pathogens). We investigated the effect of incorporating ancestral protein family gain and losses into the model inference on classification performance, to allow consideration of horizontal gene transfer events in inference of phenotype-related protein families and phenotype classification. We rigorously tested the performance of our software in cross-validation experiments, on further test data sets and for different taxonomic ranks. To test Traitar's applicability beyond the bacteria represented in GIDEON, we subsequently applied it to several hundred bacteria described in Bergey's systematic bacteriology (Goodfellow et al. 2012). We used Traitar to phenotype bacterial single amplified genomes (SAGs) and simulated incomplete genomes to investigate its potential for phenotyping microbial samples with incomplete genome sequences. We characterized two novel Clostridiales species of a biogas reactor community with Traitar, based on their genomes recovered with metagenomics. This verified and complemented a manual metabolic reconstruction. As Traitar furthermore suggests protein families associated with the presence of a particular phenotype, we discuss the protein families Traitar identified for several phenotypes, namely for 'Motility', 'Nitrate to nitrite' conversion and 'L-arabinose' fermentation.

Traitar is implemented in Python 2.7. It is freely available under the open-source GPL 3.0 license at https://github.com/hzi-bifo/traitar and as a Docker container at https://hub.docker.com/r/aweimann/traitar. A Traitar web service can be accessed at https://research.bifo.helmholtz-hzi.de/traitar.

4.3 Results

4.3.1 The Traitar software

We begin with a description of the Traitar software and phenotype classifiers. Traitar predicts the presence or absence of a phenotype, i.e. assigns a phenotype label, for 67 microbial traits to every input sequence sample (Table 4.1, Supplementary Table 1). For each of these traits, Traitar furthermore suggests candidate protein families associated with its realization, which can be subject of experimental follow-up studies.

For phenotype prediction, Traitar uses one of two different classification models. We trained the first classifier – the phypat classifier – on the protein and phenotype presence & absence labels from 234 bacterial species (Methods – Phenotype models). The second classifier – the phypat+PGL classifier – was trained using the same data and additionally information on evolutionary protein family and phenotype gains and losses. The latter were determined using maximum likelihood inference of their ancestral character states on the species phylogeny (Methods – Ancestral protein family and phenotype gains and losses).

The input to Traitar is either a nucleotide sequence FASTA file for every sample, which is run through gene prediction software, or a protein sequence FASTA file. Traitar then annotates the proteins with protein families. Subsequently, it predicts the presence or absence of each of the 67 traits for every input sequence. Note that Traitar doesn't require a phylogenetic tree for the input samples.

Finally, it associates the predicted phenotypes with the protein families that contributed to these predictions (Figure 4.2). A parallel execution of Traitar is supported by GNU parallel (Tange, 2011). The Traitar annotation procedure and the training of the phenotype models are described in more detail below (Methods – Traitar software).

Table 4.1: The 67 traits available in Traitar for phenotyping. We grouped each of these phenotypes into a microbiological or biochemical category.

$Phenotype_{(a)}$	$Category_{(b)}$
Alkaline phosphatase	Enzyme
Beta hemolysis	
Coagulase production	
Lipase	
Nitrate to nitrite	
Nitrite to gas	
Pyrrolidonyl-beta-naphthylamide	
DNase	
Bile-susceptible	Growth
Colistin-Polymyxin susceptible	
Growth at 42°C	
Growth in 6.5% NaCl	
Growth in KCN	
Growth on MacConkey agar	
Growth on ordinary blood agar	
Mucate utilization	
Arginine dihydrolase	Growth: Amino Acid
Indole	
Lysine decarboxylase	
Ornithine decarboxylase	
Acetate utilization	Growth:Carboxylic Acid
Citrate	
Malonate	
Tartrate utilization	
Gas from glucose	Growth:Glucose
Glucose fermenter	
Glucose oxidizer	
Methyl red	

Voges Proskauer	
Cellobiose	Growth:Sugar
D-Mannitol	
D-Mannose	
D-Sorbitol	
D-Xylose	
Esculin hydrolysis	
Glycerol	
Lactose	
L-Arabinose	
L-Rhamnose	
Maltose	
Melibiose	
myo-Inositol	
ONPG (beta galactosidase) _(d)	
Raffinose	
Salicin	
Starch hydrolysis	
Sucrose	
Trehalose	
Urea hydrolysis	
Bacillus or coccobacillus	Morphology
Coccus	
Coccus - clusters or groups predominate	
Coccus - pairs or chains predominate	
Gram negative	
Gram positive	
Motile	
Spore formation	
Yellow pigment	
Aerobe	Oxygen
Anaerobe	
Capnophilic	

Facultative	
Catalase	Oxygen:Enzyme
Oxidase	
Hydrogen sulfide	Product
Casein hydrolysis	Proteolysis
Gelatin hydrolysis	

(a) GIDEON phenotypes with at least 10 presence and 10 absence labels

- (b) Phenotypes assigned to microbiological / biochemical categories
- (c) ONPG: o-Nitrophenyl- β -D-galatopyranosid

Figure 4.2: Work flow of Traitar. Input to the software can be genome sequene samples in nucleotide or amino acid FASTA format. Traitar predicts phenotypes based on pre-computed classification models and provides graphical and tabular output. In the case of nucleotide input, the protein families that are important for the phenotype predictions will be further mapped to the predicted protein-coding genes.

4.3.2 Evaluation

We evaluated the two Traitar classifiers using ten-fold nested cross-validation on 234 bacterial species found in GIDEON (GIDEON I). The determined macro-accuracy (the accuracy balanced over all phenotypes) for the 67 GIDEON phenotypes was 82.6% for the phypat classifier and 85.5% for the phypat+PGL classifier; the accuracy (fraction of correct assignments averaged over all tested samples) for phypat was 88.1%, in comparison to 89.8% for phypat+PGL (Methods – Evaluation metrics; Table 4.2). Notably, Traitar classified 53 phenotypes with more than 80% macro-accuracy and

Table 4.2: We evaluated the Traitar phypat and phypat+PGL phenotype classifiers and a consensus vote of both classifiers for 234 bacteria described in the Global Infectious Disease and Epidemiology Online Network (GIDEON) in a 10-fold nested cross-validation using different evaluation measures (Methods – Evaluation). Subsequently, we tested another 42 bacteria from GIDEON and 296 bacteria described in Bergey's manual of systematic bacteriology for an independent performance assessment of the two classifiers. We only report the overall accuracy for the evaluation of the classifiers on the data from Bergey's, as insufficient phenotype labels (less than 5 with a negative and positive label, respectively) were available for several phenotypes, to enable a comparable macro-accuracy calculation to the other data sets (Supplementary Table 1).

Data set	Classifier	Macro-	Accu-	Recall	Recall
(# bacteria)		accuracy	racy	Phenotype+	Phenotype-
GIDEON I (234)	phypat	82.6	88.1	86.1	91.4
	phypat+PGL	85.5	89.8	87.8	90.9
	consensus	83.0	88.8	82.2	95.4
GIDEON II (42)	Phypat	85.3	87.5	84.9	90.2
	phypat+PGL	86.7	87.9	86.3	89.7
	consensus	85.7	87.2	80.8	93.7
Bergey's (296)	phypat	NA	72.9	74.6	71.2
	phypat+PGL	NA	72.4	74	70.8
	consensus	NA	72.9	66.6	79.2

26 phenotypes with at least 90% macro-accuracy with one of the two classifiers (Figure 4.2, Supplementary Table 2). Phenotypes that could be predicted with very high confidence included the outcome of a 'Methyl red' test, 'Spore formation', oxygen requirement (i.e. 'Anaerobe' and 'Aerobe'), 'Growth on MacConkey agar' or 'Catalase'. Some phenotypes proved to be difficult to predict (60-70% macro-accuracy), which included 'DNAse', 'myo-Inositol' or 'Yellow pigment' and 'Tartrate utilization', regardless of which classifier was used. This might be caused by the relatively small number (<20) of positive (phenotype present) examples that were available.

For an independent assessment of Traitar's classification performance we next tested Traitar on 42 bacterial species that had phenotype information available in GIDEON (GIDEON II), but were not used for learning the phenotype models (The Traitar software – Annotation). For calculation of the macro-accuracy, we considered only phenotypes represented by at least five phenotype-positive and five phenotype-negative bacteria. On these data, Traitar predicted the phenotypes with a macro-accuracy of

Figure 4.3: Macro-accuracy for each phenotype for the Traitar phypat and phypat+PGL phenotype classifiers determined in nested cross-validation on 234 bacterial species described in the Global Infectious Disease and Epidemiology Online Network (Methods – Evaluation metrics, Table 4.1, Supplementary Table 1).

85.3% with the phypat classifier and 86.7% with the phypat+PGL classifier, and accuracies of 87.5% and 87.9%, respectively (Table 4.2). To investigate the performance of Traitar for bacterial genomes from a different data source, we next determined from two volumes of Bergey's Manual of Systematic Bacteriology, namly 'The Proteobacteria' and 'The Firmicutes', the phenotypes of further sequenced bacteria that were not in our GIDEON I and II data sets (Supplementary Table 1, 4). In total, we thus identified phenotypes for another 296 sequenced bacterial species (The Traitar software – Annotation). Also for these bacteria, Traitar performed well but was less reliable than before, with accuracies for the phypat classifier of 72.9% and 72.1% for the phypat+PGL classifier (Table 4.2). This is likely due to the taxonomic differences of bacteria listed in GIDEON and Bergey's and also because most of the bacteria in Bergey's have only draft genomes available for phenotyping.

When combining the predictions of the phypat and phypat+PGL classifiers into a consensus vote, Traitar assigns phenotypes more reliably, while predicting less phenotype labels compared to the individuals classifiers (Table 2). Depending on the use case, Traitar can be used with performance characterized by different trade-offs between the recall of the phenotype-positive and the phenotype-negative classes.

4.3.3 Performance per taxon at different ranks of the taxonomy

We investigated the performance of Traitar across the part of the bacterial tree of life represented in our data set. For this purpose, we evaluated the nested cross-validation performance of the phypat and phypat+PGL classifiers at different ranks of the NCBI taxonomy. For a given GIDEON taxon, we pooled all bacterial species that are descendants of this taxon. Figure 4.4 shows the accuracy estimates projected on the NCBI taxonomy from the domain level down to individual families. Notably, the accuracy of the phypat+PGL (phypat) classifier for the phyla covered by at least five bacterial species showed low variance and was high across all phyla, ranging from 84% (81%) for Actinobacteria over 90% (89%) for Bacteroidetes, 89% (90%) for Proteobacteria, 91% (90%) for Firmicutes to 91% (86%) for Tenericutes.

Figure 4.4: Classification accuracy for each taxon at different ranks of the NCBI taxonomy. For better visualization of names for the internal nodes, the taxon names are displayed on branches leading to the respective taxon node in the tree. The nested cross-validation accuracy obtained with Traitar for 234 bacterial species described in the Global Infectious Disease and Epidemiology Online Network was projected onto the NCBI taxonomy down to the family level. Colored circles at the tree nodes depict the performance of the phypat+PGL classifier (left-hand circles) and the phypat classifier (right-hand circles). The size of the circles reflects the number of species per taxon.

4.3.4 Phenotyping incomplete genomes

GFMs or SAGs are often incomplete and thus we analyzed the effect of missing genome assembly parts onto the performance of Traitar. Rinke *et al.* used a single-cell sequencing approach to analyze poorly characterized parts of the bacterial and archaeal tree of life, the so-called 'microbial dark matter' (Rinke et al. 2013). They pooled 20 SAGs from the candidate phylum Cloacimonetes, formerly known as WWE1, to generate joint – more complete – genome assemblies that had at least a genome-wide average nucleotide identity of 97% and belonged to a single 16S-based operational taxonomic unit, namely *Cloacamonas acidaminovorans (Pelletier et al., 2008)*.

According to our predictions based on the joint assembly of the single-cell genomes, C. acidaminovorans is Gram-negative and is adapted to an anaerobic lifestyle, which agrees with the description by Rinke *et al.* (Figure 4.5). Traitar further predicted 'Arginine dihydrolase' activity, which is in line with the characterization of the species as an amino acid degrader (Rinke et al. 2013). Remarkably, the prediction of a bacil-

lus or coco-bacillus shape agrees with the results of Limam *et al.* (Limam et al. 2014), who used a WWE1-specific probe and characterized the samples with fluorescence *in situ* hybridization. They furthermore report that members of the Cloacimonetes candidate phylum are implicated in anaerobic digestion of cellulose, primarily in early hydrolysis, which is in line with the very limited carbohydrate degradation spectrum found by Traitar.

Subsequently, we compared the predicted phenotypes for the SAGs to the predictions for the joint assembly. The phypat classifier recalled more of the phenotype predictions of the joint assembly based on the SAGs than the phypat+PGL classifier. However, the phypat+PGL classifier made fewer false positive predictions (Figure 4.6 a).

In the next experiment, we inferred phenotypes based on simulated GFMs, by subsampling from the coding sequences of each of the 42 bacterial genomes (GIDEON II). Starting with the complete set of coding sequences we randomly deleted genes from the genomes. For the obtained draft genomes with different degrees of completeness, we re-ran the Traitar classification and computed the accuracy measures, as before. We observed that the average fraction of phenotypes identified (macro-recall for the positive class) of the phypat+PGL classifier dropped more quickly with more missing coding sequences than that of the phypat classifier (Figure 4.6 b). However, at the same time, the recall of the negative class of the phypat+PGL classifier improved with a decreasing number of coding sequences, meaning that fewer but more reliable predictions were made.

Figure 4.5: Single-cell phenotyping with Traitar. We used 20 genome assemblies with varying degrees of completeness from single cells of the Cloacimonetes candidate phylum and a joint assembly for phenotyping with Traitar. Shown is a heatmap of assembly samples vs. phenotypes, which is the standard visualization for phenotype predictions in Traitar. The origin of the phenotype's prediction (Traitar phypat and/or Traitar phypat+PGL classifier) determines the color of the heatmap entries. The sample labels have their genome completeness estimates as suffixes. The colors of the dendrogram indicate similar phenotype distributions across samples, as determined by a hierarchical clustering with SciPy¹.

Overall, the tradeoffs in the recall of the phenotype-positive and the phenotype-negative classes of the two classifiers resulted in a similar overall macro-accuracy across the range of tested genome completeness.

Figure 4.6: Phenotyping simulated draft genomes and single cell genomes. In (a) we used 20 genome assemblies with varying degrees of completeness from single cells of the Cloacimonetes candidate phylum and a joint assembly for phenotyping with the Traitar phypat and the Traitar phypat+PGL classifiers. Shown is the performance of the phenotype prediction vs. the genome completeness of the single cells with respect to the joint assembly. In (b) we simulated draft genomes based on an independent test set of 42 microbial (pan)genomes. The coding sequences of these genomes were down-sampled (10 replications per sampling point) and the resulting simulated draft genomes were used for phenotyping with the Traitar phypat and the Traitar phypat+PGL classifiers. We plotted various performance estimates (mean center values and and s.d. error bars shown) against the protein content completeness.

Thus, depending on the intended usage, a particular classifier can be chosen: we expect that the reliable predictions inferred with the phypat+PGL classifier and the more abundant, but less reliable predictions made with the phypat classifier will complement one another in different use cases for partial genomes recovered from metagenomic data. By analyzing the protein families with assigned weights and the bias terms of the two classifiers, we found the phypat+PGL classifier to base its predictions primarily on the presence of protein families that were typical for the phenotypes. In contrast, the phypat classifier also took typically absent protein families from phenotype-positive genomes into account in its decision. More technically, the positive weights in models of the phypat classifier are balanced out by negative weights, whereas for the phypat+PGL classifier, they are balanced out by the bias term. By down-weighting the bias term for the phypat+PGL classifier by the protein content completeness, we could show that the accuracy of the phypat classifier could be increased over that of the phypat+PGL, regardless of the protein content completeness (data not shown). However, this requires knowledge of the protein content completeness for each genomic sample, which could be indirectly estimated using methods such as checkM (Parks et al. 2015).

4.3.5 Traitar as a resource for gene target discovery

In addition to phenotype assignment, Traitar suggests the protein families relevant for the assignment of a phenotype (Methods – Majority feature selection, Table 4.3). We exemplarily demonstrate this capability here for three phenotypes that are already wellstudied, namely 'Motile', 'Nitrate to nitrite' conversion and 'L-arabinose' metabolism. These phenotypes represent one each from the phenotype categories morphology, enzymatic activity and growth on sugar.

In general, we observed that the protein families important for classification can be seen to be gained and lost jointly with the respective phenotypes within the microbial phylogeny (Figure 4.7). Among the selected Pfam families that are important for classifying the motility phenotype were proteins of the flagellar apparatus and chemotaxis-related proteins (Table 4.3). Motility allows bacteria to colonize their preferred environmental niches. Genetically, it is mainly attributed to the flagellum, which is a molecular motor, and is closely related to chemotaxis, a process that lets bacteria sense chemicals in their surroundings. Motility also plays a role in bacterial pathogenicity, as it enables bacteria to establish and maintain an infection. For example, pathogens can use flagella to adhere to their host and they have been reported to be less virulent if they lack flagella (Josenhans et al. 2002). Of 48 flagellar proteins described in (R. Liu et al. 2007), four proteins (FliS, MotB, FlgD and FliJ) were sufficient for accurate classification of the motility phenotype and were selected by our classifier, as well as FlaE, which was not included in this collection. Flis (PF02561) is a known export chaperone that inhibits early polymerization of the flagellar filament FliC in the cytosol (Lam et al. 2010). MotB (PF13677), part of the membrane proton-channel complex, acts as the stator of the bacterial flagellar motor (Hosking et al. 2006). Traitar also identified further protein families related to chemotaxis, such as CZB (PF13682), a family of chemoreceptor zinc-binding domains found in many bacterial signal transduction proteins involved in chemotaxis and motility (Draper et al. 2011), and the P2 response regulator-binding domain (PF07194). The latter is connected to the chemotaxis kinase CheA and is thought to enhance the phosphorylation signal of the signaling complex (Dutta et al. 1999).

Nitrogen reduction in nitrate to nitrite conversion is an important step of the nitrogen cycle and has a major impact on agriculture and public health. Two types of nitrate reductases are found in bacteria: the membrane-bound Nar and the periplasmic Nap nitrate reductase (Moreno-Vivian et al. 1999), which we found both to be relevant for the classification of the phenotype: we identified all subunits of the Nar complex as being relevant for the 'Nitrate to nitrite' conversion phenotype (i.e. the gamma and delta subunit (PF02665, PF02613)), as well as Fer4_11 (PF13247), which is in the iron–sulfur center of the beta subunit of Nar. The delta subunit is involved in the assembly of the Nar complex and is essential for its stability, but probably is not directly part of it (Pantel et al. 1998). Traitar also identified the Molybdopterin oxido-

reductase Fe4S4 domain (PF04879), which is bound to the alpha subunit of the nitrate

reductase complex (Pantel et al. 1998). Traitor furthermore suggested NapB (PF03892) as relevant, which is a subunit of the periplasmic Nap protein and NapD (PF03927), which is an uncharacterized protein implicated in forming Nap (Moreno-Vivian et al. 1999).

Table 4.3: The most relevant Pfam families for classification of three important phenotypes: 'Nitrate to Nitrite', 'Motility' and 'L-Arabinose'. We ranked the Pfam families with positive weights in the Traitar SVM classifiers by the correlation of the Pfam families with the respective phenotype labels across 234 bacteria described in the Global Infectious Disease and Epidemiology Online Network. Shown are the 10 highest ranking Pfam families along with their descriptions and a description of their phenotype-related function, where we found one.

Accession	Phenotype	Pfam description	Remarks
PF13677	Motile	Membrane MotB of proton-channel complex MotA/MotB	Flagellar protein
PF03963	Motile	Flagellar hook capping protein N-terminal region	Flagellar protein
PF02561	Motile	Flagellar protein FliS	Flagellar protein
PF02050	Motile	Flagellar FliJ protein	Flagellar protein
PF07559	Motile	Flagellar basal body protein FlaE	Flagellar protein
PF13682	Motile	Chemoreceptor zinc-binding domain	Chemotaxis-related
PF03350	Motile	Uncharacterized protein family, UPF0114	
PF05226	Motile	CHASE2 domain	Chemotaxis-related
PF07194	Motile	P2 response regulator binding domain	Chemotaxis-related
PF04982	Motile	HPP family	
PF03927	Nitrate to nitrite	NapD protein	Involved in Nar formation
PF13247	Nitrate to nitrite	4Fe-4S dicluster domain	Iron-sulfur cluster center of the beta subunit of Nar
PF03892	Nitrate to nitrite	Nitrate reductase	Periplasmic Nap subunit
		cytochrome c-type subunit (NapB)	
PF02613	Nitrate to nitrite	Nitrate reductase delta subunit	Nap subunit
PF01127	Nitrate to nitrite	Succinate dehydrogenase/Fumarate reductase transmembrane subunit	
PF01292	Nitrate to nitrite	Prokaryotic cytochrome b561	
PF03459	Nitrate to nitrite	TOBE domain	
PF03824	Nitrate to nitrite	High-affinity nickel transport protein	
PF04879	Nitrate to nitrite	Molybdopterin oxidoreductase Fe4S4 domain	Bound to the alpha subunit of Nar
PF02665	Nitrate to nitrite	Nitrate reductase gamma subunit	Nar subunit
PF11762	L-Arabinose	L-arabinose isomerase C-terminal domain	Catalyzes first reaction in L-arabinose metabolism
PF04295	L-Arabinose	D-galactarate dehydratase $/$	
		Altronate hydrolase, C terminus	
PF13802	L-Arabinose	Galactose mutarotase-like	
PF11941	L-Arabinose	Domain of unknown function (DUF3459)	
PF14310	L-Arabinose	Fibronectin type III-like domain	

PF06964	L-Arabinose	Alpha-L-arabinofuranosidase	Acts on L-arabinose
		C-terminus	side chains in pectins
PF01963	L-Arabinose	TraB family	
PF01614	L-Arabinose	Bacterial transcriptional regulator	
PF06276	L-Arabinose	Ferric iron reductase FhuF-like transporter	
PF04230	L-Arabinose	Polysaccharide pyruvyl transferase	

L-arabinose is major constituent of plant polysaccharides, which is located, for instance, in pectin side chains and is an important microbial carbon source (D. Martinez et al. 2008). Traitar identified the L-arabinose isomerase C-terminal domain (PF11762), which catalyzes the first step in L-arabinose metabolism – the conversion of L-arabinose into L-ribulose (Sa-Nogueira et al. 1997), as being important for realizing the L-arabinose metabolism. It furthermore suggested the C-terminal domain of Alpha-L-arabinofuranosidase (PF06964), which cleaves nonreducing terminal alpha-L-arabinofuranosidic linkages in L-arabinose-containing polysaccharides (Gilead et al. 1995) and is also part of the well-studied L-arabinose operon in *Escherichia coli* (Sa-Nogueira et al. 1997).

4.3.6 Phenotyping biogas reactor population genomes

We used Traitar to phenotype two novel Clostridiales species (unClos_1, unFirm_1) based on their genomic information reconstructed from metagenome samples. These were taken from a commercial biogas reactor operating with municipal waste (Frank et al. 2015). The genomes of unClos_1 and unFirm_1 were estimated to be 91% complete and 60% complete based on contigs ≥ 5 kb, respectively. Traitar predicted unClos_1 to utilize a broader spectrum of carbohydrates than unFirm_1 (Table 4.4). We crossreferenced our predictions with a metabolic reconstruction conducted by Frank et al. (under review; supplementary material). We considered all phenotype predictions that Traitar inferred with either the phypat or the phypat+PGL classifier. The manual reconstruction and predictions inferred with Traitar agreed to a great extent (Table 4.4). Traitar recalled 87.5% (6/7) of the phenotypes inferred via the metabolic reconstruction and also agreed to 81.8% (9/11) on the absent phenotypes. Notable exceptions were that Traitar only found a weak signal for 'D-xylose' utilization. A weak signal means that only a minority of the classifiers in the voting committee assigned these samples to the phenotype-positive class (Methods – Phenotype models). However, the metabolic reconstruction was also inconclusive with respect to xylose fermentation. Furthermore, Traitar only found a weak signal for 'Glucose fermentation' for unFirm_1. Whilst genomic analysis of unFirm_1 revealed the Embden–Meyerhof–Parnas (EMP) pathway, which would suggest glucose fermentation, gene-centric and metaproteomic analysis of this phylotype indicated that the EMP pathway was probably employed in an anabolic direction (gluconeogenesis); therefore unFirm_1 is also unlikely to ferment D-Mannose. This suggests that unFirm_1 is unlikely to ferment sugars and instead metabolizes acetate (also predicted by Traitar, Table 4) via a syntrophic interaction with hydrogen-utilizing methanogens.

Traitar predicted further phenotypes for both species that were not targeted by the manual reconstruction. One of these predictions was an anaerobic lifestyle, which is likely to be accurate, as the genomes were isolated from an anaerobic bioreactor environment. It also predicted them to be Gram-positive, which is probably correct, as the Gram-positive sortase protein family can be found in both genomes.

This is a Gram-positive biomarker (Paterson et al. 2004). Furthermore, all Firmicutes known so far are Gram-positive (Goodfellow et al. 2012). Additionally, Traitar assigned 'Motile' and 'Spore formation' to unFirm_1, based on the presence of several flagellar proteins (e.g. FliM, MotB, FliS and FliJ) and the sporulation proteins CoatF and YunB.

4.4 Discussion

We have developed Traitar, a software framework for predicting phenotypes from the protein family profiles of bacterial genomes. Traitar provides a quick and fully automated way of assigning 67 different phenotypes to bacteria based on the protein family content of their genomes.

Microbial trait prediction from phyletic patterns has been proposed in previous studies for a limited number of phenotypes (Feldbauer et al. 2015; Kastenmuller et al. 2009; Konietzny, P. B. Pope, et al. 2014; Lingner et al. 2010; MacDonald et al. 2010; Weimann, Trukhina, et al. 2013). To our knowledge, the only currently available software for microbial genotype-phenotype inference is PICA, which is based on learning associations of clusters of orthologous genes (Tatusov et al. 2001) with traits (Feldbauer et al. 2015; MacDonald et al. 2010). Recently, PICA was extended by Feldbauer *et al.* for predicting eleven traits overall, optimized for large datasets and tested on incomplete genomes (Feldbauer et al. 2015; MacDonald et al. 2010). Traitar allows prediction of 67 phenotypes, including 60 entirely novel ones. It furthermore includes Table 4.4: Phenotype predictions for two novel Clostridiales species with genomes reconstructed from a commercial biogas reactor metagenome. Traitar output (yes, no, weak) was cross-referenced with phenotypes manually reconstructed based on Kyoto Encyclopedia of Genes and Genomes orthology annotation (Frank *et al.* submitted; supplementary material), which are primarily the fermentation phenotypes of various sugars. We considered all phenotype predictions that Traitar inferred with either the phypat or the phypat+PGL classifier. A weak prediction means that only a minority of the classifiers in the Traitar voting committee assigned this sample to the phenotype-positive class (Traitar phenotype). Table entries colored in red show a difference between the prediction and the reconstruction, whereas green denotes an overlap; yellow is inconclusive.

	$unClos_1$	$unFirm_1$	
Glucose	yes	weak	
Acetate utilization	no	yes	
Mannitol	yes	no	
Starch	no	no	
hydrolysis			
Xylose	weak	no	
L-Arabinose	yes	no	
Capnophilic	yes	no	
Sucrose	yes	no	
D-Mannose	yes	no	
Maltose	yes	no	
Arginine	no	yes	
dihydrolase			

different prediction modes, one based on phyletic patterns, one additionally including a statistical model of protein family evolution for its predictions. Traitar also suggest associations between phenotypes and protein families. For three traits, we showed that several of these associations are to known key families of establishment of a particular trait, and that furthermore candidate families were suggested, that might serve as targets for experimental studies. Some of the phenotypes annotated in GIDEON are specific for the human habitat (such as 'coagulase production' or 'growth on ordinary blood agar') and the genetic underpinnings learned by Traitar could be interesting to study for infection disease research.

In cross-validation experiments with phenotype data from the GIDEON database, we showed that the Traitar phypat classifier has high accuracy in phenotyping bacterial

samples. Considering ancestral protein family gains and losses in the classification, which is implemented in the Traitar phypat+PGL classifier, improves the accuracy compared to prediction from phyletic patterns only, both for individual phenotypes and overall. Barker et al. were first to note the phylogenetic dependence of genomic samples and how this can lead to biased conclusions (Barker et al. 2005). MacDonald et al. selected protein families based on correlations with a phenotype and corrected for the taxonomy (MacDonald et al. 2010). Here we accounted for the evolutionary history of the phenotype and the protein families in the classifier training itself to automatically improve phenotype assignment. We additionally demonstrated the reliability of the performance estimates by phenotyping, with a similar accuracy, an independent test dataset with bacteria described in GIDEON, which we did not use in the cross-validation. Traitar also reliably phenotyped a large and heterogenic collection of bacteria that we extracted from Bergey's Manual of Systematic Bacteriology – mostly with only draft genomes available. We didn't observe any bias towards specific taxa in GIDEON, but some of the phenotypes might be realized with different protein families in taxa that are less well represented indicated by the around 15% - 20% less reliable phenotyping results for bacteria described in Bergey's manual of systematic bacteriology. We expect that the accuracy of the phenotype classification models already available in Traitar will further improve the more data will become available and can be incorporated into its training.

We found that Traitar can provide reliable insights into the metabolic capabilities of microbial community members even from partial genomes, which are very common for genomes recovered from single cells or metagenomes. One obvious limitation being for incomplete genomes, the absence of a phenotype prediction may be due to the absence of the relevant protein families from the input genomes. The analysis of both the SAGs and simulated genomes led us to the same conclusions: the phypat classifier is more suitable for exploratory analysis, as it assigned more phenotypes to incomplete genomes, at the price of more false positive predictions. In contrast, the phypat+PGL classifier assigned fewer phenotypes, but also made fewer false assignments. At the moment, genotype–phenotype inference with Traitar only takes into account the presence and absence of protein families of the bacteria analyzed. This information can be readily computed from the genomic and metagenomic data. Future research could focus also on integration of other 'omics' data to allow even more accurate phenotype assignments. Additionally, expert knowledge of the biochemical pathways that are used in manual metabolic reconstructions, for example, could be integrated as prior knowledge into the model in future studies.

For the phenotyping of novel microbial species, generating a detailed (manual) metabolic reconstruction such as the one by Frank *et al.* (submitted; supplementary material) is time-intensive. Furthermore, such reconstructions are usually focused on specific pathways and are dependent on the research question. This is not an option for studies with 10-50+ genomes, which are becoming more and more common in microbiology (Brown et al. 2015; Hess et al. 2011; MacDonald et al. 2010; Rinke et al. 2013). Traitar thus is likely to be particularly helpful for multi-genome studies. It furthermore may pick up on things outside of the original research focus and could serve as a seed or a first-pass method for a detailed metabolic reconstruction in future studies.

4.5 Methods

4.5.1 The Traitar software

In this section we first describe the Traitar annotation procedure. We proceed with the genome and phenotype data used for the training of Traitar phenotype models; afterwards we explain the training and illustrate how we considered ancestral protein family gains and losses in the models. Finally, we specify the requirements for running the Traitar software.

Annotation

In the case of nucleotide DNA sequence input, Traitar uses Prodigal (Hyatt et al. 2010) for gene prediction prior to Pfam family annotation. The amino acid sequences are then annotated in Traitar with protein families (Pfams) from the Pfam database (version 27.0) (Finn, Bateman, et al. 2014) using the hmmsearch command of HMMER 3.0 (Finn, Clements, et al. 2011).

Each Pfam family has a hand-curated threshold for the bit score, which is set in such a way that no false positive is included (Punta et al. 2012). A fixed threshold of 25 is then applied to the bit score (the log-odds score) and all Pfam domain hits with an E-value above 10^{-2} are discarded. The resulting Pfam family counts (phyletic patterns) are turned into presence or absence values, as we found this representation to yield a favorable classification performance (Weimann, Trukhina, et al. 2013).

Genome and phenotype data

We obtained our phenotype data from the GIDEON database (Berger 2005). In GIDEON a bacterium is labeled either as phenotype-positive, -negative or strainspecific. In the latter case we discarded this phenotype label. The GIDEON traits can be grouped into the categories the use of various substrates as source of carbon and energy for growth, oxygen requirement, morphology, antibiotic susceptibility and enzymatic activity (Table 4.1, Supplementary Table 1). We only considered phenotypes that were available in GIDEON for at least 20 bacteria, with a minimum of 10 bacteria annotated as positive (phenotype presence) for a given phenotype and 10 as negative (phenotype absence) to enable a robust and reliable analysis of the respective phenotypes. Furthermore, to be included in the analysis, we required each bacterial sample to have:

- a) at least one annotated phenotype,
- b) at least one sequenced strain,
- c) a representative in the sTOL.

In total, we extracted 234 species-level bacterial samples with 67 phenotypes with sufficient total, positive and negative labels from GIDEON (GIDEON I). GIDEON associates these bacteria with 9305 individual phenotype labels, 2971 being positive and 6334 negative (Supplementary Table 1, 3). GIDEON species that had at least one sequenced strain available but were not part of the sTOL tree were set aside for a later independent assessment of the classification accuracy. In total, this additional dataset comprised further 42 unique species with 58 corresponding sequenced bacterial strains (GIDEON II, Supplementary Table 1, 4). We obtained 1836 additional phenotype labels for these bacteria, consisting of 574 positive and 1262 negative ones. We searched the Firmicutes and Proteobacteria volumes of Bergey's systematic bacteriology specifically for further bacteria not represented so far in the GIDEON data sets (Goodfellow et al. 2012). In total, we obtained phenotype data from Bergey's for 206 Firmicutes and 90 Proteobacteria with a total of 1152 positive labels and 1376 negative labels (Supplementary Table 1, 5). As in GIDEON, in Bergey's the phenotype information is usually given on the species level.

We downloaded the coding sequences of all complete bacterial genomes that were available via the NCBI FTP server under ftp://ftp.ncbi.nlm.nih.gov/genomes/ as of

11 May 2014 and genomes from the PATRIC data base as of September 2015 (Wattam et al., 2014). These were annotated with Traitar. For bacteria with more than one sequenced strain available, we chose the union of the Pfam family annotation of the single genomes to represent the pangenome Pfam family annotation, as in (Y. Liu et al. 2006).

Phenotype models

We represented each phenotype from the set of GIDEON phenotypes across all genomes as a vector yp, and solved a binary classification problem using the matrix of Pfam phyletic patterns XP across all genomes as input features and yp as the binary target variable (Supplementary Figure 1). For classification, we relied on support vector machines (SVMs), which are a well-established machine learning method (Boser et al. 1992). Specifically, we used a linear L1-regularized L2-loss SVM for classification as implemented in the LIBLINEAR library (Fan et al. 2008). For many datasets, linear SVMs achieve comparable accuracy to SVMs with a non-linear kernel but allow faster training. The weight vector of the separating hyperplane provides a direct link to the Pfam families that are relevant for the classification. L1-regularization enables feature selection, which is useful when applied to highly correlated and high-dimensional datasets, as used in this study (Zou et al. 2005). We used the interface to LIBLINEAR implemented in scikit-learn (Pedregosa et al. 2011). For classification of unseen data points – genomes without available phenotype labels supplied by the user – Traitar uses a voting committee of five SVMs with the best single cross-validation accuracy (Methods – Nested cross-validation). Traitar then assigns each unseen data point to the majority class (phenotype presence or absence class) of the voting committee.

Ancestral protein family and phenotype gains and losses

We constructed an extended classification problem by including ancestral protein family gains and losses, as well as the ancestral phenotype gains and losses in our analysis, as implemented in GLOOME (Cohen and Pupko 2011). Barker *et al.* report that common methods for inferring functional links between genes, that do not take the phylogeny into account, suffer from high rates of false positives (Barker et al. 2005). Here, we jointly derived the classification models from the observable phyletic patterns and phenotype labels, and from phylogenetically unbiased ancestral protein family and phenotype gains and losses, that we inferred via a maximum likelihood approach from the observable phyletic patterns on a phylogenetic tree, showing the relationships among the samples. (Supplementary Figure 1). Ancestral character state evolution in GLOOME is modeled via a continuous-time Markov process with exponential waiting times. The gain and loss rates are sampled from two independent gamma distributions (Cohen and Pupko, 2010).

GLOOME needs a binary phylogenetic tree with branch lengths as input. The taxonomy of the National Center for Biointechnology Information (NCBI) and other taxonomies are not suitable, because they provide no branch length information. We used the sequenced tree of life (sTOL) (Fang et al. 2013), which is bifurcating and was inferred with a maximum likelihood approach based on unbiased sampling of structural protein domains from whole genomes of all sequenced organisms (Gough et al., 2001). We employed GLOOME with standard settings to infer posterior probabilities for the phenotype and Pfam family gains and losses from the Pfam phyletic patterns of all NCBI bacteria represented in the sTOL and the GIDEON phenotypes. Each GIDEON phenotype p is available for a varying number of bacteria. Therefore, for each phenotype, we pruned the sTOL to those bacteria that were both present in the NCBI database and had a label for the respective phenotype in GIDEON. The posterior probabilities of ancestral Pfam gains and losses were then mapped onto this GIDEON phenotype-specific tree (Gps-sTOL, Supplementary Figure 2).

Let *B* be the set of all branches in the sTOL and *P* be the set of all Pfam families. We then denote the posterior probability g_{ij} of an event *a* for a Pfam family pf to be a gain event on branch *b* in the sTOL computed with GLOOME as:

$$g_{ij} = P\left(a = gain | i = b, j = pf\right) \ \forall \ i \ \in B, \ \forall \ j \ \in P,$$

and the posterior probability of a to be a loss event for a Pfam family p on branch b as:

$$l_{ii} = P(a = loss | i = b, j = pf) \ \forall i \in B, \ \forall j \in P.$$

We established a mapping $f : B' \to B$ between the branches of the sTOL B and the set of branches B' of the Gps-sTOL (Supplementary Figure 2). This was achieved by traversing the tree from the leaves to the root.

There are two different scenarios for a branch b' in B' to map to the branches in B:

a) Branch b' in the Gps-sTOL derives from a single branch b in the sTOL: $f(b') = \{b\}$. The posterior probability of a Pfam gain inferred in the Gps-sTOL on branch

b' consequently is the same as that on branch b in the sTOL $g_{b'j} = g_{\rm bj} \forall \ j \epsilon P.$

b) Branch b' in the Gps-sTOL derives from m branches b_1, \ldots, b_m in the sTOL: $f(b') = \{b_1, \ldots, b_m\}$ (Supplementary figure 2). In this case, we iteratively calculated the posterior probabilities for at least one Pfam gain g' on branch b'from the posterior probabilities for a gain g'_{b_1j} from the posterior probabilities g_1, \ldots, g_m of a gain on branches b_1, \ldots, b_m with the help of h:

$$h_1 = g_{b_1j}$$

$$h_{n+1} = (1-h_n) \cdot g_{b_{n+1}j}$$

$$g'_{b_1j} = h_m \ \forall j \in P.$$

Inferring the Gps-sTOL Pfam posterior loss probabilities l'_{ij} from the sTOL posterior Pfam loss probabilities is analogous to deriving the gain probabilities. The posterior probability for a phenotype p to be gained g'_{ip} or lost l'_{ip} can be directly defined for the Gps-sTOL in the same way as for the Pfam probabilities.

For classification, we did not distinguish between phenotype or Pfam gains or losses, assuming that the same set of protein families gained with a phenotype will also be lost with the phenotype. This assumption simplified the classification problem. Specifically, we proceeded in the following way:

1. We computed the joint probability x_{ij} of a Pfam family gain or loss on branch b' and the joint probability y_j of a phenotype gain or loss on branch b':

$$\begin{aligned} x_{ij} &= g'_{ij}l'_{ij} + \left(1 - g'_{ij}\right) \cdot l'_{ij} + \left(1 - l'_{ij}\right) \cdot g'_{ij} \,\forall \, i \,\in B', \,\forall \, j \in P \\ &= g'_{ij} + \left(1 - g'_{ij}\right) \cdot l'_{ij} \\ y_i &= g'_{ip} + \left(1 - g'_{ip}\right) \cdot l'_{ip} \quad \forall \, i \,\in B'. \end{aligned}$$

2. Let \mathbf{x}_i be a vector representing the probabilities x_{ij} for all Pfam families $j \in P$ on branch b_i . We discarded any samples (\mathbf{x}_i, y_i) that had a probability for a phenotype gain or loss y_i above the reporting threshold of GLOOME but below a threshold t. We set the threshold t to 0.5.

This defines the matrix X and the vector y as:

$$(X, \mathbf{y}) = \{ (\mathbf{x}_i, y_i,) | y_i = 0 \lor y_i \ge t, i \in B' \}$$
.

By this means, we avoided presenting the classifier with samples corresponding to uncertain phenotype gain or loss events and used only confident labels in the subsequent classifier training instead.

3. We inferred discrete phenotype labels \mathbf{y}' by applying this threshold t to the joint probability y_i for a phenotype gain or loss to set up a well-defined classification problem with a binary target variable. Whenever the probability for a phenotype to be gained or lost on a specific branch was larger than t, the event was considered to have happened:

$$\mathbf{y}' = \begin{cases} 1, \text{ if } y_i \ge t \\ 0, \text{ otherwise } \forall i \in B'. \end{cases}$$

4. Finally, we formulated a joint binary classification problem for each target phenotype yp and the corresponding gain and loss events \mathbf{y}' , the phyletic patterns XP, and the Pfam gain and loss events X, which we solved again with a linear L1-regularized L2-loss SVM. We applied this procedure for all GIDEON phenotypes under investigation.

Software Requirements

Traitar can be run on a standard laptop with Linux/Unix. The runtime (wallclock time) for annotating and phenotyping a typical microbial genome with 3 Mbp is 9 minutes (3 min/Mbp) on an Intel(R) Core(TM) i5-2410M dual core processor with 2.30 GHz, requiring only a few megabytes of memory.

4.5.2 Cross-validation

We employed cross-validation to assess the performance of the classifiers individually for each phenotype. For a given phenotype, we divided the bacterial samples that were annotated with that phenotype into ten folds. Each fold was selected once for testing the model, which was trained on the remaining folds. The optimal regularization parameter C needed to be determined independently in each step of the cross-validation; therefore, we employed a further inner cross-validation using the following range of values for the parameter $C: 10^{-3}$, $10^{-2} \cdot 0.7$, $10^{-2} \cdot 0.5$, $10^{-2} \cdot 0.2$, $10^{-2} \cdot 0.1$, ..., 1. In other words, for each fold kept out for testing in the outer cross-validation, we determined the value of the parameter C that gave the best accuracy in an additional tenfold cross-validation on the remaining folds. This value was then used to train the SVM model in the current outer cross-validation step. Whenever we proceeded to a new cross-validation fold, we re-computed the ancestral character state reconstruction of the phenotype with only the training samples included (Ancestral protein family and phenotype gains and losses). This procedure is known as nested cross-validation (Ruschhaupt et al. 2004).

The bacterial samples in the training folds imply a Gps-sTOL in each step of the inner and outer cross-validation without the samples in the test fold. We used the same procedure as before to map the Pfam gains and losses inferred previously on the GpssTOL onto the tree defined by the current cross-validation training folds. Importantly, the test error is only estimated on the observed phenotype labels rather than on the inferred phenotype gains and losses.

4.5.3 Evaluation metrics

We used evaluation metrics from multi-label classification theory for performance evaluation (Manning et al. 2008). We determined the performance for the individual phenotype-positive and the phenotype-negative classes based on the confusion matrix of true positive (TP), true negative (TN), false negative (FN) and false positive (FP) samples from their binary classification equivalents by averaging over all n phenotypes. We utilized two different accuracy measures for assessing multi-class classification performance (i.e. the accuracy pooled over all classification decisions and the macro-accuracy). Macro-accuracy represents an average over the accuracy of the individual binary classification problems and we computed this from the macro-recall of the phenotype-positive and the phenotype-negative classes as follows:

$$Macro-recall_{Pos} = \frac{\left(\sum_{i=1}^{n} \frac{TP_{i}}{TP_{i}+FN_{i}}\right)}{n}$$
$$Macro-recall_{Neg} = \frac{\left(\sum_{i=1}^{n} \frac{TN_{i}}{FP_{i}+TN_{i}}\right)}{n}$$
$$Macro-accuracy = \frac{(Macro-recall_{Pos} + Macro-recall_{Neg})}{n}$$

 $\mathbf{2}$

However, if there are only few available labels for some phenotypes, the variance of the macro-accuracy will be high and this measure cannot be reliably computed anymore; it cannot be computed at all if no labels are available. The accuracy only assesses the overall classification performance without consideration of the information about specific phenotypes. Large classes dominate small classes (Manning et al. 2008)

$$\operatorname{Recall}_{\operatorname{Pos}} = \frac{\sum_{i=1}^{n} \operatorname{TP}_{i}}{\sum_{i=1}^{n} \operatorname{TP}_{i} + \sum_{i=1}^{n} \operatorname{FN}_{i}}$$
$$\operatorname{Recall}_{\operatorname{Neg}} = \frac{\sum_{i=1}^{n} \operatorname{TN}_{i}}{\sum_{i=1}^{n} \operatorname{TN}_{i} + \sum_{i=1}^{n} \operatorname{FP}_{i}}$$
$$\operatorname{Accuracy} = \frac{(\operatorname{Recall}_{\operatorname{Pos}} + \operatorname{Recall}_{\operatorname{Neg}})}{2}.$$

4.5.4 Majority feature selection

The weights in linear SVMs can directly be linked to features that are relevant for the classification. We identified the most important protein families used as features from the voting committee of SVMs consisting of the five most accurate models, which were also used for classifying new samples. If the majority, which is at least three predictors, included a positive value for a given protein family, we added this feature to the list of important features. We further ranked these protein families features by their correlation with the phenotype using Pearson's correlation coefficient.

4.5.5 Acknowledgements

We thank Andreas Klötgen, David Lähnemann, Susanne Reimering and Alexander Sczyrba for providing helpful comments on the manuscript; Johannes Dröge and Jens Loers for reviewing the Traitar software and Gary Robertson for helping to set up the Traitar web service. JAF and PBP are supported by a grant from the European Research Council (336355-MicroDE).

4.6 Supplementary material

The supplementary material can be found in the original version of the paper in the appendix and online at http://dx.doi.org/10.1101/043315.

Chapter 5

Antibiotic resistance prediction from transcriptional and mutational profiles of *Pseudomonas aeruginosa*

Status in preparation

Joint work with Monika Schniederjans, Ariane Khaledi, Alice C. McHardy, Susanne Häußler Wrote the manuscript Conceived and designed the analyses (with MS, ACM, SH) Implemented and conducted the analyses Interpreted the classification results, found biomarkers, etc. (with MS)

5.1 Introduction

Multi-drug resistant bacterial pathogens increasingly threaten public health. They cause many deaths and impose a huge economic burden on the health care sector (ECDC 2009). At the same time the pharmaceutical industry approves less and less novel antibiotics and those brought to the market often involve only minor modification to the original drugs. *Pseudomonas aeruginosa* is a particularly prevalent pathogen responsible for 8% of all hospital acquired infections (Sievert et al. 2013). It is found in diverse natural and human habitats and is particularly dangerous for patients suffering from cystic fibrosis, burn wounds or neutropenia. The pathogen grows persistent biofilms for example in the lung of cystic fibrosis patients, which makes it even harder to eradicate (Costerton 2001).

The large genome and an even larger assessory genome of P. aeruginosa provide the genetic basis of this adaptability (Stover et al. 2000). The pathogenicity of P. aeruginosa is due to various virulence factors such as toxins, proteases and hemolysins. Many secretions systems and degradative enzymes confer a high natural resistance to many antibiotics (Rumbaugh 2014). Furthermore, the rates of resistance of P. aeruginosa to various antibiotic is increasing at an alarming rate (Hirsch et al. 2010).

Antibiotics used in the treatment of *P. aeruginosa* infections include quinolones, β lactams and aminoglycosides (Meletis et al. 2013). The pathogen realizes different resistance mechanisms against β -lactam antibiotics such as by active efflux, altered outer-membrance permeability or β -lactamase activity including by acquired secondary β -lactamases. Carbapenem-resistant *P. aeruginosa* already accounted for 18% of all reported cases (ECDC 2009). Quinolone resistance is mainly mediated by target mutations, whereas aminoglycosides like gentamicin are mainly inactivated by degradative enzymes (Pechère et al. 1999). (Magiorakos et al. 2012). The polymyxin colistin was already discovered more than 60 years ago. Due to its nephrotoxic effects it was soon after replaced with less toxic drugs. Recently, it has been re-evaluated for treatment of multi-drug resistant *P. aeruginosa* infections, as it often represents the only promising option to combat the pathogen (Michalopoulos et al. 2005).

Quick and cheap genome sequencing of bacterial genomes is about to replace many expensive phenotypic microbiological assays in clinical diagnostics, for instance for the identification of bacterial pathogens. Genome sequencing is also being evaluated for determining phenotypic properties such as virulence or antibiotic resistance. (Didelot et al. 2012). Lieberman *et al.* monitored the evolution of *Burkholderia dolosa*, a highly

drug resistant pathogen found in cystic fibrosis infections, over an extended time period. By genome sequencing they observed parallel adaptive evolution and identified known and novel genes implicated in pathogenesis. (Lieberman et al. 2011). Bradley et al. developed Mykrobe predictor, a highly accurate antibiotic resistance profiling tool – comparable to gold-standard phenotypic assays – for *Staphylococcus aureus* and Mycobacterium tuberculosis, which assesses known genetic resistance markers (Bradley et al. 2015). To quantify the phenotypic effect of mutations, for example for antibiotic resistance genes, one can also take the gene expression level into account. However, transcriptome sequencing has so far been largely neglected (Palmer et al. 2013). Khaledia et al. identified markers of antibiotic resistance in *P.aeruginosa* from the transcriptional and mutational profiles, as determined by RNAseq of 135 clinical P. aeruginosa isolates with transcriptome-wide association. Furthermore they explored the potential of machine learning methods to determine global patterns of antibiotic resistance to ciprofloxacin(Khaledi et al. 2016). In this study we also employed machine learning methods to find global sequence variation and gene expression patterns that provide an accurate prediction of resistance to antibiotics of four commonly used drug classes - fluoroquinolones (ciprofloxacin), β -lactams (meropenem and ceftazidim), aminoglycosides (tobramycin) and polymyxins (colistin).

5.2 Results

Antibiotic resistance statistics Determination of the minimum inhibitory concentrations (MIC) of 467 *P. aeruginosa* isolates indicated that over 74% of the isolates were resistant against meropenem. More than 58% of the strains exhibited resistance to ciprofloxacin and ceftazidim. Only tobramycin resistance was less widely distributed, with only 33% resistant isolates, as well as colistin resistance, which was observed for only 5% of the samples. We discarded intermediate resistant isolates in subsequent analysis steps (Table 5.1). Multi-drug resistant isolates represent a large fraction of our data set (Figure 5.1). The resistance profiles of 79 isolates indicated that only the lastresort drug colistin represented a promising treatment option. Alarmingly, five strains out of a total of 20 colistin resistant strains showed resistance to all five antibiotics tested.

Antibiotic resistance prediction with logistic regression Large-scale genomic studies probe thousands or hundreds of thousands of genetic loci in parallel across **Table 5.1:** Antibiotic resistance frequency across 467 *P. aeruginosa* clinical isolates as determined by the minimal inhibitory concentration (MIC) [µg/ml]. We determined antibiotic resistance to five antibiotics as defined by a MIC threshold according to the Clinical & Laboratory Standards Institute guidelines. For each antibiotic, there is a MIC that is regarded as intermediate resistant. We also report the number of intermediate resistant samples and the MIC thresholds used.

#isolates	Cipro-	Tobra-	Colis-	Cefta-	Mero-
	floxacin	mycin	tin	zidim	penem
susceptible	163	301	369	162	111
resistant	258	152	20	229	319
intermediate resistant	46	14	78	76	37
$\overline{\text{MIC } [\mu g/\text{ml}] \text{ resistant}} \geq$	4	8	8	32	16
MIC [µg/ml] susceptible \leq	1	4	2	8	4

a small number of samples. Genetic association studies that are typically employed to link genotype and phenotype are limited to finding single markers (P. E. Chen et al. 2015). Machine learning methods can identify groups of co-occuring genetic markers. Here, we employed a logistic regression classifier that scales to large-scale data sets and provides regularization to identify the most relevant genotype-phenotype associations. We trained a classifier to predict resistance or susceptibility to five antibiotics on the transcriptional as well as on single nucleotide polymorphism (SNP) profiles both obtained from RNAseq data. For evaluation of the classifiers, we used the macro accuracy (MACC) and the area under the receiver operating curve (AUC), which we estimated in a five-fold nested cross-validation. The MACC provides a single trade-off between true positive rate and false negative rate, whereas the AUC integrates all possible trade-offs (Material & Methods). Note that due to the limited scope of the project the focus is on presenting the classification performance, and we only provide selected insights into the genetic markers found.

Overall, we obtained very reliable classification results (Figure 5.2). For ciprofloxacin resistance prediction based on SNP profiles, we achieved a MACC of 87.8% and an AUC of 93.5%. The gyrA T83I mutation represented the most important marker, which is well-known to be associated with ciprofloxacin resistance (Yonezawa et al. 1995). Remarkably, we could obtain accurate prediction (MACC 76.1% / AUC 85.6%) using classifier trained on the expression profiles as well, although no expression markers have been associated with ciprofloxacin resistance, which is in line with the results obtained by Khaledi *et al.* (Khaledi et al. 2016).

Despite the fact that tobramycin resistance is mainly mediated by antibiotic resistance genes acquired by horizontal gene transfer (Poole 2005), we obtained highly accurate classification results for this drug as well, both using expression as well as SNP profiles for classifier training. Among the expression markers relevant for tobraymcin resistance prediction, we found amrB, which is the RND multi-drug efflux transporter (Westbrock-Wadman et al. 1999), as well as many uncharacterized genes. Interestingly, we found several SNPs in the amrB gene to contribute to the prediction as well. However, it is possible that these are an artifact of the SNP inference based on the RNAseq data, as SNPs in genes highly expressed in the tobramycin resistant isolates such as amrB might have remained undetected in the susceptible samples, due to low expression counts.

We further report a reliable prediction of meropenem (MACC 81.4%, AUC 92.2%) and ceftazidim (MACC 76.7%, AUC 83.3%), but solely based on gene expression profiles. We found that the over expression of mexB and oprM, which both encode parts of the well-characterized MexAB-OprM efflux system, are among the most important markers for meropenem resistance. Underexpression of oprD, which encodes a porin that confers passage of meropenem into the bacterial cell is also among the most important epxression markers (Meletis et al. 2013). We identified ampC as the most important biomarker for resistance to ceftazidim, which encodes a β -lactamase with known degradative activity against ceftazidim (Meletis et al. 2013).

Last, we learned a classifier for predicting colistin resistance. We obtained moderately accurate classification results when using expression (76.7% MACC) or SNPs (66.3% MACC). Interestingly, we observed a rather unreliable prediction of the colistin resistance class vs. a very reliable assignment to the susceptible class. Additionally, we obtained a high AUC of 87.3% based on the SNP profiles and 95.1% based on the expression data, which is the highest value obtained for any of the resistance classifiers. This indicates that we can set-up a highly reliable diagnostic test using an approriate trade-off between the true positive and false negative rate. The overexpression of pmrB, part of the two-component signal transduction system PmrAB and known to modulate resistance to colistin, as well as overexpression of genes in close proximity to pmrB, were found to be most relevant for the classification (Moskowitz et al. 2004). Interesting, we also found SNPs within this operon contributing to prediction of colistin resistance based on the mutational profiles. As for tobramycin resistance this might be due to low expression counts of these genes in the colistin susceptible group.

Additionally, we found several genes to be relevant for the prediction of antibiotic resistance with no known association with resistance. For instance gbuA seems to play

an important role in meropenem resistance and is currently being characterized in the lab of our collaborator Susanne Häußler at the Helmholtz Centre for Infection Research.

5.3 Discussion

The global increase of resistance to various antibiotics poses a serious thread to health care institutions and the economy. There is an imminent need for accurate determination of drug resistances for clinical isolates, to advise the physician to administer the most effective drug and minimize the spread of resistant strains. Currently, antibiotic susceptibility and resistance screening used in clinical practise requires to isolate and culture a bacterial pathogen, which can take several days. Furthermore, a recent study conducted in Spanish hospitals indicated that the determination of antibiotic resistance in clinical practise exhibited low accuracy and high variability across hospitals (Juan et al. 2013). However, determination of molecular markers of antibiotic resistance could lead to cheaper and quicker diagnostics. We have demonstrated in a large-scale study that the transcriptional and mutational profiles of P. aeruginosa allow an accurate prediction of antibiotic resistance.

The recent advances in microbial genomics could improve or even replace standard diagnostic microbiology (Reuter et al. 2013). Khaledi *et al.* showed the potential of machine learning methods for predicting antibiotic resistance to ciprofloxacin based on 135 isolates. Here, we show that a machine learning apporach is suitable for a wider range of antibiotics using a much larger data set of 467 samples. The logistic regression classifiers employed detected many genes with known links to antibiotic resistance, but follow-up studies are required to investigate the role of uncharacterized genes, which could provide insights into the antibiotic resistance mechanism.

It is crucial to avoid recommending an antibiotic for treatment, although the pathogen is resistant to the prescribed drug. It is less worse to miss a treatment option and instead recommend to administer a alternative antibiotic for treatment. Thus, in future research, it will be important to optimize the classifier for prediction of the susceptibility class. Integrating data'omics such as the transcriptional and mutational profile may further improve prediction quality. Additionally, whole genome sequencing could aid in a more reliable unbiased detection of mutational sites implicated in resistance, since it does not depend on the level of expression of certain genes.

Importantly, genome-wide transcriptome and complete genome sequencing seem suitable to detect biomarkers of anitbiotic resistance or susceptibility, but also timeconsuming. However, quicker and cheaper targeted approaches such as PCR-based methods to detect the presence of individual genes, or MassARRY to screen for individual SNPs may be employed to speed up diagnostics, once the biomarkers are identified (Gabriel et al. 2009).

Finally, the framework we have developed is not limited to antibiotic resistance but is applicable to reveal other clinically relevant genotype-phenotype associations such as pathogenicity. Our results suggest that antibiotic resistance profiling could soon identify molecular markers that accurately distinguish resistant and non-resistant isolates thus providing a cheaper and quicker approach compared to current practise in clinical resistance diagnostics.

5.4 Materials and Methods

Strain collection and antibiotic resistance profiles The clinical isolates included in this study were provided by different hospitals or institutions across Germany and other European countries and sampled from diverse infection sites. The antibiotic resistance profiles for five antibiotics were determined by agar dilution in at least two duplicates. Briefly, cultures were grown in 96-well plates for 4 h at 37 °C in an orbital shaker and adjusted to an $OD600 = 0.08 - 0.1(1 - 2 \cdot 10^8 \text{ cells/ml})$. After serial dilutions to $2 - 4 \cdot 10^6 \text{ cells/ml}$, finally 5 μ l of the adjusted bacterial suspensions were spotted on cation-adjusted Müller-Hinton agar plates containing different concentrations of the antibiotic. After incubation at 37 °C overnight, the minimal inhibitory concentrations (MICs) were determined. The classification of antibiotic resistance and susceptibility was done according to CLSI (Clinical and Laboratory Standards Institute) guidelines.

RNA sequencing The clinical isolates were cultured in lysogeny broth until OD600 = 2 at 37 °C in an orbital shaker before cells were harvested with RNAprotect Bacteria Reagent (Qiagen). The extraction of RNA, sequencing library construction, cDNA sequencing and data analysis was performed according to Krüger *et al.* (Krueger et al. 2016). For logistic regression classification based on gene expression, the logarithmized read counts per gene obtained by mapping to the *Pseudomonas aeruginosa* UCBPP-PA14 reference genome were used. In addition, the read counts were standardized, by removing the mean of each feature and dividing by the standard deviation. The SNP calling was performed using SAMtools (Li et al. 2009). SNPs in coding regions that were covered by at least three reads and had a score of at least 50 were used as binary genotype information, with 1 marking the presence and 0 the

absence of a SNP in an isolate. In cases where the read coverage was not sufficient, an NA was displayed and set to absent for classification.

Logistic regression classification A binary classification was learned for each antibiotic. Antibiotic sensitive and susceptible samples were assigned to two separate target classes and encoded in a binary target variable. Logistic regression classifiers were trained independently on the logarithmized transcript counts and the binary SNP profiles using the LIBLINEAR library (Fan et al. 2008). Specifically we used a L1-regularized L2-penalized logistic regression classifier, which enables feature selection via regularization. We identified the most important genes from an ensemble of the five most accurate logistic regression classifiers, as determined in a five-fold cross-validation for different values of the hyperparameter C, which controls the degree of regularization. If the majority, which is at least three predictors, included a positive value or a negative value for a given protein family, we added this feature to the list of important features.

Classification evaluation The performance of each classifier was evaluated using nested five-fold cross-validation. The isolates were divided in five cross-validation folds. Each fold was once selected for testing the classifier, whereas the other folds were used to train the classifier. The parameter C was optimized in a further inner cross-validation step (Ruschhaupt et al. 2004). Macro-accuracy (MACC) and area under curve (AUC) were used as performance measures to evaluate the classifiers. The macro-accuracy is the average of the recall of the susceptible and the sensitive class (Manning et al. 2008). The AUC is the area under the receiver operating characteristic (ROC) curve. The ROC curve is computed for logistic regression models by varying the probability threshold that is required for a samples to be assigned to the resistant class each time recomputing the recall of the susceptible and the sensitive class (Fawcett 2006).

Figure 5.1: Cross-resistance of *P. aeruiginosa* isolates to five different antibiotics. Overlapping shapes represent regions of cross-resistances. The numbers in the intersections denote the number of resistant isolates. Intermediate resistant isolates were discarded for this analysis.

Figure 5.2: We trained a logistic regression classifier on RNAseq data of 467 P. *aeruginosa* isolates to predict resistance to five different antibiotics. In five-fold nested cross-validation we estimated the macro accuracy (MACC) shown in a) and the area under the curve (AUC) show in b) based on expression and single nucleotide polymorphism profiles.

CHAPTER 6

Synopsis

The number of sequenced microbial genomes rapidly grows, creating a need for sophisticated method for genome interpretation to tackle problems in health and infection research. In my PhD project, I have developed three methods to link bacterial genotypes to phenotypes, each with a different focus. I first devised a classifier to predict the genomic components of microbial plant biomass degradation from the genomes of a set of diverse bacterial plant biomass degraders and non-degraders. Subsequently, I developed a software package providing a fully automated prediction of many traits, only requiring as input microbial genomes. Last, I used a large data set of clinical isolates of *P. aeruignosa* to reveal the genetic determinants of antibiotic resistance from transcriptional and mutational profiles.

The sparsity of available phenotype data represents a bottleneck for deriving further genotype-phenotype models (Dutilh et al. 2013). The costs for phenotype assays do not decrease at a similar speed as sequencing costs do. Together with my colleage Sebastian Konietzny, we have manully curated a set of plant biomass degrader and non-degraders from the biomedical literature. Furthermore, I extracted a large dataset of phenotypes from Bergey's systematic bacteriology and GIDEON (Berger 2005; Goodfellow et al. 2012). This exemplifies that existing resources like curated phenotype databases, as well as the biomedical literature seem promising to provide the training data for learning additional genotype-phenotype associations. In the future, one could apply more advanced text mining approaches like natural lanuage processing to more efficiently and systematic search the microbiological literature.

Another avenue for future research could be to integrate expert knowledge of the biochemical pathways that are used in manual metabolic reconstructions as prior knowledge into the model for learning of the phenotype models. We have shown that antibiotic resistance can be predicted from mutational, as well as transcription profiles. Integrating different "data'omics" such as genomics and transcriptomics, may improve the prediction of phenotypes by joint inference on these data types (Franzosa et al. 2015). Finally, multi-label learning could be used to exploit dependencies across different phenotypes such as cross-resistance of different antibiotics (Zhang et al. 2014). Revealing the genetic components and predicting clinically relevant phenotypes such as drug resistance could, in the future, lead to more effective treatments and provide insights into pathogenesis. Uncovering the genotype-phenotype associations of biotechnologically important traits may deepen the understanding of microbial metabolism and reveal novel enzymes to be used in industrial processes. This thesis provides methods and results that could guide researchers on their path towards these goals.

Glossary

16S component of the 30S small subunit of prokarotic ribosomes.

- $\mathbf{AUC}\xspace$ area under the curve.
- C. acidaminovorans Cloacamonas acidaminovorans.
- CAZyme Carbohydrate-active enzyme.
- **CBM** carbohydrate binding module.
- ${\bf CE}\,$ carbohydrate esterase.
- ${\bf CMC}\,$ carboxymethyl cellulose.
- contig contiguous sequence.
- DNA desoxynucleic acid.
- **FN** false negative.
- **FP** false positive.
- ${\bf GFM}\,$ genome from metagenome.

GH glycoside hydrolase.

GIDEON Global Infectious Disease and Epidemiology Network.

Gps-sTOL GIDEON phenotype-specific tree.

GT glycoside transferase.

GWAS genome-wide association study.

 ${\bf HMM}\,$ hidden Markov model.

KEGG Kyoto Encyclopedia of Genes and Genomes.

MACC macro-accuracy.

MIC minium inhibitory concentration.

NCBI national center of biotechtechnology information.

NCBI-nr NCBI non-redundant database.

 ${\bf nCV}$ nested cross-validation.

NGS Next-generation sequencing.

P. aeruignosa Pseudomonas aeruginosa.

phypat phyletic pattern classifier.

phypat+PGL phyletic pattern and protein gain and loss classifier.

 ${\bf PL}\,$ polysaccharide lyase.

RNA ribonucleic acid.

RNAseq RNA sequencing.

ROC receiver operating characteristic.

SAG single amplified genome.

 ${\bf SNP}\,$ short nucleotide polymorphism.
- ${\bf sTOL}$ sequenced tree of life.
- ${\bf SVM}$ support vector machine.
- **TN** true negative.
- **TP** true positive.
- $\mathbf{WGS}\xspace$ whole genome sequencing.

References

- Abubucker, S., N. Segata, J. Goll, A. M. Schubert, J. Izard, B. L. Cantarel, B. Rodriguez-Mueller, J. Zucker, M. Thiagarajan, B. Henrissat, O. White, S. T. Kelley, B. Methe, P. D. Schloss, D. Gevers, M. Mitreva, and C. Huttenhower (2012). "Metabolic reconstruction for metagenomic data and its application to the human microbiome". *PLoS Computational Biology* 8.6. DOI: 10.1371/journal.pcbi.1002358 (cit. on p. 11).
- Adrio, J. L. and A. L. Demain (2014). "Microbial enzymes: tools for biotechnological processes". *Biomolecules* 4.1, pp. 117–139. DOI: 10.3390/biom4010117 (cit. on p. 3).
- Alneberg, J., B. S. Bjarnason, I. de Bruijn, M. Schirmer, J. Quick, U. Z. Ijaz, L. Lahti, N. J. Loman, A. F. Andersson, and C. Quince (2014). "Binning metagenomic contigs by coverage and composition". *Nature Methods* 11.11, pp. 1144–1146. DOI: 10.1038/nmeth.3103 (cit. on pp. 7, 48).
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990). "Basic local alignment search tool". *Journal of Molecular Biology* 215.3, pp. 403–410.
 DOI: 10.1016/S0022-2836(05)80360-2 (cit. on p. 8).
- Anderson, I., B. Abt, A. Lykidis, H. P. Klenk, N. Kyrpides, and N. Ivanova (2012). "Genomics of aerobic cellulose utilization systems in actinobacteria".

PLoS One 7.6, e39331. DOI: 10.1371/journal.pone.0039331 (cit. on pp. 26, 38).

- Andoh, A., T. Tsujikawa, and Y. Fujiyama (2003). "Role of dietary fiber and short-chain fatty acids in the colon". *Current Pharmaceutical Design* 9.4, pp. 347–358 (cit. on p. 3).
- Aravind, L. (2000). "Guilt by association: contextual information in genome analysis". *Genome Research* 10.8, pp. 1074–1077 (cit. on p. 9).
- Aspeborg, H., P. M. Coutinho, Y. Wang, H. Brumer, and B. Henrissat (2012). "Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)". *BMC Evolutionary Biology* 12, p. 186. DOI: 10. 1186/1471-2148-12-186 (cit. on p. 27).
- Bai, Y., D. B. Müller, G. Srinivas, R. Garrido-Oter, E. Potthoff, M. Rott, N. Dombrowski, P. C. Münch, S. Spaepen, M. Remus-Emsermann, B. Hüttel, A. C. McHardy, J. A. Vorholt, and P. Schulze-Lefert (2015). "Functional overlap of the Arabidopsis leaf and root microbiota". *Nature* 528.7582, pp. 364–369. DOI: 10.1038/nature16192 (cit. on p. 3).
- Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev, and P. A. Pevzner (2012). "SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing". *Journal of Computational Biology* 19.5, pp. 455–477. DOI: 10.1089/cmb.2012.0021 (cit. on p. 8).
- Bankevich, A. and P. A. Pevzner (2016). "TruSPAdes: barcode assembly of TruSeq synthetic long reads". *Nature Methods* 13.3, pp. 248–250. DOI: 10. 1038/nmeth.3737 (cit. on p. 7).
- Barker, D. and M. Pagel (2005). "Predicting functional gene links from phylogenetic-statistical analyses of whole genomes". *PLoS Computational Biology* 1.1. DOI: 10.1371/journal.pcbi.0010003 (cit. on pp. 10, 48, 67, 70).
- Beerenwinkel, N., M. Dumer, M. Oette, K. Korn, D. Hoffmann, R. Kaiser, T. Lengauer, J. Selbig, and H. Walter (2003). "Geno2Pheno: estimating pheno-typic drug resistance from HIV-1 genotypes." *Nucleic Acids Research* 31.13, pp. 3850–3855 (cit. on p. 24).

- Berger, S. A. (2005). "GIDEON: a comprehensive Web-based resource for geographic medicine". International Journal of Health Geographics 4.10. DOI: 10.1186/1476-072X-4-10 (cit. on pp. 15, 48, 69, 87).
- Boisvert, S., F. Laviolette, and J. Corbeil (2010). "Ray: Simultaneous Assembly of Reads from a Mix of High-Throughput Sequencing Technologies". *Journal of Computational Biology* 17.11, pp. 1519–1533. DOI: 10.1089/cmb.2009.0238 (cit. on p. 8).
- Boisvert, S., F. Raymond, É. Godzaridis, F. Laviolette, and J. Corbeil (2012).
 "Ray Meta: scalable de novo metagenome assembly and profiling". *Genome Biology* 13, R122. DOI: 10.1186/gb-2012-13-12-r122 (cit. on p. 6).
- Boraston, A., D. Bolam, H. Gilbert, and G. Davies (2004). "Carbohydrate-binding modules: fine-tuning polysaccharide recognition." *Biochemical Journal* 15, pp. 769–781 (cit. on p. 27).
- Boser, B. E., I. M. Guyon, and V. N. Vapnik (1992). "A training algorithm for optimal margin classifiers". 130401: ACM, pp. 144–152. DOI: 10.1145/ 130385.130401 (cit. on pp. 12, 24, 41, 70).
- Bradley, P., N. C. Gordon, T. M. Walker, L. Dunn, S. Heys, B. Huang, S. Earle,
 L. J. Pankhurst, L. Anson, M. de Cesare, P. Piazza, A. A. Votintseva, T.
 Golubchik, D. J. Wilson, D. H. Wyllie, R. Diel, S. Niemann, S. Feuerriegel,
 T. A. Kohl, N. Ismail, S. V. Omar, E. G. Smith, D. Buck, G. McVean, A. S.
 Walker, T. E. A. Peto, D. W. Crook, and Z. Iqbal (2015). "Rapid antibioticresistance predictions from genome sequence data for Staphylococcus aureus
 and Mycobacterium tuberculosis". Nature Communications 6 (cit. on p. 79).
- Bremges, A., E. Singer, T. Woyke, and A. Sczyrba (2016). "MeCorS: Metagenome-enabled error correction of single cell sequencing reads". *Bioinformatics*, btw144. DOI: 10.1093/bioinformatics/btw144 (cit. on p. 8).
- Brown, C. T., L. A. Hug, B. C. Thomas, I. Sharon, C. J. Castelle, A. Singh, M. J. Wilkins, K. C. Wrighton, K. H. Williams, and J. F. Banfield (2015). "Unusual biology across a group comprising more than 15% of domain Bacteria". *Nature* 523.7559, pp. 208–11. DOI: 10.1038/nature14486 (cit. on pp. 7, 68).
- Brulc, J., D. Antonopoulos, M. Berg Miller, M. Wilson, A. Yannarell, E. Dinsdale, R. Edwards, E. Frank, J. Emerson, P. Wacklin, P. Coutinho, B. Henrissat, K. Nelson, and B. White (2009). "Gene-centric metagenomics of the

fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases." *Proceedings of the National Academy of Sciences* 106.6, p. 1948 (cit. on p. 23).

- Brumm, P., S. Hermanson, B. Hochstein, J. Boyum, N. Hermersmann, K. Gowda, and D. Mead (2010). "Mining Dictyoglomus turgidum for Enzymatically Active Carbohydrases". Applied Biochemistry and Biotechnology DOI 10.1007/s12010-010-9029-6 (cit. on p. 23).
- Brumm, P., D. Mead, J. Boyum, C. Drinkwater, K. Gowda, D. Stevenson, and P. Weimer (2010). "Functional Annotation of Fibrobacter succinogenes S85 Carbohydrate Active Enzymes". *Applied Biochemistry and Biotechnology* DOI 10.1007/s12010-010-9070-5 (cit. on p. 23).
- Bulgarelli, D., R. Garrido-Oter, P. C. Münch, A. Weiman, J. Dröge, Y. Pan, A. C. McHardy, and P. Schulze-Lefert (2015). "Structure and function of the bacterial root microbiota in wild and domesticated barley". *Cell Host & Microbe* 17.3, pp. 392–403. DOI: 10.1016/j.chom.2015.01.011 (cit. on p. 18).
- Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat (2009). "The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics". *Nucleic Acids Research* 37.Database issue, pp. D233–238. DOI: 10.1093/nar/gkn663 (cit. on p. 39).
- Caspi, R., R. Billington, L. Ferrer, H. Foerster, C. A. Fulcher, I. M. Keseler, A. Kothari, M. Krummenacker, M. Latendresse, L. A. Mueller, Q. Ong, S. Paley, P. Subhraveti, D. S. Weaver, and P. D. Karp (2016). "The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases". *Nucleic Acids Research* 44.D1, pp. D471–D480. DOI: 10.1093/nar/gkv1164 (cit. on p. 10).
- Chen, P. E. and B. J. Shapiro (2015). "The advent of genome-wide association studies for bacteria". *Current Opinion in Microbiology*. Environmental microbiology - Extremophiles 25, pp. 17–24. DOI: 10.1016/j.mib.2015.03.002 (cit. on pp. 10, 80).
- Clark, A. G. et al. (2007). "Evolution of genes and genomes on the Drosophila phylogeny". Nature 450.7167, pp. 203–18. DOI: 10.1038/nature06341 (cit. on p. 14).

- Cleary, B., I. L. Brito, K. Huang, D. Gevers, T. Shea, S. Young, and E. J. Alm (2015). "Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning". *Nature Biotechnology* 33.10, pp. 1053– 60. DOI: 10.1038/nbt.3329 (cit. on pp. 7, 48).
- Cohen, O. and T. Pupko (2011). "Inference of gain and loss events from phyletic patterns using stochastic mapping and maximum parsimony-a simulation study". *Genome Biology Evolution* 3, pp. 1265–75. DOI: 10.1093/gbe/evr101 (cit. on p. 70).
- Cohen, O., H. Ashkenazy, E. L. Karin, D. Burstein, and T. Pupko (2013). "Co-PAP: Coevolution of Presence-Absence Patterns". *Nucleic Acids Research* 41.W1, W232–W237. DOI: 10.1093/nar/gkt471 (cit. on p. 10).
- Cortes, C. and V. Vapnik (1995). "Support-vector networks." Machine Learning 20.3, pp. 273–297 (cit. on pp. 24, 41).
- Costerton, J. W. (2001). "Cystic fibrosis pathogenesis and the role of biofilms in persistent infection". *Trends in Microbiology* 9.2, pp. 50–52 (cit. on p. 78).
- DeBoy, R., E. Mongodin, D. Fouts, L. Tailford, H. Khouri, J. Emerson, Y. Mohamoud, K. Watkins, B. Henrissat, H. Gilbert, and K. Nelson (2008). "Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus." *Journal of Bacteriology* 190.15, pp. 5455–5463 (cit. on p. 36).
- Didelot, X., R. Bowden, D. J. Wilson, T. E. A. Peto, and D. W. Crook (2012). "Transforming clinical microbiology with bacterial genome sequencing". Nature Reviews Genetics 13.9, pp. 601–612. DOI: 10.1038/nrg3226 (cit. on p. 78).
- Draper, J., K. Karplus, and K. M. Ottemann (2011). "Identification of a chemoreceptor zinc-binding domain common to cytoplasmic bacterial chemoreceptors". *Journal of Bacteriology* 193.17, pp. 4338–45. DOI: 10.1128/JB.05140– 11 (cit. on p. 62).
- Dröge, J. and A. C. McHardy (2012). "Taxonomic binning of metagenome samples generated by next-generation sequencing technologies". *Briefings in Bioinformatics* 13.6, pp. 646–655. DOI: 10.1093/bib/bbs031 (cit. on p. 7).

- Duan, C. J. and J. X. Feng (2010). "Mining metagenomes for novel cellulase genes". *Biotechnology Letters* 32.12, pp. 1765–1775. DOI: 10.1007/s10529-010-0356-z (cit. on p. 38).
- Durot, M., P.-Y. Bourguignon, and V. Schachter (2009). "Genome-scale models of bacterial metabolism: reconstruction and applications". *FEMS Microbiology Reviews* 33.1, pp. 164–190. DOI: 10.1111/j.1574-6976.2008.00146.x (cit. on p. 11).
- Dutilh, B. E., L. Backus, R. A. Edwards, M. Wels, J. R. Bayjanov, and S. A. F. T. v. Hijum (2013). "Explaining microbial phenotypes on a genomic scale: GWAS for microbes". *Briefings in Functional Genomics* 12.4, pp. 366– 380. DOI: 10.1093/bfgp/elt008 (cit. on pp. 10, 87).
- Dutta, R., L. Qin, and M. Inouye (1999). "Histidine kinases: diversity of domain organization". *Molecular Microbiology* 34.4, pp. 633–40 (cit. on p. 62).
- ECDC, E. (2009). "The bacterial challenge: time to react". *Stockholm: European Center for Disease Prevention and Control* (cit. on p. 78).
- Eddy, S. R. (1998). "Profile hidden Markov models". Bioinformatics (Oxford, England) 14.9, pp. 755–763 (cit. on p. 9).
- Enright, A. J., I. Iliopoulos, N. C. Kyrpides, and C. A. Ouzounis (1999). "Protein interaction maps for complete genomes based on gene fusion events". *Nature* 402.6757, pp. 86–90. DOI: 10.1038/47056 (cit. on p. 9).
- Everard, A. and P. D. Cani (2013). "Diabetes, obesity and gut microbiota". Best Practice & Research. Clinical Gastroenterology 27.1, pp. 73–83. DOI: 10.1016/ j.bpg.2013.03.007 (cit. on p. 3).
- Fan, R. E., K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin (2008). "LI-BLINEAR: A Library for Large Linear Classification". *Journal of Machine Learning Research* 9, pp. 1871–1874 (cit. on pp. 12, 13, 41, 42, 70, 84).
- Fang, H., M. E. Oates, R. B. Pethica, J. M. Greenwood, A. J. Sardar, O. J. Rackham, P. C. Donoghue, A. Stamatakis, D. A. de Lima Morais, and J. Gough (2013). "A daily-updated tree of (sequenced) life as a reference for genome research". *Scientific Reports* 3. DOI: 10.1038/srep02015 (cit. on p. 71).

- Fawcett, T. (2006). "An Introduction to ROC Analysis". Pattern Recognition Letters 27.8, pp. 861-874. DOI: 10.1016/j.patrec.2005.10.010 (cit. on p. 84).
- Feldbauer, R., F. Schulz, M. Horn, and T. Rattei (2015). "Prediction of microbial phenotypes based on comparative genomics". *BMC Bioinformatics* 16 Suppl 14. DOI: 10.1186/1471-2105-16-S14-S1 (cit. on pp. 14, 15, 65).
- Finn, R. D., A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt, S. R. Eddy, A. Heger, K. Hetherington, L. Holm, J. Mistry, E. L. Sonnhammer, J. Tate, and M. Punta (2014). "Pfam: the protein families database". *Nucleic Acids Research* 42.Database issue, pp. D222–30. DOI: 10.1093/nar/gkt1223 (cit. on p. 68).
- Finn, R. D., J. Clements, and S. R. Eddy (2011). "HMMER web server: interactive sequence similarity searching". Nucleic Acids Research 39.Web Server issue, W29–37. DOI: 10.1093/nar/gkr367 (cit. on pp. 39, 68).
- Finn, R. D., P. Coggill, R. Y. Eberhardt, S. R. Eddy, J. Mistry, A. L. Mitchell, S. C. Potter, M. Punta, M. Qureshi, A. Sangrador-Vegas, G. A. Salazar, J. Tate, and A. Bateman (2016). "The Pfam protein families database: towards a more sustainable future". *Nucleic Acids Research* 44.D1, pp. D279–D285. DOI: 10.1093/nar/gkv1344 (cit. on p. 9).
- Frank, J. A., Y. Pan, A. Tooming-Klunderud, V. G. Eijsink, A. C. McHardy, A. J. Nederbragt, and P. B. Pope (2015). "Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data". *bioRxiv.* DOI: 10.1101/026922 (cit. on p. 64).
- Franzosa, E. A., T. Hsu, A. Sirota-Madi, A. Shafquat, G. Abu-Ali, X. C. Morgan, and C. Huttenhower (2015). "Sequencing and beyond: integrating molecular 'omics' for microbial community profiling". *Nature Reviews Microbiology* 13.6, pp. 360–372. DOI: 10.1038/nrmicro3451 (cit. on p. 88).
- Gabriel, S., L. Ziaugra, and D. Tabbaa (2009). "SNP genotyping using the Sequenom MassARRAY iPLEX platform". Current protocols in human genetics, pp. 2–12 (cit. on p. 83).
- Gawad, C., W. Koh, and S. R. Quake (2016). "Single-cell genome sequencing: current state of the science". *Nature Reviews Genetics* 17.3, pp. 175–188. DOI: 10.1038/nrg.2015.16 (cit. on p. 8).

- Gevers, D., R. Knight, J. F. Petrosino, K. Huang, A. L. McGuire, B. W. Birren, K. E. Nelson, O. White, B. A. Methé, and C. Huttenhower (2012). "The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome". *PLOS Biology* 10.8, e1001377. DOI: 10.1371/journal.pbio. 1001377 (cit. on pp. 2, 3).
- Gilead, S. and Y. Shoham (1995). "Purification and characterization of alpha-Larabinofuranosidase from Bacillus stearothermophilus T-6". Applied and Environmental Microbiology 61.1, pp. 170–4 (cit. on p. 64).
- Goodfellow, M., P. Kämpfer, H.-J. Busse, M. E. Trujillo, K.-i. Suzuki, W. Ludwig, and W. B. Whitman (2012). *Bergey's manual of systematic bacteriology*. Springer New York. ISBN: 0-387-68233-3 (cit. on pp. 2, 15, 47, 49, 65, 69, 87).
- Goodwin, S., J. D. McPherson, and W. R. McCombie (2016). "Coming of age: ten years of next-generation sequencing technologies". *Nature Reviews Genetics* 17.6, pp. 333–351. DOI: 10.1038/nrg.2016.49 (cit. on p. 4).
- Gregor, I., J. Droge, M. Schirmer, C. Quince, and A. C. McHardy (2016). "PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes". *PeerJ* 4. DOI: 10.7717/peerj.1603 (cit. on pp. 7, 48).
- Grice, E. A. and J. A. Segre (2012). "The human microbiome: our second genome". Annual Review of Genomics and Human Genetics 13, pp. 151–170. DOI: 10.1146/annurev-genom-090711-163814 (cit. on p. 3).
- Gurevich, A., V. Saveliev, N. Vyahhi, and G. Tesler (2013). "QUAST: quality assessment tool for genome assemblies". *Bioinformatics* 29.8, pp. 1072–1075. DOI: 10.1093/bioinformatics/btt086 (cit. on p. 7).
- Hacquard, S., B. Kracher, K. Hiruma, P. C. Münch, R. Garrido-Oter, M. R. Thon, A. Weimann, U. Damm, J.-F. Dallery, M. Hainaut, B. Henrissat, O. Lespinet, S. Sacristán, E. Ver Loren van Themaat, E. Kemen, A. C. McHardy, P. Schulze-Lefert, and R. J. O'Connell (2016). "Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi". Nature Communications 7, p. 11362. DOI: 10.1038/ncomms11362 (cit. on p. 17).
- Haft, D. H., B. J. Loftus, D. L. Richardson, F. Yang, J. A. Eisen, I. T. Paulsen, and O. White (2001). "TIGRFAMs: a protein family resource for the func-

tional identification of proteins". *Nucleic Acids Research* 29.1, pp. 41–3 (cit. on p. 35).

- Hardesty, D. (n.d.). Iron hydroxide precipitate (orange) in a Missouri stream receiving acid drainage from surface coal mining. URL: https://commons. wikimedia.org/wiki/File:Iron_hydroxide_precipitate_in_stream. jpg (visited on 08/25/2016) (cit. on p. 2).
- Harvey, P. H. and M. D. Pagel (1991). The comparative method in evolutionary biology. Vol. 239. Oxford University Press Oxford (cit. on p. 48).
- Hastie, T., R. Tibshirani, and J. Friedman (2009). *The elements of statistical learning 2nd edition*. New York: Springer (cit. on pp. 11, 13).
- Hervé, C., A. Rogowski, A. Blake, S. Marcus, H. Gilbert, and J. Knox (2010). "Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects." *Proceedings of the National Academy of Sciences* 107.34, pp. 15293–15298 (cit. on p. 36).
- Hess, M., A. Sczyrba, R. Egan, T. W. Kim, H. Chokhawala, G. Schroth, S. Luo, D. S. Clark, F. Chen, T. Zhang, R. I. Mackie, L. A. Pennacchio, S. G. Tringe, A. Visel, T. Woyke, Z. Wang, and E. M. Rubin (2011). "Metagenomic discovery of biomass-degrading genes and genomes from cow rumen". *Science* 331.6016, pp. 463–7. DOI: 10.1126/science.1200387 (cit. on pp. 3, 7, 14, 23, 32–34, 47, 68).
- Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust (2007). "Biomass recalcitrance: engineering plants and enzymes for biofuels production". *Science* 315.5813, pp. 804–7. DOI: 10. 1126/science.1137016 (cit. on p. 22).
- Hirsch, E. B. and V. H. Tam (2010). "Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes". Expert Review of Pharmacoeconomics & Outcomes Research 10.4, pp. 441–451. DOI: 10.1586/erp.10.49 (cit. on p. 78).
- Hosking, E. R., C. Vogt, E. P. Bakker, and M. D. Manson (2006). "The Escherichia coli MotAB proton channel unplugged". *Journal of Molecular Biol*ogy 364.5, pp. 921–37. DOI: 10.1016/j.jmb.2006.09.035 (cit. on p. 62).
- Howe, A. C., J. K. Jansson, S. A. Malfatti, S. G. Tringe, J. M. Tiedje, and C. T. Brown (2014). "Tackling soil diversity with the assembly of large, com-

plex metagenomes". Proceedings of the National Academy of Sciences 111.13, pp. 4904–4909. DOI: 10.1073/pnas.1402564111 (cit. on p. 6).

- Howe, A. and P. S. G. Chain (2015). "Challenges and opportunities in understanding microbial communities with metagenome assembly (accompanied by IPython Notebook tutorial)". *Frontiers in Microbiology* 6. DOI: 10.3389/ fmicb.2015.00678 (cit. on pp. 5, 6).
- Huerta-Cepas, J., D. Szklarczyk, K. Forslund, H. Cook, D. Heller, M. C. Walter, T. Rattei, D. R. Mende, S. Sunagawa, M. Kuhn, L. J. Jensen, C. von Mering, and P. Bork (2016). "eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences". *Nucleic Acids Research* 44.D1, pp. D286–D293. DOI: 10.1093/nar/gkv1248 (cit. on p. 9).
- Hugenholtz, P., B. M. Goebel, and N. R. Pace (1998). "Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity". *Journal of Bacteriology* 180.24, p. 6793 (cit. on p. 5).
- Hyatt, D., G. L. Chen, P. F. Locascio, M. L. Land, F. W. Larimer, and L. J. Hauser (2010). "Prodigal: prokaryotic gene recognition and translation initiation site identification". *BMC Bioinformatics* 11. DOI: 10.1186/1471-2105-11-119 (cit. on pp. 8, 68).
- Imelfort, M., D. Parks, B. J. Woodcroft, P. Dennis, P. Hugenholtz, and G. W. Tyson (2014). "GroopM: an automated tool for the recovery of population genomes from related metagenomes". *PeerJ* 2. DOI: 10.7717/peerj.603 (cit. on pp. 7, 48).
- Ivanova, N., J. Sikorski, O. Chertkov, M. Nolan, S. Lucas, N. Hammon, S. Deshpande, J.-F. Cheng, R. Tapia, C. Han, L. Goodwin, S. Pitluck, M. Huntemann, K. Liolios, I. Pagani, K. Mavromatis, G. Ovchinikova, A. Pati, A. Chen, K. Palaniappan, M. Land, L. Hauser, E.-M. Brambilla, K. P. Kannan, M. Rohde, B. J. Tindall, M. Göker, J. C. Detter, T. Woyke, J. Bristow, J. A. Eisen, V. Markowitz, P. Hugenholtz, N. C. Kyrpides, H.-P. Klenk, and A. Lapidus (2011). "Complete genome sequence of the extremely halophilic Halanaerobium praevalens type strain (GSL)". Standards in Genomic Sciences 4.3, pp. 312–321. DOI: 10.4056/sigs.1824509 (cit. on pp. 26, 38).

- Jaroszewski, L., Z. Li, S. S. Krishna, C. Bakolitsa, J. Wooley, A. M. Deacon, I. A. Wilson, and A. Godzik (2009). "Exploration of uncharted regions of the protein universe". *PLoS Biology* 7.9, e1000205. DOI: 10.1371/journal.pbio. 1000205 (cit. on p. 8).
- Josenhans, C. and S. Suerbaum (2002). "The role of motility as a virulence factor in bacteria". *International Journal of Medical Microbiology* 291.8, pp. 605–14. DOI: 10.1078/1438-4221-00173 (cit. on p. 61).
- Juan, C., M. C. Conejo, N. Tormo, C. Gimeno, Á. Pascual, and A. Oliver (2013). "Challenges for accurate susceptibility testing, detection and interpretation of β-lactam resistance phenotypes in Pseudomonas aeruginosa: results from a Spanish multicentre study". The Journal of Antimicrobial Chemotherapy 68.3, pp. 619–630. DOI: 10.1093/jac/dks439 (cit. on p. 82).
- Kanehisa, M., Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe (2015).
 "KEGG as a reference resource for gene and protein annotation". *Nucleic Acids Research*, gkv1070. DOI: 10.1093/nar/gkv1070 (cit. on p. 10).
- Kang, D. D., J. Froula, R. Egan, and Z. Wang (2015). "MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities". *PeerJ* 3. DOI: 10.7717/peerj.1165 (cit. on pp. 7, 48).
- Kastenmuller, G., M. E. Schenk, J. Gasteiger, and H. W. Mewes (2009). "Uncovering metabolic pathways relevant to phenotypic traits of microbial genomes". *Genome Biology* 10.3. DOI: 10.1186/gb-2009-10-3-r28 (cit. on pp. 14, 65).
- Kaylen, M., D. Van Dyne, Y. Choi, and M. Blasé (2000). "Economic feasibility of producing ethanol from lignocellulosic feedstocks." *Bioresource Technology* 72, pp. 19–32 (cit. on p. 22).
- Kensche, P. R., V. van Noort, B. E. Dutilh, and M. A. Huynen (2008). "Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution". *Journal of the Royal Society, Interface / the Royal Society* 5.19, pp. 151–170. DOI: 10.1098/rsif.2007.1047 (cit. on p. 10).
- Khaledi, A., M. Schniederjans, S. Pohl, R. Rainer, U. Bodenhofer, B. Xia, F. Klawonn, S. Bruchmann, M. Preusse, D. Eckweiler, A. Dötsch, and S. Häussler (2016). "Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa". Antimicrobial Agents and Chemotherapy, AAC.00075–16. DOI: 10.1128/AAC.00075–16 (cit. on pp. 10, 79, 80).

- Konietzny, S. G. A., P. B. Pope, A. Weimann, and A. C. McHardy (2014).
 "Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders". *Biotechnology for Biofuels* 7.124. DOI: 10.1186/s13068-014-0124-8 (cit. on pp. 14, 18, 48, 65).
- Konietzny, S. G. A., L. Dietz, and A. C. McHardy (2011). "Inferring functional modules of protein families with probabilistic topic models". *BMC Bioinformatics* 12, p. 141. DOI: 10.1186/1471-2105-12-141 (cit. on p. 10).
- Kostic, A. D., R. J. Xavier, and D. Gevers (2014). "The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead". *Gastroenterol*ogy. The Gut Microbiome in Health and Disease 146.6, pp. 1489–1499. DOI: 10.1053/j.gastro.2014.02.009 (cit. on p. 3).
- Krueger, J., S. Pohl, M. Preusse, A. Kordes, N. Rugen, M. Schniederjans, A. Pich, and S. Häussler (2016). "Unravelling post-transcriptional PrmC-dependent regulatory mechanisms in Pseudomonas aeruginosa". *Environmental Microbiology*, n/a–n/a. DOI: 10.1111/1462-2920.13435 (cit. on p. 83).
- Laehnemann, D., A. Borkhardt, and A. C. McHardy (2016). "Denoising DNA deep sequencing data - high-throughput sequencing errors and their correction". *Briefings in Bioinformatics* 17.1, pp. 154–179. DOI: 10.1093/bib/ bbv029 (cit. on p. 4).
- Lam, W. W., E. J. Woo, M. Kotaka, W. K. Tam, Y. C. Leung, T. K. Ling, and S. W. Au (2010). "Molecular interaction of flagellar export chaperone FliS and cochaperone HP1076 in Helicobacter pylori". *Federation of American Societies For Experimental Biology Journal* 24.10, pp. 4020–32. DOI: 10.1096/fj.10-155242 (cit. on p. 61).
- Land, M., L. Hauser, S.-R. Jun, I. Nookaew, M. R. Leuze, T.-H. Ahn, T. Karpinets, O. Lund, G. Kora, T. Wassenaar, S. Poudel, and D. W. Ussery (2015). "Insights from 20 years of bacterial genome sequencing". *Functional & Integrative Genomics* 15.2, pp. 141–161. DOI: 10.1007/s10142-015-0433-4 (cit. on p. 4).
- Lasken, R. S. and J. S. McLean (2014). "Recent advances in genomic DNA sequencing of microbial species from single cells". *Nature Reviews Genetics* 15.9, pp. 577–84. DOI: 10.1038/nrg3785 (cit. on pp. 8, 48).

- Lee, D., O. Redfern, and C. Orengo (2007). "Predicting protein function from sequence and structure". Nature Reviews. Molecular Cell Biology 8.12, pp. 995– 1005. DOI: 10.1038/nrm2281 (cit. on p. 8).
- Lee, J. (1997). "Biological conversion of lignocellulosic biomass to ethanol." *Journal of Biotechnology* 56, pp. 1–24 (cit. on p. 22).
- Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and I. G. P. D. P. Subgroup (2009). "The Sequence Alignment/Map format and SAMtools". *Bioinformatics* 25.16, pp. 2078–2079. DOI: 10.1093/bioinformatics/btp352 (cit. on p. 83).
- Lieberman, T. D., J.-B. Michel, M. Aingaran, G. Potter-Bynoe, D. Roux, M. R. Davis, D. Skurnik, N. Leiby, J. J. LiPuma, J. B. Goldberg, A. J. McAdam, G. P. Priebe, and R. Kishony (2011). "Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes". *Nature Genetics* 43.12, pp. 1275–1280. DOI: 10.1038/ng.997 (cit. on p. 79).
- Limam, R. D., R. Chouari, L. Mazeas, T. D. Wu, T. Li, J. Grossin-Debattista, J. L. Guerquin-Kern, M. Saidi, A. Landoulsi, A. Sghir, and T. Bouchez (2014).
 "Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose". *Microbiologyopen* 3.2, pp. 157–67. DOI: 10.1002/mbo3.144 (cit. on p. 58).
- Lingner, T., S. Muhlhausen, T. Gabaldon, C. Notredame, and P. Meinicke (2010). "Predicting phenotypic traits of prokaryotes from protein domain frequencies". *BMC Bioinformatics* 11.481. DOI: 10.1186/1471-2105-11-481 (cit. on pp. 10, 14, 65).
- Liu, B. and M. Pop (2011). "MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets". BMC Proceedings 5.2, pp. 1– 12. DOI: 10.1186/1753-6561-5-S2-S9 (cit. on p. 11).
- Liu, R. and H. Ochman (2007). "Stepwise formation of the bacterial flagellar system". Proceedings of the National Academy of Sciences of the United States of America 104.17, pp. 7116–21. DOI: 10.1073/pnas.0700266104 (cit. on p. 61).
- Liu, Y., J. Li, L. Sam, C. S. Goh, M. Gerstein, and Y. A. Lussier (2006). "An integrative genomic approach to uncover molecular mechanisms of prokaryotic

traits". *PLoS Computational Biology* 2.11. DOI: 10.1371/journal.pcbi. 0020159 (cit. on pp. 10, 70).

- Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius (2002). "Microbial cellulose utilization: fundamentals and biotechnology". *Microbiology and olecular Biology Reviews* 66.3, pp. 506–77 (cit. on pp. 38, 39).
- MacDonald, N. J. and R. G. Beiko (2010). "Efficient learning of microbial genotype-phenotype association rules". *Bioinformatics* 26.15, pp. 1834–40. DOI: 10.1093/bioinformatics/btq305 (cit. on pp. 10, 15, 65, 67, 68).
- Macnab, R. M. (2003). "How bacteria assemble flagella". Annual Review Microbiology 57, pp. 77–100. DOI: 10.1146/annurev.micro.57.030502.090832 (cit. on p. 48).
- Magiorakos, A.-P., A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas, C. G. Giske, S. Harbarth, J. F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, D. L. Paterson, L. B. Rice, J. Stelling, M. J. Struelens, A. Vatopoulos, J. T. Weber, and D. L. Monnet (2012). "Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance". *Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases* 18.3, pp. 268–281. DOI: 10.1111/j.1469–0691.2011.03570.x (cit. on p. 78).
- Manichanh, C., L. Rigottier-Gois, E. Bonnaud, K. Gloux, E. Pelletier, L. Frangeul, R. Nalin, C. Jarrin, P. Chardon, P. Marteau, J. Roca, and J. Dore (2006). "Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach". *Gut* 55.2, pp. 205–211. DOI: 10.1136/gut.2005. 073817 (cit. on p. 3).
- Manning, C. D., P. Raghavan, and H. Schütze (2008). Introduction to information retrieval. Vol. 1. Cambridge university press Cambridge, UK (cit. on pp. 74, 84).
- Markowitz, V. M., I. M. Chen, K. Palaniappan, K. Chu, E. Szeto, Y. Grechkin, A. Ratner, B. Jacob, J. Huang, P. Williams, M. Huntemann, I. Anderson, K. Mavromatis, N. N. Ivanova, and N. C. Kyrpides (2012). "IMG: the Integrated Microbial Genomes database and comparative analysis system". Nucleic Acids

Research 40.Database issue, pp. D115–22. DOI: 10.1093/nar/gkr1044 (cit. on p. 39).

- Markowitz, V. M., N. Ivanova, E. Szeto, K. Palaniappan, K. Chu, D. Dalevi, I. M. A. Chen, Y. Grechkin, I. Dubchak, I. Anderson, A. Lykidis, K. Mavromatis, P. Hugenholtz, and N. C. Kyrpides (2008). "IMG/M: a data management and analysis system for metagenomes". *Nucleic Acids Research* 36.suppl_1, pp. D534–538. DOI: 10.1093/nar/gkm869 (cit. on p. 39).
- Martinez, D., R. M. Berka, B. Henrissat, M. Saloheimo, M. Arvas, S. E. Baker, J. Chapman, O. Chertkov, P. M. Coutinho, D. Cullen, E. G. Danchin, I. V. Grigoriev, P. Harris, M. Jackson, C. P. Kubicek, C. S. Han, I. Ho, L. F. Larrondo, A. L. de Leon, J. K. Magnuson, S. Merino, M. Misra, B. Nelson, N. Putnam, B. Robbertse, A. A. Salamov, M. Schmoll, A. Terry, N. Thayer, A. Westerholm-Parvinen, C. L. Schoch, J. Yao, R. Barabote, M. A. Nelson, C. Detter, D. Bruce, C. R. Kuske, G. Xie, P. Richardson, D. S. Rokhsar, S. M. Lucas, E. M. Rubin, N. Dunn-Coleman, M. Ward, and T. S. Brettin (2008). "Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)". Nature Biotechnology 26.5, pp. 553–60. DOI: 10.1038/nbt1403 (cit. on p. 64).
- Martinez, J. L. (2008). "Antibiotics and antibiotic resistance genes in natural environments". *Science* 321.5887, pp. 365–7. DOI: 10.1126/science.1159483 (cit. on pp. 2, 48).
- Martiny, J. B., S. E. Jones, J. T. Lennon, and A. C. Martiny (2015). "Microbiomes in light of traits: A phylogenetic perspective". *Science* 350.6261. DOI: 10. 1126/science.aac9323 (cit. on pp. 47, 48).
- Meletis, G. and M. Bagkeri (2013). "Pseudomonas aeruginosa: Multi-Drug-Resistance Development and Treatment Options". *Infection Control*, p. 33 (cit. on pp. 78, 81).
- Michalopoulos, A. S., S. Tsiodras, K. Rellos, S. Mentzelopoulos, and M. E. Falagas (2005). "Colistin treatment in patients with ICU-acquired infections caused by multiresistant Gram-negative bacteria: the renaissance of an old antibiotic". Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 11.2, pp. 115–121. DOI: 10.1111/j.1469-0691.2004.01043.x (cit. on p. 78).

- Mikheenko, A., V. Saveliev, and A. Gurevich (2015). "MetaQUAST: evaluation of metagenome assemblies". *Bioinformatics*, btv697. DOI: 10.1093/ bioinformatics/btv697 (cit. on p. 7).
- Mitchell, W. (1998). "Physiology of carbohydrate to solvent conversion by clostridia." Advances in Microbial Physiology 39, pp. 31–130 (cit. on p. 22).
- Moreno-Vivian, C., P. Cabello, M. Martinez-Luque, R. Blasco, and F. Castillo (1999). "Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases". *Journal of Bacteriology* 181.21, pp. 6573–84 (cit. on pp. 62, 63).
- Morrison, M., P. Pope, S. Denman, and C. McSweeney (2009). "Plant biomass degradation by gut microbiomes: more of the same or something new?" Current Opinion in Biotechnology 20, pp. 358–363 (cit. on p. 23).
- Moskowitz, S. M., R. K. Ernst, and S. I. Miller (2004). "PmrAB, a Two-Component Regulatory System of Pseudomonas aeruginosa That Modulates Resistance to Cationic Antimicrobial Peptides and Addition of Aminoarabinose to Lipid A". *Journal of Bacteriology* 186.2, pp. 575–579. DOI: 10.1128/ JB.186.2.575-579.2004 (cit. on p. 81).
- Naas, A. E., A. K. Mackenzie, J. Mravec, J. Schückel, W. G. T. Willats, V. G. H. Eijsink, and P. B. Pope (2014). "Do Rumen Bacteroidetes Utilize an Alternative Mechanism for Cellulose Degradation?" *mBio* 5.4, e01401–14. DOI: 10.1128/mBio.01401-14 (cit. on p. 14).
- Narihiro, T. and Y. Sekiguchi (2007). "Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update". Current Opinion in Biotechnology 18.3, pp. 273–278. DOI: 10.1016/j. copbio.2007.04.003 (cit. on p. 3).
- NASA (n.d.). The ice wedge in permafrost. URL: http://science.nasa.gov/ newhome/headlines/ast27jul99_1.htm (visited on 08/25/2016) (cit. on p. 2).
- Nielsen, H. B., M. Almeida, A. S. Juncker, S. Rasmussen, J. Li, S. Sunagawa, D. R. Plichta, L. Gautier, A. G. Pedersen, E. Le Chatelier, E. Pelletier, I. Bonde, T. Nielsen, C. Manichanh, M. Arumugam, J. M. Batto, M. B. Quintanilha Dos Santos, N. Blom, N. Borruel, K. S. Burgdorf, F. Boumezbeur, F. Casellas, J. Dore, P. Dworzynski, F. Guarner, T. Hansen, F. Hildebrand, R. S. Kaas,

S. Kennedy, K. Kristiansen, J. R. Kultima, P. Leonard, F. Levenez, O. Lund,
B. Moumen, D. Le Paslier, N. Pons, O. Pedersen, E. Prifti, J. Qin, J. Raes,
S. Sorensen, J. Tap, S. Tims, D. W. Ussery, T. Yamada, H. I. T. C. Meta, P. Renault, T. Sicheritz-Ponten, P. Bork, J. Wang, S. Brunak, S. D. Ehrlich, and
H. I. T. C. Meta (2014). "Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes". *Nature Biotechnology* 32.8, pp. 822–8. DOI: 10.1038/nbt.2939 (cit. on pp. 7, 48).

- Sa-Nogueira, I., T. V. Nogueira, S. Soares, and H. de Lencastre (1997). "The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression". *Microbiology* 143 (Pt 3), pp. 957–69 (cit. on p. 64).
- Ochman, H., J. G. Lawrence, and E. A. Groisman (2000). "Lateral gene transfer and the nature of bacterial innovation". *Nature* 405.6784, pp. 299–304. DOI: 10.1038/35012500 (cit. on p. 48).
- Olapade, O. A. and A. J. Ronk (2015). "Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2,3-dioxygenase genes in contaminated soils". *Microbial Ecology* 69.1, pp. 59–65. DOI: 10.1007/s00248-014-0466-6 (cit. on p. 3).
- Olson, D., S. Tripathi, R. Giannone, J. Lo, N. Caiazza, D. Hogsett, R. Hettich, A. Guss, G. Dubrovsky, and L. Lynd (2010). "Deletion of the Cel48S cellulase from Clostridium thermocellum". *Proceedings of the National Academy* of Sciences doi: 10.1073/pnas.1003584107 (cit. on p. 36).
- Pal, C., B. Papp, and M. J. Lercher (2005). "Adaptive evolution of bacterial metabolic networks by horizontal gene transfer". *Nature Genet* 37.12, pp. 1372–5. DOI: 10.1038/ng1686 (cit. on p. 48).
- Palmer, A. C. and R. Kishony (2013). "Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance". *Nature Reviews Genetics* 14.4, pp. 243–248. DOI: 10.1038/nrg3351 (cit. on p. 79).
- Pantel, I., P. E. Lindgren, H. Neubauer, and F. Gotz (1998). "Identification and characterization of the Staphylococcus carnosus nitrate reductase operon". *Molecular Genetics and Genomics* 259.1, pp. 105–14 (cit. on pp. 62, 63).
- Parks, D. H., M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson (2015). "CheckM: assessing the quality of microbial genomes recovered from

isolates, single cells, and metagenomes". *Genome Research* 25.7, pp. 1043–55. DOI: 10.1101/gr.186072.114 (cit. on pp. 7, 61).

- Paterson, G. K. and T. J. Mitchell (2004). "The biology of Gram-positive sortase enzymes". Trends in Microbiology 12.2, pp. 89–95. DOI: 10.1016/j.tim. 2003.12.007 (cit. on p. 65).
- Pechère, J.-C. and T. Köhler (1999). "Patterns and modes of beta-lactam resistance in Pseudomonas aeruginosa". Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 5 Suppl 1, S15–S18 (cit. on p. 78).
- Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg (2011). "Scikit-learn: Machine learning in Python". *Journal of Machine Learning* 12, pp. 2825–30 (cit. on p. 70).
- Peng, Y., H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin (2011). "Meta-IDBA: a de Novo assembler for metagenomic data". *Bioinformatics* 27.13, pp. i94– i101. DOI: 10.1093/bioinformatics/btr216 (cit. on p. 6).
- Platt, J. C. (1999). "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods". ADVANCES IN LARGE MARGIN CLASSIFIERS. MIT Press, pp. 61–74 (cit. on p. 13).
- Poole, K. (2005). "Aminoglycoside Resistance in Pseudomonas aeruginosa". Antimicrobial Agents and Chemotherapy 49.2, pp. 479–487. DOI: 10.1128/AAC. 49.2.479-487.2005 (cit. on p. 81).
- Pope, P. B., A. K. Mackenzie, I. Gregor, W. Smith, M. A. Sundset, A. C. McHardy, M. Morrison, and V. G. Eijsink (2012). "Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci". *PLoS One* 7.6, e38571. DOI: 10.1371/journal.pone.0038571 (cit. on p. 23).
- Pope, P. B., W. Smith, S. E. Denman, S. G. Tringe, K. Barry, P. Hugenholtz, C. S. McSweeney, A. C. McHardy, and M. Morrison (2011). "Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies". *Science* 333.6042, pp. 646–648. DOI: 10.1126/science.1205760 (cit. on p. 3).

- Pope, P., S. Denman, M. Jones, S. Tringe, K. Barry, S. Malfatti, A. McHardy, J.-F. Cheng, P. Hugenholtz, C. McSweeney, and M. Morrison (2010). "Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different to other herbivores". *Proc. Natl. Acad. Sci. USA* 107, pp. 14793–14798 (cit. on pp. 23, 48).
- Punta, M., P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. Sonnhammer, S. R. Eddy, A. Bateman, and R. D. Finn (2012). "The Pfam protein families database". *Nucleic Acids Research* 40.Database issue, pp. D290–301. DOI: 10.1093/nar/gkr1065 (cit. on pp. 35, 39, 68).
- Qin, J., R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D. R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J.-M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H. B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Doré, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, M. Antolin, F. Artiguenave, H. Blottiere, N. Borruel, T. Bruls, F. Casellas, C. Chervaux, A. Cultrone, C. Delorme, G. Denariaz, R. Dervyn, M. Forte, C. Friss, M. v. d. Guchte, E. Guedon, F. Haimet, A. Jamet, C. Juste, G. Kaci, M. Kleerebezem, J. Knol, M. Kristensen, S. Layec, K. L. Roux, M. Leclerc, E. Maguin, R. M. Minardi, R. Oozeer, M. Rescigno, N. Sanchez, S. Tims, T. Torrejon, E. Varela, W. d. Vos, Y. Winogradsky, E. Zoetendal, P. Bork, S. D. Ehrlich, and J. Wang (2010). "A human gut microbial gene catalogue established by metagenomic sequencing". Nature 464.7285, pp. 59–65. DOI: 10.1038/nature08821 (cit. on p. 3).
- Quick, J., P. Ashton, S. Calus, C. Chatt, S. Gossain, J. Hawker, S. Nair, K. Neal, K. Nye, T. Peters, E. De Pinna, E. Robinson, K. Struthers, M. Webber, A. Catto, T. J. Dallman, P. Hawkey, and N. J. Loman (2015). "Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella". *Genome Biology* 16, p. 114. DOI: 10.1186/s13059-015-0677-2 (cit. on p. 4).

- Reuter, S., M. J. Ellington, E. J. P. Cartwright, C. U. Köser, M. E. Török, T. Gouliouris, S. R. Harris, N. M. Brown, M. T. G. Holden, M. Quail, J. Parkhill, G. P. Smith, S. D. Bentley, and S. J. Peacock (2013). "Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology". JAMA Internal Medicine 173.15, pp. 1397–1404. DOI: 10.1001/ jamainternmed.2013.7734 (cit. on p. 82).
- Rho, M., H. Tang, and Y. Ye (2010). "FragGeneScan: predicting genes in short and error-prone reads". Nucleic Acids Research 38.20, e191–e191. DOI: 10. 1093/nar/gkq747 (cit. on p. 8).
- Rinke, C., P. Schwientek, A. Sczyrba, N. Ivanova, I. J. Anderson, J. F. Cheng,
 A. Darling, S. Malfatti, B. K. Swan, E. A. Gies, J. A. Dodsworth, B. P. Hedlund, G. Tsiamis, S. M. Sievert, W. T. Liu, J. A. Eisen, S. J. Hallam,
 N. C. Kyrpides, R. Stepanauskas, E. M. Rubin, P. Hugenholtz, and T. Woyke (2013). "Insights into the phylogeny and coding potential of microbial dark matter". *Nature* 499.7459, pp. 431–7. DOI: 10.1038/nature12352 (cit. on pp. 8, 48, 58, 68).
- Roth, C., S. Rastogi, L. Arvestad, K. Dittmar, S. Light, D. Ekman, and D. A. Liberles (2007). "Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms". *Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution* 308.1, pp. 58–73. DOI: 10.1002/jez. b.21124 (cit. on p. 9).
- Rubin, E. M. (2008). "Genomics of cellulosic biofuels". Nature 454.7206, pp. 841–
 5. DOI: 10.1038/nature07190 (cit. on pp. 13, 22).
- Rumbaugh, K. P. (2014). "Genomic complexity and plasticity ensure Pseudomonas success". *FEMS Microbiology Letters* 356.2, pp. 141–143. DOI: 10.1111/1574-6968.12517 (cit. on pp. 15, 78).
- Ruschhaupt, M., W. Huber, A. Poustka, and U. Mansmann (2004). "A compendium to ensure computational reproducibility in high-dimensional classification tasks". *Statistical Applications in Genetics and Molecular Biology* 3, Article37. DOI: 10.2202/1544-6115.1078 (cit. on pp. 41, 74, 84).
- Sanger, F. and A. R. Coulson (1975). "A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase". *Journal of Molecular Biology* 94.3, pp. 441–448 (cit. on p. 4).

- Sayers, E. W., T. Barrett, D. A. Benson, E. Bolton, S. H. Bryant, K. Canese, V. Chetvernin, D. M. Church, M. Dicuccio, S. Federhen, M. Feolo, I. M. Fingerman, L. Y. Geer, W. Helmberg, Y. Kapustin, S. Krasnov, D. Landsman, D. J. Lipman, Z. Lu, T. L. Madden, T. Madej, D. R. Maglott, A. Marchler-Bauer, V. Miller, I. Karsch-Mizrachi, J. Ostell, A. Panchenko, L. Phan, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, M. Shumway, K. Sirotkin, D. Slotta, A. Souvorov, G. Starchenko, T. A. Tatusova, L. Wagner, Y. Wang, W. J. Wilbur, E. Yaschenko, and J. Ye (2012). "Database resources of the National Center for Biotechnology Information". Nucleic Acids Research 40.Database issue, pp. D13–25. DOI: 10.1093/nar/gkr1184 (cit. on p. 24).
- Schultz, J., R. R. Copley, T. Doerks, C. P. Ponting, and P. Bork (2000). "SMART: a web-based tool for the study of genetically mobile domains". *Nucleic Acids Research* 28.1, pp. 231–4 (cit. on p. 35).
- Sievert, D. M., P. Ricks, J. R. Edwards, A. Schneider, J. Patel, A. Srinivasan, A. Kallen, B. Limbago, S. Fridkin, and National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities (2013). "Antimicrobialresistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010". Infection Control and Hospital Epidemiology 34.1, pp. 1–14. DOI: 10.1086/668770 (cit. on p. 78).
- Someya, S., M. Kakuta, M. Morita, K. Sumikoshi, W. Cao, Z. Ge, O. Hirose, S. Nakamura, T. Terada, and K. Shimizu (2010). "Prediction of carbohydratebinding proteins from sequences using support vector machines". Advances Bioinformatics. DOI: 10.1155/2010/289301 (cit. on p. 24).
- Sommer, M. O. A. and G. Dantas (2011). "Antibiotics and the resistant microbiome". Current Opinion in Microbiology 14.5, pp. 556–563. DOI: 10.1016/ j.mib.2011.07.005 (cit. on p. 2).
- Sonnhammer, E. L. L. and E. V. Koonin (2002). "Orthology, paralogy and proposed classification for paralog subtypes". *Trends in Genetics* 18.12, pp. 619– 620 (cit. on p. 9).
- Staley, J. T. and a. A. Konopka (1985). "Measurement of in Situ Activities of Nonphotosynthetic Microorganisms in Aquatic and Terrestrial Habitats". An-

nual Review of Microbiology 39.1, pp. 321–346. DOI: 10.1146/annurev.mi. 39.100185.001541 (cit. on p. 5).

- Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. L. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K.-S. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. W. Hancock, S. Lory, and M. V. Olson (2000). "Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen". *Nature* 406.6799, pp. 959–964. DOI: 10.1038/35023079 (cit. on p. 78).
- Suen, G., P. J. Weimer, D. M. Stevenson, F. O. Aylward, J. Boyum, J. Deneke, C. Drinkwater, N. N. Ivanova, N. Mikhailova, O. Chertkov, L. A. Goodwin, C. R. Currie, D. Mead, and P. J. Brumm (2011). "The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist". *PLoS ONE* 6.4, e18814. DOI: 10.1371/journal.pone.0018814 (cit. on p. 35).
- Tatusov, R. L., D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T. Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova, and E. V. Koonin (2001). "The COG database: new developments in phylogenetic classification of proteins from complete genomes". Nucleic Acids Research 29.1, pp. 22–8. DOI: 10.1093/nar/29.1.22 (cit. on pp. 9, 65).
- Taylor, L., B. Henrissat, P. Coutinho, N. Ekborg, S. Hutcheson, and R. Weiner (2006). "Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T." *Journal of Bacteriology* 188.11, pp. 3849–3861 (cit. on p. 36).
- Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon (2006). "An obesity-associated gut microbiome with increased capacity for energy harvest". *Nature* 444.7122, pp. 1027–131. DOI: 10.1038/ nature05414 (cit. on p. 3).
- U.S. National Oceanic and Atmospheric Administration (2004). White flocculent mats in and around the extremely gassy, high-temperature (100°C, 212°F) white smokers at Champagne Vent. URL: http://oceanexplorer.noaa.gov/

explorations/04fire/logs/hirez/champagne_vent_hirez.jpg (visited on 08/25/2016) (cit. on p. 2).

- Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, M. Cayouette, A. C. McHardy, G. Djordjevic, N. Aboushadi, R. Sorek, S. G. Tringe, M. Podar, H. G. Martin, V. Kunin, D. Dalevi, J. Madejska, E. Kirton, D. Platt, E. Szeto, A. Salamov, K. Barry, N. Mikhailova, N. C. Kyrpides, E. G. Matson, E. A. Ottesen, X. Zhang, M. Hernandez, C. Murillo, L. G. Acosta, I. Rigoutsos, G. Tamayo, B. D. Green, C. Chang, E. M. Rubin, E. J. Mathur, D. E. Robertson, P. Hugenholtz, and J. R. Leadbetter (2007). "Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite". *Nature* 450.7169, pp. 560–5. DOI: 10.1038/nature06269 (cit. on p. 23).
- Weimann, A., Y. Trukhina, P. B. Pope, S. G. Konietzny, and A. C. McHardy (2013). "De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes". *Biotechnology for Biofuels* 6.24. DOI: 10.1186/1754-6834-6-24 (cit. on pp. 15, 17, 48, 65, 68).
- Weimann, A., K. Mooren, J. Frank, P. B. Pope, A. Bremges, and A. C. McHardy (2016a). "From Genomes to Phenotypes: Traitar, the Microbial Trait Analyzer". *mSystems* 1.6. Ed. by N. Segata. DOI: 10.1128/mSystems.00101-16 (cit. on pp. 17, 46).
- (2016b). "From genomes to phenotypes: Traitar, the microbial trait analyzer". bioRxiv, p. 043315. DOI: 10.1101/043315 (cit. on p. 17).
- Weinberg, Z. (2012). SVM separating hyperplanes. URL: https://commons. wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg (visited on 08/25/2016) (cit. on p. 12).
- Westbrock-Wadman, S., D. R. Sherman, M. J. Hickey, S. N. Coulter, Y. Q. Zhu, P. Warrener, L. Y. Nguyen, R. M. Shawar, K. R. Folger, and C. K. Stover (1999). "Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability". *Antimicrobial Agents and Chemotherapy* 43.12, pp. 2975–2983 (cit. on p. 81).
- Wheals, A., L. Basso, D. Alves, and H. Amorim (1999). "Fuel ethanol after 25 years." *TIBTECH* 17, pp. 482–487 (cit. on p. 22).

- Wilson, D. B. (2009). "Evidence for a novel mechanism of microbial cellulose degradation". *Cellulose* 16.4, pp. 723–727. DOI: 10.1007/s10570-009-9326-9 (cit. on pp. 36, 38, 39).
- Wooley, J. C., A. Godzik, and I. Friedberg (2010). "A Primer on Metagenomics". PLOS Computational Biology 6.2, e1000667. DOI: 10.1371/journal.pcbi. 1000667 (cit. on p. 6).
- Wright, G. D. (2012). "Antibiotics: a new hope". *Chemistry & Biology* 19.1, pp. 3–10. DOI: 10.1016/j.chembiol.2011.10.019 (cit. on pp. 3, 15).
- Xie, G., D. C. Bruce, J. F. Challacombe, O. Chertkov, J. C. Detter, P. Gilna, C. S. Han, S. Lucas, M. Misra, G. L. Myers, P. Richardson, R. Tapia, N. Thayer, L. S. Thompson, T. S. Brettin, B. Henrissat, D. B. Wilson, and M. J. McBride (2007). "Genome Sequence of the Cellulolytic Gliding Bacterium Cytophaga hutchinsonii". *Applied and Environmental Microbiology* 73.11, pp. 3536–3546. DOI: 10.1128/aem.00225-07 (cit. on p. 23).
- Yamada, T., M. Kanehisa, and S. Goto (2006). "Extraction of phylogenetic network modules from the metabolic network". *BMC Bioinformatics* 7, p. 130. DOI: 10.1186/1471-2105-7-130 (cit. on p. 10).
- Yaun, G.-X., K.-W. Chang, C.-J. Hsieh, and C.-J. Lin (2010). "A Comparison of Optimization methods for Large-scale L1-regularized Linear Classification". *Journal of Machine Learning Research* 11, pp. 3183–3234 (cit. on p. 41).
- Yin, Y., X. Mao, J. Yang, X. Chen, F. Mao, and Y. Xu (2012). "dbCAN: a web resource for automated carbohydrate-active enzyme annotation". *Nucleic Acids Research* doi:10.1093/nar/gks479. DOI: 10.1093/nar/GKS479 (cit. on pp. 9, 40).
- Yonezawa, M., M. Takahata, N. Matsubara, Y. Watanabe, and H. Narita (1995). "DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa." *Antimicrobial Agents and Chemotherapy* 39.9, pp. 1970–1972 (cit. on p. 80).
- Yosef, N., J. Gramm, Q.-F. Wang, W. Noble, R. Karp, and R. Sharan (2010). "Prediction of phenotype information from genotype data." *Communications in information and systems* 10.2, pp. 99–114 (cit. on p. 24).

- Zhang, M. L. and Z. H. Zhou (2014). "A Review on Multi-Label Learning Algorithms". *IEEE Transactions on Knowledge and Data Engineering* 26.8, pp. 1819–1837. DOI: 10.1109/TKDE.2013.39 (cit. on p. 88).
- Zou, H. and T. Hastie (2005). "Regularization and variable selection via the elastic net". Journal of the Royal Statistical Society: Series A 67.2, pp. 301– 320 (cit. on p. 70).

REFERENCES

 ${}_{\text{APPENDIX}} A$

Journal versions of the published articles

CHAPTER A. JOURNAL VERSIONS OF THE PUBLISHED ARTICLES

RESEARCH

Open Access

De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes

Aaron Weimann^{1,3†}, Yulia Trukhina^{1,3†}, Phillip B Pope², Sebastian GA Konietzny^{1,3} and Alice C McHardy^{1,3*}

Abstract

Background: Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data.

Results: We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes.

Conclusions: Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes.

Background

Lignocellulosic biomass is the primary component of all plants and one of the most abundant organic compounds on earth. It is a renewable, geographically distributed and a source of sugars, which can subsequently be converted into biofuels with low greenhouse gas emissions, such as ethanol. Chemically, it primarily consists of cellulose, hemicellulose and lignin. Saccharification - the process of degrading lignocellulose into the individual component sugars - is of considerable biotechnological interest.

¹Max-Planck Research Group for Computational Genomics and

³Department of Algorithmic Bioinformatics, Heinrich Heine University

Several mechanical and chemical procedures for saccharification have been established; however, all are relatively expensive, slow and inefficient [1]. An alternative approach is realized in nature by various microorganisms, which use enzyme-driven lignocellulose degradation to generate sugars as sources of carbon and energy. The search for novel enzymes allowing an efficient breakdown of plant biomass has therefore attracted considerable interest [2-5]. In particular, the discovery of novel cellulases for saccharification is considered crucial in this context [6]. However, the complexity of the underlying biological mechanisms and the lack of robust enzymes that can be economically produced in larger quantities currently still prevent industrial application.

For some lignocellulose-degrading species, carbohydrateactive enzymes (CAZymes) and protein domains implicated in lignocellulose degradation are well known. Many of

© 2013 Weimann et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: alice.mchardy@uni-duesseldorf.de

[†]Equal contributors

Epidemiology, Max-Planck Institute for Informatics, University Campus E1 4, Saarbrücken 66123, Germany

Düsseldorf, Düsseldorf 40225, Germany Full list of author information is available at the end of the article

these have been recognized by physiological and biochemical tests as being relevant for the biochemical process of cellulose degradation itself, such as the enzymes of the glycoside hydrolase (GH) families GH6 and GH9 and the endoglucanase-containing family GH5. Two well-studied paradigms are currently known for microbial cellulose degradation: The 'free-enzyme system' is realized in most aerobic microbes and entails secretion of a set of cellulases to the outside of the cell. In anaerobic microorganisms large multi-enzyme complexes, known as cellulosomes, are assembled on the cell surface and catalyze degradation. In both cases, the complete hydrolysis of cellulose requires endoglucanases (GH5 and GH9), which are believed to target non-crystalline regions, and exo-acting cellobiohydrolases, which attack crystalline structures from either the reducing (GH7 and GH48) or nonreducing (GH6) end of the beta-glucan chain. However, in the genomes of some plant biomass-degrading species, homologs of such enzymes have not been found. Recent genome analyses of the lignocellulose-degrading microorganisms, such as the aerobe Cytophaga hutchinsonii [7], the anaerobe Fibrobacter succinogenes [8,9] and the extreme thermophile anaerobe Dictyoglomus turgidum [10] have revealed only GH5 and GH9 endoglucanases. Genes encoding exo-acting cellobiohydrolases (GH6 and GH48) and cellulosome structures (dockerins and cohesins) are absent.

Metagenomics offers the possibility of studying the genetic material of difficult-to-culture (i.e. uncultured) species within microbial communities with the capability to degrade plant biomass. Recent metagenome studies of the gut microbiomes of the wood-degrading higher termites (Nasutitermes), the Australian Tammar wallaby (Macropus eugenii) [11,12] and two studies of the cow rumen metagenome [13,14] have revealed new insights into the mechanisms of cellulose degradation in uncultured organisms and microbial communities. Microbial communities of different herbivores have been shown to be dominated by lineages affiliated to the Bacteroidetes and Firmicutes, of which different Bacteroidetes lineages exhibited endoglucanse activity [11,15]. Notably, exoacting families and cellulosomal structures have a low representation or are entirely absent from gut metagenomes sequenced to date. Thus, current knowledge about genes and pathways involved in plant biomass degradation in different species, particularly uncultured microbial ones, is still incomplete.

We describe a method for the *de novo* discovery of protein domains and CAZy families associated with microbial plant biomass degradation from genome and metagenome sequences. It uses protein domain and gene family annotations as input and identifies those domains or gene families, which in concert are most distinctive for the lignocellulose degraders. Among the gene and protein domains identified with our method were known key genes of plant biomass degradation. Additionally, it identified several novel protein domains and gene families as being relevant for the process. These might represent novel leads towards elucidating the mechanisms of plant biomass degradation for the currently less well understood microbial species. Our method furthermore can be used to identify plant biomass-degrading species from the genomes of cultured or uncultured microbes. Application to draft genomes assembled from the metagenome of a switchgrass-adherent microbial community in cow rumen predicted genomes from several Bacteroidales lineages which encode active glycoside hydrolases and a relative to a known plant biomass degrader to represent lignocellulose degraders.

In technical terms, our method selects the most informative features from an ensemble of L1-regularized L2-loss linear Support Vector Machine (SVM) classifiers, trained to distinguish genomes of cellulose-degrading species from non-degrading species based on protein family content. Protein domain annotations are available in public databases and new protein sequences can be rapidly annotated with Hidden Markov Models (HMMs) or - somewhat slower - with BLAST searches of one protein versus the NCBI-nr database [16]. Co-occurrence of protein families in the biomass-degrading fraction of samples and an absence of these families within the non-degrading fraction allows the classifier to link these proteins to biomass degradation without requiring sequence homology to known proteins involved in lignocellulose degradation. Classification with SVMs has been previously used successfully for phenotype prediction from genetic variations in genomic data. In Beerenwinkel et al. [17], support vector regression models were used for predicting phenotypic drug resistance from genotypes. SVM classification was used by Yosef et al. [18] for predicting plasma lipid levels in baboons based on single nucleotide polymorphism data. In Someya et al. [19], SVMs were used to predict carbohydrate-binding proteins from amino acid sequences. The SVM [20,21] is a discriminative learning method that infers, in a supervised fashion, the relationship between input features (such as the distribution of conserved gene clusters or single nucleotide polymorphisms across a set of sequence samples) and a target variable, such as a certain phenotype, from labeled training data. The inferred function is subsequently used to predict the value of this target variable for new data points. This type of method makes no a priori assumptions about the problem domain. SVMs can be applied to datasets with millions of input features and have good generalization abilities, in that models inferred from small amounts of training data show good predictive accuracy on novel data. The use of models that include an L1-regularization term favors solutions in which few

features are required for accurate prediction. There are several reasons why sparseness is desirable: the high dimensionality of many real datasets results in great challenges for processing. Many features in these datasets are usually non-informative or noisy, and a sparse classifier can lead to a faster prediction. In some applications, like ours, a small set of relevant features is desirable because it allows direct interpretation of the results.

Results

We trained an ensemble of SVM classifiers to distinguish between plant biomass-degrading and non-degrading microorganisms based on either Pfam domain or CAZY gene family annotations (see Methods section for the training and evaluation of the SVM classification ensemble). We used a manually curated data set of 104 microbial (meta-)genome sequence samples for this purpose, which included 19 genomes and 3 metagenomes of lignocellulose degraders and 82 genomes of non-degraders (Figure 1, Figure 2, Additional file 1: Table S1). Fungi are known to use several enzymes for plant biomass degradation for which the corresponding genes are not found in prokaryotic genomes and vice versa, while other genes are shared by prokaryotic and eukaryotic degraders. To investigate similarities and differences detectable with our method, we included the genome of lignocellulose degrading fungus Postia placenta into our analysis. After training, we identified the most distinctive protein domains and CAZy families of plant biomass degraders from the resulting models. We compared these protein domains and gene families with known plant biomass degradation genes. We furthermore applied our method to identify plant biomass degraders among 15 draft genomes from the metagenome of a microbial community adherent to switch grass in cow rumen.

Distinctive Pfam domains of microbial plant biomass degraders

For the training of a classifier which distinguishes between plant biomass-degrading and non-degrading microorganisms we used Pfam annotations of 101 microbial genomes and two metagenomes. This included metagenomes of microbial communities from the gut of a wood-degrading higher termite and from the foregut of the Australian Tammar Wallaby as examples for plant biomass-degrading communities. Furthermore, 19 genomes of microbial lignocellulose degraders were included of the phyla Firmicutes (7 isolate genome sequences), Actinobacteria (5), Proteobacteria (3), Bacteroidetes (1), Fibrobacteres (1), Dictyoglomi (1) and Basidiomycota (1). Eighty-two microbial genomes annotated to not possess the capability to degrade lignocellulose were used as examples of non-lignocellulose-degrading microbial species (Additional file 1: Table S1).

We assessed the value of information about the presence or absence of protein domains for distinguishing lignocellulose degraders from non-degraders. With the respective classifier, $eSVM_{bPFAM}$, each microbial (meta-) genome sequence was represented by a feature vector with the features indicating the presence or absence of Pfam domains (see Methods). The nested cross-validation macro-accuracy of $eSVM_{bPFAM}$ in distinguishing plant biomass-degrading from non-degrading microorganisms was 0.91. This corresponds to 94% (97 of 103) of the (meta-)genome sequences being classified correctly. Only three of the 21 cellulose-degrading samples and three of the non-degraders were misclassified (Table 1, Table 2). Among these were four Actinobacteria and one genome affiliated with the Basidiomycota and Theromotogae each.

We identified the Pfam domains with the greatest importance for assignment to the lignocellulose-degrading class by eSVM_{bPFAM} (Figure 1; see Methods for the feature selection algorithm). Among these are several protein domains known to be relevant for plant biomass degradation. One of them is the GH5 family, which is present in all of the plant biomass-degrading samples. Almost all activities determined within this family are relevant to plant biomass degradation. Because of its functional diversity, a subfamily classification of the GH5 family was recently proposed [24]. The carbohydrate-binding modules CBM_6 and CBM_4_9 were also selected. Both families are Type B carbohydrate-binding modules (CBMs), which exhibit a wide range of specificities, recognizing single glycan chains comprising hemicellulose (xylans, mannans, galactans and glucans of mixed linkages) and/or noncrystalline cellulose [25]. Type A CBMs (e.g. CBM2 and CBM3), which are more commonly associated with binding to insoluble, highly crystalline cellulose, were not identified as relevant by eSVM_{bPFAM}. Furthermore, numerous enzymes that degrade non-cellulosic plant structural polysaccharides were identified, including those that attack the backbone and side chains of hemicellulosic polysaccharides. Examples include the GH10 xylanases and GH26 mannanases. Additionally, enzymes that generally display specificity for oligosaccharides were selected, including GH39 β-xylosidases and GH3 enzymes.

We subsequently trained a classifier - $eSVM_{fPFAM}$ - with a weighted representation of Pfam domain frequencies for the same data set. The macro-accuracy of $eSVM_{fPFAM}$ was 0.84 (Table 2); lower than that of the $eSVM_{bPFAM}$; with nine misclassified samples (4 Actinobacteria, 2 Bacteroidetes, 1 Basidiomycota, 1 Thermotogae phyla and the Tammar Wallaby metagenome). Again, we determined the most relevant protein domains for identifying a plant biomass-degrading sequence sample from the models by

protein domain was chosen in the respective experiment.

feature selection. Among the most important protein families were, as before, GH5, GH10 and GH88 (PF07221: N-acylglucosamine 2-epimerase) (Figure 1). GH6, GH67 and CE4 acetyl xylan esterases ("accessory enzymes" that contribute towards complete hydrolysis of xylan) were only relevant for prediction with the $eSVM_{fPFAM}$ classifier.

Additionally, both models specified protein domains not commonly associated with plant biomass degradation as being relevant for assignment, such as the lipoproteins DUF4352 and PF00877 (NlpC/P60 family) and binding domains PF10509 (galactose-binding signature domain) and PF03793 (PASTA domain) (Figure 1).

Weimann et al. Biotechnology for Biofuels 2013, 6:24 http://www.biotechnologyforbiofuels.com/content/6/1/24

ſ

Page 5 of 13

]			A	-	+	-	+	-	-	-	+	-	-	+	-	+	-	-	+	-	+	+	+	-	ŀ
		Presen	ce/Absence	В	-	+	-	+	-	-	-	+		-	+	-	-	-	-	-	-	+	+	-	-	Ŀ
				a	-+	+ +	-+	++	-+	-+	-	+	-+	-+	+	-+	-	-	+	-	-+	++	++	-	+	┝
		We	eighted	b	-	+	-	+	-	-	-	-	•	+	+	+	-	+	-	-	+	+	-	-	-	T
	l			С	-	+	-	+	•	-	+	-	·	-	+	+	-	+	+	•	+	-	•	-	-	L
	Occ 0 min	urrence	max		GH5	GH6	GH10	GH11	GH12	GH26	GH43	GH44	GH55	GH65	GH67	GH74	GH81	GH95	GH106	CBM3	CBM4	CBM6	CBM9	CBM10	CBM16	
Cellulose deglading miliciones	Cytophaga hutchinsonii ATCC 33406 Saccharophagus degradans 2-40 Thermobifida fusca YX Acidothermus cellulolyticus 11B Clostridium thermocellum ATCC 27405 Caldicellulosiruptor saccharolyticus DSM 8903 Clostridium phytofermentans ISDg Cellvibrio japonicus Ueda107 Clostridium cellulolyticum H10 Dictyoglomus turgidum DSM 6724 Caldicellulosiruptor bescii Z-1320, DSM 6725 Teredinibacter turnerae T7901 Xylanimonas cellulosilytica DSM 15894 Thermomonospora curvata DSM 43183 Fibrobacter succinogenes succinogenes S85 Cellulomonas flavigena DSM 20109 Tammar wallaby foregut Cow rumen Termite hindgut																									
	Microbes that do	not degrad	e cellulose																			I				
							_																			
Cow rumen bins	Predicted non-degra	ADa AMa AN AQ AS1a ATa AWa BO2	Myxococcal Spirochaeta Clostridiales Bacteroidale Clostridiales Clostridiales Clostridiales	es les																						
	Ambigous prediction	AFa AGa Ala	Bacteroidale Bacteroidale Bacteroidale Spirochaeta Bacteroidale Clostridiales	, es es es es es																						

domain families ("A", "a", "B", "b", "C", "c" as described in Table 1).

	eSVM _{bPFAM}	eSVM _{CAZY_B}					
False negatives	Postia placenta Mad-698-R	Thermomonospora curvata DSM 43183					
	Xylanimonas cellulosilytica DSM 15894						
	Thermomonospora curvata DSM 43183						
False positives	Actinosynnema mirum 101	Actinosynnema mirum 101					
	Arthrobacter aurescens TC1						
	Thermotoga lettingae TMO						

Shown are species which were misclassified with the eSVM_{CAZY_B} and the eSVM_{bPFAM} classifiers. Contrary to previous beliefs [22], recent literature indicates in agreement with our predictions that *T. curvata* is a non-degrader. Furthermore, recent evidence supports that *A. mirum* is a lignocellulose degrader, which has not been previously described [23].

Distinctive CAZy families of microbial plant biomass degraders

We searched for distinctive CAZy families of microbial plant biomass degraders with our method. CAZy families include glycoside hydrolases (GH), carbohydratebinding modules (CBM), glycosyltransferases (GT), polysaccharide lyases (PL) and carbohydrate esterases (CE). The annotations from the CAZy database comprised 64 genomes of non-lignocellulose-degrading species and 16 genomes of lignocellulose-degraders. There were no CAZy annotations available for the remaining genomes. In addition, we included the metagenomes of the gut microbiomes of the Tammar wallaby (TW), the wood-degrading higher termite and of the cow rumen microbiome (Additional file 1: Table S1). We evaluated the value of information about the presence or absence of CAZy domains, or of their relative frequencies for identification of lignocellulosedegrading microbial (meta-)genomes in the following experiments:

- 1) By training of the classifiers $eSVM_{CAZY_A}$ (presence/ absence) and $eSVM_{CAZY_a}$ (counts), based on genome annotations with all CAZy families.
- 2) By training of the classifiers $eSVM_{CAZY_B}$ (presence/ absence) and $eSVM_{CAZY_b}$ (counts), based on the annotations of the genomes and the TW sample with all CAZy families, except for the GT family members, which were not annotated for the TW sample.
- 3) By training of the classifiers eSVM_{CAZY_C} (presence/ absence) and eSVM_{CAZY_c} (counts) with the entire data set based on GH family and CBM annotations, as these were the only ones available for the three metagenomes.

The macro-accuracy of these classifiers ranged from 0.87 to 0.96, similar to the Pfam-domain-based models (Table 2). Notably, almost exclusively Actinobacteria were misclassified by the $eSVM_{CAZY}$ classifiers, except for the Firmicute *Caldicellulosiruptor saccharolyticus*.

The best classification results were obtained with the presence-absence information for all CAZy families except for the GT families of the microbial genomes and the TW sample. In this setting $(eSVM_{CAZY_B})$ only two species (*Thermomonospora curvata* and *Actinosynnema mirum*) were misclassified (Table 1). These species remained misclassified with all six classifiers.

Using feature selection, we determined the CAZy families from the six $eSVM_{CAZy}$ classifiers that are most relevant for identifying microbial cellulose-degraders. Many of these GH families and CBMs are present in all (meta-) genomes (Figure 2). This analysis identified further gene families known to be relevant for plant biomass degradation. Among them are cellulase-containing families (GH5, GH6, GH12, GH44, GH74), hemicellulasecontaining families (GH10, GH11, GH26, GH55, GH81, GH115), families with known oligosaccharide/side-chaindegrading activities (GH43, GH65, GH67, GH95) and several CBMs (CBM3, -4, -6, -9, -10, -16, -22, -56). Several of these (GH6, GH11, GH44, GH67, GH74, CBM4, CBM6, CBM9) were consistently identified by at least half of the six classifiers as distinctive for plant biomass degraders. These might be considered signature genes of the plant biomass-degrading microorganisms we analyzed. Additionally, several GT, PL and CE domains were identified as relevant (eSVM_{CAZY A}: PL1, PL11 and CE5, "eSVM_{CAZY_B}: CE5; eSVM_{CAZY_a}: GT39, PL1 and CE2, eSVM_{CAZY b}: none). These CAZy families, as well as GH115 and CBM56, are not included in Figure 2, as they are not annotated for all sequences.

Identification of plant biomass degraders from a cow rumen metagenome

We used our method to predict the plant biomassdegrading capabilities for 15 draft genomes of uncultured microbes reconstructed from the metagenome of a microbial community adherent to switchgrass in cow rumen [14] (see Methods for the classification with an ensemble of SVM classifiers). The draft genomes represent genomes with more than 50% of the sequence reconstructed by taxonomic binning of the metagenome
	Presence/absence of Pfam	Weighted Pfam domain	Prese fami	nce/absence ily represent	CAZy ation	W fami	eighted CA v represent	Zy ation
	domains	representation	Α	В	С	а	b	с
nCV macro-accuracy	0.91	0.84	0.90	0.96	0.94	0.91	0.93	0.87
nCV recall	0.86	0.73	0.81	0.94	0.90	0.88	0.88	0.79
nCV true negative rate	0.96	0.96	0.98	0.98	0.98	0.95	0.98	0.95

Table 2 Accuracy of classifying microbes as lignocellulose-degraders or non-degraders

L1-regularized SVMs were trained with Pfam domain or CAZY family (meta-)genome annotations. Capital letters denote classifiers trained based on the presence or absence of CAZy families and small letters indicate classifiers trained based on the relative abundances of CAZy families in annotations. Abbreviations "A", "a"," B", "b", "C", "c" denote the following: Classifiers "A","a" were trained with annotations of all CAZy families for 16 microbial genomes; Classifiers "B","b" were trained with annotations for all CAZy families, except for the GT family members (which were not annotated for the Tammar Wallaby metagenome), for 16 genomes and the TW metagenome of plant biomass degraders; Classifiers "C","c" were trained with annotations for the GH families and CBMs for the 16 microbial genomes and three metagenomes of plant biomass degraders, as only these were annotated for the metagenomes. All CAZy-based classifiers were trained with available annotations for 64 genomes of non-biomass degraders. The Pfam-based classifiers were trained with 21 (meta-)genomes of biomass-degraders and 82 microbial genomes of non-degraders. For more details on the experimental set-up and the evaluation measures shown see the Methods section on performance evaluation.

sample. The microbial community adherent to switchgrass is likely to be enriched with plant biomass degraders, as it was found to differ from the rumen fluid community in its taxonomic composition and degradation of switch grass after incubation in cow rumen had occurred. For identification of plant biomass-degrading microbes, we classified each draft genome individually with the eSVM_{bPFAM} and eSVM_{CAZY B} models, which had the highest macro-accuracy based on Pfam domain or CAZy family annotations, respectively. The eSVM_{bPFAM} classifier assigned seven of the draft genomes to plant biomass degraders (Table 3). One of these, genome APb, was found by 16S rRNA analysis to be related to the fibrolytic species Butyrivibrio fibrisolvens. Four others (AC2a, AGa, AJ and AH) are of the order of Bacteroidales, and include all but one draft genomes affiliated to the Bacteroidales. The 6th and 7th predicted degrader, represented by genome Ala and AWa, belong to the Clostridiales, like genome APb. The eSVM_{CAZY B} classifier also assigned five of these genomes to the plant biomass degraders. Additionally it classified genome AH as plant biomassdegrading, while being ambiguous in the assignment of AFa (Table 3). To validate these predictions, we searched the draft genomes for genes encoding 51 enzymatically active glycoside hydrolases characterized from the same rumen dataset (for the results of these experiments see Figure three in Hess et al. [14]). Genomes AGa, AC2a, AJ and AIa were all linked to different enzymes of varying specificities (Table 3). AC2a was linked to cellulose degradation, specifically to a carboxymethyl cellulose (CMC)degrading GH5 endoglucanase as well as GH9 enzyme capable of degrading insoluble cellulosic substrates such as Avicel[®]. Ala demonstrated capabilities towards xylan and soluble cellulosic substrates with affiliations to four GH10 xylanases. Both AGa and AJ demonstrated broader substrate versatility and were linked to enzymes with capabilities towards cellulosic substrates CMC and Avicel[®] (GH5, GH9 and GH26), hemicellulosic substrates lichenan (β -1,3, β -1,4 β -glucan) and xylan (GH5, GH9 and GH10), as well as the natural feedstocks miscanthus and switchgrass (GH5 and GH9). Importantly, no carbohydrate-active enzymes were affiliated to draft genomes that were predicted to not possess plant biomass-degrading capabilities (Table 3). Overall, assignments were largely consistent between the two classifiers and supporting evidence for the capability to degrade plant biomass was found for five of the predicted degraders.

Timing experiments

Our method uses annotations with Pfam domains or CAZy families as input. Generating these by similaritysearches with profile HMMs rather than with BLAST provides a better scalability for next-generation sequencing data sets. HMM databases such as dbCAN contain a representation of entire protein families rather than of individual gene family members, which largely decreases the number of entries one has to compare against. For example, searching the ORFs of the Fibrobacter succinogenes genome [26] for similarities to CAZy families with the dbCAN HMM models took 23 seconds on an Intel[®] Xeon[®] 1.6 GHz CPU. In comparison, searching for similarities to CAZy families by BLASTing the same set of ORFs against all sequences with CAZy family annotation of the NCBI non-redundant protein database (downloaded from http://csbl.bmb.uga.edu/ dbCAN/ on April 19th 2011) on the same machine required approximately 1 hour and 55 minutes, a difference of two orders of magnitude. Because of their better scalability and also because they are well-established for identifying protein domains or gene families [27-29], we recommend the use of HMM-based similarities and annotations as input to our method.

Discussion

We investigated the value of information about the presence-or-absence of CAZy families and Pfam protein domains, as well as information about their relative abundances, for the identification of lignocellulose degraders. Classifiers trained with CAZy family or Pfam

Table 3 Pre	diction of the p	lant biomass de	egradation capak	oilities for 15 dr	aft genc	omes									
	AC2a	AGa	Ala-2	A	APb	AFa	АН	AWa	ADa	AMa	AN	AQ	AS1	ATa	BOa
eSVM _{CAZY_B}	++++	++	++	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	0	1	1	;	:	;	;	;	:
eSVMbPFAM	++	++	+	++	+++++	,	+++++++++++++++++++++++++++++++++++++++	+	:	,	:	:	:	,	:
CMC	GH5 (TW-33)	GH5 (TW-40) GH5 (MH-2)	GH10 (TW-34)	GH5 (TW-39) GH26 (TW-10) GH10 (TW-8)											
XYL		GH10 (TW-25)	GH10 (TW-30) GH10 (TW-31) GH10 (TW-37)	GH10 (TW-8)											
SWG		GH5 (TW-40) GH5 (MH-2)													
MIS	GH9 (TW-64)	GH5 (TW-40) GH5 (MH-2) GH9 (TW-50)		GH5 (TW-39)											
AM	GH9 (TW-64)	GH5 (TW-40) GH5 (MH-2) GH9 (TW-50)		GH5 (TW-39)											
LIC		GH5 (TW-40) GH5 (MH-2) GH9 (TW-50)		GH5 (TW-39)											
Genome recon.	structions from the mistion of a second	hetagenome of a micr	obial community adhe	erent to switchgrass in	n the cow r	umen wer	e obtained	by taxonon	hic binning	of assemble	d sequence	es in the o	original stud	dy. Symbols fied as plan	.

genc	
draft	
15	
for	
capabilities	
degradation	
biomass	
plant	
the	
of	
Prediction	
e 3	

depict the prediction outcome of a voting committee of the 5 eSVM_{GAZY} and the eSVM_{bFAM} classifiers with the best macro-accuracy (see text for the description of the classifiers). ++:: genome classified as plant biomass degrader by a lot of 5 classifiers; --:: genome classified as plant biomass degrader by all classifiers are of the description; -:: genome classified as plant biomass degrader by all classifiers; --:: genome classified as plant biomass degrader by all classifiers; --:: genome classified as not plant biomass degrader by all classifiers; --:: genome classified as not plant biomass degrader by all classifiers; --:: genome classified as not plant biomass degrader by all classifiers; --:: genome classified as not plant biomass degrader by all classifiers; --:: genome classified as not plant biomass degrader by all classifiers; --:: genome classified as not plant biomass degrader by all classifiers; --:: genome classifi

domain annotations allowed an accurate identification of plant biomass degraders and determined similar domains and CAZy families as being most distinctive. Many of these are recognized by physiological and biochemical tests as being relevant for the biochemical process of cellulose degradation itself, such as GH6, members of the GH5 family and to a lesser extent GH44 and GH74. In contrast to widely accepted paradigms for microbial cellulose degradation, recent genome analysis of cellulolytic bacteria has identified examples (i.e. Fibrobacter) where there is an absence of genes encoding exo-acting cellobiohydrolases (GH6 and GH48) and cellulosome structures [30]. In addition, these exo-acting families and cellulosomal structures have had a low representation or are entirely absent from sequenced gut metagenomes. Our method also finds the exo-acting cellobiohydrolases GH7 and GH48 to be less important. GH7 represents fungal enzymes, so its absence makes sense; however, the lower importance assigned to GH48 is interesting. The role of GH48 is believed to be of high importance, although recent research has raised questions. Olson et al. [31] have found that a complete solubilization of crystalline cellulose can occur in Clostridium thermocellum without the expression of GH48, albeit at significantly lower rates. Furthermore, genome analysis of cellulose-degrading microbes Cellvibrio japonicus [32] and Saccharophagus degradans [33] have determined the presence of only non-reducing end enzymes (GH6) and an absence of a reducing end cellobiohydrolase (GH48), suggesting that the latter are not essential for all cellulolytic enzyme systems.

While we have focused on cellulose degradation, our method has also identified enzymes that degrade other plant polysaccharides as being relevant, such as hemicellulose (GH10, GH11, GH12, GH26, GH55, GH81, CE4), pectins (PL1, GH88 and GH43), oligosaccharides (GH3, GH30, GH39, GH43, GH65, GH95) and the side-chains attached to noncellulosic polysaccharides (GH67, GH88, GH106). This was expected, since many cellulosedegrading microbes produce a repertoire of different glycoside hydrolases, lyases and esterases (see, for example, [32,33]) that target the numerous linkages that are present within different plant polysaccharides, which often exist in tight cross-linked forms within the plant cell wall. The results from our method add further weight to this. The observation of numerous CBMs being relevant in the CAZy analysis also agrees with previous findings that many different CBM-GH combinations are possible in bacteria. Moreover, recent reports have demonstrated that the targeting actions of CBMs have strong proximity effects within cell wall structures, i.e. CBMs directed to a cell wall polysaccharide (e.g. cellulose) other than the target substrate of their appended glycoside hydrolase (e.g. xylanase) can promote enzyme action against the target substrate (e.g. xylan) within the cell wall [34]. This provides explanations as to why cellulose-directed CBMs are appended to many non-cellulase cell wall hydrolases.

Several Pfam domains of unknown function (DUFs) or protein domains which have not previously been associated with cellulose degradation are predicted as being relevant. These include transferases (PF01704) and several putative lipoproteins (DUF4352), some of which have predicted binding properties (NlpC/P60 family: PF00877, PASTA domain: PF03793). The functions of these domains in relation to cellulose degradation are not known, but possibilities include binding to cellulose, binding to other components of the cellulolytic machinery or interaction with the cell surface.

Another result of our study are the classifiers for identifying microbial lignocellulose-degraders from genomes of cultured and uncultured microbial species reconstructed from metagenomes. Classification of draft genomes reconstructed from switchgrass-adherent microbes from cow rumen with the most accurate classifiers predicted six or seven of these to represent plant biomass-degrading microbes, including a close relative to the fibrolytic species Butyrivibrio fibrisolvens. Cross-referencing of all draft genomes against a catalogue of enzymatically active glycoside hydrolases provided a degree of method validation and was in majority agreement with our predictions. Four genomes (AGa, AC2a, AJ and AIa) predicted positive were linked to cellulolytic and/or hemicellulolytic enzymes, and importantly no genomes that were predicted negative were linked to carbohydrate-active enzymes from that catalogue of enzymatically active enzymes. Also, no connections to carbohydrate-active enzymes from that catalogue were observed for the three genomes (AFa,AH and AWa) where ambiguous predictions were made. As both draft genomes as well as the catalogue of carbohydrate active enzymes in cow rumen are incomplete, in addition to our training data not covering all plant-biomass-degrading taxa, such ambiguous assignments might be better resolvable with more information in the future.

We trained a previous version of our classifier with the genome of *Methanosarcina barkeri fusaro* incorrectly labeled as a plant biomass degrader, according to information provided by IMG. In cross-validation experiments, our method correctly assigned *M. barkeri* to be a non-plant biomass-degrading species. We labeled *Thermonospora curvata* as a plant biomass degrader and *Actinosynnema mirum* as non-degrader according to information from the literature (see Additional file 1: Table S1). Both were misassigned by all classifiers in the cross-validation experiments. However, in a recent work by Anderson *et al.* [23] it was shown that in cellulose activity assays *A. mirum* could degrade various cellulose substrates. In the same study, *T. curvata* did not show cellulolytic activity against

any of these substrates, contrary to previous beliefs [22]. The authors found out that the cellulolytic *T. curvata* strain was in fact a T. fusca strain. Thus, our method could correctly assign both strains despite of the incorrect phenotypic labeling. The genome of Postia placenta, the only fungal plant biomass degrader of our data set was misassigned in the Pfam-based SVM analyses. Fungi possess cellulases not found in prokaryotic species [35] and might employ a different mechanism for plant biomass degradation [36,37]. Indeed, in our data set, Postia placenta is annotated with the cellulase-containing GH5 family and xylanase GH10, but the hemicellulase family GH26 does not occur. Furthermore, the (hemi-)cellulose binding CBM domains CBM6 and CBM_4_9, which were identified as being relevant for assignment to lignocellulose degraders with the $e\ensuremath{\text{SVM}_{b\ensuremath{\text{PFAM}}}}$ classifier, are absent. All of the latter ones, GH26, CBM6 and especially CBM4 and CBM9, occur very rarely in eukaryotic genome annotations, according to the CAZy database.

Conclusions

We have developed a computational technique for the identification of Pfam protein domains and CAZy families that are distinctive for microbial plant biomass degradation from (meta-)genome sequences and for predicting whether a (draft) genome of cultured or uncultured microorganisms encodes a plant biomass-degrading organism. Our method is based on feature selection from an ensemble of linear L1-regularized SVMs. It is sufficiently accurate to detect errors in phenotype assignments of microbial genomes. However, some microbial species remained misclassified in our analysis, which indicates that further distinctive genes and pathways for plant biomass degradation are currently poorly represented in the data and could therefore not be identified.

To identify a lignocellulose degrader from the currently available data, the presence of a few domains, many of which are already known, is sufficient. The identification of several protein domains which have so far not been associated with microbial plant biomass degradation in the Pfam-based SVM analyses as being relevant may warrant further scrutiny. A difficulty in our study was to generate a sufficiently large and correctly annotated dataset to reach reliable conclusions. This means that the results could probably be further improved in the future, as more sequences and information on plant biomass degraders become available. The method will probably also be suitable for identifying relevant gene and protein families of other phenotypes.

The prediction and subsequent validation of three Bacteroidales genomes to represent cellulose-degrading species demonstrates the value of our technique for the identification of plant biomass degraders from draft genomes from complex microbial communities, where there is an increasing production of genome assemblages for uncultured microbes. These to our knowledge represent the first cellulolytic Bacteroidetes-affiliated lineages described from herbivore gut environments. This finding has the potential to influence future cellulolytic activity investigations within rumen microbiomes, which has for the greater part been attributed to the metabolic capabilities of species affiliated to the bacterial phyla Firmicutes and Fibrobacteres.

Methods

Annotation

We annotated all protein coding sequences of microbial genomes and metagenomes with Pfam protein domains (Pfam-A 26.0) and Carbohydrate-Active Enzymes (CAZymes) [28,38]. The CAZy database contains information on families of structurally related catalytic modules and carbohydrate binding modules (CBMs) or (functional) domains of enzymes that degrade, modify or create glycosidic bonds. HMMs for the Pfam domains were downloaded from the Pfam database. Microbial and metagenomic protein sequences were retrieved from IMG 3.4 and IMG/M 3.3 [39,40]. HMMER 3 [41] with gathering thresholds was used to annotate the samples with Pfam domains. Each Pfam family has a manually defined gathering threshold for the bit score that was set in such a way that there were no false-positives detected. For annotation of protein sequences with CAZy families, the available annotations from the database were used. For annotations not available in the database, HMMs for the CAZy families were downloaded from dbCAN (http://csbl.bmb.uga.edu/dbcan) [42]. To be considered a valid annotation, matches to Pfam and dbCAN protein domain HMMs in the protein sequences were required to be supported by an e-value of at least 1e-02 and a bit score of at least 25. Additionally, we excluded matches to dbCAN HMMs with an alignment longer than 100 bp that did not exceed an e-value of 1e-04. Multiple matches of one and the same protein sequence against a single Pfam or dbCAN HMM exceeding the thresholds were counted as one annotation.

Phenotype annotation of lignocellulose-degrading and non-degrading microbes

We defined genomes and metagenomes as originating from either lignocellulose-degrading or non-lignocellulosedegrading microbial species based on information provided by IMG/M and in the literature. For every microbial genome and metagenome, we downloaded the genome publication and further available articles (Additional file 1: Table S1). We did not consider genomes for which no publications were available. For cellulose-degrading species annotated in IMG, we verified these assignments based on these publications. We used text search to identify the keywords "cellulose", "cellulase", "carbon source", "plant cell wall" or "polysaccharide" in the publications for non-cellulose-degrading species. We subsequently read all articles that contained these keywords in detail to classify the respective organism as either cellulose-degrading or non-degrading. Genomes that could not be unambiguously classified in this manner were excluded from our study.

Classification with an ensemble of support vector machine classifiers

The SVM is a supervised learning method that can be used for data classification [20,21]. Here, we use an L1-regularized L2-loss SVM, which solves the following optimization problem for a set of instance-label pairs $(\overrightarrow{\mathbf{x}_i}, y_i), \overrightarrow{\mathbf{x}_i} \in \mathbb{R}^n, y_i \in \{-1, +1\}, i = 1, ..., l$:

$$\min_{\overrightarrow{\mathbf{w}}} || \overrightarrow{\mathbf{w}} ||_1 + C \sum_{i=1}^l \left(\max(0, 1 - y_i \overrightarrow{\mathbf{w}}^T \overrightarrow{\mathbf{x}_i}) \right)^2, \tag{1}$$

where $C \ge 0$ is a penalty parameter. This choice of the classifier and regularization term results in sparse models, where non-zero components of the weight vector \overrightarrow{w} are important for discrimination between the classes [43]. SVM classification was performed using the LIBLINEAR package [44]. The components of $\overrightarrow{x_i}$ are either binary valued and represent the presence or absence of protein domains, or continuous-valued and represent the frequency of a particular protein domain or gene family relative to the total number of annotations. All features were normalized by dividing by the sum of all vector entries and subsequently scaled, such that the value of each feature was within the range [0,1]. The label +1 was assigned to genomes and metagenomes of plant biomass-degrading microorganisms, the label -1 to all sequences from non-degrading ones. Classification of the draft genomes assembled from the fiber-adherent microbial community from cow rumen was performed with a voting committee of multiple models with different settings for the penalty parameter C that performed comparably well. A majority vote of the 5 most accurate models was used here obtained in a single crossvalidation run with different settings of the penalty parameter C.

Performance evaluation

The assignment accuracy of a classifier was determined with a standard nested cross-validation (nCV) setup [45]. In nCV, an outer cross-validation loop is organized according to the leave-one-out principle: In each step, one data point is left out. In an inner loop, the optimal parameters for the model (here, the penalty parameter C) are sought, in a second cross-validation experiment

with the remaining data points. For determination of the best setting for the penalty parameter *C*, values for C = 10^x , x = -3.0, -2.5, -2.25, ..., 0 were tried. Values of the parameter *C* larger than 1 were not tested extensively, as we found that they resulted in models with similar accuracies. This is in agreement with the Liblinear tutorial in the appendix of [44] which states that once the parameter C exceeds a certain value, the obtained models have a similar accuracy. The SVM with the penalty parameter setting yielding the best assignment accuracy was used to predict the class membership of the left out data point. The class membership predictions for all data points were used to determine the assignment accuracy of the classifier, based on their agreement with the correct assignments. For this purpose, the result of each leave-one-out experiment was classified as either a true positive (TP - correctly predicted lignocellulose degraders), true negative (TN - correctly predicted non-degraders), false positive (FP - non-degraders predicted to be degraders) or a false negative assignment (FN - degraders predicted to be non-degraders). The recall of the positive class and the true negative rate of the classifier were calculated according to the following equations:

$$\operatorname{Re}call = \frac{TP}{TP + FN}$$
(2)

$$True \ negative \ rate = \frac{TN}{TN + FP}$$
(3)

The average of the recall and the true negative rate, the macro-accuracy, was used as the assignment accuracy to assess the overall performance:

$$MACC = \frac{\text{Recall} + True \ negative \ rate}{2} \tag{4}$$

Subsequently, we identified the settings for the penalty parameter C with the best macro-accuracy by leave-one -out cross-validation. The parameter settings resulting in the most accurate models were used to each train a separate model on the entire data set. Prediction of the five best models were combined to form a voting committee and used for the classification of novel sequence samples such as the partial genome reconstructions from the cow rumen metagenome of switch-grass adherent microbes (see Additional file 2: Table S2 for an evaluation and meta-parameter settings of these ensembles of classifiers).

Feature selection

An SVM model can be represented by a sparse weight vector \vec{w} . The positive and negative components of \vec{w} , the 'feature weights' specify the relative importance of the protein domains or CAZy families for discrimination between plant biomass-degrading and non-plant

biomass-degrading microorganisms. To determine the most distinctive features for the positive class (that is, the lignocellulose degraders), we selected all features that received a positive weight in weight vectors of the majority of the five most accurate models. This ensemble of models was also used for classification of the cow rumen draft genomes of uncultured microbes (see Classification with a SVM).

Additional files

Additional file 1: Table S1. Isolate strains and metagenome samples used in this study. The signs "+" and "-" indicate availability of CAZy or Pfam annotation data. The symbol * marks strains for which we provide another reference than the genome publication characterizing the metabolic capacities of the respective strain.

Additional file 2: Table S2: Evaluation and meta-parameter settings of the ensembles of classifiers. The ensembles were used for feature selection and phenotype classification of the (draft) genomes and metagenomes. The macro-accuracy for each model for a discrete set of values for the parameter *C* was calculated in cross-validation experiments. The five best models were selected based on macro-accuracy. The mean of the exponentially transformed parameter *C* and the mean macro-accuracy for these five models are shown for all trained classifiers. For details on the different ensemble classifiers, see the Results section in the manuscript.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AW, YT, PBP and ACM designed the study, interpreted the results and wrote the manuscript. AW and YT conducted the experiments under the supervision of ACM. SGAK and AW computed the CAZy family and protein domain annotations. All authors read and approved the final manuscript.

Acknowledgements

YT, AW and ACM were supported by the Max Planck society and Heinrich Heine University Düsseldorf. PBP gratefully acknowledges support from the Research Council of Norway and the Bilateralt Forskningssamarbeid -Prosjektetablering (BILAT) program. The authors are grateful to Angela Rennwanz who helped downloading the articles for the microbial genomes used in our analysis.

Author details

¹Max-Planck Research Group for Computational Genomics and Epidemiology, Max-Planck Institute for Informatics, University Campus E1 4, Saarbrücken 66123, Germany. ²Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Post Office Box 5003, Ås 1432, Norway. ³Department of Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.

Received: 16 August 2012 Accepted: 12 February 2013 Published: 15 February 2013

References

- 1. Rubin EM: Genomics of cellulosic biofuels. *Nature* 2008, 454:841–845.
- Kaylen M, Van Dyne DL, Choi YS, Blasé M: Economic feasibility of producing ethanol from lignocellulosic feedstocks. *Biores Technol* 2000, 72:19–32.
- 3. Lee J: Biological conversion of lignocellulosic biomass to ethanol. *J Biotechnol* 1997, **56**:1–24.
- Wheals AE, Basso LC, Alves DMG, Amorim HV: Fuel ethanol after 25 years. *TIBTECH* 1999, 17:482–487.
- Mitchell WJ: Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 1998, 39:31–130.

- Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. *Science* 2007, 315:804–807.
- Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, et al: Genome sequence of the cellulolytic gliding bacterium cytophaga hutchinsonii. Appl Environ Microbiol 2007, 73:3536–3546.
- Brumm P, Mead D, Boyum J, Drinkwater C, Gowda K, Stevenson D, Weimer P: Functional annotation of fibrobacter succinogenes S85 carbohydrate active enzymes. Appl Biochem Biotechnol 2010, doi:10.1007/s12010-010-9070-5.
- Morrison M, Pope PB, Denman SE, McSweeney CS: Plant biomass degradation by gut microbiomes: more of the same or something new? *Curr Opin Biotech* 2009, 20:358–363.
- 10. Brumm P, Hermanson S, Hochstein B, Boyum J, Hermersmann N, Gowda K, Mead D: Mining *Dictyoglomus turgidum* for enzymatically active
- carbohydrases. *Appl Biochem Biotechnol* 2010, doi:10.1007/s12010-010-9029-6.
 Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng J-F, Hugenholtz P, McSweeney CS, Morrison M: Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different to other herbivores. *Proc Natl Acad Sci USA* 2010, 107:14793–14798.
- Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, *et al*: Metagenomic and functional analysis of hindgut microbiota of a woodfeeding higher termite. *Nature* 2007, 450:560–565.
- Brulc JM, Antonopoulos DA, Berg Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, et al: Genecentric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 1948, 2009:106.
- Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, *et al*: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. *Science* 2011, 331:463–467.
- Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH: Metagenomics of the svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. *PLoS One* 2012, doi:10.1371/journal.pone.0038571.
- Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, *et al*: Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res* 2012, 40:D13–D25.
- Beerenwinkel N, Dumer M, Oette M, Korn K, Hoffmann D, Kaiser R, Lengauer T, Selbig J, Walter H: Geno2Pheno: estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res 2003, 31:3850–3855.
- Yosef N, Gramm J, Wang Q-F, Noble WS, Karp RM, Sharan R: Prediction of phenotype information from genotype data. *Commun Inf Syst* 2010, 10:99–114.
- Someya S, Kakuta M, Morita M, Sumikoshi K, Cao W, Ge Z, Hirose O, Nakamura S, Terada T, Shimizu K: Prediction of carbohydrate-binding proteins from sequences using support vector machines. *Adv Bioinformatics* 2010, doi:10.1155/2010/289301.
- 20. Cortes C, Vapnik V: Support-vector networks. Mach Learn 1995, 20:273-297.
- Boser B, Guyon I, Vapnik V: A training algorithm for optimal margin classifiers. In Fifth Proceedings of the Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACM; 1992:144–152.
- Chertkov O, Sikorski J, Nolan M, Lapidus A, Lucas S, Del Rio TG, Tice H, Cheng J-F, Goodwin L, Pitluck S, et al: Complete genome sequence of Thermomonospora curvata type strain (B9). Stand Genomic Sci 2011, 4:13–22.
- Anderson I, Abt B, Lykidis A, Klenk HP, Kyrpides N, Ivanova N: Genomics of aerobic cellulose utilization systems in actinobacteria. *PLoS One* 2012, 7:e39331.
- Aspeborg H, Coutinho PM, Wang Y, Brumer H 3rd, Henrissat B: Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). *BMC Evol Biol* 2012, 12:186.
- Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. *Biochem J* 2004, 15:769–781.
- Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, et al: The complete genome sequence of fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 2011, 6:e18814.

- Schultz J, Copley RR, Doerks T, Ponting CP, Bork P: SMART: a web-based tool for the study of genetically mobile domains. *Nucleic Acids Res* 2000, 28:231–234.
- Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al: The Pfam protein families database. Nucleic Acids Res 2012, 40:D290–D301.
- Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, White O: TIGRFAMs: a protein family resource for the functional identification of proteins. *Nucleic Acids Res* 2001, 29:41–43.
- Wilson DB: Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 2008, 1125:289–297.
- Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR: Deletion of the Cel48S cellulase from Clostridium thermocellum. *Proc Natl Acad Sci USA* 2010, doi:10.1073/ pnas.1003584107.
- DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE: Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol 2008, 190:5455–5463.
- Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM: Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40 T. J Bacteriol 2006, 188:3849–3861.
- Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP: Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci USA 2010, 107:15293–15298.
- 35. Duan CJ, Feng JX: Mining metagenomes for novel cellulase genes. Biotechnol Lett 2010, **32**:1765–1775.
- 36. Wilson DB: Evidence for a novel mechanism of microbial cellulose degradation. *Cellulose* 2009, **16**:723–727.
- Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. *Microbiol Mol Biol Rev* 2002, 66:506–577.
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. *Nucleic Acids Res* 2009, 37:D233–D238.
- Markowitz VM, Chen IM, Chu K, Szeto E, Palaniappan K, Grechkin Y, Ratner A, Jacob B, Pati A, Huntemann M, et al: IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 2012, 40:D123–D129.
- Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, et al: IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012, 40:D115–D122.
- 41. Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. *Nucleic Acids Res* 2011, **39**:W29–W37.
- Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y: dbCAN: a web resource for automated carbohydrate-active enzyme annotation. *Nucleic Acids Res* 2012, doi:10.1093/nar/gks479.
- Yaun G-X, Chang K-W, Hsieh C-J, Lin C-J: A comparison of optimization methods for large-scale L1-regularized linear classification. J Mach Learn Res 2010, 11:3183–3234.
- Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ: LIBLINEAR: a library for large linear classification. J Mach Learn Res 2008, 9:1871–1874.
- Ruschhaupt M, Huber W, Poustka A, Mansmann U: A compendium to ensure computational reproducibility in high-dimensional classification tasks. Stat Appl Genet Mol Biol 2004, 3:Article 37.

doi:10.1186/1754-6834-6-24

Cite this article as: Weimann *et al.*: **De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes.** *Biotechnology for Biofuels* 2013 **6**:24.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

() BioMed Central

Supplementary Table S1. Isolate strains and metagenome samples used in this study. The signs "+" and "-" indicate availability of CAZy or Pfam annotation data. The symbol * marks strains for which we provide another reference than the genome publication characterizing the metabolic capacities of the respective strain.

				Pfam	CA	Zy		Reference
				Binary/ weighted	а	b	С	
	mes	1	Macropus eugenii gut microbiome (tammar wallaby)	+	_	+	+	Pope et al 2010) [1]
	n-genc	2	Cow rumen microbiome	-	-	-	+	Brulc et al 2009 [2]
	Meta	3	Termite gut microbiome	+	-	-	+	Warnecke et al 2007 [3]
		1	Acidothermus cellulolyticus 11B	+	4	F		Barabote et al 2009 [4]
		2	Anaerocellum thermophilum Z- 1320, DSM 6725	+	4	F		Kataeva et al 2009 [5]
nisms		3	Bryantella formatexigens I-52, DSM 14469	+	-	-		Wolin et al 2003 [6]
		4	Caldicellulosiruptor saccharolyticus DSM 8903	+	4	F		Rainey et al 1994* [7]
orga		5	<i>Cellulomonas flavigena</i> 134, DSM 20109	+	4	F		Abt et al 2010 [8]
ing		6	Cellvibrio japonicus Ueda 107	+	4	ŀ		DeBoy et al 2008 [9]
ad		7	Clostridium cellulolyticum H10	+	4	+		Petitdemange et al 1984* [10]
ibap-a	omes	8	Clostridium phytofermentans ISDg	+	4	F		Warnick et al 2002* [11]
lulose	Gen	9	<i>Clostridium thermocellum</i> ATCC 27405	+	4	F		Feinberg et al 2011 [12]
Cel		10	Cytophaga hutchinsonii ATCC 33406	+	4	F		Xie et al 2007 [13]
		11	Dictyoglomus turgidum DSM 6724	+	4	F		Brumm et al 2011 [14]
		12	Fibrobacter succinogenes succinogenes S85	+	4	F		Bae et al 1993* [15]
		13	Postia placenta Mad-698-R	+	-	-		Martinez et al 2009 [16]
		14	Ruminococcus flavefaciens FD- 1	+	-	-		Berg Miller et al 2009 [17]
		15	Saccharophagus degradans 2- 40	+	4	F		Fraiberg et al 2010 [18]

		16	Teredinibacter turnerae T7901	+	+	Yang et al 2009 [19]
		17	Thermobifida fusca YX	+	+	Lykidis et al 2007 [20]
		18	<i>Thermomonospora curvata</i> DSM 43183	+	+	Chertkov et al 2011 [21]
		19	Xylanimonas cellulosilytica XIL07, DSM 15894	+	+	Foster et al 2010 [22]
		1	Acetobacter pasteurianus IFO 3283-01	+	+	Azuma et al 2009 [23]
		2	Acidimicrobium ferrooxidans DSM 10331	+	+	Clum et al 2009 [24]
		3	Acidithiobacillus ferrooxidans ATCC 23270	+	+	Valdés et al 2008 [25]
		4	Actinosynnema mirum DSM 43827	+	+	Land et al 2009 [26]
		5	Agrobacterium tumefaciens C58 (Cereon)	+	+	Wood et al 2001 [27]
		6	Alcanivorax borkumensis SK2	+	+	Schneiker et al 2006 [28]
		7	Alkalilimnicola ehrlichei MLHE- 1	+	+	Hoeft et al 2007* [29]*
sms		8	Alkaliphilus metalliredigens QYMF	+	+	Fu et al 2009)* [30]
ganis		9	Archaeoglobus fulgidus DSM 4304	+	-	Klenk et al 1997 [31]
101		10	Arthrobacter aurescens TC1	+	+	Mongodin et al 2006 [32]
ling	1.0	11	Azoarcus sp. BH72	+	+	Krause et al 2006 [33]
egrac	Senomes	12	<i>Azorhizobium caulinodans</i> ORS 571	+	+	Liu et al 2011 [34]
ose a	0	13	Azotobacter vinelandii DJ, ATCC BAA-1303	+	+	Setubal et al 2009 [35]
cellul		14	<i>Beijerinckia indica indica</i> ATCC 9039	+	+	Tamas et al 2010 [36]
Non-		15	Candidatus amoebophilus asiaticus 5a2	+	+	Schmitz-Esser et al 2010 [37]
		16	Chloroflexus aurantiacus J-10- fl	+	+	Tang et al 2011 [38]
		17	Chromobacterium violaceum ATCC 12472	+	+	Brazilian National Genome Project Consortium 2003 [39]
		18	Comamonas testosteroni KF-1	+	-	Ma et al 2009 [40]
		19	Cupriavidus taiwanensis	+	-	Amadou et al 2008 [41]
		20	Cyanothece sp. ATCC 51142	+	+	Welsh et al 2008 [42]
		21	Dehalococcoides ethenogenes 195	+	+	Seshadri et al 2005 [43]
		22	Desulfatibacillum alkenivorans AK-01	+	+	Callaghan et al 2012 [44]
		23	Desulfitobacterium hafniense DCB-2	+	+	Shinoda et al 2006) [45]

24	Desulfohalobium retbaense DSM 5692	+	+	Spring et al 2010 [46]
25	Desulfomicrobium baculatum DSM 4028	+	+	Copeland et al 2009 [47]
26	Desulfotalea psychrophila LSv54	+	+	Rabus et al 2004 [48]
27	Desulfotomaculum reducens MI-1	+	+	Junier et al 2010 [49]
28	Diaphorobacter sp. TPSYc	+	+	Byrne-Bailey et al 2010 [50]
29	Frankia alni ACN14a	+	+	Normand et al 2007 [51]
30	Geobacter bemidjiensis Bem	+	+	Aklujkar et al 2010 [52]
31	Hyperthermus butylicus DSM 5456	+	-	Brügger et al 2007 [53]
32	Klebsiella pneumoniae 342	+	+	Yi et al 2010 [54]
33	Lactobacillus salivarius salivarius UCC118	+	+	Jimenez et al 2010 [55]
34	Magnetococcus sp. MC-1	+	+	Schübbe et al 2009 [56]
35	Marinobacter aquaeolei VT8	+	+	Singer et al 2011* [57]
36	<i>Mesorhizobium loti</i> MAFF303099	+	+	Kaneko et al 2000 [58]
37	<i>Metallosphaera sedula</i> DSM 5348	+	-	Auernik et al 2008 [59]
38	Methanobrevibacter smithii ATCC 35061	+	-	Hansen et al 2011 [60]
39	Methanocaldococcus fervens AG86	+	-	Galperin and Cochrane 2009 [61]
40	Methanococcoides burtonii DSM 6242	+	-	Saunders et al 2003 [62]
41	Methanocorpusculum labreanum Z	+	-	Anderson et al 2009 [63]
42	Methanoculleus marisnigri JR1	+	-	Anderson et al 2009 [63]
43	Methanopyrus kandleri AV19	+	-	Slesarev et al 2002 [64]
44	Methanosarcina acetivorans C2A	+	-	Galagan et al 2002 [65]
45	Methanosphaera stadtmanae DSM 3091	+	-	Fricke et al 2006 [66]
46	Methylibium petroleiphilum PM1	+	+	Kane et al 2007 [67]
47	Methylocella silvestris BL2	+	+	Chen et al 2010 [68]
48	Nautilia profundicola Am-H	+	+	Campbell et al 2009 [69]
49	Nitrobacter hamburgensis X14	+	+	Starkenburg et al 2008 [70]
50	Nitrosococcus oceani ATCC 19707	+	+	Klotz et al 2006 [71]
51	Nitrosomonas europaea ATCC 19718	+	+	Chain et al 2003 [72]
52	Nitrosopumilus maritimus SCM1	+	-	Walker et al 2010 [73]

53	Nitrosospira multiformis ATCC 25196	+	+	Norton et al 2008 [74]
54	Nostoc punctiforme PCC 73102	+	+	Meeks et al 2001 [75]
55	Paracoccus denitrificans PD1222	+	+	Siddavattam et al 2011 [76]
56	Parvibaculum lavamentivorans DS-1	+	+	Schleheck et al 2007 [77]
57	Pelotomaculum thermopropionicum SI	+	+	Kosaka et al 2008 [78]
58	Persephonella marina EX-H1	+	+	Revsenbach et al 2009 [79]
59	Polaromonas naphthalenivorans C12	+	+	Yagi et al 2009 [80]
60	Pseudomonas mendocina ymp	+	+	Guo et al 2011 [81]
61	Pyrobaculum aerophilum IM2	+	-	Eitz-Gibbon et al 2002 [82]
62	Pyrococcus abyssi GE5	+	-	(Cohen et al 2003 [83]
63	Rhizobium etli CFN 42	+	+	Fauvart et al 2011 [84]
64	Rhodobacter sphaeroides KD131	+	+	Porter et al 2011 [85]
65	Rhodococcus sp. RHA1	+	+	Takeda et al 2010 [86]
66	Rhodoferax ferrireducens T118	+	+	Risso et al 2009 [87]
67	Rhodospirillum rubrum ATCC 11170	+	+	Munk et al 2011 [88]
68	Sinorhizobium medicae WSM419	+	+	Reeve et al 2010 [89]
69	<i>Slackia heliotrinireducens</i> DSM 20476	+	+	Pukall et al 2009 [90]
70	Streptococcus thermophilus LMD-9	+	+	Sun et al 2011 [91]
71	<i>Sulfolobus acidocaldarius</i> DSM 639	+	-	Chen et al 2005 [92]
72	Sulfurospirillum deleyianum DSM 6946	+	+	Sikorski et al 2010 [93]
73	Synechococcus elongatus PCC 7942	+	+	Holtman et al 2005 [94]
74	Synechococcus sp. CC9605	+	+	Jenkins et al 2006)* [95]
75	Syntrophomonas wolfei wolfei Goettingen	+	+	Sieber et al 2010 [96]
76	Syntrophus aciditrophicus SB	+	+	McInerney et al 2007 [97]
77	Thermotoga lettingae TMO	+	+	Zhaxybayeva et al 2009 [98]
78	Thioalkalivibrio sp. HL-EbGR7	+	+	Muyzer et al 2011 [99]
79	<i>Thiobacillus denitrificans</i> ATCC 25259	+	+	Beller et al 2006 [100]
80	Thiomicrospira crunogena XCL- 2	+	+	Scott et al 2006 [101]
81	Thiomicrospira denitrificans ATCC 33889	+	+	Sievert et al 2008 [102]
82	Zymomonas mobilis mobilis ZM4	+	-	Pappas et al 2011 [103]

References

- 1. Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng JF, Hugenholtz P, McSweeney CS, Morrison M: Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proceedings of the National Academy of Sciences of the United States of America 2010, 107:14793-14798.
- Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, et al: Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America 2009, 106:1948-1953.
- 3. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, et al: **Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite.** *Nature* 2007, **450**:560-565.
- 4. Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Adney WS, Xu XC, Lapidus A, Daubin V, Me C, et al: Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. *Genome Research* 2009:1033-1043.
- 5. Kataeva Ia, Yang S-J, Dam P, Poole FL, Yin Y, Zhou F, Chou W-c, Xu Y, Goodwin L, Sims DR, et al: Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium "Anaerocellum thermophilum" DSM 6725. Journal of bacteriology 2009, 191:3760-3761.
- 6. Wolin MJ, Miller TL, Collins MD, Lawson PA: Formate-dependent growth and homoacetogenic fermentation by a bacterium from human feces: description of Bryantella formatexigens gen. nov., sp. nov. Applied and environmental microbiology 2003, 69:6321-6326.
- 7. Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E, Morgan HW: Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS microbiology letters 1994, 120:263-266.
- 8. Abt B, Foster B, Lapidus A, Clum A, Sun H, Pukall Ru, Lucas S, Glavina Del Rio T, Nolan M, Tice H, et al: **Complete genome sequence of Cellulomonas flavigena**

type strain (134). Standards in genomic sciences 2010, 3:15-25.

- 9. DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE: Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. Journal of bacteriology 2008, 190:5455-5463.
- 10. Petitdemange E, Biologique LDC, Ce V-l-n, Bacte C: Clostridium cellulolyticum sp. nov., a Cellulolytic, Mesophilic Species from Decayed Grass. International Journal 1984:155-159.
- 11. Warnick TA, Methe BA, Leschine SB: Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. International journal of systematic and evolutionary microbiology 2002, 52:1155-1160.
- 12. Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, Tapia R, Han C, Lapidus A, Lucas S, et al: Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. *Journal of bacteriology* 2011, 193:2906-2907.
- 13. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, et al: Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. *Applied and environmental microbiology* 2007, 73:3536-3546.
- 14. Brumm P, Hermanson S, Hochstein B, Boyum J, Hermersmann N, Gowda K, Mead D: Mining Dictyoglomus turgidum for enzymatically active carbohydrases. Applied biochemistry and biotechnology 2011, 163:205-214.
- 15. Bae HD, McAllister Ta, Yanke J, Cheng KJ, Muir aD: Effects of Condensed Tannins on Endoglucanase Activity and Filter Paper Digestion by Fibrobacter succinogenes S85. Applied and environmental microbiology 1993, 59:2132-2138.
- 16. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, et al: Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. *Proceedings of the National Academy of Sciences of the United States of America* 2009, 106:1954-1959.
- 17. Berg Miller ME, Antonopoulos Da, Rincon MT, Band M, Bari A, Akraiko T, Hernandez A, Thimmapuram J, Henrissat B, Coutinho PM, et al: Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. *PloS one* 2009, 4:e6650.
- 18. Fraiberg M, Borovok I, Weiner RM, Lamed R: Discovery and characterization of cadherin domains in Saccharophagus degradans 2-40. *Journal of bacteriology* 2010, **192:**1066-1074.
- 19. Yang JC, Madupu R, Durkin aS, Ekborg Na, Pedamallu CS, Hostetler JB, Radune D, Toms BS, Henrissat B, Coutinho PM, et al: The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). *PloS one* 2009, 4:e6085.
- 20. Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, et al: Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. Journal of

bacteriology 2007, **189:**2477-2486.

- 21. Chertkov O, Sikorski J, Nolan M, Lapidus A, Lucas S, Del Rio TG, Tice H, Cheng J-F, Goodwin L, Pitluck S, et al: Complete genome sequence of Thermomonospora curvata type strain (B9). Standards in genomic sciences 2011, 4:13-22.
- 22. Foster B, Pukall Ru, Abt B, Nolan M, Glavina Del Rio T, Chen F, Lucas S, Tice H, Pitluck S, Cheng J-F, et al: **Complete genome sequence of Xylanimonas** cellulosilytica type strain (XIL07). *Standards in genomic sciences* 2010, 2:1-8.
- Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M: Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 2009, 37:5768-5783.
- 24. Clum A, Nolan M, Lang E, Glavina Del Rio T, Tice H, Copeland A, Cheng J-F, Lucas S, Chen F, Bruce D, et al: **Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICP).** *Standards in genomic sciences* 2009, 1:38-45.
- 25. Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen Ja, Holmes DS: Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. *BMC genomics* 2008, **9**:597.
- 26. Land M, Lapidus A, Mayilraj S, Chen F, Copeland A, Del Rio TG, Nolan M, Lucas S, Tice H, Cheng J-F, et al: **Complete genome sequence of Actinosynnema mirum type strain (101).** *Standards in genomic sciences* 2009, **1:**46-53.
- Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF, et al: The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science (New York, NY) 2001, 294:2317-2323.
- 28. Schneiker S, Martins dos Santos ViaP, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, et al: Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. *Nature biotechnology* 2006, 24:997-1004.
- 29. Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS: Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. International journal of systematic and evolutionary microbiology 2007, 57:504-512.
- 30. Fu H-l, Meng Y, Ordóñez E, Villadangos AF, Bhattacharjee H, Gil JA, Mateos LM, Rosen BP: Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum. The Journal of biological chemistry 2009, 284:19887-19895.
- 31. Klenk HP, Clayton Ra, Tomb JF, White O, Nelson KE, Ketchum Ka, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, et al: The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. *Nature* 1997, **390**:364-370.
- 32. Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, et al: **Secrets of soil survival**

revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS genetics 2006, 2:e214.

- Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, B\"ohm M, Friedrich F, Hurek T, Krause L, et al: Complete genome of the mutualistic, N2fixing grass endophyte Azoarcus sp. strain BH72. Nature biotechnology 2006, 24:1385-1391.
- 34. Liu C-T, Lee K-B, Wang Y-S, Peng M-H, Lee K-T, Suzuki S, Suzuki T, Oyaizu H: Involvement of the azorhizobial chromosome partition gene (parA) in the onset of bacteroid differentiation during Sesbania rostrata stem nodule development. Applied and environmental microbiology 2011, 77:4371-4382.
- 35. Setubal JC, dos Santos P, Goldman BS, Ertesvag H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, et al: **Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes.** Journal of bacteriology 2009, **191:**4534-4545.
- 36. Tamas I, Dedysh SN, Liesack W, Stott MB, Alam M, Murrell JC, Dunfield PF: Complete genome sequence of Beijerinckia indica subsp. indica. *Journal of bacteriology* 2010, **192:**4532-4533.
- 37. Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T, Horn M: The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoebaassociated bacteria. Journal of bacteriology 2010, **192:**1045-1057.
- 38. Tang K-h, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, Karbach LE, Land ML, Lapidus A, et al: **Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus.** *BMC genomics* 2011, **12:**334.
- 39. Brazilian National Genome Project Consortium: The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proceedings of the National Academy of Sciences of the United States of America 2003, 100:11660-11665.
- 40. Ma Y-F, Zhang Y, Zhang J-y, Chen D-w, Zhu Y, Zheng H, Wang S-y, Jiang C-y, Zhao G-p, Liu S-j: The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. *Applied and environmental microbiology* 2009, **75:**6812-6819.
- 41. Amadou C, Mangenot S, Glew M, Bontemps C, Capela D, Dossat C, Marchetti M, Servin B, Saad M, Schenowitz C, et al: Genome sequence of the -rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. *Genome Research* 2008:1472-1483.
- 42. Welsh Ea, Liberton M, Stöckel J, Loh T, Elvitigala T, Wang C, Wollam A, Fulton RS, Clifton SW, Jacobs JM, et al: The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proceedings of the National Academy of Sciences of the United States of America 2008, 105:15094-15099.
- 43. Seshadri R, Adrian L, Fouts DE, Eisen Ja, Phillippy AM, Methe Ba, Ward NL, Nelson WC, Deboy RT, Khouri HM, et al: Genome sequence of the PCEdechlorinating bacterium Dehalococcoides ethenogenes. Science (New York, NY) 2005, 307:105-108.

- 44. Callaghan AV, Morris BEL, Pereira IAC, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B: **The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation.** *Environmental Microbiology* 2012, **14:**101-113.
- 45. Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H: Complete Genome Sequence of the Dehalorespiring Bacterium Desulfitobacterium hafniense Y51 and Comparison with Dehalococcoides ethenogenes 195. Journal of bacteriology 2006, 188:2262-2274.
- 46. Spring S, Nolan M, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng J-F, Lucas S, Land M, Chen F, et al: **Complete genome sequence of Desulfohalobium retbaense type strain (HR(100)).** *Standards in genomic sciences* 2010, **2**:38-48.
- 47. Copeland A, Spring S, Göker M, Schneider S, Lapidus A, Del Rio TG, Tice H, Cheng J-F, Chen F, Nolan M, et al: **Complete genome sequence of Desulfomicrobium baculatum type strain (X).** *Standards in genomic sciences* 2009, 1:29-37.
- 48. Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, et al: The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 2004, 6:887-902.
- 49. Junier P, Junier T, Podell S, Sims DR, Detter JC, Lykidis A, Han CS, Wigginton NS, Gaasterland T, Bernier-Latmani R: The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environmental Microbiology 2010, 12:2738-2754.
- 50. Byrne-Bailey KG, Weber Ka, Chair AH, Bose S, Knox T, Spanbauer TL, Chertkov O, Coates JD: Completed genome sequence of the anaerobic iron-oxidizing bacterium Acidovorax ebreus strain TPSY. *Journal of bacteriology* 2010, 192:1475-1476.
- 51. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, et al: Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Research 2007:7-15.
- 52. Aklujkar M, Young ND, Holmes D, Chavan M, Risso C, Kiss HE, Han CS, Land ML, Lovley DR: The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. *BMC genomics* 2010, 11:490.
- 53. Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, Awayez M, She Q, Garrett Ra, Klenk H-P: The genome of Hyperthermus butylicus: a sulfurreducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. Archaea (Vancouver, BC) 2007, 2:127-135.
- 54. Yi H, Xi Y, Liu J, Wang J, Wu J, Xu T, Chen W, Chen B, Lin M, Wang H, et al: Sequence analysis of pKF3-70 in Klebsiella pneumoniae: probable origin from R100-like plasmid of Escherichia coli. *PloS one* 2010, 5:e8601.
- 55. Jimenez E, Langa S, Martin V, Arroyo R, Martin R, Fernandez L, Rodriguez JM: Complete genome sequence of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. *Journal of bacteriology* 2010,

192:4800.

- 56. Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross Ca, Sch\"uler D, Cox BL, Nealson KH, Bazylinski Da: Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Applied and environmental microbiology 2009, 75:4835-4852.
- 57. Singer E, Webb EA, Nelson WC, Heidelberg JF, Ivanova N, Pati A, Edwards KJ: Genomic potential of Marinobacter aquaeolei, a biogeochemical "opportunitroph". Applied and environmental microbiology 2011, 77:2763-2771.
- 58. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe a, Idesawa K, Ishikawa a, Kawashima K, et al: **Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement).** DNA research : an international journal for rapid publication of reports on genes and genomes 2000, **7:**381-406.
- 59. Auernik KS, Maezato Y, Blum PH, Kelly RM: The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Applied and environmental microbiology 2008, 74:682-692.
- 60. Hansen EE, Lozupone Ca, Rey FE, Wu M, Guruge JL, Narra A, Goodfellow J, Zaneveld JR, McDonald DT, Goodrich Ja, et al: **Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins.** *Proceedings of the National Academy of Sciences of the United States of America* 2011, **108 Suppl** 4599-4606.
- 61. Galperin MY, Cochrane GR: Nucleic Acids Research annual Database Issue and the NAR online Molecular Biology Database Collection in 2009. Nucleic acids research 2009, 37:D1-4.
- 62. Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, et al: Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Research 2003, 13:1580-1588.
- 63. Anderson I, Ulrich LE, Lupa B, Susanti D, Porat I, Hooper SD, Lykidis A, Sieprawska-Lupa M, Dharmarajan L, Goltsman E, et al: Genomic characterization of methanomicrobiales reveals three classes of methanogens. *PloS one* 2009, 4:e5797.
- 64. Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Shcherbinina OV, Shakhova VV, Belova GI, Aravind L, Natale Da, Rogozin IB, et al: The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proceedings of the National Academy of Sciences of the United States of America 2002, 99:4644-4649.
- 65. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, et al: **The genome of M. acetivorans reveals extensive metabolic and physiological diversity.** *Genome Research* 2002, **12:**532-542.
- 66. Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK: The genome sequence of Methanosphaera stadtmanae reveals

why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. *Journal of bacteriology* 2006, 188:642-658.

- 67. Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR: Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. Journal of bacteriology 2007, 189:1931-1945.
- 68. Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF: Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. Journal of bacteriology 2010, 192:3840-3841.
- 69. Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu D, Robinson JM, Khouri HM, Eisen JA, Cary SC: Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. *PLoS genetics* 2009, **5**:e1000362.
- 70. Starkenburg SR, Larimer FW, Stein LY, Klotz MG, Chain PSG, Sayavedra-Soto La, Poret-Peterson AT, Gentry ME, Arp DJ, Ward B, Bottomley PJ: **Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobacter.** *Applied and environmental microbiology* 2008, **74:**2852-2863.
- 71. Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG, Larimer FW, Malfatti SA, Norton JM, Poret-Peterson AT, et al: **Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707.** *Applied and environmental microbiology* 2006, **72**:6299-6315.
- 72. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, et al: Complete genome sequence of the ammoniaoxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. Journal of bacteriology 2003, 185:2759-2773.
- 73. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir a, et al: Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences of the United States of America 2010, 107:8818-8823.
- 74. Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PSG, Hauser LJ, Land ML, Larimer FW, Shin MW, Starkenburg SR: **Complete genome sequence** of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Applied and environmental microbiology 2008, **74**:3559-3572.
- 75. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R: An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. *Photosynthesis Research* 2001:85-106.
- 76. Siddavattam D, Karegoudar TB, Mudde SK, Kumar N, Baddam R, Avasthi TS, Ahmed N: Genome of a novel isolate of Paracoccus denitrificans capable of degrading N,N-dimethylformamide. *Journal of bacteriology* 2011, **193:**5598-5599.
- 77. Schleheck D, Knepper TP, Eichhorn P, Cook AM: Parvibaculum lavamentivorans

DS-1T degrades centrally substituted congeners of commercial linear alkylbenzenesulfonate to sulfophenyl carboxylates and sulfophenyl dicarboxylates. Applied and environmental microbiology 2007, 73:4725-4732.

- 78. Kosaka T, Kato S, Shimoyama T, Ishii S, Abe T, Watanabe K: The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. *Genome Res* 2008, **18**:442-448.
- 79. Reysenbach A-L, Hamamura N, Podar M, Griffiths E, Ferreira S, Hochstein R, Heidelberg J, Johnson J, Mead D, Pohorille a, et al: **Complete and draft genome sequences of six members of the Aquificales.** *Journal of bacteriology* 2009, **191:**1992-1993.
- 80. Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL: The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. *Environmental Microbiology* 2009, 11:2253-2270.
- 81. Guo W, Wang Y, Song C, Yang C, Li Q, Li B, Su W, Sun X, Song D, Yang X, Wang S: Complete genome of Pseudomonas mendocina NK-01, which synthesizes medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides. Journal of bacteriology 2011, **193:**3413-3414.
- 82. Fitz-Gibbon ST, Ladner H, Kim U-J, Stetter KO, Simon MI, Miller JH: Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proceedings of the National Academy of Sciences of the United States of America 2002, 99:984-989.
- 83. Cohen GN, Barbe Ve, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Qu\'erellou Je, Ripp R, et al: **An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi.** *Molecular microbiology* 2003, **47:**1495-1512.
- 84. Fauvart M, Sánchez-Rodríguez A, Beullens S, Marchal K, Michiels J: Genome Sequence of Rhizobium etli CNPAF512, a Nitrogen-Fixing Symbiont Isolated from Bean Root Nodules in Brazil. *Journal of bacteriology* 2011, 193:3158-3159.
- 85. Porter SL, Wilkinson Da, Byles ED, Wadhams GH, Taylor S, Saunders NJ, Armitage JP: Genome sequence of Rhodobacter sphaeroides Strain WS8N. Journal of bacteriology 2011, 193:4027-4028.
- 86. Takeda H, Shimodaira J, Yukawa K, Hara N, Kasai D, Miyauchi K, Masai E, Fukuda M: Dual two-component regulatory systems are involved in aromatic compound degradation in a polychlorinated-biphenyl degrader, Rhodococcus jostii RHA1. Journal of bacteriology 2010, 192:4741-4751.
- 87. Risso C, Sun J, Zhuang K, Mahadevan R, DeBoy R, Ismail W, Shrivastava S, Huot H, Kothari S, Daugherty S, et al: Genome-scale comparison and constraintbased metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens. *BMC genomics* 2009, 10:447.
- Munk aC, Copeland A, Lucas S, Lapidus A, Del Rio TG, Barry K, Detter JC, Hammon N, Israni S, Pitluck S, et al: Complete genome sequence of Rhodospirillum rubrum type strain (S1). Standards in genomic sciences 2011, 4:293-302.

- 89. Reeve W, Chain P, Ardley J, Nandesena K, Tiwari R, Malfatti S, Kiss H, Lapidus A, Co- A, Nolan M, et al: Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Standards in genomic sciences 2010:77-86.
- 90. Pukall R, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, Lucas S, Chen F, Tice H, Cheng J-F, Chertkov O, et al: **Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1).** *Standards in genomic sciences* 2009, 1:234-241.
- 91. Sun Z, Chen X, Wang J, Zhao W, Shao Y, Wu L, Zhou Z, Sun T, Wang L, Meng H, et al: **Complete genome sequence of Streptococcus thermophilus strain ND03.** Journal of bacteriology 2011, **193:**793-794.
- 92. Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA: **The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota.** *Journal of bacteriology* 2005, **187:**4992-4999.
- 93. Sikorski J, Lapidus A, Copeland A, Glavina T, Rio D, Nolan M, Lucas S, Chen F, Tice H, Cheng J-f, et al: **Complete genome sequence of Sulfurospirillum deleyianum type strain (5175T).** *Standards in genomic sciences* 2010:149-157.
- 94. Holtman CK, Chen Y, Sandoval P, Gonzales A, Nalty MS, Thomas TL, Youderian P, Golden SS: High-Throughput Functional Analysis of the Synechococcus elongatus PCC 7942 Genome. DNA research 2005, 12:103-115.
- 95. Jenkins BD, Zehr JP, Gibson A, Campbell L: Cyanobacterial assimilatory nitrate reductase gene diversity in coastal and oligotrophic marine environments. *Environmental Microbiology* 2006, **8:**2083-2095.
- 96. Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus R, McInerney MJ: The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environmental Microbiology 2010, 12:2289-2301.
- 97. McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP: The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proceedings of the National Academy of Sciences of the United States of America 2007, 104:7600-7605.
- 98. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbo CL, Doolittle WF, Gogarten JP, Noll KM: On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proceedings of the National Academy of Sciences of the United States of America 2009, 106:5865-5870.
- Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Pati A, D'Haeseleer P, Woyke T, Kyrpides NC: Complete genome sequence of "Thioalkalivibrio sulfidophilus" HL-EbGr7. Standards in genomic sciences 2011, 4:23-35.
- 100. Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP: The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans. Journal of bacteriology 2006, 188:1473-1488.

- 101. Scott KM, Sievert SM, Abril FN, Ball La, Barrett CJ, Blake Ra, Boller AJ, Chain PSG, Clark Ja, Davis CR, et al: The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. *PLoS biology* 2006, 4:e383.
- 102. Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ, Hemp J, H\"ugler M, Land M, Lapidus A, Larimer FW, et al: Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Applied and environmental microbiology 2008, 74:1145-1156.
- 103. Pappas KM, Kouvelis VN, Saunders E, Brettin TS, Bruce D, Detter C, Balakireva M, Han CS, Savvakis G, Kyrpides NC, Typas Ma: Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype strain ATCC 10988. Journal of bacteriology 2011, 193:5051-5052.

Supplementary Table S2. Evaluation and meta-parameter settings of the ensembles of classifiers used for feature selection and phenotype classification of (draft) genomes. The macro-accuracy for each model for a discrete set of values for the parameter *C* was calculated in cross-validation experiments. The five best models were selected based on macro-accuracy. The mean exponentially transformed parameter *C* and the mean macroaccuracy for these five models are shown for all trained classifiers. For details on the different ensemble classifiers, see the result section in the manuscript.

	Mean	Mean
	parameter	macro-
	С	Accuracy
eSVM _{bPFAM}	10 ^{-1.7}	0.93
eSVM _{fPFAM}	10 ^{-1.5}	0.87
eSVM _{CAZY_A}	10 ^{-1.0}	0.95
eSVM _{CAZY_B}	10 ^{-1.9}	0.95
eSVM _{CAZY_C}	10 ^{-1.9}	0.94
eSVM _{CAZY_a}	10 ^{-1.1}	0.93
eSVM _{CAZY_b}	10 ^{-1.6}	0.94
eSVM _{CAZY_c}	10 ^{-1.8}	0.92

From genomes to phenotypes: Traitar, the microbial trait analyzer

Aaron Weimann^{1,2,3}, Kyra Mooren^{1,3}, Jeremy Frank⁴, Phillip B. Pope⁴, Andreas Bremges^{1,2} and Alice C. McHardy^{1,2,3,†}

¹Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany

²German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany

³Department for Algorithmic Bioinformatics, Heinrich Heine University, 40225 Düsseldorf, Germany

⁴Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432 Norway

[†]Correspondence: alice.mchardy@helmholtz-hzi.de

Abstract

5

10

The number of sequenced genomes is growing exponentially, profoundly shifting the bottleneck from data generation to genome interpretation. Traits are often used to characterize and distinguish bacteria, and are likely a driving factor in microbial community composition, yet little is known about the traits of most microbes. We describe Traitar, the microbial trait analyzer, which is a fully automated software package for deriving phenotypes from the genome sequence. Traitar provides phenotype classifiers to predict 67 traits related to the use of various substrates as carbon and energy sources, oxygen requirement, morphology, antibiotic susceptibility, proteolysis and enzymatic activities. Furthermore, it suggests protein

- families associated with the presence of particular phenotypes. Our method uses L1regularized L2-loss support vector machines for phenotype assignments based on phyletic patterns of protein families and their evolutionary histories across a diverse set of microbial species. We demonstrate reliable phenotype assignment for Traitar
- 15 to bacterial genomes from 572 species of 8 phyla, also based on incomplete singlecell genomes and simulated draft genomes. We also showcase its application in metagenomics by verifying and complementing a manual metabolic reconstruction of two novel Clostridiales species based on draft genomes recovered from commercial biogas reactors. Traitar is available at <u>https://github.com/hzi-bifo/traitar</u>.

20

Introduction

5

10

Microbes are often characterized and distinguished by their traits, for instance, in *Bergey's Manual of Systematic Bacteriology* (Goodfellow et al., 2012). A trait or phenotype can vary in complexity; for example, it can refer to the degradation of a specific substrate or the activity of an enzyme inferred in a lab assay, the respiratory mode of an organism, the reaction to Gram staining or antibiotic resistances. Traits are also likely driving factor for microbial community composition (Martiny et al., 2015). Microbial community members with varying metabolic capabilities can aid in waste water treatment, bioremediation of soils and promotion of plant growth (Bai et al., 2015; Narihiro and Sekiguchi, 2007; Olapade and Ronk, 2015); in the cow rumen microbiota, bacterial cellulose degraders influence the ability to process plant biomass material (Hess et al., 2011). In the Tammar wallaby foregut microbiome, the dominant bacterial species is implicated in the lower methane emissions produced by wallaby compared to ruminants (Pope et al., 2011).

In addition to the exponential growth of available sequenced microbial genome isolates, metagenome and single cell genome sequencing further contributes to the increasing number of available genomes. For the recovery of genomes from metagenomes (GFMs), computational methods based on e.g. differential read coverage and *k*-mer usage were developed (Alneberg et al., 2014; Cleary et al., 2015; Gregor et al., 2016; Imelfort et al., 2014; Kang et al., 2015; Nielsen et al., 2014), which allow to recover genomes without the need to obtain microbial isolates in pure cultures (Brown et al., 2015; Hess et al., 2011). In addition, single-cell genomics provides another culture-independent analysis technique and also allows, although often fragmented, genome recovery for less abundant taxa in microbial communities (Lasken and McLean, 2014; Rinke et al., 2013). Together, these

developments profoundly shift the analytical bottleneck from data generation to interpretation.

The genotype-phenotype relationships for some microbial traits have been well studied. For instance, bacterial motility is attributed to the proteins of the flagellar apparatus (Macnab, 2003). We have recently shown that delineating such 5 relationships from microbial genomes and accompanying phenotype information with statistical learning methods enables the accurate prediction of the plant biomass degradation phenotype and the *de novo* discovery of both known and novel protein families that are relevant for the realization of the plant biomass degradation 10 phenotype (Konietzny et al., 2014; Weimann et al., 2013). However, a fully automated software framework for prediction of a broad range of traits from only the genome sequence is currently missing. Additionally, horizontal gene transfer, a common phenomenon across bacterial genomes, has not been utilized to improve trait prediction so far. Traits with their causative genes may be transferred from one bacterium to the other (Ochman et al., 2000; Pal et al., 2005) (e.g. for antibiotic 15 resistances (Martinez, 2008)) and the vertically transferred part of a bacterial genome might be unrelated to the traits under investigation (Barker and Pagel, 2005; Harvey and Pagel, 1991; Martiny et al., 2015).

Here we present Traitar, the microbial trait analyzer: an easy-to-use, fully automated software framework for the accurate prediction of currently 67 phenotypes directly from the genome sequence (Figure 1).

Figure 1: Traitar can be used to phenotype microbial community members based on genomes recovered from single-cell sequencing or (metagenomic) environmental shotgun sequencing data or of microbial isolates. Traitar provides classification models based on protein family annotation for a wide variety of different phenotypes related to the use of various substrates as source of carbon and energy for growth, oxygen requirement, morphology, antibiotic susceptibility and enzymatic activity.

- We used phenotype data from the microbiology section of the Global Infectious Disease and Epidemiology Network (GIDEON) – a resource dedicated to the diagnosis, treatment and teaching of infectious diseases and microbiology (Berger, 2005) – for training phenotype classification models on the protein family annotation
- 5 of a large number of sequenced genomes of microbial isolates (predominantly bacterial pathogens). We investigated the effect of incorporating ancestral protein family gain and losses into the model inference on classification performance, to allow consideration of horizontal gene transfer events in inference of phenotyperelated protein families and phenotype classification. We rigorously tested the 10 performance of our software in cross-validation experiments, on further test data sets
- and for different taxonomic ranks. To test Traitar's applicability beyond the bacteria

represented in GIDEON, we subsequently applied it to several hundred bacteria described in Bergey's systematic bacteriology (Goodfellow et al., 2012). We used Traitar to phenotype bacterial single amplified genomes (SAGs) and simulated incomplete genomes to investigate its potential for phenotyping microbial samples
with incomplete genome sequences. We characterized two novel Clostridiales species of a biogas reactor community with Traitar, based on their genomes recovered with metagenomics. This verified and complemented a manual metabolic reconstruction. As Traitar furthermore suggests protein families associated with the presence of a particular phenotype, we discuss the protein families Traitar identified for several phenotypes, namely for 'Motility', 'Nitrate to nitrite' conversion and 'L-arabinose' fermentation.

Traitar is implemented in Python 2.7. It is freely available under the open-source GPL 3.0 license at <u>https://github.com/hzi-bifo/traitar</u> and as a Docker container at <u>https://hub.docker.com/r/aweimann/traitar</u>. A Traitar web service can be accessed at <u>https://research.bifo.helmholtz-hzi.de/traitar</u>.

Results

15

The Traitar software

We begin with a description of the Traitar software and phenotype classifiers. Traitar predicts the presence or absence of a phenotype, i.e. assigns a phenotype label, for

20 67 microbial traits to every input sequence sample (Table 1, Supplementary Table 1). For each of these traits, Traitar furthermore suggests candidate protein families associated with its realization, which can be subject of experimental follow-up studies.

For phenotype prediction, Traitar uses one of two different classification models. We trained the first classifier – the phypat classifier – on the protein and phenotype presence & absence labels from 234 bacterial species (Methods – Phenotype models). The second classifier – the phypat+PGL classifier – was trained using the same data and additionally information on evolutionary protein family and phenotype gains and losses. The latter were determined using maximum likelihood inference of their ancestral character states on the species phylogeny (Methods – Ancestral protein family and phenotype gains and losses).

5

The input to Traitar is either a nucleotide sequence FASTA file for every sample, which is run through gene prediction software, or a protein sequence FASTA file. Traitar then annotates the proteins with protein families. Subsequently, it predicts the presence or absence of each of the 67 traits for every input sequence. Note that Traitar doesn't require a phylogenetic tree for the input samples.

Finally, it associates the predicted phenotypes with the protein families that contributed to these predictions (Figure 2). A parallel execution of Traitar is supported by GNU parallel (Tange, 2011). The Traitar annotation procedure and the training of the phenotype models are described in more detail below (Methods – Traitar software).

Table 1: The 67 traits available these phenotypes into a microb	ole in Traitar for phenotyp piological or biochemical ca	bing. We grouped each of tegory.
Phenotype _(a)	Category _(b)	
Alkaline phosphatase		
Beta hemolysis		
Coagulase production		
Lipase	Enzyme	
Nitrate to nitrite		
Nitrite to gas		
Pyrrolidonyl-beta-naphthylamide		

Bile-susceptible	
Colistin-Polymyxin susceptible	
DNase	
Growth at 42°C	
Growth in 6.5% NaCl	Growth
Growth in KCN	
Growth on MacConkey agar	
Growth on ordinary blood agar	
Aucate utilization	
Arginine dihydrolase	
ndole	Growth [.] Amino Acid
ysine decarboxylase	
Prnithine decarboxylase	
cetate utilization	
Citrate	Growth Carboxylic Acid
lalonate	
artrate utilization	
as from glucose	
ilucose fermenter	
ilucose oxidizer	Growth:Glucose
ethyl red	
oges Proskauer	
ellobiose	
-Mannitol	
Mannose	
-Sorbitol	
-Xylose	
sculin hydrolysis	
lycerol	
actose	
Arabinose	
-Rhamnose	Orouth Origin
laltose	Growin:Sugar
lelibiose	
iyo-Inositol	
) NPG (beta galactosidase)	
Raffinose	
Salicin	
Starch hvdrolvsis	
Sucrose	
rehalose	
Jrea hydrolysis	
acillus or coccobacillus	
occus - clusters or aroups predominate	Morphology
occus - pairs or chains predominate	

Gram negative			
Gram positive			
Motile			
Spore formation			
Yellow pigment			
Aerobe			
Anaerobe			
Capnophilic	Олуден		
Facultative			
Catalase	Oxvaen:Enzyme		
Oxidase	Chygen.Enzyme		
Hydrogen sulfide	Product		
Casein hydrolysis	Proteolysis		
Gelatin hydrolysis	1 100019013		
(a) GIDEON phenotypes with at least 10 pre labels	sence and 10 absence		
(b) Phenotypes assigned to microbiological	biochemical categories		
(c) ONPG: o-Nitrophenyl-β-D-galatopyranos	id		

Figure 2: Work flow of Traitar. Input to the software can be genome sequene samples in nucleotide or amino acid FASTA format. Traitar predicts phenotypes based on pre-computed classification models and provides graphical and tabular output. In the case of nucleotide input, the protein families that are important for the phenotype predictions will be further mapped to the predicted protein-coding genes.

Evaluation

5

We evaluated the two Traitar classifiers using ten-fold nested cross-validation on 234 bacterial species found in GIDEON (GIDEON I). The determined macro-accuracy (the accuracy balanced over all phenotypes) for the 67 GIDEON phenotypes was 82.6% for the phypat classifier and 85.5% for the phypat+PGL classifier; the accuracy (fraction of correct assignments averaged over all tested samples) for

phypat was 88.1%, in comparison to 89.8% for phypat+PGL (Methods – Evaluation metrics; Table 2). Notably, Traitar classified 53 phenotypes with more than 80% macro-accuracy and 26 phenotypes with at least 90% macro-accuracy with one of the two classifiers (Figure 3, Supplementary Table 2). Phenotypes that could be predicted with very high confidence included the outcome of a 'Methyl red' test, 'Spore formation', oxygen requirement (i.e. 'Anaerobe' and 'Aerobe'), 'Growth on MacConkey agar' or 'Catalase'. Some phenotypes proved to be difficult to predict (60-70% macro-accuracy), which included 'DNAse', 'myo-Inositol' or 'Yellow pigment' and 'Tartrate utilization', regardless of which classifier was used. This might be 10 caused by the relatively small number (<20) of positive (phenotype present) examples that were available.

5

Table 2: We evaluated the Traitar phypat and phypat+PGL phenotype classifiers
 and a consensus vote of both classifiers for 234 bacteria described in the Global Infectious Disease and Epidemiology Online Network (GIDEON) in a 10-fold nested cross-validation using different evaluation measures (Methods - Evaluation). Subsequently, we tested another 42 bacteria from GIDEON and 296 bacteria described in Bergey's manual of systematic bacteriology for an independent performance assessment of the two classifiers.

Data set (# bacteria)	Classifier	Macro- accuracy	Accuracy	Recall Phenotype+	Recall Phenotype-
	phypat	82.6	88.1	86.1	91.4
GIDEON I (234)	phypat+PGL	85.5	89.8	87.8	90.9
	consensus	83.0	88.8	82.2	95.4
	Phypat	85.3	87.5	84.9	90.2
GIDEON II (42)	phypat+PGL	86.7	87.9	86.3	89.7
	consensus	85.7	87.2	80.8	93.7
	phypat	NA ¹	72.9	74.6	71.2
Bergey's (296)	phypat+PGL	NA ¹	72.4	74	70.8
	consensus	NA ¹	72.9	66.6	79.2
1 We only report the positive label, respective calculation to the ot	e overall accuracy ectively) were avai her data sets (Sup	, as insufficient phen lable for several phe oplementary Table 1)	otype labels (notypes, to er).	less than 5 with a nable a comparable	negative and e macro-accuracy

For an independent assessment of Traitar's classification performance we next tested Traitar on 42 bacterial species that had phenotype information available in GIDEON (GIDEON II), but were not used for learning the phenotype models (The Traitar software – Annotation). For calculation of the macro-accuracy, we considered only phenotypes represented by at least five phenotype-positive and five phenotype-5 negative bacteria. On these data, Traitar predicted the phenotypes with a macroaccuracy of 85.3% with the phypat classifier and 86.7% with the phypat+PGL classifier, and accuracies of 87.5% and 87.9%, respectively (Table 2). To investigate the performance of Traitar for bacterial genomes from a different data source, we 10 next determined from two volumes of Bergey's Manual of Systematic Bacteriology, namly 'The Proteobacteria' and 'The Firmicutes', the phenotypes of further sequenced bacteria that were not in our GIDEON I and II data sets (Supplementary Table 1, 4). In total, we thus identified phenotypes for another 296 sequenced bacterial species (The Traitar software – Annotation). Also for these bacteria, Traitar 15 performed well but was less reliable than before, with accuracies for the phypat classifier of 72.9% and 72.1% for the phypat+PGL classifier (Table 2). This is likely due to the taxonomic differences of bacteria listed in GIDEON and Bergey's and also because most of the bacteria in Bergey's have only draft genomes available for phenotyping.

20 When combining the predictions of the phypat and phypat+PGL classifiers into a consensus vote, Traitar assigns phenotypes more reliably, while predicting less phenotype labels compared to the individuals classifiers (Table 2). Depending on the use case, Traitar can be used with performance characterized by different trade-offs between the recall of the phenotype-positive and the phenotype-negative classes.

25

Performance per taxon at different ranks of the taxonomy

Figure 4: Classification accuracy for each taxon at different ranks of the NCBI taxonomy. For better visualization of names for the internal nodes, the taxon names are displayed on branches leading to the respective taxon node in the tree. The nested cross-validation accuracy obtained with Traitar for 234 bacterial species described in the Global Infectious Disease and Epidemiology Online Network was projected onto the NCBI taxonomy down to the family level. Colored circles at the tree nodes depict the performance of the phypat+PGL classifier (left-hand circles) and the phypat classifier (right-hand circles). The size of the circles reflects the number of species per taxon.

We investigated the performance of Traitar across the part of the bacterial tree of life represented in our data set. For this purpose, we evaluated the nested cross-validation performance of the phypat and phypat+PGL classifiers at different ranks of the NCBI taxonomy. For a given GIDEON taxon, we pooled all bacterial species that are descendants of this taxon. Figure 4 shows the accuracy estimates projected on the NCBI taxonomy from the domain level down to individual families. Notably, the accuracy of the phypat+PGL (phypat) classifier for the phyla covered by at least five bacterial species showed low variance and was high across all phyla, ranging from 84% (81%) for Actinobacteria over 90% (89%) for Bacteroidetes, 89% (90%) for Proteobacteria, 91% (90%) for Firmicutes to 91% (86%) for Tenericutes.

Phenotyping incomplete genomes

5

10

25

GFMs or SAGs are often incomplete and thus we analyzed the effect of missing genome assembly parts onto the performance of Traitar. Rinke *et al.* used a singlecell sequencing approach to analyze poorly characterized parts of the bacterial and archaeal tree of life, the so-called 'microbial dark matter' (Rinke et al., 2013). They pooled 20 SAGs from the candidate phylum Cloacimonetes, formerly known as WWE1, to generate joint – more complete – genome assemblies that had at least a genome-wide average nucleotide identity of 97% and belonged to a single 16S-based operational taxonomic unit, namely *Cloacamonas acidaminovorans (Pelletier*)

20 based operational taxonomic unit, namely *Cloacamonas acidaminovorans (Pelletier et al., 2008)*.

According to our predictions based on the joint assembly of the single-cell genomes, *C. acidaminovorans* is Gram-negative and is adapted to an anaerobic lifestyle, which agrees with the description by Rinke *et al.* (Figure 5). Traitar further predicted 'Arginine dihydrolase' activity, which is in line with the characterization of the species as an amino acid degrader (Rinke et al., 2013). Remarkably, the prediction of a bacil-

varying degrees of completeness from single cells of the Cloacimonetes candidate phylum and a joint assembly for phenotyping with Traitar. Shown is a heatmap of assembly samples vs. phenotypes, which is the standard visualization for phenotype predictions in Traitar. The origin of the phenotype's prediction (Traitar phypat and/or Traitar phypat+PGL classifier) determines the color of the heatmap entries. The sample labels have their genome completeness estimates as suffixes. The colors of the dendrogram indicate similar phenotype distributions across samples, as determined by a hierarchical clustering with SciPy¹.

¹ http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html

lus or coco-bacillus shape agrees with the results of Limam *et al.* (Limam et al., 2014), who used a WWE1-specific probe and characterized the samples with fluorescence *in situ* hybridization. They furthermore report that members of the Cloacimonetes candidate phylum are implicated in anaerobic digestion of cellulose, primarily in early hydrolysis, which is in line with the very limited carbohydrate degradation spectrum found by Traitar.

Subsequently, we compared the predicted phenotypes for the SAGs to the predictions for the joint assembly. The phypat classifier recalled more of the phenotype predictions of the joint assembly based on the SAGs than the phypat+PGL classifier. However, the phypat+PGL classifier made fewer false positive

predictions (Figure 6 a).

5

10

In the next experiment, we inferred phenotypes based on simulated GFMs, by subsampling from the coding sequences of each of the 42 bacterial genomes (GIDEON II). Starting with the complete set of coding sequences we randomly deleted genes from the genomes. For the obtained draft genomes with different degrees of completeness, we re-ran the Traitar classification and computed the accuracy measures, as before. We observed that the average fraction of phenotypes identified (macro-recall for the positive class) of the phypat+PGL classifier dropped more quickly with more missing coding sequences than that of the phypat classifier

20 (Figure 6 b). However, at the same time, the recall of the negative class of the phypat+PGL classifier improved with a decreasing number of coding sequences, meaning that fewer but more reliable predictions were made.

Overall, the tradeoffs in the recall of the phenotype-positive and the phenotypenegative classes of the two classifiers resulted in a similar overall macro-accuracy

across the range of tested genome completeness.

Figure 6: Phenotyping simulated draft genomes and single cell genomes. In (a) we used 20 genome assemblies with varying degrees of completeness from single cells of the Cloacimonetes candidate phylum and a joint assembly for phenotyping with the Traitar phypat and the Traitar phypat+PGL classifiers. Shown is the performance of the phenotype prediction vs. the genome completeness of the single cells with respect to the joint assembly. In (b) we simulated draft genomes based on an independent test set of 42 microbial (pan)genomes. The coding sequences of these genomes were down-sampled (10 replications per sampling point) and the resulting simulated draft genomes were used for phenotyping with the Traitar phypat and the Traitar phypat+PGL classifiers. We plotted various performance estimates (mean center values and and s.d. error bars shown) against the protein content completeness.

Thus, depending on the intended usage, a particular classifier can be chosen: we expect that the reliable predictions inferred with the phypat+PGL classifier and the more abundant, but less reliable predictions made with the phypat classifier will complement one another in different use cases for partial genomes recovered from

5 metagenomic data.

By analyzing the protein families with assigned weights and the bias terms of the two classifiers, we found the phypat+PGL classifier to base its predictions primarily on the presence of protein families that were typical for the phenotypes. In contrast, the

phypat classifier also took typically absent protein families from phenotype-positive genomes into account in its decision. More technically, the positive weights in models of the phypat classifier are balanced out by negative weights, whereas for the phypat+PGL classifier, they are balanced out by the bias term. By down-weighting the bias term for the phypat+PGL classifier by the protein content completeness, we could show that the accuracy of the phypat classifier could be increased over that of the phypat+PGL, regardless of the protein content completeness (data not shown). However, this requires knowledge of the protein content completeness for each genomic sample, which could be indirectly estimated using methods such as checkM (Parks et al., 2015).

Traitar as a resource for gene target discovery

5

10

15

In addition to phenotype assignment, Traitar suggests the protein families relevant for the assignment of a phenotype (Methods – Majority feature selection, Table 3). We exemplarily demonstrate this capability here for three phenotypes that are already well-studied, namely 'Motile', 'Nitrate to nitrite' conversion and 'L-arabinose' metabolism. These phenotypes represent one each from the phenotype categories morphology, enzymatic activity and growth on sugar.

In general, we observed that the protein families important for classification can be seen to be gained and lost jointly with the respective phenotypes within the microbial phylogeny. Among the selected Pfam families that are important for classifying the motility phenotype were proteins of the flagellar apparatus and chemotaxis-related proteins (Table 3). Motility allows bacteria to colonize their preferred environmental niches. Genetically, it is mainly attributed to the flagellum, which is a molecular motor, and is closely related to chemotaxis, a process that lets bacteria sense chemicals in

their surroundings. Motility also plays a role in bacterial pathogenicity, as it enables

bacteria to establish and maintain an infection. For example, pathogens can use flagella to adhere to their host and they have been reported to be less virulent if they lack flagella (Josenhans and Suerbaum, 2002). Of 48 flagellar proteins described in (Liu and Ochman, 2007), four proteins (FliS, MotB, FlgD and FliJ) were sufficient for accurate classification of the motility phenotype and were selected by our classifier, 5 as well as FIaE, which was not included in this collection. FliS (PF02561) is a known export chaperone that inhibits early polymerization of the flagellar filament FliC in the cytosol (Lam et al., 2010). MotB (PF13677), part of the membrane proton-channel complex, acts as the stator of the bacterial flagellar motor (Hosking et al., 2006). 10 Traitar also identified further protein families related to chemotaxis, such as CZB (PF13682), a family of chemoreceptor zinc-binding domains found in many bacterial signal transduction proteins involved in chemotaxis and motility (Draper et al., 2011), and the P2 response regulator-binding domain (PF07194). The latter is connected to the chemotaxis kinase CheA and is thought to enhance the phosphorylation signal of 15 the signaling complex (Dutta et al., 1999).

Nitrogen reduction in nitrate to nitrite conversion is an important step of the nitrogen cycle and has a major impact on agriculture and public health. Two types of nitrate reductases are found in bacteria: the membrane-bound Nar and the periplasmic Nap nitrate reductase (Moreno-Vivian et al., 1999), which we found both to be relevant for the classification of the phenotype: we identified all subunits of the Nar complex as being relevant for the 'Nitrate to nitrite' conversion phenotype (i.e. the gamma and delta subunit (PF02665, PF02613)), as well as Fer4_11 (PF13247), which is in the iron–sulfur center of the beta subunit of Nar. The delta subunit is involved in the assembly of the Nar complex and is essential for its stability, but probably is not directly part of it (Pantel et al., 1998). Traitar also identified the Molybdopterin oxido-

Figure 7: Phenotype gain and loss dynamics match protein family dynamics. We show the phenotype–protein family gain and loss dynamics for families identified as important by Traitar for the L-arabinose phenotype. Signed colored circles along the tree branches depict protein family gains (+) or losses (-). Taxon nodes are colored according to their inferred (ancestral) phenotype state.

reductase Fe4S4 domain (PF04879), which is bound to the alpha subunit of the nitrate reductase complex (Pantel et al., 1998). Traitor furthermore suggested NapB (PF03892) as relevant, which is a subunit of the periplasmic Nap protein and NapD

5 (PF03927), which is an uncharacterized protein implicated in forming Nap (Moreno-

Vivian et al., 1999).

Table 3: The most relevant Pfam families for classification of three important phenotypes: 'Nitrate to Nitrite', 'Motility' and 'L-Arabinose'. We ranked the Pfam families with positive weights in the Traitar SVM classifiers by the correlation of the Pfam families with the respective phenotype labels across 234 bacteria described in the Global Infectious Disease and Epidemiology Online Network. Shown are the 10 highest ranking Pfam families along with their descriptions and a description of their phenotype-related function, where we found one.

Accession	Phenotype	Pfam description	Remarks
PF13677	Motile	Membrane MotB of proton-channel complex MotA/MotB	Flagellar protein
PF03963	Motile	Flagellar hook capping protein N-terminal region	Flagellar protein
PF02561	Motile	Flagellar protein FliS	Flagellar protein
PF02050	Motile	Flagellar FliJ protein	Flagellar protein
PF07559	Motile	Flagellar basal body protein FlaE	Flagellar protein
PF13682	Motile	Chemoreceptor zinc-binding domain	Chemotaxis-related
PF03350	Motile	Uncharacterized protein family, UPF0114	

PF05226	Motile	CHASE2 domain	Chemotaxis-related
PF07194	Motile	P2 response regulator binding domain	Chemotaxis-related
PF04982	Motile	HPP family	
PF03927	Nitrate to nitrite	NapD protein	Involved in Nar formation
PF13247	Nitrate to nitrite	4Fe-4S dicluster domain	Iron-sulfur cluster center of the beta subunit of Nar
PF03892	Nitrate to nitrite	Nitrate reductase cytochrome c-type subunit (NapB)	Periplasmic Nap subunit
PF02613	Nitrate to nitrite	Nitrate reductase delta subunit	Nap subunit
PF01127	Nitrate to nitrite	Succinate dehydrogenase/Fumarate reductase transmembrane subunit	
PF01292	Nitrate to nitrite	Prokaryotic cytochrome b561	
PF03459	Nitrate to nitrite	TOBE domain	
PF03824	Nitrate to nitrite	High-affinity nickel transport protein	
PF04879	Nitrate to nitrite	Molybdopterin oxidoreductase Fe4S4 domain	Bound to the alpha subunit of Nar
PF02665	Nitrate to nitrite	Nitrate reductase gamma subunit	Nar subunit
PF11762	L-Arabinose	L-arabinose isomerase C-terminal domain	Catalyzes first reaction in L- arabinose metabolism
PF04295	L-Arabinose	D-galactarate dehydratase / Altronate hydrolase, C terminus	
PF13802	L-Arabinose	Galactose mutarotase-like	
PF11941	L-Arabinose	Domain of unknown function (DUF3459)	
PF14310	L-Arabinose	Fibronectin type III-like domain	
PF06964	L-Arabinose	Alpha-L-arabinofuranosidase C-terminus	Acts on L-arabinose side chains in pectins
PF01963	L-Arabinose	TraB family	
PF01614	L-Arabinose	Bacterial transcriptional regulator	
PF06276	L-Arabinose	Ferric iron reductase FhuF-like	
PF04230	L-Arabinose	transporter Polysaccharide pyruvyl transferase	

L-arabinose is major constituent of plant polysaccharides, which is located, for instance, in pectin side chains and is an important microbial carbon source (Martinez et al., 2008). Traitar identified the L-arabinose isomerase *C*-terminal domain (PF11762), which catalyzes the first step in L-arabinose metabolism – the conversion of L-arabinose into L-ribulose (Sa-Nogueira et al., 1997), as being important for realizing the L-arabinose metabolism. It furthermore suggested the *C*-terminal domain of Alpha-L-arabinofuranosidase (PF06964), which cleaves nonreducing terminal alpha-L-arabinofuranosidic linkages in L-arabinose-containing polysaccharides (Gilead and Shoham, 1995) and is also part of the well-studied L-

10 arabinose operon in *Escherichia coli* (Sa-Nogueira et al., 1997).

Phenotyping biogas reactor population genomes

We used Traitar to phenotype two novel Clostridiales species (unClos 1, unFirm 1) based on their genomic information reconstructed from metagenome samples. These were taken from a commercial biogas reactor operating with municipal waste (Frank et al., 2015). The genomes of unClos 1 and unFirm 1 were estimated to be 91% 5 complete and 60% complete based on contigs ≥5 kb, respectively. Traitar predicted unClos 1 to utilize a broader spectrum of carbohydrates than unFirm 1 (Table 4). We cross-referenced our predictions with a metabolic reconstruction conducted by Frank et al. (under review; supplementary material). We considered all phenotype 10 predictions that Traitar inferred with either the phypat or the phypat+PGL classifier. The manual reconstruction and predictions inferred with Traitar agreed to a great extent (Table 4). Traitar recalled 87.5% (6/7) of the phenotypes inferred via the metabolic reconstruction and also agreed to 81.8% (9/11) on the absent phenotypes. Notable exceptions were that Traitar only found a weak signal for 'D-xylose' 15 utilization. A weak signal means that only a minority of the classifiers in the voting committee assigned these samples to the phenotype-positive class (Methods -Phenotype models). However, the metabolic reconstruction was also inconclusive with respect to xylose fermentation. Furthermore, Traitar only found a weak signal for 'Glucose fermentation' for unFirm 1. Whilst genomic analysis of unFirm 1 revealed 20 the Embden-Meyerhof-Parnas (EMP) pathway, which would suggest glucose fermentation, gene-centric and metaproteomic analysis of this phylotype indicated that the EMP pathway was probably employed in an anabolic direction (gluconeogenesis); therefore unFirm 1 is also unlikely to ferment D-Mannose. This suggests that unFirm 1 is unlikely to ferment sugars and instead metabolizes acetate (also predicted by Traitar, Table 4) via a syntrophic interaction with hydrogen-utilizing 25 methanogens.

Traitar predicted further phenotypes for both species that were not targeted by the manual reconstruction. One of these predictions was an anaerobic lifestyle, which is likely to be accurate, as the genomes were isolated from an anaerobic bioreactor environment. It also predicted them to be Gram-positive, which is probably correct, as

5 the Gram-positive sortase protein family can be found in both genomes.

Table 4 Phenotype predictions for two novel Clostridiales species with genomes reconstructed from a commercial biogas reactor metagenome. Traitar output (yes, no, weak) was cross-referenced with phenotypes manually reconstructed based on Kyoto Encyclopedia of Genes and Genomes orthology annotation (Frank *et al.* submitted; supplementary material), which are primarily the fermentation phenotypes of various sugars. We considered all phenotype predictions that Traitar inferred with either the phypat or the phypat+PGL classifier. A weak prediction means that only a minority of the classifiers in the Traitar voting committee assigned this sample to the phenotype-positive class (Traitar phenotype). Table entries colored in red show a difference between the prediction and the reconstruction, whereas green denotes an overlap; yellow is inconclusive.

	unClos_1	unFirm_1
Glucose	yes	weak
Acetate utilization	no	yes
Mannitol	yes	no
Starch hydrolysis	no	no
Xylose	weak	no
L-Arabinose	yes	no
Capnophilic	yes	no
Sucrose	yes	no
D-Mannose	yes	no
Maltose	yes	no
Arginine dihydrolase	no	yes

10

This is a Gram-positive biomarker (Paterson and Mitchell, 2004). Furthermore, all Firmicutes known so far are Gram-positive (Goodfellow et al., 2012). Additionally, Traitar assigned 'Motile' and 'Spore formation' to unFirm_1, based on the presence of several flagellar proteins (e.g. FliM, MotB, FliS and FliJ) and the sporulation proteins CoatF and YunB.

Discussion

We have developed Traitar, a software framework for predicting phenotypes from the protein family profiles of bacterial genomes. Traitar provides a quick and fully automated way of assigning 67 different phenotypes to bacteria based on the protein

5 family content of their genomes.

Microbial trait prediction from phyletic patterns has been proposed in previous studies for a limited number of phenotypes (Feldbauer et al., 2015; Kastenmuller et al., 2009; Konietzny et al., 2014; Lingner et al., 2010; MacDonald and Beiko, 2010; Weimann et al., 2013). To our knowledge, the only currently available software for microbial genotype-phenotype inference is PICA, which is based on learning associations of 10 clusters of orthologous genes (Tatusov et al., 2001) with traits (MacDonald and Beiko, 2010). Recently, PICA was extended by Feldbauer et al. for predicting eleven traits overall, optimized for large datasets and tested on incomplete genomes (Feldbauer et al., 2015). Traitar allows prediction of 67 phenotypes, including 60 15 entirely novel ones. It furthermore includes different prediction modes, one based on phyletic patterns, one additionally including a statistical model of protein family evolution for its predictions. Traitar also suggest associations between phenotypes and protein families. For three traits, we showed that several of these associations are to known key families of establishment of a particular trait, and that furthermore candidate families were suggested, that might serve as targets for experimental 20

studies. Some of the phenotypes annotated in GIDEON are specific for the human habitat (such as 'coagulase production' or 'growth on ordinary blood agar') and the genetic underpinnings learned by Traitar could be interesting to study for infection disease research.

In cross-validation experiments with phenotype data from the GIDEON database, we showed that the Traitar phypat classifier has high accuracy in phenotyping bacterial samples. Considering ancestral protein family gains and losses in the classification, which is implemented in the Traitar phypat+PGL classifier, improves the accuracy compared to prediction from phyletic patterns only, both for individual phenotypes 5 and overall. Barker et al. were first to note the phylogenetic dependence of genomic samples and how this can lead to biased conclusions (Barker and Pagel, 2005). MacDonald et al. selected protein families based on correlations with a phenotype and corrected for the taxonomy (MacDonald and Beiko, 2010). Here we accounted 10 for the evolutionary history of the phenotype and the protein families in the classifier training itself to automatically improve phenotype assignment. We additionally demonstrated the reliability of the performance estimates by phenotyping, with a similar accuracy, an independent test dataset with bacteria described in GIDEON, which we did not use in the cross-validation. Traitar also reliably phenotyped a large 15 and heterogenic collection of bacteria that we extracted from Bergey's Manual of Systematic Bacteriology - mostly with only draft genomes available. We didn't observe any bias towards specific taxa in GIDEON, but some of the phenotypes might be realized with different protein families in taxa that are less well represented indicated by the around 15% - 20% less reliable phenotyping results for bacteria 20 described in Bergey's manual of systematic bacteriology. We expect that the accuracy of the phenotype classification models already available in Traitar will further improve the more data will become available and can be incorporated into its training.

We found that Traitar can provide reliable insights into the metabolic capabilities of microbial community members even from partial genomes, which are very common

for genomes recovered from single cells or metagenomes. One obvious limitation being for incomplete genomes, the absence of a phenotype prediction may be due to the absence of the relevant protein families from the input genomes. The analysis of both the SAGs and simulated genomes led us to the same conclusions: the phypat classifier is more suitable for exploratory analysis, as it assigned more phenotypes to incomplete genomes, at the price of more false positive predictions. In contrast, the phypat+PGL classifier assigned fewer phenotypes, but also made fewer false assignments. At the moment, genotype–phenotype inference with Traitar only takes into account the presence and absence of protein families of the bacteria analyzed.

5

- 10 This information can be readily computed from the genomic and metagenomic data. Future research could focus also on integration of other 'omics' data to allow even more accurate phenotype assignments. Additionally, expert knowledge of the biochemical pathways that are used in manual metabolic reconstructions, for example, could be integrated as prior knowledge into the model in future studies.
- 15 For the phenotyping of novel microbial species, generating a detailed (manual) metabolic reconstruction such as the one by Frank *et al.* (submitted; supplementary material) is time-intensive. Furthermore, such reconstructions are usually focused on specific pathways and are dependent on the research question. This is not an option for studies with 10–50+ genomes, which are becoming more and more common in 20 microbiology (Brown et al., 2015; Hess et al., 2011; Rinke et al., 2013). Traitar thus is likely to be particularly helpful for multi-genome studies. It furthermore may pick up
 - on things outside of the original research focus and could serve as a seed or a firstpass method for a detailed metabolic reconstruction in future studies.

Methods

The Traitar software

running the Traitar software.

In this section we first describe the Traitar annotation procedure. We proceed with the genome and phenotype data used for the training of Traitar phenotype models; afterwards we explain the training and illustrate how we considered ancestral protein family gains and losses in the models. Finally, we specify the requirements for

Annotation

5

25

In the case of nucleotide DNA sequence input, Traitar uses Prodigal (Hyatt et al.,

- 10 2010) for gene prediction prior to Pfam family annotation. The amino acid sequences are then annotated in Traitar with protein families (Pfams) from the Pfam database (version 27.0) (Finn et al., 2014) using the hmmsearch command of HMMER 3.0 (Finn et al., 2011).
- Each Pfam family has a hand-curated threshold for the bit score, which is set in such a way that no false positive is included (Punta et al., 2012). A fixed threshold of 25 is then applied to the bit score (the log-odds score) and all Pfam domain hits with an Evalue above 10⁻² are discarded. The resulting Pfam family counts (phyletic patterns) are turned into presence or absence values, as we found this representation to yield a favorable classification performance (Weimann et al., 2013).

20 Genome and phenotype data

We obtained our phenotype data from the GIDEON database (Berger, 2005). In GIDEON a bacterium is labeled either as phenotype-positive, -negative or strain-specific. In the latter case we discarded this phenotype label. The GIDEON traits can be grouped into the categories the use of various substrates as source of carbon and energy for growth, oxygen requirement, morphology, antibiotic susceptibility and

enzymatic activity (Table 1, Supplementary Table 1). We only considered phenotypes that were available in GIDEON for at least 20 bacteria, with a minimum of 10 bacteria annotated as positive (phenotype presence) for a given phenotype and 10 as negative (phenotype absence) to enable a robust and reliable analysis of the respective phenotypes. Furthermore, to be included in the analysis, we required each bacterial sample to have:

- a) at least one annotated phenotype,
- b) at least one sequenced strain,
- c) a representative in the sTOL.

5

- In total, we extracted 234 species-level bacterial samples with 67 phenotypes with sufficient total, positive and negative labels from GIDEON (GIDEON I). GIDEON associates these bacteria with 9305 individual phenotype labels, 2971 being positive and 6334 negative (Supplementary Table 1, 3). GIDEON species that had at least one sequenced strain available but were not part of the sTOL tree were set aside for a later independent assessment of the classification accuracy. In total, this additional dataset comprised further 42 unique species with 58 corresponding sequenced bacterial strains (GIDEON II, Supplementary Table 1, 4). We obtained 1836 additional phenotype labels for these bacteria, consisting of 574 positive and 1262
- 20 systematic bacteriology specifically for further bacteria not represented so far in the GIDEON data sets (Goodfellow et al., 2012). In total, we obtained phenotype data from Bergey's for 206 Firmicutes and 90 Proteobacteria with a total of 1152 positive labels and 1376 negative labels (Supplementary Table 1, 5). As in GIDEON, in Bergey's the phenotype information is usually given on the species level.

negative ones. We searched the Firmicutes and Proteobacteria volumes of Bergey's

We downloaded the coding sequences of all complete bacterial genomes that were available via the NCBI FTP server under <u>ftp://ftp.ncbi.nlm.nih.gov/genomes/</u> as of 11 May 2014 and genomes from the PATRIC data base as of September 2015 (Wattam et al., 2014). These were annotated with Traitar. For bacteria with more than one sequenced strain available, we chose the union of the Pfam family annotation of the single genomes to represent the pangenome Pfam family annotation, as in (Liu et al., 2006).

Phenotype models

5

We represented each phenotype from the set of GIDEON phenotypes across all genomes as a vector *yp*, and solved a binary classification problem using the matrix of Pfam phyletic patterns *XP* across all genomes as input features and *yp a*s the binary target variable (Supplementary Figure 1). For classification, we relied on support vector machines (SVMs), which are a well-established machine learning method (Boser et al., 1992). Specifically, we used a linear L1-regularized L2-loss SVM for classification as implemented in the LIBLINEAR library (Fan et al., 2008). For many datasets, linear SVMs achieve comparable accuracy to SVMs with a nonlinear kernel but allow faster training. The weight vector of the separating hyperplane provides a direct link to the Pfam families that are relevant for the classification. L1-

20 correlated and high-dimensional datasets, as used in this study (Zou and Hastie, 2005). We used the interface to LIBLINEAR implemented in scikit-learn (Pedregosa et al., 2011). For classification of unseen data points – genomes without available phenotype labels supplied by the user – Traitar uses a voting committee of five SVMs with the best single cross-validation accuracy (Methods – Nested cross-validation).

regularization enables feature selection, which is useful when applied to highly

25 Traitar then assigns each unseen data point to the majority class (phenotype presence or absence class) of the voting committee.

Ancestral protein family and phenotype gains and losses

We constructed an extended classification problem by including ancestral protein family gains and losses, as well as the ancestral phenotype gains and losses in our analysis, as implemented in GLOOME (Cohen and Pupko, 2011). Barker *et al.* report

- 5 that common methods for inferring functional links between genes, that do not take the phylogeny into account, suffer from high rates of false positives (Barker and Pagel, 2005). Here, we jointly derived the classification models from the observable phyletic patterns and phenotype labels, and from phylogenetically unbiased ancestral protein family and phenotype gains and losses, that we inferred via a maximum 10 likelihood approach from the observable phyletic patterns on a phylogenetic tree, showing the relationships among the samples. (Supplementary Figure 1). Ancestral character state evolution in GLOOME is modeled via a continuous-time Markov process with exponential waiting times. The gain and loss rates are sampled from two independent gamma distributions (Cohen and Pupko, 2010).
- GLOOME needs a binary phylogenetic tree with branch lengths as input. The taxonomy of the National Center for Biointechnology Information (NCBI) and other taxonomies are not suitable, because they provide no branch length information. We used the sequenced tree of life (sTOL) (Fang et al., 2013), which is bifurcating and was inferred with a maximum likelihood approach based on unbiased sampling of structural protein domains from whole genomes of all sequenced organisms (Gough et al., 2001). We employed GLOOME with standard settings to infer posterior probabilities for the phenotype and Pfam family gains and losses from the Pfam phyletic patterns of all NCBI bacteria represented in the sTOL and the GIDEON phenotypes. Each GIDEON phenotype *p* is available for a varying number of bacteria. Therefore, for each phenotype, we pruned the sTOL to those bacteria that

were both present in the NCBI database and had a label for the respective phenotype in GIDEON. The posterior probabilities of ancestral Pfam gains and losses were then mapped onto this GIDEON phenotype-specific tree (Gps-sTOL, Supplementary Figure 2).

5 Let *B* be the set of all branches in the sTOL and *P* be the set of all Pfam families. We then denote the posterior probability g_{ij} of an event *a* for a Pfam family *pf* to be a gain event on branch *b* in the sTOL computed with GLOOME as:

$$g_{ij} = P(a = gain|i = b, j = pf) \forall i \in B, \forall j \in P,$$

and the posterior probability of *a* to be a loss event for a Pfam family *p* on branch *b* as:

$$l_{ij} = P(a = loss | i = b, j = pf) \forall i \in B, \forall j \in P.$$

We established a mapping $f: B' \to B$ between the branches of the sTOL *B* and the set of branches *B*' of the Gps-sTOL (Supplementary Figure 2). This was achieved by traversing the tree from the leaves to the root.

15

20

There are two different scenarios for a branch b' in B' to map to the branches in B:

- a) Branch *b*' in the Gps-sTOL derives from a single branch *b* in the sTOL: $f(b') = \{b\}$. The posterior probability of a Pfam gain inferred in the Gps-sTOL on branch *b*' consequently is the same as that on branch *b* in the sTOL $g_{b'j} = g_{bj} \forall j \in P$.
- b) Branch b' in the Gps-sTOL derives from *m* branches $b_1, ..., b_m$ in the sTOL:

 $f(b') = \{b_1, ..., b_m\}$ (Supplementary figure 2). In this case, we iteratively calculated the posterior probabilities for at least one Pfam gain g' on branch b' from the posterior probabilities for a gain g'_{b_1j} from the posterior probabilities $g_1, ..., g_m$ of a gain on branches $b_1, ..., b_m$ with the help of h:

$$\begin{array}{rcl} h_1 & = & g_{b_1 j} \\ h_{n+1} & = & (1-h_n) \cdot g_{b_{n+1} j} \\ g'_{b_1 j} & = & h_m \, \forall j \in P. \end{array}$$

5 Inferring the Gps-sTOL Pfam posterior loss probabilities l'_{ij} from the sTOL posterior Pfam loss probabilities is analogous to deriving the gain probabilities. The posterior probability for a phenotype p to be gained g_{ip}' or lost l_{ip}' can be directly defined for the Gps-sTOL in the same way as for the Pfam probabilities.

For classification, we did not distinguish between phenotype or Pfam gains or losses, assuming that the same set of protein families gained with a phenotype will also be lost with the phenotype. This assumption simplified the classification problem. Specifically, we proceeded in the following way:

1. We computed the joint probability x_{ij} of a Pfam family gain or loss on branch b'and the joint probability y_i of a phenotype gain or loss on branch b':

15

$$\begin{aligned} x_{ij} &= g'_{ij}l'_{ij} + \left(1 - g'_{ij}\right) \cdot l'_{ij} + \left(1 - l'_{ij}\right) \cdot g'_{ij} \forall i \in B', \forall j \in P \\ &= g'_{ij} + \left(1 - g'_{ij}\right) \cdot l'_{ij} \end{aligned}$$

$$y_i = g'_{ip} + \left(1 - g_{ip}'\right) \cdot l'_{ip} \quad \forall i \in B'.$$

2. Let x_i be a vector representing the probabilities x_{ij} for all Pfam families $j \in P$ on

branch b_i . We discarded any samples (x_i , y_i) that had a probability for a phenotype gain or loss y_i above the reporting threshold of GLOOME but below a threshold t. We set the threshold t to 0.5.

This defines the matrix X and the vector **y** as:

5
$$(X, \mathbf{y}) = \{(\mathbf{x}_{i}, y_{i}) | y_{i} = 0 \lor y_{i} \ge t, i \in B'\},$$

By this means, we avoided presenting the classifier with samples corresponding to uncertain phenotype gain or loss events and used only confident labels in the subsequent classifier training instead.

3. We inferred discrete phenotype labels y' by applying this threshold t to the joint 10 probability y_i for a phenotype gain or loss to set up a well-defined classification problem with a binary target variable. Whenever the probability for a phenotype to be gained or lost on a specific branch was larger than t, the event was considered to have happened:

$$\mathbf{y}' = \begin{cases} 1, \text{ if } y_i \ge t \\ 0, \quad \text{otherwise} \end{cases} \forall i \in B'.$$

4. Finally, we formulated a joint binary classification problem for each target phenotype yp and the corresponding gain and loss events y', the phyletic patterns *XP*, and the Pfam gain and loss events *X*, which we solved again with a linear L1regularized L2-loss SVM. We applied this procedure for all GIDEON phenotypes under investigation.

20 Software Requirements

Traitar can be run on a standard laptop with Linux/Unix. The runtime (wallclock time) for annotating and phenotyping a typical microbial genome with 3 Mbp is 9 minutes (3

min/Mbp) on an Intel(R) Core(TM) i5-2410M dual core processor with 2.30 GHz, requiring only a few megabytes of memory.

Cross-validation

- We employed cross-validation to assess the performance of the classifiers 5 individually for each phenotype. For a given phenotype, we divided the bacterial samples that were annotated with that phenotype into ten folds. Each fold was selected once for testing the model, which was trained on the remaining folds. The optimal regularization parameter C needed to be determined independently in each step of the cross-validation; therefore, we employed a further inner cross-validation using the following range of values for the parameter C: 10^{-3} , $10^{-2} \cdot 0.7$, $10^{-2} \cdot 0.5$, 10 $10^{-2} \cdot 0.2$, $10^{-2} \cdot 0.1$, ..., 1. In other words, for each fold kept out for testing in the outer cross-validation, we determined the value of the parameter C that gave the best accuracy in an additional tenfold cross-validation on the remaining folds. This value was then used to train the SVM model in the current outer cross-validation step. 15 Whenever we proceeded to a new cross-validation fold, we re-computed the ancestral character state reconstruction of the phenotype with only the training samples included (Ancestral protein family and phenotype gains and losses). This procedure is known as nested cross-validation (Ruschhaupt et al., 2004).
- The bacterial samples in the training folds imply a Gps-sTOL in each step of the inner and outer cross-validation without the samples in the test fold. We used the same procedure as before to map the Pfam gains and losses inferred previously on the Gps-sTOL onto the tree defined by the current cross-validation training folds. Importantly, the test error is only estimated on the observed phenotype labels rather than on the inferred phenotype gains and losses.

Evaluation metrics

We used evaluation metrics from multi-label classification theory for performance evaluation (Manning et al., 2008). We determined the performance for the individual phenotype-positive and the phenotype-negative classes based on the confusion

- 5 matrix of true positive (*TP*), true negative (*TN*), false negative (*FN*) and false positive (*FP*) samples from their binary classification equivalents by averaging over all *n* phenotypes. We utilized two different accuracy measures for assessing multi-class classification performance (i.e. the accuracy pooled over all classification decisions and the macro-accuracy). Macro-accuracy represents an average over the accuracy
- 10 of the individual binary classification problems and we computed this from the macrorecall of the phenotype-positive and the phenotype-negative classes as follows:

$$Macro-recall_{Pos} = \left(\sum_{i=1}^{n} \frac{TP_i}{TP_i + FN_i}\right) / n$$

$$Macro-recall_{Neg} = \left(\sum_{i=1}^{n} \frac{TN_i}{FP_i + TN_i}\right) / n$$

 $Macro-accuracy = (Macro-recall_{Pos} + Macro-recall_{Neg})/2.$

However, if there are only few available labels for some phenotypes, the variance of the macro-accuracy will be high and this measure cannot be reliably computed anymore; it cannot be computed at all if no labels are available. The accuracy only assesses the overall classification performance without consideration of the information about specific phenotypes. Large classes dominate small classes (Manning et al., 2008).

$$Recall_{Pos} = \frac{\sum_{i=1}^{n} TP_i}{\sum_{i=1}^{n} TP_i + \sum_{i=1}^{n} FN_i}$$
$$Recall_{Neg} = \frac{\sum_{i=1}^{n} TN_i}{\sum_{i=1}^{n} TN_i + \sum_{i=1}^{n} FP_i}$$

$$Accuracy = (Recall_{Pos} + Recall_{Neg})/2$$

Majority feature selection

The weights in linear SVMs can directly be linked to features that are relevant for the classification. We identified the most important protein families used as features from the voting committee of SVMs consisting of the five most accurate models, which were also used for classifying new samples. If the majority, which is at least three predictors, included a positive value for a given protein family, we added this feature to the list of important features. We further ranked these protein families features by their correlation with the phenotype using Pearson's correlation coefficient.

Acknowledgements

We thank Andreas Klötgen, David Lähnemann, Susanne Reimering and Alexander Sczyrba for providing helpful comments on the manuscript; Johannes Dröge and Jens Loers for reviewing the Traitar software and Gary Robertson for helping to set up the Traitar web service. JAF and PBP are supported by a grant from the European Research Council (336355-MicroDE).

15

References

Alneberg, J., Bjarnason, B.S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z., Lahti, L.,
Loman, N.J., Andersson, A.F., and Quince, C. (2014). Binning metagenomic contigs
by coverage and composition. Nat Methods doi:10.1038/nmeth.3103.

- 5 Bai, Y., Muller, D.B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski, N., Munch, P.C., Spaepen, S., Remus-Emsermann, M., *et al.* (2015). Functional overlap of the Arabidopsis leaf and root microbiota. Nature doi:10.1038/nature16192.
 - Barker, D., and Pagel, M. (2005). Predicting functional gene links from phylogeneticstatistical analyses of whole genomes. PLoS computational biology doi:10.1371/journal.pcbi.0010003.
 - Berger, S.A. (2005). GIDEON: a comprehensive Web-based resource for geographic medicine. International journal of health geographics doi:10.1186/1476-072X-4-10.
 - Boser, B.E., Guyon, I.M., and Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. Paper presented at: Proceedings of the fifth annual workshop on computational learning theory (Association for Computing Machinery).
 - Brown, C.T., Hug, L.A., Thomas, B.C., Sharon, I., Castelle, C.J., Singh, A., Wilkins, M.J., Wrighton, K.C., Williams, K.H., and Banfield, J.F. (2015). Unusual biology across a group comprising more than 15% of domain Bacteria. Nature doi:10.1038/nature14486.
- 20 Cleary, B., Brito, I.L., Huang, K., Gevers, D., Shea, T., Young, S., and Alm, E.J. (2015). Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning. Nat Biotechnol doi:10.1038/nbt.3329.
 - Cohen, O., and Pupko, T. (2010). Inference and characterization of horizontally transferred gene families using stochastic mapping. Molecular biology and evolution doi:10.1093/molbev/msp240.
 - Cohen, O., and Pupko, T. (2011). Inference of gain and loss events from phyletic patterns using stochastic mapping and maximum parsimony--a simulation study. Genome biology and evolution doi:10.1093/gbe/evr101.
- Draper, J., Karplus, K., and Ottemann, K.M. (2011). Identification of a chemoreceptor zinc binding domain common to cytoplasmic bacterial chemoreceptors. Journal of
 bacteriology doi:10.1128/JB.05140-11.

Dutta, R., Qin, L., and Inouye, M. (1999). Histidine kinases: diversity of domain organization. Molecular microbiology *34*, 633-640

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLINEAR: A library for large linear classification. J Mach Learn Res 9, 1871-1874

Fang, H., Oates, M.E., Pethica, R.B., Greenwood, J.M., Sardar, A.J., Rackham, O.J., Donoghue, P.C., Stamatakis, A., de Lima Morais, D.A., and Gough, J. (2013). A daily-updated tree of (sequenced) life as a reference for genome research. Scientific reports doi:10.1038/srep02015.

- 40 Feldbauer, R., Schulz, F., Horn, M., and Rattei, T. (2015). Prediction of microbial phenotypes based on comparative genomics. BMC bioinformatics doi:10.1186/1471-2105-16-S14-S1.
 - Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., *et al.* (2014). Pfam: the protein families database. Nucleic acids research doi:10.1093/nar/gkt1223.
 - Finn, R.D., Clements, J., and Eddy, S.R. (2011). HMMER web server: interactive sequence similarity searching. Nucleic acids research doi:10.1093/nar/gkr367.

Frank, J.A., Pan, Y., Tooming-Klunderud, A., Eijsink, V.G.H., McHardy, A.C., Nederbragt, A.J., and Pope, P.B. (2015). Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. bioRxiv doi:10.1101/026922.

15

25

35

45

50

- Gilead, S., and Shoham, Y. (1995). Purification and characterization of alpha-Larabinofuranosidase from Bacillus stearothermophilus T-6. Applied and environmental microbiology *61*, 170-174
- Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M.E., Suzuki, K.-i., Ludwig, W., and Whitman, W.B. (2012). Bergey's manual of systematic bacteriology (Springer New York).
 - Gough, J., Karplus, K., Hughey, R., and Chothia, C. (2001). Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. Journal of molecular biology doi:10.1006/jmbi.2001.5080.
- 10 Gregor, I., Droge, J., Schirmer, M., Quince, C., and McHardy, A.C. (2016). PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ doi:10.7717/peerj.1603.
 - Harvey, P.H., and Pagel, M.D. (1991). The comparative method in evolutionary biology, Vol 239 (Oxford University Press Oxford).
- 15 Hess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Schroth, G., Luo, S., Clark, D.S., Chen, F., Zhang, T., *et al.* (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science doi:10.1126/science.1200387.
 - Hosking, E.R., Vogt, C., Bakker, E.P., and Manson, M.D. (2006). The Escherichia coli MotAB proton channel unplugged. Journal of molecular biology doi:10.1016/j.jmb.2006.09.035.
 - Hyatt, D., Chen, G.L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics doi:10.1186/1471-2105-11-119.
- Imelfort, M., Parks, D., Woodcroft, B.J., Dennis, P., Hugenholtz, P., and Tyson, G.W. (2014).
 GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ doi:10.7717/peerj.603.
 - Josenhans, C., and Suerbaum, S. (2002). The role of motility as a virulence factor in bacteria. International journal of medical microbiology : IJMM doi:10.1078/1438-4221-00173.
- Kang, D.D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an efficient tool for
 accurately reconstructing single genomes from complex microbial communities. PeerJ doi:10.7717/peerj.1165.
 - Kastenmuller, G., Schenk, M.E., Gasteiger, J., and Mewes, H.W. (2009). Uncovering metabolic pathways relevant to phenotypic traits of microbial genomes. Genome biology doi:10.1186/gb-2009-10-3-r28.
- 35 Konietzny, S.G., Pope, P.B., Weimann, A., and McHardy, A.C. (2014). Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders. Biotechnology for biofuels doi:10.1186/s13068-014-0124-8.
 - Lam, W.W., Woo, E.J., Kotaka, M., Tam, W.K., Leung, Y.C., Ling, T.K., and Au, S.W. (2010). Molecular interaction of flagellar export chaperone FliS and cochaperone
- 40 HP1076 in Helicobacter pylori. FASEB journal : official publication of the Federation of American Societies for Experimental Biology doi:10.1096/fj.10-155242.
 - Lasken, R.S., and McLean, J.S. (2014). Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet doi:10.1038/nrg3785.
- Limam, R.D., Chouari, R., Mazeas, L., Wu, T.D., Li, T., Grossin-Debattista, J., Guerquin Kern, J.L., Saidi, M., Landoulsi, A., Sghir, A., *et al.* (2014). Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose. MicrobiologyOpen doi:10.1002/mbo3.144.
 - Lingner, T., Muhlhausen, S., Gabaldon, T., Notredame, C., and Meinicke, P. (2010). Predicting phenotypic traits of prokaryotes from protein domain frequencies. BMC bioinformatics doi:10.1186/1471-2105-11-481.

50

5

- Liu, R., and Ochman, H. (2007). Stepwise formation of the bacterial flagellar system. Proceedings of the National Academy of Sciences of the United States of America doi:10.1073/pnas.0700266104.
- Liu, Y., Li, J., Sam, L., Goh, C.S., Gerstein, M., and Lussier, Y.A. (2006). An integrative genomic approach to uncover molecular mechanisms of prokaryotic traits. PLoS computational biology doi:10.1371/journal.pcbi.0020159.
 - MacDonald, N.J., and Beiko, R.G. (2010). Efficient learning of microbial genotypephenotype association rules. Bioinformatics doi:10.1093/bioinformatics/btq305.
- Macnab, R.M. (2003). How bacteria assemble flagella. Annual review of microbiology doi:10.1146/annurev.micro.57.030502.090832.
 - Manning, C.D., Raghavan, P., and Schütze, H. (2008). Introduction to information retrieval, Vol 1 (Cambridge university press Cambridge, UK).
- Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M., Cullen, D., *et al.* (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol doi:10.1038/nbt1403.
 - Martinez, J.L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science doi:10.1126/science.1159483.
 - Martiny, J.B., Jones, S.E., Lennon, J.T., and Martiny, A.C. (2015). Microbiomes in light of traits: A phylogenetic perspective. Science doi:10.1126/science.aac9323.
 - Moreno-Vivian, C., Cabello, P., Martinez-Luque, M., Blasco, R., and Castillo, F. (1999). Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. Journal of bacteriology *181*, 6573-6584
- Narihiro, T., and Sekiguchi, Y. (2007). Microbial communities in anaerobic digestion
 processes for waste and wastewater treatment: a microbiological update. Current opinion in biotechnology doi:10.1016/j.copbio.2007.04.003.
 - Nielsen, H.B., Almeida, M., Juncker, A.S., Rasmussen, S., Li, J., Sunagawa, S., Plichta, D.R., Gautier, L., Pedersen, A.G., Le Chatelier, E., *et al.* (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol doi:10.1038/nbt.2939.
 - Ochman, H., Lawrence, J.G., and Groisman, E.A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature doi:10.1038/35012500.
- Olapade, O.A., and Ronk, A.J. (2015). Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2,3 dioxygenase genes in contaminated soils. Microbial ecology doi:10.1007/s00248-014-0466-6.
 - Pal, C., Papp, B., and Lercher, M.J. (2005). Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nature genetics doi:10.1038/ng1686.
- Pantel, I., Lindgren, P.E., Neubauer, H., and Gotz, F. (1998). Identification and characterization of the Staphylococcus carnosus nitrate reductase operon. Molecular & general genetics : MGG 259, 105-114
 - Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome research doi:10.1101/gr.186072.114.
- 45 Paterson, G.K., and Mitchell, T.J. (2004). The biology of Gram-positive sortase enzymes. Trends in microbiology doi:10.1016/j.tim.2003.12.007.
 - Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in Python. J Mach Learn Res 12, 2825-2830

50

39

5

20

Pelletier, E., Kreimeyer, A., Bocs, S., Rouy, Z., Gyapay, G., Chouari, R., Riviere, D., Ganesan, A., Daegelen, P., Sghir, A., *et al.* (2008). "Candidatus Cloacamonas acidaminovorans": genome sequence reconstruction provides a first glimpse of a new bacterial division. Journal of bacteriology doi:10.1128/JB.01248-07.

- Pope, P.B., Smith, W., Denman, S.E., Tringe, S.G., Barry, K., Hugenholtz, P., McSweeney, C.S., McHardy, A.C., and Morrison, M. (2011). Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science doi:10.1126/science.1205760.
- 10 Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., *et al.* (2012). The Pfam protein families database. Nucleic acids research doi:10.1093/nar/gkr1065.
 - Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., *et al.* (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature doi:10.1038/nature12352.
 - Ruschhaupt, M., Huber, W., Poustka, A., and Mansmann, U. (2004). A compendium to ensure computational reproducibility in high-dimensional classification tasks. Statistical applications in genetics and molecular biology doi:10.2202/1544-6115.1078.
- Sa-Nogueira, I., Nogueira, T.V., Soares, S., and de Lencastre, H. (1997). The Bacillus subtilis
 L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 143 (Pt 3), 957-969
 - Tange, O. (2011). GNU parallel-the command-line power tool. USENIX 36, 42-47
- Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B., Galperin, M.Y., Fedorova, N.D., and Koonin, E.V. (2001). The COG
 database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic acids research doi:10.1093/nar/29.1.22.
 - Wattam, A.R., Abraham, D., Dalay, O., Disz, T.L., Driscoll, T., Gabbard, J.L., Gillespie, J.J., Gough, R., Hix, D., Kenyon, R., *et al.* (2014). PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic acids research doi:10.1093/nar/gkt1099.
- 30 Weimann, A., Trukhina, Y., Pope, P.B., Konietzny, S.G., and McHardy, A.C. (2013). De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes. Biotechnology for biofuels doi:10.1186/1754-6834-6-24.
 - Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net. J R Stat Soc A 67, 301-320

5

Supplementary Figure 1

Schematic overview of the Traitar phenotype model training. (a) The phenotype and Pfam protein family phyletic patterns correspond to gain events on a star-shaped phylogenetic tree. Alternatively, we reconstructed the ancestral Pfam family and phenotype gain and loss events on the sequenced Tree of Life. (b) We trained a support vector machine classifier either on the phyletic patterns and on the ancestral gain and loss events, or solely on the phyletic patterns. (c) In this way, we inferred classification models for all available phenotypes.

Sheet1	Supplementary table S1 Detailed information on the 67 phenotypes used in this study

henotype _(a)	Test type _(b)	Test description $_{\rm (c)}$	GIDEON I+ _(e) G	IDEON I-(d) tot	DEON I GIDE	ON II+ ^(h) GIDEC	N II- _(g) GIDE total _{(i}	ON II Berge	⊧y's+ _(k) Berge	'y's- _(i) Berg	ey's ^{m)}
cetate ilization	Gener al test	A variety of commercial kits are satisfactory. Includes late reactions for gram-positive and non-fermentative gram-	27	6	46	വ	7	٢	٢	9	17
erobe	Basic test	Organisms which grow only in the presence of air.	64	167	231	~	35	42	25	0	25
.Ikaline hosphatase	Gener al test	Most kits utilize p- nitrophenyl phosphate as substrate. Insure thorough washing if phosphate buffers are emploved	30	с	45	۲	ო	6	12	21	33
naerobe	Basic test	Organisms which do not grow in the presence of oxvoen	46	169	215	14	27	41	16	11	27
rginine ihydrolase	Gener al test	For most organisms, Moeller medium interpreted with control after 18 hours (or longer for gram-positive and non-fermentative gram-	46	88	134	ω	15	23	35	22	06
acillus or occobacillu	Basic test	Bacilli predominate	160	48	208	28	12	40	0	0	0
teta emolysis	Gener al test	Sheep blood	18	134	152	4	17	21	4	5	თ

	35	വ	0	0	0	0
	6	ო	0	0	0	0
	9	N	0	0	0	0
	27	10	40	41	40	4
	6	~	28	39	30	5
	.	ო	12	7	10	ო
Sheet1	16	75	214	216	213	б б
	8	45	170	204	185	22
	35	30	44	2	58	œ
	Gener Simmons citrate medium al test using a light inoculum (avoid stabbing the agar). Includes late reactions for gram- positive and non- fermentative gram- negative rods	Gener Standard or commercial al test slide plasma tests acceptable; tube tests may help differentiate Staphylococcus aureus from other taxa	Basic Cocci predominate. test	Basic The predominant forms test are cocci, in clusters or irregular groups.	Basic The predominant forms test are cocci in chains or pairs.	Gener Standard disk diffusion al test technique; recommended media and disk potency may vary for specific taxa
	Citrate	Coagulase production	Coccus	Coccus - clusters or groups predominate	Coccus - pairs or chains predominate	Colistin- Polymyxin susceptible

	107	06	2
	23	50	0
	49	2	0
	<i>б</i>	20	1
	6	5	J
	5	7	7
Sheet1	181	145	8
	128	09	71
	23	8 S	15
	Commercial phenol red techniques usually acceptable; Andrades or i more sensitive indicators n necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	Commercial phenol red techniques usually acceptable; Andrades or i more sensitive indicators n necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	<pre>r Standard commercial t agar tests; Presumpto Plates useful for anaerobes</pre>
	Ferm entati on or acidifi cation	Ferm entati on or acidifi cation	Gener al test
	D-Mannitol	D-Mannose	DNase

	78	109	80	0
	60	22	31	0
	8	33	49	0
	29	32	50	42
	24	5	5	23
	Ω	6	1	19
Sheet1	145	162	145	227
	127	1	6	130
	0	4	25	97
	Commercial phenol red i techniques usually acceptable; Andrades or i more sensitive indicators n necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	Commercial phenol red i techniques usually acceptable; Andrades or i more sensitive indicators n necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	It For most organisms, t Moeller medium interpreted with control after 18 hours (or longer for gram-positive and non-fermentative gram- negative rods)	 Organisms which grow both in the presence and absence of air.
	Ferm entati on or acidifi cation	Ferm entati on or acidifi cation	Gene al tesi	Basic test
	D-Sorbitol	D-Xylose	Esculin hydrolysis	Facultative

	10	61	0	0
	Q		0	0
	4	30	0	o
	18	22	35	6
	15	6	ດ	38
	ю	ო	26	N
Sheet1	128	141	209	214
	106	1	28	192
	22	30	131	5
	Gener Gas produced from D- al test glucose; Durham tube or gas bubbles noted in commercial kits	Gener Commercial or self al test prepared (or X-ray film) tests interpreted after 24- 48 hours against control at lowered temperature; Presumpto Plates useful for anaerobes	Basic Commercial phenol red test techniques are generally acceptable; Andrades or more sensitive indicators more sensitive indicators necessary for organisms producing more subtle pH changes; specific acidification techniques applied for Neisseria; Presumpto Plates useful for anaerobes	Basic Hugh and Leifson test method; in most cases 'positive' indicates nonfermentative organism which oxidizes glucose
	Gas from glucose	Gelatin hydrolysis	Glucose fermenter	Glucose oxidizer

	31 56	0	8 22	4	0	10 28	0	0
	28	0	14	0	0	0	0	0
	22	41	41	12	15	7	38	42
	. 4	24	18	Ν	თ	0		с
	ω	17	23	10	Q	р	2	39
Sheet1	110	227	227	20	96	24	220	229
	80	110	127	27	67	4	165	18
	24	117	100	43	29	10	55	211
	Commercial phenol red techniques usually acceptable; Andrades or more sensitive indicators necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	Gram-negative forms predominate	Gram-positive forms predominate	Media vary according to the species tested	Media vary according to the species tested	Commercial kits based on 1:13,000 KCN are suggested	Visible growth within 48 hours; or within 7 days for gram positive and non-fermentative gram negative rods	Visible growth on sheep blood agar within 48
	Ferm entati on or acidifi cation	Basic test	Basic test	2 Gener al test	Gener al test	Gener al test	Basic test	Basic test
	Glycerol	Gram negative	Gram positive	Growth at 4 degrees C	Growth in 6.5% NaCl	Growth in KCN	Growth on MacConkey agar	Growth on ordinary

	Ν	65	103	
	Ν	4	55	
Sheet1	0	6	4 0	
	20	20	28	
	9	24	7	
	4	N	2	
	129	165	16 5	
	16	145	104	
	د	5	6	
	Gener TSI for al test enterobacteriaceae and most other species; Presumpto Plates useful for anaerobes. Includes late appearance of hydrogen sulfide for gram-positive and non- fermentative gram- negative rods	Gener A spot test is acceptable al test for most organisms; overnight testing with a paper strip is helpful in confirming negative reactions; Presumpto Plates useful for anaerobes	Ferm Commercial phenol red entati techniques usually on or acceptable; Andrades or acidifi more sensitive indicators cation necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	
	Hydrogen sulfide	Indole	Lactose	
	108	14	23	26
--------	---	--	---	---
	8	თ	43	20
	24	£	6	Q
		15	26	თ
	23	13	24	വ
	ω	7	р	4
Sheet1	158	96	129	74
	1 4	76	109	8
	4	20	20	.
	 Commercial phenol red techniques usually acceptable; Andrades or more sensitive indicators necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram 	er Standard egg yolk agar it test; Presumpto Plates useful for anaerobes	 Commercial phenol red techniques usually acceptable; Andrades or acceptable; Andrades or more sensitive indicators n necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non-fermentative gram negative rods 	er For most organisms, it Moeller medium interpreted with control after 18 hours (or longer for gram-positive and non-fermentative gram- negative rods)
	e Ferm entati on or acidifi catior	Gene al test	Ferm entati on or acidifi catior	Gene a al tes:
	L-Arabinos	Lipase	L- Rhamnose	Lysine decarboxyl: se

	Malonate Gener Standard test based c al test maintenance of alkalin pH (bromthymol blue) the presence of gluco and malonate; commercial kits are acceptable	Maltose Ferm Commercial phenol re entati techniques usually on or acceptable; Andrades acidifi more sensitive indicat cation necessary for organisi with more subtle pH changes. Includes latt reactions for gram positive & non- fermentative gram	Melibiose Ferm Commercial phenol re entati techniques usually on or acceptable; Andrades acidifi more sensitive indicat cation necessary for organisi with more subtle pH changes. Includes latte reactions for gram positive & non- fermentative gram	Methyl red Gener Commercial or self- al test prepared media are
	on ine Sse	ed tors sms	ed tors sms	
	5	105	25	23
	59	99	8	29
Sheet1	40	171	113	52
	~	6	ຽ	N
	4	σ	7	5
	ى ا	27	27	7
	0	88	8	£
	0	32	4 5	7
	0	118	03	12

	92	,	32	74	0
	32	ω	29	43	0
	60	ო	ო	31	0
	37	ω	5	27	12
	26	Q	9	19	5
	5	7	ى N	ω	~
Sheet1	214	34	117	167	06
	144	23	107	92	76
	70	.	0	75	4 4
	er Standard hanging drop st on fresh broth isolates for most purposes; perform at 22 to 25 degrees C if Listeria suspected	er A variety of commercial st kits are satisfactory. Includes late reactions for gram-positive and non-fermentative gram- negative rods	n Commercial phenol red ti techniques usually r acceptable; Andrades or fif more sensitive indicators on necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	er Commercial and self- st prepared media are acceptable; alternative techniques used for mvcobacteria	er Standard zinc dust test st applied to 'nitrate- neorative' organisms
	Gene al tes	Gene al tes	ol Ferm entation on or acidif catior catior	Gene al tes	as Gene al tes
	Motile	Mucate utilization	myo-Inosit	Nitrate to nitrite	Nitrite to g

				Sheet1						
ONPG (beta galactosidas e)	Gener Commercial kits are al test generally satisfactory; suggest a heavy inoculum in buffered medium; yellow pigmented organisms may not be suitable for	45	70	15	ω	σ	17	4	5	15
Ornithine decarboxyla se	Gener For most organisms, al test Moeller medium interpreted with control after 18 hours (or longer for gram-positive and non-fermentative gram-	1	67	8	N	ى ا	~	13	53	36
Oxidase	negative roas) Basic Paper strip test from test appropriate media	56	130	186	Q	24	29	19	19	38
Pyrrolidonyl- beta- naphthylami de	Gener L-pyrrolidonyl-beta- Gener L-pyrrolidonyl-beta- al test naphthylamide - PYR (or pyrrolidonyl arylamidase - PYRA) - reagents commercially available; read color within 10 seconds (2 minutes for Carr-Scarborough	53	20	6	ى ا	6	5	0	0	0
	reagent)									

	0 8	52	Q	82
	00	24	7	4
	53	28	ო	38
	27	21	42	20
	17	6	40	ງນ
	6	σ	N	ى ا
Sheet1	137	134	234	92
	107	8	216	65
	90 S	4	18	27
	Ferm Commercial phenol red entati techniques usually on or acceptable; Andrades or acidifi more sensitive indicators cation necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	Ferm Commercial phenol red entati techniques usually on or acceptable; Andrades or acidifi more sensitive indicators cation necessary for organisms with more subtle pH changes. Includes late reactions for gram positive & non- fermentative gram negative rods	Basic Note that spores may test only appear in vitro, and may not be seen in clinical material	Gener Standard starch al test hydrolysis or Mueller- Hilton agar tests developed with iodine solutions; Presumpto Plates useful for anaerobes
	Raffinose	Salicin	Spore formation	Starch hydrolysis

	71	29	ى م	
	20	19	4	
	υ	10	~	
	29	16	29	
	8	œ	28	
	~	∞	-	
Sheet1	155	90	174	ing to GIDEON IDEON
	127	89	161	et lab accord cording to G set set I I dataset set set set l I dataset
	58	28	د	tition in the we shenotype ac EON I datas DEON I datas the GIDEON EON II datas DEON II datas DEON II datas the GIDEON
	Gener Christensen agar testing al test for most taxa; other techniques for mycobacteria, ureaplasma and other organisms as recommended. Includes late reactions for gram- positive and non- fermentative gram- negative rods	Gener Commercial or self- al test prepared media are generally acceptable; the test is most reliable when performed on cultures no older than three davs	Gener Yellow pigment noted on al test sheep blood or other primary isolation agar. Includes late appearance of pigment for gram-positive and non-fermentative gram- negative rods	V phenotypes test required for the phenotype determina s on wet lab test for determination of the p of phenotype-positive bacteria in the GID of phenotype-negative bacteria in the GID mber of bacteria with phenotype labels in of phenotype-negative bacteria in the GID of phenotype-negative bacteria in the GID
	Urea hydrolysis	Voges Proskauer	Yellow pigment	 (a) GIDEON (b) Type of (c) Remark: (d) Number (d) Number (e) Number (f) Total nur (g) Number (h) Number

Sheet1

(j) Number of phenotype-positive bacteria in the Bergey dataset
 (k) Number of phenotype-negative bacteria in the Bergey dataset
 (l) Total number of bacteria with phenotype labels in the Bergey dataset

Phenotype _(a)	phypat+PGL _(b) phy	/pat _(c)
Spore formation	1	0.887
Methyl red	1	0.905
Gram positive	966.0	1
Gram negative	0.991	0.987
Growth on MacConkey agar	0.988	0.97
Anaerobe	0.986	0.959
Catalase	0.984	0.985
Aerobe	0.972	0.98
Coccus - pairs or chains predominate	0.903	0.974
Coagulase production	0.972	0.944
Glucose fermenter	0.966	0.897
Glucose oxidizer	0.962	0.949
Oxidase	0.962	0.937
Motile	0.958	0.912
Nitrate to nitrite	0.954	0.926
Cellobiose	0.946	0.877
Growth in 6.5% NaCl	0.943	0.862
Bacillus or coccobacillus	0.939	0.811
Coccus	0.879	0.931
L-Arabinose	0.904	0.923
Sucrose	0.922	0.825
Urea hydrolysis	0.889	0.921
Esculin hydrolysis	0.915	0.846
D-Xylose	0.905	0.857
Citrate	0.904	0.765
Gelatin hydrolysis	0.902	0.817
Glycerol	0.864	0.769
Trehalose	0.899	0.825
D-Mannitol	0.828	0.897
Facultative	0.862	0.896

Supplementary Table S2 Macro-accuracy of the phypat and phypat+PGL classifiers obtained in cross-validation experiments for the 67 GIDEON phenotypes

ONPG (beta galactosidase)	0.883	0.857
Nitrite to gas	0.879	0.84
D-Sorbitol	0.842	0.877
Voges Proskauer	0.876	0.866
Acetate utilization	0.75	0.876
Malonate	0.875	0.806
Melibiose	0.875	0.769
Raffinose	0.873	0.749
Coccus - clusters or groups predominate	0.816	0.87
Capnophilic	0.747	0.869
Lipase	0.867	0.824
D-Mannose	0.865	0.866
Salicin	0.861	0.789
Colistin-Polymyxin susceptible	0.861	0.844
Beta hemolysis	0.855	0.765
Lactose	0.854	0.847
Maltose	0.854	0.794
Casein hydrolysis	0.814	0.846
L-Rhamnose	0.781	0.84
Growth on ordinary blood agar	0.833	0.691
Ornithine decarboxylase	0.83	0.755
Pyrrolidonyl-beta-naphthylamide	0.829	0.767
Growth at 42 degrees C	0.613	0.801
Gas from glucose	0.788	0.794
Starch hydrolysis	0.793	0.793
Growth in KCN	0.793	0.679
Indole	0.728	0.792
Lysine decarboxylase	0.6	0.737
Mucate utilization	0.775	0.662
Arginine dihydrolase	0.743	0.766
Bile-susceptible	0.761	0.681
Alkaline phosphatase	0.633	0.75
Hydrogen sulfide	0.734	0.559

Tartrate utilization	0.694	0.328
Yellow pigment (0.688	0.613
myo-Inositol	0.68	0.639
DNase ().658	0.677
(a) Phenotypes sorted by the maximal macro-accuracy		
determined from a 10-fold nested cross-validation fron	n 234 bacteria	

determined from a 10-1010 nested cross-validation from 234 bacteris described in the Global Infectious Disease and Epidemiology Online Network

(b) Macro accuracy for the phypat+PGL classifier(c) Macro accuracy for the phypat classifier

links to the National Center for Biotechnology Information (NCBI)	databases		
Strain _(a)	Species _(b)	Bioproject NC id _{/c}	BI taxonomy
			09744
	ACITOTEPIASITIA TAIUTAWI	BCZBI	441/00
Achromobacter xylosoxidans A8	Achromobacter xylosoxidans	762376	59899
Acidaminococcus fermentans DSM 20731	Acidaminococcus fermentans	591001	43471
Acidaminococcus intestini RyC-MR95	Acidaminococcus intestini	568816	74445
Acidovorax avenae subsp. avenae ATCC 19860	Acidovorax avenae	643561	42497
Acinetobacter baumannii 1656-2	Acinetobacter baumannii	400667	58731
Acinetobacter baumannii AB0057	Acinetobacter baumannii	405416	58765
Acinetobacter baumannii AB307-0294	Acinetobacter baumannii	480119	59083
Acinetobacter baumannii ACICU	Acinetobacter baumannii	497978	158685
Acinetobacter baumannii ATCC 17978	Acinetobacter baumannii	509170	61601
Acinetobacter baumannii AYE	Acinetobacter baumannii	509173	61637
Acinetobacter baumannii MDR-TJ	Acinetobacter baumannii	557600	59271
Acinetobacter baumannii MDR-ZJ06	Acinetobacter baumannii	696749	158677
Acinetobacter baumannii SDF	Acinetobacter baumannii	889738	162739
Acinetobacter baumannii TCDC-AB0715	Acinetobacter baumannii	980514	158679
Acinetobacter calcoaceticus PHEA-2	Acinetobacter calcoaceticus	871585	83123
Aerococcus urinae ACS-120-V-Col10a	Aerococcus urinae	866775	64757
Aeromonas hydrophila subsp. hydrophila ATCC 7966	Aeromonas hydrophila	380703	58617
Aeromonas salmonicida subsp. salmonicida A449	Aeromonas salmonicida	382245	58631
Aggregatibacter actinomycetemcomitans ANH9381	Aggregatibacter actinomycetemcomitans	694569	46989
Aggregatibacter actinomycetemcomitans D7S-1	Aggregatibacter actinomycetemcomitans	754507	80743
Aggregatibacter aphrophilus NJ8700	Aggregatibacter aphrophilus	634176	59407
Anaerococcus prevotii DSM 20548	Anaerococcus prevotii	525919	59219
Arcanobacterium haemolyticum DSM 20595	Arcanobacterium haemolyticum	644284	49489
Arcobacter butzleri ED-1	Arcobacter butzleri	367737	58557
Arcobacter butzleri RM4018	Arcobacter butzleri	944546	158699
Arthrobacter aurescens TC1	Arthrobacter aurescens	290340	58109
Atopobium parvulum DSM 20469	Atopobium parvulum	521095	59195
Bacillus anthracis str. A0248	Bacillus anthracis	198094	57909
Bacillus anthracis str. Ames	Bacillus anthracis	260799	58091
Bacillus anthracis str. 'Ames Ancestor'	Bacillus anthracis	261594	58083
Bacillus anthracis str. CDC 684	Bacillus anthracis	568206	59303

Supplementary Table S3 Mapping of bacterial strains to 234 species described in the Global Infectious Disease and Epidemiology Online Network with

Bacilius antinracis str. H9401	ים
Dacilius antinacis su. Stenne Docilius servius 0200402	
Dacillus cereus U3DD 102 Dacillus cereus A4187	
Bacilius cereus AH820	ממ
Bacilius cereus ATCC 10967 Bacilius cereus ATCC 14570	ממ
Bacillus cereus B4264	ממ
Bacillus cereus biovar anthracis str. Cl	
Bacillus cereus E33L	В
Bacillus cereus F837/76	В
Bacillus cereus G9842	В
Bacillus cereus NC7401	В
Bacillus cereus Q1	В
Bacillus coagulans 2-6	В
Bacillus coagulans 36D1	В
Bacillus licheniformis DSM 13 = ATCC 14580	В
Bacillus megaterium DSM 319	В
Bacillus megaterium WSH-002	Ш
Bacillus pumilus SAFR-032	Ш
Bacillus subtilis BSn5	В
Bacillus subtilis subsp. spizizenii str. W23	В
Bacillus subtilis subsp. spizizenii TU-B-10	В
Bacillus subtilis subsp. subtilis str. 168	В
Bacillus subtilis subsp. subtilis str. RO-NN-1	В
Bacillus thuringiensis BMB171	В
Bacillus thuringiensis serovar chinensis CT-43	В
Bacillus thuringiensis serovar finitimus YBT-020	В
Bacillus thuringiensis serovar konkukian str. 97-27	Ш
Bacillus thuringiensis str. Al Hakam	Ш
Bacteroides fragilis 638R	В
Bacteroides fragilis NCTC 9343	В
Bacteroides fragilis YCH46	В
Bacteroides thetaiotaomicron VPI-5482	Ш
Bacteroides vulgatus ATCC 8482	В
Bartonella bacilliformis KC583	Ξ.
Bartonella clarridgeiae 73	m

Bacillus anthracis	592021
Bacillus anthracis	768494
Bacillus cereus	222523
Bacillus cereus	226900
Bacillus cereus	288681
Bacillus cereus	334406
Bacillus cereus	347495
Bacillus cereus	361100
Bacillus cereus	405531
Bacillus cereus	405532
Bacillus cereus	405534
Bacillus cereus	405535
Bacillus cereus	572264
Bacillus cereus	637380
Bacillus coagulans	345219
Bacillus coagulans	941639
Bacillus licheniformis	279010
Bacillus megaterium	1006007
Bacillus megaterium	592022
Bacillus pumilus	315750
Bacillus subtilis	1052585
Bacillus subtilis	1052588
Bacillus subtilis	224308
Bacillus subtilis	655816
Bacillus subtilis	936156
Bacillus thuringiensis	281309
Bacillus thuringiensis	412694
Bacillus thuringiensis	541229
Bacillus thuringiensis	714359
Bacillus thuringiensis	930170
Bacteroides fragilis	272559
Bacteroides fragilis	295405
Bacteroides fragilis	862962
Bacteroides thetaiotaomicron	226186
Bacteroides vulgatus	435590
Bartonella bacilliformis	360095
Bartonella clarridgeiae	696125

Bartonella drahamii ac∕laun	Bartonella orahamii	RZAFOA	ROADE
Bartonella henselae str. H∩iiston-1	Bartonella henselae	283166	57745
Bartonella quintana str. Toulouse	Bartonella guintana	283165	57635
Bifidobacterium adolescentis ATCC 15703	Bifidobacterium adolescentis	367928	58559
Bifidobacterium bifidum BGN4	Bifidobacterium bifidum	484020	167988
Bifidobacterium bifidum PRL2010	Bifidobacterium bifidum	702459	59883
Bifidobacterium bifidum S17	Bifidobacterium bifidum	883062	59545
Bifidobacterium breve ACS-071-V-Sch8b	Bifidobacterium breve	866777	158863
Bifidobacterium dentium Bd1	Bifidobacterium dentium	401473	43091
Bifidobacterium longum DJO10A	Bifidobacterium longum	1035817	158861
Bifidobacterium longum NCC2705	Bifidobacterium longum	205913	58833
Bifidobacterium longum subsp. infantis 157F	Bifidobacterium longum	206672	57939
Bifidobacterium longum subsp. infantis ATCC 15697 = JCM 1222	Bifidobacterium longum	391904	159865
Bifidobacterium longum subsp. longum BBMN68	Bifidobacterium longum	565040	62693
Bifidobacterium longum subsp. longum JCM 1217	Bifidobacterium longum	565042	62695
Bifidobacterium longum subsp. longum JDM301	Bifidobacterium longum	759350	49131
Bifidobacterium longum subsp. longum KACC 91563	Bifidobacterium longum	890402	60163
Bordetella avium 197N	Bordetella avium	360910	61563
Bordetella bronchiseptica RB50	Bordetella bronchiseptica	257310	57613
Bordetella parapertussis 12822	Bordetella parapertussis	257311	57615
Bordetella pertussis CS	Bordetella pertussis	1017264	158859
Bordetella pertussis Tohama I	Bordetella pertussis	257313	57617
Bordetella petrii DSM 12804	Bordetella petrii	340100	61631
Brachyspira pilosicoli 95/1000	Brachyspira pilosicoli	759914	50609
Brevibacillus brevis NBRC 100599	Brevibacillus brevis	358681	59175
Brucella abortus A13334	Brucella abortus	1104320	83615
Brucella abortus bv. 1 str. 9-941	Brucella abortus	262698	58019
Brucella abortus S19	Brucella abortus	430066	58873
Brucella canis ATCC 23365	Brucella canis	1104321	83613
Brucella canis HSK A52141	Brucella canis	483179	59009
Brucella melitensis ATCC 23457	Brucella melitensis	1029825	158853
Brucella melitensis biovar Abortus 2308	Brucella melitensis	224914	57735
Brucella melitensis bv. 1 str. 16M	Brucella melitensis	359391	62937
Brucella melitensis M28	Brucella melitensis	546272	59241
Brucella melitensis M5-90	Brucella melitensis	703352	158855
Brucella melitensis NI	Brucella melitensis	941967	158857
Brucella suis 1330	Brucella suis	1112912	83617

Brucella suis ATCC 23445
Brucella suis VBI22
Burkholderia ambifaria AMMD
Burkholderia ambifaria MC40-6
Burkholderia cenocepacia AU 1054
Burkholderia cenocepacia HI2424
Burkholderia cenocepacia J2315
Burkholderia cenocepacia MC0-3
Burkholderia gladioli BSR3
Burkholderia mallei A I CC 23344
Burkholderia mallei NCTC 10229 Burkholderia molloi NCTC 10247
Burkholderia mallei SAVP1
Burkholderia multivorans ATCC 17616
Burkholderia pseudomallei 1026b
Burkholderia pseudomallei 1106a
Burkholderia pseudomallei 1710b
Burkholderia pseudomallei 668
Burkholderia pseudomallei K96243
Burkholderia thailandensis E264
Burkholderia vietnamiensis G4
Campylobacter concisus 13826
Campylobacter curvus 525.92
Campylobacter hominis ATCC BAA-381
Campylobacter lari RM2100
Capnocytophaga canimorsus Cc5
Capnocytophaga ochracea DSM 7271
Chromobacterium violaceum ATCC 12472
Clostridium beijerinckii NCIMB 8052
Clostridium botulinum A2 str. Kyoto
Clostridium botulinum A3 str. Loch Maree
Clostrialum botulinum A str. A I CC 1939/
Clostridium botulinum A str. A I CC 3502
Clostridium botulinum A str. Hall
Clostridium botulinum B1 str. Okra

204722 470137	339670	398577	216591	331271	331272	406425	999541	320388	320389	412022	395019	272560	320372	320373	357348	884204	271848	269482	360104	360105	360107	306263	860228	521097	243365	290338	637910	290402	413999	441770	441771	441772	498213	498214
			acia	acia	acia	acia					INS	nallei	nallei	nallei	nallei	nallei	ensis	ensis	SU		<u>s</u>		morsus	acea	aceum									

59871

Brucella suis

Burkholderia ambifaria Burkholderia ambifaria Burkholderia cenocep Burkholderia multivora Burkholderia pseudom Burkholderia pseudom Burkholderia pseudom Burkholderia pseudom Burkholderia pseudon Burkholderia thailande Campylobacter concis Campylobacter curvus Campylobacter homin Capnocytophaga cani Clostridium beijerincki Clostridium botulinum Clostridium botulinum Clostridium botulinum Clostridium botulinum Clostridium botulinum Burkholderia cenocep Burkholderia cenocep Burkholderia cenocep Burkholderia vietnami Capnocytophaga ochr Chromobacterium viol Citrobacter rodentium Clostridium botulinum Burkholderia gladioli Burkholderia mallei Burkholderia mallei Burkholderia mallei Burkholderia mallei Campylobacter lari Citrobacter koseri Brucella suis

Clostridium botulinum Ba4 str. 657
Clostriatum botulinum BK1019925 Clostridium botulinum B str. Eklund 17B
Clostridium botulinum E3 str. Alaska E43
Clostridium botulinum F str. 230613
Clostridium botulinum F str. Langeland
Clostridium difficile 630
Clostridium difficile BI1
Clostridium difficile CD196
Clostridium difficile R20291 Clostridium perfringens ATCC 13124
Clostridium perfringens SM101
Clostridium perfringens str. 13
Corynebacterium dibhtheriae 241
Corynebacterium diphtheriae 31A
Corynebacterium diphtheriae BH8
Corynebacterium diphtheriae C7 (beta)
Corynebacterium diphtheriae CDCE 8392
Corynebacterium diphtheriae HC01
Corynebacterium diphtheriae HC02
Corynebacterium diphtheriae HC03
Corynebacterium diphtheriae HC04
Corynebacterium diphtheriae INCA 402
Corynebacterium diphtheriae NCI C 13129
Converter and apprendent wo
Corvnehacterium initialiae v.A01 Corvnehacterium initialiam K411
Corynebacterium kroppenstedtii DSM 44385
Corynebacterium pseudotuberculosis 1002
Corynebacterium pseudotuberculosis 1/06-A
Corynebacterium pseudotuberculosis 258
Corynebacterium pseudotuberculosis 267
Corynebacterium pseudotuberculosis 31

Clostridium botulinum	508765	59159
Clostridium botulinum	508767	59157
Clostridium botulinum	515621	59173
Clostridium botulinum	536232	59229
Clostridium botulinum	758678	159513
Clostridium botulinum	929506	66203
Clostridium botulinum	941968	162091
Clostridium difficile	272563	57679
Clostridium difficile	645462	41017
Clostridium difficile	645463	40921
Clostridium difficile	699034	158363
Clostridium perfringens	195102	57681
Clostridium perfringens	195103	57901
Clostridium perfringens	289380	58117
Clostridium tetani	212717	57683
Comamonas testosteroni	688245	62961
Corynebacterium aurimucosum	548476	59409
Corynebacterium diphtheriae	257309	57691
Corynebacterium diphtheriae	698962	84309
Corynebacterium diphtheriae	698963	84313
Corynebacterium diphtheriae	698964	84303
Corynebacterium diphtheriae	698965	84295
Corynebacterium diphtheriae	698966	83607
Corynebacterium diphtheriae	698967	84297
Corynebacterium diphtheriae	698968	84317
Corynebacterium diphtheriae	698969	84299
Corynebacterium diphtheriae	698970	84301
Corynebacterium diphtheriae	698971	84305
Corynebacterium diphtheriae	698972	83605
Corynebacterium diphtheriae	698973	84311
Corynebacterium jeikeium	306537	58399
Corynebacterium kroppenstedtii	645127	59411
Corynebacterium pseudotuberculosis	1074485	89381
Corynebacterium pseudotuberculosis	1087451	162167
Corynebacterium pseudotuberculosis	1087452	83609
Corynebacterium pseudotuberculosis	1087453	159669
Corynebacterium pseudotuberculosis	1087454	159665

Corvneharterium nseudotuherrulosis 316	Convoehanterium nseudotuhernulosis	1089446	162175
Corynebacterium pseudotuberculosis 3/99-5	Corynebacterium pseudotuberculosis	1117942	157909
Corynebacterium pseudotuberculosis 42/02-A	Corynebacterium pseudotuberculosis	1161911	168258
Corynebacterium pseudotuberculosis C231	Corynebacterium pseudotuberculosis	1168865	167260
Corynebacterium pseudotuberculosis CIP 52.97	Corynebacterium pseudotuberculosis	679896	159677
Corynebacterium pseudotuberculosis Cp162	Corynebacterium pseudotuberculosis	681645	159675
Corynebacterium pseudotuberculosis FRC41	Corynebacterium pseudotuberculosis	765874	50585
Corynebacterium pseudotuberculosis 119	Corynebacterium pseudotuberculosis	889513	159673
Corynebacterium pseudotuberculosis P54B96	Corynebacterium pseudotuberculosis	935298	159671
Corynebacterium pseudotuberculosis PAT10	Corynebacterium pseudotuberculosis	935697	159667
Corynebacterium resistens DSM 45100	Corynebacterium resistens	662755	50555
Corynebacterium ulcerans 0102	Corynebacterium ulcerans	945711	159659
Corynebacterium ulcerans 809	Corynebacterium ulcerans	945712	68291
Corynebacterium ulcerans BR-AD22	Corynebacterium ulcerans	996634	169879
Corynebacterium urealyticum DSM 7109	Corynebacterium urealyticum	504474	61639
Cronobacter sakazakii ATCC BAA-894	Cronobacter sakazakii	1138308	167045
Cronobacter sakazakii ES15	Cronobacter sakazakii	290339	58145
Cronobacter turicensis z3032	Cronobacter turicensis	693216	40821
Cryptobacterium curtum DSM 15641	Cryptobacterium curtum	469378	59041
Cupriavidus metallidurans CH34	Cupriavidus metallidurans	266264	57815
Desulfovibrio desulfuricans ND132	Desulfovibrio desulfuricans	525146	59213
Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774	Desulfovibrio desulfuricans	641491	63159
Desulfovibrio vulgaris DP4	Desulfovibrio vulgaris	391774	58679
Desulfovibrio vulgaris RCH1	Desulfovibrio vulgaris	573059	161961
Desulfovibrio vulgaris str. Hildenborough	Desulfovibrio vulgaris	882	57645
Desulfovibrio vulgaris str. 'Miyazaki F'	Desulfovibrio vulgaris	883	59089
Dichelobacter nodosus VCS1703A	Dichelobacter nodosus	246195	57643
Edwardsiella tarda EIB202	Edwardsiella tarda	498217	41819
Edwardsiella tarda FL6-60	Edwardsiella tarda	718251	159657
Eggerthella lenta DSM 2243	Eggerthella lenta	479437	59079
Enterobacter aerogenes KCTC 2190	Enterobacter aerogenes	1028307	68103
Enterobacter asburiae LF7a	Enterobacter asburiae	640513	72793
Enterococcus faecalis D32	Enterococcus faecalis	1206105	171261
Enterococcus faecalis OG1RF	Enterococcus faecalis	226185	57669
Enterococcus faecalis V583	Enterococcus faecalis	474186	54927
Enterococcus faecium Aus0004	Enterococcus faecium	1155766	87025
Enterococcus faecium DO	Enterococcus faecium	333849	55353

Enternmonus hirae ATCC 0700	Enterococcus hirae	768486	70619
Escherichia coli 042	Escherichia coli	1033813	162139
Escherichia coli 536	Escherichia coli	1048689	162153
Escherichia coli 55989	Escherichia coli	1072459	162115
Escherichia coli ABU 83972	Escherichia coli	155864	57831
Escherichia coli APEC 01	Escherichia coli	199310	57915
Escherichia coli ATCC 8739	Escherichia coli	216592	161985
Escherichia coli BL21(DE3)	Escherichia coli	316385	58979
Escherichia coli 'BL21-Gold(DE3)pLysS AG'	Escherichia coli	316401	161993
Escherichia coli B str. REL606	Escherichia coli	316407	161931
Escherichia coli BW2952	Escherichia coli	331111	58395
Escherichia coli CFT073	Escherichia coli	331112	58393
Escherichia coli DH1	Escherichia coli	362663	58531
Escherichia coli E24377A	Escherichia coli	364106	58541
Escherichia coli ED1a	Escherichia coli	386585	57781
Escherichia coli ETEC H10407	Escherichia coli	405955	58623
Escherichia coli HS	Escherichia coli	409438	59425
Escherichia coli IAI1	Escherichia coli	413997	58803
Escherichia coli IAI39	Escherichia coli	431946	161939
Escherichia coli IHE3034	Escherichia coli	439855	58919
Escherichia coli KO11FL	Escherichia coli	44450	59091
Escherichia coli LF82	Escherichia coli	469008	161947
Escherichia coli NA114	Escherichia coli	481805	58783
Escherichia coli O103:H2 str. 12009	Escherichia coli	511145	57779
Escherichia coli O111:H- str. 11128	Escherichia coli	536056	161951
Escherichia coli O127:H6 str. E2348/69	Escherichia coli	544404	59235
Escherichia coli O157:H7 str. EC4115	Escherichia coli	566546	162011
Escherichia coli O157:H7 str. EDL933	Escherichia coli	573235	41021
Escherichia coli O157:H7 str. Sakai	Escherichia coli	574521	59343
Escherichia coli O157:H7 str. TW14359	Escherichia coli	585034	59377
Escherichia coli O26:H11 str. 11368	Escherichia coli	585035	62979
Escherichia coli O55:H7 str. CB9615	Escherichia coli	585055	59383
Escherichia coli O55:H7 str. RM12579	Escherichia coli	585056	62981
Escherichia coli O7:K1 str. CE10	Escherichia coli	585057	59381
Escherichia coli O83:H1 str. NRG 857C	Escherichia coli	585395	41013
Escherichia coli P12b	Escherichia coli	585396	41023
Escherichia coli S88	Escherichia coli	585397	59379

Escherichia coli SE11	Escherichia coli	591946
Escherichia coli SE15	Escherichia coli	595495
Escherichia coli SMS-3-5	Escherichia coli	595496
Escherichia coli str. 'clone D i14'	Escherichia coli	655817
Escherichia coli str. 'clone D i2'	Escherichia coli	685038
Escherichia coli str. K-12 substr. DH10B	Escherichia coli	696406
Escherichia coli str. K-12 substr. MG1655	Escherichia coli	701177
Escherichia coli str. K-12 substr. W3110	Escherichia coli	714962
Escherichia coli UM146	Escherichia coli	741093
Escherichia coli UMN026	Escherichia coli	866768
Escherichia coli UMNK88	Escherichia coli	869729
Escherichia coli UTI89	Escherichia coli	885275
Escherichia coli W	Escherichia coli	885276
Escherichia coli Xuzhou21	Escherichia coli	910348
Escherichia fergusonii ATCC 35469	Escherichia fergusonii	585054
Eubacterium eligens ATCC 27750	Eubacterium eligens	515620
Eubacterium limosum KIST612	Eubacterium limosum	903814
Eubacterium rectale ATCC 33656	Eubacterium rectale	515619
Fibrobacter succinogenes subsp. succinogenes S85	Fibrobacter succinogenes	59374
Filifactor alocis ATCC 35896	Filifactor alocis	546269
Finegoldia magna ATCC 29328	Finegoldia magna	334413
Francisella philomiragia subsp. philomiragia ATCC 25017	Francisella philomiragia	484022
Francisella tularensis subsp. holarctica FTNF002-00	Francisella tularensis	1001534
Francisella tularensis subsp. holarctica LVS	Francisella tularensis	1001542
Francisella tularensis subsp. holarctica OSU18	Francisella tularensis	177416
Francisella tularensis subsp. mediasiatica FSC147	Francisella tularensis	376619
Francisella tularensis subsp. tularensis FSC198	Francisella tularensis	393011
Francisella tularensis subsp. tularensis NE061598	Francisella tularensis	393115
Francisella tularensis subsp. tularensis SCHU S4	Francisella tularensis	418136
Francisella tularensis subsp. tularensis TI0902	Francisella tularensis	441952
Francisella tularensis subsp. tularensis TIGB03	Francisella tularensis	458234
Francisella tularensis subsp. tularensis WY96-3418	Francisella tularensis	510831
Fusobacterium nucleatum subsp. nucleatum ATCC 25586	Fusobacterium nucleatum	190304
Gardnerella vaginalis 409-05	Gardnerella vaginalis	1009464
Gardnerella vaginalis ATCC 14019	Gardnerella vaginalis	525284
Gardnerella vaginalis HMP9231	Gardnerella vaginalis	553190
Gordonia bronchialis DSM 43247	Gordonia bronchialis	526226

Gordonia polyisoprenivorans VH2	Gordonia polyisoprenivorans	1112204
Haemophilus ducreyi 35000HP	Haemophilus ducreyi	233412
Haemophilus influenzae 10810	Haemophilus influenzae	262727
Haemophilus influenzae 86-028NP	Haemophilus influenzae	262728
Haemophilus influenzae F3031	Haemophilus influenzae	281310
Haemophilus influenzae F3047	Haemophilus influenzae	374930
Haemophilus influenzae PittEE	Haemophilus influenzae	374931
Haemophilus influenzae PittGG	Haemophilus influenzae	71421
Haemophilus influenzae R2846	Haemophilus influenzae	862964
Haemophilus influenzae R2866	Haemophilus influenzae	866630
Haemophilus influenzae Rd KW20	Haemophilus influenzae	935897
Haemophilus parainfluenzae T3T1	Haemophilus parainfluenzae	862965
Helicobacter bizzozeronii CIII-1	Helicobacter bizzozeronii	1002804
Helicobacter cinaedi PAGU611	Helicobacter cinaedi	1172562
Helicobacter felis ATCC 49179	Helicobacter felis	936155
Helicobacter pylori 2017	Helicobacter pylori	102608
Helicobacter pylori 2018	Helicobacter pylori	1055527
Helicobacter pylori 26695	Helicobacter pylori	1055528
Helicobacter pylori 35A	Helicobacter pylori	1055529
Helicobacter pylori 51	Helicobacter pylori	1055530
Helicobacter pylori 83	Helicobacter pylori	1127122
Helicobacter pylori 908	Helicobacter pylori	1163739
Helicobacter pylori B38	Helicobacter pylori	1163740
Helicobacter pylori B8	Helicobacter pylori	1163741
Helicobacter pylori Cuz20	Helicobacter pylori	1163742
Helicobacter pylori ELS37	Helicobacter pylori	1163743
Helicobacter pylori F16	Helicobacter pylori	290847
Helicobacter pylori F30	Helicobacter pylori	357544
Helicobacter pylori F32	Helicobacter pylori	512562
Helicobacter pylori F57	Helicobacter pylori	563041
Helicobacter pylori G27	Helicobacter pylori	570508
Helicobacter pylori Gambia94/24	Helicobacter pylori	585535
Helicobacter pylori HPAG1	Helicobacter pylori	585538
Helicobacter pylori HUP-B14	Helicobacter pylori	592205
Helicobacter pylori India7	Helicobacter pylori	637913
Helicobacter pylori J99	Helicobacter pylori	693745
Helicobacter pylori Lithuania75	Helicobacter pylori	765962

Helicobacter pylori P12
Helicobacter pylori PeCan18
Helicobacter pylori PeCan4
Helicobacter pylori Puno120
Helicobacter pylori Puno135
Helicobacter pylori Sat464
Helicobacter pylori Shi112
Helicobacter pylori Shi169
Helicobacter pylori Shi417
Helicobacter pylori Shi470
Helicobacter pylori SJM180
Helicobacter pylori SNT49
Helicobacter pylori SouthAfrica7
Helicobacter pylori v225d
Helicobacter pylori XZ274
Klebsiella oxytoca E718
Klebsiella oxytoca KCTC 1686
Klebsiella variicola At-22
Kocuria rhizophila DC2201
Kytococcus sedentarius DSM 20547
Lactobacillus acidophilus 30SC
Lactobacillus acidophilus NCFM
Lactobacillus brevis ATCC 367
Lactobacillus buchneri NRRL B-30929
Lactobacillus casei ATCC 334
Lactobacillus casei BD-II
Lactobacillus casei BL23
Lactobacillus casei LC2W
Lactobacillus casei str. Zhang
Lactobacillus crispatus ST1
Lactobacillus fermentum CECT 5716
Lactobacillus fermentum IFO 3956
Lactobacillus gasseri ATCC 33323
Lactobacillus johnsonii DPC 6026
Lactobacillus johnsonii F19785
Lactobacillus johnsonii NCC 533
Lactobacillus plantarum JDM1

Helicobacter pylori	765963
Helicobacter pylori	765964
Helicobacter pylori	794851
Helicobacter pylori	85962
Helicobacter pylori	85963
Helicobacter pylori	866344
Helicobacter pylori	866345
Helicobacter pylori	866346
Helicobacter pylori	869727
Helicobacter pylori	907237
Helicobacter pylori	907238
Helicobacter pylori	907239
Helicobacter pylori	907240
Helicobacter pylori	985080
Helicobacter pylori	985081
Klebsiella oxytoca	1006551
Klebsiella oxytoca	1191061
Klebsiella variicola	640131
Kocuria rhizophila	378753
Kytococcus sedentarius	478801
Lactobacillus acidophilus	272621
Lactobacillus acidophilus	891391
Lactobacillus brevis	387344
Lactobacillus buchneri	511437
Lactobacillus casei	321967
Lactobacillus casei	498216
Lactobacillus casei	543734
Lactobacillus casei	998820
Lactobacillus casei	999378
Lactobacillus crispatus	748671
Lactobacillus fermentum	334390
Lactobacillus fermentum	712938
Lactobacillus gasseri	324831
Lactobacillus johnsonii	257314
Lactobacillus johnsonii	633699
Lactobacillus johnsonii	909954
Lactobacillus plantarum	220668

	044047	59367
Lactobacillus plantarum	889932	53537
_actobacillus reuteri	491077	55357
_actobacillus reuteri	557433	58875
Lactobacillus reuteri	557436	58471
_actobacillus rhamnosus	1088720	162169
Lactobacillus rhamnosus	568703	161983
_actobacillus rhamnosus	568704	59315
_actobacillus salivarius	362948	58233
actobacillus salivarius	712961	162005
Lactococcus garvieae	420889	73413
Lactococcus garvieae	420890	161935
_aribacter hongkongensis	557598	59265
Legionella longbeachae	661367	46099
Legionella pneumophila	272624	57609
Legionella pneumophila	297245	58209
Legionella pneumophila	297246	58211
Legionella pneumophila	400673	58733
Legionella pneumophila	423212	48801
Legionella pneumophila	933093	86885
Leptospira interrogans	189518	57881
Leptospira interrogans	267671	58065
Leptospira interrogans	573825	161957
Leptotrichia buccalis	523794	59211
Leuconostoc citreum	349519	58481
Leuconostoc mesenteroides	1107880	84337
Leuconostoc mesenteroides	203120	57919
Listeria innocua	272626	61567
Listeria monocytogenes	1030009	162131
Listeria monocytogenes	1126011	162185
Listeria monocytogenes	169963	61583
Listeria monocytogenes	265669	57689
Listeria monocytogenes	393126	54441
Listeria monocytogenes	393127	54443
Listeria monocytogenes	393130	54459
Listeria monocytogenes	393133	54461
Listeria monocytogenes	552536	59203
	actobacillus plantarum actobacillus reuteri actobacillus reuteri actobacillus reuteri actobacillus reuteri actobacillus thamnosus actobacillus thamnosus actobacillus salivarius actobacillus salivarius actorostoc mesenteroides ateria monocytogenes steria monocytogenes steria monocytogenes steria monocytogenes steria monocytogenes steria monocytogenes steria monocytogenes steria monocytogenes	actobacillus reuteri actobacillus reuteri actobacillus reuteri actobacillus reuteri actobacillus reuteri actobacillus remmosus actobacillus rhamnosus actobacillus rhamnosus actobacillus rhamnosus actobacillus rhamnosus actobacillus rhamnosus actobacillus rhamnosus actobacillus rhamnosus actobacillus rhamnosus actobacillus salivarius actobacillus salivarius actobacillus salivarius actobacillus salivarius actobacillus salivarius actobacillus salivarius actobacillus salivarius actobacillus salivarius actobacillus rhamnosus actobacillus salivarius actobacillus salivarius actobacillus salivarius actobacillus salivarius actobacillus rhamnosus actobacillus rhamnosus actoronal regionella pneumophila agionella pneumophila agio

l isteria monocytorienes M7	l isteria monocytodenes	568819	59317
Listeria monocytogenes serotype 4b str. CLIP 80459	Listeria monocytogenes	637381	43727
Listeria monocytogenes serotype 4b str. F2365	Listeria monocytogenes	653938	43671
Listeria seeligeri serovar 1/2b str. SLCC3954	Listeria seeligeri	683837	46215
Listeria welshimeri serovar 6b str. SLCC5334	Listeria welshimeri	386043	61605
Lysinibacillus sphaericus C3-41	Lysinibacillus sphaericus	444177	58945
Micrococcus luteus NCTC 2665	Micrococcus luteus	465515	59033
Mobiluncus curtisii ATCC 43063	Mobiluncus curtisii	548479	49695
Moraxella catarrhalis RH4	Moraxella catarrhalis	749219	48809
Mycobacterium leprae Br4923	Mycobacterium leprae	272631	57697
Mycobacterium leprae TN	Mycobacterium leprae	561304	59293
Mycoplasma fermentans JER	Mycoplasma fermentans	637387	53543
Mycoplasma fermentans M64	Mycoplasma fermentans	943945	62099
Mycoplasma genitalium G37	Mycoplasma genitalium	243273	57707
Mycoplasma penetrans HF-2	Mycoplasma penetrans	272633	57729
Mycoplasma pneumoniae 309	Mycoplasma pneumoniae	1112856	85495
Mycoplasma pneumoniae FH	Mycoplasma pneumoniae	272634	57709
Mycoplasma pneumoniae M129	Mycoplasma pneumoniae	722438	162027
Neisseria gonorrhoeae FA 1090	Neisseria gonorrhoeae	242231	57611
Neisseria gonorrhoeae NCCP11945	Neisseria gonorrhoeae	521006	59191
Neisseria gonorrhoeae TCDC-NG08107	Neisseria gonorrhoeae	940296	161097
Neisseria lactamica 020-06	Neisseria lactamica	489653	60851
Neisseria meningitidis 053442	Neisseria meningitidis	122586	57817
Neisseria meningitidis 8013	Neisseria meningitidis	122587	57819
Neisseria meningitidis alpha14	Neisseria meningitidis	272831	57825
Neisseria meningitidis alpha710	Neisseria meningitidis	374833	58587
Neisseria meningitidis FAM18	Neisseria meningitidis	604162	161967
Neisseria meningitidis G2136	Neisseria meningitidis	630588	161971
Neisseria meningitidis H44/76	Neisseria meningitidis	662598	61649
Neisseria meningitidis M01-240149	Neisseria meningitidis	909420	162083
Neisseria meningitidis M01-240355	Neisseria meningitidis	935588	162075
Neisseria meningitidis M04-240196	Neisseria meningitidis	935589	162077
Neisseria meningitidis MC58	Neisseria meningitidis	935591	162079
Neisseria meningitidis NZ-05/33	Neisseria meningitidis	935593	162081
Neisseria meningitidis WUE 2594	Neisseria meningitidis	935599	162085
Neisseria meningitidis Z2491	Neisseria meningitidis	942513	162093
Nocardia farcinica IFM 10152	Nocardia farcinica	247156	58203

Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111	Nocardiopsis dassonvillei	446468
Ochrobactrum anthropi ATCC 49188	Ochrobactrum anthropi	439375
Odoribacter splanchnicus DSM 220712	Odoribacter splanchnicus	709991
Olsenella uli DSM 7084	Olsenella uli	633147
Paenibacillus polymyxa E681	Paenibacillus polymyxa	1052684
Paenibacillus polymyxa M1	Paenibacillus polymyxa	349520
Paenibacillus polymyxa SC2	Paenibacillus polymyxa	886882
Parabacteroides distasonis ATCC 8503	Parabacteroides distasonis	435591
Pasteurella multocida 36950	Pasteurella multocida	1075089
Pasteurella multocida subsp. multocida str. 3480	Pasteurella multocida	1132496
Pasteurella multocida subsp. multocida str. HN06	Pasteurella multocida	272843
Pasteurella multocida subsp. multocida str. Pm70	Pasteurella multocida	584721
Pediococcus pentosaceus ATCC 25745	Pediococcus pentosaceus	278197
Porphyromonas asaccharolytica DSM 20707	Porphyromonas asaccharolytica	879243
Porphyromonas gingivalis ATCC 33277	Porphyromonas gingivalis	1030843
Porphyromonas gingivalis TDC60	Porphyromonas gingivalis	242619
Porphyromonas gingivalis W83	Porphyromonas gingivalis	431947
Prevotella denticola F0289	Prevotella denticola	767031
Prevotella intermedia 17	Prevotella intermedia	246198
Prevotella melaninogenica ATCC 25845	Prevotella melaninogenica	553174
Propionibacterium acnes 266	Propionibacterium acnes	1031709
Propionibacterium acnes 6609	Propionibacterium acnes	1091045
Propionibacterium acnes ATCC 11828	Propionibacterium acnes	1114966
Propionibacterium acnes KPA171202	Propionibacterium acnes	1114967
Propionibacterium acnes SK137	Propionibacterium acnes	1114969
Propionibacterium acnes TypeIA2 P.acn17	Propionibacterium acnes	267747
Propionibacterium acnes TypeIA2 P.acn31	Propionibacterium acnes	553199
Propionibacterium acnes TypeIA2 P.acn33	Propionibacterium acnes	909952
Proteus mirabilis HI4320	Proteus mirabilis	529507
Providencia stuartii MRSN 2154	Providencia stuartii	1157951
Pseudomonas aeruginosa DK2	Pseudomonas aeruginosa	1089456
Pseudomonas aeruginosa LESB58	Pseudomonas aeruginosa	1093787
Pseudomonas aeruginosa M18	Pseudomonas aeruginosa	208963
Pseudomonas aeruginosa NCGM2.S1	Pseudomonas aeruginosa	208964
Pseudomonas aeruginosa PA7	Pseudomonas aeruginosa	381754
Pseudomonas aeruginosa PAO1	Pseudomonas aeruginosa	557722
Pseudomonas aeruginosa UCBPP-PA14	Pseudomonas aeruginosa	941193

Pseudomonas fluorescens A506	Pseudomonas fluorescens	1037911
Pseudomonas fluorescens F113	Pseudomonas fluorescens	1114970
Pseudomonas fluorescens Pf0-1	Pseudomonas fluorescens	205922
Pseudomonas fluorescens SBW25	Pseudomonas fluorescens	216595
Pseudomonas mendocina NK-01	Pseudomonas mendocina	1001585
Pseudomonas mendocina ymp	Pseudomonas mendocina	399739
Pseudomonas putida BIRD-1	Pseudomonas putida	1042876
Pseudomonas putida DOT-T1E	Pseudomonas putida	1196325
Pseudomonas putida F1	Pseudomonas putida	160488
Pseudomonas putida GB-1	Pseudomonas putida	231023
Pseudomonas putida KT2440	Pseudomonas putida	351746
Pseudomonas putida ND6	Pseudomonas putida	390235
Pseudomonas putida S16	Pseudomonas putida	76869
Pseudomonas putida W619	Pseudomonas putida	931281
Pseudomonas stutzeri A1501	Pseudomonas stutzeri	1123519
Pseudomonas stutzeri ATCC 17588 = LMG 11199	Pseudomonas stutzeri	1196835
Pseudomonas stutzeri CCUG 29243	Pseudomonas stutzeri	379731
Pseudomonas stutzeri DSM 10701	Pseudomonas stutzeri	96563
Pseudomonas stutzeri DSM 4166	Pseudomonas stutzeri	996285
Rahnella aquatilis CIP 78.65 = ATCC 33071	Rahnella aquatilis	1151116
Rahnella aquatilis HX2	Rahnella aquatilis	745277
Ralstonia pickettii 12D	Ralstonia pickettii	402626
Ralstonia pickettii 12J	Ralstonia pickettii	428406
Rhodococcus equi 103S	Rhodococcus equi	685727
Rhodococcus erythropolis PR4	Rhodococcus erythropolis	234621
Roseburia hominis A2-183	Roseburia hominis	585394
Rothia dentocariosa ATCC 17931	Rothia dentocariosa	762948
Rothia mucilaginosa DY-18	Rothia mucilaginosa	680646
Salmonella bongori NCTC 12419	Salmonella bongori	218493
Sebaldella termitidis ATCC 33386	Sebaldella termitidis	526218
Selenomonas sputigena ATCC 35185	Selenomonas sputigena	546271
Serratia plymuthica AS9	Serratia plymuthica	768492
Shigella boydii CDC 3083-94	Shigella boydii	300268
Shigella boydii Sb227	Shigella boydii	344609
Shigella dysenteriae Sd197	Shigella dysenteriae	300267
Shigella flexneri 2002017	Shigella flexneri	198214
Shigella flexneri 2a str. 2457T	Shigella flexneri	198215

 165185

 87037

 57591

 57591

 57593

 57593

 58735

 66299

 58723

 66299

 58723

 66299

 58723

 66299

 58735

 58735

 58859

 58735

 58859

 66171

 68749

 162049

 58855

 58735

 58859

 60171

 58859

 60171

 58853

 58853

 58853

 58853

 58853

 58853

 60171

 58853

 58853

 60171

 588515

 588515

 58215

 58215

 58215

 58213

 58213

 58213

 58213

 58213

 58213

 57991

 </tbr>
 </tbr>
 </tbr>
</t

Shigella flexneri 2a str. 301	Shigella flexneri
Shigella flexneri 5 str. 8401	Shigella flexneri
Shigella sonnei Ss046	Shigella sonnei
Slackia heliotrinireducens DSM 20476	Slackia heliotrinireducens
Staphylococcus aureus 04-02981	Staphylococcus aureus
Staphylococcus aureus RF122	Staphylococcus aureus
Staphylococcus aureus subsp. aureus 11819-97	Staphylococcus aureus
Staphylococcus aureus subsp. aureus 71193	Staphylococcus aureus
Staphylococcus aureus subsp. aureus COL	Staphylococcus aureus
Staphylococcus aureus subsp. aureus ECT-R 2	Staphylococcus aureus
Staphylococcus aureus subsp. aureus ED133	Staphylococcus aureus
Staphylococcus aureus subsp. aureus ED98	Staphylococcus aureus
Staphylococcus aureus subsp. aureus HO 5096 0412	Staphylococcus aureus
Staphylococcus aureus subsp. aureus JH1	Staphylococcus aureus
Staphylococcus aureus subsp. aureus JH9	Staphylococcus aureus
Staphylococcus aureus subsp. aureus JKD6159	Staphylococcus aureus
Staphylococcus aureus subsp. aureus LGA251	Staphylococcus aureus
Staphylococcus aureus subsp. aureus M013	Staphylococcus aureus
Staphylococcus aureus subsp. aureus MRSA252	Staphylococcus aureus
Staphylococcus aureus subsp. aureus MSHR1132	Staphylococcus aureus
Staphylococcus aureus subsp. aureus MSSA476	Staphylococcus aureus
Staphylococcus aureus subsp. aureus Mu3	Staphylococcus aureus
Staphylococcus aureus subsp. aureus Mu50	Staphylococcus aureus
Staphylococcus aureus subsp. aureus MW2	Staphylococcus aureus
Staphylococcus aureus subsp. aureus N315	Staphylococcus aureus
Staphylococcus aureus subsp. aureus NCTC 8325	Staphylococcus aureus
Staphylococcus aureus subsp. aureus str. JKD6008	Staphylococcus aureus
Staphylococcus aureus subsp. aureus str. Newman	Staphylococcus aureus
Staphylococcus aureus subsp. aureus T0131	Staphylococcus aureus
Staphylococcus aureus subsp. aureus TCH60	Staphylococcus aureus
Staphylococcus aureus subsp. aureus TW20	Staphylococcus aureus
Staphylococcus aureus subsp. aureus USA300_FPR3757	Staphylococcus aureus
Staphylococcus aureus subsp. aureus USA300_TCH1516	Staphylococcus aureus
Staphylococcus aureus subsp. aureus VC40	Staphylococcus aureus
Staphylococcus carnosus subsp. carnosus TM300	Staphylococcus carnosus
Staphylococcus epidermidis ATCC 12228	Staphylococcus epidermidis
Staphylococcus epidermidis RP62A	Staphylococcus epidermidis

Stanhylococcus haemolyticus JCSC1435	Stanhvlococcus haemolyticus	279808	62919
Staphylococcus luadunensis HKU09-01	Staphylococcus luadunensis	1034809	162143
Staphylococcus lugdunensis N920143	Staphylococcus lugdunensis	698737	46233
Staphylococcus pseudintermedius ED99	Staphylococcus pseudintermedius	937773	62125
Staphylococcus pseudintermedius HKU10-03	Staphylococcus pseudintermedius	984892	162109
Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305	Staphylococcus saprophyticus	342451	58411
Stenotrophomonas maltophilia D457	Stenotrophomonas maltophilia	1163399	162199
Stenotrophomonas maltophilia JV3	Stenotrophomonas maltophilia	391008	58657
Stenotrophomonas maltophilia K279a	Stenotrophomonas maltophilia	522373	61647
Stenotrophomonas maltophilia R551-3	Stenotrophomonas maltophilia	868597	72473
Streptobacillus moniliformis DSM 12112	Streptobacillus moniliformis	519441	41863
Streptococcus agalactiae 2603V/R	Streptococcus agalactiae	205921	57935
Streptococcus agalactiae A909	Streptococcus agalactiae	208435	57943
Streptococcus agalactiae NEM316	Streptococcus agalactiae	211110	61585
Streptococcus dysgalactiae subsp. equisimilis ATCC 12394	Streptococcus dysgalactiae	486410	59103
Streptococcus dysgalactiae subsp. equisimilis GGS_124	Streptococcus dysgalactiae	663954	161979
Streptococcus equi subsp. equi 4047	Streptococcus equi	40041	59261
Streptococcus equi subsp. zooepidemicus	Streptococcus equi	552526	59263
Streptococcus equi subsp. zooepidemicus MGCS10565	Streptococcus equi	553482	59259
Streptococcus gallolyticus subsp. gallolyticus ATCC 43143	Streptococcus gallolyticus	637909	46061
Streptococcus gallolyticus subsp. gallolyticus ATCC BAA-2069	Streptococcus gallolyticus	981539	162103
Streptococcus gallolyticus UCN34	Streptococcus gallolyticus	990317	63617
Streptococcus gordonii str. Challis substr. CH1	Streptococcus gordonii	467705	57667
Streptococcus infantarius subsp. infantarius CJ18	Streptococcus infantarius	1069533	87033
Streptococcus intermedius JTH08	Streptococcus intermedius	591365	168614
Streptococcus mitis B6	Streptococcus mitis	365659	46097
Streptococcus oralis Uo5	Streptococcus oralis	927666	65449
Streptococcus pasteurianus ATCC 43144	Streptococcus pasteurianus	981540	68019
Streptococcus pneumoniae 670-6B	Streptococcus pneumoniae	1130804	162191
Streptococcus pneumoniae 70585	Streptococcus pneumoniae	170187	57857
Streptococcus pneumoniae AP200	Streptococcus pneumoniae	171101	57859
Streptococcus pneumoniae ATCC 700669	Streptococcus pneumoniae	189423	52533
Streptococcus pneumoniae CGSP14	Streptococcus pneumoniae	373153	58581
Streptococcus pneumoniae D39	Streptococcus pneumoniae	487213	59119
Streptococcus pneumoniae G54	Streptococcus pneumoniae	487214	59117
Streptococcus pneumoniae Hungary19A-6	Streptococcus pneumoniae	488221	59125
Streptococcus pneumoniae INV104	Streptococcus pneumoniae	488222	59121

Otroatecocci e accimentio e INIV/200	Otroatococci o accimica	0000	60103
ouepicoccus priedinomide INV200 Otroato consulto anonimonico 11A	Ou epicoccus priedinoriae	400423	23160
		010011	10160
Streptococcus pneumoniae UXC141	Streptococcus pneumoniae	516950	59181
Streptococcus pneumoniae P1031	Streptococcus pneumoniae	525381	49735
Streptococcus pneumoniae R6	Streptococcus pneumoniae	561276	59287
Streptococcus pneumoniae ST556	Streptococcus pneumoniae	574093	52453
Streptococcus pneumoniae Taiwan19F-14	Streptococcus pneumoniae	869215	162037
Streptococcus pneumoniae TCH8431/19A	Streptococcus pneumoniae	869216	162035
Streptococcus pneumoniae TIGR4	Streptococcus pneumoniae	869269	162039
Streptococcus pseudopneumoniae IS7493	Streptococcus pseudopneumoniae	1054460	71153
Streptococcus pyogenes Alab49	Streptococcus pyogenes	1010840	158061
Streptococcus pyogenes M1 GAS	Streptococcus pyogenes	160490	57845
Streptococcus pyogenes MGAS10270	Streptococcus pyogenes	160491	57847
Streptococcus pyogenes MGAS10394	Streptococcus pyogenes	186103	57871
Streptococcus pyogenes MGAS10750	Streptococcus pyogenes	193567	57895
Streptococcus pyogenes MGAS15252	Streptococcus pyogenes	198466	57911
Streptococcus pyogenes MGAS1882	Streptococcus pyogenes	286636	58105
Streptococcus pyogenes MGAS2096	Streptococcus pyogenes	293653	58337
Streptococcus pyogenes MGAS315	Streptococcus pyogenes	319701	58335
Streptococcus pyogenes MGAS5005	Streptococcus pyogenes	370551	58569
Streptococcus pyogenes MGAS6180	Streptococcus pyogenes	370552	58571
Streptococcus pyogenes MGAS8232	Streptococcus pyogenes	370553	58573
Streptococcus pyogenes MGAS9429	Streptococcus pyogenes	370554	58575
Streptococcus pyogenes NZ131	Streptococcus pyogenes	471876	59035
Streptococcus pyogenes SSI-1	Streptococcus pyogenes	487215	162171
Streptococcus pyogenes str. Manfredo	Streptococcus pyogenes	798300	158037
Streptococcus salivarius 57.1	Streptococcus salivarius	1046629	162151
Streptococcus salivarius JIM8777	Streptococcus salivarius	347253	162145
Streptococcus uberis 0140J	Streptococcus uberis	218495	57959
Streptomyces griseus subsp. griseus NBRC 13350	Streptomyces griseus	455632	58983
Treponema denticola ATCC 35405	Treponema denticola	243275	57583
Treponema pallidum subsp. pallidum DAL-1	Treponema pallidum	243276	208669
Treponema pallidum subsp. pallidum SS14	Treponema pallidum	455434	58977
Treponema pallidum subsp. pallidum str. Chicago	Treponema pallidum	491078	87069
Treponema pallidum subsp. pallidum str. Nichols	Treponema pallidum	491079	87051
Treponema pallidum subsp. pertenue str. CDC2	Treponema pallidum	491080	87067
Treponema pallidum subsp. pertenue str. Gauthier	Treponema pallidum	491081	87065

Treponema pallidum subsp. pertenue str. SamoaD	Treponema pallidum	666714	159543
Tropheryma whipplei str. Twist	Tropheryma whipplei	203267	57705
Tropheryma whipplei TW08/27	Tropheryma whipplei	218496	57961
Tsukamurella paurometabola DSM 20162	Tsukamurella paurometabola	521096	48829
Ureaplasma parvum serovar 3 str. ATCC 27815	Ureaplasma parvum	273119	57711
Ureaplasma parvum serovar 3 str. ATCC 700970	Ureaplasma parvum	505682	58887
Ureaplasma urealyticum serovar 10 str. ATCC 33699	Ureaplasma urealyticum	565575	59011
Veillonella parvula DSM 2008	Veillonella parvula	479436	41927
Vibrio cholerae IEC224	Vibrio cholerae	1134456	89389
Vibrio cholerae LMA3984-4	Vibrio cholerae	243277	57623
Vibrio cholerae M66-2	Vibrio cholerae	345073	159869
Vibrio cholerae MJ-1236	Vibrio cholerae	579112	59355
Vibrio cholerae O1 biovar El Tor str. N16961	Vibrio cholerae	593588	59387
Vibrio cholerae O1 str. 2010EL-1786	Vibrio cholerae	914149	78933
Vibrio cholerae O395	Vibrio cholerae	935297	159541
Vibrio furnissii NCTC 11218	Vibrio furnissii	903510	82347
Vibrio parahaemolyticus RIMD 2210633	Vibrio parahaemolyticus	223926	57969
Vibrio vulnificus CMCP6	Vibrio vulnificus	196600	58007
Vibrio vulnificus MO6-24/O	Vibrio vulnificus	216895	62909
Vibrio vulnificus YJ016	Vibrio vulnificus	914127	62243
Weeksella virosa DSM 16922	Weeksella virosa	865938	63627
Wolinella succinogenes DSM 1740	W olinella succinogenes	273121	61591
Yersinia enterocolitica subsp. enterocolitica 8081	Yersinia enterocolitica	393305	57741
Yersinia enterocolitica subsp. palearctica 105.5R(r)	Yersinia enterocolitica	930944	162069
Yersinia enterocolitica subsp. palearctica Y11	Yersinia enterocolitica	994476	63663
Yersinia pestis A1122	Yersinia pestis	1035377	158119
Yersinia pestis Angola	Yersinia pestis	187410	57875
Yersinia pestis Antiqua	Yersinia pestis	214092	57621
Yersinia pestis biovar Medievalis str. Harbin 35	Yersinia pestis	229193	58037
Yersinia pestis biovar Microtus str. 91001	Yersinia pestis	349746	58485
Yersinia pestis CO92	Yersinia pestis	360102	58607
Yersinia pestis D106004	Yersinia pestis	377628	58609
Yersinia pestis D182038	Yersinia pestis	386656	58619
Yersinia pestis KIM10+	Yersinia pestis	547048	158537
Yersinia pestis Nepal516	Yersinia pestis	637382	158071
Yersinia pestis Pestoides F	Yersinia pestis	637385	158073
Yersinia pestis Z176003	Yersinia pestis	637386	47317
	Page 18		

Yersinia pseudotuberculosis IP 31758	Yersinia pseudotuberculosis	273123	58157
Yersinia pseudotuberculosis IP 32953	Yersinia pseudotuberculosis	349747	58487
Yersinia pseudotuberculosis PB1/+	Yersinia pseudotuberculosis	502800	59151
Yersinia pseudotuberculosis YPIII	Yersinia pseudotuberculosis	502801	59153
(a) Strain designation			
(b) Species name			
(c) NCBI bioproject id of the sequencing project			
(d) NCBI taxonomy strain id			

Supplementary Table S4 Mapping of bacterial strains to 42 species in the Global Infectious Disease and Epidemiology Online Network with links to the National Center for Biotechnology Information (NCBI) databases

Strain _(a)	Species _(b)	NCBI Bioproject id _(c) N	VCBI taxonomy id _(d)
Actinobacillus suis H91-0380	Actinobacillus suis	176363	696748
Adlercreutzia equolifaciens DSM 19450	Adlercreutzia equolifaciens	223286	1384484
Alistipes shahii WAL 8301	Alistipes shahii	197175	717959
Bacillus infantis NRRL B-14911	Bacillus infantis	222804	1367477
Bacteroides xylanisolvens XB1A	Bacteroides xylanisolvens	197168	627309
Burkholderia cepacia GG4	Burkholderia cepacia	173858	1009846
Butyrivibrio fibrisolvens	Butyrivibrio fibrisolvens	197155	831
Campylobacter coli 15-537360	Campylobacter coli	226113	1358410
Campylobacter coli CVM N29710	Campylobacter coli	219322	1273173
Corynebacterium argentoratense DSM 44202	Corynebacterium argentoratense	217419	1348662
Enterococcus casseliflavus EC20	Enterococcus casselifiavus	55693	565655
Enterococcus mundtii QU 25	Enterococcus mundtii	229420	1300150
Erysipelothrix rhusiopathiae	Erysipelothrix rhusiopathiae	68021	1648
Erysipelothrix rhusiopathiae SY1027	Erysipelothrix rhusiopathiae	206518	1313290
Eubacterium siraeum	Eubacterium siraeum	197160	39492
Eubacterium siraeum V10Sc8a	Eubacterium siraeum	197178	717961
Faecalibacterium prausnitzii	Faecalibacterium prausnitzii	197157	853
Faecalibacterium prausnitzii L2-6	Faecalibacterium prausnitzii	197183	718252
Fretibacterium fastidiosum	Fretibacterium fastidiosum	197182	651822
Gordonibacter pamelaeae 7-10-1-b	Gordonibacter pamelaeae	197167	657308
Lactobacillus paracasei subsp. paracasei 8700:2	Lactobacillus paracasei	55295	537973
Listeria ivanovii	Listeria ivanovii	73473	1638
Mannheimia haemolytica D153	Mannheimia haemolytica	212303	1261126
Mannheimia haemolytica D171	Mannheimia haemolytica	212304	1311759
Mannheimia haemolytica D174	Mannheimia haemolytica	212305	1311760
Mannheimia haemolytica M42548	Mannheimia haemolytica	198769	1316932
Mannheimia haemolytica USDA-ARS-USMARC-183	Mannheimia haemolytica	195458	1249531
Mannheimia haemolytica USDA-ARS-USMARC-185	Mannheimia haemolytica	195457	1249526
Mannheimia haemolytica USMARC_2286	Mannheimia haemolytica	213228	1366053
Megasphaera elsdenii	Megasphaera elsdenii	71135	206

Mycoplasma hominis	Mycoplasma hominis	41875	2098
Nocardia brasiliensis ATCC 700358	Nocardia brasiliensis	86913	1133849
Nocardia cyriacigeorgica	Nocardia cyriacigeorgica	89395	135487
Pandoraea pnomenusa 3kgm	Pandoraea pnomenusa	229878	1416914
Photorhabdus asymbiotica subsp. asymbiotica ATCC 43949	Photorhabdus asymbiotica	59243	553480
Prevotella dentalis DSM 3688	Prevotella dentalis	184818	908937
Propionibacterium avidum 44067	Propionibacterium avidum	197361	1170318
Pseudomonas monteilii SB3078	Pseudomonas monteilii	232252	1435044
Pseudomonas monteilii SB3101	Pseudomonas monteilii	232253	1435058
Raoultella omithinolytica B6	Raoultella ornithinolytica	198431	1286170
Roseburia intestinalis	Roseburia intestinalis	197164	166486
Roseburia intestinalis XB6B4	Roseburia intestinalis	197179	718255
Ruminococcus bromii	Ruminococcus bromii	197158	40518
Ruminococcus champanellensis 18P13	Ruminococcus champanellensis	197169	213810
Serratia marcescens FGI94	Serratia marcescens	185180	1249634
Serratia marcescens WW4	Serratia marcescens	188478	435998
Staphylococcus pasteuri SP1	Staphylococcus pasteuri	226267	1276282
Staphylococcus warneri SG1	Staphylococcus warneri	187059	1194526
Streptococcus anginosus C1051	Streptococcus anginosus	218003	862970
Streptococcus anginosus C238	Streptococcus anginosus	218004	862971
Streptococcus constellatus subsp. pharyngis C1050	Streptococcus constellatus	218002	862969
Streptococcus constellatus subsp. pharyngis C232	Streptococcus constellatus	217998	696216
Streptococcus constellatus subsp. pharyngis C818	Streptococcus constellatus	218001	862968
Streptococcus iniae SF1	Streptococcus iniae	206041	1318633
Streptococcus lutetiensis 033	Streptococcus Iutetiensis	213397	1076934
Streptococcus oligofermentans AS 1.3089	Streptococcus oligofermentans	201429	1302863
Streptomyces albus J1074	Streptomyces albus	196849	457425
Vibrio alginolyticus NBRC 15630 = ATCC 17749	Vibrio alginolyticus	199933	1219076
(a) Strain designation			

(a) Strain designation
(b) Species name
(c) NCBI bioproject id of the sequencing project
(d) NCBI taxonomy strain id

Supplementary Table S5 Mapping of bacterial strains to 296 species described in Bergey's Manual of Systematic Bacteriology

Strain _(a)	Species _(b)	NCBI taxonomy $\mathrm{id}_{(\mathrm{d})}$
[Bacteroides] pectinophilus ATCC 43243	[Bacteroides] pectinophilus	483218.5
[Clostridium] mangenotii LM2	[Clostridium] mangenotii	1392497.3
[Clostridium] mangenotii TR	[Clostridium] mangenotii	1408823.3
[Eubacterium] cylindroides ATCC 27803	Faecalitalea cylindroides	649755.3
[Eubacterium] cylindroides T2-87	Faecalitalea cylindroides	717960.3
Abiotrophia defectiva ATCC 49176	Abiotrophia defectiva	592010.4
Acetobacterium woodii DSM 1030	Acetobacterium woodii	931626.3
Acidithiobacillus caldus ATCC 51756	Acidithiobacillus caldus	637389.3
Acidithiobacillus caldus SM-1	Acidithiobacillus caldus	990288.8
Acidithiobacillus ferrooxidans ATCC 23270	Acidithiobacillus ferrooxidans	243159.4
Acidithiobacillus ferrooxidans ATCC 53993	Acidithiobacillus ferrooxidans	380394.4
Acidithiobacillus thiooxidans	Acidithiobacillus thiooxidans	930.4
Acidithiobacillus thiooxidans A01	Acidithiobacillus thiooxidans	1432062.4
Acidithiobacillus thiooxidans ATCC 19377	Acidithiobacillus thiooxidans	637390.5
Aerococcus viridans ATCC 11563	Aerococcus viridans	655812.3
Aerococcus viridans LL1	Aerococcus viridans	1175629.3
Alkalibacillus haloalkaliphilus C5	Alkalibacillus haloalkaliphilus	1193119.3
Alkaliphilus transvaalensis ATCC 700919	Alkaliphilus transvaalensis	1408422.3
Amphibacillus xylanus NBRC 15112	Amphibacillus xylanus	698758.3
Anaerococcus hydrogenalis ACS-025-V-Sch4	Anaerococcus hydrogenalis	879306.3
Anaerococcus hydrogenalis DSM 7454	Anaerococcus hydrogenalis	561177.4
Anaerococcus lactolyticus ATCC 51172	Anaerococcus lactolyticus	525254.4
Anaerococcus lactolyticus S7-1-13	Anaerococcus lactolyticus	1284686.3
Anaerococcus tetradius ATCC 35098	Anaerococcus tetradius	525255.3
Anaerococcus vaginalis ATCC 51170	Anaerococcus vaginalis	655811.4
Anaerostipes hadrus DSM 3319	Anaerostipes hadrus	649757.3
Anaerotruncus colihominis DSM 17241	Anaerotruncus colihominis	445972.6
Aneurinibacillus aneurinilyticus ATCC 12856	Aneurinibacillus aneurinilyticus	649747.3
Aneurinibacillus terranovensis DSM 18919	Aneurinibacillus terranovensis	1121002.4
Anoxybacillus ayderensis AB04	Anoxybacillus ayderensis	265546.4
Anoxybacillus flavithermus	Anoxybacillus flavithermus	33934.3
Anoxybacillus flavithermus AK1	Anoxybacillus flavithermus	1297581.3
Anoxybacillus flavithermus NBRC 109594	Anoxybacillus flavithermus	1315967.3
Anoxybacillus flavithermus TNO-09.006	Anoxybacillus flavithermus	1267580.3
Anoxybacillus flavithermus WK1	Anoxybacillus flavithermus	491915.6
Anoxybacillus gonensis G2	Anoxybacillus gonensis	198467.4
Anoxybacillus kamchatkensis G10	Anoxybacillus kamchatkensis	1212546.3
Anoxybacillus tepidamans PS2	Anoxybacillus tepidamans	1382358.3
Azotobacter chroococcum NCIMB 8003	Azotobacter chroococcum	1328314.4
Azotobacter vinelandii CA	Azotobacter vinelandii	1283330.3
Azotobacter vinelandii CA6	Azotobacter vinelandii	1283331.3
Azotobacter vinelandii DJ	Azotobacter vinelandii	322710.5
Bacillus alcalophilus ATCC 27647	Bacillus alcalophilus	1218173.3
Bacillus halodurans C-125	Bacillus halodurans	272558.8
Bacillus methanolicus MGA3	Bacillus methanolicus	796606.3
Bacillus mycoides ATCC 6462	Bacillus mycoides	1405.1
Bacillus mycoides DSM 2048	Bacillus mycoides	526997.3

Bacillus mycoides Rock1-4	Bacill
Bacillus mycoides Rock3-17	Bacill
Bacillus pseudofirmus OF4	Bacill
Bacillus pseudomycoides DSM 12442	Bacill
Bacillus selenitireducens MLS10	[Bacil
Bacillus thermoamylovorans	Bacill
Bacillus weihenstephanensis	Bacill
Bacillus weihenstephanensis FSL H7-687	Bacill
Bacillus weihenstephanensis FSL R5-860	Bacill
Bacillus weihenstephanensis KBAB4	Bacill
Bacillus weihenstephanensis NBRC 101238 = DSM 11821	Bacill
Blautia hansenii DSM 20583	Blauti
Blautia producta ATCC 27340	Blauti
Blautia producta ER3	Blauti
Blautia schinkii DSM 10518	Blauti
Brevibacillus agri 5-2	Brevit
Brevibacillus agri BAB-2500	Brevit
Brevibacillus borstelensis 3096-7	Brevit
Brevibacillus borstelensis AK1	Brevit
Brevibacillus borstelensis cifa_chp40	Brevit
Brevibacillus borstelensis LChuR05	Brevit
Brevibacillus laterosporus	Brevit
Brevibacillus laterosporus DSM 25	Brevit
Brevibacillus laterosporus GI-9	Brevit
Brevibacillus laterosporus LMG 15441	Brevit
Brevibacillus laterosporus PE36	Brevit
Brevibacillus thermoruber 423	Brevit
Brevibacillus thermoruber PM1	Brevit
Bulleidia extructa W1219	Bullei
Buttiauxella agrestis	Buttia
Buttiauxella agrestis ATCC 33320	Buttia
Butyrivibrio fibrisolvens 16/4	Butyri
Butyrivibrio fibrisolvens AB2020	Butyri
Butyrivibrio fibrisolvens FE2007	Butyri
Butyrivibrio fibrisolvens MD2001	Butyri
Butyrivibrio fibrisolvens ND3005	Butyri
Butyrivibrio fibrisolvens WTE3004	Butyri
Butyrivibrio fibrisolvens YRB2005	Butyri
Caldibacillus debilis DSM 16016	Caldit
Cardiobacterium hominis ATCC 15826	Cardio
Carnobacterium maltaromaticum ATCC 35586	Carno
Carnobacterium maltaromaticum LMA28	Carno
Chromohalobacter israelensis 6768	Chron
Chromohalobacter salexigens DSM 3043	Chron
Citrobacter amalonaticus	Citrob
Citrobacter braakii GTA-CB04	Citrob
Citrobacter farmeri GTC 1319	Citrob
Citrobacter freundii 4_7_47CFAA	Citrob
Citrobacter freundii ATCC 8090 = MTCC 1658	Citrob
Citrobacter freundii CFNIH1	Citrob

cillus mycoides	526998.3
cillus mycoides	526999.3
cillus pseudofirmus	398511.4
cillus pseudomycoides	527000.3
acillus] selenitireducens	439292.5
cillus thermoamylovorans	35841.3
cillus weihenstephanensis	86662.6
cillus weihenstephanensis	1227358.4
cillus weihenstephanensis	1227359.4
cillus weihenstephanensis	315730.11
cillus weihenstephanensis	1220585.4
autia hansenii	537007.6
autia producta	1121114.4
autia producta	33035.4
autia schinkii	1410649.3
evibacillus agri	1444307.3
evibacillus agri	1246477.3
evibacillus borstelensis	1444309.3
evibacillus borstelensis	1300222.3
evibacillus borstelensis	1429889.3
evibacillus borstelensis	45462.4
evibacillus laterosporus	1465.13
evibacillus laterosporus	1121121.3
evibacillus laterosporus	1118154.3
evibacillus laterosporus	1042163.3
evibacillus laterosporus	1399144.3
evibacillus thermoruber	1346613.3
evibacillus thermoruber	1382302.3
lleidia extructa	679192.3
ttiauxella agrestis	82977.3
ttiauxella agrestis	1006004.4
tyrivibrio fibrisolvens	657324.3
tyrivibrio fibrisolvens	1280697.3
tyrivibrio fibrisolvens	1280700.3
tyrivibrio fibrisolvens	1280703.3
tyrivibrio fibrisolvens	1280696.3
tyrivibrio fibrisolvens	1280699.3
tyrivibrio fibrisolvens	1280687.3
ldibacillus debilis	1121917.3
rdiobacterium hominis	638300.3
rnobacterium maltaromaticum	1087479.3
rnobacterium maltaromaticum	1234679.3
romohalobacter israelensis	141390.3
romohalobacter salexigens	290398.11
robacter amalonaticus	35703.8
robacter braakii	57706.1
robacter farmeri	1114922.3
robacter freundii	742730.3
robacter freundii	1006003.3
robacter freundii	1333848.3

Citrobacter freundii GTC 09479 Citrobacter freundii GTC 09629 Citrobacter freundii MGH 56 Citrobacter freundii NBRC 12681 Citrobacter freundii RLS1 Citrobacter freundii str. ballerup 7851/39 Citrobacter freundii UCI 31 Citrobacter freundii UCI 32 Citrobacter sedlakii NBRC 105722 Citrobacter werkmanii NBRC 105721 Citrobacter youngae ATCC 29220 Clostridium acidurici 9a Clostridium cellulosi CS-4-4 Clostridium leptum DSM 753 Clostridium methylpentosum DSM 5476 Clostridium orbiscindens 1_3_50AFAA Clostridium sporosphaeroides DSM 1294 Clostridium sticklandii DSM 519 Clostridium thermocellum AD2 Clostridium thermocellum ATCC 27405 Clostridium thermocellum BC1 Clostridium thermocellum DSM 1313 Clostridium thermocellum DSM 2360 Clostridium thermocellum JW20 Clostridium thermocellum YS Colwellia psychrerythraea 34H Colwellia psychrerythraea GAB14E Desulfitobacterium dehalogenans ATCC 51507 Desulfitobacterium hafniense DCB-2 Desulfitobacterium hafniense DP7 Desulfitobacterium hafniense PCP-1 Desulfitobacterium hafniense TCP-A Desulfitobacterium hafniense Y51 Desulfitobacterium metallireducens DSM 15288 Dickeya chrysanthemi M074 Dickeya chrysanthemi NCPPB 3533 Dickeya chrysanthemi NCPPB 402 Dickeya chrysanthemi NCPPB 516 Dolosigranulum pigrum ATCC 51524 Dorea formicigenerans 4 6 53AFAA Dorea formicigenerans ATCC 27755 Dorea longicatena AGR2136 Dorea longicatena DSM 13814 Enterobacter cancerogenus ATCC 35316 Enterobacter cancerogenus M004 Enterobacter cloacae ATCC 13047 Enterobacter cloacae BIDMC 66 Enterobacter cloacae BIDMC 67 Enterobacter cloacae BIDMC 8 Enterobacter cloacae BWH 31

Citrobacter freundii	1288347.3
Citrobacter freundii	1297584.3
Citrobacter freundii	1439318.3
Citrobacter freundii	1114920.3
Citrobacter freundii	1454056.3
Citrobacter freundii	670484.3
Citrobacter freundii	1400136.3
Citrobacter freundii	1400137.3
Citrobacter sedlakii	1218086.3
Citrobacter werkmanii	1114921.3
Citrobacter youngae	500640.5
Gottschalkia acidurici	1128398.3
[Clostridium] cellulosi	1367212.3
[Clostridium] leptum	428125.8
[Clostridium] methylpentosum	537013.3
Flavonifractor plautii	742738.3
[Clostridium] sporosphaeroides	1121334.3
[Clostridium] sticklandii	499177.3
Ruminiclostridium thermocellum	1138384.3
Ruminiclostridium thermocellum	203119.11
Ruminiclostridium thermocellum	1349417.3
Ruminiclostridium thermocellum	637887.3
Ruminiclostridium thermocellum	572545.3
Ruminiclostridium thermocellum	492476.4
Ruminiclostridium thermocellum	1094188.3
Colwellia psychrerythraea	167879.5
Colwellia psychrerythraea	28229.3
Desulfitobacterium dehalogenans	756499.4
Desulfitobacterium hafniense	272564.6
Desulfitobacterium hafniense	537010.4
Desulfitobacterium hafniense	1090321.3
Desulfitobacterium bafniense	872024 4
Desulfitobacterium hafniense	138119.41
Desulfitobacterium metallireducens	871968 4
Dickeya chrysanthemi	556 28
Dickeya chrysanthemi	1224148.3
Dickeya chrysanthemi	1223569.3
Dickeya chrysanthemi	1223571.3
	883103.3
Dorea formicigenerans	742765.5
Dorea formicigenerans	411461 4
Dorea longicatena	1280698.3
Dorea longicatena	411462.6
	500639.8
Enterobacter cancerogenus	69218.3
	550 124
Enterobacter cloacae	1439324 3
Enterobacter cloacae	1430325 3
Enterobacter cloacae	1329846 6
Enterobacter cloacae	1329845.3

Enterobacter cloacae BWH 43 Enterobacter cloacae CHS 79 Enterobacter cloacae EC_38VIM1 Enterobacter cloacae ECNIH2 Enterobacter cloacae ECNIH3 Enterobacter cloacae ECR091 Enterobacter cloacae EcWSU1 Enterobacter cloacae IIT-BT 08 Enterobacter cloacae ISC8 Enterobacter cloacae JD6301 Enterobacter cloacae JD8715 Enterobacter cloacae MGH 53 Enterobacter cloacae MGH 54 Enterobacter cloacae MR2 Enterobacter cloacae MRSN 11489 Enterobacter cloacae P101 Enterobacter cloacae S611 Enterobacter cloacae str. Hanford Enterobacter cloacae subsp. cloacae 08XA1 Enterobacter cloacae subsp. cloacae ATCC 13047 Enterobacter cloacae subsp. cloacae ENHKU01 Enterobacter cloacae subsp. cloacae GS1 Enterobacter cloacae subsp. cloacae NCTC 9394 Enterobacter cloacae subsp. cloacae SY-70 Enterobacter cloacae subsp. dissolvens SDM Enterobacter cloacae UCI 23 Enterobacter cloacae UCI 24 Enterobacter cloacae UCI 29 Enterobacter cloacae UCI 30 Enterobacter cloacae UCI 35 Enterobacter cloacae UCI 36 Enterobacter cloacae UCI 39 Enterobacter cloacae UCI 49 Enterobacter cloacae UCI 50 Enterobacter cloacae UCICRE 11 Enterobacter cloacae UCICRE 12 Enterobacter cloacae UCICRE 3 Enterobacter cloacae UCICRE 5 Enterobacter cloacae UCICRE 9 Erwinia amylovora 01SFR-BO Erwinia amylovora ACW56400 Erwinia amylovora ATCC 49946 Erwinia amylovora CFBP 1232 Erwinia amylovora CFBP 2585 Erwinia amylovora CFBP1430 Erwinia amylovora Ea266 Erwinia amylovora Ea356 Erwinia amylovora Ea644 Erwinia amylovora MR1 Erwinia amylovora NBRC 12687

Enterobacter cloacae Erwinia amylovora Erwinia amylovora

1439328.3 1439326.3 1334630.3 1333850.3 1333851.3 1333849.3 1045856.3 1070842.3 1432556.3 1399774.3 1399775.3 1439329.3 1439330.3 1312879.3 1410032.3 1354030.3 1399146.3 1340854.3 1203195.3 716541.4 1211025.3 1177927.3 718254.4 1449089.4 1104326.3 1400146.3 1400147.3 1400148.3 1400149.3 1400150.3 1400151.3 1400152.3 1400154.3 1400155.3 1329855.3 1329856.3 1329852.3 1329853.3 1329854.3 1255306.3 1027397.3 716540.3 1255307.3 1255305.3 665029.3 1255304.3 1255303.3 1255309.3 1255310.3

1219359.3
Erwinia amylovora UPN527 Erwinia billingiae Eb661 Erwinia mallotivora Erwinia tracheiphila PSU-1 Erysipelothrix rhusiopathiae ATCC 19414 Erysipelothrix rhusiopathiae SY1027 Escherichia hermannii NBRC 105704 Escherichia vulneris NBRC 102420 Eubacterium acidaminophilum DSM 3953 Eubacterium biforme DSM 3989 Eubacterium brachy ATCC 33089 Eubacterium desmolans ATCC 43058 Eubacterium dolichum DSM 3991 Eubacterium hallii DSM 3353 Eubacterium infirmum F0142 Eubacterium nodatum ATCC 33099 Eubacterium plexicaudatum ASF492 Eubacterium ramulus ATCC 29099 Eubacterium saphenum ATCC 49989 Eubacterium siraeum 70/3 Eubacterium siraeum DSM 15702 Eubacterium siraeum V10Sc8a Eubacterium sulci ATCC 35585 Eubacterium ventriosum ATCC 27560 Eubacterium xylanophilum ATCC 35991 Exiguobacterium acetylicum DSM 20416 Exiguobacterium antarcticum B7 Exiguobacterium antarcticum DSM 14480 Exiguobacterium aurantiacum DSM 6208 Facklamia hominis ACS-120-V-Sch10 Facklamia hominis CCUG 36813 Facklamia ignava CCUG 37419 Facklamia languida CCUG 37842 Facklamia sourekii ATCC 700629 Faecalibacterium cf. prausnitzii KLE1255 Faecalibacterium prausnitzii A2-165 Faecalibacterium prausnitzii L2-6 Faecalibacterium prausnitzii M21/2 Faecalibacterium prausnitzii SL3/3 Flavonifractor plautii ATCC 29863 Gallibacterium anatis 10672-6 Gallibacterium anatis 12656/12 Gallibacterium anatis 23T10 Gallibacterium anatis 4895 Gallibacterium anatis 7990 Gallibacterium anatis CCM5995 Gallibacterium anatis DSM 16844 = F 149 Gallibacterium anatis IPDH697-78 Gallibacterium anatis str. Avicor Gallibacterium anatis UMN179

Erwinia amylovora	1255308.3
Erwinia billingiae	634500.5
Erwinia mallotivora	69222.5
Erwinia tracheiphila	1044999.3
Erysipelothrix rhusiopathiae	525280.3
Erysipelothrix rhusiopathiae	1313290.3
Escherichia hermannii	1115512.3
Escherichia vulneris	1115515.3
Eubacterium acidaminophilum	1286171.3
Holdemanella biformis	518637.5
Eubacterium brachy	1321814.3
Eubacterium desmolans	1408437.3
[Eubacterium] dolichum	428127.7
[Eubacterium] hallii	411469.3
[Eubacterium] infirmum	883109.3
[Eubacterium] nodatum	1161902.3
Eubacterium plexicaudatum	1235802.3
Eubacterium ramulus	1256908.3
Eubacterium saphenum	592031.3
[Eubacterium] siraeum	657319.3
[Eubacterium] siraeum	428128.7
[Eubacterium] siraeum	717961.3
[Eubacterium] sulci	888727.3
Eubacterium ventriosum	411463.4
Eubacterium xylanophilum	1336241.3
Exiguobacterium acetylicum	1397697.3
Exiguobacterium antarcticum	1087448.3
Exiguobacterium antarcticum	1397700.3
Exiguobacterium aurantiacum	1397694.4
Facklamia hominis	883110.3
Facklamia hominis	883111.3
Facklamia ignava	883112.3
Facklamia languida	883113.3
Facklamia sourekii	1408438.3
Faecalibacterium prausnitzii	748224.3
Faecalibacterium prausnitzii	411483.3
Faecalibacterium prausnitzii	718252.3
Faecalibacterium prausnitzii	411485.1
Faecalibacterium prausnitzii	657322.3
Flavonifractor plautii	411475.3
Gallibacterium anatis	1396515.3
Gallibacterium anatis	1195244.3
Gallibacterium anatis	750.1
Gallibacterium anatis	1396510.3
Gallibacterium anatis	1396511.3
Gallibacterium anatis	1396513.3
Gallibacterium anatis	1121910.3
Gallibacterium anatis	1396514.3
Gallibacterium anatis	1396512.3
Gallibacterium anatis	1005058.3

Gemella bergeriae ATCC 700627 Gemella cuniculi DSM 15828 Gemella haemolysans ATCC 10379 Gemella haemolysans M341 Gemella sanguinis ATCC 700632 Gemella sanguinis M325 Geobacillus caldoxylosilyticus CIC9 Geobacillus caldoxylosilyticus NBRC 107762 Geobacillus kaustophilus GBlys Geobacillus kaustophilus HTA426 Geobacillus kaustophilus NBRC 102445 Geobacillus stearothermophilus ATCC 7953 Geobacillus subterraneus PSS2 Geobacillus thermocatenulatus GS-1 Geobacillus thermodenitrificans DSM 465 Geobacillus thermodenitrificans NG80-2 Geobacillus thermoglucosidans TNO-09.020 Geobacillus thermoglucosidasius C56-YS93 Geobacillus thermoglucosidasius NBRC 107763 Geobacillus thermoleovorans B23 Geobacillus thermoleovorans CCB_US3_UF5 Geobacillus vulcani PSS1 Gracilibacillus boraciitolerans JCM 21714 Granulicatella adiacens ATCC 49175 Granulicatella elegans ATCC 700633 Halobacillus halophilus DSM 2266 Halorhodospira halochloris str. A Halorhodospira halophila SL1 Halothermothrix orenii H 168 Halothiobacillus neapolitanus c2 Holdemania filiformis DSM 12042 Hydrogenovibrio marinus Hydrogenovibrio marinus DSM 11271 Jeotgalibacillus campisalis SF-57 Jeotgalicoccus psychrophilus DSM 19085 Kyrpidia tusciae DSM 2912 Lachnoanaerobaculum saburreum DSM 3986 Lachnoanaerobaculum saburreum F0468 Lelliottia amnigena CHS 78 Leuconostoc argentinum KCTC 3773 Leuconostoc carnosum JB16 Leuconostoc carnosum KCTC 3525 Leuconostoc fallax KCTC 3537 Leuconostoc lactis Leuconostoc lactis KCTC 3528 = DSM 20202 Leuconostoc pseudomesenteroides 1159 Leuconostoc pseudomesenteroides 4882 Leuconostoc pseudomesenteroides KCTC 3652 Leuconostoc pseudomesenteroides PS12 Listeria grayi DSM 20601

Gemella bergeri	1321820.3
Gemella cuniculi	1121914.3
Gemella haemolysans	546270.5
Gemella haemolysans	562981.3
Gemella sanguinis	1408440.3
Gemella sanguinis	562983.3
Geobacillus caldoxylosilyticus	1234664.3
Geobacillus caldoxylosilyticus	1220594.3
Geobacillus kaustophilus	1337888.4
Geobacillus kaustophilus	235909.7
Geobacillus kaustophilus	1220595.3
Geobacillus stearothermophilus	937593.4
Geobacillus subterraneus	1382357.3
Geobacillus thermocatenulatus	1444308.3
Geobacillus thermodenitrificans	1413215.3
Geobacillus thermodenitrificans	420246.7
Geobacillus thermoglucosidasius	1136178.3
Geobacillus thermoglucosidasius	634956.3
Geobacillus thermoglucosidasius	1223501.3
Geobacillus thermoleovorans	1406857.3
Geobacillus thermoleovorans	1111068.3
Geobacillus vulcani	1382315.3
Gracilibacillus boraciitolerans	1298598.3
Granulicatella adiacens	638301.3
Granulicatella elegans	626369.3
Halobacillus halophilus	866895.3
Halorhodospira halochloris	1354791.3
Halorhodospira halophila	349124.8
Halothermothrix orenii	373903.5
Halothiobacillus neapolitanus	555778.5
Holdemania filiformis	545696.5
Hydrogenovibrio marinus	28885.3
Hydrogenovibrio marinus	1123513.3
Jeotgalibacillus campisalis	220754.4
Jeotgalicoccus psychrophilus	1122129.3
Kyrpidia tusciae	562970.4
Lachnoanaerobaculum saburreum	887325.3
Lachnoanaerobaculum saburreum	1095750.3
Lelliottia amnigena	1439331.3
Leuconostoc lactis	886872.3
Leuconostoc carnosum	1229758.3
Leuconostoc carnosum	1046593.3
Leuconostoc fallax	907931.3
Leuconostoc lactis	1246.4
Leuconostoc lactis	935294.3
Leuconostoc pseudomesenteroides	1339246.3
Leuconostoc pseudomesenteroides	1154757.4
Leuconostoc pseudomesenteroides	935295.4
Leuconostoc pseudomesenteroides	
	1339247.3

Listeria gravi FSL F6-1183 Listeria ivanovii FSL F6-596 Listeria ivanovii subsp. ivanovii PAM 55 Listeria ivanovii subsp. ivanovii WSLC 3010 Listeria ivanovii subsp. londoniensis WSLC 30167 Listeria ivanovii WSLC3009 Lonsdalea quercina subsp. quercina Luteimonas mephitis DSM 12574 Lysinibacillus fusiformis Lysinibacillus fusiformis H1k Lysinibacillus fusiformis ZB2 Lysinibacillus fusiformis ZC1 Lysinibacillus odysseyi 34hs-1 = NBRC 100172 Lysobacter antibioticus Lysobacter antibioticus HS124 Macrococcus caseolyticus JCSC5402 Mannheimia granulomatis DSM 19156 Mannheimia haemolytica D153 Mannheimia haemolytica D171 Mannheimia haemolytica D174 Mannheimia haemolytica D193 Mannheimia haemolytica D35 Mannheimia haemolytica D38 Mannheimia haemolytica M42548 Mannheimia haemolytica MhBrain2012 Mannheimia haemolytica MhSwine2000 Mannheimia haemolytica PHL213 Mannheimia haemolytica serotype 6 str. H23 Mannheimia haemolytica serotype A1/A6 str. PKL10 Mannheimia haemolytica serotype A2 str. BOVINE Mannheimia haemolytica serotype A2 str. OVINE Mannheimia haemolytica USDA-ARS-USMARC-183 Mannheimia haemolytica USDA-ARS-USMARC-185 Mannheimia haemolytica USMARC 2286 Mannheimia varigena USDA-ARS-USMARC-1261 Mannheimia varigena USDA-ARS-USMARC-1296 Mannheimia varigena USDA-ARS-USMARC-1312 Mannheimia varigena USDA-ARS-USMARC-1388 Marinococcus halotolerans DSM 16375 Marinomonas mediterranea MMB-1 Megasphaera elsdenii 24-50 Megasphaera elsdenii DSM 20460 Megasphaera elsdenii T81 Methylobacter luteus IMV-B-3098 Methylobacter marinus A45 Methylobacter whittenburyi Methylococcus capsulatus str. Bath Methylococcus capsulatus str. Texas = ATCC 19069 Methylomicrobium agile Methylomicrobium album BG8

Listeria gravi 1265827.4 Listeria ivanovii 702454.3 Listeria ivanovii 1638.4 202751.3 Listeria ivanovii Listeria ivanovii 202752.6 Listeria ivanovii 1457190.3 Lonsdalea guercina 1082705.1 Luteimonas mephitis 1122183.3 Lysinibacillus fusiformis 28031.4 Lysinibacillus fusiformis 1416755.3 Lysinibacillus fusiformis 1231627.3 Lysinibacillus fusiformis 714961.3 Lysinibacillus odysseyi 1220589.3 Lysobacter antibioticus 84531.4 Lysobacter antibioticus 1286308.3 Macrococcus caseolyticus 458233.11 Mannheimia granulomatis 1122190.3 Mannheimia haemolytica 1261126.6 1311759.4 Mannheimia haemolytica Mannheimia haemolytica 1311760.4 Mannheimia haemolytica 1329904.3 Mannheimia haemolytica 1329905.3 1329906.3 Mannheimia haemolytica Mannheimia haemolytica 1316932.3 1329902.3 Mannheimia haemolytica Mannheimia haemolytica 1329903.3 Mannheimia haemolytica 272629.3 Mannheimia haemolytica 1261125.3 Mannheimia haemolytica 1450449.3 Mannheimia haemolytica 669262.3 Mannheimia haemolytica 669261.3 Mannheimia haemolytica 1249531.3 Mannheimia haemolytica 1249526.3 Mannheimia haemolytica 1366053.4 Mannheimia varigena 1432056.3 Mannheimia varigena 1433287.3 Mannheimia varigena 1434214.3 Mannheimia varigena 1434215.3 Marinococcus halotolerans 1122203.4 Marinomonas mediterranea 717774.3 Megasphaera elsdenii 907.5 Megasphaera elsdenii 907.4 Megasphaera elsdenii 1410663.3 Methylobacter luteus 1095552.3 Methylobacter marinus 674036.3 Methylobacter whittenburyi 39770.3 Methylococcus capsulatus 243233.7 1224744.3 Methylococcus capsulatus Methylomicrobium agile 39774.3 686340.3 Methylomicrobium album

Methylomonas methanica MC09 Mitsuokella jalaludinii DSM 13811 Mitsuokella multacida DSM 20544 Moorella thermoacetica ATCC 39073 Moorella thermoacetica Y72 Oenococcus kitaharae DSM 17330 Oenococcus oeni ATCC BAA-1163 Oenococcus oeni AWRIB202 Oenococcus oeni AWRIB304 Oenococcus oeni AWRIB318 Oenococcus oeni AWRIB418 Oenococcus oeni AWRIB419 Oenococcus oeni AWRIB422 Oenococcus oeni AWRIB429 Oenococcus oeni AWRIB548 Oenococcus oeni AWRIB553 Oenococcus oeni AWRIB568 Oenococcus oeni AWRIB576 Oenococcus oeni DSM 20252 = AWRIB129 Oenococcus oeni PSU-1 Oenococcus oeni X2L Orenia marismortui DSM 5156 Paenibacillus panacisoli DSM 21345 Paenibacillus pasadenensis DSM 19293 Paenibacillus peoriae KCTC 3763 Paenibacillus popilliae ATCC 14706 Paenibacillus sanguinis 2301083 = DSM 16941 Paenibacillus stellifer DSM 14472 Paenibacillus terrae HPL-003 Paenibacillus wynnii DSM 18334 Parvimonas micra A293 Parvimonas micra ATCC 33270 Parvimonas micra KCOM 1535; ChDC B708 Pasteurella dagmatis ATCC 43325 Pectobacterium carotovorum M022 Pectobacterium carotovorum subsp. brasiliense Pectobacterium carotovorum subsp. brasiliensis PBR1692 Pectobacterium carotovorum subsp. carotovorum Pectobacterium carotovorum subsp. carotovorum PC1 Pectobacterium carotovorum subsp. carotovorum PCC21 Pectobacterium carotovorum subsp. odoriferum Pediococcus acidilactici 7 4 Pediococcus acidilactici AGR20 Pediococcus acidilactici D3 Pediococcus acidilactici DSM 20284 Pediococcus acidilactici MA18/5M Pediococcus claussenii ATCC BAA-344 Peptoniphilus harei ACS-146-V-Sch2b Peptoniphilus indolicus ATCC 29427 Peptoniphilus lacrimalis 315-B

Methylomonas methanica 857087.3 Mitsuokella jalaludinii 1410665.3 Mitsuokella multacida 500635.8 Moorella thermoacetica 264732.11 Moorella thermoacetica 1325331.3 1045004.4 Oenococcus kitaharae Oenococcus oeni 379360.3 1160703.3 Oenococcus oeni Oenococcus oeni 1160702.3 Oenococcus oeni 1167631.3 Oenococcus oeni 1206769.3 Oenococcus oeni 1206770.3 Oenococcus oeni 1206771.3 Oenococcus oeni 655225.3 Oenococcus oeni 1206772.3 Oenococcus oeni 1206773.3 Oenococcus oeni 1206774.3 Oenococcus oeni 1206775.3 1122618.3 Oenococcus oeni Oenococcus oeni 2031237 Oenococcus oeni 1335618.3 Orenia marismortui 926561.3 1122922.3 Paenibacillus panacisoli Paenibacillus pasadenensis 1122923.3 Paenibacillus peoriae 1087481.3 Paenibacillus popilliae 1212764 3 Paenibacillus sanguinis 1122925.3 Paenibacillus stellifer 169760.4 Paenibacillus terrae 985665.3 Paenibacillus wynnii 268407.5 1408286.3 Parvimonas micra 411465.1 Parvimonas micra Parvimonas micra 33033.4 Pasteurella dagmatis 667128.3 Pectobacterium carotovorum 554.6 Pectobacterium carotovorum 180957.1 Pectobacterium carotovorum 558269.5 Pectobacterium carotovorum 555.14 Pectobacterium carotovorum 561230.3 Pectobacterium carotovorum 1218933.3 Pectobacterium carotovorum 78398.4 Pediococcus acidilactici 563194 3 Pediococcus acidilactici 1384067.3 Pediococcus acidilactici 1306952.3 Pediococcus acidilactici 862514.3 Pediococcus acidilactici 1080365.4 Pediococcus claussenii 701521.8 Peptoniphilus harei 908338.3 997350.3 Peptoniphilus indolicus 596330.3 Peptoniphilus lacrimalis

Peptoniphilus lacrimalis DNF00528 Peptoniphilus lacrimalis DSM 7455 Peptostreptococcus anaerobius 653-L Peptostreptococcus anaerobius VPI 4330 Photobacterium angustum S14 Photobacterium leiognathi Irivu.4.1 Photobacterium leiognathi subsp. mandapamensis svers.1.1. Photobacterium phosphoreum ANT220 Photobacterium profundum 3TCK Photobacterium profundum SS9 Planococcus antarcticus DSM 14505 Pluralibacter gergoviae FB2 Pontibacillus chungwhensis BH030062 Pontibacillus marinus BH030004 = DSM 16465 Proteus penneri ATCC 35198 Providencia alcalifaciens 205/92 Providencia alcalifaciens Ban1 Providencia alcalifaciens Dmel2 Providencia alcalifaciens DSM 30120 Providencia alcalifaciens F90-2004 Providencia alcalifaciens PAL-1 Providencia alcalifaciens PAL-2 Providencia alcalifaciens PAL-3 Providencia alcalifaciens R90-1475 Providencia alcalifaciens RIMD 1656011 Providencia rettgeri CCBH11880 Providencia rettgeri Dmel1 Providencia rettgeri DSM 1131 Providencia rustigianii DSM 4541 Pseudoalteromonas citrea Pseudoalteromonas citrea NCIMB 1889 Pseudoalteromonas luteoviolacea 2ta16 Pseudoalteromonas luteoviolacea B = ATCC 29581 Pseudoalteromonas luteoviolacea HI1 Pseudoalteromonas piscicida ATCC 15057 Pseudoalteromonas piscicida JCM 20779 Pseudoalteromonas rubra ATCC 29570 Pseudobacteroides cellulosolvens ATCC 35603 = DSM 2933 Pseudobutyrivibrio ruminis AD2017 Pseudobutyrivibrio ruminis CF1b Pseudobutyrivibrio ruminis HUN009 Pseudoflavonifractor capillosus ATCC 29799 Pseudomonas agarici NCPPB 2289 Pseudomonas alcaligenes MRY13-0052 Pseudomonas alcaligenes NBRC 14159 Pseudomonas alcaligenes OT 69 Pseudomonas cichorii JBC1 Pseudomonas corrugata CFBP 5454 Pseudomonas luteola XLDN4-9 Pseudomonas oryzihabitans NBRC 102199

1401070.3 Peptoniphilus lacrimalis Peptoniphilus lacrimalis 1122949.3 Peptostreptococcus anaerobius 596329.3 Peptostreptococcus anaerobius 1035196.3 Photobacterium angustum 314292.23 1248232.3 Photobacterium leiognathi Photobacterium leiognathi 1001530.3 Photobacterium phosphoreum 1454202.3 Photobacterium profundum 314280.5 298386.8 Photobacterium profundum Planococcus antarcticus 1185653.3 Pluralibacter gergoviae 61647.1 Pontibacillus chungwhensis 1385513.3 Pontibacillus marinus 1385511.3 Proteus penneri 471881.3 Providencia alcalifaciens 1256988.3 Providencia alcalifaciens 663916.4 Providencia alcalifaciens 1141661.3 Providencia alcalifaciens 520999.6 Providencia alcalifaciens 1256987.3 Providencia alcalifaciens 1256991.3 Providencia alcalifaciens 1256992.3 Providencia alcalifaciens 1256993.3 Providencia alcalifaciens 1256989.3 Providencia alcalifaciens 1256990.3 Providencia rettgeri 587 17 Providencia rettgeri 1141663.3 Providencia rettgeri 521000.6 Providencia rustigianii 500637.6 Pseudoalteromonas citrea 43655.3 Pseudoalteromonas citrea 1117314 3 1353533.3 Pseudoalteromonas luteoviolacea Pseudoalteromonas luteoviolacea 1268239.3 Pseudoalteromonas luteoviolacea 43657.9 Pseudoalteromonas piscicida 1279016.3 Pseudoalteromonas piscicida 1117317.3 Pseudoalteromonas rubra 1117318.14 Pseudobacteroides cellulosolvens 398512.4 Pseudobutyrivibrio ruminis 1280694.3 Pseudobutyrivibrio ruminis 1280688.3 Pseudobutyrivibrio ruminis 1458469.3 Pseudoflavonifractor capillosus 411467.6 690598.6 Pseudomonas agarici Pseudomonas alcaligenes 1405803.3 Pseudomonas alcaligenes 1215092.3 1333854.3 Pseudomonas alcaligenes Pseudomonas cichorii 1441629.3 Pseudomonas corrugata 1316927 4 Pseudomonas luteola 1207076.3 Pseudomonas oryzihabitans 1215113.3

Pseudomonas pseudoalcaligenes AD6 Pseudomonas pseudoalcaligenes CECT 5344 Pseudomonas pseudoalcaligenes KF707 Pseudomonas tolaasii 6264 Pseudomonas tolaasii NCPPB 2192 Pseudomonas tolaasii PMS117 Psychromonas arctica DSM 14288 Ruminococcus albus 7 Ruminococcus albus 8 Ruminococcus albus AD2013 Ruminococcus albus SY3 Ruminococcus bromii L2-63 Ruminococcus callidus ATCC 27760 Ruminococcus flavefaciens 007c Ruminococcus flavefaciens 17 Ruminococcus flavefaciens AE3010 Ruminococcus flavefaciens ATCC 19208 Ruminococcus flavefaciens FD-1 Ruminococcus flavefaciens MA2007 Ruminococcus flavefaciens MC2020 Ruminococcus flavefaciens ND2009 Ruminococcus gnavus AGR2154 Ruminococcus gnavus ATCC 29149 Ruminococcus gnavus CC55_001C Ruminococcus lactaris ATCC 29176 Ruminococcus lactaris CC59_002D Ruminococcus obeum A2-162 Ruminococcus obeum ATCC 29174 Ruminococcus torques ATCC 27756 Ruminococcus torques L2-14 Selenomonas artemidis DSM 19719 Selenomonas artemidis F0399 Selenomonas flueggei ATCC 43531 Selenomonas infelix ATCC 43532 Selenomonas noxia ATCC 43541 Selenomonas noxia F0398 Selenomonas ruminantium AB3002 Selenomonas ruminantium AC2024 Selenomonas ruminantium subsp. ruminantium ATCC 12561 Serratia fonticola AU-AP2C Serratia fonticola AU-P3(3) Serratia fonticola LMG 7882 Serratia fonticola RB-25 [PRJNA232952] Serratia fonticola UTAD54 Shewanella algae JCM 21037 Shewanella amazonensis SB2B Shewanella baltica BA175 Shewanella baltica OS117 Shewanella baltica OS155 Shewanella baltica OS183

Pseudomonas pseudoalcaligenes	1453503.3
Pseudomonas pseudoalcaligenes	1182590.4
Pseudomonas pseudoalcaligenes	1149133.6
Pseudomonas tolaasii	1161101.3
Pseudomonas tolaasii	564423.7
Pseudomonas tolaasii	1030145.6
Psychromonas arctica	1123036.3
Ruminococcus albus	697329.1
Ruminococcus albus	246199.4
Ruminococcus albus	1384065.3
Ruminococcus albus	1341156.4
Ruminococcus bromii	657321.5
Ruminococcus callidus	411473.3
Ruminococcus flavefaciens	1341157.4
Ruminococcus flavefaciens	1030842.4
Ruminococcus flavefaciens	1384066.3
Ruminococcus flavefaciens	1336236.3
Ruminococcus flavefaciens	641112.4
Ruminococcus flavefaciens	1410670.3
Ruminococcus flavefaciens	1410671.3
Ruminococcus flavefaciens	1410672.3
[Ruminococcus] gnavus	1384063.4
[Ruminococcus] gnavus	411470.6
[Ruminococcus] gnavus	1073375.3
Ruminococcus lactaris	471875.6
Ruminococcus lactaris	1073376.3
[Ruminococcus] obeum	657314.3
[Ruminococcus] obeum	411459.7
[Ruminococcus] torques	411460.6
[Ruminococcus] torques	657313.3
Selenomonas artemidis	1123249.3
Selenomonas artemidis	749551.3
Selenomonas flueggei	638302.3
Selenomonas infelix	679201.3
Selenomonas noxia	585503.3
Selenomonas noxia	702437.3
Selenomonas ruminantium	1392502.3
Selenomonas ruminantium	1392501.3
Selenomonas ruminantium	1280706.4
Serratia fonticola	1332071.4
Serratia fonticola	1332070.3
Serratia fonticola	1378072.3
Serratia fonticola	1441930.3
Serratia fonticola	1379259.4
Shewanella algae	1236544.3
Shewanella amazonensis	326297.1
Shewanella baltica	693974.3
Shewanella baltica	693970.3
Shewanella baltica	325240.15
Shewanella baltica	693971.4

Shewanella baltica OS185 Shewanella baltica OS195 Shewanella baltica OS223 Shewanella baltica OS625 Shewanella baltica OS678 Shewanella colwelliana ATCC 39565 Shewanella frigidimarina NCIMB 400 Shewanella putrefaciens 200 Shewanella putrefaciens CN-32 Shewanella putrefaciens HRCR-6 Shewanella putrefaciens JCM 20190 Shewanella woodyi ATCC 51908 Shimwellia blattae DSM 4481 = NBRC 105725 Shuttleworthia satelles DSM 14600 Solibacillus silvestris StLB046 Solobacterium moorei DSM 22971 Solobacterium moorei F0204 Sporolactobacillus inulinus CASD Sporolactobacillus laevolacticus DSM 442 Sporolactobacillus terrae DSM 11697 Sporolactobacillus terrae HKM-1 Sporomusa ovata DSM 2662 Staphylococcus arlettae CVD059 Staphylococcus caprae C87 Staphylococcus chromogenes MU 970 Staphylococcus delphini 8086 Staphylococcus epidermidis M23864:W1 Staphylococcus hyicus ATCC 11249 Staphylococcus intermedius NCTC 11048 Streptococcus anginosus 1_2_62CV Streptococcus anginosus 1505 Streptococcus anginosus C1051 Streptococcus anginosus C238 Streptococcus anginosus DORA 7 Streptococcus anginosus F0211 Streptococcus anginosus SA1 Streptococcus anginosus SK1138 Streptococcus anginosus SK52 = DSM 20563 Streptococcus anginosus subsp. whileyi CCUG 39159 Streptococcus anginosus subsp. whileyi MAS624 Streptococcus anginosus T5 Streptococcus bovis ATCC 700338 Streptococcus bovis B315 Streptococcus bovis SN033 Streptococcus canis FSL Z3-227 Streptococcus criceti HS-6 Streptococcus devriesei DSM 19639 Streptococcus didelphis DSM 15616 Streptococcus entericus DSM 14446 Streptococcus equinus

Shewanella baltica	402882.13
Shewanella baltica	399599.8
Shewanella baltica	407976.7
Shewanella baltica	693972.3
Shewanella baltica	693973.6
Shewanella colwelliana	1336240.3
Shewanella frigidimarina	318167.14
Shewanella putrefaciens	399804.5
Shewanella putrefaciens	319224.16
Shewanella putrefaciens	1305841.3
Shewanella putrefaciens	1236543.3
Shewanella woodyi	392500.6
Shimwellia blattae	630626.3
Shuttleworthia satelles	626523.3
Solibacillus silvestris	1002809.3
Solobacterium moorei	1123263.3
Solobacterium moorei	706433.3
Sporolactobacillus inulinus	1069536.3
Sporolactobacillus laevolacticus	1395513.3
Sporolactobacillus terrae	1444306.3
Sporolactobacillus terrae	1449983.3
Sporomusa ovata	1123288.3
Staphylococcus arlettae	1212545.3
Staphylococcus capitis	435838.3
Staphylococcus chromogenes	1220551.3
Staphylococcus delphini	1141105.7
Staphylococcus caprae	525378.3
Staphylococcus hyicus	1284.6
Staphylococcus intermedius	1141106.7
Streptococcus anginosus	742820.3
Streptococcus anginosus	1163301.3
Streptococcus anginosus	862970.3
Streptococcus anginosus	862971.3
Streptococcus anginosus	1403946.3
Streptococcus anginosus	706437.3
Streptococcus anginosus	1328.12
Streptococcus anginosus	1161422.3
Streptococcus anginosus	1000570.3
Streptococcus anginosus	1095729.3
Streptococcus anginosus	1353243.3
Streptococcus anginosus	1163302.3
Streptococcus equinus	864569.5
Streptococcus equinus	1280690.3
Streptococcus equinus	1280704.3
Streptococcus canis	482234.3
Streptococcus criceti	873449.3
Streptococcus devriesei	1123300.3
Streptococcus didelphis	1123301.3
Streptococcus entericus	1123302.3
Streptococcus equinus	1335.4

Streptococcus equinus 2B Streptococcus equinus ATCC 33317 Streptococcus equinus ATCC 9812 Streptococcus equinus JB1 Streptococcus ferus DSM 20646 Streptococcus hyovaginalis DSM 12219 Streptococcus infantis ATCC 700779 Streptococcus infantis SK1076 Streptococcus infantis SK1302 Streptococcus infantis SK970 Streptococcus infantis X Streptococcus iniae Streptococcus iniae 9117 Streptococcus iniae IUSA1 Streptococcus iniae KCTC 11634BP Streptococcus iniae SF1 Streptococcus lutetiensis 033 Streptococcus macacae NCTC 11558 Streptococcus minor DSM 17118 Streptococcus mutans 11A1 Streptococcus mutans 11SSST2 Streptococcus mutans 11VS1 Streptococcus mutans 14D Streptococcus mutans 15JP3 Streptococcus mutans 15VF2 Streptococcus mutans 1ID3 Streptococcus mutans 1SM1 Streptococcus mutans 21 Streptococcus mutans 24 Streptococcus mutans 2ST1 Streptococcus mutans 2VS1 Streptococcus mutans 3SN1 Streptococcus mutans 4SM1 Streptococcus mutans 4VF1 Streptococcus mutans 5DC8 Streptococcus mutans 5SM3 Streptococcus mutans 66-2A Streptococcus mutans 8ID3 Streptococcus mutans A19 Streptococcus mutans A9 Streptococcus mutans AC4446 Streptococcus mutans ATCC 25175 Streptococcus mutans B Streptococcus mutans B04Sm5 Streptococcus mutans B05Sm11 Streptococcus mutans B06Sm2 Streptococcus mutans B07Sm2 Streptococcus mutans B082SM-A Streptococcus mutans B084SM-A Streptococcus mutans B09Sm1

Streptococcus equinus	1410675.5
Streptococcus equinus	1210006.5
Streptococcus equinus	525379.3
Streptococcus equinus	1294274.5
Streptococcus ferus	1123303.3
Streptococcus hvovaginalis	1123305.3
Streptococcus infantis	889204.3
Streptococcus infantis	1005705.3
Streptococcus infantis	871237.3
Streptococcus infantis	1035189.4
Streptococcus infantis	997830 4
Streptococcus iniae	1346 13
Streptococcus iniae	386894.6
Streptococcus iniae	1273539.3
Streptococcus iniae	1260129.3
Streptococcus iniae	1318633.3
Streptococcus lutetiensis	1076934 5
Streptococcus macacae	764298.3
Streptococcus minor	1123309.3
Streptococcus mutans	857155 3
Streptococcus mutans	857147.3
Streptococcus mutans	857143.3
Streptococcus mutans	857113.3
Streptococcus mutans	857152.3
Streptococcus mutans	857145.3
Streptococcus mutans	857154.3
Streptococcus mutans	857151 3
Streptococcus mutans	857112.3
Streptococcus mutans	857107.3
Streptococcus mutans	857148 3
Streptococcus mutans	857144 3
Streptococcus mutans	857140.3
Streptococcus mutans	857150 3
Streptococcus mutans	857146.3
Streptococcus mutans	1257027.2
Streptococcus mutans	957142.3
Streptococcus mutans	057142.5
Streptococcus mutans	057111.5
Streptococcus mutans	057155.5
Streptococcus mutans	007 100.0
Streptococcus mutans	1257040.2
	1257040.5
	1257041.3
	4005407.0
	1223197.3
Streptococcus mutans	1220187.3
Streptococcus mutans	1225199.3
Streptococcus mutans	1225192.3
Streptococcus mutans	1225198.3
	1225190.3
Streptococcus mutans	1225193.3

Streptococcus mutans B102SM-B Streptococcus mutans B107SM-B Streptococcus mutans B111SM-A Streptococcus mutans B112SM-A Streptococcus mutans B114SM-A Streptococcus mutans B115SM-A Streptococcus mutans B12Sm1 Streptococcus mutans B13Sm1 Streptococcus mutans B23Sm1 Streptococcus mutans B24Sm2 Streptococcus mutans B85SM-B Streptococcus mutans B88SM-A Streptococcus mutans DSM 20523 Streptococcus mutans G123 Streptococcus mutans GS-5 Streptococcus mutans KK21 Streptococcus mutans KK23 Streptococcus mutans M21 Streptococcus mutans M230 Streptococcus mutans M2A Streptococcus mutans N29 Streptococcus mutans N3209 Streptococcus mutans N34 Streptococcus mutans N66 Streptococcus mutans NCTC 11060 Streptococcus mutans NFSM1 Streptococcus mutans NFSM2 Streptococcus mutans NLML1 Streptococcus mutans NLML4 Streptococcus mutans NLML5 Streptococcus mutans NLML8 Streptococcus mutans NLML9 Streptococcus mutans NMT4863 Streptococcus mutans NN2025 Streptococcus mutans NV1996 Streptococcus mutans NVAB Streptococcus mutans OMZ175 Streptococcus mutans PKUSS-HG01 Streptococcus mutans PKUSS-LG01 Streptococcus mutans R221 Streptococcus mutans S1B Streptococcus mutans SA38 Streptococcus mutans SA41 Streptococcus mutans SF1 Streptococcus mutans SF12 Streptococcus mutans SF14 Streptococcus mutans SM1 Streptococcus mutans SM4 Streptococcus mutans SM6 Streptococcus mutans ST1

Streptococcus mutans 1225195.3 Streptococcus mutans 12251913 Streptococcus mutans 1225203.3 Streptococcus mutans 1225196.3 Streptococcus mutans 1225204.3 1225205.3 Streptococcus mutans Streptococcus mutans 1225189.3 1225188.3 Streptococcus mutans Streptococcus mutans 1225202.3 Streptococcus mutans 1225194.3 Streptococcus mutans 1225200.3 Streptococcus mutans 1225201.3 Streptococcus mutans 1123310.3 Streptococcus mutans 857134.3 Streptococcus mutans 1198676.3 Streptococcus mutans 1257038.3 Streptococcus mutans 1257039.3 Streptococcus mutans 857133.3 857100.3 Streptococcus mutans Streptococcus mutans 857126.3 Streptococcus mutans 857138.3 Streptococcus mutans 857125.3 Streptococcus mutans 857131.3 857124.3 Streptococcus mutans Streptococcus mutans 1257042.3 Streptococcus mutans 857130.3 Streptococcus mutans 857141.3 Streptococcus mutans 857114.3 Streptococcus mutans 857129.3 857128.3 Streptococcus mutans 857115.3 Streptococcus mutans Streptococcus mutans 857127.3 Streptococcus mutans 857137.3 Streptococcus mutans 511691.3 Streptococcus mutans 857123.3 Streptococcus mutans 857140.4 Streptococcus mutans 857099.3 Streptococcus mutans 1403829.3 Streptococcus mutans 1404260.3 Streptococcus mutans 857101.3 Streptococcus mutans 857105.3 Streptococcus mutans 857104.3 Streptococcus mutans 857103.3 857121.3 Streptococcus mutans Streptococcus mutans 857102.3 857120.3 Streptococcus mutans 857108.3 Streptococcus mutans 857109.4 Streptococcus mutans Streptococcus mutans 857119.3 Streptococcus mutans 857118.3

Streptococcus mutans ST6 Streptococcus mutans str. B16 P Sm1 Streptococcus mutans T4 Streptococcus mutans TCI-101 Streptococcus mutans TCI-109 Streptococcus mutans TCI-11 Streptococcus mutans TCI-110 Streptococcus mutans TCI-116 Streptococcus mutans TCI-120 Streptococcus mutans TCI-123 Streptococcus mutans TCI-125 Streptococcus mutans TCI-138 Streptococcus mutans TCI-143 Streptococcus mutans TCI-145 Streptococcus mutans TCI-146 Streptococcus mutans TCI-148 Streptococcus mutans TCI-149 Streptococcus mutans TCI-151 Streptococcus mutans TCI-152 Streptococcus mutans TCI-153 Streptococcus mutans TCI-154 Streptococcus mutans TCI-162 Streptococcus mutans TCI-163 Streptococcus mutans TCI-164 Streptococcus mutans TCI-169 Streptococcus mutans TCI-170 Streptococcus mutans TCI-173 Streptococcus mutans TCI-176 Streptococcus mutans TCI-177 Streptococcus mutans TCI-179 Streptococcus mutans TCI-187 Streptococcus mutans TCI-191 Streptococcus mutans TCI-196 Streptococcus mutans TCI-201 Streptococcus mutans TCI-202 Streptococcus mutans TCI-204 Streptococcus mutans TCI-210 Streptococcus mutans TCI-212 Streptococcus mutans TCI-218 Streptococcus mutans TCI-219 Streptococcus mutans TCI-220 Streptococcus mutans TCI-222 Streptococcus mutans TCI-223 Streptococcus mutans TCI-224 Streptococcus mutans TCI-227 Streptococcus mutans TCI-228 Streptococcus mutans TCI-234 Streptococcus mutans TCI-239 Streptococcus mutans TCI-242 Streptococcus mutans TCI-243

Streptococcus mutans	857117.3
Streptococcus mutans	1225186.3
Streptococcus mutans	857132.3
Streptococcus mutans	1074113.3
Streptococcus mutans	1074114.3
Streptococcus mutans	1074095.3
Streptococcus mutans	1074115.3
Streptococcus mutans	1074116.3
Streptococcus mutans	1074118.3
Streptococcus mutans	1074119.3
Streptococcus mutans	1074120.3
Streptococcus mutans	1074121.3
Streptococcus mutans	1074122.3
Streptococcus mutans	1074123.3
Streptococcus mutans	1074124.3
Streptococcus mutans	1074125.3
Streptococcus mutans	1074126.3
Streptococcus mutans	1074127.3
Streptococcus mutans	1074128.3
Streptococcus mutans	1074129.3
Streptococcus mutans	1074130.3
Streptococcus mutans	1074134.3
Streptococcus mutans	1074135.3
Streptococcus mutans	1074136.3
Streptococcus mutans	1074137.3
Streptococcus mutans	1074138.3
Streptococcus mutans	1074140.3
Streptococcus mutans	1074143.3
Streptococcus mutans	1074144.3
Streptococcus mutans	1074146.3
Streptococcus mutans	1074148.3
Streptococcus mutans	1074149.3
Streptococcus mutans	1074151.3
Streptococcus mutans	1074153.3
Streptococcus mutans	1074154.3
Streptococcus mutans	1074155.3
Streptococcus mutans	1074156.3
Streptococcus mutans	1074157.3
Streptococcus mutans	1074159.3
Streptococcus mutans	1074160.3
Streptococcus mutans	1074161.3
Streptococcus mutans	1074162 3
Streptococcus mutans	1074163.3
Streptococcus mutans	1074164.3
Streptococcus mutans	1074165
Streptococcus mutans	1074166 3
Streptococcus mutans	1074167
Streptococcus mutans	1074168
Streptococcus mutans	1074169
Streptococcus mutans	1074170

Streptococcus mutans TCI-244 Streptococcus mutans TCI-249 Streptococcus mutans TCI-256 Streptococcus mutans TCI-260 Streptococcus mutans TCI-264 Streptococcus mutans TCI-267 Streptococcus mutans TCI-268 Streptococcus mutans TCI-278 Streptococcus mutans TCI-279 Streptococcus mutans TCI-280 Streptococcus mutans TCI-289 Streptococcus mutans TCI-292 Streptococcus mutans TCI-294 Streptococcus mutans TCI-298 Streptococcus mutans TCI-30 Streptococcus mutans TCI-399 Streptococcus mutans TCI-400 Streptococcus mutans TCI-51 Streptococcus mutans TCI-62 Streptococcus mutans TCI-70 Streptococcus mutans TCI-75 Streptococcus mutans TCI-78 Streptococcus mutans TCI-82 Streptococcus mutans TCI-85 Streptococcus mutans TCI-86 Streptococcus mutans TCI-92 Streptococcus mutans TCI-96 Streptococcus mutans TCI-99 Streptococcus mutans U138 Streptococcus mutans U2A Streptococcus mutans U2B Streptococcus mutans UA159 Streptococcus mutans UA159-FR Streptococcus mutans W6 Streptococcus oligofermentans AS 1.3089 Streptococcus orisratti DSM 15617 Streptococcus ovis DSM 16829 Streptococcus parasanguinis ATCC 15912 Streptococcus parasanguinis ATCC 903 Streptococcus parasanguinis CC87K Streptococcus parasanguinis F0405 Streptococcus parasanguinis F0449 Streptococcus parasanguinis FW213 Streptococcus parasanguinis SK236 Streptococcus parauberis Streptococcus parauberis KCTC 11537 Streptococcus parauberis KCTC 11980BP Streptococcus parauberis KRS-02083 Streptococcus parauberis KRS-02109 Streptococcus parauberis NCFD 2020

Streptococcus mutans	1074171.3
Streptococcus mutans	1074173.3
Streptococcus mutans	1074175.3
Streptococcus mutans	1074176.3
Streptococcus mutans	1074177.3
Streptococcus mutans	1074178.3
Streptococcus mutans	1074179.3
Streptococcus mutans	1074180.3
Streptococcus mutans	1074181.3
Streptococcus mutans	1074182.3
Streptococcus mutans	1074183.3
Streptococcus mutans	1074184.3
Streptococcus mutans	1074185.3
Streptococcus mutans	1074186.3
Streptococcus mutans	1074190.3
Streptococcus mutans	1074092.3
Streptococcus mutans	1074093.3
Streptococcus mutans	1074100.3
Streptococcus mutans	1074101.3
Streptococcus mutans	1074102.3
Streptococcus mutans	1074104.3
Streptococcus mutans	1074105.3
Streptococcus mutans	1074106.3
Streptococcus mutans	1074107.3
Streptococcus mutans	1074108.3
Streptococcus mutans	1074109.3
Streptococcus mutans	1074111.3
Streptococcus mutans	1074112.3
Streptococcus mutans	857135.3
Streptococcus mutans	857116.3
Streptococcus mutans	857106.3
Streptococcus mutans	210007.7
Streptococcus mutans	1437447.3
Streptococcus mutans	857122.3
Streptococcus oligofermentans	1302863.3
Streptococcus orisratti	1123311.3
Streptococcus ovis	1123312.3
Streptococcus parasanguinis	760570.3
Streptococcus parasanguinis	888048.3
Streptococcus parasanguinis	1073372.3
Streptococcus parasanguinis	905067.3
Streptococcus parasanguinis	1095733.3
Streptococcus parasanguinis	1114965.3
Streptococcus parasanguinis	1035185.3
Streptococcus parauberis	1348.3
Streptococcus parauberis	936154.3
Streptococcus parauberis	1260132.3
Streptococcus parauberis	1207545.3
Streptococcus parauberis	1207544.3
Streptococcus parauberis	873447.3

Streptococcus phocae C-4 Streptococcus porcinus str. Jelinkova 176 Streptococcus ratti FA-1 = DSM 20564 Streptococcus sanguinis ATCC 29667 Streptococcus sanguinis CC94A Streptococcus sanguinis SK1 Streptococcus sanguinis SK1056 Streptococcus sanguinis SK1057 Streptococcus sanguinis SK1058 Streptococcus sanguinis SK1059 Streptococcus sanguinis SK1087 Streptococcus sanguinis SK115 Streptococcus sanguinis SK150 Streptococcus sanguinis SK160 Streptococcus sanguinis SK330 Streptococcus sanguinis SK340 Streptococcus sanguinis SK353 Streptococcus sanguinis SK355 Streptococcus sanguinis SK36 Streptococcus sanguinis SK405 Streptococcus sanguinis SK408 Streptococcus sanguinis SK49 Streptococcus sanguinis SK678 Streptococcus sanguinis SK72 Streptococcus sanguinis VMC66 Streptococcus sinensis HKU4 Streptococcus sobrinus DSM 20742 Streptococcus sobrinus TCI-107 Streptococcus sobrinus TCI-118 Streptococcus sobrinus TCI-119 Streptococcus sobrinus TCI-121 Streptococcus sobrinus TCI-124 Streptococcus sobrinus TCI-13 Streptococcus sobrinus TCI-157 Streptococcus sobrinus TCI-16 Streptococcus sobrinus TCI-160 Streptococcus sobrinus TCI-172 Streptococcus sobrinus TCI-175 Streptococcus sobrinus TCI-194 Streptococcus sobrinus TCI-2 Streptococcus sobrinus TCI-200 Streptococcus sobrinus TCI-215 Streptococcus sobrinus TCI-28 Streptococcus sobrinus TCI-336 Streptococcus sobrinus TCI-342 Streptococcus sobrinus TCI-345 Streptococcus sobrinus TCI-348 Streptococcus sobrinus TCI-349 Streptococcus sobrinus TCI-352 Streptococcus sobrinus TCI-355

Streptococcus phocae	1000562.3
Streptococcus porcinus	873448.3
Streptococcus ratti	699248.3
Streptococcus sanguinis	997356.4
Streptococcus sanguinis	1073373.3
Streptococcus sanguinis	888807.3
Streptococcus sanguinis	888820.3
Streptococcus sanguinis	888821.3
Streptococcus sanguinis	888822.3
Streptococcus sanguinis	888823.3
Streptococcus sanguinis	888824.3
Streptococcus sanguinis	888810.3
Streptococcus sanguinis	888811.3
Streptococcus sanguinis	888812.3
Streptococcus sanguinis	888813.3
Streptococcus sanguinis	888814.4
Streptococcus sanguinis	888815.3
Streptococcus sanguinis	888816.3
Streptococcus sanguinis	388919.9
Streptococcus sanguinis	888817.3
Streptococcus sanguinis	888818.3
Streptococcus sanguinis	888808.3
Streptococcus sanguinis	888819.3
Streptococcus sanguinis	888809.3
Streptococcus sanguinis	888825.3
Streptococcus sinensis	176090.4
Streptococcus sobrinus	1123317.3
Streptococcus sobrinus	1074066.3
Streptococcus sobrinus	1074117.3
Streptococcus sobrinus	1074067.3
Streptococcus sobrinus	1074068.3
Streptococcus sobrinus	1074069.3
Streptococcus sobrinus	1074053.3
Streptococcus sobrinus	1074132.3
Streptococcus sobrinus	1074054.3
Streptococcus sobrinus	1074133.3
Streptococcus sobrinus	1074139.3
Streptococcus sobrinus	1074142.3
Streptococcus sobrinus	1074150.3
Streptococcus sobrinus	1074094.3
Streptococcus sobrinus	1074152.3
Streptococcus sobrinus	1074158.3
Streptococcus sobrinus	1074055.3
Streptococcus sobrinus	1074189.3
Streptococcus sobrinus	1074070.3
Streptococcus sobrinus	1074071.4
Streptococcus sobrinus	1074072.3
Streptococcus sobrinus	1074073.3
Streptococcus sobrinus	1074074.3
Streptococcus sobrinus	1074076.3

Streptococcus sobrinus TCI-357 Streptococcus sobrinus TCI-363 Streptococcus sobrinus TCI-366 Streptococcus sobrinus TCI-367 Streptococcus sobrinus TCI-373 Streptococcus sobrinus TCI-374 Streptococcus sobrinus TCI-376 Streptococcus sobrinus TCI-377 Streptococcus sobrinus TCI-381 Streptococcus sobrinus TCI-384 Streptococcus sobrinus TCI-392 Streptococcus sobrinus TCI-395 Streptococcus sobrinus TCI-396 Streptococcus sobrinus TCI-50 Streptococcus sobrinus TCI-53 Streptococcus sobrinus TCI-54 Streptococcus sobrinus TCI-56 Streptococcus sobrinus TCI-61 Streptococcus sobrinus TCI-77 Streptococcus sobrinus TCI-79 Streptococcus sobrinus TCI-80 Streptococcus sobrinus TCI-89 Streptococcus sobrinus TCI-9 Streptococcus sobrinus TCI-98 Streptococcus sobrinus W1703 Streptococcus suis 05HAS68 Streptococcus suis 05ZYH33 Streptococcus suis 07SC3 Streptococcus suis 10581 Streptococcus suis 11538 Streptococcus suis 11611 Streptococcus suis 12814 Streptococcus suis 13730 Streptococcus suis 14636 Streptococcus suis 14A Streptococcus suis 161_00P5 Streptococcus suis 22083 Streptococcus suis 2524 Streptococcus suis 2651 Streptococcus suis 2726 Streptococcus suis 4417 Streptococcus suis 4961 Streptococcus suis 6407 Streptococcus suis 8074 Streptococcus suis 86-5192 Streptococcus suis 8830 Streptococcus suis 89/1591 Streptococcus suis 89-1591 Streptococcus suis 89-2479 Streptococcus suis 89-3576-3

Streptococcus sobrinus 1074077.3 1074078.3 Streptococcus sobrinus Streptococcus sobrinus 1074079.3 Streptococcus sobrinus 1074080.3 Streptococcus sobrinus 1074081.3 1074082.3 Streptococcus sobrinus Streptococcus sobrinus 1074083.3 Streptococcus sobrinus 1074084.3 1074085.3 Streptococcus sobrinus 1074086.3 Streptococcus sobrinus Streptococcus sobrinus 1074088.3 Streptococcus sobrinus 1074089.3 Streptococcus sobrinus 1074090.3 Streptococcus sobrinus 1074056.3 Streptococcus sobrinus 1074057.3 Streptococcus sobrinus 1074058.3 Streptococcus sobrinus 1074059.3 Streptococcus sobrinus 1074060.3 1074061.3 Streptococcus sobrinus Streptococcus sobrinus 1074062.3 Streptococcus sobrinus 1074063.3 Streptococcus sobrinus 1074064.3 1074052.3 Streptococcus sobrinus 1074065.3 Streptococcus sobrinus Streptococcus sobrinus 1227275.3 672190.3 Streptococcus suis Streptococcus suis 391295.8 Streptococcus suis 1214149.3 Streptococcus suis 1214158.3 1214180.3 Streptococcus suis 1214148.3 Streptococcus suis Streptococcus suis 1214156.3 Streptococcus suis 1214159.3 Streptococcus suis 1214183.3 Streptococcus suis 1214167.3 Streptococcus suis 1214150.3 Streptococcus suis 1214184.3 Streptococcus suis 1214181.3 Streptococcus suis 1214154.3 Streptococcus suis 1214161.3 Streptococcus suis 1214155.3 Streptococcus suis 1214176.3 Streptococcus suis 1214179.3 Streptococcus suis 1214182.3 Streptococcus suis 1214166.3 1214157.3 Streptococcus suis 286604.5 Streptococcus suis Streptococcus suis 1214151.3 Streptococcus suis 1214169.3 Streptococcus suis 1214171.3

Streptococcus suis 89-4109-1 Streptococcus suis 89-5259 Streptococcus suis 92-1191 Streptococcus suis 92-1400 Streptococcus suis 92-4172 Streptococcus suis 93A Streptococcus suis 98HAH33 Streptococcus suis A7 Streptococcus suis BM407 Streptococcus suis D12 Streptococcus suis D9 Streptococcus suis EA1832.92 Streptococcus suis GZ1 Streptococcus suis JS14 Streptococcus suis NT77 Streptococcus suis P1/7 Streptococcus suis R61 Streptococcus suis R735 Streptococcus suis RC1 Streptococcus suis S15 Streptococcus suis S19 Streptococcus suis S22 Streptococcus suis S24 Streptococcus suis S28 Streptococcus suis S428 Streptococcus suis S735 Streptococcus suis SC070731 Streptococcus suis SC84 Streptococcus suis SS12 Streptococcus suis ST1 Streptococcus suis ST3 Streptococcus suis T15 Streptococcus suis TL13 Streptococcus suis YB51 Streptococcus suis YS1 Streptococcus suis YS10-2 Streptococcus suis YS12 Streptococcus suis YS14 Streptococcus suis YS16 Streptococcus suis YS17-2 Streptococcus suis YS19-3 Streptococcus suis YS21 Streptococcus suis YS23-2 Streptococcus suis YS24 Streptococcus suis YS27-2 Streptococcus suis YS3 Streptococcus suis YS31 Streptococcus suis YS34 Streptococcus suis YS35 Streptococcus suis YS39

Streptococcus suis	1214172.3
Streptococcus suis	1214173.3
Streptococcus suis	1214175.3
Streptococcus suis	1214177.3
Streptococcus suis	1214178.3
Streptococcus suis	1214162.3
Streptococcus suis	391296.8
Streptococcus suis	993512.3
Streptococcus suis	568814.3
Streptococcus suis	1004952.3
Streptococcus suis	1005042.3
Streptococcus suis	1321372.3
Streptococcus suis	423211.3
Streptococcus suis	945704.3
Streptococcus suis	1214163.3
Streptococcus suis	218494.6
Streptococcus suis	996306.3
Streptococcus suis	1214165.3
Streptococcus suis	1214152.3
Streptococcus suis	1214160.3
Streptococcus suis	1214164.3
Streptococcus suis	1214168.3
Streptococcus suis	1214170.3
Streptococcus suis	1214174.3
Streptococcus suis	1214153.3
Streptococcus suis	1184252.3
Streptococcus suis	1246365.4
Streptococcus suis	568813.3
Streptococcus suis	1005041.3
Streptococcus suis	1004951.3
Streptococcus suis	1007064.3
Streptococcus suis	1340847.3
Streptococcus suis	1276647.3
Streptococcus suis	1380773.3
Streptococcus suis	1214185.3
Streptococcus suis	1214186.3
Streptococcus suis	1214187.3
Streptococcus suis	1214188.3
Streptococcus suis	1214189.3
Streptococcus suis	1214190.3
Streptococcus suis	1214191.3
Streptococcus suis	1214192.3
Streptococcus suis	1214193.3
Streptococcus suis	1214194.3
Streptococcus suis	1214195.3
Streptococcus suis	1214196.3
Streptococcus suis	1214197.3
Streptococcus suis	1214198.3
Streptococcus suis	1214199.3
Streptococcus suis	1214200.3

Streptococcus suis YS4 Streptococcus suis YS43 Streptococcus suis YS44 Streptococcus suis YS46 Streptococcus suis YS49 Streptococcus suis YS50 Streptococcus suis YS53 Streptococcus suis YS54-2 Streptococcus suis YS56 Streptococcus suis YS57 Streptococcus suis YS59 Streptococcus suis YS6 Streptococcus suis YS64 Streptococcus suis YS66 Streptococcus suis YS67 Streptococcus suis YS7 Streptococcus suis YS72 Streptococcus suis YS74 Streptococcus suis YS77 Streptococcus thermophilus ASCC 1275 Streptococcus thermophilus CNCM I-1630 Streptococcus thermophilus CNRZ1066 Streptococcus thermophilus DGCC7710 Streptococcus thermophilus JIM 8232 Streptococcus thermophilus LMD-9 Streptococcus thermophilus LMG 18311 Streptococcus thermophilus MN-ZLW-002 Streptococcus thermophilus MTCC 5460 Streptococcus thermophilus MTCC 5461 Streptococcus thermophilus ND03 Streptococcus thoraltensis DSM 12221 Streptococcus urinalis 2285-97 Streptococcus urinalis FB127-CNA-2 Syntrophothermus lipocalidus DSM 12680 Tetragenococcus muriaticus 3MR10-3 Tetragenococcus muriaticus DSM 15685 Tetragenococcus muriaticus PMC-11-5 Thiomicrospira chilensis DSM 12352 Thiomicrospira crunogena XCL-2 Thiomicrospira kuenenii DSM 12350 Thiomicrospira pelophila DSM 1534 Virgibacillus halodenitrificans Virgibacillus halodenitrificans 1806 Weissella cibaria KACC 11862 Weissella confusa LBAE C39-2 Weissella halotolerans DSM 20190 Weissella hellenica Weissella koreensis KACC 15510 Weissella koreensis KCTC 3621 Weissella paramesenteroides ATCC 33313

Streptococcus suis	1214201.3
Streptococcus suis	1214202.3
Streptococcus suis	1214203.3
Streptococcus suis	1214204.3
Streptococcus suis	1214205.3
Streptococcus suis	1214206.3
Streptococcus suis	1214207.3
Streptococcus suis	1214208.3
Streptococcus suis	1214209.3
Streptococcus suis	1214210.3
Streptococcus suis	1214211.3
Streptococcus suis	1214212.3
Streptococcus suis	1214213.3
Streptococcus suis	1214214.3
Streptococcus suis	1214215.3
Streptococcus suis	1214216.3
Streptococcus suis	1214217.3
Streptococcus suis	1214218.3
Streptococcus suis	1214219.3
Streptococcus thermophilus	1408178.4
Streptococcus thermophilus	1042404.3
Streptococcus thermophilus	299768.6
Streptococcus thermophilus	1268061.3
Streptococcus thermophilus	1051074.3
Streptococcus thermophilus	322159.8
Streptococcus thermophilus	264199.4
Streptococcus thermophilus	1187956.3
Streptococcus thermophilus	1073569.3
Streptococcus thermophilus	1073570.5
Streptococcus thermophilus	767463.3
Streptococcus thoraltensis	1123318.3
Streptococcus urinalis	764291.3
Streptococcus urinalis	883168.3
Syntrophothermus lipocalidus	643648.3
Tetragenococcus muriaticus	1302648.3
Tetragenococcus muriaticus	1123359.3
Tetragenococcus muriaticus	1302649.3
Thiomicrospira chilensis	1123515.3
Thiomicrospira crunogena	317025.9
Thiomicrospira kuenenii	1168067.3
Thiomicrospira pelophila	1123517.3
Virgibacillus halodenitrificans	1482.4
Virgibacillus halodenitrificans	1196028.3
Weissella cibaria	911104.3
Weissella confusa	1127131.3
Weissella halotolerans	1123500.3
Weissella hellenica	46256.5
Weissella koreensis	1045854.4
Weissella koreensis	1123721.3
Weissella paramesenteroides	585506.3

Xanthomonas albilineans Xanthomonas campestris JX Xanthomonas campestris LMCP11 Xanthomonas campestris pv. arecae NCPPB 2649 Xanthomonas campestris pv. campestris str. 8004 Xanthomonas campestris pv. campestris str. ATCC 33913 Xanthomonas campestris pv. campestris str. B100 Xanthomonas campestris pv. campestris str. Xca5 Xanthomonas campestris pv. cannabis NCPPB 2877 Xanthomonas campestris pv. musacearum 'Kenyan' Xanthomonas campestris pv. musacearum NCPPB 2005 Xanthomonas campestris pv. musacearum NCPPB 4379 Xanthomonas campestris pv. musacearum NCPPB 4380 Xanthomonas campestris pv. musacearum NCPPB 4381 Xanthomonas campestris pv. musacearum NCPPB 4384 Xanthomonas campestris pv. musacearum NCPPB 4392 Xanthomonas campestris pv. musacearum NCPPB 4394 Xanthomonas campestris pv. raphani 756C Xanthomonas campestris pv. viticola LMG 965 Xanthomonas fragariae LMG 25863 Xanthomonas oryzae ATCC 35933 Xanthomonas oryzae pv. oryzae KACC 10331 Xanthomonas oryzae pv. oryzae MAFF 311018 Xanthomonas oryzae pv. oryzae NAI8 Xanthomonas oryzae pv. oryzae PXO99A Xanthomonas oryzae pv. oryzicola BLS256 Xanthomonas oryzae pv. oryzicola MAI10 Xanthomonas oryzae X11-5A Xanthomonas oryzae X8-1A Xenorhabdus bovienii SS-2004 Xenorhabdus nematophila C2-3 Xenorhabdus nematophila F1 Xylella fastidiosa 32 Xylella fastidiosa 6c Xylella fastidiosa 9a5c Xylella fastidiosa ATCC 35879 Xylella fastidiosa Dixon Xylella fastidiosa EB92.1 Xylella fastidiosa M12 Xylella fastidiosa M23 Xylella fastidiosa MUL0034 Xylella fastidiosa Mul-MD Xylella fastidiosa PLS229 Xylella fastidiosa subsp. fastidiosa GB514 Xylella fastidiosa subsp. multiplex ATCC 35871 Xylella fastidiosa subsp. multiplex str. Red Oak 1 Xylella fastidiosa subsp. sandyi Ann-1 Xylella fastidiosa Temecula1

Xanthomonas albilineans 29447.3 1182783.3 Xanthomonas campestris 339.49 Xanthomonas campestris Xanthomonas campestris 487849.3 Xanthomonas campestris 314565.5 190485.4 Xanthomonas campestris Xanthomonas campestris 509169.4 1211707.3 Xanthomonas campestris Xanthomonas campestris 92824.15 Xanthomonas campestris 1075759.3 Xanthomonas campestris 1094183.3 Xanthomonas campestris 1094184.3 Xanthomonas campestris 1094185.3 Xanthomonas campestris 559737.3 Xanthomonas campestris 1094186.4 Xanthomonas campestris 1184263.3 Xanthomonas campestris 1094187.3 Xanthomonas campestris 990315.4 Xanthomonas campestris 487899.3 Xanthomonas fragariae 1131451.6 Xanthomonas oryzae 1313303.3 Xanthomonas oryzae 291331.8 342109.8 Xanthomonas oryzae 1423889.3 Xanthomonas oryzae Xanthomonas oryzae 360094.4 Xanthomonas oryzae 383407.3 Xanthomonas oryzae 1423890.3 Xanthomonas oryzae 1009853.4 Xanthomonas oryzae 1009854.4 406818.4 Xenorhabdus bovienii 628.3 Xenorhabdus nematophila Xenorhabdus nematophila 1306162.3 Xylella fastidiosa 1214121.5 Xylella fastidiosa 1211847.5 Xylella fastidiosa 160492.11 Xylella fastidiosa 2371.35 Xylella fastidiosa 155919.4 Xylella fastidiosa 945689.3 Xylella fastidiosa 405440.5 Xylella fastidiosa 405441.5 Xylella fastidiosa 1401256.4 Xylella fastidiosa 1403344.3 Xylella fastidiosa 1444770.3 Xylella fastidiosa 788929.3 Xylella fastidiosa 1267006.3 Xylella fastidiosa 1343737.3 Xylella fastidiosa 155920.4 Xylella fastidiosa 183190.5

(a) Strain designation

(b) Species name

(c) NCBI taxonomy strain id