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Abstract

In quantum mechanics, systems may exhibit correlations that go beyond
those possible in classical theories. The classical correlations form a con-
vex polytope uniquely characterized by finitely many vertices, such that
every classically achievable distribution of measurement probabilities can
be written as a convex combination of these vertices. Consequently, any
correlation that cannot be decomposed in this way is incompatible with a
classical statistical theory.

Such incompatibilities manifest themselves in different ways. One ex-
ample is the Kochen-Specker theorem, which asserts that quantum corre-
lations, in general, cannot be understood as correlations between hidden
parameters whose values are independent of other, simultaneously per-
formed measurements. The experimental verification of quantum mechan-
ical predictions in this case is faced with the so-called problem of compat-
ibility: in general, real measurements are never perfectly compatible, and
thus, the assumptions underlying the Kochen-Specker theorem cannot be
straightforwardly implemented.

To address this issue, we present a formulation of the theorem, combin-
ing it with ideas behind Leggett-Garg inequalities, that is well-defined even
for imperfectly compatible observables, and which reduces to the usual for-
mulation in the limit of perfect compatibility.

Another important aspect of quantum correlations is the phenomenon
of entanglement. Many methods to detect the entanglement of arbitrary
quantum states have to be specifically taylored to that state, or else, quickly
become infeasibly resource intensive. We present a novel method to detect
any given state’s entanglement content by performing a sequence of ran-
dom measurements on different subsystems, and constructing appropriate
witness operators from these measurement by semidefinite programming.
We furthermore show that this method scales favorably as compared to
other methods, such as quantum state tomography.

Quantum correlations can be used as a resource to perform certain tasks
not classically feasible, or indeed, impossible. The third main result of this
thesis is to present a novel such task: the certification of lower bounds
to detector efficiencies in a device-independent scenario, where neither
the quantum state nor the characterization of the measurement devices is
known. To do so, we develop a method to derive Bell inequalities given
only the observed measurement data, such that the violation of these in-
equalities allows us to derive a minimum efficiency that the detectors must
exceed in order to produce this violation. Furthermore, we discuss ap-
plications of this method to (device-independent) entanglement detection,
nonlocality certification without a shared reference frame, and quantum
key distribution.

Finally, we outline a program to recast quantum theory as a so-called
principle theory, whose empirical content derives from (ideally) intuitive
physical postulates. We identify the notion of an epistemic restriction, that
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is, a restriction on the amount of information that can be gathered about a
system, as a possible foundation for this program. We then discuss how
such an epistemic restriction emerges via logical constraints on the pre-
dictability of measurement outcomes due to considerations of consistency.
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Zusammenfassung

Systeme in der Quantenmechanik können Korrelationen aufweisen, die
über die in klassischen Theorien möglichen hinaus gehen. Die klassischen
Korrelationen bilden einen konvexen Polytopen, der durch Angabe von
endlich vielen Vertices eindeutig charakterisiert werden kann, so dass jede
klassisch mögliche Verteilung von Messergebnissen als konvexe Summe
dieser Vertices geschrieben werden kann. Jede Korrelation die nicht in
solcher Weise darstellbar ist, ist somit nicht mit einer klassischen statis-
tischen Theorie vereinbar.

Derartige Unvereinbarkeiten manifestieren sich in verschiedener Weise.
Ein Beispiel ist das Kochen-Specker Theorem, welches aussagt, dass Quan-
tenkorrelationen im Allgemeinen nicht als Korrelationen versteckter Pa-
rameter, deren Wert unabhängig von anderen, gleichzeitig durchgefḧrten
Messungen ist, verstanden werden können. Die experimentelle Überprüf-
barkeit der quantenmechanischen Vorhersagen in diesem Fall sieht sich mit
dem sogenannten Kompatibilitätsproblem konfrontiert: im Allgemeinen
sind real durchgeführte Messungen niemals absolut kompatibel, und da-
her können die Annahmen des Kochen-Specker Theorems nicht direkt in
den experimentellen Kontext übersetzt werden.

Um dieses Problem zu lösen, schlagen wir eine Formulierung des The-
orems vor, indem wir einige Ideen, die den Leggett-Garg Ungleichungen
zugrunde liegen, hinzuziehen, welche auch für nicht perfekt kompatible
Observablen wohldefiniert ist, und welche für den Fall perfekter Kompati-
bilität auf die ursprüngliche Formulierung reduziert.

Ein weiterer wichtiger Aspekt der Quantenkorrelationen ist das Phäno-
men der Verschränkung. Viele Methoden zur Detektion der Verschränkung
beliebiger Quantenzustände müssen spezifisch auf diese Zustände abges-
timmt sein, oder benötigen andernfalls unerreichbare Resourcen. Wir de-
monstrieren eine neue Methode zur Detektion des Verschränkungsinhaltes
beliebiger Zustände, indem eine Abfolge zufälliger Messungen an verschie-
denen Untersystemen durchgeführt wird, woraus dann ein semidefinites
Programm einen geeigneten Verschränkungszeugen konstruiert. Weiterhin
zeigen wir, dass diese Methode im Vergleich mit Methoden wie etwa Quan-
tenzustandstomographie ein besseres Skalierungsverhalten an den Tag legt.

Quantenkorrelationen können als Resourcen für Aufgaben, die klas-
sisch praktisch undurchführbar oder sogar unmöglich sind, dienen. Der
dritte Beitrag dieser Dissertation legt eine neuartige Aufgabe aus diesem
Bereich dar: die Zertifizierung unterer Schranken an Detektoreffizienzen
im geräteunabhängigen Szenario, in welchem weder der Quantenzustand
noch die Charakterisierung der Messapparatur bekannt ist. Dafür entwick-
eln wir eine Methode, um Bellungleichungen lediglich aus den Messdaten
zu konstruieren, so dass die Verletzung dieser Ungleichungen es uns er-
laubt, die minimale Effizienz, welche die Detektoren überschreiten müssen
um diese Verletzung hervorzubringen, abzuleiten. Weiterhin diskutieren
wir Anwendungen dieser Methode auf die geräteunabhängige Detektion
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von Verschränkung, die Feststellung nichtlokaler Korrelationen ohne ge-
meinsames Bezugssystem, und die Quantenschlüsselverteilung.

Schließlich beschreiben wir ein Programm, die Quantenmechanik in die
Form einer Prinzipientheorie zu bringen, deren empirischer Inhalt von (ide-
alerweise) intuitiv einsichtigen physikalischen Postulaten ableitbar ist. Wir
identifizieren den Begriff der epistemischen Einschränkung, bei der es sich
um eine Einschränkung der über ein System verfügbaren Information han-
delt, als mögliche Grundlage für dieses Programm. Wir geben an, wie solch
eine epistemische Einschränkung aus logischen Bedingungen bezüglich
der Vorhersagbarkeit von Messergebnissen aus Konsistenzüberlegungen
folgt.
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Chapter 1

Introduction

In the most basic sense, a physical theory consists of a mathematical for-
malism, combined with a prescription connecting the elements of this for-
malism to observable physical quantities. Thus, classical physics in its La-
grangian formulation contains:

• The configuration space Σs, i.e. the vector space spanned by the sys-
tem’s (generalized) coordinates q (subject to certain kinematical con-
straints), representing the physical system s

• The system’s state q(t), representing the instantaneous (at time t) val-
ues of the generalized coordinates

• The Lagrangian L(q, q̇, t), which is related to the difference between
kinetic and potential energy of the system

• The action S =
∫

dtL, whose variation according to the principle of
least action δS = 0 yields the system’s trajectory, that is, the explicit
functional form of q(t)

Using these ingredients, classical mechanics can be used to derive pre-
dictions of empirical observables using a simple algorithm: we simply com-
pute the time evolution of the system’s generalized coordinates q(t) using
the principle of least action, and then use our knowledge of the system’s
state at all times to compute the observable quantities we are interested in.

Note that it is not necessarily the case that the formulation of a theory
must be unique: for instance, in the case of classical mechanics, an equiv-
alent formulation is given by the Hamiltonian formalism, where a system
S is described in phase space Πs, spanned by its generalized coordinates q

and momenta p, with the Hamiltonian H(q,p, t) corresponding to its total
energy, and where the time evoltion of the generalized coordinates and mo-
menta (i.e. the system’s state) is given by Hamilton’s equations,

dq

dt
=
∂H(q,p, t)

∂p

dp

dt
= −∂H(q,p, t)

∂q
. (1.1)

Now, in order for a physical theory to be complete, any well-defined em-
pirically accessible quantity ought to be matched with a corresponding ele-
ment of the formalism, and predictions made using this formalism ought to
match empirical observation in all cases. In this sense, classical mechanics
as described above fails to be complete in several respects: in the regime
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of high velocities |q̇| ∼ c, where c is the speed of light, classical mechani-
cal predictions cease to be valid due to corrections from special relativity;
likewise, for strong gravitational fields, the general theory of relativity be-
comes necessary; and finally, and most importantly for the purposes of this
thesis, in the regime of small action S ∼ �, where � is the reduced Planck’s
constant, quantum mechanical effects must be taken into account.

From this point of view, quantum mechanics can be viewed as a com-
pletion of classical mechanics within a domain where the latter ceases to
apply. Now, the question presents itself: is quantum mechanics itself com-
plete? Since it, like Newtonian mechanics, fails to account for the effects
of large velocities and gravitational fields, it is just as incomplete in this
regimes. Furthermore, while a completion of quantum mechanics for large
velocities has been formulated in the form of quantum field theory, com-
pletion to the gravitational sector, that is, formulating a theory of quantum
gravity, is still an outstanding problem.

However, concerns were raised early on that quantum mechanics might
fail to be complete even in its stated domain of applicability. Einstein,
Podolsky, and Rosen (1935) formulated an argument, now famous as the
so-called ‘EPR-argument’ after the initials of its authors, designed to show
that there exist measurable quantities that have no corresponding represen-
tative in the formalism.

The form of the argument most familiar today is due to Bohm and
Aharonov (1957), considering two particles whose spin degrees of freedom
are described by an entangled wave function. Since spins along orthogonal
axes are described by non-commuting quantities in the formalism of quan-
tum mechanics, there exists an uncertainty principle dictating that complete
knowledge of the spin along one direction entails complete ignorance along
the orthogonal direction.

Now, consider performing a spin measurement on particle I. Due to
the nature of the entangled state, whatever outcome is obtained dictates
that the spin of particle II must be oppositely aligned. Hence, after obtain-
ing a spin along the positive x-direction for particle I, we know that the
spin of particle II must be aligned in negative x-direction. However, by the
uncertainty principle, we also must conclude that the spin along e.g. the y-
direction of particle II must be absolutely unknown—that is, measurement
along this axis yields a positive or negative alignment with 50% probability
each.

Yet, if we had instead performed a measurement along the y-direction
of particle I, we can run the same argument again: since the y-spin of parti-
cle II is perfectly determined via this measurement, it follows that the spin
along the x-direction is completely undetermined, with quantum mechan-
ics again predicting a probability of 50% to yield either value. However,
if both particles are sufficiently far removed from one another (far enough
that no signal travelling at c could traverse their distance during the time
the experiment takes), there ought to be no influence between the particles.
But then, how does the second particle ‘know’ whether to have an exactly
determined spin along the x- or y-direction?

From this apparent paradox, EPR concluded that, there being no mech-
anism to influence the spin orientation of particle II, there must be a def-
inite fact of the matter regarding this orientation at all times, and hence,
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since quantum mechanics cannot predict this direction in all cases, the the-
ory must be incomplete—there exists an observable quantity that does not
have a representative within the formalism.

The argument sparked a great amount of controversy, most notably due
to Bohr (1935), who used the notion of complementarity to argue that quan-
tum mechanics should be considered a complete theory (within its domain),
after all. It was not until three decades later that Bell, in a seminal pa-
per, showed that the EPR-requirements of non-interaction of spacelike sep-
arated systems and simultaneous values for conjugate observables are, in
fact, jointly irreconcilable with the predictions of quantum mechanics (Bell
1964). Experimental investigations due to Freedman and Clauser (1972),
the groups of Aspect (Aspect, Dalibard, and Roger 1982; Aspect, Grang-
ier, and Roger 1981, 1982) and Zeilinger (Weihs et al. 1998) have provided
strong evidence favoring the quantum mechanical predictions. However,
only recently has it become possible to perform a test of Bell’s predictions
free from certain loopholes (Giustina et al. 2015; Hensen et al. 2015; Shalm
et al. 2015).

A main motivation behind the suspicion of quantum mechanics’ incom-
pleteness was the fact that the theory only yields probabilistic predictions in
the general case. In classical meachanics, such a situation always signals an
incompleteness regarding the knowledge of a given physical system, and
given the requisite additional knowledge, deterministic predictions are in
principle possible for any given system. But in quantum mechanics, due
to the uncertainty principle, such additional knowledge is not attainable.
Indeed, controversy regarding quantum mechanics and its interpretation
continues to this day.

However, whatever else quantum mechanics may be, it is certainly an
algorithm capable of producing some of the most well-confirmed predic-
tions, making it one of the most successful physical theories available.
Hence, in the following, we will take an operational approach: rather than
considering contentious interpretational matters, we will try to understand
quantum mechanics simply as a means of generating experimentally verifi-
able predictions. To this end, in the following section, we will introduce the
framework of generalized probabilistic theories (GPTs), which proposes a
set of reasonable constraints a physical theory aimed at (probabilistically)
predicting measurement outcomes should fulfill. Since this turns out rather
broad, afterwards, we will narrow our scope, locating quantum mechanics
within this class of theories, and provide a brief introduction of its formal-
ism.

1.1 Generalized Probabilistic Theories

The framework of generalized probabilistic theories arose out of the at-
tempt to understand quantum theory in operational terms. The roots of
this view can be traced back to pioneering works by Mackey (1963), Lud-
wig (1983), and Kraus et al. (1983) (see also the review (Janotta and Hin-
richsen 2014)). Instead of focusing on the theory’s interpretation, it marks
a shift in perspective towards considering its empirical predictions, as well
as allowed operations.
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In the following, we will introduce the GPT-framework first on the ex-
ample of single systems, and then move on to consider the case of compos-
ite systems, and consequently, of possible correlations.

1.1.1 Single Systems

In the setting of generalized probabilistic theories, a physical system is con-
sidered to be a ‘black box’, which can receive inputs and, based on these
inputs, produces certain outcomes.

Commonly, one requires that these black box systems can be manipu-
lated in three distinct ways: via preparations, transformations, and mea-
surements. However, since any manipulation can be either thought of as
part of the preparation process, or a measurement, it largely suffices to
think exclusively about preparations and measurements.

The role of a preparation is, as the name implies, to prepare a physical
system in a given (although not necessarily known) state; that is, a prepara-
tion fixes a system’s disposition to react to certain inputs (due to the settings
of a measurement apparatus) in certain ways. Measurement, then, interro-
gates the system, producing certain outcomes according to its setting. In
the GPT context, these outcomes are usually referred to as effects.

In principle, the output of a measurement system may be either digi-
tal, yielding a finite number of distinct values, or analog. However, due to
unavoidable inaccuracies in e.g. reading a value off of a scale, it is suffi-
cient here to restrict ourselves to a finite number of outcomes. Thus, any
measurement is associated with a finite number of effects, albeit different
measurements can share some of the same effects.

This allows us now to introduce the concept of a state in the GPT frame-
work: a state is simply the set of probabilities assigned to all effects. Thus,
any two systems that assign the same probabilities to all effects are in the
same state—this encapsulates the operational character of the framework.
In general, this list of probabilities might well be infinite. To circumvent
this, one postulates the existence of a finite number of fiducial effects, which
suffice to specify the state uniquely.

Consider thus the set {Mi} of k possible (fiducial) measurements, each
of which has li possible outcomes, leading to the set {i|Mj} of all possible
effects. A state is then the list of probabilities assigned to these effects, given
a certain preparation procedure P , i.e.

ωP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pr(1|M1, P )
Pr(2|M1, P )

...
Pr(l1|M1, P )

...
Pr(1|M2, P )

...
Pr(lk|Mk, P )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.2)

Here, Pr(i|Mj , P ) denotes the probability of observing the ith outcome, if
the jth measurement is performed following preparation procedure P .
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Different preparation procedures may assign the same probabilities to
all effects; in this case, the states are equivalent, and thus, any given state
is an equivalence class of preparations. Furthermore, we may consider the
case of a preparation device probabilistically performing different prepara-
tions P and P ′. Then, for a given measurement Mj , we will obtain the ith
outcome with probability pPr(i|Mj , P ) + (1 − p)Pr(i|Mj , P

′), if the proba-
bility for preparation procedure P is p. Consequently, any convex combi-
nation of states must again be a state, and thus, the state space Ω must be
convex. Any state ω that can be written as a convex combination of other
states, i.e. in the form

ω =
∑

i

λiωi (1.3)

with 0 < λi ≤ 1 and
∑

i λi = 1 is called mixed; consequently, states that
have no convex decomposition are called pure.

By means of example, let us look at the classical bit, or cbit, and the gen-
eralized bit, or gbit for short. For the cbit, there exists a single measurement
M with two outcomes 1 and 0. Its state is completely specified by the two
outcome probabilities:

ωc =

(
Pr(0|M)
Pr(1|M)

)
, (1.4)

with Pr(0|M) + Pr(1|M) = 1.
The gbit is a system for which there exist two measurement devices Mx

and My, each of which has two outcomes, ↑ and ↓. Thus, the state of the
gbit is given by

ωg =

⎛
⎜⎜⎝

Pr(↑|Mx)
Pr(↓|Mx)
Pr(↑|My)
Pr(↓|My)

⎞
⎟⎟⎠ . (1.5)

Normalization enforces that Pr(↑|Mx) + Pr(↓|Mx) = Pr(↑|My) + Pr(↓
|My) = 1. Hence, the state space of the gbit is the unit square. Fig. 1.1 shows
the state spaces of the cbit and gbit.

a) b)

Pr(↑|Mx)

Pr(↑|My)0

1

10

1

ΩgΩc

FIGURE 1.1: a) State space of the cbit, with pure states high-
lighted by white circles. b) State space of the gbit, pure
states again highlighted by white circles.
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We have seen that states ω in a GPT form a convex subset Ω of a vector
space V . Now, we can model effects as linear functionals e : V → [0, 1] (el-
ements of the dual space V ∗) which associate a real number in the interval
[0, 1] to every state ω ∈ Ω. We identify this number with the probability of
obtaining a given outcome, i.e.

Pr(i|M) = ei(ω). (1.6)

Then, linearity follows from the following argument: suppose we have
a preparation procedure that prepares each of the states ωi with probability
pi, that is, prepares the state ω =

∑
i piωi. Then, we will observe the j-th

outcome with probability Pr(j|M) = ej(ω) = ej(
∑

i piωi).
However, after the preparation, we have the i-th state with probability

pi—that is, with probability p1, we have the state ω1, with probability p2 the
state ω2, and so on. Now, if the state is ω1, then the probability of obtaining
the j-th outcome is Pr(j|M) = ej(ω1); likewise, if the state is ω2, then the
probability will be Pr(j|M) = ej(ω2), and so on.

Each of these cases happens now with probability pi. Thus, since both
are equivalent descriptions of the same situation, we must have:

ej

(∑
i

piωi

)
=

∑
i

piej(ωi) (1.7)

for all effects ej .
For an l-outcome measurement M , there then exist l effects {e1, . . . , el}

such that
l∑

i=1

ei(ω) = 1 (1.8)

for all ω.
Both states and effects may be unreliable: a preparation procedure may

fail to produce a system, or an experiment may yield no outcome, even
though a system is present. If the preparation procedure for a system in the
state ω succeeds with probability p (and consequently, fails with probability
1− p), then, for instance, an effect ei that yields outcome i on the system in
state ω with probability 1, will now yield that outcome with probability p,
instead. Conversely, if instead we have an unreliable effect ei that produces
the correct outcome with probability q, we will observe the outcome i with
a probability of qei(ω).

Thus, we can represent unreliable states as subnormalized vectors pω ∈
V , and unreliable effects likewise as qe ∈ V ∗. This extends the convex set of
states Ω in V to the (truncated) convex cone

V+ = {pω ∈ V |0 ≤ p ≤ 1, ω ∈ Ω}. (1.9)

Conversely, effects can be considered to be elements of the dual cone

V ∗
+ = {qe ∈ V ∗|0 ≤ q ≤ 1, e(ω) ≥ 0∀ω ∈ Ω}. (1.10)

Finally, there exists a special effect, the so-called unit effect u, which is
defined by u(ω) = 1 for all ω ∈ Ω; that is, this effect can be viewed as
merely determining whether a system is present, and thus, the preparation
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procedure was successful. For any given collection of effects ei of an l-
outcome measurement, we have that

l∑
i=1

ei = u, (1.11)

as the sum of all possible outcome probabilities must equal one.
Since we want the effects to yield probabilities if applied to all states,

we must have, for all effects e and states ω,

0 ≤ e(ω) ≤ 1. (1.12)

The lower bound is already obeyed by restricting the set of effects to the
(positive) dual convex cone V ∗

+. To implement the upper bound, we note
that with any effect e, also its complement e⊥ = u − e must be included
in the set of effects, since e⊥(ω) ≥ 0 implies (u − e)(ω) ≥ 0, and hence,
e(ω) ≤ 1 for all ω. Thus, the allowed set of effects E can be considered as
the intersection of the convex cone V ∗

+ with the set of complement effects,
i.e.

E = V ∗
+ ∩ (u− V ∗

+). (1.13)

In general, not all effects may be jointly measurable. Here, joint measura-
bility means the following. Consider two effects ei and ej , yielding a one-bit
outcome each if applied to an arbitrary state ω. Now, for these effects to be
jointly measurable means that there exists a third effect, ei∧j , such that, ap-
plied to the same ω, it yields two bits with the same statistical distribution
as the two bits obtained from measuring the effects ei and ej individually
(cf. Janotta and Hinrichsen 2014).

For the full measurement, we need three additional effects ei∧j̄ , eī∧j and
eī∧j̄ such that the condition in Eq. 1.11 holds, i.e.

ei∧j + ei∧j̄ + eī∧j + eī∧j̄ = u. (1.14)

Furthermore, the original effects must be obtainable as the mariginals
of the joint measurement:

ei = ei∧j + ei∧j̄

ej = ei∧j + eī∧j (1.15)

The joint effect ei∧j can now be obtained in the following ways:

ei∧j = ei − ei∧j̄

= ej − eī∧j (1.16)

= ei + ej − u+ eī∧j̄

Thus, a joint effect exists if the intersection of sets

E ∩ (ei − E) ∩ (ej − E) ∩ (ei + ej − u+ E) (1.17)

is not empty.
The machinery introduced so far suffices to describe measurements
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on single systems. In the following section, we will introduce the nec-
essary tools to handle composite systems, which will then enable us to
move on to our main topic, the possible correlations allowed by a given
GPT. However, for completeness, we will have a short look at the allowed
transformations—modeling, for instance, the possible physical evolutions
of a system—below.

A transformation T is a mapping from a state space ΩA to a state space
ΩB , T : ΩA → ΩB . By an analogous argument to the one used for effects,
we obtain that they must act linearly on states, that is,

T

(∑
i

piωi

)
=

∑
i

piT (ωi). (1.18)

Furthermore, we require transformations to be positive and normaliza-
tion-nonincreasing, meaning that

ei(T (ω)) ≥ 0 (1.19)

and
l∑

i=1

ei(T (ω)) ≤ 1 (1.20)

for all ω and l-outcome measurements with effects ei.
If a transformation is invertible, that is, there exists a T−1 such that

TT−1 = 1, and if T−1 is a transformation as well, we call the transforma-
tion reversible. The reversible transformations of a system form a compact
Lie group. In the case of the gbit described above, this group of transfor-
mations is the dihedral group D4, that is, the group of rotations through
an angle nπ

2 , where n ∈ N. In the quantum mechanical description of a
d-dimensional system, this group is the group of d × d unitary matrices,
U(d).

1.1.2 Composite Systems

Having now compiled the necessary tools for the description of single sys-
tems in the GPT framework, we proceed to the case of composite systems
and their correlations, which will be the main concern of this thesis.

Consider thus two systems A and B, whose state spaces ΩA and ΩB

form convex subsets of vector spaces VA and VB , respectively. We are now
looking for a construction that yields a physically reasonable definition for a
combined state space ΩAB , which we anticipate to be again a convex subset
of a vector space VAB .

To do so, we will make two physical assumptions. The first assumption
is local tomography: essentially, we want to assume that we can learn all
there is to know about a system by performing local measurements on its
subsystems. Thus, suppose we have a collection of effects eA on system A,
and a collection of effects eB on system B. Local tomography then means
that for any two states ωAB and ω′

AB of the joint system, if it holds that
eAB(ωAB) = eAB(ω′

AB), then ωAB = ω′
AB . Here, we use the notation eAB to

denote the joint effect of a simultaneous measurement on both subsystems,
and suppress the outcome indices to avoid clutter. It can be shown that this
assumption mandates a tensor product structure for the theory, that is, the



1.1. Generalized Probabilistic Theories 9

joint vector space is the tensor product of the subsystem vector spaces:

VAB = VA ⊗ VB. (1.21)

The reason for this is that the number of parameters to determine an ele-
ment of VA ⊗ VB is equal to the product of the number of parameters to
determine an element of VA and the number of parameters to determine an
element of VB (Barrett 2007).

This assumption is nontrivial: in fact, theories have been proposed in
which it is violated. The most well-known such theory is the so-called real-
vector-space quantum theory (Hardy and Wootters 2012), where the complex
Hilbert space of standard quantum mechanics is replaced by a vector space
over the real numbers, and where in general measurements on pairs of sub-
systems are necessary to fully determine the state of a system.

The second physical constraint we require is the no-signalling principle.
This principle intuitively demands that there is no instantaneous action at
a distance between two systems, and as such, is motivated by the fact that
in special relativity, all influences propagate with a speed that is bounded
by that of light (in vacuum, i.e. c).

The framework as introduced so far has no notions of space and time,
and hence, no concept of distance. However, we can implement this prin-
ciple in an operational way by demanding that for each system, there must
exist local states ωA ∈ ΩA and ωB ∈ ΩB that completely suffice to determine
the local measurement statistics. Thus, for any l-outcome measurementMA

on subsystem A and m-outcome measurement MB on subsystem B, we re-
quire that

Pr(i|MA,MB) = Pr(i|MA) (1.22)
Pr(j|MA,MB) = Pr(j|MB), (1.23)

where i ∈ {0, . . . , l} (j ∈ {0, . . . ,m}) enumerates the measurement out-
comes of MA (MB). Thus, the choice of measurement on A (B) does not
influence the probability of obtaining the outcome j (i) on B (A).

We start with the simplest scenario: independent, locally prepared sys-
tems A andB in the states ωA and ωB respectively. In this case, for any joint
measurement, we expect that the probabilities factorize, that is

Pr(i, j|MA,MB) = Pr(i|MA) · Pr(j|MB), (1.24)

and hence, if the joint state of the system is ωAB ,

eAB
ij (ωAB) = eAi (ωA)eBj (ωB) (1.25)

This situation can be represented using the tensor product ⊗, yielding
ωAB = ωA ⊗ ωB and eAB

ij = eAi ⊗ eBj .
A natural generalization is to allow arbitrary convex combinations of

states of the above form. This corresponds to the situation in which the two
parties,A andB, produce a certain joint state ωi

A⊗ωj
B with a given probabil-

ity pij—that is, it allows us to include (classical) correlations into our frame-
work. Here, we speak of a correlation whenever knowledge of the state of
one party increases the knowledge of the state of the other party—in the



10 Chapter 1. Introduction

extreme case, if e.g. either the joint state ω1
A ⊗ω1

B or ω2
A ⊗ω2

B , knowledge of
A’s state determines B’s state completely, and we have perfect correlation.

Such a state can then always be written as

ωAB =
∑
ij

pijω
i
A ⊗ ω

j
B. (1.26)

This now allows us to find a first definition for the states of the joint
system AB. This definition is given by the minimal tensor product, ⊗min, and
yields

V A
+ ⊗min V

B
+ =

⎧⎨
⎩ωAB =

∑
ij

pijω
i
A ⊗ ω

j
B|ωi

A ∈ V A
+ , ω

i
B ∈ V B

+ , pij ≥ 0

⎫⎬
⎭

(1.27)

V A∗
+ ⊗min V

B∗
+ =

⎧⎨
⎩eAB =

∑
ij

qije
A
i ⊗ eBj |eAi ∈ V A∗

+ , eBi ∈ V B∗
+ , qij ≥ 0

⎫⎬
⎭ .

(1.28)

However, this is not the only possible way to generate a joint state space;
and in fact, this definition would be inadequate to capture the phenomena
of quantum mechanics, as there exist (entangled) states that cannot be writ-
ten in the form of Eq. 1.26.

Thus, we need to allow different definitions of the joint state space, if
we are to capture the phenomena of quantum mechanics. A feature of the
above definition is that if system A has k extremal (pure) states, and system
B has l such states, the joint system will have k · l extremal states; hence, to
include states that cannot be written as in Eq. 1.26, we need to add further
extremal states to the state space (while obeying the physical constraints of
local tomography and no-signalling).

There is a natural limit to this procedure of adding states to the tensor
product: it can be shown that there exists a trade-off between the additional
states available (as compared to the minimal tensor product) in the joint sys-
tem, and the measurements that can be performed on it (Short and Barrett
2010). In fact, the maximum number of additional states is attained, if the
set of joint effects is minimal (and vice versa); thus, we define the maximal
tensor product as the set of all states which give nonnegative results for all
effects contained in the minimal tensor product:

V A
+ ⊗max V

B
+ =

{
ωAB ∈ V A ⊗ V B|eA ⊗ eB(ωAB) ≥ 0∀eA ∈ V A∗, eB ∈ V B∗}

(1.29)
The requirement of nonnegativity in the above ensures that there exist

local reduced states ωA and ωB that reproduce the local measurement statis-
tics independently of the actions of the other party, and thus, enforces the
no-signalling condition.

The minmal and maximal tensor products give a range of possible joint
state spaces, and thus, a range of theories. A priori, each of these could yield
a physical theory compatible with the desiderata formulated so far; how-
ever, in practice, only one of them can be realized in nature. It is therefore
interesting to mention that the case of quantum mechanics corresponds, in
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a sense, to the most symmetrical one: the quantum tensor product sits right
’in between’ the minimal and maximal tensor products in the sense that
there exists a symmetry between entangled states and effects—the convex
cones of states and effects can both be identified with the set of positive
semidefinite operators on Hilbert space (Janotta, Gogolin, et al. 2011).

We have now assembled the requisite toolkit to treat composite systems
and their correlations within the framework of generalized probabilistic
theories. In the next section, we will bring the formalism to bear, by de-
veloping from it the notions of standard quantum mechanics.

1.2 Quantum Mechanics

Quantum mechanics can be viewed as an example of the generalized prob-
abilistic theories discussed in the previous section. Thus, we now have
to specialize the general framework presented there to the more familiar
elements comprising the quantum mechanical description of nature—that
is, we have to find the appropriate mathematical representations of quan-
tum states, effects, and transformations, as well as choose a tensor product
structure describing system composition.

We will follow the same basic structure as in the previous section, and
start out with a description of single systems, which we then generalize to
allow for system composition.

1.2.1 Single Systems

The quantum description of a system A proceeds as follows. First, states
are elements of the vector space of Hermitian (self-adjoint) n × n matrices
over C, that is, matrices M ∈ C

n×n such that M † = M , where the operation
† refers to Hermitian conjugation. This vector space can be understood as
the space of bounded linear operators over a (complex, and for the purposes
of this thesis, finite-dimensional) Hilbert space HA, denoted B(HA). Within
this space, unnormalized states are elements of the convex cone of positive
semidefinite operators, i.e. operators ρ such that for all |ψ〉 ∈ HA, it holds
that

〈ψ| ρ |ψ〉 ≥ 0, (1.30)

where 〈ψ| = |ψ〉†. For brevity, we will denote this as ρ ≥ 0. Adding the
normalization condition tr (ρ) = 1, we obtain the quantum state space

Ω = {ρ ∈ B(HA)|ρ ≥ 0, tr (ρ) = 1}. (1.31)

A normalized, positive semidefinite operator ρ is called a density operator or,
in particular when the underlying Hilbert space is finite dimensional (as it
will be for most purposes in this thesis), density matrix.

The space B(HA) comes equipped with an inner product 〈A,B〉 =
tr

(
A†B

)
. As any (normalized) state must have inner product 1 with the

unit effect, it is simply the identity 1. Thus, quantum mechanically possi-
ble effects Ei associated to an l-outcome measurement must satisfy

l∑
i=1

Ei = 1. (1.32)
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Then, the probability of observing the outcome i is simply given by the
inner product of Ei and the state ρ:

Pr(i|ρ) = tr
(
E

†
i ρ

)
≡ tr (Eiρ) , (1.33)

where we have used that E†
i = Ei. This implies that Ei ≥ 0, as probabilities

must be positive. This encapsulates the most general description of mea-
surement in quantum theory, the so-called positive operator valued measures,
or POVMs.

A special important case are the so-called projection-valued measures, or
PVMs, where effects Πi obey the additional condition that

ΠiΠj = δijΠj . (1.34)

A projection Π|ψ〉 onto a vector |ψ〉 ∈ HA is a positive semidefinite oper-
ator such that

Π2
|ψ〉 = Π|ψ〉, (1.35)

with Π|ψ〉 |ψ〉 = |ψ〉. Using the scalar product 〈φ|ψ〉 = 〈φ| · |ψ〉 on HA, we
see that we can write

Π|ψ〉 = |ψ〉〈ψ| , (1.36)

since
|ψ〉〈ψ|2 = |ψ〉〈ψ| , (1.37)

and
|ψ〉〈ψ| |ψ〉 = |ψ〉 〈ψ|ψ〉︸ ︷︷ ︸

=1

= |ψ〉 . (1.38)

We can then diagonalize any density matrix ρ, yielding

ρ =
∑

i

λi |i〉〈i| , (1.39)

where {|i〉} is a basis on HA. Let now {λ↓i } denote the collection of eigen-
values λi in descending order. Then, any density matrix with rank(ρ) ≥ 2
can be written as a mixture

ρ = λ
↓
1 |1〉〈1|︸ ︷︷ ︸

ρ1

+(1− λ
↓
1)

(∑
i

λ
↓
i

1− λ
↓
1

|i〉〈i|
)

︸ ︷︷ ︸
ρ2

. (1.40)

Hence, all pure density matrices are rank-one projections.
Thus, for any pure density matrix ρ there exists a |ψ〉 ∈ HA such that ρ

can be written as
ρ = |ψ〉〈ψ| . (1.41)

This means that pure states are in one-to-one correspondence with (nor-
malized, 〈ψ|ψ〉 = 1) vectors |ψ〉 in the Hilbert space HA, and consequently,
such vectors can alternatively be used for their representation. However,
this representation is not unique: the transformation

|ψ〉 → ∣∣ψ′〉 = eiφ |ψ〉 , (1.42)
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with φ ∈ [0, 2π], leaves the resulting density matrix invariant:

ρ = eiφ |ψ〉〈ψ| e−iφ = |ψ〉〈ψ| . (1.43)

Hence, a pure state is given by the equivalence class (or ray) of vectors |ψ〉 ∈
HA that differ only by the above global phase transformation.

For an l-outcome measurement whose associated effects are given by
the projection operators Πi, we can define a (Hermitian) measurement opera-
tor O as

O =
l∑

i=1

oiΠi, (1.44)

where oi is the outcome associated with the projector Πi. From this defini-
tion, we immediately see that the inner product of such an operator with
a density matrix ρ yields the expectation value of the associated measure-
ment, given the state ρ:

〈O, ρ〉 = tr (Oρ) (1.45)

=
l∑

i=1

oitr (Πiρ) (1.46)

=
l∑

i=1

oiPr (oi|ρ) (1.47)

≡ 〈O〉 (1.48)

If the system is in a state |ψi〉 such that Πi |ψi〉 = |ψi〉 for some i, and
consequently, Πj |ψi〉 = 0 for i �= j, then 〈O〉 = oi, i.e. we will see the out-
come oi with certainty. Hence, the eigenvalues of O yield the possible mea-
surement outcomes. Furthermore, we want measurements to be repeatable:
that is, an immediate re-measurement of the same observable should yield
the same outcome. Thus, it follows that if measuring O yielded outcome
oi, in order to yield the same outcome again, after the first measurement,
the system must be in an eigenstate |ψi〉 of outcome oi, even if it was in an
arbitrary state before the first measurement. This is sometimes called the
projection postulate.

As we have seen, effects may fail to be jointly observable in GPTs. In
quantum mechanics, this occurs whenever two measurement operators O1

and O2 fail to have common eigenstates. In this case, for any |ψ〉, we have

O1O2 |ψ〉 �= O2O1 |ψ〉 , (1.49)

and consequently,

[O1, O2] = O1O2 −O2O1 �= 0, (1.50)

where the object [O1, O2] defined by this equation is called the commutator
of O1 and O2. This implies that the value of O1 and O2 cannot be known
simultaneously to arbitrary precision, as after the measurement of O1, the
system fails to be in an eigenstate of O2, and vice versa. The uncertainties

ΔOi =
√〈

O2
i

〉− 〈Oi〉2 (1.51)
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are connected by the Schrödinger-Robertson uncertainty relation (Robertson
1929)

ΔO1ΔO2 =
|〈[O1, O2]〉|

2
. (1.52)

Jointly measurable observables are often called compatible.
In this formulation, joint measurability is thus synonymous with com-

mutativity. This is, however, only the case for measurement operators of
the form of Eq. 1.44, defined in terms of projections. For the more general
case of POVMs, this equivalence breaks down: for two POVM-elements
Ei and Ej , it may be that [Ei, Ej ] �= 0, yet still, there may exists a joint
effect Eij such that the effects Ei and Ej can be obtained as its marginals
(Lahti and Pulmannová 1997). However, in the following, we will gener-
ally understand observables as being of the form of Eq. 1.44, and thus, use
commutativity and joint measurability interchangeably.

Finally, the allowed transformations of quantum theory can be derived
by requiring that they preserve the norm, and hence, the scalar product on
HA, ensuring that valid states are taken to valid states. Thus, for a transfor-
mation |ψ〉 → |ψ′〉 = U |ψ〉, we have

〈ψ|ψ〉 !
=

〈
ψ′|ψ′〉 (1.53)

= 〈ψ|U †U |ψ〉 , (1.54)

and hence, U †U = 1 = UU †. Matrices obeying this condition are called
unitary.

As in the preceding section, it is instructive to look at an example of a
quantum mechanical system. The simplest nontrivial such system is the
qubit. Its Hilbert space is two-dimensional, and consequently, pure states
can be written in the form

|ψ〉 = α |0〉+ β |1〉 , (1.55)

where α and β are complex parameters fulfilling the normalization condi-
tion |α|2 + |β|2 = 1, and {|0〉 , |1〉} is an orthonormal basis, the so-called
computational basis, of the qubit Hilbert space.

The arbitrary overall phase implies that we can choose α real, and write
the general qubit state as

|ψ〉 = z |0〉+ (x+ iy) |1〉 , (1.56)

with the real parameters x, y and z now fulfilling the normalization con-
dition x2 + y2 + z2 = 1, which parametrizes a 2-sphere. Thus, any pure
qubit state lies on the surface of a three dimensional ball, the so-called Bloch
sphere. In spherical coordinates, we can then write this state as

|ψ〉 = cos

(
ϑ

2

)
|0〉+ eiφsin

(
ϑ

2

)
|1〉 , (1.57)

where the half-angle ensures that orthogonal states get mapped to antipo-
dal points on the sphere. The Bloch sphere is shown in Fig. 1.2.
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FIGURE 1.2: The bloch sphere of single qubit states. Indi-
cated are the computational basis states |0〉 and |1〉, as well
as an arbitrary state |ψ〉 with azimuth ϑ and phase φ.

This picture can be extended to mixed states, as well. Any state ρ can be
written in the form

ρ =
1

2

(
1 + z x− iy

x+ iy 1− z

)
(1.58)

=
1

2
(1 + xσx + yσy + zσz) (1.59)

≡ 1

2
(1 + s · σ), (1.60)

where we have introduced the Pauli matrices

σx =

(
0 1
1 0

)
, (1.61)

σy =

(
0 −i
i 0

)
, (1.62)

σz =

(
1 0
0 −1

)
, (1.63)

the Pauli vector σ = (σx, σy, σz)
T , and finally, the Bloch vector s = (x, y, z)T .

In the bloch picture, the mixed states are then those with |s| < 1, that is,
they form the interior of the Bloch ball.

Measurements can be represented on the Bloch sphere by the projectors

Π± =
1± a · σ

2
, (1.64)

whose eigenstates corresponding to the eigenvalues ±1 are given by the
states with Bloch vectors ±a.
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1.2.2 Composite Systems

To introduce the tensor product structure of composite systems in quantum
mechanics, it is simplest to start with pure states of two systems A and B,
respectively their Hilbert spaces HA and HB .

Let thus {|ai〉} be a basis ofHA, and {|bj〉} a basis ofHB . Then, a basis of
the composite space HAB = HA ⊗HB is given by {|ai〉 ⊗ |bj〉}. For brevity,
we will often write |aibj〉 for tensor products of vectors, whenever there is
no danger of confusion. If HA has dimension dA (and thus, dA elements in
its basis), and HB has dimension dB , this means that the dimension of HAB

must be dA · dB .
As before, the simplest case of independently locally prepared systems

in states |ψA〉 ∈ HA and |ψB〉 ∈ HB simply is the product state

|ψAB〉 = |ψA〉 ⊗ |ψB〉 ≡ |ψAψB〉 . (1.65)

However, the most general element of HAB can be written as

|ψAB〉 =
∑
ij

cij |aibj〉 , (1.66)

where cij ∈ C,
∑

ij |cij |2 = 1.
This state in general cannot be brought into the form of Eq. 1.65, and

in that case, it is not an element of the minimal tensor product. We call
such states entangled. A famous example of entangled states for the case of
a two-qubit system are the Bell states (Bell 1964)

|Φ+〉 = 1√
2

(|00〉+ |11〉) , |Ψ+〉 = 1√
2

(|01〉+ |10〉) ,

|Φ−〉 = 1√
2

(|00〉 − |11〉) , |Ψ−〉 = 1√
2

(|01〉 − |10〉) .
(1.67)

The above notions readily generalize to mixed states. As before, ele-
ments of the minimal tensor product, that is, elements of the form

ρAB =
∑
ij

pijρ
i
A ⊗ ρ

j
B (1.68)

with pij ≥ 0,
∑

ij pij = 1 are called separable; they can be interpreted as
describing a preparation that yields either of the product states ρi

A ⊗ ρ
j
B

with probability pij . Conversely, the general density matrices describing a
joint state of the systems A and B,

ρAB =
∑

i

pi |ψi〉〈ψi| (1.69)

where |ψi〉 ∈ HAB , that cannot be brought into the form of Eq. 1.68 are
called entangled.

Finally, the density matrix of the joint system ρAB allows the construc-
tion of local states ρA and ρB such that these states yield the same statistics
for local measurements as the joint state, independently of manipulations
on the other system, as required by the no-signalling principle. The con-
struction of these local states uses the partial trace operation. For a state
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ρ =
∑

ijkl cijkl |ai〉〈aj | ⊗ |bk〉〈bl|, the partial trace over subsystem B is de-
fined as the linear operation

trB

⎛
⎝∑

ijkl

cijkl |ai〉〈aj | ⊗ |bk〉〈bl|
⎞
⎠ =

∑
ijklm

cijkl |ai〉〈aj | 〈bm|bk〉〈bl|bm〉. (1.70)

The definition for the partial trace over subsystem A is analogous.
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Chapter 2

Quantum Correlations

A central topic of this thesis is the study of correlations. Intuitively, a cor-
relation between two random variables X and Y means that knowledge of
the value of one variable increases the probability of correctly guessing the
value of the other. Thus, formally, the two variables are independent if

Pr(Xx|Y y) = Pr(Xx)

Pr(Y y|Xx) = Pr(Y y), (2.1)

whereXx (Y y) denotes the value ofX being x (Y being y), and Pr(Xx|Y y) is
the conditional probability thatX yields the value x, given that Y yields the
value y. This implies that the joint probability distribution is the product of
the individual probabilities:

Pr(Xx, Y y) = Pr(Xx) · Pr(Y y). (2.2)

A suitable measure for correlations then is any expression that measures
the deviation of the joint distribution from a product form. One such mea-
sure that will be used throughout this thesis is the correlator 〈XY 〉, defined
as

〈XY 〉 =
∑
x,y

xyPr (XxY y) . (2.3)

Whenever X and Y are independent, the correlator becomes merely the
product of their average values:

〈XY 〉 =
∑
x,y

xyPr (Xx) Pr (Y y)

=
∑

x

xPr (Xx)
∑

y

yPr (Y y) (2.4)

≡ 〈X〉〈Y 〉.

Thus, any deviation from this value indicates a nonvanishing correlation of
X and Y .

An important factor in assessing the correlations possible in general-
ized probabilistic theories is the fact that certain effects may not be jointly
measurable. Thus, for two random variables describing measurements per-
formed on a physical system, it might be the case that no joint probability
distribution exists. In fact, as we will see in the following section, the re-
quirement of joint measurability implies certain constraints on the correla-
tions available in a theory, and serves to delineate the classical correlations
from those of post-classical theories like, for instance, quantum mechanics.
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In order to properly compare correlations possible in various theories,
we will first introduce a standard setting, which we will then analyze from
the points of view of classical probability, quantum theory, and more gen-
eral probabilistic theories. This setting is the one proposed by Clauser,
Horne, Shimony, and Holt (CHSH) (Clauser, Horne, et al. 1969): two par-
ties, Alice (A) and Bob (B) each perform two dichotomic ±1-valued mea-
surements, {A1, A2} and {B1, B2} respectively, on two subsystems A and
B of a joint system AB. The setup is schematically depicted in Fig. 2.1.

FIGURE 2.1: Schematic depiction of the CHSH setting used
to analyze possible correlations. Two parties, A and B, can
choose between two possible ±1-valued measurements to
investigate the correlations between their subsystems.

In the following sections, we will analyze this setup, and find bounds on
the allowed values for (linear combinations of) the correlators 〈AiBj〉 that
depend on the possible correlations between the subsystems—classical,
quantum, and post-quantum (i.e. given by a non-quantum GPT). After this
analysis, we introduce three famous ‘no-go’ theorems due to Bell (1964),
Kochen and Specker (1969), and Leggett and Garg (1985), concerning the
impossibility of replicating correlations of quantum theory within a classi-
cal theory obeying certain empirically motivated restrictions.

2.1 Correlations: Classical, Quantum, and Beyond

Different physical theories may differ widely in the allowed correlations
between subsystems. Fundamentally, this is an assertion about the proba-
bility distributions that have a model—in terms of appropriate states and
effects—within the theory. As we will see, classical correlations can be
defined by the requirement that all probability distributions that can be
obtained within a given experimental setting must be obtainable as the
marginals of a joint probability distribution. This is due to the fact that,
in such theories, all effects are jointly measurable.

The situation differs in theories in which this is not the case, which in-
cludes, in particular, quantum mechanics. In the following, we will first in-
troduce the set of classically allowed correlations for a given experimental
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setting, and then study the novel possibilities that arise when we consider
probabilistic theories in which not all effects are jointly measurable.

2.1.1 The Polytope of Classical Correlations

In classical theories, all effects are jointly measurable. This implies that
there exists a well-defined joint probability distribution Pr(Aa1

1 , A
a2

2 , B
b1
1 ,

Bb2
2 ) for the CHSH-scenario, and that we can interprete measurements as

simply revealing the value of a given observable quantity. Thus, any classi-
cal theory must assign probabilities pi to each of the 16 possible outcomes,
as shown in Table 2.1.

TABLE 2.1: The classical probability distribution must as-
sign values to each of the possible outcome combinations in
the CHSH setting.

a1 a2 b1 b2 Pr
(
Aa1

1 , A
a2

2 , B
b1
1 , B

b2
2

)
+ + + + p1

+ + + − p2

+ + − + p3

+ + − − p4

+ − + + p5

+ − + − p6

+ − − + p7

+ − − − p8

− + + + p9

− + + − p10

− + − + p11

− + − − p12

− − + + p13

− − + − p14

− − − + p15

− − − − p16

From this assignment of values, all other probabilities can be obtained
by marginalization, e.g. Pr

(
A+

1

)
=

∑8
i=1 pi, or, more importantly in the

following discussion, Pr
(
A+

1 , B
+
1

)
= p1 + p2 + p5 + p6.

Now, let us consider the CHSH-combination of correlators (Clauser,
Horne, et al. 1969):

〈CCHSH〉 = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉. (2.5)

This can be rewritten using the values from Table 2.1 in two ways (Cereceda
2000):

〈CCHSH〉 = 2− 4(p4 + p5 + p6 + p8 + p9 + p11 + p12 + p13)

= 4(p1 + p2 + p3 + p7 + p10 + p14 + p15 + p16)− 2 (2.6)

Due to the normalization condition
∑

i pi = 1, the terms in parentheses
are bounded between 0 and 1. Hence, we obtain the following bound on
the CHSH-expression:

−2 ≤ 〈CCHSH〉 ≤ 2. (2.7)
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Thus, we conclude that for any theory in which there exists a joint prob-
ability distribution for the CHSH-observables, the absolute value of the
CHSH-quantity is bounded by two. It is important to note here that in
order to conclude whether the set of observables {A1, A2, B1, B2} admits a
joint probability distribution, we never have to measure all of them simul-
taneously; it is sufficient to measure the pairs present in the expression in
Eq. 2.5.

The bound in Eq. 2.7 provides a necessary and sufficient condition for
the existence of a joint probability distribution for the observables {A1, A2,

B1, B2}. It would be useful to have a general technique to generate such
conditions, based only on the number of local observables per party. Such
a technique was, in fact, introduced already by Boole (1862), and applied
to the case of finding inequalities of the type of Eq. 2.7 by Pitowsky (1989,
1994).

The CHSH-inequality described above can be considered to be a hy-
perplane dividing the space of probability distributions of the pairs of ob-
servables AiBj : those that obey it, and that consequently possess a joint
distribution, lie on one side, while those that fail to be consistent marginals
of a joint distribution lie on the other. The minus sign in Eq. 2.5 can be
distributed among the four possible places, which, together with the up-
per and lower bounds, in total yields eight hyperplanes bounding the set
of classical correlations.

An equivalent way to describe the convex polytope circumscribed by
these planes is to consider its vertices vi. In order to derive these vertices,
we merely need to note that the fundamental condition for the existence
of a joint probability distribution is the existence of a population such that
the relative frequencies of values for the observables Ai and Bj approaches
that of Table 2.1. We may imagine this as an urn model: each ball comes
decorated with values for A1, A2, B1 and B2.

In order to check whether such a model exists, we can simply rely on
conditions of logical consistency—within a population of balls that may be
red or green, and wooden or made from metal, each ball that is both red and
wooden must also possess the joint property ‘red and wooden’. (Compare
this with the condition for joint measurability in Eq. 1.17.)

Thus, for the simple case in which we have two observables A and B

with outcomes ±1, as well as their conjunction A ∧B, we require that their
+1-outcomes obey the truth table of the Boolean and, as shown in Table 2.2.

TABLE 2.2: Truth table of the and-function.

A+ B+ A+ ∧B+

0 0 0
0 1 0
1 0 0
1 1 1

The rows of this truth table now represent the logically possible out-
comes: say, that the ball is neither red nor wooden, red but not wooden,
and so on. We can associate to each of these possibilities a probability λi;
then, the probabilities for the different outcomes, Pr (A+), Pr (B+), and
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Pr (A+B+), where A+ can be read as ‘has property A’, e.g. ‘is red’, can
be obtained by the combination:

⎛
⎝ Pr (A+)

Pr (B+)
Pr (A+B+)

⎞
⎠ = λ1

⎛
⎝0

0
0

⎞
⎠ + λ2

⎛
⎝0

1
0

⎞
⎠ + λ3

⎛
⎝1

0
0

⎞
⎠ + λ4

⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝λ2 + λ4

λ3 + λ4

λ4

⎞
⎠ ,

(2.8)
with 0 ≤ λi ≤ 1 and

∑
i λi = 1. Thus, all valid probability distributions

p = (Pr (A+) ,Pr (B+) ,Pr (A+B+))
T for this population can be written as

a convex combination of the rows of Table 2.2, which therefore form the
vertices vi of a convex polytope:

p =
∑

i

λivi (2.9)

This polytope is depicted in Fig. 2.2.

v1

v2

v3

v4

FIGURE 2.2: Polytope of allowed probability distributions
consistent with the logical constraints in Table 2.2.

It is straightforward to extend this description to less trivial settings. For
the CHSH-setting discussed above, the vertices of the polytope of classical
correlations are obtained as the 16 rows of Table 2.3.

From these vertices, one can now once again obtain the facets of the
polytope, which will take the form of inequalities h · p ≤ x0, where h is the
normal of the hyperplane corresponding to a facet, and x0 is a scalar offset.
Among the nontrivial (that is, not given from simple consistency conditions
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TABLE 2.3: Vertices of the polytope of classical correlations
in the CHSH-setting.

A1 A2 B1 B2 A1 ∧B1 A1 ∧B2 A2 ∧B1 A2 ∧B2

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0
1 0 1 0 1 0 0 0
1 0 1 1 1 1 0 0
1 1 0 0 0 0 0 0
1 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1

on the probabilities) inequalities, one finds the set (Pitowsky 1989):

−1 ≤ Pr
(
A+

1 B
+
1

)
+ Pr

(
A+

1 B
+
2

)
+ Pr

(
A+

2 B
+
1

)−Pr
(
A+

2 B
+
2

)
−Pr

(
A+

1

)− Pr
(
B+

1

) ≤ 0

−1 ≤ Pr
(
A+

1 B
+
1

)
+ Pr

(
A+

1 B
+
2

)− Pr
(
A+

2 B
+
1

)
+Pr

(
A+

2 B
+
2

)
−Pr

(
A+

1

)− Pr
(
B+

2

) ≤ 0

−1 ≤ Pr
(
A+

1 B
+
1

)− Pr
(
A+

1 B
+
2

)
+ Pr

(
A+

2 B
+
1

)−Pr
(
A+

2 B
+
2

)
(2.10)

−Pr
(
A+

2

)− Pr
(
B+

1

) ≤ 0

−1 ≤ Pr
(
A+

1 B
+
1

)
+ Pr

(
A+

1 B
+
2

)
+ Pr

(
A+

2 B
+
1

)−Pr
(
A+

2 B
+
2

)
−Pr

(
A+

2

)− Pr
(
B+

2

) ≤ 0

These inequalities were first proposed by Clauser and Horne (1974),
and are thus generally referred to as CH-inequalities. Analogous inequal-
ities hold after exchanging some subset of +1 outcomes for −1 outcomes;
adding those inequalities containing only +1 or only −1 outcomes to −1
times those containing mixed outcomes, one obtains the CHSH-inequalities
from above.

We have now introduced a method of bounding the correlations obtain-
able in classical theories, that is, in theories where all effects are jointly ob-
servable. However, since this is not the case in quantum theory, or in more
general GPTs, one might suspect that these bounds fail to hold in such the-
ories. We will now proceed to put this intuition on more solid footing.

2.1.2 Quantum Correlations and Beyond

Imagine you have three coins, C1, C2 and C3, each of which, when thrown
in isolation, yields either heads (H) or tails (T ) with 50% probability. You
can throw either pair of coins simultaneously, and find the following corre-
lations:
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• whenever C1 and C2 are thrown together, the outcome is either both
heads (HH) or both tails (TT ), with equal probability

• whenever C2 and C3 are thrown together, the outcome is again either
(HH) or (TT ), with equal probability

• whenever C1 and C3 are thrown together, the outcome is either (HT )
or (TH), with equal probability.

Clearly, these pairwise joint distributions are compatible, in the sense
that the single-coin marginal distributions always yield either (H) or (T )
with probability 1

2 . However, trying to throw all three coins simultane-
ously, we run into an inconsistency: if C1 yields (H), then so must C2; but
then, likewise, C3 must yield (H)—but from the anticorrelation between
C3 and C1, this implies that C1 must yield (T ). Thus, there is no possible
assignment of values to all three coins thrown together.

Now, can such a situation in fact occur in the real world? One might
think that, due to the joint measurability of all effects, this situation is im-
possible in the classical realm. This is, however, not quite the case: for
instance, it would be easy to program a computer such that it yields the
above correlations. Moreover, a machine can be constructed distributing
tokens marked (H) or (T ) in accordance with these statistics, as long as it is
forbidden to request all three tokens at once.

More in general, a failure to possess a joint distribution is possible if,
for instance, the choice of pairs influences the probability distribution from
which their values are drawn; that is, if the pair {C1, C3} is chosen, the
probability distribution for all three coins is

Pr (C1, C2, C3) = λ1(HTT ) + λ2(HHT ) + λ3(THH) + λ4(TTH). (2.11)

Here, λ1 +λ2 = 1
2 = λ3 +λ4 to yield the correct probability for the outcomes

of C1 and C3 (since the value of C2 is unobservable in this setting, we can
leave its probability open), while if the pair {C2, C3} is chosen, the joint
probability distribution is instead

Pr (C1, C2, C3) = μ1(HHH) + μ2(HTT ) + μ3(THH) + μ4(TTT ), (2.12)

where now μ1 + μ3 = 1
2 = μ2 + μ4. Finally, for the pair {C1, C2}, we have

Pr (C1, C2, C3) = ν1(HHH) + ν2(HHT ) + ν3(TTH) + ν4(TTT ), (2.13)

with again ν1 +ν2 = 1
2 = ν3 +ν4. Thus, allowing the choice of measurement

to influence the outcome distribution, we can reproduce the correlations
of the coins. This condition is commonly called (Shimony 1986) parameter
dependence (where the parameter is the choice of pair to throw, or, more
generally, the choice of measurement).

Another possibility is to have the outcome of the second coin throw de-
pend on the outcome of the first (or vice versa): thus, if C1 is thrown and
lands (H), immediately it is fixed that if C2 were thrown, it would yield
(H), while C3 would yield (T ). This condition is known as outcome depen-
dence (Shimony 1986). In the following, we will refer to the assumption
that neither parameter- nor outcome-dependence is given as nondisturbance
assumption.
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A final possibility is that there simply is no joint probability distribu-
tion. In other words, events which cannot be observed—such as the simul-
taneous throwing of all three coins—do not possess a well-defined proba-
bility. This is equivalent to assuming that there does not, in general, exist
an underlying definite value for all observables—since if there was such a
value, and there is neither parameter- nor outcome dependence, the asymp-
totic relative frequencies of possible value assignments within a population
would yield a probability distribution as in Table 2.1. The assumption that
there is such an underlying definite value is generally called value definite-
ness, or sometimes simply realism.

In the classical realm, we can assume all observable quantities to be si-
multaneously definite, since there are joint effects for any collection of ef-
fects. Thus, we can think of measurement in classical mechanics as merely
‘revealing’ an a priori present value of a given quantity. Consequently, all
violations of inequalities of the conditions for the existence of a joint prob-
ability distribution must be due to either of the first two conditions—that
is, either the choice of measurement, or its outcome, must influence, or dis-
turb, the probability distribution from which measurement outcomes are
drawn.

However, due to the possible non-existence of joint effects in GPTs, the
situation here is less clear-cut. It is, in fact, possible to find GPT-systems
which lead to a violation of the bounds in Eq. 2.7. In this section, we will
merely introduce this possibility, leaving questions of interpretation for the
next section.

Such a setup is given by the so-called Popescu-Rohrlich (PR) box (Popescu
and Rohrlich 1994). Popescu and Rohrlich take the CHSH-setting in Fig. 2.1,
and imagine a system that, upon measurement of a pair of local observables
{Ai+1, Bj+1}, returns an answer according to the following probability dis-
tribution:

Pr
(
A

ak

i+1, B
bl

j+1

)
=

{
1
2 if i · j = k ⊕ l

0 otherwise
(2.14)

Here, i, j, k, l ∈ {0, 1}, the operator ⊕ denotes addition modulo 2, and
the indices k and l yield the outcomes ak = (−1)k and bl = (−1)l. This
implies perfect anticorrelation in the case of measuring the pair {A2, B2},
since k ⊕ l = 1 implies k �= l, but perfect correlation for the pairs {A1, B1},
{A1, B2}, and {A2, B1}. Nevertheless, outcome probabilities on one side are
independent of the settings on the other, thus satisfying the no-signalling
principle (see Sec. 1.1.2). Thus, the correlations defined in this way are often
referred to as no-signalling correlations. This yields for the CHSH-expression

〈CCHSH〉 = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉
= 1 + 1 + 1− (−1) (2.15)
= 4 > 2.

Thus, we have seen that GPTs contain correlations that cannot be the
result of a joint probability distribution for all observable quantities. In
fact, since the value 4 is the algebraic maximum of the CHSH-expression for
±1-valued observables, we can say that such correlations yield a maximal
violation of the CHSH-inequality.
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As we have seen, in and of itself, that may not be surprising: failure
of either parameter- or outcome-independence suffices to account for the
observed violation. However, in the next section, we will introduce some
assumptions that give us good physical reason to believe that these condi-
tions are upheld, and nevertheless, the violation will persist; and in fact,
as we will see, this violation is not just present in some abstract GPT, but
rather, occurs in quantum mechanics as well.

2.2 Three No-Go Theorems

In order to make the connection between the abstract formalism introduced
so far and physics, we need to specify a physical scenario in which we in-
tend to perform experiments. Furthermore, we will introduce scenarios
such that we have good physical reason to suppose that the nondisturbance
assumption is fulfilled, and nevertheless show that violations of the bounds
in Eq. 2.7 occur, leading to the conclusion that either, despite appearances,
there is some influence of either the choice of measurements, or their out-
comes, on one another—or that we must drop the assumption of value def-
initeness.

There are several possibilities to interpret correlators like 〈AB〉: they
could pertain to the correlation of observables measured on distinct systems
(or subsystems); the measurements could be performed simultaneously on
one and the same system; or, they could be performed in sequence on a
system. Each of these cases, as we will see in the following, leads to an
interesting result. Since we are mainly concerned with the consequences
of these in a real experimental setting, in the following, we will use the
quantum formalism, on the presumption that quantum theory is indeed
the correct description of real physical systems.

2.2.1 Bell: Locality

In order to ensure nondisturbance, the most stringent physical requirement
is to carry out measurements on systems that cannot possibly influence
each other. According to the special theory of relativity, information (or
information-bearing physical carriers) propagate with a speed bounded by
that of light in vacuum, c. Hence, performing measurements on two sys-
tems separated by a sufficient distance such that no signal could reach each
from the other during the performance of the experiment seems to forestall
any possibility of influence between the experiments.

This is, in fact, the assumption of locality made by Bell (1964). In our
setup, this corresponds to assuming a joint system, described by a density
operator ρAB in the joint Hilbert space HAB = HA ⊗ HB , on which local
measurements of the form Ai ⊗ 1 and 1 ⊗ Bj are performed. Thus, the
CHSH-expression becomes

〈CCHSH〉 = 〈A1 ⊗B1〉+ 〈A1 ⊗B2〉+ 〈A2 ⊗B1〉 − 〈A2 ⊗B2〉. (2.16)

If the locality-assumption now suffices to certify nondisturbance, and if
we are furthermore justified in assigning definite values to these quantum
mechanical observables, then the above expression should be bounded by
2.
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However, if we take the state

∣∣Φ+
〉

=
1√
2
(|00〉+ |11〉), (2.17)

together with the observables

A1 = σx, B1 = 1√
2
(σx + σz),

A2 = σz, B2 = 1√
2
(σx − σz),

(2.18)

a straightforward calculation of the expectation values

〈AiBj〉 = tr
(
Ai ⊗Bj

∣∣Φ+
〉〈

Φ+
∣∣) (2.19)

shows that

〈CCHSH〉 = 〈A1 ⊗B1〉+ 〈A1 ⊗B2〉+ 〈A2 ⊗B1〉 − 〈A2 ⊗B2〉
=

1√
2

+
1√
2

+
1√
2
− (− 1√

2
) (2.20)

= 2
√

2 > 2.

Which, as can be shown, is in fact the maximum value (Cirel’son 1980).
Thus, despite the locality requirement, there are quantum mechanical mea-
surements that do not possess a joint probability distribution. The impos-
sibility to reconcile a local realistic picture with the predictions of quantum
mechanics is the content of Bell’s theorem. The reason for this irreconcilabil-
ity does indeed lie with the failure of co-measurability of the observables:
neitherA1 andA2, norB1 andB2 are jointly measurable, since both [A1, A2]
and [B1, B2] are nonzero (cf. Eq. 1.52). The necessity of this requirement can
be seen easily by taking the square of the CHSH-operator:

C2
CHSH = 4 ·1+(A1A2−A2A1)⊗ (B2B1−B1B2) = 4 ·1− [A1, A2]⊗ [B1, B2],

(2.21)
where we have used that dichotomic observables square to the identity.
Hence, a violation of the CHSH-inequality is only possible if both commu-
tators are nonvanishing.

Note, however, that while this is a necessary condition, it is not alone
sufficient: for a state of the form ρprod = |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|, since the ob-
servables Ai act nontrivially only on |ψ1〉, while the observables Bj act only
on |ψ2〉, the correlators factorize (cf. Eq. 2.4), yielding for the expectation
value of the CHSH-operator

〈CCHSH〉 = 〈A1〉〈B1〉+ 〈A1〉〈B2〉+ 〈A2〉〈B1〉 − 〈A2〉〈B2〉
= 〈A1〉 (〈B1〉+ 〈B2〉) + 〈A2〉 (〈B1〉 − 〈B2〉) (2.22)
≤ 2,

since 〈Ai〉, 〈Bj〉 ≤ 1. This extends to convex combinations ρsep =
∑

i piρ
i
prod,

since each of the terms in the combination is bounded by 2. Thus, separable
states, i.e. states that can be written as a convex combination of product
states, cannot violate the bound |〈CCHSH〉| ≤ 2. It follows that, besides non-
jointly measurable observables, entanglement is a critical resource for Bell
inequality violation.
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It is sometimes alleged that Bell’s theorem implies that quantum me-
chanics is a non-local theory (see, e.g. Maudlin 2014b). This, as we have
seen, is however only justified if one requires the existence of a probability
table of the form of Table 2.1, assigning probabilities even to unobservable
joint effects (s.a. (Werner 2014a), (Maudlin 2014a) for a reply, and (Werner
2014b) for a response to the reply). Dropping this assumption means that
bounds of the form of Eq. 2.7 or 2.10 can no longer be derived, without
resorting to any non-local influence of either measurement settings or out-
comes.

There is another interesting consequence of the violation of Bell inequal-
ities: in all theories (including, specifically, the generalized probabilistic
theories of Sec. 1.1) that are no-signalling and that predict the violation of
Bell inequalities, information cannot be perfectly copied—that is, in all such
theories there exists a no-cloning theorem (Masanes, Acin, and N. Gisin 2006).
Indeed, the quantum no-cloning theorem was first found in the context of
a proposal (due to Herbert (1982)) for superluminal communication (Dieks
1982; Wootters and Zurek 1982): picture two parties, Alice and Bob, who
share the |Φ+〉-Bell state (see Eq. 1.67). Both parties can carry out measure-
ments in either the σx- or σz-basis. After Alice carries out her measurement,
Bob’s particle will be in an eigenstate of the basis Alice used, and hence,
yield a deterministic outcome if Bob measures in the same basis, but a ran-
dom one if he measures along an orthogonal direction.

Now suppose Bob uses a cloning machine in order to multiply his qubit,
that is, he effects the transition

|ψB〉 ⊗ |r〉 → |ψB〉 ⊗ |ψB〉 = UC |ψB〉 ⊗ |r〉 , (2.23)

where |ψB〉 is the state of Bob’s qubit, |r〉 is a qubit in some reference state,
and UC is a unitary matrix implementing the cloning operation. Then, if
Bob performs this operation often enough, he ends up with an ensemble of
identical quantum states which are eigenstates of either σx or σz . Now, he
simply needs to measure half of his qubits in the σx-basis, and the other half
in the σz-basis, to see which measurement yields a deterministic outcome,
and thus, to find out which measurement was performed by Alice.

Since this protocol may be performed on a timescale shorter than the
time a speed-of-light signal would need to reach Bob from Alice, provided
both parties are sufficiently far removed from one another, and Alice can
use her choice of measurement basis to communicate one bit of information
to Bob, this thus constitutes faster-than-light communication. However, we
had demanded just the impossibility of such FTL-signalling in establishing
the GPT-framework; consequently, since quantum mechanics fits into this
framework, no operation of the form in Eq. 2.23 can exist for general states.

2.2.2 Kochen-Specker: Noncontextuality

As Bell’s theorem relies on locality in order to prevent influences between
different measurements, so does the theorem by Kochen and Specker (1969)
rely on the notion of noncontextuality: roughly, the idea that the value of
an observable A, measured simultaneously with observables B or C (with
which it hence must be jointly measurable), does not depend on whether it
is measured simultaneously with B or C. This is a reasonable expectation
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in the classical world—for instance, we do not observe an object’s color
changing, depending on whether we measure it simultaneously with its
shape, or with its mass.

It is again clear that this assumption holds whenever we have a joint
probability distribution—as in this case, we can think of a population in
which elements simply carry certain values for all observables within ex-
perimental interest, which do not mutually influence one another, and are
simply revealed upon measurement. The assumption is, however, not jus-
tified in the case of our coin example: if we assume that, say, the outcome of
throwing C2 is always (H), independent of whether we throw the third or
first coin simultaneously with it, we run into a contradiction—namely, we
would deduce that both of these coins likewise always yield (H), contrary
to their mutual anticorrelation.

To make these notions more precise, let us consider four observables
{A,B,C,D} on a four-dimensional Hilbert space H4. Among these observ-
ables, we have the following commutation (and hence, joint measurability)
relations:

[A,B] = 0 [C,B] = 0
[A,D] = 0 [C,D] = 0
[A,C] �= 0 [B,D] �= 0

(2.24)

Thus, in the expression〈CKS
CHSH

〉
= 〈AB〉+ 〈BC〉+ 〈CD〉 − 〈DA〉, (2.25)

only jointly measurable quantities enter in pairs. If we now assume that
the value of each observable is independent of the context—that, for in-
stance, the value of A does not depend on whether it is measured simulta-
neously with B or D—we again assume the presence of a joint probability
distribution for all observables, and consequently, again obtain the bound∣∣〈CKS

CHSH

〉∣∣ ≤ 2.
Now, with the identifications A1 ⊗ 1 = C, A2 ⊗ 1 = A, 1 ⊗ B1 = D

and 1 ⊗ B2 = B, the observables in Eq. 2.18 fulfill exactly these relations.
Consequently, we cannot assume that each of them yields its value inde-
pendently of its context—and hence, any test of Bell’s theorem is also a test
of the Kochen-Specker theorem.

However, we need not appeal to entanglement, or indeed the bipartite
Hilbert-space structure in order to test the Kochen-Specker theorem. For
instance, we may take the observables (which are related to the observables
in Eq. 2.18 by a unitary rotation)

A = σx ⊗ σx, B = 1√
2

⎛
⎜⎜⎝

1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1

⎞
⎟⎟⎠ ,

C = σx ⊗ 1, D = 1√
2

⎛
⎜⎜⎝

1 −1 0 0
−1 −1 0 0
0 0 −1 −1
0 0 −1 1

⎞
⎟⎟⎠ ,

(2.26)
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and the (product) state

|ψ〉 =
1√
2
(|00〉+ |10〉), (2.27)

to again obtain the value
〈CKS

CHSH

〉
= 2

√
2. Hence, we can view the noncon-

textuality of Kochen and Specker as a relaxation of Bell’s locality: for any
set of local observables, the commutation relations in Eq. 2.24 will be auto-
matically fulfilled, but not every set of observables fulfilling them consists
of local observables on a bipartite Hilbert space.

2.2.3 Leggett-Garg: Macroscopic Realism

Finally, the third option to make the nondisturbance assumption plausible
is the macroscopic realism of Leggett and Garg (1985). Macroscopic realism is
the conjunction of two postulates:

• Any macroscopic system that has available to it two or more distin-
guishable states, is at any given time in exactly one of those states.

• It is possible, in principle, to determine which of these states the sys-
tem is in at a given time, without disturbing the system or its dynam-
ics.

Let us thus imagine a system that has exactly two states available to it,
as well as a measurement Q (which we again assume to be ±1-valued) that
is capable of differentiating between these states. Furthermore, we measure
this observable at four different points in time t1 . . . t4. Then, we observe the
correlation between measurements at different points in time, and calculate
the quantity〈CLG

CHSH

〉
= 〈Q(t1)Q(t2)〉+ 〈Q(t2)Q(t3)〉+ 〈Q(t3)Q(t4)〉 − 〈Q(t1)Q(t4)〉.

(2.28)
Again, now, the assumption of macroscopic realism serves to shield a

measurement at a later time from the influence of an earlier one; thus, again,
we can assume a joint probability distribution for the value ofQ at different
times, and conclude that

∣∣〈CLG
CHSH

〉∣∣ ≤ 2.
A difference to the previous two cases is now that at first sight, there

is no problem with ’joint’ measurability—after all, we just re-measure the
same observable Q at different points in time. However, in general, there
will be a non-trivial time-evolution of the system in between measure-
ments. This time-evolution is mediated by some unitary U(t), producing
the transformation |ψ(0)〉 → |ψ(t)〉 = U(t) |ψ(0)〉. To calculate the expecta-
tion value of an operator at time t, we can equally well use a time-evolved
operator and the state at t = 0:

〈A〉t = tr (Aρ(t))

= tr
(
AU(t)ρ(0)U †(t)

)
= tr

(
U †(t)AU(t)ρ(0)

)
(2.29)

= tr (A(t)ρ(0)) .
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This is known as the Heisenberg picture, whereas the corresponding pic-
ture in which the time evolution acts on the states instead is the Schrödinger
picture. Hence, we can keep the initial state fixed, and take Qi = U †(ti −
t0)Q(t0)U(ti − t0). However, this yields ‘too much’ incommensurability: in
general, [Q(ti), Q(tj)] �= 0 for any pair of indices, and consequently, we do
not know how to define the correlator 〈Q(ti)Q(tj)〉, as the simple product
of both operators will typically fail to be Hermitian.

Nevertheless, for projective qubit measurements, we can go back to the
definition of the correlator

〈Q1Q2〉 =
∑
qk,ql

qkqlPr (Qqk

1 Q
ql

2 ) , (2.30)

where qk, ql ∈ {+1,−1} are the outcomes of Q1 and Q2, respectively. To
calculate these probabilities, the projection postulate yields

Pr (Qqk

1 Q
ql

2 ) =

〈
1 + qkq1 · σ

2
· 1 + qlq2 · σ

2
· 1 + qkq1 · σ

2

〉
, (2.31)

where qi is the Bloch vector associated to Qi.
Using this to compute the correlator, one arrives at the expression (Fritz

2010) ∑
qk,ql

qkqlPr (Qqk

1 Q
ql

2 ) = 〈Q1 ◦Q2〉, (2.32)

for the appropriate quantum analogue to the classical correlation functions
in Eq. 2.28, where the symbol ◦ denotes the symmetric (Jordan) product

X ◦ Y =
XY + Y X

2
. (2.33)

With this framework, it can again be shown that in quantum mechanics,
a maximum of

〈CLG
CHSH

〉
= 2

√
2 is achievable.
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Chapter 3

Their Detection

We have now introduced the main tools and concepts necessary for the
study of quantum correlations. In this chapter, we aim to bring these tools
to bear, with a particular focus on the experimental detection of these cor-
relations.

One particular issue that needs to be addressed in translating the con-
cepts developed so far to the laboratory is the fact that, in general, no ex-
periment is free of noise. As a consequence, no state preparation is ever
perfect: instead of some target state ρ, a real preparation procedure may
end up producing, e.g., a state of the form

ρ′ = pρ+
1− p

d
1d, (3.1)

where d is the Hilbert space dimension. This models the addition of white
(unbiased) noise to the target state, and may result in its deterioration to
such an extent that methods developed to test qualities of the state ρ—such
as its degree of entanglement—are no longer applicable.

Furthermore, a realistic measurement never exactly corresponds to a
given measurement operator O one set out to implement. Finite precision
in, e.g., polarizer settings may result in a slightly different measurement
being actually implemented. As an important consequence, measurements
A and B that are formally jointly measurable, may fail to be so in their
actual implementation—that is, [A,B] = 0 does not hold exactly. This raises
issues, e.g., with the experimental testing of the predictions of the Kochen-
Specker theorem.

It is not our purpose here to study these experimental imperfections in
detail. Rather, we will instead propose methods robust to such unavoidable
inaccuracies, which then may be experimentally applicable even in cases
where the original methods fail to be, and thus, we aim to extend the reach
of laboratory testing to novel phenomena.

In particular, in the following sections, we will introduce a method to
test the Kochen-Specker predictions (or rather, a slight generalization) in
experimentally realistic cases, where the usual definition of noncontextual-
ity does not hold in general. Afterwards, we will turn our attention to the
phenomenon of entanglement and its detection via so-called witness opera-
tors, where a witness is an operator W such that

tr (Wρ)

{
≥ 0 if ρ is separable,

< 0 for at least one entangled ρ.
(3.2)
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Here, it is the problem of detecting the entanglement of a completely un-
known state ρ that will concern us, and we exhibit a construction capable of
finding the optimal witness operator, given a set of local measurements and
their outcomes. This construction makes use of the method of semidefinite
programming, to which we give a brief introduction.

3.1 Testing Quantum Contextuality

As we have seen in Sec. 2.2.2, the Kochen-Specker theorem introduces a
nondisturbance assumption based on the idea that jointly measurable ob-
servables, i.e. A and B such that [A,B] = 0, do not influence each other.
However, in realistic experimental implementations, this condition does
not hold in general. Hence, violations of the classical bound of inequali-
ties such as 〈CKS

CHSH

〉
= 〈AB〉+ 〈BC〉+ 〈CD〉 − 〈DA〉 ≤ 2 (3.3)

do not necessarily signal the contextuality of quantum theory; instead, it
may be the case that measurement of A, say, influences the value of B and
D, if they are imperfectly implemented.

Indeed, one can write down an explicit model where a measurement
introduces a random state transition independently of which observable is
measured, which allows a violation of inequality 3.3 up to (and beyond)
quantum levels (Szangolies, Kleinmann, and Gühne 2013; s.a. Szangolies
2015).

3.1.1 Markov Models

To introduce this model, we again work in the CHSH-setting introduced
before. Let us assume that each observable O ∈ {A,B,C,D} can always be
assigned a definite value v(O) = ±1. Clearly, this amounts to assuming a
joint probability distribution, which simply states the probabilities for each
possible value assignment to be present. Thus, each possible state of the
model is a probability distribution of the form given in Table 2.1.

Such a probability distribution can be considered as a 16-dimensional
vector spanning the set of possible probability assignments, that is, a con-
vex combination of the basis states

λi = (0, . . . , 0︸ ︷︷ ︸
i zeros

, 1, 0, . . . , 0︸ ︷︷ ︸
15−i zeros

)T , (3.4)

where i ∈ {0, . . . , 15}, and each λi corresponds to one definite assignment
of values ±1 to the observables {A,B,C,D}. These values are sometimes
called hidden variables, and the resulting state is the hidden-variable state.
Thus, we can alternatively label the basis states by this value assignment,
yielding e.g. λ0 = (+ + + +), λ1 = (+ + + −), and so on, where we
have used the obvious abbreviations of + and − for the values +1 and −1
respectively. If we now consider

(+) =

(
1
0

)
, (−) =

(
0
1

)
(3.5)
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as a basis for the individual subspaces associated with each observable, we
can write, e.g.,

λ0 = (+ + + +) = (+)⊗ (+)⊗ (+)⊗ (+), (3.6)

and analogously for the other basis vectors. The general state is then of the
form

P =
∑

i

piλi, (3.7)

with pi being the probability of finding the system in state λi.
Allowed transformations in this model are all linear transformations

that take valid probability distributions to valid probability distributions,
that is, transformations which preserve the 1-norm ||P ||1 =

∑
i pi = 1.

Thus, the condition for a matrix M = (mij) to represent a valid transforma-
tion P → P ′ = MP follows from∑

i

p′i =
∑
ij

mijpj = 1, (3.8)

which necessitates that
∑

imij = 1. Such matrices are generally called
(left-)stochastic.

The model now is a Markov chain, that is, a discrete random process that
undergoes probabilistic state transitions without memory (Norris 1998).
The states of the Markov chain are just the value-assignments to the ob-
servables, i.e., the hidden-variable states. Whenever a measurement is per-
formed, the noise introduced into the system via its imperfect implementa-
tion may lead to a state change with a certain probability p. Note that the
transition does not depend on which measurement is carried out—in this
sense, the model is ‘noncontextual’. Consider now the model given by the
transition matrix (Szangolies, Kleinmann, and Gühne 2013)(

1− p p

p 1− p

)
⊗ 1

⊗3
2 , (3.9)

which after the first measurement flips the value assigned to observable A
with a probability of p, and leaves all other values invariant. Suppose p = 1,
such that the value ofA is flipped deterministically. Then, we can introduce
the quantity

Kij = AiBj +BiCj + CiDj −DiAj , (3.10)

where the notation Ai = A(λi) denotes the value of A given the hidden
state λi. For p = 1, e.g. the state λ0 = (+ + + +) is taken to λ8 = (− +
+ +) after each measurement; hence, since K0,8 = 4, this would violate the
inequality maximally. For arbitrary p, starting in the state λ0, we have〈CKS

CHSH

〉
= pK0,8 + (1− p)K0,0 = 2 + 2p, (3.11)

and hence, any p ≥ 0 leads to a violation of the KS-CHSH inequality. In
fact, it can be shown that such a violation exists for arbitrary starting states
P =

∑
i piλi (Szangolies, Kleinmann, and Gühne 2013).
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3.1.2 Noncontextual Evolution

We have now exhibited a model capable of violating KS-inequalities, even
though it may be said to be ‘noncontextual’ in the sense that its dynamics
are unchanged, no matter which measurement (or set of measurements in
more general cases) is performed. The reason for this is the failure of the KS-
nondisturbance assumption: in realistic experiments, we do not have per-
fectly compatible observables; thus, we cannot conclude that measurement
of one observable does not influence the value of the other, as in general,
there exists an uncertainty principle between incompatible observables.

This severely hampers the experimental testability of the Kochen-Spec-
ker predictions. One way around this problem that has been proposed is
by way of the use of error terms that seek to quantify the amount of distur-
bance introduced by the incompatibility of observables (Gühne et al. 2010).
The KS-CHSH equation then assumes the form〈CKS

CHSH

〉− 2perr(B1A2B3)− 2perr(C1B2C3)

−2perr(D1C2D3)− 2perr(A1D2A3) ≤ 2, (3.12)

where e.g. perr(B1A2B3) is the probability that the first and second mea-
surements of the value of B disagree, given that A was measured in be-
tween. However, these error terms only hold in the case where additional
measurements always increase the total disturbance to the system; yet, this
assumption may not hold in models of the form discussed in the previous
section, and thus, such models can lead to violations of inequality 3.12.

Hence, a different approach towards making the KS-predictions exper-
imentally accessible was pursued in (Szangolies, Kleinmann, and Gühne
2013). This approach may be viewed as finding a new nondisturbance as-
sumption that can be termed noncontextual evolution, consisting of the con-
junction of two conditions:

• All of a system’s observables have definite values at any given time.

• It is possible to uniquely attribute to each system a sequence of (hid-
den-variable) states λi → λj → λk → . . . (or probabilistic combina-
tions thereof) that is independent of the measurements performed on
the system.

In a sense, this can be viewed as a generalization and combination of
both the Leggett-Garg and Kochen-Specker nondisturbance assumptions:
taking the trivial evolution in which the hidden-variable state remains un-
changed throughout the measurement procedure returns the KS-scenario;
using measurements that merely check one single property at any given
point in time yields the LG one. Taken together, we can now impose a time-
ordering on the measurements: take, for instance, two dichotomic measure-
ments Q1 and Q2, and evaluate them at two distinct points in time, t1 and
t2. We can then propose the following inequality:

〈Q1(t1)Q2(t2)〉+ 〈Q1(t1)Q1(t2)〉+ 〈Q2(t1)Q1(t2)〉 − 〈Q2(t1)Q2(t2)〉 ≤ 2,
(3.13)

which holds again in all cases where there exists a joint probability distri-
bution for all observables.
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TABLE 3.1: The Peres-Mermin square of nine observables
on a two-qubit system.

A = σx ⊗ 1 B = 1⊗ σx C = σx ⊗ σx

a = 1⊗ σy b = σy ⊗ 1 c = σy ⊗ σy

α = σx ⊗ σy β = σy ⊗ σx γ = σz ⊗ σz

Now, we can impose a similar time ordering on inequality 3.3, which
yields 〈CNCE

CHSH

〉
= 〈AB〉+ 〈CB〉+ 〈CD〉 − 〈AD〉 ≤ 2, (3.14)

where the ordering now indicates the measurement sequence. Note that the
same observables are always measured at the same point in the sequence.
This ensures now that the model proposed above no longer is capable of
violating the inequality: the quantity Kij = AiBj + CiBj + CiDj − AiDj

is bounded by two for all possible hidden-variable evolutions (as long as
they are independent of which measurement is being performed). Thus,
models obeying the new nondisturbance assumption can be ruled out, and
moreover, since we do no longer need perfect compatibility between mea-
surements, this possibility is in fact directly amenable to experimental test-
ing. Furthermore, since the class of models ruled out includes the Kochen-
Specker noncontextual ones, this opens up a perspective for testing the
Kochen-Specker predictions in the laboratory.

The procedure outlined so far can be generalized to different settings.
For instance, a conceptually insightful proof of the Kochen-Specker theo-
rem is given by the Peres-Mermin square (Mermin 1990b; Peres 1990), as
shown in Table 3.1.

In this table of observables, each row and each column yields a set of
compatible observables (a context), and the product of every row, as well
as the first two columns, is 1, while the product of the observables in the
third column yields −1. Each of the observables, measured individually,
yields either the value +1 or −1. Thus, if we try to distribute values among
the observables independently of the context in which they are measured,
then, in order to obey the condition given by the row products, the product
of all of these values needs to be +1, and hence, an even number of −1’s
must occur in the value assignment; however, looking at the columns, the
product of all the values ought to be −1, necessitating an odd number of
−1’s. Hence, no context-independent assignment of values can reproduce
the quantum mechanical predictions.

It is worthy of note that we have not needed to talk about the state
on which the measurements are to be performed here: indeed, the phe-
nomenon of contextuality is often said to be state-independent.

Collecting the observables present in rows and columns of Table 3.1, one
may propose the following expression (Cabello 2008):〈CKS

PM

〉
= 〈ABC〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉 − 〈Ccγ〉 (3.15)

The reasoning above shows that classically,
〈CKS

PM

〉 ≤ 4, while in quantum
mechanics,

〈CKS
PM

〉
= 6 is possible.

However, this inequality suffers from the same issue as before: in a real
experiment, perfect compatibility of observables is generally impossible to
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achieve; hence, there may be spurious violations of the classical bound due
to disturbance. But as before, the inequality can be re-ordered to yield〈CNCE

PM

〉
= 〈ABC〉+ 〈cab〉+ 〈βγα〉+ 〈Aaα〉+ 〈βBb〉 − 〈cγC〉, (3.16)

which can be shown to be bounded by 4 for the case of measurement-
independent disturbances, and yields a maximum of 6 in quantum mechan-
ics (Szangolies, Kleinmann, and Gühne 2013).

Not all inequalities can be directly modified this way. In certain cases,
such as the inequality proposed by Klyachko, Can, Binicioğlu, and Shu-
movsky (KCBS) (Klyachko et al. 2008), a simple re-ordering is not enough.
The original expression〈CKS

KCBS

〉
= 〈AB〉+ 〈BC〉+ 〈CD〉+ 〈DE〉+ 〈EA〉 (3.17)

with observables on a qutrit system is classically bounded (from below) by
−3, and no re-ordering of observables as above is possible. However, one
may introduce an additional term, 〈AA〉, and then modify the expression to

〈CNCE
KCBS

〉
= 〈AB〉+ 〈CB〉+ 〈CD〉+ 〈DE〉+ 〈EA〉 − 〈AA〉, (3.18)

is classically bounded by −4: to minimize the expression, Ai must equal Ei,
while Aj must equal −Ei; consequently, Ai = −Aj , and thus, 〈AA〉 = −1,
yielding the minimum −4. In quantum mechanics, however, a minimum of
4− 4

√
5 can be achieved (Szangolies, Kleinmann, and Gühne 2013).

Finally, an expression can be derived from the intriguing scenario pro-
posed by Yu and Oh (2012), which takes the form (Kleinmann et al. 2012;
Zhang et al. 2013) 〈CKS

YO

〉
=

∑
i

Γi〈Ai〉+
∑
ij

Γij〈AiAj〉, (3.19)

where the coefficients Γi and Γij are as follows:

Γi =

⎧⎪⎨
⎪⎩

1 ∀i ∈ {4, 7, 10, . . . , 13}
2 ∀i ∈ {1, 5, 6, 8, 9}
3 ∀i ∈ {2, 3}

Γij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 ∀(i, j) ∈ {(1, 2), (1, 3), (1, 4), (1, 7), (4, 10), (8, 10), (9, 10),

(5, 11), (7, 11), (9, 11), (6, 12), (7, 12), (8, 12), (4, 13),

(5, 13), (6, 13)}
−2 ∀(i, j) ∈ {(2, 3), (2, 5), (2, 8), (3, 6), (3, 9), (5, 8), (6, 9)}
0 else

Classically, this inequality is bounded by 16. Using our method, we
obtain the modified expression〈CNCE

YO

〉
=

∑
i

Γi〈Ai〉+
∑
ij

Γij〈AiAj〉+ 4
∑

i

〈AiAi〉, (3.20)

which is bounded by 68 for all noncontextually evolving hidden variable
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theories, while the maximum quantum value is 69 + 1
3 (Szangolies, Klein-

mann, and Gühne 2013).
Thus, we have seen that the problematic failure of compatibility in real

laboratory experiments can be overcome by generalizing the nondistur-
bance assumption of Kochen and Specker to the assumption of noncontex-
tual evolution, where the hidden variables are allowed to undergo arbitrary
evolution, as long as this evolution does not depend on the measurement
context. Since this assumption contains Kochen-Specker noncontextuality
in the limit of trivial evolutions, it is thus a proper generalization of the
latter, and hence, its experimental implementation serves to exclude a set
of hidden-variable theories including the Kochen-Specker noncontextual
ones.

3.2 Semidefinite Programming Basics

Before we move on to the next main topic of this thesis, we first need to
introduce a tool that has been gaining importance in quantum information
theory, namely, semidefinite programming (Vandenberghe and Boyd 1996).
Semidefinite programming is a subset of convex optimization (Boyd and Van-
denberghe 2004), that is, the task of minimizing convex functions over con-
vex sets. Many of the problems arising in quantum information theory are
of this kind: entanglement distillation (Rains 2001), distinguishing separa-
ble and entangled states (Doherty, Parrilo, and Spedalieri 2002), and the un-
ambiguous discrimination of non-orthogonal quantum states (Eldar 2003),
to name just a few examples, can be aided by semidefinite methods.

To introduce the semidefinite programming framework, we will start
by first recalling some basics of constrained optimization, with a particular
focus on the relationship between primal and dual problems. Then, we will
discuss the special case of semidefinite problems, and give an outline of the
algorithmic methods used to solve them.

3.2.1 Constrained Optimization and Lagrange Duality

For simplicity, we will consider the case of a two-dimensional problem; all
definitions straightforwardly generalize to the case of more complex prob-
lem spaces. The simplest case is an optimization problem with a single
equality constraint:

minimize: f(x, y)
subject to: g(x, y) = c

Here, the problem is to find a feasible point (x, y) such that the function
f(x, y) is minimized, given the constraint g(x, y) = c. A feasible point (x, y)
is any point within the domain of f(x, y) such that g(x, y) = c; the opti-
mal point (x∗, y∗) is then that element of the set of feasible points such that
f(x, y) assumes its minimum p∗. The situation is depicted in Fig. 3.1.

At the optimal point, the constraint lies tangent to a contour of f(x, y).
Hence, we must have

∇f(x, y) = −μ∇g(x, y). (3.21)
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g(x, y) = c

∇f(x∗, y∗)

∇g(x∗, y∗)
(x∗, y∗)

f(x, y)

p∗ = f(x∗, y∗)

FIGURE 3.1: Plot of the objective function f(x, y) together
with its contours and the constraint g(x, y) = c. The optimal
value lies on the intersection of the yellow surface with the
objective function.

We can then define the Lagrangian

L(x, y, μ) = f(x, y) + μ(c− g(x, y)), (3.22)

where μ is a so-called Lagrange multiplier. The optimal point (x∗, y∗) is then
given by a stationary point (x∗, y∗, μ) of this Lagrangian, that is, a point
such that

∇L(x, y, μ) = 0, (3.23)

where the gradient now includes partial differentiation with respect to x,
y, and μ. This yields three equations with three unknowns, whose solution
yields possible optimal points. Whether these candidate solutions are (lo-
cal) extrema of the objective function can then be decided by computing the
magnitude of the gradient.

For the general case, now, we allow problems with n objective variables,
that is, objective functions f(x) where x = (x1, x2, . . . , xn)T , together with
k equality constraints. These problems are of the form:

minimize: f(x)
subject to: gi(x) = ci, i ∈ {1, . . . , k}

To solve them, we formulate the Lagrangian

L(x,μ) = f(x) +

k∑
i=1

μi(ci − gi(x)), (3.24)

where μ = (μ1, μ2, . . . , μk), and then again take the gradient as above.
Using the Lagrangian, we can then define the dual function

q(μ) = inf
x∈X

L(x,μ), (3.25)
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where X is the domain of f(x) (for instance, R
n). This is a function de-

pending only on the Lagrange multipliers, and we can then write the dual
problem as:

maximize: q(μ)
subject to: μi ≥ 0, i ∈ {1, . . . , k}

For all μ ≥ 0, q(μ) ≤ p∗; hence, the maximization over q(μ) yields a
lower bound for the optimal value of the primal problem. The difference
between the optimal dual value d∗ and the optimal primal value p∗ is called
the duality gap; if this gap is zero, one speaks of strong duality, otherwise, the
problem is said to exhibit weak duality.

The case where there are, besides the k equality constraints, l inequality
constraints can be treated similarly, by means of the Karush-Kuhn-Tucker
conditions (Karush 1939; Kuhn and Tucker 1951).

3.2.2 Semidefinite Problems

Semidefinite problems form a special and interesting case of the above
framework. We now consider only linear objective functions, that is, func-
tions f(x) that can be written in the form (following the notation of Van-
denberghe and Boyd (1996))

f(x) = cT x, (3.26)

where x, c ∈ R
n are the variable and the problem vector, respectively. Fur-

thermore, we consider constraints of the form

F (x) = F0 +
∑

i

xiFi ≥ 0, (3.27)

where Fi ∈ R
m×m, Fi = F T

i , and F (x) ≥ 0 denotes positive semidefinite-
ness. This problem is called convex, since with F (x) ≥ 0 and F (y) ≥ 0, it
follows that for any 0 ≤ μ ≤ 1

F (μx + (1− μ)y) = μF (x) + (1− μ)F (y) ≥ 0, (3.28)

i.e. the set of feasible points is convex. A schematic representation of such
a problem is given in Fig. 3.2.

Roughly, one can interpret a convex optimization as the problem of
moving as far as possible in the direction of −c, while staying within the
feasible set {x|F (x) ≥ 0}. The general problem can then be written as:

minimize: cT x

subject to: F (x) = F0 +
∑

i xiFi ≥ 0, i ∈ 1, . . . , k

From the primal problem, one can again derive the dual problem (for
details, see (Boyd and Vandenberghe 2004))

maximize: −tr (F0Z)
subject to: tr (FiZ) = ci, i ∈ 1, . . . , k

Z ≥ 0,
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F (x) ≥ 0

−c

x∗

FIGURE 3.2: Schematic representation of a convex optimiza-
tion problem.

where Z ∈ R
m×m and Z = ZT . It is straightforward to see that this dual in-

deed yields a lower bound on the primal problem, i.e. that cT x ≥ −tr (F0Z)
for all feasible points x and Z. In general, for feasible x and Z, one has

tr (ZF (x)) ≥ 0, (3.29)

since Z and F (x) are both positive semidefinite. Using the constraints
tr (FiZ) = ci, this yields

0 ≤ tr (ZF (x)) = tr (F0Z) +
∑

i

tr (ZFixi) = tr (F0Z) + cT x. (3.30)

Thus, for all feasible x and Z, we have

−tr (F0Z) ≤ cT x. (3.31)

In particular, this holds for the optimal value p∗ of the primal, i.e.

−tr (F0Z) ≤ p∗. (3.32)

Likewise, we have for the optimal value d∗ of the dual that

d∗ ≤ cT x. (3.33)

Consequently, we have that d∗ ≤ p∗.
An advantage of the semidefinite programming framework is that strict

conditions for strong duality, i.e. p∗ = d∗, are known. Consider thus the
optimal sets of the primal and dual programs,

Xopt = {x|F (x) ≥ 0, cT x = p∗}
Zopt = {T |Z ≥ 0, tr (FiZ) = ci, −tr (F0Z) = d∗}. (3.34)

If either of the following conditions hold, we have p∗ = d∗:
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1. The primal program is strictly feasible, i.e. there exists x with F (x) ≥
0.

2. The dual program is strictly feasible, i.e. there exists Z = ZT ≥ 0 with
tr (FiZ) = ci.

If both conditions hold, both sets in Eq. 3.34 are nonempty.
This result is known as the strong duality theorem. A proof can be found,

e.g., in (Rockafellar 2015).

3.2.3 Interior Point Methods

Another advantage of semidefinite programming is the fact that there exists
effective numerical methods to find (arbitrarily close to) optimal solutions.
In the following, we will only consider the case in which both conditions for
strong duality hold, and hence, d∗ = p∗. Then, the solution to a semidefinite
problem can be found using interior-point methods, whose basic idea is to
iteratively find candidate solutions x(k) and Z(k) such that the duality gap
is strictly decreasing, that is

cT x(k) + tr
(
F0Z

(k)
)
> cT x(k+1) + tr

(
F0Z

(k+1)
)
. (3.35)

Once the duality gap is smaller than some pre-defined tolerance ε, the al-
gorithm terminates with a solution approximating the optimal point to the
desired degree of accuracy. Such methods solve both the primal and dual
problem, and are hence also referred to as primal-dual methods. The benefit
of these methods compared to simply solving either the primal or dual on
its own is that one may use information from the dual (i.e. Z(k)) to find a
good update for the primal variable x(k) (Vandenberghe and Boyd 1996).

In the following, we briefly discuss the motivation behind one of the
most common interior-point algorithms, the central path following algorithm.
First, we define the barrier function

φ(x) =

{
log detF (x)−1 if F (x) > 0

∞ otherwise,
(3.36)

which can be thought of as a strongly repulsive potential diverging to in-
finity at the boundary of the feasible set {x|F (x) > 0}. The minimum of
this barrier function yields the analytic center

xc = argminφ(x). (3.37)

The analytic center of a linear matrix inequality F (x) ≥ 0 can be computed
using the Newton method (Vandenberghe and Boyd 1996).

We can use the notion of analytic center to parametrize a curve through
the feasible set, whose endpoint will yield the optimal value of the opti-
mization problem. To do so, consider

minimize: log detF (x)−1

subject to: F (x) > 0
cT x = γ,

where again the analytic center is the argument xc minimizing the objective
function. This essentially corresponds to calculating the minimum of the
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objective function that lies on a constraint surface cT x = γ, where p∗ ≤ γ ≤
p̄ = sup{cT x|F (x) < 0}. This yields a path parametrized by γ through the
feasible set, the so-called central path (see Fig. 3.3).

−c

cT x = p̄

cT x = p∗

cT x = γ

xc(γ)

FIGURE 3.3: The central path is given by the minimum of
the barrier function φ(x) intersecting the level surfaces of
the constraint cT x = γ, with γ ∈ [p∗, p̄].

The most common strategy to solve a semidefinite problem then is to
choose points that lie either on, or close to, the central path. One possibility
is, for instance, to introduce a measure of deviation from the central path,

ψ(x) = log detF (x)−1 − log detF (xc(cT x))−1, (3.38)

and keep this below a certain tolerance whenever choosing a new candidate
optimal point.

In these algorithms, the most computationally expensive step is in gen-
eral choosing the next candidate point, as the Newton method for finding
the analytic center includes a least-squares problem in a large number of
variables (Vandenberghe and Boyd 1996).

In order to implement semidefinite programming methods in this the-
sis, use was made of the freely available MATLAB-toolboxes YALMIP (Löf-
berg 2004) and SDPT3 (Toh, Todd, and Tütüncü 1999).

3.3 Random Measurements to Witness Entanglement

Having now availed us of the tool of semidefinite programming, we pro-
ceed to present the second main result of this thesis, namely, a procedure
for detecting the entanglement of arbitrary (and unknown) quantum states
ρ (Szangolies, Kampermann, and Bruß 2015).

The tool we use to approach this problem are the so-called entanglement
witnesses, as briefy introduced at the beginning of this chapter. In general,
detecting entanglement of an unknown state using such a witness is a hard
task (Žnidarič et al. 2007). However, as we will show, it is possible to devise
a protocol in which two parties carry out measurements, and then check,
via a semidefinite program, whether a witness detecting the unknown state
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can be constructed from these measurements, in such a way that the num-
ber of measurements that have to be carried out is significantly smaller on
average than the number of measurements needed, e.g., to reconstruct the
full state, and then compute its entanglement.

3.3.1 Entanglement Witnesses

We first introduce entanglement witnesses and the concepts needed in the
remainder of this section. As briefly mentioned, an entanglement witness
W (Lewenstein et al. 2000; Terhal 2000) is a (Hermitian) operator such that

tr (Wρ)

{
≥ 0 if ρ is separable,

< 0 for at least one entangled ρ.
(3.39)

Thus, a negative expectation value of W certifies the presence of entan-
glement. The existence of witness operators follows from the Hahn-Banach
theorem (see, e.g., (Hirzebruch and Scharlau 1971)): if there are two convex
disjoint subsets S1 and S2 of a Banach space at least one of which is compact,
then there always exists a bounded functional f separating them. Here, a
Banach space simply is a vector space equipped with a norm, together with
the completeness requirement that the limit of every Cauchy sequence of
vectors lies within the space. In particular, all Hilbert spaces with the norm
induced by the scalar product are examples of Banach spaces, as is the space
of trace-class operators acting on a Hilbert space.

Now, take an arbitrary separable state ρ on some Hilbert space HAB =
HA ⊗HB . Such a state can always be written in the form

ρAB =
∑

i

piρ
i
A ⊗ ρi

B. (3.40)

Hence, the separable states are the convex hull of the product states, i.e.
states of the form ρAB = ρA ⊗ ρB . As now any entangled state ρent lies
outside of this set, it follows immediately from the Hahn-Banach theorem
that there must exist a bounded functional separating this state from the set
of separable states, which we can identify with a Hermitian operator W .

In fact, in general, there will exist more than one such witness operator.
Let us introduce the range of a witness W as

R(W ) = {ρ|tr (Wρ) < 0}, (3.41)

i.e. as the set of states that are detected by a given witness. Then, a witness
W2 is said to be finer than W1 if R(W1) ⊂ R(W2), that is, if W2 detects all the
states W1 detects, and at least one additional state. We call a witness Wopt

optimal if there is no finer witness detecting the same states. In this case, the
witness directly bounds the set of separable states (see Fig. 3.4).

We will mostly be concerned with a special kind of witness, the so-called
decomposable witnesses. A witness W is decomposable if it can be written as
(Woronowicz 1976)

W = P +QTA , (3.42)
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separable

entangled

ρent

W

Wopt

tr (Wρ) > 0

tr (Wρ) = 0

tr (Wρ) < 0

FIGURE 3.4: The set of separable states forms a convex
subset within the set of quantum states. Witnesses can
be understood as (affine) hyperplanes separating the set of
states into detected entangled states and separable and un-
detected entangled states.

where P and Q are both positive semidefinite operators, and TA denotes
partial transposition with respect to subsystem A, i.e. the operation

A =
∑
ijkl

a
ij
kl |i〉〈j| ⊗ |k〉〈l| → ATA =

∑
ijkl

a
ij
kl |j〉〈i| ⊗ |k〉〈l| . (3.43)

To understand these particular witnesses, we first need to introduce the
partial transpose criterion, which can be used to decide entanglement of a
quantum state.

The partial transpose, PPT (for positive partial transpose), or Peres-
Horodecki criterion (M. Horodecki, P. Horodecki, and R. Horodecki 1996;
Peres 1996) provides a sufficient criterion for entanglement, that is also nec-
essary in the case of 2× 2 and 2× 3-dimensional Hilbert spaces.

Consider any separable state

ρAB =
∑

i

piρ
i
A ⊗ ρi

B. (3.44)

Its partial transpose is

ρ
TA

AB =
∑

i

pi(ρ
i
A)T ⊗ ρi

B, (3.45)

i.e. the local components ρi
A are transposed individually. However, the

transposition does not change the spectrum of an operator; thus, for all sep-
arable states, the spectrum of ρAB and ρTA

AB must be the same. In particular,
both must be positive operators.

Thus, whenever we act on a state with the partial transpose, and find a
nonpositive result—that is, the partial transpose has at least one negative
eigenvalue in its spectrum—we know that this state cannot be separable. In
fact, in dimensions 2 × 2 and 2 × 3, one finds that all entangled states lead
to a nonpositive partial transpose, while in higher dimensions, entangled
states having positive partial transpose (so-called PPT entangled states) exist
(M. Horodecki, P. Horodecki, and R. Horodecki 1996).
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Consider now a positive semidefinite operator Q. It holds that

tr
(
QTAρ

)
= tr

(
QρTA

)
, (3.46)

and consequently, tr
(
QTAρ

)
may be negative, provided ρTA is a nonpositive

operator. Thus, if we obtain a negative expectation value upon measuring
QTA , we may conclude that the state ρ must be entangled—QTA is an en-
tanglement witness based on the PPT-criterion. To obtain the most general
such witness, note that we can add an arbitrary positive operator P to ob-
tain

tr
([
P +QTA

]
ρ
)

= tr (Pρ) + tr
(
QTAρ

)
, (3.47)

where the first term in the sum is positive (or zero) for all ρ, while the sec-
ond term may become negative for some entangled states. Hence, an oper-
ator of the form

W = P +QTA (3.48)

is the most general witness detecting states with nonpositive partial trans-
pose.

Entanglement witnesses typically need to be tailored to the states they
are intended to detect. For instance, consider a state ρNPT which has a neg-
ative partial transpose. Then, if |ψ−〉 is the eigenvector of ρTA

NPT to the nega-
tive eigenvalue λ−, the operator

W = |ψ−〉〈ψ−|TA (3.49)

is an entanglement witness for the state ρNPT. Likewise, for any entangled
pure state |ψent〉, one may take

W = α1− |ψent〉〈ψent| , (3.50)

where α can be computed as the maximal overlap of |ψent〉 with a separable
state, that is,

α = max
ρsep

tr (|ψent〉〈ψent| ρsep) = max
|φ〉=|φA〉⊗|φB〉

|〈ψent|φ〉|2. (3.51)

This maximum can be effectively computed by means of the Schmidt de-
composition (Bourennane et al. 2004).

However, this has the disadvantage of necessitating prior knowledge
of the state one wants to detect, and even then, if one uses a non-optimal
witness, a noisy preparation may still lead to a failure of detecting the state,
even though it is entangled. To see this, consider the Bell state |Ψ−〉 (see
Eq. 1.67), and the operator

W|Ψ−〉 =
2

3
1− ∣∣Ψ−〉〈Ψ−∣∣ . (3.52)

Since the maximal overlap of |Ψ−〉 with the separable states is

tr
(∣∣Ψ−〉〈Ψ−∣∣ ρsep

)
=

1

2
, (3.53)
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the operator yields a positive expectation value on all separable states, but

tr
(
W|Ψ−〉

∣∣Ψ−〉〈Ψ−∣∣) = −1

3
. (3.54)

Hence, it is an entanglement witness detecting |Ψ−〉.
Now assume that we have an imperfect preparation procedure yielding,

due to the addition of white noise, instead the so-called Werner state (Werner
1989)

ρW = p
∣∣Ψ−〉〈Ψ−∣∣ +

1− p

4
1, (3.55)

which is entangled for p > 1
3 . The expectation value of W given this state is

tr
(
W|Ψ−〉ρW

)
=

5− 9p

12
. (3.56)

Thus, states with 1
3 < p ≤ 5

9 will not be detected by the witness, even
though they are entangled. Hence, the unavoidable presence of noise in ev-
ery real experiment may spoil an effort to detect entanglement, even though
it is in fact present.

In a case such as this, of course, the problem can be avoided by simply
using the optimal witness for the state |Ψ−〉. However, this may no longer
be the case for other preparation failures. Consider the optimal witness

W
opt
|Ψ−〉 =

1

2
1− ∣∣Ψ−〉〈Ψ−∣∣ , (3.57)

and a source that produces the mixture

ρM = p
∣∣Ψ−〉〈Ψ−∣∣ + (1− p)

∣∣Φ−〉〈Φ−∣∣ . (3.58)

This state is separable only for p = 1
2 ; however, the witness W opt

|Ψ−〉 is only
able to detect its entanglement in the regime p > 1

2 . Hence, even though
the state ρM may be suitable for certain entanglement-based quantum in-
formation tasks, a test based on the witness W opt

|Ψ−〉 may lead to the rejection
of the source producing it as a viable device.

Thus, it would be interesting to have an efficient procedure capable
of detecting entanglement in arbitrary states, should any entanglement be
present. We now proceed to describe such a procedure.

3.3.2 Random States and Random Witnesses

If we have no knowledge about the state ρ we wish to detect, there is no
way to choose an appropriate witness a priori. One approach then might
be to simply choose a witness randomly, and attempt detection.

In order to gauge whether this might be an appropriate method, we first
need to specify what exactly we mean by choosing a witness (or, more gen-
erally, a Hermitian operator) ‘randomly’; likewise, in order to quantify its
performance on random quantum states, we need to give a procedure for
drawing a quantum state randomly. First, we need an appropriate proba-
bility measure. A requirement on such a measure is translational invariance:
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if we look at integrals over R, we have∫
R

f(x) dx =

∫
R

f(x+ a) dx. (3.59)

Note now that (R,+), that is, the real numbers equipped with the addition
operation, forms a group. Hence, for our measure μ, we require that for
arbitrary elements g of some group G, it holds that∫

G

f(x) dμ(x) =

∫
G

f(gx) dμ(x), (3.60)

where we have now indicated the group operation simply by juxtaposition.
A measure μ is called Haar measure (Haar 1933) if it satisfies

μ(gS) = μ(Sg) = μ(S), (3.61)

with
μ(S) =

∫
g∈S

dμ(g), (3.62)

for arbitrary S ⊆ G and g ∈ G. In addition, if μ(G) = 1, then μ is a probability
measure on G. Thus, we can define the probability of S, given a probability
density function f such that dμ(g) = f(g) dg as

μ(S) =

∫
g∈S

dμ(g) =

∫
g∈S

f(g) dg. (3.63)

This definition can now be applied to the groups of interest to us, which
are the unitary groups U(n). To build intuition, it may be helpful to con-
sider the simple case U(1). Any given element U ∈ U(1) has the form
U = eiφ. The measure dμ(U) = dφ then measures the perimeter of the unit
circle, and it holds that dφ+ φ0 = dφ, for any fixed φ0. Alternatively, this
can be written as dμ(UU0) = dμ(U), with U0 = eiφ0 , which yields the re-
quired translational invariance in Eq. 3.61. Hence, generalization to U(n)
follows from taking U and U0 from U(n).

One should, however, be careful not to generalize the intuition gained
from the simple case of U(1)—whose group manifold is simply the unit
circle S

1—too hastily. For instance, in the case of SO(3), the group of ro-
tations in three dimensions, whose group manifold is the unit sphere S2,
naively drawing the angles θ and φ at random will fail to yield a uni-
formly distributed direction—rather, the points picked this way will tend
to ‘bunch’ at the poles. The reason for this is that the measure in this case,
sin(θ) dθ dφ = dcos(θ) dφ is a function of θ. Thus, one needs to draw values
for t = cos(θ) from the interval [−1, 1], calculating θ = arccos(t), and draw
φ from [0, 2π].

This gives us now a method for choosing random unitary matrices—
we simply sample a distribution that is uniform with respect to the Haar
measure. For U(1), this amounts to choosing a random phase φ ∈ [0, 2π].
For n > 1, a convenient method to draw Haar-random unitaries is to first
create a matrix with uniformly random, bounded complex entries, and then
to diagonalize it using the Gram-Schmidt method. This can be shown to
guarantee Haar-randomness (Mezzadri 2007).



50 Chapter 3. Their Detection

Using this method, we can thus effectively generate random unitary
matrices. Since the rows and columns of an n × n unitary matrix form a
basis of an n-dimensional Hilbert space, extracting a column from such a
random unitary yields a random pure state. For random mixed states, if
the dimension of the pure state generated this way is n = k × l, we trace
out the k-dimensional environment, yielding an l-dimensional mixed state
randomly distributed according to the measure (Życzkowski, Penson, et al.
2011)

dμ(ρ) ∝ Θ(ρ)δ(tr (ρ)− 1)detρk−n, (3.64)

where the Θ-function enforces positivity, and the dirac δ guarantees the
normalization.

Finally, a random (normalized) Hermitian operator H can be produced
by first generating a diagonal matrix D with uniformly distributed random
real entries, then drawing a random unitary U according to the process
outlined above, and forming

H =
UDU †

tr (UDU †)
. (3.65)

Now having a method of randomly drawing Hermitian operators, and
thus, observables, we need to check whether a given operator W actually is
an entanglement witness. The first check involves the spectrum of W : if W
is either positive- or negative-definite, then W cannot possibly be an entan-
glement witness, as, per Eq. 3.39, W must have positive expectation value
on separable states, but yield a negative value for at least one entangled
state. Hence, any prospective witness operator must be indefinite.

Furthermore, an easy to check condition is whether W ’s partial trans-
pose is positive. Since for any separable state ρsep, ρTA

sep is again a separa-
ble density operator, we can find ρ′sep such that ρ′TA

sep = ρsep, and hence, if
W TA ≥ 0, we have

tr (Wρsep) = tr
(
Wρ′TA

sep

)
= tr

(
W TAρ′sep

) ≥ 0, (3.66)

and consequently, the expectation value ofW is nonegative on all separable
states. Since W however is an indefinite operator, there must exist at least
one state such that W yields a negative expectation value, which cannot
be separable and hence, must be entangled. Thus, the conditions of indef-
initeness and positivity of the partial transpose suffice to identify W as a
witness.

There are, however, witnesses that cannot be found in this way, due to
the fact that there exist entangled states with a positive partial transpose
in all Hilbert spaces of dimension greater than 2× 3. These additional wit-
nesses can be found using an overlap minimization algorithm, based on the
one presented in (Kampermann et al. 2012).

The goal of the algorithm is to calculate the quantity

min
|ψ〉=|a〉|b〉

tr (W |ψ〉〈ψ|) , (3.67)

i.e. the minimal expectation value of W on a separable pure state.
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This is done using the following iterative procedure. First, a starting
state |b0〉 is chosen, and with it, the quantity

XA = trB(W1⊗ |b0〉〈b0|) (3.68)

is calculated. Then, the eigenvector |a0〉 to the smallest eigenvalue of XA is
chosen for the calculation of

XB = trB(W |a0〉〈a0| ⊗ 1). (3.69)

The procedure is now iterated, with in the next step |b1〉 being the eigenvec-
tor to the smallest eigenvalue of XB , and so on.

In each step, the overlap tr (W |ψi〉〈ψi|), with |ψi〉 = |ai〉 ⊗ |bi〉, is calcu-
lated; if it is found to be negative, the procedure is terminated, as W is not
an entanglement witness. Otherwise, the algorithm terminates if either a
fixed number of iterations has been performed, or the difference between
expectation values of W on successive states |ψi−1〉 and |ψi〉 differs by less
than a predefined amount.

Note that, however, only the negative result of this iteration procedure is
fully conclusive: even if no negative overlap with a separable state is found
using the above procedure, this does not strictly imply that W is a witness,
as the algorithm is not guaranteed to reach the global minimum in general.
In order to increase the confidence in having found the global optimum, the
procedure is repeated 103 times with different initial conditions.

We can now use these methods to quantify the chances of detecting a
random state by measuring a random witness operator. The results of this
are discouraging: among 105 candidate operators on a two-qubit Hilbert
space, a fraction of 1.73±0.05%, where the uncertainty is due to finite statis-
tics, were identified as witnesses via their positive partial transpose; a fur-
ther 1.34 ± 0.04% were found using the overlap-minimization procedure.
Furthermore, these witnesses are not typically very effective: even for max-
imally entangled states, only a fraction of (1.094±0.007)·10−2 were detected
using witnesses with positive partial transpose, while operators found us-
ing the overlap-minimization process detected (1.092 ± 0.008) · 10−2 of all
generated states. For general entangled states, the effectiveness is much
lower, on the order of 10−5 (Szangolies, Kampermann, and Bruß 2015).

Hence, using the simple method of merely randomly measuring wit-
nesses is not a feasible strategy to detect the entanglement of arbitrary
states. However, there exists a better method, which rests on carrying out
local measurements on a joint Hilbert space HAB = HA ⊗ HB , and then
using a semidefinite program to determine the best possible witness that
can be generated using these measurements, and the observed experimen-
tal data. We discuss this method in the following.

3.3.3 Random States and Observables

In general, in order to measure an operator W on a joint Hilbert space
HAB = HA ⊗ HB , it has to be decomposed into local measurements on
the subspaces HA and HB , preferrably using some local basis that is sim-
ple to implement experimentally. For instance, the witness W opt

|Ψ−〉 can be
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decomposed as

W
opt
|Ψ−〉 =

1

2
1− ∣∣Ψ−〉〈Ψ−∣∣

=
1

4
(1 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz). (3.70)

Our approach now is, instead of starting with a witnessW ∈ B(HAB), to
start with local observables Ai ∈ B(HA) and Bj ∈ B(HB), and then attempt
to find a combination

W =
∑
ij

cijAi ⊗Bj , (3.71)

such thatW is a witness operator detecting the unknown state ρ. For the re-
mainder of this chapter, we will exclusively consider the case of decompos-
able witnesses, that is, witnesses that can be written in the form of Eq. 3.42.

Thus, our task is now to find of coefficients cij , given the operators
Ai, Bj , and their expectation values (as approximated via measurement)
〈Ai ⊗Bj〉, such that the operator formed according to Eq. 3.71 is a decom-
posable witness with minimal expectation value. If this expectation value
then is negative, we have detected the entanglement of our unknown state.

We can collect the coefficients cij into a vector c, and likewise, the ex-
pectation values into a vector m. Consequently, the expectation value of
the prospective witness can be written as

〈W 〉 =
∑
ij

cij〈Ai ⊗Bj〉

= mT c. (3.72)

Then, the problem of finding a suitable witness can be cast into the form
of a semidefinite program (see Sec. 3.2.2)

minimize: mT c

subject to: W =
∑

ij cijAi ⊗Bj

W = P +QTA

P ≥ 0
Q ≥ 0
tr (W ) = 1.

Here, the trace constraint is merely to ensure normalization of the witness.
The reason for this is that traceless operators cannot be witnesses: the ex-
pectation value of any traceless operator with the maximally mixed state
vanishes. Hence, the hyperplane associated to a traceless operator nec-
essarily contains the maximally mixed state. However, there always is a
finite ball of separable states around the maximally mixed state, and con-
sequently, this operator must have both positive and negative eigenvalues
with at least some separable states, and hence, cannot be a witness.

If this program yields a negative optimal value, we know with certainty
that the state ρ, which gave rise to the values 〈Ai ⊗Bj〉, must have been
entangled.

There now remains the question of the effectiveness of this method.
Clearly, if the number of measurements that have to be performed is not sig-
nificantly smaller than the number of measurements needed to fully charac-
terize the state, we have not gained much. In order to characterize a state of
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dimension d = dA×dB , where dA is the dimension of HA (and analogously
for dB), one needs in total (d2

A−1) ·(d2
B−1) measurements. Thus, this value

yields an upper bound for our method, since having tomographically com-
plete information about a state clearly suffices to decide its entanglement
content.

3.3.4 Evaluation of the Method

Given the previous considerations, we need to evaluate the chances of suc-
cess of our method. The simplest way to do so is to simulate enough ex-
periments in order to gather meaningful statistics, and then to compute the
average number of measurements needed in order to detect a state of a
given entanglement content.

To do this, we first need a way to measure the entanglement content of
a quantum state ρ. That is, we need a suitable entanglement measure E(ρ),
whose value yields information about, roughly, the ‘amount’ of entangle-
ment in a given state. Such a measure must satisfy a number of conditions
(Vedral et al. 1997):

1. First of all, it should vanish on all separable states, that is, E(ρsep) = 0
for all separable states ρsep.

2. Furthermore, it should be invariant under operations that do not
change the entanglement content of the state. Operations of this
type amount to a local change of basis, implemented by local uni-
tary operations, i.e., for a state acting on a bipartite Hilbert space
HAB = HA ⊗HB ,

E(ρ) = E(UA ⊗ UBρU
†
A ⊗ U

†
B), (3.73)

where UA and UB are unitary.

3. Entanglement cannot be created via local operations, together with
classical communication between the parties sharing a state (LOCC).
Thus, any entanglement measure should be nonincreasing under any
map ΛLOCC that can be implemented in this way:

E(ρ) ≥ E
(
ΛLOCC(ρ)

)
(3.74)

4. Furthermore, it is often demanded that entanglement measures need
to be convex, that is, that they should be nonincreasing under mixture:

∑
i

piE(ρi) ≥ E

(∑
i

piρi

)
. (3.75)

This indicates that, if we have an ensemble of states ρi, and loose in-
formation about which state is present, entanglement should not in-
crease.

An appropriate entanglement measure for our purposes is the so-called
negativity (Vidal and Werner 2002; Życzkowski, P. Horodecki, et al. 1998).
Essentially, the negativity measures the violation of the PPT-criterion (see
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Eq. 3.45 and the discussion following it):

N (ρ) =
||ρTA ||1 − 1

2
, (3.76)

where ||X||1 = tr
(√

XX†
)

denotes the trace norm. Equivalently, the nega-
tivity can be computed as

N (ρ) =
∑

i

|λi| − λi

2
, (3.77)

where the λi are the negative eigenvalues of ρ. Occasionally, also the loga-
rithmic negativity

NL(ρ) = log2||ρTA ||1 (3.78)

is used, which has the advantage of making the measure additive—that is,
for n copies of the state ρ, we have that NL(ρ⊗n) = nNL(ρ). However, this
measure no longer is convex (Plenio 2005).

Due to the fact that the negativity is constructed from the PPT-criterion,
it fails to detect entangled states whose partial transpose is positive. How-
ever, as we only consider decomposable witnesses, this is not a restriction in
our case. In fact, there is a close connection between the negativity and op-
timal decomposable witness, in that their expectation value exactly yields
the value of the negativity (Jungnitsch, Moroder, and Gühne 2011). Thus,
the witnesses constructed by our process automatically yield a lower bound
to the negativity of the state that is being examined.

We now proceed as follows. First, a random state ρ is drawn accord-
ing to the discussion in Sec. 3.3.2. Then, the expectation value of this state
with (again randomly drawn) measurements Ai and Bj is computed. Since
one needs at least two distinct local measurements for the detection of en-
tanglement (Tóth and Gühne 2005), in the first round, we calculate two
expectation values 〈Ai ⊗Bj〉. Then, these expectation values and the mea-
surements that were performed are fed into our SDP. If the SDP produces
a negative optimal value, we have detected the entanglement of the state
ρ, and the procedure stops; otherwise, one or more new random measure-
ment(s) are added, and the process is repeated, until either a detection is
achieved, or we reach the tomographic limit.

There are several possible strategies for the addition of new measure-
ments:

1. At each step, a new measurement is added on either HA or HB , fol-
lowed by measuring all combinations of measurements in the pool so
far.

2. A new measurement is added on both sides. Thus, at the k-th iteration
step, we have the expectation values of {Ai ⊗Bi}k

i=1.

3. A new measurement is added alternatively on HA or HB , while the
other side simply continues their measurement. This yields a succes-
sion of measurements of the formA1⊗B1 → A1⊗B2 → A2⊗B2 → . . .

Since the second strategy already enables detection in the second round,
this is the one we will use in the following. First, we test the method on 105

random 2× 2-dimensional states. The results are shown in Fig. 3.5.
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FIGURE 3.5: 105 runs of our procedure using 2 × 2-
dimensional states drawn uniformly at random. The data is
normalized with respect to the value of the negativity, such
that it sums to one in each bin. As can be seen, for low
entanglement content, the number of measurements con-
verges to the tomographic maximum of 9 measurements.

One can clearly see that the method gets more effective as states with
higher entanglement content are examined. This is only to be expected,
as the overlap of such states with the set of separable states gets smaller,
and hence, intuitively, they are at a greater ‘distance’ to the set of separable
states, making it easier to find suitable witnesses separating them.

The gain in efficiency is even more pronounced for 3 × 3-dimensional
states. Testing our method on 3 · 104 random instances, we find a distri-
bution of necessary measurements in order to detect the states as shown in
Fig. 3.6.

FIGURE 3.6: 3 · 104 runs of our procedure using 3 × 3-
dimensional states drawn uniformly at random. The data is
again normalized with respect to the value of the negativity,
such that it sums to one in each bin. As only relatively few
states of low negativity are produced, the distribution is cut
off at a value of N (ρ) = 0.05, as the statistics in that regime
were too noisy to yield reliable conclusions. Likewise, too
few states of maximal entanglement content were produced
to yield satisfactory statistics.
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Since too few highly entangled states were generated in the 3×3 dimen-
sional case via random drawing, a separate analysis was made for max-
imally entangled states, see Fig. 3.7. There, 2 · 104 maximally entangled
states were produced, and detection took on average 10± 3 measurements,
were the uncertainty is due to the finite size of the statistics. As compared
to the tomographic maximum of 64 measurements, we thus see that even
moderately entangled states can be detected much more efficiently using
our method.

FIGURE 3.7: 2 · 104 runs of our procedure using 3 × 3-
dimensional maximally entangled states.

3.3.5 Statistical Analysis

We have so far only concentrated on the case of perfect measurements, that
is, used the exact quantum mechanical expectation values 〈Ai ⊗Bj〉 in our
analysis. However, each real experiment is subject to error, of both a statisti-
cal and possibly systematic nature. Regarding the former, it is thus interest-
ing to see how our method performs if we consider the effects of finite-size
statistics.

Experimentally, using dichotomic measurements yielding n+ times the
value +1 and n− times the value −1, the mean value of an operator M is
calculated as

M =
1

N
(n+ − n−) =

1

N
(2n+ −N), (3.79)

if N experiments are performed in total.
Since the outcomes are binomially distributed, the statistical uncertainty

of the value n+ is
Δn+ =

√
Np+(1− p+), (3.80)

with p+ being the probability of obtaining the outcome +1. By error prop-
agation, we can calculate the statistical uncertainty of M̄ as

ΔM =
dM

dn+
Δn+ =

2√
N

√
p+(1− p+). (3.81)
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However, the probability p+ is of course a priori unknown. But, since
the quantity p+(1− p+) assumes its maximum of 1

4 at p+ = 1
2 , we can use a

worst-case estimate for the uncertainty of M given by

ΔM ≤ 1√
N
. (3.82)

Now, our witnesses are of the form

W =
∑

i

Mi, (3.83)

with Mi = Ai ⊗ Bi (recall that we are using the second strategy presented
above). A naive guess at the total statistical uncertainty of the witness ex-
pectation value would now be to again simply use standard error propaga-
tion to obtain

ΔW =

√√√√∑
i

(
dW

dMi

)2

(ΔM i)2 =

√∑
i

c2i (ΔM i)2. (3.84)

This would, however, be incorrect: the coefficients ci are not independent
of the mean values M i, and thus, likewise are subject to error.

This challenge can be overcome by dividing the data into two bins, one
of which is used to calculate the coefficients ci via the SDP, which are then
used to evaluate the witness expectation value using the data from the sec-
ond bin (Moroder et al. 2013). Thus, the coefficients are indeed indepen-
dent of the statistical uncertainties of the data in that bin, and hence, can be
treated as constants; then, we can use the formula in Eq. 3.84 to calculate
the uncertainty of the witness expectation value, which yields

ΔW =

√∑
i

c2i
4

Ni
pi(1− pi) ≤

√∑
i

c2i
Ni
. (3.85)

If we now measure every observable the same number of times, that is,
Ni = N for all i, this simply becomes

ΔW ≤ 1√
N

√∑
i

c2i . (3.86)

This estimate can then help to facilitate the decision of whether it is
experimentally more prudent to add another measurement, or rather, in-
crease the number of measurement repetitions. As we have elaborated, our
method yields a lower bound to the negativity; thus, adding measurements
improves this bound, and hence, a smaller number of repetitions may be
necessary to unambiguously (up to some statistical certainty) conclude that
the expectation value is lower than zero.

As can be seen in Fig. 3.8, in the case of a single two-qubit state ρ with
a (low) negativity of N (ρ) = 0.0163, the maximum of the 3σ confidence in-
terval decreases sharply after adding another measurement direction, thus
allowing to conclude the presence of entanglement after a far smaller num-
ber of measurement repetitions.
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FIGURE 3.8: The maximum of the 3σ-confidence interval
for the detection of a two-qubit state ρ with negativity
N (ρ) = 0.0163, yielding the number of measurement rep-
etitions necessary to conclude entanglement for 6, 7 and 8
measurements.
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Chapter 4

Their Applications

A major driving force behind the development of quantum information the-
ory was the realization that non-classical correlations, instead of being a
mere curiosity, can be viewed as a resource. Thus, they may be applied to
solve problems that are classically either infeasible, or downright impossi-
ble. Entanglement has, so far, received the most attention in this regard:
two important early applications were quantum teleportation, where entan-
gled resources can be used to transmit the quantum information in, e.g, a
single qubit state using only two classical bits of communication (Bennett,
Brassard, et al. 1993), and superdense coding, where in some sense the reverse
occurs—a single qubit is used to send two bits of classical information (Ben-
nett and Wiesner 1992).

Since then, a plethora of applications of quantum correlations has been
proposed: it can be used to reduce the amount of communication nec-
essary between parties trying to jointly evaluate a function of some in-
put data (Brukner, Żukowski, et al. 2004), to reduce statistical uncertain-
ties in parameter-estimation tasks beyond the classical limit (Giovannetti,
Lloyd, and Maccone 2006), to create precisely synchronized clock networks
(Komar et al. 2014), and it is instrumental in bringing about the quantum
speedup at least for certain kinds of quantum computation (Jozsa and Lin-
den 2003). Recently, quantum entanglement has even made its way into
biology, with speculations that it might be instrumental to photosynthesis
(Sarovar et al. 2010) and the magnetic sense of certain birds (Gauger et al.
2011).

However, the area that arguably stands to profit the most from tech-
nologies harnessing quantum entanglement is cryptography. While there
are cryptographic protocols that do not rely on entangled resources, yet
guarantee absolute security against any adversary (Bennett 1984), proto-
cols using entanglement, going back to the protocol by Ekert (1991), have
the additional feature of device independence (Mayers and Yao 1998): in a
device-independent setting, no assumptions need to be made about any of
the apparata—e.g., sources and detectors—used; in fact, they may be fully
under the control of an adversary trying to spy on the parties attempting to
establish a secure communications channel.

This becomes possible only using the violation of Bell inequalities (see
Chapter 2). The basic logic is that classical resources are unable to yield
such violations, and thus, the presence of a violation certifies the presence
of a quantum resource; furthermore, any actions of an eavesdropper tend
to destroy the correlations necessary to yield the violation. Hence, Bell in-
equality violation suffices to conclude that no significant information has
been leaked to the eavesdropper.
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Making this qualitative reasoning fully quantitative had been a long-
standing problem that was only solved in full by Vazirani and Vidick (2014).
In the following, we will not be concerned with the details of this security
proof. Rather, our aim is to first introduce the device-independent sce-
nario, and then, as the third contribution of this thesis, introduce a novel
problem—bounding the detection efficiency of uncharacterized detectors—
whose solution depends on entangled quantum resources (Szangolies, Kam-
permann, and Bruß 2016).

4.1 The Device-Independent Framework

Device independence is an attractive feature for security-critical applica-
tions. While it was realized early on that quantum mechanics may provide
security against malicious parties in cryptographic settings (Bennett 1984),
such implementations may fail to be secure in the presence of direct tamper-
ing with experimental equipment, or even just simple experimental noise
(Scarani and Kurtsiefer 2009). However, by moving towards implementa-
tions that are secure independently of the physical implementation of the
devices, unconditional security can be restored in realistic cases.

Since thus device independence finds its natural home in cryptographic
settings, we will introduce it from this vantage point, starting out by intro-
ducing some necessary basic notions of cryptography, and then discussing
their device-independent implementation in the protocol of Ekert (1991).

4.1.1 Cryptography Basics

The main object of cryptography is the establishment of secure communi-
cation in the presence of untrusted third parties, called adversaries or eaves-
droppers. To this end, if one party (Alice) intends to share information with
another party (Bob) that must be kept secure from an eavesdropper (Eve),
the outline of a typical cryptographic protocol is as follows:

1. Alice and Bob establish an encryption scheme that is used to convert a
message, e.g. ordinary text (the plaintext), into a format (the ciphertext)
that is illegible to anybody that does not possess the tools necessary
for decryption.

2. Alice takes her plaintext message, encrypts it, and sends it to Bob via
a public channel.

3. Bob receives Alice’s ciphertext, and uses the decryption method in
order to access the plaintext message.

If the protocol is secure, then no third party, even if they do intercept
Alice’s message, can access the plaintext. In order to establish this security,
several techniques may be used. First, and by far the most popular, one
may apply to the plaintext a function that is hard to invert; the security of
such a protocol then rests on the assumption that any eavesdropper does
not possess the computational tools necessary to perform this inversion,
and hence, access the plaintext, while a trusted party, e.g. Bob, possesses
additional information that renders this task manageable.
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In this vein, the popular RSA scheme (Rivest, Shamir, and Adleman
1978) relies on the computational hardness of prime factorization: a pair
of prime numbers is generated, and then multiplied. From this, a public
key, which is available to anyone to encrypt their data, is generated. In
order to decode a message, one further needs the private key; this key can
be generated knowing both the public key and the pair of primes. Thus,
while everybody can encrypt their data using the public key, only those in
possession of the private key are able to decrypt it; hence, Alice is able to
send a secure message to Bob using his public key, without any untrusted
parties (which do not possess Bob’s private key) being able to decode the
message.

This protocol relies on the practical infeasibility of finding the prime
factors of sufficiently large numbers. In 2009, a 232-digit (768-bit) number
was factorized using the number field sieve method (Lenstra et al. 1993),
an effort that took two years on several hundred CPUs (Kleinjung et al.
2010). Factorizing a 1024-bit number (a size currently typical for RSA en-
cryption) would take an effort about a thousand times greater. However,
since the first 512-bit key was factored only a decade prior to the factoring
of the 768-bit key (Cavallar et al. 2000), and the increase in complexity was
of comparable magnitude, factoring of 1024-bit RSA keys may become pos-
sible by similar efforts by 2020 (Kleinjung et al. 2010). Furthermore, while
it is often believed to be the case, it has not been proven that no efficient
algorithm to solve factorization problems exists.

Another challenge to the security of such protocols, and one more rel-
evant to the present concerns, comes from the field of quantum compu-
tation: Shor (1994) was able to construct a quantum algorithm capable of
factoring large numbers whose complexity grows only polynomially with
the length of the number to be factored, instead of exponentially (or sub-
exponentially) as in the case of the best-known classical algorithms.

In light of these challenges it seems prudent to look for an alternative
way of encryption that does not rely on (conjectured) hardness of inversing
certain mathematical operations. A class of such cryptographic systems are
the so-called information-theoretically secure systems: in protocols based on
an information-theoretically secure encoding, an adversary simply does not
possess enough information in order to break the encryption (whereas, in
systems such as the RSA encryption briefly discussed above, the informa-
tion is present, although hard to obtain). Thus, such systems are unbreak-
able by cryptanalytic techniques.

A special case of information-theoretic security is perfect security: in
a perfectly secure protocol, the ciphertext provides no information at all
about the plaintext—that is, the probability distribution over possible plain-
texts is independent of the ciphertext. The most well-known perfectly se-
cure encryption method is the one-time pad, also known as Vernam cipher af-
ter Gilbert Vernam, who developed it in 1918 (Singh 1999). The idea of the
method is simple: a key consisting of random characters is added (modulo
the alphabet size) to the plaintext to produce the ciphertext. If this key is
now at least as long as the plaintext, and is truly random, then the resulting
encryption is provably perfectly secure, provided the key is kept secret and
never reused.

This, however, also highlights a drawback of the method: in order to
establish their secure communication channel, Alice and Bob have to share
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a pre-agreed key; that is, they must have already exchanged a string of
random characters that is the same length as the message they want to share
in secret. Hence, the overall protocol is only secure if Alice and Bob can be
confident that no third party ever had access to the key, and thus, that their
method of key distribution is itself perfectly secure.

It is here that quantum correlations enter into the picture. In a classical
world, information leakage is nigh impossible to prevent, given sufficient
resources of the eavesdropper. However, the unique properties of quantum
mechanics enable a method of key distribution whose security is guaran-
teed by the laws of quantum mechanics. In the following, we turn towards
the description of a particular protocol achieving this secure quantum key
distribution (QKD), and use it as a way to introduce the important device-
independent setting.

4.1.2 The Ekert Protocol and Device-Independence

The protocol presented by Ekert (1991) aims to accomplish the goal of se-
cure key distribution using the properties of quantum correlations for secu-
rity. The basic setup is a modified version of the CHSH-setting (see Fig. 2.1),
using three, instead of two, observables per party. Alice’s observables are
Ai = ai · σ, with

a1 =

⎛
⎝1

0
0

⎞
⎠ , a2 =

⎛
⎝0

0
1

⎞
⎠ , a3 = 1√

2

⎛
⎝1

0
1

⎞
⎠ . (4.1)

Likewise, Bob’s observables are Bj = bj · σ with

b1 =

⎛
⎝1

0
0

⎞
⎠ , b2 = 1√

2

⎛
⎝ 1

0
−1

⎞
⎠ , b3 = 1√

2

⎛
⎝1

0
1

⎞
⎠ . (4.2)

Now, the protocol runs as follows:

1. Alice and Bob share two qubits in the singlet state |Φ+〉 (see Eq. 1.67).

2. Alice chooses i ∈ {1, 2, 3} at random, and performs measurement Ai;
likewise, Bob chooses j ∈ {1, 2, 3} at random, and measuresBj . These
first two steps are repeated until sufficiently many measurements to
yield conclusive statistics have been performed.

3. Alice and Bob announce the bases they have measured in publicly.

4. The raw key is formed by using those cases in which both parties
have performed either their first or third measurement: due to the
correlations in the state |Φ+〉, whenever Alice obtains a +1-outcome,
and Bob measures in the same basis, he will likewise obtain a +1-
outcome (and equivalently for the −1-case), thus leaving both with
perfectly correlated data.

5. The remaining measurements are used to compute the value of the
CHSH-quantity

〈CCHSH〉 = 〈A1 ⊗B3〉+ 〈A1 ⊗B2〉+ 〈A2 ⊗B3〉 − 〈A2 ⊗B2〉. (4.3)
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If there has now been any interference by an eavesdropper, this value
will not exceed the classical bound of 〈CCHSH〉 = 2: any measurement
of Eve destroys the entanglement between the two qubits of Alice and
Bob, and hence, as discussed in Sec. 2.2.1, subsequent measurements
performed by Alice and Bob will yield correlations compatible with a
classical model. Conversely, a value of

〈CCHSH〉 = 2
√

2 (4.4)

guarantees the absence of an eavesdropper, and consequently, enables
the distribution of a secure cryptographic key.

The above protocol now achieves the goal of distributing a random bit
string of arbitrary length in such a way that only Alice and Bob have access
to it. Hence, it provides a secure foundation for cryptographic schemes
such as the one-time pad. However, most interesting for our purpose is
that it can be implemented in a device-independent way: Alice and Bob
need not make any assumptions on the correct functioning of their appa-
rata; in fact, those can even be completely untrusted, e.g. manufactured by
a possibly adversarial third party.

The reason for this is the use of Bell inequality violation as a security
certificate: all that is needed to conclude the absence of an eavesdropper
are the observed measurement results; the way in which they are produced
is of no consequence. Knowing that there is a Bell inequality violation, from
the discussion in Sec. 2.1.2, we know that there cannot be independent, pre-
defined definite values for all observables; consequently, no eavesdropper
could have obtained these values surreptitiously. It can be shown that, in
fact, an efficient quantum key distribution scheme is possible in this way
(Vazirani and Vidick 2014).

This realization has led to considerable attention being devoted to the
device-independent scenario. For an overview, see e.g. the New Jour-
nal of Physics special issue curated by Pironio, Scarani, and Vidick (2016),
which among others features contributions on topics including device-
independent randomness certification (Mironowicz et al. 2016), entangle-
ment quantification (Goh, Bancal, and Scarani 2016), testing of causal order
(Baumeler and S. Wolf 2016), and self-testing of quantum states (McKague
2016).

Among these, the latter, self-testing has particular relevance to the ap-
plication we will describe in the following. The object of self-testing is,
essentially, to use unknown (or untrusted) devices, and nevertheless ex-
tract information about the implemented measurements and the quantum
state. A simple self-testing scenario includes a source, which is claimed to
produce a certain quantum state (say, |Φ+〉), together with two spacelike
separated apparata, which are claimed to carry out certain measurements.
It can then be shown that the observed probability distributions suffice to
decide whether the claims are correct, up to a local change of basis (Mayers
and Yao 2004).

In the following, we propose a protocol aimed at self-testing the quality
of the detectors used. That is, using this protocol, absent any further as-
sumptions on the detectors or source, one can use Bell inequality violations
to certify a lower bound on the detection efficiency η, i.e. the probability
that a detector registers an accurate outcome.
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4.2 Device-Independent Detection Efficiency Bound-

ing

Consider the following scenario. Your lab needs a new detector; funding
being tight, you turn to your local used detector vendor. Naturally, they
promise you quality products. However, you are not sure whether you can
trust their promises (and all sales are final). Given that all equipment—
detectors and sources—is under the vendor’s control, is there a way to en-
sure that you purchase a detector whose detection efficiency meets your
needs?

Classically, the answer is no: a shrewd enough vendor can manipu-
late the detector to yield spurious detections according to some pre-set pro-
gram, they can vary the source rate from the rate it is claimed to have, or
use other means of tampering with the equipment.

Fortunately, as we will show, the answer is different in quantum me-
chanics. To demonstrate this, we will first discuss a method to construct
Bell inequalities a posteriori, that is, using only the observed measurement
outcomes. If these fail to be consistent with a classical model, the result-
ing Bell inequality violation is then used to certify a bound on the minimal
efficiency of the detectors involved.

4.2.1 Bell Inequalities from Measurement Statistics

In order to certify bounds on detector efficiencies, we first need to find a
method to construct Bell inequalities using only the observed measurement
statistics. The simplest idea would be, of course, to simply agree on a Bell
inequality beforehand, and see whether it is violated. Indeed, this is the
common strategy employed in many self-testing protocols (see, e.g., May-
ers and Yao 2004; McKague, Yang, and Scarani 2012; Miller and Shi 2012).

However, this method has the drawback that while its conclusions are
robust, cases in which the chosen Bell inequality is not violated, but some
other Bell inequality violation might be achievable by the state with some
given set of measurements, are ignored. Thus, we aim to find a method
that finds a Bell inequality violation whenever non-classical measurement
statistics are present.

It has previously been studied whether random local measurements can
yield Bell inequality violations (Liang et al. 2010; Shadbolt et al. 2012; Wall-
man and Bartlett 2012; Wallman, Liang, and Bartlett 2011). However, the
previously investigated schemes used restricted classes of Bell inequalities,
such as the CHSH inequality and the class of Mermin-Ardehali-Belinsky-
Klyshko (MABK) inequalities (Ardehali 1992; Belinsky and Klyshko 1993;
Mermin 1990a). Our method, in contrast, constructs a Bell inequality from
nothing but the observed statistics, and is thus not limited to violations of
any fixed Bell inequality.

The basis of the method is as follows. According to the discussion in
Sec. 2.1.2, the classical probability distributions form a polytope. Hence,
any probability distribution not contained in the polytope, that is, any dis-
tribution that cannot be written as a convex combination of the vertices of
this polytope, does not possess a classical model, and consequently violates
some Bell inequality. Our task is then, given the observed measurement
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statistics, to decide whether they can be written as such a convex combina-
tion.

The setting is again a modified CHSH-setting (see Fig. 2.1), where now
Alice has access to n dichotomic local observables Ai, while Bob likewise
measures m observables Bj . For any n and m, the polytope of classical
correlations has 2n+m vertices vk. Our experimental data consists of the
measurement statistics, that is, the probabilities Pr

(
A+

i

)
that observable Ai

yields the +1-outcome, the probabilities Pr (B+
j ), and the joint probabilities

Pr (A+
i B

+
j ), which we collect into the n+m+ nm-dimensional vector

Pobs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pr
(
A+

1

)
...

Pr (A+
n )

Pr
(
B+

1

)
...

Pr (B+
m)

Pr
(
A+

1 B
+
1

)
...

Pr (A+
nB

+
m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5)

If this vector cannot be written as

Pobs =
∑

k

λkvk, (4.6)

with 0 ≤ λk ≤ 1,
∑

k λk = 1, no classical model for the observed statistics
exists.

This can be translated into a linear separation problem: if we can find a
hyperplane separating the vertices vk from Pobs, we know that Pobs cannot
lie within the convex hull of the vk, that is, it cannot be contained in the
classical polytope. A hyperplane in n+m+ nm dimensions can be charac-
terised by its normal vector h, together with a constant x0. It consists of all
points (probability distributions) P such that∑

α

hαPα = x0. (4.7)

Here, α runs over the elements of h, which are given by

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hA1

...
hAn

hB1

...
hBm

hA1B1

...
hAnBm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.8)

Thus, we have to solve the following satisfiability problem:
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find: h ∈ R
n+m+nm, x0 ∈ R

subject to: hT vk < x0 ∀k ∈ {1, . . . , 2n+m}
hT Pobs > x0.

If there exists a solution to this problem, then the observed measure-
ment statistics Pobs do not have a classical model. The hyperplane found in
this manner then defines the Bell inequality

∑
α

hαPα =
n∑

i=1

hAi
Pr

(
A+

i

)
+

m∑
j=1

hBj
Pr

(
B+

j

)
+

nm∑
i,j=1

hAiBj
Pr

(
A+

i B
+
j

)
≤ x0.

(4.9)
In order to maximize the quantum violation Q > x0 of the Bell inequal-

ity, we can turn the satisfiability problem above into an optimization:

maximize: hT Pobs

subject to: hT vk < x0 ∀k ∈ {1, . . . , 2n+m}
hT Pobs > x0

−1 ≤ hi ≤ 1∀i ∈ {1, . . . , n+m+ nm},
where the constraint on the magnitude of the elements of h merely ensures
the boundedness of the problem, and sets an arbitrary overall scale. The
Bell inequality found in this way will directly bound the polytope of classi-
cal correlations, and is called tight.

An example of a Bell inequality (which happens to be tight) that may
be found with this method is the CH-inequality (see Eq. 2.10) with h =
(−1, 0,−1, 0, 1, 1, 1,−1)T and x0 = 0.

The method as outlined so far thus allows us to find Bell inequalities
using nothing but the observed measurement statistics. But there exists a
confounding issue: due to the finite efficiency of the detectors involved,
some events will fail to be detected; but in this case, the observed measure-
ment statistics will only approximate the real probabilities if the detected
events constitute a fair sample of all events. If, instead, certain events are
systematically rejected, it becomes possible to produce spurious violations
of Bell inequalities, despite the existence of an underlying classical model
(Pearle 1970). This leads to the so-called detection or fair-sampling loophole.
We will now discuss this issue in more detail, and then propose a solution
within our framework.

4.2.2 The Pearle Model and the Detection Loophole

The detection loophole was first pointed out by Pearle (1970), who pro-
posed an explicit model in which data rejection by the detectors leads to
apparent violations of a Bell inequality, even though all events are sampled
from a joint probability distribution (cf. the discussion in Sec. 2.1.1). We will
now briefly discuss this model, largely following the simplified exposition
due to Gill (2015).

We consider once again the CHSH-scenario (Fig. 2.1). A source dis-
tributes two particles to parties A and B. In the Pearle model, now, each
particle carries a hidden variable, say XA for the particle sent to A, and
XB for the one sent to B, such that XA = −XB . The hidden variables are
each composed of a scalar r and a point on the two-sphere S

2, q, such that
XA = rq = −XB . The scalar r can be considered an amplitude, while the
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unit vector q represents the direction of the spin of the particle sent to A

(while −q is the analogue for B). The direction q is uniformly distributed
on S

2, independently of r.
Parties A and B carry out measurements in directions a and b, respec-

tively. The experimental outcomes are then generated by the response func-
tions for the detectors,

A(XA) =

{
sgn(q · a) if arccos(|q · a|) ≥ rπ

2

0 else
(4.10)

and

B(XB) =

{
−sgn(q · b) if arccos(|q · b|) ≥ rπ

2

0 else,
(4.11)

where sgn(x) yields the sign of x, and 0 signals a non-detection.
Now, in the quantum setting, the prediction for the correlation between

two measurement directions a and b is

〈a · σ ⊗ b · σ〉 = −a · b ≡ −cos(φ), (4.12)

where φ is the angle between a and b, if we assume A and B share the
singlet state ∣∣Ψ−〉 =

1√
2
(|01〉 − |10〉). (4.13)

This yields a maximal violation of the CHSH-inequality for, e.g., the
directions

a1 =

⎛
⎝1

0
0

⎞
⎠ , b1 = 1√

2

⎛
⎝−1
−1
0

⎞
⎠ ,

a2 =

⎛
⎝0

1
0

⎞
⎠ , b2 = 1√

2

⎛
⎝−1

1
0

⎞
⎠ ,

(4.14)

since

〈CCHSH〉 = −a1 · b1 − a1 · b2 − a2 · b1 + a2 · b2 = 2
√

2. (4.15)

This correlation can be reproduced by the Pearle model for a specific
choice of distribution of the amplitude r. This distribution is somewhat
complicated (Gill 2015); however, matters can be simplified by equivalently
choosing S = rπ

2 such that

S =
2√

1 + 3v
π

− 1, (4.16)

and drawing v uniformly at random from the interval [0, π]. The correla-
tions obtained using this model are shown in Fig. 4.1, which shows a very
good agreement with the quantum mechanical prediction.

In the Pearle model, data rejection rates vary with the angle between a

and b, ranging from maximally 2
3 to 4

3(1− 2
π
) ≈ 0.485 (Pearle 1970). Even if

the overall source rate is thus unknown, an experimenter could notice this
systematic variation and hence, conclude that there is something suspicious
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−cos(φ)

Pearle

φ〈a
b
〉

FIGURE 4.1: Numerical simulation of the Pearle-model. 100
datapoints were generated by performing 105 simulated
measurements each, according to Eqs. 4.10 and 4.11.

about the behavior of the apparata. However, as shown by N. Gisin and B.
Gisin (1999), data-rejection based models exist that do not suffer from this
issue.

There are several possible responses to the detection loophole. One is
the so-called fair-sampling assumption (Clauser and Horne 1974): we sim-
ply assume that the detected events form a fair sample of the complete set
of events, and thus, asymptotically obey the same statistics. While this is
a physically well-motivated assumption, in our scenario, it cannot be al-
lowed; after all, a malicious vendor is under no obligation to let their detec-
tors detect a fair sample.

Another response alters the Bell inequalities based on the finite effi-
ciency of the detectors involved. Garg and Mermin (1987) thus replace the
correlation functions 〈AB〉 with functions taking the conditional probabil-
ity for a detection into account,

E(A,B) =
∑
a,b

abPr
(
Aa, Bb

∣∣∣A andB click
)
. (4.17)

If the probability for each detector to correctly produce a click is η, then
these modified correlation functions are related to the correlators as defined
in Eq. 2.4 by (Garg and Mermin 1987, s.a. Larsson 2014)

E(A,B) =
η

2− η
〈AB〉, (4.18)

which yields a modified bound for the CHSH-inequality,

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 4

η
− 2. (4.19)

However, as the detection efficiency is unknown in our case, this solu-
tion likewise is not open to us. Fortunately, there exists a third solution:
certain Bell inequalities can be re-expressed using solely the known total
counts generated by the detectors (Eberhard 1993). It is to this method that
we turn in the following.
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4.2.3 The Classical Cone

Imagine that, during the course of an experiment, the source sent out ex-
actly N particle pairs, such that ideal detectors would have produced N

clicks in total. Now, of course, N is an unknown number in the case of im-
perfect detectors, since at least the number of cases in which both detectors
failed to produce a click is necessarily unknown. However, we can use the
same logic as before to derive Bell inequalities, by deriving the vertices of a
polytope that all distributions of counts must obey if there is an underlying
classical model producing these counts.

TABLE 4.1: Extreme values of count rates in the ideal sce-
nario.

A+ B+ A+ ∧B+

0 0 0
0 N 0
N 0 0
N N N

In the extremal case yielding the vertices of the polytope, as shown in
Table 4.1, all N particle pairs can either produce the +1-outcomes for A, B,
or for both, in the case of ideal detectors. Thus, the polytope is identical to
the one derived in Sec. 2.1.1, merely uniformly stretched in all directions by
a factor N . Recall now that the Bell inequalities that can be derived using
the polytope method had the form∑

i

hAi
Pr

(
A+

i

)
+

∑
j

hBj
Pr

(
B+

j

)
+

∑
ij

hAiBj
Pr

(
A+

i B
+
j

)
≤ x0. (4.20)

Now, in the limit of large N , the probabilities in this equation will be
given by ratios of detected +1-outcomes and the overall number of events,
yielding

∑
i

hAi

N+
Ai

N
+

∑
j

hBj

N+
Bj

N
+

∑
ij

hAiBj

N++
AiBj

N
≤ x0, (4.21)

whereN+
Ai

simply is the number of +1-outcomes for the observableAi (like-
wise for Bj), and N++

AiBj
counts how often both observables yielded +1 to-

gether. Now, we can eliminate the unknown number of particle pairs N
by multiplying through with it, provided that x0 = 0; otherwise, the right
hand side, i.e. the classical bound, acquires a dependence on N . This leads
to Bell inequalities of the form∑

i

hAi
N+

Ai
+

∑
j

hBj
N+

Bj
+

∑
ij

hAiBj
N++

AiBj
≤ 0, (4.22)

which now only contain the experimentally accessible total counts for all
observables, and are hence free from the detection loophole. A special case
of these Bell inequalities with h = (−1, 0,−1, 0, 1, 1, 1,−1)T is then the Eber-
hard inequality (Eberhard 1993)

−N+
A1

−N+
B1

+N++
A1B1

+N++
A1B2

+N++
A2B1

−N++
A2B2

≤ 0. (4.23)
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In order to (for convenience) move back to Bell inequalities dealing
with probabilities, we can then divide by the number of total counts N∗,
which yields, strictly speaking, the conditional probability that e.g. Ai pro-
duced a +1-outcome, given that at least one detector produced a click. We
will, however, not notationally distinguish between these conditional prob-
abilities and the ideal probabilities, and continue writing Pr

(
A+

i

)
for this

case. Performing this operation on Eq. 4.23 then once again yields the CH-
inequality, which, in terms of the probabilities generated in this way, is thus
free from the detection loophole.

These inequalities can now be generated using the observed measure-
ment statistics as before. Given the vector Pobs containing the measured
statistics (as generated according to the above discussion), we solve the fol-
lowing optimization problem:

maximize: hT Pobs

subject to: hT vk < 0∀k ∈ {1, . . . , 2n+m}
hT Pobs > 0
0 ≤ hi ≤ 1∀i ∈ {1, . . . , n+m+ nm},

which, if a solution exists, then yields a maximally violated Bell inequality
defined by the hyperplane h which is free from the detection loophole, and
whose violation is thus unambiguous even in the case of unknown detector
efficiencies.

Since we have mandated that x0 = 0, each such hyperplane now con-
tains the origin, which is also necessarily one of the vertices of the set of
allowed probability distributions. Geometrically, this means that these hy-
perplanes now only bound a convex cone, instead of a convex polytope, as
before; for all probability distributions inside this cone, a classical model
cannot be excluded. Hence, we term this the classical cone. Essentially, this
is due to the fact that the unknown total number of particle pairs N sets
the ‘scale’ of the polytope; hence, we must allow for arbitrary scaling trans-
formations. This situation is schematically depicted in Fig. 4.2, which also
shows the more general set of no-signalling correlations (see Sec. 2.1.2).

The method as presented so far already allows several intriguing appli-
cations. First of all, it enables a device-independent version of the protocols
for observing Bell inequality violations between two laboratories which do
not possess a shared reference frame (Liang et al. 2010; Shadbolt et al. 2012;
Wallman and Bartlett 2012; Wallman, Liang, and Bartlett 2011). In (Wall-
man and Bartlett 2012), it is shown that two parties can always violate a
Bell inequality if they share a Bell state (see Eq. 1.67) and perform three
measurements along orthogonal axes of their local coordinate system, re-
moving the necessity of establishing a shared global frame of reference.

Using our method, this result can be extended to the device-independ-
ent case. In this case, there is naturally no need for a global reference frame,
and in fact, even the need for a characterization of the detectors, and hence,
the local measurement directions, is eliminated. The effectiveness of the
method can then be gauged by numerical simulation. In Fig. 4.3, 5 · 105

random maximally entangled two-qubit states were generated, and mea-
surements were performed up to a limit of n + m = 12 in total (that is, 6
measurements for party A and B each), or until a Bell inequality violation
was detected. As can be seen, more than half of all states were detected
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classical

quantum

no-signalling

v1 = 0

v2 v3

h

FIGURE 4.2: The sets of classical, quantum, and no-
signalling correlations, together with a Bell inequality de-
fined by its normal vector h, and the cone of probability
distributions where we cannot exclude the existence of a
classical model (hatched area).

using 6 measurements or fewer, and thus, the expected number of mea-
surements per party until detection remains of the same order as in the
protocol of Wallman and Bartlett (2012), even though no characterization of
the detectors was assumed in our case.

FIGURE 4.3: Numerical simulation of 5 · 105 detection at-
tempts for a maximally entangled two-qubit state. The per-
centage of states detected is plotted against the total number
n+m of local measurements.

Furthermore, our method can be viewed as constructing a device-inde-
pendent entanglement witness that does not have to be tailored to a state
beforehand (cf. Sec. 3.3). Given a Bell inequality∑

i

hAi
Pr

(
A+

i

)
+

∑
j

hBj
Pr

(
B+

j

)
+

∑
ij

hAiBj
Pr

(
A+

i B
+
j

)
≤ 0, (4.24)
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with (unknown) operators E+
Ai

and E+
Bj

such that

Pr
(
A+

i

)
= tr

(
E+

Ai
⊗ 1ρ

)
Pr

(
B+

j

)
= tr

(
1⊗ E+

Bj
ρ
)

(4.25)

Pr
(
A+

i B
+
j

)
= tr

(
E+

Ai
⊗ E+

Bj
ρ
)
,

we can construct the witness operator

W = −
∑

i

hAi
E+

Ai
⊗ 1−

∑
j

hBj
1⊗ E+

Bj
−

∑
ij

hAiBj
E+

Ai
⊗ E+

Bj
. (4.26)

From the construction of our Bell inequalities, it is immediate that a neg-
ative value for tr (Wρ) implies that ρ is entangled. Thus, the construction
can be used to detect the entanglement of an unknown state in a device-
independent way, and hence represents a natural further development of
the method presented in (Szangolies, Kampermann, and Bruß 2015).

Finally, our method suggests a device-independent QKD (DIQKD) pro-
tocol in which the participants do not agree on a Bell inequality beforehand,
but simply perform some set of measurements available to them, and then
see whether the resulting measurement statistics violated a Bell inquality.
In most DIQKD protocols, closing the detection loophole is a difficult prob-
lem, necessitating measures such as using a heralded amplifier to boost sig-
nal strengths (N. Gisin, Pironio, and Sangouard 2010) or an entanglement
swapping relay to ensure a sufficient violation of a given Bell inequality
(Curty and Moroder 2011).

In contrast, since the Bell inequalities generated by our construction do
not suffer from the detection loophole, any violation detected using our
method suffices to guarantee security. Furthermore, since we find that Bell
inequality which is maximally violated, we can directly optimize the rate R
of secret bits distributed between Alice and Bob, as this rate is connected to
the quantum violation Q by (Masanes, Pironio, and Acín 2011)

R ≥ −log2f(Q)−H(a|b). (4.27)

Here, f(Q) is a function depending on the Bell inequality used that can be
determined by semidefinite methods, and H(a|b) is the conditional Shan-
non entropy of Alice’s outcomes a and Bob’s outcomes b.

Thus, this ensures that a Bell inequality is chosen that leads to the best
key rate given the actually performed measurements (which may differ
from the measurements Alice and Bob set out to perform, either due to
noise or the actions of an eavesdropper), while simultaneously evading the
detection loophole.

Besides these applications, we now move on to a novel task: the bound-
ing of detector efficiencies. That is, our aim in the following is to find, for at
least one of the involved detectors, a lower bound on η such that the detec-
tor can be certified to possess at least this detection efficiency. To do so, we
first introduce a tool that will aid us in computing these lower bounds, the
Navascués-Pironio-Acín hierarchy.
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4.2.4 The Navascués-Pironio-Acín Hierarchy

In a scenario with limited detection efficiencies, our observed probabilities
will differ from the quantum mechanical predictions for the ideal case. That
is, if ηA is the detection efficiency of the detector A, ηB correspondingly for
B, we have to consider the probabilities that the detector produces a click
and yields the outcome +1, that is

Pr
(
A+

i ∧A clicks
)

= ηAtr
(
Π+

Ai
⊗ 1ρ

)
Pr

(
B+

j ∧B clicks
)

= ηBtr
(
1⊗Π+

Bj
ρ
)

(4.28)

Pr
(
A+

i B
+
j ∧A andB click

)
= ηAηBtr

(
Π+

Ai
⊗Π+

Bj
ρ
)
,

where e.g. Π+
Ai

is the projector on the +1-eigenspace of Ai. Note that it suf-
fices here to consider projective measurements and a pure state ρ = |ψ〉〈ψ|,
since we leave the dimension of the underlying quantum system unspec-
ified, and every POVM can be realized using a projective measurement
on a higher-dimensional system in a pure state via Naimark’s extension
(Naimark 1940, 1943). Thus, our Bell inequalities now take the form

ηA

∑
i

hAi
Pr

(
A+

i

)
+ ηB

∑
j

hBj
Pr

(
B+

j

)
+ ηAηB

∑
ij

hAiBj
Pr

(
A+

i B
+
j

)
≤ 0.

(4.29)
Let us, for the moment, make the simplifying assumption that all detec-

tor efficiencies are equal, ηA = ηB ≡ η. We can then calculate the critical
detection efficiency as

ηcrit = −
∑

i hAi
Pr

(
A+

i

)
+

∑
j hBj

Pr
(
B+

j

)
∑

ij hAiBj
Pr

(
A+

i B
+
j

) . (4.30)

Any detection efficiency exceeding this threshold allows for a violation of
the inequality 4.29. Inverting this logic, thus, means that observing a vio-
lation implies that the detectors used possess minimally the detection effi-
ciency ηcrit.

Calculation of this detection efficiency necessitates an optimization over
all Pobs that have a quantum model, that is, which can be observed in a
quantum mechanical experiment. Thus, we have the following optimiza-
tion problem:

minimize: η

subject to: η = −
P

i hAi
Pr(A+

i )+
P

j hBj
Pr(B+

j )
P

ij hAiBj
Pr(A+

i B+
j )

Pr
(
A+

i

)
= 〈ψ|E+

Ai
|ψ〉

Pr
(
B+

j

)
= 〈ψ|E+

Bj
|ψ〉

Pr
(
A+

i B
+
j

)
= 〈ψ|E+

Ai
E+

Bj
|ψ〉

E
+†
Ai

= E+
Ai
, E

+†
Bj

= E+
Bj

E2
Ai

= EAi
, E2

Bj
= EBj

,
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where we have introduced the operatorsE+
Ai

= Π+
Ai
⊗1 andE+

Bj
= 1⊗Π+

Bj
.

This is a challenging optimization to perform even in simple cases. Fortu-
nately, there exists a tool, the so-called Navascués-Pironio-Acín (NPA) hierar-
chy (Navascués, Pironio, and Acín 2007, 2008), which allows us to compute
lower bounds to ηcrit in an efficient way.

The NPA hierarchy introduces an infinite sequence of criteria, each more
stringent than the last, such that every quantum mechanical probability dis-
tribution obeys all criteria. Thus, on every level of the hierarchy, additional
probability distributions are excluded. For the case we are interested in,
which includes projective measurements with two outcomes, we first form
the set of observables

E = 1 ∪ {E+
Ai
} ∪ {E+

Bj
}, (4.31)

where i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Then consider the set of operators
O = {O1, . . . , Ok}, which are linear combinations of products of operators
in E . O can be viewed as a finite subset of the algebra generated by E .

Consider linear equations of the form∑
ij

(Fk)ij〈ψ|O†
iOj |ψ〉 = gk(P ), (4.32)

where k ∈ {1, . . . , l}, and gk(P ) are linear functions of the probabilities,

gk(P ) = (gk)0 +
∑
i,j

(gk)ijPr
(
A+

i B
+
j

)
. (4.33)

Now define the sets Sn of operators as

S0 = {1}, (4.34)
S1 = S0 ∪ {E+

Ai
} ∪ {E+

Bj
}, (4.35)

S2 = S1 ∪ {E+
Ai
E+

Aj
} ∪ {E+

Bi
E+

Bj
} ∪ {E+

Ai
E+

Bj
}, (4.36)

S3 = . . . (4.37)

That is, the set Sn is simply the set of all products of observables up to
length n. Every operator Oi ∈ O can be written as a linear combination of
operators from Sn for sufficiently large n.

Navascués, Pironio, and Acín (2007) now show that it is a necessary
and sufficient condition for P to have a quantum model if there exists a
certificate Γ such that ∑

ij

(Fk)ijΓij = gk(P ) (4.38)

for all equations of the form 4.32 such that Γ is a Hermitian complex posi-
tive semidefinite matrix.

Furthermore, whenever there exists a certificate for a set of operators O,
there also exists a certificate for any set O′ that can be generated from O by
linear combinations; hence, it suffices to check the existence of a certificate
for the sets in Eq. 4.34, and the associated equations 4.32.

Consequently, there exists a hierarchy of tests, each yielding a certificate
Γn associated with one of the sets Sn, such that a probability distribution
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P is quantum if and only if it passes all of these tests, and conversely, any
non-quantum probability distribution will fail a test at some level n <∞.

Now, these tests can be implemented via semidefinite programming
(see Sec. 3.2); moreover, a ready-made implementation exists in the freely-
available MATLAB-toolbox QETLAB (Johnston 2016) that also allows set-
ting the fulfillment of the hierarchy to some given level (in practice ≤ 4) as
a constraint for optimization tasks.

4.2.5 Bounding Detector Efficiencies

Having now assembled the necessary tools, we move on to the next main
contribution of this thesis, namely, establishing lower bounds on the effi-
ciencies of detectors in an adversarial setting. As discussed in the previ-
ous section, the critical detection efficiency can be obtained by using the
expression in Eq. 4.30 (for the case of identical detectors), and finding the
minimum over all probability vectors P such that P has a quantum model,
that is, could have originated from a quantum state ρ and measurements
performed on it.

Since this optimization is, in general, infeasible—for one, we would
have to allow for Hilbert spaces of arbitrary dimension—, we can establish
a series of increasingly better lower bounds using successive levels of the
NPA-hierarchy. In practice, low levels of the hierarchy often suffice, even
yielding exact bounds in certain cases—for instance, for the CH-inequality,
the minimum detection efficiency is ηcrit ≈ 66.7% (Eberhard 1993), which
can already be found using the ‘0’th level of the hierarchy, which simply
optimizes over all no-signalling correlations.

In Fig. 4.4, we demonstrate the effect of including additional levels of
the NPA-hierarchy on the lower bound for ηcrit. There, detectors with a
simulated efficiency of 90% were used to perform random measurements
on maximally entangled two-qubit states, until a Bell inequality violation
was detected. Then, using the coefficients of the Bell inequalities generated,
lower bounds on the critical detection efficiencies were calculated using the
NPA-hierarchy up to the third level, which however did not yield an ap-
preciable increase over the second.

The above scenario assumes that both detectors have the same effi-
ciency. Clearly, this is not an assumption we would want to make in the
fully device-independent scenario. If both detectors are unknown, the low-
est bound for the detection efficiency of one detector is achieved by assum-
ing that the other detector is perfect. Thus, taking into account the quantum
violation Q, the bound for the unknown detector in this case is

ηA,crit =
Q−∑

j hBj
p(B+

j )∑
ij hAiBj

p(A+
i B

+
j ) +

∑
i hAi

p(A+
i )
. (4.39)

For the CH-inequality, its mere violation suffices to certify a bound of
ηA,crit = 0.5. However, other inequalities allow the certification of better
lower bounds. Take, for example, the Bell inequality defined by the coef-
ficients in Table 4.2, which has n = 6 and m = 5 measurements, and was
found using our method by performing random unit-efficiency measure-
ments on a maximally entangled two-qubit state.
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FIGURE 4.4: Effect of using further levels of the NPA-
hierarchy. To generate the plot, random measurements
were performed by detectors with a simulated efficiency of
η = 0.9 on a maximally entangled 2-qubit state until a Bell
inequality violation was detected. Then, the critical detec-
tion efficiency was computed on different levels of the NPA-
hierarchy, starting with the 0th level, which merely tests the
no-signalling constraint. The third level was also tested, but
yielded no further improvement.

TABLE 4.2: Coefficients for a Bell inequality with n = 6
and m = 5 measurements. The first column and the top
row yield the coefficients hAi

and hBj
respectively, while

the entry (i, j) of the remaining array yields the coefficient
hAiBj

.

−2 −6 −4 −6 −6

−4 6 0 2 2 −2
−6 −6 6 6 2 4
−6 0 3 −2 5 5
−4 0 −3 −2 6 6
−6 6 6 0 −6 6

0 −2 0 4 4 −6

This Bell inequality, in the symmetric case, is violated if both detectors
exceed an efficiency of ηcrit > 0.86 (this and all following values were cal-
culated using the second level of the NPA-hierarchy). If we set ηB = 1, the
mere violation still serves to certify ηA > 0.751, which is already substantial.
Furthermore, in the simulation, a violation of Q = 1.971 was produced (an
upper bound for the maximal violation computed using the second level
of the NPA-hierarchy is Q2 = 3.6791), which suffices to certify a minimum
detection efficiency of ηA > 0.886.

Hence, even in the fully device-independent case, strong lower bounds
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on the detection efficiency of a single detector are achievable. Neverthe-
less, it may be beneficial to rely on a detector with a known upper bound
ηknown on its detection efficiency in order to characterize a completely un-
known one. Thus, we now modify our scenario slightly, and assume that
you brought an old detector that you wish to replace with a certifiably bet-
ter one with you. To illustrate this approach, in Fig. 4.5, the lower bound on
the detection efficiency of the unknown detector is plotted against the effi-
ciency of the known detector for testing the CH-inequality with a quantum
violation in the range of Q = {0.04, 0.08, 0.12, 0.16, 0.2}.

ηknown

η
A

,c
ri

t

FIGURE 4.5: Certified lower bound on the detection effi-
ciency of an unknown detector versus the efficiency of the
known detector using the CH-inequality for the indicated
quantum violations Q.

Thus, we see that the method of using Bell inequality violations con-
structed from nothing but the observed measurement statistics, besides the
already-mentioned applications to finding Bell inequality violations inde-
pendent of a global reference frame, device-independent entanglement de-
tection of unknown states, and quantum cryptography, serves to establish
bounds on detection efficiency both in the fully device-independent case,
and in the case where one detector is (at least partially) characterized. This
represents a novel advantage of using quantum mechanical, as opposed to
classical, resources.
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Chapter 5

Their Foundations

In the previous chapter, we have described a novel task where using quan-
tum mechanical resources confers an advantage as compared to classical
resources. Besides the potential practical uses of such a method, finding
such advantages also helps to more precisely delineate the boundary be-
tween quantum and classical theories. That is, viewed from the operational
framework as introduced in Sec. 1.1, we may view classical and quantum
theories as theories allowing (or prohibiting) certain tasks, such that they
can be used to characterize these theories. We have already seen several
examples of such tasks: classical information can be copied, while infor-
mation in quantum states, in general, cannot (see Sec. 2.2.1); quantum me-
chanics allows for secure key distribution, whereas this security cannot be
guaranteed in the classical world; and so on.

It is remarkable that few such operational constraints suffice to isolate
quantum theory within a broad class of theories. Clifton, Bub, and Halvor-
son (2003) postulate the following three constraints:

1. No signalling: information cannot be transmitted between two parties
faster than light.

2. No broadcasting: for a given state ρ and a reference state σ, there exists
in general no transformation T such that

trA (T (ρ⊗ σ)) = trB (T (ρ⊗ σ)) = ρ, (5.1)

that is, which leaves all reduced states equal to the original ρ (this is
essentially a generalization of the no-cloning theorem to include the
case of mixed states).

3. No (unconditionally secure) bit commitment: there exists no protocol
such that Alice sends Bob an encrypted bit of data, which Bob can
only decode upon receiving additional information from Alice, such
that Alice cannot cheat, i.e. change the information contained in the
bit after having sent it to Bob (i.e. she is ‘committed’ to that informa-
tion).

They show that these suffice to isolate important properties (e.g. the
existence of non-simultaneously measurable effects and entanglement) of
quantum mechanics within a class of theories including classical theories
and theories more general than quantum mechanics.

The basic goal behind such a characterization of quantum mechanics is
to recast it in the form of a principle theory. Here, a principle theory is a
theory whose empirical content is deducible from a few postulates (or even
a single one), ideally of transparent physical or operational content. An
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archetypical example of such a theory is special relativity. Ultimately, all of
its novelty (as compared to Newtonian mechanics) stems from the adoption
of two empirically motivated principles (Einstein 1905):

1. Relativity: the same physical laws hold across all inertial frames of
reference.

2. Constancy of the speed of light: the speed of light is the same in all frames
of reference, regardless of the motion of the source.

The combination of these principles yields the full empirical content of
special relativity—the impossibility of defining a universal standard of si-
multaneity, relativistic length contraction, time dilation, the equivalence of
mass and energy, the existence of a universal speed limit, and so on. Thus,
the entire catalogue of phenomena special relativity gives rise to is, in some
way, implicit within these two simple postulates of transparent physical
meaning. Ultimately, these postulates root the abstract mathematical appa-
ratus of special relativity in simple physical facts.

The question that projects such as the one of Clifton, Bub, and Halvor-
son (2003) now attempt to address is: does there exist a similar set of pos-
tulates, likewise rooting the diverse phenomena of quantum mechanics
within transparent physical (or operational, or information-theoretic) pos-
tulates?

Besides their formulation, there exist several other approaches aimed
at identifying the principles of quantum mechanics. We will not attempt
here a survey of these proposals, much less an evaluation of their relative
strengths and failings. Rather, we will pinpoint a common notion that is
present in several recent reconstructions of quantum mechanics—namely,
the idea of an epistemic restriction: the existence of an in-principle bound on
the knowledge that is obtainable about a given physical system. Later on,
we will give arguments for how such a restriction naturally arises in certain
kinds of systems.

Before proceeding with this task, though, we will give a (somewhat
heuristic) motivation outlining how quantum mechanics may be derived,
in a way analogous to special relativity, by adding a further constraint—a
new principle—to the original classical formulation.

5.1 Reconstructing Quantum Mechanics

In order to explore the relationship between classical and quantum mechan-
ics, it is advantageous to cast both into the same mathematical framework.
Usually, quantum mechanics, with its noncommutative algebra of observ-
ables acting on complex Hilbert spaces, seems to be a very different beast
from classical mechanics, where observables form a commutative algebra
of smooth real-valued functions on, e.g., phase space. However, it was re-
alized early on that this is not a fundamental distinction: Koopman (1931)
and von Neumann (1932) showed that classical mechanics can be recast in
the language of operators on Hilbert spaces; likewise, Groenewold (1946)
and Moyal (1949), building on earlier work by Weyl (1927) and Wigner
(1932), provided a formulation of quantum mechanics on phase space.

Indeed, we have already introduced a framework capable of encom-
passing both quantum and classical theories, as well as more general ones,
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in the GPT-framework introduced in Sec. 1.1. However, this framework
starts out assuming the probabilistic nature of these theories; since the fact
that quantum mechanics yields only probabilistic predictions was an early
reason for skepticism regarding its completeness, we instead need a frame-
work that includes the deterministic Newtonian theory, and take our leave
from there.

It is thus the formulation of quantum mechanics in phase space that
will be of particular interest for us. Formulating quantum mechanics in
phase space allows us to pinpoint the areas of agreement with and diver-
gence from classical mechanics more accurately, and thus, serves to eluci-
date what kind of new principle is needed in order to arrive at the novelties
of quantum mechanics. For an overview of phase space quantum mechan-
ics, see e.g. (Curtright and Zachos 2012).

5.1.1 Phase-Space Quantum Mechanics

We begin this short introduction to quantum mechanics in phase space
with a brief reminder of some of the fundamental quantities of classical
mechanics in its phase-space formulation. The classical phase space ΠS of
an n-particle system S is a 6n-dimensional manifold spanned by the sys-
tem’s generalized momenta q and positions p. The system’s state x =
(q,p) = (q1, . . . , qn, p1, . . . , pn) is a given point of ΠS . Observable quanti-
ties are given by smooth real-valued functions on phase space, which are
composed using the pointwise product—given two functions f and g, their
product fg is the function

(fg)(x) = f(x)g(x). (5.2)

The time evolution of the system is governed by Hamilton’s equations
(see Eq. 1.1). By means of the Poisson bracket

{f, g} =
∑

i

f
(←−
∂ qi

−→
∂ pi

−←−
∂ pi

−→
∂ qi

)
g, (5.3)

where the arrows on the partial derivatives indicate whether they act on
functions on the left or right, Hamilton’s equations become

dqi
dt

=
∂H

∂pi
= {qi, H},

dpi

dt
=
∂H

∂qi
= {pi, H}; (5.4)

and for a general observable f , we have

df

dt
= {f,H}. (5.5)

In general, the Poisson bracket can be interpreted as giving the rate of
change of an observable given the translations induced by the other; hence,
since the Hamiltonian generates time translations, the Poisson bracket of an
observable with the Hamiltonian yields the former’s time evolution.

Often, we do not have perfect information about the state x of a given
system. As an example, the precise values of positions and momenta of
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the molecules in a single mole of gas constitute an unmanageable amount
of data, and hence, we must instead consider a description of the system
that takes the ignorance of the complete state of the system into account.
Such a description is given by the Liouville distribution L(p, q, t), which is
defined such that L(p, q, t) dnp dnq yields the probability of finding the sys-
tem in the infinitesimal phase space volume dnp dnq at time t. Its total time
derivative vanishes,

dL

dt
=
∂L

∂t
+

∑
i

(
∂L

∂qi
q̇i +

∂L

∂pi
ṗi

)
= 0, (5.6)

which expresses the conservation of the volume bounded by neighboring
phase space trajectories. Using Hamilton’s equations to replace the time
derivatives of positons and momenta, this then yields

∂L

∂t
= −{L,H}. (5.7)

Quantum mechanics can now be formulated in much the same terms:
we remain in the arena of phase space, and observables remain the same
smooth, real-valued functions as before. However, we must modify the al-
gebra of observables: they are no longer composed as in Eq. 5.2, but rather,
using the noncommutative star product

f � g =
∑

i

f exp

[
i�

2

(←−
∂ qi

−→
∂ pi

−←−
∂ pi

−→
∂ qi

)]
g. (5.8)

Additionally, the Poisson bracket is replaced by the Moyal bracket

{f, g}� =
1

i�
(f � g − g � f), (5.9)

and Liouville’s equation (Eq.5.7) becomes Moyal’s equation

∂W

∂t
= −{W,H}�, (5.10)

where W = W (q, p, t) is the Wigner function (Wigner 1932), a quasiproba-
bility distribution (which may assume negative values) on phase space that
reduces to the Liouville distribution in the limit � → 0.

Note that the above formulation of the star product makes the connec-
tion between the noncommutativity of the algebra of observables and the
impossibility of a local realistic description manifest: the star product de-
pends on all of the derivatives of the functions f and g. But for smooth func-
tions, knowledge of all derivatives at a given point is equivalent to knowl-
edge of the function across the whole space; hence, if we want to describe
observables in quantum mechanics using real-valued functions instead of
operators, we need to take the values of these functions at all points into
account.

This yields a formulation of quantum mechanics that is completely
equivalent to the standard Hilbert space formalism. This equivalence is
made explicit by the Wigner-Weyl transform, which maps phase space func-
tions to Hilbert space operators (Weyl map), or vice versa (Wigner map).
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Thus, e.g., the Weyl transform of the Wigner function W is the density ma-
trix ρ, and Moyal’s equation becomes

∂ρ

∂t
= − i

�
[ρ,H], (5.11)

the familiar von Neumann equation governing the time evolution of the
density matrix.

We now have a formulation of quantum mechanics within the same
arena as classical mechanics. This allows us to elucidate their connection,
and introduce a prospective new principle underlying quantum mechanics.

5.1.2 Deformations of Physical Theories

The formalism of phase space quantum mechanics allows us to view it as
a deformation of classical mechanics. Here, a deformation of a mathematical
object is, essentially, the introduction of a parameter (or a set thereof), such
that the original object is recovered in a certain limit. This yields a family of
new objects associated with each value of the parameter. In this sense, an
ellipse is a deformation of a circle, since in the limit of vanishing eccentricity
ε→ 0, every ellipse becomes a circle.

For physical theories, deformations are a way to complete a theory to
a new domain in such a way that the original theory is recovered in the
appropriate limit (that is, in the theory’s original domain of validity). In
this sense, special relativity can be viewed as a deformation of Newtonian
mechanics whose deformation parameter is the speed of light, c: letting for-
mally c → ∞, or equivalently, considering the domain v � c, again repro-
duces the Newtonian phenomenology. This gives an immediate interpreta-
tion of the postulate of the constancy of the speed of light as necessitating
the deformation of the Newtonian theory, and thus, illustrates the connec-
tion between the physical principle and the mathematical formalism.

Now, can we speak of quantum mechanics as a deformation in the same
sense? And if this is the case, does this help with our search for a principle
of ‘quantumness’?

We first observe that the star product of Eq. 5.8 can be written in terms of
a power series (see, e.g., (Hirshfeld and Henselder 2002), which will guide
much of our presentation in the following)

f � g =
∞∑

n=0

(i�)nCn(f, g) = fg + i�C1(f, g) +O(�2), (5.12)

which indeed reduces to the pointwise product in the (formal) limit � → 0.
Here, the expressions Cn(f, g) denote functions of the derivatives of f and
g. In general, these may be arbitrary, thus yielding many potential defor-
mations; however, it was shown by Gerstenhaber (1964) that requiring asso-
ciativity of the new product places strong constraints on the Cn, essentially
determining them uniquely in many cases. The requirement of associativity
can be expressed as∑

j+k=n

Cj(Ck(f, g), h) =
∑

j+k=n

Cj(f, Ck(g, h)). (5.13)
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Furthermore, to yield the correct classical limit, we require that

C0(f, g) = fg, (5.14)

and
C1(f, g)− C1(g, f) = {f, g}. (5.15)

The final requirement essentially expresses the correspondence principle: if
we define the �-commutator as

[f, g]� = f � g − g � f, (5.16)

it can be written as
lim
�→0

1

i�
[f, g]� = {f, g}, (5.17)

that is, in the classical limit, the Poisson structure of phase space is recov-
ered. It can then be shown (Gerstenhaber 1964) that the the Moyal star
product of Eq. 5.8 fulfills these requirements (in the case of a flat Euclidean
phase space).

There is, however, a question regarding the uniqueness of this scheme.
We call two star products � and �′ c-equivalent (where the c stands for co-
homology) if there exists a transformation T with T =

∑∞
n=0 �

nTn such that

f �′ g = T−1(T (f) � T (g)). (5.18)

Now, all star products consistent with the above requirements are c-
equivalent; however, they constitute different quantization schemes, and
in general, may yield different spectra for physical observables. Hence,
additional physical requirements are needed to single out the appropriate
scheme in any given case (Bayen et al. 1978a,b).

We will not discuss these difficulties any further in the following, and
content ourselves with the above demonstration—which albeit remains
heuristic—to motivate looking for the new principle of quantumness in
the direction indicated by the idea that quantum mechanics should be re-
garded as a deformation of the classical theory due to the non-vanishing of
Planck’s constant �. The idea then is that just as the finiteness of the speed
of light entails the deformation of classical mechanics into the theory of spe-
cial relativity, so does the existence of a nonzero � motivate the formalism
of quantum mechanics.

However, what, exactly, is meant by ‘nonzero �’? There is a clear op-
erational interpretation of the invariant speed of light: every measurement
will yield the same value for c, regardless of the motion of the observer.
What is the analogous interpretation of �?

Several independent lines of reasoning suggest the interpretation that
it essentially corresponds to an epistemic restriction: a nonzero �, roughly,
means that there exists a smallest volume beyond which the state of a sys-
tem cannot be further ‘localized’ in phase space. We will clarify this notion
in the following.
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5.2 Self-Reference and Epistemic Restrictions

The discussion in the preceding Section suggests that quantum mechanics
can be viewed as a deformation of classical mechanics, yielding a comple-
tion of the latter in the realm where the nonvanishing value of � becomes
relevant—that is, the realm of small action S (see Chap. 1). In this section,
we want to examine the suggestion that the positive value of � essentially
constitutes an epistemic restriction. Here, an epistemic restriction means
a restriction on the knowledge about a given physical system (from Greek
epistēmē, meaning ‘knowledge’).

Several reconstruction attempts centrally feature such a restriction. In
(Grinbaum 2003) three such attempts are discussed, due to Rovelli (1996),
Brukner and Zeilinger (2003), and Fuchs (2002), and assumptions common
to each are identified; in a similar vein, the approaches of Masanes, Müller,
et al. (2013), and von Weizsäcker (1985) (for an English translation, see
(von Weizsäcker, Görnitz, and Lyre 2006)) likewise include a bound on the
knowledge obtainable for a single system. We will have a more detailed
look at these examples, and their common assumptions, in the following.

5.2.1 Epistemic Restrictions and the Reconstruction of Quantum
Mechanics

Grinbaum (2003) gives an overview over several distinct attempts at recon-
structing the formalism of quantum mechanics from first principles, viewed
from an information-theoretic vantage point. He notes that there exists a
common thread across these reconstructions, in that they are broadly con-
cerned with limits on the acquisition of information about physical sys-
tems. Thus, for instance, in his reconstruction of quantum mechanics, Rov-
elli (1996) proposes the following two principles:

(R1): “There is a maximum amount of relevant information that can be ex-
tracted from a system.”

(R2): “It is always possible to acquire new information about a system.”

Similarly, Brukner and Zeilinger (2003) propose that:

(BZ): “The information content of a quantum system is finite,”

which is an obvious cognate of ‘Zeilinger’s Principle’ that an elementary
system contains one bit of information (Zeilinger 1999). Furthermore, they
introduce the notion of complementary observables, and postulate that
maximal information about an observable entails zero information about
all others—thus also introducing the possibility of acquiring novel infor-
mation that cannot be reduced to the information already possessed about
the system.

Fuchs (2002) considers that:

(F1): “There is maximal information about a system.”

(F2): “There will always be questions that we can ask of a system for which
we cannot predict the outcomes.”
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The approach of Masanes, Müller, et al. (2013) is located within the GPT-
framework (see Sec. 1.1), where they propose as an ‘information unit’ the
gbit, which is characterized as follows:

(M1): “[T]he state of a gbit can be characterized with a finite number of
measurements. [...] [I]f a gbit is used to perfectly encode one classical
bit, it cannot simultaneously encode any further information.”

(M2): “[A]ll linear functions E : Sgbit → [0, 1] correspond to outcomes of
measurements that can in principle be performed.”

Finally, an early example is provided by the reconstruction of quan-
tum theory due to von Weizsäcker (1985), in terms of what he calls ‘ur-
alternatives’ (where ‘ur’ means, roughly, primitive or primordial). He pro-
poses that

(vW1): “[O]ne can lay down as a definition that to every 2k-fold alternative
will belong exactly the information k[.]”

(vW2): “[O]ne must add, however, that the decidability of this alternative
itself implies a formally infinite quantity of other alternatives and thus
of information belonging to the same object.”

The common gist behind these formulations is a finiteness assumption,
that is, an assumption stating that there is a finite maximum of informa-
tion that can be extracted (via measurement) from a qiven system, and an
assumption of additional information, according to which one can always ac-
quire more information about a system.

At first blush, these assumptions appear contradictory: if maximal in-
formation about a system is known, then it seems no further information
can in principle be attained. That this is not so is best demonstrated by ap-
pealing to the toy theory of Spekkens (2007). Spekkens postulates the knowl-
edge balance principle:

(Sp): “If one has maximal knowledge, then for every system, at every time,
the amount of knowledge one possesses about the ontic state of the
system at that time must equal the amount of knowledge one lacks.”

Here, the qualifier ontic (from Greek ontos, meaning ‘of that which is’)
refers to the actual physical state of a system, to be constrasted with an
epistemic state, which refers to a state of knowledge about a system. As an
example, picture a system’s actual phase space state x = (q,p), in contrast
with a Liouville distribution associated to it if this ontic state is not exactly
known.

Spekkens’ toy theory implements a version of the above assumptions:
the knowledge one has is always finite; but, since there is more informa-
tion contained in the state of a system in the theory, this information is, in
principle, accessible to measurement—at the cost of invalidating previous
information. This is, in fact, the emergence of a first characteristically quan-
tum notion: after making a measurement, knowledge gathered during pre-
vious measurements may be obsolete; in this case, the two measurements
are complementary.

The toy theory provides an accessible laboratory to demonstrate how
certain quantum effects follow from epistemic restrictions of the above
kind. Thus, we introduce it here in a little more detail.
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The elementary system in the toy theory, the toy bit (tbit), is character-
ized by four different states t1, t2, t3 and t4; thus, two bits of information are
needed to uniquely specify the state of a tbit. However, by the knowledge
balance principle, only one bit is available at any time, and consequently,
we can at most ‘localize’ any given tbit within a two-element subset of its
state space. That is, there are six toy bit states of maximum knowledge,
{t1, t2}, {t2, t3}, {t1, t3}, {t2, t4}, {t1, t4}, {t3, t4}, and one single state of less-
than-maximal knowledge, here equivalent to the state of complete igno-
rance {t1, t2, t3, t4}.

Measurements in the toy theory distinguish between disjunct subsets
of the state space. There are three different measurements; measurement
outcomes for the different ontic states are shown in Table 5.1.

TABLE 5.1: Measurements in Spekkens’ toy theory.

t1 t2 t3 t4
mz 1 1 0 0
mx 1 0 1 0
my 1 0 0 1

Accordingly, the outcome 1 upon measuring mx means that the tbit is
in either the state t1 or t2; the outcome 1 for mz means it is either in t1 or t4;
and so on. Consequently, after obtaining the outcome 1 formx, the outcome
of a mz measurement is completely unknown.

However, suppose we now measure mz , after having obtained the out-
come 1 in an mx-measurement. No matter what outcome we obtain, both
bits of information, taken together, would suffice to exactly pinpoint the
ontic state of the tbit, in violation of the knowledge balance principle. Con-
sequently, the ontic state of the system must be changed upon obtaining
the second bit of information, in such a way as to be consistent with the
measurement outcome obtained upon measuring mz , but not necessarily
with the previously obtained result for the mx-measurement. Thus, after
themz-measurement, the outcome of any furthermx measurement must be
completely uncertain. In this way, the knowledge balance principle intro-
duces the phenomenon of complementarity.

Starting from this example, we can now examine the role played by
epistemic restrictions in general in giving rise to quantum phenomena. As
Rovelli (1996) observes, the finiteness assumption already introduces the
constant � into the formalism: if there exists a maximum for the informa-
tion that can be obtained about a given physical system, then there exists a
smallest phase space volume such that a system cannot be localized further
in phase space. Since this volume has the dimension (kgm2s−1)3n for an
n-particle system, this then implies the existence of a constant of dimension
kgm2s−1 characterizing this minimum phase space volume, which is just
the dimension of Planck’s constant.

Thus, recalling the discussion of quantum mechanics as a deformation
of classical mechanics in Sec. 5.1.2, the logic is the following: the finite-
ness assumption introduces the constant � into the phase space picture;
furthermore, the assumption of additional information ensures that we do
not simply end up with a discretized phase space, since we can, in princi-
ple, always acquire additional information—thus, we cannot simply divide
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the phase space into fixed cells of volume �
3n, but must allow for the pos-

sibility of, e.g., increasing our knowledge of the position of a system at a
corresponding cost regarding our knowledge of its momentum. Together,
thus, the two principles introduce the necessity of deforming the formal-
ism of classical mechanics to accurately account for phenomena where the
bound on our maximal information becomes relevant. This is schematically
represented in Fig. 5.1.
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FIGURE 5.1: Effect of introducing the finiteness assumption
and the assumption of additional information on the state
of a system in phase space.

Consequently, if this program can be carried out to completion, we will
obtain a foundation for quantum mechanics that rests on foundations sim-
ilar to those of special relativity: quantum mechanics, on this view, is sim-
ply the completion of classical mechanics in the regime where we can no
longer neglect the effects of the finite maximum of information that can be
obtained about a system. In the same sense, special relativity is the com-
pletion of classical mechanics in the regime where we can no longer neglect
the finite maximum speed of propagation of physical systems. Note that
this, too, is sometimes formulated as a restriction on information: namely,
the speed of light poses a limit on how fast information propagates through
spacetime—thus e.g. leading to the no-signalling principle.

However, this still leaves a question open: what is it that prohibits
us from acquiring more information about a given system? The analo-
gous question in special relativity receives an answer from the geometry
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of Minkowski spacetime: for spacetime events A and B, if they are sep-
arated such that no speed-of-light signal could reach one from the other,
there always exist frames of reference R and R′ such that A occurs before
B in R, but after B in R′. Consequently, for any signal passing between
them, an observer in R would perceive it as moving from A to B, while an
observer in R′ would see it moving from B to A, making a causal ordering
of both events impossible.

Is there a similar foundation for the epistemic restrictions giving rise
to quantum phenomena? In the following, we give a candidate for such a
foundation, by deriving intrinsic limits on the ability to predict measurment
outcomes, and on the accuracy with which a given system can be ‘localized’
within its state space. To set the stage, we provide a brief excursus dis-
cussing the connection between randomness, mathematical undecidability,
and epistemic restrictions.

5.2.2 Randomness and Undecidability

The fact that for every quantum state, certain measurements yield random
outcomes, is one of the most salient features of quantum theory. Further-
more, it was at the center of early worries regarding the completeness of
quantum theory: in classical theories, randomness only occurs due to ig-
norance of the complete physical state; hence, it seems natural to wonder
whether quantum mechanics really constitutes a fundamental theory, or if
there could be some completion eliminating this randomness.

As we have seen, there are strict constraints on any putative completion,
given (among others) by the no-go results discussed in Sec. 2.2. We will
thus take quantum randomness as given, and instead continue the present
thread of investigation by asking for its origin.

First of all, it is clear that in any theory based on the epistemic restric-
tions discussed above, certain measurement outcomes must be random.
The assumption of additional information entails that there are measure-
ment outcomes that are not predictable from maximal knowledge about a
physical system; these outcomes must hence be random. We can see this,
again, explicitly in the toy theory: after a measurement, the ontic state is
randomized among the possibilities consistent with this outcome, in order
to uphold the knowledge balance principle, thus yielding an analogue of
the projection postulate for this theory.

Now, mathematically, there exists a close connection between random-
ness and the notion of undecidability (for an in-depth study on the connec-
tion between these concepts and their application to physics, see (Svozil
1993)). Famously, Gödel (1931) proved that any (consistent) theory capable
of finitely axiomatizing (a certain fragment of) elementary number theory
contains propositions that are not decidable from the axioms of this the-
ory. Similarly, Turing (1936) demonstrated the existence of functions that
cannot be computed by any Turing-machine equivalent device—which, if
we assume the Church-Turing thesis (Kleene 1943), entails that there exist
questions such that there is no algorithmic means of answering them (with
the prototype of such a question being the famous halting problem, i.e. the
question of whether a given machine will eventually halt on a given input).

These arguments make use of the notion of self-reference: an axiomatic
system strong enough to encode number theory can encode propositions



90 Chapter 5. Their Foundations

about itself (demonstrating this was a major part of Gödel’s ingenuous
proof), which may yield paradoxical consequences, such as in the famous
Epimenides- or liar-paradox of uttering the sentence ‘this sentence is false’.

A particularly elegant demonstration of the connection between ran-
domness and undecidability is given by Chaitin’s constant. Chaitin’s con-
stant for a (possibly universal) Turing machine U is given by (Chaitin 1975)

ΩU =
∑

x:U(x) halts

2−|x|. (5.19)

Here, x denotes the (binary representation of) a program on a so-called
prefix-free set, that is, a set of programs such that if x is a valid program,
no x′ such that x′ is an extension of x (i.e. the first |x| bits of x′, where |x|
denotes the length of x, are equal to x) is also a valid program. Together
with Kraft’s inequality (Kraft 1949), this requirement ensures that the sum
converges to a real number between 0 and 1. ΩU can then be interpreted
as the probability that U halts, given a random program, and is thus often
referred to as halting probability.

ΩU must be uncomputable, since knowledge of the precise value of its
first n bits allows solving the halting problem for all programs of less than
n bits length (Chaitin 1975): one runs all programs of less than n bits in
parallel (by a dovetailing process), and adds the corresponding factor for
each program that has halted to an estimate for ΩU ; as soon as that estimate
reaches the true value, one knows that none of the programs that are still
running will halt.

Furthermore, for each axiomatic system (again at least strong enough
to axiomatize number theory), there exists a constant k such that the sys-
tem cannot decide the value of any bit beyond the kth; that is, the values
of these bits are undecidable statements (this is a consequence of Chaitin’s
incompleteness theorem (Chaitin 1974); see also Sec. 5.2.5).

Finally, Chaitin’s constant is algorithmically random—and indeed, any al-
gorithmically random number such that there exists a computable series
of rational approximations from below for this number (i.e. such that is
is recursively enumerable) is a Chaitin constant for some Turing machine U
(Calude, Hertling, et al. 1998). Here, algorithmic randomness is defined
using the notion of Kolmogorov complexity (Kolmogorov 1963).

The Kolmogorov complexityK(σ) of a string σ is the length of the short-
est program x for a given Turing machine U (which takes as programs
strings from a prefix-free set) such that it produces σ, i.e.

K(σ) = min
x:U(x)=σ

|x|. (5.20)

Note that the Kolmogorov complexity of a string σ is uncomputable; in-
deed, if one could compute Kolmogorov complexity, one could also solve
the halting problem (Chaitin, Arslanov, and Calude 1995).

An important property of Kolmogorov complexity is the invariance theo-
rem: for two different universal Turing machines U and U ′, the Kolmogorov
complexity of a string σ differs by at most an additive constant c, since for
any program x for U , it holds that there exists a program y for U ′ with
|y| < |x|+ c such that

U(x) = U ′(y), (5.21)
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such that consequently, the length of the shortest program producing σ on
U ′ is at most the length of the shortest program on U , plus the constant c.

A string σ is then algorithmically random roughly if its Kolmogorov
complexity is equal to its length (up to an additive constant): in this case,
the number is incompressible, and hence, there is no ‘law’ according to
which it is generated. More precisely, an infinite string σ is algorithmically
random if there exists a constant c such that for any n-bit prefix σn of σ (that
is, a string containing the first n bits of σ) (Levin 1973; Schnorr 1973),

K(σn) > n− c. (5.22)

It can be shown that this notion of randomness is equivalent to other no-
tions, e.g. Martin-Löf randomness (Martin-Löf 1966). Hence, Chaitin’s con-
stant shows a direct connection between the undecidable propositions cor-
responding to the digits of the halting probability (beyond some given in-
dex k), and its random nature.

At first, it is not clear that these formal results should have any applica-
tion to physics. However, it is possible to realize instances of undecidable
questions within physical systems: certain physical systems are equivalent
to Turing machines, and consequently, questions about their properties may
be mapped to undecidable questions about their equivalent Turing ma-
chines. Such an equivalence was recently used by Cubitt, Perez-Garcia, and
M. M. Wolf (2015) to show that the question of whether a system possesses
a spectral gap—i.e. a finite energy difference between the ground state and
the first excited state—is undecidable. They used a mapping between the
ground state of spin systems and the problem of tiling the plane with tiles
having colored edges, such that only the same colors meet, which is known
to be undecidable (Berger 1966). Earlier results along similar lines had been
obtained by Lloyd (1993, 1994). Since this is an in principle measurable
quantity, the outcome of this measurement hence must be undecidable.

Other applications of undecidability to physics exist. Perhaps the first
application is due to Popper (1950a,b), who argued that no physical sys-
tem can, in general, perfectly predict its own behavior. More intriguingly,
the notion of self-reference and the paradoxes it yields has been applied to
the notion of measurement in quantum mechanics in several ways. Dalla
Chiara (1977) considers the question from the point of view of quantum
logic, while Zwick (1978) speculates that the result of the state reduction af-
ter a measurement might be analogous to a proposition undecidable from
the information encoded in the state beforehand.

A related point of view is offered by Peres and Zurek (1982), who claim
that the inability of quantum theory to completely describe the measure-
ment process is a logical necessity analogous to Gödel’s theorem. In a sim-
ilar vein, Breuer (1995) shows by a self-referential argument that it is im-
possible for a given observer to accurately distinguish all states of a system
that includes itself as a proper part, while Aerts (2005) shows that there
are properties pertaining to the observer that cannot be perfectly observed.
Also of interest is the result of Calude and Stay (2007) showing that an un-
certainty principle between two observables implies an incompleteness re-
sult relating the value of a real number and the knowledge of the length of
the shortest program computing it.
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More recently, Brukner (2009) and Paterek et al. (2010) have demon-
strated that the outcome of a quantum measurement is random exactly if a
proposition encoded within the measurement is undecidable from informa-
tion encoded within the quantum state—however, the axiom systems they
use are very simple, and, in principle, completable. Finally, Eisert, Müller,
and Gogolin (2012) could show that whether a given port of a measurement
apparatus ever yields a detection is an undecidable question.

We have seen that there is a broad array of literature on the connec-
tion between quantum mechanics, its randomness, and mathematical un-
decidability. The idea to explore this connection as yielding the sought-for
foundational principle for quantum mechanics seems to have first been en-
tertained by Wheeler: in notes that have only recently been published on-
line, he proposed that the ‘point of origin’ of the quantum principle are the
‘“undecidable propositions” of mathematical logic’ (Wheeler 1974). Indeed,
Wheeler had once confronted Gödel with the question of what connection
the latter saw between his incompleteness theorem and Heisenberg’s un-
certainty relation; however, Gödel was apparently not too taken with the
idea, as he reportedly ‘threw [Wheeler] out of his office’ (cf. the account
provided in (Barrow 1999, p. 221)).

Gödel’s reservations notwithstanding, we will in the following explore
the possibility of giving Wheeler’s notion—what he sometimes called ‘an
idea for an idea’ (see e.g. (Buckley and Peat 1996, p. 87))—a more strin-
gent formulation. In order to do so, we will first introduce some necessary
notions and notations.

5.2.3 Properties and Measurements

We consider a physical system S to be represented by its state space ΣS . For
generality, we do not wish to make too many assumptions about this state
space; it can be thought of as the collection of states s, where a state is a
mathematical object containing all information about the system. To guide
intuition, one may imagine this state space as analogous to phase space,
and the state then as a given phase space point.

Not every state space is suitable for a physical theory, however. A first
requirement is that ΣS be a metric space, that is, a space such that there exists,
for any two elements s and s′, a distance d(s, s′) such that

d(s, s′) ≥ 0,

d(s, s′) = 0 ⇔ s = s′,
d(s, s′) = d(s′, s), (5.23)
d(s, s′′) ≤ d(s, s′) + d(s′, s′′).

This is due to the fact that we want to be able to compare two states, e.g. to
assess how close a prepared state is to some given target state, or to quantify
experimental errors via the spread of states reconstructed from a series of
independent experiments.

Additionally, measurement data is always finite, simply due to the fact
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that it must be stored in some way—in memory, on a notepad, or in a com-
puter. Thus, data belongs to a set that is at most countable, i.e. of the cardi-
nality of the natural numbers N, since there exists a one-to-one correspon-
dence between finite strings in some (finite) alphabet and the natural num-
bers. To then tell two states s and s′ apart, we must be able to approximate
either arbitrarily well using these finite pieces of data.

What it means to be able to differentiate between s and s′ using our fi-
nite pieces of data now is the following: there exists some mapping from
the (countable) set of data to states of ΣS ; call states in the image of this
mapping reconstructible. Then, we say that a reconstructible state s∗ ε-
approximates s if s∗ lies in an ε-neighborhood of s. Here, an ε-neighborhood
of a state s is an open ball with radius ε, that is, the set

Bε(s) = {s′ ∈ ΣS |d(s, s′) < ε}. (5.24)

Then, to differentiate between two arbitrary states s and s′, we need to
be able to find an ε and a state s∗ reconstructible using our finite data such
that s∗ ε-approximates s, but not s′ (or vice versa). This is the case if and
only if the set of states reconstructible from finite data lies dense in the state
space ΣS : for a subset Y of X to lie dense in X merely means that any
neighborhood of elements from X contains at least one element of Y . A set
containing a countable dense subset is called separable.

As we have seen, our state space ΣS needs to be a separable metric
space. A consequence of this is that its cardinality can at most be that of the
set R of real numbers (Aliprantis and Border 2006), standardly denoted c.
In the following, we will thus assume that the cardinality of all state spaces
considered is equal to c, unless explicitly noted otherwise; this is justified
by the fact that in general, even the simplest systems—e.g. a point of mass
moving in one dimension—already have a continuous space of states avail-
able to them.

With the notion of state space in hand, we can now define a property π
as simply a subset of state space, π ⊂ ΣS . Any state s ∈ π possesses the
property, while states in the complement π⊥ do not possess it. This is again
in analogy to a phase space-based description: consider, for example, the
property ‘having energy less than E0’, which is simply the set πE0

= {s ∈
ΣS |H(s) < E0}, where H is the Hamiltonian of the system.

The set of all properties of S then is the powerset 2ΣS , i.e. the set of all
subsets of ΣS . An equivalent interpretation of 2ΣS is as the set of all indicator
functions mπ : ΣS → {0, 1}, which yield 1 for all s ∈ π, and 0 for all s ∈ π⊥.
We can consider the indicator function mπ to yield the truth value of the
proposition ‘S has property π in state s’.

This truth evaluation by means of indicator functions forms the basis
of a propositional calculus that can be used to reason about properties of
a system. There exists a (partial) ordering relation given by set inclusion,
such that for all properties πa, πb, and πc

πa ⊆ πa,

πa ⊆ πb, πb ⊆ πa ⇔ πa = πb, (5.25)
πa ⊆ πb, πb ⊆ πc ⇒ πa ⊆ πc.

We can view this ordering as yielding a logical implication relation, such
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that for propositions a and b (where we may read, e.g., a as the proposi-
tion ‘S has property πa’) a → b (read: ‘a implies b’) whenever πa ⊆ πb.
To emphasize its role as an ordering relation, we will also write a ≤ b if
πa ⊆ πb. Additionally, set intersection πa ∩ πb and union πa ∪ πb defines
logical connectives a ∧ b and a ∨ b, respectively, while negation is given by
the complement, i.e. if a is true of all elements of πa, then ¬a holds of all el-
ements of π⊥a . The set ΣS , equipped with set inclusion as ordering relation
and set intersection and union then forms a lattice.

The effect of epistemic restrictions can also be illustrated at this level: as
shown by Grinbaum (2005), the finiteness assumption entails that the lattice
of propositions as defined above is orthomodular, i.e. that the inference

a ≤ b→ a ∨ (a⊥ ∧ b) = b (5.26)

holds. Such orthomodular lattices are important in the field of quantum
logic: a quantum logic is the logical calculus formed by the lattice of sub-
spaces of Hilbert space with subspace inclusion as partial order relation
(Birkhoff and von Neumann 1936). Such lattices are orthomodular, and
hence, the epistemic restriction induces a logic isomorphic to quantum
logic.

Orthomodularity can be considered as a weakening of the notion of dis-
tributivity. A lattice is distributive if

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (5.27)

(and likewise with the connectives reversed). Famously, distributivity holds
in classical logic, but not in quantum logic, where we can view classical
logic as the lattice of subsets of phase space, together with set inclusion as
ordering relation.

Take for instance the following propositions:

• a: The particle’s momentum is in the interval [0, 1
2 ].

• b: The particle’s position is in the interval [0, 1
2 ].

• c: The particle’s position is in the interval [12 , 1].

Then, the proposition
a ∧ (b ∨ c), (5.28)

for a certain particle, may evaluate to true, since the uncertainty principle
yields ΔpΔq ≥ 1

2 , in units where � = 1. However, the proposition

(a ∧ b) ∨ (a ∧ c) (5.29)

is necessarily false, since both a ∧ b and a ∧ c imply an uncertainty of 1
4 ,

in violation of the uncertainty principle, and hence, both evaluate to false.
Consequently, distributivity fails to hold in the quantum world; and more-
over, this failure can be attributed to the nonvanishing of �, which comes
about due to the epistemic restriction.

Using the calculus as developed so far, we can combine properties log-
ically. A system that possesses properties πa and πb, likewise possesses the
property πab = πa ∩ πb; if every system that possesses property πa also
possesses property πc, then πa implies πc (see the illustration in Fig. 5.2).
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Thus, certain properties of a system in state s suffice to determine others;
more generally, since every singleton subset of a set can be considered as
the intersection of all subsets containing the singleton, we can equivalently
specify the state of a system by giving a list of properties such that all prop-
erties of the system can be inferred from this list.

s

ΣS

πc

πa πb

πab

FIGURE 5.2: A state space ΣS together with a state s, three
properties πa, πb, and πc, as well as their logical relations.

Let us now introduce the measurement apparatus A upon which we place
no restriction other than that it is a physical system, and hence, possesses
a state space ΣA of cardinality c. A measurement apparatus is any system
A that can perform tests on an (object) system S, such that for a certain
property π,A produces the outcome 1 if S possesses that property in state s,
and 0 otherwise. Hence, A effectively evaluates the characteristic function
of the property π.

Furthermore, we imagine that A is equipped with a memory, such that
it can store the results of previous measurements, and, moreover, that it is
capable, using this stored information, to make predictions regarding the
outcome of future measurements. In order to do so, A must in general be
equipped with a device capable of universal computation; call an A that
fulfills this requirement a universal observer. This models the scenario in
real experiments: in general, the experimenter is able to perform arbitrary
measurements, and manipulate the data thus obtained in arbitrary ways.
Indeed, any experimenter equipped with enough scratch paper and ink can
perform universal computation.

Now, if there are no epistemic restrictions, then A can, in principle, ob-
tain sufficient information about the state of S to decide the outcome of any
measurement in advance. We will call any theory in which this is possible
(if only in principle, i.e. in the limit of infinite resources needed for full
universal computation) a classical theory, and formulate the following

Criterion of classicality. If it is possible in principle to ob-
tain sufficient information about the state s of a given system
S, such that all further measurement outcomes can be uniquely
predicted from this information, then the theory is classical.
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This criterion is exactly what the assumptions of finiteness and addi-
tional information deny: in theories in which these hold, no specification of
a state s exists such that knowing this specification, all measurement out-
comes become predictable (this is sometimes also expressed as these theo-
ries not having any dispersion-free states, i.e. states for which every observ-
able assumes a sharp value, see e.g. (Bell 1966)).

These notions may become more clear by using again the toy theory
as an example. The toy bit’s (ontic) state space is simply the set ΣT =
{t1, t2, t3, t4}. There are three properties each toy bit can have, as given
by the domains of the indicator functions (measurements) mx, my, and mz .
Together with their complements, these are the subsets

{t1, t2} ≡ πx, {t3, t4} ≡ π⊥x ,

{t1, t3} ≡ πy, {t2, t4} ≡ π⊥y , (5.30)

{t1, t4} ≡ πz, {t2, t3} ≡ π⊥z .

Any two of these suffice to infer the third, and thus, yield complete knowl-
edge about the state. Hence, we can represent the states via the properties;
it turns out that there are three distinct ways to do so for each state:

t1 : (π(1)
x , π(1)

y ) ≡ (π(1)
x , π(1)

z ) ≡ (π(1)
y , π(1)

z )

t2 : (π(1)
x , π(0)

y ) ≡ (π(1)
x , π(0)

z ) ≡ (π(0)
y , π(0)

z )

t3 : (π(0)
x , π(1)

y ) ≡ (π(0)
x , π(0)

z ) ≡ (π(1)
y , π(0)

z ) (5.31)

t4 : (π(0)
x , π(0)

y ) ≡ (π(0)
x , π(1)

z ) ≡ (π(0)
y , π(1)

z )

Here, the notation π
(v)
i with v ∈ {0, 1} denotes whether the system in the

given state has (v = 1) or does not have (v = 0) the property πi.
Consequently, if we could know the value of two properties in the toy

theory, we would know the entire state, and thus, the outcome of every
further measurement, fulfilling the criterion of classicality. However, this is
exactly what the knowledge balance principle forbids.

Using the machinery developed above, we will now have a look at the
question of whether it is possible, in principle, to predict every conceivable
measurement outcome, given sufficient information about the system.

5.2.4 Not all Measurement Outcomes can be Predicted

There exists a broad similarity between many of the paradoxes of self-ref-
erence. This similarity was brought to the fore by Lawvere (1969), who
showed that many of these results follow from a fixed-point theorem in
the setting of Cartesian closed categories (CCCs). Here, a category C is a
mathematical structure comprised of a class of objects, ob(C), a class hom(C)
of morphisms (or arrows) connecting a source object X with a target object Y
(i.e. f : X → Y ), a composition relation ◦ that allows associative composition
of morphisms, and an identity morphism 1X : X → X for every object X .

Furthermore, a category C is Cartesian closed if it has a terminal object T
(i.e. an object such that for every other object X in C, there exists exactly
one morphism X → T taking it to the terminal object), if any two objects X
and Y have a product X × Y in C, and if there exists an exponential Y Z for
any two objects Y and Z.
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The archetypical example of a Cartesian closed category is the category
Set, whose objects are sets, and whose morphisms are given by functions
between sets, with the operation ◦ defined as function composition. Then,
every singleton set is a terminal object, the product of sets X and Y is just
their Cartesian product, and the set Y Z is the set of all functions from Z to
Y (compare the previously introduced powerset 2ΣS , which we can under-
stand as the set of all functions from ΣS to the set 2 = {0, 1}).

An important property of the category Set is that it allows the currying
(Curry, Feys, and Craig 1958) of functions: for every function f : X × Y →
Z, there exists a curried function g : X → ZY such that f(x, y) = g(x)(y).
Thus, g maps an x ∈ X to a function from Y to Z, such that evaluating that
function at y ∈ Y yields the same z ∈ Z as f(x, y).

Lawvere’s deep result then was to make explicit the common structure
behind not only Gödel’s incompleteness theorems and Turing’s proof of the
undecidability of the halting problem, but also, Cantor’s proof of the un-
countability of real numbers (Cantor 1892), Russell’s construction of a ‘set
of all sets that do not contain themselves’, which contains itself if and only
if it does not contain itself (Russell 1967), Tarski’s proof of the impossibility
of defining the notion of ‘truth’ in the system it pertains to (Tarski 1936),
and Berry’s paradox noting that ‘the smallest number not definable in less
than eleven words’ has just been defined using ten (Russell 1908). For a
pedagogical introduction to Lawvere’s result with many explicit examples
see (Yanofsky 2003).

Our task now is to apply Lawvere’s formalism to measurement, and es-
pecially to the possibility of predicting measurement outcomes. To do so,
we first need to make more precise what we mean by such prediction. As
we have formalized it, measurement of a property π corresponds to evalu-
ating the indicator function of the property, i.e. the function

mπ : ΣS → {0, 1} (5.32)

that yields 1 if the system in state s possesses this property, and 0 else. In
order to perfectly predict all measurement outcomes, A must be able to
decide, for every property π, whether S possesses it in state s. That is, for
every s and every π, A must be able to decide whether mπ(s) yields 0 or 1.

We can formalize this as follows. First, A must choose which property
to predict. In order to do so, there must be a map p̃ : ΣA → 2ΣS , that is, a
map that picks out a given property (i.e. an element of 2ΣS ) given a state of
A. We can think ofA as a Turing machine, which is initialized with a certain
program on its tape, where the program is the ‘prediction program’ for the
property π; the state a of A then just determines which program has been
chosen.

Then,Amust be able to evaluate p̃(a) on the state s of S. Recall from our
discussion above that p̃(a) ∈ 2ΣS is a function such that p̃(a)(s) = mπ(s),
and that, within the category of sets, there then exists a function p(a, s) =
p̃(a)(s). This is then our prediction map: if there exists a p such that p(a, s) =
mπ(s), then A can predict every property of S in state s.

Call an mπ such that p(a, s) = mπ(s) representable by a. Thus, we can
equivalently say that A is a perfect predictor for the properties of S if every
mπ is representable by some a ∈ ΣA.
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Finally, since |ΣS | = |ΣA| = c (see the discussion in Sec. 5.2.3), there
exists a bijection r : ΣS → ΣA, whose inverse we denote by r̄.

We are now ready to establish the main result of this section: for a sys-
tem S and a universal observer A, there does not exist a prediction map p,
such that p(a, s) = mπ(s) for all mπ.

The result follows by explicitly constructing an mπ such that mπ(s) �=
p(a, s). In order to construct this function (and hence, the corresponding
property), we will follow the method of Lawvere (1969), as presented in
(Yanofsky 2003). The construction makes use of a further map α : {0, 1} →
{0, 1}, and uses the bijection r to construct a map 〈1, r〉 : ΣS → ΣS × ΣA

such that a state s is taken to a state (s, a) = (s, r(s)) ∈ ΣS × ΣA.
Then, we define mα by means of the commutative diagram in Fig. 5.3,

i.e. mα = α ◦ p ◦ 〈1, r〉.

FIGURE 5.3: Commutative diagram used in the proof of the
impossibility of perfectly predicting all measurement out-
comes.

Now, the claim is that there cannot exist a p(a, s) such that p(a, s) =
mα(s). Evaluated at some given state s, mα(s) = α(p(s, r(s))) ∈ {0, 1}. As-
sume now for contradiction there exists a p such thatmπ(s) is representable
by some a. Evaluating p at this a yields

p(r̄(a), a) = mα(r̄(a))

= α(p(r̄(a), r(r̄(a)))) (5.33)
= α(p(r̄(a), a)),

where the first step is just the assumption of representability, the second
step follows from the definition of mα, and the final step just uses the prop-
erties of the inverse. This establishes p(r̄(a), a) as a fixed point of α, since
α(p(r̄(a), a)) = p(r̄(a), a). Consequently, if every mα is to be predictable by
A, then every α must have a fixed point.

This is, however, clearly not the case in general: choose for α the nega-
tion function ¬1 = 0, ¬0 = 1, which has no fixed point, and we arrive at
the desired contradiction. Consequently, the measurement described by the
map

m¬(r̄(a)) = ¬p(r̄(a), a) (5.34)

cannot be equal to p(s, a), and hence, A cannot coherently predict whether
S possesses the associated property.

Thus, the above stated criterion of classicality cannot be fulfilled in the
setting described here: no matter the knowledge A has about S, there al-
ways exist measurements such that A cannot predict their outcome; hence,
we have shown that it is always possible to acquire additional information



5.2. Self-Reference and Epistemic Restrictions 99

about a given object system. As in the case of the finiteness of the speed
of light following from the geometry of Minkowski space, we have thus
shown that an epistemic restriction of the kind discussed above follows
from considerations on the predictive abilities of universal observers.

A major factor in making this proof work is the existence of the map
〈1, r〉, which we can consider to be a concatenation of the bijection r and
the diagonal map Δ : ΣS → ΣS that associates to every state s ∈ ΣS the tuple
(s, s) ∈ ΣS × ΣS . This map essentially ‘copies’ the information in s, and
can thus physically be considered a cloning device (see the discussion of
cloning in Sec. 2.2.1). The existence of this map is closely tied to the special
properties of the category Set, in particular, the Cartesian product.

An intriguing point here is that this is an operation that is impossible in
quantum mechanics. Moreover, this impossibility (in its generalized form
of no-broadcasting) plays a crucial role in the reconstruction of quantum
mechanics due to Clifton, Bub, and Halvorson (2003). Its importance for
quantum mechanics may stem from the fact that it is closely connected to
measurement: cloning is equivalent to perfect state discrimination—if all
states of a given set of states are perfectly discriminable, then they can be
cloned, since we can just re-prepare the state the discrimination procedure
indicated; and if all states in a given set are clonable, they can be discrim-
inated, since we can just prepare sufficiently many states to perform full
tomography.

We can elucidate the above proof by for the moment assuming that
|ΣS | = |ΣA| = ℵ0, i.e. that both state spaces have the cardinality of the
natural numbers. This allows us to find an enumeration of the states of
S and A. Now, we can propose a table of values for the function p (see
Table 5.2).

TABLE 5.2: Illustration of the fixed-point argument in terms
of a diagonalization technique.

s1 s2 s3 s4 s5 . . . sn . . .

m1 ← a1 (1) 0 1 1 1 . . . 1 . . .

m2 ← a2 1 (0) 1 0 0 0
m3 ← a3 0 1 (0) 0 0 1
m4 ← a4 1 0 0 (1) 1 1
m5 ← a5 0 0 0 1 (1) 0

...
...

. . .
...

m¬ ← an 0 1 1 0 0 . . . (E) . . .
...

...
...

. . .

Each row of this table yields the values of a measurement mπ, if the
state of S is sj . In state a1, A predicts the values of m1 given the state of S,
i.e. p(a1, sj) = m1(sj), while in state a2, A predicts the values of m2, and so
on. Consequently, the existence of this table is equivalent to the assumption
that each mπ is representable by some ai.

Now, the measurement impossible to predict is constructed by assign-
ing to each sj the negation of the value along the main diagonal—thus,
m¬(s1) = 0, m¬(s2) = 1, and so on. Of course, any assignment of val-
ues to states sj yields a valid property—we merely consider the property
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equivalent to the subset of ΣS that does not contain s1, contains s2, and so
forth.

If A now is able to predict the outcome of m¬, then there must be some
state an such that p(an, sj) = m¬(sj). However, this state clearly cannot
be a1, since m¬ differs from m1 in the value assigned to s1; it cannot be a2,
since m¬ differs from m2 in the value assigned to s2. Generally, for each n,
mn(sn) �= m¬(sn); hence, there can be no state in whichA correctly predicts
the outcomes of m¬ for all sj .

ai

sj

a
(1)
i a

(2)
i a

(n)
i s

(1)
j s

(2)
j s

(m)
j

FIGURE 5.4: Schematic representation of A’s prediction
task: A’s tape is initialized with n symbols (a

(1)
i , . . . , a

(n)
i )

encoding the program for predicting the ith property
(that is, it is in state ai), concatenated with m symbols
(s

(1)
j , . . . , s

(m)
j ) encoding S’s state sj . By successively read-

ing these symbols and carrying out the appropriate opera-
tions, it then computes the value of p(sj , ai).

We can also look at this in the way shown in Fig. 5.4. A is considered
to be a Turing machine implementing the function p(a, s). On its tape, it re-
ceives an n-symbol description of a program ai for predicting the ith prop-
erty, as well as an m-symbol description of the state sj of the system. The
output then is given by the entry at position (j, i) of Table 5.2. The entries
with value 1 along the main diagonal then yield the set of all states si such
that A predicts that S in state si has property πi. The set of all of those si is
a subset of ΣS , i.e. a property, which we will call πΔ. Then, the complement
of this set is another property π¬ = π⊥Δ.

If this is now the nth property, A is faced with having to make a con-
tradictory prediction: if A predicts that sn has the nth property, then sn is a
member of the set πΔ; but the nth property is precisely the complement of
that set, and hence A ought to predict that sn does not have that property.
Likewise, if A predicts that sn does not have the nth property, then sn is a
member of the set π⊥Δ, and consequently, possesses the nth property.

Consequently, there does not exist a Turing machine such that it can pre-
dict the values of all measurements, and if we again assume the Church-
Turing thesis, there are properties such that no computable process ever
accurately predicts whether a system possesses them. Note that on this
formulation, we need not impose any restrictions on the cardinality of the
state spaces: for whatever cardinality that may be, a Turing machine only
accepts finite-length programs with finite-length inputs. Thus, if this is an
accurate representation of how real-world prediction of measurement out-
comes occurs, then no prediction of every possible measurement outcome
is possible in general.

Nevertheless, the empirical relevance of this result might still be ques-
tioned: after all, real-world measurements always have finite accuracy;
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hence, there always exists room for further improvement, and consequently,
for gaining additional information about a system. Furthermore, as de-
tailed above, A just fails to be able to consistently predict the measurement
outcome of one particular measurment, if the system is in one particular
state. Consequently, it might be unlikely that this possibility ever has any
empirically observable consequences.

Regarding the first objection, however, we note that while this is the
case with continuous state spaces, the elements of a state space whose car-
dinality is that of the natural numbers can be respresented exactly using
a finite amount of information; nevertheless, even in this case, the result
above shows that we cannot predict the outcome of all possible measure-
ments.

The last objection can be countered by noting that we can, in fact, use
the above method to construct many more (indeed, infinitely many) incon-
sistent properties. For instance, we need not limit ourselves to choosing
the values to flip along the main diagonal; we can equally well choose the
value ai assigns to si+1, if i is even, and to si−1 if it is odd (with the excep-
tion of i = 1, where we have to take s1). Or, indeed, we could flip a value
at some randomly chosen index j in each row, just taking care not to repeat
this choice.

Consequently, there exist infinitely many measurements such that a
given apparatus A cannot predict their outcome for every state s of the
object system S. In fact, since the cardinality of the set of properties is that
of the powerset of ΣS , almost all (in the sense of ‘all but a measure-zero
subset’) properties are unpredictable. But this does not imply a limit on the
information to be gained about a system: for any ε, in a continuous state
space, if we localize a system beyond the accuracy given by ε, we still have
only gained a finite amount of information about the system, and conse-
quently, there is still an infinite amount of information unknown to us.

Hence, we now turn to the first assumption, namely, the assumption
that we can only acquire a finite amount of information for each system.

5.2.5 Making Undecidability Quantifiable: Berry’s Paradox

The proof in the previous section, much like the work of Turing, Gödel, and
others, establishes the existence of ‘unsolvable questions’ of a certain kind,
essentially by exhibiting an example. However, it does nothing to quantify
their prevalence. To illustrate this, consider localizing a system within its
state space by a series of nested intervals. Assume for the moment that the
state space is continuous, but bounded; certainly, this is effectively the case
for any real physical system, with e.g. its position limited by the size of
the laboratory. We can then simply map the k-dimensional state space to
the k-dimensional unit hypercube [0, 1]×k. Such a mapping also exists if we
assume an unbounded state space, and restrict ourselves to the open unit
hypercube (0, 1)×k; for instance, in the one dimensional case, every x ∈ R

is mapped to y ∈ (0, 1) by

f(x) =
1

1 + e−x
. (5.35)

However, for every such mapping, the density of states will be highly
non-uniform—in fact, for any interval (0, a) with a < 1, almost all states
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will lie outside the interval. Hence, we restrict ourselves to bounded state
spaces, with however arbitrary bounds.

Then, we can just ask whether s is in (0, 1
2), yielding one bit of infor-

mation regarding the state of S (in the case of a k-dimensional state space,
we need to repeat the question for every dimension, thus yielding k bits of
information). Afterwards, we again split the remaining space in half, and
so on, narrowing down the state of S with ever increasing accuracy: n bits
of information suffice to localize the system within a state space volume
of size 2−n (or, for k-dimensional state spaces, kn bits localize the system
within a volume of 2−kn).

However, at any given point in this procedure, there are still infinitely
many questions left open, so to speak. The assumption of finite information
then boils down to postulating that there is an end-point to the iteration:
after having accumulated a maximum of information, say n0 bits, the state
of the system cannot be further constrained. This could occur in two ways:
first, there might be no more information available—i.e. the state space
is partitioned into cells of a given minimum volume, and once a state is
located within that volume, we simply know all there is to know.

This possibility, however, is in conflict with the principle of additional
information: as demonstrated above, it is always possible to acquire new
information about a system. Hence, whenever we acquire new informa-
tion, some information we already have must become obsolete, in order to
not exceed the maximum. Within the toy theory, this occurs via a random-
ization of the ontic state consistent with the information acquired upon the
most recent measurement; in quantum mechanics, we require the state to
indeterministically transition to an eigenstate of a given measurement op-
erator.

As we did with the postulate of additional information in the previous
section, we now venture to likewise give a reason behind the postulate of
finite information. This will be achieved as follows. The proof in the pre-
vious section relied on finding a single inconsistent assignment of values,
by constructing a ‘self-negating’ property π¬. In analogy, Gödel’s result can
be said to rely on a suitable formalization of the liar-paradox, which like-
wise yields a single statement that cannot be consistently assigned a truth
value. In order to extend these results, then, we will instead find a formula-
tion such that we can find a class of ‘paradoxical’ statements whose extent,
moreover, can be precisely quantified, and show that there exists a limit
such that every question further constraining the state space localization of
S falls within this class.

This construction takes its leave from the Berry paradox. As noted
above, the paradox in this case is that

“the smallest number not definable in less than eleven words”

uniquely names a number if and only if that number is, in fact, not defin-
able in less than eleven words; but in this case, the above statement is a
definition of this number, consisting of merely ten words.

Berry’s paradox, in a suitably formalized manner, can be used to for-
mulate an incompleteness theorem due to Chaitin (1974) asserting that all
statements beyond a given limit are undecidable within a given formal sys-
tem. Since the theorem is less familiar than the Gödelian version, we will
present a short outline of its proof.
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First of all, we will formalize what it means to ‘define’ a number. Fix a
universal Turing machine U , again taking programs from a prefix-free set
(in the following, we will always assume programs to come from a prefix-
free set). Then, a number (or string) σ is defined by a program x such that
U(x) = σ. As defined in Sec. 5.2.2, the length of the shortest x such that x
defines σ then is the Kolmogorov complexity of σ, denoted K(σ).

Additionally, assume F is an axiom system of sufficient strength to for-
malize assertions about the Kolmogorov complexity of strings, such that F
is sound—that is, such that every statement about complexity it proves is,
in fact, true (this is a stronger requirement than necessary for establishing
Gödel’s incompleteness theorem, where one merely needs to require that
the system is consistent, i.e. proves no contradictions).

For this system F , it can then be shown that there exists a constant n0

such that all assertions of the form

K(σ) ≥ n0 (5.36)

are unprovable in F . However, since there are infinitely many strings with
complexity above any given threshold, this translates to infinitely many
undecidable statements.

To prove this, imagine a program, p, such that p enumerates all proofs
within F , and halts whenever it finds a proof that the Kolmogorov com-
plexity of some integer z is exactly n, outputting z. This program itself
has a certain Kolmogorov complexity, given by a constant cp, specifying the
program itself, plus a contribution of size log2(n) encoding the number n.
However, since p is a program that outputs z, it is itself a definition of z, of
complexity K(z) = cp + log2(n). Yet, p outputs z if and only if the complex-
ity of z is equal to n; but there exists some n0 for which n0 > cp + log2(n0),
and thus, while proving that z has no description shorter than n0 bits, p is
itself a description of z shorter than n0 bits. Consequently, no such proof
can be present among the proofs of F .

We now need to translate this result to our setting. First of all, consider
the state s of S as given by the values assigned to a (countably infinite) set
of properties πi (cf. Eq. 5.31),

s = (π
(v)
1 , π

(v)
2 , π

(v)
3 , . . .). (5.37)

As briefly discussed above, such a sequence suffices to ‘localize’ the state of
S arbitrarily well within its state space. This is due to the fact that the set
of all extensions of a n-bit sequence—i.e. the set of all sequences that have
this sequence as their n-bit prefix—forms a set of (uniform) measure 2−n,
and thus, with n increasing, any desired localization can be achieved.

If we now assume that each physical system can, in principle, have each
of these properties, then the above sequence is almost surely random, in
the sense that the non-random infinite sequences (bit strings) form a set
of measure zero (see, e.g., (Li and Vitányi 1993, p. 122)); consequently, a
generic state s of a system S leads to a sequence as in Eq. 5.37 that is random
with probability one.

Now, the question arises: how many bits of the sequence in Eq. 5.37 can
A obtain? If the answer turns out to be infinite, then A can localize the state
of S to arbitrary accuracy within its state space.
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However, supposing that A can obtain knowledge of infinitely many
bits of s is in fact inconsistent with the randomness of the sequence. Here,
by randomness, we mean algorithmic randomness (see Eq. 5.22).

Now assume, for contradiction, that A can obtain infinitely many bits
of s (the following proof closely parallels the one given by Chaitin (1992)).
Furthermore, assume that there exists a program pA modeling the process
by which A obtains bits of s. Then, there exists a special-purpose computer
C and a program p given by the string

p = 00 . . . 01︸ ︷︷ ︸
l bits

pAx, (5.38)

such that in executing this program, C does the following: first, it reads the
l initial bits, which essentially just tells it the number l. Then, it executes
the program pA, generating bits of the sequence s (in no particular order);
in doing so, it keeps count of the number of bits r it has read of pA. It stops
executing pA as soon as it has found the values and positions of r + 2l bits
of the sequence in Eq. 5.37 (note that knowledge of the position of a given
bit of this sequence is equal to knowledge of which property it is that takes
the proven value). Consequently, C executes only the program p′ given by

p′ = 00 . . . 01︸ ︷︷ ︸
l bits

p′Ax, (5.39)

where p′A is given by the first r bits of pA.
Thus, after having executed this program, C knows the values and po-

sitions of r + 2l bits of the representation of s as given in Eq. 5.37. Then, C
determines the value of that bit of the sequence that is the furthest to the
right, i.e. the last bit whose value it has proven. Say this bit is at position n.
Consequently, C knows the values (and positions) of r + 2l bits (including
the final one) of the initial segment

sn = (π
(v)
1 , π

(v)
2 , π

(v)
3 , . . . , π(v)

n ). (5.40)

Now, there are n−r−2l bits in this sequenceC does not know. These bits
are given to it in the string x of the program p′. As a result, C then knows
the first n bits of s, outputs them, and halts. Its action on the program p′ is
thus

C(00 . . . 01︸ ︷︷ ︸
l bits

pAx) = sn. (5.41)

The length of p′ is given by

|p′| = l + r + n− r − 2l = n− l. (5.42)

Consequently, we can give an upper bound on the Kolmogorov complexity
of sn given by

K(sn) ≤ n− l + c′, (5.43)

where c′ is a constant equal to the length of the shortest program simulating
C on some universal Turing machine. Due to the randomness of s, we thus
have

n− c < K(sn) ≤ n− l + c′, (5.44)
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which implies that l < c + c′. Consequently, if we now take l = c + c′,
we obtain again a contradiction of the Berry type: K(sn), if A could obtain
the values of r + 2l bits of s, must be smaller than n − c; but we know
that this bound must hold by the randomness of s. Hence, A cannot obtain
all of these values, and thus, can only approximate it to a finite degree of
precision. In other words, we have proven that the maximal information
obtainable about the state of S by a universal observer A is finite.

As it stands, this proof has an obvious lacuna: we have assumed that the
process by which A obtains the values of elements of s—that is, by which it
decides whether S has a given property πi in state s—is equivalent to some
program pA. This is equivalent to assuming the physical Church-Turing the-
sis (or sometimes Church-Turing-Deutsch thesis (Deutsch 1985), which states
that all physically computable functions are Turing-computable (Piccinini
2007). If this thesis does not hold, then the proof above fails: there might
not exist a (Turing-computable) program pA; consequently, the process by
which A decides whether a given system has some property would be non-
computable, and the conjunction of the systems A and S would constitute
a device capable of computing a non-Turing computable function—a so-
called hypercomputer (Copeland 2002; Copeland and Proudfoot 1999).

This is a substantive, and controversial, thesis about physical reality.
Attitudes towards it range from the assumption that the universe, in some
sense, is itself nothing but a giant computer (a notion which takes its origin
with Zuse’s Rechnender Raum (calculating space) (Zuse 1969)), to the idea that
the process behind quantum state reduction allows the harnessing of hyper-
computational resources (Hameroff and Penrose 2014). We will not propose
to enter this discussion here, but merely note that the thesis is, in princi-
ple, experimentally refutable—although what exact form such a refutation
would take is itself subject to discussion (Leitsch, Schachner, and Svozil
2008). Consequently, we adopt it as an empirical principle on par with the
finiteness of the speed of light, or the geometry of Minkowski space.

It is interesting to note here that Masanes, Müller, et al. (2013) point out
that their assumption that a suitable set of gbits suffices to reversibly encode
any unknown state of an arbitrary system essentially amounts to assuming
the Church-Turing-Deutsch thesis.

Combining the results of this and the previous section, we have thus
shown a possible point of origin for both the postulate of finite information
and the possibility of always being able to obtain additional information,
in the same sense that the geometry of Minkowski space is the point of ori-
gin for the finiteness of the speed of light. According to these results, the
possibility of obtaining additional information originates from the impos-
sibility of predicting all possible measurement outcomes, as established via
Lawvere’s fixed-point theorem; while the impossibility of obtaining infinite
information about a system then follows from a contradiction of the Berry
type that arises in assuming that an observer could predict infinitely many
of the properties of an object system, combined with the assumption that
there exist no physical resources capable of hypercomputation.
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Chapter 6

Conclusions and Outlook

In this thesis, we have engaged with the topic of quantum correlations from
three different vantage points: regarding the methods of their detection,
their possible applications to tasks not classically feasible, and finally, their
foundations.

We first considered a generalization of the Kochen-Specker theorem
aimed at making its predictions testable in real-world experiments. A nec-
essary assumption in the Kochen-Specker theorem is the compatibility of
measurements that are performed jointly; however, due to unavoidable ex-
perimental noise, this compatibility is in general not given in experiments:
this is the problem of compatibility.

We demonstrated, using a simple class of Markov models, that in the
case of imperfect compatibility, spurious violations of inequalities derived
to enable the experimental testability of the Kochen-Specker theorem may
occur. To remedy this, we proposed a new nondisturbance assumption,
noncontextual evolution, that essentially posits that a system traverses a
sequence of hidden-variable states independently of the measurements that
are performed on it. This allowed us to derive modifications of existing
Kochen-Specker inequalities, such that the performed measurements obey
a time-ordering. We showed that, in contrast to the usual Kochen-Specker
inequalities, these inequalities cannot be violated by a Markov model, and
consequently, allow for experimental testing even if the observables fail to
be compatible.

Since the nondisturbance assumption we posit reduces to Kochen-Spec-
ker noncontextuality in the limit of perfect compatibility, these modified
inequalities may thus be regarded as enabling the real-world experimen-
tal implementation of tests against a more general set of hidden-variable
theories.

Furthermore, we considered the possibility of detecting the entangle-
ment content of completely unknown quantum states. Many tests for en-
tanglement, such as e.g. entanglement witnesses, have to be tailored to-
wards a specific state whose entanglement one wants to detect, such that
they may fail to detect the entanglement in case a different, yet entangled,
state is prepared by the source. On the other hand, tests of unknown quan-
tum states, such as for instance quantum state tomography, become pro-
hibitively resource-intensive for even comparatively small systems.

We proposed a construction of witness operators from random local
measurements, such that a semidefinite program is used to determine if
entanglement has been detected. This enables a protocol that is guaranteed
to eventually detect the entanglement of any given state: we may simply
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continue to add local measurements, until the semidefinite program con-
cludes a detection.

We demonstrated that this procedure scales much more favorably with
system size than quantum tomography. Additionally, we discussed the ef-
fect of performing additional measurements on the statistics—and thus, the
number of repetitions of individual measurements—needed to conclude a
detection within a given level of confidence.

Turning then to the possible applications of quantum correlations, we
proposed a new task having no classical solution that can nevertheless be
performed using quantum resources: the certification of lower bounds on
detector efficiency. While classically, it is always possible to introduce, e.g.,
source rate variations or false clicks in order to ‘fake’ a given detection effi-
ciency if one does not have access to the devices’ inner workings, in quan-
tum mechanics, it turns out that the violation of Bell inequalities can be
leveraged to produce a bound on the minimum efficiency a detector must
exceed.

In order to achieve this, we proposed a method of generating Bell in-
equalities using only the observed measurement data. This is possible due
to the fact that the classically achievable correlations from a convex poly-
tope defined by finitely many vertices. Since these vertices are uniquely
determined by the given experimental setting (i.e. the number n of observ-
ables on Alice’s, and the numberm of observables on Bob’s side), it becomes
possible to check, via a linear program, whether the observed measurement
statistics lie within the polytope. If they do not, then there exists a Bell in-
equality violated by these statistics, and moreover, this Bell inequality can
be explicitly constructed such that it is maximally violated. Additionally,
the construction is such that the Bell inequalities found in this way are in-
herently free from the fair sampling loophole, that is, their violation is not
due to possible sampling effects induced by data rejection.

This method already has several interesting potential applications: for
one, it can be considered a natural further development of the witness con-
struction presented previously, where now we not only leave the quantum
state, but also the performed measurements unknown. This is due to the
fact that every Bell inequality can be considered an entanglement witness,
since entanglement is a necessary condition to achieve Bell inequality viola-
tion. Furthermore, our construction represents a method to generate Bell in-
equality violations even in the absence of a shared reference frame between
distant laboratories; indeed, we may leave our detectors fully uncharacter-
ized. Finally, since the secret key rate in certain device-independent quan-
tum key distribution schemes depends on the degree of violation of a Bell
inequality, our method allows to find a protocol where no Bell inequality
needs to be agreed upon a priori by the parties, but where the Bell inequal-
ity leading to the highest key rate can simply be determined from the ob-
served measurement statistics.

However, our main focus was the certification of lower bounds on de-
tector efficiencies. For any given Bell inequality, a minimum detection ef-
ficiency can be calculated such that no violation can be observed using de-
tectors not meeting this minimum requirement. In general, this calculation
necessitates optimization over the full set of quantum correlations, which
is difficult to characterize; however, using the Navascués-Pironio-Acín hi-
erarchy, we are able to derive a sequence of increasing lower bounds to this
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efficiency. Taking into account the magnitude of the quantum value then
allows to compute even better lower bounds.

The last topic of this thesis then was to discuss a program to propose
foundational principles on which quantum theory rests, in analogy to spe-
cial relativity, whose empirical content derives from the principle of relativ-
ity combined with the constancy of the speed of light across all frames of
reference. Several reconstructions of quantum mechanics share an appeal
to certain epistemic restrictions as their common basis. Such restrictions es-
sentially put a bound on the information accessible about a given system,
while nevertheless stipulating that new information can always be gained
via measurement.

Just as the geometry of Minkowski space underlies the principles of
special relativity, we proposed to look towards logical restrictions imposed
upon (universal) observers by the phenomena of paradoxical self-reference.
We could show, using a diagonalization argument, that no observer can
predict the outcome of every measurement—essentially, because it is pos-
sible to construct a paradoxical property such that any prediction is self-
falsifying: if the observer predicts that the object system possesses the prop-
erty, then it does not, and vice versa. This bears a strong analogy to the
undecidability of the halting problem, which can be proved by construct-
ing a program that halts exactly if it predicts that it fails to halt, and vice
versa. Thus, this shows that new information can always be obtained about
a physical system.

Furthermore, under the assumption of the physical Church-Turing the-
sis, it is possible to show that only finitely many of the properties of a given
physical system can be simultaneously observed: for if it were the case that
there exists a computable procedure that produces the values of all proper-
ties, then one could produce a program such that it yields n bits encoding
whether the system has or fails to have n given properties, with the length
of this program being smaller than the bound imposed by the algorithmic
randomness of this sequence. Thus, there exists a finite (albeit noncom-
putable) bound on the total information obtainable about a given system,
in other words, an epistemic restriction.

It is interesting to observe here that the proofs mentioned above depend
critically on the properties of the category Set, most notably, the possibility
to arbitrarily copy information. This is a feature inherent in our conception
of the world: without it, communication in the everyday sense becomes im-
possible. After all, communication has only taken place if afterwards both
the provider and the recipient are in possession of the same information—
i.e. if each possesses a copy of the same information. Thus, all the informa-
tion we can share (such as this thesis) is of necessity classical information:
the quantum world is removed from our everyday experience not through
size, but rather, through communicability.
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