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Abstract

The main aim of this thesis is to derive results concerning the Hausdorff dimension of random
sets. The notion of Hausdorff dimension has been introduced in order to characterize sets
which do possess a fractional pattern. Such sets are commonly referred to as fractals. A
typical feature of fractal sets is that they exhibit reappearing patterns, i.e. many fine details
of the set resemble the whole set, a phenomenon which is called self-similarity.

The sets we consider in this thesis are randomized, evolve randomly over time and are de-
scribed by a random field {X (¢) : t € R?}, where ¢ is considered to be the "time"-parameter
and for any ¢ € RY the random variable X (¢) is R™-valued. The self-similarity of the set is
carried over to a statistical self-similarity, which means that a suitable time-scaling of the
random field corresponds in distribution to a scaling in the state space. More precisely, if £

is a suitable d x d matrix and D is a suitable m X m matrix then

(X(cFt)  t e RS (P X (1) 1 t € RYY,

- stands for the equality of all finite-dimensional marginal distributions. Random

where
fields satisfying the aforementioned property are used for various applications such as the
modeling of stock price evolution (see [1, 42]) and ground water modeling (see [31]).

We are interested in determining the Hausdorff dimension of the random sets given by the
image

X([0,1]%) = {X(t): t € [0,1]} c R™

and the graph
Gr X ([0, 1]%) = {(t, X (2)) : t € [0,1]%} ¢ RH™

of X over the unit cube [0,1]%. As usual, the Hausdorff dimension is calculated by giving an
upper and a lower bound. In our case the random field is Holder continuous with respect to
a certain quasi-metric, of which we make use in calculating an upper bound for the Hausdorff
dimension and by generalizing a lemma [2, Lemma 8.2.1] which gives an upper bound for
the image and the graph of Holder continuous functions. A lower bound is calculated by
relating the Hausdorff dimension to potential theoretic methods. In particular, we see that
for any realization of the above random fractals one obtains the same Hausdorff dimension.

Moreover, the obtained Hausdorff dimension is in general not integer.



Zusammenfassung

Das wesentliche Ziel dieser Dissertation besteht darin, die Hausdorff Dimension zufélliger
Mengen zu bestimmen. Der Begriff der Hausdorff Dimension wurde eingefithrt, um Men-
gen zu charakterisieren, die ein gebrochenes Muster aufweisen. Solche Mengen werden im
Allgemeinen als Fraktale bezeichnet. Ein typisches Merkmal fraktaler Mengen ist, dass sie
wiederauftretende Muster aufweisen, d.h. viele feine Details der Menge dhneln der gesamten
Menge, ein Phianomen, das als Selbstdhnlichkeit bezeichnet wird.

Die Mengen, die wir in dieser Dissertation betrachten, sind randomisiert, entwickeln sich
zufillig im Laufe der Zeit und werden durch ein Zufallsfeld {X(¢) : ¢ € R?} beschrieben,
wobei ¢ als ,,Zeitparameter* aufgefasst wird und fiir jedes t € R? die Zufallsvariable X (t)
Werte in R™ hat. Die Selbstdhnlichkeit der Menge wird auf eine sogenannte statistische
Selbstdhnlichkeit iibertragen, d.h. eine geeignete Zeitskalierung des Zufallsfeldes entspricht
in Verteilung einer rdumlichen Skalierung. Genauer, fiir eine geeignete d x d Matrix £ und

eine geeignete m x m Matrix D gilt
(X(cFt)  t e R (P X (1) 1 t € RYY,

wobei 22 fiir die Gleichheit aller endlich-dimensionalen Randverteilungen steht. Zufallsfelder
mit der oben genannten Skalierungseigenschaft finden Anwendungen in vielen Bereichen,
unter anderem in der Modellierung von Aktienpreisen (siehe [1, 42]) und in der Beschreibung
von Grundwasserstromung (siche [31]).

In dieser Arbeit interessieren wir uns fir die Hausdorff Dimension der zufilligen Mengen

gegeben durch das Bild
X([0, 1)) = {X(t) : t € [0,1]"} CR™

und den Graphen
Gr X ([0, %) = {(t, X (1)) : t € [0,1]9} ¢ RH*™

von X iiber dem Einheitsquader [0,1]¢. Wie iiblich wird die Hausdorff Dimension iiber
eine obere und untere Schranke berechnet. In unserem Fall ist das Zufallsfeld Holder-stetig
beziiglich einer Pseudometrik. Davon machen wir Gebrauch, um eine obere Schranke fiir die
Hausdorff Dimension zu berechnen, indem wir ein Lemma [2, Lemma 8.2.1] verallgemein-
ern, welches eine obere Schranke fiir das Bild und den Graphen Hélder-stetiger Funktionen
liefert. Eine untere Schranke wird mithilfe von potentialtheoretischen Methoden berechnet.
Insbesondere sehen wir, dass man fiir jede Realisierung der obigen zufilligen Fraktale die

gleiche Hausdorff Dimension erhélt, welche im Allgemeinen nicht ganzzahlig ist.
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Introduction

A real-valued self-similar field {X(¢) : ¢ € R?} is a random field whose finite-dimensional
distributions are invariant under scaling of the "time variable" ¢ and the corresponding X ()
in the state space. More precisely, a scalar valued random field {X () : t € R?} is said to be
H-self-similar for some H € R if for any ¢ > 0

(X(ct): t e RY "D (A X (1) t € RYY,

where 2 means equality of all finite-dimensional marginal distributions. It was first studied
formally by Lamperti [28] and the parameter H is often called the self-similarity index or the
Hurst index in the literature. The theoretical importance of self-similar random fields has
increased significantly during the past four decades. They are useful to model various natural
phenomena for instance in physics, geophysics, mathematical engineering, finance, internet
traffic or ground water modeling, see, e.g., [31, 1, 2, 16, 14, 21, 22, 24, 27, 42, 43, 47, 13, 12,
8, 15, 48].

A very important class of such fields is given by Gaussian random fields and, in particular
by the well-known fractional Brownian field By with Hurst index H € (0,1). The random

field By has stationary increments, i.e. it satisfies
(By(t+h) — By(h) : t e R L (By(t) : t € R}

for any h € R%. In addition By is isotropic, that is

{By(At) it e R} 'L (By(t) 1 t e RYY
for any orthogonal d x d matrix A. Furthermore, it is a generalization of the famous fractional
Brownian motion, implicitely introduced in [23] and defined in [35].

However, Gaussian modeling is a serious drawback for applications including heavy-tailed
persistent phenomena. For this purpose a-stable random fields have been introduced, where
a random field {X (¢) : t € R} is said to be a-stable for a € (0,2] if every finite-dimensional
marginal distribution (X (¢1),...,X(¢,)) is a-stable. Self-similar a-stable fields with station-
ary increments have been extensively proposed as an alternative to Gaussian modeling (see,
e.g., [39, 48]).

Nevertheless, certain applications [8, 12] require a random field satisfying a scaling relation
with different Hurst indices in different not necessarily orthogonal directions. Such random
fields are called anisotropic in the literature. In the Gaussian case a popular example of

an anisotropic random field is the fractional Brownian sheet By, . g, with Hurst indices

vi



Introduction

Hy,...,H; > 0. It was introduced by Kamont [23] and satisfies the property
f.d.
{BH17...,Hd(Clt17 e ,Cdtd) 1t = (tl, e ,td> S Rd} = {Cllql P ngBHl,...7Hd(t) 1t e Rd} (01)

for any c1,...,cq > 0. However, By, . p, does not have stationary increments. We refer
the reader to [5, 18, 54] and the references therein for further information on the fractional
Brownian sheet.

A new class of anisotropic random fields has been recently proposed by Biermé, Meerschaert
and Scheffler [9], where the anisotropic behavior is driven by a d x d matrix E. To be more
precise, according to [9] a scalar valued random field {X(¢) : ¢ € R?} is called an operator
scaling random field of order £ and H, where E is a d X d matrix with positive real parts of
its eigenvalues and H > 0 if for any ¢ > 0

{(X(cPt) it e RY L (X (1) : ¢ € RY). (0.2)
As usual, ¢ = exp(Eloge) = 372, %Ek is the linear operator defined through the
matrix exponential. The existence of a-stable random fields satisfying (0.2) has been provided
in [9] through moving-average as well as harmonizable stochastic integral representations.
These fields are shown to have stationary increments. This property has been proven to
be quite useful in studying their sample paths. According to [9] there exist modifications
of the moving-average and harmonizable representation which almost surely satisfy a Holder
condition of certain indices in the Gaussian case o = 2. From this, results about the Hausdorff
dimension of their graphs on a compact set have been deduced. Biermé and Lacaux [10]
established similar results in the stable case o € (0,2) for the harmonizable representation.
In addition they showed that the moving-average stable random field does not admit any
continuous modification.

Hoffmann [20] introduced the so-called operator scaling random sheets. The main idea
behind such fields is to combine the property (0.1) of fractional Brownian sheets and (0.2)
of operator scaling random fields in order to obtain a more general class of random fields.

More precisely, according to his terminology a real-valued random field is called an operator

scaling random sheet if for any c1,...,¢, >0
(X (P, cBrty) it = (ty,... ty) € R (T cHnx(4): t € RYY, (0.3)
where Ei,...,E, are suitable matrices with positive real parts of their eigenvalues and

Hy,...,H, > 0. By following the outline in [9] and by using the same kind of stochastic
integral representations the existence of random fields satisfying (0.3) has been established in
[20]. These fields have been proven to be quite flexible in modeling physical phenomena and
can be applied in order to extend the well-known Cahn-Hilliard phase-field model. We refer
to [3] and the references therein for further details. However, the aforementioned operator
scaling random sheets do not possess stationary increments.

Another multivariate generalization of operator scaling random fields has been presented

by Li and Xiao [33], i.e. to random fields with values in R". The extension is to allow a

vii



Introduction

scaling relation in the state space by linear operators. This concept is mainly motivated by
the increasing interest in multivariate random field models in spatial statistics as well as in
environmental, agricultural and ecological sciences. See [33, 47, 13] for further information.
If Fis a d x d real matrix and D is an m X m real matrix with positive real parts of their
eigenvalues a random field {X (¢) : t € R?} with values in R™ is called operator-self-similar if

for any ¢ > 0
(X(cFt) it e R L {PX (1) t € RYY, (0.4)

By defining stochastic vector integrals of deterministic matrix kernels with respect to a sta-
ble random vector measure and by using the concepts developped in [9], Li and Xiao [33]
established the existence of random fields satisfying (0.4). Lastly, they mention that from
both theoretical and applied point of view it would be interesting to investigate the sample
path regularity and fractal properties of these fields.

In this thesis we study both operator scaling random sheets and operator-self-similar ran-
dom fields and provide results about their sample path properties. The results presented in
this thesis generalize various results in the literature, as will be shown in several examples.
Additionally, we completely solve an open problem concerning the Holder continuity and
Hausdorff dimension of the sample paths of multivariate operator-self-similar stable random
fields formulated in [33]. In particular, our results are valid for a large class of self-similar
random fields.

This thesis is mainly divided into two parts. The aim of the first part is essentially to lay
out the mathematical foundations required for the presented results.

Since our main focus will be on Hausdorff dimensions, we recall its definition, some basic
properties and related results in the first chapter.

An essential tool in studying anisotropic random fields is the change to generalized polar
coordinates with respect to scaling matrices, which was introduced in [38] and already used
in [9, 10, 11, 32, 33]. Therefore, Chapter 2 is devoted to introduce these generalized polar
coordinates and recall their properties.

Since the random fields we consider in this thesis are a-stable and given by stochastic
integrals constructed in [42, 33|, the subsequent chapter focuses on a-stable distributions and
the construction of these integrals.

In the second part we present our main results. More precisely, in Chapter 4 we consider
a random field X with values in RY, where at each time ¢t € R? the components of the
random vector X (t) are N independent copies of the harmonizable operator scaling stable
random sheets introduced by Hoffmann [20]. This idea is motivated by Ayache and Xiao
[5]. By combining and further extending methods used in [9, 10, 11, 5] we give an upper
bound on the uniform modulus of continuity of these fields. Based on this, we determine the
Hausdorff dimension of the range and the graph of a trajectory of such fields over the unit
cube [0,1]%. As noted above the property of stationary increments is no more true for the
fields constructed in [20]. The absence of this property seems to be one of the main difficulties

in determining results about their sample paths.
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Introduction

Finally, Chapter 5 and 6 deal with multivariate operator-self-similar stable random fields
introduced by Li and Xiao [33]. As mentioned earlier they leave the open problem of investi-
gating the sample path regularity and fractal dimensions of these fields. In particular, they
conjecture that these properties such as path continuity and Hausdorff dimensions are mostly
determined by the real parts of the eigenvalues of the scaling matrices in (0.4). In Chapter
5 we will solve this problem for the moving-average and harmonizable representation of such
fields in the Gaussian case o = 2 and highlight the fact that the aforementioned properties
also depend on the multiplicity of the real parts of the eigenvalues of the scaling matrices.
The purpose of Chapter 6 is to establish the corresponding results in the stable case o € (0, 2)
for the harmonizable representation.

Large parts of the last three chapters are based on the works of Sénmez [44, 45, 46].

ix



Part |I.

Foundations



1. Hausdorff dimension

In this chapter we introduce the notion of Hausdorff dimension and methods for its calcu-
lation, where the content of this chapter is strongly based on the books [17, 37] and parts
of [2, 40]. For a more general introduction, information on the history and proofs of the

statements below the reader is adviced to consult the aforementioned references.

1.1. Definition and properties

The basic aim is to describe the geometric structure of general Borel sets in the euclidean
space R™ with an emphasis on fractal sets. These are typically sets having Lebesgue measure
zero but being quite different from smooth curves and surfaces. Let U C R™ be a non-empty
set. Recall that the diameter of U is defined as

diam(U) = sup{ ||z — y|| : z,y € U},

where || - || is a fixed norm on R™. For any s > 0 the s-dimensional Hausdorff measure of U
is defined by

H*(U) = lim inf {Z diam(Uy)* : U C | U, diam(Uy) < 5} :
040 k=1 k=1

One can easily show that H*(U) < oo implies H!(U) = 0 for all t > s (see [17, Chapter 2.2]).

Thus, there exists a critical value, denoted by dimy U, such that

dimy U =inf{s > 0: H*(U) =0} =sup{s > 0: H*(U) = oo}.

dimy U is called the Hausdorff dimension of U.

Remark 1.1. From the definition of the Hausdorff dimension it is immediate that dimy U = m
for any non-empty open set U C R™ and, in particular dimy R"™ = m. Furthermore, as
expected to hold for any reasonable definition of dimension it is monotone, that is dimy U <

dimy V for any two sets U C V.

In order to determine the Hausdorff dimension of U one usually gives an upper bound and
a lower bound for dimy U. In our considerations we will be interested in determining the
dimension of the range and the graph of a function. More precisely, let f : R? — R™ be a

function. We are interested in the Hausdorff dimension of the range

£[0,1)) = {f(z) : 2 € [0,1)7} CR™



1. Hausdorfl dimension

and the graph
Gr £([0,1]%) = {(:g, f(@) 1z €0, 1]d} c R&™

of f over the unit cube [0, 1]?. The following Lemma is well-known and gives an upper bound

if the function f satisfies a Holder condition. A proof can be found in [2, p. 193] for instance.

Lemma 1.2. Let f = (f1,..., fm) : RT — R™ satisfy a Hélder condition of order o =
(a1, .. am) on [0,1]%, that is

[fi(x) = fiy) < cllz—yl|*, i=1,....m
for some ¢ >0 and all z,y € [0,1]9. Assuming that
O<on<...<a, <1

we have

d+ 3% (am — i) 3

Qmy

dimy £([0,1]%) < min {m,

Qm

dimy Gr £([0, 1]%) < min { d+ 30t (O = ai),d + zm:(l - ai)}.
i=1

Corollary 1.3. (i) Let f : U — R™ be a Lipschitz transformation on some Borel set U C R,

1.€.
1f(2) = fW)ll <clle =yl Ve,yeU

with some ¢ > 0. Then dimy f(U) < dimy U.
(ii) If f : U — R™ is a bi-Lipschitz transformation on the Borel set U C R?, i.e.

allz =yl <[lf(x) = FWll < eallz =yl Va,y €U,

where 0 < ¢ < ¢y < 00, then dimy f(U) = dimy U. In particular, for any function f : R —

R™ we have
dimy, £([0,1]%) < dimy Gr £([0,1]9). (1.1)

Proof. A proof of (i) and (ii) can be found in [17, Corollary 2.4]. Furthermore, (1.1) is a
frequently used result. For the sake of completeness, let us prove it. Consider the projection
G : RHA*™ — R™ given by G(x,y) =y for all (z,y) € R? x R™ and let || - ||; be the 1-norm.
Using the fact that all norms on the euclidean space are equivalent (see, e.g., [38, Proposition
2.1.4]) for all (z1,91), (v2,2) € R x R™ we get

1G(z1,91) — G(@2, y2)|| = [lyr — w2l < ||z — 22| + ly1 — w2
< cllz1 — xoll1 + cllyr — y2lli = cl|(z1,y1) — (@2, y2) |11

<cll(z1,91) — (w2, 92) |,



1. Hausdorfl dimension

where we used the equivalence of norms in the second and last inequality and c is an unspeci-

fied positive constant. Thus, G is a Lipschitz transformation and (i) yields

dimy; £([0,1]%) = dimy G( Gr £([0,1]%)) < dimy Gr £([0,1]9).

Lemma 1.2 has been improved by Xiao [53, Lemma 2.1] to the following statement.

Lemma 1.4. Let the assumptions of Lemma 1.2 hold. Then

d+ Y0 () — ay)

: d . _ .
dimy £([0,1]) < min {m; . 1<j<my,
J o m
dimy Gr £([0,1]%) < min{d+ 2zl 042)71 <j<m;d+ Z(l - ai)}.
& i=1

In Lemma 5.5 of the second part of this thesis we further generalize Lemma 1.4.

1.2. Frostman criterion

In the underlying chapter we mainly introduced techniques for calculating the upper bound
of Hausdorff dimensions. In this section we focus on the calculation of lower bounds by
relating the Hausdorff dimension to potential theoretic methods. Let U C R™ be a subset
and let M!(U, B(U)) be the set of Borel-probabilty measures on U. For v > 0 the vy-energy
of u € MYU,B(U)) is defined as

IV(M):/U/Uu(dx)u(dy)_

[l =yl

The following Theorem is often referred to as Frostman’s theorem (see, e.g., [17, Theorem
4.13]) and states that in order to find a lower bound for dimy U it suffices to show that there
exists a probability measure p € M (U, B(U)) with finite y-energy.

Theorem 1.5. Let U C R™. If there exists a probability measure u € M (U,B(U)) with
I,(p) < oo then HY(U) = oo and, consequently dimy U > .

In this thesis we will be interested in random fields {X (z) : z € R?} with values in R™ and
continuous paths. To be more precise, if we consider the image X ([0,1]%) of such a random

field a typical choice of a random probability measure
e MH(X([0,1)%), B(X([0,1]%)))

is the occupation measure given by

U) = / 1 x(a)cvrd
n(U) ot X@eV}e



1. Hausdorff dimension
for any U € B(X([0,1]%)) so that

/g(w)du(w) = /[0 I @)t

for any measurable function g and, in particular

— Tdp(x)dp( / / X(t s~ Vdtds
/01]d)/[01]d I dn@dnt) = [ I - X6

(see, e.g., [17, p. 243]). Thus, by Theorem 1.5 it suffices to show that

/[0 1)d /[0 1)d [X(t) — X(s)||7dtds < o0

in order to get dimy X ([0, 1]¢) > ~, which almost surely follows from

IE[/ / 1X () — X(s)||"dtds] < oo
0,134 Jpo,1je

Note that the latter integrand is non-negative so that Tonelli’s theorem applies and yields

that in order to show dimy X ([0, 1]%) > ~ almost surely one only has to prove that

/ / E[|IX () — X (s)]]dtds < oc.
0.1 Jjo.e

Moreover, by the same arguments as above it suffices to show that

Sy o BLIE = 51410 = X))

in order to obtain dimy Gr X ([0, 1]%) > ~ almost surely.

2

}dtds < 0



2. Generalized polar coordinates

This chapter is mainly devoted to introducing the generalized polar coordinates and can be
seen as a collection of their properties which have been established in [9, 10, 32]. Throughout
this chapter, we fix a matrix £ € R¥? with distinct positive real parts of its eigenvalues

given by 0 < a1 < ... < a, for some p < d.

2.1. Spectral decomposition

Let f be the minimal polynomial of F, i.e. the polynomial of lowest degree such that f(E) =
0. Moreover, factor f into polynomials f1,..., f, such that all roots of each f; have real
part equal to a; and define W; = Ker (f;(E)) = {x € R? : fi(E)x = 0} as the kernel of
fi(E),1 <i < p. Note that Wy,..., W, are vector subspaces of R?. Then by [38, Theorem
2.1.14]

RI=W1@...0W,

is a direct sum decomposition, that is any = € R? can uniquely be written as
T=21+...+Tp

for x; € W;, 1 < i < p. Further, one can choose an inner product on R? such that the
subspaces W1, ..., W, are mutually orthogonal. A quite often choice in our considerations will

1/2

be ||z||2 = (z,z)"/* the associated Euclidean norm. Furthermore, we will refer to W1 &...@W,

as the direct sum decomposition with respect to FE.

2.2. Definition of polar coordinates

We now recall the definition of the generalized polar coordinates with respect to the matrix
E. This definition originates from the following result taken from [38, Lemma 6.1.5]. Let us

fix an arbitrary norm || - ||.

Lemma 2.1. For any x € R? define

1 dt
E
HwHEz/ It xllft-
0

Then || - || is a norm on R® such that t — ||t¥x| is strictly increasing for all x € R\ {0}.
Moreover, if Sp = {x € RY: ||z|g = 1} denotes the unit sphere in R? with respect to this
norm the mapping ¥ : (0,00) x S — R\ {0} defined by ¥ (t,0) = t£0 is a homeomorphism.



2. Generalized polar coordinates

Since the function 1 in Lemma 2.1 is continuous and bijective, any = € R%\ {0} can

uniquely be written as

T = TE(a:)ElE(x)

for some continuous functions 7g(x) > 0 and lg(x) € Sg depending on E. 7g(z) is called
the radius with respect to E and lg(z) is called the direction with respect to E. We observe
that Sp = {z € R?: 7g(x) = 1} and Sg is compact. Moreover, it is clear that 7g(z) — oo as
|z|| = oo and 7E(xz) — 0 as ||z|| — 0. Hence, 7g(-) can be extended continuously by setting
7(0) = 0. Thus, one obtains a continuous function 7z : R? — [0,00) that additionally
satisfies 7p(z) = T7p(—2). We will recall some more properties of this function in the next

sections. Before doing so let us give the perhaps easiest example of such a function.

Example 2.2. Let I be the identity operator on R? and || - || an arbitrary norm. Note that
any r € R?\ {0} can be written as

x x
= ol - = el o = 7, (2) i, ().
] (£ ’
Since this representation is unique by Lemma 2.1, we obtain that 77,(z) = ||z|| and I;,(z) =

H’;—” for all z € R%\ {0}. Although being quite simple, this example will be of high importance

in this thesis as we shall see in the next chapters.

2.3. E-homogeneous functions

FE-homogeneous functions play important roles in establishing the existence of operator-self-
similar random fields and have been introduced in [9, Secion 2]. Let us briefly summarize the

content of the aforementioned section.

Definition 2.3. A function ¢ : R? — C is called E-homogeneous if ¢(cPx) = co(z) for all
c>0and z € R?\ {0}.

Important properties of a continuous E-homogeneous function ¢ with positive values on
R4\ {0} are that ¢(0) = 0 and that ¢ attains a strictly positive maximum and minimum on

the compact set Sg, that is

My = pax #(0) >0 and mg:= join ®(0) > 0. (2.1)

Definition 2.4. Let 3 > 0 and ¢ : RY — [0,00) a continuous function. Then ¢ is called
(8, E)-admissible if ¢(z) > 0 for all x # 0 and for any 0 < A < B there exists a constant
¢ > 0 such that for A < ||y| < B

6z +y) — d(y)| < crp(x)”

holds for any z € R? with 75(z) < 1.

According to [9, Remark 2.9] if ¢ is (8, E')-admissible then we necessarily have 5 < a;.
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Various examples of E-homogeneous and (3, E)-admissible functions have been given in
[9, 10]. Moreover, a very important example of an E-homogeneous function is given by the

radial part 7p with respect to E. This is straightforward to see, since for any ¢ > 0 and
z € R\ {0}

cFr=cFrpx)Plp(x) = (CTE(x))ElE(ac)

But on the other hand

cFr=1p(cPz)Plp(cPr).
Since this representation is unique by definition, it follows that crp(z) = 7g(cFx) and Igp(z) =
Ip(cFz).
2.4. Properties of polar coordinates

In this section we mainly recall results on how to bound the growth rate of 7 (z) in terms of
the real parts of the eigenvalues of E. Let us start with a Lemma that has been established

in [9, Lemma 2.1].

Lemma 2.5. For any small € > 0 and H > 0 there ewist constants C31,...,C34 > 0 such
that
H H
Caallz]| ™™ < mp(@)” < Caalla) ™

for all x with Tg(x) <1 and
H _ H
Caallal| ™" < re(2)" < Challal|s ™

for all x with Tp(z) > 1.

Corollary 2.6. Let H > 0 and 8 € R. Then

TE(.%')

i Toglra @]~ 22)

In particular, for any e > 0 and x € R\ {0} with ||z|| < n for some n > 0 one can find a
constant C35 > 0 such that

(2)" | log[rp(2)]’| < C3 57 (2)"~* (2.3)
or, analogously
TE(.%')H“Og[l +TE($)_1]B| S 0375TE(:B)H_6. (2.4)

Proof. By Lemma 2.5 we have for ¢ < %

H H_
Csalz)|*17" < mp(2)" < Cajafl™r
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for all = with 75(x) < 1. Using this for an unspecified constant ¢ > 0 we obtain

H a-e
lim 7@3@ <S¢ lim =] pH
lallio [log[Tr(2)I?| = "lizli0 | 11|25 <))

=0,

where the last equality is a well-known fact. Let us now prove (2.3), which is equivalent to
75 (2)"|log[rp (2))°| < Cs.
But this is obvious, since 7 is continuous and by (2.2)

TE(.T)€

lim ——M—~%2—— = 0.
[0 [log[Te(z)] |

The proof of (2.4) is carried out analogously. O

Biermé and Lacaux [10, Corollary 3.4] proved the following improvement of the bounds in

Lemma 2.5.

Lemma 2.7. Let R* =W, & ... & W), be the direct sum decomposition with respect to E.
For any n € (0,1) and H > 0 there exist finite constants Cs¢,C37 > 0 such that for any
x € W; \ {0} with ||z|]| <n

;-1 ;-1

H Lt H H it
Cagllz|* Nogllz[ll] ¢ < 7m(x)™ < Cazllz|* [logll«[]] =,

where l;,1 <1 < p, are positive integers depending on W;.

In [32, Example 6.2] it is shown that the bounds in Lemma 2.7 cannot be improved in
general. However, in Example 4.6 of the second part of this thesis we will see that there is
an example of a matrix I in which these bounds can be improved.

The upper bound in the following Lemma is the statement of [9, Lemma 2.2] and implies
that the function p : R?xR? — [0, c0) given by p(z,y) = Te(x—y) is a quasi-metric on R? (see
[41] for a definition of a quasi-metric). By using the same method with minor adjustments

we can also prove the lower bound.

Lemma 2.8. There exists a constant C3g > 1 such that for all x,y € R? we have

Cig(te(x) +7(y)) < 1Bz +Y) < Ca8(te(2) + TE(Y)).

Proof. Let us prove the lower bound. Set G = {(z,y) € R? x R : 75(x) + 7(y) = 1}. Note
that G is bounded and, by the continuity of the function 7, it is closed. Hence, G is compact.
Moreover, GG is bounded away from zero. Thus, the continuous function (z,y) — 7e(z + y)

assumes a positive and finite minimum on G. Let us define

K = i + ).
i (@ +y)
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Note that Sg x {0} C G. Thus, by the definition of K we have
K <1(0+0)=7r(0)=1.
For z,y € R?\ {0} define s = (1g(z) + TE(y))fl. Then it follows
me(x+y) =s ste(r +y) = s 're(s"(z +y) = s 're(sPr + s"y),

where we used that 75 is an F-homogeneous function as shown in Chapter 2.3. Note that

(sPx,sPy) € G, since
re(stz) + me(sPy) = s(te(z) + me(Yy)) = ssTh=1.
Therefore, we obtain
| E E A
TeE(x+y)=s TE(s"r+s"y) > s K = (tp(x) + T6(y)) K.

Hence, this proves the lower bound. O

Corollary 2.9. For any H > 0 there exists a constant C39 > 1 such that for all z,y € R?
we have
Cg,_,é (re@)" + 15(W)™) < e+ )" < Cso(ra(x)” + TR(NT).

Proof. Throughout this proof, let ¢ be an unspecified positive constant which might change

in each occurence. Let us first prove the left inequality. From Lemma 2.8 we get

rp(z +y) " > elrp(x) +muy) ! > erp(a)?

and, analogously 7g(z + 3) > crg(y)! so that, overall

ez +y)" > K (re(@)” + me(y)")

for some suitable K1 > 1. It remains to prove the right inequality. Using the left inequality

we obtain

H

me(@)! = e +y— )" > c(rel@+ )" +5(-") > crp(z + )"

and, analogously 7g(y) > crg(z + y). Combining this, we conclude

2ctp(x + y)H < TE(x)H + TE(y)H

or, equivalently
me(z +y)! < Ko(rp(x)” + mp(y)")

for some suitable K3 > 1. Now the statement follows by choosing C3 9 = max{K;, K»}. O

10
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Remark 2.10. As before let R* =W, & ... & W), denote the direct sum decomposition with
respect to E. For any 1 < k < p define O, = W1 & ... 3 Wj. Then Corollary 2.9 along with
Lemma 2.7 implies that one can find two constants C3 19, C3,11 > 0 such that for any ¢ > 0,
H >0,z € Wyk+1<i<pandye O withz =y + 3", ,z; and z < n for some
n € (0,1) we have

Hie P Hite H-e P H-e
Coao(llyll ™ + 3 fasll ™) <7e@) < Con(loll s + 3 Jlaall ™).
i=k+1 i=k+1

This estimate will play an important role in our considerations and we will quite often make

use of it.

11



3. Stable distributions and integrals

This chapter serves as an introduction to a-stable distributions and stable integrals. The
first section of this chapter is strongly influenced by the content of [42, Chapter 2|, where
a more general treatment and related results concerning stable distributions can be found.
The second section can basically be seen as a short summary of [42, Chapter 6], where the
theory of complex-valued stable stochastic integrals has been developed. This theory has been
extended to vector-valued stochastic integrals in [33], which will be summarized in the third

and last section of this chapter. From now on, throughout this thesis let us fix a probability
space (2, A, P).

3.1. «a-stable random variables

We now recall the definition of a-stable random variables. Here we only focus on the case of

symmetric distributions.

Definition 3.1. A random vector X = (X7,..., X,,) with values in R™ is called multivariate

symmetric stable if for any A, B > 0 there exists C' > 0 such that

AXW 4 Bx@ L ox, (3.1)

where X(M) and X are independent copies of X and 4 means equality in distribution.

Stable random variables are usually called a-stable. The term a-stable is justified by the
following Theorem [42, Theorem 2.1.2].

Theorem 3.2. Let X = (Xy,...,X,,) be a multivariate symmetric stable random vector.

Then there is a unique constant o € (0,2] such that in (3.1)
C = (A” + B*)s.

Moreover, any linear combination > -, bx Xy of the components is univariate symmetric

stable. X is also referred to as symmetric a-stable (SaS) with index o of stability.
Remark 3.3. If X is a Gaussian random vector with mean 0 and covariance matrix ¥ € R™*™,
i.e. X ~N(0,%) then X is SaS with index a = 2, since for any two independent copies X 1)

and X@ of X and any constants A, B > 0

AXD 4 BX® « N(0,(A% + B2)X) ~ (A% + B?)2 X

12
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so that (3.1) holds with C' = (4% + B2)%. Moreover, any symmetric 2-stable random vector

has a Gaussian distribution.

The property (3.1) of symmetric a-stable random vectors can be extended to the following
result (see [42, Corollary 2.1.3]).

Corollary 3.4. A random vector X is symmetric a-stable if and only if for any n > 2
XW 4y x@ 4 4 xmdyix,

where XM ..., X are independent copies of X.

In this thesis characteristic functions of stable random vectors play an important role in
calculating certain expected energy integrals as given in Chapter 1.2 and fortunately they
are usually known in closed form. Let X = (Xq,...,X,,) be a symmetric a-stable random
variable with values in R™ and for any 6 = (0y,...,60,,) € R™ let

6 (0) = da(01,. .., 0m) = Elexp(i(0, X))] = Elexp(i i 0, X))
k=1

denote its characteristic function. The following Theorem [42, Theorem 2.4.3] gives useful

information on ¢4 (0).

Theorem 3.5. X is a symmetric a-stable vector in R™ with 0 < a < 2 if and only if there
exists a unique symmetric finite measure I' on the unit sphere Sy, = {x € R™ : ||z| = 1}
such that

6a(0) = exp (= [ 1(6.2)|"T(dr)).

m

I' is called the spectral measure of the symmetric a-stable random vector X.

Note that Theorem 3.5 only gives information on the characteristic function for 0 < a < 2.
However, in the Gaussian case a = 2 it is well-known that the characteristic function of a

Rme

random vector with mean 0 and covariance matrix 3 € is given by

62(0) = exp(—5070).

Corollary 3.6. If m = 1 one has S1 = {—1,1} and the symmetric spectral measure of the
symmetric a-stable random variable X satisfies T'({1}) = T'({—1}). Hence, the characteristic
function of X is given by

$a(0) = exp(—c®|0]*)
with

— (20({1)))".

Q=

o= ([ lefr(dz)

o s called the scale parameter of X. Furthermore, though not being known in closed form in
general except for a few special cases, the probability densities of a-stable random variables

exist and are continuous, see [42, p.9].

13



3. Stable distributions and integrals

3.2. Complex-valued SaS stochastic integrals

The aim of this section is to define stochastic integrals which have a stable distribution. Again
we restrict our considerations to special cases and refer the reader to [42, Chapter 6] for a
more general outline. In the following we will identify any complex-valued random variable
X = X1 +iXs with the variable (X1, X5) taking values in R?. Let us first state the following

definition.

Definition 3.7. A complex-valued SaS random variable X = X; + i X5 is called isotropic or

rotationally invariant if
evx L x

for any ¢ € [0, 27).

The following Theorem [42, Theorem 2.6.3] characterizes the set of all isotropic SaS random
variables for 0 < o < 2.

Theorem 3.8. For 0 < a < 2 let X = X1 +1Xo be a complex-valued SaS random variable
and let I' be its spectral measure according to Theorem 3.5. Then X is isotropic if and only
if I is uniform, that is for any B € B(S2)

where
cos sin
R, - ( sp sing )
—sing cosgp
is the matriz corresponding to the rotation by the angle ¢ € [0, 2m).

In the following let Ay denote the Lebesgue measure on RY and define
& ={A € B(RY) : \y(A) < o0}. (3.2)

Furthermore, let L(Q) be the set of all real random variables on the underlying probability

space. Because of its appearance in (3.2) \; is also referred to as Lebesgue control measure.

Definition 3.9. A mapping M : & — L%(Q) is called an independently scattered random

measure with Lebesgue control measure if it satisfies the following two conditions.

(i) If Ay, ..., Ak € & are disjoint then the random variables M (A1), ..., M(Ag) are inde-
pendent.

(ii) M is o-additive, that is for any sequence of pairwise disjoint sets (A4, )nen in & such
that (U,—, An € & we have

M( fj An> :iM(An) a.s
n=1 n=1

14



3. Stable distributions and integrals

According to [42, Section 6.1] there exists a random measure, denoted M, such that for
any A € & the random variable M, (A) is a complex-valued isotropic SaS random variable
with the property that for 0 < o < 2 the spectral measure I'4 of M, (A) according to Theorem
3.5 is given by

Pa(B) = M(A)y(B)

for all B € B(S2), where 7 is a finite and uniform measure on the unit circle S. Note that I'4
is a uniform measure on Sy, which by Theorem 3.8 is equivalent to M, (A) being isotropic.
By [42, Theorem 6.3.1] for all # € R? the characteristic function of M, (A) is given by

Efexp (i(6, Ma(A)))] = exp (= [0]"coa(4)1(S2))
with

1 ™
co = —/ | cos p|%dp.
21 Jo

In the literature, for simplicity it is usually assumed that 7 is a probability measure on So,
which implies that v(S2) = 1. However, in this thesis without loss of generality we will

assume that v(52) = % so that the characteristic function of M, (A) equals

Elexp (i(6, Ma(A)))] = exp (- |0]*Aa(4))

for any @ € R?. This characteristic function remains to be true in the Gaussian case o = 2.
From now on we will call M, a complex isotropic SaS random measure.
Having introduced a complex isotropic SaS random measure we are ready to define the

stochastic integral
f ()Mo (dx)
Rd

for any measurable function
Fel*N ={f Ri>C: /d ()| *dz < oo},
R

where A = A\g and dz = A\j(dx). Let us first assume that f is a simple function of the form
f(z) =377 cjla,(z), where cy,...,c, € Cand Ay,..., A, € & are disjoint. In this case we
define

I(f) = |, f@)Maldr) =3 ¢;Ma(4)).
j=1

Now assume that f € L%()) is arbitrary. Then according to [42, p. 277] there exists a

sequence of simple functions (fy,)nen in LY(\) with the properties that

fu(@) = f(2)

as n — oo for almost every z € R? and that the sequence (f,,)nen is dominated, that is there
exists a function g € L%(\) such that for every n € N and 2 € R?

[fn(2)| < g().

15
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In addition it is shown in [42, Chapter 6] that the sequence of integrals (I(fn)), ¢y defined

above converges in probability and one defines

I(f) = plim I(fy),

n—oo

where plim denotes the limit in probability. Furthermore, this limit does not depend

n— o0
on a particular choice of the approximating sequence (fy)nen. The following Proposition

summarizes some important properties of the integral I(f).

Proposition 3.10. (i) For any f € L*(\) the integral I(f) is a complez-valued isotropic
SaS random variable.
(ii) For any f,g € L*(\) and any a,b € C

I(af +bg) =al(f)+bl(g) a.s.

Let {f; : t € R¥} C L%)\) be a family of functions. We will usually be interested in
the random field {I(f;) : t € R?}. The following result might be quite surprising at first
glance and states that the real and imaginary parts of {I(f;) : t € R?} have the same finite-
dimensional distributions [42, Corollary 6.3.5].

Theorem 3.11. Let {I(f;) : t € R} be given as above. For any 01,...,0, € R and

ti,... t, € RY

]E{exp (izn:Gj ReI(ftj)ﬂ = exp ( - /Rd | iejftj(x),adz)
j=1 Jj=1

and, in particular
(ReI(fy):t e RN (ImI(f,):t e RY).
Remark 3.12. Let M = M"' +iM? be a Gaussian random measure satisfying

E[M(A)M(B)] = \(ANB) and M(—A) = M(A)

for all A, B € &y, where M denotes the complex conjugate of M. Furthermore, let My be
the complex-valued isotropic SaS random measure with a = 2 defined above. Assume that
{f; : t € R} C L2()) is a subset of functions satisfying

for all £,z € R, Then one obtains

(Re /Rd i) Mo(da) : ¢ € RYY 2 {/Rd file)M(de) : t € RYY.

A proof of this statement and the definition of the real-valued integral

/R fila) M (dz)

16
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can be found in [42, Section 7.2.2].

3.3. R™-valued SaS stochastic integrals

This section is concerned with integral representations of random vectors which have a stable
distribution. These integrals have been constructed in [33] by providing both stochastic
integrals of real and complex matrix-valued functions. From now on, throughout this thesis
let [|Q] = max|;|=; [|Qx|| be the operator norm for any matrix @ € R™*™.

Let us first recall the definition of stochastic integrals of real matrix-valued functions. Since
the details of this construction are omitted in [33], we will be more precise concerning the
proofs of the statements we make. Let & be defined as in the previous section. According to
[33, p. 8] there exists a random measure W, such that W, (A4) = (W1(A),..., W (A)) is a
SasS random variable with values in R for any A € & with the property that for 0 < o < 2
the spectral measure I' 4 of W, (A) is given by

La(B) = Aa(A)y(B)
for any B € B(S,,), where v is a finite and uniform measure on S, satisfying
[ 1.2 (dz) = o]
Sm
for any 6 € R™. Therefore, by Theorem 3.5 the characteristic function of W, (A) is given by
E|exp (i(0, Wa(A))) | = exp (= Aa(A)]|0]*).

In particular, for disjoint sets Ay,..., A, € & and 01,...,0, € R™ one obtains
E[exp (i Y105, Wa(4)))) | = exp (= D a(4))[165]1°).
j=1 j=1

This remains to be true in the Gaussian case a = 2. Now assume that {Q(u) : u € R} is a
family of real m x m matrices and that the function @ : u — Q(u) is measurable. In addition

assume that

[ Q@) du < .
R4

We want to define the integral
1@ = [ QuWa(du).

Suppose first that @ is a simple function of the form Q(u) = 774 Rjla;(u), where
Ry,...R, e R™*™ and Ay,...,A, € & are disjoint sets. In this case we define

I(Q) =D RiWa(4;).
j=1
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Thus, one obtains a SaS random vector with characteristic function given by
n

E[ exp (i(6,1(Q)))] = E[ exp (i<9,§jRjWa(Aj)>)} E|[exp (i Z (RF0.Wa(4))))]

e (= L AADIRTO) =exp (— [ 107 o)

for all # € R™. Now assume that @) is an arbitrary measurable matrix-valued function
satisfying

[ IQG)du < .
R4

Then according to [34, p. 148] there exists a sequence of simple matrix-valued functions

(Qn)nen as above satisfying

107w = Q7w du — 0 (33)

as n — oo. From the definition of the integral I(-) for simple matrix-valued functions we

further get

E[exp (i60,1(Q) — 1@u)))] = exp (= [ | 1QF ()0 — QF @)o°du) — 1

for all § € R™ as m,n — oo by (3.3). Thus I(Q,,) — I(Q.,) — 0 in probability as m,n — oo
and the sequence (I (Q"))n cy converges in probability. We define

1(Q) = plim I(Qn).

n—00

This limit does not depend on the choice of the approximating sequence (Qy)nen. Indeed,
assume that both (Qn)nen and (Sy,)nen are sequences of simple functions satisfying (3.3).

Then the sequence (T},)nen defined by

n if n even,
7, = ¢ ¥
S, if n odd

satisfies (3.3) as well so that
plim I(T},)

n—oo

exists, which in particular yields

plim I(Q,,) = plim I(S,).

n—o0 n—oo

Thus, one obtains a SaS random vector with characteristic function given by

E[exp (100, 1@)] = lim E[exp (i60,1@u0) | = Jim exp (= [ |QF(@)o)"du)
= exp (-~ /Rd 1Q7 (b du).

18
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Let us summarize the properties of the integral in the following Theorem.

Theorem 3.13. Let {Q(u) : u € R} be a family of real m x m matrices. If the function Q
given by Q(u) for all u € R? is measurable and satisfies

L, It ?du < oc
Rd

the stochastic integral
1@ = [ Q)Wa(du)
exists and is a SaS random vector with values in R™. Moreover, its characteristic function
s given by
E[exp (i00.1(@))] = exp (= [ 107 ()0]*du)
for all 9 € R™.

Let us now turn to the definition of stochastic integrals of complex matrix-valued functions
by briefly summarizing the content in [33, Section 4]. Again one first has to remark that
there exists a random measure M, such that M, (A) is a C™-valued SaS random variable for

any A € & with characteristic function of its real part Re M, (A) given by
E | exp (i(6, Re Mo (4)) )| = exp (= Aa(4)]0])

for all & € R™. Let {Q1(u) : u € R} and {Qz(u) : u € RY} be two families of real m x m
matrices and define Q(u) = Qi(u) + iQa(u) for all u € R? Assume that the function
Q : u Q(u) is measurable and satisfies

L, (10l + 1Ga ()l < o )

For notational convenience let us define the set of all complex matrix-valued measurable

functions satisfying (3.4) by L*(\). We want to define the real vector-valued integral
1(0) = Re /R Q) NIy (du).

As usual we first assume that Q is a simple function of the form

Q(u) = Q1(u) + iQz(u ZR Ta,( )—i—iiTjﬂAj(u),

j=1

where Ry, ..., Ry, T1,...,T, € R™"™ and A4,..., A, € & are disjoint. In this case we define
=3 (R MR(A;) = TyNIF(Ay),

where M n = Re ]\Zfa and ]\Zf[o‘ = Im Ma denote the real and imaginary part of Ma. If
Q(u) = Q1(u) +iQ2(u) € L*(\) is arbitrary one chooses a sequence of simple functions

19



3. Stable distributions and integrals
(Qn = QTf + i@g)neN satisfying
16" = Q)T 5y — 0
and

[ 1Ga()" = Q)" 5ydu — 0

as n — o0o. The sequence (1: (Q”))n cny converges in probability and one defines

1(Q) = plim 1(Q"),

n—o0

where this limit does not depend on the choice of (Q™),en as above.
Now let {Q; : t € R?} € L¥()\) be a family of complex m x m matrices. To close this

section let us summarize some important properties of the random field {I(Q;) : t € R?}.

Theorem 3.14. Let {I(Q;) : t € R%} be the R™-valued SaS random field defined above.
Then for any 61, ...,0, € R™ and ty, ..., t, € R we have

[ exp (i(3 0. 7(@1,)))] = exp ( - (IS e e+ i@%j<u>Tejr2)gdu>,
j=1 Jj=1 Jj=1

where Q%] + ZQ% = Qtj.

20
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4. Operator scaling stable random sheets

Having set the foundations for this thesis we are now able to present our main results. We
begin this chapter with the formal definition of operator scaling stable random sheets and
recall some results concerning their existence and properties established in [20]. Based on

this we investigate their sample path properties in the subsequent sections.

4.1. Definition and existence

Throughout this chapter, let d = 77, d; for some n € N, dy,...,d, € Nand let F; € R% xd;

j=1,...,n be matrices with distinct real parts of their eigenvalues given by
; ,
0<ay <...<a)

for some p; < dj. Furthermore, let ¢; = trace(Ej). We define the block diagonal matrix
E € R¥*d a5

FEn 0 N
0 B, | 7!
where the matrices F1, ..., E, € R¥4 are defined as
0 0
0
Ej = Ej
0
0 0

In analogy to [20, Definition 1.1.1] let us state the following definition.

Definition 4.1. A scalar valued random field {X(z) : € R?} is called operator scaling

random sheet if for some Hy, ..., H, > 0 we have

(X(cEiz):z e R} (HiX(2): 2 € R (4.1)

forall¢>0and j=1,...,n.

22
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Let us remark that any operator scaling random sheet {X(z) : € RY} according to
Definition 4.1 is also an operator scaling random field of order £ and H = Z;L:1 Hj in the
sense of (0.2), since by applying (4.1) iteratively one gets

(X(cPz) iz e R L {X(F .. Frg) iz e R L (X (B2 cPrg) iz e RY

e X (2) rz e RY = {F X (2) sz € RY)

for any ¢ > 0. Further note that this definition is indeed a generalization of the definition of
operator scaling random fields, since forn =1, d =dy and £ = F; = Fy (4.1) coincides with
the property (0.2).

Let us now turn to the existence of harmonizable operator scaling SaS random sheets
constructed in [20]. Suppose that we are given functions ¢; : R% — [0, 0o) that are continuous
and Ef—homogeneous according to Definition 2.3. Moreover, assume that v;(x) # 0 for « # 0.
Let 0 < a < 2 and M, be a complex-valued isotropic symmetric a-stable random measure on
R? with Lebesgue control measure as introduced in Chapter 3.2. The following Theorem is
due to [20, Theorem 4.1.1] and provides the existence of harmonizable operator scaling SaS

random sheets.

Theorem 4.2. For any vector v € RY let x = (z1,...,7,) € R x ... x R? = RL. The
random field

Xa@) =Re [ TI(9 — 0(6) % Ma(de), v e R (4.2)
RA
j=1
exists and is stochastically continuous if and only if H; € (0, a{) forallj=1,...,n.

Let us remark that by the definition of stable integrals given in Chapter 3.2 X, (z) exists

if and only if the kernel function in the integral in (4.2) satisfies
LTI = 1)~ dg < o0
R GZ

or, equivalently

II /]R |68 — 1%y (&) "9 dg; < oo,
j=1

The finiteness of the above integrals has basically already been shown in the proof of [9,
Theorem 4.1] and the stochastic continuity can be proven similarly as a consequence of this
Theorem. Further note that from (4.2) it follows that X, (z) = 0 for all z = (z1,...,z,) €
R% x ... x R = R? such that z; = 0 for at least one j € {1,...,n}.

The following result has been established in [20, Corollary 4.2.1] and shows that the random
field given by (4.2) is an operator scaling random sheet. Its proof is carried out exactly as
the proof of [9, Corollary 4.2 (a)] by using the characteristic function of stable integrals given
in Chapter 3.2.
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4. Operator scaling stable random sheets

Corollary 4.3. Under the conditions of Theorem 4.2 the random field {X,(z) : x € R?}
given by (4.2) is operator scaling in the sense of (4.1), that is

(Xa(cPiz) 2 e RS (Hi X, (2) : 2 € RY} (4.3)

forallc>0andj=1,...,n.

Thus, Theorem 4.2 and Corollary 4.3 provide a large class of operator scaling SaS random
sheets. As we shall see below fractional Brownian sheets fall into the class of random fields
given by (4.2). It is well-known that a fractional Brownian sheet does not have stationary
increments. Thus, in general a random field given by (4.2) does not possess stationary
increments. But it satisfies a slightly weaker property as the following statement shows. Let
us mention that it has been proven in [20, Corollary 4.2.2] by essentially using the same

arguments as in the proof of [9, Corollary 4.2 (b)].
Corollary 4.4. Let x = (z1,...,7,) € R® x ... x R¥% = R%  Under the conditions of
Theorem 4.2 for any h € R%, j =1,...,n the random field {Xo(z) : © € R?} satisfies

4 Xo(z).

Xo(z1, .. szjm,zj+hxjpn, . xn) — Xo(T1, o @1, R, Tty ..., )
Having recalled the definition of harmonizable operator scaling SaS random sheets our
main objective is to provide results related to their sample paths concerning path continuity
and Hausdorff dimension. A main tool in studying sample path properties of operator scaling
random sheets are the generalized polar coordinates with respect to the matrix E introduced
in Chapter 2. Using (4.3), in the Gaussian case o« = 2 one can write the variance of Xq(x),z €

R?, as

E[X3(x)] = E[X3 (ri(2)Flp(a))] = 7(a) 2 ELX3 (1(2))]

with H = Z?:l Hj. Since in the Gaussian case many sample path properties such as path
continuity can be deduced from the variance, this shows that information about the behavior
of the polar coordinates (7g(x), [g(x)) contains information about the sample path regularity,
i.e. polar coordinates are useful to characterize the sample path regularity. This property
also holds in the stable case a € (0,2). Thus, before studying the sample paths of the random
field { X, (z) : z € R9} given in Theorem 4.2 in the following section we will establish some
useful properties concerning the radial part of the polar coordinates and other results which

will serve as useful tools in our investigations.

4.2. Preliminaries

Throughout this chapter, let us denote by (7r(z),lr(z)) the generalized polar coordinates

according to Chapter 2 for any matrix 1" with positive real parts of its eigenvalues.

Lemma 4.5. Let E be as in Chapter 4.1. Then there exists a constant Cs1 > 1 such that

n

Coi Y e, (z)" <7p(@)” < Cs1 ) 7a,(z))"

Jj=1 Jj=1
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4. Operator scaling stable random sheets

orany H >0 and z = (z1,...,2,) € R4 x ... x R = RY,
Jor any

Proof. For simplicity in this proof let us assume that n = 2. The general case follows
inductively. Furthermore, for any vector x € R? let us write z = (x1,29) € R% x R%. By

Corollary 2.9 there exists a constant ¢ > 1 such that

%(TE(ZL'l, 0)4 +TE(O,3:2)H) < 75((z1,0) + (0, l‘g))H = rp(z) < C(TE(:nl,O)H +75(0, mg)H)

for all x = (x1,22) € RY Thus, it only remains to prove that 7p(z1,0) = 7g,(21) and
7E(0,22) = Tg,(x2). Let us prove that 75 (z1,0) = 7g, (x1). The assertion 7£(0, z2) = Tg,(22)

is proven exactly the same way. Note that by definition

(21,0) = 78(21,0)Plp(21,0) = (7m(21,0)" n(z1, 0)1, 75 (21, 0)Pp(21,0)s )

— (TE(xl, O)EllE(xl,O)l, O),

where we used the notation Iz(z) = (Ig(z)1,g(r)2) € RE x R%. But on the other hand one
can write

21 = 7g, (21) P g, (1)

yielding that

78, (1) 1, (1) = 7B(21,0) P p(21,0)1.

Further noting that
lp(21,0) = (Ig(21,0)1,l(21,0)2) = (Ig(x1,0)1,0)
and taking into account the definition of the norm || - ||g given in Lemma 2.1 we obtain
L= [ltg, (z0)ll e, = (1, 0)1l| 6, -

Thus, by the uniqueness of the representation we have 7, (1) = 7g(x1,0) and g, (z1) =

lg(x1,0); as desired. This concludes the proof. O

Example 4.6. Let n =d and d; = ... = d, = 1. Assume that £1 = aq,...,E, = a, are

positive and pairwise distinct. Hence, F is a diagonal matrix given by

. aq 0

E=)FE;=

J=1
Note that any z; € R can uniquely be written as
a; %'ai
Tj = Ta; (%) o, (x5) = F|a;]*

1
so that 7, (zj) = |x;|% forall j = 1,...,n. Note that ai, ..., a, correspond to the eigenvalues
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4. Operator scaling stable random sheets
of E and the direct sum decomposition with respect to E is given by
r=2x1€1 +...+2xgeq =:T1+...+Tp

for any = (x1,...,24) € R% where (e1,...,eq) denotes the canonical basis of R%. By

Lemma 4.5 for any H > 0 we further get

1& A R4 . d . u n "
Dozl = =Y Nl < () <edfaylv =) Tyl
€= “j=1 =1 =1

for some constant ¢ > 1. Note that this bound is an improvement of the bounds given in
Remark 2.10.

We now state two technical Lemmas which will be needed in order to estimate certain
expected energy integrals arising from Frostman’s theorem (see Chapter 1). Lemma 4.7 below
with k£ = 1 is an analogous statement to [5, Lemma 3.6] (see also [54, p. 212]). Furthermore,
Lemma 4.8 with k£ = 1 is the statement of [5, Lemma 3.7]. By using the methods in [54, 5]

we can establish the statements for general k € N.

Lemma 4.7. Let 0 < h < 1 be a given constant. Then for any constants 6 > h,M > 0,

u > 0 and any k € N there exist positive and finite constants Cs o and Cs 3, depending only
on 0,u and M such that for all0 < A< M

2
I(A) = / (A+ ") b= 1dr < Cso(A~"5 + Cs). (4.4)
0

Proof. Throughout this proof, let ¢ be an unspecified positive constant which might change

in each occurence. Let us first assume that v = %. In this case we can estimate
2 2 2
I(A) = / (A +rMy~upk=tar < / rthe Rl = / P75 TRl dr < oo,
0 0 0
since § > h by assumption and, thus —% +k—1 > —1. Hence, I(A) is bounded by a

constant independent of A. So it remains to prove (4.4) for u # %. By using the substitution
s = A+ r" we obtain

2 1 rA+2h _
I(A) = / (A+rh)y~urk=tdr = 7/ s (s — A)%ds
0 h Ja
A42h A+2h
< %/ s~uth—1ds < %(M—i— Zhﬁ*%/ s*”+§*1ds,
A A

where in the first inequality we used that k — h > 0. Now we have to consider two cases.

First assume that —u + % < 0. Elementary integration shows that

h
A2 c

I(A) < c/ ST s = — = (AT — (A4 2h) TR ) <eATHE
A u —

SSES
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4. Operator scaling stable random sheets

On the other hand if —u + % > 0 one gets

C
k
—U‘f‘g

k

(st e <

1(4) <

Overall we obtain

I(A) < A5 4 (M +2") 75 < Csa(A™F5 + Cs )

—u—i—%

for some suitable constants C5 > and Cj 3 independent of A. O

Lemma 4.8. Let a, 3, n be positive constants and k € N. For A >0 and B > 0 define

7,]{?—1

2
J = J(A, B) :/0 S e (4.5)

Then there exist positive and finite constants Cs4 and Cs 5, depending only on o, 3, n such
that the following holds for all reals A, B > 0 satisfying As < Cs4B:

(i) if a8 > k then

1
J < Cs5—7— 4.6
> U555 Aﬁngﬁ ( )
(ii) if af =k then
1 k _k
J < Cs5—log(l+ B*A @) (4.7)
’ Bq/]
(iii) if 0 < aff < k and aff +n # k then
1
J S C5,5(W + 1) (48)
Proof. Using the change of variables s = 5 we get
J = /231 ! L prigd-1pgs
“Jo  (A+Bes®)? (B+ Bs)"

1 2 1 1,
= 7/ 5" ds.
Bk o (A+ Bes®)B (1 + s)n

Note that if B < 2 one can split the last integral so that

1 1 1 sk=1 2B7! 1 sh=1
= ds + —— ds. (4.9
7= /0 (A1 Bosa)f (Lysy1 " Bk /1 A Besp ey @9

On the other hand if B > 2 then J is bounded from above by the first term in (4.9). Hence,
in the following it is sufficient to consider the case 0 < B < 2. Thus, using the change of
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4. Operator scaling stable random sheets

variables t = A~# Bs we further get

Sk—l

1 1 gk—1 2B~1 J
< ds + —— S
T= B /0 (A+Bosa)p ™t Bk /1 (A+ Boso)Bsn™®

1
“a k—
! /A B( P gk gt it g
0

~ Bk A+ Ate)p
24~ k-1 (4.10)
1 a t kgl gkt g L
+ —k / 1 n B A o B A&dt
B"=F Ja~aB (A + At*)B A B-ntn

1 1 A_éB 1 1 00 tk’fl
=g a4 [ et
B" p8-% Jo (1+to)Bti=k AB—E+2 Ja-gp (1 +t)Btn

From now on let ¢ be an unspecified positive constant which might change in each occurence.

Let us now first prove (i). If a8 > k, by using the change of variables s = 1 + t“ one gets

1—a
a

1
A aB 1 A-1Bo 1 0o .
/ Wdt:c/ (S)l—deSC/ s7(s — 1) %" ds < o0,
0 ( + ) 1 35(3_1) 1

o

since —( + k?TO‘ < —1. Thus, one gets an upper estimate of the last expression in (4.10) by

c 1 o© 1 gt
AP—4 B - AP+ /A*éB taftn 1=k

c c 1 —af—n+k
B AB-Epn + AB-E+1 (A aB)
& &

= Aﬂ_an + BaB+n—k’

Using that A < Cs.4B the last expression can further be estimated by

c c 1

+ — s
AP-Epn " ap-tpn PP 46-Lpn

for some suitable C5 5 > 0. This proves (4.6). Let us now show (ii) and assume that a5 = k.

Then the last expression in (4.10) equals

1 oAEB 1o gk
— / gt — / L
B Jo (14 t)Bei=k Aa Ja—ap (14t)Ptn

Note that for any y > 0 and m >0
20+y)" =0+y)"+A+y" =21+y"
and using this inequality with y = t* and m =

1 1
5 +tF) = 51 + %) < (1 +t)P.
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Thus, we get an upper estimate of the last integrals by

2 A*éB 1 1 00 tk—l
—/ 7dt+—n/ . o—dt
B /o (1 + th)tl—F Ao Ja—ap thtn

1
2 (A B 1 1 oo 1
= —dt 7/ —dt
B /0 ti=k ¢t + Ae Ja-dptitn

_1
2 /A o B tk—l 1 1 1
0

= — S u— +777
B L+tE " Aq (A=a B
21 kg 11 1 -

for some suitable C5 5 > 0. Thus, it remains to prove (4.8). So assume that 0 < af < k and
af +n # k. Let us first consider the case af +n < k. Then we can estimate J from above
by
J < /2 prBmnth =l g < oo,
0

since —af8 —n+ k —1 > —1. Now assume that a5 +n > k. Let us split the last integral in
(4.9) as

1 Blan 1 skl 12 1 51
J = fk/ ds + 7,]{/ ) ds.
B+ Jy (A + Bas®)B (1 + s)n Bk Jp-1i4% (A+ Bes®)B (1 + s)n

By using the change of variables ¢t = A% Bs we further get

1! 1 AsB~!
J = k/ : As—w B Rh gy
Bk Jo (A+At*)P (1 4 Aap-1t)n

1 247w AElplokk-1 41 g1
Bk /1 (A + Ate)8(1+ A= B-1t)n

dt

11 11 A -1
< — k/ aﬁdt+—7k/ : dt.
B AB8-% Jo (141t2) B AB-3 11 (14 t4)8(1+ Aa B-1t)n

Since —aff+k—1> —1and 0 < B < 2 by assumption, we can further get an upper estimate

of the last expression by

1 1
1 BA™@ h—1 1 24 @ k=1
A / dt + —— / ) : dt =: Ja.
AP—aBn  AP—apBn /1 tos AP~aBn JBaa tabtn(Aa B-1)n

Let us note that

BAié 1 1
/ tPR=Lg — ((BA™a) "R _ ¢ < ¢(BAT )btk
1

and that

1
A~ w
1 ? pmab—ntk=1 g1 ¢ (BA—é)—aﬂ—n—l—k: _ (A—é)—aﬁ—n—kk

(AaB-1)n Jpa—& (AxB-1
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c

< — BoB—ntk gB+E—% _ C(BA—é)—ozB-Hc_
(AFB1)

Therefore, we can estimate Jo from above by

g, < c n 1 c
*= AEpn " AP-Epn (A Byes-k
C C C C
AP—Epgn B (Aw)ep—kpn  BoPtn
C
S Ba5+n_k7

where we used that A < U548 in the last inequality. Overall we get that

1
J < CS’S(W +1)
for some suitable constant Cs 5 > 0. This completes the proof. Ll

4.3. Uniform modulus of continuity

In this section we study the uniform modulus of continuity of the random field given in (4.2).
Our approach is to apply results established in [10, 11] by using the properties stated in
the preceding two sections. Throughout this section, suppose that R € R¥*? with ¢(R) =
trace(R) and the distinct real parts of its eigenvalues are given by 0 < a; < ... < a,, for some

p < d. Let us first state the following result which is a direct consequence of [10, Proposition
5.3].

Proposition 4.9. Let {X(x) : * € R} be a real-valued centered Gaussian field, G4 C RY

a non-empty compact set and assume that there exists a constant C > 0 such that for all

x,y € Gq
E[(X(z) — X(y))°] < Crr(z — y)*"|log mr(z — y)|° (4.11)

for some H € (0,a1) and 8 € R. Then there exists a modification X* of X such that

“u [ X*(z) — X*(y)]

p

y€Ga TR(7 — y)H|log Tr(z — y)|
T#Y

< o0 a.s.
$+8+e

for any e > 0.

Let us remark that Proposition 4.9 is a quite general result, since it holds for any centered
Gaussian random field that satisfies (4.11). A corresponding result for certain stable random
fields has been proven in [11] by using series representations of stable fields as given in
[29, 30, 25]. More precisely, in the following let M, be a complex-valued isotropic SaS

random measure according to Chapter 3.2. Furthermore, let Y be a scalar valued random
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4. Operator scaling stable random sheets
field defined through the stochastic integral
Y(a)=Re [ fale,€)Ma(de) (412

for any z € RY, where f,(z, ) € L¥()\) is given by

n

fa(@,&) = [T (%) — 1)1ha(€)

j=1
for all z = (z1,...,2,), &€ = (&1,...,&) € RM x ... x R¥% = R% and v, : RY = [0,00) is a

measurable function satisfying

[ min1, el (€)1 de < .

The following is due to [11, Proposition 5.1].

Proposition 4.10. Assume that there exist some positive and finite constants cy, K and
B € (0,a1) such that
_B_M
ha(§)] < cyTpr(§)7 e
holds for almost every € € RY with ||€|| > K. Then there exists a modification Y* of Y such
that for any non-empty compact set G4 C R?

. V*(2) = V* ()

<00  a.s. (4.13)
#9EGa TR(z — y)?[log (1 + Tr(z —y) )]

6+5+2

@

for any 6 > 0.
Let us now state the main result of this section.

Proposition 4.11. Let the assumptions of Theorem 4.2 hold and assume that H; = 1 or,
equivalently a{ > 1 forj=1,...,n. Then there exists a modification X} of the random field

in (4.2) such that for any e > 0 and any non-empty compact set Gy C R?

. Xa(x) - Xa(w)|

2y5Ca i1 e (25 — yy) [ log X0y T (w5 — yj)|

— <00 a.s.
ate

if a=2 and

Xi(z) - X;
sup [Xa(z) = Xa ()] 20 as.

_1y1Etste
w9€Ga 30y 7hy (w5 — yj) [log (1+ Koy 7, (w5 — )71 2 e

if a € (0,2), where we used the notation x = (x1,...,2,) € R4 x ... x R¥n = R4, In
particular, for any 0 < v < 1 and v = (x1,...,24),y = (Y1,.--,yn) € Gq one can find a
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positive and finite constant Cs ¢ such that

| Xa(@) = Xa)| < Cs6 ) 7r, (5 — y5)" (4.14)
j=1
holds almost surely.
Proof. Let us first assume that o = 2. In the following let || - ||, denote the p-norm on R™ for

p > 1, ¢ an unspecified positive constant, G4 C R% an arbitrary compact set and recall that
by the equivalence of norms one can find a constant ¢ such that 1{jullo < |lulli < cf|ul|2 o,

equivalently
1 n 9 n 2 n 9
S il < (X huil)” < e fuil
=1 =1 =1

for any v € R™. Further let us remark that by Theorem 3.11 the variance of the centered

Gaussian random variable Xo(z) in (4.2) is given by
() = BXa(@)) = ¢ [ T]1ee) — 12y,() > v,
RS2

Note that for all 1 < j <n and x = (z1,...,2,) € G4 one can find a constant 0 < M < oo
such that
FQ(xl,...,$j_1,9,J}j+1,...,.CCn) < M,

where 6 € R% with 7;(0) = 1. Using all this and the elementary inequality

[ Xa(2) = Xa(y)]

n
<D X (@1, Tie 1, Tiy Vit 1 - Yn) — X2 (T, - i1y Yis Yitds - > Yn)|
i=1
with the convention that

X2<$17 o Ti—15Yi Yit 1, - - - 7yTL) = XQ(Z/)

for i =1 and

Xo(@1, oy Tim1, Tiy Yig1s - - -, Yn) = Xo(2)

for i = n we get for all x = (x1,...,z,) and y = (y1,...,yn) € Gg

2

SE{ Z|X2(ZL‘1,---7%71,%7%“7---’%)—X2(1E1,~--,J»‘z‘fl,yi,yiﬂ,---,yn)!) ]
2

Z|X2(1E1,-~-,SC¢—1,I1'—yi,yi+1,---7yn)!) }

n
< R[> X1, Timt, T — Yis Yig s - - ﬁ%)ﬂ;
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where we used Corollary 4.4 in the equality and the equivalence of norms in the last inequality.
Using Corollary 4.3 and the generalized polar coordinates for x; — y; we can further get an

upper estimate of the last expression by
n
e 7 (s — ) B[ | X, 2io1, L (25— 9, it ) P
i=1

n
< CMZTEi(xi —yi)? < eMrp(z —y)?,
=1

where we used Lemma 4.5 with H = 2 in the last inequality. Therefore, X satisfies (4.11)
with H = 1 and 8 = 0 so that Proposition 4.9 yields

wp 1)~ X5)

<00 a.s. (4.15)
2y€Ga T (T — y)|log TE(T — Y
TFY

)|%+s

for any € > 0 and a continuous modification X3 of Xs, which by Lemma 4.5 is equivalent to

sup | X5 (z) — X3 (y)
zi’ifd Yo e (i — yi) | log X0y T, (2 — vi))|

T <00 a.S.
3te

Let us now prove (4.14). Note that (4.14) is trivially true for x = y, so assume = # v,
x,y € G4. Then by (4.15) we obtain

* * 1
X5 (2) = X3 ()| < erp(z —y)|log Tp(z — y)[27¢ < erp(z —y)"

n
< Cs6y 7 (ri —yi)?
i=1
almost surely for some suitable constant Cs g > 0 and any 0 < v < 1, where we used (2.3) in
the second inequality and Lemma 4.5 in the last inequality.

Let us now assume that a € (0,2). The idea is to apply Proposition 4.10 with
n L
Yo = [Jws(&) =
j=1

Let K > 0 be a constant. Note that 757 (£) > 0 is bounded away from zero for all £ € R?
with ||| > K. Thus, using the change to generalized polar coordinates, the fact that v; is

E]-T—homogeneous and (2.1) one gets

Ya(€) = Yo (Ter ()T 1gr(€)) = v (Tpr (&) Lgr (€)1, ..., Tor () Fr Lgr (€)n)

=11 T?j(TET(f)EjTlET(f)j)fle = TET(f)flf%%'(lET(ﬁ)j)flfg
j=1

j=1
27:1 aj M j
=7pr(§)" T @ ij(lET(f)J)_l_E
7j=1
a(E) a(E)
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for all ¢ € R? with [|¢|| > K and some constant c; > 0, where we used the elementary
fact that q(E) = trace(E) = >7_; ¢; and the notation lgr(§) = (Igr(§1,...,lpr(§)n) €
R x ... x R%¥ = R% Thus, since we also assumed that aj > 1for j = 1,...,n, the
assumptions of Proposition 4.10 are fulfilled with 5 = 1 and there exists a modification X}
of X, such that

. | X0 (x) — XA (y)]
w,gigd (T —Y) [log (1 +7p(x — y)il)}

T <00 a.s.

o

e+3+

for any € > 0 and any non-empty compact set Gy C R? which by Lemma 4.5 is equivalent

to

. [Xa(e) — Xa(w)|

Pyelia Y i1 (%5 = ;) [log (1 + X7y 7, (25 — ;) 1)]

- <00 a.s.

6+%+a
From this, (4.14) is deduced exactly as in the Gaussian case o = 2 above by using (2.4)
instead of (2.3). This completes the proof. O

Proposition 4.11 immediately implies the following.

Corollary 4.12. Let the assumptions of Theorem 4.2 hold with H; =1, 1 < j < n, and let
G4 C R? be a non-empty compact set. Let Xq,...,Xn be N independent copies of Xo and
define X (z) = (X1(2),..., Xn(x)) for any x € R%. Then there exists a modification X* of X
such that for any 0 <~ < 1, any norm || || and any v = (x1,...,2), y = (Y1,---,Yn) € Gy
there exists a constant Cs7 > 0 such that

n
IX* (@) = X*()Il < Cs.7 ) 7, (w5 — )" (4.16)
j=1
holds almost surely.
Proof. Without loss of generality let us assume that |- || = || - ||1 is the I-norm on RY. Then

by Proposition 4.11 there exist continuous modifications X of X;,1 <7 < N, such that
n
X (@) = X[ (W) < e 7, (a5 — y;)
j=1

for some positive constant c¢. Using this for X* = (X7,..., X} ) we get

n n

X" (2) = X ()l = Y |1X{(2) = X[ ()| <ne ) 7p, (x5 —y5)7
i=1 j=1

as desired. ]
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4.4. Hausdorff dimension of the sample paths

Throughout this section, suppose that the assumptions of Theorem 4.2 hold and let
X1,...,Xn be N independent copies of the random field X, given in (4.2). Let us define
the stable random field X = {X(z) : # € R?} with values in RY by

X(z) = (X1(z),..., Xn(x)), z€RL

We will call X a (d, N)-harmonizable operator scaling stable random sheet. Furthermore, for
1<j<nlet
b=Wio. . oW
1 pj

be the direct sum decomposition with respect to £ according to Chapter 2.1 and let ui =
dim W}, 1 < k < p;. Note that
dj:,ul—i—...—i—,u;j.

In order to state our Theorems conveniently we will assume that

H H H. H. H,, H.
0< T <..< 7 <2< <2<, <t <l
Ap, ay Ay ay Ap,, ay

Furthermore, for 1 < j < n let us define uk up 41 and ak = ap 41-p 1 <k < pj. Note

that we have

H H H- H H, H,
0<~—11<...<—1§—2<..< 22§...§~—:<...< — < 1. (4.17)
CLI apl CLI CLp2 al apn

Theorem 4.13. Let X = {X(x) : x € RY} be a (d, N)-harmonizable operator scaling stable
random sheet satisfying (4.17). Then with probability one

n Pj
dimy X ([0,1]%) = min{N; ZZ Mk} (4.18)
j=1k= 1
and
n  Pj CLj
dimy Gr X ([0, 1]%) —min{z k- G(I,b),1 <1< n,1 Sbgpl}

, is
j=1k=1"J

n Dj 7 n Py ]

a .
DD OL TR D o (419
— ) j=lk=1"" j= 1k1

min G(I,b) else

1<i<n

1<b<p;

where . , ,
-1 Pj ~j al n
a Hl - ~ Hl
600 =33 A4S Bis - v - 2w
j=1k=1 Wttj k=1 % =l k=1 a,

The second equality in (4.19) is verified by the following Lemma whose proof is elementary.
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4. Operator scaling stable random sheets

Denote

i M“@
m\wb

ER

where G(I,b) is defined as in Theorem 4.13.

1§l§n,1§b§pl},

Lemma 4.14. Assume that (4.17) holds. The following statements are true.

(i) If N > 377 DYl 1HIU’I<: then

n Pj j
= Z 7’6
j=1k=1 H
(ii) 1f
-1 Ppj dj ] b—1 &l l -1 Pj d] ) b dl l
DDl Y SN <D0 Y FERL+ Y 2 (4.20)
j=1k=1"1J g=1 "1 j=1k=1"1J E=1 "1
for some 1 <1l <nand1<b<p then k =G(l,b) and
n n b—1
ke (Y dj— Y B+ N Y dj— Y #+N|.
=l k=1 J=l k=1

Proof. Let us first assume that N > Z lzk 1 H uk . Noting that 0 < % < 1 we can

b
estimate

-1 Py diHl _j b &2 y n b y n Dj di _j n Dj ~jHl
GLb) =3 > i+ D Zpin+ 3 di =) i+ Fﬂk—ZZ~zH,“k
j=1k=1 % k=1 % =l k=1 j=1k=1"1J j=1k=1 %1
DI &l~ n Pj ~j b n  Pj il
== > Sk 3 S A - Sk S g
k=b+1 "0 j=l4+1k=1"b k=1 j=1k=1""7

D n P .
> > e X Zde zwzz;‘gﬂi
k=1

k=b+1 Jj=l+1k=1 j=1k=1
n Pj a]
= —d, — Z d; +Zd +ZZ —E
j= z+1 j=l j=1k= 1

where we used (4.17) in the second inequality. It remains to prove (ii). So suppose that (4.20)
holds for some 1 <1 <nand 1 <b < p;. Then using (4.17) we can estimate

-1 pj ~j b &gg n b l -1 Dpj ~] ak l
o< g8 it S L A BE a5
J = Jj= k=1 j=1k=
o & diHl ~j aj,
- ~ My — oy ¥
;hﬁﬂk 2
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4. Operator scaling stable random sheets

-1 Pj ~j

—Zd+2k+ fuk ZHuk

j=l+1 k=b+1 pfact

no Pi &i P sl llpy al al

szﬂk ka Z*/‘kﬂLZﬁk

j=l+1 k=1 k=b+1 —1 k=1

IR

j=1k=1"1J

Now let us show that G(I,b) < G(j,k) for all 1 < j < n and 1 < k < p; or, equivalently
G(l,b) — G(j,k) < 0. We divide the proof into the case that either 1 < j <l!—1or j =1 and
1 < b < k and the case that either [+1 < j <mnorj=1and k < b < p;. Let us first consider
the case that either 1 < j <[l—1or j=1and 1 <b < k. For simplicity let us assume that
j=1land 1 <b <k, since the case 1 < j <[ — 1 is proven analogously. Then using (4.17)

and (4.20) we can estimate

-1 p; a Hl b ”‘l -1 pi a Hl k dl
G(,0) - ZZ~1H Z~z“q ZZ~ZH ZTIq Z
i—1g=1 =197 i=1g—=1 =1 Y% i=bt1
H, H,
(or == N
E Y
-1 pi GiH, -1 ps GiH kol k
< Z”H Z~z“q ZZ~ZH ZT?“£1+Z“1
i=1g=1 i—1g=1 =1 Y% i=bt1
H H, Q& gy aq g
(&2 &é) (;;Hiﬂq‘F;Hlﬂq)
% e
dlﬂq ‘ K
q=b+1 "k i=b+1

Let us now consider the case that either [+ 1 < j <norj=1[1and k < b < p;. Again let
us assume for simplicity that j = [ and & < b < py, since the case [ +1 < j < n is proven
analogously. Then (4.17) and (4.20) yield

-1 p;i b=l -1 pi =i k=l b
a Hl ag a Hp _, ag I
GUD) =GR =3 D Zhrity + D 5Hy =3 D by = D oty = D
i=1q=1 g=1" i=1qg=1 "k"7? q=1"k i=k+1
H H
tr— =) N
ap G
-1 p; At H b =l -1 pi Gt H k=l
gt - Qg gt q -l
SZZ~ZH 2+Z~l“q_ZZ~zH ¢ ZT“q_ Z
i=1g=1 "b"""7 g=1"b i=1qg=1 "k"7? q=1"k i=k+1
H, H, (’ii al ‘i} a l)
+(=r — =) g+ ) i
a, a l_lqlei 4 : H"1
b—1 b
=jpt D = Y =0
q=k+1 i=k+1
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4. Operator scaling stable random sheets

as desired. Altogether if (4.20) holds we have

n b n b—1
R=Gb) <fi,+y dj—Y fp+N=Y dj—> fp+N
j=l k=1 3=l k=1
and
n
k=G(,b)>> di— Y f+N
7=l k=1
This completes the proof. O

As usual the proof of Theorem 4.13 is divided into proving the upper and lower bounds
separately. Let us first show that the upper bounds in (4.18) and (4.19) follow from Corollary
4.12 and a covering argument, where one has to take into account the anisotropic behavior

of operator scaling random sheets. Before doing this let us state the following Remark.

Remark 4.15. Assume that the conditions of Theorem 4.2 hold. Then by Corollary 4.3 for
any ¢ > 0
{Xo(cFiz): z e RY} td {cMi X (x) : z € R,

If we define E’j = % we have

(Xa(cBiz) 2 e R S (¢ X () : 2 € RY = {cXu(z) : 7 € RY,

i.e. the random field X, satisfies (4.1) with Ej = E’j and H; = 1,1 < j < n. Thus, unless
stated otherwise without loss of generality we will assume that H; = 1,1 < j < n, which by
Theorem 4.2 implies that 1 < a{ <...< a%],.

Proof of the upper bounds in Theorem 4.13. According to Corollary 4.12 there exists a
modification X* of X such that (4.16) holds. Note that X and X* are indistinguishable
by the continuity of X*. Therefore, without loss of generality we will assume that X itself
almost surely satisfies (4.16).

Let us first note that according to Remark 1.1

dimy X ([0,1]%) < dimy RN = N a.s,

so in the proof of the upper bound in (4.18) we only need to prove the inequality
dimy X ([0,1]%) <3 "> ajpl, as. (4.21)

j=1k=1
Throughout this proof, let ¢ be an unspecified positive constant and let us use the notation

x=(r1,...,0,) € RN x ... x R¥ = RY for any vector x. Furthermore, let us write

Pj

U
:U]—:Uj—l—...—l—x]
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4. Operator scaling stable random sheets

as the direct sum decomposition with respect to E; for any vector x; € R%,1 < j < n. By
(4.16) combined with Remark 2.10 for any non-empty compact set G4 C R%, any z,y € Gy
and any constants 0 < ;5 < ’y;k < aii’ 1<j<n,1<k<p;

n Pj

1X (@) = Xl < >3 [laf — [ as. (4.22)

j=1k=1
Let us choose compact subsets ij c W ,1 <j<n,1<k<pj,such that
d; j j
0,1]% C VY +...+ V],

where Vlj +...+ VpJ; = {:I}]l +... —i—xgj : xé S Vz-j, 1 <i<p;}. Moreover, let p = maxi<j<n pj
and if p; < p we define V! = {0}, a], = pj, =0 for k =p; +1,...,p. Then we can write

0,19 = [0, 2] x . x 0,1 C (V! 4+ 4 V) xx (V)

:(Vll><...><V1”)+...+(Vpl><...><V;D”).

For any integer k > 2 we cover V= Vll X ... x V" 1<1<p, by my,; sub-rectangles
Rk, = Brjipn ¥ oo X Rty 1 <igg <myy,

where each Ry, ,; C Vlj has side-lengths k:_a{, 1 < j < n, if and only if Vlj # {0} and
Ry iy, = 10} if and only if Vlj = {0}. Thus, in case V}j # {0} the diameter and volume of
the rectangle Ry, , ; satisfy

diam(Rk,l,ik,zJ) = ck

and

i
VOI(Rk,lyik,l,j) = ck™H,

where the volume is taken with respect to the Lebesgue measure on RHI Thus, the volume

of Ry, , with respect to the Lebesgue measure on R% is given by

n n .
Vol(Rps0,) = [ VOl(Rp iy ) = ch™ 2=i=1 1 (4.23)
j=1
for all 1 <1 <p,1 <ip; < my; and k > 2. Note that since {Rk,l,ik,zvl < iy < my,} cover

Vi, we have
me,1

Z VO](Rk,l,ik,J S C

ik, =1

or, equivalently

my < Ckzy:l @i . (4.24)
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4. Operator scaling stable random sheets
Note that X ([0, 1]¢) can be covered by
X(Ripipy + -+ Bep,)s 1 <ik1 <mp,..., 1<y <y

for any integer k& > 2. Furthermore, by (4.22) the diameter of the image X (Ry1,, + ...+

Ry pix p) almost surely satisfies

diam X (R 1, , + -+ Ripiy,)

n Pj
!
ST 3 Ol LR
el yh€ Ry, j=11=1 (4.25)
n b Jat ot
S cz Z kial fyj,l S Cmajx kia’le,l = k_1+6
i=11=1 s

with § = max{l—a{%,l, 1<j<n,1<I<p;}and1-6 € (0,1). Let us choose v, € (7, é)
for all 1 < j <n,1 <1< pjsuch that

n Pj 1 ) n Pj o
(L=0) 3> —u] > aluj.

j=11=1 13l j=11=1

Then with 8 = 3774 S Lu{ it follows from (4.24) and (4.25) that

=1 75,

mg.1 mg.p

Z . Z dialnX'(Rk,l’%1 + ...+ Rk’pﬂ'k’p)ﬁ
ipal ipp=l

<emp.. o Mpy - k—(1-0)8

n

< Ckaﬂ j=1 aj L~ (1-0)8

_ ey el (=68 _

as k — oo. Then by the definition of the Hausdorff dimension (see Chapter 1.1) this proves
that

dimy X ([0,1]%) < 8 = ZZ —'M{ a.s.

Since this holds for any v;; < é or, equivalently any % > a{ , we derive (4.21) by letting
# 4 a{ .

Now we turn to the proof of the upper bound in (4.19). We will show that there are
two different ways of covering Gr X ([0,1]%), each of which leads to an upper bound of
dimy; Gr X ([0, 1]%).

Note that for any fixed integer k > 2 the graph Gr X ([0, 1]%) can be covered by

(Rkvlvik,l + et + Rk7p7ik,p) X X<Rk717ik,l + e + Rk7p7ik,p)7

1 <ip1 <mga,...,1 <igp < myp. Combining this with (4.25) we see that Gr X ([0, 1]9)
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4. Operator scaling stable random sheets

can be covered by my 1 ...my, cubes in RN with side-lengths at most c¢k~'+9. Then by

exactly the same arguments as above we obtain

n Pj

dimy Gr X ([0,1]% ZZCL{/L{ a.s. (4.26)
Jj=11l=1

We fix integers 1 <[ <n and 1 < b < p;. Observe that each
(Riig, - Bipin ) X X(Riiiy + oo+ Ripiiy )

can be covered by my; cubes in RN of side-lengths k=% so that each cube has volume
k=@ From (4.23) and (4.25) it follows that

1+6)N
vol ((Rk717ik,1 + ...+ Rk,p,ikyp) X X<Rk,17ik,1 + ...+ Rk,p,ik,p)) < ck™ E; 12uq= 1llq.“q+( +0)N

and therefore

mk,b,lk_aé(d+N) <ck” Z;L=1 Zsil ajy+(—14+8)N — k™ ZJ 1Zq L @i+ 1+5)N. (4.27)

Let us further note that by (4.17)

n n DPj n DPj
l

_Zzaq“q""ab d——zzaqﬂﬁ%zzﬂé

j=1q=1 j= 1q 1 Jj= 1q 1

-1 pj b
—ZZab—a]uq+ZZab—aju+Zd EL i Z(&é—&é)ﬂfl

j=1lg=1 j=l+1q=1 q=b

n Pj . o D1 l

< D0 > (@ —aa + Y (ay -

j=l+1q=1 q=b

Combining this with (4.27) yields
Py < ekt Soamt @A YL (6 —E) @ ON (4.28)

Hence, Gr X([0,1]%) can be covered by M1 - .. Mg pMp cubes in RN with side-lenths
k~%. Denote

-1 pj a] ' b gl n b
mszqu Yot > di =Y i+ (1= Ap)N,
j=1q=1% g=1 % = =1

where 0 < 75 < &% is chosen such that 1 —§ > dffyl’b. In order to obtain
b
dimy Gr X ([0, 1]%) < my;  a.s.

we want to show that

~ sl
MmE1.. - Mg pMkpbl - (k‘ ab)m’*l —0
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4. Operator scaling stable random sheets
as k — oo. Recall from (4.24) that
M1 - M < OB AT N DD DL L

and that the constants 7;4,,1 < j < n,1 < ¢ < pj, are chosen such that 1 — ¢ > dlb:yl,b.
Combining this with (4.28) we obtain

5 )
M1 - Mg Mg g - k0™
< Ckzj 1Zq 1aq,uq+Z] 1+1 Zq 1( “q+z &b*a fig+(ay—1+0)N—aymy,1

— 0

as k — oo, since the exponent in the last expression equals

n Pj n Pi
SN alpd + Z — al)id + Z(aﬁ, —ab)ih + (ay — 14+ 6)N
j=1g=1 j=l+1q= 1 =
-1 Pj d‘j ) b &l n b
—az(zz;fﬂwz; D WE RN
i=1q=1% g=1 % j=l 1
-1 pj n
_Zzaq“q+zaq”q+ Z Zab”jq+ b= L+ON
Jj=1g¢=1 j=l+1q=1
-1 Pj n b
+Zdéﬂé > gy - Zaq”q_ab<zdﬂ 2%4’(1_%5)]\7)
Jj= 1q 1 j=l q=1
n
= —apiy + Z%Mq + Zab,uq (@ — 146 — aj, + ayp) N
j=l+1g=1
n b
—ay Y dj+a Y i
7=l q=1

n D n b
= —apip+ap > di+ > apilh+ (—1+08+apie)N —ap > dj+ap Y ik
j=1+1 q=b j=l q=1
=(—14+d5+aFys)N <0
by assumption. This shows that

dimy Gr X ([0, 1]%) < my;  a.s.

Since this holds for any 0 < 7, < ail’ by letting 4, T ail we derive that
b b

=1 P & b sl n b
dimg; Gr X ([0, 1] <Zz~l”q Zﬁ’ il + Z Zﬂlq N as. (4.29)
j=1gq=1 g=1""b j=l q=1 b
Combining (4.26) and (4.29) yields the upper bound in (4.19). O

42



4. Operator scaling stable random sheets

Before proving the lower bounds in Theorem 4.13 we need several Lemmata. The following

result is the statement of [6, Lemma 3.1 (a)].

Lemma 4.16. Let X be a random vector with values in RN having a continuous probability
density. Then
-0
E[IX]™°] < oo

for any 0 < § < N.

The following Lemma is needed in order to determine a lower bound for dimg; Gr X ([0, 1]9)
and it will also be of importance in the last chapter. Its proof can be seen as a generalization
of the methods used in the proof of [9, Theorem 5.6].

Lemma 4.17. Let {Y(z) : * € R?} be a random field with values in RN. If v > N there
exists a positive and finite constant Csg > 0 such that

E[(le =yl + IV (2) = Y@)I) 7#] < Caslla =9 [ E[exp (ifo

for any x,y € R?.

Proof. Let us define a function f, : RY — R given by f,(¢) = (||€]|* + 1)7%. Suppose first
that N > 2. Then by using classical polar coordinates we obtain for some unspecified positive

constant c
/ f(&)d€ = / (I€I1 + 1) 2de < c/ (r2 4 1) 3N g,
RN RN 0
Using the substitution u = r? + 1 we further calculate

o0 &) _
/ (T2+1)7%TN71dT:C/ u*%(u—l)%(u—l)*%du
’ ! (4.30)
00 _ .
< c/ w3 du < 00,
1

since —y < —N by assumption. If N =1 (4.30) is proven analogously. Let f7 be the Fourier

transform of f,. Then using (4.30) we obtain

O =1 [ e n iyl < [ 1€ 1, ()1dy

= fr(y)dy < oo
RN

for any ¢ € RV, i.e. fv(ﬁ) is essentially bounded and one can find a constant ¢ independent
of & such that

/(O] < e (4.31)
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4. Operator scaling stable random sheets

Using Fourier inversion (see also [7, Lemma 4.1]) we can write

(&) = (2;)]\, /]RN e*i<£,y>f7(y)dy

for any ¢ € RN so that we can calculate

wy)‘%]

B[l =yl + 1Y) = YWIP) ] = llo =l 7B[(1+ (=

— 1o — B[, (=00

. ie, @yl .
= o=yl B[ [ TR ©de].

Note that the integral in the last expression is of product structure so that Fubini’s theorem

applies. Combining this with (4.22) the last expression becomes

e 1Y (@)=Y @)l A
clo =yl [ B[ 4 €)de
RN
e 1Y (2) =Y ()]l
x_yH—w/NE[ez@ B >}d€
R

for some suitable C5g > 0. O

< Cszs

In the following for any z,y € R? let

o(z,y) = [| Xa(r) = Xa(y)lla

-\

be the scale parameter of the 1-dimensional stable random variable X, (z) — X, (y) according

[~

n

[T 1) = TL @) — 1) T foy(&)] > de
j=1

j=1 j=1

to Corollary 3.6. The following Theorem is crucial for proving the lower bounds in Theorem
4.13. TIts proof is based on [49, Theorem 1] and also on [50, 51, 52]. Let us remark that
a similar method of the following proof has been applied in [50, Theorem 3.4] for certain
a-stable random fields if 1 < a < 2. In the following we are able to extend this method
for 0 < @ < 1 and, in particular this shows that the statement of [50, Theorem 3.5] can be

formulated for 0 < o« < 1 as well.

Theorem 4.18. There exists a constant Cs59 > 0, depending on q1,...,q, and d only such

that for all x = (x1,...,xn), Yy = (Y1,.-.Yn) € [%,1)d1 X ... X [%,1)“1” we have

n
o(z,y) > Cs9 Y 7, (x5 — yj),
j=1

where g, () is the radial part with respect to E;,1 < j <n.

Proof. Throughout this proof, we fix © = (z1,...,2n), ¥y = (y1,...Yn) € [%, D% x...x [%, 1)dn

and an unspecified positive constant ¢ independent of z and y. We will show that for any
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4. Operator scaling stable random sheets
I<j<n
o(r,y) > cj7E; (T — Y5), (4.32)
for some c; > 0, since this implies that
n
o(z,y) > Cs9 ZTE]- (w5 — ;)
j=1

with C59 = W Without loss of generality assume that j = 1 and let r = 7, (1 —y1).
Note that for r = 0 (4.32) always holds, thus in the following we will assume that r > 0. For
every 1 < j < n we consider a so-called bump function §; € C>®(R%) with values in [0, 1]
such that §;(0) =1 and §; vanishes outside the open ball

B(K;,0) = {z € RY : 75,(2) < K;}

for

K 1o o™ K ~1a 7% K Kl

Kj:mln{lail( dji)ul i 773( dji)apj E ail‘aig‘,
K 2 K] 2 K] K}
1
. 1.5+ 1.2 ¢
K{(Jdig)T K GJdip)™ ]

where £ > 0 is some (sufficiently) small number and K{ e ,KZ are the suitable constants
C31,...,C034 derived from Lemma 2.5 corresponding to the matrix F;. The choice of the

positive constant K; will be clear later in this proof. Let Sj be the Fourier transform of d;.

Then by the Riemann-Lebesgue Lemma (see, e.g., [26, Chapter 1 Theorem 4.1])

10;(¢)] = 0
as ||&]] — oo and §; € C(R%). Moreover, the bump functions §; can be chosen such that the
integral

B
k

‘- Ad(ﬁ|¢j(§j)!_l_2) f[\gj(ﬁj)!ﬁdf (4.33)

is a positive and finite constant for any 8 > 0 and k € N (see the proof of [49, Theorem 1]).

By the Fourier inversion formula we can write

>

1 —1i(8j,A\;
d;(sj) = W/Rdj e A5 (N)dA; (4.34)

for all s; € R%. Let 07(s1) = -61((2)P s1). Then by using the change of variables & =
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(%)EfA1 and the fact that d§; = -z d\1 we obtain from (4.34)

7"11

. 11 ()P A 2
%ls1) = ro (2m)d /Rdl e BTG (Ag)dy
1 1
- —ifs1, ()T A 5
= an (277)‘11 /Rdl & . ! 51()\1)d)\1 (4.35)

1
- (2m)d /Rdl THsg, (r fl)dfl

By Lemma 2.5 we have

1
+& . ¢

(L‘],
Kl
) (4.36)

> mm{m@;)%“,@(@;)%‘a} > K,

where the second inequality follows from x; € [%, 1)%. Furthermore, using the fact that 7z, (-)

4
o
1

7, (25) > min { K{ ;| °

is E1-homogeneous (see Chapter 2.3) we have

1 T TE, (L1 — Y1
TEl((;)El (x1—1)) = w =12=>Kj, (4.37)
and by Lemma 2.5 we obtain
1. pr 1
TEy ((T)El xl) ;TE1 (1‘1)
L +e Lte -
Y £ S EVE AN« S EVC AN -« N C1E
D G T T FRE St < P 1
1= u” Hxl yil[ [ES Y
L _¢
K%Hle} (4.38)
Kl J S
? s - ylnaz%
. [ K} K Loar—ai+% K3 a2 Kj
> —, —(Vdi= (Vd
_mm{Ki’Kgl( 12) el

Z Kla

where we used that z1,y; € [3,1)% in the second inequality. (4.36), (4.37) and (4.38) imply
that 0;(x;) = 0,1 < j <n,0{(z1—y1) =0 and 6](z1) = 0. Hence, combining this with (4.34)
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and (4.35) it follows that

/ ( .n iwj A _ ﬁ(ei@j:/\j) _ 1))

j=1 j=1
- —i{z5,4 (51 Ef)q i 3 )\
H

= [ (e - 1)6—1<W1>51(r A dA
R21

<11 / () 1) @05 (),
j=2"RY
_ ( [, (@ - it T s,
R41
T [, (@)~ 1emiesnig o, )
=2 R
= @2m)® . 2m) (57(0) - 67 (21) ) H (6;(0) = (=)

—@mt . 2m) (8 — ) — 5 xl)ﬁ( s~ ) — 85()

J=2

= (2m)'61(0) = (2m)

rdi
Let us choose k£ € N such that ko > 1. We now show that

1

(/d [L (et H ) 1) ’ aH |7Z)j(>\j)|_a_de)\>
R TG0 j=1 j=1

< 2o (z,y)t.

Note that for & > 1 we have k& = 1 and (4.40) is trivially true. For A = (Aq,...

R4 x ... x R Jet

n n
(ei<zjv>‘j> _ H iy,

and note that since |e? — 1|2 =2 — 2cost < 4 for all t € R, it follows that

—_

J

n
H AR 1\+H\e vihi) — 1] < 2.2 = 2ntl

From this we obtain

([, 1= r’erwj Y

— k:a a=daj )\
</{)\6Rd:|z(>\)|<1} M H i
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+/ k:a a=q; J\
{AeRd:|z()\)|>1} M HW] 4 >

< )\ @ . )\ _a_qjd)\
N (/{)\GRdﬂz()\)'Sl}‘z( )| 1:[ ’w]( J)‘

1
+/ kaJra a— q]dA ko
{AeRd:|z(/\)|>1} M H s () )

<1 ( [ 1 raHm |aqﬂdA)%

= 2”+10(m,y)%.

Let 3 > 1 be the constant such that = + % = 1. Recall from (4.39) that I = |I| € R. Then
by Hélder’s inequality and (4.40)

1

B
T [y (A7) e =2

1 1 A LI 3
<o yi( [ S 180 ) TL800)1Pan) .
(T 15 (A o) % =2

Using the change of variables &; = = A1, d& = r®d); and that ¢y is EY-homogeneous the

last expression becomes
j=1 (4.41)

where we used that - —&—% = 1 and (4.33) in the first equality. Overall combining (4.39) with
(4.41) yields
1
(27r)dr_q1 < c(o(x,y) - r_l_kql)z,

which is equivalent to (4.32) for some suitable constant ¢;. This finishes the proof of the
Theorem. O

Proposition 4.19. For v > 0 let

- —
b= /[5,1}% .“/[é’l]an (ZTEJ (zj — 2/;)) dxdy.
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Then &, is finite for any 0 < v < min{N, > " Zk i ﬁl_auk} where ¢ > 0 is a sufficiently

small number.

Proof. Throughout this proof, let ¢ and ¢’ be two unspeciﬁed positive constants. Let us first
observe that for any 0 <y < min{N, >’ ; Z ' 1 1a+e“k} there exist integers 1 <1 < n,1 <
b < p; such that

n Py aj n Pj
DI AP (442
j=l k=b+1 Jj=l k=b

where

zzm Sy 3

j=l k=p;+1 j=l+1k= 11+€

with the convention that 377, ., S 1 1 = uk = 0. In the following without loss of generality
we will only consider the case [ = 1 and b = 1, since the remaining cases are simpler because

they require less steps of integration using Lemma 4.7. Thus, assuming (4.42) with [ =b =1

we choose positive constants 5%,...,5;1,5 ,...,532,...,5%,...,5& such that 5i > % for
each 1 <j<n,1<k<pjand §
P11 n Pj g 1 P11 Pj
M Hi ar 1 Hi i,
STEELNN PR oy < p Y SEEY Y R (4.43)
1 1
k=2 O j=2k=1 5% Ie k=2 O j=2k=1 5%

For any vector x; € R%,1 < j <n, let
:Ej:a:j—k...—i—xpj

J

be its direct sum decomposition with respect to F;. Recall that R%G = Wf B...6 ng. Note

that
£ < / /
Tt leafl<2 |xn||<2(ZT )

Since the I/Vl-j (1 < i < pj;) are orthogonal in the associated euclidean norm, it follows that
;|| <2 implies [|z]| <2 fori=1,...,p;. Then Remark 2.10 yields

n Pj 1+6
k k
&y < C/||;zku<2 (Z |25 “* ) dxy.
j=1,.,n J=1lk=1
k=1,...,p;
By using the change to (classical) polar coordinates we further get
n o Piooo =l 144
Jjya Jyug—1 7.7
£, <c/ri€(0’2) (S0 ) et
j=1,...,n J=1lk=1
k=1,..
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Applying Lemma 4.7 with

n—1 Pj 1t+e pn—1 1+e

I\ a ny a” 1+€ n n
A:ZZ(’I"‘Z:)?C—FZ(Tk)k’ h = e s k:'upn’ U ="y and 5—5}7"

j:l k=1 k=1 Pn

we integrate with respect to dry; in the last expression and obtain that

n

Hpp
n—1 Pj 14e  pp—1 e\ YA j
/ Jy o ny\ a” j -1 j
e +C/ r€(0,2) ( (r) & + Z(Tk:) ’“) H (rg)"e ™ dry,.
(G,k)#(nypn) SI=1E=1 k=1 j=1,..,n
k=1,...,p;
(4,k)#(n,pn)

By repeating this procedure, i.e. by repeatedly using Lemma 4.7 to the integral in the
last expression, integrating with respect to dry _y,...,dr7,. .., d . dr?, drpl, o drd we
derive that

1+E)’Y+(Zk 2 51 +Z] QZk 1 5]

2
5ygd+c/'aﬁ)% -@b%—wﬁ. (4.44)
0

Note that from (4.43) we get

1

l+e N N 1 l+e ai 1 1

Thus, the integral on the right-hand side of (4.44) is finite. This proves the assertion. O

Proposition 4.20. Let 1 <1 <n and 1 <b < p; be two integers such that

-1 Dpj -1 pj b
sziuiﬂLZakﬂi SN <Y S alag + > an,
j=1k=1 j=1k=1 k=1

For v > N define

n —-N
G, = / g T (s = ) o

Then if € > 0 is sufficiently small G, is finite for any

-1 Pj j b [ n b 1+¢
vers XS Ry B Sa - S e - N
7j=1k=1 ) k=1 @y 7=l k=1 b

Proof. To simplify notation let gi = 1@—25, 1 <j<n1<Ek<pj, and let us choose € > 0

small enough such that

-1 Pj Ia] — ,u -1 Pj ~] b ﬂl
2. f+2*k<N<ZZ ’“+Z*§“- (4.45)
j=1k=1 9k o A

20
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Assume that

-1 pj l b
N<7<ZZ—;’ Z
[} k=1

j=1k=1

l

n b
i Z Zﬂi +(1—gy)N. (4.46)

w~\@~

Let ¢ and ¢ be two unspecified positive constants. Furthermore, let

— .l Dj
=T;t...+x

Lj

be the direct sum decomposition with respect to F; for any vector z; € R%,1<j<n

Without loss of generality let || - || = || - |2 be the 2-norm so that by the equivalence of norms

we have
n
[zll2 = [[(z1,- -, 2n)ll2 = ZH% <ed llzlle
j=1

n pj n Pj
=X DNt 3 < e D [kl
j=1 \ k=1 J=1k=1

where we used that the spectral components Wf , 1 <1 < pj, are orthogonal in the associated
euclidean norm in the last equality. Using this we obtain

Gy Sc/x”QHx”Nﬂ(gTEﬂ ) S
<c /uxkuq (X3 w)" (ZZ i)

_77
Jj=1k=1
1,. 7pj

where the last inequality follows from Remark 2.10 and the fact that ||z| < 2 implies ||2%|| < 2

for 1 < j <mn,1 <k <p;. By using the change to (classical) polar coordinates we can further
estimate

J

= fcan (ST (30 ™ T ¢

Jj=1k=1

7Y=L ] (4.47)
O 0% Jj=1k=1
k:l, D3

’

1
k 17 7p]

In order to show that the integral in (4.47) is finite we will integrate dry, . .. ,dré iteratively.
Furthermore, we will assume that [ # 1 and b # 1 in (4.45), since for [ = b = 1 one can use

(4.8) of Lemma 4.8 to obtain (4.49) directly. Indeed, if [ = b =1 (4.45) gives

giN < iy

so that by (4.8) of Lemma 4.8 with

n
B- zrk+zzrk, a=gl, B=N

, k=p; and n=v-N
J=2k=1

o1
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we obtain

n N—y—gi N+i1
Gy < C/ r1€(0,2) (Zrk + Z Zrk) o

(.77k):(172)"" (Lpl) k=2 J=2k=1
7j=2,...,n
k:17" Py
P1 .
[TehA— T i -ar]
k=2 §=2,...n
kil,.. 7p]

which is (4.49) below with [ = b = 1. So in the following assume that [ # 1 and b # 1 in
(4.45). We first integrate with respect to dri. Since [ # 1 and b # 1, by (4.45) we have

which is equivalent to
Ngi > fir.

Thus, we can use (4.6) of Lemma 4.8 with

n Pj . n
A= Zrk9k+zz Jk? B = Zrk+zzrk7 a_glv ﬁ:Na
k= j=2k=1 j=2k=1

and 7 = v — N to obtain that

n Pj 1

R R0 SEES 3 oV O WETEES 9) ST

(k)AL k=2 J=2k=1 k=2
P1 ) - .
1al—1 iy
. H(’rk)#k H (Ti)#k dri.
k=2 71=2,...,n
k:17“ 7pj
Note that by (4.45) we can repeat this procedure for integration with respect to dT%, ceey d?“;l)_l
and obtain
p1 n Pj  N—vy
Gy<c| eon (Lt X Yor)
(k) =(Lb)ewes(Lpr)  F=D j=l+1k=1
j=l+1,...,n
e (4.48)
n £ pi . . . o X '
'<Z b 3 Z ) [Tt T ot
j=l+1k=1 b il im
k=1,...,p;
with

-1 Pj ~j b—1 ~]

=N LY By

j=1k= 19k k:lgk
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Note that by (4.45) we now have

which is equivalent to

Thus, we can integrate with respect to dr} in (4.48) by using (4.8) of Lemma 4.8 with o = g},
B=—& k=fl n=v—N and get that

Y2 . n Py N
‘ J
G <cf oy (Xt X )
(k) =(Lb+1),..,(Lpy)  F=0F1 J=l+l k=1
Jj=l+1,..n
]{::17'"7p]. (4-49)
P ,
=l N 1
[T obAt TI s
k=b+1 j=l+1,..,n
k:L...,pj
with
-1 Pj ﬁ b—1 ﬂl
¢=k—af—n=N-v—g(N- oY E) 4
j=1k=1 9% k=19
-1 Pj /],J b—1 ,al
= (1= gh)N +gi( B S ER) i -y
j=1k=19% k=19
Observe that by (4.46)
n b n b
§>=ddi+y == di— > [
7=l k=1 j=l+1 k=b+1
Note that the number of integrals in (4.49) is given by
n
p—b+ > p
j=l+1

and the sum of the exponents in the integral in (4.49) satisfies

bi n n n
§4+ D m—=b+ 3 di— > pi>—m—b+ > p))
k=b+1 j=l+1 j=1+1 j=l+1
Thus, the integral in (4.49) is finite and this completes the proof. O

Proof of the lower bounds in Theorem 4.13. Throughout this proof, let ¢ be an unspecified
positive constant. Let us first prove the lower bound in (4.18). Note that by the monoticity

23



4. Operator scaling stable random sheets
of the Hausdorff dimension (see Remark 1.1)
. d . L d
dingy X ((0,1)%) > dimgg X ([, 11%).

Thus, it suffices to show that
1 n b
dimy X([§7 119 > min{N,> "> ajul} as.
j=1k=1

According to Frostman’s theorem (see Chapter 1.2) it suffices to show that

=E[[ [ IX @) - X )| dedy] < o
b S

in order to obtain dimy X ([3,1]%) > v almost surely.
Let us remark that the characteristic function of the a-stable random vector X (z)— X (y) =
(X1(2) — X1(y), ..., Xn(2) — XN (v)), 2,y € R?, is given by

Il
=
D
»

T
/N
-~

[]=
>
—
s
&
|
s
S
=
~—

E|exp (i(0, X (z) = X()))]

<.
Il
—

p

[
=
=
2
-

[
=
=
T
k=
o

<.
I
—

I
=
CD

— 1010 (z,9)") = exp ( — Zwyy o(w,y)%)

<.
Il
—

for any # € RY with scale parameter o(z,y) defined as in the proof of Theorem 4.18. In
particular, for Y (z,y) = ﬁ(X(m) — X (y)) with @ # y we obtain that

B[exp (160, (2.))] = B[exp (il 20, X(a) = X))}
= exp (- fj |9j\a),

which shows that the distribution of Y (x,y) is independent of z and y. Thus, since the
probability densities of a-stable random variables exist and are continuous (see Corollary

3.6) by Lemma 4.16 we can find a constant ¢ independent of z and y such that

E[lY (z, y)I7"] < ¢

for any 0 < v < N. Using this we obtain

&= [, o fy a9 TEIY Gl oy
14 1]d
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- / 1]Ul/ ) Vdzdy
- -y
/ 1]d/ ZTEj (2, —yj)> dxdy
j=1
- -
B c/[l 1]2%4 o ./[1 1)2dn (ZTEj (xj - yj)) dxdy,
2 % =

where we used Theorem 4.18 in the last inequality. By Proposition 4.19 the integral in the

/\

last expression is finite for any

n Pj

O<’y<m1n{sz

jlk’l

and any € > 0 arbitrarily small. Thus, Frostman’s criterion yields

n Pj

dimy X([§ 1]%) > min{N, ZZ

jlk’l

Since this holds for any small € > 0, the lower bound in (4.18) follows by letting ¢ — 0.
Now we prove the lower bound in (4.19). First assume that
> > g <N
j=1k=1

By Corollary 1.3 (ii) and (4.18)

n Pj
dimy Gr X ([0,1]%) > dimy X ([0, 1]¢ ZZak,uk a.s.

Therefore, it suffices to prove that for any 1 <1 <n,1 <b <y
dimy Gr X ([0, 1]%) > G(,b) a.s.,

where G(I,b) is defined as in Theorem 4.13. By Lemma 4.14 and the assumption H; = 1,

1 < j <mn, (see Remark 4.15) it remains to consider the case that

-1 pj -1 pj b
. Al LS all
akﬂk+§:akﬂk<N<§:§:akl‘k > agi,
i=1 k=1 = =1 k=1 h=1

for some 1 <[ <mn,1 <b<p. Again by Frostman’s criterion (Chapter 1.2) it is sufficient to
show that

G = [, o [, B0 =0l 1) = X)) F ey < o0

in order to obtain dimy Gr X ([%, 1]9) > ~ almost surely. Assume that v > N. Applying
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Lemma 4.17 with the characteristic function computed above we get

- y)"
— il a
Gy < c/;l]d /;,ud lz =yl /RN exp( Z 16; | ~F )d@d:cdy
— gyl -N B L
/[ 1]d/ e Yl Moz, y) /RN exp( Z | )duda:dy,

2’ j=1

where we used the change of variables u; = 0; |‘|7( v) duj = |‘|T( y‘)‘ df; in the last equality. Note

yl|?

that by using the change of variables v; = u$ we get

J
/R exp( Z\uﬂ du— H/exp —|u;|*)du; = H2/ exp(—uj)du;
© 1 1
:le_ll-/o v exp(—vj)dvj:cf(a)N

where I'(z) = [5°v* e Vdv is the gamma function. Combining this with Theorem 4.18 we

can estimate

[27

n -N
Grsef [, el (e g - w) ey
2 j=1

By Proposition 4.20 the last expression is finite for any

=1 P ] b il n b l 14
N<7<ZZ~1/% ZdTﬂk+Zdj_Zﬂk+(l_ P )N
j=1k=1 ¢ k=1 " j=l k=1 b
and any € > 0. Thus, by Frostman’s theorem
P = YR ° l+e¢
dimy Gr X ([, 101) > Y > Fim+ Y —ph+ Y dj— Y fij+ (1= ——)N
j=1k=1 % k=1 % =1 k=1 ap

almost surely for any € > 0. Since this holds for any arbitrarily small € > 0, this proves the
lower bound in (4.19) by letting € — 0. This completes the proof of Theorem 4.13. (]

We are now interested in properties of the 1-dimensional random field X, given in Theorem
4.2. Let us first recall the definition of the Holder critical exponent [9, Definition 5.1].

Definition 4.21. Let 8 € (0,1). A real-valued random field {X(z) : # € R9} is said to
have Holder critical exponent 3 if there exists a modification X™* of X such that the following

properties hold.

(i) For any s € (0,53) the sample paths of X* almost surely satisfy a uniform Holder

condition of order s on [0,1]%, i.e. there exists a positive and finite random variable A

o6
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such that
X" (z) — X*(y)| < Allx —y® (4.50)

for all x,y € [0,1]%.
(ii) For any s € (8,1) (4.50) fails almost surely.
We now state the following which is an easy consequence of Theorem 4.13.

Corollary 4.22. Assume that the conditions of Theorem 4.13 hold and let X, be the random
field given in (4.2). Then with probability one

H
dimy Gr X ([0,1]%) =d +1 - .

Gpy

(4.51)

Furthermore, X, admits f% as the Hoélder critical exponent.
P1

Proof. By Remark 4.15 without loss of generality we may assume that H; = 1 or, equivalently
al > 1. From Theorem 4.13 and Lemma 4.14 with N = 1 we get

dimy Gr X ([0,1]%) = G(1,1) a.s.,

since

by assumption. By definition we have

" 1 1
GL)=p1+Y di—fj+(1——)-1=d+1——.
j=1 a p,

It remains to prove that X, admits a% as the Holder critical exponent. Let ¢ be an unspecified
p1

positive constant. From Corollary 4.12 with N = 1 we get that there exists a modification

X* of X, such that

n
| X*(z) — X" (y)| < CZTEj (xj —y;)° a.s.
j=1
for any 0 < s < 1 and z,y € [0,1]¢, which is by Lemma 4.5 equivalent to
| X*(z) = X*(y)| < etp(z —y)*  a.s.

Combining this with Lemma 2.5 and the fact that, by (4.17), a}gl is the largest real part of
the eigenvalues of E we get that

(X" () = X" ()l < cllz —yl® as.

for any s € (0,-1-). Thus X* almost surely satisfies (4.50) with s € (0, -1-). It remains to
P1

(Zpl

prove that (4.50) with s € (a%, 1) almost surely fails. We prove this by contradiction. So
p1

o7
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assume that for some s € (-1, 1) we have
p1

[ X (2) = X" ()| < cllz —ylI®
with positive probability. Then Lemma 1.2 with m = 1 and a; = s yields
dimy Gr X ([0,1]) <d+1—s

with positive probability. But this contradicts (4.51). The proof of Corollary 4.22 is complete.
O

Remark 4.23. Corollary 4.22 shows that the components of (d, N)-harmonizable operator
scaling stable random sheets almost surely satisfy a Holder condition. However, for N > 2 the
upper bounds for the Hausdorff dimension of the image and the graph one gets from Lemma
1.4 are not sharp as soon as E # ally, that is as soon as the random field is anisotropic.
Furthermore, comparing Theorem 4.13 for N > 2 with Corollary 4.22 is quite surprising and
shows that in the 1-dimensional case the Hausdorff dimension of the graph only depends on
solely one real part of the eigenvalues of the scaling matrices F1, ..., F,, namely the largest,
whereas in higher dimensions the Hausdorff dimension of the graph depends in general on all

the real parts of the eigenvalues and even the multiplicity of the eigenvalues.

We close this chapter with two examples which show that Theorem 4.2 includes a very

large class of random fields.

Example 4.24. Let o = 2,d; = E; = 1 for all j = 1,...,n and consider the functions
P(&) = || for all § € R. Clearly, v; is 1-homogeneous and satisfies 1;(§;) # 0 for all
& # 0. Thus, by Theorem 4.2 we can define

d
Xo(o) =Re [ TL(9 = 0I5 30(de). @ = (o, .3) € R,
Rd -
J=1

forall 0 < H; < 1,1 <j <d. Let M be a Gaussian random measure as in Remark 3.12 and

define
d

£2(6) = [T (5% — 1)jg 7%,

j=1

Note that f,(€) = (=€) for all z,& € R? so that by Remark 3.12

Xa(o) & [ (&M (da).

In [18] it is shown that up to a multiplicative constant the latter is an integral representation
of the fractional Brownian sheet at time z € R? with Hurst indices Hy,..., Hy. Moreover,

the statement of Theorem 4.13 becomes that with probability one

d
din X(0.11) = min{N, 3 7-)
j=1

o8
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and
d 1 k—1 Hk
dimy Gr X ([0, 1]%) = min { F;Z—+d—k+1+(1—Hk)N,1gk:gd}.
j=1 J j=1 J

Thus, Theorem 4.13 can be seen as a generalization of [5, Theorem 3.1]. In particular, from

Corollary 4.22 in the 1-dimensional case we get
dimy Gr X5([0,1]9) =d+1—H, a.s.,

which generalizes [4, Theorem 1.3] and X2 admits H; as the Holder critical exponent.

Example 4.25. Let n = 1,d = d; and E = Ey. As noted above the random field X, given
by (4.2) coincides with the operator scaling random field in [9, Theorem 4.1] and Theorem
4.13 reads as

o1
. . a
dimy; X ([0, 1]%) = min{N, 321 Fkluk

and
p1 1 ~1 b
H
dimy, Gr X(0,1]%) = min { 3" L ul; 3 Skl +d =3+ (1- ZHN1<b < pif
mH T T k=1 ap

almost surely. Let us remark that in the Gaussian case ov = 2 this generalizes the Hausdorff
dimension results stated in [32, Section 3]. Furthermore, in the 1-dimensional case from
Corollary 4.22 we obtain

Hy

1

dimy Gr X, ([0,1]") =d + 1 —
a’Pl

a.s.,

which is the statement of [9, Theorem 5.6] for & = 2 and [10, Proposition 5.7] for o € (0, 2).

29



5. Multivariate Gaussian operator-self-similar
random fields

As noted in the Introduction in this chapter we give the solution to some open problems
formulated in [33]. We first recall the definition of operator-self-similar random fields and

results concerning their existence established in [33].

5.1. Definition and existence

Throughout this chapter, let £ € R%*? be a matrix with distinct positive real parts of its
eigenvalues given by 0 < a1 < ... < a, for some p < d,q = trace(E) and let D € R™*™ be
a matrix with positive real parts of its eigenvalues given by 0 < A1 < X < ... < \j,. Note

that Aq,..., A, are not necessarily different.

Definition 5.1. A random field {X(z) : z € R?} with values in R™ is called multivariate

operator-self-similar for £ and D or (E, D)-operator-self-similar if
(X(cFz): 2 e R} (P X(z) : 2 € RT) (5.1)

for all ¢ > 0.

An important class of multivariate Gaussian operator-self-similar random fields is given by
the so-called operator-fractional Brownian motion Bp with state space scaling exponent D
introduced in [36]. The random field Bp fulfills the self-similarity relation

{Bp(ct) : t e R} "2 1P Bp(t) - t € RT)

for any ¢ > 0, i.e. it is (Ig, D)-operator-self-similar. We remark that Mason and Xiao [36]
studied several sample path properties of Bp including fractal dimensions of the range and
the graph of Bp. More precisely, for any arbitrary Borel set U C R, under some additional
assumptions (see [36, Theorem 4.1]), they showed that almost surely the Hausdorff dimension

of the range and graph are given by

dimy Bp(F) = min {m, (dimq.LF + zj:(kj — )\i)))\;l’ 1<5< m}
i=1
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5. Multivariate Gaussian operator-self-similar random fields

and
dimy Bp(F) if dimy F <) A,
dimy Gr BD(F) = m =l
dimy F+> (1=X;) if dimy F > A
i=1 =1

In particular, if F' = [0, 1]% they obtain that almost surely

dimy Bp([0,1)%) = min {m, (d+ i(Aj — M)A < m) (5.2)
i=1

and

dimy Bp([0,1]7) ifd <Y A,
i—1

dimy Gr Bp([0,1]%) = (5.3)

d+> (1=X) ifd>> A
i=1 i=1

In the following let ¢ : R? — [0,00) be an E-homogeneous (3, E)-admissible function
according to Definition 2.3 and Definition 2.4. Recall that 0 < 8 < a;. Moreover, let W5 be
an R™-valued symmetric Gaussian random measure on R% according to Chapter 3.3. The
following is due to [33, Theorem 2.5] and provides the existence of moving-average operator-

self-similar Gaussian random fields.

Theorem 5.2. If \,,, < B the random field
Xo(a) = [ [0l )P = o(y)PE i Waldy), @ € RY (54)

exists and is a stochastically continuous (E, D)-operator-self-similar Gaussian random field

with stationary increments.

For the sake of simplicity let us denote the kernel matrix in (5.4) by

Q(z,y) = [p(z — y)P 2 — p(—y)P=31m]

and let us recall that according to Chapter 3.3 X exists, since

[ 1 ldy < o
Rd

for all 2 € R?, as shown in the proof of [33, Theorem 2.5].

Let us now turn to the existence of harmonizable operator-self-similar Gaussian random
fields constructed in [33, Theorem 2.6]. Suppose that 1 : R? — [0, 00) is a continuous E7-
homogeneous function such that 1 (x) # 0 for z # 0. Moreover, let My be a C™-valued

symmetric Gaussian random measure on R? as given in Chapter 3.3.
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5. Multivariate Gaussian operator-self-similar random fields
Theorem 5.3. If \,,, < a1 the random field

Xola) = Re [ (@00 (o) P Hm iy (dy), € RS 55)
R
exists and is a stochastically continuous (E, D)-operator-self-similar Gaussian random field

with stationary increments.

As in the above X, is well defined, since the kernel matrix in (5.5) satisfies
01 = costa )2+ fsina ) Pl ()P4 Py < oo

for all € R, which is shown in the proof of [33, Theorem 2.5].

Let us recall that an R™-valued random field {Y (x) : € R?} is said to be proper if for
every « € R? the distribution of Y (z) is full, i.e. it is not supported on any proper hyperplane
in R™, which is in the Gaussian case well-known to be equivalent to det Cov (Y (z)) > 0. In
[33] it is shown that Xy, is proper, whereas X is proper if % is not an eigenvalue of D (see
[33, Remark 2.1]). For the sake of simplicity we will always assume that the latter holds in
order to ensure that both X, and X, are proper.

Remark 5.4. Assume that the conditions of Theorem 5.2 and Theorem 5.3 hold so that, in
particular \,, < aj. Let X be (FE, D)-operator-self-similar and define E = % and D = % for

some H € (Ap,,a1). Then X is (E, D)—operator—self—simﬂar as well, since for any ¢ > 0
(X(cEz):z e R} {(em)PX(2) : 2 € R} = {PX(2) : 2 € RYY,

Note that the real parts of the eigenvalues of D are smaller than 1, whereas the real parts of
the eigenvalues of E are larger than 1. So without loss of generality we will always assume
that

O< << <A, <1l<a <...<ap. (5.6)

As in the previous chapter a main tool for the study of sample paths of multivariate (E, D)-
operator-self-similar random fields will be the change to generalized polar coordinates with
respect to the scaling matrix F. Before studying their sample paths, in the next section we

state and prove a Lemma which might be of independent interest in fractal geometry.

5.2. Preliminaries

Let us adapt the notation of the previous chapters and let (7g(z),lg(z)) be the generalized
polar coordinates with respect to E. Furthermore, let R = W, @& ... ® W), be the direct sum

decomposition with respect to E as introduced in Chapter 2.1 and define

pr = dim Wy, g =dim Wy g, G = apr1-k
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5. Multivariate Gaussian operator-self-similar random fields
for 1 <k < p. Note that
ap > as > ... > Q. (5.7)

The following Lemma is a generalization of Lemma 1.4.

Lemma 5.5. Let f = (f1,..., fm) : [0,1]% — R™ satisfy the following generalized Holder

condition with respect to E:
[filz) = fily)l < cTe(x —y)™, 1<i<m, (5.8)

where ¢ > 0 and 0 < a; < 1 are constants such that

O<ar<ax<...<a,<1. (5.9)
Then
P J o
dimy £([0,1]%) < min {m; it Ahih +a21_1(a3 @) 1< < m} (5.10)
J
and
p J N
dimy, Gr £([0,1]%) < min { Lot Wb ¥ (05 = 00) 4 oo
Qj
(5.11)

l
Zd—] +ZMJ+Z 1<z<p}

J=l+1

Proof. Throughout this proof, let ¢ be an unspecified positive constant which might change

in each occurence. Note that we clearly have
dimy £([0,1]%) < dimy R™ =m
and by Corollary 1.3 (ii)
dimyy £([0,1]%) < dimy, Gr £([0,1]%).
So it suffices to prove (5.11). We first show that

Zk 1akuk+21 1( —Oéz)
ay

dimy Gr f([0, 1] ) < (5.12)
for every fixed 1 < j < m. Let us choose compact subsets Vi C Wy,...,V, C W, such that

0,07 CVi+ ...+ 1V,

where Vi +...+V, ={a1 + ...+, :2; € V;,1 <i < p}. For any integer n > 2 we cover V]
(1 <1< p)by ky cubes {Ry,;,} (1 <i; < ky;) with edge-lengths n™% so that the diameter
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5. Multivariate Gaussian operator-self-similar random fields

and volume of R, ;;, satisfy
diam(R,, ;) < en™ (5.13)

and

vol(Ry, 14,) < en™ M,

where the volume is taken with respect to the p;-dimensional Lebesgue measure. Since the
cubes {R,, 14} (1 <4 < ky;) cover Vj, we have

kpg < en®ht
for all 1 <[ < p, which yields that
bt Ky < cndaior @M (5.14)

For any vector € R% let x = 21 +.. .+, be the direct sum decomposition with respect to £
and let £ > 0 denote an unspecified (small) constant which might change in each occurence.
From (5.8) and Remark 2.10 we get for 1 <i<m and e >0

p o,
[fi(@) = fi()] < etp(z —y)™ <> llop — gl
k=1

Thus, each f(Rp14, + ...+ Rnpi,) can be covered by a rectangle T}, .., C R™ of sides
c(L)@=¢ (1 <i < m). Note that

m

1 —
VO](Tn,il,..,,ip) S C(E) j=1 6% E‘

J o) —
For each fixed 1 < j < m we can cover T}, ... ;, by at most c(%)zz:l(al %)=¢ cubes Tsis,oipk

(1<k< c(%)zgzl(ai_aﬂ')_e) of edge-lengths (L)%, since
1.5V (- 1.5 (mea—e 1 _
()2 D) Ol (Ty ) = o) et (O (e
— c(l) le a;+(m—jla;—e
n
> o(b)Elso
n

by (5.9). Note that

Grf([0,1)) ¢ J URnrir +---+ Rupi,) X Triirooipik

i1yerip K

and since 1
diam(Tn7i17,,,7iP,k) S C(g)aj7
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5. Multivariate Gaussian operator-self-similar random fields

(5.13) shows that
1
3 (5.15)

diam ((Rn,l,il + ...+ Rn,p,ip) X Tn,ilp..,ip,k) < C(E)aj

Let v > €. Then by (5.14) and (5.15)
Ropiy + oot Rupiy) X Tojiyip k) R

Z Z diam ((

i1,enip kK
< Ckn,l e kn,p : (%)23:1( —aj)—¢ (%)7+Zf:1 al“l+zz:1(aﬂ'7°‘i)
1
<c(=)"*=0
<e()

as n — oo. This proves
— al)

dimy, CGr £([0,1]9) < E+Zk1“k“k;2 1 (9
J

for all 1 < j <m and € > 0. Hence, (5.12) follows by letting € — 0. It remains to prove
i (5.16)

dimy Gr £([0, 1]¢

for any 1 < k < p. Let us fix an integer 1 < k < p. We observe that each
(Rn’lail + te + anp»ip) X Tnyily"'zip
~4_ Further note that since

can be covered by £, . cubes in R4 of sides n
) <ecn =D @i ZL(WF&),

vol ((Rn,17i1 + ...+ Rn,p,ip) x Ty i1,

we can achieve that
0, pn 0 (dTm) < op= Y=y (aite)
or, equivalently
gn - <en” Zle ﬁlﬁl-l-ddk—zzzl(ai—ak-l-a)
and the exponent in the last expression equals
p m p m
= = ap)iu — Y (i —ag+e) < > (ag— @) — Y (i — ax +e), (5.17)
i=1 I=k+1 i=1

=1
where the last inequality follows from (5.7). Let 0 < o) < a; — &,1 < i < m, and define

ko~ k m
=) =i +d Z Z 1-2
En.p - €nx cubes in RT™ with edge-lengths

Note that Gr ([0, 1]%) can be covered by ki 1
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5. Multivariate Gaussian operator-self-similar random fields

n~% . We will now show that

Epa .. knp - logn 0% — 0 (5.18)

)

as n — oo in order to obtain dimg; Gr £([0,1]%) < 1. Using (5.14) and (5.17) we get

kpi...knp- Emkn_d’“"k <n?

)

with
p p m k
v=> aifij+ Y (ak —dj)i; — > (o5 — G +€) — Y ajfly
j=1 j=k+1 i=1 Jj=1
k m o
—ar(d=Y g+ (1-2))
j=1 i=1 k
p m P m
=ar Yy, fij—y (wi—ap+e)—ar », fij—» (ar— ;)
j=k+1 i=1 j=k+1 i=1
m
ZZ(O[;—OQ—FE) <0
i=1

by assumption so that (5.18) holds and implies dimg Gr £([0,1]¢) < 1. Therefore, (5.16)
follows by letting o — «; — £ and € — 0. The proof of Lemma 5.5 is complete. O

Remark 5.6. Let f = (f1,..., fm) : [0,1]¢ = R™ and assume that f satisfies (5.8) with «;
replaced by §; for every 8; < ;. Then in view of the proof of Lemma 5.5 we see that (5.10)
and (5.11) are still valid.

Example 5.7. Let the assumptions of Lemma 5.5 hold with £ = I; the identity operator
on R?. By Example 2.2 we have 77,(z) = ||z|| for all z € R%. Further note that p = 1,a; = 1
and the direct sum decomposition with respect to I; is R = W so that dim W, = d. Thus,

Lemma 5.5 reads as

dimy f(]0, 1]d) < min {m,

and

d+ Zg:l(aj — ;)
Q;

dimHGrf([O,l]d)gmin{ ,1§j§m,d+§:(l—ai)},

=1

which coincides with the statements in Lemma 1.4.

5.3. Uniform modulus of continuity

From now on throughout this chapter, let the assumptions of Chapter 5.1 hold and let us
write X to indicate that we consider either the random field X4 in Theorem 5.2 or X, in
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5. Multivariate Gaussian operator-self-similar random fields

Theorem 5.3. We will now state a result about the modulus of continuity for the components
of X = (Xy,...,X,,). Before doing this, let us recall that from the Jordan decomposition
theorem (see e.g. [19, p. 129]) there exists a real invertible matrix A € R™*™ such that

A71DA is of the real canonical form, i.e.

J1 0
A"'DA =
0 Ji
for some k& < m and some block matrices Ji,...,J;, where each J;,1 < j < k, is either a
Jordan cell matrix of the form
Al
A1l
Jj =
1
A

with A a real eigenvalue of D or J; is of the form
A I
AN Db

I
A

where the complex numbers a + ib, b # 0, are complex conjugated eigenvalues of D.

Proposition 5.8. If the operator D itself is of the real canonical form there exist positive
and finite constants 1 < p; <m (j =1,...,m), Ce1, depending only on D,d and m, and a
modification X* of X such that for every j =1,....,m

X5 () — X7 (W) <Cs1 a.s. (5.19)

Sub )‘%+2(pj—1)+e -

zyelo)? TE(z — y)N[log Tr(z —y
Y
for every e > 0. In particular, one can find a positive and finite constant Cg o such that for
everyl <j<mande >0

X5 (x) = X5 (y)| < Coprp(z —y)V—* (5.20)

holds almost surely for any x,y € [0,1]%.

Proof. The proof of this Proposition is essentially based on the proof in [36, Proposition 4.1]

and the idea is to apply Proposition 4.9. Let ¢ be an unspecified positive constant and define
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5. Multivariate Gaussian operator-self-similar random fields

r = 7g(x —y) for some fixed z,y € [0,1]%. By Proposition 4.9 it suffices to show that
E[(X;(z) — X;(y))?] < ] logr[?®:=1). (5.21)

As before let ||Q = max),—; [[Qz] for any matrix @ € R™ ™. Let us recall that the

operator norm is submultiplicative, i.e.
IAB|| < [|All[IB] (5.22)
for all A, B € R™*™ (see, e.g., [38, Proposition 2.1.3]) and that

(Dnax aig| < 4]l < F max |ay (5.23)
for any A = (ai;) € R™*™ (see [36, p. 60]).

Fix 1 < j < m and let Jy,...,J; be the diagonal blocks of D for some k£ < m. Suppose
that the block corresponding to the eigenvalue a; = A\; +¢/3; is J;. For notational simplicity
we will suppress the subscript [. Denote the standard basis of R™ by (e, ..., €,). Since X is
(E, D)-operator-self-similar and has stationary increments, using the change to generalized

polar coordinates with respect to E we get
X(z) = X(y),¢)’]
E[(re(z — )P X (Ip(x —y)), ¢))°]
m 2
= [(z (lo(x = ) {ru(z = y)Pex,e)) |-
Note that (rPeg, e;) is the (j, k)th entry of 7P and a = (rPey, e;) # 0 only if j < k and a is

also an entry of 7/, since D is assumed to be of the real canonical form. Now we distinguish

two cases. First we assume that J is a p X p Jordan cell matrix with eigenvalue A = A;. Then

DL L o o (p 1))\k p+l
Mk ENE—L :
JE =
k)\kfl
)\k
for all k € N so that
rA —
N rrogr ... L. ) (log r)P~1
- 1 ) r A log r
J _ ogr E_
=2
k=0
A log r
’I“A
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5. Multivariate Gaussian operator-self-similar random fields

Note that for small » we have

max \(rDek, ej)| =

p—1
1<k,j<m (p—1)! (log )P~ (5.24)

Furthermore, since

=B X0 = [, (1609 — 1ljwt)Pdenl) dy
k=1 k=1

is continuous and bounded on the unit sphere Sg, there exists 0 < M < oo such that

maxges, I'(6) < M. Combining this with (5.24) we obtain
m 2 m 2
[(Z (lp(x—y (rDek,ej>) } < er? (logr [(Z (lp(x—y ) }
< cMrz)‘(log T) (pfl),

which proves (5.21).
Now we consider the case that J is a 2p x 2p matrix of the form

A I
A I
J = WlthA:</\] BJ)
Bi A
I
A
Let us define a 2p x 2p matrix M (A4,...,A,) by
Al Ay A,
M(Ah ) Ap) -

A
Ay

so that we can write J = M (A, I5,0,...,0) and

1 p—1
rd = M(T’A,TA logr,... ,’I"A%>
(p—1)!

log r)P~1
=M(@™,0,...,0) - M(I, 1 ...1(7.
(T 507 70) (27 210g T, 5 42 (pfl)' )

By using the fact that [|r™u|| < %9 |jul| for every u = (u1,ug) € R? (see [36, p. 65]) we obtain
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for u € R? that

(lo r)p_1
PR

< ||M(7“>‘J'Ig,0,...,0)-M(Ig,[glogr,...,lg((p_l)' u

7|l = || M(™,0,...,0)- M(12,12 logr, ..., I
(5.25)

Assume that the component vector of X (Ig(z — y)) corresponding to the block 7/ of 7 is
given by X (Ig(x —y)). Further let (é,...,¢&,) be the canonical basis of R?’. Then for some
1 <4 < 2p by the Cauchy-Schwarz inequality and (5.25)

E[(X;(2) - X;(1))°] = E[(r" X (ln(z - v)), ¢;)?]
=E[(r' X (lp(z —y)),&)?]
<E[Ir' X (Is(x — ) |?llé]?]
< E[[| M1 (r) Ma(r) X (Ip(x — ) ||
< E[[| M1 (r) Mo ()21 X (12 — ) |12

with M (r) =

maxges, E[|| X (0)]?] < c the last expression can be estimated from above by

M(r*15,0,...,0) and My(r) = M(IQ, Llogr,..., I (logr)p_l) Noting that

B[ |[My (1) M ()] < el My () P Ma(r) 2 < e (log )P,

where we used (5.22) in the first inequality and (5.23) in the last inequality. Hence, this
proves (5.21).
Finally, (5.20) follows from (5.19) and (2.3) exactly as in the proof of Proposition 4.11. [

5.4. Hausdorff dimension of the sample paths

In this section we state our results on the Hausdorff dimension of the range and the graph of
a trajectory of X over the unit cube [0, 1]¢. Recall that R? = Wy @...® W), is the direct sum
decomposition with respect to E, p; = dim Wj, fi; = dim W, 11_;, @ = apy1—; for 1 < j <p
so that by (5.6)

O< <. S <I<a<...<ar. (5.26)

Theorem 5.9. With probability one

X TN =N
dimy X ([0,1]%) = min {m; k1 Ttk +AZl:1( i — i)
j

m if Doy A < DDy Gk
= P 1 N
D VP T SIS S Y

1<j<m)
(5.27)
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and
dimy Gr X ([0,1]%) = min { dimy X ([0, 1]%); G(1),1 <1 < p}
p m
dimy X ([0,1]%) if Y <Y N, (5.28)
— k=1 1=1
- -1 m l
i) iy anie <Y N < Y anfu,
k=1 1=1 k=1
where

GO =3 D+ Y my (-5
=1

=1 j=l+1

<
Il

The second equality in (5.27) and the second equality in (5.28) are verified by the following

elementary Lemma whose proof is analogous to the proof of Lemma 4.14. Denote

Db 1akﬂk+zz (A — )
Aj

(= mln{ 1§j§m}

and

I

l

Y%g
a j=l+1

Lemma 5.10. If (5.26) holds then the following statements are true.
(i) IF ST\ < S8 apur, < Ly A for some 1 <1 <m then

S g+ S (N — )

(= N\

and ¢ € (I —1,1].

(ii) If >0 N < >-h_ appur then (= m.
(iii) If there is 1 < k < p such that Zj;1 ajfi; < > A < Z;?:l aj;fi; then

Z*“J‘F Z NJ"‘Zl_*

j=1 j=k+1

and Kk € (m + Z?:k+1 fij,m + Z?:k ﬂj} :

Proof. We first prove (i). So assume that for some 1 <1 <m

-1 4 l
Z)\i < Z appr < Z)\’ (5.29)
=1 k=1 =1
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Define

_ Y1 O+ STy =)
Aj

G

for 1 < j < m. We first show that ( = ;. Let [ < b < m and note that A\, > A;. Then

Soh 1 akk SN PN
G =l — b4 (N — N k=L 2 P
G—G + (A — A1) N TN + X\ W
I I b
N\ > i1 A P N\
<l—b A — \) - =1\ A\ - =1\ N\ - =1\
< + (A — A0) e PN + X\ wh

b b
D Y ‘2 s
— b4\ EEHLT gy =T
: At \p

<l-b+b—1=0,

where we used (5.26) in the last inequality. Thus, we have (; < ¢, for [ < b < m. Similarly
one shows (; < ¢, for b <1 < m so that ( = mini<j<m, (; = (;, since by (5.29)

l
g < Ziz N =1l<m
Al
and l
N — A
G > 721_1/\l L =[—1.
l

Now we prove (ii). Assume that

m p
Z A < Z A k-
=1 k=1

Then
> SN (=) _ Xitjridit PP
! Aj Aj
m J
> > 1+Y 1=m
i=j7+1 =1

for all 1 < j < m, where we used (5.26) in the last inequality. This shows ( = m.
We now turn to the proof of (iii). Suppose that

k—1 m k
S <> N <Y agfy (5.30)
j=1 i=1 j=1

-~ P m s

~ ~ 1
“lZE:&JMJﬁE:MﬁLE:(l*g)

j=1 % j=I+1 i=1 !
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We want to show that k = kj. First assume that 1 <! < k. Then using (5.30) and (5.26)

k ~ I~ k 1 1 !
Hk—ﬁlzzdfjﬂj—zdfjﬂy— > ﬂ]"‘(g_;)z)\i
j=1 4k j=1" j=l+1 ! k=1
ko~ I~ k =
S D D ) D e DL
j=1 % j=1 % j=l+1 ! koj=1
k=1 o k
=t D = D
j=t+1 j=l+1
k-1 k
<hkt Y - Y =0,
J=l+1 J=l+1

~ ~ l m
i 1 1
J~ J - ~
Hk—ﬁl:ngﬂg—Zaﬂj+ > i+ a_a)ZAZ
J=1 J=1 Jj=k+1 i=1
E g L& Lo LA
<ZC~T/~‘J_Z(~7MJ‘+ Z NJ"‘(&*_ET) gy
j=1 %k j=1 M j=k+1 ¢ koj=1
I !
== Z g]ﬂj + Z Hj
j=k+1 j=k+1
! !
< - i+ Y =0,
j=k+1 j=k+1

i.e. kg < k. This proves k = miny<;<, k; = K. Finally, by (5.30) we have

P P
Kk =kKr < fix + Z /lj+m:Z/1j+m

j=k+1 j=k
and

p
K= K > Z fj + m.
j=k+1

Proposition 5.11. Fiz 1 < j <m and let € > 0 be sufficiently small. Then the integral
&= [ [ o=y L N dady
[0,1] J[0,1]¢

s finite for any

=1 1‘%% + Zg:1(>\j - \i) }

0<’y§min{m, 3
J

Proof. In this proof let ¢ and ¢’ be two unspecified positive constants. Note that

£, < / TE(x)—vAjJer:l()\j—/\i)dx‘
lz[<2
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In order to show that the integral in the last expression is finite we observe that for any

Shon ther + T (Y — Ai)}

0<7<min{m, 3
J

there exists an integer 1 <[ < p such that

i1 %MHZ?:NM—M <v< - l1+5'uk+zz 1A — i)

5.31
y 5 (5.31)

In the following we only consider the case [ = 1, since the remaining cases are easier because
they require less steps of integration using Lemma 4.7. So assuming (5.31) with [ = 1 we can

choose positive constants do,. .., d, such that 6; > %;E, 2<j<pand

k= 25k+21 1 (A —A)<7<1%15M1+Zk 25k+21 ey —)\).

.32
y y (5.32)

Let = 1 + ...+, for z; € W;,1 < i < p be the direct sum decomposition with respect

to E. Since the W; are orthogonal in the associated euclidean norm, it follows that ||z| < 2
implies ||z;|| <2 for 1 <+i < p. Then by Remark 2.10

Lte e 5. J .
& < c/ / (||z1]] a1 A aj> YA+ T (A Al)d:cl...da:p.
lle1]|<2 llzpl|<2

By using the change to (classical) polar coordinates we can further estimate

2 2 14e 1te
& < c/o drl.../o drp(ri™ +...4+1m") SN A H it (5.33)

Applying Lemma 4.7 to the integral in (5.33) with

p—1 1+‘s 7
A:era’, u:’y)\j—Z()\j—)\i) and k=
j=1 i=1

we integrate with respect to dr, in the last expression and obtain that

2 2 14e 14e j Hp p—1

, a1 e VR N CYED VR mi—1

& <c Jrc/ drl.../ drp_l(rl +...+rp_l) i=1 » i
0 0 i

By repeating this procedure (p — 2)-times, we derive

2 1+

Note that from (5.32) we get

l+e¢ S
( YA +Z k25k>+u1—1
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>1+5.( al

— —1=-1.
1+5M1) + 11

a
Thus, the integral in (5.34) is finite and this proves the assertion. O

Proposition 5.12. Let 1 < k < p be an integer such that

k—1 m k
Doy <Y N <Y ajh
]:]_ =1 ]21

For v > m define
G, = [ [ e =yl e — )" S N dady
[0,1]¢ J[0,1]¢

Then if € > 0 is sufficiently small G is finite for any

Proof. Let us first note that by a change of variables

Gy <e [ el s S
lzl<2

a

Let ¢ and ¢’ be two unspecified positive constants. To simplify notation let g; = 7 4{6, 1<

j < p. Then by assumption for sufficiently small € > 0 we have
k—1 m k
> 9if; < YA <D gih. (5.35)
j=1 i=1 j=1

Let us write z = 21 + ... + o + y for x; € Wi, 1<i<kandye Wk+1@...@Wp. As in
the proof of Proposition 4.20 we remark that

k k

el < ellzllz = e | 3 a3 + Iyl < e( D lesllz + lylla)

j=1 i=1
k

< e D llall + llyl)
j=1

and that [|z| < 2 implies ||z;|| < 2,1 < i <k, and ||y|| < 2. Combining this with Remark
2.10 we get
k
g, < c/ / / \
T w2 <2 i< (2::

J=1

k .
< (SNl + llyl) " dan . dady.
j=1

1 1 —E:Z i
ol + lyller ) =
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By using the change to (classical) polar coordinates we further get
k 1

2 2 2 = EINEDPIPY
g Sc/ dr/ dr.../ dr ri 4o =
K 0 o " 0 I(Z] )
(5.36)

7j=1
k ko
X (er+r) H o Ljera oL,
=1 =1
., dry iteratively.

In order to show that the integral in (5.36) is finite we will integrate dry,
Furthermore, we will assume that & > 1 in (5.35), since for k = 1 we can use (4.8) of Lemma

4.8 to obtain (5.38) directly. Indeed, if £k =1 in (5.35) we have

*Z/\ < i1

g1 i=1
so that by (4.8) of Lemma 4.8 with
m
BZT? Q= —, ﬁ_z)\“ n=7° m k:ﬂl
91 i=1

we obtain

2 1N 4 P

which is (5.38) below with £ = 1. So in the following assume that £ > 1 in (5.35). Let us

first integrate with respect to dry. Since by (5.35)
1 & -
— Z Ai > fiy
91 ;-

we can use (4.6) of Lemma 4.8 with

k 1 " m
=2 Hr, B3t a=n =) N m=y-m k=i
— i— i=1
to get that
L A\ =2 Aitgiin

., drp_1 and

Using (5.35), we can repeat this procedure for integration with respect to drs,
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5. Multivariate Gaussian operator-self-similar random fields

obtain

2 2 L —S S iy
g»ySC/ dr/ d?“k(r,f’“ —i—ri) 2eima AHd o 937
0 0
m— ~

(5.37)
P i —
X (rk + r) 77“2““71 ~rzj:k+1’” t
Since by (5.35) we have
m k—1 1
(Z)\z‘ - Zgjﬂj)* < fir
i—1 j=1 9k
we can use (4.8) of Lemma 4.8 to the integral in (5.37) with
1 m k—1
B:T7 o= —), BZZ)‘Z'i_Zg]/]’]) n=vy-—m, k:ﬂk
9k i=1 j=1
and obtain
2 m - ~ ~ ~
G, <c / e (DL )t SRl (5.38)
0
Observe that for
k g; p m 1
m<y<d Zhi+ > g+ (1-XN—)
j=1 9k j=k+1 i=1 Ik
we have
1 m k—1 P
m—y—— (3N = Y giy) H D Ay -1
9k iz =1 j=kt1
P P
>—fik— > B+t Y p—1=-1
Jj=k+1 Jj=k+1
Thus, the integral in (5.38) is finite and this completes the proof. O

We now give a proof of Theorem 5.9 which further takes into account some methods used
in the proof of [36, Theorem 4.1] and [53, Theorem 2.1].

Proof of Theorem 5.9. By the Jordan decomposition Theorem (see Chapter 5.3) there exists
a real invertible matrix A € R™*™ guch that D = A 'DA is of the real canonical form.

Consider the random field Y given by
Y(z)=A"'X(z), zeR%

Then using the fact that ¢© = A=1cP A for any ¢ > 0 (see [38, Proposition 2.2.2]) and the
fact that X is (F, D)-operator-self-similar we get that

Y(cFPr)=A"1X(cFr) 4 AP X(2) = AP AATI X (2)
= PAX(2) = LY (2)
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5. Multivariate Gaussian operator-self-similar random fields

for any ¢ > 0 and = € R?. Hence, Y is an (E, D)—operator—self—similar Gaussian random field
in R™ and has stationary increments. Moreover, the mapping y — Ay is bi-Lipschitz, since

by [38, Proposition 2.1.3] we have

1

——ly|l <Ayl < ||A]llly
A 1|||| | < [[Ay[l < [|A[[lly]l

for all y € R™. Therefore, from Corollary 1.3 (ii) we get
dimy Y([0,1]%) = dimy X ([0, 1]9)

and
dimy GrY ([0, 1]%) = dimy Gr X ([0, 1]9).

Thus, without loss of generality we may and will assume that D itself is of the real canonical
form. Furthermore, by Proposition 5.8 there exists a modification X* of X such that (5.20)
holds. Since X™ is continuous, X and X™* are indistinguishable and we may also assume that
X itself satisfies (5.20).

Let us now first prove (5.27). Since X satisfies (5.20), the upper bound in (5.27) follows from
Lemma 5.5 and Remark 5.6. It remains to prove the lower bound in (5.27). By Frostman’s
theorem (see Chapter 1.2) it suffices to show that

&=[ [ EIX@) - X)|dedy < oo
[0,1]¢ J[0,1}¢

to obtain that dimy X ([0, 1]%) > ~ almost surely. From now on let ¢ and ¢’ be two unspecified
positive constants and let us further recall some well-known facts taken from [53, p. 279].

For any positive definite matrix T € R"™*™ with rank m and any vector u € R one can

estimate
u' T > culw. (5.39)
Furthermore, for any a > 0 we have
9 2\—2 —~y41
/ (y*+a*) 2dy = c1(y)a™” for yv>1 (5.40)
0
and
o 2 2\—2L P —~+1
/ (y"+a”) 2eVdy=ca(y)a " +c3(y) for 0<y<1,p>0, (5.41)
0

where ¢;(7), c2(y) and c3(7y) are positive constants depending only on .

Note that since X is (F, D)-operator-self-similar with stationary increments

X(2) = X(y) L X(x —y) = X (r5(z — y)Plp(z — y))

Lz — y)P X (Ip(z —y))
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5. Multivariate Gaussian operator-self-similar random fields

for all z,y € R%. For the covariance matrix this implies that
det Cov (X (z) — X (y)) = (det Tp(x — y)D)2 det Cov X (Ig(z — y))

=[] 7e(z — y)*¥ det Cov X (Ip(z — y)),
j=1

where in the last equality we used that D is of the real canonical form and the fact that

det 7p(x — y)? =17, 76(x — y)". Since X is Gaussian, continuous and proper, we have
det Cov X (lp(z — y)) > errlgn det Cov X () > 0.
€EOF
For = # y let
X - X;
}/J(J"’y)_ J(:E) J)\(.y)7 _17 , .
Te(z — Y)Y
Then
1

det Cov (Y (z,y)) = det Cov (X (z) — X(y))

[T} Tr(z —y)*Y

=det Cov X (Igp(x —y)) > ¢

for some positive constant ¢ independent of x and y with z # y. Since Y (z,y) is Gaussian, this
implies that Cov (Y (z,y)) is a positive definite matrix with rank m. Therefore, using (5.39)
with 7' = Cov (Y (z,y)) and the fact that X is a Gaussian field with stationary increments
by the definition of Y (x,y) we obtain for v > 0

& = E[|X(z) = X(y)[ 7]

(5.42)

We now consider two cases. First assume that there exists an integer 1 <[ < m such that
-1 p !
)IRYED SIS ¥
i=1 k=1 i=1

Then by Lemma 5.10 we may and will assume that [ — 1 < v < [. We first integrate with
respect to duj in the last integral in (5.42) by using exp(—u?) < 1 and (5.40) with

a= (i (ujp (e - yw*l)?)

Jj=2
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5. Multivariate Gaussian operator-self-similar random fields

so that

& <crp(z—y) ™. /m [u% +> (uTp(e - y)Aj_M)ZT
j=2

7j=2
m 9 7(7;1) m
< CTE(ZE _ y)—wl . /Rm_l {Z (UjTE(:E _ y)A]‘—M) } exp ( — Zu?)dug codugy,
j=2 Jj=2
A —(7—1)(Aa—A1) e 2 -
—_ )M = (=D (A2 =A1) |
< crp(z —y) /Rm_1 {“2 + D ( }

u;TE (T — y)’\ij)
m
X exp ( - Zu?)duz codugy,.
j=3

By iterating this argument for integration with respect to dus, ..., du;_1 we find that

_ (=41
2

& < crp(z — Z/)_w\ﬁzi:lo‘l_)‘i) / {u? + Z (ujTE(x — y))\jﬂz)Q}

m—I+1

Note that 0 < v—1I1+1 < 1 by assumption so that we can use (5.41) to integrate with respect

to du; in the last expression and obtain that

m 2 _ (=D
& < crp(x — y)_’y/\H_Zi:l()‘l_)‘i) o ([ > (ujTE(a: - y)/\j—Az) } C c’)

J=l+1
m
X exp ( — Z u?)dulﬂ oo dUgy,.
j=l+1

Since —(y — [) > 0 by assumption, we can get an upper estimate of the integral in the last

expression by a change of polar coordinates and obtain

c/Rm% ({ zm: u?}l;—i-c/) exp(— i": u?)dul+1...dum

j=l+1 j=l+1
o N =2 m—l—1
Sc/ (r_y—i—c)e_r P T dr < oo,
0
To summarize this we have

1
&, < etz — y)—w\z-i-zi:l(/\z—/\i).

On the other hand if
m P
Z Ai < Z A fi
i=1 k=1
by Lemma 5.10 we may assume that v < m and the above calculations show that

& < emp(a —y) P EIL RN,
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5. Multivariate Gaussian operator-self-similar random fields
Altogether we obtain that for some 1 <[ <m
l
&y < C/ / TE(T — y)*'Y)‘l*Zi:l()‘l’)‘i)d:rdy.
[0,1]¢ J[0,1]¢

By Proposition 5.11 the above integral is finite for any

D het T bkt POIRIOVES )\z)}

0<7<m1n{m, N

where € > 0 is arbitrarily small. Frostman’s theorem then yields

S he1 Tzt + PIRIPYEPYY }

dimy X ([0, 1]%) > min {m, 3
l

almost surely. Since this holds for any arbitrarily small & > 0, the lower bound in (5.27)
follows by letting ¢ — 0.
We now turn to the proof of (5.28). First assume that

P m
Z agpy < Z Ai-
k=1 i=1
Then combining (5.27), Corollary 1.3 (ii) and Lemma 5.5 we obtain almost surely

Zﬁﬂ agplg ~+ Zg:l()‘j — i)
Aj

min{ 1<5< m} = dimy X ([0, 1]%)

S app X (A — M)
Aj

< dimy, Gr X ([0,1)") < min { 1<j<m}

so that dimy X ([0, 1]%) = dimy Gr X ([0, 1]¢) almost surely. Now we consider the case that

N
I
—

m l
aifiy < 3N < ) asl;
1 i=1 j=1

J
for some 1 < [ < p. Then the upper bound in (5.28) follows from (5.20), Lemma 5.5 and
Remark 5.6. It remains to prove dimy Gr X ([0, 1]%) > v almost surely for all

[ p m
a; B A\
0<y<> 2+ > gi+> (1-2.
— q . . ajp
j=1 j=l+1 =1

By Lemma 5.10 we may and will assume that v > m + Z§:l+1 fi;. Again by Frostman’s

theorem it is sufficient to show that

X
2

|dzdy < oo.

G, = [ Bl ol 1) - X1

If Y(z,y) is defined as above we obtain

X
2

1y = E[(lo -yl + X (z) - X()|I*)

]
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5. Multivariate Gaussian operator-self-similar random fields

[N

_ 1 1 R mu‘T oy
_/’” (2m)% \/detCov (Y(x,y)) {H vl +;( (7= y)™) }

X exp ( - %’LLT Cov (Y (z, y))_lu)du

C/Rm {HCU -yl + Z (uitp(z — y)’\i)ﬂ “duy . .. dup,
i=1

IA

_ —7A1 2 ”I—y”2 > ,\i,,\l 2 _%d d
_CTE‘(JZ‘—y) . m{ul—i_ﬁ—’_z UZTEZII— ):| UL ..o AUy -
=2

We first integrate with respect to du; using (5.40) to obtain that

2 m _(=1
o= lz —yl| . ,\ -\ 2} 2
Ny < ctp(z —y) /Rm_l [77_]2( o T Z:ZQ wiTE(x ) dusg . . . duy,.
Since v > m, we can repeat this procedure for integration with respect to dus, ..., du,, and

obtain that

Ny < ctp(r — y)—WerZ?ll(Am—M)Hm _ yH—(W—m)TE(x _ y)(v—m)Am

so that
Gy<c| [ @y R o -yl dady.
[0,1]4 J]0,1]4

By Proposition 5.12 the above integral is finite for all

1
m<7<z i+ Z uj+z (1-A—5)

J=l+1

with an arbitrarily small € > 0 and we obtain

l

Iy

l
di J
imy Gr X ([0, 1 Z d
j=1 j=l+1 =1
almost surely. Therefore, the lower bound in (5.28) follows by letting € — 0. This completes

the proof of Theorem 5.9. O

Let us close this chapter with the following two examples.

Example 5.13. As noted in Chapter 5.1 the operator fractional Brownian motion is (14, D)-
operator-self-similar. Let us assume that £ = I; in Theorem 5.2 and Theorem 5.3. Then

Theorem 5.9 can be written as

d+ 21:1(/\3' )
Aj ’

dimy X ([0, 1]%) = min {m,
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5. Multivariate Gaussian operator-self-similar random fields
and

dimy X ([0, 1]%)
dimy Gr X ([0, 1]%) =

if d < Z

d+d (1-X) ifd> Z

i=1 =1
almost surely, which coincides with (5.2) and (5.3).

Example 5.14. Assume that D = H - I, for some 0 < H < 1, i.e. D is a diagonal matrix
with constant diagonal entries H. In this situation the random field X coincides with the

same random field as in Example 4.25 with a = 2 and Theorem 5.9 further becomes

P
dimy X ([0, 1]%) mln{m,Z—k }
k:lH
and
P . l ip p H
dimy Gr X ([0,1]% —mm{Z— ZT[L + Z /Zk—i—(l—f)m,lglgp}
k=1 I =1 U k=l+1 a

almost surely so that we recover the results in Example 4.25.
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6. Multivariate stable harmonizable
operator-self-similar random fields

The purpose of this chapter is to establish the corresponding results of Chapter 5 for a-stable
harmonizable operator-self-similar random fields. Indeed, we will see that these fields have
the same kind of regularity properties as the Gaussian fields given in Chapter 5. We first

recall the definition of stable harmonizable operator-self-similar random fields from [33].

6.1. Definition and existence

Throughout this chapter, let us adopt the notation of the preceding chapter and assume that
(5.6) holds. Let 1 : RY — [0,00) be a continuous E”-homogeneous function according to
Definition 2.3 and assume that 1 (z) # 0 for z # 0. Moreover, let M,, a € (0,2), be a C™-
valued SaS random measure on R? as introduced in Chapter 3.3. Recall that ¢ = trace(E).
The following is due to [33, Theorem 2.6].

Theorem 6.1. If (5.6) holds the random field

Xolw) = Re [ (09— 1)(y) P~ ML,(dy), @ € RY (6.1)
Rd

is well-defined, proper, stochastically continuous and (E, D)-operator-self-similar SaS with

stationary increments.

Let us recall that X, is well-defined, since the kernel matrix in (6.1) satisfies
[ Jexp e —1p2 )P dy < oo
R

for all 2 € R?, which is shown in the proof of [33, Theorem 2.6]. Moreover, according to

Theorem 3.14 the characteristic function of X, (z), x € R?, is given by
Elexp (i(0, Xa(2)))]

— exp ( — [ (1= costa.))? + <sin<x,y>>2aw<y>”ifmenady)

(6.2)

. _ Tii a
=exp<— /Rd\e“x’w—lwuww Pioalng| dy>

for any 6 € R™.
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6. Multivariate stable harmonizable operator-self-similar random fields

Before studying the sample paths of the random field given in (6.1) we establish results

about exponential powers of linear operators in the next section.

6.2. Exponential powers of linear operators

The following Proposition is due to [38, Proposition 2.2.11].

Proposition 6.2. Let A € R™*™ be a matriz and let || - || be an arbitrary norm on R™. The

following statements hold.

(i) If every eigenvalue of A has real part less than 31 then for any ty > 0 there exists a constant
C > 0 such that ||tAu|| > Ct%t|ju|| holds for all 0 < t < to and all u € R™.

(ii) If every eigenvalue of A has real part less than P2 then for any so > 0 there exists a
constant C' > 0 such that ||s4u|| < Cs%2||u|| holds for all s > so and all u € R™.

Corollary 6.3. Assume that D is of the real canonical form (see Chapter 5.3) and let || - ||

be an arbitrary norm on R™. The following statements hold.
(i) For any to > 0 there exists a constant C71 > 0 such that for any e > 0
m
1EP6]] = Cra Y t%9*(6;
j=1
holds for all 0 < t <ty and all @ = (01,...,0,,) € R™.
(ii) For any so > 0 there exists a constant C7 2 > 0 such that for any € > 0
m
Is™P0ll < Cr2 ) 574165
j=1
holds for all s > so and all § = (61,...,0,,) € R™.

Proof. We only prove part (i). Part (ii) is proven exactly the same way. In this proof let ¢
be an unspecified positive constant. Assume that the distinct real parts of the eigenvalues of

D are given by \i,...,\, for some k < m and let us write
J1
Jo

J

for some block matrices J; so that each J; is associated with Xj, 1 < j5 < k. Furthermore,
write § = (01,...,0;) for any 6 = (01,...,0,) € R™ and let || - ||; be the 1-norm. Then
applying Proposition 6.2 and noting that every eigenvalue of each J; has real part less than
Xj—ke,1SjSkforalls>0,t0>0andallO<t§towehave

k
1E20] > c[[t76]ly = ¢ Y 178111
j=1
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6. Multivariate stable harmonizable operator-self-similar random fields

ko m
A 121 e A (1
j=1 Jj=1
where we used the equivalence of norms in the first inequality. O

6.3. Uniform modulus of continuity

As before let (75(z),lgp(x)) denote the generalized polar coordinates with respect to E. For
notational convenience let us suppress the subscript o and simply write X instead of X,.

The following is the main result of this section.

Proposition 6.4. Let the assumptions of Theorem 6.1 hold and suppose that D is of the real
canonical form. Then there exists a modification X* of X such that for any € > 0 and any
0>0

| X () — X7 (y)]

sup SrIsT < (6.3)
r,yi[é(),l}‘i te(z —y)N~e[log (1 + Tp(x —y)~1)] 2" @
Ty
holds almost surely for all 1 < j < m. In particular, for every e >0 and j =1,...,m there
exists a constant C73 > 0 such that X™* almost surely satisfies
X5 (@) = X ()| < Crami(e —y)hi—e (6.4)

for all x,y € [0,1]¢.

The proof of Proposition 6.4 takes into account some methods used in the proof of [11,
Proposition 5.1] and the key point is to remark that the components X;,1 < j < m, behave

like 1-dimensional operator scaling harmonizable random fields given in [9)].

Proof. Fix 1 < j < m and denote by (ey,...,ep) the canonical basis of R”. The main idea
is to apply Proposition 4.10 with an appropriate choice of the function . Indeed, let Y be

the random field given in (4.12), more precisely
V(@) =Re [ (€9~ 1)(€)Mald2)
R

for any x € RY, with
_pT_4
Ya(&) = 0(€) 7~ eyl
where || - || is an arbitrary norm on R”. We now show that
f.d

{Xj(z): 2 € RY} = {Y(z): 2 € R (6.5)

Let t1,...,t, € R% and 0y,...,6, € R. By (6.2) and Theorem 3.11 we have

E[exp (i ;ekxj@k))} —E[exp (@ Ores, X(11)))]
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6. Multivariate stable harmonizable operator-self-similar random fields

:exp(_/Rd

= E[exp (Z kZi:l HkY(tk))}

> O 1) \\w<y>-DT-ifm6jr“dy>
k=1

and this proves (6.5). Let ¢ be an unspecified positive constant. Let us remark that Corollary
6.3 can also be applied to the block diagonal matrix DT + 21, Then using this, the fact
that ¢ is ET-homogeneous and (2.1) we see that

Valy) = [9(0) P Eme,]| < cbg) N+
= cw (TET (y)ET ZET (y)) 7)\j+€f%

Nife—a Nide_d
= crpr(y) Ajte i'¢(lET(2/)) it a

< cympr(y) R a

for all y € R? with |y|| > K > 0 and some ¢, € (0,00). Thus, Proposition 4.10 applies and
yields that there exists a modification Y* of ¥ such that Y™ satisfies (4.13) with § = \; —e.

Furthermore, since Y* is a modification of Y, for 61,...,60, € R, t1,...,t, € R? we have
n n
S 0YH(t) =D 0:Y(t)
i=1 i=1
almost surely, which implies that
(Y*(z) 2 e R} (V(2) : 2 € RYY.
Combining this with (6.5) yields
(Y*(2) : 2 € RN S {Xj(2) : 2 € R}, (6.6)
Let us now show that there exists a (random) constant C' such that
Aj—e -1 6+%+i
1X;() = X;(y)| < Crpe —y)Y [ log (1+ 7u(z — ) 7))

for all ,y € [0,1]NQ%, x # vy, almost surely. Indeed, from (6.6) for any =,y € [0,1]%, x # y,

we get
P(IXj(x) — X;(y)| < Crp(z —y)V—e [log (1 + (s — y)_l)}5+;+;>

B P<‘Y*(x) =Y (y)| < Crplz—y)V [log (1 + 7i(2 — y)—l)]6+%+;>

=1,
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which yields that P(2*) =1 for
« \j—e 1\ teta
Q" = 1 1X;(@) = X; ()| < Ol — )™~ |log (1 4+ 7u(z —y) ']
Va,y € [0,1]"NQ% » #y},

since [0,1]¢ N Q7 is countable. We now define a modification X 7 of Xj on [0, 1]¢ such that
(6.3) holds with probability one as follows. If w ¢ Q* we set

Xi(u)(w)=0
for all u € [0,1]?. Now suppose that w € Q*. Then for any u € [0, 1] N Q% we set
X3 (0)(w) = X;(u)(w).

Now assume that u € [0,1]¢ is arbitrary and w € Q*. Then since [0,1]¢ N Q? is dense in
[0,1]%, there exists a sequence (u,)nen in [0,1]% N Q% such that lim, e u, = u. It follows
from Corollary 2.6 that

lim X7 (un)(w) — X5 (tm) (w)]

m,n—oo ' J J
o+3+2
< lim Crg(u, — um)Aj_E [log (1 + e (up — um)_lﬂ 2o

m,n— 0o

=0 a.s.

so that (X7 (un)(w)), oy is @ Cauchy sequence in R and, thus converges. We set

neN

Note that this limit does not depend on the choice of (uy,)nen and that X ]* is well-defined.
We now show that X7 is a modification of X;. Let u € [0, 1]% and let (u,)nen be a sequence

in [0,1]9 N Q? with u, — u as n — co. Since X is stochastically continuous, we have

Xj(u) = plim X (up).

n—o0
Moreover, there exists a subsequence (uy, )ken Of (un)nen such that
Xj(u) = lim Xj;(up,) a.s.
Using this, from the definition of X7 we get
P(X7(u) = Xj(u)) = P(klim Xj(upn,) = X;(u)) =1,
—00

which shows that X7 is a modification of X;. Let us now show that X7 satisfies (6.3) almost
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surely. Recall that 7 is continuous. Then for any u,v € [0,1]? we can find a constant C
such that

1 (u) (@) — X5 (0)(@)] = lim [ X5 (un) (@) — X (v0) (@)

B C\10+i+L
< nh_}rlgo Cre(u, — vn)AJ € [log (1 + 7 (un — vp) 1)} ’

N \joHb
=Crg(u—v)¥° [10g (1 +71E(u—v)" )}

for every w € 2. This proves (6.3). Finally, (6.4) follows from (6.3) and (2.4) exactly as in
the proof of Proposition 4.11. This concludes the proof. O

Proposition 6.4 compared to Proposition 5.8 shows that (E, D)-operator-self-similar stable
random fields satisfy the same generalized Holder condition with respect to the matrix F as
the Gaussian ones. Therefore, it is natural to have also the same results of Theorem 5.9 for
the Hausdorff dimension of their images and graphs on [0,1]¢, which we state in the next

section.

6.4. Hausdorff dimension of the sample paths

As in the previous chapter let R = W, @ ... @ W), be the direct sum decomposition with
respect to F, define p; = dim Wy, fi; = dim Wy,11_;, a; = apy1—j for 1 < j < p and assume
that (5.26) holds. As before let X = X, for some a € (0,2) be the random field given by
(6.1).

Theorem 6.5. With probability one

4 AN OVEDY
dimy; X ([0,1]%) = min {m; k=1 Ol +AZZ=1( i) e m}
j
6.7
fm § SN < S o7
D D > STV y IS P
and
dimy Gr X ([0,1]%) = min { dimy X ([0,1]%); G(1),1 <1 < p}
dims X ([0, 1)) if > k<> N (6.8)
— k=1 i=1
- -1 m l
G(D) iy anie <Y N <Y anfix,
k=1 i=1 k=1
where
-~ D m
Gl => Zh+ > i+ (1-%)
j=1% j=I+1 i=1
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6. Multivariate stable harmonizable operator-self-similar random fields

Before proving Theorem 6.5 we first prove two Lemmata. The result stated in the following
Lemma is taken from [53, p. 283]. However, since the proof is omitted in [53], for the sake of

completeness let us prove it.

Lemma 6.6. Let Y be a random vector with values tn R™ and characteristic function ¢.
Then for each v >0

2
23RNV = e % [ [ e (- WD) swdpt e 69)
Proof. By the definition of ¢ the right hand side of (6.9) equals

/ /mu"y Yexp (— Hy2||2)/ exp (i(x, uy)) Py (dz)dydu,

where Py denotes the distribution of Y. Using Fubini’s theorem and the characteristic

function of a multivariate normal distribution the last expression becomes

> 2
(271')7%/ /muwfl/ exp( (ux, y>) eXp( HyH )dyP (dz)du
E [ [T enE e (- %UZHCIJHQ)Py(dx)du.

By using the substitution v = ul|z|| and Fubini’s theorem again the last expression further

equals
11— L, -1
Lo [ el exp (= 502 o] tavPy (da)
o0 1
:/ Hx||_7Py(dx)-/ v’ Lexp (— Zv?)dv
Rm™ 0 2
with
oo 1 [0.9]
/ v’ Lexp (= Zv?)dv = 22 1z exp(—u)du
0 2 0
:2%_1F(1)7

1

where we used the change of variables u = 51)2 in the first equality. This proves (6.9). O

The following Lemma shows that the assumption (Hs) made in [53, Section 3|, which states
that there is an upper bound for the characteristic function of multivariate SaS random fields
in terms of the characteristic function of their components, is superfluous in order to determine
the Hausdorff dimension of the range and the graph of the sample paths of multivariate a-
stable random fields. This assumption is used in the proof of [53, Theorem 3.1} in order to
derive a statement which coincides with the statement of the following Lemma. However, in

the following proof we will see that the aforementioned assumption is in fact superfluous.

Lemma 6.7. Assume that D is of the real canonical form. Then for all t € [0,1]¢, § € R™
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and € > 0 there exists a constant C74 > 0, depending only on €, such that

Efexp (i(X(t),0))] < exp ( —Cra f: \TE(t)AJ'*EHjP).
j=1

Let us recall that the characteristic function of the SaS random vector X (t) is given by
(6.2).

Proof. Let (Tr(t),lr(t)) be the generalized polar coordinates of ¢ with respect to E and recall
that Sp = {t € R? : 7p(t) = 1}. Further, let ¢ be an unspecified positive constant. Using

(6.2) and the change to generalized polar coordinates we get

Efexp (i(X(t),0))]

= exp (— [ lexp (ilra()"1e(0). ) - uaw(y)—DT—ifmenady)
= exp (— [ lexp @lta(e), 7)™ y) - 1|a||w<y>—DT—ifme||ady>
= exp ( /Rd lexp (i(lp(t), z)) — Ha"TE(t)DT+ZIm¢(Z)—DT_Zlm/9||a7-E(t)_‘1dZ>,

where we used the substitution z = TE(t)ETy, dz = 7p(t)%dy and the ET-homogeneity of 1)
in the last equality. Let us note that the function

_ i(€,2)— 1| —(Am—€)a—q
0©) = [ 1€ (z) =
is positive and finite on the compact Sg and, hence due to the continuity of I"

My = grgér; I'¢) >o.

Using this and Corollary 6.3 the above calculations show that for all ¢ € [0, 1] we can estimate

E[exp (i(X(2),6))]

< exp (— C/Rd |exp (i(lg(t),2)) — 1!0‘1#(2)_()‘7”—5)0‘_%2‘ Z TE(t))\j+E+29j‘O‘TE(t)—Q>

j=1

= exp <— C/Rd lexp (i(lp(t), z)) — 1|a¢(z)—(km—e)a—qdz‘ ]Z_:lTE(t)AjJrsej’a)

< exp < — My, - ‘ Z TE(t))‘jJra@j’a)

j=1

so that, in particular

E[exp (i(X(t),0))] < exp ( — My, ‘TE(t))‘jJra@j’a) (6.10)
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for all 1 < j < m. Now let X ... X (™) be independent copies of X (t). Since X (t) is Sas,
from Corollary 3.4 we get

me (XD 4+ XMy L x ).
Using this and (6.10) we obtain
E[exp (i(X(t),0))] = E[exp (i(m~= 3 X1, 0))]
j=1

E[exp (im ™ (X9, )

| A

exp (= elre(t)*10;|")

— exp ( s 7 ()71,

=1
as desired. ]

Proof of Theorem 6.5. As in the proof of Theorem 5.9 without loss of generality we will
assume that D is of the real canonical form and that X satisfies (6.4).

Let us first prove (6.7). Since X satisfies (6.4), the upper bound in (6.7) follows from
Lemma 5.5 and Remark 5.6. Now we prove the lower bound by applying Frostman’s theorem
(see Chapter 1.2). Let

5:/ / E[|[X(£) — X (s)|~dtd
= [ B = X6 aras

and, throughout this proof let ¢ be an unspecified positive constant. Using the fact that X

has stationary increments, Lemma 6.6 and Lemma 6.7 for all )\; > Aj, 1 < j < m, we obtain

= E[[[X(#) — X(s)[77] = E[[| X (t — )]
< c/oOo /Rm Hy” [exp (i(X(t—s),uy>)}dyu7*1du
‘yHQ 3 — 8)uly; || u' " du
<cf [ ex ( - lr(t = Suly| )dyl...dym e
/ eXP<—CZ|TE t—s) 993;‘\’&)
7j=1

> y—m—1 HxHQ
X /0 u exp(—ﬁ)dudaﬂl...d:ﬁm,

where we used Fubini’s theorem and the change of variables = uy in the last equality. Note

o — lol?
2u?

that by using the substitution

0 2 oo ||z||P=mt _pemea 1 s
uv—m—l ex . H.’EH du :/ v 2 2lzll—s v 2 exp(—v)dv
/ p(— )= [ ol v exp(—0)
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S m
= cHxHV*m/ v "2 L exp(—v)dv
0
m

= ez - ).

Combining this with (6.11) we get

Sc a:”mexp —c TEt—S;H?'adJZ'
v J

=1 (6.12)

y—m m

m m 24 L=
- N -\
—erp(t—5)" 2= [ 13 (mwlt =) M) |7 exp (= D eluil”)dy
i=1 i=1
where we used the change of variables y; = 7p(t — s)’\;xi in the last equality. Now let us first

consider the case where there is an integer 0 <[ < m — 1 such that

m—[—1 m—l1

Z Ai <Zak,uk Z

By Lemma 5.10 we may and will assume that m — [ — 1 < v < m — [. By using (5.40) and
(5.41) we will integrate with respect to dypm,...,dy,—; in the integral in (6.12). We first
integrate with respect to dy,, to find that

_ ’ m— / _ I\ 21-5—
Gy < ete(t—s) 2L X m=) X, /m {yz,fF (TE(t—S)/\"L AZ’%‘) ] :

X exp ( clyil )dym
=1
_ N4 (m—y)AL, ~ 12 - 2 777;71
<ecrp(t—s) “i= 1 /]Rm—l [ 2. (’TE (t—s) |yl|) }
m—1
X exp ( -y C‘yi|a)dym—1 - dyy.
=1

By repeating this argument for dy,,—1 ...dy,,_; exactly as in the proof of Theorem 5.9 we

obtain

m—1l \,
¢ < erp(t—s)” 2 L N (m=l=y)\,

m—1

m—l1

= CTE(t _ S)Zj:l )‘;n—liA;)ify)\l

m—1

On the other hand if
m P
Z Ai < Z Aol
i=1 k=1
by Lemma 5.10 we can assume that v < m and the above calculations yield

Gy < emp(t —5) P O ),
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Altogether we have shown that for some 1 <[ <m

E<C/ / 5) i ) g,
0,1]¢ J10, 1]d

By Proposition 5.11 the last integral is finite for any

S e+ Y (N — A;>}

0<'y<min{m, Y

with an arbitrarily small € > 0 so that

- 11+€#k+21 1N = )\)}

dimy X ([0, 1]%) > min {m, -
>\l

almost surely. Since this holds for any ¢ > 0 and )\9 > Aj, 1 < j < m, the lower bound in
(6.7) follows by letting € — 0 and A} — A;, 1 < j < m.
Now we turn to the proof of (6.8). If >°F_; appu < Y11 A; then the almost sure equality

dimy, X ([0, 1]) = dimg, Gr X ([0, 1]%)

is proven exactly by the same argument as in the proof of Theorem 5.9. So let us consider
the case that

for some 1 <1 < p. Note that the upper bound in (6.8) follows from (6.4), Lemma 5.5 and
Remark 5.6 as before. It remains to prove the lower bound in (6.8). Again we will do this by

applying Frostman’s theorem. Let
- )\
0<7<Z HJ+ZMJ+Z d—
j=1+1
and according to Lemma 5.10 assume that
p P
m + Z i1 <’y<m+Zﬂj.
j=l1+1 j=l

For s,t € [0,1]? define

X
2

J.

y =E[(lt = sl* + 1 X(#) - X(s)II*)”

From the fact that X has stationary increments, Lemma 4.17 and Lemma 6.7 we get for any

m<ells =7 [ E[ew (it 1) ay
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m
<ec s—t_v/ exp( —c¢ et — s)%i|—2 “)dy
ls =7 | exp( 2 el el il
m ’
—clls =t [ exp (= e 3 Ir(t = ) oy [*)da
RrR™ .
Jj=1

m /

= clls =t Tt - 5)” 2,

where we used that .

/Rm exp ( — Z \uﬂ“)du < 00

j=1
in the last equality as shown in the proof of the lower bound in Theorem 4.13. Overall we

have shown that

_X
G, = [ o Bl =7 5 1X(5) = X 0)) st
[0,1]¢ J[0,1]¢
< c/ / s — £ rg(t — 8)~ 2im1 M dsdt.
[0,1]¢ J[0,1]¢

By Proposition 5.12 the above integral is finite for any

1+
m<’y<z lu]+ Z u]+2 (1- N5

Jj=l+1 i=1 al
and any € > 0 as soon as )\9 > Aj, 1 < j <m, such that
-1 m l
Z&]ﬂj < Z/\; < Z&]ﬂj
7j=1 =1 7j=1
This proves that
d ! a; p i 1 + (3
dimy Gr X ([0, 1) > Y s+ > i+ (1= N——)
j=1 U j=l+1 i1 a

almost surely for any £ > 0 and )\3 > Aj, 1 < j < m. Thus, the lower bound in (6.8) follows
by letting ¢ — 0 and )\; — Aj, 1 < j < m. Finally, the second equality in (6.7) and the
second equality in (6.8) follow from Lemma 5.10. O

Let us close this thesis with the following short remark about the relation between the time

scaling matrix E' and the state space scaling operator D.

Remark 6.8. In (5.26) we made use of the fact that the matrices E and D of (E, D)-operator-
self-similar random fields are in general not unique. However, Theorem 5.9 and Theorem 6.5
enlighten the property that the quotients of the real parts of the eigenvalues of £ and D
are always unique since the Hausdorff dimension of the range and the graph depends on the

quotients ;f—; and , 1 <i<p, 1<j<m. Let us also remark that any (F, D)-operator-
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self-similar random field is also (%, %)—operator—self—similar for any H € (A, a1). However,

the quotients of the real parts of £ and D are the same as those of % and %.
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Index of notation

_.,
a

diam(U)

[

H(U)

dimy U

fU)

Gr f(U)
-y

B(U)

Rk;Xn

(TE(x)v lE(x))

&o

LX)
plim
trace(F)
vol(U)
c=(U)
c)
I'(z)

equality of finite-dimensional distributions

diameter of the set U

arbitrary norm

s-dimensional Hausdorff measure of the set U

Hausdorff dimension of the set U

range of the function f over the set U

graph of the function f over the set U

p-norm for p > 1

Borel o-algebra over the set U

set of real matrices with k rows and n columns

generalized polar coordinates of the vector x with respect to the matrix F
unit sphere with respect to 75

identity operator on R¥

probability space

equality in distribution

symmetric a-stable

multivariate normal distribution with mean vector u and covariance matrix 3
X is normally distributed with mean vector p and covariance matrix X
unit sphere in R with respect to a norm || - ||

transpose of the matrix A

Lebesgue measure on R?

{A € B(RY) : \g(A) < oo}

almost surely

{f i RY = C: foa |f(2)|*Aalda) < o0}

limit in probability

trace of the matrix F

volume of the set U

set of smooth functions on U

set of continuous functions on U

gamma function, i.e. [°v* e dv
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