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Zusammenfassung

Ultrakurze und ultraintensive Laserpulse finden Anwendung in vielen verschiedenen
Feldern. Man kann sie zum Beispiel zur Teilchenbeschleunigung beziehungsweise
zur Erzeugung sekundärer Strahlung benutzen. Die Anwendungen reichen von
Laserwakefieldbeschleunigung für medizinische Verwendung bis zur Erzeugung
hoher Harmonischer, Attosekundenpulse und Terahertzstrahlung. Zudem können
mit solchen Pulsen ultrarelativistische beziehungsweise quantenelektrodynamische
Effekte im Rahmen der Grundlagenforschung untersucht werden.

Die schnelle Entwicklung in Hochleistungslasern, welche durch die Erfindung der
Chirped Pulse Amplification ausgelöst wurde, erreicht heute ihre Grenzen. Optische
Komponenten wie Gitter und Kristalle sind im Zuge der Laserverstärkung der
hochenergetischen Strahlung ausgesetzt und nah an ihrem Zerstörungslimit. Um
diese Beschränkung zu überwinden ist es vorgesehen, Plasma als Verstärkermedium
zu nutzen.

Der Ansatz dieser Forschung ist es, Plasmawellen als Energieüberträger zwischen
zwei Laserpulsen zu benutzen. Der typischerweise lange, hochenergetische Pump-
puls soll an einer solchen Plasmawelle in einen typischerweise kurzen, niederen-
ergetischen Seedpuls streuen, wobei dieser Puls in seiner Dauer möglichst kurz
bleiben soll. Die Plasmawelle kann entweder eine hochfrequente Langmuir- oder
eine niederfrequente ionenakustische Oszillation sein. Im ersten Fall spricht man
von Raman-Streuung, im zweiten von Brillouin-Streuung.

Insbesondere das sogenannte strong coupling regime hat in den letzten Jahren
vermehrt neues Interesse erfahren. Hier ist die Plasmawelle eine getriebene Quasi-
mode des Plasmas mit einer mittelhohen Frequenz. Dieser Streumechanismus
besitzt einige Vorteile gegenüber Raman-Verstärkung oder herkömmlicher, weak
coupling Brillouin-Verstärkung. Die Laserpulse müssen hier nicht gegeneinander
in ihrer Frequenz verstimmt werden, der verstärkte Puls ist mit ca. 100 fs Dauer
kurz, der Vorgang ist gegenüber Dichteinhomogenitäten im Plasma robust und
fast die komplette Energie des Pumppulses kann auf den Seed übertragen werden.

Wir untersuchen die kinetische Dispersionsrelation für weak und strong coupling
Brillouinverstärkung für Elektronen-Protonen und Elektronen-Positronen Plasmen
und benennen die Limits einer Fluidbeschreibung. Anschließend studieren wir den
Übergang zwischen weak und strong coupling und seine Charakteristika anhand
eines neuen Dreiwellenmodells. Danach diskutieren wir den Einfluss des Chirps
des Pumps auf den verstärkten Seed und die Relevanz in Bezug auf die Effizienz
des Energieübertrags. Da die vorliegende Arbeit an der Schnittstelle zwischen
Experiment und Theorie entstanden ist, setzen wir zuletzt die Ergebnisse in den
Kontext aktueller und zukünftiger Experimente.



Abstract

Ultra-short ultra-intense laser pulses find applications in many different fields. Be
it in direct usage, for example as a driver for particle acceleration, or to generate
secondary radiation. Possible deployments are laser-wakefield acceleration for medi-
cal purposes and the generation of high harmonics, attosecond pulses and terahertz
radiation, respectively. Furthermore, ultra-relativistic or quantumelectrodynamic
effects can be investigated using these laser pulses in fundamental research.

However, the fast development in available highest peak power triggered by the
invention of Chirped Pulse Amplification reaches its limits today. During laser
amplification, optical components such as gratings and crystals are affected by the
highly energetic radiation and one needs to preserve their damageless operation.
To overcome the limits given by the destruction threshold of such components,
plasma as an amplfication medium is proposed.

The idea is to use plasma waves as an energy transmitter between two laser pulses.
The typically long, high energetic pump pulse is intended to scatter off this plasma
wave into the typically short, low energetic seed pulse, while the latter ideally
stays short in duration. The plasma wave can be either a high frequency Langmuir
oscillation or a low frequency ion acoustic wave. The former scattering mechanism
is known as Raman scattering and the latter is called Brillouin scattering.
Especially the so-called strong coupling regime has received increased interest

in recent years. In this process, the plasma wave is a driven quasi-mode of the
plasma with average frequency. This scattering mechanism bears many advantages
over Raman amplification or weak coupling Brillouin amplification. Here, the laser
pulses need no detuning, are relatively short ∼ 100 fs, it is a scheme robust against
density inhomogenities and almost all energy can be transmitted from the pump
to the seed pulse.

We study the kinetic dispersion relation for weak and strong coupling Brillouin
amplification for electron-proton and electron-positron plasmas and name the
limits of the fluid description. In the next step, we investigate the transition from
weak to strong coupling and its characteristics with a newly derived three wave
interaction model. The influence of the pump chirp on the amplified seed and
energy transmission efficiency is discussed subsequently. As this work at hand was
done at the junction between experiments and theory we lastly put the analysis
made into the context of current and future experiments.
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1 Introduction

Light is an essential ingredient for almost all life known to mankind. Human
population on earth’s surface would be unimaginable without the sun in the center
of our solar system, delivering heat and energy to our planet. And with light comes
one of the most fundamental constants of the laws of nature, the speed of light
c = 3 · 108 m/s. This basic concept, first proposed by one of the most ingenious
minds physics witnessed so far, Albert Einstein in 1905 [1, 2], opened a whole new
field of research and understanding of physics.

Electromagnetic radiation encompasses a wide spectrum of frequencies, of which
only the small portion we call light is visible to the human eye. Measuring wave-
lengths, the distance between two consecutive maxima in a wave, analog to water
waves, allows us to differentiate within this wide range of electromagnetic radia-
tion. Starting from harmful γ-Rays at λ ≈ 10−12 m over x- or Röntgen-rays at
λ ≈ 10−11− 10−9 m to ultraviolet radiation at λ ≈ 10−8− 10−7 m, we finally arrive
at the visible spectrum, covering the wavelength range form 400 to 700 nm, i.e.
4 · 10−7 − 7 · 10−7 m. At longer wavelengths, up to λ ≈ 1 mm or 10−3 m we find
infrared radiation, surpassed by microwaves and radio waves with wavelengths of
up to 100 km.

Einstein’s explanation of the photoelectric effect earned him the Nobel prize in
physics in 1922. His discovery opened the field of quantum mechanics. Although
Einstein himself opposed this field for his entire life, it revolutionized physics from
the early 20th century onward.

One of the many important impacts his findings had was the subsequent in-
vention of the laser, an acronym standing for light amplification by stimulated
emission of radiation. The first laser was built by Maiman in 1960 [3], based on
the concept presented by Townes and Schawlow [4]. Although introducing the
concept in a brief sentence does not do it justice, laser light can essentially be
described as extremely coherent, precise and well defined radiation. Today its
range of application is both very wide and disparate. Lasers are used in barcode
scanners, disk players, printers, surgical instruments, in industrial products for
welding and distance measurement, as military applications such as weapons or as
a key ingredient of modern fiber-optic communication.

Lasers come in different flavors and types. The first important criterion is the
mode of operation. Many of the aforementioned applications require continuous
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radiation. However, operating the laser in pulsed intervals allows to deposit its
energy in a very confined area over a very short duration. One goal of such
ultra-short ultra-intense laser pulses is to accelerate particles, e.g. for non-invasive
cancer treatment.

Back in the 1980’s, the invention of chirped pulse amplification (CPA) by Strick-
land and Mourou [5] and its implementation [6] catalyzed rapid development in
laser techniques, and consequently resulted in a huge increase in available peak
power and a decrease in the shortest possible pulse duration. Today we find
petawatt systems, i.e. experimental setups that can shoot laser pulses with 1015 W
peak power. Two of the most powerful facilities are located in Osaka [7] and at the
national ignition facility NIF [8]. For comparison, the whole power consumption of
earth’s population including fossil fuels is estimated 12.3 TW = 1.23 · 1013 W [9],
thus only 1% of what is delivered by existing laser schemes. Ambitious projects as
ELI beamlines aim at generating even higher peak powers up to 10 PW = 1016 W
[10], almost 10% of the power radiated on earth by the sun.

For such high power laser radiation there are many possible applications in
plasma–light interaction. It can be used directly for laser induced fusion via fast
ignition [11] or via wakefield excitation [12] as a driver for particle acceleration
[13, 14]. State of the art experiments yielded electron energies of 4 GeV [15] up
to 9 GeV [16] and ion energies of up to 160 MeV [17, 18]. A state of the art
experiment [19] used laser accelerated electrons for treatment of cancer in mice.
For comparison, CERN delivers proton energies in the range of TeV [20]. Another
possibility is to use these high power lasers to excite secondary radiation, e.g. high
harmonics [21], attosecond (1 as = 10−18 s) pulses [22] and radiation in the range
of terahertz (1 THz = 1012 Hz) [23, 24].

However, today’s laser technique is limited by the damage threshold of the
optical components such as gratings [25] and crystals [26]. The idea of replacing
solid state components by using plasma as the amplification medium occured
already decades ago [27, 28, 29, 30, 31], eventually proposing Raman and Brillouin
scattering [32, 33] to reach the Exawatt (1 EW = 1018 W) or even Zetawatt (1 ZW
= 1021 W) regime [34, 35, 36].

The fundamental idea is that two counterpropagating lasers, one called pump and
the other called seed, are aligned to overlap when radiated into plasma. Their beat
wave is in resonance with a plasma mode, off which photons of the pump scatter in
order to become photons of the seed. Typically, the pump is a laser pulse of long
duration and of average amplitude, while the seed is a short pulse with low ampli-
tude. Ideally, the latter will stay short but absorb all the energy transmitted by the
pump and thus become a short laser pulse with high amplitude after the interaction.

One possible description of the scattering process differentiates between two
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regimes: The linear phase and the pump depletion regime. In the former, the
pump stays unchanged, as only a few photons are lost in the scattering process.
Simultaneously, the seed grows exponentially. As soon as both amplitudes reach
similar values the process complicates and the growth of the seed is algebraical.
In an ideal setup, the pump pulse eventually diminishes and transmits almost
its whole energy to the seed, wherefor this regime is called nonlinear or pump
depletion regime.

Usually, the diameter of the pulses in this scenario is quite large at approximately
1 mm, in order to avoid unwanted effects such as relativistic self-channeling [37].
As a consequence, the local intensity is quite low. It is substantially below 1018

W/cm2, which allows to disregard relativistic effects, but on the other hand allows
laser pulse filamentation to develop faster [38, 39]. Since the radial dimensions are
large compared to the longitudinal extent, one-dimensional theory is often sufficient.

For Raman scattering, the basic principles [40, 41] were further developed to
propose an amplification setup [32, 33, 42, 43]. The plasma wave, off which photons
scatter, is a Langmuir wave, i.e. an electrostatic plasma oscillation, in terms of
quanta also referred to as plasmons. Next to simulations, there is also analytic
theory available, covering the nonlinear amplification stages with a self-similarity
ansatz [44, 45]. Experiments done on Raman amplification [46, 47, 48, 49] empha-
size the relevance of theoretical investigations such as kinetic simulations [50, 51],
however, the optimal setup remains yet to be found [52, 53].

Brillouin scattering is superficially similar to the Raman case, though very
different in its details [41, 54]. The plasma mode governing the amplification is a
lower frequency ion acoustic mode, or, in terms of quanta, built up by phonons. As
the goal of such an amplification process is to yield short laser pulses, the so called
strongly coupled regime was analyzed extensively in recent years [55, 56, 57]. Here,
the plasma mode is no longer a resonant mode of the plasma itself, but a quasi-mode,
i.e. only resonant in the presence of the lasers. It has a much higher frequency than
an ion acoustic wave, though still lower than a Langmuir wave. As the frequency of
the plasma mode defines the minimum duration of the amplified laser pulse ∆t, we
state that for Raman we have ∆t ≈ 10 fs (1 fs = 10−15 s), for Brillouin ∆t ≈ 1 ps
(1 ps = 10−12 s) and for strongly coupled Brillouin ∆t ≈ 100 fs. Especially the in-
vestigation of the transition between weak and strong coupling Brillouin scattering
delivers deep insights on the amplification process [58] and is discussed in this work.

Although the final duration of the laser pulse may be longer, strong coupling Bril-
louin amplification bears advantages over Raman. The plasma densities necessary
for effective energy transmission range from ne = 1018 − 1020 cm−3. Thus, pretty
dense plasmas are necessary. In order to fulfill energy and momentum conservation
during the scattering process, the two laser pulses used need to be detuned by a
substantial amount, roughly 30 nm for 800 nm wavelength, in the case of Raman
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scattering. In case of Brillouin scattering, the detuning is negligible due to the
lower frequency of the plasma wave. Detuning of the central wavelength of a laser
is a feat not easily managed during experiments. Effects concerning the tunability
of lasers and how they affect the amplification scheme were discussed previously,
e.g. for chirp [59, 53, 38, 60, 61, 62], and are shown in this work. Other advantages
of Brillouin amplification over Raman amplification are that the quasi-mode is
hardly affected by density inhomogenities [63], rendering strongly coupled Brillouin
amplification more robust. Furthermore, the pump depletes almost completely and
less energy of the pump is transferred to the density oscillation than when using
Raman scattering.

Comparisons between the different processes were made repeatedly [63, 64, 65]
and an amplification scheme using both Raman and strongly coupled Brillouin was
proposed [66]. It was also shown, that in the relativistic regime, where laser-matter
interactions change [67, 68], a unified treatment is necessary [69].

The scattering mechanisms are not limited to electron-proton plasmas, but
can be used for multiple ion species, such as, possibly, positron-electron plasmas
[70, 71, 72]. Similar as for Raman, it is possible to describe the linear regime with
a dispersion relation [41]. Here, one differentiates between a fluid description and
a more general kinetic treatment [73], both also discussed in this work. For strong
coupling Brillouin, there is also a self-similarity analysis available [55, 50] treating
the nonlinear regime analytically, and stressing results obtained by simulations.
The first experiments [74, 75, 76] yielded promising results, although the optimal
implementation remains challenging [77].

The Brillouin amplification setup is tricky in its implementation, as with plasma
density, shape, ion and electron temperature, pump and seed pulse central wave-
length, amplitude, shape, duration and time delay between those two, there are
many parameters that need to be optimized to make feasible predictions for exper-
iments. The goal of this work was to clear that wide parameter space and find and
tackle the reasons, why theory predicts a very high energy transmission efficiency
yet unreached in experiments.

The work at hand is structured as follows. In Ch. 2 we name the basics for
laser plasma interaction, following explanations given in [37, 41, 78, 79, 80, 81, 82],
i.e. introduce Vlasov’s equation, Maxwell’s equations and a fluid description.
We introduce the key equations and parameters describing plasma in Sec. 2.1,
ranging from a discussion about ionization in Subsec. 2.1.1 to an analysis of
the dispersion of generic plasma waves in Subsec. 2.1.3. We continue with the
introduction of Gaussian laser pulses and chirp in Sec. 2.2, whereafter we discuss
laser plasma interaction in Sec. 2.3. Here, we derive and identify the pondero-
motive force as the main force opposing electrostatic or thermal pressure in a
light-plasma interaction scenario in Subsec. 2.3.1. In Subsec. 2.3.2 we introduce
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parametric instabilities, such as Raman and Brillouin scattering. After deriving
the models and discussing their dispersion, we summarize other instabilities in
Subsec. 2.3.2 and draw a conclusion why the strong coupling regime is very rele-
vant for Brillouin amplification, on which we will focus throughout the whole thesis.

Ch. 3 focuses on the simulation techniques and gives an overview about the
most important effects regarding Brillouin amplification. We introduce the ba-
sic simulation models used in this work with the δNA-model and the envelope
three-wave interaction model in Sec. 3.1. Their implementation is done in C++,
using the library PETSc [83, 84]. Afterwards, we show the amplification process in
more detail, listing differences between weakly and strongly coupled Brillouin and
discussing growth rate and frequency in both linear and nonlinear regime in Sec. 3.2.

With these basis set, the main part of this work subdivides into four main
chapters.
In Ch. 4 we derive a full kinetic collisionless relativistic dispersion relation for

an arbitrary ion species plasma interacting with laser light. After the derivation in
Sec. 4.1, which is presented in appendix A.1 in detail, we briefly discuss Hydrogen
plasma in Sec. 4.2 and consecutively specify on the electron-positron plasma case
in Sec. 4.3. In the latter we note a dramatic difference from the fluid description
in the weak coupling regime for Brillouin amplification, rendering the kinetic
treatment crucial. However, we conclude in Sec. 4.4 that for strong coupling both
fluid and kinetic description correspond, justifying the use of the former in the
following chapters. This fourth chapter is solely based on an analytic treatment
and builds up the manuscript [73].

Having the analytic background placed, Ch. 5 follows up discussing the transition
between weak and strong coupling Brillouin amplification. We present simulations
performed with the aforementioned models in Sec. 5.1, and describe at first the
linear regime of interaction, where the pump stays unaffected in Sec. 5.1.1. A
spectral observation leads to a criterion for the transition in the pump depletion
regime given in Sec. 5.1.2, eventually depending on temperature, density and pump
strength. Afterwards, we discuss the effect of a Gaussian shaped pump on the
interaction in Sec. 5.3. With this we conclude in Sec. 5.4 three distinct reasons why
the transitional case is important. Initially weakly coupled setups develop strong
coupling due to amplification of the seed pulse. Initially strongly coupled setups
develop weak coupling structures in the tail trailing the maximum due to pump
depletion, which severely reduces the overall energy transmission efficiency and,
lastly, we discuss longitudinally Gaussian pump beam profiles, naturally exhibiting
parts where the threshold for strong coupling is exceeded and others where this
is not the case. We also discuss the possibility of a self-similar treatment for the
transitional case in appendix A.2. The content of this chapter was published in
the following manuscript [58].
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With both the analytic background and transition scenario discussed, we in-
vestigate the influence a quadratic pulse chirp has on the amplification process
in Ch. 6. For this reason, we slightly expand the simulation model given in Sec.
3.1 while simultaneously neglecting other terms in Sec. 6.1. We distinguish the
influence the chirp has in the linear regime in Sec. 6.2 and nonlinear regime in Sec.
6.3. Afterwards, we formulate the concept of an intrinsic chirp unique to strongly
coupled Brillouin amplification in Sec. 6.4. The substance of this chapter was
published in the manuscript [62].

Despite this work at hand was done theoretically, we stress its experimental
relevance. Especially chapters 5 and 6 deal with problems affecting today’s ex-
periments, as they are performed in parameter regimes relevant for the transition
between weak and strong coupling and actual laser pulses are always affected by
chirp. Furthermore, in the course of working on this thesis, the author held multi-
ple meetings with experimental groups, resulting in theoretical investigations and
preparations for experiments. This work is summarized in Ch. 7. In Sec. 7.1 we
show particle-in-cell simulations done with the code EPOCH [85, 86] for clarifying
a low energy transmission efficiency due to spontaneous Raman backscattering
of the pump pulse. Sec. 7.2 deals with plasma ionization and especially inverse
bremsstrahlung as the major absorption mechanism, rendering an experimental
setup without a mere ionization laser futile. At last in Sec. 7.3 we discuss with
simulations the influence of the sign of the pump pulse chirp and its relevance for
experiments.

In the end we summarize the contributions made throughout the work explained
in this thesis in Ch. 8. We also give an outlook into future investigations for theory
and experiment.

The author’s contributions consist of the derivation of the relativistic kinetic
dispersion relation in Ch. 4 and its discussion as well as comparison to the fluid
model. The two envelope models used in chapters 5 and 6 were also derived
and implemented by the author. The author performed the simulations shown in
these two chapters and interpreted the results, as well as he tried to formulate
the self-similar solution, i.e. the work presented in appendices A.1 and A.2 was
performed by the author. The analytic estimate given for the transition time
starting with an arbitrary weak coupling setup in Ch. 5 was formulated by the
author. The simulations shown in Ch. 7 were done by the author. All images
and figures used throughout this thesis are done by the author, as well as is the text.

Note that all equations given in this thesis are in Gaussian cgs-units, but
whenever we calculate values, we give the dimensions in SI-units.
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2 Basics of laser-plasma
interaction

The following chapter introduces the basic principles, keywords and parameters
for laser plasma interaction. We move from a very general description, following
the explanations given in [78], more into detail when we discuss scattering of
photons off plasmons or phonons, respectively, eventually introducing Brillouin
amplification.
Sec. 2.1 deals with fundamental concepts of plasma physics such as ionization

(Subsec. 2.1.1), plasma frequency, Debye-shielding, Maxwellian distributions and
thermal velocity (Subsec. 2.1.2). Furthermore, Langmuir waves and ion acoustic
modes are discussed via the plasma dispersion relation (Subsec. 2.1.3).
In Sec. 2.2 Gaussian beam parameters are introduced in order to describe

ultra-short ultra-intense laser pulses. We take a note on a solution of the paraxial
wave equation and explain the key parameters such as Rayleigh length and beam
waist. Furthermore, we introduce the concept of chirp, later on being relevant in
Ch. 6.
In Sec. 2.3 we introduce the most relevant equations for the work at hand.

For the discussion of the Vlasov equation and introduction of the hydrodynamic
description we mainly follow chapters 4 and 5 in [81]. We discuss Raman and
Brillouin amplification, introduce the strong coupling regime and also take a note
on different scattering mechanisms.

First, we give an overview over the equations used in this work and analyze their
physical meaning.
The very famous Maxwell equations

∇ · E = 4πρ, (2.1)
∇ ·B = 0, (2.2)

∇× E = −1

c

∂B

∂t
, (2.3)

∇×B =
1

c

(
4πj +

∂E

∂t

)
(2.4)

express the origin of electric and magnetic fields E and B, respectively, and their
connection. The variable c ≈ 3 · 1010 cm/s denotes the speed of light and j the
electric current, ∇ is the nabla operator ∇ = ∂/∂xx̂ + ∂/∂yŷ + ∂/∂zẑ. In detail,
the divergence operator ∇· calculates wheter a vector field has sources or drains
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in a specific volume. Eq. (2.1) is also known as Gauss’ law or Poisson equation,
stating that electric charges are the sources of electric fields, with charge density
ρ = qn, where q is the electric charge and n the particle density. On the other
hand, Eq. (2.2) does not imply that there are no sources of magnetic fields, but
rather no magnetic monopoles, i.e. the sum of magnetic field lines entering and
leaving a specific volume surface is zero. Eq. (2.3) is also known as Faraday’s law,
stating that the change in a magnetic field induces an electric field. Lastly, Eq.
(2.4) is also known as Ampere’s law, stating that the change in an electric field
and an electric current induce a magnetic field.

In addition to expressing the electric field via a potential, we can also derive the
magnetic field from a potential and define B = ∇×A and E = −∇φ−(1/c)∂A/∂t.
Note that for low amplitudes ||(1/c)∂A/∂t|| � ||∇φ|| one can often write E ≈
−∇φ. With these potentials, we can rewrite the Maxwell equations (2.1)-(2.4) into

∇2φ− 1

c2

∂2

∂t2
φ = −4πρ, (2.5)

∇2A− 1

c2

∂2

∂t2
A = −4π

j

c
, (2.6)

two wave equations for φ and A, respectively. However, these potentials are
arbitrary up to a gauge that can be chosen freely. Since only E and B are
physically relevant quantities, the potentials can be altered into φ′ and A′ via

φ′ = φ− ∂λ

∂t
, A′ = A +∇λ,

where λ is an arbitrary scalar function differentiable two times with respect to space
and time. These changed potentials will still result in the same electromagnetic
fields. The above Eqs. (2.5)-(2.6) use the so called Lorenz gauge ∇ ·A = −∂φ/∂t.
Another widely used gauge is the Coulomb gauge ∇ ·A = 0. For more information
see Appendix 4 in [78].

The four Maxwell equations are sufficient to describe the propagation of radia-
tion, induction of current and other phenomena related to electromagnetic fields.
However, investigating laser-plasma interaction, we also need equations covering
the particle response. We start with the also famous Vlasov equation

∂

∂t
fk + v · ∇rfk + qk

(
E +

1

c
v ×B

)
· ∇pfk = 0, (2.7)

with the one-particle distribution function fk (r,p, t) for particle species k. The
variable v denotes the velocity, ∇r acts on the spatial coordinates r and ∇p on
the momentum coordinates p. This Eq. (2.7) neglects collisions between particles.
Thus, changes in the distribution function only happens due to internal and external
electromagnetic fields and the initial distribution. This is a valid approximation, if
the number of particles in the Debye-sphere (see introduction of (2.18)) is large.
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The Vlasov equation is a kinetic equation following from the Liouville equation,
for more insights see e.g. chapter 4 in [81].
The Vlasov equation is the most general particle description that will be used

in this work. It enables to get statistical information in the position-momentum
space (r,v) at any time t. Frequently, one is not interested in the momentum
distribution. Integrating over the velocity causes a loss in information, resulting in
so called moments of the distribution function fk. Note that treating momentum
and velocity equivalently is only valid in the non-relativistic limit.
With this aforementioned simplification of the kinetic treatment we arrive at

the hydrodynamic picture. The latter is applicable only on time scales larger than
possible with kinetic treatment. We define the particle density of species k

nk (r, t) =

∫ ∞
−∞

dvfk (r,v, t) . (2.8)

Additionally, we define the mean velocity

uk = 〈v〉 =

∫∞
−∞ dv vfk (r,v, t)∫∞
−∞ dvfk (r,v, t)

. (2.9)

Integrating the Vlasov equation (2.7) over velocity we find
∂

∂t
nk +∇ · (nkuk) = 0, (2.10)

noting that fk (v → ±∞)→ 0 as there are no particles at v → ±∞. Eq. (2.10) is
know as the (particle) continuity equation. Multiplying the Vlasov equation (2.7)
with v and integrating over the velocity delivers

∂

∂t
uk + (uk · ∇)uk −

qk
mk

(
E +

uk
c
×B

)
= − 1

mknk
∇Pk, (2.11)

where we have used the continuity equation (2.10), for more details see chapter 5.1
in [81]. This is the momentum balance, allowing to calculate the mean velocity of
particle type k, where qk defines the charge and mk the mass of particle of type k.
Note that equivalently to Eq. (2.11) the momentum balance can be written in the
form

∂

∂t
(nkuk) +∇ · (nkukuk)−

qknk
mk

(E + uk ×B) = − 1

mk

∇Pk. (2.12)

In principle, one finds a hierarchy of equations: The zeroth moment of the Vlasov
equation, i.e. the equation describing the density (2.10), contains the mean velocity.
The mean velocity is defined via the first moment of the Vlasov equation (2.11),
which contains the pressure Pk. One could go on and derive an equation for the
pressure term, but at one point we need to stop the hierarchy. Since all calculations
in this work only base on either the Vlasov equation (2.7) or continuity equation
plus momentum balance (2.10)-(2.11), we stop the derivation right here. When
solving Eq. (2.11), one needs an appropriate ansatz for the pressure term Pk, e.g.
the particles following isothermal ideal gas behavior. For applications, see e.g. Sec.
2.1.3.
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2.1. PLASMA

2.1 Plasma

2.1.1 Ionization

The explanation of ionization at hand basically follows the explanations given in
Ch. 2.1 in [78].

Ionization is the process where an atom loses a bound electron. A neutral atom
has as many electrons as protons, i.e. an atom that has lost Z electrons is Z
times ionized. We call Z the charge state or ionization state. Describing the
thermodynamic state of an atom compound, we use the free energy F [J/kg],
depending on temperature T , volume V and number of particles Nj of charge state
j.
Reaching thermodynamic equilibrium means that the free energy F (T, V,Nj)

is minimized. For describing the density distribution of different charge states of
such an atom compound in thermodynamic equilibrium we use the Saha equations

nj+1ne
nj

= 2
Uj+1

Uj

(
2πmekBT

h2

)3/2

exp

(
−Ij −∆Ij

kBT

)
, j = 1, 2, ..., (Z − 1),

(2.13)

where nj = Nj/V is the particle density of charge state j, ne is the electron density,
Uj is the internal energy of charge state j, me ≈ 9.11 · 10−31 kg the electron mass,
kB ≈ 1.38 · 10−23 J/K is Boltzmann’s constant, h ≈ 6.63 · 10−34 Js is Planck’s
constant, Ij is the ionization energy of the ground state and ∆Ij is the reduction
of the ionization potential due to local electrostatic fields.
Such a compound of atoms which is at least partially ionized can be called -

under some premises following in the next sections - a plasma. The Saha equations
are valid, whenever plasma is in local thermodynamic equilibrium (LTE). This
means, we have parameters such as charge state, density and mean velocities
following Boltzmann distributions

nj ∝ exp

(
− Ej
kBT

)
, (2.14)

where Ej is the energy level above the ground state. In local thermodynamic
equilibrium all laws of thermodynamic equilibrium are valid but Planck’s radiation
law, i.e. the plasma can lose radiation.
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2.1. PLASMA

2.1.2 Defining parameters

Important in many different fields in physics is the so called cross section σ of a
process. It has the unit of an area and gives the probability of an event. Imagining
hard spheres colliding, the cross section would be the intersection area σ ≈ πr2,
where r is the radius.

For the deflection of a charged test particle off a fixed charge, e.g. an electron
scattering of a nucleus, the calculation of the cross section becomes more com-
plicated. The interacting force is no longer just a mechanical push but following
Coulomb interaction. Hence, the cross section depends e.g. on the initial velocity.
A lower speed equals a larger interaction time and therefore larger deflection or
even trapping of the test particle.
With the cross section σab of an interaction between test particle a and back-

ground particle b we define the mean free path lab = 1/nbσab. This is the length
the test particle propagates before it undergoes the specific reaction. If the test
particle velocity is va we can define the collision frequency νab = va/lab, i.e. the
number of events per second.
Calculating νei in plasma, i.e. the collision frequency of electrons and ions, is

more difficult. Electrons in LTE follow a velocity distribution, namely the Maxwell
distribution,

f (v) = A exp

(
− v2

v2
the

)
, (2.15)

where A is the normalization factor such that the integral over f over all velocities
equals 1. vthe =

√
kBTe/me is the thermal velocity for electrons. Calculating the

collision frequency now requires averaging, i.e. integrating, over the product of
cross section and velocity, namely νei =< σeive >v ni.

Retaining the classical description and not calculating the cross section quantum
mechanically [87], one finds

νei ≈ 2.9 · 10−6Z
2ni (cm

−3) ln (Λ)

(Te(eV ))3/2
(s−1), (2.16)

also known as the Spitzer-formula [88], where ln (Λ) is the so called Coulomb loga-
rithm. This is the logarithm of the ratio of the integration range when calculating
the collision frequency. It is affected by uncertainty, typical values range from 5 to
15 (see e.g. [89]).

The Maxwell distribution (2.15) will play an important role in the derivation of
the kinetic dispersion relation in Ch. 4. The collision frequency (2.16) is needed to
estimate radiation absorption via inverse bremsstrahlung, i.e. electron-ion collisions
under absorption of photons, in Ch. 7.

The Coulomb potential is an infinite-range potential, following φCoulomb ∝ 1/r.
Thus, it decays proportionally to the distance from its center of origin. However,
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2.1. PLASMA

since in plasma one finds many free charged particles, this behavior changes.
Assuming a static positive ion, eventually it will be surrounded by negatively
charged electrons. In a far-field the sum of the Coulomb potentials will cancel out.
This is called screening effect or Debye-shielding [78, 81]. It leads to quasi-neutrality
of the plasma on mesoscopic scales, defined by the Debye length

λDe =

√
kBTe

4πe2ne0
, (2.17)

where e = 4.8 · 10−10 esu ≈ 1.6 · 10−19 C is the elementary charge and ne0 the
electron background density. With this we find [78] the altered potential

φ ∝ 1

r
exp

(
− r

λDe

)
. (2.18)

Eq. (2.18) implies that the long-range Coulomb potential is now shortened to an
effective distance of the order of λDe [78].

Considering a cold plasma Te = Ti = 0 without any external electric or magnetic
fields implies vanishing thermal velocities or pressure terms. Since ions are much
heavier than electrons, e.g. mi/me ≈ 1836 in case of Hydrogen, they can be
assumed to be static bodies in space, neutralized by the light electrons. Applying a
small external force on the plasma would lead to an electron disposition, resulting
in a local electric field. We consider the equations

je = −neeve, (2.19)

∇ · je + e
∂ne
∂t

= 0, (2.20)

∇2φ = −4πene. (2.21)

Eq. (2.19) is defining the electric current, carried by the density ne with velocity
ve. Eq. (2.20) is the charge continuity equation (see Eq. (2.10) for similarity). It
states that sources or drains of current must be due to charge density fluctuations.
Eq. (2.21) is the Poisson equation (see Eq. (2.1)), implying that charges are
sources of an electric field since E ≈ −∇φ. Using Newton’s equation of motion
via identifying that the only force acting on electrons is due to the electric field we
formulate

me
∂v

∂t
= −e∇φ. (2.22)

Replacing the velocity with the current Eq. (2.19) we write

me
∂v

∂t
= me

∂

∂t

−je
ene
≈ − me

ene0

∂je
∂t
, (2.23)
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2.1. PLASMA

where we assumed small density fluctuations compared to changes in the electron
velocity. Taking the divergence of Eq. (2.23) allows us to replace the left-hand-side
with Eq. (2.20) and the right-hand-side with Eq. (2.21), obtaining

∂2

∂t2
ne +

4πe2ne0
me

ne = 0. (2.24)

This Eq. (2.24) is an oscillator ordinary differential equation where we identify

ωpe =

√
4πe2ne0
me

(2.25)

as the electron plasma frequency, which is a very significant parameter describing
plasmas. It can be understood as the definition of the time scale with which
plasma can react to external perturbations. Furthermore, we notice the very handy
relation

ωpe =
λDe
vthe

, (2.26)

relating the time scale, length scale for quasi-neutrality and thermal motion of
electrons in a plasma.

In the next subsection we introduce different waves that can exist in plasma, so
called eigenmodes, especially Langmuir and ion acoustic waves. We derive their
dispersion relation, i.e. the relation between frequency and wave number ω (k).
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2.1. PLASMA

2.1.3 Dispersion

This subsection will introduce electron plasma waves and ion acoustic waves, as
they can exist in plasmas and are the responsible waves later on allowing Raman
and Brillouin scattering, respectively. Throughout this paragraph, we will basically
follow the description used in chapter 1.5 in [41].

We use the fluid model for electrons and ions derived above, i.e. Eqs. (2.10) and
(2.12). We stick to one-dimensional motion in x-direction, i.e. u = u and E = E.
Focusing on the high frequency electron wave first, we summarize

∂ne
∂t

+
∂

∂x
(neue) = 0, (2.27)

∂

∂t
(neue) +

∂

∂x

(
neu

2
e

)
= −neeE

me

− 1

me

∂Pe
∂x

, (2.28)

Pe
n3
e

= const., (2.29)

where Eq. (2.29) is the adiabatic equation of state, implying electrons moving
much slower than the plasma wave phase velocity vthe � ω/k. Taking the time
derivative of Eq. (2.27), space derivative of Eq. (2.28) and inserting each other
delivers

∂2ne
∂t2
− ∂2

∂x2

(
neu

2
e

)
− e

me

∂ (neE)

∂x
− 1

me

∂2Pe
∂x2

= 0. (2.30)

We take the Poisson equation (2.1), replacing the density on the right-hand-side
with the sum over electrons and static ions

∂E

∂x
= −4πe (ne − Zni0) , (2.31)

and perturb the system of Eqs. (2.29)-(2.31) via ne = ne0 + εne1, ue = ue0 + εue1
with ue0 = 0, Pe = ne0kBTe + εPe1 and E = E0 + εE1 with E0 = 0, where ε is a
small number. Applying this gives rise to

Pe1 = 3mv2
thene1, (2.32)

∂E1

∂x
= −4πene1, (2.33)

∂2ne1
∂t2

− n0e

me

∂E1

∂x
− ∂2Pe1

∂x2
= 0. (2.34)

Inserting Eqs. (2.32) and (2.33) into Eq. (2.34) leads to(
∂2

∂t2
− 3v2

the

∂2

∂x2
+ ω2

pe

)
ne1 = 0, (2.35)
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2.1. PLASMA

that can be Fourier transformed to obtain the dispersion relation for electron
plasma waves

ω2 = ω2
pe + 3k2v2

the. (2.36)

Usually, ω2
pe � 3k2v2

the, i.e. the frequency of that plasma wave is mainly given by
the electron plasma frequency. These electron plasma waves are also known as
Langmuir waves.

The other type of plasma wave, the low frequency ion acoustic waves, only exists
because of contributions of both, electrons and ions. As it is low in frequency, we
can neglect phenomena acting on the time-scale of ωpe, i.e. neglecting electron
inertia. We again stick to one-dimensional motion and model the electron pressure
isothermally, i.e. Pe = nekBTe. Electrons are fast enough to balance thermal
fluctuations. With these assumptions the momentum balance for electrons simplifies
to

ne0eE1 = −kBTe
∂ne1
∂x

. (2.37)

For ions we formulate a similar system to the derivation of Langmuir waves by
stating

∂ni
∂t

+
∂

∂x
(niui) = 0, (2.38)

∂

∂t
(niui) +

∂

∂x

(
niu

2
i

)
=
Ze

mi

niE −
1

mi

∂Pi
∂x

, (2.39)

Pi
n3
i

= const., (2.40)

i.e. consisting of continuity equation, momentum balance and the adiabatic
equation of state. The same ansatz as for Langmuir wave yields

∂2ni
∂t2
− ∂2

∂x2

(
niu

2
i

)
+
Ze

mi

∂

∂x
(niE)− 1

mi

∂2Pi
∂x2

= 0. (2.41)

We state that the factor between the unperturbed ion and electron density is the
charge state ni0 = ne0/Z. Additionally, perturbing the system similar to above via
ni = ne0/Z + εni1, ui = εui1, Pi = Pi0 + ε3kBTini1 and E = εE1 delivers

∂2ni1
∂t2

+
Zene0
mi

∂E1

∂x
− 3kBTi

mi

∂2ni1
∂x2

= 0. (2.42)

Now we insert Eq. (2.37) into Eq. (2.42), assuming ne1 ≈ Zni1, i.e. that electrons
follow the low speed ions, in order to find

∂2ni1
∂t2

− ZkBTe + 3kBTi
mi

∂2ni1
∂x2

= 0. (2.43)
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2.1. PLASMA

Again Fourier transforming Eq. (2.43) delivers the dispersion relation

ω2 = k2c2
s, (2.44)

where cs =
√

(ZkBTe + 3kBTi) /mi is the ion sound velocity. Note that typically
Te � Ti and hence cs ≈

√
ZkBTe/mi.

We point out that different to Langmuir waves these ion acoustic waves have
frequencies around ω ∼ 0 instead of ω ∼ ωpe, i.e. are indeed low frequency. They
are the analogue of sound waves in neutral gases [41], that is why they are called
ion acoustic waves.
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2.2. LASER LIGHT

2.2 Laser light

This section gives the mathematical description and explanation of what we inter-
pret as a laser pulse. We will not give insight into the different parts of a laser
system or the different possibilities to generate laser radiation, but rather describe
a Gaussian beam and the principle of chirped pulse amplification.

Whenever we talk about laser pulses in this work, we assume (super-) Gaussian
pulses, i.e. temporally restrained TEM00 modes of a laser fulfilling the paraxial
wave equation (see e.g. [90])

E(r, z, t) =E0x
w0

w(z)
exp

(
− r2

w(z)2

)
exp

(
i
[
ωt− kz − k r2

2R(z)
+ ψ(z)

])
exp

(
−(z + z0 − vgt)n

σn

)
, (2.45)

moving into z-direction, where r is the transverse space direction using cylindrical
coordinates. The electric field is polarized in x-direction. Here, E0 denotes the
amplitude and x the unit vector in x-direction, i.e. the direction of polarization.
The beam waist w0 marks the lowest radius the laser pulse can have, while w(z) is
the radius at position z in propagation direction, i.e. w(0) = w0. Note that the
radius is defined by a drop in field amplitude by a factor of 1/e, where e denotes the
Euler constant. The radial distance is given by r, the curvature of the wavefronts
at position z is given by R(z). The Gouy phase at z is given by ψ(z), ω denotes
the frequency, while k stands for the wavenumber. We note, that this form is the
complex representation of a plane wave. By transforming the basis, one could also
rewrite the complex expression of the electric field into a real term consisting of sin
or cos functions. The group velocity vg = ∂ω/∂k depends on the medium the pulse
propagates in, as the dependency ω(k) is given by the dispersion relation. For
vacuum one finds ω = ck, for plasma we have ω2 = c2k2 + ω2

pe. Lastly, σ denotes
the length of the laser pulse.

Let us have a closer look at the different terms in Eq. (2.45). The polariza-
tion in x direction is known as linear polarization, defining in which direction
the E-field vector points. In electromagnetic radiation, the magnetic field is per-
pendicular on the electric field, i.e. in this example B points into y direction.
There is also the possibility of circular polarization: Here, E and B do not oscillate
but stay constant in amplitude and rotate transversely to the propagation direction.

The term exp (−r2/w(z)2) defines the transverse profile (envelope) of the pulse.
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2.2. LASER LIGHT

The spot size parameter w(z) is given via

w(z) = w0

√
1 +

(
z

zR

)2

, with (2.46)

zR =
πw2

0

λ0

, (2.47)

where zR is called the Rayleigh length. The value
√

2 log (2)w(z) defines the full
width at half maximum (FWHM) at position z, i.e. the radial laser width at which
the amplitude has dropped to 50% at both ends. The Rayleigh length, depending
on the beam waist and central wavelength λ0, is the range z at which the width
w(z) is

√
2 times larger than in focus, where it is w0.

Similarly, the term exp (− (z + z0 − vgt)n /σn) describes the longitudinal profile
or envelope. Quite often, we consider super-Gaussian pulses with steep longitudinal
edges, where n � 2. In the limit of a Gaussian profile, n = 2. z0 is the initial
displacement such that after the focusing time t = tfocus we have vgtfocus = z0, i.e.
the pulse is in focus. Here, the value (2 log (2))1/n σ defines the full width at half
maximum in longitudinal direction.

The term exp (iφ) defines the phase, i.e. the rapidly oscillating part of the
electric field, opposite to the envelope parts mentioned above. The two parameters,
radius of curvature and Gouy phase, are given by

R(z) = z

(
1 +

(zR
z

)2
)
, ψ(z) = arctan

(
z

zR

)
, (2.48)

i.e. again depending on the Rayleigh length zR. The former describes the wavefront
curvature in distance z, the latter causes an apparent wavelength change close to
focus, however it is only relevant for higher order modes and neglected for Gaussian
pulses discussed in this work.

Fig. 2.1 incorporates the parameters described above. The pulse starts at the
left-hand-side, focuses down to the beam waist w0 and consecutively defocuses
again. The temporal profile is hinted as the blue gradient.
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(a) (b) (c)

Figure 2.2: Three different kind of chirps, (a) negative α < 0 (from high to low
frequency in propagation direction), (b) zero, and (c) positive α > 0
chirp (from low to high frequency).

Figuratively, chirping a laser pulse not only stretches it in time, but separates
the front and back of it into parts with higher and lower frequency or vice versa,
depending on the sign of α. This is illustrated in Fig. 2.2, where pulses propagate
from left-to-right. In Fig. 2.2a one sees a negative chirp, where the head (front
in propagation direction) has a higher frequency than the tail. The opposite is
shown in Fig. 2.2c. The case where no chirp is applied is visible in the center in
Fig. 2.2b.

The relation between chirp-rate α and the duration of the pulse can be calculated
via

α =

√
∆ω2∆t2 − 64 log (2)2

2∆t2
, (2.50)

which means for a short duration slightly larger than the bandwidth limit, a large
chirp is necessary. For longer durations the chirp-rate is lower. Note that in
experimental physics, chirp is often defined in Fourier space, i.e. the opposite is
true (large chirp → long duration). However, Eq. (2.50) is the definition of the
chirp we stick to, especially in Ch. 6. Fig. 2.3 shows the relation between the
pump duration ∆t and the attributive chirp-rate α in Eq. (2.50). A conventional,
constant laser bandwidth of ∆λ = 18 nm was used.

∆ t
pump

 / ps
5 10 15

α
 /
 ω

02

×10
-6

1

2

3

4

Figure 2.3: Chirp-rate of the pump α vs. attributive duration ∆t for constant
bandwidth ∆λ = 18 nm.
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2.3 Laser-plasma interaction

This section gives an overview about how laser light propagates in plasma. Further-
more, we introduce the critical density and discuss so called parametric instabilities,
i.e. scattering of photons off quantized plasma oscillations. For example Raman
and Brillouin scattering. In that course we basically follow the scheme given in
[41] in Chs. 3, 7 and 8.

Knowing the vacuum dispersion of light ω = ck, we derive light dispersion in
plasma. Considering a one-dimensional electric field E = E(x) exp (−iωt) with a
rapidly oscillating phase ω & ωpe exceeding the plasma frequency, we can again treat
ions as neutralizing background charges ni0 = Zne0. The reason is that phenomena
caused by this field will directly affect only the light electrons. Furthermore, we
neglect the terms ue · ∇ue and ue × B in the electron momentum balance Eq.
(2.11) and obtain

∂ue
∂t

= − e

me

E(x) exp (−iωt) (2.51)

as the equation describing the momentum change in electrons. Under consideration
of Eq. (2.51), the electric current je = −ne0eue translates into

∂je
∂t

=
ω2
pe

4π
E, (2.52)

and via integration in time we find

je =
iω2
pe

4πω
E. (2.53)

Considering the two Maxwell equations (2.3) and (2.4) and inserting Eqs. (2.51)
and (2.53) we find

∇× E =
iω
c
B, (2.54)

∇×B = − iω
c

(
1−

ω2
pe

ω2

)
E, (2.55)

where ε ≡ 1− ω2
pe/ω

2 is known as the dielectric function. Taking the curl of Eq.
(2.55) and subsequently inserting Eq. (2.54) delivers

∇2E−∇ (∇ · E) +
ω2

c2
εE = 0. (2.56)

Assuming a uniform density gives ∇ ·E = 0, Fourier transforming Eq. (2.56) then
gives the dispersion relation for light in plasma

ω2 = ω2
pe + c2k2. (2.57)
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Note that Eq. (2.57) implies that the lowest frequency light in plasma can have
is ωpe. This means that incident light with lower frequency would lead to an
imaginary wavenumber k in order to fulfill Eq. (2.57). Hence, lasers with frequency
ω < ωpe are forbidden to penetrate plasma. This can be understood via recalling
that electron motion in plasma happens on time scales given by ωpe. If an incident
perturbation, e.g. laser light, occurs on slower time scales, the electrons are quick
enough to rebalance any outer forces. Thus, light penetration into the medium is
prevented.

In addition, the condition for light to enter plasma ω & ωpe allows us to define
the so called critical density nc. It is the maximum density plasma can have such
that light with a fixed frequency ω can still penetrate. In a mathematical form we
write this

nc =
meω

2

4πe2
(2.58)

as the critical density.
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2.3.1 Ponderomotive force

In this subsection we derive the ponderomotive force. This is the force causing
displacement of electrons in plasma due to light pressure, opening up the possibility
for parametric instabilities. In the course we cover chapter 6.2 in [41].

We start with a homogeneous plasma in which a high frequency light wave
propagates, similar to the previous consideration in Sec. 2.3. We change the basis
to write the electric field as E = E(x) sin (ωt), while ω & ωpe. Neglecting the
electron pressure, the momentum balance Eq. (2.11) changes into

∂ue
∂t

+ (ue · ∇)ue = − e

me

E(x) sin (ωt) . (2.59)

We split the electron velocity into two parts of different frequency ue = ule + uhe .
Next, we state that the change in the high frequency part ∂uhe/∂t is only due to
the rapidly oscillating electric field. With these two assumptions we can neglect
the second term in Eq. (2.59) and integrate in time, yielding

uhe =
eE

meω
cos (ωt) , (2.60)

i.e. a rapid oscillation by the electrons, phase shifted with respect to the laser
field. Multiplying Eq. (2.59) with the electron mass me and averaging over the
high frequency oscillation 〈...〉t delivers

me
∂〈ue〉t
∂t

= −e〈E〉t −
me

2
〈∇
(
uhe · uhe

)
〉t. (2.61)

Inserting Eq. (2.60) changes Eq. (2.61) into

me
∂〈ue〉t
∂t

= −e〈E〉t −
1

4

e2

meω2
∇E2(x), (2.62)

where we identify

Fponderomotive = −1

4

e2

meω2
∇E2(x) (2.63)

as the ponderomotive force. This force proportional to the gradient of the elec-
tric field envelope squared pushes away the electrons from regions of high laser fields.

In the following we will discuss parametric instabilities, phenomena where laser
light scatters off plasma oscillations. We remark that this laser light applies
ponderomotive pressure which can get rebalanced by electron pressure. With the
ponderomotive force, a plasma oscillation can be excited and if it is an eigenmode
(see electron plasma oscillation and ion acoustic modes in Sec. 2.1.3) it can be
amplified.

27



2.3. LASER-PLASMA INTERACTION

2.3.2 Parametric instabilities

Parametric instabilities are described by equations of parametric oscillators. The
equation of such an oscillator is given by(

∂2

∂t2
+ δ(t)

∂

∂t
+ ω2(t)

)
f = 0, (2.64)

i.e. a normal oscillator equation but with time dependent damping δ(t) and fre-
quency ω(t). By this, the amplitude of the solution to Eq. (2.64) varies in time,
i.e. can increase or decrease.

In the following two subsections we will derive equations for an incident photon
decaying into a quantized oscillation in plasma plus a scattered photon. We de-
scribe both Raman scattering, where the plasma oscillation is a Langmuir wave,
and Brillouin scattering. In the latter, we have ion acoustic waves.

This scattering mechanism can be harnessed as an amplification setup: We use
two lasers counter-propagating each other. The experiment is manipulated in a
way that all photons of the first laser become photons of the second laser under
scattering via the parametric instability. This is the concept of laser amplification
in plasma.

First, we always consider energy and momentum balance via

ω0 = ω + ω1, (2.65)
k0 = k + k1, (2.66)

where the index 0 denotes frequency and wavenumber of the incident photon, the
index 1 marks the scattered photon and no index signals plasma quanta. Multi-
plying Eq. (2.65) by ~, i.e. Planck’s constant, we can interpret the equation as
conservation of energy. The same is true for Eq. (2.66) but for momentum.

In the derivation of plasma instabilities we always look for growth rates Γ defining
the growth of the plasma wave and, thus, also the amplification factor. Considering
a plane wave exp (−iωt), if ω becomes complex ω = ωR + iΓ, we can rewrite it as
exp (Γt) exp (−iωRt). This equals a wave that oscillates with frequency ωR and
grows exponentially in time with the growth rate Γ.

The pursuit of the following two subsections is to find these complex frequencies
and hence the growth rates for Raman and Brillouin scattering, where we will
follow chapters 7 and 8 in [41].

Raman scattering

Raman scattering is the inelastic decay of a light wave into a scattered light wave
and a Langmuir wave. From Eq. (2.36) we know that the minimum frequency a
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Langmuir wave can have is ωpe. This means ω0 must be larger than 2ωpe, because if
not, the scattered light wave with frequency ωpe would not be allowed to propagate
in plasma. This directly translates to the condition n0/nc . 0.25, i.e. Raman
scattering can only occur in plasmas below quarter critical density.

In the following we derive the equations describing Raman scattering and derive
the dispersion relation. We prove that indeed the Langmuir wave is the plasma
oscillation necessary for the instability. In the end we discuss the growth rate and
frequency of Raman scattering.

The wave equation for the vector potential A (2.6) in Coulomb-gauge ∇ ·A = 0
is

∂2

∂t2
A− c2∇2A = 4πcj− c ∂

∂t
∇φ, (2.67)

where we separate the current into a longitudinal and transverse part j = jl + jt.
We connect the Poisson equation (2.21) with the charge continuity equation (2.20),
stating that ∇ · jt = 0, in order to find

∂

∂t
∇φ = 4πjl. (2.68)

Inserting Eq. (2.68) into Eq. (2.67) we have(
∂2

∂t2
− c2∇2

)
A = 4πcjt. (2.69)

We recall jt = −neeut, i.e. the transverse current is carried by the transverse
velocity of electrons oscillating in the laser field. The transverse part of the
momentum balance leads to ut = eA/mec if |ut| � c. Inserting into Eq. (2.69)
gives us an equation handling light propagation in plasma as(

∂2

∂t2
− c2∇2

)
A = −4πe2ne

me

A, (2.70)

where we will apply the perturbation ansatz A = A0 + εA1 and ne = n0 + εne1,
yielding the first order in ε equation(

∂2

∂t2
− c2∇2 + ω2

pe

)
A1 = −4πe2

me

ne1A0. (2.71)

We note that the left-hand-side bracket applied on a plane wave would already
give us the dispersion relation for light in plasma (2.57).
For the electrons we again take continuity equation (2.10) and momentum

balance (2.11), separate the velocity ue into longitudinal and transverse part
ue = ul + eA/mec and find

∂ul
∂t

=
e

me

∇φ− 1

2
∇
(
ul +

eA

mec

)2

− 1

neme

∇Pe. (2.72)
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Note that the second term on the right-hand-side builds the ponderomotive force
given by Eq. (2.63). Analog to the procedure in Sec. 2.1.3, we expand the
perturbation ansatz by stating ul = u0+εu1 and φ = φ0+εφ1, where u0 = 0, φ0 = 0.
Hence, to first order in ε, continuity equation and momentum balance (2.72) read

∂ne1
∂t

+ n0∇ · u1 = 0, (2.73)

∂u1

∂t
=

e

me

∇φ1 −
e2

m2
ec

2
∇ (A0 ·A1)− 3v2

the

n0

∇ne1, (2.74)

where we have used again the adiabatic pressure assumption Pe/n3
e = const. and

vthe is the thermal velocity for electrons. Differentiation of Eq. (2.73) with respect
to time and taking the divergence of Eq. (2.74) delivers(

∂2

∂t2
+ ω2

pe − 3v2
the∇2

)
ne1 =

n0e
2

m2
ec

2
∇2 (A0 ·A1) . (2.75)

We note that the left-hand-side bracket applied on a plane wave would already
give us the Langmuir dispersion relation (2.36).

Commenting on the system Eqs. (2.71) and (2.75), we can Fourier transform
them in space and rewrite them as[

∂2

∂t2
+

(
ω2

1 r1

r2 ω2
2

)]
B = 0, (2.76)

where B = (A1, ne1), ω2
1 = ω2

pe + c2k2, ω2
2 = ω2

pe + 3v2
thek

2 and r1 and r2 are the
right-hand-sides including A0 in Eqs. (2.71) and (2.75), respectively. In this form
we directly see the analogy to the parametric oscillator equation (2.64). The
frequency term ω2 (t) is now replaced with the matrix having all components filled,
thus delivering a time dependent frequency.

Eqs. (2.71) and (2.75) with a plane wave ansatz A0 = Ã0 cos (k0 · x− ω0t) in
Fourier space read(

ω2 − c2k2 − ω2
pe

)
A1 (k, ω) =

4πe2

2me

Ã0 [ne1 (k− k0, ω − ω0) + ne1 (k + k0, ω + ω0)] , (2.77)(
ω2 − 3v2

thek
2 − ω2

pe

)
ne1 (k, ω) =

k2e2n0

2m2
ec

2
Ã0· [A1 (k− k0, ω − ω0) + A1 (k + k0, ω + ω0)] . (2.78)

Inserting Eq. (2.77) into Eq. (2.78) we find the dispersion relation

ω2 − 3v2
thek

2 − ω2
pe =

ω2
pec

2k2

4

e2Ã2
0

m2
ec

4

(
1

D−
+

1

D+

)
, (2.79)
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where contributions ne1 (k± 2k0, ω ± 2ω0) are neglected as nonresonant and D± =
(ω ± ω0)2 − c2 (k± k0)2 − ω2

pe. We note that the left-hand-side of Eq. (2.79) is
the dispersion relation of Langmuir waves (2.35). D+ and D− are the dispersion
relations for light waves in plasma upshifted and downshifted, respectively, in
frequency and wavenumber. The term eÃ0/mec

2 is often abbreviated via

a0 =
e|Ã0|
mec2

, (2.80)

the dimensionless pump amplitude. Throughout the work at hand we will often
refer to this value a0 as it is a crucial parameter for laser plasma interaction.
Recalling the transverse component of the momentum balance leading to ut =
eA/mec, a0 = |ut|/c can be interpreted as the fraction of the speed of light with
which electrons oscillate. However, the last two statements only hold true in the
nonrelativistic case |ut| � c, as a0 can be larger than 1 since it only defines the laser
amplitude. The dimensionless value a0 has the same value as the dimensionless
electric field amplitude E0/mecω0, hence it is a very useful parameter. One usually
distinguishes three regimes: a0 � 1 defines the nonrelativistic regime, a0 . 1
is called weakly relativistic and for a0 & 1 a full relativistic treatment becomes
necessary.

In this work, we mostly stick to nonrelativistic laser amplitudes, as the diameter
of pulses used for Brillouin amplification is typically large, i.e. the local amplitude
low. This way one mitigates unwanted relativistic effects, e.g. self-focusing, see
Sec. 2.3.2. Sometimes we operate in the weakly relativistic regime, where the
relativistic Lorentz factor can be approximated via its Taylor expansion in the first
two terms.

Coming back to the Raman scattering dispersion relation Eq. (2.79), we want to
find the wavenumber, where maximum growth occurs. We can neglect the upshifted
wave as nonresonant and downshifted as highly resonant [41], i.e. D− ≈ 0, which
lets us write

D−
(
ω2 − ω2

L

)
=
ω2
pec

2k2a2
0

4
, (2.81)

where we have introduced ω2
L = 3v2

thek
2+ω2

pe for convenience. We state ω = ωL+∆ω
with ∆ω � ωL, i.e. the scattered plasma wave is a slightly changed Langmuir
wave assumed to be resonant (ωL − ω0)2 ≈ c2 (k− k0)2 + ω2

pe. Hence, we find
D− ≈ 2∆ω (ωL − ω0). Solving Eq. (2.81) for ∆ω, keeping in mind that it is small,
we have

∆ω ≈ ωpecka0

4

√
1

ωL (ωL − ω0)
. (2.82)

We note ωL � ω0, i.e. a negative radicant in Eq. (2.82). Finally, we rewrite
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∆ω = iΓ and constitute

ΓRaman ≈
ωpecka0

4

√
1

ωL (ω0 − ωL)
(2.83)

as the growth rate for Raman backscattering. We note that it scales linearly with
a0. Solving the resonance condition for the scattered plasma wave, we find

kRaman ≈ k0 +
ω0

c

√
1− 2

ωpe
ω0

(2.84)

as the wavenumber at which maximum growth occurs. We note kRaman ≈ 2k0 for
n0/nc � 0.25 and kRaman ≈ k0 for n0/nc ≈ 0.25 as the two limits.
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Brillouin scattering

Brillouin scattering is the decay of a photon into a different photon and an ion
acoustic phonon. Also for this process, energy and momentum conservation (Eqs.
(2.65) and (2.66)) hold true. Since the ion acoustic frequency is much lower than
the laser frequency kcs � ω0, the process can occur for every plasma density
n0 ≤ nc. It also implies that almost all energy of the incident photon will be
transferred to the scattered photon.

Deriving the model for Brillouin scattering we follow a similar approach as in
the previous section, i.e. considering homogeneous plasma radiated by a strong
laser field. In fact, Eq. (2.71) holds true also in the case of Brillouin scattering,
neglecting the ion contribution on the right-hand-side as they are much heavier.
The search for the equation describing the density oscillation is analog to what was
presented in Sec. 2.1.3. We again separate the electron velocity into longitudinal
and transverse part via u = ul + ut. With ut = eA/mec, following from the
transverse part of the momentum balance, we find again Eq. (2.72). Now we
assume the electrons to follow isothermal behavior Pe = nekBTe and linearize
ne = n0 + εne1 A = A0 + εA1 and φ = εφ1 to obtain to first order in ε

e

me

∇φ1 =
e2

m2
ec

2
∇ (A0 ·A1) +

v2
the

n0

∇ne1. (2.85)

Defining ni = ni0 + εni1, ui = εui1 and φ = εφ1, continuity equation (2.10) and
momentum balance (2.11) for ions become

∂ni1
∂t

+ ni0∇ · ui1 = 0, (2.86)

∂ui1
∂t

= −Ze
mi

∇φ1, (2.87)

again to first order in ε. Deriving Eq. (2.86) with respect to time and taking the
divergence ∇· of Eq. (2.87) we find

∂2ni1
∂t2

− Zeni0
mi

∇2φ1 = 0. (2.88)

Considering Zni0 = n0 and Zni1 ≈ ne1 for the same arguments as in Sec. 2.1.3,
plugging Eq. (2.88) into Eq. (2.85) results in(

∂2

∂t2
− c2

s∇2

)
n2
e1 =

Ze2n0

memic2
∇2 (A0 ·A1) . (2.89)

Thus, the coupled system of equations describing Brillouin scattering consists of
Eqs. (2.71) and (2.89). Note that again these equations also represent a parametric
oscillator as it was discussed for Raman scattering above.
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Deriving the dispersion relation we follow an approach analog to the Raman
case, considering a plane wave A0 = Ã0 cos (k0 · x− ω0t) and Fourier transform
Eqs. (2.71) and (2.89) to find(

ω2 − c2k2 − ω2
pe

)
A1 (k, ω) =

4πe2Ã0

2me

[ne1 (k − k0, ω − ω0) + ne1 (k + k0, ω + ω0)] , (2.90)(
ω2 − c2

sk
2
)
ne1 (k, ω) =

Zn0e
2k2Ã0

2memic2
· [A1 (k − k0, ω − ω0) + A1 (k + k0, ω + ω0)] . (2.91)

Again neglecting non resonant terms and recalling ω � ω0 we combine Eqs. (2.90)
and (2.91) to the Brillouin dispersion relation

ω2 − c2
sk

2 =
c2k2a2

0ω
2
pi

4

(
1

D−
+

1

D+

)
, (2.92)

where ωpi =
√
Zme/miωpe is the ion plasma frequency.

Similar to Raman scattering, we note resonance with the downshifted wave
D− ≈ 0, i.e. rewriting Eq. (2.92) into

(
ω2 − c2

sk
2
) (
ω2 − 2ωω0 + 2c2k0 · k− c2k2

)
=
c2k2a2

0

4
ω2
pi. (2.93)

Stating ω = kcs + iΓ, where Γ� kcs and assuming resonance in the plasma wave
we find

ΓBrillouin =
1

2
√

2

ck0a0ωpi√
csk0ω0

, (2.94)

as the maximum growth rate, which resides at wavenumber

kBrillouin = 2k0 − 2
ω0cs
c2

. (2.95)

We remark that the Brillouin instability growth rate is proportional to the di-
mensionless vector amplitude ΓBrillouin ∝ a0 and the wavenumber is given by
kBrillouin ≈ 2k0. Recalling momentum conservation Eq. (2.66), the latter implies
k0 ≈ −k1, i.e. the absolute wavenumbers of incident and scattered light wave are
almost the same. The value 2ω0cs/c

2 is sometimes defined as δkwc and will play
an important role in Ch. 5.
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Strong coupling regime

The strong coupling regime is defined through the light amplitude a0. If the
ponderomotive pressure due to the laser exceeds the electrostatic (Raman) or
thermal (Brillouin) pressure by far, we find a frequency |ω| � ωR. In particular,
|ω| � ωpe for Raman and |ω| � csk for Brillouin scattering. This means that we
expect a much higher frequency than what is given by a Langmuir or ion acoustic
mode, respectively. Therefore, the plasma mode off which light scatters is no
longer an eigenmode of the plasma, but a driven quasi-mode which only exists in
the presence of the laser. In this part we will derive the strong coupling limit for
Brillouin scattering, as here it is relevant and for Raman it is not, as we will show
in the subsequent section.

Considering ω0 � |ω| � csk and assuming k ≈ 2k0, Eq. (2.93) becomes

ω3 ≈ −c
2k2

0a
2
0

2

ω2
pi

ω0

. (2.96)

Looking for the solution of Eq. (2.96) with the largest imaginary part, we find

ω ≈
(
c2k2

0a
2
0

2

ω2
pi

ω0

)1/3
(

1

2
+ i
√

3

2

)
. (2.97)

Via ω = ωR + iΓ we distinguish the growth rate to be

Γsc
Brillouin =

√
3

2

(
c2k2

0a
2
0

2

ω2
pi

ω0

)1/3

, (2.98)

i.e. proportional to a2/3
0 .

Comparing the strong coupling growth rate to the weak coupling one, we find
that the latter scales linearly in a0, thus has preferable dependence. However, the
condition for entering strong coupling |ω| � csk is linked to the vector amplitude
a0 and thus to the laser intensity via

I14 � 0.44

√
Z

A

nc
n0

√
1− n0

nc
(Te/keV)3/2 (λ/µm)−2 , or a0 �

√
16ω2

0c
3
s

ω2
pic

3
. (2.99)

Here, I14 is the intensity in units of 1014 W/cm2 and A is the atomic number.
The intensity and dimensionless vector amplitude are related via I/

(
W/cm2) ≡

a2
0/
(
7.3 · 10−19 (λ/µm)2) [54, 58, 63]. By the choice of the laser-plasma parameters

one chooses the regime in which the interaction takes place. Ch. 5 is devoted to
the analysis of both different regimes and in particular the transition between the
two.
In the next subsection we sum up the aforementioned Raman and Brillouin

scattering and additionally focus on different scattering mechanisms altering the
amplification scheme.
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Different scattering mechanisms

In the previous Subsecs. we derived the dispersion relations and growth rates
for Raman, Brillouin and strongly coupled Brillouin scattering. If a0 is strong
enough it does not trigger an eigenmode but a quasi-mode of the plasma with
higher frequency. We have |ω|2 � ω2

pe + 3k2v2
th,e in case of Raman or |ω| � kcs in

case of Brillouin scattering. This is the case when the ponderomotive potential
exceeds the electrostatic or thermal pressure, respectively. These are the forces
counteracting each other for Raman and Brillouin.

This regime is referred to as strongly coupled and in order to reach it the pump
amplitude needs to exceed the thresholds a0 � 81/2(ne/nc)

1/4 for Raman [40] or
a0 � (16ω2

0c
3
s/(ω

2
pic

3))1/2 for Brillouin [41]. The latter condition is equivalent to
Eq. (2.99). For a higher density the electrostatic potential is higher, it is thus more
difficult to enter strongly coupled Raman. Simultaneously, the current induced
by the ponderomotive force is higher, which is why strongly coupled Brillouin is
accessed.

When the interaction is strongly coupled the frequency and growth rate Γ of the
plasma wave depend only on the pump strength a0 and no longer on the electron
temperature Te.

If both laser amplitudes are sufficiently large, such that electron motion is no
longer determined by the space charge electric field of the plasma wave but directly
by the ponderomotive force, we speak of superradiant amplification (SRA). This
regime is accessible if a0a1 > ne/4nc [91], where a1 denotes the dimensionless seed
strength.

If the respective plasma wave is driven too strongly it can break which may
prevent or at least completely alter the amplification. For Langmuir waves we
expect wave breaking (WB) if we pump above a0 > (ne/nc)

3/4/4 [32] while for ion
acoustic waves the threshold is given via a0 > (

√
mi/mevth,ene/(4cnc))

1/2.

Fig. 2.4 shows the thresholds of a0 above which one of the three different regimes
dominates the interaction in dependency of ne/nc. The SRA threshold is calculated
for a fixed seed strength a1. In Subfig. 2.4a one finds the limits for Raman, in
Subfig. 2.4b for Brillouin amplification. Below the thresholds we expect weakly
coupled amplification.

For the chosen seed amplitude of a1 = 0.3 either SRA (red dashed) or Langmuir
WB (green dotted) is the dominant process that alters the usual Raman scattering
off electrostatic Langmuir waves above a certain pump strength. Additionally,
one finds that strongly coupled stimulated Raman scattering (scSRS) cannot be
reached directly from weak coupling. In Subfig. 2.4b we see that for Brillouin with
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a1 = 0.02 all three regimes are accessible depending on the chosen density. This is a
strong evidence that strongly coupled stimulated Brillouin scattering (scSBS) is an
important mechanism which deserves interest. However, the thresholds presented
are only valid for a transition from weak coupling to a different regime. For a
transition from e.g. wave breaking into strong coupling the threshold may vary.

In conclusion, we find strong coupling being one of the very relevant effects for
Brillouin amplification and playing a negligible role for Raman scattering.

0.001 0.01 0.1
ne/nc

0.01

0.1

1
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Raman

ascSRS

aSRA, as 0.3

aLWB

=

(a)

0.001 0.01 0.1
ne/nc

0.02

0.2

2
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Brillouin

ascSBS

aSRA, as 0.02

aIAWB

=

(b)

Figure 2.4: Threshold values for dimensionless pump strength a0 above which
strongly coupled Raman/Brillouin (blue), super radiant amplification
(dashed red) or wave breaking (dotted green) set in vs. electron density
in units of the critical density. The SRA regime can be reached if a1

exceeds a0, here a1 was chosen as specified in the legends. Below the
lines we expect weak coupling.
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3 Simulation tools and principles
of Brillouin amplification

In this chapter we introduce the simulation techniques used throughout the thesis.
Even though it might not seem so, the choice of the theoretical model best suited
for simulation is a difficult one. The obvious choice would be to simulate Maxwell’s
equations (2.1)-(2.4) for all free particles. Considering in plasmas we have to deal
with roughly 1020 particles, this idea can quickly be dropped, as none of todays
supercomputers could handle that vast amount of calculus. On the other hand, if
one distinguished process is studied it may not even be proper to incorporate all
other effects coexisting with the one investigated.

As the choice of the model is crucial, it is also fundamental for theory to question
itself. One possible way to underline results obtained from simulation is to back
them up with analytic models or further simulations with different codes. The
best way possible is of course to have experiments confirming theoretical predictions.

The flavors of codes typically used in laser-plasma interaction underly a hierarchy,
we will very briefly introduce them. One of the most general codes relies on solving
Maxwell’s equations and the Vlasov equation (2.7) [50, 51]. A bit more general
and noise affected are so called PIC (particle in cell) models: here, many particles
are treated as one large particle compound. Maxwell’s equations are solved on a
grid and these simulation schemes are most widely spread. In Ch. 7 we use the
PIC code EPOCH [85, 86]. It is also possible to incorporate collisions, relativistic
and quantum mechanical processes in these models, furtherly complicating them.

More specific codes are the ones used in this thesis. In the next Sec. 3.1 we intro-
duce two different kinds, being derived from continuity equation (2.10), momentum
balance (2.11) and Maxwell’s equations (2.5), implemented in a self-written C++
code using the PETSc library [83, 84].

To give the reader a deeper understanding of the amplification process, we
exemplarily show simulation results in Sec. 3.2. Here, we highlight the differences
between weakly and strongly coupled Brillouin scattering and discuss growth in
both the linear and the pump depletion regime.
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3.1 δNA- and envelope model

It is a general goal of theory to find fast and reliable simulation tools including as
many physical effects as necessary to resolve complex dynamics. In this section we
derive the major two plasma models used throughout the thesis. The first, quite
general one, is the δNA-model, consisting of continuity equation (2.10), momen-
tum balance (2.11) and the Maxwell equation in potential form (2.6). A further
simplification leads to the slowly-varying-envelope approximation, i.e. making use
of the rapidly oscillating electric field varying much faster than the pulse envelope.
In the latter scenario we find three wave interaction models.

For performance reasons we want to find simulation models that are less noisy
and faster than PIC and still deliver correct predictions. Possible candidates are
envelope models which do not resolve the rapidly oscillating electric field. They are
widely used and have delivered promising results, e.g. [50]. However, so far these
envelope models were only able to cover either weak or strong coupling Brillouin
amplification but not both. We derive a more general envelope model which we
benchmark with Maxwell-Fluid, hence δNA simulations. Since in experiments the
beam diameters are large in order to evade relativistic effects, we can stick to the
one-dimensional case and the peak intensities are rather low.

We consider the Maxwell equation in Lorenz gauge (2.6)(
1

c2

∂2

∂t2
−∇2

)
A =

4π

c
j, (3.1)

with j ≈ −neep/me being the current with the electron density ne, the elementary
charge and electron rest mass e and me and the electron momentum p, where
p⊥ � p‖ is assumed. c denotes the speed of light and A the electromagnetic
vector potential. A solution to the transverse part of the electron momentum
balance is p⊥ = eA/c. By introducing ne = n0 + δn, where n0 is the unperturbed
background density and δn a small deviation we arrive at(

∂2

∂t2
− c2∇2

)
A = −ω2

pe

(
1 +

δn

n0

)
A. (3.2)

We assume low frequency electrons driving the ions isothermally ne ≈ ni which is
a legitimate approximation when investigating Brillouin scattering [51]. Here, we
imply Z = 1, i.e. a Hydrogen plasma. When we combine the continuity equation
with the longitudinal part of the electron momentum balance we find the density
wave equation (

∂2

∂t2
− c2

s∇2

)
δn

n0

=
Ze2

2memic2
∇2A2. (3.3)
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Introducing the new variable δN = δn/n0 and the new units [t] = 1/ωpe, [x] = c/ωpe
and [A] = mec

2/e delivers the δNA-model. We used one-dimensional geometry
with A = A(x, t) and δN = δN(x, t).(

∂2

∂t2
− ∂2

∂x2

)
A = − (1 + δN)A, (3.4)(

∂2

∂t2
− c2

s

c2

∂2

∂x2

)
δN = ν

∂2

∂x2
A2, (3.5)

where ν = Zme/(2mi) is the residual coupling coefficient. We remark that Eqs.
(3.4)-(3.5) is in dimensionless form.

When looking for a three-wave model we first split A = A0 + A1, just like we
did in Sec. 2.3.2 and assume three waves

A0 =
1

2

(
a0eiφ0 + a∗0e

−iφ0
)
y, φ0 =

ck0

ωpe
x− ω0

ωpe
t, (3.6)

A1 =
1

2

(
a1eiφ1 + a∗1e

−iφ1
)
y, φ1 = −ck1

ωpe
x− ω1

ωpe
t, (3.7)

δN =
1

2

(
neiφ2 + n∗e−iφ2

)
, φ2 =

ck2

ωpe
x− ω2

ωpe
t, (3.8)

in dimensionless units, where y is the unit vector in y-direction, a0,1 and n complex
envelopes in which additional phase information is stored. φ0,1,2 are the (fixed)
rapid oscillations with wavenumbers k0,1 of pump and seed, respectively, in plasma.
Thus, the pump pulse is propagating from left to right and the seed vice versa. We
choose energy and momentum balance such that φ0 = φ1 + φ2, thus ω0 = ω1 + ω2

and k0 + k1 = k2 and only consider resonant terms. Hence, from Eq. (3.4) we can
derive an equation for a0 and a1 each. The model then reads(

∂2

∂t2
− 2i

ω0

ωpe

∂

∂t
− ω2

0

ω2
pe

− ∂2

∂x2
− 2i

ck0

ωpe

∂

∂x
+
c2kp0

2

ω2
pe

+ 1

)
a0 =− 1

2
a1n, (3.9)(

∂2

∂t2
− 2i

ω1

ωpe

∂

∂t
− ω2

1

ω2
pe

− ∂2

∂x2
+ 2i

ck1

ωpe

∂

∂x
+
c2kp1

2

ω2
pe

+ 1

)
a1 =− 1

2
a0n

∗, (3.10)(
∂2

∂t2
− 2i

ω2

ωpe

∂

∂t
− ω2

2

ω2
pe

− c2
s

c2

∂2

∂x2
− 2i

c2
sk2

cωpe

∂

∂x
+
c2
sk

2
2

ω2
pe

)
n =

−Zmec
2 (kp0 + kp1)2

2miω2
pe

a0a
∗
1, (3.11)

where we assumed the second derivative with respect to x on the right-hand-side of
Eq. (3.5) being much larger applied to the rapid phase eiφ2 than to the amplitudes
a0a

∗
1. We state that the dispersion relations for light in plasma ω2

0,1 = c2k0,1
2 + ω2

pe

and ion acoustic waves ω2 = csk2 hold. Subsequently, we make the slowly varying
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3.1. δNA- AND ENVELOPE MODEL

envelope approximation for the two light waves ||∂t|| � ||2ω0,1/ωpe|| and ||∂x|| �
||2ck0,1/ωpe|| in order to arrive at(

∂

∂t
+
ck0

ω0

∂

∂x

)
a0 = −iωpe

4ω0

a1n, (3.12)(
∂

∂t
− ck1

ω1

∂

∂x

)
a1 = −iωpe

4ω1

a0n
∗, (3.13)(

∂2

∂t2
− 2i

ω2

ωpe

∂

∂t
− c2

s

c2

∂2

∂x2
− 2i

c2
sk2

cωpe

∂

∂x

)
n = −Zmec

2k2
2

2miω2
pe

a0a
∗
1, (3.14)

which is the three-wave model in the same units as the δNA-model (3.4)-(3.5).
We now introduce new units in order to arrive at the same scaling as Guzdar et.
al [54].

We transform into the new units [t]2 = 1/γ0, where γ0 =
√

3/2
(
k2

0a
2
0c

2ω2
pi/(2ω0)

)1/3

is the strongly coupled growth rate (see Sec. 2.3.2), [x]2 = [t]2 c
2k0/ω0, rewrite

a0,1 = E0,1 [E0,1] e/ (mecω0) with [E1] = 2
√

2ω3
0ω2memic2γ2

0/
(
c2k2

2ω
2
peZe

2
)
and

[E0] =
√
ω1/ω0 [E1], respectively and scale the density wave via n = 4

√
ω0ω1γ0/ω

2
peN .

In order to arrive at the new system we therefore change ∂t → γ0/ωpe∂t, ∂x →
γ0ω0/ (ck0ωpe) ∂x, n → 4

√
ω0ω1γ0/ω

2
peN , a1 → 2

√
2ω0ω2γ2

0mi/
(
Zc2k2

2ω
2
peme

)
E1

and a0 → 2
√

2ω1ω2γ2
0mi/

(
Zc2k2

2ω
2
peme

)
E0 in Eqs. (3.12)-(3.14) and find(

∂

∂t
+

∂

∂x

)
E0 = −iNE1, (3.15)(

∂

∂t
− θ ∂

∂x

)
E1 = −iN∗E0, (3.16)(

ε
∂2

∂t2
− 2i

∂

∂t

)
N = −E0E

∗
1 , (3.17)

where we neglected the derivatives with respect to x in Eq. (3.17), θ being the
phase velocity ratio θ = |vph,0|/|vph,1| ≈ 1 and the coefficient

ε = γ0/ω2, (3.18)

where ω2 is still a free parameter we choose to be ω2 = 2k0cs. We note that
ε = ε(a0) depends on the local pump amplitude a0, however, for simulations we
ignore the change of a0 and set ε 6= ε(a0) constant with the initial pump amplitude
a0

0. Furthermore, we note that ε is the crucial factor if we compare the model
(3.15)-(3.17) to previous ones [69]. It determines whether we are in the weak
coupling ε ≈ 0, strong coupling ε � 1 or the transition regime ε ≈ 1. It is the
ratio of the strongly coupled growth rate γ0 ≈ ωsc to the weakly coupled frequency
ω2 ≈ ωwc, as they were derived in Sec. 2.3.2.
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3.2. CHARACTERISTICS OF WEAKLY AND STRONGLY COUPLED
BRILLOUIN AMPLIFICATION

3.2 Characteristics of weakly and strongly
coupled Brillouin amplification

In this section we show some characteristics of weakly and strongly coupled Brillouin
amplification to ease the reader’s understanding throughout the following, more
specialized chapters. As the latter regime is more relevant in today’s research,
we focus on this, however, many basics are similar between the two. A deeper
comparison, including the transition of one regime to the other, is done in Ch. 5.
In Sec. 2.3.2 we already mentioned that the pump strength a0 determines whether
the interaction takes place weakly or strongly coupled. For now we only assume
local intensities high enough that we are always in the strong coupling regime and
shift back a more detailed distinction to Ch. 5.
From many other publications [50, 61, 62] we know that via omitting the first

derivative with respect to time in Eq. (3.17), the model Eqs. (3.15)-(3.17) solely
describes strongly coupled Brillouin amplification and vice versa. As already
mentioned before, one distinguishes between different regimes depending on how
long the amplification process takes place.

In a first phase, where the high energetic pump is still much larger in amplitude
than the seed, the former will stay unaffected by its loss of photons and the seed
will grow exponentially. We call this the linear regime, as effectively Eq. (3.15)
can be neglected because the pump is unchanged. Here, the growth rates derived
in Sec. (2.3.2) are applicable.

After some time, when the amplitudes of both seed and pump are of comparable
size, we can no longer neglect the loss of photons of the pump. This implies
that we have to incorporate Eq. (3.15) in our model. As the main energy flow
still continues from pump to seed, the pump eventually depletes. That is the
reason why we call this the pump depletion or nonlinear regime. Hereby, the seed
envelope shape develops oscillations and peak amplitude growth continues in a
polynomial way instead of exponential. There is also an analytic way to describe
the seed envelope in this regime, because it follows self-similar behavior. For
more details on self-similarity, see e.g. [44, 45] for Raman or [50, 55] for Brillouin
amplification. The appendix A.2 is completely dedicated to investigate a more
general self-similar solution applicable for both weakly and strongly coupled regime.
However, the above cited solutions are able to predict growth and form of the seed
in the nonlinear regime quantitatively which was not possible with the general
solution in appendix A.2. Here, the arguments drawn are of qualitative nature.

Fig. 3.1 exemplarily shows the different stages of an amplified seed in a plasma
with one percent critical density ne = 0.01nc, corresponding to ne ≈ 1.7 · 1019

cm−3 being pumped by a constant intensity I0 = 1016 W/cm2, corresponding to
E0 ≈ 0.07, being well above the threshold for strong coupling as Ethresh ≈ 0.01
at wavelength λ0 = 800 nm. We discuss two different Gaussian seeds, carrying
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3.2. CHARACTERISTICS OF WEAKLY AND STRONGLY COUPLED
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the same total energy but differ in duration. In solid black we show a seed of 50
fs duration and I1 = 1014 W/cm2 peak intensity, in dashed black a seed of 1 ps
duration (both FWHM) and I1 = 5 · 1012 W/cm2.
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Figure 3.1: Simulation results for model (3.15)-(3.17) for two different seed pulses
(long in dashed black, short in solid black) carrying the same energy
in a setup with parameters described in text. First, the initial seeds
are shown in (a), then after the linear regime (b) and eventually in
pump depletion (c). Explanations of pulse shape and peak amplitude
are given in the text.

Subfig. 3.1a shows the initial setups of the two seeds described above, traveling
from right-to-left. Note that the duration mentioned above directly translates to
the spatial width presented here. Furthermore, we remark the aforementioned
dependence I ∝ E2. The y-axis in Fig. 3.1 shows E1 instead of I1, i.e. the factor
of 20 in peak intensity between the two seeds translates to a factor of

√
20 ≈ 4.5

in peak amplitude.

In Subfig. 3.1b the seed pulses approach the pump amplitude E0 ≈ 0.07, but
until here, the pump (not shown) is almost unchanged. This is the situation after
1 ps of constant pumping at the end of the linear regime. We note that the two
different pulses have not only moved, but got amplified differently: The initially
short pulse has drawn a tail which then got amplified, the initially long pulse got
directly amplified to a higher peak amplitude than its counterpart.

Note that in Subfig. 3.1c the y-axis scaling has changed, here, the seed amplitude
has surpassed the pumping limit after 1.75 ps. Both seed pulses follow self-similar
behavior and develop characteristic oscillations in their envelope trailing a leading
maximum. We find these oscillations in the envelope not going down to zero, the
explanation is adjourned to Ch. 6.
Notably, the pulse shown in solid black, which was at the end of the linear

regime less amplified than the one shown in dashed black, has now surpassed its
counterpart in peak amplitude.

We summarize that at the end of the linear regime, the initially long pulse has a
higher peak amplitude than the initially short. In the pump depletion regime the
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situation is reversed.
The explanation of this requires a look on the situation in Fourier space. The

initially short seed pulse will be broader than its counterpart in Fourier space.
However, the strongly coupled Brillouin instability also has a certain bandwidth,
as is shown in Fig. 3.2 in red.

In case of the long pulse in Subfig. 3.2a, the whole pulse fits into the instability,
i.e. all of it gets amplified. In case of the short pulse in Subfig. 3.2b, only the
central part of its Fourier transform fits into the instability. That is why it draws
a tail at first, as its wings will not experience amplification. This was already
explained in [92].
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Figure 3.2: Normalized spectra |F (E1)| of the initial seeds shown in Fig. 3.1a, the
short one in solid black in (a) and the long one in dashed black in (b)
in k-space. In solid red the normalized bandwidth of the instability is
sketched.

Fig. 3.3 shows the peak amplitude of both seed pulses over time, in solid black
for the initially short pulse and in dashed black for the initially long seed. The
horizontal solid blue line marks the pump amplitude, the dashed vertical blue line
roughly separates the two different growth regimes: to its left we see exponential
growth of both initial seeds in the linear regime, to the right we see polynomial or
algebraic growth in the nonlinear regime.
The dashed-dotted red line is a fit, describing a ∝ t3/4 behavior. Apparently,

the initially short pulse grows in peak amplitude with this behavior. This can be
understood with the self-similar analysis [50, 55], where this growth is predicted.
For comparison, in weak coupling Brillouin or Raman (not shown), the growth in
the nonlinear regime is predicted to be ∝ t. The initially long pulse apparently
has weaker growth in the nonlinear regime.
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Figure 3.3: Peak amplitude growth for two different seed pulses depicted in Fig.
3.1. In solid black is shown an initially short seed, in dashed black an
initially long seed. The horizontal solid blue line is the pump amplitude,
the vertical dashed blue line separates linear regime (to the left) from
pump depletion regime (to the right). The dashed-dotted red line is
a fit ∝ t3/4, apparently describing growth of the initially short seed in
the nonlinear regime.

To clarify the qualitative difference between weak and strong coupling besides
the aforementioned different time and length scales, we show Fig. 3.4. Here,
we present simulation results from both the δNA-model (in solid-dotted green)
(3.4)-(3.5) and the three wave model (in solid red) (3.15)-(3.17). The parameters
are ne = 0.05nc, i.e. ne ≈ 9 · 1019 cm−3 for the density, an electron temperature
of Te = 200 eV. The seed with Es = 0.001 and a duration of 100 fs is pumped by
either I0 ≈ 1012 W/cm2 in Subfig. 3.4a or I0 ≈ 1016 W/cm2 in Subfig. 3.4b.
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Figure 3.4: Simulation of Eqs. (3.4)-(3.5) (solid-dotted green) and (3.15)-(3.17)
(solid red), respectively, for parameters as specified in text. In (a) the
interaction is weakly coupled, in (b) it is strongly coupled. In both
cases, the two models show good agreement.
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In Subfig. 3.4a we see a snapshot of the weakly coupled Brillouin amplification
in the pump depletion regime after 60 ps of interaction. The envelope oscillation
trailing the leading spike is a deviation from the result shown in Subfig. 3.4b,
where a snapshot is shown after 1 ps of interaction in the nonlinear regime of
strongly coupled Brillouin amplification. Weakly coupled Brillouin scattering has
the characteristic that these oscillations go down to zero. Raman scattering shares
this trait. The reason for that is given in Chs. 5 and 6.

In summary, we have illustrated the basic mechanisms and phases of the ampli-
fication scenario. We showed the influence of short or long seed pulse durations
on the amplification and gave an explanation. Furthermore, we presented the
evolution of the amplitude of the leading spike in the interaction. Lastly, we
explained the differences between weak and strong coupling to be the final pulse
duration, growth behavior in the pump depletion regime and shape of the amplified
pulse envelope in the nonlinear regime.
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4 Kinetic dispersion for
parametric instabilities

The fluid description presented in the previous chapter in Sec. 2.3.2 is one possible
way to treat Brillouin scattering in plasma. However, the equations at the basis
are not the most general ones. We have seen right in the beginning of Ch. 2, that
continuity and momentum equation are a consequence of the Vlasov equation. We
showed that in the derivation of Raman and (strong coupling) Brillouin scattering
there are assumptions made about the electron and ion fluid, e.g. isothermal and
adiabatic equations of state.

The work by Edwards et al. [72] included a fluid description of Brillouin am-
plification in electron-positron plasmas. Here, they claimed to observe enhanced
Brillouin growth. However, the simulations presented showed less growth than
what was estimated with analytic models. The terminology enhanced is somehow
irritating. It is enhanced in comparison to Raman growth, but in fact reduced
compared to the electron-proton plasma case, which is only properly possible to
investigate if the interaction is treated kinetically.

The goal of this chapter at hand is to derive a dispersion relation for Brillouin
amplification, valid in both weak and strong coupling. We consider weakly rela-
tivistic amplitudes a0 ≤ 1 and arbitrary ion species in a single charge state. With
this we can handle both the Hydrogen plasma case that is assumed throughout
the course of this thesis and also clarify the disagreement in growth rates between
simulation and fluid description in the electron positron case in [72].

Electron-positron plasmas seem a bit an artificial consideration. However, it was
shown [93] that these plasmas can be produced in the lab via a laser drive with
relatively high density and existence duration.

We proof that for the heavier ion case mi/me & 1836, where equality is reached
in case of electron-proton plasma, the fluid description is valid in the linear regime.
It allows us to stick to the easier description throughout this thesis.

Furthermore, we show that in the electron-positron case mi/me = 1 the fluid
and kinetic descriptions agree again, but only in the strong coupling regime. This
renders the investigations made in Ch. 6 about chirping the pump pulse in the
strong coupling regime valid for any ion species. In weak coupling the plasma
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mode is damped.

However, the dispersion relation derived here is even more powerful, as it covers
the case of weakly relativistic laser amplitudes. This implies that it can be analyzed
and investigated in regimes exceeding the investigations made throughout this work.

This chapter is organized as follows. We give a brief description of the derivation
of the kinetic dispersion relation. A detailed version is given in appendix A.1 in Sec.
4.1, basically following [71] for the more general case of arbitrary ion species with
arbitrary temperature ratio between ions and electrons. Afterwards, we discuss the
electron-proton case in Sec. 4.2 and remark the similarity to the fluid description
given by Eq. (2.92) in Sec. 2.3.2. Subsequently, we discuss the differences occuring
for electron-positron plasmas in Sec. 4.3. We find the laser strength dependence of
the growth rate Γ ∝ a2

0 stated in [70]. Lastly, we sum up the results in Sec. 4.4.
The content of this chapter is part of the manuscript [73].

48



4.1. WEAKLY RELATIVISTIC KINETIC DISPERSION RELATION FOR AN
ARBITRARY HOMOGENEOUS PLASMA

4.1 Weakly relativistic kinetic dispersion relation
for an arbitrary homogeneous plasma

Similar to [71] we start with Maxwell’s equations in potential form Eqs. (2.5) and
(2.6) and the Vlasov equation (2.7)

(
∇2 − 1

c2

∂2

∂t2

)
A = −4π

c
j⊥, (4.1)

∇2φ = −4πe (ni − ne) , (4.2)

0 =
∂

∂t
fk + v · ∇rfk + qk

(
E +

1

c
v ×B

)
· ∇pfk, (4.3)

with the vector potential A, the electrostatic potential φ, the distribution function
fk, speed of light c, perpendicular current j⊥, elementary charge e and particle
charge qk, density nk, velocity v, electric field E and magnetic field B. The index
k denotes the species k = e, i, hence electron or ion, and B = ∇×A.

We assume the distribution function fk only depending on the laser propagation
direction z and find

fk (z,p, t) = nk0gk (z, pz, t) δ

(
px +

qkAx
c

)
δ

(
py +

qkAy
c

)
, (4.4)

where δ denotes the δ distribution. We assume ni0 = ne0 ≡ n0 and write

nk (z, t) = n0

∫ +∞

−∞
dpz [gk (z, pz, t)] , (4.5)

j⊥ (z, t) = −e
2n0

c
A (z, t)

∫ +∞

−∞
dpz

[
gi
miγi

+
ge
meγe

]
,

= −e
2n0

mec
A (z, t)

∫ +∞

−∞
dpz

[
β
gi
γi

+
ge
γe

]
, (4.6)

where β = me/mi denotes the mass ratio. The Lorentz factor γk is given as

γe =

√
1 +

(
pz
mec

)2

+

(
eA (z, t)

mec2

)2

, (4.7)

γi =

√
1 + β2

(
pz
mec

)2

+ β2

(
eA (z, t)

mec2

)2

, (4.8)
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Inserting Eqs. (4.4)-(4.8) into the initial system (4.1)-(4.3) we find(
∂2

∂z2
− 1

c2

∂2

∂t2

)
A =

ω2
pe

c2
A

∫ +∞

−∞
dpz

[
β
gi
γi

+
ge
γe

]
, (4.9)

∂2

∂z2
φ = −4πen0

∫ +∞

−∞
dpz [gi − ge] , (4.10)

0 =
∂

∂t
gk + vz

∂

∂z
gk +

[
−qk

∂

∂z
φ− mk

2

(
e

mkc

)2
1

γk

∂

∂z
A2

]
∂

∂pz
gk.

(4.11)

Perturbing the system (4.9)-(4.11) via

φ = φ0 + εφ1, A = A0 + εA1, gk = gk0 + εgk1,

φ0 = 0, A0 = A0⊥ = A0x + iA0y = A exp (i(k0z − ω0t)) , A ∈ R,

φ1 = φ̃ exp (i(kz − ωt)) + φ̃∗ exp (−i(k∗z − ω∗t)) ,
gk1 = g̃k exp (i(kz − ωt)) + g̃∗k exp (i(k∗z − ω∗t)) ,

A1⊥ = A+ exp (i(k+z − ω+t)) + A− exp (i(k−z − ω−t)) ,

with k+ = k0 + k, k− = k0 − k∗, introducing a0 = eA⊥/mc
2, selecting first-order

and only resonant terms yields the weakly relativistic kinetic dispersion relation
for arbitrary ion species

D+D− =
ω2
pea

2
0

4
(D+ +D−)

[
I4 −mec

2k (F + I3)
]
, (4.12)

with

In = βn−1Iin + Ien,

Ikn =

∫ +∞

−∞
dpz

[
1

γn−1
k0

∂gk0/∂pz
vzk − ω

]
, n = 1, 2, 3,

Ik4 =

∫ +∞

−∞
dpz

[
gk0

γ3
k0

]
,

D+ = −ω2
+ + c2k2

+ + ω2
pe

∫ +∞

−∞
dpz

[
β

γi0
gi0 +

1

γe0
ge0

]
,

D− = −ω∗−
2 + c2k∗−

2 + ω2
pe

∫ +∞

−∞
dpz

[
β

γi0
gi0 +

1

γe0
ge0

]
,

F =
4πe2n0I

2
2

k − 4πe2n0I1

.
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Non-relativistic limit

In the non-relativistic limit we have γk0 ≈ 1, Ik4 ≈ 0 and we take the 1D-distribution
function to be Maxwellian

gk0 =
1

mkvthk
√
π

exp
(
−v2

z/v
2
thk

)
, vthk =

√
kBTk
mk

. (4.13)

We notice that we can identify the Integrals Ikn with the electric susceptibilities
(see e.g. [81]) via

Ikn = − 1

kmkv2
thk

[
1 +

ω√
2mkvthk

Z

(
ω√

2mkvthk

)]
= − k

meω2
pe

χk, (4.14)

where Z denotes the complex plasma Z-function, discussed in various literature,
e.g. [41]. It is given by

Z (ζ) =
1√
2

∫ ∞
−∞

e−t2

t− ζ
dt. (4.15)

We expect larger growth for the downshifted light wave, thus D− ≈ 0. Inserting
into Eq. (4.12) delivers

a2
0c

2k2

4D−
=

1 + χi + χe
χe [1 + (1 + β2)χi] + β2χi

, (4.16)

withD− = −ω2+c2k2+(1 + β)ω2
pe. We note χk � 1 and can therefore approximate

(1 + β)2 a
2
0c

2k2

4D−
≈ 1

χe
+

1

χi
. (4.17)

We write

χkin
e =

1 + ζeZ(ζe)

k2λ2
De

, χkin
i = α

1 +
√
α/βζeZ(

√
α/βζe)

k2λ2
De

, (4.18)

χflu
e =

1

k2λ2
De

, χflu
i = −

ω2
pi

ω2
, (4.19)

where χkin
j denotes the kinetic and χflu

j the fluid susceptibilities, where α = Te/Ti
is the temperature ratio and ζe = ω/

√
2mekvthe. Eq. (4.17) is the non-relativistic

kinetic dispersion relation for arbitrary ion species. Note that in the limit β → 1,
thus in the electron-positron case, we arrive at the dispersion relation given by
Shukla et al. [70], while aShukla = a/2.

Fig. 4.1 describes how Eq. (4.17) is solved. For a fixed wavenumber k we
evaluate the dispersion relation in real part R(ω) and imaginary part I(ω). In
Fig. 4.1, we measure ω in units of ωpe/

√
2kλDe, where λDe is the Debye-length
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of electrons. We draw the lines where Eq. (4.17) is fulfilled. In more detail, this
means that in Fig. 4.1 the blue surface marks the area where R (RHS) > R (LHS).
The red area is assigned to I (RHS) > I (LHS), where RHS and LHS denote the
right- or left-hand-side, respectively, of Eq. (4.17). This is necessary because
evaluation of the Z-function is very complicated. If the two borders of the surfaces
cross, Eq. (4.17) is fulfilled.
Fig. 4.1 consists of three different cases, differing in pump strength a0. For

the first case a0 = 0.005 we find the cut at R(ω) ≈ 0.02 and I(ω) ≈ 0.005. For
a0 = 0.01 we have R(ω) ≈ 0.03 and I(ω) ≈ 0.02 as a solution of Eq. (4.17). In
case of a0 = 0.05 the search of the crossing point complicates even further. Here,
instead of one distinct point we find a full crossing line. The point chosen for
evaluating the growth rate Γ is assumed to be the crossing point closest to origin,
i.e. roughly at R(ω) ≈ 0.06 and I(ω) ≈ 0.06.
We always have these hard-to-find growth rates Γ if the pump strength a0 is

strong enough such that the interaction is strongly coupled.
The evaluation is done automatically using a scripted language, e.g. Mathemat-

ica.

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

ReHΩL

Im
HΩ
L

a=0.005

(a)

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

ReHΩL

Im
HΩ
L

a=0.01

(b)

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

ReHΩL

Im
HΩ
L

a=0.05

(c)

Figure 4.1: Solving the kinetic dispersion relation Eq. (4.17) via the method
explained in text. Evaluation of the complex Z-function requires the
comparison of real and imaginary part of right-hand-side with left-hand-
side, Eq. (4.17) is fulfilled where both surface borders cross.
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4.2 Dispersion in Hydrogen plasmas

We first consider the dispersion relation Eq. (4.17) in the electron-proton limit
β = 1/1836, α� 1 with kinetic (4.18) and fluid (4.19) description and compare it
to the solution of Eq. (2.92).
In Fig. 4.2 we solved the three equations mentioned above for a0 = 0.005. On

the x-axis one finds the wavenumber of the plasma oscillation k in units of the
laser wavenumber k0, and on the y-axis the growth rate Γ or the frequency ω in
Fig. 4.2a or 4.2b, respectively. In solid black is the solution obtained by solving
Eq. (4.17) with kinetic susceptibilities, in dashed blue the solution with fluid
description of the susceptibilities and in dotted red the solution of Eq. (2.92), i.e.
the dispersion relation derived in Sec. 2.3.2.
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Figure 4.2: Growth rate Γ and real frequency ω over k for a0 = 0.005 obtained
from solving Eq. (4.17) with kinetic susceptibilities Eq. (4.18) (solid
black), fluid susceptibilities Eq. (4.19) (dashed blue) and from solving
Eq. (2.92) (dotted red).

As can be seen, the three different results agree perfectly. The only difference is
that the kinetic dispersion relation exhibits areas where Γ < 0, i.e. where damping
of the wave occurs. However, maximum growth rate and its distribution over k as
well as the frequency agree.

In Fig. 4.3 we present the results by solving the same equations in the same
color format but now pump strength resolved, i.e. on the x-axis is a0 and on the
y-axis one finds the maximum growth rate Γ and frequency ω, respectively.

Again, we find perfect agreement for all pump amplitudes a0. In both, Subfigs.
4.3a and 4.3b we find two different regions of dependence of a0. At a0 & 0.1 growth
changes, as does the frequency. Closer evaluation gives that for a0 < 0.1 we find
Γ ∝ a0 and for a0 & 0.1 we have Γ ∝ a

2/3
0 and Γ ≈ ω, as was already discussed in

Sec.2.3.2 in Eqs. (2.94) and (2.98).
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Figure 4.3: Maximum growth rate Γ and its associated real frequency ω vs. pump
amplitude a0 obtained from solving Eq. (4.17) with kinetic susceptibili-
ties Eq. (4.18) (solid black), fluid susceptibilities Eq. (4.19) (dashed
blue) and from solving Eq. (2.92) (dotted red).

In summary, all three different evaluations deliver the same results,. This means
that for electron-ion plasmas, kinetic treatment is not necessary, neither in the
weak, nor in the strong coupling regime. We appreciate this result as the evaluation
of Eq. (2.92) is much easier than of Eq. (4.17), as was explained with Fig. 4.1.
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4.3 Dispersion in Electron-Positron plasmas

In the electron-positron limit β = 1, α = 1 we get the same results for Eq. (4.17)
in fluid description (4.19) as Edwards et al. [72], with aEdwards =

√
2a0, but not if

we consider full kinetic treatment.
We consider an electron-positron plasma with β = 1, α = 1, n = 0.1nc and

T = 200 eV. We compare the full kinetic treatment via Eq. (4.17) with (4.18)
and (4.19) to the dispersion relation given by Edwards et al., i.e. Eq. (42) of the
supplemental material of [72].
Fig. 4.4 shows the evaluation of the three different equations mentioned above

for fixed a0 = 0.005. The solution of Eq. (4.17) is shown in solid black (with Eq.
(4.18)) and dashed blue for fluid treatment of the susceptibilities following Eq.
(4.19). The solution of Eq. (42) of [72] is shown in red dotted lines.

In Subfig. 4.4a we directly find that the fluid treatment highly overestimates
the growth rate for this given pump strength. Not only this, but also the range of
the instability in k is highly underestimated. For the real frequency ω we also see
strong disagreement.
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Figure 4.4: Growth rate Γ and real frequency ω over k for a0 = 0.005 obtained
from solving Eq. (4.17) with kinetic susceptibilities Eq. (4.18) (solid
black), fluid susceptibilities Eq. (4.19) (dashed blue) and from solving
Eq. (42) in [72] (dotted red). The left side of the black curve follows
Γ ∝ a2

0 behavior.

Fig. 4.5 shows the growth rate Γ for different pump strengths a0 taken from
fluid description [72] (dotted red) and kinetic description (4.17) (solid black). In
solid red we show

Γ =
cka0√

22

√
2ω2

pe

kCe (ω0 − kCe)
, (4.20)
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the growth rate given by [72]. We note that the growth rate calculated from the
fluid dispersion deviates from the analytic prediction Eq. (4.20). We also note
that the a0 above which the deviation occurs is the same the frequency ω becomes
larger than kvth, as Fig. 4.6 shows. This hints that also here strong coupling sets
in, where growth occurs with the usual ∝ a

2/3
0 behavior.

Fig. 4.7a shows the ratio of growth rates obtained from full kinetic and fluid
description. One observes for low a0 that there is a large factor between these two.
As one approaches the strong coupling regime, the two results converge towards
each other. This means for strong coupling Brillouin amplification in electron
positron plasmas the fluid description is valid and applicable.
Fig. 4.7b shows the ratio of frequency obtained from full kinetic and fluid

description. For each pump strength a0 we observe a significant blueshift in
frequency of roughly 10%, once the dispersion is treated kinetically.
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Figure 4.5: Growth rate Γ for different pump strengths a0 from fluid description
(dotted red) and kinetic dispersion (solid black). The solid red line
is calculated from (4.20). The position a0 ≈ 0.02 seperates weak and
strong coupling. In the latter regime, the two results are much closer
to each other than in the former regime.
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Figure 4.6: Ratio of ωFluid and kvth. For low values of a0 it is unity, for larger
values it gets much larger, hence a quasi-mode is amplified.
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Figure 4.7: Ratio of growth rate Γ (a) and ω (b) between fluid and kinetic treatment.
For low amplitudes a0, there is a grave difference, for larger a0, i.e.
strong coupling, ΓFluid/ΓKinetic approaches 1. For ω, kinetic treatment
gives a significant blueshift compared to what is obtained by fluid
description.
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4.4 Conclusion

We have derived a weakly relativistic kinetic dispersion relation for Brillouin
amplification in homogeneous plasmas in a single charge state for an arbitrary ion
mass mi and arbitrary temperature ratio Te/Ti in Eq. (4.12). We remark that this
is a powerful equation with its range of application exceeding the needs of the work
at hand. Therefore, subsequently, we assumed non-relativistic pump amplitudes
and derived the dispersion relation (4.17), with which we investigated the cases of
Hydrogen plasma, as well as electron-positron plasma, and discussed the weak and
strong coupling regimes.

Although similar to former equations, for the first time such a dispersion relation
was derived, filling the picture of understanding.

With the dispersion relation (4.17) we have shown that we can replace the
susceptibilities χ either in kinetic description Eq. (4.18), where we need to solve
the complex Z- or plasma dispersion function. Or we insert fluid susceptibilities
Eq. (4.19) to find a dispersion relation delivering the same results as Eq. (2.92),
directly derived from fluid equations.

For an electron-proton plasma, i.e. ionized Hydrogen, we have shown that we
obtain the same growth rates and frequencies from kinetic and fluid description,
respectively, rendering the former as not necessary for these plasmas. Apparently,
the latter is sufficient in describing Brillouin amplification.

In case of electron-positron plasmas, we tackled the message of [72] that here,
Brillouin amplification is strongly enhanced, and showed that when treating the
interaction more generally, i.e. kinetically, the growth rates actually decrease
dramatically. Although Raman growth rates might be reduced even more, to speak
of strong enhancement is quite deluding. Additionally, we have shown a significant
blueshift in frequency of approximately 10% when treated kinetically in comparison
to fluid results.

Furthermore, we have shown that also the fluid description in [72] is not complete
as it ignores the differences occurring when entering strong coupling.
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5 Transition from weakly to
strongly coupled Brillouin
amplification

In the following chapter we investigate the transition regime between weakly and
strongly coupled Brillouin amplification. Both scattering mechanisms exhibit
different characteristics in peak amplitude growth, time- and length-scales as well
as duration and self-similarity of the seed pulse. In weak coupling the beat of
pump and seed pulse drives an ion acoustic wave with frequency ω = kcs and a
growth rate γ � ω. For sufficiently strong pump waves the interaction becomes
a quasi-mode of the plasma with ω � kcs and γ ≈ ω. Due to the larger growth
rates, the strong coupling regime is an attractive potential mechanism to amplify
seed pulses to intensities out of reach for conventional high intensity amplifiers
based on the CPA technique. The distinction between these two regimes is possible
by the parameters of the laser-plasma setup. It is found that today’s experiments
take place with parameters in the transition regime.

Furthermore, setups initially triggering weak coupling Brillouin scattering will
enter strong coupling as soon as the seed pulse exceeds the critical amplitude.
On the other hand, starting in strong coupling and entering the nonlinear pump
depletion regime will decrease the pump amplitude trailing the leading intensity
spike. Thus, it will drop below the critical amplitude which leads to a significant
decrease in the overall energy transmission efficiency.

We present a unified treatment for all scenarios, hence covering weak, strong
coupling and their transition in a reduced envelope model and see differences
to previously used models which were derived for only one asymptotic regime.
Furthermore, we give an analytic expression for the time it takes for an arbitrary
interaction setup to enter the strong coupling regime and confirm it by simulations.
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5.1 Simulations of δNA- and envelope models

In this section we investigate the two different models derived in Ch. 3, namely
the δNA- and ε-model Eqs. (3.4)-(3.5) and (3.15)-(3.17), respectively. Once again
we clarify characteristics of weakly and strongly coupled Brillouin amplification,
as schematically already introduced in Sec. 3.2. Here, we expand the picture of
understanding with the transitional case.

We choose typical parameters in experiments with a Hydrogen plasma with an
electron temperature Te = 200 eV, background density n0 = 0.05nc ≈ 9 · 1019 cm−3,
where nc = ω2

0me/(4πe
2) is the critical density. The central laser wavelength of

both pump and seed is λ0 = 800 nm and the initial seed amplitude is small at
E0
s = as = 10−3 with a duration of 100 fs. The threshold value for a0 which de-

termines the regime is calculated via athreshold =
√

16ω2
0c

3
s/(ω

2
pic

3) (see Eq. (2.99))
and for parameters specified as above we find athreshold ≈ 0.0075.

The simulation results of the δNA- and ε-model, (3.4)-(3.5) and (3.15)-(3.17),
respectively, are presented in Fig. 5.1. Parameters are chosen as described above.
Results obtained by simulating the δNA model are presented in solid magenta.
ε-model results are represented with dashed-crossed black lines. For the strong
coupling limit we find self-similar behavior [50] in the pulse envelope shape 5.1a as
we observe characteristic oscillations behind the leading maximum. The oscillations
behind the leading maximum drop down to zero. Functions following this trait are
named π-pulse solutions. For the weak coupling limit 5.1c we also find self-similar
behavior [92, 62] (described for Raman amplification, which is analog).

For a0 = 0.1 (→ I0 ≈ 1016 W/cm2, Subfig. 5.1a) we have ε ≈ 4.9 and simulated
for 1.1 ps. For a0 = 0.01 (→ I0 ≈ 1014 W/cm2, Subfig. 5.1b) ε ≈ 1 and an
interaction time of 8 ps. For Subfig. 5.1c we observed amplification during 58 ps
and a0 = 0.001 (→ I0 ≈ 1012 W/cm2) ε ≈ 0.2. Thus both limiting regimes and
the transition should be covered. The respective interaction time is chosen such
that characteristic appearance can be discussed.

For the transition case 5.1b we see the front amplified according to strong
coupling theory but the back is in beat with another frequency. From the very
complicated seed envelope, which changes substantially in time and space, one can
deduce that formulating a self-similar solution which covers the whole interaction
spectrum might be difficult. However, we give it a try in Apx. A.2 and came to
results at least qualitatively agreeing. We were able to reproduce the shown en-
velopes. Still, self-similar solutions usually predict growth of the leading maximum,
which we failed to achieve with our solution.

The lower row of Fig. 5.1 shows the respective density profiles. In 5.1d we find
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the characteristic density slab for strong coupling with a quadratic slope. In Subfig.
5.1e we see many of these slabs. Subfig. 5.1f shows the characteristic density
plateau for weak coupling. Remarkably, we notice very good agreement between
the two models. Apparently an initially fixed ε (see Eq. (3.18)), which determines
whether strong or weak coupling is the dominant process still gives access to the
transition regime (see Subfig 5.1b). This is an interesting feature from a physical
point of view but also in practical terms since simulating the envelope model is
computationally much less demanding.
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Figure 5.1: Simulation results for model (3.4)-(3.5) (solid magenta) and (3.15)-
(3.17) (dashed-crossed black) for parameters as specified in text. Shown
are amplified seed pulse envelopes (upper row) and density waves (lower
row). For the limit regimes (a) strong coupling and (c) weak coupling,
self-similar behavior is found in the pulse shape. In the transition
regime (b) we find the front to follow strongly coupled behavior but
the back part is in beat with a second frequency. Also shown in [58].

However, although we start with a pump amplitude around the threshold a0 ∼
athreshold we end up in the strong coupling regime. This is due to the fact that
during amplification the seed eventually surpasses the threshold limit and there-
fore the interaction in the front part will be strongly coupled. This is a crucial
observation as in the front most of the pulse energy is stored. So in principle no
matter how small the initial amplitudes are chosen, if the interaction lasts for a
sufficiently long time it will end up strongly coupled.

Besides seeing the transition from weak to strong coupling in the envelope shape
we also find evidence in the spectra and growth of the seed maximum in time. For
the results obtained by simulating either the δNA- or ε-model are the same, we
stick with the latter. Fig. 5.2 shows a simulation for a0 = 0.005 (→ I0 = 2.5 · 1013

W/cm2), thus well below the threshold, over 20 ps for the same seed and plasma
parameters as before. On top we see the normalized seed spectrum in k over time
t. Subfig. 5.2a was obtained by simulating ε = 0 which gives us the pure weak
coupling model. Subfig. 5.2b assumes the actual ε ≈ 2/3. In Subfig. 5.2c we see
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the maximum growth over time as the blue line corresponds to ε = 0 with the blue
circles representing linear growth, which is expected for weak coupling. The red
line corresponds to ε ≈ 2/3, thus no neglect of the second derivative with respect
to t in the density equation. The red circles represent growth proportional to t3/4,
which is expected for strong coupling.

0 1 2

t / s ×10
-11

-1- δk
wc

-1

-1+ δk
wc

k
 /
 k

0p

0

1

(a)

0 1 2

t / s ×10
-11

-1- δk
wc

-1

-1+ δk
wc

k
 /
 k

0p

0

1

(b)

0 1 2

t / s ×10
-11

0.01

0.02

0.03

m
a
x
(|

E
s
|)

(c)

Figure 5.2: Simulation results for model (3.15)-(3.17) for parameters as specified in
text. Shown are normalized seed spectra (upper row) and the maximum
growth (lower row) for ε = 0 ((a), blue line) and ε ≈ 2/3 ((b), red line).
The circles in (c) correspond to growth ∝ t (weakly coupled) or ∝ t3/4
(strongly coupled).

Note that sometimes we use E0 ≡ Ep and E1 ≡ Es equivalently. For pure
weakly coupled treatment ε = 0 the seed spectrum broadens symmetrically around
−1 + δkwc in the nonlinear regime and the maximum grows linearly as the fit
shows. δkwc = 2ω0cs/c

2 is the value given by Kruer [41] for the deviation of the
plasma wave number from 2kp0 at which the mode with the highest growth rate γ is
located in weak coupling, as it was introduced in Eq. (2.95) in Sec. 2.3.2. For the
chosen parameters we find δkwc ≈ 0.001kp0. For that reason δk is also the detuning
that applies itself to the two laser pulses, although initially they are not detuned.
For the full model ε ≈ 2/3 we note asymmetric amplification and faster spectral
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broadening, as it is typical for strong coupling, as soon as the seed exceeds the
threshold after t ≈ 11 ps.

63



5.1. SIMULATIONS OF δNA- AND ENVELOPE MODELS

5.1.1 Linear regime

In the following we investigate the linear regime by analyzing the ε model. The
linear regime is characterized by a large pump in comparison to seed which does
not lose energy and thus stays uniform, hence we can assume Ep as constant.
The remaining Eqs. (3.16)-(3.17) can be Fourier transformed in space x→ k and
Laplace transformed in time t→ p in order to find

Es (p, k) =
1

p− iαk − i|Ep|2
εp2+2ip

Es (t = 0, k) , (5.1)

→ Es (t, k) = A (t, k)Es (t = 0, k) , (5.2)

where A is the Laplace backtransformation of the fraction in Eq. (5.1) which can
be calculated numerically and in the following is referred to as the amplification
function. Eq. (5.2) describes how an initial signal Es(t = 0, k) evolves in time in
the linear regime.

We note that this analysis has been done before (see e.g. [50]) but always with
different models, distinctly derived for either weak or strong coupling. Already
for weak coupling amplification in the linear regime we noted differences between
results obtained by numerical simulation of the ε-model versus reduced models
and also by analytics.

Fig. 5.3 shows log |A| in dependence of k1, i.e. the wavenumber of the seed,
evaluated for a0 = 10−1, 10−2 and 10−3, in order to keep consistency with Fig. 5.1,
at t = 4 (corresponding to 0.4 ps, 1.8 ps and 8.4 ps, respectively). We remark that
the mode at k1 = −(k0 + δk) is oscillating in time between 1 and 0 while the mode
at k1 = −(k0 − δk) is growing. This can be seen e.g. for a0 = 0.001, i.e. the solid
red line, where the dip marks the lower wavenumber and vice versa. After a large
time t� 4 we would no longer see the beat frequency of 2δk in density and seed
but the solution converges to the one obtained by simulating more reduced models.
When analyzing the amplification function |A|, we find the separation of the

oscillating part at k1 = −(k0 + δk) and the growing part at k1 = −(k0 − δk). This
is consistent to what we find in simulations.
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Figure 5.3: Amplification function |A| for a0 = 10−1 (dotted blue), 10−2 (dashed
green) and 10−3 (solid red) after t = 4 (for corresponding durations in
units see text). On the x-axis we show the wavenumber of the seed.

As mentioned before, δk is the detuning between pump and seed that the system
applies on itself during the interaction. The analytic limit δkwc = 2ω0cs/c

2 only
holds for low pump strength a0 � 1 as is suggested by Fig. 6.10. Here, we
obtain δk by solving the full dispersion relation (see eg. [41]) and finding the
wavenumber with the highest growth rate. For large a0 → 1 the ratio converges to
zero, δk/δkwc → 0.
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Figure 5.4: Ratio of detuning δk to analytic limit δkwc over pump strength a0. For
large a0 → 1 the ratio converges to zero, thus no detuning between
pump and seed establishes in the strong coupling regime.
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5.1.2 Nonlinear regime

We first analyze whether the detuning derived from linear theory remains true
in the nonlinear phase. We simulate the same parameters and setups as in Sec.
5.1, thus a0 = 0.1, 0.01, 0.001 but now for a much longer interaction time. The
resulting detuning ratio is δk/δkwc ≈ 0, 0.75, 1.

Fig. 5.5 shows the final seed envelopes and the normalized density spectra over
time. The upper row (Subfigs. 5.5a-5.5c) shows the final seeds for a0 = 0.1 after
5 ps, a0 = 0.01 after 25 ps and a0 = 0.001 after 230 ps. We note that all three
cases are structurally similar: there is an “envelope of the envelope” which shows
weak coupling characteristics, while in between and especially in the leading front
we find oscillations not going down to zero. The latter is an indication for strong
coupling behavior. Only the final seed amplitudes and both time and space scales
change with pump strength.
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Figure 5.5: Seed envelopes for a0 = 0.1 at 5 ps (a), a0 = 0.01, 25 ps (b), a0 = 0.001,
230 ps (c) and the corresponding density spectra over time (d)-(f).

In the density spectra we note that the maximum growth occurs for the respective
k = 2kp0 − δk as expected from linear theory. It is highlighted by the black dashed
line. For a0 = 0.1 (Subfig. 5.5d) we see that up to t ≈ 3 ps the maximum of the
spectrum is at k ≈ 2kp0. Consecutively, there are two maximum branches eventually
converging to 2kp0 ± δkwc. Consequently, this is visible in the density envelope, as
it develops oscillations precisely as shown in Fig. 5.1e. These oscillations are then
imprinted on the seed envelope, resulting in that “envelope of the envelope”. We
estimate the time it takes for the system to develop such oscillations by noting
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5.1. SIMULATIONS OF δNA- AND ENVELOPE MODELS

that, as soon as two wavelengths of the beat fit inside the driven density, these
two branches will develop,

tsplitvg = 2
2π

2δkwc
, ⇒ tsplit =

π

csk
p
0

, (5.3)

where vg is the group velocity of the seed. For the chosen parameters we calculate
tsplit ≈ 3 ps. The length of the black dotted line in Subfigs. 5.5d-5.5f corresponds
to the calculated tsplit and for a0 = 0.1 we find very good agreement between the
estimate and the actual time it takes for the density to split into two branches.

For a0 = 0.01 (Subfig. 5.5e) we observe that in the initial stage for roughly 5 ps
the maximum of the density spectrum is found at 2kp0− δk, where δk ≈ 3/4δkwc, as
expected from linear theory. We also note that it takes the system longer (around
5 ps) to develop the splitting at 2kp0 ± δkwc. For a0 = 0.001 (Subfig. 5.5f) it takes
even longer (around 150 ps).

For a0 = 0.1 we start the interaction in strong coupling and the instability
is broad, i.e. covers a large interval in k. As soon as their beat fits inside the
driven density oscillation, both modes at 2kp0 ± δkwc can and will be amplified.
The seed envelope then develops a second envelope looking like originating from
weak coupling. For both a0 = 0.01 and 0.001 we do not clearly start in the strong
coupling regime. The width of the instability increases with the pump strength.
This means that although the beat of 2δkwc would fit inside the driven density
wave we cannot see amplification at both modes 2kp0 ± δkwc because it does not
amplify this broad spectrum yet. When the seed grows and exceeds the pump, it
gradually increases the unstable spectrum until eventually both density modes are
covered and consequently amplified.

This gives rise to a second time scale t for which the seed has to be amplified
so that afterwards the splitting into the two density modes can happen. From
massive simulation data we found that the seed spectral broadening goes with
k̃shift ≈ εt̃ in dimensionless units, translating into

kshift ≈
3
√

3

32

a2
0ω

2
pi

cs
t, (5.4)

when reintroducing dimensions. Furthermore, we noticed that the amplification
time necessary for the system to develop both density modes coincides with the
amplification duration necessary for the seed to surpass the strong coupling thresh-
old. Therefore we call the time duration twc→sc. When δk ≈ δkwc a broadening by
kshift ≈ 2δkwc is required, so we find

twc→sc ≈
128√

27

c2
s

c2

ω0

ω2
pe

1

a2
0

. (5.5)
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We note that both durations tsplit and twc→sc must be exceeded before we observe
growth of both density modes. The former typically limits an interaction starting
in strong coupling, as the instability is already broad here. Whereas the latter is
the limiting duration when starting in weak coupling, as the instability is not yet
broad but the driven density wave is. We note that twc→sc ∝ Ten

−1a−2
0 which we

investigate further in the following chapter.
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5.2. WEAK-TO-STRONG COUPLING TRANSITION

5.2 Weak-to-strong coupling transition

In the following chapter, we vary one parameter while holding the other two
constant in order to validate the ∝ Ten

−1a−2
0 dependency in twc→sc given by Eq.

(5.5).

For Fig. 5.6 we hold n = 0.05nc and Te = 200 eV constant and vary a0 = 0.01,
0.01/

√
2 or 0.005. In the upper row one finds the seed spectra over time. The

horizontal dotted red lines highlight k = −1± δkwc. Since for the chosen pump
strengths δk ≈ δkwc holds, we find the seed maximum in the linear regime at
approximately −1 + δkwc. After the amplification enters pump depletion, the seed
spectrum rapidly broadens. The green dashed lines correspond to the spectral
broadening over time kshift introduced in Eq. (5.4). The white line and text
correspond to the time twc→sc given by Eq. (5.5). It marks the point in time where
the second density mode grows and the seed front is subject to strongly coupled
amplification.
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Figure 5.6: Seed (a)-(c) and density spectra (d)-(f) for different pump strengths a0 at
fixed temperature Te = 200 eV and density n = 0.05nc. The horizontal
dotted red lines highlight −1± δkwc or 2± δkwc, respectively. Green
dashed is the spectral broadening in the nonlinear regime according to
Eq. (5.4). The white line and text gives the duration it takes for the
system to transit from weak to strong coupling and develop the two
density branches according to Eq. (5.5).
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5.2. WEAK-TO-STRONG COUPLING TRANSITION

In each case Subfigs. 5.6a-5.6c we find good agreement between the predicted
spectral broadening kshift and the actual one. Also the transition duration twc→sc

agrees with the time it takes for the density spectra to develop the second mode
in the nonlinear regime Subfigs. 5.6d-5.6f. Furthermore, the three simulations
confirm the ∝ a−2

0 proportionality of the transition time twc→sc.

Figs. 5.7 and 5.8 are constructed in the same way as Fig. 5.6. Fig. 5.7 is to
investigate the temperature dependence of Eq. (5.5). It fulfills the prediction
twc→sc ∝ Te. In Fig. 5.8 we varied the density and we again find good agreement to
analytic expressions. For both, spectral broadening kshift and transition duration,
we could confirm the proportionality twc→sc ∝ Ten

−1a−2
0 .
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Figure 5.7: Same as Fig. 5.6 but for constant pump strength a0 = 0.01 and density
n = 0.05nc with varying temperature Te.
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Figure 5.8: Same as Fig. 5.6 but for constant pump strength a0 = 0.01 and
temperature Te = 200 eV with varying density n.
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5.3. GAUSSIAN SHAPED PUMP PULSE

5.3 Gaussian shaped pump pulse

We investigated the duration necessary for an arbitrary initially weak coupling
setup to enter the strongly coupled regime. Additionally, we have shown that every
initially strong coupling setup exhibits weak coupling characteristics in the seed
envelope shape. Now we have a look at experimentally relevant Gaussian envelopes
for the pump pulse.

We consider the setup described in Fig. 5.9 with the same plasma parameters
as in Sec. 5.1.1 with n = 0.05nc and Te = 200 eV. In Subfig. 5.9a the pump pulse
with peak amplitude E0 = 0.03 and 2.2 ps duration is shown in dashed black.
The gray area marks the parts of the pump where it exceeds the strong coupling
threshold of Ethreshold = 0.0075. Apparently, most parts of the pump are above
threshold and only in the wings the amplitude is lower. The counterpropagating,
lower amplitude seed with E1 = 0.001 and 200 fs duration is shown in magenta.
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Figure 5.9: Simulation results for model (3.15)-(3.17) for parameters as specified in
text. In (a) the initial setup is shown, with the pump in dashed black
and the seed in magenta. The gray area marks the parts of the pump
exceeding the strong coupling threshold. In (b) the seed is shown after
amplification in magenta. For comparison, the blue line is obtained
from simulating the same parameters with the same equations, only
omitting the first derivative with respect to time in Eq. (3.17). Also
published in [58].

Subfig. 5.9b shows the seed after amplification in magenta. For comparison, the
simulation result of Eqs. (3.15)-(3.17) under neglect of the first derivative with
respect to time in Eq. (3.17), i.e. omitting weakly coupled effects, is plotted in blue.

In a setup described in Fig. 5.9, one would usually assume that weak coupling
effects can be neglected as the peak amplitude of the pump exceeds the strong
coupling threshold by far. However, this is not quite true. Not considering the full
term in Eq. (3.17) overestimates the final peak amplitude of the seed and, in fact,
highly overestimates the overall energy transmission efficiency. Evaluation of the
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5.3. GAUSSIAN SHAPED PUMP PULSE

latter has shown that by simulating the full model Eqs. (3.15)-(3.17), the overall
energy in the final seed is approx. 25% lower than in case of simulating only the
strongly coupled model.
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5.4 Conclusion

We studied stimulated Brillouin scattering in weak and strong coupling and during
the transition, while focusing on the latter. We used the general δNA-model
(3.4)-(3.5) and the envelope model (3.15)-(3.17) introduced in Ch. 3. We investi-
gated the two limit regimes weak and strong coupling and especially the transition.
Surprisingly, we found remarkable agreement in all simulations performed with
both models, although for the simpler model we assumed ε(a0) to be constant and
not changing with varying pump strength a0.

Simulations of long interaction durations have shown that eventually every initial
setup will develop strong as well as weak coupling characteristics. A difference
from more reduced models solely treating strong or weak coupling is the growth of
two density modes at 2± δkwc. This will either occur as soon as two wavelengths of
the beat 2δkwc fit into the driven density slab when the interaction starts strongly
coupled. Or when the seed spectrum exceeds a broadness of 2δkwc and thus can
amplify both density modes when the interaction starts weakly coupled. For both
time durations we gave analytic expressions (5.3) and (5.5) and confirmed them
by simulations.

This implies that no matter how far away from the strong coupling threshold
the initial setup starts, if we hold up the amplification long enough the seed front,
while growing in amplitude, will eventually trigger and enter the strong coupling
regime. Furthermore, the upcoming density modulation with length scales on the
order of hundreds of the laser wavelength should be detectable in experiments.

Lastly, we investigated the amplification with a Gaussian shaped pump pulse.
Here, we have shown that even though its peak amplitude might be well above
the strong coupling threshold and only the wings of the pulse exhibit amplitudes
below the threshold, the full model Eqs. (3.15)-(3.17) needs to be taken into
consideration. This means, the assumption to neglect weak coupling effects by
omitting the first derivative with respect to time in Eq. (3.17) might deliver results
describing the leading seed spike quite well, but highly overestimate the overall
energy transmission efficiency. This is another potential reason why theory and
experiment still vary very much in the predicted and measured efficiencies for
Brillouin amplification.
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6 Influence of pump chirp

In this chapter we investigate the influence chirping the pump has on the strongly
coupled Brillouin amplification scheme. As introduced in Sec. 2.2, chirping a laser
pulse with constant bandwidth in frequency or wavelength, alters its duration.
This chapter has high experimental relevance, as in a Brillouin amplification setup,
the two lasers usually originate from the same laser system. This implies, that a
fixed bandwidth is given and in order to create the pump pulse, the formerly very
short seed is stretched in time, and, thus, affected by chirp.

We investigate the influence of the sign of the chirp (see Sec. 2.2), as we can
go from red-to-blue or from blue-to-red wavelengths. We show that the outcome
highly depends on the sign of the chirp.

Furthermore, in this chapter we take note on the intrinsic chirp developing
in a strongly coupled Brillouin amplification setup. This will eventually explain
the form of the seed envelope undergone amplification, different from the weakly
coupled or Raman scenario.

The chapter is organized as follows. In Sec. 6.1 we derive the three wave
interaction model and explain in detail the differences from the basic one derived
in Sec. 3.1. Afterwards, we draw conclusions on both the linear (Sec. 6.2) and
pump depletion regime (Sec. 6.3). Then we discuss the formalism of the intrinsic
chirp in Sec. 6.4 and comment on the choice of chirp rates according to real
parameters available in experiments in Sec. 6.5. Afterwards, we summarize the
results obtained in Sec. 6.6.
The content of this chapter was published in [62].
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6.1. MULTI-DIMENSIONAL THREE-WAVE INTERACTION MODEL
INCLUDING CHIRP

6.1 Multi-dimensional three-wave interaction
model including chirp

We derive a three wave interaction model, extending Eqs. (3.15)-(3.17) by the
chirp, simultaneously dropping the first derivative with respect to time in (3.17),
as here we are only interested in the strong coupling regime.

We take the same initial Eqs. as in Sec. 3.1, but consider the three waves to be

a0 =
1

2

(
A0 (x, y, t) exp

(
iφ0 + iαφ2

0

)
+ c.c.

)
ŷ, φ0 = ω0t− k0x, (6.1)

a1 =
1

2
(A1 (x, y, t) exp (iφ1) + c.c.) ŷ, φ1 = ω1t+ k1x, (6.2)

δn

n0

=
1

2
(n (x, y, t) exp (iφ2) + c.c.) , φ2 = ω2t− k2x, (6.3)

with complex envelopes A0,1 and n, phases φ0,1,2 and a linear frequency chirp α
instead of Eqs. (3.6)-(3.8). We consider the wave equation in weakly relativistic
approximation, momentum balance and continuity equation. Afterwards, we apply
some algebra, namely neglect of non-resonant contributions, slowly-varying envelope
approximation and phase-matching φ0 = φ1 + φ2. For consistency with the former
model Eqs. (3.15)-(3.17), we introduce new variables n→ 2N , A0,1 → −cE0,1/ω0

and vg0,1 = c2k0,1/ω0,1. The three-wave interaction model then reads[
∂

∂t
+ vg0

∂

∂x
− i

2

vg0
k0

∂2

∂y2
− i

2

c2

ω3
0

∂2

∂x2
−

3iω2
pee

2

16m2
ec

2ω3
0

(
|E0|2 + 2|E1|2

)]
E0

= −i
ω2
pe

2ω0

NE1e−iα(ω0t−k0x)2 , (6.4)[
∂

∂t
− vg1

∂

∂x
− i

2

vg1
k1

∂2

∂y2
− i

2

c2

ω3
1

∂2

∂x2
−

3iω2
pee

2

16m2
ec

2ω1ω2
0

(
2|E0|2 + |E1|2

)]
E1

= −i
ω2
pe

2ω1

N∗E0eiα(ω0t−k0x)2 , (6.5)[
∂2

∂t2
− c2

s

∂2

∂x2
− c2

s

∂2

∂y2
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N = − Ze2k2

2

4memiω2
0

E0E
∗
1e

iα(ω0t−k0x)2 . (6.6)
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6.2 Effects on the linear regime

We first focus on the linear regime where we only have energy transmission from
the high-energy pump to the low-energy seed and can thus neglect any change in
E0. Furthermore, we at first consider the one-dimensional case which is valid for
large beam diameters and additionally neglect relativistic and dispersive effects.
Hence Eqs. (6.4)-(6.6) reduce to[

∂

∂t
− vg1

∂

∂x

]
E1 = −i

ω2
pe

2ω1

N∗E0eiα(ω0t−k0x)2 , (6.7)

∂2

∂t2
N = − Ze2k2

2

4memiω2
0

E0E
∗
1e

iα(ω0t−k0x)2 . (6.8)

From Eq. (6.1) we find

∂

∂t

(
φ0 + αφ2

0

)
=
∂φ

∂t
= ω = ω0 + 2αω0 (ω0t− k0x) ,

∂φ

∂t
= ω0 + ω̃,

→ ω̃ = 2αω0 (ω0t− k0x) .

When looking for the frequency change over time at a fixed position x = x0 one
finds

∆ω

ω0

= 2αω0∆t. (6.9)

Operating in a low density regime enables the dispersion relation to be close to
the one for vacuum. Thus we assume

∆k

k0

≈ ∆ω

ω0

= 2αω0∆t. (6.10)

The maximum frequency shift is limited by the (pump) pulse bandwidth ∆ω <
∆ωbandwidth.

However, we can also draw attention to the bandwidth of the instability which
in the following is called ∆kΓ. From investigations of the amplification function |A|
in Eq. (5.1), we know that exponential growth of an amplified mode sets in after a
duration of ∆tΓ ≈ 2/Γ0. Here, Γ0 is the (exponential) growth rate determined by
the amplitude |E0|. A rough estimate from Eq. (6.10) is thus, that the chirp rate
should be lower than

|α| < ∆kγ
2k0ω0∆tΓ

, (6.11)

so that the time the pump needs to cover the instability bandwidth ∆kΓ is at least
the time necessary for the specific modes to start growing exponentially ∆tΓ and
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thus at a later stage entering the non-linear pump depletion regime. If we had a
higher chirp-rate |α| than limited via Eq. (6.11) we would detune over ∆kΓ faster
than ∆tΓ and thus amplification would be much reduced. Note that the instability
bandwidth ∆kΓ grows larger for larger pump amplitudes |E0|.
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Figure 6.1: Analytic results for seed spectrum amplified in the linear phase. The
initial seed (a) is at first asymmetrically altered (b), later the spectrum
looks more symmetric (c).
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Figure 6.2: Examplary seed envelope spectrum at three different times in the
amplification process in the linear regime. Shown is the pulse bandwidth
∆kseed and the instability bandwidth ∆kΓ. Parameters can be found in
the text below, behavior is the same as for analytics (see Fig. 6.1).

We consider a seed pulse with a bandwidth of ∆λseed = 18 nm (∆kseed ≈ 2 · 10−2k0)
which corresponds to a Fourier-limited duration of ∆τseed ≈ 100 fs full width half
maximum. Its initial peak intensity is Is0 = 1012 W/cm2 and the envelope has
Gaussian shape. The pump pulse is as well Gaussian and has a peak intensity
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of Ip0 = 1016 W/cm2 and a duration of ∆τpump ≈ 4 ps full width half maximum
with an, at first, arbitrary chirp-rate α and, thus, arbitrary bandwidth ∆λpump.
Since we at first consider one-dimensional simulations which are valid for large
beam diameters we note the total pump energy per area to be Ξ ≈ 31.5 kJ/cm2.
This seems to be a reasonably low number if one considers beam radii on the
order of r ≈ 100 µm. Thus we yield an energy on the order of 1 J. We find
∆kΓ ≈ 2 · 10−3k0 and Γ0 ≈ 4.4 · 1012 s−1, which is similar to the growth rate
calculated for plane waves with the peak intensity of the pump. We operate in a
plasma with a density of n0 = 0.01nc ≈ 1.7 · 1019 cm−3 and have a central laser
frequency of ω0 ≈ 2.35 · 1015 s−1. Hence from the criterion Eq. (6.11) we find
|α| / 1 · 10−6ω−2

0 ≡ |αcrit|.

Fig. 6.3 shows simulation results for parameters as given above for two different
scenarios for the linear phase: Each figure consists of four graphs, in solid black
one finds the initial seed spectrum, in dashed blue the spectrum during and in
dash-dotted red the spectrum after the amplification process. The dotted green
line marks the maximum pump amplitude (E0

0 ≈ 0.068) which has to be surpassed
in order to reach the pump-depletion regime. In Fig. 6.3a we have a chirp-rate of
|α| < |αcrit| and thus see that the seed amplitudes grows larger than the pump’s
(dash-dotted red). On the other hand in Fig. 6.3b we have |α| > |αcrit| and see
that the seed does not grow larger than the pump and thus we will not enter the
pump-depletion regime.
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Figure 6.3: Simulation results for parameters as specified in text which results in
a criterion |α| / 1 · 10−6ω−2

0 . Fig. (a) has |α| < |αcrit| and thus the
seed gets larger than the pump. Fig. (b) has |α| > |αcrit| and hence
the seed stays lower in amplitude.
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This example is in very good agreement to our derived criterion. The same is
true for positive chirps as one finds in Fig. 6.4.
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Figure 6.4: Simulation results for parameters as specified in text which results in
a criterion |α| / 1 · 10−6ω−2

0 . Fig. (a) has |α| < |αcrit| and thus the
seed gets larger than the pump. Fig. (b) has |α| > |αcrit| and hence
the seed stays lower in amplitude.

Note that in [62] there is also a complete analytic theory found to describe and
match growth and envelope change in the linear regime.

80



6.3. PUMP DEPLETION REGIME

6.3 Pump depletion regime

Next, we consider multiple one-dimensional observations again without transverse
dependence, dispersion and relativistic mass increase, thus considering the model

[
∂

∂t
+ vg0

∂

∂x

]
E0 = −i

ω2
pe

2ω0

NE1e−iα(ω0t−k0x)2 , (6.12)[
∂

∂t
− vg1

∂

∂x

]
E1 = −i

ω2
pe

2ω1

N∗E0eiα(ω0t−k0x)2 , (6.13)

∂2

∂t2
N = − Ze2k2

2

4memiω2
0

E0E
∗
1e

iα(ω0t−k0x)2 . (6.14)

We perform simulations modeling Eqs. (6.12)-(6.14) with the same parameters as
mentioned in Sec. 6.2, but for a longer pump duration of ∆tpump ≈ 6 ps and thus
a higher pump energy per area of Ξ ≈ 47.2 kJ/cm2.

Fig. 6.5 shows multiple one-dimensional simulations both spatially and chirp-
rate α resolved, where the color scale determines the amplitude of seed or pump,
respectively. While the spatial resolution is shown on the x-axis one finds α on
the y-axis. The seed on the left is always shown at the same time as the pump on
the right. With the aforementioned criterion Eq. (6.11) we estimate reasonable
chirp-rates to resolve to be |α| < 1.5 · 10−6ω−2

0 . Note that this simulation is
performed in a co-moving frame of the seed.

Fig. 6.5a shows the initial seed pulses as a blue bar on the left, in this co-moving
frame standing still. The pump gets radiated from the left into the simulation
box and the initial scenario is shown in Fig. 6.5b. After roughly 3.8 ps the seed
amplification process has reached the end of the linear phase and one finds an
amplified tail drawn behind the leading front (Fig. 6.5c). The pump has at this
stage (Fig. 6.5d) entered the simulation box but so far has not lost any energy.

After about 7.5 ps for particular chirp-rates around α ≈ 0 one finds an am-
plified seed as is shown by the bright color (Fig. 6.5e). At the same moment one
sees depletion in the pump’s amplitude (and thus energy) in Fig. 6.5f for the same
chirp-rates one finds amplification. After 11.3 ps the pump (Fig. 6.5h) has left the
simulation box and got filtered, whereas the seed has developed it’s final form.

In Fig. 6.5g one finds around |α| ≈ 0 a high peak in amplitude and after it
there are several oscillations following. This is a very characteristic behavior for
the amplification process in the pump depletion regime. For lower α one does not
find any amplification. For higher chirp-rates one finds only one maximum very
far behind the initial seed and almost no trailing oscillations.
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Figure 6.5: Multiple one-dimensional simulation results for parameters as specified
in text. Shown are seed (left column) and pump (right column) pulse
at different times in the co-moving frame with respect to the seed. On
the x-axis there is spatial, on the y-axis there is chirp-rate resolution,
color represents the respective amplitude. Fig. (g) shows the seed
after the amplification: around α = 0 one finds typical behavior with a
leading maximum and many oscillations behind. For α > 0 one finds
one isolated maximum further behind the initial seed.
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6.3. PUMP DEPLETION REGIME

We focus on three distinct chirp-rates α in order to show the vast amount of
tunability chirp introduces. Fig. 6.6 is organized as follows: On top the seed
is shown in three different stages, in black it is the initial pulse, in dashed blue
after the linear regime and in solid blue after the pump depletion regime. On the
bottom there is the spectrum with the same color code as on top.

(a) (b) (c)

Figure 6.6: Seed in space (top) and k (bottom) for three different chirp-rates α
(left to right) in the three different states (initial: black, linear phase:
dashed blue, pump depletion regime: solid blue).

In Fig. 6.6b we find the unchirped case α = 0. As mentioned in Sec. 3.2 this
is a very characteristic solution: In the linear stage the seed draws a tail whose
amplitude grows exponentially and can be described analytically. When the seed
is in the pump depletion regime one finds self-similar behavior as the leading max-
imum continues growing, but only polynomially, and it drags oscillations behind.
In the spectrum one can again see the bandwidth of the seed (black) and of the
instability (dashed blue). After entering the pump depletion regime (solid blue)
the spectrum gets broader and is more or less symmetric.

For the negative chirp α ≈ −1.18 · 10−7ω2
0 (Fig. 6.6a) one finds that the oscilla-

tions behind the leading maximum that establish in the pump depletion regime at
one point go down to the bottom. The spectrum is narrower and more symmetric
than without any chirp. For positive chirp α ≈ 3.21 ·10−7ω2

0 we find a very localized
pulse without any oscillations in the non-linear stage of the amplification process.
The spectrum gets broader and is less symmetric than in the unchirped case.

The asymmetry of the spectrum in the unchirped case was already discussed in
Ch. 5, where we discussed the detuning δk. By applying a chirp, we can either
increase or decrease this effect, depending on the sign.
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6.3. PUMP DEPLETION REGIME

The goal of parametric amplification processes is both retaining high energy
transmission efficiency and also generation of ultra-high peak power of an amplified
laser pulse. Fig. 6.7 shows a chirp-rate resolved graph for the peak amplitude
(normalized to 1, dashed red) and transmission efficiency η (blue). The value η is
obtained by dividing the difference between final and initial seed energy per area
by the total pump energy per area.

We find that for α ≈ −1.18 · 10−7ω2
0 (as presented in Fig. 6.6a) we increase both

the final amplitude of the seed and the efficiency in comparison to the unchirped
case. For the positive chirp-rate α ≈ 3.21 · 10−7ω2

0 we find a lower final amplitude
and efficiency, but as a trade-off we yield a smooth and isolated seed as shown in
Fig. 6.6c.

The reason for that increase or decrease, respectively, of the efficiency lies again
in the spectrum. By chirping, we either push the resonance away or stay resonant.
A mechanism further complicating that process is discussed in the next section,
where we introduce the concept of the intrinsic chirp.

Figure 6.7: Normalized peak amplitude after amplification (dashed red) and energy
transmission efficiency from pump to seed (solid blue) for different
chirp-rates α.
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6.4. INTRINSIC CHIRP DEVELOPING DURING STRONGLY COUPLED
AMPLIFICATION

6.4 Intrinsic chirp developing during strongly
coupled amplification

In this section, we take a closer look at the seed in the non-linear stage. We found
that the seed resembles a non-linear oscillator and intrinsically experiencing a
chirp: The homogeneous solution to Eq. (6.14) for α = 0 is

Nhom = βt, (6.15)

with an arbitrary constant β. We focus on plane waves, thus spatial derivatives
vanish. Next we state at a certain point in time the two waves are similar E0 ≈ E1,
namely when pump depletion sets in. Inserting Eq. (6.15) into Eq. (6.13) yields

∂

∂t
E1 = −iβ

ω2
pe

2ω1

tE1, (6.16)

which has the solution

E1 = E0
1e
−iβ

ω2
pe

4ω1
t2
. (6.17)

Apparently we find an intrinsic chirp applied to the seed (and simultaneously to
the pump) during amplification in the pump-depletion regime.

In the following we present simulational results for the model (6.12)-(6.13) for
the same laser-plasma parameters as specified in Sec. 6.2. Fig. 6.8 shows the seed
envelope in the pump-depletion regime (upper panel) for a vanishing chirp-rate
of the pump α = 0. The lower panel shows the derivative of the seed phase
(solid blue), thus the wave-number, spatially resolved. We find a behavior that is
characteristic for a non-linear oscillator with fast changes in wave-number (peaks)
whenever there is a dip in the seed envelope. Spatially, we find, on average, a
linear variation of the wavenumber from head to tail of the seed, as is shown in
solid red. This linear decrease in wave-number corresponds to a chirp that gets
applied to the seed pulse from front to end in the nonlinear regime.

With this result we immediately understand the asymmetry for positive and
negative chirp as shown for instance in Fig. 6.7: An additional chirp applied to the
pump pulse can only alter the seed from this “offset”-chirped scenario, intrinsically
gained during a regular, non-chirped amplification process. This is also in very
good agreement with observations made via analytic self-similarity theory, see e.g.
[92, 62].
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Figure 6.8: Seed envelope |Es| (blue) and oscillating field R(Es) (dashed red, both
top) over space at a given time and the wave-number over space in
the seed (bottom) for a vanishing pump chirp-rate α. The latter is
enveloped by two lines (dashed black) and results in a weighted average
wave-number (red) which changes linearly from front to end. This can
also be seen in the oscillating field: two neighboring peaks get closer
to each other from front to end. This is a characteristic behavior for a
non-linear oscillator and also in good agreement to self-similar theory
observations and witnesses the intrinsic chirp the seed yields during the
pump-depletion regime.

Now we look a bit more into detail for the chirped (pump) scenarii. Fig. 6.9 is
built up like Fig. 6.8, on top there is the seed envelope, on the bottom there is the
wave-number of the seed, both spatially resolved.

Fig. 6.9a shows the negative chirp-rate, where the resulting seed looks like a
Raman amplified pulse (oscillations going to the bottom). The red line in the
lower panel, which has a vanishing slope, is again the weighted average of the
wave-number over space. It tells us that with this pump chirp-rate we compensated
the intrinsic chirp gained during the pump-depletion regime. In Raman (or weakly
coupled Brillouin) amplification one does not find an intrinsic chirp.
However, when chirping the pump pulse with a positive rate (Fig. 6.9b) we see
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that we get rid of the behavior as a non-linear oscillator: No longer are there steep
peaks in the spatial wave-number but a very smooth profil (bottom). Therefore
we do no longer see oscillations in the envelope but this isolated pulse (top).
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Figure 6.9: Seed envelope (blue) and oscillating field (dashed red, both top) over
space at a given time and the wave-number over space in the seed
(bottom) for a negative (a) and positive (b) pump chirp-rate α. In
(a) the intrinsic chirp (linear wave-number change, see Fig. 6.8) gets
compensated and thus we end up with a Raman-like pulse. In (b) the
non-linear oscillations have vanished, thus ending up with an isolated
pulse.

87



6.5. AVAILABLE PARAMETERS IN EXPERIMENTS

6.5 Available parameters in experiments

One should keep in mind that pump duration ∆tpump, pump chirp-rate α and
pump bandwidth ∆λpump cannot be chosen independently, but are connected via
the relation

α =

√
∆ω2∆t2pump − 64ln (2)2

2∆t2pump
, (6.18)

with ∆ω = 2πc∆λ/λ2
0. So far, we kept the duration constant and changed the

chirp-rate, thus changed the bandwidth from which the pump pulse is created. In
experiments, scientists typically use one laser setup to generate two laser pulses
for pump-seed amplification, thus both laser pulses have the same bandwidth.
The chirp-rates α used for the simulations shown above with a pump duration
of ∆tpump would correspond to a pump bandwidth of ∆λpump ≈ 7.3 nm (for
α ≈ −1.18 · 10−7ω2

0) or ∆λpump ≈ 2.7 nm (for α ≈ 3.21 · 10−7ω2
0), respectively.

The seed bandwidth is ∆λseed = 18 nm and when choosing this also for the pump
bandwidth one ends up at |α| ≈ 7.95 · 10−7ω2

0. This would be a chirp rate that is
too low for operating in a favorable regime, as can be seen in Fig. 6.7.

In order to find out what we could do when we use the same bandwidth for both
pump and seed, and also the same energy per area, but only vary the pump duration,
we perform a new parameter scan as is shown in Fig. 6.10. On the left, one finds
the seed, again in a co-moving frame and with the same parameters as before. The
x-axis is again spatial resolution and the y-axis represents the pump duration with
the corresponding (positive) chirp-rate α calculated via Eq. (6.18). On the right
one finds the pump, which again gets radiated into the simulation box from the left.

The shortest pump duration is ∆tpump = 10∆tseed, thus roughly 1 ps, the longest
is ∆tpump ≈ 180∆tseed, thus roughly 18 ps.

Fig. 6.11 is constructed the same way as was Fig. 6.10, but here the chirp is set
to zero.
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Figure 6.10: Multiple one-dimensional simulation results for positive chirp rate α
with parameters as specified in text. Shown are seed (left column) and
pump (right column) pulse at different times in the co-moving frame
with respect to the seed. On the x-axis there is space, on the y-axis
there is the pump duration resolved, color represents the respective
amplitude. The pump always carries the same energy (per area) but
changes its duration and thus the chirp-rate α according to Eq. (6.18)
and its peak intensity
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Figure 6.11: Multiple one-dimensional simulation results for vanishing chirp rate α
with parameters as specified in text. Shown are seed (left column) and
pump (right column) pulse at different times in the co-moving frame
with respect to the seed. On the x-axis there is space, on the y-axis
there is the pump duration resolved, color represents the respective
amplitude. The pump always carries the same energy (per area) but
changes its duration and thus the chirp-rate α according to Eq. (6.18)
and its peak intensity

Fig. 6.12 summarizes the results obtained from the simulations presented in Figs.
6.10 and 6.11. Here, we show the energy transmission efficiency η depending on the
pump duration ∆tpump, while the latter was evaluated for an original bandwidth
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of 18 nm.
It is readily found, that respecting the influence of the chirp only decreases the

energy transmission efficiency η. This was obtained by using the real relationship
between pump duration and chirp, assuming the pump originates from the same
laser as the seed, which implies both having the same bandwidth. Furthermore,
the sign of α is fundamental, as simulations indicate that α < 0 decreases the
energy transmission to a negligible amount. A negative chirp-rate implies going
from blue-to-red wavelengths from front-to-end of the pump.
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Figure 6.12: Efficiency of energy transmission from pump to seed pulse, pump
duration resolved. The pump always carries the same energy (per
area) but changes its duration and thus the chirp-rate α according to
Eq. (6.18) and its peak intensity. The solid blue line corresponds to
the simulations presented in Fig. 6.11 for α = 0, the dashed red line
to Fig. 6.10 for α > 0 and the dash-dotted yellow line to α < 0.

91



6.6. CONCLUSION

6.6 Conclusion

In this chapter we have derived the (multi-dimensional) three-wave-interaction
model including chirp for strongly coupled Brillouin amplification in Sec. 6.1.
Consecutively in Sec. 6.2, we formulated an analytic estimate, how large the chirp
rate α should be to cover the full seed spectrum and entirely amplify it linearly,
just like what was done in [61] for weak coupling.

Afterwards, we commented on the pump depletion regime in Sec. 6.3 and
presented different resulting amplified seed envelope forms when allowing to choose
an arbitrary chirp rate α. Here, we could create envelopes that looked very similar
to those obtained from weak coupling or Raman amplification (see Ch. 5 for
comparison) and showed that we can increase the energy transmission efficiency η
and also the maximum peak amplitude of the seed.

However, in the course of investigation, we found that for strongly coupled
Brillouin amplification, there is always an intrinsic chirp getting applied to both
seed and pump in the nonlinear regime. We have shown where this intrinsic chirp
originates from by investigating the model equations (6.4)-(6.6). We investigated
how we can compensate it by applying a negative pump chirp in Sec. 6.4.

Commenting on Brillouin experiments, we summarized what happens if pump
and seed are generated from the same laser oscillator with a constant bandwidth
∆λ in Sec. 6.5 via a large parameter scan. We marked strong differences in the
energy transmission efficiency η depending on the sign of the chirp and rendered a
positive one as favorable. However, overall the efficiency decreases when considering
a constant bandwidth for both laser pulses and the chirp necessary for stretching
the pump. This is one of the reasons why strong coupling Brillouin amplification
experiments have not yet reached efficiencies obtained by numerical simulations.
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7 Theory support of experiments

The following chapter consists of calculations and simulations which were performed
to optimize experiments.

In Sec. 7.1 post-processing simulations for an sc-SBS experiment performed by T.
Gangolf et al. in Düsseldorf are presented. The main reasons for low efficiency were
identified as spontaneous Raman backscattering of the pump as well as radiation
absorption due to inverse bremsstrahlung.

Sec. 7.2 comments on and calculates molecular Hydrogen plasma ionization dy-
namics, ranging from dissociation to direct laser heating via inverse bremsstrahlung.
These investigations were performed to support experiments supposed to take
place in Düsseldorf in November 2016 by T. Gangolf et al..

Sec. 7.3 consists of the pursuit of finding the optimal pump pulse duration and
according pump chirp, sign included. This one-dimensional parameter scan was
performed for J.-R. Marques et al. at LULI, France in May 2015.
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7.1 Spontaneous Raman backscattering

The data about an sc-SBS experiment in Düsseldorf performed by the experimental
group around T. Gangolf et al. was received and yielded a relatively low energy
transmission efficiency. For the reasons were unknown, simulations with the PIC
code EPOCH [85, 86] were performed. PIC codes include more physical effects
than reduced Maxwell-fluid models, which is why we chose that simulation method.
The parameters were λ0 = 800 nm for both pump and seed central wavelength,
full width half maximum (in intensity) duration of σp = 3 ps and σs = 30− 300
fs, where the lower case index p and s denotes pump and seed, respectively. As
peak intensities we used I0

p = 3 · 1015 − 3 · 1016 W/cm2 and I0
s = 8 · 1013 − 8 · 1014

W/cm2. The varying seed intensity constitutes because the total seed energy was
conserved throughout the whole experiment, thus the larger intensity corresponds
to the shorter duration. The whole measurement yielded only an amplification
factor of 2 as maximum over many different shots and pulse delay combinations,
hence there was some disambiguity in the actual total energy carried by the pump,
which is why we simulated a range of pump intensities. The lower one mentioned
above was measured in a transition measurement, where no seed was involved and
only the pump propagated through the plasma. However, the initially radiated
pump intensity was supposed to be I0

p = 3 · 1016 W/cm2.
The plasma was assumed to be ionized Hydrogen with a density of n0 ≈ 0.09nc,

corresponding to ≈ 1.57 · 1020 cm−3 at maximum, consisting of a Gaussian slab
with full width half maximum broadness of σn ≈ 625λ0 ≈ 500 µm.

A first simulation, testing just the single pump or seed pulse, respectively, pass-
ing through the plasma yielded that the pump (here: I0

p = 3 · 1015 W/cm2) will
backscatter spontaneously via the Raman instability. Fig. 7.1 shows two snapshots
of the pump intensity (upper frame) and the density (lower frame) (Fig. 7.1a).
Travelling from left to right, the pump will reflect off the density wave that gets
amplified by the pump front due to plasma inhomogenities (Fig. 7.1b).

From the observations made in Fig. 7.1 we note that the experiment is very
sensitive to the pulse delay, i.e. where and when in the plasma the two pulses
overlap. For optimal energy transmission efficiency, we want the seed to start
interfering with the pump roughly at the snapshot presented in Fig. 7.1a, as here
there has not happened any spontaneous backscattering.

Fig. 7.2 shows two simulations for I0
p = 3 · 1015 W/cm2 (Fig. 7.2a) and

I0
p = 3 · 1016 W/cm2 (Fig. 7.2b), where the delay is set to match the optimal
conditions mentioned above. The seed intensity is in both cases I0

s = 8 · 1014

W/cm2 and the duration is σs = 30 fs. The result does not change significantly as
the seed either enters the nonlinear phase and gets amplified by a large factor as
can be seen in Fig. 7.2a. Or the pump triggers spontaneous backscattering this
early in the interaction such that there is no seed amplification observable as can
be seen in Fig. 7.2b.
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(a) (b)

Figure 7.1: Simulation of a pump passing through plasma from left to right. After
some time (b) spontaneous backscattering happens.

(a) (b)

Figure 7.2: Seed-pump interaction for low (a) and high (b) pump strength. We find
seed amplification in case of (a) and essentially spontaneous Raman
backscattering in case of (b).

In our post-experiment analysis we found out that presumably the majority of
the pump intensity got backscattered via spontaneous Raman scattering right at
the plasma front. This leaves only a fraction of the pump to propagate through
the plasma, a possible explanation why the pump peak intensity measured in
the transmission experiment was about 10 times less than the initial intensity.
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If the initial intensity would have been ∝ 1015 instead of ∝ 1016 W/cm2, seed
amplification by several orders of magnitude would have been predicted by our
PIC simulations.
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7.2 Plasma ionization

In this section we discuss the topic of ionization of a gas jet in experiments. In the
previous section, one of the reasons given for a lack of visible seed amplification
was spontaneous Raman scattering. Here, we bring in another effect, namely,
collisional absorption of radiation, i.e. inverse bremsstrahlung, as a major loss
effect if the plasma is not heated up to a certain temperature.

Usually, in Brillouin amplification experiments, there is a third laser pulse
involved, that should ionize a gas jet and heat the target to reduce collisional
damping of the pump and seed laser to a minimum. We focus on a molecular
Hydrogen, i.e. H2, gas jet with 10 % critical density, as depicted in Fig. 7.3.

Figure 7.3: Schematic experimental setup for the Brillouin amplification experiment
planned in November 2016 in Düsseldorf. By courtesy of T. Gangolf.

One of the problems investigating both dissociation of molecular Hydrogen and
collisional absorption of laser light is that none of these can be investigated using
PIC codes as they simply do not include these effects.
However, for dissociation it can be found [94, 95] that a laser intensity of

I ≈ 5 ·1013 W/cm2 should be sufficient to dissociate the molecules and yield atomic
Hydrogen, i.e. this is a problem already solved by sufficiently intense radiation.

The search for an optimal ionization and heating beam such that pump and
seed pulses are not affected by inverse bremsstrahlung losses is more complicated
or, respectively, needs easier analytic models. From [37, 41, 80, 82] we find the
formula

fA = 1− exp

(
−8νeiL

3c

)
, (7.1)

that defines the fractional absorption of light in a linear density profile. Although
a linear density profile is not a good approximation for the rather Gaussian or
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Lorentzian shaped profile obtained from a gas nozzle described in Fig. 7.3, it is
valid to get a first idea. The value L depicts the length of the plasma slab, c is the
speed of light and νei is the collision frequency between electrons and ions, given
by Eq. (2.16), also known as the Spitzer formula [88]. The Coulomb-logarithm
was evaluated with the Debye length vthe/ωpe or with vthe/ω0, respectively, and
the classical minimum distance Ze2/kBTe for Te = 100 eV, as was the goal in this
experiment. The value therefore ranged from log Λ ≈ 6.2− 7.3.
However, this evaluation would result in a fractional absorption of fA = 1, i.e.

the whole pump pulse would be absorbed if it would pass such a 100 eV plasma.
Our analytics have shown that a plasma temperature of Te ≈ 1 keV would be
favorable, however difficult it may be to achieve.

A more detailed analytic look into the heating mechanism of the plasma by the
pump laser depicted in Fig. 7.3 follows the scheme mentioned in [96, 97] for a
stationary, pre-ionized, homogeneous and initially cold plasma and shown in Eqs.
(7.2)-(7.4) with Fig. 7.4.

Figure 7.4: Schematic laser heating of a cold plasma as described in [96, 97].

Te0 (tend) =

(
5

3

κ

nekB
Φ (tend)

)2/5

, (7.2)

Te (z, tend) =

(
Te0 (tend)

3/2 − 3

2
κz

)2/3

, (7.3)

κ = 10−16Z
n2
e

nc
log Λ. (7.4)

In Fig. 7.4 we schematically describe an incident laser with intensity I0 shining on
a target of surface A, where the target has the length zL and the temperatures
Te0 and Te(z) at the radiated site or in the target, respectively. With the formulas
(7.2)-(7.4), the temperatures in the target can be calculated, while Φ(tend) denotes
the total flux, i.e. the energy per area, that is radiated through the target. With
the parameters given in Fig. 7.3, we assume the ionization and heating prepulse
to carry 0.9 J of energy and the area of incidence to be A ≈ 0.3− 1.3 · 10−4 cm2.
With these values we calculate the total energy flux to be Φ (tend) = 0.7−3 kJ/cm2

and finally the temperature at the radiated front to be Te0 ≈ 200− 350 eV and at
the rear to be Te(zL) ≈ 130− 300 eV. The actual value depends on which area of
incidence A and which definition of the Coulomb logarithm log Λ we choose.
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This means that the goal of an electron temperature of roughly 100 eV is achieved.
However, according to Eq. (7.1) it would still be much too low and consequently
result in a completely absorbed pump pulse. In order to properly simulate heating
and collisional absorption, usage of codes like LASNEX [98] is required. LASNEX
was also used in [96], but unfortunately, this code is not publicly available. We
tried to use the code MULTI [99], which is often used for simulations concerning
laser fusion, but it is only applicable for overdense plasmas. Thus, we could not
find any computational setup to properly simulate the heating of the plasma by
the ionizing prepulse and the absorption via inverse bremsstrahlung of the pump
pulse. However, since we evaluated the fractional absorption with Eq. (7.1), we
strongly recommend to use a higher plasma temperature, achievable with a prepulse
carrying more energy.
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7.3 Chirp and duration of pump pulse

We were asked by the group around J.-R. Marques to find the optimal pump pulse
duration with respect to chirp for a Brillouin amplification experiment at LULI in
France.
We simulate the one-dimensional three-wave interaction model[

∂

∂t
+

∂

∂x

]
Ep = −iNEse−iα(ω0t−k0x)2 , (7.5)[

∂

∂t
− ∂

∂x

]
Es = −iN∗Epeiα(ω0t−k0x)2 , (7.6)

∂2

∂t2
N = −δEpE∗seiα(ω0t−k0x)2 , (7.7)

with Ep,s denoting the pump’s and seed’s amplitude, respectively, N the density
variation with respect to the unperturbed background density n0, α the quadratic
chirp, ω0 and k0 central laser frequency and wavenumber, respectively and the
coupling parameter δ. This is basically the one-dimensional version of our envelope
model including chirp (6.4)-(6.6) but with a density dependent coupling parameter
δ. We find

δ = 4
Zme

mi

√
ωpeω0

ck0

, (7.8)

with Z being the ion charge state, me,i the electron and ion mass, respectively,
c the vacuum speed of light and ωpe the electron plasma frequency. We note
ωpe =

√
4πe2n0/me and thus for a density profile we have a dependency δ ∝ ñ1/4

if n0 (x) = n0
0ñ (x).

We assume large transverse diameters thus at first stick to the one-dimensional
case. Both pump and seed laser have a a central wavelength of λ0 = 1054 nm and a
bandwidth of ∆λ ≈ 6.55 nm and have a Gaussian profile in longitudinal direction.
The seed is bandwidth-limited and thus has a FWHM duration of ∆τseed ≈ 500 fs.
The seed’s peak intensity is Is0 = 109 W/cm2. For the pump intensity, duration
and chirp-rate we perform parameter scans, holding the pump energy-per-area Ξ
constant at Ξ ≈ 22.55 kJ/cm2. We vary the pump duration τpump between 1 – 6
ps and thus the peak intensity from 3 · 1016 – 5 · 1015 W/cm2 in order to hold Ξ
constant. Since the pump has the same bandwidth as the seed we have to take
into account the chirp-rate α which is calculated via

|α| =

√
∆ω2τ 2

pump − 64 log (2)2

2τ 2
pumpω

2
0

, (7.9)

with the frequency bandwidth ∆ω = 2πc∆λ/λ2
0. In Fig. 7.5, which shows α (τpump),

one finds that for longer pump durations one needs lower chirp α. In the following
we always talk about pump durations since via Eq. (7.9) we can translate it into
the chirp-rate α.
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Figure 7.5: Chirp-rate α vs. pump duration τpump according to Eq. (7.9) for a
constant bandwidth of ∆λ ≈ 6.55 nm around λ0 = 1054 nm. Note that
for large durations a low chirp-rate is necessary.

For the density we assume a Gaussian slab with a FWHM length of d ≈ 948λ0 ≈ 1
mm. Both the seed and the pump pulse start in a distance of d from the density
peak in opposite directions. In its peak the density is n0

0 = 0.1nc ≈ 1020 cm−3.
Simulations are performed in a co-moving frame with respect to the seed.
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Figure 7.6: Multiple one-dimensional simulation results for parameters as specified
in text. Shown are pump |Ep| (left column) and seed |Es| (right column)
pulse at different times. On the x-axis there is space, on the y-axis there
is the pump duration resolved, color represents the respective amplitude.
The pump always carries the same energy (per area, 1d simulations)
but changes its duration and thus the chirp-rate α according to Eq.
(7.9) and its peak intensity
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Fig. 7.6 shows multiple one-dimensional simulations with parameters as depicted
above. Negative pump duration τpump < 0 stands for negative sign of the chirp
α. Fig. 7.6a shows the pump at the end of the linear stage where no depletion is
visible. It has already propagated into the simulation box.
The seed is located at x = 800λ0 and stays there since the simulation box moves
with its group velocity. Fig. 7.6b shows the seed at the end of the linear stage and
the drawn tail is visible.

Fig. 7.6c shows the pump after the interaction. For every duration one observes
depletion after the leading intensity front. The lower the maximum amplitude is,
the earlier depletion sets in. Additionally, one finds that for negative chirp-rates
the oscillations behind the leading front go down close to zero while for positive α
it looks more like a steady slope almost without any oscillations.

Fig. 7.6d shows the according seed after the amplification and thus after pump
depletion. The same tendency is visible: for negative chirp the oscillations go to
zero, for positive chirps one gets one large plateau as a result. One can also see
that longer pump pulse durations seem favorable, since the final amplitude of the
seed is higher.
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Figure 7.7: Energy transmission efficiency η (red, left-hand y-axis) and maximum
peak amplitude (blue, right-hand y-axis), respectively, vs. pump dura-
tion. Each for the same radiated pump energy (per area, 1D simulations).
Depicted are three different cases: solid lines for parameters as specified
above, dashed for a flat density profile at n0 = 0.1nc and dotted for
neglect of both, the chirp and the density shape.
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Fig. 7.7 depicts the efficiency (red) and maximum peak amplitude (blue) after
the amplification. The solid line represents the values for parameters as specified
above. The dashed line stands for a flat density profile at n0 = 0.1nc and in order
to obtain the dotted line, we neglected both the density profile and the influence
of the chirp (α = 0).

One finds that for longer pump durations the energy transmission efficiency as
well as the maximum peak amplitude grows (up to η ≈ 70%, |Es|max ≈ 0.21). As
in Fig. 7.6 we spot an asymmetry in the results with respect to the sign of the
chirp. For positive sign (upchirp) we see a slightly larger efficiency and lower peak
intensity, for negative sign (downchirp) vice versa.

The dotted line is symmetric around zero since here the influence of the chirp
is neglected and the results to the left are the same as the ones to the right.
When chirp is considered (dashed), we see that we increase the maximum peak
intensity and simultaneously decrease the efficiency. When we even respect the
density profile we have an increase in this effect: The efficiency is decreased and
the maximum amplitude increased further.

However, for negative chirp-rates, we find a lower growth of the sc-SBS plasma
mode (not shown) which is appreciated since this is one criterion for the validity
of our model.

Fig. 7.8 shows the seed for a pump duration of 6 ps. In Fig. 7.8a the chirp
has negative sign, in Fig. 7.8b positive. Shown are again three plots each, dotted
with neglect of chirp and density, dashed with neglect of the density profile and
solid with all parameters as specified above. For the black dashed line one sees the
typical π-pulse-like oscillations often depicted in literature. We see that the chirp
highly modulates these oscillations. For downchirp (α < 0) we see the oscillations
going down to zero, for upchirp (α > 0) we see the oscillations vanish and a huge
pulse plateau is obtained.

Fig. 7.9 shows the seed after the amplification for different chirp-rates α and
is thus analog to Fig. 7.6. Fig. 7.9a is for negative, Fig. 7.9b for positive chirp.
This stresses that for downchirp the oscillations behind the leading maximum go
further down and for upchirp eventually vanish. This also stresses that for lower
chirp rate (longer pump duration) the maximum peak intensity obtained increases.
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Figure 7.8: Pump duration is 6 ps, the chirp has either negative (a) or positive (b)
sign. The black dotted line represents neglect of chirp and the density
profile, the dashed blue only neglect of the density profile and the solid
red one is obtained via all parameters specified as above.
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Figure 7.9: Pump duration varies as α does, negative (a) or positive (b) sign. On
the x-axis the pulses are spatially resolved.

Considering the actual chirp-rate α and density variation δn we were able to
deliver a parameter scan for both efficiency and seed peak amplitude in Fig. 7.7.
Subsequently, our results were taken into consideration for the actual experiment.
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8 Summary and prospects

In this chapter we summarize the findings of the work at hand. Early ideas of
harnessing Brillouin scattering as a potential amplification mechanism date back
to the 1980s, however, only the more recent advance in both computer technology
and scientific understanding of the process opened up the possibility for further
insight.
After summarizing the thesis in Sec. 8.1 we give a short mention to earlier

attempts carried out during the past years in Sec. 8.2. Of these attempts, not all
were successful, yet relevant enough to be mentioned here, if only as a signpost for
coming generations of researchers.

8.1 Summary

The contributions made towards establishing a Brillouin amplification setup as a
feasible method for further increase in maximum peak intensity laser generation
are crucial, as, among other points, is made evident by the manuscripts submitted
to a high impact factor journal.

Having established the physical background including basic analytic models
and equations ready for simulations in Chs. 2 and 3, we began by discussing the
weakly relativistic kinetic treatment of Brillouin amplification for an arbitrary ion
species in homogeneous charge state in Ch. 4. This is a necessity for discussing
electron-positron plasmas as here, plasma waves might be heavily damped. This is
the first time we present this dispersion relation in writing. The discovery that
the fluid model delivers the same results as the kinetic model for Hydrogen is a
further highly relevant point that supports several previous findings.

In Ch. 5 we discussed significant observations covering the transition between
weak and strong coupling Brillouin amplification. We derived a unified model,
valid in both limit regimes and in the intermediate case. Here, we were able to
distinguish between three important phenomena: When the interaction starts in
strong coupling, the pump will eventually be depleted and thus its amplitude will
drop below the threshold for strong coupling. As a consequence, the tail trailing
the leading maximum of the seed will experience weakly coupled amplification.
Second, typical laser pulses in experiments are Gaussian shaped. Therefore, even
if the threshold for strong coupling is surpassed at the pulses peak, this may not
be the case for its wings, resulting in a considerable drop in energy transmission
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efficiency. Third, an experiment starting in weak coupling will always end in a
strong coupling scenario as the seed gets amplified and eventually surpasses the
required intensity. We investigated the time necessary for an arbitrary interaction
setup to reach strong coupling and explained the characteristic density oscillations.

Hereafter we presented the results regarding the pump pulse chirp in Ch. 6.
We found that, other than in weak coupling Brillouin or Raman amplification
scenarios, the sign of the chirp plays an important role in strong coupling Brillouin
. We then identified the intrinsic chirp in the nonlinear regime of the amplification
as responsible for this asymmetry and discussed the influence of the pump chirp
on the resulting seed shape and energy. Furthermore, we explained the chirp
intrinsic to strong coupling Brillouin amplification by analyzing the homogeneous
solution to the density equation. As laser pulses in labs are typically affected
by a chirp, this work was also extremely relevant to previous and future experiments.

In Ch. 7 we summarized the simulations and investigations performed for the
experiments, i.e. spontaneous Raman backscatter, ionization or collisional absorp-
tion and chirp.

The goal of this thesis, as already mentioned in the introduction, is to search
for optimal adjustments of laser and plasma settings in the wide parameter-space.
In consideration of the full model that combines weak and strong coupling, we
made out several possible loss mechanisms that at least partially explain the
discrepancy of energy transmission efficiencies predicted by theory and yielded
by experiments. These are the influence of real chirp rates including their sign,
the possibility of spontaneous Raman backscattering, and collisional damping of
laser light. Furthermore, we were able to deepen the general understanding of the
amplification process by formulating and analyzing the kinetic dispersion relation,
the transition between weak and strong coupling Brillouin, and the influence of
chirp.

The contributions made are fundamental, but there is still a long way to go
before we will be able to include Brillouin amplification units in labs as a regular
component of high intensity laser systems. At this point we would like to point out
that, although on the process is theoretically well understood, the experimental
setup is tremendously difficult. One needs a majorly ionized and homogeneous
plasma of about 1 mm length with a high density on the order of 1020 cm−3 and
two almost perfectly aligned laser pulses. Through meetings with experimental
physicists and through experience collected during the work presented in Ch. 7,
the author noticed that there is still a variety of different problems theoreticians
and experimentalists face in their pursuit of making Brillouin amplification feasible.

The work at hand offers a base upon which further research can build. If both
theoreticians and experimentalists work together closely, there is a good chance
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that Brillouin amplification will reach a state where it is a feasible, robust and
reliable application. This could be realized within the next decades, opening many
doors from fundamental research to tabletop laser accelerators for hospitals.

Part of this work was done under the auspices of SFB TR 18 of the DFG. Later,
funding was provided by the Studienstiftung des deutschen Volkes. Both are
gratefully acknowledged.
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8.2 Other attempts

In the following we list four different attempts from our work on strongly coupled
Brillouin amplification, that were either not further investigated or failed to achieve
good results, but may still be useful for coming generations.

One important feature of parametric instabilities covers the analytic self-similarity
theory. In appendix A.2 we explain in detail how we conducted such an attempt
at Brillouin amplification covering weak and strong coupling. However, although
qualitatively the results nicely fit the simulated envelopes, our theory failed to give
scaling laws predicting the growth of the leading seed spike like former theories
did [50, 55, 92].

Another idea to omit both pump pulse absorption by the plasma via inverse
bremsstrahlung and the need of a third laser, pre-heating and ionizing the plasma,
was to use a neutral gas target and ionize it with a strong seed pulse. As the
seed pulse would only ionize the target at its front, there would be almost no
room for collisional damping since there are neither free electrons nor ions at the
front. However, because this simultaneously reduced the effective plasma length, we
were not able to observe sufficient amplification in order to recommend this scheme.

The taking into account of the kinetic scattering mechanism of superradiant
amplification mentioned in Sec. 2.3.2 and mainly investigated by Dreher et al. [100]
could give further interesting leads. Neither the transition from weakly or strongly
coupled Brillouin into superradiant amplification, nor wave breaking for the plasma
quasi-mode responsible for strong coupling Brillouin has been investigated so far.

Further research on self-focusing, seed pulse broadening and curvature in two
dimensions, filamentation, and superluminal motion were made throughout recent
years and, for example, investigated in the author’s master thesis. It may be
worthwhile to pursue these subjects in further detail.
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A

A.1 Derivation of a weakly relativistic kinetic
dispersion relation

We present the full derivation of Eq. (4.12).
Similar to [71] we start with Maxwell’s equations and the Vlasov equation(

∇2 − 1

c2

∂2

∂t2

)
A = −4π

c
j⊥, (A.1)

∇2φ = −4πe (ni − ne) , (A.2)

0 =
∂

∂t
fk + v · ∇rfk + qk

(
E +

1

c
v ×B

)
· ∇pfk, (A.3)

with the vector potential A, the electrostatic potential φ, the distribution function
fk, speed of light c, perpendicular current j⊥, elementary charge e and particle
charge qk, density nk, velocity v, electric field E and magnetic field B. The index
k denotes the species k = e, i, hence electron or ion, and B = ∇×A.

We assume the distribution function fk only depending on the laser propagation
direction z and find

fk (z,p, t) = nk0gk (z, pz, t) δ

(
px +

qkAx
c

)
δ

(
py +

qkAy
c

)
, (A.4)

where δ denotes the δ distribution. We assume ni0 = ne0 ≡ n0 and write

nk (z, t) = n0

∫ +∞

−∞
dpz [gk (z, pz, t)] , (A.5)

j⊥ (z, t) = −e
2n0

c
A (z, t)

∫ +∞

−∞
dpz

[
gi
miγi

+
ge
meγe

]
,

= −e
2n0

mec
A (z, t)

∫ +∞

−∞
dpz

[
β
gi
γi

+
ge
γe

]
, (A.6)

where β = me/mi denotes the mass ratio. The Lorentz factor γk is given as

γe =

√
1 +

(
pz
mec

)2

+

(
eA (z, t)

mec2

)2

, (A.7)

γi =

√
1 + β2

(
pz
mec

)2

+ β2

(
eA (z, t)

mec2

)2

, (A.8)

i



A.1. DERIVATION OF A WEAKLY RELATIVISTIC KINETIC DISPERSION
RELATION

Inserting Eqs. (A.4)-(A.8) into the initial system (A.1)-(A.3) we find(
∂2

∂z2
− 1

c2

∂2

∂t2

)
A =

ω2
pe

c2
A

∫ +∞

−∞
dpz

[
β
gi
γi

+
ge
γe

]
, (A.9)

∂2

∂z2
φ = −4πen0

∫ +∞

−∞
dpz [gi − ge] , (A.10)

0 =
∂

∂t
gk + vz

∂

∂z
gk +

[
−qk

∂

∂z
φ− mk

2

(
e

mkc

)2
1

γk

∂

∂z
A2

]
∂

∂pz
gk.

(A.11)

Perturbing the system (A.9)-(A.11) via

φ = φ0 + εφ1, A = A0 + εA1, gk = gk0 + εgk1,

φ0 = 0, A0 = A0⊥ = A0x + iA0y = A exp (i(k0z − ω0t)) , A ∈ R,

the 0th order terms deliver

ω2
0 = c2k2

0 + ω2
pe

∫ +∞

−∞
dpz

[
β
gi0
γi0

+
ge0
γe0

]
. (A.12)

introducing a = eA⊥/mc
2, we find via Taylor expansion

1

γk
' 1

γk0

−
(
me

mk

)3
a0⊥a1

γ3
k0

ε+O
(
ε2
)
. (A.13)

With Eq. (A.13) we rewrite the system (A.9)-(A.11), selecting only contributions
proportional to ε and ∂|a0|2/∂z = 0,

c2

ω2
pe

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
a1 =∫ +∞

−∞
dpz

[
a0

(
β
gi1
γi0

+
ge1
γe0

)
+ a1

(
β
gi0
γi0

+
ge0
γe0

)
− a0 (a0a

∗
1 + a∗0a1)

(
β3

2

gi0
γ3
i0

+
1

2

ge0
γ3
e0

)]
,

(A.14)
∂2

∂z2
φ1 = −4πen0

∫ +∞

−∞
dpz [gi1 − ge1] ,

(A.15)

0 =

(
∂

∂t
+ vz

∂

∂z

)
ge1 +

(
e
∂

∂z
φ1 −

mec
2

2γe0

∂ (a0a
∗
1 + a∗0a1)

∂z

)
∂ge0
∂z

,

(A.16)

0 =

(
∂

∂t
+ vz

∂

∂z

)
gi1 −

(
e
∂

∂z
φ1 + β

mec
2

2γi0

∂ (a0a
∗
1 + a∗0a1)

∂z

)
∂ge0
∂z

,

(A.17)
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A.1. DERIVATION OF A WEAKLY RELATIVISTIC KINETIC DISPERSION
RELATION

since qe = −e and qi = e. We make the ansatz

φ1 = φ̃ exp (i(kz − ωt)) + φ̃∗ exp (−i(k∗z − ω∗t)) ,
gk1 = g̃k exp (i(kz − ωt)) + g̃∗k exp (i(k∗z − ω∗t)) ,
a1⊥ = a+ exp (i(k+z − ω+t)) + a− exp (i(k−z − ω−t)) ,

with k+ = k0 + k, k− = k0 − k∗. With Eqs. (A.16) and (A.17) we construct,
selecting resonant terms,

β
g̃i
γi0

+
g̃e
γe0

=
ekφ̃

(
β ∂gi0/∂pz

γi0
− ∂ge0/∂pz

γe0

)
+ mec2

2
ka
(
a∗− + a+

) (
β2 ∂gi0/∂pz

γ2i0
+ ∂ge0/∂pz

γ2e0

)
−ω + vzk

,

(A.18)

g̃i − g̃e =
ekφ̃ (∂gi0/∂pz + ∂ge0/∂pz) + mec2

2
ka
(
a∗− + a+

) (
β ∂gi0/∂pz

γi0
− ∂ge0/∂pz

γe0

)
−ω + vzk

,

(A.19)

as well as the other resonant terms from Eqs. (A.15) and (A.14)

ω2
pe

(
ω2

+ − c2k2
+

)
a+ =∫ +∞

−∞
dpz

[
−a

2

(
aa∗− + aa+

)(
β3 gi0
γ3
i0

+
ge0
γ3
e0

)
+ a

(
β
g̃i
γi0

+
g̃e
γe0

)
+ a+

(
β
gi0
γi0

+
ge0
γe0

)]
,

(A.20)
ω2
pe

(
ω2
− − c2k2

−
)
a− =∫ +∞

−∞
dpz

[
−a

2

(
aa− + aa∗+

)(
β3 gi0
γ3
i0

+
ge0
γ3
e0

)
+ a

(
β
g̃i
γi0

+
g̃e
γe0

)
+ a−

(
β
gi0
γi0

+
ge0
γe0

)]
,

(A.21)

− k2φ̃ = −4πen0

∫ +∞

−∞
dpz [g̃i − g̃e] . (A.22)

We introduce the notation

In = βn−1Iin + Ien,

Ikn =

∫ +∞

−∞
dpz

[
1

γn−1
k0

∂gk0/∂pz
vzk − ω

]
, n = 1, 2, 3,

Ik4 =

∫ +∞

−∞
dpz

[
gk0

γ3
k0

]
,

D+ = −ω2
+ + c2k2

+ + ω2
pe

∫ +∞

−∞
dpz

[
β

γi0
gi0 +

1

γe0
ge0

]
,

D− = −ω∗−
2 + c2k∗−

2 + ω2
pe

∫ +∞

−∞
dpz

[
β

γi0
gi0 +

1

γe0
ge0

]
,

F =
4πe2n0I

2
2

k − 4πe2n0I1

.
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A.1. DERIVATION OF A WEAKLY RELATIVISTIC KINETIC DISPERSION
RELATION

Integrating Eqs. (A.18) and (A.19) over longitudinal momentum allows replacement
of the according integrals in Eqs. (A.20)-(A.22) and elimination of φ̃, hence finding

a+ =
ω2
pea

2

2

mec
2k
(
a∗− + a+

)
(F + I3)− a∗−I4

−D+ + ω2
pea

2I4/2
, (A.23)

a∗− =
ω2
pea

2

2

mec
2k
(
a∗− + a+

)
(F + I3)− a+I4

−D− + ω2
pea

2I4/2
. (A.24)

Solving the linear set of Eqs. (A.23)-(A.24) gives us the weakly relativistic disper-
sion relation for arbitrary ion species with charge state Z = 1

D+D− =
ω2
pea

2

4
(D+ +D−)

[
I4 −mec

2k (F + I3)
]
. (A.25)
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A.2. SELF-SIMILAR SOLUTION IN TRANSITION FROM WEAK TO
STRONG COUPLING

A.2 Self-similar solution in transition from weak
to strong coupling

In this appendix we derive a self-similar solution for both weak and strong coupling
Brillouin amplification, covering the transition regime.

One differentiates between two different behaviors depending on the pump
strength, the so-called weak and strong coupling regimes. These two domains
differ fundamentally in both linear and non-linear stage of amplification in terms
of growth rate and spectral broadening. Especially the transition regime deserves
special interest as it was introduced and investigated in Ch. 5.

Starting from Ampere’s and Faraday’s laws in combination with continuity and
momentum balance we can derive the so-called δNA-model consisting of

∂2A

∂t2
=
∂2A

∂x2
− (1 + δN)A, (A.26)

∂2δN

∂t2
= c2

s

∂2δN

∂x2
+ ε

∂2|A|2

∂x2
, (A.27)

the same as Eqs. (3.4)-(3.5), with A being the vector potential, δN the change
from the background density, cs ∝

√
Te the ion speed of sound proportional to the

square root of the electron temperature and ε = me/mi the electron to ion mass
ratio, while [t] is the chosen time unit. After application of the slowly varying
envelope approximation we can describe the two laser fields plus density wave in a
much simpler model. From Eqs. (A.26) and (A.27) we can derive the three wave
interaction model (

∂

∂t
+

∂

∂x

)
Ep = −iNEs, (A.28)(

∂

∂t
− ∂

∂x

)
Es = −iN∗Ep, (A.29)(

∂2

∂t2
− 2iω̃N

∂

∂t
− 2ic̃sω̃N

∂

∂x
− c̃s2 ∂

2

∂x2

)
N = −νE∗sEp, (A.30)

with Ep,s being the normalized electric field and N the change from the background
density (all complex envelopes). ω̃N = (ωp − ωs) [t] is the frequency mismatch
between pump and seed, c̃s = cs/vg the ion speed of sound normalized to pump’s
group velocity and ν = Zmeck

2
Nωpe [t]2

√
ωpe/ωp/ (2mik0). See the model (3.12)-

(3.14) for comparison.

Our goal is to derive a self-similar solution analog to [55, 50, 92, 62], but
our solution should cover the transition regime from weakly to strongly coupled
stimulated Brillouin scattering. From previous investigations we know that the

v



A.2. SELF-SIMILAR SOLUTION IN TRANSITION FROM WEAK TO
STRONG COUPLING

∂2/∂x2 term in Eq. (A.30) can be neglected as it has no influence. Next we
transform into the co-moving frame of the density wave via introduction of the
variables ζ = x− c̃st, τ ′ = −x and end up with the system

[
(1− c̃s)

∂

∂ζ
− ∂

∂τ ′

]
Ep = −iNEs, (A.31)[

− (1 + c̃s)
∂

∂ζ
+

∂

∂τ ′

]
Es = −iN∗Ep, (A.32)[

c̃s
2 ∂

2

∂ζ2
+ 2iω̃N c̃s

∂

∂τ ′

]
N = −νE∗sEp. (A.33)

We remark that we have to choose this transformation. Else, we end up with
second and first order derivatives with respect to the same variable in the density
equation. These derivatives would, later on, contradict the self-similarity ansatz.
In the transformed equations (A.31)-(A.33) we neglect the τ ′ derivatives with
respect to the ζ derivatives as the amplification length is much larger than the
pulse durations. Now we postulate the self-similarity ansatz ξ = ζατ ′β, τ = τ ′ and
find for the derivatives

∂

∂τ ′
=

∂

∂τ
+ βζατβ−1 ∂

∂ξ
,

∂

∂ζ
= αζα−1τβ

∂

∂ξ
,

∂2

∂ζ2
= α (α− 1) ζα−2τβ

∂

∂ξ
+ α2ζ2α−2τ 2β ∂

2

∂ξ2
.

With these rules we find the set of Eqs.

(1− c̃s)αξ1−1/ατβ/α
∂

∂ξ
Ep = −iNEs, (A.34)

− (1 + c̃s)αξ
1−1/ατβ/α

∂

∂ξ
Es = −iN∗Ep, (A.35)[

α (α− 1) c̃s
2ξ1−2/ατ 2β/α ∂

∂ξ
+ α2c̃s

2ξ2−2/ατ 2β/α ∂
2

∂ξ2
+

2iω̃N c̃s
∂

∂τ
+ 2iω̃N c̃sβτ−1ξ

∂

∂ξ

]
N = −νE∗sEp. (A.36)

Next, we postulate

Ep = τ γAp (ξ) , Es = τ δAs (ξ) , N = τλB (ξ) . (A.37)
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A.2. SELF-SIMILAR SOLUTION IN TRANSITION FROM WEAK TO
STRONG COUPLING

Inserting the ansatz (A.37) into the three equations (A.34)-(A.36) we find

(1− c̃s)αξ1−1/ατ γ+β/α ∂

∂ξ
Ap =− iτ δ+λBAs, (A.38)

− (1 + c̃s)αξ
1−1/ατ δ+β/α

∂

∂ξ
As =− iτ γ+λB∗Ap,

(A.39)[
α (α− 1) c̃s

2ξ1−2/ατλ+2β/α ∂

∂ξ
+ α2c̃s

2ξ2−2/ατλ+2β/α ∂
2

∂ξ2
+

2iω̃N c̃sλτλ−1 + 2iω̃N c̃sβτλ−1ξ
∂

∂ξ

]
B =− ντ γ+δA∗sAp. (A.40)

Since we want the τ dependence to vanish the exponents of τ all have to be the
same, hence

γ +
β

α
= δ + λ, δ +

β

α
= γ + λ, λ+

2β

α
= λ− 1, λ+

2β

α
= γ + δ, (A.41)

which has the solution γ = δ = −3/4, λ = −1/2 and β/α = −1/2. Without loss
of generality we pick α = 1 and therefore find β = −1/2. In summary, we find the
system

(1− c̃s)
∂

∂ξ
Ap = −iAsB, (A.42)

− (1 + c̃s)
∂

∂ξ
As = −iApB∗, (A.43)[

c̃s
2 ∂

2

∂ξ2
− iω̃N c̃s

(
1 + ξ

∂

∂ξ

)]
B = −νA∗sAp, (A.44)

in the variables ξ = ζ/
√
τ ′ and τ = τ ′.
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Figure A.1: Comparison between self-similar results (upper row) at given pump
amplitude via solving Eqs. (A.42)-(A.44) to full δNA simulations
(lower row) at corresponding pump strengths via solving the model
(A.26)-(A.27). Note that the presented simulation results are obtained
at a fixed ζ = 3000λ0, which is the seed’s starting position, thus in the
frame propagating with c̃s to the right. We mainly distinguish three
different regimes: pure wc (A.1a and A.1d), mixed wc and sc (A.1b
and A.1e) and pure sc (A.1c and A.1f). Parameters are n = 0.3nc,
c̃s ≈ 1.5 · 10−3, which corresponds to Te = 2 keV and a detuning
ω̃N = 0.67%ω̃p, where ω̃p is the dimensionless pump frequency.

Fig. A.1 stresses the capability of our self-similar model (A.42)-(A.44). We find
the three different non-linear amplification regimes also found via simulating the
δNA model (A.26)-(A.27) as explained in the figure.

However, so far we have chosen a rather arbitrary detuning of ω̃N = 0.67%ω̃p
and notice heavy influence on the outcome. Additionally, the final seed amplitudes
for both different approaches do not agree (see Fig. A.1). In conclusion we can say
that we found qualitatively good agreement between the self-similar model and
non-linear simulations. Results at least look very promising but of course demand
further investigation.

Especially in comparison to other self-similarity models [55, 50, 92, 62], our
result fails to predict growth of the seed peak amplitude over time. The attempts
focusing on solely weak or strong coupling Brillouin amplification usually perform
transformations into the co-moving frame of the seed. This way, δ directly depicts
the maximum growth rate over time in the nonlinear regime. In case of strong
coupling one finds δ = 3/4, in case of weak coupling it is δ = 1. However, since we
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transform into the co-moving frame with the density wave, no such scaling can be
found. This implies that our self-similar solution presented in this appendix lacks
the predictive power of former solutions.
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