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Abstract

The current progress in high-intensity laser technology provides experimental access to
unprecedented high field strengths and thus allows to explore the interaction between light
and matter in new regimes. Presently emerging facilities, like the Extreme Light Infra-
structure, offer prospects to probe scenarios where the theory of quantum electrodynamics
(QED) predicts the occurrence of novel effects. Despite being one of the best established
physical theories today, QED is still awaiting systematic experimental verification in time-
dependent fields of high strength. This could be achieved by dedicated experiments aiming
at a variety of strong-field phenomena, like the Breit-Wheeler process.
Predicted by Breit and Wheeler in 1934, the collision of two energetic photons can lead to
the creation of an electron-positron pair. Early theoretical studies have shown that upon
application of a coherent light source, the strong-field Breit-Wheeler (SFBW) process can
be induced as a multiphoton reaction. In these studies, the laser field was treated as
an infinitely extended plane wave. However, employing modern high-intensity lasers, the
highest intensities are reached in very short pulses, comprising only few optical cycles.
Therefore, the question arises to which extent the process is affected by the properties of
the laser field, in particular by the finite duration and the spectral composition.
In this thesis, we study the SFBW process in short laser pulses and acquire answers to these
questions. Our approach is based on detailed S-matrix calculations in the framework of
laser-dressed QED, allowing us to obtain numerical predictions for the process probability
in various parameter constellations. The analysis of the corresponding results has given rise
to general insights about the process, which shall be presented in detail. In particular, a
new quantitative model for multiphoton processes in short laser pulses is developed, which
clearly reveals and explains the connection between the properties of the laser field and
the energy spectrum of the produced particles.
Moreover, focusing on the quantum nature of the process, the relevance of interferences
shall be investigated. Following the multiphoton approach, distinct interference effects
arising in the particle spectra can be detected and understood, revealing a characteristic
dependence on the carrier-envelope phase of the laser pulse. Besides, further expanding
our model approach allows us to examine general properties of multiphoton-interference
processes driven by pulsed laser fields with a continuous frequency spectrum.
In addition, the influence of the particle’s spin on the SFBW process is inspected by
way of comparison between predictions from full Dirac theory and scalar theory, respec-
tively. Facilitating a simplified theoretical treatment, the scalar case can be regarded as
an approximation to the Dirac case. Our study examines various regimes and includes an
intuitive approach to the underlying principle. This way, we also gain information on the
applicability of the spinless approximation.
Finally, we regard an extended scenario involving a second laser pulse which arrives with
a variable delay. The contributions from both pulses to the pair-creation process induce
pronounced interference effects, which are intrinsically different to the multiphoton inter-
ferences. Inspecting the influence of the delay time, further fundamental properties of the
SFBW process can be analyzed and understood from a complementary perspective.
The present study enhances the understanding of several aspects inherent to the SFBW
process. Furthermore, some of our concepts and insights can be applied to other strong-
field phenomena, such as nonlinear Compton scattering, as well.
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Zusammenfassung

Der aktuelle Fortschritt in der Hochintensitätslasertechnologie ermöglicht sehr hohe Feld-
stärken und erlaubt somit die Wechselwirkung von Licht und Materie in neuen Regimen
zu untersuchen. Gegenwärtig entstehende Forschungseinrichtungen, wie die Extreme Light
Infrastructre, eröffnen die Aussicht auf Experimente, in denen die Quantenelektrodynamik
(QED) das Auftreten neuartiger Effekte vorhersagt. Obwohl sie eine der bestetablierten
Theorien der heutigen Physik ist, steht bei zeitabhängigen Feldern hoher Feldstärke eine
systematische experimentelle Überprüfung noch aus. Diese könnte durch spezielle Experi-
mente erbracht werden, die auf eine Vielzahl von Starkfeldphänomenen abzielen, wie zum
Beispiel den Breit-Wheeler Prozess.
Wie schon 1934 durch Breit und Wheeler vorhergesagt, kann die Kollision zweier ener-
getischer Photonen zu der Erzeugung eines Elektron-Positron-Paares führen. Frühe the-
oretische Studien haben gezeigt, dass, sofern eine kohärente Lichtquelle beteiligt ist, der
Breit-Wheeler Prozess in starken Feldern (der SFBW Prozess) als Multiphotonenreak-
tion stattfinden kann. In diesen Studien war das Laserfeld als eine unendlich ausgedehnte,
ebene Welle beschrieben. In modernen, hoch intensiven Lasern wird die höchste Intensität
jedoch in sehr kurzen Pulsen erzeugt, die nur wenige optische Zyklen umfassen. Es stellt
sich daher die Frage, in welchem Maß der Prozess von den Eigenschaften des Laserfeldes
beeinflusst wird, insbesondere von der endlichen Länge und der spektralen Zusammenset-
zung.
In dieser Dissertation studieren wir den SFBW Prozess in kurzen Laserpulsen und er-
arbeiten Antworten zu diesen Fragen. Unser Ansatz basiert auf detaillierten S-Matrix-
Rechnungen im Rahmen der Starkfeld-QED. Dieser ermöglicht es uns, numerische Vorher-
sagen für die Prozesswahrscheinlichkeit in verschiedenen Parameterkonstellationen zu er-
halten. Die Analyse der zugehörigen Ergebnisse hat allgemeine Einblicke in den Prozess
ermöglicht, welche ausführlich präsentiert werden. Insbesondere wird ein neues quanti-
tatives Modell für Multiphotonenprozesse in kurzen Laserpulsen entwickelt, welches die
Verbindung zwischen den Eigenschaften des Laserfeldes und dem Energiespektrum der
erzeugten Teilchen klar aufzeigt und erklärt.
Zudem wird mit Blick auf die quantenmechanischen Eigenschaften des Prozesses die Be-
deutung von Interferenzen untersucht. Dem Multiphotonenansatz folgend können aus-
geprägte Interferenzeffekte in den Teilchenspektren detektiert und verstanden werden,
wobei eine charakteristische Abhängigkeit von der Phasenlage zwischen der Trägerfrequenz
und der Einhüllenden des Laserpulses (carrier-envelope phase, CEP) zu Tage tritt. Außer-
dem ermöglicht eine Erweiterung unseres Modellansatzes die Untersuchung allgemeiner
Eigenschaften von Multiphotoneninterferenzprozessen, wie sie durch gepulste Laserfelder
mit kontinuierlichen Frequenzspektren induziert werden.
Weitergehend wird der Einfluss des Teilchenspins in dem SFBW Prozess anhand eines Ver-
gleiches von Vorhersagen aus der umfangreicheren Theorie nach Dirac und der skalaren
Theorie untersucht. Da sie eine vereinfachte theoretische Behandlung ermöglicht, wird
die skalare Theorie zuweilen als eine Näherung für die Dirac’sche Theorie verwendet. Wir
betrachten verschiedene Regime und entwickeln einen intuitiven Zugang zu dem zugrunde
liegenden Prinzip. Auf diesem Weg erhalten wir zudem Informationen über die Anwend-
barkeit dieser Näherung.
Schließlich analysieren wir ein erweitertes Szenario, in dem ein zweiter Laserpuls mit einer
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variablen Zeitverzögerung Berücksichtigung findet. Die Beiträge der beiden Pulse zu dem
Paarerzeugungsprozess induzieren deutliche Interferenzeffekte, welche sich fundamental
von den Multiphotoneninterferenzen unterscheiden. Indem wir die Abhängigkeit von der
Zeitverzögerung untersuchen, können wir weitere grundlegende Eigenschaften des SFBW
Prozesses studieren und aus einer komplementären Perspektive verstehen.
Diese Arbeit erweitert das Verständnis einiger Aspekte des SFBW Prozesses. Darüber
hinaus können manche unserer Konzepte und Erkenntnisse auch auf andere Phänomene
in starken Laserfeldern, wie z.B. die nichtlineare Comptonstreuung, übertragen werden.
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1 | Introduction

1.1 Overview and motivation

The theory of quantum electrodynamics (QED) is one of the best-established theories in
today’s physics. For example, energy levels in atomic physics could be predicted very
accurately. However, for high electromagnetic field intensities, it is not so well tested.
Seeking for fundamental verification, presently emerging experimental facilities can probe
the area of strong-field QED aiming at a variety of interesting effects.
One the most intriguing predictions of QED is the creation of electron-positron pairs due
to the collision of two high-energy photons. Predicted by Breit and Wheeler [BW34]
in 1934, this process contradicts the superposition principle of classical electrodynamics.
Instead, the two photons annihilate and are converted into matter, albeit with a small
probability.
Shortly after the invention of the laser in 1960, theoreticians began to investigate the
situation when a strong laser field collides with high-energy photons [Rei62, NNR65]. In
analogy to processes known from atomic physics, they found that the strong-field Breit-
Wheeler (SFBW) pair-creation process can be induced as a multiphoton reaction, i.e.
several laser photons can participate and thus reduce the required energy per individual
photon. Symbolically, the process can be written as

ωγ + nω → e+e− , (1.1)

where ωγ denotes the frequency of the high-energy (gamma) photon, which collides with
n laser photons of frequency ω.
A corresponding experiment could first be conducted in 1997 at the Stanford Linear Accel-
erator Center (SLAC) [BFHS+97]. There, a highly energetic electron beam (47 GeV) was
brought into collision with an optical laser pulse (ω = 2.35 eV) with an intensity on the
order of 1018W/cm2 and picosecond duration. The produced positrons were attributed to
a two-stage process: First, one laser photon was scattered off the electron beam and pro-
duced a high-energy photon (ωγ ≈ 29 GeV) by means of Compton scattering. Next, this
Compton photon collided with (on average) five laser photons, leading to electron-positron
pairs due to the multiphoton Breit-Wheeler process. The experimental results were found
in agreement with theoretical results obtained from strong-field QED [HMK10].
The successful experiment and the ongoing progress of high-intensity laser technology has
triggered substantial theoretical effort with regard to strong-field QED phenomena; see
[EKK09, DPMHK12] for a review. It is worth mentioning that the SLAC experiment
has probed only one distinct case in the broad parameter space inherent to the SFBW
process. Theoretical studies have predicted that the process properties exhibit pronounced
qualitative differences in different regimes, which shall be briefly addressed in the following.
In the early theoretical investigations of the SFBW process [Rei62, NR64a, NR64b, NNR65,
NR67, Rit85], the laser field was treated as an infinitely extended, monochromatic field
(IPW). Following the historical path, the different interaction regimes can broadly be dis-
tinguished by means of the Lorentz-invariant field-strength parameter ξ = |eA0|/m, where
A0 denotes the amplitude of the vector potential describing the IPW laser field.1

1A precise definition will be given in Sec. 2.1.2. Throughout this work, m and e denote the mass and
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CHAPTER 1. INTRODUCTION

For ξ � 1, the probability of the process involving n laser photons scales as ξ2n, giv-
ing particular weight to the process requiring the smallest possible photon number. In
this regime, the effect of the laser field on the produced particles is (negligibly) small,
and the process could in principle be treated theoretically by pursuing a perturbative
approach. The minimum number of necessary laser photons can be deduced from the
invariant threshold condition

nωωγ > m2 , (1.2)

which follows from the energy-momentum balance associated with reaction (1.1). Through-
out this work, the gamma quantum is assumed to collide head-on with the laser beam.
For the SLAC experiment, this condition implies that at least n = 4 laser photons are
required. However, the experiment was conducted with sufficiently high field strength
(ξ ≈ 0.5) to induce non-perturbative behavior. As we will discuss in detail, the impact
of the laser field on the classical dynamics of the charged particles increases the threshold
energy. In fact, this effect was strong enough to close the leading-order production channel
with four photons, such that at least n = 5 photons had to be absorbed [Rei09, HMK10].
For slightly higher laser intensities with ξ . 1, the produced pairs can in principle still
be understood to be created due to the absorption of individual laser photons. The
total probability is obtained from many different photon-number channels, each producing
particle pairs with different energies and preferred emission directions.
However, beginning at ξ ∼ 1, the global behavior changes. Especially for ξ � 1, the
SFBW process resembles the Schwinger effect [Sau31, HE36, Sch51], which describes the
creation of electron-positron pairs from the vacuum upon application of a static electric
field of strength Es. When this field is very strong, it can separate virtual electron-positron
pairs arising spontaneously from the QED vacuum. The scale is determined by the critical
field strength Ec = m2/e = 1.3 × 1016 V/cm. Acting on a particle of charge e along the
distance of one Compton wavelength λe = 1/m, a field of strength Ec expends an electrical
work equivalent to one electron rest mass m.
Phenomenologically, the resemblance becomes apparent by comparing the dependence of
the total pair-creation rates on the field strength: Regarding the SFBW process, the rate
scales for ξ � 1 as [Rei62, Rit85]

RSFBW ∼

{
(E′)3/2 exp

(
−4

3
Ec
E′

)
for E′ � 1

2Ec ,

(E′)2/3 for E′ � 1
2Ec ,

(1.3)

where E′ = ωγω
m A0 is an invariant measure of the amplitude E0 = ωA0 of the (IPW) laser

electric field, which accounts for the frequency of the gamma quantum. For example in
the frame of reference where ωγ = m, we simply have E′ = E0; however, we note that the
gamma quantum is a key ingredient, since a single IPW laser field with uniformly aligned
momentum vectors cannot create particle pairs. In comparison, the rate for the Schwinger
process scales as [Sch51]

RSchwinger ∼ E2
s

∞∑
ν=1

ν−2 exp

(
−νπEc

Es

)
∼

{
E2
s exp

(
−πEcEs

)
for Es � Ec ,

E2
s for Es/Ec →∞ .

(1.4)

The similarity can be understood intuitively by regarding the regions of highest laser field
strength E0. When ξ is large, the local field strength can be sufficiently strong to produce
pairs in a Schwinger-like fashion within a region of extent ` = m/(eE0) = 1/(ωξ). Since

charge of the positron, respectively. We employ Gaussian units and set ~ = c = 1.

2



1.1. OVERVIEW AND MOTIVATION

` is much shorter than the laser wavelength 2π/ω, the field appears as quasi-static. At
this point, we see that the characteristic length scale of the SFBW process depends on ξ
[Rit85]: While the entire length of the laser field is probed in the multiphoton regime where
ξ . 1, the process happens predominantly in well-localized regions (of length ` ∼ 1/ξ) in
the tunneling regime where ξ & 1.
Owing to its truly non-perturbative and intriguing nature, the Schwinger effect attracts
significant attention, especially from a theoretical point of view; see [GT16] for a cur-
rent review. A direct experimental observation is hindered, though, by the enormous
value of the critical field strength Ec. Regarding Schwinger-like pair production in the
SFBW scheme, the process probability can be enhanced substantially while preserving the
characteristic behavior by introducing a secondary laser field of high frequency but small
intensity [SGD08]. The absorption of already one of these photons effectively reduces
the tunneling distance and can thus amplify the probability tremendously. Following this
concept, which is referred to as dynamical assistance, an experimental observation could
be facilitated by a suitable combination of presently available radiation sources [JM13].
Further interesting effects occur also at moderate laser intensities with ξ < 1. For ex-
ample, several decades after the first studies, the SFBW process has been investigated
theoretically in bichromatic laser fields comprising two laser modes of different frequency
and amplitude [NF00, WX14, JM15]. Assuming a stable phase relation between the two
modes, particle pairs can be created via absorbing photons in various combinations. When
the laser frequencies are chosen in a commensurate ratio, different photon combinations
can give rise to kinematically equivalent pairs. These contributions add up coherently
and can thus be subject to pronounced interference effects, even with regard to the total
number of produced pairs.2 Similar to multiphoton-interference effects arising in atomic
physics, the relative phase between the two laser modes offers a means of coherent phase
control on the pair-creation process. Taking advantage of their sensitive and volatile na-
ture, the interference effects could be probed in experimentally demanding measurements
providing further verification of strong-field QED.
Other aspects of interest are, for example, spin and polarization effects. The broad diver-
sity of phenomena related to the SFBW process motivates ongoing research, ultimately
aiming at an improved understanding of the structure of the QED vacuum.
The current technological development of high-power lasers offers good prospects for cor-
responding experimental studies. Laser intensities up to the order of 1025 W/cm2 (cor-
responding to ξ ∼ 1000) are envisaged in the near future, for example at the Extreme
Light Infrastructure (ELI) in Romania [ELI]. With regard to the SFBW process, poten-
tial sources of high-energy radiation, besides Compton scattering, are X-ray free-electron
lasers (XFELs), or plasma-based high-harmonic generation [Gib96, RadBB+12] requiring
powerful optical lasers. The HIBEF project [Hib] at DESY in Hamburg will soon provide
a combined setup comprising the European XFEL [DES] and a powerful optical laser,
offering possibilities for an experimental investigation of the SFBW process.
The highest laser intensities are achieved by focusing and compressing the laser energy to
narrow regions and very short durations. Accordingly, theoretical studies began to account
for the actual shape of the laser pulse, see, e.g., [HIM10, TTKH12, KK12a, MHKDP15,
DP16] for the SFBW process. The corresponding field configuration is depicted schemati-
cally in Fig. 1.1. Regarding the multiphoton regime, the broad frequency spectrum inher-

2We note that similar effects occur in related processes, such as the Bethe-Heitler process, where the
gamma quantum is replaced by a highly relativistic nucleus. Here, however, we will focus on the Breit-
Wheeler process. The references in this introduction comprise only a small selection, which is primarily
motivated by conceptual similarities with the present work.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic illustration of the field configuration for the SFBW process: The
gamma quantum (blue) collides with a short laser pulse (red).

ent to these short pulses facilitates a multitude of production channels, inducing significant
differences in the particle spectra in comparison to the case of an IPW laser field. The
question arises, how the pulse shape affects the process and in particular how the con-
nection between the pulse spectrum and the energy spectrum of the produced particles
is established. Furthermore, given the prominent role of interference effects arising in
bichromatic fields, it is not clear if they persist when a short pulse is employed, and how
they can be controlled.
The present work provides answers to these questions and investigates various other as-
pects of the SFBW process in short laser pulses. Our method relies on explicit S-matrix
calculations in the framework of laser-dressed QED. The laser pulse is described as a short
pulse with a finite duration and a homogeneous structure in the transverse plane, which
means that focusing effects are neglected. This approach facilitates the use of Volkov states
[Wol35], which describe the quantum dynamics of the charged particles inside the laser
field non-perturbatively and allow us to derive analytical expressions for the pair-creation
probability.3

The influence of the pulse properties on the process is examined in detail. A new model
approach for multiphoton processes in short pulses is developed, allowing us to understand
the structure of the particle spectra and to detect interference effects. Furthermore, the
role of the particle spin in the process is investigated. To this end, we compare predictions
from the usual Dirac theory with those obtained from Klein-Gordon theory. In particu-
lar, we address the question to which extent the spin sensitivity is affected by the pulse
duration.
Finally, we investigate a situation in which the laser field is composed of two individual
pulses arriving with a variable time delay. The contributions from both pulses to the
pair-production process induce pronounced interference effects, which are intrinsically dif-
ferent to the multiphoton interferences. Inspecting the influence of the delay time, further
fundamental properties of the SFBW process can be analyzed and understood from a
complementary perspective.
Overall, this work provides a detailed investigation of the SFBW process in short pulses,
including intuitive approaches to the underlying physics.

1.2 Structure of this thesis and my contribution

This thesis is structured as follows: In Chap. 2, we present the theoretical description
of the SFBW process in a short laser pulse. We will derive analytical expressions for
the pair-creation probabilities for scalar and for Dirac particles, respectively. Numerical
evaluations of these expressions allow us to explore the properties and the behavior of the

3We note that the recent publication [DP16] presents an approximate analytical treatment which
accounts for focusing effects.
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process in various parameter constellations, where we place our focus on the multipho-
ton regime of moderate laser intensities. In Chap. 3, we develop a model approach for
multiphoton processes originating from the broad frequency spectrum of the pulse. Pro-
viding quantitative estimates for the probabilities of different pair-production channels,
this approach allows us to understand the energy spectra of the produced particles and
serves as a basic tool for our forthcoming analysis. In Chap. 4, we investigate the role of
interference effects arising between these production channels. In this context, the influ-
ence of the carrier-envelope phase of the laser pulse is analyzed in detail. Furthermore,
we address the general question to which extent interference effects, which can induce
very pronounced signatures in idealized bichromatic fields, are affected by the spectral
broadening inherent to actual radiation sources. In Chap. 5, the role of the particle’s spin
in the pair-production process is examined. Starting from analytical expressions obtained
for IPW laser fields, the impact of the pulse duration on the SFBW process is studied, as
well. In Chap. 6, the laser field is generalized to two independent, copropagating pulses
with a variable time delay. We extend the S-matrix treatment for scalar particles, and
explore the impact of the time delay. This way, the interaction between pair-production
processes originating from the individual pulses is analyzed.
All analytical calculations presented in the main part of this thesis have been conducted
by myself. Starting from the S-matrix calculation for Dirac particles in [KK12a], I have
refined several details of the calculation, e.g. the introduction of a damping in the context
of the Boca-Florescu transformation, and applied the trace technique. I have extended
the calculation for scalar particles and generalized it for the case of a double pulse with a
variable time delay.
In order to compute the pair-production probabilities, I have developed a new C++ code
and corresponding Matlab scripts for the evaluation. The only external input are the spin-
resolved Dirac results in Chap. 5, which were contributed by Dr. Katarzyna Krajewska
and Prof. Jerzy Z. Kamiński from the University of Warsaw, Poland.
The model approaches were developed by myself, in particular the P model in Chap. 3, the
angular-momentum model in Chap. 5, and the Gaussian model for the delay dependence in
Chap. 6. The same holds for the analytical investigation of interference effects in Chap. 4.
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laser pulses: Identifying multiphoton interference and carrier-envelope-phase effects,
Phys. Rev. D. 93, 053011 (2016), [JM16a].
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• M.J.A. Jansen, J.Z. Kamiński, K. Krajewska, and C. Müller: Strong-field Breit-
Wheeler pair production in short laser pulses: Relevance of spin effects, Phys. Rev.
D 94, 013010 (2016), [JKKM16].

• M.J.A. Jansen and C. Müller: Strong-field Breit-Wheeler pair production in two
consecutive laser pulses with variable time delay, accepted for publication in Phys.
Lett. B (2016), preprint [JM16b].

The results published in the first two articles are presented in Chapters 3,4, and 5 of this
thesis. The third article is based on the results presented in Chap. 6.
Besides, during the time of my Ph.D. work, two further articles regarding the SFBW
process in two infinitely extended monochromatic fields were published:

• M.J.A. Jansen and C. Müller: Strongly enhanced pair production in combined high-
and low-frequency laser fields, Phys. Rev. A 88, 052125 (2013), [JM13].

• M.J.A. Jansen and C. Müller: Pair Creation of Scalar Particles in Intense Bichro-
matic Laser Fields, J. Phys. Conf. Ser. 594, 012051 (2015), [JM15].

These results were primarily elaborated in the course of my Master’s thesis [Jan13].
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2 | Theoretical Framework

This chapter provides the theoretical framework for a detailed description of the strong-
field Breit-Wheeler process induced by a single ultrashort high-intensity pulse. The case of
two consecutive pulses will be fully addressed in Chap. 6. After the major constituents of
the process are introduced in the first section, we will present the analytical derivation of
the pair-production probability for scalar and spinor particles, respectively. Furthermore,
general properties, in particular regarding the kinematical situation, are investigated. The
latter apply both to the scalar and to the spinor case.

2.1 Preparations

In this section, we introduce and examine the basic constituents of the strong-field Breit-
Wheeler scenario. We will characterize the laser field and the high-energy gamma quan-
tum, and revisit the dynamics of charged particles in this environment.

2.1.1 Charged particles in a strong laser field

Beginning with the classical behavior, this section contains a brief review of the dynamics
of charged particles being subject to a strong laser field. In comparison, the effect of the
gamma quantum can be neglected.
We restrict ourselves to plane-wave fronted laser fields, where all field modes share a
common propagation direction, which will be chosen along the z axis. The space-time
dependence of the field is entirely determined by the phase variable η = k · x = ω(t− z),
where kµ denotes the wave four-vector for a characteristic mode with frequency ω, and
xµ = (t, r) denotes the space-time coordinates. Hence, the laser field can be described by
a vector potential Aµ(η), where a gauge is chosen with ∂ · A = 0 and A0 = 0.

2.1.1.1 Classical description

The classical dynamics of a point-like particle with mass m and charge −e in a laser field
given by Aµ are governed by the equation of motion

m
duµ

dτ
= −eFµνuν (2.1)

with the particle’s four-velocity uµ = dxµ/dτ , its proper time τ and the field-strength
tensor Fµν = ∂µAν − ∂νAµ. We employ the metric tensor gµν = diag(+1,−1,−1,−1).
Due to the restriction to a common propagation direction for all field modes, the equation
of motion can readily be integrated, see App. A.1.
Assuming a laser pulse of finite duration, withAµ(0) = 0, the kinetical momentum pµ(η) =
muµ(η) of the particle in the laser field follows as

pµ(η) = pµ0 + eAµ(η)−
(
ep0 · A(η) +

e2

2
A2(η)

)
kµ

k · p0
(2.2)

where pµ0 = pµ(0) denotes the particle’s initial four-momentum.
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The form of Eq. (2.2) allows a direct conclusion: When the laser pulse has passed the
particle, i.e. when Aµ(η) = 0 again, the particle has its initial momentum pµ0 again.
There is no net effect of the laser field on the particle momentum.
Hence, with regard to the pair-creation process, pµ0 can equally be understood as the final
momentum of a particle. In a purely classical consideration, the particle may be thought
of to be created at a certain point ηb with a momentum in agreement with pµ(ηb) as given
by Eq. (2.2). However, due to the quantum nature of the pair-creation process, the point
ηb cannot be specified. Instead, in order to formulate conservation laws, it is helpful to
employ the average momentum

qµ = pµ0 + 〈eAµ〉 −
〈
ep0 · A+

e2

2
A2

〉
kµ

k · p0
, (2.3)

where 〈. . . 〉 denotes a phase average. A particle being detected outside the laser field with
momentum pµ0 possesses an average momentum qµ inside the field. These momenta qµ are
referred to as laser-dressed momenta, and they are employed in the theoretical treatments
of various strong-field QED processes.1 They can be ascribed an effective, laser-dressed
mass

m∗ =
√
q2 =

√
m2 + e2〈A〉2 − e2〈A2〉. (2.4)

2.1.1.2 Quantum description

In the framework of relativistic quantum mechanics, the dynamics of a scalar particle in
the laser field can be described by the Klein-Gordon equation[

∂2

∂t2
+ (−i∇ + eA)2 +m2

]
Ψ = 0 . (2.5)

For a particle (anti-particle) with free four-momentum pµ− (pµ+), it is solved by the Gordon-
Volkov states2

Ψp± =

√
m

V Ep±
ei[±p±·x+Λ±] (2.6)

with

Λ± =
1

k · p±

∫ k·x

0

[
ep± · A(η)∓ e2

2
A2(η)

]
dη (2.7)

and with pµ± = (Ep± ,p±), Ep± =
√
m2 + p2

± and a normalizing volume V . As we will see
in the course of this work, the phase factor Λ± is closely related to the classical dynamics
of the particle in the laser field. In fact, the entire phase of the Gordon-Volkov states
can be associated with the classical action of the particle in the laser field. Conversely,
outside the pulse, Λ± is constant. Consequently, far away from the pulse, the Gordon-
Volkov state Ψp± behaves asymptotically like a usual plane-wave momentum Eigenstate

1Despite the dressed momenta being expressed in terms of the vector potential, they are derived from
the classical dynamics, which solely depend on the electric and magnetic fields. Hence, when another
gauge is chosen, the expression for the dressed momenta may look different, but the dressed momenta
themselves should eventually be the same.

2The Gordon-Volkov states can for example be found in [EKK09]. In comparison, we have included an
additional factor of

√
2m in the prefactor. Our choice is motivated by a normalization constraint based on

the charge density. Accordingly, we account for the different prefactor by reducing the interaction Hamil-
tonian (see Eq. (2.15) below) by the factor 2m. One may argue that this is a more natural choice, since,
this way, the interaction Hamiltonian has consistent dimensionality, and resembles the non-relativistic
expression, c.p. [Gre00], p. 14.
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with Eigenvalue ∓p±. In the following, we will formally describe the pair-production
process as the transition of an electron from the negative-energy initial state Ψp+ to the
positive-energy final state Ψp− . The unoccupied initial state then describes a positron
with asymptotic momentum +p+.
The spin of the particles can be accounted for by employing the full Dirac equation[

i/∂ + e /A−m
]

Ψ = 0 , (2.8)

where Feynman slash notation indicates four-products with Dirac gamma matrices, see
App. A.2 for further details on the conventions. It is solved by the Dirac-Volkov states
(see, e.g., [BLP80])

Ψ(1/2)
p±s± =

√
m

V Ep±

[
1± e/k /A

2k · p±

]
wp±s±e

i[±p±·x+Λ±] . (2.9)

The free spinors wp±s± are presented in App. A.3. The symbols s± denote the particles’
spin state. The form of the Volkov states reveals that the spin returns to its initial
orientation after the particle has left the laser pulse.
With regard to our following calculation, we note that the Dirac-Volkov states can be
shown (see, e.g., [Zak05] and [BF10]) to form an orthogonal basis of the solutions to the
Dirac equation (2.8). The analogue holds in the scalar case [Boc11].

2.1.2 Plane-wave laser fields of finite extent

In order to model a laser pulse of finite extent, we introduce a vector potential of the form

Aµ = A0f(η)X[0,2π](η)εµ (2.10)

where the characteristic function X[0,2π](η) restricts the phase η = k · x to the interval
[0, 2π]. Here, the fundamental wave four-vector kµ = ωb(1, 0, 0, 1) is defined for the basic
frequency ωb. The space-time dependence of the field, as well as its spectral composition, is
determined by the function f(η), which will remain unspecified for the following derivation.
Employing a real polarization vector εµ with ε·k = 0, the field is linearly polarized. Having
plane wave fronts, this field is homogeneous in the transverse plane, yet finite along the
longitudinal direction. Neglecting focusing effects, this approach allows us to model a
finite laser pulse.
Our numerical examples in chapters 3 – 6 will be presented for a specific choice of the
shape function, which is defined by means of its derivative

f ′(η) = sin2(η/2) sin(Noscη + χ) . (2.11)

The shape is determined by the sin2-envelope which comprises a number Nosc of har-
monic oscillations. In order to fulfill Maxwell’s equations, the number of cycles has to
be restricted to Nosc ≥ 2. Otherwise, the vector potential in Eq. (2.10) would not be
continuous. The relative phase between the oscillations and the envelope is controlled by
the carrier-envelope phase χ. The spectrum of this pulse obtains its dominant contribu-
tion from the central frequency ωc = Noscωb. Further details will be addressed below, in
particular in Chap. 4 and additionally in App. A.6.
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With the laser field assumed to be rather strong, depleting effects due to the absorption of
individual photons can be neglected3, which allows us to treat the laser field classically in
the following discussion. The field strength will be determined by means of the Lorentz-
invariant parameter

ξmax =
eA0

m
maxη|f(η)| . (2.12)

This definition can also be applied to infinitely extended, monochromatic fields with Aµ =
A0 cos(η)εµ, yielding the usual field-strength parameter ξ = eA0/m.4 As can be seen from
Eq. (2.2), a strong laser field with ξ ∼ 1 accelerates particles, which were initially at rest,
to relativistic velocities within a single field cycle. For a monochromatic field of frequency
ω, the peak intensity is I[1020W/cm2] = (ξω[eV]/7.5)2 [DPMHK12].

2.1.3 Gamma quantum

The gamma quantum is described as one single mode {kγ , λγ} of a quantized radiation
field Âµ. Its absorption during the pair-production process can be expressed as an effective
scattering potential

Aµγ = 〈0|Âµ|kγλγ〉 =

√
2π

V ωγ
e−ikγ ·xεµγ . (2.13)

Here, kµγ = (ωγ ,kγ) is the corresponding wave four-vector, and εµγ is a real polarization
vector with mode index λγ , with kγ · εγ = 0. The gamma quantum is assumed to be
colliding head-on with the laser pulse.

2.2 Strong-Field Breit-Wheeler pair production of scalar par-
ticles

In this section, we present a detailed derivation of an analytical expression for the pair-
creation probability of spinless particles. Additional properties, in particular the energy-
momentum balance, will be addressed as well. The latter plays a crucial role for the
understanding of the resulting energy spectra of the produced particles.

2.2.1 The pair-creation probability

In the framework of relativistic quantum mechanics, the creation of an electron-positron
pair can formally be described as the transition of one laser-dressed electron from the
negative- to the positive-energy continuum. The resulting unoccupied state then corre-
sponds to the positron.

3In [SHMB16], depletion effects due to nonlinear Compton scattering and successive Breit-Wheeler
pair production are estimated to become relevant when a strong laser with eA0/m ∼ 103 interacts with
an electron beam with a charge of nC. There, a substantial fraction of the laser energy is transferred to
the produced particles. However, in our work, we employ eA0/m ∼ 1.

4We introduce ξmax at the level of the vector potential. Regarding effects which are rather caused by
the laser electric field, the correspondence with the ξ parameter introduced for monochromatic fields has
to be treated with care, since the pulse shape affects the derivative which connects the electric field and
the vector potential: For a monochromatic field with frequency ω, the amplitudes of the electric field and
of the vector potential differ by a factor ω. Conversely, the pulse envelope induces deviations from this
factor, in particular for short pulses.
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2.2. PRODUCTION OF SCALAR PARTICLES

The probability of the process can be obtained from the S-matrix amplitude [EKK09]

Sp+p− = −i
∫
d4xΨ∗p−HintΨp+ (2.14)

which describes the creation of an electron with momentum pµ− and of a positron with
momentum pµ+. The process is formally induced by the interaction Hamiltonian5

Hint =
−ie
2m

(
Aγ ·

→
∂ −

←
∂ · Aγ

)
− e2

m
Aγ · A (2.15)

which accounts for the absorption of the gamma quantum.
Inserting the Gordon-Volkov states Ψp± and sorting the constituents with respect to their
space-time dependence, the S matrix can be brought into the form

Sp+p− = S0

∫
d4xC(η)e−iQ·x−iH(η) (2.16)

with a prefactor S0 = iem
√

2π
V 3Ep+Ep−ωγ

, a combined momentum vector

Qµ = kµγ −
(
pµ+ + pµ−

)
, (2.17)

and auxiliary functions

C(η) = a+ bf(η)X[0,2π](η) ,

H(η) =

∫ η

0
h(η̃)dη̃ ,

h(η) =
[
h1f(η) + h2f

2(η)
]
X[0,2π](η) ,

(2.18)

which include the abbreviations6

a =
p− − p+

2m
· εγ ,

b =
eA0

m
ε · εγ ,

h1 = −eA0

[
ε · p+

k · p+
− ε · p−
k · p−

]
,

h2 = −e
2A2

0

2

[
1

k · p+
+

1

k · p−

]
.

(2.19)

As a next step, the space-time integration in Eq. (2.16) has to be carried out. To this
end, we employ light-cone coordinates, which account for the space-time dependence of
the laser pulse. For a given four vector xµ, we first introduce the parallel component
x‖ = x · n = z, where the unit vector n denotes the laser propagation direction. The
corresponding light-cone coordinates are

x− = x0 − x‖ ,

x+ =
1

2
(x0 + x‖) ,

x⊥ = x− x‖n .

(2.20)

5The prefactor (2m)−1 is chosen in accordance with the normalization of the Gordon-Volkov states in
Eq. (2.6).

6Note that we have slightly changed the definition of S0, a ∼ g0 and b ∼ g1 in comparison with
[JKKM16].
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Products between four vectors xµ and yµ are of the form x · y = x−y+ + x+y− − x⊥ · y⊥.
Concerning the phase variable η, this means η = k · x = k+x− = k0x−. The integration
measure transforms as d4x = dx−dx+d2x⊥.
This way, the three integrations along x+ and x⊥ can readily be evaluated and yield

Sp+p− = (2π)3S0δ(Q
−)δ(2)(Q⊥)

∫
dx−C(k0x−)e−iQ

0x−−iH(k0x−) , (2.21)

where the constraint Q− = 0 = Q0 −Q‖ has been used to rewrite Q+ = Q0.
Next, we have to investigate the remaining integral

I =

∫
dx−C(k0x−)e−iQ

0x−−iH(k0x−) (2.22)

which we decompose according to the definition of C(k0x−) from Eq. (2.18) into the form
I = aI0 + bI1 with the integrals

I0 =

∫
dx−e−iQ

0x−−iH(k0x−) ,

I1 =

∫
dx−f(k0x−)X[0,2π](k

0x−)e−iQ
0x−−iH(k0x−) .

(2.23)

While the characteristic function restricts the integrand of I1 to a finite phase interval,
I0 is formally unlimited. We recall that H(k0x−) is constant outside the pulse interval
x− ∈ [0, 2π/k0]. In order to regularize the integral I0, we regard it as the limit of a
series of convergent integrals, which, in this context, is referred to as the Boca-Florescu
transformation [BF09]. The latter was also revisited in App. B of [KK12b]. We present a
slightly modified treatment, offering a transparent way to deal with the limit process. For
ε > 0, we introduce a damping factor e−ε|x−| in order to control the asymptotic behavior
of the integrand. An integration by parts yields

I0(ε) =

∫
dx−e−iQ

0x−−iH(k0x−)−ε|x−|

=

[
e−iQ

0x−−iH(k0x−)−ε|x−|

−iQ0 − ε sign(x−)

]∞
−∞

−
∫
dx−

−ik0h(k0x−)

−iQ0 − ε sign(x−)
e−iQ

0x−−iH(k0x−)−ε|x−|

(2.24)

where the surface terms vanish due to the damping. The remaining integral is restricted to
a finite interval since h(k0x−) includes the characteristic function. Accordingly, assuming
weak damping ε� |Q0|, the integral can be approximated by

I0(ε) = − k
0

Q0

∫
h(k0x−)e−iQ

0x−−iH(k0x−)dx− +O(ε/|Q0|) . (2.25)

The condition Q0 6= 0 can be verified by regarding the kinematical situation [KK12a] and
will be discussed in Sec. 2.2.3. Furthermore, we will deduce a global lower bound for |Q0|
for a given gamma-quantum momentum kµγ . Hence, ε can be chosen sufficiently small
in order to safely neglect the higher-order terms. The original integral I0 can now be
identified as

I0 ≡ −
k0

Q0

∫
h(k0x−)e−iQ

0x−−iH(k0x−)dx− . (2.26)
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This way, the problematic limit ε → 0 is avoided at the price of an arbitrarily small
damping. This damping affects the phase coordinate x− = t − z, which is naturally
limited by the longitudinal extent of the interaction chamber and by the duration of the
experiment.
As a result, the integral I from Eq. (2.22) can be expressed as

I =

∫
dx−C̃(k0x−)e−iQ

0x−−iH(k0x−) (2.27)

with the new definition

C̃(η) =
[
b̃f(η) + c̃f2(η)

]
X[0,2π](η) (2.28)

and the corresponding abbreviations

b̃ = b− k0

Q0
h1 a ,

c̃ = − k
0

Q0
h2 a .

(2.29)

With both terms in C̃(η) being affected by the characteristic function X[0,2π](η), the entire
integration is now limited to a finite domain and can be evaluated numerically. When the
laser field is infinitely extended, the integrand is usually Fourier decomposed by means
of Bessel functions. This is in principle also possible for our particular shape function
as defined in Eq. (2.11), but each term contains a product of about ten ordinary Bessel
functions, which is barely suitable for computational purposes (see also App. A.6 and A.7).
The total pair-creation probability for Klein-Gordon particles is obtained by integrating
the absolute square of the S-matrix element over all possible particle states. Additionally,
assuming an unpolarized beam of gamma quanta, the average over the corresponding
polarization directions is taken. Accordingly, the total pair-creation probability reads

PKG =
1

2

∑
λγ

∫
V d3p+

(2π)3

∫
V d3p−
(2π)3

|Sp+p− |2 , (2.30)

where V/(2π)3 can be seen as the number of states per unit volume in the momentum
space.
This expression contains the absolute square of the δ functions, which has to be treated
with care. They result from the integration in light-cone coordinates, such that the asso-
ciated volume is not just the normalizing volume V . Instead, it is helpful to regard the
gamma quantum as a wavepacket, see for example [MHKDP15]. As presented in App. A.5,
one finds that the square of 2πδ(Q−) yields (k0

γ/k
−
γ )L, where L denotes the extent of the

normalizing volume along the propagation direction of the gamma quantum. In our case
of a head-on collision, the scaling factor k0

γ/k
−
γ reduces to 1

2 . It can be seen as the ratio
between the interaction time and the temporal extent of the gamma quantum. This way,
the square of the δ functions occurring in Eq. (2.30) effectively leads to∣∣∣(2π)3δ(Q−)δ(2)(Q⊥)

∣∣∣2 =
1

2
V (2π)3δ(Q−)δ(2)(Q⊥) . (2.31)

As a next step, we will integrate over the electron momenta, since we are rather interested
in the positron. The three conditions Q− = 0 and Q⊥ = 0 are sufficient to uniquely
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determine the electron momentum as a function of the gamma-quantum energy and of
the positron momentum: Owing to Q⊥ = 0, the transverse components of the electron
momentum fulfill p⊥− = −p⊥+. The remaining condition Q− = 0 can be rewritten in the
form

p0
− = k−γ − p−+ + p

‖
− . (2.32)

Requiring the free particle states to be on the mass shell with p0
± =

√
m2 + p2

±, we take
the square of Eq. (2.32) and obtain a preliminary solution for the parallel component of
the electron momentum

p
‖
− =

m2 + p⊥+ · p⊥+ − (k−γ − p−+)2

2(k−γ − p−+)
(2.33)

assuming k−γ − p−+ 6= 0. Furthermore, having taken the square of Eq. (2.32), we have
to make sure that the electron energy p0

− has the correct sign. To this end, we revisit
Eq. (2.32) and insert our preliminary solution for p‖−, which yields

p0
− =

m2 + p⊥+ · p⊥+ + (k−γ − p−+)2

2(k−γ − p−+)
. (2.34)

Accordingly, we see that p0
− > 0 if

k−γ − p−+ > 0 , (2.35)

where k−γ = 2ωγ . This condition restricts the possible positron momenta for a given
gamma-quantum energy and will be investigated in the following section. When this
condition is fulfilled, Eq. (2.33) is a valid solution for p‖−.
Finally, in order to carry out the integration, the δ functions are expressed as a function
of p−, which induces an additional factor p0

−/p
−
− > 0 stemming from δ(Q−), with p−− =

k−γ − p−+. After these steps, the pair-production probability reads

PKG =
αm2

16π2ωγ

∑
λγ

∫
d3p+

1

p0
+(k−γ − p−+)

∣∣∣∣∣
∫ 2π/k0

0
dx−C̃(k0x−)e−iQ

0x−−iH(k0x−)

∣∣∣∣∣
2

(2.36)
where α = e2 denotes the Feinstructure constant. The integration is understood to be
restricted to those positron momenta for which the condition given by Eq.(2.35) is fulfilled.
In principle, this expression can be used to compute the total pair-creation probability for
any set of parameters describing the laser pulse and the gamma quantum.

2.2.2 Kinematical constraints

In the following, we will discuss the kinematical constraints which arise when the light-cone
δ functions are evaluated in order to settle the electron momentum for a given combination
of the gamma-quantum energy and the positron momentum.
Introducing the polar angle ϑ via p‖+ = |p+| cos(ϑ), Eq. (2.35) can be written in the form

cos(ϑ) >

√
m2 + p2

+ − k−γ
|p+|

(2.37)
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|p+|/m

0 2 4 6 8 10
-1

-0.5

0

0.5

1

0.2

0.9

1.1

2.2

Figure 2.1: Right-hand side of Eq. (2.37) as a function of |p+|/m for various values of
k−γ /m as indicated in the legend. Pairs can only be created for values of cos(ϑ) which are
above the curves.

assuming |p+| > 0. Accordingly, the kinematical situation is crucially determined by
the right-hand side of Eq. (2.37), which is plotted in Fig. 2.1 as a function of |p+| for
various values of the gamma-quantum energy. If the gamma-quantum energy is small
with k−γ = 2ωγ < m (see red and blue curves in Fig. 2.1), pair creation is limited to

positrons with a minimum momentum |p+| > m2−(k−γ )2

2k−γ
which will be emitted into a

narrow angular cone around the laser forward direction.
Conversely, if k−γ > m (see green and purple curves), positrons with relatively small

momenta |p+| < (k−γ )2−m2

2k−γ
can be emitted into all angular directions. Positrons with

higher energies are again emitted into an increasingly narrow cone around the forward
direction.
For symmetry reasons, the same consideration applies if the electron momentum was to
be determined for a given combination of the gamma-quantum energy and the positron
momentum. As we will see in the following, the conclusions drawn in this section still hold
when the effect of the laser field on the charged particles is taken into account.

2.2.3 Energy-momentum balance

In this section, we formulate the energy-momentum balance of the process, which will
eventually give access to the actually absorbed energy from the laser pulse. Additionally,
the corresponding derivation gives further insight into the kinematical situation and in
particular allows us to state a lower limit for |Q0|.
As a first step, we notice that the requirements Q⊥ = 0 and Q− = 0 imposed by the
δ functions coincide with the properties of the laser wave vector kµ, which fulfills k⊥ = 0
and k− = 0 as well. Accordingly, Qµ can be expressed as a multiple of kµ, allowing us to
state the requirements Q⊥ = 0 and Q− = 0 in the form

kµγ + rkµ = pµ+ + pµ− , (2.38)
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CHAPTER 2. THEORETICAL FRAMEWORK

with an unrestricted real number r. A restriction can be obtained from the square of
Eq. (2.38), where the on-shell condition p2

± = m2 can be used explicitly. This way, one
finds r ≥ m2/(ωγωb), where ωb denotes the laser (basis) frequency associated with kµ.
Since Qµ = −rkµ, we can deduce −Q0 ≥ m2/ωγ , which sets the scale for the damping fac-
tor applied in our version of the Boca-Florescu transformation. Furthermore, the criterion
Q0 6= 0 follows as well.
Equation (2.38) can be understood as a preliminary energy-momentum balance of the
pair-creation process in the limit of small laser intensities. The δ functions restrict the
momenta of the particles such that the energy-momentum balance can be fulfilled by
absorbing a certain four vector rkµ. With the spectral composition of the laser pulse
being undetermined yet, this process is allowed since rkµ could in principle be provided
by one laser photon, or by a combination of several laser photons.
In the previous section, we have seen that in particular high-energy particles are emitted
into the laser forward direction, which can now be understood: These processes require
a large photon energy to be absorbed from the laser pulse, which is necessarily accom-
panied by an equally large momentum in the laser forward direction, which needs to be
compensated.
With the laser field being treated classically, the actually absorbed photon energy can-
not be accessed directly. Instead, we have to rely on the appropriate energy-momentum
balance. For higher laser intensities, we have to take into account that the momenta of
the charged particles are strongly affected by the laser field. To this end, we recall the
classical dynamics of the particles and regard their dressed momenta qµ±.7 The sum of the
dressed momenta is of the form

qµ+ + qµ− = pµ+ + pµ− + wkµ , (2.39)

with

w =

〈
ep+ · A
k · p+

− e2A2

2k · p+

〉
−
〈
ep− · A
k · p−

+
e2A2

2k · p−

〉
. (2.40)

The effect of the laser field on the particles induces an additional term in the sum of the
momenta which is proportional to the laser wave vector kµ.8 The corresponding energy
(and momentum) is provided by the laser field. Accordingly, we formulate the full energy-
momentum balance in the form

kµγ + r∗k
µ = qµ+ + qµ− (2.41)

where r∗ = r+w. In particular, we note that the relation imposed by Q⊥ = 0 and Q− = 0
between the free momenta pµ± and the gamma quantum kµγ has remained unaffected by
these steps. The new parameter r∗ has to fulfill the threshold condition r∗ ≥ m2

∗/(ωγωb)
which is formulated with the laser-dressed mass of the particles. Finally, the absorbed
laser photon energy follows as

EL = q0
+ + q0

− − k0
γ . (2.42)

7The positron dressed momentum qµ+ can be obtained from Eq. (2.3) by employing the free positron
momentum pµ+ and by replacing−e→ e. Our treatment aims at medium intensities ξmax ≤ 1. Accordingly,
the formation length of the pair-creation process (see [Rit85]) covers a substantial fraction of the pulse,
which justifies to average over the full pulse length.

8We note that the product wkµ is independent of the choice of the laser wave vector kµ, since the
frequency cancels in expressions kµ/(k · p±).
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2.2. PRODUCTION OF SCALAR PARTICLES

As we shall see in the following chapters, this energy is a crucial key to the understanding
of the energy spectra of the produced particles. We close this section with two additional
remarks:
Equation (2.41) closely resembles the energy-momentum balance which is obtained when
an infinitely extended, monochromatic laser field is employed. There, four instead of three
δ functions arise. As a consequence, the parameter r∗ is restricted to integer values, which
further supports the picture of the particles being created via absorbing distinct laser
photons, despite the classical treatment of the laser field. Furthermore, the dressed mo-
menta arise naturally when the exponents of the Volkov states (which contain the classical
action) are decomposed into purely oscillatory and linearly growing phase dependencies.
In principle, a similar decomposition can also be carried out in our case of a finite pulse,
which is demonstrated in App. A.7 using the notation of the double-pulse scenario. But
with the combined dressing effect being proportional to kµ with k− = 0 = k⊥, this effect is
not visible for the three δ functions. Still, this detour shows why the effect of the dressing
can be written as

w = −
(
h1〈f〉+ h2〈f2〉

)
(2.43)

with h1 and h2 being introduced in Eq. (2.19) as the constituents of the combined exponent
H(η).9 With our shape function f(η) being restricted to the phase interval [0, 2π], we
employ the phase average in the form 〈f〉 = 1

2π

∫ 2π
0 f(η)dη.

2.2.4 Differential probabilities

Starting from the expression for the total pair-production probability in Eq. (2.36), the
fully differential probability

d3PKG

dEp+d
2Ωp+

=
αm2

16π2ωγ

∑
λγ

|p+|
k−γ − p−+

∣∣∣∣∣
∫ 2π/k0

0
dx−C̃(k0x−)e−iQ

0x−−iH(k0x−)

∣∣∣∣∣
2

(2.44)

can be defined, since d3p+ = Ep+ |p+|d2Ωp+dEp+ with d2Ωp+ = sin(ϑ)dϑdϕ, where ϕ
denotes the azimuthal angle describing the positron emission direction with respect to εµ.
The quantity d3PKG/(dEp+d

2Ωp+) describes to which extent the creation of positrons
with energy Ep+ and emission direction as given by ϑ and ϕ contribute to the total
pair-creation probability. One should keep in mind that this contribution is not only
determined by the probability density ∼ |Sp+p− |2, but also by the infinitesimal volume of
the surrounding phase space. The latter is sensitive to the choice of the coordinates.
As enforced by the three δ functions, the original six-dimensional integration space avail-
able in Eq. (2.30) is reduced to a three-dimensional sub-space which is now parametrized
by the positron momentum. Evaluating δ(Q−) has led to the factor p0

−/p
−
−, which can be

regarded as the Jacobian of the transform between the electron momentum and the sub-
volume which is defined via Q− = 0 = Q⊥. This factor induces an asymmetry between
the laser forward and backward direction (see, for example, Fig. 5.3 in Chap. 5), which
reflects the geometry of the coordinates, rather than the properties of the process.10

9As it turns out, with regard to the dressing effect, H was defined with a counter-intuitive sign.
10 Let us regard the following instructive example: When the positron energy is chosen with Ep+ = ωγ

in a setup with vanishingly small field strength ξmax � 1, the required laser photon energy is EL ≈ ωγ ,
such that the process closely resembles the original Breit-Wheeler process in the center-of-mass system,
provided that the pulse spectrum contains a photon of frequency ωγ . Accordingly, each particle can be
expected to be produced with equal probabilities in the forward and backward direction. However, due
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CHAPTER 2. THEORETICAL FRAMEWORK

2.3 Production of Dirac particles

Having completed the analytical derivation of the pair-production probability in the scalar
case, we will now proceed to the full calculation including the spin of the particles. Evalu-
ating the products of the spinors and the gamma matrices requires additional steps, which
can, however, be postponed by rearranging the expression. At this point, many important
steps can be applied in close analogy to the scalar case.

2.3.1 The pair-production probability

Employing the Dirac-Volkov states as introduced in Eq.(2.9), the S-matrix element for
the production of Dirac particles reads

S(1/2)
p+s+,p−s− = ie

∫
d4xΨ

(1/2)
p−s−

/AγΨ(1/2)
p+s+ . (2.45)

Similarly to the scalar case, the expression can be brought into the form

S(1/2)
p+s+,p−s− = S0

∫
d4xC(η) e−iQ·x−iH(η) (2.46)

with S0, Qµ and H(η) as given in Sec. 2.2.1. The spinors are included in the reduced
matrix element

C(η) = a + bf(η)X[0,2π](η) (2.47)

with the new abbreviations

a = wp−s−/εγwp+s+ ,

b =
eA0

2
wp−s−

[
/εγ/k/ε

k · p+
−
/ε/k/εγ
k · p−

]
wp+s+ .

(2.48)

Initially, C contains a further term of the form e/k /A
2k·p− /εγ

e/k /A
2k·p+

, which can, however, be shown
to vanish.11

We note that a and b can in principle be evaluated explicitly for any combination of the
spin projections s+ and s−, yielding usual complex numbers. Hence, the calculation can
now be continued in full analogy to the scalar case. Switching to light-cone coordinates,
evaluating three integrals and applying the Boca-Florescu transformation, we arrive at

S(1/2)
p+s+,p−s− = (2π)3S0δ(Q

−)δ(2)(Q⊥)

∫
dx−C̃(k0x−)e−iQ

0x−−iH(k0x−) (2.49)

with

C̃(η) =
[
b̃f(η) + c̃f2(η)

]
X[0,2π](η) ,

b̃ = b− k0

Q0
h1 a , c̃ = − k

0

Q0
h2 a .

(2.50)

to the factor p0
−/p

−
−, the differential probability for the positron d3PKG/(dEp+d

2Ωp+) is enhanced in the
backward direction. Similarly, the electron differential probability d3PKG/(dEp−d

2Ωp−), which includes
a factor p0

+/p
−
+, is also enhanced in the backward direction. This is no contradiction, but inherent to the

definition of the differential probabilities.
11To this end, we write /k /A/εγ/k /A = /A/k/εγ/k /A = −/A/εγ/k/k /A = 0, c.p. App. A.2.
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2.3. PRODUCTION OF DIRAC PARTICLES

Similarly to the scalar case [compare Eq. (2.30)], the pair-production probability is ob-
tained as

P(1/2)
s+,s− =

1

2

∑
λγ

∫
V d3p+

(2π)3

∫
V d3p−
(2π)3

|S(1/2)
p+s+,p−s− |

2 . (2.51)

With Qµ being independent of the particles’ spin, the remaining steps are identical to the
scalar case, and we arrive at

P(1/2)
s+,s− =

αm2

16π2ωγ

∑
λγ

∫
d3p+

1

p0
+(k−γ − p−+)

∣∣∣∣∣
∫ 2π/k0

0
dx−C̃(k0x−)e−iQ

0x−−iH(k0x−)

∣∣∣∣∣
2

.

(2.52)
This probability still depends on the spin projections s+ and s−. It describes the proba-
bility that the detector measures the particles with these spin projections. Note that the
actual spin orientation of the produced particles does not necessarily coincide with these
projections [BLP80, IKS05].
The full pair-production probability for Dirac particles is obtained by summing over all
possible spin configurations

P(1/2) =
∑
s+,s−

P(1/2)
s+,s− . (2.53)

2.3.2 The spinor properties

When the full pair-production probability is regarded, the spin properties can be treated
with the usual trace technique. This technique can be applied to expressions of the form

M(p+, p−) =
∑
s+,s−

∣∣wp−s−Γwp+s+

∣∣2 (2.54)

where Γ denotes a general matrix acting on the spinors. As presented in App. A.4, this
expression can be obtained as the trace

M(p+, p−) = Tr

[
Γ

(
/p+
−m

2m

)
Γ

(
/p− +m

2m

)]
. (2.55)

The spin projections are traced out, and the resulting expression can be evaluated an-
alytically, independent of the actual representation of the spinors. This way, the pair-
production probabilities can be evaluated numerically without the need to implement
spinors and matrices.
In order to apply this scheme to our calculation, we investigate the structure of our
expressions in more detail. We note that C̃(k0x−) is the only component of the spin-
resolved probabilities P

(1/2)
s+,s− [see Eq. (2.52)] which depends on the spin projections s±.

Revisiting C̃(k0x−) in Eq. (2.50), we see that the spinors are included in b̃ and c̃, which
are independent of the integration variable x−. Thus, the integrals

Ij =

∫ 2π/k0

0
dx−f j(k0x−)e−iQ

0x−−iH(k0x−) (2.56)

can be evaluated independently of the spin states, allowing us to write∫
dx−C̃(k0x−)e−iQ

0x−−iH(k0x−) = b̃I1 + c̃I2 . (2.57)
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Hence, the full probability can be expressed as

P(1/2) =
αm2

16π2ωγ

∑
λγ

∫
d3p+

1

p0
+(k−γ − p−+)

∑
s+,s−

∣∣∣b̃I1 + c̃I2

∣∣∣2 (2.58)

where
∑

s+,s−

∣∣∣b̃I1 + c̃I2

∣∣∣2 can be brought into the form suggested by Eq. (2.54). The
explicit calculation comprises many terms and is presented in App. A.4.4.
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3 | Modeling the particle spectrum

This chapter contains a new model approach for the strong-field Breit-Wheeler process in
laser pulses of moderate intensity. Based on concepts generalized from bichromatic fields,
this model aims at multiphoton processes being induced by the spectral components of
the pulse. Providing quantitative estimates for combined emission-absorption processes in
different photon-number channels, it supports the understanding of the energy spectra of
the produced particles and facilitates the detection of interferences between these channels.
This way, we prepare the ground for the forthcoming investigations. The content of this
chapter was originally published in [JM16a].

3.1 Introduction

As we have seen in the previous chapter, the three delta functions establish a connection
between the energy of the gamma quantum and the momenta of the particles, but the
contribution of the laser pulse remains undetermined except for the requirement that the
transferred four-momentum can be expressed as a multiple of the laser four-momentum.
This means that a given process is in principle possible if the transferred energy can be
delivered by a combination of laser photons. We recall that the actually required laser
energy has to be deduced externally by regarding the classical behavior of the charged
particles in the laser field. The resulting expression remains compatible with the original
constraints imposed by the delta functions.
Once the required energy for a given pair-production process is known, the question arises
which combination of laser photons plays a dominant role for the process. In the following,
we present our model approach which allows us to identify the dominant photon-number
channels. Furthermore, the structure of the pair-creation spectra can be understood this
way. In addition, this approach allows us to detect and understand interferences between
different photon-number channels. The latter exhibit a distinct dependence on the carrier-
envelope phase of the laser pulse, which shall be examined in detail in the next chapter.

3.2 Concepts from the multichromatic case

In order to understand the various production channels and the corresponding interferences
facilitated by a pulse of moderate intensity, we revisit concepts known from explicit S-
matrix calculations in bichromatic laser fields and apply them to a multichromatic field
with M discrete modes. Finally, the case of a pulse with a continuous spectrum can be
regarded as the limit of M →∞.

3.2.1 Pair-creation amplitude

We regard a multichromatic field composed of M discrete modes which propagate in a
common direction and are polarized along a common axis. The latter property simplifies
the notation, but it is not used explicitly in the analysis.1 The modes are characterized by

1For example in [NF00], a bichromatic calculation has been presented for arbitrary angles between the
polarization vectors.
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CHAPTER 3. MODELING THE PARTICLE SPECTRUM

means of their frequencies ωj (which are assumed pairwise different), amplitudes aj , and
phase shifts δj . Suppressing the spatial dependence in the notation, the combined vector
potential in dimensionless units reads

ξ(t) =
M∑
j=1

ξj cos(ωjt− δj) (3.1)

with amplitude parameters ξj =
eaj
m .

Generalizing the procedure established for mono- and bichromatic fields (see, e.g., [NNR65,
Rei80, Rit85, NF00, EKK09, JM13]), the pair-creation amplitude is Fourier decomposed
as

S =

∞∑
n1=−∞

· · ·
∞∑

nM=−∞
S(n1, . . . , nM ) , (3.2)

with partial amplitudes which can be brought into the form

S(n̄) = S0(n̄) δ(q0
+ + q0

− − ωγ −
M∑
j=1

njωj) e
iϕ(n̄) . (3.3)

Here, the multiindex n̄ = (n1, . . . , nM ) has been introduced to shorten the notation. The
phase shifts of the field modes appear explicitly in the amplitude phase term

ϕ(n̄) =

M∑
j=1

njδj . (3.4)

The creation of a pair with dressed particle energies q0
± requires the energy q0

+ +q0
−−ωγ to

be absorbed from the laser field. The δ functions in the partial amplitudes allow only those
processes, where this energy can be provided by a sum of integer multiples of the mode
frequencies. At this point, despite the classical treatment of the laser field, the concept of
laser photons comes into this consideration. As the photon numbers nj in Eq. (3.2) are not
necessarily positive, the creation of a pair can be accompanied by the emission of photons
into the laser field [WX14, AVCM14]. For certain parameter constellations, in particular
if the energy of the dominant laser modes exceeds the actually required energy, these can
be the most probable production channels, as will be shown in an example below.
As a preparation for the following steps, we sort the various production channels by
the total number N of photons being interchanged with the laser field. To this end,
we introduce the symbol |n̄| =

∑M
j=1 |nj | and rearrange the summation of the partial

amplitudes in the form

S =
∑
n̄

S(n̄) =
∞∑
N=1

∑
|n̄|=N

S(n̄) =
∞∑
N=1

S(N) (3.5)

with the N -photon amplitude S(N) =
∑
|n̄|=N S(n̄) which accounts for processes involving

a total number N of laser photons.

3.2.2 Probabilities and interferences

In the following, we shall investigate the corresponding pair-production probability which
is obtained from the absolute square of the amplitude S. Further continuing our approach,
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we divide the resulting expression into contributions with equal and non-equal photon
numbers and obtain

|S|2 =
∑
N

[
S(N)S∗(N) +

∑
N ′ 6=N

S(N)S∗(N ′)
]
. (3.6)

The full pair-production probability follows as the integration over all possible parti-
cle states. At this point, we continue regarding the particle momenta as fixed exter-
nal parameters and introduce the fully differential probabilities PN = S(N)S∗(N) and
PNN ′ = S(N)S∗(N ′) + S(N ′)S∗(N). The latter describes interferences between channels
of different photon numbers N and N ′ 6= N . However, as will be shown shortly, also the
first term can contain interferences.
As a general criterion for interferences between two processes with photon combinations n̄
and n̄′, the total photon energies need to be identical [NF00, AM13, WX14, JM15], which
means

M∑
j=1

njωj =
M∑
j=1

n′jωj . (3.7)

Under this condition, both processes are induced by the same absorbed energy as well
as the same absorbed momentum. Accordingly, the particles are produced in the same
final states.2 When a bichromatic field is employed, and when emission processes can be
neglected, this criterion can only be fulfilled for N 6= N ′.3 However, in particular for a
laser field with many modes, interferences can as well arise between channels with equal
total numbers of interchanged photons, which we shall refer to as self-interferences (SI).
Decomposing the N -photon probability at the level of individual photon contributions as
characterized by n̄ and n̄′ in the form

PN =
∑
|n̄|=N

[
S(n̄)S∗(n̄) +

∑
|n̄′|=N
n̄′ 6=n̄

S(n̄)S∗(n̄′)
]
, (3.8)

we first recognize the ordinary N -photon probability Pord
N =

∑
|n̄|=N S(n̄)S∗(n̄). The

remaining term gives the (N -photon) self-interference probability

PSI
N =

∑
|n̄|=N

∑
|n̄′|=N
n̄′ 6=n̄

S(n̄)S∗(n̄′) , (3.9)

which accounts for interferences between contributions of different combinations of the
same total number N of photons. In contrast to the usual interferences between different
photon-number channels, the self-interference terms are lacking a characteristic phase
dependence, as will be discussed below.

2In principle, the angular momentum of the photons needs to be compensated by the particles, as
well, and may thus induce different behavior depending on the difference between the number of absorbed
photons, see also Sec. 5.1. This approach may provide further insight into the selection rule for interference
effects in the total production rates formulated in [JM15], which was based on the analytical properties
of the interference terms.

3In a bichromatic field with modes ω1 and ω2, condition Eq. (3.7) imposes the following restriction
when the number of absorbed photons is supposed to be changed by an integer l (neglecting emission
processes): n1ω1 + n2ω2

·
= (n1 + l)ω1 + (n2 − l)ω2 = n1ω1 + n2ω2 + l(ω1 − ω2). This can only be fulfilled

for l = 0. However, this line of arguing breaks down when the net number nj of photons interchanged
with a given mode becomes negative, since the total number of absorbed photons then includes |nj |.
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In order to further approach the interference terms between channels of photon numbers
N and N ′ 6= N , we assume that the complex phase arg[S0(n̄)] of the partial amplitudes
remains constant under variations of the photon combination n̄, except for phase jumps by
π, i.e. changes in sign. For example, in the case of a bichromatic field with orthogonally
polarized modes, this condition is fulfilled.4 Thus, the interference term can be written in
the form

PNN ′ = 2
∑
|n̄|=N
|n̄′|=N ′

|S0(n̄)||S0(n̄′)|σn̄,n̄′ cos
[
ϕ(n̄)− ϕ(n̄′)

]
, (3.10)

where the δ functions are suppressed, and where σn̄,n̄′ = cos(arg[S0(n̄)]−arg[S0(n̄′)]) = ±1
absorbs signs. At this point, the role of the optical phase shifts δj becomes apparent. They
are included in the combined phases ϕ and can thus induce strong modulating effects on
the interference terms. If the amplitude phases depend only on the total number N of
exchanged photons, such that we may write ϕ(n̄) = ϕ(N), a common interference phase

φNN ′ = ϕ(N)− ϕ(N ′) (3.11)

can be introduced. In particular for the case of a pulse, several of its properties can be
derived analytically and shall be presented below.

3.3 P model

Aiming at the energy spectra of the created particles in the multiphoton regime, we will
now develop our model approach which produces quantitative estimates for the ordinary
production channels introduced in the previous section. Neglecting the self-interference
terms, this approach facilitates straightforward implementation and still accurately re-
produces several properties of the actual particle spectra. Furthermore, it allows us to
estimate the magnitude and phase of interference terms between different photon-number
channels.
The name “P model” indicates that this approach is based on the probabilities of the
various production channels. In Sec. 4.3.1, we will develop another approach starting
from the S-matrix amplitudes, which is referred to as “S model”.

3.3.1 Definitions

In order to employ our previously developed concepts in the forthcoming derivation, we
introduce the full pair-production probability P in the form

P =
1

2

∑
λγ

∑
s+,s−

∫
V d3p+

(2π)3

∫
V d3p−
(2π)3

P , (3.12)

where P denotes the fully differential probabilities from Sec. 3.2.2. This way, also the
partial probabilities for specific photon-number channels can be obtained from PN or
PNN ′ .
We will regard positron spectra which are defined as follows: For fixed positron emission
direction, the pair-creation probabilities are evaluated for various positron energies. These

4Due to these sign changes, the typical interference phase term cos
(∑

j ∆njδj
)
obtained in a bichro-

matic field does not contain sufficient information to tell if the term leads to constructive or destructive
interference.
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results are then presented as a function of the required laser photon energy EL. The
corresponding differential probability is referred to by the symbol dP, which is defined as

dP =
d3P

dEp+d
2Ωp+

∂Ep+

∂EL
. (3.13)

This definition can be applied for the full calculation (see previous chapter) and also for
the partial probabilities from Sec. 3.2.2.5

3.3.2 Outline

The probability Pord
n̄ = S(n̄)S∗(n̄) can be understood as the probability to create a certain

particle pair from the photon combination n̄, without interferences. Regarding a specific
energy spectrum, the actually produced pair is characterized by the required photon energy
EL. The model idea is to decompose the pair-creation probability into the probability
%n̄(EL) to find the specific photon combination n̄ in the pulse spectrum, and the probability
pn̄(EL) to create the pair from these photons. Accordingly, we begin with

dPord
n̄ (EL) ≈ pn̄(EL)%n̄(EL) . (3.14)

Similar to the δ function in Eq. (3.3), the quantity %n̄(EL) determines if the laser field
can in principle provide the required photon combination. Additionally, it accounts quan-
titatively for the spectral composition of the field. The field intensity then determines the
pair-creation probability pn̄(EL).
In order to further develop the model, the pair-creation probability pn̄(EL) is assumed to
be independent of the actual photon combination n̄. Instead, only the total number of
involved laser photons N = |n̄| is accounted for, allowing us to write pn̄(EL) ≈ pN (EL).
This way, the probability of the ordinary N -photon channel can be expressed in the form

dPord
N (EL) ≈ pN (EL)%N (EL) , (3.15)

where %N (EL) =
∑
|n̄|=N %n̄(EL) is the probability to find any combination of N photons

that sum up to the required energy EL. At this point, the spectral properties of the laser
field have effectively been separated from the pair-creation probability.
As a last simplification, the pair-creation probability pN (EL) is assumed to be essentially
determined by the perturbative intensity scaling [Rit85], which means

pN (EL) ≈ p0 ξ
2N
max , (3.16)

where p0 can be regarded as a global prefactor for a given positron energy spectrum.
Following this approach, also interference terms can be modeled by

dPNN ′ ≈ 2 p0 ξ
N+N ′
max

√
%N%N ′ cos(φNN ′) , (3.17)

5The definition in Eq. (3.13) differs from d3P
dELd

2Ωp+
, which includes up to two different positron energies

for a given value of EL. This is a purely kinematical effect which can be illustrated in the following
example. Let us regard the creation of a pair with emission directions along the collision axis. In the c.m.
frame, both particles have the same energies and propagate in opposite directions. When the same process
is observed in a frame which is boosted along the collision axis, both particles may travel in the same
direction, but with different energies. Next, we note that the kinematics of the process are invariant under
exchange of the two particles, in particular the required energy remains the same. Thus, two different
energy solutions arise for positrons being emitted in the same direction.
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CHAPTER 3. MODELING THE PARTICLE SPECTRUM

when sign changes induced by σn̄,n̄′ in Eq. (3.10) are neglected. Accordingly, the global
sign of the interference term remains undetermined.
As a next step, we will discuss the photon-finding probabilities %N , which shall be treated
without further simplifications. Subsequent numerical examples will show that this model
approach nicely reproduces various features of the particle energy spectra and allows us
to detect and understand interference effects.
We note that a related model approach for pair-production in short pulses has been pre-
sented in [NSKT12]. There, the full probability is equally decomposed into multiphoton
processes. Cross sections obtained in monochromatic fields are, as an approximation,
convoluted with the pulse spectrum. In contrast, our approach emphasizes the spectral
properties of the pulse, while the pair-production probabilities are approximated. Hence,
the models are conceptually different.

3.3.3 Photon-finding probability

In the following, we shall determine the probabilities of multiphoton processes driven by a
laser pulse with a continuous frequency spectrum. The pulse is assumed to be plane-wave
fronted, with its electric field being described by a real-valued function f(t). As before,
the spatial dependence is suppressed in the notation.
We begin with the probability to find a single photon of given energy ω in the pulse
spectrum. To this end, we regard the total pulse energy E and apply Plancharel’s theorem
in the form

E ∼
∫ ∞
−∞

dt |f(t)|2 ∼
∫ ∞

0
dω|f̂(ω)|2 (3.18)

where f̂(ω) =
∫∞
−∞ f(t)eiωtdt denotes the Fourier transform of f(t). Our results will be

normalized in the end, allowing us to drop the prefactors for a moment. This equation
can be read in the form dE ∼ |f̂(ω)|2dω and thus allows us to deduce the spectral energy
density |f̂(ω)|2. Introducing photons to this initially classical calculation, we obtain the
photon number density 1

ω |f̂(ω)|2. Employing a proper normalization, these steps give rise
to the probability density

%(ω) =
1

N%

1

ω
|f̂(ω)|2 (3.19)

to find one photon of frequency ω in the pulse spectrum, which will be referred to as
photon-finding probability. The normalization condition requires N% =

∫∞
0

1
ω |f̂(ω)|2dω.

At this point, one-photon processes can be accessed via the P model, since %1(ω) = %(ω).
Next, we regard the probability to find any combination of N > 1 photons that sum up to
the energy ω. When emission processes can be neglected, the corresponding probability
density reads

%N (ω) =
1

N !

∫
dω1

∫
dω2 · · ·

∫
dωN %(ω1)%(ω2) · · · %(ωN ) δ

(
ω −

N∑
j=1

ωj

)
, (3.20)

with the frequencies being assumed pairwise different, and %(ω) being defined to vanish
for non-positive frequencies. In particular with regard to numerical evaluations, it is
convenient to recast this expression into the recursive form

%N (ω) =
1

N

∫ ω

0
dω′%(ω − ω′)%N−1(ω′) . (3.21)
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Figure 3.1: Photon-finding probability densities %N (ω) for N = 1 (red) and N = 2 (blue)
based on Eq. (3.21), i.e. without emission processes, for a short pulse pulse with a shape
function given by Eq. (2.11) with Nosc = 6, ωc = m and χ = 0. Subticks indicate integer
multiples of the basic frequency ωb = ωc/Nosc.

This quantity will be referred to as multiphoton-finding probability and allows us to es-
timate the probabilities of ordinary multiphoton channels with arbitrary high photon
numbers. Due to the recursive form, increasing the photon number by one requires one
further integration.
In Fig. 3.1, we present a typical example of the one- and two-photon-finding probability
densities obtained for our standard pulse shape given by Eq. (2.11). For the one-photon
case, the probability is sharply peaked at the central pulse frequency ωc. The characteristic
zeros in %1 at most integer multiples of the basic frequency ωb = ωc/Nosc are caused by
the window function X[0,2π](η), see App. A.6. In contrast, the two-photon probability has
its maximum at ω = 2ωc, where processes may be induced by two of the most-probable
photons with frequencies around ωc. As a general property following from the folding
structure, the dominant peak becomes broader and the finer structure disappears as the
photon number is increased.
Finally, we include emission processes, which can be treated in analogy to general absorp-
tion and stimulated emission processes. Neglecting degeneracies, the probabilities of both
processes are the same, and proportional to the photon density at the transition frequency.
Following our model approach, we assume the corresponding pair-creation probabilities
pn̄ to be well approximated by pN , such that only the photon-finding probabilities have to
be generalized. To this end, we include negatively weighted photons into the summation
of N photons with total energy ω via

%N (ω) =
1

N

∫ ∞
−∞

dω′%(|ω − ω′|)%N−1(|ω′|) . (3.22)

After this step, also emission processes are covered by the P model. Their importance
can be estimated by numerically comparing Eqs. (3.21) and (3.22) and will be discussed
in Sec. 3.4.2.
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3.4 Numerical examples

The following two examples will demonstrate the performance of the P model. We begin
with a typical positron spectrum [cp. Eq. (3.13)] obtained in a six-cycle, medium-intensity
pulse with ξmax = 0.1 revealing clear signatures of multiphoton processes. The second
example focuses on emission processes occurring in a pulse of significantly higher amplitude
and frequency. All examples in the present and in the following chapter are based on the
full Dirac equation and are summed over the spin configurations of particles.
The numerical calculations are carried out in a frame of reference where the central laser
frequency and the gamma-quantum energy are of the same order. The corresponding ex-
perimental parameters could be realized by employing a Nd:YAG laser with ωc ≈ 2.4 eV
and peak intensity ∼ 1017 W/cm2. Additionally, gamma quanta of ∼ 300 GeV are
required, which could in principle be created by Compton backscattering off an ultra-
energetic electron beam. The required energies are within the intended scope of XCELS
[XCE].

3.4.1 Multiphoton processes

Figure 3.2 depicts our first exemplary positron energy spectrum (black line) as a function
of the absorbed laser photon energy EL in units of the central laser frequency ωc. The
corresponding positron energy is indicated at the top axis. The energy spectrum exhibits
a series of broad peaks centered around integer values of EL/ωc (see also [HIM10, JSL+12,
KK12a, KGA14]). Especially for higher energies, additional fast oscillations occur. As a
general trend, the spectrum decays rapidly as the energy grows.
In the following, we shall see how the P model can reproduce these properties and thus
support their understanding. We begin with the model estimate for the one-photon chan-
nel, which is obtained from the pulse spectrum and amplitude as described above. The
remaining parameter p0 is determined by fitting the model expression to the high-energy
part of the positron spectrum, which yields p0 ≈ 7.0 × 10−5. The red line in Fig. 3.2
depicts the resulting estimate, which agrees nicely with the pair-production probability in
the low- and high-energy parts of the spectrum.
The energy dependence of the model estimate reflects the spectral composition of the
pulse. Accordingly, a dominant peak occurs at the central frequency ωc, while higher
photon energies are accompanied with much smaller probabilities. The fast oscillations are
induced by the finite length of the pulse and are addressed in further detail in App. A.6.
Comparing the actual pair-production spectrum and the model expression for the one-
photon channel, the approximate shape of the first broad peak at EL ≈ ωc and also of
the neighboring subpeaks are nicely reproduced. In the high-energy part, almost complete
agreement is found for a broad range of energies comprising many fast oscillations.6 Based
on the good agreement, positrons at both ends of the spectrum are understood to be
produced via absorption of one laser photon.
Including higher photon numbers, also the central part of the spectrum can be reproduced
to good extent by our model. For the parameters under investigation, the contributions of
emission processes are negligible. Employing the same value for p0 as for the one-photon
channel, the model estimates for the two-, three- and four-photon channels agree well with
the broad peaks at EL/ωc ≈ 2, 3 and 4. The latter exhibit an oscillating substructure
which becomes increasingly pronounced for higher photon numbers and will be addressed

6Note that dressing effects are relevant here. When they are neglected while determining the absorbed
energy EL, the fast oscillations are offset.
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Figure 3.2: Energy spectrum of positrons dP = d3P
dEp+d

2Ωp+

∂Ep+
∂EL

(EL) (black line) in units
of 1/m as a function of the required laser photon energy EL in units of the central laser
frequency ωc. Top axis shows the corresponding positron energy. Colored lines depict
model estimates for partial probabilities induced by the absorption of different numbers
N of laser photons as indicated in the legend and by the symbols [N ]. These positrons
with ϕ = π

4 , ϑ = 0.3π result from the head-on collision of a laser pulse with ξmax = 0.1,
Nosc = 6, ωc = 0.9m and χ = 0 and a gamma quantum of energy ωγ = 3.015m. Originally
published in [JM16a].

in Sec. 4.2. Again, the good agreement allows us to identify the dominant pair-production
channels with corresponding multiphoton peaks.
The global structure of the particle spectrum is determined by the interplay between the
perturbative intensity scaling and the fall-off of the photon-finding probability, which scales
as (EL/ωc)

−9 for the current pulse profile. For the parameters employed in Fig. 3.2, the
model expressions for the five- and six-photon channels lie clearly below the one-photon
tail, implying that these channels are only of minor importance. Consequently, the number
of absorbed laser photons of the dominant pair-production channel at a certain required
photon energy EL cannot necessarily be deduced from the ratio EL/ωc alone.
This example has shown that the P model works well, which reveals that the structure of
the particle spectrum is strongly determined by the pulse spectrum.

3.4.2 Emission processes

In order to enhance the relative importance of emission processes in this example, the laser
amplitude and frequency are increased significantly with ξmax = 0.5 and ωc = 3.6m. The
resulting positron spectrum is depicted in Fig. 3.3 (black line) and compared to model
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Figure 3.3: Positron energy spectrum dP (black line) in units of 1/m obtained for
ωc = 3.6m and ξmax = 0.5 in order to demonstrate emission processes at low energies.
Remaining parameters are identical to Fig. 3.2. The colored lines depict model estimates
for processes involving a total number N of laser photons, where N is indicated in the
legend and by the labels [N ]. The solid lines correspond to absorption-only processes,
while the symbol lines show processes where at least one photon is emitted into the laser
wave. The model expressions for the three and four photon absorption-only processes are
too small to be seen here. Subticks indicate laser photon energies EL which correspond
to integer multiples of the laser basis frequency ωb. Originally published in [JM16a].

estimates for various production channels. The indicated photon numbers denote the
total number of photons being interchanged with the laser field. The model expressions
are presented both for the absorption-only case (solid lines) and for the case in which at
least one photon is emitted (symbol lines). Unlike in the previous example, the remaining
parameter p0 was chosen in order to obtain good agreement at the one-photon peak, with
p0 ≈ 1.7× 10−4.
When emission processes are included in a production channel of fixed total number of
involved photons, additional broad peaks appear at lower energies. Since emitting instead
of absorbing one photon reduces the resulting energy by two photon energies, these peaks
are offset by an even number of central frequencies from the major peak in the absorption-
only case.
As Fig. 3.3 shows, the pair-production probabilities in the low-energy part of the positron
spectrum exceed the model estimate for the one-photon channel by more than two orders
of magnitude, in particular when the required energy falls into the spectral hole at ωc/3 =
2ωb (see red curve in Fig. 3.1). Instead, significant contributions arise from channels
with two or four photons, where one or two photons are emitted into the laser wave. In
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this scenario, even smallest fractions of the enormous central frequency are sufficient to
produce a particle pair. Thus, the low-energetic positrons are predominantly produced
via absorbing one photon of the central laser frequency and releasing the excess energy by
emitting another photon into the laser field.
When the laser amplitude is reduced, the relative weight of processes with higher photon
number decreases, and the particle spectrum approaches the shape of the one-photon
channel.

3.5 Conclusion

In this chapter, we have presented a new quantitative model for the SFBW process driven
by a short laser pulse with medium intensity. The good performance of our model approach
shows, besides, that for ξmax < 1, the process can indeed be understood as being induced
by individual photons stemming from the pulse. For higher field intensities ξmax � 1,
the SFBW process increasingly resembles the Schwinger effect, which is rather sensitive
to the local field strength [Rit85, MKDP16]. Therefore, our approach explicitly aims at
medium intensities. The model supports the understanding of the pair-production process
and shall be employed as a basic tool for the following investigations. In principle, it can
be applied to other multiphoton processes driven by laser pulses, as well, and can easily
be extended to higher photon numbers.
Regarding the SFBW process, we have investigated the energy spectra of the produced
particles, which possess a rich structure. Employing our multiphoton approach, the po-
sition of the main peaks and their approximate shapes can be understood. Besides, fine
structures were observed in some of the peaks. They will be addressed in the following
chapter, revealing carrier-envelope-phase and interference effects.
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4 | CEP and interference effects

This chapter contains a detailed investigation of the effects caused by the carrier-envelope
phase (CEP) of the laser pulse on the pair-creation probability in the multiphoton regime.
The CEP is introduced as the relative phase between the pulse envelope and the underlying
harmonic oscillation, cp. Eq. (2.11). Thus, it directly affects the temporal shape of the
resulting pulse. This effect is depicted in the left panel of Fig. 4.1, where we present the
pulse shape f ′(η) for a pulse with Nosc = 6 field cycles and two distinct values of the CEP.
Furthermore, and more important for us, the CEP also affects the spectral properties
of the pulse. The corresponding spectral densities are presented in the right panel of
Fig. 4.1.1 While the broad central peak remains virtually invariant under variations of the
CEP χ, the spectral density depends on χ at both ends of the spectrum. Additionally, as
will be discussed in the following section, the CEP leaves characteristic imprints on the
quantum phases of the different pair-production channels. As a consequence, interference
terms obtain a distinct CEP dependence, which facilitates their detection.
We will first continue our analytical approach in order to understand the effects of the
CEP on the pair-creation spectra. As a next step, these effects will be investigated in
detail by regarding numerically computed examples, where interferences between different
production channels can be detected.
Finally, we will regard interference effects driven by continuous spectra from a slightly
more distanced view. In this context, the role of self-interference terms shall be addressed,
as well as the question to which extent the unavoidable spectral broadening of radiation
sources affects interference effects. The contents of Secs. 4.1 and 4.2 were originally
published in [JM16a].

4.1 CEP effects: Analytical approach

In order to develop an analytical approach to effects caused by the carrier-envelope phase,
we will first generalize the multichromatic field to the case of a pulse with a continuous
spectrum. In particular, we will establish a connection between the phase shifts δj , which
are crucial for interferences, and the spectral phase of a pulse. Next, the effects of the CEP
on the spectral phase and on the pulse spectrum in general will be discussed. Finally, these
findings will be combined with our concepts developed in Chap. 3 in order to understand
the effects of the CEP on the pair-creation process.

4.1.1 Continuous generalization of the multichromatic field

As we shall see in the following, the multichromatic field as introduced in Eq. (3.1) can
straightforwardly be generalized to the case of a continuous spectrum. To this end, we
regard a plane-wave fronted pulse being defined by its vector potential A(t), again dropping
the spatial dependence in the notation. Its Fourier decomposition can be brought into the

1Here, “spectral density” refers to the absolute value squared of the Fourier transform of f ′. We note
that the visual appearance of the zeros in the spectral density depends on the choice of the numerical
grid. Different to other plots such as Fig. 3.1, the grid employed in Fig. 4.1 was chosen in order to match
the zeros.
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Figure 4.1: Pulse shape as determined by Eq. (2.11) for different values of the CEP χ in
real space (left) and Fourier space (right). Here, we regard a pulse with Nosc = 6 field
cycles. Due to the factor ω2

c , the rescaled Fourier transforms are independent of the central
frequency ωc.

form
A(t) =

1

π

∫ ∞
0
|Â(ω)| cos(ωt− φω)dω (4.1)

which can already be considered the continuous generalization of the multichromatic field
in Eq. (3.1). The comparison also shows that the phase shift δj can be associated with
the spectral phase φω = arg Â(ω) of the corresponding frequency mode. The latter can as
well be expressed by the spectral phase of the electric field E(t), leading to the relation

δj =̂ arg Â(ω) = arg Ê(ω)− π/2 . (4.2)

4.1.2 CEP signatures in the pulse spectrum

The effect of the CEP on the pulse spectrum will now be investigated for the exemplary
case of a plane-wave fronted pulse with an electric field of the form

E(t) ∼ fenv(t) cos(ωct+ χ) . (4.3)

The shape of this pulse is determined by the envelope function fenv(t) which is independent
of the CEP χ. The pulse spectrum can be written as

Ê(ω) ∼ f̂env(ω + ωc)e
iχ + f̂env(ω − ωc)e−iχ (4.4)

which reveals the explicit dependence on the CEP.
The CEP dependence becomes particularly straightforward, if the first term can be ne-
glected, which requires two conditions: (i) the spectral width of the pulse needs to be
small, i.e. the pulse length should not be extremely short; (ii) the regarded frequencies ω
should be close to the central frequency ωc. Under these assumptions, the spectral phase
depends linearly on the CEP, while the photon density remains invariant.
In the general case, for example in the high-energy part of spectrum, both the spectral
phase and the photon density exhibit a more complicated CEP dependence. The properties
of our standard pulse shape are discussed in more detail in App. A.6.
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4.1.3 CEP effects in the energy spectra of the produced particles

Our previously developed concepts shall now be combined in order to understand the influ-
ence of the CEP on the pair-production spectra. To this end, the pulse shape can remain
unspecified, but the spectral width is assumed to be in accordance with condition (i). As a
consequence, the simplified CEP dependence applies for those processes which are induced
by photons with frequencies around the central frequency. Regarding the particle spectra,
this condition is fulfilled in an interval which begins at EL ≈ ωc (when emission processes
can be neglected). It typically comprises several multiphoton peaks and extends to the
energy where the one-photon process becomes noticeable again.
In this inner part of the spectrum, the relevant multiphoton-finding probabilities are essen-
tially independent of the carrier-envelope phase. Conversely, the linear CEP dependence of
the spectral phase is conveyed to the phase shifts, which modulate the interference terms.
If the envelope function is invariant under time reversal (t→ −t), its Fourier transform is
real-valued, such that neighboring modes are subject to the same spectral phase, except
for phase jumps by π which are caused by sign changes. This allows us to continue com-
bining individual channels into photon-number channels. Regarding interference terms
between (absorption-only) channels with N and N ′ photons, we can thus deduce that the
interference phase [cp. Eq. (3.11)] obtains a (N −N ′)χ dependence.2 Depending on the
probabilities of the participating channels, this phase can lead to pronounced interference
effects with a distinct signature. When emission processes are included, the interference
phase can in principle be treated similarly to the absorption-only case, but, as seen in
Eq. (3.4), the phase of emitted photons contributes with inverted sign. On the other
hand, self-interference terms cannot be detected this way, since the CEP dependence of
their phase vanishes identically.
In the outer parts of the spectrum, additional CEP effects are caused by the high-energy
CEP dependence of the photon density, which directly affects the resulting pair-production
probabilities. Furthermore, also the interference phases can become more involved.
The following numerical examples are based on our usual pulse shape in Eq. (2.11) which
fulfills the above criteria.

4.2 CEP and interference effects: Numerical examples

Guided by our analytical approach, we will now inspect CEP effects occurring in numeri-
cally computed particle spectra, in particular aiming at interference effects.

4.2.1 Detailed examples

In Fig. 4.2, we present numerically computed positron spectra for various values of the CEP
χ at constant maximum pulse amplitude ξmax. Following the P model, this normalization
is chosen in order to keep the probabilities of the dominant production channels constant.
The pulse energy, however, depends on χ. The panels depict positron spectra for increasing
values of the pulse amplitude with ξmax = 0.05 (left), ξmax = 0.1 (center) and ξmax = 0.2
(right). Each increment of ξmax leads to one more multiphoton peak before the one-photon
tail begins. These last peaks correspond to photon numbers Ñ = 3, 4 and 5, respectively.
As expected from our previous discussion, the CEP induces local modifications in the
particle spectra, while their overall structure as determined by the multiphoton peaks
and the one-photon tail is preserved. Quantitatively strong CEP effects arise between

2Further details concerning the sign changes will be discussed in Sec. 4.2.2 below.
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Figure 4.2: Positron energy spectra dP in units of 1/m for various values of the carrier-
envelope phase as indicated in the legend and for ξmax = 0.05 (left), ξmax = 0.1 (center)
and ξmax = 0.2 (right). Remaining parameters are the same as in Fig. 3.2. The inlets
show the respective last multiphoton peak before the one-photon tail begins. Subticks
indicate laser photon energies EL which correspond to integer multiples of the laser basis
frequency ωb. Originally published in [JM16a].

neighboring multiphoton peaks, affecting the pair-creation probability by about one order
of magnitude. As depicted in the inlets, the peaks associated with Ñ are modulated by
small oscillations with a scale given by the laser basic frequency ωb. These oscillations, as
well as the one-photon tail, exhibit also a strong dependence on the CEP.
In the following, these effects shall be explained by employing our recently developed
concepts. With Nosc = 6, the pulse shape complies with condition (i). Condition (ii) is
fulfilled for those processes which are not affected by the high-energy CEP dependence
of the one-photon channel, which begins at EL ≈ 3ωc (cp. Fig. 4.1). The appearance of
the corresponding CEP effects depends on the strengths of the competing multiphoton
channels. For ξmax = 0.05 (left panel), the inner part of the particle spectrum can thus
be extended to EL ≈ 3.5ωc. For the stronger laser amplitudes employed in the center and
the right panel, the upper extent can be chosen as EL ≈ 4.5ωc.
In the inner parts, the distinct CEP effects can be attributed to interference effects. At
energies in between the broad multiphoton peaks, the probabilities of neighboring multi-
photon channels are of the same order. Thus, strong interference terms arise, with their
phase revealing a linear dependence on the CEP. This is the main origin of the CEP effects
which are visible at energies EL & 1.5ωc in all panels of Fig. 4.2, at EL & 2.5ωc in the
center and right panel and at EL & 3.5ωc in the right panel. The CEP effects were checked
by a Fourier analysis of dP(χ) for constant values of EL. They can become more involved
when interferences with other photon-number channels become noticeable.
The broad multiphoton peaks are also subject to interference effects. For a given particle
spectrum, the interferences become stronger as the number of photons grows. This can
already be anticipated from Fig. 3.2, where the difference between the probabilities of the
photon-number channels can be seen to decrease for higher photon numbers. Conversely,
regarding a given multiphoton peak, increasing the pulse amplitude ξmax enhances this
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difference and thus weakens the interference effects. The small spectral oscillations disap-
pear as well, which leads to the conclusion that they are mainly caused by interferences.
When the ordinary interferences are suppressed due to the lack of competing processes,
effects caused by self-interference terms could be expected to become visible. However,
the isolated multiphoton peaks are almost invariant under the CEP, which is in good
agreement with our analytical approach predicting the corresponding interference phase
to be independent of the CEP. On the downside, this means that these terms cannot be
accessed in this analysis.
The peak associated with Ñ exhibits particularly strong CEP effects (see the inlets of
Fig. 4.2). Here, interferences arise predominantly between the channel with Ñ photons
and the one-photon channel, with their interference phase revealing a (Ñ−1)χ dependence.
These interferences are the main origin of the CEP sensitivity of the spectral oscillations.
In the right panel, the high-energy CEP dependence of the one-photon channel additionally
enhances the pair-creation probability for χ = π/2 as compared to χ = 0, π. Therefore,
the inner part of this spectrum is defined to end at EL ≈ 4.5ωc.
The corresponding spectral oscillations shall now be discussed in more detail. In the left
panel, they almost disappear for χ = π/4 and χ = 3π/4. With their original periodicity
being ωb/2, the remaining pattern has a periodicity of ωb. The center panel reveals a
similar behavior, with smallest deviations from the original shape of the multiphoton peak
for χ = π/2. In the right panel, the corresponding situation would appear for χ = π/8
(not shown).
These observations can be traced back to the finite temporal length of the pulse profile,
which leaves strong signatures in the entire pulse spectrum. The Fourier transform of the
characteristic function is of the form sinc(πω/ωb). As a consequence, the photon density
vanishes at integer values of EL/ωb (except for energies in the main central peak; see.
Fig. 3.1), while the spectral phase jumps by π (cp. App. A.6). Both of these effects are
reflected in the particle spectra: The one-photon process is clearly affected by the zeros of
the photon density, and the interference phases obtain a discrete energy dependence (see
the following subsection for further details).
Hence, the shape of the spectral oscillations is determined by the one-photon channel and
additionally modulated by the energy-dependent interference phase. The latter is of the
form (Ñ − 1)χ+ jπ, where the integer j is increased when EL passes an integer multiple
of ωb. When the interference term vanishes for a certain CEP, the remaining oscillatory
pattern arises due to the incoherent addition of the one-photon channel on top of the
multiphoton peak.
The one-photon tail lies in the outer part and exhibits CEP effects which are mostly caused
by the high-energy CEP dependence of the photon density. In addition, they can arise
from interferences involving, for example, the weak channel with Ñ + 1 photons.

4.2.2 Further details on the interference terms

In the following, the interference phases will be discussed in more detail. We begin by
addressing the jumps of the spectral phase caused by the finite length of the pulse.
Let us regard the interference terms in Eq. (3.10), which are modulated by the phases ϕ(n̄).
The latter are determined by the spectral phases of the involved photons [cp. Eq. (4.2)].
In the inner part of the particle spectrum (cp. Sec. 4.1.3), the spectral phase of a relevant
photon with frequency ω ≡ ωj is given by

φωj = −χ+ `jπ + const . (4.5)
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The integer `j is zero for ωj ≈ ωc and counts the number of sign changes which occur
whenever ωj passes integer multiples of the basic frequency ωb outside the the main peak,
which is situated in the interval (ωc − 2ωb, ωc + 2ωb), see Figs. 3.1 and 3.3. The constant
introduced in Eq. (4.5) is independent of ωj and χ. For any given photon combination n̄
of N photons, we define the total number of sign changes `n̄ =

∑N
j=1 `j .

The full interference term in Eq. (3.10) can now be decomposed into contributions from
different photon combinations (n̄, n̄′) which shall be sorted by the number of sign changes
∆`n̄,n̄′ = `n̄ − `n̄′ . Here, we can also account for σn̄,n̄′ [see Eq. (3.10)], which can induce
further sign changes. Altogether, the full interference term PNN ′ can now be separated
into two contributions: one with constructive interference, the other one with destructive
interference. With ∆`n̄,n̄′ being independent of χ in the inner part, and assuming the same
for σn̄,n̄′ , both interference terms obtain an effective interference phase of (N −N ′)χ.
When the high-energy CEP dependence has to be taken into account (see e.g. the right
panel of Fig. 4.2), i.e. when the first term in Eq. (4.4) has to be included, the interference
phase can deviate from the linear CEP dependence. However, in our numerical compu-
tations, these deviations were found to have only small impact on the appearance of the
corresponding cosine term.

4.3 Interference processes driven by continuous spectra

In this section, we will regard interferences between multiphoton processes driven by a
continuous spectrum from a more generalized viewpoint. We will first discuss the relevance
of self-interference terms (i.e. interferences between processes with equal total numbers
of photons) in a general field with a continuous spectrum. To this end, we develop an
alternative model approach in close analogy to the P Model, with the major difference
being that the present model is based on the amplitude of the process, rather than the
probability. This model supports the understanding of the special role played by self-
interference terms.
Afterwards, we will briefly discuss the situation of a bichromatic field, which is a workhorse
for theoretical studies on interference effects in strong-field QED (see, e.g., [NF00, KK12c,
AM13, JM15]). We will address the question to which extent the spectral broadening
of the fields, which is unavoidable in actual experiments, may affect the appearance of
interference effects.

4.3.1 S model

In order to approach self-interference terms, a model similar to the P model shall now
be developed based on the S-matrix amplitude. As before, we begin with a multichro-
matic field and regard the one-photon amplitude S(N = 1) which has been introduced in
Eq. (3.5). In analogy to the decomposition employed in Eq. (3.3), we bring S(N = 1) into
the form

S1 =
M∑
j=1

s(j) δ(q0
+ + q0

− − ωγ − ωj) ξj . (4.6)

Here, however, the perturbative intensity scaling is expressively taken into account, while
the phase shifts eiδj have been absorbed into the factor s(j). The transition to a continuous
spectrum is achieved via

∑
j ξj →

∫∞
0 |ξ(ω)|dω, with ξ(ω) = 1

π

∫∞
−∞ ξ(t)e

iωtdt, which yields
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S1 =

∫ ∞
0

dω s(ω) δ(q0
+ + q0

− − ωγ − ω) |ξ(ω)| . (4.7)

Effectively, the δ function disappears after this step. This is in line with the observation
that employing a pulse instead of a multichromatic field leads to three instead of four δ
functions in the S matrix.
In the same manner, the N -photon amplitude S(N) can be expressed (for absorption-only
processes) as

SN =
1

N !

∫ ∞
0

dω1 . . .

∫ ∞
0

dωN s(ω1, . . . , ωN ) δ(q0
+ + q0

− − ωγ −
N∑
j=1

ωj)

× |ξ(ω1)| . . . |ξ(ωN )| .

(4.8)

This expression has the same convolution structure as the multiphoton-finding probability
in Eq. (3.20). It can be used to obtain numerical estimates for the S-matrix amplitude by
regarding s(ω1, . . . , ωN ) as a global prefactor. In principle, the optical phase shifts could
be obtained from the spectral phase and could thus be incorporated as well. Emission
processes can be included in analogy to the method employed in the P model.
The resulting model expressions for the probabilities reproduce the particle spectra to
good extent as well. In contrast to the P model, this model includes the ordinary terms
and the self-interference terms. However, the latter cannot be accessed directly, as shall
be discussed further below. Furthermore, with the models being based on rather different
approaches, a comparison of the numerical estimates does not necessarily deliver relevant
information.

4.3.2 Self-interferences

As introduced in Sec. 3.2.2, self-interferences are interferences between different combina-
tions of the same total number of involved laser photons. Thus, they arise in channels
with at least two photons. Following the S model, we will now regard the structure of the
S-matrix amplitudes for processes with one or two photons stemming from a laser field
with an unspecified shape.
Starting with the one-photon amplitude, the integration in Eq. (4.7) is carried out and
yields

S1 = s(EL)|ξ(EL)| , (4.9)

where EL = q0
+ + q0

− − ωγ denotes the required energy from the laser photon.3 Thus, the
pair-production amplitude is proportional to the Fourier transform of ξ(t) evaluated at
the required energy.
Similarly, the two-photon amplitude following from Eq. (4.8) can be written as

S2 =
1

2

∫
dω s(ω,EL − ω)|ξ(ω)| |ξ(EL − ω)| (4.10)

where ω denotes the frequency of the first photon, while EL − ω is the frequency of the
second photon. For the following discussion, we note that the two-photon amplitude is of
the form

S2 =

∫
dω g(ω) (4.11)

3If EL depends on the laser frequency, the factor resulting from the derivative which occurs, when the
δ function is evaluated, is absorbed into s(EL).
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where g(ω) is a complex-valued function, which can be assumed to be continuous, at least
piecewise. From now on, we drop the explicit dependence on the required energy EL,
which is regarded as a fixed external parameter.
The corresponding differential probability for the two-photon processes

P2 = |S2|2 =

∫ ∫
dωdω′ g(ω)g∗(ω′) (4.12)

can be understood as a two-dimensional integration. Here, contributions with ω = ω′

are the ordinary, interference-free, two-photon processes. Conversely, contributions with
ω 6= ω′ are the two-photon self-interferences.
Mathematically speaking, the integration domain with ω = ω′ has a vanishing weight in
the two-dimensional integration. Usually, this means that the corresponding contribution
to the integral vanishes. In order to deliver a finite contribution, the integrand needed
singularities like δ(ω−ω′). But the latter is not compatible with the structure of Eq. (4.12),
since both integrals are independent of each other. Hence, from this point of view, the
full two-photon probability cannot be reduced to the ordinary processes. Instead, the
self-interference terms give a sizable contribution.
This finding is further corroborated by the following picture. Temporarily regarding a
multichromatic field, the two-photon amplitude Eq. (4.11) arises as a discrete sum S2 =∑

j gj . Therefore, the self-interference terms can be obtained from the discretized version
of Eq. (4.12) as

PSI
2 =

∑
j

gj (S2 − gj)∗ . (4.13)

If the field is composed of many modes, allowing us to assume that S2 − gj ≈ S2, we see
that PSI

2 ≈ P2. This assumption is particularly well fulfilled in the case of a continuous
spectrum. As a final illustrative example, one may think of g(ω) being a Gaussian func-
tion. Thus, the integrand of the probability P2 [see Eq. (4.12)] is spherically symmetric,
completely eliminating the special role of the main diagonal.
In conclusion, the self-interference terms are natural constituents of processes driven by
a continuous spectrum. In contrast to the usual interferences between different photon-
number channels, the self-interference terms are lacking a characteristic phase dependence
which could be investigated in parameter scans. Instead, they silently contribute to the
process probability. Moreover, when we regard the transition from a multichromatic field
towards a continuous spectrum, the weight of the usual diagonal terms vanishes. In fact,
at least when the spectral phase is virtually independent of the frequency, their role is
assumed by the self-interference terms.
Finally we note that the P model follows a different approach, since the integrations are
carried out at the level of the probability. There, the full probabilities are approximated
by the combination of the diagonal terms and the phenomenological factor p0.

4.3.3 Interferences in bichromatic fields of finite spectral width

Bichromatic fields arise as the superposition of two co-propagating monochromatic fields
with different frequencies and amplitudes. When these fields are employed in scattering
experiments, photons can be interchanged with both fields. In particular, interferences
between different process channels can arise. The phase of these interferences can usually
be controlled by the relative phase shift between the two monochromatic modes, leading
to pronounced interference effects. In the following, we will briefly address the question
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to which extent these interferences are affected by the finite spectral broadening which is
unavoidable in the laser fields employed in actual experiments.
At first glance, one might suspect that interferences are suppressed. Regarding a given
constellation of photons, each with a differently detuned energy, the interference criterion
Eq. (3.7) cannot be fulfilled. However, employing our approach presented in Sec. 3.2,
we will first sort the photon combinations according to their total energy. This way, we
can expect to find suitable interference partners. Following this path, we will explore the
situation in more detail, in particular with regard to the question if the characteristic
dependence on the optical phases persist.
To this end, we introduce a bichromatic field with a basic frequency ωB and a higher
harmonic ωH . The spectral shape including the broadening is described by functions
ξB(ω) and ξH(ω), which give rise to the full field in the form

ξ(ω) = ξB(ω) + ξH(ω) . (4.14)

This decomposition is naturally repeated in the process amplitudes as introduced in the
previous section. Starting from Eq. (4.9), the one-photon amplitude can be written as

S1 = SB1 + SH1 (4.15)

where the superscripts denote the spectral origin of the involved photon. Analogously, the
two-photon amplitude introduced in Eq. (4.10) can be brought into the form

S2 = SBB2 + SBH2 + SHH2 . (4.16)

where for example the first term is of the form

SBB2 =
1

2

∫
dω s(ω,EL − ω)|ξB(ω)||ξB(EL − ω)| . (4.17)

The following discussion requires a closer look at the energetic situation. We assume the
spectral broadening to be much smaller than the difference between the modes ωB and
ωH . Accordingly, if a process requires a certain energy EL, only one of the respective
terms in Eqs. (4.15) and (4.16) will deliver the relevant contribution. As an example, let
us regard the case where ωH = 2ωB. If the required energy EL is close to ωH , it can be
provided by either two photons from the basic mode ωB, or by one photon from the higher
harmonic ωH . The relevant terms are S1 ≈ SH1 and S2 ≈ SBB2 . The resulting probability
thus reads

P ≈ |SH1 + SBB2 |2 = |SH1 |2 + 2<
(
SH1 S∗BB2

)
+ |SBB2 |2 . (4.18)

The structure of the probability is similar to the well-known case of a bichromatic field,
where the relative phase shift between the two modes induces a distinct phase term. Here,
with S∗BB2 being composed of the superposition of many contributions, the question arises
if these distinct phase effects are preserved. This question can be answered by following
our discussion in Sec. 4.1: If the spectral phase of the laser field is practically constant
across the spectral range around ωB, or if it depends only linearly on the frequency, all
contributions to S∗BB2 enter with a common photon phase. As a consequence, we can
expect to obtain a similar dependence on the relative phase shift between (the spectral
ranges around) ωH and ωB as in the original bichromatic case. The self-interference terms
inherent to |SBB2 |2 are independent of this phase shift.
In conclusion, we expect pronounced interference effects to persist despite a certain degree
of spectral broadening. We have found a quantitative criterion which aims at the spectral
properties, in particular the spectral phase, of the radiation source. This criterion has to
be compared with the actual experimental situation.

41



CHAPTER 4. CEP AND INTERFERENCE EFFECTS

4.4 Conclusion

In this chapter, we have seen that the pair-production process driven by a short pulse
of moderate intensity is subject to pronounced interference effects between different pro-
duction channels. These channels arise due to the broad spectrum of the pulse, which
allows to deliver the required photon energy by different combinations of photons. When
channels of different total numbers of photons interfere, the interference phases obtain a
characteristic dependence on the CEP of the laser pulse, which can be detected in the
energy spectra of the produced particles. These effects reflect the analogy between the
CEP of a continuous pulse and the relative phase shift in bichromatic fields.
Further effects caused by the CEP comprise the probability of the multiphoton channels,
and in particular the symmetry properties of the laser field. The latter effects will be
discussed in Chap. 6.
In addition, we have employed our analytical approach in order to explore the general
properties of interference processes driven by short pulses. We have found that in addi-
tion to the above-mentioned interferences, also interferences between combinations of the
same total number of photons (self-interferences) arise. From a mathematical perspective,
these terms provide important contributions to the full probability. However, at least for
the pair-production process, they are lacking a characteristic dependence on the CEP (or
on any other accessible parameter), and can therefore hardly be detected. Regarding the
experimental observation of general multiphoton interferences, we have investigated the
question if interference effects persist despite the spectral broadening inherent to experi-
mental radiation sources. We have found that the spectral broadening does not necessarily
suppress interferences.
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Being a truly non-classical entity, the spin is responsible for the fundamental properties of
matter. Regarding for example the periodic table, the chemical and the physical properties
of the elements are, at their core, determined by the Pauli exclusion principle, which
applies to the occupation of the electronic shells as well as to the formation of the nuclei.
Regarding charged (fermionic) elementary particles such as the electron, the spin induces
a magnetic moment, which affects the properties of individual atoms and molecules, for
example via spin-orbit coupling, as well as collective phenomena such as ferromagnetism.
In this chapter, the role of the particles’ spin in the pair-production process shall be
investigated. To this end, a comparison will be established between the probabilities
obtained starting from the Klein-Gordon (KG) equation and from the full Dirac equation.
Characteristic differences and similarities arise, which shall be examined. The analysis
is supported by the P Model and by the insights gained in the previous chapters. The
basic understanding emerges from a consideration of the pair-production rates obtained
for multiphoton processes in monochromatic fields. In the course of this chapter, the
influence of the pulse duration is studied in detail.
The two inequivalent spin configurations for Dirac particles are distinguished by means of
the label s = |s+ + s−|, which gives the absolute value of the sum of the spin quantum
numbers in Ps+,s− , and has the values s = 0 and s = 1. For Dirac particles, the mul-
tiphoton pair-production rates have been derived in the course of this work. For scalar
particles, the main derivation was presented in [Jan13].1 We present results which were
originally published in [JKKM16] as well as additional results and analysis.

5.1 Multiphoton processes in monochromatic fields

We begin our investigation of spin effects by regarding multiphoton processes in monochro-
matic fields. In combination with the P-Model approach, the resulting properties and
insights can be transferred to the case of a short laser pulse. As a major advantage, the
corresponding pair-creation rates can be expressed in closed analytical form for several lim-
iting cases and thus allow direct access to the properties of the underlying pair-creation
process. These rates are obtained from an S-matrix approach employing the Volkov states.
Hence, the action of the laser field on the particles is fully taken into account. For small
field strengths, the analytical expressions for the rates can be Taylor expanded in the
field-strength parameter ξ. The leading order term scales as ξ2N for a N -photon process
and should coincide with a corresponding calculation within perturbation theory, where
the laser field is treated as a quantized radiation field. This can explicitly be verified for
the one-photon process; and for a more general treatment, we refer to [BV80, BV81].
A further simplification can be achieved by evaluating the expressions in the center-of-mass
(c.m.) frame, where the frequencies of the gamma quantum and of the laser field can both
be described by the particles’ c.m. velocity β.2 We begin our discussion by regarding the

1A related derivation for the production probability of scalar particles due to the absorption of two
energetic photons can be found in [AB65], though with some minor misprints.

2For a N -photon process, the energy balance in the c.m. frame reads Nω′c = ω′γ = Ep′+ = Ep′− =

m/
√

1− β2.
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behavior close to the energetic threshold, where the particles are produced with vanishing
velocities β = 0. In the following, we present the rates RN for the N -photon process in
terms of a common prefactor αmξ2N .
For the usual Breit-Wheeler process initiated by the head-on collision of two linearly
polarized photons with polarization vectors e1 and e2, we obtain the following rates for
the production of low-energy KG and Dirac particles, respectively:

RKG
1,pol =

1

4
β(e1 · e2)2 +O(β3) , (5.1)

RDI
1,pol =

1

2
β(e1 × e2)2 +O(β3) . (5.2)

For Dirac particles, the leading-order term stems from the contribution with s = 0. Despite
the similar β scaling, the comparison between KG and Dirac reveals a striking difference
concerning the dependence on the relative orientation of the photon polarization vectors:
For parallel alignment, the production rate for scalar particles reaches its maximum, while
production of Dirac particles is completely suppressed. Conversely, in the orthogonal case,
the situation is reversed.
In order to enhance the similarity between Dirac and KG, we will regard a beam of
unpolarized gamma quanta (by taking the average of the polarization direction of the
gamma quantum) in the following. For the one-photon process, we obtain

RKG
1 =

1

8
β − 11

48
β3 +O(β5) , (5.3)

R
(0)
1 =

1

4
β − 1

8
β3 +O(β5) , (5.4)

R
(1)
1 =

1

2
β3 − 7

20
β5 +O(β7) . (5.5)

The full Dirac rate is obtained as the sum RDI
1 = R

(0)
1 + R

(1)
1 , where the superscript s

distinguishes the spin configurations. The rate for KG particles and the contribution from
s = 0 both grow linearly in β, while the contribution from s = 1 is suppressed by an
additional factor of β2. Comparing the threshold behavior of the different rates, a rather
simple picture emerges: The rate for Dirac particles is dominated by the contribution from
s = 0 and twice as large as the production rate of (intrinsically spinless) KG pairs. In
order to establish an intuitive approach, one may say that Dirac pairs are produced with
vanishing total spin. Furthermore, the rate ratio ζ1 = RDI

1 /RKG
1 = 2 coincides with the

number of spin configurations which are included in the term with s = 0. In the following,
we shall use this ratio as a measure for the spin sensitivity of the process.
This simple picture has to be treated with care, since it only holds close to threshold. For
higher energies, the contribution from s = 1 becomes sizable, and, furthermore, also the
rate ratio between the contribution from s = 0 and KG exceeds the factor 2.
A further complication emerges when we increase the number of absorbed laser photons,
which affects the threshold behavior significantly. For the process involving two laser
photons, we find

RKG
2 =

13

48
β3 − 133

160
β5 +O(β7) , (5.6)

R
(0)
2 =

1

3
β3 − 77

160
β5 +O(β7) , (5.7)

R
(1)
2 =

1

8
β − 31

48
β3 +O(β5) . (5.8)
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Here, the production rate of Dirac particles is dominated by the contribution from s = 1.
In comparison, the rate for KG particles is strongly suppressed with a relative factor of β2.
However, as before, the KG rate resembles the contribution from s = 0. Their numerical
ratio is 16/13, which clearly differs from the factor 2 found for the one-photon process.
For the three-photon process, the threshold behavior resembles the one-photon process:

RKG
3 =

9

512
β − 249

1024
β3 +O(β5) , (5.9)

R
(0)
3 =

9

256
β − 177

512
β3 +O(β5) , (5.10)

R
(1)
3 =

93

128
β3 − 1155

256
β5 +O(β7) . (5.11)

Again, the dominant contribution to the full Dirac rate stems from the term with s = 0.
As for the one-photon process, the rate ratio is RDI

3 /RKG
3 = 2 for low-energy particles.

Further increasing the number of absorbed laser photons up to N = 10 has revealed that
the described behavior continues to alternate between even and odd photon numbers. For
even numbers N , the ratio R

(0)
N /RKG

N between the production rates of low-energy particles
can be described by the formula 4N2

2N2+2N+1
, which approaches the factor 2 in the limit of

large photon numbers.
Several aspects of the described behavior can be understood by regarding the total-angular-
momentum balance of the process.3 Each participating photon carries one unit of angular
momentum along the beam axis. The total incoming angular momentum thus depends
on the number of absorbed photons and has to be compensated by the particles. When
the particles are produced with small momenta, such that their total angular momentum
is completely determined by their spin, this constraint imposes a selection rule which is
particularly sensitive to the parity of the number of photons and to the spin configuration
of the pair. For example in the one-photon process, the total incoming angular momentum
is -2, 0, or 2. This gives an explanation for the suppression of the contribution from s = 1
close to the threshold, while the “spinless” configurations remain unaffected. Conversely,
for the two-photon process, the total incoming angular momentum is an odd number.
Accordingly, the contribution with s = 1 dominates the Dirac rate, while the “spinless”
configurations are suppressed this time. For higher particle momenta, the suppression
is generally mitigated since the incoming angular momentum may also be transferred
to the orbital angular momentum of the pair. In order to obtain a significant orbital-
angular-momentum component along the beam axis, the particles are preferably emitted
in transverse directions.4 In contrast, when the incoming angular momentum can be
compensated by the particles’ spin, their emission pattern remains unaffected by this
consideration. Signatures of this selection rule are visible in the angular distributions and
shall be presented below.
As a preparation for the discussion of spin effects in a laser pulse, we will now investigate
the rate ratio ζN for N = 1, 2, 3 in the whole interval of β. In addition to the dependence
on the parity of the number of photons, the spin sensitivity reveals an increasingly rich
dependence on β as N grows. As the blue curve in Fig. 5.1 shows, the one-photon ζ1

essentially grows with β. Conversely, for the two-photon process (see green curve), ζ2

diverges with 1/β2 at the threshold and falls into a minimum at β ∼ 0.5. For these
3In [IKS05], the angular-momentum balance was used in a similar context.
4We determine the pair-creation rates (or probabilities) in a plane-wave basis for the particle states

in which the orbital angular momentum can hardly be accessed. Nevertheless, the process produces real
particles with well-defined physical properties.
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Figure 5.1: Ratio between the rates for Dirac and KG for different numbers of absorbed
photons as a function of the velocity β of the particles. Originally published in [JKKM16].

momenta, the spin sensitivity is actually smaller than for the one-photon process. Finally
the three-photon ζ3 possesses a pronounced maximum and minimum (red curve). For all
processes under investigation, we find ζN ≥ 2. Thus, the KG rate gives a lower limit
for the full Dirac rate. Furthermore, despite the rich dependence on β, the rate ratio
amounts to ζN ∼ 4 for intermediate momenta. In the limit of ultra-relativistic particles,
the production rates generally vanish again. As can also be seen in Fig. 5.1, the asymptotic
behavior reveals strong spin sensitivities. Nevertheless, these processes play only a minor
role for the full pair-production probability obtained in a pulse.
In conclusion, the spin effects strongly depend on the kinematic conditions and can par-
tially be understood in terms of the angular-momentum balance of the process. Strong
spin effects arise close to threshold if the number of laser photons is even, and for ultrarel-
ativistic particles. In contrast, moderate particle energies are generally accompanied with
intermediate spin sensitivity.

5.2 Spin effects in short pulses

As a next step, we will investigate the influence of the pulse shape on the spin effects. To
this end, we will compare pair-production processes in laser fields with a common central
frequency ωc but different spectral compositions. Beginning with a monochromatic field,
we will proceed to pulses with various numbers of cycles Nosc and carrier-envelope phases
χ, see Eq. (2.11). To begin with, the latter will be chosen as χ = 0. As before, we will
keep ξmax constant. Furthermore, guided by our findings for monochromatic fields, we will
regard kinematically different scenarios.
In particular for a long pulse or a monochromatic field, the kinematic situation is deter-
mined by the ratio ωcωγ/m2

∗, which is invariant under Lorentz transformations along the
beam axis. Here, m∗ denotes the laser-dressed mass. Assuming a monochromatic field of
linear polarization with amplitude parameter ξ, the dressed mass readsm∗ = m

√
1 + ξ2/2.
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The minimum number of required laser photons is given by the smallest integer which ex-
ceeds m2

∗/(ωcωγ). In the regime with ξ . 1, the production channel with smallest photon
number usually gives the dominant contribution to the full process due to the perturbative
intensity scaling. For a process involving N laser photons of frequency ωc, the particles’
center-of-mass energy reads Ep′ =

√
Nωcωγ . In order to establish a connection to our pre-

vious findings, we introduce the usual relativistic parameters β and γ = (1− β2)−1/2 and

account for the laser dressing by means of Ep′ = γm∗, which leads to β =
√

1− m2
∗

Nωcωγ
.

The calculations are carried out in the c.m. frame of the leading-order process in the
monochromatic field. We note that the ratios ζN from the previous section are invariant
under Lorentz transformations along the beam axis.

5.2.1 Above the one-photon threshold

In this first scenario, we begin with a weak monochromatic laser field with ξ = 0.02 and
photon frequencies ωc = ωγ = 1.006m. Hence, the absorption of one laser photon is
sufficient to create a pair just above the threshold with β ≈ 0.11. In accordance with
Eqs. (5.3)-(5.5), the comparison of the particle creation rates yields a Dirac-to-KG ratio
of ζ ≈ 2.1. In contrast, when an ultrashort pulse with Nosc = 2 of the same central
frequency is employed, we obtain a significantly larger ratio ζ ≈ 3.5. This is, the spin
sensitivity is clearly enhanced in the pulse as compared to the monochromatic field.
The origin of this enhancement can be traced back to the broad spectrum of the short
pulse, in particular to the availability of high-energy photons. While the monochromatic
laser field produces pairs with fixed c.m. energy Ep′ ≈ 1.006m, the pulse produces pairs
in a broad energy range. As can be seen from the corresponding momentum spectrum in
Fig. 5.2, the positrons are typically produced with significantly higher momenta than in
the monochromatic field, where p+ ≈ 0.11m. In the spirit of the P-Model, the momentum
spectrum is determined by the interplay between the spectral energy density of the pulse
and the energy dependence of the production rates [see. Eqs. (5.3)-(5.5)]. While the
energy density generally falls off for higher photon energies, the production rates of the
one-photon process essentially grows with β. As a result, the largest contributions stem
from particles with an average c.m. velocity β ≈ 0.45.5 As we have seen in the previous
section, these processes are also subject to stronger spin effects with ζ1 ≈ 3.6 [see. Fig. 5.1]
than the production of low-energy pairs.
Despite the strong spin sensitivity of the fully integrated probabilities, several similarities
between Dirac and KG can be found in the differential probabilities. The momentum
spectra as depicted in Fig. 5.2 exhibit qualitative resemblance for KG and Dirac particles.
The dominant contribution to the latter stems from the term with s = 0, while the
contribution from s = 1 shows the typical suppression at the threshold which is imposed by
the angular momentum balance. The shapes of the high-energy tails are mostly determined
by the fall-off of the spectral energy density and thus similar for all spin configurations.
As a next step, we regard the fully differential angular distributions for fixed positron mo-
menta p+ = 0.15m in Fig. 5.3. The angular distribution of the contribution with s = 0 is
almost homogenous yet moderately enhanced in the laser backward direction. In contrast,
the angular distribution of the contribution with s = 1 is peaked around the polarization
axis of the laser, while emission along the laser axis is suppressed. Comparing the two

5The typical average c.m. velocity can most easily be obtained as follows: Starting from the energy
spectrum, the typical positron momentum p+ can be deduced. The corresponding average absorbed laser
energy EL then replaces the product Nωc in the above equations for β, where also the pulse-dressed mass
enters.
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Figure 5.2: Angularly integrated probabilities dP
dEp+

in units of 1/m as a function of p+/m

for ωc = ωγ = 1.006m, Nosc = 2, and ξmax = 0.02. Originally published in [JKKM16].

distributions, the impact of the conservation of angular momentum (as discussed in the
previous section) becomes obvious. The total Dirac distribution is essentially determined
by the contribution with s = 0, while the smaller contribution with s = 1 appears as an
azimuthal modulation. In comparison, the KG distribution appears qualitatively similar,
but, here, the modulations are offset by π/2 as compared to the Dirac case. Employ-
ing the framework of quantum kinetic theory, a similar out-of-phase behavior is found in
the momentum spectra of the particles being produced in a purely time-dependent field
[HADG09, DD10, DD11].
Until now, we have compared the two extreme cases of a monochromatic laser field and
of an ultrashort pulses with just two cycles. Increasing the number of cycles with Nosc =
2, 4, 6, and 9, the spin sensitivities were found to diminish with ζ = 3.5, 2.9, 2.6, and 2.4. As
Nosc grows, the spectral width of the pulse becomes narrower and the availability of high-
energy photons is reduced. Accordingly, the pairs are produced within a narrower energy
range and with smaller typical energy. This behavior will be depicted in the following
section. Thus, the spin effects are reduced and the situation becomes increasingly similar
to the case of a monochromatic field, where ζ ≈ 2.1.

5.2.2 Just below the one-photon threshold

In the next scenario, the frequencies ωγ = 1.4m and ωc = 0.7m are chosen just below
the threshold of the one-photon process. With ξ = 0.2, the monochromatic field produces
pairs by means of a two-photon process with β ≈ 0.69 and strong spin effects as indicated
by ζ ≈ 5.8. In contrast, the comparison of the pair-production probabilities in a two-cycle
pulse yields ζ ≈ 3.4. Hence, for these parameters, the spin effects in the pulse are clearly
reduced as compared to the monochromatic case.
The current scenario nicely illustrates that the sharp threshold behavior inherent to the
pair-production process in a monochromatic field is smeared out when a pulse is regarded
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Figure 5.3: Fully differential probability d3P
dEp+d

2Ωp+
in units of 1/m for p+ = 0.15m,

ωc = ωγ = 1.006m, Nosc = 2, and ξmax = 0.02. The angles ϑ and ϕ describe the positron
emission direction and are measured with respect to the laser propagation and polarization
directions, respectively. Originally published in [JKKM16].

instead. While the monochromatic field can only produce pairs via absorption of two or
more laser photons, the high-energy part of the pulse spectrum facilitates pair production
by one-photon processes. In particular, since the central frequency is chosen just slightly
below the threshold, the spectral density at the required energy can still be significant,
at least in a certain interval up to moderate particle energies. The perturbative intensity
scaling additionally favors channels with smaller photon numbers. Accordingly, the full
pair-production probability in the pulse is mostly determined by low-energy pairs created
by one-photon processes, with average c.m. velocities β ≈ 0.45 [see the momentum spec-
trum in Fig. 5.4]. These processes are accompanied with smaller spin sensitivity than the
high-energy two-photon process driven in the monochromatic field and thus reduce the
overall spin effects.
The described dominance of the production channel with lower photon number is referred
to as subthreshold enhancement [TTKH12] and is induced by the intensity dependence of
the pair-production rates. From the above line of argument, one may expect the reduced
spin sensitivity to be a general accompanying feature if the dominant channel is driven by
an odd number of laser photons.
As before, the momentum spectra for KG and Dirac are similar in shape, with the latter
being determined by the contribution with s = 0. The small plateaus at p+ ≈ m are
caused by the two-photon process which eventually becomes dominant for higher energies,
when the spectral density falls off. In particular, positrons with p+ ≈ m require the
energy EL ≈ 1.4m to be absorbed from the pulse. The pulse spectrum, however, has its
first zero at this energy, such that this process necessarily requires the absorption of two
laser photons, just as in the monochromatic case.
When the pulse length is increased, the spin sensitivity in the present scenario exhibits
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Figure 5.4: Same as Fig. 5.2 but for ωγ = 1.4m, ωc = 0.7m, and ξmax = 0.2. Originally
published in [JKKM16].

a nonmonotonous behavior: First, for Nosc = 2, 4, 6, and 9, we find ζ = 3.4, 2.9, 2.7,
and 2.7. Thus, although the pulse spectrum becomes narrower, the difference with the
monochromatic case is increased. Conversely, for Nosc = 12, 15, and 20, we obtain ζ =
2.7, 2.9, and 3.3. Hence, the spin sensitivity eventually grows again and approaches the
monochromatic case, where ζ ≈ 5.8. In the following, we shall investigate the influence of
the pulse length in more detail. As before, the behavior can be understood by combining
the P Model, which is based on the pulse spectrum, and the spin effects obtained in
monochromatic fields.
In order to apply the P Model, the required photon energy EL has to be determined. It
depends on the positron energy as well as on its emission direction. For typical (abso-
lute values of the) positron momenta, the relevant interval of energies EL is depicted in
the upper panels of Fig. 5.5 for two different pulses with Nosc = 2 (left) and Nosc = 9
(right). The extent of this interval, as indicated by the red and green curves in Fig. 5.5, is
determined by the kinematics which are governed by the laser-dressed energy-momentum
balance. For the current parameters, especially due to the moderate value of ξmax = 0.2,
increasing Nosc only barely changes the interval. While the upper limit grows with p+,
the smallest overall required energy arises for p+ ≈ 0.34m. Production of positrons with
p+ ≈ 0.98m happens in a c.m. frame, such that the corresponding photon energy does
not depend on the emission direction.
In contrast, strong effects due to the pulse length are present in the actual distributions
of absorbed energies for fixed positron energies. Their shape is illustrated in Fig. 5.5 by
means of the mean value and of the standard deviation obtained for the production of
Dirac particles.6 Increasing the pulse length, the interval of typically absorbed energies
becomes generally narrower.
This behavior follows directly from the spectrum of the pulse, which is also depicted in the

6The energy distribution is asymmetric, and therefore the standard deviation exceeds the distance
between the mean value and the lower or upper interval boundary for some positron momenta.
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Figure 5.5: Analyzing the positron momentum spectra for Nosc = 2 (left) and Nosc = 9
(right): The required photon energy EL depends on the positron energy and in general
also on the emission direction. The plots in the upper row depict statistical information
about EL based on the pair-creation probability for Dirac particles. In particular, for a
given positron momentum p+, the relevant interval of photon energies can be read off. The
second row depicts the P-Model estimates (in arb. units) for the probability of multiphoton
processes as a function of the required energy EL. Combining these information, for
example the number of absorbed photons can be estimated. Comparing the plots for
Nosc = 2 and Nosc = 9, the reduced spectral width of the pulse clearly restricts the
available pair-production channels.

lower panels of Fig. 5.5. Here, the P-Model estimates (including emission processes) for
the first photon-number channels are presented. Comparing Nosc = 2 (left) and Nosc = 9
(right), the effect of the reduced spectral width becomes clearly visible. The longer pulse
supports processes in much narrower intervals centered around integer multiples of its
central frequency.

Consequently, for positrons with p+ . 0.7m which require photon energies above the
central frequency but sufficiently below the onset of the two-photon peak, increasing
Nosc reduces the availability of high-energy photons and thus only processes requiring
the smallest possible photon energies persist. This behavior is also reflected in the mo-
mentum spectra of Dirac particles, which are depicted in the upper panel of Fig. 5.6 for
pulses with different numbers of cycles. As Nosc grows, a pronounced peak emerges around
p+ ≈ 0.34m due to the suppression of channels requiring increasingly unfavorable photon
energies. The corresponding influence on the spin effects is illustrated by the ratio ζ(p+)
between the differential probabilities for Dirac and KG, respectively, in the lower panel
of Fig. 5.6. Since the spin sensitivity of the one-photon process grows with EL (at least
close to the threshold), the above-described suppression leads to a minimum of ζ(p+) at
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Figure 5.6: Positron momentum spectra for Dirac particles (upper panel) and spin effects
as given by the ratio ζ(p+) between the differential probabilities for Dirac and KG (lower
panel) for various values of Nosc (as given in legend) and for ωγ = 1.4m, ωc = 0.7m, and
ξmax = 0.2. Inlets show processes around p+ ≈ 0.34, where smallest overall spin sensitivity
is found. Note different scales in the upper panel.

p+ ≈ 0.34m. Besides, this illustrates that the spin sensitivity is determined by the sum of
the particle’s momenta, which is encoded in EL, rather than by the positron momentum
alone. For short pulses with Nosc < 9, these processes with smallest EL give the dominant
contribution to the full pair-production probability and thus this development reduces the
overall spin effects.
However, for longer pulses, the one-photon processes become increasingly unlikely and are
eventually superseded by the high-energy two-photon processes, which are accompanied
with significantly higher spin sensitivity. As depicted in the right column of Fig. 5.5, the
required photon energy for positrons with momenta p+ & 0.7m approaches the two-photon
peak in the P Model. The upper right panel clearly shows the transitions between the
one- and two-photon processes at p+ ≈ 0.75m, and between the two- and three-photon
processes at p+ ≈ 1.1m. With Dirac and KG particles having different preferred angular
directions, the transitions between the neighboring photon-number channels happen at
slightly different positron energies and thereby enhance the corresponding spin effects
visible in the lower panel of Fig. 5.6.
In particular positrons with p+ ≈ 0.98m require photon energies of 2ωc, which can most
easily be provided by two photons of the central frequency, independent of the number of
cycles. Thus, as Nosc grows, a corresponding maximum emerges in the positron energy
spectra (see upper panel of Fig. 5.6). These processes increasingly resemble the process in
a monochromatic field, while the first maximum at p+ ≈ 0.34m deteriorates for Nosc > 12
(see inlet). Hence, the monochromatic situation is approached, and the threshold condition
becomes more and more important. Note that for p+ ≈ 0.98m, the ratio between the
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differential rates ζ(p+) ≈ 6 can be read off the lower panel of Fig. 5.6 and almost coincides
with the rate ratio obtained in the monochromatic field, see also Fig. 5.1.
In conclusion, we have seen how the pair-creation spectra react to the transition from an
ultrashort pulse towards a significantly longer pulse in a rather complicated constellation of
laser and radiation parameters. The P Model has proven helpful for the understanding of
the positron momentum spectra obtained in pulses of various lengths. The accompanying
spin effects could basically be understood from the behavior found in monochromatic fields.
This finding provides further support for the underlying assumptions of the P Model.

5.2.3 Deeply below the one-photon threshold

As a final example where the pulse length has a particularly strong impact on the spin
effects, we regard the frequencies ωγ = 1.006m and ωc = 0.503m, which are deeply below
the one-photon threshold. This scenario resembles the parameters of the above-threshold
example, except that the laser frequency is halved. Hence, a weak monochromatic field
with ξ = 0.001 can produce low-energy pairs with c.m. velocity β ≈ 0.11 via absorption
of two laser photons. As we have seen in Sec. 5.1, this process is quite sensitive to the
particles’ spin, with ζ ≈ 39. In contrast, the two-cycle pulse yields ζ ≈ 2.9 only, which
means a reduction of one order of magnitude in the spin sensitivity.
As in the previous example, the pulse cannot provide photons of energy 2ωc. Therefore,
particles with β ≈ 0.11 are produced via absorption of two laser photons. These processes
occur with strong spin sensitivity, as in the monochromatic field. However, in addition,
pairs with other energies are produced via absorption of one laser photon. Owing to
the small value of ξ, these processes dominate the full pair-production probability, see
Fig. 5.7 (a). The particles’ typical average c.m. velocity β ≈ 0.32 is greater than for
the process in a monochromatic field, but – as can be anticipated from Fig. 5.1 – the
corresponding spin effects are clearly smaller. Different to the above-threshold scenario,
increasing the particle energy (and reducing the number of laser photons from two to one)
thus reduces the spin effects in the present case. This is a consequence of the enormous
spin sensitivity inherent to low-energy two-photon processes.
The particles’ energy spectrum [see Fig. 5.7 (a)] contains several interesting details. Both
the probabilities for KG and the contribution with s = 0 contain a pronounced dip at
β ≈ 0.11 which is caused by the spectral hole. In comparison, close to the threshold,
the contribution with s = 1 is smaller by about two orders of magnitude, but it remains
completely unaffected by the spectral hole. As we have seen before, these low-energy
processes are suppressed when only one laser photon is absorbed. Here, the pulse spectrum
also allows to deliver the required energy via two photons. Hence, the angular momentum
balance can be fulfilled, but the intensity scaling limits the corresponding probability. In
contrast to the one-photon processes, multiphoton processes are unaffected by the holes
in the pulse spectrum.
The plateaus visible for higher positron momenta are further consequences of the spectral
holes. As we have seen in the previous example (compare Fig. 5.5), for each positron
momentum p+, the spectral energy density is probed in a certain range of photon energies.
In the current scenario, only the process with β ≈ 0.11 happens in a c.m. frame, which
explains the strength of the corresponding dip in the momentum spectrum. As p+ grows,
the range of photon energies is shifted to higher energies, becomes broader and comprises
several spectral holes. Consequently, the effect of the spectral holes is soon washed out,
but, in the current scenario, a plateau structure emerges instead: With the spectral energy
density falling off for higher energies, the integrated probability drops significantly when
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Figure 5.7: Same as Fig. 5.2 but for ωγ = 1.006m, ωc = 0.503m, and a) ξmax = 0.001, b)
ξmax = 0.1. Originally published in [JKKM16].

the lower boundary of the interval passes one more local maximum in the pulse spectrum.
Conversely, it remains almost constant when a hole is passed.

As a final step, we proceed to higher laser intensities with ξ = 0.1. The relative importance
of multiphoton processes is thereby enhanced significantly, while the effects of the spectral
holes disappear. Unlike in the previous scenarios, the P Model suggests that low-energy
particles are predominantly produced via absorption of two laser photons, while higher
total photon energies may also be delivered via three laser photons. Accordingly, the
low-energy part of the momentum spectrum as depicted in Fig. 5.7 (b) is dominated by
the contribution with s = 1. Close to the threshold, the “spinless” channels are clearly
suppressed, since they are restricted to one- and, possibly, three-photon processes. As a
consequence, the low-energy part of the particle spectrum reveals very strong spin effects,
with a huge difference between Dirac and KG. However, as before, a higher degree of
similarity is found in the behavior for intermediate and high positron momenta. Thus, the
integrated probability exhibits only moderate spin sensitivity, with ζ ≈ 4.6. In contrast,
the spin effects in the monochromatic field amount to ζ2 ≈ 66 for the dominant two-
photon process. In the present scenario, the laser dressing becomes noticeable and leads
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Figure 5.8: Same as Fig. 5.3 but for ωγ = 1.006m, ωc = 0.503m, and ξmax = 0.1. Originally
published in [JKKM16].

to a reduction (as compared to the low-intensity case) of the particles’ momenta (β ≈ 0.08
as compared to β ≈ 0.11), which, in turn, significantly increases the spin sensitivity.
The contribution of the weaker three-photon process eventually reduces the overall spin
sensitivity to ζ ≈ 43, which still exceeds the value found in the pulse by almost one order
of magnitude. Thus, the strong impact of the pulse length on the spin effects persists also
for these enhanced laser intensities.
Despite the striking differences between (total) Dirac and KG for small particle momenta,
a close resemblance can be found between KG and the contribution with s = 0, even in the
fully differential angular distributions. These are depicted for fixed positron momentum
p+ = 0.15m in Fig. 5.8. At first glance, the emission patterns of the “spinless” channels
look almost identical. The positron emission direction is centered around the polarization
direction of the laser7, with a numerical ratio less than two as expected for a low-energy
two-photon process. Again, the restriction to transverse directions is a clear consequence of
the angular momentum balance. The non-vanishing emission probabilities for longitudinal
directions stem from processes with different photon numbers. In comparison, the emission
pattern from s = 1 appears inverted, but with higher probabilities. As a result, the total
angular distribution for Dirac particles is almost homogenous in transverse directions and
thus entirely different to KG.
With the pair production being dominated by multiphoton processes, carrier-envelope-
phase effects could be expected. Until now, we have kept the CEP χ = 0 throughout.
Next, we repeat the calculations for different values of the CEP while the maximum ampli-
tude ξmax = 0.1 is fixed, as in the previous chapter. As a major difference to the previous
chapter, the current investigation focuses on integrated probabilities. Since interference
effects tend to disappear after integrating, we start our discussion with the ratio ζ(p+),

7The asymmetry between the forward and backward direction along the polarization axis is related to
the asymmetry of the vector potential, which can partially be controlled by the carrier-envelope phase.
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ωc = 0.503m, and ξmax = 0.1.

which does not include the last integration over the positron momenta. Despite being
based on angle-integrated pair-production probabilities, this ratio exhibits clear CEP ef-
fects, which can be seen in Fig. 5.9 where ζ(p+) is depicted for different values of χ. The
CEP appears to modulate the rate ratio, with moderate enhancements and suppressions
depending on the positron momentum. Particularly strong effects occur for high positron
momenta with p+ & m, where also three-photon processes become relevant. Here, the
rate ratio changes by several ten percent. In the other scenarios, the influence of the
CEP on the spin sensitivities ζ(p+) obtained in the pulse was found to be significantly
smaller. There, the pairs were mostly produced via absorption of one laser photon. For
these processes, ζ(p+) is virtually invariant when χ changes. Finally, regarding the ratio ζ
between the fully integrated probabilities, the CEP effects almost vanish and amount to
. 3% only, for all examples.
As before, when the pulse length is increased, the reduced spectral width enhances the
relative weight of processes induced by photons close to the central frequency. In the
present scenario, this development amplifies the weight of the huge spin effects induced
by the low-energy two-photon process leading to the pair with β ≈ 0.08. Accordingly, the
spin effects obtained in the pulse become much stronger than in the previous examples:
For Nosc = 2, 6, 12, and 18, the rate ratios ζ = 4.6, 8.6, 14, and 18 were found, approaching
the monochromatic case, where ζ ≈ 43.

5.3 Summary and conclusion

To conclude this chapter, we have seen that the influence of the spin degree of freedom
on the pair-production probabilities strongly depends on the kinematic situation under
investigation. Predictions from Dirac and KG theory can be either quite similar, even
with regard to the angular distributions of produced particles, or largely different. Hence,
the spin plays a fundamental role for the process.
Beginning with multiphoton processes in monochromatic fields, the spin sensitivity, which
was measured by the ratio ζ between the pair-production rates of Dirac and KG pairs,
was found to depend on the energy of the produced particles and on the number of
absorbed photons. The underlying behavior could basically be understood by regarding
the conservation of the angular momentum which is carried by the incoming photons.
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Accordingly, in particular close to the energetic threshold of the process, the spin effects
depend on the parity of the total number of absorbed photons (i.e. the gamma quantum
and the laser photons): Strong effects occur for odd total photon numbers, while ζ ∼ 2 for
even total photon numbers. Conversely, production of particles with moderate energies
is generally accompanied with intermediate spin sensitivity ζ ∼ 4, while ultrarelativistic
particles are produced with strong spin effects with ζ →∞. Especially in monochromatic
fields (or long pulses) of moderate intensity (ξ < 1), these extreme cases can play a major
role.
In contrast, increasing the spectral width (while keeping the central frequency constant)
by reducing the pulse length generally enhances the weight of processes with moderate
particle energies and thus induces intermediate spin sensitivity, which may be either larger
or smaller than in the monochromatic case. This behavior was found despite the spectral
holes present in our particular shape function, and may therefore be expected to arise in
short pulses of other shapes, as well.
With regard to the theoretical investigation of the pair-production process, we note that
despite the differences between the predictions from Dirac and KG theory, the general
behavior reveals a high degree of similarity. This way, predictions from KG theory can
be employed as an approximation to the full Dirac theory, which demands more involved
computations. For example in the case of even higher laser intensities ξmax � 1, when the
process happens in the tunneling regime, an overall ratio ζ ≈ 6 was found in [VCM13].
Following the same philosophy, an S-matrix calculation for scalar particles was employed
in [JM13] in order to investigate the enhancement of Schwinger-like pair production by
adding a secondary high-frequency laser field.
We note that the present analysis provides information about the applicability of this
approximation in the regime of moderate intensities ξmax . 1. Furthermore, our approach
based on the conservation of angular momentum supports an intuitive understanding of
the role of spin.
Finally, our findings show that the pulse duration exhibits a profound influence on the
SFBW process at moderate laser intensities. Following our multiphoton approach, this
influence can be understood from the frequency spectrum of the pulse.
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6 | Two consecutive pulses

In this chapter, we regard the Strong-Field Breit-Wheeler process in the field of two consec-
utive laser pulses. We extend the laser field to two independent short pulses, which travel
in the same direction but arrive with a variable time delay. These studies provide basic
information about the pair-production process, in particular with regard to effects related
to the shape of the driving laser field. In atomic physics, similar setups are employed to
conduct experiments in a pump-probe manner, aiming at time-resolved information about
the respective process.

6.1 The pair-creation probability

In the following, we will present the derivation of the pair-production probability for scalar
particles due to the collision of a high-energy gamma quantum with two consecutive laser
pulses. The latter can be described independently of each other, facilitating a derivation
with a high degree of generality and flexibility. The field configuration is depicted in
Fig. 6.1.
We will first introduce the combined vector field and the corresponding Gordon-Volkov
states, and then derive the expressions for the S-matrix amplitude.

6.1.1 Scalar particles in the field of two consecutive pulses

The combined vector potential Ac reads

Ac = A1 +A2 (6.1)

where each pulse is of the form given by Eq. (2.10). In addition, we introduce phase-shift
parameters δj which allow us to determine the timing of the pulses. The pulse parameters
can be chosen almost independently, such that the vector potential of the individual pulses
is introduced in the most general form as

Aµj = Aµj (ηj) = ajfj(ηj − δj)X[0,2π](ηj − δj)ε
µ
j (6.2)

with ηj = kj · x for j = 1, 2. The notation employed in Eq. (6.2) treats the phase shifts δj
as a part of the shape function, which simplifies the beginning of the following derivation.
The pulses are restricted to the intervals

ηj ∈ [δj , δj + 2π]. (6.3)

D`

`

Figure 6.1: Schematic illustration of the field configuration: The gamma quantum collides
with two consecutive laser pulses which are separated by a variable distance D. Originally
published in [JM16b].
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The pulses propagate in the same direction, and are polarized in transverse directions, i.e.
k1 · k2 = 0 and εi · kj = 0 for i, j ∈ {1, 2}. In the following derivation, the phase shifts δj
are understood to be chosen such that the pulses are strictly separated. Assuming pulse
number one to arrive first with δ1 = 0, this condition implies δ2

ω2
> 2π

ω1
.

Since the pulses have vanishing overlap, i.e. due to A1 · A2 = 0, the Gordon-Volkov
solutions of the corresponding Klein-Gordon equation can be written as

Ψc
p± =

√
m

V Ep±
ei[±p±·x+Λ±1 +Λ±2 ] (6.4)

where the contribution of the pulse j = 1, 2

Λ±j =
1

kj · p±

∫ ηj

0

[
ep± · Aj(η)∓ e2

2
A2
j (η)

]
dη (6.5)

is of the same form as in the single-pulse case.

6.1.2 S-matrix amplitude

The S-matrix element for the pair-production process induced by the decay of the gamma
quantum in the combined laser field Ac reads

Scp+p− = −i
∫
d4x (Ψc

p−)∗Hcint Ψc
p+
, (6.6)

with the interaction Hamiltonian

Hcint =
−ie
2m

(
Aγ ·

→
∂ −

←
∂ · Aγ

)
− e2

m
Aγ · Ac . (6.7)

Similar to the derivation in the single-pulse case, we introduce auxiliary functions allowing
us to bring the S-matrix element in the convenient form

Scp+p− = S0

∫
d4xCc e−iQ·x−iH

c
(6.8)

with the same prefactor S0 = iem
√

2π
V 3Ep+Ep−ωγ

and combined momentum vector Qµ =

kµγ −
(
pµ+ + pµ−

)
as before. Differences occur in the reduced matrix element Cc, which now

reads

Cc = C0 +
2∑
j=1

Cj (6.9)

with

C0 =
p− − p+

2m
· εγ ,

Cj =
eAj(ηj)
m

· εγ .
(6.10)

Furthermore, the auxiliary function Hc is extended according to

Hc = H1 +H2 (6.11)
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with contributions stemming from the individual pulses

Hj =

∫ ηj

0
hj(η − δj)X[0,2π](η − δj)dη ,

hj(η − δj) =

2∑
l=1

hljf
l
j(η − δj) ,

(6.12)

revealing the explicit dependence on the phase shifts. We finally introduce the abbrevia-
tions

h1,j = −eaj
[
εj · p+

kj · p+
− εj · p−
kj · p−

]
,

h2,j = −
e2a2

j

2

[
1

kj · p+
+

1

kj · p−

]
.

(6.13)

With regard to the space-time integration required in Eq. (6.8), we note that Cc and Hc

depend only on the light-cone-minus coordinate x−, since ηj = k0
jx
−. Accordingly, we

begin with the integrals along x+ and x⊥, which brings us to the familiar form

Scp+p− = (2π)3S0δ(Q
−)δ(2)(Q⊥)

∫
dx−Cc e−iQ

0x−−iHc
. (6.14)

Inspecting the reduced matrix element Cc, the terms C1 and C2 are recognized to be
restricted to the phase interval of the respective pulse. In contrast, C0 is not restricted.
Concerning Hc, we regard the phase dependence of the contributions Hj , which can be
summarized by accounting for the effect of the characteristic function X[0,2π](η−δj) in the
form

Hj =


0, for ηj < δj∫ ηj

δj
hj(η − δj)dη, for ηj ∈ (δj , δj + 2π)

H?
j =

∫ δj+2π
δj

hj(η − δj)dη, for ηj > δj + 2π .

(6.15)

For ηj > δj + 2π, the value of Hj is constant and shall be denoted by H?
j .

The integral proportional to C0 can now be regularized in analogy to the treatment pre-
sented for the single-pulse case in Sec. 2.2.1. For ε > 0, we introduce a damping factor
e−ε|x

−| and integrate by parts according to∫
dx−e−iQ

0x−−iHc−ε|x−| =

=

[
e−iQ

0x−−iHc−ε|x−|

−iQ0 − ε sign(x−)

]∞
−∞

−
∫
dx−

−idHc

dx−

−iQ0 − ε sign(x−)
e−iQ

0x−−iHc−ε|x−| .
(6.16)

As can be seen from Eq. (6.15), the derivatives dHj
dx− vanish outside the pulse intervals, i.e.

dHj

dx−
= k0

j hj(k
0
jx
− − δj)X[0,2π](k

0
jx
− − δj) , (6.17)

which restricts the integration domain. Assuming weak damping ε� |Q0|, we thus obtain
the regularized integral∫

dx−e−iQ
0x−−iHc ≡

2∑
j=1

−k0
j

Q0

∫
dx−

dHj

dηj
e−iQ

0x−−iHc
. (6.18)
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Accordingly, we can define a reduced matrix element

C̃c = C̃1 + C̃2 (6.19)

where for each part C̃j , the x− integration is restricted to the phase interval of the respec-
tive pulse. They can be brought into the form

C̃j = Cj −
k0
j

Q0

dHj

dηj
C0 =

2∑
l=1

g̃lj f
l
j(Φj)X[0,2π](Φj) (6.20)

with Φj = k0
jx
− − δj and constants

g̃1,j =
eaj
m
εj · εγ −

k0
j

Q0

(p− − p+) · εγ
2m

h1,j ,

g̃2,j = −
k0
j

Q0

(p− − p+) · εγ
2m

h2,j ,

(6.21)

where hlj was defined in Eq. (6.13) for l = 1, 2. This way, we can express the S-matrix
element from Eq. (6.14) as

Scp+p− = (2π)3S0δ(Q
−)δ(2)(Q⊥)

∫
dx− C̃c e−iQ

0x−−iHc
. (6.22)

The pair-creation probability can now be obtained in full analogy to the case of a sin-
gle pulse by following the steps after Eq. (2.30). In the case of Dirac particles, similar
structures arise.

6.2 General properties

In the following, we will inspect the structure of the pair-creation amplitude obtained in
the combined laser field in more detail. In particular, we will focus on the question in which
way the presence of an additional pulse affects the process. As a first step, we rearrange
the S-matrix amplitude, allowing us to identify contributions from the individual pulses.

6.2.1 Identifying contributions from the individual pulses

Owing to the vanishing overlap between the two pulses, the S matrix in Eq. (6.22) can
be decomposed into contributions from the individual pulses. To this end, we regard the
separate parts

Ij =

∫
dx−C̃je

−iQ0x−−iHj (6.23)

where we explicitly took Hj in the exponent. Due to the restriction of the integration
domain, the contribution of the other pulse Hc − Hj to the exponent is constant. Fur-
thermore, recalling Eq. (6.15), we rewrite Hj inside the integration domain by means of a
substitution as

Hj =

∫ ηj

δj

2∑
l=1

hljf
l
j(η − δj) dη =

2∑
l=1

hlj

∫ Φj

0
f lj(Φ̃j) dΦ̃j ≡ Hj(Φj) (6.24)

with Φj = ηj − δj as before.
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Inspecting C̃j in Eq. (6.20), we reformulate the integral Ij via substituting x− = (Φj +
δj)/k

0
j as

Ij = Fj e
−iQ0δj/k

0
j (6.25)

with

Fj =
1

k0
j

2∑
l=1

g̃lj

∫ 2π

0
dΦj f

l
j(Φj)e

−iQ0Φj/k
0
j−iHj(Φj) . (6.26)

This way, the only dependence on δj is absorbed in the factor e−iQ
0δj/k

0
j , while Fj is

entirely independent of δj .1

As a consequence, the S matrix describing the complete process can be written as

Scp+p− = (2π)3S0 δ(Q
−)δ(2)(Q⊥)

(
F1 + F2 e

−iH?
1−iQ0∆

)
(6.27)

for δ1 = 0, which can be chosen without loss of generality. The remaining phase-shift
parameter δ2 can now be employed to describe the distance ∆ = δ2/k

0
2 between the fronts

of the pulses.
The partial amplitudes Fj depend exclusively on the pulse with number j. Due to the
substitution introduced in Eq. (6.25), both integrals Fj are effectively evaluated at phase
zero. As we will see in the following, the phase factor e−iH?

1−iQ0∆ adjusts the phases of the
particles and of the gamma quantum in order to account for the temporal delay between
the pulses. Before discussing further implications, we investigate this factor in more detail.

6.2.2 The phase factor

In order to understand the structure of the phase

φ = H?
1 +Q0∆ (6.28)

occurring in Eq. (6.27), we recall that Qµ = kµγ − (pµ+ + pµ−). Accordingly, the term
Q0∆ describes the phase development of the free momenta p± and kγ . The relative sign
between the phases of the particles and of the gamma quantum follows from the structure
of the S matrix, see Eq. (6.6). Furthermore, we note that Hj arises in Eq. (6.12) as
Hj = Λ−j − Λ+

j , where Λ±j describes the effect of the laser pulse j on the phases of the
Gordon-Volkov states [see Eq. (6.4)]. Hence, H?

1 contains the full effect of the first pulse
on the phases of the charged particles.
Following a more intuitive approach, the phase φ can also be understood by employing
the concept of laser-dressed states: To this end, we bring H?

j into the form

H?
j = 2πµj , with µj =

2∑
l=1

hlj〈f lj〉 . (6.29)

As we have seen in Sec. 2.2.3, µj is a measure for the dressing of the particles due to the
laser pulse j, i.e. µj = −wj , where w was introduced for a single pulse in Eq. (2.39).
Denoting the length of the pulses by Lj = 2π/k0

j allows us to bring φ into the form

φ = Q0∆+H?
1 = (Q0 + µ1k

0
1)L1 +Q0(∆− L1) . (6.30)

1In App. A.7, we briefly show how Fj can be Fourier expanded, which is the usual way of computing
these expressions. However, taking advantage of the finite integration domain, we have actually computed
Fj by means of a direct numerical integration.
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The first term describes the phase development in the presence of the first pulse. The
average action of the pulse on the charged particles is accounted for by means of the
dressed states, which can be seen from

Q0 + µ1k
0
1 = k0

γ −
(
p0

+ + p0
− + w1k

0
1

)
. (6.31)

This expression can also be recognized as the (negative of the) absorbed photon energy
EL which was introduced for the case of a single pulse in Eq. (2.42). Since the particles
are subject to the full length of the first pulse, the uncertainty inherent to the dressing
approach is completely cured. The second term in Eq. (6.30) describes the phase devel-
opment in the gap between the pulses. In the following, we will denote the extent of the
gap by

D = ∆− L1 , (6.32)

see Fig. 6.1.
Having understood the phase factor, we will now continue the discussion of the form of
the combined S-matrix amplitude.

6.2.3 Conclusion

As we have seen before, the structure of the combined S-matrix element from Eq. (6.27)
is of the form

Scp+p− ∼ F1 + F2 e
−iφ , (6.33)

where the Fj denote the individual contributions of the pulses. The amplitude of the
combined process is subject to quantum two-pathway interferences between these contri-
butions. The interference phase is determined by φ, which describes the development of
the particles’ phases between the pulse fronts. Despite φ being explicitly dependent on the
properties of the first pulse, the effect of the first pulse on the contribution of the second
pulse is limited to this phase factor. Nevertheless, as we shall see, this phase factor can
induce a rich variety of effects.
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6.3 Two-pulse interference

In the following, we will investigate the interference effects arising due to the presence
of an additional pulse. Restricting ourselves to the production of scalar particles, the
superscript “KG”, which was introduced in Eq. (2.30), will be dropped. As we have seen
in the previous chapter, the angular distributions of Dirac and KG particles can be vastly
different. However, in this chapter, we rather focus on the influence of the second pulse.
The main conclusions are independent of the actual shape of the angular distributions,
such that these simplified KG calculations are sufficient to understand the behavior. We
begin with the case of two identical pulses with a variable distance, allowing us to inspect
and understand the basic properties and the general behavior in a simplified environment.
Afterwards, the case of two different pulses will be addressed.

6.3.1 Two identical pulses

We begin with the case of two identical pulses with a distance ∆ between their fronts, i.e.
F2 = F1 ≡ F . The combined S matrix is of the form

Scp+p− ∼ F (1 + e−iφ) with φ = Q0∆+H?
1 . (6.34)

In comparison, if only one of the two pulses was present, the S matrix would contain only
one term

Sp+p− ∼ F . (6.35)

Accordingly, the presence of the second pulse induces a factor (1 + e−iφ) in the amplitude.
In the case of a double pulse, the absolute square reads

|Scp+p− |
2 ∼ 2 |F |2 [1 + cos(φ)] , (6.36)

giving rise to the differential probability

d3Pc

dp+d2Ωp+

=
αm2

16π2ωγ

∑
λγ

|p+|2

Ep+(k−γ − p−+)
2|F |2 [1 + cos(φ)] =

d3P

dp+d2Ωp+

2 [1 + cos(φ)] ,

(6.37)
where we recall that F and φ depend on the particle momenta. Here, we denote the
absolute value of the positron momentum as p+ = |p+|. On the level of the differential
probability, the presence of the second pulse leads to a factor 2 [1 + cos(φ)]. Accordingly,
in the extreme cases, the process probability in the combined field can be completely
suppressed, or amplified by a factor of four in comparison with the case of a single pulse.
The effect of this factor on the resulting pair-creation spectra shall now be investigated
further.

6.3.1.1 Angular distributions

Employing the same shape function [cp. Eq. (2.11)] as before, we begin with a single four-
cycle pulse with moderate amplitude ξmax = 0.1 and regard the fully differential angular
distributions for two different positron momenta p+ in the two rows of Fig. 6.2. The first
column depicts the angular distributions d3P

dp+d2Ωp+
obtained in a single pulse. For p+ =

0.33m, the contribution is enhanced in the propagation direction of the gamma quantum,
whereas for p+ = 0.53m, the contribution is enhanced in the laser-propagation direction.
The second column depicts the combined momentum spectrum obtained when a second,
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Figure 6.2: The first column depicts the fully differential angular distributions d3P
dp+d2Ωp+

(in units of 1/m) for p+ = 0.33m (first row) and p+ = 0.53m (second row) obtained
from a single pulse with Nosc = 4, ωc = ωγ = 1.01m, ξmax = 0.1, and χ = 0. The
remaining three columns show the combined momentum spectra d3Pc

dp+d2Ωp+
for the cases

when a second, identical pulse follows shortly after the first pulse. From left to right, we
increase the width D of the gap, which is indicated in units of the length L = 2πNosc/ωc
of the individual pulses.

identical pulse follows directly after the first pulse, i.e. D = 0. For p+ = 0.33m, main
contributions are now obtained from the laser-propagation direction, and for p+ = 0.53m,
the emission pattern is peaked at ϑ ≈ 0.4π and ϕ ≈ ±0.5π.
The difference with the angular distributions of the single-pulse case is entirely induced by
the factor 2 [1 + cos(φ)], which shall be referred to as q(3). The latter can be understood
as the ratio between the triple-differential angular distributions of the double pulse and
the single pulse. With D = 0, the phase φ can be written as

−φ = ELL (6.38)

where EL denotes the energy which is required to produce the pair in one of the pulses,
and L = 2πNosc/ωc denotes the length of the individual pulses. Thus, at this point, the
laser-dressed energy EL enters explicitly into the pair-creation probabilities. We recall
that EL generally depends both on the positron momentum and on the emission angles.
For the present parameters, the process at p+ ≈ 0.14m happens approximately in a c.m.
system. Hence, for higher positron momenta, the width of the interval of relevant photon
energies EL(ϑ, ϕ) generally grows with p+. While q(3) barely completes a half-cycle as
ϑ is varied at p+ = 0.33m, more than two full cycles are completed for p+ = 0.53m.
Concerning ϕ, we note that the laser dressing induces a small dependence in EL, which
leads to a modulation (∆q(3)/q(3) . 25% for the preferred directions), which is, however,
smaller than the dominant modulations along ϑ.2

2The dressing affects EL by less than one percent. However, with regard to the phase term, the relevant
scale is given by the period length, such that these small effects in EL can induce much stronger effects
in q(3).
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Figure 6.3: The first panel depicts the momentum-integrated angular distribution
d2P/d2Ωp+ obtained for a single pulse. For a double pulse, the ratio q(2) [see Eq. (6.40)]
is presented for various interpulse distances D in the remaining panels. The parameters
are the same as in Fig. 6.2.

As a next step, we increase the interpulse distance D. The third and fourth columns in
Fig. 6.2 depict the cases of D = 0.06L and D = 0.13L, respectively. The angular distri-
butions are found to be strongly sensitive to the interpulse distance: Both the emission
directions and the emission patterns change entirely. For p+ = 0.53m, a particularly
pronounced emission pattern emerges at ϑ ≈ ϕ ≈ π/2 for D = 0.13L.
When the second pulse arrives after a gap D, the phase φ receives the additional term
Q0D. We note that Q0 can be recognized as the (negative of the) photon energy E0 which
is required in order to produce the pair without dressing effects. Accordingly, we write
the phase in the form

−φ = ELL+ E0D (6.39)

which helps to understand the dependence on the positron momentum. We see that
increasing the gap width amplifies the momentum dependence of the phase and thereby
enhances the modulating effects. As D grows, q(3) completes an increasing number of
oscillations when ϑ is varied. The asymptotic behavior will be discussed below.
Next, we integrate the angular distributions over the absolute value of the positron momen-
tum, i.e. we regard d2P/d2Ωp+ . For the case of a single pulse, the resulting distribution
is depicted in the first panel of Fig. 6.3. The dominant contributions are obtained in the
laser-propagation direction, but also other directions are important. When the second
pulse is included, the combined distribution d2Pc/d2Ωp+ appears qualitatively similar to
the single-pulse case. In order to demonstrate the differences, we regard the ratio

q(2) =

[
d2Pc

d2Ωp+

]
/

[
d2P

d2Ωp+

]
, (6.40)

which is depicted in the remaining three panels of Fig. 6.3 for various interpulse distances
D. For a given value of D, the ratio q(2) varies both in ϑ and ϕ by . 10%. The angu-
lar pattern and in particular the average values of q(2) clearly change as D is increased.
However, these changes and the modulations along ϑ are weaker than those in q(3). Since
the ratio q(2) is obtained after the integration over the absolute value of the positron mo-
mentum is carried out, q(2) can be regarded as an average of q(3), based on the underlying
pair-production probabilities.
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Figure 6.4: The black line shows the positron momentum spectrum dP/dp+ (in units
of 1/m) obtained from a single pulse. The colored lines show the combined momentum
spectra dPc/dp+ for the cases when a second, identical pulse follows shortly after the
first pulse. The different colors refer to different gap widths D, which are indicated in the
legend in units of the length L of the individual pulses. The parameters are the same as
in Fig. 6.2. Originally published in [JM16b].

6.3.1.2 Momentum spectra

In this section, we discuss the momentum spectra of the produced particles, which are
obtained after integrating the triply differential probabilities over the emission directions.
Employing the same parameters as in the previous section, the momentum spectrum
dP/dp+ obtained from a single pulse is presented as the black line in Fig. 6.4. It pos-
sesses a rather simple structure with a maximum at p+ ≈ 0.34m. When we add a second
repetition of the same pulse, the resulting momentum spectrum becomes much more in-
volved: The red line in Fig. 6.4 depicts the situation where the second pulse follows directly
after the first, i.e. D = 0. The resulting momentum spectrum obtains a main maximum
at p+ ≈ 0.23m, where the probability is approximately three times higher than in the
single-pulse case. Conversely, at p+ ≈ 0.36m, just slightly off the position of the single-
pulse maximum, the double-pulse distribution obtains a pronounced minimum, where the
probability is smaller by a factor of two than for the single pulse. For p+ ≈ 0.5m, the
double-pulse distribution possesses a plateau, where the probability is again substantially
higher than for the single pulse.
From our previous discussion, we know that these effects are induced by the factor q(3) =
2[1 + cos(φ)], which is now averaged over the emission directions of the positron. For the
present parameters, the process at p+ ≈ 0.14m happens approximately in a c.m. system,
such that all phase factors are approximately the same. In fact, the corresponding ratio
between the double-pulse and the single-pulse probabilities is just slightly less than four,
which is the maximum possible value. Especially for higher momenta, EL becomes angle
dependent and the oscillating terms tend to cancel. However, in comparison with q(2),
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we note that the integration over the emission angles has a weaker damping effect than
the integration over the absolute value of the positron momentum. The plateau structure
arises when the factor cos(φ) grows as a function of p+, while the single-pulse probability
drops.
In general, slightly increasing the gap width D allows a certain value of the phase φ to
be achieved with slightly less energy (or momentum). Accordingly, the locations of the
extrema in the momentum spectrum are shifted to smaller energies. In Fig. 6.4, this
behavior can (still) be recognized by comparing the red and the green curves, where the
latter is obtained for D = 0.06L. Overall, we see that the momentum spectrum depends
very sensitively on the gap width. A particular case occurs for D = 0.13L, which is
depicted as the blue curve. There, production of positrons with p+ . 0.15m is strongly
suppressed, while the probability for positrons with p+ ≈ 0.33m is enhanced by a factor
of ≈ 3.6. The angular distribution of these positrons is depicted in the top right panel of
Fig. 6.2, which is more pronounced than in the single-pulse case (see top left panel).
Comparing the angular distributions and the momentum spectra, one can see that the
second pulse acts in some cases like a collimator for the produced particles. However,
due to the strong momentum dependence of the phase φ, these collimating properties
are restricted to a certain energy range. This can be seen by regarding the momentum-
integrated angular distributions in Fig. 6.3, where the effect of the second pulse is damped.

6.3.1.3 Total probability

As a next step, we regard the effect of the second pulse on the total probabilities. Employ-
ing the same parameters as before, the ratio q = Pc/P between the total probabilities
for the double pulse and the single pulse is presented in Fig. 6.5. The ratio exhibits a
damped, oscillatory behavior as the gap width grows. Starting with q ≈ 1.96 for vanish-
ing gap width, the ratio arrives at its minimum value close to D ≈ 0.06L where q ≈ 1.65.
The corresponding momentum spectrum was presented as the green line in Fig. 6.4, and
the angular distributions were investigated in the previous figures. For D = 0.13L, a ratio
q ≈ 2.07 is found, while the maximum value q ≈ 2.3 is achieved for D ≈ 0.18L. These
results clearly show that also the total probability is subject to pronounced interference
effects, which are highly sensitive to the pulse distance.
In order to understand the characteristic dependence on the interpulse distance, we note
that Pc is obtained as an integration of the form [cp. Eq. (6.37)]

Pc =

∫
d3p+ %(p+) 2 [1 + cos(ELL+ E0D)] (6.41)

where we use the single-pulse probability density

%(p+) =
d3P

d3p+
=

αm2

16π2ωγ

∑
λγ

|F |2

Ep+(k−γ − p−+)
. (6.42)

With regard to Eq. (6.41), we recall that E0 and EL both depend on p+. For an ana-
lytical approach, these dependencies can in principle be expressed in closed form, but the
probability density remains out of reach.
The integration in Eq. (6.41) is restricted to those particle momenta for which the prob-
ability density %(p+) gives significant contributions. In our previous examples, we have
|p+| . 1.5m. When the momentum is varied, the phase factor induces oscillations. These
oscillations become faster as the pulse distance grows. When D is sufficiently large, these
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Figure 6.5: The ratio of the fully integrated pair-production probabilities q = Pc/P as
a function of the pulse distance for the same parameters as in Fig. 6.2.

oscillations are much faster than any variation in %(p+). As a consequence, in the limit
of large pulse distances, the cosine term can well be approximated by its average and
thus vanishes. Hence, we see that q → 2 for large pulse distances, which means that
the combined probability is simply obtained as the sum of the contributions of the single
pulses.
When we regard the differential probabilities in Eq. (6.37), the phase factor remains also
for large values of D. Nevertheless, any detection process is based on an integration over a
certain energy range or angular region. In the limit of large pulse distances, based on the
same argument as before, the angular distributions and the energy spectra of the detected
particles thus approach the single-pulse patterns, with the probabilities being twice as
large as in the single-pulse case.
A further understanding of the dependence of the ratio q on D can be gained within
a simplified model approach. To this end, we note that q can be understood as the
average of 2 [1 + cos(ELL+ E0D)] with respect to the probability density %, i.e. q =
2+2〈cos(ELL+E0D)〉%. As a first simplification, we assume that EL ≈ E0, which is valid
when the dressing effects are small. The integration in Eq. (6.41) can then be expressed
as an integral over the absorbed energy EL

Pc =

∫
dEL %(EL) 2 [1 + cos(EL[L+D])] (6.43)

where %(EL) is obtained as the two-dimensional integral of %(p+) over those momenta
with constant EL. We denote the average absorbed energy by 〈EL〉, and the width of the
distribution %(EL) by ∆EL. Using only these information, we adopt the model assumption
that %(EL) can be described by a normal distribution

%(EL) =
1√

2π(∆EL)2
exp

(
−(EL − 〈EL〉)2

2(∆EL)2

)
(6.44)
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Figure 6.6: The ratio q as a function of the pulse distance D for similar parameters as in
Fig. 6.5, where ξmax = 0.1, ωc = 1.01m and L ≈ 24.8λe. We recall that λe = 1/m denotes
the Compton wavelength. Here, we show the behavior for ξmax = 0.1 and ωc = 0.505m
(left) and for ξmax = 0.5 and ωc = 1.01m (right). In both cases, the remaining parameters
are the same as in Fig. 6.5.

and obtain3

q = 2 + 2 e−(∆EL[L+D]/2)2
cos (〈EL〉[L+D]) . (6.45)

This expression illustrates in a semiquantitative manner how the ratio q depends on
the pulse distance, and qualitatively reflects the numerically obtained result depicted in
Fig. 6.5. For large distances D, q approaches the asymptotic value 2. The decay rate
is determined by the width ∆EL of the distribution of absorbed energies. Furthermore,
q oscillates in D, with a periodicity being determined by the average absorbed energy
〈EL〉. We note that 〈EL〉 and ∆EL depend on the pulse spectrum and on the details of
the pair-production process, and that the distance between neighboring zeros of q(D)− 2
is actually not constant. The agreement between q(D) and a numerical fit of the form
suggested by Eq. (6.45) depends on the interaction parameters. Here, q(D) decays slower
than the Gaussian.
For the present parameters, the process is mostly driven via absorption of one laser photon
of the central frequency. When we reduce4 the central frequency to half of its original value,
i.e. ωc = 0.505m, the process is dominated by two-photon absorption. Still, the ratio q(D)
exhibits a similar behavior with damped oscillations, albeit with a smaller amplitude, see
left panel of Fig. 6.6. One reason for the stronger damping is certainly given by the
increased length L of the pulses. We finally note that for the original ωc = 1.01m, but
higher field strength ξmax = 0.5, the behavior remains similar, see right panel of Fig. 6.6.
Before we proceed to the case of two non-identical pulses, we remark that a related work
was presented in [KK14], where the SFBW process was investigated in a scenario com-
prising a train of identical pulses, which followed each other without delay. There, the
emphasis was put on the fully differential energy spectra of the produced particles, where
a comb-like structure arises as the number of pulses is increased. Regarding laser-induced
nonlinear Compton scattering, which exhibits similar properties as the pair-creation pro-
cess, the effect of the time delay was briefly addressed in [KTK14]. The distance between

3Equation (6.45) is obtained when the integration domain in Eq. (6.43) is extended to the entire real
axis. Due to the decay of the Gaussian distribution, this is a valid approximation when ∆EL � 〈EL〉.

4The transition between ωc = 1.01m and ωc = 0.505m reveals complicated behavior of q(D). In
particular for ωc = 0.707m, the envelope of the oscillations is non-monotonous in D.
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the combs in the (fully differential) energy spectra of the Compton photons were shown
to be sensitive to the pulse distance.
Besides, some studies of pair production in purely time-dependent fields (employing the
framework of quantum kinetic theory) have also investigated field configurations com-
prising several, not necessarily identical, pulses with a variable delay [AD12, KMvW+13,
LLX+14]. The effects have some similarity to our case. In particular, after integrating the
probabilities over one momentum component, a quasi-periodical dependence on the delay
arises, as well, which can in principle be understood from our perspective.
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6.3.2 Different pulses

In this section, we regard two different pulses that shall arrive with various distances D
and in particular in different orders. We employ the same four-cycle pulse as before, and
an additional stronger three-cycle pulse with a smaller central frequency. The parameters
are

Pulse A: Nosc = 4, ξmax = 0.1, ωc = 1.01m,

Pulse B: Nosc = 3, ξmax = 0.2, ωc = 0.808m.
(6.46)

If not stated otherwise, the CEP of both pulses is chosen as χA = χB = 0. The polarization
vectors of both pulses are parallel. The gamma-quantum energy remains at ωγ = 1.01m.
As in the previous section, we begin with the fully differential angular distributions.

6.3.2.1 Angular distributions

From Eq. (6.33), we expect that the process is sensitive to the order in which the two
pulses arrive, since the phase factor depends exclusively on the first pulse. In Fig. 6.7, we
depict the fully differential angular distributions for the individual pulses A and B in the
first and second panel, respectively. The comparison once more reveals the sensitivity of
the process to the laser parameters. Next, we regard the case when pulse A arrives first,
and B follows immediately, with vanishing distance D. The resulting angular distribution
is depicted in the third panel of Fig. 6.7. The emission pattern qualitatively resembles
the distribution obtained in pulse A, which is the dominant one. Still, the combined
probability is clearly not just given by the sum of the individual contributions, but subject
to interference processes, which can most clearly be seen by comparing the probabilities
along the collision axis (ϑ ≈ 0, π).
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Figure 6.7: Fully differential angular distributions d3P
dp+d2Ωp+

(in units of 1/m) for p+ =

0.31m. The first two panels depict the probabilities obtained in the individual pulses A and
B [see Eq. (6.46)]. The third panel shows the combined probability obtained when both
pulses arrive immediately after each other. For the present parameters with χA = χB = 0,
the process remains invariant when the pulses arrive in inverted order.

Now, we interchange the order in which the pulses arrive, i.e. pulse B arrives first, and
pulse A follows immediately. Still, we find the same angular distribution as in the original
ordering. This result is quite striking, since Eq. (6.27) [or (6.33)] clearly suggests an
asymmetry between the two pulses.
In order to investigate the situation further, we change the CEP of the pulses. In Fig. 6.8,
we present the angular distributions for the same parameters as before, but with χB = π/2
for pulse B. The individual contribution of pulse B is only moderately affected by this
change. The combined distributions, however, are now clearly sensitive to the ordering of
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the pulses. As can be seen by comparing the third and fourth panel of Fig. 6.8, the tempo-
ral ordering strongly affects the emission patterns and the magnitude of the probabilities.
In the case when pulse B arrives first (fourth panel), the combined distribution resembles
the distribution obtained in pulse A. However, when the gap width D is changed, the
emission patterns change completely again. This can be seen by comparing with Fig. 6.9,
where the combined angular distributions are depicted for D = 3λe, which is ∼ 10% of
the pulse lengths.
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Figure 6.8: Fully differential angular probabilities for the same parameters as in Fig. 6.7,
except χB = π/2. Here, the ordering of the pulses clearly affects the process.
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Figure 6.9: Fully differential angular probabilities for the same parameters as in Fig. 6.8
but with a gap width of D = 3λe.

These examples show that the sensitivity of the process to the temporal ordering of the
pulses is connected to the CEP. Accordingly, this effect can only be understood from
Eq. (6.27) when we regard it at a level where the CEP appears explicitly. From a more
distanced perspective, the CEP affects the symmetry properties of the pulses and thus
of the combined field. Numerical evaluations have motivated the conjecture that two
different laser fields being described by different shape functions f(η) and g(η) give rise
to the same fully differential probabilities, when the shape functions fulfill the relation
f ′(−η) = −g′(η). We recall that these derivatives of the shape functions are proportional
to the electric and magnetic fields. One may speculate that this conjecture can be proven
by employing the CPT invariance of QED. A similar relation was also found in [LLX+14].
Applying this approach to the combined field f = f1+f2, the fully differential probabilities
can thus be expected to be invariant under the exchange of the order of the pulses, if the
shape functions fj of both individual pulses fulfill f ′j(−η) = −f ′j(η). For our family of
shape functions, this condition is only fulfilled for χ = 0 and χ = π. Finally, we note
that pulses with χ = π/2 and χ = 3π/2 are related via this symmetry, i.e. they induce
the same pair-production probabilities. This is compatible with the interference phase
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cos((N − N ′)χ) which was introduced in the context of the multiphoton-CEP effects in
Chapter 4.
When we integrate the angular distributions over the positron momentum, the influence
of the temporal ordering is weaker than for the fully differential probabilities, but still
visible. We present the original case of pulses A and B (with χA = χB = 0) in Fig. 6.10,
and for χB = π/2 in Fig. 6.11. Comparing the contributions of pulse B, the CEP has
only a marginal influence on the integrated angular distribution here. Also the distri-
butions obtained in the combined field appear qualitatively similar in all cases, yet clear
quantitative differences exist.
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Figure 6.10: Momentum integrated angular distributions d2P
d2Ωp+

for the same parameters
as in Fig. 6.7, i.e. χA = χB = 0, and D = 0.
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Figure 6.11: Same as Fig. 6.10, except χB = π/2.

Again, the gap width D has a distinct influence. The combined distributions for D = 3λe
are depicted in Fig. 6.12. In comparison with D = 0 (see third and fourth panel of
Fig. 6.11), the effect of the temporal ordering almost appears to be inverted.
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Figure 6.12: Same as Fig. 6.11, except D = 3λe.
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Figure 6.13: Momentum spectra dP
dp+

(in units of 1/m) for the pulses A and B with D = 0.
The left panel depicts the situation when χA = χB = 0. In the right panel, the CEP of
pulse B is changed according to χB = π/2.

6.3.2.2 Momentum spectra

In Fig. 6.13, we inspect the momentum spectra dP
dp+

for the pulses A and B in the case
when χA = χB = 0 (left) and for χB = π/2 (right). Again, the CEP plays only a minor
role for the individual contribution of pulse B, but the momentum spectra obtained in
the combined fields exhibit pronounced differences. When χA = χB = 0, the combined
momentum spectrum possesses a sharply peaked maximum at p+ ≈ 0.37m. When χB =
π/2, the momentum spectrum deeply depends on the temporal order of the pulses. When
pulse B arrives first, a sharp maximum is located at p+ ≈ 0.31m, where the probability
is significantly higher than the maximum value obtained with χB = 0. In contrast, when
pulse A arrives first, the momentum spectrum has a pronounced minimum at p+ ≈ 0.32m.

6.3.2.3 Total probability

Finally, we regard the total probabilities and in particular the influence of the distance
D between the pulses. In Fig. 6.14, we present the total probabilities obtained in the
combined field of the pulses A and B, normalized to the sum of the individual probabilities.
We begin with χ = 0 for both pulses, where the individual probabilities amount to PA ≈
4.1× 10−6 and PB ≈ 2.6× 10−6. As depicted in the left panel of Fig. 6.14, the combined
probability exhibits a damped oscillatory behavior as the pulse distance grows. For small
distances, pronounced interference effects enhance or decrease the total probability by up
to 20% in comparison with the direct summation of the individual probabilities. When the
pulse distance grows, these interference effects soon become smaller. Overall, the behavior
closely resembles the case of two identical pulses, as depicted for example in Fig. 6.5, where
a different normalization was employed. In principle, the interferences are in both cases
subject to a similar mechanism. As a major difference, the interference terms arising from
the non-identical pulses are not only determined by the phase φ, but also by the complex
values of the contributions Fj of the individual pulses [see, e.g., Eq. (6.33)].
Next, we change the CEP of pulse B according to χB = π/2. As expected from the
momentum spectra in Fig. 6.13, the corresponding probability is only mildly affected and
now amounts to PB ≈ 2.7×10−6. With the symmetry of the combined field being partially
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Figure 6.14: The plots show the probabilities obtained in the combined fields of the pulses
A and B as a function of the pulse distance, normalized by the sum of the individual
probabilities. Left: χA = χB = 0. Center: χA = 0 and χB = π/2. Right: χA = π/3 and
χB = π/5.

broken, the resulting probability is now sensitive to the temporal order of the pulses. The
normalized probabilities are depicted for the two nonequivalent field configurations in the
center panel of Fig. 6.14. For both configurations, the dependence on the pulse distance
exhibits qualitatively similar behavior as in the symmetric case. Most strikingly, the total
probabilities obtained in the two different configurations appear to be offset by a phase
of π and we find

1

2
[PAB(D) + PBA(D)] ≈PA + PB (6.47)

for any given pulse distance D. Upon close inspection, we find that an analogous relation
holds (approximately) for the momentum-integrated angular distributions (see Figs. 6.11
and 6.12) and for the momentum spectra5 (see right panel of Fig. 6.13), but it does not
hold for the fully differential probabilities (see Fig. 6.8). These findings imply that at least
one integration is required for a relation of the type as in Eq. (6.47).
We emphasize that this relation arises due to the special choices of the CEP. When χA =
χB = 0, it does not hold, as can be seen from the left panels of Figs. 6.13 and 6.14.
Finally we present the total probabilities for χA = π/3 and χB = π/5 in the right panel
of Fig. 6.14, with PA ≈ 4.4× 10−6 and PB ≈ 2.6× 10−6. Equation (6.47) is not fulfilled,
since the total probabilities obtained in the two nonequivalent field configurations are
offset by a relatively small phase.

6.4 Conclusion

In this chapter, we have extended the laser field by a second short pulse which arrives
with a variable delay. Assuming the pulses to arrive strictly after each other, the S-matrix
approach allows us to separate the process amplitude into contributions from the individ-
ual pulses. The combined process is subject to pronounced interferences between these
contributions, which can either suppress the differential probability completely or enhance
it by a factor of four in the case of two identical pulses. The interference phase depends on
the absorbed photon energy and on the interpulse distance. When the total probability

5For higher momenta, the accuracy decreases, even when the angular resolution is increased.
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is regarded, the interference phases tend to cancel due to the underlying integration over
different absorbed energies. However, when the pulse distance is on the order of the pulse
length or smaller, distinct interference effects remain visible.
We have addressed the question to which extent the order of the two pulses affects the
process. The answer to that question was found to be determined by the CEP of the pulses.
In particular, for certain (special) constellations of the CEP χ, the process is invariant
under the exchange of the order of the pulses, even with regard to the fully differential
probabilities. In contrast, for (most) other choices of χ, the process is sensitive to the order.
The differences were traced back to the symmetry properties of the laser fields. From a
classical viewpoint, and also with regard to pump-probe experiments, the sensitivity to the
temporal order seems natural and satisfies the expectation. However, this property can be
affected by changing the continuous parameter χ. Hence, instead of a two-stage process,
the SFBW process induced by these consecutive pulses can rather be understood as one
single process driven by the combined field composed of the individual pulses. The two
pulses act like two (asymmetrically structured) slits in a double-slit experiment. Similar
interpretations of the pair-creation process induced by pulse trains can also be found in
[HIM10, KK14]. One may ask what happens when the gamma quantum is restricted
to a finite temporal extent as well. In the present scenario, the gamma quantum is
infinitely extended, such that it interacts with both pulses simultaneously, which is the
key explanation to our findings. The temporal ordering of the laser pulses presumably
becomes even more relevant when the gamma quantum is described as a wave packet
with a well-defined beginning. Furthermore, the role of the interference effects may be
determined by the temporal extent of this wave packet, which could either be longer or
much shorter than the laser pulses and the gap distance.
Regarding the two pulses as the constituents of a combined field, the results presented in
this chapter further emphasize the strong sensitivity of the process to the properties of
the driving field.
With regard to an experimental observation of Schwinger-like pair production via dynam-
ical assistance [SGD08], we conclude that the two pulses need to arrive simultaneously
in order to enhance the probability by reducing the tunneling distance. This can also be
deduced from Fig. 5 in [LLX+14]. We note that the case of two simultaneously arriving
laser pulses could also be computed in our framework by using the Volkov states for the
combined field. This way, the individual contributions cannot necessarily be separated
analytically, but the integrals can (at least in principle) be evaluated numerically.
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7 | Conclusion

We have studied in detail the SFBW process induced by short laser pulses of medium
intensity. With regard to the influence of the properties of the laser pulses, particular
emphasis has been placed on the spectral properties, the CEP, and the pulse duration. In
the regime of moderate intensities, the SFBW process in a (short) pulse can be understood
in terms of multiphoton processes being induced by individual photons stemming from
the pulse. This approach has been incorporated into a new quantitative model, which has
provided important analytical support for this work.
Our results show that the process is very sensitive to the properties of the driving laser
field. Furthermore, for example the focusing of a short pulse was recently found to affect
the SFBW probabilities substantially [DP16]. Consequently, the angular distributions ob-
tained in experiments may differ strongly from the theoretical predictions unless exactly
the same pulse shape is employed. Hence, rather than aiming at actual predictions for
experimental measurements, our work enhances the fundamental understanding of the
process. In addition, we note that the process under investigation is closely related to
other laser-induced strong-field (QED) processes, such as multiphoton Compton scatter-
ing. Some of the insights found in this work, in particular related to the multiphoton
approach, can therefore be applied to these processes, as well.
Owing to its quantum nature, the SFBW process is subject to interference effects, which
have been studied in detail, in particular with respect to the question how they are affected
by the broad spectrum inherent to a short pulse. The spectra of the produced particles
were found to exhibit clear signatures of interference effects, even when short pulses are em-
ployed. In addition to the interferences between production channels comprising different
photon combinations, our investigation of a double-pulse scenario shows that interferences
also arise between processes which originate from different parts of the driving laser field.
This latter approach can in particular be applied in order to reproduce the particle spectra
in the regime of ξmax � 1, as has been shown in [MKDP16]. These subpulse interferences
and the multiphoton interferences are two complementary approaches to the interference
processes. In both cases, the interferences can be controlled by the CEP. This way, the
optical phase (CEP) offers a means to control the quantum phase of the SFBW process.
We have seen that the SFBW process exhibits a non-trivial dependence on the spin of the
particles. The underlying behavior could be understood to some extent by regarding the
angular-momentum balance, but the details remain elusive. The spin plays a fundamental
role, which should be taken into account for theoretical calculations aiming at precise
predictions.
With regard to an experimental observation of the SFBW process under investigation, we
note that the requirements concerning the optical laser (∼ 1018 W/cm2) are well within
reach of contemporary facilities. In contrast, the generation of the high-frequency photon
with ∼ 100 GeV is more challenging. These photons could be generated by Compton
backscattering off an ultrarelativistic electron beam, which could be created by a conven-
tional accelerator (like SLAC), possibly in combination with a subsequent laser-plasma-
based accelerator [BCD+07]. A similar scheme is currently under development at XCELS.
In order to observe the effect with less energetic photons, the coherent radiation may be
obtained from an X-ray free-electron laser with a substantially higher central frequency.
Employing 0.2 keV as provided by SASE3 at DESY, the required intensity is 1021 W/cm2,
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CHAPTER 7. CONCLUSION

which is about one order of magnitude beyond the performance goals formulated in the
year 2002 [DES]. In addition, the original x-ray pulse needs to be shortened, which could
be achieved by various methods [SSY04, Tan15, PR15]. This way, the required photon
energy is substantially reduced and amounts to 4 GeV for the parameters employed in the
first example of Chap. 3. These energies are accessible via state-of-the art laser-plasma
based accelerators [LNG+06]. Both approaches to the SFBW process are technologically
challenging and require, among others, very powerful laser systems on the PW scale, such
as the Diocles laser (US) [Dio], or the laser system planned for ELI-NP (Rumania).
We finally note that also the original Breit-Wheeler process, which comprises only two
highly energetic photons, attracts significant attention with regard to a refined experi-
mental observation [PMHR14, RdJ+16], even in the general media.1

Turning light into matter is a fascinating prospect. The process itself is accompanied by
a multitude of physical phenomena which are still waiting for experimental observation
and further theoretical investigation. In view of the latest technological developments, one
may hope for dedicated experiments in the near future.

1See, e.g., http://www.bbc.com/news/science-environment-27470034, and http://www.faz.net/
aktuell/wissen/physik-mehr/quantenverwandlung-es-werde-das-licht-zur-materie-12969264.
html.
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A | Appendix

A.1 Classical motion of a charged particle in a laser field

For this calculation, which is adapted from [IZ85], we assume the vector potential to be
given in the form

Aµ(η) = f(η)εµ (A.1)

where εµ is a real polarization vector with ε2 = −1 and k · ε = 0.
The dynamics of a particle with mass m and charge −e are governed by the equation of
motion

m
duµ

dτ
= −eFµνuν (A.2)

with the particle’s four velocity uµ = dxµ/dτ and proper time τ . The right-hand side is
determined by the field-strength tensor Fµν = (kµεν − kνεµ)f ′(η).
Since k2 = 0 and hence kµFµν = 0, multiplying Eq. (A.2) with kµ reveals the first constant
of motion k ·u(τ) = k ·u(0) = const. Consequently, the phase variable η can be expressed
as a linear function of τ . For simplicity, we assume the particle to be initially at the origin,
allowing us to write η = k · u(0)τ and to bring Eq. (A.2) into the form

duµ

dη
= − e

m

(
ε · u(η)

k · u(0)
kµ − εµ

)
f ′(η) . (A.3)

Multiplying by εµ and integrating yields

ε · u(η) = ε · u(0)− e

m
[f(η)− f(0)] (A.4)

which can be inserted in Eq. (A.3)

duµ

dη
= − e

m

(
kµ

k · u(0)

[
ε · u(0)− e

m
[f(η)− f(0)]

]
− εµ

)
f ′(η) . (A.5)

With the right-hand side of this equation being independent of u(η), it can directly be
integrated and yields

uµ(η) = uµ(0)− e

m
[f(η)− f(0)]

(
ε · u(0)

k · u(0)
kµ − εµ

)
+

e2

2m2
[f(η)− f(0)]2

kµ

k · u(0)
. (A.6)

Assuming the laser field to be of finite extent, with f(0) = 0, the kinetical momentum
pµ(η) = muµ(η) of the particle in the laser field can be expressed as

pµ(η) = pµ0 + eAµ(η)−
(
ep0 ·A(η) +

e2

2
A2(η)

)
kµ

k · p0
(A.7)

where pµ0 denotes the particle’s initial four momentum.
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A.2 Dirac γ matrices

The following section contains some helpful details of the Dirac γ matrices.
The γ matrices are defined by the anti-commutation relation

γµγν + γνγµ = 2gµνI4 (A.8)

with the metric tensor gµν = diag(1,−1,−1,−1) and with IN denoting the N × N unit
matrix. Employing the Pauli σ matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.9)

the Dirac γ matrices can be represented in the form

γ0 =

(
I2 0
0 −I2

)
, γk =

(
0 σk
−σk 0

)
. (A.10)

The γ matrices fulfill the properties

(γ0)2 = 1 , (γ0)† = γ0

(γk)2 = −1 , (γk)† = −γk .
(A.11)

We employ Feynman slash notation to indicate four-products between the gamma matrices
and a four vector aµ

/a = aµγ
µ (A.12)

Products of slashed quantities can be reordered via

/a/b = aµbνγ
µγν = aµbν(2gµν − γνγµ) = 2a · b− /b/a (A.13)

where aµ and bν are assumed to be composed of complex numbers. In particular, this
implies /k/k = k · k = 0 for a wave four-vector kµ = (|k|,k).
It is furthermore convenient to employ the Dirac adjoint, which is defined for a four-spinor
w via

w = w†γ0 (A.14)

and for an operator acting on the spinors via

/a = γ0(/a)†γ0 . (A.15)

The γ matrices are invariant under the Dirac adjoint γµ = γµ.
Properties concerning the traces are presented in App. A.4.2.

A.3 Spinors

In the following, we will present the spinors employed in the Dirac-Volkov states and
revisit their properties [Gre00, Gre03]. In particular, we will show how the spinor products
occurring in the S-matrices can be evaluated analytically by means of the trace technique.
The Dirac-Volkov states Eq.(2.9) are solutions of the full Dirac equation Eq.(2.8), when
the spinors wp±s± are solutions of the free Dirac equation(

i/∂ −m
)

Ψr(p) = 0 (A.16)
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with a wave function Ψr(p) of the form

Ψr(p) = e−iεrp·xwr(p) (A.17)

with pµ = (Ep,p), Ep =
√
m2 + p2 and a spinor wr(p). The index r distinguishes different

states, which shall be classified below. We define εr = +1 for r = 1, 2, and εr = −1 for
r = 3, 4. This sign affects the energy εrEp and the canonical momentum εrp.
Inserting this ansatz into the Dirac equation yields the algebraic equation(

εr/p−m
)
wr(p) = 0 . (A.18)

It is fulfilled by the following spinors wr(p) which are presented in the r’th column of the
matrix √

Ep +m

2m




1
0
pz

Ep+m
px+ipyy
Ep+m

 ,


0
1

px−ipy
Ep+m
−pz
Ep+m

 ,


pz

Ep+m
px+ipy
Ep+m

1
0

 ,


px−ipy
Ep+m
−pz
Ep+m

0
1


 . (A.19)

For p → pzez, these are Eigenspinors of the spin operator 1
2Σz = 1

2

(
σz 0
0 σz

)
, with

Eigenvalues +1
2 for r = 1, 3 and −1

2 for r = 2, 4.
They are normalized according to

w†r(p)wr(p) =
Ep
m

(A.20)

and fulfill the closure relation

4∑
r=1

εrw
r
α(p)wrβ(p) = δαβ , (A.21)

which is needed for the trace technique presented in the following.
The orthogonality can be expressed as

wr(p)wr
′
(p) = δrr′εr , w†r(εrp)wr′(εr′p) = δrr′

Ep
m
. (A.22)

The spinors wr(p) with r = 3, 4 describe electrons with negative energy −Ep and canonical
momentum −p, which serve as initial states for our treatment of the pair-production
process. When an electron has left this state, this empty state corresponds to a positron
with energy +Ep and momentum +p. Furthermore, also the spin projection is inverted,
which can formally be seen when a charge conjugation is applied. Therefore, we define
the spinors wp±s± employed in the Dirac-Volkov states as

wp−,+1/2 = w1(p−) ,

wp−,−1/2 = w2(p−) ,

wp+,+1/2 = w4(p+) ,

wp+,−1/2 = w3(p+) .

(A.23)
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A.4 Trace technique

In this appendix, we first revisit the trace technique [Gre03], which allows to express
spin-summed matrix elements independent of the actual representation of the spinors.
We begin with a presentation of the general concept, which is then refined and explicitly
applied to our calculation of the pair-production probability in a single pulse.
In order to increase the readability of the following section, we introduce the notation
u(p−, s−) = wp−s− and v(p+, s+) = wp+s+ for the spinors introduced in App. A.3. Fur-
thermore, we denote four-products in the form a · b = (ab).

A.4.1 General concept

When we regard the spin-summed pair-production probability, we have to look at expres-
sions of the form

M(p+, p−) =
∑
s+,s−

|u(p−, s−)Γ v(p+, s+)|2

=
∑
s+,s−

u(p−, s−)Γ v(p+, s+)v(p+, s+)Γu(p−, s−)
(A.24)

with a general matrix Γ acting on the spinors.
In order to treat this expression analytically, it is helpful to define energy projection
operators

Λ±(p) =
±/p+m

2m
(A.25)

which are sensitive to the sign of the energy, i.e.

Λ+(p)u(p, s) = u(p, s)

Λ−(p)v(p, s) = v(p, s)

Λ+(p)v(p, s) = 0 = Λ−(p)u(p, s) .

(A.26)

The expressionM(p+, p−) contains the matrix
∑

s+
v(p+, s+)v(p+, s+), which will be re-

garded first. Dropping the explicit momentum dependence (each spinor and the projection
operator is evaluated at p+), the α, β entry of this matrix can be written as

∑
s+

vα(p+, s+)vβ(p+, s+) =

4∑
r=3

wrαw
r
β =

4∑
r=1

(Λ+w
r)αw

r
β = −

4∑
r=1

εr (Λ+w
r)αw

r
β

= −
∑
γ

(Λ+)αγ

4∑
r=1

εrw
r
γw

r
β = −

∑
γ

(Λ+)αγ δγβ =

(
/p+
−m

2m

)
αβ

(A.27)

where the closure relation Eq.(A.21) has been used in the second-to-last step. Effectively,
the spinors have thus been eliminated.
The analogue expression for the electronic spinors reads

∑
s−

uα(p−, s−)uβ(p−, s−) =

(
/p− +m

2m

)
αβ

. (A.28)
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Temporarily abbreviating u ≡ u(p−, s−) and v ≡ v(p+, s+), the matrix elementM(p+, p−)
can finally be rewritten as

M(p+, p−) =
∑
s+,s−

uΓ v v Γu =
∑
s−

uΓ

(
/p+
−m

2m

)
Γu

=
∑
s−

∑
αβ

uα

(
Γ

(
/p+
−m

2m

)
Γ

)
αβ

uβ =
∑
αβ

(
Γ

(
/p+
−m

2m

)
Γ

)
αβ

∑
s−

uβuα

=
∑
αβ

(
Γ

(
/p+
−m

2m

)
Γ

)
αβ

(
/p− +m

2m

)
βα

= Tr

[
Γ

(
/p+
−m

2m

)
Γ

(
/p− +m

2m

)]
.

(A.29)

Accordingly, traces over products of γ matrices have to be evaluated.

A.4.2 Traces over products of γ matrices

Several helpful properties are [Gre03]

1. The γ matrices have vanishing trace

Tr(γµ) = 0 . (A.30)

2. However, for a product of two γ matrices, the trace reads

Tr(/a/b) = 4(ab) . (A.31)

3. Products comprising several gamma matrices can be iteratively reduced via

Tr(/a1 . . . /an) = (a1a2) Tr(/a3 . . . /an)− (a1a3) Tr(/a2/a4 . . . /an)+

+ · · ·+ (a1an) Tr(/a2 . . . /an−1) .
(A.32)

As a consequence, the trace of a product of an uneven number of gamma matrices
vanishes.

4. The order of products can be inverted

Tr(/a1 . . . /an) = Tr(/an . . . /a1) . (A.33)

A.4.3 Refinement

When the matrix operator Γ is composed of various terms Γ =
∑

j Γj containing dif-
ferent products of γ matrices, the following refinement is helpful. For M(p+, p−) =∑

i,jMij(p+, p−), we can write

Mij(p+, p−) =
∑
s+,s−

u(p−, s−)Γi v(p+, s+) [u(p−, s−)Γj v(p+, s+)]∗

=
∑
s+,s−

u(p−, s−)Γi v(p+, s+)v(p+, s+)Γj u(p−, s−)

= Tr

[
Γi

(
/p+
−m

2m

)
Γj

(
/p− +m

2m

)]
≡ Tr (Γi,Γj)

(A.34)

in close analogy to the steps presented in Eq. (A.29). Note that Tr (Γi,Γj)
∗ = Tr (Γj ,Γi).

Furthermore, when the γ matrices are multiplied with purely real four-vectors, like in our
case, the resulting traces are entirely real, allowing us to drop the complex conjugation
and thus to interchange the order of the arguments.
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A.4.4 Explicit application to our calculation

Starting from Eq.(2.58), the trace technique has to be applied to

M =
∑
s+,s−

∣∣∣b̃I1 + c̃I2

∣∣∣2 . (A.35)

With b̃ and c̃ being usual complex numbers, the expression can be written as

M = |I1|2
( ∑
s+,s−

b̃b̃∗
)

+ 2<

I1I
∗
2

( ∑
s+,s−

b̃c̃∗
)+ |I2|2

( ∑
s+,s−

c̃c̃∗
)
. (A.36)

We inspect b̃ as defined in Eq. (2.50) and introduce abbreviations in order to separate the
slashed quantities in the form

b̃ = b− k0

Q0
h1a

= wp−s−

[
− eA0

2c(kp−)︸ ︷︷ ︸
=:m−

/ε/k/εγ +
eA0

2c(kp+)︸ ︷︷ ︸
=:m+

/εγ/k/ε−
k0

Q0
h1︸ ︷︷ ︸

=:m1

/εγ

]
wp+s+ .

(A.37)

This sum contains two products of three γ matrices, which can be combined by rewriting
the central term via

/εγ/k/ε = −/ε/k/εγ − 2/k(εγε) , (A.38)

which leads to

b̃ = wp−s−

[
(m− −m+)︸ ︷︷ ︸

=:m3

/ε/k/εγ −2m+(εγε)︸ ︷︷ ︸
=:mk

/k +m1/εγ

]
wp+s+ . (A.39)

Conversely, c̃ can straight-forwardly be structured as

c̃ = − k
0

Q0
h2a = wp−s−

[
− k

0

Q0
h2︸ ︷︷ ︸

=:m2

/εγ

]
wp+s+ . (A.40)

Employing the refined trace technique [see Eq. (A.34)], we can approach the terms in
Eq. (A.36). We begin with the last term, which has the simplest structure. We obtain∑

s+,s−

c̃c̃∗ = |m2|2 Tr

[
/εγ

(
/p+
−m

2m

)
/εγ

(
/p− +m

2m

)]
= |m2|2 Tr(/εγ , /εγ) . (A.41)

For the central term, we regard∑
s+,s−

c̃b̃∗ = Tr

[
m2/εγ

(
/p+
−m

2m

)(
m∗3/ε/k/εγ +m∗k/k +m∗1/εγ

)(/p− +m

2m

)]
=m2m

∗
3 Tr(/εγ , /ε/k/εγ) +m2m

∗
k Tr(/εγ , /k) +m2m

∗
1 Tr(/εγ , /εγ) ,

(A.42)

since b̃c̃∗ =
(
c̃b̃∗
)∗. Furthermore, note that all values m... are real, as well as the traces.

Accordingly, we drop the complex conjugation for the remaining term, which reads∑
s+,s−

b̃b̃∗ = |m3|2 Tr(/ε/k/εγ , /ε/k/εγ) + |mk|2 Tr(/k, /k) + |m1|2 Tr(/εγ , /εγ)

+ 2m3mk Tr(/ε/k/εγ , /k) + 2m3m1 Tr(/ε/k/εγ , /εγ) + 2mkm1 Tr(/k, /εγ) .

(A.43)

The traces are presented in the following section.
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A.4.5 Explicit traces

In our calculation, we need the following traces, which can be evaluated using the prop-
erties presented in App. A.4.2

Tr(/εγ , /εγ) =
1

m2

[
2(εγp+)(εγp−) + (p+p−) +m2

]
(A.44)

Tr(/εγ , /ε/k/εγ) =
1

(2m)2
[−8(kp−)(εεγ)(p+εγ)− 4(kp−)(εp+) + 4(kp+)(εp−)] (A.45)

Tr(/εγ , /k) =
1

(2m)2
[4(kp−)(εγp+) + 4(kp+)(εγp−)] (A.46)

Tr(/ε/k/εγ , /ε/k/εγ) =
1

(2m)2
[8(kp+)(kp−)] (A.47)

Tr(/k, /k) =
1

(2m)2
[8(kp+)(kp−)] (A.48)

Tr(/ε/k/εγ , /k) =
1

(2m)2
[−8(kp+)(kp−)(εεγ)] (A.49)

A.5 Dealing with squares of δ functions

When transition amplitudes are calculated in a plane-wave basis, the space-time integra-
tion yields δ functions. The corresponding probability is then obtained as the absolute
square of this expression. In this context, the question arises how to treat squares of δ
functions.
We first present the usual treatment, followed by an illustration of the problems arising
when coordinate transformations are involved. As a next step, we present our first at-
tempt to treat the squares of δ functions being formulated in light-cone coordinates. This
approach, however, includes a subtle shortcoming, which shall be illustrated. The issue is
finally resolved in App. A.5.4 by treating the incoming gamma quantum as a wave packet.

A.5.1 Standard treatment

The standard treatment can be summarized as follows: Starting with

2πδ(k) =

∫ ∞
−∞

dx eikx (A.50)

the original integration domain is understood to be limited to a finite extent L, motivating
to replace

2πδ(k)→
∫ L/2

−L/2
dx eikx =

2

k
sin(kL/2) . (A.51)

This way, the integral of a square of δ functions can readily be assigned the value∫ ∞
−∞

dk [2πδ(k)]2 →
∫ ∞
−∞

dk

[
2

k
sin(kL/2)

]
= 2πL . (A.52)

Furthermore, from Eq. (A.51), we can deduce

2πδ(k = 0)→ L . (A.53)
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Accordingly, the expression for the probability containing δ(k)2 and an arbitrary function
f(k) is usually treated as∫ ∞

−∞
dk [2πδ(k)]2 f(k) = 2π [2πδ(k = 0)] f(k = 0)→ 2πLf(0) . (A.54)

A.5.2 Coordinate transforms

When a coordinate transform is involved, the above treatment has to applied with great
care, as shall be demonstrated in the following. As a general rule, δ functions with their
argument being given by a function g(k) can be recast according to

δ [g(k)] =
∑
k0

1

|g′(k)|
δ(k − k0) (A.55)

for g′(k0) 6= 0, where k0 is iterated through the simple zeros of g(k).
Let us introduce a real number a > 0 and regard∫ ∞

−∞
d(ak) [2πδ(k)]2 = a

∫ ∞
−∞

dk [2πδ(k)]2 → 2πaL (A.56)

according to Eq. (A.52). Here, L is the extent of the integration domain which has led to
δ(k). Likewise, we may follow a different procedure by employing Eq. (A.55), which yields
2πδ(k) = 2πa δ(ak). Accordingly, we obtain∫ ∞

−∞
d(ak) [2πδ(k)]2 =

∫ ∞
−∞

d(ak) [2πa δ(ak)]2 = a2

∫ ∞
−∞

d(ak) [2πδ(ak)]2

= 2πa2 [2πδ(ak = 0)]

(A.57)

where the comparison with Eq. (A.56) shows that 2πδ(ak = 0) = L/a. Hence, when
squares of δ functions have to be evaluated, it is crucial to know the original integration
domain.
In our case of a finite laser pulse, the δ functions naturally arise in light-cone coordinates,
such that the corresponding volume factors have to be determined carefully.

A.5.3 A first attempt

Inspecting the S-matrix element, the square of the δ functions needs to be compensated
by the normalization factor V of the incoming gamma quantum, where V denotes a
usual Cartesian normalization volume. While the transverse δ functions are expressed
in Cartesian coordinates, we have to find the correct volume factor associated with δ(Q−).
As a first attempt, we restrict the integration along x‖ to the finite range L‖, i.e. the
longitudinal extent of the normalization volume V . Likewise, also the interaction time
is restricted to a finite duration. This way, the partial integration applied in the Boca-
Florescu transform can initially be carried out without the explicit need for a damping.
Regarding the (unrestricted) integrals along x+ and x−, one obtains

2πδ(Q−)I0 ≡
eiQ

−L
‖
l − e−iQ−L

‖
u

iQ−
−k0

Q0

∫ 2π/k0

0
dx−h(k0x−)e−iH(k0x−)−iQ0x−+

+
eiQ

‖L
‖
u − e−iQ‖L

‖
l

iQ‖
eiQ

0L0
l − e−iQ0L0

u−iH(2π)

iQ0

(A.58)
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where I0 was introduced in Eq. (2.23), and L‖l and L
‖
u describe the lower and upper limits,

respectively, of the integration domain along x‖. Similarly, the temporal extent is given
by L0

u − L0
l .

The second line corresponds to the surface term which vanishes due to the damping in-
cluded in our version of the Boca-Florescu transformation. Here, we may also argue that
in the limit1 of a large volume, the first factor of the second line restricts Q‖ = 0. In com-
bination with Q⊥ = 0, this condition can be ruled out from a kinematical consideration.
The first factor of the remaining first line is easily recognized as 2πδ(Q−), while the second
factor is already familiar from the Boca-Florescu transform. With the volume factors at
hand, one feels tempted to conclude that 2πδ(Q− = 0)→ L‖ = L

‖
u − L‖l .

However, this conclusion turns out to be wrong. This approach (seems to) overestimate
the interaction time, i.e. the time in which the laser pulse actually interacts with the
gamma quantum. With the laser pulse being truly limited to a short finite duration, the
interaction time is only L‖/2.
In order to obtain a more straightforward derivation, it is helpful to treat the gamma
quantum as a wave packet. This way, squares of light-cone δ functions can be avoided,
and we can apply the usual treatment.

A.5.4 Treating the gamma quantum as a wave packet

In the context of Breit-Wheeler pair production, a similar procedure was first presented
in [MHKDP15]. We present our own version.
We describe the gamma quantum as a wave packet with a continuous distribution of
momentum components along the beam axis η(κ‖), allowing us to express the effective
scattering potential in the form

Aµγ =

√
2π

V ωγ

∫
dκ‖ η(κ‖)e−iκ·xεµγ (A.59)

with κµ = (|κ‖|, 0, 0, κ‖). For the pair-production process, we need κ‖ < 0.
This way, with the only difference being the presence of the wave-packet function η(κ‖)
and the modified momentum vector κµ, starting from Eq. (2.21), the S matrix can be
expressed as

Sp+p− =

∫
dκ‖ η(κ‖)S(κ‖) (A.60)

with
S(κ‖) = (2π)3S0 δ(R

−)δ(2)(P⊥)I(κ‖) (A.61)

where the former momentum vector Qµ is replaced by Rµ = κµ−Pµ, with Pµ = pµ+ +pµ−.
Furthermore, we have I(κ‖) =

∫
dx−C(k0x−)e−iR

0x−−iH(k0x−). The latter depends on κ‖

only via R0.
The integration along κ‖ can be used to eliminate δ(R−), inducing a factor∣∣∣∣dκ−dκ‖

∣∣∣∣−1

=

(
κ−

κ0

)−1

> 0 . (A.62)

Since κ− = −2κ‖ > 0, the condition R− = 0 leads to κ‖ = −P−/2.
1To be precise, expression Eq.(A.58) was derived under the assumptions L0

u > L
‖
u+2π/k0 and L0

l > L
‖
l .

However, also in this approach we could introduce a damping factor, such that the surface terms strictly
disappear.
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The S-matrix element thus reads

Sp+p− = (2π)3S0
κ0

κ−
δ(2)(P⊥)η(κ‖)I(κ‖)

∣∣∣∣
κ‖=−P−/2

. (A.63)

The absolute square of the S matrix shall now be obtained from this expression2.
As a next step, we contract the wave packet via

η(κ‖) = δ(κ‖ − k‖γ) . (A.64)

This δ function, as well as δ(2)(P⊥), is based on usual Cartesian coordinates. Thus, with
regard to the absolute square, we deduce

|2πδ(κ‖ − k‖γ)|2 = 2πL‖ δ(κ‖ − k‖γ) (A.65)

where L‖ is the longitudinal extent of the normalization volume V . The latter was intro-
duced in Eq. (A.59) and is now included in the prefactor S0 ∼ 1/

√
V . Similarly, we have

|(2π)2δ(2)(P⊥)|2 = (2π)2V ⊥ δ(2)(P⊥) , (A.66)

where V ⊥ is the perpendicular extent of the normalization volume, such that V = L‖V ⊥.
This way, the square of the S-matrix amplitude reads

|Sp+p− |2 = |S0|2
(
κ0

κ−

)2

(2π)3δ(κ‖ − k‖γ)δ(2)(P⊥) |I(κ‖)|2V
∣∣∣∣
κ‖=−P−/2

. (A.67)

After the contraction, we have I(k
‖
γ) = I from Eq. (2.22), Rµ = Qµ and k0

γ/k
−
γ = 1/2.

Finally, the δ functions are expressed in the original form, such that one factor of 1/2 is
absorbed into δ(Q−), yielding

|Sp+p− |2 =
1

2
|S0|2 (2π)3δ(Q−)δ(2)(Q⊥)|I|2 V . (A.68)

This way, the squares have been resolved, and we can derive the prescription

(2π)3δ(Q− = 0)δ(2)(Q⊥ = 0)→
k0
γ

k−γ
V . (A.69)

We note that the scale factor k0
γ/k
−
γ = 1/2 gives the ratio between the interaction time

and the temporal extent of the gamma quantum.
In the context of Compton scattering, an analogous procedure can be applied, where the
incoming electron is treated as a wave packet and determines the scaling factor [IT13].
The resulting expression was shown to reproduce the classical limit in [Mac14], which
provided an important argument in favor of the wave-packet approach and indicated a
shortcoming in our first attempt.

2The treatment presented in [MHKDP15] follows a slightly different approach by regarding the two
amplitudes (which are multiplied in order to obtain the probability) simultaneously. This way, one arrives
at |Sp+p− |2 ∼ 2π

∫
dκ‖ |η(κ‖)|2 κ0

κ− (2π)3|S0|2 δ(R−)δ(2)(P⊥)|I(κ‖)|2. In principle, we could have followed
a similar procedure, yet the resulting expression additionally contains V ⊥ [see Eq.(A.66)] due to our
definition of the wave packet. Our wave packet is introduced with smallest possible deviation from the
original calculation, aiming at an early contraction.

90



A.6. PROPERTIES OF THE PULSE SHAPE

A.6 Properties of the pulse shape

In the following, we briefly review the properties of the pulse shape used for our numerical
examples, which reads (cp. Eq. (2.11))

f ′(η) = sin2(η/2) sin(Noscη + χ) . (A.70)

Using trigonometric identities, it can directly be written as a Fourier series

f ′(η) =
1

2
sin(Noscη + χ)− 1

4
sin([Nosc − 1]η + χ)− 1

4
sin([Nosc + 1]η + χ)

=

Nosc+1∑
n=Nosc−1

a′n sin(nη + χ)
(A.71)

with a′n = 1/2 for n = Nosc, and a′n = −1/4 for n = Nosc ± 1.
We note that this way, the vector potential being proportional to f(η) can easily be
determined analytically. Similarly, also f(η)2, which appears in the Volkov phases, can
be expressed as a Fourier series comprising generally ten terms (and one constant term).
Accordingly, the Volkov states can be expanded into a product of about ten ordinary Bessel
functions, see App. A.7. However, this approach is numerically much more expensive than
a direct integration of the corresponding integrals comprising the Volkov phases.
With regard to the electric field associated with f ′, we have to account for the characteristic
function X[0,2π](η). Accordingly, the Fourier transform of the electric field is of the form

̂f ′X[0,2π](ν) =

Nosc+1∑
n=Nosc−1

a′n

∫ 2π/ωb

0
sin(nωbt+ χ)eiνtdt

=
1

2iωb

Nosc+1∑
n=Nosc−1

a′n
[
eiχIn(ν/ωb)− e−iχI−n(ν/ωb)

]
,

(A.72)

with

In(x) =

∫ 2π

0
ei(x+n)φdφ =

e2πix − 1

i(x+ n)
= 2eiπx

sin(πx)

x+ n
. (A.73)

We note that these integrals are crucially determined by the characteristic function, which
is used in order to model the finite length of the pulse. As a first and most important
effect, the finite extent of the integration domain broadens the spectral peaks induced by
f ′(η). Nevertheless, we see that In vanishes for integer values of x except x = −n. These
zeros remain in the Fourier transform of the electric field [see Eq. (A.72) and Eq. (A.74)
below] at most integer values of ν/ωb except ±ν/ωb ∈ {Nosc, Nosc ± 1} and determine the
appearance of the one-photon-finding probability, which is depicted in Fig. 3.1.
The spectral phase discussed in Chap. 4 is introduced at the level of the vector potential,
which is proportional to f(η). Since f ′(η) = 1

ωb
d
dtf(η), the Fourier transforms are related

according to f̂ ′(ν) = − iν
ωb
f̂(ν). The corresponding spectral phases are the same except for

an overall offset, such that it is sufficient to regard the spectral phase induced by f̂ ′(ν).
To this end, we abbreviate x = ν/ωb and simplify the Fourier transform of the electric
field [see Eq. (A.72)] according to

̂f ′X[0,2π] =
eiπx

iωb
sin(πx)

Nosc+1∑
n=Nosc−1

a′n

(
eiχ

x+ n
− e−iχ

x− n

)
. (A.74)
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For high energies with x > Nosc+1, the zeros induced by sin(πx) are accompanied by phase
jumps of π, which induce the characteristic behavior of the interference terms involving
one high-energy photon. Conversely, in the central peak where ν/ωb ∈ (Nosc−2, Nosc +2),
the zeros of sin(πx) are compensated by one of the 1/(x−n) terms, and the phase remains
continuous.3 Furthermore, as discussed in Sec. 4.1, for energies within the central peak,
we may neglect the terms with 1/(x+ n). Hence, we can deduce that the spectral phase
approximately scales as −χ + πν/ωb. We note that the frequency-dependent term is
irrelevant for the interference phase, since it is compensated by the analogous term from
the interference partner. In fact, as mentioned in Sec. 4.1, one can simplify the analysis of
the interference phase by transforming the pulse into a time interval which is symmetric
about t = 0. This way, the continuous frequency dependence induced by eiπx vanishes
directly:
We briefly sketch the procedure required to transform the pulse into the interval [−π, π].
Introducing φ = η − π, the shape function reads

f ′(φ) =

Nosc+1∑
n=Nosc−1

a′n sin(nφ+ nπ + χ) . (A.75)

Now we can proceed in close analogy to the above treatment, except that the integral
in In(x) extents from −π to π and temporarily contains the additional phase term einπ,
yielding

In(x) = einπ
∫ π

−π
ei(x+n)φdφ = 2

sin(xπ)

(x+ n)
, (A.76)

which is more compact than the prior version of In in Eq. (A.73). This way, we arrive at
the original expression in Eq. (A.74) but without the factor eiπx.

A.7 Fourier expanding the integrals

Employing the notation introduced in Chap. 6 for a double pulse, we separate oscillatory
and growing terms in Hj(Φj) [see Eq. (6.24)] via

Hj =

2∑
l=1

hlj

∫ Φj

0

(
f lj(η)− 〈f lj〉

)
dη︸ ︷︷ ︸

=:Gj

+Φj

2∑
l=1

hlj〈f lj〉︸ ︷︷ ︸
=:µj

(A.77)

with the phase average

〈f lj〉 =
1

2π

∫ 2π

0
f lj(η)dη . (A.78)

This way, Gj can be regarded as a periodic function in Φj , with period length 2π. As
can be seen from Eq. (6.20), the same holds for C̃j . As a consequence, C̃je−iGj can be
expanded into a Fourier series. Bringing the shape function into the form of Eq. (A.71), the
key step is to replace each harmonic term in the exponent by employing the Jacobi-Anger
expansion [AS72]

eiz sin(θ) =

∞∑
n=−∞

Jn(z)einθ , (A.79)

3We note, however, that the relation between the coefficients a′n has to be taken into consideration in
order to show that no further zeros (with corresponding phase jumps) are induced by the summation.
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where the Jn(z) denote ordinary Bessel functions.
Following this path, one can derive the expansion coefficients Dj(nj) and arrives at the
form

C̃je
−iGj =

∞∑
nj=−∞

Dj(nj)e
injΦj . (A.80)

Accordingly, the integrand of Fj from Eq. (6.26) can be written as

2∑
l=1

g̃ljf
l
j(Φj)e

−i(Q0Φj/k
0
j+Gj+Φjµj) =

∞∑
nj=−∞

Dj(nj)e
−i(Q0+µjk

0
j−njk0

j ) Φj/k
0
j . (A.81)

Despite the suggestive form of Eq. (A.81), one should keep in mind that the integration is
restricted to Φj ∈ [0, 2π]. Accordingly, the exponent does not deliver a fourth δ function.
In particular, the numbers nj should be treated with care. They cannot be interpreted as
the number of absorbed photons with frequency k0

j .
The term µjk

0
j describes the dressing of the particle states due to the interaction with the

j-th laser pulse, with µj = −wj , where w was introduced for a single pulse in Eq. (2.39),
see also Sec. 6.2.2. We note that this Fourier expansion can be applied to the case of a
single pulse, too.
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